
MATLAB®

Function Reference

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB Function Reference
© COPYRIGHT 1984–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)
March 2007 Online only Revised for 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)
September 2009 Online only Revised for Version 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)
March 2018 Online only Revised for Version 9.4 (Release 2018a)
September 2018 Online only Revised for Version 9.5 (Release 2018b)
March 2019 Online only Revised for Version 9.6 (Release 2019a)

Alphabetical List
1

v

Contents

Alphabetical List

1

Logical Operators: Short-Circuit && ||
Logical operations with short-circuiting

Syntax
expr1 && expr2
expr1 || expr2

Description
expr1 && expr2 represents a logical AND operation that employs short-circuiting
behavior on page 1-4. That is, expr2 is not evaluated if expr1 is logical 0 (false).
Each expression must evaluate to a scalar logical result.

expr1 || expr2 represents a logical OR operation that employs short-circuiting
behavior on page 1-4. That is, expr2 is not evaluated if expr1 is logical 1 (true). Each
expression must evaluate to a scalar logical result.

Examples

Use Scalar Logical Conditions

Create two vectors.

X = [1 0 0 1 1];
Y = [0 0 0 0 0];

Using the short-circuit OR operator with X and Y returns an error. The short-circuit
operators operate only with scalar logical conditions.

Use the any and all functions to reduce each vector to a single logical condition.

any(X) || any(Y)

1 Alphabetical List

1-2

ans = logical
 1

The expression is equivalent to 1 OR 0, so it evaluates to logical 1 (true) after
computing only the first condition, any(X).

Specify Dependent Logical Conditions

Specify a logical statement where the second condition depends on the first. In the
following statement, it doesn't make sense to evaluate the relation on the right if the
divisor, b, is zero.

b = 1;
a = 20;
x = (b ~= 0) && (a/b > 18.5)

x = logical
 1

The result is logical 1 (true). However, if (b ~= 0) evaluates to false, MATLAB®
assumes the entire expression to be false and terminates its evaluation of the
expression early.

Specify b = 0 and evaluate the same expression.

b = 0;
x = (b ~= 0) && (a/b > 18.5)

x = logical
 0

The result is logical 0 (false). The first statement evaluates to logical 0 (false), so the
expression short-circuits.

 Logical Operators: Short-Circuit && ||

1-3

Change Structure Field Value

Create a structure with fields named 'File' and 'Format'.

S = struct('File',{'myGraph'},'Format',[])

S = struct with fields:
 File: 'myGraph'
 Format: []

Short-circuit expressions are useful in if statements when you want multiple conditions
to be true. The conditions can build on one another in such a way that it only makes sense
to evaluate the second expression if the first expression is true.

Specify an if statement that executes only when S contains an empty field named
'Format'.

if isfield(S,'Format') && isempty(S.Format)
 S.Format = '.png';
end
S

S = struct with fields:
 File: 'myGraph'
 Format: '.png'

The first condition tests if 'Format' is the name of a field in structure S. The second
statement then tests whether the Format field is empty. The truth of the second condition
depends on the first. The second condition can never be true if the first condition is not
true. Since S has an empty field named 'Format', the body statement executes and
assigns S.Format the value '.png'.

Definitions

Logical Short-Circuiting
With logical short-circuiting, the second operand, expr2, is evaluated only when the
result is not fully determined by the first operand, expr1.

1 Alphabetical List

1-4

Due to the properties of logical AND and OR, the result of a logical expression is
sometimes fully determined before evaluating all of the conditions. The logical and
operator returns logical 0 (false) if even a single condition in the expression is false. The
logical or operator returns logical 1 (true) if even a single condition in the expression is
true. When the evaluation of a logical expression terminates early by encountering one of
these values, the expression is said to have short-circuited.

For example, in the expression A && B, MATLAB does not evaluate condition B at all if
condition A is false. If A is false, then the value of B does not change the outcome of the
operation.

When you use the element-wise & and | operators in the context of an if or while loop
expression (and only in that context), they use short-circuiting to evaluate expressions.

Note Always use the && and || operators to enable short-circuit evaluation. Using the &
and | operators for short-circuiting can yield unexpected results when the expressions do
not evaluate to logical scalars.

See Also
all | and | any | false | find | logical | or | true | xor

Topics
“Reduce Logical Arrays to Single Value”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 Logical Operators: Short-Circuit && ||

1-5

colon, :
Vector creation, array subscripting, and for-loop iteration

The colon is one of the most useful operators in MATLAB. It can create vectors, subscript
arrays, and specify for iterations.

Syntax
x = j:k

x = j:i:k

A(:,n)

A(m,:)

A(:)

A(j:k)

Description
x = j:k creates a unit-spaced vector x with elements [j,j+1,j+2,...,j+m] where m
= fix(k-j). If j and k are both integers, then this is simply [j,j+1,...,k].

x = j:i:k creates a regularly-spaced vector x using i as the increment between
elements. The vector elements are roughly equal to [j,j+i,j+2*i,...,j+m*i] where
m = fix((k-j)/i). However, if i is not an integer, then floating point arithmetic plays
a role in determining whether colon includes the endpoint k in the vector, since k might
not be exactly equal to j+m*i. If you specify nonscalar arrays, then MATLAB interprets
j:i:k as j(1):i(1):k(1).

x = colon(j,k) and x = colon(j,i,k) are alternate ways to execute the commands
j:k and j:i:k, but are rarely used. These syntaxes enable operator overloading for
classes.

A(:,n), A(m,:), A(:), and A(j:k) are common indexing expressions for a matrix A
that contain a colon. When you use a colon as a subscript in an indexing expression, such

1 Alphabetical List

1-6

as A(:,n), it acts as shorthand to include all subscripts in a particular array dimension.
It is also common to create a vector with a colon for the purposes of indexing, such as
A(j:k). Some indexing expressions combine both uses of the colon, as in A(:,j:k).

Common indexing expressions that contain a colon are:

• A(:,n) is the nth column of matrix A.
• A(m,:) is the mth row of matrix A.
• A(:,:,p) is the pth page of three-dimensional array A.
• A(:) reshapes all elements of A into a single column vector. This has no effect if A is

already a column vector.
• A(:,:) reshapes all elements of A into a two-dimensional matrix. This has no effect if

A is already a matrix or vector.
• A(j:k) uses the vector j:k to index into A and is therefore equivalent to the vector

[A(j), A(j+1), ..., A(k)].
• A(:,j:k) includes all subscripts in the first dimension but uses the vector j:k to

index in the second dimension. This returns a matrix with columns [A(:,j), A(:,j
+1), ..., A(:,k)].

Examples

Create Unit-Spaced Vector

Create a unit-spaced vector of numbers between 1 and 10. The colon operator uses a
default increment of +1.

x = 1:10

x = 1×10

 1 2 3 4 5 6 7 8 9 10

Create Vector with Specified Increment

Create vectors that increment or decrement by a specified value.

 colon, :

1-7

Create a vector whose elements increment by 0.1.

x = 0:0.1:1

x = 1×11

 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

Create a vector whose elements decrement by -2.

y = 10:-2:0

y = 1×6

 10 8 6 4 2 0

Index Matrix Rows and Columns

Examine several ways to index a matrix using a colon :.

Create a 3-by-3 matrix. Index the first row.

A = magic(3)

A = 3×3

 8 1 6
 3 5 7
 4 9 2

A(1,:)

ans = 1×3

 8 1 6

Index the second and third column.

A(:,2:3)

1 Alphabetical List

1-8

ans = 3×2

 1 6
 5 7
 9 2

Reshape the matrix into a column vector.

A(:)

ans = 9×1

 8
 3
 4
 1
 5
 9
 6
 7
 2

Specify for-loop Iterations

In the context of a for-loop, the colon specifies the loop iterations.

Write a for-loop that squares a number for values of n between 1 and 4.

for n = 1:4
 n^2
end

ans = 1

ans = 4

ans = 9

ans = 16

 colon, :

1-9

Input Arguments
j — Starting vector value
scalar

Starting vector value, specified as a real numeric scalar. If j < k so that the output
vector is not empty, then j is the first element in the vector.
Example: x = 0:5
Example: x = 0:0.5:5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | datetime | duration

k — Ending vector value
scalar

Ending vector value, specified as a real numeric scalar. k is the last value in the vector
only when the increment lines up to exactly land on k. For example, the vector 0:5
includes 5 as the last value, but 0:0.3:1 does not include the value 1 as the last value
since the increment does not line up with the endpoint.
Example: x = 0:5
Example: x = 0:0.5:5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | datetime | duration

i — Increment between vector elements
1 (default) | scalar

Increment between vector elements, specified as a real numeric scalar.
Example: x = 0:0.5:5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | datetime | duration

Output Arguments
x — Regularly-spaced vector
row vector

1 Alphabetical List

1-10

Regularly-spaced vector, returned as a row vector. If j > k, then x = j:k is an empty
matrix. More generally, the syntax x = j:i:k returns an empty matrix when:

• i, j, or k is an empty input
• i == 0
• i > 0 and j > k
• i < 0 and j < k

Tips
• The for reference page has a description of how to use : in the context of loop

statements.
• linspace is similar to the colon operator :, but it gives direct control over the

number of points and always includes the endpoints. The sibling function logspace
generates logarithmically spaced values.

• When you create a vector to index into a cell array or structure array (such as
cellName{:} or structName(:).fieldName), MATLAB returns multiple outputs in
a comma-separated list. For more information, see “How to Use the Comma-Separated
Lists”.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with some limitations. For more information, see “Index
and View Tall Array Elements”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 colon, :

1-11

• Complex inputs are not supported.
• The input i cannot have a logical value.
• Vector inputs are not supported.
• Inputs must be constants.
• Uses single-precision arithmetic to produce single-precision results.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• You can build the GPU array equivalent to A:B or A:D:B in this way:

C = gpuArray.colon(A,B)
C = gpuArray.colon(A,D,B)

You can also pass GPU arrays directly to the colon operator (A:D:B).
• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The colon operator is not supported. Instead, build the distributed array equivalent to
A:B or A:D:B in this way:

C = distributed.colon(A,B)
C = distributed.colon(A,D,B)

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

1 Alphabetical List

1-12

See Also
for | linspace | logspace | reshape | varargin

Topics
“Generate Sequence of Dates and Time”
“MATLAB Operators and Special Characters”
“Array Indexing”

Introduced before R2006a

 colon, :

1-13

abs
Absolute value and complex magnitude

Syntax
Y = abs(X)

Description
Y = abs(X) returns the absolute value on page 1-16 of each element in array X.

If X is complex, abs(X) returns the complex magnitude on page 1-16.

Examples

Absolute Value of Scalar
y = abs(-5)

y = 5

Absolute Value of Vector

Create a numeric vector of real values.

x = [1.3 -3.56 8.23 -5 -0.01]'

x = 5×1

 1.3000
 -3.5600
 8.2300
 -5.0000

1 Alphabetical List

1-14

 -0.0100

Find the absolute value of the elements of the vector.

y = abs(x)

y = 5×1

 1.3000
 3.5600
 8.2300
 5.0000
 0.0100

Magnitude of Complex Number

y = abs(3+4i)

y = 5

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. If X is
complex, then it must be a single or double array. The size and data type of the output
array is the same as the input array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

 abs

1-15

Definitions

Absolute Value
The absolute value (or modulus) of a real number is the corresponding nonnegative value
that disregards the sign.

For a real value, a, the absolute value is:

• a, if a is greater than or equal to zero
• -a, if a is less than zero

abs(-0) returns 0.

Complex Magnitude
The complex magnitude (or modulus) is the length of a vector from the origin to a
complex value plotted in the complex plane.

For a complex value, a + bi is defined as a2 + b2.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-16

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
angle | hypot | imag | norm | real | sign | unwrap

Introduced before R2006a

 abs

1-17

accumarray
Construct array with accumulation

Syntax
A = accumarray(subs,val)
A = accumarray(subs,val,sz)
A = accumarray(subs,val,sz,fun)
A = accumarray(subs,val,sz,fun,fillval)
A = accumarray(subs,val,sz,fun,fillval,issparse)

Description
A = accumarray(subs,val) returns array A by accumulating elements on page 1-30
of vector val using the subscripts subs. If subs is a column vector, then each element
defines a corresponding subscript in the output, which is also a column vector. The
accumarray function collects all elements of val that have identical subscripts in subs
and stores their sum in the location of A corresponding to that subscript (for index i,
A(i)=sum(val(subs(:)==i))). Elements of A whose subscripts do not appear in subs
are equal to 0.

For an m-by-n matrix subs, each row represents an n-dimensional subscript into output A.
The ith row of subs corresponds to the ith element in the vector val.

A = accumarray(subs,val,sz) returns an array, A, with size sz. Specify sz as a
vector of positive integers to define the size of the output, or as [] to let the subscripts in
subs determine the size of the output. Use sz when subs does not reference trailing
rows, columns, or dimensions that you would like to be present in the output.

A = accumarray(subs,val,sz,fun) applies the function fun to each subset of
elements in val that have identical subscripts in subs. Specify fun using the @ symbol
(e.g., @mean), or as [] to use the default function, @sum.

A = accumarray(subs,val,sz,fun,fillval) fills all elements of A that are not
referred to by any subscript in subs with the scalar value, fillval. The fillval input

1 Alphabetical List

1-18

must have the same class as the values returned by fun. Specify fillval as [] to use
the default value, 0.

A = accumarray(subs,val,sz,fun,fillval,issparse) returns an array, A, that is
sparse if the scalar issparse is true or 1, and full if issparse is false or 0. The
output, A, is full by default.

Examples

Find Bin Counts

Create a vector of subscripts, subs.

subs = [1; 2; 4; 2; 4]

subs = 5×1

 1
 2
 4
 2
 4

Use accumarray with val = 1 to count the number of identical subscripts in subs.

A = accumarray(subs,1)

A = 4×1

 1
 2
 0
 2

The result is a vector of bin counts. You can obtain the same answer with
histcounts(subs,'BinMethod','integers'). However, accumarray also can
compute bin counts over higher dimensional grids.

 accumarray

1-19

Accumulate Data

Create a vector of data, val, and a vector of subscript values with the same length, subs.

val = 101:105';
subs = [1; 3; 4; 3; 4]

subs = 5×1

 1
 3
 4
 3
 4

Use accumarray to sum the values in val that have identical subscripts in subs.

A = accumarray(subs,val)

A = 4×1

 101
 0
 206
 208

The result is a vector of accumulated values. Since the second and fourth elements of
subs are equal to 3, A(3) is the sum of the second and fourth elements of val, that is,
A(3) = 102 + 104 = 206. Also, A(2) = 0 because subs does not contain the value 2.
Since subs is a vector, the output, A, is also a vector. The length of A is max(subs,
[],1).

Specify Output Size

Create a vector of data, val, and a matrix of subscripts, subs.

val = 101:106';
subs = [1 1; 2 2; 3 2; 1 1; 2 2; 4 1]

subs = 6×2

1 Alphabetical List

1-20

 1 1
 2 2
 3 2
 1 1
 2 2
 4 1

The subscripts in subs define a 4-by-2 matrix for the output.

Use accumarray to sum the values in val that have identical subscripts in subs.

A = accumarray(subs,val)

A = 4×2

 205 0
 0 207
 0 103
 106 0

The result is a 4-by-2 matrix of accumulated values.

Use the sz input of accumarray to return a 4-by-4 matrix. You can specify a size with
each dimension equal to or greater than the default size, in this case 4-by-2, but not
smaller.

A = accumarray(subs,val,[4 4])

A = 4×4

 205 0 0 0
 0 207 0 0
 0 103 0 0
 106 0 0 0

The result is a 4-by-4 matrix of accumulated values.

Use Custom Functions

Create a vector of data, val, and a matrix of subscripts, subs.

 accumarray

1-21

val = [100.1 101.2 103.4 102.8 100.9 101.5]';
subs = [1 1; 1 1; 2 2; 3 2; 2 2; 3 2]

subs = 6×2

 1 1
 1 1
 2 2
 3 2
 2 2
 3 2

The subscripts in subs define a 3-by-2 matrix for the output.

Use the fun input of accumarray to calculate the within-group variances of data in val
that have identical subscripts in subs. Specify fun as @var.

A1 = accumarray(subs,val,[],@var)

A1 = 3×2

 0.6050 0
 0 3.1250
 0 0.8450

The result is a 3-by-2 matrix of variance values.

Alternatively, you can specify fun as an anonymous function so long as it accepts vector
inputs and returns a scalar. A common situation where this is useful is when you want to
pass additional parameters to a function. In this case, use the var function with a
normalization parameter.

A2 = accumarray(subs,val,[],@(x) var(x,1))

A2 = 3×2

 0.3025 0
 0 1.5625
 0 0.4225

The result is a 3-by-2 matrix of normalized variance values.

1 Alphabetical List

1-22

Sum Values Natively

Create a vector of data, val, and a matrix of subscripts, subs.

val = int8(10:15);
subs = [1 1 1; 1 1 1; 1 1 2; 1 1 2; 2 3 1; 2 3 2]

subs = 6×3

 1 1 1
 1 1 1
 1 1 2
 1 1 2
 2 3 1
 2 3 2

The subscripts in subs define a 2-by-3-by-2 multidimensional array for the output.

Use accumarray to sum the data values in val that have identical subscripts in subs.
You can use a function handle to sum the values in their native, int8, integer class by
using the 'native' option of the sum function.

A = accumarray(subs,val,[],@(x) sum(x,'native'))

A = 2x3x2 int8 array
A(:,:,1) =

 21 0 0
 0 0 14

A(:,:,2) =

 25 0 0
 0 0 15

The result is a 2-by-3-by-2 multidimensional array of class int8.

 accumarray

1-23

Group Values in Cell Array

Create a vector of data, val, and a matrix of subscripts, subs.

val = 1:10;
subs = [1 1;1 1;1 1;1 1;2 1;2 1;2 1;2 1;2 1;2 2]

subs = 10×2

 1 1
 1 1
 1 1
 1 1
 2 1
 2 1
 2 1
 2 1
 2 1
 2 2

The subscripts in subs define a 2-by-2 matrix for the output.

Use accumarray to group the elements of val into a cell array.

A = accumarray(subs,val,[],@(x) {x})

A = 2x2 cell array
 {4x1 double} {0x0 double}
 {5x1 double} {[10]}

The result is a 2-by-2 cell array.

Verify that the vector elements are in the same order as they appear in val.

A{2,1}

ans = 5×1

 5
 6
 7
 8
 9

1 Alphabetical List

1-24

Since the subscripts in subs are sorted, the elements of the numeric vectors in the cell
array are in the same order as they appear in val.

Using Functions That Depend on Data Order

Create a vector of data, val, and a matrix of subscripts, subs.

val = 1:5;
subs = [1 2; 1 1; 1 2; 1 1; 2 3]

subs =

 1 2
 1 1
 1 2
 1 1
 2 3

The subscripts in subs define a 2-by-3 matrix for the output, but are unsorted with
respect to the linear indices in the output, A.

Group the values in val into a cell array by specifying fun = @(x) {x}.

A = accumarray(subs,val,[],@(x) {x})

A =

 2×3 cell array

 [2×1 double] [2×1 double] []
 [] [] [5]

The result is a 2-by-3 cell array.

Examine the vector in A{1,2}.

A{1,2}

 accumarray

1-25

ans =

 3
 1

The elements of the A{1,2} vector are in a different order than in val. The first element
of the vector is 3 instead of 1. If the subscripts in subs are not sorted with respect to
their linear indices, then accumarray might not always preserve the order of the data in
val when it passes them to fun. In the unusual case that fun requires that its input
values be in the same order as they appear in val, sort the indices in subs with respect
to the linear indices of the output.

In this case, use the sortrows function with two inputs and two outputs to reorder subs
and val concurrently with respect to the linear indices of the output.

[S,I] = sortrows(subs,[2,1]);
A = accumarray(S,val(I),[],@(x) {x});
A{1,2}

ans =

 1
 3

The elements of the A{1,2} vector are now in sorted order.

Fill Output with NaN Values

Create a vector of data, val, and a matrix of subscripts, subs.

val = 101:106';
subs = [1 1; 2 2; 3 3; 1 1; 2 2; 4 4]

subs = 6×2

 1 1
 2 2
 3 3
 1 1

1 Alphabetical List

1-26

 2 2
 4 4

The subscripts in subs define a 4-by-4 matrix for the output, but only reference 4 out of
the 16 elements. By default, the other 12 elements are 0 in the output.

Use the fillval input of accumarray to fill in the extra output elements with NaN
values.

A = accumarray(subs,val,[],[],NaN)

A = 4×4

 205 NaN NaN NaN
 NaN 207 NaN NaN
 NaN NaN 103 NaN
 NaN NaN NaN 106

The result is a 4-by-4 matrix padded with NaN values.

Change Output Sparsity

Create a vector of data, val, and a matrix of subscripts, subs.

val = [34 22 19 85 53 77 99 6];
subs = [1 1; 400 400; 80 80; 1 1; 400 400; 400 400; 80 80; 1 1]

subs = 8×2

 1 1
 400 400
 80 80
 1 1
 400 400
 400 400
 80 80
 1 1

The subscripts in subs define a 400-by-400 matrix for the output, but only reference 3 out
of the 160,000 elements. When the result of an operation with accumarray leads to a

 accumarray

1-27

large output array with low density of nonzero elements, you can save storage space by
storing the output as a sparse matrix.

Use the issparse input of accumarray to return a sparse matrix.

A = accumarray(subs,val,[],[],[],true)

A =
 (1,1) 125
 (80,80) 118
 (400,400) 152

The result is a sparse matrix. You can obtain the same answer with
sparse(subs(:,1),subs(:,2),val).

Input Arguments
subs — Subscript matrix
vector of indices | matrix of indices | cell array of index vectors

Subscript matrix, specified as a vector of indices, matrix of indices, or cell array of index
vectors. The indices must be positive integers:

• The value in each row of the m-by-n matrix, subs, specifies an n-dimensional index
into the output, A. For example, if subs is a 3-by-2 matrix, it contains three 2-D
subscripts. subs also can be a column vector of indices, in which case the output, A, is
also a column vector.

• The ith row in subs corresponds to the ith data value in val.
• If subs is empty, then the accumarray function errors.

Thus, subs determines which data in val to group, as well as its final destination in the
output. If subs is a cell array of index vectors, each vector must have the same length,
and the function treats the vectors as columns of a subscript matrix.

val — Data
vector | scalar

Data, specified as a vector or scalar:

1 Alphabetical List

1-28

• If val is a vector, it must have the same length as the number of rows in subs.
• If val is a scalar, it is scalar expanded.

In both cases, a one-to-one pairing is present between the subscripts in each row of subs
and the data values in val.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

sz — Size of output array
[] (default) | vector of positive integers

Size of output array, specified as a vector of positive integers or [] (default). When you
specify [] for the default size, the values in subs determine the size of the output array,
A.

When you specify sz as a vector of positive integers, it must satisfy these properties:

• If subs is a nonempty m-by-n matrix with n > 1 columns, then sz must have n
elements and pass the logical test all(sz >= max(subs,[],1)).

• If subs is a nonempty column vector, then sz must be [m 1] where m >=
max(subs).

Example: sz = [3 3]

fun — Function
[] (default) | function handle

Function, specified as a function handle or [] (default). The default function is @sum. The
fun function must accept a column vector and return a numeric, logical, or char
scalar, or a scalar cell. If the subscripts in subs are not sorted with respect to their
linear indices, fun should not depend on the order of the values in its input data. For
more information on function handles, see “Create Function Handle”.
Example: fun = @max
Data Types: function_handle

fillval — Fill value
[] (default) | scalar

Fill value, specified as a scalar or [] (default). The default value of fillval is 0. If subs
does not reference each element in the output, accumarray fills in the output with the

 accumarray

1-29

value specified by fillval. The class of fillval must be the same as the values
returned by fun.

issparse — Output sparsity
false or 0 (default) | true or 1

Output sparsity, specified as a numeric or logical 1 (true) or 0 (false). Specify true or
1 when you want the output array to be sparse. If issparse is true or 1:

• fillval must be 0 or [].
• The values in val and the output values of fun must both have type double.

Output Arguments
A — Output array
vector | matrix | multidimensional array

Output array, returned as a vector, matrix, or multidimensional array. A has the same class
as the values returned by fun.

When sz is not specified, the size of A depends on the input subs:

• If subs is a nonempty matrix with n > 1 columns, then A is an n-dimensional array of
size max(subs,[],1).

• If subs is an empty matrix with n > 1 columns, then A is an n-dimensional empty
array with size 0-by-0-by-...-by-0.

• If subs is a nonempty column vector, then A is a column vector of length max(subs,
[],1). The length of A is 0 when subs is empty.

Definitions

Accumulating Elements
The following graphic illustrates the behavior of accumarray on a vector of temperature
data taken over a 12-month period. To find the maximum temperature reading for each
month, accumarray applies the max function to each group of values in temperature
that have identical subscripts in month.

1 Alphabetical List

1-30

No values in month point to the 5, 6, 7, or 10 positions of the output. These elements are
0 in the output by default, but you can specify a value to fill in using fillval.

Tips
• The behavior of accumarray is similar to that of the histcounts function. Both

functions group data into bins.

• histcounts groups continuous values into a 1-D range using bin edges.
accumarray groups data using n-dimensional subscripts.

• histcounts returns the bin counts and/or bin placement. However, accumarray
can apply any function to the binned data.

You can mimic the behavior of histcounts using accumarray with val = 1.

 accumarray

1-31

• The sparse function also has accumulation behavior similar to that of accumarray.

• sparse groups data into bins using 2-D subscripts, whereas accumarray groups
data into bins using n-dimensional subscripts.

• For elements with identical subscripts, sparse assigns the sum of those elements
to the output. accumarray does the same by default, but optionally can apply any
function to the bins.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Unless you provide explicit bounds on the accumarray input values, the code
generator may not be able to predetermine the size of the accumarray output.
Therefore, variable-size arrays and dynamic memory allocation must be enabled.

• Enumeration inputs are not supported.
• The input argument fun must return a full (non-sparse) scalar.
• When fun produces a scalar 1-by-1 cell array output:

• The fillval input is required, must be a scalar 1-by-1 cell array, and must contain
the same type as the output of fun contains.

• The order of accumulated values that fun receives as input may not match the
order in MATLAB.

• To predetermine the output type for fun, the code generator may call fun before
processing the accumarray input arguments. If the execution of fun causes side
effects, for instance by modifying a global or persistent variable or printing to output,
then the generated code results may differ from MATLAB results.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-32

Usage notes and limitations:

• The fun argument can be @sum (default), @prod, @min, @max, @any, or @all.
• val and fillval must be full (nonsparse) logical or floating-point (double or single)

arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
full | histcounts | sparse | sum

Introduced before R2006a

 accumarray

1-33

acos
Inverse cosine in radians

Syntax
Y = acos(X)

Description
Y = acos(X) returns the “Inverse Cosine” on page 1-37 (cos-1) of the elements of X in
radians. The function accepts both real and complex inputs.

• For real values of X in the interval [-1, 1], acos(X) returns values in the interval [0,
π].

• For real values of X outside the interval [-1,1] and for complex values of X, acos(X)
returns complex values.

Examples

Inverse Cosine of Value

Find the inverse cosine of a value.

y = acos(0)

y = 1.5708

Inverse Cosine of Vector of Complex Values

Find the inverse cosine of the elements of vector x. The acos function acts on x element-
wise.

1 Alphabetical List

1-34

x = [0.5i 1+3i -2.2+i];
y = acos(x)

y = 1×3 complex

 1.5708 - 0.4812i 1.2632 - 1.8642i 2.6799 - 1.5480i

Plot Inverse Cosine Function

Plot the inverse cosine function over the intervals −1 ≤ x ≤ 1.

x = -1:.01:1;
plot(x,acos(x))
grid on

 acos

1-35

Input Arguments
X — Cosine of angle
scalar | vector | matrix | multidimensional array

Cosine of angle, specified as a scalar, vector, matrix, or multidimensional array. The acos
operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-36

Definitions

Inverse Cosine
The inverse cosine is defined as

cos−1(z) = − ilog z + i 1− z2 1/2 .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates an error during simulation and returns NaN in generated code when the
input value X is real, but the output should be complex. To get the complex result,
make the input value complex by passing in complex(X).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

 acos

1-37

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acosd | asec | cos | cosd

Introduced in R2006a

1 Alphabetical List

1-38

acosd
Inverse cosine in degrees

Syntax
Y = acosd(X)

Description
Y = acosd(X) returns the inverse cosine (cos-1) of the elements of X in degrees. The
function accepts both real and complex inputs.

• For real values of X in the interval [-1, 1], acosd(X) returns values in the interval [0,
180].

• For values of X outside the interval [-1, 1] and for complex values of X, acosd(X)
returns complex values.

Examples

Inverse Cosine of 0

Verify that inverse cosine of 0 is exactly 90.

acosd(0)

ans = 90

Round-Trip Calculation for Complex Angles

Show that the inverse cosine, followed by cosine, returns the original values of X.

cosd(acosd([2 3]))

 acosd

1-39

ans = 1×2

 2 3

acosd([2 3]) returns two complex angles, which are then passed to the cosd function.
cosd returns the original values, 2 and 3.

Input Arguments
X — Cosine of angle
scalar value | vector | matrix | N-D array

Cosine of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or N-D
array. The acosd operation is element-wise when X is non-scalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-40

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acos | cos | cosd

Introduced before R2006a

 acosd

1-41

acosh
Inverse hyperbolic cosine

Syntax
Y = acosh(X)

Description
Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

The acosh function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Cosine Function

Graph the inverse hyperbolic cosine function over the domain 1 ≤ x ≤ π.

x = 1:pi/40:pi;
plot(x,acosh(x))
grid on
xlabel('x')
ylabel('y')

1 Alphabetical List

1-42

Definitions

Inverse Hyperbolic Cosine
For real values x in the domain x > 1, the inverse hyperbolic cosine satisfies

cosh−1 x = log x + x2− 1 .

For complex numbers z = x + iy, as well as real values in the domain − ∞ < z ≤ 1, the
call acosh(z) returns complex results.

 acosh

1-43

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates an error during simulation and returns NaN in generated code when the
input value x is real, but the output should be complex. To get the complex result,
make the input value complex by passing in complex(x).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-44

See Also
acos | asinh | atanh | cosh

Introduced before R2006a

 acosh

1-45

acot
Inverse cotangent in radians

Syntax
Y = acot(X)

Description
Y = acot(X) returns the “Inverse Cotangent” on page 1-49 (cot-1) of the elements of X
in radians. The function accepts both real and complex inputs.

• For real values of X, acot(X) returns values in the interval [-π/2, π/2].
• For complex values of X, acot(X) returns complex values.

Examples

Inverse Cotangent of a Value

Find the inverse cotangent of a value.

acot(2.6)

ans = 0.3672

Inverse Cotangent of a Vector of Complex Values

Find the inverse cotangent of the elements of vector x. The acot function acts on x
element-wise.

x = [0.5i 1+3i -2.2+i];
Y = acot(x)

1 Alphabetical List

1-46

Y = 1×3 complex

 1.5708 - 0.5493i 0.1093 - 0.3059i -0.3689 - 0.1506i

Plot the Inverse Cotangent Function

Plot the inverse cotangent function over the intervals −2π ≤ x < 0 and 0 < x ≤ 2π.

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),'b')
hold on
plot(x2,acot(x2),'b')
grid on

 acot

1-47

Input Arguments
X — Cotangent of angle
scalar | vector | matrix | multidimensional array

Cotangent of angle, specified as a scalar, vector, matrix, or multidimensional array. The
acot operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-48

Definitions

Inverse Cotangent
The inverse cotangent is defined as

cot−1(z) = tan−1 1
z .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

See Also
acotd | atan | cot | cotd

Introduced before R2006a

 acot

1-49

acotd
Inverse cotangent in degrees

Syntax
Y = acotd(X)

Description
Y = acotd(X) returns the inverse cotangent (cot-1) of the elements of X in degrees. The
function accepts both real and complex inputs.

• For real values of X, acotd(X) returns values in the range [-90, 90].
• For complex values of X, acotd(X) returns complex values.

Examples

Inverse Cotangent of Vector

x = [0 20 Inf];
y = acotd(x)

y = 1×3

 90.0000 2.8624 0

The acotd operation is element-wise when you pass a vector, matrix, or N-D array.

Inverse Cotangent of Complex Value

acotd(1+i)

1 Alphabetical List

1-50

ans = 31.7175 - 23.0535i

Input Arguments
X — Cotangent of angle
scalar value | vector | matrix | N-D array

Cotangent of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or
N-D array. The acotd operation is element-wise when X is non-scalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 acotd

1-51

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acot | cot | cotd

Introduced before R2006a

1 Alphabetical List

1-52

acoth
Inverse hyperbolic cotangent

Syntax
Y = acoth(X)

Description
Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

The acoth function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Cotangent Function

Graph the inverse hyperbolic cotangent function over the domains −30 ≤ x < − 1 and
1 < x ≤ 30.

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2))
grid on
xlabel('x')
ylabel('y')

 acoth

1-53

Definitions

Inverse Hyperbolic Cotangent
For real values x in the domain − ∞ < x < − 1 and 1 < x < ∞, the inverse hyperbolic
cotangent satisfies

coth−1 x = tanh−1 1
x = 1

2log x + 1
x− 1 .

1 Alphabetical List

1-54

For complex numbers z = x + iy as well as real values in the domain −1 ≤ z ≤ 1, the call
acoth(z) returns complex results.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 acoth

1-55

See Also
acosh | acot | asinh | atanh | coth

Introduced before R2006a

1 Alphabetical List

1-56

acsc
Inverse cosecant in radians

Syntax
Y = acsc(X)

Description
Y = acsc(X) returns the “Inverse Cosecant” on page 1-60 (csc-1) of the elements of X
in radians. The function accepts both real and complex inputs.

• For real values of X in the intervals [-∞, -1] and [1, ∞], acsc(X) returns real values in
the interval [-π/2, π/2].

• For real values of X in the interval (-1, 1) and for complex values of X, acsc(X)
returns complex values.

Examples

Inverse Cosecant of a Value

Find the inverse cosecant of a value.

acsc(3)

ans = 0.3398

Inverse Cosecant of a Vector of Complex Angles

Find the inverse cosecant of the elements of vector x. The acsc function acts on x
element-wise.

 acsc

1-57

x = [0.5i 1+3i -2.2+i];
Y = acsc(x)

Y = 1×3 complex

 0.0000 - 1.4436i 0.0959 - 0.2970i -0.3795 - 0.1833i

Plot the Inverse Cosecant Function

Plot the inverse cosecant function over the intervals −10 ≤ x < − 1 and 1 < x ≤ 10.

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),'b')
hold on
plot(x2,acsc(x2),'b')
grid on

1 Alphabetical List

1-58

Input Arguments
X — Cosecant of angle
scalar | vector | matrix | multidimensional array

Cosecant of angle, specified as a scalar, vector, matrix, or multidimensional array. The
acsc operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

 acsc

1-59

Definitions

Inverse Cosecant
The inverse cosecant is defined as

csc−1(z) = sin−1 1
z .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-60

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acscd | asec | csc | cscd

Introduced in R2006a

 acsc

1-61

acscd
Inverse cosecant in degrees

Syntax
Y = acscd(X)

Description
Y = acscd(X) returns the inverse cosecant (cosec-1) of the elements of X in degrees.
The function accepts both real and complex inputs.

• For real values of X in the intervals [-∞, -1] and [1, ∞], acscd(X) returns values in the
range [-90, 90].

• For real values of X in the interval (-1, 1) and for complex values of X, acscd(X)
returns complex values.

Examples

Inverse Cosecant of Vector

x = [20 10 Inf];
y = acscd(x)

y = 1×3

 2.8660 5.7392 0

The acscd operation is element-wise when you pass a vector, matrix, or N-D array.

1 Alphabetical List

1-62

Inverse Cosecant of Complex Value
acscd(1+i)

ans = 25.9136 - 30.4033i

Input Arguments
X — Cosecant of angle
scalar value | vector | matrix | N-D array

Cosecant of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or
N-D array. The acscd operation is element-wise when X is non-scalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 acscd

1-63

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acsc | csc | cscd

Introduced before R2006a

1 Alphabetical List

1-64

acsch
Inverse hyperbolic cosecant

Syntax
Y = acsch(X)

Description
Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

The acsch function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Cosecant Function

Graph the inverse hyperbolic cosecant function over the domains −20 ≤ x ≤ − 1 and
1 ≤ x ≤ 20.

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2))
grid on
xlabel('x')
ylabel('y')

 acsch

1-65

Definitions

Inverse Hyperbolic Cosecant
For real values x in the domain x < 0 and x > 0, the inverse hyperbolic cosecant satisfies

csch−1 z = sinh−1 1
z = log 1

x + 1
x2 + 1 .

For complex numbers z = x + iy, the call acsch(z) returns complex results.

1 Alphabetical List

1-66

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acosh | acsc | asinh | csch

Introduced before R2006a

 acsch

1-67

actxcontrol
Create Microsoft ActiveX control in figure window

Syntax
c = actxcontrol(progid)
c = actxcontrol(progid,Name,Value)

Description
c = actxcontrol(progid) creates an ActiveX® control in a figure window. The
programmatic identifier (progid) for the control determines the type of control created.
For the value, see the documentation provided by the control vendor. The returned object
c is the default interface for the control.

You cannot use an ActiveX server for the progid because MATLAB cannot insert ActiveX
servers in a figure. For information about using ActiveX servers, see actxserver.

c = actxcontrol(progid,Name,Value) creates a control using name-value pair
arguments.

Examples

Display mwsamp Control Events

c = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200]);
events(c)

Click = void Click()
 DblClick = void DblClick()

1 Alphabetical List

1-68

 MouseDown = void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)
 Event_Args = void Event_Args(int16 typeshort, int32 typelong, double typedouble, ustring typestring, bool typebool)

Input Arguments
progid — Programmatic identifier
string | character vector

Programmatic identifier, specified as a string or a character vector. Get the Programmatic
identifier from the control or server vendor documentation. For the progid values for
MATLAB, see “Programmatic Identifiers”.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: actxcontrol('progid','position',[0 0 200 200],'parent',gcf)

position — Position vector
integer vector

MATLAB position vector specifying the position of the control in an integer vector,
specified as the comma-separated pair consisting of 'position' and an integer vector. The
format is [left, bottom, width, height] using pixel units.
Example: 'position',[0 0 200 200]

parent — Parent figure, model, or Command Window
handle

Parent figure, model, or Command Window, specified as the comma-separated pair
consisting of 'parent' and a handle. This functionality is not supported for figures created
with the uifigure function. For more information, see “Displaying Graphics in App
Designer”.
Example: 'parent',gcf

callback — Name of event handler
string | character vector | cell array of character vectors

 actxcontrol

1-69

Name of the event handler, specified as the comma-separated pair consisting of 'callback'
and a string or a character vector, or as a cell array of character vectors. To use the same
handler for all events, specify a single name. To handle specific events, specify a cell
array of event name/event handler pairs.
Example: 'callback',{`Click' 'myClickHandler';'DblClick'
'myDblClickHandler';'MouseDown' 'myMouseDownHandler'

filename — File name
string | character vector

File name, specified as the comma-separated pair consisting of 'filename' and a string or a
character vector, containing the initial conditions of the previously saved control.

licensekey — License key
string | character vector

License key to create licensed ActiveX controls that require design-time licenses,
specified as the comma-separated pair consisting of 'licensekey' and a string or a
character vector. For information on how to use controls that require run-time licenses,
see “Deploy ActiveX Controls Requiring Run-Time Licenses”.

Limitations
• COM functions are available on Microsoft® Windows® systems only.

Tips
• When you no longer need the control, call release to free memory and other

resources used by the interface. Releasing the interface does not delete the control
itself. To release the interface, use the delete function. For an example event handler,
see the file sampev.m in the toolbox\matlab\winfun\comcli folder.

• For information about creating Microsoft Forms 2.0 controls in MATLAB or other non-
VBA container applications, see “Microsoft Forms 2.0 Controls”.

See Also
actxserver

1 Alphabetical List

1-70

Topics
“Display Message for Workbook OnClose Event”
“COM Event Handlers”

Introduced before R2006a

 actxcontrol

1-71

actxcontrollist
List currently installed Microsoft ActiveX controls

Syntax
info = actxcontrollist

Description
info = actxcontrollist returns a list of controls

Examples

Show Information for mwsamp2 Control

MATLAB displays information relevant to your installation.

list = actxcontrollist;
for k = 1:numel(list)/3
 if contains(list{k,1},'mwsamp2','IgnoreCase',true)
 control = sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{k,:})
 break;
 end
end

control =
 ' Name = Mwsamp2 Control
 ProgID = MWSAMP.MwsampCtrl.2
 File = C:\Program Files\MATLAB\R2017a\toolbox\matlab\winfun\win64\mwsamp2.ocx
 '

Output Arguments
info — Information
cell array of character vectors

1 Alphabetical List

1-72

Information specified as a 1-by-3 cell array of character vectors containing the name,
programmatic identifier (ProgID), and file name for the control. Each control has one row,
which MATLAB sorts by file name.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
actxcontrol | actxcontrolselect

Introduced before R2006a

 actxcontrollist

1-73

actxcontrolselect
Create Microsoft ActiveX control from UI

Syntax
c = actxcontrolselect
[c, info] = actxcontrolselect

Description
c = actxcontrolselect displays a dialog box listing all ActiveX controls installed on
the system and creates the one you select from the list.

[c, info] = actxcontrolselect returns information about the control.

Output Arguments
c — COM object
function handle

COM object, returned as a function handle. Use the handle to identify this control when
calling MATLAB COM functions.

info — Information
cell array of character vectors

Information specified as a 1-by-3 cell array of character vectors containing the name,
programmatic identifier (ProgID), and file name for the control.

Limitations
• COM functions are available on Microsoft Windows systems only.

1 Alphabetical List

1-74

See Also
actxcontrol | actxcontrollist

Topics
“Creating Control Objects Using a UI”

Introduced before R2006a

 actxcontrolselect

1-75

actxGetRunningServer
Handle to running instance of MATLAB Automation server

Syntax
c = actxGetRunningServer(progid)

Description
c = actxGetRunningServer(progid) gets a reference to a running instance of the
OLE Automation server. Returns a handle to the default interface of the server.

If the server specified by progid is not currently running or if the server object is not
registered, then the function returns an error. If multiple instances of the server are
running, then the operating system controls the behavior of this function.

Examples

Create List of Excel Property Names

c = actxGetRunningServer('Excel.Application');
list = fieldnames(c);

Input Arguments
progid — Programmatic identifier
string | character vector

Programmatic identifier, specified as a string or a character vector.

The control or server vendor documentation specifies the ProgID. For MATLAB progid
values, see “Programmatic Identifiers”.

1 Alphabetical List

1-76

Example: 'Matlab.Application'

Output Arguments
c — COM object
function handle

COM object, returned as a function handle.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
actxcontrol | actxserver

Topics
“MATLAB COM Automation Server Interface”

Introduced in R2007a

 actxGetRunningServer

1-77

actxserver
Create COM server

Syntax
c = actxserver(progid)
c = actxserver(progid,'machine',machineName)

Description
c = actxserver(progid) creates a local OLE Automation server, where progid is the
programmatic identifier (ProgID) of an OLE-compliant COM server. The function returns a
handle to the default interface of the server.

For components implemented in a dynamic link library (DLL), actxserver creates an in-
process server. For components implemented as an executable (EXE), actxserver
creates an out-of-process server. You can create out-of-process servers either on the client
system or on any other system on a network that supports DCOM.

c = actxserver(progid,'machine',machineName) creates a server on a remote
computer.

Examples

Display Excel ActivePrinter Property

Create a Microsoft Excel® object and display the ActivePrinter property. MATLAB
displays the value for your system.

e = actxserver('Excel.Application');
get(e,'ActivePrinter')

ans = \\printers\Copy-Fl2-South on Ne04:

1 Alphabetical List

1-78

When you are finished with the application, close Excel in MATLAB and delete the server
object.

Quit(e)
delete(e)

Input Arguments
progid — Programmatic identifier
string | character vector

Programmatic identifier, specified as a string or a character vector. The control or server
vendor documentation specifies the ProgID. For MATLAB progid values, see
“Programmatic Identifiers”.
Example: 'Matlab.Application'

machineName — Remote computer
string | character vector

Name of remote computer on which to start the server, specified as a string or a
character vector.
Example: 'machine','mymachine'

Limitations
• COM functions are available on Microsoft Windows systems only.
• 64-bit MATLAB does not support custom interfaces.
• The MATLAB COM Interface does not support invoking functions with optional

parameters.

Tips
• You can register events for COM servers. For more information, see “COM Events”.

 actxserver

1-79

See Also
actxGetRunningServer | actxcontrol

Topics
“Write Data to Excel Spreadsheet Using ActiveX”
“Read Spreadsheet Data Using Excel as Automation Server”

Introduced before R2006a

1 Alphabetical List

1-80

add
Package: matlab.mapreduce

Add single key-value pair to KeyValueStore

Syntax
add(KVStore,key,value)

Description
add(KVStore,key,value) adds a single key-value pair to KVStore, which is a
KeyValueStore created during mapreduce execution. Use add in a map or reduce
function written for use with mapreduce to store intermediate or final key-value pair
information.

Examples

Add Key/Value Pairs to KeyValueStore

Use add in map and reduce functions to pass data into the intermediate and final
KeyValueStore. This simple example uses identity map and reduce functions that pass
the inputs straight through to the output.

inds = datastore('airlinesmall.csv','SelectedVariableNames','ArrDelay','TreatAsMissing','NA');
preview(inds)

ans=8×1 table
 ArrDelay

 8
 8
 21

 add

1-81

 13
 4
 59
 3
 11

outds = mapreduce(inds,@myMapper,@myReducer,mapreducer(0));

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

readall(outds)

ans=1×2 table
 Key Value
 __________ _________________

 'ArrDelay' [123523x1 double]

function myMapper(data,info,intermKV)
 add(intermKV, 'ArrDelay',data.ArrDelay);
end

function myReducer(key,intermValIter,outKV)
 data = getnext(intermValIter);
 while hasnext(intermValIter)
 data = [data; getnext(intermValIter)];
 end
 add(outKV,key,data);
end

1 Alphabetical List

1-82

Input Arguments
KVStore — Key-value pair storage object
KeyValueStore object

Key-value pair storage object, specified as a KeyValueStore object. The mapreduce
function automatically creates the KeyValueStore object during execution:

• In the map function, the name of the intermediate KeyValueStore object is the third
input argument to the map function, myMapper(data, info, intermKVStore).
Use that same variable name to add intermediate key-value pairs with add or
addmulti in the map function.

• In the reduce function, the name of the final KeyValueStore object is the third input
argument to the reduce function, myReducer(intermKey, intermValIter,
outKVStore). Use that same variable name to add final key-value pairs with add or
addmulti in the reduce function.

For more information, see KeyValueStore.

key — Key
numeric scalar | character vector | string

Key, specified as a numeric scalar, character vector, or string.

All of the keys added by the map function must have the same class. The keys added by
the reduce function also must have the same class, but that class can differ from the class
of the keys added by the map function.

Numeric keys cannot be NaN, complex, logical, or sparse.
Example: add(intermKVStore,'Sum',sum(X)) adds a key-value pair to an
intermediate KeyValueStore object (named intermKVStore) in a map function.
Example: add(outKVStore,'Stats',[mean(X) max(X) min(X) var(X) std(X)])
adds a key-value pair to a final KeyValueStore object (named outKVStore) in a reduce
function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

value — Value
any MATLAB object

 add

1-83

Value, specified as any MATLAB object. This includes all valid MATLAB data types.

The OutputType argument of mapreduce affects the type of values that the reduce
function can add:

• If the OutputType is 'Binary' (the default), then a value added by the reduce
function can be any MATLAB object.

• If the OutputType is 'TabularText', then a value added by the reduce function can
be a numeric scalar, character vector, or string scalar when using the add function.
Additionally, you can use the addmulti function to add multiple values with a numeric
vector, cell vector of character vectors, cell vector of numeric scalars, or string array.
In each case, the numeric values cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products
with mapreduce. See the documentation for the appropriate product to get product-
specific key-value pair requirements.

Example: add(intermKVStore,'Sum',sum(X)) specifies a single scalar value to pair
with a key.
Example: add(outKVStore,'Stats',[mean(X) max(X) min(X) var(X) std(X)])
specifies a numeric array as the value to pair with a key.

Tips
• Avoid using add in a loop, as it can negatively affect mapreduce execution time.

Instead, use cell arrays to collect multiple values (using vectorized operations if
possible) and use a single call to addmulti.

See Also
addmulti

Topics
KeyValueStore
“Build Effective Algorithms with MapReduce”

1 Alphabetical List

1-84

Introduced in R2014b

 add

1-85

matlab.apputil.create
Create or modify app project file for packaging app into .mlappinstall file using
interactive dialog box

Syntax
matlab.apputil.create
matlab.apputil.create(prjfile)

Description
matlab.apputil.create opens the Package App dialog box that steps you through the
process of creating an .mlappinstall file.

matlab.apputil.create(prjfile) loads the specified .prj file and populates the
Package App dialog box with the information from the specified project file. Use this
option if you need to update an existing app.

Examples

Open Dialog Box for Creating an App Package

matlab.apputil.create

1 Alphabetical List

1-86

Minimally, add a main file, specify an app name, and indicate the required products.
MATLAB creates and continuously saves a .prj file, regardless of whether you click
Package. However, MATLAB does not create a .mlappinstall file if you do not click
Package.

Update Existing App Package

Assume you have an existing project file, myapp.prj. You want to add a file and update
the description.

Open the Package App dialog box, specifying the previously created .prj file:

matlab.apputil.create('myapp.prj')

 matlab.apputil.create

1-87

The dialog box opens populated with the data you previously specified for myapp. Adjust
the information in the dialog box, as needed.

Input Arguments
prjfile — Full or partial path to the .prj file
character vector | string scalar

Full or partial path to the .prj file you created previously with the Package App dialog
box, specified as a character vector or string scalar.
Example: 'C:\myapp.prj'
Example: "C:\myapp.prj"

See Also
matlab.apputil.package

Topics
“MATLAB App Installer File — mlappinstall”

Introduced in R2012b

1 Alphabetical List

1-88

matlab.apputil.getInstalledAppInfo
List installed app information

Syntax
matlab.apputil.getInstalledAppInfo

appinfo = matlab.apputil.getInstalledAppInfo

Description
matlab.apputil.getInstalledAppInfo displays the ID and name of all installed
custom apps. It does not display this information for apps packaged with MathWorks®

products.

appinfo = matlab.apputil.getInstalledAppInfo returns structure to appinfo,
which includes the status, ID, location, and name of all installed custom apps. It does not
return this information for apps packaged with MathWorks products.

Examples

Display Installed Apps Information in the Command Window

Assume you installed two apps, LinePlotter and PlotRandNumbers. Display the app
information in the Command Window.

 matlab.apputil.getInstalledAppInfo

ID Name
------------------ ---------------
LinePlotterAPP LinePlotter
PlotRandNumbersAPP PlotRandNumbers

 matlab.apputil.getInstalledAppInfo

1-89

Store Installed App Information in a Variable

Assume you installed an app, ColorPalette. Get the app information and store it in a
variable, myappinfo.

 myappinfo = matlab.apputil.getInstalledAppInfo;

Store Installed App Information in a Variable and Display IDs

Assume you installed two apps, LinePlotter and PlotRandNumbers. Get and store the
app information for both installed apps in a variable, myappinfo. Then, get the id for
each app.

myappinfo = matlab.apputil.getInstalledAppInfo

myappinfo =

1x2 struct array with fields:
 id
 name
 status
 location

Get the id of each installed app:

appids={myappinfo.id}

appids =

 'LinePlotterAPP' 'PlotRandNumbersAPP'

Output Arguments
appinfo — Information about installed apps
structure array

Information about the installed app, returned as a structure array, with one element for
each installed app. Each element of the structure array has the following fields:

status — Installation status
'installed'

1 Alphabetical List

1-90

Status of the installation, returned as 'installed'.

id — Unique identifier for the installed app
character vector

Unique identifier for the installed app, returned as a character vector.

The ID is for use when running or uninstalling the app programmatically.

location — Folder where the app is installed
character vector

Folder where the app is installed, returned as a character vector.

name — Name of the installed app
character vector

Name of the installed app as it appears in the apps gallery, returned as a character vector.

See Also
matlab.apputil.install | matlab.apputil.run | matlab.apputil.uninstall

Topics
“MATLAB App Installer File — mlappinstall”

Introduced in R2012b

 matlab.apputil.getInstalledAppInfo

1-91

matlab.apputil.install
Install app from a .mlappinstall file

Syntax
appinfo = matlab.apputil.install(appfile)

Description
appinfo = matlab.apputil.install(appfile) installs the specified app file and
returns information about the app.

Examples

Install App and Display Information About the Installation

Assume you have downloaded an app from File Exchange named EmployeeData. Install
it and return information about the installation to the variable appinfo. Later, if you
decide to deinstall the app programmatically, you have the app id required to do so.

appinfo = matlab.apputil.install...
 ('C:\myguis\myapps\EmployeeData.mlappinstall')

appinfo =

 id: 'EmployeeDataApp'
 name: 'EmployeeData'

1 Alphabetical List

1-92

 status: 'installed'
 location: 'C:\myguis\myapps\EmployeeData.mlappinstall'

Input Arguments
appfile — Full or partial path to .mlappinstall file
character vector | string scalar

Full or partial path of the app file you want to install, specified as a character vector or
string scalar.
Example: 'C:\myguis\myapps\myapp.mlappinstall'
Example: "C:\myguis\myapps\myapp.mlappinstall"

Output Arguments
appinfo — Information about installed app
structure

Information about the installed app, returned as a structure with the fields:

status — Installation status
'installed' | 'updated'

Installation status, returned as one of the following:

• 'installed' — New app is installed.
• 'updated' — Previously installed app is updated.

id — Unique identifier
character vector

Unique identifier for the installed app, returned as a character vector.

The ID is for use when running or uninstalling the app programmatically.

location — Folder where app is installed
character vector

Folder where app is installed, returned as a character vector.

 matlab.apputil.install

1-93

name — Name of installed app
character vector

Name of installed app as it appears in the apps gallery, returned as a character vector.

See Also
matlab.apputil.getInstalledAppInfo | matlab.apputil.package |
matlab.apputil.uninstall

Topics
“MATLAB App Installer File — mlappinstall”

Introduced in R2012b

1 Alphabetical List

1-94

matlab.apputil.package
Package app files into .mlappinstall file

Syntax
matlab.apputil.package(prjfile)

Description
matlab.apputil.package(prjfile) creates a .mlappinstall file based on the
information in the specified prjfile.

Examples

Create mlappinstall File for Previously Created Project File

Assume you previously created myprjfile.prj using matlab.apputil.create. The
following command creates the corresponding .mlappinstall file.

matlab.apputil.package('myprjfile.prj')

Input Arguments
prjfile — Full or partial path to app project (.prj) file
character vector | string scalar

Full or partial path to app project (.prj) file, specified as a character vector or string
scalar.
Example: 'plotdata.prj'
Example: "plotdata.prj"

 matlab.apputil.package

1-95

Tips
• To create a .prj file, use matlab.apputil.create.

See Also
matlab.apputil.create | matlab.apputil.install | matlab.apputil.run

Introduced in R2012b

1 Alphabetical List

1-96

matlab.apputil.run
Run app programmatically

Syntax
matlab.apputil.run(appid)

Description
matlab.apputil.run(appid) runs the custom app specified by the unique identifier,
appid.

Examples

Run Previously Installed App

Assume you installed two apps, PlotData and setslider. Run PlotData
programmatically, using its ID.

Get IDs of all installed apps.

matlab.apputil.getInstalledAppInfo

ID Name
------------------- ----------------
setsliderAPP setslider
PlotDataAPP PlotData

Run PlotData.

 matlab.apputil.run

1-97

matlab.apputil.run('PlotDataAPP')

Input Arguments
appid — ID of custom app
character vector | string scalar

ID of custom app you want to run, specified as a character vector or string scalar.
Example: 'DataExplorationAPP'
Example: "DataExplorationAPP"

Tips
• The ID of a custom app is returned when you install it. You can use

matlab.apputil.getInstalledAppInfo to get the ID after you have installed an
app.

• When a custom app runs, MATLAB adds any folders it needs to have added to the
path, as identified when the app was packaged. When the app exits, MATLAB removes
those folders from the path.

• You can run multiple, different custom apps concurrently. However, you cannot run
two instances of the same app concurrently.

See Also
matlab.apputil.create | matlab.apputil.getInstalledAppInfo |
matlab.apputil.install

Introduced in R2012b

1 Alphabetical List

1-98

matlab.apputil.uninstall
Uninstall app

Syntax
matlab.apputil.uninstall(appid)

Description
matlab.apputil.uninstall(appid) removes the app specified by the unique
identifier, appid. MATLAB removes all files corresponding to the app and removes the
app from the app gallery.

Examples

Uninstall App

Assume you previously installed two apps, setslider and simplegui. Get the IDs of all
installed apps, and then use the ID for simplegui to uninstall it.

View the IDs of all apps

matlab.apputil.getInstalledAppInfo

ID Name
------------------- ----------------
setsliderAPP setslider
simpleguiAPP simplegui

Uninstall the simplegui app.

matlab.apputil.uninstall('simpleguiAPP')

Confirm the app was removed, by running matlab.apputil.getInstalledAppInfo
again.

 matlab.apputil.uninstall

1-99

matlab.apputil.getInstalledAppInfo

ID Name
------------------- ----------------
setsliderAPP setslider

Input Arguments
appid — ID of app
character vector | string scalar

ID of app to be uninstalled, specified as a character vector or string scalar.
Example: 'DataExplorationAPP'
Example: "DataExplorationAPP"

Tips
• To determine the appid of an installed app, preserve the value returned when you

install the app programmatically with matlab.apputil.install, or use
matlab.apputil.getInstalledAppInfo.

See Also
matlab.apputil.getInstalledAppInfo | matlab.apputil.install

Introduced in R2012b

1 Alphabetical List

1-100

addevent
Add event to timeseries

Syntax
tsout = addevent(tsin,tsevent)
tsout = addevent(tsin,eventname,eventtime)

Description
tsout = addevent(tsin,tsevent) adds a tsdata.event object tsevent to the
timeseries object tsin. The event tsevent can be a single tsdata.event object or
an array of tsdata.event objects.

tsout = addevent(tsin,eventname,eventtime) creates a tsdata.event object
and adds it to the Events property of tsin. The argument eventname can be a single
event name character vector or a cell array of event name character vectors. eventtime
is the corresponding event time or a cell array of event times.

Examples

Add Event

Create a timeseries object and add an event to it.

tsin = timeseries((1:5)');
tsout = addevent(tsin,'Event1',0);
tsout.Events

 EventData: []
 Name: 'Event1'
 Time: 0
 Units: 'seconds'
 StartDate: ''

 addevent

1-101

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

tsevent — Event
scalar | array

Event, specified as a scalar tsdata.event object or an array of tsdata.event objects.

eventname — Event name
character vector | cell array

Event name, specified as a character vector containing the name of a tsdata.event
object or a cell array containing multiple event names.
Data Types: char | cell

eventtime — Event time
scalar | cell array

Event time, specified as a scalar time or a cell array of times corresponding to the events
in eventname.

See Also
delevent | timeseries | tsdata.event

Introduced before R2006a

1 Alphabetical List

1-102

addmulti
Package: matlab.mapreduce

Add multiple key-value pairs to KeyValueStore

Syntax
addmulti(KVStore,keys,values)

Description
addmulti(KVStore,keys,values) adds multiple key-value pairs to KVStore, which is
a KeyValueStore created during mapreduce execution. Use addmulti in a map or
reduce function written for use with mapreduce to store intermediate or final key-value
pair information.

Examples

Add Multiple Key/Value Pairs to KeyValueStore

Use add and addmulti in map and reduce functions to pass data into the intermediate
and final KeyValueStore. This simple example uses identity map and reduce functions
that pass the inputs straight through to the output.

inds = datastore('airlinesmall.csv','SelectedVariableNames',...
 {'ArrDelay','DepDelay'},'TreatAsMissing','NA');
preview(inds)

ans=8×2 table
 ArrDelay DepDelay
 ________ ________

 8 12
 8 1

 addmulti

1-103

 21 20
 13 12
 4 -1
 59 63
 3 -2
 11 -1

outds = mapreduce(inds,@myMapper,@myReducer,mapreducer(0));

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 50%
Map 100% Reduce 100%

readall(outds)

ans=2×2 table
 Key Value
 __________ _________________

 'ArrDelay' [123523x1 double]
 'DepDelay' [123523x1 double]

function myMapper(data,info,intermKV)
 addmulti(intermKV,{'ArrDelay' 'DepDelay'},{data.ArrDelay data.DepDelay});
end

function myReducer(key,intermValIter,outKV)
 data = getnext(intermValIter);
 while hasnext(intermValIter)
 data = [data; getnext(intermValIter)];
 end
 add(outKV,key,data);
end

1 Alphabetical List

1-104

Input Arguments
KVStore — Key-value pair storage object
KeyValueStore object

Key-value pair storage object, specified as a KeyValueStore object. The mapreduce
function automatically creates the KeyValueStore object during execution:

• In the map function, the name of the intermediate KeyValueStore object is the third
input argument to the map function, myMapper(data, info, intermKVStore).
Use that same variable name to add intermediate key-value pairs with add or
addmulti in the map function.

• In the reduce function, the name of the final KeyValueStore object is the third input
argument to the reduce function, myReducer(intermKey, intermValIter,
outKVStore). Use that same variable name to add final key-value pairs with add or
addmulti in the reduce function.

For more information, see KeyValueStore.

keys — Keys
numeric scalar | numeric vector | character vector | string array | cell vector of character
vectors | cell vector of numeric scalars

Keys, specified as a numeric scalar, numeric vector, character vector, string array, cell
vector of character vectors, or cell vector of numeric scalars. If the keys are a numeric
vector, cell vector, or string array, then each entry specifies a different key.

All of the keys added by the map function must have the same class. The keys added by
the reduce function must also have the same class, but that class can differ from the class
of the keys added by the map function.

Numeric keys cannot be NaN, complex, logical, or sparse.
Example: addmulti(intermKVStore,{'Sum'; 'Count'; 'Variance'},{sum(X);
numel(X); var(X)}) adds three key-value pairs to an intermediate KeyValueStore
object (named intermKVStore) using a cell vector to specify the keys.
Example: addmulti(intermKVStore,[1 2 3 4],{sum(X); mean(X); max(X);
min(X)}) adds four key-value pairs to an intermediate KeyValueStore object using a
numeric vector to specify the keys.

 addmulti

1-105

Example: addmulti(outKVStore,'Stats',{[mean(X) max(X) min(X) var(X)
std(X)]}) adds a single key-value pair to a final KeyValueStore object (named
outKVStore) using a character vector as the key.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

values — Values
cell array

Values, specified as a cell array. Each entry in the cell array specifies the value in a key-
value pair, so numel(values) must be equal to the number of keys. The entries in the
cell array can be any MATLAB object, including all valid MATLAB data types.

The OutputType argument of mapreduce affects the type of values that the reduce
function can add:

• If the OutputType is 'Binary' (the default), then a value added by the reduce
function can be any MATLAB object.

• If the OutputType is 'TabularText', then a value added by the reduce function can
be a numeric scalar, character vector, or string scalar when using the add function.
Additionally, you can use the addmulti function to add multiple values with a numeric
vector, cell vector of character vectors, cell vector of numeric scalars, or string array.
In each case, the numeric values cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products
with mapreduce. See the documentation for the appropriate product to get product-
specific key-value pair requirements.

Example: addmulti(intermKVStore,{'Sum'; 'Count'; 'Variance'},{sum(X);
numel(X); var(X)}) adds three key-value pairs to an intermediate KeyValueStore
object named intermKVStore.
Example: addmulti(intermKVStore,[1 2 3 4],{sum(X); mean(X); max(X);
min(X)}) adds four key-value pairs to an intermediate KeyValueStore object using a
cell vector.
Example: addmulti(outKVStore,'Stats',{[mean(X) max(X) min(X) var(X)
std(X)]}) adds a single key-value pair to a final KeyValueStore object named
outKVStore.

1 Alphabetical List

1-106

Example: addmulti(outKVStore,{'Distance' 'Time'},{table.Distance
table.Time}) adds two key-value pairs using variables in a table to specify the values.

Tips
• Avoid using add in a loop, as it can negatively affect mapreduce execution time.

Instead, use cell arrays to collect multiple values (using vectorized operations if
possible) and use a single call to addmulti.

See Also
add

Topics
KeyValueStore
“Build Effective Algorithms with MapReduce”

Introduced in R2014b

 addmulti

1-107

audioinfo
Information about audio file

Syntax
info = audioinfo(filename)

Description
info = audioinfo(filename) returns information about the contents of the audio file
specified by filename.

Examples

Get Information About Audio File

Create a WAVE file from the example file handel.mat, and get information about the file.

Create a WAVE (.wav) file in the current folder.

load handel.mat
filename = 'C:\Temp\handel.wav';
audiowrite(filename,y,Fs);
clear y Fs

Use audioinfo to return information about the WAVE file.

info = audioinfo(filename)

info =

 struct with fields:

 Filename: 'C:\Temp\handel.wav'

1 Alphabetical List

1-108

 CompressionMethod: 'Uncompressed'
 NumChannels: 1
 SampleRate: 8192
 TotalSamples: 73113
 Duration: 8.9249
 Title: []
 Comment: []
 Artist: []
 BitsPerSample: 16

Input Arguments
filename — Name of file
character vector | string scalar

Name of file, specified as a character vector or string scalar that includes the file
extension. If a path is specified, it can be absolute, relative, or partial.
Example: 'myFile.mp3'
Example: '../myFile.mp3'
Example: 'C:\temp\myFile.mp3'

audioinfo supports the following file formats.

Platform Support File Format
All platforms WAVE (.wav)

OGG (.ogg)
FLAC (.flac)
AU (.au)
AIFF (.aiff, .aif)
AIFC (.aifc)

Windows 7 (or later), Macintosh, and
Linux®

MP3 (.mp3)
MPEG-4 AAC (.m4a, .mp4)

On Windows 7 platforms (or later), audioinfo might also return information about the
contents of any files supported by Windows Media® Foundation.

 audioinfo

1-109

On Linux platforms, audioinfo might also return information about the contents of any
files supported by GStreamer.

audioinfo can extract audio metadata from MPEG-4 (.mp4, .m4v) video files on
Windows 7 or later, macOS 10.7 Lion or higher, and Linux, and from Windows Media
Video (.wmv) and AVI (.avi) files on Windows 7 (or later) and Linux platforms.
Data Types: char | string

Output Arguments
info — Information about audio file
structure

Information about audio file, returned as a structure. info can contain the following
fields.

Field Name Description Data Type
Filename Filename including the

absolute path to the file and
the file extension.

character vector

CompressionMethod Compression method used. character vector
NumChannels Number of audio channels

encoded in the audio file.
double

SampleRate Sample rate of the audio
data in the file, in hertz.

double

TotalSamples Total number of audio
samples in the file.

double

Duration Duration of the file, in
seconds.

double

BitsPerSample Number of bits per sample
encoded in the audio file.

Only valid for WAVE (.wav)
and FLAC (.flac) files.

double

1 Alphabetical List

1-110

Field Name Description Data Type
BitRate Number of kilobits per

second (kbit/s) used for
compressed audio files.

Only valid for MP3 (.mp3)
and MPEG-4 Audio
(.m4a, .mp4) files.

double

Title Value of 'Title', if any. character vector
Artist Value of 'Artist', if any. character vector
Comment Value of 'Comment', if any. character vector

Note The BitRate property returns the actual bit rate on Mac platforms, and not the
encoded bit rate. This means that bit rate values might be lower than specified at the time
of the encoding, depending on the source data.

Note On Mac platforms, audioinfo returns metadata from .m4a and .mp4 files only on
macOS 10.7 Lion or higher. Previous versions of macOS will not read the 'Title',
'Author', or 'Comment' fields.

Limitations
• For MP3 and MPEG-4 AAC audio files on Windows 7 or later and Linux platforms,

audioinfo might report fewer samples than expected. On Linux platforms, this is due
to a limitation in the underlying GStreamer framework.

• On Linux platforms, audioinfo interprets single channel data in MPEG-4 AAC files as
stereo data.

See Also
audioread | audiowrite

Introduced in R2012b

 audioinfo

1-111

audioread
Read audio file

Syntax
[y,Fs] = audioread(filename)
[y,Fs] = audioread(filename,samples)

[y,Fs] = audioread(___ ,dataType)

Description
[y,Fs] = audioread(filename) reads data from the file named filename, and
returns sampled data, y, and a sample rate for that data, Fs.

[y,Fs] = audioread(filename,samples) reads the selected range of audio samples
in the file, where samples is a vector of the form [start,finish].

[y,Fs] = audioread(___ ,dataType) returns sampled data in the data range
corresponding to the dataType of 'native' or 'double', and can include any of the
input arguments in previous syntaxes.

Examples

Read Complete Audio File

Create a WAVE file from the example file handel.mat, and read the file back into
MATLAB®.

Create a WAVE (.wav) file in the current folder.

load handel.mat

filename = 'handel.wav';

1 Alphabetical List

1-112

audiowrite(filename,y,Fs);
clear y Fs

Read the data back into MATLAB using audioread.

[y,Fs] = audioread('handel.wav');

Play the audio.

sound(y,Fs);

Read Portion of Audio File

Create a FLAC file from the example file handel.mat, and then read only the first 2
seconds.

Create a FLAC (.flac) file in the current folder.

load handel.mat

filename = 'handel.flac';
audiowrite(filename,y,Fs);

Read only the first 2 seconds.

samples = [1,2*Fs];
clear y Fs
[y,Fs] = audioread(filename,samples);

Play the samples.

sound(y,Fs);

Return Audio in Native Integer Format

Create a .flac file, read the first 2 seconds of the file and then return audio in the native
integer format.

Create a FLAC (.flac) file in the current folder.

 audioread

1-113

load handel.mat
filename = 'handel.flac';
audiowrite(filename,y,Fs);

Read only the first 2 seconds and specify the data and view the datatype of the sampled
data y. The data type of y is double.

samples = [1,2*Fs];
clear y Fs
[y,Fs] = audioread(filename,samples);
whos y

 Name Size Bytes Class Attributes

 y 16384x1 131072 double

Request audio data in the native format of the file, and then view the data type of the
sampled data y. Note the new data type of y.

[y,Fs] = audioread(filename,'native');
whos y

 Name Size Bytes Class Attributes

 y 73113x1 146226 int16

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of file to read, specified as a character vector or string scalar that includes the file
extension. If a path is specified, it can be absolute, relative or partial.
Example: 'myFile.mp3'
Example: '../myFile.mp3'
Example: 'C:\temp\myFile.mp3'

audioread supports the following file formats.

1 Alphabetical List

1-114

Platform Support File Format
All platforms WAVE (.wav)

OGG (.ogg)
FLAC (.flac)
AU (.au)
AIFF (.aiff, .aif)
AIFC (.aifc)

Windows 7 (or later), Macintosh, and Linux MP3 (.mp3)
MPEG-4 AAC (.m4a, .mp4)

On Windows platforms prior to Windows 7, audioread does not read WAVE files with
MP3 encoded data.

On Windows 7 (or later) platforms, audioread might also read any files supported by
Windows Media Foundation.

On Linux platforms, audioread might also read any files supported by GStreamer.

audioread can extract audio from MPEG-4 (.mp4, .m4v) video files on Windows 7 or
later, Macintosh, and Linux, and from Windows Media Video (.wmv) and AVI (.avi) files
on Windows 7 (or later) and Linux platforms.
Data Types: char | string

samples — Audio samples to read
[1,inf] (default) | two-element vector of positive scalar integers

Audio samples to read, specified as a two-element vector of the form [start,finish],
where start and finish are the first and last samples to read, and are positive scalar
integers.

• start must be less than or equal to finish.
• start and finish must be less than the number of audio samples in the file,
• You can use inf to indicate the last sample in the file.

Note When reading a portion of some MP3 files on Windows 7 platforms, audioread
might read a shifted range of samples. This is due to a limitation in the underlying
Windows Media Foundation framework.

 audioread

1-115

When reading a portion of MP3 and M4A files on Linux platforms, audioread might read
a shifted range of samples. This is due to a limitation in the underlying GStreamer
framework.

Example: [1,100]
Data Types: double

dataType — Data format of audio data, y
'double' (default) | 'native'

Data format of audio data,y, specified as one of the following:

'double' Double-precision normalized samples.
'native' Samples in the native format found in the file.

For compressed audio formats, such as MP3 and MPEG-4 AAC that do not store data in
integer form, 'native' defaults to 'single'.
Data Types: char | string

Output Arguments
y — Audio data
matrix

Audio data in the file, returned as an m-by-n matrix, where m is the number of audio
samples read and n is the number of audio channels in the file.

• If you do not specify dataType, or dataType is 'double', then y is of type double,
and matrix elements are normalized values between −1.0 and 1.0.

• If dataType is 'native', then y can be one of several MATLAB data types,
depending on the file format and the BitsPerSample value of the input file. Call
audioinfo to determine the BitsPerSample value of the file.

File Format BitsPerSample Data Type of y Data Range of y
WAVE (.wav) 8 uint8 0 ≤ y ≤ 255

1 Alphabetical List

1-116

File Format BitsPerSample Data Type of y Data Range of y
16 int16 -32768 ≤ y ≤

+32767
24 int32 -2^31 ≤ y ≤ 2^31–

1
32 int32 -2^31 ≤ y ≤ 2^31–

1
32 single -1.0 ≤ y ≤ +1.0
64 double -1.0 ≤ y ≤ +1.0

WAVE (.wav) (u-
law)

8 int16 -32124 ≤ y ≤
+32124

WAVE (.wav) (A-
law)

8 int16 -32256 ≤ y ≤
+32256

FLAC (.flac) 8 uint8 0 ≤ y ≤ 255
16 int16 -32768 ≤ y ≤

+32767
24 int32 -2^31 ≤ y ≤ 2^31–

1
MP3 (.mp3),
MPEG-4 AAC
(.m4a, .mp4), OGG
(.ogg), and certain
compressed WAVE
files

N/A single -1.0 ≤ y ≤ +1.0

Note Where y is single or double and the BitsPerSample is 32 or 64, values in y
might exceed −1.0 or +1.0.

Fs — Sample rate
positive scalar

Sample rate, in hertz, of audio data y, returned as a positive scalar.

 audioread

1-117

Limitations
• For MP3, MPEG-4 AAC, and AVI audio files on Windows 7 or later and Linux platforms,

audioread might read fewer samples than expected. On Windows 7 platforms, this is
due to a limitation in the underlying Media Foundation framework. On Linux
platforms, this is due to a limitation in the underlying GStreamer framework. If you
require sample-accurate reading, work with WAV or FLAC files.

• On Linux platforms, audioread reads MPEG-4 AAC files that contain single-channel
data as stereo data.

See Also
audioinfo | audiowrite

Introduced in R2012b

1 Alphabetical List

1-118

audiowrite
Write audio file

Syntax
audiowrite(filename,y,Fs)
audiowrite(filename,y,Fs,Name,Value)

Description
audiowrite(filename,y,Fs) writes a matrix of audio data, y, with sample rate Fs to
a file called filename. The filename input also specifies the output file format. The
output data type on page 1-124 depends on the output file format and the data type of the
audio data, y.

audiowrite(filename,y,Fs,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Examples

Write an Audio File

Create a WAVE file from the example file handel.mat, and read the file back into
MATLAB®.

Write a WAVE (.wav) file in the current folder.

load handel.mat

filename = 'handel.wav';
audiowrite(filename,y,Fs);
clear y Fs

Read the data back into MATLAB using audioread.

 audiowrite

1-119

[y,Fs] = audioread(filename);

Listen to the audio.

sound(y,Fs);

Specify Bits Per Sample and Metadata

Create a FLAC file from the example file handel.mat and specify the number of output
bits per sample and a comment.

load handel.mat

filename = 'handel.flac';
audiowrite(filename,y,Fs,'BitsPerSample',24,...
'Comment','This is my new audio file.');
clear y Fs

View information about the new FLAC file by using the audioinfo function

info = audioinfo(filename) ;

The info structure contains the following information fields: Filename,
CompressionMethod, NumChannels, SampleRate, TotalSamples, Duration, Title,
Comment, Artist, and BitsPerSample.

Input Arguments
filename — Name of file to write
character vector | string scalar

Name of file to write, or the full path to the file, specified as a character vector or string
scalar that includes the file extension. If a path is specified, it can be absolute or relative.
If you do not specify the path, then the destination directory is the current working
directory.

audiowrite supports the following file formats.

1 Alphabetical List

1-120

Platform Support File Format
All platforms WAVE (.wav)

OGG (.ogg)
FLAC (.flac)

Windows and Mac MPEG-4 AAC (.m4a, .mp4)

Example: 'myFile.m4a'
Example: '../myFile.m4a'
Example: 'C:\temp\myFile.m4a'

When writing AAC files on Windows, audiowrite pads the front and back of the output
signal with extra samples of silence. The Windows AAC encoder also places a very sharp
fade-in and fade-out on the audio. This results in audio with an increased number of
samples after being written to disk.
Data Types: char | string

y — Audio data to write
real matrix

Audio data to write, specified as an m-by-n real matrix, where m is the number of audio
samples to write and n is the number of audio channels to write.

If either m or n is 1, then audiowrite assumes that this dimension specifies the number
of audio channels, and the other dimension specifies the number of audio samples.

The maximum number of channels depends on the file format.

File Format Maximum Number of Channels
WAVE (.wav) 1024
OGG (.ogg) 255
FLAC (.flac) 8
MPEG-4 AAC (.m4a, .mp4) 2

The valid range for the data in y depends on the data type of y.

 audiowrite

1-121

Data Type of y Valid Range for y
uint8 0 ≤ y ≤ 255
int16 -32768 ≤ y ≤ +32767
int32 -2^31 ≤ y ≤ 2^31–1
single -1.0 ≤ y ≤ +1.0
double -1.0 ≤ y ≤ +1.0

Data beyond the valid range is clipped.

If y is single or double, then audio data in y should be normalized to values in the
range −1.0 and 1.0, inclusive.
Data Types: single | double | int16 | int32 | uint8

Fs — Sample rate
positive scalar

Sample rate, in hertz, of audio data y, specified as a positive scalar greater than 0. Values
of Fs are truncated to integer boundaries. When writing to .m4a or .mp4 files on
Windows platforms, audiowrite supports only samples rates of 44100 and 48000.
Example: 44100
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Title','Symphony No. 9','Artist','My Orchestra' instructs
audiowrite to write an audio file with the title “Symphony No. 9” and the artist
information “My Orchestra.”

BitsPerSample — Number of output bits per sample
16 (default) | 8 | 24 | 32 | 64

Number of output bits per sample, specified as the comma-separated pair consisting of
'BitsPerSample' and a number.

1 Alphabetical List

1-122

Only available for WAVE (.wav) and FLAC (.flac) files. For FLAC files, only 8, 16, or 24
bits per sample are supported.
Example: 'BitsPerSample',32

BitRate — Kilobits per second (kbit/s)
128 (default) | 64 | 96 | 160 | 192 | 256 | 320

Number of kilobits per second (kbit/s) used for compressed audio files, specified as the
comma-separated pair consisting of 'BitRate' and an integer. Noninteger values are
truncated. On Windows 7 or later, the only valid values are 96, 128, 160, and 192.

In general, a larger BitRate value results in higher compression quality.

Only available for MPEG-4 (.m4a, .mp4) files.
Example: 'BitRate',96

Quality — Quality setting for the Ogg Vorbis Compressor
75 (default) | value in the range [0 100]

Quality setting for the Ogg Vorbis Compressor, specified as the comma-separated pair
consisting of 'Quality' and a number in the range [0 100], where 0 is lower quality and
higher compression, and 100 is higher quality and lower compression.

Only available for OGG (.ogg) files.
Example: 'Quality',25

Title — Title information
[] (default) | character vector | string scalar

Title information, specified as the comma-separated pair consisting of 'Title' and a
character vector or string scalar.
Data Types: char | string

Artist — Artist information
[] (default) | character vector | string scalar

Artist information, specified as the comma-separated pair consisting of 'Artist' and a
character vector or string scalar.
Data Types: char | string

 audiowrite

1-123

Comment — Additional information
[] (default) | character vector | string scalar

Additional information, specified as the comma-separated pair consisting of 'Comment'
and a character vector or string scalar.
Data Types: char | string

Note On Mac platforms, audiowrite writes metadata to WAVE, OGG, and FLAC files
only, and will not write the 'Title', 'Author', or 'Comment' fields to MPEG-4 AAC
files.

Algorithms
The output data type is determined by the file format, the data type of y, and the specified
output BitsPerSample.

File Formats Data Type of y Output
BitsPerSample

Output Data Type

WAVE (.wav), uint8, int16,
int32, single,
double

8 uint8
16 int16
24 int32

uint8, int16,
int32

32 int32

single, double 32 single
single, double 64 double

FLAC (.flac) uint8, int16,
int32, single,
double

8 int8
16 int16
24 int32

MPEG-4
(.m4a, .mp4),
OGG (.ogg)

uint8, int16,
int32, single,
double

N/A single

1 Alphabetical List

1-124

See Also
audioinfo | audioread

Introduced in R2012b

 audiowrite

1-125

autumn
Autumn colormap array

Syntax
c = autumn
c = autumn(m)

Description
c = autumn returns the autumn colormap as a three-column array with the same
number of rows as the colormap for the current figure. If no figure exists, then the
number of rows is equal to the default length of 64. Each row in the array contains the
red, green, and blue intensities for a specific color. The intensities are in the range [0,1],
and the color scheme looks like this image.

c = autumn(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the autumn colormap.

surf(peaks);
colormap('autumn');

1 Alphabetical List

1-126

Get the autumn colormap array and reverse the order. Then apply the modified colormap
to the surface.

c = autumn;
c = flipud(c);
colormap(c);

 autumn

1-127

Downsample the Autumn Colormap

Get a downsampled version of the autumn colormap containing only ten colors. Then
display the contours of the peaks function by applying the colormap and interpolated
shading.

c = autumn(10);
surf(peaks);
colormap(c);
shading interp;

1 Alphabetical List

1-128

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 autumn

1-129

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-130

addcats
Add categories to categorical array

Syntax
B = addcats(A,newcats)
B = addcats(A,newcats,'Before',beforewhere)
B = addcats(A,newcats,'After',afterwhere)

Description
B = addcats(A,newcats) adds categories to the end of the category list for the input
categorical array, A. The output categorical array, B, contains the same values as A. The
output, B, does not contain any elements equal to the new categories until you assign
values from newcats to elements in B.

If A is an ordinal categorical array, you must specify the 'Before',beforewhere or
'After',afterwhere input arguments.

B = addcats(A,newcats,'Before',beforewhere) adds categories before the
category specified by beforewhere.

B = addcats(A,newcats,'After',afterwhere) adds categories after the category
specified by afterwhere.

Examples

Add Categories at End

Create a nonordinal categorical array.

A = categorical({'republican' 'democrat' 'republican';...
 'democrat' 'republican' 'democrat'})

 addcats

1-131

A = 2x3 categorical array
 republican democrat republican
 democrat republican democrat

Display the categories of A.

categories(A)

ans = 2x1 cell array
 {'democrat' }
 {'republican'}

A is a 2-by-3 categorical array with two categories.

Add the categories, independent and undeclared, to the end of the category list.

B = addcats(A,{'independent' 'undeclared'})

B = 2x3 categorical array
 republican democrat republican
 democrat republican democrat

B contains the same values as A.

Display the categories of B.

categories(B)

ans = 4x1 cell array
 {'democrat' }
 {'republican' }
 {'independent'}
 {'undeclared' }

B is a 2-by-3 categorical array with four categories.

Add Categories and Specify Category to Precede

Create an ordinal categorical array.

1 Alphabetical List

1-132

A = categorical({'medium' 'large'; 'small' 'xlarge'; 'large' 'medium'},...
 {'small' 'medium' 'large' 'xlarge'},'Ordinal',true)

A = 3x2 categorical array
 medium large
 small xlarge
 large medium

Display the categories of A.

categories(A)

ans = 4x1 cell array
 {'small' }
 {'medium'}
 {'large' }
 {'xlarge'}

Since A is ordinal, the categories have the mathematical ordering small < medium <
large < xlarge.

Add the category xsmall before small.

B = addcats(A,'xsmall','Before','small')

B = 3x2 categorical array
 medium large
 small xlarge
 large medium

B contains the same values as A.

Display the categories of B.

categories(B)

ans = 5x1 cell array
 {'xsmall'}
 {'small' }
 {'medium'}
 {'large' }
 {'xlarge'}

 addcats

1-133

The categories have the mathematical ordering xsmall < small < medium < large
< xlarge.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

newcats — New categories
character vector | cell array of character vectors | string array

New categories, specified as a character vector, a cell array of character vectors, or a
string array.

beforewhere — Category to precede
character vector | string scalar

Category to precede, specified as a character vector or a string scalar.

afterwhere — Category to follow
character vector | string scalar

Category to follow, specified as a character vector or a string scalar.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-134

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
categories | iscategory | mergecats | removecats | renamecats | reordercats |
setcats

Introduced in R2013b

 addcats

1-135

addpath
Add folders to search path

Syntax
addpath(folderName1,...,folderNameN)
addpath(folderName1,...,folderNameN,position)

addpath(___ ,'-frozen')

oldpath = addpath(___)

Description
addpath(folderName1,...,folderNameN) adds the specified folders to the top of the
search path for the current MATLAB session.

addpath(folderName1,...,folderNameN,position) adds the specified folders to
the top or bottom of the search path, as specified by position.

addpath(___ ,'-frozen') additionally disables folder change detection for the folders
being added. When folder change detection is disabled for a folder, MATLAB does not
detect changes made to the folder from outside of MATLAB.

Use this syntax with any of the arguments in previous syntaxes. You can specify '-
frozen' and position in either order.

oldpath = addpath(___) additionally returns the path prior to adding the specified
folders.

Examples

1 Alphabetical List

1-136

Add Folder to Top of Search Path

Create a folder, add it to the top of your search path, and then save the search path for
future MATLAB® sessions.

mkdir('matlab/myfiles')
addpath('matlab/myfiles')
savepath matlab/myfiles/pathdef.m

Add Folder to End of Search Path

Create the folder matlab/myfiles and add it to the end of the search path.

mkdir('matlab/myfiles')
addpath('matlab/myfiles','-end')

Add Folder and Its Subfolders to Search Path

Add matlab/myfiles and its subfolders to the search path.

Create the folder matlab/myfiles and call genpath inside of addpath to add all
subfolders of matlab/myfiles to the search path.

mkdir('matlab/myfiles')
addpath(genpath('matlab/myfiles'))

Add Folder to Search Path and Disable Folder Change Notification

Create the folder matlab/myfiles. Then, add it to the top of the search path, disable
folder change notification, and return the search path before adding the folder.

mkdir('matlab/myfiles')
oldpath = addpath('matlab/myfiles','-frozen');

Disabling folder change notification is not supported in MATLAB® Online™.

 addpath

1-137

Input Arguments
folderName1,...,folderNameN — Folder names to add to search path
character vectors | string scalars

Folder names to add to the search path, specified as one or more character vectors or
string scalars. Use the full path name for each folder. Use genpath with addpath to add
all subfolders of folderName.
Example: 'c:\matlab\work'
Example: '/home/user/matlab'
Example: '/home/user/matlab','/home/user/matlab/test'

MATLAB resolves all path names containing '.', '..', and symbolic links to their target
location before adding them to the path. This ensures that each entry in the MATLAB path
represents a unique folder location. For example, if you specify c:\matlab\..\work,
MATLAB adds the folder c:\work to the path.
Data Types: char | string

position — Position on search path
'-begin' (default) | '-end'

Position on the search path, specified as one of the following:

Value of position Description
'-begin' Add specified folders to the top of the search path.
'-end' Add specified folders to the bottom of the search path.

Output Arguments
oldpath — Path prior to addition of folders
character vector

Path prior to the addition of folders, returned as a character vector.

1 Alphabetical List

1-138

Tips
• To save the newly modified search path for future MATLAB sessions, use the

savepath function.
• To modify the search path programmatically at startup, use addpath statements in a

startup.m file. For more information, see “Add Folders to the MATLAB Search Path
at Startup”.

Algorithms
If you use addpath within a local function, the path change persists after program
control returns from the function. That is, the scope of the path change is global.

See Also
genpath | path | pathsep | rmpath | savepath

Topics
“What Is the MATLAB Search Path?”
“Files and Folders that MATLAB Accesses”
“Specify File Names”
“Add Folders to the MATLAB Search Path at Startup”

Introduced before R2006a

 addpath

1-139

addpref
Add custom preference

Syntax
addpref(group,pref,value)

Description
addpref(group,pref,value) creates the specified preference in the specified group
and sets its value to value. If the specified preference exists, MATLAB returns an error.

Preferences are persistent and maintain their values between MATLAB sessions.

Examples

Add New Preference

Add a preference called version to the mytoolbox group of preferences. Set the value
of version to the cell array {'1.0','beta'}.

addpref('mytoolbox','version',{'1.0','beta'})

Add Multiple New Preferences

Add two preferences to the mytoolbox group of preferences and set their values.

1 Alphabetical List

1-140

addpref('mytoolbox',{'modifieddate','docpath'},{'1/9/2019','C:\mytoolbox\documentation'})

Input Arguments
group — Custom preference group name
character vector | string scalar

Preference group name, specified as a character vector or a string scalar. group must be
a valid variable name. For more information, see “Variable Names”.
Example: 'mytoolbox'
Data Types: char | string

pref — Custom preference name
character vector | cell array of character vectors | string array

Custom preference name, specified as a character vector, a cell array of character
vectors, or a string array. pref must be a valid variable name. For more information, see
“Variable Names”.

If pref is a cell array of character vectors or a non-scalar string, value must specify a
value for each preference specified in pref.
Example: 'version'
Example: {'version','modifieddate','docpath'}
Data Types: char | string

value — Custom preference value
any MATLAB data type

Custom preference value, specified as any MATLAB data type, including numeric types,
character vectors, cell arrays, structures, and objects. If pref is a cell array of character
vectors or a nonscalar string array, value must specify a cell array that includes a value
for each preference specified in pref.
Example: 1.1
Example: {{1.1,'beta'},datetime(2018,1,9),'C:\mytoolbox
\documentation'}

 addpref

1-141

See Also
getpref | ispref | rmpref | setpref | uigetpref | uisetpref

Topics
“Preferences”

Introduced before R2006a

1 Alphabetical List

1-142

addpoints
Add points to animated line

Syntax
addpoints(an,x,y)
addpoints(an,x,y,z)

Description
addpoints(an,x,y) adds points defined by x and y to the animated line specified by
an. Create an animated line with the animatedline function. To display the updates on
the screen, use drawnow or drawnow limitrate. New points automatically connect to
previous points.

addpoints(an,x,y,z) adds points defined by x, y, and z to the 3-D animated line
specified by an.

Examples

Add Five Points to Animated Line

Create an animated line object with no data. Then, add five points to the line. Use a circle
to mark each point.

h = animatedline('Marker','o');
x = 1:5;
y = 1:5;
addpoints(h,x,y)

 addpoints

1-143

Add Points Within Loop to Animated Line

Create an animated line using the animatedline function. Then, add points to the line
within a loop to create an animation. Set the axis limits before the loop to prevent the
limits from changing.

figure
h = animatedline;
axis([0 4*pi -1 1])

for x = linspace(0,4*pi,10000)

1 Alphabetical List

1-144

 y = sin(x);
 addpoints(h,x,y)
 drawnow limitrate
end

Input Arguments
an — AnimatedLine object
AnimatedLine object

AnimatedLine object. Create an AnimatedLine object using the animatedline
function.

 addpoints

1-145

x — x values
scalar | vector

x values, specified as a scalar or a vector. The length of x must equal the length of y.
Example: 11:20
Data Types: double

y — y values
scalar | vector

y values, specified as a scalar or a vector. The length of y must equal the length of x.
Example: 11:20
Data Types: double

z — z values
scalar | vector

z values, specified as a scalar or a vector. The length of z must equal the length of x and
y.
Example: 11:20
Data Types: double

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-146

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
animatedline | clearpoints | getpoints

Properties
AnimatedLine

Introduced in R2014b

 addpoints

1-147

addprop
Add custom properties to table or timetable

Syntax
T = addprop(T,propertyNames,propertyTypes)

Description
T = addprop(T,propertyNames,propertyTypes) adds properties that contain
custom metadata to the table or timetable T. The input argument propertyNames
specifies the names of the properties. For each custom property, propertyTypes
specifies whether the metadata values contained in the property apply to T as a whole, or
to the variables of T.

After you add properties using addprop, you can assign metadata values to the
properties using dot syntax.

Examples

Add Custom Properties

Read data into a table. Then add properties to contain custom metadata.

First, read measurements of humidity and air quality into a table. Display the first three
rows.

T = readtable('indoors.csv');
head(T,3)

ans=3×3 table
 Time Humidity AirQuality
 ___________________ ________ __________

1 Alphabetical List

1-148

 2015-11-15 00:00:24 36 80
 2015-11-15 01:13:35 36 80
 2015-11-15 02:26:47 37 79

Display the properties of the table. The properties object, T.Properties, stores
metadata such as the names of the two dimensions of the table and the names of the table
variables. All tables have such objects with the same properties. (Timetables also have
similar objects that include additional, time-specific properties.)

T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Humidity' 'AirQuality'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

In addition, you can specify your own properties to store custom metadata. For example,
use the addprop function to add properties to the table T for the instrument name,
measurement precision, and the name of the source file. For properties that have one
metadata value per variable, specify 'variable' as the property type. For properties
that have one value that applies to the whole table, specify 'table'.

T = addprop(T,{'Instrument','Precision','SourceFile'},{'variable','variable','table'});
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Humidity' 'AirQuality'}
 VariableDescriptions: {}

 addprop

1-149

 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 SourceFile: []
 Instrument: []
 Precision: []

When you create custom properties using addprop, the properties are empty. To store
metadata values in the custom properties, assign them using dot syntax.

T.Properties.CustomProperties.Instrument = ["clock" "hygrometer" "air quality meter"];
T.Properties.CustomProperties.Precision = [NaN 0.5 0.1];
T.Properties.CustomProperties.SourceFile = 'indoors.csv';
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Humidity' 'AirQuality'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 SourceFile: 'indoors.csv'
 Instrument: ["clock" "hygrometer" "air quality meter"]
 Precision: [NaN 0.5000 0.1000]

When you assign an array of text values to custom properties, the best practice is to use a
string array, not a cell array of character vectors. If you use a cell array of character
vectors, then there is no mechanism to prevent you from later assigning nontext values as
elements of the cell array.

1 Alphabetical List

1-150

Input Arguments
T — Input table
table | timetable

Input table, specified as a table or timetable.

propertyNames — Names of custom properties
character vector | cell array of character vectors | string array

Names of the custom properties, specified as a character vector, cell array of character
vectors, or string array.

propertyTypes — Property types
character vector | cell array of character vectors | string array

Property types, specified as a character vector, cell array of character vectors, or string
array. For each property name specified by propertyNames, specify the corresponding
property type as either 'table' or 'variable'. The number of property types must
equal the number of property names.

The table describes the two property types.

Property Type Description
'table' The property contains a single value of

arbitrary size. The value applies as
metadata to the table or timetable as a
whole.

 addprop

1-151

Property Type Description
'variable' The property contains an array that has one

value for each variable in the table or
timetable. The values are metadata for the
variables. The number of values in the
array must match the number of variables.

The values stored by the property are
synchronized with the variables. They
respond when you take one of these
actions:

• Move variables — The corresponding
values in the property are reordered.

• Add variables — Default values are
added as corresponding values in the
property.

• Remove variables — The corresponding
values are removed from the property.

See Also
rmprop | summary | table | timetable

Topics
“Add Custom Properties to Tables and Timetables”
“Access Data in a Table”
“Modify Units, Descriptions, and Table Variable Names”

Introduced in R2018b

1 Alphabetical List

1-152

addprop
Class: dynamicprops

Add dynamic property

Syntax
P = addprop(A,PropertyName)

Description
P = addprop(A,PropertyName) adds a property named PropName to each object in
array A. The output argument P is an array of meta.DynamicProperty objects that is
the same size as A.

Dynamic properties exist only on the specific instance for which they are defined.
Dynamic properties do not become part of the class definition.

You can add dynamic properties only to objects derived from the dynamicprops class.
Access the data in dynamic properties using the instance variable and the property name
(obj.PropertyName).

Input Arguments
A — Input array
object array

Input array, specified as an object array of a class that is derived from dynamicprops.

PropertyName — Name of dynamic property
character vector | string

Name of dynamic property, specified as a char vector.
Example: 'DynoProp'

 addprop

1-153

Data Types: char | string

Output Arguments
P — Output array
meta.DynamicProperty

Output array returned as an array of meta.DynamicProperty objects. Use
meta.DynamicProperty objects to define access methods for dynamic properties, to set
property attributes, and to remove dynamic properties.

Attributes
Access Public

To learn about attributes of methods, see Method Attributes.

Examples

Add Dynamic Property
Add a dynamic property to an object of the Dyno class.

classdef Dyno < dynamicprops
 properties
 Prop1
 end
end

Create an object

o = Dyno;

Add a property called DynoProp

p = addprop(o,'DynoProp');

Set the AbortSet attribute of the dynamic property

1 Alphabetical List

1-154

p.AbortSet = 1;

Remove the dynamic property

delete(p)

See Also
dynamicprops | meta.DynamicProperty

Topics
“Dynamic Properties — Adding Properties to an Instance”
“Set and Get Methods for Dynamic Properties”

Introduced in R2008a

 addprop

1-155

addproperty
Add custom property to COM object

Syntax
addproperty(c,name)

Description
addproperty(c,name) adds custom property specified by name to object or interface c.

Examples

Add Custom Property to mwsamp Control

Create an instance of the control.

f = figure('position',[100 200 200 200]);
c = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);

Add a custom property named Position and assign a value.

addproperty(h,'Position')
h.Position = [200 120];
get(h)

Label: 'Label'
 Radius: 20
 Position: [200 120]

Input Arguments
c — COM object
function handle

1 Alphabetical List

1-156

COM object, specified as a function handle.

name — Property name
character vector

Property name, specified as a character vector.
Example: 'Position'

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
Property Inspector | deleteproperty | get | set

Topics
“COM Object Properties”

Introduced before R2006a

 addproperty

1-157

addsampletocollection
Add sample to tscollection

Syntax
tscout = addsampletocollection(tscin,'Time',timevals,tsname,tsdata)

Description
tscout = addsampletocollection(tscin,'Time',timevals,tsname,tsdata)
adds data samples to the tscollection member specified by the name tsname for one
or more time values. tsdata contains the sample data.

To add samples to more than one tscollection member at a time, continue to list each
tscollection member name followed by the corresponding data separated by commas.
For example, the command tscout =
addsampletocollection(tscin,'Time',timevals,ts1name,ts1data,ts2name,
ts2data) adds samples to two timeseries in tscin simultaneously.

Examples

Add tscollection Sample

Create a tscollection object from two timeseries objects and add a sample to the
tscollection.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,'Name','Acceleration');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,'Name','Speed');
tscin = tscollection({ts1;ts2});
tscout = addsampletocollection(tscin,'Time',3.5,'Acceleration',10,'Speed',4.9);
tscout.Acceleration.Data

ans = 6×1

1 Alphabetical List

1-158

 1.1000
 2.9000
 3.7000
 10.0000
 4.0000
 3.0000

tscout.Speed.Data

ans = 6×1

 3.2000
 4.2000
 6.2000
 4.9000
 8.5000
 1.1000

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

timevals — Sample times
scalar | vector

Sample times, specified as a numeric scalar or vector, or a cell array of date character
vectors. Valid date character vectors and strings can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01

 addsampletocollection

1-159

Format Example
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

tsname — timeseries name
character vector

timeseries name, specified as a character vector.
Data Types: char

tsdata — timeseries data
scalar | vector | multidimensional array

timeseries data, specified as a numeric or logical scalar, vector, or multidimensional
array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Tips
• If you do not specify data samples for a tscollection member, that timeseries

will contain NaN values for the times specified in timevals for numeric data. For
logical data, the timeseries will contain false values.

• When a tscollection member requires Quality values, you can specify data
quality codes together with the data samples by using the following syntax:

tsc = addsampletocollection(tsc,'Time',timevals,...
ts1name,ts1cellarray,ts2name,ts2cellarray,...)

1 Alphabetical List

1-160

Specify the data in the first cell array element and Quality in the second cell array
element.

If a tscollection member already has Quality values, but you only provide data
samples, then 0 is added to the existing Quality array at the times specified in
timevals.

See Also
delsamplefromcollection | timeseries | tscollection

Introduced before R2006a

 addsampletocollection

1-161

addtodate
Modify date number by field

Syntax
R = addtodate(D, Q, F)

Description
R = addtodate(D, Q, F) adds quantity Q to the indicated date field F of a scalar
serial date number D, returning the updated date number R.

The quantity Q to be added can be a positive or negative integer. The absolute value of Q
must be less than or equal to 1e16. The date field F must be a character vector or string
scalar equal to one of the following: 'year', 'month', 'day', 'hour', 'minute',
'second', or 'millisecond'.

If the addition to the date field causes the field to roll over, the MATLAB software adjusts
the next more significant fields accordingly. Adding a negative quantity to the indicated
date field rolls back the calendar on the indicated field. If the addition causes the field to
roll back, MATLAB adjusts the next less significant fields accordingly.

Examples
Modify the hours, days, and minutes of a given date:

t = datenum('07-Apr-2008 23:00:00');
datestr(t)
ans =
 07-Apr-2008 23:00:00

t= addtodate(t, 2, 'hour');
datestr(t)
ans =
 08-Apr-2008 01:00:00

1 Alphabetical List

1-162

t= addtodate(t, -7, 'day');
datestr(t)
ans =
 01-Apr-2008 01:00:00

t= addtodate(t, 59, 'minute');
datestr(t)
ans =
 01-Apr-2008 01:59:00

Adding 20 days to the given date in late December causes the calendar to roll over to
January of the next year:

R = addtodate(datenum('12/24/2007 12:45'), 20, 'day');

datestr(R)
ans =
 13-Jan-2008 12:45:00

See Also
date | datenum | datestr | datevec

Introduced before R2006a

 addtodate

1-163

addToolbarExplorationButtons
Add data exploration buttons to figure toolbar

Syntax
addToolbarExplorationButtons(fig)

Description
addToolbarExplorationButtons(fig) adds the data exploration buttons on page 1-
165 to the figure toolbar for the specified figure.

In R2018b, the data exploration buttons were moved from the figure toolbar to the axes
toolbar. In most cases, you do not need to use this function. However, if you have code
that relies on the buttons appearing in the figure toolbar, you can use the
addToolbarExplorationButtons and removeToolbarExplorationButtons
functions to control the appearance of the buttons in the figure toolbar.

Examples

Add and Remove Data Exploration Buttons

Create a figure with a surface plot. Then add the data exploration buttons to the figure
toolbar.

fig = figure;
surf(peaks);
addToolbarExplorationButtons(fig)

Notice that the figure toolbar now includes buttons to zoom in, zoom out, and so on.

Remove the buttons from the figure toolbar.

1 Alphabetical List

1-164

removeToolbarExplorationButtons(fig)

Input Arguments
fig — Target figure
single Figure object | vector of Figure objects

Target figure, specified as a single Figure object or a vector of Figure objects.

Definitions

Data Exploration Buttons
The standard data exploration buttons include options to:

• Zoom in or out of the axes view
• Pan the axes view
• Rotate the axes view
• Show data tips
• Brush data

In R2018b, the data exploration buttons were moved from the figure toolbar to the axes
toolbar. This figure illustrates the relocation of the buttons.

 addToolbarExplorationButtons

1-165

See Also
axtoolbar | removeToolbarExplorationButtons

Introduced in R2018a

1 Alphabetical List

1-166

addts
Add timeseries to tscollection

Syntax
tscout = addts(tscin,ts)
tscout = addts(tscin,ts,tsname)
tscout = addts(tscin,tsdata,tsname)

Description
tscout = addts(tscin,ts) adds a timeseries object ts to the tscollection
object tscin. The input timeseries can be a single timeseries object or a cell array
of timeseries objects.

tscout = addts(tscin,ts,tsname) specifies the names of the input timeseries
objects. tsname can be a single character vector or a cell array of character vectors
defining the names for each timeseries in ts.

tscout = addts(tscin,tsdata,tsname) adds a timeseries object with data
tsdata and name tsname to the input tscollection.

Examples

Add timeseries to Collection

Create a tscollection object containing one timeseries object. Then, add a second
timeseries to the collection.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,...
 'Name','Acceleration');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,...
 'Name','Speed');

 addts

1-167

tscin = tscollection(ts1);
tscout = addts(tscin,ts2)

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 5 seconds

Member Time Series Objects:

 Acceleration
 Speed

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

ts — Input timeseries
scalar | cell array

Input timeseries, specified as a scalar timeseries object or a cell array of
timeseries objects.

tsname — timeseries name
character vector | cell array of character vectors

timeseries name, specified as a character vector or a cell array of character vectors.

tsdata — timeseries data
scalar | vector | multidimensional array

timeseries data, specified as a numeric or logical scalar, vector, or multidimensional
array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Alphabetical List

1-168

Tips
• The timeseries objects that you add to the collection must have the same time

vector as the collection. That is, the time vectors must have the same time values and
units.

• Suppose that the time vector of a timeseries object is associated with calendar
dates. When you add the timeseries to a collection with a time vector without
calendar dates, the time vectors are compared based on the units and the values
relative to the StartDate property.

See Also
removets | timeseries | tscollection

Introduced before R2006a

 addts

1-169

addvars
Add variables to table or timetable

Syntax
T2 = addvars(T1,var1,...,varN)
T2 = addvars(T1,var1,...,varN,'Before',location)
T2 = addvars(T1,var1,...,varN,'After',location)
T2 = addvars(___ ,'NewVariableNames',newNames)

Description
T2 = addvars(T1,var1,...,varN) adds the variables specified by var1,…,varN to
the right of the last variable of T1. The input arguments var1,…,varN can include arrays
of any type, tables, and timetables. All input arguments must have the same number of
rows.

T2 = addvars(T1,var1,...,varN,'Before',location) inserts the variables to
the left of the table variable indicated by location (see diagram). You can specify
location as a variable name, or a numeric or logical index.

1 Alphabetical List

1-170

T2 = addvars(T1,var1,...,varN,'After',location) inserts the variables to the
right of the table variable indicated by location.

T2 = addvars(___ ,'NewVariableNames',newNames) renames the added variables
in T2 using the names specified by newNames. The number of names in newNames must
be the same as the number of added variables. You can use this syntax with any of the
input arguments of the previous syntaxes.

Examples

Add Variables

Create a table. Then add variables from the workspace to the table.

Load arrays from the patients.mat file. Create a table that contains the names, ages,
heights, and weights of patients. Then display the first three rows.

load patients
T1 = table(LastName,Age,Height,Weight);
head(T1,3)

ans=3×4 table
 LastName Age Height Weight

 addvars

1-171

 __________ ___ ______ ______

 'Smith' 38 71 176
 'Johnson' 43 69 163
 'Williams' 38 64 131

Add the workspace variables, Gender and Smoker, to the table.

T2 = addvars(T1,Gender,Smoker);
head(T2,3)

ans=3×6 table
 LastName Age Height Weight Gender Smoker
 __________ ___ ______ ______ ________ ______

 'Smith' 38 71 176 'Male' true
 'Johnson' 43 69 163 'Male' false
 'Williams' 38 64 131 'Female' false

Insert Variables at Specified Locations

Create a table. Then insert variables before and after specified locations in the table.

Load arrays from the patients.mat file. Create a table that contains the names and
genders of patients. Then display the first three rows.

load patients
T1 = table(LastName,Gender);
head(T1,3)

ans=3×2 table
 LastName Gender
 __________ ________

 'Smith' 'Male'
 'Johnson' 'Male'
 'Williams' 'Female'

Insert the workspace variable, Age, before the table variable, Gender. To refer to a table
variable by name, specify its name as a character vector.

1 Alphabetical List

1-172

T2 = addvars(T1,Age,'Before','Gender');
head(T2,3)

ans=3×3 table
 LastName Age Gender
 __________ ___ ________

 'Smith' 38 'Male'
 'Johnson' 43 'Male'
 'Williams' 38 'Female'

Insert more variables after Age. Since Age is a table variable in T2, specify its name as a
character vector.

T3 = addvars(T2,Height,Weight,'After','Age');
head(T3,3)

ans=3×5 table
 LastName Age Height Weight Gender
 __________ ___ ______ ______ ________

 'Smith' 38 71 176 'Male'
 'Johnson' 43 69 163 'Male'
 'Williams' 38 64 131 'Female'

Insert Smoker after the first table variable. You can specify variables by position in the
table instead of by name.

T4 = addvars(T3,Smoker,'After',1);
head(T4,3)

ans=3×6 table
 LastName Smoker Age Height Weight Gender
 __________ ______ ___ ______ ______ ________

 'Smith' true 38 71 176 'Male'
 'Johnson' false 43 69 163 'Male'
 'Williams' false 38 64 131 'Female'

 addvars

1-173

Rename Variables

Create a table. Add variables and give them new names in the table.

First, create a table from workspace variables.

load patients
T1 = table(LastName,Age,Gender,Smoker);
head(T1,3)

ans=3×4 table
 LastName Age Gender Smoker
 __________ ___ ________ ______

 'Smith' 38 'Male' true
 'Johnson' 43 'Male' false
 'Williams' 38 'Female' false

Combine Diastolic and Systolic into one matrix with two columns. Name the new
table variable BloodPressure.

T2 = addvars(T1,[Diastolic Systolic],'NewVariableNames','BloodPressure');
head(T2,3)

ans=3×5 table
 LastName Age Gender Smoker BloodPressure
 __________ ___ ________ ______ _____________

 'Smith' 38 'Male' true 93 124
 'Johnson' 43 'Male' false 77 109
 'Williams' 38 'Female' false 83 125

Add Height and Weight as new table variables. Rename them Inches and Pounds.

T3 = addvars(T2,Height,Weight,'Before','Smoker','NewVariableNames',{'Inches','Pounds'});
head(T3,3)

ans=3×7 table
 LastName Age Gender Inches Pounds Smoker BloodPressure
 __________ ___ ________ ______ ______ ______ _____________

 'Smith' 38 'Male' 71 176 true 93 124
 'Johnson' 43 'Male' 69 163 false 77 109

1 Alphabetical List

1-174

 'Williams' 38 'Female' 64 131 false 83 125

Input Arguments
T1 — Input table
table | timetable

Input table, specified as a table or timetable.

var1,...,varN — Variables to add to output table
arrays, tables, and timetables

Variables to add to the output table, specified as arrays, tables, and timetables. The
variables specified by var1,...,varN all must have the same number of rows as the
input table T1.
Example: T2 = addvars(T1,A) inserts the workspace variables A to the right of the last
table variable.
Example: T2 = addvars(T1,X,Y,Z) inserts the workspace variables X, Y, and Z.

location — Location to insert added variables
character vector | string scalar | integer | logical array

Location to insert added variables, specified as a character vector, string scalar, integer,
or logical array.

• If location is a character vector or string scalar, then it is the name of a variable in
the input table T1.

• If location is the integer n, then it specifies the nth variable in T1.
• If location is a logical array, whose nth element is 1 (true), then it specifies the nth

variable in T1. All other elements of location must be 0 (false).

Example: T2 = addvars(T1,Latitude,'Before','Longitude') insert the
workspace variable Latitude to the left of the table variable named Longitude.
Example: T2 = addvars(T1,Y,Z,'After','X') inserts the workspace variables Y
and Z to the right of the table variable named X.

 addvars

1-175

newNames — Names of added variables
character vector | cell array of character vectors | string array

Names of the added variables, specified as a character vector, cell array of character
vectors, or string array.
Example: T2 = addvars(T1,lat,lon,'NewVariableNames',
{'Latitude','Longitude'}) inserts the workspace variables lat and lon and names
the corresponding table variables 'Latitude' and 'Longitude'.

Limitations
• Use single quotes for the input names 'Before', 'After', and

'NewVariableNames'. To avoid confusion with variable inputs, do not use double-
quoted string scalars (such as "Before") for these names.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
mergevars | movevars | removevars | splitvars

1 Alphabetical List

1-176

Topics
“Add, Delete, and Rearrange Table Variables”
“Add and Delete Table Rows”
“Access Data in a Table”
“Modify Units, Descriptions, and Table Variable Names”
“Clean Messy and Missing Data in Tables”

Introduced in R2018a

 addvars

1-177

airy
Airy Functions

Syntax
W = airy(Z)
W = airy(k,Z)
W = airy(k,Z,scale)

Description
W = airy(Z) returns the Airy function, Ai(Z), for each element of Z.

W = airy(k,Z) returns any of four different Airy functions, depending on the value of k,
such as the Airy function of the second kind or the first derivative of an Airy function.

W = airy(k,Z,scale) scales the resulting Airy function. airy applies a specific
scaling function to W depending on your choice of k and scale.

Examples

Airy Function of Real-Valued x

Define x.

x = -10:0.01:1;

Calculate Ai(x)

ai = airy(x);

Calculate Bi(x) using k = 2.

bi = airy(2,x);

1 Alphabetical List

1-178

Plot both results together on the same axes.

figure
plot(x,ai,'-b',x,bi,'-r')
axis([-10 1 -0.6 1.4])
xlabel('x')
legend('Ai(x)','Bi(x)','Location','NorthWest')

Airy Function of Complex-Valued x

Compute the Airy function at a slice through the complex plane at x + i.

 airy

1-179

Take a slice through the complex plane.

x = -4:0.1:4;
z = x+1i;

Calculate Ai(z).

w = airy(z);

Plot the real part of the result.

figure
plot(x, real(w))
axis([-4 4 -1.5 1])
xlabel('real(z)')

1 Alphabetical List

1-180

Scaled Airy Function

Define x.

x = -10:0.01:1;

Calculate the scaled and unscaled Airy function.

scaledAi = airy(0,x,1);
noscaleAi = airy(0,x,0);

Plot the real part of each result.

rscaled = real(scaledAi);
rnoscale = real(noscaleAi);
figure
plot(x,rscaled,'-b',x,rnoscale,'-r')
axis([-10 1 -0.60 0.60])
xlabel('x')
legend('scaled','not scaled','Location','SouthEast')

 airy

1-181

Input Arguments
Z — System variable
vector | matrix | N-D Array

System variable, specified as a real or complex vector, matrix, or N-D array.
Data Types: single | double
Complex Number Support: Yes

k — Type of Airy function
0 (default) | 1 | 2 | 3

1 Alphabetical List

1-182

Type of Airy function, specified as one of four values.

k Returns
0 Airy function,Ai(Z), which is the same as airy(Z).
1 First derivative of Airy function, Ai′(Z).
2 Airy function of the second kind,Bi(Z)
3 First derivative of Airy function of the second kind,Bi′(Z)

Data Types: single | double

scale — Scaling option
0 (default) | 1

Scaling option, specified as 0 or 1. Use scale = 1 to enable the scaling of Z. The values
you specify for k and scale determine the scaling function airy applies to Z.

scale k Scaling applied to output
0 Any None
1 0 or 1 e

2
3Z(3/2)

1 2 or 3 e−
2
3Re(Z(3/2))

Data Types: single | double

Output Arguments
W — Airy function of Z
vector | matrix | N-D Array

Airy function of Z, returned as an array the same size as Z.

 airy

1-183

Definitions
Airy Functions
The Airy functions form a pair of linearly independent solutions to

d2W
dZ2 − ZW = 0.

The relationship between the Airy and modified Bessel functions is

Ai(Z) = 1
π

Z
3 K1/3(ζ)

Bi(Z) = Z
3 I−1/3(ζ) + I1/3(ζ) ,

where

ζ = 2
3Z3/2 .

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Always returns a complex result.
• Strict single-precision calculations are not supported. In the generated code, single-

precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

See Also
besselh | besseli | besselj | besselk | bessely

1 Alphabetical List

1-184

Introduced before R2006a

 airy

1-185

align
Align UI components and graphics objects

Note

Use this function only with GUIDE, or with apps created using the figure
function.

Syntax
align(HandleList,'HorizontalAlignment','VerticalAlignment')
Positions = align(HandleList, 'HorizontalAlignment',
'VerticalAlignment')
Positions = align(CurPositions, 'HorizontalAlignment',
'VerticalAlignment')

Description
align(HandleList,'HorizontalAlignment','VerticalAlignment') aligns the
uicontrol and axes objects in HandleList, a vector of handles, according to the
options HorizontalAlignment and VerticalAlignment. The following tables show
the possible values for HorizontalAlignment and VerticalAlignment.

HorizontalAlignment Definition
'None' No horizontal alignment
'Left' Aligns the left edges of the objects with the left edge

of the bounding box that encloses the objects
'Center' Shifts objects to center their positions to the average

of the extreme x-values of the group
'Right' Aligns the right edges of the objects with the right

edge of the bounding box that encloses the objects

1 Alphabetical List

1-186

HorizontalAlignment Definition
'Distribute' Equalizes x-distances between all objects within the

span of the extreme x-values
'Fixed' Spaces objects to have a specified number of points

between them in the x-direction

VerticalAlignment Definition
'None' No vertical alignment
'Top' Aligns the top edges of the objects with the top edge

of the bounding box that encloses the objects
'Middle' Shifts objects to center their positions to the average

of the extreme y-values of the group
'Bottom' Aligns the bottom edges of the objects with the bottom

edge of the bounding box that encloses the objects
'Distribute' Equalizes y-distances between all objects within the

span of the extreme y-values
'Fixed' Spaces objects to have a specified number of points

between them in the y-direction

Aligning objects does not change their absolute sizes. All alignment options align the
objects within the bounding box that encloses the objects. Distribute and Fixed align
objects to the bottom left of the bounding box. Distribute evenly distributes the objects
while Fixed distributes the objects with a fixed distance (in points) between them. When
you specify both horizontal and vertical distance together, the keywords
'HorizontalAlignment' and 'VerticalAlignment' are not necessary.

If you use Fixed for HorizontalAlignment or VerticalAlignment, you must also
specify the distance, in points, where 72 points equals 1 inch. For example:

align(HandleList,'Fixed',Distance,'VerticalAlignment')

distributes the specified components Distance points horizontally and aligns them
vertically as specified.

align(HandleList,'HorizontalAlignment','Fixed',Distance)

aligns the specified components horizontally as specified and distributes them Distance
points vertically.

 align

1-187

align(HandleList,'Fixed',HorizontalDistance,...
 'Fixed',VerticalDistance)

distributes the specified components HorizontalDistance points horizontally and
distributes them VerticalDistance points vertically.

Positions = align(HandleList, 'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the specified objects as a vector
of Position vectors. The position of the objects on the figure does not change.

Positions = align(CurPositions, 'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the objects whose positions are
contained in CurPositions, where CurPositions is a vector of Position vectors. The
position of the objects on the figure does not change.

Examples

Align a Row of Buttons

Create a UI window containing three buttons that are roughly in a row.

f = figure('Position',[100 100 350 200]);
u1 = uicontrol('Parent',f,'Position',[43 50 75 30],'String','Yes');
u2 = uicontrol('Parent',f,'Position',[143 75 75 30],'String','No');
u3 = uicontrol('Parent',f,'Position',[233 40 75 30],'String','Cancel');

1 Alphabetical List

1-188

Align the bottom edges of the buttons, and equalize the horizontal spacing between the
buttons.

align([u1 u2 u3],'distribute','bottom');

 align

1-189

Align a Vertical Stack of Buttons

Create a UI window containing a vertical stack of buttons.

f = figure('Position',[100 100 350 200])
u1 = uicontrol(f,'Position',[10 80 60 30],'String','One');
u2 = uicontrol(f,'Position',[50 50 60 30],'String','Two');
u3 = uicontrol(f,'Position',[30 10 60 30],'String','Three');

1 Alphabetical List

1-190

Align the button centers and set the space between buttons to seven points.

align([u1 u2 u3],'Center','Fixed',7);

 align

1-191

See Also
figure | uicontrol | uistack

1 Alphabetical List

1-192

alim
Set or query axes alpha limits

Syntax
alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(ax,...)

Description
alpha_limits = alim returns the alpha limits (ALim property) of the current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin is the value of
the data mapped to the first alpha value in the alphamap, and amax is the value of the
data mapped to the last alpha value in the alphamap. Data values in between are linearly
interpolated across the alphamap, while data values outside are clamped to either the
first or last alphamap value, whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (ALimMode property) of the
current axes.

alim('alim_mode') sets the alpha limits mode on the current axes. alim_mode can be

• auto — MATLAB automatically sets the alpha limits based on the alpha data of the
objects in the axes.

• manual — MATLAB does not change the alpha limits.

alim(ax,...) operates on the specified axes.

Examples

 alim

1-193

Set Alpha Limits

Plot a surface using the gradient of z as the alphamap. Adjust the alpha limits to see only
where the gradient is between 0 and 0.15.

[x,y] = meshgrid(-2:.2:2);
z = x.*exp(-x.^2-y.^2);
surf(x,y,z+.001,'FaceAlpha','flat',...
 'AlphaDataMapping','scaled',...
 'AlphaData',gradient(z),...
 'FaceColor','blue');
alim([0 .15])

1 Alphabetical List

1-194

See Also
Functions
alpha | alphamap | caxis

Properties
Axes

Introduced before R2006a

 alim

1-195

all
Determine if all array elements are nonzero or true

Syntax
B = all(A)
B = all(A,'all')
B = all(A,dim)
B = all(A,vecdim)

Description
B = all(A) tests along the first array dimension of A whose size does not equal 1, and
determines if the elements are all nonzero or logical 1 (true). In practice, all is a
natural extension of the logical AND operator.

• If A is a vector, then all(A) returns logical 1 (true) if all the elements are nonzero
and returns logical 0 (false) if one or more elements are zero.

• If A is a nonempty matrix, then all(A) treats the columns of A as vectors and returns
a row vector of logical 1s and 0s.

• If A is an empty 0-by-0 matrix, then all(A) returns logical 1 (true).
• If A is a multidimensional array, then all(A) acts along the first array dimension

whose size does not equal 1 and returns an array of logical values. The size of this
dimension becomes 1, while the sizes of all other dimensions remain the same.

B = all(A,'all') tests over all elements of A. This syntax is valid for MATLAB
versions R2018b and later.

B = all(A,dim) tests elements along dimension dim. The dim input is a positive
integer scalar.

B = all(A,vecdim) tests elements based on the dimensions specified in the vector
vecdim. For example, if A is a matrix, then all(A,[1 2]) tests over all elements in A,
since every element of a matrix is contained in the array slice defined by dimensions 1
and 2.

1 Alphabetical List

1-196

Examples

Test Matrix Columns

Create a 3-by-3 matrix, and then test each column for all nonzero elements.

A = [0 0 3;0 0 3;0 0 3]

A = 3×3

 0 0 3
 0 0 3
 0 0 3

B = all(A)

B = 1x3 logical array

 0 0 1

Reduce a Logical Vector to a Single Condition

Create a vector of decimal values and test which values are less than 0.5.

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69];
B = (A < 0.5)

B = 1x7 logical array

 0 0 1 1 1 1 0

The output is a vector of logical values. The all function reduces such a vector of logical
values to a single condition. In this case, B = all(A < 0.5) yields logical 0.

This makes all particularly useful in if statements.

if all(A < 0.5)

 all

1-197

%do something

else

%do something else

end

The code is executed depending on a single condition, rather than a vector of possibly
conflicting conditions.

Test Arrays of Any Dimension

Create a 3-by-7-by-5 multidimensional array and test to see if all of its elements are less
than 3.

A = rand(3,7,5) * 5;
B = all(A(:) < 3)

B = logical
 0

You can also test the array for elements that are greater than zero.

B = all(A(:) > 0)

B = logical
 1

The syntax A(:) turns the elements of A into a single column vector, so you can use this
type of statement on an array of any size.

Test Matrix Rows

Create a 3-by-3 matrix.

A = [0 0 3;0 0 3;0 0 3]

1 Alphabetical List

1-198

A = 3×3

 0 0 3
 0 0 3
 0 0 3

Test the rows of A for all nonzero elements by specifying dim = 2.

B = all(A,2)

B = 3x1 logical array

 0
 0
 0

Nonzero Elements in Array Page

Create a 3-D array and determine if all elements in each page of data (rows and columns)
are zero.

A(:,:,1) = [2 1; 3 5];
A(:,:,2) = [0 0; 0 0];
A(:,:,3) = [-2 9; 4 1];
B = all(A,[1 2])

B = 1x1x3 logical array
B(:,:,1) =

 1

B(:,:,2) =

 0

B(:,:,3) =

 1

 all

1-199

Input Arguments
A — Input Array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, A:

• all(A,1) works on successive elements in the columns of A and returns a row vector
of logical values.

• all(A,2) works on successive elements in the rows of A and returns a column vector
of logical values.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

1 Alphabetical List

1-200

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then all(A,[1 2]) returns a 1-by-1-by-3 array
whose elements indicate nonzero values for each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Logical array
scalar | vector | matrix | multidimensional array

Logical array, returned as a scalar, vector, matrix, or multidimensional array. The
dimension of A acted on by all has size 1 in B.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

 all

1-201

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
and | any | colon | prod | sum

Topics
“Reduce Logical Arrays to Single Value”

Introduced before R2006a

1 Alphabetical List

1-202

allchild
Find all children of specified objects

Syntax
child_handles = allchild(handle_list)

Description
child_handles = allchild(handle_list) returns the list of all children (including
ones with hidden handles) for each handle. If handle_list is a single element,
allchild returns the output in a vector. If handle_list is a vector of handles, the
output is a cell array.

Examples
Compare the results these two statements return:

axes
get(gca,'Children')
allchild(gca)

See Also
findall | findobj

Introduced before R2006a

 allchild

1-203

alpha
Add transparency to objects in axes

Syntax
alpha value
alpha alphadata
alpha facealpha
alpha alphadatamapping

alpha(obj, ___)
alpha(ax, ___)

Description
alpha value sets the face transparency for graphics objects in the current axes that
support transparency. Specify value as a scalar value between 0 (transparent) and 1 (no
transparency), 'clear', or 'opaque'.

alpha alphadata varies the transparency across all image, patch, chart surface, and
primitive surface objects in the axes. This option sets the corresponding alpha data
properties for the objects.

alpha facealpha specifies whether to use flat or interpolated transparency across the
faces of all patch, chart surface, and primitive surface objects in the axes. This option sets
the FaceAlpha property for the objects.

alpha alphadatamapping controls the interpretation of the alpha data values for all
image, patch, chart surface, and primitive surface objects in the axes. This option sets the
AlphaDataMapping property for the objects.

alpha(obj, ___) sets the face transparency for the objects specified by obj. The
option, obj, can precede any of the input arguments in the previous syntaxes. Use single
quotes around input arguments that are character arrays, for example,
alpha(obj,'opaque').

1 Alphabetical List

1-204

alpha(ax, ___) sets the face transparency for the graphics objects in the axes specified
by ax, instead of the current axes. Specify ax as the first input argument. You cannot
specify both the ax and obj inputs.

Examples

Set Transparency for All Graphics Objects in Axes

Create a bar chart and a scatter chart. Set the face transparency for both the bar series
and scatter series object to 0.5.

bar(1:10)
hold on
scatter(10*rand(10,1),10*rand(10,1),'filled','SizeData',200)
hold off
alpha(.5)

 alpha

1-205

Set Transparency for Specific Graphics Object

Create a bar chart and a scatter chart. Set the transparency for the scatter series object
to 0.5 without affecting the bar series object.

b = bar(1:10);
hold on
s = scatter(10*rand(10,1),10*rand(10,1),'filled','SizeData',200);
hold off
alpha(s,.5)

1 Alphabetical List

1-206

Set Surface Transparency Using z Values

Create a surface chart. Vary the transparency across the surface based on the z values.

s = surf(peaks);
alpha(s,'z')

 alpha

1-207

Set Mapping of Alpha Data into Alphamap

Create an image. Vary the transparency across the image based on the color values. By
default, the image clamps the transparency values between 0 and 1. Values less than 0
are completely transparency and values greater than 1 are completely opaque. Instead,
transform the transparency values to span the alphamap using the alpha scaled
command.

imagesc(peaks)
alpha color
alpha scaled

1 Alphabetical List

1-208

Input Arguments
value — Face transparency value
scalar from 0 through 1 | 'clear' | 'opaque'

Face transparency value, specified as one of these values:

• Scalar from 0 through 1 — Set the face transparency to the specified value. A value of
0 means transparent. A value of 1 means opaque. Values between 0 and 1 are
semitransparent.

 alpha

1-209

• 'clear' — Set the face transparency to 0 (transparent).
• 'opaque' — Set the face transparency to 1 (opaque).

If the object does not have a face or if the face has no color, then the alpha function does
not have a visual effect on the object. For example, alpha does not have a visual effect on
scatter charts that use unfilled markers or that use markers without a face ('*', '+',
'.', and 'x').

This table lists the graphics objects that support transparency and the associated face
transparency property that updates to the value specified.

Graphics Object Face Transparency Property
Area objects FaceAlpha
Bar objects FaceAlpha
Scatter objects MarkerFaceAlpha
Histogram and histogram2 objects FaceAlpha
Image objects AlphaData
Chart and primitive surface objects FaceAlpha
Patch objects FaceAlpha

alphadata — Option to vary transparency across object
'x' | 'y' | 'z' | 'color' | 'rand' | matrix

Option to vary the transparency across the object, specified as one of the values in this
table. The table columns indicate how each option affects the different types of objects,
depending on what objects are contained in the axes.

Option Chart or Primitive
Surface Objects

Patch Objects Image Objects

'x' Set the AlphaData
property to be the
same as the XData
property and set the
FaceAlpha property
to 'flat'.

Set the
FaceVertexAlphaD
ata property to be
the same as the
XData property and
set the FaceAlpha
property to 'flat'.

No effect.

1 Alphabetical List

1-210

Option Chart or Primitive
Surface Objects

Patch Objects Image Objects

'y' Set the AlphaData
property to be the
same as the YData
property and set the
FaceAlpha property
to 'flat'.

Set the
FaceVertexAlphaD
ata property to be
the same as the
YData property and
set the FaceAlpha
property to 'flat'.

No effect.

'z' Set the AlphaData
property to be the
same as the ZData
property and set the
FaceAlpha property
to 'flat'.

Set the
FaceVertexAlphaD
ata property to be
the same as the
ZData property and
set the FaceAlpha
property to 'flat'.

No effect.

'color' Set the AlphaData
property to be the
same as the CData
property and set the
FaceAlpha property
to 'flat'.

Set the
FaceVertexAlphaD
ata property to be
the same as the
FaceVertexCData
property and set the
FaceAlpha property
to 'flat'.

Set the AlphaData
data property to be
the same as the
CData property.

'rand' Set the AlphaData
property to a matrix
of random numbers
the same size as the
ZData property and
set the FaceAlpha
property to 'flat'.

Set the
FaceVertexAlphaD
ata property to a
matrix of random
numbers the same
size as the ZData
property and set the
FaceAlpha property
to 'flat'.

Set the AlphaData
data property to a
matrix of random
numbers the same
size as the CData
property.

 alpha

1-211

Option Chart or Primitive
Surface Objects

Patch Objects Image Objects

Matrix
Use the function
form of the
command, for
example,
alpha([.1 .2; .3
.4]).

Set the AlphaData
property to the
matrix and set the
FaceAlpha property
to 'flat'. The
matrix must be the
same size as the
CData property of
the surface.

Set the
FaceVertexAlphaD
ata property to the
matrix and set the
FaceAlpha property
to 'flat'. The
matrix must be the
same size as the
FaceVertexCData
property of the
patch.

Set the AlphaData
data property to the
matrix. The matrix
must be the same
size as the CData
property of the
image.

facealpha — Option for flat or interpolated face transparency
'flat' | 'interp' | 'texture'

Option for flat or interpolated face transparency, specified as one of the values in this
table. The table columns indicate how each option affects the different types of objects,
depending on what objects are contained in the axes.

Option Chart or Primitive
Surface Objects

Patch Objects

'flat' Set the FaceAlpha
property to 'flat'. The
AlphaData property must
be an array the same size as
the CData property. The
FaceColor property must
be set to 'flat'.

Set the FaceAlpha
property to 'flat'. The
FaceVertexAlphaData
property must be a column
vector with length equal to
the number of faces in the
Faces property.

'interp' Set the FaceAlpha
property to 'interp'. The
AlphaData property must
be an array the same size as
the CData property. The
FaceColor property must
be set to 'interp'.

Set the FaceAlpha
property to 'interp'. The
FaceVertexAlphaData
property must be a column
vector with length equal to
the number of vertices in
the Vertices property.

1 Alphabetical List

1-212

Option Chart or Primitive
Surface Objects

Patch Objects

'texture' Set the FaceAlpha
property to 'texturemap'.
The FaceColor property
must be set to
'texturemap'.

No effect.

alphadatamapping — Interpretation of alpha data values
'none' | 'direct' | 'scaled'

Interpretation of alpha data values, specified as 'none', 'direct', or 'scaled'. This
option sets the AlphaDataMapping property for image, patch, and surface objects in the
axes.

• 'none' — Interpret alpha data values as transparency values. A value of 0 or less is
completely transparent. A value of 1 or greater is opaque. Values between 0 and 1 are
semitransparent.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Fix values
with a decimal portion to the nearest lower integer. The Alphamap property of the
figure contains the alphamap.

• 'scaled' — Transform the alpha data values to span the portion of the figure’s
alphamap indicated by the ALim property of the axes. Linearly map the data values to
alpha values.

obj — Graphics objects that support transparency
scalar | vector

Graphics objects that support transparency, specified as a scalar or vector. Use this option
if you want to control which objects alpha affects. Otherwise, alpha affects all objects in
the axes that support transparency.

Specify one or more of these types of objects:

• Area object
• Bar series object
• Scatter series object
• Histogram or histogram2 object

 alpha

1-213

• Image object
• Patch object
• Chart or primitive surface object

Note Not all objects support the alphadata, facealpha, and alphadatamapping
input arguments. See the syntax descriptions for a list of objects that each option
supports.

ax — Axes object
axes object

Axes object. If you do not specify the axes, then alpha sets the transparency for graphics
objects in the current axes.

See Also
alim | alphamap

Topics
“Add Transparency to Graphics Objects”

Introduced before R2006a

1 Alphabetical List

1-214

alphamap
Specify figure alphamap (transparency)

Syntax
alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter',delta)
alphamap(fig,...)
alphamap(ax,...)
alpha_map = alphamap
alpha_map = alphamap(fig)
alpha_map = alphamap(ax)
alpha_map = alphamap('parameter')

Description
alphamap(alpha_map) sets the AlphaMap of the current figure to the specified m-by-1
array of alpha values, alpha_map. If you set the alphamap for the figure, then axes and
charts in the figure use the same alphamap.

alphamap('parameter') creates a new alphamap or modifies the current alphamap.
You can specify the following parameters:

• 'default' — Set the AlphaMap property to the figure's default alphamap.
• 'rampup' — Create a linear alphamap with increasing opacity (default length equals

the current alphamap length).
• 'rampdown' — Create a linear alphamap with decreasing opacity (default length

equals the current alphamap length).
• 'vup' — Create an alphamap that is opaque in the center and becomes more

transparent linearly towards the beginning and end (default length equals the
current alphamap length).

 alphamap

1-215

• 'vdown' — Create an alphamap that is transparent in the center and becomes more
opaque linearly towards the beginning and end (default length equals the current
alphamap length).

• 'increase' — Modify the alphamap making it more opaque (default delta is .1,
added to the current values).

• 'decrease' — Modify the alphamap making it more transparent (default delta
is .1, subtracted from the current values).

• 'spin' — Rotate the current alphamap (default delta is 1; delta must be an
integer).

alphamap('parameter',length) creates a new alphamap with the length specified by
the integer length (used with parameters 'rampup', 'rampdown', 'vup', 'vdown').

alphamap('parameter',delta) modifies the existing alphamap using the value
specified by the integer delta (used with parameters 'increase', 'decrease',
'spin').

alphamap(fig,...) performs the operation on the alphamap of the figure identified by
fig.

alphamap(ax,...) performs the operation on the alphamap of the axes or polar axes
identified by ax.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(fig) returns the current alphamap from the figure identified
by fig.

alpha_map = alphamap(ax) returns the current alphamap from the axes or polar axes
identified by ax.

alpha_map = alphamap('parameter') returns the alphamap modified by the
parameter, but does not set the AlphaMap property.

Examples

Change Alphamap for Surface Plot

Create a surface plot and change the alphamap.

1 Alphabetical List

1-216

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2-y.^2);

Plot the data, using the gradient of z as the alphamap.

figure
surf(x,y,z+.001,'FaceAlpha','flat',...
 'AlphaDataMapping','scaled',...
 'AlphaData',gradient(z),...
 'FaceColor','blue')

Change the alphamap to be opaque at the middle and transparent towards the ends.

alphamap('vup')

 alphamap

1-217

Definitions

Compatibility Considerations
Starting in R2018a, if you set the alphamap for a figure, then axes and charts in the figure
use the same alphamap. Previously, any axes or chart that you set the alphamap for
explicitly were unaffected when you set the figure alphamap. If you want an Axes object
to use a different alphamap than the figure, then set the axes alphamap after setting the
figure alphamap.

1 Alphabetical List

1-218

See Also
alim | alpha

Introduced before R2006a

 alphamap

1-219

alphaShape
Polygons and polyhedra from points in 2-D and 3-D

Description
An alphaShape creates a bounding area or volume that envelops a set of 2-D or 3-D
points. You can manipulate the alphaShape object to tighten or loosen the fit around the
points to create a nonconvex region. You also can add or remove points or suppress holes
or regions.

After you create an alphaShape object, you can perform geometric queries. For example,
you can determine if a point is inside the shape or you can find the number of regions that
make up the shape. You also can calculate useful quantities like area, perimeter, surface
area, or volume, and plot the shape for visual inspection.

Creation
To create an alphaShape object, use the alphaShape function with input arguments
that define the shape's vertices. You also can specify an alpha radius and hole or region
thresholds when you create the alphaShape.

Syntax
shp = alphaShape(x,y)
shp = alphaShape(x,y,z)
shp = alphaShape(P)
shp = alphaShape(___ ,a)
shp = alphaShape(___ ,Name,Value)

Description
shp = alphaShape(x,y) creates a 2-D alpha shape of the points (x,y) using the
default alpha radius. The default alpha radius produces the tightest fitting alpha shape,
which encloses all of the points.

1 Alphabetical List

1-220

shp represents a polygon. The polygon has no isolated points or edges, nor does it have
dangling edges.

shp = alphaShape(x,y,z) creates a 3-D alpha shape of the points (x,y,z) using the
default alpha radius.

shp represents a polyhedron. The polyhedron has the previously stated polygon traits,
but it additionally does not have isolated faces or dangling faces.

shp = alphaShape(P) specifies points (x,y) or (x,y,z) in the columns of matrix P.

shp = alphaShape(___ ,a) creates an alpha shape with alpha radius a using any of
the arguments in the previous syntaxes.

shp = alphaShape(___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments. For example, you can suppress interior holes or voids
using 'HoleThreshold'.

Input Arguments
x — x-coordinates
column vector

x-coordinates of points, specified as a column vector.
Data Types: double

y — y-coordinates
column vector

y-coordinates of points, specified as a column vector.
Data Types: double

z — z-coordinates
column vector

z-coordinates of points, specified as a column vector.
Data Types: double

P — Point coordinates
matrix with two columns | matrix with three columns

 alphaShape

1-221

Point coordinates, specified as a matrix with two columns (for a 2-D alpha shape) or a
matrix with three columns (for a 3-D alpha shape).

• For 2-D, the columns of P represent x and y coordinates, respectively.
• For 3-D, the columns of P represent x, y, and z coordinates, respectively.

Data Types: double

a — Alpha radius
nonnegative scalar

Alpha radius, specified as a nonnegative scalar. The default alpha radius is a =
criticalAlpha(shp,'all-points'), which is the smallest alpha radius that produces
an alpha shape that encloses all points.

Specify a = criticalAlpha(shp,'one-region') to use the smallest alpha radius
that produces an alpha shape with only one region.

The extreme values of a are

• Inf, where alphaShape produces the convex hull
• 0, where alphaShape produces an empty alpha shape

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: shp = alphaShape(...,'HoleThreshold',10)

HoleThreshold — Maximum interior holes
0 (default) | finite, nonnegative scalar

Maximum area or volume of interior holes or voids to fill in, specified as a finite,
nonnegative scalar.

• For 2-D, HoleThreshold specifies the maximum area of interior holes to fill in.
• For 3-D, HoleThreshold specifies the maximum volume of interior voids to fill in.

Holes extending completely through the alpha shape cannot be filled in.

1 Alphabetical List

1-222

When you specify both a 'HoleThreshold' and a 'RegionThreshold', the application
of the thresholds is order dependent. alphaShape fills in holes before suppressing
regions.
Data Types: double

RegionThreshold — Maximum regions
0 (default) | finite, nonnegative scalar

Maximum area (2-D) or volume (3-D) of regions to suppress, specified as a finite,
nonnegative scalar.

When you specify a 'HoleThreshold' and a 'RegionThreshold', the application of
the thresholds is order dependent. alphaShape fills in holes before suppressing regions.
Data Types: double

Properties
Points — Coordinates of points
matrix

Coordinates of points, specified as a matrix with two or three columns (for 2-D or 3-D
point sets). These points are initially used to create the alpha shape, excluding duplicates.
Data Types: double

Alpha — Alpha radius
nonnegative scalar

Alpha radius, specified as a nonnegative scalar. The alpha radius is the radius of the alpha
disk or sphere that sweeps over the points to create the alpha shape.

The default alpha radius is a = criticalAlpha(shp,'all-points'), which is the
smallest alpha radius that produces an alpha shape enclosing all points. Specify a =
criticalAlpha(shp,'one-region') to use the smallest alpha radius that produces
an alpha shape with only one region.

The extreme values of Alpha have the following conditions:

• If Alpha is Inf, then alphaShape produces the convex hull.

 alphaShape

1-223

• If Alpha is 0, then the resulting alphaShape is empty.

Data Types: double

HoleThreshold — Maximum interior holes
0 (default) | finite nonnegative scalar

Maximum area or volume of interior holes or voids to fill in, specified as a finite
nonnegative scalar.

• For 2-D, HoleThreshold specifies the maximum area of interior holes to fill in.
• For 3-D, HoleThreshold specifies the maximum volume of interior voids to fill in.

Holes extending completely through the 3-D alpha shape cannot be filled in.

The default value is 0, so that alphaShape does not suppress any holes or voids. The
application of the HoleThreshold and RegionThreshold properties is order-
dependent. alphaShape fills in holes before suppressing regions.
Data Types: double

RegionThreshold — Maximum regions
0 (default) | finite nonnegative scalar

Maximum area (2-D) or volume (3-D) of regions to suppress, specified as a finite
nonnegative scalar.

The default value is 0, so that alphaShape does not suppress any regions. The
application of the HoleThreshold and RegionThreshold properties is order-
dependent. alphaShape fills in holes before suppressing regions.
Data Types: double

Object Functions
alphaSpectrum Alpha values giving distinct alpha shapes
criticalAlpha Alpha radius defining critical transition in shape
numRegions Number of regions in alpha shape
inShape Determine if point is inside alpha shape
alphaTriangulation Triangulation that fills alpha shape
boundaryFacets Boundary facets of alpha shape
perimeter Perimeter of 2-D alpha shape

1 Alphabetical List

1-224

area Area of 2-D alpha shape
surfaceArea Surface area of 3-D alpha shape
volume Volume of 3-D alpha shape
plot Plot alpha shape
nearestNeighbor Determine nearest alpha shape boundary point

Examples

Alpha Shape from 2-D Point Cloud

Find the shape of a 2-D point cloud of data.

Create and plot a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15];
y = [y1; y1];
plot(x,y,'.')
axis equal

 alphaShape

1-225

Compute an alpha shape for the point set using the default alpha radius.

shp = alphaShape(x,y);
plot(shp)

1 Alphabetical List

1-226

Check the value of the default alpha radius.

shp.Alpha

ans = 0.7752

The default alpha radius results in an alpha shape with a jagged boundary. To better
capture the boundary of the point set, try a larger alpha radius.

Compute an alpha shape using an alpha value of 2.5.

shp.Alpha = 2.5;
plot(shp)

 alphaShape

1-227

Alpha Shape from 3-D Point Cloud

Find the shape of a 3-D point cloud of data.

Create and plot a set of 3-D points.

[x1,y1,z1] = sphere(24);
x1 = x1(:);
y1 = y1(:);
z1 = z1(:);
x2 = x1+5;

1 Alphabetical List

1-228

P = [x1 y1 z1; x2 y1 z1];
P = unique(P,'rows');
plot3(P(:,1),P(:,2),P(:,3),'.')
axis equal
grid on

Compute a 3-D alpha shape using an alpha radius of 1.

shp = alphaShape(P(:,1),P(:,2),P(:,3),1);
plot(shp)
axis equal

 alphaShape

1-229

Fill Holes in 2-D Alpha Shape

Create an alpha shape by specifying its alpha radius, and fill the holes in an alpha shape.

Create and plot a 2-D set of points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(2:5), numel(cos(th)*(2:5)),1);];
y1 = [reshape(sin(th)*(2:5), numel(sin(th)*(2:5)),1);];
x = [x1; x1+15;];
y = [y1; y1];

1 Alphabetical List

1-230

plot(x,y,'.')
axis equal

Compute an alpha shape for the point set using an alpha radius of 1.

shp = alphaShape(x,y,1);
plot(shp)

 alphaShape

1-231

An alpha radius of 1 results in an alpha shape with two regions containing holes. To
suppress the small holes in the alpha shape, you can specify a HoleThreshold by
estimating the area of the largest hole to fill. To fill all holes in the shape, you can assign
an arbitrarily large value to HoleThreshold.

Create a new alpha shape that suppresses the holes by specifying a HoleThreshold of
15.

shp = alphaShape(x,y,1,'HoleThreshold',15);
plot(shp)

1 Alphabetical List

1-232

Discard Small Regions of 3-D Alpha Shape

Control the number of regions of an alpha shape by setting a region threshold.

Create and plot a set of 3-D points.

[x1,y1,z1] = sphere(24);
x1 = x1(:);
y1 = y1(:);
z1 = z1(:);
x2 = x1+5;

 alphaShape

1-233

[x3,y3,z3] = sphere(5);
x3 = x3(:)+5;
y3 = y3(:);
z3 = z3(:)+25;
P = [x1 y1 z1; x2 y1 z1; 0.25*x3 0.25*y3 0.25*z3];
P = unique(P,'rows');
plot3(P(:,1),P(:,2),P(:,3),'.')
axis equal
grid on

Compute an alpha shape for the point set using an alpha radius of 1.

1 Alphabetical List

1-234

shp = alphaShape(P,1);
plot(shp)
axis equal

In this case, the alpha shape produces a small region above the two equal-sized spheres.
To suppress this region, you can specify a RegionThreshold by estimating its volume.

Specify a RegionThreshold of 2. The resulting shape contains only the two larger
regions.

shp.RegionThreshold = 2;
plot(shp)
axis equal

 alphaShape

1-235

Modify Points of 2-D Alpha Shape

Add points to an existing alpha shape.

Create and plot a 2-D set of points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15;];
y = [y1; y1];

1 Alphabetical List

1-236

plot(x,y,'.')
axis equal

Compute an alpha shape for the point set using an alpha radius of 1. The resulting alpha
shape has two regions.

shp = alphaShape(x,y,1);
plot(shp)

 alphaShape

1-237

Now add a third region to the alpha shape by adding new points directly to the
shp.Points matrix.

x3 = x1+8;
y3 = y1+10;
shp.Points(end+1,:) = [x3 y3];
plot(shp)

1 Alphabetical List

1-238

See Also
boundary | convhull | criticalAlpha | delaunayTriangulation |
triangulation | trisurf

Topics
“Types of Region Boundaries”

Introduced in R2014b

 alphaShape

1-239

alphaSpectrum
Alpha values giving distinct alpha shapes

Syntax
a = alphaSpectrum(shp)

Description
a = alphaSpectrum(shp) returns the values of the alpha radius that produce distinct
alpha shapes. a is in descending sorted order. Each element in a represents a value of the
alpha radius that results in a distinct shape. The length of a is equal to the number of
unique shapes. Values of alpha that lie between the values in a do not produce unique
alpha shapes.

Examples

Find Alpha Spectrum for 2-D Point Cloud

Create and plot a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15;];
y = [y1; y1];
plot(x,y,'.')
axis equal

1 Alphabetical List

1-240

Create an alpha shape for the point cloud using the default alpha radius.

shp = alphaShape(x,y);

Find the spectrum of critical alpha values that produces unique alpha shapes for the point
cloud.

alphaspec = alphaSpectrum(shp);

Plot the alpha shape corresponding to the smallest alpha value in the spectrum.

shp.Alpha = alphaspec(length(alphaspec));
plot(shp)

 alphaSpectrum

1-241

Compare this alpha shape to the one produced by the next smallest critical alpha value.
The alpha shapes are unique.

shp.Alpha = alphaspec(length(alphaspec)-1);
plot(shp)

1 Alphabetical List

1-242

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

 alphaSpectrum

1-243

Output Arguments
a — Alpha values for distinct alpha shapes
column vector

Alpha values for distinct alpha shapes, returned as a column vector in descending sorted
order.

See Also
alphaShape | plot

Introduced in R2014b

1 Alphabetical List

1-244

alphaTriangulation
Triangulation that fills alpha shape

Syntax
tri = alphaTriangulation(shp)
tri = alphaTriangulation(shp,RegionID)

[tri,P] = alphaTriangulation(___)

Description
tri = alphaTriangulation(shp) returns a triangulation that defines the domain of
the alpha shape. Each row in tri specifies a triangle or tetrahedron defined by vertex IDs
(the row numbers of the shp.Points matrix).

tri = alphaTriangulation(shp,RegionID) returns a triangulation for a region of
the alpha shape. RegionID is the ID for the region and 1 ≤ RegionID ≤
numRegions(shp).

[tri,P] = alphaTriangulation(___) also returns a matrix of vertex coordinates,
P, using any of the previous syntaxes.

Examples

Compute Triangulation for 3-D Point Cloud

Create a set of 3-D points.

[x1, y1, z1] = sphere(24);
x1 = x1(:);
y1 = y1(:);
z1 = z1(:);
x2 = x1+5;

 alphaTriangulation

1-245

P = [x1 y1 z1; x2 y1 z1];
P = unique(P,'rows');

Create and plot an alpha shape for the point cloud using an alpha radius of 1.

shp = alphaShape(P,1);
plot(shp)

Use alphaTriangulation to recover the triangulation that defines the domain of the
alpha shape.

tri = alphaTriangulation(shp);

Find the total number of tetrahedra that make up the alpha shape.

1 Alphabetical List

1-246

numtetrahedra = size(tri,1)

numtetrahedra = 3729

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

RegionID — ID number for a region in the alpha shape
positive integer scalar

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

Output Arguments
tri — Triangulation
matrix

Triangulation, returned as a matrix. tri is of size mtri-by-nv, where mtri is the number
of triangles or tetrahedra in the alpha shape and nv is the number of vertices. The value
of nv is 3 for 2-D alpha shapes and 4 for 3-D alpha shapes.

 alphaTriangulation

1-247

P — Vertex coordinates
matrix

Vertex coordinates, returned as a matrix. P is of size N-by-dim, where N is the number of
points in the alpha shape and dim is either 2 or 3 (for either a 2-D or 3-D alpha shape).

See Also
alphaShape | plot | triangulation | triplot

Introduced in R2014b

1 Alphabetical List

1-248

area
Area of 2-D alpha shape

Syntax
A = area(shp)
A = area(shp,RegionID)

Description
A = area(shp) returns the area of 2-D alpha shape shp.

A = area(shp,RegionID) returns the area of a region of the alpha shape. RegionID is
the ID for the region and 1 ≤ RegionID ≤ numRegions(shp).

Examples

Find Area of 2-D Alpha Shape

Create a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15;];
y = [y1; y1];

Create and plot an alpha shape using an alpha radius of 2.5.

shp = alphaShape(x,y,2.5);
plot(shp)

 area

1-249

Compute the area of the alpha shape.

totalarea = area(shp)

totalarea = 155.2914

Compute the areas of each of the two regions separately.

regionareas = area(shp, 1:numRegions(shp))

regionareas = 1×2

 77.6457 77.6457

1 Alphabetical List

1-250

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

RegionID — ID number for a region in the alpha shape
positive integer scalar

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

See Also
alphaShape | criticalAlpha | perimeter | volume

Introduced in R2014b

 area

1-251

boundaryFacets
Boundary facets of alpha shape

Syntax
bf = boundaryFacets(shp)
bf = boundaryFacets(shp,RegionID)

[bf,P] = boundaryFacets(___)

Description
bf = boundaryFacets(shp) returns a matrix representing the facets that make up the
boundary of the alpha shape. The facets represent edge segments in 2-D and triangles in
3-D. The vertices of the facets index into the shp.Points matrix.

bf = boundaryFacets(shp,RegionID) returns the boundary facets for a region of
the alpha shape. RegionID is the ID for the region and 1 ≤ RegionID ≤
numRegions(shp).

[bf,P] = boundaryFacets(___) also returns a matrix of vertex coordinates, P, using
any of the previous syntaxes.

Examples

Find Boundary of 3-D Alpha Shape

Create a set of 3-D points.

[x1, y1, z1] = sphere(24);
x1 = x1(:);
y1 = y1(:);
z1 = z1(:);
x2 = x1+5;

1 Alphabetical List

1-252

P = [x1 y1 z1; x2 y1 z1];
P = unique(P,'rows');

Create and plot an alpha shape using an alpha radius of 1.5.

shp = alphaShape(P,1.5);
plot(shp)
axis equal

Compute and plot only the boundary of the alpha shape.

[tri, xyz] = boundaryFacets(shp);
trisurf(tri,xyz(:,1),xyz(:,2),xyz(:,3),...
 'FaceColor','cyan','FaceAlpha',0.3)
axis equal

 boundaryFacets

1-253

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

RegionID — ID number for a region in the alpha shape
positive integer scalar

1 Alphabetical List

1-254

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

Output Arguments
bf — Boundary facets
matrix

Boundary facets, returned as a matrix. bf is of size m-by-n, where m is the number of
boundary facets and n is the number of vertices per facet.

P — Vertex coordinates
matrix

Vertex coordinates, returned as a matrix. P is of size N-by-dim, where N is the number of
points on the boundary of the alpha shape and dim is either 2 or 3 (for either a 2-D or 3-D
alpha shape).

See Also
alphaShape | plot | triangulation

Introduced in R2014b

 boundaryFacets

1-255

criticalAlpha
Alpha radius defining critical transition in shape

Syntax
a = criticalAlpha(shp,type)

Description
a = criticalAlpha(shp,type) returns the critical alpha radius that produces a
notable transition in the alpha shape. Specifying type as 'all-points' returns the
smallest alpha radius producing an alpha shape that encloses all points. Specifying type
as 'one-region' returns the smallest alpha radius producing an alpha shape that
encloses all points and has only one region.

Examples

Find Critical Alpha Values of 2-D Point Cloud

Create and plot a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15;];
y = [y1; y1];
plot(x,y,'.')
axis equal

1 Alphabetical List

1-256

Create an alpha shape using the default alpha radius.

shp = alphaShape(x,y);

Compute the smallest alpha radius that produces an alpha shape enclosing all of the
points and plot the corresponding alpha shape.

pc = criticalAlpha(shp,'all-points');
shp.Alpha = pc;
plot(shp)

 criticalAlpha

1-257

Compute the smallest alpha radius that produces an alpha shape enclosing all of the
points and having only one region.

shp = alphaShape(x,y);
pc = criticalAlpha(shp,'one-region');
shp.Alpha = pc;
plot(shp)

1 Alphabetical List

1-258

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

type — Type of critical transition
'all-points' | 'one-region'

 criticalAlpha

1-259

Type of critical transition, specified as either 'all-points' or 'one-region'.

• 'all-points' corresponds to the smallest alpha radius producing an alpha shape
that encloses all points.

• 'one-region' corresponds to the smallest alpha radius producing an alpha shape
that encloses all points and has only one region.

Data Types: char

Output Arguments
a — Critical alpha radius
scalar

Critical alpha radius, returned as a scalar. a is the value of the alpha radius that produces
an alpha shape, which either encloses all points (if type is 'all-points'), or encloses
all points within a single region (if type is 'one-region').

After using criticalAlpha to find a, you can make the alpha radius of shp equal to a by
typing shp.Alpha = a.

See Also
alphaShape | alphaSpectrum

Introduced in R2014b

1 Alphabetical List

1-260

inShape
Determine if point is inside alpha shape

Syntax
tf = inShape(shp,qx,qy)
tf = inShape(shp,qx,qy,qz)
tf = inShape(shp,QP)
tf = inShape(___ ,RegionID)
[tf,ID] = inShape(___)

Description
tf = inShape(shp,qx,qy) returns logical 1 (true) values for the 2-D query points
(qx,qy) that are within 2-D alpha shape shp. Otherwise, inShape returns values of
logical 0 (false). The qx and qy arguments are numeric arrays whose corresponding
elements specify the (x,y) query point coordinates.

tf = inShape(shp,qx,qy,qz) tests whether the 3-D query points (qx,qy,qz) are
within 3-D alpha shape shp.

tf = inShape(shp,QP) specifies the 2-D or 3-D query point coordinates in a matrix
with 2 or 3 columns.

tf = inShape(___ ,RegionID) tests whether the query points are within a specific
region of the alpha shape, using any of the previous syntaxes. RegionID is the ID for the
region and 1 ≤ RegionID ≤ numRegions(shp).

[tf,ID] = inShape(___) also returns the IDs for the regions in the alpha shape that
contain the query points. ID is NaN for query points that are not in the alpha shape.

Examples

 inShape

1-261

Query Points Inside and Outside of 2-D Alpha Shape

Create a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15;];
y = [y1; y1];

Create and plot an alpha shape using an alpha radius of 2.5.

shp = alphaShape(x,y,2.5);
plot(shp)

1 Alphabetical List

1-262

Create a Cartesian grid of query points near the alpha shape.

[qx, qy] = meshgrid(-10:2:25, -10:2:10);

Check if the query points are inside of the alpha shape, and if so, plot them red. Plot the
query points that lie outside of the alpha shape in blue.

in = inShape(shp,qx,qy);
plot(shp)
hold on
plot(qx(in),qy(in),'r.')
plot(qx(~in),qy(~in),'b.')

 inShape

1-263

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

qx — Query point x-coordinates
numeric array

Query point x-coordinates, specified as a numeric array.
Data Types: double

qy — Query point y-coordinates
numeric array

Query point y-coordinates, specified as a numeric array.
Data Types: double

qz — Query point z-coordinates
numeric array

Query point z-coordinates, specified as a numeric array.
Data Types: double

QP — Query point coordinates
matrix with two columns | matrix with three columns

Query point coordinates, specified as a matrix with two columns (2-D) or a matrix with
three columns (3-D).

• For 2-D, the columns of QP represent x and y coordinates, respectively.
• For 3-D, the columns of QP represent x, y, and z coordinates, respectively.

Data Types: double

RegionID — ID number for a region in the alpha shape
positive integer scalar

1 Alphabetical List

1-264

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

Output Arguments
tf — Containment status of query points
logical array

Status of the query points, returned as a logical array. The size of tf is equal to the size of
the inputs that specify the query points (qx, qy, qz, or QP).

inShape returns logical 1 (true) values for points that are within the alpha shape or
exactly on the boundary.

ID — IDs of the regions containing the query points
numeric array

IDs of regions containing query points, returned as a numeric array. ID is the same size
as tf.

See Also
alphaShape | plot

Introduced in R2014b

 inShape

1-265

nearestNeighbor
Determine nearest alpha shape boundary point

Syntax
I = nearestNeighbor(shp,qx,qy)
I = nearestNeighbor(shp,qx,qy,qz)
I = nearestNeighbor(shp,QP)

I = nearestNeighbor(___ ,RegionID)

[I,D] = nearestNeighbor(___)

Description
I = nearestNeighbor(shp,qx,qy), for a 2-D alpha shape shp, returns the indices of
points on the boundary of shp closest to the query points. I is the array of nearest
neighbor indices where each index corresponds to the row index in shp.Points. The qx
and qy query coordinates must be the same size.

I = nearestNeighbor(shp,qx,qy,qz), for a 3-D alpha shape, returns the indices of
the boundary points of shp closest to (qx,qy,qz) and corresponds to the row indices in
shp.Points. The qx, qy, and qz query coordinates must be the same size.

I = nearestNeighbor(shp,QP) specifies the query points as a matrix QP. For a 2-D
alpha shape, QP is a matrix with two columns representing the qx and qy coordinates. For
a 3-D alpha shape, QP has three columns representing the qx, qy, and qz coordinates.

I = nearestNeighbor(___ ,RegionID) returns the index of the nearest point that
lies on the boundary of the region specified by RegionID, where 1 ≤ RegionID ≤
numRegions(shp). You can include any of the input arguments in the previous syntaxes.

[I,D] = nearestNeighbor(___) additionally returns the Euclidean distance
between the query point and its nearest neighbor. D has the same size as I.

1 Alphabetical List

1-266

Examples

Nearest Alpha Shape Boundary Point

Create a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15];
y = [y1; y1];

Create and plot an alpha shape with alpha radius equal to 1.

shp = alphaShape(x,y,1);
plot(shp)
hold on

 nearestNeighbor

1-267

Compute the nearest shp boundary point to the query point QP. Plot the query point in
blue and the nearest boundary neighbor in red.

QP = [6 3];
plot(QP(1),QP(2),'b.','MarkerSize',10)
hold on
I = nearestNeighbor(shp, QP);
plot(shp.Points(I,1),shp.Points(I,2),'r.','MarkerSize',10)

1 Alphabetical List

1-268

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

qx — Query point x-coordinates
numeric array

 nearestNeighbor

1-269

Query point x-coordinates, specified as a numeric array.
Data Types: double

qy — Query point y-coordinates
numeric array

Query point y-coordinates, specified as a numeric array.
Data Types: double

qz — Query point z-coordinates
numeric array

Query point z-coordinates, specified as a numeric array.
Data Types: double

QP — Query point coordinates
two-column matrix | three-column matrix

Query point coordinates, specified as a two-column matrix or a three-column matrix.

• For 2-D, the columns of P represent qx and qy coordinates, respectively.
• For 3-D, the columns of P represent qx, qy, and qz coordinates, respectively.

Data Types: double

RegionID — ID number for a region in the alpha shape
positive integer scalar

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

1 Alphabetical List

1-270

Output Arguments
I — Nearest neighbor indices
integer-valued array

Nearest neighbor indices, returned as an integer-valued array. The indices correspond to
the row index of shp.Points and indicate the points on the boundary of shp that are
closest to the given query points.

D — Distance from query points to nearest neighbors
numeric array

Distance from query points to nearest neighbors, returned as a numeric array. D is the 2-D
or 3-D Euclidean distance and is the same size as I.

See Also
alphaShape

Introduced in R2015a

 nearestNeighbor

1-271

numRegions
Number of regions in alpha shape

Syntax
N = numRegions(shp)

Description
N = numRegions(shp) returns the number of distinct regions that make up the alpha
shape. For an alpha radius of Inf, the alpha shape is the convex hull, and the number of
regions is one. As the value of the alpha radius decreases the shape can break into
separate regions, depending on the point set.

Examples

Find Number of Regions in 2-D Alpha Shape

Create and plot a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15;];
y = [y1; y1];
plot(x,y,'.')
axis equal

1 Alphabetical List

1-272

Create an alpha shape using an alpha radius of 7 and query the number of distinct
regions in the shape.

shp = alphaShape(x,y,7);
nregions = numRegions(shp)

nregions = 1

Use a smaller alpha radius of 2.5 to better capture the boundary and then retrieve the
new number of distinct regions.

shp.Alpha = 2.5;
nregions = numRegions(shp)

nregions = 2

 numRegions

1-273

Plot the alpha shape to check the boundary quality.

plot(shp)

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.

1 Alphabetical List

1-274

Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

See Also
alphaShape

Introduced in R2014b

 numRegions

1-275

perimeter
Perimeter of 2-D alpha shape

Syntax
L = perimeter(shp)
L = perimeter(shp,RegionID)

Description
L = perimeter(shp) returns the total perimeter of 2-D alpha shape shp, including the
perimeter of any interior holes in the alpha shape.

L = perimeter(shp,RegionID) returns the perimeter of a region within the alpha
shape. RegionID is the ID for the region and 1 ≤ RegionID ≤ numRegions(shp).

Examples

Find Perimeter of 2-D Alpha Shape

Create a set of 2-D points.

th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15;];
y = [y1; y1];

Create and plot an alpha shape using an alpha radius of 2.5.

shp = alphaShape(x,y,2.5);
plot(shp)

1 Alphabetical List

1-276

Compute the perimeter of the alpha shape.

totalperim = perimeter(shp)

totalperim = 62.6526

Compute the perimeters of each of the two regions separately.

regionperims = perimeter(shp, 1:numRegions(shp))

regionperims = 1×2

 31.3263 31.3263

 perimeter

1-277

Input Arguments
shp — 2-D alpha shape
alphaShape object

2-D alpha shape, specified as an alphaShape object. For more information, see
alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

RegionID — ID number for a region in the alpha shape
positive integer scalar

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

See Also
alphaShape | area | criticalAlpha

Introduced in R2014b

1 Alphabetical List

1-278

plot
Plot alpha shape

Syntax
plot(shp)
plot(shp,Name,Value)
h = plot(___)

Description
plot(shp) plots alpha shape shp in a figure window.

plot(shp,Name,Value) uses additional options specified by one or more Name,Value
pair arguments. For a complete list of allowed Name,Value pairs, see Patch.

h = plot(___) returns a handle to a Patch object using any of the previous syntaxes.

Examples

Plot 3-D Alpha Shape and Modify Patch Properties

Create a set of 3-D points.

[x1, y1, z1] = sphere(24);
x1 = x1(:);
y1 = y1(:);
z1 = z1(:);
x2 = x1+5;
P = [x1 y1 z1; x2 y1 z1];
P = unique(P,'rows');

Create and plot an alpha shape using an alpha radius of 1.5.

 plot

1-279

shp = alphaShape(P,1.5);
plot(shp)

Plot the alpha shape with a specified color and transparency factor.

plot(shp,'FaceColor','red','FaceAlpha',0.1)

1 Alphabetical List

1-280

Input Arguments
shp — Alpha shape
alphaShape object

Alpha shape, specified as an alphaShape object. For more information, see alphaShape.
Example: shp = alphaShape(x,y) creates a 2-D alphaShape object from the (x,y)
point coordinates.

 plot

1-281

Output Arguments
h — Handle to Patch object
handle

Handle to Patch object, returned as a handle. For more information, see “Introduction to
Patch Objects”.

See Also
alphaShape | patch

Introduced in R2014b

1 Alphabetical List

1-282

surfaceArea
Surface area of 3-D alpha shape

Syntax
A = surfaceArea(shp)
A = surfaceArea(shp,RegionID)

Description
A = surfaceArea(shp) returns the total surface area of 3-D alpha shape shp,
including the surface area of any interior voids in the alpha shape.

A = surfaceArea(shp,RegionID) returns the surface area of a region of the alpha
shape. RegionID is the ID for the region and 1 ≤ RegionID ≤ numRegions(shp).

Examples

Find Surface Area of 3-D Alpha Shape

Create a set of 3-D points.

[x1, y1, z1] = sphere(24);
x1 = x1(:);
y1 = y1(:);
z1 = z1(:);
x2 = x1+5;
P = [x1 y1 z1; x2 y1 z1];
P = unique(P,'rows');

Create and plot an alpha shape using an alpha radius of 1.5.

shp = alphaShape(P,1.5);
plot(shp)

 surfaceArea

1-283

Compute the surface area of the alpha shape.

totalsurfarea = surfaceArea(shp)

totalsurfarea = 24.9361

Compute the surface area of each region separately.

regionsurfareas = surfaceArea(shp, 1:numRegions(shp))

regionsurfareas = 1×2

 12.4680 12.4680

1 Alphabetical List

1-284

Input Arguments
shp — 3-D alpha shape
alphaShape object

3-D alpha shape, specified as an alphaShape object. For more information, see
alphaShape

Example: shp = alphaShape(x,y,z) creates a 3-D alphaShape object from the
(x,y,z) point coordinates.

RegionID — ID number for a region in the alpha shape
positive integer scalar

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

See Also
alphaShape | area | volume

Introduced in R2014b

 surfaceArea

1-285

volume
Volume of 3-D alpha shape

Syntax
V = volume(shp)
V = volume(shp,RegionID)

Description
V = volume(shp) returns the volume of 3-D alpha shape shp.

V = volume(shp,RegionID) returns the volume of a region of the alpha shape.
RegionID is the ID for the region and 1 ≤ RegionID ≤ numRegions(shp).

Examples

Find Volume of 3-D Alpha Shape

Create a set of 3-D points.

[x1, y1, z1] = sphere(24);
x1 = x1(:);
y1 = y1(:);
z1 = z1(:);
x2 = x1+5;
P = [x1 y1 z1; x2 y1 z1];
P = unique(P,'rows');

Create and plot an alpha shape using an alpha radius of 1.5.

shp = alphaShape(P,1.5);
plot(shp)

1 Alphabetical List

1-286

Compute the volume of the alpha shape.

totalvol = volume(shp)

totalvol = 8.2468

Compute the volumes of each of the two regions separately.

regionvols = volume(shp, 1:numRegions(shp))

regionvols = 1×2

 4.1234 4.1234

 volume

1-287

Input Arguments
shp — 3-D alpha shape
alphaShape object

3-D alpha shape, specified as an alphaShape object. For more information, see
alphaShape

Example: shp = alphaShape(x,y,z) creates a 3-D alphaShape object from the
(x,y,z) point coordinates.

RegionID — ID number for a region in the alpha shape
positive integer scalar

ID number for region in alpha shape, specified as a positive integer scalar between 1 and
numRegions(shp).

An alpha shape can contain several smaller regions, depending on the point set and
parameters. Each of these smaller regions is assigned a unique RegionID, which
numbers the regions from the largest area or volume to the smallest. For example,
consider a 3-D alpha shape with two regions. The region with the largest volume has a
RegionID of 1, and the smaller region has a RegionID of 2.
Example: shp.RegionThreshold = area(shp,numRegions(shp)-2); suppresses
the two smallest regions in 2-D alpha shape shp.
Data Types: double

See Also
alphaShape | area | surfaceArea

Introduced in R2014b

1 Alphabetical List

1-288

amd
Approximate minimum degree permutation

Syntax
P = amd(A)
P = amd(A,opts)

Description
P = amd(A) returns the approximate minimum degree permutation vector for the sparse
matrix C = A + A'. The Cholesky factorization of C(P,P) or A(P,P) tends to be sparser
than that of C or A. The amd function tends to be faster than symamd, and also tends to
return better orderings than symamd. Matrix A must be square. If A is a full matrix, then
amd(A) is equivalent to amd(sparse(A)).

P = amd(A,opts) allows additional options for the reordering. The opts input is a
structure with the two fields shown below. You only need to set the fields of interest:

• dense — A nonnegative scalar value that indicates what is considered to be dense. If A
is n-by-n, then rows and columns with more than max(16,(dense*sqrt(n)))
entries in A + A' are considered to be "dense" and are ignored during the ordering.
MATLAB software places these rows and columns last in the output permutation. The
default value for this field is 10.0 if this option is not present.

• aggressive — A scalar value controlling aggressive absorption. If this field is set to a
nonzero value, then aggressive absorption is performed. This is the default if this
option is not present.

MATLAB software performs an assembly tree post-ordering, which is typically the same
as an elimination tree post-ordering. It is not always identical because of the approximate
degree update used, and because “dense” rows and columns do not take part in the post-
order. It well-suited for a subsequent chol operation, however, If you require a precise
elimination tree post-ordering, you can use the following code:

P = amd(S);
C = spones(S)+spones(S');

 amd

1-289

[ignore, Q] = etree(C(P,P));
P = P(Q);

If S is already symmetric, omit the second line, C = spones(S)+spones(S').

Examples

Effect of Preordering on Sparsity of Cholesky Factors

Compute the Cholesky factor of a matrix before and after it is ordered using amd to
examine the effect on sparsity.

Load the barbell graph sparse matrix and add a sparse identity matrix to it to ensure it is
positive definite. Compute two Cholesky factors: one of the original matrix and one of the
original matrix preordered with amd.

load barbellgraph.mat
A = A+speye(size(A));
p = amd(A);
L = chol(A,'lower');
Lp = chol(A(p,p),'lower');

Plot the sparsity patterns of all four matrices. The Cholesky factor obtained from the
preordered matrix is much sparser compared to the factor of the matrix in its natural
ordering.

figure
subplot(2,2,1)
spy(A)
title('Original Matrix A')
subplot(2,2,2)
spy(A(p,p))
title('AMD ordered A')
subplot(2,2,3)
spy(L)
title('Cholesky factor of A')
subplot(2,2,4)
spy(Lp)
title('Cholesky factor of AMD ordered A')

1 Alphabetical List

1-290

See Also
colamd | colperm | dissect | symamd | symrcm

 amd

1-291

analyzeCodeCompatibility
Create code compatibility analysis results

Syntax
r = analyzeCodeCompatibility
r = analyzeCodeCompatibility(names)
r = analyzeCodeCompatibility(___ ,'IncludeSubfolders',tf)

Description
r = analyzeCodeCompatibility creates code compatibility analysis results for the
current working folder and subfolders and returns it as a
CodeCompatibilityAnalysis object.

r = analyzeCodeCompatibility(names) analyzes the files or folders specified by
names.

r = analyzeCodeCompatibility(___ ,'IncludeSubfolders',tf) specifies
whether to include subfolders in the analysis. By default, subfolders are included in the
analysis. Use this syntax with any of the arguments in previous syntaxes.

Examples
Analyze Code in Current Folder

Create code compatibility analysis results for code in your current folder and subfolders.

r = analyzeCodeCompatibility

r =

 CodeCompatibilityAnalysis with properties:

 Date: 20-Apr-2017 15:06:06

1 Alphabetical List

1-292

 MATLABVersion: "R2017b"
 Files: [92×1 string]
 ChecksPerformed: [299×6 table]
 Recommendations: [28×7 table]

Analyze the code again and omit subfolders from the analysis.

r = analyzeCodeCompatibility('IncludeSubfolders',false)

r =

 CodeCompatibilityAnalysis with properties:

 Date: 20-Apr-2017 15:06:56
 MATLABVersion: "R2017b"
 Files: [5×1 string]
 ChecksPerformed: [299×6 table]
 Recommendations: [1×7 table]

Input Arguments
names — Name of files or folders to analyze
character vector | cell array of character vectors | string scalar | string array

Name of files or folders to analyze, specified as a character vector, cell array of character
vectors, string scalar, or string array.

The name of a file must be a valid MATLAB code or App file (.m, .mlx, or .mlapp).
Example: '../thisFile.m'
Example: {'folderA','folderB','fileA'}
Data Types: char | string

tf — Subfolder analysis indicator
true (default) | false | 0 | 1

Subfolder analysis indicator, specified as true, false, 0, or 1. By default,
analyzeCodeCompatibility includes subfolders in the analysis. To omit subfolders,
set tf to false or 0.

 analyzeCodeCompatibility

1-293

See Also
CodeCompatibilityAnalysis | codeCompatibilityReport

Topics
“MATLAB Code Compatibility Report”

Introduced in R2017b

1 Alphabetical List

1-294

ancestor
Ancestor of graphics object

Syntax
p = ancestor(h,type)
p = ancestor(h,type,'toplevel')

Description
p = ancestor(h,type) returns the handle of the closest ancestor of h, if the ancestor
is one of the types of graphics objects specified by type. type can be:

• a character vector with the name of a single type of object, for example, 'figure'.
• a cell array containing the names of multiple objects, for example,

{'hgtransform','hggroup','axes'}.

If MATLAB cannot find an ancestor of h that is one of the specified types, then ancestor
returns p as empty. When ancestor searches the hierarchy, it includes the object itself in
the search. Therefore, if the object with handle h is of one of the types listed in type,
ancestor will return object h.

ancestor returns p as empty but does not issue an error if h is not a graphics object.

p = ancestor(h,type,'toplevel') returns the highest-level ancestor of h, if this
type appears in the type argument.

Examples

Return Top-Level Ancestor

Create Line objects and parent them to a Group object. Then return the top-level
ancestor.

 ancestor

1-295

g = hggroup;
ln = line(randn(5),randn(5),'Parent',g);

tp = ancestor(g,{'figure','axes','hggroup'},'toplevel')

tp =
 Figure (1) with properties:

 Number: 1
 Name: ''
 Color: [0.9400 0.9400 0.9400]
 Position: [360 502 560 420]
 Units: 'pixels'

1 Alphabetical List

1-296

 Show all properties

See Also
findobj

Introduced before R2006a

 ancestor

1-297

and, &
Find logical AND

Syntax
A & B
and(A,B)

Description
A & B performs a logical AND of arrays A and B and returns an array containing
elements set to either logical 1 (true) or logical 0 (false). An element of the output
array is set to logical 1 (true) if both A and B contain a nonzero element at that same
array location. Otherwise, the array element is set to 0.

and(A,B) is an alternate way to execute A & B, but is rarely used. It enables operator
overloading for classes.

Examples

Locate Nonzero Values

Find the logical AND of two matrices. The result contains logical 1 (true) only where
both matrices contain nonzero values.

A = [5 7 0; 0 2 9; 5 0 0]

A = 3×3

 5 7 0
 0 2 9
 5 0 0

B = [6 6 0; 1 3 5; -1 0 0]

1 Alphabetical List

1-298

B = 3×3

 6 6 0
 1 3 5
 -1 0 0

A & B

ans = 3x3 logical array

 1 1 0
 0 1 1
 1 0 0

Truth Table for Logical AND

Create a truth table for and.

A = [true false]

A = 1x2 logical array

 1 0

B = [true; false]

B = 2x1 logical array

 1
 0

C = A&B

C = 2x2 logical array

 1 0
 0 0

 and, &

1-299

Input Arguments
A — Left operand
scalar | vector | matrix | multidimensional array

Left operand, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and
B must either be the same size or have sizes that are compatible (for example, A is an M-
by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

B — Right operand
scalar | vector | matrix | multidimensional array

Right operand, specified as a scalar, vector, matrix, or multidimensional array. Inputs A
and B must either be the same size or have sizes that are compatible (for example, A is an
M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Tips
• You can chain together several logical operations, for example, A & B | C.
• The symbols & and && perform different operations in MATLAB. The element-wise AND

operator described here is &. The short-circuit AND operator is &&.
• When you use the element-wise & and | operators in the context of an if or while

loop expression (and only in that context), they use short-circuiting to evaluate
expressions. Otherwise, you must specify && or || to opt-in to short-circuiting
behavior. See Logical Operators: Short Circuit for more information.

1 Alphabetical List

1-300

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
all | any | bitand | not | or | xor

Topics
“Find Array Elements That Meet a Condition”
“Truth Table for Logical Operations”
“MATLAB Operators and Special Characters”

 and, &

1-301

Introduced before R2006a

1 Alphabetical List

1-302

angle
Phase angle

Syntax
theta = angle(z)

Description
theta = angle(z) returns the phase angle in the interval [-π,π] for each element of a
complex array z. The angles in theta are such that z = abs(z).*exp(i*theta).

Examples

Magnitude and Phase of Complex Number

Create a complex number, and compute its magnitude and phase.

z = 2*exp(i*0.5)

z = 1.7552 + 0.9589i

r = abs(z)

r = 2

theta = angle(z)

theta = 0.5000

 angle

1-303

FFT Phase

Create a signal that consists of two sinusoids of frequencies 15 Hz and 40 Hz. The first
sinusoid has a phase of −π/4, and the second has a phase of π/2. Sample the signal at
100 Hz for one second.

fs = 100;
t = 0:1/fs:1-1/fs;
x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t);

Compute the Fourier transform of the signal. Plot the magnitude of the transform as a
function of frequency.

y = fft(x);
z = fftshift(y);

ly = length(y);
f = (-ly/2:ly/2-1)/ly*fs;

stem(f,abs(z))
xlabel 'Frequency (Hz)'
ylabel '|y|'
grid

1 Alphabetical List

1-304

Compute the phase of the transform, removing small-magnitude transform values. Plot
the phase as a function of frequency.

tol = 1e-6;
z(abs(z) < tol) = 0;

theta = angle(z);

stem(f,theta/pi)
xlabel 'Frequency (Hz)'
ylabel 'Phase / \pi'
grid

 angle

1-305

Input Arguments
z — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single
Complex Number Support: Yes

1 Alphabetical List

1-306

Algorithms
angle takes a complex number z = x + iy and uses the atan2 function to compute the
angle between the positive x-axis and a ray from the origin to the point (x,y) in the xy-
plane.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 angle

1-307

See Also
abs | atan2 | unwrap

Introduced before R2006a

1 Alphabetical List

1-308

animatedline
Create animated line

Syntax
an = animatedline
an = animatedline(x,y)
an = animatedline(x,y,z)

an = animatedline(___ ,Name,Value)
an = animatedline(ax, ___)

Description
an = animatedline creates an animated line that has no data and adds it to the
current axes. Create an animation by adding points to the line in a loop using the
addpoints function.

an = animatedline(x,y) creates an animated line with initial data points defined by x
and y.

an = animatedline(x,y,z) creates an animated line with initial data points defined
by x, y, and z.

an = animatedline(___ ,Name,Value) specifies animated line properties using one
or more name-value pair arguments. For example, 'Color','r' sets the line color to
red. Use this option after any of the input argument combinations in the previous
syntaxes.

an = animatedline(ax, ___) creates the line in the axes specified by ax instead of in
the current axes (gca). The option ax can precede any of the input argument
combinations in the previous syntaxes.

Examples

 animatedline

1-309

Display Line Animation

Create the initial animated line object. Then, use a loop to add 1,000 points to the line.
After adding each new point, use drawnow to display the new point on the screen.

h = animatedline;
axis([0,4*pi,-1,1])

x = linspace(0,4*pi,1000);
y = sin(x);
for k = 1:length(x)
 addpoints(h,x(k),y(k));
 drawnow
end

1 Alphabetical List

1-310

For faster rendering, add more than one point to the line each time through the loop or
use drawnow limitrate.

Query the points of the line.

[xdata,ydata] = getpoints(h);

Clear the points from the line.

clearpoints(h)
drawnow

 animatedline

1-311

Specify Animated Line Color

Set the color of the animated line to red and set its line width to 3 points.

x = [1 2];
y = [1 2];
h = animatedline(x,y,'Color','r','LineWidth',3);

1 Alphabetical List

1-312

Set Maximum Number of Points

Limit the number of points in the animated line to 100. Use a loop to add one point to the
line at a time. When the line contains 100 points, adding a new point to the line deletes
the oldest point.

h = animatedline('MaximumNumPoints',100);
axis([0,4*pi,-1,1])

x = linspace(0,4*pi,1000);
y = sin(x);
for k = 1:length(x)
 addpoints(h,x(k),y(k));
 drawnow
end

 animatedline

1-313

Add Points in Sets for Fast Animation

Use a loop to add 100,000 points to an animated line. Since the number of points is large,
adding one point to the line each time through the loop might be slow. Instead, add 100
points to the line each time through the loop for a faster animation.

h = animatedline;
axis([0,4*pi,-1,1])

numpoints = 100000;
x = linspace(0,4*pi,numpoints);
y = sin(x);

1 Alphabetical List

1-314

for k = 1:100:numpoints-99
 xvec = x(k:k+99);
 yvec = y(k:k+99);
 addpoints(h,xvec,yvec)
 drawnow
end

Another technique for creating faster animations is to use drawnow limitrate instead
of drawnow.

 animatedline

1-315

Use drawnow limitrate for Fast Animation

Use a loop to add 100,000 points to an animated line. Since the number of points is large,
using drawnow to display the changes might be slow. Instead, use drawnow limitrate
for a faster animation.

h = animatedline;
axis([0,4*pi,-1,1])

numpoints = 100000;
x = linspace(0,4*pi,numpoints);
y = sin(x);
for k = 1:numpoints
 addpoints(h,x(k),y(k))
 drawnow limitrate
end

1 Alphabetical List

1-316

Control Animation Speed

Control the animation speed by running through several iterations of the animation loop
before drawing the updates on the screen. Use this technique when drawnow is too slow
and drawnow limitrate is too fast.

For example, update the screen every 1/30 seconds. Use the tic and toc commands to
keep track of how much time passes between screen updates.

h = animatedline;
axis([0,4*pi,-1,1])
numpoints = 10000;

 animatedline

1-317

x = linspace(0,4*pi,numpoints);
y = sin(x);
a = tic; % start timer
for k = 1:numpoints
 addpoints(h,x(k),y(k))
 b = toc(a); % check timer
 if b > (1/30)
 drawnow % update screen every 1/30 seconds
 a = tic; % reset timer after updating
 end
end
drawnow % draw final frame

1 Alphabetical List

1-318

A smaller interval updates the screen more often and results in a slower animation. For
example, use b > (1/1000) to slow down the animation.

Input Arguments
x — Initial x values
[] (default) | scalar or vector

Initial x values for the animated line, specified as a scalar or vector. The input x must be
equal in size to y.
Example: 1:10
Data Types: double

y — Initial y values
[] (default) | scalar or vector

Initial y values for the animated line, specified as a scalar or vector. The input y must be
equal in size to x.
Example: 1:10
Data Types: double

z — Initial z values
[] (default) | scalar or vector

Initial z values for the animated line, specified as a scalar or vector. The input z must be
equal in size to x and y.
Example: 1:10
Data Types: double

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then animatedline uses the current
axes.

 animatedline

1-319

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The animated line properties listed here are only a subset. For a complete list, see
AnimatedLine.
Example: 'Color','red','Marker','o'

Color — Line color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

1 Alphabetical List

1-320

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

 animatedline

1-321

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the marker symbols listed in this table. By default, the
animated line object does not have markers. Specifying a marker symbol adds markers at
each data point or vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

1 Alphabetical List

1-322

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 animatedline

1-323

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

1 Alphabetical List

1-324

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MaximumNumPoints — Maximum number of points stored and displayed
1000000 (default) | positive value | Inf

Maximum number of points stored and displayed as part of the line, specified as a positive
value or Inf. By default, the value is one million points. If the number of points exceeds
the maximum value permitted, then the animated line keeps the most recently added
points and drops points from the beginning of the line. These dropped points no longer
display on the screen and are not returned when using getpoints.

Use this property to limit the number of points appearing on the screen at any given time
or to limit the amount of memory used. If you specify the value as Inf, then the animated
line does not drop any points, but the number of points stored is limited by the amount of
memory available.
Example: 10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 animatedline

1-325

Output Arguments
an — AnimatedLine object
AnimatedLine object

AnimatedLine object. Use an to modify the AnimatedLine object after its been
created, such as changing property values or adding points to the line. For a list of
properties, see AnimatedLine.

Tips
• Animated lines do not support data tips.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

1 Alphabetical List

1-326

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
addpoints | clearpoints | getpoints

Properties
AnimatedLine

Introduced in R2014b

 animatedline

1-327

AnimatedLine Properties
Line animation appearance and behavior

Description
AnimatedLine properties control the appearance and behavior of an AnimatedLine
object. By changing property values, you can modify certain aspects of the line. Use dot
notation to refer to a particular object and property:

an = animatedline;
c = an.Color;
an.Color = 'red';

Properties
Color and Styling

Color — Line color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-328

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

 AnimatedLine Properties

1-329

Line Style Description Resulting Line
'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

MaximumNumPoints — Maximum number of points stored and displayed
1000000 (default) | positive value | Inf

Maximum number of points stored and displayed as part of the line, specified as a positive
value or Inf. By default, the value is one million points. If the number of points exceeds
the maximum value permitted, then the animated line keeps the most recently added
points and drops points from the beginning of the line. These dropped points no longer
display on the screen and are not returned when using getpoints.

Use this property to limit the number of points appearing on the screen at any given time
or to limit the amount of memory used. If you specify the value as Inf, then the animated
line does not drop any points, but the number of points stored is limited by the amount of
memory available.
Example: 10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to

1 Alphabetical List

1-330

appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)

 AnimatedLine Properties

1-331

Value Description
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

1 Alphabetical List

1-332

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 AnimatedLine Properties

1-333

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

1 Alphabetical List

1-334

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

 AnimatedLine Properties

1-335

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-336

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you

 AnimatedLine Properties

1-337

do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

1 Alphabetical List

1-338

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

 AnimatedLine Properties

1-339

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the AnimatedLine object that has a defined
color. You cannot click a part that has an associated color property set to 'none'. If
the plot contains markers, then the entire marker is clickable if either the edge or the
fill has a defined color. The HitTest property determines if the AnimatedLine object
responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the AnimatedLine object passes
the click to the object below it in the current view of the figure window. The HitTest
property of the AnimatedLine object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the AnimatedLine object. If you
have defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the AnimatedLine object
that has one of these:

1 Alphabetical List

1-340

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the AnimatedLine object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

 AnimatedLine Properties

1-341

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'animatedline'

This property is read-only.

Type of graphics object, returned as 'animatedline'. Use this property to find all
objects of a given type within a plotting hierarchy, for example, searching for the type
using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-342

See Also
Functions
animatedline

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2014b

 AnimatedLine Properties

1-343

annotation
Create annotations

Syntax
annotation(lineType,x,y)
annotation(lineType)

annotation(shapeType,dim)
annotation(shapeType)

annotation(___ ,Name,Value)
annotation(container, ___)

an = annotation(___)

Description
annotation(lineType,x,y) creates a line or arrow annotation extending between two
points in the current figure. Specify lineType as 'line', 'arrow', 'doublearrow', or
'textarrow'. Specify x and y as two-element vectors of the form [x_begin x_end]
and [y_begin y_end], respectively.

annotation(lineType) creates the annotation in the default position between the
points (0.3,0.3) and (0.4,0.4).

annotation(shapeType,dim) creates a rectangle, ellipse, or text box annotation with
a particular size and location in the current figure. Specify shapeType as 'rectangle',
'ellipse', or 'textbox'. Specify dim as a four-element vector of the form [x y w
h]. The x and y elements determine the position and the w and h elements determine the
size.

annotation(shapeType) creates the annotation in the default position so that the
lower left corner is at (0.3,0.3) and the width and height are both 0.1.

annotation(___ ,Name,Value) creates the annotation and specifies properties as
name-value pair arguments. Different types of annotations support different properties.

1 Alphabetical List

1-344

You can specify properties with any of the input argument combinations in the previous
syntaxes.

annotation(container, ___) creates the annotation in the figure, uipanel, or uitab
specified by container, instead of in the current figure.

an = annotation(___) returns the annotation object. The type of object returned
depends on first input argument. Use an to modify properties of the object after it is
created. You can specify an output argument with any of the previous syntaxes.

Examples

Create Text Arrow Annotation

Create a simple line plot and add a text arrow to the figure. Specify the text arrow
location in normalized figure coordinates, starting at the point (0.3,0.6) and ending at
(0.5,0.5). Specify the text description by setting the String property.

figure
plot(1:10)
x = [0.3 0.5];
y = [0.6 0.5];
annotation('textarrow',x,y,'String','y = x ')

 annotation

1-345

Create Text Box Annotation

Create a simple line plot and add a text box annotation to the figure. Specify the text
description by setting the String property. Force the box to fit tightly around the text by
setting the FitBoxToText property to 'on'.

figure
plot(1:10)
dim = [.2 .5 .3 .3];
str = 'Straight Line Plot from 1 to 10';
annotation('textbox',dim,'String',str,'FitBoxToText','on');

1 Alphabetical List

1-346

Create a text box annotation without setting the FitBoxToText property. The text box
uses the specified width and height and wraps text as needed.

figure
plot(1:10)
dim = [.2 .5 .3 .3];
str = 'Straight Line Plot from 1 to 10';
annotation('textbox',dim,'String',str)

 annotation

1-347

Create Text Box Annotation with Multiline Text

Create a text box annotation with multiline text by setting the String property to a cell
array. Each element of the cell array displays on a separate line. Force the box to fit
tightly around the text by setting the FitBoxToText property to 'on'.

figure
plot(1:10)
dim = [0.2 0.5 0.3 0.3];
str = {'Straight Line Plot','from 1 to 10'};
annotation('textbox',dim,'String',str,'FitBoxToText','on');

1 Alphabetical List

1-348

Create Rectangle Annotation

Create a stem plot and add a rectangle annotation to the figure. Change the color of the
rectangle outline by specifying the Color property.

figure
data = [2 4 6 7 8 7 5 2];
stem(data)
dim = [.3 .68 .2 .2];
annotation('rectangle',dim,'Color','red')

 annotation

1-349

Add a second rectangle annotation to the figure. Specify the fill color by setting the
FaceColor property. Add transparency by setting the FaceAlpha property to a value
between 0 (completely transparent) and 1 (completely opaque).

dim2 = [.74 .56 .1 .1];
annotation('rectangle',dim2,'FaceColor','blue','FaceAlpha',.2)

1 Alphabetical List

1-350

Create Ellipse Annotation

Create a simple line plot and add an ellipse annotation to the figure. Specify dim as the
size and location of the smallest rectangle that encloses the ellipse.

figure
x = linspace(-4,4);
y = x.^3 - 12*x;
plot(x,y)

dim = [.2 .74 .25 .15];
annotation('ellipse',dim)

 annotation

1-351

Draw a red rectangle using the same dimensions to show how the ellipse fills the
rectangular area.

annotation('rectangle',dim,'Color','red')

1 Alphabetical List

1-352

Combine Two Types of Annotations

Create a simple line plot. Then, add a bent arrow to the graph by combining a line and an
arrow annotation.

figure
plot(1:10)

xl = [.3 .3];
yl = [.3 .4];
annotation('line',xl,yl)

 annotation

1-353

xa = [.3 .4];
ya = [.4 .4];
annotation('arrow',xa,ya)

Modify Annotation After Creation

Add a text arrow to a figure and return the annotation text arrow object, a.

figure
plot(1:10)
x = [0.3,0.5];

1 Alphabetical List

1-354

y = [0.6,0.5];
a = annotation('textarrow',x,y,'String','y = x ');

Modify properties of the annotation text arrow using a. For example, change the color to
red and the font size to 14 points.

a.Color = 'red';
a.FontSize = 14;

 annotation

1-355

See the annotation property pages for a list of properties for each type of annotation.

Input Arguments
lineType — Type of line annotation
'line' | 'arrow' | 'doublearrow' | 'textarrow'

Type of line annotation, specified as one of these values.

1 Alphabetical List

1-356

Value Type of Object Example
'line' Annotation line annotation('line',

[.1 .2],[.1 .2])
'arrow' Annotation arrow annotation('arrow',

[.1 .2],[.1 .2])
'doublearrow' Annotation double arrow annotation('doublearr

ow',[.1 .2],[.1 .2])
'textarrow' Annotation text arrow. To

add text to the tail end of
the text arrow, use the
String property.

annotation('textarrow
',[.1 .2],
[.1 .2],'String','my
text')

shapeType — Type of shape annotation
'rectangle' | 'ellipse' | 'textbox'

Type of shape annotation, specified as one of these values.

Value Type of Object Example
'rectangle' Annotation rectangle annotation('rectangle

',[.2 .3 .4 .5])
'ellipse' Annotation ellipse annotation('ellipse',

[.2 .3 .4 .5])
'textbox' Annotation text box. To

specify the text, set the
String property. To
automatically adjust the
dimensions of the box to fit
closely around the text, set
the FitBoxToText
property to 'on'.

annotation('textbox',
[.2 .3 .4 .5],'String
','my
text','FitBoxToText',
'on')

x — Beginning and ending x-coordinates
two-element vector of the form [x_begin x_end]

Beginning and ending x-coordinates, specified as a two-element vector of the form
[x_begin x_end]. Together the x and y input arguments determine the endpoints of
the line, arrow, double arrow, or text arrow annotation. The annotation extends from the
point (x_begin, y_begin) to (x_end, y_end).

 annotation

1-357

By default, the units are normalized to the figure. The lower left corner of the figure maps
to (0,0) and the upper right corner maps to (1,1). To change the units, use the Units
property.
Example: x = [.3 .5]

y — Beginning and ending y-coordinates
two-element vector of the form [x_begin x_end]

Beginning and ending y-coordinates, specified as a two-element vector of the form
[y_begin y_end]. Together the x and y input arguments determine the endpoints of
the line, arrow, double arrow, or text arrow annotation. The annotation extends from the
point (x_begin, y_begin) to (x_end, y_end).

By default, the units are normalized to the figure. The lower left corner of the figure maps
to (0,0) and the upper right corner maps to (1,1). To change the units, use the Units
property.
Example: y = [.3 .5]

dim — Size and location
four-element vector of the form [x y w h]

Size and location, specified as a four-element vector of the form [x y w h]. The first two
elements specify the coordinates of the lower left corner of the text box, rectangle, or
ellipse with respect to the lower left corner of the figure. The second two elements specify
the width and height of the annotation, respectively.

If you are creating an ellipse, then dim is the size and location of the smallest rectangle
that encloses the ellipse.

By default, the units are normalized to the figure. The lower left corner of the figure maps
to (0,0) and the upper right corner maps to (1,1). To change the units, use the Units
property
Example: dim = [.3 .4 .5 .6]

container — Target for annotation
figure object | uipanel object | uitab object

Target for annotation, specified as a figure, uipanel, or uitab object. For example, to add
an annotation to a specific figure, specify the figure object as the first input argument to
the function.

1 Alphabetical List

1-358

f = figure;
annotation(f,'line',[.1 .2],[.2 .3])

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: annotation('rectangle',[.5 .5 .1 .1],'EdgeColor','r') creates a
rectangle annotation with a red outline.

Each type of annotation object supports a different set of properties. For a full list of
properties and descriptions for each type, see the associated property page.

• Annotation Line
• Arrow
• DoubleEndArrow
• TextArrow
• TextBox
• Annotation Rectangle
• Ellipse

Output Arguments
an — Annotation object
scalar

Annotation object, returned as a scalar. The type of annotation object returned depends
on the first input argument.

First Input Argument Type of Object Returned Property Page
'line' Line Annotation Line
'arrow' Arrow Arrow
'doublearrow' Double arrow DoubleEndArrow

 annotation

1-359

First Input Argument Type of Object Returned Property Page
'textarrow' Text arrow TextArrow
'textbox' Text box TextBox
'rectangle' Rectangle Annotation Rectangle
'ellipse' Ellipse Ellipse

Definitions

Compatibility Considerations
Starting in R2014b, annotations cannot cross uipanel boundaries. Instead, they clip at the
boundaries. Previous versions of MATLAB allow annotations to extend into (or out of) the
boundaries. To display an annotation within a specific figure, uipanel, or uitab, use the
container input argument.

See Also
rectangle | text

Topics
“Add Text to Chart”

Introduced before R2006a

1 Alphabetical List

1-360

Arrow Properties
Arrow appearance and behavior

Description
Arrow properties control the appearance and behavior of an Arrow object. By changing
property values, you can modify certain aspects of the arrow.

Starting in R2014b, you can use dot notation to query and set properties.

ar = annotation('arrow');
c = ar.Color;
ar.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Arrow color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Arrow color, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The default RGB triplet value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Arrow Properties

1-361

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

LineStyle — Style of arrow stem
'-' (default) | '--' | ':' | '-.' | 'none'

1 Alphabetical List

1-362

Style of arrow stem, specified as one of the line styles listed in this table.

Line Style Description Result
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No stem No stem

LineWidth — Width of arrow stem
0.5 (default) | positive value

Width of arrow stem, specified as a positive value in point units. One point equals 1/72
inch.
Example: 0.75
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

HeadStyle — Style of arrowhead
'vback2' (default) | 'plain' | 'ellipse' | 'vback1' | 'vback3' | 'cback1' |
'cback2' | ...

Style of the arrowhead, specified as one of the styles in this table.

Style Result Style Result
'plain' 'fourstar'

'ellipse' 'rectangle'

'vback1' 'diamond'

'vback2' (default) 'rose'

 Arrow Properties

1-363

Style Result Style Result
'vback3' 'hypocycloid'

'cback1' 'astroid'

'cback2' 'deltoid'

'cback3' 'none' No arrowhead

HeadLength — Length of arrowhead
10 (default) | scalar numeric value

Length of the arrowhead, specified as a scalar numeric value in point units. One point
equals 1/72 inch. The arrowhead extends backwards from the point (x_end,y_end)
determined by the X and Y properties.
Example: 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

HeadWidth — Width of arrowhead
10 (default) | scalar numeric value

Width of the arrowhead, specified as a scalar numeric value in point units. One point
equals 1/72 inch.
Example: 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Position

X — Beginning and ending x-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending x-coordinates, specified as a two-element vector of the form
[x_begin x_end].

1 Alphabetical List

1-364

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0), and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.5]

Y — Beginning and ending y-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending y-coordinates, specified as a two-element vector of the form
[y_begin y_end].

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0), and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.5]

Position — Size and location
[0.3 0.3 0.1 0.1] (default) | four-element vector

Size and location, specified as a four-element vector of the form [x_begin y_begin dx
dy]. The first two elements specify the coordinates for the beginning of the arrow. The
second two elements specify the slope of the arrow.

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0), and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.5 0.5 0.2 0.3]

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

 Arrow Properties

1-365

Units Description
'normalized' (default) Normalized with respect to the figure,

uipanel, or uitab that contains the
annotation. The lower-left corner of the
container maps to (0,0) and the upper-
right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the figure window.

This property affects the Position property. If you change the units, then it is good
practice to return it to the default value after completing your computation to prevent
affecting other functions that assume Units is set to the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

1 Alphabetical List

1-366

See Also
annotation

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Arrow Properties

1-367

DoubleEndArrow Properties
Double end arrow appearance and behavior

Description
DoubleEndArrow properties control the appearance and behavior of a DoubleEndArrow
object. By changing property values, you can modify certain aspects of the double arrow.

Starting in R2014b, you can use dot notation to query and set properties.

an = annotation('doublearrow');
c = an.Color;
an.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Arrow color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Arrow color, specified as an RGB triplet, hexadecimal color code, a color name, or a short
name. The default RGB triplet value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-368

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Style of arrow stem
'-' (default) | '--' | ':' | '-.' | 'none'

 DoubleEndArrow Properties

1-369

Style of arrow stem, specified as one of the line styles listed in this table.

Line Style Description Result
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No stem No stem

LineWidth — Width of arrow stem
0.5 (default) | positive value

Width of arrow stem, specified as a positive value in point units. One point equals 1/72
inch.
Example: 0.75
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Head1Style — Style of first arrowhead
'vback2' (default) | 'plain' | 'ellipse' | 'vback1' | 'vback3' | 'cback1' | ...

Style of the first arrowhead, specified as one of the head style options in this table. The
first arrowhead is located at the point (x_begin,y_begin) determined by the X and Y
properties.

Style Result Style Result
'plain' 'fourstar'

'ellipse' 'rectangle'

'vback1' 'diamond'

1 Alphabetical List

1-370

Style Result Style Result
'vback2' (default) 'rose'

'vback3' 'hypocycloid'

'cback1' 'astroid'

'cback2' 'deltoid'

'cback3' 'none' No arrowhead

Head2Style — Style of second arrowhead
'vback2' (default) | 'plain' | 'ellipse' | 'vback1' | 'vback3' | 'cback1' | ...

Style of the second arrowhead, specified as one of the head style options in this table. The
second arrowhead is located at the point (x_end,y_end) determined by the X and Y
properties.

Style Result Style Result
'plain' 'fourstar'

'ellipse' 'rectangle'

'vback1' 'diamond'

'vback2' (default) 'rose'

'vback3' 'hypocycloid'

'cback1' 'astroid'

'cback2' 'deltoid'

'cback3' 'none' No arrowhead

 DoubleEndArrow Properties

1-371

Head1Length — Length of first arrowhead
10 (default) | scalar numeric value

Length of the first arrowhead, specified as a scalar numeric value in point units. One
point equals 1/72 inch. The first arrowhead extends backwards from the point
(x_begin,y_begin) determined by the X and Y properties.
Example: 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Head2Length — Length of second arrowhead
10 (default) | scalar numeric value

Length of the second arrowhead, specified as a scalar numeric value in point units. One
point equals 1/72 inch. The second arrowhead extends backwards from the point
(x_end,y_end) determined by the X and Y properties.
Example: 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Head1Width — Width of first arrowhead
10 (default) | scalar numeric value

Width of the first arrowhead, specified as a scalar numeric value in point units. One point
equals 1/72 inch. The first arrowhead is located at the point (x_begin,y_begin)
determined by the X and Y properties.
Example: 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Head2Width — Width of second arrowhead
10 (default) | scalar numeric value

Width of the second arrowhead, specified as a scalar numeric value in point units. One
point equals 1/72 inch. The second arrowhead is located at the point (x_end,y_end)
determined by the X and Y properties.
Example: 15

1 Alphabetical List

1-372

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Position

X — Beginning and ending x-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending x-coordinates, specified as a two-element vector of the form
[x_begin x_end].

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3]

Y — Beginning and ending y-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending y-coordinates, specified as a two-element vector of the form
[y_begin y_end].

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3]

Position — Size and location
[0.3 0.3 0.1 0.1] (default) | four-element vector

Size and location, specified as a four-element vector of the form [x_begin y_begin dx
dy]. The first two elements specify the coordinates for the beginning of the arrow. The
second two elements specify the slope of the arrow.

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.5 0.5 0.2 0.3]

 DoubleEndArrow Properties

1-373

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

Units Description
'normalized' (default) Normalized with respect to the figure,

uipanel, or uitab that contains the
annotation. The lower-left corner of the
container maps to (0,0) and the upper-
right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the figure window.

1 Alphabetical List

1-374

This property affects the Position property. If you change the units, then it is good
practice to return it to the default value after completing your computation to prevent
affecting other functions that assume Units is set to the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

See Also
annotation

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 DoubleEndArrow Properties

1-375

Ellipse Properties
Ellipse appearance and behavior

Description
Ellipse properties control the appearance and behavior of an Ellipse object. By
changing property values, you can modify certain aspects of the ellipse.

Starting in R2014b, you can use dot notation to query and set properties.

an = annotation('ellipse');
c = an.Color;
an.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Outline color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Outline color, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-376

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

FaceColor — Fill color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 Ellipse Properties

1-377

Fill color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

1 Alphabetical List

1-378

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width of ellipse outline, specified as a positive value in point units. One point equals
1/72 inch.
Example: 0.75
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 Ellipse Properties

1-379

Position

Position — Size and location
[0.3 0.3 0.1 0.1] (default) | four-element vector

Size and location, specified as a four-element vector of the form [x y length height].
The first two elements specify the coordinates of the lower-left corner of the smallest
rectangle that enclose the ellipse. The second two elements specify length and height of
the rectangle.

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3 0.4 0.5]

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

Units Description
'normalized' (default) Normalized with respect to the figure,

uipanel, or uitab that contains the
annotation. The lower-left corner of the
container maps to (0,0) and the upper-
right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.

1 Alphabetical List

1-380

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the figure window.

This property affects the Position property. If you change the units, then it is good
practice to return it to the default value after completing your computation to prevent
affecting other functions that assume Units is set to the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

See Also
annotation

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Ellipse Properties

1-381

Line Properties
Annotation line appearance and behavior

Description
Line properties control the appearance and behavior of an Line object. By changing
property values, you can modify certain aspects of the line.

Starting in R2014b, you can use dot notation to query and set properties.

h = annotation('line');
c = h.Color;
h.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Line color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-382

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

 Line Properties

1-383

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in point units. One point equals 1/72 inch.
Example: 0.75
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Position

X — Beginning and ending x-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending x-coordinates, specified as a two-element vector of the form
[x_begin x_end].

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3]

Y — Beginning and ending y-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending y-coordinates, specified as a two-element vector of the form
[y_begin y_end].

1 Alphabetical List

1-384

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3]

Position — Size and location
[0.3 0.3 0.1 0.1] (default) | four-element vector

Size and location, specified as a four-element vector of the form [x_begin y_begin dx
dy]. The first two elements specify the coordinates of the starting point of the line. The
second two elements specify the slope of the line.

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property. To change the units, use the Units property.
Example: [0.2 0.2 0.3 0.3]

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

Units Description
'normalized' (default) Normalized with respect to the figure,

uipanel, or uitab that contains the
annotation. The lower-left corner of the
container maps to (0,0) and the upper-
right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.

 Line Properties

1-385

Units Description
'points' Points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the figure window.

This property affects the Position property. If you change the units, then it is good
practice to return it to the default value after completing your computation to prevent
affecting other functions that assume Units is set to the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

See Also
annotation

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-386

Rectangle Properties
Annotation rectangle appearance and behavior

Description
Rectangle properties control the appearance and behavior of a Rectangle object. By
changing property values, you can modify certain aspects of the rectangle.

Starting in R2014b, you can use dot notation to query and set properties.

h = annotation('rectangle');
c = h.Color;
h.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Outline color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Outline color, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Rectangle Properties

1-387

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

FaceColor — Fill color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

1 Alphabetical List

1-388

Fill color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 Rectangle Properties

1-389

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

FaceAlpha — Fill transparency
1 (default) | value in range [0,1]

Fill transparency, specified as a scalar value in the range [0,1]. A value of 1 is opaque
and 0 is completely transparent. Values between 0 and 1 are semitransparent.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

1 Alphabetical List

1-390

LineWidth — Line width
0.5 (default) | positive value

Line width of rectangle outline, specified as a positive value in point units. One point
equals 1/72 inch.
Example: 0.75
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Position

Position — Size and location
[0.3 0.3 0.1 0.1] (default) | four-element vector

Size and location, specified as a four-element vector of the form [x y length height].
The first two elements specify the coordinates of the lower left corner of the rectangle.
The second two elements specify the length and height of the rectangle.

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0) and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3 0.4 0.5]

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

Units Description
'normalized' (default) Normalized with respect to the figure,

uipanel, or uitab that contains the
annotation. The lower-left corner of the
container maps to (0,0) and the upper-
right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.

 Rectangle Properties

1-391

Units Description
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the figure window.

This property affects the Position property. If you change the units, then it is good
practice to return it to the default value after completing your computation to prevent
affecting other functions that assume Units is set to the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

See Also
annotation

Topics
“Access Property Values”

1 Alphabetical List

1-392

“Graphics Object Properties”

Introduced before R2006a

 Rectangle Properties

1-393

TextArrow Properties
Text arrow appearance and behavior

Description
TextArrow properties control the appearance and behavior of a TextArrow object. By
changing property values, you can modify certain aspects of the text arrow.

Starting in R2014b, you can use dot notation to query and set properties.

ta = annotation('textarrow');
s = ta.FontSize;
ta.FontSize = 12;

If you are using an earlier release, use the get and set functions instead.

Properties
Text

String — Text to display
'' (default) | character array | string array | cell array | categorical array | numeric value

Text to display, specified as a character array, string array, cell array, categorical array, or
numeric value.
Example: 'my label'
Example: string('my label')
Example: {'first line','second line'}
Example: 123

To include numeric variables with text, use the num2str function. For example:

x = 42;
str = ['The value is ',num2str(x)];

1 Alphabetical List

1-394

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline text:

• Use a string array, where each element contains a line of text, such as
string({'line one','line two'}).

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line'). This property converts text with new line characters to
cell arrays.

Text that contains only a numeric value is converted using sprintf('%g',value). For
example, 12345678 displays as 1.23457e+07.

Note

• The words default, factory, and remove are reserved words that will not appear in
text when quoted as a normal characters. To display any of these words individually,
precede them with a backslash, such as '\default' or '\remove'.

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

TextRotation — Text rotation angle in degrees
0 (default) | scalar numeric value

Text rotation angle in degrees, specified as a scalar numeric value. Set this property to a
positive value to rotate the text counterclockwise. Angles are absolute and not relative to
previous rotations. A rotation of 0 degrees is always horizontal.
Example: 90
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

 TextArrow Properties

1-395

TextColor — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as a three-element RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of [0 0 0] corresponds to black.

Note Setting the Color property changes the TextColor property to the same value,
unless you explicitly set the TextColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

1 Alphabetical List

1-396

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TextEdgeColor — Color of text box outline
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of text box outline, specified as a three-element RGB triplet, a hexadecimal color
code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 TextArrow Properties

1-397

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TextBackgroundColor — Color of text box background
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of text box background, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

1 Alphabetical List

1-398

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 TextArrow Properties

1-399

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TextLineWidth — Width of text box outline
0.5 (default) | scalar numeric value

Width of text box outline, specified as a scalar numeric value in point units. One point
equals 1/72 inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TextMargin — Space around text within text box
2 (default) | scalar numeric value

Space around the text within the text box, specified as a scalar numeric value in pixel
units.
Example: 10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

1 Alphabetical List

1-400

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

 TextArrow Properties

1-401

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

1 Alphabetical List

1-402

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

 TextArrow Properties

1-403

https://www.latex-project.org
https://www.latex-project.org

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar value greater than 0

Font size, specified as a scalar value greater than 0 in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

1 Alphabetical List

1-404

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'normalized' | 'pixels'

Font size units, specified as one of the values in this table.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the

parent container height, typically a figure.
If you resize the container, the font size
modifies accordingly. For example, if the
FontSize is 0.1 in normalized units, then
the text is 1/10 of the container height.

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

If you set both the font size and the font units in one function call, you must set the
FontUnits property first so that the axes correctly interprets the specified font size.

Arrow

Color — Arrow color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Arrow color, specified as a three-element RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of [0 0 0] corresponds to black.

 TextArrow Properties

1-405

Note Setting this property also changes the text color if you have not explicitly set the
text color using the TextColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

1 Alphabetical List

1-406

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of arrow stem
0.5 (default) | scalar numeric value

Width of arrow stem, specified as a scalar numeric value greater than zero in point units.
One point equals 1/72 inch. The default value is 0.5 points.
Example: 0.75
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 TextArrow Properties

1-407

HeadStyle — Style of arrowhead
'vback2' (default) | 'plain' | 'ellipse' | 'vback1' | 'vback3' | 'cback1' | ...

Style of the arrowhead, specified as one of the head style options in this table.

Style Result Style Result
'plain' 'fourstar'

'ellipse' 'rectangle'

'vback1' 'diamond'

'vback2' (default) 'rose'

'vback3' 'hypocycloid'

'cback1' 'astroid'

'cback2' 'deltoid'

'cback3' 'none' No arrowhead

HeadLength — Length of arrowhead
10 (default) | scalar numeric value

Length of the arrowhead, specified as a scalar numeric value in point units. One point
equals 1/72 inch.
Example: 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

HeadWidth — Width of arrowhead
10 (default) | scalar numeric value

Width of the arrowhead, specified as a scalar numeric value in point units. One point
equals 1/72 inch.
Example: 15

1 Alphabetical List

1-408

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Position

X — Beginning and ending x-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending x-coordinates for the arrow, specified as a two-element vector of
the form [x_begin x_end].

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0), and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3]

Y — Beginning and ending y-coordinates
[0.3 0.4] (default) | two-element vector

Beginning and ending y-coordinates for the arrow, specified as a two-element vector of
the form [y_begin y_end].

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0), and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.3]

Position — Size and location
[0.3 0.3 0.1 0.1] (default) | four-element vector

Size and location, specified as a four-element vector of the form [x_begin y_begin
length height]. The first two elements specify the coordinates of the beginning of the
arrow. The second two elements specify the length and height of the arrow. The text box
extends from the beginning of the arrow.

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0), and the upper-right corner maps to (1,1). To change the units, use the Units
property.
Example: [0.2 0.2 0.3 0.1]

 TextArrow Properties

1-409

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

Units Description
'normalized' (default) Normalized with respect to the figure,

uipanel, or uitab that contains the
annotation. The lower-left corner of the
container maps to (0,0) and the upper-
right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the figure window.

1 Alphabetical List

1-410

This property affects the Position property. If you change the units, then it is good
practice to return it to the default value after completing your computation to prevent
affecting other functions that assume Units is set to the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

HorizontalAlignment — Horizontal alignment of text
'left' (default) | 'center' | 'right'

Horizontal alignment of the text, specified as one of the values in this table. This property
is useful when aligning multiple lines of text.

Value Result
'left'

'center'

'right'

VerticalAlignment — Vertical alignment of text with respect to arrow
'top' (default) | 'cap' | 'middle' | 'baseline' | 'bottom'

Vertical alignment of the text with respect to the end of the arrow, specified as 'top',
'cap', 'middle', 'baseline', or 'bottom'.

See Also
annotation

 TextArrow Properties

1-411

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-412

TextBox Properties
Text box appearance and behavior

Description
TextBox properties control the appearance and behavior of a TextBox object. By
changing property values, you can modify certain aspects of the text box.

Starting in R2014b, you can use dot notation to query and set properties.

t = annotation('textbox');
sz = t.FontSize;
t.FontSize = 12;

If you are using an earlier release, use the get and set functions instead.

Properties
Text

String — Text to display
'' (default) | character array | string array | cell array | categorical array | numeric value

Text to display, specified as a character array, string array, cell array, categorical array, or
numeric value.
Example: 'my label'
Example: string('my label')
Example: {'first line','second line'}
Example: 123

To include numeric variables with text, use the num2str function. For example:

x = 42;
str = ['The value is ',num2str(x)];

 TextBox Properties

1-413

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline text:

• Use a string array, where each element contains a line of text, such as
string({'line one','line two'}).

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line'). This property converts text with new line characters to
cell arrays.

Text that contains only a numeric value is converted using sprintf('%g',value). For
example, 12345678 displays as 1.23457e+07.

Note

• The words default, factory, and remove are reserved words that will not appear in
text when quoted as a normal characters. To display any of these words individually,
precede them with a backslash, such as '\default' or '\remove'.

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-414

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'

 TextBox Properties

1-415

Example: [0 0 1]
Example: '#0000FF'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

1 Alphabetical List

1-416

Modifier Description Example
\fontsize{specifier} Font size —Replace

specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑

 TextBox Properties

1-417

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\iota ι \Sigma Σ \rightarro
w

→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

1 Alphabetical List

1-418

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar value greater than 0

Font size, specified as a scalar value greater than 0 in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

FontWeight — Character thickness
'normal' (default) | 'bold'

 TextBox Properties

1-419

https://www.latex-project.org
https://www.latex-project.org

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'normalized' | 'pixels'

Font size units, specified as one of the values in this table.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the

parent container height, typically a figure.
If you resize the container, the font size
modifies accordingly. For example, if the
FontSize is 0.1 in normalized units, then
the text is 1/10 of the container height.

1 Alphabetical List

1-420

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

If you set both the font size and the font units in one function call, you must set the
FontUnits property first so that the axes correctly interprets the specified font size.

Text Box

FitBoxToText — Option to fit box width and height to text
'on' (default) | 'off'

Option to fit the box width and height to the text, specified as one of these values:

• 'on' — Resize the text box to fit the text.
• 'off' — Wrap the text to fit the width of the text box. Wrapping can cause some of

the text to extend below the text box.

If you resize a text box when in plot edit mode, or if you change the Position property,
then the FitBoxToText property changes to 'off'.

EdgeColor — Color of box outline
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of box outline, specified as a three-element RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 TextBox Properties

1-421

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-422

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

BackgroundColor — Color of text box background
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of text box background, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

 TextBox Properties

1-423

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'none' Not
applicable

Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

FaceAlpha — Transparency of background color
1 (default) | scalar value between 0 and 1 inclusive

Transparency of the background color, specified as a scalar value between 0 and 1. If the
value is 1, then the color is opaque. To add transparency, set the property to a value
closer to 0, where 0 is completely transparent.

LineStyle — Line style of box outline
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of box outline, specified as one of the options listed in this table.

Line Style Description
'-' Solid line

1 Alphabetical List

1-424

Line Style Description
'--' Dashed line
':' Dotted line
'-.' Dash-dotted line
'none' Box outline is invisible

LineWidth — Width of box outline
0.5 (default) | scalar numeric value

Width of box outline, specified as a scalar numeric value in point units. One point equals
1/72 inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Margin — Space around text within the text box
5 (default) | scalar numeric value

The space around the text within the text box, specified as a scalar numeric value in pixel
units.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Position

Position — Size and location
[0.3 0.3 0.1 0.1] (default) | four-element vector

Size and location, specified as a four-element vector of the form [x_begin y_begin
length height]. The first two elements specify the coordinates for the lower-left
corner of the text box. The second two elements specify the length and height of the text
box.

By default, the units are normalized to the figure. The lower-left corner of the figure maps
to (0,0), and the upper-right corner maps to (1,1). To change the units, use the Units
property.

 TextBox Properties

1-425

Note If the FitBoxToText property is set to 'on' and you change the String property,
then the Position property might not reflect the latest changes until the next time the
screen refreshes. To ensure that the position value reflects the latest changes, call
drawnow before querying the position when working in a script or function.

Example: [0.2 0.3 0.4 0.5]

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

Units Description
'normalized' (default) Normalized with respect to the figure,

uipanel, or uitab that contains the
annotation. The lower-left corner of the
container maps to (0,0) and the upper-
right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.

1 Alphabetical List

1-426

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the figure window.

This property affects the Position property. If you change the units, then it is good
practice to return it to the default value after completing your computation to prevent
affecting other functions that assume Units is set to the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

HorizontalAlignment — Horizontal alignment of text within text box
'left' (default) | 'center' | 'right'

Horizontal alignment of the text within the text box, specified as one of the values in this
table.

Value Result
'left'

'center'

'right'

VerticalAlignment — Vertical alignment of text within text box
'top' (default) | 'middle' | 'bottom'

 TextBox Properties

1-427

Vertical alignment of the text within the text box, specified as one of the values in this
table.

Value Result
'top'

'middle'

'bottom'

Note The 'cap' and 'baseline' values are not recommended. Use the 'top' and
'bottom' values, respectively, instead.

See Also
annotation

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-428

ans
Most recent answer

Syntax
ans

Description
When you run MATLAB code that returns an output without specifying an output
argument, MATLAB creates the ans variable and stores the output there. Changing or
using the value of ans in a script or function is not recommended, as the value can
change frequently.

ans is specific to the current workspace. The base workspace and each function
workspace can have its own instance of ans. For more information, see “Base and
Function Workspaces”.

Examples

Result of a Simple Calculation

Perform a simple calculation in the Command Window without assigning the result to a
variable. MATLAB stores the result in the ans variable.

2 + 2

ans = 4

Perform a simple calculation in the Command Window and assign the result to the
variable result.

result = 4 + 4

result = 8

 ans

1-429

Display the values of result and then ans. MATLAB displays the value of result
without returning an output. Therefore, the value of ans remains unchanged.

result

result = 8

ans

ans = 4

Call a Function That Returns Output

Suppose you have a function testFunc, which returns an output, without specifying an
output variable.

function a = testFunc
a = 75;
end

Call testFunc. MATLAB stores the returned result in ans.

testFunc

ans = 75

See Also
display

Topics
“Enter Statements in Command Window”

Introduced before R2006a

1 Alphabetical List

1-430

any
Determine if any array elements are nonzero

Syntax
B = any(A)
B = any(A,'all')
B = any(A,dim)
B = any(A,vecdim)

Description
B = any(A) tests along the first array dimension of A whose size does not equal 1, and
determines if any element is a nonzero number or logical 1 (true). In practice, any is a
natural extension of the logical OR operator.

• If A is a vector, then B = any(A) returns logical 1 (true) if any of the elements of A
is a nonzero number or is logical 1, and returns logical 0 (false) if all the elements
are zero.

• If A is a nonempty, nonvector matrix, then B = any(A) treats the columns of A as
vectors, returning a row vector of logical 1s and 0s.

• If A is an empty 0-by-0 matrix, any(A) returns logical 0 (false).
• If A is a multidimensional array, any(A) acts along the first array dimension whose

size does not equal 1 and returns an array of logical values. The size of this dimension
becomes 1, while the sizes of all other dimensions remain the same.

B = any(A,'all') tests over all elements of A. This syntax is valid for MATLAB
versions R2018b and later.

B = any(A,dim) tests elements along dimension dim. The dim input is a positive
integer scalar.

B = any(A,vecdim) tests elements based on the dimensions specified in the vector
vecdim. For example, if A is a matrix, then any(A,[1 2]) tests over all elements in A,

 any

1-431

since every element of a matrix is contained in the array slice defined by dimensions 1
and 2.

Examples

Test Matrix Columns

Create a 3-by-3 matrix.

A = [0 0 3;0 0 3;0 0 3]

A = 3×3

 0 0 3
 0 0 3
 0 0 3

Test each column for nonzero elements.

B = any(A)

B = 1x3 logical array

 0 0 1

Reduce a Logical Vector to a Single Condition

Create a vector of decimal values and test which values are less than 0.5.

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69];
B = (A < 0.5)

B = 1x7 logical array

 0 0 1 1 1 1 0

1 Alphabetical List

1-432

The output is a vector of logical values. The any function reduces such a vector of logical
values to a single condition. In this case, B = any(A < 0.5) yields logical 1.

This makes any particularly useful in if statements.

if any(A < 0.5)

%do something

else

%do something else

end

The code is executed depending on a single condition, rather than a vector of possibly
conflicting conditions.

Test Arrays of Any Dimension

Create a 3-by-7-by-5 multidimensional array and test to see if any of its elements are
greater than 3.

A = rand(3,7,5) * 5;
B = any(A(:) > 3)

B = logical
 1

You can also test the array for elements that are less than zero.

B = any(A(:) < 0)

B = logical
 0

The syntax A(:) turns the elements of A into a single column vector, so you can use this
type of statement on an array of any size.

 any

1-433

Test Matrix Rows

Create a 3-by-3 matrix.

A = [0 0 3;0 0 3;0 0 3]

A = 3×3

 0 0 3
 0 0 3
 0 0 3

Test the rows of A for nonzero elements by specifying dim = 2.

B = any(A,2)

B = 3x1 logical array

 1
 1
 1

Nonzero Elements in Array Page

Create a 3-D array and determine if there are nonzero elements in each page of data
(rows and columns).

A(:,:,1) = [2 0; 0 0];
A(:,:,2) = [0 0; 0 0];
A(:,:,3) = [0 0; 0 1];
B = any(A,[1 2])

B = 1x1x3 logical array
B(:,:,1) =

 1

1 Alphabetical List

1-434

B(:,:,2) =

 0

B(:,:,3) =

 1

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. The any
function ignores elements of A that are NaN (Not a Number).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, A:

• any(A,1) works on successive elements in the columns of A and returns a row vector
of logical values.

• any(A,2) works on successive elements in the rows of A and returns a column vector
of logical values.

 any

1-435

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then any(A,[1 2]) returns a 1-by-1-by-3 array
whose elements indicate nonzero values for each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-436

Output Arguments
B — Logical array
scalar | vector | matrix | multidimensional array

Logical array, returned as a scalar, vector, matrix, or multidimensional array. The
dimension of A acted on by any has size 1 in B.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 any

1-437

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
all | colon | nnz | or | prod | sum

Topics
“Reduce Logical Arrays to Single Value”

Introduced before R2006a

1 Alphabetical List

1-438

matlab.appdesigner Settings
App Designer settings, including canvas editor and component browser settings

You can customize App Designer using the matlab.appdesigner settings. Access
matlab.appdesigner settings using the root SettingsGroup object returned by the
settings function. For example, set the temporary value for resizing hints to 1 (where
the default is 0) to show resizing hints in the canvas.

s = settings;
s.matlab.appdesigner.designview.ShowResizingHints.TemporaryValue = 1

For more information about settings, see “Access and Modify Settings”.

Settings
matlab.appdesigner.compbrowser

IncludeComponentLabels — Include component labels
0 (default) | 1

Include component labels in the Component Browser, specified as a 1 or 0.

Set to 1 to display labels that are grouped with components as separate items in the
Component Browser. Otherwise, those labels do not appear in the Component Browser.
Example:
s.matlab.appdesigner.compbrowser.IncludeComponentLabels.TemporaryVal
ue = 1

matlab.appdesigner.history

MaxFileListSize — Number of recent apps to display
8 (default) | positive integer

Number of recent apps to display in the Designer tab Open menu, specified as a positive
integer between 0 and 12. The default value is 8.
Example:
s.matlab.appdesigner.compbrowser.MaxFileListSize.TemporaryValue = 6

 matlab.appdesigner Settings

1-439

matlab.appdesigner.designview

ShowGrid — Show the grid
0 (default) | 1

Show the grid, specified as 1 or 0.

Set to 1 to overlay a grid onto the canvas as an alignment aid.
Example: s.matlab.appdesigner.designview.ShowGrid.TemporaryValue = 1

GridInterval — Grid spacing interval
10 (default) | positive integer

Grid spacing interval in pixels, specified as a positive integer between 10 and 50.

ShowGrid must be set to 1 to see the change in grid spacing.
Example: s.matlab.appdesigner.designview.GridInterval.TemporaryValue =
6

SnapToGrid — Snap components to the grid
1 (default) | 0

Snap components to the grid, specified as 1 or 0.

Set to 1 to have the upper left corner of a component always snap to the intersection of
two grid lines whenever you resize or move the component on the canvas. ShowGrid
must be set to 1 in order for components to snap to the grid.
Example: s.matlab.appdesigner.designview.SnapToGrid.TemporaryValue = 0

ShowAlignmentHints — Show alignment hints
1 (default) | 0

Show alignment hints, specified as 1 or 0.

Set to 1 to display alignment hints as you resize or move a component on the canvas.
Example:
s.matlab.appdesigner.designview.ShowAlignmentHints.TemporaryValue =
0

ShowResizingHints — Show resizing hints
0 (default) | 1

1 Alphabetical List

1-440

Show resizing hints, specified as 1 or 0.

Set to 1 to display the size of a component as you resize it on the canvas.
Example:
s.matlab.appdesigner.designview.ShowResizingHints.TemporaryValue = 1

See Also
settings

Topics
“Access and Modify Settings”
“App Designer Preferences”

Introduced in R2018a

 matlab.appdesigner Settings

1-441

append
Combine strings

Syntax
str = append(str1,...,strN)

Description
str = append(str1,...,strN) combines the text from str1,...,strN. Each input
argument can be a string array, a character vector, or a cell array of character vectors.

• If any input is a string array, then the output is a string array.
• If any input is a cell array, and none are string arrays, then the output is a cell array of

character vectors.
• If all inputs are character vectors, then the output is a character vector.

Unlike the strcat function, append preserves trailing whitespace characters from input
arguments of all data types.

Examples

Combine Strings

Create two strings.

str1 = "Good";
str2 = "Morning";

Combine them using the append function.

str = append(str1,str2)

1 Alphabetical List

1-442

str =
"GoodMorning"

To add a space between the input strings, specify a space character as another input
argument.

str = append(str1,' ',str2)

str =
"Good Morning"

As an alternative, you can use the plus operator to combine strings.

str = str1 + ' ' + str2

str =
"Good Morning"

However, the best practice is to use append when you do not know whether the input
arguments are strings, character vectors, or cell arrays of character vectors.

Combine Character Vectors

Create two character vectors, with the first character vector having a trailing whitespace
character.

chr1 = 'Hello ';
chr2 = 'World';

Combine them into one character vector.

chr3 = append(chr1,chr2)

chr3 =
'Hello World'

The append function always preserves trailing whitespace characters, unlike the strcat
function. (strcat removes trailing whitespace characters from character vectors.)

chr4 = strcat(chr1,chr2)

chr4 =
'HelloWorld'

 append

1-443

Combine Arrays of Text

You can combine string arrays or cell arrays of character vectors, element by element.
Also, you can append a single piece of text to the elements of an input array.

Create an array of file names.

names = ["data" "report" "slides"]

names = 1x3 string array
 "data" "report" "slides"

Create an array of file extension names, with a different extension for each element of
names.

ext = [".xlsx" ".docx" ".pptx"]

ext = 1x3 string array
 ".xlsx" ".docx" ".pptx"

Combine the file names and extensions.

str1 = append(names,ext)

str1 = 1x3 string array
 "data.xlsx" "report.docx" "slides.pptx"

To append the same extension to each name, use a character vector or a string scalar.

str2 = append(names,'.mat')

str2 = 1x3 string array
 "data.mat" "report.mat" "slides.mat"

1 Alphabetical List

1-444

Implicit Expansion

The append function supports implicit expansion of arrays. For example, you can combine
strings from a column vector and a row vector to form a two-dimensional string array.

Create a column vector of strings. Then create a row vector.

str1 = ["A";"B";"C"]

str1 = 3x1 string array
 "A"
 "B"
 "C"

str2 = ["1" "2" "3" "4"]

str2 = 1x4 string array
 "1" "2" "3" "4"

Combine str1 and str2.

str = append(str1,str2)

str = 3x4 string array
 "A1" "A2" "A3" "A4"
 "B1" "B2" "B3" "B4"
 "C1" "C2" "C3" "C4"

Input Arguments
str1,...,strN — Input text
string arrays | character vectors | cell arrays of character vectors

Input text, specified as string arrays, character vectors, or cell arrays of character
vectors.

The append function supports input arguments that have compatible sizes.

String arrays and cell arrays of character vectors have compatible sizes if, for each
dimension, one of these conditions is true:

 append

1-445

• The lengths of that dimension are equal for all arrays.
• For one or more arrays, the length of that dimension is equal to 1. For the other

arrays, the lengths are not equal to 1 but are equal to each other.

Character vectors are always compatible with all other input arguments. You can always
append a character vector to another character vector, or to the elements of a string
array or cell array of character vectors.

For more information on combining arrays with compatible sizes, see “Compatible Array
Sizes for Basic Operations”.

See Also
cat | cellstr | horzcat | join | plus | strcat | strjoin | vertcat

Introduced in R2019a

1 Alphabetical List

1-446

area
Filled area 2-D plot

Syntax
area(Y)
area(X,Y)
area(...,basevalue)
area(...,Name,Value)
area(ax,...)
ar = area(...)

Description
An area graph displays elements in Y as one or more curves and fills the area beneath
each curve. When Y is a matrix, the curves are stacked showing the relative contribution
of each row element to the total height of the curve at each x interval.

area(Y) plots the vector Y or plots each column in matrix Y as a separate curve and
stacks the curves. The x-axis automatically scales to 1:size(Y,1). The values in Y can
be numeric or duration values.

area(X,Y) plots Y versus X and fills the area between 0 and Y. The values in X can be
numeric, datetime, duration or categorical values.

• If Y is a vector, then specify X as a vector of increasing values with length equal to Y. If
the values in X are not increasing, then area sorts the values before plotting.

• If Y is a matrix, then specify X as a vector of increasing values with length equal to the
number of rows in Y. area plots the columns of Y as filled areas. For each X, the net
result is the sum of corresponding values from the rows of Y. You also can specify X as

 area

1-447

a matrix with size equal to Y. To avoid unexpected output when X is a matrix, specify X
so that the columns repeat.

area(...,basevalue) specifies the base value for the area fill. The default basevalue
is 0. Specify the base value as a numeric value.

area(...,Name,Value) modifies the area chart using one or more name-value pair
arguments.

area(ax,...) plots into the axes ax instead of into the current axes (gca).

ar = area(...) returns one or more Area objects. The area function creates one
Area object for vector input arguments. It creates one object per column for matrix input
arguments.

Creating an area graph of an m-by-n matrix creates n area objects (that is, one per
column), whereas a 1-by-n vector creates one area object.

Some area object properties that you set on an individual area object set the values for all
area objects in the graph. See Area for information on specific properties.

Examples

Create Area Graph

Plot the data in matrix Y as an area graph.

Y = [1, 5, 3;
 3, 2, 7;
 1, 5, 3;
 2, 6, 1];
figure
area(Y)

1 Alphabetical List

1-448

Adjust Base Value of Area Graph

By default, area uses the y-axis as the base value. Change the base value by setting the
basevalue input argument to -4.

Y = [1, 5, 3;
 3, 2, 7;
 1, 5, 3;
 2, 6, 1];
figure
basevalue = -4;
area(Y,basevalue)

 area

1-449

Specify Color and Line Style for Area Plot

Create an area plot of Y and use a dotted line style. Return the three area objects in array
h. The area function creates one area object for each column in Y.

Y = [1, 5, 3;
 3, 2, 7;
 1, 5, 3;
 2, 6, 1];
h = area(Y,'LineStyle',':');

1 Alphabetical List

1-450

Change the area colors using RGB triplet color values. Starting in R2014b, you can use
dot notation to set properties. If you are using an earlier release, use the set function
instead.

h(1).FaceColor = [0 0.25 0.25];
h(2).FaceColor = [0 0.5 0.5];
h(3).FaceColor = [0 0.75 0.75];

 area

1-451

Area Chart with Colormap Colors

Create an area chart that uses colormap colors by setting the FaceColor property to
'flat'.

y = [1 3 5; 3 2 7; 3 4 2];
area(y,'FaceColor','flat')

1 Alphabetical List

1-452

Tips
• If Y contains NaN values, then the area function breaks up the area around the

missing values.

 area

1-453

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
bar | plot | sort

Properties
Area

Topics
“Plot Dates and Durations”
“Plot Categorical Data”
“Compare Data Sets Using Overlayed Area Graphs”

1 Alphabetical List

1-454

Introduced before R2006a

 area

1-455

Area Properties
Area chart appearance and behavior

Description
Area properties control the appearance and behavior of an Area object. By changing
property values, you can modify certain aspects of the area chart.

Starting in R2014b, you can use dot notation to query and set properties.

ar = area(1:10);
ec = ar.EdgeColor;
ar.EdgeColor = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

FaceColor — Area fill color
RGB triplet | 'r' | 'g' | 'b' | 'flat' | ...

Area fill color, specified as an RGB triplet or one of the color options in this table.

Starting in R2017b, the default value is an RGB triplet from the ColorOrder property of
the axes. In previous releases, the default value was 'flat' and the colors were based
on the colormap.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and
short color name options and the equivalent RGB triplet values.

1 Alphabetical List

1-456

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]
'none' No color Not applicable
'flat' Colors from the axes

colormap
Not applicable

EdgeColor — Area outline color
[0 0 0] (default) | RGB triplet | 'r' | 'g' | 'b' | 'flat' | ...

Area outline color, specified as an RGB triplet or one of the color options in the table. The
default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]

 Area Properties

1-457

Option Description Equivalent RGB Triplet
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]
'none' No color Not applicable
'flat' Colors from the axes

colormap
Not applicable

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1]

Face transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0
is completely transparent. Values between 0 and 1 are semitransparent.
Example: a.FaceAlpha = 0.5;

EdgeAlpha — Edge transparency
1 (default) | scalar in range [0,1]

Edge transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0
is completely transparent. Values between 0 and 1 are semitransparent.
Example: a.EdgeAlpha = 0.5;

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

1 Alphabetical List

1-458

Line Style Description Resulting Line
':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Area outline width
0.5 (default) | scalar numeric value

Area outline width, specified as a scalar numeric value in point units. One point equals
1/72 inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Baseline

BaseValue — Baseline value
0 (default) | numeric scalar value

 Area Properties

1-459

Baseline value, specified as a numeric scalar value.

The baseline value that you specify applies to either the x-axis or the y-axis depending on
the bar chart orientation. If you change the orientation of the bar chart from vertical to
horizontal, or vice versa, the baseline value might change. Set the BaseValue property
after setting the Horizontal property.

ShowBaseLine — Baseline visibility
'on' (default) | 'off'

Baseline visibility, specified as one of these values:

• 'on' — Show the baseline.
• 'off' — Hide the baseline.

BaseLine — Baseline
baseline object

This property is read-only.

Baseline object. For a list of baseline properties, see Baseline.

Data

XData — x-coordinates
[] (default) | vector

x-coordinates, specified as a vector. Alternatively, specify the x-coordinates using the
input argument X to the area function. If you do not specify X, then area uses the indices
of the values in YData as the x-coordinates.

XData and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for XData, specified as one of these values:

1 Alphabetical List

1-460

• 'auto' — Use the indices of the values in YData.
• 'manual' — Use manually specified values. To specify the values, set the XData

property or pass the input argument X to the area function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y-coordinates
[] (default) | vector

y-coordinates, specified as a vector. Alternatively, specify the y-coordinates using the
input argument Y to the area function.

XData and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

 Area Properties

1-461

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

1 Alphabetical List

1-462

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

 Area Properties

1-463

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

1 Alphabetical List

1-464

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.

 Area Properties

1-465

If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

1 Alphabetical List

1-466

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Area object responds to the
click or if an ancestor does.

 Area Properties

1-467

• 'none' — Cannot capture mouse clicks. Clicking the Area object passes the click to
the object behind it in the current view of the figure window. The HitTest property of
the Area object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Area object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Area object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Area object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

1 Alphabetical List

1-468

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'area'

This property is read-only.

Type of graphics object, returned as 'area'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object

 Area Properties

1-469

elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
area

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-470

array2table
Convert homogeneous array to table

Syntax
T = array2table(A)
T = array2table(A,Name,Value)

Description
T = array2table(A) converts the m-by-n array, A, to an m-by-n table, T. Each column of
A becomes a variable in T.

array2table uses the input array name appended with the column number for the
variable names in the table. If these names are not valid MATLAB identifiers,
array2table uses names of the form 'Var1',...,'VarN', where N is the number of
columns in A.

T = array2table(A,Name,Value) creates a table from an array, A, with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify row names or variable names to include in the table.

Examples

Convert Numeric Array to Table

Create an array of numeric data.

A = [1 4 7; 2 5 8; 3 6 9]

A = 3×3

 1 4 7

 array2table

1-471

 2 5 8
 3 6 9

Convert the array, A, to a table.

T = array2table(A)

T=3×3 table
 A1 A2 A3
 __ __ __

 1 4 7
 2 5 8
 3 6 9

The table has variable names that append the column number to the input array name, A.

Convert Array to Table Including Variable Names

Create an array of numeric data.

A = [1 12 30.48; 2 24 60.96; 3 36 91.44]

A = 3×3

 1.0000 12.0000 30.4800
 2.0000 24.0000 60.9600
 3.0000 36.0000 91.4400

Convert the array, A, to a table and include variable names.

T = array2table(A,...
 'VariableNames',{'Feet','Inches','Centimeters'})

T=3×3 table
 Feet Inches Centimeters
 ____ ______ ___________

 1 12 30.48
 2 24 60.96

1 Alphabetical List

1-472

 3 36 91.44

Input Arguments
A — Input array
matrix

Input array, specified as a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell
Complex Number Support: Yes

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RowNames',{'row1','row2','row3'} uses the row names, row1, row2,
and row3 for the table, T.

RowNames — Row names for T
{} (default) | cell array of character vectors | string array

Row names for T, specified as the comma-separated pair consisting of 'RowNames' and a
cell array of character vectors or string array, whose elements are nonempty and distinct.
The number of names must equal the number of rows, size(A,1).

VariableNames — Variable names for T
cell array of character vectors | string array

Variable names for T, specified as the comma-separated pair consisting of
'VariableNames' and a cell array of character vectors or a string array, whose
elements are nonempty and distinct. The number of names must equal the number of
variables, size(A,2).

Furthermore, the variable names must be valid MATLAB identifiers. If valid MATLAB
identifiers are not available for use as variable names, MATLAB uses an array of N names

 array2table

1-473

of the form 'Var1' ... 'VarN' where N is the number of variables. You can determine
valid MATLAB variable names using the function isvarname.

Output Arguments
T — Output table
table

Output table, returned as a table. The table can store metadata such as descriptions,
variable units, variable names, and row names. For more information, see the Properties
section of table.

Tips
• If A is a cell array, use cell2table(A) to create a table from the contents of the cells

in A. Each variable in the table is numeric or a cell array of character vectors.
array2table(A) creates a table where each variable is a column of cells.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'RowNames' name-value pair is not supported.

For more information, see “Tall Arrays”.

See Also
cell2table | isvarname | struct2table | table | table2array

1 Alphabetical List

1-474

Topics
“Access Data in a Table”

Introduced in R2013b

 array2table

1-475

array2timetable
Convert homogeneous array to timetable

Syntax
TT = array2timetable(X,'RowTimes',rowTimes)
TT = array2timetable(X,'SampleRate',Fs)
TT = array2timetable(X,'TimeStep',dt)
TT = array2timetable(___ ,'StartTime',t0)
TT = array2timetable(___ ,'VariableNames',varNames)

Description
TT = array2timetable(X,'RowTimes',rowTimes) converts X and rowTimes to a
timetable. X is an M-by-N array and rowTimes is an M-by-1 vector of datetime or duration
values. Each column of X becomes a variable of TT. The time values in rowTimes label
the rows of the timetable. TT is an M-by-N timetable.

For more information on creating and using timetables, see “Timetables”.

TT = array2timetable(X,'SampleRate',Fs) uses the sample rate Fs to calculate
regularly spaced row times. Fs is a positive numeric scalar that specifies the number of
samples per second (Hz). The first row time is zero seconds.

TT = array2timetable(X,'TimeStep',dt) uses the time step dt to calculate
regularly spaced row times. dt is a duration or calendar duration value that specifies the
length of time between consecutive row times. The first row time is zero seconds.

TT = array2timetable(___ ,'StartTime',t0) specifies start time t0, instead of
zero seconds, as the first row time. You can use this syntax when you create a regular
timetable using either the 'SampleRate' or 'TimeStep' name-value pair arguments
from either of the previous two syntaxes.

TT = array2timetable(___ ,'VariableNames',varNames) specifies the names of
the variables in the output timetable. You can use this syntax with any of the input
arguments of the previous syntaxes.

1 Alphabetical List

1-476

Examples

Convert Array to Timetable

Convert an array to a timetable. Add a vector of durations as the row times.

X = rand(5,3);
Time = seconds(1:5);
TT = array2timetable(X,'RowTimes',Time)

TT=5×4 timetable
 Time X1 X2 X3
 _____ _______ _______ _______

 1 sec 0.81472 0.09754 0.15761
 2 sec 0.90579 0.2785 0.97059
 3 sec 0.12699 0.54688 0.95717
 4 sec 0.91338 0.95751 0.48538
 5 sec 0.63236 0.96489 0.80028

Return the size of the timetable. TT contains five rows and three variables. The set of row
times is a table property. The row times are not contained in a table variable.

size(TT)

ans = 1×2

 5 3

Specify Sample Rate

Specify a sample rate of 500 Hz, and convert an array to a timetable.

X = rand(5,3);
TT = array2timetable(X,'SampleRate',500)

TT=5×4 timetable
 Time X1 X2 X3
 _________ _______ _______ _______

 array2timetable

1-477

 0 sec 0.81472 0.09754 0.15761
 0.002 sec 0.90579 0.2785 0.97059
 0.004 sec 0.12699 0.54688 0.95717
 0.006 sec 0.91338 0.95751 0.48538
 0.008 sec 0.63236 0.96489 0.80028

Specify Time Step

Specify a time step of 0.5 seconds, and convert an array to a timetable.

X = rand(5,3);
TT = array2timetable(X,'TimeStep',seconds(0.5))

TT=5×4 timetable
 Time X1 X2 X3
 _______ _______ _______ _______

 0 sec 0.81472 0.09754 0.15761
 0.5 sec 0.90579 0.2785 0.97059
 1 sec 0.12699 0.54688 0.95717
 1.5 sec 0.91338 0.95751 0.48538
 2 sec 0.63236 0.96489 0.80028

Specify Start Time

Specify a time step of 15 seconds, and a start time of 5 minutes.

X = rand(5,3);
TT = array2timetable(X,'TimeStep',seconds(15),'StartTime',minutes(5))

TT=5×4 timetable
 Time X1 X2 X3
 ________ _______ _______ _______

 5 min 0.81472 0.09754 0.15761
 5.25 min 0.90579 0.2785 0.97059
 5.5 min 0.12699 0.54688 0.95717

1 Alphabetical List

1-478

 5.75 min 0.91338 0.95751 0.48538
 6 min 0.63236 0.96489 0.80028

Specify Variable Names

Convert an array to a timetable. Specify the row times as a datetime vector. Specify
names for the timetable variables.

X = randi([70 90],5,3);
Time = datetime(2016,7,1:5);
varNames = {'Temp1','Temp2','Temp3'};
TT = array2timetable(X,'RowTimes',Time,'VariableNames',varNames)

TT=5×4 timetable
 Time Temp1 Temp2 Temp3
 ___________ _____ _____ _____

 01-Jul-2016 87 72 73
 02-Jul-2016 89 75 90
 03-Jul-2016 72 81 90
 04-Jul-2016 89 90 80
 05-Jul-2016 83 90 86

Input Arguments
X — Input matrix
matrix

Input matrix.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration |
calendarDuration
Complex Number Support: Yes

rowTimes — Times associated with rows of timetable
datetime vector | duration vector

 array2timetable

1-479

Times associated with rows of a timetable, specified as a datetime vector or a duration
vector. Each time labels a row in the output timetable. The time values in rowTimes do
not need to be unique, sorted, or regular.

Fs — Sample rate
positive numeric scalar

Sample rate, specified as a positive numeric scalar. Fs specifies the number of samples
per second (Hz).

dt — Time step
datetime scalar | duration scalar

Time step, specified as a datetime scalar or duration scalar.
Data Types: datetime | duration | calendarDuration

t0 — Start time
datetime scalar | duration scalar

Start time, specified as a datetime scalar or duration scalar.

• If t0 is a datetime value, then the row times of TT are datetime values.
• If t0 is a duration, then the row times are durations.

If the time step dt is a calendar duration value, then t0 must be a datetime value.
Data Types: datetime | duration

varNames — Names of variables
cell array of character vectors | string array

Names of the variables in the output timetable, specified as a cell array of character
vectors or a string array. The number of names in varNames must equal the number of
variables.

Output Arguments
TT — Output timetable
timetable

1 Alphabetical List

1-480

Output timetable. The timetable can store metadata such as descriptions, variable units,
variable names, and row times. For more information, see the Properties section of
timetable.

Tips
• In certain cases, you can call array2timetable with a syntax that specifies a regular

time step between row times, and yet array2timetable returns an irregular
timetable. This result occurs when you specify the time step using a calendar unit of
time and there is a row time that introduces an irregular step. For example, if you
create a timetable with a time step of one calendar month, starting on January 31,
2019, then it is irregular with respect to months.

stime = datetime(2019,1,31);
tstep = calmonths(1);
X = [1:3]';
TT = array2timetable(X,'TimeStep',tstep,'StartTime',stime)

TT =

 3×1 timetable

 Time X
 ___________ _

 31-Jan-2019 1
 28-Feb-2019 2
 31-Mar-2019 3

In addition, there are other cases where irregularities are due to shifts from Daylight
Saving Time (DST) or to row times that are leap seconds. This table specifies the row
time values and time steps that can produce irregular timetables unexpectedly.

Row Time Value Time Step
Start time specified as the 29th, 30th, or
31st day of the month

Number of calendar months or quarters

Start time specified as February 29 Number of calendar years

 array2timetable

1-481

Row Time Value Time Step
Any row time occurring between 1:00
a.m. and 2:00 a.m. on a day shifting
from DST to standard time (when row
times are specified as datetime values
whose time zone observes DST)

Number of calendar days or months

Any row time that is a leap second
(when row times are specified as
datetime values whose time zone is the
UTCLeapSecond time zone)

Time step specified in any calendar unit
(days, weeks, months, quarters, or
years)

Compatibility Considerations

'SamplingRate' is not recommended
Not recommended starting in R2018b

The 'SamplingRate' name-value pair argument is not recommended. Use
'SampleRate' instead. The corresponding timetable property is also named
SampleRate.

For backward compatibility, you still can specify 'SamplingRate' as the name of the
name-value pair. However, the value is assigned to the SampleRate property.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
isvarname | summary | table2timetable | timetable | uitable

1 Alphabetical List

1-482

Topics
“Create Timetables”
“Clean Timetable with Missing, Duplicate, or Nonuniform Times”
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Select Timetable Data by Row Time and Variable Type”
“Access Data in a Table”
“Tables”
“Represent Dates and Times in MATLAB”

Introduced in R2016b

 array2timetable

1-483

arrayfun
Apply function to each element of array

Syntax
B = arrayfun(func,A)
B = arrayfun(func,A1,...,An)
B = arrayfun(___ ,Name,Value)
[B1,...,Bm] = arrayfun(___)

Description
B = arrayfun(func,A) applies the function func to the elements of A, one element at
a time. arrayfun then concatenates the outputs from func into the output array B, so
that for the ith element of A, B(i) = func(A(i)). The input argument func is a
function handle to a function that takes one input argument and returns a scalar. The
output from func can have any data type, so long as objects of that type can be
concatenated. The arrays A and B have the same size.

You cannot specify the order in which arrayfun calculates the elements of B or rely on
them being done in any particular order.

B = arrayfun(func,A1,...,An) applies func to the elements of the arrays
A1,...,An, so that B(i) = func(A1(i),...,An(i)). The function func must take n
input arguments and return a scalar. The arrays A1,...,An all must have the same size.

B = arrayfun(___ ,Name,Value) applies func with additional options specified by
one or more Name,Value pair arguments. For example, to return output values in a cell
array, specify 'UniformOutput',false. You can return B as a cell array when func
returns values that cannot be concatenated into an array. You can use Name,Value pair
arguments with the input arguments of either of the previous syntaxes.

[B1,...,Bm] = arrayfun(___) returns multiple output arrays B1,...,Bm when
func returns m output values. func can return output arguments that have different data
types, but the data type of each output must be the same each time func is called. You
can use this syntax with any of the input arguments of the previous syntaxes.

1 Alphabetical List

1-484

The number of output arguments from func need not be the same as the number of input
arguments specified by A1,...,An.

Examples

Apply Function to Field of Structure Array

Create a nonscalar structure array. Each structure has a field that contains a vector of
random numbers. The vectors have different sizes.

S(1).f1 = rand(1,5);
S(2).f1 = rand(1,10);
S(3).f1 = rand(1,15)

S = 1x3 struct array with fields:
 f1

Calculate the mean for each field in S by using the arrayfun function. You cannot use
structfun for this calculation because the input argument to structfun must be a
scalar structure.

A = arrayfun(@(x) mean(x.f1),S)

A = 1×3

 0.6786 0.6216 0.6069

Return Object Array

Create a structure array in which each structure has two fields containing numeric
arrays.

S(1).X = 5:5:100; S(1).Y = rand(1,20);
S(2).X = 10:10:100; S(2).Y = rand(1,10);
S(3).X = 20:20:100; S(3).Y = rand(1,5)

S = 1x3 struct array with fields:
 X

 arrayfun

1-485

 Y

Plot the numeric arrays. Return an array of chart line objects from the plot function and
use them to add different markers to each set of data points. arrayfun can return arrays
of any data type so long as objects of that data type can be concatenated.

figure
hold on
p = arrayfun(@(a) plot(a.X,a.Y),S);
p(1).Marker = 'o';
p(2).Marker = '+';
p(3).Marker = 's';
hold off

1 Alphabetical List

1-486

Return Outputs in Cell Array

Create a nonscalar structure array. Each structure has a field that contains numeric
matrices.

S(1).f1 = rand(3,5);
S(2).f1 = rand(6,10);
S(3).f1 = rand(4,2)

S = 1x3 struct array with fields:
 f1

Calculate the mean for each field in S by using the arrayfun function. mean returns
vectors containing the mean of each column, so the means cannot be returned as an
array. To return the means in a cell array, specify the 'UniformOutput',false name-
value pair.

A = arrayfun(@(x) mean(x.f1),S,'UniformOutput',false)

A = 1x3 cell array
 {1x5 double} {1x10 double} {1x2 double}

Return Multiple Output Arrays

Create a nonscalar structure array.

S(1).f1 = 1:10;
S(2).f1 = [2; 4; 6];
S(3).f1 = []

S = 1x3 struct array with fields:
 f1

Calculate the sizes of each field of S by using the arrayfun function. The number of rows
and columns are each in 1-by-3 numeric arrays.

[nrows,ncols] = arrayfun(@(x) size(x.f1),S)

 arrayfun

1-487

nrows = 1×3

 1 3 0

ncols = 1×3

 10 1 0

Input Arguments
func — Function to apply
function handle

Function to apply to the elements of the input arrays, specified as a function handle.

func can correspond to more than one function file and therefore can represent a set of
overloaded functions. In these cases, MATLAB determines which function to call based on
the class of the input arguments.
Example: B = arrayfun(@round,A) returns the integer part of each element of A.

A — Input array
array

Input array. A can have any data type.

If you define the class that A belongs to, and you also overload the subsref or size
methods of A, then arrayfun places these requirements on A:

• The size method of A must return an array of doubles.
• A must support linear indexing.
• The product of the sizes returned by the size method must not exceed the limit of A,

as defined by linear indexing into A.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-488

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: A = arrayfun(@(x) mean(x.f1),S,'UniformOutput',false) returns
the means in a cell array. S is a structure array in which each structure has a field named
f1.

UniformOutput — True or false
true (default) | false

True or false, specified as the comma-separated pair consisting of 'UniformOutput'
and either true (1) or false (0).

Value of 'UniformOutput' Description
true (1) func must return scalars that arrayfun

concatenates into arrays.
false (0) arrayfun returns the outputs of func in

cell arrays. The outputs of func can have
any sizes and different data types.

ErrorHandler — Function to catch errors
function handle

Function to catch errors, specified as the comma-separated pair consisting of
'ErrorHandler' and a function handle. If func throws an error, then the error handler
specified by 'ErrorHandler' catches the error and takes the action specified in the
function. The error handler either must throw an error or return the same number of
outputs as func. If the value of 'UniformOutput' is true, then the output arguments of
the error handler must be scalars and have the same data type as the outputs of func.

The first input argument of the error handler is a structure with these fields:

• identifier — Error identifier
• message — Error message text
• index — Linear index into the input arrays at which func threw the error

The remaining input arguments to the error handler are the input arguments for the call
to func that made func throw the error.

 arrayfun

1-489

Suppose func returns two doubles as output arguments. You can specify the error
handler as 'ErrorHandler',@errorFunc, where errorFunc is a function that raises a
warning and returns two output arguments.

function [A,B] = errorFunc(S,varargin)
 warning(S.identifier, S.message);
 A = NaN;
 B = NaN;
end

If you do not specify 'ErrorHandler', then arrayfun rethrows the error thrown by
func.

Output Arguments
B — Output array
array of any data type | cell array

Output array, returned as an array of any data type or as a cell array.

By default, arrayfun concatenates the outputs from func into an array. func must
return scalars. If func returns objects, then the class that the objects belong to must
meet these requirements.

• Support assignment by linear indexing into the object array
• Have a reshape method that returns an array that has the same size as the input

If the value of the 'UniformOutput' name-value pair argument is false (0), then
arrayfun returns outputs in a cell array. In that case, the outputs from func can have
any sizes and different data types.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with these limitations:

1 Alphabetical List

1-490

• The specified function must not rely on persistent variables.
• The 'ErrorHandler' name-value pair is not supported.
• With the 'UniformOutput' name-value pair set to true (default), the outputs from

the specified function must be numeric, logical, characters, or cell arrays.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the 'ErrorHandler' option.
• Code generation does not support the 'UniformOutput' option. The input function

to arrayfun must return a scalar or scalars that can be concatenated into an array.
• Code generation does not support cell array inputs to func.
• To predetermine the output type for func, the code generator can call func before

processing the accumarray input arguments.

• If the execution of func causes side-effects, for instance by modifying a global or
persistent variable or printing to output, then the generated code results can differ
from MATLAB results.

• If the input array to accumarray is empty, then the code generator can use zero-
valued inputs to predetermine output types. func must not error when its inputs
are zero, or the generated code can produce unexpected errors.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See arrayfun in the Parallel Computing Toolbox™ documentation.

 arrayfun

1-491

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cell2mat | cellfun | spfun | splitapply | structfun

Topics
“Anonymous Functions”
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-492

ascii
Set FTP transfer mode to ASCII

Syntax
ascii(ftpobj)

Description
ascii(ftpobj) sets the FTP transfer mode for the server associated with ftpobj to
ASCII. Use ASCII mode for text files, such as HTML pages and Rich Text Format (RTF)
files.

Examples

Set Transfer Mode to ASCII

Download a text file from an FTP server, using the ASCII transfer mode.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

The default transfer mode is binary. When you download a text file, you can use ASCII
mode instead so that newline characters are converted correctly.

 ascii

1-493

Set the transfer mode to ASCII. To show the current transfer mode, display the FTP
object.

ascii(ftpobj)
ftpobj

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: ascii

Download a text file and close the connection.

mget(ftpobj,'README.txt');
close(ftpobj)

Display the beginning of README.txt. To read the copy of README.txt downloaded to
your computer, use the fileread function.

readme = fileread('README.txt');
readme(1:95)

ans =
 ' Welcome to the
 NOAA/National Centers for Environmental Information (NCEI)'

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

1 Alphabetical List

1-494

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

See Also
binary | ftp

Introduced before R2006a

 ascii

1-495

asec
Inverse secant in radians

Syntax
Y = asec(X)

Description
Y = asec(X) returns the “Inverse Secant” on page 1-499 (sec-1) of the elements of X in
radians. The function accepts both real and complex inputs.

• For real values of X in the interval [-∞, -1] and [1, ∞], asec(X) returns values in the
interval [0, π].

• For real values of X in the interval (-1, 1) and for complex values of X, asec(X)
returns complex values.

Examples

Inverse Secant of a Value

Find the inverse secant of a value.

asec(-2.8)

ans = 1.9360

Inverse Secant of a Vector of Complex Values

Find the inverse secant of the elements of vector x. The asec function acts on x element-
wise.

1 Alphabetical List

1-496

x = [0.5i 1+3i -2.2+i];
Y = asec(x)

Y = 1×3 complex

 1.5708 + 1.4436i 1.4749 + 0.2970i 1.9503 + 0.1833i

Plot the Inverse Secant Function

Plot the inverse secant function over the intervals −5 ≤ x ≤ − 1 and 1 ≤ x ≤ 5.

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),'b')
hold on
plot(x2,asec(x2),'b')
grid on

 asec

1-497

Input Arguments
X — Secant of angle
scalar | vector | matrix | multidimensional array

Secant of angle, specified as a scalar, vector, matrix, or multidimensional array. The asec
operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-498

Definitions

Inverse Secant
The inverse secant is defined as

sec−1(z) = cos−1 1
z .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 asec

1-499

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acos | asecd | sec | secd

Introduced before R2006a

1 Alphabetical List

1-500

asecd
Inverse secant in degrees

Syntax
Y = asecd(X)

Description
Y = asecd(X) returns the inverse secant (sec-1) of the elements of X in degrees. The
function accepts both real and complex inputs.

• For real values of X in the intervals [-∞, -1] and [1, ∞], asecd(X) returns values in the
interval [0, 180].

• For real values of X in the interval (-1, 1) and for complex values of X, asecd(X)
returns complex values.

Examples

Inverse Secant of Vector

x = [10 1 Inf];
y = asecd(x)

y = 1×3

 84.2608 0 90.0000

The asecd operation is element-wise when you pass a vector, matrix, or N-D array.

 asecd

1-501

Inverse Secant of Complex Value
asecd(1+i)

ans = 64.0864 + 30.4033i

Input Arguments
X — Secant of angle
scalar value | vector | matrix | N-D array

Secant of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or N-D
array. The asecd operation is element-wise when X is non-scalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-502

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asec | sec | secd

Introduced before R2006a

 asecd

1-503

asech
Inverse hyperbolic secant

Syntax
Y = asech(X)

Description
Y = asech(X) returns the inverse hyperbolic secant for each element of X.

The asech function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Secant Function

Graph the inverse hyperbolic secant over the domain 0 . 01 ≤ x ≤ 1.

x = 0.01:0.001:1;
plot(x,asech(x))
grid on
xlabel('x')
ylabel('y')

1 Alphabetical List

1-504

Definitions
Inverse Hyperbolic Secant
For real values x in the domain 0 < x ≤ 1, the inverse hyperbolic secant satisfies

sech−1(x) = cosh−1 1
x = log 1

x + 1
x2 − 1 .

For complex numbers z = x + iy as well as real values in the regions − ∞ < z ≤ 0 and
1 ≤ z < ∞, the call asech(z) returns complex results.

 asech

1-505

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acosh | asec | asinh | sech

1 Alphabetical List

1-506

Introduced before R2006a

 asech

1-507

asin
Inverse sine in radians

Syntax
Y = asin(X)

Description
Y = asin(X) returns the “Inverse Sine” on page 1-511 (sin-1) of the elements of X in
radians. The function accepts both real and complex inputs.

• For real values of X in the interval [-1, 1], asin(X) returns values in the interval [-π/2,
π/2].

• For real values of X outside the interval [-1, 1] and for complex values of X, asin(X)
returns complex values.

Examples

Inverse Sine of Value

Find the inverse sine of a value.

y = asin(1)

y = 1.5708

Inverse Sine of Vector of Complex Values

Find the inverse sine of the elements of vector x. The asin function acts on x element-
wise.

1 Alphabetical List

1-508

x = [0.5i 1+3i -2.2+i];
y = asin(x)

y = 1×3 complex

 0.0000 + 0.4812i 0.3076 + 1.8642i -1.1091 + 1.5480i

Plot Inverse Sine Function

Plot the inverse sine function over the intervals −1 ≤ x ≤ 1.

x = -1:.01:1;
plot(x,asin(x))
grid on

 asin

1-509

Input Arguments
X — Sine of angle
scalar | vector | matrix | multidimensional array

Sine of angle, specified as a scalar, vector, matrix, or multidimensional array. The asin
operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-510

Definitions

Inverse Sine
The inverse sine is defined as

sin−1(z) = − ilog iz + (1− z2)1/2 .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates an error during simulation and returns NaN in generated code when the
input value X is real, but the output should be complex. To get the complex result,
make the input value complex by passing in complex(X).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

 asin

1-511

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acsc | asind | sin | sind

Introduced in R2006a

1 Alphabetical List

1-512

asind
Inverse sine in degrees

Syntax
Y = asind(X)

Description
Y = asind(X) returns the inverse sine (sin-1) of the elements of X in degrees. The
function accepts both real and complex inputs.

• For real values of X in the interval [-1, 1], asind(X) returns values in the interval
[-90, 90].

• For real values of X outside the interval [-1, 1] and for complex values of X, asind(X)
returns complex values.

Examples

Inverse Sine of Scalar

Show that the inverse sine of 1 is exactly 90°.

asind(1)

ans = 90

Round-Trip Calculation for Complex Angles

Show that the inverse sine, followed by sine, returns the original values of X.

sind(asind([2 3]))

 asind

1-513

ans = 1×2

 2 3

Graph of Inverse Sine Function

Plot the inverse sine function over the domain −1 ≤ x ≤ 1.

x = -1:.01:1;
plot(x,asind(x))
grid on

1 Alphabetical List

1-514

Input Arguments
X — Sine of angle
scalar value | vector | matrix | N-D array

Sine of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or N-D
array. The asind operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 asind

1-515

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asin | sin | sind

Introduced before R2006a

1 Alphabetical List

1-516

asinh
Inverse hyperbolic sine

Syntax
Y = asinh(X)

Description
Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Sine Function

Graph the inverse hyperbolic sine over the domain −5 ≤ x ≤ 5.

x = -5:.01:5;
plot(x,asinh(x))
grid on
xlabel('x')
ylabel('y')

 asinh

1-517

Definitions

Inverse Hyperbolic Sine
For real values x in the domain of all real numbers, the inverse hyperbolic sine satisfies

sinh−1 x = log x + x2 + 1 .

For complex numbers z = x + iy, the call asinh(z) returns complex results.

1 Alphabetical List

1-518

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acosh | asin | sinh

Introduced before R2006a

 asinh

1-519

assert
Throw error if condition false

Syntax
assert(cond)

assert(cond,msg)
assert(cond,msg,A1,...,An)

assert(cond,msgID,msg)
assert(cond,msgID,msg,A1,...,An)

Description
assert(cond) throws an error if cond is false.

assert(cond,msg) throws an error and displays the error message, msg, if cond is
false.

assert(cond,msg,A1,...,An) displays an error message that contains formatting
conversion characters, such as those used with the MATLAB sprintf function, if cond is
false. Each conversion character in msg is converted to one of the values A1,...,An.

assert(cond,msgID,msg) throws an error, displays the error message, msg, and
includes an error identifier on the exception, if cond is false. The identifier enables you to
distinguish errors and to control what happens when MATLAB encounters the errors.

assert(cond,msgID,msg,A1,...,An) includes an error identifier on the exception
and displays a formatted error message.

Examples

1 Alphabetical List

1-520

Value in Expected Range

Assert that the value, x, is greater than a specified minimum value.

minVal = 7;
x = 26;

assert(minVal < x)

The expression evaluates as true, and the assertion passes.

Assert that the value of x is between the specified minimum and maximum values.

maxVal = 13;

assert((minVal < x) && (x < maxVal))

Assertion failed.

The expression evaluates as false. The assertion fails and MATLAB throws an error.

Expected Data Type

Assert that the product of two numbers is a double-precision number.

a = 13;
b = single(42);
c = a*b;

assert(isa(c,'double'),'Product is not type double.')

Product is not type double.

Enhance the error message to display the data type of c.

assert(isa(c,'double'),'Product is type %s, not double.',class(c))

Product is type single, not double.

 assert

1-521

Expected Code Conditions

Use the assert function to test for conditions that should not happen in normal code
execution. If the coefficients are numeric, the computed roots should be numeric. A
quadratic equation using the specified coefficients and computed roots should be zero.

function x = quadraticSolver(C)

validateattributes(C,{'numeric'},{'size',[1 3]})

a = C(1);
b = C(2);
c = C(3);

x(1) = (-b+sqrt(b^2-4*a*c))/(2*a);
x(2) = (-b-sqrt(b^2-4*a*c))/(2*a);
assert(isnumeric(x),'quadraticSolver:nonnumericRoots',...
 'Computed roots are not numeric')

y1 = a*x(1)^2+b*x(1)+c;
y2 = a*x(2)^2+b*x(2)+c;
assert(y1 == 0,'quadraticSolver:root1Error','Error in first root')
assert(isequal(y2,0),'quadraticSolver:root2Error','Error in second root')

end

Input Arguments
cond — Condition to assert
MATLAB expression

Condition to assert, specified as a valid MATLAB expression. If cond is false, the assert
function throws an error. cond can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~). Use the logical operators and and or to create
compound expressions. MATLAB evaluates compound expressions from left to right,
adhering to operator precedence rules.
Example: a<0
Example: exist('myfunction.m','file')

msg — Information about assertion failure
character vector | string scalar

1 Alphabetical List

1-522

Information about the assertion failure, specified as a character vector or string scalar.
This message displays as the error message. To format the message, use escape
sequences, such as \t or \n. You also can use any format specifiers supported by the
sprintf function, such as %s or %d. Specify values for the conversion specifiers via the
A1,...,An input arguments. For more information, see “Formatting Text”.

Note You must specify more than one input argument with assert if you want MATLAB
to convert special characters (such as \t, \n, %s, and %d) in the error message.

Example: 'Assertion condition failed.'

A1,...,An — Numeric, character, or string arrays
arrays

Numeric, character, or string arrays. This input argument provides the values that
correspond to and replace the conversion specifiers in msg.

msgID — Identifier for assertion failure
character vector | string scalar

Identifier for the assertion failure, specified as a character vector or string scalar. Use the
message identifier to help identify the source of the error or to control a selected subset
of the errors in your program.

The message identifier includes a component and mnemonic. The identifier must always
contain a colon and follows this simple format: component:mnemonic. The component
and mnemonic fields must each begin with a letter. The remaining characters can be
alphanumerics (A–Z, a–z, 0–9) and underscores. No whitespace characters can appear
anywhere in msgID. For more information, see “Message Identifiers”.
Example: 'MATLAB:singularMatrix'
Example: 'MATLAB:narginchk:notEnoughInputs'

Tips
• When you issue an error, MATLAB captures information about it and stores it in a data

structure that is an object of the MException class. You can access information in the
exception object by using try/catch. Or, if your program terminates because of an

 assert

1-523

exception and returns control to the Command Prompt, you can use
MException.last.

• If an assertion failure occurs within a try block, MATLAB does not cease execution of
the program. In this case, MATLAB passes control to the catch block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates specified error messages at compile time only if all input arguments are
constants or depend on constants. Otherwise, generates specified error messages at
run time.

• If called with more than 1 argument, has no effect in standalone code even when run-
time error detection is enabled. See “Run-Time Error Detection and Reporting in
Standalone C/C++ Code” (MATLAB Coder).

• See “Rules for Using assert Function” (MATLAB Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
MException | error

Topics
“Capture Information About Exceptions”

1 Alphabetical List

1-524

Introduced in R2007a

 assert

1-525

assignin
Assign value to variable in specified workspace

Syntax
assignin(ws,var,val)

Description
assignin(ws,var,val) assigns the value val to the variable var in the workspace ws.
For example, assignin('base','x',42) assigns the value 42 to the variable x in the
MATLAB base workspace.

If val requires evaluation, MATLAB evaluates it in the function that calls assignin, not
in the workspace specified by ws. If val is a function handle, it must be evaluable in the
function that calls assignin.

The assignin function is useful for these tasks:

• Exporting data from a function to the base workspace.
• From within a function, changing the value of a variable that is defined in the

workspace of the caller function. For example, you can change the value of a variable
in the calling-function argument list.

Examples

Update Base Workspace Variable from Function

In a file in your current working folder, create a function that adds two numbers and then
assigns a value to a variable fcnStatus in the base workspace.

function c = myAdd(a,b)
 c = a+b;

1 Alphabetical List

1-526

 str = sprintf('%s called with %d,%d (%s)',mfilename,a,b,char(datetime));
 assignin('base','fcnStatus',str)
end

At the command prompt, call the function.

n = myAdd(2,3)

n =

 5

View the value of the fcnStatus variable that the myAdd function assigned in the base
workspace.

fcnStatus

fcnStatus =

 'myAdd called with 2,3 (17-Nov-2017 14:56:14)'

Save Data from Dialog Box to Base Workspace

In a file in your current working folder, create a function that displays a dialog box to
input a name and a birth year and computes age in the year 2050. The assignin
function exports the values to the MATLAB workspace variables name and age2050.

function mydialog
 prompt = {'Enter name:','Enter birth year:'};
 answer = inputdlg(prompt);

 n = answer{1};
 birthyear = str2double(answer{2});
 a = 2050-birthyear;

 assignin('base','name',n);
 assignin('base','age2050',a);
end

At the command prompt, run the function, enter data, and click OK.

mydialog

 assignin

1-527

View the exported values in the Workspace browser.

Change Value of Variable in Calling Function

Create a function that changes an input age to 42. The call to assignin in localfcn
changes the value of a in the workspace of the main function, updateAge.

function updateAge(a)
 validateattributes(a,{'numeric'},{'scalar'})
 fprintf('\tYour age: %d\n',a)
 localfcn
 fprintf('\tYour updated age: %d\n',a)
end

function localfcn
 assignin('caller','a',42)
end

At the command prompt, call the main function.

updateAge(37)

 Your age: 37
 Your updated age: 42

1 Alphabetical List

1-528

While this example describes how to assign a variable into the caller workspace, the best
practice is to have the local function localfcn return the updated age as an output
argument.

Assign Function Handle to Variable in Specified Workspace

In a file in your current working folder, create a function that finds the minimum value of
a random array. The assignfh local function assigns the function handle fh into the
workspace of minRand. The minRand function evaluates fh with the input n.

function m = minRand(n)
 assignfh

 A = fh(n)
 m = min(A(:));
end

function assignfh
 fh = @(dim)rand(dim);
 assignin('caller','fh',fh)
end

Call the function with an input value of 2.

m = minRand(2)

A =

 0.3486 0.1423
 0.0419 0.0766

m =

 0.0419

The function handle evaluates to a 2-by-2 array of random numbers.

Create another version of the function, called minRand2, in which the local function
overrides the rand function in the function handle definition.

Similar to the minRand example, the assignfh2 local function assigns fh into the
workspace of minRand2. The assignfh2 function overrides the rand function in its
workspace with a variable named rand and creates the function handle. This behavior is

 assignin

1-529

consistent with anonymous functions – the function handle is created using variables
available at the time you create it. Therefore, the function handle evaluation in minRand2
results in n indexing into the rand array defined in assignfh2.

function m = minRand2(n)
 assignfh2(n)

 A = fh(n)
 m = min(A(:));
end

function assignfh2(n)
 rand = 13*ones(n);
 fh = @(dim)rand(dim);
 assignin('caller','fh',fh)
end

Call the function with an input value of 2.

m = minRand2(2)

A =

 13

m =

 13

When assigning an anonymous function to a caller workspace, MATLAB puts the
definition of the function handle in a variable in the caller workspace. The function with
the call to assignin evaluates the function handle. While this examples describes how to
assign a variable into the caller workspace, the best practice is to have the local function
assignfh return the function handle as an output argument.

Input Arguments
ws — Workspace
'base' | 'caller'

Workspace, specified as 'base' or 'caller'.

1 Alphabetical List

1-530

To assign values in the MATLAB base workspace, use 'base'. The base workspace stores
variables that you create at the MATLAB command prompt, including any variables that
scripts create, assuming that you run the script from the command line or from the
Editor.

To assign variables in the workspace of the caller function, use 'caller'. The caller
workspace is the workspace of the function that called the currently running function. For
example, assume that funA calls funB. The caller workspace of funB is funA. Therefore,
from funB, you can assign a value to a variable in funA using assignin and specifying
the workspace as 'caller'.

Note Assigning to variables in the caller workspace can make code more difficult to
understand, give surprising results to the user (unexpected or redefined variables in their
workspace), and have a negative performance impact. The best practice is to have the
function return the variables as output arguments.

The base and caller workspaces are equivalent in the following cases:

• You call a function at the command prompt and the main function calls assignin.
• You call assignin at the command prompt.

Data Types: char | string

var — Variable name
character vector | string scalar

Variable name, specified as a character vector or string scalar. If var does not exist in the
specified workspace, the assignin function creates it.
Data Types: char | string

val — Value
scalar | array

Value of variable, specified as a scalar or array value. val can have any data type, and
can include MATLAB expressions.

If the value of the variable requires evaluation, MATLAB evaluates the expression in the
function that contains the call to assignin, not in the workspace specified by ws. If val
is a function handle, it must be evaluable in the function that calls assignin.

 assignin

1-531

Example: 5
Example: 'hello'
Example: rand(3,7)
Example: @cos

Tips
• The assignin function does not assign values to specific elements of an array.

Therefore var cannot contain array indices. This code results in an error.

X = 1:8;
assignin('base','X(3:5)',-1);

To assign values to specific elements of an array, use the evalin function.

evalin('base','X(3:5) = -1')

See Also
evalin

Topics
“Base and Function Workspaces”

Introduced before R2006a

1 Alphabetical List

1-532

atan
Inverse tangent in radians

Syntax
Y = atan(X)

Description
Y = atan(X) returns the “Inverse Tangent” on page 1-535 (tan-1) of the elements of X
in radians. The function accepts both real and complex inputs.

• For real values of X, atan(X) returns values in the interval [-π/2, π/2].
• For complex values of X, atan(X) returns complex values.

Examples

Inverse Tangent of a Value

Find the inverse tangent of a value.

atan(0.8)

ans = 0.6747

Inverse Tangent of a Vector of Complex Values

Find the inverse tangent of the elements of vector x. The atan function acts on x
element-wise.

x = [0.5i 1+3i -2.2+i];
Y = atan(x)

 atan

1-533

Y = 1×3 complex

 0.0000 + 0.5493i 1.4615 + 0.3059i -1.2019 + 0.1506i

Plot the Inverse Tangent Function

Plot the inverse tangent function over the interval −20 ≤ x ≤ 20.

x = -20:0.01:20;
plot(x,atan(x))
grid on

1 Alphabetical List

1-534

Input Arguments
X — Tangent of angle
scalar | vector | matrix | multidimensional array

Tangent of angle, specified as a scalar, vector, matrix, or multidimensional array. The
atan operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Definitions

Inverse Tangent
The inverse tangent is defined as

tan−1(z) = i
2log i + z

i− z .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 atan

1-535

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acot | atan2 | atand | tan

Introduced before R2006a

1 Alphabetical List

1-536

atan2
Four-quadrant inverse tangent

Syntax
P = atan2(Y,X)

Description
P = atan2(Y,X) returns the four-quadrant inverse tangent on page 1-540 (tan-1) of Y
and X, which must be real. The atan2 function follows the convention that atan2(x,x)
returns 0 when x is mathematically zero (either 0 or -0).

Examples

Find Four-Quadrant Inverse Tangent of a Point

Find the four-quadrant inverse tangent of the point y = 4, x = -3.

atan2(4,-3)

ans = 2.2143

Convert Complex Number to Polar Coordinates

Convert 4 + 3i into polar coordinates.

z = 4 + 3i;
r = abs(z)

r = 5

theta = atan2(imag(z),real(z))

 atan2

1-537

theta = 0.6435

The radius r and the angle theta are the polar coordinate representation of 4 + 3i.

Alternatively, use angle to calculate theta.

theta = angle(z)

theta = 0.6435

Convert r and theta back into the original complex number.

z = r*exp(i*theta)

z = 4.0000 + 3.0000i

Plot Four-Quadrant Inverse Tangent

Plot atan2(Y,X) for -4<Y<4 and -4<X<4.

Define the interval to plot over.

[X,Y] = meshgrid(-4:0.1:4,-4:0.1:4);

Find atan2(Y,X) over the interval.

P = atan2(Y,X);

Use surf to generate a surface plot of the function. Note that plot plots the
discontinuity that exists at Y=0 for all X<0.

surf(X,Y,P);
view(45,45);

1 Alphabetical List

1-538

Input Arguments
Y — y-coordinates
scalar | vector | matrix | multidimensional array

y-coordinates, specified as a scalar, vector, matrix, or multidimensional array. Inputs Y and
X must either be the same size or have sizes that are compatible (for example, Y is an M-
by-N matrix and X is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double

 atan2

1-539

X — x-coordinates
scalar | vector | matrix | multidimensional array

x-coordinates, specified as a scalar, vector, matrix, or multidimensional array. Inputs Y and
X must either be the same size or have sizes that are compatible (for example, Y is an M-
by-N matrix and X is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double

Definitions
Four-Quadrant Inverse Tangent
The four-quadrant inverse tangent, atan2(Y,X), returns values in the closed interval [-
pi,pi] based on the values of Y and X, as shown in the graphic.

In contrast, atan(Y/X) returns results that are limited to the interval [-pi/2,pi/2],
shown on the right side of the diagram.

IEEE Compliance
For real inputs, atan2 has a few behaviors that differ from those recommended in the
IEEE®-754 Standard.

1 Alphabetical List

1-540

 MATLAB IEEE
atan2(0,-0) 0 pi
atan2(-0,-0) 0 -pi

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
angle | atan | atan2d | atanh | tan

 atan2

1-541

Introduced before R2006a

1 Alphabetical List

1-542

atan2d
Four-quadrant inverse tangent in degrees

Syntax
D = atan2d(Y,X)

Description
D = atan2d(Y,X) returns the four-quadrant inverse tangent on page 1-544 (tan-1) of Y
and X, which must be real. The result, D, is expressed in degrees.

Examples

Inverse Tangent of Four Points on the Unit Circle

x = [1 0 -1 0];
y = [0 1 0 -1];
d = atan2d(y,x)

d = 1×4

 0 90 180 -90

Input Arguments
Y — y-coordinates
scalar | vector | matrix | multidimensional array

y-coordinates, specified as a scalar, vector, matrix, or multidimensional array. Inputs Y and
X must either be the same size or have sizes that are compatible (for example, Y is an M-

 atan2d

1-543

by-N matrix and X is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double

X — x-coordinates
scalar | vector | matrix | multidimensional array

x-coordinates, specified as a scalar, vector, matrix, or multidimensional array. Inputs Y and
X must either be the same size or have sizes that are compatible (for example, Y is an M-
by-N matrix and X is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double

Definitions

Four-Quadrant Inverse Tangent
The four-quadrant inverse tangent, atan2d(Y,X), returns values in the closed interval
[-180,180] based on the values of Y and X as shown in the graphic.

1 Alphabetical List

1-544

In contrast, atand(Y/X) returns results that are limited to the interval [-90,90], shown
on the right side of the diagram.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 atan2d

1-545

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
atan | atan2 | atand | tan | tand

Introduced in R2012b

1 Alphabetical List

1-546

atand
Inverse tangent in degrees

Syntax
Y = atand(X)

Description
Y = atand(X) returns the inverse tangent (tan-1) of the elements of X in degrees. The
function accepts both real and complex inputs.

• For real values of X, atand(X) returns values in the interval [-90, 90].
• For complex values of X, atand(X) returns complex values.

Examples

Inverse Tangent of Vector

x = [-50 -20 0 20 50];
y = atand(x)

y = 1×5

 -88.8542 -87.1376 0 87.1376 88.8542

The atand operation is element-wise when you pass a vector, matrix, or N-D array.

Inverse Tangent of Complex Value

atand(10+i)

 atand

1-547

ans = 84.3450 + 0.5618i

Input Arguments
X — Tangent of angle
scalar value | vector | matrix | N-D array

Tangent of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or N-
D array. The atand operation is element-wise when X is non-scalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-548

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
atan | atan2d | tan | tand

Introduced before R2006a

 atand

1-549

atanh
Inverse hyperbolic tangent

Syntax
Y = atanh(X)

Description
The atanh function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.

Examples

Graph of Inverse Hyperbolic Tangent Function

Graph the inverse hyperbolic tangent over the domain −1 < x < 1.

x = -0.99:0.01:0.99;
plot(x,atanh(x))
grid on
xlabel('x')
ylabel('y')

1 Alphabetical List

1-550

Definitions
Inverse Hyperbolic Tangent
For real values x in the domain −1 < x < 1, the inverse hyperbolic tangent satisfies

tanh−1 x = 1
2log 1 + x

1− x .

For complex numbers z = x + iy as well as real values in the regions − ∞ < z < − 1 and
1 < z < ∞, the call atanh(z) returns complex results.

 atanh

1-551

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates an error during simulation and returns NaN in generated code when the
input value x is real, but the output should be complex. To get the complex result,
make the input value complex by passing in complex(x).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-552

See Also
acosh | asinh | atan | atan2 | tan | tanh

Introduced before R2006a

 atanh

1-553

audiodevinfo
Information about audio device

Syntax
info = audiodevinfo
nDevices = audiodevinfo(IO)
name = audiodevinfo(IO,ID)
DriverVersion = audiodevinfo(IO,ID,'DriverVersion')
support = audiodevinfo(IO,ID,Fs,nBits,nChannels)

ID = audiodevinfo(IO,name)
ID = audiodevinfo(IO,Fs,nBits,nChannels)

Description
info = audiodevinfo returns information about the input and output audio devices on
the system.

nDevices = audiodevinfo(IO) returns the number of input devices on the system if
IO is 1, and returns the number of output devices on the system if IO is 0.

name = audiodevinfo(IO,ID) returns the name of the audio device specified by the
device identifier, ID.

DriverVersion = audiodevinfo(IO,ID,'DriverVersion') returns the name of
the driver for the audio device specified by ID.

support = audiodevinfo(IO,ID,Fs,nBits,nChannels) returns 1 if the input or
output audio device specified by ID supports the sample rate, number of bits, and number
of channels specified by the values of Fs, nBits, and nChannels, respectively.
Otherwise, support is 0.

ID = audiodevinfo(IO,name) returns the device identifier of the input or output
audio device identified by the device name, name. If no device is found with the specified
name, then audiodevinfo returns an error.

1 Alphabetical List

1-554

ID = audiodevinfo(IO,Fs,nBits,nChannels) returns the device identifier of the
first input or output device that supports the sample rate, number of bits, and the number
of channels specified by the values of Fs, nBits, and nChannels, respectively. If no
supporting device is found, then ID is -1.

Examples

View Information About Audio Devices

Call audiodevinfo with no inputs to view information about the input and output audio
devices on a system. audiodevinfo returns a structure containing two fields, input and
output.

info = audiodevinfo

info =

 struct with fields:

 input: [1×2 struct]
 output: [1×4 struct]

The input field contains audio device names, driver used, and device identifiers.

info.input

ans =

 1×2 struct array with fields:

 Name
 DriverVersion
 ID

Display the information on the first input device.

info.input(1)

 audiodevinfo

1-555

ans =

 struct with fields:

 Name: 'Primary Sound Capture Driver Windows DirectSound '
 DriverVersion: 'Windows DirectSound'
 ID: 0

Display the information on the second input device.

info.input(2)

ans =

 struct with fields:

 Name: 'HP 4120 Microphone HP 4120 Windows DirectSound '
 DriverVersion: 'Windows DirectSound'
 ID: 1

The values on your system might differ from this example.

View Number of Output Devices

View the number of output audio devices on the system, using an IO value of 0 to indicate
output.

nDevices = audiodevinfo(0)

nDevices =

 4

This example shows three output devices, but your system might vary.

1 Alphabetical List

1-556

Check Support for Input Device

Check if the input audio device identified by the ID value, 0, supports a sample rate of
44100 hertz, with 16 bits per sample, and two channels.

support = audiodevinfo(1,0,44100,16,2)

support =

 logical

 1

The input device supports the specified sample rate, number of bits and number of
channels. Note that results on your system might vary.

Input Arguments
IO — Input or output device
1 | 0

Input or output device, specified as 1 to indicate input, or 0 to indicate output.

ID — Audio device identifier
integer

Audio device identifier, specified as an integer. The device can be an input or output audio
device.

Fs — Sample rate
scalar

Sample rate, in hertz, specified as a positive scalar.
Example: 44100
Data Types: single | double

nBits — Number of bits per sample
scalar

 audiodevinfo

1-557

Number of bits per sample, specified as a scalar.
Example: 16
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nChannels — Number of audio channels
1 | 2

Number of audio channels, specified as 1 (mono) or 2 (stereo).

name — Name of input or output device
character vector

Name of the input or output audio device, specified as a character vector.
Data Types: char

Output Arguments
info — Information about audio devices
structure array

Information about audio devices, returned as a structure array containing two fields,
input and output. Each field is an array of structures, with each structure containing
information about one of the audio input or output devices on the system. The individual
device structure fields are:

• Name — Name of the device, returned as a character vector.
• DriverVersion — Name of the driver used to communicate with the device, returned

as a character vector.
• ID — Device identifier, returned as a scalar.

See Also
audioplayer | audiorecorder

Introduced before R2006a

1 Alphabetical List

1-558

audioplayer
Object for playing audio

Description
Use an audioplayer object to play audio data. The object contains properties that
enable additional flexibility during playback. For example, you can pause, resume, or
define callbacks using the audioplayer object functions.

Creation

Syntax
player = audioplayer(Y,Fs)
player = audioplayer(Y,Fs,nBits)
player = audioplayer(Y,Fs,nBits,ID)

player = audioplayer(recorder)
player = audioplayer(recorder,ID)

Description
player = audioplayer(Y,Fs) creates an audioplayer object for signal Y, using
sample rate Fs. The function returns the audio player object, player.

player = audioplayer(Y,Fs,nBits) uses nBits bits per sample for signal Y.

player = audioplayer(Y,Fs,nBits,ID) uses the audio device identified by ID for
output.

player = audioplayer(recorder) creates an audioplayer object using audio
recorder object recorder.

 audioplayer

1-559

player = audioplayer(recorder,ID) creates an object from recorder that uses
the audio device identified by ID for output.

Input Arguments
Y — Audio signal
vector | array

Audio signal, specified as a vector or two-dimensional array of numeric data.

The value range of the input sample depends on the data type.

Data Type Sample Value Range
int8 -128 to 127
uint8 0 to 255
int16 -32768 to 32767
single -1 to 1
double -1 to 1

Data Types: single | double | int8 | int16 | uint8

Fs — Sampling frequency
numeric scalar

Sampling frequency in hertz (Hz), specified as a numeric scalar.

Valid values of the sampling rate depend on both the sample rates permitted by MATLAB
and the specific audio hardware on your system. MATLAB has a hard restriction of 1000
Hz <= Fs <= 384000 Hz, although further hardware-dependent restrictions apply.
Typical values supported by most sound cards are 8000, 11025, 22050, 44100, 48000,
and 96000 hertz.
Data Types: single | double

nBits — Bits per sample
16 (default) | 8 | 24

Bits per sample, specified as 8, 16, or 24.

1 Alphabetical List

1-560

Specify nBits only when the signal Y contains floating-point values. Valid values of
nBits depend on the audio hardware. For example, depending on your audio hardware,
nBits can be one of these values: 8, 16, or 24.

ID — Device identifier
-1 (default) | integer

Device identifier, specified as an integer.

To obtain the ID of a device, use the audiodevinfo function.

recorder — Audio recorder object
audiorecorder object

Audio recorder object, specified as an audiorecorder object. Use the audiorecorder
function to create the object.

Properties
BitsPerSample — Bits per sample
positive integer

This property is read-only.

Bits per sample, returned as a positive integer.

CurrentSample — Sample currently playing
positive integer

This property is read-only.

Sample currently playing on the audio output device, returned as a positive integer.

If the device is not playing, then CurrentSample is the next sample to play using the
play or resume methods.

DeviceID — Audio device identifier
integer

This property is read-only.

Audio device identifier, returned as an integer.

 audioplayer

1-561

NumChannels — Number of audio channels
1 | 2

This property is read-only.

Number of audio channels, returned as 1 or 2.

Running — Audio player status
on | off

This property is read-only.

Audio player status, returned as on or off.

SampleRate — Sampling frequency
numeric scalar

Sampling frequency in hertz (Hz), returned as a numeric scalar.

To set the SampleRate, use the Fs input argument when constructing the audioplayer
object.

TotalSamples — Total length of audio data
integer

This property is read-only.

Total length of the audio data in samples, returned as an integer.

Tag — Label
character vector

Label, specified as a character vector.

Type — Object class name
'audioplayer'

This property is read-only.

Object class name, returned as 'audioplayer'.

UserData — User-defined data
[] (default) | any data type

1 Alphabetical List

1-562

User-defined data, specified as a value of any data type. Use this property to store any
additional data with the object.

StartFcn — Function to execute at start
character vector | string scalar | function handle

Function to execute at start of playback, specified as a character vector or string scalar
containing the name of the function, or a function handle.

The first two inputs to your callback function must be the audioplayer object and an
event structure. For more information, see callback functions.

StopFcn — Function to execute at end
character vector | string scalar | function handle

Function to execute at the end of playback, specified as a character vector or string scalar
containing the name of the function, or a function handle.

The first two inputs to your callback function must be the audioplayer object and an
event structure. For more information, see callback functions.

TimerFcn — Function to execute repeatedly
character vector | string scalar | function handle

Function to execute repeatedly during playback, specified as a character vector or string
scalar containing the name of the function, or a function handle. To specify time intervals
for the repetitions, use the TimerPeriod property.

The first two inputs to your callback function must be the audioplayer object and an
event structure. For more information, see callback functions.

TimerPeriod — Timer period
0.05 (default) | numeric scalar

Timer period, specified as numeric scalar.

Timer period is the time in seconds between TimerFcn callbacks.

Object Functions
get Query property values for audioplayer object

 audioplayer

1-563

isplaying Determine if playback is in progress
pause Pause playback or recording
play Play audio from audioplayer object
playblocking Play audio from audioplayer object, hold control until playback completes
resume Resume playback or recording from paused state
set Set property values for audioplayer object
stop Stop playback or recording

Examples

Play Audio File

Load and play a sample audio file.

Load handel.mat into the workspace. The file contains a sample audio data array y and
the sampling rate Fs.

load('handel.mat')
whos y Fs

 Name Size Bytes Class Attributes

 Fs 1x1 8 double
 y 73113x1 584904 double

Create an audioplayer object to play the file.

player = audioplayer(y,Fs);

Play the audio object on the default audio device.

play(player);

Record and Play Audio Sample

Record audio data from a microphone and then play the recorded audio.

Create an audiorecorder object with default property values.

1 Alphabetical List

1-564

recObj = audiorecorder;

Record a five second sample of your speech with your microphone.

disp('Start speaking.')

Start speaking.

recordblocking(recObj,5);
disp('End of Recording.');

End of Recording.

Create an audio player object from the recording and then play the recorded sample.

playerObj = audioplayer(recObj);
play(playerObj);

See Also
audiodevinfo | audiorecorder | sound

Topics
“Record and Play Audio”
“Supported Video and Audio File Formats”

Introduced before R2006a

 audioplayer

1-565

audiorecorder
Object for recording audio

Description
Use an audiorecorder object to record audio data from an input device such as a
microphone for processing in MATLAB. The audiorecorder object contains properties
that enable additional flexibility during recording. For example, you can pause, resume,
or define callbacks using the audiorecorder object functions.

Creation

Syntax
recorder = audiorecorder
recorder = audiorecorder(Fs,nBits,NumChannels)
recorder = audiorecorder(Fs,nBits,NumChannels,ID)

Description
recorder = audiorecorder creates and returns an audiorecorder object with these
properties:

• Sampling frequency Fs = 8000 hertz
• Bits per sample nBits = 8
• Number of channels nChannels = 1

recorder = audiorecorder(Fs,nBits,NumChannels) sets the sample rate Fs (in
hertz), the bits per sample nBits, and the number of channels nChannels.

recorder = audiorecorder(Fs,nBits,NumChannels,ID) sets the audio input
device to the device specified by ID.

1 Alphabetical List

1-566

Input Arguments
Fs — Sampling frequency
numeric scalar

Sampling frequency in hertz (Hz), specified as a numeric scalar.

Valid values of the sampling rate depend on both the sample rates permitted by MATLAB
and the specific audio hardware on your system. MATLAB has a hard restriction of 1000
Hz <= Fs <= 384000 Hz, although further hardware-dependent restrictions apply.
Typical values supported by most sound cards are 8000, 11025, 22050, 44100, 48000,
and 96000 hertz.
Data Types: single | double

nBits — Bits per sample
8 (default) | 16 | 24

Bits per sample, specified as 8, 16, or 24.

Specify nBits only when the signal Y contains floating-point values. Valid values of
nBits depend on the audio hardware. For example, depending on your audio hardware,
nBits can be one of these values: 8, 16, or 24.

NumChannels — Number of channels
1(mono) (default) | 2 (stereo)

Number of channels, specified as 1 (mono) or 2 (stereo).

ID — Device identifier
-1 (default) | integer

Device identifier, specified as an integer.

To obtain the ID of a device, use the audiodevinfo function.

Properties
BitsPerSample — Bits per sample
positive integer

This property is read-only.

 audiorecorder

1-567

Bits per sample, returned as a positive integer.

CurrentSample — Sample currently recording
positive integer

This property is read-only.

Sample currently recording on the audio input device, returned as a positive integer.

If the device is not recording, CurrentSample is the next sample to record using the
record or resume methods.

DeviceID — Audio device identifier
integer

This property is read-only.

Audio device identifier, returned as an integer.

Running — Audio recorder status
off (default) | on

This property is read-only.

Audio recorder status, returned as on or off.

SampleRate — Sampling frequency
8000 (default) | numeric scalar

Sampling frequency in hertz (Hz), returned as a numeric scalar.

To set the SampleRate, use the Fs input argument when constructing the
audiorecorder object.

TotalSamples — Total length of audio data
integer

This property is read-only.

Total length of the audio data in samples, returned as an integer.

Tag — Label
character vector

1 Alphabetical List

1-568

Label, specified as a character vector.

Type — Object class name
'audiorecorder'

This property is read-only.

Object class name, returned as 'audiorecorder'.

UserData — User-defined data
[] (default) | any data type

User-defined data, specified as a value of any data type. Use this property to store any
additional data with the object.

StartFcn — Function to execute at start
character vector | string scalar | function handle

Function to execute at start of recording, specified as a character vector or string scalar
containing the name of the function, or a function handle.

The first two inputs to your callback function must be the audiorecorder object and an
event structure. For more information, see callback functions.

StopFcn — Function to execute at end
character vector | string scalar | function handle

Function to execute at end of recording, specified as a character vector or string scalar
containing the name of the function, or a function handle.

The first two inputs to your callback function must be the audiorecorder object and an
event structure. For more information, see callback functions.

TimerFcn — Function to execute repeatedly
character vector | string scalar | function handle

Function to execute repeatedly during recording, specified as a character vector or string
scalar containing the name of the function, or a function handle. To specify time intervals
for the repetitions, use the TimerPeriod property.

The first two inputs to your callback function must be the audiorecorder object and an
event structure. For more information, see callback functions.

 audiorecorder

1-569

TimerPeriod — Timer period
0.05 (default) | numeric scalar

Timer period, specified as numeric scalar.

Timer period is the time in seconds between TimerFcn callbacks.

Object Functions
get Query property values for audiorecorder object
getaudiodata Store recorded audio signal in numeric array
getplayer Creates associated audioplayer object
isrecording Determine if recording is in progress
pause Pause playback or recording
play Play audio from audiorecorder object
record Record audio to audiorecorder object
recordblocking Record audio to audiorecorder object, hold control until recording

completes
resume Resume playback or recording from paused state
set Set property values for audiorecorder object
stop Stop playback or recording

Examples

Record Audio from Input Device

Record audio data from a microphone and then play the recorded audio.

Create an audiorecorder object with default property values.

recObj = audiorecorder;

Alternatively, create an audiorecorder object with the desired properties. For a CD-
quality audio in stereo, define these properties: sampling frequency (Fs), number of bits
per sample (nBits), the number of channels (nChannels), and input device identifier
(ID).

Fs = 44100 ;
nBits = 16 ;

1 Alphabetical List

1-570

nChannels = 2 ;
ID = -1; % default audio input device
recObj = audiorecorder(Fs,nBits,nChannels,ID);

Collect a five second sample of your speech with your microphone.

disp('Start speaking.')

Start speaking.

recordblocking(recObj,5);
disp('End of Recording.');

End of Recording.

Play back the recording.

play(recObj);

See Also
audiodevinfo | audioplayer | sound

Topics
“Record and Play Audio”
“Supported Video and Audio File Formats”

Introduced before R2006a

 audiorecorder

1-571

aviinfo
Information about Audio/Video Interleaved (AVI) file

Note aviinfo will be removed in a future release. Use VideoReader instead.

Syntax
fileinfo = aviinfo(filename)

Description
fileinfo = aviinfo(filename) returns a structure whose fields contain information
about the AVI file in filename. Specify filename as a character vector or string scalar.
If filename does not include an extension, then .avi is used. The file must be in the
current working directory or in a directory on the MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name Description
AudioFormat Character vector containing the name of the format

used to store the audio data, if audio data is present
AudioRate Integer indicating the sample rate in Hertz of the audio

stream, if audio data is present
Filename Character vector specifying the name of the file
FileModDate Character vector containing the modification date of

the file
FileSize Integer indicating the size of the file in bytes
FramesPerSecond Integer indicating the desired frames per second
Height Integer indicating the height of the AVI movie in pixels

1 Alphabetical List

1-572

Field Name Description
ImageType Character vector indicating the type of image. Either

'truecolor' for a truecolor (RGB) image, or
'indexed' for an indexed image.

NumAudioChannels Integer indicating the number of channels in the audio
stream, if audio data is present

NumFrames Integer indicating the total number of frames in the
movie

NumColormapEntries Integer specifying the number of colormap entries. For
a truecolor image, this value is 0 (zero).

Quality Number between 0 and 100 indicating the video quality
in the AVI file. Higher quality numbers indicate higher
video quality; lower quality numbers indicate lower
video quality. This value is not always set in AVI files
and therefore can be inaccurate.

VideoCompression Character vector containing the compressor used to
compress the AVI file. If the compressor is not
Microsoft Video 1, Run Length Encoding (RLE),
Cinepak, or Intel® Indeo, aviinfo returns the four-
character code that identifies the compressor.

Width Integer indicating the width of the AVI movie in pixels

See Also
VideoReader | VideoWriter | mmfileinfo

Introduced before R2006a

 aviinfo

1-573

axes
Create Cartesian axes

Syntax
axes
axes(Name,Value)
axes(parent,Name,Value)
ax = axes(___)

axes(cax)

Description
axes creates the default Cartesian axes in the current figure and makes it the current
axes. Typically, you do not need to create axes before plotting since graphics functions
automatically create axes when plotting if they do not exist.

axes(Name,Value) modifies the axes appearance or controls the way data displays
using one or more name-value pair arguments. For example, 'FontSize',14 sets the
font size for the axes text. For a list of properties, see Axes.

axes(parent,Name,Value) creates the axes in the figure, panel, or tab specified by
parent, instead of in the current figure.

ax = axes(___) returns the Axes object created. Use ax to query and modify
properties of the Axes object after it is created. For a list of properties, see Axes.

axes(cax) makes the axes or chart specified by cax the current axes on page 1-583
and brings the parent figure into focus. This command also makes cax the first object
listed in the Children property of the figure and sets the CurrentAxes property of the
figure to cax.

Examples

1 Alphabetical List

1-574

Position Multiple Axes in Figure

Position two Axes objects in a figure and add a plot to each one.

Specify the position of the first Axes object so that it has a lower left corner at the point
(0.1 0.1) with a width and height of 0.7. Specify the position of the second Axes object so
that it has a lower left corner at the point (0.65 0.65) with a width and height of 0.28. By
default, the values are normalized to the figure. Return the Axes objects as ax1 and ax2.

figure
ax1 = axes('Position',[0.1 0.1 0.7 0.7]);
ax2 = axes('Position',[0.65 0.65 0.28 0.28]);

 axes

1-575

Add a plot to each Axes object. Specify the axes by passing it as the first input argument
to the graphics function. Most graphics functions reset some axes properties, such as the
tick values and labels. However, they do not reset the axes position.

contour(ax1,peaks(20))
surf(ax2,peaks(20))

Make Axes the Current Axes

Create two overlayed Axes objects. Then, specify the current axes and add a plot.

1 Alphabetical List

1-576

First create two Axes objects and specify the positions. Display the box outline around
each axes. Return the Axes objects as ax1 and ax2.

figure
ax1 = axes('Position',[0.1 0.1 .6 .6],'Box','on');
ax2 = axes('Position',[.35 .35 .6 .6],'Box','on');

Make ax1 the current axes. This action brings the axes to the front of the display and
makes it the target for subsequent graphics functions. Add a line plot to the axes.

axes(ax1)
x = linspace(0,10);
y = sin(x);
plot(x,y)

 axes

1-577

Create Axes in Tabs

Create a figure with two tabs. Add axes to each tab by specifying the parent container for
each one. Plot a line in the first tab and a surface in the second tab.

figure
tab1 = uitab('Title','Tab1');
ax1 = axes(tab1);
plot(ax1,1:10)

tab2 = uitab('Title','Tab2');

1 Alphabetical List

1-578

ax2 = axes(tab2);
surf(ax2,peaks)

Input Arguments
parent — Parent container
Figure object | Panel object | Tab object

Parent container, specified as a Figure, Panel, or Tab object.

cax — Axes to make current
Axes object | PolarAxes object | graphics object

 axes

1-579

Axes to make current, specified as an Axes object, a PolarAxes object, or a graphics
object such as a HeatmapChart.

If you want to make an object the current axes without changing the state of the figure,
set the CurrentAxes property of the figure containing the axes; for example:

fig = gcf;
fig.CurrentAxes = cax;

This approach is useful if you want a figure to remain minimized or stacked below other
figures, but want to specify the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.
Example: axes('Position',[.3 .3 .5 .5]) sets the position.

Some graphics functions change axes property values when plotting, such as the axis
limits or tick values. Set axes properties after plotting.

Note The properties listed here are only a subset. For a full list, see Axes.

Position — Size and location, excluding margin for labels
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector of form [left
bottom width height]

Size and location, excluding a margin for the labels, specified as a four-element vector of
the form [left bottom width height]. By default, MATLAB measures the values in
units normalized to the container. To change the units, set the Units property.

• The left and bottom elements define the distance from the lower left corner of the
container (typically a figure, panel, or tab) to the lower left corner of the position
boundary.

• The width and height elements are the position boundary dimensions. For axes in a
3-D view, the Position property is the smallest rectangle that encloses the axes.

1 Alphabetical List

1-580

If you want to specify the position and account for the text around the axes, then set the
OuterPosition property instead. These figures show the areas defined by the
OuterPosition values (blue) and the Position values (red).

2-D View of Axes 3-D View of Axes

For more information on the axes position, see “Control Axes Layout”.

OuterPosition — Size and location, including labels and margin
[0 0 1 1] (default) | four-element vector of the form [left bottom width height]

Size and location, including the labels and a margin, specified as a four-element vector of
the form [left bottom width height]. By default, MATLAB measures the values in
units normalized to the container. To change the units, set the Units property. The
default value of [0 0 1 1] includes the whole interior of the container.

• The left and bottom elements define the distance from the lower left corner of the
container (typically a figure, panel, or tab) to the lower left corner of the outer position
boundary.

• The width and height elements are the outer position boundary dimensions.

These figures show the areas defined by the OuterPosition values (blue) and the
Position values (red).

 axes

1-581

2-D View of Axes 3-D View of Axes

For more information on the axes position, see “Control Axes Layout”.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0) and the upper right corner maps to
(1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.

1 Alphabetical List

1-582

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a Name,Value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
Position.

Definitions

Current Axes
The current axes is the target for graphics output. By default, graphics functions such as
plot, text, and surf draw their results in the current axes. The current axes object is
typically the last Axes object created or the last one you clicked with the mouse.
Changing the current figure also changes the current axes. The gca command returns the
current axes.

See Also
Properties
Axes

Functions
axis | cla | clf | figure | gca | polaraxes | subplot

 axes

1-583

Topics
“Control Ratio of Axis Lengths and Data Unit Lengths”
“Control Axes Layout”

Introduced before R2006a

1 Alphabetical List

1-584

Axes Properties
Axes appearance and behavior

Description
Axes properties control the appearance and behavior of an Axes object. By changing
property values, you can modify certain aspects of the axes.

Starting in R2014b, you can use dot notation to query and set properties.

ax = gca;
c = ax.Color;
ax.Color = 'blue';

If you are using an earlier release, use the get and set functions instead.

Properties
Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

 Axes Properties

1-585

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The font size affects the title, axis labels,
and tick labels. It also affects any legends or colorbars associated with the axes. The
default font size depends on the specific operating system and locale. By default, the font
size is measured in points. To change the units, set the FontUnits property.

MATLAB automatically scales some of the text to a percentage of the axes font size.

• Titles and axis labels — 110% of the axes font size by default. To control the scaling,
use the TitleFontSizeMultiplier and LabelFontSizeMultiplier properties.

• Legends and colorbars — 90% of the axes font size by default. To specify a different
font size, set the FontSize property for the Legend or Colorbar object instead.

Example: ax.FontSize = 12

FontSizeMode — Selection mode for font size
'auto' (default) | 'manual'

Selection mode for the font size, specified as one of these values:

• 'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the
default size, the font size might scale down to improve readability and layout.

• 'manual' — Font size specified manually. Do not scale the font size as the axes size
changes. To specify the font size, set the FontSize property.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

LabelFontSizeMultiplier — Scale factor for label font size
1.1 (default) | numeric value greater than 0

1 Alphabetical List

1-586

Scale factor for the label font size, specified as a numeric value greater than 0. The scale
factor is applied to the value of the FontSize property to determine the font size for the
x-axis, y-axis, and z-axis labels.
Example: ax.LabelFontSizeMultiplier = 1.5

TitleFontSizeMultiplier — Scale factor for title font size
1.1 (default) | numeric value greater than 0

Scale factor for the title font size, specified as a numeric value greater than 0. The scale
factor is applied to the value of the FontSize property to determine the font size for the
title.
Example: ax.TitleFontSizeMultiplier = 1.75

TitleFontWeight — Title character thickness
'bold' (default) | 'normal'

Title character thickness, specified as one of these values:

• 'bold' — Thicker characters outlines than normal
• 'normal' — Default weight as defined by the particular font

Example: ax.TitleFontWeight = 'normal'

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'normalized' | 'pixels'

Font size units, specified as one of these values.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the axes

height. If you resize the axes, the font size
modifies accordingly. For example, if the
FontSize is 0.1 in normalized units, then
the text is 1/10 of the height value stored in
the axes Position property.

 Axes Properties

1-587

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

To set both the font size and the font units in a single function call, you first must set the
FontUnits property so that the Axes object correctly interprets the specified font size.

FontSmoothing — Character smoothing
'on' (default) | 'off'

Character smoothing, specified as 'on' or 'off'.

Value Description Result
'on' Use antialiasing to make

text appear smoother on the
screen.

Example:
ax.FontSmoothing =
'on'

'off' Do not use antialiasing. Use
this setting if the text seems
blurry.

Example:
ax.FontSmoothing =
'off'

1 Alphabetical List

1-588

Ticks

XTick, YTick, ZTick — Tick values
[] (default) | vector of increasing values

Tick values, specified as a vector of increasing values. If you do not want tick marks along
the axis, then specify an empty vector []. The tick values are the locations along the axis
where the tick marks appear. The tick labels are the labels that you see next to each tick
mark. Use the XTickLabels, YTickLabels, and ZTickLabels properties to specify the
associated labels.
Example: ax.XTick = [2 4 6 8 10]
Example: ax.YTick = 0:10:100

Alternatively, use the xticks, yticks, and zticks functions to specify the tick values.
For an example, see “Specify Axis Tick Values and Labels”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XTickMode, YTickMode, ZTickMode — Selection mode for tick values
'auto' (default) | 'manual'

Selection mode for the tick values, specified as one of these values:

• 'auto' — Automatically select the tick values based on the range of data for the axis.
• 'manual' — Manually specify the tick values. To specify the values, set the XTick,

YTick, or ZTick property.

Example: ax.XTickMode = 'auto'

XTickLabel, YTickLabel, ZTickLabel — Tick labels
'' (default) | cell array of character vectors | string array | categorical array

Tick labels, specified as a cell array of character vectors, string array, or categorical
array. If you do not want tick labels to show, then specify an empty cell array {}. If you do
not specify enough labels for all the ticks values, then the labels repeat.

Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter property
for more information.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.

 Axes Properties

1-589

As an alternative to setting this property, you can use the xticklabels, yticklabels,
and zticklabels functions. For an example, see “Specify Axis Tick Values and Labels”.
Example: ax.XTickLabel = {'Jan','Feb','Mar','Apr'}

XTickLabelMode, YTickLabelMode, ZTickLabelMode — Selection mode for tick
labels
'auto' (default) | 'manual'

Selection mode for the tick labels, specified as one of these values:

• 'auto' — Automatically select the tick labels.
• 'manual' — Manually specify the tick labels. To specify the labels, set the

XTickLabel, YTickLabel, or ZTickLabel property.

Example: ax.XTickLabelMode = 'auto'

TickLabelInterpreter — Tick label interpretation
'tex' (default) | 'latex' | 'none' | x

Tick label interpretation, specified as one of these values:

• 'tex' — Interpret labels using a subset of TeX markup.
• 'latex' — Interpret labels using a subset of LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the text.

The table that follows lists the supported modifiers when the TickLabelInterpreter
property is set to 'tex', which is the default value. Modifiers remain in effect until the
end of the text, except for superscripts and subscripts which only modify the next
character or the text within the curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'

1 Alphabetical List

1-590

Modifier Description Example
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this with other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

 Axes Properties

1-591

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...

1 Alphabetical List

1-592

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. Use dollar
symbols around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or
'$$\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. To change the font style, use LaTeX
markup within the text. The FontName, FontWeight, and FontAngle properties have no
effect.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this limit reduces by about 10 characters per line. For more
information about the LaTeX system, see The LaTeX Project website at www.latex-
project.org.

XTickLabelRotation, YTickLabelRotation, ZTickLabelRotation — Tick label
rotation
0 (default) | numeric value in degrees

Tick label rotation, specified as a numeric value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation.
Example: ax.XTickLabelRotation = 45
Example: ax.YTickLabelRotation = 90

Alternatively, use the xtickangle, ytickangle, and ztickangle functions.

XMinorTick, YMinorTick, ZMinorTick — Minor tick marks
'off' | 'on'

Minor tick marks, specified as one of these values:

• 'off' — Do not display minor tick marks. This value is the default for an axis with a
linear scale.

 Axes Properties

1-593

https://www.latex-project.org
https://www.latex-project.org

• 'on' — Display minor tick marks between the major tick marks on the axis. The space
between the major tick marks determines the number of minor tick marks. This value
is the default for an axis with a log scale.

Example: ax.XMinorTick = 'on'

TickDir — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values:

• 'in' — Direct the tick marks inward from the axis lines. (Default for 2-D views)
• 'out' — Direct the tick marks outward from the axis lines. (Default for 3-D views)
• 'both' — Center the tick marks over the axis lines.

Example: ax.TickDir = 'out'

TickDirMode — Selection mode for TickDir
'auto' (default) | 'manual'

Selection mode for the TickDir property, specified as one of these values:

• 'auto' — Automatically select the tick direction based on the current view.
• 'manual' — Manually specify the tick direction. To specify the tick direction, set the

TickDir property.

Example: ax.TickDirMode = 'auto'

TickLength — Tick mark length
[0.01 0.025] (default) | two-element vector

Tick mark length, specified as a two-element vector of the form [2Dlength 3Dlength].
The first element is the tick mark length in 2-D views and the second element is the tick
mark length in 3-D views. Specify the values in units normalized relative to the longest of
the visible x-axis, y-axis, or z-axis lines.
Example: ax.TickLength = [0.02 0.035]

Rulers

XLim, YLim, ZLim — Minimum and maximum axis limits
[0 1] (default) | two-element vector of the form [min max]

1 Alphabetical List

1-594

Minimum and maximum limits, specified as a two-element vector of the form [min max],
where max is greater than min. You can specify the limits as numeric, categorical,
datetime, or duration values. However, the type of values that you specify must match the
type of values along the axis.

You can specify both limits or you can specify one limit and let the axes automatically
calculate the other. For an automatically calculated minimum or maximum limit, use -inf
or inf, respectively.
Example: ax.XLim = [0 10]
Example: ax.YLim = [-inf 10]
Example: ax.ZLim = [0 inf]

Alternatively, use the xlim, ylim, and zlim functions to set the limits. For an example,
see “Specify Axis Limits”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

XLimMode, YLimMode, ZLimMode — Selection mode for axis limits
'auto' (default) | 'manual'

Selection mode for the axis limits, specified as one of these values:

• 'auto' — Automatically select the axis limits based on the data plotted, which is, the
total span of the XData, YData, or ZData of all the objects displayed in the axes.

• 'manual' — Manually specify the axis limits. To specify the axis limits, set the XLim,
YLim, or ZLim property.

Example: ax.XLimMode = 'auto'

XAxis, YAxis, ZAxis — Axis ruler
ruler object

Axis ruler, returned as a ruler object. The ruler controls the appearance and behavior of
the x-axis, y-axis, or z-axis. Modify the appearance and behavior of a particular axis by
accessing the associated ruler and setting ruler properties. The type of ruler that
MATLAB creates for each axis depends on the plotted data. For a list of ruler properties
that Axes objects support, see:

• NumericRuler

 Axes Properties

1-595

• DatetimeRuler
• DurationRuler
• CategoricalRuler

For example, access the ruler for the x-axis through the XAxis property. Then, change the
Color property of the ruler, and thus the color of the x-axis, to red. Similarly, change the
color of the y-axis to green.

ax = gca;
ax.XAxis.Color = 'r';
ax.YAxis.Color = 'g';

If the Axes object has two y-axes, then the YAxis property stores two ruler objects.

XAxisLocation — x-axis location
'bottom' (default) | 'top' | 'origin'

x-axis location, specified as one of the values in this table. This property applies only to 2-
D views.

Value Description Result
'bottom' Bottom of the axes.

Example:
ax.XAxisLocation =
'bottom'

1 Alphabetical List

1-596

Value Description Result
'top' Top of the axes.

Example:
ax.XAxisLocation =
'top'

'origin' Through the origin point
(0,0).

Example:
ax.XAxisLocation =
'origin'

YAxisLocation — y-axis location
'left' (default) | 'right' | 'origin'

y-axis location, specified as one of the values in this table. This property applies only to 2-
D views.

 Axes Properties

1-597

Value Description Result
'left' Left side of the axes.

Example:
ax.YAxisLocation =
'left'

'right' Right side of the axes.

Example:
ax.YAxisLocation =
'right'

1 Alphabetical List

1-598

Value Description Result
'origin' Through the origin point

(0,0).

Example:
ax.YAxisLocation =
'origin'

XColor, YColor, ZColor — Color of axis line, tick values, and labels
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the axis line, tick values, and labels in the x, y, or z direction, specified as an RGB
triplet, a hexadecimal color code, a color name, or a short name. The color you specify
also affects the grid lines, unless you specify the grid line color using the GridColor or
MinorGridColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

 Axes Properties

1-599

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.XColor = [1 1 0]
Example: ax.YColor = 'y'
Example: ax.ZColor = 'yellow'
Example: ax.ZColor = '#FFFF00'

XColorMode — Property for setting x-axis grid color
'auto' (default) | 'manual'

1 Alphabetical List

1-600

Property for setting the x-axis grid color, specified as 'auto' or 'manual'. The mode
value only affects the x-axis grid color. The x-axis line, tick values, and labels always use
the XColor value, regardless of the mode.

The x-axis grid color depends on both the XColorMode property and the GridColorMode
property, as shown here.

XColorMode GridColorMode x-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' XColor property

'manual' GridColor property

The x-axis minor grid color depends on both the XColorMode property and the
MinorGridColorMode property, as shown here.

XColorMode MinorGridColorMode x-Axis Minor Grid Color
'auto' 'auto' MinorGridColor property

'manual' MinorGridColor property
'manual' 'auto' XColor property

'manual' MinorGridColor property

YColorMode — Property for setting y-axis grid color
'auto' (default) | 'manual'

Property for setting the y-axis grid color, specified as 'auto' or 'manual'. The mode
value only affects the y-axis grid color. The y-axis line, tick values, and labels always use
the YColor value, regardless of the mode.

The y-axis grid color depends on both the YColorMode property and the GridColorMode
property, as shown here.

YColorMode GridColorMode y-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' YColor property

 Axes Properties

1-601

YColorMode GridColorMode y-Axis Grid Color
'manual' GridColor property

The y-axis minor grid color depends on both the YColorMode property and the
MinorGridColorMode property, as shown here.

YColorMode MinorGridColorMode y-Axis Minor Grid Color
'auto' 'auto' MinorGridColor property

'manual' MinorGridColor property
'manual' 'auto' YColor property

'manual' MinorGridColor property

ZColorMode — Property for setting z-axis grid color
'auto' (default) | 'manual'

Property for setting the z-axis grid color, specified as 'auto' or 'manual'. The mode
value only affects the z-axis grid color. The z-axis line, tick values, and labels always use
the ZColor value, regardless of the mode.

The z-axis grid color depends on both the ZColorMode property and the GridColorMode
property, as shown here.

ZColorMode GridColorMode z-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' ZColor property

'manual' GridColor property

The z-axis minor grid color depends on both the ZColorMode property and the
MinorGridColorMode property, as shown here.

ZColorMode MinorGridColorMode z-Axis Minor Grid Color
'auto' 'auto' MinorGridColor property

'manual' MinorGridColor property
'manual' 'auto' ZColor property

1 Alphabetical List

1-602

ZColorMode MinorGridColorMode z-Axis Minor Grid Color
'manual' MinorGridColor property

XDir — x-axis direction
'normal' (default) | 'reverse'

x-axis direction, specified as one of these values.

Value Description Result in 2-D Result in 3-D
'normal' Values increase from

left to right.

Example: ax.XDir
= 'normal'

'reverse' Values increase from
right to left.

Example: ax.XDir
= 'reverse'

YDir — y-axis direction
'normal' (default) | 'reverse'

y-axis direction, specified as one of these values.

 Axes Properties

1-603

Value Description Result in 2-D Result in 3-D
'normal' Values increase from

bottom to top (2-D
view) or front to back
(3-D view).

Example: ax.YDir
= 'normal'

'reverse' Values increase from
top to bottom (2-D
view) or back to front
(3-D view).

Example: ax.YDir
= 'reverse'

ZDir — z-axis direction
'normal' (default) | 'reverse'

z-axis direction, specified as one of these values.

Value Description Result in 3-D
'normal' Values increase pointing out

of the screen (2-D view) or
from bottom to top (3-D
view).

Example: ax.ZDir =
'normal'

1 Alphabetical List

1-604

Value Description Result in 3-D
'reverse' Values increase pointing

into the screen (2-D view) or
from top to bottom (3-D
view).

Example: ax.ZDir =
'reverse'

XScale, YScale, ZScale — Scale of values along axis
'linear' (default) | 'log'

Axis scale, specified as one of these values.

Value Description Result
'linear' Linear scale

Example: ax.XScale =
'linear'

'log' Log scale

Example: ax.XScale =
'log'

Grids

XGrid, YGrid, ZGrid — Grid lines
'off' (default) | 'on'

Grid lines, specified as one of these values:

• 'off' — Do not display the grid lines.
• 'on' — Display grid lines perpendicular to the axis; for example, along lines of

constant x, y, or z values.

Alternatively, use the grid on or grid off command to set all three properties to 'on'
or 'off', respectively. For more information, see grid.
Example: ax.XGrid = 'on'

 Axes Properties

1-605

Layer — Placement of grid lines and tick marks
'bottom' (default) | 'top'

Placement of grid lines and tick marks in relation to graphic objects, specified as one of
these values:

• 'bottom' — Display tick marks and grid lines under graphics objects.
• 'top' — Display tick marks and grid lines over graphics objects.

This property affects only 2-D views.
Example: ax.Layer = 'top'

GridLineStyle — Line style for grid lines
'-' (default) | '--' | ':' | '-.' | 'none'

Line style for grid lines, specified as one of the line styles in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

To display the grid lines, use the grid on command or set the XGrid, YGrid, or ZGrid
property to 'on'.
Example: ax.GridLineStyle = '--'

GridColor — Color of grid lines
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of grid lines, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-606

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 Axes Properties

1-607

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

To set the colors for the axes box outline, use the XColor, YColor, and ZColor
properties.

To display the grid lines, use the grid on command or set the XGrid, YGrid, or ZGrid
property to 'on'.
Example: ax.GridColor = [0 0 1]
Example: ax.GridColor = 'b'
Example: ax.GridColor = 'blue'
Example: ax.GridColor = '#0000FF'

GridColorMode — Property for setting grid color
'auto' (default) | 'manual'

Property for setting the grid color, specified as one of these values:

• 'auto' — Check the values of the XColorMode, YColorMode, and ZColorMode
properties to determine the grid line colors for the x, y, and z directions.

• 'manual' — Use GridColor to set the grid line color for all directions.

GridAlpha — Grid-line transparency
0.15 (default) | value in the range [0,1]

Grid-line transparency, specified as a value in the range [0,1]. A value of 1 means
opaque and a value of 0 means completely transparent.
Example: ax.GridAlpha = 0.5

GridAlphaMode — Selection mode for GridAlpha
'auto' (default) | 'manual'

Selection mode for the GridAlpha property, specified as one of these values:

• 'auto' — Default transparency value of 0.15.
• 'manual' — Manually specify the transparency value. To specify the value, set the

GridAlpha property.

Example: ax.GridAlphaMode = 'auto'

1 Alphabetical List

1-608

XMinorGrid, YMinorGrid, ZMinorGrid — Minor grid lines
'off' (default) | 'on'

Minor grid lines, specified as one of these values:

• 'off' — Do not display grid lines.
• 'on' — Display grid lines aligned with the minor tick marks of the axis. You do not

need to enable minor ticks to display minor grid lines.

Alternatively, use the grid minor command to toggle the visibility of the minor grid
lines.
Example: ax.XMinorGrid = 'on'

MinorGridLineStyle — Line style for minor grid lines
':' (default) | '-' | '--' | '-.' | 'none'

Line style for minor grid lines, specified as one of the line styles shown in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

To display minor grid lines, use the grid minor command or set the XMinorGrid,
YMinorGrid, or ZMinorGrid property to 'on'.
Example: ax.MinorGridLineStyle = '-.'

MinorGridColor — Color of minor grid lines
[0.1 0.1 0.1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of minor grid lines, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 Axes Properties

1-609

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-610

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

To display minor grid lines, use the grid minor command or set the XMinorGrid,
YMinorGrid, or ZMinorGrid property to 'on'.
Example: ax.MinorGridColor = [0 0 1]
Example: ax.MinorGridColor = 'b'
Example: ax.MinorGridColor = 'blue'
Example: ax.MinorGridColor = '#0000FF'

MinorGridColorMode — Property for setting minor grid color
'auto' (default) | 'manual'

Property for setting the minor grid color, specified as one of these values:

• 'auto' — Check the values of the XColorMode, YColorMode, and ZColorMode
properties to determine the grid line colors for the x, y, and z directions.

• 'manual' — Use MinorGridColor to set the minor grid line color for all directions.

MinorGridAlpha — Minor grid line transparency
0.25 (default) | value in the range [0,1]

Minor grid line transparency, specified as a value in the range [0,1]. A value of 1 means
opaque and a value of 0 means completely transparent.
Example: ax.MinorGridAlpha = 0.5

MinorGridAlphaMode — Selection mode for MinorGridAlpha
'auto' (default) | 'manual'

Selection mode for the MinorGridAlpha property, specified as one of these values:

• 'auto' — Default transparency value of 0.25.
• 'manual' — Manually specify the transparency value. To specify the value, set the

MinorGridAlpha property.

Example: ax.MinorGridAlphaMode = 'auto'

 Axes Properties

1-611

Labels

Title — Text object for axes title
text object

Text object for axes title. To add a title, set the String property of the text object. To
change the title appearance, such as the font style or color, set other properties. For a
complete list, see Text.

ax = gca;
ax.Title.String = 'My Title';
ax.Title.FontWeight = 'normal';

Alternatively, use the title function to add a title and control the appearance.

title('My Title','FontWeight','normal')

Note This text object is not contained in the axes Children property, cannot be returned
by findobj, and does not use default values defined for text objects.

XLabel, YLabel, ZLabel — Text object for axis label
text object

Text object for axis label. To add an axis label, set the String property of the text object.
To change the label appearance, such as the font size, set other properties. For a
complete list, see Text.

ax = gca;
ax.YLabel.String = 'My y-Axis Label';
ax.YLabel.FontSize = 12;

Alternatively, use the xlabel, ylabel, and zlabel functions to add an axis label and
control the appearance.

ylabel('My y-Axis Label','FontSize',12)

Note These text objects are not contained in the axes Children property, cannot be
returned by findobj, and do not use default values defined for text objects.

Legend — Legend associated with axes
empty GraphicsPlaceholder (default) | Legend object

1 Alphabetical List

1-612

This property is read-only.

Legend associated with the Axes object, specified as a Legend object. To add a legend to
the axes, use the legend function. Then, you can use this property to modify the legend.
For a complete list of properties, see Legend.

plot(rand(3))
legend({'Line 1','Line 2','Line 3'},'FontSize',12)
ax = gca;
ax.Legend.TextColor = 'red';

You also can use this property to determine if the axes has a legend.

ax = gca;
lgd = ax.Legend
if ~isempty(lgd)
 disp('Legend Exists')
end

Multiple Plots

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. Each row of the matrix
defines one color in the color order. The default color order has seven colors.

Default Color Order Associated RGB Triplets
 [0 0.4470 0.7410
 0.8500 0.3250 0.0980
 0.9290 0.6940 0.1250
 0.4940 0.1840 0.5560
 0.4660 0.6740 0.1880
 0.3010 0.7450 0.9330
 0.6350 0.0780 0.1840]

Change Color Order Before Plotting

You must change the color order before plotting. Changing the order has no effect on
existing plots. However, many graphics functions reset the color order back to the default
value before plotting. To ensure that the axes uses your specified color order, use one of
these approaches:

 Axes Properties

1-613

• Change the default color order for the axes before plotting.
• Set the NextPlot property of the axes to 'replacechildren'or 'add' before

plotting.

For example, this code changes the default color order for all future axes.

co = [1 0 0.4
 0.8 0.2 0.5
 0.6 0.4 0.6
 0.4 0.6 0.7
 0.2 0.8 0.8
 0 1 0.9];
set(groot,'defaultAxesColorOrder',co)
plot(rand(5))

To revert to the original color order, use this command.

set(groot,'defaultAxesColorOrder','remove')

Alternatively, set the NextPlot property of the Axes object to 'replacechildren'
before plotting. New plots replace existing plots and use the first color in the color order,
but they do not reset other axes properties.

co = [1 0 0.4
 0.8 0.2 0.5
 0.6 0.4 0.6
 0.4 0.6 0.7
 0.2 0.8 0.8
 0 1 0.9];
ax = axes('ColorOrder',co,'NextPlot','replacechildren');
plot(ax,rand(5))

ColorOrderIndex — Next color
1 (default) | positive integer

Next color to use in the color order, specified as a positive integer. For example, if this
property is set to 1, then the next plot added to the axes uses the first color in the color
order. If the index value exceeds the number of colors in the color order, then the index
value modulo of the number of colors determines the next color used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
then the color order index value increases every time a new plot is added. Reset the color
order by setting the ColorOrderIndex property to 1.

1 Alphabetical List

1-614

Example: ax.ColorOrderIndex = 5

LineStyleOrder — Line-style order
'-' solid line (default) | character vector | cell array of character vectors | string array

Line-style order, specified as a character vector, a cell array of character vectors, or a
string array. Create each element using one or more of the line-style specifiers listed in
the table. You can combine a line and a marker specifier in a single element, such as '-
*'.
Example: {'-*',':','o'}

MATLAB cycles through the line styles only after using all the colors contained in the
ColorOrder property. The default LineStyleOrder has only one line style, '-'.

Specifier Line Style
'-' (default) Solid line
'--' Dashed line
':' Dotted line
'-.' Dash-dotted line
'+' Plus sign markers
'o' Circle markers
'*' Star markers
'.' Point markers
'x' Cross markers
's' Square markers
'd' Diamond markers
'^' Upward-pointing triangle markers
'v' Downward-pointing triangle markers
'>' Right-pointing triangle markers
'<' Left-pointing triangle markers
'p' Five-pointed star (pentagram) markers
'h' Six-pointed star (hexagram) markers

 Axes Properties

1-615

Change Line-Style Order Before Plotting

You must change the line-style order before plotting. Changing the order has no effect on
existing plots. However, many graphics functions reset the line-style order back to the
default value before plotting. To ensure that the axes uses your specified line-style order,
use one of these approaches:

• Change the default line-style order for the axes before plotting.
• Set the NextPlot property of the axes to 'replacechildren'or 'add' before

plotting.

For example, this code changes the default line-style order for all future axes.

set(groot,'defaultAxesLineStyleOrder',{'-*',':','o'})
plot(rand(15))

To revert to the original line-style order, use this command.

set(groot,'defaultAxesLineStyleOrder','remove')

Alternatively, set the NextPlot property of the Axes object to 'replacechildren'
before plotting. New plots replace existing plots and use the first color and line style, but
they do not reset other axes properties.

ax = axes('LineStyleOrder',{'-*',':','o'},'NextPlot','replacechildren');
plot(ax,rand(15))

LineStyleOrderIndex — Next line style
1 (default) | positive integer

Next line style to use in the line-style order, specified as a positive integer. For example, if
this property is set to 1, then the next plot added to the axes uses the first line style in the
line-style order. If the index value exceeds the number of line styles in the line-style order,
then the index value modulo of the number of line styles determines the next line style
used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
then the index value increases every time you add a new plot. Subsequent plots cycle
through the line-style order. Reset the line-style order by setting the
LineStyleOrderIndex property to 1.
Example: ax.LineStyleOrderIndex = 1

1 Alphabetical List

1-616

NextPlot — Properties to reset
'replace' (default) | 'add' | 'replacechildren' | 'replaceall'

Properties to reset when adding a new plot to the axes, specified as one of these values:

• 'add' — Add new plots to the existing axes. Do not delete existing plots or reset axes
properties before displaying the new plot.

• 'replacechildren' — Delete existing plots before displaying the new plot. Reset
the ColorOrderIndex and LineStyleOrderIndex properties to 1, but do not reset
other axes properties. The next plot added to the axes uses the first color and line
style based on the ColorOrder and LineStyle order properties. This value is similar
to using cla before every new plot.

• 'replace' — Delete existing plots and reset axes properties, except Position and
Units, to their default values before displaying the new plot.

• 'replaceall' — Delete existing plots and reset axes properties, except Position
and Units, to their default values before displaying the new plot. This value is similar
to using cla reset before every new plot.

Note For Axes objects with only one y-axis, the 'replace' and 'replaceall'
property values are equivalent. For Axes objects with two y-axes, the 'replace' value
affects only the active side while the 'replaceall' value affects both sides.

Figures also have a NextPlot property. Alternatively, you can use the newplot function
to prepare figures and axes for subsequent graphics commands.

SortMethod — Order for rendering objects
'depth' (default) | 'childorder'

Order for rendering objects, specified as one of these values:

• 'depth' — Draw objects in back-to-front order based on the current view. Use this
value to ensure that objects in front of other objects are drawn correctly.

• 'childorder' — Draw objects in the order in which they are created by graphics
functions, without considering the relationship of the objects in three dimensions. This
value can result in faster rendering, particularly if the figure is very large, but also can
result in improper depth sorting of the objects displayed.

 Axes Properties

1-617

Color and Transparency Maps

Colormap — Color map
parula (default) | m-by-3 array of RGB triplets

Color map, specified as an m-by-3 array of RGB (red, green, blue) triplets that define m
individual colors.
Example: ax.Colormap = [1 0 1; 0 0 1; 1 1 0] sets the color map to three
colors: magenta, blue, and yellow.

MATLAB accesses these colors by their row number.

Alternatively, use the colormap function to change the color map.

ColorScale — Scale for color mapping
'linear' (default) | 'log'

Scale for color mapping, specified as one of these values:

• 'linear' — Linear scale. The tick values along the colorbar also use a linear scale.
• 'log' — Log scale. The tick values along the colorbar also use a log scale.

Example: ax.ColorScale = 'log'

CLim — Color limits
[0 1] (default) | two-element vector of the form [cmin cmax]

Color limits for objects in axes that use the colormap, specified as a two-element vector of
the form [cmin cmax]. This property determines how data values map to the colors in
the colormap where:

• cmin specifies the data value that maps to the first color in the colormap.
• cmax specifies the data value that maps to the last color in the colormap.

The Axes object interpolates data values between cmin and cmax across the colormap.
Values outside this range use either the first or last color, whichever is closest.

CLimMode — Selection mode for CLim
'auto' (default) | 'manual'

Selection mode for the CLim property, specified as one of these values:

1 Alphabetical List

1-618

• 'auto' — Automatically select the limits based on the color data of the graphics
objects contained in the axes.

• 'manual' — Manually specify the values. To specify the values, set the CLim property.
The values do not change when the limits of the axes children change.

Alphamap — Transparency map
array of 64 values from 0 to 1 (default) | array of finite alpha values from 0 to 1

Transparency map, specified as an array of finite alpha values that progress linearly from
0 to 1. The size of the array can be m-by-1 or 1-by-m. MATLAB accesses alpha values by
their index in the array. Alphamaps can be any length.

AlphaScale — Scale for transparency mapping
'linear' (default) | 'log'

Scale for transparency mapping, specified as one of these values:

• 'linear' — Linear scale
• 'log' — Log scale

Example: ax.AlphaScale = 'log'

ALim — Alpha limits
[0 1] (default) | two-element vector of the form [amin amax]

Alpha limits, specified as a two-element vector of the form [amin amax]. This property
affects the AlphaData values of graphics objects, such as surface, image, and patch
objects. This property determines how the AlphaData values map to the figure alpha
map, where:

• amin specifies the data value that maps to the first alpha value in the figure alpha
map.

• amax specifies the data value that maps to the last alpha value in the figure alpha
map.

The Axes object interpolates data values between amin and amax across the figure alpha
map. Values outside this range use either the first or last alpha map value, whichever is
closest.

The Alphamap property of the figure contains the alpha map. For more information, see
the alpha function.

 Axes Properties

1-619

ALimMode — Selection mode for ALim
'auto' (default) | 'manual'

Selection mode for the ALim property, specified as one of these values:

• 'auto' — Automatically select the limits based on the AlphaData values of the
graphics objects contained in the axes.

• 'manual' — Manually specify the alpha limits. To specify the alpha limits, set the
ALim property.

Box Styling

Color — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

1 Alphabetical List

1-620

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.Color = [0 0 1];
Example: ax.Color = 'b';
Example: ax.Color = 'blue';
Example: ax.Color = '#0000FF';

LineWidth — Line width
0.5 (default) | positive numeric value

Line width of axes outline, tick marks, and grid lines, specified as a positive numeric value
in point units. One point equals 1/72 inch.
Example: ax.LineWidth = 1.5

Box — Box outline
'off' (default) | 'on'

 Axes Properties

1-621

Box outline, specified as 'off' or 'on'.

Value Description 2-D Result 3-D Result
'off' Do not display the

box outline around
the axes.

Example: ax.Box =
'off'

'on' Display the box
outline around the
axes. For 3-D views,
use the BoxStyle
property to change
extent of the outline.

Example: ax.Box =
'on'

The XColor, YColor, and ZColor properties control the color of the outline.
Example: ax.Box = 'on'

BoxStyle — Box outline style
'back' (default) | 'full'

Box outline style, specified as 'back' or 'full'. This property affects only 3-D views.

1 Alphabetical List

1-622

Value Description Result
'back' Outline the back planes of

the 3-D box.

Example: ax.BoxStyle =
'back'

'full' Outline the entire 3-D box.

Example: ax.BoxStyle =
'full'

Clipping — Clipping of objects to axes limits
'on' (default) | 'off'

Clipping of objects to the axes limits, specified as either 'on' or 'off'. The clipping
behavior of an object within the Axes object depends on both the Clipping property of
the Axes object and the Clipping property of the individual object. The property value
of the Axes object has these effects:

• 'on' — Enable each individual object within the axes to control its own clipping
behavior based on the Clipping property value for the object.

• 'off' — Disable clipping for all objects within the axes, regardless of the Clipping
property value for the individual objects. Parts of objects can appear outside of the

 Axes Properties

1-623

axes limits. For example, parts can appear outside the limits if you create a plot, use
the hold on command, freeze the axis scaling, and then add a plot that is larger than
the original plot.

This table lists the results for different combinations of Clipping property values.

Clipping Property for
Axes Object

Clipping Property for
Individual Object

Result

'on' 'on' Individual object is clipped.
Others might or might not
be.

'on' 'off' Individual object is not
clipped. Others might or
might not be.

'off' 'on' All objects are unclipped.
'off' 'off' All objects are unclipped.

ClippingStyle — Clipping boundaries
'3dbox' (default) | 'rectangle'

Clipping boundaries, specified as one of the values in this table. If a plot contains
markers, then as long as the data point lies within the axes limits, MATLAB draws the
entire marker.

The ClippingStyle property has no effect if the Clipping property is set to 'off'.

1 Alphabetical List

1-624

Value Descriptions Illustration of Boundary
Region

'3dbox' Clip plotted objects to the
six sides of the axes box
defined by the axis limits.

Thick lines might display
outside the axes limits.

'rectangle' Clip plotted objects to a
rectangular boundary
enclosing the axes in any
given view.

Clip thick lines at the axes
limits.

AmbientLightColor — Background light color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background light color, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short name. The background light is a directionless light that shines uniformly
on all objects in the axes. To add light, use the light function.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 Axes Properties

1-625

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-626

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.AmbientLightColor = [1 0 1]
Example: ax.AmbientLightColor = 'm'
Example: ax.AmbientLightColor = 'magenta'
Example: ax.AmbientLightColor = '#FF00FF'

Position

OuterPosition — Size and location, including labels and margin
[0 0 1 1] (default) | four-element vector of the form [left bottom width height]

Size and location, including the labels and a margin, specified as a four-element vector of
the form [left bottom width height]. By default, MATLAB measures the values in
units normalized to the container. To change the units, set the Units property. The
default value of [0 0 1 1] includes the whole interior of the container.

• The left and bottom elements define the distance from the lower left corner of the
container (typically a figure, panel, or tab) to the lower left corner of the outer position
boundary.

• The width and height elements are the outer position boundary dimensions.

These figures show the areas defined by the OuterPosition values (blue) and the
Position values (red).

2-D View of Axes 3-D View of Axes

For more information on the axes position, see “Control Axes Layout”.

 Axes Properties

1-627

Position — Size and location, excluding margin for labels
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector of form [left
bottom width height]

Size and location, excluding a margin for the labels, specified as a four-element vector of
the form [left bottom width height]. By default, MATLAB measures the values in
units normalized to the container. To change the units, set the Units property.

• The left and bottom elements define the distance from the lower left corner of the
container (typically a figure, panel, or tab) to the lower left corner of the position
boundary.

• The width and height elements are the position boundary dimensions. For axes in a
3-D view, the Position property is the smallest rectangle that encloses the axes.

If you want to specify the position and account for the text around the axes, then set the
OuterPosition property instead. These figures show the areas defined by the
OuterPosition values (blue) and the Position values (red).

2-D View of Axes 3-D View of Axes

For more information on the axes position, see “Control Axes Layout”.

TightInset — Margins for text labels
four-element vector of the form [left bottom right top]

This property is read-only.

Margins for the text labels, specified as a four-element vector of the form [left bottom
right top]. By default, MATLAB measures the values in units normalized to the
container. To change the units, set the Units property.

1 Alphabetical List

1-628

The elements define the distances between the bounds of the Position property and the
extent of the surrounding text. The Position values combined with the TightInset
values define the tightest bounding box that encloses the axes and the surrounding text.

These figures show the areas defined by the OuterPosition values (blue), the
Position values (red), and the Position expanded by the TightInset values
(magenta).

2-D View of Axes 3-D View of Axes

For more information, see “Control Axes Layout”.

ActivePositionProperty — Active position property
'outerposition' (default) | 'position'

Active position property during resize operation, specified as one of these values:

• 'outerposition' — Hold the OuterPosition property constant.
• 'position' — Hold the Position property constant.

A figure can change size if you interactively resize it or during a printing or exporting
operation.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

 Axes Properties

1-629

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0) and the upper right corner maps to
(1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a Name,Value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
Position.

DataAspectRatio — Relative length of data units
[1 1 1] (default) | three-element vector of the form [dx dy dz]

Relative length of data units along each axis, specified as a three-element vector of the
form [dx dy dz]. This vector defines the relative x, y, and z data scale factors. For

1 Alphabetical List

1-630

example, specifying this property as [1 2 1] sets the length of one unit of data in the x-
direction to be the same length as two units of data in the y-direction and one unit of data
in the z-direction.

Alternatively, use the daspect function to change the data aspect ratio.
Example: ax.DataAspectRatio = [1 1 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

DataAspectRatioMode — Data aspect ratio mode
'auto' (default) | 'manual'

Data aspect ratio mode, specified as one of these values:

• 'auto' — Automatically select values that make best use of the available space. If
PlotBoxAspectRatioMode and CameraViewAngleMode are also set to 'auto',
then enable "stretch-to-fill" behavior. Stretch the axes so that it fills the available
space as defined by the Position property.

• 'manual' — Disable the "stretch-to-fill" behavior and use the manually specified data
aspect ratio. To specify the values, set the DataAspectRatio property.

PlotBoxAspectRatio — Relative length of each axis
[1 1 1] (default) | three-element vector of the form [px py pz]

Relative length of each axis, specified as a three-element vector of the form [px py pz]
defining the relative x-axis, y-axis, and z-axis scale factors. The plot box is a box enclosing
the axes data region as defined by the axis limits.

Alternatively, use the pbaspect function to change the data aspect ratio.

If you specify the axis limits, data aspect ratio, and plot box aspect ratio, then MATLAB
ignores the plot box aspect ratio. It adheres to the axis limits and data aspect ratio.
Example: ax.PlotBoxAspectRatio = [1 0.75 0.75]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

PlotBoxAspectRatioMode — Selection mode for PlotBoxAspectRatio
'auto' (default) | 'manual'

Selection mode for the PlotBoxAspectRatio property, specified as one of these values:

 Axes Properties

1-631

• 'auto' — Automatically select values that make best use of the available space. If
DataAspectRatioMode and CameraViewAngleMode also are set to 'auto', then
enable "stretch-to-fill" behavior. Stretch the Axes object so that it fills the available
space as defined by the Position property.

• 'manual' — Disable the "stretch-to-fill" behavior and use the manually specified plot
box aspect ratio. To specify the values, set the PlotBoxAspectRatio property.

View

View — Azimuth and elevation of view
[0 90] (default) | two-element vector of the form [azimuth elevation]

Azimuth and elevation of view, specified as a two-element vector of the form [azimuth
elevation] defined in degree units. Alternatively, use the view function to set the view.
Example: ax.View = [45 45]

Projection — Type of projection onto 2-D screen
'orthographic' (default) | 'perspective'

Type of projection onto a 2-D screen, specified as one of these values:

• 'orthographic' — Maintain the correct relative dimensions of graphics objects
regarding the distance of a given point from the viewer, and draw lines that are
parallel in the data parallel on the screen.

• 'perspective' — Incorporate foreshortening, which enables you to perceive depth
in 2-D representations of 3-D objects. Perspective projection does not preserve the
relative dimensions of objects. Instead, it displays a distant line segment smaller than
a nearer line segment of the same length. Lines that are parallel in the data might not
appear parallel on screen.

CameraPosition — Camera location
three-element vector of the form [x y z]

Camera location, or the viewpoint, specified as a three-element vector of the form [x y
z]. This vector defines the axes coordinates of the camera location, which is the point
from which you view the axes. The camera is oriented along the view axis, which is a
straight line that connects the camera position and the camera target. For an illustration,
see “Camera Graphics Terminology”.

If the Projection property is set to 'perspective', then as you change the
CameraPosition setting, the amount of perspective also changes.

1 Alphabetical List

1-632

Alternatively, use the campos function to set the camera location.
Example: ax.CameraPosition = [0.5 0.5 9]
Data Types: single | double

CameraPositionMode — Selection mode for CameraPosition
'auto' (default) | 'manual'

Selection mode for the CameraPosition property, specified as one of these values:

• 'auto' — Automatically set CameraPosition along the view axis. Calculate the
position so that the camera lies a fixed distance from the target along the azimuth and
elevation specified by the current view, as returned by the view function. Functions
like rotate3d, zoom, and pan, change this mode to 'auto' to perform their actions.

• 'manual' — Manually specify the value. To specify the value, set the
CameraPosition property.

CameraTarget — Camera target point
three-element vector of the form [x y z]

Camera target point, specified as a three-element vector of the form [x y z]. This
vector defines the axes coordinates of the point. The camera is oriented along the view
axis, which is a straight line that connects the camera position and the camera target. For
an illustration, see “Camera Graphics Terminology”.

Alternatively, use the camtarget function to set the camera target.
Example: ax.CameraTarget = [0.5 0.5 0.5]
Data Types: single | double

CameraTargetMode — Selection mode for CameraTarget
'auto' (default) | 'manual'

Selection mode for the CameraTarget property, specified as one of these values:

• 'auto' — Position the camera target at the centroid of the axes plot box.
• 'manual' — Use the manually specified camera target value. To specify a value, set

the CameraTarget property.

CameraUpVector — Vector defining upwards direction
three-element direction vector of the form [x y z]

 Axes Properties

1-633

Vector defining upwards direction, specified as a three-element direction vector of the
form [x y z]. For 2-D views, the default value is [0 1 0]. For 3-D views, the default
value is [0 0 1]. For an illustration, see “Camera Graphics Terminology”.

Alternatively, use the camup function to set the upwards direction.
Example: ax.CameraUpVector = [sin(45) cos(45) 1]

CameraUpVectorMode — Selection mode for CameraUpVector
'auto' (default) | 'manual'

Selection mode for the CameraUpVector property, specified as one of these values:

• 'auto' — Automatically set the value to [0 0 1] for 3-D views so that the positive z-
direction is up. Set the value to [0 1 0] for 2-D views so that the positive y-direction
is up.

• 'manual' — Manually specify the vector defining the upwards direction. To specify a
value, set the CameraUpVector property.

CameraViewAngle — Field of view
6.6086 (default) | scalar angle in range [0,180)

Field of view, specified as a scalar angle greater than 0 and less than or equal to 180.
Changing the camera view angle affects the size of graphics objects displayed in the axes,
but does not affect the degree of perspective distortion. The greater the angle, the larger
the field of view and the smaller objects appear in the scene. For an illustration, see
“Camera Graphics Terminology”.
Example: ax.CameraViewAngle = 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

CameraViewAngleMode — Selection mode for CameraViewAngle
'auto' (default) | 'manual'

Selection mode for the CameraViewAngle property, specified as one of these values:

• 'auto' — Automatically select the field of view as the minimum angle that captures
the entire scene, up to 180 degrees.

• 'manual' — Manually specify the field of view. To specify a value, set the
CameraViewAngle property.

1 Alphabetical List

1-634

Interactivity

Toolbar — Data exploration toolbar
AxesToolbar object (default)

Data exploration toolbar, which is an AxesToolbar object. The toolbar appears at the
top-right corner of the axes when you hover over it.

The toolbar buttons depend on the contents of the axes, but typically include zooming,
panning, rotating, data tips, data brushing, and restoring the original view. You can
customize the toolbar buttons using the axtoolbar and axtoolbarbtn functions.

If you do not want the toolbar to appear when you hover over the axes, set the Visible
property of the AxesToolbar object to 'off'.

ax = gca;
ax.Toolbar.Visible = 'off';

For more information, see AxesToolbar.

Interactions — Interactions
array of interaction objects | []

Interactions, specified as an array of interaction objects or an empty array. The
interactions you specify are available within your chart through gestures. You do not have
to select any axes toolbar buttons to use them. For example, a panInteraction object
enables dragging to pan within a chart. For a list of interaction objects, see “Control
Chart Interactivity”.

The default set of interactions depends on the type of chart you are displaying. You can
replace the default set with a new set of interactions, but you cannot access or modify any
of the interactions in the default set. For example, this code replaces the default set of
interactions with the panInteraction and zoomInteraction objects.

ax = gca;
ax.Interactions = [panInteraction zoomInteraction];

To remove all interactions from the axes, set this property to an empty array. To
temporarily disable the current set of interactions, call the

 Axes Properties

1-635

disableDefaultInteractivity function. You can reenable them by calling the
enableDefaultInteractivity function.

Note

• Setting this property is not supported in the Live Editor.
• Interaction objects are not returned by findobj or findall, and they are not copied

by copyobj.

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

CurrentPoint — Location of mouse pointer
2-by-3 array

Location of mouse pointer, specified as a 2-by-3 array. The CurrentPoint property
contains the (x,y,z) coordinates of the mouse pointer with respect to the axes. The
returned array is of the form:

[xfront yfront zfront
 xback yback zback]

The two points indicate the location of the last mouse click. However, if the figure has a
WindowButtonMotionFcn callback defined, then the points indicate the last location of
the mouse pointer. The figure also has a CurrentPoint property.

The values of the current point when using perspective projection can be different from
the same point in orthographic projection because the shape of the axes volume can be
different.
Orthogonal Projection

When using orthogonal projection, the values depend on whether the click is within the
axes or outside the axes.

1 Alphabetical List

1-636

• If the click is inside the axes, the two points lie on the line that is perpendicular to the
plane of the screen and that passes through the pointer. The coordinates are the
points where this line intersects the front and back surfaces of the axes volume (which
is defined by the axes x, y, and z limits). The first row is the point nearest to the
camera position. The second row is the point farthest from the camera position. This is
true for both 2-D and 3-D views.

• If the click is outside the axes, but within the figure, then the points lie on a line that
passes through the pointer and is perpendicular to the camera target and camera
position planes. The first row is the point in the camera position plane. The second row
is the point in the plane of the camera target.

Perspective Projection

Clicking outside of the Axes object in perspective projection returns the front point as the
current camera position. Only the back point updates with the coordinates of a point that
lies on a line extending from the camera position through the pointer and intersecting the
camera target at that point.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

 Axes Properties

1-637

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.

1 Alphabetical List

1-638

• Cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

 Axes Properties

1-639

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

1 Alphabetical List

1-640

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Axes object responds to the
click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off'. The HitTest property determines if the Axes object responds
to the click or if an ancestor does.

 Axes Properties

1-641

• 'none' — Cannot capture mouse clicks. Clicking the Axes object passes the click to
the object below it in the current view of the figure window, which is typically the axes
or the figure. The HitTest property has no effect.

If you want an object to be clickable when it is underneath other objects that you do not
want to be clickable, then set the PickableParts property of the other objects to
'none' so that the click passes through them.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Axes object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Axes object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Axes object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Figure object | Panel object | Tab object

1 Alphabetical List

1-642

Parent, specified as Figure object, Panel object, or Tab object.

Children — Children
empty GraphicsPlaceholder array | array of graphics objects

Children, returned as an array of graphics objects. Use this property to view a list of the
children or to reorder the children by setting the property to a permutation of itself.

You cannot add or remove children using the Children property. To add a child to this
list, set the Parent property of the child graphics object to the Axes object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'axes'

This property is read-only.

Type of graphics object returned as 'axes'.

 Axes Properties

1-643

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
axes | axis | box | caxis | cla | gca | grid

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-644

axis
Set axis limits and aspect ratios

Syntax
axis(limits)

axis style
axis mode
axis ydirection
axis visibility

lim = axis
[m,v,d] = axis('state')

___ = axis(ax, ___)

Description
axis(limits) specifies the limits for the current axes. Specify the limits as vector of
four, six, or eight elements.

axis style uses a predefined style to set the limits and scaling. For example, specify
the style as equal to use equal data unit lengths along each axis.

axis mode sets whether MATLAB automatically chooses the limits or not. Specify the
mode as manual, auto, or one of the semiautomatic options, such as 'auto x'.

axis ydirection, where ydirection is ij, places the origin at the upper left corner
of the axes. The y values increase from top to bottom. The default for ydirection is xy,
which places the origin at the lower left corner. The y values increase from bottom to top.

axis visibility, where visibility is off, turns off the display of the axes
background. Plots in the axes still display. The default for visibility is on, which
displays the axes background.

 axis

1-645

lim = axis returns the x-axis and y-axis limits for the current axes. For 3-D axes, it also
returns the z-axis limits. For polar axes, it returns the theta-axis and r-axis limits.

[m,v,d] = axis('state') returns the current settings for the axis limit selection, the
axes visibility, and the y-axis direction. This syntax will be removed in a future release.
Use the XLimMode, YLimMode, ZLimMode, Visible, and YDir properties of the axes to
get the values instead.

___ = axis(ax, ___) uses the axes or polar axes specified by ax instead of the
current axes. Specify ax as the first input argument for any of the previous syntaxes. Use
single quotes around input arguments that are character vectors, such as
axis(ax,'equal').

Examples

Set Axis Limits

Plot the sine function.

x = linspace(0,2*pi);
y = sin(x);
plot(x,y,'-o')

1 Alphabetical List

1-646

Change the axis limits so that the x-axis ranges from 0 to 2π and the y-axis ranges from
-1.5 to 1.5.

axis([0 2*pi -1.5 1.5])

 axis

1-647

Use Semiautomatic Axis Limits

Create a plot. Set the limits for the x-axis and set the minimum y-axis limit. Use an
automatically calculated value for the maximum y-axis limit.

x = linspace(-10,10,200);
y = sin(4*x)./exp(.1*x);
plot(x,y)
axis([-10 10 0 inf])

1 Alphabetical List

1-648

Set Axis Limits for Multiple Axes

Create a figure with two subplots. Plot a sine wave in each subplot. Then, set the axis
limits for the subplots to the same values.

x1 = linspace(0,10,100);
y1 = sin(x1);
ax1 = subplot(2,1,1);
plot(ax1,x1,y1)

x2 = linspace(0,5,100);

 axis

1-649

y2 = sin(x2);
ax2 = subplot(2,1,2);
plot(ax2,x2,y2)

axis([ax1 ax2],[0 10 -1 1])

Display Plot Without Axes Background

Plot a surface without displaying the axes lines and background.

surf(peaks)
axis off

1 Alphabetical List

1-650

Use Tight Axis Limits and Return Values

Plot a surface. Set the axis limits to equal the range of the data so that the plot extends to
the edges of the axes.

surf(peaks)
axis tight

 axis

1-651

Return the values of the current axis limits.

l = axis

l = 1×6

 1.0000 49.0000 1.0000 49.0000 -6.5466 8.0752

Change Direction of Coordinate System

Create a checkerboard plot and change the direction of the coordinate system.

1 Alphabetical List

1-652

First, create the plot using the summer colormap. By default, the x values increase from
left to right and the y values increase from bottom to top.

C = eye(10);
pcolor(C)
colormap summer

Reverse the coordinate system so that the y values increase from top to bottom.

axis ij

 axis

1-653

Retain Current Axis Limits When Adding New Plots

Plot a sine wave.

x = linspace(0,10);
y = sin(x);
plot(x,y)

1 Alphabetical List

1-654

Add another sine wave to the axes using hold on. Keep the current axis limits by setting
the limits mode to manual.

y2 = 2*sin(x);
hold on
axis manual
plot(x,y2)
hold off

 axis

1-655

If you want the axes to choose the appropriate limits, set the limits mode back to
automatic.

axis auto

1 Alphabetical List

1-656

Input Arguments
limits — Axis limits
four-element vector | six-element vector | eight-element vector

Axis limits, specified as a vector of four, six, or eight elements.

For Cartesian axes, specify the limits in one of these forms:

• [xmin xmax ymin ymax] — Set the x-axis limits to range from xmin to xmax. Set
the y-axis limits to range from ymin to ymax.

 axis

1-657

• [xmin xmax ymin ymax zmin zmax] — Also set the z-axis limits to range from
zmin to zmax.

• [xmin xmax ymin ymax zmin zmax cmin cmax] — Also set the color limits.
cmin is the data value that corresponds to the first color in the colormap. cmax is the
data value that corresponds to the last color in the colormap.

The XLim, YLim, ZLim, and CLim properties for the Axes object store the limit values.

For polar axes, specify the limits in this form:

• [thetamin thetamax rmin rmax] — Set the theta-axis limits to range from
thetamin to thetamax. Set the r-axis limits to range from rmin to rmax.

The ThetaLim and RLim properties for the PolarAxes object store the limit values.

For partially automatic limits, use inf or -inf for the limits you want the axes to choose
automatically. For example, axis([-inf 10 0 inf]) lets the axes choose the
appropriate minimum x-axis limit and maximum y-axis limit. It uses the specified values
for the maximum x-axis limit and minimum y-axis limit.

Note If the x-axis, y-axis, or z-axis displays categorical, datetime, or duration values, then
use the xlim, ylim, and zlim functions to set the limits instead.

Example: axis([0 1 0 1])
Example: axis([0 1 0 1 0 1])
Example: axis([0 inf 0 inf])

mode — Manual, automatic, or semiautomatic selection of axis limits
manual | auto | 'auto x' | 'auto y' | 'auto z' | 'auto xy' | 'auto xz' | 'auto
yz'

Manual, automatic, or semiautomatic selection of axis limits, specified as one of the
values in this table.

1 Alphabetical List

1-658

Value Description Axes Properties That
Change

manual Freeze all axis limits at their
current values.

Sets XLimMode, YLimMode,
and ZLimMode to
'manual'. If you are
working with polar axes,
then this option sets
ThetaLimMode and
RLimMode to 'manual'.

auto Automatically choose all
axis limits.

Sets XLimMode, YLimMode,
and ZLimMode to 'auto'. If
you are working with polar
axes, then this option sets
ThetaLimMode and
RLimMode to 'auto'.

'auto x' Automatically choose the x-
axis limits.

Sets XLimMode to 'auto'.

'auto y' Automatically choose the y-
axis limits.

Sets YLimMode to 'auto'.

'auto z' Automatically choose the z-
axis limits.

Sets ZLimMode to 'auto'.

'auto xy' Automatically choose the x-
axis and y-axis limits.

Sets XLimMode and
YLimMode to 'auto'.

'auto xz' Automatically choose the x-
axis and z-axis limits.

Sets XLimMode and
ZLimMode to 'auto'.

'auto yz' Automatically choose the y-
axis and z-axis limits.

Sets YLimMode and
ZLimMode to 'auto'.

Note You cannot use these options with polar axes.

style — Axis limits and scaling
tight | fill | equal | image | square | vis3d | normal

Axis limits and scaling, specified as one of these values.

 axis

1-659

Value Description Axes Properties That
Change

tight Fit the axes box tightly
around the data by setting
the axis limits equal to the
range of the data.

XLimMode, YLimMode, and
ZLimMode change to
'auto'. If you are working
with polar axes, then
ThetaLimMode and
RLimMode change. The
limits automatically update
to incorporate new data
added to the axes. To keep
the limits from changing
when using hold on, use
axis tight manual.

equal Use the same length for the
data units along each axis.

Sets DataAspectRatio to
[1 1 1], sets
PlotBoxAspectRatio to
[3 4 4], and sets the
associated mode properties
to manual. Disables the
“stretch-to-fill” behavior.

image Use the same length for the
data units along each axis
and fit the axes box tightly
around the data.

Sets DataAspectRatio to
[1 1 1]and sets the
associated mode property to
manual. Disables the
“stretch-to-fill” behavior.

square Use axis lines with equal
lengths. Adjust the
increments between data
units accordingly.

Sets PlotBoxAspectRatio
to [1 1 1] and sets the
associated mode property to
manual. Disables the
“stretch-to-fill” behavior.

fill Enable the “stretch-to-fill”
behavior (the default). The
lengths of each axis line fill
the position rectangle
defined in the Position
property of the axes.

Sets the plot box aspect
ratio mode and data aspect
ratio mode properties to
auto.

1 Alphabetical List

1-660

Value Description Axes Properties That
Change

vis3d Freeze the aspect ratio
properties.

Sets the plot box aspect
ratio mode and data aspect
ratio mode properties to
manual.

normal Restore the default
behavior.

Sets the plot box aspect
ratio mode and data aspect
ratio mode properties to
auto.

For more information on the plot box aspect ratio and the data aspect ratio, see the
PlotBoxAspectRatio and DataAspectRatio properties.

Note You cannot use these options with polar axes, except for the axis tight and axis
normal commands.

ydirection — y-axis direction
xy (default) | ij

y-axis direction, specified as one of these values:

• xy — Default direction. For axes in a 2-D view, the y-axis is vertical with values
increasing from bottom to top.

• ij — Reverse direction. For axes in a 2-D view, the y-axis is vertical with values
increasing from top to bottom.

Note You cannot use these options with polar axes.

visibility — Axes lines and background visibility
on (default) | off

Axes lines and background visibility, specified as either on or off. Specifying the visibility
sets the Visible property of the Axes object or PolarAxes object to the specified value.

ax — Target axes
one or more axes

 axis

1-661

Target axes, specified as one or more axes. You can specify Axes objects or PolarAxes
objects. If you do not specify the axes, then axis sets the limits for the current axes
(gca).

When you specify the axes, use single quotes around other input arguments that are
character vectors.
Example: axis(ax,'tight')
Example: axis(ax,limits)
Example: axis(ax,'manual')

Output Arguments
lim — Current limit values
four-element vector | six-element vector

Current limit values, returned as a four-element or six-element vector.

• For Cartesian axes in a 2-D view, lim is of the form [xmin xmax ymin ymax]. For
axes in a 3-D view, lim is of the form [xmin xmax ymin ymax zmin zmax]. The
XLim, YLim, and ZLim properties for the Axes object store the limit values.

• For polar axes, lim is of the form [thetamin thetamax rmin rmax]. The
ThetaLim and RLim properties for the PolarAxes object store the limit values.

Tips
• You can combine multiple input arguments together, for example, axis image ij .

The options are evaluated from left to right. Subsequent options can overwrite
properties set by prior ones.

• If axes do not exist, the axis function creates them.
• Use hold on to keep plotting functions from overriding preset axis limits.

See Also
Functions
caxis | grid | subplot | title | xlim | ylim | zlim

1 Alphabetical List

1-662

Properties
Axes | PolarAxes

Topics
“Specify Axis Limits”
“Control Ratio of Axis Lengths and Data Unit Lengths”

Introduced before R2006a

 axis

1-663

axtoolbar
Create axes toolbar

Syntax
tb = axtoolbar(buttons)
tb = axtoolbar(ax,buttons)
tb = axtoolbar
tb = axtoolbar(ax)
tb = axtoolbar(___ ,Name,Value)
[tb,btns] = axtoolbar(___)

Description
tb = axtoolbar(buttons) replaces the default toolbar that appears above the top-
right corner of the current axes with a toolbar that contains only the specified buttons.
For example, axtoolbar({'pan','restoreview'}) specifies a button to pan and a
button to restore the original view. The function returns the AxesToolbar object created.

tb = axtoolbar(ax,buttons) replaces the toolbar for the axes specified by ax,
instead of the current axes.

tb = axtoolbar replaces the toolbar for the current axes with an empty toolbar.

tb = axtoolbar(ax) replaces the toolbar for the specified axes with an empty toolbar,
instead of the current axes.

tb = axtoolbar(___ ,Name,Value) specifies toolbar properties using one or more
name-value pair arguments.

[tb,btns] = axtoolbar(___) also returns the toolbar button objects created, which
are either ToolbarStateButton objects or ToolbarPushButton objects. You can use
the objects to modify the toolbar and toolbar buttons after you create them.

1 Alphabetical List

1-664

Examples

Create Toolbar with Subset of Default Buttons

Create a plot. Replace the standard axes toolbar with a custom toolbar that includes
buttons to zoom in, zoom out, and restore the view. Return the AxesToolbar object and
the button objects created as output arguments.

plot(magic(5))
[tb,btns] = axtoolbar({'zoomin','zoomout','restoreview'});

 axtoolbar

1-665

Create Toolbar for Specific Axes Object

Create two subplots with a custom toolbar for each one.

First, create two subplots and assign the Axes objects to the variables ax1 and ax2.
Replace the toolbar for the upper subplot with a custom toolbar by specifying ax1 as the
first input argument to the axtoolbar function. Then, replace the toolbar for the lower
subplot. Hover over each subplot to see its toolbar.

ax1 = subplot(2,1,1);
plot(ax1,magic(5))
[tb1,btns1] = axtoolbar(ax1,{'zoomin','zoomout','restoreview'});

ax2 = subplot(2,1,2);
plot(ax2,magic(5))
[tb2,btns2] = axtoolbar(ax2,{'pan','datacursor'});

1 Alphabetical List

1-666

Input Arguments
ax — Target axes
Axes object

Target axes, specified as an Axes object.

buttons — Toolbar buttons
'default' | cell array with one or more button names

Toolbar buttons, specified as 'default' for the default set of buttons or a cell array
containing one or more button names listed in this table. The buttons appear in a

 axtoolbar

1-667

standard order on the toolbar regardless of the order in which you specify them. Each
button can appear only once in the toolbar.

Button Name Icon Description
'export' Save the axes as a tightly

cropped image or PDF file
'brush' Toggle data brushing mode

'datacursor' Toggle data cursor mode

'rotate' Toggle rotate mode

'pan' Toggle pan mode

'zoomin' Toggle zoom-in mode

'zoomout' Toggle zoom-out mode

'restoreview' Restore original view of
axes

Example: axtoolbar({'zoomin','zoomout','restoreview'})

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
axtoolbar({'zoomin','zoomout'},'SelectionChangedFcn',@mycallback)

Note The properties listed here are only a subset. For a full list, see AxesToolbar.

SelectionChangedFcn — Callback for selection changes
'' (default) | function handle | cell array | character vector

Callback for selection changes, specified as one of these values:

1 Alphabetical List

1-668

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when you click a state button. It does not execute if a state button
Value property changes programmatically.

This callback function can access specific information about interaction with the buttons.
MATLAB passes this information in a SelectionChangedEventData object as the
second argument to your callback function. You can query the object properties using dot
notation. For example, event.Selection returns the currently selected button. The
SelectionChangedEventData object is not available to callback functions specified as
character vectors.

This table lists the properties of the SelectionChangedEventData object.

Property Description
Axes Axes object associated with the toolbar
Selection Currently selected button
PreviousSelection Previously selected button
Source AxesToolbar object
EventName 'SelectionChanged'

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

 axtoolbar

1-669

Output Arguments
tb — Toolbar
AxesToolbar object

Toolbar, returned as an AxesToolbar object. Use tb to modify the toolbar after you
create it. For a list of properties, see AxesToolbar.

btns — Toolbar buttons
graphics array

Toolbar buttons, returned as a graphics array containing one or more
ToolbarPushButton or ToolbarStateButton objects. Use the elements in the btns
array to modify the buttons after you create them. For a list of properties, see
ToolbarStateButton and ToolbarPushButton.

Limitations
• Custom toolbars do not appear in figures in the Live Editor. To see the custom toolbar,

open the figure in a separate figure window.

See Also
Functions
axtoolbarbtn

Properties
AxesToolbar | ToolbarPushButton | ToolbarStateButton

Introduced in R2018b

1 Alphabetical List

1-670

axtoolbarbtn
Add buttons to axes toolbar

Syntax
btn = axtoolbarbtn(tb)
btn = axtoolbarbtn(tb,style)
btn = axtoolbarbtn(tb,style,Name,Value)

Description
btn = axtoolbarbtn(tb) adds a push button to the axes toolbar specified by tb and
returns the ToolbarPushButton object.

btn = axtoolbarbtn(tb,style) adds either a push button or a state button to the
toolbar specified by tb and returns the button object. For a push button, set the style to
'push'. For a state button with two states, set the style to 'state'.

btn = axtoolbarbtn(tb,style,Name,Value) specifies button properties using one
or more name-value pair arguments.

Examples

Add State Button to Toolbar

Add a custom state button for the axes toolbar that turns on and off the axes grid lines.

First, create a program file called mycustomstatebutton.m. Within the program file:

• Plot random data.
• Create a toolbar for the axes with options to zoom in, zoom out, and restore the view

using the axtoolbar function.

 axtoolbarbtn

1-671

• Add an empty state button to the toolbar using the axtoolbarbtn function. Return
the ToolbarStateButton object.

• Specify the icon, tool tip, and callback function for the state button by setting the
Icon, Tooltip, and ValueChangedFcn properties. This example uses the icon,
which you must first save as an image file called mygridicon.png on your path.

When you run the program file, click the icon to turn on and off the grid lines.

function mycustomstatebutton

plot(rand(5))
ax = gca;
tb = axtoolbar(ax,{'zoomin','zoomout','restoreview'});

btn = axtoolbarbtn(tb,'state');
btn.Icon = 'mygridicon.png';
btn.Tooltip = 'Grid Lines';
btn.ValueChangedFcn = @customcallback;

 function customcallback(src,event)
 switch src.Value
 case 'off'
 event.Axes.XGrid = 'off';
 event.Axes.YGrid = 'off';
 event.Axes.ZGrid = 'off';
 case 'on'
 event.Axes.XGrid = 'on';
 event.Axes.YGrid = 'on';
 event.Axes.ZGrid = 'on';
 end
 end

end

1 Alphabetical List

1-672

Add Push Button to Toolbar

Create a custom push button for the axes toolbar that snaps the view of the axes to a 2-D
view.

First, create a program file called mycustompushbutton.m. Within the program file:

• Plot a surface.
• Create a toolbar for the axes with options to zoom in, zoom out, rotate, and restore the

view using the axtoolbar function.
• Add an empty push button to the toolbar using the axtoolbarbtn function. Return

the ToolbarPushButton object.

 axtoolbarbtn

1-673

• Specify the icon, tool tip, and callback function for the push button by setting the
Icon, Tooltip, and ButtonPressedFcn properties, respectively. This example uses
the icon, which you must first save as an image file called my2dicon.png on your
path.

When you run the program file, click the icon to snap the view of the axes to a 2-D view.

function mycustompushbutton

surf(peaks(25))
ax = gca;
tb = axtoolbar(ax,{'zoomin','zoomout','rotate','restoreview'});

btn = axtoolbarbtn(tb,'push');
btn.Icon = 'my2dicon.png';
btn.Tooltip = 'Snap to 2-D view';
btn.ButtonPushedFcn = @customcallback;

 function customcallback(src,event)
 view(event.Axes,2)
 end

end

1 Alphabetical List

1-674

Input Arguments
tb — Toolbar
AxesToolbar object

Toolbar, specified as an AxesToolbar object. Create the toolbar using the axtoolbar
function, such as tb = axestoolbar.

style — Button style
'push' | 'state'

Button style, specified as one of these options.

 axtoolbarbtn

1-675

Style Description
'push' Push button. When clicked once, the button

appears to press and release.
'state' State button with two states. When clicked

once, the button remains in the pressed or
released state until it is clicked again.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: axtoolbarbtn(tb,'push','Icon','myimage.png','Tooltip','My
Icon Tooltip')

Note The properties listed here are only a subset. Push buttons and state buttons
support a different set of properties. For a full list of properties and descriptions for each
type, see the associated property page.

• ToolbarPushButton
• ToolbarStateButton

Icon — Button icon
'none' (default) | file name | m-by-n-by-3 array | m-by-n matrix | predefined icon

Button icon, specified as one of these values:

• File name — Specify the file name as a character vector or a string scalar. The file
name can be an image file on the path or a full path to an image file. The image file
type must be JPEG, GIF, or PNG. MATLAB scales down the image to fit, if necessary.

• Array — Specify an m-by-n-by-3 array of RGB triplets.
• Matrix — Specify an m-by-n matrix of numeric values.

• If the values are of an integer type, then specify values between 0 and 63. A value
of 0 is the darkest color and a value of 63 is transparent. NaN is also transparent.

1 Alphabetical List

1-676

• If the values are of type double, then specify values between 1 and 64. A value of
1 is the darkest color and a value of 64 is transparent. NaN is also transparent.

• Predefined icon — Specify one of the names in this table.

Icon Name Result
'brush'

'datacursor'

'rotate'

'pan'

'zoomin'

'zoomout'

'restoreview'

'none' No icon

Example: btn.Icon = 'icon.png'
Example: btn.Icon = 'C:\Documents\icon.png'
Example: btn.Icon = 'rotate'

Tooltip — Button tool tip
'' (default) | character vector | cell array of character vectors | string array

Button tool tip, specified as a character vector, cell array of character vectors, or a string
array. Use this property to display a message when you hover the pointer over the button.
To display multiple lines of text, specify a cell array of character vectors or a string array.
Each element in the array displays a separate line of text.
Example: btn.Tooltip = 'My Tooltip'

See Also
Functions
axtoolbar

 axtoolbarbtn

1-677

Properties
AxesToolbar | ToolbarPushButton | ToolbarStateButton

Introduced in R2018b

1 Alphabetical List

1-678

AxesToolbar Properties
Axes toolbar appearance and behavior

Description
AxesToolbar properties control the appearance and behavior of the AxesToolbar
object. By changing property values, you can modify certain aspects of the toolbar.

tb = axtoolbar('default');
tb.Visible = 'off';

Properties
Interactivity

Visible — Visibility
'on' (default) | 'off'

Visibility the axes toolbar when you hover over the axes, specified as one of these values:

• 'on' — Display the toolbar above the top-right corner of the axes when you hover
over the axes.

• 'off' — Do not display the toolbar. You still can access the properties of an invisible
toolbar.

Callbacks

SelectionChangedFcn — Callback for selection changes
'' (default) | function handle | cell array | character vector

Callback for selection changes, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

 AxesToolbar Properties

1-679

This callback executes when you click a state button. It does not execute if a state button
Value property changes programmatically.

This callback function can access specific information about interaction with the buttons.
MATLAB passes this information in a SelectionChangedEventData object as the
second argument to your callback function. You can query the object properties using dot
notation. For example, event.Selection returns the currently selected button. The
SelectionChangedEventData object is not available to callback functions specified as
character vectors.

This table lists the properties of the SelectionChangedEventData object.

Property Description
Axes Axes object associated with the toolbar
Selection Currently selected button
PreviousSelection Previously selected button
Source AxesToolbar object
EventName 'SelectionChanged'

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

1 Alphabetical List

1-680

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

 AxesToolbar Properties

1-681

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the AxesToolbar object. The Interruptible property has
two values:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback

1 Alphabetical List

1-682

determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the AxesToolbar object tries to interrupt a running callback that cannot
be interrupted, then the BusyAction property determines if it is discarded or put in the
queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

• 'cancel' — Discard the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

Parent/Child

Children — Child buttons
graphics array

Child buttons, specified as a graphics array of ToolbarPushButton and
ToolbarStateButton objects. If you are using the default axes toolbar, then this
property does not contain any children. However, if you create a custom toolbar using the
axtoolbar function, then this property contains the child buttons.

Parent — Parent container
Axes object

Parent container, specified as an Axes object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

 AxesToolbar Properties

1-683

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'axestoolbar' (default)

This property is read-only.

Type of graphics object, returned as 'axestoolbar'. Use this property to find all objects
of a given type within a plotting hierarchy.

Tag — User-specified tag
'' (default) | character vector | string scalar

Tag to associate with the axestoolbar object, specified as a character vector or string
scalar.

Use this property to find axestoolbar objects in a hierarchy. For example, you can use
the findobj function to find axestoolbar objects that have a specific Tag property
value.
Example: 'January Data'

1 Alphabetical List

1-684

UserData — User data
[] (default) | any MATLAB data

User data to associate with the axestoolbar object, specified as any MATLAB data, for
example, a scalar, vector, matrix, cell array, character array, table, or structure. MATLAB
does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

Unused Properties

UIContextMenu — Context menu (not used)
uicontextmenu object

Context menu, specified as a ContextMenu object.

Note The axes toolbar does not use this property.

ButtonDownFcn — Mouse-click callback (not used)
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as a function handle, a cell array, or a character vector.

Note The axes toolbar does not use this property.

See Also
axtoolbar

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2018b

 AxesToolbar Properties

1-685

balance
Diagonal scaling to improve eigenvalue accuracy

Syntax
[T,B] = balance(A)
[S,P,B] = balance(A)
B = balance(A)
B = balance(A,'noperm')

Description
[T,B] = balance(A) returns a similarity transformation T such that B = T\A*T, and B
has, as nearly as possible, approximately equal row and column norms. T is a permutation
of a diagonal matrix whose elements are integer powers of two to prevent the
introduction of roundoff error. If A is symmetric, then B == A and T is the identity matrix.

[S,P,B] = balance(A) returns the scaling vector S and the permutation vector P
separately. The transformation T and balanced matrix B are obtained from A, S, and P by
T(:,P) = diag(S) and B(P,P) = diag(1./S)*A*diag(S).

B = balance(A) returns just the balanced matrix B.

B = balance(A,'noperm') scales A without permuting its rows and columns.

Examples
This example shows the basic idea. The matrix A has large elements in the upper right
and small elements in the lower left. It is far from being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =
 1.0e+04 *
 0.0001 0.0100 1.0000

1 Alphabetical List

1-686

 0.0000 0.0001 0.0100
 0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers of two and a
balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =
 1.0e+03 *
 2.0480 0 0
 0 0.0320 0
 0 0 0.0003
B =
 1.0000 1.5625 1.2207
 0.6400 1.0000 0.7813
 0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A, shown here as the
columns of V.

[V,E] = eig(A); V
V =
0.9999 -0.9999 -0.9999
0.0100 0.0059 + 0.0085i 0.0059 - 0.0085i
0.0001 0.0000 - 0.0001i 0.0000 + 0.0001i

Note that all three vectors have the first component the largest. This indicates V is badly
conditioned; in fact cond(V) is 8.7766e+003. Next, look at the eigenvectors of B.

[V,E] = eig(B); V
V =
0.6933 -0.6993 -0.6993
0.4437 0.2619 + 0.3825i 0.2619 - 0.3825i
0.5679 0.2376 - 0.4896i 0.2376 + 0.4896i

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill conditioning is
concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed eigenvalues of A and B
agree within roundoff error; balancing has little effect on the computed results.

 balance

1-687

Limitations
Balancing can destroy the properties of certain matrices; use it with some care. If a
matrix contains small elements that are due to roundoff error, balancing might scale them
up to make them as significant as the other elements of the original matrix.

Tips
• Nonsymmetric matrices can have poorly conditioned eigenvalues. Small perturbations

in the matrix, such as roundoff errors, can lead to large perturbations in the
eigenvalues. The condition number of the eigenvector matrix,

cond(V) = norm(V)*norm(inv(V))

where

[V,T] = eig(A)

relates the size of the matrix perturbation to the size of the eigenvalue perturbation.
Note that the condition number of A itself is irrelevant to the eigenvalue problem.

Balancing is an attempt to concentrate any ill conditioning of the eigenvector matrix
into a diagonal scaling. Balancing usually cannot turn a nonsymmetric matrix into a
symmetric matrix; it only attempts to make the norm of each row equal to the norm of
the corresponding column.

Note The MATLAB eigenvalue function, eig(A), automatically balances A before
computing its eigenvalues. Turn off the balancing with eig(A,'nobalance').

See Also
eig | equilibrate

1 Alphabetical List

1-688

bandwidth
Lower and upper matrix bandwidth

Syntax
B = bandwidth(A,type)

[lower,upper] = bandwidth(A)

Description
B = bandwidth(A,type) returns the bandwidth on page 1-692 of matrix A specified
by type. Specify type as 'lower' for the lower bandwidth, or 'upper' for the upper
bandwidth.

[lower,upper] = bandwidth(A) returns the lower bandwidth, lower, and upper
bandwidth, upper, of matrix A.

Examples

Find Bandwidth of Triangular Matrix

Create a 6-by-6 lower triangular matrix.

A = tril(magic(6))

A = 6×6

 35 0 0 0 0 0
 3 32 0 0 0 0
 31 9 2 0 0 0
 8 28 33 17 0 0
 30 5 34 12 14 0
 4 36 29 13 18 11

 bandwidth

1-689

Find the lower bandwidth of A by specifying type as 'lower'. The result is 5 since every
diagonal below the main diagonal has nonzero elements.

B = bandwidth(A,'lower')

B = 5

Find the upper bandwidth of A by specifying type as 'upper'. The result is 0 since there
are no nonzero elements above the main diagonal.

B = bandwidth(A,'upper')

B = 0

Find Bandwidth of Sparse Block Matrix

Create a 100-by-100 sparse block matrix.

B = kron(speye(25),ones(4));

View a 10-by-10 section of elements from the top left of B.

full(B(1:10,1:10))

ans = 10×10

 1 1 1 1 0 0 0 0 0 0
 1 1 1 1 0 0 0 0 0 0
 1 1 1 1 0 0 0 0 0 0
 1 1 1 1 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 0 0
 0 0 0 0 0 0 0 0 1 1
 0 0 0 0 0 0 0 0 1 1

B has 4-by-4 blocks of ones centered on the main diagonal.

Find both the lower and upper bandwidths of B by specifying two output arguments.

[lower,upper] = bandwidth(B)

1 Alphabetical List

1-690

lower = 3

upper = 3

Input Arguments
A — Input matrix
2-D numeric matrix

Input matrix, specified as a 2-D numeric matrix. A can be either full or sparse.
Data Types: single | double
Complex Number Support: Yes

type — Bandwidth type
'lower' | 'upper'

Bandwidth type, specified as 'lower' or 'upper'.

• Specify 'lower' for the lower bandwidth (below the main diagonal).
• Specify 'upper' for the upper bandwidth (above the main diagonal).

Output Arguments
B — Lower or upper bandwidth
nonnegative integer scalar

Lower or upper bandwidth, returned as a nonnegative integer scalar.

• If type is 'lower', then 0 ≤ B ≤ size(A,1)-1.
• If type is 'upper', then 0 ≤ B ≤ size(A,2)-1.

lower — Lower bandwidth
nonnegative integer scalar

Lower bandwidth, returned as a nonnegative integer scalar. lower is in the range
0 ≤ lower ≤ size(A,1)-1.

 bandwidth

1-691

upper — Upper bandwidth
nonnegative integer scalar

Upper bandwidth, returned as a nonnegative integer scalar. upper is in the range
0 ≤ upper ≤ size(A,2)-1.

Definitions

Upper and Lower Bandwidth
The upper and lower bandwidths of a matrix are measured by finding the last diagonal
(above or below the main diagonal, respectively) that contains nonzero values.

That is, for a matrix A with elements Aij:

• The upper bandwidth B1 is the smallest number such that Ai j = 0 whenever j− i > B1.
• The lower bandwidth B2 is the smallest number such that Ai j = 0 whenever i− j > B2.

Note that this measurement does not disallow intermediate diagonals in a band from
being all zero, but instead focuses on the location of the last diagonal containing
nonzeros. By convention, the upper and lower bandwidths of an empty matrix are both
zero.

Tips
• Use the isbanded function to test if a matrix is within a specific lower and upper

bandwidth.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Alphabetical List

1-692

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
diag | isbanded | isdiag | istril | istriu

Introduced in R2014a

 bandwidth

1-693

bar
Bar graph

Syntax
bar(y)
bar(x,y)

bar(___ ,width)
bar(___ ,style)
bar(___ ,color)
bar(___ ,Name,Value)

bar(ax, ___)

b = bar(___)

Description
bar(y) creates a bar graph with one bar for each element in y. If y is a matrix, then bar
groups the bars according to the rows in y.

bar(x,y) draws the bars at the locations specified by x.

bar(___ ,width) sets the relative bar width, which controls the separation of bars
within a group. Specify width as a scalar value. Use this option with any of the input
argument combinations in the previous syntaxes.

bar(___ ,style) specifies the style of the bar groups. For example, use 'stacked' to
display each group as one multicolored bar.

bar(___ ,color) sets the color for all the bars. For example, use 'r' for red bars.

bar(___ ,Name,Value) modifies the bar chart using one or more name-value pair
arguments. The settings apply to all bars plotted. For example, use
'EdgeColor','black' to outline all the bars in black.

1 Alphabetical List

1-694

bar(ax, ___) plots into the axes specified by ax instead of into the current axes (gca).
The option ax can precede any of the input argument combinations in the previous
syntaxes.

b = bar(___) returns one or more Bar objects. If y is a vector, then bar creates one
Bar object. If y is a matrix, then bar creates a Bar object for each column. Use b to make
future modifications to the Bar objects after they are created.

Examples

Create Bar Graph

y = [75 91 105 123.5 131 150 179 203 226 249 281.5];
bar(y)

 bar

1-695

Specify Bar Locations

Specify the bar locations along the x-axis.

x = 1900:10:2000;
y = [75 91 105 123.5 131 150 179 203 226 249 281.5];
bar(x,y)

1 Alphabetical List

1-696

Specify Bar Width

Set the width of each bar to 40 percent of the total space available for each bar.

y = [75 91 105 123.5 131 150 179 203 226 249 281.5];
bar(y,0.4)

 bar

1-697

Display Groups of Bars

Display four groups of three bars.

y = [2 2 3; 2 5 6; 2 8 9; 2 11 12];
bar(y)

1 Alphabetical List

1-698

Display Stacked Bars

Display one bar for each row of the matrix. The height of each bar is the sum of the
elements in the row.

y = [2 2 3; 2 5 6; 2 8 9; 2 11 12];
bar(y,'stacked')

 bar

1-699

Create Bar Graph with Categorical Data

Create a bar graph with categorical values along the x-axis. By default, the categories
display in alphabetical order.

c = categorical({'apples','pears','oranges'});
prices = [1.23 0.99 2.3];
bar(c,prices)

1 Alphabetical List

1-700

Specify Subplot for Bar Graph

Create a figure with two subplots. In the upper subplot, plot a bar graph. In the lower
subplot, plot a stacked bar graph of the same data.

y = [1 2 3; 4 5 6];
ax1 = subplot(2,1,1);
bar(ax1,y)

ax2 = subplot(2,1,2);
bar(ax2,y,'stacked')

 bar

1-701

Specify Bar Color

Create a bar graph using red bars.

y = [75 91 105 123.5 131 150 179 203 226 249 281.5];
bar(y,'r')

1 Alphabetical List

1-702

Specify Bar and Outline Colors

Set the bar interior color and outline color using RGB triplets. Set the width of the bar
outline.

y = [75 91 105 123.5 131 150 179 203 226 249 281.5];
bar(y,'FaceColor',[0 .5 .5],'EdgeColor',[0 .9 .9],'LineWidth',1.5)

 bar

1-703

Control Individual Bar Colors

Control individual bar colors using the CData property of the Bar object.

Create a bar chart and assign the Bar object to a variable. Set the FaceColor property
of the Bar object to 'flat' so that the chart uses the colors defined in the CData
property. By default, the CData property is prepopulated with a matrix of the default RGB
color values. To change a particular color, change the corresponding row in the matrix.
For example, change the color of the second bar.

b = bar(rand(10,1));
b.FaceColor = 'flat';
b.CData(2,:) = [.5 0 .5];

1 Alphabetical List

1-704

Bar Chart with Colormap Colors

Create a bar chart that uses colormap colors by setting the FaceColor property to
'flat'. Then set the CData property for each Bar object to an integer.

y = [1 3 5; 3 2 7; 3 4 2];
b = bar(y,'FaceColor','flat');
for k = 1:size(y,2)
 b(k).CData = k;
end

 bar

1-705

Change Properties for Specific Bar Series

Create a bar graph with a three-column matrix input and return the three bar series
objects. bar creates one bar series for each column in the matrix.

y = [2 4 6; 3 4 5];
b = bar(y);

1 Alphabetical List

1-706

Change properties for a specific bar series by indexing into the object array. For example,
change properties of the bars representing the second column of y using b(2). Starting
in R2014b, you can use dot notation to set properties. If you are using an earlier release,
use the set function instead.

b(2).LineWidth = 2;
b(2).EdgeColor = 'red';

 bar

1-707

Input Arguments
x — x values
vector | matrix

x values, specified as a vector or a matrix. If x and y are both vectors, then they must be
equal length. If x and y are both matrices, then they must be equal size. If x is a vector
and y is a matrix, then the length of x must equal the number of rows in y.

The x values do not have to be in order, but they cannot contain duplicate values. If x is a
matrix, then it cannot contain duplicate values across columns.

1 Alphabetical List

1-708

Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

y — y values
vector | matrix

y values, specified as a vector or a matrix.

• If y is a vector, then bar draws one bar for each element. The bar function treats all
vectors as column vectors.

• If y is a matrix, then bar groups the bars according to the rows in y.

Example: [10 8 5 7 3 9 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

width — Bar width
0.8 (default) | scalar

Bar width, specified as a fraction of the total space available for each bar. The default of
0.8 means the bar width is 80% of the space from the previous bar to the next bar, with
10% of that space on each side.

If the width is 1, then the bars within a group touch one another.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

style — Bar group style
'grouped' (default) | 'stacked' | 'hist' | 'histc'

Bar group style, specified by one of these values.

 bar

1-709

Style Purpose
'grouped' Display one group for each row in y.

• If y is an m-by-n matrix, then bar
displays m groups of n vertical bars,
where m is the number of rows and n is
the number of columns in y.

• If y is a vector of length n, then bar
displays one group of n bars. The bar
function treats all vectors as column
vectors.

'stacked' Display one bar for each row in y.

• If y is an m-by-n matrix, then bar
displays m bars where each bar height
is the sum of the elements in the row.
Each bar is multicolored. Colors
correspond to distinct elements and
show the relative contribution each row
element makes to the total sum.

• If y is a vector of length n, then bar
displays n bars. The bar function treats
all vectors as column vectors.

'histc' Display the graph in histogram format, in
which bars touch one another. This option
creates a Patch object instead of a Bar
object. You cannot specify name-value pair
arguments when using this option.

'hist' Display the graph in histogram format, but
center each bar over the x-ticks, rather
than making bars span x-ticks as the histc
option does. This option creates a Patch
object instead of a Bar object. You cannot
specify name-value pair arguments when
using this option.

color — Bar color
'b' | 'r' | 'g' | 'c' | 'm' | 'y' | 'k' | 'w'

1 Alphabetical List

1-710

Bar color, specified as one of the colors in this table.

Color Color
'b' Blue
'r' Red
'g' Green
'c' Cyan
'm' Magenta
'y' Yellow
'k' Black
'w' White

ax — Axes object
axes object

Axes object. If you do not specify an axes, then bar uses the current axes for the bar
graph.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The Bar properties listed here are only a subset. For a complete list, see Bar.

Note You cannot specify Name,Value pairs when using the 'hist' or 'histc' bar
group style options.

Example: 'EdgeColor','g' specifies a green outline around the bars.

EdgeColor — Outline color
'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 bar

1-711

Outline color, specified as 'flat', an RGB triplet, a hexadecimal color code, a color
name, or a short name. If there are 150 bars or fewer, the default value is [0 0 0],
which corresponds to black. If there are more than 150 bars, the default value is 'none'.

Starting in R2017b, the 'flat' option uses the CData values to color the edges. In
previous releases, the 'flat' option colored the edges using colors from the colormap.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-712

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: b = bar(1:10,'EdgeColor','red')
Example: b.EdgeColor = [0 0.5 0.5];
Example: b.EdgeColor = 'flat';
Example: b.EdgeColor = '#D2F9A7';

FaceColor — Fill color
'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Fill color, specified as 'flat', an RGB triplet, a hexadecimal color code, a color name, or
a short name. The 'flat' option uses the CData values to color the faces.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

 bar

1-713

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Starting in R2017b, the default value is an RGB triplet from the ColorOrder property of
the axes. In previous releases, the default value was 'flat' and the colors were based
on the colormap.
Example: b = bar(1:10,'FaceColor','red')
Example: b.FaceColor = [0 0.5 0.5];
Example: b.FaceColor = 'flat';
Example: b.FaceColor = '#D2F9A7';

1 Alphabetical List

1-714

CData — Color data
RGB triplet | three-column matrix | scalar | vector

Color data, specified as one of these values:

• RGB triplet — Single RGB color value applies to all bars.
• Three-column matrix — One color per bar. Each row in the matrix specifies an RGB

triplet for a particular bar.
• Scalar — Single color applies to all bars, where the color comes from the colormap.
• Vector — One color per bar. The colors come from the colormap.

By default, when you create a bar chart, the CData property contains a three-column
matrix of RGB triplets. You can change the color for a particular bar by changing the
corresponding row in the matrix.

This property applies only when the FaceColor or EdgeColor property is set to 'flat'.

Example

Change the color for a particular bar by setting the FaceColor property to 'flat'. Then
change the corresponding row in the CData matrix to the new RGB triplet. For example,
change the color of the second bar.

b = bar(1:10,'FaceColor','flat');
b.CData(2,:) = [0 0.8 0.8];

 bar

1-715

BaseValue — Baseline value
0 (default) | numeric scalar value

Baseline value, specified as a numeric scalar value.

The baseline value that you specify applies to either the x-axis or the y-axis depending on
the bar chart orientation. If you change the orientation of the bar chart from vertical to
horizontal, or vice versa, the baseline value might change. Set the BaseValue property
after setting the Horizontal property.

LineStyle — Line style of bar outlines
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of bar outlines, specified as one of the line styles in this table.

Line Style Line Style Resulting Line
'-' Solid line

'--' Dashed line

1 Alphabetical List

1-716

Line Style Line Style Resulting Line
':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of bar outlines
0.5 (default) | positive value

Width of bar outlines, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
b — Bar objects
Bar objects

Bar objects. Use the elements in b to access and modify properties of a specific Bar
object after it has been created.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

 bar

1-717

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
bar3 | bar3h | barh | histogram | hold | stairs

Properties
Bar

Topics
“Modify Baseline of Bar Graph”
“Overlay Bar Graphs”
“Plot Dates and Durations”
“Plot Categorical Data”

External Websites
MATLAB Plot Gallery

Introduced before R2006a

1 Alphabetical List

1-718

https://www.mathworks.com/products/matlab/plot-gallery.html

barh
Plot bar graph horizontally

Syntax
barh(y)
barh(x,y)
barh(...,width)
barh(...,style)
barh(...,'color')
barh(...,'PropertyName',PropertyValue,...)
barh(ax,...)
b = barh(...)

Description
A barh graph displays the values in a vector or matrix as horizontal bars.

barh(y) draws one horizontal bar for each element in y. If y is a matrix, barh groups
the bars produced by the elements in each row. The y-axis scale ranges from 1 up to
length(y) when y is a vector, and 1 to size(y,1), which is the number of rows, when
y is a matrix. The values in y can be numeric or duration values.

barh(x,y) draws a bar for each element in y at locations specified in x, where x is a
vector defining locations along the y-axis. The location values can be nonmonotonic, but
cannot contain duplicate values. If y is a matrix, barh groups the elements of each row in
y at corresponding locations in x. The values in x can be numeric, datetime, duration, or
categorical values.

barh(...,width) sets the relative bar width and controls the separation of bars within
a group. The default width is 0.8, so if you do not specify x, the bars within a group have

 barh

1-719

a slight separation. If width is 1, the bars within a group touch one another. The value of
width must be a scalar.

barh(...,style) specifies the style of the bars. Specify style as one of these values:

• 'grouped' displays m groups of n bars, where m is the number of rows and n is the
number of columns in y. Each group contains one bar per column in y. This is the
default value.

• 'stacked' displays one bar for each row in y. The bar length is the sum of the
elements in the row. Each bar is multicolored, with colors corresponding to distinct
elements and showing the relative contribution each row element makes to the total
sum. The barh function treats all vectors as column vectors. If y is a vector of length
n, then barh displays n bars.

• 'histc' displays the graph in histogram format, in which bars touch one another.
• 'hist' also displays the graph in histogram format, but centers each bar over the

tick value, rather than making bars span the tick values as the histc option does.

Note When you use either the hist or histc option, you cannot also use parameter/
value syntax. These two options create Patch objects rather than Bar objects.

barh(...,'color') displays all bars using the color specified by the single-letter
abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k', or 'w'.

barh(...,'PropertyName',PropertyValue,...) sets the named property or
properties to the specified values. You cannot specify properties when hist or histc
options are used. See Bar for more information.

barh(ax,...) plots into the axes ax instead of into the current axes (gca).

b = barh(...) returns a vector of Bar objects. When y is a matrix, barh creates one
Bar object per column in y. Each Bar object comprises a set of bars that have the same
color. Use b to change properties for all bars in a Bar object.

Examples

1 Alphabetical List

1-720

Horizontal Bar Graph of Single Data Series

Create a horizontal bar graph of vector data.

y = [57,91,105,123,131,150,...
 170,203,226.5,249,281.4];
figure
barh(y)

barh draws one horizontal bar for each element in y.

 barh

1-721

Specify Width for Horizontal Bar Graph

Specify the bar width to 0.4.

y = [57,91,105,123,131,150,...
 170,203,226.5,249,281.4];

figure;
width = 0.4;
barh(y,width);

1 Alphabetical List

1-722

Specify Style for Horizontal Bar Graph

Create a figure with four subplots. In each subplot, create a horizontal bar graph using a
different style option for each graph.

x = [2,4];
y = [1,2,3,4;...
 5,6,7,8];

figure;
subplot(2,2,1);
barh(x,y,'grouped'); % groups by row
title('Grouped Style')

subplot(2,2,2);
barh(x,y,'stacked'); % stacks values in each row together
title('Stacked Style')

subplot(2,2,3);
barh(x,y,'hist'); % centers bars over x values
title('hist Style')

subplot(2,2,4);
barh(x,y,'histc'); % spans bars over x values
title('histc Style')

 barh

1-723

Specify Color for Horizontal Bar Graph

Create a horizontal bar graph and change the color of the bars to red.

y = [57,91,105,123,131,150,...
 170,203,226.5,249,281.4];
figure
barh(y,'r')

1 Alphabetical List

1-724

Horizontal Bar Graph of Categorical Data

Create a horizontal bar graph with categorical values along the y-axis. By default, the
categories display in alphabetical order.

c = categorical({'apples','pears','oranges'});
prices = [1.23 0.99 2.3];
barh(c,prices)

 barh

1-725

Specify Bar Properties Using Name-Value Pairs

Create a horizontal bar graph and set the line width to 2. Use RGB triplets to set the face
color and edge color for the bars.

y = [57,91,105,123,131,150,...
 170,203,226.5,249,281.4];

figure
barh(y,'FaceColor',[0,0.5,0.5],...
 'EdgeColor',[0,0,0.9],...
 'LineWidth',2)

1 Alphabetical List

1-726

Specify Horizontal Bar Locations

Define x and y as vectors of data.

x = 1900:10:2000;
y = [57,91,105,123,131,150,...
 170,203,226.5,249,281.4];

Create a horizontal bar graph of the data in y. Use x to specify the bar locations along the
y-axis.

 barh

1-727

figure
barh(x,y)

Horizontal Bar Graph of Matrix Data

Load the data set count.dat, which returns a three-column matrix, count. Store y as
the first six rows of count.

load count.dat
y = count(1:6,:);

Create a horizontal bar graph of matrix y.

1 Alphabetical List

1-728

figure
barh(y)

By default, barh groups the bars by row.

Specify Different Properties For Each Bar Series

Load the data set, count.dat, that returns a three-column matrix, count. Define y as
the first four rows of count.

load count.dat
y = count(1:4,:);

 barh

1-729

Create a horizontal bar graph of y using a dotted line style. Return the three bar series
handles. barh creates a bar series for each column in y.

h = barh(y,'LineStyle',':');

Use the handles in h to set different property values for each bar series. Change the face
color of the first bar series to cyan by setting the FaceColor property to cyan. Set the
face color for the third bar series using an RGB triplet.

Starting in R2014b, you can use dot notation to set properties. If you are using an earlier
release, use the set function instead.

h(1).FaceColor = 'cyan';
h(3).FaceColor = [0,0.5,0.5];

1 Alphabetical List

1-730

Change Baseline Value for Horizontal Bar Graph

Load the data set count.dat, which returns a three-column matrix, count. Store y as
the first six rows of count.

load count.dat
y = count(1:6,:);

Create a horizontal bar graph of y and set the basevalue to 25.

figure
barh(y,'BaseValue',25)

 barh

1-731

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-732

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
bar | bar3 | bar3h | histogram | stairs

Properties
Bar

Topics
“Modify Baseline of Bar Graph”
“Overlay Bar Graphs”
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

 barh

1-733

bar3
Plot 3-D bar graph

Syntax
bar3(Z)
bar3(Y,Z)
bar3(...,width)
bar3(...,style)
bar3(...,color)
bar3(ax,...)
h = bar3(...)

Description
bar3 draws a three-dimensional bar graph.

bar3(Z) draws a three-dimensional bar chart, where each element in Z corresponds to
one bar. When Z is a vector, the y-axis scale ranges from 1 to length(Z). When Z is a
matrix, the y-axis scale ranges from 1 to the number of rows in Z.

bar3(Y,Z) draws a bar chart of the elements in Z at the locations specified in Y, where Y
is a vector defining the y values for the vertical bars. The y values can be nonmonotonic,
but cannot contain duplicate values. If Z is a matrix, elements from the same row in Z
appear at the same location along the y-axis.

bar3(...,width) sets the width of the bars and controls the separation of bars within a
group. The default width is 0.8 and the bars have a slight separation. If width is 1, the
bars within a group touch one another.

1 Alphabetical List

1-734

bar3(...,style) specifies the style of the bars. style is 'detached', 'grouped', or
'stacked'. Default mode of display is 'detached'.

• 'detached' displays the elements of each row in Z as separate blocks behind one
another in the x direction.

• 'grouped' displays n groups of m vertical bars, where n is the number of rows and m
is the number of columns in Z. Each group contains one bar per column in Z.

• 'stacked' displays one bar for each row in Z. The bar height is the sum of the
elements in the row. Each bar is multicolored, with colors corresponding to distinct
elements and showing the relative contribution each row element makes to the total
sum.

bar3(...,color) displays all bars using the color specified by color. For example, use
'r' for red bars. Specify color as one of these values: 'r', 'g', 'b', 'c', 'm', 'y',
'k', or 'w'.

bar3(ax,...) plots into the axes ax instead of into the current axes (gca).

h = bar3(...) returns a vector of Surface objects. When Z is a matrix, bar3 creates
one Surface object per column in Z.

Examples

Create 3-D Bar Graph

Load the data set count.dat, which returns a three-column matrix, count. Store Z as
the first 10 rows of count.

load count.dat
Z = count(1:10,:);

Create a 3-D bar graph of Z. By default, the style is detached.

figure
bar3(Z)
title('Detached Style')

 bar3

1-735

Specify Bar Width for 3-D Bar Graph

Load the data set count.dat, which returns a three-column matrix, count. Store Z as
the first 10 rows of count.

load count.dat
Z = count(1:10,:);

Create a 3-D bar graph of Z and set the bar width to 0.5.

width = 0.5;

1 Alphabetical List

1-736

figure
bar3(Z,width)
title('Bar Width of 0.5')

3-D Bar Graph with Grouped Style

Load the data set count.dat, which returns a three-column matrix, count. Store Z as
the first 10 rows of count.

load count.dat
Z = count(1:10,:);

 bar3

1-737

Create a 3-D bar graph of Z. Group the elements in each row of Z by specifying the style
option as grouped.

figure
bar3(Z,'grouped')
title('Grouped Style')

3-D Bar Graph with Stacked Style

Load the data set count.dat, which returns a three-column matrix, count. Store Z as
the first 10 rows of count.

1 Alphabetical List

1-738

load count.dat
Z = count(1:10,:);

Create a 3-D bar graph of Z. Stack the elements in each row of Z by specifying the style
option as stacked.

figure
bar3(Z,'stacked')
title('Stacked Style')

 bar3

1-739

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
LineSpec | bar | bar3h | barh

Topics
“Color 3-D Bars by Height”

Introduced before R2006a

1 Alphabetical List

1-740

bar3h
Plot horizontal 3-D bar graph

Syntax
bar3h(Y)
bar3h(Z,Y)
bar3h(...,width)
bar3h(...,style)
bar3h(...,color)
bar3h(ax,...)
h = bar3h(...)

Description
bar3h draws three-dimensional horizontal bar charts.

bar3h(Y) draws a three-dimensional bar chart, where each element in Y corresponds to
one bar. When Y is a vector, the z-axis scale ranges from 1 to length(Y). When Y is a
matrix, the z-axis scale ranges from 1 to the number of rows in Y.

bar3h(Z,Y) draws a bar chart of the elements in Y at the locations specified in Z, where
Z is a vector defining the z values for the horizontal bars. The z values can be
nonmonotonic, but cannot contain duplicate values. If Y is a matrix, elements from the
same row in Y appear at the same location along the z-axis.

bar3h(...,width) sets the width of the bars and controls the separation of bars within
a group. The default width is 0.8 and the bars have a slight separation. If width is 1,
then the bars within a group touch one another.

 bar3h

1-741

bar3h(...,style) specifies the style of the bars. style is 'detached', 'grouped',
or 'stacked'. Default mode of display is 'detached'.

• 'detached' displays the elements of each row in Y as separate blocks behind one
another in the x direction.

• 'grouped' displays n groups of m horizontal bars, where n is the number of rows and
m is the number of columns in Y. Each group contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar length is the sum of the
elements in the row. Each bar is multicolored, with colors corresponding to distinct
elements and showing the relative contribution each row element makes to the total
sum.

bar3h(...,color) displays all bars using the color specified by color. For example,
use 'r' for red bars. Specify color as one of these values: 'r', 'g', 'b', 'c', 'm',
'y', 'k', or 'w'.

bar3h(ax,...) plots into the axes ax instead of into the current axes (gca).

h = bar3h(...) returns a vector Surface objects. When Y is a matrix, bar3h creates
one Surface object per column in Y.

Examples

Create 3-D Horizontal Bar Graph

Load the data set count.dat, which returns a three-column matrix, count. Store Y as
the first ten rows of count.

load count.dat
Y = count(1:10,:);

Create a 3-D horizontal bar graph of Y. By default, the style is detached.

figure
bar3h(Y)

1 Alphabetical List

1-742

Specify Bar Width for 3-D Horizontal Bar Graph

Load the data set count.dat, which returns a three-column matrix, count. Store Y as
the first ten rows of count.

load count.dat;
Y = count(1:10,:);

Create a 3-D horizontal bar graph of Y and set the bar width to 0.5.

width = 0.5;

 bar3h

1-743

figure
bar3h(Y,width)
title('Width of 0.5')

3-D Horizontal Bar Graph with Grouped Style

Load the data set count.dat, which returns a three-column matrix, count. Store Y as
the first ten rows of count.

load count.dat
Y = count(1:10,:);

1 Alphabetical List

1-744

Create a 3-D horizontal bar graph of Y and specify the style option as grouped.

figure
bar3h(Y,'grouped')
title('Grouped Style Option')

3-D Horizontal Bar Graph with Stacked Option

Load the data set count.dat, which returns a three-column matrix, count. Store Y as
the first ten rows of count.

 bar3h

1-745

load count.dat
Y = count(1:10,:);

Create a 3-D horizontal bar graph of Y and specify the style option as stacked.

figure
bar3h(Y,'stacked')
title('Stacked Style Option')

1 Alphabetical List

1-746

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
LineSpec | bar | bar3 | barh | patch

Introduced before R2006a

 bar3h

1-747

Bar Properties
Bar chart appearance and behavior

Description
Bar properties control the appearance and behavior of a Bar object. By changing
property values, you can modify certain aspects of the bar chart.

Starting in R2014b, you can use dot notation to query and set properties.

b = bar(1:10);
c = b.FaceColor
b.FaceColor = [0 0.5 0.5];

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

FaceColor — Fill color
'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Fill color, specified as 'flat', an RGB triplet, a hexadecimal color code, a color name, or
a short name. The 'flat' option uses the CData values to color the faces.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-748

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Starting in R2017b, the default value is an RGB triplet from the ColorOrder property of
the axes. In previous releases, the default value was 'flat' and the colors were based
on the colormap.
Example: b = bar(1:10,'FaceColor','red')
Example: b.FaceColor = [0 0.5 0.5];

 Bar Properties

1-749

Example: b.FaceColor = 'flat';
Example: b.FaceColor = '#D2F9A7';

EdgeColor — Outline color
'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Outline color, specified as 'flat', an RGB triplet, a hexadecimal color code, a color
name, or a short name. If there are 150 bars or fewer, the default value is [0 0 0],
which corresponds to black. If there are more than 150 bars, the default value is 'none'.

Starting in R2017b, the 'flat' option uses the CData values to color the edges. In
previous releases, the 'flat' option colored the edges using colors from the colormap.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

1 Alphabetical List

1-750

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'none' Not
applicable

Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: b = bar(1:10,'EdgeColor','red')
Example: b.EdgeColor = [0 0.5 0.5];
Example: b.EdgeColor = 'flat';
Example: b.EdgeColor = '#D2F9A7';

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1]

Face transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0
is completely transparent. Values between 0 and 1 are semitransparent.
Example: b = bar(1:10,'FaceAlpha',0.5)
Example: b.FaceAlpha = 0.5;

EdgeAlpha — Edge transparency
1 (default) | scalar in range [0,1]

Edge transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0
is completely transparent. Values between 0 and 1 are semitransparent.

 Bar Properties

1-751

Example: b = bar(1:10,'EdgeAlpha',0.5)
Example: b.EdgeAlpha = 0.5;

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of bar outlines
0.5 (default) | positive value

Width of bar outlines, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Bar Graph Type

BarLayout — Arrangement of bars
'grouped' (default) | 'stacked'

Arrangement of bars, specified as one of these values:

• 'grouped' — Group bars by rows in Y, where Y is the input argument to the bar or
barh function that created the bar chart.

• 'stacked' — Display one bar for each row in Y. The bar height is the sum of the
elements in the row. Each bar is multicolored. Colors correspond to distinct elements
and show the relative contribution each row element makes to the total sum.

1 Alphabetical List

1-752

BarWidth — Relative width of individual bars
0.8 (default) | scalar in range [0,1]

Relative width of individual bars, specified as a scalar value in the range [0,1]. Use this
property to control the separation of bars within a group. The default value is 0.8, which
means that MATLAB separates the bars slightly. If you set this property to 1, then
adjacent bars touch.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Horizontal — Horizontal bar chart
'off' (default) | 'on'

Horizontal bar chart, specified as one of these values:

• 'on' — Display bars horizontally. If you create a graph with barh, then the
Horizontal property is set to 'on'.

• 'off' — Display bars vertically. If you create the chart with bar, then the
Horizontal property is set to 'off'.

Baseline

BaseValue — Baseline value
0 (default) | numeric scalar value

Baseline value, specified as a numeric scalar value.

The baseline value that you specify applies to either the x-axis or the y-axis depending on
the bar chart orientation. If you change the orientation of the bar chart from vertical to
horizontal, or vice versa, the baseline value might change. Set the BaseValue property
after setting the Horizontal property.

ShowBaseLine — Baseline visibility
'on' (default) | 'off'

Baseline visibility, specified as one of these values:

• 'on' — Show the baseline.
• 'off' — Hide the baseline.

 Bar Properties

1-753

BaseLine — Baseline
baseline object

This property is read-only.

Baseline object. For a list of baseline properties, see Baseline.

Data

CData — Color data
RGB triplet | three-column matrix | scalar | vector

Color data, specified as one of these values:

• RGB triplet — Single RGB color value applies to all bars.
• Three-column matrix — One color per bar. Each row in the matrix specifies an RGB

triplet for a particular bar.
• Scalar — Single color applies to all bars, where the color comes from the colormap.
• Vector — One color per bar. The colors come from the colormap.

By default, when you create a bar chart, the CData property contains a three-column
matrix of RGB triplets. You can change the color for a particular bar by changing the
corresponding row in the matrix.

This property applies only when the FaceColor or EdgeColor property is set to 'flat'.

Example

Change the color for a particular bar by setting the FaceColor property to 'flat'. Then
change the corresponding row in the CData matrix to the new RGB triplet. For example,
change the color of the second bar.

b = bar(1:10,'FaceColor','flat');
b.CData(2,:) = [0 0.8 0.8];

1 Alphabetical List

1-754

XData — Bar locations
vector

Bar locations, specified as a vector with no repeating values.

• For vertical bar charts, the values are the bar locations along the x-axis.
• For horizontal bar charts, the values are the bar locations along the y-axis.

Alternatively, specify the bar locations using the input argument X to the bar or barh
function. If you do not specify X, then the indices of the values in YData determine the
bar locations.

XData and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for XData, specified as one of these values:

 Bar Properties

1-755

• 'auto' — Use the indices of the values in YData (or ZData for 3-D plots).
• 'manual' — Use manually specified values. To specify the values, set the XData

property or specify the input argument X to the plotting function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — Bar lengths
vector

Bar lengths, specified as a vector. Alternatively, specify the bar lengths using the input
argument Y to the bar or barh function.

XData and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

1 Alphabetical List

1-756

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

 Bar Properties

1-757

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

1 Alphabetical List

1-758

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

 Bar Properties

1-759

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.

1 Alphabetical List

1-760

If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

 Bar Properties

1-761

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Bar object that has a defined color. You

1 Alphabetical List

1-762

cannot click a part that has an associated color property set to 'none'. The HitTest
property determines if the Bar object responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Bar object passes the click to
the object below it in the current view of the figure window. The HitTest property of
the Bar object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Bar object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Bar object that has one
of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Bar object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

 Bar Properties

1-763

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'bar' (default)

This property is read-only.

Type of graphics object, returned as 'bar'. Use this property to find all objects of a given
type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

1 Alphabetical List

1-764

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
bar | barh | pareto

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Bar Properties

1-765

baryToCart
Class: TriRep

(Not recommended) Convert point coordinates from barycentric to Cartesian

Note baryToCart(TriRep) is not recommended. Use
barycentricToCartesian(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
XC = baryToCart(TR, SI, B)

Description
XC = baryToCart(TR, SI, B) returns the Cartesian coordinates XC of each point in B
that represents the barycentric coordinates with respect to its associated simplex SI.

Input Arguments
TR Triangulation representation.
SI Column vector of simplex indices that index into the triangulation matrix

TR.Triangulation
B B is a matrix that represents the barycentric coordinates of the points to

convert with respect to the simplices SI. B is of size m-by-k, where m =
length(SI), the number of points to convert, and k is the number of
vertices per simplex.

1 Alphabetical List

1-766

Output Arguments
XC Matrix of Cartesian coordinates of the converted points. XC is of size m-by-n,

where n is the dimension of the space where the triangulation resides. That
is, the Cartesian coordinates of the point B(j) with respect to simplex
SI(j) is XC(j).

Examples
Compute the Delaunay triangulation of a set of points.

x = [0 4 8 12 0 4 8 12]';
y = [0 0 0 0 8 8 8 8]';
dt = DelaunayTri(x,y)

Compute the barycentric coordinates of the incenters.

cc = incenters(dt);
tri = dt(:,:);

Plot the original triangulation and reference points.

figure
subplot(1,2,1);
triplot(dt); hold on;
plot(cc(:,1), cc(:,2), '*r'); hold off;
axis equal;

Stretch the triangulation and compute the mapped locations of the incenters on the
deformed triangulation.

b = cartToBary(dt,[1:length(tri)]',cc);
y = [0 0 0 0 16 16 16 16]';
tr = TriRep(tri,x,y)
xc = baryToCart(tr, [1:length(tri)]', b);

Plot the deformed triangulation and mapped locations of the reference points.

subplot(1,2,2);
triplot(tr); hold on;
plot(xc(:,1), xc(:,2), '*r'); hold off;
axis equal;

 baryToCart

1-767

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

See Also
cartesianToBarycentric | delaunayTriangulation | pointLocation |
triangulation

1 Alphabetical List

1-768

base2dec
Convert text representing number in base N to decimal number

Syntax
d = base2dec('strn', base)

Description
d = base2dec('strn', base) converts strn, text representing a number in the base
specified by base, into its decimal (base 10) equivalent. base must be an integer between
2 and 36. strn must represent a nonnegative integer value. If strn represents an integer
value greater than the value returned by flintmax, then base2dec might not return an
exact conversion.

strn can be a character array, a cell array of character vectors, or a string column vector.
If strn is a character array, then each row represents a number in the base specified by
base. If strn is a cell array of character vectors or a string column vector, then each
element represents a number in the base specified by base.

Examples
The expression base2dec('212',3) converts 2123 to decimal, returning 23.

See Also
bin2dec | dec2base | flintmax | hex2dec

 base2dec

1-769

Baseline Properties
Baseline appearance and behavior

Description
Baseline objects are created as part of bar charts, area charts, and stem charts.
Baseline properties control the appearance and behavior of a Baseline object. By
changing property values, you can modify certain aspects of the baseline. Use dot
notation to refer to a particular object and property:

b = bar(1:10);
bl = b.BaseLine;
c = bl.Color;
bl.Color = 'red';

Properties
Appearance

Color — Line color
'none' | RGB triplet | hexadecimal color codes | 'r' | 'g''b' | ...

Line color, specified as 'none', an RGB triplet, hexadecimal color code, a color name, or
a short name. If you specify the color as 'none', then the baseline is invisible.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-770

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' | '--' | ':' | '-.' | 'none'

Line style, specified as one of the line styles listed in this table.

 Baseline Properties

1-771

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
positive value

Line width, specified as a positive value in point units.
Example: 0.75

Location and Visibility

BaseValue — Value of baseline
scalar

Value of the baseline, specified as a scalar.

Typically, baselines are associated with bar series, stem series, or area objects. The
BaseValue property for the associated object and the BaseValue property for the
baseline object always have the same value. Setting one property also sets the other
property. The BaseLine property for the associated object contains the baseline object.
Example: 0.75

Visible — Visibility
'on' | 'off'

Visibility, specified as one of these values:

• 'on' — Display the baseline.
• 'off' — Hide the baseline without deleting it. You can access the properties of an

invisible baseline.

Typically, baselines are associated with bar series, stem series, or area objects. The
ShowBaseline property for the associated object and the Visible property for the

1 Alphabetical List

1-772

baseline object always have the same value. Setting one property also sets the other
property. The BaseLine property for the associated object contains the baseline object.

Parent/Child

Parent — Parent
Axes object

Parent, returned as an Axes object. However, Baseline objects are not listed as children
of the axes.

Children — Children
empty GraphicsPlaceholder array

The baseline has no children. You cannot set this property.

See Also
area | bar | barh | stem

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2014b

 Baseline Properties

1-773

batchStartupOptionUsed
Determine if MATLAB started with -batch option

Syntax
batchStartupOptionUsed

Description
batchStartupOptionUsed returns true when MATLAB starts with -batch option.
Otherwise, the function returns false. Use the -batch option to start MATLAB non-
interactively.

Use this function to guard code from being executed when MATLAB is running non-
interactively with the -batch startup option and user input is either not desired or not
supported in this mode.

Examples

Provide Default Value for Automated Test

Suppose that you have a test that requires user input. You can automate this test to run
using the matlab -batch startup option.

Prompt the user for input during interactive testing or specify a default value for
automated testing.

if ~batchStartupOptionUsed
 answer = inputdlg("Enter a number");
else

1 Alphabetical List

1-774

 answer = 10;
end

See Also
isdeployed | ismcc | matlab (Linux) | matlab (Windows) | matlab (macOS)

Introduced in R2019a

 batchStartupOptionUsed

1-775

beep
Produce operating system beep sound

Syntax
beep
beep on
beep off

status = beep

Description
beep produces your computer's default beep sound, if it is enabled.

beep on enables the beep sound.

beep off disables the beep sound.

status = beep returns the current beep mode (on or off).

Examples

Produce Beep Sound

Produce your system’s default beep sound after a period of silence.

Pause for 5 seconds of silence, and then produce your system’s default beep sound.

1 Alphabetical List

1-776

pause(5)
beep

Tips
• If you have configured your system not to produce any sound, then beep is silent.
• beep produces the operating system’s default beep sound. To produce a sound and

specify its pitch and duration in MATLAB, use the sound function.

See Also
sound

Introduced before R2006a

 beep

1-777

BeginInvoke
Initiate asynchronous .NET delegate call

Syntax
result = BeginInvoke(arg1,...,argN,callback,object)

Description
result = BeginInvoke(arg1,...,argN,callback,object) initiates asynchronous
call to a .NET delegate. You must call EndInvoke to complete the asynchronous call.

Input Arguments
arg1,...,argN

Input arguments for delegate. The type and number of arguments must agree with the
delegate signature.

callback

.NET System.AsyncCallback delegate, or [] null value.

object

User-defined object, or [] null value.

Output Arguments
result

.NET System.IAsyncResult object. Used to monitor the progress of the asynchronous call.
Input argument to EndInvoke.

1 Alphabetical List

1-778

https://msdn.microsoft.com/en-us/library/system.asynccallback.aspx
https://msdn.microsoft.com/en-us/library/system.iasyncresult.aspx

See Also
EndInvoke

Topics
“Calling .NET Methods Asynchronously”

External Websites
MSDN Calling Synchronous Methods Asynchronously

Introduced in R2011a

 BeginInvoke

1-779

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/calling-synchronous-methods-asynchronously

bench
MATLAB benchmark

Syntax
bench
bench(N)
bench(0)
t = bench(N)

Description
bench measures the execution speed of six different MATLAB tasks and compares it to
the speed of several other computers. The six tasks are:

Test Description Performance Factors
LU Perform lu of a full matrix Floating-point, regular memory access
FFT Perform fft of a full vector Floating-point, irregular memory access
ODE Solve van der Pol equation with

ode45
Data structures and MATLAB function files

Sparse Solve a symmetric sparse linear
system

Mixed integer and floating-point

2-D Plot Lissajous curves 2-D line drawing graphics
3-D Display colormapped peaks with

clipping and transforms
3-D animated OpenGL graphics

A final bar chart shows speed, which is inversely proportional to time. The longer bars
represent faster machines, and the shorter bars represent the slower ones.

bench(N) runs each of the six tasks N times.

bench(0) just displays the results from other machines.

t = bench(N) returns an N-by-6 array with the execution times.

1 Alphabetical List

1-780

Tips

Note A benchmark is intended to compare performance of one particular version of
MATLAB on different machines. It does not offer direct comparisons between different
versions of MATLAB because tasks and problem sizes change from version to version.

The LU and FFT tasks involve large matrices and long vectors.

The 2-D and 3-D tasks measure graphics performance, including support for hardware-
accelerated graphics. The rendererinfo function provides information about the
graphics renderer implementation MATLAB is using. For example, this command gets the
information for the current axes and stores it in a structure called info.

info = rendererinfo(gca)

Fluctuations of five or ten percent in the measured times of repeated runs on a single
machine are normal.

See Also
cputime | memory | mlint | mlintrpt | pack | profile | profsave | rehash | tic

Introduced in R2008a

 bench

1-781

besselh
Bessel function of third kind (Hankel function)

Syntax
H = besselh(nu,Z)
H = besselh(nu,K,Z)
H = besselh(nu,K,Z,scale)

Description
H = besselh(nu,Z) computes the Hankel function on page 1-790 of the first kind
Hν

1 z = Jν z + iYν z for each element in array Z.

H = besselh(nu,K,Z) computes the Hankel function on page 1-790 of the first or
second kind Hν K z , where K is 1 or 2, for each element of array Z.

H = besselh(nu,K,Z,scale) specifies whether to scale the Hankel function to avoid
overflow or loss of accuracy. If scale is 1, then Hankel functions of the first kind Hν

1 z
are scaled by e−iZ, and Hankel functions of the second kind Hν

2 z are scaled by e+iZ.

Examples

Modulus and Phase of Hankel Function

Generate the contour plots of the modulus and phase of the Hankel function H0
(1)(z). See

[1] pg. 359.

Create a grid of values for the domain.

[X,Y] = meshgrid(-4:0.002:2,-1.5:0.002:1.5);

1 Alphabetical List

1-782

Calculate the Hankel function over this domain and generate the modulus contour plot.

H = besselh(0,X+1i*Y);
contour(X,Y,abs(H),0:0.2:3.2)
hold on

In the same figure, add the contour plot of the phase.

contour(X,Y,rad2deg(angle(H)),-180:10:180)
hold off

 besselh

1-783

Asymptotic Behavior

Plot the real and imaginary parts of the Hankel function of the second kind and examine
their asymptotic behavior.

Calculate the Hankel function of the second kind H0
2 z = J0 z − iY0 z in the interval

0 . 1, 25 .

k = 2;
nu = 0;

1 Alphabetical List

1-784

z = linspace(0.1,25,200);
H = besselh(nu,k,z);

Plot the real and imaginary parts of the function. In the same figure, plot the linear
combination J0

2 z + Y0
2 z , which reveals the asymptotic behavior of the magnitudes of

the real and imaginary parts.

plot(z,real(H),z,imag(H))
grid on
hold on
M = sqrt(real(H).^2 + imag(H).^2);
plot(z,M,'--')
legend('$J_0(z)$', '$Y_0(z)$', '$\sqrt{J_0^2 (z) + Y_0^2 (z)}$','interpreter','latex')

 besselh

1-785

Exponentially Scaled Hankel Function

Calculate the exponentially scaled Hankel function H1
2 z ⋅ eiz on the complex plane and

compare it to the unscaled function.

Calculate the unscaled Hankel function of the second order on the complex plane. When z
has a large positive imaginary part, the value of the function quickly diverges. This
phenomenon limits the range of computable values.

k = 2;
nu = 1;
x = -5:0.4:15;
y = x';
z = x + 1i*y;
scaled = 1;
H = besselh(nu,k,z);
surf(x,y,imag(H))
xlabel('real(z)')
ylabel('imag(z)')

1 Alphabetical List

1-786

Now, calculate H1
2 z ⋅ eiz on the complex plane and compare it to the unscaled function.

The scaled function increases the range of computable values by avoiding overflow and
loss of accuracy when z has a large positive imaginary part.

Hs = besselh(nu,k,z,scaled);
surf(x,y,imag(Hs))
xlabel('real(z)')
ylabel('imag(z)')

 besselh

1-787

Input Arguments
nu — Equation order
scalar | vector | matrix | multidimensional array

Equation order, specified as a scalar, vector, matrix, or multidimensional array. nu
specifies the order of the Hankel function on page 1-790. nu and Z must be the same
size, or one of them can be scalar.
Example: besselh(3,Z)
Data Types: single | double

1 Alphabetical List

1-788

K — Kind of Hankel function
1 (default) | 2

Kind of Hankel function, specified as 1 or 2.

• If K = 1, then besselh computes the Hankel function of the first kind
Hν

1 z = Jν z + iYν z .
• If K = 2, then besselh computes the Hankel function of the second kind

Hν
2 z = Jν z − iYν z .

Example: besselh(nu,2,Z)

Z — Functional domain
scalar | vector | matrix | multidimensional array

Functional domain, specified as a scalar, vector, matrix, or multidimensional array. nu and
Z must be the same size, or one of them can be scalar.
Example: besselh(nu,[1-1i 1+0i 1+1i])
Data Types: single | double
Complex Number Support: Yes

scale — Toggle to scale function
0 (default) | 1

Toggle to scale function, specified as one of these values:

• 0 (default) — No scaling
• 1 — Scale the output of besselh, depending on the value of K:

• If K = 1, then scale the Hankel function of the first kind Hν
1 z by e−iZ.

• If K = 2, then scale Hankel function of the second kind Hν
2 z by e+iZ.

On the complex plane, Hν
1 z overflows when imag(Z) is large and negative.

Similarly, Hν
2 z overflows when imag(Z) is large and positive. Exponentially scaling

the output of besselh is useful in these two cases since the function otherwise
quickly loses accuracy or overflows the limits of double precision.

Example: besselh(nu,K,Z,1)

 besselh

1-789

Definitions

Hankel Functions and Bessel’s Equation
This differential equation, where ν is a real constant, is called Bessel's equation:

z2d2y
dz2 + zdy

dz + z2− ν2 y = 0.

Its solutions are known as Bessel functions.

The Bessel functions of the first kind, denoted Jν(z) and J–ν(z), form a fundamental set of
solutions of Bessel's equation for noninteger ν. The Bessel functions of the second kind,
denoted Yν(z), form a second solution of Bessel's equation—linearly independent of Jν(z)—
defined by

Yν(z) =
Jν(z)cos(νπ)− J−ν(z)

sin(νπ) .

The Bessel functions of the third kind, also called Hankel functions of the first and second
kind, are defined by linear combinations of the Bessel functions, where Jν(z) is besselj,
and Yν(z) is bessely:

Hν
(1)(z) = Jν(z) + iYν(z)

Hν
(2)(z) = Jν(z)− iYν(z) .

References
[1] Abramowitz, M., and I.A. Stegun. Handbook of Mathematical Functions. National

Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-790

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
besseli | besselj | besselk | bessely

Introduced before R2006a

 besselh

1-791

besseli
Modified Bessel function of first kind

Syntax
I = besseli(nu,Z)
I = besseli(nu,Z,scale)

Description
I = besseli(nu,Z) computes the modified Bessel function of the first kind on page 1-
796 Iν(z) for each element in array Z.

I = besseli(nu,Z,scale) specifies whether to exponentially scale the modified
Bessel function of the first kind to avoid overflow or loss of accuracy. If scale is 1, then
the output of besseli is scaled by the factor exp(-abs(real(Z))).

Examples

Plot Modified Bessel Functions of First Kind

Define the domain.

z = 0:0.01:5;

Calculate the first five modified Bessel functions of the first kind. Each row of I contains
the values of one order of the function evaluated at the points in z.

I = zeros(5,501);
for nu = 0:4
 I(nu+1,:) = besseli(nu,z);
end

Plot all of the functions in the same figure.

1 Alphabetical List

1-792

plot(z,I)
axis([0 5 0 8])
grid on
legend('I_0','I_1','I_2','I_3','I_4','Location','NorthWest')
title('Modified Bessel Functions of the First Kind for $\nu \in [0,4]$','interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$I_\nu(z)$','interpreter','latex')

 besseli

1-793

Calculate Exponentially Scaled Modified Bessel Functions

Calculate the scaled modified Bessel function of the first kind Iν z ⋅ e− Re Z for values of
z in the interval 0, 20 and for orders ν between 0 and 3.

z = linspace(0,20);
scale = 1;
Is = zeros(4,100);
for nu = 0:3
 Is(nu+1,:) = besseli(nu,z,scale);
end

Plot all of the functions in the same figure. For large values of z, the scaled functions do
not overflow the limits of double precision, extending their range of computability
compared to the unscaled functions.

plot(z,Is)
legend('I_0','I_1','I_2','I_3')
title('Scaled Mod. Bessel Functions of the First Kind for $\nu \in \left[0, 3 \right]$','interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$e^{-|{z}|} \cdot I_\nu(z)$','interpreter','latex')

1 Alphabetical List

1-794

Input Arguments
nu — Equation order
scalar | vector | matrix | multidimensional array

Equation order, specified as a scalar, vector, matrix, or multidimensional array. nu is a real
number that specifies the order of the modified Bessel function of the first kind on page 1-
796. nu and Z must be the same size, or one of them can be scalar.
Example: besseli(3,Z)
Data Types: single | double

 besseli

1-795

Z — Functional domain
scalar | vector | matrix | multidimensional array

Functional domain, specified as a scalar, vector, matrix, or multidimensional array.
besseli is real-valued where Z is positive. nu and Z must be the same size, or one of
them can be scalar.
Example: besseli(nu,[1-1i 1+0i 1+1i])
Data Types: single | double
Complex Number Support: Yes

scale — Toggle to scale function
0 (default) | 1

Toggle to scale function, specified as one of these values:

• 0 (default) — No scaling
• 1 — Scale the output of besseli by exp(-abs(real(Z)))

The magnitude of besseli grows rapidly as the value of abs(real(Z)) increases, so
exponentially scaling the output is useful for large values of abs(real(Z)), where the
results otherwise quickly lose accuracy or overflow the limits of double precision.
Example: besseli(nu,Z,1)

Definitions

Modified Bessel Functions
This differential equation, where ν is a real constant, is called the modified Bessel's
equation:

z2d2y
dz2 + zdy

dz − z2 + ν2 y = 0.

Its solutions are known as modified Bessel functions.

The modified Bessel functions of the first kind, denoted Iν(z) and I–ν(z), form a
fundamental set of solutions of the modified Bessel's equation. Iν(z) is defined by

1 Alphabetical List

1-796

Iν(z) = z
2

ν∑
(k = 0)

∞ z2
4

k

k!Γ(ν + k + 1) .

The modified Bessel functions of the second kind, denoted Kν(z), form a second solution
independent of Iν(z) given by

Kν(z) = π
2

I−ν(z)− Iν(z)
sin(νπ) .

You can compute the modified Bessel functions of the second kind using besselk.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the order nu is less than 0, then it must be an integer.
• Always returns a complex result.
• Strict single-precision calculations are not supported. In the generated code, single-

precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 besseli

1-797

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
airy | besselh | besselj | besselk | bessely

Introduced before R2006a

1 Alphabetical List

1-798

besselj
Bessel function of first kind

Syntax
J = besselj(nu,Z)
J = besselj(nu,Z,scale)

Description
J = besselj(nu,Z) computes the Bessel function of the first kind on page 1-804 Jν(z)
for each element in array Z.

J = besselj(nu,Z,scale) specifies whether to exponentially scale the Bessel function
of the first kind to avoid overflow or loss of accuracy. If scale is 1, then the output of
besselj is scaled by the factor exp(-abs(imag(Z))).

Examples

Plot Bessel Functions of First Kind

Define the domain.

z = 0:0.1:20;

Calculate the first five Bessel functions of the first kind. Each row of J contains the values
of one order of the function evaluated at the points in z.

J = zeros(5,201);
for i = 0:4
 J(i+1,:) = besselj(i,z);
end

Plot all of the functions in the same figure.

 besselj

1-799

plot(z,J)
grid on
legend('J_0','J_1','J_2','J_3','J_4','Location','Best')
title('Bessel Functions of the First Kind for $\nu \in [0, 4]$','interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$J_\nu(z)$','interpreter','latex')

Calculate Exponentially Scaled Bessel Function

Calculate the unscaled (J) and scaled (Js) Bessel function of the first kind J2 z for
complex values of z.

1 Alphabetical List

1-800

x = -10:0.3:10;
y = x';
z = x + 1i*y;
scale = 1;
J = besselj(2,z);
Js = besselj(2,z,scale);

Compare the plots of the imaginary part of the scaled and unscaled functions. For large
values of abs(imag(z)), the unscaled function quickly overflows the limits of double
precision and stops being computable. The scaled function removes this dominant
exponential behavior from the calculation, and thus has a larger range of computability
compared to the unscaled function.

surf(x,y,imag(J))
title('Bessel Function of the First Kind','interpreter','latex')
xlabel('real(z)','interpreter','latex')
ylabel('imag(z)','interpreter','latex')

 besselj

1-801

surf(x,y,imag(Js))
title('Scaled Bessel Function of the First Kind','interpreter','latex')
xlabel('real(z)','interpreter','latex')
ylabel('imag(z)','interpreter','latex')

1 Alphabetical List

1-802

Input Arguments
nu — Equation order
scalar | vector | matrix | multidimensional array

Equation order, specified as a scalar, vector, matrix, or multidimensional array. nu is a real
number that specifies the order of the Bessel function of the first kind on page 1-804. nu
and Z must be the same size, or one of them can be scalar.
Example: besselj(3,0:5)
Data Types: single | double

 besselj

1-803

Z — Functional domain
scalar | vector | matrix | multidimensional array

Functional domain, specified as a scalar, vector, matrix, or multidimensional array.
besselj is real-valued where Z is positive. nu and Z must be the same size, or one of
them can be scalar.
Example: besselj(1,[1-1i 1+0i 1+1i])
Data Types: single | double
Complex Number Support: Yes

scale — Toggle to scale function
0 (default) | 1

Toggle to scale function, specified as one of these values:

• 0 (default) — No scaling
• 1 — Scale the output of besselj by exp(-abs(imag(Z)))

On the complex plane, the magnitude of besselj grows rapidly as the value of
abs(imag(Z)) increases, so exponentially scaling the output is useful for large values of
abs(imag(Z)) where the results otherwise quickly lose accuracy or overflow the limits
of double precision.
Example: besselj(3,0:5,1)

Definitions

Bessel Functions
This differential equation, where ν is a real constant, is called Bessel's equation:

z2d2y
dz2 + zdy

dz + z2− ν2 y = 0.

Its solutions are known as Bessel functions.

The Bessel functions of the first kind, denoted Jν(z) and J–ν(z), form a fundamental set of
solutions of Bessel's equation for noninteger ν. Jν(z) is defined by

1 Alphabetical List

1-804

Jν(z) = z
2

ν∑
(k = 0)

∞ −z2
4

k

k!Γ(ν + k + 1) .

The Bessel functions of the second kind, denoted Yν(z), form a second solution of Bessel's
equation that is linearly independent of Jν(z). Yν(z) is defined by

Yν(z) =
Jν(z)cos(νπ)− J−ν(z)

sin(νπ) .

You can calculate Bessel functions of the second kind using bessely.

Tips
The Bessel functions are related to the Hankel functions, also called Bessel functions of
the third kind:

Hν
(1)(z) = Jν(z) + i Yν(z)

Hν
(2)(z) = Jν(z)− i Yν(z) .

Hν
(K)(z) is besselh, Jν(z) is besselj, and Yν(z) is bessely. The Hankel functions also

form a fundamental set of solutions to Bessel's equation (see besselh).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 besselj

1-805

Usage notes and limitations:

• If the order nu is less than 0, then it must be an integer.
• Always returns a complex result.
• Strict single-precision calculations are not supported. In the generated code, single-

precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The order nu must be a positive, real, integer.
• The argument Z must be a real value.
• The three-input syntax J = besselj(nu,Z,scale) is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
besselh | besseli | besselk | bessely

Introduced before R2006a

1 Alphabetical List

1-806

besselk
Modified Bessel function of second kind

Syntax
K = besselk(nu,Z)
K = besselk(nu,Z,scale)

Description
K = besselk(nu,Z) computes the modified Bessel function of the second kind on page
1-811 Kν(z) for each element in array Z.

K = besselk(nu,Z,scale) specifies whether to exponentially scale the modified
Bessel function of the second kind to avoid underflow or loss of accuracy. If scale is 1,
then the output of besselk is scaled by a factor exp(Z).

Examples

Plot Modified Bessel Functions of Second Kind

Define the domain.

z = 0:0.01:5;

Calculate the first five modified Bessel functions of the second kind. Each row of K
contains the values of one order of the function evaluated at the points in z.

K = zeros(5,501);
for i = 0:4
 K(i+1,:) = besselk(i,z);
end

Plot all of the functions in the same figure.

 besselk

1-807

plot(z,K)
axis([0 5 0 8])
grid on
legend('K_0','K_1','K_2','K_3','K_4','Location','Best')
title('Modified Bessel Functions of the Second Kind for $\nu \in [0,4]$','interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$K_\nu(z)$','interpreter','latex')

1 Alphabetical List

1-808

Calculate Exponentially Scaled Modified Bessel Functions

Calculate the scaled modified Bessel functions of the second kind Kν z ⋅ e z for values of z
in the interval 0, 5 and for orders of ν between 0 and 3.

z = linspace(0,5);
scale = 1;
Ks = zeros(4,100);
for nu = 0:3
 Ks(nu+1,:) = besselk(nu,z,scale);
end

Plot all of the functions in the same figure. For large values of z, the scaled functions do
not underflow the limits of double precision as quickly as the unscaled functions,
extending their range of computability.

plot(z,Ks)
ylim([0 3])
legend('K_0','K_1','K_2','K_3')
title('Scaled Mod. Bessel Functions of the Second Kind for $\nu \in \left[0, 3 \right]$','interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$K_\nu(z) \cdot e^{z}$','interpreter','latex')

 besselk

1-809

Input Arguments
nu — Equation order
scalar | vector | matrix | multidimensional array

Equation order, specified as a scalar, vector, matrix, or multidimensional array. nu is a real
number that specifies the order of the modified Bessel function of the second kind on
page 1-811. nu and Z must be the same size, or one of them can be scalar.
Example: besselk(3,Z)
Data Types: single | double

1 Alphabetical List

1-810

Z — Functional domain
scalar | vector | matrix | multidimensional array

Functional domain, specified as a scalar, vector, matrix, or multidimensional array.
besselk is real-valued where Z is positive. nu and Z must be the same size, or one of
them can be scalar.
Example: besselk(nu,0:3)
Data Types: single | double
Complex Number Support: Yes

scale — Toggle to scale function
0 (default) | 1

Toggle to scale function, specified as one of these values:

• 0 (default) — No scaling
• 1 — Scale the output of besselk by exp(Z)

The value of besselk decreases rapidly as the value of Z increases, so exponentially
scaling the output is useful for large values of Z where the results otherwise quickly lose
accuracy or underflow the limits of double precision.
Example: besselk(nu,Z,1)

Definitions

Modified Bessel Functions
This differential equation, where ν is a real constant, is called the modified Bessel's
equation:

z2d2y
dz2 + zdy

dz − z2 + ν2 y = 0.

Its solutions are known as modified Bessel functions.

The modified Bessel functions of the first kind, denoted Iν(z) and I–ν(z), form a
fundamental set of solutions of the modified Bessel's equation. Iν(z) is defined by

 besselk

1-811

Iν(z) = z
2

ν∑
(k = 0)

∞ z2
4

k

k!Γ(ν + k + 1) .

You can compute the modified Bessel functions of the first kind using besseli.

The modified Bessel functions of the second kind, denoted Kν(z), form a second solution
independent of Iν(z) given by

Kν(z) = π
2

I−ν(z)− Iν(z)
sin(νπ) .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
airy | besselh | besseli | besselj | bessely

Introduced before R2006a

1 Alphabetical List

1-812

bessely
Bessel function of second kind

Syntax
Y = bessely(nu,Z)
Y = bessely(nu,Z,scale)

Description
Y = bessely(nu,Z) computes the Bessel function of the second kind on page 1-818
Yν(z) for each element in array Z.

Y = bessely(nu,Z,scale) specifies whether to exponentially scale the Bessel function
of the second kind to avoid overflow or loss of accuracy. If scale is 1, then the output of
bessely is scaled by the factor exp(-abs(imag(Z))).

Examples

Plot Bessel Functions of Second Kind

Define the domain.

z = 0:0.1:20;

Calculate the first five Bessel functions of the second kind. Each row of Y contains the
values of one order of the function evaluated at the points in z.

Y = zeros(5,201);
for i = 0:4
 Y(i+1,:) = bessely(i,z);
end

Plot all of the functions in the same figure.

 bessely

1-813

plot(z,Y)
axis([-0.1 20.2 -2 0.6])
grid on
legend('Y_0','Y_1','Y_2','Y_3','Y_4','Location','Best')
title('Bessel Functions of the Second Kind for $\nu \in [0, 4]$','interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$Y_\nu(z)$','interpreter','latex')

1 Alphabetical List

1-814

Calculate Exponentially Scaled Bessel Function

Calculate the unscaled (Y) and scaled (Ys) Bessel function of the second kind Y2 z for
complex values of z.

x = -10:0.35:10;
y = x';
z = x + 1i*y;
scale = 1;
Y = bessely(2,z);
Ys = bessely(2,z,scale);

Compare the plots of the imaginary part of the scaled and unscaled functions. For large
values of abs(imag(z)), the unscaled function quickly overflows the limits of double
precision and stops being computable. The scaled function removes this dominant
exponential behavior from the calculation and thus has a larger range of computability
compared to the unscaled function.

surf(x,y,imag(Y))
title('Bessel Function of the Second Kind','interpreter','latex')
xlabel('real(z)','interpreter','latex')
ylabel('imag(z)','interpreter','latex')

 bessely

1-815

surf(x,y,imag(Ys))
title('Scaled Bessel Function of the Second Kind','interpreter','latex')
xlabel('real(z)','interpreter','latex')
ylabel('imag(z)','interpreter','latex')

1 Alphabetical List

1-816

Input Arguments
nu — Equation order
scalar | vector | matrix | multidimensional array

Equation order, specified as a scalar, vector, matrix, or multidimensional array. nu is a real
number that specifies the order of the Bessel function of the second kind on page 1-818.
nu and Z must be the same size, or one of them can be scalar.
Example: bessely(3,0:5)
Data Types: single | double

 bessely

1-817

Z — Functional domain
scalar | vector | matrix | multidimensional array

Functional domain, specified as a scalar, vector, matrix, or multidimensional array.
bessely is real-valued where Z is positive. nu and Z must be the same size, or one of
them can be scalar.
Example: bessely(1,[1-1i 1+0i 1+1i])
Data Types: single | double
Complex Number Support: Yes

scale — Toggle to scale function
0 (default) | 1

Toggle to scale function, specified as one of these values:

• 0 (default) — No scaling
• 1 — Scale the output of bessely by exp(-abs(imag(Z)))

On the complex plane, the magnitude of bessely grows rapidly as the value of
abs(imag(Z)) increases, so exponentially scaling the output is useful for large values of
abs(imag(Z)) where the results otherwise quickly lose accuracy or overflow the limits
of double precision.
Example: bessely(3,0:5,1)

Definitions

Bessel Functions
This differential equation, where ν is a real constant, is called Bessel's equation:

z2d2y
dz2 + zdy

dz + z2− ν2 y = 0.

Its solutions are known as Bessel functions.

The Bessel functions of the first kind, denoted Jν(z) and J–ν(z), form a fundamental set of
solutions of Bessel's equation for noninteger ν. Jν(z) is defined by

1 Alphabetical List

1-818

Jν(z) = z
2

ν∑
(k = 0)

∞ −z2
4

k

k!Γ(ν + k + 1) .

You can calculate Bessel functions of the first kind using besselj.

The Bessel functions of the second kind, denoted Yν(z), form a second solution of Bessel's
equation that is linearly independent of Jν(z). Yν(z) is defined by

Yν(z) =
Jν(z)cos(νπ)− J−ν(z)

sin(νπ) .

Tips
The Bessel functions are related to the Hankel functions, also called Bessel functions of
the third kind:

Hν
(1)(z) = Jν(z) + i Yν(z)

Hν
(2)(z) = Jν(z)− i Yν(z) .

Hν
(K)(z) is besselh, Jν(z) is besselj, and Yν(z) is bessely. The Hankel functions also

form a fundamental set of solutions to Bessel's equation (see besselh).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 bessely

1-819

Usage notes and limitations:

• The order nu must be a positive, real, integer value.
• The argument Z must be a positive real value.
• The three-input syntax J = bessely(nu,Z,scale) is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
besselh | besseli | besselj | besselk

Introduced before R2006a

1 Alphabetical List

1-820

beta
Beta function

Syntax
B = beta(Z,W)

Description
B = beta(Z,W) computes the beta function for corresponding elements of arrays Z and
W. The arrays must be real and nonnegative. They must be the same size, or either can be
scalar.

Examples
In this example, which uses integer arguments,

beta(n,3)
 = (n-1)!*2!/(n+2)!
 = 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to recover the exact
result.

format rat
beta((0:10)',3)

ans =

 1/0
 1/3
 1/12
 1/30
 1/60
 1/105
 1/168

 beta

1-821

 1/252
 1/360
 1/495
 1/660

Definitions

Beta Function
The beta function is

B(z, w) =∫
0

1

tz − 1(1− t)w− 1dt = Γ(z)Γ(w)
Γ(z + w)

where Γ(z) is the gamma function.

Algorithms
beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-822

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
betainc | betaln | gammaln

Introduced before R2006a

 beta

1-823

betainc
Incomplete beta function

Syntax
I = betainc(X,Z,W)
I = betainc(X,Z,W,tail)

Description
I = betainc(X,Z,W) computes the incomplete beta function for corresponding
elements of the arrays X, Z, and W. The elements of X must be in the closed interval [0,1].
The arrays Z and W must be nonnegative and real. All arrays must be the same size, or any
of them can be scalar.

I = betainc(X,Z,W,tail) specifies the tail of the incomplete beta function. Choices
are:

'lower' (the default) Computes the integral from 0 to x
'upper' Computes the integral from x to 1

These functions are related as follows:

1-betainc(X,Z,W) = betainc(X,Z,W,'upper')

Note that especially when the upper tail value is close to 0, it is more accurate to use the
'upper' option than to subtract the 'lower' value from 1.

Examples

Compute Incomplete Beta Function

Compute the incomplete beta function corresponding to the elements of Z according to
the parameters X and W.

1 Alphabetical List

1-824

format longG
X = 0.5;
Z = (1:10)';
W = 3;
I = betainc(X,Z,W)

I = 10×1

 0.875
 0.6875
 0.5
 0.34375
 0.2265625
 0.14453125
 0.08984375
 0.0546875
 0.03271484375
 0.019287109375

Definitions

Incomplete Beta Function
The incomplete beta function is

Ix(z, w) = 1
B(z, w)∫

0

x

tz − 1(1− t)w− 1dt

where B(z, w), the beta function, is defined as

B(z, w) =∫
0

1

tz − 1(1− t)w− 1dt = Γ(z)Γ(w)
Γ(z + w)

and Γ(z) is the gamma function.

 betainc

1-825

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Always returns a complex result.
• Strict single-precision calculations are not supported. In the generated code, single-

precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
beta | betaln

1 Alphabetical List

1-826

Introduced before R2006a

 betainc

1-827

betaincinv
Beta inverse cumulative distribution function

Syntax
x = betaincinv(y,z,w)
x = betaincinv(y,z,w,tail)

Description
x = betaincinv(y,z,w) computes the inverse incomplete beta function for
corresponding elements of y, z, and w, such that y = betainc(x,z,w). The elements of
y must be in the closed interval [0,1], and those of z and w must be nonnegative. y, z, and
w must all be real and the same size (or any of them can be scalar).

x = betaincinv(y,z,w,tail) specifies the tail of the incomplete beta function.
Choices are 'lower' (the default) to use the integral from 0 to x, or 'upper' to use the
integral from x to 1. These two choices are related as follows:
betaincinv(y,z,w,'upper') = betaincinv(1-y,z,w,'lower'). When y is close
to 0, the 'upper' option provides a way to compute x more accurately than by
subtracting y from 1.

Definitions
Inverse Incomplete Beta Function
The incomplete beta function is defined as

Ix(z, w) = 1
β(z, w)∫

0

x
t(z − 1)(1− t)(w− 1)dt

betaincinv computes the inverse of the incomplete beta function with respect to the
integration limit x using Newton's method.

1 Alphabetical List

1-828

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Always returns a complex result.
• Strict single-precision calculations are not supported. In the generated code, single-

precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 betaincinv

1-829

See Also
beta | betainc | betaln

1 Alphabetical List

1-830

betaln
Logarithm of beta function

Syntax
L = betaln(Z,W)

Description
L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without computing
beta(Z,W). Since the beta function can range over very large or very small values, its
logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or either can be
scalar.

Examples

Compute Natural Log of Beta Function

Compute the natural logarithm of the beta function according to the value of X without
directly computing the beta function. beta(X,X) results in floating point arithmetic
underflow.

X = 510;
betaln(X,X)

ans = -708.8616

 betaln

1-831

Algorithms
betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
beta | betainc | gammaln

1 Alphabetical List

1-832

Introduced before R2006a

 betaln

1-833

between
Calendar math differences

Syntax
dt = between(t1,t2)
dt = between(t1,t2,components)

Description
dt = between(t1,t2) returns the differences between the datetime values in t1 and
t2. The dt output is a calendarDuration array in terms of the calendar components
years, months, days, and time, such that t2 = t1+dt.

dt = between(t1,t2,components) returns the differences between datetime values
in terms of the specified calendar or time components.

Examples

Differences Between Two Datetime Arrays

Create two datetime arrays.

t1 = datetime('now')

t1 = datetime
 02-Mar-2019 20:49:15

t2 = datetime('tomorrow','Format','dd-MMM-yyyy HH:mm:ss') + caldays(0:2)

t2 = 1x3 datetime array
 03-Mar-2019 00:00:00 04-Mar-2019 00:00:00 05-Mar-2019 00:00:00

1 Alphabetical List

1-834

Find the difference between the two arrays.

dt = between(t1,t2)

dt = 1x3 calendarDuration array
 3h 10m 44.961s 1d 3h 10m 44.961s 2d 3h 10m 44.961s

between returns a calendarDuration array containing differences in terms of days,
hours, minutes, and seconds.

Difference Between Datetime Values in Calendar Days

Create a sequence of datetimes over a 6-month period. Then, find the number of days
between the first date and each of the dates in the sequence.

t1 = datetime(2013,1,1);
t2 = dateshift(t1,'end','month',0:4)

t2 = 1x5 datetime array
 31-Jan-2013 28-Feb-2013 31-Mar-2013 30-Apr-2013 31-May-2013

dt = between(t1,t2,'Days')

dt = 1x5 calendarDuration array
 30d 58d 89d 119d 150d

Input Arguments
t1 — Input date and time
datetime array | character vector | cell array of character vectors | string array

Input date and time, specified as a datetime array, character vector, cell array of
character vectors, or string array. At least one of inputs t1 and t2 must be a datetime
array. t1 and t2 must be the same size unless one is a scalar.

t2 — Input date and time
datetime array | character vector | cell array of character vectors | string array

 between

1-835

Input date and time, specified as a datetime array, character vector, cell array of
character vectors, or string array. At least one of inputs t1 and t2 must be a datetime
array. t1 and t2 must be the same size unless one is a scalar.

components — Calendar or time components
'years' | 'quarters' | 'months' | 'weeks' | 'days' | 'time' | cell array of
character vectors | string array

Calendar or time components, specified as one of the following character vectors, or a
cell array or string array containing one or more of these values:

• 'years'
• 'quarters'
• 'months'
• 'weeks'
• 'days'
• 'time'

Except for 'time', the above components are flexible lengths of time. For example, one
month represents a different length of time when added to a datetime in January than
when added to a datetime in February.

between operates on the calendar or time components in decreasing order, starting with
the largest component.

In general, t2 is not equal to t1 + dt, unless you include 'time' in components.
Example: {'years','quarters'}
Data Types: char | cell | string

Output Arguments
dt — Difference array
calendarDuration array

Difference array, returned as a calendarDuration array.

1 Alphabetical List

1-836

Tips
• To compute differences between datetime values in t1 and t2 as exact, fixed-length

durations, use t2-t1.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
caldiff | calendarDuration | diff | minus

Introduced in R2014b

 between

1-837

bicg
Biconjugate gradients method

Syntax
x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description
x = bicg(A,b) attempts to solve the system of linear equations A*x = b for x. The n-
by-n coefficient matrix A must be square and should be large and sparse. The column
vector b must have length n. A can be a function handle, afun, such that
afun(x,'notransp') returns A*x and afun(x,'transp') returns A'*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If bicg converges, it displays a message to that effect. If bicg fails to converge after the
maximum number of iterations or halts for any reason, it prints a warning message that
includes the relative residual norm(b-A*x)/norm(b) and the iteration number at which
the method stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tol is [], then bicg uses the
default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is [],
then bicg uses the default, min(n,20).

1 Alphabetical List

1-838

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use the preconditioner
M or M = M1*M2 and effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is
[] then bicg applies no preconditioner. M can be a function handle mfun, such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then bicg
uses the default, an all-zero vector.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Flag Convergence
0 bicg converged to the desired tolerance tol within maxit

iterations.
1 bicg iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 bicg stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during bicg became too

small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual norm(b-
A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a vector of the
residual norms at each iteration including norm(b-A*x0).

Examples

Using bicg with a Matrix Input
This example shows how to use bicg with a matrix input. bicg. The following code:

 bicg

1-839

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2);

displays this message:

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Using bicg with a Function Handle
This example replaces the matrix A in the previous example with a handle to a matrix-
vector product function afun. The example is contained in a file run_bicg that

• Calls bicg with the @afun function handle as its first argument.
• Contains afun as a nested function, so that all variables in run_bicg are available to

afun.

Place the following into a file called run_bicg:

function x1 = run_bicg
n = 100;
on = ones(n,1);
b = afun(on,'notransp');
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = bicg(@afun,b,tol,maxit,M1,M2);

 function y = afun(x,transp_flag)
 if strcmp(transp_flag,'transp') % y = A'*x
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
 elseif strcmp(transp_flag,'notransp') % y = A*x

1 Alphabetical List

1-840

 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
 end
 end
end

When you enter

x1 = run_bicg;

MATLAB software displays the message

bicg converged at iteration 9 to a solution with ...
relative residual
5.3e-009

Using bicg with a Preconditioner
This example demonstrates the use of a preconditioner.

Load A = west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12;
maxit = 20;

Use bicg to find a solution at the requested tolerance and number of iterations.

[x0,fl0,rr0,it0,rv0] = bicg(A,b,tol,maxit);

fl0 is 1 because bicg does not converge to the requested tolerance 1e-12 within the
requested 20 iterations. In fact, the behavior of bicg is so poor that the initial guess (x0
= zeros(size(A,2),1)) is the best solution and is returned as indicated by it0 = 0.
MATLAB® stores the residual history in rv0.

Plot the behavior of bicg.

 bicg

1-841

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

The plot shows that the solution does not converge. You can use a preconditioner to
improve the outcome.

Create the preconditioner with ilu, since the matrix A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

1 Alphabetical List

1-842

MATLAB cannot construct the incomplete LU as it would result in a singular factor, which
is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = bicg(A,b,tol,maxit,L,U);

fl1 is 0 because bicg drives the relative residual to 4.1410e-014 (the value of rr1).
The relative residual is less than the prescribed tolerance of 1e-12 at the sixth iteration
(the value of it1) when preconditioned by the incomplete LU factorization with a drop
tolerance of 1e-6. The output rv1(1) is norm(b), and the output rv1(7) is norm(b-
A*x2).

You can follow the progress of bicg by plotting the relative residuals at each iteration
starting from the initial estimate (iterate number 0).

semilogy(0:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

 bicg

1-843

References
[1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

1 Alphabetical List

1-844

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When input A is a sparse matrix:

• Only one sparse matrix preconditioner M is supported.
• If you use two preconditioners, M1 and M2, then both of them must be functions.
• For GPU arrays, bigc does not detect stagnation (Flag 3). Instead, it reports

failure to converge (Flag 1).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicgstab | cgs | gmres | ilu | lsqr | minres | mldivide | pcg | qmr | symmlq

Topics
“Create Function Handle”

 bicg

1-845

Introduced before R2006a

1 Alphabetical List

1-846

bicgstab
Biconjugate gradients stabilized method

Syntax
x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description
x = bicgstab(A,b) attempts to solve the system of linear equations A*x=b for x. The
n-by-n coefficient matrix A must be square and should be large and sparse. The column
vector b must have length n. A can be a function handle, afun, such that afun(x)
returns A*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If bicgstab converges, a message to that effect is displayed. If bicgstab fails to
converge after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and the
iteration number at which the method stopped or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [], then bicgstab
uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is
[], then bicgstab uses the default, min(n,20).

 bicgstab

1-847

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2) use
preconditioner M or M = M1*M2 and effectively solve the system inv(M)*A*x =
inv(M)*b for x. If M is [] then bicgstab applies no preconditioner. M can be a function
handle mfun, such that mfun(x) returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
bicgstab uses the default, an all zero vector.

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Flag Convergence
0 bicgstab converged to the desired tolerance tol within maxit

iterations.
1 bicgstab iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 bicgstab stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during bicgstab became

too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative residual norm(b-
A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the iteration number at
which x was computed, where 0 <= iter <= maxit. iter can be an integer + 0.5,
indicating convergence halfway through an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns a vector of the
residual norms at each half iteration, including norm(b-A*x0).

1 Alphabetical List

1-848

Examples
Using bicgstab with a Matrix Input
This example first solves Ax = b by providing A and the preconditioner M1 directly as
arguments.

The code:

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1);

displays the message:

bicgstab converged at iteration 12.5 to a solution with relative
residual 2e-014.

Using bicgstab with a Function Handle
This example replaces the matrix A in the previous example with a handle to a matrix-
vector product function afun, and the preconditioner M1 with a handle to a backsolve
function mfun. The example is contained in a file run_bicgstab that

• Calls bicgstab with the function handle @afun as its first argument.
• Contains afun and mfun as nested functions, so that all variables in run_bicgstab

are available to afun and mfun.

The following shows the code for run_bicgstab:

function x1 = run_bicgstab
n = 21;
b = afun(ones(n,1));
tol = 1e-12;
maxit = 15;
x1 = bicgstab(@afun,b,tol,maxit,@mfun);

 function y = afun(x)

 bicgstab

1-849

 y = [0; x(1:n-1)] + ...
 [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
 [x(2:n); 0];
 end

 function y = mfun(r)
 y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];
 end
end

When you enter

x1 = run_bicgstab;

MATLAB software displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 2e-014.

Using bicgstab with a Preconditioner
This example demonstrates the use of a preconditioner.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12;
maxit = 20;

Use bicgstab to find a solution at the requested tolerance and number of iterations.

[x0,fl0,rr0,it0,rv0] = bicgstab(A,b,tol,maxit);

fl0 is 1 because bicgstab does not converge to the requested tolerance 1e-12 within
the requested 20 iterations. In fact, the behavior of bicgstab is so bad that the initial
guess (x0 = zeros(size(A,2),1)) is the best solution and is returned as indicated by
it0 = 0. MATLAB® stores the residual history in rv0.

1 Alphabetical List

1-850

Plot the behavior of bicgstab.

semilogy(0:0.5:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

The plot shows that the solution does not converge. You can use a preconditioner to
improve the outcome.

Create a preconditioner with ilu, since A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

 bicgstab

1-851

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

MATLAB cannot construct the incomplete LU as it would result in a singular factor, which
is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = bicgstab(A,b,tol,maxit,L,U);

fl1 is 0 because bicgstab drives the relative residual to 5.9829e-014 (the value of
rr1). The relative residual is less than the prescribed tolerance of 1e-12 at the third
iteration (the value of it1) when preconditioned by the incomplete LU factorization with
a drop tolerance of 1e-6. The output rv1(1) is norm(b) and the output rv1(7) is
norm(b-A*x2) since bicgstab uses half iterations.

You can follow the progress of bicgstab by plotting the relative residuals at each
iteration starting from the initial estimate (iterate number 0).

semilogy(0:0.5:it1,rv1/norm(b),'-o');
xlabel('Iteration Number');
ylabel('Relative Residual');

1 Alphabetical List

1-852

References
[1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] van der Vorst, H.A., "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for
the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., March
1992, Vol. 13, No. 2, pp. 631–644.

 bicgstab

1-853

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When input A is a sparse matrix:

• Only one sparse matrix preconditioner M is supported.
• If you use two preconditioners, M1 and M2, then both preconditioners must be

functions.
• The output parameters iter and resvec record only whole iterations.
• bigcstab does not detect stagnation (Flag 3). Instead, it reports failure to

converge (Flag 1).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | cgs | gmres | ilu | lsqr | minres | mldivide | pcg | qmr | symmlq

1 Alphabetical List

1-854

Topics
“Create Function Handle”

Introduced before R2006a

 bicgstab

1-855

bicgstabl
Biconjugate gradients stabilized (l) method

Syntax
x = bicgstabl(A,b)
x = bicgstabl(afun,b)
x = bicgstabl(A,b,tol)
x = bicgstabl(A,b,tol,maxit)
x = bicgstabl(A,b,tol,maxit,M)
x = bicgstabl(A,b,tol,maxit,M1,M2)
x = bicgstabl(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstabl(A,b,...)
[x,flag,relres] = bicgstabl(A,b,...)
[x,flag,relres,iter] = bicgstabl(A,b,...)
[x,flag,relres,iter,resvec] = bicgstabl(A,b,...)

Description
x = bicgstabl(A,b) attempts to solve the system of linear equations A*x=b for x. The
n-by-n coefficient matrix A must be square and the right-hand side column vector b must
have length n.

x = bicgstabl(afun,b) accepts a function handle afun instead of the matrix A.
afun(x) accepts a vector input x and returns the matrix-vector product A*x. In all of the
following syntaxes, you can replace A by afun.

x = bicgstabl(A,b,tol) specifies the tolerance of the method. If tol is [] then
bicgstabl uses the default, 1e-6.

x = bicgstabl(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [] then bicgstabl uses the default, min(N,20).

x = bicgstabl(A,b,tol,maxit,M) and x = bicgstabl(A,b,tol,maxit,M1,M2)
use preconditioner M or M=M1*M2 and effectively solve the system A*inv(M)*x = b for
x. If M is [] then a preconditioner is not applied. M may be a function handle returning M\x.

1 Alphabetical List

1-856

x = bicgstabl(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [] then
bicgstabl uses the default, an all zero vector.

[x,flag] = bicgstabl(A,b,...) also returns a convergence flag:

Flag Convergence
0 bicgstabl converged to the desired tolerance tol within maxit

iterations.
1 bicgstabl iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 bicgstabl stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during bicgstabl became too

small or too large to continue computing.

[x,flag,relres] = bicgstabl(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstabl(A,b,...) also returns the iteration number
at which x was computed, where 0 <= iter <= maxit. iter can be k/4 where k is
some integer, indicating convergence at a given quarter iteration.

[x,flag,relres,iter,resvec] = bicgstabl(A,b,...) also returns a vector of
the residual norms at each quarter iteration, including norm(b-A*x0).

Examples
Using bicgstabl with Inputs or with a Function
You can pass inputs directly to bicgstabl:

n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M = diag([10:-1:1 1 1:10]);
x = bicgstabl(A,b,tol,maxit,M);

You can also use a matrix-vector product function:

 bicgstabl

1-857

function y = afun(x,n)
y = [0; x(1:n-1)] + [((n-1)/2:-1:0)';
(1:(n-1)/2)'].*x+[x(2:n); 0];

and a preconditioner backsolve function:

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)';
1;
(1:(n-1)/2)'];

as inputs to bicgstabl:

x1 = bicgstabl(@(x)afun(x,n),b,tol,maxit,@(x)mfun(x,n));

Using bicgstabl with a Preconditioner
This example demonstrates the use of a preconditioner.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12;
maxit = 20;

Use bicgstabl to find a solution at the requested tolerance and number of iterations.

[x0,fl0,rr0,it0,rv0] = bicgstabl(A,b,tol,maxit);

fl0 is 1 because bicgstabl does not converge to the requested tolerance 1e-12 within
the requested 20 iterations. In fact, the behavior of bicgstabl is so poor that the initial
guess (x0 = zeros(size(A,2),1)) is the best solution and is returned as indicated by
it0 = 0. MATLAB® stores the residual history in rv0.

Plot the behavior of bicgstabl.

1 Alphabetical List

1-858

semilogy(0:0.25:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

The plot shows that the solution does not converge. You can use a preconditioner to
improve the outcome.

Create a preconditioner with ilu, since A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing the
drop tolerance or consider using the 'udiag' option.

 bicgstabl

1-859

MATLAB cannot construct the incomplete LU as it would result in a singular factor, which
is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = bicgstabl(A,b,tol,maxit,L,U);

fl1 is 0 because bicgstabl drives the relative residual to 1.0257e-015 (the value of
rr1). The relative residual is less than the prescribed tolerance of 1e-12 at the sixth
iteration (the value of it1) when preconditioned by the incomplete LU factorization with
a drop tolerance of 1e-6. The output rv1(1) is norm(b), and the output rv1(9) is
norm(b-A*x2) since bicgstabl uses quarter iterations.

You can follow the progress of bicgstabl by plotting the relative residuals at each
iteration starting from the initial estimate (iterate number 0).

semilogy(0:0.25:it1,rv1/norm(b),'-o');

h = gca;
h.XTick = 0:0.25:it1;

xlabel('Iteration number');
ylabel('Relative residual');

1 Alphabetical List

1-860

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

 bicgstabl

1-861

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | cgs | gmres | ilu | lsqr | minres | mldivide | pcg | qmr | symmlq

Topics
“Create Function Handle”

1 Alphabetical List

1-862

bin2dec
Convert text representation of binary number to decimal number

Syntax
bin2dec(binarystr)

Description
bin2dec(binarystr) interprets binarystr, text that represents a binary number, and
returns the equivalent decimal number. binarystr must represent a nonnegative integer
value smaller than or equal to the value returned by flintmax.

binarystr can be a character array, a cell array of character vectors, or a string array.
bin2dec ignores any space characters in the input text.

Examples
Binary 010111 converts to decimal 23:

bin2dec('010111')
ans =
 23

Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =
 23

 bin2dec

1-863

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be specified as a character array. Cell arrays are not supported.
• When the input is empty, the answer does not match the answer in MATLAB.

See Also
base2dec | dec2bin | flintmax | hex2dec

1 Alphabetical List

1-864

binscatter
Package: matlab.graphics.chart.primitive

Binned scatter plot

Syntax
binscatter(x,y)
binscatter(x,y,N)
binscatter(___ ,Name,Value)
binscatter(ax, ___)
h = binscatter(___)

Description
binscatter(x,y) displays a binned scatter plot for vectors x and y. A binned scatter
plot partitions the data space into rectangular bins and displays the count of data points
in each bin using different colors. When zooming into the plot, the bin sizes automatically
adjust to show finer resolution.

binscatter(x,y,N) specifies the number of bins to use. N can be a scalar or a two-
element vector [Nx Ny]. If N is a scalar, then Nx and Ny are both set to the scalar value.
The maximum number of bins in each dimension is 250.

binscatter(___ ,Name,Value) specifies property values with one or more name-value
pair arguments. For example, you can specify 'ShowEmptyBins' as 'on' to color areas
with no data points. For a full list of properties, see Binscatter Properties. Use this option
with any of the input argument combinations in previous syntaxes.

binscatter(ax, ___) plots into the axes specified by ax instead of into the current
axes (gca). The ax input can precede any of the input argument combinations in previous
syntaxes.

h = binscatter(___) returns a Binscatter object. Use this object to inspect and
adjust the properties of the binned scatter plot.

 binscatter

1-865

Examples

Binned Scatter Plot of Vectors

Generate random numbers in both the x and y dimensions and create a binned scatter
plot. The binscatter function automatically chooses an appropriate number of bins to
cover the range of values in the data.

x = randn(1e6,1);
y = 2*x + randn(1e6,1);
binscatter(x,y)

1 Alphabetical List

1-866

Specify Number of Bins

Plot a binned scatter plot of 10,000 random numbers sorted into 30 bins in the x
dimension and 10 bins in the y dimension.

rng default % for reproducibility
x = randn(1e4,1);
y = randn(1e4,1);
h = binscatter(x,y,[30 10]);

 binscatter

1-867

Find the bin counts. The result is a matrix with the top left element corresponding to the
bin count of the bottom left bin in the plot. The x bins are in the rows of the matrix and
the y bins are in the columns.

counts = h.Values;

Change Color Map of Binned Scatter Plot

Create a binned scatter plot of some random data points.

x = randn(1e5,1);
y = randn(1e5,1);
binscatter(x,y)

1 Alphabetical List

1-868

The default color map ranges from light colors (for small values) to dark colors (for large
values). Switching to a color map that uses dark colors for small values can make it easier
to spot outliers.

Use the colormap function to change the colors in the plot. Pass in the current axes
handle using gca.

colormap(gca,'parula')

 binscatter

1-869

Adjust Binned Scatter Plot Properties

Generate 1,000 random numbers and create a binned scatter plot. Return the
Binscatter object to adjust properties of the plot without recreating the entire plot.

x = randn(1000,1);
y = randn(1000,1);
h = binscatter(x,y)

1 Alphabetical List

1-870

h =
 Binscatter with properties:

 NumBins: [11 11]
 XBinEdges: [1x12 double]
 YBinEdges: [1x12 double]
 Values: [11x11 double]
 XLimits: [-3.2764 3.6305]
 YLimits: [-3.1155 3.6168]
 FaceAlpha: 1

 Show all properties

 binscatter

1-871

Specify exactly how many bins to use in each direction.

h.NumBins = [20 30];

Turn on the display of empty bins in the plot.

h.ShowEmptyBins = 'on';

1 Alphabetical List

1-872

Specify the extent of the axes with the XLimits and YLimits properties. Then limit the
bin limits in the x direction with a vector.

xlim(gca,h.XLimits);
ylim(gca,h.YLimits);
h.XLimits = [-1 1];

 binscatter

1-873

Input Arguments
x, y — Input vectors
vectors

Input vectors, specified as real vectors of the same length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

N — Number of bins
scalar | two-element vector

1 Alphabetical List

1-874

Number of bins, specified as a scalar or two-element vector [Nx Ny].

• If N is a two-element vector [Nx Ny], then binscatter uses Nx bins in the x
dimension and Ny bins in the y dimension.

• If N is a scalar, then Nx and Ny are both set to the scalar value.

binscatter uses Nx and Ny bins along the x and y dimensions in the initial plot, when
the axes are not zoomed in. (The axes are not zoomed in when the XLimMode and
YLimMode properties are both 'auto'.) When zooming, binscatter adjusts the number
of bins to maintain a bin size such that the visible portion of the plot is approximately
divided into Nx-by-Ny bins.

The maximum number of bins in each dimension is 250. The default number of bins is
computed based on the data size and standard deviation and does not exceed 100.
Example: [10 20]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ax — Target axes
gca (default) | Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then binscatter
uses the current axes (gca).

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: binscatter(x,y,'ShowEmptyBins','on') turns on the display of empty
bins in the plot.

The properties listed here are only a subset. For a complete list, see Binscatter
Properties.

XLimits — Data limits in x-dimension
vector

Data limits in x-dimension, specified as a two-element vector [Xmin Xmax].

 binscatter

1-875

binscatter only displays data points that fall within the specified data limits inclusively,
Xmin ≤ X ≤ Xmax.

Example: [0 10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

YLimits — Data limits in y-dimension
vector

Data limits in y-dimension, specified as a two-element vector [Ymin Ymax].

binscatter only displays data points that fall within the specified data limits inclusively,
Ymin ≤ Y ≤ Ymax.

Example: [0 10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

ShowEmptyBins — Toggle to show empty bins
'off' (default) | 'on'

Toggle to show empty bins, specified as either 'off' or 'on'. Specify 'on' to color tiles
in the plot that fall within the bin limits, but have no data points.

Output Arguments
h — Binscatter object
Binscatter object

Binscatter object. Use this object to inspect and adjust properties of the plot. For a full
listing of properties, see Binscatter Properties.

Tips
• Change the ColorScale property of the axes to 'log' to produce better bin coloring

when a few bins dominate the plot.

1 Alphabetical List

1-876

ax = gca;
ax.ColorScale = 'log';

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

With tall arrays, the binscatter function plots in iterations, progressively adding to the
plot as more data is read. During the updates, a progress indicator shows the proportion
of data that has been plotted. Zooming and panning is supported during the update
process, before the plot is complete. To stop the update process, press the pause button in
the progress indicator.

For more information, see “Tall Arrays”.

See Also
histcounts | histcounts2 | histogram | histogram2 | scatter

Topics
“Visualization of Tall Arrays”

Introduced in R2017b

 binscatter

1-877

Binscatter Properties
Binscatter appearance and behavior

Description
Binscatter properties control the appearance and behavior of binned scatter plots. By
changing property values, you can modify aspects of the display. Use dot notation to refer
to a particular object and property:

h = binscatter(randn(1,100),randn(1,100));
N = h.NumBins
h.NumBins = [3 3]

Properties
Bins

NumBins — Number of bins
scalar | two-element vector

Number of bins, specified as a scalar or two-element vector [Nx Ny].

• If NumBins is specified as a two-element vector [Nx Ny], then binscatter uses Nx
bins in the x dimension and Ny bins in the y dimension.

• If NumBins is specified as a scalar, then Nx and Ny are both set to the scalar value.

binscatter uses Nx and Ny bins along the x and y dimensions in the initial plot, when
the axes are not zoomed in. (The axes are not zoomed in when the XLimMode and
YLimMode properties are both 'auto'.) When zooming, binscatter adjusts the number
of bins to maintain a bin size such that the visible portion of the plot is approximately
divided into Nx-by-Ny bins.

The maximum number of bins in each dimension is 250. The default number of bins is
computed based on the data size and standard deviation and does not exceed 100.
Example: [10 20]

1 Alphabetical List

1-878

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NumBinsMode — Selection mode for number of bins
'auto' (default) | 'manual'

Selection mode for number of bins, specified as either 'auto' or 'manual'. With the
default value of 'auto', the number of bins is computed from the data according to
Scott's rule, [3.5*std(X(:))*numel(X)^(-1/4),
3.5*std(Y(:))*numel(Y)^(-1/4)].

If you specify the number of bins, then the value of 'NumBinsMode' is set to 'manual'.

ShowEmptyBins — Toggle to show empty bins
'off' (default) | 'on'

Toggle to show empty bins, specified as either 'off' or 'on'. Specify 'on' to color tiles
in the plot that fall within the bin limits, but have no data points.

XBinEdges — Bin edges in x-dimension
vector

This property is read-only.

Bin edges in x-dimension, returned as a vector.
Data Types: single | double | datetime | duration

YBinEdges — Bin edges in y dimension
vector

This property is read-only.

Bin edges in y dimension, returned as a vector.
Data Types: single | double | datetime | duration

XLimits — Data limits in x-dimension
vector

Data limits in x-dimension, specified as a two-element vector [Xmin Xmax].

binscatter only displays data points that fall within the specified data limits inclusively,
Xmin ≤ X ≤ Xmax.

 Binscatter Properties

1-879

Example: [0 10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

XLimitsMode — Selection mode for data limits in x-dimension
'auto' (default) | 'manual'

Selection mode for data limits in x-dimension, specified as 'auto' or 'manual'. The
default value is 'auto', so that the bin limits automatically adjust to the data along the x-
axis.

If you explicitly specify XLimits, then XLimitsMode is automatically set to 'manual'.
In that case, specify XLimitsMode as 'auto' to rescale the bin limits to the data.

YLimits — Data limits in y-dimension
vector

Data limits in y-dimension, specified as a two-element vector [Ymin Ymax].

binscatter only displays data points that fall within the specified data limits inclusively,
Ymin ≤ Y ≤ Ymax.

Example: [0 10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

YLimitsMode — Selection mode for data limits in y-dimension
'auto' (default) | 'manual'

Selection mode for data limits in y-dimension, specified as 'auto' or 'manual'. The
default value is 'auto', so that the bin limits automatically adjust to the data along the y-
axis.

If you explicitly specify YLimits, then YLimitsMode is automatically set to 'manual'.
In that case, specify YLimitsMode as 'auto' to rescale the bin limits to the data.

Data

XData — x coordinates of data
vector

x coordinates of data, specified as a vector.

1 Alphabetical List

1-880

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

YData — y coordinates of data
vector

y coordinates of data, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Values — Bin values
double matrix vector

This property is read-only.

Bin values, returned as a double matrix. The (i,j)th entry in Values specifies the bin
count for the bin whose x edges are [XBinEdges(i), XBinEdges(i+1)] and whose y
edges are [YBinEdges(j), YBinEdges(j+1)].

The bin inclusion scheme for the different numbered bins in Values, as well as their
relative orientation to the x-axis and y-axis, is

For example, the (1,1) bin includes values that fall on the first edge in each dimension.
The last bin in the bottom right includes values that fall on any of its edges.

 Binscatter Properties

1-881

Transparency

FaceAlpha — Transparency of tiles
1 (default) | scalar value between 0 and 1 inclusive

Transparency of tiles, specified as a scalar value between 0 and 1 inclusive. binscatter
uses the same transparency for all the tiles. A value of 1 means fully opaque and 0 means
completely transparent (invisible).
Example: binscatter(X,Y,'FaceAlpha',0.5) creates a binned scatter plot with
semitransparent bins.

Legend

DisplayName — Text used by legend
variable name of Data or '' (default) | character vector

Text used by the legend, specified as a character vector. The text appears next to an icon
of the binscatter.
Example: 'Text Description'

For multiline text, create the character vector using sprintf with the new line character
\n.
Example: sprintf('line one\nline two')

Alternatively, you can specify the legend text using the legend function.

• If you specify the text as an input argument to the legend function, then the legend
uses the specified text and sets the DisplayName property to the same value.

• If you do not specify the text as an input argument to the legend function, then the
legend uses the text in the DisplayName property. The default value of DisplayName
is one of these values.

• For numeric inputs, DisplayName is a character vector representing the variable
name of the input data used to construct the histogram. If the input data does not
have a variable name, then DisplayName is empty, ''.

• For categorical array inputs, DisplayName is empty, ''.

If the DisplayName property does not contain any text, then the legend generates a
character vector. The character vector has the form 'dataN', where N is the number
assigned to the binscatter object based on its location in the list of legend entries.

1 Alphabetical List

1-882

If you edit interactively the character vector in an existing legend, then MATLAB updates
the DisplayName property to the edited character vector.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

 Binscatter Properties

1-883

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

1 Alphabetical List

1-884

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

 Binscatter Properties

1-885

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

1 Alphabetical List

1-886

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the Binscatter object. The Interruptible property has
two values:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the Binscatter object tries to interrupt a running callback that cannot
be interrupted, then the BusyAction property determines if it is discarded or put in the
queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

 Binscatter Properties

1-887

• 'cancel' — Discard the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Binscatter object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Binscatter object passes the
click to the object behind it in the current view of the figure window. The HitTest
property of the Binscatter object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Binscatter object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Binscatter object
that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Binscatter object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

1 Alphabetical List

1-888

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object

Parent, specified as an Axes object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'binscatter'

 Binscatter Properties

1-889

This property is read-only.

Type of graphics object, returned as 'binscatter'. Use this property to find all objects
of a given type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Tag to associate with binscatter
'' (default) | character vector

Tag to associate with the binscatter object, specified as a character vector or string
scalar.

Use this property to find binscatter objects in a hierarchy. For example, you can use
the findobj function to find binscatter objects that have a specific Tag property
value.
Example: 'January Data'
Data Types: char

UserData — User data
[] (default) | any MATLAB data

User data to associate with the binscatter object, specified as any MATLAB data, for
example, a scalar, vector, matrix, cell array, character array, table, or structure. MATLAB
does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

See Also
binscatter

Introduced in R2017b

1 Alphabetical List

1-890

binary
Set FTP transfer mode to binary

Syntax
binary(ftpobj)

Description
binary(ftpobj) sets the FTP transfer mode for the server associated with ftpobj to
binary, which is the default for FTP objects. If you previously called the ascii function,
then call binary before transferring a nontext file, such as an executable file or zip
archive.

Examples

Set Transfer Mode to Binary

Download a text file from an FTP server, using the ASCII transfer mode. After you
download the file, set the transfer mode back to binary.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

The default transfer mode is binary. When you download a text file, you can use ASCII
mode instead so that newline characters are converted correctly.

 binary

1-891

Set the transfer mode to ASCII. To show the current transfer mode, display the FTP
object.

ascii(ftpobj)
ftpobj

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: ascii

Download a text file.

mget(ftpobj,'README.txt');

Use the ASCII transfer mode only for text files. To download nontext files, such as images
or ZIP archives, use the binary transfer mode.

Set the transfer mode back to binary. To check that the mode is now binary, display the
FTP object again.

binary(ftpobj)
ftpobj

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Input Arguments
ftpobj — Connection to FTP server
FTP object

1 Alphabetical List

1-892

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Connection to an FTP server, specified as an FTP object.

See Also
ascii | ftp

Introduced before R2006a

 binary

1-893

bitand
Bit-wise AND

Syntax
C = bitand(A,B)
C = bitand(A,B,assumedtype)

objout = bitand(netobj1,netobj2)

Description
C = bitand(A,B) returns the bit-wise AND of A and B.

C = bitand(A,B,assumedtype) assumes that A and B are of assumedtype.

objout = bitand(netobj1,netobj2) returns the bit-wise AND of the .NET
enumeration objects netobj1 and netobj2.

Examples

Truth Table

Create a truth table for the logical AND operation.

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TTable = bitand(A, B)

TTable = 2x2 uint8 matrix

 0 0
 0 1

1 Alphabetical List

1-894

bitand returns 1 only if both bit-wise inputs are 1.

Negative Values

Explore how bitand handles negative values.

MATLAB® encodes signed integers using two's complement. Thus, the bit-wise AND of -5
(11111011) and 6 (00000110) is 2 (00000010).

C = -5;
D = 6;
bitand(C,D,'int8')

ans = 2

Input Arguments
A,B — Input values
scalars | vectors | matrices | multidimensional arrays

Input values, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A
and B must either be the same size or have sizes that are compatible (for example, A is an
M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”. A and B also must be the same data type
unless one is a scalar double.

• If A and B are double arrays, and assumedtype is not specified, then MATLAB treats
A and B as unsigned 64-bit integers.

• If assumedtype is specified, then all elements in A and B must have integer values
within the range of assumedtype.

Data Types: double | logical | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype — Assumed data type of integ1 and integ2
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' | 'int16' | 'int8'

 bitand

1-895

Assumed data type of A and B, specified as 'uint64', 'uint32', 'uint16', 'uint8',
'int64', 'int32', 'int16', or 'int8'.

• If A and B are double arrays, then assumedtype can specify any valid integer type,
but defaults to 'uint64'.

• If A and B are integer type arrays, then assumedtype must specify that same integer
type.

Data Types: char | string

netobj1, netobj2 — Input values
.NET enumeration objects

Input values, specified as .NET enumeration objects. You must be running a version of
Windows to use .NET enumeration objects as input arguments.

bitand is an instance method for MATLAB enumeration objects created from a .NET
enumeration.

Output Arguments
C — Bit-wise AND result
array

Bit-wise AND result, returned as an array. C is the same data type as A and B.

• If either A or B is a scalar double, and the other is an integer type, then C is the
integer type.

objout — Bit-wise AND result
.NET enumeration object

Bit-wise AND result, returned as a .NET enumeration objects.

1 Alphabetical List

1-896

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Both inputs can be unsigned integer arrays, or one input can be an unsigned integer
array and the other input can be a scalar double.

• 64-bit integers are not supported.
• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bitcmp | bitget | bitnot | bitor | bitset | bitshift | bitxor | intmax

 bitand

1-897

Topics
“Creating .NET Enumeration Bit Flags”

Introduced before R2006a

1 Alphabetical List

1-898

bitcmp
Bit-wise complement

Syntax
cmp = bitcmp(A)
cmp = bitcmp(A,assumedtype)

Description
cmp = bitcmp(A) returns the bit-wise complement of A.

cmp = bitcmp(A,assumedtype) assumes that A is of assumedtype.

Examples

Complement of a Negative Integer
A = int8(-11);
cmp = bitcmp(A)

cmp = int8
 10

You can see the complement operation when the numbers are shown in binary.

original = bitget(A,8:-1:1)

original = 1x8 int8 row vector

 1 1 1 1 0 1 0 1

complement = bitget(bitcmp(A),8:-1:1)

complement = 1x8 int8 row vector

 bitcmp

1-899

 0 0 0 0 1 0 1 0

Complement of Unsigned Integers

cmp = bitcmp(64,'uint8')

cmp = 191

maxint = intmax('uint8') - 64

maxint = uint8
 191

The complement of an unsigned integer is equal to itself subtracted from the maximum
integer of its data type.

Input Arguments
A — Input value
signed integer array | unsigned integer array | double array

Input value, specified as a signed integer array, unsigned integer array, or double array.

• If A is a double array, and assumedtype is not specified, then MATLAB treats A as an
unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have integer values within
the range of assumedtype.

Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

assumedtype — Assumed data type of A
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' | 'int16' | 'int8'

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16', 'uint8',
'int64', 'int32', 'int16', or 'int8'.

1 Alphabetical List

1-900

• If A is a double array, then assumedtype can specify any valid integer type, but
defaults to 'uint64'.

• If A is an integer type array, then assumedtype must specify that same integer type.

Data Types: char | string

Output Arguments
cmp — Bit-wise complement
signed integer array | unsigned integer array | double array

Bit-wise complement, returned as a signed integer array, unsigned integer array, or
double array. cmp is the same size and type as A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The input argument A must be a gpuArray of unsigned integers.
• 64-bit integers are not supported.
• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 bitcmp

1-901

See Also
bitand | bitget | bitor | bitset | bitshift | bitxor | intmax

Introduced before R2006a

1 Alphabetical List

1-902

bitget
Get bit at specified position

Syntax
b = bitget(A,bit)
b = bitget(A,bit,assumedtype)

Description
b = bitget(A,bit) returns the bit value at position bit in integer array A.

b = bitget(A,bit,assumedtype) assumes that A is of assumedtype.

Examples

Maximum Integer

Find the difference in the binary representation between the maximum integer of signed
and unsigned integers.

a1 = intmax('int8');
a2 = intmax('uint8');
b1 = bitget(a1,8:-1:1)

b1 = 1x8 int8 row vector

 0 1 1 1 1 1 1 1

b2 = bitget(a2,8:-1:1)

b2 = 1x8 uint8 row vector

 1 1 1 1 1 1 1 1

 bitget

1-903

The signed integers require a bit to accommodate negative integers.

Negative Numbers Using Two's Complement

Find the 8-bit representation of a negative number.

A = -29;
b = bitget(A,8:-1:1,'int8')

b = 1×8

 1 1 1 0 0 0 1 1

Input Arguments
A — Input values
array

Input values, specified as an array. A can be a scalar or an array of the same size as bit.

• If A is a double array, and assumedtype is not specified, then MATLAB treats A as an
unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have integer values within
the range of assumedtype.

Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

bit — Bit position
integer | integer array

Bit position, specified as an integer or integer array. bit can be a scalar or an array of
the same size as A. bit must be between 1 (the least-significant bit) and the number of
bits in the integer class of A.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

1 Alphabetical List

1-904

assumedtype — Assumed data type of A
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' | 'int16' | 'int8'

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16', 'uint8',
'int64', 'int32', 'int16', or 'int8'.

• If A is a double array, then assumedtype can specify any valid integer type, but
defaults to 'uint64'.

• If A is an integer type array, then assumedtype must specify that same integer type.

Data Types: char | string

Output Arguments
b — Bit value at bit
array

Bit value at bit, returned as an array of 0s and 1s. b is the same data type as A.

• If A and bit are scalars, then b is also a scalar.
• If either A or bit is an array, then b is the same size as that array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Both inputs can be unsigned integer arrays, or one input can be an unsigned integer
array and the other input can be a scalar double.

 bitget

1-905

• 64-bit integers are not supported.
• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
bitand | bitcmp | bitor | bitset | bitshift | bitxor | intmax

Introduced before R2006a

1 Alphabetical List

1-906

bitnot
.NET enumeration object bit-wise NOT instance method

Syntax
objout = bitnot(netobj)

Description
objout = bitnot(netobj) reverses all bits of the .NET enumeration objects netobj.

Input Arguments
netobj — Input value
.NET enumeration objects

Input value, specified as .NET enumeration object. You must be running a version of
Windows to use .NET enumeration objects as input arguments.

Output Arguments
objout — Bit-wise NOT result
.NET enumeration object

Bit-wise NOT result, returned as a .NET enumeration object.

Limitations
• The method is an instance method for MATLAB enumeration objects created from

a .NET enumeration. This method does not have an equivalent MATLAB function.

 bitnot

1-907

See Also
bitand | bitor | bitxor

Topics
“Creating .NET Enumeration Bit Flags”

Introduced in R2011a

1 Alphabetical List

1-908

bitor
Bit-wise OR

Syntax
C = bitor(A,B)
C = bitor(A,B,assumedtype)

objout = bitor(netobj1,netobj2)

Description
C = bitor(A,B) returns the bit-wise OR of A and B.

C = bitor(A,B,assumedtype) assumes that A and B are of assumedtype.

objout = bitor(netobj1,netobj2) returns the bit-wise OR of the .NET enumeration
objects netobj1 and netobj2.

Examples

Truth Table

Create a truth table for the logical OR operation.

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TTable = bitor(A, B)

TTable = 2x2 uint8 matrix

 0 1
 1 1

 bitor

1-909

bitor returns 1 if either bit-wise input is 1.

Negative Values

Explore how bitor handles negative values.

MATLAB® encodes negative integers using two's complement. Thus, the bit-wise OR of -5
(11111010) and 6 (00000110) is -1 (11111110).

C = -5;
D = 6;
bitor(C,D,'int8')

ans = -1

Input Arguments
A,B — Input values
scalars | vectors | matrices | multidimensional arrays

Input values, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A
and B must either be the same size or have sizes that are compatible (for example, A is an
M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”. A and B also must be the same data type
unless one is a scalar double.

• If A and B are double arrays, and assumedtype is not specified, then MATLAB treats
A and B as unsigned 64-bit integers.

• If assumedtype is specified, then all elements in A and B must have integer values
within the range of assumedtype.

Data Types: double | logical | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype — Assumed data type of integ1 and integ2
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' | 'int16' | 'int8'

1 Alphabetical List

1-910

Assumed data type of A and B, specified as 'uint64', 'uint32', 'uint16', 'uint8',
'int64', 'int32', 'int16', or 'int8'.

• If A and B are double arrays, then assumedtype can specify any valid integer type,
but defaults to 'uint64'.

• If A and B are integer type arrays, then assumedtype must specify that same integer
type.

Data Types: char | string

netobj1, netobj2 — Input values
.NET enumeration objects

Input values, specified as .NET enumeration objects. You must be running a version of
Windows to use .NET enumeration objects as input arguments.

bitor is an instance method for MATLAB enumeration objects created from a .NET
enumeration.

Output Arguments
C — Bit-wise OR result
array

Bit-wise OR result, returned as an array. C is the same data type as A and B.

• If either A or B is a scalar double, and the other is an integer type, then C is the
integer type.

objout — Bit-wise OR result
.NET enumeration object

Bit-wise OR result, returned as a .NET enumeration objects.

 bitor

1-911

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Both inputs can be unsigned integer arrays, or one input can be an unsigned integer
array and the other input can be a scalar double.

• 64-bit integers are not supported.
• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bitand | bitcmp | bitget | bitnot | bitset | bitshift | bitxor | intmax

1 Alphabetical List

1-912

Topics
“Creating .NET Enumeration Bit Flags”

Introduced before R2006a

 bitor

1-913

bitset
Set bit at specific location

Syntax
intout = bitset(A,bit)
intout = bitset(A,bit,assumedtype)

intout = bitset(A,bit,V)
intout = bitset(A,bit,V,assumedtype)

Description
intout = bitset(A,bit) returns the value of A with position bit set to 1 (on).

intout = bitset(A,bit,assumedtype) assumes A is of type assumedtype.

intout = bitset(A,bit,V) returns A with position bit set to the value of V.

• If V is zero, then the bit position bit is set to 0 (off).
• If V is nonzero, then the bit position bit is set to 1 (on).

intout = bitset(A,bit,V,assumedtype) assumes A is of type assumedtype.

Examples

Set Bits to On

Add powers of 2 onto a number.

A = 4;
intout = bitset(A,4:6)

intout = 1×3

1 Alphabetical List

1-914

 12 20 36

You can see that bitset sequentially turns on bits 4 through 6.

c = dec2bin(intout)

c = 3x6 char array
 '001100'
 '010100'
 '100100'

Out of Range of Integer Type

MATLAB® throws an error if you specify an integer outside the range of assumedtype.
For instance, bitset(300,5,'int8') returns an error since the maximum value of an
int8 integer is 127.

Avoid this error by limiting your input to the range of the specified data type.

intout = bitset(75,5,'int8')

intout = 91

Set Bits to Off

Repeatedly subtract powers of 2 from a number.

a = intmax('uint8')

a = uint8
 255

for k = 0:7
 a = bitset(a, 8-k, 0);
 b(1,k+1) = a;
end
b

 bitset

1-915

b = 1x8 uint8 row vector

 127 63 31 15 7 3 1 0

Set Multiple Bits

Set multiple bits to different values

bits = 2:6;
val = [1 0 0 1 1];
intout = bitset(0,bits,val,'int8')

intout = 1×5

 2 0 0 16 32

Input Arguments
A — Input values
array

Input values, specified as an array. A, bit, and V can each be scalars or arrays of the
same size.

• If A is a double array, and assumedtype is not specified, then MATLAB treats A as an
unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have integer values within
the range of assumedtype.

Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

bit — Bit position
integer | integer array

1 Alphabetical List

1-916

Bit position, specified as an integer or integer array. A, bit, and V can each be scalars or
arrays of the same size. The values of bit must be between 1 (the least significant bit)
and the number of bits in the integer class of A.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

assumedtype — Assumed data type of A
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' | 'int16' | 'int8'

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16', 'uint8',
'int64', 'int32', 'int16', or 'int8'.

• If A is a double array, then assumedtype can specify any valid integer type, but
defaults to 'uint64'.

• If A is an integer type array, then assumedtype must specify that same integer type.

Data Types: char | string

V — bit value
scalar | numeric array

Bit value, specified as a scalar or a numeric array. A, bit, and V can each be scalars or
arrays of the same size.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical

Output Arguments
intout — Adjusted integers
array

Adjusted integers, returned as an array. intout is the same data type as A.

• If A, bit, and V are all scalars, then intout is also a scalar.
• If any of A, bit, or V is an array, then intout is the same size as that array.

 bitset

1-917

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Both inputs can be unsigned integer arrays, or one input can be an unsigned integer
array and the other input can be a scalar double.

• 64-bit integers are not supported.
• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
bitand | bitcmp | bitget | bitor | bitshift | bitxor | intmax

Introduced before R2006a

1 Alphabetical List

1-918

bitshift
Shift bits specified number of places

Syntax
intout = bitshift(A,k)
intout = bitshift(A,k,assumedtype)

Description
intout = bitshift(A,k) returns A shifted to the left by k bits, equivalent to
multiplying by 2k. Negative values of k correspond to shifting bits right or dividing by 2|k|
and rounding to the nearest integer towards negative infinity. Any overflow bits are
truncated.

• If A is an array of signed integers, then bitshift returns the arithmetic shift results,
preserving the signed bit when k is negative, and not preserving the signed bit when k
is positive.

• If k is positive, MATLAB shifts the bits to the left and inserts k 0-bits on the right.
• If k is negative and A is nonnegative, then MATLAB shifts the bits to the right and

inserts |k| 0-bits on the left.
• If k is negative and A is negative, then MATLAB shifts the bits to the right and inserts

|k| 1-bits on the left.

intout = bitshift(A,k,assumedtype) assumes A is of type assumedtype.

Examples

Shifted 8-bit Integer

Repeatedly shift the bits of an unsigned 8-bit value to the left until all the nonzero bits
overflow.

 bitshift

1-919

a = intmax('uint8');
s1 = 'Initial uint8 value %5d is %08s in binary\n';
s2 = 'Shifted uint8 value %5d is %08s in binary\n';
fprintf(s1,a,dec2bin(a))

Initial uint8 value 255 is 11111111 in binary

 for i = 1:8
 a = bitshift(a,1);
 fprintf(s2,a,dec2bin(a))
 end

Shifted uint8 value 254 is 11111110 in binary
Shifted uint8 value 252 is 11111100 in binary
Shifted uint8 value 248 is 11111000 in binary
Shifted uint8 value 240 is 11110000 in binary
Shifted uint8 value 224 is 11100000 in binary
Shifted uint8 value 192 is 11000000 in binary
Shifted uint8 value 128 is 10000000 in binary
Shifted uint8 value 0 is 00000000 in binary

Different Results for Different Integer Types

Find the shift for a number using different assumed integer types.

uintout = bitshift(6,5:7,'uint8')

uintout = 1×3

 192 128 0

intout = bitshift(6,5:7,'int8')

intout = 1×3

 -64 -128 0

1 Alphabetical List

1-920

Input Arguments
A — Input values
array

Input values, specified as an array. A can be a scalar or an array of the same size as k.

• If A is a double array, and assumedtype is not specified, then MATLAB treats A as an
unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have integer values within
the range of assumedtype.

Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

k — Number of switched bits
integer | integer array

Number of switched bits, specified as an integer or integer array. k can be a scalar or an
array of the same size as A.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

assumedtype — Assumed data type of A
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' | 'int16' | 'int8'

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16', 'uint8',
'int64', 'int32', 'int16', or 'int8'.

• If A is an integer type array, then assumedtype must specify that same integer type.
• If A is a double array, then assumedtype can specify any valid integer type.

Data Types: char | string

Output Arguments
intout — Shifted values
array

Shifted values, returned as an array. intout is the same data type as A.

 bitshift

1-921

• If A and k are scalars, then intout is also a scalar.
• If either A or k is an array, then intout is the same size as that array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• At least one of the inputs, A or k, must be an integer array.
• Input A cannot be a signed integer array.
• 64-bit integers are not supported.
• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
bitand | bitcmp | bitget | bitor | bitset | bitxor | intmax

Introduced before R2006a

1 Alphabetical List

1-922

bitxor
Bit-wise XOR

Syntax
C = bitxor(A,B)
C = bitxor(A,B,assumedtype)

objout = bitxor(netobj1,netobj2)

Description
C = bitxor(A,B) returns the bit-wise XOR of A and B.

C = bitxor(A,B,assumedtype) assumes that A and B are of assumedtype.

objout = bitxor(netobj1,netobj2) returns the bit-wise XOR of the .NET
enumeration objects netobj1 and netobj2.

Examples

Truth Table

Create a truth table for the logical XOR operation.

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TTable = bitxor(A, B)

TTable = 2x2 uint8 matrix

 0 1
 1 0

 bitxor

1-923

bitxor returns 0 if both bit-wise inputs are equal.

Negative Values

Explore how bitxor handles negative values.

MATLAB® encodes negative integers using two's complement. Thus, the bit-wise XOR of
-5 (11111010) and 6 (00000110) is -3 (11111100).

C = -5;
D = 6;
bitxor(C,D,'int8')

ans = -3

Input Arguments
A,B — Input values
scalars | vectors | matrices | multidimensional arrays

Input values, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A
and B must either be the same size or have sizes that are compatible (for example, A is an
M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”. A and B also must be the same data type
unless one is a scalar double.

• If A and B are double arrays, and assumedtype is not specified, then MATLAB treats
A and B as unsigned 64-bit integers.

• If assumedtype is specified, then all elements in A and B must have integer values
within the range of assumedtype.

Data Types: double | logical | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype — Assumed data type of A and B
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' | 'int16' | 'int8'

1 Alphabetical List

1-924

Assumed data type of A and B, specified as 'uint64', 'uint32', 'uint16', 'uint8',
'int64', 'int32', 'int16', or 'int8'.

• If A and B are double arrays, then assumedtype can specify any valid integer type,
but defaults to 'uint64'.

• If A and B are integer type arrays, then assumedtype must specify that same integer
type.

Data Types: char | string

netobj1, netobj2 — Input values
.NET enumeration objects

Input values, specified as .NET enumeration objects. You must be running a version of
Windows to use .NET enumeration objects as input arguments.

bitxor is an instance method for MATLAB enumeration objects created from a .NET
enumeration.

Output Arguments
C — Bit-wise XOR result
array

Bit-wise XOR result, returned as an array. C is the same data type as A and B.

• If either A or B is a scalar double, and the other is an integer type, then C is the
integer type.

objout — Bit-wise XOR result
.NET enumeration object

Bit-wise XOR result, returned as a .NET enumeration objects.

 bitxor

1-925

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Both inputs can be unsigned integer arrays, or one input can be an unsigned integer
array and the other input can be a scalar double.

• 64-bit integers are not supported.
• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The assumedtype argument is not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bitand | bitcmp | bitget | bitnot | bitor | bitset | bitshift | intmax

1 Alphabetical List

1-926

Topics
“Creating .NET Enumeration Bit Flags”

Introduced before R2006a

 bitxor

1-927

blanks
Create character array of blanks

Syntax
chr = blanks(n)

Description
chr = blanks(n) returns a 1-by-n array of space characters.

Examples

Create Array of Blanks

Create an array of five blanks. To display it, embed it in a character array that starts and
ends with a visible character.

b = blanks(5);
chr = ['|' b '|']

chr =
'| |'

Embed the blanks in a string and display the string. Starting in R2017a, you can create
strings using double quotes.

str = "Due Date:" + b + "2017-01-13"

str =
"Due Date: 2017-01-13"

1 Alphabetical List

1-928

Input Arguments
n — Number of space characters
integer

Number of space characters, specified as an integer.

• If n is 0, then blanks returns a 1-by-0 character array.
• If n is less than 0, then blanks treats it as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
char | deblank | string

Topics
“Create Character Arrays”
“Formatting Text”

Introduced before R2006a

 blanks

1-929

blkdiag
Block diagonal matrix

Syntax
B = blkdiag(A1,...,AN)

Description
B = blkdiag(A1,...,AN) returns the block diagonal matrix on page 1-931 created by
aligning the input matrices A1,...,AN along the diagonal of B.

Examples

Diagonal of Three Matrices

Create a block diagonal matrix from three matrices of different sizes.

A1 = ones(2,2);
A2 = 2*ones(3,2);
A3 = 3*ones(2,3);
B = blkdiag(A1,A2,A3)

B = 7×7

 1 1 0 0 0 0 0
 1 1 0 0 0 0 0
 0 0 2 2 0 0 0
 0 0 2 2 0 0 0
 0 0 2 2 0 0 0
 0 0 0 0 3 3 3
 0 0 0 0 3 3 3

1 Alphabetical List

1-930

Input Arguments
A1,...,AN — Input matrices
matrices

Input matrices, specified as a comma-separated list of matrices. The matrices can be
either square or rectangular and can differ in size.

If any of the input matrices are sparse, then the output block diagonal matrix is also
sparse.

Definitions

Block Diagonal Matrix
A block diagonal matrix is a matrix whose diagonal contains blocks of smaller matrices, in
contrast to a regular diagonal matrix with single elements along the diagonal. A block
diagonal matrix takes on the following form, where A1, A2,…, AN are each matrices that
can differ in size:

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 blkdiag

1-931

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
diag

Introduced before R2006a

1 Alphabetical List

1-932

bone
Bone colormap array

Syntax
c = bone
c = bone(m)

Description
c = bone returns the bone colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = bone(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the bone colormap.

surf(peaks);
colormap('bone');

 bone

1-933

Get the bone colormap array and reverse the order. Then apply the modified colormap to
the surface.

c = bone;
c = flipud(c);
colormap(c);

1 Alphabetical List

1-934

Downsample the Bone Colormap

Get a downsampled version of the bone colormap containing only twenty colors. Then
display the contours of a paraboloid by applying the colormap and interpolated shading.

c = bone(20);
[X,Y] = meshgrid(-10:1:10);
Z = X.^2 + Y.^2;
surf(X,Y,Z);
colormap(c);
shading interp;

 bone

1-935

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-936

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 bone

1-937

boundary
Boundary of a set of points in 2-D or 3-D

Syntax
k = boundary(x,y)
k = boundary(x,y,z)
k = boundary(P)
k = boundary(___ ,s)
[k,v] = boundary(___)

Description
k = boundary(x,y) returns a vector of point indices representing a single conforming
2-D boundary around the points (x,y). The points (x(k),y(k)) form the boundary.
Unlike the convex hull, the boundary can shrink towards the interior of the hull to envelop
the points.

k = boundary(x,y,z) returns a triangulation representing a single conforming 3-D
boundary around the points (x,y,z). Each row of k is a triangle defined in terms of the
point indices.

k = boundary(P) specifies points (x,y) or (x,y,z) in the columns of matrix P.

k = boundary(___ ,s) specifies shrink factor s using any of the previous syntaxes. s is
a scalar between 0 and 1. Setting s to 0 gives the convex hull, and setting s to 1 gives a
compact boundary that envelops the points. The default shrink factor is 0.5.

[k,v] = boundary(___) also returns a scalar v, which is the area (2-D) or volume (3-
D) which boundary k encloses.

Examples

1 Alphabetical List

1-938

Boundary of 2-D Point Cloud

Create and plot a set of random 2-D points.

x = gallery('uniformdata',30,1,1);
y = gallery('uniformdata',30,1,10);
plot(x,y,'.')
xlim([-0.2 1.2])
ylim([-0.2 1.2])

Compute a boundary around the points using the default shrink factor.

k = boundary(x,y);
hold on;
plot(x(k),y(k));

 boundary

1-939

Create a new boundary around the points using a shrink factor of 0.1. The result is a less
compact boundary enveloping the points.

j = boundary(x,y,0.1);
hold on;
plot(x(j),y(j));

1 Alphabetical List

1-940

Boundary of 3-D Point Cloud

Create and plot a set of random 3-D points.

P = gallery('uniformdata',30,3,5);
plot3(P(:,1),P(:,2),P(:,3),'.','MarkerSize',10)
grid on

 boundary

1-941

Plot the boundary using the default shrink factor.

k = boundary(P);
hold on
trisurf(k,P(:,1),P(:,2),P(:,3),'Facecolor','red','FaceAlpha',0.1)

1 Alphabetical List

1-942

Shrink Factor Effect on 3-D Boundary

Create and plot a set of random 3-D points.

P = gallery('uniformdata',30,3,8);
plot3(P(:,1),P(:,2),P(:,3),'.')
grid on

 boundary

1-943

Compute two boundaries: one with a shrink factor of 0 and the other with a shrink factor
of 1.

k = boundary(P,0);
j = boundary(P,1);

Compare the shrink factors by plotting the original points and the two boundaries side-by-
side.

subplot(1,2,1);
plot3(P(:,1),P(:,2),P(:,3),'.','MarkerSize',10)
hold on
trisurf(k,P(:,1),P(:,2),P(:,3),'FaceColor','red','FaceAlpha',0.1)
axis equal

1 Alphabetical List

1-944

title('Shrink Factor = 0')

subplot(1,2,2);
plot3(P(:,1),P(:,2),P(:,3),'.','MarkerSize',10)
hold on
trisurf(j,P(:,1),P(:,2),P(:,3),'FaceColor','red','FaceAlpha',0.1)
axis equal
title('Shrink Factor = 1')

Volume of 3-D Boundary

Create and plot a set of random 3-D points.

 boundary

1-945

P = gallery('uniformdata',30,3,1);
plot3(P(:,1),P(:,2),P(:,3),'.')
grid on

Use the boundary function to compute a boundary around the points, and find the
volume of the resulting shape.

[~, vol] = boundary(P);
vol

vol = 0.3012

1 Alphabetical List

1-946

Input Arguments
x — x-coordinates of points
column vector

x-coordinates of points, specified as a column vector.
Data Types: double

y — y-coordinates of points
column vector

y-coordinates of points, specified as a column vector.
Data Types: double

z — z-coordinates of points
column vector

z-coordinates of points, specified as a column vector.
Data Types: double

P — Point coordinates
matrix with two columns | matrix with three columns

Point coordinates, specified as a matrix with two columns (for a 2-D alpha shape) or a
matrix with three columns (for a 3-D alpha shape).

• For 2-D, the columns of P represent x and y coordinates, respectively.
• For 3-D, the columns of P represent x, y, and z coordinates, respectively.

Data Types: double

s — Shrink factor
0.5 (default) | scalar in range [0,1]

Shrink factor, specified as a scalar in the range of [0,1].

• s = 0 corresponds to the convex hull of the points.
• s = 1 corresponds to the tightest single-region boundary around the points.

The default shrink factor is 0.5. Specify a larger or smaller shrink factor to tighten or
loosen the boundary around the points, respectively.

 boundary

1-947

Example: k = boundary(x,y,0.76) specifies a shrink factor of 0.76, producing a
tighter boundary than the default.

Output Arguments
k — Boundary point indices
vector | matrix

Boundary point indices, returned as a vector or matrix. k contains the indices of the input
points that lie on the boundary.

• For 2-D problems, k is a column vector of point indices representing the sequence of
points around the boundary, which is a polygon.

• For 3-D problems, k is a triangulation matrix of size mtri-by-3, where mtri is the
number of triangular facets on the boundary. Each row of k defines a triangle in terms
of the point indices, and the triangles collectively form a bounding polyhedron.

v — Area or volume enclosed by boundary
scalar

Area or volume enclosed by boundary, returned as a scalar.

• For 2-D problems, v is the area enclosed by boundary k.
• For 3-D problems, v is the volume enclosed by boundary k.

See Also
alphaShape | convhull | delaunayTriangulation | triangulation | trisurf

Introduced in R2014b

1 Alphabetical List

1-948

boundaryshape
Create polyshape from 2-D triangulation

Syntax
polyout = boundaryshape(TR)
[polyout,vertexID] = boundaryshape(TR)

Description
polyout = boundaryshape(TR) creates a polyshape object from the boundary of a
2-D triangulation. TR can be either a triangulation object or a
delaunayTriangulation object.

Once you create the polyshape object polyout, you can analyze its properties or
perform additional computations using polyshape functions. For example, you can
access the vertices that define the boundary with the property polyout.Vertices, and
you can plot the shape using the command plot(polyout).

[polyout,vertexID] = boundaryshape(TR) also returns a vector vertexID that
maps the vertices of the polyshape to the vertices of the triangulation.

Examples

Simple Boundary

Create and plot a simple triangulation object.

P = [2.5 8.0; 6.5 8.0; 2.5 5.0; 6.5 5.0; 1.0 6.5; 8.0 6.5];
T = [5 3 1; 3 2 1; 3 4 2; 4 6 2];
TR = triangulation(T,P);
triplot(TR)
xlim([0 9])
ylim([4.5 8.5])

 boundaryshape

1-949

Create and plot a polyshape object whose boundary is equal to the boundary of the
triangulation.

polyout = boundaryshape(TR);
plot(polyout)

1 Alphabetical List

1-950

Solid and Hole Boundaries

Create and plot a triangulation object.

T = [5 1 3; 6 1 4; 5 4 1; 2 6 3; 3 6 5; 2 1 6];
P = [3 0.5; 3.5 1.5; 4 0.5; 3.25 0.6; 3.75 0.6; 3.5 1];
TR = triangulation(T,P);
triplot(TR)
xlim([2.8 4.2])
ylim([0.4 1.8])

 boundaryshape

1-951

Create and plot a polyshape object whose boundaries are equal to the boundaries of the
triangulation. Due to the inner and outer closed boundaries of the triangulation, polyout
contains both a hole boundary and a solid boundary.

polyout = boundaryshape(TR)

polyout =
 polyshape with properties:

 Vertices: [7x2 double]
 NumRegions: 1
 NumHoles: 1

plot(polyout)

1 Alphabetical List

1-952

Input Arguments
TR — Triangulation
2-D triangulation object | 2-D delaunayTriangulation object

Triangulation, specified as a 2-D triangulation object or a 2-D
delaunayTriangulation object.

 boundaryshape

1-953

Output Arguments
polyout — Output polyshape
polyshape object

Output polyshape, returned as a polyshape object.

vertexID — Vertex identification
vector

Vertex identification, returned as a vector of integers. Each element in vertexID
corresponds to the row number of the triangulation vertex in the Points property. The
length of vertexID is equal to the number of rows in the Vertices property of the
polyshape object.
Data Types: double

See Also
delaunayTriangulation | polyshape | triangulation

Introduced in R2018b

1 Alphabetical List

1-954

bounds
Smallest and largest elements

Syntax
[S,L] = bounds(A)
[S,L] = bounds(A,'all')
[S,L] = bounds(A,dim)
[S,L] = bounds(A,vecdim)
[S,L] = bounds(___ ,nanflag)

Description
[S,L] = bounds(A) returns the smallest element S and largest element L of an array. S
is equivalent to min(A) and L is equivalent to max(A).

[S,L] = bounds(A,'all') computes the smallest and largest values over all elements
of A. This syntax is valid for MATLAB versions R2018b and later.

[S,L] = bounds(A,dim) operates along the dimension dim of A. For example, if A is a
matrix, then bounds(A,2) returns column vectors S and L containing the smallest and
largest elements of each row.

[S,L] = bounds(A,vecdim) computes the smallest and largest values based on the
dimensions specified in the vector vecdim. For example, if A is a matrix, then bounds(A,
[1 2]) returns the smallest and largest values over all elements in A, since every
element of a matrix is contained in the array slice defined by dimensions 1 and 2.

[S,L] = bounds(___ ,nanflag) specifies whether to include or omit NaN values
when determining the smallest and largest elements. bounds(A,'omitnan') ignores
NaN values. If any element of A is NaN, then bounds(A,'includenan') returns NaN for
both S and L. The default behavior is 'omitnan'.

Examples

 bounds

1-955

Smallest and Largest Elements of Vector

Simultaneously compute the smallest and largest values of a vector.

A = [2 4 -1 10 6 3 0 -16];
[S,L] = bounds(A)

S = -16

L = 10

Smallest and Largest Elements of Matrix Rows

Compute the smallest and largest elements of each row of a matrix.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

[S,L] = bounds(A,2)

S = 4×1

 2
 5
 6
 1

L = 4×1

 16
 11
 12
 15

1 Alphabetical List

1-956

Bounds of Array Page

Create a 3-D array and compute the smallest and largest values in each page of data
(rows and columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
[S1,L1] = bounds(A,[1 2]);
S1

S1 =
S1(:,:,1) =

 -2

S1(:,:,2) =

 -5

S1(:,:,3) =

 -3

L1

L1 =
L1(:,:,1) =

 4

L1(:,:,2) =

 13

L1(:,:,3) =

 8

 bounds

1-957

Starting in R2018b, to compute the bounds over all dimensions of an array, you can either
specify each dimension in the vector dimension argument, or use the 'all' option.

[S2,L2] = bounds(A,[1 2 3])

S2 = -5

L2 = 13

[Sall,Lall] = bounds(A,'all')

Sall = -5

Lall = 13

Vector with NaN Values

Include and ignore NaN elements of a vector when computing its smallest and largest
values.

Ignore NaN values when computing the largest and smallest values of a vector, which is
the default.

A = [2 NaN 6 -5 0 NaN 10];
[S,L] = bounds(A)

S = -5

L = 10

Use the 'includenan' option to include NaN values, which causes bounds to return NaN
for both the smallest and largest values of A.

[S,L] = bounds(A,'includenan')

S = NaN

L = NaN

1 Alphabetical List

1-958

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | categorical | datetime | duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a matrix A.

• bounds(A,1) computes the smallest and largest values of each column.

• bounds(A,2) computes the smallest and largest values of each row.

 bounds

1-959

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then [S,L] = bounds(A,[1 2]) returns a 1-
by-1-by-3 array for both S and L. The elements of S and L are the smallest and largest
values in the corresponding page of A, respectively.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-960

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of these values:

• 'omitnan' — Ignore all NaN values in the input. If the input contains only NaN values,
then bounds returns NaN for both S and L.

• 'includenan' — Include NaN values. If any element of the input is NaN, then bounds
returns NaN for both S and L.

Output Arguments
S — Smallest element
vector | matrix | multidimensional array

Smallest element, specified as a vector, matrix, or multidimensional array.

L — Largest element
vector | matrix | multidimensional array

Largest element, specified as a vector, matrix, or multidimensional array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 bounds

1-961

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
max | min

Introduced in R2017a

1 Alphabetical List

1-962

box
Display axes outline

Syntax
box on
box off
box

box(ax, ___)

Description
box on displays the box outline around the current axes. This option sets the Box
property of the current axes to 'on'.

box off does not display the box outline around the current axes. This option sets the
Box property of the current axes to 'off'. This option is the default behavior.

box toggles the display of the box outline.

box(ax, ___) uses the axes specified by ax instead of the current axes. Specify the axes
as the first input argument for any of the previous syntaxes. Use single quotes around the
'on' and 'off' inputs, such as box(ax,'on').

Examples

Display Box Outline Around Axes

Plot a surface and display the box outline around the axes.

[X,Y,Z] = peaks;
surf(X,Y,Z)
box on

 box

1-963

Turn off the display of the box outline.

box off

1 Alphabetical List

1-964

Change Style of Box Outline

First, plot a surface and display the box outline around the axes. By default, the outline
appears around the back planes of the axes because the BoxStyle property of the axes is
set to 'back'.

[X,Y,Z] = peaks;
surf(X,Y,Z)
box on

 box

1-965

Next, display the outline around the entire axes by setting the BoxStyle property to
'full'. Starting in R2014b, you can use dot notation to set properties. If you are using
an earlier release, use the set function instead.

ax = gca;
ax.BoxStyle = 'full';

1 Alphabetical List

1-966

Change Color of Box Outline

Create a scatter plot and display the box outline around the axes.

x = rand(10,1);
y = rand(10,1);
scatter(x,y)
box on

 box

1-967

Change the color of the box outline in the x-axis direction by setting the XColor property
of the axes. Starting in R2014b, you can use dot notation to set properties. If you are
using an earlier release, use the set function instead.

ax = gca;
ax.XColor = 'red';

1 Alphabetical List

1-968

Turn Off Box Outline for Specific Axes

Create a figure with two subplots and assign the Axes objects to the variables ax1 and
ax2. Plot a line in each subplot. Remove the box outline around the lower subplot by
specifying ax2 as the first input argument to box.

ax1 = subplot(2,1,1);
plot(ax1,1:10)

ax2 = subplot(2,1,2);

 box

1-969

plot(ax2,1:10)
box(ax2,'off')

Input Arguments
ax — Target axes
Axes object | PolarAxes object

Target axes, specified as an Axes object or a PolarAxes object. If you do not specify the
axes, then box affects the current axes.

1 Alphabetical List

1-970

Tips
• Some Cartesian axes properties affect the appearance of the box outline. This table

lists a subset of axes properties related to the box outline.

Axes Property Description
Box Display of box outline
BoxStyle Style of box outline
XColor, YColor, ZColor Box outline color in the x-axis, y-axis,

and z-axis directions
LineWidth Width of box outline, tick marks, and

grid lines
• Some polar axes properties affect the appearance of the outline around the polar axes.

If you are working with polar axes, then the box command controls the outline display
when the theta-axis limits do not span 360 degrees. This table lists a subset of polar
axes properties related to the outline.

PolarAxes Property Description
Box Display of full outline
RColor, ThetaColor Outline color
LineWidth Width of outline, tick marks, and grid

lines

Algorithms
The box function sets the Box property of the Axes or PolarAxes object to either 'on'
or 'off'.

See Also
Functions
axis | gca | grid

Properties
Axes | PolarAxes

 box

1-971

Introduced before R2006a

1 Alphabetical List

1-972

break
Terminate execution of for or while loop

Syntax
break

Description
break terminates the execution of a for or while loop. Statements in the loop after the
break statement do not execute.

In nested loops, break exits only from the loop in which it occurs. Control passes to the
statement that follows the end of that loop.

Examples

Exit Loop Before Expression Is False

Sum a sequence of random numbers until the next random number is greater than an
upper limit. Then, exit the loop using a break statement.

limit = 0.8;
s = 0;

while 1
 tmp = rand;
 if tmp > limit
 break
 end
 s = s + tmp;
end

 break

1-973

Tips
• The break statement exits a for or while loop completely. To skip the rest of the

instructions in the loop and begin the next iteration, use a continue statement.
• break is not defined outside a for or while loop. To exit a function, use return.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
continue | end | for | return | while

Introduced before R2006a

1 Alphabetical List

1-974

brighten
Brighten or darken colormap

Syntax
brighten(beta)
brighten(map,beta)
newmap = brighten(___)

brighten(f,beta)

Description
brighten(beta) shifts the intensities of all colors in the current colormap in the same
direction. The colors brighten when beta is between 0 and 1, and they darken when
beta is between -1 and 0. The magnitude of the change is proportional to the magnitude
of beta. Use this syntax to adjust colors for all graphics objects in the current figure that
use a colormap.

brighten(map,beta) shifts the intensities of the colormap specified as map.

newmap = brighten(___) returns the adjusted colormap for any of the input
argument combinations in the previous syntaxes. When you specify the output argument,
the current figure is not affected.

brighten(f,beta) shifts the intensities of the colormap assigned to figure f. The colors
of other graphics objects are affected, such as the axes, axes labels, and ticks.

Examples

Brighten Current Colormap

Create a surface plot with the default colormap.

 brighten

1-975

surf(peaks);

Brighten the colormap for current figure.

brighten(.8);

1 Alphabetical List

1-976

Darken a Colormap in a Subplot

Display two surface plots using the subplot function and the summer colormap.

ax1 = subplot(1,2,1);
surf(ax1,peaks);
axis tight
ax2 = subplot(1,2,2);
surf(ax2,peaks);
axis tight
colormap(summer)

 brighten

1-977

Darken the summer colormap and apply it to the second surface.

newmap = brighten(summer,-.7);
colormap(ax2,newmap)

1 Alphabetical List

1-978

Input Arguments
beta — Brightness adjustment
numeric scalar value

Brightness adjustment parameter, specified as a numeric scalar value. The brighten
function raises each value in the colormap to the power of γ, which is defined as:

γ =
1− β, β > 0

1
1 + β , β ≤ 0

 brighten

1-979

Data Types: single | double

f — Figure
Figure object

Figure to adjust, specified as a Figure object. When you specify this argument, the
colors of other graphics objects within the figure are affected in addition to the objects
that use the colormap. For example, color of the axes, axes labels, and ticks changes.

map — Colormap
three-column matrix of RGB triplets

Colormap to adjust, specified as a three-column matrix of RGB triplets. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of a color. The intensities must be in the range [0, 1]. For example, here
is a colormap that contains five colors:

map = [0.2 0.1 0.5
 0.1 0.5 0.8
 0.2 0.7 0.6
 0.8 0.7 0.3
 0.9 1 0];

This table lists the RGB triplet values for common colors.

Color RGB Triplet
yellow [1 1 0]
magenta [1 0 1]
cyan [0 1 1]
red [1 0 0]
green [0 1 0]
blue [0 0 1]
white [1 1 1]
black [0 0 0]

Alternatively, you can create the matrix by calling one of the predefined colormap
functions. Call the function as an input argument to the brighten function. For example,
this command brightens the parula colormap.

brighten(parula,.8)

1 Alphabetical List

1-980

Data Types: double | single

Output Arguments
newmap — Adjusted colormap
three-column matrix of RGB triplets

Adjusted colormap, returned as a three-column matrix of RGB triplets.

See Also
colormap | rgbplot

Introduced before R2006a

 brighten

1-981

brush
Interactively mark, delete, modify, and save observations in graphs

Syntax
brush on
brush off
brush
brush color
brush(figure_handle,...)
brushobj = brush(figure_handle)

Description
Data brushing is a mode for interacting with graphs in figure windows in which you can
click data points or drag a selection rectangle around data points to highlight
observations in a color of your choice. Highlighting takes different forms for different
types of graphs, and brushing marks persist—even in other interactive modes—until
removed by deselecting them.

brush on turns on interactive data brushing mode.

brush off turns brushing mode off, leaving any brushed observations still highlighted.

brush by itself toggles the state of the data brushing tool.

brush color sets the current color used for brushing graphics to the specified
ColorSpec. Changing brush color affects subsequent brushing, but does not change the
color of observations already brushed or the brush tool's state.

brush(figure_handle,...) applies the function to the specified figure handle.

brushobj = brush(figure_handle) returns a brush mode object for that figure,
useful for controlling and customizing the figure's brushing state. The following
properties of such objects can be modified using get and set:

1 Alphabetical List

1-982

Enable 'on' | {'off'} Specifies whether this figure mode is currently enabled on
the figure.

FigureHandle The associated figure handle. This property supports get
only.

Color Specifies the color to be used for brushing.

brush cannot return a brush mode object at the same time you are calling it to set a
brushing option.

Examples

Example 1
On a scatter plot, drag out a rectangle to brush the graph:

x = rand(20,1);
y = rand(20,1);
scatter(x,y,80,'s')
brush on

 brush

1-983

Example 2
Brush observations from -.2 to .2 on a line plot in dark red:

x = [-2*pi:.1:2*pi];
y = sin(x);
plot(x,y);
h = brush;
set(h,'Color',[.6 .2 .1],'Enable','on');

1 Alphabetical List

1-984

Tips
• “Types of Charts You Can Brush” on page 1-986
• “Mode Exclusivity and Persistence” on page 1-986
• “How Data Linking Affects Data Brushing” on page 1-987
• “Mouse Gestures for Data Brushing” on page 1-987
• “Brush Mode Callbacks” on page 1-988

 brush

1-985

Types of Charts You Can Brush
Not all charts support data brushing. The graphics functions listed here create charts that
support data brushing.

• Line charts created with plot, plot3, loglog, semilogx, semilogy, or stairs.
Brushing highlights a line segment when you brush both vertices of the line segment.

• Scatter charts created with scatter, scatter3, or spy.
• Stem charts created with stem or stem3.
• Area charts created with area
• Bar charts created with bar or barh.
• Radial charts created with compass, feather, rose or ezpolar.
• Surface charts created with surf, surfc, surfl, mesh, meshc, or meshz. Brushing

highlights a surface face when you brush all four vertices of the face.
• Histogram charts created with histogram or histogram2. Before you can enable

brushing, turn on data linking using the linkdata on command or by selecting the

link plot icon in the figure toolbar.

Mode Exclusivity and Persistence
Data brushing mode is exclusive, like zoom, pan, data cursor, or plot edit mode. However,
brush marks created in data brushing mode persist through all changes in mode. Brush
marks that appear in other graphs while they are linked via linkdata also persist even
when data linking is subsequently turned off. That is, severing connections to a graph's
data sources does not remove brushing marks from it. The only ways to remove brushing
marks are (in brushing mode):

• Brush an empty area in a brushed graph.
• Right-click and select Clear all brushing from the context menu.

Changing the brushing color for a figure does not recolor existing brush marks. If you
change the brushing color and hold down the Shift key when brushing new data, all
existing brush marks change to the new color. All brush marks that appear on linked plots
in the same or different figure also change to the new color if the brushing action affects
them. The behavior is the same whether you select a brushing color from the Brush Tool
dropdown palette, set it by calling brush(colorspec), or by setting the Color property
of a brush mode object (e.g., set(brushobj,'Color',colorspec)).

1 Alphabetical List

1-986

How Data Linking Affects Data Brushing
When you use the Data Linking tool or call the linkdata function, brushing marks that
you make on one plot appear on other plots that depict the same variable you are
brushing—if those plots are also linked. This happens even if the affected plot is not in
Brushing mode. That is, brushing marks appear on a linked plot in any mode when you
brush another plot linked to it via a common variable or brush that variable in the
Variables editor. Be aware that the following conditions apply, however:

• The graph type must support data brushing. For a list, see “Types of Charts You Can
Brush” on page 1-986.

• The graphed variable must not be complex; if you can plot a complex variable you can
brush it, but such graphs do not respond when you brush the complex variable in
another linked plot. For more information about linking complex variables, see
Example 3 in the linkdata reference page.

• Observations that you brush display in the same color in all linked graphs. The color is
the brush color you have selected in the window you are interacting with, and can
differ from the brushing colors selected in the other affected figures. When you brush
linked plots, the brushing color is associated with the variable(s) you brush

The last bullet implies that brush marks on an unlinked graph can change color when
data linking is turned on for that figure. Brushing marks can, in fact, vanish and be
replaced by marks in the same or different color when the plot enters a linked state. In
the linked state, brushing is tied to variables (data sources), not just the graphics. If
different observations for the same variable on a linked figure are brushed, those
variables override the brushed graphics on the newly linked plot. In other words, the
newly linked graph loses all its previous brush marks when it “joins the club” of common
data sources.

Mouse Gestures for Data Brushing
You can brush graphs in several ways. The basic operation is to drag the mouse to
highlight all observations within the rectangle you define. The following table lists data
brushing gestures and their effects.

 brush

1-987

Action Gesture Result
Select data
using a Region
Of Interest

ROI mouse drag Region of interest (ROI) rectangle (or
rectangular prism for 3-D axes) appears during
the gesture and all brushable observations within
the rectangle are highlighted. All other brushing
marks in the axes are removed. The ROI
rectangle disappears when the mouse button is
released.

Select a single
point

Single left-click on a
graphic object that
supports data
brushing

Produces an equivalent result to ROI rectangle,
brushing where the rectangle encloses only the
single vertex on the graphical object closest to
the mouse. All other brushing annotations in the
figure are removed.

Add a point to
the selection or
remove a
highlighted one

Single left-click on a
graphic object that
supports data
brushing, with the
Shift key down

Equivalent brushing by dragging an ROI
rectangle that encloses only the single vertex on
the graphic object closest to the mouse. All other
brushed regions in the figure remain brushed.

Add to or
subtract from
region of
interest

Click or ROI drag
with the Shift or
Ctrl keys down

Region of interest grows; all unbrushed vertices
within the rectangle become brushed and all
brushed observations in it become unbrushed. All
brushed vertices outside the ROI remain
brushed.

Brush Mode Callbacks
You can program the following callbacks for brush mode operations.

• ActionPreCallback <function_handle> — Function to execute before brushing

Use this callback to execute code when a brush operation begins. The function handle
should reference a function with two implicit arguments:

function myfunction(src,event_data)
% src handle to the figure that has been clicked
% event_data object containing event data
end

The event data has the following property:

1 Alphabetical List

1-988

Axes The handle of the axes that is being brushed
• ActionPostCallback <function_handle> — Function to execute after brushing

Use this callback to execute code when a brush operation ends. The function handle
should reference a function with two implicit arguments:

function myfunction(src,event_data)
% src handle to the figure that has been clicked
% event_data object containing event data
% (same as the event data of the
% 'ActionPreCallback' callback)
end

See Also
linkaxes | linkdata | pan | rotate3d | zoom

Topics
“Interactively Explore Plotted Data”

 brush

1-989

bsxfun
Apply element-wise operation to two arrays with implicit expansion enabled

Syntax
C = bsxfun(fun,A,B)

Description
C = bsxfun(fun,A,B) applies the element-wise binary operation specified by the
function handle fun to arrays A and B.

Examples

Deviation of Matrix Elements from Column Mean

Subtract the column mean from the corresponding column elements of a matrix A. Then
normalize by the standard deviation.

A = [1 2 10; 3 4 20; 9 6 15];
C = bsxfun(@minus, A, mean(A));
D = bsxfun(@rdivide, C, std(A))

D = 3×3

 -0.8006 -1.0000 -1.0000
 -0.3203 0 1.0000
 1.1209 1.0000 0

In MATLAB® R2016b and later, you can directly use operators instead of bsxfun, since
the operators independently support implicit expansion of arrays with compatible sizes.

(A - mean(A))./std(A)

1 Alphabetical List

1-990

ans = 3×3

 -0.8006 -1.0000 -1.0000
 -0.3203 0 1.0000
 1.1209 1.0000 0

Compare Vector Elements

Compare the elements in a column vector and a row vector. The result is a matrix
containing the comparison of each combination of elements from the vectors. An
equivalent way to execute this operation is with A > B.

A = [8; 17; 20; 24]

A = 4×1

 8
 17
 20
 24

B = [0 10 21]

B = 1×3

 0 10 21

C = bsxfun(@gt,A,B)

C = 4x3 logical array

 1 0 0
 1 1 0
 1 1 0
 1 1 1

 bsxfun

1-991

Expansion with Custom Function

Create a function handle that represents the function f (a, b) = a− eb.

fun = @(a,b) a - exp(b);

Use bsxfun to apply the function to vectors a and b. The bsxfun function expands the
vectors into matrices of the same size, which is an efficient way to evaluate fun for many
combinations of the inputs.

a = 1:7;
b = pi*[0 1/4 1/3 1/2 2/3 3/4 1].';
C = bsxfun(fun,a,b)

C = 7×7

 0 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
 -1.1933 -0.1933 0.8067 1.8067 2.8067 3.8067 4.8067
 -1.8497 -0.8497 0.1503 1.1503 2.1503 3.1503 4.1503
 -3.8105 -2.8105 -1.8105 -0.8105 0.1895 1.1895 2.1895
 -7.1205 -6.1205 -5.1205 -4.1205 -3.1205 -2.1205 -1.1205
 -9.5507 -8.5507 -7.5507 -6.5507 -5.5507 -4.5507 -3.5507
 -22.1407 -21.1407 -20.1407 -19.1407 -18.1407 -17.1407 -16.1407

Input Arguments
fun — Binary function to apply
function handle

Binary function to apply, specified as a function handle. fun must be a binary (two-input)
element-wise function of the form C = fun(A,B) that accepts arrays A and B with
compatible sizes. For more information, see “Compatible Array Sizes for Basic
Operations”. fun must support scalar expansion, such that if A or B is a scalar, then C is
the result of applying the scalar to every element in the other input array.

In MATLAB R2016b and later, the built-in binary functions listed in this table
independently support implicit expansion. With these functions, you can call the function
or operator directly instead of using bsxfun. For example, you can replace C =
bsxfun(@plus,A,B) with A+B.

1 Alphabetical List

1-992

Function Symbol Description
plus + Plus
minus - Minus
times .* Array multiply
rdivide ./ Right array divide
ldivide .\ Left array divide
power .^ Array power
eq == Equal
ne ~= Not equal
gt > Greater than
ge >= Greater than or equal to
lt < Less than
le <= Less than or equal to
and & Element-wise logical AND
or | Element-wise logical OR
xor N/A Logical exclusive OR
max N/A Binary maximum
min N/A Binary minimum
mod N/A Modulus after division
rem N/A Remainder after division
atan2 N/A Four-quadrant inverse

tangent; result in radians
atan2d N/A Four-quadrant inverse

tangent; result in degrees
hypot N/A Square root of sum of

squares

Example: C = bsxfun(@plus,[1 2],[2; 3])
Data Types: function_handle

 bsxfun

1-993

A,B — Input arrays
scalars | vectors | matrices | multidimensional arrays

Input arrays, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A
and B must have compatible sizes. For more information, see “Compatible Array Sizes for
Basic Operations”. Whenever a dimension of A or B is singleton (equal to one), bsxfun
virtually replicates the array along that dimension to match the other array. In the case
where a dimension of A or B is singleton, and the corresponding dimension in the other
array is zero, bsxfun virtually diminishes the singleton dimension to zero.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64 | char | logical
Complex Number Support: Yes

Tips
• It is recommended that you replace most uses of bsxfun with direct calls to the

functions and operators that support implicit expansion. Compared to using bsxfun,
implicit expansion offers faster speed of execution, better memory usage, and
improved readability of code. For more information, see “Compatible Array Sizes for
Basic Operations”.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

The specified function must not rely on persistent variables.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-994

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See bsxfun in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
arrayfun | repmat

Topics
“Array vs. Matrix Operations”

Introduced in R2007a

 bsxfun

1-995

builddocsearchdb
Build searchable documentation database

Syntax
builddocsearchdb(folder)

Description
builddocsearchdb(folder) builds a searchable database, also referred to as a search
index, from HTML files in the specified folder.

The builddocsearchdb function creates a subfolder, helpsearch-v3, to contain the
database files. The database enables MATLAB to search for content within the HTML files
assuming the MATLAB version is the same version used to create the database.

Beginning with MATLAB R2014b, you can maintain search indexes side by side. For
instance, if you already have a search index for MATLAB R2014a or earlier, run
builddocsearchdb against your help files using MATLAB R2014b or later. Then, when
you run any MATLAB release, the help browser automatically uses the appropriate index
for searching your documentation database.

Examples

Search Custom Help Files

Build a search database for custom help files.

MATLAB includes a set of sample files to demonstrate how to create a custom toolbox and
supporting documentation. This sample toolbox is called the Upslope Area Toolbox. The
upslope folder includes a file named info.xml, which is required to display custom
documentation, and a subfolder named html, which contains HTML documentation and
supporting files.

1 Alphabetical List

1-996

Copy the sample files to a temporary folder, and add the copied files to the path.

sample = fullfile(...
 matlabroot,'help','techdoc','matlab_env',...
 'examples','upslope');
tmp = tempname;
mkdir(tmp);
copyfile(sample,tmp);
addpath(tmp);

Create a search database.

folder = fullfile(tmp,'html');
builddocsearchdb(folder)

Under the Supplemental Software heading, click Upslope Area Toolbox.

Search the supplemental documentation for the term tarboton, which appears in several
of the example help files. The search returns several results from the Upslope Area
Toolbox.

 builddocsearchdb

1-997

Remove the temporary example files.

rmpath(tmp)
rmdir(tmp,'s')

Note Your help appears alongside the MathWorks documentation only when you are
viewing installed documentation. If you are viewing documentation on the web, then your
documentation displays in a help browser separate from the MathWorks documentation.

Input Arguments
folder — Full path to folder with HTML files
character vector

Full path to a folder with HTML files, specified as a character vector. The folder must be:

• On the MATLAB search path
• Outside the matlabroot folder
• Outside any installed Hardware Support Package help folder

To include a particular HTML document in the search database, the builddocsearchdb
function requires that:

1 Alphabetical List

1-998

• The document has a title.
• The content is different from the title.

Example: builddocsearchdb('c:\myfiles\html')

See Also
doc | help

Topics
“Display Custom Documentation”

Introduced in R2007a

 builddocsearchdb

1-999

builtin
Execute built-in function from overloaded method

Syntax
builtin(function,x1,...,xn)
[y1,...,yn] = builtin(function,x1,...,xn)

Description
builtin(function,x1,...,xn) executes the built-in function with the input
arguments x1 through xn. Use builtin to execute the original built-in from within a
method that overloads the function. To work properly, you must never overload builtin.

[y1,...,yn] = builtin(function,x1,...,xn) stores any output from function
in y1 through yn.

Examples

Run an Overloaded Function within a Class Definition

Execute the built-in functionality from within an overloaded method.

Create a simple class describing the speed of a particle and providing a disp method by
pasting the following code into a file called MyParticle.m.

classdef MyParticle
 properties
 velocity;
 end
 methods
 function p = MyParticle(x,y,z)
 p.velocity.x = x;
 p.velocity.y = y;

1 Alphabetical List

1-1000

 p.velocity.z = z;
 end
 function disp(p)
 builtin('disp',p) % call builtin
 if isscalar(p)
 disp(' Velocity')
 disp([' x: ',num2str(p.velocity.x)])
 disp([' y: ',num2str(p.velocity.y)])
 disp([' z: ',num2str(p.velocity.z)])
 end
 end
 end
end

Create an instance MyParticle.

p = MyParticle(1,2,4)

p =

 MyParticle

 Properties:
 velocity: [1x1 struct]

 Methods

 Velocity
 x: 1
 y: 2
 z: 4

Input Arguments
function — Built-in function name
character vector | string scalar

Built-in function name in the MATLAB path, specified as a character vector or string
scalar. function cannot be a function handle.

x1,...,xn — Valid input arguments for function
supported data types

 builtin

1-1001

Valid input arguments for function, specified by supported data types.

Definitions

built-in function
A built-in function is part of the MATLAB executable. MATLAB does not implement these
functions in the MATLAB language. Although most built-in functions have a .m file
associated with them, this file only supplies documentation for the function.

You can use the syntax which function to check whether a function is built-in.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
feval | which

Introduced before R2006a

1 Alphabetical List

1-1002

bvp4c
Solve boundary value problem — fourth-order method

Syntax
sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)

Description
sol = bvp4c(odefun,bcfun,solinit) integrates a system of differential equations
of the form y′ = f(x,y) specified by odefun, subject to the boundary conditions described
by bcfun and the initial solution guess solinit. Use the bvpinit function to create the
initial guess solinit, which also defines the points at which the boundary conditions in
bcfun are enforced.

sol = bvp4c(odefun,bcfun,solinit,options) also uses the integration settings
defined by options, which is an argument created using the bvpset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the FJacobian option to provide the analytical partial derivatives of
odefun.

Examples

Solve Second-Order BVP

Solve a second-order BVP in MATLAB® using functions. For this example, use the second-
order equation

y′′ + y = 0.

The equation is defined on the interval 0, π/2 subject to the boundary conditions

y 0 = 0,

 bvp4c

1-1003

y π/2 = 2.

To solve this equation in MATLAB, you need to write a function that represents the
equation as a system of first-order equations, a function for the boundary conditions, and
a function for the initial guess. Then the BVP solver uses these three inputs to solve the
equation.

Code Equation

Write a function that codes the equation. Use the substitutions y1 = y and y2 = y′ to
rewrite the equation as a system of first-order equations.

y1′ = y2,

y2′ = − y1.

The corresponding function is

function dydx = bvpfcn(x,y)
dydx = zeros(2,1);
dydx = [y(2)
 -y(1)];
end

Note: All functions are included at the end of the example as local functions.

Code Boundary Conditions

Write a function that codes the boundary conditions in the form g y a , y b = 0. In this
form the boundary conditions are

y 0 = 0,

y π/2 − 2 = 0.

The corresponding function is

function res = bcfcn(ya,yb)
res = [ya(1)
 yb(1)-2];
end

1 Alphabetical List

1-1004

Create Initial Guess

Use the bvpinit function to create an initial guess for the solution of the equation. Since
the equation relates y′′ to y, a reasonable guess is that the solution involves trigonometric
functions. Use a mesh of five points in the interval of integration. The first and last values
in the mesh are where the solver applies the boundary conditions.

The function for the initial guess accepts x as an input and returns a guess for the value
of y1 and y2. The function is

function g = guess(x)
g = [sin(x)
 cos(x)];
end

xmesh = linspace(0,pi/2,5);
solinit = bvpinit(xmesh, @guess);

Solve Equation

Use bvp4c with the derivative function, boundary condition function, and initial guess to
solve the problem.

sol = bvp4c(@bvpfcn, @bcfcn, solinit);

Plot Solution

plot(sol.x, sol.y, '-o')

 bvp4c

1-1005

Local Functions

Listed here are the local functions that bvp4c uses to solve the equation.

function dydx = bvpfcn(x,y) % equation to solve
dydx = zeros(2,1);
dydx = [y(2)
 -y(1)];
end
%--------------------------------
function res = bcfcn(ya,yb) % boundary conditions
res = [ya(1)
 yb(1)-2];
end

1 Alphabetical List

1-1006

%--------------------------------
function g = guess(x) % initial guess for y and y'
g = [sin(x)
 cos(x)];
end
%--------------------------------

Compare bvp4c and bvp5c Solvers

Solve a BVP at a crude error tolerance with two different solvers and compare the results.

Consider the second-order ODE

y′′ + 2
x y′ + 1

x4 y = 0.

The equation is defined on the interval 1
3π , 1 subject to the boundary conditions

y 1
3π = 0,

y 1 = sin 1 .

To solve this equation in MATLAB®, you need to write a function that represents the
equation as a system of first-order equations, write a function for the boundary
conditions, set some option values, and create an initial guess. Then the BVP solver uses
these four inputs to solve the equation.

Code Equation

With the substitutions y1 = y and y2 = y′, you can rewrite the ODE as a system of first-
order equations

y1′ = y2,

y2′ = − 2
x y2−

1
x4 y1.

The corresponding function is

function dydx = bvpfcn(x,y)
dydx = [y(2)

 bvp4c

1-1007

 -2*y(2)/x - y(1)/x^4];
end

Note: All functions are included at the end of the example as local functions.

Code Boundary Conditions

The boundary condition function requires that the boundary conditions are in the form
g y a , y b = 0. In this form, the boundary conditions are

y 1
3π = 0,

y 1 − sin 1 = 0.

The corresponding function is

function res = bcfcn(ya,yb)
res = [ya(1)
 yb(1)-sin(1)];
end

Set Options

Use bvpset to turn on the display of solver statistics, and specify crude error tolerances
to highlight the difference in error control between the solvers. Also, for efficiency,
specify the analytical Jacobian

J =
∂ f i
∂y =

∂ f1
∂y1

∂ f1
∂y2

∂ f2
∂y1

∂ f2
∂y2

=
0 1

− 1
x4 −

2
x

.

The corresponding function that returns the value of the Jacobian is

function dfdy = jac(x,y)
dfdy = [0 1
 -1/x^4 -2/x];
end

opts = bvpset('FJacobian',@jac,'RelTol',0.1,'AbsTol',0.1,'Stats','on');

1 Alphabetical List

1-1008

Create Initial Guess

Use bvpinit to create an initial guess of the solution. Specify a constant function as the
initial guess with an initial mesh of 10 points in the interval 1/3π, 1 .

xmesh = linspace(1/(3*pi), 1, 10);
solinit = bvpinit(xmesh, [1; 1]);

Solve Equation

Solve the equation with both bvp4c and bvp5c.

sol4c = bvp4c(@bvpfcn, @bcfcn, solinit, opts);

The solution was obtained on a mesh of 9 points.
The maximum residual is 9.794e-02.
There were 157 calls to the ODE function.
There were 28 calls to the BC function.

sol5c = bvp5c(@bvpfcn, @bcfcn, solinit, opts);

The solution was obtained on a mesh of 11 points.
The maximum error is 6.742e-02.
There were 244 calls to the ODE function.
There were 29 calls to the BC function.

Plot Results

Plot the results of the two calculations for y1 with the analytic solution for comparison.
The analytic solution is

y1 = sin 1
x ,

y2 = − 1
x2cos 1

x .

xplot = linspace(1/(3*pi),1,200);
yplot = [sin(1./xplot); -cos(1./xplot)./xplot.^2];

plot(xplot,yplot(1,:),'k',sol4c.x,sol4c.y(1,:),'r*',sol5c.x,sol5c.y(1,:),'bo')
title('Comparison of BVP Solvers with Crude Error Tolerance')
legend('True','BVP4C','BVP5C')
xlabel('x')
ylabel('solution y')

 bvp4c

1-1009

The plot confirms that bvp5c directly controls the true error in the calculation, while
bvp4c controls it only indirectly. At more stringent error tolerances, this difference
between the solvers is not as apparent.

Local Functions

Listed here are the local functions that the BVP solvers use to solve the problem.

function dydx = bvpfcn(x,y) % equation to solve
dydx = [y(2)
 -2*y(2)/x - y(1)/x^4];
end
%---------------------------------
function res = bcfcn(ya,yb) % boundary conditions

1 Alphabetical List

1-1010

res = [ya(1)
 yb(1)-sin(1)];
end
%---------------------------------
function dfdy = jac(x,y) % analytical jacobian for f
dfdy = [0 1
 -1/x^4 -2/x];
end
%---------------------------------

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle that defines the functions to be
integrated. odefun and bcfun must accept the same number of input arguments.

To code odefun, use the functional signature dydx = odefun(x,y) for a scalar x and
column vector y. The return value dydt is a column vector of data type single or
double that corresponds to f(x,y). odefun must accept both input arguments x and y,
even if one of the arguments is not used in the function.

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;
end

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);
end

 bvp4c

1-1011

bvp4c also can solve problems with singularities in the solution on page 1-1015 or
multipoint boundary conditions on page 1-1014.
Example: sol = bvp4c(@odefun, @bcfun, solinit)
Unknown Parameters

If the BVP being solved includes unknown parameters, you instead can use the functional
signature dydx = odefun(x,y,p), where p is a vector of parameter values. When you
use this functional signature the BVP solver calculates the values of the unknown
parameters starting from the initial guess for the parameter values provided in solinit.
Data Types: function_handle

bcfun — Boundary conditions
function handle

Boundary conditions, specified as a function handle that computes the residual error in
the boundary conditions. odefun and bcfun must accept the same number of input
arguments.

To code bcfun, use the functional signature res = bcfun(ya,yb) for column vectors
ya and yb. The return value res is a column vector of data type single or double that
corresponds to the residual value of the boundary conditions at the boundary points.

For example, if y(a) = 1 and y(b) = 0, then the boundary condition function is

function res = bcfun(ya,yb)
res = [ya(1)-1
 yb(1)];
end

Since y(a) = 1, the residual value of ya(1)-1 should be 0 at the point x = a. Similarly,
since y(b) = 0, the residual value of yb(1) should be 0 at the point x = b.

The boundary points x = a and x = b where the boundary conditions are enforced are
defined in the initial guess structure solinit. For two-point boundary value problems, a
= solinit.x(1) and b = solinit.x(end).
Example: sol = bvp4c(@odefun, @bcfun, solinit)
Unknown Parameters

If the BVP being solved includes unknown parameters, you instead can use the functional
signature res = bcfun(ya,yb,p), where p is a vector of parameter values. When you

1 Alphabetical List

1-1012

use this functional signature the BVP solver calculates the values of the unknown
parameters starting from the initial guess for the parameter values provided in solinit.
Data Types: function_handle

solinit — Initial guess of solution
structure

Initial guess of solution, specified as a structure. Use bvpinit to create solinit.

Unlike initial value problems, a boundary value problem can have no solution, a finite
number of solutions, or infinitely many solutions. An important part of the process of
solving a BVP is providing a guess for the required solution. The quality of this guess can
be critical for the solver performance and even for a successful computation. For some
guidelines on creating a good initial guess, see “Initial Guess of Solution”.
Example: sol = bvp4c(@odefun, @bcfun, solinit)
Data Types: struct

options — Option structure
structure

Option structure. Use the bvpset function to create or modify the options structure.
Example: options = bvpset('RelTol',1e-5,'Stats','on') specifies a relative
error tolerance of 1e-5 and turns on the display of solver statistics.
Data Types: struct

Output Arguments
sol — Solution structure
structure

Solution structure. You can access the fields in sol with dot-indexing, such as
sol.field1. The solution (sol.x,sol.y) is continuous on the interval of integration
defined in the initial mesh solinit.x and has a continuous first derivative there. You
can use sol with the deval function to evaluate the solution at other points in the
interval.

The structure sol has these fields.

 bvp4c

1-1013

Field Description
x Mesh selected by bvp4c. This mesh

typically contains different points than the
initial mesh solinit.x.

y Approximation to y(x) at the mesh points of
sol.x.

yp Approximation to y′(x) at the mesh points of
sol.x.

parameters Final values for the unknown parameters
specified in solinit.parameters.

solver 'bvp4c'
stats Computational cost statistics related to the

solution: the number of mesh points,
residual error, and number of calls to
odefun and bcfun.

Definitions

Multipoint Boundary Value Problems
For multipoint boundary value problems, the boundary conditions are enforced at several
points in the interval of integration.

bvp4c can solve multipoint boundary value problems where a = a0 < a1 < a2 < ...< an = b
are boundary points in the interval [a,b]. The points a1,a2,...,an−1 represent interfaces that
divide [a,b] into regions. bvp4c enumerates the regions from left to right (from a to b),
with indices starting from 1. In region k, [ak−1,ak], bvp4c evaluates the derivative as

yp = odefun(x,y,k)

In the boundary conditions function bcfun(yleft,yright), yleft(:,k) is the solution
at the left boundary of [ak−1,ak]. Similarly, yright(:,k) is the solution at the right
boundary of region k. In particular, yleft(:,1) = y(a) and yright(:,end) = y(b).

When you create an initial guess with bvpinit, use double entries in xinit for each
interface point. See the reference page for bvpinit for more information.

1 Alphabetical List

1-1014

If yinit is a function, bvpinit calls y = yinit(x,k) to get an initial guess for the
solution at x in region k. In the solution structure sol returned by bpv4c, sol.x has
double entries for each interface point. The corresponding columns of sol.y contain the
left and right solution at the interface, respectively.

See “Solve BVP with Multiple Boundary Conditions” for an example that solves a three-
point boundary value problem.

Singular Boundary Value Problems
bvp4c solves a class of singular boundary value problems, including problems with
unknown parameters p, of the form

y′ = S y
x + f x, y, p ,

0 = bc y 0 , y b , p .

The interval is required to be [0, b] with b > 0. Often such problems arise when
computing a smooth solution of ODEs that result from partial differential equations
(PDEs) due to cylindrical or spherical symmetry. For singular problems, you specify the
(constant) matrix S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x,y,p). The boundary conditions and initial guess must be consistent with
the necessary condition for smoothness S·y(0) = 0.

See “Solve BVP with Singular Term” for an example that solves a singular boundary value
problem.

Algorithms
bvp4c is a finite difference code that implements the three-stage Lobatto IIIa formula [1],
[2]. This is a collocation formula and the collocation polynomial provides a C1-continuous
solution that is fourth-order accurate uniformly in the interval of integration. Mesh
selection and error control are based on the residual of the continuous solution.

The collocation technique uses a mesh of points to divide the interval of integration into
subintervals. The solver determines a numerical solution by solving a global system of
algebraic equations resulting from the boundary conditions, and the collocation
conditions imposed on all the subintervals. The solver then estimates the error of the
numerical solution on each subinterval. If the solution does not satisfy the tolerance

 bvp4c

1-1015

criteria, the solver adapts the mesh and repeats the process. You must provide the points
of the initial mesh, as well as an initial approximation of the solution at the mesh points.

References
[1] Shampine, L.F., and J. Kierzenka. "A BVP Solver based on residual control and the

MATLAB PSE." ACM Trans. Math. Softw. Vol. 27, Number 3, 2001, pp. 299–316.

[2] Shampine, L.F., M.W. Reichelt, and J. Kierzenka. "Solving Boundary Value Problems for
Ordinary Differential Equations in MATLAB with bvp4c." MATLAB File Exchange,
2004.

See Also
bvp5c | bvpget | bvpinit | bvpset | bvpxtend | deval

Topics
“Boundary Value Problems”

Introduced before R2006a

1 Alphabetical List

1-1016

https://www.mathworks.com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c
https://www.mathworks.com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c

bvp5c
Solve boundary value problem — fifth-order method

Syntax
sol = bvp5c(odefun,bcfun,solinit)
sol = bvp5c(odefun,bcfun,solinit,options)

Description
sol = bvp5c(odefun,bcfun,solinit) integrates a system of differential equations
of the form y′ = f(x,y) specified by odefun, subject to the boundary conditions described
by bcfun and the initial solution guess solinit. Use the bvpinit function to create the
initial guess solinit, which also defines the points at which the boundary conditions in
bcfun are enforced.

sol = bvp5c(odefun,bcfun,solinit,options) also uses the integration settings
defined by options, which is an argument created using the bvpset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the FJacobian option to provide the analytical partial derivatives of
odefun.

Examples

Solve Second-Order BVP

Solve a second-order BVP in MATLAB® using functions. For this example, use the second-
order equation

y′′ + y = 0.

The equation is defined on the interval 0, π/2 subject to the boundary conditions

y 0 = 0,

 bvp5c

1-1017

y π/2 = 2.

To solve this equation in MATLAB, you need to write a function that represents the
equation as a system of first-order equations, a function for the boundary conditions, and
a function for the initial guess. Then the BVP solver uses these three inputs to solve the
equation.

Code Equation

Write a function that codes the equation. Use the substitutions y1 = y and y2 = y′ to
rewrite the equation as a system of first-order equations.

y1′ = y2,

y2′ = − y1.

The corresponding function is

function dydx = bvpfcn(x,y)
dydx = zeros(2,1);
dydx = [y(2)
 -y(1)];
end

Note: All functions are included at the end of the example as local functions.

Code Boundary Conditions

Write a function that codes the boundary conditions in the form g y a , y b = 0. In this
form the boundary conditions are

y 0 = 0,

y π/2 − 2 = 0.

The corresponding function is

function res = bcfcn(ya,yb)
res = [ya(1)
 yb(1)-2];
end

1 Alphabetical List

1-1018

Create Initial Guess

Use the bvpinit function to create an initial guess for the solution of the equation. Since
the equation relates y′′ to y, a reasonable guess is that the solution involves trigonometric
functions. Use a mesh of five points in the interval of integration. The first and last values
in the mesh are where the solver applies the boundary conditions.

The function for the initial guess accepts x as an input and returns a guess for the value
of y1 and y2. The function is

function g = guess(x)
g = [sin(x)
 cos(x)];
end

xmesh = linspace(0,pi/2,5);
solinit = bvpinit(xmesh, @guess);

Solve Equation

Use bvp5c with the derivative function, boundary condition function, and initial guess to
solve the problem.

sol = bvp5c(@bvpfcn, @bcfcn, solinit);

Plot Solution

plot(sol.x, sol.y, '-o')

 bvp5c

1-1019

Local Functions

Listed here are the local functions that bvp5c uses to solve the equation.

function dydx = bvpfcn(x,y) % equation to solve
dydx = zeros(2,1);
dydx = [y(2)
 -y(1)];
end
%--------------------------------
function res = bcfcn(ya,yb) % boundary conditions
res = [ya(1)
 yb(1)-2];
end

1 Alphabetical List

1-1020

%--------------------------------
function g = guess(x) % initial guess for y and y'
g = [sin(x)
 cos(x)];
end
%--------------------------------

Compare bvp4c and bvp5c Solvers

Solve a BVP at a crude error tolerance with two different solvers and compare the results.

Consider the second-order ODE

y′′ + 2
x y′ + 1

x4 y = 0.

The equation is defined on the interval 1
3π , 1 subject to the boundary conditions

y 1
3π = 0,

y 1 = sin 1 .

To solve this equation in MATLAB®, you need to write a function that represents the
equation as a system of first-order equations, write a function for the boundary
conditions, set some option values, and create an initial guess. Then the BVP solver uses
these four inputs to solve the equation.

Code Equation

With the substitutions y1 = y and y2 = y′, you can rewrite the ODE as a system of first-
order equations

y1′ = y2,

y2′ = − 2
x y2−

1
x4 y1.

The corresponding function is

function dydx = bvpfcn(x,y)
dydx = [y(2)

 bvp5c

1-1021

 -2*y(2)/x - y(1)/x^4];
end

Note: All functions are included at the end of the example as local functions.

Code Boundary Conditions

The boundary condition function requires that the boundary conditions are in the form
g y a , y b = 0. In this form, the boundary conditions are

y 1
3π = 0,

y 1 − sin 1 = 0.

The corresponding function is

function res = bcfcn(ya,yb)
res = [ya(1)
 yb(1)-sin(1)];
end

Set Options

Use bvpset to turn on the display of solver statistics, and specify crude error tolerances
to highlight the difference in error control between the solvers. Also, for efficiency,
specify the analytical Jacobian

J =
∂ f i
∂y =

∂ f1
∂y1

∂ f1
∂y2

∂ f2
∂y1

∂ f2
∂y2

=
0 1

− 1
x4 −

2
x

.

The corresponding function that returns the value of the Jacobian is

function dfdy = jac(x,y)
dfdy = [0 1
 -1/x^4 -2/x];
end

opts = bvpset('FJacobian',@jac,'RelTol',0.1,'AbsTol',0.1,'Stats','on');

1 Alphabetical List

1-1022

Create Initial Guess

Use bvpinit to create an initial guess of the solution. Specify a constant function as the
initial guess with an initial mesh of 10 points in the interval 1/3π, 1 .

xmesh = linspace(1/(3*pi), 1, 10);
solinit = bvpinit(xmesh, [1; 1]);

Solve Equation

Solve the equation with both bvp4c and bvp5c.

sol4c = bvp4c(@bvpfcn, @bcfcn, solinit, opts);

The solution was obtained on a mesh of 9 points.
The maximum residual is 9.794e-02.
There were 157 calls to the ODE function.
There were 28 calls to the BC function.

sol5c = bvp5c(@bvpfcn, @bcfcn, solinit, opts);

The solution was obtained on a mesh of 11 points.
The maximum error is 6.742e-02.
There were 244 calls to the ODE function.
There were 29 calls to the BC function.

Plot Results

Plot the results of the two calculations for y1 with the analytic solution for comparison.
The analytic solution is

y1 = sin 1
x ,

y2 = − 1
x2cos 1

x .

xplot = linspace(1/(3*pi),1,200);
yplot = [sin(1./xplot); -cos(1./xplot)./xplot.^2];

plot(xplot,yplot(1,:),'k',sol4c.x,sol4c.y(1,:),'r*',sol5c.x,sol5c.y(1,:),'bo')
title('Comparison of BVP Solvers with Crude Error Tolerance')
legend('True','BVP4C','BVP5C')
xlabel('x')
ylabel('solution y')

 bvp5c

1-1023

The plot confirms that bvp5c directly controls the true error in the calculation, while
bvp4c controls it only indirectly. At more stringent error tolerances, this difference
between the solvers is not as apparent.

Local Functions

Listed here are the local functions that the BVP solvers use to solve the problem.

function dydx = bvpfcn(x,y) % equation to solve
dydx = [y(2)
 -2*y(2)/x - y(1)/x^4];
end
%---------------------------------
function res = bcfcn(ya,yb) % boundary conditions

1 Alphabetical List

1-1024

res = [ya(1)
 yb(1)-sin(1)];
end
%---------------------------------
function dfdy = jac(x,y) % analytical jacobian for f
dfdy = [0 1
 -1/x^4 -2/x];
end
%---------------------------------

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle that defines the functions to be
integrated. odefun and bcfun must accept the same number of input arguments.

To code odefun, use the functional signature dydx = odefun(x,y) for a scalar x and
column vector y. The return value dydt is a column vector of data type single or
double that corresponds to f(x,y). odefun must accept both input arguments x and y,
even if one of the arguments is not used in the function.

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;
end

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);
end

 bvp5c

1-1025

bvp5c also can solve problems with singularities in the solution on page 1-1015 or
multipoint boundary conditions on page 1-1014.
Example: sol = bvp5c(@odefun, @bcfun, solinit)
Unknown Parameters

If the BVP being solved includes unknown parameters, you instead can use the functional
signature dydx = odefun(x,y,p), where p is a vector of parameter values. When you
use this functional signature the BVP solver calculates the values of the unknown
parameters starting from the initial guess for the parameter values provided in solinit.
Data Types: function_handle

bcfun — Boundary conditions
function handle

Boundary conditions, specified as a function handle that computes the residual error in
the boundary conditions. odefun and bcfun must accept the same number of input
arguments.

To code bcfun, use the functional signature res = bcfun(ya,yb) for column vectors
ya and yb. The return value res is a column vector of data type single or double that
corresponds to the residual value of the boundary conditions at the boundary points.

For example, if y(a) = 1 and y(b) = 0, then the boundary condition function is

function res = bcfun(ya,yb)
res = [ya(1)-1
 yb(1)];
end

Since y(a) = 1, the residual value of ya(1)-1 should be 0 at the point x = a. Similarly,
since y(b) = 0, the residual value of yb(1) should be 0 at the point x = b.

The boundary points x = a and x = b where the boundary conditions are enforced are
defined in the initial guess structure solinit. For two-point boundary value problems, a
= solinit.x(1) and b = solinit.x(end).
Example: sol = bvp5c(@odefun, @bcfun, solinit)
Unknown Parameters

If the BVP being solved includes unknown parameters, you instead can use the functional
signature res = bcfun(ya,yb,p), where p is a vector of parameter values. When you

1 Alphabetical List

1-1026

use this functional signature the BVP solver calculates the values of the unknown
parameters starting from the initial guess for the parameter values provided in solinit.
Data Types: function_handle

solinit — Initial guess of solution
structure

Initial guess of solution, specified as a structure. Use bvpinit to create solinit.

Unlike initial value problems, a boundary value problem can have no solution, a finite
number of solutions, or infinitely many solutions. An important part of the process of
solving a BVP is providing a guess for the required solution. The quality of this guess can
be critical for the solver performance and even for a successful computation. For some
guidelines on creating a good initial guess, see “Initial Guess of Solution”.
Example: sol = bvp5c(@odefun, @bcfun, solinit)
Data Types: struct

options — Option structure
structure

Option structure. Use the bvpset function to create or modify the options structure.
Example: options = bvpset('RelTol',1e-5,'Stats','on') specifies a relative
error tolerance of 1e-5 and turns on the display of solver statistics.
Data Types: struct

Output Arguments
sol — Solution structure
structure

Solution structure. You can access the fields in sol with dot-indexing, such as
sol.field1. The solution (sol.x,sol.y) is continuous on the interval of integration
defined in the initial mesh solinit.x and has a continuous first derivative there. You
can use sol with the deval function to evaluate the solution at other points in the
interval.

The structure sol has these fields.

 bvp5c

1-1027

Field Description
x Mesh selected by bvp5c. This mesh

typically contains different points than the
initial mesh solinit.x.

y Approximation to y(x) at the mesh points of
sol.x.

yp Approximation to y′(x) at the mesh points of
sol.x.

parameters Final values for the unknown parameters
specified in solinit.parameters.

solver 'bvp5c'
stats Computational cost statistics related to the

solution: the number of mesh points,
residual error, and number of calls to
odefun and bcfun.

Definitions

Multipoint Boundary Value Problems
For multipoint boundary value problems, the boundary conditions are enforced at several
points in the interval of integration.

bvp5c can solve multipoint boundary value problems where a = a0 < a1 < a2 < ...< an = b
are boundary points in the interval [a,b]. The points a1,a2,...,an−1 represent interfaces that
divide [a,b] into regions. bvp5c enumerates the regions from left to right (from a to b),
with indices starting from 1. In region k, [ak−1,ak], bvp5c evaluates the derivative as

yp = odefun(x,y,k)

In the boundary conditions function bcfun(yleft,yright), yleft(:,k) is the solution
at the left boundary of [ak−1,ak]. Similarly, yright(:,k) is the solution at the right
boundary of region k. In particular, yleft(:,1) = y(a) and yright(:,end) = y(b).

When you create an initial guess with bvpinit, use double entries in xinit for each
interface point. See the reference page for bvpinit for more information.

1 Alphabetical List

1-1028

If yinit is a function, bvpinit calls y = yinit(x,k) to get an initial guess for the
solution at x in region k. In the solution structure sol returned by bpv4c, sol.x has
double entries for each interface point. The corresponding columns of sol.y contain the
left and right solution at the interface, respectively.

See “Solve BVP with Multiple Boundary Conditions” for an example that solves a three-
point boundary value problem.

Singular Boundary Value Problems
bvp5c solves a class of singular boundary value problems, including problems with
unknown parameters p, of the form

y′ = S y
x + f x, y, p ,

0 = bc y 0 , y b , p .

The interval is required to be [0, b] with b > 0. Often such problems arise when
computing a smooth solution of ODEs that result from partial differential equations
(PDEs) due to cylindrical or spherical symmetry. For singular problems, you specify the
(constant) matrix S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x,y,p). The boundary conditions and initial guess must be consistent with
the necessary condition for smoothness S·y(0) = 0.

See “Solve BVP with Singular Term” for an example that solves a singular boundary value
problem.

Algorithms
bvp5c is a finite difference code that implements the four-stage Lobatto IIIa formula [1].
This is a collocation formula and the collocation polynomial provides a C1-continuous
solution that is fifth-order accurate uniformly in [a,b]. The formula is implemented as an
implicit Runge-Kutta formula. Some of the differences between bvp5c and bvp4c are:

• bvp5c solves the algebraic equations directly. bvp4c uses analytical condensation.
• bvp4c handles unknown parameters directly. bvp5c augments the system with trivial
differential equations for the unknown parameters.

 bvp5c

1-1029

References
[1] Shampine, L.F., and J. Kierzenka. "A BVP Solver that Controls Residual and Error." J.

Numer. Anal. Ind. Appl. Math. Vol. 3(1-2), 2008, pp. 27–41.

See Also
bvp4c | bvpget | bvpinit | bvpset | bvpxtend | deval

Topics
“Boundary Value Problems”

Introduced in R2006b

1 Alphabetical List

1-1030

bvpget
Extract properties from options structure created with bvpset

Syntax
val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description
val = bvpget(options,'name') extracts the value of the named property from the
structure options, returning an empty matrix if the property value is not specified in
options. It is sufficient to type only the leading characters that uniquely identify the
property. Case is ignored for property names. [] is a valid options argument.

val = bvpget(options,'name',default) extracts the named property as above, but
returns val = default if the named property is not specified in options. For example,

val = bvpget(options,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in options.

See Also
bvp4c | bvp5c | bvpinit | bvpset | deval

Introduced before R2006a

 bvpget

1-1031

bvpinit
Form initial guess for boundary value problem solver

Syntax
solinit = bvpinit(x,yinit)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(___ ,parameters)

Description
solinit = bvpinit(x,yinit) uses the initial mesh x and initial solution guess yinit
to form an initial guess of the solution for a boundary value problem. You then can use the
initial guess solinit as one of the inputs to bvp4c or bvp5c to solve the boundary value
problem.

solinit = bvpinit(sol,[anew bnew]) forms an initial guess for the solution on the
interval [anew bnew], where sol is a solution structure obtained from bvp4c or bvp5c.
The new interval [anew bnew] must be larger than the previous interval on which sol is
defined. The previous solution sol is extrapolated to the new interval.

solinit = bvpinit(___ ,parameters) specifies a vector of initial guesses for
parameters with unknown values in the boundary value problem. You can use this syntax
with either of the previous input argument combinations.

Examples

Initial Guess of BVP Solution

Create an initial guess of the solution to a BVP, solve the BVP with bvp4c, and then
extend the solution to a new domain.

Forming a good initial guess of the solution to a BVP problem is perhaps the most difficult
part of solving the problem. BVP solutions are not necessarily unique, so the initial guess

1 Alphabetical List

1-1032

can be the deciding factor in which of many solutions the solver returns. The initial guess
should satisfy the boundary conditions, and the behavior inbetween should reflect your
general expectations about the problem (whether the solution oscillates, is a simple linear
function, and so on...).

Consider the differential equation

y′′ = − y.

The equation is subject to the boundary conditions

y 0 = y π = 0.

The function that encodes the equation as a first-order system is

function dydx = bvpfun(x,y)
dydx = [y(2)
 -y(1)];
end

Similarly, the function that encodes the boundary conditions is

function res = bcfun(ya,yb)
res = [ya(1)
 yb(1)];
end

You either can include the required functions as local functions at the end of a file (as
done here), or you can save them as separate, named files in a directory on the MATLAB
path.

Initial Guess with Function Handle

You reasonably can expect the solution to the equation to be oscillatory, so sine and cosine
functions are a good initial guess of the behavior of the solution and its derivative
between the fixed boundary points.

function y = guess(x)
y = [sin(x)
 cos(x)];
end

Create a solution structure using 10 equally spaced mesh points in the domain 0, π and
the initial guess function.

 bvpinit

1-1033

xmesh = linspace(0,pi,10);
solinit = bvpinit(xmesh,@guess);

Solve BVP

Call bvp4c with the ode function, boundary conditions, and solution guess. Plot the
result.

sol = bvp4c(@bvpfun, @bcfun, solinit);
plot(sol.x,sol.y,'-o')

1 Alphabetical List

1-1034

Local Functions

Listed here are the local helper functions that the BVP solver bvp4c calls to calculate the
solution. Alternatively, you can save these functions as their own files in a directory on the
MATLAB path.

function dydx = bvpfun(x,y) % equation being solved
dydx = [y(2)
 -y(1)];
end
%---
function res = bcfun(ya,yb) % boundary conditions
res = [ya(1)
 yb(1)];
end
%---
function y = guess(x) % guess at solution behavior
y = [sin(x)
 cos(x)];
end
%---

Extend BVP Solution with Extrapolation

Solve a BVP over an initial interval, and then iteratively extend the interval using each
solution as the initial guess for the next interval.

Consider the equation

y′′ = y.

As a first-order system, the equation becomes a system of two equations

y1′ = y2,

y2′ = y1.

The equation is initially defined on the interval 0, 3 and is subject to the boundary
conditions

y 0 = 0,

 bvpinit

1-1035

y 3 = 1.

The function that encodes the equation as a first-order system is

function dydx = bvpfun(x,y)
dydx = [y(2)
 y(1)];
end

Similarly, the function that encodes the boundary conditions is

function res = bcfun(ya,yb)
res = [ya(1)
 yb(1)-1];
end

You either can include the required functions as local functions at the end of a file (as
done here), or you can save them as separate, named files in a directory on the MATLAB
path.

Initial Guess

Use an exponential function as the initial guess for the solution. Since the equation has
two solution components, write an initial guess function of the form y = guess(x) that
returns a vector.

function y = guess(x)
y = [exp(x)
 exp(x)];
end

A mesh of five points is sufficient to capture the behavior of the guess function.

xmesh = linspace(0,3,5);
solinit = bvpinit(xmesh,@guess);

Solve Equation

Solve the equation in the initial interval 0, 3 and plot the results for y1.

sol = bvp4c(@bvpfun, @bcfun, solinit);
plot(sol.x(1,:),sol.y(1,:),'-o')

1 Alphabetical List

1-1036

Extend Interval

Now, use bvpinit to extend the interval of integration in a loop, solving and plotting
each new problem. In each iteration, form the initial guess using the previous solution
sol extrapolated to the new interval [0 k]. In each new problem, bvp4c enforces the
boundary conditions at the new boundaries [0 k].

hold on
for k = 4:8
 solinit = bvpinit(sol,[0 k]);
 sol = bvp4c(@bvpfun, @bcfun, solinit);
 plot(sol.x(1,:),sol.y(1,:),'-o')
end

 bvpinit

1-1037

This example shows a simplified version of continuation, a useful technique to solve BVPs
by breaking the problem down into smaller intervals or simpler problems. For more
examples of this technique, see:

• “Solve BVP Using Continuation”
• “Verify BVP Consistency Using Continuation”

Local Functions

Listed here are the local helper functions that the BVP solver bvp4c calls to calculate the
solution. Alternatively, you can save these functions as their own files in a directory on the
MATLAB path.

1 Alphabetical List

1-1038

function dydx = bvpfun(x,y) % equation being solved
dydx = [y(2)
 y(1)];
end
%---
function res = bcfun(ya,yb) % boundary conditions
res = [ya(1)
 yb(1)-1];
end
%---
function y = guess(x) % guess at solution behavior
y = [exp(x)
 exp(x)];
end
%---

Input Arguments
x — Initial mesh
vector

Initial mesh, specified as a vector. To solve the problem on the interval [a,b], specify x(1)
as a and x(end) as b. The entries of x must be in increasing order (if a < b) or
decreasing order (if a > b). The solver adapts this mesh to the solution (by adding,
removing, and moving the mesh points), so a guess like x = linspace(a,b,10) often
suffices. To handle difficult problems, place some mesh points where the solution changes
rapidly.

• For two-point boundary value problems, the entries of x must be unique. That is, if a <
b, the entries must satisfy x(1) < x(2) < ... < x(end). If a > b, the entries must
satisfy x(1) > x(2) > ... > x(end).

• For multipoint boundary value problems, you can specify the points in [a,b] at which
the boundary conditions apply, other than the endpoints a and b, by repeating their
entries in x. For example, consider the vector

x = [0 0.5 1 1 1.5 2];

For this mesh, the boundary conditions apply at three points: the endpoints 0 and 2,
and the repeated entry 1. In general, repeated entries represent boundary points
between regions in [a,b]. The repeated entry 1 divides the interval [0 2] into two
regions: [0 1] and [1 2].

 bvpinit

1-1039

Example: solinit = bvpinit(linspace(a,b,10),yinit)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

yinit — Initial guess of solution
vector | function

Initial guess of solution, specified as a vector or a function.

• Vector – For each component of the solution, bvpinit replicates the corresponding
element of the vector as a constant guess across all mesh points. That is, yinit(i) is
a constant guess for the ith component yinit(i,:) of the solution at all the mesh
points in x.

• Function – For a given mesh point, the guess function must return a vector whose
elements are guesses for the corresponding components of the solution. The function
must be of the form

y = guess(x)

x is a mesh point and y is a vector whose length is the same as the number of
components in the solution. For example, if yinit is a function, then at each mesh
point bvpinit calls

y(:,j) = guess(x(j))

For multipoint boundary value problems, the guess function must be of the form

y = guess(x, k)

y is an initial guess for the solution at x in region k. The function must accept the
input argument k, which is provided for flexibility in writing the guess function.
However, the function is not required to use k.

Example: solinit = bvpinit(x,)
Example: solinit = bvpinit(x,@guess)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | function_handle
Complex Number Support: Yes

1 Alphabetical List

1-1040

parameters — Initial guess for unknown parameter values
scalar | vector

Initial guess for unknown parameter values, specified as a scalar or vector.
Example: solinit = bvpinit(x, yinit, [0 1 sqrt(2)]) specifies a vector of
guesses for three unknown parameters.
Example: Type edit mat4bvp to see an example of a BVP with an unknown parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

sol — Prior solution
structure

Prior solution, specified as a solution structure returned by bvp4c or bvp5c. If sol
contains parameters, they are copied to solinit.
Data Types: struct

Output Arguments
solinit — Initial guess of solution
structure

Initial guess of solution, returned as a structure. Use this structure as the third input to
bvp4c or bvp5c to solve the boundary value problem.

See Also
bvp4c | bvp5c | bvpget | bvpset | bvpxtend | deval

Introduced before R2006a

 bvpinit

1-1041

bvpset
Create or alter options structure of boundary value problem

Syntax
options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts,'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description
options = bvpset('name1',value1,'name2',value2,...) creates a structure
options that you can supply to the boundary value problem solver bvp4c, in which the
named properties have the specified values. Any unspecified properties retain their
default values. For all properties, it is sufficient to type only the leading characters that
uniquely identify the property. bvpset ignores case for property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing options
structure oldopts. This overwrites any values in oldopts that are specified using name/
value pairs and returns the modified structure as the output argument.

options = bvpset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any values set in newopts overwrite the
corresponding values in oldopts.

bvpset with no input arguments displays all property names and their possible values,
indicating defaults with braces {}.

You can use the function bvpget to query the options structure for the value of a
specific property.

1 Alphabetical List

1-1042

BVP Properties
bvpset enables you to specify properties for the boundary value problem solver bvp4c.
There are several categories of properties that you can set:

• “Error Tolerance Properties” on page 1-1043
• “Vectorization” on page 1-1044
• “Analytical Partial Derivatives” on page 1-1045
• “Singular BVPs” on page 1-1046
• “Mesh Size Property” on page 1-1047
• “Solution Statistic Property” on page 1-1047

Error Tolerance Properties
Because bvp4c uses a collocation formula, the numerical solution is based on a mesh of
points at which the collocation equations are satisfied. Mesh selection and error control
are based on the residual of this solution, such that the computed solution S(x) is the
exact solution of a perturbed problem S′(x) = f(x,S(x)) + res(x). On each subinterval of the
mesh, a norm of the residual in the ith component of the solution, res(i), is estimated
and is required to be less than or equal to a tolerance. This tolerance is a function of the
relative and absolute tolerances, RelTol and AbsTol, defined by the user.

∥ res(i)/max abs f (i) , AbsTol(i)/RelTol ∥ ≤ RelTol

The following table describes the error tolerance properties.

 bvpset

1-1043

BVP Error Tolerance Properties

Property Value Description
RelTol Positive scalar

{1e-3}
A relative error tolerance that applies to all components of the
residual vector. It is a measure of the residual relative to the
size of f(x,y). The default, 1e-3, corresponds to 0.1% accuracy.

The computed solution S(x) is the exact solution of S′(x) =
F(x,S(x)) + res(x). On each subinterval of the mesh, the residual
res(x) satisfies

∥ res(i)/max abs F(i) , AbsTol(i)/RelTol ∥ ≤ RelTol
AbsTol Positive scalar

or vector
{1e-6}

Absolute error tolerances that apply to the corresponding
components of the residual vector. AbsTol(i) is a threshold
below which the values of the corresponding components are
unimportant. If a scalar value is specified, it applies to all
components.

Vectorization
The following table describes the BVP vectorization property. Vectorization of the ODE
function used by bvp4c differs from the vectorization used by the ODE solvers:

• For bvp4c, the ODE function must be vectorized with respect to the first argument as
well as the second one, so that F([x1 x2 ...],[y1 y2 ...]) returns [F(x1,y1)
F(x2,y2)...].

• bvp4c benefits from vectorization even when analytical Jacobians are provided. For
stiff ODE solvers, vectorization is ignored when analytical Jacobians are used.

1 Alphabetical List

1-1044

Vectorization Properties

Property Value Description
Vectorized on | {off} Set on to inform bvp4c that you have coded the

ODE function F so that F([x1 x2 ...],[y1
y2 ...]) returns [F(x1,y1) F(x2,y2) ...].
That is, your ODE function can pass to the solver a
whole array of column vectors at once. This
enables the solver to reduce the number of
function evaluations and may significantly reduce
solution time.

With the MATLAB array notation, it is typically an
easy matter to vectorize an ODE function. In the
shockbvp example shown previously, the
shockODE function has been vectorized using
colon notation into the subscripts and by using the
array multiplication (.*) operator.

function dydx = shockODE(x,y,e)
pix = pi*x;
dydx = [y(2,:)...
-x/e.*y(2,:)-pi^2*cos(pix)-
pix/e.*sin(pix)];

Analytical Partial Derivatives
By default, the bvp4c solver approximates all partial derivatives with finite differences.
bvp4c can be more efficient if you provide analytical partial derivatives ∂f/∂y of the
differential equations, and analytical partial derivatives, ∂bc/∂ya and ∂bc/∂yb, of the
boundary conditions. If the problem involves unknown parameters, you must also provide
partial derivatives, ∂f/∂p and ∂bc/∂p, with respect to the parameters.

The following table describes the analytical partial derivatives properties.

 bvpset

1-1045

BVP Analytical Partial Derivative Properties

Property Value Description
FJacobian Function handle A function handle that computes the

analytical partial derivatives of f(x,y). When
solving y′ = f(x,y), set this property to @fjac
if dfdy = fjac(x,y) evaluates the
Jacobian ∂f/∂y. If the problem involves
unknown parameters p, [dfdy,dfdp] =
fjac(x,y,p) must also return the partial
derivative ∂f/∂p. For problems with constant
partial derivatives, set this property to the
value of dfdy or to a cell array
{dfdy,dfdp}.

BCJacobian Function handle A function handle that computes the
analytical partial derivatives of bc(ya,yb). For
boundary conditions bc(ya,yb), set this
property to @bcjac if [dbcdya,dbcdyb] =
bcjac(ya,yb) evaluates the partial
derivatives ∂bc/∂ya, and ∂bc/∂yb. If the
problem involves unknown parameters p,
[dbcdya,dbcdyb,dbcdp] =
bcjac(ya,yb,p) must also return the
partial derivative ∂bc/∂p. For problems with
constant partial derivatives, set this property
to a cell array {dbcdya,dbcdyb} or
{dbcdya,dbcdyb,dbcdp}.

Singular BVPs
bvp4c can solve singular problems of the form

y′ = S y
x + f (x, y, p)

posed on the interval [0,b] where b > 0. For such problems, specify the constant matrix S
as the value of SingularTerm. For equations of this form, odefun evaluates only the
f(x,y,p) term, where p represents unknown parameters, if any.

1 Alphabetical List

1-1046

Singular BVP Property
Property Value Description
SingularTerm Constant matrix Singular term of singular BVPs. Set to

the constant matrix S for equations of
the form

y′ = S y
x + f (x, y, p)

posed on the interval [0,b] where b > 0.

Mesh Size Property
bvp4c solves a system of algebraic equations to determine the numerical solution to a
BVP at each of the mesh points. The size of the algebraic system depends on the number
of differential equations (n) and the number of mesh points in the current mesh (N). When
the allowed number of mesh points is exhausted, the computation stops, bvp4c displays a
warning message and returns the solution it found so far. This solution does not satisfy
the error tolerance, but it may provide an excellent initial guess for computations
restarted with relaxed error tolerances or an increased value of NMax.

The following table describes the mesh size property.

BVP Mesh Size Property
Property Value Description
NMax positive integer

{floor(1000/n)}
Maximum number of mesh points
allowed when solving the BVP, where n is
the number of differential equations in
the problem. The default value of NMax
limits the size of the algebraic system to
about 1000 equations. For systems of a
few differential equations, the default
value of NMax should be sufficient to
obtain an accurate solution.

Solution Statistic Property
The Stats property lets you view solution statistics.

 bvpset

1-1047

The following table describes the solution statistics property.

BVP Solution Statistic Property

Property Value Description
Stats on | {off} Specifies whether statistics about the

computations are displayed. If the stats
property is on, after solving the problem,
bvp4c displays:

• The number of points in the mesh
• The maximum residual of the solution
• The number of times it called the
differential equation function odefun to
evaluate f(x,y)

• The number of times it called the boundary
condition function bcfun to evaluate
bc(y(a),y(b))

Examples
To create an options structure that changes the relative error tolerance of bvp4c from
the default value of 1e-3 to 1e-4, enter

options = bvpset('RelTol',1e-4);

To recover the value of 'RelTol' from options, enter

bvpget(options,'RelTol')

ans =

 1.0000e-004

See Also
bvp4c | bvp5c | bvpget | bvpinit | deval

1 Alphabetical List

1-1048

Topics
“Create Function Handle”

Introduced before R2006a

 bvpset

1-1049

bvpxtend
Form guess structure for extending boundary value solutions

Syntax
solinit = bvpxtend(sol,xnew,ynew)
solinit = bvpxtend(sol,xnew,extrap)
solinit = bvpxtend(sol,xnew)
solinit = bvpxtend(sol,xnew,ynew,pnew)
solinit = bvpxtend(sol,xnew,extrap,pnew)

Description
solinit = bvpxtend(sol,xnew,ynew) uses solution sol computed on [a,b] to form
a solution guess for the interval extended to xnew. The extension point xnew must be
outside the interval [a,b], but on either side. The vector ynew provides an initial guess
for the solution at xnew.

solinit = bvpxtend(sol,xnew,extrap) forms the guess at xnew by extrapolating
the solution sol. extrap has three possible values:

• 'constant' — ynew is a value nearer to end point of solution in sol.
• 'linear' — ynew is a value at xnew of linear interpolant to the value and slope at the

nearer end point of solution in sol.
• 'solution' — ynew is the value of (cubic) solution in sol at xnew.

The value of extrap also can be a string.

solinit = bvpxtend(sol,xnew) uses the extrapolating solution where extrap is
'constant'. If there are unknown parameters, values present in sol are used as the
initial guess for parameters in solinit.

solinit = bvpxtend(sol,xnew,ynew,pnew) specifies a different guess pnew. pnew
can be used with extrapolation, using the syntax solinit =
bvpxtend(sol,xnew,extrap,pnew). To modify parameters without changing the
interval, use [] as place holder for xnew and ynew.

1 Alphabetical List

1-1050

See Also
bvp4c | bvp5c | bvpinit

 bvpxtend

1-1051

caldays
Calendar duration in days

Syntax
D = caldays(X)

Description
D = caldays(X) returns an array representing calendar days equivalent to the values in
array X.

• If X is a numeric array, then D is a calendarDuration array with each element equal
to the number of calendar days in the corresponding element of X. Calendar days
account for Daylight Saving Time shifts when used in calendar calculations.

• If X is a calendarDuration array, then D is a double array with each element equal
to the number of whole calendar days in the corresponding element of X.

Examples

Create Array of Calendar Days
X = magic(5);
D = caldays(X)

D = 5x5 calendarDuration array
 17d 24d 1d 8d 15d
 23d 5d 7d 14d 16d
 4d 6d 13d 20d 22d
 10d 12d 19d 21d 3d
 11d 18d 25d 2d 9d

1 Alphabetical List

1-1052

Convert Calendar Durations to Calendar Days

Create an array of calendar durations. Then, convert each value to the equivalent number
of whole calendar days.

X = caldays(8:10) + hours(1.2345)

X = 1x3 calendarDuration array
 8d 1h 14m 4.2s 9d 1h 14m 4.2s 10d 1h 14m 4.2s

D = caldays(X)

D = 1×3

 8 9 10

caldays returns a numeric array.

Current Time at Future Date

Add two calendar days to the current date and time.

t = datetime('now') + caldays(2)

t = datetime
 04-Mar-2019 20:33:39

Create Sequence of Dates

Create a sequence of consecutive dates beginning on March 18, 2014.

T = datetime([2014,03,18]) + caldays(0:4)

T = 1x5 datetime array
 18-Mar-2014 19-Mar-2014 20-Mar-2014 21-Mar-2014 22-Mar-2014

Create a sequence of dates beginning on March 18, 2014, spaced 2 days apart.

 caldays

1-1053

T = datetime([2014,03,18]) + caldays(0:2:8)

T = 1x5 datetime array
 18-Mar-2014 20-Mar-2014 22-Mar-2014 24-Mar-2014 26-Mar-2014

Input Arguments
X — Input array
numeric array | calendar duration array | logical array

Input array, specified as a numeric array, calendar duration array, or logical array. If X is a
numeric array, it must contain only integer values. That is, you cannot create fractional
calendar units.

Tips
• caldays creates days that account for Daylight Saving Time shifts when used in

calendar calculations. To create exact fixed-length (24 hour) days, use the days
function.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

1 Alphabetical List

1-1054

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
calendarDuration | days | hours

Introduced in R2014b

 caldays

1-1055

caldiff
Calendar math successive differences

Syntax
dt = caldiff(t)
dt = caldiff(t,components)
dt = caldiff(t,components,dim)

Description
dt = caldiff(t) calculates time differences between adjacent datetime values in t in
terms of the calendar components years, months, days, and time. caldiff calculates
differences along the first array dimension whose size does not equal 1.

• If t is a vector of length m, then dt = caldiff(t) returns a vector of length m-1.
The elements of dt are the differences between adjacent elements of t.

dt = [between(t(1),t(2)), between(t(2),t(3)),..., between(t(m-1),t(m))]

• If t is a nonvector p-by-m matrix, then dt = caldiff(t) returns a matrix of size
(p-1)-by-m, whose elements are the differences between the rows of t.

dt(:,I) = [between(t(1,I),t(2,I), between(t(2,I),t(3,I)), ...,
 between(t(p-1,I),t(p,I))]

dt = caldiff(t,components) finds the differences between successive datetimes in t
in terms of the specified calendar or time components.

dt = caldiff(t,components,dim) finds the differences between successive
datetimes along the dimension specified by dim.

Examples

1 Alphabetical List

1-1056

Calendar Differences Between Datetime Values

Create a datetime array and then compute the differences between the values in terms
of calendar components.

t = [datetime('yesterday');datetime('today');datetime('tomorrow')]

t = 3x1 datetime array
 01-Mar-2019
 02-Mar-2019
 03-Mar-2019

D = caldiff(t)

D = 2x1 calendarDuration array
 1d
 1d

Differences Using Specific Calendar Components

Create a datetime array and then compute the differences between the values in terms
of days.

t = datetime('now') + calmonths(0:3)

t = 1x4 datetime array
Columns 1 through 3

 02-Mar-2019 20:29:31 02-Apr-2019 20:29:31 02-May-2019 20:29:31

Column 4

 02-Jun-2019 20:29:31

D = caldiff(t,'days')

D = 1x3 calendarDuration array
 31d 30d 31d

 caldiff

1-1057

Computer the differences between the datetime values in terms of weeks and days.

D = caldiff(t,{'weeks','days'})

D = 1x3 calendarDuration array
 4w 3d 4w 2d 4w 3d

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

components — Calendar or time components
'years' | 'quarters' | 'months' | 'weeks' | 'days' | 'time' | cell array of
character vectors | string array

Calendar or time components, specified as one of the following character vectors, or a
cell array or string array containing one or more of these values:

• 'years'
• 'quarters'
• 'months'
• 'weeks'
• 'days'
• 'time'

Except for 'time', the above components are flexible lengths of time. For example, one
month represents a different length of time when added to a datetime in January than
when added to a datetime in February.

caldiff operates on the calendar or time components in decreasing order, starting with
the largest component.

In general, t(2:m) is not equal to t(1:m-1) + dt, unless you include 'time' in
components.

1 Alphabetical List

1-1058

Example: {'years','quarters'}
Data Types: char | cell | string

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. If no value is specified, the
default is the first array dimension whose size does not equal 1.

Output Arguments
dt — Difference array
scalar | vector | matrix | multidimensional array

Difference array, returned as a scalar, vector, matrix, or multidimensional
calendarDuration array.

Tips
• To compute successive differences between datetimes in t1 and t2 as exact, fixed-
length units of hours, minutes, and seconds, use diff(t).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The dim input must be specified. Use caldiff(t,'',dim) to use the default
components.

For more information, see “Tall Arrays”.

 caldiff

1-1059

See Also
between | calendarDuration | diff | minus

Introduced in R2014b

1 Alphabetical List

1-1060

calendar
Calendar for specified month

Syntax
c = calendar
c = calendar(d)
c = calendar(y, m)

Description
c = calendar returns a 6-by-7 matrix containing a calendar for the current month. The
calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or text representing a date and time,
returns a calendar for the specified month.

c = calendar(y, m), where y and m are integers, returns a calendar for the specified
month of the specified year.

If you do not specify an output argument, then calendar displays a calendar in the
Command Window but does not return a value.

Examples
The command

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when Sputnik 1 was
launched).

 Oct 1957
 S M Tu W Th F S
 0 0 1 2 3 4 5

 calendar

1-1061

 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30 31 0 0
 0 0 0 0 0 0 0

Limitations
• MATLAB Online determines the current month from Coordinated Universal Time

(UTC) rather than from local time.

See Also
datenum

Introduced before R2006a

1 Alphabetical List

1-1062

https://www.mathworks.com/products/matlab-online.html

calendarDuration
Lengths of time in variable-length calendar units

Description
The values in calendar duration arrays represent elapsed time in calendar units of
variable length. For example, the number of days in a month depends on the particular
month of the year. Calculations with calendar durations account for daylight saving time
changes and leap years. Use calendar duration arrays to simplify calculations on datetime
arrays that involve calendar units, such as days and months.

Creation
You can create calendar duration arrays that have specified time units using the
calyears, calquarters, calmonths, calweeks, and caldays functions. For example,
to create an array that has elapsed times of 1, 2, and 3 calendar months, use the
calmonths function.

M = calmonths(1:3)

M =

 1×3 calendarDuration array

 1mo 2mo 3mo

You also can create a calendar duration array using the calendarDuration function,
described below.

Syntax
L = calendarDuration(Y,M,D)
L = calendarDuration(Y,M,D,H,MI,S)
L = calendarDuration(Y,M,D,T)
L = calendarDuration(X)

 calendarDuration

1-1063

L = calendarDuration(___ ,'Format',displayFormat)

Description
L = calendarDuration(Y,M,D) creates an array of calendar durations from numeric
arrays Y, M, and D, containing the number of years, months, and days, respectively.

L = calendarDuration(Y,M,D,H,MI,S) also includes hours, minutes, and seconds
specified by H, MI, and S, respectively.

L = calendarDuration(Y,M,D,T) creates an array of calendar durations from
numeric arrays containing the number of years, months, and days, and a duration array T
containing elapsed times.

L = calendarDuration(X) creates an array of calendar durations from a numeric
matrix.

L = calendarDuration(___ ,'Format',displayFormat) additionally specifies
displayFormat as the value of the Format property of L. The Format property changes
the display of L but not its values. You can use this syntax with any of the arguments from
the previous syntaxes.

Input Arguments
Y,M,D — Years, months, and days (as separate arguments)
numeric arrays

Years, months, and days, specified as numeric arrays. These arrays either must be the
same size, or any can be a scalar. Y,M,D must contain only integer values.

Specifying month values greater than 12 is equivalent to specifying a number of years
plus a number of months. For example, 25 months are equal to 2 years and 1 month.
However, day values are not equivalent to a number of months because the number of
days in a month is not fixed, and cannot be determined until you add the calendar
duration to a specific datetime.
Example: L = calendarDuration(2,10,24) returns a calendar duration of 2 years,
10 months, and 24 days.

H,MI,S — Hours, minutes, and seconds (as separate arguments)
numeric arrays

1 Alphabetical List

1-1064

Hours, minutes, and seconds, specified as numeric arrays. These arrays either must be
the same size, or any can be a scalar. Specify fractional seconds as part of S. The H and MI
arrays must contain only integer values.

Specifying month values greater than 12 is equivalent to specifying a number of years
plus a number of months. For example, 25 months are equal to 2 years and 1 month.
Minute values greater than 60 carry over to a number of hours. Second values greater
than 60 carry over to a number of minutes. However, day values are not equivalent to a
number of months because the number of days in a month is not fixed and cannot be
determined until you add the calendar duration to a specific datetime. Similarly, hour
values are not equivalent to a number of calendar days.
Example: L = calendarDuration(2,10,24,12,45,07.451) returns a calendar
duration of 2 years, 10 months, 24 days, 12 hours, 45 minutes, and 7.451 seconds.

T — Elapsed times
duration array

Elapsed times, specified as a duration array. T either must be the same size as the Y, M,
and D input arguments or be a scalar.
Example: T = hours(5); L = calendarDuration(2,10,24,T) adds a duration of 5
hours to L.

X — Years, months, days, and optionally, times
numeric matrix

Years, months, days, and optionally, times, specified as a numeric matrix. X must have
either three or six columns. The first three columns contain the number of years, months,
and days, respectively. If X has six columns, then the last three columns contain the
number of hours, minutes, and seconds, respectively.

All columns must contain integer values, except for the sixth column. You can specify
fractional seconds in the sixth column.
Example: L = calendarDuration([2 10 24]) returns a calendar duration of 2 years,
10 months, and 24 days.
Example: L = calendarDuration([2 10 24 12 45 07.451]) returns a calendar
duration of 2 years, 10 months, 24 days, 12 hours, 45 minutes, and 7.451 seconds.

 calendarDuration

1-1065

Properties
Format — Display format
'ymdt' (default) | character vector | string scalar

Display format for calendar durations, specified as a combination of the characters y, q,
m, w, d, and t, in that order. The format must include m, d, and t.

Character Unit Required?
y Years no
q Quarters (multiples of

3 months)
no

m Months yes
w Weeks no
d Days yes
t Time (hours, minutes,

and seconds)
yes

To specify the number of digits displayed for fractional seconds, use the format function.

If the value of a date or time component is zero, then it is not displayed.
Example: L.Format = 'yqmdt' displays each value in L as the number of calendar
years, quarters, months, and days, along with its time component.

Examples

Use Calendar Durations with Datetime Values

Create a datetime value.

D = datetime(2017,7,1)

D = datetime
 01-Jul-2017

1 Alphabetical List

1-1066

Create a datetime array in which each value starts on the first day of a different month.
One convenient way to create such an array is to add an array of calendar months to D.

First, create an array of calendar months using the calmonths function.

C = calmonths(0:3)

C = 1x4 calendarDuration array
 0mo 1mo 2mo 3mo

Then, add D and C. Since C is a calendar duration array, this operation accounts for the
fact that months can have different numbers of days.

M = D + C

M = 1x4 datetime array
 01-Jul-2017 01-Aug-2017 01-Sep-2017 01-Oct-2017

Due to leap years and Daylight Saving Time, calendar years, months, and days can have
varying lengths. To accommodate these varying lengths of time, use calendar duration
arrays for arithmetic operations on datetime arrays.

Create Calendar Duration

L = calendarDuration(1,3,15)

L = calendarDuration
 1y 3mo 15d

Specify Numeric and Duration Inputs That Overflow

Create a numeric array representing numbers of days.

D = [1 3;4 2]

D = 2×2

 calendarDuration

1-1067

 1 3
 4 2

Create a duration array representing elapsed times in hours. One element specifies 25
hours, which is longer than one day.

T = hours([1 2; 25 12])

T = 2x2 duration array
 1 hr 2 hr
 25 hr 12 hr

Create a calendar duration array. Specify input arguments D, T, and scalar values for the
year and month. The second input, 13, specifies more months than there are in one year.

L = calendarDuration(1,13,D,T)

L = 2x2 calendarDuration array
 2y 1mo 1d 1h 0m 0s 2y 1mo 3d 2h 0m 0s
 2y 1mo 4d 25h 0m 0s 2y 1mo 2d 12h 0m 0s

Month values greater than 12 carry over to years in the display. However, hour values
greater than 24 do not carry over to days in the display. Due to Daylight Saving Time, the
number of hours in a calendar day is not necessarily 24 hours.

Specify Display Format

Create a calendar duration array and specify a format that displays the values in terms of
months, weeks, days, and time.

L = calendarDuration(1,1,5:9,'Format','mwdt')

L = 1x5 calendarDuration array
 13mo 5d 13mo 6d 13mo 1w 13mo 1w 1d 13mo 1w 2d

Since the format does not include 'y' for years, the input values of 1 year and 1 month
display as their sum, 13mo. While 't' must be specified, the time component is not
displayed if the hours, minutes, and seconds are all zero.

1 Alphabetical List

1-1068

Tips
• For more information on functions that accept or return calendar duration arrays, see

“Dates and Time”.
• When you add a calendarDuration array that contains more than one unit to a

datetime, MATLAB always adds the larger units first. If t is a datetime, then this
command:

t + calendarDuration(1,2,3)

is the same as:

t + calyears(1) + calmonths(2) + caldays(3)

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
between | caldiff | cellstr | char | datetime | duration | iscalendarduration |
split | string | time

 calendarDuration

1-1069

Topics
“Represent Dates and Times in MATLAB”
“Generate Sequence of Dates and Time”
“Compare Dates and Time”
“Date and Time Arithmetic”

Introduced in R2014b

1 Alphabetical List

1-1070

split
Split calendar duration into numeric and duration units

Syntax
[X1,X2,...] = split(t,units)

Description
[X1,X2,...] = split(t,units) returns the calendar duration values specified in t
as separate numeric arrays, one for each of the date or time units specified by units. The
number of date and time units specified by units determines the number of output
arguments.

Examples

Split Calendar Duration Array

Create a calendarDuration array.

T = calmonths(15:17) + caldays(8) + hours(1.2345)

T = 1x3 calendarDuration array
 1y 3mo 8d 1h 14m 4.2s 1y 4mo 8d 1h 14m 4.2s 1y 5mo 8d 1h 14m 4.2s

Get the month, day, and time.

[m,d,t] = split(T,{'months','days','time'})

m = 1×3

 15 16 17

 split

1-1071

d = 1×3

 8 8 8

t = 1x3 duration array
 01:14:04 01:14:04 01:14:04

Get the year, month, day, and time.

[y,m,d,t] = split(T,{'years','months','days','time'})

y = 1×3

 1 1 1

m = 1×3

 3 4 5

d = 1×3

 8 8 8

t = 1x3 duration array
 01:14:04 01:14:04 01:14:04

When you request both the year and month, split carries over month values greater
than 12 to the year value.

Input Arguments
t — Input calendar duration
calendarDuration array

Input calendar duration, specified as a calendarDuration array.
Data Types: calendarDuration

1 Alphabetical List

1-1072

units — Date and time units
character vector | cell array of character vectors | string array

Date and time units, specified as a character vector, a cell array of character vectors, or a
string array. Specify units only when the first input argument is the
calendarDuration array, t.

The units can be one or more of the values in the table.

Value Units t Is Split Into
'years' years
'quarters' quarters
'months' months
'weeks' weeks
'days' days
'time' time, in the format hours:minutes:seconds

You must specify date and time units from largest to smallest. For example,
{'years','months'} is valid, but {'months','years'} is not.
Example: split(t,{'years','months','days'})
Data Types: char | cell | string

Output Arguments
X1,X2,... — Output numeric and duration values
arrays

Output numeric and duration values, returned as arrays. split returns year, month,
and day values in numeric arrays and time values in duration arrays.
Data Types: double | duration

 split

1-1073

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
caldays | calmonths | calquarters | calweeks | calyears | time

Introduced in R2014b

1 Alphabetical List

1-1074

calllib
Call function in C shared library

Syntax
[x1,...,xN] = calllib(libname,funcname,arg1,...,argN)

Description
[x1,...,xN] = calllib(libname,funcname,arg1,...,argN) calls function
funcname in C library libname, passing input arguments arg1,...,argN. The
calllib function returns output values obtained from funcname in x1,...,xN.

Examples

Call addStructByRef Function

Load the library.

if ~libisloaded('shrlibsample')
 addpath(fullfile(matlabroot,'extern','examples','shrlib'))
 loadlibrary('shrlibsample')
end

Display function signature.

libfunctionsview shrlibsample

[double, c_structPtr] addStructByRef(c_structPtr)

The input argument is a pointer to a c_struct data type.

Create a MATLAB structure, struct:

struct.p1 = 4; struct.p2 = 7.3; struct.p3 = -290;

 calllib

1-1075

Call the function.

[res,st] = calllib('shrlibsample','addStructByRef',struct);

Display the results.

res

res =
 -279

Cleanup.

unloadlibrary shrlibsample

Input Arguments
libname — Name of shared library
character vector

Name of shared library, specified as a character vector. Do not include the path or file
extension in libname.

If you call loadlibrary using the alias option, then you must use the alias name for
the libname argument.
Data Types: char

funcname — Name of function in library
character vector

Name of function in library, specified as a character vector.
Data Types: char

arg1,...,argN — Input arguments
any type

Input arguments, 1 through N, required by funcname (if any), specified by any type. The
funcname argument list specifies the argument type.

1 Alphabetical List

1-1076

Output Arguments
x1,...,xN — Output arguments
any type

Output arguments, 1 through N, from funcname (if any), returned as any type. The
funcname argument list specifies the argument type.

Limitations
• Use with libraries that are loaded using the loadlibrary function.

Tips
• MATLAB validates input argument types before calling funcname. If MATLAB displays

error messages about data types, check the MATLAB function signature. For example,
if funcname is in library mylib type:

libfunctions('mylib','-full')

To find funcname, scroll through the output. For more information, refer to your
library documentation.

When you call funcname, that function might display errors. For information about
error messages, refer to your library documentation.

See Also
libfunctionsview | loadlibrary

Topics
Passing Arguments
“MATLAB Terminates Unexpectedly When Calling Function in Shared Library”
“No Matching Signature Error”

Introduced before R2006a

 calllib

1-1077

callSoapService
Send SOAP (Simple Object Access Protocol) message to endpoint

Note callSoapService will be removed in a future release. Use
matlab.wsdl.createWSDLClient instead.

Syntax
response = callSoapService(endpoint,soapAction,message)

Description
response = callSoapService(endpoint,soapAction,message) sends message
to the soapAction service at endpoint.

Examples

Retrieve Book Information from Library Database

This example assumes the library is on a local intranet and does not use an actual
endpoint; therefore, you cannot run it.

Retrieve the name of the author of a book titled “In the Fall.” The relative path of the
library service is urn:LibraryCatalog. To get the author's name, use the getAuthor
function, which takes the book name as the input value. The getAuthor parameter is
nameToLookUp. The XML data type for title is {http://www.w3.org/2001/
XMLSchema}string. The SOAP message style is rpc by default.

Create the SOAP message.

message = createSoapMessage(...
 'urn:LibraryCatalog',...
 'getAuthor',...

1 Alphabetical List

1-1078

 {'In the Fall'},...
 {'nameToLookUp'},...
 {'{http://www.w3.org/2001/XMLSchema}string'})

message =

[#document: null]

This response does not necessarily indicate that the message is valid, although certain
input problems produce error messages.

Send the message to the server for processing, and get the author's name back. The
server endpoint is http://test/soap/services/LibraryCatalog. The server
method is urn:LibraryCatalog#getAuthor.

response = callSoapService(...
 'http://test/soap/services/LibraryCatalog',...
 'urn:LibraryCatalog#getAuthor',...
 message)

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<getAuthorResponse xmlns="urn:LibraryCatalog">
<ns1:getAuthorReturn xmlns:ns1="http://latestversion.soap.test">
Kate Alvin
</ns1:getAuthorReturn>
</getAuthorResponse>
</soapenv:Body>
</soapenv:Envelope>

MATLAB returns the message in a single line, displayed here on separate lines for
legibility.

Extract the author's name.

author = parseSoapResponse(response)

author = Kate Alvin

 callSoapService

1-1079

MATLAB automatically converted the XML string data type to char.

Input Arguments
endpoint — URL identifying a built-in HTTP service
string

URL identifying a built-in HTTP service, specified as a string.
Example: 'http://test/soap/services/LibraryCatalog'

soapAction — Name of service
string

Name of service, specified as a string.
Example: 'urn:LibraryCatalog#getAuthor'

message — Java® document object model (DOM)
string

Java document object model (DOM), specified as a string. Use createSoapMessage to
create message.

Output Arguments
response — Result of soapAction
string

Result of soapAction, returned as a string. To read information in response, use the
parseSoapResponse function.

See Also
createSoapMessage | matlab.wsdl.createWSDLClient | parseSoapResponse |
urlread | xmlread

Introduced before R2006a

1 Alphabetical List

1-1080

calmonths
Calendar duration in months

Syntax
M = calmonths(X)

Description
M = calmonths(X) returns an array representing calendar months equivalent to the
values in X.

• If X is a numeric array, then M is a calendarDuration array with each element equal
to the number of calendar months in the corresponding element of X.

• If X is a calendarDuration array, then M is a double array with each element equal
to the number of whole calendar months in the corresponding element of X.

Examples

Create Array of Calendar Months

X = magic(4);
M = calmonths(X)

M = 4x4 calendarDuration array
 1y 4mo 2mo 3mo 1y 1mo
 5mo 11mo 10mo 8mo
 9mo 7mo 6mo 1y
 4mo 1y 2mo 1y 3mo 1mo

 calmonths

1-1081

Convert Calendar Durations to Calendar Months

Create an array of calendar durations. Then, convert each value to the equivalent number
of whole calendar months.

X = calmonths(15:17) + caldays(8) + hours(1.2345)

X = 1x3 calendarDuration array
 1y 3mo 8d 1h 14m 4.2s 1y 4mo 8d 1h 14m 4.2s 1y 5mo 8d 1h 14m 4.2s

M = calmonths(X)

M = 1×3

 15 16 17

Input Arguments
X — Input array
numeric array | calendar duration array | logical array

Input array, specified as a numeric array, calendar duration array, or logical array. If X is a
numeric array, it must contain only integer values. That is, you cannot create fractional
calendar units.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-1082

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
calendarDuration | calweeks

Introduced in R2014b

 calmonths

1-1083

calquarters
Calendar duration in quarters

Syntax
Q = calquarters(X)

Description
Q = calquarters(X) returns an array representing calendar quarters equivalent to the
values in array X.

• If X is a numeric array, then Q is a calendarDuration array with each element equal
to the number of calendar quarters in the corresponding element of X.

• If X is a calendarDuration array, then Q is a double array with each element equal
to the number of whole calendar quarters in the corresponding element of X.

Q = fix(calmonths(t)/3)

Examples

Create Array of Calendar Quarters

X = magic(4);
Q = calquarters(X)

Q = 4x4 calendarDuration array
 16q 2q 3q 13q
 5q 11q 10q 8q
 9q 7q 6q 12q
 4q 14q 15q 1q

1 Alphabetical List

1-1084

Convert Calendar Durations to Quarters

Create an array of calendar durations. Then, convert each value to the equivalent number
of whole calendar quarters.

X = calmonths(2:2:6) + caldays(8)

X = 1x3 calendarDuration array
 2mo 8d 4mo 8d 6mo 8d

Q = calquarters(X)

Q = 1×3

 0 1 2

Input Arguments
X — Input array
numeric array | calendar duration array | logical array

Input array, specified as a numeric array, calendar duration array, or logical array. If X is a
numeric array, it must contain only integer values. That is, you cannot create fractional
calendar units.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 calquarters

1-1085

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
calendarDuration | calmonths

Introduced in R2014b

1 Alphabetical List

1-1086

calweeks
Calendar duration in weeks

Syntax
W = calweeks(X)

Description
W = calweeks(X) returns an array representing calendar weeks equivalent to the
values in X.

• If X is a numeric array, then W is a calendarDuration array with each element equal
to the number of calendar weeks in the corresponding element of X.

• If X is a calendarDuration array, then calweeks returns the number of whole
weeks equivalent to each calendar duration in X.

Examples

Create Array of Calendar Weeks

X = magic(4);
W = calweeks(X)

W = 4x4 calendarDuration array
 16w 2w 3w 13w
 5w 11w 10w 8w
 9w 7w 6w 12w
 4w 14w 15w 1w

 calweeks

1-1087

Convert Calendar Durations to Calendar Weeks

Create an array of calendar durations. Then, convert each value to the equivalent number
of whole calendar weeks.

X = caldays(15:17) + hours(1.2345)

X = 1x3 calendarDuration array
 15d 1h 14m 4.2s 16d 1h 14m 4.2s 17d 1h 14m 4.2s

W = calweeks(X)

W = 1×3

 2 2 2

Input Arguments
X — Input array
numeric array | calendar duration array | logical array

Input array, specified as a numeric array, calendar duration array, or logical array. If X is a
numeric array, it must contain only integer values. That is, you cannot create fractional
calendar units.

Output Arguments
W — Calendar weeks
scalar | vector | matrix | multidimensional array

Calendar weeks, returned as a scalar, vector, matrix, or multidimensional array. W is the
same size as X. The data type of W depends on X.

• If X is a numeric array, then W is an array of calendar durations in units of equivalent
flexible-length calendar weeks.

• If X is a calendarDuration array, then W is a double array of integer values
representing whole calendar weeks.

1 Alphabetical List

1-1088

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
caldays | calendarDuration

Introduced in R2014b

 calweeks

1-1089

calyears
Calendar duration in years

Syntax
Y = calyears(X)

Description
Y = calyears(X) returns an array representing calendar years equivalent to the values
in X. Calendar years account for leap days when used in calendar calculations.

• If X is a numeric array, then Y is a calendarDuration array with each element equal
to the number of calendar years in the corresponding element of X.

• If X is a calendarDuration array, then calyears returns the number of whole years
equivalent to each calendar duration in X.

Examples

Create Array of Calendar Years

X = magic(4);
Y = calyears(X)

Y = 4x4 calendarDuration array
 16y 2y 3y 13y
 5y 11y 10y 8y
 9y 7y 6y 12y
 4y 14y 15y 1y

1 Alphabetical List

1-1090

Convert Calendar Durations to Calendar Years

Create an array of calendar durations. Then, convert each value to the equivalent number
of whole calendar years.

X = calmonths(21:25) + caldays(8)

X = 1x5 calendarDuration array
 1y 9mo 8d 1y 10mo 8d 1y 11mo 8d 2y 8d 2y 1mo 8d

Y = calyears(X)

Y = 1×5

 1 1 1 2 2

Input Arguments
X — Input array
numeric array | calendar duration array | logical array

Input array, specified as a numeric array, calendar duration array, or logical array. If X is a
numeric array, it must contain only integer values. That is, you cannot create fractional
calendar units.

Output Arguments
Y — Calendar years
scalar | vector | matrix | multidimensional array

Calendar years, returned as a scalar, vector, matrix, or multidimensional array. Y is the
same size as X. The data type of Y depends on X.

• If X is a numeric array, then Y is an array of calendar durations in units of equivalent
flexible-length calendar years.

• If X is a calendarDuration array, then Y is a double array of integer values
representing whole calendar years.

 calyears

1-1091

Tips
• calyears creates years that account for leap days when used in calendar

calculations. To create exact fixed-length (365.2425 day) years, use the years
function.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
calendarDuration | calmonths | years

Introduced in R2014b

1 Alphabetical List

1-1092

camdolly
Move camera position and target

Syntax
camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,targetmode,coordsys)
camdolly(ax,...)

Description
camdolly(dx,dy,dz) moves the camera position and the camera target by the specified
amounts dx, dy, and dz.

camdolly(dx,dy,dz,'targetmode') uses the targetmode argument to determine
how the camera moves:

• 'movetarget' (default) — Move both the camera and the target.
• 'fixtarget' — Move only the camera.

camdolly(dx,dy,dz,targetmode,coordsys) uses the coordsys argument to
determine how MATLAB interprets dx, dy, and dz:

• 'camera' (default) — Move in the coordinate system of the camera. dx moves left/
right, dy moves down/up, and dz moves along the viewing axis. MATLAB normalizes
the units to the scene.

For example, setting dx to 1 moves the camera to the right, which pushes the scene to
the left edge of the box formed by the axes position rectangle. A negative value moves
the scene in the other direction. Setting dz to 0.5 moves the camera to a position
halfway between the camera position and the camera target.

• 'pixels' — Interpret dx and dy as pixel offsets. This option ignores dz.
• 'data' — Interpret dx, dy, and dz as offsets in axes data coordinates.

 camdolly

1-1093

camdolly(ax,...) operates on the axes identified by the first argument, ax. When you
do not specify an axes object, camdolly operates on the current axes.

camdolly sets the axes CameraPosition and CameraTarget properties, which in turn
sets the CameraPositionMode and CameraTargetMode properties to manual.

Examples

Move Camera Position and Target

Move the camera along the x-axis and y-axis in a series of steps.

surf(peaks)
axis vis3d
t = 0:pi/20:4*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t)
 camdolly(dx(i),dy(i),0)
 drawnow
end

1 Alphabetical List

1-1094

See Also
axes | campos | camproj | camtarget | camup | camva

Topics
“Camera Graphics Terminology”

Introduced before R2006a

 camdolly

1-1095

cameratoolbar
Control camera toolbar programmatically

Syntax
cameratoolbar
cameratoolbar('NoReset')
cameratoolbar('SetMode',mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')
cameratoolbar('Hide')
cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndSceneLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')
h = cameratoolbar(...)
mode = cameratoolbar('GetMode')
paxis = cameratoolbar('GetCoordsys')
tf = cameratoolbar('GetVisible')
cameratoolbar('Close')
cameratoolbar(fig,...)

Description
cameratoolbar creates a toolbar that enables interactive manipulation of the axes
camera and light when you drag the mouse on the figure window. Several axes camera
properties are set when the toolbar is initialized.

cameratoolbar('NoReset') creates the toolbar without setting any camera
properties.

cameratoolbar('SetMode',mode) sets the toolbar mode (depressed button). mode
can be 'orbit', 'orbitscenelight', 'pan', 'dollyhv', 'dollyfb', 'zoom',
'roll', 'nomode'. For descriptions of the various modes, see “Camera Toolbar”. You
can also set these modes using the toolbar, by clicking the respective buttons.

1 Alphabetical List

1-1096

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of the camera
motion. coordsys can be: 'x', 'y', 'z', 'none'.

cameratoolbar('Show') shows the toolbar on the current figure.

cameratoolbar('Hide') hides the toolbar on the current figure.

cameratoolbar('Toggle') toggles the visibility of the toolbar.

cameratoolbar('ResetCameraAndSceneLight') resets the current camera and
scenelight.

cameratoolbar('ResetCamera') resets the current camera.

cameratoolbar('ResetSceneLight') resets the current scenelight.

cameratoolbar('ResetTarget') resets the current camera target.

h = cameratoolbar(...) returns the handle to the toolbar.

mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current principal axis.

tf = cameratoolbar('GetVisible') returns the visibility of the toolbar (1 if visible,
0 if not visible).

cameratoolbar('Close') removes the toolbar from the current figure.

cameratoolbar(fig,...) specifies the figure to operate on by passing the figure
handle as the first argument.

In general, the use of OpenGL hardware improves rendering performance.

Alternatives
Display the toolbar by selecting Camera Toolbar from the figure window's View menu.

See Also
rotate3d | zoom

 cameratoolbar

1-1097

Topics
“Camera Toolbar”

Introduced before R2006a

1 Alphabetical List

1-1098

camlight
Create or move light object in camera coordinates

Syntax
camlight('headlight')
camlight('right')
camlight('left')
camlight
camlight(az,el)
camlight(...,'style')
camlight(lgt,...)
camlight(ax,...)
lgt = camlight(...)

Description
camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and elevation (el) with
respect to the camera position. The camera target is the center of rotation and az and el
are in degrees.

camlight(...,'style') defines the style argument using one of two values:

• local (default) — The light is a point source that radiates from the location in all
directions.

• infinite — The light shines in parallel rays.

camlight(lgt,...) uses the light specified by lgt.

 camlight

1-1099

camlight(ax,...) uses the axes specified by ax instead of the current axes.

lgt = camlight(...) returns the light object.

camlight sets the light object Position and Style properties. A light created with
camlight does not track the camera. In order for the light to stay in a constant position
relative to the camera, call camlight whenever you move the camera.

Examples

Move Light Object

Create a light positioned to the left of the camera and then reposition the light each time
the camera moves.

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20
 camorbit(10,0)
 camlight(h,'left')
 pause(.1)
end

1 Alphabetical List

1-1100

See Also
light | lightangle

Topics
“Lighting Overview”

Introduced before R2006a

 camlight

1-1101

camlookat
Position camera to view object or group of objects

Syntax
camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description
camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes Children.

camlookat(axes_handle) views the objects that are children of the axes identified by
axes_handle.

camlookat views the objects that are in the current axes by moving the camera position
and camera target while preserving the relative view direction and camera view angle.
The viewed object (or objects) roughly fill the axes position rectangle. To change the view,
camlookat sets the axes CameraPosition and CameraTarget properties.

Examples

Position Camera to View Object

Create three spheres. Then set the data aspect ratio, the view, and the projection type.

[x,y,z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);

1 Alphabetical List

1-1102

daspect([1 1 1])
view(30,10)
camproj perspective

Compose the scene around sphere s1.

camlookat(s1)

 camlookat

1-1103

Compose the scene around sphere s2.

camlookat(s2)

1 Alphabetical List

1-1104

Compose the scene around sphere s3.

camlookat(s3)

 camlookat

1-1105

See Also
campos | camtarget

Topics
“Camera Graphics Terminology”

Introduced before R2006a

1 Alphabetical List

1-1106

camorbit
Rotate camera position around camera target

Syntax
camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description
camorbit(dtheta,dphi) rotates the camera position around the camera target by the
amounts specified in dtheta and dphi (both in degrees). dtheta is the horizontal
rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') rotates the camera position around the camera
target, using the coordsys argument to determine the center of rotation. coordsys can
take on two values:

• data (default) — Rotate the camera around an axis defined by the camera target and
the direction (default is the positive z direction).

• camera — Rotate the camera about the point defined by the camera target.

camorbit(dtheta,dphi,'coordsys','direction') defines the axis of rotation for
the data coordinate system using the direction argument in conjunction with the
camera target. Specify direction as a three-element vector containing the x-, y-, and z-
components of the direction or one of the options, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the first argument,
axes_handle. When you do not specify an axes handle, camorbit operates on the
current axes.

The behavior of camorbit differs from the rotate3d function in that while the
rotate3d tool modifies the View property of the axes, the camorbit function fixes the

 camorbit

1-1107

aspect ratio and modifies the CameraTarget, CameraPosition, and CameraUpVector
properties of the axes. See Axes for more information on all axes properties.

Examples

Rotate Camera Horizontally

Rotate the camera horizontally about a line defined by the camera target point and a
direction that is parallel to the y-axis. Visualize this rotation as a cone formed with the
camera target at the apex and the camera position forming the base.

surf(peaks)
axis vis3d

for i = 1:36
 camorbit(10,0,'data',[0 1 0])
 drawnow
end

1 Alphabetical List

1-1108

Rotate Camera Along Circle Around Axes

Rotate in the camera coordinate system to orbit the camera around the axes along a
circle while keeping the center of a circle at the camera target.

surf(peaks)
axis vis3d

for i=1:36
 camorbit(10,0,'camera')
 drawnow
end

 camorbit

1-1109

Alternatives
Enable 3-D rotation from the figure Tools menu or the figure toolbar.

See Also
axes | axis | camdolly | campan | camroll | camzoom

Topics
“Camera Graphics Terminology”

1 Alphabetical List

1-1110

Introduced before R2006a

 camorbit

1-1111

campan
Rotate camera target around camera position

Syntax
campan(dtheta,dphi)
campan(dtheta,dphi,coordsys)
campan(dtheta,dphi,coordsys,direction)
campan(ax,...)

Description
campan(dtheta,dphi) rotates the camera target of the current axes around the camera
position by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi,coordsys) determine the center of rotation using the
coordsys argument. It can take on two values:

• 'data' (default) — Rotate the camera target around an axis defined by the camera
position and the direction (default is the positive z direction)

• 'camera' — Rotate the camera about the point defined by the camera target.

campan(dtheta,dphi,coordsys,direction) defines the axis of rotation for the data
coordinate system using the direction argument with the camera position. Specify
direction as a three-element vector containing the x-, y-, and z-components of the
direction or one of the options, 'x', 'y', or 'z', to indicate [1 0 0], [0 1 0], or [0 0
1] respectively.

campan(ax,...) operates on the axes identified by the first argument, ax. When you do
not specify an axes object, campan operates on the current axes.

Examples

1 Alphabetical List

1-1112

Rotate Camera Target

Move the camera target to pan the object in a circular motion.

sphere;
axis vis3d
hPan = sin(-pi:1:pi);
vPan = cos(-pi:1:pi);
for k = 1:length(hPan)
 campan(hPan(k),vPan(k))
 pause(.1)
end

 campan

1-1113

See Also
axes | camdolly | camorbit | camroll | camtarget | camzoom

Topics
“Camera Graphics Terminology”

Introduced before R2006a

1 Alphabetical List

1-1114

campos
Set or query camera position

Syntax
campos
campos([camera_position])
campos('mode')
campos('auto')
campos('manual')
campos(ax,...)

Description
campos returns the camera position in the current axes.

campos([camera_position]) sets the position of the camera in the current axes to the
specified value. Specify the position as a three-element vector containing the x-, y-, and z-
coordinates of the desired location in the data units of the axes.

campos('mode') returns the value of the camera position mode, which can be either
auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(ax,...) performs the set or query on the axes identified by the first argument,
ax. When you do not specify an axes object, campos operates on the current axes.

campos sets or queries values of the axes CameraPosition and CameraPositionMode
properties. The camera position is the point in the Cartesian coordinate system of the
axes from which you view the scene.

 campos

1-1115

Examples

Move Camera Position

Move the camera along the x-axis in a series of steps.

surf(peaks)
axis vis3d off
for x = -200:5:200
 campos([x,5,10])
 drawnow
end

1 Alphabetical List

1-1116

See Also
axis | camproj | camtarget | camup | camva

Topics
“Camera Graphics Terminology”

Introduced before R2006a

 campos

1-1117

camproj
Set or query projection type

Syntax
camproj
camproj('projection_type')
camproj(axes_handle,...)

Description
camproj returns the projection type setting in the current axes. The projection type
determines whether MATLAB 3-D views use a perspective or orthographic projection.

camproj('projection_type') sets the projection type in the current axes to the
specified value. Possible values for projection_type are orthographic and
perspective.

camproj(axes_handle,...) performs the set or query on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle, camproj
operates on the current axes.

camproj sets or queries values of the axes object Projection property.

Examples

Set Projection Type

Plot two surfaces and compare the different projection settings.

subplot(1,2,1)
surf(membrane)
camproj('perspective')

1 Alphabetical List

1-1118

subplot(1,2,2)
surf(membrane)

camproj('orthographic')

See Also
axis | campos | camtarget | camup | camva

Topics
“Camera Graphics Terminology”

 camproj

1-1119

Introduced before R2006a

1 Alphabetical List

1-1120

camroll
Rotate camera about view axis

Syntax
camroll(dtheta)
camroll(ax,dtheta)

Description
camroll(dtheta) rotates the camera around the camera viewing axis by the amounts
specified in dtheta (in degrees). The viewing axis is the line passing through the camera
position and the camera target.

camroll(ax,dtheta) operates on the axes identified by the first argument, ax. When
you do not specify an axes object, camroll operates on the current axes.

camroll sets the axes CameraUpVector property and also sets the
CameraUpVectorMode property to manual.

Examples

Rotate Camera About View Axis

Rotate the camera around the viewing axis.

surf(peaks)
axis vis3d
for i = 1:36
 camroll(10)
 drawnow
end

 camroll

1-1121

See Also
axes | axis | camdolly | camorbit | campan | camzoom

Topics
“Camera Graphics Terminology”

Introduced before R2006a

1 Alphabetical List

1-1122

camtarget
Set or query location of camera target

Syntax
camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description
camtarget returns the location of the camera target in the current axes. The camera
target is the location in the axes that the camera points to. The camera remains oriented
toward this point regardless of its position.

camtarget([camera_target]) sets the camera target in the current axes to the
specified value. Specify the target as a three-element vector containing the x-, y-, and z-
coordinates of the desired location in the data units of the axes.

camtarget('mode') returns the value of the camera target mode, which can be either
auto (default) or manual.

camtarget('auto') sets the camera target mode to auto. When the camera target
mode is auto, the camera target is the center of the axes plot box.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes identified by
axes_handle. When you do not specify an axes handle, camtarget operates on the
current axes.

camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

 camtarget

1-1123

Examples

Move Camera Target

Move the camera position and the camera target along the x-axis in a series of steps.

surf(peaks);
axis vis3d
xp = linspace(-150,40,50);
xt = linspace(25,50,50);
for i = 1:50
 campos([xp(i),25,5]);
 camtarget([xt(i),30,0])
 drawnow
end

1 Alphabetical List

1-1124

See Also
axis | campos | camup | camva

Topics
“Camera Graphics Terminology”

Introduced before R2006a

 camtarget

1-1125

camup
Set or query camera up vector

Syntax
camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description
camup returns the camera up vector setting in the current axes. The camera up vector
specifies the direction that is oriented up in the scene.

camup([up_vector]) sets the up vector in the current axes to the specified value.
Specify the up vector as x, y, and z components.

camup('mode') returns the current value of the camera up vector mode, which can be
either auto (default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode, [0 1 0] is the
up vector of for 2-D views. This means the y-axis points up. For 3-D views, the up vector is
[0 0 1], meaning the z-axis points up.

camup('manual') sets the camera up vector mode to manual. In manual mode, the
value of the camera up vector does not change unless you set it.

camup(axes_handle,...) performs the set or query on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camup operates on
the current axes.

1 Alphabetical List

1-1126

Examples

Set Camera Up Vector

Set the x-axis to be the up axis.

surf(peaks)
camup([1 0 0]);

 camup

1-1127

See Also
axis | campos | camtarget | camup

Topics
“Camera Graphics Terminology”

Introduced before R2006a

1 Alphabetical List

1-1128

camva
Set or query camera view angle

Syntax
camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description
camva returns the camera view angle setting in the current axes. The camera view angle
determines the field of view of the camera. Larger angles produce a smaller view of the
scene. Implement zooming by changing the camera view angle.

camva(view_angle) sets the view angle in the current axes to the specified value.
Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle mode, which can be
either auto (the default) or manual.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual.

camva(axes_handle,...) performs the set or query on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camva operates on
the current axes.

 camva

1-1129

Tips
The camva function sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, the camera view angle adjusts so that the
scene fills the available space in the window. If you move the camera to a different
position, the camera view angle changes to maintain a view of the scene that fills the
available area in the window.

Setting a camera view angle or setting the camera view angle to manual disables the
MATLAB stretch-to-fill feature (stretching of the axes to fit the window). This means
setting the camera view angle to its current value,

camva(camva)

can cause a change in the way the graph looks. See axes for more information.

Examples

Set Camera View Angle

Create two push buttons, one that zooms in and another that zooms out. Set the range
checking in the callback statements to keep the values for the camera view angle in the
range greater than zero and less than 180. Then create a surface plot to zoom in and out
on.

uicontrol('Style','pushbutton',...
 'String','Zoom In',...
 'Position',[20 20 60 20],...
 'Callback','if camva <= 1; return; else; camva(camva-1); end');

uicontrol('Style','pushbutton',...
 'String','Zoom Out',...
 'Position',[100 20 60 20],...
 'Callback',...
 'if camva >= 179; return; else; camva(camva+1); end');

surf(peaks);

1 Alphabetical List

1-1130

See Also
axis | campos | camtarget | camup

Topics
“Camera Graphics Terminology”

Introduced before R2006a

 camva

1-1131

camzoom
Zoom in and out on scene

Syntax
camzoom(zoom_factor)
camzoom(axes_handle,...)

Description
camzoom(zoom_factor) zooms in or out on the scene depending on the value specified
by zoom_factor. If zoom_factor is greater than 1, the scene appears larger; if
zoom_factor is greater than zero and less than 1, the scene appears smaller.

camzoom(axes_handle,...) operates on the axes identified by the first argument,
axes_handle. When you do not specify an axes handle, camzoom operates on the current
axes.

Tips
camzoom sets the axes CameraViewAngle property, which in turn causes the
CameraViewAngleMode property to be set to manual. Note that setting the
CameraViewAngle property disables the MATLAB stretch-to-fill feature (stretching of the
axes to fit the window). This may result in a change to the aspect ratio of your graph. See
the axes function for more information on this behavior.

See Also
axes | camdolly | camorbit | campan | camroll | camva

Topics
“Camera Graphics Terminology”

1 Alphabetical List

1-1132

Introduced before R2006a

 camzoom

1-1133

cartToBary
Class: TriRep

(Not recommended) Convert point coordinates from Cartesian to barycentric

Note cartToBary(TriRep) is not recommended. Use
cartesianToBarycentric(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
B = cartToBary(TR, SI, XC)

Description
B = cartToBary(TR, SI, XC) returns the barycentric coordinates of each point in XC
with respect to its associated simplex SI.

Input Arguments
TR Triangulation representation.
SI Column vector of simplex indices that index into the triangulation matrix

TR.Triangulation.
XC Matrix that represents the Cartesian coordinates of the points to be

converted. XC is of size m-by-n, where m is of length(SI), the number of
points to convert, and n is the dimension of the space where the triangulation
resides.

1 Alphabetical List

1-1134

Output Arguments
B Matrix of dimension m-by-k where k is the number of vertices per simplex.

Examples
Compute the Delaunay triangulation of a set of points.

x = [0 4 8 12 0 4 8 12]';
y = [0 0 0 0 8 8 8 8]';
dt = DelaunayTri(x,y)

Compute the barycentric coordinates of the incenters.

cc = incenters(dt);
tri = dt(:,:);

Plot the original triangulation and reference points.

figure
subplot(1,2,1);
triplot(dt); hold on;
plot(cc(:,1), cc(:,2), '*r');
hold off;
axis equal;

Stretch the triangulation and compute the mapped locations of the incenters on the
deformed triangulation.

b = cartToBary(dt,[1:length(tri)]',cc);
y = [0 0 0 0 16 16 16 16]';
tr = TriRep(tri,x,y)
xc = baryToCart(tr, [1:length(tri)]', b);

Plot the deformed triangulation and mapped locations of the reference points.

subplot(1,2,2);
triplot(tr);
hold on;
plot(xc(:,1), xc(:,2), '*r');
hold off;
axis equal;

 cartToBary

1-1135

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher dimensional equivalent.

See Also
barycentricToCartesian | delaunayTriangulation | pointLocation |
triangulation

1 Alphabetical List

1-1136

cart2pol
Transform Cartesian coordinates to polar or cylindrical

Syntax
[theta,rho] = cart2pol(x,y)
[theta,rho,z] = cart2pol(x,y,z)

Description
[theta,rho] = cart2pol(x,y) transforms corresponding elements of the two-
dimensional Cartesian coordinate arrays x and y into polar coordinates theta and rho.

[theta,rho,z] = cart2pol(x,y,z) transforms three-dimensional Cartesian
coordinate arrays x, y, and z into cylindrical coordinates theta, rho, and z.

Examples

Cartesian to Polar Coordinates

Convert the Cartesian coordinates defined by corresponding entries in matrices x and y
to polar coordinates theta and rho.

x = [5 3.5355 0 -10]

x = 1×4

 5.0000 3.5355 0 -10.0000

y = [0 3.5355 10 0]

y = 1×4

 cart2pol

1-1137

 0 3.5355 10.0000 0

[theta,rho] = cart2pol(x,y)

theta = 1×4

 0 0.7854 1.5708 3.1416

rho = 1×4

 5.0000 5.0000 10.0000 10.0000

Cartesian to Cylindrical Coordinates

Convert the three-dimensional Cartesian coordinates defined by corresponding entries in
the matrices x, y, and z to cylindrical coordinates theta, rho, and z.

x = [1 2.1213 0 -5]'

x = 4×1

 1.0000
 2.1213
 0
 -5.0000

y = [0 2.1213 4 0]'

y = 4×1

 0
 2.1213
 4.0000
 0

z = [7 8 9 10]'

z = 4×1

1 Alphabetical List

1-1138

 7
 8
 9
 10

[theta,rho,z] = cart2pol(x,y,z)

theta = 4×1

 0
 0.7854
 1.5708
 3.1416

rho = 4×1

 1.0000
 3.0000
 4.0000
 5.0000

z = 4×1

 7
 8
 9
 10

Input Arguments
x, y, z — Cartesian coordinates
scalars | vectors | matrices | multidimensional arrays

Cartesian coordinates, specified as scalars, vectors, matrices, or multidimensional arrays.
x, y, and z must be the same size, or any of them can be scalar.
Data Types: single | double

 cart2pol

1-1139

Output Arguments
theta — Angular coordinate
array

Angular coordinate, returned as an array. theta is the counterclockwise angle in the x-y
plane measured in radians from the positive x-axis. The value of the angle is in the range
[-pi pi].

rho — Radial coordinate
array

Radial coordinate, returned as an array. rho is the distance from the origin to a point in
the x-y plane.

z — Elevation coordinate
array

Elevation coordinate, returned as an array. z is the height above the x-y plane.

Algorithms
The mapping from two-dimensional Cartesian coordinates to polar coordinates, and from
three-dimensional Cartesian coordinates to cylindrical coordinates is

1 Alphabetical List

1-1140

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cart2sph | pol2cart | sph2cart

Introduced before R2006a

 cart2pol

1-1141

cart2sph
Transform Cartesian coordinates to spherical

Syntax
[azimuth,elevation,r] = cart2sph(x,y,z)

Description
[azimuth,elevation,r] = cart2sph(x,y,z) transforms corresponding elements of
the Cartesian coordinate arrays x, y, and z to spherical coordinates azimuth,
elevation, and r.

Examples

Cartesian to Spherical Coordinates

Convert the Cartesian coordinates defined by corresponding entries in the matrices x, y,
and z to spherical coordinates az, el, and r. These points correspond to the eight
vertices of a cube.

x = [1 1 1 1; -1 -1 -1 -1]

x = 2×4

 1 1 1 1
 -1 -1 -1 -1

y = [1 1 -1 -1; 1 1 -1 -1]

y = 2×4

 1 1 -1 -1

1 Alphabetical List

1-1142

 1 1 -1 -1

z = [1 -1 1 -1; 1 -1 1 -1]

z = 2×4

 1 -1 1 -1
 1 -1 1 -1

[az,el,r] = cart2sph(x,y,z)

az = 2×4

 0.7854 0.7854 -0.7854 -0.7854
 2.3562 2.3562 -2.3562 -2.3562

el = 2×4

 0.6155 -0.6155 0.6155 -0.6155
 0.6155 -0.6155 0.6155 -0.6155

r = 2×4

 1.7321 1.7321 1.7321 1.7321
 1.7321 1.7321 1.7321 1.7321

Input Arguments
x,y,z — Cartesian coordinates
scalars | vectors | matrices | multidimensional arrays

Cartesian coordinates, specified as scalars, vectors, matrices, or multidimensional arrays.
x, y, and z must be the same size, or any of them can be scalar.
Data Types: single | double

 cart2sph

1-1143

Output Arguments
azimuth — Azimuth angle
array

Azimuth angle, returned as an array. azimuth is the counterclockwise angle in the x-y
plane measured in radians from the positive x-axis. The value of the angle is in the range
[-pi pi].

elevation — Elevation angle
array

Elevation angle, returned as an array. elevation is the elevation angle in radians from
the x-y plane. The value of the angle is in the range [-pi/2, pi/2].

r — Radius
array

Radius, returned as an array. r is the distance from the origin to a point. The length units
of r are arbitrary, matching the units of the input arrays x, y, and z.

Algorithms
The mapping from three-dimensional Cartesian coordinates to spherical coordinates is

azimuth = atan2(y,x)
elevation = atan2(z,sqrt(x.^2 + y.^2))
r = sqrt(x.^2 + y.^2 + z.^2)

1 Alphabetical List

1-1144

The notation for spherical coordinates is not standard. For the cart2sph function,
elevation is measured from the x-y plane. Notice that if elevation = 0, the point is
in the x-y plane. If elevation = pi/2, then the point is on the positive z-axis.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 cart2sph

1-1145

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cart2pol | pol2cart | sph2cart

Introduced before R2006a

1 Alphabetical List

1-1146

cast
Cast variable to different data type

Syntax
B = cast(A,newclass)
B = cast(A,'like',p)

Description
B = cast(A,newclass) converts A to class newclass, where newclass is the name of
a built-in data type compatible with A. The cast function truncates any values in A that
are too large to map into newclass.

B = cast(A,'like',p) converts A to the same data type and sparsity as the variable p.
If A and p are both real, then B is also real. Otherwise, B is complex.

Examples

Convert Numeric Data Type

Convert an int8 value to uint8.

Define a scalar 8-bit integer.

a = int8(5);

Convert a to an unsigned 8-bit integer.

b = cast(a,'uint8');
class(b)

ans =
'uint8'

 cast

1-1147

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Enumeration inputs must be scalar valued at compile time. Arrays of enumerations are
not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• For the syntax B = cast(A,'like',p), the output B is a gpuArray if and only if p
is a gpuArray.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• For the syntax B = cast(A,'like',p), the output B is a distributed array if and
only if p is a distributed array.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
class | typecast

1 Alphabetical List

1-1148

Topics
“Class Support for Array-Creation Functions”

Introduced before R2006a

 cast

1-1149

cat
Concatenate arrays

Syntax
C = cat(dim,A,B)
C = cat(dim,A1,A2,…,An)

Description
C = cat(dim,A,B) concatenates B to the end of A along dimension dim when A and B
have compatible sizes (the lengths of the dimensions match except for the operating
dimension dim).

C = cat(dim,A1,A2,…,An) concatenates A1, A2, … , An along dimension dim.

You can use the square bracket operator [] to concatenate. For example, [A,B] or [A
B] concatenates arrays A and B horizontally, and [A; B] concatenates them vertically.

Examples

Two Matrices

Create and concatenate two matrices vertically, then horizontally.

A = ones(3)

A = 3×3

 1 1 1
 1 1 1
 1 1 1

B = zeros(3)

1 Alphabetical List

1-1150

B = 3×3

 0 0 0
 0 0 0
 0 0 0

C1 = cat(1,A,B)

C1 = 6×3

 1 1 1
 1 1 1
 1 1 1
 0 0 0
 0 0 0
 0 0 0

C2 = cat(2,A,B)

C2 = 3×6

 1 1 1 0 0 0
 1 1 1 0 0 0
 1 1 1 0 0 0

3-D Arrays

Create two 3-D arrays and concatenate them along the third dimension. The lengths of
the first and second dimensions in the resulting array matches the corresponding lengths
in the input arrays, while the third dimension expands.

A = rand(2,3,4);
B = rand(2,3,5);
C = cat(3,A,B);
szC = size(C)

szC = 1×3

 2 3 9

 cat

1-1151

Expand Tables

Create a table and add a row using a cell array.

LastName = {'Sanchez';'Johnson';'Li';'Diaz'};
Age = [38;43;38;40];
T1 = table(LastName,Age)

T1=4×2 table
 LastName Age
 _________ ___

 'Sanchez' 38
 'Johnson' 43
 'Li' 38
 'Diaz' 40

Trow = {'Brown',49};
T2 = cat(1,T1,Trow)

T2=5×2 table
 LastName Age
 _________ ___

 'Sanchez' 38
 'Johnson' 43
 'Li' 38
 'Diaz' 40
 'Brown' 49

Dates with Different Types

Concatenate a date character vector, a string date, and a datetime into a single column of
dates. The result is a datetime vector.

chardate = '2016-03-24';
strdate = "2016-04-19";

1 Alphabetical List

1-1152

t = datetime('2016-05-10','InputFormat','yyyy-MM-dd');
C = cat(1,chardate,strdate,t)

C = 3x1 datetime array
 24-Mar-2016
 19-Apr-2016
 10-May-2016

Matrices in a Cell Array

Create a cell array containing two matrices, and concatenate the matrices both vertically
and horizontally.

M1 = [1 2; 3 4];
M2 = [5 6; 7 8];
A1 = {M1,M2};
Cvert = cat(1,A1{:})

Cvert = 4×2

 1 2
 3 4
 5 6
 7 8

Chorz = cat(2,A1{:})

Chorz = 2×4

 1 2 5 6
 3 4 7 8

Input Arguments
dim — Dimension to operate along
positive integer scalar

 cat

1-1153

Dimension to operate along, specified as a positive integer scalar. For example, if A and B
are both 2-by-2 matrices, then cat(1,A,B) concatenates vertically creating a 4-by-2
matrix. cat(2,A,B) concatenates horizontally creating a 2-by-4 matrix.

dim must be either 1 or 2 for table or timetable input.

A — First input
scalar | vector | matrix | multidimensional array | table | timetable

First input, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

B — Second input
scalar | vector | matrix | multidimensional array | table | timetable

Second input, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

• The elements of B are concatenated to the end of the first input along the operating
dimension. The sizes of the input arguments must be compatible. For example, if the
first input is a matrix of size 3-by-2, then B must have 2 columns to concatenate
vertically, and 3 rows to concatenate horizontally.

• When concatenating horizontally, all table inputs must have unique variable names.
When present, row names must be identical, except for order. Similarly, all timetable
inputs must have the same row times and all columns must have different names.

• You can concatenate valid combinations of different types. For more information, see
“Valid Combinations of Unlike Classes”.

A1,A2,…,An — List of inputs
comma-separated list

List of inputs, specified as a comma-separated list of arrays to concatenate in the order
they are specified.

• The inputs must have compatible sizes. For example, if A1 is a row vector of length m,
then the remaining inputs must each have m columns to concatenate vertically.

• When concatenating horizontally, all table inputs must have unique variable names.
When present, row names must be identical, except for order. Similarly, all timetable
inputs must have the same row times and all columns must have different names.

• You can concatenate valid combinations of different types. For more information, see
“Valid Combinations of Unlike Classes”.

1 Alphabetical List

1-1154

Tips
• To construct text by horizontally concatenating strings, character vectors, or cell

arrays of character vectors, use the strcat function.
• To construct a single piece of delimited text from a cell array of character vectors or a

string array, use the strjoin function.

Algorithms
When concatenating an empty array to a nonempty array, cat omits the empty array in
the output. For example, cat(2,[1 2],[]) returns the row vector [1 2].

If all input arguments are empty and have compatible sizes, then cat returns an empty
array whose size is equal to the output size as when the inputs are nonempty. For
example, cat(2,zeros(0,1),zeros(0,2)) returns a 0-by-3 empty array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

• Vertical concatenation of character arrays is not supported.
• Concatenation in any dimension other than 1 requires all input arguments to be tall

arrays.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 cat

1-1155

• Does not support concatenation of cell arrays.
• If supplied, dim must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
horzcat | strcat | strjoin | vertcat

Topics
“Creating, Concatenating, and Expanding Matrices”
“Valid Combinations of Unlike Classes”
“Combine Categorical Arrays”
“Concatenating Objects of Different Classes”
“Concatenation Methods”

Introduced before R2006a

1 Alphabetical List

1-1156

categorical
Array that contains values assigned to categories

Description
categorical is a data type that assigns values to a finite set of discrete categories, such
as High, Med, and Low. These categories can have a mathematical ordering that you
specify, such as High > Med > Low, but it is not required. A categorical array provides
efficient storage and convenient manipulation of nonnumeric data, while also maintaining
meaningful names for the values. A common use of categorical arrays is to specify groups
of rows in a table.

Creation

Syntax
B = categorical(A)
B = categorical(A,valueset)
B = categorical(A,valueset,catnames)
B = categorical(A, ___ ,Name,Value)

Description
B = categorical(A) creates a categorical array from the array A. The categories of B
are the sorted unique values from A.

B = categorical(A,valueset) creates one category for each value in valueset.
The categories of B are in the same order as the values of valueset.

You can use valueset to include categories for values not present in A. Conversely, if A
contains any values not present in valueset, then the corresponding elements of B are
undefined.

 categorical

1-1157

B = categorical(A,valueset,catnames) names the categories in B by matching
the category values in valueset with the names in catnames.

B = categorical(A, ___ ,Name,Value) creates a categorical array with additional
options specified by one or more Name,Value pair arguments. You can include any of the
input arguments in previous syntaxes.

For example, to indicate that the categories have a mathematical ordering, specify
'Ordinal',true.

Input Arguments
A — Input array
numeric array | logical array | categorical array | datetime array | duration array | string
array | cell array of character vectors

Input array, specified as a numeric array, logical array, categorical array, datetime array,
duration array, string array, or cell array of character vectors.

categorical removes leading and trailing spaces from input values that are strings or
character vectors.

If A contains missing values, then the corresponding element of B is undefined and
displays as <undefined>. The categorical function converts the following values to
undefined categorical values:

• NaN in numeric and duration arrays
• The missing string (<missing>) or the empty string ("") in string arrays
• The empty character vector ('') in cell arrays of character vectors
• NaT in datetime arrays
• Undefined values (<undefined>) in categorical arrays

B does not have a category for undefined values. To create an explicit category for
missing or undefined values, you must include the desired category name in catnames,
and a missing value as the corresponding value in valueset.

A also can be an array of objects with the following class methods:

• unique

1 Alphabetical List

1-1158

• eq

valueset — Categories
unique(A) (default) | vector of unique values

Categories, specified as a vector of unique values. The data type of valueset and the
data type of A must be the same, except when A is a string array. In that case, valueset
either can be a string array or a cell array of character vectors.

categorical removes leading and trailing spaces from elements of valueset that are
strings or character vectors.

catnames — Category names
cell array of character vectors | string array

Category names, specified as a cell array of character vectors or a string array. If you do
not specify the catnames input argument, then categorical uses the values in
valueset as category names.

To merge multiple distinct values in A into a single category in B, include duplicate names
corresponding to those values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Ordinal',true specifies that the categories have a mathematical ordering

Ordinal — Sort order indicator
false (default) | true

Sort order indicator, specified as the comma-separated pair consisting of 'Ordinal' and
either false (0) or true (1).

false (0) categorical creates a categorical array that is not ordinal, which
is the default behavior.

The categories of B have no mathematical ordering. Therefore, you
can compare only the values in B for equality.

 categorical

1-1159

true (1) categorical creates an ordinal categorical array.

The categories of B have a mathematical ordering, such that the
first category specified is the smallest and the last category is the
largest. You can compare the values in B using relational operators,
such as less than and greater than, in addition to comparing the
values for equality. You also can use the min and max functions on
an ordinal categorical array.

For more information, see “Ordinal Categorical Arrays”.

Protected — Category protection indicator
false | true

Category protection indicator specified as the comma-separated pair consisting of
'Protected' and either false (0) or true (1). The categories of ordinal categorical
arrays are always protected. The default value is true when you specify
'Ordinal',true. Otherwise, the value is false.

false (0) When you assign new values to B, the categories update
automatically. Therefore, you can combine (nonordinal) categorical
arrays that have different categories. The categories can update
accordingly to include the categories from both arrays.

true (1) When you assign new values to B, the values must belong to one of
the existing categories. Therefore, you can only combine arrays
that have the same categories. To add new categories to B, you
must use the function addcats.

Examples

Convert Array and Select Data by Category

Create a categorical array that has weather station labels. Add it to a table of
temperature readings. Then use the categories to select temperature readings by station.

First, create arrays containing temperature readings, dates, and station labels.

1 Alphabetical List

1-1160

Temps = [58; 72; 56; 90; 76];
Dates = {'2017-04-17';'2017-04-18';'2017-04-30';'2017-05-01';'2017-04-27'};
Stations = {'S1';'S2';'S1';'S3';'S2'};

Convert Stations to a categorical array.

Stations = categorical(Stations)

Stations = 5x1 categorical array
 S1
 S2
 S1
 S3
 S2

Display the categories. The three stations labels are categories.

categories(Stations)

ans = 3x1 cell array
 {'S1'}
 {'S2'}
 {'S3'}

Create a table that contains the temperatures, dates, and station labels.

T = table(Temps,Dates,Stations)

T=5×3 table
 Temps Dates Stations
 _____ ____________ ________

 58 '2017-04-17' S1
 72 '2017-04-18' S2
 56 '2017-04-30' S1
 90 '2017-05-01' S3
 76 '2017-04-27' S2

Display the readings taken from station S2. You can use the == operator to find the values
of Station that equal S2. Then use logical indexing to select the table rows that have
data from station S2.

 categorical

1-1161

TF = (T.Stations == 'S2');
T(TF,:)

ans=2×3 table
 Temps Dates Stations
 _____ ____________ ________

 72 '2017-04-18' S2
 76 '2017-04-27' S2

Specify Categories Not Present in Input Array

Convert the cell array of character vectors A to a categorical array. Specify a list of
categories that includes values that are not present in A.

Create a cell array of character vectors.

A = {'republican' 'democrat'; 'democrat' 'democrat'; 'democrat' 'republican'};

Convert A to a categorical array. Add a category for independent.

valueset = {'democrat' 'republican' 'independent'};
B = categorical(A,valueset)

B = 3x2 categorical array
 republican democrat
 democrat democrat
 democrat republican

Display the categories of B.

categories(B)

ans = 3x1 cell array
 {'democrat' }
 {'republican' }
 {'independent'}

1 Alphabetical List

1-1162

Specify Category Names for Integers

Create a numeric array.

A = [1 3 2; 2 1 3; 3 1 2]

A = 3×3

 1 3 2
 2 1 3
 3 1 2

Convert A to categorical array B and specify category names.

B = categorical(A,[1 2 3],{'red' 'green' 'blue'})

B = 3x3 categorical array
 red blue green
 green red blue
 blue red green

Display the categories of B.

categories(B)

ans = 3x1 cell array
 {'red' }
 {'green'}
 {'blue' }

B is not an ordinal categorical array. Therefore, you can compare the values in B only
using the equality operators, == and ~=.

Find the elements that belong to the category 'red'. Access those elements using logical
indexing.

TF = (B == 'red');
B(TF)

ans = 3x1 categorical array
 red
 red

 categorical

1-1163

 red

Create Ordinal Categorical Array

Create a 5-by-2 numeric array.

A = [3 2;3 3;3 2;2 1;3 2]

A = 5×2

 3 2
 3 3
 3 2
 2 1
 3 2

Convert A to an ordinal categorical array where 1, 2, and 3 represent categories child,
adult, and senior respectively.

valueset = [1:3];
catnames = {'child' 'adult' 'senior'};

B = categorical(A,valueset,catnames,'Ordinal',true)

B = 5x2 categorical array
 senior adult
 senior senior
 senior adult
 adult child
 senior adult

Since B is ordinal, the categories of B have a mathematical ordering, child < adult <
senior.

1 Alphabetical List

1-1164

Convert String Array

Starting in R2017a, you can create string arrays using double quotes. Also, a string array
can have missing values, displayed as <missing>, without quotation marks.

str = ["plane","jet","plane","helicopter",missing,"jet"]

str = 1x6 string array
 "plane" "jet" "plane" "helicopter" <missing> "jet"

Convert string array str to a categorical array. The categorical function converts
missing strings to undefined categorical values, displayed as <undefined>.

C = categorical(str)

C = 1x6 categorical array
 plane jet plane helicopter <undefined> jet

Bin Numeric Data into Categories

Use the discretize function (instead of categorical) to bin 100 random numbers into
three categories.

x = rand(100,1);
y = discretize(x,[0 .25 .75 1],'categorical',{'small','medium','large'});
summary(y)

 small 22
 medium 46
 large 32

Tips
• For a list of functions that accept or return categorical arrays, see “Categorical

Arrays”.
• If the input array has numeric, datetime, or duration values that are too close

together, then the categorical function truncates them to duplicate values. For

 categorical

1-1165

example, categorical([1 1.00001]) truncates the second element of the input
array. To create categories from numeric data, use the discretize function.

Alternatives
You also can group numeric data into categories using discretize.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

With the syntax B = categorical(A), the order of categories is undefined. Use
valueset and catnames to enforce the order.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• In generated code, you can create, concatenate, and index into categorical arrays.
Also, you can use relational operations to compare elements of categorical arrays.

• Aside from the constructor, you cannot call the methods of the categorical data type.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-1166

• For the one input syntax B = categorical(A), the order of the categories is
undefined. To enforce the order, use valueset and catnames.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
categories | discretize | iscategorical

Topics
“Access Data Using Categorical Arrays”
“Advantages of Using Categorical Arrays”
“Core Functions Supporting Categorical Arrays”

Introduced in R2013b

 categorical

1-1167

CategoricalRuler Properties
Control axis with categorical values

Description
CategoricalRuler properties control the appearance and behavior of an x-axis, y-axis,
or z-axis that shows categorical values. Each individual axis has its own ruler object. By
changing property values of the ruler, you can modify certain aspects of a specific axis.

Use dot notation to refer to a particular ruler and property. Access the ruler objects
through the XAxis, YAxis, and ZAxis properties of the Axes object. For example:

ax = gca;
co = ax.XAxis.Color;
ax.XAxis.Color = 'blue';

Properties
Appearance

Color — Color of axis line and labels
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the axis line and labels, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-1168

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note The Color property for the ruler and the associated XColor, YColor, or ZColor
property for the parent axes always have the same value. Setting one also sets the other.

LineWidth — Width of axis line and tick marks
0.5 (default) | positive value

 CategoricalRuler Properties

1-1169

Width of axis line and tick marks, specified as a positive value in point units. One point
equals 1/72 inch.
Example: ax.XAxis.LineWidth = 2;

Note Setting the LineWidth property for the parent axes sets the LineWidth property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Label — Axis label
text object (default)

Axis label, which is a text object. To display text or change existing text, set the String
property for the text object. Use other properties to change the text appearance, such as
the font style or color.

ax = gca;
ax.XAxis.Label.String = 'X Axis';
ax.XAxis.Label.FontSize = 12;

For a full list of options, see Text.

Alternatively, add or modify the axis labels using the xlabel, ylabel, and zlabel
functions.

Note The text object is not a child of the ruler object, so it cannot be returned by
findobj and it does not use the default text property values.

Visible — Axis visibility
'on' (default) | 'off'

Axis visibility, specified as one of these values:

• 'on' — Display the axis.
• 'off' — Hide the axis without deleting it. You still can access properties of an

invisible axis using the ruler object.

Example: ax.XAxis.Visible = 'off';

1 Alphabetical List

1-1170

Scale and Direction

Scale — Scale of values along axis
'linear' (default)

Scale of values along axis, specified as 'linear'.

Direction — Direction of increasing values
'normal' (default) | 'reverse'

Direction of increasing values, specified as one of these values:

• 'normal' — Values increase from left to right or bottom to top.
• 'reverse' — Values increase from right to left or top to bottom.

Note The Direction property for the ruler and the associated XDir, YDir, or ZDir
property for the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.Direction = 'reverse';

Tick Values and Labels

Categories — Categories plotted along axis
cell array of character vectors | categorical array | string array

Categories plotted along the axis, specified as a cell array of character vectors, a
categorical array, or a string array. Querying this property returns a cell array of
character vectors. Set this property to exclude certain categories from appearing in the
chart.
Example: ax.XAxis.Categories = categorical({'small','medium','large'})
specifies a categorical array.
Example: ax.XAxis.Categories = {'small','medium','large'} specifies a cell
array.
Example: ax.XAxis.Categories = string({'small','medium','large'})
specifies a string array.

 CategoricalRuler Properties

1-1171

Example

Create a histogram with categories along the x-axis and query the Categories property.
Then set the Categories property so that only a subset of categories appear along the
axis.

A = categorical({'r' 'b' 'g' 'g' 'r' 'b' 'b' 'r' 'g' 'y' 'g' 'm'});
h = histogram(A);
ax = gca;
ax.XAxis.Categories

ans =

 1×5 categorical array

 b g m r y

ax.XAxis.Categories = categorical({'b','m','y'});

Data Types: cell | categorical | string

Limits — First and last categories displayed along axis
two-element vector

First and last categories displayed along the axis, specified as a two-element vector
indicating two category names. The categories must be two of the categories in the
Categories property, and must appear in the same relative order that they appear in the
Categories property.
Example: ax.XAxis.Categories = categorical({'small','medium'}) specifies
a two-element categorical array.
Example: ax.XAxis.Categories = {'small','medium'} specifies a two-element
cell array.
Example: ax.XAxis.Categories = string({'small','medium'}) specifies a two-
element string array.

If you assign a value to this property, then MATLAB changes the associated LimitsMode
property to 'manual'.

Alternatively, set the limits using the xlim, ylim, and zlim functions.

1 Alphabetical List

1-1172

Note The Limits property for the ruler and the associated XLim, YLim, or ZLim
property for the parent axes always have the same value. Setting one also sets the other.

Example

Set the Limits property to only show the categories between 'b' and 'm' along the
axis.

A = categorical({'r' 'b' 'g' 'g' 'r' 'b' 'b' 'r' 'g' 'y' 'g' 'm'});
h = histogram(A);
ax = gca;
ax.XAxis.Limits = categorical({'b','m'});

Data Types: categorical | string | cell

LimitsMode — Selection mode for Limits property
'auto' (default) | 'manual'

Selection mode for the Limits property, specified as one of these values:

• 'auto' — Automatically select the axis limits based on the data plotted.
• 'manual' — Use axis limit values that you specify. To specify the axis limits, set the

Limits property.

Note The LimitsMode property for the ruler and the associated XLimMode, YLimMode,
or ZLimMode property for the parent axes always have the same value. Setting one also
sets the other.

TickValues — Tick mark locations along the axis
cell array of character vectors | categorical array | string array

Tick mark locations along the axis, specified as a cell array of character vectors, a
categorical array, or a string array indicating category names. The categories must be a
subset of the categories in the Categories property and must appear in the same
relative order that they appear in the Categories property. To remove all tick marks and
labels along the axis, set this property to an empty array [].
Example: ax.XAxis.Categories = categorical({'small','medium','large'})
specifies a categorical array.

 CategoricalRuler Properties

1-1173

Example: ax.XAxis.Categories = {'small','medium','large'} specifies a cell
array.
Example: ax.XAxis.Categories = string({'small','medium','large'})
specifies a string array.

If you assign a value to this property, then MATLAB sets the TickValuesMode property
to 'manual'.

Alternatively, use the xticks, yticks, and zticks functions.

Note The TickValues property for the ruler and the associated XTick, YTick, or
ZTick property for the parent axes always have the same value. Setting one also sets the
other.

Example

Label a subset of categories along the axis by setting the TickValues property to a
subset of categories.

A = categorical({'r' 'b' 'g' 'g' 'r' 'b' 'b' 'r' 'g' 'y' 'g' 'm'});
h = histogram(A);
ax = gca;
ax.XAxis.TickValues = categorical({'b','m','y'});

Data Types: categorical | string | cell

TickValuesMode — Selection mode for TickValues property
'auto' (default) | 'manual'

Selection mode for the TickValues property, specified as one of these values:

• 'auto' — Automatically select the tick values based on the data plotted.
• 'manual' — Use tick values that you specify. To specify the values, set the

TickValues property.

Note The TickValuesMode property for the ruler and the associated XTickMode,
YTickMode, or ZTickMode property for the parent axes always have the same value.
Setting one also sets the other.

1 Alphabetical List

1-1174

TickLabels — Tick mark labels
'' (default) | cell array of character vectors | string array | categorical array

Tick mark labels, specified as a cell array of character vectors, string array, or categorical
array. Use this property to relabel the tick marks without changing the category names. If
you do not specify a label for every value, then the labels repeat. The labels support TeX
and LaTeX markup. See the TickLabelInterpreter property for more information.

If you set this property, then MATLAB sets the TickLabelsMode property to 'manual'.

Alternatively, specify the tick labels using the xticklabels, yticklabels, and
zticklabels functions.

Note

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

• The TickLabels property for the ruler and the associated XTickLabel,
YTickLabel, or ZTickLabel property for the parent axes always have the same
value. Setting one also sets the other.

Example

Relabel the categories along the x-axis.

A = categorical({'r' 'b' 'g' 'g' 'r' 'b' 'b' 'r' 'g' 'y' 'g'});
h = histogram(A);
ax = gca;
ax.XAxis.TickLabels = {'Blue','Green','Red','Yellow'}

Data Types: char | string | categorical

TickLabelsMode — Selection mode for TickLabels property
'auto' (default) | 'manual'

Selection mode for the TickLabels property, specified as one of these values:

• 'auto' — Automatically select the tick labels.
• 'manual' — Use tick labels that you specify. To specify the labels, set the

TickLabels property.

 CategoricalRuler Properties

1-1175

Note The TickLabelsMode property for the ruler and the associated XTickLabelMode,
YTickLabelMode, or ZTickLabelMode property for the parent axes always have the
same value. Setting one also sets the other.

TickLabelInterpreter — Interpretation of tick label characters
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

Note Setting the TickLabelInterpreter property for the parent axes sets the
TickLabelInterpreter property for the ruler to the same value. However, setting the
ruler property does not set the axes property. To prevent the axes property value from
overriding the ruler property value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.TickLabelInterpreter = 'latex';

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the text.

This table lists the supported modifiers with the TickLabelInterpreter property set to
'tex'. Modifiers remain in effect until the end of the text. Superscripts and subscripts
are an exception because they only modify the next character or the text within the curly
braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'

1 Alphabetical List

1-1176

Modifier Description Example
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥

 CategoricalRuler Properties

1-1177

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´

1 Alphabetical List

1-1178

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. Use dollar
symbols around the labels, for example, use '$\int_1^{20} x^2 dx$' for inline mode
or '$$\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup
within the text. The maximum size of the text that you can use with the LaTeX interpreter
is 1200 characters. For multiline text, the maximum size of the text reduces by about 10
characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

TickLabelRotation — Rotation of tick labels
scalar value in degrees

Rotation of tick labels, specified as a scalar value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation.

Alternatively, you can rotate the tick labels using the xtickangle, ytickangle, and
ztickangle functions.

Note The TickLabelRotation property for the ruler and the associated
XTickLabelRotation, YTickLabelRotation, or ZTickLabelRotation property for
the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.TickLabelRotation = 45;
Example: ax.YAxis.TickLabelRotation = -45;

TickLabelRotationMode — Selection mode for TickLabelRotation property
'auto' (default) | 'manual'

 CategoricalRuler Properties

1-1179

https://www.latex-project.org
https://www.latex-project.org

Selection mode for the TickLabelRotation property, specified as one of these values:

• 'auto' — Automatically select the tick label rotation.
• 'manual' — Use a tick label rotation that you specify. To specify the rotation, set the

TickLabelRotation property.

TickDirection — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values:

• 'in' — Direct the tick marks inward from the axis lines. This is the default for 2-D
views.

• 'out' — Direct the tick marks outward from the axis lines. This is the default for 3-D
views.

• 'both' — Center the tick marks over the axis lines.

If you assign a value to this property, then MATLAB sets the TickDirectionMode
property to 'manual'.

Note Setting the TickDir property for the parent axes sets the TickDirection
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickDirection = 'out';

TickDirectionMode — Selection mode for TickDirection property
'auto' (default) | 'manual'

Selection mode for the TickDirection property, specified as one of these values:

• 'auto' — Automatically select the tick direction.
• 'manual' — Use a tick direction that you specify. To specify the tick direction, set the

TickDirection property.

TickLength — Tick mark length
two-element vector

1 Alphabetical List

1-1180

Tick mark length, specified as a two-element vector of the form [2Dlength 3Dlength].
The first element is the tick mark length in 2-D views. The second element is the tick
mark length in 3-D views. Specify the values in units normalized relative to the longest
axes dimension.

Note Setting the TickLength property for the parent axes sets the TickLength
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickLength = [0.02 0.035];

MinorTick — Minor tick mark display
'off' (default) | 'on'

Minor tick mark display, specified as one of these values:

• 'off' — Do not display minor tick marks. This is the default value for an axis with a
linear scale.

• 'on' — Display minor tick marks between the major tick marks on the axis. This is the
default value for an axis with a log scale. The space between the major tick marks
determines the number of minor tick marks. If the MinorTickValues property is set
to empty [], then no minor tick marks appear. Specify the tick mark locations by
setting the MinorTickValues property.

Note The MinorTick property for the ruler and the associated XMinorTick,
YMinorTick, or ZMinorTick property for the parent axes always have the same value.
Setting one also sets the other.

Example: ax.XAxis.MinorTick = 'on';

MinorTickValues — Minor tick mark locations
cell array of character vectors | categorical array | string array

Minor tick mark locations, specified as a cell array of character vectors, a categorical
array, or a string array indicating category names. The categories must be a subset of the
categories in the Categories property and must appear in the same relative order that
they appear in the Categories property.

 CategoricalRuler Properties

1-1181

If you assign values to this property, then MATLAB sets the MinorTickValuesMode
property to 'manual'.
Data Types: categorical | string | cell

MinorTickValuesMode — Selection mode for MinorTickValues property
'auto' (default) | 'manual'

Selection mode for the MinorTickValues property, specified as one of these values:

• 'auto' — Use automatically calculated minor tick values.
• 'manual' — Use minor tick values that you specify. To specify the values, set the

MinorTickValues property.

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific system and locale. To use a fixed-width font that renders
well, specify 'FixedWidth'. The actual fixed-width font used depends on the
FixedWidthFontName property of the root object.

Note Setting the FontName property for the parent axes sets the FontName property for
the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontName = 'Cambria';

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The default font size depends on the
specific operating system and locale.

Note Setting the FontSize property for the parent axes sets the FontSize property for
the ruler to the same value. However, setting the ruler property does not set the axes

1 Alphabetical List

1-1182

property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontSize = 12;

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font.
• 'bold' — Thicker character outlines than normal.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note Setting the FontWeight property for the parent axes sets the FontWeight
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontWeight = 'bold';

FontAngle — Text character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font can look the same as the normal font.

Note Setting the FontAngle property for the parent axes sets the FontAngle property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontAngle = 'italic';

 CategoricalRuler Properties

1-1183

FontSmoothing — Text antialiasing
'on' (default) | 'off'

Text smoothing, specified as one of these values:

• 'on' — Enable text antialiasing to reduce the jagged appearance of text characters
and make the text easier to read. In certain cases, smoothed text blends against the
background color and can make the text appear blurry.

• 'off' — Disable text antialiasing. Use this setting if the text seems blurry.

Note Setting the FontSmoothing property for the parent axes sets the FontSmoothing
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontSmoothing = 'off';

Parent/Child

Parent — Ruler parent
Axes object

Ruler parent, specified as an Axes object.

Note Ruler objects are not listed in the Children property of the parent Axes object.

Children — Ruler children
empty GraphicsPlaceholder array

The ruler has no children. You cannot set this property.

See Also
Axes

Introduced in R2017a

1 Alphabetical List

1-1184

categories
Categories of categorical array

Syntax
C = categories(A)

Description
C = categories(A) returns a cell array of character vectors containing the categories
of the categorical array, A.

Examples

List Categories in Categorical Array

Create a categorical array, A.

A = categorical({'plane' 'car' 'train' 'car' 'plane'})

A = 1x5 categorical array
 plane car train car plane

A is a 1-by-5 categorical array.

Display the categories of A.

C = categories(A)

C = 3x1 cell array
 {'car' }
 {'plane'}
 {'train'}

 categories

1-1185

Since you created A by specifying only an input array, the categories appear in
alphabetical order.

List Categories in Ordinal Categorical Array

Create an ordinal categorical array.

A = categorical({'medium' 'large'; 'small' 'xlarge'; 'large' 'medium'},...
 {'small' 'medium' 'large' 'xlarge'},'Ordinal',true)

A = 3x2 categorical array
 medium large
 small xlarge
 large medium

A is a 3-by-2 ordinal categorical array.

Display the categories of A.

C = categories(A)

C = 4x1 cell array
 {'small' }
 {'medium'}
 {'large' }
 {'xlarge'}

The categories appear in the order in which you specified them. Since A is ordinal, the
categories have the mathematical ordering small < medium < large < xlarge.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

1 Alphabetical List

1-1186

Tips
• C includes all categories in A, even if A does not contain any data from a category. To

see the unique values in A, use unique(A).
• The order of the categories listed in C is the same order used by functions, such as

summary and histogram. To change the order of the categories, use reordercats.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
addcats | categorical | histogram | iscategory | mergecats | removecats |
renamecats | reordercats | setcats | unique

Introduced in R2013b

 categories

1-1187

caxis
Set colormap limits

Syntax
caxis(limits)
caxis('auto')
caxis('manual')
caxis(target, ___)

cl = caxis

Description
caxis(limits) sets the colormap limits for the current axes. limits is a two-element
vector of the form [cmin cmax]. All values in the colormap indexing array on page 1-
1195 that are less than or equal to cmin map to the first row in the colormap. All values
that are greater than or equal to cmax map to the last row in the colormap. All values
between cmin and cmax map linearly to the intermediate rows of the colormap.

Note The caxis function only affects graphics objects that have the CDataMapping
property set to 'scaled'. It does not affect graphics objects that use truecolor or have
the CDataMapping set to 'direct'.

caxis('auto') enables automatic limit updates when values in the colormap indexing
array change. This is the default behavior. The caxis auto command is an alternative
form of this syntax.

caxis('manual') disables automatic limit updates. The caxis manual command is an
alternative form of this syntax.

caxis(target, ___) sets the colormap limits for a specific axes or chart. Specify
target as the first input argument in any of the previous syntaxes.

cl = caxis returns the current colormap limits for the current axes or chart.

1 Alphabetical List

1-1188

Examples

Raise the Lower Limit

Plot a paraboloid with a colorbar.

[X,Y] = meshgrid(-5:.5:5);
Z = X.^2 + Y.^2;
surf(Z);
colorbar

Get the current color limits.

 caxis

1-1189

lim = caxis

lim = 1×2

 0 50

Raise the lower limit to 20. Notice that all values of Z that are less than or equal to 20
map to the first color.

caxis([20 50])

1 Alphabetical List

1-1190

Hold Color Limits for Multiple Surface Plots

Create two paraboloid surfaces that are vertically offset.

[X,Y] = meshgrid(-5:.5:5);
Z1 = X.^2 + Y.^2;
Z2 = Z1 + 50;

Plot the first paraboloid. Add a colorbar, and hold the axes for the second paraboloid.

surf(X,Y,Z1);
colorbar
hold on

 caxis

1-1191

Hold the current color limits using the 'manual' option. Then plot the second
paraboloid.

caxis('manual');
surf(X,Y,Z2);

Set Color Limits on a Specific Axes

Plot a paraboloid in two subplots.

[X,Y] = meshgrid(-5:1:5);
Z = X.^2 + Y.^2;

1 Alphabetical List

1-1192

ax1 = subplot(1,2,1);
surf(ax1,Z);
ax2 = subplot(1,2,2);
surf(ax2,Z);

Raise the lower color limit of the right axes to 20.

caxis(ax2,[20 50])

 caxis

1-1193

Input Arguments
limits — New limits
vector of the form [cmin cmax]

New limits, specified as a vector of the form [cmin cmax]. The value of cmin must be
less than cmax.
Data Types: single | double

target — Target
current axes (default) | Axes object | graphics object

1 Alphabetical List

1-1194

Target axes or chart, specified as an Axes object or a graphics object that has a
Colormap property (such as a HeatMapChart object).

Output Arguments
cl — Current limits
vector of the form [cmin cmax]

Current limits of the current axes or chart, returned as a vector of the form [cmin
cmax].

Definitions

Colormap Indexing Array
An array that maps data elements in a chart to specific rows in the colormap. MATLAB
stores the indexing array as a property on the graphics object.

For example, the CData property of a Surface object is an indexing array that maps grid
points on the surface to specific rows in the colormap.

See Also
colormap

Topics
“Control Colormap Limits”

Introduced before R2006a

 caxis

1-1195

cd
Change current folder

Syntax
cd
cd newFolder
oldFolder = cd(newFolder)

Description
cd displays the current folder.

cd newFolder changes the current folder to newFolder. Folder changes are global.
Therefore, if you use cd within a function, the folder change persists after MATLAB
finishes executing the function.

oldFolder = cd(newFolder) returns the existing current folder to oldFolder, and
then it changes the current folder to newFolder.

Examples

Change Current Folder Using Full and Relative Paths

Change the current folder to the featured examples folder for MATLAB R2017a, assuming
that version is installed on your C: drive.

cd 'C:\Program Files\MATLAB\R2017a\examples\matlab_featured'

Using the full path, change the current folder from C:\Program Files\MATLAB
\R2017a\examples\matlab_featured to C:\Program Files\MATLAB\R2017a.

cd ..\..

1 Alphabetical List

1-1196

Use a relative path to change the current folder from C:\Program Files\MATLAB
\R2017a back to C:\Program Files\MATLAB\R2017a\examples
\matlab_featured.

cd examples\matlab_featured

Change, and then Restore Current Folder

Change the current folder to the featured examples folder for MATLAB R2017a, assuming
that version is installed on your C: drive. Then restore the current folder to its original
location.

Change the current folder to the featured examples folder for MATLAB R2017a.

cd 'C:\Program Files\MATLAB\R2017a\examples\matlab_featured'

Change the current folder to C:\Program Files, saving the folder path before changing
it.

oldFolder = cd('C:\Program Files')

oldFolder =

 'C:\Program Files\MATLAB\R2017a\examples\matlab_featured'

Use the cd command to display the new current folder.

cd

C:\Program Files

Change the current folder back to the original folder, using the stored path. Use the cd
command to display the new current folder.

cd(oldFolder)
cd

 cd

1-1197

C:\Program Files\MATLAB\R2017a\examples\matlab_featured

Change Current Folder to User Home Folder on UNIX®

Change the current folder to the featured examples folder for MATLAB R2016b, assuming
that version is installed in your user home folder on a UNIX platform.

cd ~/MATLAB/R2016b/examples/matlab_featured

Input Arguments
newFolder — New folder path
character vector | string scalar

New folder path to which you want to change the current folder, specified as a character
vector or string scalar.

Note If newFolder is a string, enclose it in parentheses. For example,
cd("FolderName").

Valid values include a full or relative path or one of these values.

../ One level up from the current folder
Multiples of ../ Multiple levels up from the current folder
./ A path relative to the current folder. cd

assumes that the path is relative to the
current folder even if the ./ is not present.

If newFolder contains spaces, enclose it in single quotation marks. For example, cd
'Folder Name'.

On UNIX® systems, you can use the ~ (tilde) character to represent the user home folder.
For example, ~/ or ~username/.

1 Alphabetical List

1-1198

MATLAB resolves folder path names containing '.', '..', and symbolic links to their target
location before changing the current folder. For example, if you specify c:\matlab
\..\work, MATLAB resolves the path name to c:\work before changing the current
folder.

Output Arguments
oldFolder — Previous current folder
character vector

Previous current folder that was in place before you issued the cd command, returned as
a character vector.

Definitions

Current Folder
The current folder is a reference location that MATLAB uses to find files. This folder is
sometimes referred to as the current directory, current working folder, or present
working directory.

See Also
dir | pwd | what

Topics
“Specify File Names”
“Files and Folders that MATLAB Accesses”

Introduced before R2006a

 cd

1-1199

convexHull
Class: DelaunayTri

(Not recommended) Convex hull

Note convexHull(DelaunayTri) is not recommended. Use
convexHull(delaunayTriangulation) instead.

DelaunayTri is not recommended. Use delaunayTriangulation instead.

Syntax
K = convexHull(DT)
[K AV] = convexHull(DT)

Description
K = convexHull(DT) returns the indices into the array of points DT.X that correspond
to the vertices of the convex hull.

[K AV] = convexHull(DT) returns the convex hull and the area or volume bounded by
the convex hull.

Input Arguments
DT Delaunay triangulation.

1 Alphabetical List

1-1200

Output Arguments
K If the points lie in 2-D space, K is a column vector of length numf.

Otherwise K is a matrix of size numf-by-ndim, numf being the number of
facets in the convex hull, and ndim the dimension of the space where the
points reside.

AV The area or volume of the convex hull.

Examples

Example 1
Compute the convex hull of a set of random points located within a unit square in 2-D
space.

x = rand(10,1)
y = rand(10,1)
dt = DelaunayTri(x,y)
k = convexHull(dt)
plot(dt.X(:,1),dt.X(:,2), '.', 'markersize',10); hold on;
plot(dt.X(k,1),dt.X(k,2), 'r'); hold off;

 convexHull

1-1201

Example 2
Compute the convex hull of a set of random points located within a unit cube in 3-D
space, and the volume bounded by the convex hull.

X = rand(25,3)
dt = DelaunayTri(X)
[ch v] = convexHull(dt)
trisurf(ch, dt.X(:,1),dt.X(:,2),dt.X(:,3), 'FaceColor', 'cyan')

1 Alphabetical List

1-1202

Definitions

Convex Hull
The convex hull of a set of points X is the smallest convex region containing all of the
points of X.

See Also
convhull | convhulln | delaunayTriangulation | triangulation |
voronoiDiagram

 convexHull

1-1203

cd
Change or view current folder on FTP server

Syntax
cd(ftpobj,folder)
cd(ftpobj)
newFolder = cd(___)

Description
cd(ftpobj,folder) changes the current folder on the FTP server associated with
ftpobj.

cd(ftpobj) displays the path to the current folder on the server.

newFolder = cd(___) also returns the path as a character vector. You can use the
input arguments from either of the previous syntaxes. If you use the first syntax, then
newFolder is the path after you change the folder.

Examples

Change Folder

Connect to an FTP server and navigate to a folder on that server.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov

1 Alphabetical List

1-1204

 user: anonymous
 dir: /
 mode: binary

Display the contents of the top-level folder. It contains another folder named pub.

dir(ftpobj)

DMSP Solid_Earth google12c4c939d7b90761.html mgg
INDEX.txt coastwatch hazards pub
README.txt dmsp4alan index.html tmp
STP ftp.html international wdc
Snow_Ice geomag ionosonde

Change folders to the pub folder. Then display its contents.

cd(ftpobj,'pub')

ans =
'/pub'

dir(ftpobj)

WebCD coast glac_lib krm outgoing results rgon

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

folder — Name of target folder
character vector | string scalar

 cd

1-1205

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Name of the target folder on the FTP server, specified as a character vector or string
scalar. To specify the folder above the current one, use '..'.

See Also
dir | ftp

Introduced before R2006a

1 Alphabetical List

1-1206

cdf2rdf
Convert complex diagonal form to real block diagonal form

Syntax
[V,D] = cdf2rdf(V,D)

Description
If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing in complex-
conjugate pairs, cdf2rdf transforms the system so D is in real diagonal form, with 2-by-2
real blocks along the diagonal replacing the complex pairs originally there. The
eigenvectors are transformed so that

X = V*D/V

continues to hold. The individual columns of V are no longer eigenvectors, but each pair
of vectors associated with a 2-by-2 block in D spans the corresponding invariant vectors.

Examples
The matrix

X =
 1 2 3
 0 4 5
 0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

 1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
 0 0 - 0.6479i 0 + 0.6479i

 cdf2rdf

1-1207

 0 0.6479 0.6479

D =

 1.0000 0 0
 0 4.0000 + 5.0000i 0
 0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =

 1.0000 -0.0191 -0.4002
 0 0 -0.6479
 0 0.6479 0

D =

 1.0000 0 0
 0 4.0000 5.0000
 0 -5.0000 4.0000

Algorithms
The real diagonal form for the eigenvalues is obtained from the complex form using a
specially constructed similarity transformation.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-1208

See Also
eig | rsf2csf

Introduced before R2006a

 cdf2rdf

1-1209

cdfepoch
Convert date text or serial date number to CDF formatted dates

Syntax
E = cdfepoch(date)

Description
E = cdfepoch(date) converts the date, specified by date, into a cdfepoch object.
date must be valid date value represented by text, as returned by datestr, or a serial
date number, returned by datenum. date can also be a cdfepoch object.

When writing data to a CDF file using cdfwrite, use cdfepoch to convert MATLAB
dates or serial date numbers to CDF formatted dates. The MATLAB cdfepoch object
simulates the CDFEPOCH data type in CDF files.

To convert a cdfepoch object into a MATLAB serial date number, use the todatenum
function.

Examples
Convert the current time in serial date number format into a CDF epoch object.

% NOW function returns current time as serial date number
dateobj = cdfepoch(now)

dateobj =

 cdfepoch object:
 11-Mar-2009 15:09:25

Convert the current time, which is returned by datestr in text form, into a CDF epoch
object.

1 Alphabetical List

1-1210

% DATESTR function returns text representing a date
dateobj2 = cdfepoch(datestr(now))

dateobj2 =

 cdfepoch object:
 11-Mar-2009 15:09:25

Convert the CDF epoch object into a serial date number.

dateobj = cdfepoch(now);
mydatenum = todatenum(dateobj)

mydatenum =

 7.3384e+005

Definitions

MATLAB Serial Date Number
A MATLAB serial date number represents the whole and fractional number of days from
0-Jan-0000 to a specific date. The year 0000 is merely a reference point and is not
intended to be interpreted as a real year in time. The MATLAB serial date number
calculates dates differently than CDF epochs.

CDF Epoch
A CDF epoch is the number of milliseconds since 1-Jan-0000.

See Also
cdfinfo | cdfread | datenum | datestr | datetime | todatenum

Introduced before R2006a

 cdfepoch

1-1211

cdfinfo
Information about Common Data Format (CDF) file

Syntax
info = cdfinfo(filename)

Description
info = cdfinfo(filename) returns information about the Common Data Format
(CDF) file specified by filename. Specify filename as a character vector or string
scalar.

Note Because cdfinfo creates temporary files, the current working directory must be
writeable.

The following table lists the fields returned in the structure, info. The table lists the
fields in the order that they appear in the structure.

Field Description
Filename Character vector specifying the name of the file
FileModDate Character vector indicating the date the file was last

modified
FileSize Double scalar specifying the size of the file, in bytes
Format Character vector specifying the file format
FormatVersion Character vector specifying the version of the CDF library

used to create the file
FileSettings Structure array containing library settings used to create

the file

1 Alphabetical List

1-1212

Field Description
Subfiles Filenames containing the CDF file's data, if it is a multi-file

format CDF
Variables N-by-6 cell array, where N is the number of variables,

containing information about the variables in the file. The
columns present the following information:
Column 1 Character vector specifying name of variable
Column 2 Double array specifying the dimensions of the

variable, as returned by the size function
Column 3 Double scalar specifying the number of

records assigned for the variable
Column 4 Character vector specifying the data type of

the variable, as stored in the CDF file
Column 5 Character vector specifying the record and

dimension variance settings for the variable.
The single T or F to the left of the slash
designates whether values vary by record.
The zero or more T or F letters to the right of
the slash designate whether values vary at
each dimension. Here are some examples.
T/ (scalar variable
F/T (one-dimensional variable)

T/TFF (three-dimensional variable)
GlobalAttributes Structure array that contains one field for each global

attribute. The name of each field corresponds to the name
of an attribute. The data in each field, contained in a cell
array, represents the entry values for that attribute.

VariableAttributes Structure array that contains one field for each variable
attribute. The name of each field corresponds to the name
of an attribute. The data in each field is contained in a n-
by-2 cell array, where n is the number of variables. The
first column of this cell array contains the variable names
associated with the entries. The second column contains
the entry values.

 cdfinfo

1-1213

Note Attribute names returned by cdfinfo might not match the names of the attributes
in the CDF file exactly. Attribute names can contain characters that are illegal in MATLAB
field names. cdfinfo removes illegal characters that appear at the beginning of
attributes and replaces other illegal characters with underscores ('_'). When cdfinfo
modifies an attribute name, it appends the attribute's internal number to the end of the
field name. For example, the attribute name Variable%Attribute becomes
Variable_Attribute_013.

Note To improve performance, turn off the file validation which the CDF library does by
default when opening files. For more information, see cdflib.setValidate.

Examples

Get Information About CDF File

Get information about the sample file, example.cdf.

info = cdfinfo('example.cdf')

info = struct with fields:
 Filename: 'example.cdf'
 FileModDate: '10-May-2010 21:35:01'
 FileSize: 1310
 Format: 'CDF'
 FormatVersion: '2.7.0'
 FileSettings: [1x1 struct]
 Subfiles: {}
 Variables: {6x6 cell}
 GlobalAttributes: [1x1 struct]
 VariableAttributes: [1x1 struct]

View information about the variables in the file.

info.Variables

ans = 6x6 cell array
 Columns 1 through 5

 {'Time' } {1x2 double} {[24]} {'epoch' } {'T/' }

1 Alphabetical List

1-1214

 {'Longitude' } {1x2 double} {[1]} {'int8' } {'F/FT' }
 {'Latitude' } {1x2 double} {[1]} {'int8' } {'F/TF' }
 {'Data' } {1x3 double} {[1]} {'double'} {'T/TTT' }
 {'multidimensional'} {1x4 double} {[1]} {'uint8' } {'T/TTTT'}
 {'Temperature' } {1x2 double} {[10]} {'int16' } {'T/TT' }

 Column 6

 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}

See Also
cdflib.setValidate | cdfread

Introduced before R2006a

 cdfinfo

1-1215

cdflib
Interact directly with CDF library

Description
MATLAB provides direct access to dozens of functions in the CDF library. Using these
functions, you can read and write data, create variables, attributes, and entries, and take
advantage of other features of the CDF library. To use these functions, you must be
familiar with the CDF C interface. Documentation about CDF is available at the CDF
website.

The MATLAB functions correspond to functions in the CDF library new Standard
Interface. In most cases, the syntax of a MATLAB function is similar to the syntax of the
corresponding CDF library function. To use these functions, you must prefix the function
name with the package name, cdflib. For example, to use the CDF library function to
open an existing CDF file, use this syntax:

cdfid = cdflib.open('example.cdf');

MATLAB supports CDF version 3.6.1. For copyright information, see the
cdfcopyright.txt file.

The following tables list all of the functions in the MATLAB CDF library package, grouped
by category.

Note For information about MATLAB support for the Network Common Data Form
(netCDF), which is a completely separate, incompatible format, see netcdf.

1 Alphabetical List

1-1216

https://cdf.gsfc.nasa.gov/
https://cdf.gsfc.nasa.gov/

Library Information
cdflib.getConstantNames Names of Common Data Format (CDF) library constants
cdflib.getConstantValue Numeric value corresponding to Common Data Format (CDF)

library constant
cdflib.getFileBackward Return current backward compatibility mode setting
cdflib.getLibraryCopyright Copyright notice of Common Data Format (CDF) library
cdflib.getLibraryVersion Library version and release information
cdflib.getValidate Library validation mode
cdflib.setFileBackward Set backward compatibility mode
cdflib.setValidate Specify library validation mode

 cdflib

1-1217

File Operations
cdflib.close Close Common Data Format (CDF) file
cdflib.create Create Common Data Format (CDF) file
cdflib.delete Delete existing Common Data Format (CDF) file
cdflib.getCacheSize Number of cache buffers used
cdflib.getChecksum Checksum mode
cdflib.getCompression Compression settings
cdflib.getCompressionCacheSize Number of compression cache buffers
cdflib.getCopyright Copyright notice in Common Data Format (CDF) file
cdflib.getFormat Format of Common Data Format (CDF) file
cdflib.getMajority Majority of variables
cdflib.getName Name of Common Data Format (CDF) file
cdflib.getReadOnlyMode Read-only mode
cdflib.getStageCacheSize Number of cache buffers for staging
cdflib.getVersion Common Data Format (CDF) library version and

release information
cdflib.inquire Basic characteristics of Common Data Format (CDF)

file
cdflib.open Open existing Common Data Format (CDF) file
cdflib.setCacheSize Specify number of dotCDF cache buffers
cdflib.setChecksum Specify checksum mode
cdflib.setCompression Specify compression settings
cdflib.setCompressionCacheSize Specify number of compression cache buffers
cdflib.setFormat Specify format of Common Data Format (CDF) file
cdflib.setMajority Specify majority of variables
cdflib.setReadOnlyMode Specify read-only mode
cdflib.setStageCacheSize Specify number of staging cache buffers for Common

Data Format (CDF) file

1 Alphabetical List

1-1218

Variables
cdflib.closeVar Close specified variable from multifile format

Common Data Format (CDF) file
cdflib.createVar Create new variable
cdflib.deleteVar Delete variable
cdflib.deleteVarRecords Delete range of records from variable
cdflib.getVarAllocRecords Number of records allocated for variable
cdflib.getVarBlockingFactor Blocking factor for variable
cdflib.getVarCacheSize Number of multifile cache buffers
cdflib.getVarCompression Information about compression used by variable
cdflib.getVarData Single value from record in variable
cdflib.getVarMaxAllocRecNum Maximum allocated record number for variable
cdflib.getVarMaxWrittenRecNum Maximum written record number for variable
cdflib.getVarsMaxWrittenRecNum Maximum written record number for CDF file
cdflib.getVarName Variable name, given variable number
cdflib.getVarNum Variable number, given variable name
cdflib.getVarNumRecsWritten Number of records written to variable
cdflib.getVarPadValue Pad value for variable
cdflib.getVarRecordData Entire record for variable
cdflib.getVarReservePercent Compression reserve percentage for variable
cdflib.getVarSparseRecords Information about how variable handles sparse

records
cdflib.hyperGetVarData Read hyperslab of data from variable
cdflib.hyperPutVarData Write hyperslab of data to variable
cdflib.inquireVar Information about variable
cdflib.putVarData Write single value to variable
cdflib.putVarRecordData Write entire record to variable
cdflib.renameVar Rename existing variable
cdflib.setVarAllocBlockRecords Specify range of records to be allocated for variable
cdflib.setVarBlockingFactor Specify blocking factor for variable
cdflib.setVarCacheSize Specify number of multi-file cache buffers for variable
cdflib.setVarCompression Specify compression settings used with variable
cdflib.setVarInitialRecs Specify initial number of records written to variable
cdflib.setVarPadValue Specify pad value used with variable
cdflib.SetVarReservePercent Specify reserve percentage for variable
cdflib.setVarsCacheSize Specify number of cache buffers used for all variables
cdflib.setVarSparseRecords Specify how variable handles sparse records

 cdflib

1-1219

Attributes

cdflib.createAttr Create attribute
cdflib.deleteAttr Delete attribute
cdflib.deleteAttrEntry Delete attribute entry
cdflib.deleteAttrgEntry Delete entry in global attribute
cdflib.getAttrEntry Value of entry in attribute with variable scope
cdflib.getAttrgEntry Value of entry in global attribute
cdflib.getAttrMaxEntry Number of last entry for variable attribute
cdflib.getAttrMaxgEntry Number of last entry for global attribute
cdflib.getAttrName Name of attribute, given attribute number
cdflib.getAttrNum Attribute number, given attribute name
cdflib.getAttrScope Scope of attribute
cdflib.getNumAttrEntries Number of entries for attribute with variable scope
cdflib.getNumAttrgEntries Number of entries for attribute with global scope
cdflib.getNumAttributes Number of attributes with variable scope
cdflib.getNumgAttributes Number of attributes with global scope
cdflib.inquireAttr Information about attribute
cdflib.inquireAttrEntry Information about entry in attribute with variable scope
cdflib.inquireAttrgEntry Information about entry in attribute with global scope
cdflib.putAttrEntry Write value to entry in attribute with variable scope
cdflib.putAttrgEntry Write value to entry in attribute with global scope
cdflib.renameAttr Rename existing attribute

Utility Functions

cdflib.computeEpoch Convert time value to CDF_EPOCH value
cdflib.computeEpoch16 Convert time value to CDF_EPOCH16 value
cdflib.epoch16Breakdown Convert CDF_EPOCH16 value to time value
cdflib.epochBreakdown Convert CDF_EPOCH value into time value

1 Alphabetical List

1-1220

Limitations
• CDF files do not support non-ASCII encoded inputs. Variable names, attributes names,

variable values, and attribute values must have 7-bit ASCII encoding. Attempting to
write non-ASCII encoded inputs results in an error or data with corrupted characters.

See Also
cdfinfo | cdfread

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib

1-1221

cdflib.close
Close Common Data Format (CDF) file

Syntax
cdflib.close(cdfId)

Description
cdflib.close(cdfId) closes the specified CDF file. cdfId identifies the CDF file.

You must close a CDF to guarantee that all modifications you made since opening the CDF
are actually written to the file.

Examples
Open the example CDF file and then close it.

cdfid = cdflib.open('example.cdf');
cdflib.close(cdfid)

References
This function corresponds to the CDF library C API routine CDFcloseCDF.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.create | cdflib.open

1 Alphabetical List

1-1222

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.close

1-1223

cdflib.closeVar
Close specified variable from multifile format Common Data Format (CDF) file

Syntax
cdflib.closeVar(cdfId,varNum)

Description
cdflib.closeVar(cdfId,varNum) closes a variable in a multifile format CDF.

cdfId identifies the CDF file and varNum is a numeric value that specifies the variable.
Variable identifiers (variable numbers) are zero-based.

For multifile CDFs, you must close all open variable files to guarantee that all
modifications you have made are actually written to the CDF file(s). You do not need to
call this function for variables in a single-file format CDF.

Examples
Create a multifile CDF, create a variable, and then close the variable. To run this example,
you must be in a writable folder.

cdfid = cdflib.create('your_multifile.cdf');

% Make it a multifile format CDF
cdflib.setFormat(cdfid,'MULTI_FILE')

% Create a variable in the CDF.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Close the variable.
cdflib.closeVar(cdfid, varnum)

% Clean up

1 Alphabetical List

1-1224

cdflib.delete(cdfid)
clear cdfid

References
This function corresponds to the CDF library C API routine CDFclosezVar.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getFormat | cdflib.getVarNum | cdflib.setFormat

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.closeVar

1-1225

https://cdf.gsfc.nasa.gov/

cdflib.computeEpoch
Convert time value to CDF_EPOCH value

Syntax
epoch = cdflib.computeEpoch(timeval)

Description
epoch = cdflib.computeEpoch(timeval) converts the time value specified by
timeval into a CDF_EPOCH value.

Input Arguments
timeval

7-by-1 time vector. The following table describes the time components.

Component Description
year AD e.g. 1994
month 1–12
day 1–31
hour 0–23
minute 0–59
second 0–59
millisecond 0–999

1 Alphabetical List

1-1226

Output Arguments
epoch

MATLAB double representing a CDF_EPOCH time value.

Examples
Convert a time value into a CDF_EPOCH value.

timeval = [1999 12 31 23 59 59 0];
epoch = cdflib.computeEpoch(timeval);

References
This function corresponds to the CDF library C API routine computeEPOCH.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.computeEpoch16 | cdflib.epoch16Breakdown | cdflib.epochBreakdown

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.computeEpoch

1-1227

https://cdf.gsfc.nasa.gov/

cdflib.computeEpoch16
Convert time value to CDF_EPOCH16 value

Syntax
epoch16 = cdflib.computeEpoch16(timeval)

Description
epoch16 = cdflib.computeEpoch16(timeval) converts the time value specified by
timeval into a CDF_EPOCH16 value.

Input Arguments
timeval

10-by-1 time vector. The following table describes the time components. To specify
multiple time values, use additional columns.

Component Description
year AD e.g. 1994
month 1–12
day 1–31
hour 0–23
minute 0–59
second 0–59
millisecond 0–999
microsecond 0–999
nanosecond 0–999

1 Alphabetical List

1-1228

Component Description
picosecond 0–999

Output Arguments
epoch16

CDF Epoch16 time value. If the input argument timeval has m-by-10 elements, the
return value epoch16 will have size 2-by-m

Examples
Convert the time value into an CDF_EPOCH16 value:

timeval = [1999; 12; 31; 23; 59; 59; 50; 100; 500; 999];
epoch16 = cdflib.computeEpoch16(timeval);

References
This function corresponds to the CDF library C API routine computeEPOCH16.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.computeEpoch | cdflib.epoch16Breakdown | cdflib.epochBreakdown

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.computeEpoch16

1-1229

https://cdf.gsfc.nasa.gov/

cdflib.create
Create Common Data Format (CDF) file

Syntax
cdfId = cdflib.create(filename)

Description
cdfId = cdflib.create(filename) creates a new CDF file with the name contained
in filename. Specify filename as a character vector or string scalar. Returns the CDF
file identifier cdfId.

Examples
Create a CDF file. To run this example, you must have write permission in your current
directory.

cdfId = cdflib.create('myfile.cdf');

% Clean up
cdflib.delete(cdfId);

clear cdfId

References
This function corresponds to the CDF library C API routine CDFcreateCDF.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

1 Alphabetical List

1-1230

https://cdf.gsfc.nasa.gov/

See Also
cdflib.close | cdflib.open

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.create

1-1231

cdflib.createAttr
Create attribute

Syntax
attrnum = cdflib.createAttr(cdfId,attrName,scope)

Description
attrnum = cdflib.createAttr(cdfId,attrName,scope) creates an attribute in a
CDF file with the specified scope.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrName

Name you want to assign to the attribute, specified as a character vector or string scalar.

scope

Scope of the attribute, specified as one of these character vectors or string scalars, or its
numeric equivalent.

Value Description
'global_scope' Attribute applies to the CDF as a whole.
'variable_scope' Attribute applies only to the variable

To get the numeric equivalent of these constants, use the cdflib.getConstantValue
function.

1 Alphabetical List

1-1232

Output Arguments
attrNum

Numeric value identifying the attribute. Attribute numbers are zero-based.

Examples
Create a CDF, and then create an attribute in the CDF. To run this example, you must be
in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create attribute
attrNum = cdflib.createAttr(cdfId,'Purpose','global_scope');

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFcreateAttr.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.deleteAttr | cdflib.getAttrNum | cdflib.getConstantNames |
cdflib.getConstantValue

Topics
“Import CDF Files Using Low-Level Functions”

 cdflib.createAttr

1-1233

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

1 Alphabetical List

1-1234

cdflib.createVar
Create new variable

Syntax
varnum = cdflib.createVar(cdfId, varname, datatype, numElements,
dims, recVariance, dimVariance)

Description
varnum = cdflib.createVar(cdfId, varname, datatype, numElements,
dims, recVariance, dimVariance) creates a new variable in the Common Data
Format (CDF) file with the specified characteristics.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varname

Character vector or string scalar that specifies the name you want to assign to the
variable.

datatype

Data type of the variable, specified as one of the following character vectors or string
scalars containing a valid CDF data type, or its numeric equivalent.

CDF Data Type Description
'CDF_BYTE 1-byte, signed integer

 cdflib.createVar

1-1235

CDF Data Type Description
'CDF_CHAR' 1 byte, signed character data type that maps to the MATLAB

char or string class
'CDF_INT1' 1-byte, signed integer
'CDF_UCHAR' 1 byte, unsigned character data type that maps to the

MATLAB uint8 class
'CDF_UINT1' 1-byte, unsigned integer
'CDF_INT2' 2-byte, signed integer
'CDF_UINT2' 2-byte, unsigned integer
'CDF_INT4' 4-byte, signed integer
'CDF_UINT4' 4-byte, unsigned integer
'CDF_FLOAT' 4-byte, floating point
'CDF_REAL4' 4-byte, floating point
'CDF_REAL8' 8-byte, floating point.
'CDF_DOUBLE' 8-byte, floating point
'CDF_EPOCH' 8-byte, floating point
'CDF_EPOCH16' two 8-byte, floating point

numElements

Number of elements per datum. Value should be 1 for all data types, except for
'CDF_CHAR' and 'CDF_UCHAR'.

dims

A vector of the dimensions extents; empty if there are no dimension extents.

recVariance

Specifies record variance: true or false.

dimVariance

A vector of logicals; empty if there are no dimensions.

1 Alphabetical List

1-1236

Output Arguments
varNum

The numeric identifier for the variable. Variable numbers are zero-based.

Examples
Create a CDF file and then create a variable named 'Time' in the CDF. The variable has
no dimensions and varies across records. To run this example, you must be in a writable
folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no variables.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 0
 numvAttrs: 0
 numgAttrs: 0

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Retrieve info about the file again to verify variable was created.
% Note value of numVars field is now 1.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 1
 numvAttrs: 0
 numgAttrs: 0

 cdflib.createVar

1-1237

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFcreatezVar.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.closeVar | cdflib.deleteVar

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1238

https://cdf.gsfc.nasa.gov/

cdflib.delete
Delete existing Common Data Format (CDF) file

Syntax
cdflib.delete(cdfId)

Description
cdflib.delete(cdfId) deletes the existing CDF file specified by the identifier cdfId.
If the CDF file is a multi-file format CDF, the cdflib.delete function also deletes the
variable files (having file extensions of .z0, .z1, etc.).

Examples
Create a CDF file, and then delete it. To run this example, you must be in a writable
folder.

cdfId = cdflib.create('mytempfile.cdf');

% Verify that the file was created.
ls *.cdf

mytempfile.cdf

% Delete the file.
cdflib.delete(cdfId)

% Verify that the file no longer exists.
ls *.cdf

References
This function corresponds to the CDF library C API routine CDFdeleteCDF.

 cdflib.delete

1-1239

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.create | cdflib.setFormat

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1240

https://cdf.gsfc.nasa.gov/

cdflib.deleteAttr
Delete attribute

Syntax
cdflib.deleteAttr(cdfId,attrNum)

Description
cdflib.deleteAttr(cdfId,attrNum) deletes the specified attribute from the CDF
file.

cdfId identifies the Common Data Format (CDF) file.attrNum is a numeric identifier that
specifies the attribute. Attribute numbers are zero-based.

Examples
Create a CDF file, and then create an attribute in the file. Then delete the attribute. To
run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create attribute.
attrNum = cdflib.createAttr(cdfId,'Purpose','global_scope');

% Prove it exists.
anum = cdflib.getAttrNum(cdfid,'Purpose')

anum =

 0

% Delete the attribute.
cdflib.deleteAttr(cdfid,attrNum);

 cdflib.deleteAttr

1-1241

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFdeleteAttr.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.createAttr | cdflib.getAttrNum

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1242

https://cdf.gsfc.nasa.gov/

cdflib.deleteAttrEntry
Delete attribute entry

Syntax
cdflib.deleteAttrEntry(cdfId,attrNum,entryNum)

Description
cdflib.deleteAttrEntry(cdfId,attrNum,entryNum) deletes an entry from an
attribute in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based. The
attribute must have variable scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers are zero-based.

Examples
Create a CDF, and then create an attribute in the file. Write a value to an entry for the
attribute, and then delete the entry. To run this example, you must be in a writable folder.
cdfid = cdflib.create('your_file.cdf');

 cdflib.deleteAttrEntry

1-1243

% Initially the file contains no attributes, global or variable.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 0
 numvAttrs: 0
 numgAttrs: 0

% Create an attribute with variable scope in the file.
attrNum = cdflib.createAttr(cdfid,'my_var_scope_attr','variable_scope');

% Write a value to an entry for the attribute
cdflib.putAttrEntry(cdfid,attrNum,0,'CDF_CHAR','My attr value');

% Get the value of the attribute entry
value = cdflib.getAttrEntry(cdfid,attrNum,0)

value =

My attr value

% Delete the entry
cdflib.deleteAttrEntry(cdfid,attrNum,0);

% Now try to view the value of the entry
% Should return NO_SUCH_ENTRY failure.
value = cdflib.getAttrEntry(cdfid,attrNum,0) % Should fail

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFdeleteAttrzEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.deleteAttr

1 Alphabetical List

1-1244

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.deleteAttrEntry

1-1245

cdflib.deleteAttrgEntry
Delete entry in global attribute

Syntax
cdflib.deleteAttrgEntry(cdfId,attrNum,entryNum)

Description
cdflib.deleteAttrgEntry(cdfId,attrNum,entryNum) deletes an entry from a
global attribute in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based. The
attribute must have global scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers are zero-based.

Examples
Create a CDF and create a global attribute in the file. Write a value to an entry for the
attribute and then delete the entry. To run this example, you must be in a writable folder.
cdfid = cdflib.create('your_file.cdf');

1 Alphabetical List

1-1246

% Initially the file contains no attributes, global or variable.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 0
 numvAttrs: 0
 numgAttrs: 0

% Create an attribute with global scope in the file.
attrNum = cdflib.createAttr(cdfid,'my_global_attr','global_scope');

% Write a value to an entry for the attribute
cdflib.putAttrgEntry(cdfid,attrNum,0,'CDF_CHAR','My global attr');

% Get the value of the global attribute entry
value = cdflib.getAttrgEntry(cdfid,attrNum,0)

value =

My global attr

% Delete the entry
cdflib.deleteAttrgEntry(cdfid,attrNum,0);

% Now try to view the value of the entry
% Should return NO_SUCH_ENTRY failure.
value = cdflib.getAttrgEntry(cdfid,attrNum,0) % Should fail

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFdeleteAttrgEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.deleteAttr | cdflib.deleteAttrEntry

 cdflib.deleteAttrgEntry

1-1247

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1248

cdflib.deleteVar
Delete variable

Syntax
cdflib.deleteVar(cdfId,varNum)

Description
cdflib.deleteVar(cdfId,varNum) deletes a variable from a Common Data Format
(CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that specifies the variable.
Variable numbers are zero-based.

Examples
Create a CDF, create a variable in the CDF, and then delete it.

cdfid = cdflib.create('mycdf.cdf');

% Initially the file contains no variables.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 0
 numvAttrs: 0
 numgAttrs: 0

% Create a variable in the CDF.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

 cdflib.deleteVar

1-1249

% Retrieve info about the variable in the CDF.

info = cdflib.inquireVar(cdfid, 0)

info =

 name: 'Time'
 datatype: 'cdf_int1'
 numElements: 1
 dims: []
 recVariance: 1
 dimVariance: []

% Delete the variable from the CDF

cdflib.deleteVar(cdfid,0);

% Check to see if the variable was deleted from the CDF.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 0
 numvAttrs: 0
 numgAttrs: 0

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFdeletezVar.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

1 Alphabetical List

1-1250

https://cdf.gsfc.nasa.gov/

See Also
cdflib.createVar

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.deleteVar

1-1251

cdflib.deleteVarRecords
Delete range of records from variable

Syntax
cdflib.deleteVarRecords(cdfId,varNum,startRec,endRec)

Description
cdflib.deleteVarRecords(cdfId,varNum,startRec,endRec) deletes a range of
records from a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value that identifies the variable. Variable numbers are zero-based.

startRec

Numeric value that specifies the record at which to start deleting records. Record
numbers are zero-based.

endRec

Numeric value that specifies the record at which to stop deleting records. Record
numbers are zero-based.

1 Alphabetical List

1-1252

Examples
Make a writable copy of the example CDF, get the number of a variable in the CDF, and
delete specific records in the variable. To run this example, you must be in a writable
folder.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.cdf');
copyfile(srcFile,'myfile.cdf');
fileattrib('myfile.cdf','+w');
cdfid = cdflib.open('myfile.cdf');
varnum = cdflib.getVarNum(cdfid,'Temperature');
cdflib.deleteVarRecords(cdfid,varnum,1,2);
cdflib.close(cdfid);

References
This function corresponds to the CDF library C API routine CDFdeletezVarRecords.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarNumRecsWritten | cdflib.putVarRecordData

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.deleteVarRecords

1-1253

https://cdf.gsfc.nasa.gov/

cdflib.epoch16Breakdown
Convert CDF_EPOCH16 value to time value

Syntax
timeVec = cdflib.epoch16Breakdown(epoch16Time)

Description
timeVec = cdflib.epoch16Breakdown(epoch16Time) convert a CDF_EPOCH16
value into a time vector. timeVec will have 10-by-n elements, where n is the number of
CDF_EPOCH16 values.

The following table describes the time value components.

timeVec Element Description Valid Values
timeVec(1,:) Year AD e.g. 1994
timeVec(2,:) Month 1–12
timeVec(3,:) Day 1–31
timeVec(4,:) Hour 0–23
timeVec(5,:) Minute 0–59
timeVec(6,:) Second 0–59
timeVec(7,:) Millisecond 0–999
timeVec(8,:) Microsecond 0–999
timeVec(9,:) Nanosecond 0–999
timeVec(10,:) Picosecond 0–999

Examples
Convert CDF_EPOCH16 value into time value.

1 Alphabetical List

1-1254

timeval = [1999; 12; 31; 23; 59; 59; 50; 100; 500; 999];
epoch16 = cdflib.computeEpoch16(timeval);

timevec = cdflib.epoch16Breakdown(epoch16)

timevec =

 1999
 12
 31
 23
 59
 59
 50
 100
 500
 999

References
This function corresponds to the CDF library C API routine EPOCH16breakdown.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.computeEpoch16

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.epoch16Breakdown

1-1255

https://cdf.gsfc.nasa.gov/

cdflib.epochBreakdown
Convert CDF_EPOCH value into time value

Syntax
timeVec = cdflib.epochBreakdown(epochTime)

Description
timeVec = cdflib.epochBreakdown(epochTime) decomposes the CDF_EPOCH
value, epochTime value into individual time components. timeVec will have 7-by-n
elements, where n is the number of CDF_EPOCH values in epochTime.

The return value timeVec has the following elements:

timeVec Element Description Valid Values
timeVec(1,:) Year AD e.g. 1994
timeVec(2,:) Month 1–12
timeVec(3,:) Day 1–31
timeVec(4,:) Hour 0–23
timeVec(5,:) Minute 0–59
timeVec(6,:) Second 0–59
timeVec(7,:) Millisecond 0–999

Examples
Convert a CDP_EPOCH value into a time vector.

% First convert a time vector into a CDF_EPOCH value
timeval = [1999 12 31 23 59 59 0];
epoch = cdflib.computeEpoch(timeval);

1 Alphabetical List

1-1256

% Convert the CDF_EPOCH value into a time vector
timevec = cdflib.epochBreakdown(epoch)

timevec =

 1999
 12
 31
 23
 59
 59
 0

References
This function corresponds to the CDF library C API routine EPOCHbreakdown.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.computeEpoch | cdflib.epoch16Breakdown | cdflib.epochBreakdown

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.epochBreakdown

1-1257

https://cdf.gsfc.nasa.gov/

cdflib.getAttrEntry
Value of entry in attribute with variable scope

Syntax
value = cdflib.getAttrEntry(cdfId,attrNum,entryNum)

Description
value = cdflib.getAttrEntry(cdfId,attrNum,entryNum) returns the value of
an attribute entry in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based. The
attribute must have variable scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers are zero-based.

Output Arguments
Value

Value of the entry.

1 Alphabetical List

1-1258

Examples
Open the example CDF and get the value of an entry associated with an attribute with
variable scope in the file.

cdfid = cdflib.open('example.cdf');

% The fourth attribute is of variable scope.
attrscope = cdflib.getAttrScope(cdfid,3)

attrscope =

VARIABLE_SCOPE

% Get information about the first entry for this attribute
[dtype numel] = cdflib.inquireAttrEntry(cdfid,3,0)

dtype =

cdf_char

numel =

 10

% Get the value of the entry for this attribute.
% Note that it is a character vector of length 10
value = cdflib.getAttrEntry(cdfid,3,0)

value =

Time value

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetAttrzEntry.

 cdflib.getAttrEntry

1-1259

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrgEntry | cdflib.putAttrEntry | cdflib.putAttrgEntry

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1260

https://cdf.gsfc.nasa.gov/

cdflib.getAttrgEntry
Value of entry in global attribute

Syntax
value = cdflib.getAttrgEntry(cdfId,attrNum,entryNum)

Description
value = cdflib.getAttrgEntry(cdfId,attrNum,entryNum) returns the value of
a global attribute entry in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based. The
attribute must have global scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers are zero-based.

Output Arguments
Value

Value of the entry.

 cdflib.getAttrgEntry

1-1261

Examples
Open the example CDF, and then get the value of an entry associated with a global
attribute in the file:

cdfid = cdflib.open('example.cdf');

% Any of the first three attributes have global scope.
attrscope = cdflib.getAttrScope(cdfid,0)

attrscope =

GLOBAL_SCOPE

% Get information about the first entry for global attribute
[dtype numel] = cdflib.inquireAttrgEntry(cdfid,0,0)

dtype =

cdf_char

numel =

 23

% Get the value of the first entry for this global attribute.
value = cdflib.getAttrgEntry(cdfid,0,0)

value =

This is a sample entry.

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetAttrgEntry.

1 Alphabetical List

1-1262

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrEntry | cdflib.putAttrEntry | cdflib.putAttrgEntry

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getAttrgEntry

1-1263

https://cdf.gsfc.nasa.gov/

cdflib.getAttrMaxEntry
Number of last entry for variable attribute

Syntax
maxEntry = cdflib.getAttrMaxEntry(cdfId,attrNum)

Description
maxEntry = cdflib.getAttrMaxEntry(cdfId,attrNum) returns the number of the
last entry for an attribute in a Common Data Format (CDF) file.

cdfId identifies the CDF file.

attrNum is a numeric value that specifies the attribute. Attribute numbers are zero-
based. The attribute must have variable scope.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based. The
attribute must have variable scope.

Output Arguments
maxEntry

Entry number of the last entry in the attribute. Entry numbers are zero-based.

1 Alphabetical List

1-1264

Examples
Open the example CDF and get the number of the last entry associated with an attribute
with variable scope in the file:

cdfid = cdflib.open('example.cdf');

% The fourth attribute is of variable scope.
attrscope = cdflib.getAttrScope(cdfid,3)

attrscope =

VARIABLE_SCOPE

% Get the number of the last entry for this attribute.
entrynum = cdflib.getAttrMaxEntry(cdfid,3)

entrynum =

 3

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetAttrMaxzEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrMaxgEntry

 cdflib.getAttrMaxEntry

1-1265

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1266

cdflib.getAttrMaxgEntry
Number of last entry for global attribute

Syntax
maxEntry = cdflib.getAttrMaxgEntry(cdfId,attrNum)

Description
maxEntry = cdflib.getAttrMaxgEntry(cdfId,attrNum) returns the last entry
number of a global attribute in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based. The
attribute must have global scope.

Output Arguments
maxEntry

Entry number of the last entry in the attribute. Entry numbers are zero-based.

 cdflib.getAttrMaxgEntry

1-1267

Examples
Open the example CDF and get the number of the last entry associated with a global
attribute in the file:

cdfid = cdflib.open('example.cdf');

% Any of the first three attribute are of global scope.
attrscope = cdflib.getAttrScope(cdfid,0)

attrscope =

GLOBAL_SCOPE

% Get the number of the last entry for this attribute.
entrynum = cdflib.getAttrMaxgEntry(cdfid,0)

entrynum =

 4

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetAttrMaxgEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrMaxEntry

1 Alphabetical List

1-1268

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getAttrMaxgEntry

1-1269

cdflib.getAttrName
Name of attribute, given attribute number

Syntax
name = cdflib.getAttrName(cdfId,attrNum)

Description
name = cdflib.getAttrName(cdfId,attrNum) returns the name of an attribute in a
Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based.

Output Arguments
name

Character vector specifying the name of the attribute.

Examples
Open the example CDF and get name of an attribute.

1 Alphabetical List

1-1270

cdfid = cdflib.open('example.cdf');

% Get name of the first attribute in the file.
attrName = cdflib.getAttrName(cdfId,0)

attrName =

SampleAttribute

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetAttrName.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.createAttr

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getAttrName

1-1271

https://cdf.gsfc.nasa.gov/

cdflib.getAttrNum
Attribute number, given attribute name

Syntax
attrNum = cdflib.getAttrNum(cdfId,attrName)

Description
attrNum = cdflib.getAttrNum(cdfId,attrName) returns the number of an
attribute in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrName

Character vector or string scalar specifying the name of an attribute.

Output Arguments
attrNum

Numeric value that identifies the attribute. Attribute numbers are zero-based.

Examples
Open the example CDF and get the attribute number associated with the
SampleAttribute attribute.

1 Alphabetical List

1-1272

cdfid = cdflib.open('example.cdf');

attrNum = cdflib.getAttrNum(cdfid,'SampleAttribute')

attrNum =

 0

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetAttrNum.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.createAttr | cdflib.getAttrName

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getAttrNum

1-1273

https://cdf.gsfc.nasa.gov/

cdflib.getAttrScope
Scope of attribute

Syntax
scope = cdflib.getAttrScope(cdfId,attrNum)

Description
scope = cdflib.getAttrScope(cdfId,attrNum) returns the scope of an attribute
in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that specifies the attribute. Attribute numbers are zero-based.

Output Arguments
scope

One of the following character vectors, or its numeric equivalent.

Value Description
'GLOBAL_SCOPE' Attribute applies to the CDF as a whole.
'VARIABLE_SCOPE' Attribute applies only to the variable.

1 Alphabetical List

1-1274

To get the numeric equivalent of these constants, use the cdflib.getConstantValue
function.

Examples
Open example CDF and get the scope of the first attribute in the file:

cdfid = cdflib.open('example.cdf');

attrScope = cdflib.getAttrScope(cdfid,0)

attrScope =

GLOBAL_SCOPE

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetAttrScope.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.createAttr | cdflib.getAttrName | cdflib.getConstantValue

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getAttrScope

1-1275

https://cdf.gsfc.nasa.gov/

cdflib.getCacheSize
Number of cache buffers used

Syntax
numBuffers = cdflib.getCacheSize(cdfId)

Description
numBuffers = cdflib.getCacheSize(cdfId) returns the number of cache buffers
used for the Common Data Format (CDF) file identified by cdfId. For a discussion of
cache schemes, see the CDF User's Guide.

Examples
Open the example CDF file and get the cache size:

cdfid = cdflib.open('example.cdf');

numBuf = cdflib.getCacheSize(cdfid)

numBuf =

 300

% Clean up
cdflib.close(cdfid)
clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetCacheSize.

1 Alphabetical List

1-1276

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getCacheSize

1-1277

https://cdf.gsfc.nasa.gov/

cdflib.getChecksum
Checksum mode

Syntax
mode = cdflib.getChecksum(cdfId)

Description
mode = cdflib.getChecksum(cdfId) returns the checksum mode of the Common
Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
mode

One of the following character vectors or its numeric equivalent.

'MD5_CHECKSUM' File uses MD5 checksum.
'NO_CHECKSUM' File does not use a checksum.

To get the numeric equivalent of the constants specified by these character vectors, use
cdflib.getConstantValue.

1 Alphabetical List

1-1278

Examples
Open the example CDF file, and then get the checksum mode of the file:

cdfid = cdflib.open('example.cdf');

checksummode = cdflib.getChecksum(cdfid)

checksummode =

NO_CHECKSUM

% Clean up
cdflib.close(cdfid);
clear cdfid;

References
This function corresponds to the CDF library C API routine CDFgetChecksum.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.setChecksum

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getChecksum

1-1279

https://cdf.gsfc.nasa.gov/

cdflib.getCompression
Compression settings

Syntax
[ctype,cparms,cpercentage] = cdflib.getCompression(cdfId)

Description
[ctype,cparms,cpercentage] = cdflib.getCompression(cdfId) returns
information about the compression settings of a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
ctype

Character vector specifying compression type, such as 'HUFF_COMPRESSION'. If the
CDF does not use compression, the function returns 'NO_COMPRESSION'. For a list of
supported compression types, see cdflib.setCompression.

cparms

The value of the parameter associated with the type of compression. For example, for the
'RLE_COMPRESSION' compression type, the parameter specifies the style of run-length
encoding. For a list of parameters supported by each compression type, see
cdflib.setCompression.

1 Alphabetical List

1-1280

cpercentage

The rate of compression, expressed as a percentage.

Examples
Open the example CDF file and check the compression settings in the file.

cdfId = cdflib.open('example.cdf');

[ctype, cparms, cpercentage] = cdflib.getCompression(cdfId)

ctype =

GZIP_COMPRESSION

cparms =

 7

cper =

 26

% Clean up
cdflib.close(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFgetCompression.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

 cdflib.getCompression

1-1281

https://cdf.gsfc.nasa.gov/

See Also
cdflib.getVarCompression | cdflib.setCompression |
cdflib.setVarCompression

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1282

cdflib.getCompressionCacheSize
Number of compression cache buffers

Syntax
numBuffers = cdflib.getCompressionCacheSize(cdfId)

Description
numBuffers = cdflib.getCompressionCacheSize(cdfId) returns the number of
cache buffers used for the compression scratch Common Data Format (CDF) file. cdfId
identifies the CDF file. For a discussion of cache schemes, see the CDF User's Guide.

Examples
Open the example CDF file and check the compression cache size of the file:

cdfId = cdflib.open('example.cdf');

numBuf = cdflib.getCompressionCacheSize(cdfId)

numBuf =

 80

% Clean up
cdflib.close(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine
CDFgetCompressionCacheSize.

 cdflib.getCompressionCacheSize

1-1283

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setCompressionCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1284

https://cdf.gsfc.nasa.gov/

cdflib.getConstantNames
Names of Common Data Format (CDF) library constants

Syntax
names = cdflib.getConstantNames()

Description
names = cdflib.getConstantNames() returns a cell array of character vectors,
where each character vector is the name of a constant known to the Common Data
Format (CDF) library.

Examples
Get a list of the names of CDF library constants.

names = cdflib.getConstantNames()

names =

 'AHUFF_COMPRESSION'
 'ALPHAMVSD_ENCODING'
 'ALPHAMVSG_ENCODING'
 'ALPHAMVSI_ENCODING'
 'ALPHAOSF1_ENCODING'
 'CDF_BYTE'
 'CDF_CHAR'
 .
 .
 .

References
For copyright information, see the cdfcopyright.txt file.

 cdflib.getConstantNames

1-1285

See Also
cdflib.getConstantValue

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1286

cdflib.getConstantValue
Numeric value corresponding to Common Data Format (CDF) library constant

Syntax
value = cdflib.getConstantValue(constantName)

Description
value = cdflib.getConstantValue(constantName) returns the numeric value of
the CDF library constant specified in constantName. Specify constantName as a
character vector or string scalar. To see a list of constant names, use
cdflib.getConstantNames.

Examples
View the list of CDF library constants and get the numeric value corresponding to one of
the constants.

% Retrieve a list of library constants
names = cdflib.getConstantNames();

value = cdflib.getConstantValue(names{1})

value =

 3

References
For copyright information, see the cdfcopyright.txt file.

 cdflib.getConstantValue

1-1287

See Also
cdflib.getConstantNames

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1288

cdflib.getCopyright
Copyright notice in Common Data Format (CDF) file

Syntax
copyright = cdflib.getCopyright(cdfId)

Description
copyright = cdflib.getCopyright(cdfId) returns the copyright notice in the CDF
file identified by cdfId.

Examples
Create a CDF file, and then get the copyright notice in the file. To run this example, you
must be in a writable folder.

cdfId = cdflib.create('your_file.cdf');

copyright = cdflib.getCopyright(cdfId)

copyright =

Common Data Format (CDF)
(C) Copyright 1990-2009 NASA/GSFC
Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(Internet -- CDFSUPPORT@LISTSERV.GSFC.NASA.GOV)

% Clean up.
cdflib.delete(cdfId)
clear cdfId

 cdflib.getCopyright

1-1289

References
This function corresponds to the CDF library C API routine CDFgetCopyright.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getLibraryCopyright

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1290

https://cdf.gsfc.nasa.gov/

cdflib.getFileBackward
Return current backward compatibility mode setting

Syntax
mode = cdflib.getFileBackward()

Description
mode = cdflib.getFileBackward() returns the backward compatibility mode.

Output Arguments
mode

One of the following character vectors:

'BACKWARDFILEon' Backward compatibility mode is on.
'BACKWARDFILEoff' Backward compatibility mode is off.

For more information about backward compatibility mode, see
cdflib.setFileBackward.

Examples
mode = cdflib.getFileBackward

mode =

BACKWARDFILEoff

 cdflib.getFileBackward

1-1291

References
This function corresponds to the CDF library C API routine CDFgetFileBackward.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.setFileBackward

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1292

https://cdf.gsfc.nasa.gov/

cdflib.getFormat
Format of Common Data Format (CDF) file

Syntax
format = cdflib.setFormat(cdfId)

Description
format = cdflib.setFormat(cdfId) returns the format of the CDF file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
format

One of the following character vectors, or its numeric equivalent.

'SINGLE_FILE' The CDF is stored in a single file.
'MULTI_FILE' The CDF is made up of multiple files.

To get the numeric equivalent of the constants specified by these character vectors, use
cdflib.getConstantValue.

Examples
Open the example CDF file and determine its file format:

 cdflib.getFormat

1-1293

cdfId = cdflib.open('example.cdf');

format = cdflib.getFormat(cdfId)

format =

 'SINGLE_FILE'

% Clean up.
cdflib.close(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFgetFormat.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.setFormat

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1294

https://cdf.gsfc.nasa.gov/

cdflib.getLibraryCopyright
Copyright notice of Common Data Format (CDF) library

Syntax
copyright = cdflib.getLibraryCopyright()

Description
copyright = cdflib.getLibraryCopyright() returns a character vector
containing the copyright notice of the CDF library.

Examples
Get the copyright of the CDF library.

copyright = cdflib.getLibraryCopyright()

copyright =

Common Data Format (CDF)
(C) Copyright 1990-2008 NASA/GSFC
Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(Internet -- CDFSUPPORT@LISTSERV.GSFC.NASA.GOV)

References
This function corresponds to the CDF library C API routine CDFgetLibraryCopyright.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

 cdflib.getLibraryCopyright

1-1295

https://cdf.gsfc.nasa.gov/

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getCopyright

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1296

cdflib.getLibraryVersion
Library version and release information

Syntax
[version,release,increment] = cdflib.getLibraryVersion()

Description
[version,release,increment] = cdflib.getLibraryVersion() returns
information about the Common Data Format (CDF) library.

Output Arguments
version

Numeric value indicating the version number of the CDF library.

release

Numeric value indicating the release number of the CDF library.

increment

Numeric value indicating the increment number of the CDF library.

Examples
Get the version information of the CDF library:

[version, release, increment] = cdflib.getLibraryVersion()

version =

 cdflib.getLibraryVersion

1-1297

 3

release =

 6

increment =

 1

References
This function corresponds to the CDF library C API routine CDFgetLibraryVersion.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVersion

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1298

https://cdf.gsfc.nasa.gov/

cdflib.getMajority
Majority of variables

Syntax
majority = cdflib.getMajority(cdfId)

Description
majority = cdflib.getMajority(cdfId) returns the majority of variables in a
Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
majority

One of the following character vectors or its numeric equivalent.

'ROW_MAJOR' C-like array ordering for variable storage. The first
dimension in each variable array varies the slowest. This is
the default.

'COLUMN_MAJOR' Fortran-like array ordering for variable storage. The first
dimension in each variable array varies the fastest.

To get the numeric equivalent of the constants specified by these character vectors, use
cdflib.getConstantValue.

 cdflib.getMajority

1-1299

Examples
Open the example CDF file, and then determine the majority of variables in the file:

cdfId = cdflib.open('example.cdf');

majority = cdflib.getMajority(cdfId)

majority =

ROW_MAJOR

% Clean up
cdflib.close(cdfId)

clear cdfId

References
This function corresponds to the CDF library C API routine CDFgetMajority.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.setMajority

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1300

https://cdf.gsfc.nasa.gov/

cdflib.getName
Name of Common Data Format (CDF) file

Syntax
name = cdflib.getName(cdfId)

Description
name = cdflib.getName(cdfId) returns the name of the CDF file identified by
cdfId.

Examples
Open the example CDF file and get the name of the file. The path name returned for your
installation will be different.

cdfId = cdflib.open('example.cdf');

name = cdflib.getName(cdfId)

name =

yourinstallation\matlab\toolbox\matlab\demos\example

% Clean up
cdflib.close(cdfId)

clear cdfId

References
This function corresponds to the CDF library C API routine CDFgetName.

 cdflib.getName

1-1301

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.create | cdflib.open

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1302

https://cdf.gsfc.nasa.gov/

cdflib.getNumAttrEntries
Number of entries for attribute with variable scope

Syntax
nentries = cdflib.getNumAttrEntries(cdfId,attrNum)

Description
nentries = cdflib.getNumAttrEntries(cdfId,attrNum) returns the number of
entries for the specified attribute in the Common Data Format (CDF) file.

cdfId identifies the CDF file.

attrNum is a numeric value that specifies the attribute. Attribute numbers are zero-
based. The attribute must have variable scope.

Examples
Open the example CDF, find an attribute with variable scope, and determine how many
entries are associated with the attribute:

cdfid = cdflib.open('example.cdf');

% Get the number of an attribute
% with variable scope
attrNum = cdflib.getAttrNum(cdfid,'Description');

% Check that scope of attribute is variable
attrScope = cdflib.getAttrScope(cdfid,attrNum)

VARIABLE_SCOPE

% Determine the number of entries for the attribute
attrEntries = cdflib.getNumAttrEntries(cdfid,attrNum)

 cdflib.getNumAttrEntries

1-1303

attrEntries =

 4

% Clean up
cdflib.close(cdfid);

References
This function corresponds to the CDF library C API routine CDFgetNumAttrzEntries.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrScope

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1304

https://cdf.gsfc.nasa.gov/

cdflib.getNumAttrgEntries
Number of entries for attribute with global scope

Syntax
nentries = cdflib.getNumAttrgEntries(cdfId,attrNum)

Description
nentries = cdflib.getNumAttrgEntries(cdfId,attrNum) returns the number of
entries written for the specified global attribute in the Common Data Format (CDF) file.

cdfId identifies the CDF file. attrNum is a numeric value that identifies the attribute.
Attribute numbers are zero-based. The attribute must have global scope.

Examples
Open the example CDF and find out how many entries are associated with a global
attribute in the file.

cdfid = cdflib.open('example.cdf');

% The first attribute is a global attribute.
attrgEntries = cdflib.getNumAttrgEntries(cdfid,0)

attrgEntries =

 3

% Clean up
cdflib.close(cdfid);

clear cdfid

 cdflib.getNumAttrgEntries

1-1305

References
This function corresponds to the CDF library C API routine CDFgetNumAttrgEntries.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getNumAttrEntries

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1306

https://cdf.gsfc.nasa.gov/

cdflib.getNumAttributes
Number of attributes with variable scope

Syntax
numAtts = cdflib.getNumAttributes(cdfId)

Description
numAtts = cdflib.getNumAttributes(cdfId) returns the total number of
attributes with variable scope in a Common Data Format (CDF) file. cdfId identifies the
CDF file.

Examples
Open the example CDF and find out how many attributes in the file have variable scope:

cdfid = cdflib.open('example.cdf');

% Determine the number of attributes with variable scope
numAttrs = cdflib.getNumAttributes(cdfid)

numAttrs =

 1

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetNumvAttributes.

 cdflib.getNumAttributes

1-1307

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getNumgAttributes

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1308

https://cdf.gsfc.nasa.gov/

cdflib.getNumgAttributes
Number of attributes with global scope

Syntax
ngatts = cdflib.getNumgAttributes(cdfId)

Description
ngatts = cdflib.getNumgAttributes(cdfId) returns the total number of global
attributes in a Common Data Format (CDF) file. cdfId identifies the CDF file.

Examples
Open the example CDF and find out how many global attributes are in the file:

cdfid = cdflib.open('example.cdf');

% Determine the number of global attributes in the file.
numgAttrs = cdflib.getNumgAttributes(cdfid)

numgAttrs =

 3

% Clean up
cdflib.close(cdfid);

References
This function corresponds to the CDF library C API routine CDFgetNumgAttributes.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

 cdflib.getNumgAttributes

1-1309

https://cdf.gsfc.nasa.gov/

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getNumAttributes

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1310

cdflib.getReadOnlyMode
Read-only mode

Syntax
mode = cdflib.getReadOnlyMode(cdfId)

Description
mode = cdflib.getReadOnlyMode(cdfId) returns the read-only mode of a Common
Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
mode

One of the following character vectors or its numeric equivalent.

'READONLYon' CDF is in read-only mode
'READONLYoff' CDF can be modified.

To get the numeric equivalent of the constants specified by these character vectors, use
cdflib.getConstantValue.

 cdflib.getReadOnlyMode

1-1311

Examples
Open the example CDF file and determine its current read-only status:

cdfId = cdflib.open('example.cdf');

mode = cdflib.getReadOnlyMode(cdfId)

mode =

READONLYoff

% Clean up.
cdflib.close(cdfId);
clear cdfId

References
This function corresponds to the CDF library C API routine CDFgetReadOnlyMode.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.setReadOnlyMode

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1312

https://cdf.gsfc.nasa.gov/

cdflib.getStageCacheSize
Number of cache buffers for staging

Syntax
numBuffers = cdflib.getStageCacheSize(cdfId)

Description
numBuffers = cdflib.getStageCacheSize(cdfId) returns the number of cache
buffers used for the staging scratch file of the Common Data Format (CDF) file. For more
information about cache buffers, see the CDF User's Guide.

cdfId identifies the CDF file.

Examples
Open the example CDF file and determine the number of cache buffers used for staging:

cdfId = cdflib.open('example.cdf');

numBuf = cdflib.getStageCacheSize(cdfId)

numBuf =

 125

% Clean up
cdflib.close(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFgetStageCacheSize.

 cdflib.getStageCacheSize

1-1313

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setStageCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1314

https://cdf.gsfc.nasa.gov/

cdflib.getValidate
Library validation mode

Syntax
mode = cdflib.getValidate()

Description
mode = cdflib.getValidate() returns the validation mode of the Common Data
Format (CDF) library.

Output Arguments
mode

One of the following character vectors or its numeric equivalent.

'VALIDATEFILEon' Validation mode is on. For information about validation
mode, see cdflib.setValidate.

'VALIDATEFILEoff' Validation mode is off.

To get the numeric equivalent of the constants specified by these character vectors, use
cdflib.getConstantValue.

Examples
Determine the current validation mode of the CDF library.

mode = cdflib.getValidate()

mode =

 cdflib.getValidate

1-1315

'VALIDATEFILEon'

References
This function corresponds to the CDF library C API routine CDFgetValidate.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.setValidate

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1316

https://cdf.gsfc.nasa.gov/

cdflib.getVarAllocRecords
Number of records allocated for variable

Syntax
numrecs = cdflib.getVarAllocRecords(cdfId, varNum)

Description
numrecs = cdflib.getVarAllocRecords(cdfId, varNum) returns the number of
records allocated for a variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers are zero-based.

Examples
Open example CDF and get the number of records allocated for a variable:

cdfid = cdflib.open('example.cdf');

% Determine the number of records allocated for the
% first variable in the file.
numrecs = cdflib.getVarAllocRecords(cdfid,0)

numrecs =

 64

% Clean up
cdflib.close(cdfid)

clear cdfid

 cdflib.getVarAllocRecords

1-1317

References
This function corresponds to the CDF library C API routine CDFgetzVarAllocRecords.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setVarAllocBlockRecords

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1318

https://cdf.gsfc.nasa.gov/

cdflib.getVarBlockingFactor
Blocking factor for variable

Syntax
blockingFactor = cdflib.getVarBlockingFactor(cdfId,varNum)

Description
blockingFactor = cdflib.getVarBlockingFactor(cdfId,varNum) returns the
blocking factor for a variable in a Common Data Format (CDF) file. A variable's blocking
factor specifies the minimum number of records the library allocates when you write to an
unallocated record.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers are zero-based.

Examples
Open the example CDF and determine the blocking factor of a variable.

cdfid = cdflib.open('example.cdf');

cdflib.getVarBlockingFactor(cdfid,0)

ans =

 0

% Clean up
cdflib.close(cdfid)
clear cdfid

 cdflib.getVarBlockingFactor

1-1319

References
This function corresponds to the CDF library C API routine
CDFgetzVarBlockingFactor.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setVarBlockingFactor

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1320

https://cdf.gsfc.nasa.gov/

cdflib.getVarCacheSize
Number of multifile cache buffers

Syntax
numBuffers = cdflib.getVarCacheSize(cdfId,varNum)

Description
numBuffers = cdflib.getVarCacheSize(cdfId,varNum) returns the number of
cache buffers used for a variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable identifiers are zero-based.

This function applies only to multifile format CDFs. For more information about caching,
see the CDF User's Guide.

Examples
Create a multifile CDF and retrieve the number of buffers being used for a variable. To
run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf')

% Set the format of the file to be multi-file
cdflib.setFormat(cdfid,'MULTI_FILE');

% Create a variable in the file
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Note how the library creates a separate file for the variable
ls your_file.*

your_file.cdf your_file.z0

 cdflib.getVarCacheSize

1-1321

% Determine the number of cache buffers used with the variable
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

 1

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetzVarCacheSize.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setVarCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1322

https://cdf.gsfc.nasa.gov/

cdflib.getVarCompression
Information about compression used by variable

Syntax
[ctype,cparams,percent] = cdflib.getVarCompression(cdfId, varNum)

Description
[ctype,cparams,percent] = cdflib.getVarCompression(cdfId, varNum)
returns information about the compression used for a variable in a Common Data Format
(CDF) File.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
ctype

Character vector identifying the type of compression. For a list of compression types, see
cdflib.setCompression.

cparams

Any additional parameter required by the compression type.

percent

Numeric value indicating the level of compression, expressed as a percentage.

 cdflib.getVarCompression

1-1323

Examples
Open the example CDF file and check the compression settings of any variable.

cdfid = cdflib.open('example.cdf');

% Check the compression setting of any variable in the file
% The example checks the first variable (variable numbers are zero-based).
[ctype params percent] = cdflib.getVarCompression(cdfid,0)

ctype =

NO_COMPRESSION

params =

 []

percent =

 100

% Clean up
cdflib.close(cdfid);
clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetzVarCompression.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setCompression | cdflib.setVarCompression

1 Alphabetical List

1-1324

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getVarCompression

1-1325

cdflib.getVarData
Single value from record in variable

Syntax
datum = cdflib.getVarData(cdfId,varNum,recNum,indices)
datum = cdflib.getVarData(cdfId,varNum,recNum)

Description
datum = cdflib.getVarData(cdfId,varNum,recNum,indices) returns a single
value from a variable in a Common Data Format (CDF) file.

datum = cdflib.getVarData(cdfId,varNum,recNum) returns a single value from a
variable with no dimensions in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying the variable containing the datum. Variable numbers are zero-
based.

recNum

Numeric value identifying the location of the datum in the variable. In CDF terminology,
this is called the record number. Record numbers are zero-based.

indices

Array of dimension indices within the record. Dimension indices are zero-based. If the
variable has no dimensions, you can omit this parameter.

1 Alphabetical List

1-1326

Output Arguments
datum

Value of the specified record.

Examples
Open the example CDF file and retrieve data associated with a variable:

cdfid = cdflib.open('example.cdf');

% Determine how many variables are in the file.
info = cdflib.inquire(cdfid);

info.numVars

ans =

 5

% Determine if the first variable has dimensions.
varinfo = cdflib.inquireVar(cdfid,0);
vardims = varinfo.dims
vardims =

 []

% Get data from variable, without specifying dimensions.
datum = cdflib.getVarData(cdfid, varnum, recnum)

datum =

 6.3146e+013

% Get dimensions of another variable in file.
varinfo = cdflib.inquireVar(cdfid,3);
vardims = varinfo.dims
vardims =

 [4 2 2]

 cdflib.getVarData

1-1327

% Retrieve the first datum in the record. Indices are zero-based.
datum = cdflib.getVarData(cdfId,3,0,[0 0 0])

info =

 30

% Clean up.
cdflib.close(cdfid);
clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetzVarData.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarRecordData | cdflib.hyperGetVarData | cdflib.putVarData

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1328

https://cdf.gsfc.nasa.gov/

cdflib.getVarMaxAllocRecNum
Maximum allocated record number for variable

Syntax
maxrec = cdflib.getVarMaxAllocRecNum(cdfId,varNum)

Description
maxrec = cdflib.getVarMaxAllocRecNum(cdfId,varNum) returns the record
number of the maximum allocated record for a variable in a Common Data Format (CDF)
file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers and record numbers are zero-based.

Examples
Open example CDF and get the maximum allocated record number for a variable:

cdfid = cdflib.open('example.cdf');

% Determine maximum record number for variable in file.
maxRecNum = cdflib.getVarMaxAllocRecNum(cdfid,0)

maxRecNum =

 63

% Clean up
cdflib.close(cdfid)

clear cdfid

 cdflib.getVarMaxAllocRecNum

1-1329

References
This function corresponds to the CDF library C API routine
CDFgetzVarMaxAllocRecNum.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarMaxWrittenRecNum

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1330

https://cdf.gsfc.nasa.gov/

cdflib.getVarMaxWrittenRecNum
Maximum written record number for variable

Syntax
maxrec = cdflib.getVarMaxwrittenRecNum(cdfId,varNum)

Description
maxrec = cdflib.getVarMaxwrittenRecNum(cdfId,varNum) returns the record
number of the maximum record written for a variable in a Common Data Format (CDF)
file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers and record numbers are zero-based.

Examples
Open the example CDF, and then determine the maximum number of records written to a
variable:

cdfid = cdflib.open('example.cdf');

% Determine the number records written to variable.
numRecs = cdflib.getVarNumRecsWritten(cdfid,0)

numRecs =

 24

% Determine the maximum record number of the records written
maxRecNum = cdflib.getVarMaxWrittenRecNum(cdfid,0)

maxRecNum =

 cdflib.getVarMaxWrittenRecNum

1-1331

 23

% Clean up
cdflib.close(cdfid)

clear cdfid

References
This function corresponds to the CDF library C API routine
CDFgetzVarMaxWrittenRecNum.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarMaxAllocRecNum | cdflib.getVarNumRecsWritten

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1332

https://cdf.gsfc.nasa.gov/

cdflib.getVarsMaxWrittenRecNum
Maximum written record number for CDF file

Syntax
maxrec = cdflib.getVarsMaxwrittenRecNum(cdfId)

Description
maxrec = cdflib.getVarsMaxwrittenRecNum(cdfId) returns the maximum record
number written for all variables in a Common Data Format (CDF) file.

cdfId identifies the CDF file. Record numbers are zero-based.

Examples
Open the example CDF, and then determine the maximum number of records written to
the file:

cdfid = cdflib.open('example.cdf');

% Determine the maximum record number of the records written
maxRecNum = cdflib.getVarsMaxWrittenRecNum(cdfid)

maxRecNum =

 23

% Clean up
cdflib.close(cdfid)

 cdflib.getVarsMaxWrittenRecNum

1-1333

References
This function corresponds to the CDF library C API routine
CDFgetzVarsMaxWrittenRecNum.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarMaxWrittenRecNum

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1334

https://cdf.gsfc.nasa.gov/

cdflib.getVarName
Variable name, given variable number

Syntax
name = cdflib.getVarName(cdfId,varNum)

Description
name = cdflib.getVarName(cdfId,varNum) returns the name of the variable in a
Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers are zero-based. name is a character vector specifying the name.

Examples
Open the example CDF, and then get the name of a variable in the file:

cdfid = cdflib.open('example.cdf');

name = cdflib.getVarName(cdfid,1)

name =

Longitude

% Clean up
cdflib.close(cdfid)

clear cdfid

 cdflib.getVarName

1-1335

References
This function corresponds to the CDF library C API routine CDFgetzVarName.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.inquireVar

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1336

https://cdf.gsfc.nasa.gov/

cdflib.getVarNum
Variable number, given variable name

Syntax
varNum = cdflib.getVarNum(cdfId,varname)

Description
varNum = cdflib.getVarNum(cdfId,varname) returns the identifier (variable
number) for a variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varname is a character vector or string scalar that
identifies the variable. Variable names are case-sensitive.

Examples
Open example CDF, and then get the number of a variable named Longitude:

cdfid = cdflib.open('example.cdf');

varNum = cdflib.getVarNum(cdfid,'Longitude')

varNum =

 1

% Clean up
cdflib.close(cdfid);

clear cdfid

 cdflib.getVarNum

1-1337

References
This function corresponds to the CDF library C API routine CDFgetzVarNum.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarName

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1338

https://cdf.gsfc.nasa.gov/

cdflib.getVarNumRecsWritten
Number of records written to variable

Syntax
numrecs = cdflib.getVarNumRecsWritten(cdfId,varNum)

Description
numrecs = cdflib.getVarNumRecsWritten(cdfId,varNum) returns the total
number of records written to a variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers are zero-based.

Examples
Open the example CDF, and then determine the number of records written to a variable:

cdfid = cdflib.open('example.cdf');

% Determine the number of records written to the variable.
numRecs = cdflib.getVarNumRecsWritten(cdfid,0)

numRecs =

 24

% Clean up
cdflib.close(cdfid)

clear cdfid

 cdflib.getVarNumRecsWritten

1-1339

References
This function corresponds to the CDF library C API routine
CDFgetzVarNumRecsWritten.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarMaxWrittenRecNum

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1340

https://cdf.gsfc.nasa.gov/

cdflib.getVarPadValue
Pad value for variable

Syntax
padvalue = cdflib.getVarPadValue(cdfId,varNum)

Description
padvalue = cdflib.getVarPadValue(cdfId,varNum) returns the pad value used
with a variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers are zero-based.

Examples
Open the example CDF, and then determine the pad value for a variable:

cdfid = cdflib.open('example.cdf');

% Check pad value of variable in the file.
padval = cdflib.getVarPadValue(cdfid,0)

padval =

 0

% Clean up.
cdflib.close(cdfid);

clear cdfid

 cdflib.getVarPadValue

1-1341

References
This function corresponds to the CDF library C API routine CDFgetzVarPadValue.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setVarPadValue

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1342

https://cdf.gsfc.nasa.gov/

cdflib.getVarRecordData
Entire record for variable

Syntax
data = cdflib.getVarRecordData(cdfId,varNum,recNum)

Description
data = cdflib.getVarRecordData(cdfId,varNum,recNum) returns the data in a
record associated with a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value that identifies the variable in the CDF file. Variable numbers are zero-
based.

recNum

Numeric value that identifies the record in the variable. Record numbers are zero-based.

Output Arguments
data

Data in the record.

 cdflib.getVarRecordData

1-1343

Examples
Open the example CDF, and then get the data associated with a record in a variable:

cdfid = cdflib.open('example.cdf');

% Get data in first record in first variable in file.
recData = cdflib.getVarRecordData(cdfid,0,0)

recData =

 6.3146e+013

% Clean up
cdflib.close(cdfid)

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetzVarRecordData.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarData | cdflib.hyperGetVarData | cdflib.putVarRecordData

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1344

https://cdf.gsfc.nasa.gov/

cdflib.getVarReservePercent
Compression reserve percentage for variable

Syntax
percent = cdflib.getVarReservePercent(cdfId,varNum)

Description
percent = cdflib.getVarReservePercent(cdfId,varNum) returns the
compression reserve percentage for a variable in a Common Data Format (CDF) file. This
operation only applies to compressed variables.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers are zero-based.

Examples
Open the example CDF file, get the number of a compressed variable, and then determine
the reserve percent for the variable.

cdfid = cdflib.open('example.cdf');
varnum = cdflib.getVarNum(cdfid,'Temperature');
percent = cdflib.getVarReservePercent(cdfid,varnum);
cdflib.close(cdfid);

Definitions
reserve percentage
Specifies how much extra space to allocate for a compressed variable. This extra space
allows the variable to expand when you write additional records to the variable. If you do
not specify this room for growth, the library has to move the variable to the end of the file

 cdflib.getVarReservePercent

1-1345

when the size expands and the space at the original location of the variable becomes
wasted space.

By default, the reserve percent is 0 (no extra space is reserved). You can specify any
percentage between 1 and 100 and values greater than 100. The value specifies the
percentage of the uncompressed size of the variable.

References
This function corresponds to the CDF library C API routine
CDFgetzVarReservePercent.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.setVarReservePercent

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1346

https://cdf.gsfc.nasa.gov/

cdflib.getVarSparseRecords
Information about how variable handles sparse records

Syntax
stype = cdflib.getVarSparseRecords(cdfId,varNum)

Description
stype = cdflib.getVarSparseRecords(cdfId,varNum) returns information about
how a variable in the Common Data Format (CDF) file handles sparse records.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value that identifies the variable. Variable numbers are zero-based.

Output Arguments
stype

One of the following character vectors, or its numeric equivalent, that specifies how the
variable handles sparse records.

Value Description
'NO_SPARSERECORDS' No sparse records.

 cdflib.getVarSparseRecords

1-1347

Value Description
'PAD_SPARSERECORDS' For sparse records, the library uses the variable's

pad value when reading values from a missing
record.

'PREV_SPARSERECORDS' For sparse records, the library uses values from the
previous existing record when reading values from
a missing record. If there is no previous existing
record, the library uses the variable's pad value.

To get the numeric equivalent of the constants specified by these character vectors, use
cdflib.getConstantValue.

Examples
Open the example CDF, and then get the sparse record type of a variable in the file:

cdfid = cdflib.open('example.cdf');

stype = cdflib.getVarSparseRecords(cdfid,0)

stype =

NO_SPARSERECORDS

%Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFgetzVarSparseRecords.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

1 Alphabetical List

1-1348

https://cdf.gsfc.nasa.gov/

See Also
cdflib.setVarSparseRecords

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.getVarSparseRecords

1-1349

cdflib.getVersion
Common Data Format (CDF) library version and release information

Syntax
[version,release,increment] = cdflib.getVersion(cdfId)

Description
[version,release,increment] = cdflib.getVersion(cdfId) returns
information about the version of the Common Data Format (CDF) library used to create a
CDF file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
version

Numeric value indicating the version number of the CDF library.

release

Numeric value indicating the release number of the CDF library.

increment

Numeric value indicating the increment number of the CDF library.

1 Alphabetical List

1-1350

Examples
Open the example CDF file, and then find out the version of the CDF library used to
create it:

cdfId = cdflib.open('example.cdf');

[version, release, increment] = cdflib.getVersion(cdfId)

version =

 2

release =

 7

increment =

 8

% Clean up
cdflib.close(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFgetVersion.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getLibraryVersion

Topics
“Import CDF Files Using Low-Level Functions”

 cdflib.getVersion

1-1351

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

1 Alphabetical List

1-1352

cdflib.hyperGetVarData
Read hyperslab of data from variable

Syntax
data = cdflib.hyperGetVarData(cdfId,varNum,recSpec,dimSpec)
data = cdflib.hyperGetVarData(cdfId,varNum,recSpec)

Description
data = cdflib.hyperGetVarData(cdfId,varNum,recSpec,dimSpec) reads a
hyperslab of data from a variable in the Common Data Format (CDF) file. Hyper access
allows more than one value to be read from or written to a variable with a single call to
the CDF library.

data = cdflib.hyperGetVarData(cdfId,varNum,recSpec) reads a hyperslab of
data for a zero-dimensional variable in the Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Number identifying the variable containing the datum.

recSpec

Three-element array, [RSTART RCOUNT RSTRIDE], where RSTART, RCOUNT, and
RSTRIDE are scalar values specifying the starting record, number of records to read, and
the sampling interval or stride between records. Record numbers are zero-based.

 cdflib.hyperGetVarData

1-1353

dimSpec

Three-element cell array, {DSTART DCOUNT DSTRIDE}, where DSTART, DCOUNT, and
DSTRIDE are n-element vectors that describe the start, number of values along each
dimension, and sampling interval along each dimension. If the hyperslab has zero
dimensions, you can omit this parameter. Dimension indices are zero-based.

Examples
Open the example CDF file, and then get all the data associated with a variable:

cdfid = cdflib.open('example.cdf');

% Determine the number of records allocated for the first variable in the file.
maxRecNum = cdflib.getVarMaxWrittenRecNum(cdfid,0);

% Retrieve all data in records for variable.
data = cdflib.hyperGetVarData(cdfid,0,[0 maxRecNum 1]);

% Clean up
cdflib.close(cdfid)

clear cdfid

References
This function corresponds to the CDF library C API routine CDFhyperGetzVarData.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.hyperPutVarData

Topics
“Import CDF Files Using Low-Level Functions”

1 Alphabetical List

1-1354

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

 cdflib.hyperGetVarData

1-1355

cdflib.hyperPutVarData
Write hyperslab of data to variable

Syntax
cdflib.hyperPutVarData(cdfId,varNum,recSpec,dimSpec,data)

Description
cdflib.hyperPutVarData(cdfId,varNum,recSpec,dimSpec,data) writes a
hyperslab of data to a variable in a Common Data Format (CDF) file. Hyper access allows
more than one value to be read from or written to a variable with a single call to the CDF
library.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Specifies the variable containing the datum.

recSpec

Three-element array described by [RSTART RCOUNT RSTRIDE], where RSTART,
RCOUNT, and RSTRIDE are scalar values giving the start, number of records, and
sampling interval (or stride) between records. Record indices are zero-based.

dimSpec

Three-element cell array described by {DSTART DCOUNT DSTRIDE}, where DSTART,
DCOUNT, and DSTRIDE are n-element vectors that describe the start, number of values

1 Alphabetical List

1-1356

along each dimension, and sampling interval along each dimension. If the hyperslab has
zero dimensions, you can omit this parameter. Dimension indices are zero-based.

data

Data to write to the variable.

Examples
Create a CDF, create a variable, and then write a slab of data to the variable. To run this
example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Write data to the variable
cdflib.hyperPutVarData(cdfid,varNum,0,[],int8(98))

%Clean up
cdflib.delete(cdfid);
clear cdfid

References
This function corresponds to the CDF library C API routine CDFhyperzPutVarData.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.hyperGetVarData

 cdflib.hyperPutVarData

1-1357

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1358

cdflib.inquire
Basic characteristics of Common Data Format (CDF) file

Syntax
info = cdflib.inquire(cdfId)

Description
info = cdflib.inquire(cdfId) returns basic information about a Common Data
Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

Output Arguments
info

A structure containing the following fields:

Field Description
encoding Encoding of the variable data and attribute entry data
majority Majority of the variable data
maxRec Maximum record number written to a CDF variable
numVars Number of CDF variables
numvAttrs Number of attributes with variable scope

 cdflib.inquire

1-1359

Field Description
numgAttrs Number of attributes with global scope

Examples
Open the example CDF file, and then get basic information about the file:

cdfId = cdflib.open('example.cdf');

info = cdflib.inquire(cdfId)

info =

 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: 23
 numVars: 5
 numvAttrs: 1
 numgAttrs: 3

References
This function corresponds to the CDF library C API routines CDFinquireCDF and
CDFgetNumgAttributes.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.inquireVar

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1360

https://cdf.gsfc.nasa.gov/

cdflib.inquireAttr
Information about attribute

Syntax
info = cdflib.inquireAttr(cdfId,attrNum)

Description
info = cdflib.inquireAttr(cdfId,attrNum) returns information about an
attribute in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value that identifies the attribute in the file. Attribute numbers are zero-based.

Output Arguments
info

Structure containing the following fields.

Field Description
name Attribute's name
scope Either 'GLOBAL_SCOPE' or

'VARIABLE_SCOPE'

 cdflib.inquireAttr

1-1361

Field Description
maxgEntry The maximum entry number used for global

attributes.
maxEntry The maximum entry number used for attributes

with variable scope.

Examples
Open the example CDF, and then get information about the first attribute in the file.

cdfid = cdflib.open('example.cdf');

% Get information about an attribute
info = cdflib.inquireAttr(cdfid,0)

info =

 name: 'SampleAttribute'
 scope: 'GLOBAL_SCOPE'
 maxgEntry: 4
 maxEntry: -1

% Clean up
cdflib.close(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFinquireAttr.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.inquireAttrEntry | cdflib.inquireAttrgEntry

1 Alphabetical List

1-1362

https://cdf.gsfc.nasa.gov/

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.inquireAttr

1-1363

cdflib.inquireAttrEntry
Information about entry in attribute with variable scope

Syntax
[datatype,numElements] =
cdflib.inquireAttrEntry(cdfId,attrNum,entryNum)

Description
[datatype,numElements] =
cdflib.inquireAttrEntry(cdfId,attrNum,entryNum) returns the data type and
the number of elements for an attribute entry in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value identifying an attribute in the file. Attribute numbers are zero-based. The
attribute must have variable scope.

entryNum

Numeric value identifying the entry in the attribute. Entry number are zero-based.

1 Alphabetical List

1-1364

Output Arguments
datatype

Character vector identifying a CDF data type. For a list of CDF data types, see
cdflib.putAttrEntry

numElements

Numeric value indicating the number of elements in the entry.

Examples
Open example CDF, and then get information about entries associated with an attribute in
the file:

cdfid = cdflib.open('example.cdf');

% The fourth attribute is of variable scope.
attrscope = cdflib.getAttrScope(cdfid,3)

attrscope =

VARIABLE_SCOPE

% Get information about the first entry for this attribute
[dtype numel] = cdflib.inquireAttrEntry(cdfid,3,0)

dtype =

cdf_char

numel =

 10

% Clean up
cdflib.close(cdfid);

clear cdfid

 cdflib.inquireAttrEntry

1-1365

References
This function corresponds to the CDF library C API routine CDFinquireAttrzEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrScope | cdflib.inquireAttr

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1366

https://cdf.gsfc.nasa.gov/

cdflib.inquireAttrgEntry
Information about entry in attribute with global scope

Syntax
[datatype,numElements] =
cdflib.inquireAttrgEntry(cdfId,attrNum,entryNum)

Description
[datatype,numElements] =
cdflib.inquireAttrgEntry(cdfId,attrNum,entryNum) returns the data type and
the number of elements for a global attribute entry in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Numeric value identifying an attribute in the file. Attribute numbers are zero-based. The
attribute must have global scope.

entryNum

Numeric value identifying the entry in the attribute. Entry number are zero-based.

 cdflib.inquireAttrgEntry

1-1367

Output Arguments
datatype

Character vector identifying a CDF data type. For a list of CDF data types, see
cdflib.putAttrgEntry

numElements

Numeric value indicating the number of elements in the entry.

Examples
Open the example CDF, and then get information about entries associated with a global
attribute in the file.

cdfid = cdflib.open('example.cdf');

% Any of the first three attributes have global scope.
attrscope = cdflib.getAttrScope(cdfid,0)

attrscope =

GLOBAL_SCOPE

% Get information about the first entry for this attribute
[dtype numel] = cdflib.inquireAttrgEntry(cdfid,0,0)

dtype =

cdf_char

numel =

 23

% Clean up
cdflib.close(cdfid);

clear cdfid

1 Alphabetical List

1-1368

References
This function corresponds to the CDF library C API routine CDFinquireAttrgEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.inquireAttr | cdflib.inquireAttrEntry

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.inquireAttrgEntry

1-1369

https://cdf.gsfc.nasa.gov/

cdflib.inquireVar
Information about variable

Syntax
info = cdflib.inquireVar(cdfId,varNum)

Description
info = cdflib.inquireVar(cdfId,varNum) returns information about a variable in
a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value that identifies the variable. Variable numbers are zero-based.

Output Arguments
info

Structure containing the following fields.

Field Description
name Name of the variable
datatype Data type

1 Alphabetical List

1-1370

Field Description
numElements Number of elements of the datatype
dims Sizes of the dimensions
recVariance Record variance
dimVariance Dimension variances

Record and dimension variances affect how the library physically stores variable data. For
example, if a variable has a record variance of VARY, the library physically stores each
record. If the record variance is NOVARY, the library only stores one record.

Examples
Open the example CDF file and get information about a variable.

cdfid = cdflib.open('example.cdf');

% Determine if the file contains variables
info = cdflib.inquireVar(cdfid,1)

info =

 name: 'Longitude'
 datatype: 'cdf_int1'
 numElements: 1
 dims: [2 2]
 recVariance: 0
 dimVariance: [1 0]

References
This function corresponds to the CDF library C API routine CDFinquirezVar.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

 cdflib.inquireVar

1-1371

https://cdf.gsfc.nasa.gov/

See Also
cdflib.inquire

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1372

cdflib.open
Open existing Common Data Format (CDF) file

Syntax
cdfId = cdflib.open(filename)

Description
cdfId = cdflib.open(filename) opens an existing Common Data Format (CDF) file.
filename is a character vector or string scalar that identifies the file.

This function returns a CDF file identifier, cdfId.

All CDF files opened this way have the zMode set to zModeon2. Refer to the CDF User's
Guide for information about zModes.

Examples
Open the example CDF file:

cdfId = cdflib.open('example.cdf');

% Clean up
cdflib.close(cdfId)

clear cdfId

References
This function corresponds to the CDF library C API routine CDFopenCDF.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

 cdflib.open

1-1373

https://cdf.gsfc.nasa.gov/

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.close | cdflib.create

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1374

cdflib.putAttrEntry
Write value to entry in attribute with variable scope

Syntax
cdflib.putAttrEntry(cdfId,attrNum,entryNum,CDFDataType,entryVal)

Description
cdflib.putAttrEntry(cdfId,attrNum,entryNum,CDFDataType,entryVal)
writes a value to an attribute entry in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Number identifying attribute. The attribute must have variable scope. Attribute numbers
are zero-based.

entryNum

Number identifying entry. Entry numbers are zero-based.

CDFdatatype

Data type of the attribute entry, specified as one of the following character vectors or
string scalars, or its numeric equivalent.

CDF Data Type MATLAB Equivalent
'CDF_BYTE' 1-byte, signed integer

 cdflib.putAttrEntry

1-1375

CDF Data Type MATLAB Equivalent
'CDF_CHAR' 1 byte, signed character data type that maps to the MATLAB

char or string class
'CDF_INT1' 1-byte, signed integer.
'CDF_UCHAR' 1 byte, unsigned character data type that maps to the

MATLAB uint8 class
'CDF_UINT1' 1-byte, unsigned integer
'CDF_INT2' 2-byte, signed integer
'CDF_UINT2' 2-byte, unsigned integer.
'CDF_INT4' 4-byte, signed integer
'CDF_UINT4' 4-byte, unsigned integer
'CDF_FLOAT' 4-byte, floating point
'CDF_REAL4' 4-byte, floating point
'CDF_REAL8' 8-byte, floating point.
'CDF_DOUBLE' 8-byte, floating point
'CDF_EPOCH' 8-byte, floating point
'CDF_EPOCH16' two 8-byte, floating point

entryVal

Data to be written to attribute entry.

Examples
Create a CDF and create an attribute with variable scope in the file. Write a value to an
entry in the attribute. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no attributes, global or variable.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'

1 Alphabetical List

1-1376

 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 0
 numvAttrs: 0
 numgAttrs: 0

% Create an attribute of variable scope in the file.
attrNum = cdflib.createAttr(cdfid,'Another Attribute','variable_scope');

% Write a value to an entry for the attribute
cdflib.putAttrEntry(cdfid,attrNum,0,'CDF_CHAR','My Variable Attribute Test');

% Get the value of the global attribute entry
value = cdflib.getAttrEntry(cdfid,attrNum,0)

value =

My Variable Attribute Test

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFputAttrzEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrEntry | cdflib.getAttrgEntry | cdflib.getConstantValue |
cdflib.putAttrgEntry

Topics
“Import CDF Files Using Low-Level Functions”

 cdflib.putAttrEntry

1-1377

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

1 Alphabetical List

1-1378

cdflib.putAttrgEntry
Write value to entry in attribute with global scope

Syntax
cdflib.putAttrgEntry(cdfId,attrNum,entryNum,cdfDataType,entryVal)

Description
cdflib.putAttrgEntry(cdfId,attrNum,entryNum,cdfDataType,entryVal)
writes a value to a global attribute entry in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

attrNum

Number identifying attribute. Attribute numbers are zero-based. The attribute must have
global scope.

entryNum

Number identifying entry. Entry numbers are zero-based.

CDFdatatype

Data type of the attribute entry, specified as one of the following character vectors or
string scalars, or its numeric equivalent.

CDF Data Type MATLAB Equivalent
'CDF_BYTE' 1-byte, signed integer

 cdflib.putAttrgEntry

1-1379

CDF Data Type MATLAB Equivalent
'CDF_CHAR' 1 byte, signed character data type that maps to the MATLAB

char or string class
'CDF_INT1' 1-byte, signed integer.
'CDF_UCHAR' 1 byte, unsigned character data type that maps to the

MATLAB uint8 class
'CDF_UINT1' 1-byte, unsigned integer
'CDF_INT2' 2-byte, signed integer
'CDF_UINT2' 2-byte, unsigned integer.
'CDF_INT4' 4-byte, signed integer
'CDF_UINT4' 4-byte, unsigned integer
'CDF_FLOAT' 4-byte, floating point
'CDF_REAL4' 4-byte, floating point
'CDF_REAL8' 8-byte, floating point.
'CDF_DOUBLE' 8-byte, floating point
'CDF_EPOCH' 8-byte, floating point
'CDF_EPOCH16' two 8-byte, floating point

entryVal

Data to be written to global attribute entry.

Examples
Create a CDF and create a global attribute in the file. Write a value to an entry in the
attribute. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no attributes, global or variable.
info = cdflib.inquire(cdfid)

info =

 encoding: 'IBMPC_ENCODING'

1 Alphabetical List

1-1380

 majority: 'ROW_MAJOR'
 maxRec: -1
 numVars: 0
 numvAttrs: 0
 numgAttrs: 0

% Create a global attribute in the file.
attrNum = cdflib.createAttr(cdfid,'Purpose','global_scope');

% Write a value to an entry for the global attribute
cdflib.putAttrgEntry(cdfid,attrNum,0,'CDF_CHAR','My Test');

% Get the value of the global attribute entry
value = cdflib.getAttrgEntry(cdfid,attrNum,0)

value =

My Test

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFputAttrgEntry.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getAttrEntry | cdflib.getAttrgEntry | cdflib.getConstantValue |
cdflib.putAttrEntry

Topics
“Import CDF Files Using Low-Level Functions”

 cdflib.putAttrgEntry

1-1381

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

1 Alphabetical List

1-1382

cdflib.putVarData
Write single value to variable

Syntax
cdflib.putVarData(cdfId,varNum,recNum,indices,datum)

Description
cdflib.putVarData(cdfId,varNum,recNum,indices,datum) writes a single value
to a variable in a Common Data File (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value that identifies the variable to which you want to write the datum. Variable
numbers are zero-based.

recNum

Numeric value that identifies the record to which you want to write the datum. Record
numbers are zero-based.

dims

Dimension indices within the record. Dimension indices are zero-based.

datum

Data to be written to the variable.

 cdflib.putVarData

1-1383

Examples
Create a CDF, create a variable in the CDF and write data to the variable. To run this
example, you must have write permission in the current folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Write some data to the variable
cdflib.putVarData(cdfid,varNum,0,[],int8(98))

% Read the value from the variable.
datum = cdflib.getVarData(cdfid,varNum,0)

datum =

 98

%Clean up
cdflib.delete(cdfid);
clear cdfid

References
This function corresponds to the CDF library C API routine CDFputzVarData.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarData | cdflib.getVarRecordData | cdflib.hyperGetVarData

Topics
“Import CDF Files Using Low-Level Functions”

1 Alphabetical List

1-1384

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

 cdflib.putVarData

1-1385

cdflib.putVarRecordData
Write entire record to variable

Syntax
cdflib.putVarRecordData(cdfId,varNum,recNum,recordData)

Description
cdflib.putVarRecordData(cdfId,varNum,recNum,recordData) writes data to a
record in a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value that identifies the variable to which you want to write the datum. Variable
numbers are zero-based.

recNum

Numeric value identifying the location of the datum in the variable. Record numbers are
zero-based.

recordData

Data to be written to the variable.

1 Alphabetical List

1-1386

Examples
Create a CDF, create a variable, and write an entire record of data to the variable. To run
this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Write some data to the variable
cdflib.putVarRecordData(cdfid,varNum,0,int8(98))

% Read the value from the variable.
datum = cdflib.getVarData(cdfid,varNum,0)

datum =

 98

%Clean up
cdflib.delete(cdfid);
clear cdfid

References
This function corresponds to the CDF library C API routine CDFputzVarRecordData.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarRecordData | cdflib.hyperPutVarData | cdflib.putVarData

Topics
“Import CDF Files Using Low-Level Functions”

 cdflib.putVarRecordData

1-1387

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

1 Alphabetical List

1-1388

cdflib.renameAttr
Rename existing attribute

Syntax
cdflib.renameAttr(cdfId,attrNum,newName)

Description
cdflib.renameAttr(cdfId,attrNum,newName) renames an attribute in a Common
Data Format (CDF) file.

cdfId identifies the CDF file. attrNum is a numeric value that identifies the attribute.
Attribute numbers are zero-based. newName is a character vector or string scalar that
specifies the name you want to assign to the attribute.

Examples
Create a CDF, create an attribute in the CDF, and then rename the attribute. To run this
example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create an attribute
attrNum = cdflib.createAttr(cdfid,'Purpose','global_scope');

% Rename the attribute
cdflib.renameAttr(cdfid, attrNum,'NewPurpose');

% Check the name of the attribute
attrName = cdflib.getAttrName(cdfid,anum)

attrName =

NewPurpose

 cdflib.renameAttr

1-1389

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFrenameAttr.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.createAttr

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1390

https://cdf.gsfc.nasa.gov/

cdflib.renameVar
Rename existing variable

Syntax
cdflib.renameVar(cdfId,varNum,newName)

Description
cdflib.renameVar(cdfId,varNum,newName) renames a variable in a Common Data
Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies the variable.
Variable numbers are zero-based. newName is a character vector or string scalar that
specifies the name you want to assign to the variable.

Examples
Create a CDF, create a variable in the CDF, and then rename the variable. To run this
example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Get the name of the variable.
name = cdflib.getVarName(cdfid,varNum)

name =

Time

% Rename the variable
cdflib.renameVar(cdfid,varNum,'NewName');

 cdflib.renameVar

1-1391

% Check the new name.
name = cdflib.getVarName(cdfid,varNum)

name =

NewName

% Clean up
cdflib.delete(cdfid)

clear cdfid

References
This function corresponds to the CDF library C API routine CDFrenamezVar.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.createVar

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1392

https://cdf.gsfc.nasa.gov/

cdflib.setCacheSize
Specify number of dotCDF cache buffers

Syntax
cdflib.setCacheSize(cdfId,numBuffers)

Description
cdflib.setCacheSize(cdfId,numBuffers) specifies the number of cache buffers
the CDF library uses for an open dotCDF file. A dotCDF file is a file with the .cdf file
extension.

cdfId identifies an open CDF file. numBuffers is a numeric value that specifies the
number of buffers.

For information about cache schemes, see the CDF User's Guide.

Examples
Create a CDF file and set the cache size. To run this example, you must have write
permission in your current folder.

cdfId = cdflib.create('your_file.cdf');

% Get the default cache size
numBuf = cdflib.getCacheSize(cdfid)

numBuf =

 300

% Specify a cache size
cdflib.setCacheSize(cdfid,150)

% Check the cache size again

 cdflib.setCacheSize

1-1393

numBuf = cdflib.getCacheSize(cdfid)

numBuf =

 150

% Clean up
cdflib.delete(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFsetCacheSize.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1394

https://cdf.gsfc.nasa.gov/

cdflib.setChecksum
Specify checksum mode

Syntax
cdflib.setChecksum(cdfId,mode)

Description
cdflib.setChecksum(cdfId,mode) specifies the checksum mode of a Common Data
Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

mode

One of the following character vectors or string scalars, or its numeric equivalent.

'MD5_CHECKSUM' Sets file checksum to MD5 checksum.
'NO_CHECKSUM' File does not use a checksum.

To get the numeric equivalent of these constants, use cdflib.getConstantValue.

Examples
Create a CDF file and set the checksum mode. To run this example, you must be in a
writable folder.

cdfid = cdflib.create('mycdf.cdf');

 cdflib.setChecksum

1-1395

% Check initial value of checksum.
mode = cdflib.getChecksum(cdfid)

NO_CHECKSUM

cdflib.setChecksum(cdfid,'MD5_CHECKSUM')

% Verify the setting
mode = cdflib.getChecksum(cdfid)

MD5_CHECKSUM

References
This function corresponds to the CDF library C API routine CDFsetChecksum.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getChecksum | cdflib.getConstantValue

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1396

https://cdf.gsfc.nasa.gov/

cdflib.setCompression
Specify compression settings

Syntax
cdflib.setCompression(cdfId,ctype,cparms)

Description
cdflib.setCompression(cdfId,ctype,cparms) specifies compression settings of a
Common Data Format (CDF) file.

This function sets the compression for the CDF file itself, not that of any variables in the
file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

ctype

One of the following character vectors or string scalars specifying the compression type,
or its numeric equivalent.

Value Compression Type
'NO_COMPRESSION' No compression
'RLE_COMPRESSION' Run-length encoding compression
'HUFF_COMPRESSION' Huffman compression
'AHUFF_COMPRESSION' Adaptive Huffman compression
'GZIP_COMPRESSION' GNU's zip compression

 cdflib.setCompression

1-1397

To get the numeric equivalent of these constants, use cdflib.getConstantValue.

cparms

Optional parameter specifying any additional parameters required by the compression
type. Currently, the only compression type that uses this parameter is
'GZIP_COMPRESSION'. For this compression type, use cparms to specify the level of
compression as a numeric value between 1 and 9.

Examples
Create a CDF file and set the compression setting of the file. To run this example, your
current folder must be writable.

cdfId = cdflib.create('your_file.cdf');

% Determine the file's default compression setting
[ctype, cparms, cpercent] = cdflib.getCompression(cdfId)

ctype =

NO_COMPRESSION

cparms =

 []

cpercent =

 100

% Specify new compression setting
cdflib.setCompression(cdfId,'HUFF_COMPRESSION');

% Check the file's compression setting.
[ctype, cparms, cpercent] = cdflib.getCompression(cdfId)

ctype =

HUFF_COMPRESSION

cparms =

1 Alphabetical List

1-1398

OPTIMAL_ENCODING_TREES

cpercent =

 0

% Clean up
cdflib.delete(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFsetCompression.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getCompression | cdflib.getConstantValue

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setCompression

1-1399

https://cdf.gsfc.nasa.gov/

cdflib.setCompressionCacheSize
Specify number of compression cache buffers

Syntax
cdflib.setCompressionCacheSize(cdfId,numBuffers)

Description
cdflib.setCompressionCacheSize(cdfId,numBuffers) specifies the number of
cache buffers used for the compression scratch CDF file. For more information about CDF
cache schemes, see the CDF User's Guide.

cdfId identifies the CDF file. numBuffers specifies the number of buffers.

Examples
Create a CDF file and specify the number of compression cache buffers used. To run this
example you must be in a writable folder.

cdfId = cdflib.create('your_file.cdf');

% Get the current number of compression cache buffers
numBuf = cdflib.getCompressionCacheSize(cdfId)

numBuf =

 80

% Set a new value
cdflib.setCompressionCacheSize(cdfId,100)

% Check the new value
numBuf = cdflib.getCompressionCacheSize(cdfId)

numBuf =

1 Alphabetical List

1-1400

 100

% Clean up
cdflib.delete(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine
CDFsetCompressionCacheSize.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getCompressionCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setCompressionCacheSize

1-1401

https://cdf.gsfc.nasa.gov/

cdflib.setFileBackward
Set backward compatibility mode

Syntax
cdflib.setFileBackward(mode)

Description
cdflib.setFileBackward(mode) sets the backward compatibility mode to the value
specified by mode.

Input Arguments
mode

Compatibility mode, specified as one of these character vectors or string scalars.

'BACKWARDFILEon' Set backward compatibility mode on.
'BACKWARDFILEoff' Set backward compatibility mode off.

Default: 'BACKWARDFILEoff'

Examples
Set backward compatibility mode and then check the value.

cdflib.setFileBackward('BACKWARDFILEon');

mode = cdflib.getFileBackward

mode =

BACKWARDFILEon

1 Alphabetical List

1-1402

Definitions

backward compatibility mode
When specified, ensures that any new CDF file created using CDF V3.0 (or later) will be
readable by clients using version 2.7 of the CDF library. CDF 3.0 and later releases use a
64-bit file offset to allow for files greater than 2G bytes in size. CDF library versions
released before CDF 3.0 use a 32-bit file offset.

Tips
• Setting backward compatibility mode affects only your current MATLAB session, or

until you call cdflib.setFileBackward again.

References
This function corresponds to the CDF library C API routine CDFsetFileBackward.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.getFileBackward

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setFileBackward

1-1403

https://cdf.gsfc.nasa.gov/

cdflib.setFormat
Specify format of Common Data Format (CDF) file

Syntax
cdflib.setFormat(cdfId,format)

Description
cdflib.setFormat(cdfId,format) specifies the format of a Common Data Format
(CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

format

Format of CDF file, specified as a character vector or string scalar containing one of these
format values.

'SINGLE_FILE' The CDF consists of only one file. This is the default file format
'MULTI_FILE' The CDF consists of one header file for control and attribute

data and one additional file for each variable in the CDF.

You can also specify format using a numeric value. To get the numeric equivalent of the
formats, use cdflib.getConstantValue.

1 Alphabetical List

1-1404

Examples
Create a CDF file and specify its format. To run this example, you must have write
permission in your current folder.

cdfId = cdflib.create('mycdffile.cdf');

% Specify multifile format.
cdflib.setFormat(cdfId, 'MULTI_FILE');

% Check format.
 format = cdflib.getFormat(cdfId)

format =

MULTI_FILE

% Clean up
cdflib.delete(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFsetFormat.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.getFormat

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setFormat

1-1405

https://cdf.gsfc.nasa.gov/

cdflib.setMajority
Specify majority of variables

Syntax
cdflib.setMajority(cdfId,majority)

Description
cdflib.setMajority(cdfId,majority) specifies the majority of variables in a
Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

majority

One of the following format values specified as a character vector or string scalar, or its
numeric equivalent.

'ROW_MAJOR' C-like array ordering for variable storage. The first dimension in
each variable array varies the slowest. This is the default.

'COLUMN_MAJOR' Fortran-like array ordering for variable storage. The first
dimension in each variable array varies the fastest.

To get the numeric equivalent of these format values, use cdflib.getConstantValue.

1 Alphabetical List

1-1406

Examples
Create a CDF file and specify the majority used by variables in the file. To run this
example, you must have write permission in your current folder.

cdfId = cdflib.create('your_file.cdf')

% Specify the majority used by variables in the file
cdflib.setMajority(cdfId,'COLUMN_MAJOR');

% Check the majority value
majority = cdflib.getMajority(cdfId)

majority =

COLUMN_MAJOR

% Clean up
cdflib.delete(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFsetMajority.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getMajority

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setMajority

1-1407

https://cdf.gsfc.nasa.gov/

cdflib.setReadOnlyMode
Specify read-only mode

Syntax
cdflib.setReadOnlyMode(cdfId,mode)

Description
cdflib.setReadOnlyMode(cdfId,mode) specifies the read-only mode of a Common
Data Format (CDF) file.

After you open a CDF file, you can put the file into read-only mode to prevent accidental
modification.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

mode

Mode value, specified as one of these character vectors or string scalars, or its numeric
equivalent.

'READONLYon' CDF file is read-only
'READONLYoff' CDF file is modifiable.

To get the numeric equivalent of these mode values, use cdflib.getConstantValue.

1 Alphabetical List

1-1408

Examples
Open the example CDF file and set the file to read-only mode.

cdfId = cdflib.open('example.cdf');

% Set the file to READONLY mode
cdflib.setReadOnlyMode(cdfId,'READONLYon')

% Check read-only status of file again.
mode = cdflib.getReadOnlyMode(cdfId)

mode =

READONLYon

% Clean up
cdflib.close(cdfId)
clear cdfId

References
This function corresponds to the CDF library C API routine CDFsetReadOnlyMode.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.getReadOnlyMode

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setReadOnlyMode

1-1409

https://cdf.gsfc.nasa.gov/

cdflib.setStageCacheSize
Specify number of staging cache buffers for Common Data Format (CDF) file

Syntax
cdflib.setStageCacheSize(cdfId,numBuffers)

Description
cdflib.setStageCacheSize(cdfId,numBuffers) specifies the number of staging
cache buffers for a Common Data Format (CDF) file. For information about CDF cache
schemes, see the CDF User's Guide.

cdfId identifies the CDF file. numBuffers is a numeric value that specifies the number
of buffers.

Examples
Open the example CDF file and specify the number of cache buffers used.

cdfId = cdflib.open('example.cdf');

% Get current number of staging cache buffers
size = cdflib.getStageCacheSize(cdfId)

size =

 125

% Specify new cache size value.
cdflib.setStageCacheSize(cdfId, 200)

% Get size again.
size = cdflib.getStageCacheSize(cdfId)

size =

1 Alphabetical List

1-1410

 200

% Clean up
cdflib.close(cdfId)

clear cdfId

References
This function corresponds to the CDF library C API routine CDFsetStageCacheSize.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getStageCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setStageCacheSize

1-1411

https://cdf.gsfc.nasa.gov/

cdflib.setValidate
Specify library validation mode

Syntax
cdflib.setValidate(mode)

Description
cdflib.setValidate(mode) specifies the validation mode of the Common Data Format
(CDF) library. Specify the validation mode before opening any files.

Input Arguments
mode

One of the following character vectors or string scalars, or its numeric equivalent:

'VALIDATEFILEon
'

Turns validation mode on. With validation mode on, the library
performs sanity checks on the data fields in the CDF' file's internal
data structures to make sure that the values are within valid
ranges and consistent with the defined values/types/entries. This
mode also ensures that variable and attribute associations within
the file are valid. Note, however, that enabling this mode will, in
most cases, slow down the file opening process, especially for large
or very fragmented files.

'VALIDATEFILEof
f'

Turns validation mode off.

To get the numeric equivalent of these values, use cdflib.getConstantValue.

1 Alphabetical List

1-1412

Examples
Set the validation mode of the CDF library.

cdflib.setValidate('VALIDATEFILEon');

References
This function corresponds to the CDF library C API routine CDFsetValidate.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.getValidate

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setValidate

1-1413

https://cdf.gsfc.nasa.gov/

cdflib.setVarAllocBlockRecords
Specify range of records to be allocated for variable

Syntax
cdflib.setVarAllocBlockRecords(cdfId,varNum,firstrec,lastrec)

Description
cdflib.setVarAllocBlockRecords(cdfId,varNum,firstrec,lastrec) specifies
a range of records you want to allocate (but not write) for a variable in a Common Data
Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers (variable numbers) are
zero-based.

firstRec

Numeric value identifying the record at which to start allocating. Record numbers are
zero-based.

lastRec

Numeric value identifying the record at which to stop allocating. Record numbers are
zero-based.

1 Alphabetical List

1-1414

Examples
Create a CDF, create a variable in the CDF, and then specify the number of records to
allocate for the variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Specify the number of records to allocate.
cdflib.setVarAllocBlockRecords(cdfid,varNum,1,10);

% Clean up
cdflib.delete(cdfid)

clear cdfid

References
This function corresponds to the CDF library C API routine
CDFsetzVarAllocBlockRecords.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarAllocRecords

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setVarAllocBlockRecords

1-1415

https://cdf.gsfc.nasa.gov/

cdflib.setVarBlockingFactor
Specify blocking factor for variable

Syntax
cdflib.setVarBlockingFactor(cdfId,varNum,blockingFactor)

Description
cdflib.setVarBlockingFactor(cdfId,varNum,blockingFactor) specifies the
blocking factor for a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable numbers are zero-based.

blockingFactor

Numeric value that specifies the number of records to allocate when writing to an
unallocated record.

Examples
Create a CDF, create a variable in the CDF, and then set the blocking factor used with the
variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

1 Alphabetical List

1-1416

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Get the current blocking factor used with the variable
bFactor = cdflib.getVarBlockingFactor(cdfid,varNum)

bFactor =

 0

% Change the blocking factor for the variable
cdflib.setVarBlockingFactor(cdfid,varNum,10);

% Check the new blocking factor .
bFactor = cdflib.getVarBlockingFactor(cdfid,varNum)

bFactor =

 10

% Clean up
cdflib.delete(cdfid)

clear cdfid

Definitions
blocking factor
A variable's blocking factor specifies the minimum number of records the library allocates
when you write to an unallocated record. If you specify a fractional blocking factor, the
library rounds the value down.

References
This function corresponds to the CDF library C API routine
CDFsetzVarBlockingFactor.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

 cdflib.setVarBlockingFactor

1-1417

https://cdf.gsfc.nasa.gov/

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarBlockingFactor

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1418

cdflib.setVarCacheSize
Specify number of multi-file cache buffers for variable

Syntax
cdflib.setVarCacheSize(cdfId,varNum,numBuffers)

Description
cdflib.setVarCacheSize(cdfId,varNum,numBuffers) specifies the number of
cache buffers the CDF library uses for a variable in a Common Data Format (CDF) file.

This function is only used with multifile format CDF files. It does not apply to single-file
format CDFs. For more information about caching, see the CDF User's Guide.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers (variable numbers) are
zero-based.

numBuffers

Numeric value identifying the number of cache buffers to use.

Examples
Create a multifile CDF, and then retrieve the number of buffers being used for a variable:

 cdflib.setVarCacheSize

1-1419

cdfid = cdflib.create('your_file.cdf')

% Set the format of the file to be multi-file
cdflib.setFormat(cdfid,'MULTI_FILE');

% Create a variable in the file
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Note how the library creates a separate file for the variable
ls your_file.*

your_file.cdf your_file.z0

% Determine the number of cache buffers used with the variable
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

 1

% Increase the number of cache buffers used.
cdflib.setVarCacheSize(cdfid,varNum,5)

% Check the number of cache buffers used with the variable.
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

 5

% Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFsetzVarCacheSize.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

1 Alphabetical List

1-1420

https://cdf.gsfc.nasa.gov/

See Also
cdflib.getVarCacheSize | cdflib.setVarsCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setVarCacheSize

1-1421

cdflib.setVarCompression
Specify compression settings used with variable

Syntax
cdflib.setVarCompression(cdfId,varNum,ctype,cparams)

Description
cdflib.setVarCompression(cdfId,varNum,ctype,cparams) configures the
compression setting for a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers (variable numbers) are
zero-based.

ctype

One of the following character vectors or string scalars specifying the compression type,
or its numeric equivalent.

Value Compression Type
'NO_COMPRESSION' No compression.
'RLE_COMPRESSION' Run-length encoding compression
'HUFF_COMPRESSION' Huffman compression

1 Alphabetical List

1-1422

Value Compression Type
'AHUFF_COMPRESSION' Adaptive Huffman compression
'GZIP_COMPRESSION' GNU's zip compression

To get the numeric equivalent of these compression type values, use
cdflib.getConstantValue.

cparams

Optional parameter specifying any additional parameters required by the compression
type. Currently, the only compression type that uses this parameter is
'GZIP_COMPRESSION'. For this compression type, you use cparms to specify the level of
compression as a numeric value between 1 and 9.

Examples
Create a CDF, create a variable, and then set the compression used by the variable. To
run this example, you must be in a folder with execute permission.

cdfid = cdflib.create('mycdf.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Specify the compression used by the variable.
cdflib.setVarCompression(cdfid,0,'GZIP_COMPRESSION',8)

% Check the compression setting of the variable
[ctype params percent] = cdflib.getVarCompression(cdfid,0)

ctype =

GZIP_COMPRESSION

params =

 8

percent =

 0

 cdflib.setVarCompression

1-1423

% Clean up
cdflib.delete(cdfid);
clear cdfid

References
This function corresponds to the CDF library C API routine CDFsetzVarCompression.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarCompression | cdflib.setCompression

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1424

https://cdf.gsfc.nasa.gov/

cdflib.setVarInitialRecs
Specify initial number of records written to variable

Syntax
cdflib.setVarInitialRecs(cdfId,varNum,numrecs)

Description
cdflib.setVarInitialRecs(cdfId,varNum,numrecs) specifies the initial number
of records to write to a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable numbers are zero-based.

numRecs

Numeric value specifying the number of records to write.

Examples
Create a CDF, create a variable, and then specify the number of records to write for the
variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.

 cdflib.setVarInitialRecs

1-1425

varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Specify the number of records to write for the variable
cdflib.setVarInitialRecs(cdfid,varNum,100);

recsWritten = cdflib.getVarNumRecsWritten(cdfid,varNum)

recsWritten =

 100

% Clean up
cdflib.delete(cdfid)

clear cdfid

References
This function corresponds to the CDF library C API routine CDFsetzVarInitialRecs.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.createVar

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1426

https://cdf.gsfc.nasa.gov/

cdflib.setVarPadValue
Specify pad value used with variable

Syntax
cdflib.setVarPadValue(cdfId,varNum,padvalue)

Description
cdflib.setVarPadValue(cdfId,varNum,padvalue) specifies the pad value used
with a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable numbers are zero-based.

padValue

Value to use a pad value for the variable. The data type of the pad value must match the
data type of the variable.

Examples
Create a CDF, create a variable in the CDF, and then set the pad value used with the
variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

 cdflib.setVarPadValue

1-1427

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Get the current pad value used with the variable
padval = cdflib.getVarPadValue(cdfid,varNum)

padval =

 0

% Change the pad value for the variable
cdflib.setVarPadValue(cdfid,varNum,int8(1));

% Check the new pad value.
padval = cdflib.getVarPadValue(cdfid,varNum)

padval =

 1

% Clean up
cdflib.delete(cdfid)

clear cdfid

References
This function corresponds to the CDF library C API routine CDFsetzVarPadValue.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarPadValue

Topics
“Import CDF Files Using Low-Level Functions”

1 Alphabetical List

1-1428

https://cdf.gsfc.nasa.gov/

“Export to CDF Files”

 cdflib.setVarPadValue

1-1429

cdflib.SetVarReservePercent
Specify reserve percentage for variable

Syntax
cdflib.setVarReservePercent(cdfId,varNum,percent)

Description
cdflib.setVarReservePercent(cdfId,varNum,percent) specifies the
compression reserve percentage for a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers (variable numbers) are
zero-based.

percent

Numeric value specifying the amount of extra space to allocate for a compressed variable,
expressed as a percentage. You can specify values between0 (no extra space is reserved)
and 100, or values greater than 100. The value specifies the percentage of the
uncompressed size of the variable. If you specify a fractional reserve percentages, the
library rounds the value down.

1 Alphabetical List

1-1430

Examples
Create a CDF, create a variable, set the compression of the variable, and then set the
reserve percent for the variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Set the compression of the variable.
cdflib.setVarCompression(cdfid,varNum,'GZIP_COMPRESSION',8);

% Set the compression reserver percentage
cdflib.setVarReservePercent(cdfid,varNum, 80);

cdflib.close(cdfid);

Definitions

reserve percentage
Specifies how much extra space to allocate for a compressed variable. This extra space
allows the variable to expand when you write additional records to the variable. If you do
not specify this room for growth, the library has to move the variable to the end of the file
when the size expands and the space at the original location of the variable becomes
wasted space.

References
This function corresponds to the CDF library C API routine
CDFsetzVarReservePercent.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

 cdflib.SetVarReservePercent

1-1431

https://cdf.gsfc.nasa.gov/

See Also
cdflib.getVarCompression | cdflib.getVarReservePercent |
cdflib.setVarCompression

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1432

cdflib.setVarsCacheSize
Specify number of cache buffers used for all variables

Syntax
cdflib.setVarsCacheSize(cdfId,varNum,numBuffers)

Description
cdflib.setVarsCacheSize(cdfId,varNum,numBuffers) specifies the number of
cache buffers the CDF library uses for all the variables in the multifile format Common
Data Format (CDF) file.

This function is not applicable to single-file CDFs. For more information about caching,
see the CDF User's Guide.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers (variable numbers) are
zero-based.

numBuffers

Numeric value specifying the cache buffers.

 cdflib.setVarsCacheSize

1-1433

Examples
Create a multifile CDF and specify the number of buffers used for all variables. To run this
example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf')

% Set the format of the file to be multi-file
cdflib.setFormat(cdfid,'MULTI_FILE');

% Create a variable in the file
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Note how the library creates a separate file for the variable
ls your_file.*

your_file.cdf your_file.z0

% Determine the number of cache buffers used with the variable
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

 1

% Specify the number of cache buffers used by all variables in CDF.
cdflib.setVarsCacheSize(cdfid,6)

% Check the number of cache buffers used with the variable.
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

 6

% Clean up
cdflib.delete(cdfid);

clear cdfid

1 Alphabetical List

1-1434

References
This function corresponds to the CDF library C API routine CDFsetzVarsCacheSize.

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getVarCacheSize | cdflib.setVarCacheSize

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

 cdflib.setVarsCacheSize

1-1435

https://cdf.gsfc.nasa.gov/

cdflib.setVarSparseRecords
Specify how variable handles sparse records

Syntax
cdflib.getVarSparseRecords(cdfId,varNum,stype)

Description
cdflib.getVarSparseRecords(cdfId,varNum,stype) specifies the sparse records
type of a variable in a Common Data Format (CDF) file.

Input Arguments
cdfId

Identifier of a CDF file, returned by a call to cdflib.create or cdflib.open.

varNum

Number that identifies the variable to be set. Variable numbers are zero-based.

stype

One of the following character vectors or string scalars that specifies how the variable
handles sparse records, or its numeric equivalent.

Value Description
'NO_SPARSERECORDS' No sparse records
'PAD_SPARSERECORDS' For sparse records, the library uses the variable's

pad value when reading values from a missing
record.

1 Alphabetical List

1-1436

Value Description
'PREV_SPARSERECORDS' For sparse records, the library uses values from the

previous existing record when reading values from
a missing record. If there is no previous existing
record, the library uses the variable's pad value.

To get the numeric equivalent of these values, use the cdflib.getConstantValue
function.

Examples
Open a multifile CDF and close a variable.

Create a CDF, create a variable, and set the sparse records type of the variable. To run
this example you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Set the sparse records type of the variable
cdflib.setVarSparseRecords(cdfid,varNum,'PAD_SPARSERECORDS');

% Check the sparse records type of the variable
stype = cdflib.getVarSparseRecords(cdfid,varNum)

stype =

PAD_SPARSERECORDS

%Clean up
cdflib.delete(cdfid);

clear cdfid

References
This function corresponds to the CDF library C API routine CDFsetzVarSparseRecords.

 cdflib.setVarSparseRecords

1-1437

To use this function, you must be familiar with the CDF C interface. Read the CDF
documentation at the CDF website.

For copyright information, see the cdfcopyright.txt file.

See Also
cdflib.getConstantValue | cdflib.getVarSparseRecords

Topics
“Import CDF Files Using Low-Level Functions”
“Export to CDF Files”

1 Alphabetical List

1-1438

https://cdf.gsfc.nasa.gov/

cdfread
Read data from Common Data Format (CDF) file

Syntax
data = cdfread(filename)
data = cdfread(filename, param1, val1, param2, val2, ...)
[data, info] = cdfread(filename, ...)

Description
data = cdfread(filename) reads all the data from the Common Data Format (CDF)
file specified filename. Specify filename as a character vector or string scalar. CDF
data sets typically contain a set of variables, of a specific data type, each with an
associated set of records. The variable might represent time values with each record
representing a specific time that an observation was recorded. cdfread returns all the
data in a cell array where each column represents a variable and each row represents a
record associated with a variable. If the variables have varying numbers of associated
records, cdfread pads the rows to create a rectangular cell array, using pad values
defined in the CDF file.

Note Because cdfread creates temporary files, the current working directory must be
writeable.

data = cdfread(filename, param1, val1, param2, val2, ...) reads data
from the file, where param1, param2, and so on, can be any of the parameters listed in
the following table.

[data, info] = cdfread(filename, ...) returns details about the CDF file in the
info structure.

 cdfread

1-1439

Parameter Value
'Records' A vector specifying which records to read. Record numbers are

zero-based. cdfread returns a cell array with the same number
of rows as the number of records read and as many columns as
there are variables.

'Variables' A 1-by-n or n-by-1 cell array specifying the names of the
variables to read from the file. n must be less than or equal to
the total number of variables in the file. cdfread returns a cell
array with the same number of columns as the number of
variables read, and a row for each record read.

'Slices' An m-by-3 array, where each row specifies where to start
reading along a particular dimension of a variable, the skip
interval to use on that dimension (every item, every other item,
etc.), and the total number of values to read on that dimension.
m must be less than or equal to the number of dimensions of the
variable. If m is less than the total number of dimensions,
cdfread reads every value from the unspecified dimensions ([0
1 n], where n is the total number of elements in the dimension.
Note: Because the 'Slices' parameter describes how to
process a single variable, it must be used in conjunction with
the 'Variables' parameter.

'ConvertEpochToDatenum' A Boolean value that determines whether cdfread
automatically converts CDF epoch data types to MATLAB serial
date numbers. If set to false (the default), cdfread wraps
epoch values in MATLAB cdfepoch objects.
Note: For better performance when reading large data sets, set
this parameter to true.

1 Alphabetical List

1-1440

Parameter Value
'CombineRecords' A Boolean value that determines how cdfread returns the CDF

data sets read from the file. If set to false (the default),
cdfread stores the data in an m-by-n cell array, where m is the
number of records and n is the number of variables requested.
If set to true, cdfread combines all records for a particular
variable into one cell in the output cell array. In this cell,
cdfread stores scalar data as a column array. cdfread extends
the dimensionality of nonscalar and string data. For example,
instead of creating 1000 elements containing 20-by-30 arrays
for each record, cdfread stores all the records in one cell as a
1000-by-20-by-30 array
Note: If you use the 'Records' parameter to specify which
records to read, you cannot use the 'CombineRecords'
parameter.

Note: When using the 'Variable' parameter to read one
variable, if the 'CombineRecords' parameter is true,
cdfread returns the data as an M-by-N numeric or character
array; it does not put the data into a cell array.

Note To improve performance when working with large data files, use the
'ConvertEpochToDatenum' and 'CombineRecords' options.

Note To improve performance, turn off the file validation which the CDF library does by
default when opening files. For more information, see cdflib.setValidate.

Examples
Read all the data from a CDF file.

data = cdfread('example.cdf');

Read the data from the variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

 cdfread

1-1441

Read the first value in the first dimension, the second value in the second dimension, the
first and third values in the third dimension, and all values in the remaining dimension of
the variable 'multidimensional'.

data = cdfread('example.cdf', ...
 'Variable', {'multidimensional'}, ...
 'Slices', [0 1 1; 1 1 1; 0 2 2]);

This is similar to reading the whole variable into data and then using matrix indexing, as
in the following.

data{1}(1, 2, [1 3], :)

Collapse the records from a data set and convert CDF epoch data types to MATLAB serial
date numbers.

data = cdfread('example.cdf', ...
 'CombineRecords', true, ...
 'ConvertEpochToDatenum', true);

Limitations
• The cdfread function does not support non-ASCII encoded data. All the variable

names, attributes names, variable values, and attribute values in the CDF file must
have 7-bit ASCII encoding. Attempting to read non-ASCII encoded files results in
errors or data with corrupted characters.

See Also
cdfepoch | cdfinfo | cdflib.setValidate

Topics
“Import CDF Files Using Low-Level Functions”

Introduced before R2006a

1 Alphabetical List

1-1442

cdfwrite
Write data to Common Data Format (CDF) file

Note cdfwrite is not recommended. Use the cdflib low-level functions instead.

Syntax
cdfwrite(filename,variablelist)
cdfwrite(...,'PadValues',padvals)
cdfwrite(...,'GlobalAttributes',gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(...,'WriteMode',mode)
cdfwrite(...,'Format',format)

Description
cdfwrite(filename,variablelist) writes out a Common Data Format (CDF) file, to
the file name indicated in filename. Specify filename as a character vector or string
scalar. The variablelist argument is a cell array of ordered pairs, each of which
comprises a CDF variable name (specified as a character vector or string scalar) and the
corresponding CDF variable value. To write out multiple records for a variable, put the
values in a cell array where each element in the cell array represents a record.

Note Because cdfwrite creates temporary files, both the destination directory for the
file and the current working directory must be writeable.

cdfwrite(...,'PadValues',padvals) writes out pad values for given variable
names. padvals is a cell array of ordered pairs, each of which comprises a variable name
(specified as a character vector or string scalar) and a corresponding pad value. Pad
values are the default values associated with the variable when an out-of-bounds record is
accessed. Variable names that appear in padvals must appear in variablelist.

 cdfwrite

1-1443

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure gattrib as
global metadata for the CDF file. Each field of the structure is the name of a global
attribute. The value of each field contains the value of the attribute. To write out multiple
values for an attribute, put the values in a cell array where each element in the cell array
represents a record.

Note To specify a global attribute name that is invalid in your MATLAB application,
create a field called 'CDFAttributeRename' in the attribute structure. The value of this
field must have a value that is a cell array of ordered pairs. The ordered pair consists of
the name of the original attribute, as listed in the GlobalAttributes structure, and the
corresponding name of the attribute to be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the structure vattrib
as variable metadata for the CDF. Each field of the struct is the name of a variable
attribute. The value of each field should be an M-by-2 cell array where M is the number of
variables with attributes. The first element in the cell array should be the name of the
variable and the second element should be the value of the attribute for that variable.

Note To specify a variable attribute name that is illegal in MATLAB, create a field called
'CDFAttributeRename' in the attribute structure. The value of this field must have a
value that is a cell array of ordered pairs. The ordered pair consists of the name of the
original attribute, as listed in the VariableAttributes struct, and the corresponding
name of the attribute to be written to the CDF file. If you are specifying a variable
attribute of a CDF variable that you are renaming, the name of the variable in the
VariableAttributes structure must be the same as the renamed variable.

cdfwrite(...,'WriteMode',mode), where mode is either 'overwrite' or
'append', indicates whether or not the specified variables should be appended to the
CDF file if the file already exists. By default, cdfwrite overwrites existing variables and
attributes.

cdfwrite(...,'Format',format), where format is either 'multifile' or
'singlefile', indicates whether or not the data is written out as a multifile CDF. In a
multifile CDF, each variable is stored in a separate file with the name *.vN, where N is
the number of the variable that is written out to the CDF. By default, cdfwrite writes out
a single file CDF. When 'WriteMode' is set to 'Append', the 'Format' option is
ignored, and the format of the preexisting CDF is used.

1 Alphabetical List

1-1444

Examples
Write out a file 'example.cdf' containing a variable 'Longitude' with the value
[0:360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and 'Latitude'
with the variable 'Latitude' having a pad value of 10 for all out-of-bounds records that
are accessed.
cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20}, ...
 'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude' with the value
[0:360], and with a variable attribute of 'validmin' with the value 10.
varAttribStruct.validmin = {'Longitude' [10]};
cdfwrite('example', {'Longitude' 0:360}, 'VariableAttributes', ...
 varAttribStruct);

Limitations
• CDF files do not support non-ASCII encoded inputs. Variable names, attributes names,

variable values, and attribute values must have 7-bit ASCII encoding. Attempting to
write non-ASCII encoded inputs results in errors or data with corrupted characters.

See Also
cdfepoch | cdfinfo | cdfread

Introduced before R2006a

 cdfwrite

1-1445

ceil
Round toward positive infinity

Syntax
Y = ceil(X)

Y = ceil(t)
Y = ceil(t,unit)

Description
Y = ceil(X) rounds each element of X to the nearest integer greater than or equal to
that element.

Y = ceil(t) rounds each element of the duration array t to the nearest number of
seconds greater than or equal to that element.

Y = ceil(t,unit) rounds each element of t to the nearest number of the specified
unit of time greater than or equal to that element.

Examples

Round Matrix Elements Toward Positive Infinity

X = [-1.9 -0.2 3.4; 5.6 7 2.4+3.6i];
Y = ceil(X)

Y = 2×3 complex

 -1.0000 + 0.0000i 0.0000 + 0.0000i 4.0000 + 0.0000i
 6.0000 + 0.0000i 7.0000 + 0.0000i 3.0000 + 4.0000i

1 Alphabetical List

1-1446

Round Duration Values Toward Positive Infinity

Round each value in a duration array to the nearest number of seconds greater than or
equal to that value.

t = hours(8) + minutes(29:31) + seconds(1.23);
t.Format = 'hh:mm:ss.SS'

t = 1x3 duration array
 08:29:01.23 08:30:01.23 08:31:01.23

Y1 = ceil(t)

Y1 = 1x3 duration array
 08:29:02.00 08:30:02.00 08:31:02.00

Round each value in t to the nearest number of hours greater than or equal to that value.

Y2 = ceil(t,'hours')

Y2 = 1x3 duration array
 09:00:00.00 09:00:00.00 09:00:00.00

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. For complex X,
ceil treats the real and imaginary parts independently.

ceil converts logical and char elements of X into double values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | logical
Complex Number Support: Yes

 ceil

1-1447

t — Input duration
duration array

Input duration, specified as a duration array.

unit — Unit of time
'seconds' (default) | 'minutes' | 'hours' | 'days' | 'years'

Unit of time, specified as 'seconds', 'minutes', 'hours', 'days', or 'years'. A
duration of 1 year is equal to exactly 365.2425 24-hour days.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support char or logical data types for X.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-1448

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fix | floor | round

Topics
“Integers”
“Floating-Point Numbers”

Introduced before R2006a

 ceil

1-1449

cell
Cell array

Description
A cell array is a data type with indexed data containers called cells, where each cell can
contain any type of data. Cell arrays commonly contain either lists of text, combinations
of text and numbers, or numeric arrays of different sizes. Refer to sets of cells by
enclosing indices in smooth parentheses, (). Access the contents of cells by indexing with
curly braces, {}.

Creation
When you have data to put into a cell array, create the array using the cell array
construction operator, {}.

C = {1,2,3;
 'text',rand(5,10,2),{11; 22; 33}}

C = 2x3 cell array
 {[1]} {[2]} {[3]}
 {'text'} {5x10x2 double} {3x1 cell}

You also can use {} to create an empty 0-by-0 cell array.

C = {}

C =

 0x0 empty cell array

To create a cell array with a specified size, use the cell function, described below.

You can use cell to preallocate a cell array to which you assign data later. cell also
converts certain types of Java, .NET, and Python® data structures to cell arrays of
equivalent MATLAB objects.

1 Alphabetical List

1-1450

Syntax
C = cell(n)
C = cell(sz1,...,szN)
C = cell(sz)

D = cell(obj)

Description
C = cell(n) returns an n-by-n cell array of empty matrices.

C = cell(sz1,...,szN) returns a sz1-by-...-by-szN cell array of empty matrices
where sz1,...,szN indicate the size of each dimension. For example, cell(2,3)
returns a 2-by-3 cell array.

C = cell(sz) returns a cell array of empty matrices where size vector sz defines
size(C). For example, cell([2 3]) returns a 2-by-3 cell array.

D = cell(obj) converts a Java array, .NET System.String or System.Object array,
or Python sequence into a MATLAB cell array.

Input Arguments
n — Size of square cell array
integer value

Size of a square cell array, specified as an integer value.

• If n is 0, then C is an empty cell array.
• If n is negative, then it is treated as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Sizes of dimensions
integer values

Sizes of the dimensions of the cell array, specified as integer values.

 cell

1-1451

• If the size of any dimension is 0, then C is an empty cell array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, cell ignores trailing dimensions with a size of 1. For

example, cell(3,1,1,1) produces a 3-by-1 cell array of empty matrices.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size
row vector of integers

Size, specified as a row vector of integers. Each element of sz indicates the size of the
corresponding dimension.

• If the size of any dimension is 0, then C is an empty cell array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, cell ignores trailing dimensions with a size of 1. For

example, cell([3 1 1 1]) produces a 3-by-1 cell array of empty matrices.

Example: sz = [2 3 4] creates a 2-by-3-by-4 cell array of empty matrices.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

obj — Input array
Java array or object | .NET array of type System.String or System.Object | Python
sequence type

Input array, specified as:

• Java array or object
• .NET array of type System.String or System.Object
• Python sequence type

Output Arguments
C — Output array
cell array

Output array, returned as a cell array. Each cell contains an empty, 0-by-0 array of type
double.

1 Alphabetical List

1-1452

D — Converted array
cell array

Converted array, returned as a cell array.

Each cell contains a MATLAB object that has a type closest to the corresponding
Java, .NET, or Python type. For more information, see:

• “Handle Data Returned from Java Methods”
• “Handle Data Returned from Python”
• “.NET Type to MATLAB Type Mapping”

Examples

Create Cell Array

When related pieces of data have different data types, you can keep them together in a
cell array. Each cell contains a piece of data. To refer to elements of a cell array, use array
indexing. You can index into a cell array using smooth parentheses, (), and into the
contents of cells using curly braces, {}.

Create a cell array that contains several temperature readings taken on a given date.
Specify a date as a character vector, and temperatures as an array of doubles. To store
these pieces of data in a cell array, enclose them in curly braces.

C = {'2017-08-16',[56 67 78]}

C = 1x2 cell array
 {'2017-08-16'} {1x3 double}

Add readings for different dates to the cell array. One way to add more cells is to expand
the cell array by assignment, just as you can expand an ordinary array.

C(2,:) = {'2017-08-17',[58 69 79]};
C(3,:) = {'2017-08-18',[60 68 81]}

C = 3x2 cell array
 {'2017-08-16'} {1x3 double}
 {'2017-08-17'} {1x3 double}

 cell

1-1453

 {'2017-08-18'} {1x3 double}

Index into the first row of C. When you index with smooth parentheses, (), the result is a
cell array that is a subset of the cell array.

C(1,:)

ans = 1x2 cell array
 {'2017-08-16'} {1x3 double}

Index into the contents of a cell. When you index with curly braces, {}, the result is the
piece of data that is contained in the specified cell.

C{1,2}

ans = 1×3

 56 67 78

Square Cell Array

Create a 3-by-3 cell array of empty matrices.

C = cell(3)

C = 3x3 cell array
 {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double}

3-D Cell Array

Create a 3-by-4-by-2 cell array of empty matrices.

C = cell(3,4,2);
size(C)

1 Alphabetical List

1-1454

ans = 1×3

 3 4 2

Clone Size from Existing Array

Create a cell array of empty matrices that is the same size as an existing array.

A = [7 9; 2 1; 8 3];
sz = size(A);
C = cell(sz)

C = 3x2 cell array
 {0x0 double} {0x0 double}
 {0x0 double} {0x0 double}
 {0x0 double} {0x0 double}

It is a common pattern to combine the previous two lines of code into a single line.

C = cell(size(A));

Tips
• Creating a cell array of empty matrices with the cell function is equivalent to

assigning an empty matrix to the last index of a new cell array. For example, these two
statements are equivalent:

C = cell(3,4,2);
C{3,4,2} = [];

Compatibility Considerations
Cell array expansion is consistent with general array
expansion
Behavior changed in R2019a

 cell

1-1455

Starting in R2019a, the dimensions of an expanded cell array are consistent whether you
use curly braces or parentheses for indices. Previously, the output dimensions were
different when you did not specify indices for all dimensions. Indexing with curly braces
now matches the previous behavior for indexing with parentheses, which is consistent
with general array expansion. For example:

• If C is 1-by-2-by-3-by-4, then C(5,2)={3} and C{5,2}=3 both expand C to 5-by-2-
by-3-by-4. Previously, C{5,2}=3 resulted in a 5-by-24 array.

• If C is 0-by-5 or 5-by-0, then C(3)={2} and C{3}=2 expand C to 1-by-3. Previously,
C{3}=2 resulted in a 1-by-5 array when C was 0-by-5 and in a 3-by-1 array when C was
5-by-0.

• If C is 0-by-2-by-3, then C(3)={2} and C{3}=2 produce errors because it is
ambiguous which dimension to expand. Previously, C{3}=2 resulted in a 1-by-6 array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “Cell Array Limitations for Code Generation” (MATLAB Coder).

See Also
cell2mat | cell2struct | cell2table | iscell | mat2cell | num2cell |
struct2cell | table2cell

Topics
“Create Cell Array”
“Preallocate Memory for Cell Array”
“Access Data in Cell Array”
“Cell vs. Structure Arrays”

Introduced before R2006a

1 Alphabetical List

1-1456

cell2mat
Convert cell array to ordinary array of the underlying data type

Syntax
A = cell2mat(C)

Description
A = cell2mat(C) converts a cell array into an ordinary array. The elements of the cell
array must all contain the same data type, and the resulting array is of that data type.

The contents of C must support concatenation into an N-dimensional rectangle.
Otherwise, the results are undefined. For example, the contents of cells in the same
column must have the same number of columns, although they need not have the same
number of rows (see figure).

Examples

 cell2mat

1-1457

Convert Cell Array to Numeric Array

Convert numeric arrays in four cells of a cell array into one numeric array.

C = {[1], [2 3 4];
 [5; 9], [6 7 8; 10 11 12]}

C = 2x2 cell array
 {[1]} {1x3 double}
 {2x1 double} {2x3 double}

A = cell2mat(C)

A = 3×4

 1 2 3 4
 5 6 7 8
 9 10 11 12

Convert Cell Array of Structures to Array

Convert structures in a cell array into one structure array. The structures must have the
same fields.

s1.a = [1 2 3 4];
s1.b = 'Good';
s2.a = [5 6; 7 8];
s2.b = 'Morning';
c = {s1,s2};
d = cell2mat(c)

d = 1x2 struct array with fields:
 a
 b

Display the first field of structure d(1).

d(1).a

ans = 1×4

1 Alphabetical List

1-1458

 1 2 3 4

Display the second field of d(2).

d(2).b

ans =
'Morning'

Input Arguments
C — Input cell array
cell array

Input cell array, in which all cells contain the same data type. cell2mat accepts numeric
or character data within cells of C, or structures with the same field names and data
types. cell2mat does not accept objects or nested cells within C.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 cell2mat

1-1459

See Also
cell | cell2struct | cell2table | iscell | mat2cell | num2cell | struct2cell |
table2cell

Introduced before R2006a

1 Alphabetical List

1-1460

cell2struct
Convert cell array to structure array

Syntax
structArray = cell2struct(cellArray, fields, dim)

Description
structArray = cell2struct(cellArray, fields, dim) creates a structure array,
structArray, from the information contained within cell array cellArray.

The fields argument specifies field names for the structure array. This argument is a
character array, a cell array of character vectors, or a string array.

The dim argument tells MATLAB which axis of the cell array to use in creating the
structure array. Use a numeric double to specify dim.

To create a structure array with fields derived from N rows of a cell array, specify N field
names in the fields argument, and the number 1 in the dim argument. To create a
structure array with fields derived from M columns of a cell array, specify M field names in
the fields argument and the number 2 in the dim argument.

The structArray output is a structure array with N fields, where N is equal to the
number of fields in the fields input argument. The number of fields in the resulting
structure must equal the number of cells along dimension dim that you want to convert.

Examples
Create the following table for use with the examples in this section. The table lists information about
the employees of a small Engineering company. Reading the table by rows shows the names of
employees by department. Reading the table by columns shows the number of years each employee
has worked at the company.

 cell2struct

1-1461

 5 Years 10 Years 15 Years
Development Lee, Reed, Hill Dean, Frye Lane, Fox, King
Sales Howe, Burns Kirby, Ford Hall
Management Price Clark, Shea Sims
Quality Bates, Gray Nash Kay, Chase
Documentation Lloyd, Young Ryan, Hart, Roy Marsh

Enter the following commands to create the initial cell array employees:

devel = {{'Lee','Reed','Hill'}, {'Dean','Frye'}, ...
 {'Lane','Fox','King'}};
sales = {{'Howe','Burns'}, {'Kirby','Ford'}, {'Hall'}};
mgmt = {{'Price'}, {'Clark','Shea'}, {'Sims'}};
qual = {{'Bates','Gray'}, {'Nash'}, {'Kay','Chase'}};
docu = {{'Lloyd','Young'}, {'Ryan','Hart','Roy'}, {'Marsh'}};

employees = [devel; sales; mgmt; qual; docu]
employees =

 {1x3 cell} {1x2 cell} {1x3 cell}
 {1x2 cell} {1x2 cell} {1x1 cell}
 {1x1 cell} {1x2 cell} {1x1 cell}
 {1x2 cell} {1x1 cell} {1x2 cell}
 {1x2 cell} {1x3 cell} {1x1 cell}

This is the resulting cell array:

1 Alphabetical List

1-1462

Convert the cell array to a struct along dimension 1:

1 Convert the 5-by-3 cell array along its first dimension to construct a 3-by-1 struct
array with 5 fields. Each of the rows along dimension 1 of the cell array becomes a
field in the struct array:

 cell2struct

1-1463

Traversing the first (i.e., vertical) dimension, there are 5 rows with row headings that
read as follows:

rowHeadings = {'development', 'sales', 'management', ...
 'quality', 'documentation'};

2 Convert the cell array to a struct array, depts, in reference to this dimension:

depts = cell2struct(employees, rowHeadings, 1)
depts =
3x1 struct array with fields:
 development
 sales
 management
 quality
 documentation

3 Use this row-oriented structure to find the names of the Development staff who have
been with the company for up to 10 years:

1 Alphabetical List

1-1464

depts(1:2).development
ans =
 'Lee' 'Reed' 'Hill'
ans =
 'Dean' 'Frye'

Convert the same cell array to a struct along dimension 2:

1 Convert the 5-by-3 cell array along its second dimension to construct a 5-by-1 struct
array with 3 fields. Each of the columns along dimension 2 of the cell array becomes
a field in the struct array:

 cell2struct

1-1465

2 Traverse the cell array along the second (or horizontal) dimension. The column
headings become fields of the resulting structure:

colHeadings = {'fiveYears' 'tenYears' 'fifteenYears'};

years = cell2struct(employees, colHeadings, 2)

1 Alphabetical List

1-1466

years =
5x1 struct array with fields:
 fiveYears
 tenYears
 fifteenYears

3 Using the column-oriented structure, show how many employees from the Sales and
Documentation departments have worked for the company for at least 5 years:

[~, sales_5years, ~, ~, docu_5years] = years.fiveYears
sales_5years =
 'Howe' 'Burns'
docu_5years =
 'Lloyd' 'Young'

Convert only part of the cell array to a struct:

1 Convert only the first and last rows of the cell array. This results in a 3-by-1 struct
array with 2 fields:

rowHeadings = {'development', 'documentation'};

depts = cell2struct(employees([1,5],:), rowHeadings, 1)
depts =
3x1 struct array with fields:
 development
 documentation

 cell2struct

1-1467

2 Display those employees who belong to these departments for all three periods of
time:

for k=1:3
 depts(k,:)
end

ans =
 development: {'Lee' 'Reed' 'Hill'}
 documentation: {'Lloyd' 'Young'}
ans =
 development: {'Dean' 'Frye'}
 documentation: {'Ryan' 'Hart' 'Roy'}
ans =
 development: {'Lane' 'Fox' 'King'}
 documentation: {'Marsh'}

1 Alphabetical List

1-1468

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cell | cell2table | fieldnames | iscell | isstruct | struct | struct2cell |
table2struct

Topics
dynamic field names

Introduced before R2006a

 cell2struct

1-1469

cell2table
Convert cell array to table

Syntax
T = cell2table(C)
T = cell2table(C,Name,Value)

Description
T = cell2table(C) converts the contents of an m-by-n cell array, C, to an m-by-n table,
T. Each column of C provides the data contained in a variable of T.

To create variable names in the output table, cell2table appends column numbers to
the input array name. If the input array has no name, then cell2table creates variable
names of the form 'Var1',...,'VarN', where N is the number of columns in C.

T = cell2table(C,Name,Value) creates a table from a cell array, C, with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify row names or variable names to include in the table.

Examples

Convert Cell Array to Table

Create a cell array containing character vectors and numeric data.

C = {5 'cereal' 110 'C+'; 12 'pizza' 140 'B';...
 23 'salmon' 367 'A'; 2 'cookies' 160 'D'}

C = 4x4 cell array
 {[5]} {'cereal' } {[110]} {'C+'}
 {[12]} {'pizza' } {[140]} {'B' }

1 Alphabetical List

1-1470

 {[23]} {'salmon' } {[367]} {'A' }
 {[2]} {'cookies'} {[160]} {'D' }

Convert the cell array, C, to a table and specify variable names.

T = cell2table(C,...
 'VariableNames',{'Age' 'FavoriteFood' 'Calories' 'NutritionGrade'})

T=4×4 table
 Age FavoriteFood Calories NutritionGrade
 ___ ____________ ________ ______________

 5 'cereal' 110 'C+'
 12 'pizza' 140 'B'
 23 'salmon' 367 'A'
 2 'cookies' 160 'D'

The variables T.Age and T.Calories are numeric while the variables T.FavoriteFood
and T.NutritionGrade are cell arrays of character vectors.

Convert Column Headings to Variable Names

Convert a cell array to a table, and then include the first row from the cell array as
variable names for the table.

Create a cell array where the first row contains character vectors to identify column
headings.

Patients = {'Gender' 'Age' 'Height' 'Weight' 'Smoker';...
 'M' 38 71 176 true;...
 'M' 43 69 163 false;...
 'M' 38 64 131 false;...
 'F' 38 64 131 false;...
 'F' 40 67 133 false;...
 'F' 49 64 119 false}

Patients = 7x5 cell array
 {'Gender'} {'Age'} {'Height'} {'Weight'} {'Smoker'}
 {'M' } {[38]} {[71]} {[176]} {[1]}
 {'M' } {[43]} {[69]} {[163]} {[0]}

 cell2table

1-1471

 {'M' } {[38]} {[64]} {[131]} {[0]}
 {'F' } {[38]} {[64]} {[131]} {[0]}
 {'F' } {[40]} {[67]} {[133]} {[0]}
 {'F' } {[49]} {[64]} {[119]} {[0]}

Exclude the columns headings and convert the contents of the cell array to a table.

C = Patients(2:end,:);
T = cell2table(C)

T=6×5 table
 C1 C2 C3 C4 C5
 ___ __ __ ___ _____

 'M' 38 71 176 true
 'M' 43 69 163 false
 'M' 38 64 131 false
 'F' 38 64 131 false
 'F' 40 67 133 false
 'F' 49 64 119 false

The table, T, has variable names C1,...,C5.

Change the variable names by setting the table property,
T.Properties.VariableNames, to the first row of the cell array.

T.Properties.VariableNames = Patients(1,:)

T=6×5 table
 Gender Age Height Weight Smoker
 ______ ___ ______ ______ ______

 'M' 38 71 176 true
 'M' 43 69 163 false
 'M' 38 64 131 false
 'F' 38 64 131 false
 'F' 40 67 133 false
 'F' 49 64 119 false

1 Alphabetical List

1-1472

Input Arguments
C — Input cell array
2-D cell array

Input cell array, specified as a 2-D cell array. Each column of C provides data for a table
variable.

• If the contents of the cells in a column of C have compatible sizes and types, then the
corresponding table variable is the vertical concatenation of those contents into an
array.

• If the contents of the cells in a column have different sizes and types, then the
corresponding table variable is a cell array.

• If the contents of the cells in a column are all character vectors, then the
corresponding table variable is a cell array of character vectors.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RowNames',{'row1','row2','row3'} uses the row names, row1, row2,
and row3 for the table, T.

RowNames — Row names for T
{} (default) | cell array of character vectors | string array

Row names for T, specified as the comma-separated pair consisting of 'RowNames' and a
cell array of character vectors or a string array, whose elements are nonempty and
distinct. The number of names must equal the number of rows, size(C,1).

VariableNames — Variable names for T
cell array of character vectors | string array

Variable names for T, specified as the comma-separated pair consisting of
'VariableNames' and a cell array of character vectors or a string array, whose
elements are nonempty and distinct. The number of names must equal the number of
variables, size(C,2).

 cell2table

1-1473

Furthermore, the variable names must be valid MATLAB identifiers. If valid MATLAB
identifiers are not available for use as variable names, MATLAB uses an array of N names
of the form 'Var1' ... 'VarN', where N is the number of variables. You can determine
valid MATLAB variable names using the function isvarname.

Output Arguments
T — Output table
table

Output table, returned as a table. The table can store metadata such as descriptions,
variable units, variable names, and row names. For more information, see the Properties
section of table.

See Also
array2table | isvarname | struct2table | table | table2cell

Topics
“Access Data in a Table”

Introduced in R2013b

1 Alphabetical List

1-1474

celldisp
Display cell array contents

Syntax
celldisp(C)
celldisp(C,displayName)

Description
celldisp(C) recursively displays the contents of a cell array.

The celldisp function also displays the name of the cell array. If there is no name to
display, then celldisp displays ans instead. For example, if C is an expression that
creates an array, then there is no name to display.

celldisp(C,displayName) uses the specified display name instead of the default
name described in the previous syntax.

Examples

Display Contents of Each Cell

Create a cell array.

C = {'row1',[1 2 3],3+4i;
 'row2',[2 4;1 3],{'innercells',42}}

C = 2x3 cell array
 {'row1'} {1x3 double} {[3.0000 + 4.0000i]}
 {'row2'} {2x2 double} {1x2 cell }

Display the contents of each cell using the celldisp function. celldisp also displays
the curly-brace indexing you can use to index into cells.

 celldisp

1-1475

celldisp(C)

C{1,1} =

row1

C{2,1} =

row2

C{1,2} =

 1 2 3

C{2,2} =

 2 4
 1 3

C{1,3} =

 3.0000 + 4.0000i

C{2,3}{1} =

innercells

C{2,3}{2} =

 42

The last cell contains a cell array. celldisp also displays the contents of each cell from
the inner cell array.

1 Alphabetical List

1-1476

Display Different Names

Call celldisp and specify a cell array as its first input argument. Since the first
argument is not a workspace variable, and so does not have a name of its own, specify a
name as the second argument. celldisp displays the cell array using this name.

celldisp({'row1',5,10},'myCells')

myCells{1} =

row1

myCells{2} =

 5

myCells{3} =

 10

Call celldisp without specifying a name. When there is no variable name or second
input argument, celldisp displays ans as the name of the cell array.

celldisp({'row1',5,10})

ans{1} =

row1

ans{2} =

 5

 celldisp

1-1477

ans{3} =

 10

Input Arguments
C — Input cell array
cell array

Input cell array.

displayName — Displayed name of cell array
character vector | string scalar

Displayed name of the cell array, specified as a character vector or string scalar.

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cellplot

Topics
“Export Cell Array to Text File”

1 Alphabetical List

1-1478

Introduced before R2006a

 celldisp

1-1479

cellfun
Apply function to each cell in cell array

Syntax
A = cellfun(func,C)
A = cellfun(func,C1,...,Cn)
A = cellfun(___ ,Name,Value)
[A1,...,Am] = cellfun(___)

Description
A = cellfun(func,C) applies the function func to the contents of each cell of cell
array C, one cell at a time. cellfun then concatenates the outputs from func into the
output array A, so that for the ith element of C, A(i) = func(C{i}). The input
argument func is a function handle to a function that takes one input argument and
returns a scalar. The output from func can have any data type, so long as objects of that
type can be concatenated. The array A and cell array C have the same size.

You cannot specify the order in which cellfun calculates the elements of A or rely on
them being done in any particular order.

A = cellfun(func,C1,...,Cn) applies func to the contents of the cells of
C1,...,Cn, so that A(i) = func(C1{i},...,Cn{i}). The function func must take n
input arguments and return a scalar. The cell arrays C1,...,Cn all must have the same
size.

A = cellfun(___ ,Name,Value) applies func with additional options specified by one
or more Name,Value pair arguments. For example, to return output values in a cell array,
specify 'UniformOutput',false. You can return A as a cell array when func returns
values that cannot be concatenated into an array. You can use Name,Value pair
arguments with the input arguments of either of the previous syntaxes.

[A1,...,Am] = cellfun(___) returns multiple output arrays A1,...,Am when func
returns m output values. func can return output arguments that have different data types,

1 Alphabetical List

1-1480

but the data type of each output must be the same each time func is called. You can use
this syntax with any of the input arguments of the previous syntaxes.

The number of output arguments from func need not be the same as the number of input
arguments specified by C1,...,Cn.

Examples

Apply Function to Contents of Cell Array

Create a cell array that contains numeric arrays of different sizes.

C = {1:10, [2; 4; 6], []}

C = 1x3 cell array
 {1x10 double} {3x1 double} {0x0 double}

Calculate the mean of each numeric array, and return the means in an array.

A = cellfun(@mean,C)

A = 1×3

 5.5000 4.0000 NaN

Return Object Array

Create two cell arrays that contain numeric arrays of different sizes.

X = {5:5:100, 10:10:100, 20:20:100};
Y = {rand(1,20), rand(1,10), rand(1,5)};

Plot the arrays. Return an array of chart line objects from the plot function and use them
to add different markers to each set of data points. cellfun can return arrays of any
data type, so long as objects of that data type can be concatenated.

figure
hold on

 cellfun

1-1481

p = cellfun(@plot,X,Y);
p(1).Marker = 'o';
p(2).Marker = '+';
p(3).Marker = 's';
hold off

Return Multiple Output Arrays

Create a cell array that contains numeric arrays of different sizes.

C = {1:10, [2; 4; 6], []}

1 Alphabetical List

1-1482

C = 1x3 cell array
 {1x10 double} {3x1 double} {0x0 double}

Calculate the sizes of each array in C. The number of rows and columns are each in 1-by-3
numeric arrays.

[nrows,ncols] = cellfun(@size,C)

nrows = 1×3

 1 3 0

ncols = 1×3

 10 1 0

Apply Function to Characters in Cell or String Array

You can use cellfun to apply functions to cell arrays of character vectors and to string
arrays. cellfun treats the two kinds of arrays identically.

Create a cell array of character vectors that contains weekday names.

C = {'Monday','Tuesday','Wednesday','Thursday','Friday'}

C = 1x5 cell array
 {'Monday'} {'Tuesday'} {'Wednesday'} {'Thursday'} {'Friday'}

Create three-letter abbreviations for the names using the cellfun function. Specify a
function that extracts the first three characters and returns them as a character vector. To
return the abbreviations in a cell array, specify the 'UniformOutput',false name-
value pair.

A = cellfun(@(x) x(1:3),C,'UniformOutput',false)

A = 1x5 cell array
 {'Mon'} {'Tue'} {'Wed'} {'Thu'} {'Fri'}

 cellfun

1-1483

You also can call cellfun on a string array. For compatibility, cellfun treats each
element of a string array as though it were a character vector. If you specify a function
that returns text, then cellfun returns it as a cell array of character vectors, not as a
string array.

Create abbreviations for names in a string array using cellfun.

str = ["Saturday","Sunday"]

str = 1x2 string array
 "Saturday" "Sunday"

B = cellfun(@(x) x(1:3),str,'UniformOutput',false)

B = 1x2 cell array
 {'Sat'} {'Sun'}

Input Arguments
func — Function to apply
function handle | character vector | string scalar

Function to apply to the contents of the cells of the input cell arrays, specified as a
function handle, character vector, or string scalar.

func can correspond to more than one function file and therefore can represent a set of
overloaded functions. In these cases, MATLAB determines which function to call based on
the class of the input arguments.

Backward Compatibility

You can specify func as a character vector or string scalar, rather than a function handle,
but only for a limited set of function names. func can be: 'isempty', 'islogical',
'isreal', 'length', 'ndims', 'prodofsize', 'size', or 'isclass'.

If you specify a function name rather than a function handle:

• cellfun does not call any overloaded versions of the function.

1 Alphabetical List

1-1484

• The size and isclass functions require additional inputs to the cellfun function:

A = cellfun('size',C,k) returns the size along the kth dimension of each
element of C.

A = cellfun('isclass',C,classname) returns logical 1 (true) for each element
of C that matches the classname argument. This syntax returns logical 0 (false) for
objects that are a subclass of classname.

Example: A = cellfun(@mean,C) returns the means of the elements of C.

C — Input array
cell array | string array

Input array, specified as a cell array or a string array. If C is a string array, then cellfun
treats each element of C as though it were a character vector, not a string.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: A = cellfun(@mean,C,'UniformOutput',false) returns the outputs
from mean in a cell array. Use the 'UniformOutput',false name-value pair if C
contains numeric matrices and mean returns vectors.

UniformOutput — True or false
true (default) | false

True or false, specified as the comma-separated pair consisting of 'UniformOutput'
and either true (1) or false (0).

Value of 'UniformOutput' Description
true (1) func must return scalars that cellfun

concatenates into arrays.
false (0) cellfun returns the outputs of func in

cell arrays. The outputs of func can have
any sizes and different data types.

 cellfun

1-1485

ErrorHandler — Function to catch errors
function handle

Function to catch errors, specified as the comma-separated pair consisting of
'ErrorHandler' and a function handle. If func throws an error, then the error handler
specified by 'ErrorHandler' catches the error and takes the action specified in the
function. The error handler either must throw an error or return the same number of
outputs as func. If the value of 'UniformOutput' is true, then the output arguments of
the error handler must be scalars and have the same data type as the outputs of func.

The first input argument of the error handler is a structure with these fields:

• identifier — Error identifier
• message — Error message text
• index — Linear index into the input arrays at which func threw the error

The remaining input arguments to the error handler are the input arguments for the call
to func that made func throw the error.

Suppose func returns two doubles as output arguments. You can specify the error
handler as 'ErrorHandler',@errorFunc, where errorFunc is a function that raises a
warning and returns two output arguments.

function [A,B] = errorFunc(S,varargin)
 warning(S.identifier, S.message);
 A = NaN;
 B = NaN;
end

If you do not specify 'ErrorHandler', then cellfun rethrows the error thrown by
func.

Output Arguments
A — Output array
array of any data type | cell array

Output array, returned as an array of any data type or as a cell array.

1 Alphabetical List

1-1486

By default, cellfun concatenates the outputs from func into an array. func must return
scalars. If func returns objects, then the class that the objects belong to must meet these
requirements.

• Support assignment by linear indexing into the object array
• Have a reshape method that returns an array that has the same size as the input

If the value of the 'UniformOutput' name-value pair argument is false (0), then
cellfun returns outputs in a cell array. In that case, the outputs from func can have any
sizes and different data types.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with these limitations:

• The input function must be a function handle.
• The input function must not rely on persistent variables.
• The 'ErrorHandler' name-value pair is not supported.
• With the 'UniformOutput' name-value pair set to true (default), the outputs from

the specified function must be numeric, logical, characters, or cell arrays.

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 cellfun

1-1487

See Also
arrayfun | cell2mat | spfun | splitapply | structfun

Topics
“Anonymous Functions”
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-1488

cellplot
Graphically display structure of cell array

Syntax
cellplot(c)
cellplot(c, 'legend')
handles = cellplot(c)

Description
cellplot(c) displays a figure window that graphically represents the contents of c.
Filled rectangles represent elements of vectors and arrays, while scalars and short
character vectors are displayed as text.

cellplot(c, 'legend') places a colorbar next to the plot labelled to identify the data
types in c.

handles = cellplot(c) displays a figure window and returns a vector of surface
handles.

Limitations
The cellplot function can display only two-dimensional cell arrays.

Examples
Consider a 2-by-2 cell array containing a matrix, a vector, and two character vectors:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

 cellplot

1-1489

The command cellplot(c) produces

See Also
celldisp

Topics
“Export Cell Array to Text File”

Introduced before R2006a

1 Alphabetical List

1-1490

cellstr
Convert to cell array of character vectors

Syntax
C = cellstr(A)

C = cellstr(D)
C = cellstr(D,fmt)
C = cellstr(D,fmt,locale)

Description
C = cellstr(A) converts A to a cell array of character vectors. The input array A can
be a character array, a categorical array, or, starting in R2016b, a string array.

C = cellstr(D) converts a datetime, duration, or calendar duration array into a cell
array of character vectors in the format specified by the Format property of D. The
output has the same dimensions as D.

C = cellstr(D,fmt) represents dates or durations in the specified format. For
example, cellstr(D,'HH:mm:ss') represents the times associated with each element
of D.

C = cellstr(D,fmt,locale) represents dates or durations in the specified locale. For
example, cellstr(D,'dd-MMM-yyyy','en_US') represents the dates associated with
each element of D using the en_US locale. The locale affects the language used to
represent character vectors such as month and day names.

Examples

Convert String Array to Cell Array

You can create string arrays to contain multiple pieces of text. However, you might need
to use functions that accept cell arrays of character vectors as input arguments, and that

 cellstr

1-1491

do not accept string arrays. To pass data from a string array to such functions, use the
cellstr function to convert the string array to a cell array of character vectors.

Create a string array. Starting in R2017a, you can create strings using double quotes.

A = ["Past","Present","Future"]

A = 1x3 string array
 "Past" "Present" "Future"

Convert the string array to a 1-by-3 cell array of character vectors.

C = cellstr(A)

C = 1x3 cell array
 {'Past'} {'Present'} {'Future'}

Convert Character Array to Cell Array

Create a character array. Include trailing spaces so that each row has the same length,
resulting in a 3-by-4 array.

A = ['abc ';'defg';'hi ']

A = 3x4 char array
 'abc '
 'defg'
 'hi '

class(A)

ans =
'char'

Convert the character array to a 3-by-1 cell array of character vectors.

C = cellstr(A)

C = 3x1 cell array
 {'abc' }

1 Alphabetical List

1-1492

 {'defg'}
 {'hi' }

class(C)

ans =
'cell'

Convert Calendar Duration Array to Cell Array

Create a calendarDuration array.

D = calmonths(15:17) + caldays(8) + hours(1.2345)

D = 1x3 calendarDuration array
 1y 3mo 8d 1h 14m 4.2s 1y 4mo 8d 1h 14m 4.2s 1y 5mo 8d 1h 14m 4.2s

Convert the array to a cell array of character vectors.

C = cellstr(D)

C = 1x3 cell array
 {'1y 3mo 8d 1h 14...'} {'1y 4mo 8d 1h 14...'} {'1y 5mo 8d 1h 14...'}

class(C)

ans =
'cell'

Input Arguments
A — Input array
character array | cell array of character vectors | categorical array | string array

Input array, specified as a character array, a cell array of character vectors, a categorical
array, or a string array.

 cellstr

1-1493

• If A is a character array, then each row of A is a cell of C. The cellstr function
removes trailing whitespace characters in the rows of A, except for significant
whitespace such as nonbreaking space characters. Use the char function to convert
back into a character array.

• If A is a cell array of character vectors, then cellstr returns A unaltered.
• If A is a categorical array, then cellstr converts each element to a character vector

and assigns it to a cell. The size of the cell array is the same as the size of A.
• Starting in R2016b, if A is a string array, then cellstr converts each element to a

character vector and assigns it to a cell. The size of the cell array is the same as the
size of A. Use the string function to convert back into a string array.

• If any element of A is a missing string (displayed as <missing>), then cellstr
assigns an empty character array to the corresponding cell of the output C.

Data Types: char | cell | categorical | string

D — Input date and time
date or duration array

Input date and time, specified as a date or duration array.
Data Types: datetime | duration | calendarDuration

fmt — Date and time format
[] (default) | character vector | string scalar

Date and time format, specified as [], a character vector, or a string scalar. If you specify
[], then cellstr represents input D in the format specified by the Format property of D.

The supported formats depend on the data type of D.

• datetime formats can include combinations of units and delimiters, such as 'yyyy-
MMM-dd HH:mm:ss.SSS'. For details, see the Format property for datetime arrays.

• duration formats are either single characters ('y', 'd', 'h', 'm', or 's') or one of
these combinations:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'

1 Alphabetical List

1-1494

• Any of the above, with up to nine S characters to indicate fractional second digits,
such as 'hh:mm:ss.SSSS'

• calendarDuration formats can include combinations of the characters 'y', 'q',
'm', 'w', 'd', and 't' in order from largest to smallest unit of time, such as 'ym'.

For more information on the duration and calendarDuration formats, see “Set Date
and Time Display Format”.

locale — Locale represented in output
character vector | string scalar

Locale represented in the output, specified as a character vector or a string scalar. The
locale affects the language used to represent certain components of dates and times, such
as month names.

locale can be:

• 'system', to specify your system locale.
• A character vector in the form xx_YY, where xx is a lowercase ISO 639-1 two-letter

code that specifies a language, and YY is an uppercase ISO 3166-1 alpha-2 code that
specifies a country.

The locale input argument can be any of the values accepted by the 'Locale' name-
value pair argument for the datetime function.
Example: 'en_US'
Example: 'ja_JP'

Algorithms
cellstr does not remove trailing whitespace characters from character arrays when the
characters are significant whitespace, such as nonbreaking space characters.

This table shows the most common characters that are significant whitespace characters
and their descriptions. For more information, see Whitespace character.

Significant Whitespace Character Description
char(133) Next line

 cellstr

1-1495

https://en.wikipedia.org/wiki/Whitespace_character

Significant Whitespace Character Description
char(160) Nonbreaking space
char(8199) Figure space
char(8239) Narrow no-break space

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• In generated code, this function supports categorical arrays only.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
char | iscellstr | isstrprop | string | strsplit

Introduced before R2006a

1 Alphabetical List

1-1496

cgs
Conjugate gradients squared method

Syntax
x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description
x = cgs(A,b) attempts to solve the system of linear equations A*x = b for x. The n-by-
n coefficient matrix A must be square and should be large and sparse. The column vector
b must have length n. You can specify A as a function handle, afun, such that afun(x)
returns A*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If cgs converges, a message to that effect is displayed. If cgs fails to converge after the
maximum number of iterations or halts for any reason, a warning message is printed
displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at
which the method stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [], then cgs uses
the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations, maxit. If maxit is
[] then cgs uses the default, min(n,20).

 cgs

1-1497

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the preconditioner M
or M = M1*M2 and effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is
[] then cgs applies no preconditioner. M can be a function handle mfun such that
mfun(x) returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is [], then cgs
uses the default, an all-zero vector.

[x,flag] = cgs(A,b,...) returns a solution x and a flag that describes the
convergence of cgs.

Flag Convergence
0 cgs converged to the desired tolerance tol within

maxititerations.
1 cgs iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 cgs stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during cgs became too

small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual norm(b-A*x)/
norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration number at which
x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples
Using cgs with a Matrix Input
A = gallery('wilk',21);
b = sum(A,2);

1 Alphabetical List

1-1498

tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1);

displays the message

cgs converged at iteration 13 to a solution with
relative residual 2.4e-016.

Using cgs with a Function Handle
This example replaces the matrix A in the previous example with a handle to a matrix-
vector product function afun, and the preconditioner M1 with a handle to a backsolve
function mfun. The example is contained in the file run_cgs that

• Calls cgs with the function handle @afun as its first argument.
• Contains afun as a nested function, so that all variables in run_cgs are available to

afun and myfun.

The following shows the code for run_cgs:

function x1 = run_cgs
n = 21;
b = afun(ones(n,1));
tol = 1e-12; maxit = 15;
x1 = cgs(@afun,b,tol,maxit,@mfun);

 function y = afun(x)
 y = [0; x(1:n-1)] + ...
 [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
 [x(2:n); 0];
 end

 function y = mfun(r)
 y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];
 end
end

When you enter

x1 = run_cgs

MATLAB software returns

 cgs

1-1499

cgs converged at iteration 13 to a solution with
relative residual 2.4e-016.

Using cgs with a Preconditioner.
This example demonstrates the use of a preconditioner.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12;
maxit = 20;

Use cgs to find a solution at the requested tolerance and number of iterations.

[x0,fl0,rr0,it0,rv0] = cgs(A,b,tol,maxit);

fl0 is 1 because cgs does not converge to the requested tolerance 1e-12 within the
requested 20 iterations. In fact, the behavior of cgs is so poor that the initial guess (x0 =
zeros(size(A,2),1) is the best solution and is returned as indicated by it0 = 0.
MATLAB stores the residual history in rv0.

Plot the behavior of cgs.

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1 Alphabetical List

1-1500

The plot shows that the solution does not converge. You can use a preconditioner to
improve the outcome.

Create a preconditioner with ilu, since A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing the
drop tolerance or consider using the 'udiag' option.

MATLAB cannot construct the incomplete LU as it would result in a singular factor, which
is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the error message.

 cgs

1-1501

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = cgs(A,b,tol,maxit,L,U);

fl1 is 0 because cgs drives the relative residual to 4.3851e-014 (the value of rr1). The
relative residual is less than the prescribed tolerance of 1e-12 at the third iteration (the
value of it1) when preconditioned by the incomplete LU factorization with a drop
tolerance of 1e-6. The output rv1(1) is norm(b) and the output rv1(14) is norm(b-
A*x2).

You can follow the progress of cgs by plotting the relative residuals at each iteration
starting from the initial estimate (iterate number 0).

semilogy(0:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1 Alphabetical List

1-1502

References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric linear systems,”
SIAM J. Sci. Stat. Comput., January 1989, Vol. 10, No. 1, pp. 36–52.

 cgs

1-1503

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• b must be a nonsparse column vector.
• When input A is a sparse matrix:

• Only one sparse matrix preconditioner M is supported.
• If you use two preconditioners, M1 and M2, then both of them must be functions.
• cgs does not detect stagnation (Flag 3). Instead, it reports failure to converge

(Flag 1).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | gmres | ilu | lsqr | minres | mldivide | pcg | qmr | symmlq

Topics
“Create Function Handle”

1 Alphabetical List

1-1504

Introduced before R2006a

 cgs

1-1505

char
Character array

Description
A character array is a sequence of characters, just as a numeric array is a sequence of
numbers. A typical use is to store a short piece of text as a row of characters in a
character vector.

Creation
You can create a character vector using single quotation marks.

C = 'Hello, world'

C =

 'Hello, world'

If you have an array of a different data type, you can convert it to a character array using
the char function, described below.

Syntax
C = char(A)
C = char(A1,...,An)

C = char(D)
C = char(D,fmt)
C = char(D,fmt,locale)

Description
C = char(A) converts array A into a character array.

1 Alphabetical List

1-1506

C = char(A1,...,An) converts the arrays A1,...,An into a single character array.
After conversion to characters, the input arrays become rows in C. The char function
pads rows with blank spaces as needed. If any input array is an empty character array,
then the corresponding row in C is a row of blank spaces.

The input arrays A1,...,An cannot be string arrays, cell arrays, or categorical arrays.

A1,...,An can be of different sizes and shapes.

C = char(D) converts a datetime, duration, or calendar duration array into a character
array in the format specified by the Format property of D. The output contains one date
or duration in each row.

C = char(D,fmt) represents dates or durations in the specified format, such as
'HH:mm:ss'.

C = char(D,fmt,locale) represents dates or durations in the specified locale, such as
'en_US'. The locale affects the language used to represent character vectors such as
month and day names.

Input Arguments
A — Input array
numeric array | character array | cell array of character arrays | categorical array | string
array

Input array, specified as a numeric array, a character array, a cell array of character
arrays, a categorical array, or a string array.

• If A is a numeric array, then char converts numbers into characters. Valid numeric
values range from 0 to 65535 and correspond to Unicode® code units. Values from 0 to
127 also correspond to 7-bit ASCII characters. The char function:

• Rounds nonintegers toward zero.
• Treats values less than 0 as 0.
• Treats values greater than 65535 as 65535.

• If A is a character array, then char returns A unaltered.
• If A is a cell array of character arrays, then char converts the cell array to a character

array. Each row from each character array in the cell array becomes a row in C,
automatically padded with blank spaces as needed.

 char

1-1507

• If A is a multidimensional cell array, then char collapses the output into a two-
dimensional character array. For example, if A is a 2-by-2-by-2-by-2 cell array, then
the output character array C has 16 rows.

• If A is a categorical array, then char converts each element of A to a row of a
character array, in column order.

• If A is a string array, then char converts the string array to a character array. char
converts each string element of A to a character vector, and then concatenates the
vectors to produce a character array, automatically padded with blank spaces as
needed. Since char converts each string to a character vector, the size of the output
character array is different from the size of the string array.

Example: char(65) converts the integer 65 to the character A.

D — Input date and time
datetime or duration array

Input date and time, specified as a datetime or duration array.
Data Types: datetime | duration | calendarDuration

fmt — Date and time format
[] (default) | character vector | string scalar

Date and time format, specified as [], a character vector, or a string scalar. If you specify
[], then char represents input D in the format specified by the Format property of D.

The supported formats depend on the data type of D.

• datetime formats can include combinations of units and delimiters, such as 'yyyy-
MMM-dd HH:mm:ss.SSS'. For details, see the Format property for datetime arrays.

• duration formats are either single characters ('y', 'd', 'h', 'm', or 's') or one of
these combinations:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'
• Any of the above, with up to nine S characters to indicate fractional second digits,

such as 'hh:mm:ss.SSSS'

1 Alphabetical List

1-1508

• calendarDuration formats can include combinations of the characters 'y', 'q',
'm', 'w', 'd', and 't' in order from the largest to the smallest unit of time, such as
'ym'.

For more information on the duration and calendarDuration formats, see “Set Date
and Time Display Format”.

locale — Locale represented in output
character vector | string scalar

Locale represented in the output, specified as a character vector or a string scalar. The
locale affects the language used to represent certain components of dates and times, such
as month names.

locale can be:

• 'system', to specify your system locale.
• A character vector in the form xx_YY, where xx is a lowercase ISO 639-1 two-letter

code that specifies a language, and YY is an uppercase ISO 3166-1 alpha-2 code that
specifies a country.

The locale input argument can be any of the values accepted by the 'Locale' name-
value pair argument for the datetime function.
Example: 'en_US'
Example: 'ja_JP'

Output Arguments
C — Output array
character array

Output array, returned as a character array. Character arrays can have any size, but their
most typical use is for storing pieces of text as character vectors.

MATLAB stores all characters as Unicode characters using the UTF-16 encoding. For
more information on Unicode, see Unicode.

Examples

 char

1-1509

https://en.wikipedia.org/wiki/Unicode

Convert Integers to Characters

Convert a numeric array to a character array.

A = [77 65 84 76 65 66];
C = char(A)

C =
'MATLAB'

The integers from 32 to 127 correspond to printable ASCII characters. However, the
integers from 0 to 65535 also correspond to Unicode® characters. You can convert
integers to their corresponding Unicode representations using the char function.

For example, the number 8451 corresponds to the symbol for degrees Celsius. Convert
8451 using char.

C = char(8451)

C =
'℃'

Convert Multiple Arrays to Character Array

Convert multiple arrays into a single character array. The input arrays need not have the
same shape.

A1 = [65 66; 67 68];
A2 = 'abcd';
C = char(A1,A2)

C = 3x4 char array
 'AB '
 'CD '
 'abcd'

Because the input arrays do not have the same number of columns, char pads the rows
from A1 with blanks.

whos C

1 Alphabetical List

1-1510

 Name Size Bytes Class Attributes

 C 3x4 24 char

Convert String to Character Vector

Create a string scalar. Starting in R2017a, you can create string scalars using double
quotes. MATLAB® also displays strings with double quotes.

A = "Pythagoras"

A =
"Pythagoras"

Convert A to a character vector using the char function. MATLAB displays character
vectors with single quotes.

C = char(A)

C =
'Pythagoras'

Convert Duration Array to Character Array

Create a duration array.

D = hours(23:25) + minutes(8) + seconds(1.2345)

D = 1x3 duration array
 23.134 hr 24.134 hr 25.134 hr

Convert D to a character array.

C = char(D)

C = 3x9 char array
 '23.134 hr'
 '24.134 hr'
 '25.134 hr'

 char

1-1511

C is a character array that represents one duration value per row.

Specify the format of the duration values represented by C.

C = char(D,'hh:mm')

C = 3x5 char array
 '23:08'
 '24:08'
 '25:08'

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• For the syntax C = char(A), the input A must be a tall numeric column vector.
• Syntaxes with more than one input are not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For the syntax C = char(A), the input A must be a string scalar, a numeric array, or a
character array.

• Enumeration inputs must be scalar at compile time. Arrays of enumerations are not
supported.

1 Alphabetical List

1-1512

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The multiple input syntax C = char(A1,...,An) is not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cellstr | convertCharsToStrings | convertStringsToChars | ischar | string |
text

Topics
“Create Character Arrays”
“Locale Settings for MATLAB Process”

Introduced before R2006a

 char

1-1513

checkcode
Check MATLAB code files for possible problems

Syntax
checkcode(filename)
checkcode(filename1,...,filenameN)

checkcode(___ ,option1,...,optionN)

info = checkcode(___ ,'-struct')
msg = checkcode(___ ,'-string')
[___ , filepaths] = checkcode(___)

Description
checkcode(filename) displays messages about filename that report potential
problems and opportunities for code improvement. These messages are sometimes
referred to as Code Analyzer messages. The line number in the message is a hyperlink
that you can click to go directly to that line in the Editor. The exact text of the checkcode
messages is subject to some change between versions.

checkcode(filename1,...,filenameN) displays messages for each specified
filename.

checkcode(___ ,option1,...,optionN) modifies the returned messages based on
the specified option flags. For example, specify '-modcyc' to request the modified
cyclomatic complexity to be returned with each message. You can specify options with any
of the input arguments in the previous syntaxes.

info = checkcode(___ ,'-struct') returns the information as an n-by-1 structure
array, where n is the number of messages found.

msg = checkcode(___ ,'-string') returns the information as a character vector.

If you omit the '-struct' or '-string' argument and you specify an output argument,
the default behavior is '-struct'.

1 Alphabetical List

1-1514

[___ , filepaths] = checkcode(___) also returns filepaths, the absolute paths
to the file names. You can specify filepaths with either the '-struct' or '-string'
options.

Examples

Check for Potential Problems in File

Run checkcode on the example file lengthofline.m. MATLAB® displays the Code
Analyzer messages for lengthofline.m in the Command Window.

checkcode('lengthofline')

L 21 (C 1-9): The value assigned to variable 'nothandle' might be unused.
L 22 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 23 (C 5-11): The variable 'notline' appears to change size on every loop iteration. Consider preallocating for speed.
L 23 (C 44-49): Use STRCMPI(str1,str2) instead of using UPPER/LOWER in a call to STRCMP.
L 27 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 33 (C 13-16): The variable 'data' appears to change size on every loop iteration. Consider preallocating for speed.
L 33 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD.
L 37 (C 29): When both arguments are numeric scalars, consider replacing | with || for performance.
L 38 (C 47): When both arguments are numeric scalars, consider replacing | with || for performance.
L 39 (C 47): When both arguments are numeric scalars, consider replacing | with || for performance.
L 42 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 44 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 47 (C 52): Invalid syntax at ';'. A '(' might be missing a closing ')'.
L 47 (C 53): Invalid syntax at ')'. A '[' might be missing a closing ']'.
L 47 (C 54): Parse error at ']': usage might be invalid MATLAB syntax.
L 48 (C 17): Terminate statement with semicolon to suppress output (in functions).
L 48 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

Store List of Potential Problems

Run checkcode on the example file lengthofline.m. Include message IDs and store
the results in a structure.

info = checkcode('lengthofline', '-id')

info = 17x1 struct array with fields:
 id

 checkcode

1-1515

 message
 fix
 line
 column

View the values for the first message

info(1)

ans = struct with fields:
 id: 'NASGU'
 message: 'The value assigned to variable 'nothandle' might be unused.'
 fix: 0
 line: 21
 column: [1 9]

Display the Modified Cyclomatic Complexity of File

Run checkcode on the example file lengthofline.m using the '-modcyc' option.
MATLAB® displays the modified cyclomatic complexity of the file, followed by the Code
Analyzer messages for lengthofline.m.

checkcode('lengthofline', '-modcyc')

L 1 (C 23-34): The modified cyclomatic complexity of 'lengthofline' is 12.
L 21 (C 1-9): The value assigned to variable 'nothandle' might be unused.
L 22 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 23 (C 5-11): The variable 'notline' appears to change size on every loop iteration. Consider preallocating for speed.
L 23 (C 44-49): Use STRCMPI(str1,str2) instead of using UPPER/LOWER in a call to STRCMP.
L 27 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 33 (C 13-16): The variable 'data' appears to change size on every loop iteration. Consider preallocating for speed.
L 33 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD.
L 37 (C 29): When both arguments are numeric scalars, consider replacing | with || for performance.
L 38 (C 47): When both arguments are numeric scalars, consider replacing | with || for performance.
L 39 (C 47): When both arguments are numeric scalars, consider replacing | with || for performance.
L 42 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 44 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 47 (C 52): Invalid syntax at ';'. A '(' might be missing a closing ')'.
L 47 (C 53): Invalid syntax at ')'. A '[' might be missing a closing ']'.
L 47 (C 54): Parse error at ']': usage might be invalid MATLAB syntax.

1 Alphabetical List

1-1516

L 48 (C 17): Terminate statement with semicolon to suppress output (in functions).
L 48 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

Suppress Code Analyzer Messages

Suppress specific messages by creating and specifying a settings file. For example, the
file lengthofline.m includes several lines that use | instead of || as the OR operator. By
default, checkcode flags these lines.

checkcode('lengthofline')

L 21 (C 1-9): The value assigned to variable 'nothandle' might be unused.
L 22 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 23 (C 5-11): The variable 'notline' appears to change size on every loop iteration. Consider preallocating for speed.
L 23 (C 44-49): Use STRCMPI(str1,str2) instead of using UPPER/LOWER in a call to STRCMP.
L 27 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 33 (C 13-16): The variable 'data' appears to change size on every loop iteration. Consider preallocating for speed.
L 33 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD.
L 37 (C 29): When both arguments are numeric scalars, consider replacing | with || for performance.
L 38 (C 47): When both arguments are numeric scalars, consider replacing | with || for performance.
L 39 (C 47): When both arguments are numeric scalars, consider replacing | with || for performance.
L 42 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 44 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 47 (C 52): Invalid syntax at ';'. A '(' might be missing a closing ')'.
L 47 (C 53): Invalid syntax at ')'. A '[' might be missing a closing ']'.
L 47 (C 54): Parse error at ']': usage might be invalid MATLAB syntax.
L 48 (C 17): Terminate statement with semicolon to suppress output (in functions).
L 48 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

Create a settings file that suppresses the message flagging the use of | as the OR operator.

1 On the Home tab, in the Environment section, click the Preferences button.
2 Select Code Analyzer in the left pane.
3 Under Default Settings, in the Aesthetics and Readability section, clear the

message Use instead of | as the OR operator in (scalar) conditional
statements.

4 Enter mysettings.txt as the file name and save it to your current folder.
5 Press the Cancel button to exit out of the preference panel without changing the

active settings.

 checkcode

1-1517

Run checkcode on the example file using the custom settings file mysettings.txt. The
message Use instead of | as the OR operator in (scalar) conditional statements is
suppressed and is no longer visible in the list of messages.

checkcode('lengthofline','-config=mysettings.txt')

L 21 (C 1-9): The value assigned to variable 'nothandle' might be unused.
L 22 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 23 (C 5-11): The variable 'notline' appears to change size on every loop iteration. Consider preallocating for speed.
L 23 (C 44-49): Use STRCMPI(str1,str2) instead of using UPPER/LOWER in a call to STRCMP.
L 27 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 33 (C 13-16): The variable 'data' appears to change size on every loop iteration. Consider preallocating for speed.
L 33 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD.
L 42 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 44 (C 13-15): The variable 'dim' appears to change size on every loop iteration. Consider preallocating for speed.
L 47 (C 52): Invalid syntax at ';'. A '(' might be missing a closing ')'.
L 47 (C 53): Invalid syntax at ')'. A '[' might be missing a closing ']'.
L 47 (C 54): Parse error at ']': usage might be invalid MATLAB syntax.
L 48 (C 17): Terminate statement with semicolon to suppress output (in functions).
L 48 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

Input Arguments
filename — File name
character vector | string array | cell array of character vectors

File name, specified as a character vector, a string array, or a cell array of character
vectors. The file name can include a partial path, but must be in a folder on the search
path or in the current folder.

If filename is a nonscalar string array or a cell array of character vectors, MATLAB
displays information for each file.

Note You cannot combine cell arrays and character arrays of file names. For example,
you cannot have {'lengthofline', 'buggy'}, 'collatz' as an input.

Example: 'lengthofline'
Example: {'lengthofline', 'buggy'}

1 Alphabetical List

1-1518

Data Types: char | string

option — Display option
'-id' | '-fullpath' | '-notok' | '-cyc' | '-modcyc' | '-config'

Display option, specified as one of these values. Options can appear in any order.

Option Description
'-id' Request the message ID, where ID is a

character vector. When returned to a
structure, the output also has the id field,
which is the ID associated with the
message.

'-fullpath' Assume that the input file names are
absolute paths, so that checkcode does not
try to locate them.

'-notok' Run checkcode for all lines in filename,
even those lines that end with the
checkcode suppression directive, %#ok.

For information on %#ok and suppressing
messages from within your program, see
“Adjust Code Analyzer Message Indicators
and Messages”.

'-cyc' Display the McCabe complexity (also
referred to as cyclomatic complexity) of
each function in the file. In general, lower
complexity values indicate programs that
are easier to understand and modify.
Evidence suggests that programs with
higher complexity values are more likely to
contain errors. Frequently, you can lower
the complexity of a function by dividing it
into smaller, simpler functions. Some
people advocate splitting up programs that
have a complexity value over 10.

 checkcode

1-1519

Option Description
'-modcyc' Displays the modified cyclomatic

complexity of each function in the file. The
modified cyclomatic complexity for a
function is equal to the McCabe complexity
except for one difference. McCabe
complexity counts each individual case
within a switch statement as 1, while
modified cyclomatic complexity counts the
entire switch statement as 1. In general,
switch statements are simpler than nested
if-elseif-else statements and
therefore, the modified cyclomatic
complexity is often considered a better
measure of code complexity.

'-config=settingsfile'

'-config=factory'

Override the default active settings file with
the specified settings file. If the specified
file is not in the current folder, provide the
full path to the file.

For information about creating a settings
file, see “Save and Reuse Code Analyzer
Message Settings”. If you specify an invalid
file, checkcode returns a message
indicating that it cannot open or read the
file you specified. In that case, checkcode
uses the factory default settings.

To ignore all settings files and use the
factory default preference settings, specify
'-config=factory'.

Output Arguments
info — Message information
structure array | cell array

1 Alphabetical List

1-1520

Message information, returned as a n-by-1 structure array, where n is the number of
messages returned by the checkcode command. If you specify multiple file names as
input, or if you specify a cell array as input, info contains a cell array of structures.

Field Description
message Message describing the suspicious construct that code

analysis caught.
line Vector of line numbers, indicating which lines of the file the

message applies to.
column Two-column array of columns numbers (column extents),

indicating which columns of the file the message applies to.
The first column of the array specifies the column in the
Editor where the message begins. The second column of the
array specifies the column in the Editor where the message
ends. In the two-column array, each occurrence of a
message has a row.

msg — Message information
character vector

Message information, returned as a character vector. If you specify multiple file names as
input, or if you specify a cell array as input, msg contains a character vector where the
information for each file is separated by 10 equal sign characters, a space, the file name,
a space, and 10 equal sign characters.
Example: ========== C:\MyMatlabFiles\buggy.m ==========

filepaths — Absolute paths of files
cell array of character vectors

Absolute paths of files, specified as a cell array of character vectors. MATLAB lists the
filepaths in the same order as the specified input files.

Tips
To force the Code Analyzer to ignore a line of code, use %#ok at the end of the line. You
can add comments after the tag.

 checkcode

1-1521

unsuppressed1 = 10 % This line will get caught
suppressed2 = 20 %#ok This line will not get caught
suppressed3 = 30 %#ok This line will not get caught

See Also
mlintrpt | profile

Topics
“Check Code for Errors and Warnings”

Introduced in R2011b

1 Alphabetical List

1-1522

checkin
(Has been removed) Check files into source control system (UNIX platforms)

Note checkin has been removed.

Syntax
checkin('filename','comments','comment_text')
checkin({'filename1','filename2'},'comments','comment_text')
checkin('filename','comments', 'comment_text','option','value')

Description
checkin('filename','comments','comment_text') checks in the file named
filename to the source control system. Use the full path for filename and include the
file extension. You must save the file before checking it in, but the file can be open or
closed. The comment_text is a MATLAB character vector containing checkin comments
for the source control system. You must supply comments and comment_text.

checkin({'filename1','filename2'},'comments','comment_text') checks in
the files filename1 through filenamen to the source control system. Use the full paths
for the files and include file extensions. Comments apply to all files checked in.

checkin('filename','comments', 'comment_text','option','value')
provides additional checkin options. For multiple file names, use an array of character
vectors instead of filename, that is, {'filename1','filename2',...}. Options
apply to all file names. The option and value arguments are shown in the following
table.

option Argument value Argument Purpose
'force' 'on' filename is checked in even if the file has not

changed since it was checked out.

 checkin

1-1523

option Argument value Argument Purpose
'force' 'off' (default) filename is not checked in if there were no

changes since checkout.
'lock' 'on' filename is checked in with comments, and is

automatically checked out.
'lock' 'off' (default) filename is checked in with comments but

does not remain checked out.

Examples

Check In a File
Check the file /myserver/myfiles/clock.m into the source control system, with the
comment Adjustment for leapyear:

checkin('/myserver/myfiles/clock.m','comments',...
'Adjustment for leapyear')

Check In Multiple Files
Check two files into the source control system, using the same comment for each:

checkin({'/myserver/myfiles/clock.m', ...
'/myserver/myfiles/calendar.m'},'comments',...
'Adjustment for leapyear')

Check In a File and Keep It Checked Out
Check the file /myserver/myfiles/clock.m into the source control system and keep
the file checked out:

checkin('/myserver/myfiles/clock.m','comments',...
'Adjustment for leapyear','lock','on')

Introduced before R2006a

1 Alphabetical List

1-1524

checkout
(Has been removed) Check files out of source control system (UNIX platforms)

Note checkout has been removed.

Syntax
checkout('filename')
checkout({'filename1','filename2', ...})
checkout('filename','option','value',...)

Description
checkout('filename') checks out the file named filename from the source control
system. Use the full path for filename and include the file extension. The file can be
open or closed when you use checkout.

checkout({'filename1','filename2', ...}) checks out the files named
filename1 through filenamen from the source control system. Use the full paths for
the files and include the file extensions.

checkout('filename','option','value',...) provides additional checkout
options. For multiple file names, use a cell array of character vectors instead of
filename, that is, {'filename1','filename2', ...}. Options apply to all file
names. The option and value arguments are shown in the following table.

 checkout

1-1525

option Argument value Argument Purpose
'force' 'on' The checkout is forced, even

if you already have the file
checked out. This is
effectively an
undocheckout followed by
a checkout.

'force' 'off' (default) Prevents you from checking
out the file if you already
have it checked out.

'lock' 'on' (default) The checkout gets the file,
allows you to write to it, and
locks the file so that access
to the file for others is read
only.

'lock' 'off' The checkout gets a read-
only version of the file,
allowing another user to
check out the file for
updating. You do not have to
check the file in after
checking it out with this
option.

'revision' 'version_num' Checks out the specified
revision of the file.

If you end the MATLAB session, the file remains checked out. You can check in the file
from within the MATLAB desktop during a later session, or directly from your source
control system.

Examples
Check Out a File
Check out the file /myserver/myfiles/clock.m from the source control system:

checkout('/myserver/myfiles/clock.m')

1 Alphabetical List

1-1526

Check Out Multiple Files
Check out /matlab/myfiles/clock.m and /matlab/myfiles/calendar.m from the
source control system:

checkout({'/myserver/myfiles/clock.m',...
'/myserver/myfiles/calendar.m'})

Force a Checkout, Even If File Is Already Checked Out
Check out /matlab/myfiles/clock.m even if clock.m is already checked out to you:

checkout('/myserver/myfiles/clock.m','force','on')

Check Out Specified Revision of File
Check out revision 1.1 of clock.m:

checkout('/matlab/myfiles/clock.m','revision','1.1')

Introduced before R2006a

 checkout

1-1527

chol
Cholesky factorization

Syntax
R = chol(A)
R = chol(A,triangle)
[R,flag] = chol(___)
[R,flag,P] = chol(S)
[R,flag,P] = chol(___ ,outputForm)

Description
R = chol(A) factorizes symmetric positive definite matrix A into an upper triangular R
that satisfies A = R'*R. If A is nonsymmetric , then chol treats the matrix as symmetric
and uses only the diagonal and upper triangle of A.

R = chol(A,triangle) specifies which triangular factor of A to use in computing the
factorization. For example, if triangle is 'lower', then chol uses only the diagonal
and lower triangular portion of A to produce a lower triangular matrix R that satisfies A =
R*R'. The default value of triangle is 'upper'.

[R,flag] = chol(___) also returns the output flag indicating whether A is
symmetric positive definite on page 1-1538. You can use any of the input argument
combinations in previous syntaxes. When you specify the flag output, chol does not
error if the input matrix is not symmetric positive definite.

• If flag = 0 then the input matrix is symmetric positive definite and the factorization
was successful.

• If flag is not zero, then the input matrix is not symmetric positive definite and flag
is an integer indicating the index of the pivot position where the factorization failed.

[R,flag,P] = chol(S) additionally returns a permutation matrix P, which is a
preordering of sparse matrix S obtained by amd. If flag = 0, then S is symmetric
positive definite and R is an upper triangular matrix satisfying R'*R = P'*S*P.

1 Alphabetical List

1-1528

[R,flag,P] = chol(___ ,outputForm) specifies whether to return the permutation
information P as a matrix or vector, using any of the input argument combinations in
previous syntaxes. This option is only available for sparse matrix inputs. For example, if
outputForm is 'vector' and flag = 0, then S(p,p) = R'*R. The default value of
outputForm is 'matrix' such that R'*R = P'*S*P.

Examples

Solve Linear System with Symmetric Positive Definite Matrix

Use chol to factorize a symmetric coefficient matrix, and then solve a linear system using
the Cholesky factor.

Create a symmetric matrix with positive values on the diagonal.

A = [1 0 1; 0 2 0; 1 0 3]

A = 3×3

 1 0 1
 0 2 0
 1 0 3

Calculate the Cholesky factor of the matrix.

R = chol(A)

R = 3×3

 1.0000 0 1.0000
 0 1.4142 0
 0 0 1.4142

Create a vector for the right-hand side of the equation Ax = b.

b = sum(A,2);

Since A = RTR with the Cholesky decomposition, the linear equation becomes RTR x = b.
Solve for x using the backslash operator.

 chol

1-1529

x = R\(R'\b)

x = 3×1

 1.0000
 1.0000
 1.0000

Cholesky Factorization of Matrix

Calculate the upper and lower Cholesky factorizations of a matrix and verify the results.

Create a 6-by-6 symmetric positive definite test matrix using the gallery function.

A = gallery('lehmer',6);

Calculate the Cholesky factor using the upper triangle of A.

R = chol(A)

R = 6×6

 1.0000 0.5000 0.3333 0.2500 0.2000 0.1667
 0 0.8660 0.5774 0.4330 0.3464 0.2887
 0 0 0.7454 0.5590 0.4472 0.3727
 0 0 0 0.6614 0.5292 0.4410
 0 0 0 0 0.6000 0.5000
 0 0 0 0 0 0.5528

Verify that the upper triangular factor satisfies R'*R - A = 0, within roundoff error.

norm(R'*R - A)

ans = 2.5801e-16

Now, specify the 'lower' option to calculate the Cholesky factor using the lower triangle
of A.

L = chol(A,'lower')

L = 6×6

1 Alphabetical List

1-1530

 1.0000 0 0 0 0 0
 0.5000 0.8660 0 0 0 0
 0.3333 0.5774 0.7454 0 0 0
 0.2500 0.4330 0.5590 0.6614 0 0
 0.2000 0.3464 0.4472 0.5292 0.6000 0
 0.1667 0.2887 0.3727 0.4410 0.5000 0.5528

Verify that the lower triangular factor satisfies L*L' - A = 0, within roundoff error.

norm(L*L' - A)

ans = 2.5801e-16

Suppress Errors for Nonsymmetric Positive Definite Matrices

Use chol with two outputs to suppress errors when the input matrix is not symmetric
positive definite.

Create a 5-by-5 matrix of binomial coefficients. This matrix is symmetric positive definite,
so subtract 1 from the last element to ensure it is no longer positive definite.

A = pascal(5);
A(end) = A(end) - 1

A = 5×5

 1 1 1 1 1
 1 2 3 4 5
 1 3 6 10 15
 1 4 10 20 35
 1 5 15 35 69

Calculate the Cholesky factor for A. Specify two outputs to avoid generating an error if A
is not symmetric positive definite.

[R,flag] = chol(A)

R = 4×4

 1 1 1 1

 chol

1-1531

 0 1 2 3
 0 0 1 3
 0 0 0 1

flag = 5

Since flag is nonzero, it gives the pivot index where the factorization fails. chol is able
to calculate q = flag-1 = 4 rows and columns correctly before failing when it
encounters the part of the matrix that changed.

Verify that R'*R returns four rows and columns that agree with A(1:q,1:q).

q = flag-1;
R'*R

ans = 4×4

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20

A(1:q,1:q)

ans = 4×4

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20

Cholesky Factor of Sparse Matrix

Calculate the Cholesky factor of a sparse matrix, and use the permutation output to
create a Cholesky factor with fewer nonzeros.

Create a sparse positive definite matrix based on the west0479 matrix.

1 Alphabetical List

1-1532

load west0479
A = west0479;
S = A'*A;

Calculate the Cholesky factor of the matrix two different ways. First specify two outputs,
and then specify three outputs to enable row and column reordering.

[R,flag] = chol(S);
[RP,flagP,P] = chol(S);

For each calculation, check that flag = 0 to confirm the calculation is successful.

if ~flag && ~flagP
 disp('Factorizations successful.')
else
 disp('Factorizations failed.')
end

Factorizations successful.

Compare the number of nonzeros in chol(S) vs. the reordered matrix chol(P'*S*P).
Best practice is to use the three output syntax of chol with sparse matrices, since
reordering the rows and columns can greatly reduce the number of nonzeros in the
Cholesky factor.

subplot(1,2,1)
spy(R)
title('Nonzeros in chol(S)')
subplot(1,2,2)
spy(RP)
title('Nonzeros in chol(P''*S*P)')

 chol

1-1533

Reorder Sparse Matrix with Permutation Vector

Use the 'vector' option of chol to return the permutation information as a vector
rather than a matrix.

Create a sparse finite element matrix.

S = gallery('wathen',10,10);
spy(S)

1 Alphabetical List

1-1534

Calculate the Cholesky factor for the matrix, and specify the 'vector' option to return a
permutation vector p.

[R,flag,p] = chol(S,'vector');

Verify that flag = 0, indicating the calculation is successful.

if ~flag
 disp('Factorization successful.')
else
 disp('Factorization failed.')
end

Factorization successful.

 chol

1-1535

Verify that S(p,p) = R'*R, within roundoff error.

norm(S(p,p) - R'*R,'fro')

ans = 2.1161e-13

Input Arguments
A — Input matrix
matrix

Input matrix. Argument A can use full or sparse storage, but must be square and
symmetric positive definite.

chol assumes that A is symmetric for real matrices or Hermitian for complex matrices.
chol uses only the upper or lower triangle of A to perform its computations, depending
on the value of triangle.
Data Types: single | double
Complex Number Support: Yes

S — Sparse input matrix
sparse matrix

Sparse input matrix. S must be square and symmetric positive definite.

chol assumes that S is symmetric for real matrices or Hermitian for complex matrices.
chol uses only the upper or lower triangle of S to perform its computations, depending
on the value of triangle.
Data Types: double
Complex Number Support: Yes

triangle — Triangular factor of input matrix
'upper' (default) | 'lower'

Triangular factor of input matrix, specified as 'upper' or 'lower'. Use this option to
specify that chol should use the upper or lower triangle of the input matrix to compute
the factorization. chol assumes that the input matrix is symmetric for real matrices or
Hermitian for complex matrices. chol uses only the upper or lower triangle to perform its
computations.

1 Alphabetical List

1-1536

Using the 'lower' option is equivalent to calling chol with the 'upper' option and the
transpose of the input matrix, and then transposing the output R.
Example: R = chol(A,'lower')

outputForm — Shape of permutation output
'matrix' (default) | 'vector'

Shape of permutation output, specified as 'matrix' or 'vector'. This flag controls
whether the permutation output P is returned as a permutation matrix or permutation
vector.

• If flag = 0, then S is symmetric positive definite and P'*S*P = R'*R (if P is a
matrix) or S(p,p) = R'*R (if p is a vector).

• If flag is not zero, then S is not symmetric positive definite. R is an upper triangular
matrix of size q-by-n, where q = flag-1. The L-shaped region of the first q rows and
first q columns of R'*R agree with those of P'*S*P (if P is a matrix) or S(p,p) (if p is
a vector).

• If the 'lower' option is specified, then R is a lower triangular matrix and you can
replace R'*R with R*R' in the previous identities.

The Cholesky factor of P'*S*P (if P is a matrix) or S(p,p) (if p is a vector) tends to be
sparser than the Cholesky factor of S.
Example: [R,flag,p] = chol(S,'vector')

Output Arguments
R — Cholesky factor
matrix

Cholesky factor, returned as a matrix.

• If R is upper triangular, then A = R'*R. If you specify the P output for sparse
matrices, then P'*S*P = R'*R or S(p,p) = R'*R, depending on the value of
outputForm.

• If R is lower triangular, then A = R*R'. If you specify the P output for sparse
matrices, then P'*S*P = R*R' or S(p,p) = R*R', depending on the value of
outputForm..

 chol

1-1537

• Whenever flag is not zero, R contains only partial results. flag indicates the pivot
position where the factorization failed, and R contains the partially completed
factorization.

flag — Symmetric positive definite flag
scalar

Symmetric positive definite flag, returned as a scalar.

• If flag = 0, then the input matrix is symmetric positive definite. R is an upper
triangular matrix such that R'*R = A.

• If A is not symmetric positive definite, then flag is a positive integer indicating the
pivot position where the factorization failed, and MATLAB does not generate an error.
R is an upper triangular matrix of size q = flag-1 such that R'*R = A(1:q,1:q).

• If A is sparse, then R is an upper triangular matrix of size q-by-n such that the L-
shaped region of the first q rows and first q columns of R'*R agree with those of A or
S.

• If the 'lower' option is specified, then R is a lower triangular matrix and you can
replace R'*R with R*R' in the previous identities.

P — Permutation for sparse matrices
matrix | vector

Permutation for sparse matrices, returned as a matrix or vector depending on the value of
outputForm. See outputForm for a description of the identities that this output
satisfies.

This permutation matrix is based on the approximate minimum degree ordering computed
by amd. However, this preordering can differ from the one obtained directly by amd since
chol slightly changes the ordering for increased performance.

Definitions

Symmetric Positive Definite Matrix
A symmetric positive definite matrix is a symmetric matrix with all positive eigenvalues.

1 Alphabetical List

1-1538

For any real invertible matrix A, you can construct a symmetric positive definite matrix
with the product B = A'*A. The Cholesky factorization reverses this formula by saying
that any symmetric positive definite matrix B can be factored into the product R'*R.

A symmetric positive semi-definite matrix is defined in a similar manner, except that the
eigenvalues must all be positive or zero.

The line between positive definite and positive semi-definite matrices is blurred in the
context of numeric computation. It is rare for eigenvalues to be exactly equal to zero, but
they can be numerically zero (on the order of machine precision). For this reason, chol
might be able to factorize one positive semi-definite matrix, but could fail with another
matrix that has very similar eigenvalues.

Tips
• Use chol (instead of eig) to efficiently determine whether a matrix is symmetric

positive definite. See “Determine Whether Matrix Is Symmetric Positive Definite” for
more information.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For sparse matrix inputs, the standard math library must be C99 or later. Only the first
two syntaxes chol(A) and chol(A,triangle) with one output argument are
supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 chol

1-1539

• The input A must be nonsparse.
• The 'vector' option is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The input A must be nonsparse.
• The 'vector' option is not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cholupdate | ichol | ldl | qr

Topics
“Factorizations”

Introduced before R2006a

1 Alphabetical List

1-1540

cholupdate
Rank 1 update to Cholesky factorization

Syntax
R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description
R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky factorization of
A, returns the upper triangular Cholesky factor of A + x*x', where x is a column vector
of appropriate length. cholupdate uses only the diagonal and upper triangle of R. The
lower triangle of R is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'. An error
message reports when R is not a valid Cholesky factor or when the downdated matrix is
not positive definite and so does not have a Cholesky factorization.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p is 0, R1 is the
Cholesky factor of A - x*x'. If p is greater than 0, R1 is the Cholesky factor of the
original A. If p is 1, cholupdate failed because the downdated matrix is not positive
definite. If p is 2, cholupdate failed because the upper triangle of R was not a valid
Cholesky factor.

Examples
A = pascal(4)
A =

 1 1 1 1

 cholupdate

1-1541

 1 2 3 4
 1 3 6 10
 1 4 10 20

R = chol(A)
R =

 1 1 1 1
 0 1 2 3
 0 0 1 3
 0 0 0 1
x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'), we can use
cholupdate:

R1 = cholupdate(R,x)
R1 =

 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix singular) by
subtracting 1 from the last element of A. The downdated matrix is:

A - x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 19

Compare chol with cholupdate:

1 Alphabetical List

1-1542

R1 = chol(A-x*x')
Error using chol
Matrix must be positive definite.
R1 = cholupdate(R,x,'-')
Error using cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive definite matrix,
and we can use cholupdate to compute its Cholesky factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =
 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 0.7071

Tips
cholupdate works only for full matrices.

Algorithms
cholupdate uses the algorithms from the LINPACK subroutines ZCHUD and ZCHDD.
cholupdate is useful since computing the new Cholesky factor from scratch is an O(N3)
algorithm, while simply updating the existing factor in this way is an O(N2) algorithm.

References
[1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM,

Philadelphia, 1979.

 cholupdate

1-1543

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

See Also
chol | qrupdate

Introduced before R2006a

1 Alphabetical List

1-1544

circshift
Shift array circularly

Syntax
Y = circshift(A,K)
Y = circshift(A,K,dim)

Description
Y = circshift(A,K) circularly shifts the elements in array A by K positions. If K is an
integer, then circshift shifts along the first dimension of A whose size does not equal 1.
If K is a vector of integers, then each element of K indicates the shift amount in the
corresponding dimension of A.

Note The default behavior of circshift(A,K) where K is a scalar changed in R2016b.
To preserve the behavior of R2016a and previous releases, use circshift(A,K,1). This
syntax specifies 1 as the dimension to operate along.

Y = circshift(A,K,dim) circularly shifts the values in array A by K positions along
dimension dim. Inputs K and dim must be scalars.

Examples

Shift Column Vector Elements

Create a numeric column vector.

A = (1:10)'

A = 10×1

 circshift

1-1545

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Use circshift to shift the elements by three positions.

Y = circshift(A,3)

Y = 10×1

 8
 9
 10
 1
 2
 3
 4
 5
 6
 7

The result, Y, has the same elements as A but they are in a different order.

Shift Characters in Array

Create an array of characters and use circshift to shift the characters by 3 positions.
The characters are in a different order in Y.

A = 'racecar';
Y = circshift(A,3)

Y =
'carrace'

1 Alphabetical List

1-1546

Shift Matrix Elements

Create a numeric array with a cluster of ones in the top left.

A = [1 1 0 0; 1 1 0 0; 0 0 0 0; 0 0 0 0]

A = 4×4

 1 1 0 0
 1 1 0 0
 0 0 0 0
 0 0 0 0

Use circshift to shift each row of A one position to the right.

Y = circshift(A,1,2)

Y = 4×4

 0 1 1 0
 0 1 1 0
 0 0 0 0
 0 0 0 0

Shift the elements of A by one position in each dimension. The cluster of ones is now in
the center of the matrix.

Y = circshift(A,[1 1])

Y = 4×4

 0 0 0 0
 0 1 1 0
 0 1 1 0
 0 0 0 0

To move the cluster back to its original position, use circshift on Y with negative shift
values. The matrix X is equivalent to A.

X = circshift(Y,[-1 -1])

 circshift

1-1547

X = 4×4

 1 1 0 0
 1 1 0 0
 0 0 0 0
 0 0 0 0

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | table | cell
Complex Number Support: Yes

K — Shift amount
integer scalar | vector of integers

Shift amount, specified as an integer scalar or vector of integers.

• If you specify K as an integer and do not specify dim, then circshift shifts along the
first dimension whose size does not equal 1. Positive K shifts toward the end of the
dimension and negative K shifts toward the beginning.

• If you specify K as a vector of integers, then the Nth element in K specifies the shift
amount for the Nth dimension in A. If the Nth element in K is positive, then the values
of A shift toward the end of the Nth dimension. If the Nth element is negative, then the
values shift toward the beginning.

If the shift amount is greater than the length of the corresponding dimension in A, then
the shift circularly wraps to the beginning of that dimension. For example, shifting a 3-
element vector by +3 positions brings its elements back to their original positions.

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
the default is the first dimension whose size does not equal 1. If you specify dim, then K

1 Alphabetical List

1-1548

must be an integer scalar. In general, specify dim = 1 to exchange rows, dim = 2 to
exchange columns, and so on.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
fftshift | permute | reshape | shiftdim

Introduced before R2006a

 circshift

1-1549

circumcenters
Class: TriRep

(Not recommended) Circumcenters of specified simplices

Note circumcenters(TriRep) is not recommended. Use
circumcenter(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
CC = circumcenters(TR, SI)
[CC RCC] = circumcenters(TR, SI)

Description
CC = circumcenters(TR, SI) returns the coordinates of the circumcenter of each
specified simplex SI. CC is an m-by-n matrix, where m is of length length(SI), the
number of specified simplices, and n is the dimension of the space where the
triangulation resides.

[CC RCC] = circumcenters(TR, SI) returns the circumcenters and the
corresponding radii of the circumscribed circles or spheres.

Input Arguments
TR Triangulation object.

1 Alphabetical List

1-1550

SI Column vector of simplex indices that index into the triangulation matrix
TR.Triangulation. If SI is not specified the circumcenter information
for the entire triangulation is returned, where the circumcenter associated
with simplex i is the i'th row of CC.

Output Arguments
CC m-by-n matrix. m is the number of specified simplices and n is the dimension

of the space where the triangulation resides. Each row CC(i,:) represents
the coordinates of the circumcenter of simplex SI(i).

RCC Vector of length length(SI), the number of specified simplices containing
radii of the circumscribed circles or spheres.

Examples

Example 1
Load a 2-D triangulation.

load trimesh2d
trep = TriRep(tri, x,y)

Compute the circumcenters.

cc = circumcenters(trep);
triplot(trep);
axis([-50 350 -50 350]);
axis equal;
hold on;
plot(cc(:,1),cc(:,2),'*r');
hold off;

The circumcenters represent points on the medial axis of the polygon.

 circumcenters

1-1551

Example 2
Query a 3-D triangulation created with DelaunayTri. Compute the circumcenters of the
first five tetrahedra.

 X = rand(10,3);
 dt = DelaunayTri(X);
 cc = circumcenters(dt, [1:5]')

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

1 Alphabetical List

1-1552

See Also
delaunayTriangulation | incenter | triangulation

 circumcenters

1-1553

cla
Clear axes

Syntax
cla
cla(ax)

cla reset
cla(ax,'reset')

Description
cla deletes all graphics objects that have visible handles from the current axes. The
handle is visible if the HandleVisibility property of the object is set to 'on'. The next
plot added to the axes uses the first color and line style based on the ColorOrder and
LineStyleOrder properties of the axes. If axes do not exist, then this command creates
one.

cla(ax) deletes graphics objects from the axes or polar axes specified by ax instead of
the current axes.

cla reset deletes graphics objects from the current axes regardless of their handle
visibility. It also resets axes properties to their default values, except for the Position
and Units properties.

cla(ax,'reset') resets properties for the specified axes.

Examples

Clear Current Axes

Plot two sine waves. Then, clear the line plots from the axes.

1 Alphabetical List

1-1554

x = linspace(0,2*pi);
y1 = sin(x);
plot(x,y1)

hold on
y2 = sin(2*x);
plot(x,y2)

cla

 cla

1-1555

cla clears the line plots and resets the ColorIndex and LineStyleIndex properties of
the axes to 1. Subsequent plots start from the beginning of the color order and line style
order. For example, plot another sine wave.

y3 = sin(3*x);
plot(x,y3)
hold off

1 Alphabetical List

1-1556

Clear Specific Axes

Create a figure with two subplots and assign the Axes objects to the variables ax1 and
ax2. Add plots to both axes.

ax1 = subplot(2,1,1);
surf(ax1,peaks)

ax2 = subplot(2,1,2);
contour(ax2,peaks)

 cla

1-1557

Clear the surface plot from the upper subplot by specifying ax1 as an input argument to
cla.

cla(ax1)

1 Alphabetical List

1-1558

Now, reset all axes properties for the upper subplot, including the camera properties that
control the view, by using the optional input argument 'reset'.

cla(ax1,'reset')

 cla

1-1559

Clear Axes and Reset All Axes Properties

Create a line plot and set the axis limits.

x = linspace(0,2*pi);
y = sin(x);
plot(x,y)
axis([0 5 -2 2])

1 Alphabetical List

1-1560

Clear the line plot from the axes and reset all the axes properties to their default values.
cla reset resets all properties of the current axes, except for the Position and Units
properties.

cla reset

 cla

1-1561

Input Arguments
ax — Target axes
Axes object | PolarAxes object

Target axes, specified as an Axesobject or a PolarAxes object. Use ax to clear specific
axes, instead of the current axes.

1 Alphabetical List

1-1562

Algorithms
The cla command resets the ColorOrderIndex and LineStyleOrderIndex properties
of the current axes to 1.

See Also
Functions
clf | hold | newplot | reset

Properties
Axes

Introduced before R2006a

 cla

1-1563

clabel
Label contour plot elevation

Syntax
clabel(C,h)
clabel(C,h,v)
clabel(C,h,'manual')
t = clabel(C,h,'manual')

clabel(C)
clabel(C,v)
clabel(C,'manual')
tl = clabel(___)

clabel(___ ,Name,Value)

Description
clabel(C,h) labels the current contour plot with rotated text inserted into each contour
line. The contour lines must be long enough to fit the label, otherwise clabel does not
insert a label. If you do not have the contour matrix C, then replace C with [].

clabel(C,h,v) labels the contour levels specified by vector v.

clabel(C,h,'manual') labels the locations you select with the mouse. Click the mouse
or press the space bar to label the contour closest to the center of the crosshair. Press the
Return key while the cursor is within the figure window to terminate labeling.

t = clabel(C,h,'manual') returns the text objects created.

clabel(C) labels contours with '+' symbols and upright text.

clabel(C,v) adds upright labels to the contour levels specified by the vector, v.

clabel(C,'manual') adds upright labels at the locations you select with the mouse.
Click the mouse or press the space bar to label the contour closest to the center of the

1 Alphabetical List

1-1564

crosshair. Press the Return key while the cursor is within the figure window to terminate
labeling.

tl = clabel(___) returns the text and line objects created. Use any of the input
argument combinations in the previous syntaxes that do not include the contour object h.

clabel(___ ,Name,Value) modifies the label appearance using one or more
Name,Value pair arguments. Use any of the input argument combinations in the previous
syntaxes. For example, 'FontSize',14 sets the font size to 14 points.

Examples

Label Contour Plot Levels

Create a contour plot and obtain the contour matrix, C, and the contour object, h. Then,
label the contour plot.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h)

 clabel

1-1565

Label Specific Contour Levels

Label only the contours with contour levels 2 or 6.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
v = [2,6];
clabel(C,h,v)

1 Alphabetical List

1-1566

Set Contour Label Properties

Set the font size of the labels to 15 points and set the color to red using Name,Value pair
arguments.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'FontSize',15,'Color','red')

 clabel

1-1567

Set additional properties by reissuing the clabel command. For example, set the font
weight to bold and change the color to blue.

clabel(C,h,'FontWeight','bold','Color','blue')

1 Alphabetical List

1-1568

Set the font size back to the default size using the 'default' keyword.

clabel(C,h,'FontSize','default')

 clabel

1-1569

Label Contour Plot with Vertical Text

Create a contour plot and return the contour matrix, C. Then, label the contours.

[x,y,z] = peaks;
C = contour(x,y,z);
clabel(C)

1 Alphabetical List

1-1570

Input Arguments
C — Contour matrix
two-row matrix

Contour matrix returned by the contour, contour3, or contourf function. C contains
the data that defines the contour lines. For more information on the contour matrix, see
ContourMatrix.

 clabel

1-1571

Note If you pass the contour object h to the clabel function, then you can replace C
with []. For example, use clabel([],h).

h — Contour object
contour object

Contour object returned by the contour, contour3, or contourf function.

v — Contour level values
vector

Contour level values, specified as a row or column vector of individual values.
Example: [0 10 20]

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

clabel supports the LabelSpacing property plus a subset of text properties.
Example: clabel(C,h,'Color','red','FontSize',12) specifies red, 12-point
labels.

LabelSpacing — Space between labels
scalar

Space between labels, specified as a scalar value in point units.

Note Use this option with either the clabel(C,h) or clabel(C,h,v) syntax. Other
syntaxes do not support this option.

Example: clabel(C,h,'LabelSpacing',100)

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

1 Alphabetical List

1-1572

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 clabel

1-1573

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

EdgeColor — Color of text box outline
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of text box outline, specified as 'none', an RGB triplet, a hexadecimal color code, a
color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

1 Alphabetical List

1-1574

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: clabel(C,h,'EdgeColor','k')

BackgroundColor — Background color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of text box background, specified as 'none', an RGB triplet, hexadecimal color
code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

 clabel

1-1575

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: clabel(C,h,'BackgroundColor','g')

FontSize — Font size
10 (default) | scalar value greater than 0

1 Alphabetical List

1-1576

Font size, specified as a scalar value greater than 0. By default, the font size uses point
units. One point equals 1/72 inch. However, some syntaxes allow you to change the font
units using the FontUnits property.
Example: clabel(C,h,'FontSize',15)

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontSmoothing — Smooth font character appearance
'on' (default) | 'off'

Smooth font character appearance, specified as one of these values:

• 'on' — Apply font smoothing. Reduce the appearance of jaggedness in the text
characters to make the text easier to read.

 clabel

1-1577

• 'off' — Do not apply font smoothing.

Example: clabel(C,h,'FontSmoothing','on')

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'characters' | 'normalized' |
'pixels'

Font size units, specified as one of the values in this table.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'normalized' Interpret font size as a fraction of the axes

height. If you resize the axes, the font size
modifies accordingly. For example, if the
FontSize is 0.1 in normalized units, then
the text is 1/10 of the axes height.

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

1 Alphabetical List

1-1578

If you set both the font size and the font units in one function call, you must set the
FontUnits property first so that the axes correctly interprets the specified font size.

Note The clabel(C,h) and clabel(C,h,v) syntaxes do not support this option. They
always use the default value of points.

Example: clabel(C,'FontUnits','normalized')

Rotation — Text orientation
0 (default) | scalar

Text orientation, specified as a scalar value in degrees. The default rotation of 0 degrees
makes the text horizontal. For vertical text, set this property to 90 or -90. Positive values
rotate the text counterclockwise. Negative values rotate the text clockwise.

Note The clabel(C,h) and clabel(C,h,v) syntaxes do not support this option.
Instead, they insert rotated text into the contour lines, with each label rotated to match
the local orientation of the corresponding line.

Example: clabel(C,'Rotation',90)

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Display text using TeX markup.
• 'latex' — Display text using LaTeX markup.
• 'none' — Display literal characters.

Since the labels are numeric text, the effect of this property is limited to subtle changes in
the font style and weight.
Example: clabel(C,h,'Interpreter','latex')

LineStyle — Line style of text box outline
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of text box outline, specified as one of the line styles in this table.

 clabel

1-1579

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

Example: clabel(C,h,'LineStyle','--')

LineWidth — Width of text box outline
0.5 (default) | scalar

Width of text box outline, specified as a scalar value in point units. One point equals 1/72
inch.
Example: clabel(C,h,'LineWidth',1)

Margin — Space around text within the text box
3 (default) | scalar

The space around the text within the text box, specified as scalar value in point units.

MATLAB uses the Extent property value plus the Margin property value to determine
the size of the text box.
Example: clabel(C,h,'Margin',4)

Output Arguments
t — Text objects
vector

Text objects, returned as a vector. The String properties of the text objects contain the
contour values displayed.

tl — Text and line objects
vector

1 Alphabetical List

1-1580

Text and line objects, returned as a vector. The String properties of the text objects
contain the contour values displayed. The line objects correspond to the '+' symbols.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
contour | contour3 | contourc | contourf

Properties
Text

 clabel

1-1581

Introduced before R2006a

1 Alphabetical List

1-1582

class
Class of object

Syntax
className = class(obj)

Description
className = class(obj) returns the name of the class of obj.

Examples

Class of Java Object

Get the class name of a Java object.

jObject = java.lang.String('Java string');
className = class(jObject);
disp(className)

java.lang.String

Class of a Variable

Determine the class of a variable.

h = @sin;
className = class(h);
disp(className)

function_handle

 class

1-1583

Input Arguments
obj — Object or literal
variable or expression

Object or literal, specified as a variable or an expression.
Example: class(date)

Output Arguments
className — Name of the class
character vector

Name of the class, returned as a character vector.

Definitions

Obsolete Class Definition Syntax
In class definition before MATLAB 7.6 (classes defined without a classdef statement),
class constructors called the class function to create the object. The following class
function syntaxes apply only within classes defined before Version 7.6.

obj = class(s,ClassName) creates an array of objects of the specified class using the
struct s as a pattern to determine the size of obj.

obj = class(s,ClassName,parent1,parent2,...) inherits the methods and fields
of the specified parent objects. The size of the parent objects must match the size of s or
be a scalar (1-by-1). If they are scalar, MATLAB performs scalar expansion.

obj = class(struct([]),ClassName,parent1,parent2,...) constructs an
object containing only fields that it inherits from the parent objects. All parents must have
the same nonzero size, which determines the size of the returned object.

objStruct = class(structArray,ClassName,parentArray) maps every element
of the parentArray to a corresponding element in the structArray to produce the
output array of objects, objStruct.

1 Alphabetical List

1-1584

All arrays must be of the same size. If either the structArray or the parentArray is of
size 1-by-1, then MATLAB performs scalar expansion to match the array sizes.

To create an object array of size 0-by-0, set the size of the structArray and
parentArray to 0-by-0.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
isa | isobject | metaclass

Topics
“Class Components”

Introduced before R2006a

 class

1-1585

classdef
Class definition keywords

Syntax
classdef ... end

Description
classdef ... end encloses a class definition.

Examples

Class Syntax

Use these keywords to define classes. For complete examples, see “Sample Class
Implementations”.

classdef (Attributes) ClassName < SuperclassName
 properties (Attributes)
 PropertyName
 end
 methods (Attributes)
 function obj = methodName(obj,arg2,...)
 ...
 end
 end
 events (Attributes)
 EventName
 end
end

classdef (Attributes) ClassName < SuperclassName
 enumeration
 EnumName

1 Alphabetical List

1-1586

 end
end

properties, methods, events, and enumeration are also the names of MATLAB
functions used to query the respective class members for a given object or class name.

Definitions

classdef
classdef is a keyword used to define MATLAB classes.

classdef ClassName begins the class definition and an end keyword terminates the
classdef block. Only blank lines and comments can precede classdef. Enter a class
definition in a file having the same name as the class, with a filename extension of .m.

classdef ClassName < SuperclassName1 & SuperclassName2 ... begins the
class definition and specifies one or more superclasses. For more information on deriving
classes from other classes, see “Subclass Definition”.

classdef (AttributeName1 = attributevalue, AttributeName2 =
attributevalue, ...) ClassName begins the class definition and specifies optional
class attributes. For a list of class attributes, see “Class Attributes”.

Class definition files can be in folders on the MATLAB path or in class folders whose
parent folder is on the MATLAB path. Class folder names begin with the '@' character
followed by the class name (for example, @MyClass). For more information on class
folders, see “Class Files and Folders” .

For more information on classes, see “Classdef Block” and “Class Definition”.

Properties
properties begins a property definition block; an end keyword terminates the
properties block. Class definitions can contain multiple property definition blocks, each
specifying different attribute settings that apply to the properties in that particular block.

For more information on properties, see “Property Syntax”.

 classdef

1-1587

Note Properties cannot have the same name as the class.

Methods
methods begins a methods definition block; an end keyword terminates the methods
block. This block contains functions that implement class methods. Class definitions can
contain multiple method blocks, each specifying different attribute settings that apply to
the methods in that particular block. It is possible to define method functions in separate
files.

For more information on methods, see “Methods in Class Design”.

Events
events begins an events definition block; an end keyword terminates the events block.
This block contains event names defined by the class. Class definitions can contain
multiple event blocks, each specifying different attribute settings that apply to the events
in that particular block.

For more information on events, see “Events and Listeners Syntax”.

Enumeration
enumeration begins an enumeration definition block; an end keyword terminates the
enumeration block.

For more information on enumerations, see “Enumerations”.

See Also
events | methods | properties

Topics
“Class Components”
“Attribute Specification”
“Sample Class Implementations”
“Methods in Separate Files”

1 Alphabetical List

1-1588

Introduced in R2008a

 classdef

1-1589

classUnderlying
Class of underlying data in tall array

Syntax
C = classUnderlying(X)

Description
C = classUnderlying(X) returns the class of the data stored inside tall array X.

Examples

Determine Underlying Class of Tall Arrays

All tall tables and arrays belong to the tall class. However, the underlying data type of a
tall array can vary.

Create a datastore for the airlinesmall.csv data set. Select a subset of the variables
to work with, and treat 'NA' values as missing data so that datastore replaces them
with NaN values. Convert the datastore into a tall table.

varnames = {'Year', 'UniqueCarrier'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames',varnames);
tt = tall(ds)

tt =

 Mx2 tall table

 Year UniqueCarrier
 ____ _____________

 1987 'PS'

1 Alphabetical List

1-1590

 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 : :
 : :

Determine the class of the tall table tt and the first table variable Year.

class(tt)

ans =
'tall'

class(tt.Year)

ans =
'tall'

Determine the underlying data types of tt, as well as the Year and UniqueCarrier
table variables.

classUnderlying(tt)

ans =

 1x5 tall char array

 'table'

classUnderlying(tt.Year)

ans =

 1x6 tall char array

 'double'

classUnderlying(tt.UniqueCarrier)

ans =

 1x4 tall char array

 classUnderlying

1-1591

 'cell'

In some cases, the result returned by classUnderlying is an unevaluated tall array.
Unevaluated tall arrays can be evaluated using the gather function to bring the result
into memory.

Input Arguments
X — Input array
tall array

Input array, specified as a tall array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | table | cell | categorical | datetime | duration |
calendarDuration

Output Arguments
C — Underlying class
tall array

Underlying class, returned as a tall array.

Tips
• Use isaUnderlying to test whether a tall array has a particular underlying data

type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-1592

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See classUnderlying in the Parallel Computing Toolbox documentation.

See Also
isaUnderlying | istall | tall

Topics
“Tall Arrays”

Introduced in R2016b

 classUnderlying

1-1593

clc
Clear Command Window

Syntax
clc

Description
clc clears all the text from the Command Window, resulting in a clear screen. After
running clc, you cannot use the scroll bar in the Command Window to see previously
displayed text. You can, however, use the up-arrow key ↑ in the Command Window to
recall statements from the command history.

Use clc in a MATLAB code file to always display output in the same starting position on
the screen.

Examples

Clear All Output

Clear all text from the Command Window before running a command.

Create a 50-by-50 matrix of random numbers.

rand(50)

ans = 50×50

 0.8147 0.2760 0.1622 0.4173 0.6443 0.9631 0.0596 0.3015 0.4229 0.9160 0.5822 0.7363 0.8507 0.1465 0.5590 0.4561 0.6837 0.1098 0.9879 0.1636 0.6312 0.9891 0.7829 0.7136 0.5038 0.2859 0.4067 0.1170 0.5038 0.0196 0.1403 0.3180 0.6723 0.6423 0.8383 0.8090 0.1982 0.2411 0.1934 0.5230 0.7449 0.3991 0.9852 0.3257 0.0560 0.1457 0.1048 0.9173 0.8169 0.9018
 0.9058 0.6797 0.7943 0.0497 0.3786 0.5468 0.6820 0.7011 0.0942 0.0012 0.5407 0.3947 0.5606 0.1891 0.8541 0.1017 0.1321 0.9338 0.1704 0.6660 0.3551 0.0669 0.6938 0.6183 0.4896 0.5437 0.6669 0.8147 0.6128 0.4352 0.2601 0.6086 0.4315 0.2213 0.5847 0.3565 0.1951 0.8414 0.7544 0.3253 0.8923 0.5994 0.5595 0.6302 0.8169 0.5850 0.8584 0.5098 0.1895 0.4195
 0.1270 0.6551 0.3112 0.9027 0.8116 0.5211 0.0424 0.6663 0.5985 0.4624 0.8699 0.6834 0.9296 0.0427 0.3479 0.9954 0.7227 0.1875 0.2578 0.8944 0.9970 0.9394 0.0098 0.3433 0.8770 0.9848 0.9337 0.3249 0.8194 0.8322 0.0868 0.9102 0.6944 0.8371 0.9481 0.0732 0.3268 0.8572 0.3463 0.8318 0.2426 0.8005 0.9336 0.2303 0.5289 0.0734 0.6982 0.9742 0.1237 0.3581
 0.9134 0.1626 0.5285 0.9448 0.5328 0.2316 0.0714 0.5391 0.4709 0.4243 0.2648 0.7040 0.6967 0.6352 0.4460 0.3321 0.1104 0.2662 0.3968 0.5166 0.2242 0.0182 0.8432 0.9360 0.3531 0.7157 0.8110 0.2462 0.5319 0.6174 0.4294 0.9091 0.2568 0.9711 0.0610 0.5910 0.8803 0.9636 0.4186 0.8103 0.1296 0.1051 0.7203 0.5799 0.6944 0.8223 0.7337 0.1973 0.8210 0.4890
 0.6324 0.1190 0.1656 0.4909 0.3507 0.4889 0.5216 0.6981 0.6959 0.4609 0.3181 0.4423 0.5828 0.2819 0.0542 0.2973 0.1175 0.7978 0.0740 0.7027 0.6525 0.6838 0.9223 0.1248 0.4494 0.8390 0.4845 0.3427 0.2021 0.5201 0.2573 0.5916 0.0098 0.8464 0.5846 0.9102 0.4711 0.4889 0.1557 0.5570 0.2251 0.8214 0.4840 0.6032 0.2124 0.7229 0.6505 0.1112 0.6379 0.2560
 0.0975 0.4984 0.6020 0.4893 0.9390 0.6241 0.0967 0.6665 0.6999 0.7702 0.1192 0.0196 0.8154 0.5386 0.1771 0.0620 0.6407 0.4876 0.6841 0.1536 0.6050 0.7837 0.7710 0.7306 0.9635 0.4333 0.7567 0.3757 0.4539 0.8639 0.2976 0.3326 0.5323 0.5060 0.2851 0.1938 0.4040 0.2203 0.8190 0.2630 0.3500 0.8411 0.6390 0.5999 0.5433 0.9259 0.5163 0.2974 0.0161 0.9292

1 Alphabetical List

1-1594

 0.2785 0.9597 0.2630 0.3377 0.8759 0.6791 0.8181 0.1781 0.6385 0.3225 0.9398 0.3309 0.8790 0.6952 0.6628 0.2982 0.3288 0.7690 0.4024 0.9535 0.3872 0.5341 0.0427 0.6465 0.0423 0.4706 0.4170 0.5466 0.4279 0.0977 0.4249 0.8531 0.2794 0.2789 0.8277 0.4324 0.1792 0.2262 0.6249 0.6806 0.2871 0.3545 0.8876 0.4484 0.7025 0.4926 0.3264 0.3964 0.8960 0.4668
 0.5469 0.3404 0.6541 0.9001 0.5502 0.3955 0.8175 0.1280 0.0336 0.7847 0.6456 0.4243 0.9889 0.4991 0.3308 0.0464 0.6538 0.3960 0.9828 0.5409 0.1422 0.8854 0.3782 0.8332 0.9730 0.5607 0.9718 0.5619 0.9661 0.9081 0.1192 0.4424 0.9462 0.7466 0.1910 0.7492 0.9689 0.5368 0.7386 0.2337 0.9275 0.4301 0.1987 0.0354 0.9564 0.6549 0.6618 0.4208 0.5154 0.2540
 0.9575 0.5853 0.6892 0.3692 0.6225 0.3674 0.7224 0.9991 0.0688 0.4714 0.4795 0.2703 0.0005 0.5358 0.8985 0.5054 0.7491 0.2729 0.4022 0.6797 0.0251 0.8990 0.7043 0.3983 0.1892 0.2691 0.9880 0.3958 0.6201 0.1080 0.4951 0.9044 0.9064 0.2369 0.4425 0.0392 0.4075 0.7621 0.8051 0.4564 0.0513 0.5722 0.3954 0.5138 0.4445 0.8901 0.1176 0.3115 0.5445 0.4312
 0.9649 0.2238 0.7482 0.1112 0.5870 0.9880 0.1499 0.1711 0.3196 0.0358 0.6393 0.1971 0.8654 0.4452 0.1182 0.7614 0.5832 0.0372 0.6207 0.0366 0.4211 0.6259 0.7295 0.7498 0.6671 0.7490 0.8641 0.3981 0.6954 0.5170 0.7064 0.0332 0.3927 0.9573 0.3934 0.9463 0.8445 0.3476 0.0672 0.3846 0.5927 0.7008 0.9922 0.4077 0.0854 0.5385 0.1478 0.6938 0.6064 0.7025
 ⋮

Clear all text from the Command Window.

clc

Create a 10-by-10 matrix of random numbers.

rand(10)

ans = 10×10

 0.8558 0.9390 0.9262 0.6279 0.4374 0.8884 0.8964 0.2442 0.8149 0.1398
 0.6708 0.8154 0.2985 0.4504 0.7462 0.2332 0.4822 0.4290 0.1405 0.7519

 clc

1-1595

 0.5236 0.0014 0.3381 0.4736 0.4679 0.8616 0.0141 0.0102 0.8799 0.2418
 0.2988 0.0031 0.8595 0.9497 0.8608 0.7117 0.6229 0.6088 0.0954 0.6505
 0.7040 0.0875 0.3405 0.0835 0.4665 0.8728 0.2311 0.9580 0.3526 0.8574
 0.3816 0.2607 0.1381 0.2798 0.4981 0.9380 0.5274 0.0954 0.5934 0.0844
 0.5677 0.0228 0.5078 0.4470 0.4874 0.1397 0.7250 0.0356 0.5852 0.9721
 0.8879 0.4241 0.8567 0.5876 0.2295 0.3939 0.6074 0.8862 0.6677 0.0315
 0.8429 0.3411 0.3843 0.8776 0.0856 0.9806 0.5884 0.2469 0.6480 0.8354
 0.8988 0.5414 0.6957 0.4691 0.0674 0.6448 0.4334 0.0089 0.4334 0.8357

See Also
clear | clf | close | home

Topics
“Format Output”

Introduced before R2006a

1 Alphabetical List

1-1596

clear
Remove items from workspace, freeing up system memory

Syntax
clear
clear name1 ... nameN
clear -regexp expr1 ... exprN
clear ItemType

Description
clear removes all variables from the current workspace, releasing them from system
memory.

clear name1 ... nameN removes the variables, scripts, functions, or MEX-functions
name1 ... nameN from memory.

clear -regexp expr1 ... exprN removes all variables that match any of the regular
expressions listed. This option only removes variables.

clear ItemType removes the types of items indicated by ItemType, such as all,
functions, or classes.

Examples

Clear a Single Variable

Define two variables a and b, and then clear a.

a = 1;
b = 2;
clear a

 clear

1-1597

Only variable b remains in the workspace.

whos

 Name Size Bytes Class Attributes

 b 1x1 8 double

Clear Specific Variables by Name

Using regular expressions, clear those variables with names that begin with Mon, Tue, or
Wed.

clear -regexp ^Mon ^Tue ^Wed;

Clear Set of Variables

Create a cell array, vars, that contains the names of variables to clear. Then, clear those
variables.

vars = {'v1','v2','time'};
clear(vars{:})

Clear All Compiled Scripts, Functions, and MEX-functions

If a function is locked or currently running, it is not cleared from memory.

clear functions

Input Arguments
name1 ... nameN — Names of variables, scripts, functions, or MEX-functions to
clear
character vectors | string scalars

1 Alphabetical List

1-1598

Names of variables, scripts, functions, or MEX-functions to clear, specified as one or more
character vectors or string scalars.

If name is a:

• Function, then clear reinitializes any persistent variables in the function. Specifying
a local or nested function is not supported.

• Script or function that is currently executing or a function locked by mlock, then
clear does not remove it.

• Global variable, then clear removes it from the current workspace, but it remains in
the global workspace. To remove a global variable from all workspaces, use clear
global variable.

Use a partial path to distinguish between different overloaded versions of a function. For
example, clear polynom/display clears only the display method for polynom
objects, leaving any other implementations in memory.

expr1 ... exprN — Regular expressions matching names of variables to clear
character vectors | string scalars

Regular expressions matching names of variables to clear, specified as one or more
character vectors or string scalars.

ItemType — Type of items to clear
all | classes | functions | global | import | java | mex | variables

Type of items to clear, specified as one of the following.

 clear

1-1599

Value of
ItemTyp
e

Items Cleared Notes
Vari
abl
es
in
sco
pe

Scri
pts
and
func
tion
s

Clas
s
defi
nitio
ns

Pers
iste
nt
vari
able
s

ME
X
fun
ctio
ns

Glob
al
vari
able
s

Imp
ort
list

Java
classes
on the
dynam
ic path

all ✓ ✓ ✓ ✓ ✓ Fro
m
com
man
d
pro
mpt
only

 Calling clear all
decreases code
performance, and is usually
unnecessary. For more
information, see the “Tips”
on page 1-1604 section.

1 Alphabetical List

1-1600

Value of
ItemTyp
e

Items Cleared Notes
Vari
abl
es
in
sco
pe

Scri
pts
and
func
tion
s

Clas
s
defi
nitio
ns

Pers
iste
nt
vari
able
s

ME
X
fun
ctio
ns

Glob
al
vari
able
s

Imp
ort
list

Java
classes
on the
dynam
ic path

classes ✓ ✓ ✓ ✓ ✓ ✓ ✓ Calling clear classes
decreases code
performance, and is usually
unnecessary. For more
information, see the “Tips”
on page 1-1604 section.

To instantiate an object
with an updated class
definition, it is not
necessary to call clear
classes. When you modify
a class definition, MATLAB
updates it automatically.
For more information, see
“Automatic Updates for
Modified Classes”.

clear classes issues a
warning and does not clear
a class of objects if any of
those objects still exists
after the workspace is
cleared. For example,
objects can still exist in
persistent variables of
functions or figure
windows.

clear classes does not
clear a class if its file is
locked using the mlock

 clear

1-1601

Value of
ItemTyp
e

Items Cleared Notes
Vari
abl
es
in
sco
pe

Scri
pts
and
func
tion
s

Clas
s
defi
nitio
ns

Pers
iste
nt
vari
able
s

ME
X
fun
ctio
ns

Glob
al
vari
able
s

Imp
ort
list

Java
classes
on the
dynam
ic path

command. No warning is
issued in this case.

functio
ns

 ✓ ✓ ✓ Calling clear functions
decreases code
performance, and is usually
unnecessary. For more
information, see the “Tips”
on page 1-1604 section.

global ✓ clear global removes all
global variables in the
current and global
workspaces. For example,
when called from a
function, clear global
removes all global variables
in the function and global
workspaces, but not in the
base workspace.

import ✓ Call clear import only
from the command prompt.
Calling clear import in a
function or a script returns
an error.

1 Alphabetical List

1-1602

Value of
ItemTyp
e

Items Cleared Notes
Vari
abl
es
in
sco
pe

Scri
pts
and
func
tion
s

Clas
s
defi
nitio
ns

Pers
iste
nt
vari
able
s

ME
X
fun
ctio
ns

Glob
al
vari
able
s

Imp
ort
list

Java
classes
on the
dynam
ic path

java ✓ ✓ ✓ ✓ ✓ ✓ clear java issues a
warning and does not
remove the Java class
definition if any of its Java
objects exist outside the
workspace (for example, in
user data or persistent
variables in a locked code
file).

Issue a clear java
command after modifying
any files on the dynamic
Java path.

mex ✓ clear mex does not clear
locked MEX functions or
functions that are currently
in use.

variabl
es

✓

Note If the name of a variable is a value of ItemType, then calling clear followed by
that name deletes the variable with that name. clear does not interpret the name as a
keyword in this context. For example, if the workspace contains variables a, all, b, and
ball, clear all removes the variable all only.

 clear

1-1603

Tips
• Calling clear all, clear classes, and clear functions decreases code

performance, and is usually unnecessary.

• To clear one or more specific variables from the current workspace, use clear
name1 ... nameN.

• To clear all variables from the current workspace, use clear or clearvars.
• To clear all global variables, use clear global or clearvars –global.
• To clear a particular class, use clear myClass.
• To clear a particular function or script, use clear functionName.
• To clear all MEX functions, use clear mex.

• The clear function can remove variables that you specify. To remove all except a few
specified variables, use clearvars instead.

• If you clear the handle of a figure or graphics object, the object itself is not removed.
Use delete to remove objects. On the other hand, deleting an object does not remove
the variable (if any) used for storing its handle.

• The clear function does not clear Simulink® models. Use bdclose instead.
• The clear function does not clear persistent variables in local or nested functions.
• On UNIX systems, clear does not affect the amount of memory allocated to the

MATLAB process.

See Also
clc | clearvars | delete | import | inmem | load | mlock | whos

Topics
“Base and Function Workspaces”
“Strategies for Efficient Use of Memory”
“Automatic Updates for Modified Classes”
“Java Class Path”
“Regular Expressions”

Introduced before R2006a

1 Alphabetical List

1-1604

clearAllMemoizedCaches
Clear caches for all MemoizedFunction objects

Syntax
clearAllMemoizedCaches

Description
clearAllMemoizedCaches clears caches for all MemoizedFunction objects.

Examples

Clear All Memoized Function Caches

Create two memoized functions, and call them several times.

mf1 = memoize(@sin);
mf2 = memoize(@cos);

a = [mf1(0) mf1(pi/2) mf1(pi)];
b = mf2(pi/2);

View the statistics for the memoized function objects.

mf1.stats.Cache

ans = struct with fields:
 Inputs: {{1x1 cell} {1x1 cell} {1x1 cell}}
 Nargout: [1 1 1]
 Outputs: {{1x1 cell} {1x1 cell} {1x1 cell}}
 HitCount: [0 0 0]
 TotalHits: 0
 TotalMisses: 3

 clearAllMemoizedCaches

1-1605

mf2.stats.Cache

ans = struct with fields:
 Inputs: {{1x1 cell}}
 Nargout: 1
 Outputs: {{1x1 cell}}
 HitCount: 0
 TotalHits: 0
 TotalMisses: 1

Clear all memoized function caches, and view the statistics again.

clearAllMemoizedCaches
mf1.stats.Cache

ans = struct with fields:
 Inputs: {}
 Nargout: []
 Outputs: {}
 HitCount: []
 TotalHits: 0
 TotalMisses: 0

mf2.stats.Cache

ans = struct with fields:
 Inputs: {}
 Nargout: []
 Outputs: {}
 HitCount: []
 TotalHits: 0
 TotalMisses: 0

See Also
Functions
clearCache | memoize

Objects
MemoizedFunction

1 Alphabetical List

1-1606

Introduced in R2017a

 clearAllMemoizedCaches

1-1607

clearCache
Clear cache for MemoizedFunction object

Syntax
clearCache(mfcn)

Description
clearCache(mfcn) clears the cache for a MemoizedFunction object.

The memoization of a function is associated with the input function and not with the
MemoizedFunction object. Therefore, clearing a variable does not clear the cache
associated with the input function.

A MemoizedFunction object is not aware of updates to the underlying function. If you
modify the function associated with the memoized function, use clearCache to clear the
cache.

Examples

Clear Memoized Function Caches

Create a memoized function object for the sin function, and call it several times.

mf = memoize(@sin);
a = mf(0);
b = mf(pi/2);
c = mf(0);

View the statistics for the object.

mf.stats.Cache

ans = struct with fields:
 Inputs: {{1x1 cell} {1x1 cell}}

1 Alphabetical List

1-1608

 Nargout: [1 1]
 Outputs: {{1x1 cell} {1x1 cell}}
 HitCount: [1 0]
 TotalHits: 1
 TotalMisses: 2

Clear the memoized function object cache, and view the statistics.

mf.clearCache
mf.stats.Cache

ans = struct with fields:
 Inputs: {}
 Nargout: []
 Outputs: {}
 HitCount: []
 TotalHits: 0
 TotalMisses: 0

Input Arguments
mfcn — Function with memoization semantics
MemoizedFunction object

Function with memoization semantics, specified as a MemoizedFunction object.

Tips
• Two variables that memoize the same function share a cache and object property

values, such as cache size. In the following example, the variables a and b share a
cache and have the same value for cache size.

a = memoize(@svd);
b = memoize(@svd);

Clearing the cache for b (b.clearCache) also clears the cache for a, and any other
variables that memoize the svd function.

 clearCache

1-1609

• Clearing a variable does not clear the cache associated with the input function. To
clear the cache for a MemoizedFunction object that no longer exists in the
workspace, create a new MemoizedFunction object to the same function, and use the
clearCache function on the new object. Alternatively, you can clear caches for all
MemoizedFunction objects using the clearAllMemoizedCaches function.

See Also
Functions
clearAllMemoizedCaches | memoize

Objects
MemoizedFunction

Introduced in R2017a

1 Alphabetical List

1-1610

clearPersonalValue
Package: matlab.settings

Clear the personal value for a setting

Syntax
clearPersonalValue(s)

Description
clearPersonalValue(s) clears the personal value for the specified setting. If the
personal value is not set or not writeable, MATLAB throws an error.

Examples

Clear Setting Personal Value

Set and then clear the personal value for the code font size in MATLAB.

Get the root SettingsGroup object and set the personal value for the maximum column
width for comments in MATLAB.

s = settings
s.matlab.editor.language.matlab.comments.MaxWidth.PersonalValue = 80;

Display the current values for the maximum column width for comments in MATLAB.
Since the personal value is set and the temporary value is not set, the active value for the
setting is the personal value. For more information on how the active value is determined,
see “Access and Modify Settings”.

s.matlab.editor.language.matlab.comments.MaxWidth

ans =
 Setting 'matlab.editor.language.matlab.comments.MaxWidth' with properties.

 clearPersonalValue

1-1611

 ActiveValue: 80
 TemporaryValue: <no value>
 PersonalValue: 80
 FactoryValue: 75

Clear the personal value. The active value for the setting is now set to the factory value.

clearPersonalValue(s.matlab.editor.language.matlab.comments.MaxWidth)

ans =
 Setting 'matlab.editor.language.matlab.comments.MaxWidth' with properties.

 ActiveValue: 75
 TemporaryValue: <no value>
 PersonalValue: <no value>
 FactoryValue: 75

Input Arguments
s — Setting
setting object

Setting, specified as a setting object. Use the settings function to access the root
settings group object and all the available settings in the tree.

See Also
settings

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-1612

clearpoints
Clear points from animated line

Syntax
clearpoints(an)

Description
clearpoints(an) clears all points from the animated line specified by an. Create an
animated line with the animatedline function. If you want to display the update on the
screen, use drawnow after using clearpoints.

Examples

Clear Points from Animated Line

Create an animated line with 10 points. Then, clear the points stored in the animated line.

an = animatedline(1:10,1:10);
clearpoints(an)

The animated line still exists, but has no data.

Input Arguments
an — AnimatedLine object
AnimatedLine object

AnimatedLine object. Create an AnimatedLine object using the animatedline
function.

 clearpoints

1-1613

See Also
Functions
addpoints | animatedline | getpoints

Properties
AnimatedLine

Introduced in R2014b

1 Alphabetical List

1-1614

clearTemporaryValue
Package: matlab.settings

Clear the temporary value for a setting

Syntax
clearTemporaryValue(s)

Description
clearTemporaryValue(s) clears the temporary value for the specified setting. If the
temporary value is not set or not writeable, MATLAB throws an error.

Examples

Clear Setting Temporary Value

Set and then clear the temporary value for the code font size in MATLAB.

Get the root SettingsGroup object and set the temporary value for the maximum
column width for comments in MATLAB.

s = settings
s.matlab.editor.language.matlab.comments.MaxWidth.TemporaryValue = 80;

Display the current values for the maximum column width for comments in MATLAB.
Since the temporary value is set, the active value for the setting is the temporary value.
For more information on how the active value is determined, see “Access and Modify
Settings”.

s.matlab.editor.language.matlab.comments.MaxWidth

ans =
 Setting 'matlab.editor.language.matlab.comments.MaxWidth' with properties.

 clearTemporaryValue

1-1615

 ActiveValue: 80
 TemporaryValue: 80
 PersonalValue: <no value>
 FactoryValue: 75

Clear the temporary value. The active value for the setting is now set to the factory value.

clearTemporaryValue(s.matlab.editor.language.matlab.comments.MaxWidth)

ans =
 Setting 'matlab.editor.language.matlab.comments.MaxWidth' with properties.

 ActiveValue: 75
 TemporaryValue: <no value>
 PersonalValue: <no value>
 FactoryValue: 75

Input Arguments
s — Setting
setting object

Setting, specified as a setting object. Use the settings function to access the root
settings group object and all the available settings in the tree.

See Also
settings

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-1616

clearvars
Clear variables from memory

Syntax
clearvars
clearvars variables
clearvars -except keepVariables
clearvars variables -except keepVariables

clearvars -global ___

Description
clearvars removes all variables from the currently active workspace.

clearvars variables removes the variables specified by variables. If any of the
variables are global, clearvars removes these variables from the current workspace
only, leaving them accessible to any functions that declare them as global.

clearvars -except keepVariables removes all variables, except for those specified
by keepVariables. Use this syntax to keep specific variables and remove all others.

clearvars variables -except keepVariables removes the variables specified by
variables, and does not remove the variables specified by keepVariables. This syntax
allows you to use a combination of variable names, wild card characters, or regular
expressions to specify variables to remove or keep.

clearvars -global ___ removes the specified global variables from the workspace,
including those made global within functions, using any of the input arguments in the
preceding syntaxes. The -global flag must be first in the argument list.

Examples

 clearvars

1-1617

Clear Named Variables

Define three variables, a, b, and c. Then, clear a and c.

a = 1;
b = 2;
c = 3;
clearvars a c
whos

 Name Size Bytes Class Attributes

 b 1x1 8 double

Only variable b remains in the workspace.

Clear All Variables Except Specified

Remove all variables from the workspace except for the variables C and D.

clearvars -except C D

Clear Variables Using Regular Expressions and Name Variables to Exclude

Clear variables with names that start with b and are followed by 3 digits, except for the
variable b106.

clearvars -regexp ^b\d{3}$ -except b106

Name Variables to Clear and Preserve Variables Using Regular Expressions

Clear variables with names that start with a and do not end with a.

clearvars a* -except -regexp a$

1 Alphabetical List

1-1618

Clear Global Variables Except Specified

Clear all global variables, except those with names that start with x.

clearvars -global -except x*

Clear List of Variables

Clear a list of variables used for intermediate calculations.

Create two variables in the workspace.

cashOnHand = 20;
cost = 12.99;

Store a list of the names of all the variables currently in the workspace.

initialVars = who;

Specify or calculate additional variables, taxRate and tax.

taxRate = 0.0625;
tax = round(100*cost*taxRate)/100;

Update the initial variables, cost and cashOnHand.

cost = cost + tax;
cashOnHand = cashOnHand - cost;

Clear all variables except the initial variables, using the function form of clearvars.
When using the function form of a syntax, enclose input character vectors in single
quotes, and separate them with commas.

clearvars('-except',initialVars{:})

clearvars clears the variables, initialVars, taxRate, and tax.

 clearvars

1-1619

Input Arguments
variables — Names of variables to remove
character vectors | string scalars

Names of variables to remove, specified as one or more character vectors or string
scalars in one of these forms.

Form of Variables Input Variables to Remove
var1 ... varN Named variables.

Use the '*' wildcard to match patterns. For
example, clearvars A* clears all variables in
the workspace with names that start with A.

-regexp expr1 ... exprN Variables with names that match the regular
expressions. For example, clearvars -regexp
^Mon ^Tues clears only the variables in the
workspace with names that begin with Mon or
Tues.

Data Types: char | string

keepVariables — Names of variables to keep
character vectors | string scalar

Names of variables to keep, specified as one or more character vectors or string scalars,
in one of these forms.

Form of Variables Input Variables to Keep
var1 ... varN Named variables.

Use the '*' wildcard to match patterns. For
example, clearvars -except A* clears all
variables in the workspace, except those with
names that start with A.

-regexp expr1 ... exprN Variables with names that match the regular
expressions. For example, clearvars -except
-regexp ^Mon ^Tues clears all the variables in
the workspace, except those with names that
begin with Mon or Tues.

1 Alphabetical List

1-1620

Data Types: char | string

See Also
clear | exist | global | persistent | save | who | whos

Topics
“Create and Edit Variables”
“Regular Expressions”
“Command vs. Function Syntax”

Introduced in R2008a

 clearvars

1-1621

clear (serial)
Remove serial port object from MATLAB workspace

Syntax
clear obj

Description
clear obj removes obj from the MATLAB workspace, where obj is a serial port object
or an array of serial port objects.

Examples
This example creates the serial port object s on a Windows platform, copies s to a new
variable scopy, and clears s from the MATLAB workspace. s is then restored to the
workspace with instrfind and is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =
 1

Tips
If obj is connected to the device and it is cleared from the workspace, then obj remains
connected to the device. You can restore obj to the workspace with the instrfind
function. A serial port object connected to the device has a Status property value of open.

1 Alphabetical List

1-1622

To disconnect obj from the device, use the fclose function. To remove obj from
memory, use the delete function. You should remove invalid serial port objects from the
workspace with clear.

See Also
Status | delete | fclose | instrfind | isvalid

Introduced before R2006a

 clear (serial)

1-1623

clf
Clear current figure window

Syntax
clf
clf('reset')
clf(fig)
clf(fig,'reset')
figure_handle = clf(...)

Description
clf deletes from the current figure all graphics objects whose handles are not hidden
(i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects regardless of the
setting of their HandleVisibility property and resets all figure properties except
Position, Units, PaperPosition, and PaperUnits to their default values.

clf(fig) or clf(fig,'reset') clears the single figure with handle fig.

figure_handle = clf(...) returns the handle of the figure. This is useful when the
figure IntegerHandle property is off because the noninteger handle becomes invalid
when the reset option is used (i.e., IntegerHandle is reset to on, which is the default).

Alternatives
Use Clear Figure from the figure window's Edit menu to clear the contents of a figure.
You can also create a desktop shortcut to clear the current figure with one mouse click.
See “Rerun Favorite Commands”.

1 Alphabetical List

1-1624

Tips
The clf command behaves the same way when issued on the command line as it does in
callback routines — it does not recognize the HandleVisibility setting of callback.
This means that when issued from within a callback routine, clf deletes only those
objects whose HandleVisibility property is set to on.

See Also
cla | clc | hold | reset

Introduced before R2006a

 clf

1-1625

clipboard
Copy and paste text to and from system clipboard

Syntax
clipboard('copy',data)
txt = clipboard('paste')
data = clipboard('pastespecial')

Description
clipboard('copy',data) copies data to the clipboard. If data is not a character
array, it is converted using mat2str.

Note The clipboard function requires Oracle® Java software.

txt = clipboard('paste') returns the current contents of the clipboard as a
character vector. If clipboard cannot convert the contents, txt is empty ('').

data = clipboard('pastespecial') imports the clipboard contents into an array
using uiimport.

See Also
Import Tool | load | mat2str

Introduced before R2006a

1 Alphabetical List

1-1626

clock
Current date and time as date vector

Syntax
c = clock
[c tf] = clock

Description
c = clock returns a six-element date vector containing the current date and time in
decimal form:

[year month day hour minute seconds]

The clock function calculates the current date and time from the system time.

[c tf] = clock returns a second output argument that is 1 (true) if the current date
and time occur during Daylight Saving Time (DST) in your system's time zone, and 0
(false) otherwise.

Examples

Round clock Output to Integer Display

To return the current date and time, use the clock function. Set the output format so
that floating-point values display with up to five digits.

format shortg
c = clock

c = 1×6

 2019 3 2 22 14 53.391

 clock

1-1627

The sixth element of the date vector output (seconds) is accurate to several digits beyond
the decimal point.

To round to integer display format, use the fix function.

fix(c)

ans = 1×6

 2019 3 2 22 14 53

Test Whether Current Time Occurs During DST

To test whether the current date and time occur during Daylight Saving Time (DST), use
the second output of the clock function. tf is 1 (true) if c occurs during DST, and 0
(false) otherwise.

format shortg
[c tf] = clock

c = 1×6

 2019 3 2 20 34 35.257

tf = logical
 0

Limitations
• MATLAB Online returns current Coordinated Universal Time (UTC) rather than local

time.

1 Alphabetical List

1-1628

https://www.mathworks.com/products/matlab-online.html

Tips
• To time the duration of an event, use the timeit or tic and toc functions instead of

clock and etime. The clock function is based on the system time, which can be
adjusted periodically by the operating system, and thus might not be reliable in time
comparison operations.

• To return a datetime scalar representing the current date and time, type:

t = datetime('now')

See Also
cputime | date | datetime | etime | fix | now | tic | timeit | toc

Introduced before R2006a

 clock

1-1629

close
Remove specified figure

Syntax
close
close(h)
close name
close all
close all hidden
close all force
status = close(...)

Description
close deletes the current figure or the specified figure(s). It optionally returns the status
of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is an array, close deletes all figures
identified by h. h can also be the figure Number.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden handles.

close all force deletes all figures, including GUIs for which CloseRequestFcn has
been altered to not close the window.

status = close(...) returns 1 if the specified windows have been deleted and 0
otherwise.

1 Alphabetical List

1-1630

Algorithms
The close function works by evaluating the specified figure's CloseRequestFcn
property with the statement

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure using
delete(get(groot,'CurrentFigure')). If you specify an array of figure handles,
close executes each figure's CloseRequestFcn in turn. If an error that terminates the
execution of a CloseRequestFcn occurs, the figure is not deleted. Note that using your
computer's window manager (i.e., the Close menu item) also calls the figure's
CloseRequestFcn.

If a figure's handle is hidden (i.e., the figure's HandleVisibility property is set to
callback or off and the root ShowHiddenHandles property is set to on), you must
specify the hidden option when trying to access a figure using the all option.

To delete all figures unconditionally, use the statements

set(groot,'ShowHiddenHandles','on')
c = get(groot,'Children');
delete(c)

The figure CloseRequestFcn allows you to either delay or abort the closing of a figure
once the close function has been issued. For example, you can display a dialog box to
see if the user really wants to delete the figure or save and clean up before closing.

When coding a CloseRequestFcn callback, make sure that it does not call close,
because this sets up a recursion that results in a MATLAB warning. Instead, the callback
should destroy the figure with delete. The delete function does not execute the figure's
CloseRequestFcn; it deletes the specified figure.

See Also
delete | figure | gcf

Introduced before R2006a

 close

1-1631

close
Close Tiff object

Syntax
close(t)

Description
close(t) closes a Tiff object.

Examples

Close Tiff Object

Create a Tiff object for a file, and then close it.

t = Tiff('example.tif','r');
close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

1 Alphabetical List

1-1632

Algorithms

References
This function corresponds to the TIFFClose function in the LibTIFF C API. To use this
function, you must be familiar with the TIFF specification and technical notes. View this
documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 close

1-1633

http://www.simplesystems.org/libtiff/

close
Close connection to FTP server

Syntax
close(ftpobj)

Description
close(ftpobj) closes the connection to the FTP server associated with ftpobj.

Examples

Close Connection

Open a connection to an FTP server. Then close it when your session is finished.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

Show the contents on the server, and retrieve the README.txt file.

dir(ftpobj)

DMSP Solid_Earth google12c4c939d7b90761.html mgg

1 Alphabetical List

1-1634

INDEX.txt coastwatch hazards pub
README.txt dmsp4alan index.html tmp
STP ftp.html international wdc
Snow_Ice geomag ionosonde

mget(ftpobj,'README.txt');

Close the connection to the FTP server.

close(ftpobj)

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

Tips
• If you do not run close at the end of your session, then the connection either times

out automatically or terminates when you exit MATLAB.
• After calling close, calling any other FTP function on the same object automatically

reopens the connection.
• close does not return any output to indicate success or failure.

See Also
ftp

Introduced before R2006a

 close

1-1635

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

clibRelease
Release C++ object from MATLAB

Syntax
clibRelease(cppObj)

Description
clibRelease(cppObj) releases C++ object from MATLAB, making it inaccessible.

Input Arguments
cppObj — C++ object created in MATLAB
handle

C++ object created in MATLAB, specified as a handle. Once released, the underlying C+
+ object is no longer accessible in MATLAB, and the MATLAB handle cppObj becomes
invalid. If the object is returned again from the library, then MATLAB creates a handle.

See Also
Introduced in R2019a

1 Alphabetical List

1-1636

clibgen Package
Summary of packages and classes to support calling C++ library functionality from
MATLAB

Description
Use these classes to publish a MATLAB interface to a C++ shared library. If you already
have a MATLAB interface, then see “Call Functions in C++ Shared Library”.

Classes
clibgen.ClassDefinition Definition for MATLAB class corresponding to C++ class
clibgen.ConstructorDefinition Definition for MATLAB function corresponding to C++

class constructor
clibgen.EnumDefinition Definition for MATLAB enumeration corresponding to C+

+ enumeration
clibgen.FunctionDefinition Definition for MATLAB function corresponding to C++

package function
clibgen.LibraryDefinition MATLAB definition for C++ library
clibgen.MethodDefinition Definition for MATLAB function corresponding to C++

class method
clibgen.PropertyDefinition Definition for MATLAB property corresponding to public

property of C++ class

Functions
clibgen.buildInterface Create interface to C++ library without definition file
clibgen.generateLibraryDefinition Create definition file for C++ library

See Also

Topics
“Steps to Publish a MATLAB C++ Library Interface”

 clibgen Package

1-1637

clibgen.ClassDefinition class
Package: clibgen

Definition for MATLAB class corresponding to C++ class

Description
The clibgen.ClassDefinition class contains the MATLAB definition for a class
defined in the C++ header.

The clibgen.ClassDefinition class is a handle class.

Creation
MATLAB constructs a ClassDefinition object when you call addClass on a
clibgen.LibraryDefinition object.

Properties
Description — Help text
string | character vector

Help text for the end user describing the class, specified as a string or a character vector.
The default text is

help clib.packageName.fullMLClassName

Representation of a MATLAB C++ object clib.packageName.fullMLClassName

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-1638

MATLABName — C++ class name in MATLAB
string | character vector

C++ class name in MATLAB, specified as a string or a character vector.
Attributes:

GetAccess
public

SetAccess
private

CPPName — Corresponding C++ class name
string | character vector

Corresponding C++ class name, specified as a string or a character vector.
Attributes:

GetAccess
public

SetAccess
private

Methods — Class methods
clibgen.MethodDefinition

Class methods, specified as one or more clibgen.MethodDefinition objects.
Attributes:

GetAccess
public

SetAccess
private

Constructors — Class constructors
clibgen.ConstructorDefinition

Class constructors, specified as one or more clibgen.ConstructorDefinition
objects.

 clibgen.ClassDefinition class

1-1639

Attributes:

GetAccess
public

SetAccess
private

Properties — Class properties
clibgen.PropertyDefinition

Class properties, specified as one or more clibgen.PropertyDefinition objects.

Attributes:

GetAccess
public

SetAccess
private

DefiningLibrary — Library defining class
clibgen.LibraryDefinition

Library defining the class, specified as a clibgen.LibraryDefinition object.

Attributes:

GetAccess
public

SetAccess
private

Methods

Public Methods
<infotypegroup type="method"> addConstructor addMethod addProperty </
infotypegroup>

1 Alphabetical List

1-1640

See Also
addClass | clibgen.ConstructorDefinition | clibgen.LibraryDefinition |
clibgen.MethodDefinition | clibgen.PropertyDefinition

Introduced in R2019a

 clibgen.ClassDefinition class

1-1641

addConstructor
Class: clibgen.ClassDefinition
Package: clibgen

Add constructor to C++ class definition

Syntax
definition = addConstructor(classDef,cppSignature)
definition = addConstructor(classDef,cppSignature,'Description',
text)

Description
definition = addConstructor(classDef,cppSignature) adds a
clibgen.ConstructorDefinition object with C++ signature cppSignature to the
class definition.

definition = addConstructor(classDef,cppSignature,'Description',
text) adds help text to the constructor definition.

Input Arguments
classDef — Class definition
clibgen.ClassDefinition

Class definition, specified as a clibgen.ClassDefinition object.

cppSignature — C++ constructor signature
string scalar | character vector

C++ constructor signature, specified as a string scalar or a character vector.

text — Help text
string scalar | character vector

1 Alphabetical List

1-1642

Help text for the end user describing the constructor, specified as a string scalar or a
character vector.

See Also
clibgen.ClassDefinition | clibgen.ConstructorDefinition

Introduced in R2019a

 addConstructor

1-1643

addMethod
Class: clibgen.ClassDefinition
Package: clibgen

Add method to C++ class definition

Syntax
definition = addMethod(classDef,cppSignature)
definition = addMethod(classDef,cppSignature,'Description',text)

Description
definition = addMethod(classDef,cppSignature) adds a
clibgen.MethodDefinition object with C++ signature cppSignature to the class
definition.

definition = addMethod(classDef,cppSignature,'Description',text) adds
help text to the method definition.

Input Arguments
classDef — Class definition
clibgen.ClassDefinition

Class definition, specified as a clibgen.ClassDefinition object.

cppSignature — C++ method signature
string scalar | character vector

C++ method signature, specified as a string scalar or a character vector.

text — Help text
string scalar | character vector

1 Alphabetical List

1-1644

Help text for the end user describing the method, specified as a string scalar or a
character vector.

See Also
clibgen.ClassDefinition | clibgen.MethodDefinition

Introduced in R2019a

 addMethod

1-1645

addProperty
Class: clibgen.ClassDefinition
Package: clibgen

Add property to C++ class definition

Syntax
definition = addProperty(classDef,cppName,MATLABType)
definition = addProperty(classDef,cppName,'Description',text)

Description
definition = addProperty(classDef,cppName,MATLABType) adds a
clibgen.PropertyDefinition object to the class definition.

definition = addProperty(classDef,cppName,'Description',text) adds
help text to the method definition.

Input Arguments
classDef — Class definition
clibgen.ClassDefinition

Class definition, specified as a clibgen.ClassDefinition object.

cppName — C++ property name
string scalar | character vector

C++ property name, specified as a string scalar or a character vector.

MATLABType — MATLAB type
valid data type

MATLAB type, specified as a valid data type for the property.

1 Alphabetical List

1-1646

text — Help text
string scalar | character vector

Help text for the end user describing the property, specified as a string scalar or a
character vector.

See Also
clibgen.ClassDefinition | clibgen.PropertyDefinition

Introduced in R2019a

 addProperty

1-1647

clibgen.ConstructorDefinition class
Package: clibgen

Definition for MATLAB function corresponding to C++ class constructor

Description
The clibgen.ConstructorDefinition class contains the MATLAB definition for a
constructor defined in the header of a C++ class.

The clibgen.ConstructorDefinition class is a handle class.

Creation
MATLAB constructs a ConstructorDefinition object when you call addConstructor
on a clibgen.ClassDefinition object.

Properties
Description — Help text
string | character vector

Help text for the end user describing the constructor, specified as a string or a character
vector. The default text is

help clib.packageName.fullMLClassName

Constructor of class clib.packageName.fullMLClassName

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-1648

Arguments — Definition for input arguments
struct

Definition for input arguments, specified as a struct.
Attributes:

GetAccess
public

SetAccess
private

CPPSignature — C++ constructor signature
string | character vector

C++ constructor signature, specified as a string or a character vector.
Attributes:

GetAccess
public

SetAccess
private

DefiningClass — Class containing constructor
clibgen.ClassDefinition

Class containing the constructor, specified as a clibgen.ClassDefinition object.
Attributes:

GetAccess
public

SetAccess
private

MATLABSignature — Constructor signature in MATLAB
string | character vector

Constructor signature in MATLAB, specified as a string or a character vector. MATLAB
displays this signature when you load the library.

 clibgen.ConstructorDefinition class

1-1649

Attributes:

GetAccess
public

SetAccess
private

Dependent
true

Valid — Definition complete indicator
false (default) | true

Indicate if constructor definition is complete, specified as true or false.

Attributes:

GetAccess
public

SetAccess
private

Methods

Public Methods
<infotypegroup type="method"> defineArgument validate </infotypegroup>

See Also
addConstructor | clibgen.ClassDefinition

Introduced in R2019a

1 Alphabetical List

1-1650

defineArgument
Class: clibgen.ConstructorDefinition
Package: clibgen

Add input argument definition for C++ constructor

Syntax
defineArgument(constructDef,argName,mltype)
defineArgument(constructDef,argName,mltype,direction)
defineArgument(constructDef,argName,mltype,direction,shape)

Description
defineArgument(constructDef,argName,mltype) adds an input argument
definition.

defineArgument(constructDef,argName,mltype,direction) defines whether
argument is input, output, or both.

defineArgument(constructDef,argName,mltype,direction,shape) provides
information about data dimensions.

Input Arguments
constructDef — Constructor definition
clibgen.ConstructorDefinition

Constructor definition, specified as a clibgen.ConstructorDefinition object.

argName — C++ argument name
string scalar | character vector

C++ argument name, specified as a string scalar or a character vector.

 defineArgument

1-1651

mltype — MATLAB type
string scalar | character vector

MATLAB type, specified as a string scalar or a character vector.

direction — Argument type
"input" (default) | "output" | "inputoutput"

Argument type, specified as "input" for an input argument, "output" for an output
argument, or "inputoutput" for both an input and an output argument.

shape — Information for defining data dimensions
string vector | scalar text | positive integer vector | "nullTerminated" | cell array

Dimension definition used by MATLAB to define data dimensions, specified as a string
vector, scalar text, positive integer vector, "nullTerminated", or a cell array. For a cell
array, the elements are a combination of scalar text and scalar positive integers.

If you can define the argument dimension as a fixed scalar value, then enter a number,
such as 5.

If the dimension is defined by another argument, then enter the argument name as a
string. For example, consider the following C++ signature. If argument len defines the
length of data, then the value of shape is "len".

myFunc(const int *data, int len)

If the size of an argument is defined by an array, then the value of shape is one of the
following:

• 1
• Fixed dimensions: Enter a numerical array, such as [5,2].
• Variable dimensions: Enter a string array of parameter names, such as

["row","col"]

If the C++ type for the argument is a string, then use these options to choose values for
the mltype and shape arguments.

C++ Type mltype Options for shape
char * int8 Scalar value

Array of scalar values

1 Alphabetical List

1-1652

C++ Type mltype Options for shape
const char * char MATLAB char

Character vector
string "nullTerminated"

For more information, see “MATLAB to C++ Data Type Mapping”.

See Also
Introduced in R2019a

 defineArgument

1-1653

validate
Class: clibgen.ConstructorDefinition
Package: clibgen

Validate C++ constructor definition

Syntax
validate(constructDef)

Description
validate(constructDef) validates the number of arguments and the outputs of the
function to ensure that they match the C++ signature for a constructor definition.

Input Arguments
constructDef — Constructor definition
clibgen.ConstructorDefinition

Constructor definition, specified as a clibgen.ConstructorDefinition object.

See Also
Introduced in R2019a

1 Alphabetical List

1-1654

clibgen.EnumDefinition class
Package: clibgen

Definition for MATLAB enumeration corresponding to C++ enumeration

Description
The clibgen.EnumDefinition class contains the MATLAB definition for an
enumeration defined in the C++ header.

The clibgen.EnumDefinition class is a handle class.

Creation
MATLAB constructs an EnumDefinition object when you call addEnumeration on a
clibgen.LibraryDefinition object.

Properties
Description — Help text
string | character vector

Help text for the end user describing the enumeration, specified as a string or a character
vector.

Attributes:

GetAccess
public

SetAccess
public

CPPName — C++ enumeration name
string | character vector

 clibgen.EnumDefinition class

1-1655

C++ enumeration name, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
private

DefiningLibrary — Library containing enumeration
clibgen.LibraryDefinition

Library containing the enumeration, specified as a clibgen.LibraryDefinition
object.

Attributes:

GetAccess
public

SetAccess
private

Entries — Enumeration values
nested cell array

Enumeration values, specified as a nested cell array.

Attributes:

GetAccess
public

SetAccess
private

MATLABName — Value of MATLABType
string | character vector

Value of MATLABType specified in the XML, specified as a string or a character vector.

1 Alphabetical List

1-1656

Attributes:

GetAccess
public

SetAccess
private

MATLABType — MATLAB type
int32

MATLAB type for enumeration values, specified as int32.

Attributes:

GetAccess
public

SetAccess
private

Valid — Definition complete indicator
false (default) | true

Indicate if enumeration definition is complete, specified as true or false.

Attributes:

GetAccess
public

SetAccess
private

Tips
• You might need to create an enumerated value in MATLAB, but the name of that value

might not be a valid MATLAB name. For example, the enumerant name might begin
with an underscore. To derive a value from this name at run time, use this MATLAB
syntax, where enumMember is a string scalar or character vector that, when evaluated,
returns an instance of an enumeration.

 clibgen.EnumDefinition class

1-1657

clib.libName.enumName.(enumMember)

For example, suppose that you have clib.enums.keywords with these properties:
 EnumDefinition with properties:

 Description: "clib.enums.keywords Representation of C++ enumeration keywords"
 DefiningLibrary: [1×1 clibgen.LibraryDefinition]
 CPPName: "keywords"
 MATLABType: "int32"
 Valid: 1
 MATLABName: "clib.enums.keywords"
 Entries: ["_for" "_while" "_class" "_enums" "_template" "_typename"]

To assign entry _class to a variable, type:

var = clib.enums.keywords.('_class');

This syntax is valid for names less than the maximum identifier length
namelengthmax.

See Also
clibgen.LibraryDefinition

Introduced in R2019a

1 Alphabetical List

1-1658

clibgen.FunctionDefinition class
Package: clibgen

Definition for MATLAB function corresponding to C++ package function

Description
The clibgen.FunctionDefinition class contains the MATLAB definition for a
function defined in the C++ header.

The clibgen.FunctionDefinition class is a handle class.

Creation
MATLAB constructs a FunctionDefinition object when you call addFunction on a
clibgen.LibraryDefinition object.

Properties
Description — Help text
string | character vector

Help text for the end user describing the package function, specified as a string or a
character vector. The default text is

help clib.packageName.fullMLFuncName

C++ Function clib.packageName.fullMLFuncName

Attributes:

GetAccess
public

SetAccess
public

 clibgen.FunctionDefinition class

1-1659

CPPSignature — C++ function signature
string | character vector

C++ function signature, specified as a string or a character vector.
Attributes:

GetAccess
public

SetAccess
private

DefiningLibrary — Library containing function
clibgen.LibraryDefinition

Library containing the function, specified as a clibgen.LibraryDefinition object.
Attributes:

GetAccess
public

SetAccess
private

MATLABName — C++ function name in MATLAB
string | character vector

C++ function name in MATLAB, specified as a string or a character vector.
Attributes:

GetAccess
public

SetAccess
private

MATLABSignature — Function signature in MATLAB
string | character vector

Function signature in MATLAB, specified as a string or a character vector. MATLAB
displays this signature when you load the library.

1 Alphabetical List

1-1660

Attributes:

GetAccess
public

SetAccess
private

Dependent
true

Valid — Definition complete indicator
false (default) | true

Indicate if function definition is complete, specified as true or false.

Attributes:

GetAccess
public

SetAccess
private

Methods

Public Methods
<infotypegroup type="method"> defineArgument defineOutput validate </
infotypegroup>

See Also
addFunction | clibgen.LibraryDefinition

Introduced in R2019a

 clibgen.FunctionDefinition class

1-1661

defineArgument
Class: clibgen.FunctionDefinition
Package: clibgen

Add input argument definition for C++ package function

Syntax
defineArgument(funcDef,argName,mltype)
defineArgument(funcDef,argName,mltype,direction)
defineArgument(funcDef,argName,mltype,direction,shape)

Description
defineArgument(funcDef,argName,mltype) adds an input argument definition.

defineArgument(funcDef,argName,mltype,direction) defines whether argument
is input, output, or both.

defineArgument(funcDef,argName,mltype,direction,shape) provides
information about data dimensions.

Input Arguments
funcDef — Function definition
clibgen.FunctionDefinition

Function definition, specified as a clibgen.FunctionDefinition object.

argName — C++ argument name
string scalar | character vector

C++ argument name, specified as a string scalar or a character vector.

1 Alphabetical List

1-1662

mltype — MATLAB type
string scalar | character vector

MATLAB type, specified as a string scalar or a character vector.

direction — Argument type
"input" (default) | "output" | "inputoutput"

Argument type, specified as "input" for an input argument, "output" for an output
argument, or "inputoutput" for both an input and an output argument.

shape — Dimension definition
string vector | scalar text | positive integer vector | "nullTerminated" | cell array

Dimension definition used by MATLAB to define data dimensions, specified as a string
vector, scalar text, positive integer vector, "nullTerminated", or a cell array. For a cell
array, the elements are a combination of scalar text and scalar positive integers.

If you can define the argument dimension as a fixed scalar value, then enter a number,
such as 5.

If the dimension is defined by another argument, then enter the argument name as a
string. For example, consider the following C++ signature. If argument len defines the
length of data, then the value of shape is "len".

myFunc(const int *data, int len)

If the size of an argument is defined by an array, then the value of shape is one of the
following:

• 1
• Fixed dimensions: Enter a numerical array, such as [5,2].
• Variable dimensions: Enter a string array of parameter names, such as

["row","col"]

If the C++ type for the argument is a string, then use these options to choose values for
the mltype and shape arguments.

C++ Type mltype Options for shape
char * int8 Scalar value

Array of scalar values

 defineArgument

1-1663

C++ Type mltype Options for shape
const char * char MATLAB char

Character vector
string "nullTerminated"

For more information, see “MATLAB to C++ Data Type Mapping”.

See Also
defineOutput

Introduced in R2019a

1 Alphabetical List

1-1664

defineOutput
Class: clibgen.FunctionDefinition
Package: clibgen

Add output argument definition for C++ package function

Syntax
defineOutput(funcDef,argName,mltype)
defineOutput(funcDef,argName,mltype,shape)

Description
defineOutput(funcDef,argName,mltype) adds an output argument definition.

defineOutput(funcDef,argName,mltype,shape) provides information about data
dimensions.

Input Arguments
funcDef — Function definition
clibgen.FunctionDefinition

Function definition, specified as a clibgen.FunctionDefinition object.

argName — C++ output argument name
"RetVal" (default) | string scalar | character vector

C++ output argument name, specified as a string scalar or a character vector.

mltype — MATLAB type
string scalar | character vector

MATLAB type, specified as a string scalar or a character vector.

 defineOutput

1-1665

shape — Dimension definition
string vector | scalar text | positive integer vector | "nullTerminated" | cell array

Dimension definition used by MATLAB to define data dimensions, specified as a string
vector, scalar text, positive integer vector, "nullTerminated", or a cell array. For a cell
array, the elements are a combination of scalar text and scalar positive integers.

If you can define the argument dimension as a fixed scalar value, then enter a number,
such as 5.

If the dimension is defined by another argument, then enter the argument name as a
string. For example, consider the following C++ signature. If argument len defines the
length of data, then the value of shape is "len".

myFunc(const int *data, int len)

If the size of an argument is defined by an array, then the value of shape is one of the
following:

• 1
• Fixed dimensions: Enter a numerical array, such as [5,2].
• Variable dimensions: Enter a string array of parameter names, such as

["row","col"]

If the C++ type for the argument is a string, then use these options to choose values for
the mltype and shape arguments.

C++ Type mltype Options for shape
char * int8 Scalar value

Array of scalar values
const char * char MATLAB char

Character vector
string "nullTerminated"

For more information, see “MATLAB to C++ Data Type Mapping”.

See Also
defineArgument

1 Alphabetical List

1-1666

Introduced in R2019a

 defineOutput

1-1667

validate
Class: clibgen.FunctionDefinition
Package: clibgen

Validate function definition

Syntax
validate(funcDef)

Description
validate(funcDef) validates the number of arguments and the outputs of the function
to ensure that they match the C++ signature.

Input Arguments
funcDef — Function definition
clibgen.FunctionDefinition

Function definition, specified as a clibgen.FunctionDefinition object.

See Also
Introduced in R2019a

1 Alphabetical List

1-1668

clibgen.LibraryDefinition class
Package: clibgen

MATLAB definition for C++ library

Description
A clibgen.LibraryDefinition object contains information about a C++ library, such
as the classes, functions, methods, and properties present in the library. The definitions
help MATLAB identify information about parameters, such as pointers.

The clibgen.LibraryDefinition class is a handle class.

Creation
libdef = LibraryDefinition(dataFile) creates a library definition object from
dataFile.xml, the name of the data file created by the
clibgen.generateLibraryDefinition command. The constructor validates that the
dataFile file is both syntactically and semantically valid. If the file is not valid, then the
constructor throws an error.

Input Arguments
dataFile — XML file name
string | character vector

XML file name, specified as a string or a character vector, created by
clibgen.generateLibraryDefinition. The name includes the extension .xml.

Properties
OutputFolder — Folder for interface files
string | character vector

 clibgen.LibraryDefinition class

1-1669

Folder for interface files, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
public

Libraries — Library names
string | character vector

Library names, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
public

IncludePath — Path for include folders
string | character vector

Path for include folders, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
public

Classes — Class definitions
clibgen.ClassDefinition

Class definitions in the library, specified as one or more clibgen.ClassDefinition
objects.

1 Alphabetical List

1-1670

Attributes:

GetAccess
public

SetAccess
private

Enumerations — Enumeration definitions
clibgen.EnumDefinition

Enumeration definitions in the library, specified as one or more
clibgen.EnumDefinition objects.

Attributes:

GetAccess
public

SetAccess
private

Functions — Nonmember function definitions
clibgen.FunctionDefinition

Nonmember function definitions in the library, specified as one or more
clibgen.FunctionDefinition objects.

Attributes:

GetAccess
public

SetAccess
private

HeaderFiles — Header file names
string | character vector

Header file names to use in the library interface, specified as a string or a character
vector.

 clibgen.LibraryDefinition class

1-1671

Attributes:

GetAccess
public

SetAccess
private

PackageName — MATLAB package name
string | character vector

MATLAB package name for the library, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
private

Methods

Public Methods
<infotypegroup type="method"> addClass addFunction build summary validate
</infotypegroup>

See Also
clibgen.ClassDefinition | clibgen.EnumDefinition |
clibgen.FunctionDefinition | clibgen.generateLibraryDefinition

Introduced in R2019a

1 Alphabetical List

1-1672

addClass
Class: clibgen.LibraryDefinition
Package: clibgen

Add class to library definition

Syntax
ClassDef = addClass(libDef,CPPName)

Description
ClassDef = addClass(libDef,CPPName) adds a ClassDefinition object to the
library definition, where CPPName is the C++ class name.

Input Arguments
libDef — Library definition
clibgen.LibraryDefinition

Library definition, specified as a clibgen.LibraryDefinition object.

CPPName — C++ class name
string scalar | character vector

Fully qualified C++ class name, specified as a string scalar or a character vector.

See Also

Introduced in R2019a

 addClass

1-1673

addFunction
Class: clibgen.LibraryDefinition
Package: clibgen

Add function to library definition

Syntax
FunctionDef = addFunction(libDef,CPPSignature)

Description
FunctionDef = addFunction(libDef,CPPSignature) adds a
FunctionDefinition object to the library definition, where CPPSignature is the C++
function signature.

Input Arguments
libDef — Library definition
clibgen.LibraryDefinition

Library definition, specified as a clibgen.LibraryDefinition object.

CPPSignature — C++ function signature
string scalar | character vector

Fully qualified C++ function signature, specified as a string scalar or a character vector.

See Also
Introduced in R2019a

1 Alphabetical List

1-1674

build
Class: clibgen.LibraryDefinition
Package: clibgen

Build library interface

Syntax
build(libDef)

Description
build(libDef) validates and builds a library interface. If successful, the method prints
an output to the Command Window. The output contains information about the interface
file that is generated and any functions dropped because of validation failure.

Input Arguments
libDef — Library definition
clibgen.LibraryDefinition

Library definition, specified as a clibgen.LibraryDefinition object.

See Also
Introduced in R2019a

 build

1-1675

summary
Class: clibgen.LibraryDefinition
Package: clibgen

Validate library definition

Syntax
summary(libDef)
summary(libDef,'mapping')

Description
summary(libDef) displays the MATLAB classes and functions defined in the library
definition.

summary(libDef,'mapping') displays the mapping between C++ functionality and
MATLAB functionality.

Examples

Show C++ to MATLAB Function Mapping in matrixOperations

Create an interface to the matrixOperations library using the steps in “Define and
Publish Interface to C++ Shared Library”.

Display the C++ function signatures and their corresponding MATLAB signatures.

1 Alphabetical List

1-1676

Input Arguments
libDef — Library definition
clibgen.LibraryDefinition

Library definition, specified as a clibgen.LibraryDefinition object.

See Also
Introduced in R2019a

 summary

1-1677

validate
Class: clibgen.LibraryDefinition
Package: clibgen

Validate library definition

Syntax
validate(libDef)

Description
validate(libDef) validates a library definition.

Input Arguments
libDef — Library definition
clibgen.LibraryDefinition

Library definition, specified as a clibgen.LibraryDefinition object.

See Also
Introduced in R2019a

1 Alphabetical List

1-1678

clibgen.MethodDefinition class
Package: clibgen

Definition for MATLAB function corresponding to C++ class method

Description
The clibgen.MethodDefinition class contains the MATLAB definition for a member
function defined in the header of a C++ class.

The clibgen.MethodDefinition class is a handle class.

Creation
MATLAB constructs a MethodDefinition object when you call addMethod on a
clibgen.ClassDefinition object.

Properties
Description — Help text
string | character vector

Help text for the end user describing the method, specified as a string or a character
vector. The default text is

help clib.packageName.fullMLClassName

Method of class clib.packageName.fullMLClassName

Attributes:

GetAccess
public

SetAccess
public

 clibgen.MethodDefinition class

1-1679

CPPSignature — C++ method signature
string | character vector

C++ method signature, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
private

DefiningClass — Class containing method
clibgen.ClassDefinition

Class containing the method, specified as a clibgen.ClassDefinition object.

Attributes:

GetAccess
public

SetAccess
private

MATLABSignature — Method signature in MATLAB
string | character vector

Method signature in MATLAB, specified as a string or a character vector. MATLAB
displays this signature when you load the library.

Attributes:

GetAccess
public

SetAccess
private

Dependent
true

1 Alphabetical List

1-1680

Valid — Definition complete indicator
false (default) | true

Indicate if method definition is complete, specified as true or false.

Attributes:

GetAccess
public

SetAccess
private

Methods

Public Methods
<infotypegroup type="method"> defineArgument defineOutput validate </
infotypegroup>

See Also
addMethod | clibgen.ClassDefinition

Introduced in R2019a

 clibgen.MethodDefinition class

1-1681

defineArgument
Class: clibgen.MethodDefinition
Package: clibgen

Add input argument definition for C++ method

Syntax
defineArgument(methodDef,argName,mltype)
defineArgument(methodDef,argName,mltype,direction)
defineArgument(methodDef,argName,mltype,direction,shape)

Description
defineArgument(methodDef,argName,mltype) adds an input argument definition.

defineArgument(methodDef,argName,mltype,direction) defines whether
argument is input, output, or both.

defineArgument(methodDef,argName,mltype,direction,shape) provides
information about data dimensions.

Input Arguments
methodDef — Method definition
clibgen.MethodDefinition

Method definition, specified as a clibgen.MethodDefinition object.

argName — C++ argument name
string scalar | character vector

C++ argument name, specified as a string scalar or a character vector.

1 Alphabetical List

1-1682

mltype — MATLAB type
string scalar | character vector

MATLAB type, specified as a string scalar or a character vector.

direction — Argument type
"input" (default) | "output" | "inputoutput"

Argument type, specified as "input" for an input argument, "output" for an output
argument, or "inputoutput" for both an input and an output argument.

shape — Dimension definition
string vector | scalar text | positive integer vector | "nullTerminated" | cell array

Dimension definition used by MATLAB to define data dimensions, specified as a string
vector, scalar text, positive integer vector, "nullTerminated", or a cell array. For a cell
array, the elements are a combination of scalar text and scalar positive integers.

If you can define the argument dimension as a fixed scalar value, then enter a number,
such as 5.

If the dimension is defined by another argument, then enter the argument name as a
string. For example, consider the following C++ signature. If argument len defines the
length of data, then the value of shape is "len".

myFunc(const int *data, int len)

If the size of an argument is defined by an array, then the value of shape is one of the
following:

• 1
• Fixed dimensions: Enter a numerical array, such as [5,2].
• Variable dimensions: Enter a string array of parameter names, such as

["row","col"]

If the C++ type for the argument is a string, then use these options to choose values for
the mltype and shape arguments.

C++ Type mltype Options for shape
char * int8 Scalar value

Array of scalar values

 defineArgument

1-1683

C++ Type mltype Options for shape
const char * char MATLAB char

Character vector
string "nullTerminated"

For more information, see “MATLAB to C++ Data Type Mapping”.

See Also
defineOutput

Introduced in R2019a

1 Alphabetical List

1-1684

defineOutput
Class: clibgen.MethodDefinition
Package: clibgen

Add output argument definition for C++ method

Syntax
defineOutput(methodDef,argName,mltype)
defineOutput(methodDef,argName,mltype,shape)

Description
defineOutput(methodDef,argName,mltype) adds an output argument definition.

defineOutput(methodDef,argName,mltype,shape) provides information about
data dimensions.

Input Arguments
methodDef — Method definition
clibgen.MethodDefinition

Method definition, specified as a clibgen.MethodDefinition object.

argName — C++ output argument name
"RetVal" (default) | string scalar | character vector

C++ output argument name, specified as a string scalar or a character vector.

mltype — MATLAB type
string scalar | character vector

MATLAB type, specified as a string scalar or a character vector.

 defineOutput

1-1685

shape — Dimension definition
string vector | scalar text | positive integer vector | "nullTerminated" | cell array

Dimension definition used by MATLAB to define data dimensions, specified as a string
vector, scalar text, positive integer vector, "nullTerminated", or a cell array. For a cell
array, the elements are a combination of scalar text and scalar positive integers.

If you can define the argument dimension as a fixed scalar value, then enter a number,
such as 5.

If the dimension is defined by another argument, then enter the argument name as a
string. For example, consider the following C++ signature. If argument len defines the
length of data, then the value of shape is "len".

myFunc(const int *data, int len)

If the size of an argument is defined by an array, then the value of shape is one of the
following:

• 1
• Fixed dimensions: Enter a numerical array, such as [5,2].
• Variable dimensions: Enter a string array of parameter names, such as

["row","col"]

If the C++ type for the argument is a string, then use these options to choose values for
the mltype and shape arguments.

C++ Type mltype Options for shape
char * int8 Scalar value

Array of scalar values
const char * char MATLAB char

Character vector
string "nullTerminated"

For more information, see “MATLAB to C++ Data Type Mapping”.

See Also
defineArgument

1 Alphabetical List

1-1686

Introduced in R2019a

 defineOutput

1-1687

validate
Class: clibgen.MethodDefinition
Package: clibgen

Validate method definition

Syntax
validate(methodDef)

Description
validate(methodDef) validates the number of arguments and the outputs of the
method to ensure that they match the C++ signature.

Input Arguments
methodDef — Method definition
clibgen.MethodDefinition

Method definition, specified as a clibgen.MethodDefinition object.

See Also
Introduced in R2019a

1 Alphabetical List

1-1688

clibgen.PropertyDefinition class
Package: clibgen

Definition for MATLAB property corresponding to public property of C++ class

Description
The clibgen.PropertyDefinition class contains the MATLAB definition for a public
property defined in the header of a C++ class.

The clibgen.PropertyDefinition class is a handle class.

Creation
MATLAB constructs a PropertyDefinition object when you call addProperty on a
clibgen.ClassDefinition object.

Properties
Description — Help text
string | character vector

Help text for the end user describing the property, specified as a string or a character
vector. The default text is

help clib.packageName.fullMLClassName.ClassPropertyName

C++ data member

Attributes:

GetAccess
public

SetAccess
public

 clibgen.PropertyDefinition class

1-1689

CPPName — C++ property name
string | character vector

C++ property name, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
private

DefiningClass — Class containing property
clibgen.ClassDefinition

Class containing the property, specified as a clibgen.ClassDefinition object.

Attributes:

GetAccess
public

SetAccess
private

MATLABType — Type in MATLAB
string | character vector

Type in MATLAB, specified as a string or a character vector.

Attributes:

GetAccess
public

SetAccess
private

See Also
addProperty | clibgen.ClassDefinition

1 Alphabetical List

1-1690

Introduced in R2019a

 clibgen.PropertyDefinition class

1-1691

clibgen.buildInterface
Package: clibgen

Create interface to C++ library without definition file

Syntax
clibgen.buildInterface(HeaderFiles)
clibgen.buildInterface(HeaderFiles,Name,Value)

Description
clibgen.buildInterface(HeaderFiles) generates a MATLAB interface to the C++
library defined by HeaderFiles. Class constructors, methods, and functions that
MATLAB cannot automatically define are not included in the interface. To include missing
functionality, use the clibgen.generateLibraryDefinition function.

clibgen.buildInterface(HeaderFiles,Name,Value) generates the interface
using one or more name-value pair arguments.

Examples

Create Interface for Library school

Copy the school.hpp header file to writable folder H:\Documents\MATLAB
\publisher.
copyfile(fullfile(matlabroot,'extern','examples','cpp_interface','school.hpp'),'.','f')

Build the interface.

clibgen.buildInterface('school.hpp')

Warning: Only header files specified; assuming this is a header-only library. If library
files also need to be specified, use the 'Libraries' option.

1 Alphabetical List

1-1692

Building interface file 'schoolInterface.dll'.
Interface file 'schoolInterface.dll' built in folder 'H:\Documents\MATLAB\publisher\school'.
To use the library, add the interface file folder to the MATLAB path.
1 constructs need further definition to be included in the interface.
Use clibgen.generateLibraryDefinition to provide definitions.

Click the interface file folder link to add the interface to the path.

Display the classes in the library.

clib.school.Tab

Display help for the library.

help clib.school

Classes contained in clib.school:
Person - clib.school.Person Representation of C++ class Person
Teacher - clib.school.Teacher Representation of C++ class Teacher
Student - clib.school.Student Representation of C++ class Student

Compare this functionality with the output of the summary(defineschool) command in
“Define and Publish Interface to Header-Only C++ Library”. This interface does not
include:

Functions
 string clib.school.getName(clib.school.Person)

Input Arguments
HeaderFiles — Header files
string array | character vector | cell array of character vectors

One or more header files, specified as a string array, character vector, or cell array of
character vectors. Supported file extensions are .h, .hpp, and .hxx. A header file
without an extension is also supported.

MATLAB writes the interface files in a subfolder in the current folder, unless
OutputFolder is specified. The name of the subfolder is the name of the first header file
without a file extension. For example, the following statement creates the interface
library file in subfolder myHeader in the current working folder.

clibgen.buildInterface('myHeader.hpp')

Data Types: char | string | cell

 clibgen.buildInterface

1-1693

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
clibgen.buildInterface('myHeader.hpp','Libraries','myHeader.lib','Ou
tputFolder','C:\work');

Libraries — Library path
empty (default) | string array | character vector | cell array of character vectors

One or more library paths, specified as a string array, character vector, or cell array of
character vectors. Each Libraries value is a full path name to a library. For example,
running this statement on Windows creates sampleInterface.dll using myLib.lib in
C:\myLib\ and writes it to subfolder sample in the current working folder.

clibgen.buildInterface('sample.hpp','Libraries','C:\myLib\myLib.lib')

Data Types: char | string | cell

IncludePath — Header file path
empty (default) | string array | character vector | cell array of character vectors

Header file path, specified as a string array, character vector, or cell array of character
vectors. IncludePath is the full path name to folders to include during compilation of
the header files.
Data Types: char | string | cell

OutputFolder — Folder name
current folder (default) | string scalar | character vector

Folder name used to generate the interface library, specified as a string scalar or a
character vector. For example, this statement creates myHeaderInterface.dll in
C:\work\myHeader on Windows.

clibgen.buildInterface('myHeader.hpp','OutputFolder','C:\work')

Data Types: char | string | cell

1 Alphabetical List

1-1694

PackageName — Interface package name
header file name (default) | string scalar | character vector

Interface package name, specified as a string scalar or a character vector. For interfaces
created from a single header file, the default value is the name of header. For multiple
header files, specify the package name as a valid MATLAB name. For example, this
statement creates a myPackageInterface library file in subfolder myPackage in the
current working folder.

clibgen.buildInterface({'h1.hpp','h2.hpp'},'PackageName','myPackage')

Data Types: char | string | cell

Verbose — Option to display generation messages
false (default) | true

Option to display generation messages, specified as true or false. When true,
clibgen.buildInterface displays generation messages to the command window while
building the interface. For example, this statement creates an h1Interface library file in
subfolder h1 and displays messages in the command window.

clibgen.buildInterface('h1.hpp','Verbose',true)

For more information, see “Troubleshooting Messages”.
Data Types: logical

See Also
clibgen.generateLibraryDefinition

Introduced in R2019a

 clibgen.buildInterface

1-1695

clibgen.generateLibraryDefinition
Package: clibgen

Create definition file for C++ library

Syntax
clibgen.generateLibraryDefinition(HeaderFiles)
clibgen.generateLibraryDefinition(HeaderFiles,Name,Value)

Description
clibgen.generateLibraryDefinition(HeaderFiles) creates a MATLAB Live Code
definition file used to generate a MATLAB interface to the C++ library defined by
HeaderFiles.

The name of the definition file is definelibName.mlx. For more information about using
this file, see “Define MATLAB Interface to C++ Library”.

Use the clibgen.LibraryDefinition.build method to create the interface.

clibgen.generateLibraryDefinition(HeaderFiles,Name,Value) creates the
file using one or more name-value pair arguments.

Examples

Create Definition File for Library school

Copy the school.hpp header file to a writable folder.
copyfile(fullfile(matlabroot,'extern','examples','cpp_interface','school.hpp'),'.','f')

Generate the library definition file defineschool.mlx.

clibgen.generateLibraryDefinition('school.hpp')

1 Alphabetical List

1-1696

Warning: Only header files specified; assuming this is a header-only
library. If library files also need to be specified, use the 'Libraries' option.

Using MinGW64 Compiler (C++) compiler.
Generated definition file defineschool.mlx and data file 'schoolData.xml' contain definitions for
21 constructs supported by MATLAB.
1 constructs require additional definition. To include these constructs in the interface,
edit the definitions in defineschool.mlx.
Build using build(defineschool).

Input Arguments
HeaderFiles — Header file
string array | character vector | cell array of character vectors

One or more header files, specified as a string array, character vector, or cell array of
character vectors. Supported file extensions are .h, .hpp, and .hxx. A header file
without an extension is also supported.
Example: 'sample.hpp'
Data Types: char | string | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
clibgen.generateLibraryDefinition({'hfile1.hpp','hfile2.hpp'},'Libra
ries','mylib.lib','IncludePath','C:\mylib
\include','PackageName','mypackage','OutputFolder','C:\work');

Libraries — Library path
empty (default) | string array | character vector | cell array of character vectors

Full path name to library, specified as a string array, character vector, or cell array of
character vectors. For example,
clibgen.generateLibraryDefinition('sample.hpp','Libraries','C:\myLib\myLib.lib')

creates definesample.mlx using myLib.lib in C:\myLib\ and writes it in the current
working folder.

 clibgen.generateLibraryDefinition

1-1697

Data Types: char | string | cell

IncludePath — Header file path
empty (default) | string array | character vector | cell array of character vectors

Full path name to folders of included header files, specified as a string array, character
vector, or cell array of character vectors.
Data Types: char | string | cell

OutputFolder — Folder name
current folder (default) | string scalar | character vector

Folder name used to generate the definition file, specified as a string scalar or a character
vector. For example,
clibgen.generateLibraryDefinition('myHeader.hpp','OutputFolder','C:\work')

creates definemyHeader.mlx in C:\work.
Data Types: char | string | cell

PackageName — Interface package name
header file name (default) | string scalar | character vector

Name of generated interface package, specified as a string scalar or a character vector.
For interfaces created from a single header file, the default value is the name of header.
For multiple header files, specify the package name as a valid MATLAB name. For
example,
clibgen.generateLibraryDefinition({'h1.hpp','h2.hpp'},'PackageName','myPackage')

creates definemyPackage.mlx in subfolder myPackage in the current working folder.
Data Types: char | string | cell

Verbose — Option to display generation messages
false (default) | true

Option to display generation messages, specified as true or false. If Verbose is true,
then MATLAB displays generation messages to the command window while creating the
definition file. For example,

clibgen.generateLibraryDefinition('h1.hpp','Verbose',true)

creates defineh1.mlx and displays messages to the command window.

1 Alphabetical List

1-1698

For more information, see “Troubleshooting Messages”.
Data Types: logical

Limitations
• Avoid non-ASCII characters in folder and file names, as some locale settings might not

support those characters.

Tips
• To recreate a library definition file, first delete the definelibName.mlx file, then call

clibgen.generateLibraryDefinition.

See Also
clibgen.LibraryDefinition.build | clibgen.buildInterface

Topics
“Define MATLAB Interface to C++ Library”
“Errors Parsing Header Files on macOS”

Introduced in R2019a

 clibgen.generateLibraryDefinition

1-1699

closereq
Default figure close request function

Syntax
closereq

Description
closereq deletes the current figure. For more information, see the CloseRequestFcn
figure property.

Introduced before R2006a

1 Alphabetical List

1-1700

cmopts
(Has been removed) Name of source control system

Note cmopts has been removed. View the currently selected source control system
through Preferences instead.

Syntax
cmopts

Description
cmopts returns the name of your version control system.

Output Arguments
Value Returned by
cmopts

Description Platform Supported On

clearcase ClearCase® software from IBM®

Rational®
UNIX platforms

customverctrl Custom interface created using
customverctrl function

UNIX platforms

cvs Concurrent Version System (CVS) UNIX platforms
none No source control system

selected

pvcs PVCS® and ChangeMan®

software
UNIX platforms

rcs Revision Control System (RCS) UNIX platforms

 cmopts

1-1701

Value Returned by
cmopts

Description Platform Supported On

Any SCC-compliant
source control system,
for example, Microsoft
Visual SourceSafe

Varies Windows platforms

Alternatives
To view the currently selected source control system, click the Preferences button on the
Home tab, and select General > Source Control.

Introduced before R2006a

1 Alphabetical List

1-1702

cmpermute
Rearrange colors in colormap

Syntax
[Y,newmap] = cmpermute(X,map)
[Y,newmap] = cmpermute(X,map,index)

Description
[Y,newmap] = cmpermute(X,map) randomly reorders the colors in colormap map to
produce a new colormap, newmap. The cmpermute function also modifies the values in
indexed image X to maintain correspondence between the indices and the colormap, and
returns the result in Y. The image Y and associated colormap, newmap, produce the same
image as X and map.

[Y,newmap] = cmpermute(X,map,index) uses an ordering matrix (such as the
second output of sort) to define the order of colors in the new colormap.

Examples

Randomly Reorder Colormap and Display Image

Load the clown data set to get image X and its associated colormap, map. Display the
image.

load clown
figure
image(X)
colormap(map)

 cmpermute

1-1703

Randomly reorder the colormap to get the new colormap, newmap. Display image X with
the new colormap.

[Y, newmap] = cmpermute(X,map);
colormap(newmap)

1 Alphabetical List

1-1704

Input Arguments
X — Indexed image
m-by-n matrix of integers

Indexed image, specified as an m-by-n matrix of integers.
Data Types: double | uint8

map — Colormap
c-by-3 matrix

 cmpermute

1-1705

Colormap associated with indexed image X, specified as a c-by-3 matrix with values in the
range [0, 1]. Each row of map is a three-element RGB triplet that specifies the red, green,
and blue components of a single color of the colormap.
Data Types: double

index — Sort index
c-element vector of positive integers

Sort index, specified as a c-element vector of positive integers.
Data Types: double

Output Arguments
Y — Indexed image
m-by-n matrix of integers

Indexed image, returned as an m-by-n matrix of integers. Y has the same data type as
input indexed image X.
Data Types: double | uint8

newmap — Colormap with reduced colors
c-by-3 matrix

Colormap with reduced colors associated with the output indexed image Y, returned as a
c-by-3 matrix with values in the range [0, 1]. Each row of newmap is a three-element RGB
triplet that specifies the red, green, and blue components of a single color of the
colormap.
Data Types: double

See Also
randperm | sort

Topics
“Image Types”

1 Alphabetical List

1-1706

Introduced before R2006a

 cmpermute

1-1707

cmunique
Eliminate duplicate colors in colormap; convert grayscale or truecolor image to indexed
image

Syntax
[Y,newmap] = cmunique(X,map)
[Y,newmap] = cmunique(RGB)
[Y,newmap] = cmunique(I)

Description
[Y,newmap] = cmunique(X,map) removes duplicate rows from the colormap map to
produce a new colormap, newmap. The function also adjusts the indices in intensity image
X to maintain correspondence between the indices and the colormap, and returns the
result in Y. The image Y and associated colormap newmap produce the same image as X
and map but with the smallest possible colormap.

[Y,newmap] = cmunique(RGB) converts the truecolor image RGB to the indexed image
Y and its associated colormap, newmap. The returned colormap is the smallest possible
colormap for the image, containing one entry for each unique color in RGB.

Note newmap might be very large, because the number of entries can be as many as the
number of pixels in RGB.

[Y,newmap] = cmunique(I) converts the grayscale image I to an indexed image Y
and its associated colormap, newmap. The returned colormap is the smallest possible
colormap for the image, containing one entry for each unique intensity level in I.

Examples

1 Alphabetical List

1-1708

Eliminate Duplicate Entries in Colormap

Use the magic function to define X as a 4-by-4 array that uses every value in the range
between 1 and 16.

X = magic(4);

Use the gray function to create an eight-entry colormap. Then, concatenate the two
eight-entry colormaps to create a colormap with 16 entries, map. In map, entries 9
through 16 are duplicates of entries 1 through 8.

map = [gray(8); gray(8)];
size(map)

ans = 1×2

 16 3

Use cmunique to eliminate duplicate entries in the colormap.

[Y, newmap] = cmunique(X, map);
size(newmap)

ans = 1×2

 8 3

cmunique adjusts the values in the original image X so that Y and newmap produce the
same image as X and map.

figure
image(X)
colormap(map)
title('X and map')

 cmunique

1-1709

figure
image(Y)
colormap(newmap)
title('Y and newmap')

1 Alphabetical List

1-1710

Input Arguments
X — Indexed image with duplicate colors
m-by-n matrix of integers

Indexed image with duplicate colors, specified as an m-by-n matrix of integers.
Data Types: double | uint8 | uint16

map — Colormap with duplicate colors
c1-by-3 matrix

 cmunique

1-1711

Colormap with duplicate colors associated with indexed image X, specified as a c1-by-3
matrix with values in the range [0, 1]. Each row of map is a three-element RGB triplet that
specifies the red, green, and blue components of a single color of the colormap.
Data Types: double

RGB — RGB image
m-by-n-by-3 array of nonnegative numbers

RGB image, specified as an m-by-n-by-3 array of nonnegative numbers.
Data Types: double | uint8 | uint16

I — Grayscale image
m-by-n numeric matrix

Grayscale image, specified as an m-by-n numeric matrix.
Data Types: double | uint8 | uint16

Output Arguments
Y — Indexed image with unique colors
m-by-n matrix of integers

Indexed image with unique colors, returned as an m-by-n matrix of integers. If the length
of newmap is less than or equal to 256, then the output image is of class uint8.
Otherwise, the output image is of class double.
Data Types: double | uint8

newmap — Colormap with unique colors
c2-by-3 matrix

Colormap with unique colors associated with the output indexed image Y, returned as a
c2-by-3 matrix with values in the range [0, 1]. Each row of newmap is a three-element RGB
triplet that specifies the red, green, and blue components of a single color of the
colormap.
Data Types: double

1 Alphabetical List

1-1712

See Also
rgb2ind

Topics
“Image Types”

Introduced before R2006a

 cmunique

1-1713

CodeCompatibilityAnalysis
Code compatibility analysis results

Description
Use the CodeCompatibilityAnalysis object to save or report results from a code
compatibility analysis.

Creation
Create a code compatibility analysis object using the analyzeCodeCompatibility
function.

Properties
Date — Date of code compatibility analysis
datetime scalar

This property is read-only.

Date of code compatibility analysis, returned as a datetime scalar.
Data Types: datetime

MATLABVersion — Version of MATLAB
string scalar

This property is read-only.

Version of MATLAB used for code compatibility analysis, returned as a string scalar.
Data Types: string

Files — List of files analyzed
string array

1 Alphabetical List

1-1714

This property is read-only.

List of files analyzed by for code compatibility, returned as a string array.
Data Types: string

ChecksPerformed — List of checks performed and frequency of occurrence
table

This property is read-only.

List of the checks performed and the frequency of occurrence in the analyzed files,
returned as a table with these columns.

Table Column Description
Identifier Identifier for MATLAB code analyzer messages.
Description Description of check. For example, Use a newline, semicolon, or

comma before this statement or STRMATCH is not recommended.
Use STRNCMP or VALIDATESTRING instead. Description is same
as code analyzer message.

Documentation Command to open more information in documentation.
Severity Severity of check. For example, Error or Warning. Errors might

indicate syntax errors or use of functionality that is no longer
supported. Warnings might indicate opportunities to improve your
code.

NumOccurrences In analyzed code, total number of occurrences where a particular
check is flagged.

NumFiles In analyzed code, number of files where a particular check is
flagged.

Data Types: table

Recommendations — Recommendations to update code
table

This property is read-only.

Recommendations to update code based on the analysis, returned as a table with the
following columns.

 CodeCompatibilityAnalysis

1-1715

Table Column Description
Identifier Identifier for MATLAB code analyzer messages.
Description Description of check. For example, Use a newline, semicolon, or

comma before this statement or STRMATCH is not recommended.
Use STRNCMP or VALIDATESTRING instead. Description is same
as code analyzer message.

Documentation Command to open more information in documentation.
Severity Severity of check. For example, Error or Warning. Errors might

indicate syntax errors or use of functionality that is no longer
supported. Warnings might indicate opportunities to improve your
code.

File Name of file that contains flagged check.
LineNumber Line number indicating location in file of flagged check.
ColumnRange Column range indicating location in file of flagged check.

Data Types: table

Examples
Analyze Code in Current Folder

Create code compatibility analysis results for code in your current folder and subfolders.

r = analyzeCodeCompatibility

r =

 CodeCompatibilityAnalysis with properties:

 Date: 20-Apr-2017 15:06:06
 MATLABVersion: "R2017b"
 Files: [92×1 string]
 ChecksPerformed: [299×6 table]
 Recommendations: [28×7 table]

Analyze the code again and omit subfolders from the analysis.

r = analyzeCodeCompatibility('IncludeSubfolders',false)

1 Alphabetical List

1-1716

r =

 CodeCompatibilityAnalysis with properties:

 Date: 20-Apr-2017 15:06:56
 MATLABVersion: "R2017b"
 Files: [5×1 string]
 ChecksPerformed: [299×6 table]
 Recommendations: [1×7 table]

See Also
analyzeCodeCompatibility | codeCompatibilityReport

Topics
“MATLAB Code Compatibility Report”

Introduced in R2017b

 CodeCompatibilityAnalysis

1-1717

codeCompatibilityReport
Create code compatibility report

Syntax
codeCompatibilityReport
codeCompatibilityReport(names)
codeCompatibilityReport(___ ,'IncludeSubfolders',tf)

codeCompatibilityReport(cca)

Description
codeCompatibilityReport creates a code compatibility report for the current working
folder and subfolders. The code compatibility report on page 1-1720 opens in the
MATLAB Web Browser. After you upgrade to a newer version of MATLAB, you can use this
report to identify potential compatibility issues in your existing code.

codeCompatibilityReport(names) creates a report for the files or folders specified
by names.

codeCompatibilityReport(___ ,'IncludeSubfolders',tf) specifies whether to
report on subfolders. By default, subfolders are included in the analysis. Use this syntax
with any of the arguments in previous syntaxes.

codeCompatibilityReport(cca) creates a report from an existing code compatibility
result, specified as a CodeCompatibilityAnalysis object.

Examples

Create Report for Code in Current Folder

Create a code compatibility report for code in your current folder and subfolders. The
report opens in the MATLAB Web Browser.

1 Alphabetical List

1-1718

codeCompatibilityReport

Create another report, but omit subfolders from the analysis.

codeCompatibilityReport('IncludeSubfolders',false)

Create Report for Existing Analysis Results

Generate compatibility analysis results for code in your current working folder and
subfolders.

r = analyzeCodeCompatibility;

Create a report from the results. The report opens in the MATLAB Web Browser.

codeCompatibilityReport(r)

Input Arguments
names — Name of files or folders to analyze
character vector | cell array of character vectors | string scalar | string array

Name of files or folders to analyze, specified as a character vector, cell array of character
vectors, string scalar, or string array.

The name of a file must be a valid MATLAB code or App file (.m, .mlx, or .mlapp).
Example: '../thisFile.m'
Example: {'folderA','folderB','fileA'}
Data Types: char | string

tf — Subfolder analysis indicator
true (default) | false | 0 | 1

Subfolder analysis indicator, specified as true, false, 0, or 1. By default,
analyzeCodeCompatibility includes subfolders in the analysis. To omit subfolders,
set tf to false or 0.

cca — Code compatibility analysis results
CodeCompatibilityAnalysis object

 codeCompatibilityReport

1-1719

Code compatibility analysis results, specified as a CodeCompatibilityAnalysis object.

Definitions

Code Compatibility Report
The code compatibility report contains information to help you upgrade your code to a
new version of MATLAB. It contains these sections.

• Syntax Errors — Table with details about syntax errors. For example, Using ~ to
ignore a value is not permitted in this context. Syntax errors result in nonrunnable
code and, while they are not introduced with a new version of MATLAB, syntax errors
impact compatibility analysis.

The table includes this information.

Report Column Description
Occurrences Total number of syntax errors in file.
Filename Name of file that contains syntax errors.

• Functionality that has been removed — Table with details about functionality that
is being used in the analyzed code and that has been removed. For example, 'wavfinfo'
has been removed. Use 'AUDIOINFO' instead.

The table includes this information.

Report Column Description
Description Description of check. Description is same as code analyzer

message.
Documentation Link to more information in documentation.
Removed In The release in which the functionality was removed.
Filename Name of file that contains flagged check.
Line Line number indicating location in file of flagged check.

• Functionality that has changed behavior — Table with details about functionality
that is being used in the analyzed code and that has changed behavior. For example,
'legend' has changed and might interpret the name of an argument as a legend

1 Alphabetical List

1-1720

property instead of a label. To include a label with the same name as a legend
property, specify the labels using a cell array or string array. Refer to the
documentation for a list of affected property names.

The table includes this information.

Report Column Description
Description Description of check. Description is same as code analyzer

message.
Documentation Link to more information in documentation.
Affects Code
Written Before

The release in which the functionality was changed.

Filename Name of file that contains flagged check.
Line Line number indicating location in file of flagged check.

• Functionality that will be removed — Table with details about functionality that is
being used in the analyzed code and that will be removed in a future release. For
example, 'aviinfo' will be removed in a future release. Use 'VideoReader' instead.

The table includes this information.

Report Column Description
Description Description of check. Description is same as code analyzer

message.
Documentation Link to more information in documentation.
Filename Name of file that contains flagged check.
Line Line number indicating location in file of flagged check.

• Functionality that will change behavior — Table with details about functionality
that is being used in the analyzed code and that will change behavior in a future
release. For example, 'interp1(...,'cubic')' will change in a future release to perform
cubic convolution. To continue using shape-preserving piecewise cubic interpolation,
use 'interp1(...,'pchip')' instead.

The table includes the same columns as the Functionality that will be removed
section.

 codeCompatibilityReport

1-1721

• Functionality that is not recommended — Table with opportunities to improve your
code. For example, Programmatic use of DISPLAY is not recommended. Use DISP or
FPRINTF instead.

The table includes this information.

Report Column Description
Description Description of check. Description is same as code analyzer

message.
Documentation Link to more information in documentation.
Filename Name of file that contains flagged check.
Line Line number indicating location in file of flagged check.
Suppression Whether and how this check is suppressed in the Editor. A

value of None indicates that the check is not suppressed.

• Full list of checks performed — Table with information about the checks performed
on the specified code. It includes the following information.

Report Column Description
Occurrences In analyzed code, total number of occurrences where a

particular check is flagged.
Files In the analyzed code, number of files where a particular check

is flagged.
Description Description of check. For example, Use a newline, semicolon,

or comma before this statement or STRMATCH is not
recommended. Use STRNCMP or VALIDATESTRING instead.
Description is same as code analyzer message.

Severity Severity of check. For example, Error or Warning. Errors
might indicate syntax errors or use of functionality that is no
longer supported. Warnings might indicate opportunities to
improve your code.

Identifier Identifier for MATLAB code analyzer messages.
Documentation Link to more information in documentation.

• Full list of files analyzed — List of files that MATLAB analyzed for code
compatibility.

1 Alphabetical List

1-1722

Tips
• To save a report, instead of generating a report with the codeCompatibilityReport

function, you can create a CodeCompatibilityAnalysis object and save it. Then,
you can generate a report from those saved results. For more information, see “Create
Report for Existing Analysis Results” on page 1-1719.

Alternatives
Generate a Code Compatibility Report for code in the current working folder and
subfolders in the Current Folder browser. In the Current Folder browser, either click or
right-click the white space. Then select Reports > Code Compatibility Report. See
“MATLAB Code Compatibility Report”.

See Also
CodeCompatibilityAnalysis | analyzeCodeCompatibility

Topics
“MATLAB Code Compatibility Report”
“Check Code for Errors and Warnings”

Introduced in R2017b

 codeCompatibilityReport

1-1723

colamd
Column approximate minimum degree permutation

Syntax
p = colamd(S)

Description
p = colamd(S) returns the column approximate minimum degree permutation vector
for the sparse matrix S. For a non-symmetric matrix S, S(:,p) tends to have sparser LU
factors than S. The Cholesky factorization of S(:,p)' * S(:,p) also tends to be
sparser than that of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more than (knobs(1))*n
entries are ignored. Columns with more than (knobs(2))*m entries are removed prior to
ordering, and ordered last in the output permutation p. If the knobs parameter is not
present, then knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and the validity of the
matrix S.

stats(1) Number of dense or empty rows ignored by colamd
stats(2) Number of dense or empty columns ignored by colamd
stats(3) Number of garbage collections performed on the internal

data structure used by colamd (roughly of size 2.2*nnz(S)
+ 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid
stats(5) Rightmost column index that is unsorted or contains duplicate

entries, or 0 if no such column exists
stats(6) Last seen duplicate or out-of-order row index in the column

index given by stats(5), or 0 if no such row index exists

1 Alphabetical List

1-1724

stats(7) Number of duplicate and out-of-order row indices

Although MATLAB built-in functions generate valid sparse matrices, a user may construct
an invalid sparse matrix using the MATLAB C or Fortran APIs and pass it to colamd. For
this reason, colamd verifies that S is valid:

• If a row index appears two or more times in the same column, colamd ignores the
duplicate entries, continues processing, and provides information about the duplicate
entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column of its internal
copy of the matrix S (but does not repair the input matrix S), continues processing,
and provides information about the out-of-order entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an error message,
and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Examples

Compare Sparse Matrix and LU Factorization

The Harwell-Boeing collection of sparse matrices and the MATLAB® demos directory
include a test matrix west0479. It is a matrix of order 479 resulting from a model due to
Westerberg of an eight-stage chemical distillation column. The spy plot shows evidence of
the eight stages. The colamd ordering scrambles this structure.

load west0479
A = west0479;
p = colamd(A);

figure()
subplot(1,2,1), spy(A,4), title('A')
subplot(1,2,2), spy(A(:,p),4), title('A(:,p)')

 colamd

1-1725

Comparing the spy plot of the LU factorization of the original matrix with that of the
reordered matrix shows that minimum degree reduces the time and storage requirements
by better than a factor of 2.8. The nonzero counts are 15918 and 5920, respectively.

figure()
subplot(1,2,1), spy(lu(A),4), title('lu(A)')
subplot(1,2,2), spy(lu(A(:,p)),4), title('lu(A(:,p))')

1 Alphabetical List

1-1726

References
[1] The authors of the code for colamd are Stefan I. Larimore and Timothy A. Davis. The

algorithm was developed in collaboration with John Gilbert, Xerox PARC, and
Esmond Ng, Oak Ridge National Laboratory. Sparse Matrix Algorithms Research:
http://faculty.cse.tamu.edu/davis/research.html

See Also
colperm | dissect | spparms | symamd | symrcm

 colamd

1-1727

http://faculty.cse.tamu.edu/davis/research.html

Introduced before R2006a

1 Alphabetical List

1-1728

colorbar
Colorbar showing color scale

Syntax
colorbar
colorbar(location)
colorbar(___ ,Name,Value)
colorbar(target, ___)
c = colorbar(___)

colorbar('off')
colorbar(target,'off')

Description
colorbar displays a vertical colorbar to the right of the current axes or chart. Colorbars
display the current colormap and indicate the mapping of data values into the colormap.

colorbar(location) displays the colorbar in a specific location such as
'northoutside'. Not all types of charts support modifying the colorbar location.

colorbar(___ ,Name,Value) modifies the colorbar appearance using one or more
name-value pair arguments. For example, 'Direction','reverse' reverses the color
scale. Specify Name,Value as the last pair of arguments in any of the previous syntaxes.
Not all types of charts support modifying the colorbar appearance.

colorbar(target, ___) adds a colorbar to the axes or chart specified by target.
Specify the target axes or chart as the first argument in any of the previous syntaxes.

c = colorbar(___) returns the ColorBar object. You can use this object to set
properties after creating the colorbar. Specify the return argument c with any of the
previous syntaxes.

colorbar('off') deletes all colorbars associated with the current axes or chart.

 colorbar

1-1729

colorbar(target,'off') deletes all colorbars associated with the target axes or
chart. Alternatively, you can specify a ColorBar object as the target.

Examples

Add Colorbar to Graph

Add a colorbar to a surface plot indicating the color scale.

surf(peaks)
colorbar

1 Alphabetical List

1-1730

By default, the colorbar function adds a vertical colorbar to the right side of the graph.

Add Horizontal Colorbar to Graph

Add a horizontal colorbar below a plot by specifying the colorbar location as
'southoutside'.

contourf(peaks)
colorbar('southoutside')

 colorbar

1-1731

Reverse Colorbar Direction

Reverse the direction of values in a colorbar on a graph by setting the 'Direction'
property of the colorbar to 'reverse'.

surf(peaks)
colorbar('Direction','reverse')

The colorbar values ascend from top to bottom instead of ascending from bottom to top.

1 Alphabetical List

1-1732

Display Colorbar Ticks on Opposite Side

Display the colorbar tick marks and tick labels on the side of a colorbar facing the surface
plot.

surf(peaks)
colorbar('AxisLocation','in')

Add Colorbars to Subplots

Create a figure with two subplots. Add colorbars to both subplots.

 colorbar

1-1733

subplot(2,1,1) % upper subplot
surf(peaks)
colorbar

subplot(2,1,2) % lower subplot
contourf(peaks)
colorbar

1 Alphabetical List

1-1734

Specify Colorbar Ticks and Tick Labels

Add a colorbar to a plot and specify the colorbar tick marks and tick labels. Specify the
same number of tick labels as tick marks. If you do not specify enough tick labels, then
the colorbar function repeats the labels.

contourf(peaks)
colorbar('Ticks',[-5,-2,1,4,7],...
 'TickLabels',{'Cold','Cool','Neutral','Warm','Hot'})

 colorbar

1-1735

Label Colorbar

Add a text label along a colorbar.

surf(peaks)
c = colorbar;
c.Label.String = 'Elevation (ft in 1000s)';

Delete Colorbar

Add a colorbar to a surface plot.

1 Alphabetical List

1-1736

surf(peaks)
colorbar

Delete the colorbar from the surface plot.

colorbar('off')

 colorbar

1-1737

Input Arguments
location — Location
'eastoutside' (default) | 'north' | 'south' | 'east' | 'west' | 'northoutside'
| ...

Location of the colorbar with respect to the axes, specified as one of the values in this
table.

1 Alphabetical List

1-1738

Value Resulting Location Resulting Orientation
'north' Top of axes Horizontal
'south' Bottom of axes Horizontal
'east' Right side of axes Vertical
'west' Left side of axes Vertical
'northoutside' Top outside of axes Horizontal
'southoutside' Bottom outside of axes Horizontal
'eastoutside' Right outside of axes

(default)
Vertical

'westoutside' Left outside of axes Vertical

If a colorbar already exists in the specified location, then an updated colorbar replaces
the existing one. To ensure that the colorbar does not overlap the graph, specify a
location with the suffix, outside.

You also can set the colorbar location using its Location property. For example,
colorbar('Location','northoutside') is the same as
colorbar('northoutside').
Example: colorbar('westoutside')

target — Target
Axes object | PolarAxes object | graphics object

Target object that contains the associated data visualization, specified as an Axes object,
a PolarAxes object, or a graphics object that has a ColorbarVisible property. For
example, a HeatmapChart object has the ColorbarVisible property.

If you do not specify the target, then the colorbar command affects the current axes
(the object returned by gca).

Note Some charts do not support modifying the colorbar appearance, such as the
location, or returning the ColorBar object as an output argument.

Name-Value Pair Arguments
The colorbar properties listed here are only a subset. For a complete list see Colorbar.

 colorbar

1-1739

Example: colorbar('FontSize',12,'Direction','reverse') sets the font size of
the colorbar to 12 points and reverses the orientation of the colorbar.

Location — Location with respect to the axes
'eastoutside' (default) | 'north' | 'south' | 'east' | 'west' | 'northoutside'
| ...

Location with respect to the axes, specified as one of the values listed in this table.

Value Resulting Location Resulting Orientation
'north' Top of axes Horizontal
'south' Bottom of axes Horizontal
'east' Right side of axes Vertical
'west' Left side of axes Vertical
'northoutside' Top outside of axes Horizontal
'southoutside' Bottom outside of axes Horizontal
'eastoutside' Right outside of axes

(default)
Vertical

'westoutside' Left outside of axes Vertical
'manual' Determined by Position

property
Vertical

To display the colorbar in a location that does not appear in the table, use the Position
property to specify a custom location. If you set the Position property, then MATLAB
sets the Location property to 'manual'. The associated axes does not resize to
accommodate the colorbar when the Location property is set to 'manual'.

TickLabels — Tick mark labels
cell array of character vectors | string array | numeric array | character vector |
categorical array

Tick mark labels, specified as a cell array of character vectors, a string array, a numeric
array, a character vector, or a categorical array. By default, the colorbar labels the tick
marks with numeric values. If you specify labels and do not specify enough labels for all
the tick marks, then MATLAB cycles through the labels.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.

1 Alphabetical List

1-1740

Example: {'cold','warm','hot'}

TickLabelInterpreter — Interpretation of characters in tick labels
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret labels using a subset of the TeX markup.
• 'latex' — Interpret labels using a subset of LaTeX markup.
• 'none' — Display literal characters

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the labels.

This table lists the supported modifiers when the TickLabelInterpreter property is
set to 'tex', which is the default value. Most modifiers remain in effect until the end of
the text. Superscripts and subscripts modify only the next character or the text within the
curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

 colorbar

1-1741

Modifier Description Example
\fontsize{specifier} Set specifier as a scalar

numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑

1 Alphabetical List

1-1742

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\iota ι \Sigma Σ \rightarro
w

→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

 colorbar

1-1743

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. The
displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup
within the text.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, the maximum size of the text reduces by about 10
characters per line.

For more information about the LaTeX system, see The LaTeX Project Web site at https://
www.latex-project.org/.

Ticks — Tick mark locations
vector of monotonically increasing numeric values

Tick mark locations, specified as a vector of monotonically increasing numeric values. The
values do not need to be equally spaced. If you do not want tick marks displayed, then set
the property to the empty vector, [].
Example: [-1,0,1,2,3,4,5]
Data Types: single | double

Direction — Direction of color scale
'normal' (default) | 'reverse'

Direction of color scale, specified as one of these values:

• 'normal' — Display the colormap and labels ascending from bottom to top for a
vertical colorbar, and ascending from left to right for a horizontal colorbar.

• 'reverse' — Display the colormap and labels descending from bottom to top for a
vertical colorbar, and descending from left to right for a horizontal colorbar.

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale.

1 Alphabetical List

1-1744

https://www.latex-project.org
https://www.latex-project.org

If you change the axes font size, then MATLAB automatically sets the font size of the
colorbar to 90% of the axes font size. If you manually set the font size of the colorbar,
then changing the axes font size does not affect the colorbar font.

Tips
• To add a text description along the colorbar, access the underlying text object using

the Label property of the colorbar.

c.Label.String = 'My Colorbar Label';

To change the label appearance, such as the font style or color, set other text
properties. For a list of properties, see Text. For example, this code changes the font
size.

c.Label.FontSize = 12;

• Adding a colorbar might resize the axes to accommodate the colorbar.
• If an axes does not exist, then the colorbar function creates a blank axes and

displays a colorbar with the default colormap.
• You can use colorbar('delete') or colorbar('hide') instead of

colorbar('off') to delete all colorbars in the current axes. All of these commands
are equivalent.

Compatibility Considerations

'peer' input is not recommended
Not recommended starting in R2014b

Starting in R2014b, colorbar('peer',target) is not recommended and might be
removed in a future release. Use colorbar(target) instead.

See Also
Functions
caxis | colormap

 colorbar

1-1745

Properties
Colorbar

Topics
“Creating Colorbars”
“Control Colormap Limits”

Introduced before R2006a

1 Alphabetical List

1-1746

ColorBar Properties
Colorbar appearance and behavior

Description
ColorBar properties control the appearance and behavior of a ColorBar object. By
changing property values, you can modify certain aspects of the colorbar. Use dot
notation to refer to a particular object and property:

c = colorbar;
w = c.LineWidth;
c.LineWidth = 1.5;

Properties
Ticks and Labels

Ticks — Tick mark locations
vector of monotonically increasing numeric values

Tick mark locations, specified as a vector of monotonically increasing numeric values. The
values do not need to be equally spaced. If you do not want tick marks displayed, then set
the property to the empty vector, [].
Example: [-1,0,1,2,3,4,5]
Data Types: single | double

TicksMode — Selection mode for Ticks
'auto' (default) | 'manual'

Selection mode for Ticks, specified as one of these values:

• 'auto' — Automatically choose tick values.
• 'manual' — Manually specify tick values. To specify the tick values, set the Ticks

property.

 ColorBar Properties

1-1747

TickLabels — Tick mark labels
cell array of character vectors | string array | numeric array | character vector |
categorical array

Tick mark labels, specified as a cell array of character vectors, a string array, a numeric
array, a character vector, or a categorical array. By default, the colorbar labels the tick
marks with numeric values. If you specify labels and do not specify enough labels for all
the tick marks, then MATLAB cycles through the labels.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.
Example: {'cold','warm','hot'}

TickLabelsMode — Selection mode for TickLabels
'auto' (default) | 'manual'

Selection mode for TickLabels, specified as one of these values:

• 'auto' — Automatically choose the tick labels.
• 'manual' — Manually specify tick labels. To specify the tick labels, set the

TickLabels property.

TickLabelInterpreter — Interpretation of characters in tick labels
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret labels using a subset of the TeX markup.
• 'latex' — Interpret labels using a subset of LaTeX markup.
• 'none' — Display literal characters

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the labels.

This table lists the supported modifiers when the TickLabelInterpreter property is
set to 'tex', which is the default value. Most modifiers remain in effect until the end of
the text. Superscripts and subscripts modify only the next character or the text within the
curly braces {}.

1 Alphabetical List

1-1748

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞

 ColorBar Properties

1-1749

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂

1 Alphabetical List

1-1750

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. The
displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup
within the text.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, the maximum size of the text reduces by about 10
characters per line.

For more information about the LaTeX system, see The LaTeX Project Web site at https://
www.latex-project.org/.

Limits — Minimum and maximum tick mark values
two-element vector

The minimum and maximum tick mark values, specified as a two-element vector. The
second vector element must be greater than the first element.
Example: [0 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LimitsMode — Selection mode for limits
'auto' (default) | 'manual'

Selection mode for limits, specified as one of these values:

 ColorBar Properties

1-1751

https://www.latex-project.org
https://www.latex-project.org

• 'auto' — Automatically choose the limits.
• 'manual' — Use manually specified limits. To specify the limits, set the Limits

property.

Label — Label
text object

Label that displays along the colorbar, returned as a text object. This text object contains
properties that control the label appearance and the text that displays. Use the Label
property to access the text object, for example:

c = colorbar;
c.Label

ans =

 Text with properties:

 String: ''
 FontSize: 10
 FontWeight: 'normal'
 FontName: 'Helvetica'
 Color: [0.1500 0.1500 0.1500]
 HorizontalAlignment: 'left'
 Position: [0 0 0]
 Units: 'data'

 Show all properties

To add a label, or change a label, set the String property for the text object, for
example:

c.Label.String = 'Label Text Goes Here';

To change the label appearance, such as the font style or color, set other text properties.
For example, this code changes the font size.

c.Label.FontSize = 12;

For a full list of options, see Text.

Direction — Direction of color scale
'normal' (default) | 'reverse'

1 Alphabetical List

1-1752

Direction of color scale, specified as one of these values:

• 'normal' — Display the colormap and labels ascending from bottom to top for a
vertical colorbar, and ascending from left to right for a horizontal colorbar.

• 'reverse' — Display the colormap and labels descending from bottom to top for a
vertical colorbar, and descending from left to right for a horizontal colorbar.

TickLength — Tick mark length
0.01 (default) | scalar

Tick mark length, specified as a scalar. Specify the tick length as a fraction of the colorbar
axis length.
Example: 0.05
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TickDirection — Tick mark direction
'in' (default) | 'out'

Tick mark direction, specified as one of these values:

Value Description Result
'in' Display the tick marks inside colorbar box.

'out' Display the tick marks outside the colorbar
box.

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

 ColorBar Properties

1-1753

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale.

If you change the axes font size, then MATLAB automatically sets the font size of the
colorbar to 90% of the axes font size. If you manually set the font size of the colorbar,
then changing the axes font size does not affect the colorbar font.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

Position

Location — Location with respect to the axes
'eastoutside' (default) | 'north' | 'south' | 'east' | 'west' | 'northoutside'
| ...

Location with respect to the axes, specified as one of the values listed in this table.

1 Alphabetical List

1-1754

Value Resulting Location Resulting Orientation
'north' Top of axes Horizontal
'south' Bottom of axes Horizontal
'east' Right side of axes Vertical
'west' Left side of axes Vertical
'northoutside' Top outside of axes Horizontal
'southoutside' Bottom outside of axes Horizontal
'eastoutside' Right outside of axes

(default)
Vertical

'westoutside' Left outside of axes Vertical
'manual' Determined by Position

property
Vertical

To display the colorbar in a location that does not appear in the table, use the Position
property to specify a custom location. If you set the Position property, then MATLAB
sets the Location property to 'manual'. The associated axes does not resize to
accommodate the colorbar when the Location property is set to 'manual'.

AxisLocation — Axis location
'out' (default) | 'in'

Axis location, specified as one of the following values. Use this property to specify the
location of the tick marks, tick labels, and colorbar label.

• 'out' — Display the tick marks and labels on the side of the colorbar towards the
outside of the figure. This is the default value.

• 'in' — Display the tick marks and labels on the side of the colorbar towards the
inside of the figure.

AxisLocationMode — Selection mode for AxisLocation
'auto' (default) | 'manual'

Selection mode for AxisLocation, specified as one of these values:

• 'auto' — Automatically choose the location.
• 'manual' — Use a manually specified location. To specify the location, set the

AxisLocation property.

 ColorBar Properties

1-1755

Position — Custom location and size
four-element vector

Custom location and size, specified as a four-element vector of the form [left,
bottom, width, height]. The left and bottom elements specify the distance from
the lower-left corner of the figure or to the lower-left corner of the colorbar. The width
and height elements specify the dimensions of the colorbar. The Units property
determines the position units.

If you specify the Position property, then MATLAB changes the Location property to
'manual'. The associated axes does not resize to accommodate the colorbar when the
Location property is 'manual'.
Example: [0.1 0.1 0.3 0.7]

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

Units Description
'normalized' (default) Normalized with respect to the container,

which is usually the figure. The lower left
corner of the figure maps to (0,0) and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.

1 Alphabetical List

1-1756

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the container window.

This property affects the Position property. If you change the units, then it is good
practice to return it to its default value after completing your computation to prevent
affecting other functions that assume Units is the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

Color and Styling

Color — Color of tick marks, text, and box outline
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the tick marks, text, and box outline, specified as an RGB triplet, a hexadecimal
color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 ColorBar Properties

1-1757

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0 1 0]
Example: 'green'
Example: '#00FF00'

Box — Box outline
'on' (default) | 'off'

1 Alphabetical List

1-1758

Box outline, specified as one of these values:

• 'on' — Display the box outline around the colorbar.
• 'off' — Do not display the box outline around the colorbar.

LineWidth — Width of box outline
0.5 (default) | positive value

Width of box outline, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

 ColorBar Properties

1-1759

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

1 Alphabetical List

1-1760

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.

 ColorBar Properties

1-1761

If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'off' (default) | 'on'

Callback interruption, specified as 'off' or 'on'. The Interruptible property
determines if a running callback can be interrupted.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. The Interruptible property has two possible
values:

• 'off' — The running callback cannot be interrupted. MATLAB finishes executing the
running callback without any interruptions. The BusyAction property of the object
owning the interrupting callback determines if it is discarded or put in the queue.

• 'on' — The running callback can be interrupted. Interruption occurs at the next point
where MATLAB processes the queue. For example, when you have a command such as
drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

1 Alphabetical List

1-1762

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the ColorBar object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the ColorBar object passes the
click to the object behind it in the current view of the figure window. The HitTest
property of the ColorBar object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the ColorBar object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the ColorBar object that
has one of these:

• HitTest property set to 'on'

 ColorBar Properties

1-1763

• PickableParts property set to a value that enables the ancestor to capture
mouse clicks

Note The PickableParts property determines if the ColorBar object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Figure object | Panel object | Tab object

Parent, specified as a Figure object, Panel object, or a Tab object.

The ColorBar object must have the same parent as the associated axes. If you change
the parent of the associated axes, then the ColorBar object automatically updates to use
the same parent.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

1 Alphabetical List

1-1764

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'colorbar'

This property is read-only.

Type of graphics object, returned as 'colorbar'.

Use this property to find objects in a hierarchy. For example, you can use the findobj
function to find objects that have a specific Type property value.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

 ColorBar Properties

1-1765

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
colorbar

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2014b

1 Alphabetical List

1-1766

colorcube
Colorcube colormap array

Syntax
c = colorcube
c = colorcube(m)

Description
c = colorcube returns the colorcube colormap as a three-column array with the same
number of rows as the colormap for the current figure. If no figure exists, then the
number of rows is equal to the default length of 64. Each row in the array contains the
red, green, and blue intensities for a specific color. The intensities are in the range [0,1],
and the color scheme looks like this image.

c = colorcube(m) returns the colormap with m colors.

Examples

Use a Section of the Colormap

After getting the colormap array, you can isolate a section of it to use as the color scheme.

Create a surface plot of a plane.

[X,Y] = meshgrid(-10:1:10);
Z = X + Y;
surf(X,Y,Z);

 colorcube

1-1767

Get the colorcube colormap array, and isolate the red section (entries 39 to 44). Then use
this section to color the whole surface.

c = colorcube;
c = c(39:44,:);
colormap(c);

1 Alphabetical List

1-1768

Color a Plane with the Colorcube Colormap

Create a surface plot of a plane.

[X,Y] = meshgrid(-10:1:10);
Z = X + Y;
surf(X,Y,Z);

 colorcube

1-1769

Get the colorcube colormap with 75 entries. Then use it to color the plane.

c = colorcube(75);
colormap(c);

1 Alphabetical List

1-1770

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 colorcube

1-1771

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-1772

colordef
Set default property values to display different color schemes

Note colordef is not recommended.

Syntax
colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description
colordef enables you to select either a white or black background for graphics display.
It sets axis lines and labels so that they contrast with the background color.

colordef white sets the axis background, axis lines and labels, and the figure
background to the default system colors.

colordef black sets the axis background color to black, the axis lines and labels to
white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB Version 4. The most
noticeable difference is that the axis background is set to 'none', making the axis
background and figure background colors the same. The figure background color is set to
black.

colordef(fig,color_option) sets the color scheme of the figure identified by the
handle fig to one of the color options 'white', 'black', or 'none'. When you use this
syntax to apply colordef to an existing figure, the figure must have no graphic content.
If it does, you should first clear it (via clf) before using this form of the command.

h = colordef('new',color_option) returns the handle to a new figure created
with the specified color options (i.e., 'white', 'black', or 'none'). This form of the

 colordef

1-1773

command is useful for creating GUIs when you may want to control the default
environment. The figure is created with 'visible','off' to prevent flashing.

Tips
colordef affects only subsequently drawn figures, not those currently on the display.
This is because colordef works by setting default property values (on the root or figure
level). You can list the currently set default values on the root level with the statement

get(groot,'Default')

You can remove all default values using the reset command:

reset(groot)

See the get and reset references pages for more information.

See Also
clf

Introduced before R2006a

1 Alphabetical List

1-1774

colormap
View and set current colormap

Syntax
colormap map
colormap(map)
colormap(target,map)

cmap = colormap
cmap = colormap(target)

Description
colormap map sets the colormap for the current figure to one of the predefined
colormaps. If you set the colormap for the figure, then axes and charts in the figure use
the same colormap. The new colormap is the same length (number of colors) as the
current colormap. When you use this syntax, you cannot specify a custom length for the
colormap. To learn more about colormaps, see “What Is a Colormap?” on page 1-1788

colormap(map) sets the colormap for the current figure to the colormap specified by
map.

colormap(target,map) sets the colormap for the figure, axes, or chart specified by
target, instead of for the current figure.

cmap = colormap returns the colormap for the current figure as a three-column matrix
of RGB triplets.

cmap = colormap(target) returns the colormap for the figure, axes, or chart specified
by target.

Examples

 colormap

1-1775

Change Colormap for Figure

Create a surface plot and set the colormap to winter.

surf(peaks)
colormap winter

Set Colormap Back to Default

First, change the colormap for the current figure to summer.

1 Alphabetical List

1-1776

surf(peaks)
colormap summer

Now set the colormap back to your system's default value. If you have not specified a
different default value, then the default colormap is parula.

colormap default

 colormap

1-1777

Use Different Colormaps for Each Axes in Figure

Create a figure with two subplots and store the axes handles, ax1 and ax2. Use a
different colormap for each axes by passing the axes handles to the colormap function.
In the upper subplot, create a surface plot using the spring colormap. In the lower
subplot, create a surface plot using the winter colormap.

ax1 = subplot(2,1,1);
surf(peaks)
colormap(ax1,spring)

1 Alphabetical List

1-1778

ax2 = subplot(2,1,2);
surf(peaks)
colormap(ax2,winter)

Specify Number of Colors for Colormap

Specify the number of colors used in a colormap by passing an integer as an input
argument to the built-in colormap. Use five colors from the parula colormap.

mesh(peaks)
colormap(parula(5))

 colormap

1-1779

Create Custom Colormap

Create a custom colormap by defining a three-column matrix of values between 0.0 and
1.0. Each row defines a three-element RGB triplet. The first column specifies the red
intensities. The second column specifies the green intensities. The third column specifies
the blue intensities.

Use a colormap of blue values by setting the first two columns to zeros.

map = [0 0 0.3
 0 0 0.4

1 Alphabetical List

1-1780

 0 0 0.5
 0 0 0.6
 0 0 0.8
 0 0 1.0];

surf(peaks)
colormap(map)

Return Colormap Values Used in Plot

Create a surface plot of the peaks function and specify a colormap.

 colormap

1-1781

mesh(peaks)
colormap(autumn(5))

Return the three-column matrix of values that define the colors used in the plot. Each row
is an RGB triplet color value that specifies one color of the colormap.

cmap = colormap

cmap = 5×3

 1.0000 0 0
 1.0000 0.2500 0
 1.0000 0.5000 0
 1.0000 0.7500 0

1 Alphabetical List

1-1782

 1.0000 1.0000 0

Return Colormap Values for Specific Axes

Return the colormap values for a specific axes by passing its axes handle to the
colormap function.

Create a figure with two subplots and return the axes handles, ax1 and ax2. Add a filled
contour plot to each axes and use a different colormap for each axes.

ax1 = subplot(2,1,1);
contourf(peaks)
colormap(ax1,hot(8))

ax2 = subplot(2,1,2);
contourf(peaks)
colormap(ax2,pink)

 colormap

1-1783

Return the colormap values used in the upper subplot by passing its axes handle, ax1, to
the colormap function. Each row is an RGB triplet color value that specifies one color of
the colormap.

cmap = colormap(ax1)

cmap = 8×3

 0.3333 0 0
 0.6667 0 0
 1.0000 0 0
 1.0000 0.3333 0
 1.0000 0.6667 0
 1.0000 1.0000 0

1 Alphabetical List

1-1784

 1.0000 1.0000 0.5000
 1.0000 1.0000 1.0000

Change Colormap for Figure with Image

Load the spine data set that returns the image X and its associated colormap map.
Display X using the image function and set the colormap to map.

load spine
image(X)
colormap(map)

 colormap

1-1785

Input Arguments
map — Colormap for new color scheme
colormap name | three-column matrix of RGB triplets | 'default'

Colormap for the new color scheme, specified as a colormap name, a three-column matrix
of RGB triplets, or 'default'. A colormap name specifies a predefined colormap with
the same number of colors as the current colormap. A three-column matrix of RGB
triplets specifies a custom colormap. You can create the matrix yourself, or you can call
one of the predefined colormap functions to create the matrix. For example,
colormap(parula(10)) sets the colormap of the current figure to a selection of 10
colors from the parula colormap.

A value of 'default' sets the colormap to the default colormap for the target object.

Colormap Name

The following table lists the predefined colormaps.

Colormap Name Color Scale
parula

jet

hsv

hot

cool

spring

summer

autumn

winter

gray

bone

1 Alphabetical List

1-1786

Colormap Name Color Scale
copper

pink

lines

colorcube

prism

flag

white

Three-Column Matrix

To create a custom colormap, specify map as a three-column matrix of RGB triplets where
each row defines one color. An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]. For example, this matrix defines a colormap containing five
colors.

map = [0.2 0.1 0.5
 0.1 0.5 0.8
 0.2 0.7 0.6
 0.8 0.7 0.3
 0.9 1 0];

This table lists the RGB triplet values for common colors.

Color RGB Triplet
yellow [1 1 0]
magenta [1 0 1]
cyan [0 1 1]
red [1 0 0]
green [0 1 0]
blue [0 0 1]
white [1 1 1]

 colormap

1-1787

Color RGB Triplet
black [0 0 0]

Data Types: char | double

target — Target
Figure object | Axes object | PolarAxes object | graphics object

Target, specified as one of these values:

• Figure object. The figure colormap affects plots for all axes within the figure.
• Axes object or PolarAxes object. You can define a unique colormap for the different

axes within a figure.
• Graphics object that has a Colormap property. For example, you can change or query

the colormap for a HeatmapChart object.

Output Arguments
cmap — Colormap values
three-column matrix of RGB triplets

Colormap values, returned as a three-column matrix of RGB triplets. Each row of the
matrix defines one RGB triplet that specifies one color of the colormap. The values are in
the range [0, 1].

Definitions

What Is a Colormap?
A colormap is matrix of values between 0 and 1 that define the colors for graphics objects
such as surface, image, and patch objects. MATLAB draws the objects by mapping data
values to colors in the colormap.

Colormaps can be any length, but must be three columns wide. Each row in the matrix
defines one color using an RGB triplet. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0, 1]. A value of 0 indicates no color and a

1 Alphabetical List

1-1788

value of 1 indicates full intensity. For example, this command creates a colormap that has
five colors: black, red, green, blue, and white.

mymap = [0 0 0
 1 0 0
 0 1 0
 0 0 1
 1 1 1];

To change the color scheme of a visualization, call the colormap function to change the
colormap of the containing axes or figure. For example, the following commands create a
surface plot and set the colormap of the figure to mymap.

surf(peaks)
colormap(mymap)

 colormap

1-1789

Compatibility Considerations
• Starting in R2018a, if you set the colormap for a figure, then axes and charts in the
figure use the same colormap. Previously, any axes or chart that you set the colormap
for explicitly were unaffected when you set the figure colormap. If you want an Axes
object to use a different colormap than the figure, then set the axes colormap after
setting the figure colormap.

• Starting in R2014b, the default colormap is parula. In previous releases, the default
colormap was jet.

1 Alphabetical List

1-1790

Tips
• To control the limits of the colormap, and how those limits relate to the range of your

data, use the caxis function.

See Also
caxis | colorbar | hsv2rgb | ind2rgb | rgbplot

Topics
“Control Colormap Limits”

Introduced before R2006a

 colormap

1-1791

Colormap Editor
Open colormap editor

Description
The Colormap Editor allows you to customize the colormap of the current figure.
Dragging a color marker along the displayed colormap changes the position of a color
transition. Double-clicking a marker allows you to change the color at that position.
MATLAB applies all your changes to the colormap of the current figure.

Open the Colormap Editor
MATLAB command prompt: Enter colormapeditor.

Examples
Edit the Hot Colormap to Improve Image Detail

Load the mri dataset, and display one of image slices using the hot colormap.

load mri
imagesc(D(:,:,1,11))
colormap hot

1 Alphabetical List

1-1792

Open the Colormap Editor.

colormapeditor

Move the yellow marker to index 52, and move the red marker to index 35.

 Colormap Editor

1-1793

1 Alphabetical List

1-1794

The new colormap provides more detail near the center of the image.

Save the colormap in the variable c. You can use c to apply the new colormap to different
plots.

ax = gca;
c = colormap(ax);

Parameters
Color markers — Color markers
color markers placed along the displayed colormap

Color markers allow you to change the color and length of transitions in the colormap.

 Colormap Editor

1-1795

This table describes the adjustments you can make.

Adjustment Adjustment Instructions
Change the colormap Select Tools > Standard Colormaps
Add a color marker Click below the corresponding cell in the displayed

colormap.
Select a marker Left-click the marker.
Select multiple markers Adjacent markers: left-click the first marker. Then

press Shift before clicking the last marker.

Nonadjacent markers: left-click first marker. Then
hold the Ctrl key as you click the other markers.

Move a marker Select and drag the marker. You can also press the
left and right arrow keys instead of dragging the
marker.

Move multiple markers Select multiple markers, and use the left and right
arrow keys to move markers as a group. The
movement stops when one of the selected markers
encounters unselected marker or an end marker.

Delete a marker Select the marker, and perform one of the
following actions:

• Press the Delete key
• Select Edit > Delete
• Press Ctrl+X

Delete multiple markers Select the markers, and then press the Delete key,
or select Delete from the Edit menu, or type Ctrl
+X.

Change marker color Double-click the marker.

1 Alphabetical List

1-1796

Interpolating colorspace — Interpolating color space
RGB (default) | HSV

Interpolating color space, specified as one of these values:

• RGB — MATLAB calculates values in the new colormap by linearly interpolating the
red, green, and blue components of color.

• HSV — MATLAB calculates values in the new colormap by linearly interpolating the
hue, saturation, and value coordinates. Hue corresponds to the values on a color wheel
that transition from red to orange, yellow, green, cyan, blue, magenta, and finally back
to red. Hue interpolation is calculated as the shortest distance between adjacent
colors on the color wheel.

When you change the Interpolating colorspace, the Colormap Editor preserves the
number, color, and location of markers, which can cause the colormap to change.

Color data min — Colormap lower limit
number

Colormap lower limit, specified as a number. All values in your plot data that are less than
or equal to the value of Color data min map to the first color in the colormap. All values
between Color data min and Color data max map linearly to the intermediate colors of
the colormap.

When you change Color data min and Color data max, those changes are reflected in
the CLim property of the plotting axes.

Color data max — Colormap upper limit
number

Colormap upper limit, specified as a number. All values in your plot data that are greater
than or equal to the value of Color data max map to the last color in the colormap. All
values between Color data min and Color data max map linearly to the intermediate
colors of the colormap.

When you change Color data min and Color data max, those changes are reflected in
the CLim property of the plotting axes.

 Colormap Editor

1-1797

Tips
• To save a colormap after making changes, call the colormap function. Specify the

current axes as the input argument, and specify an output argument to store the
colormap.

ax = gca;
mymap = colormap(ax);

Use the save function to save the colormap as a MAT-file for use in future sessions.

save('MyColormap','mymap')
• When you move the cursor over the displayed colormap or any of its markers, the

following information displays in the Current color info section:

• Index — The row in the colormap array that corresponds to the current color.
• CData — The corresponding value in the CData property of the graphics object

that is using the colormap.
• RGB — The RGB values of the current color.
• HSV — The HSV values of the current color.

See Also
Functions
caxis | colormap

Introduced before R2006a

1 Alphabetical List

1-1798

matlab.colors Settings
MATLAB syntax highlighting color settings

You can customize the colors for syntax highlighting using the matlab.colors settings.
Access matlab.colors settings using the root SettingsGroup object returned by the
settings function. For example, set the temporary value for the color of comments to
[173 235 255] (light blue).

s = settings;
s.matlab.colors.CommentColor.TemporaryValue = [173 235 255]

For more information about settings, see “Access and Modify Settings”.

Settings
matlab.colors

SyntaxErrorColor — Color of syntax errors
[255 0 0] (default) | RGB triplet

Color of syntax errors, specified as a RGB triplet with values in the range [0,255].
Example: s.matlab.colors.SyntaxErrorColor.TemporaryValue = [173 235
255]

KeywordColor — Color of keywords
[0 0 255] (default) | RGB triplet

Color of keywords, specified as a RGB triplet with values in the range [0,255].
Example: s.matlab.colors.KeywordColor.TemporaryValue = [173 235 255]

StringColor — Color of strings
[160 32 240] (default) | RGB triplet

Color of strings, specified as a RGB triplet with values in the range [0,255].
Example: s.matlab.colors.StringColor.TemporaryValue = [173 235 255]

 matlab.colors Settings

1-1799

SystemCommandColor — Color of system commands
[179 140 0] (default) | RGB triplet

Color of system commands, specified as a RGB triplet with values in the range [0,255].
Example: s.matlab.colors.SystemCommandColor.TemporaryValue = [173 235
255]

UnterminatedStringColor — Color of unterminated strings
[179 0 0] (default) | RGB triplet

Color of unterminated strings, specified as an RGB triplet with values in the range
[0,255].
Example: s.matlab.colors.UnterminatedStringColor.TemporaryValue = [173
235 255]

CommentColor — Color of comments
[34 139 34] (default) | RGB triplet

Color of comments, specified as a RGB triplet with values in the range [0,255].
Example: s.matlab.colors.CommentColor.TemporaryValue = [173 235 255]

ValidationSectionColor — Color of validation sections
[162 82 45] (default) | RGB triplet

Color of validation sections, specified as a RGB triplet with values in the range [0,255].
Example: s.matlab.colors.ValidationSectionColor.TemporaryValue = [173
235 255]

See Also
settings

Topics
“Access and Modify Settings”
“Change Color Settings”
“Check Syntax as You Type”

1 Alphabetical List

1-1800

Introduced in R2018b

 matlab.colors Settings

1-1801

ColorSpec (Color Specification)
Color specification

Description
ColorSpec is not a function; it refers to the three ways in which you specify color for
MATLAB graphics:

• RGB triplet
• Short name
• Long name

The short names and long names are character vectors that specify one of eight
predefined colors. The RGB triplet is a three-element row vector whose elements specify
the intensities of the red, green, and blue components of the color; the intensities must be
in the range [0 1]. The following table lists the predefined colors and their RGB triplet
equivalents.

RGB Triplet Short Name Long Name
[1 1 0] y yellow
[1 0 1] m magenta
[0 1 1] c cyan
[1 0 0] r red
[0 1 0] g green
[0 0 1] b blue
[1 1 1] w white
[0 0 0] k black

Examples
This code makes the x-axis red.

1 Alphabetical List

1-1802

ax = gca;
ax.XColor = 'red';

This code changes the figure background color to pink:

fig = gcf;
fig.Color = [1 0.4 0.6];

Tips
The eight predefined colors and any colors you specify as RGB triplets are not part of a
figure's colormap, nor are they affected by changes to the figure's colormap. They are
referred to as fixed colors, as opposed to colormap colors.

In most cases, you can specify a color using either an RGB triplet or a character vector of
a color name. However, in some cases, you cannot specify the color as a color name. For
example, you cannot set the CData property of a scatter object to a color name.

See Also
bar | bar3 | colordef | colormap | fill | fill3 | uisetcolor

 ColorSpec (Color Specification)

1-1803

colperm
Sparse column permutation based on nonzero count

Syntax
j = colperm(S)

Description
j = colperm(S) generates a permutation vector j such that the columns of S(:,j) are
ordered according to increasing count of nonzero entries. This is sometimes useful as a
preordering for LU factorization; in this case use lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so that both the rows
and columns of S(j,j) are ordered according to increasing count of nonzero entries. If S
is positive definite, this is sometimes useful as a preordering for Cholesky factorization; in
this case use chol(S(j,j)).

Examples
The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost completely full. The
statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the bottom and the
rear, and lu(A(j,j)) has the same nonzero structure as A itself.

On the other hand, the Bucky ball example,

B = bucky

1 Alphabetical List

1-1804

has exactly three nonzero elements in each row and column, so j = colperm(B) is the
identity permutation and is no help at all for reducing fill-in with subsequent
factorizations.

Algorithms
The algorithm involves a sort on the counts of nonzeros in each column.

See Also
chol | colamd | dissect | lu | spparms | symamd | symrcm

Introduced before R2006a

 colperm

1-1805

COM
Access COM components and ActiveX controls from MATLAB

Description
A Component Object Model (COM) object

Creation
To create a COM object, call one of the following functions.

• actxcontrol function to create a Microsoft ActiveX control in figure window.
• actxcontrolselect function to create a control from a UI.
• actxserver function to create a COM server.

Object Functions
addproperty Add custom property to COM object
deleteproperty Remove custom property from COM object
events List of events COM object can trigger
invoke Invoke method on COM object or interface, or display methods
load Initialize COM control object from file
move Move or resize control in parent window
propedit Open built-in property page for COM control
release Release COM interface
save Serialize COM control object to file

You also can use these MATLAB functions with COM objects.
delete Delete files or objects
get Query graphics object properties
isprop True if property exists
ismethod Determine if method of object
fieldnames Field names of structure, or public fields of Java or Microsoft COM object
inspect Open property inspector

1 Alphabetical List

1-1806

methods Class method names
methodsview View class methods
set Set graphics object properties

See Also
Introduced before R2006a

 COM

1-1807

events
List of events COM object can trigger

Syntax
S = events(c)

Description
S = events(c) returns information about registered and unregistered events for COM
object c.

COM functions are available on Microsoft Windows systems only.

Examples

List Control Events
Create an mwsamp control and list all events.

f = figure('position',[100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);
events(h)

Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,
 Variant x, Variant y)
Event_Args = void Event_Args(int16 typeshort, int32 typelong,
 double typedouble, string typestring, bool typebool)

Assign the output to a variable and display one field of the returned structure.

ev = events(h);
ev.MouseDown

1 Alphabetical List

1-1808

ans =
 void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

List Workbook Events
Open a Microsoft Excel application and list all events for a Workbook object.

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = Add(wbs);
events(wb)

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

Output Arguments
S — Event information
structure array

Information about registered and unregistered events known to the COM object, returned
as a structure array. The array contains the function prototype used to call the event
handler routine. For each array element, the structure field is the event name and the
contents of that field is the function prototype for the handler of that event.

See Also
eventlisteners | isevent | registerevent | unregisterallevents |
unregisterevent

Introduced before R2006a

 events

1-1809

load
Initialize COM control object from file

Syntax
load(c,filename)

Description
load(c,filename) initializes the COM object associated with the interface represented
by the MATLAB COM object c from the file specified by filename. The file must have
been created previously by serializing an instance of the same control.

COM functions are available on Microsoft Windows systems only.

Examples

Restore Control Settings

Save settings for an mwsamp control, modify the settings, then restore the original values.

Create the control and save its original state to the file mwsample.

f = figure('position',[100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);
save(h,'mwsample')

Alter the figure by changing its label and the radius of the circle.

h.Label = 'Circle';
h.Radius = 50;
Redraw(h)

Restore the control to its original state using the load function.

1 Alphabetical List

1-1810

load(h,'mwsample')
get(h)

ans =
 Label: 'Label'
 Radius: 20

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

filename — File name
character vector

File name, specified as a character vector.

See Also
actxcontrol | actxserver | delete | release | set

Introduced before R2006a

 load

1-1811

propedit
Open built-in property page for COM control

Syntax
propedit(c)

Description
propedit(c) requests the COM control to display its built-in property page. If a control
does not have a built-in property page, then propedit fails.

COM functions are available on Microsoft Windows systems only.

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

See Also
Property Inspector | get

Introduced before R2006a

1 Alphabetical List

1-1812

save
Serialize COM control object to file

Syntax
save(c,filename)

Description
save(c,filename) saves COM control object to file specified by filename. The COM
save function is only supported for controls.

COM functions are available on Microsoft Windows systems only.

Examples

Save Control Settings

Save settings for an mwsamp control.

Create the control and save its original state to the file mwsample.

f = figure('position',[100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);
save(h,'mwsample')

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

 save

1-1813

filename — File name
character vector

File name, specified as a character vector.

See Also
actxcontrol | load

Introduced before R2006a

1 Alphabetical List

1-1814

Combine
Convenience function for static .NET System.Delegate Combine method

Syntax
result = Combine(delegateA,delegateB)

Description
result = Combine(delegateA,delegateB) combines two delegates into a new
delegate.

Input Arguments
delegateA

.NET System.Delegate object. The first delegate in the new delegate.

Default:

delegateB

.NET System.Delegate object. The last delegate in the new delegate.

Default:

Output Arguments
result

.NET System.Delegate object. A new delegate that delegates to the input delegate
delegateA, then delegateB

 Combine

1-1815

Alternatives
Use the static Combine method of the System.Delegate class.

See Also
Remove | RemoveAll

Topics
“Combine and Remove .NET Delegates”

External Websites
MSDN System.Delegate.Combine Method reference page

Introduced in R2011a

1 Alphabetical List

1-1816

https://msdn.microsoft.com/en-us/library/30cyx32c.aspx

comet
2-D comet plot

Syntax
comet(y)
comet(x,y)
comet(x,y,p)
comet(ax,...)

Description
comet(y) displays a comet graph of the vector y. A comet graph is an animated graph in
which a circle (the comet head) traces the data points on the screen. The comet body is a
trailing segment that follows the head. The tail is a solid line that traces the entire
function.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults to 0.1.

comet(ax,...) plots into the axes ax instead of into the current axes (gca).

Examples

Create Comet Graph

t = 0:.01:2*pi;
x = cos(2*t).*(cos(t).^2);
y = sin(2*t).*(sin(t).^2);
comet(x,y);

 comet

1-1817

Tips
• Comet graphs do not support data tips.

1 Alphabetical List

1-1818

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
animatedline | comet3

Introduced before R2006a

 comet

1-1819

comet3
3-D comet plot

Syntax
comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)
comet3(ax,...)

Description
A comet plot is an animated graph in which a circle (the comet head) traces the data
points on the screen. The comet body is a trailing segment that follows the head. The tail
is a solid line that traces the entire function.

comet3(z) displays a 3-D comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p*length(y). p must be between 0
and 1.

comet3(ax,...) plots into the axes ax instead of into the current axes (gca).

Examples

Create 3-D Comet Graph

t = -10*pi:pi/250:10*pi;
x = (cos(2*t).^2).*sin(t);
y = (sin(2*t).^2).*cos(t);
comet3(x,y,t);

1 Alphabetical List

1-1820

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 comet3

1-1821

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
animatedline | comet

Introduced before R2006a

1 Alphabetical List

1-1822

Command History Window
Open Command History window

Description
The Command History window displays a log of statements that you ran in the current
and previous MATLAB sessions. The Command History lists the time and date of each
session in the short date format for your operating system, followed by the statements
from that session. Brackets in the left margin indicate statements that were processed as
a group. A colored mark precedes each statement that generated an error.

MATLAB saves statements that run in the Command Window to the history file
History.xml. These statements include those you run using the Evaluate Selection
item on context menus in tools such as the Editor, Command History window, and Help
browser. By default, MATLAB automatically saves the command history file after each
statement. The history file does not include every action taken in MATLAB. For example,
changes to values in the Variables editor are not included in the Command History
window. All entries remain until you delete them, or until the number of statements in the
history file exceeds the number of statements to save, as specified in the Command
History preferences. When the specified limit is reached, MATLAB automatically deletes
the oldest entries. By default, the Command History window saves 25,000 statements.

You can select entries in the Command History window, and then perform these actions
for the selected entries.

Action How to Perform the Action
Create a script from
statements.

Select an entry or entries, and then right-click and select Create
Script or Create Live Script from the context menu. The Editor
opens a new file that contains the statements you selected from the
Command History window.

 Command History Window

1-1823

Action How to Perform the Action
Rerun previous statements. Do one of the following:

• Press the Up Arrow key (↑) until the statement you want appears
at the prompt, and then press Enter.

• Double-click an entry or entries in the Command History window.
• Select an entry in the Command History window and press Enter.

To extend the selection to include multiple statements, press Shift+↑.
Copy statements to another
window.

Select an entry or entries and then do one of the following:

• Select Copy from the context menu. Paste the selection into an
open file in the Editor or any application.

• Drag the selection from the Command History window to an open
file or another application.

Create a favorite command
from statements.

Select an entry or entries, and then do one of the following:

• Click the icon to the left of the selection. MATLAB creates a
new favorite command in the default Favorite Commands
category.

• Right-click and select Create Favorite. The Favorite Command
Editor opens with the selected entries added to the Code field.
Configure the desired fields and click Save.

For more information about favorite commands, see “Rerun Favorite
Commands”.

Delete entries. Select the entries to delete, and then right-click and select Delete, or
press the Delete key. To recall a deleted entry, right-click and select
Undo Delete, or press Ctrl+Z.

To delete all entries, click , and then select Clear Command
History from the context menu. You cannot recall entries deleted in
this way.

Some actions are not available in MATLAB Online.

1 Alphabetical List

1-1824

Open the Command History Window
To open the Command History window with all history showing, in the Command Window,
press the Up Arrow key (↑) or enter commandhistory. To open the Command History
window and display a specific statement, type any part of the statement at the prompt
and then press the Up Arrow key.

By default, the Command History window closes after a statement is selected or the Esc
key is pressed. To keep the Command History window open, in the Command History
window, click and then select either Detach or Dock. If the Command History window
is closed while detached or docked, go to the Home tab, and in the Environment
section, click Layout. Then, under Show, click Command History and select either
Docked or Popup.

Examples

Find Previous Plot Statements

Use the Command History search feature to find and run previous plot statements.

In the Command Window, run these statements to create two line plots.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

x1 = linspace(-2*pi,2*pi);
y1 = sin(x1);
y2 = cos(x1);

figure
plot(x1,y1,x1,y2)

Type plot and then press the up-arrow key. MATLAB displays the Command History with
all instances of plot highlighted. The last run instance of plot is selected.

 Command History Window

1-1825

Press the up-arrow key to select the previous run instance of plot and press Enter.
MATLAB runs the statement plot(x,y).

Programmatic Use
commandhistory opens the MATLAB Command History window when it is closed, and
selects the Command History window when it is open.

See Also
Command Window | diary

1 Alphabetical List

1-1826

Topics
“Set Command History Preferences”

Introduced before R2006a

 Command History Window

1-1827

Command Window
Select the Command Window

Description
The Command Window enables you to enter individual statements at the command line
and view the generated results.

Open the Command Window
The Command Window is always open. To restore the Command Window to the default
location, go to the Home tab, and in the Environment section, click Layout. Then, select
from one of the default layout options.

To bring focus to the Command Window from another tool such as the Editor, type
commandwindow.

Examples

Select the Command Window After Creating a Plot

Create a line plot and then bring focus back to the Command Window.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

1 Alphabetical List

1-1828

commandwindow

Copyright 2018 The MathWorks, Inc

Programmatic Use
commandwindow selects the MATLAB Command Window. For example, type
commandwindow after a plotting command to bring focus back to the Command Window.

commandwindow is not supported when running MATLAB with the -nodesktop option.

 Command Window

1-1829

Tips
To determine the number of columns and rows that display in the Command Window
given its current size, type matlab.desktop.commandwindow.size in the Command
Window. MATLAB returns the number of columns and rows, respectively. For example:

matlab.desktop.commandwindow.size

ans =
 133 24

The number of columns is based on the width of the Command Window. If the Set matrix
width to eighty columns Command Window preference is selected, the number of
columns is always 80. For more information, see “Set Command Window Preferences”.

See Also
Command History Window | input | inputdlg

Topics
“Enter Statements in Command Window”
“Set Command Window Preferences”

Introduced before R2006a

1 Alphabetical List

1-1830

compan
Companion matrix

Syntax
A = compan(u)

Description
A = compan(u) returns the corresponding companion matrix whose first row is -
u(2:n)/u(1), where u is a vector of polynomial coefficients. The eigenvalues of
compan(u) are the roots of the polynomial.

Examples

Companion Matrix for Polynomial

Compute the companion matrix corresponding to the polynomial
(x− 1)(x− 2)(x + 3) = x3− 7x + 6.

u = [1 0 -7 6];
A = compan(u)

A = 3×3

 0 7 -6
 1 0 0
 0 1 0

The eigenvalues of A are the polynomial roots.

eig(A)

ans = 3×1

 compan

1-1831

 -3.0000
 2.0000
 1.0000

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eig | poly | polyval | roots

Introduced before R2006a

1 Alphabetical List

1-1832

compass
Plot arrows emanating from origin

Syntax
compass(U,V)
compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)
h = compass(...)

Description
A compass graph displays the vectors with components (U,V) as arrows emanating from
the origin. U, V, and Z are in Cartesian coordinates and plotted on a circular grid.

compass(U,V) displays a compass graph having n arrows, where n is the number of
elements in U or V. The location of the base of each arrow is the origin. The location of the
tip of each arrow is a point relative to the base and determined by [U(i),V(i)].

compass(Z) displays a compass graph having n arrows, where n is the number of
elements in Z. The location of the base of each arrow is the origin. The location of the tip
of each arrow is relative to the base as determined by the real and imaginary components
of Z. This syntax is equivalent to compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type, marker symbol,
and color specified by LineSpec.

compass(axes_handle,...) plots into the axes with the handle axes_handle instead
of into the current axes (gca).

 compass

1-1833

h = compass(...) returns handles to line objects.

Examples

Create Compass Graph

Create a compass graph of the eigenvalues of a random matrix.

rng(0,'twister') % initialize random number generator
M = randn(20,20);
Z = eig(M);

figure
compass(Z)

1 Alphabetical List

1-1834

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 compass

1-1835

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
feather | polarplot | quiver | rose

Introduced before R2006a

1 Alphabetical List

1-1836

complex
Create complex array

Syntax
z = complex(a,b)
z = complex(x)

Description
z = complex(a,b) creates a complex output, z, from two real inputs, such that z = a
+ bi.

The complex function provides a useful substitute for expressions, such as a + 1i*b or
a + 1j*b, when

• a and b are not double or single
• b is all zeros

z = complex(x) returns the complex equivalent of x, such that isreal(z) returns
logical 0 (false).

• If x is real, then z is x + 0i.
• If x is complex, then z is identical to x.

Examples

Complex Scalar from Two Real Scalars

Use the complex function to create the complex scalar, 3 + 4i.

z = complex(3,4)

z = 3.0000 + 4.0000i

 complex

1-1837

Complex Vector from Two Real Vectors

Create a complex uint8 vector from two real uint8 vectors. The size of z, 4-by-1, is the
same as the size of the input arguments.

a = uint8([1;2;3;4]);
b = uint8([2;2;7;7]);

z = complex(a,b)

z = 4x1 uint8 column vector

 1 + 2i
 2 + 2i
 3 + 7i
 4 + 7i

Complex Scalar from One Real Scalar

Create a complex scalar with zero imaginary part.

z = complex(12)

z = 12.0000 + 0.0000i

Verify that z is complex.

isreal(z)

ans = logical
 0

1 Alphabetical List

1-1838

Input Arguments
a — Real component
scalar | vector | matrix | multidimensional array

Real component, specified as a scalar, vector, matrix, or multidimensional array.

The size of a must match the size of b, unless one is a scalar. If either a or b is a scalar,
MATLAB expands the scalar to match the size of the other input.

a and b must be the same data type with the following exceptions:

• single can combine with double.
• scalar double can combine with an integer data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

b — Imaginary component
scalar | vector | matrix | multidimensional array

Imaginary component, specified as a scalar, vector, matrix, or multidimensional array.

The size of b must match the size of a, unless one is a scalar. If either a or b is a scalar,
MATLAB expands the scalar to match the size of the other input.

a and b must be the same data type with the following exceptions:

• single can combine with double.
• scalar double can combine with an integer data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

x — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

 complex

1-1839

Output Arguments
z — Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a scalar, vector, matrix, or multidimensional array.

The size of z is the same as the input arguments.

The following describes the data type of z, when a and b have different data types.

• If either a or b is single, then z is single.
• If either a or b is an integer data type, then z is the same integer data type.

Tips
• If b contains only zeros, then z is complex and the value of all its imaginary

components is 0. In contrast, the addition a + 0i returns a strictly real result.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-1840

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
abs | angle | conj | i | imag | isreal | j | real

Topics
“Complex Numbers”

Introduced before R2006a

 complex

1-1841

compose
Format data into multiple strings

Syntax
str = compose(formatSpec,A)
str = compose(formatSpec,A1,...,AN)
str = compose(txt)

Description
str = compose(formatSpec,A) formats data values from the input array, A, using
formatting operators specified by formatSpec and returns the resulting text in str. The
compose function formats values from A in column order. If formatSpec is a string array,
then so is the output array str. Otherwise, str is a cell array of character vectors.

compose also translates the escape-character sequences in formatSpec. Escape-
character sequences represent nonprinting characters or specify actions such as newlines
or tabs.

The compose function can return multiple pieces of formatted text as a string array or a
cell array of character vectors, unlike sprintf. The sprintf function returns only a
string scalar or a character vector.

• If A has multiple rows, then compose returns str as a string array or cell array with
the same number of rows. compose repeats formatSpec in each row of str, with
formatted values from the corresponding row of A.

• If the number of columns in A exceeds the number of operators in formatSpec, then
compose repeats formatSpec as an additional column of str. The extra columns of A
contribute formatted values to the new column in str.

• If the number of columns in A is less than the number of operators in formatSpec,
then compose does not format values using those operators. Instead, compose puts
unchanged formatting operators in str. However, compose translates all escape-
character sequences except for \\ and %%.

1 Alphabetical List

1-1842

str = compose(formatSpec,A1,...,AN) formats data values from multiple input
arrays and concatenates all the formatted values. When compose uses formatting
operators from formatSpec to convert data from an input array, then those formatting
operators become unavailable to the following input arrays.

For example, if formatSpec is "%f %f %d %s" and A1 has two columns, then the
operators "%f %f" are applied to the values in A1 only. They cannot be applied to A2 or
any other input array. compose applies the remaining operators, "%d %s", to
A2,...,AN.

If the number of columns in the last input array, AN, exceeds the number of remaining
operators, then compose adds an additional column to str, as described in the previous
syntax. If the number of columns in AN is less than the number of remaining operators,
then compose puts the last unchanged operators in str.

str = compose(txt) translates escape-character sequences in txt.

• If txt does not contain formatting operators, then compose translates all escape-
character sequences. It leaves all other characters unchanged.

• If txt contains formatting operators, then compose translates all escape-character
sequences except for \\ and %%. It leaves all other characters, including the
formatting operators, unchanged.

Examples

Format Numbers into Strings

Format pi to eight decimal places and return it as a string.

A = pi

A = 3.1416

Starting in R2017a, you can create strings using double quotes. Specify formatSpec as a
string.

formatSpec = "%.8f"

formatSpec =
"%.8f"

 compose

1-1843

str = compose(formatSpec,A)

str =
"3.14159265"

Create a numeric array that contains values of pi and e. Use the %e and %f operators
with different precisions.

A = [pi exp(1)]

A = 1×2

 3.1416 2.7183

formatSpec = "The value of pi is %.2e; the value of e is %.5f.";
str = compose(formatSpec,A)

str =
"The value of pi is 3.14e+00; the value of e is 2.71828."

Format Columns of Values from Arrays

Format values taken from numeric arrays. Since the numeric arrays have multiple rows,
compose returns a string array with the same number of rows.

X = [1 2 3 4 5]';
Y = X.^2;

Starting in R2017a, you can create strings using double quotes. Specify formatSpec as a
string and return the formatted values as a string array.

formatSpec = "%d.^2 = %d";
str = compose(formatSpec,X,Y)

str = 5x1 string array
 "1.^2 = 1"
 "2.^2 = 4"
 "3.^2 = 9"
 "4.^2 = 16"
 "5.^2 = 25"

1 Alphabetical List

1-1844

Format Values with Extra or Missing Operators

Format values when the number of columns in the data array is not equal to the number
of operators. If A has more columns, then compose repeats formatSpec as an additional
column of the output string array.

Starting in R2017a, you can create strings using double quotes. Specify formatSpec as a
string.

formatSpec = "The time is %d:%d";
A = [8 15 9 30;
 10 20 11 50];
str = compose(formatSpec,A)

str = 2x2 string array
 "The time is 8:15" "The time is 9:30"
 "The time is 10:20" "The time is 11:50"

Format values when A has fewer columns.

formatSpec = "Check-in time %d:%d; Check-out time %d:%d";
A = [12 27;
 11 16];
str = compose(formatSpec,A)

str = 2x1 string array
 "Check-in time 12:27; Check-out time %d:%d"
 "Check-in time 11:16; Check-out time %d:%d"

Since A has only two columns, compose uses only the first two formatting operators in
formatSpec to format the values. compose leaves the other formatting operators
unchanged.

Escape Characters in String Array

Create a string array that includes escape-character sequences to specify horizontal tabs.
Use the compose function to translate the \t escape characters. Starting in R2017a, you
can create strings using double quotes.

 compose

1-1845

str = ["Name\tDate of Birth\tLocation";...
 "Jones\t10/20/2015\tUK";...
 "Simpson\t09/12/2015\tUSA"];
newStr = compose(str)

newStr = 3x1 string array
 "Name->Date of Birth->Location"
 "Jones->10/20/2015->UK"
 "Simpson->09/12/2015->USA"

Prevent translation of \n using another \ character.

str = "Don't escape the second\n\\n escaped-character sequence.";
newStr = compose(str)

newStr =
 "Don't escape the second
 \n escaped-character sequence."

Input Arguments
formatSpec — Formatting operators
string array | character vector | cell array of character vectors

Formatting operators, specified as a string array, character vector, or cell array of
character vectors containing formatting operators. If formatSpec includes literal text
representing escape characters, such as \n, then compose translates the escape
characters.

Formatting Operator

A formatting operator starts with a percent sign, %, and ends with a conversion character.
The conversion character is required. Optionally, you can specify flags, field width,
precision, and subtype operators between % and the conversion character. (Spaces are
invalid between operators and are shown here only for readability).

Conversion Character

This table shows conversion characters to format numeric and character data as text.

1 Alphabetical List

1-1846

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters

a–f
%X Same as %x, uppercase letters A–F

Floating-point number %f Fixed-point notation (Use a precision
operator to specify the number of digits
after the decimal point.)

%e Exponential notation, such as
3.141593e+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%E Same as %e, but uppercase, such as
3.141593E+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%g The more compact of %e or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

%G The more compact of %E or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

Characters %c Single character
%s Character vector

Optional Operators

The optional identifier, flags, field width, precision, and subtype operators further define
the format of the output text.

• Flags

 compose

1-1847

'–' Left-justify.
Example: %-5.2f

'+' Always print a sign character (+ or –) for any value.
Example: %+5.2f

' ' Insert a space before the value.
Example: % 5.2f

'0' Pad to field width with zeros before the value.
Example: %05.2f

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.
• For %f, %e, or %E, print decimal point even when precision is 0.
• For %g or %G, do not remove trailing zeros or decimal point.

Example: %#5.0f
• Field Width

Minimum number of characters to print.

Example: compose('%12d',intmax) returns " 2147483647".

The function pads to field width with spaces before the value unless otherwise
specified by flags.

• Precision

Number of digits to print.

For %f, %e, or %E Number of digits to the right of the decimal point
Example: '%.4f' prints pi as '3.1416'

For %g or %G Number of significant digits
Example: '%.4g' prints pi as '3.142'

Example: compose('%6.4f',pi) returns "3.1416".

Note If you specify a precision operator for floating-point values that exceeds the
precision of the input numeric data type, the results might not match the input values
to the precision you specified. The result depends on your computer hardware and
operating system.

1 Alphabetical List

1-1848

• Subtypes

You can use a subtype operator to print a floating-point value as its octal, decimal, or
hexadecimal value. The subtype operator immediately precedes the conversion
character. This table shows the conversions that can use subtypes.

Input Value Type Subtype and
Conversion Character

Output Value Type

Floating-point number %bx or %bX
%bo
%bu

Double-precision
hexadecimal, octal, or
decimal value
Example: %bx prints pi
as 400921fb54442d18

%tx or %tX
%to
%tu

Single-precision
hexadecimal, octal, or
decimal value
Example: %tx prints pi
as 40490fdb

Notable Behavior of Conversions with Formatting Operators

• Numeric conversions print only the real component of complex numbers.
• If you specify a conversion that does not fit the data, such as a character conversion

for a numeric value, MATLAB overrides the specified conversion, and uses %e.

Example: '%s' converts pi to 3.141593e+00.
• If you apply a string conversion (%s) to integer values, MATLAB converts values that

correspond to valid character codes to characters.

Example: '%s' converts [65 66 67] to "ABC".

Data Types: string | char | cell

A — Numeric, character, or string array
scalar | vector | matrix | multidimensional array

Numeric, character, or string array, specified as scalar, vector, matrix, or
multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

 compose

1-1849

txt — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
compose translates any escape-character sequences in txt. For example, compose
translates \n into a newline character.
Data Types: string | char | cell

Output Arguments
str — Formatted text
string array | cell array of character vectors

Formatted text, returned as a string array or a cell array of character vectors.
Data Types: string | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

The format input must be a non-tall string.

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-1850

See Also
fprintf | fscanf | sprintf | sscanf | string

Topics
“Create String Arrays”
“Formatting Text”

Introduced in R2016b

 compose

1-1851

computeStrip
Index number of strip containing specified coordinate

Syntax
stripNumber = computeStrip(t,row)
stripNumber = computeStrip(t,row,plane)

Description
stripNumber = computeStrip(t,row) returns the index of the strip containing row.
The value of row must be one-based. computeStrip clamps out-of-range coordinate
values to the bounds of the image.

stripNumber = computeStrip(t,row,plane) returns the index of the strip
containing the row in the specified plane.

Examples

Determine Index of Strip

Determine the index of the strip containing a specific row from the second image in a
TIFF file.

Create a Tiff object for the file example.tif, and then set the image file directory to
directory number 2.

t = Tiff('example.tif','r');
setDirectory(t,2)

Get the length of the strips in the image, and then get the index of the strip containing
the middle row.

stripLength = getTag(t,'RowsPerStrip')

1 Alphabetical List

1-1852

stripLength = 100

numRows = getTag(t,'ImageLength');
stripNumber = computeStrip(t,numRows/2)

stripNumber = 4

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

row — Row Number
positive integer

Row number, specified as a positive integer. The value of row must be one-based.
Example: 10
Data Types: double

plane — Plane Number
positive integer

Plane number, specified as a positive integer. The value of plane must be one-based.

Use the plane parameter only if the data is organized in separate planes. Data is
organized in separate planes when the value of the PlanarConfiguration tag is
Tiff.PlanarConfiguration.Separate.
Example: 1
Data Types: double

 computeStrip

1-1853

Algorithms

References
This function corresponds to the TIFFComputeStrip function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | computeTile

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-1854

http://www.simplesystems.org/libtiff/

computeTile
Index number of tile containing specified coordinates

Syntax
tileNumber = computeTile(t,coord)
tileNumber = computeTile(t,coord,plane)

Description
tileNumber = computeTile(t,coord) returns the index of the tile containing the
pixel specified in coord. The computeTile function clamps out-of-range coordinate
values to the bounds of the image.

tileNumber = computeTile(t,coord,plane) returns the index of the tile
containing the pixel from the specified plane.

Examples

Get Index of Tile Containing Last Pixel

Create a Tiff object for a file and get the number of rows and columns in the image.

t = Tiff('example.tif','r');
numRows = getTag(t,'ImageLength');
numCols = getTag(t,'ImageWidth');

Get the index of the tile containing the last pixel of the image.

tileNum = computeTile(t,[numRows numCols])

tileNum = 110

Close the Tiff object.

 computeTile

1-1855

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

coord — Pixel coordinates
integer array in the form [row, col]

Pixel coordinates, specified as an integer array in the form [row, col]. The integers row
and col are one-based positive scalar indices.
Example: [100,50]
Data Types: double

plane — Plane Number
positive integer

Plane number, specified as a positive integer. The value of plane must be one-based.

Use the plane parameter only if the data is organized in separate planes. Data is
organized in separate planes when the value of the PlanarConfiguration tag is
Tiff.PlanarConfiguration.Separate.
Example: 1
Data Types: double

Algorithms

References
This function corresponds to the TIFFComputeTile function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

1 Alphabetical List

1-1856

http://www.simplesystems.org/libtiff/

See Also
Tiff | computeStrip

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 computeTile

1-1857

computer
Information about computer on which MATLAB is running

Syntax
str = computer
archstr = computer('arch')
[str,maxsize] = computer
[str,maxsize,endian] = computer

Description
str = computer returns the computer type on which MATLAB is running.

archstr = computer('arch') returns the system architecture. The mex command
and standalone applications use this value to locate MATLAB library files.

[str,maxsize] = computer returns the maximum number of elements allowed in an
array with this version of MATLAB.

[str,maxsize,endian] = computer returns the endian byte order format.

Output Arguments
str — Computer type
'PCWIN64' | 'GLNXA64' | 'MACI64'

Computer type, returned as a character vector.

• 'PCWIN64' - 64-bit Windows platform
• 'GLNXA64' - 64-bit Linux platform
• 'MACI64' - 64-bit macOS platform

archstr — System architecture
'win64' | 'glnxa64' | 'maci64'

1 Alphabetical List

1-1858

System architecture, returned as a character vector.

• 'PCWIN64' - 64-bit Windows platform
• 'GLNXA64' - 64-bit Linux platform
• 'MACI64' - 64-bit macOS platform

maxsize — Maximum allowed array elements
2^48 - 1

Maximum number of elements allowed in an array, returned as double.

endian — Endian byte order format
'L' | 'B'

Endian byte order format, returned as a character vector.

• 'L' - little-endian byte ordering for 64-bit Windows, Linux, and macOS platforms
• 'B' - big-endian byte ordering

Algorithms
For 64-bit Windows platforms:

• ispc returns 1 (true)
• isunix returns 0 (false)
• ismac returns 0 (false)

For 64-bit Linux platforms:

• ispc returns 0 (false)
• isunix returns 1 (true)
• ismac returns 0 (false)

For 64-bit macOS platforms:

• ispc returns 0 (false)
• isunix returns 1 (true)
• ismac returns 1 (true)

 computer

1-1859

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Information about the computer on which the code generator is running.
• Use only when the code generation target is S-function (Simulation) or MEX-function.

See Also
getenv | ismac | ispc | isunix | setenv | winopen

External Websites
System Requirements

Introduced before R2006a

1 Alphabetical List

1-1860

https://www.mathworks.com/support/sysreq.html

cond
Condition number for inversion

Syntax
C = cond(A)
C = cond(A,p)

Description
C = cond(A) returns the 2-norm condition number for inversion on page 1-1864, equal
to the ratio of the largest singular value of A to the smallest.

C = cond(A,p) returns the p-norm condition number, where p can be 1, 2, Inf, or
'fro'.

Examples

Condition Number of Matrix

Calculate the condition number of a matrix and examine the sensitivity to the inverse
calculation.

Create a 2-by-2 matrix.

A = [4.1 2.8;
 9.7 6.6];

Calculate the 2-norm condition number of A.

C = cond(A)

C = 1.6230e+03

 cond

1-1861

Since the condition number of A is much larger than 1, the matrix is sensitive to the
inverse calculation. Calculate the inverse of A, and then make a small change in the
second row of A and calculate the inverse again.

invA = inv(A)

invA = 2×2

 -66.0000 28.0000
 97.0000 -41.0000

A2 = [4.1 2.8;
 9.671 6.608]

A2 = 2×2

 4.1000 2.8000
 9.6710 6.6080

invA2 = inv(A2)

invA2 = 2×2

 472.0000 -200.0000
 -690.7857 292.8571

The results indicate that making a small change in A can completely change the result of
the inverse calculation.

1-Norm Condition Number

Calculate the 1-norm condition number of a matrix.

Create a 3-by-3 matrix.

A = [1 0 -2;
 3 4 6;
 -1 5 7];

1 Alphabetical List

1-1862

Calculate the 1-norm condition number of A. The value of the 1-norm condition number
for an m-by-n matrix is

κ1 A = A 1 A−1
1,

where the 1-norm is the maximum absolute column sum of the matrix given by

A
1

= max
1 ≤ j ≤ n

∑
i = 1

m
ai j .

C = cond(A,1)

C = 18.0000

For this matrix the condition number is not too large, so the matrix is not particularly
sensitive to the inverse calculation.

Input Arguments
A — Input matrix
matrix

Input matrix. A can be either square or rectangular in size.
Data Types: single | double
Complex Number Support: Yes

p — Norm type
2 (default) | 1 | 'fro' | Inf

Norm type, specified as one of the values shown in this table. cond computes the
condition number using norm(A,p) * norm(inv(A),p) for values of p other than 2.
See the norm page for additional information about these norm types.

Value of p Norm Type
1 1-norm condition number
2 2-norm condition number

 cond

1-1863

Value of p Norm Type
Inf Infinity norm condition number
'fro' Frobenius norm condition number

Example: cond(A,1) calculates the 1-norm condition number.

Output Arguments
C — Condition number
scalar

Condition number, returned as a scalar. Values of C near 1 indicate a well-conditioned
matrix, and large values of C indicate an ill-conditioned matrix. Singular matrices have a
condition number of Inf.

Definitions

Condition Number for Inversion
A condition number for a matrix and computational task measures how sensitive the
answer is to changes in the input data and roundoff errors in the solution process.

The condition number for inversion of a matrix measures the sensitivity of the solution of
a system of linear equations to errors in the data. It gives an indication of the accuracy of
the results from matrix inversion and the linear equation solution. For example, the 2-
norm condition number of a matrix is

κ A = A A−1 .

In this context, a large condition number indicates that a small change in the coefficient
matrix A can lead to larger changes in the output b in the linear equations Ax = b and xA
= b. The extreme case is when A is so poorly conditioned that it is singular (an infinite
condition number), in which case it has no inverse and the linear equation has no unique
solution.

1 Alphabetical List

1-1864

Tips
• rcond is a more efficient, but less reliable, method of estimating the condition of a

matrix compared to cond.

Algorithms
The algorithm for cond has three pieces:

• If p = 2, then cond uses the singular value decomposition provided by svd to find the
ratio of the largest and smallest singular values.

• If p = 1, Inf, or 'fro', then cond calculates the condition number using the
appropriate norm of the input matrix and its inverse with norm(A,p) *
norm(inv(A),p).

• If the input matrix is sparse, then cond ignores any specified p value and calls
condest.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 cond

1-1865

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
condeig | condest | norm | normest | rank | rcond | svd

External Websites
Cleve's Corner: What is the Condition Number of a Matrix?

Introduced before R2006a

1 Alphabetical List

1-1866

https://blogs.mathworks.com/cleve/2017/07/17/what-is-the-condition-number-of-a-matrix/

condeig
Condition number with respect to eigenvalues

Syntax
c = condeig(A)
[V,D,s] = condeig(A)

Description
c = condeig(A) returns a vector of condition numbers for the eigenvalues of A. These
condition numbers are the reciprocals of the cosines of the angles between the left and
right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple eigenvalues.

See Also
balance | cond | eig

Introduced before R2006a

 condeig

1-1867

condest
1-norm condition number estimate

Syntax
c = condest(A)
c = condest(A,t)
[c,v] = condest(A)

Description
c = condest(A) computes a lower bound c for the 1-norm condition number of a
square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to the number of
columns in an underlying iteration matrix. Increasing the number of columns usually
gives a better condition estimate but increases the cost. The default is t = 2, which
almost always gives an estimate correct to within a factor 2.

[c,v] = condest(A) also computes a vector v which is an approximate null vector if c
is large. v satisfies norm(A*v,1) = norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then use rng to set the
random number generator to its startup settings before using condest.

rng('default')

Tips
This function is particularly useful for sparse matrices.

1 Alphabetical List

1-1868

Algorithms
condest is based on the 1-norm condition estimator of Hager [1] and a block-oriented
generalization of Hager's estimator given by Higham and Tisseur [2]. The heart of the
algorithm involves an iterative search to estimate A−1

1 without computing A−1. This is
posed as the convex but nondifferentiable optimization problem max A−1x 1 subject to
x 1 = 1

References
[1] William W. Hager, “Condition Estimates,” SIAM J. Sci. Stat. Comput. 5, 1984, 311-316,

1984.

[2] Nicholas J. Higham and Françoise Tisseur, “A Block Algorithm for Matrix 1-Norm
Estimation with an Application to 1-Norm Pseudospectra, “SIAM J. Matrix Anal.
Appl., Vol. 21, 1185-1201, 2000.

See Also
cond | norm | normest

Introduced before R2006a

 condest

1-1869

coneplot
Plot velocity vectors as cones in 3-D vector field

Syntax
coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
coneplot(axes_handle,...)
h = coneplot(...)

Description
coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones pointing in the
direction of the velocity vector and having a length proportional to the magnitude of the
velocity vector. X, Y, Z define the coordinates for the vector field. U, V, W define the vector
field. These arrays must be the same size, monotonic, and represent a Cartesian, axis-
aligned grid (such as the data produced by meshgrid). Cx, Cy, Cz define the location of
the cones in the vector field. The section “Specifying Starting Points for Stream Plots” in
Visualization Techniques provides more information on defining starting points.

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments) assumes [X,Y,Z] =
meshgrid(1:n,1:m,1:p), where [m,n,p]= size(U).

coneplot(...,s) automatically scales the cones to fit the graph and then stretches
them by the scale factor s. If you do not specify a value for s, coneplot uses a value of 1.
Use s = 0 to plot the cones without automatic scaling.

coneplot(...,color) interpolates the array color onto the vector field and then
colors the cones according to the interpolated values. The size of the color array must
be the same size as the U, V, W arrays. This option works only with cones (that is, not with
the quiver option).

1 Alphabetical List

1-1870

coneplot(...,'quiver') draws arrows instead of cones (see quiver3 for an
illustration of a quiver plot).

coneplot(...,'method') specifies the interpolation method to use. method can be
linear, cubic, or nearest. linear is the default. (See interp3 for a discussion of
these interpolation methods.)

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions of the cones
into the volume. The cones are drawn at positions defined by X, Y, Z and are oriented
according to U, V, W. Arrays X, Y, Z, U, V, W must all be the same size.

coneplot(axes_handle,...) plots into the axes with the handle axes_handle
instead of into the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to draw the cones.

coneplot automatically scales the cones to fit the graph, while keeping them in
proportion to the respective velocity vectors.

Examples

3-D Cone Plot

Plot velocity vector cones for vector volume data representing motion of air through a
rectangular region of space.

Load the data. The wind data set contains the arrays u, v, and w that specify the vector
components and the arrays x, y, and z that specify the coordinates.

load wind

Establish the range of the data to place the slice planes and to specify where you want the
cone plots.

xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

 coneplot

1-1871

Define where to plot the cones. Select the full range in x and y and select the range 3 to
15 in z.

xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx,cy,cz] = meshgrid(xrange,yrange,zrange);

Plot the cones and set the scale factor to 5 to make the cones larger than the default size.

figure
hcone = coneplot(x,y,z,u,v,w,cx,cy,cz,5);

Set the cone colors.

1 Alphabetical List

1-1872

hcone.FaceColor = 'red';
hcone.EdgeColor = 'none';

Calculate the magnitude of the vector field (which represents wind speed) to generate
scalar data for the slice command.

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

Create slice planes along the x-axis at xmin and xmax, along the y-axis at ymax, and along
the z-axis at zmin. Specify interpolated face color so the slice coloring indicates wind
speed, and do not draw edges.

 coneplot

1-1873

hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

Change the axes view and set the data aspect ratio.

view(30,40)
daspect([2,2,1])

1 Alphabetical List

1-1874

Add a light source to the right of the camera and use Gouraud lighting to give the cones
and slice planes a smooth, three-dimensional appearance.

camlight right
lighting gouraud
set(hsurfaces,'AmbientStrength',0.6)
hcone.DiffuseStrength = 0.8;

 coneplot

1-1875

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

1 Alphabetical List

1-1876

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isosurface | patch | reducevolume | smooth3 | stream2 | stream3 | streamline |
subvolume

Topics
“Overview of Volume Visualization”

Introduced before R2006a

 coneplot

1-1877

conj
Complex conjugate

Syntax
Zc = conj(Z)

Description
Zc = conj(Z) returns the complex conjugate of each element in Z.

Examples

Find Complex Conjugate of Complex Number

Find the complex conjugate of the complex number Z.

Z = 2+3i

Z = 2.0000 + 3.0000i

Zc = conj(Z)

Zc = 2.0000 - 3.0000i

Find Complex Conjugate of Complex Values in Matrix

Create a 2-by-2 matrix with complex elements.

Z = [0-1i 2+1i; 4+2i 0-2i]

Z = 2×2 complex

1 Alphabetical List

1-1878

 0.0000 - 1.0000i 2.0000 + 1.0000i
 4.0000 + 2.0000i 0.0000 - 2.0000i

Find the complex conjugate of each complex number in matrix Z.

Zc = conj(Z)

Zc = 2×2 complex

 0.0000 + 1.0000i 2.0000 - 1.0000i
 4.0000 - 2.0000i 0.0000 + 2.0000i

Input Arguments
Z — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. conj operates
element-wise when Z is nonscalar.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 conj

1-1879

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
complex | ctranspose | i | imag | j | real

Introduced before R2006a

1 Alphabetical List

1-1880

contains
Determine if pattern is in strings

Syntax
TF = contains(str,pattern)
TF = contains(str,pattern,'IgnoreCase',true)

Description
TF = contains(str,pattern) returns 1 (true) if str contains the specified pattern,
and returns 0 (false) otherwise.

If pattern is an array containing multiple patterns, then contains returns 1 if it finds
any element of pattern in str.

TF = contains(str,pattern,'IgnoreCase',true) ignores case when determining
if str contains pattern.

Examples

Search for Single Pattern

Create a string array that contains names. Determine which strings contain Paul.

Starting in R2017a, you can create strings using double quotes.

str = ["Mary Ann Jones","Paul Jay Burns","John Paul Smith"]

str = 1x3 string array
 "Mary Ann Jones" "Paul Jay Burns" "John Paul Smith"

Return a logical array where the position of each element equal to 1 corresponds to the
position of a string in str that contains Paul.

 contains

1-1881

pattern = "Paul";
TF = contains(str,pattern)

TF = 1x3 logical array

 0 1 1

Display the strings that contain Paul. Index back into str using TF.

str(TF)

ans = 1x2 string array
 "Paul Jay Burns" "John Paul Smith"

Search for Multiple Patterns

Create a string array that contains names. Determine which strings contain either Ann or
Paul.

Starting in R2017a, you can create strings using double quotes.

str = ["Mary Ann Jones","Christopher Matthew Burns","John Paul Smith"]

str = 1x3 string array
 "Mary Ann Jones" "Christopher Matth..." "John Paul Smith"

pattern = ["Ann","Paul"];
TF = contains(str,pattern)

TF = 1x3 logical array

 1 0 1

Display the strings that contain either Ann or Paul. Index back into str using TF.

str(TF)

ans = 1x2 string array
 "Mary Ann Jones" "John Paul Smith"

1 Alphabetical List

1-1882

Ignore Case

Create a string array that contains names. Determine which names contain anne,
ignoring case.

Starting in R2017a, you can create strings using double quotes.

str = ["Anne","Elizabeth","Marianne","Tracy"]

str = 1x4 string array
 "Anne" "Elizabeth" "Marianne" "Tracy"

pattern = "anne";
TF = contains(str,pattern,'IgnoreCase',true)

TF = 1x4 logical array

 1 0 1 0

Display the strings that contain anne. Index back into str using TF.

str(TF)

ans = 1x2 string array
 "Anne" "Marianne"

Determine if Character Vector Contains Pattern

Create a character vector that contains a list of foods. Determine whether the names of
different foods are in the character vector.

chr = 'peppers, onions, and mushrooms';
TF = contains(chr,'onion')

TF = logical
 1

 contains

1-1883

TF = contains(chr,'pineapples')

TF = logical
 0

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.

pattern — Search pattern
string array | character vector | cell array of character vectors

Search pattern, specified as a string array, a character vector, or a cell array of character
vectors.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and pattern must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

1 Alphabetical List

1-1884

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
endsWith | find | ismember | regexp | startsWith | strcmp | strfind

Topics
“Create String Arrays”
“Search and Replace Text”
“Compare Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

 contains

1-1885

continue
Pass control to next iteration of for or while loop

Syntax
continue

Description
continue passes control to the next iteration of a for or while loop. It skips any
remaining statements in the body of the loop for the current iteration. The program
continues execution from the next iteration.

continue applies only to the body of the loop where it is called. In nested loops,
continue skips remaining statements only in the body of the loop in which it occurs.

Examples

Selectively Display Values in Loop

Display the multiples of 7 from 1 through 50. If a number is not divisible by 7, use
continue to skip the disp statement and pass control to the next iteration of the for
loop.

for n = 1:50
 if mod(n,7)
 continue
 end
 disp(['Divisible by 7: ' num2str(n)])
end

Divisible by 7: 7
Divisible by 7: 14
Divisible by 7: 21

1 Alphabetical List

1-1886

Divisible by 7: 28
Divisible by 7: 35
Divisible by 7: 42
Divisible by 7: 49

Skip to Next Loop Iteration

Count the number of lines of code in the file magic.m. Skip blank lines and comments
using a continue statement. continue skips the remaining instructions in the while
loop and begins the next iteration.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) || strncmp(line,'%',1) || ~ischar(line)
 continue
 end
 count = count + 1;
end
count

count = 31

fclose(fid);

Tips
• The continue statement skips the rest of the instructions in a for or while loop and

begins the next iteration. To exit the loop completely, use a break statement.
• continue is not defined outside a for or while loop. To exit a function, use return.

 continue

1-1887

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
break | for | while

Introduced before R2006a

1 Alphabetical List

1-1888

contour
Contour plot of matrix

Syntax
contour(Z)
contour(X,Y,Z)
contour(___ ,levels)
contour(___ ,LineSpec)
contour(___ ,Name,Value)
contour(ax, ___)
M = contour(___)
[M,c] = contour(___)

Description
contour(Z) creates a contour plot containing the isolines of matrix Z, where Z contains
height values on the x-y plane. MATLAB automatically selects the contour lines to display.
The row and column indices of Z are the x and y coordinates in the plane, respectively.

contour(X,Y,Z) specifies the x and y coordinates for the values in Z.

contour(___ ,levels) specifies the contour lines to display as the last argument in
any of the previous syntaxes. Specify levels as a scalar value n to display the contour
lines at n automatically chosen levels (heights). To draw the contour lines at specific
heights, specify levels as a vector of monotonically increasing values. To draw the
contours at one height (k), specify levels as a two-element row vector [k k].

contour(___ ,LineSpec) specifies the style and color of the contour lines.

contour(___ ,Name,Value) specifies additional options for the contour plot using one
or more name-value pair arguments. Specify the options after all other input arguments.
For a list of properties, see Contour.

contour(ax, ___) displays the contour plot in the target axes. Specify the axes as the
first argument in any of the previous syntaxes.

 contour

1-1889

M = contour(___) returns the contour matrix M, which contains the (x, y) coordinates
of the vertices at each level.

[M,c] = contour(___) returns the contour matrix and the contour object c. Use c to
set properties after displaying the contour plot.

Examples

Contours of a Function

Create matrices X and Y, that define a grid in the x-y plane. Define matrix Z as the heights
above that grid. Then plot the contours of Z.

x = linspace(-2*pi,2*pi);
y = linspace(0,4*pi);
[X,Y] = meshgrid(x,y);
Z = sin(X)+cos(Y);
contour(X,Y,Z)

1 Alphabetical List

1-1890

Contours at Twenty Levels

Define Z as a function of X and Y. In this case, call the peaks function to create X, Y, and
Z. Then plot 20 contours of Z.

[X,Y,Z] = peaks;
contour(X,Y,Z,20)

 contour

1-1891

Contours at One Level

Display the contours of the peaks function at Z = 1.

[X,Y,Z] = peaks;
v = [1,1];
contour(X,Y,Z,v)

1 Alphabetical List

1-1892

Dashed Contour Lines

Create a contour plot of the peaks function, and specify the dashed line style.

[X,Y,Z] = peaks;
contour(X,Y,Z,'--')

 contour

1-1893

Contours with Labels

Define Z as a function of two variables, X and Y. Then create a contour plot of that
function, and display the labels by setting the ShowText property to 'on'.

x = -2:0.2:2;
y = -2:0.2:3;
[X,Y] = meshgrid(x,y);
Z = X.*exp(-X.^2-Y.^2);
contour(X,Y,Z,'ShowText','on')

1 Alphabetical List

1-1894

Custom Line Width

Create a contour plot of the peaks function. Make the contour lines thicker by setting the
LineWidth property to 3.

Z = peaks;
[M,c] = contour(Z);
c.LineWidth = 3;

 contour

1-1895

Contours Over Discontinuous Surface

Insert NaN values wherever there are discontinuities on a surface. The contour function
does not draw contour lines in those regions.

Define matrix Z as a sampling of the peaks function. Replace all values in column 26 with
NaN values. Then plot the contours of the modified Z matrix.

Z = peaks;
Z(:,26) = NaN;
contour(Z)

1 Alphabetical List

1-1896

Input Arguments
X — x-coordinates
matrix | vector

x-coordinates, specified as a matrix the same size as Z, or as a vector with length n,
where [m,n] = size(Z). The default value of X is the vector (1:n).

When X is a matrix, the values must be strictly increasing or decreasing along one
dimension and remain constant along the other dimension. The dimension that varies

 contour

1-1897

must be the opposite of the dimension that varies in Y. You can use the meshgrid
function to create X and Y matrices.

When X is a vector, the values must be strictly increasing or decreasing.
Example: X = 1:10
Example: X = [1 2 3; 1 2 3; 1 2 3]
Example: [X,Y] = meshgrid(1:10)

The XData property of the Contour object stores the x-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — y-coordinates
matrix | vector

y-coordinates, specified as a matrix the same size as Z, or as a vector with length m,
where [m,n] = size(Z). The default value of Y is the vector (1:m).

When Y is a matrix, the values must be strictly increasing or decreasing along one
dimension and remain constant along the other dimension. The dimension that varies
must be the opposite of the dimension that varies in X. You can use the meshgrid
function to create the X and Y matrices.

When Y is a vector, the values must be strictly increasing or decreasing.
Example: Y = 1:10
Example: Y = [1 1 1; 2 2 2; 3 3 3]
Example: [X,Y] = meshgrid(1:10)

The YData property of the Contour object stores the y-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Z — z-coordinates
matrix

z-coordinates, specified as a matrix. This matrix must have at least two rows and two
columns, and it must contain at least two different values.

1 Alphabetical List

1-1898

Example: Z = peaks(20)

The ZData property of the Contour object stores the z-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

levels — Levels
scalar | vector

Contour levels, specified as a scalar whole number or a vector. Use this argument to
control the number and location of the contour lines. When you do not specify the levels,
the contour function chooses the levels automatically.

• To draw contour lines at n automatically chosen heights, specify levels as the scalar
value n.

• To draw the contour lines at specific heights, specify levels as a vector of
monotonically increasing values.

• To draw contour lines at a single height k, specify levels as a two-element row
vector [k k].

Example: contour(peaks,10) draws contour lines at 10 automatically chosen heights
on the peaks function.
Example: contour(peaks,[-4 0 4]) draws contour lines at 3 specific heights on the
peaks function: -4, 0, and 4.
Example: contour(peaks,[3 3]) draws contour lines to show where the height of the
peaks function is 3.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LineSpec — Line style and color
character vector | string scalar

Line style and color, specified as a character vector or string scalar containing line style
symbols, color options, or both. The line style symbols are listed in the following table,
and they can appear in any order. Marker symbols such as 'o' are ignored.

You do not need to specify both the line style and the color. For example, if you omit the
line style and specify the color, then the plot shows solid lines using the specified color.

 contour

1-1899

Line Style Description Resulting Line
- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

This table lists the available color options.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then contour
plots into the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: contour(Z,'ShowText','on') displays the contour line labels.

1 Alphabetical List

1-1900

Note The properties listed here are only a subset. For a complete list, see Contour.

ShowText — Contour line labels
'off' (default) | 'on'

Contour line labels, specified as one of these values:

• 'off' — Do not label the contour lines.
• 'on' — Display the height values along the contour lines.

LineWidth — Line Width
0.5 (default) | positive value

Contour line width, specified as a positive value in points. One point equals 1/72 inch.

LabelSpacing — Label spacing
144 (default) | scalar

Label spacing along the contour lines, specified as a scalar value in points, where one
point is 1/72 inch. Use this property to control the number of contour labels along the
contour lines. Smaller values produce more labels.

You must set the ShowText property to 'on' for the LabelSpacing property to have an
effect.

If you use the clabel function to display the labels, then the LabelSpacing property
has no effect and the plot displays one label per line.

Output Arguments
M — Contour matrix
matrix

Contour matrix, returned as two-row matrix. This matrix contains the contour levels
(heights) and the coordinates of the vertices at each level. The data is arranged
sequentially in n sets of columns for n contour lines:

• The first column in each set contains the contour level and the number of vertices at
that level. The top number is the contour level, and the bottom number is the number
of vertices.

 contour

1-1901

• Subsequent columns in the set are the (x, y) coordinates of the vertices. Each column
represents an ordered pair. The top number is the x-coordinate, and the bottom
number is the y-coordinate.

For example, here are the first few columns of the contour matrix M =
contour(peaks(3)):

The ContourMatrix property of the Contour object stores the contour matrix.

c — Contour object
Contour object

Contour object. Use this object to set properties after displaying the contour plot.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-1902

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
clabel | contour3 | contourc | contourf

Properties
Contour

Topics
“Highlight Specific Contour Levels”

Introduced before R2006a

 contour

1-1903

contour3
3-D contour plot

Syntax
contour3(Z)
contour3(X,Y,Z)
contour3(___ ,levels)
contour3(___ ,LineSpec)
contour3(___ ,Name,Value)
contour3(ax, ___)
M = contour3(___)
[M,c] = contour3(___)

Description
contour3(Z) creates a 3-D contour plot containing the isolines of matrix Z, where Z
contains height values on the x-y plane. MATLAB automatically selects the contour lines
to display. The row and column indices of Z are the x and y coordinates in the plane,
respectively.

contour3(X,Y,Z) specifies the x and y coordinates for the values in Z.

contour3(___ ,levels) specifies the contour lines to display as the last argument in
any of the previous syntaxes. Specify levels as a scalar value n to display the contour
lines at n automatically chosen levels (heights). To draw the contour lines at specific
heights, specify levels as a vector of monotonically increasing values. To draw the
contours at one height (k), specify levels as a two-element row vector [k k].

contour3(___ ,LineSpec) specifies the style and color of the contour lines.

contour3(___ ,Name,Value) specifies additional options for the contour plot using
one or more name-value pair arguments. Specify the options after all other input
arguments. For a list of properties, see Contour.

1 Alphabetical List

1-1904

contour3(ax, ___) displays the contour plot in the target axes. Specify the axes as the
first argument in any of the previous syntaxes.

M = contour3(___) returns the contour matrix M, which contains the (x, y)
coordinates of the vertices at each level.

[M,c] = contour3(___) returns the contour matrix and the contour object c. Use c
to set properties after displaying the contour plot.

Examples

Contours of Sphere

Define Z as a function of X and Y. In this case, call the sphere function to create X, Y, and
Z. Then plot the contours of Z.

[X,Y,Z] = sphere(50);
contour3(X,Y,Z);

 contour3

1-1905

Contours at Fifty Levels

Define Z as a function of two variables, X and Y. Then plot the contours of Z. In this case,
let MATLAB® choose the contours and the limits for the x- and y-axes.

[X,Y] = meshgrid(-5:0.25:5);
Z = X.^2 + Y.^2;
contour3(Z)

1 Alphabetical List

1-1906

Now specify 50 contour levels, and display the results within the x and y limits used to
calculate Z.

contour3(X,Y,Z,50)

 contour3

1-1907

Contours at Specific Levels with Labels

Define Z as a function of two variables, X and Y. Then plot the contours at Z = [-.2
-.1 .1 .2]. Show the contour labels by setting the ShowText property to 'on'.

[X,Y] = meshgrid(-2:0.25:2);
Z = X.*exp(-X.^2-Y.^2);
contour3(X,Y,Z,[-.2 -.1 .1 .2],'ShowText','on')

1 Alphabetical List

1-1908

Contours at One Level

Define Z as a function of X and Y. In this case, call the peaks function to create X, Y, and
Z. Then display the contours at Z = 2.

[X,Y,Z] = peaks;
contour3(X,Y,Z,[2 2]);

 contour3

1-1909

Custom Line Width

Define Z as a function of two variables, X and Y. Plot 30 contours of Z, and then set the
line width to 3.

[X,Y] = meshgrid(-2:0.0125:2);
Z = X.*exp(-X.^2-Y.^2);
[M,c] = contour3(X,Y,Z,30);
c.LineWidth = 3;

1 Alphabetical List

1-1910

Input Arguments
X — x-coordinates
matrix | vector

x-coordinates, specified as a matrix the same size as Z, or as a vector with length n,
where [m,n] = size(Z). The default value of X is the vector (1:n).

When X is a matrix, the values must be strictly increasing or decreasing along one
dimension and remain constant along the other dimension. The dimension that varies

 contour3

1-1911

must be the opposite of the dimension that varies in Y. You can use the meshgrid
function to create X and Y matrices.

When X is a vector, the values must be strictly increasing or decreasing.
Example: X = 1:10
Example: X = [1 2 3; 1 2 3; 1 2 3]
Example: [X,Y] = meshgrid(1:10)

The XData property of the Contour object stores the x-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — y-coordinates
matrix | vector

y-coordinates, specified as a matrix the same size as Z, or as a vector with length m,
where [m,n] = size(Z). The default value of Y is the vector (1:m).

When Y is a matrix, the values must be strictly increasing or decreasing along one
dimension and remain constant along the other dimension. The dimension that varies
must be the opposite of the dimension that varies in X. You can use the meshgrid
function to create the X and Y matrices.

When Y is a vector, the values must be strictly increasing or decreasing.
Example: Y = 1:10
Example: Y = [1 1 1; 2 2 2; 3 3 3]
Example: [X,Y] = meshgrid(1:10)

The YData property of the Contour object stores the y-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Z — z-coordinates
matrix

z-coordinates, specified as a matrix. This matrix must have at least two rows and two
columns, and it must contain at least two different values.

1 Alphabetical List

1-1912

Example: Z = peaks(20)

The ZData property of the Contour object stores the z-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

levels — Levels
scalar | vector

Contour levels, specified as a scalar whole number or a vector. Use this argument to
control the number and location of the contour lines. When you do not specify the levels,
the contour3 function chooses the levels automatically.

• To draw contour lines at n automatically chosen heights, specify levels as the scalar
value n.

• To draw the contour lines at specific heights, specify levels as a vector of
monotonically increasing values.

• To draw contour lines at a single height k, specify levels as a two-element row
vector [k k].

Example: contour3(peaks,10) draws contour lines at 10 automatically chosen heights
on the peaks function.
Example: contour3(peaks,[-4 0 4]) draws contour lines at 3 specific heights on the
peaks function: -4, 0, and 4.
Example: contour3(peaks,[3 3]) draws contour lines to show where the height of the
peaks function is 3.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LineSpec — Line style and color
character vector | string scalar

Line style and color, specified as a character vector or string scalar containing line style
symbols, color options, or both. The line style symbols are listed in the following table,
and they can appear in any order. Marker symbols such as 'o' are ignored.

You do not need to specify both the line style and the color. For example, if you omit the
line style and specify the color, then the plot shows solid lines using the specified color.

 contour3

1-1913

Line Style Description Resulting Line
- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

This table lists the available color options.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then contour3
plots into the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: contour3(Z,'ShowText','on') displays the contour line labels.

1 Alphabetical List

1-1914

Note The properties listed here are only a subset. For a complete list, see Contour.

ShowText — Contour line labels
'off' (default) | 'on'

Contour line labels, specified as one of these values:

• 'off' — Do not label the contour lines.
• 'on' — Display the height values along the contour lines.

LineWidth — Line Width
0.5 (default) | positive value

Contour line width, specified as a positive value in points. One point equals 1/72 inch.

LabelSpacing — Label spacing
144 (default) | scalar

Label spacing along the contour lines, specified as a scalar value in points, where one
point is 1/72 inch. Use this property to control the number of contour labels along the
contour lines. Smaller values produce more labels.

You must set the ShowText property to 'on' for the LabelSpacing property to have an
effect.

If you use the clabel function to display the labels, then the LabelSpacing property
has no effect and the plot displays one label per line.

Output Arguments
M — Contour matrix
matrix

Contour matrix, returned as two-row matrix. This matrix contains the contour levels
(heights) and the coordinates of the vertices at each level. The data is arranged
sequentially in n sets of columns for n contour lines:

• The first column in each set contains the contour level and the number of vertices at
that level. The top number is the contour level, and the bottom number is the number
of vertices.

 contour3

1-1915

• Subsequent columns in the set are the (x, y) coordinates of the vertices. Each column
represents an ordered pair. The top number is the x-coordinate, and the bottom
number is the y-coordinate.

For example, here are the first few columns of the contour matrix M =
contour(peaks(3)):

The ContourMatrix property of the Contour object stores the contour matrix.

c — Contour object
Contour object

Contour object. Use this object to set properties after displaying the contour plot.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-1916

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
clabel | contour | contourc | contourf

Properties
Contour

Introduced before R2006a

 contour3

1-1917

contourc
Low-level contour plot computation

Syntax
C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description
contourc calculates the contour matrix C used by contour, contour3, and contourf.
The values in Z determine the heights of the contour lines with respect to a plane. The
contour calculations use a regularly spaced grid determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z, where Z must be
at least a 2-by-2 matrix. The contours are isolines in the units of Z. The number of contour
lines and the corresponding values of the contour lines are chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines at the values
specified in vector v. The length of v determines the number of contour levels. To
compute a single contour of level k, use contourc(Z,[k k]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C = contourc(x,y,Z,v)
compute contours of Z using vectors x and y to determine the x and y values. x and y
must be monotonically increasing.

1 Alphabetical List

1-1918

Tips
For more information on the contour matrix, see the ContourMatrix property for
contour objects.

Specifying irregularly spaced x and y vectors is not the same as contouring irregularly
spaced data. If x or y is irregularly spaced, contourc calculates contours using a
regularly spaced contour grid, then transforms the data to x or y.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
clabel | contour | contour3 | contourf

 contourc

1-1919

Introduced before R2006a

1 Alphabetical List

1-1920

contourf
Filled 2-D contour plot

Syntax
contourf(Z)
contourf(X,Y,Z)
contourf(___ ,levels)
contourf(___ ,LineSpec)
contourf(___ ,Name,Value)
contourf(ax, ___)
M = contourf(___)
[M,c] = contourf(___)

Description
contourf(Z) creates a filled contour plot containing the isolines of matrix Z, where Z
contains height values on the x-y plane. MATLAB automatically selects the contour lines
to display. The row and column indices of Z are the x and y coordinates in the plane,
respectively.

contourf(X,Y,Z) specifies the x and y coordinates for the values in Z.

contourf(___ ,levels) specifies the contour lines to display as the last argument in
any of the previous syntaxes. Specify levels as a scalar value n to display the contour
lines at n automatically chosen levels (heights). To draw the contour lines at specific
heights, specify levels as a vector of monotonically increasing values. To draw the
contours at one height (k), specify levels as a two-element row vector [k k].

contourf(___ ,LineSpec) specifies the style and color of the contour lines.

contourf(___ ,Name,Value) specifies additional options for the contour plot using
one or more name-value pair arguments. Specify the options after all other input
arguments. For a list of properties, see Contour.

 contourf

1-1921

contourf(ax, ___) displays the contour plot in the target axes. Specify the axes as the
first argument in any of the previous syntaxes.

M = contourf(___) returns the contour matrix M, which contains the (x, y)
coordinates of the vertices at each level.

[M,c] = contourf(___) returns the contour matrix and the contour object c. Use c
to set properties after displaying the contour plot.

Examples

Contours of Peaks Function

Define Z as a function of two variables. In this case, call the peaks function to create Z.
Then display a filled contour plot of Z, letting MATLAB® choose the contour levels.

Z = peaks;
contourf(Z)

1 Alphabetical List

1-1922

Contours at Ten Levels

Define Z as a function of two variables, X and Y. Then display contours at 10 levels of Z.

x = linspace(-2*pi,2*pi);
y = linspace(0,4*pi);
[X,Y] = meshgrid(x,y);
Z = sin(X) + cos(Y);
contourf(X,Y,Z,10)

 contourf

1-1923

Contours at Specific Levels with Labels

Define Z as a function of X and Y. In this case, call the peaks function to create X, Y, and
Z. Then display contours at levels 2 and 3.

The white region corresponds to the heights less than 2. The purple region corresponds
to heights between 2 and 3. And the yellow region corresponds to heights that are
greater than 3.

[X,Y,Z] = peaks(50);
contourf(X,Y,Z,[2 3],'ShowText','on')

1 Alphabetical List

1-1924

Contours at One Level

Define Z as a function of X and Y. In this case, call the peaks function to create X, Y, and
Z. Then display contours at Z = 2.

[X,Y,Z] = peaks;
contourf(X,Y,Z,[2 2])

 contourf

1-1925

Dashed Contour Lines

Create a contour plot, and specify the dashed line style.

[X,Y,Z] = peaks;
contourf(X,Y,Z,'--')

1 Alphabetical List

1-1926

Custom Line Width

Create a filled contour plot. Make the contour lines thicker by setting the LineWidth
property to 3.

Z = peaks;
[M,c] = contourf(Z);
c.LineWidth = 3;

 contourf

1-1927

Contours Over Discontinuous Surface

Insert NaN values wherever there are discontinuities on a surface. The contourf
function does not draw contour lines in those regions.

Define matrix Z as a sampling of the peaks function. Replace all values in column 26 with
NaN values. Then plot the contours of the modified Z matrix.

Z = peaks;
Z(:,26) = NaN;
contourf(Z)

1 Alphabetical List

1-1928

Input Arguments
X — x-coordinates
matrix | vector

x-coordinates, specified as a matrix the same size as Z, or as a vector with length n,
where [m,n] = size(Z). The default value of X is the vector (1:n).

When X is a matrix, the values must be strictly increasing or decreasing along one
dimension and remain constant along the other dimension. The dimension that varies

 contourf

1-1929

must be the opposite of the dimension that varies in Y. You can use the meshgrid
function to create X and Y matrices.

When X is a vector, the values must be strictly increasing or decreasing.
Example: X = 1:10
Example: X = [1 2 3; 1 2 3; 1 2 3]
Example: [X,Y] = meshgrid(1:10)

The XData property of the Contour object stores the x-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — y-coordinates
matrix | vector

y-coordinates, specified as a matrix the same size as Z, or as a vector with length m,
where [m,n] = size(Z). The default value of Y is the vector (1:m).

When Y is a matrix, the values must be strictly increasing or decreasing along one
dimension and remain constant along the other dimension. The dimension that varies
must be the opposite of the dimension that varies in X. You can use the meshgrid
function to create the X and Y matrices.

When Y is a vector, the values must be strictly increasing or decreasing.
Example: Y = 1:10
Example: Y = [1 1 1; 2 2 2; 3 3 3]
Example: [X,Y] = meshgrid(1:10)

The YData property of the Contour object stores the y-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Z — z-coordinates
matrix

z-coordinates, specified as a matrix. This matrix must have at least two rows and two
columns, and it must contain at least two different values.

1 Alphabetical List

1-1930

Example: Z = peaks(20)

The ZData property of the Contour object stores the z-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

levels — Levels
scalar | vector

Contour levels, specified as a scalar whole number or a vector. Use this argument to
control the number and location of the contour lines. When you do not specify the levels,
the contourf function chooses the levels automatically.

• To draw contour lines at n automatically chosen heights, specify levels as the scalar
value n.

• To draw the contour lines at specific heights, specify levels as a vector of
monotonically increasing values.

• To draw contour lines at a single height k, specify levels as a two-element row
vector [k k].

The contourf function uses the current colormap to fill the spaces between the levels in
the plot. The first color fills the space between the lowest level and the level above it. The
last color corresponds to Z-values that are greater than the highest level in the plot. If Z
contains values that are smaller than the lowest level displayed in the plot, the region
between the lowest level and the smallest Z-value is white.
Example: contourf(peaks,10) draws contour lines at 10 automatically chosen heights
on the peaks function.
Example: contourf(peaks,[-4 0 4]) draws contour lines at 3 specific heights on the
peaks function: -4, 0, and 4.
Example: contourf(peaks,[3 3]) draws contour lines to show where the height of the
peaks function is 3.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LineSpec — Line style and color
character vector | string scalar

 contourf

1-1931

Line style and color, specified as a character vector or string scalar containing line style
symbols, color options, or both. The line style symbols are listed in the following table,
and they can appear in any order. Marker symbols such as 'o' are ignored.

You do not need to specify both the line style and the color. For example, if you omit the
line style and specify the color, then the plot shows solid lines using the specified color.

Line Style Description Resulting Line
- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

This table lists the available color options.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then contourf
plots into the current axes.

1 Alphabetical List

1-1932

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: contourf(Z,'ShowText','on') displays the contour line labels.

Note The properties listed here are only a subset. For a complete list, see Contour.

ShowText — Contour line labels
'off' (default) | 'on'

Contour line labels, specified as one of these values:

• 'off' — Do not label the contour lines.
• 'on' — Display the height values along the contour lines.

LineWidth — Line Width
0.5 (default) | positive value

Contour line width, specified as a positive value in points. One point equals 1/72 inch.

LabelSpacing — Label spacing
144 (default) | scalar

Label spacing along the contour lines, specified as a scalar value in points, where one
point is 1/72 inch. Use this property to control the number of contour labels along the
contour lines. Smaller values produce more labels.

You must set the ShowText property to 'on' for the LabelSpacing property to have an
effect.

If you use the clabel function to display the labels, then the LabelSpacing property
has no effect and the plot displays one label per line.

 contourf

1-1933

Output Arguments
M — Contour matrix
matrix

Contour matrix, returned as two-row matrix. This matrix contains the contour levels
(heights) and the coordinates of the vertices at each level. The data is arranged
sequentially in n sets of columns for n contour lines:

• The first column in each set contains the contour level and the number of vertices at
that level. The top number is the contour level, and the bottom number is the number
of vertices.

• Subsequent columns in the set are the (x, y) coordinates of the vertices. Each column
represents an ordered pair. The top number is the x-coordinate, and the bottom
number is the y-coordinate.

For example, here are the first few columns of the contour matrix M =
contour(peaks(3)):

The ContourMatrix property of the Contour object stores the contour matrix.

c — Contour object
Contour object

Contour object. Use this object to set properties after displaying the contour plot.

1 Alphabetical List

1-1934

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
clabel | contour | contour3 | contourc

Properties
Contour

Topics
“Change Fill Colors for Contour Plot”

 contourf

1-1935

Introduced before R2006a

1 Alphabetical List

1-1936

Contour Properties
Contour chart appearance and behavior

Description
Contour properties control the appearance and behavior of Contour objects. By
changing property values, you can modify certain aspects of the contour chart.

Starting in R2014b, you can use dot notation to query and set properties.

[C,h] = contour(...);
w = h.LineWidth;
h.LineWidth = 2;

If you are using an earlier release, use the get and set functions instead.

Properties
Levels

LevelList — Contour levels
empty matrix (default) | vector of z values

Contour levels, specified as a vector of z values. By default, the contour function chooses
values that span the range of values in the ZData property.

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LevelListMode — Selection mode for LevelList
'auto' (default) | 'manual'

Selection mode for the LevelList, specified as one of these values:

• 'auto' — Determine the values based on the ZData values.

 Contour Properties

1-1937

• 'manual' — Use manually specified values. To specify the values, set the LevelList
property. When the mode is manual, the contour function does not change the values
as you change ZData.

LevelStep — Spacing between contour lines
0 (default) | scalar numeric value

Spacing between contour lines, specified as a scalar numeric value. For example, specify
a value of 2 to draw contour lines at increments of 2. The contour function determines
the contour interval based on the ZData values.

Setting this property sets the associated mode property to manual.
Example: 3.4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LevelStepMode — Selection mode for LevelStep
'auto' (default) | 'manual'

Selection mode for the LevelStep, specified as one of these values:

• 'auto' — Determine the value based on the ZData values.
• 'manual' — Use a manually specified value. To specify the value, set the LevelStep

property. When the mode is manual, the contour function does not change the value
as you change ZData.

Color and Styling

Fill — Fill between contour lines
'off' (default) | 'on'

Fill between contour lines, specified as one of these values:

• 'off' — Do not fill the spaces between contour lines with a color. This is the default
value when you create the contour chart using the contour or contour3 functions.

• 'on' — Fill the spaces between contour lines with color. This is the default value
when you create the contour chart using the contourf function.

LineColor — Color of contour lines
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

1 Alphabetical List

1-1938

Color of contour lines, specified as 'flat', an RGB triplet, a hexadecimal color code, a
color name, or a short name. To use a different color for each contour line, specify
'flat'. The colors are determined by the contour value of the line, the colormap, and
the scaling of data values into the colormap. For more information on color scaling, see
caxis.

To use the same color for all contour lines, specify an RGB triplet, a hexadecimal color
code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 Contour Properties

1-1939

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line Width
0.5 (default) | positive value

Contour line width, specified as a positive value in points. One point equals 1/72 inch.

Labels

ShowText — Contour line labels
'off' (default) | 'on'

Contour line labels, specified as one of these values:

• 'off' — Do not label the contour lines.

1 Alphabetical List

1-1940

• 'on' — Display the height values along the contour lines.

LabelSpacing — Label spacing
144 (default) | scalar

Label spacing along the contour lines, specified as a scalar value in points, where one
point is 1/72 inch. Use this property to control the number of contour labels along the
contour lines. Smaller values produce more labels.

You must set the ShowText property to 'on' for the LabelSpacing property to have an
effect.

If you use the clabel function to display the labels, then the LabelSpacing property
has no effect and the plot displays one label per line.

TextStep — Interval between labeled contour lines
0 (default) | scalar numeric value

Interval between labeled contour lines, specified as a scalar numeric value. By default,
the contour plot includes a label for every contour line when the ShowText property is
set to 'on'.

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TextStepMode — Selection mode for TextStep
'auto' (default) | 'manual'

Selection mode for the TextStep, specified as one of these values:

• 'auto' — Determine value based on the ZData values. If the ShowText property is
set to 'on', then the contour function labels every contour line.

• 'manual' — Use a manually specified value. To specify the value, set the TextStep
property.

TextList — Contour lines to label
empty matrix (default) | vector of real values

Contour lines to label, specified as a vector of real values.

Setting this property sets the associated mode property to manual.

 Contour Properties

1-1941

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TextListMode — Selection mode for TextList
'auto' (default) | 'manual'

Selection mode for the TextList, specified as one of these values:

• 'auto' — Use values equal to the values of the LevelList property. The contour plot
includes a text label for each line.

• 'manual' — Use manually specified values. Specify the values by setting the
TextList property.

Data

ContourMatrix — Contour matrix
[] (default) | matrix

This property is read-only.

Contour matrix, returned as two-row matrix. This matrix contains the contour levels
(heights) and the coordinates of the vertices at each level. The data is arranged
sequentially in n sets of columns for n contour lines:

• The first column in each set contains the contour level and the number of vertices at
that level. The top number is the contour level, and the bottom number is the number
of vertices.

• Subsequent columns in the set are the (x, y) coordinates of the vertices. Each column
represents an ordered pair. The top number is the x-coordinate, and the bottom
number is the y-coordinate.

For example, here are the first few columns of the contour matrix M =
contour(peaks(3)):

1 Alphabetical List

1-1942

XData — x values
[] (default) | vector or matrix

x values, specified as a vector or matrix.

• If XData is a vector, then length(XData) must equal size(ZData,2) and YData
must also be a vector. The XData values must be strictly increasing or strictly
decreasing and cannot contain any duplicates.

• If XData is a matrix, then size(XData) and size(YData) must equal
size(ZData). Typically, you should set the XData values so that the columns are
strictly increasing or strictly decreasing and the rows are uniform (or the rows are
strictly increasing or strictly decreasing and the columns are uniform).

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

XDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for the XData, specified as one of these values:

• 'auto' — Set the XData using the column indices of ZData.
• 'manual' — Use manually specified values. To specify the values, set the XData

property directly, or specify the input argument X to the contour, contourf, or
contour3 function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

 Contour Properties

1-1943

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y values
[] (default) | vector or matrix

y values, specified as a vector or matrix.

• If YData is a vector, then length(YData) must equal size(ZData,1) and XData
must also be a vector. The XData values must be strictly increasing or strictly
decreasing and cannot contain any duplicates.

• If YData is a matrix, then size(XData) and size(YData) must equal
size(ZData). Typically, you should set the YData values so that the columns are
strictly increasing or strictly decreasing and the rows are uniform (or the rows are
strictly increasing or strictly decreasing and the columns are uniform).

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

YDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for the YData, specified as one of these values:

• 'auto' — Set the YData using the row indices of ZData.
• 'manual' — Use manually specified values. To specify the values, set the YData

property directly, or specify the input argument Y to the contour, contourf, or
contour3 function.

1 Alphabetical List

1-1944

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

ZData — Data that defines surface to contour
[] (default) | matrix

Data that defines the surface to contour, specified as a matrix. ZData must be at least a 2-
by-2 matrix.

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ZDataSource — Variable linked to ZData
'' (default) | character vector | string

Variable linked to ZData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

 Contour Properties

1-1945

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

1 Alphabetical List

1-1946

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

 Contour Properties

1-1947

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-1948

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

 Contour Properties

1-1949

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

1 Alphabetical List

1-1950

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Contour object responds to the
click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Contour object passes the click
to the object behind it in the current view of the figure window. The HitTest property
of the Contour object has no effect.

 Contour Properties

1-1951

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Contour object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Contour object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Contour object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

1 Alphabetical List

1-1952

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'contour'

This property is read-only.

Type of graphics object, returned as 'contour'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

 Contour Properties

1-1953

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
contour | contour3 | contourf | meshc | surfc

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-1954

ConstantLine Properties
Constant line appearance and behavior

Description
A constant line is a line that is graphed at a specified x- or y-value in Cartesian axes. The
xline and yline functions create constant vertical and horizontal lines, respectively. You
can modify the appearance and behavior of the constant line by changing ConstantLine
property values.

xl = xline(4);
xl.LineWidth = 2;

Properties
Location

Value — Location of constant line
scalar

Location of the constant line on the x- or y-axis, specified as a scalar. You can specify the
value as a numeric, categorical, datetime, or duration value.

Example

Create a constant line at x = 5.5. Then change the value to 7.

xl = xline(5.5);
xl.Value = 7;

InterceptAxis — Intercept axis
'x' | 'y'

Intercept axis, specified as 'x' or 'y' for a vertical line or horizontal line, respectively. A
constant line with an x-intercept is a vertical line, whereas a constant line with a y-
intercept is a horizontal line.

 ConstantLine Properties

1-1955

Labels

Label — Line label
'' (default) | character vector | cell array of character vectors | string array | numeric
array

Line label, specified as a character vector, cell array of character vectors, string array, or
numeric array. To create a multiline label, use a string array or a cell array of character
vectors.
Example: 'cutoff frequency'
Example: {'first line','second line'}
Example: ["first line" "second line"]

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols, use TeX markup. For a list of supported markup, see the
Interpreter property.

LabelHorizontalAlignment — Horizontal alignment of label
'right' (default) | 'left' | 'center'

Horizontal alignment of the label with respect to the line, specified as one of the options
in the table.

Option Description
'right' Right side of the line.

1 Alphabetical List

1-1956

Option Description
'left' Left side of the line.

'center' Center of the line. For vertical lines, the label segments
the line.

LabelVerticalAlignment — Vertical alignment of label
'top' (default) | 'middle' | 'bottom'

Vertical alignment of the label with respect to the line, specified as one of the options in
the table.

 ConstantLine Properties

1-1957

Option Description
'top' Top of the line.

'middle' Middle of the line. For horizontal lines, the label segments
the line.

'bottom' Bottom of the line.

LabelOrientation — Label orientation
'aligned' (default) | 'horizontal'

1 Alphabetical List

1-1958

Label orientation, specified as 'aligned' or 'horizontal'. Examples are shown in the
table.

Orientation Description
'aligned' Label has the same orientation as the line.

'horizontal' Label is horizontal, regardless of the line orientation.

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

 ConstantLine Properties

1-1959

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

1 Alphabetical List

1-1960

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

 ConstantLine Properties

1-1961

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

1 Alphabetical List

1-1962

https://www.latex-project.org
https://www.latex-project.org

Color and Styling

Color — Line color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 ConstantLine Properties

1-1963

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'g'
Example: [0.6 0.2 0.5]
Example: '#D2F9A7'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points.

Alpha — Line transparency
0.7 (default) | scalar in range [0,1]

1 Alphabetical List

1-1964

Line transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0
is completely transparent. Values between 0 and 1 are semitransparent.

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font Size
positive number

Font size, specified as a positive number. The unit of measurement is points. The default
font size depends on your operating system and locale.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

 ConstantLine Properties

1-1965

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

1 Alphabetical List

1-1966

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

 ConstantLine Properties

1-1967

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-1968

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

 ConstantLine Properties

1-1969

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

1 Alphabetical List

1-1970

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the ConstantLine object that has a defined
color. You cannot click a part that has an associated color property set to 'none'. The
HitTest property determines if the ConstantLine object responds to the click or if
an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the ConstantLine object that has
no color. The HitTest property determines if the ConstantLine object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the ConstantLine object passes
the click through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the ConstantLine object. If you
have defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the ConstantLine object
that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

 ConstantLine Properties

1-1971

Note The PickableParts property determines if the ConstantLine object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object (default)

Parent, specified as an Axes object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

1 Alphabetical List

1-1972

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'constantline'

This property is read-only.

Type of graphics object, returned as 'constantline'. Use this property to find all
objects of a given type within a plotting hierarchy, for example, searching for the type
using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
xline | yline

 ConstantLine Properties

1-1973

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2018b

1 Alphabetical List

1-1974

contourslice
Draw contours in volume slice planes

Syntax
contourslice(X,Y,Z,V,xslice,yslice,zslice)
contourslice(V,xslice,yslice,zslice)
contourslice(___ ,num)
contourslice(___ ,lvls)
contourslice(___ ,method)
contourslice(ax, ___)
s = contourslice(___)

Description
contourslice(X,Y,Z,V,xslice,yslice,zslice) draws contours in slices for the
volumetric data V, where V determines the contour colors. Specify X,Y, and Z as the
coordinate data. Specify xslice, yslice, and zslice as the slice locations using one of
these forms:

• To draw one or more slice planes that are orthogonal to a particular axis, specify the
slice arguments as a scalar or vector.

• To draw a single slice along a surface, specify all the slice arguments as matrices that
define a surface.

contourslice(V,xslice,yslice,zslice) uses the default coordinate data for V.
The (x,y,z) location for each element in V is based on the column, row, and page index,
respectively.

contourslice(___ ,num) specifies the number of contour lines to draw per slice. Use
this option with any of the input arguments from the previous syntaxes.

contourslice(___ ,lvls) specifies the values at which to draw contour lines within
each slice.

 contourslice

1-1975

contourslice(___ ,method) specifies the interpolation method, where method can
be 'linear', 'cubic', or 'nearest'.

contourslice(ax, ___) plots into the specified axes, instead of the current axes (gca).

s = contourslice(___) returns the Patch objects created.

Examples

Draw Contours for Single Slice

Create a single slice plane through volumetric data and draw contours of the data values.

Create the matrices X, Y, Z, and V from the flow data set. Draw contours of V in the slice
plane where z = 0.

[X,Y,Z,V] = flow;
zslice = 0;
contourslice(X,Y,Z,V,[],[],zslice)
grid on

1 Alphabetical List

1-1976

Draw Contours in Slice Planes

Create multiple slice planes through volumetric data. Draw contours of the data values in
each of the slice planes. Let MATLAB choose the contour levels.

Create V as an array of volume data defined by v = xe−x2− y2− z2. Draw contours in three
slice planes that are orthogonal to the x-axis at the values -1.2, 0.8, and 2. Do not
create any slice planes that are orthogonal to the y-axis or z-axis by specifying empty
arrays. Change the axes view to a 3-D view and add grid lines.

 contourslice

1-1977

[X,Y,Z] = meshgrid(-2:.2:2);
V = X.*exp(-X.^2-Y.^2-Z.^2);

xslice = [-1.2,0.8,2];
yslice = [];
zslice = [];
contourslice(X,Y,Z,V,xslice,yslice,zslice)
view(3)
grid on

1 Alphabetical List

1-1978

Specify Contour Levels and Add Colorbar

Create multiple slice planes through volumetric data. Draw contours of the data values in
each of the slice planes. Specify the levels where you want to draw the contours. Then,
add a colorbar.

Draw contours in three slice planes that are orthogonal to the x-axis at the values -1.2,
0.8, and 2. Draw contours for the volume data between the values -0.2 and 0.4, spaced
every 0.01. Add a colorbar to see how the data values map to the contour colors. Also,
change the axes view to a 3-D view and add grid lines.

[X,Y,Z] = meshgrid(-2:.2:2);
V = X.*exp(-X.^2-Y.^2-Z.^2);
xslice = [-1.2,0.8,2];
lvls = -0.2:0.01:0.4;

contourslice(X,Y,Z,V,xslice,[],[],lvls)
colorbar
view(3)
grid on

 contourslice

1-1979

Draw Contours Along Surface Slice

Create a surface slice through volumetric data and draw contours along the surface of the
volume data. Specify the number of contour levels to draw.

Create V as an array of volume data defined by v = xe−x2− y2− z2. Then, show a slice of
the volume data along the surface defined by z = x2− y2. Draw 20 contours along the
surface. Change the axes view to a 3-D view and add grid lines.

[X,Y,Z] = meshgrid(-5:0.2:5);
V = X.*exp(-X.^2-Y.^2-Z.^2);

1 Alphabetical List

1-1980

[xsurf,ysurf] = meshgrid(-2:0.2:2);
zsurf = xsurf.^2-ysurf.^2;
contourslice(X,Y,Z,V,xsurf,ysurf,zsurf,20)
view(3)
grid on

Input Arguments
X — x-axis coordinate data
vector | 3-D array

 contourslice

1-1981

x-axis coordinate data, specified as a vector or a 3-D array the same size as V. If you
specify a 3-D array, it must be monotonic and orthogonally spaced, as if produced by the
meshgrid function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — y-axis coordinate data
vector | 3-D array

y-axis coordinate data, specified as a vector or a 3-D array the same size as V. If you
specify a 3-D array, it must be monotonic and orthogonally spaced, as if produced by the
meshgrid function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Z — z-axis coordinate data
vector | 3-D array

z-axis coordinate data, specified as a vector or a 3-D array the same size as V. If you
specify a 3-D array, it must be monotonic and orthogonally spaced, as if produced by the
meshgrid function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

V — Volume data
3-D array

Volume data, specified as a 3-D array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

xslice — x-axis slice values
scalar | vector | [] | matrix

x-axis slice values, specified in one of these forms:

• Scalar — Draw one slice plane orthogonal to the x-axis at the specified location.
• Vector — Draw multiple slice planes orthogonal to the x-axis at the specified locations.
• [] — Do not draw any slice planes.

1 Alphabetical List

1-1982

• Matrix — Draw the slice along a surface, instead of a plane. If you use this option, then
yslice and zslice also must be matrices that are the same size.

Example: [2 4] draws slice planes orthogonal to the x-axis at the values 2 and 4.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yslice — y-axis slice values
scalar | vector | [] | matrix

y-axis slice values, specified in one of these forms:

• Scalar — Draw one slice plane orthogonal to the y-axis at the specified location.
• Vector — Draw multiple slice planes orthogonal to the y-axis at the specified locations.
• [] — Do not draw any slice planes.
• Matrix — Draw the slice along a surface, instead of a plane. If you use this option, then

xslice and zslice also must be matrices that are the same size.

Example: [2 4] draws slice planes orthogonal to the y-axis at the values 2 and 4.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zslice — z-axis slice values
scalar | vector | [] | matrix

z-axis slice values, specified in one of these forms:

• Scalar — Draw one slice plane orthogonal to the z-axis at the specified location.
• Vector — Draw multiple slice planes orthogonal to the z-axis at the specified locations.
• [] — Do not draw any slice planes.
• Matrix — Draw the slice along a surface, instead of a plane. If you use this option, then

xslice and yslice also must be matrices that are the same size.

Example: [2 4] draws slice planes orthogonal to the z-axis at the values 2 and 4.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

num — Number of contour lines
scalar

 contourslice

1-1983

Number of contour lines per slice, specified as a scalar.
Example: 4 draws four contour lines within each slice.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

lvls — Contour line levels
vector

Contour line levels, specified as a vector. If you want to draw a single contour line per
slice at a particular level, then specify the vector in the form [lvl lvl].
Example: [1 3 5] draws contour lines at the levels 1, 3, and 5 within each slice.
Example: [4 4] draws a single contour line at the level 4 within each slice.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

method — Interpolation method
'linear' (default) | 'cubic' | 'nearest'

Interpolation method, specified as one of these values:

• 'linear' — Linear interpolation of the values at neighboring grid points in each
respective dimension. This value is the default value when the slice is a surface.

• 'cubic' — Cubic interpolation of the values at neighboring grid points in each
respective dimension.

• 'nearest' — Nearest grid point value. This value is the default value when the slices
are planes.

ax — Target axes
current axes (default) | Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then
contourslice plots into the current axes.

Algorithms
The contourslice function does not clear existing plots before plotting.

1 Alphabetical List

1-1984

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
contour | interp3 | isosurface | meshgrid | slice

Introduced before R2006a

 contourslice

1-1985

matlab.unittest.constraints Package
Summary of classes in MATLAB Constraints Interface

Description
Constraints specify business rules against which to qualify a calculated value. Use
constraints in conjunction with the matlab.unittest.qualifications qualification
methods assertThat, assumeThat, fatalAssertThat, or verifyThat. Constraints
determine whether or not a calculated (actual) value satisfies the constraint. Constraints
also provide diagnostics. The matlab.unittest.constraints package consists of the
following classes.

Classes

Constraint Implementations
Fundamental Constraint-Related Interfaces
matlab.unittest.constraints.BooleanConstraint Interface class for boolean combinations

of constraints
matlab.unittest.constraints.Constraint Fundamental interface class for

comparisons

General Purpose
matlab.unittest.constraints.Eventually Poll for value to asynchronously satisfy

constraint
matlab.unittest.constraints.HasField Constraint specifying structure containing

particular field
matlab.unittest.constraints.IsAnything Constraint specifying any value
matlab.unittest.constraints.IsEqualTo General constraint to compare for equality
matlab.unittest.constraints.IsFalse Constraint specifying false value
matlab.unittest.constraints.IsSameHandleAs Constraint specifying handle instance

same as another
matlab.unittest.constraints.IsTrue Constraint specifying true value

1 Alphabetical List

1-1986

matlab.unittest.constraints.ReturnsTrue Constraint specifying function handle that
returns true

Errors and Warnings
matlab.unittest.constraints.IssuesNoWarnings Constraint specifying function that issues

no warnings
matlab.unittest.constraints.IssuesWarnings Constraint specifying function that issues

expected warning profile
matlab.unittest.constraints.Throws Constraint specifying function handle

that throws MException

Inequalities
matlab.unittest.constraints.IsGreaterThan Constraint specifying value

greater than another value
matlab.unittest.constraints.IsGreaterThanOrEqualTo Constraint specifying value

greater than or equal to another
value

matlab.unittest.constraints.IsLessThan Constraint specifying value less
than another value

matlab.unittest.constraints.IsLessThanOrEqualTo Constraint specifying value less
than or equal to another value

Array Size
matlab.unittest.constraints.HasElementCount Constraint specifying expected number of

elements
matlab.unittest.constraints.HasLength Constraint specifying expected length of

array
matlab.unittest.constraints.HasSize Constraint specifying expected size of

array
matlab.unittest.constraints.IsEmpty Constraint specifying empty value
matlab.unittest.constraints.IsScalar Constraint specifying scalar value

Type
matlab.unittest.constraints.IsInstanceOf Constraint specifying inclusion in given class

hierarchy
matlab.unittest.constraints.IsOfClass Constraint specifying class type

Strings
matlab.unittest.constraints.ContainsSubstring Constraint specifying string containing

substring

 matlab.unittest.constraints Package

1-1987

matlab.unittest.constraints.EndsWithSubstring Constraint specifying string ending
with substring

matlab.unittest.constraints.IsSubstringOf Constraint specifying substring of
another string

matlab.unittest.constraints.Matches Constraint specifying string matches
regular expression

matlab.unittest.constraints.StartsWithSubstring Constraint specifying string starting
with substring

Finiteness
matlab.unittest.constraints.HasInf Constraint specifying array containing any infinite

value
matlab.unittest.constraints.HasNaN Constraint specifying array containing NaN value
matlab.unittest.constraints.IsFinite Constraint specifying finite value

Numeric Attributes
matlab.unittest.constraints.IsReal Constraint specifying real valued array
matlab.unittest.constraints.IsSparse Constraint specifying sparse array

Set
matlab.unittest.constraints.HasUniqueElements Constraint specifying set contains

unique elements
matlab.unittest.constraints.IsSameSetAs Constraint specifying set contains same

elements as another set
matlab.unittest.constraints.IsSubsetOf Constraint specifying actual set is

subset of expected set
matlab.unittest.constraints.IsSupersetOf Constraint specifying actual set is

superset of expected set

Files and Folders
matlab.unittest.constraints.IsFile Constraint specifying value points to file
matlab.unittest.constraints.IsFolder Constraint specifying value points to folder

Actual Value Proxies
matlab.unittest.constraints.AnyCellOf Test if any element of cell array meets

constraint
matlab.unittest.constraints.AnyElementOf Test if any element of array meets

constraint
matlab.unittest.constraints.EveryCellOf Test if all elements of cell array meet

constraint

1 Alphabetical List

1-1988

matlab.unittest.constraints.EveryElementOf Test if all elements of array meet constraint

Tolerances
matlab.unittest.constraints.AbsoluteTolerance Absolute numeric tolerance
matlab.unittest.constraints.RelativeTolerance Relative numeric tolerance
matlab.unittest.constraints.Tolerance Abstract interface class for tolerances

Comparators
matlab.unittest.constraints.CellComparator Comparator for cell arrays
matlab.unittest.constraints.LogicalComparator Comparator for two logical

values
matlab.unittest.constraints.NumericComparator Comparator for numeric data

types
matlab.unittest.constraints.ObjectComparator Comparator for MATLAB or Java

objects
matlab.unittest.constraints.PublicPropertyComparator Comparator for public properties

of MATLAB objects
matlab.unittest.constraints.StringComparator Comparator for two strings,

character arrays, or cell arrays
of character arrays

matlab.unittest.constraints.StructComparator Comparator for MATLAB
structure arrays

matlab.unittest.constraints.TableComparator Comparator for MATLAB tables

See Also
Simulink.sdi.constraints.MatchesSignal

Introduced in R2013a

 matlab.unittest.constraints Package

1-1989

matlab.unittest.constraints.AbsoluteToleran
ce class
Package: matlab.unittest.constraints
Superclasses:

Absolute numeric tolerance

Description
This numeric Tolerance assesses the magnitude of the difference between actual and
expected values. For the tolerance to be satisfied, abs(expVal - actVal) <= absTol
must be true.

Construction
AbsoluteTolerance(tolVals) creates an absolute tolerance object that assesses the
magnitude of the difference between the actual and expected values.

The data types of the inputs to the AbsoluteTolerance constructor determines which
data types the tolerance supports. For example, AbsoluteTolerance(10*eps)
constructs an AbsoluteTolerance for comparing double-precision numeric arrays,
while AbsoluteTolerance(int8(2)) constructs an AbsoluteTolerance for
comparing numeric arrays of type int8. If the actual and expected values being
compared contain more than one numeric data type, the tolerance only applies to the data
types specified by the values passed into the constructor.

To specify different tolerance values for different data types, you can pass multiple
tolerance values to the constructor. For example, AbsoluteTolerance(10*eps,
10*eps('single'), int8(1)) constructs an AbsoluteTolerance object applies the
following absolute tolerances:

• 10*eps applies an absolute tolerance of 10*eps for double-precision numeric arrays.
• 10*eps('single') applies an absolute tolerance of 10*eps for single-precision

numeric arrays.

1 Alphabetical List

1-1990

• int8(1) applies an absolute tolerance of 1 for numeric arrays of type int8.

You can specify more than one tolerance for a particular data type by combining
tolerances with the & and | operators. To combine two tolerances, the sizes of the
tolerance values for each data type must be compatible.

Input Arguments
tolVals

Numeric tolerances, specified as a comma-separated list of numeric arrays. Each input
argument contains the tolerance specification for a particular data type. Each numeric
array can be a scalar or array the same size as the actual and expected values.

Properties
Values

Numeric tolerances, specified by the tolVals input argument

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test with Absolute Tolerance

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance

testCase = TestCase.forInteractiveUse;

 matlab.unittest.constraints.AbsoluteTolerance class

1-1991

Assert that the difference between an actual value, 4.1, and an expected value, 4.5, is
less than 0.5.

testCase.assertThat(4.1, IsEqualTo(4.5, ...
 'Within', AbsoluteTolerance(0.5)))

Assertion passed.

Specify Absolute Tolerance for Different Data Types

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance

testCase = TestCase.forInteractiveUse;

Create the following actual and expected cell arrays.

act = {'abc', 123, single(106), int8([1, 2, 3])};
exp = {'abc', 122, single(105), int8([2, 4, 6])};

Test whether the arrays satisfy the AbsoluteTolerance constraint within a value of 2.

testCase.verifyThat(act, IsEqualTo(exp, ...
 'Within', AbsoluteTolerance(2)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>{3}
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> The tolerance was ignored. The tolerance as specified does not support comparisons of single values.
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 106 105 1 0.00952381

 Actual single:
 106
 Expected single:

1 Alphabetical List

1-1992

 105

Actual cell:
 'abc' [123] [106] [1×3 int8]
Expected cell:
 'abc' [122] [105] [1×3 int8]

The test fails because the tolerance is only applied to the double data type.

Create a tolerance object that specifies different tolerances for different data types.

tolObj = AbsoluteTolerance(2, single(3), int8([2, 3, 5]));

A tolerance of 2 is a applied to double valued data. A tolerance of 3 is applied to single
valued data. A tolerance of [2 3 5] is applied to corresponding array elements of int8
valued data.

Verify that the expected and actual values satisfy the AbsoluteTolerance constraint.

testCase.verifyThat(act, IsEqualTo(exp, 'Within', tolObj))

Interactive verification passed.

Combine Absolute and Relative Tolerances

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Define an actual value approximation for pi.

act = 3.14;

Construct a tolerance object to test that the difference between the actual and expected
values is within 0.001 and within 0.25%.

tolObj = AbsoluteTolerance(0.001) & RelativeTolerance(0.0025);

Verify that the actual value is within the tolerance of the expected value of pi.

 matlab.unittest.constraints.AbsoluteTolerance class

1-1993

testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> AndTolerance failed.
 --> AbsoluteTolerance failed.
 --> The error was not within absolute tolerance.
 --> RelativeTolerance passed.
 --> The error was within relative tolerance.
 --> Failure table:
 Actual Expected Error RelativeError AbsoluteTolerance RelativeTolerance
 ______ ________________ ____________________ _____________________ _________________ _________________

 3.14 3.14159265358979 -0.00159265358979299 -0.000506957382897213 0.001 0.0025

 Actual double:
 3.140000000000000
 Expected double:
 3.141592653589793

The actual value does not satisfy the AbsoluteTolerance constraint.

Construct a constraint that is satisfied if the values are within 0.001 or 0.25%, and then
retest the actual value.

tolObj = AbsoluteTolerance(0.001) | RelativeTolerance(0.0025);
testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj))

Verification passed.

Combine Absolute and Relative Tolerances to Test Small and Large Values

Combine tolerances so when you test the equality of values, an absolute (floor) tolerance
dominates when the values are near zero, and a relative tolerance dominates for larger
values.

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

1 Alphabetical List

1-1994

Define two structures containing electromagnetic properties of a vacuum. One structure,
approxVacuumProps, contains approximate values for the permeability and speed of
light in a vacuum.

approxVacuumProps.Permeability = 1.2566e-06; % Approximate
approxVacuumProps.Permitivity = 8.854187817*10^-12;
approxVacuumProps.LightSpeed = 2.9979e+08; % Approximate

baselineVacuumProps.Permeability = 4*pi*10^-7;
baselineVacuumProps.Permitivity = 8.854187817*10^-12;
baselineVacuumProps.LightSpeed = 1/sqrt(...
 baselineVacuumProps.Permeability*baselineVacuumProps.Permitivity);

Test that the relative difference between the approximate and baseline values is within
eps*1e11.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
 'Within', RelativeTolerance(eps*1e11)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>.Permeability
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> RelativeTolerance failed.
 --> The error was not within relative tolerance.
 --> Failure table:
 Actual Expected Error RelativeError RelativeTolerance
 __________ ____________________ _____________________ _____________________ ____________________

 1.2566e-06 1.25663706143592e-06 -3.70614359173257e-11 -2.94925536216295e-05 2.22044604925031e-05

 Actual double:
 1.256600000000000e-06
 Expected double:
 1.256637061435917e-06

Actual struct:
 Permeability: 1.256600000000000e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 299790000

 matlab.unittest.constraints.AbsoluteTolerance class

1-1995

Expected struct:
 Permeability: 1.256637061435917e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 2.997924580105029e+08

The test fails because the relative difference in the permeabilities is not within the
tolerance. The difference between the two values is small, but the numbers are close to
zero, so the difference relative to their size is not small enough to satisfy the tolerance.

Construct a tolerance object to test that the absolute difference between the approximate
and baseline values is within 1e-4.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
 'Within', AbsoluteTolerance(1e-4)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>.LightSpeed
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> AbsoluteTolerance failed.
 --> The error was not within absolute tolerance.
 --> Failure table:
 Actual Expected Error RelativeError AbsoluteTolerance
 _________ ________________ _________________ ____________________ _________________

 299790000 299792458.010503 -2458.01050287485 -8.1990404935028e-06 0.0001

 Actual double:
 299790000
 Expected double:
 2.997924580105029e+08

Actual struct:
 Permeability: 1.256600000000000e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 299790000
Expected struct:
 Permeability: 1.256637061435917e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 2.997924580105029e+08

1 Alphabetical List

1-1996

The test fails because the absolute difference in the speed of light is not within the
tolerance. The difference between the two values is small relative to their size, but too
large to satisfy the tolerance.

Construct a logical disjunction of tolerance objects to test that the absolute difference
between the approximate and baseline values is within 1e-4 or the relative difference is
within eps*1e11. The test uses this tolerance so permeability values that are close to
zero satisfy the absolute (floor) tolerance, and speed of light values that are large, satisfy
the relative tolerance.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
 'Within', RelativeTolerance(eps*1e11)| AbsoluteTolerance(1e-4)))

Verification passed.

See Also
matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.RelativeTolerance

Introduced in R2013a

 matlab.unittest.constraints.AbsoluteTolerance class

1-1997

matlab.unittest.constraints.AnyCellOf class
Package: matlab.unittest.constraints

Test if any element of cell array meets constraint

Description
The AnyCellOf class creates a proxy of the actual value to the framework. The proxy
enables a test writer to apply a constraint against each element of a cell array, which
ensures that a passing result occurs if at least one element of the cell array satisfies the
constraint.

It is intended that you use this class through matlab.unittest qualifications as shown
in the examples. The class does not modify the provided actual value, but serves as a
wrapper to perform the constraint analysis. The testing framework analyzes the
constraint on an element-by-element basis.

Construction
AnyCellOf(actVal) creates a proxy instance that tests if any element of a provided cell
array, actVal, meets a constraint. The test passes if at least one element individually
satisfies the constraint.

Input Arguments
actVal

Actual value to test against constraint

1 Alphabetical List

1-1998

Properties
ActualValue

Actual value to test against constraint. Set this property through the constructor via the
actVal input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Any Cell Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.AnyCellOf

testCase = TestCase.forInteractiveUse;

Test that at least one cell of actVal is finite.

import matlab.unittest.constraints.IsFinite
actVal = {NaN, Inf, 5};
testCase.verifyThat(AnyCellOf(actVal), IsFinite)

Interactive verification passed.

Test that at least one cell of the actual value contains five elements.

import matlab.unittest.constraints.HasElementCount
testCase.verifyThat(AnyCellOf({42, [11 38], 1:5}), HasElementCount(5))

Interactive verification passed.

Test that at least one cell of the actual value matches 'tea' regardless of case.

 matlab.unittest.constraints.AnyCellOf class

1-1999

import matlab.unittest.constraints.Matches
testCase.verifyThat(AnyCellOf({'Coffee','Tea','Water'}), ...
 Matches('tea','IgnoringCase',true))

Interactive verification passed.

Test that at least one cell of the actual value is less than zero.

import matlab.unittest.constraints.IsLessThan
testCase.verifyThat(AnyCellOf({1, 5}), IsLessThan(0))

Interactive verification failed.

Framework Diagnostic:

All cells failed. The first cell failed because:
--> IsLessThan failed.
 --> The value must be less than the maximum value.

 Actual double:
 1
 Maximum Value (Exclusive):
 0

Actual Value Cell Array:
 [1] [5]

Neither actual value element is less than zero.

Test that neither cell of the actual value is empty.

import matlab.unittest.constraints.IsEmpty
testCase.verifyThat(AnyCellOf({inputParser.empty,''}), ~IsEmpty)

Interactive verification failed.

Framework Diagnostic:

All cells failed. The first cell failed because:
--> Negated IsEmpty failed.
 --> The value must not be empty.
 --> The value has a size of [0 0].

1 Alphabetical List

1-2000

 Actual inputParser:
 0x0 inputParser array with properties:

 FunctionName
 CaseSensitive
 KeepUnmatched
 PartialMatching
 StructExpand
 Parameters
 Results
 Unmatched
 UsingDefaults

Actual Value Cell Array:
 [0x0 inputParser] ''

Both actual value elements are empty.

See Also
AnyElementOf | EveryCellOf | EveryElementOf |
matlab.unittest.qualifications

 matlab.unittest.constraints.AnyCellOf class

1-2001

matlab.unittest.constraints.AnyElementOf
class
Package: matlab.unittest.constraints

Test if any element of array meets constraint

Description
The AnyElementOf class creates a proxy of the actual value to the framework. The proxy
enables a test writer to apply a constraint against each element of an array, which
ensures that a passing result occurs when at least one element of the array satisfies the
constraint.

It is intended that you use this class through matlab.unittest qualifications as shown
in the examples. The class does not modify the provided actual value, but serves as a
wrapper to perform the constraint analysis. The testing framework analyzes the
constraint on an element-by-element basis.

Construction
AnyElementOf(actVal) creates a proxy instance that tests if any element of a provided
array, actVal, meets a constraint. The test passes if at least one element individually
satisfies the constraint.

Tips
• AnyElementOf checks if any element in the provided array satisfies an associated

constraint. However, there are some constraints, such as HasNaN and HasInf, that
natively validate if any of the elements satisfy a condition. In these situations, use of
AnyElementOf is unnecessary and impedes qualification performance.

1 Alphabetical List

1-2002

Input Arguments
actVal

Actual value to test against constraint

Properties
ActualValue

Actual value to test against constraint. Set this property through the constructor via the
actVal input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Any Element Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.AnyElementOf

testCase = TestCase.forInteractiveUse;

Test that at least one element of actVal is finite.

import matlab.unittest.constraints.IsFinite
actVal = [NaN, Inf, 5];
testCase.verifyThat(AnyElementOf(actVal), IsFinite)

Interactive verification passed.

Test that at least one element of the actual value is complex.

 matlab.unittest.constraints.AnyElementOf class

1-2003

import matlab.unittest.constraints.IsReal
testCase.verifyThat(AnyElementOf([1+0i 4i]), ~IsReal)

Interactive verification passed.

Test that at least one element of the actual value array is less than zero.

import matlab.unittest.constraints.IsLessThan
testCase.verifyThat(AnyElementOf([1 5]), IsLessThan(0))

Interactive verification failed.

Framework Diagnostic:

All elements failed. The first element failed because:
--> IsLessThan failed.
 --> The value must be less than the maximum value.

 Actual Value:
 1
 Maximum Value (Exclusive):
 0

Actual Value Array:
 1 5

Neither actual value element is less than zero.

See Also
AnyCellOf | EveryCellOf | EveryElementOf | matlab.unittest.qualifications

1 Alphabetical List

1-2004

matlab.unittest.constraints.BooleanConstrai
nt class
Package: matlab.unittest.constraints
Superclasses:

Interface class for boolean combinations of constraints

Description
The BooleanConstraint interface class provides an interface for boolean combinations
of Constraints. Any constraint that derives from BooleanConstraint can be
combined and negated using the and (&), or (|), and not (~) operators.

Classes that derive from the BooleanConstraint interface class must implement
everything required by the standard Constraint interface. When a given constraint is
negated, the diagnostics must be written in a different form than for a standard (non-
negated) failure. Therefore, classes deriving from the BooleanConstraint class must
implement a method to provide a Diagnostic object for the negated case, in addition to
the non-negated case.

In exchange for meeting these requirements, all BooleanConstraint implementations
inherit the appropriate MATLAB overloads for and, or, and not so that they can be
combined with other BooleanConstraint objects or negated.

Methods

getNegativeDiagnosticFor Produce negated diagnostic for value

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

 matlab.unittest.constraints.BooleanConstraint class

1-2005

Examples

Boolean Combinations of Constraints

At the command prompt, create a test case for interactive testing and import several
classes that subclass BooleanConstraint.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasElementCount
import matlab.unittest.constraints.HasLength
import matlab.unittest.constraints.HasInf
import matlab.unittest.constraints.HasNaN
import matlab.unittest.constraints.IsEmpty
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.IsGreaterThanOrEqualTo
import matlab.unittest.constraints.IsOfClass
import matlab.unittest.constraints.IsReal

testCase = TestCase.forInteractiveUse;

Test these passing cases.

testCase.verifyThat(3, IsReal & IsGreaterThanOrEqualTo(3))
testCase.verifyThat([1 2 3; 4 5 6], HasLength(3) & HasElementCount(6))
testCase.verifyThat([3 NaN 5], HasNaN | HasInf)
testCase.verifyThat(3, ~IsEqualTo(4))
testCase.verifyThat('Some char', IsOfClass(?char) & ~IsEmpty)

See Also
Diagnostic | matlab.unittest.constraints

Topics
“Create Custom Boolean Constraint”

1 Alphabetical List

1-2006

getNegativeDiagnosticFor
Class: matlab.unittest.constraints.BooleanConstraint
Package: matlab.unittest.constraints

Produce negated diagnostic for value

Syntax
diag = getNegativeDiagnosticFor(constObj, actVal)

Description
diag = getNegativeDiagnosticFor(constObj, actVal) produces a negated
diagnostic for a value. The getNegativeDiagnosticFor method analyzes the provided
value, actVal, against the constraint, constObj, and produces a
matlab.unittest.diagnostics.Diagnostic object, diag, which corresponds to the
negation of the constraint, constObj. This method is a protected method.

The diagnostics that this method produces are expressed in the negative sense of the
constraint. For example, a hypothetical IsTasty constraint, when negated, should
express that the actual value was "tasty", when it should not have been, and it should
describe the details on why it was found to be tasty.

Like the getDiagnosticFor method of Constraint, the
getNegativeDiagnosticFor is only called upon failures, and thus can afford a more
detailed analysis than the satisfiedBy method.

Input Arguments
constObj

BooleanConstraint instance

 getNegativeDiagnosticFor

1-2007

actVal

Value for comparison

Examples

Implement getNegativeDiagnosticFor method

function diag = getNegativeDiagnosticFor(constraint, actual)
% getNegativeDiagnosticFor - produce a diagnostic when the constraint is
% incorrectly met
%
% This method is called by the testing framework when the constraint has
% been met but should not have been met because it was negated in a
% boolean expression. It should produce a Diagnostic result that
% describes the failure in the correct terms which express the
% requirement that the constraint actually should not have been met.

import matlab.unittest.diagnostics.StringDiagnostic

if constraint.satisfiedBy(actual)
 % Create the negative diagnostic. This will show information such as the
 % constraint class name and display the raw actual and expected values.
 % Using the DiagnosticSense.NegativeDiagnostic enumeration also
 % produces language more appropriate for the negated case.
 diag = StringDiagnostic(sprintf(...
 ['Negated HasSameSizeAs failed.\nSize [%s] of ' ...
 'Actual Value and Expected Value were the same ' ...
 'but should not have been.', int2str(size(actual))));
else
 % Produce a passing diagnostic, with language appropriate for
 % the negated case.
 diag = StringDiagnostic('Negated HasSameSizeAs passed.');
end % if

end % function

See Also
Diagnostic | getDiagnosticFor | satisfiedBy

1 Alphabetical List

1-2008

Topics
“Create Custom Boolean Constraint”

 getNegativeDiagnosticFor

1-2009

matlab.unittest.constraints.CellComparator
class
Package: matlab.unittest.constraints

Comparator for cell arrays

Description
The CellComparator compares cell arrays.

Construction
CellComparator creates a comparator for cell arrays.

CellComparator(compObj) indicates a comparator, compObj, that defines the
comparator used to compare values contained in the cell array. By default, a cell
comparator supports only empty cell arrays.

CellComparator(compObj,Name,Value) provides a comparator with additional
options specified by one or more Name,Value pair arguments.

CellComparator(Name,Value) provides a comparator for empty cell arrays with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
compObj

Comparator object

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-2010

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Recursively

Indicator of whether comparator operates recursively, specified as false or true
(logical 0 or 1). When this value is false, the comparator does not operate recursively
on its data.

When the value is true, the data types the cell comparator supports are fully supported
in recursion. For example:

comp1 = CellComparator(StringComparator)
comp2 = CellComparator(StringComparator,'Recursively', true)

Both comp1 and comp2 support cell arrays of strings and character arrays. However, only
comp2 supports cell arrays that recursively contain either cell arrays or strings as their
elements.

Default: false

Properties
Recursive

Indicator of whether comparator operates recursively, specified in the name-value pair
argument, 'Recursively'

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Compare Cell Arrays

Create a test case for interactive testing.

 matlab.unittest.constraints.CellComparator class

1-2011

import matlab.unittest.TestCase;
import matlab.unittest.constraints.CellComparator
import matlab.unittest.constraints.StringComparator
import matlab.unittest.constraints.IsEqualTo

testCase = TestCase.forInteractiveUse;

Use a CellComparator to test that two cell arrays are equal to each other.

actual = {'abc','def'};
expected = {'abc','def'};
testCase.verifyThat(actual, IsEqualTo(expected,...
 'Using', CellComparator(StringComparator)))

Interactive verification passed.

By default, the CellComparator supports only comparison of empty cell arrays.
Therefore, it is necessary to pass it a StringComparator.

Change the actual value and compare it to the expected value. To satisfy the constraint,
construct it to ignore case and whitespace characters.

actual = {'ABC','D E F'};
testCase.verifyThat(actual, IsEqualTo(expected, 'Using', ...
 CellComparator(StringComparator), 'IgnoringWhitespace', ...
 true, 'IgnoringCase',true))

Interactive verification passed.

Test nested cell arrays of character vectors by constructing the comparator to operate
recursively.

actual = {'abc',{'def','ghi'}};
expected = {'abc',{'def','ghi'}};

testCase.verifyThat(actual, IsEqualTo(expected, 'Using', ...
 CellComparator(StringComparator, 'Recursively', true)))

Interactive verification passed.

See Also
matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance

1 Alphabetical List

1-2012

Introduced in R2013a

 matlab.unittest.constraints.CellComparator class

1-2013

matlab.unittest.constraints.Constraint class
Package: matlab.unittest.constraints

Fundamental interface class for comparisons

Description
The Constraint interface class is the means by which matlab.unittest constraints
encode comparison logic and the corresponding diagnostic information. Every comparison
that conditionally can produce a failure inherits from the Constraint interface class.

Classes deriving from the Constraint interface class must provide a means to
determine if a given value satisfies the constraint. To do this, implement the
satisfiedBy method, which includes the definition of the underlying comparison logic.
Classes deriving from the Constraint class also must provide a diagnostic for any given
actual value. The testing framework uses the diagnostic when it encounters a
qualification failure. To do this, implement the getDiagnosticFor method.

In exchange for meeting these requirements, all Constraint implementations are easily
used with all qualification types through the verifyThat, assertThat, assumeThat, or
fatalAssertThat methods. The qualifications use the comparison and diagnostic
knowledge contained within the constraints. Also, the constraints can be used in
situations where a test failure is not wanted, but the testing framework needs to reuse
the comparison logic. For example, a constraint implementation may want to use the logic
defined inside of another constraint. Since the constraint can interact with the other
constraint directly, it can use the logic without the potential of causing a qualification
failure.

Methods

getDiagnosticFor Produce diagnostic for compared value
satisfiedBy Determine whether value satisfies constraint

1 Alphabetical List

1-2014

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
ConstraintDiagnostic | Diagnostic | assertThat | assumeThat |
fatalAssertThat | matlab.unittest.constraints | verifyThat

Topics
“Create Custom Constraint”

 matlab.unittest.constraints.Constraint class

1-2015

getDiagnosticFor
Class: matlab.unittest.constraints.Constraint
Package: matlab.unittest.constraints

Produce diagnostic for compared value

Syntax
diag = getDiagnosticFor(constObj,actVal)

Description
diag = getDiagnosticFor(constObj,actVal) produces a diagnostic, diag, for a
compared value, actVal. When creating a custom constraint, the class author must
implement the getDiagnosticFor method so that it analyzes the value, actVal, against
the constraint, constObj, and instantiates and returns a
matlab.unittest.diagnostics.Diagnostic object.

Typically, the testing framework calls this method when it encounters a qualification
failure. Therefore, the constraint author can afford to undertake a more detailed analysis
in the getDiagnosticFor method than the satisfiedBy method.

Input Arguments
actVal

Value for comparison

constObj

Constraint instance

1 Alphabetical List

1-2016

Output Arguments
diag

Diagnostic instance

See Also
ConstraintDiagnostic | Diagnostic | satisfiedBy

Topics
“Create Custom Constraint”

 getDiagnosticFor

1-2017

satisfiedBy
Class: matlab.unittest.constraints.Constraint
Package: matlab.unittest.constraints

Determine whether value satisfies constraint

Syntax
TF = satisfiedBy(constObj,actVal)

Description
TF = satisfiedBy(constObj,actVal) determines whether a value, actVal, satisfies
a constraint, constObj. The satisfiedBy method is used to determine qualification
success or failure. It returns true or false (logical 0 or 1). When creating a custom
constraint, a class author must place comparison logic in this method.

Since the most common usage is for the passing case, the constraint author should
optimize for speed in that case. It is only in the failing case that more expensive detailed
analysis is helpful.

Input Arguments
actVal

Value to evaluate against the constraint

constObj

Constraint instance

See Also
getDiagnosticFor

1 Alphabetical List

1-2018

Topics
“Create Custom Constraint”

 satisfiedBy

1-2019

matlab.unittest.constraints.ContainsSubstri
ng class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying string containing substring

Construction
ContainsSubstring(substring) creates a constraint that specifies a string scalar or
character vector containing substring. The constraint is satisfied only if the actual
value contains an expected substring.

ContainsSubstring(substring,Name,Value) provides a constraint with additional
options specified by one or more Name,Value pair arguments. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
substring

Text that must be contained within the actual value, specified as a character vector or
string scalar. substring can include newline characters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false or true (logical 0
or 1)

1 Alphabetical List

1-2020

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified as false or true
(logical 0 or 1)

Default: false

Properties
IgnoreCase

Indicator if the constraint is insensitive to case, specified in the name-value pair
argument, 'IgnoringCase'. This property applies at all levels of recursion, such as
nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified in the name-value pair
argument, 'IgnoringWhitespace'. This property applies at all levels of recursion, such
as nested structures.

Substring

Character vector or string scalar that must be included in the actual value, specified in
the input argument, substring.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Contains Specified Substring

Create a test case for interactive testing.

 matlab.unittest.constraints.ContainsSubstring class

1-2021

import matlab.unittest.TestCase
import matlab.unittest.constraints.ContainsSubstring

testCase = TestCase.forInteractiveUse;

Define the actual value.

actVal = 'This Is One Long Message';

Test the actVal contains the text 'One'.

testCase.verifyThat(actVal, ContainsSubstring('One'))

Interactive verification passed.

Test the actVal contains the text 'long'.

testCase.verifyThat(actVal, ContainsSubstring('long'))

Interactive verification failed.

Framework Diagnostic:

ContainsSubstring failed.
--> The value does not contain the substring.

Actual char:
 This Is One Long Message
Expected Substring:
 long

By default, the ContainsSubstring constraint is case sensitive.

Repeat the test ignoring case.

testCase.verifyThat(actVal, ContainsSubstring('long',...
 'IgnoringCase', true))

Interactive verification passed.

Test actVal contains the text 'thisisone'. For the test to pass, configure the
constraint to ignore whitespace and case.

testCase.verifyThat(actVal, ContainsSubstring('thisisone', ...
 'IgnoringCase', true, 'IgnoringWhitespace', true))

1 Alphabetical List

1-2022

Interactive verification passed.

Assert that actVal does not contain the text 'longer'.

testCase.assertThat(actVal, ~ContainsSubstring('longer',...
 'IgnoringCase', true))

Interactive verification passed.

See Also
EndsWithSubstring | IsSubstringOf | Matches | StartsWithSubstring

 matlab.unittest.constraints.ContainsSubstring class

1-2023

matlab.unittest.constraints.EndsWithSubstri
ng class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying string ending with substring

Construction
EndsWithSubstring(suffix) creates a constraint specifying a string scalar or
character vector ending with a substring. The constraint is satisfied only if the actual
value ends with the expected text, suffix.

EndsWithSubstring(suffix,Name,Value) provides a constraint with additional
options specified by one or more Name,Value pair arguments. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
suffix

Text that occurs at the end of the actual value, specified as a string scalar or character
vector. suffix can include newline characters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false or true (logical 0
or 1)

1 Alphabetical List

1-2024

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified as false or true
(logical 0 or 1)

Default: false

Properties
IgnoreCase

Indicator if the constraint is insensitive to case, specified in the name-value pair
argument, 'IgnoringCase'. This property applies at all levels of recursion, such as
nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified in the name-value pair
argument, 'IgnoringWhitespace'. This property applies at all levels of recursion, such
as nested structures.

Suffix

Text that occurs at the end of the actual value, specified in the input argument, suffix.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Ends with Specified Text

Create a test case for interactive testing.

 matlab.unittest.constraints.EndsWithSubstring class

1-2025

import matlab.unittest.TestCase
import matlab.unittest.constraints.EndsWithSubstring

testCase = TestCase.forInteractiveUse;

Define the actual value.

actVal = 'This Is One Long Message';

Test the actVal ends with 'Message'.

testCase.verifyThat(actVal, EndsWithSubstring('Message'))

Interactive verification passed.

Test the actVal ends with 'AgE'.

testCase.verifyThat(actVal, EndsWithSubstring('AgE'))

Interactive verification failed.

Framework Diagnostic:

EndsWithSubstring failed.
--> The value does not end with the supplied suffix.

Actual char:
 This Is One Long Message
Expected Suffix:
 AgE

By default, the EndsWithSubstring constraint is case sensitive.

Repeat the test ignoring case.

testCase.verifyThat(actVal, EndsWithSubstring('AgE',...
 'IgnoringCase', true))

Interactive verification passed

Test the actVal ends with 'longmessage'. For the test to pass, configure the constraint
to ignore whitespace and case.

testCase.verifyThat(actVal, EndsWithSubstring('longmessage', ...
 'IgnoringCase', true, 'IgnoringWhitespace', true))

1 Alphabetical List

1-2026

Interactive verification passed.

Assert that actVal does not end with 'long'.

testCase.assertThat(actVal, ~EndsWithSubstring('long'))

Interactive verification passed.

See Also
ContainsSubstring | IsSubstringOf | Matches | StartsWithSubstring

 matlab.unittest.constraints.EndsWithSubstring class

1-2027

matlab.unittest.constraints.Eventually class
Package: matlab.unittest.constraints
Superclasses:

Poll for value to asynchronously satisfy constraint

Construction
outConstObj = Eventually(constObj) creates a constraint, outConstObj, that
polls for an actual value returned from a function handle to asynchronously satisfy the
constObj constraint. It is not satisfied if evaluation of the function handle does not
produce a value that satisfies the constraint within 20 seconds. The testing framework
invokes the drawnow function while the Eventually constraint waits for specified
function to satisfy the constraint.

outConstObj = Eventually(constObj,'WithTimeoutOf',timeOutVal) creates a
constraint that polls for the constraint to be satisfied within the timer period specified in
timeOutVal.

Input Arguments
constObj

Constraint instance

timeOutVal

Maximum time to attempt to produce passing behavior, specified in seconds

Default: 20 seconds

1 Alphabetical List

1-2028

Properties
FinalReturnValue

Output produced when the test framework invokes the supplied function handle. This
property is read only and is set when the test framework invokes the function handle.

Timeout

Maximum time to attempt to produce passing behavior, specified by the timeOutVal
input argument

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Verify Test Passes Eventually

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.Eventually
import matlab.unittest.constraints.IsGreaterThan
import matlab.unittest.constraints.IsLessThan

testCase = TestCase.forInteractiveUse;

Verify that, within the timeout period, a call to toc results in a value greater than 10
(seconds). The Eventually constraint repeatedly calls toc until either the constraint is
satisfied or the elapsed time exceeds the timeout period. Repeated calls to toc result in
the elapsed time since the last call to tic.

tic
testCase.verifyThat(@toc, Eventually(IsGreaterThan(10)))

Interactive verification passed.

 matlab.unittest.constraints.Eventually class

1-2029

The verification may take as long as 10 seconds for toc to reach a passing value. If you
issue the call to tic and wait more than 10 seconds before issuing the verifyThat
command, the verification returns immediately since toc already returns a value greater
than 10.

Verify that, within the timeout period, toc does not return a negative value.

testCase.verifyThat(@toc, Eventually(IsLessThan(0)))

Interactive verification failed.

Framework Diagnostic:

Eventually failed.
--> The constraint never passed with a timeout of 20 second(s).
--> IsLessThan failed.
 --> The value must be less than the maximum value.

 Actual Value:
 36.532254706346720
 Maximum Value (Exclusive):
 0

Evaluated Function:
 function_handle with value:

 @toc

This failure is expected since elapsed time is not going to be less than zero. However,
Eventually polls toc for the duration of the timeout period.

Adjust the timeout period so Eventually polls for 5 seconds.

tic
testCase.verifyThat(@toc, Eventually(IsGreaterThan(10), ...
 'WithTimeoutOf', 5))

Interactive verification failed.

Framework Diagnostic:

Eventually failed.
--> The constraint never passed with a timeout of 5 second(s).

1 Alphabetical List

1-2030

--> IsGreaterThan failed.
 --> The value must be greater than the minimum value.

 Actual Value:
 5.143138452046230
 Minimum Value (Exclusive):
 10

Evaluated Function:
 function_handle with value:

 @toc

If you didn’t wait more than 5 seconds between calls to tic and verifyThat, the test
fails because the elapsed time is not greater than 10 seconds within the modified timeout
period.

See Also
drawnow | matlab.unittest.constraints.Constraint

 matlab.unittest.constraints.Eventually class

1-2031

matlab.unittest.constraints.EveryCellOf
class
Package: matlab.unittest.constraints

Test if all elements of cell array meet constraint

Description
The EveryCellOf class creates a proxy of the actual value to the framework. The proxy
enables a test writer to apply a constraint against each element of a cell array, which
ensures that a passing result occurs when every element of the cell array satisfies the
constraint.

It is intended that you use this class through matlab.unittest qualifications as shown
in the examples. The class does not modify the provided actual value, but serves as a
wrapper to perform the constraint analysis. The testing framework analyzes the
constraint on an element-by-element basis.

Construction
EveryCellOf(actVal) creates a proxy instance that tests if every element of a
provided cell array, actVal, meets a constraint. The test passes if all elements satisfy the
constraint.

Tips
• EveryCellOf checks if every element in the provided cell array satisfies an

associated constraint. However, there are some constraints, a prominent one being
IsEqualTo, that natively validate if all elements in cell arrays satisfy a condition. In
these situations, use of EveryCellOf is unnecessary and impedes qualification
performance.

1 Alphabetical List

1-2032

Input Arguments
actVal

Actual value to test against constraint

Properties
ActualValue

Actual value to test against constraint. Set this property through the constructor via the
actVal input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Every Cell Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.EveryCellOf

testCase = TestCase.forInteractiveUse;

Test that every cell of actVal contains the substring 'ain'.

import matlab.unittest.constraints.ContainsSubstring
actVal = {'Rain','Main','Plain'};
testCase.verifyThat(EveryCellOf(actVal), ContainsSubstring('ain'))

Interactive verification passed.

Test that every cell of the actual value array has two elements.

 matlab.unittest.constraints.EveryCellOf class

1-2033

import matlab.unittest.constraints.HasElementCount
testCase.verifyThat(EveryCellOf({{'hello','world'}, {11 38}}), HasElementCount(2))

Interactive verification passed.

Test that every cell of the actual value array is empty.

import matlab.unittest.constraints.IsEmpty
testCase.verifyThat(EveryCellOf({inputParser.empty,''}), IsEmpty)

Interactive verification passed.

Test that every cell of the actual value array is finite.

import matlab.unittest.constraints.IsFinite
testCase.verifyThat(EveryCellOf({NaN, Inf, 5}), IsFinite)

Interactive verification failed.

Framework Diagnostic:

At least one cell failed.

Failing indices:
 1 2
The first failing cell failed because:
--> IsFinite failed.
 --> The value must be finite.

 Actual Value:
 NaN

Actual Value Cell Array:
 [NaN] [Inf] [5]

Only the third element has a finite value.

Test that every cell of the actual value array is real.

import matlab.unittest.constraints.IsReal
testCase.verifyThat(EveryCellOf({1 4i}), IsReal)

Interactive verification failed.

1 Alphabetical List

1-2034

Framework Diagnostic:

At least one cell failed.

Failing indices:
 2
The first failing cell failed because:
--> IsReal failed.
 --> The value must be real.

 Actual Value:
 0.000000000000000 + 4.000000000000000i

Actual Value Cell Array:
 [1] [0.000000000000000 + 4.000000000000000i]

The second element has an imaginary value.

See Also
AnyCellOf | AnyElementOf | EveryElementOf |
matlab.unittest.qualifications

 matlab.unittest.constraints.EveryCellOf class

1-2035

matlab.unittest.constraints.EveryElementOf
class
Package: matlab.unittest.constraints

Test if all elements of array meet constraint

Description
The EveryElementOf class creates a proxy of the actual value to the framework. The
proxy enables a test writer to apply a constraint against each element of an array, which
ensures that a passing result occurs when every element of the array that satisfies the
constraint.

It is intended that you use this class through matlab.unittest qualifications as shown
in the examples. The class does not modify the provided actual value, but serves as a
wrapper to perform the constraint analysis. The testing framework analyzes the
constraint on an element-by-element basis.

Construction
EveryElementOf(actVal) creates a proxy instance that tests if every element of a
provided array, actVal, meets a constraint. The test passes if all elements satisfy the
constraint.

Tips
• EveryElementOf checks if every element in the provided array satisfies an

associated constraint. However, there are some constraints, such as IsEqualTo and
IsGreaterThan, IsLessThan, that natively validate if all elements in the array
satisfy a condition. In these situations, use of EveryElementOf is unnecessary and
impedes qualification performance.

1 Alphabetical List

1-2036

Input Arguments
actVal

Actual value to test against constraint

Properties
ActualValue

Actual value to test against constraint. Set this property through the constructor via the
actVal input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Every Element Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.EveryElementOf

testCase = TestCase.forInteractiveUse;

Test that every element of actVal is less than 55.

import matlab.unittest.constraints.IsLessThan
actVal = [1 1 2 3 5 8 13 21 34];
testCase.verifyThat(EveryElementOf(actVal), IsLessThan(55))

Interactive verification passed.

Test that every element of the actual value array is complex.

 matlab.unittest.constraints.EveryElementOf class

1-2037

import matlab.unittest.constraints.IsReal
testCase.verifyThat(EveryElementOf([1+2i 4i]), ~IsReal)

Interactive verification passed.

Test that every element of the actual value array is less than zero.

import matlab.unittest.constraints.IsLessThan
testCase.verifyThat(EveryElementOf([1 -5]), IsLessThan(0))

Interactive verification failed.

Framework Diagnostic:

At least one element failed.

Failing indices:
 1
The first failing element failed because:
--> IsLessThan failed.
 --> The value must be less than the maximum value.

 Actual Value:
 1
 Maximum Value (Exclusive):
 0

Actual Value Array:
 1 -5

Only the second element is less than zero.

Test that every element of the actual value array has a NaN value.

import matlab.unittest.constraints.HasNaN
testCase.verifyThat(EveryElementOf([NaN 0/0 5]), HasNaN)

Interactive verification failed.

Framework Diagnostic:

At least one element failed.

1 Alphabetical List

1-2038

Failing indices:
 3
The first failing element failed because:
--> HasNaN failed.
 --> The value must be NaN.

 Actual Value:
 5

Actual Value Array:
 NaN NaN 5

Only the third element has a NaN value.

See Also
AnyCellOf | AnyElementOf | EveryCellOf | matlab.unittest.qualifications

 matlab.unittest.constraints.EveryElementOf class

1-2039

matlab.unittest.constraints.HasElementCoun
t class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying expected number of elements

Construction
HasElementCount(countVal) provides a constraint that specifies an expected number
of elements. The constraint is satisfied if the actual value array has the same number of
elements specified as by countVal.

Input Arguments
countVal

Number of elements a value must have to satisfy the constraint.

Properties
Count

Number of elements a value must have to satisfy the constraint. Set this property through
the constructor via the countVal input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

1 Alphabetical List

1-2040

Test for Expected Number of Elements

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasElementCount

testCase = TestCase.forInteractiveUse;

Verify a scalar has an element count of one.

testCase.verifyThat(3, HasElementCount(1))

Interactive verification passed.

Test the element count of the vector.

testCase.assertThat([42 7 13], HasElementCount(3))

Interactive assertion passed.

Test the element count of the matrix.

testCase.assertThat([1 2 3; 4 5 6], HasElementCount(5))

Interactive assertion failed.

Framework Diagnostic:

HasElementCount failed.
--> The value did not have the correct number of elements.

 Actual Number of Elements:
 6
 Expected Number of Elements:
 5

Actual Value:
 1 2 3
 4 5 6
Assertion failed.

The matrix has six elements.

Test that a square identity matrix has the correct number of elements.

 matlab.unittest.constraints.HasElementCount class

1-2041

n = 7;
testCase.assumeThat(eye(n), HasElementCount(n^2))

Interactive assumption passed.

Verify the element count of a cell array of character vectors.

testCase.verifyThat({'someText', 'moreText'}, HasElementCount(2))

Interactive verification passed.

Test the element count of a structure.

s.Field1 = 1;
s.Field2 = 2;
testCase.verifyThat(s, HasElementCount(2))

Interactive verification failed.

Framework Diagnostic:

HasElementCount failed.
--> The value did not have the correct number of elements.

 Actual Number of Elements:
 1
 Expected Number of Elements:
 2

Actual Value:
 Field1: 1
 Field2: 2

The structure has two fields, but it only has one element.

testCase.verifyThat(s, HasElementCount(1))

Interactive verification passed.

See Also
HasLength | HasSize | IsEmpty | numel

1 Alphabetical List

1-2042

matlab.unittest.constraints.HasField class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying structure containing particular field

Construction
HasField(fieldname) provides a constraint specifying structure containing particular
field, fieldname. The constraint is satisfied if the actual value is a structure and that
structure contains a field named fieldname.

Input Arguments
fieldname

Name of the field that a structure must contain to satisfy the constraint, specified as a
character vector.

Properties
Field

Name of the field that a structure must contain to satisfy the constraint. Set this property
through the constructor via the fieldname input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

 matlab.unittest.constraints.HasField class

1-2043

Test That Structure Has Particular Field

Create a TestCase for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasField

testCase = TestCase.forInteractiveUse;

Define the following structure, S, with two fields.

S = struct('Tag', 123, 'Serial', 345);

Verify that the structure has a 'Tag' field.

testCase.verifyThat(S, HasField('Tag'))

Interactive verification passed.

Verify that the structure has a 'tag' field.

testCase.verifyThat(S, HasField('tag'))

Interactive verification failed.

Framework Diagnostic:

HasField failed.
--> The value did not have the expected field.

 Actual Fieldnames:
 'Tag'
 'Serial'
 Expected Fieldname:
 'tag'

Actual Value:
 Tag: 123
 Serial: 345

The verification fails because the field name comparison is case sensitive.

Verify that the structure has a 'Tag' field.

testCase.verifyThat(S, HasField('Tag'))

1 Alphabetical List

1-2044

Interactive verification passed.

Verify that the structure has both a 'Tag' and a 'Serial' field.

testCase.verifyThat(S, HasField('Tag') & HasField('Serial'))

Interactive verification passed.

Verify that the structure does not have a 'Name' field.

testCase.verifyThat(S, ~HasField('Name'))

Interactive verification passed.

See Also

 matlab.unittest.constraints.HasField class

1-2045

matlab.unittest.constraints.HasInf class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying array containing any infinite value

Construction
HasInf creates a constraint that is able to determine if any value of an actual value array
is an infinite value. This constraint is satisfied only if the actual value array contains at
least one infinite value.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Array Contains Infinite Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasInf

testCase = TestCase.forInteractiveUse;

Test that the value Inf satisfies the constraint.

testCase.verifyThat(Inf, HasInf)

Interactive verification passed.

Assert that an array contains an infinite value.

1 Alphabetical List

1-2046

testCase.assertThat([0 1 1 2 3 5 8 13], HasInf)

Interactive assertion failed.

Framework Diagnostic:

HasInf failed.
--> At least one element must be Inf or -Inf.

Actual double:
 0 1 1 2 3 5 8 13
Assertion failed.

The array does not contain any infinite values.

Verify that an array contains an infinite value.

testCase.verifyThat([-Inf 5 NaN], HasInf)

Interactive verification passed.

Assert that a complex number that is infinite in the imaginary part satisfies the constraint.

testCase.assertThat(42+Inf*1i, HasInf)

Interactive verification passed.

Verify that an array does not contain any infinite values.

testCase.verifyThat([NaN -7+NaN*1i], ~HasInf)

Interactive verification passed.

Negating the HasInf constraint does not ensure the value is finite, only that it does not
contain any infinite values.

See Also
HasNaN | IsFinite | isinf

 matlab.unittest.constraints.HasInf class

1-2047

matlab.unittest.constraints.HasLength class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying expected length of array

Construction
HasLength(lengthVal) provides a constraint that specifies an expected length of an
array. The constraint is satisfied if the largest dimension length of the actual value array
has the same number of elements specified as by lengthVal.

Input Arguments
lengthVal

Length a value must have to satisfy the constraint.

Properties
Count

Length a value must have to satisfy the constraint. Set this property through the
constructor via the lengthVal input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

1 Alphabetical List

1-2048

Test for Expected Array Length

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasLength

testCase = TestCase.forInteractiveUse;

Assert that a 2x5x3 array has an expected length.

testCase.assertThat(rand(2, 5, 3), HasLength(5))

Interactive assertion passed.

Verify that a cell array of character vectors has an expected length.

testCase.verifyThat({'SomeString', 'SomeOtherString'}, HasLength(2))

Interactive verification passed.

Verify that an identity matrix has an expected length.

testCase.verifyThat(eye(2), HasLength(4))

Interactive verification failed.

Framework Diagnostic:

HasLength failed.
--> The array has an incorrect length.

 Actual Length:
 2
 Expected Length:
 4

Actual Array:
 1 0
 0 1

 matlab.unittest.constraints.HasLength class

1-2049

The matrix has a length of 2.

See Also
HasElementCount | HasSize | IsEmpty | length

1 Alphabetical List

1-2050

matlab.unittest.constraints.HasNaN class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying array containing NaN value

Construction
HasNaN creates a constraint that is able to determine if any value of an actual value array
is NaN. This constraint is satisfied only if the actual value array contains at least one NaN
value.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Array Contains NaN Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasNaN

testCase = TestCase.forInteractiveUse;

Test that the value NaN satisfies the constraint.

testCase.verifyThat(NaN, HasNaN)

Interactive verification passed.

Assert that an array contains a NaN value.

 matlab.unittest.constraints.HasNaN class

1-2051

testCase.assertThat([0 1 1 2 3 5 8 13], HasNaN)

Interactive assertion failed.

Framework Diagnostic:

HasNaN failed.
--> At least one element must be NaN.

Actual double:
 0 1 1 2 3 5 8 13
Assertion failed.

The array does not contain a NaN value.

Verify that an array contains a NaN value.

testCase.verifyThat([-Inf 5 NaN], HasNaN)

Interactive verification passed.

Assert that a complex number satisfies the constraint.

testCase.assertThat(42+NaN*1i, HasNaN)

Interactive assertion passed.

Verify that an array does not contain any NaN values.

testCase.verifyThat([Inf -7+Inf*1i], ~HasNaN)

Interactive verification passed.

Negating the HasNaN constraint does not ensure the value is finite, only that it does not
contain any NaN values.

See Also
HasInf | IsFinite | isnan

1 Alphabetical List

1-2052

matlab.unittest.constraints.HasSize class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying expected size of array

Construction
HasSize(sizeVal) provides a constraint that specifies an expected size of an array. The
constraint is satisfied if the actual value array size is equal to the size specified by
sizeVal.

Input Arguments
sizeVal

Size a value must have to satisfy the constraint.

Properties
Size

Size a value must have to satisfy the constraint. Set this property through the constructor
via the sizeVal input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

 matlab.unittest.constraints.HasSize class

1-2053

Test for Expected Array Size

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasSize

testCase = TestCase.forInteractiveUse;

Assert that a 2x5x3 array has an expected size.

testCase.assertThat(rand(2, 5, 3), HasSize([2 5 3]))

Interactive assertion passed.

Verify that a cell array of character vectors has an expected size.

testCase.verifyThat({'SomeText', 'SomeOtherText'}, HasSize([1 2]))

Interactive verification passed.

Verify that an identity matrix has an expected size.

testCase.verifyThat(eye(2), HasSize([4 1]))

Interactive verification failed.

Framework Diagnostic:

HasSize failed.
--> The value had an incorrect size.

 Actual Size:
 2 2
 Expected Size:
 4 1

Actual Value:
 1 0
 0 1

1 Alphabetical List

1-2054

The matrix has a size of 2x2.

See Also
HasElementCount | HasLength | IsEmpty | size

 matlab.unittest.constraints.HasSize class

1-2055

matlab.unittest.constraints.HasUniqueEleme
nts class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying set contains unique elements

Construction
HasUniqueElements creates a constraint specifying that a set contains unique
elements. The constraint produces a qualification failure for any actual value set that does
not contain unique elements. If numel(unique(actualSet)) is equal to
numel(actualSet), the constraint considers the actual value set to have unique
elements.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test for Unique Elements

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.HasUniqueElements;

testCase = TestCase.forInteractiveUse;

Test 'abc' and 'Mississippi' for unique elements.

testCase.verifyThat('abc', HasUniqueElements);

1 Alphabetical List

1-2056

Interactive verification passed.

testCase.verifyThat('Mississippi', HasUniqueElements);

Interactive verification failed.

Framework Diagnostic:

HasUniqueElements failed.
--> The value contains 3 nonunique element(s):
 --> Nonunique element found at indices [2 5 8 11]:
 i
 --> Nonunique element found at indices [9 10]:
 p
 --> Nonunique element found at indices [3 4 6 7]:
 s

Actual char:
 Mississippi

Assert that a set of doubles has unique elements.

testCase.assertThat(magic(6), HasUniqueElements);

Interactive assertion passed.

testCase.assertThat(abs(-3:3), HasUniqueElements);

Interactive assertion failed.

Framework Diagnostic:

HasUniqueElements failed.
--> The value contains 3 nonunique element(s):
 --> Nonunique element found at indices [3 5]:
 1
 --> Nonunique element found at indices [2 6]:
 2
 --> Nonunique element found at indices [1 7]:
 3

Actual double:
 3 2 1 0 1 2 3
Assertion failed.

 matlab.unittest.constraints.HasUniqueElements class

1-2057

Verify that a cell array has unique elements.

testCase.verifyThat({'abc','123';'abc','345'},HasUniqueElements);

Interactive verification failed.

Framework Diagnostic:

HasUniqueElements failed.
--> The value contains 1 nonunique element(s):
 --> Nonunique element found at indices [1 2]:
 'abc'

Actual cell:
 'abc' '123'
 'abc' '345'

Assert that a table has unique rows.

t = table([3;3;5],{'A';'C';'E'},logical([1;0;0]));
testCase.assertThat(t,HasUniqueElements);

Interactive assertion passed.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.IsSameSetAs |
unique

Introduced in R2016a

1 Alphabetical List

1-2058

matlab.unittest.constraints.IsAnything class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying any value

Construction
IsAnything provides a constraint specifying any value. The constraint is satisfied by any
value. It is the default constraint for selectors that do not require an input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Instantiate IsAnything Object

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsAnything

testCase = TestCase.forInteractiveUse;

Verify that the following values satisfy the IsAnything constraint: NaN, an
inputParser object, a numeric array, and a complex number.

testCase.verifyThat(NaN, IsAnything)
testCase.verifyThat(inputParser, IsAnything)
testCase.verifyThat(1:10, IsAnything)
testCase.verifyThat(-Inf+5j, IsAnything)

Interactive verification passed.
Interactive verification passed.

 matlab.unittest.constraints.IsAnything class

1-2059

Interactive verification passed.
Interactive verification passed.

Test that empty cells, arrays, and character vectors satisfy the IsAnything constraint.

testCase.verifyThat({}, IsAnything)
testCase.verifyThat([], IsAnything)
testCase.verifyThat('', IsAnything)

Interactive verification passed.
Interactive verification passed.
Interactive verification passed.

The constraint is satisfied even though the data are empty.

See Also
matlab.unittest.selectors

1 Alphabetical List

1-2060

matlab.unittest.constraints.IsEmpty class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying empty value

Construction
IsEmpty provides a constraint that specifies an empty value. The constraint is satisfied if
the actual value array is empty.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Is Empty

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEmpty

testCase = TestCase.forInteractiveUse;

Verify that an empty character vector satisfies the IsEmpty constraint.

testCase.verifyThat('', IsEmpty)

Interactive verification passed.

Assert that a vector is not empty.

testCase.assertThat([13 42], ~IsEmpty)

 matlab.unittest.constraints.IsEmpty class

1-2061

Interactive verification passed.

Verify that a matrix with a dimension of length zero is empty.

testCase.verifyThat(rand(2, 5, 0, 3), IsEmpty)

Interactive verification passed.

Assert that an empty object satisfies the IsEmpty constraint.

testCase.assertThat(MException.empty, IsEmpty)

Interactive assertion passed.

Verify that a cell array containing an empty numeric array is empty.

testCase.verifyThat({[]}, IsEmpty)

Interactive verification failed.

Framework Diagnostic:

IsEmpty failed.
--> The value must be empty.
--> The value has a size of [1 1].

Actual Value:
 {[]}

The cell array is not empty, even though the only thing it contains is an empty array.

See Also
HasCount | HasLength | HasSize | isempty

1 Alphabetical List

1-2062

matlab.unittest.constraints.IsFalse class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying false value

Construction
IsFalse provides a constraint specifying a false value. This constraint is satisfied only by
a scalar logical with a value of false.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test Actual Value Is False

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsFalse

testCase = TestCase.forInteractiveUse;

Test that false satisfies the IsFalse constraint.

testCase.verifyThat(false, IsFalse)

Interactive verification passed.

Test that the IsFalse constraint is not satisfied by true.

testCase.verifyThat(true, IsFalse)

 matlab.unittest.constraints.IsFalse class

1-2063

Interactive verification failed.

Framework Diagnostic:

IsFalse failed.
--> The value must evaluate to "false".

Actual Value:
 1

The test fails because true returns logical(1).

Test that the IsFalse constraint is not satisfied by the double 0.

testCase.verifyThat(0, IsFalse)

Interactive verification failed.

Framework Diagnostic:

IsFalse failed.
--> The value must be logical. It is of type "double".

Actual Value:
 0

The IsFalse constraint is satisfied only by logical(0).

Test that the IsFalse constraint is not satisfied by a logical array of zeros.

testCase.verifyThat([false false false], IsFalse)

Interactive verification failed.

Framework Diagnostic:

IsFalse failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
 0 0 0

1 Alphabetical List

1-2064

The IsFalse constraint is only satisfied if the value is scalar and logical(0).

See Also
IsTrue

 matlab.unittest.constraints.IsFalse class

1-2065

matlab.unittest.constraints.IsFile class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying value points to file

Construction
IsFile creates a constraint specifying that a value is a string scalar or character vector
that points to an existing file. The constraint is satisfied if the value is an absolute or
relative path to an existing file.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Test If File Exists

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsFile;

testCase = TestCase.forInteractiveUse;

Test if myFile.mat is an existing file in your current working folder. This example
assumes that the file does not exist and the test fails.

act = 'myFile.mat';
testCase.verifyThat(act,IsFile)

Interactive verification failed.

1 Alphabetical List

1-2066

Framework Diagnostic:

IsFile failed.
--> Value does not point to an existing file.
--> Current folder during evaluation:
 'C:\work'

Actual char:
 myFile.mat

In your current working folder, create a folder myFolder that contains a file
myTxtFile.txt.

mkdir myFolder
dlmwrite(['myFolder' filesep 'myTxtFile.txt'],rand(5))

Verify that myTxtFile.txt is an existing file in myFolder.

act = ['myFolder' filesep 'myTxtFile.txt'];
testCase.verifyThat(act,IsFile)

Interactive verification passed.

Test That File Does Not Exist

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsFile;

testCase = TestCase.forInteractiveUse;

Verify that nonexistentFile.mat is not an existing file in your current working folder.
This example assumes that the file does not exist and the test passes.

act = 'nonexistentFile.mat';
testCase.verifyThat(act,~IsFile)

Interactive verification passed.

See Also
matlab.unittest.constraints.IsFolder

 matlab.unittest.constraints.IsFile class

1-2067

Introduced in R2018a

1 Alphabetical List

1-2068

matlab.unittest.constraints.IsFinite class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying finite value

Construction
IsFinite creates a constraint that is able to determine if all values of an actual value
array are finite. This constraint is satisfied only if the actual value array does not contain
any infinite or NaN values.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Array Contains Only Finite Values

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsFinite

testCase = TestCase.forInteractiveUse;

Test that the value 17 satisfies the constraint.

testCase.verifyThat(17, IsFinite)

Interactive verification passed.

Assert that an array is completely finite.

 matlab.unittest.constraints.IsFinite class

1-2069

testCase.assertThat([0 1 1 2 3 5 8 13], IsFinite)

Interactive assertion passed.

Verify that an array is completely finite.

testCase.verifyThat([-Inf 5 NaN], IsFinite)

Interactive verification failed.

Framework Diagnostic:

IsFinite failed.
--> All elements must be finite-valued.
 Failing indices:
 1 3

Actual Value:
 -Inf 5 NaN

The array contains an infinite value.

Test if a complex number that is infinite in the imaginary part satisfies the constraint.

testCase.assertThat(42+Inf*1i, IsFinite)

Interactive assertion failed.

Framework Diagnostic:

IsFinite failed.
--> The value must be finite.

Actual Value:
 42.000000000000000 + Infi
Assertion failed.

Verify that an array does not contain all finite values.

testCase.verifyThat([NaN -7+NaN*1i], ~IsFinite)

1 Alphabetical List

1-2070

Interactive verification passed.

See Also
HasInf | HasNaN | isfinite

 matlab.unittest.constraints.IsFinite class

1-2071

matlab.unittest.constraints.IsFolder class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying value points to folder

Construction
IsFolder creates a constraint specifying that a value is a string scalar or character
vector that points to an existing folder. The constraint is satisfied if the value is an
absolute or relative path to an existing folder.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Test If Folder Exists

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsFolder;

testCase = TestCase.forInteractiveUse;

Test if myFolder is an existing folder in your current working folder. This example
assumes that the folder does not exist and the test fails.

act = 'myFolder';
testCase.verifyThat(act,IsFolder)

Interactive verification failed.

1 Alphabetical List

1-2072

Framework Diagnostic:

IsFolder failed.
--> Value does not point to an existing folder.
--> Current folder during evaluation:
 'C:\work'

Actual char:
 myFolder

In your current working folder, create a folder myFolder.

mkdir myFolder

Verify that myFolder is an existing folder in your current working folder.

act = 'myFolder';
testCase.verifyThat(act,IsFolder)

Interactive verification passed.

Test That Folder Does Not Exist

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsFolder;

testCase = TestCase.forInteractiveUse;

Verify that nonexistentFolder is not an existing folder in your current working folder.
This example assumes that the folder does not exist and the test passes.

act = 'nonexistentFolder';
testCase.verifyThat(act,~IsFolder)

Interactive verification passed.

See Also
matlab.unittest.constraints.IsFile

Introduced in R2018a

 matlab.unittest.constraints.IsFolder class

1-2073

matlab.unittest.constraints.IsGreaterThan
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying value greater than another value

Construction
IsGreaterThan(floorVal) creates a constraint specifying that an actual value is
greater than another value. The constraint is satisfied if the actual value array is greater
than the specified floor value, floorVal. The actual value is greater than floorVal only
if the result of the expression actual > floorVal is nonempty and all values are true.

Input Arguments
floorVal

Largest value that fails the constraint.

Properties
FloorValue

Largest value that fails the constraint. Set this property through the constructor via the
floorVal input argument.

Methods

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

1 Alphabetical List

1-2074

Examples

Test That Actual Value Is Greater Than Provided Floor Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsGreaterThan

testCase = TestCase.forInteractiveUse;

Test that the actual value is greater than two.

actVal = 3;
testCase.verifyThat(actVal, IsGreaterThan(2))

Interactive verification passed.

Test that the actual value is greater than three.

testCase.verifyThat(actVal, IsGreaterThan(3))

Interactive verification failed.

Framework Diagnostic:

IsGreaterThan failed.
--> The value must be greater than the minimum value.

Actual double:
 3
Minimum Value (Exclusive):
 3

The actual value is equal to, not greater than, three.

Test that each element in the actual value array is greater than four.

actVal = [5 6 7];
testCase.verifyThat(actVal, IsGreaterThan(4))

Interactive verification passed.

 matlab.unittest.constraints.IsGreaterThan class

1-2075

Test that each element in the actual value matrix is greater than four.

actVal = [1 2 3; 4 5 6];
testCase.verifyThat(actVal, IsGreaterThan(4))

Interactive verification failed.

Framework Diagnostic:

IsGreaterThan failed.
--> Each element must be greater than the minimum value.

 Failing Indices:
 1 2 3 5

Actual double:
 1 2 3
 4 5 6
Minimum Value (Exclusive):
 4

The matrix contains four elements with a value less than or equal to four.

Test that the actual value, 5, is greater than every element in an array.

testCase.verifyThat(5, IsGreaterThan([1 2 3]))

Interactive verification passed.

Test that elements in the actual value array are greater than the corresponding floor
values.

testCase.verifyThat([5 -3 2], IsGreaterThan([4 -9 0]))

Interactive verification passed.

Repeat the test, this time negating the first actual value element.

testCase.verifyThat([-5 -3 2], IsGreaterThan([4 -9 0]))

Interactive verification failed.

Framework Diagnostic:

1 Alphabetical List

1-2076

IsGreaterThan failed.
--> Each element must be greater than each corresponding element of the minimum value array.

 Failing Indices:
 1

Actual double:
 -5 -3 2
Minimum Value (Exclusive):
 4 -9 0

The negated element is less than four.

See Also
IsGreaterThanOrEqualTo | IsLessThan | IsLessThanOrEqualTo | gt

 matlab.unittest.constraints.IsGreaterThan class

1-2077

matlab.unittest.constraints.IsGreaterThanOr
EqualTo class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying value greater than or equal to another value

Construction
IsGreaterThanOrEqualTo(floorVal) creates a constraint specifying that an actual
value is greater than or equal to another value. The constraint is satisfied if the actual
value array is greater than or equal to the specified floor value, floorVal. The actual
value is greater than or equal to floorVal only if the result of the expression actual
>= floorVal is nonempty and all values are true.

Input Arguments
floorVal

Minimum value to satisfy the constraint.

Properties
FloorValue

Minimum value to satisfy the constraint. Set this property through the constructor via the
floorVal input argument.

1 Alphabetical List

1-2078

Methods

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Is Greater Than or Equal to Provided Floor Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsGreaterThanOrEqualTo

testCase = TestCase.forInteractiveUse;

Test that the actual value is greater than or equal to two.

actVal = 3;
testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(2))

Interactive verification passed.

Test that the actual value is greater than or equal to three.

testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(3))

Interactive verification passed.

Test that each element in the actual value array is greater than or equal to four.

actVal = [5 6 7];
testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(4))

Interactive verification passed.

Test that each element in the actual value matrix is greater than or equal to four.

actVal = [1 2 3; 4 5 6];
testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(4))

 matlab.unittest.constraints.IsGreaterThanOrEqualTo class

1-2079

Interactive verification failed.

Framework Diagnostic:

IsGreaterThanOrEqualTo failed.
--> Each element must be greater than or equal to the minimum value.

 Failing Indices:
 1 3 5

Actual double:
 1 2 3
 4 5 6
Minimum Value (Inclusive):
 4

The matrix contains three elements that are greater than or equal to four.

Test that the actual value, 5, is greater than or equal to every element in an array.

testCase.verifyThat(5, IsGreaterThanOrEqualTo([1 2 3 5]))

Interactive verification passed.

Test that elements in the actual value array are greater than or equal to the
corresponding floor values.

testCase.verifyThat([5 -3 0], IsGreaterThanOrEqualTo([4 -9 0]))

Interactive verification passed.

Repeat the test, this time negating the first actual value element.

testCase.verifyThat([-5 -3 0], IsGreaterThanOrEqualTo([4 -9 0]))

Interactive verification failed.

Framework Diagnostic:

IsGreaterThanOrEqualTo failed.
--> Each element must be greater than or equal to each corresponding element of the minimum value array.

 Failing Indices:

1 Alphabetical List

1-2080

 1

Actual double:
 -5 -3 0
Minimum Value (Inclusive):
 4 -9 0

The negated element is less than or equal to four.

See Also
IsGreaterThan | IsLessThan | IsLessThanOrEqualTo | ge

 matlab.unittest.constraints.IsGreaterThanOrEqualTo class

1-2081

matlab.unittest.constraints.IsEqualTo class
Package: matlab.unittest.constraints
Superclasses:

General constraint to compare for equality

Description
The IsEqualTo class creates a constraint that compares data for equality. The type of
comparison it uses is governed by the data type of the expected value. First, the testing
framework checks if the expected value is an object. This check is performed first
because it is possible for the object to have overridden methods that are used in
subsequent checks (e.g. islogical). The following list categorizes and describes the
various tests.

Data Type Equality Comparison Method
MATLAB & Java
Objects

If the expected value is a MATLAB or Java object, the IsEqualTo
constraint calls the isequaln method if it is defined on the expected
value object, otherwise it calls isequal. If the check returns false and a
supported tolerance is specified, the IsEqualTo constraint checks the
actual and expected values for equivalent class, size, and sparsity before
determining if the values are within the tolerance.

If the constraint can determine that the actual and expected values are
equal because they are of the same class and size and all properties are
equal, then IsEqualTo does not call isequal or isequaln.

Logicals If the expected value is a logical, the constraint checks the actual and
expected values for equivalent sparsity. If the sparsity matches, the
constraint compares the values with the isequal method. Otherwise,
the constraint is not satisfied.

1 Alphabetical List

1-2082

Data Type Equality Comparison Method
Numerics If the expected value is numeric, the constraint checks the actual and

expected values for equivalent class, size, and sparsity. If the all these
checks match, the constraint uses the isequaln method for
comparison. If isequaln returns true, the constraint is satisfied. If the
complexity does not match or isequaln returns false, and a
supported tolerance is supplied, the constraint uses the tolerance in the
comparison. Otherwise, the constraint is not satisfied.

Strings If the expected value is a string, the constraint uses the strcmp
function to check the actual and expected values for equality. However, if
the IgnoreCase property is true, the strings are compared using
strcmpi. If the IgnoreWhitespace is true, all whitespace characters
are removed from the actual and expected strings before passing them
to strcmp or strcmpi.

Structures If the expected value is a struct, the constraint compares the field
count of the actual and expected values. If not equal, the constraint is
not satisfied. Otherwise, each field of the expected value struct must
exist on the actual value struct. If any field names are different, the
constraint is not satisfied. Then, the constraint recursively compares the
fields in a depth first examination. The recursion continues until a
fundamental data type is encountered (that is, logical, numeric, string,
or object), and then the values are compared as described above.

Cell Arrays If the expected value is a cell array, the constraint checks the actual and
expected values for size equality. If they are not equal in size, the
constraint is not satisfied. Otherwise, each element of the array is
recursively compared in a manner identical to fields in a structure,
described above.

Tables If the expected value is a table, the actual and expected values are
checked for class equality, size equality, and for equal table properties. If
they are not equal in class, size, or table properties, the constraint is not
satisfied. Then, the constraint compares the size and type of each
column variable and recursively compares each row of the table in a
depth first examination. The recursion continues until a fundamental
data type is encountered (that is, logical, numeric, string, or object), and
then the values are compared as described above.

 matlab.unittest.constraints.IsEqualTo class

1-2083

Construction
IsEqualTo(expVal) provides a general constraint to compare for equality.

IsEqualTo(expVal,Name,Value) provides a constraint with additional options
specified by one or more Name,Value pair arguments. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
expVal

The expected value that is compared to the actual value.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false or true (logical 0
or 1)

Default: false

IgnoringFields

Fields to ignore during struct comparison, specified as a cell array of character vectors.

Default: (empty)

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified as false or true
(logical 0 or 1)

Default: false

1 Alphabetical List

1-2084

Using

Particular comparator to use for constraint construction, specified as a
matlab.unittest.constraints.Comparator object

Default: (empty)

Within

Tolerance to use in constraint construction, specified as a
matlab.unittest.constraints.Tolerance object

Default: (empty)

Properties
Comparator

Specific comparator used in construction of the constraint, specified as a
matlab.unittest.constraints.Comparator object in the name-value pair
argument, 'Using'.

Expected

The expected value that is compared to the actual value specified in the expVal input
argument.

IgnoreCase

Indicator if the constraint is insensitive to case, specified in the name-value pair
argument, 'IgnoringCase'. This property applies at all levels of recursion, such as
nested structures.

IgnoredFields

Fields to ignore during struct comparison, specified in the name-value pair argument,
'IgnoringFields'.

 matlab.unittest.constraints.IsEqualTo class

1-2085

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified in the name-value pair
argument, 'IgnoringWhitespace'. This property applies at all levels of recursion, such
as nested structures.

Tolerance

Specific tolerance used in construction of the constraint, specified as a
matlab.unittest.constraints.Tolerance object in the name-value pair argument,
'Within'. This property applies at all levels of recursion, such as nested structures.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test Numerics for Equality

Create a TestCase for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Verify that an actual value of 5 is equal to the expected value.

expVal = 5;
testCase.verifyThat(5,IsEqualTo(expVal))

Verification passed.

Assume that the actual value is 4.95. Verify that the difference between the actual value
and expected value is less than 0.09.

testCase.verifyThat(4.95,IsEqualTo(expVal,'Within',AbsoluteTolerance(0.09)))

1 Alphabetical List

1-2086

Verification passed.

Assume that the actual value is 4.9. Verify that the difference between the actual and
expected value is less than 1%.

testCase.verifyThat(4.9,IsEqualTo(expVal,'Within',RelativeTolerance(0.01)))

Verification failed.

 Framework Diagnostic:

 IsEqualTo failed.
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> RelativeTolerance failed.
 --> The error was not within relative tolerance.
 --> Failure table:
 Actual Expected Error RelativeError RelativeTolerance
 ______ ________ ___________________ ___________________ _________________
 4.9 5 -0.0999999999999996 -0.0199999999999999 0.01

 Actual Value:
 4.900000000000000
 Expected Value:
 5

The two values differ by more than 1%.

Test Floating Point Calculation with Tolerance

Create a TestCase for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Test that 0.1*3 = 0.3.

act = 0.1*3;
exp = 0.3;
testCase.verifyThat(act, IsEqualTo(exp))

 matlab.unittest.constraints.IsEqualTo class

1-2087

Verification failed.

 Framework Diagnostic:

 IsEqualTo failed.
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ ____________________ ____________________
 0.3 0.3 5.55111512312578e-17 1.85037170770859e-16

 Actual Value:
 0.300000000000000
 Expected Value:
 0.300000000000000

This test fails due to round off error in floating point arithmetic.

Perform the comparison of floating point numbers using a tolerance. Test that 0.1*3 =
0.3 within a relative tolerance of 2*eps.

testCase.verifyThat(act, IsEqualTo(exp, ...
 'Within', RelativeTolerance(2*eps)))

Verification passed.

Test Strings for Equality

Create a TestCase for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo

testCase = TestCase.forInteractiveUse;

Verify that two character vectors are equal.

expVal = 'Hello';
testCase.verifyThat('Hello',IsEqualTo(expVal))

Verification passed.

Change the case of the actual value and test for equality.

1 Alphabetical List

1-2088

testCase.verifyThat('hello',IsEqualTo(expVal))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> StringComparator failed.
 --> The character arrays are not equal.

 Actual char:
 hello
 Expected char:
 Hello

Ignore case and test again.

testCase.verifyThat('hello',IsEqualTo(expVal,'IgnoringCase',true))

Verification passed.

Ignore whitespace and test two character vectors.

expVal = 'a bc';
testCase.verifyThat('abc',IsEqualTo(expVal,'IgnoringWhitespace',true))
testCase.verifyThat('ab c',IsEqualTo(expVal,'IgnoringWhitespace',true))

Verification passed.
Verification passed.

Test Objects for Equality Using Comparator

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.RelativeTolerance
import matlab.unittest.constraints.PublicPropertyComparator

testCase = TestCase.forInteractiveUse;

Define actual and expected timeseries objects. Perturb one of the actual data points by
1%.

 matlab.unittest.constraints.IsEqualTo class

1-2089

expected = timeseries(1:10);
actual = expected;
actual.Data(7) = 1.01*actual.Data(7);

Test that the actual and expected values are equal within a relative tolerance of 2%.

testCase.verifyThat(actual, IsEqualTo(expected,...
 'Within', RelativeTolerance(.02)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.
 --> The objects are not equal using "isequal".
 --> The tolerance was ignored. The tolerance as specified does not support comparisons of timeseries values.

 Actual timeseries:
 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [10x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [1x1x10 double]
 DataInfo: [1x1 tsdata.datametadata]

 More properties, Methods
 Expected timeseries:
 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [10x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [1x1x10 double]
 DataInfo: [1x1 tsdata.datametadata]

 More properties, Methods

Use the PublicPropertyComparator in the construction of the constraint.

testCase.verifyThat(actual, IsEqualTo(expected,...
 'Within', RelativeTolerance(.02),...
 'Using', PublicPropertyComparator.supportingAllValues))

Interactive verification passed.

The test passes because the PublicPropertyComparator compares each public
property individually instead of comparing the object all at once. In the former test, the
ObjectComparator compares timeseries objects, and therefore relies on the
isequal method of the timeseries class. Due to the perturbation in the actual

1 Alphabetical List

1-2090

timeseries, isequal returns false. The comparator does not apply the tolerance
because the double-valued tolerance cannot apply directly to the timeseries object. In
the latter test, the comparator applies the tolerance to each public property that contains
double-valued data.

See Also
matlab.unittest.constraints.Constraint |
matlab.unittest.constraints.Tolerance

Introduced in R2013a

 matlab.unittest.constraints.IsEqualTo class

1-2091

matlab.unittest.constraints.IsInstanceOf
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying inclusion in given class hierarchy

Construction
IsInstanceOf(class) provides a constraint specifying inclusion in a given class
hierarchy. The constraint is satisfied if the actual value instance passes the “isa”
relationship with class .

Input Arguments
class

Class name that the actual value must derive from or be an instance of to satisfy the
constraint, specified as a fully qualified class name represented by a character vector or a
meta.class instance.

Properties
Class

Class name that the actual value must derive from or be an instance of to satisfy the
constraint. Set this property through the constructor via the class input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

1 Alphabetical List

1-2092

Examples

Test That Actual Value Is Instance of Specified Class

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsInstanceOf

testCase = TestCase.forInteractiveUse;

Verify that the actual value, 5, is an instance of the double class.

testCase.verifyThat(5, IsInstanceOf('double'))

Interactive verification passed.

Repeat the test using an instance of meta.class instead of a character vector.

testCase.verifyThat(5, IsInstanceOf(?double))

Interactive verification passed.

Assert that zero is an instance of the logical class.

testCase.assertThat(0, IsInstanceOf('logical'))

Interactive assertion failed.

Framework Diagnostic:

IsInstanceOf failed.
--> The value must be an instance of the expected type.

 Actual Class:
 double
 Expected Type:
 logical

Actual Value:
 0
Assertion failed.

 matlab.unittest.constraints.IsInstanceOf class

1-2093

Verify that @sin is a function handle.

testCase.verifyThat(@sin, IsInstanceOf(?function_handle))

Interactive verification passed.

Verify that name is an instance of the char class.

name = 42;
testCase.verifyThat(name, IsInstanceOf('char'))

Interactive verification failed.

Framework Diagnostic:

IsInstanceOf failed.
--> The value must be an instance of the expected type.

 Actual Class:
 double
 Expected Type:
 char

Actual Value:
 42

Test That Derived Class Is Instance of Specified Class

In a file in your working folder, create a class, DerivedExample, that inherits from the
handle class.

classdef DerivedExample < handle
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsInstanceOf

testCase = TestCase.forInteractiveUse;

Verify that an instance of the DerivedExample class is an instance of a handle.

1 Alphabetical List

1-2094

exObj = DerivedExample;
testCase.verifyThat(exObj, IsInstanceOf(?handle))

Interactive verification passed.

Even though exObj is not an instance of the handle class, the verification passes
because it derives from the handle class.

See Also
IsOfClass | isa

 matlab.unittest.constraints.IsInstanceOf class

1-2095

matlab.unittest.constraints.IsLessThan class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying value less than another value

Construction
IsLessThan(ceilVal) creates a constraint specifying that an actual value is less than
another value. The constraint is satisfied if the actual value array is less than the specified
ceiling value, ceilVal. The actual value is less than ceilVal only if the result of the
expression actual < ceilVal is nonempty and all values are true.

Input Arguments
ceilVal

Smallest value that fails the constraint.

Properties
CeilingValue

Smallest value that fails the constraint. Set this property through the constructor via the
ceilVal input argument.

Methods

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

1 Alphabetical List

1-2096

Examples

Test That Actual Value Is Less Than Provided Ceiling Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsLessThan

testCase = TestCase.forInteractiveUse;

Test that the actual value is less than four.

actVal = 3;
testCase.verifyThat(actVal, IsLessThan(4))

Interactive verification passed.

Test that the actual value is less than three.

testCase.verifyThat(actVal, IsLessThan(3))

Interactive verification failed.

Framework Diagnostic:

IsLessThan failed.
--> The value must be less than the maximum value.

Actual double:
 3
Maximum Value (Exclusive):
 3

The actual value is equal to, not less than, three.

Test that each element in the actual value array is less than four.

actVal = [1 2 3];
testCase.verifyThat(actVal, IsLessThan(4))

Interactive verification passed.

 matlab.unittest.constraints.IsLessThan class

1-2097

Test that each element in the actual value matrix is less than four.

actVal = [1 2 3; 4 5 6];
testCase.verifyThat(actVal, IsLessThan(4))

Interactive verification failed.

Framework Diagnostic:

IsLessThan failed.
--> Each element must be less than the maximum value.

 Failing Indices:
 2 4 6

Actual double:
 1 2 3
 4 5 6
Maximum Value (Exclusive):
 4

The matrix contains three elements that are greater than or equal to four.

Test that the actual value, 0, is less than every element in an array.

testCase.verifyThat(0, IsLessThan([1 2 3]))

Interactive verification passed.

Test that elements in the actual value array are less than the corresponding ceiling
values.

testCase.verifyThat([4 -9 0], IsLessThan([5 -3 2]))

Interactive verification passed.

Repeat the test, this time negating the second actual value element.

testCase.verifyThat([4 9 0], IsLessThan([5 -3 2]))

Interactive verification failed.

Framework Diagnostic:

1 Alphabetical List

1-2098

IsLessThan failed.
--> Each element must be less than each corresponding element of the maximum value array.

 Failing Indices:
 2

Actual double:
 4 9 0
Maximum Value (Exclusive):
 5 -3 2

The negated element is greater than -3.

See Also
IsGreaterThan | IsGreaterThanOrEqualTo | IsLessThanOrEqualTo | lt

 matlab.unittest.constraints.IsLessThan class

1-2099

matlab.unittest.constraints.IsLessThanOrEq
ualTo class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying value less than or equal to another value

Construction
IsLessThanOrEqualTo(ceilVal) creates a constraint specifying that an actual value
is less than or equal to another value. The constraint is satisfied if the actual value array
is less than or equal to the specified ceiling value, ceilVal. The actual value is less than
or equal to ceilVal only if the result of the expression actual <= ceilVal is
nonempty and all values are true.

Input Arguments
ceilVal

Maximum value to satisfy the constraint.

Properties
CeilingValue

Maximum value to satisfy the constraint. Set this property through the constructor via the
ceilVal input argument.

1 Alphabetical List

1-2100

Methods

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Is Less Than or Equal to Provided Ceiling Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsLessThanOrEqualTo

testCase = TestCase.forInteractiveUse;

Test that the actual value is less than or equal to four.

actVal = 3;
testCase.verifyThat(actVal, IsLessThanOrEqualTo(4))

Interactive verification passed.

Test that the actual value is less than or equal to three.

testCase.verifyThat(actVal, IsLessThanOrEqualTo(3))

Interactive verification passed.

Test that each element in the actual value array is less than or equal to four.

actVal = [1 2 3 4];
testCase.verifyThat(actVal, IsLessThanOrEqualTo(4))

Interactive verification passed.

Test that each element in the actual value matrix is less than or equal to four.

actVal = [1 2 3; 4 5 6];
testCase.verifyThat(actVal, IsLessThanOrEqualTo(4))

 matlab.unittest.constraints.IsLessThanOrEqualTo class

1-2101

Interactive verification failed.

Framework Diagnostic:

IsLessThanOrEqualTo failed.
--> Each element must be less than or equal to the maximum value.

 Failing Indices:
 4 6

Actual double:
 1 2 3
 4 5 6
Maximum Value (Inclusive):
 4

The matrix contains two elements that are greater than four.

Test that the actual value, 1, is less than or equal to every element in an array.

testCase.verifyThat(1, IsLessThanOrEqualTo([1 2 3]))

Interactive verification passed.

Test that elements in the actual value array are less than the corresponding ceiling
values.

testCase.verifyThat([4 -9 2], IsLessThanOrEqualTo([5 -3 2]))

Interactive verification passed.

Repeat the test, this time negating the second actual value element.

testCase.verifyThat([4 9 2], IsLessThanOrEqualTo([5 -3 2]))

Interactive verification failed.

Framework Diagnostic:

IsLessThanOrEqualTo failed.
--> Each element must be less than or equal to each corresponding element of the maximum array.

 Failing Indices:

1 Alphabetical List

1-2102

 2

Actual double:
 4 9 2
Maximum Value (Inclusive):
 5 -3 2

The negated element is greater than -3.

See Also
IsGreaterThan | IsGreaterThanOrEqualTo | IsLessThan | le

 matlab.unittest.constraints.IsLessThanOrEqualTo class

1-2103

matlab.unittest.constraints.IsOfClass class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying class type

Construction
IsOfClass(class) provides a constraint specifying the class type. The constraint is
satisfied if the actual value is the same class as class . The constraint is not satisfied if
the actual value derives from class.

Input Arguments
class

Class name that must be matched by the actual value to satisfy the constraint, specified
as a fully qualified class name represented by a character vector or a meta.class
instance.

Properties
Class

Class name that must be matched by the actual value to satisfy the constraint. Set this
property through the constructor via the class input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

1 Alphabetical List

1-2104

Test That Actual Value Class Is Specified Class

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsOfClass

testCase = TestCase.forInteractiveUse;

Verify that the actual value, 5, is a double.

testCase.verifyThat(5, IsOfClass('double'))

Interactive verification passed.

Repeat the test using an instance of meta.class instead of a character vector.

testCase.verifyThat(5, IsOfClass(?double))

Interactive verification passed.

Assert that zero is an instance of the logical class.

testCase.assertThat(0, IsOfClass('logical'))

Interactive assertion failed.

Framework Diagnostic:

IsOfClass failed.
--> The value's class is incorrect.

 Actual Class:
 double
 Expected Class:
 logical

Actual Value:
 0
Assertion failed.

Verify that @sin is a function handle.

testCase.verifyThat(@sin, IsOfClass(?function_handle))

 matlab.unittest.constraints.IsOfClass class

1-2105

Interactive verification passed.

Verify that name is an instance of the char class.

name = 42;
testCase.verifyThat(name, IsOfClass('char'))

Interactive verification failed.

Framework Diagnostic:

IsOfClass failed.
--> The value's class is incorrect.

 Actual Class:
 double
 Expected Class:
 char

Actual Value:
 42

Test That Derived Class Is Instance of Specified Class

In a file in your working folder, create a class, DerivedExample, that inherits from the
handle class.

classdef DerivedExample < handle
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsOfClass

testCase = TestCase.forInteractiveUse

Verify that an instance of the DerivedExample class is an instance of a handle.

exObj = DerivedExample;
testCase.verifyThat(exObj, IsOfClass(?handle))

1 Alphabetical List

1-2106

Interactive verification failed.

Framework Diagnostic:

IsOfClass failed.
--> The value's class is incorrect.

 Actual Class:
 DerivedExample
 Expected Class:
 handle

Actual Value:
 DerivedExample with no properties.

Even though exObj derives from the handle class, it is not an instance of the handle
class.

Verify that an instance of the DerivedExample class is an instance of a
DerivedExample.

testCase.verifyThat(exObj, IsOfClass(?DerivedExample))

Interactive verification passed.

See Also
IsInstanceOf | class

 matlab.unittest.constraints.IsOfClass class

1-2107

matlab.unittest.constraints.IsReal class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying real valued array

Construction
IsReal provides a constraint specifying a real valued array. This constraint is satisfied
only if the actual value contains only real values.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Array Is Real Valued

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsReal

testCase = TestCase.forInteractiveUse;

Verify that the values 5 and 5+0i are real.

testCase.verifyThat(5, IsReal)
testCase.verifyThat(5+0i, IsReal)

Interactive verification passed.
Interactive verification passed.

Test if the imaginary number is real.

1 Alphabetical List

1-2108

testCase.verifyThat(sqrt(-1), IsReal)

Interactive verification failed.

Framework Diagnostic:

IsReal failed.
--> The value must be real.

Actual Value:
 0.000000000000000 + 1.000000000000000i

The actual value is imaginary.

Assert that an array contains only real values.

testCase.assertThat([0 1 1 2 3 5 8 13], IsReal)

Interactive assertion passed.

Test that the array, arr, is real.

arr = [NaN -Inf];
testCase.verifyThat(arr, IsReal)

Interactive verification passed.

Multiply the array by a complex number and test that the values are not real.

testCase.verifyThat(42i*arr, ~IsReal)

Interactive verification passed.

See Also
isreal

 matlab.unittest.constraints.IsReal class

1-2109

matlab.unittest.constraints.IsSameHandleAs
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying handle instance same as another

Construction
IsSameHandle(h) provides a constraint specifying a handle instance or group of
instances is same as another.

The constraint is satisfied only if each element of the actual value is the same instance as
each corresponding element of h.

Input Arguments
h

handle object or array of handle objects. The actual value array passed to the
qualification must be the same size as h.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test Handles for Equality

In a file in your working folder, create the following handle class for interactive testing.

1 Alphabetical List

1-2110

classdef ExampleHandle < handle
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsSameHandleAs

testCase = TestCase.forInteractiveUse;

Instantiate two handles.

h1 = ExampleHandle;
h2 = ExampleHandle;

Verify that the handle, h1, is the same as h1.

testCase.verifyThat(h1, IsSameHandleAs(h1))

Interactive verification passed.

Test that h1 is the same handle instance as h2.

testCase.verifyThat(h1, IsSameHandleAs(h2))

Interactive verification failed.

Framework Diagnostic:

IsSameHandleAs failed.
--> Values do not refer to the same handle.

Actual Value:
 ExampleHandle with no properties.
Expected Handle Object:
 ExampleHandle with no properties.

Test that two arrays of handles are the same instances.

expArr = [h1 h2 h1];
actArr = [h1 h2 h1];

testCase.verifyThat(expArr, IsSameHandleAs(actArr))

Interactive verification passed.

 matlab.unittest.constraints.IsSameHandleAs class

1-2111

The arrays satisfy the constraint even though the elements within a particular array are
not the same instance as each other.

Verify that the constraint is not satisfied if it expects a single handle and the actual value
is an array of the same instances.

testCase.verifyThat([h1 h1], IsSameHandleAs(h1))

Interactive verification failed.

Framework Diagnostic:

IsSameHandleAs failed.
--> Sizes do not match.
 Actual Value Size : [1 2]
 Expected Handle Object Size : [1 1]

Actual Value:
 1x2 ExampleHandle array with no properties.
Expected Handle Object:
 ExampleHandle with no properties.

Similarly, the constraint is not satisfied a single handle instance if it expects an array of
handles.

testCase.verifyThat(h2, IsSameHandleAs([h2 h2]))

Interactive verification failed.

Framework Diagnostic:

IsSameHandleAs failed.
--> Sizes do not match.
 Actual Value Size : [1 1]
 Expected Handle Object Size : [1 2]

Actual Value:
 ExampleHandle with no properties.

1 Alphabetical List

1-2112

Expected Handle Object:
 1x2 ExampleHandle array with no properties.

See Also
IsEqualTo | eq | handle

 matlab.unittest.constraints.IsSameHandleAs class

1-2113

matlab.unittest.constraints.IsSameSetAs
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying set contains same elements as another set

Construction
IsSameSetAs(expSet) creates a constraint specifying that a set contains same
elements as another set. The constraint produces a qualification failure for any actual-
value set that is not the same set as the expected-value set.

Sets can have the same elements in different orders, different numbers, or different
shapes. An actual value is considered the same set as the expected set if
ismember(actual,expected) and ismember(expected,actual) both return arrays
that contain all true values and at least one of the following conditions is met:

• The actual set and the expected set are of the same class.
• The actual set is an object.
• The expected set is an object.

Input Arguments
expSet — Expected-value set to compare to actual-value set
depends on test values

Expected-value set to compare to actual-value set. The type of the input depends on the
test values.

Properties
ExpectedSet — Expected-value set to compare to actual-value set
depends on test values

1 Alphabetical List

1-2114

This property is read-only.

Expected-value set to compare to actual-value set. The data type of the property depends
on the test values. Set this property through the constructor via the expSet input
argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Test if Actual and Expected Sets Are the Same

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsSameSetAs;

testCase = TestCase.forInteractiveUse;

Verify that two sets are the same.

actSet = {'a' 'b' 'c'};
expSet = {'a' 'b' 'c'};

testCase.verifyThat(actSet,IsSameSetAs(expSet))

Interactive verification passed.

Repeat the test with a different expected set. The test fails because the sets do not
contain the same elements.

expSet = {'a' 'b' 'd'};

testCase.verifyThat(actSet,IsSameSetAs(expSet))

Interactive verification failed.

Framework Diagnostic:

 matlab.unittest.constraints.IsSameSetAs class

1-2115

IsSameSetAs failed.
--> The actual value contains 1 element(s) not found in the expected set:
 --> Element at index 3:
 {'c'}
--> The actual value is missing 1 element(s) found in the expected set:
 --> Element at index 3:
 {'d'}

Actual Value:
 1×3 cell array

 {'a'} {'b'} {'c'}
Expected Set:
 1×3 cell array

 {'a'} {'b'} {'d'}

Verify that two sets are the same. Although the order of the elements and the shape of the
sets are different, the sets contain the same elements.

actSet = [1 2 3];
expSet = [3;2;1];

testCase.verifyThat(actSet,IsSameSetAs(expSet))

Interactive verification passed.

Verify that two sets are the same. Although the expSet contains elements that are not
unique and has a size that does not match actSet, the two sets have the same elements.

expSet = [1 2 3 1 2];

testCase.verifyThat(actSet,IsSameSetAs(expSet))

Interactive verification passed.

See Also
ismember | matlab.unittest.constraints.HasUniqueElements |
matlab.unittest.constraints.IsSubsetOf |
matlab.unittest.constraints.IsSupersetOf

1 Alphabetical List

1-2116

Introduced in R2018a

 matlab.unittest.constraints.IsSameSetAs class

1-2117

matlab.unittest.constraints.IsScalar class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying scalar value

Construction
IsScalar provides a constraint that specifies a scalar value. The constraint is satisfied if
the actual value is a scalar.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Is Scalar

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsScalar

testCase = TestCase.forInteractiveUse;

Verify that a value of zero satisfies the IsScalar constraint.

testCase.verifyThat(0,IsScalar)

Interactive verification passed.

Assert that a single object is scalar.

testCase.assertThat(timeseries(1),IsScalar)

1 Alphabetical List

1-2118

Interactive verification passed.

Verify that a vector is not scalar.

testCase.verifyThat([2 3],IsScalar)

Interactive verification failed.

Framework Diagnostic:

IsScalar failed.
--> The value must be a scalar.
--> The value has a size of [1 2].

Actual Value:
 2 3

Assert that an empty structure does not satisfy the IsScalar constraint.

testCase.assertThat(struct([]),IsScalar)

Interactive assertion failed.

Framework Diagnostic:

IsScalar failed.
--> The value must be a scalar.
--> The value has a size of [0 0].

Actual Value:
 0x0 struct array with no fields.
Assertion failed.

See Also
HasElementCount | HasLength | HasSize | IsEmpty | isscalar

Introduced in R2014b

 matlab.unittest.constraints.IsScalar class

1-2119

matlab.unittest.constraints.IsSparse class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying sparse array

Construction
IsSparse creates a constraint specifying a sparse array. This constraint is satisfied only
when the actual value is sparse.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Array Is Sparse

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsSparse

testCase = TestCase.forInteractiveUse;

Create an identity matrix, and test if it is sparse.

F = eye(7);
testCase.verifyThat(F, IsSparse)

Interactive verification failed.

Framework Diagnostic:

1 Alphabetical List

1-2120

IsSparse failed.
--> The value must be sparse.

Actual Value:
 1 0 0 0 0 0 0
 0 1 0 0 0 0 0
 0 0 1 0 0 0 0
 0 0 0 1 0 0 0
 0 0 0 0 1 0 0
 0 0 0 0 0 1 0
 0 0 0 0 0 0 1

The matrix, F, is a full matrix.

Convert F to a sparse matrix and retest for sparsity.

S = sparse(F);
testCase.verifyThat(S, IsSparse)

Interactive verification passed.

See Also
issparse

 matlab.unittest.constraints.IsSparse class

1-2121

matlab.unittest.constraints.IsSubsetOf class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying actual set is subset of expected set

Construction
IsSubsetOf(expSet) creates a constraint specifying that the actual value set is a
subset of the expected value set. The constraint produces a qualification failure for any
actual value set that is not a subset of the expected value set. An actual value set is
considered a subset of the expected value set if ismember(actSet,expSet) contains all
true values and the actual and expected values satisfy one of the following conditions:

• The actual and expected values are of the same class.
• The actual value is an object.
• The expected value is an object.

Input Arguments
expSet — Expected value set to compare to actual value set
depends on test values

Expected value set to compare to actual value set. The type of the input depends on the
test values.

Properties
Superset — Superset of actual value set
depends on test values

Superset of the actual value set. The data type of the property depends on the test values.
To satisfy the constraint, the actual value set must be a subset of Superset. Set this
property through the constructor via the expSet input argument.

1 Alphabetical List

1-2122

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test if Actual Set Is Subset of Expected

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsSubsetOf;

testCase = TestCase.forInteractiveUse;

Verify that the actual cell array is a subset of the expected set.

testCase.verifyThat({'c','b'}, IsSubsetOf({'a','b','c'}));

Interactive verification passed.

testCase.verifyThat({'a';'d'}, IsSubsetOf({'a','b','c'}));

Interactive verification failed.

Framework Diagnostic:

IsSubsetOf failed.
--> The actual value contains 1 element(s) not found in the expected superset:
 --> Element at index 2 not found in the expected superset:
 'd'

Actual Value (cell):
 'a'
 'd'
Expected Superset (cell):
 'a' 'b' 'c'

Assert that a set of doubles is a subset of the expected set.

testCase.assertThat([25;209], IsSubsetOf(magic(21)));

 matlab.unittest.constraints.IsSubsetOf class

1-2123

Interactive assertion passed.

testCase.assertThat(25:33, IsSubsetOf(30:40));

Interactive assertion failed.

Framework Diagnostic:

IsSubsetOf failed.
--> The actual value contains 5 element(s) not found in the expected superset:
 --> Element at index 1 not found in the expected superset:
 25
 --> Element at index 2 not found in the expected superset:
 26
 --> Element at index 3 not found in the expected superset:
 27
 --> Element at index 4 not found in the expected superset:
 28
 --> Element at index 5 not found in the expected superset:
 29

Actual Value (double):
 25 26 27 28 29 30 31 32 33
Expected Superset (double):
 30 31 32 33 34 35 36 37 38 39 40
Assertion failed.

Verify that the rows of a table are a subset of the expected table.

actT = table([3,1]',{'C';'A'},logical([0;1]));
expT = table([1:2:5]',{'A';'C';'E'},logical([1;0;0]));
testCase.verifyThat(actT, IsSubsetOf(expT));

Interactive verification passed.

Test that if the actual and expected sets have different types, the IsSubsetOf constraint
is not satisfied.

testCase.assumeThat(single(1:3), IsSubsetOf(0:5));

Interactive assumption failed.

Framework Diagnostic:

1 Alphabetical List

1-2124

IsSubsetOf failed.
--> Classes do not match.

 Actual Class:
 single
 Expected Class:
 double

Actual Value (single):
 1 2 3
Expected Superset (double):
 0 1 2 3 4 5
Assumption failed.

See Also
ismember | matlab.unittest.constraints |
matlab.unittest.constraints.IsSameSetAs |
matlab.unittest.constraints.IsSupersetOf

Introduced in R2016a

 matlab.unittest.constraints.IsSubsetOf class

1-2125

matlab.unittest.constraints.IsSubstringOf
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying substring of another string

Construction
IsSubstringOf(superstring) creates a constraint specifying a substring of another
string scalar or character vector. The constraint is satisfied only if the actual value is
contained within an expected superstring, superstring.

IsSubstringOf(superstring,Name,Value) provides a constraint with additional
options specified by one or more Name,Value pair arguments. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
superstring

Text that contains the actual value, specified as a string scalar or character vector.
superstring can include newline characters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false or true (logical 0
or 1)

1 Alphabetical List

1-2126

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified as false or true
(logical 0 or 1)

Default: false

Properties
IgnoreCase

Indicator if the constraint is insensitive to case, specified in the name-value pair
argument, 'IgnoringCase'. This property applies at all levels of recursion, such as
nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified in the name-value pair
argument, 'IgnoringWhitespace'. This property applies at all levels of recursion, such
as nested structures.

Superstring

Superstring that includes the actual value, specified in the input argument,
superstring.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Is Substring of Specified String

Create a test case for interactive testing.

 matlab.unittest.constraints.IsSubstringOf class

1-2127

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsSubstringOf

testCase = TestCase.forInteractiveUse;

Define the actual value string.

S = string('This Is One Long String');

Test that the actual value string, 'One', is contained in S.

testCase.verifyThat('One', IsSubstringOf(S))

Interactive verification passed.

Test that the actual value 'long' is contained in S.

testCase.verifyThat('long', IsSubstringOf(S))

Interactive verification failed.

Framework Diagnostic:

IsSubstringOf failed.
--> The value is not found within the superstring.

Actual char:
 long
Expected Superstring:
 This Is One Long String

By default, the IsSubstringOf constraint is case sensitive.

Repeat the test ignoring case.

testCase.verifyThat('long', IsSubstringOf(S,...
 'IgnoringCase', true))

Interactive verification passed.

Test that the actual value 'thisisone' is contained in S. For the test to pass, configure
the constraint to ignore whitespace and case.

testCase.verifyThat('thisisone', IsSubstringOf(S, ...
 'IgnoringCase', true, 'IgnoringWhitespace', true))

1 Alphabetical List

1-2128

Interactive verification passed.

Assert that the actual value 'longer' is not contained in S.

testCase.assertThat('Longer', ~IsSubstringOf(S))

Interactive assertion passed.

See Also
ContainsSubstring | EndsWithSubstring | Matches | StartsWithSubstring

 matlab.unittest.constraints.IsSubstringOf class

1-2129

matlab.unittest.constraints.IssuesNoWarnin
gs class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying function that issues no warnings

Construction
outConstObj = IssuesNoWarnings creates a constraint, outConstObj, specifying a
function that issues no warnings when the testing framework invokes it. The constraint is
satisfied if no warnings are issued when the testing framework invokes the function.

outConstObj = IssuesNoWarnings('WhenNargoutIs', numOutputs) creates a
constraint that can determine if the actual value is a function handle that issues no
warnings when the testing framework invokes it with a particular number of output
arguments, numOutputs.

Input Arguments
numOutputs

Number of outputs the constraint requests when invoking the function handle, specified
as a non-negative, real, scalar integer.

Default: 0

Properties
FunctionOutputs

Output arguments produced at invocation of the supplied function handle, specified as a
cell array. This property provides access to output arguments. It is read only and the
testing framework sets it when it invokes the function handle. The number of outputs is
determined by the Nargout property.

1 Alphabetical List

1-2130

Nargout

Number of output arguments the instance uses when executing functions. Set this
property through the constructor via the numOutputs input argument.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Instantiate IssuesNoWarnings Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IssuesNoWarnings

testCase = TestCase.forInteractiveUse;

Verify that a call to true does not result in any warning.

testCase.verifyThat(@true, IssuesNoWarnings)

Interactive verification passed.

Verify that a call to size with an empty array does not result in any warning. Examine the
output arguments.

issuesNoWarningsConstraint = IssuesNoWarnings('WhenNargoutIs', 2);
testCase.verifyThat(@() size([]), issuesNoWarningsConstraint)
[actualOut1, actualOut2] = issuesNoWarningsConstraint.FunctionOutputs{:};

Interactive verification passed.

Verify that the constraint is not satisfied if the actual value is not a function handle.

testCase.verifyThat(5, IssuesNoWarnings)

Interactive verification failed.

 matlab.unittest.constraints.IssuesNoWarnings class

1-2131

Framework Diagnostic:

IssuesNoWarnings failed.
--> The value must be an instance of the expected type.

 Actual Class:
 double
 Expected Type:
 function_handle

Actual Value:
 5

Verify that the constraint is not satisfied if the actual value results in a warning.

testCase.verifyThat(@() warning('some:id', 'Message'), IssuesNoWarnings)

Warning: Message
> In @()warning('some:id','Message')
 In matlab.unittest.internal.constraints.FunctionHandleConstraint/invoke (line 36)
 In matlab.unittest.internal.constraints.WarningQualificationConstraint/invoke (line 39)
 In matlab.unittest.constraints.IssuesNoWarnings/issuesNoWarnings (line 140)
 In matlab.unittest.constraints.IssuesNoWarnings/satisfiedBy (line 90)
 In matlab.unittest.internal.qualifications.QualificationDelegate/qualifyThat (line 62)
 In matlab.unittest.qualifications.Verifiable/verifyThat (line 228)
Interactive verification failed.

Framework Diagnostic:

IssuesNoWarnings failed.
--> The function issued warnings.

 Warnings Issued:
 --> 'some:id'
 Message

1 Alphabetical List

1-2132

Evaluated Function:
 @()warning('some:id','Message')

See Also
matlab.unittest.constraints.Constraint |
matlab.unittest.constraints.IssuesWarnings |
matlab.unittest.constraints.Throws | warning

 matlab.unittest.constraints.IssuesNoWarnings class

1-2133

matlab.unittest.constraints.IssuesWarnings
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying function that issues expected warning profile

Description
The IssuesWarnings class creates a constraint that issues an expected warning profile.
The constraint is satisfied only if the actual value is a function handle that issues a
specific set of warnings. You specify warnings using warning identifiers.

By default, the constraint only confirms that when the testing framework invokes the
function handle, MATLAB issues the specified set of warnings. It ignores the number of
times the warnings are issued, in what order they are issued, and whether or not any
unspecified warnings are issued. However, you can set parameters to respect the order,
the count, and the warning set. Alternatively, you can specify the exact warning profile for
comparison.

Construction
outConstObj = IssuesWarnings(warnArr) creates a constraint, outConstObj,
specifying a function that issues expected warnings, warnArr.

outConstObj = IssuesWarnings(expVal,Name,Value) creates a constraint with
additional options specified by one or more Name,Value pair arguments. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-2134

Input Arguments
warnArr

Warning identifiers expected when the testing framework invokes the function handle,
specified as a cell array of warning identifiers. If warnArr is empty, the constructor
throws an MException.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Exactly

Indicator if the value is a function handle that must issue a warning profile that is an
exact match, specified as false or true (logical 0 or 1). When this value is false, the
instance relies on specification of other parameters and default instance behavior to
determine the strictness of its comparison. When set to true, the instance requires the
warning profile to be exactly the same as the specified warning profile.

Default: false

RespectingCount

Indicator whether to respect element counts, specified as false or true (logical 0 or
1). When this value is false, the instance is insensitive to the number of occurrences of
members and ignores their frequency. When set to true, the instance is sensitive to the
total number of set members. This means that, in addition to ensuring that all of the
specified warnings are issued, this instance is not satisfied if the number of times that a
particular warning issues differs from the number of times that warning is specified in
warnArr.

Default: false

RespectingOrder

Indicator whether to respect the order of elements, specified as false or true (logical
0 or 1). When this value is false, the instance is insensitive to the order of the set
members. When set to true, the instance is sensitive to the order of the set members.

 matlab.unittest.constraints.IssuesWarnings class

1-2135

This means that this instance is not satisfied if the order of the issued warnings differs
from the order the warnings are specified in warnArr.

The order of a given set of warnings is determined by trimming the warning profiles to a
profile with no repeated adjacent warnings. For example, the warning profile {id:A,
id:A, id:B, id:C, id:C, id:C, id:A, id:A, id:A} is trimmed to {id:A,
id:B, id:C, id:A}.

When this constraint respects order, the order of the warnings that are issued and
expected must match the order of the expected warning profile. Warnings issued that are
not listed in warnArr are ignored when determining order.

Default: false

RespectingSet

Indicator whether to respect set elements, specified as false or true (logical 0 or 1).
When this value is false, the instance ignores additional set members. When set to
true, the instance is sensitive to additional set members. This means that, in addition to
ensuring that all of the specified warnings are issued, this instance is not satisfied if any
extra, unspecified warnings are issued.

Default: false

WhenNargoutIs

Number of outputs the constraint should request when invoking the function handle,
specified as a non-negative, real, scalar integer.

Default: 0

Properties
Exact

Indicator of whether the constraint performs exact comparisons. Set this property
through the constructor via the name-value pair argument, 'Exactly'.

1 Alphabetical List

1-2136

ExpectedWarnings

Expected warning identifiers. Set this read-only property through the constructor via the
warnArr input argument.

FunctionOutputs

Output arguments produced at invocation of the supplied function handle, specified as a
cell array. This property provides access to output arguments. It is read only and the
testing framework sets it when it invokes the function handle. The number of outputs is
determined by the Nargout property.

Nargout

Number of output arguments the instance uses when it executes functions. Set this
property through the constructor via the name-value pair argument, 'WhenNargoutIs'.

RespectCount

Indicator if the constraint respects the element counts, specified through the constructor
via the name-value pair argument, 'RespectingCount'.

RespectOrder

Indicator if the constraint respects the order of elements, specified through the
constructor via the name-value pair argument, 'RespectingOrder'.

RespectSet

Indicator if the constraint respects set elements, specified through the constructor via the
name-value pair argument, 'RespectingSet'.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

 matlab.unittest.constraints.IssuesWarnings class

1-2137

Instantiate IssuesWarnings Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IssuesWarnings

testCase = TestCase.forInteractiveUse;

Create a helper anonymous function for use in this example. Create several warning
identifiers.

issueWarnings = @(idCell) cellfun(@(id) warning(id,'Message'), idCell);
firstID = 'first:id';
secondID = 'second:id';
thirdID = 'third:id';

Verify that the helper function issues a particular warning.

testCase.verifyThat(@() issueWarnings({firstID}),...
 IssuesWarnings({firstID}))

Interactive verification passed.

Verify the function issues a warning ignoring count, warning set, and order.

testCase.verifyThat(@() issueWarnings({firstID, thirdID, secondID,...
 firstID}), IssuesWarnings({secondID, firstID}))

Interactive verification passed.

Verify the function issues a warning while respecting the warning set.

testCase.verifyThat(@() issueWarnings({firstID, thirdID, secondID,...
 firstID}), IssuesWarnings({firstID, secondID, thirdID}, ...
 'RespectingSet', true))

Interactive verification passed.

Verify the function issues a warning while respecting the warning count.

testCase.verifyThat(@() issueWarnings({secondID, firstID, thirdID,...
 secondID}), IssuesWarnings({firstID, secondID, secondID}, ...
 'RespectingCount', true))

Interactive verification passed.

1 Alphabetical List

1-2138

Verify the function issues a warning while respecting the warning order.

testCase.verifyThat(@() issueWarnings({firstID, secondID, secondID,...
 thirdID}), IssuesWarnings({firstID, secondID}, 'RespectingOrder', true))

Interactive verification passed.

Verify the function issues an exact match to the expected warning profile.

testCase.verifyThat(@() issueWarnings({firstID, secondID, secondID,...
 thirdID}), IssuesWarnings({firstID, secondID, secondID, thirdID}, ...
 'Exactly', true))

Interactive verification passed.

Verify that the constraint is not satisfied if the actual value is not a function handle.

testCase.verifyThat(5, IssuesWarnings({firstID}))

Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.
--> The value must be an instance of the expected type.

 Actual Class:
 double
 Expected Type:
 function_handle

Actual Value:
 5

Verify that the constraint is not satisfied if the function does not issue a warning.

testCase.verifyThat(@rand, IssuesWarnings({firstID}))

Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.
--> The function handle did not issue a correct warning profile.

 matlab.unittest.constraints.IssuesWarnings class

1-2139

 The expected warning profile ignores:
 Set
 Count
 Order
 --> The function handle did not issue any warnings.

 Expected Warning Profile:
 --> 'first:id'

Evaluated Function:
 @rand

Verify that the constraint is not satisfied if the function issues a non-specified warning
identifier.

testCase.verifyThat(@() issueWarnings({firstID}), IssuesWarnings({secondID}))

Warning: Message
> In @(id)warning(id,'Message')
 In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
 In @()issueWarnings({firstID})
 In matlab.unittest.internal.constraints.FunctionHandleConstraint/invoke (line 36)
 In matlab.unittest.internal.constraints.WarningQualificationConstraint/invoke (line 39)
 In matlab.unittest.constraints.IssuesWarnings/invoke (line 431)
 In matlab.unittest.constraints.IssuesWarnings/invokeCapturingOutput (line 510)
 In matlab.unittest.constraints.IssuesWarnings/issuesExpectedWarnings (line 519)
 In matlab.unittest.constraints.IssuesWarnings/satisfiedBy (line 239)
 In matlab.unittest.internal.qualifications.QualificationDelegate/qualifyThat (line 62)
 In matlab.unittest.qualifications.Verifiable/verifyThat (line 228)
Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.
--> The function handle did not issue a correct warning profile.
 The expected warning profile ignores:
 Set
 Count
 Order
 --> The function handle did not issue the correct warnings.

 Missing Warnings:
 --> 'second:id'

1 Alphabetical List

1-2140

 Actual Warning Profile:
 --> 'first:id'
 Expected Warning Profile:
 --> 'second:id'

Evaluated Function:
 @()issueWarnings({firstID})

Consider the following actual value and warning array.

actVal = @() issueWarnings({firstID, firstID, secondID, firstID});
warnArr = {firstID, secondID, firstID, firstID};

Test whether the warning array is exactly the same as the expected array.

testCase.verifyThat(actVal, IssuesWarnings(warnArr, 'Exactly', true))

Warning: Message
> In @(id)warning(id,'Message')
 In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
 In @()issueWarnings({firstID,firstID,secondID,firstID})
 In matlab.unittest.internal.constraints.FunctionHandleConstraint/invoke (line 36)
 In matlab.unittest.internal.constraints.WarningQualificationConstraint/invoke (line 39)
 In matlab.unittest.constraints.IssuesWarnings/invoke (line 431)
 In matlab.unittest.constraints.IssuesWarnings/invokeCapturingOutput (line 510)
 In matlab.unittest.constraints.IssuesWarnings/issuesExpectedWarnings (line 519)
 In matlab.unittest.constraints.IssuesWarnings/satisfiedBy (line 239)
 In matlab.unittest.internal.qualifications.QualificationDelegate/qualifyThat (line 62)
 In matlab.unittest.qualifications.Verifiable/verifyThat (line 228)
Warning: Message
> In @(id)warning(id,'Message')
 In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
 In @()issueWarnings({firstID,firstID,secondID,firstID})
 In matlab.unittest.internal.constraints.FunctionHandleConstraint/invoke (line 36)
 In matlab.unittest.internal.constraints.WarningQualificationConstraint/invoke (line 39)
 In matlab.unittest.constraints.IssuesWarnings/invoke (line 431)
 In matlab.unittest.constraints.IssuesWarnings/invokeCapturingOutput (line 510)
 In matlab.unittest.constraints.IssuesWarnings/issuesExpectedWarnings (line 519)
 In matlab.unittest.constraints.IssuesWarnings/satisfiedBy (line 239)
 In matlab.unittest.internal.qualifications.QualificationDelegate/qualifyThat (line 62)
 In matlab.unittest.qualifications.Verifiable/verifyThat (line 228)
Warning: Message
> In @(id)warning(id,'Message')
 In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
 In @()issueWarnings({firstID,firstID,secondID,firstID})

 matlab.unittest.constraints.IssuesWarnings class

1-2141

 In matlab.unittest.internal.constraints.FunctionHandleConstraint/invoke (line 36)
 In matlab.unittest.internal.constraints.WarningQualificationConstraint/invoke (line 39)
 In matlab.unittest.constraints.IssuesWarnings/invoke (line 431)
 In matlab.unittest.constraints.IssuesWarnings/invokeCapturingOutput (line 510)
 In matlab.unittest.constraints.IssuesWarnings/issuesExpectedWarnings (line 519)
 In matlab.unittest.constraints.IssuesWarnings/satisfiedBy (line 239)
 In matlab.unittest.internal.qualifications.QualificationDelegate/qualifyThat (line 62)
 In matlab.unittest.qualifications.Verifiable/verifyThat (line 228)
Warning: Message
> In @(id)warning(id,'Message')
 In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
 In @()issueWarnings({firstID,firstID,secondID,firstID})
 In matlab.unittest.internal.constraints.FunctionHandleConstraint/invoke (line 36)
 In matlab.unittest.internal.constraints.WarningQualificationConstraint/invoke (line 39)
 In matlab.unittest.constraints.IssuesWarnings/invoke (line 431)
 In matlab.unittest.constraints.IssuesWarnings/invokeCapturingOutput (line 510)
 In matlab.unittest.constraints.IssuesWarnings/issuesExpectedWarnings (line 519)
 In matlab.unittest.constraints.IssuesWarnings/satisfiedBy (line 239)
 In matlab.unittest.internal.qualifications.QualificationDelegate/qualifyThat (line 62)
 In matlab.unittest.qualifications.Verifiable/verifyThat (line 228)
Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.
--> The function handle did not issue a correct warning profile.
 The expected warning profile must match exactly.
 --> The function handle did not issue the exact warning profile expected.

 Actual Warning Profile:
 --> 'first:id'
 --> 'first:id'
 --> 'second:id'
 --> 'first:id'
 Expected Warning Profile:
 --> 'first:id'
 --> 'second:id'
 --> 'first:id'
 --> 'first:id'

Evaluated Function:
 @()issueWarnings({firstID,firstID,secondID,firstID})

1 Alphabetical List

1-2142

Test whether the warning array is the same as the expected array when respecting set,
order and count.

testCase.verifyThat(actVal, IssuesWarnings(warnArr,...
 'RespectingSet',true,'RespectingOrder',true,'RespectingCount',true))

Interactive verification passed.

In this example, a constraint that specifies a warning profile that respects set, order and
count is not the same as one that specifies an exact warning profile.

See Also
matlab.unittest.constraints.IssuesNoWarnings |
matlab.unittest.constraints.Throws | warning

Topics
“Message Identifiers”

 matlab.unittest.constraints.IssuesWarnings class

1-2143

matlab.unittest.constraints.IsSupersetOf
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying actual set is superset of expected set

Construction
IsSupersetOf(expSet) creates a constraint specifying that the actual value set is a
superset of the expected value set. The constraint produces a qualification failure for any
actual value set that is not a superset of the expected value set. An actual value set is
considered a superset of the expected value set if ismember(expSet,actSet) contains
all true values and the actual and expected values satisfy one of the following conditions:

• The actual and expected values are of the same class.
• The actual value is an object.
• The expected value is an object.

Input Arguments
expSet — Expected value set to compare to actual value set
depends on test values

Expected value set to compare to actual value set. The type of the input depends on the
test values.

Properties
Subset — Subset of actual value set
depends on test values

1 Alphabetical List

1-2144

Subset of the actual value set. The data type of the property depends on the test values.
To satisfy the constraint, the actual value set must be a superset of Subset. Set this
property through the constructor via the expSet input argument.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test if Actual Set Is Superset of Expected

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsSupersetOf;

testCase = TestCase.forInteractiveUse;

Verify that the actual cell array is a subset of the expected set.

testCase.verifyThat({'a','b','c'}, IsSupersetOf({'c';'b'}));

Interactive verification passed.

testCase.verifyThat({'a','b','c'}, IsSupersetOf({'a','d'}));

Interactive verification failed.

Framework Diagnostic:

IsSupersetOf failed.
--> The expected subset contains 1 element(s) not found in the actual value:
 --> Element at index 2 not found in the actual value:
 'd'

Actual Value (cell):
 'a' 'b' 'c'
Expected Subset (cell):
 'a' 'd'

 matlab.unittest.constraints.IsSupersetOf class

1-2145

Assert that a set of doubles is a subset of the expected set.

testCase.assertThat(magic(21), IsSupersetOf([25;209]));

Interactive assertion passed.

testCase.assertThat(25:33, IsSupersetOf(30:40));

Interactive assertion failed.

Framework Diagnostic:

IsSupersetOf failed.
--> The expected subset contains elements not found in the actual value (First 5 of 7):
 --> Element at index 5 not found in the actual value:
 34
 --> Element at index 6 not found in the actual value:
 35
 --> Element at index 7 not found in the actual value:
 36
 --> Element at index 8 not found in the actual value:
 37
 --> Element at index 9 not found in the actual value:
 38

Actual Value (double):
 25 26 27 28 29 30 31 32 33
Expected Subset (double):
 30 31 32 33 34 35 36 37 38 39 40
Assertion failed.

Verify that the rows of a table are a subset of the expected table.

actT = table([1:2:5]',{'A';'C';'E'},logical([1;0;0]));
expT = table([3,1]',{'C';'A'},logical([0;1]));
testCase.verifyThat(actT, IsSupersetOf(expT));

Interactive verification passed.

Test that if the actual and expected sets have different types, the IsSubsetOf constraint
is not satisfied.

testCase.assumeThat(single(0:5), IsSupersetOf(1:3));

Interactive assumption failed.

1 Alphabetical List

1-2146

Framework Diagnostic:

IsSupersetOf failed.
--> Classes do not match.

 Actual Class:
 single
 Expected Class:
 double

Actual Value (single):
 0 1 2 3 4 5
Expected Subset (double):
 1 2 3
Assumption failed.

See Also
ismember | matlab.unittest.constraints |
matlab.unittest.constraints.IsSameSetAs |
matlab.unittest.constraints.IsSubsetOf

Introduced in R2016a

 matlab.unittest.constraints.IsSupersetOf class

1-2147

matlab.unittest.constraints.IsTrue class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying true value

Construction
IsTrue provides a constraint specifying a true value. This constraint is satisfied only by a
scalar logical with a value of true.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test Actual Value Is True

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsTrue

testCase = TestCase.forInteractiveUse;

Test that true satisfies the IsTrue constraint.

testCase.verifyThat(true, IsTrue)

Interactive verification passed.

Test that the IsTrue constraint is not satisfied by false.

testCase.verifyThat(false, IsTrue)

1 Alphabetical List

1-2148

Interactive verification failed.

Framework Diagnostic:

IsTrue failed.
--> The value must evaluate to "true".

Actual Value:
 0

The test fails because false returns logical(0).

Test that the IsTrue constraint is not satisfied by the double 1.

testCase.verifyThat(1, IsTrue)

Interactive verification failed.

Framework Diagnostic:

IsTrue failed.
--> The value must be logical. It is of type "double".

Actual Value:
 1

The IsTrue constraint is satisfied only by logical(1).

Test that the IsTrue constraint is not satisfied by a logical array of ones.

testCase.verifyThat([true true true], IsTrue)

Interactive verification failed.

Framework Diagnostic:

IsTrue failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
 1 1 1

 matlab.unittest.constraints.IsTrue class

1-2149

The IsTrue constraint is satisfied only if the value is scalar and logical(1).

Tips
• For faster test execution, use verifyTrue, assertTrue, assumeTrue, or

fatalAssertTrue instead of IsTrue.
• To display custom comparisons in the form of a function handle, use ReturnsTrue

instead of IsTrue.

See Also
IsFalse | ReturnsTrue

1 Alphabetical List

1-2150

matlab.unittest.constraints.LogicalComparat
or class
Package: matlab.unittest.constraints

Comparator for two logical values

Construction
LogicalComparator creates a comparator for two logical values. The comparator is
satisfied if the actual and expected values have the same sparsity and the logical values
are equivalent.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Compare Logical Values

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.LogicalComparator
import matlab.unittest.constraints.IsEqualTo

testCase = TestCase.forInteractiveUse;

Test the value of true.

testCase.assertThat(true, IsEqualTo(true, ...
 'Using', LogicalComparator))

Interactive assertion passed.

 matlab.unittest.constraints.LogicalComparator class

1-2151

Test an array of true values.

testCase.assertThat([true true true], IsEqualTo(true, ...
 'Using', LogicalComparator))

Interactive assertion failed.

Framework Diagnostic:

IsEqualTo failed.
--> LogicalComparator failed.
 --> The logical values are not equal

Actual Logical Value:
 1 1 1
Expected Logical Value:
 1
Assertion failed.

The actual value must be a scalar logical to satisfy the constraint.

Compare the value of 1 to true.

testCase.verifyThat(1, IsEqualTo(true, 'Using', LogicalComparator))

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> LogicalComparator failed.
 --> Class check failed.
 --> Classes do not match.

 Actual Class:
 double
 Expected Class:
 logical

Actual double:
 1
Expected logical:
 1

1 Alphabetical List

1-2152

Compare the value of false to true.

testCase.assertThat(false, IsEqualTo(true, 'Using', LogicalComparator))

Interactive assertion failed.

Framework Diagnostic:

IsEqualTo failed.
--> LogicalComparator failed.
 --> The logical values are not equal

Actual Logical Value:
 0
Expected Logical Value:
 1
Assertion failed.

See Also
matlab.unittest.constraints.IsEqualTo

Introduced in R2013a

 matlab.unittest.constraints.LogicalComparator class

1-2153

matlab.unittest.constraints.Matches class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying string matches regular expression

Construction
Matches(expr) creates a constraint that specifies that a string scalar or character
vector matches a regular expression. The constraint is satisfied only if the actual value
matches the given regular expression, expr.

Matches(expr,'IgnoringCase',caseInsensitive) creates a constraint indicating
whether to ignore case difference.

Input Arguments
expr

Regular expression that the actual value must match to satisfy the constraint, specified as
a string scalar or character vector. expr can include newline characters.

caseInsensitive

Indicator if the constraint is insensitive to case, specified as false or true (logical 0
or 1)

Default: false

Properties
Expression

Regular expression that the actual value must match, specified in the input argument,
expr.

1 Alphabetical List

1-2154

IgnoreCase

Indicator if the constraint is insensitive to case, specified in the input argument,
ignoreCase. This property applies at all levels of recursion, such as nested structures.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Matches Regular Expression

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.Matches

testCase = TestCase.forInteractiveUse;

Test that the actual value string, 'Epsilon Eridani', matches 'eps'.

testCase.verifyThat('Epsilon Eridani', Matches('^eps'))

Interactive verification failed.

Framework Diagnostic:

Matches failed.
--> The value does not match the regular expression.

Actual char:
 Epsilon Eridani
Regular Expression:
 ^eps

To satisfy the constraint, configure it to be case insensitive.

testCase.verifyThat('Epsilon Eridani', Matches('^eps', ...
 'IgnoringCase', true))

 matlab.unittest.constraints.Matches class

1-2155

Interactive verification passed.

Define the regular expression that the actual value must match.

expr = 'Some[Tt]?ext';

The [Tt]? contained in the regular expression indicates that either 'T' or 't' matches
at that location 0 or 1 times.

Test that the actual values, 'SomeText' and 'Sometext', satisfy the constraint.

testCase.verifyThat('SomeText', Matches(expr))
testCase.verifyThat('Sometext', Matches(expr))

Interactive verification passed.
Interactive verification passed.

Test that the actual value 'Someext' satisfies the constraint.

testCase.verifyThat('Someext', Matches(expr))

Interactive verification passed.

Test that the actual value 'sometext' does not satisfy the constraint.

testCase.verifyThat('sometext', Matches(expr))

Interactive verification failed.

Framework Diagnostic:

Matches failed.
--> The value does not match the regular expression.

Actual char:
 sometext
Regular Expression:
 Some[Tt]?ext

See Also
ContainsSubstring | EndsWithSubstring | IsSubstringOf |
StartsWithSubstring | regexp

1 Alphabetical List

1-2156

Topics
“Regular Expressions”

 matlab.unittest.constraints.Matches class

1-2157

matlab.unittest.constraints.NumericCompar
ator class
Package: matlab.unittest.constraints

Comparator for numeric data types

Construction
NumericComparator creates a comparator for numeric data types. The comparator is
satisfied if inputs are of the same class with equivalent size, complexity, and sparsity, and
the built-in isequaln function returns true.

NumericComparator('Within',tolObj) creates a comparator using a specified
tolerance. In this case, NumericComparator first checks for equivalent class, size, and
sparsity of the actual and expected values. If these checks fail, the comparator is not
satisfied. If these checks pass and the isequaln or complexity check fails,
NumericComparator delegates comparison to the supplied tolerance, tolObj.

Input Arguments
tolObj

matlab.unittest.constraints.Tolerance instance

Properties
Tolerance

Specific tolerance used in construction of the comparator, specified as a Tolerance
object in the tolObj input argument

1 Alphabetical List

1-2158

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Compare Numeric Values

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.NumericComparator
import matlab.unittest.constraints.IsEqualTo

testCase = TestCase.forInteractiveUse;

Use a numeric comparator to test that 1.618 is equal to 1.618.

testCase.verifyThat(1.618, IsEqualTo(1.618,...
 'Using', NumericComparator))

Verification passed.

Verify that (1+sqrt(5))/2 is equal to 1.618.

testCase.verifyThat((1+sqrt(5))/2, IsEqualTo(1.618, ...
 'Using', NumericComparator))

Verification failed.

 Framework Diagnostic:

 IsEqualTo failed.
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ________________ ________ ____________________ ____________________
 1.61803398874989 1.618 3.39887498947977e-05 2.10066439399244e-05

 Actual Value:
 1.618033988749895
 Expected Value:
 1.618000000000000

Retest using a relative tolerance of 0.25%.

 matlab.unittest.constraints.NumericComparator class

1-2159

import matlab.unittest.constraints.RelativeTolerance

testCase.verifyThat((1+sqrt(5))/2, IsEqualTo(1.618, ...
 'Using', NumericComparator('Within', RelativeTolerance(0.0025))))

Verification passed.

See Also
isequaln | matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance

Introduced in R2013a

1 Alphabetical List

1-2160

matlab.unittest.constraints.ObjectComparat
or class
Package: matlab.unittest.constraints

Comparator for MATLAB or Java objects

Construction
ObjectComparator creates a comparator for MATLAB or Java objects. The comparator
is satisfied if isequaln returns true. However, if the class of the expected value defines
an isequal method, whether visible or hidden, but not an isequaln method, the
ObjectComparator uses that method for comparison instead of isequaln.

ObjectComparator('Within',tolObj) creates a comparator using a specified
tolerance. ObjectComparator first checks that a call to isequaln or isequal returns
true. If the check fails, the ObjectComparator checks for equivalent class, size, and
sparsity of the actual and expected values. If these checks pass, ObjectComparator
delegates comparison to the supplied tolerance, tolObj. The value of this tolerance must
be of the same class as the actual and expected values.

Input Arguments
tolObj

Tolerance instance

Properties
Tolerance

Specific tolerance used in construction of the comparator, specified as a
matlab.unittest.constraints.Tolerance object in the tolObj input argument

 matlab.unittest.constraints.ObjectComparator class

1-2161

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Compare MATLAB Objects

In a file, MyInt.m, in your working folder, create a subclass of int8.

classdef MyInt < int8
 methods
 function i = MyInt(value)
 i@int8(value);
 end
 end
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.ObjectComparator
import matlab.unittest.constraints.IsEqualTo

testCase = TestCase.forInteractiveUse;

Use an ObjectComparator to test that two instances of MyInt are equal to each other.

testCase.verifyThat(MyInt(10), ...
 IsEqualTo(MyInt(10), 'Using', ObjectComparator))

Interactive verification passed.

Test the equality of two instances of MyInt that are constructed with different input
values.

testCase.verifyThat(MyInt(11), ...
 IsEqualTo(MyInt(10), 'Using', ObjectComparator))

Interactive verification failed.

1 Alphabetical List

1-2162

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.
 --> The objects are not equal using "isequal".

Actual Object:
 MyInt:

 int8 data:
 11
Expected Object:
 MyInt:

 int8 data:
 10

One instance of MyInt has a value of 11, and the other has a value of 10.

Repeat the test and specify that values must be equal within an absolute tolerance of 1.

import matlab.unittest.constraints.AbsoluteTolerance

testCase.verifyThat(MyInt(11), IsEqualTo(MyInt(10), ...
 'Using', ObjectComparator('Within', AbsoluteTolerance(MyInt(1)))))

Interactive verification passed.

See Also
isequal | matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance

Introduced in R2013a

 matlab.unittest.constraints.ObjectComparator class

1-2163

matlab.unittest.constraints.PublicPropertyC
omparator class
Package: matlab.unittest.constraints

Comparator for public properties of MATLAB objects

Description
The PublicPropertyComparator compares public properties of MATLAB objects.

The PublicPropertyComparator supports MATLAB objects or arrays of objects and
recursively compares data structures contained in the public properties. The
PublicPropertyComparator is different from the isequal function because it
examines only the public properties of the objects.

Typically you construct a PublicPropertyComparator using the
supportingAllValues static method.

Construction
PublicPropertyComparator creates a comparator for public properties of MATLAB
objects. This comparator supports only objects with no public properties.

PublicPropertyComparator(compObj) indicates a comparator, compObj, that defines
the comparator used to compare public properties. This comparator supports recursion
only in the data types supported by compObj.

PublicPropertyComparator(compObj,Name,Value) provides a comparator with
additional options specified by one or more Name,Value pair arguments.

1 Alphabetical List

1-2164

Methods

supportingAllValues Comparator for public properties that supports any value in
recursion

Input Arguments
compObj

Comparator object

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringProperties — Properties to ignore during object comparison
cell array of character vectors

Properties to ignore during object comparison, specified as a cell array of character
vectors.
Example: PublicPropertyComparator('IgnoringProperties',{'Stack'})

Recursively — Setting for whether comparator operates recursively
false (default) | true

Setting for whether comparator operates recursively, specified as false or true
(logical 0 or 1). When this value is false, the comparator does not operate recursively
on its data.

When the value is true, the data types that the public property comparator supports are
fully supported in recursion.

 matlab.unittest.constraints.PublicPropertyComparator class

1-2165

Properties
IgnoredProperties

Properties to ignore during object comparison, specified in the name-value pair argument,
'IgnoringProperties'.

Recursive

Indicator of whether comparator operates recursively, specified in the name-value pair
argument, 'Recursively'.

Limitations
• The PublicPropertyComparator does not compare public properties of objects that

overload the subsref, numel, or properties functions.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Instantiate PublicPropertyComparator Object

In a file in your working folder, construct this Employee class.

classdef Employee
 properties (SetAccess=immutable)
 Name
 end
 properties (Access=private)
 Location
 end
 methods
 function obj = Employee(name,location)
 obj.Name = name;

1 Alphabetical List

1-2166

 obj.Location = location;
 end
 end
end

At the command prompt, create two instances of the Employee class.

e1 = Employee('sam','Building A');
e2 = Employee('Sam','Building B');

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.PublicPropertyComparator
import matlab.unittest.constraints.StringComparator

testCase = TestCase.forInteractiveUse;

Construct a comparator and verify that e1 and e2 are equal.

compObj = PublicPropertyComparator;
testCase.verifyThat(e1, IsEqualTo(e2,'Using',compObj))

Error using matlab.unittest.constraints.Comparator/throwUnsupportedValue (line 313)
None of the currently available comparators support the value.

Available Comparators:
 1×0 Comparator array with no properties.

Value (char):
 Sam

Error in matlab.unittest.constraints.Comparator>getActExpCompFrom (line 402)
 throwUnsupportedValue(comparison.Comparators,expVal);

Error in matlab.unittest.constraints.Comparator>deepComparisonIsSatisfied (line 351)
[actVal,expVal,comp] = getActExpCompFrom(comparison);

Error in matlab.unittest.constraints.Comparator>deepComparisonIsSatisfied (line 355)
 if ~deepComparisonIsSatisfied(subComparisonArray(k))

Error in matlab.unittest.constraints.Comparator/satisfiedBy (line 84)
 bool = deepComparisonIsSatisfied(comparison);

Error in matlab.unittest.constraints.IsEqualTo/satisfiedBy (line 193)
 bool = constraint.Comparator.satisfiedBy(actual,constraint.Expected);

Error in matlab.unittest.internal.qualifications.QualificationDelegate/qualifyThat (line 80)
 result = constraint.satisfiedBy(actual);

Error in matlab.unittest.qualifications.Verifiable/verifyThat (line 230)
 qualifyThat(verifiable.VerificationDelegate, ...

 matlab.unittest.constraints.PublicPropertyComparator class

1-2167

The test fails because, by default, the PublicPropertyComparator does not support
character vectors.

Construct a comparator that supports character vectors. Specify that the comparison is
not case-sensitive.
compObj = PublicPropertyComparator(StringComparator);
testCase.verifyThat(e1, IsEqualTo(e2,'Using',compObj, 'IgnoringCase',true))

Interactive verification passed.

The test passes even though e1.Location and e2.Location are not the same. Since
Location is a private property, the comparator does not compare its contents.

See Also
matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.ObjectComparator

Introduced in R2014a

1 Alphabetical List

1-2168

matlab.unittest.constraints.PublicPropertyC
omparator.supportingAllValues
Class: matlab.unittest.constraints.PublicPropertyComparator
Package: matlab.unittest.constraints

Comparator for public properties that supports any value in recursion

Syntax
PublicPropertyComparator.supportingAllValues
PublicPropertyComparator.supportingAllValues(Name,Value)

Description
PublicPropertyComparator.supportingAllValues creates a comparator for public
properties of MATLAB objects. This comparator supports any value in recursion.
supportingAllValues is a Static method of the PublicPropertyComparator class.

PublicPropertyComparator.supportingAllValues(Name,Value) provides a
comparator for MATLAB objects with no public properties with additional options
specified by one or more Name,Value pair arguments.

You typically pass this comparator to another constraint, such as IsEqualTo. You can use
the Name,Value pairs of the IsEqualTo constraint with a comparator constructed with
the PublicPropertyComparator.supportingAllValues syntax.

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 matlab.unittest.constraints.PublicPropertyComparator.supportingAllValues

1-2169

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase — Setting for comparator insensitivity to case
false (default) | true

Setting for whether the comparator is insensitive to case, specified as false or true
(logical 0 or 1). When it is false, the comparator is sensitive to case. The comparator
uses this name-value pair only if the contents being compared consist of character
vectors.

IgnoringFields — Fields to ignore during struct comparison
cell array of character vectors

Fields to ignore during struct comparison, specified as a cell array of character vectors.
Example:
PublicPropertyComparator.supportingAllValues('IgnoringFields',
{'timestamp'})

IgnoringProperties — Properties to ignore during object comparison
cell array of character vectors

Properties to ignore during object comparison, specified as a cell array of character
vectors.
Example:
PublicPropertyComparator.supportingAllValues('IgnoringProperties',
{'Stack'})

IgnoringWhitespace — Setting for comparator insensitivity to whitespace
characters
false (default) | true

Setting for whether the comparator is insensitive to whitespace characters, specified as
false or true (logical 0 or 1). When it is false, the comparator is sensitive to
whitespace characters. Whitespace characters consist of space, form feed, new line,
carriage return, horizontal tab, and vertical tab. The comparator uses this name-value
pair only if the contents being compared consist of character vectors.

Within — Tolerance to use for numerical comparison
instance of matlab.unittest.constraints.Tolerance

1 Alphabetical List

1-2170

Tolerance to use for numerical comparison, specified as a
matlab.unittest.constraints.Tolerance object. The comparator uses this name-
value pair only if the contents being compared consist of numeric types.

Limitations
• The PublicPropertyComparator does not compare public properties of objects that

overload the subsref, numel, or properties functions.

Examples

Instantiate PublicPropertyComparator Object to Support All Values

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.PublicPropertyComparator

testCase = TestCase.forInteractiveUse;

Test a passing case.

m1 = MException('Msg:ID','MsgText');
m2 = MException('Msg:ID','MsgText');
testCase.verifyThat(m1, IsEqualTo(m2, 'Using', ...
 PublicPropertyComparator.supportingAllValues))

Interactive verification passed.

Test a failing case.

m1 = MException('Msg:ID','MsgText');
m2 = MException('Msg:ID','msgtext');
testCase.verifyThat(m1, IsEqualTo(m2, 'Using', ...
 PublicPropertyComparator.supportingAllValues))

Interactive verification failed.

 matlab.unittest.constraints.PublicPropertyComparator.supportingAllValues

1-2171

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>.message
 --> StringComparator failed.
 --> The character arrays are not equal.

 Actual char:
 MsgText
 Expected char:
 msgtext

Actual MException:
 MException with properties:

 identifier: 'Msg:ID'
 message: 'MsgText'
 cause: {}
 stack: [0×1 struct]
Expected MException:
 MException with properties:

 identifier: 'Msg:ID'
 message: 'msgtext'
 cause: {}
 stack: [0×1 struct]

Test a case that passes when the comparator ignores differences in case.

m1 = MException('Msg:ID','MsgText');
m2 = MException('Msg:ID','msgtext');
testCase.verifyThat(m1, IsEqualTo(m2,'Using', ...
 PublicPropertyComparator.supportingAllValues('IgnoringCase',true)))

Interactive verification passed.

Test a case that passes when the comparator ignores the message property of the
MException object.

testCase.verifyThat(m1, IsEqualTo(m2,'Using', ...
 PublicPropertyComparator.supportingAllValues('IgnoringProperties',{'message'})))

Interactive verification passed.

1 Alphabetical List

1-2172

Instantiate PublicPropertyComparator Object with Tolerance

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.RelativeTolerance
import matlab.unittest.constraints.PublicPropertyComparator

testCase = TestCase.forInteractiveUse;

Define actual and expected timeseries objects. Perturb one of the actual data points by
1%.

expected = timeseries(1:10);
actual = expected;
actual.Data(7) = 1.01*actual.Data(7);

Test that the actual and expected values are equal within a relative tolerance of 2%.

testCase.verifyThat(actual, IsEqualTo(expected,...
 'Within', RelativeTolerance(.02)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.
 --> The objects are not equal using "isequal".
 --> The tolerance was ignored. The tolerance as specified does not support comparisons of timeseries values.

 Actual timeseries:
 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [10x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [1x1x10 double]
 DataInfo: [1x1 tsdata.datametadata]

 More properties, Methods
 Expected timeseries:
 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [10x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [1x1x10 double]
 DataInfo: [1x1 tsdata.datametadata]

 matlab.unittest.constraints.PublicPropertyComparator.supportingAllValues

1-2173

 More properties, Methods

Use the PublicPropertyComparator in the construction of the constraint.

testCase.verifyThat(actual, IsEqualTo(expected,...
 'Within', RelativeTolerance(.02),...
 'Using', PublicPropertyComparator.supportingAllValues))

Interactive verification passed.

The test passes because the PublicPropertyComparator compares each public
property individually instead of comparing the object all at once. In the former test, the
ObjectComparator compares timeseries objects, and therefore relies on the
isequal method of the timeseries class. Due to the perturbation in the actual
timeseries, isequal returns false. The comparator does not apply the tolerance
because the double-valued tolerance cannot apply directly to the timeseries object. In
the latter test, the comparator applies the tolerance to each public property that contains
double-valued data.

See Also
matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.ObjectComparator

Introduced in R2014a

1 Alphabetical List

1-2174

matlab.unittest.constraints.RelativeToleranc
e class
Package: matlab.unittest.constraints
Superclasses:

Relative numeric tolerance

Description
This numeric Tolerance assesses the magnitude of the difference between actual and
expected values, relative to the expected value. For the tolerance to be satisfied,
abs(expVal - actVal) <= relTol.*abs(expVal) must be true.

Construction
RelativeTolerance(tolVals) creates a relative tolerance object that assesses the
magnitude of the difference between actual and expected values, relative to the expected
value.

The data types of the inputs to the RelativeTolerance constructor determine which
data types the tolerance supports. For example, RelativeTolerance(10*eps)
constructs a RelativeTolerance for comparing double-precision numeric arrays while
RelativeTolerance(single(2)) constructs a RelativeTolerance for comparing
single-precision numeric arrays. If the actual and expected values being compared
contain more than one numeric data type, the tolerance only applies to the data types
specified by the values passed into the constructor.

To specify different tolerance values for different data types, you can pass multiple
tolerance values to the constructor. For example, RelativeTolerance(10*eps,
10*eps('single')) constructs an RelativeTolerance that applies the following
absolute tolerances:

• 10*eps applies a relative tolerance of 10*eps for double-precision numeric arrays.
• 10*eps('single') applies a relative tolerance of 10*eps for single-precision

numeric arrays.

 matlab.unittest.constraints.RelativeTolerance class

1-2175

You can specify more than one tolerance for a particular data type by combining
tolerances with the & and | operators. To combine two tolerances, the sizes of the
tolerance values for each data type must be compatible.

Input Arguments
tolVals

Numeric tolerances, specified as a comma-separated list of arrays containing floating-
point numbers. Each input argument contains the tolerance specification for a particular
data type. Each numeric array can be a scalar or array the same size as the actual and
expected values.

Properties
Values

Numeric tolerances, specified by the tolVals input argument

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test with Relative Tolerance

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Assert that the difference between an actual value, 4.1, and an expected value, 4.5, is
less than 10%.

1 Alphabetical List

1-2176

testCase.assertThat(4.1, IsEqualTo(4.5, ...
 'Within', RelativeTolerance(0.1)))

Assertion passed.

Specify Relative Tolerance for Different Data Types

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Create the following actual and expected cell arrays.

act = {'abc', 123, single(106)};
exp = {'abc', 122, single(105)};

Test that the arrays satisfy the RelativeTolerance constraint within 2%.

testCase.verifyThat(act, IsEqualTo(exp, ...
 'Within', RelativeTolerance(0.02)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>{3}
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> The tolerance was ignored. The tolerance as specified does not support comparisons of single values.
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 106 105 1 0.00952381

 Actual single:
 106

 matlab.unittest.constraints.RelativeTolerance class

1-2177

 Expected single:
 105

Actual cell:
 'abc' [123] [106]
Expected cell:
 'abc' [122] [105]

The test fails because the tolerance is only applied to the double data type.

Create a tolerance object that specifies different tolerances for different data types.

tolObj = RelativeTolerance(0.02, single(0.02));

A tolerance of 2% is a applied to double and single valued data.

Verify that the expected and actual values satisfy the RelativeTolerance constraint.

testCase.verifyThat(act, IsEqualTo(exp, 'Within', tolObj))

Verification passed.

Combine Relative and Absolute Tolerances

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Define an actual value approximation for pi.

act = 3.14;

Construct a tolerance object to test that the difference between the actual and expected
values is within 0.001 and within 0.25%.

tolObj = AbsoluteTolerance(0.001) & RelativeTolerance(0.0025);

Verify that the actual value is within the tolerance of the expected value of pi.

1 Alphabetical List

1-2178

testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> AndTolerance failed.
 --> AbsoluteTolerance failed.
 --> The error was not within absolute tolerance.
 --> RelativeTolerance passed.
 --> The error was within relative tolerance.
 --> Failure table:
 Actual Expected Error RelativeError AbsoluteTolerance RelativeTolerance
 ______ ________________ ____________________ _____________________ _________________ _________________

 3.14 3.14159265358979 -0.00159265358979299 -0.000506957382897213 0.001 0.0025

 Actual double:
 3.140000000000000
 Expected double:
 3.141592653589793

The actual value does not satisfy the AbsoluteTolerance constraint.

Construct a constraint that is satisfied if the values are within 0.001 or 0.25%, and then
retest the actual value.

tolObj = AbsoluteTolerance(0.001) | RelativeTolerance(0.0025);
testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj))

Verification passed.

Combine Absolute and Relative Tolerances to Test Small and Large Values

Combine tolerances so when you test the equality of values, an absolute (floor) tolerance
dominates when the values are near zero, and a relative tolerance dominates for larger
values.

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance
import matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

 matlab.unittest.constraints.RelativeTolerance class

1-2179

Define two structures containing electromagnetic properties of a vacuum. One structure,
approxVacuumProps, contains approximate values for the permeability and speed of
light in a vacuum.

approxVacuumProps.Permeability = 1.2566e-06; % Approximate
approxVacuumProps.Permitivity = 8.854187817*10^-12;
approxVacuumProps.LightSpeed = 2.9979e+08; % Approximate

baselineVacuumProps.Permeability = 4*pi*10^-7;
baselineVacuumProps.Permitivity = 8.854187817*10^-12;
baselineVacuumProps.LightSpeed = 1/sqrt(...
 baselineVacuumProps.Permeability*baselineVacuumProps.Permitivity);

Test that the relative difference between the approximate and baseline values is within
eps*1e11.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
 'Within', RelativeTolerance(eps*1e11)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>.Permeability
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> RelativeTolerance failed.
 --> The error was not within relative tolerance.
 --> Failure table:
 Actual Expected Error RelativeError RelativeTolerance
 __________ ____________________ _____________________ _____________________ ____________________

 1.2566e-06 1.25663706143592e-06 -3.70614359173257e-11 -2.94925536216295e-05 2.22044604925031e-05

 Actual double:
 1.256600000000000e-06
 Expected double:
 1.256637061435917e-06

Actual struct:
 Permeability: 1.256600000000000e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 299790000

1 Alphabetical List

1-2180

Expected struct:
 Permeability: 1.256637061435917e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 2.997924580105029e+08

The test fails because the relative difference in the permeabilities is not within the
tolerance. The difference between the two values is small, but the numbers are close to
zero, so the difference relative to their size is not small enough to satisfy the tolerance.

Construct a tolerance object to test that the absolute difference between the approximate
and baseline values is within 1e-4.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
 'Within', AbsoluteTolerance(1e-4)))

Verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>.LightSpeed
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> AbsoluteTolerance failed.
 --> The error was not within absolute tolerance.
 --> Failure table:
 Actual Expected Error RelativeError AbsoluteTolerance
 _________ ________________ _________________ ____________________ _________________

 299790000 299792458.010503 -2458.01050287485 -8.1990404935028e-06 0.0001

 Actual double:
 299790000
 Expected double:
 2.997924580105029e+08

Actual struct:
 Permeability: 1.256600000000000e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 299790000
Expected struct:
 Permeability: 1.256637061435917e-06
 Permitivity: 8.854187816999999e-12
 LightSpeed: 2.997924580105029e+08

 matlab.unittest.constraints.RelativeTolerance class

1-2181

The test fails because the absolute difference in the speed of light is not within the
tolerance. The difference between the two values is small relative to their size, but too
large to satisfy the tolerance.

Construct a logical disjunction of tolerance objects to test that the absolute difference
between the approximate and baseline values is within 1e-4 or the relative difference is
within eps*1e11. The test uses this tolerance so permeability values that are close to
zero satisfy the absolute (floor) tolerance, and speed of light values that are large, satisfy
the relative tolerance.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
 'Within', RelativeTolerance(eps*1e11)| AbsoluteTolerance(1e-4)))

Verification passed.

See Also
matlab.unittest.constraints.AbsoluteTolerance |
matlab.unittest.constraints.IsEqualTo

Introduced in R2013a

1 Alphabetical List

1-2182

matlab.unittest.constraints.ReturnsTrue
class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying function handle that returns true

Construction
ReturnsTrue provides a constraint specifying that a function handle that returns true.
The constraint is satisfied only by a function handle that returns a scalar logical with a
value of true.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Test Actual Value Specified by Function Handle Returns True

These comparisons are shown for example only. There are other constraints that might
better handle the particular comparisons.

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.ReturnsTrue

testCase = TestCase.forInteractiveUse;

Verify that the ReturnsTrue constraint is satisfied by the value returned by a handle to
true.

 matlab.unittest.constraints.ReturnsTrue class

1-2183

testCase.verifyThat(@true, ReturnsTrue)

Interactive verification passed.

Verify that the ReturnsTrue constraint is not satisfied by a handle to false.

testCase.verifyThat(@false, ReturnsTrue)

Interactive verification failed.

Framework Diagnostic:

ReturnsTrue failed.
--> The function handle should have evaluated to "true".
--> Returned value:
 0

Actual Function Handle:
 @false

Verify that a call to isequal returns true.

testCase.verifyThat(@() isequal(1,1), ReturnsTrue)

Interactive verification passed.

Verify that a function that returns a double-valued 1 does not satisfy the ReturnsTrue
constraint.

testCase.verifyThat(@() double(true), ReturnsTrue)

Interactive verification failed.

Framework Diagnostic:

ReturnsTrue failed.
--> The function handle should have returned a logical value. It was of type "double".
--> Returned value:
 1

Actual Function Handle:
 @()double(true)

Verify that the negation of a text comparison of 'a' and 'b' returns true.

1 Alphabetical List

1-2184

testCase.verifyThat(@() ~strcmp('a','b'), ReturnsTrue)

Interactive verification passed.

Test if a comparison of 'a' to the cell array {'a','a'} returns true.

testCase.verifyThat(@() strcmp('a',{'a','a'}), ReturnsTrue)

Interactive verification failed.

Framework Diagnostic:

ReturnsTrue failed.
--> The function handle should have returned a scalar. The return value had a size of [1 2].
--> Returned value:
 1 1

Actual Function Handle:
 @()strcmp('a',{'a','a'})

The constraint is not satisfied because the call to strcmp results a logical array, not a
logical scalar.

Tips
• To display custom comparisons in the form of a function handle, use ReturnsTrue

instead of IsTrue.

See Also
Constraint | IsTrue

 matlab.unittest.constraints.ReturnsTrue class

1-2185

matlab.unittest.constraints.StartsWithSubst
ring class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying string starting with substring

Construction
StartsWithSubstring(prefix) creates a constraint specifying a string scalar or
character vector starting with a substring. The constraint is satisfied only if the actual
value starts with an expected prefix, prefix.

StartsWithSubstring(prefix,Name,Value) provides a constraint with additional
options specified by one or more Name,Value pair arguments. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
prefix

Text at the start of the actual value, specified as a string scalar or character vector.
prefix can include newline characters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false or true (logical 0
or 1)

1 Alphabetical List

1-2186

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified as false or true
(logical 0 or 1)

Default: false

Properties
IgnoreCase

Indicator if the constraint is insensitive to case, specified in the name-value pair
argument, 'IgnoringCase'. This property applies at all levels of recursion, such as
nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified in the name-value pair
argument, 'IgnoringWhitespace'. This property applies at all levels of recursion, such
as nested structures.

Prefix

Text at the start of the actual value, specified in the input argument, prefix.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test That Actual Value Starts with Specified Substring

Create a test case for interactive testing.

 matlab.unittest.constraints.StartsWithSubstring class

1-2187

import matlab.unittest.TestCase
import matlab.unittest.constraints.StartsWithSubstring

testCase = TestCase.forInteractiveUse;

Define the actual value.

actVal = 'This Is One Long Message';

Test that actVal starts with 'This'.

testCase.verifyThat(actVal, StartsWithSubstring('This'))

Interactive verification passed.

Test that actVal starts with 'this is'.

testCase.verifyThat(actVal, StartsWithSubstring('this is'))

Interactive verification failed.

Framework Diagnostic:

StartsWithSubstring failed.
--> The value does not start with the supplied prefix.

Actual char:
 This Is One Long Message
Expected Prefix:
 this is

By default, the StartsWithSubstring constraint is case sensitive.

Repeat the test, this time ignoring case.

testCase.verifyThat(actVal, StartsWithSubstring('this is',...
 'IgnoringCase', true))

Interactive verification passed.

Test that actVal starts with 'thisisone'. For the test to pass, configure the constraint
to ignore whitespace and case.

testCase.verifyThat(actVal, StartsWithSubstring('thisisone', ...
 'IgnoringCase', true, 'IgnoringWhitespace', true))

1 Alphabetical List

1-2188

Interactive verification passed.

Assert that actVal does not start with 'long'.

testCase.assertThat(actVal, ~StartsWithSubstring('Long'))

Interactive assertion passed.

See Also
ContainsSubstring | EndsWithSubstring | IsSubstringOf | Matches

 matlab.unittest.constraints.StartsWithSubstring class

1-2189

matlab.unittest.constraints.StringComparato
r class
Package: matlab.unittest.constraints

Comparator for two strings, character arrays, or cell arrays of character arrays

Construction
StringComparator creates a comparator for two strings, character arrays, or cell
arrays of character arrays. The comparator is satisfied if the two values are equal. By
default, StringComparator checks that the values have equal size and class, and then
performs a case-sensitive comparison of each value.

StringComparator(Name,Value) creates a comparator with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the comparator is insensitive to case, specified as false or true (logical 0
or 1). When it is false, the comparator is sensitive to case.

Default: false

IgnoringWhitespace

Indicator if the comparator is insensitive to whitespace characters, specified as false or
true (logical 0 or 1). When it is false, the comparator is sensitive to whitespace

1 Alphabetical List

1-2190

characters. Whitespace characters consist of space, form feed, new line, carriage return,
horizontal tab, and vertical tab.

Default: false

Properties
IgnoreCase

Indicator if the comparator is insensitive to case, specified in the name-value pair
argument, 'IgnoringCase'

IgnoreWhitespace

Indicator if the comparator is insensitive to whitespace characters, specified in the name-
value pair argument, 'IgnoringWhitespace'

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Compare Character Vectors

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.StringComparator
import matlab.unittest.constraints.IsEqualTo

testCase = TestCase.forInteractiveUse;

Verify that the actual and expected character vectors are equal using a string comparator.

expected = 'coffee';
actual = 'coffee';

 matlab.unittest.constraints.StringComparator class

1-2191

testCase.verifyThat(actual,IsEqualTo(expected, ...
 'Using', StringComparator))

Interactive verification passed.

Change the actual character vector and repeat the comparison.

expected = 'coF Fee';
testCase.verifyThat(actual,IsEqualTo(expected, ...
 'Using', StringComparator))

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> StringComparator failed.
 --> The character arrays are not equal.

 Actual char:
 coffee
 Expected char:
 coF Fee

For the test to pass, construct a comparator that ignores case and whitespace characters.

testCase.verifyThat(actual,IsEqualTo(expected, ...
 'Using', StringComparator('IgnoringCase', true, ...
 'IgnoringWhitespace', true)))

Interactive verification passed.

See Also
matlab.unittest.constraints.IsEqualTo | strcmp

Introduced in R2013a

1 Alphabetical List

1-2192

matlab.unittest.constraints.StructComparato
r class
Package: matlab.unittest.constraints

Comparator for MATLAB structure arrays

Construction
StructComparator creates a comparator for MATLAB structure arrays.

StructComparator(compObj) indicates a comparator, compObj, that defines the
comparator used to compare values contained in the structure. By default, a
StructComparator supports only empty structure arrays.

StructComparator(compObj,Name,Value) provides a comparator with additional
options specified by one or more Name,Value pair arguments.

StructComparator(Name,Value) provides a comparator for empty structure arrays
with additional options specified by one or more Name,Value pair arguments.

Input Arguments
compObj

Comparator object

A comparator is passed into the StructComparator to support data types during
recursion. By default, the StructComparator supports only empty structure arrays.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 matlab.unittest.constraints.StructComparator class

1-2193

IgnoringFields — Fields to ignore during struct comparison
cell array of character vectors

Fields to ignore during struct comparison, specified as a cell array of character vectors.

Recursively — Setting for whether comparator operates recursively
false (default) | true

Setting for whether the comparator operates recursively, specified as false or true
(logical 0 or 1). When this value is false, the comparator does not operate recursively
on its data.

When the value is true, the data types the StructComparator supports are fully
supported in recursion. For example:

comp1 = StructComparator(NumericComparator);
comp2 = StructComparator(NumericComparator, 'Recursively', true);

Both comp1 and comp2 support structures that contain numeric values as their fields.
However, only comp2 supports structures that recursively contain either structures or
numeric values as their fields.

Properties
IgnoredFields

Fields to ignore during struct comparison, specified in the name-value pair argument,
'IgnoringFields'.

Recursive

Indicator of whether comparator operates recursively, specified in the name-value pair
argument, 'Recursively'.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

1 Alphabetical List

1-2194

Examples

Compare Numeric Structures

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.AbsoluteTolerance
import matlab.unittest.constraints.StructComparator
import matlab.unittest.constraints.NumericComparator

testCase = TestCase.forInteractiveUse;

Create two equal structures.

s1 = struct('id',7,'score',7.3);
s2 = s1;

Test that the structures are equal. By default, the StructComparator supports only
empty structures, so you need to configure the comparator with a NumericComparator.

testCase.verifyThat(s1, IsEqualTo(s2, 'Using', ...
 StructComparator(NumericComparator)))

Verification passed.

Change the score of s2 and compare the structures again.

s2.score = 7.6;
testCase.verifyThat(s1, IsEqualTo(s2, 'Using', ...
 StructComparator(NumericComparator)))

Verification failed.

 Framework Diagnostic:

 IsEqualTo failed.
 --> Path to failure: <Value>.score
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError

 matlab.unittest.constraints.StructComparator class

1-2195

 ______ ________ _____ ___________________
 7.3 7.6 -0.3 -0.0394736842105263

 Actual Value:
 7.300000000000000
 Expected Value:
 7.600000000000000

 Actual Value:
 struct with fields:

 id: 7
 score: 7.300000000000000
 Expected Value:
 struct with fields:

 id: 7
 score: 7.600000000000000

Specify an absolute tolerance for the comparison.

testCase.verifyThat(s1, IsEqualTo(s2, 'Using', ...
 StructComparator(NumericComparator), 'Within', ...
 AbsoluteTolerance(0.5)))

Verification passed.

Compare Character Structures

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.constraints.StructComparator
import matlab.unittest.constraints.StringComparator

testCase = TestCase.forInteractiveUse;

Create two structures. Make one of the fields a nested structure.

e1 = struct('name', struct('first','sam','last','smith'), ...
 'location','Building A');
e2 = e1;

1 Alphabetical List

1-2196

Verify that the two structures are equal. Since the struct contains a nested structure,
configure the constraint to operate recursively.

testCase.verifyThat(e1, IsEqualTo(e2, 'Using', ...
 StructComparator(StringComparator, 'Recursively', true)))

Verification passed.

Change the first name field of the e2 structure and repeat the comparison.

e2.name.first = ' SAM';
testCase.verifyThat(e1, IsEqualTo(e2, 'Using', ...
 StructComparator(StringComparator, 'Recursively', true)))

Verification failed.

 Framework Diagnostic:

 IsEqualTo failed.
 --> Path to failure: <Value>.name.first
 --> StringComparator failed.
 --> The character arrays are not equal.

 Actual char:
 sam
 Expected char:
 SAM

 Actual Value:
 struct with fields:

 name: [1×1 struct]
 location: 'Building A'
 Expected Value:
 struct with fields:

 name: [1×1 struct]
 location: 'Building A'

Configure the comparator to ignore case and whitespace characters.

testCase.verifyThat(e1, IsEqualTo(e2, 'Using', ...
 StructComparator(StringComparator, 'Recursively', true), ...
 'IgnoringCase', true, 'IgnoringWhitespace', true))

 matlab.unittest.constraints.StructComparator class

1-2197

Verification passed.

See Also
matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance

Introduced in R2013a

1 Alphabetical List

1-2198

matlab.unittest.constraints.TableComparator
class
Package: matlab.unittest.constraints

Comparator for MATLAB tables

Construction
TableComparator creates a comparator for MATLAB tables that iterates over each
column of the table. By default, a TableComparator supports only empty tables.

TableComparator(compObj) indicates a comparator, compObj, that defines the
comparator used to compare values contained in the table columns.

TableComparator(___ ,Name,Value) provides a comparator with additional options
specified by one or more Name,Value pair arguments. Use this option with any of the
input argument combinations in the previous syntaxes.

Input Arguments
compObj — Comparator object
instance of matlab.unittest.constraints

Comparator object, specified as an instance of matlab.unittest.constraints that is
classified as a comparator.
Example: CellComparator
Example: NumericComparator
Example: StringComparator

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 matlab.unittest.constraints.TableComparator class

1-2199

Recursively — Setting for whether comparator operates recursively
false (default) | true

Setting for whether the comparator operates recursively, specified as false or true
(logical 0 or 1). When this value is false, the comparator does not operate recursively
on its data.

When the value is true, the data types that the table comparator supports are fully
supported in recursion.
Data Types: logical

Properties
Recursive — Indicator of whether comparator operates recursively
false (default) | true

Indicator of whether the comparator operates recursively, returned as false or true
(logical 0 or 1).
Data Types: logical

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test Table Equality with TableComparator

Create a test case for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Create two equal tables.

LastName = {'Williams';'Jones';'Brown'};
Age = [38;40;49];

1 Alphabetical List

1-2200

Height = [64;67;64];
Weight = [131;133;119];
BloodPressure = [125 83; 117 75; 122 80];

T1 = table(Age,Height,Weight,BloodPressure, ...
 'RowNames',LastName);
T2 = T1;

Test that the tables are equal. Check the columns of the tables with a numeric
comparator.

import matlab.unittest.constraints.TableComparator
import matlab.unittest.constraints.NumericComparator
import matlab.unittest.constraints.IsEqualTo
testCase.verifyThat(T1,IsEqualTo(T2, ...
 'Using',TableComparator(NumericComparator)))

Interactive verification passed.

Change the age of the last person to 50 and compare the tables again.

T2.Age(end) = 50;
testCase.verifyThat(T1,IsEqualTo(T2, ...
 'Using',TableComparator(NumericComparator)))

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> Path to failure: <Value>.Age
 --> NumericComparator failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 value =

 1×5 table array

 Index Actual Expected Error RelativeError
 _____ ______ ________ _____ _____________

 3 49 50 -1 -0.02

 Actual double:

 matlab.unittest.constraints.TableComparator class

1-2201

 38
 40
 49
 Expected double:
 38
 40
 50

Actual table:
 value =

 3×4 table array

 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Williams 38 64 131 125 83
 Jones 40 67 133 117 75
 Brown 49 64 119 122 80
Expected table:
 value =

 3×4 table array

 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Williams 38 64 131 125 83
 Jones 40 67 133 117 75
 Brown 50 64 119 122 80

See Also
matlab.unittest.constraints.IsEqualTo

Introduced in R2017a

1 Alphabetical List

1-2202

matlab.unittest.constraints.Throws class
Package: matlab.unittest.constraints
Superclasses:

Constraint specifying function handle that throws MException

Description
The Throws class creates a constraint that is satisfied only if the actual value is a function
handle that throws a specific exception.

If the function throws an MException and the ExpectedException property of the
constraint is an error identifier, a qualification failure occurs if the actual MException
thrown has a different identifier. Alternately, if the ExpectedException property is a
meta.class, the constraint is not satisfied if the actual MException thrown does not
derive from the ExpectedException.

Construction
outConstObj = Throws(excep) provides a constraint, outConstObj, specifying a
function handle that throws a particular MException, excep.

outConstObj = Throws(excep,Name,Value) provides a constraint with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
excep

Error identifier or meta.class representing the specific type of expected exception. If
excep is a meta.class but does not derive from MException, the Throws constructor
throws an MException.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 matlab.unittest.constraints.Throws class

1-2203

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CausedBy

Expected causes, specified as a cell array of character vectors or an array of meta.class
instances.

The testing results in a qualification failure if any causes specified in CausedBy are not
found within the cause tree.

Default: {}

WhenNargoutIs

Number of outputs the constraint should request when invoking the function handle,
specified as a non-negative, real, scalar integer.

Default: 0

RespectingSet

Indicator whether to respect the set of expected causes, specified as false or true
(logical 0 or 1). When this value is false, the instance ignores additional causes.
When set to true, the instance is sensitive to additional causes. A true value means that
the constraint is not satisfied if the expected exceptions contain causes that are not
specified in the 'CausedBy' name-value pair.

Default: 0

Properties
ExpectedException

Expected MException identifier or class. Set this read-only property through the
constructor via the excep input argument.

Nargout

Number of output arguments the instance uses when executing functions. Set this
property through the constructor via the name-value pair argument, 'WhenNargoutIs'.

1 Alphabetical List

1-2204

RequiredCauses

Expected causes for the function handle throwing an MException. Set this property
through the constructor via the name-value pair argument, 'CausedBy'.

RespectSet

Indicator if the constraint respects set elements, specified through the constructor via the
name-value pair argument, 'RespectingSet'.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Instantiate Throws Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.Throws

testCase = TestCase.forInteractiveUse;

Verify that a function throws a specified error id.

testCase.verifyThat(@() error('SOME:error:id','Error!'), ...
 Throws('SOME:error:id'))

Interactive verification passed.

Verify that a function throws a specified exception class.

testCase.verifyThat(@() error('SOME:error:id','Error!'), ...
 Throws(?MException))

Interactive verification passed.

Verify that a function, when called with a specified number of outputs, throws a specified
error.

 matlab.unittest.constraints.Throws class

1-2205

testCase.verifyThat(@() disp('hi'), Throws('MATLAB:maxlhs', ...
 'WhenNargoutIs', 1))

Interactive verification passed.

Check causes by identifier.
me = MException('TOP:error:id','TopLevelError!');
causeBy1 = MException('causedBy:someOtherError:id','CausedByError!');
causeBy2 = MException('causedBy:yetAnotherError:id','AnotherCausedByError!');
me = me.addCause(causeBy1);
me = me.addCause(causeBy2);

testCase.verifyThat(@() me.throw, Throws('TOP:error:id','CausedBy',...
 {'causedBy:someOtherError:id'}))

Interactive verification passed.

Check that the exception does not include any additional causes than the ones specified
by 'CausedBy'.

testCase.verifyThat(@() me.throw, Throws('TOP:error:id','CausedBy',...
 {'causedBy:someOtherError:id'},'RespectingSet',true))

Interactive verification failed.

Framework Diagnostic:

Throws failed.
--> The following causes were unexpectedly found in the exception tree:
 --> 'causedBy:yetAnotherError:id'

Actual Error Report:
 Error using @()me.throw
 TopLevelError!

 Caused by:
 CausedByError!
 AnotherCausedByError!

Actual Error Structure:
 ?MException 'TOP:error:id'
 --> ?MException 'causedBy:someOtherError:id'
 --> ?MException 'causedBy:yetAnotherError:id'

Evaluated Function:
 @()me.throw

1 Alphabetical List

1-2206

Check causes by class.

me = MException('TOP:error:id','TopLevelError!');
causeBy = MException('causedBy:someOtherError:id','CausedByError!');
me = me.addCause(causeBy);
testCase.verifyThat(@() me.throw, Throws('TOP:error:id','CausedBy', ...
 ?MException))

Interactive verification passed.

Verify that if the actual value is not a function handle, the constraint is not satisfied.

testCase.fatalAssertThat(5, Throws('some:id'))

Interactive fatal assertion failed.

Framework Diagnostic:

Throws failed.
--> The value must be an instance of the expected type.

 Actual Class:
 double
 Expected Type:
 function_handle

Actual Value:
 5
Fatal assertion failed.

Verify that if the function does not throw an exception, the constraint is not satisfied.

testCase.assumeThat(@rand, Throws(?MException))

Interactive assumption failed.

Framework Diagnostic:

Throws failed.
--> The function did not throw any exception.

 Expected Exception:
 --> ?MException

 matlab.unittest.constraints.Throws class

1-2207

Evaluated Function:
 @rand
Assumption failed.

Verify that if the function issues a non-specified error identifier, the constraint is not
satisfied.

testCase.verifyThat(@() error('SOME:id','Error!'), Throws('OTHER:id'))

Interactive verification failed.

Framework Diagnostic:

Throws failed.
--> The function threw the wrong exception.

 Actual Exception:
 'SOME:id'
 Expected Exception:
 'OTHER:id'

Actual Error Report:
 Error using @()error('SOME:id','Error!')
 Error!

Evaluated Function:
 @()error('SOME:id','Error!')

Verify that if the function throws an exception and the cause does not match the specified
identifier, the constraint is not satisfied.

testCase.verifyThat(@() error('TOP:error:id','TopLevelError!'), ...
 Throws('TOP:error:id','CausedBy',{'causedBy:someOtherError:id'}))

Interactive verification failed.

Framework Diagnostic:

Throws failed.
--> The following causes were not found in the exception tree:
 --> 'causedBy:someOtherError:id'

1 Alphabetical List

1-2208

Actual Error Report:
 Error using @()error('TOP:error:id','TopLevelError!')
 TopLevelError!

Actual Error Structure:
 ?MException 'TOP:error:id'

Evaluated Function:
 @()error('TOP:error:id','TopLevelError!')

See Also
MException | error | matlab.unittest.constraints |
matlab.unittest.constraints.IssuesWarnings

Topics
“Message Identifiers”

Introduced in R2013a

 matlab.unittest.constraints.Throws class

1-2209

matlab.unittest.constraints.Tolerance class
Package: matlab.unittest.constraints

Abstract interface class for tolerances

Description
Tolerances define a notion of fuzzy equality for a set of data types and can be plugged in
to the IsEqualTo constraint through the 'Within' name-value pair argument.

Classes that derive from the Tolerance interface class must provide a tolerance
definition. Use the satisfiedBy method to implement the tolerance definition. Classes
that derive from the Tolerance class also must provide a diagnostic for two compared
values. The testing framework uses the diagnostic when the compared values are outside
of the allowable tolerance. Use the getDiagnosticFor method to implement this
condition. Finally, classes that derive from the Tolerance class must provide a means to
determine which data types the tolerance supports. Define the supported data types by
implementing the supports method.

Methods
getDiagnosticFor Produce diagnostic for two values specified to be within tolerance
satisfiedBy Determine whether two values are within tolerance
supports Determine whether tolerance supports specified data type

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

1 Alphabetical List

1-2210

See Also

Topics
“Create Custom Tolerance”

 matlab.unittest.constraints.Tolerance class

1-2211

getDiagnosticFor
Class: matlab.unittest.constraints.Tolerance
Package: matlab.unittest.constraints

Produce diagnostic for two values specified to be within tolerance

Syntax
diag = getDiagnosticFor(tolObj,actVal,expVal)

Description
diag = getDiagnosticFor(tolObj,actVal,expVal) produces a diagnostic, diag,
for a value, actVal, evaluated against another value, expVal, within the tolerance
defined by tolObj. When creating a custom tolerance, the class author must implement
the getDiagnosticFor method so that it analyzes the two values, actVal and expVal,
against the tolerance, tolObj, and instantiates and returns a
matlab.unittest.diagnostics.Diagnostic object.

Typically, this diagnostic is used when the getDiagnosticFor method of IsEqualTo is
invoked, and the result is incorporated into the diagnostic output of the IsEqualTo
constraint.

Input Arguments
actVal

Value to determine if is within tolerance of expVal

tolObj

Tolerance instance

1 Alphabetical List

1-2212

expVal

Expected value

See Also
ConstraintDiagnostic | Diagnostic | satisfiedBy | supports

Topics
“Create Custom Tolerance”

 getDiagnosticFor

1-2213

satisfiedBy
Class: matlab.unittest.constraints.Tolerance
Package: matlab.unittest.constraints

Determine whether two values are within tolerance

Syntax
TF = satisfiedBy(tolObj,actVal,expVal)

Description
TF = satisfiedBy(tolObj,actVal,expVal) determines whether two values,
actVal and expVal, are within the tolerance defined by tolObj. The satisfiedBy
method is used to determine whether the tolerance is met. It returns true or false
(logical 0 or 1). When creating a custom tolerance, a class author uses this method to
contain the tolerance definition.

Input Arguments
actVal

Value to determine if is within tolerance of expVal

tolObj

Tolerance instance

expVal

Expected value

See Also
getDiagnosticFor | supports

1 Alphabetical List

1-2214

Topics
“Create Custom Tolerance”

 satisfiedBy

1-2215

supports
Class: matlab.unittest.constraints.Tolerance
Package: matlab.unittest.constraints

Determine whether tolerance supports specified data type

Syntax
TF = supports(tolObj,typeVal)

Description
TF = supports(tolObj,typeVal) determines whether the tolerance supports a
specific data type. It returns true or false (logical 0 or 1).

The supports method provides the ability for a tolerance author to specify support for
data types. Generally, the method operates by examining the type of typeVal to
determine whether it is supported.

Input Arguments
tolObj

Tolerance instance

typeVal

Value used to determine tolerance support

See Also
getDiagnosticFor | satisfiedBy

1 Alphabetical List

1-2216

Topics
“Create Custom Tolerance”

 supports

1-2217

matlab.unittest.constraints.AndConstraint
class
Package: matlab.unittest.constraints

Boolean conjunction of two constraints

Description
The testing framework constructs an AndConstraint when you denote the conjunction
of two constraints with the logical AND operator (&). The framework constructs instances
of the class, so there is no need to construct this class directly.

Properties
FirstConstraint — Left side constraint
instance of class in matlab.unittest.constraint package

This property is read-only.

Left side constraint in the Boolean conjunction, specified as an instance of a class in the
matlab.unittest.constraint package.

SecondConstraint — Right side constraint
instance of class in matlab.unittest.constraint package

This property is read-only.

Right side constraint in the Boolean conjunction, specified as an instance of a class in the
matlab.unittest.constraint package.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.NotConstraint |
matlab.unittest.constraints.OrConstraint

1 Alphabetical List

1-2218

Introduced in R2013a

 matlab.unittest.constraints.AndConstraint class

1-2219

matlab.unittest.constraints.OrConstraint
class
Package: matlab.unittest.constraints

Boolean disjunction of two constraints

Description
The testing framework constructs an OrConstraint when you denote the disjunction of
two constraints with the logical OR operator (|). The framework constructs instances of
the class, so there is no need to construct this class directly.

Properties
FirstConstraint — Left side constraint
instance of class in matlab.unittest.constraint package

This property is read-only.

Left side constraint in the Boolean disjunction, specified as an instance of a class in the
matlab.unittest.constraint package.

SecondConstraint — Right side constraint
instance of class in matlab.unittest.constraint package

This property is read-only.

Right side constraint in the Boolean disjunction, specified as an instance of a class in the
matlab.unittest.constraint package.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.AndConstraint |
matlab.unittest.constraints.NotConstraint

1 Alphabetical List

1-2220

Introduced in R2013a

 matlab.unittest.constraints.OrConstraint class

1-2221

matlab.unittest.constraints.NotConstraint
class
Package: matlab.unittest.constraints

Boolean complement of constraint

Description
The testing framework constructs a NotConstraint when you denote the complement of
a constraint with the logical NOT operator (~). The framework constructs instances of the
class, so there is no need to construct this class directly.

Properties
Constraint — Constraint being complemented
instance of class in matlab.unittest.constraints package

This property is read-only.

Constraint being complemented, specified as an instance of a class in the
matlab.unittest.constraints package.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.AndConstraint |
matlab.unittest.constraints.OrConstraint

Introduced in R2013a

1 Alphabetical List

1-2222

matlab.unittest.constraints.AndTolerance
class
Package: matlab.unittest.constraints

Boolean conjunction of two tolerances

Description
The testing framework constructs an AndTolerance when you denote the conjunction of
two tolerances with the logical AND operator (&). The framework constructs instances of
the class, so there is no need to construct this class directly.

See Also
matlab.unittest.constraints.OrTolerance

Introduced in R2013a

 matlab.unittest.constraints.AndTolerance class

1-2223

matlab.unittest.constraints.OrTolerance
class
Package: matlab.unittest.constraints

Boolean disjunction of two constraints

Description
The testing framework constructs an OrTolerance when you denote the disjunction of
two tolerances with the logical OR operator (|). The framework constructs instances of
the class, so there is no need to construct this class directly.

See Also
matlab.unittest.constraints.AndTolerance

Introduced in R2013a

1 Alphabetical List

1-2224

contrast
Create grayscale colormap to enhance image contrast

Syntax
newmap = contrast(I)
newmap = contrast(I,m)

Description
newmap = contrast(I) creates a grayscale colormap that enhances the contrast of
image I. The new colormap increases the contrast among pixels that are difficult to
distinguish visually, but have slightly different brightness values.

newmap = contrast(I,m) returns the new colormap as an m-by-3 array. Use this
syntax when you want the new colormap to have a different number of rows than the
original colormap.

Examples

Enhance the Contrast of an Image

Load clown to get image X and its associated colormap, map. Display the image produced
by X and map.

load clown
imagesc(X)
colormap(map)

 contrast

1-2225

Use contrast to return a gray colormap that enhances the contrast of image X. Then
update the display with the new colormap.

newmap = contrast(X);
colormap(newmap)

1 Alphabetical List

1-2226

Display Image with Fewer Gray Levels

Load clown to get image X. Then create a contrast-enhancing colormap, and display the
image using that colormap.

load clown
imagesc(X)
newmap1 = contrast(X);
colormap(newmap1)

 contrast

1-2227

Next, use contrast to create another colormap containing only 10 shades of gray.
Update the display with the new colormap. Notice that the shadow areas are lighter and
have lost some detail.

newmap2 = contrast(X,10);
colormap(newmap2)

1 Alphabetical List

1-2228

Input Arguments
I — Image
m-by-n matrix | m-by-n-by-3 truecolor image

Image to enhance, specified as an m-by-n matrix or an m-by-n-by-3 truecolor image.

m — Number of rows in new colormap
numeric scalar value

Number of rows in the new colormap, specified as a numeric scalar value.

 contrast

1-2229

Note When m is significantly different than the number of rows in the original colormap,
the new colormap might be missing some values or contain repeated values. This
discrepancy might reduce the amount of tonal detail in the enhanced image.

Example: newmap = contrast(I,50) returns a colormap containing 50 rows.

See Also
brighten | colormap | image

Introduced before R2006a

1 Alphabetical List

1-2230

conv
Convolution and polynomial multiplication

Syntax
w = conv(u,v)
w = conv(u,v,shape)

Description
w = conv(u,v) returns the convolution on page 1-2233 of vectors u and v. If u and v
are vectors of polynomial coefficients, convolving them is equivalent to multiplying the
two polynomials.

w = conv(u,v,shape) returns a subsection of the convolution, as specified by shape.
For example, conv(u,v,'same') returns only the central part of the convolution, the
same size as u, and conv(u,v,'valid') returns only the part of the convolution
computed without the zero-padded edges.

Examples

Polynomial Multiplication via Convolution

Create vectors u and v containing the coefficients of the polynomials x2 + 1 and 2x + 7.

u = [1 0 1];
v = [2 7];

Use convolution to multiply the polynomials.

w = conv(u,v)

w = 1×4

 conv

1-2231

 2 7 2 7

w contains the polynomial coefficients for 2x3 + 7x2 + 2x + 7.

Vector Convolution

Create two vectors and convolve them.

u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)

w = 1×9

 1 2 2 1 0 1 2 2 1

The length of w is length(u)+length(v)-1, which in this example is 9.

Central Part of Convolution

Create two vectors. Find the central part of the convolution of u and v that is the same
size as u.

u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')

w = 1×7

 15 5 -9 7 6 7 -1

w has a length of 7. The full convolution would be of length length(u)+length(v)-1,
which in this example would be 10.

1 Alphabetical List

1-2232

Input Arguments
u,v — Input vectors
vectors

Input vectors, specified as either row or column vectors. The vectors u and v can be
different lengths or data types.

When u or v are of type single, then the output is of type single. Otherwise, conv
converts inputs to type double and returns type double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

shape — Subsection of convolution
'full' (default) | 'same' | 'valid'

Subsection of the convolution, specified as 'full', 'same', or 'valid'.

'full' Full convolution (default).
'same' Central part of the convolution of the same size as u.
'valid' Only those parts of the convolution that are computed without

the zero-padded edges. Using this option, length(w) is
max(length(u)-length(v)+1,0), except when length(v) is
zero. If length(v) = 0, then length(w) = length(u).

Definitions
Convolution
The convolution of two vectors, u and v, represents the area of overlap under the points
as v slides across u. Algebraically, convolution is the same operation as multiplying
polynomials whose coefficients are the elements of u and v.

Let m = length(u) and n = length(v) . Then w is the vector of length m+n-1 whose
kth element is

w(k) = ∑
j

u(j)v(k− j + 1) .

 conv

1-2233

The sum is over all the values of j that lead to legal subscripts for u(j) and v(k-j+1),
specifically j = max(1,k+1-n):1:min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

• The inputs u and v must be column vectors.
• The second input v cannot be a tall array.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For information about C/C++ code generation limitations, see “Variable-Sizing
Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-2234

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
conv2 | convmtx | convn | deconv | filter | xcorr

Introduced before R2006a

 conv

1-2235

conv2
2-D convolution

Syntax
C = conv2(A,B)
C = conv2(u,v,A)
C = conv2(___ ,shape)

Description
C = conv2(A,B) returns the two-dimensional convolution on page 1-2243 of matrices A
and B.

C = conv2(u,v,A) first convolves each column of A with the vector u, and then it
convolves each row of the result with the vector v.

C = conv2(___ ,shape) returns a subsection of the convolution according to shape.
For example, C = conv2(A,B,'same') returns the central part of the convolution,
which is the same size as A.

Examples

2-D Convolution

In applications such as image processing, it can be useful to compare the input of a
convolution directly to the output. The conv2 function allows you to control the size of
the output.

Create a 3-by-3 random matrix A and a 4-by-4 random matrix B. Compute the full
convolution of A and B, which is a 6-by-6 matrix.

1 Alphabetical List

1-2236

A = rand(3);
B = rand(4);
Cfull = conv2(A,B)

Cfull = 6×6

 0.7861 1.2768 1.4581 1.0007 0.2876 0.0099
 1.0024 1.8458 3.0844 2.5151 1.5196 0.2560
 1.0561 1.9824 3.5790 3.9432 2.9708 0.7587
 1.6790 2.0772 3.0052 3.7511 2.7593 1.5129
 0.9902 1.1000 2.4492 1.6082 1.7976 1.2655
 0.1215 0.1469 1.0409 0.5540 0.6941 0.6499

Compute the central part of the convolution Csame, which is a submatrix of Cfull with
the same size as A. Csame is equal to Cfull(3:5,3:5).

Csame = conv2(A,B,'same')

Csame = 3×3

 3.5790 3.9432 2.9708
 3.0052 3.7511 2.7593
 2.4492 1.6082 1.7976

Extract 2-D Pedestal Edges

The Sobel edge-finding operation uses a 2-D convolution to detect edges in images and
other 2-D data.

Create and plot a 2-D pedestal with interior height equal to one.

A = zeros(10);
A(3:7,3:7) = ones(5);
mesh(A)

 conv2

1-2237

Convolve the rows of A with the vector u, and then convolve the rows of the result with
the vector v. The convolution extracts the horizontal edges of the pedestal.

u = [1 0 -1]';
v = [1 2 1];
Ch = conv2(u,v,A);
mesh(Ch)

1 Alphabetical List

1-2238

To extract the vertical edges of the pedestal, reverse the order of convolution with u and
v.

Cv = conv2(v,u,A);
mesh(Cv)

 conv2

1-2239

Compute and plot the combined edges of the pedestal.

figure
mesh(sqrt(Ch.^2 + Cv.^2))

1 Alphabetical List

1-2240

Input Arguments
A — Input array
vector | matrix

Input array, specified as a vector or matrix.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

 conv2

1-2241

B — Second input array
vector | matrix

Second input array, specified as a vector or a matrix to convolve with A. The array B does
not have to be the same size as A.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

u — Input vector
row or column vector

Input vector, specified as a row or column vector. u convolves with each column of A.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

v — Second input vector
row or column vector

Second input vector, specified as a row or column vector. v convolves with each row of the
convolution of u with the columns of A.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

shape — Subsection of convolution
'full' (default) | 'same' | 'valid'

Subsection of the convolution, specified as one of these values:

• 'full' — Return the full 2-D convolution.
• 'same' — Return the central part of the convolution, which is the same size as A.
• 'valid' — Return only parts of the convolution that are computed without zero-

padded edges.

1 Alphabetical List

1-2242

Output Arguments
C — 2-D convolution
vector | matrix

2-D convolution, returned as a vector or matrix. When A and B are matrices, then the
convolution C = conv2(A,B) has size size(A)+size(B)-1. When [m,n] = size(A),
p = length(u), and q = length(v), then the convolution C = conv2(u,v,A) has m
+p-1 rows and n+q-1 columns.

When one or more input arguments to conv2 are of type single, then the output is of
type single. Otherwise, conv2 converts inputs to type double and returns type
double.
Data Types: double | single

Definitions

2-D Convolution
For discrete, two-dimensional variables A and B, the following equation defines the
convolution of A and B:

C(j, k) = ∑
p
∑
q

A(p, q)B(j− p + 1, k− q + 1)

p and q run over all values that lead to legal subscripts of A(p,q) and B(j-p+1,k-q+1).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

 conv2

1-2243

• The argument A must not be empty if the shape argument is 'full' (default).
• The argument B cannot be a tall array.
• For the syntax conv2(u,v,A), only A can be a tall array.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• Input vectors u and v must not be distributed arrays.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
conv | convn

Introduced before R2006a

1 Alphabetical List

1-2244

convertCharsToStrings
Convert character arrays to string arrays, leaving other arrays unaltered

When working with your own code, you can use convertCharsToStrings to make your
code accept character arrays. Then you do not have to make any other changes to code
you had written to work with string arrays.

Syntax
B = convertCharsToStrings(A)
[B1,...,Bn] = convertCharsToStrings(A1,...,An)

Description
B = convertCharsToStrings(A) converts A to a string array if A is a character array
or a cell array of character vectors. If A has any other data type, then
convertCharsToStrings returns A unaltered.

[B1,...,Bn] = convertCharsToStrings(A1,...,An) converts any character
arrays or cell arrays of character vectors in A1,...,An to string arrays, and then returns
them as the corresponding output arguments in B1,...,Bn. If any of the arguments
A1,...,An has any other data type, then convertCharsToStrings returns it
unaltered.

Examples

Convert Character Arrays to String Arrays

Create a character vector and convert it to a string scalar.

chr = 'Mercury'

chr =
'Mercury'

 convertCharsToStrings

1-2245

str = convertCharsToStrings(chr)

str =
"Mercury"

Convert a cell array of character vectors to a string array.

C = {'Venus','Earth','Mars'}

C = 1x3 cell array
 {'Venus'} {'Earth'} {'Mars'}

str = convertCharsToStrings(C)

str = 1x3 string array
 "Venus" "Earth" "Mars"

Process and Return Input Arrays

Process an arbitrary number of input arrays of different types, converting only the
character arrays to string arrays.

Create a set of numeric, character, and string arrays.

A = [1 2 3]

A = 1×3

 1 2 3

str = ["Mercury","Gemini","Apollo"]

str = 1x3 string array
 "Mercury" "Gemini" "Apollo"

B = [2 5; 7 6]

B = 2×2

1 Alphabetical List

1-2246

 2 5
 7 6

C = {'volts','amps'}

C = 1x2 cell array
 {'volts'} {'amps'}

Convert the character array and leave the other arrays unaltered.

[newA,newStr,newB,newC] = convertCharsToStrings(A,str,B,C)

newA = 1×3

 1 2 3

newStr = 1x3 string array
 "Mercury" "Gemini" "Apollo"

newB = 2×2

 2 5
 7 6

newC = 1x2 string array
 "volts" "amps"

Input Arguments
A — Input array
array of any size and data type

Input array, specified as an array of any size or data type.

 convertCharsToStrings

1-2247

Output Arguments
B — Output array
array

Output array. The data type of the output array depends on the data type of the input
array, A.

• If A is a character vector, then B is a string scalar.
• If A is a cell array of character vectors, then B is a string array that has the same size.
• If A is a character array with multiple rows, then the columns of A are concatenated

and B is returned as a string scalar. For example, the 3-by-2 character array
['Xx';'Yy';'Zz'] is converted to "XYZxyz".

• If A has any other data type, then B is identical to A.

Tips
• To enable code that works with strings to accept character arrays as inputs, add a call

to convertCharsToStrings at the beginning of your code.

For example, if you have defined a function myFunc that accepts three input
arguments, process all three inputs using convertCharsToStrings. Leave the rest
of your code unchanged.

function y = myFunc(a,b,c)
 [a,b,c] = convertCharsToStrings(a,b,c);
 <line 1 of original code>
 <line 2 of original code>
 ...

In this example, the output arguments [a,b,c] overwrite the input arguments in
place. If any input argument is not a character array or a cell array of character
vectors, then it is unaltered.

If myFunc accepts a variable number of input arguments, then process all the
arguments specified by varargin.

function y = myFunc(varargin)
 [varargin{:}] = convertCharsToStrings(varargin{:});
 ...

1 Alphabetical List

1-2248

• The convertCharsToStrings function is more efficient when converting one input
argument. If performance is a concern, then call convertCharsToStrings on one
input argument at a time, rather than calling it once on multiple inputs.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• A cell array input must be scalar at compile time.

See Also
convertContainedStringsToChars | convertStringsToChars | isStringScalar
| iscellstr | ischar | ismissing | isstring | string | varargin

Topics
“Update Your Code to Accept Strings”

Introduced in R2017b

 convertCharsToStrings

1-2249

convertContainedStringsToChars
Convert string arrays at any level of cell array or structure

To make your code accept cell arrays and structures that contain strings as input
arguments, add a call to convertContainedStringsToChars to the beginning of your
code. Then you do not have to make any other changes to code that you had written to
work with cell arrays or structures containing character arrays.

Syntax
B = convertContainedStringsToChars(A)
[B1,...,Bn] = convertContainedStringsToChars(A1,...,An)

Description
B = convertContainedStringsToChars(A) converts string arrays at any level in A.

• If A is a string array, then B is a character vector or cell array of character vectors.
• If A is a cell array or a structure, then string arrays in any cell or field of A become

character vectors or cell arrays of character vectors in B. All other cells or fields of A
are unaltered in B.

• Otherwise, the function returns A unaltered.

[B1,...,Bn] = convertContainedStringsToChars(A1,...,An) converts the
input arguments A1,...,An. For every input argument, there must be a corresponding
output argument in B1,...,Bn.

Examples

Convert Strings in Cell Array

Create a cell array containing launch dates, spacecraft names, and planets visited. Some
cells contain string arrays, and others do not.

1 Alphabetical List

1-2250

C = {2004,"Messenger","Mercury"; ...
 1977,"Voyager 1",["Jupiter","Saturn"]; ...
 2006,"New Horizons","Pluto"}

C = 3x3 cell array
 {[2004]} {["Messenger"]} {["Mercury"]}
 {[1977]} {["Voyager 1"]} {1x2 string }
 {[2006]} {["New Horizons"]} {["Pluto"]}

Convert the strings in C to character vectors.

C = convertContainedStringsToChars(C)

C = 3x3 cell array
 {[2004]} {'Messenger' } {'Mercury'}
 {[1977]} {'Voyager 1' } {1x2 cell }
 {[2006]} {'New Horizons'} {'Pluto' }

Note that the function converts the string array ["Jupiter","Saturn"] to a cell array
of character vectors, contained in cell C(2,3). To access the contents of the cell, use
curly brace indexing.

C{2,3}

ans = 1x2 cell array
 {'Jupiter'} {'Saturn'}

Convert Strings in Structure

Create a structure containing arrays of data, a title, and labels for a plot. Some of the
fields contain strings, and others do not.

S.x = linspace(0,2*pi);
S.y = sin(S.x);
S.title = "y = sin(x)";
S.axislabels = ["x (radians)","y"]

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]

 convertContainedStringsToChars

1-2251

 title: "y = sin(x)"
 axislabels: ["x (radians)" "y"]

Convert the strings in S.

S = convertContainedStringsToChars(S)

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'
 axislabels: {'x (radians)' 'y'}

Process and Return Multiple Inputs

Process an arbitrary number of input arrays of different types.

Create an array of doubles, a structure, and a cell array. The structure and cell array
contain strings, specified using double quotes.

x = linspace(0,2*pi,8);
S.y = sin(x);
S.title = "y = sin(x)";
C = {{sin(x),"y = sin(x)"},{cos(x),"y = cos(x)"}};

Convert the strings and return all other data unaltered.

[x,S,C] = convertContainedStringsToChars(x,S,C)

x = 1×8

 0 0.8976 1.7952 2.6928 3.5904 4.4880 5.3856 6.2832

S = struct with fields:
 y: [0 0.7818 0.9749 0.4339 -0.4339 -0.9749 -0.7818 -2.4493e-16]
 title: 'y = sin(x)'

1 Alphabetical List

1-2252

C = 1x2 cell array
 {1x2 cell} {1x2 cell}

Display the contents of the cell array contained in the first cell, C(1). The function
converts strings that are in nested cells or nested structures to character vectors. Note
that character vectors display with single quotes.

C{1}

ans = 1x2 cell array
 {1x8 double} {'y = sin(x)'}

Input Arguments
A — Input array
array

Input array, specified as an array of any size or data type.

If A is a cell array or a structure, then it can be nested. A cell can contain another cell
array, and a structure can have a field that is another structure.
convertContainedStringsToChars converts every element or field value that is a
string into a corresponding character vector or cell array of character vectors. The
function converts each element or field value using the rules defined by the
convertStringsToChars function, traversing every level and combination of nested
containers.

See Also
convertCharsToStrings | convertStringsToChars | isStringScalar | ischar |
isstring | string | validateattributes

Topics
“Update Your Code to Accept Strings”

Introduced in R2018b

 convertContainedStringsToChars

1-2253

convertStringsToChars
Convert string arrays to character arrays, leaving other arrays unaltered

When working with your own code, you can use convertStringsToChars to make your
code accept string inputs. Then you do not have to make any other changes to code that
you had written to work with character arrays.

Syntax
B = convertStringsToChars(A)
[B1,...,Bn] = convertStringsToChars(A1,...,An)

Description
B = convertStringsToChars(A) converts A to a character vector or a cell array of
character vectors if A is a string array. Otherwise, convertStringsToChars returns A
unaltered.

[B1,...,Bn] = convertStringsToChars(A1,...,An) converts any string arrays in
A1,...,An to character vectors or cell arrays of character vectors, and then returns
them as the corresponding output arguments in B1,...,Bn. If any of the arguments
A1,...,An has any other data type, then convertStringsToChars returns it
unaltered.

Examples

Convert String Arrays to Character Arrays

Create a string scalar and convert it to a character vector.

str = "Mercury"

str =
"Mercury"

1 Alphabetical List

1-2254

chr = convertStringsToChars(str)

chr =
'Mercury'

Convert a string array to a cell array of character vectors.

str = ["Venus","Earth","Mars"]

str = 1x3 string array
 "Venus" "Earth" "Mars"

C = convertStringsToChars(str)

C = 1x3 cell array
 {'Venus'} {'Earth'} {'Mars'}

Process and Return Input Arrays

Process an arbitrary number of input arrays of different types, converting only the string
arrays to character arrays.

Create a set of numeric, character, and string arrays.

A = [1 2 3]

A = 1×3

 1 2 3

str = ["Mercury","Gemini","Apollo"]

str = 1x3 string array
 "Mercury" "Gemini" "Apollo"

B = [2 5; 7 6]

B = 2×2

 convertStringsToChars

1-2255

 2 5
 7 6

C = {'volts','amps'}

C = 1x2 cell array
 {'volts'} {'amps'}

Convert the string array and return the other arrays unaltered.

[newA,newStr,newB,newC] = convertStringsToChars(A,str,B,C)

newA = 1×3

 1 2 3

newStr = 1x3 cell array
 {'Mercury'} {'Gemini'} {'Apollo'}

newB = 2×2

 2 5
 7 6

newC = 1x2 cell array
 {'volts'} {'amps'}

Input Arguments
A — Input array
array of any size and data type

Input array, specified as an array of any size or data type.

1 Alphabetical List

1-2256

Output Arguments
B — Output array
array

Output array. The data type of the output array depends on the data type of the input
array, A.

• If A is a string scalar, then B is a character vector.
• If A is a string array of any other size, then B is a cell array of character vectors that

has the same size.
• If A has any other data type, then B is identical to A.

If A is a string array, then convertStringsToChars converts any element that is:

• An empty string (displayed as "") to a 0-by-0 character array (displayed as '')
• A missing string (displayed as <missing>) to a 0-by-0 character array

If A is an empty string array, then B is an empty cell array. An empty array has at least one
dimension whose size is 0.

Tips
• To enable your existing code to accept string arrays as input, add a call to

convertStringsToChars at the beginning of your code.

For example, if you have defined a function myFunc that accepts three input
arguments, process all three inputs using convertStringsToChars. Leave the rest
of your code unchanged.

function y = myFunc(a,b,c)
 [a,b,c] = convertStringsToChars(a,b,c);
 <line 1 of original code>
 <line 2 of original code>
 ...

In this example, the output arguments [a,b,c] overwrite the input arguments in
place. If any input argument is not a string array, then it is unaltered.

 convertStringsToChars

1-2257

If myFunc accepts a variable number of input arguments, then process all the
arguments specified by varargin.

function y = myFunc(varargin)
 [varargin{:}] = convertStringsToChars(varargin{:});
 ...

• The convertStringsToChars function is more efficient when converting one input
argument. If performance is a concern, then call convertStringsToChars on one
input argument at a time, rather than calling it once on multiple inputs.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
convertCharsToStrings | convertContainedStringsToChars | isStringScalar
| iscellstr | ischar | ismissing | isstring | string | varargin

Topics
“Update Your Code to Accept Strings”

Introduced in R2017b

1 Alphabetical List

1-2258

convertvars
Convert table or timetable variables to specified data type

Syntax
T2 = convertvars(T1,vars,dataType)

Description
T2 = convertvars(T1,vars,dataType) converts the specified variables to the
specified data type. The input argument T1 can be a table or timetable.

While you can specify dataType as the name of a data type, you also can specify it as a
function handle. In that case, it is a handle to a function that converts or otherwise
modifies the variables specified by vars. Similarly, vars can contain variable names or
positions of variables in T1, or it can be a handle to a function that identifies variables.

Examples

Convert Table Variables

Read a table from a spreadsheet containing data on electric power outages. The table has
text variables showing the region and cause for each power outage, datetime variables
showing the outage and restoration times, and numeric variables showing the power loss
and number of customers affected. Display the first five rows.

T1 = readtable('outages.csv');
head(T1,5)

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'

 convertvars

1-2259

 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 'West' 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 'MidWest' 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'

Convert the variables Region and Cause to categorical variables. Note that categorical
values are not displayed with quotation marks.

T2 = convertvars(T1,{'Region','Cause'},'categorical');
head(T2,5)

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 _________ ________________ ______ __________ ________________ _______________

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

It can be convenient to convert variables to data types that offer different functionality.
For example, now that T2.Region is a categorical variable, you can use the pie function
to make a pie chart of power outages by region. But you cannot use T1.Region as the
input argument to pie, because that variable contains text, not categorical data.

pie(T2.Region)

1 Alphabetical List

1-2260

Detect Variable Types Without Specifying Names

Detect which table variables are datetime arrays. Then use the datetime function as an
argument to the convertvars function to specify a time zone and display format.

Read power outage data into a table and display the first three rows.

T1 = readtable('outages.csv');
head(T1,3)

ans=3×6 table
 Region OutageTime Loss Customers RestorationTime Cause

 convertvars

1-2261

 ___________ ________________ ______ __________ ________________ ______________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

The datetime arrays in T1 do not have their time zones set. Without specifying the names
or locations of table variables, you can detect which variables are datetime arrays using a
function handle to the isdatetime function. (A function handle is a variable that stores
an association to a function. You can use a function handle to pass a function to another
function. For example, specify @isdatetime to pass the handle to convertvars.) Then
you can convert all datetime variables so that they have a time zone and a different
display format. This technique is useful when converting many table variables that all
have the same data type.

Call the convertvars function. To modify the time zone and format in place, specify an
anonymous function that calls the datetime function with the 'TimeZone' and
'Format' name-value pair arguments. (An anonymous function is not stored in a
program file. It can be useful for a function that requires only a brief definition. In this
case, it also allows a call to datetime with multiple inputs, while passing convertvars
a function that accepts only one input, as convertvars requires.) Display the first three
rows, showing the change in format.

modifyTimeZoneAndFormat = @(x)(datetime(x,'TimeZone','UTC','Format','MMM dd, yyyy, HH:mm z'));
T2 = convertvars(T1,@isdatetime,modifyTimeZoneAndFormat);
head(T2,3)

ans=3×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ _______________________ ______ __________ _______________________ ______________

 'SouthWest' Feb 01, 2002, 12:18 UTC 458.98 1.8202e+06 Feb 07, 2002, 16:50 UTC 'winter storm'
 'SouthEast' Jan 23, 2003, 00:49 UTC 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' Feb 07, 2003, 21:15 UTC 289.4 1.4294e+05 Feb 17, 2003, 08:14 UTC 'winter storm'

Input Arguments
T1 — Input table
table | timetable

1 Alphabetical List

1-2262

Input table, specified as a table or timetable.

If T1 is a timetable, then you cannot use convertvars to convert its row times, because
the row times are not contained in a timetable variable. The row times are timetable
metadata.

vars — Variables in input table or timetable
character vector | cell array of character vectors | string array | numeric array | logical
array | function handle

Variables in the input table or timetable, specified as a character vector, cell array of
character vectors, string array, numeric array, logical array, or function handle.

If vars is a function handle, then the function must accept one input argument, identify
its data type, and return a logical scalar. For example, use the isnumeric function to
detect which variables are numeric.
Example: T2 = convertvars(T1,'Region','categorical') converts the type of
the variable Region.
Example: T2 = convertvars(T1,[1,3:6],'string') converts variables specified by
position to string arrays.
Example: T2 = convertvars(T1,@isnumeric,'int32') converts all numeric
variables to 32-bit integers.

dataType — Data type of converted variables
character vector | string scalar | function handle

Data type of the converted variables, specified as a character vector, string scalar, or
function handle.

If dataType is a function handle, then the function must accept one input argument and
convert it to another data type. For example, the string function converts an input
argument to a string array.

The table shows the names of many common data types.

'single' Single-precision number
'double' Double-precision number
'int8' Signed 8-bit integer

 convertvars

1-2263

'int16' Signed 16-bit integer
'int32' Signed 32-bit integer
'int64' Signed 64-bit integer
'uint8' Unsigned 8-bit integer
'uint16' Unsigned 16-bit integer
'uint32' Unsigned 32-bit integer
'uint64' Unsigned 64-bit integer
'logical' Logical 1 (true) or 0 (false)
'string' String array
'cell' Cell array
'cellstr' Cell array of character vectors
'categorical' Categorical array
'datetime' Datetime array
'duration' Duration array
'calendarDuration' Calendar duration array

If you specify 'char' as a data type, then convertvars converts variables to character
arrays. Best practice is to avoid creating table or timetable variables that are character
arrays. Instead, consider converting variables to string arrays, categorical arrays, or cell
arrays of character vectors.
Example: T2 = convertvars(T1,'OutageTime','datetime') converts the type of
the variable OutageTime.
Example: T2 = convertvars(T1,'Region',@categorical) converts a variable
using a function handle to the categorical function.

See Also
addvars | mergevars | movevars | removevars | splitvars

Topics
“Add, Delete, and Rearrange Table Variables”
“Modify Units, Descriptions, and Table Variable Names”
“Clean Messy and Missing Data in Tables”

1 Alphabetical List

1-2264

“Create Function Handle”
“Pass Function to Another Function”

Introduced in R2018b

 convertvars

1-2265

convhull
Convex hull

Note Qhull-specific options are no longer supported. Remove the OPTIONS argument
from all instances in your code that pass it to convhull.

Syntax
K = convhull(X,Y)
K = convhull(X,Y,Z)
K = convhull(X)
K = convhull(...,'simplify', logicalvar)
[K,V] = convhull(...)

Description
K = convhull(X,Y) returns the 2-D convex hull of the points (X,Y), where X and Y are
column vectors. The convex hull K is expressed in terms of a vector of point indices
arranged in a counterclockwise cycle around the hull.

K = convhull(X,Y,Z) returns the 3-D convex hull of the points (X,Y,Z), where X, Y, and
Z are column vectors. K is a triangulation representing the boundary of the convex hull. K
is of size mtri-by-3, where mtri is the number of triangular facets. That is, each row of K
is a triangle defined in terms of the point indices.

K = convhull(X) returns the 2-D or 3-D convex hull of the points X. This variant
supports the definition of points in matrix format. X is of size mpts-by-ndim, where mpts
is the number of points and ndim is the dimension of the space where the points reside, 2
≦ ndim ≦ 3. The output facets are equivalent to those generated by the 2-input or 3-input
calling syntax.

1 Alphabetical List

1-2266

K = convhull(...,'simplify', logicalvar) provides the option of removing
vertices that do not contribute to the area/volume of the convex hull, the default is false.
Setting 'simplify' to true returns the topology in a more concise form.

[K,V] = convhull(...) returns the convex hull K and the corresponding area/volume
V bounded by K.

Visualization
Use plot to plot the output of convhull in 2-D. Use trisurf or trimesh to plot the
output of convhull in 3-D.

Examples

Plot 2-D Convex Hull

xx = -1:.05:1;
yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b*')

 convhull

1-2267

Definitions

Convex Hull
convhull returns the convex hull of a set of points in 2-D or 3-D space.

See Also
convexHull | convhulln | delaunay | polyarea | voronoi | voronoiDiagram

1 Alphabetical List

1-2268

Introduced before R2006a

 convhull

1-2269

convhulln
N-D convex hull

Syntax
K = convhulln(X)
K = convhulln(X,options)
[K,v] = convhulln(...)

Description
K = convhulln(X) returns the indices K of the points in X that make up the facets of
the convex hull of X. If X contains 2-D coordinates or 3-D coordinates, then the facets
form triangles or tetrahedra, respectively. In general, X can be an m-by-n array
representing m points in n-dimensional space. If the convex hull has p facets then K has
size p-by-n.

convhulln uses Qhull.

K = convhulln(X,options) specifies a cell array of Qhull options. The default options
are:

• {'Qt'} for 2-, 3-. and 4-dimensional input
• {'Qt','Qx'} for 5-dimensional input and higher.

If options is [], the default options are used. For more information on Qhull and its
options, see http://www.qhull.org/.

[K,v] = convhulln(...) also returns the volume v of the convex hull.

Visualization
Plotting the output of convhulln depends on the value of n:

1 Alphabetical List

1-2270

http://www.qhull.org/

• For n = 2, use plot as you would for convhull.
• For n = 3, you can use trisurf to plot the output. The calling sequence is

K = convhulln(X);
trisurf(K,X(:,1),X(:,2),X(:,3))

• You cannot plot convhulln output for n > 3.

Examples
The following example illustrates the options input for convhulln. The following
commands

X = [0 0; 0 1e-10; 0 0; 1 1];
K = convhulln(X)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow
(cosine of min. angle is 0.9999999999999998).
A coplanar point may lead to a wide facet.
Options 'QbB' (scale to unit box) or 'Qbb'
(scale last coordinate) may remove this warning.
Use 'Pp' to skip this warning.

To suppress the warning, use the option 'Pp'. The following command passes the option
'Pp', along with the default 'Qt', to convhulln.

K = convhulln(X,{'Qt','Pp'})

K =

 1 4
 1 2
 4 2

Algorithms
convhulln is based on Qhull [1]. For information about Qhull, see http://
www.qhull.org/. For copyright information, see http://www.qhull.org/
COPYING.txt.

 convhulln

1-2271

http://www.qhull.org/
http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.qhull.org/COPYING.txt

References
[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull Algorithm for Convex

Hulls,” ACM Transactions on Mathematical Software, Vol. 22, No. 4, Dec. 1996, p.
469-483.

See Also
convexHull | convhull | delaunayn | dsearchn | tsearchn | voronoin

Introduced before R2006a

1 Alphabetical List

1-2272

convn
N-D convolution

Syntax
C = convn(A,B)
C = convn(A,B,shape)

Description
C = convn(A,B) returns the N-dimensional convolution on page 1-2276 of arrays A and
B.

C = convn(A,B,shape) returns a subsection of the convolution according to shape.
For example, C = convn(A,B,'same') returns the central part of the convolution,
which is the same size as A.

Examples

3-D Convolution

You can control the size of the output of the convn function. For example, the 'same'
option trims the outer part of the convolution and returns only the central part, which is
the same size as the input.

Convolve a random 2-by-3-by-2 array A with a 2-by-2-by-2 kernel B. The result is a 3-by-4-
by-3 array, which is size(A) + size(B) - 1.

A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B)

C =
C(:,:,1) =

 convn

1-2273

 0.2037 0.2354 0.1898 0.1581
 0.4301 0.6902 0.4426 0.1825
 0.2264 0.4548 0.2527 0.0244

C(:,:,2) =

 0.2733 0.5444 0.4686 0.1975
 0.6365 1.3772 1.2052 0.4645
 0.3632 0.8327 0.7366 0.2670

C(:,:,3) =

 0.0696 0.3090 0.2788 0.0394
 0.2063 0.6869 0.7627 0.2821
 0.1367 0.3779 0.4839 0.2426

sizeC = size(A) + size(B) - 1

sizeC = 1×3

 3 4 3

Return the central part of the convolution, which is the same size as A.

C = convn(A,B,'same')

C =
C(:,:,1) =

 1.3772 1.2052 0.4645
 0.8327 0.7366 0.2670

C(:,:,2) =

 0.6869 0.7627 0.2821
 0.3779 0.4839 0.2426

1 Alphabetical List

1-2274

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as vector, a matrix, or a multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

B — Second input array
vector | matrix | multidimensional array

Second input array, specified as a vector, a matrix, or a multidimensional array to
convolve with A. The array B does not have to be the same size as A.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

shape — Subsection of convolution
'full' (default) | 'same' | 'valid'

Subsection of the convolution, specified as one of these values:

• 'full' — Return the full N-D convolution.
• 'same' — Return the central part of the convolution, which is the same size as A.
• 'valid' — Return only parts of the convolution that are computed without zero-

padded edges.

Output Arguments
C — N-D convolution
vector | matrix | multidimensional array

N-D convolution, returned as a vector, a matrix, or a multidimensional array. If A and B
have the same number of dimensions, the full convolution C = convn(A,B) has size
size(A)+size(B)-1.

 convn

1-2275

When one or both of A and B are of type single, then the output is of type single.
Otherwise, convn converts inputs to type double and returns type double.
Data Types: double | single

Definitions

N-D Convolution
For discrete, N-dimensional variables A and B, this equation defines the convolution of A
and B:

C(j1, j2, ..., jN) = ∑
k1
∑
k2

...∑
kN

A(k1, k2, ..., kN)B(j1− k1, j2− k2, ..., jN − kN)

Each ki runs over all values that lead to legal subscripts of A and B.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The argument A must not be empty if the shape argument is 'full' (default).
• The argument B cannot be a tall array.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-2276

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
conv | conv2

Introduced before R2006a

 convn

1-2277

copper
Copper colormap array

Syntax
c = copper
c = copper(m)

Description
c = copper returns the copper colormap as a three-column array with the same number
of rows as the colormap for the current figure. If no figure exists, then the number of
rows is equal to the default length of 64. Each row in the array contains the red, green,
and blue intensities for a specific color. The intensities are in the range [0,1], and the
color scheme looks like this image.

c = copper(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the copper colormap.

surf(peaks);
colormap('copper');

1 Alphabetical List

1-2278

Get the copper colormap array and reverse the order. Then apply the modified colormap
to the surface.

c = copper;
c = flipud(c);
colormap(c);

 copper

1-2279

Downsample the Copper Colormap

Get a downsampled version of the copper colormap containing only ten colors. Then
display the contours of the peaks function by applying the colormap and interpolated
shading.

c = copper(10);
surf(peaks);
colormap(c);
shading interp;

1 Alphabetical List

1-2280

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 copper

1-2281

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-2282

matlab.mixin.CustomDisplay class
Package: matlab.mixin

Interface for customizing object display

Description
This class provides an interface for customizing the way MATLAB displays objects. Derive
your class from matlab.mixin.CustomDisplay to add the custom display functionality
to your class.

For customizing object display, matlab.mixin.CustomDisplay defines a number of
protected methods that you can override in your subclass. By overriding specific methods,
you can customize specific aspects of the object display.

matlab.mixin.CustomDisplay also implements three public, sealed methods. disp
and display provide a simple object display. The details method provides a standard
formal display of object information.

Note You cannot use matlab.mixin.CustomDisplay to derive a custom display for
enumeration classes. For an alternative approach, see “Overloading the disp Function”

 matlab.mixin.CustomDisplay class

1-2283

Methods
convertDimensionsToString Return array dimensions as text
displayEmptyObject Display for empty object arrays
displayNonScalarObject Display format for non-scalar objects
displayPropertyGroups Display titles and property groups as defined
displayScalarHandleToDeletedObject

Display format for deleted scalar handles
displayScalarObject Display format for scalar objects
getClassNameForHeader Return class name for display
getDeletedHandleText Returns text for handle to deleted object display
getDetailedFooter Returns default detailed footer for object display
getDetailedHeader Returns default detailed header for object display
getFooter Build and return display footer text
getHandleText Return text 'handle' with link to documentation
getHeader Build and return display header text
getPropertyGroups Construct array of property groups
getSimpleHeader Return simple header for object display

Attributes
Abstract This class defines an interface that subclasses

inherit. You cannot instantiate this class.
HandleCompatible You can use this class to derive both handle and

value classes.

See Also
matlab.mixin.util.PropertyGroup

Topics
“Custom Display Interface”

1 Alphabetical List

1-2284

Introduced in R2013b

 matlab.mixin.CustomDisplay class

1-2285

matlab.mixin.CustomDisplay.convertDimensi
onsToString
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Return array dimensions as text

Syntax
dimstr = matlab.mixin.CustomDisplay.convertDimensionsToString(obj)

Description
dimstr = matlab.mixin.CustomDisplay.convertDimensionsToString(obj)
converts a size vector into a properly formatted text of dimensions for the nonscalar
header.

Input Arguments
obj

MATLAB object

Output Arguments
dimstr

Text representing the object’s dimensions as determined by calling size.

1 Alphabetical List

1-2286

Attributes
Static true
Access Protected
Sealed true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
getHeader

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.convertDimensionsToString

1-2287

displayEmptyObject
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Display for empty object arrays

Syntax
displayEmptyObject(obj)

Description
displayEmptyObject(obj) is called by disp when the object, obj, is empty. An object
array is empty if one or more of its dimensions are zero. An empty object array is never
scalar.

The default display of an empty object consists of a header and a list of property names.
The header consists of the object's dimensions and the properties are shown in the order
defined in the class definition. displayEmptyObject shows only those properties with
public GetAccess and Hidden set to false.

Override this method to customize the appearance of an empty object array.

Input Arguments
obj

Object of a class derived from matlab.mixin.CustomDisplay

Default:

1 Alphabetical List

1-2288

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.CustomDisplay.displayNonScalarObject |
matlab.mixin.CustomDisplay.displayScalarHandleToDeletedObject |
matlab.mixin.CustomDisplay.displayScalarObject

Topics
“Custom Display Interface”

 displayEmptyObject

1-2289

displayNonScalarObject
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Display format for non-scalar objects

Syntax
displayNonScalarObject(obj)

Description
displayNonScalarObject(obj) is called by the disp method when the object, obj, is
nonscalar (prod(size(obj)) > 1)

The default display of a nonscalar object array consists of a header and a list of property
names. The header consists of the object's dimensions and the properties are shown in
the order defined in the class definition. displayNonScalarObject shows only those
properties with public GetAccess and Hidden set to false.

Override this method to customize the display a nonscalar object array.

Input Arguments
obj

Object array of a class derived from matlab.mixin.CustomDisplay

Default:

1 Alphabetical List

1-2290

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.CustomDisplay.displayEmptyObject |
matlab.mixin.CustomDisplay.displayScalarHandleToDeletedObject |
matlab.mixin.CustomDisplay.displayScalarObject

Topics
“Custom Display Interface”

 displayNonScalarObject

1-2291

matlab.mixin.CustomDisplay.displayProperty
Groups
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Display titles and property groups as defined

Syntax
matlab.mixin.CustomDisplay.displayPropertyGroups(obj,
propertyGroupArray)

Description
matlab.mixin.CustomDisplay.displayPropertyGroups(obj,
propertyGroupArray) displays titles and custom property lists as defined by the
property groups.

Input Arguments
obj

MATLAB object

Default:

propertyGroupArray

Array of matlab.mixin.util.PropertyGroup objects.

Default:

1 Alphabetical List

1-2292

Attributes
Static true
Access Protected
Sealed true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
PropertyGroup

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.displayPropertyGroups

1-2293

displayScalarHandleToDeletedObject
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Display format for deleted scalar handles

Syntax
displayScalarHandleToDeletedObject(obj)

Description
displayScalarHandleToDeletedObject(obj) is called by the disp method when
obj is:

• An instance of a handle class
• Scalar
• A handle to a deleted object

That is, the following expression is true.

isa(obj,'handle') && isscalar(obj) && ~isvalid(obj)

Override this method to customize the appearance of your object's display when it is
deleted.

Input Arguments
obj

Object of a class derived from matlab.mixin.CustomDisplay

Default:

1 Alphabetical List

1-2294

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.CustomDisplay.displayEmptyObject |
matlab.mixin.CustomDisplay.displayNonScalarObject |
matlab.mixin.CustomDisplay.displayScalarObject

Topics
“Custom Display Interface”

 displayScalarHandleToDeletedObject

1-2295

displayScalarObject
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Display format for scalar objects

Syntax
displayScalarObject(obj)

Description
displayScalarObject(obj) is called by the disp method when the object, obj, is
scalar (prod(size(obj)) == 1).

The default display of a scalar object consists of a header and a list of properties and their
values. Properties are shown in the order they are defined in the class definition.
displayScalarObject shows only those properties with public GetAccess and
Hidden set to false.

Override this method to customize the display of a scalar object.

Input Arguments
obj

Object of a class derived from matlab.mixin.CustomDisplay

Default:

1 Alphabetical List

1-2296

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.CustomDisplay.displayEmptyObject |
matlab.mixin.CustomDisplay.displayNonScalarObject |
matlab.mixin.CustomDisplay.displayScalarHandleToDeletedObject

Topics
“Custom Display Interface”

 displayScalarObject

1-2297

matlab.mixin.CustomDisplay.getClassNameF
orHeader
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Return class name for display

Syntax
name = matlab.mixin.CustomDisplay.getClassNameForHeader(obj)

Description
name = matlab.mixin.CustomDisplay.getClassNameForHeader(obj) returns
the class name of obj. If the display supports hypertext links, the text is linked to the
help for the class of obj.

Use this method when building a custom display that includes the class name, but differs
from the default header.

Input Arguments
obj

MATLAB object

Default:

1 Alphabetical List

1-2298

Output Arguments
name

The simple class name, linked to the help for the class if the display supports hypertext
links

Attributes
Static true
Access Protected
Sealed true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
getHeader

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.getClassNameForHeader

1-2299

matlab.mixin.CustomDisplay.getDeletedHan
dleText
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Returns text for handle to deleted object display

Syntax
handleText = matlab.mixin.CustomDisplay.getDeletedHandleText

Description
handleText = matlab.mixin.CustomDisplay.getDeletedHandleText returns
the text:

'handle to deleted'

The text is linked to the documentation on deleted handle objects.

Output Arguments
handleText

Text 'handle to deleted', linked if the display supports hypertext links

Attributes
Static true
Access Protected
Sealed true

1 Alphabetical List

1-2300

Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
getHeader

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.getDeletedHandleText

1-2301

matlab.mixin.CustomDisplay.getDetailedFoot
er
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Returns default detailed footer for object display

Syntax
headerText = matlab.mixin.CustomDisplay.getDetailedFooter(obj)

Description
headerText = matlab.mixin.CustomDisplay.getDetailedFooter(obj) returns
the text containing:

Methods, Events, Superclass

Each link executes the respective command on obj.

Input Arguments
obj

MATLAB object

Output Arguments
headerText

Text containing the linked phrase 'Methods, Events, Superclasses' or an empty
character vector if the display does not support hypertext links

1 Alphabetical List

1-2302

Attributes
Static true
Access Protected
Sealed true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
events | getFooter | methods | superclasses

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.getDetailedFooter

1-2303

matlab.mixin.CustomDisplay.getDetailedHea
der
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Returns default detailed header for object display

Syntax
header = matlab.mixin.CustomDisplay.getDetailedHeader(obj)

Description
header = matlab.mixin.CustomDisplay.getDetailedHeader(obj) returns text
containing:

• Linked class name of obj
• Link to handle documentation if obj is a handle class
• The text 'with properties:'

Input Arguments
obj

MATLAB object

Output Arguments
header

Text containing the full detailed header, with properly inserted links if the display
supports hypertext linking

1 Alphabetical List

1-2304

Attributes
Static true
Access Protected
Sealed true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
handle

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.getDetailedHeader

1-2305

getFooter
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Build and return display footer text

Syntax
s = getFooter(obj)

Description
s = getFooter(obj) returns the text used as the footer when displaying obj. This
method is called once for the entire object array.

Override this method to create a custom footer. The overriding implementation must
support all states of the object, including scalar, nonscalar, empty, and deleted (if obj is
an instance of a handle class).

Input Arguments
obj

Object array of a class derived from matlab.mixin.CustomDisplay

Output Arguments
s

Footer text, returned as a char vector.

The default implementation returns an empty char vector

1 Alphabetical List

1-2306

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.CustomDisplay.getHeader |
matlab.mixin.CustomDisplay.getPropertyGroups

Topics
“Custom Display Interface”

 getFooter

1-2307

matlab.mixin.CustomDisplay.getHandleText
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Return text 'handle' with link to documentation

Syntax
handleText = matlab.mixin.CustomDisplay.getHandleText

Description
handleText = matlab.mixin.CustomDisplay.getHandleText returns the text
'handle'. If the display supports hypertext linking, the text is linked to documentation
describing handle classes.

Output Arguments
handleText

Text handle, linked to the handle documentation.

Attributes
Static true
Access Protected
Sealed true
Hidden true

To learn about attributes of methods, see Method Attributes.

1 Alphabetical List

1-2308

See Also
getHeader

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.getHandleText

1-2309

getHeader
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Build and return display header text

Syntax
s = getHeader(obj)

Description
s = getHeader(obj) returns the text used as the header when displaying obj. This
method is called once for the entire object array.

Override this method to create a custom header. The overriding implementation must
support all states of the object, including scalar, nonscalar, empty, and deleted (if obj is
an instance of a handle class).

Input Arguments
obj

Object array of a class derived from matlab.mixin.CustomDisplay

Output Arguments
s

Header string, returned as a char array

The default implementation returns the following:

1 Alphabetical List

1-2310

• If obj is scalar, returns classname, which is the simple name of the class (the
nonpackage-qualified name).

• If obj is nonscalar, returns classname and dimensions.
• If obj is empty, returns an empty char.
• If obj is a deleted handle, returns the string deleted classname handle

classname is linked to MATLAB documentation for the class. Selecting the link displays
the helpPopup window.

If you override this method, you might need to terminate s with a newline (\n) character.

Examples

Append Text to Default Header

Append the text, 'with Customized Display', to the header text.

Write a getHeader method.
methods (Access = protected)
 function header = getHeader(obj)
 if ~isscalar(obj)
 header = getHeader@matlab.mixin.CustomDisplay(obj);
 else
 headerStr = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 headerStr = [headerStr,' with Customized Display'];
 header = sprintf('%s\n',headerStr);
 end
 end
end

Add getHeader method to class definition.

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

 getHeader

1-2311

See Also
matlab.mixin.CustomDisplay.getFooter |
matlab.mixin.CustomDisplay.getPropertyGroups

Topics
“Custom Display Interface”

1 Alphabetical List

1-2312

getPropertyGroups
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Construct array of property groups

Syntax
groups = getPropertyGroups(obj)

Description
groups = getPropertyGroups(obj) returns an array of
matlab.mixin.util.PropertyGroup objects. MATLAB displays property groups
separated by blank spaces.

Each default display state handler method calls this method once. The default
implementation returns the properties in one group. These properties must have public
GetAccess and not be defined as Hidden. If the object is scalar, MATLAB includes
dynamic properties.

Override this method to construct one or more customized groups of properties to display.

Each group object array has the following fields:

• Title — Text used as the header for the property group or an empty string if no title
is used.

• PropertyList — The property list can be either:

• A 1-by-1 struct of property name-property value pairs
• A cell array of property names.

Use the struct of name-value pairs if the object is scalar and you want to assign custom
property values. Otherwise, use a cell array of property names. If the object is scalar
MATLAB adds the property values retrieved from the object.

 getPropertyGroups

1-2313

Input Arguments
obj

Object array of a class derived from matlab.mixin.CustomDisplay

Default:

Output Arguments
groups

1xN array of matlab.mixin.util.PropertyGroup objects, where N is the number of
groups

Examples

Custom Property Group

Customize the values returned by some properties.

Write a getPropertyGroups method.

methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 pd(1:length(obj.Password)) = '*';
 propList = struct('Department',obj.Department,...
 'JobTitle',obj.JobTitle,...
 'Name',obj.Name,...
 'Salary','Not available',...
 'Password',pd);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end
end

1 Alphabetical List

1-2314

Add function to class definition.

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.CustomDisplay.getFooter |
matlab.mixin.CustomDisplay.getHeader | matlab.mixin.util.PropertyGroup

Topics
“Custom Display Interface”
“Customize Property Display”

 getPropertyGroups

1-2315

matlab.mixin.CustomDisplay.getSimpleHead
er
Class: matlab.mixin.CustomDisplay
Package: matlab.mixin

Return simple header for object display

Syntax
header = matlab.mixin.CustomDisplay.getSimpleHeader(obj)

Description
header = matlab.mixin.CustomDisplay.getSimpleHeader(obj) returns the
default simple header for obj.

Input Arguments
obj

MATLAB object.

Default:

Output Arguments
header

Text containing the linked class name and the phrase 'with properties'

1 Alphabetical List

1-2316

Attributes
Static true
Access Protected
Sealed true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.CustomDisplay.getHeader

Topics
“Custom Display Interface”

 matlab.mixin.CustomDisplay.getSimpleHeader

1-2317

matlab.mixin.Copyable class
Package: matlab.mixin

Superclass providing copy functionality for handle objects

Description
The matlab.mixin.Copyable class is an abstract handle class that provides a copy
method for copying handle objects. The copy method makes a shallow copy of the object
(that is, it shallow-copies all nondependent properties from the source object to the
destination object). MATLAB does not call copy recursively on any handles contained in
property values.

Subclass matlab.mixin.Copyable to define handle classes that inherit a copy method.
The copy method. The copy method copies data without calling the class constructor or
property set functions. It therefore produces no side effects.

Subclasses can customize copy behavior by deriving from matlab.mixin.Copyable and
overriding the copyElement method. For more information, see the example
“Customizing Subclass Copy Behavior” on page 1-2319.

The matlab.mixin.Copyable class is a handle class.

Class Attributes
Abstract

true
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

1 Alphabetical List

1-2318

Methods

Public Methods
<infotypegroup type="method"> copy </infotypegroup>

Protected Methods
<infotypegroup type="method"> copyElement </infotypegroup>

Examples

Add Copy Method
Add a copy method to your handle class by subclassing matlab.mixin.Copyable.

classdef MyClass < matlab.mixin.Copyable
 properties
 Prop
 end
end

Create an object.

a = MyClass;

Create a copy of the object.

b = copy(a);

For more information, see “Implement Copy for Handle Classes”.

Customizing Subclass Copy Behavior
The copy method provides the public, non-overrideable interface to copy behavior. This
method takes an array of objects as input and returns an array of the same dimensions.

copyElement is a protected method that the copy method uses to perform the copy
operation on each object in the input array. You can override copyElement in your
subclass to customize the behavior of the inherited copy method.

 matlab.mixin.Copyable class

1-2319

Use the property NonCopyable attribute to control if the copy operation copies specific
property values.

Implement Selective Deep Copy

This example overrides the copyElement method in a subclass of
matlab.mixin.Copyable to implement a deep copy of a specific class of handle
objects.

Consider the following classes:

• ContainsHandles — subclass of matlab.mixin.Copyable that contains handle
objects in two properties

• DeepCp — subclass of matlab.mixin.Copyable
• ShallowCp — subclass of handle

Here are the simplified class definitions.

classdef ContainsHandles < matlab.mixin.Copyable
 properties
 Prop1
 Prop2
 DeepObj % Contains a DeepCp object
 ShallowObj % Contains a ShallowCp object
 end
 methods
 function obj = ContainsHandles(val1,val2,deepobj,shallowobj)
 if nargin > 0
 obj.Prop1 = val1;
 obj.Prop2 = val2;
 obj.DeepObj = deepobj;
 obj.ShallowObj = shallowobj;
 end
 end
 end
 methods(Access = protected)
 % Override copyElement method:
 function cpObj = copyElement(obj)
 % Make a shallow copy of all four properties
 cpObj = copyElement@matlab.mixin.Copyable(obj);
 % Make a deep copy of the DeepCp object
 cpObj.DeepObj = copy(obj.DeepObj);
 end

1 Alphabetical List

1-2320

 end
end

The DeepCp class derives from matlab.mixin.Copyable.

classdef DeepCp < matlab.mixin.Copyable
 properties
 DpProp
 end
 methods
 function obj = DeepCp(val)
 ...
 end
 end
end

The handle class ShallowCp does not derive from matlab.mixin.Copyable and,
therefore, has no copy method.

classdef ShallowCp < handle
 properties
 ShProp
 end
 methods
 function obj = ShallowCp(val)
 ...
 end
 end
end

Create a ContainsHandles object, which contains the two handle objects in its DpProp
and ShProp properties.

sc = ShallowCp(7);
dc = DeepCp(7);
a = ContainsHandles(4,5,dc,sc);
a.DeepObj

ans =

 DeepCp with properties:

 DpProp: 7

a.ShallowObj.ShProp

 matlab.mixin.Copyable class

1-2321

ans =

 ShallowCp with properties:

 ShProp: 7

Make a copy of the ContainsHandles object.

b = copy(a);

The returned copy b contains a shallow copy of object sc, and a deep copy of object dc.
That is, the dc object passed to ContainsHandles constructor is now a new,
independent object as a result of the copy operation. You can now change the dc object
without affecting the copy. This is not the case for the shallow-copied object, sc.

Change the property values of the handle objects.

sc.ShProp = 5;
dc.DpProp = 5;

Note that the object that is deep-copied is not affected.

b.DeepObj

ans =

 DeepCp with properties:

 DpProp: 7

The shallow-copied object still references the same data.

b.ShallowObj

ans =

 ShallowCp with properties:

 ShProp: 5

Override Copy Behavior in Hierarchies

The copyElement method in a superclass cannot access the private data in a subclass.

If you override copyElement in a subclass of matlab.mixin.Copyable, and then use
this subclass as a superclass, you need to override copyElement in all subclasses that

1 Alphabetical List

1-2322

contain private properties. The override of copyElement in subclasses should call the
copyElement in the respective superclass, as in the previous example.

The following simplified code demonstrates this approach.

classdef SuperClass < matlab.mixin.Copyable
 properties(Access = private)
 super_prop
 end
 methods
 ...

 function cpObj = copyElement(obj)
 ...
 cpObj = copyElement@matlab.mixin.Copyable(obj);
 ...
 end
 end
end

classdef SubClass1 < SuperClass
 properties(Access=private)
 sub_prop1
 end
 methods
 function cpObj = copyElement(obj)
 % Copy super_prop
 cpObj = copyElement@SuperClass(obj);
 % Copy sub_prop1 in subclass
 % Assignment can introduce side effects
 cpObj.sub_prop1 = obj.sub_prop1;
 end
 end
end

The override of copyElement in SubClass1 copies the private subclass property
because the superclass cannot access private data in the subclass.

Note The assignment of sub_prop1 in the override of copyElement in SubClass1 calls
the property set method, if one exists, possibly introducing side effects to the copy
operation.

 matlab.mixin.Copyable class

1-2323

Copy Behaviors for Specific Inputs

Consider a call to the matlab.mixin.Copyable copy method of this form:

B = copy(A);

This call to copy produces the results described for each of the following conditions:

• A has dynamic properties — copy does not copy dynamic properties. You can
implement dynamic-property copying in the subclass if needed.

• A has no non-dependent properties — copy creates a new object with no property
values without calling the class constructor to avoid introducing side effects.

• A contains deleted handles — copy creates deleted handles of the same class in the
output array.

• A has attached listeners — copy does not copy listeners.
• A contains objects of enumeration classes — Enumeration classes cannot subclass

matlab.mixin.Copyable.
• A delete method calls copy — copy creates a legitimate copy, obeying all the

behaviors that apply in any other usage.

Note You cannot derive an enumeration class from matlab.mixin.Copyable because
the instances you can create is limited to the ones defined inside the enumeration block.
See “Define Enumeration Classes” for more information about enumeration classes.

Definitions

Making a Deep Copy
Copy each property value and assign it to the new (copied) property. Recursively copy
property values that reference handle objects to copy all of the underlying data.

Making a Shallow Copy
Copy each property value and assign it to the new (copied) property. If a property value is
a handle, copy the handle but not the underlying data.

1 Alphabetical List

1-2324

See Also

Topics
“Implement Copy for Handle Classes”

Introduced in R2011a

 matlab.mixin.Copyable class

1-2325

copy
Class: matlab.mixin.Copyable
Package: matlab.mixin

Copy array of handle objects

Syntax
B = copy(A)

Description
B = copy(A) copies each element in the array of handles A to the new array of handles
B.

The copy method performs a copy according to the following rules:

• The copy method does not copy Dependent properties
• MATLAB does not call the copy method recursively on any handles contained in

property values
• MATLAB does not call the class constructor or property set methods during the copy

operation.
• B has the same number of elements and same size as A.
• B is the same class as A.
• If A is empty, B is also empty.
• If A is heterogeneous, B is also heterogeneous.
• If A contains deleted handle objects, copy creates deleted handles of the same class in

B.
• Dynamic properties and listeners associated with objects in A are not copied to objects

in B.
• You can call copy inside your class delete method.

1 Alphabetical List

1-2326

Input Arguments
A

Handle object array

Default:

Output Arguments
B

Handle object array containing copies of the objects in A.

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes.

See Also
handle | matlab.mixin.Copyable

Topics
“Implement Copy for Handle Classes”

Introduced in R2011a

 copy

1-2327

copyElement
Class: matlab.mixin.Copyable
Package: matlab.mixin

Copy scalar MATLAB object

Syntax
b = copyElement(h)

Description
b = copyElement(h) makes a copy of the scalar handle h and returns a scalar handle
of the same class.

The sealed matlab.mixin.Copyable copy method calls the protected copyElement
method to copy each object in the array. Override copyElement in your subclass to
control copy behavior.

Input Arguments
h — Handle to copy
scalar handle

Handle to copy, specified as a scalar handle.

Output Arguments
b — Copy of input handle
scalar handle

Copy of input handle, returned as a scalar handle.

1 Alphabetical List

1-2328

Attributes
Access protected

To learn about attributes of methods, see Method Attributes.

See Also
copy

Topics
“Implement Copy for Handle Classes”

Introduced in R2011a

 copyElement

1-2329

copyfile
Copy file or folder

Syntax
copyfile source
copyfile source destination
copyfile source destination f

status = copyfile(___)
[status,msg] = copyfile(___)
[status,msg,msgID] = copyfile(___)

Description
copyfile source copies the file or folder source to the current folder. After a
successful copyfile operation, the timestamp for the new file is the same as the
timestamp for source.

copyfile source destination copies source to the file or folder destination.

• If source is a file, then destination can be a file or a folder.
• If source is a folder, then destination must be a folder.
• If source is a folder or specifies multiple files and destination does not exist, then

copyfile attempts to create destination.

copyfile source destination f copies source to destination, even when
destination is not writable. The state of the read/write attribute for destination
does not change.

status = copyfile(___) copies the specified file or folder and returns a status of 1 if
the operation is successful. Otherwise, copyfile returns 0. You can use this syntax with
any of the input argument combinations in the previous syntaxes.

[status,msg] = copyfile(___) also returns the message text for any warning or
error that occurs.

1 Alphabetical List

1-2330

[status,msg,msgID] = copyfile(___) additionally returns the message ID for any
warning or error that occurs.

Examples

Copy File to Another Folder

Copy myfile1.m from the current folder to the subfolder myFolder.

mkdir myFolder
copyfile myfile1.m myFolder

Create Copy of File in Current Folder

Create a copy of myfile1.m in the current folder, assigning it the name myfile2.m.

copyfile myfile1.m myfile2.m

Copy Files and Folder to New Folder

Copy files and subfolders with names beginning with my from the current folder to the
folder newFolder, where newFolder does not already exist.

copyfile my* newFolder

Copy File to Read-Only Folder

Copy the file myfile1.m from the current folder to the read-only folder restricted.

Create the read-only folder restricted.

mkdir restricted
fileattrib restricted -w

 copyfile

1-2331

Copy and rename the file myfile1.m. A status of 0 shows the copy was unsuccessful.

status = copyfile('myfile1.m', 'restricted');
status

status = logical
 0

Copy the file myfile1.m using the 'f' option to override the read-only status of the
destination folder. A status of 1 and an empty message and messageId confirm the copy
was successful.

[status,message,messageId] = copyfile('myfile1.m', 'restricted', 'f');
status

status = logical
 1

message

message =

 0x0 empty char array

messageId

messageId =

 0x0 empty char array

Input Arguments
source — File or folder to copy
character vector | string scalar

File or folder to copy, specified as a character vector or string scalar. source can be an
absolute or relative path. To copy multiple files or folders, use wildcards (*).

Note If source is a string, enclose all the inputs in parentheses. For example,
movefile("myfile.m","newfolder").

1 Alphabetical List

1-2332

destination — File or folder destination
character vector | string scalar

File or folder destination, specified as a character vector or string scalar. destination
can be an absolute or relative path, but cannot include wildcards.

Note If destination is a string, enclose all the inputs in parentheses. For example,
movefile("myfile.m","newfolder").

Output Arguments
status — Copy status
0 | 1

Copy status, indicating if the attempt to move the file or folder is successful, returned as
0 or 1. If the attempt is successful, the value of status is 1. Otherwise, the value is 0.
Data Types: logical

msg — Error message
character vector

Error message, returned as a character vector. If an error or warning occurs, msg
contains the message text of the error or warning. Otherwise, msg is empty, ''.

msgID — Error message identifier
character vector

Error message identifier, returned as a character vector. If an error or warning occurs,
msgID contains the message identifier of the error or warning. Otherwise, msgID is
empty, ''.

See Also
cd | delete | dir | mkdir | movefile | rmdir

Topics
“Manage Files and Folders”
“Specify File Names”

 copyfile

1-2333

Introduced before R2006a

1 Alphabetical List

1-2334

copyobj
Copy graphics objects and their descendants

Syntax
new_handle = copyobj(h,p)
copyobj(___ ,'legacy')

Description
copyobj creates copies of graphics objects and assigns the objects to the new parent.

The new parent must be appropriate for the copied object (for example, you can copy an
axes only to figure or uipanel). copyobj copies children as well.

new_handle = copyobj(h,p) copies one or more graphics objects identified by h and
returns the handle of the new object or an array of new objects. The new graphics objects
are children of the graphics objects specified by p.

copyobj(___ ,'legacy') copies object callback properties and object application data.
This behavior is consistent with versions of copyobj before MATLAB release R2014b.

What is Not Copied
copyobj does not copy properties or objects that depend on their original context to
operate properly. Objects with default context menus (such as legends and colorbars)
create new context menus for the new object. Figures create new toolbars and menus for
the new figure.

copyobj does not copy:

• Callback properties (except when using the legacy option).
• Application data associated with the object (except when using the legacy option).
• Context menu of legends, colorbars, or other objects that define default context

menus.

 copyobj

1-2335

• Default figure toolbar and menus.
• Axes objects used with the yyaxis function.
• The Interactions property of an axes object.
• The DataTipTemplate property for objects that have this property, such as Line,

Scatter, and Surface objects.
• You cannot copy the same object more than once to the same parent in a single call to

copyobj.

MATLAB changes the Parent property to the new parent and assigns the new objects a
new handle.

Examples
Copy a surface to a new axes that is in a different figure.

h = surf(peaks);
colormap hsv

Create the destination figure and axes:

fig = figure;
ax = axes;

Copy the surface to the new axes and set properties that are not surface properties:

new_handle = copyobj(h,ax);
colormap(fig,hsv)
view(ax,3)
grid(ax,'on')

Note that while the surface is copied, the colormap, view, and grid are not copied.

Tips
h and p can be scalars or vectors. When both are vectors, they must be the same length,
and the output argument, new_handle, is a vector of the same length. In this case,
new_handle(i) is a copy of h(i) with its Parent property set to p(i).

1 Alphabetical List

1-2336

When h is a scalar and p is a vector, h is copied once to each of the parents in p. Each
new_handle(i) is a copy of h with its Parent property set to p(i), and
length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy of h(i) with its
Parent property set to p. The length of new_handle equals length(h).

Note You must copy the associated axes when copying a legend or a colorbar.

When programming a UI, do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the CreateFcn repeatedly,
which raises a series of error messages after exceeding the recursion limit.

See Also
findobj | gca | gcf | gco | get | set

Introduced before R2006a

 copyobj

1-2337

corrcoef
Correlation coefficients

Syntax
R = corrcoef(A)
R = corrcoef(A,B)

[R,P] = corrcoef(___)
[R,P,RL,RU] = corrcoef(___)

___ = corrcoef(___ ,Name,Value)

Description
R = corrcoef(A) returns the matrix of correlation coefficients on page 1-2346 for A,
where the columns of A represent random variables and the rows represent observations.

R = corrcoef(A,B) returns coefficients between two random variables A and B.

[R,P] = corrcoef(___) returns the matrix of correlation coefficients and the matrix
of p-values for testing the hypothesis that there is no relationship between the observed
phenomena (null hypothesis). Use this syntax with any of the arguments from the
previous syntaxes. If an off-diagonal element of P is smaller than the significance level
(default is 0.05), then the corresponding correlation in R is considered significant. This
syntax is invalid if R contains complex elements.

[R,P,RL,RU] = corrcoef(___) includes matrices containing lower and upper
bounds for a 95% confidence interval for each coefficient. This syntax is invalid if R
contains complex elements.

___ = corrcoef(___ ,Name,Value) returns any of the output arguments from the
previous syntaxes with additional options specified by one or more Name,Value pair
arguments. For example, corrcoef(A,'Alpha',0.1) specifies a 90% confidence
interval, and corrcoef(A,'Rows','complete') omits all rows of A containing one or
more NaN values.

1 Alphabetical List

1-2338

Examples

Random Columns of Matrix

Compute the correlation coefficients for a matrix with two normally distributed, random
columns and one column that is defined in terms of another. Since the third column of A is
a multiple of the second, these two variables are directly correlated, thus the correlation
coefficient in the (2,3) and (3,2) entries of R is 1.

x = randn(6,1);
y = randn(6,1);
A = [x y 2*y+3];
R = corrcoef(A)

R = 3×3

 1.0000 -0.6237 -0.6237
 -0.6237 1.0000 1.0000
 -0.6237 1.0000 1.0000

Two Random Variables

Compute the correlation coefficient matrix between two normally distributed, random
vectors of 10 observations each.

A = randn(10,1);
B = randn(10,1);
R = corrcoef(A,B)

R = 2×2

 1.0000 0.4518
 0.4518 1.0000

 corrcoef

1-2339

P-Values of Matrix

Compute the correlation coefficients and p-values of a normally distributed, random
matrix, with an added fourth column equal to the sum of the other three columns. Since
the last column of A is a linear combination of the others, a correlation is introduced
between the fourth variable and each of the other three variables. Therefore, the fourth
row and fourth column of P contain very small p-values, identifying them as significant
correlations.

A = randn(50,3);
A(:,4) = sum(A,2);
[R,P] = corrcoef(A)

R = 4×4

 1.0000 0.1135 0.0879 0.7314
 0.1135 1.0000 -0.1451 0.5082
 0.0879 -0.1451 1.0000 0.5199
 0.7314 0.5082 0.5199 1.0000

P = 4×4

 1.0000 0.4325 0.5438 0.0000
 0.4325 1.0000 0.3146 0.0002
 0.5438 0.3146 1.0000 0.0001
 0.0000 0.0002 0.0001 1.0000

Correlation Bounds

Create a normally distributed, random matrix, with an added fourth column equal to the
sum of the other three columns, and compute the correlation coefficients, p-values, and
lower and upper bounds on the coefficients.

A = randn(50,3);
A(:,4) = sum(A,2);
[R,P,RL,RU] = corrcoef(A)

R = 4×4

 1.0000 0.1135 0.0879 0.7314

1 Alphabetical List

1-2340

 0.1135 1.0000 -0.1451 0.5082
 0.0879 -0.1451 1.0000 0.5199
 0.7314 0.5082 0.5199 1.0000

P = 4×4

 1.0000 0.4325 0.5438 0.0000
 0.4325 1.0000 0.3146 0.0002
 0.5438 0.3146 1.0000 0.0001
 0.0000 0.0002 0.0001 1.0000

RL = 4×4

 1.0000 -0.1702 -0.1952 0.5688
 -0.1702 1.0000 -0.4070 0.2677
 -0.1952 -0.4070 1.0000 0.2825
 0.5688 0.2677 0.2825 1.0000

RU = 4×4

 1.0000 0.3799 0.3575 0.8389
 0.3799 1.0000 0.1388 0.6890
 0.3575 0.1388 1.0000 0.6974
 0.8389 0.6890 0.6974 1.0000

The matrices RL and RU give lower and upper bounds, respectively, on each correlation
coefficient according to a 95% confidence interval by default. You can change the
confidence level by specifying the value of Alpha, which defines the percent confidence,
100*(1-Alpha)%. For example, use an Alpha value equal to 0.01 to compute a 99%
confidence interval, which is reflected in the bounds RL and RU. The intervals defined by
the coefficient bounds in RL and RU are bigger for 99% confidence compared to 95%,
since higher confidence requires a more inclusive range of potential correlation values.

[R,P,RL,RU] = corrcoef(A,'Alpha',0.01)

R = 4×4

 1.0000 0.1135 0.0879 0.7314
 0.1135 1.0000 -0.1451 0.5082
 0.0879 -0.1451 1.0000 0.5199

 corrcoef

1-2341

 0.7314 0.5082 0.5199 1.0000

P = 4×4

 1.0000 0.4325 0.5438 0.0000
 0.4325 1.0000 0.3146 0.0002
 0.5438 0.3146 1.0000 0.0001
 0.0000 0.0002 0.0001 1.0000

RL = 4×4

 1.0000 -0.2559 -0.2799 0.5049
 -0.2559 1.0000 -0.4792 0.1825
 -0.2799 -0.4792 1.0000 0.1979
 0.5049 0.1825 0.1979 1.0000

RU = 4×4

 1.0000 0.4540 0.4332 0.8636
 0.4540 1.0000 0.2256 0.7334
 0.4332 0.2256 1.0000 0.7407
 0.8636 0.7334 0.7407 1.0000

NaN Values

Create a normally distributed matrix involving NaN values, and compute the correlation
coefficient matrix, excluding any rows that contain NaN.

A = randn(5,3);
A(1,3) = NaN;
A(3,2) = NaN;
A

A = 5×3

 0.5377 -1.3077 NaN
 1.8339 -0.4336 3.0349
 -2.2588 NaN 0.7254
 0.8622 3.5784 -0.0631

1 Alphabetical List

1-2342

 0.3188 2.7694 0.7147

R = corrcoef(A,'Rows','complete')

R = 3×3

 1.0000 -0.8506 0.8222
 -0.8506 1.0000 -0.9987
 0.8222 -0.9987 1.0000

Use 'all' to include all NaN values in the calculation.

R = corrcoef(A,'Rows','all')

R = 3×3

 1 NaN NaN
 NaN NaN NaN
 NaN NaN NaN

Use 'pairwise' to compute each two-column correlation coefficient on a pairwise basis.
If one of the two columns contains a NaN, that row is omitted.

R = corrcoef(A,'Rows','pairwise')

R = 3×3

 1.0000 -0.3388 0.4649
 -0.3388 1.0000 -0.9987
 0.4649 -0.9987 1.0000

Input Arguments
A — Input array
matrix

Input array, specified as a matrix.

 corrcoef

1-2343

• If A is a scalar, corrcoef(A) returns NaN.
• If A is a vector, corrcoef(A) returns 1.

Data Types: single | double
Complex Number Support: Yes

B — Additional input array
vector | matrix | multidimensional array

Additional input array, specified as a vector, matrix, or multidimensional array.

• A and B must be the same size.
• If A and B are scalars, then corrcoef(A,B) returns 1. If A and B are equal, however,

corrcoef(A,B) returns NaN.
• If A and B are matrices or multidimensional arrays, then corrcoef(A,B) converts

each input into its vector representation and is equivalent to corrcoef(A(:),B(:))
or corrcoef([A(:) B(:)]).

• If A and B are 0-by-0 empty arrays, corrcoef(A,B) returns a 2-by-2 matrix of NaN
values.

Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: R = corrcoef(A,'Alpha',0.03)

Alpha — Significance level
0.05 (default) | number between 0 and 1

Significance level, specified as a number between 0 and 1. The value of the 'Alpha'
parameter defines the percent confidence level, 100*(1-Alpha)%, for the correlation
coefficients, which determines the bounds in RL and RU.
Data Types: single | double

1 Alphabetical List

1-2344

Rows — Use of NaN option
'all' (default) | 'complete' | 'pairwise'

Use of NaN option, specified as one of these values:

• 'all' — Include all NaN values in the input before computing the correlation
coefficients.

• 'complete' — Omit any rows of the input containing NaN values before computing
the correlation coefficients. This option always returns a positive semi-definite matrix.

• 'pairwise' — Omit any rows containing NaN only on a pairwise basis for each two-
column correlation coefficient calculation. This option can return a matrix that is not
positive semi-definite.

Data Types: char

Output Arguments
R — Correlation coefficients
matrix

Correlation coefficients, returned as a matrix.

• For one matrix input, R has size [size(A,2) size(A,2)] based on the number of
random variables (columns) represented by A. The diagonal entries are set to one by
convention, while the off-diagonal entries are correlation coefficients of variable pairs.
The values of the coefficients can range from -1 to 1, with -1 representing a direct,
negative correlation, 0 representing no correlation, and 1 representing a direct,
positive correlation. R is symmetric.

• For two input arguments, R is a 2-by-2 matrix with ones along the diagonal and the
correlation coefficients along the off-diagonal.

• If any random variable is constant, its correlation with all other variables is undefined,
and the respective row and column value is NaN.

P — P-values
matrix

P-values, returned as a matrix. P is symmetric and is the same size as R. The diagonal
entries are all ones and the off-diagonal entries are the p-values for each variable pair. P-

 corrcoef

1-2345

values range from 0 to 1, where values close to 0 correspond to a significant correlation
in R and a low probability of observing the null hypothesis.

RL — Lower bound for correlation coefficient
matrix

Lower bound for correlation coefficient, returned as a matrix. RL is symmetric and is the
same size as R. The diagonal entries are all ones and the off-diagonal entries are the 95%
confidence interval lower bound for the corresponding coefficient in R. The syntax
returning RL is invalid if R contains complex values.

RU — Upper bound for correlation coefficient
matrix

Upper bound for correlation coefficient, returned as a matrix. RU is symmetric and is the
same size as R. The diagonal entries are all ones and the off-diagonal entries are the 95%
confidence interval upper bound for the corresponding coefficient in R. The syntax
returning RL is invalid if R contains complex values.

Definitions

Correlation Coefficient
The correlation coefficient of two random variables is a measure of their linear
dependence. If each variable has N scalar observations, then the Pearson correlation
coefficient is defined as

ρ(A, B) = 1
N − 1 ∑i = 1

N Ai− μA
σA

Bi− μB
σB

,

where μA and σA are the mean and standard deviation of A, respectively, and μB and σB
are the mean and standard deviation of B. Alternatively, you can define the correlation
coefficient in terms of the covariance of A and B:

ρ(A, B) = cov(A, B)
σAσB

.

The correlation coefficient matrix of two random variables is the matrix of correlation
coefficients for each pairwise variable combination,

1 Alphabetical List

1-2346

R =
ρ(A, A) ρ(A, B)
ρ(B, A) ρ(B, B)

.

Since A and B are always directly correlated to themselves, the diagonal entries are just
1, that is,

R =
1 ρ(A, B)

ρ(B, A) 1
.

References
[1] Fisher, R.A. Statistical Methods for Research Workers, 13th Ed., Hafner, 1958.

[2] Kendall, M.G. The Advanced Theory of Statistics, 4th Ed., Macmillan, 1979.

[3] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical Recipes in
C, 2nd Ed., Cambridge University Press, 1992.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• A and B must be tall arrays of the same size, even if both are vectors.
• Inputs A and B cannot be scalars for corrcoef(A,B).
• The second input B must be 2-D.
• The 'pairwise' option is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 corrcoef

1-2347

Usage notes and limitations:

• Row-vector input is only supported when the first two inputs are vectors and
nonscalar.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cov | mean | plotmatrix | std

Introduced before R2006a

1 Alphabetical List

1-2348

matlab.lang.correction.AppendArgumentsCo
rrection class
Package: matlab.lang.correction

Correct error by appending missing input arguments

Description
Use AppendArgumentsCorrection objects in functions that throw an MException
object. MException uses AppendArgumentsCorrection values to display suggestions
for missing input arguments.

Creation

Description
aac = matlab.lang.correction.AppendArgumentsCorrection(arguments)
creates a correction that suggests appending input arguments to the function call from
which the MException was thrown.

Input Arguments
arguments — Suggested arguments
string vector | character vector | cell array of character vectors

Suggested arguments, specified as a string or character vector, or a cell array of
character vectors.

Examples

 matlab.lang.correction.AppendArgumentsCorrection class

1-2349

Suggest Fix When Function Called Without Arguments

The function hello requires one input argument. Add a suggested input argument
"world" to the error message.
function hello(audience)
if nargin < 1
 me = MException('MATLAB:notEnoughInputs', 'Not enough input arguments.');
 aac = matlab.lang.correction.AppendArgumentsCorrection('"world"');
 me = me.addCorrection(aac);
 throw(me);
end
fprintf("Hello, %s!\n", audience);
end

Call the function without an argument.

hello

Error using hello (line 6)
Not enough input arguments.

Did you mean:
>> hello("world")

See Also
Correction | addCorrection

Introduced in R2019a

1 Alphabetical List

1-2350

cos
Cosine of argument in radians

Syntax
Y = cos(X)

Description
Y = cos(X) returns the cosine for each element of X. The cos function operates
element-wise on arrays. The function accepts both real and complex inputs.

• For real values of X, cos(X) returns real values in the interval [-1, 1].
• For complex values of X, cos(X) returns complex values.

Examples

Plot Cosine Function

Plot the cosine function over the domain −π ≤ x ≤ π.

x = -pi:0.01:pi;
plot(x,cos(x))
grid on

 cos

1-2351

Cosine of Vector of Complex Angles

Calculate the cosine of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = cos(x)

y = 1×3 complex

 1.5431 + 0.0000i -2.5092 - 0.0000i 14.7547 +22.9637i

1 Alphabetical List

1-2352

Input Arguments
X — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Cosine of input angle
scalar | vector | matrix | multidimensional array

Cosine of input angle, returned as a real-valued or complex-valued scalar, vector, matrix
or multidimensional array.

Definitions

Cosine Function
The cosine of an angle, α, defined with reference to a right angled triangle is

cos(α) = adjacent side
hypotenuse = b

h .

 cos

1-2353

The cosine of a complex argument, α, is

cos(α) = eiα + e−iα

2 .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-2354

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acos | acosd | cosd | cosh | cospi

Introduced before R2006a

 cos

1-2355

cosd
Cosine of argument in degrees

Syntax
Y = cosd(X)

Description
Y = cosd(X) returns the cosine of the elements of X, which are expressed in degrees.

Examples

Cosine of 90 degrees compared to cosine of π/2 radians

cosd(90)

ans = 0

cos(pi/2)

ans = 6.1232e-17

Cosine of complex angles specified in degrees

Create an array of three complex angles and compute the cosine.

z = [180+i 45+2i 10+3i];
y = cosd(z)

y = 1×3 complex

1 Alphabetical List

1-2356

 -1.0002 + 0.0000i 0.7075 - 0.0247i 0.9862 - 0.0091i

Input Arguments
X — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar, vector, matrix, or N-
D array. The cosd operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Cosine of angle
scalar value | vector | matrix | N-D array

Cosine of angle, returned as a real-valued or complex-valued scalar, vector, matrix, or N-D
array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 cosd

1-2357

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acos | acosd | cos

Introduced before R2006a

1 Alphabetical List

1-2358

cospi
Compute cos(X*pi) accurately

Syntax
Y = cospi(X)

Description
Y = cospi(X) computes cos(X*pi) without explicitly computing X*pi. This
calculation is more accurate than cos(X*pi) because the floating-point value of pi is an
approximation of π. In particular:

• For odd integers, cospi(n/2) is exactly zero.
• For integers, cospi(n) is +1 or -1.

Examples

Calculate Cosine of Multiples of π

Compare the accuracy of cospi(X) vs. cos(X*pi).

Create a vector of values.

X = [0 1/2 1 3/2 2];

Calculate the cosine of X*pi using the normal cos function.

Y = cos(X*pi)

Y = 1×5

 1.0000 0.0000 -1.0000 -0.0000 1.0000

 cospi

1-2359

The results contain small numerical errors due to the fact that pi is a floating-point
approximation of the true value of π. For instance, Y(2) is not exactly zero even though
cos π

2 = 0.

Y(2)

ans = 6.1232e-17

Use cospi to calculate the same values. In this case, the results are exact.

Z = cospi(X)

Z = 1×5

 1 0 -1 0 1

Z(2)

ans = 0

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-2360

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cos | cosd | sinpi

Introduced in R2018b

 cospi

1-2361

cosh
Hyperbolic cosine

Syntax
Y = cosh(X)

Description
Y = cosh(X) returns the hyperbolic cosine of the elements of X. The cosh function
operates element-wise on arrays. The function accepts both real and complex inputs. All
angles are in radians.

Examples

Hyperbolic Cosine of Vector

Create a vector and calculate the hyperbolic cosine of each value.

X = [0 pi 2*pi 3*pi];
Y = cosh(X)

Y = 1×4
103 ×

 0.0010 0.0116 0.2677 6.1958

Graph of Hyperbolic Cosine

Plot the hyperbolic cosine function over the domain −5 ≤ x ≤ 5 .

1 Alphabetical List

1-2362

x = -5:0.01:5;
y = cosh(x);
plot(x,y)
grid on

Plot Hyperbolic Cosine and Exponential Functions

The hyperbolic cosine satisfies the identity cosh x = ex + e−x
2 . In other words, cosh x is

the average of ex and e−x. Verify this by plotting the functions.

 cosh

1-2363

Create a vector of values between -3 and 3 with a step of 0.25. Calculate and plot the
values of cosh(x), exp(x), and exp(-x). As expected, the curve for cosh(x) lies
between the two exponential curves.

x = -3:0.25:3;
y1 = cosh(x);
y2 = exp(x);
y3 = exp(-x);
plot(x,y1,x,y2,x,y3)
grid on
legend('cosh(x)','exp(x)','exp(-x)','Location','bestoutside')

1 Alphabetical List

1-2364

Input Arguments
X — Input angles in radians
scalar | vector | matrix | multidimensional array

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Definitions

Hyperbolic Cosine
The hyperbolic cosine of an angle x can be expressed in terms of exponential functions as

cosh x = ex + e−x

2 .

In terms of the traditional cosine function with a complex argument, the identity is

cosh x = cos ix .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 cosh

1-2365

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acosh | cos | rad2deg | sinh | tanh

Introduced before R2006a

1 Alphabetical List

1-2366

cot
Cotangent of angle in radians

Syntax
Y = cot(X)

Description
Y = cot(X) returns the cotangent of elements of X. The cot function operates element-
wise on arrays. The function accepts both real and complex inputs.

• For real values of X, cot(X) returns real values in the interval [-∞, ∞].
• For complex values of X, cot(X) returns complex values.

Examples

Plot Cotangent Function

Plot the cotangent function over the domain −π < x < 0 and 0 < x < π .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

 cot

1-2367

Cotangent of Vector of Complex Angles

Calculate the cotangent of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = cot(x)

y = 1×3 complex

 0.0000 + 1.3130i -0.0000 - 1.0903i -0.0006 - 0.9997i

1 Alphabetical List

1-2368

Input Arguments
X — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Cotangent of input angle
scalar | vector | matrix | multidimensional array

Cotangent of input angle, returned as a real-valued or complex-valued scalar, vector,
matrix or multidimensional array.

Definitions

Cotangent Function
The cotangent of an angle, α, defined with reference to a right angled triangle is

cot α = 1
tan α = adjacent side

opposite side = b
a .

.

 cot

1-2369

The cotangent of a complex argument α is

cot α =
i eiα + e−iα

eiα− e−iα .

.

Tips
• In floating-point arithmetic, cot is a bounded function. That is, cot does not return

values of Inf or -Inf at points of divergence that are multiples of pi, but a large
magnitude number instead. This stems from the inaccuracy of the floating-point
representation of π.

1 Alphabetical List

1-2370

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acot | acotd | acoth | cotd | coth

Introduced before R2006a

 cot

1-2371

cotd
Cotangent of argument in degrees

Syntax
Y = cotd(X)

Description
Y = cotd(X) returns the cotangent of the elements of X, which are expressed in
degrees.

Examples

Cotangent of angles approaching 90 and 180 degrees

Create a vector of input angles consisting of 90° and the next smaller and larger double
precision numbers. Then compute the cotangent.

x1 = [90-eps(90) 90 90+eps(90)];
y1 = cotd(x1)

y1 = 1×3
10-15 ×

 0.2480 0 -0.2480

cotd returns zero when the input angle is exactly 90°. Evaluation at the next smaller
double-precision angle returns a slightly positive result. Likewise, the cotangent is
slightly negative when the input angle is the next double-precision number larger than
90.

The behavior is similar for input angles near 180°.

1 Alphabetical List

1-2372

x2 = [180-eps(180) 180 180+eps(180)];
y2 = cotd(x2)

y2 = 1×3
1015 ×

 -2.0159 -Inf 2.0159

Cotangent of complex angle, specified in degrees

x = 35+5i;
y = cotd(x)

y = 1.3958 - 0.2606i

Input Arguments
X — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar, vector, matrix, or N-
D array. The cotd operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Cotangent of angle
scalar value | vector | matrix | N-D array

Cotangent of angle, returned as a real-valued or complex-valued scalar, vector, matrix, or
N-D array of the same size as X.

 cotd

1-2373

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• In some cases, generated code returns -Inf when MATLAB returns Inf.
• In some cases, generated code returns Inf when MATLAB returns -Inf.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acot | acotd | cot

1 Alphabetical List

1-2374

Introduced before R2006a

 cotd

1-2375

coth
Hyperbolic cotangent

Syntax
Y = coth(X)

Description
Y = coth(X) returns the hyperbolic tangent of the elements of X. The coth function
operates element-wise on arrays. The function accepts both real and complex inputs. All
angles are in radians.

Examples

Hyperbolic Cotangent of Vector

Create a vector and calculate the hyperbolic cotangent of each value.

X = [0 pi 2*pi 3*pi];
Y = coth(X)

Y = 1×4

 Inf 1.0037 1.0000 1.0000

Graph of Hyperbolic Cotangent

Plot the hyperbolic cotangent over the domain −π < x < 0 and 0 < x < π.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;

1 Alphabetical List

1-2376

y1 = coth(x1);
y2 = coth(x2);
plot(x1,y1,x2,y2)
grid on

Input Arguments
X — Input angles in radians
scalar | vector | matrix | multidimensional array

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.

 coth

1-2377

Data Types: single | double
Complex Number Support: Yes

Definitions

Hyperbolic Cotangent
The hyperbolic cotangent of x is equal to the inverse of the hyperbolic tangent

coth x = 1
tanh x = e2x + 1

e2x− 1
.

In terms of the traditional cotangent function with a complex argument, the identity is

coth x = icot ix .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-2378

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acoth | cosh | cot | sinh | tanh

Introduced before R2006a

 coth

1-2379

count
Count occurrences of pattern in strings

Syntax
A = count(str,pattern)
A = count(str,pattern,'IgnoreCase',true)

Description
A = count(str,pattern) returns the number of occurrences of pattern in str.

If pattern is an array containing multiple patterns, then count returns the sum of the
occurrences of all elements of pattern in str.

A = count(str,pattern,'IgnoreCase',true) ignores case when counting the
number of occurrences of pattern.

Examples

Count Occurrences of Pattern

Count the number of occurrences of the sequence of characters, red, in string arrays.

Starting in R2017a, you can create a string using double quotes.

str = "paired with red shoes"

str =
"paired with red shoes"

To count the occurrences of red, use the count function. In this example, the result is 2
because red is also part of the word paired.

A = count(str,"red")

1 Alphabetical List

1-2380

A = 2

Create a 2-by-1 string array.

str = ["red green red red blue blue green";
 "green red blue green green blue"]

str = 2x1 string array
 "red green red red blue blue green"
 "green red blue green green blue"

Count the occurrences of red in each element of str. If str is a string array or cell array
of character vectors, then A is a numeric array that has the same size.

A = count(str,"red")

A = 2×1

 3
 1

Occurrences of Multiple Patterns

Count the total number of occurrences of red and blue in a string array.

Starting in R2017a, you can create strings using double quotes.

str = ["red green blue";
 "green red blue green blue"]

str = 2x1 string array
 "red green blue"
 "green red blue green blue"

count returns 2 for the first string because red and blue each occur once. count
returns 3 for the second string because red occurs once and blue occurs twice.

A = count(str,["red","blue"])

A = 2×1

 count

1-2381

 2
 3

Ignore Case When Counting Patterns

Count the number of occurrences of the letter E in a string array that contains names,
ignoring case.

Starting in R2017a, you can create strings using double quotes.

str = ["Edgar Allan Poe";"Louisa May Alcott"]

str = 2x1 string array
 "Edgar Allan Poe"
 "Louisa May Alcott"

A = count(str,'E','IgnoreCase',true)

A = 2×1

 2
 0

Count Pattern in Character Vector

Count the number of times al occurs in the word alphabetical.

chr = 'alphabetical'

chr =
'alphabetical'

A = count(chr,'al')

A = 2

1 Alphabetical List

1-2382

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.

pattern — Search pattern
string array | character vector | cell array of character vectors

Search pattern, specified as a string array, a character vector, or a cell array of character
vectors.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and pattern must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 count

1-2383

See Also
contains | endsWith | find | numel | startsWith | strlength

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

1 Alphabetical List

1-2384

countcats
Count occurrences of categorical array elements by category

Syntax
B = countcats(A)
B = countcats(A,dim)

Description
B = countcats(A) returns the number of elements in each category of the categorical
array, A.

• If A is a vector, then countcats returns the number of elements in each category.
• If A is a matrix, then countcats treats the columns of A as vectors and returns the

category counts for each column of A.
• If A is a multidimensional array, then countcats acts along the first array dimension

whose size does not equal 1.

B = countcats(A,dim) returns the category counts along dimension dim.

For example, you can return the category counts of each row in a categorical array using
countcats(A,2).

Examples

Category Counts of Categorical Vector

Create a 1-by-5 categorical vector.

A = categorical({'plane' 'car' 'train' 'car' 'plane'})

 countcats

1-2385

A = 1x5 categorical array
 plane car train car plane

A has three categories, car, plane, and train.

Find the number of elements in each category of A.

B = countcats(A)

B = 1×3

 2 2 1

The first element in B corresponds to the first category of A, which is car. The second
element in B corresponds to the second category of A, which is plane. The third element
of B corresponds to the third category of A, which is train.

Since A is a row vector, countcats returns a row vector.

Category Counts of Each Column in Array

Create a 3-by-2 categorical array, A, from a numeric array.

valueset = 1:3;
catnames = {'red' 'green' 'blue'};

A = categorical([1 3; 2 1; 3 1],valueset,catnames)

A = 3x2 categorical array
 red blue
 green red
 blue red

A has three categories, red, green, and blue.

Find the category counts of each column in A.

B = countcats(A)

1 Alphabetical List

1-2386

B = 3×2

 1 2
 1 0
 1 1

The first row of B corresponds to the first category of A. The value, red, occurs once in
the first column of A and twice in the second column.

The second row of B corresponds to the second category of A. The value, green, occurs
once in the first column of A, and it does not occur in the second column.

The third row of B corresponds to the third category of A. The value, blue, occurs once in
the first column of A and once in the second column.

Category Counts of Each Row in Array

Create a 3-by-2 categorical array, A, from a numeric array.

valueset = 1:3;
catnames = {'red' 'green' 'blue'};

A = categorical([1 3; 2 1; 3 1],valueset,catnames)

A = 3x2 categorical array
 red blue
 green red
 blue red

A has three categories, red, green, and blue.

Find the category counts of A along the second dimension.

B = countcats(A,2)

B = 3×3

 1 0 1
 1 1 0

 countcats

1-2387

 1 0 1

The first column of B corresponds to the first category of A. The value, red, occurs once
in the first row of A, once in the second row, and once in the third row.

The second column of B corresponds to the second category of A. The value, green,
occurs in only one element. It occurs in the second row of A.

The third column of B corresponds to the third category of A. The value, blue, occurs
once in the first row of A and once in the third row.

Category Counts of Array Containing Undefined Elements

Create a 6-by-1 categorical array, A, from a numeric array.

valueset = 1:3;
catnames = {'red' 'green' 'blue'};

A = categorical([1;3;2;1;3;1],valueset,catnames)

A = 6x1 categorical array
 red
 blue
 green
 red
 blue
 red

Remove the blue category.

A = removecats(A,'blue')

A = 6x1 categorical array
 red
 <undefined>
 green
 red
 <undefined>
 red

1 Alphabetical List

1-2388

A has two categories, red and green. Elements of A that were from the blue category
are now undefined.

Find the number of elements in each category of A.

B = countcats(A)

B = 2×1

 3
 1

The first element in B corresponds to the first category of A. The value, red, occurs three
times in A.

The second element in B corresponds to the second category of A. The value, green,
occurs once in A.

countcats does not return any information on undefined elements.

Use the summary function to view the number of undefined elements in addition to the
number of elements in each category of A.

summary(A)

 red 3
 green 1
 <undefined> 2

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

 countcats

1-2389

Consider a two-dimensional categorical array, A.

If dim = 1, then countcats(A,1) returns the category counts for each column of A.

If dim = 2, then countcats(A,2) returns the category counts of each row of A.

If dim is greater than ndims(A), then countcats(A) returns an array the same size as
A for each category. countcats returns 1 for elements in the corresponding category and
0 otherwise.

1 Alphabetical List

1-2390

Tips
• To find the number of undefined elements in a categorical array, A, you must use

summary or isundefined.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
categories | iscategory | ismember | isundefined | summary

Introduced in R2013b

 countcats

1-2391

cov
Covariance

Syntax
C = cov(A)
C = cov(A,B)
C = cov(___ ,w)
C = cov(___ ,nanflag)

Description
C = cov(A) returns the covariance on page 1-2396.

• If A is a vector of observations, C is the scalar-valued variance on page 1-2397.
• If A is a matrix whose columns represent random variables and whose rows represent

observations, C is the covariance matrix with the corresponding column variances
along the diagonal.

• C is normalized by the number of observations-1. If there is only one observation, it is
normalized by 1.

• If A is a scalar, cov(A) returns 0. If A is an empty array, cov(A)returns NaN.

C = cov(A,B) returns the covariance between two random variables A and B.

• If A and B are vectors of observations with equal length, cov(A,B) is the 2-by-2
covariance matrix.

• If A and B are matrices of observations, cov(A,B) treats A and B as vectors and is
equivalent to cov(A(:),B(:)). A and B must have equal size.

• If A and B are scalars, cov(A,B) returns a 2-by-2 block of zeros. If A and B are empty
arrays, cov(A,B) returns a 2-by-2 block of NaN.

C = cov(___ ,w) specifies the normalization weight for any of the previous syntaxes.
When w = 0 (default), C is normalized by the number of observations-1. When w = 1, it
is normalized by the number of observations.

1 Alphabetical List

1-2392

C = cov(___ ,nanflag) specifies a condition for omitting NaN values from the
calculation for any of the previous syntaxes. For example, cov(A,'omitrows') will omit
any rows of A with one or more NaN elements.

Examples

Covariance of Matrix

Create a 3-by-4 matrix and compute its covariance.

A = [5 0 3 7; 1 -5 7 3; 4 9 8 10];
C = cov(A)

C = 4×4

 4.3333 8.8333 -3.0000 5.6667
 8.8333 50.3333 6.5000 24.1667
 -3.0000 6.5000 7.0000 1.0000
 5.6667 24.1667 1.0000 12.3333

Since the number of columns of A is 4, the result is a 4-by-4 matrix.

Covariance of Two Vectors

Create two vectors and compute their 2-by-2 covariance matrix.

A = [3 6 4];
B = [7 12 -9];
cov(A,B)

ans = 2×2

 2.3333 6.8333
 6.8333 120.3333

 cov

1-2393

Covariance of Two Matrices

Create two matrices of the same size and compute their 2-by-2 covariance.

A = [2 0 -9; 3 4 1];
B = [5 2 6; -4 4 9];
cov(A,B)

ans = 2×2

 22.1667 -6.9333
 -6.9333 19.4667

Specify Normalization Weight

Create a matrix and compute the covariance normalized by the number of rows.

A = [1 3 -7; 3 9 2; -5 4 6];
C = cov(A,1)

C = 3×3

 11.5556 5.1111 -10.2222
 5.1111 6.8889 5.2222
 -10.2222 5.2222 29.5556

Covariance Excluding NaN

Create a matrix and compute its covariance, excluding any rows containing NaN values.

A = [1.77 -0.005 3.98; NaN -2.95 NaN; 2.54 0.19 1.01]

A = 3×3

 1.7700 -0.0050 3.9800
 NaN -2.9500 NaN
 2.5400 0.1900 1.0100

1 Alphabetical List

1-2394

C = cov(A,'omitrows')

C = 3×3

 0.2964 0.0751 -1.1435
 0.0751 0.0190 -0.2896
 -1.1435 -0.2896 4.4104

Input Arguments
A — Input array
vector | matrix

Input array, specified as a vector or matrix.
Data Types: single | double

B — Additional input array
vector | matrix

Additional input matrix, specified as a vector or matrix. B must be the same size as A.
Data Types: single | double

w — Normalization weight
0 (default) | 1

Normalization weight, specified as one of these values:

• 0 — The output is normalized by the number of observations-1. If there is only one
observation, it is normalized by 1.

• 1 — The output is normalized by the number of observations.

Data Types: single | double

nanflag — NaN condition
'includenan' (default) | 'omitrows' | 'partialrows'

NaN condition, specified as one of these values:

 cov

1-2395

• 'includenan' — include all NaN values in the input prior to computing the
covariance.

• 'omitrows' — omit any row of input containing one or more NaN values prior to
computing the covariance.

• 'partialrows' — omit rows containing NaN only on a pairwise basis for each two-
column covariance calculation.

Data Types: char

Output Arguments
C — Covariance
scalar | matrix

Covariance, specified as a scalar or matrix.

• For single matrix input, C has size [size(A,2) size(A,2)] based on the number of
random variables (columns) represented by A. The variances of the columns are along
the diagonal. If A is a row or column vector, C is the scalar-valued variance.

• For two-vector or two-matrix input, C is the 2-by-2 covariance matrix between the two
random variables. The variances are along the diagonal of C.

Definitions
Covariance
For two random variable vectors A and B, the covariance is defined as

cov(A, B) = 1
N − 1 ∑i = 1

N
(Ai− μA)*(Bi− μB)

where μA is the mean of A, μB is the mean of B, and * denotes the complex conjugate.

The covariance matrix of two random variables is the matrix of pairwise covariance
calculations between each variable,

C =
cov(A, A) cov(A, B)
cov(B, A) cov(B, B)

.

1 Alphabetical List

1-2396

For a matrix A whose columns are each a random variable made up of observations, the
covariance matrix is the pairwise covariance calculation between each column
combination. In other words, C(i, j) = cov A(: , i), A(: , j) .

Variance
For a random variable vector A made up of N scalar observations, the variance is defined
as

V = 1
N − 1 ∑i = 1

N
Ai− μ 2

where μ is the mean of A,

μ = 1
N ∑i = 1

N
Ai .

Some definitions of variance use a normalization factor of N instead of N-1, which can be
specified by setting w to 1. In either case, the mean is assumed to have the usual
normalization factor N.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• A and B must be tall arrays of the same size, even if both are vectors.
• The 'partialrows' option is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 cov

1-2397

Usage notes and limitations:

• If the input is variable-size and is [] at run time, returns [] not NaN.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
corrcoef | mean | median | std | var | xcorr | xcov

Introduced before R2006a

1 Alphabetical List

1-2398

cplxpair
Sort complex numbers into complex conjugate pairs

Syntax
B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description
B = cplxpair(A) sorts the elements along different dimensions of a complex array,
grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the element with
negative imaginary part comes first. The purely real values are returned following all the
complex pairs. The complex conjugate pairs are forced to be exact complex conjugates. A
default tolerance of 100*eps relative to abs(A(i)) determines which numbers are real
and which elements are paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs grouped together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and complex conjugates
paired.

If A is a multidimensional array, cplxpair(A) treats the values along the first non-
singleton dimension as vectors, returning an array of sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and overrides the
default tolerance.

 cplxpair

1-2399

Diagnostics
If there are an odd number of complex numbers, or if the complex numbers cannot be
grouped into complex conjugate pairs within the tolerance, cplxpair generates the
error message

Complex numbers can't be paired.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced before R2006a

1 Alphabetical List

1-2400

cputime
Elapsed CPU time

Syntax
cputime

Description
cputime returns the total CPU time (in seconds) used by your MATLAB application from
the time it was started. This number can overflow the internal representation and wrap
around.

Examples
The following code returns the CPU time used to run surf(peaks(40)).

t = cputime;
surf(peaks(40));
e = cputime-t

e =
 0.4667

Tips
To measure performance, it is recommended that you use the timeit or tic and toc
functions. For more information, see Using tic and toc Versus the cputime Function.

See Also
clock | etime | tic | timeit | toc

 cputime

1-2401

Introduced before R2006a

1 Alphabetical List

1-2402

RandStream.create
Create random number streams

Class
RandStream

Syntax
[s1,s2,...] = RandStream.create('gentype','NumStreams',n)
s = RandStream.create('gentype')
[...] = RandStream.create('gentype', Name, Value,...)

Description
[s1,s2,...] = RandStream.create('gentype','NumStreams',n) creates n
random number streams that use the uniform pseudorandom number generator algorithm
specified by gentype. The streams are independent in a pseudorandom sense. The
streams are not necessarily independent from streams created at other times.
RandStream.list returns all possible values for gentype or see “Choosing a Random
Number Generator” for details on generator algorithms.

Note Multiple streams are not supported by all generator types. Use either the
multiplicative lagged Fibonacci generator (mlfg6331_64) or the combined multiple
recursive generator (mrg32k3a) to create multiple streams.

s = RandStream.create('gentype') creates a single random stream. The
RandStream constructor is a more concise alternative when you need to create a single
stream.

[...] = RandStream.create('gentype', Name, Value,...) allows you to
specify optional Name, Value pairs to control creation of the stream. The parameters are:

 RandStream.create

1-2403

NumStreams Total number of streams of this type that
will be created across sessions or labs.
Default is 1.

StreamIndices Stream indices that should be created in
this call. Default is 1:N, where N is the
value given with the 'NumStreams'
parameter.

Seed Nonnegative scalar integer with which to
initialize all streams. Default is 0. Seeds
must be an integer between 0 and 232 − 1
or 'shuffle' to create a seed based on
the current time.

NormalTransform Transformation algorithm used by
randn(S, ...) to generate normal
pseudorandom values. Options are
'Ziggurat', 'Polar', or 'Inversion'.

CellOutput Logical flag indicating whether or not to
return the stream objects as elements of a
cell array. Default is false.

Typically, you call RandStream.create once to create multiple independent streams in a
single pass. Alternatively, you can create each stream from separate calls to
RandStream.create, but you must specify the appropriate values for gentype,
'NumStreams', 'Seed', and 'StreamIndices' to ensure their independence:

• Specify the same set of values for gentype, 'NumStreams', and 'Seed' in each
case.

• Specify a different value for 'StreamIndices' that is between 1 and the
'NumStreams' value in each case.

Examples
Create three independent streams.

[s1,s2,s3] = RandStream.create('mrg32k3a','NumStreams',3);
r1 = rand(s1,100000,1);
r2 = rand(s2,100000,1);

1 Alphabetical List

1-2404

r3 = rand(s3,100000,1);
corrcoef([r1,r2,r3])

Create one stream from a set of three independent streams and designate it as the global
stream.

s2 = RandStream.create('mrg32k3a','NumStreams',3,'StreamIndices',2);
RandStream.setGlobalStream(s2);

See Also
RandStream | RandStream.list

 RandStream.create

1-2405

createClassFromWsdl
Create MATLAB class based on WSDL document

Note createClassFromWsdl will be removed in a future release. Use
matlab.wsdl.createWSDLClient instead.

Syntax
createClassFromWsdl(source)

Description
createClassFromWsdl(source) creates a MATLAB class based on the service name
defined in source.

createClassFromWsdl creates a class folder, @servicename, in the current folder. The
class folder contains:

• A method file for each Web service operation.
• A display method, display.m.
• A constructor, servicename.m.

Examples

Display Standardized Test Scores

This example illustrates how to use the function. It does not use an actual WSDL
document; therefore, you cannot run it. Retrieve information from a database that
provides standardized test scores. Assume the WSDL document is located at http://
examplestandardtests.com/scoreswebservice?WSDL.

Create the MATLAB class, @TestScoreWebService, in the current folder.

1 Alphabetical List

1-2406

createClassFromWsdl('http://examplestandardtests.com/scoreswebservice?WSDL')

Retrieving document at 'http://examplestandardtests.com/scoreswebservice?WSDL'

Create the service.

svc = TestScoreWebService

endpoint: 'http://examplestandardtests.com/scoreswebservice'
 wsdl: 'http://examplestandardtests.com/scoreswebservice?WSDL'

Display the class methods.

dir @TestScoreWebService

display.m
StudentNames.m
Tests.m
TestScoreWebService.m

Display the calling syntax for the StudentNames function.

help StudentNames

 StudentNames(obj)

 Get names of students who took tests

 Output:
 Names = (string)

Get the names. MATLAB creates a structure with the names of the test takers.

students = StudentNames(svc)

students =

 StudentInfo: [125x1 struct]

View the data for the first student.

students.StudentInfo(1)

 createClassFromWsdl

1-2407

StudentNameLast: 'Benjamin'
StudentNameFirst: 'Ali'

Input Arguments
source — Web Services Description Language (WSDL) document
string

Web Services Description Language (WSDL) document, specified as a string. The name
must include the location of the document, using one of the following:

• URL
• Full path
• Relative path

Example: 'http://examplestandardtests.com/scoreswebservice?WSDL'

See Also
createSoapMessage | matlab.wsdl.createWSDLClient | xmlread

Topics
“Specify Proxy Server Settings for Connecting to the Internet”

Introduced before R2006a

1 Alphabetical List

1-2408

matlab.project.createProject
Package: matlab.project

Create blank project

Syntax
proj = matlab.project.createProject
proj = matlab.project.createProject(path)
proj = matlab.project.createProject(name)

Description
proj = matlab.project.createProject creates and opens a blank project and
returns the project object. Use the project object to manipulate the new project at the
command line. The new project is created in the default project folder.

proj = matlab.project.createProject(path) creates the project in the specified
folder.

proj = matlab.project.createProject(name) creates the project in the default
folder, with the specified name.

Examples

Create Blank Project in the Default Folder

Create a blank project in the default project folder and specify the project name. After the
project is created, you can set up the project by adding files to the project, configuring
the project path, and specifying startup and shutdown files.

proj = matlab.project.createProject;
proj.Name = "My New Project";

 matlab.project.createProject

1-2409

Create a Blank Project in a Specified Folder

Create a blank project in the specified folder and specify the project name.

proj = matlab.project.createProject("C:\work\myprojectname");

Create a Named Blank Project in the Default Folder

Create a blank project in the default project folder with the specified name.

proj = matlab.project.createProject("myprojectname");

Input Arguments
path — New project path
character vector | string scalar

New project path, specified as a character vector or string scalar. If you do not specify the
path, matlab.project.createProject creates the project in the default location. You
can change the default location in the project preferences.

name — New project name
character vector | string scalar

New project name, specified as a character vector or string scalar.

Output Arguments
proj — Project
matlab.project.Project object

Project, returned as a matlab.project.Project object. Use the
matlab.project.Project object to programmatically manipulate the currently open
project.

1 Alphabetical List

1-2410

Tips
• To change the default folder for new projects, on the Home tab, in the Environment

section, click Preferences. Go to MATLAB > Project and in the New Projects
section, set the Default folder.

See Also
addFile | addFolderIncludingChildFiles | addPath | addReference |
addShortcut | currentProject | openProject

Topics
“Create Projects”

Introduced in R2019a

 matlab.project.createProject

1-2411

createSoapMessage
Create SOAP (Simple Object Access Protocol) message to send to server

Note createSoapMessage will be removed in a future release. Use
matlab.wsdl.createWSDLClient instead.

Syntax
message = createSoapMessage(namespace,method,values,names,types)
message = createSoapMessage(namespace,method,values,names,types,
style)

Description
message = createSoapMessage(namespace,method,values,names,types)
creates a SOAP message.

message = createSoapMessage(namespace,method,values,names,types,
style) creates message with specified style.

Examples

Retrieve Book Information from Library Database

This example assumes the library is on a local intranet and does not use an actual
endpoint; therefore, you cannot run it.

Retrieve the name of the author of a book titled “In the Fall.” The relative path of the
library service is urn:LibraryCatalog. To get the author's name, use the getAuthor
function, which takes the book name as the input value. The getAuthor parameter is
nameToLookUp. The XML data type for title is {http://www.w3.org/2001/
XMLSchema}string. The SOAP message style is rpc by default.

1 Alphabetical List

1-2412

Create the SOAP message.

message = createSoapMessage(...
 'urn:LibraryCatalog',...
 'getAuthor',...
 {'In the Fall'},...
 {'nameToLookUp'},...
 {'{http://www.w3.org/2001/XMLSchema}string'})

message =

[#document: null]

This response does not necessarily indicate that the message is valid, although certain
input problems produce error messages.

Send the message to the server for processing, and get the author's name back. The
server endpoint is http://test/soap/services/LibraryCatalog. The server
method is urn:LibraryCatalog#getAuthor.

response = callSoapService(...
 'http://test/soap/services/LibraryCatalog',...
 'urn:LibraryCatalog#getAuthor',...
 message)

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<getAuthorResponse xmlns="urn:LibraryCatalog">
<ns1:getAuthorReturn xmlns:ns1="http://latestversion.soap.test">
Kate Alvin
</ns1:getAuthorReturn>
</getAuthorResponse>
</soapenv:Body>
</soapenv:Envelope>

MATLAB returns the message in a single line, displayed here on separate lines for
legibility.

Extract the author's name.

author = parseSoapResponse(response)

 createSoapMessage

1-2413

author = Kate Alvin

MATLAB automatically converted the XML string data type to char.

Input Arguments
namespace — Location of Web service
string

Location of Web service, specified as a string in the form of a valid Uniform Resource
Identifier (URI).
Example: 'urn:LibraryCatalog'

method — Name of Web service operation
string

Name of Web service operation, specified as a string.
Example: 'getAuthor'

values — Input arguments for method
cell array

Input arguments for method, specified as a cell array.
Example: {'In the Fall'}

names — Parameter for method
cell array

Parameter for method, specified as a cell array.
Example: {'nameToLookUp'}

types — XML data types for values
cell array

XML data types for values, specified as a cell array.
Example: {'{http://www.w3.org/2001/XMLSchema}string'}

style — Style for structuring SOAP message
'rpc' (default) | 'document'

1 Alphabetical List

1-2414

Style for structuring the SOAP message, specified as one of these values. Use a style
supported by the service specified in namespace.

'rpc' Remote Procedure Call (RPC) encoding
'document' Document-style encoding

Output Arguments
message — Java document object model (DOM)
string

Java document object model (DOM), returned as a string. Use message as input to
callSoapService function.

See Also
callSoapService | matlab.wsdl.createWSDLClient | parseSoapResponse |
urlread | xmlread

Introduced before R2006a

 createSoapMessage

1-2415

cross
Cross product

Syntax
C = cross(A,B)
C = cross(A,B,dim)

Description
C = cross(A,B) returns the cross product on page 1-2420 of A and B.

• If A and B are vectors, then they must have a length of 3.
• If A and B are matrices or multidimensional arrays, then they must have the same size.

In this case, the cross function treats A and B as collections of three-element vectors.
The function calculates the cross product of corresponding vectors along the first
array dimension whose size equals 3.

C = cross(A,B,dim) evaluates the cross product of arrays A and B along dimension,
dim. A and B must have the same size, and both size(A,dim) and size(B,dim) must
be 3. The dim input is a positive integer scalar.

Examples

Cross Product of Vectors

Create two 3-D vectors.

A = [4 -2 1];
B = [1 -1 3];

Find the cross product of A and B. The result, C, is a vector that is perpendicular to both A
and B.

1 Alphabetical List

1-2416

C = cross(A,B)

C = 1×3

 -5 -11 -2

Use dot products to verify that C is perpendicular to A and B.

dot(C,A)==0 & dot(C,B)==0

ans = logical
 1

The result is logical 1 (true).

Cross Product of Matrices

Create two matrices containing random integers.

A = randi(15,3,5)

A = 3×5

 13 14 5 15 15
 14 10 9 3 8
 2 2 15 15 13

B = randi(25,3,5)

B = 3×5

 4 20 1 17 10
 11 24 22 19 17
 23 17 24 19 5

Find the cross product of A and B.

C = cross(A,B)

 cross

1-2417

C = 3×5

 300 122 -114 -228 -181
 -291 -198 -105 -30 55
 87 136 101 234 175

The result, C, contains five independent cross products between the columns of A and B.
For example, C(:,1) is equal to the cross product of A(:,1) with B(:,1).

Cross Product of Multidimensional Arrays

Create two 3-by-3-by-3 multidimensional arrays of random integers.

A = randi(10,3,3,3);
B = randi(25,3,3,3);

Find the cross product of A and B, treating the rows as vectors.

C = cross(A,B,2)

C =
C(:,:,1) =

 -34 12 62
 15 72 -109
 -49 8 9

C(:,:,2) =

 198 -164 -170
 45 0 -18
 -55 190 -116

C(:,:,3) =

 -109 -45 131
 1 -74 82
 -6 101 -121

1 Alphabetical List

1-2418

The result is a collection of row vectors. For example, C(1,:,1) is equal to the cross
product of A(1,:,1) with B(1,:,1).

Find the cross product of A and B along the third dimension (dim = 3).

D = cross(A,B,3)

D =
D(:,:,1) =

 -14 179 -106
 -56 -4 -75
 2 -37 10

D(:,:,2) =

 -37 -162 -37
 50 -124 -78
 1 63 118

D(:,:,3) =

 62 -170 56
 46 72 105
 -2 -53 -160

The result is a collection of vectors oriented in the third dimension. For example,
D(1,1,:) is equal to the cross product of A(1,1,:) with B(1,1,:).

Input Arguments
A,B — Input arrays
numeric arrays

Input arrays, specified as numeric arrays.
Data Types: single | double
Complex Number Support: Yes

 cross

1-2419

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. The size of dimension
dim must be 3. If no value is specified, the default is the first array dimension whose size
equals 3.

Consider two 2-D input arrays, A and B:

• cross(A,B,1) treats the columns of A and B as vectors and returns the cross
products of corresponding columns.

• cross(A,B,2) treats the rows of A and B as vectors and returns the cross products of
corresponding rows.

cross returns an error if dim is greater than ndims(A).

Definitions
Cross Product
The cross product between two 3-D vectors produces a new vector that is perpendicular
to both.

Consider the two vectors

A = a1 i + a2 j + a3k ,

B = b1 i + b2 j + b3k .

1 Alphabetical List

1-2420

In terms of a matrix determinant involving the basis vectors i , j , and k , the cross
product of A and B is

C = A × B =
i j k

a1
b1

a2
b2

a3
b3

= (a2b3− a3b2) i + (a3b1− a1b3) j + (a1b2− a2b1)k .

Geometrically, A × B is perpendicular to both A and B. The magnitude of the cross
product, A × B , is equal to the area of the parallelogram formed using A and B as sides.
This area is related to the magnitudes of A and B as well as the angle between the vectors
by

A × B = A B sinα .

Thus, if A and B are parallel, then the cross product is zero.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 cross

1-2421

Usage notes and limitations:

• If supplied, dim must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
dot | kron | norm

Introduced before R2006a

1 Alphabetical List

1-2422

csc
Cosecant of input angle in radians

Syntax
Y = csc(X)

Description
Y = csc(X) returns the cosecant of the elements of X. The csc function operates
element-wise on arrays. The function accepts both real and complex inputs.

• For real values of X, csc(X) returns real values in the interval [-∞, -1] and [1, ∞].
• For complex values of X, csc(X) returns complex values.

Examples

Plot Cosecant Function

Plot the cosecant function over the domain −π < x < 0 and 0 < x < π as shown.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

 csc

1-2423

Cosecant of Vector of Complex Angles

Calculate the cosecant of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = csc(x)

y = 1×3 complex

 0.0000 + 0.8509i 0.0000 + 0.4345i -0.0308 - 0.0198i

1 Alphabetical List

1-2424

Input Arguments
X — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Cosecant of input angle
scalar | vector | matrix | multidimensional array

Cosecant of input angle, returned as a real-valued or complex-valued scalar, vector, matrix
or multidimensional array.

Definitions

Cosecant Function
The cosecant of an angle, α, defined with reference to a right angled triangle is

csc(α) = 1
sin α = hypotenuse

opposite side = h
a .

 csc

1-2425

The cosecant of a complex argument, α, is

csc α = 2i
eiα− e−iα .

Tips
• In floating-point arithmetic, csc is a bounded function. That is, csc does not return

values of Inf or -Inf at points of divergence that are multiples of pi, but a large
magnitude number instead. This stems from the inaccuracy of the floating-point
representation of π.

1 Alphabetical List

1-2426

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acsc | acscd | acsch | cscd | csch

Introduced before R2006a

 csc

1-2427

cscd
Cosecant of argument in degrees

Syntax
Y = cscd(X)

Description
Y = cscd(X) returns the cosecant of the elements of X, which are expressed in degrees.

Examples

Cosecant of 180 degrees compared to cosecant of π radians

cscd(180) is infinite, whereas csc(pi) is large but finite.

cscd(180)

ans = Inf

csc(pi)

ans = 8.1656e+15

Cosecant of vector of complex angles, specified in degrees

z = [35+i 15+2i 10+3i];
y = cscd(z)

y = 1×3 complex

1 Alphabetical List

1-2428

 1.7421 - 0.0434i 3.7970 - 0.4944i 5.2857 - 1.5681i

Input Arguments
X — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar, vector, matrix, or N-
D array. The cscd operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Cosecant of angle
scalar value | vector | matrix | N-D array

Cosecant of angle, returned as a real-valued or complex-valued scalar, vector, matrix, or
N-D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 cscd

1-2429

• In some cases, generated code returns -Inf when MATLAB returns Inf.
• In some cases, generated code returns Inf when MATLAB returns -Inf.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acsc | acscd | csc

Introduced before R2006a

1 Alphabetical List

1-2430

csch
Hyperbolic cosecant

Syntax
Y = csch(X)

Description
Y = csch(X) returns the hyperbolic cosecant of the elements of X. The csch function
operates element-wise on arrays. The function accepts both real and complex inputs. All
angles are in radians.

Examples

Hyperbolic Cosecant of Vector

Create a vector and calculate the hyperbolic cosecant of each value.

X = [0 pi 2*pi 3*pi];
Y = csch(X)

Y = 1×4

 Inf 0.0866 0.0037 0.0002

Graph of Hyperbolic Cosecant

Plot the hyperbolic cosecant over the domain −π < x < 0 and 0 < x < π .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;

 csch

1-2431

y1 = csch(x1);
y2 = csch(x2);
plot(x1,y1,x2,y2)
grid on

Input Arguments
X — Input angles in radians
scalar | vector | matrix | multidimensional array

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.

1 Alphabetical List

1-2432

Data Types: single | double
Complex Number Support: Yes

Definitions

Hyperbolic Cosecant
The hyperbolic cosecant of x is equal to the inverse of the hyperbolic sine

csch x = 1
sinh x = 2

ex− e−x .

In terms of the traditional cosecant function with a complex argument, the identity is

csch x = icsc ix .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 csch

1-2433

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
acsch | cosh | csc | sinh

Introduced before R2006a

1 Alphabetical List

1-2434

csvread
(Not recommended) Read comma-separated value (CSV) file

Note csvread is not recommended. Use readmatrix instead. For more information,
see Compatibility Considerations.

Syntax
M = csvread(filename)
M = csvread(filename,R1,C1)
M = csvread(filename,R1,C1,[R1 C1 R2 C2])

Description
M = csvread(filename) reads a comma-separated value (CSV) formatted file into
array M. The file must contain only numeric values.

M = csvread(filename,R1,C1) reads data from the file starting at row offset R1 and
column offset C1. For example, the offsets R1=0, C1=0 specify the first value in the file.

M = csvread(filename,R1,C1,[R1 C1 R2 C2]) reads only the range bounded by
row offsets R1 and R2 and column offsets C1 and C2. Another way to define the range is to
use spreadsheet notation, such as 'A1..B7' instead of [0 0 6 1].

Examples

Read Entire CSV File

Create a file named csvlist.dat that contains comma-separated values.

 02, 04, 06, 08
 03, 06, 09, 12
 05, 10, 15, 20

 csvread

1-2435

 07, 14, 21, 28

Read the numeric values in the file.

filename = 'csvlist.dat';
M = csvread(filename)

M =

 2 4 6 8
 3 6 9 12
 5 10 15 20
 7 14 21 28

Read CSV File Starting at Specific Row and Column Offset

Read the matrix starting two rows below the first row from the file described in the
previous example.

M = csvread('csvlist.dat',2,0)

M =

 5 10 15 20
 7 14 21 28

Read Specific Range from CSV File

Read the matrix bounded by row offsets 1 and 2 and column offsets 0 and 2 from the file
described in the first example.

M = csvread('csvlist.dat',1,0,[1,0,2,2])

M =

1 Alphabetical List

1-2436

 3 6 9
 5 10 15

Input Arguments
filename — File name
character vector | string

File name, specified as a character vector or string.
Example: 'myFile.dat' or "myFile.dat"
Data Types: char | string

R1 — Starting row offset
0 (default) | nonnegative integer

Starting row offset, specified as a nonnegative integer. The first row has an offset of 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C1 — Starting column offset
0 (default) | nonnegative integer

Starting column offset, specified as a nonnegative integer. The first column has an offset
of 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

R2 — Ending row offset
nonnegative integer

Ending row offset, specified as a nonnegative integer. The first row has an offset of 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C2 — Ending column offset
nonnegative integer

Ending column offset, specified as a nonnegative integer. The first column has an offset of
0.

 csvread

1-2437

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
• Skip header rows or columns by specifying row and column offsets. All values in the
file other than headers must be numeric.

Algorithms
csvread fills empty delimited fields with zero. When the csvread function reads data
files with lines that end with a nonspace delimiter, such as a semicolon, it returns a
matrix, M, that has an additional last column of zeros.

csvread imports any complex number as a whole into a complex numeric field,
converting the real and imaginary parts to the specified numeric type. The table shows
valid forms for a complex number.

Form Example
±<real>±<imag>i|j 5.7-3.1i
±<imag>i|j -7j

Embedded white space in a complex number is invalid and is regarded as a field delimiter.

Compatibility Considerations

csvread is not recommended
Not recommended starting in R2019a

csvread is not recommended. Use readmatrix instead. There are no plans to remove
csvread.

Starting in R2019a, use the readmatrix function to read a matrix from a csv file. The
readmatrix function has these advantages over the csvread function:

1 Alphabetical List

1-2438

• Better cross-platform support and performance
• Automatic detection of data format and types
• Ability to use import options to control the data import process, including the handling

of errors and missing data

This table shows typical usages of csvread and how to update your code to use
readmatrix instead.

Not Recommended Recommended
M = csvread(filename) M = readmatrix(filename)

See Also
csvwrite | dlmread | readmatrix | readtable | textscan | uiimport

Topics
“Ways to Import Text Files”

Introduced before R2006a

 csvread

1-2439

ctranspose, '
Complex conjugate transpose

Syntax
B = A'
B = ctranspose(A)

Description
B = A' computes the complex conjugate transpose on page 1-2442 of A.

B = ctranspose(A) is an alternate way to execute A', but is rarely used. It enables
operator overloading for classes.

Examples

Conjugate Transpose of Real Matrix

Create a 4-by-2 matrix.

A = [2 1; 9 7; 2 8; 3 5]

A = 4×2

 2 1
 9 7
 2 8
 3 5

Find the conjugate transpose of A.

B = A'

1 Alphabetical List

1-2440

B = 2×4

 2 9 2 3
 1 7 8 5

The result is a 2-by-4 matrix. B has the same elements as A, but the row and column index
for each element are interchanged. When no complex elements are present, A' produces
the same result as A.'.

Conjugate Transpose of Complex Matrix

Create a 2-by-2 matrix with complex elements.

A = [0-1i 2+1i;4+2i 0-2i]

A = 2×2 complex

 0.0000 - 1.0000i 2.0000 + 1.0000i
 4.0000 + 2.0000i 0.0000 - 2.0000i

Find the conjugate transpose of A.

B = A'

B = 2×2 complex

 0.0000 + 1.0000i 4.0000 - 2.0000i
 2.0000 - 1.0000i 0.0000 + 2.0000i

The result, B, contains the elements of A with the row and column indices interchanged.
The sign of the imaginary part of each number is also switched.

Input Arguments
A — Input array
vector | matrix

 ctranspose, '

1-2441

Input array, specified as a vector or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | categorical |
datetime | duration | calendarDuration
Complex Number Support: Yes

Definitions

Complex Conjugate Transpose
The complex conjugate transpose of a matrix interchanges the row and column index for
each element, reflecting the elements across the main diagonal. The operation also
negates the imaginary part of any complex numbers.

For example, if B = A' and A(1,2) is 1+1i, then the element B(2,1) is 1-1i.

Tips
• The nonconjugate transpose operator, A.', performs a transpose without conjugation.

That is, it does not change the sign of the imaginary parts of the elements.
• For logical or non-numeric inputs, ctranspose and transpose produce the same

result.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-2442

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
conj | permute | transpose

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 ctranspose, '

1-2443

csvwrite
(Not recommended) Write comma-separated value file

Note csvwrite is not recommended. Use writematrix instead. For more information,
see Compatibility Considerations.

Syntax
csvwrite(filename,M)
csvwrite(filename,M,row,col)

Description
csvwrite(filename,M) writes matrix M to file filename as comma-separated values.

csvwrite(filename,M,row,col) writes matrix M to file filename starting at the
specified row and column offset. The row and column arguments are zero based, so that
row=0 and col=0 specify the first value in the file.

Examples

Write Matrix to Comma-Separated Value File

Create an array of sample data M.

M = magic(3)

M = 3×3

 8 1 6
 3 5 7
 4 9 2

1 Alphabetical List

1-2444

Write matrix M to the file 'myFile.txt'.

csvwrite('myFile.txt',M)

View the data in the file.

type('myFile.txt')

8,1,6
3,5,7
4,9,2

Write Matrix Starting at Offset

Write a matrix to a file starting at a defined offset position.

Create an array of sample data M.

M = magic(3)

M = 3×3

 8 1 6
 3 5 7
 4 9 2

Define the starting offsets to skip one row and two columns.

row = 1 ;
col = 2 ;

Write matrix M to the file 'myFile.txt', starting at the offset position.

csvwrite('myFile.txt',M,row,col)

View the data in the file.

type('myFile.txt')

,,,,
,,8,1,6
,,3,5,7
,,4,9,2

 csvwrite

1-2445

Input Arguments
filename — File name
character vector | string

File name, specified as a character vector or string.
Example: 'myFile.dat'
Data Types: char | string

M — Numeric data to write
matrix

Numeric data to write, specified as a matrix of numeric values.
Example: [1,2,3;4,5,6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

row — Row offset
0 (default) | scalar

Row offset, specified as a scalar. The row offset indicates the number of rows to skip
before writing the numeric data. row is zero-based, so that row = 0 instructs MATLAB to
begin writing in the first row of the destination file. Skipped rows are populated with
commas.

col — Column offset
0 (default) | scalar

Column offset, specified as a scalar. The column offset indicates the number of columns to
skip before writing the numeric data. col is zero-based, so that col = 0 instructs
MATLAB to begin writing in the first column of the destination file. Skipped columns are
separated by commas.

1 Alphabetical List

1-2446

Limitations
• csvwrite writes a maximum of five significant digits. If you need greater precision,

use dlmwrite with a precision argument.

• csvwrite does not accept cell arrays for the input matrix M. To export a cell array
that contains only numeric data, use cell2mat to convert the cell array to a numeric
matrix before calling csvwrite.

Algorithms
• csvwrite terminates each line with a line feed character ('\n' or char(10)) and no

carriage return.

Compatibility Considerations

csvwrite is not recommended
Not recommended starting in R2019a

csvwrite is not recommended. Use writematrix instead. There are no plans to remove
csvwrite.

Starting in R2019a, use the writematrix function to write a matrix to a comma
separated text file. The writematrix function has better cross-platform support and
performance over the csvwrite function.

This table shows typical usages of csvwrite and how to update your code to use
writematrix instead.

Not Recommended Recommended
csvwrite('mydata.txt',M) writematrix(M,'mydata.txt')

See Also
csvread | dlmwrite | uiimport | writematrix | writetable | xlswrite

 csvwrite

1-2447

Topics
“Write Data to Text Files”

Introduced before R2006a

1 Alphabetical List

1-2448

cummax
Cumulative maximum

Syntax
M = cummax(A)
M = cummax(A,dim)
M = cummax(___ ,direction)
M = cummax(___ ,nanflag)

Description
M = cummax(A) returns the cumulative maximum elements of A. By default, cummax(A)
operates along the first array dimension whose size does not equal 1.

• If A is a vector, then cummax(A) returns a vector of the same size containing the
cumulative maxima of A.

• If A is a matrix, then cummax(A) returns a matrix of the same size containing the
cumulative maxima in each column of A.

• If A is a multidimensional array, then cummax(A) returns an array of the same size
containing the cumulative maxima along the first array dimension of A whose size does
not equal 1.

M = cummax(A,dim) returns the cumulative maxima along the dimension dim. For
example, if A is a matrix, then cummax(A,2) returns the cumulative maxima along the
rows of A.

M = cummax(___ ,direction) optionally specifies the direction using any of the
previous syntaxes. You must specify A and, optionally, can specify dim. For instance,
cummax(A,2,'reverse') returns the cumulative maxima of A by working from end to
beginning of the second dimension of A.

M = cummax(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. cummax(A,'includenan') includes all NaN
values in the calculation while cummax(A,'omitnan') ignores them.

 cummax

1-2449

Examples

Cumulative Maximum Values in Vector

Find the cumulative maxima of a 1-by-10 vector of random integers.

v = randi(10,1,10)

v = 1×10

 9 10 2 10 7 1 3 6 10 10

M = cummax(v)

M = 1×10

 9 10 10 10 10 10 10 10 10 10

Cumulative Maximum Values in Matrix Columns

Find the cumulative maxima of the columns of a 3-by-3 matrix.

A = [3 5 2; 1 6 3; 7 8 1]

A = 3×3

 3 5 2
 1 6 3
 7 8 1

M = cummax(A)

M = 3×3

 3 5 2
 3 6 3
 7 8 3

1 Alphabetical List

1-2450

Cumulative Maximum Values in Matrix Rows

Find the cumulative maxima of the rows of a 3-by-3 matrix.

A = [3 5 2; 1 6 3; 7 8 1]

A = 3×3

 3 5 2
 1 6 3
 7 8 1

M = cummax(A,2)

M = 3×3

 3 5 5
 1 6 6
 7 8 8

Cumulative Maximum Array Values in Reverse Direction

Calculate the cumulative maxima in the third dimension of a 2-by-2-by-3 array. Specify
direction as 'reverse' to work from the end of the third dimension to the beginning.

A = cat(3,[1 2; 3 4],[9 10; 11 12],[5 6; 7 8])

A =
A(:,:,1) =

 1 2
 3 4

A(:,:,2) =

 9 10
 11 12

 cummax

1-2451

A(:,:,3) =

 5 6
 7 8

M = cummax(A,3,'reverse')

M =
M(:,:,1) =

 9 10
 11 12

M(:,:,2) =

 9 10
 11 12

M(:,:,3) =

 5 6
 7 8

Vector with NaN Values

Create a vector containing NaN values and compute the cumulative maxima. By default,
cummax ignores NaN values.

A = [3 5 NaN 9 0 NaN];
M = cummax(A)

M = 1×6

 3 5 5 9 9 9

1 Alphabetical List

1-2452

If you include NaN values in the calculation, then the cumulative maximum becomes NaN
as soon as the first NaN value in A is encountered.

M = cummax(A,'includenan')

M = 1×6

 3 5 NaN NaN NaN NaN

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. For complex
elements, cummax compares the magnitude of the elements. If magnitudes are equal,
cummax also compares the phase angles.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, A:

• cummax(A,1) works on successive elements in the columns of A and returns an array
of the same size as A with the cumulative maxima in each column.

 cummax

1-2453

• cummax(A,2) works on successive elements in the rows of A and returns an array of
the same size as A with the cumulative maxima in each row.

cummax returns A if dim is greater than ndims(A).

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

Data Types: char

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of the following values:

• 'omitnan' — Ignore all NaN values in the input. If the input has consecutive leading
NaN values, then cummax returns NaN in the corresponding elements of the output. For
example, cummax([NaN 7 13 6],'omitnan') returns the row vector [NaN 7 13
13].

• 'includenan' — Include NaN values from the input when computing the cumulative
maxima, resulting in NaN values in the output.

Data Types: char

1 Alphabetical List

1-2454

Output Arguments
M — Cumulative maxima
vector | matrix | multidimensional array

Cumulative maxima, returned as a vector, matrix, or multidimensional array. The size and
data type of M are the same as those of A.

Tips
• The 'reverse' option in many cumulative functions allows quick directional

calculations without requiring a flip or reflection of the input array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'reverse' direction is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 cummax

1-2455

• The nanflag argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cummin | cumprod | cumsum | max | min | movmax

Introduced in R2014b

1 Alphabetical List

1-2456

cummin
Cumulative minimum

Syntax
M = cummin(A)
M = cummin(A,dim)
M = cummin(___ ,direction)
M = cummin(___ ,nanflag)

Description
M = cummin(A) returns the cumulative minimum elements of A. By default, cummin(A)
operates along the first array dimension whose size does not equal 1.

• If A is a vector, then cummin(A) returns a vector of the same size containing the
cumulative minima of A.

• If A is a matrix, then cummin(A) returns a matrix of the same size containing the
cumulative minima in each column of A.

• If A is a multidimensional array, then cummin(A) returns an array of the same size
containing the cumulative minima along the first array dimension of A whose size does
not equal 1.

M = cummin(A,dim) returns the cumulative minima along the dimension dim. For
example, if A is a matrix, then cummin(A,2) returns the cumulative minima along the
rows of A.

M = cummin(___ ,direction) optionally specifies the direction using any of the
previous syntaxes. You must specify A and, optionally, can specify dim. For instance,
cummin(A,2,'reverse') returns the cumulative minima of A by working from end to
beginning of the second dimension of A.

M = cummin(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. cummin(A,'includenan') includes all NaN
values in the calculation while cummin(A,'omitnan') ignores them.

 cummin

1-2457

Examples

Cumulative Minimum Values in Vector

Find the cumulative minima of a 1-by-10 vector of random integers.

v = randi([0,10],1,10)

v = 1×10

 8 9 1 10 6 1 3 6 10 10

M = cummin(v)

M = 1×10

 8 8 1 1 1 1 1 1 1 1

Cumulative Minimum Values in Matrix Columns

Find the cumulative minima of the columns of a 3-by-3 matrix.

A = [3 5 2; 1 6 3; 7 8 1]

A = 3×3

 3 5 2
 1 6 3
 7 8 1

M = cummin(A)

M = 3×3

 3 5 2
 1 5 2
 1 5 1

1 Alphabetical List

1-2458

Cumulative Minimum Values in Matrix Rows

Find the cumulative minima of the rows of a 3-by-3 matrix.

A = [3 5 2; 1 6 3; 7 8 1]

A = 3×3

 3 5 2
 1 6 3
 7 8 1

M = cummin(A,2)

M = 3×3

 3 3 2
 1 1 1
 7 7 1

Cumulative Minimum Array Values in Reverse Direction

Calculate the cumulative minima in the third dimension of a 2-by-2-by-3 array. Specify
direction as 'reverse' to work from the end of the third dimension to the beginning.

A = cat(3,[1 2; 3 4],[9 10; 11 12],[5 6; 7 8])

A =
A(:,:,1) =

 1 2
 3 4

A(:,:,2) =

 9 10
 11 12

 cummin

1-2459

A(:,:,3) =

 5 6
 7 8

M = cummin(A,3,'reverse')

M =
M(:,:,1) =

 1 2
 3 4

M(:,:,2) =

 5 6
 7 8

M(:,:,3) =

 5 6
 7 8

Vector with NaN Values

Create a vector containing NaN values and compute the cumulative minima. By default,
cummin ignores NaN values.

A = [3 5 NaN 9 0 NaN];
M = cummin(A)

M = 1×6

 3 3 3 3 0 0

1 Alphabetical List

1-2460

If you include NaN values in the calculation, then the cumulative minimum becomes NaN
as soon as the first NaN value in A is encountered.

M = cummin(A,'includenan')

M = 1×6

 3 3 NaN NaN NaN NaN

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. For complex
elements, cummin compares the magnitude of the elements. If magnitudes are equal,
cummin also compares the phase angles.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, A:

• cummin(A,1) works on successive elements in the columns of A and returns an array
of the same size as A with the cumulative minima in each column.

 cummin

1-2461

• cummin(A,2) works on successive elements in the rows of A and returns an array of
the same size as A with the cumulative minima in each row.

cummin returns A if dim is greater than ndims(A).

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

Data Types: char

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of the following values:

• 'omitnan' — Ignore all NaN values in the input. If the input has consecutive leading
NaN values, then cummin returns NaN in the corresponding elements of the output. For
example, cummin([NaN 7 13 6],'omitnan') returns the row vector [NaN 7 7
6].

• 'includenan' — Include NaN values from the input when computing the cumulative
minima, resulting in NaN values in the output.

Data Types: char

1 Alphabetical List

1-2462

Output Arguments
M — Cumulative minima
vector | matrix | multidimensional array

Cumulative minima, returned as a vector, matrix, or multidimensional array. The size and
data type of M are the same as those of A.

Tips
• The 'reverse' option in many cumulative functions allows quick directional

calculations without requiring a flip or reflection of the input array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'reverse' direction is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 cummin

1-2463

• The nanflag argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cummax | cumprod | cumsum | max | min | movmin

Introduced in R2014b

1 Alphabetical List

1-2464

cumprod
Cumulative product

Syntax
B = cumprod(A)
B = cumprod(A,dim)
B = cumprod(___ ,direction)
B = cumprod(___ ,nanflag)

Description
B = cumprod(A) returns the cumulative product of A starting at the beginning of the
first array dimension in A whose size does not equal 1.

• If A is a vector, then cumprod(A) returns a vector containing the cumulative product
of the elements of A.

• If A is a matrix, then cumprod(A) returns a matrix containing the cumulative products
for each column of A.

• If A is a multidimensional array, then cumprod(A) acts along the first nonsingleton
dimension on page 1-2471.

B = cumprod(A,dim) returns the cumulative product along dimension dim. For
example, if A is a matrix, then cumprod(A,2) returns the cumulative product of each
row.

B = cumprod(___ ,direction) optionally specifies the direction using any of the
previous syntaxes. You must specify A, and optionally can specify dim. For instance,
cumprod(A,2,'reverse') returns the cumulative product within the rows of A by
working from end to beginning of the second dimension.

B = cumprod(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. cumprod(A,'includenan') includes NaN
values in the calculation while cumprod(A,'omitnan') ignores them.

 cumprod

1-2465

Examples

Cumulative Product of Vector

Find the cumulative product of the integers from 1 to 5. The element B(2) is the product
of A(1) and A(2), while B(5) is the product of elements A(1) through A(5).

A = 1:5;
B = cumprod(A)

B = 1×5

 1 2 6 24 120

Cumulative Product of Each Column in Matrix

Define a 3-by-3 matrix whose elements correspond to their linear indices.

A = [1 4 7; 2 5 8; 3 6 9]

A = 3×3

 1 4 7
 2 5 8
 3 6 9

Find the cumulative product of the columns of A. The element B(5) is the product of
A(4) and A(5), while B(9) is the product of A(7) , A(8), and A(9).

B = cumprod(A)

B = 3×3

 1 4 7
 2 20 56
 6 120 504

1 Alphabetical List

1-2466

Cumulative Product of Each Row in Matrix

Define a 2-by-3 matrix whose elements correspond to their linear indices.

A = [1 3 5; 2 4 6]

A = 2×3

 1 3 5
 2 4 6

Find the cumulative product of the rows of A. The element B(3) is the product of A(1)
and A(3), while B(5) is the product of A(1), A(3), and A(5).

B = cumprod(A,2)

B = 2×3

 1 3 15
 2 8 48

Logical Input with Double Output

Create an array of logical values.

A = [true false true; true true false]

A = 2x3 logical array

 1 0 1
 1 1 0

Find the cumulative product of the rows of A.

B = cumprod(A,2)

B = 2×3

 cumprod

1-2467

 1 0 0
 1 1 0

The output has type double.

class(B)

ans =
'double'

Reverse Cumulative Product

Create a 3-by-3 matrix of random integers between 1 and 10.

rng default;
A = randi([1,10],3)

A = 3×3

 9 10 3
 10 7 6
 2 1 10

Calculate the cumulative product along the columns. Specify the 'reverse' option to
work from bottom to top in each column. The result is the same size as A.

B = cumprod(A,'reverse')

B = 3×3

 180 70 180
 20 7 60
 2 1 10

1 Alphabetical List

1-2468

Vector with NaN Values

Create a vector containing NaN values and compute the cumulative products. By default,
cumprod includes NaN values. When you include NaN values in the calculation, the
cumulative product becomes NaN as soon as the first NaN value in A is encountered.

A = [1 3 NaN 2 4 NaN];
B = cumprod(A)

B = 1×6

 1 3 NaN NaN NaN NaN

Ignore NaN values in the cumulative product calculation using the 'omitnan' option.

B = cumprod(A,'omitnan')

B = 1×6

 1 3 3 6 24 24

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, A.

 cumprod

1-2469

• cumprod(A,1) works on successive elements in the columns of A and returns the
cumulative products of each column.

• cumprod(A,2) works on successive elements in the rows of A and returns the
cumulative products of each row.

cumprod returns A if dim is greater than ndims(A).

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing each product,
resulting in NaN values in the output.

• 'omitnan' — Ignore NaN values in the input. The product of elements containing NaN
values is the product of all non-NaN elements. If all elements are NaN, then cumprod
returns 1.

Output Arguments
B — Cumulative product array
vector | matrix | multidimensional array

1 Alphabetical List

1-2470

Cumulative product array, returned as a vector, matrix, or multidimensional array of the
same size as the input array A.

The class of B is the same as the class of A except if A is logical, in which case B is
double.

Definitions
First Nonsingleton Dimension
The first nonsingleton dimension is the first dimension of an array whose size is not equal
to 1.

For example:

• If X is a 1-by-n row vector, then the second dimension is the first nonsingleton
dimension of X.

• If X is a 1-by-0-by-n empty array, then the second dimension is the first nonsingleton
dimension of X.

• If X is a 1-by-1-by-3 array, then the third dimension is the first nonsingleton dimension
of X.

Tips
• Many cumulative functions in MATLAB support the 'reverse' option. This option

allows quick directional calculations without needing a flip or reflection of the input
array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

 cumprod

1-2471

The 'reverse' direction is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Logical inputs are not supported. Cast input to double first.
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The nanflag argument is not supported.
• The order of the products within the comprod operation is not defined. Therefore, the

cumprod operation on a gpuArray might not return exactly the same answer as the
cumprod operation on the corresponding MATLAB numeric array. The differences
might be significant when A is a signed integer type.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The order of the products within the comprod operation is not defined. Therefore, the
cumprod operation on a distributed array might not return exactly the same answer as
the cumprod operation on the corresponding MATLAB numeric array. The differences
might be significant when A is a signed integer type.

1 Alphabetical List

1-2472

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cummax | cummin | cumsum | movprod | prod | sum

Introduced before R2006a

 cumprod

1-2473

cumsum
Cumulative sum

Syntax
B = cumsum(A)
B = cumsum(A,dim)
B = cumsum(___ ,direction)
B = cumsum(___ ,nanflag)

Description
B = cumsum(A) returns the cumulative sum of A starting at the beginning of the first
array dimension in A whose size does not equal 1.

• If A is a vector, then cumsum(A) returns a vector containing the cumulative sum of the
elements of A.

• If A is a matrix, then cumsum(A) returns a matrix containing the cumulative sums for
each column of A.

• If A is a multidimensional array, then cumsum(A) acts along the first nonsingleton
dimension on page 1-2480.

B = cumsum(A,dim) returns the cumulative sum of the elements along dimension dim.
For example, if A is a matrix, then cumsum(A,2) returns the cumulative sum of each row.

B = cumsum(___ ,direction) optionally specifies the direction using any of the
previous syntaxes. You must specify A, and optionally can specify dim. For instance,
cumsum(A,2,'reverse') returns the cumulative sum within the rows of A by working
from end to beginning of the second dimension.

B = cumsum(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. cumsum(A,'includenan') includes all NaN
values in the calculation while cumsum(A,'omitnan') ignores them.

1 Alphabetical List

1-2474

Examples

Cumulative Sum of Vector

Find the cumulative sum of the integers from 1 to 5. The element B(2) is the sum of
A(1) and A(2), while B(5) is the sum of elements A(1) through A(5).

A = 1:5;
B = cumsum(A)

B = 1×5

 1 3 6 10 15

Cumulative Sum of Each Column in Matrix

Define a 3-by-3 matrix whose elements correspond to their linear indices.

A = [1 4 7; 2 5 8; 3 6 9]

A = 3×3

 1 4 7
 2 5 8
 3 6 9

Find the cumulative sum of the columns of A. The element B(5) is the sum of A(4) and
A(5), while B(9) is the sum of A(7), A(8), and A(9).

B = cumsum(A)

B = 3×3

 1 4 7
 3 9 15
 6 15 24

 cumsum

1-2475

Cumulative Sum of Each Row in Matrix

Define a 2-by-3 matrix whose elements correspond to their linear indices.

A = [1 3 5; 2 4 6]

A = 2×3

 1 3 5
 2 4 6

Find the cumulative sum of the rows of A. The element B(3) is the sum of A(1) and
A(3), while B(5) is the sum of A(1), A(3), and A(5).

B = cumsum(A,2)

B = 2×3

 1 4 9
 2 6 12

Cumulative Sum of Logical Input

Create an array of logical values.

A = [true false true; true true false]

A = 2x3 logical array

 1 0 1
 1 1 0

Find the cumulative sum of the rows of A.

B = cumsum(A,2)

B = 2×3

1 Alphabetical List

1-2476

 1 1 2
 1 2 2

The output has type double.

class(B)

ans =
'double'

Reverse Cumulative Sum

Create a 3-by-3 matrix of random integers between 1 and 10.

rng default;
A = randi([1,10],3)

A = 3×3

 9 10 3
 10 7 6
 2 1 10

Calculate the cumulative sum along the rows. Specify the 'reverse' option to work from
right to left in each row. The result is the same size as A.

B = cumsum(A,2,'reverse')

B = 3×3

 22 13 3
 23 13 6
 13 11 10

 cumsum

1-2477

Vector with NaN Values

Create a vector containing NaN values and compute the cumulative sums. By default,
cumsum includes NaN values. When you include NaN values in the calculation, the
cumulative sum becomes NaN as soon as the first NaN value in A is encountered.

A = [3 5 NaN 9 0 NaN];
B = cumsum(A)

B = 1×6

 3 8 NaN NaN NaN NaN

You can ignore NaN values in the cumulative sum calculation using the 'omitnan'
option.

B = cumsum(A,'omitnan')

B = 1×6

 3 8 8 17 17 17

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, A:

1 Alphabetical List

1-2478

• cumsum(A,1) works on successive elements in the columns of A and returns the
cumulative sums of each column.

• cumsum(A,2) works on successive elements in the rows of A and returns the
cumulative sums of each row.

cumsum returns A if dim is greater than ndims(A).

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

Data Types: char

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of the following values:

• 'includenan' — Include NaN values from the input when computing the cumulative
sums, resulting in NaN values in the output.

• 'omitnan' — Ignore all NaN values in the input. The sum of elements containing NaN
values is the sum of all non-NaN elements. If all elements are NaN, then cumsum
returns 0.

Data Types: char

 cumsum

1-2479

Output Arguments
B — Cumulative sum array
vector | matrix | multidimensional array

Cumulative sum array, returned as a vector, matrix, or multidimensional array of the same
size as the input array A.

The class of B is the same as the class of A except if A is logical, in which case B is
double.

Definitions

First Nonsingleton Dimension
The first nonsingleton dimension is the first dimension of an array whose size is not equal
to 1.

For example:

• If X is a 1-by-n row vector, then the second dimension is the first nonsingleton
dimension of X.

• If X is a 1-by-0-by-n empty array, then the second dimension is the first nonsingleton
dimension of X.

• If X is a 1-by-1-by-3 array, then the third dimension is the first nonsingleton dimension
of X.

Tips
• Many cumulative functions in MATLAB support the 'reverse' option. This option

allows quick directional calculations without needing a flip or reflection of the input
array.

1 Alphabetical List

1-2480

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'reverse' direction is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Logical inputs are not supported. Cast input to double first.
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The nanflag argument is not supported.
• The order of the additions within the cumsum operation is not defined. Therefore, the

cumsum operation on a gpuArray might not return exactly the same answer as the
cumsum operation on the corresponding MATLAB numeric array. The differences might
be significant when A is a signed integer type.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 cumsum

1-2481

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The order of the additions within the cumsum operation is not defined. Therefore, the
cumsum operation on a distributed array might not return exactly the same answer as
the cumsum operation on the corresponding MATLAB numeric array. The differences
might be significant when A is a signed integer type.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cummax | cummin | cumprod | diff | movsum | prod | sum

Introduced before R2006a

1 Alphabetical List

1-2482

cumtrapz
Cumulative trapezoidal numerical integration

Syntax
Q = cumtrapz(Y)
Q = cumtrapz(X,Y)
Q = cumtrapz(___ ,dim)

Description
Q = cumtrapz(Y) computes the approximate cumulative integral of Y via the
trapezoidal method on page 1-15163 with unit spacing. The size of Y determines the
dimension to integrate along:

• If Y is a vector, then cumtrapz(Y) is the cumulative integral of Y.
• If Y is a matrix, then cumtrapz(Y) is the cumulative integral over each column.
• If Y is a multidimensional array, then cumtrapz(Y) integrates over the first dimension

whose size does not equal 1.

Q = cumtrapz(X,Y) integrates Y with respect to the coordinates or scalar spacing
specified by X.

• If X is a vector of coordinates, then length(X) must be equal to the size of the first
dimension of Y whose size does not equal 1.

• If X is a scalar spacing, then cumtrapz(X,Y) is equivalent to X*cumtrapz(Y).

Q = cumtrapz(___ ,dim) integrates along the dimension dim using any of the
previous syntaxes. You must specify Y, and optionally can specify X. If you specify X, then
it can be a scalar or a vector with length equal to size(Y,dim). For example, if Y is a
matrix, then cumtrapz(X,Y,2) cumulatively integrates each row of Y.

Examples

 cumtrapz

1-2483

Cumulative Integral of Vector with Unit Spacing

Calculate the cumulative integral of a vector where the spacing between data points is 1.

Create a numeric vector of data.

Y = [1 4 9 16 25];

Y contains function values for f x = x2 in the domain [1 5].

Use cumtrapz to integrate the data with unit spacing.

Q = cumtrapz(Y)

Q = 1×5

 0 2.5000 9.0000 21.5000 42.0000

This approximate integration yields a final value of 42. In this case, the exact answer is a
little less, 411

3 . The cumtrapz function overestimates the value of the integral because
f(x) is concave up.

Cumulatively Integrate Vector of Data with Nonunit Spacing

Calculate the cumulative integral of a vector where the spacing between data points is
uniform, but not equal to 1.

Create a domain vector.

X = 0:pi/5:pi;

Calculate the sine of X.

Y = sin(X');

Cumulatively integrate Y using cumtrapz. When the spacing between points is constant,
but not equal to 1, an alternative to creating a vector for X is to specify the scalar spacing
value. In that case, cumtrapz(pi/5,Y) is the same as pi/5*cumtrapz(Y).

Q = cumtrapz(X,Y)

1 Alphabetical List

1-2484

Q = 6×1

 0
 0.1847
 0.6681
 1.2657
 1.7491
 1.9338

Cumulatively Integrate Matrix with Nonuniform Spacing

Cumulatively integrate the rows of a matrix where the data has a nonuniform spacing.

Create a vector of x-coordinates and a matrix of observations that take place at the
irregular intervals. The rows of Y represent velocity data, taken at the times contained in
X, for three different trials.

X = [1 2.5 7 10];
Y = [5.2 7.7 9.6 13.2;
 4.8 7.0 10.5 14.5;
 4.9 6.5 10.2 13.8];

Use cumtrapz to integrate each row independently and find the cumulative distance
traveled in each trial. Since the data is not evaluated at constant intervals, specify X to
indicate the spacing between the data points. Specify dim = 2 since the data is in the
rows of Y.

Q1 = cumtrapz(X,Y,2)

Q1 = 3×4

 0 9.6750 48.6000 82.8000
 0 8.8500 48.2250 85.7250
 0 8.5500 46.1250 82.1250

The result is a matrix of the same size as Y with the cumulative integral of each row.

 cumtrapz

1-2485

Multiple Cumulative Integrations

Perform nested integrations in the x and y directions. Plot the results to visualize the
cumulative integral value in both directions.

Create a grid of values for the domain.

x = -2:0.1:2;
y = -2:0.2:2;
[X,Y] = meshgrid(x,y);

Calculate the function f x, y = 10x2 + 20y2 on the grid.

F = 10*X.^2 + 20*Y.^2;

cumtrapz integrates numeric data rather than functional expressions, so in general the
underlying function does not need to be known to use cumtrapz on a matrix of data. In
cases where the functional expression is known, you can instead use integral,
integral2, or integral3.

Use cumtrapz to approximate the double integral

I a, b =∫−2

b∫−2

a
10x2 + 20y2 dx dy .

To perform this double integration, use nested function calls to cumtrapz. The inner call
first integrates the rows of data, then the outer call integrates the columns.

I = cumtrapz(y,cumtrapz(x,F,2));

Plot the surface representing the original function as well as the surface representing the
cumulative integration. Each point on the surface of the cumulative integration gives an
intermediate value of the double integral. The last value in I gives the overall
approximation of the double integral, I(end) = 642.4. Mark this point in the plot with
a red star.

surf(X,Y,F,'EdgeColor','none')
xlabel('X')
ylabel('Y')
hold on
surf(X,Y,I,'FaceAlpha',0.5,'EdgeColor','none')
plot3(X(end),Y(end),I(end),'r*')
hold off

1 Alphabetical List

1-2486

Input Arguments
Y — Numeric data
vector | matrix | multidimensional array

Numeric data, specified as a vector, matrix, or multidimensional array. By default,
cumtrapz integrates along the first dimension of Y whose size does not equal 1.
Data Types: single | double
Complex Number Support: Yes

 cumtrapz

1-2487

X — Point spacing
1 (default) | uniform scalar spacing | vector of coordinates

Point spacing, specified as 1 (default), a uniform scalar spacing, or a vector of
coordinates.

• If X is a scalar, then it specifies a uniform spacing between the data points and
cumtrapz(X,Y) is equivalent to X*cumtrapz(Y).

• If X is a vector, then it specifies x-coordinates for the data points and length(X) must
be the same as the size of the integration dimension in Y.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, Y:

• cumtrapz(Y,1) works on successive elements in the columns of Y.

• cumtrapz(Y,2) works on successive elements in the rows of Y.

1 Alphabetical List

1-2488

If dim is greater than ndims(Y), then cumtrapz returns an array of zeros of the same
size as Y.

Tips
• Use trapz and cumtrapz to perform numerical integrations on discrete data sets.

Use integral, integral2, or integral3 instead if a functional expression for the
data is available.

• trapz reduces the size of the dimension it operates on to 1, and returns only the final
integration value. cumtrapz also returns the intermediate integration values,
preserving the size of the dimension it operates on.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cumprod | cumsum | trapz

Topics
“Integration of Numeric Data”

 cumtrapz

1-2489

Introduced before R2006a

1 Alphabetical List

1-2490

curl
Compute curl and angular velocity of vector field

Syntax
[curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...)
[curlx,curly] = curl(...)
cav = curl(...)

Description
[curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl (curlx,
curly, curlz) and angular velocity (cav) perpendicular to the flow (in radians per time
unit) of a 3-D vector field U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must be monotonic,
but do not need to be uniformly spaced. X, Y, and Z must have the same number of
elements, as if produced by meshgrid.

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are determined by
the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the angular
velocity perpendicular to z (in radians per time unit) of a 2-D vector field U, and V.

The arrays X and Y, which define the coordinates for U and V, must be monotonic, but do
not need to be uniformly spaced. X and Y must have the same number of elements, as if
produced by meshgrid.

 curl

1-2491

[curlz,cav]= curl(U,V) assumes X and Y are determined by the expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), [curlx,curly] = curl(...) returns only
the curl.

cav = curl(...) returns only the curl angular velocity.

Examples

Display Curl Angular Velocity Using Colored Slice Planes

Use colored slice planes to display the curl angular velocity at specified locations in the
vector field.

load wind
cav = curl(x,y,z,u,v,w);
h = slice(x,y,z,cav,[90 134],59,0);
shading interp
daspect([1 1 1]);
axis tight
colormap(hot(16));
camlight
set([h(1),h(2)],'ambientstrength',.6);

1 Alphabetical List

1-2492

Display Curl Angular Velocity in One Plane

Display the curl angular velocity in one plane of the volume. Then plot the velocity vectors
in the same plane.

load wind
k = 4;
x = x(:,:,k);
y = y(:,:,k);
u = u(:,:,k);
v = v(:,:,k);

 curl

1-2493

cav = curl(x,y,u,v);
pcolor(x,y,cav);
shading interp
hold on
quiver(x,y,u,v,'y');
hold off
colormap('copper');

1 Alphabetical List

1-2494

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
divergence | streamribbon

Topics
“Displaying Curl with Stream Ribbons”

Introduced before R2006a

 curl

1-2495

currentDirectory
Return index of current IFD

Syntax
dirNum = currentDirectory(t)

Description
dirNum = currentDirectory(t) returns the index of the current image file directory
(IFD). Index values are one-based.

Examples

Determine Current IFD

Create a Tiff object for a TIFF file and determine which IFD is the current IFD.

t = Tiff('example.tif','r');
dnum = currentDirectory(t)

dnum = 1

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

1 Alphabetical List

1-2496

Algorithms

References
This function corresponds to the TIFFCurrentDirectory function in the LibTIFF C API.
To use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | setDirectory

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 currentDirectory

1-2497

http://www.simplesystems.org/libtiff/

currentProject
Package: matlab.project

Get current project

Syntax
proj = currentProject

Description
proj = currentProject gets the currently open project, and returns a project object
proj that you can use to manipulate the project programmatically. When the currently
open project is running a shortcut, startup file, or shutdown file for a referenced project,
currentProject returns the object for the referenced project instead. If no project is
open, MATLAB displays an error.

For more information about working with projects programmatically, see “Create and Edit
Projects Programmatically”

Examples

Get Example Project

Open the Times Table App example project and get a project object you can use to
manipulate the project at the command line.

matlab.project.example.timesTable
proj = currentProject

proj =

 Project with properties:

 Name: "Times Table App"
 SourceControlIntegration: "Git"

1 Alphabetical List

1-2498

 RepositoryLocation: "C:\myProjects\examples\repositories\TimesTableApp"
 SourceControlMessages: [1×3 string]
 ReadOnly: 0
 TopLevel: 1
 Dependencies: [1×1 digraph]
 Categories: [1×1 matlab.project.Category]
 Files: [1×14 matlab.project.ProjectFile]
 Shortcuts: [1×4 matlab.project.Shortcut]
 ProjectPath: [1×3 matlab.project.PathFolder]
 ProjectReferences: [1×0 matlab.project.ProjectReference]
 StartupFiles: [1×0 string]
 ShutdownFiles: [1×0 string]
 Description: "This example project contains the source code and tests for a ...
 RootFolder: "C:\myProjects\examples\TimesTableApp"
 ProjectStartupFolder: "C:\myProjects\examples\TimesTableApp"

Output Arguments
proj — Project
matlab.project.Project object

Project, returned as a matlab.project.Project object. Use the
matlab.project.Project to programmatically manipulate the currently open project.

See Also
openProject

Topics
“Create and Edit Projects Programmatically”

Introduced in R2019a

 currentProject

1-2499

customverctrl
(Has been removed) Allow custom source control system (UNIX platforms)

Note customverctrl has been removed.

Syntax
customverctrl

Description
customverctrl function is for customers who want to integrate a source control system
that is not supported for use with MATLAB software. When using this function, conform to
the structure of one of the supported version control systems, for example, RCS. For
examples, see the files clearcase.m, cvs.m, pvcs.m, and rcs.m in matlabroot
\toolbox\matlab\verctrl.

Introduced before R2006a

1 Alphabetical List

1-2500

cylinder
Generate cylinder

Syntax
[X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(axes_handle,...)
cylinder(...)

Description
cylinder generates x-, y-, and z-coordinates of a unit cylinder. You can draw the
cylindrical object using surf or mesh, or draw it immediately by not providing output
arguments.

[X,Y,Z] = cylinder returns the x-, y-, and z-coordinates of a cylinder with a radius
equal to 1. The cylinder has 20 equally spaced points around its circumference.

[X,Y,Z] = cylinder(r) returns the x-, y-, and z-coordinates of a cylinder using r to
define a profile curve. cylinder treats each element in r as a radius at equally spaced
heights along the unit height of the cylinder. The cylinder has 20 equally spaced points
around its circumference.

 cylinder

1-2501

[X,Y,Z] = cylinder(r,n) returns the x-, y-, and z-coordinates of a cylinder based on
the profile curve defined by vector r. The cylinder has n equally spaced points around its
circumference.

cylinder(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

cylinder(...), with no output arguments, plots the cylinder using surf.

Examples

Display Unit Cylinder

figure
cylinder

1 Alphabetical List

1-2502

Generate Coordinates of Cylinder and Display Surface

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;
figure
[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

 cylinder

1-2503

Tips
cylinder treats its first argument as a profile curve. The resulting surface graphics
object is generated by rotating the curve about the x-axis, and then aligning it with the z-
axis.

See Also
sphere | surf

1 Alphabetical List

1-2504

Introduced before R2006a

 cylinder

1-2505

daqread
Read Data Acquisition Toolbox (.daq) file

Syntax
data = daqread('filename')
[data,time] = daqread(...)
[data,time,abstime] = daqread(...)
[data,time,abstime,events] = daqread(...)
[data,time,abstime,events,daqinfo] = daqread(...)
data = daqread(...,'Param1', Val1,...)
daqinfo = daqread('filename','info')

Description
data = daqread('filename') reads all the data from the Data Acquisition Toolbox™
(.daq) file specified by filename. daqread returns data, an m-by-n data matrix, where
m is the number of samples and n is the number of channels. If data includes data from
multiple triggers, the data from each trigger is separated by a NaN. If you set the
OutputFormat property to tscollection, daqread returns a time series collection
object. See below for more information.

[data,time] = daqread(...) returns time/value pairs. time is an m-by-1 vector, the
same length as data, that contains the relative time for each sample. Relative time is
measured with respect to the first trigger that occurs.

[data,time,abstime] = daqread(...) returns the absolute time of the first trigger.
abstime is returned as a clock vector.

[data,time,abstime,events] = daqread(...) returns a log of events. events is a
structure containing event information. If you specify either theSamples, Time, or
Triggers parameters (see below), the events structure contains only the specified
events.

[data,time,abstime,events,daqinfo] = daqread(...) returns a structure,
daqinfo, that contains two fields: ObjInfo and HwInfo. ObjInfo is a structure

1 Alphabetical List

1-2506

containing property name/property value pairs and HwInfo is a structure containing
hardware information. The entire event log is returned to daqinfo.ObjInfo.EventLog.

data = daqread(...,'Param1', Val1,...) specifies the amount of data returned
and the format of the data, using the following parameters.

Parameter Description
Samples Specify the sample range.
Time Specify the relative time range.
Triggers Specify the trigger range.
Channels Specify the channel range. Channel names can be specified as a

cell array.
DataFormat Specify the data format as doubles (default) or native.
TimeFormat Specify the time format as vector (default) or matrix.
OutputFormat Specify the output format as matrix (the default) or

tscollection. When you specify tscollection, daqread only
returns data.

The Samples, Time, and Triggers properties are mutually exclusive; that is, either
Samples, Triggers or Time can be defined at once.

daqinfo = daqread('filename','info') returns metadata from the file in the
daqinfo structure, without incurring the overhead of reading the data from the file as
well. The daqinfo structure contains two fields:

daqinfo.ObjInfo
a structure containing parameter/value pairs for the data acquisition object used to
create the file, filename. Note: The UserData property value is not restored.

daqinfo.HwInfo
a structure containing hardware information. The entire event log is returned to
daqinfo.ObjInfo.EventLog.

Examples
Use Data Acquisition Toolbox to acquire data. The analog input object, ai, acquires one
second of data for four channels, and saves the data to the output file data.daq.

 daqread

1-2507

ai = analoginput('nidaq','Dev1');
chans = addchannel(ai,0:3);
set(ai,'SampleRate',1000)
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger, ActualRate)
set(ai,'LoggingMode','Disk&Memory')
set(ai,'LogFileName','data.daq')
start(ai)

After the data has been collected and saved to a disk file, you can retrieve the data and
other acquisition-related information using daqread. To read all the sample-time pairs
from data.daq:

[data,time] = daqread('data.daq');

To read samples 500 to 1000 for all channels from data.daq:

data = daqread('data.daq','Samples',[500 1000]);

To read only samples 1000 to 2000 of channel indices 2, 4 and 7 in native format from the
file, data.daq:

data = daqread('data.daq', 'Samples', [1000 2000],...
 'Channels', [2 4 7], 'DataFormat', 'native');

To read only the data which represents the first and second triggers on all channels from
the file, data.daq:

[data,time] = daqread('data.daq', 'Triggers', [1 2]);

To obtain the channel property information from data.daq:

daqinfo = daqread('data.daq','info');
chaninfo = daqinfo.ObjInfo.Channel;

To obtain a list of event types and event data contained by data.daq:

daqinfo = daqread('data.daq','info');
events = daqinfo.ObjInfo.EventLog;
event_type = {events.Type};
event_data = {events.Data};

To read all the data from the file data.daq and return it as a time series collection
object:

1 Alphabetical List

1-2508

data = daqread('data.daq','OutputFormat','tscollection');

Tips

More About .daq Files
• The format used by daqread to return data, relative time, absolute time, and event

information is identical to the format used by the getdata function that is part of
Data Acquisition Toolbox. For more information, see the Data Acquisition Toolbox
documentation.

• If data from multiple triggers is read, then the size of the resulting data array is
increased by the number of triggers issued because each trigger is separated by a
NaN.

• ObjInfo.EventLog always contains the entire event log regardless of the value
specified by Samples, Time, or Triggers.

• The UserData property value is not restored when you return device object
(ObjInfo) information.

• When reading a .daq file, the daqread function does not return property values that
were specified as a cell array.

• Data Acquisition Toolbox (.daq) files are created by specifying a value for the
LogFileName property (or accepting the default value), and configuring the
LoggingMode property to Disk or Disk&Memory.

More About Time Series Collection Object Returned
When OutputFormat is set to tscollection, daqread returns a time series collection
object. This times series collection object contains an absolute time series object for each
channel in the file. The following describes how daqread sets some of the properties of
the times series collection object and the time series objects.

• The time property of the time series collection object is set to the value of the
InitialTriggerTime property specified in the file.

• The name property of each time series object is set to the value of the Name property
of a channel in the file. If this name cannot be used as a time series object name,
daqread sets the name to 'Channel' with the HwChannel property of the channel
appended.

 daqread

1-2509

• The value of the Units property of the time series object depends on the value of the
DataFormat parameter. If the DataFormat parameter is set to 'double', daqread
sets the DataInfo property of each time series object in the collection to the value of
the Units property of the corresponding channel in the file. If the DataFormat
parameter is set to 'native', daqread sets the Units property to 'native'. See
the Data Acquisition Toolbox documentation for more information on these properties.

• Each time series object will have tsdata.event objects attached corresponding to
the log of events associated with the channel.

If daqread returns data from multiple triggers, the data from each trigger is separated
by a NaN in the time series data. This increases the length of data and time vectors in the
time series object by the number of triggers.

See Also
timeseries | tscollection

1 Alphabetical List

1-2510

daspect
Control data unit length along each axis

Syntax
daspect(ratio)
d = daspect

daspect auto
daspect manual
m = daspect('mode')

___ = daspect(ax, ___)

Description
daspect(ratio) sets the data aspect ratio for the current axes. The data aspect ratio is
the relative length of the data units along the x-axis, y-axis, and z-axis. Specify ratio as a
three-element vector of positive values that represent the relative lengths of data units
along each axis. For example, [1 2 3] indicates that the length from 0 to 1 along the x-
axis is equal to the length from 0 to 2 along the y-axis and 0 to 3 along the z-axis. For
equal data unit lengths in all directions, use [1 1 1].

d = daspect returns the data aspect ratio for the current axes.

daspect auto sets an automatic mode, enabling the axes to choose the data aspect
ratio. The mode must be automatic to enable the “stretch-to-fill on page 1-2520” feature
of the axes.

daspect manual sets a manual mode and uses the ratio stored in the
DataAspectRatio property for the Axes object. When the mode is manual, it disables
the stretch-to-fill behavior of the axes. Specifying a value for the data aspect ratio sets the
mode to manual.

 daspect

1-2511

m = daspect('mode') returns the current mode, which is either 'auto' or 'manual'.
By default, the mode is automatic unless you specify the data aspect ratio or set the mode
to manual.

___ = daspect(ax, ___) uses the axes specified by ax instead of the current axes.
Specify the axes as the first input argument for any of the previous syntaxes. Use single
quotes around the 'auto' and 'manual' inputs.

Examples

Use Equal Data Unit Lengths Along Each Axis

Plot a set of data. Use data units of equal lengths in all directions by setting the data
aspect ratio to [1 1 1].

t = linspace(0,2*pi);
x = cos(t);
y = sin(t);
plot(x,y)
daspect([1 1 1])

1 Alphabetical List

1-2512

Use Different Data Unit Lengths Along Each Axis

Plot a set of data. Set the data aspect ratio so that the length of one data unit in the x-axis
direction equals the length of two data units in the y-axis direction and z-axis direction
(not shown).

t = linspace(0,2*pi);
x = cos(t);
y = sin(t);
plot(x,y)
daspect([1 2 2])

 daspect

1-2513

When you set the data aspect ratio, the associated mode changes to manual. Query the
current data aspect ratio mode.

d = daspect('mode')

d =
'manual'

Revert Back to Default Data Aspect Ratio

Create a 3-D scatter chart of random data and set the data aspect ratio. Then revert back
to the default data aspect ratio.

1 Alphabetical List

1-2514

X = rand(100,1);
Y = rand(100,1);
Z = rand(100,1);
scatter3(X,Y,Z)
daspect([3 2 1])

daspect auto

 daspect

1-2515

Query Data Aspect Ratio

Create a surface plot and query the data aspect ratio.

[x,y] = meshgrid(-2:.2:2);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

1 Alphabetical List

1-2516

d = daspect

d = 1×3

 4 4 1

The ratio indicates that the length of four units in the x-axis direction equals four units in
the y-axis direction and one unit in the z-axis direction. For example, if the ratio is [4 4
1], then the length from 0 to 1 on the x-axis equals the length from 0 to 1 on the y-axis
and 0 to 0.25 on the z-axis.

 daspect

1-2517

Set Data Aspect Ratio for Specific Axes Object

Create a figure with two subplots and return the axes objects from the subplot function.
Set the data aspect ratio for the lower subplot by specifying ax2 as the first input
argument to the daspect function.

ax1 = subplot(2,1,1);
plot(1:10)

ax2 = subplot(2,1,2);
plot(1:10)
daspect(ax2,[1 2 1])

1 Alphabetical List

1-2518

Input Arguments
ratio — Data aspect ratio
three-element vector

Data aspect ratio, specified as a three-element vector of positive values. For example,
daspect([1 2 3]) specifies that the length of one unit along the x-axis equals the
length of two units along the y-axis and three units along the z-axis.

Specifying the data aspect ratio sets the DataAspectRatio property for the Axes object.
The DataAspectRatio property interacts with the PlotBoxAspectRatio, XLim, YLim,
and ZLim properties to control the length and scale of the x-axis, y-axis, and z-axis.

Specifying the ratio sets the DataAspectRatioMode property to 'manual' and disables
the stretch-to-fill on page 1-2520 behavior of the axes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then daspect
uses the current axes (gca).

Output Arguments
d — Current data aspect ratio values
three-element vector

Current data aspect ratio, returned as a three-element vector of values representing the
ratio of the x-axis, y-axis, and z data unit lengths.

Querying the data aspect ratio returns the DataAspectRatio property value for the
corresponding Axes object.

m — Current data aspect ratio mode
'auto' | 'manual'

 daspect

1-2519

Current data aspect ratio mode, returned as either 'auto' or 'manual'. When the mode
is automatic, MATLAB determines the appropriate data aspect ratio value. If you specify a
value, then the mode changes to manual.

Querying the data aspect ratio mode returns the DataAspectRatioMode property value
for the corresponding Axes object.

Definitions

Stretch-to-Fill
When the “stretch-to-fill” behavior is enabled, MATLAB stretches the axes to fill the
available space. The axes might not exactly match the data aspect ratio, plot box aspect
ratio, and camera-view angle values stored in its DataAspectRatio,
PlotBoxAspectRatio, and CameraViewAngle properties.

If you specify the data aspect ratio, plot box aspect ratio, or camera-view angle, then the
“stretch-to-fill” behavior is disabled. When the behavior is disabled, MATLAB makes the
axes as large as possible within the available space and strictly adheres to the property
values. There is no distortion. For more information, see “Control Axes Layout”.

Algorithms
The daspect function sets and queries several axes properties related to the data aspect
ratio.

• DataAspectRatio — Property that stores the data aspect ratio value.
• DataAspectRatioMode — Property that stores the data aspect ratio mode. When you

set the ratio, this property changes to 'manual'.

See Also
axis | pbaspect | xlim | ylim | zlim

Topics
“Control Ratio of Axis Lengths and Data Unit Lengths”

1 Alphabetical List

1-2520

“Control Axes Layout”

Introduced before R2006a

 daspect

1-2521

datacursormode
Enable, disable, and manage interactive data cursor mode

Syntax
datacursormode on
datacursormode off
datacursormode
datacursormode toggle
datacursormode(figure_handle)
dcm_obj = datacursormode(figure_handle)

Description
datacursormode on enables data cursor mode on the current figure.

datacursormode off disables data cursor mode on the current figure. Starting in
R2018b, some data cursor interactions are enabled by default, regardless of the mode. If
you want to disable these default interactions, then use the
disableDefaultInteractivity function.

datacursormode or datacursormode toggle toggles data cursor mode in the current
figure.

datacursormode(figure_handle) enables or disables data cursor mode on the
specified figure.

dcm_obj = datacursormode(figure_handle) returns the data cursor mode object
for the figure. The object enables you to customize the data cursor. For more information
on data cursor mode objects, see “Output Arguments” on page 1-2523. You cannot change
the state of data cursor mode in a call to datacursormode that returns a mode object.

A data cursor is a small black square with a white border that you interactively position
on a graph in data cursor mode. When you click a graphic object such as a line on a
graph, a data tip appears. Data tips are small text boxes or windows that float within an
axes that display data values at data cursor locations. The default style is a text box. Data

1 Alphabetical List

1-2522

tips list x-, y- and (where appropriate) z-values for one data point at a time. See
“Examples” on page 1-2526 for an illustration of these two styles.

Input Arguments
figure_handle

Optional handle of figure window

Default: The current figure

state

'', 'toggle', 'on', or 'off'

Default: 'toggle'

Output Arguments
dcm_obj

Use the object returned by datacursormode to control aspects of data cursor behavior.
You can use the set and get commands to set and query object property values. You can
customize how data cursor mode presents information by coding callback functions for
these objects.

Parameter Name/Value Pairs for Data Cursor Mode Objects
The following parameters apply to objects returned by calls to datacursormode, not to
the function itself.

DisplayStyle

datatip | window

Determines how the data cursor displays.

• datatip displays data cursor information in a small yellow text box attached to a
black square marker at a data point you interactively select.

 datacursormode

1-2523

• window displays data cursor information for the data point you interactively select in a
floating window within the figure.

Default: datatip

Enable

on | off

Specifies whether data cursor mode is currently enabled for the figure.

Default: off

Figure

handle

Handle of the figure associated with the data cursor mode object.

Interpreter

none | tex | latex

Specifies the interpretation of text characters. Use TeX markup to add superscripts and
subscripts, modify the font type and color, and include special characters in the text. For
more information, see Interpreter.

Default: tex

SnapToDataVertex

on | off

Specifies whether the data cursor snaps to the nearest data value or is located at the
actual pointer position.

Default: on

UpdateFcn

function handle

Reference to a function that formats the text appearing in the data cursor. You can supply
your own function to customize data tip display. Your function must include at least two

1 Alphabetical List

1-2524

arguments. The first argument is unused, and can be a variable name or tilde (~). The
second argument passes the data cursor event object to your update function. The event
object encapsulates the state of the data cursor. The following function definition
illustrates the update function:

function output_txt = myfunction(~,event_obj)
% ~ Currently not used (empty)
% event_obj Object containing event data structure
% output_txt Data cursor text

event_obj is an object that has the following properties.

Target Handle of the object the data cursor is referencing (the object
which you click, for example, a line or a bar from a series)

Position An array specifying the x, y (and z for 3-D graphs) coordinates
of the cursor

You can query these properties within your function. For example,

pos = get(event_obj,'Position');

returns the coordinates of the cursor. Another way of accessing that data is to obtain the
struct and query its Position field:

eventdata = get(event_obj);
pos = eventdata.Position;

You can also obtain the position directly from the object:

pos = event_obj.Position;

You can redefine the data cursor Updatefcn at run time. For example:

set(dcm_obj,'UpdateFcn',@myupdatefcn)

applies the function myupdatefcn to the current data tip or tips. When you set an update
function in this way, the function must be on the MATLAB path. If instead you select the
data cursor mode context menu item Select text update function, you can interactively
select a function that is not on the path.

Do not redefine figure window callbacks, such as ButtonDownFcn, KeyPressFcn, or
CloseRequestFcn while in data cursor mode. If you attempt to change any figure
callbacks when you are in an interactive mode, you receive a warning and the attempt
fails. MATLAB interactive modes are:

 datacursormode

1-2525

• brush
• datacursormode
• pan
• rotate3d
• zoom

This restriction does not apply to changing the figure WindowButtonMotionFcn callback
or uicontrol callbacks.

Querying Data Cursor Mode
Use the getCursorInfo function to query the data cursor mode object (dcm_obj in the
update function syntax) to obtain information about the data cursor. For example,

info_struct = getCursorInfo(dcm_obj);

returns a vector of structures, one for each data cursor on the graph. Each structure has
the following fields.

Target The handle of the graphics object containing the data point
Position An array specifying the x, y, (and z) coordinates of the cursor

Line and lineseries objects have an additional field.

DataIndex A scalar index into the data arrays that correspond to the
nearest data point. The value is the same for each array.

See “Output Arguments” on page 1-2523 for more details on data cursor mode objects.

Examples
This example creates a plot and enables data cursor mode from the command line.

surf(peaks)
datacursormode on
% Click mouse on surface to display data cursor

Selecting a point on the surface opens a data tip displaying its x-, y-, and z-coordinates.

1 Alphabetical List

1-2526

You change the data tip display style to be a window instead of a text box using the Tools
> Options > Display cursor in window , or use the context menu Display Style >
Window inside figure to view the data tip in a floating window that you can move
around inside the axes.

You can position multiple text box data tips on the same graph, the window style of data
tip displays only one value at a time.

This example enables data cursor mode on the current figure and sets data cursor mode
options. The following statements

• Create a graph
• Toggle data cursor mode to on

 datacursormode

1-2527

• Obtain the data cursor mode object, specify data tip options, and get the handle of the
line the data tip occupies:

fig = figure;
z = peaks;
plot(z(:,30:35))
dcm_obj = datacursormode(fig);
set(dcm_obj,'DisplayStyle','datatip',...
 'SnapToDataVertex','off','Enable','on')

disp('Click line to display a data tip, then press Return.')
% Wait while the user does this.
pause

c_info = getCursorInfo(dcm_obj);
% Make selected line wider
set(c_info.Target,'LineWidth',2)

1 Alphabetical List

1-2528

This example shows you how to customize the text that the data cursor displays. For
example, you can replace the text displayed in the data tip and data window (x: and y:)
with Time: and Amplitude: by creating a simple update function.

Save the following functions in your current directory or any writable directory on the
MATLAB path before running them. As they are functions, you cannot highlight them and
then evaluate the selection to make them work.

Save this code as doc_datacursormode.m:

function doc_datacursormode
% Plots graph and sets up a custom data tip update function
fig = figure;
a = -16; t = 0:60;
plot(t,sin(a*t))

 datacursormode

1-2529

dcm_obj = datacursormode(fig);
set(dcm_obj,'UpdateFcn',@myupdatefcn)

Save the following code as myupdatefcn.m on the MATLAB path:

function txt = myupdatefcn(empt,event_obj)
% Customizes text of data tips

pos = get(event_obj,'Position');
txt = {['Time: ',num2str(pos(1))],...
 ['Amplitude: ',num2str(pos(2))]};

To set up and use the update function, type:

doc_datacursormode

When you place a data tip using this update function, it looks like the one in the following
figure.

Tips
• Most types of graphs and 3-D plots support data cursor mode, but several do not

(pareto, for example).
• Polar plots support data tips, but display Cartesian rather than polar coordinates on

them.
• Histograms created with histogram display specialized data tips that itemize the

observation counts and bin edges.
• You place data tips only by clicking data objects on graphs. You cannot place them

programmatically (by executing code to position a data cursor).
• When DisplayStyle is datatip, you can place multiple data tips on a graph. When

DisplayStyle is window, it reports only the most recent data tip.

1 Alphabetical List

1-2530

• datacursormode off exits data cursor mode but does not remove displayed data
tips. However, if the DisplayStyle is window, the data tip window goes away.

Alternatives
Use the Data Cursor button in the toolbar to label x, y, and z values on graphs and
surfaces. You can control how data tips display by right-clicking and selecting items from
the context menu.

See Also
brush | pan | rotate3d | zoom

Topics
“Interactively Explore Plotted Data”
“Data Cursors with Histograms”

Introduced before R2006a

 datacursormode

1-2531

datastore
Create datastore for large collections of data

Syntax
ds = datastore(location)
ds = datastore(location,Name,Value)

Description
ds = datastore(location) creates a datastore from the collection of data specified
by location. A datastore is a repository for collections of data that are too large to fit in
memory. After creating ds, you can read and process the data.

ds = datastore(location,Name,Value) specifies additional parameters for ds
using one or more name-value pair arguments. For example, you can create a datastore
for image files by specifying 'Type','image'.

Examples

Create Datastore for Text Data

Create a datastore associated with the sample file airlinesmall.csv. This file contains
airline data from the years 1987 through 2008.

To manage the import of missing data in numeric columns, use the 'TreatAsMissing'
name-value pair argument. In this example, specifying the value 'NA' for
'TreatAsMissing', replaces every instance of 'NA' with a NaN in the imported data.
Where, NaN is the value specified in the 'MissingValue' property of the datastore.

ds = datastore('airlinesmall.csv', ...
 'TreatAsMissing','NA')

ds =
 TabularTextDatastore with properties:

1 Alphabetical List

1-2532

 Files: {
 'B:\matlab\toolbox\matlab\demos\airlinesmall.csv'
 }
 FileEncoding: 'UTF-8'
 AlternateFileSystemRoots: {}
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 DatetimeLocale: en_US

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: 'NA'
 MissingValue: NaN

 Advanced Text Format Properties:
 TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
 TextType: 'char'
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
 ReadSize: 20000 rows

datastore creates a TabularTextDatastore.

Create Datastore for Image Data

Create a datastore containing all .tif files in the MATLAB® path and its subfolders.

ds = datastore(fullfile(matlabroot, 'toolbox', 'matlab'),...
'IncludeSubfolders', true,'FileExtensions', '.tif','Type', 'image')

ds =

 datastore

1-2533

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\imagesci\corn.tif'
 }
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage

Input Arguments
location — Files or folders to include in the datastore
path | DsFileSet object

Files or folders included in the datastore, specified as a path or a DsFileSet object.

• path — Specify the path as a character vector, cell array of character vectors, string
scalar, or a string array, containing the location of files or folders that are local or
remote.

• Local files or folders — Specify location as a local path to files or folders. If the
files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the
datastore. You can use the wildcard character (*) when specifying the local path.
This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify location to be the full paths of the files or
folders as an internationalized resource identifier (IRI) of the form hdfs:///
path_to_file. For more information, see “Work with Remote Data”.

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats
and ignores any other format. To specify a custom list of file extensions to include in your
datastore, see the FileExtensions property.

For KeyValueDatastore, the files must be MAT-files or Sequence files generated by the
mapreduce function. MAT-files must be in a local file system or in a network file system.

1 Alphabetical List

1-2534

Sequence files can be in a local, network, or HDFS™ file system. For
DatabaseDatastore, the location argument need not be files. For more information, see
DatabaseDatastore.
Example: 'file1.csv'
Example: '../dir/data/file1.jpg'
Example: {'C:\dir\data\file1.xls','C:\dir\data\file2.xlsx'}
Example: 'C:\dir\data*.mat'
Example: 'hdfs:///data/file1.txt'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FileExtensions',{'.jpg','.tif'} includes all extensions with a .jpg
or .tif extension for an ImageDatastore object.

Type — Type of datastore
'tabulartext' | 'image' | 'spreadsheet' | 'keyvalue' | 'file' | 'tall' | ...

Type of datastore, specified as the comma-separated pair consisting of 'Type' and one of
the following:

Value of 'Type' Description
'tabulartext' Text files containing tabular data. The

encoding of the data must be ASCII or
UTF-8.

'image' Image files in a format such as JPEG or
PNG. Acceptable files include imformats
formats.

'spreadsheet' Spreadsheet files containing one or more
sheets.

 datastore

1-2535

Value of 'Type' Description
'keyvalue' Key-value pair data contained in MAT-files

or Sequence files with data generated by
mapreduce.

'file' Custom format files, which require a
specified read function to read the data. For
more information, see FileDatastore.

'tall' MAT-files or Sequence files produced by the
write function of the tall data type. For
more information see, TallDatastore.

'parquet' Parquet files containing column-oriented
data. For more information see,
ParquetDatastore.

'database' Data stored in database. Requires Database
Toolbox™. Requires specification of
additional input argument when using the
type parameter. For more information, see
DatabaseDatastore.

• If there are multiple types that support the format of the files, then use the 'Type'
argument to specify a datastore type.

• If you do not specify a value for 'Type', then datastore automatically determines
the appropriate type of datastore to create based on the extensions of the files.

Data Types: char | string

IncludeSubfolders — Include subfolders within folder
true or false | 0 or 1

Include subfolders within a folder, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true (1) or false (0). Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

When you do not specify 'IncludeSubfolders', then the default value is false.

The 'IncludeSubfolders' name-value pair is only valid when creating these objects:

• TabularTextDatastore

1 Alphabetical List

1-2536

• ImageDatastore
• SpreadsheetDatastore
• FileDatastore
• KeyValueDatastore

Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Extensions of files
character vector | cell array of character vectors | string scalar | string array

Extensions of files, specified as the comma-separated pair consisting of
'FileExtensions' and a character vector, cell array of character vectors, string scalar,
or string array. When specifying 'FileExtensions', also specify 'Type'. You can use
the empty quotes '' to represent files without extensions.

If 'FileExtensions' is not specified, then datastore automatically includes all
supported file extensions depending on the datastore type. If you want to include
unsupported extensions, then specify each extension you want to include individually.

• For TabularTextDatastore objects, supported extensions
include .txt, .csv, .dat, .dlm, .asc, .text, and no extension.

• For ImageDatastore objects, supported extensions include all imformats
extensions.

• For SpreadsheetDatastore objects, supported extensions
include .xls, .xlsx, .xlsm, .xltx, and .xltm.

• For TallDatastore objects, supported extensions include .mat and .seq.

The 'FileExtensions' name-value pair is only valid when creating these objects:

• TabularTextDatastore
• ImageDatastore
• SpreadsheetDatastore
• FileDatastore
• KeyValueDatastore

Example: 'FileExtensions','.jpg'
Example: 'FileExtensions',{'.txt','.text'}

 datastore

1-2537

Data Types: char | cell | string

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server™, and the data is stored on your local machines with a copy of
the data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

1 Alphabetical List

1-2538

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

TextType — Output data type of text variables
'char' (default) | 'string'

Output data type of text variables, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'. If the output table from the read,
readall, or preview functions contains text variables, then 'TextType' specifies the
data type of those variables for TabularTextDatastore and SpreadsheetDatastore
objects only. If 'TextType' is 'char', then the output is a cell array of character
vectors. If 'TextType' is 'string', then the output has type string.
Data Types: char | string

DatetimeType — Type for imported date and time data
'datetime' (default) | 'text'

Type for imported date and time data, specified as the comma-separated pair consisting
of 'DatetimeType' and one of these values: 'datetime' or 'text'. The
'DatetimeType' argument only applies when creating a TabularTextDatastore
object.

Value Type for Imported Date and Time Data
'datetime' MATLAB datetime data type

For more information, see datetime.
'text' If 'DatetimeType' is specified as 'text', then the type

for imported date and time data depends on the value
specified in the 'TextType' parameter:

• If 'TextType' is 'char', then the datastore returns
dates as a cell array of character vectors.

• If 'TextType' is 'string', then the datastore
returns dates as an array of strings.

Example: 'DatetimeType','datetime'
Data Types: char | string

 datastore

1-2539

DurationType — Output data type of duration data
'duration' (default) | 'text'

Output data type of duration data from text files, specified as the comma-separated pair
consisting of 'DurationType' and either 'duration' or 'text'.

Value Type for Imported Duration Data
'duration' MATLAB duration data type

For more information, see duration.
'text' If 'DurationType' is specified as 'text', then the type

for imported duration data depends on the value specified
in the 'TextType' parameter:

• If 'TextType' is 'char', then the importing function
returns duration data as a cell array of character
vectors.

• If 'TextType' is 'string', then the importing
function returns duration data as an array of strings.

Data Types: char | string

In addition to these name-value pairs, you also can specify any of the properties of the
following objects as name-value pairs, except for the Files property:

• TabularTextDatastore
• ImageDatastore
• SpreadsheetDatastore
• KeyValueDatastore
• TallDatastore
• DatabaseDatastore

Output Arguments
ds — Datastore for collection of data
TabularTextDatastore | ImageDatastore | SpreadsheetDatastore |
KeyValueDatastore | FileDatastore | TallDatastore | ...

1 Alphabetical List

1-2540

Datastore for a collection of data, returned as one of these objects:
TabularTextDatastore, ImageDatastore, SpreadsheetDatastore,
KeyValueDatastore, FileDatastore, TallDatastore, ParquetDatastore, or
DatabaseDatastore. The type of the datastore depends on the type of files or the
location argument. For more information, click the datastore name in the following
table:

Type Output
Text files TabularTextDatastore
Image files ImageDatastore
Spreadsheet files SpreadsheetDatastore
MAT-files or Sequence files
produced by mapreduce

KeyValueDatastore

Custom format files FileDatastore
MAT-files or Sequence files
produced by the write
function of the tall data
type.

TallDatastore

Parquet Files ParquetDatastore
Database DatabaseDatastore

For each of these datastore types, the Files property is a cell array of character vectors.
Each character vector is an absolute path to a file resolved by the location argument.

See Also
fileDatastore | imageDatastore | imformats | javaaddpath | mapreduce |
parquetDatastore | spreadsheetDatastore | tabularTextDatastore | tall

Topics
“Getting Started with Datastore”
“Work with Remote Data”
“Set Up Datastore for Processing on Different Machines or Clusters”

 datastore

1-2541

Introduced in R2014b

1 Alphabetical List

1-2542

combine
Package: matlab.io

Combine data from multiple datastores

Syntax
dsnew = combine(ds1,ds2,...,dsN)

Description
dsnew = combine(ds1,ds2,...,dsN) combines two or more datastores by
horizontally concatenating the data returned by the read function on the input
datastores.

Examples

Combine Datastores

Create a datastore that maintains parity between the pair of images of the underlying
datastores. For instance, create two separate image datastores, and then create a
combined datastore representing the two underlying datastores.

Create a datastore imds1 representing a collection of three images.

imds1 = imageDatastore({'street1.jpg','street2.jpg','peppers.png'});

Create a second datastore imds2 by transforming the images of imds1 to grayscale
images.

imds2 = transform(imds1,@(x) rgb2gray(x));

Create a combined datastore from imds1 and imds2.

imdsCombined = combine(imds1,imds2);

 combine

1-2543

Read the first pair of images from the combined datastore. Each read operation on this
combined datastore returns a pair of images represented by a 1-by-2 cell array.

dataOut = read(imdsCombined)

dataOut = 1x2 cell array
 {480x640x3 uint8} {480x640 uint8}

Display the output of the first read from the combined datastore.

imshow(imtile(dataOut));

Input Arguments
ds1,ds2,...,dsN — Datastores to combine
datastore objects

Datastores to combine, specified as two or more comma separated datastore objects. For
a complete list of built-in datastores, see “Select Datastore for File Format or
Application”. You can also specify custom datastores.

1 Alphabetical List

1-2544

Output Arguments
dsnew — New datastore with combined data
CombinedDatastore object

New datastore with combined data, returned as a CombinedDatastore object.

The dsnew object is a new datastore instance that is the horizontally concatenated result
of a read operation on each of the underlying datastores.

See Also
CombinedDatastore | hasdata | preview | read | readall | reset | transform

Topics
“Select Datastore for File Format or Application”

Introduced in R2019a

 combine

1-2545

CombinedDatastore
Datastore to combine data read from multiple underlying datastores

Description
Use a CombinedDatastore object to combine the data read from multiple other
datastores.

A CombinedDatastore maintains parity between the underlying datastores, so that data
is read from corresponding parts of the underlying datastores. Resetting the
CombinedDatastore resets all of the underlying datastores.

Creation
You can create a CombinedDatastore object using the combine function. For example,
dsnew = combine(ds1,ds2) creates a datastore that combines the read data from
datastores ds1 and ds2.

Properties
UnderlyingDatastores — Underlying datastores
cell array

Underlying datastores, specified as a cell array of datastore objects.
Data Types: cell

Object Functions
combine Combine data from multiple datastores
hasdata Determine if data is available to read
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore

1 Alphabetical List

1-2546

reset Reset datastore to initial state
transform Transform datastore

Examples

Combine Datastores

Create a datastore that maintains parity between the pair of images of the underlying
datastores. For instance, create two separate image datastores, and then create a
combined datastore representing the two underlying datastores.

Create a datastore imds1 representing a collection of three images.

imds1 = imageDatastore({'street1.jpg','street2.jpg','peppers.png'});

Create a second datastore imds2 by transforming the images of imds1 to grayscale
images.

imds2 = transform(imds1,@(x) rgb2gray(x));

Create a combined datastore from imds1 and imds2.

imdsCombined = combine(imds1,imds2);

Read the first pair of images from the combined datastore. Each read operation on this
combined datastore returns a pair of images represented by a 1-by-2 cell array.

dataOut = read(imdsCombined)

dataOut = 1x2 cell array
 {480x640x3 uint8} {480x640 uint8}

Display the output of the first read from the combined datastore.

imshow(imtile(dataOut));

 CombinedDatastore

1-2547

See Also
datastore

Topics
“Getting Started with Datastore”

Introduced in R2019a

1 Alphabetical List

1-2548

counteachlabel
Package: matlab.io.datastore

Count files in ImageDatastore labels

Syntax
T = countEachLabel(imds)

Description
T = countEachLabel(imds) returns a summary table of the labels in imds and the
number of files associated with each.

Examples

Label Count

Create an ImageDatastore object and label each image according to the folder it is in.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),...
'LabelSource', 'foldernames', 'FileExtensions', {'.jpg', '.png', '.tif'})

imds =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg'
 ... and 5 more
 }
 Labels: [demos; demos; demos ... and 5 more categorical]

 counteachlabel

1-2549

 ReadFcn: @readDatastoreImage

List the file count for each label.

T = countEachLabel(imds)

T =

 Label Count
 ________ _____

 demos 6
 imagesci 2

Input Arguments
imds — Input datastore
ImageDatastore object

Input datstore, specified as an ImageDatastore object. To create an ImageDatstore
from your image data, use the imageDatastore function.

Output Arguments
T — Table of label counts
two-column table

Table of label counts, returned as a two-column table containing the name of each label in
imds and the number of files associated with each label.
Data Types: table

See Also
ImageDatastore | datastore | splitEachLabel

1 Alphabetical List

1-2550

Introduced in R2016a

 counteachlabel

1-2551

fileDatastore
Datastore with custom file reader

Description
Use a FileDatastore object to manage large collections of custom format files where
the collection does not necessarily fit in memory or when a large custom format file does
not fit in memory. You can create a FileDatastore object using the fileDatastore
function, specify its properties, and then import and process the data using object
functions.

Creation

Syntax
fds = fileDatastore(location,'ReadFcn',@fcn)
fds = fileDatastore(location,'ReadFcn',@fcn,Name,Value)

Description
fds = fileDatastore(location,'ReadFcn',@fcn) creates a datastore from the
collection of files specified by location and uses the function fcn to read the data from
the files.

fds = fileDatastore(location,'ReadFcn',@fcn,Name,Value) specifies
additional parameters and properties for fds using one or more name-value pair
arguments. For example, you can specify which files to include in the datastore depending
on their extensions with
fileDatastore(location,'ReadFcn',@customreader,'FileExtensions',
{'.exts','.extx'}).

1 Alphabetical List

1-2552

Input Arguments
location — Files or folders to include in datastore
path | DsFileSet object

Files or folders included in the datastore, specified as a path or a DsFileSet object.

• path — Specify the path as a character vector, cell array of character vectors, string
scalar, or a string array, containing the location of files or folders that are local or
remote.

• Local files or folders — Specify location as a local path to files or folders. If the
files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the
datastore. You can use the wildcard character (*) when specifying the local path.
This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify location to be the full paths of the files or
folders as an internationalized resource identifier (IRI) of the form hdfs:///
path_to_file. For more information, see “Work with Remote Data”.

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats
and ignores any other format. To specify a custom list of file extensions to include in your
datastore, see the FileExtensions property.
Example: 'file1.ext'
Example: '../dir/data/file1.ext'
Example: {'C:\dir\data\file1.exts','C:\dir\data\file2.extx'}
Example: 'C:\dir\data*.ext'

@fcn — Function that reads file data
function handle

Function that reads the file data, specified as a function handle.

The signature of the function represented by the function handle @fcn depends on the
value of the specified ReadMode. The function that reads the file data must confirm to one
of these signatures.

 fileDatastore

1-2553

ReadMode ReadFcn signature
'file' (default) The function must have this signature:

function data = MyReadFcn(filename)
...
end

filename — Name of file to read.

data — Corresponding file data.
'partialfile' The function must have this signature:

function [data,userdata,done] = MyReadFcn(filename,userdata)
...
end

userdata — Set and read fields of userdata to persist data
between multiple FileDatastore read calls.

done — Set this logical argument to either true or false.

• false — Continue to read the current file.
• true — Terminate current file read and read the next file.

data — Portion of file data.

1 Alphabetical List

1-2554

ReadMode ReadFcn signature
'byte' The function must have this signature:

function data = MyReadFcn(filename,offset,size)
...
end

offset — Specify the byte offset from the first byte in the
file.

size — Specify the number of bytes to read during the
current read operation.

data — Portion of file data of the size specified in
BlockSize.

The FileDatastore increments both the offset and size
inputs based on the value specified in BlockSize.

The value specified in @fcn, sets the value of the ReadFcn property.
Example: @customreader
Data Types: function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: fds = fileDatastore('C:\dir\data','FileExtensions',
{'.exts','.extx'})

IncludeSubfolders — Subfolder inclusion flag
true or false | 0 or 1

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true, false, 0, or 1. Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

If you do not specify 'IncludeSubfolders', then the default value is false.

 fileDatastore

1-2555

Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Custom format file extensions
character vector | cell array of character vectors | string scalar | string array

Custom format file extensions, specified as the comma-separated pair consisting of
'FileExtensions' and a character vector, cell array of character vectors, string scalar,
or string array.

When you specify a file extension, the fileDatastore function creates a datastore
object only for files with the specified extension. You can also create a datastore for files
without any extensions by specifying 'FileExtensions' as an empty character vector,
''. If you do not specify 'FileExtensions', then fileDatastore automatically
includes all files within a folder.
Example: 'FileExtensions',''
Example: 'FileExtensions','.ext'
Example: 'FileExtensions',{'.exts','.extx'}
Data Types: char | cell | string

PreviewFcn — Function to preview input data
@ReadFcn (default) | function handle

Function to preview the input data, specified as a function handle.

If you do not specify a preview function, FileDatastore uses the value specified in
@ReadFcn as the default preview function. Alternatively, you can specify your own custom
preview function for your data.

• @ReadFcn (default) — Use ReadFcn to sample FileDatastore data. This option can
lead to slower performance for tall construction.

• Function handle — Use your custom preview function for FileDatastore and
tall construction to sample the input data. Use PreviewFcn to provide a function
that reads only the minimum needed part of input data for preview and tall
construction.

The function specified by PreviewFcn must return values with the same data types that
the ReadFcn returns.

1 Alphabetical List

1-2556

Data Types: function_handle

ReadMode — Portion of the file to read
'file' (default) | 'partialfile' | 'bytes'

Portion of the file to read, specified as 'file', 'partialfile', or 'bytes'.

'file' (default) Use read mode 'file' when your custom function,
specified in ReadFcn, reads the complete file in one
read operation.

Based on your custom read function, the file
datastore reads the complete file with each call to
read. The unit of parallelization to is a complete file.

'partialfile' Use read mode 'partialfile' when your custom
file read function, specified in ReadFcn, reads only a
portion of the file with each read operation.

Based on your custom read function, the file
datastore reads only a portion of the file with every
call to the read function.

In the 'partialfile' read mode, the unit of
parallelization is a complete file. Multiple read
operations, in serial, are necessary to read a
complete file.

'bytes' Use read mode 'bytes' when your custom function,
specified in ReadFcn, reads a BlockSize sized
portion of the file with each read operation.

FileDatastore sets the unit of parallelization to a
block of the file containing the number of bytes
specified by BlockSize.

Based on your custom read function, the file
datastore reads BlockSize sized portions of a file
with every call to the read function. Multiple read
operations in parallel are necessary to read a
complete file.

Data Types: char | string

 fileDatastore

1-2557

BlockSize — Number of bytes to read
positive integer

Number of bytes to read with every read operation, specified as a positive integer.

To ensure that you can distribute multiple blocks of a file across multiple parallel
MATLAB workers, specify BlockSize as a positive integer greater than 131072 bytes
(128 kilobytes).

To specify or to change the value of BlockSize, you must first set ReadMode to
'bytes'. FileDatastore sets the default value of BlockSize based on the value
specified in ReadMode.

• If ReadMode is 'file' or 'partialfile', then FileDatastore sets the default
BlockSize to inf.

• If ReadMode is 'bytes', then FileDatastore sets the default BlockSize to 128
megabytes.

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

1 Alphabetical List

1-2558

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

Properties
FileDatastore properties describe the files associated with a FileDatastore object.
Except for the Files property, you can specify the value of FileDatastore properties
using name-value pair arguments. To view or modify a property after creating the object,
use the dot notation.

Files — Files included in datastore
character vector | cell array of character vectors | string scalar | string array

Files included in the datastore, resolved as a character vector, cell array of character
vectors, string scalar, or string array, where each character vector or string is a full path
to a file. The location argument in the fileDatastore and datastore functions
defines Files when the datastore is created.
Example: {'C:\dir\data\file1.ext';'C:\dir\data\file2.ext'}
Example: 'hdfs:///data/*.mat'

 fileDatastore

1-2559

Data Types: char | cell | string

ReadFcn — Function that reads file data
function handle

Function that reads the file data, specified as a function handle.

The value specified by @fcn, sets the value of the ReadFcn property.
Example: @MyCustomFileReader
Data Types: function_handle

UniformRead — Vertically concatenateable flag
false (default) | true

This property is read-only.

Vertically concatenateable flag, specified as a logical true or false. Specify the value of
this property when you first create the FileDatastore object.

true Multiple reads of the FileDatastore object return
uniform data that is vertically concatenateable.

When the UniformRead property value is true:

• The ReadFcn function must return data that is
vertically concatenateable ; otherwise, the
readall method returns an error.

• The underlying data type of the output of the
tall function is the same as the data type of the
output from ReadFcn.

false (default) Multiple reads of the FileDatastore object do not
return uniform data that is vertically
concatenateable.

When the UniformRead property value is false:

• readall returns a cell array.
• tall returns a tall cell array.

Example: fds =
fileDatastore(location,'ReadFcn',@load,'UniformRead',true)

1 Alphabetical List

1-2560

Data Types: logical | double

Object Functions
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state
transform Transform datastore
combine Combine data from multiple datastores

Examples

Create FileDatastore Object

Create a datastore for the files in the MATLAB® demos folder that have a .mat
extension.

fds = fileDatastore(fullfile(matlabroot,'toolbox','matlab','demos'),'ReadFcn',@load,'FileExtensions','.mat')

fds =

 FileDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\accidents.mat';
 ' ...\matlab\toolbox\matlab\demos\airfoil.mat';
 ' ...\matlab\toolbox\matlab\demos\airlineResults.mat'
 ... and 37 more
 }
 UniformRead: 0
 ReadFcn: @load
 AlternateFileSystemRoots: {}

 fileDatastore

1-2561

Read Datastore of MAT-Files

Create a datastore containing all the .mat files within the MATLAB® demos folder,
specifying the load function to read the file data.

fds = fileDatastore(fullfile(matlabroot,'toolbox','matlab','demos'),'ReadFcn',@load,'FileExtensions','.mat')

fds =

 FileDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\accidents.mat';
 ' ...\matlab\toolbox\matlab\demos\airfoil.mat';
 ' ...\matlab\toolbox\matlab\demos\airlineResults.mat'
 ... and 37 more
 }
 UniformRead: 0
 ReadFcn: @load
 AlternateFileSystemRoots: {}

Read the first file in the datastore, and then read the second file.

data1 = read(fds);
data2 = read(fds);

Read all files in the datastore simultaneously.

readall(fds);

Initialize a cell array to hold the data and counter i.

dataarray = cell(numel(fds.Files), 1);
i = 1;

Reset the datastore to the first file and read the files one at a time until there is no data
left. Assign the data to the array dataarray.

reset(fds);
while hasdata(fds)
 dataarray{i} = read(fds);

1 Alphabetical List

1-2562

 i = i+1;
end

Read One Array at a Time From Large MAT-File

You can create a datastore to read from a large MAT-file that does not necessarily fit in
memory. Assuming that each array in the large MAT-file fits in the available memory,
create a datastore to read and process the data in three steps:

1 Write a custom reading function that reads one array at a time from a MAT-file.
2 Set up the parameters of the datastore function to perform partial reads.
3 Read one array at a time from the MAT-file.

Write a custom function that reads one array at time from MAT-file. The function must
have a signature as described in the @ReadFcn argument of FileDatastore. Save this
file in your working folder or in a folder that is on the MATLAB path. For this example, a
custom function load_variable is included here.

type load_variable.m

function [data,variables,done] = load_variable(filename,variables)

 % If variable list is empty,
 % create list of variables from the file
 if isempty(variables)
 variables = who('-file', filename);
 end

 % Load a variable from the list of variables
 data = load(filename, variables{1});

 % Remove the newly-read variable from the list
 variables(1) = [];

 % Move on to the next file if this file is done reading.
 done = isempty(variables);

end

Create and setup a FileDatastore containing accidents.mat. Specify the datastore
parameters to use 'partialfile' as the read mode and load_variable as the custom
reading fuction.

 fileDatastore

1-2563

fds = fileDatastore('accidents.mat','ReadMode','partialfile','ReadFcn',@load_variable);

Read the first three variables from the file using the datastore. The file accidents.mat
contains nine variables and every call to read returns one variable. Therefore, to get the
first three variables, call the read function three times.

data = read(fds)

data = struct with fields:
 datasources: {3x1 cell}

data = read(fds)

data = struct with fields:
 hwycols: 17

data = read(fds)

data = struct with fields:
 hwydata: [51x17 double]

Note that the sample file accidents.mat is small and fits in memory, but you can expect
similar results for large MAT-files that do not fit in memory.

Alternatives
You also can create a FileDatastore object using the datastore function. For
example, ds = datastore(location,'Type','file','ReadFcn',@fcn) creates a
datastore from a collection of files specified by location.

See Also
datastore | mapreduce | tall

Topics
“Getting Started with Datastore”
“Work with Remote Data”

1 Alphabetical List

1-2564

“Develop Custom Datastore”
“Set Up Datastore for Processing on Different Machines or Clusters”

Introduced in R2016a

 fileDatastore

1-2565

hasdata
Package: matlab.io

Determine if data is available to read

Syntax
tf = hasdata(ds)

Description
tf = hasdata(ds) returns logical 1 (true) if there is data available to read from the
datastore specified by ds. Otherwise, it returns logical 0 (false).

Examples

Determine if Data is Available to Read

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

While there is data available in the datastore, read the data.

while hasdata(ds)
 T = read(ds);
end

Input Arguments
ds — Input datastore
datastore

1 Alphabetical List

1-2566

Input datastore. You can use these datastores as input to the hasdata method.

• MATLAB datastores — Datastores created using MATLAB datastore functions. For
example, create a datastore for a collection of images using ImageDatastore. For a
complete list of datastores, see “Select Datastore for File Format or Application”.

• Combined or transformed datastores — Datastores created using the combine and
transform functions.

• Custom datastores — Datastores created using the custom datastore framework. See
“Develop Custom Datastore”.

See Also
datastore

Introduced in R2014b

 hasdata

1-2567

imageDatastore
Datastore for image data

Description
Use an ImageDatastore object to manage a collection of image files, where each
individual image fits in memory, but the entire collection of images does not necessarily
fit. You can create an ImageDatastore object using the imageDatastore function,
specify its properties, and then import and process the data using object functions.

Creation

Syntax
imds = imageDatastore(location)
imds = imageDatastore(location,Name,Value)

Description
imds = imageDatastore(location) creates a datastore imds from the collection of
image data specified by location.

imds = imageDatastore(location,Name,Value) specifies additional parameters
and properties for imds using one or more name-value pair arguments.

Input Arguments
location — Files or folders to include in datastore
path | DsFileSet object

Files or folders included in the datastore, specified as a path or a DsFileSet object.

1 Alphabetical List

1-2568

• path — Specify the path as a character vector, cell array of character vectors, string
scalar, or a string array, containing the location of files or folders that are local or
remote.

• Local files or folders — Specify location as a local path to files or folders. If the
files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the
datastore. You can use the wildcard character (*) when specifying the local path.
This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify location to be the full paths of the files or
folders as an internationalized resource identifier (IRI) of the form hdfs:///
path_to_file. For more information, see “Work with Remote Data”.

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats
and ignores any other format. To specify a custom list of file extensions to include in your
datastore, see the FileExtensions property.

The imageDatastore function supports files have an imformats format.
Example: 'file1.jpg'
Example: '../dir/data/file1.png'
Example: {'C:\dir\data\file1.tif','C:\dir\data\file2.tif'}
Example: 'C:\dir\data*.jpg'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imds = imageDatastore('C:\dir\imagedata','FileExtensions',
{'.jpg','.tif'})

IncludeSubfolders — Subfolder inclusion flag
false (default) | true

 imageDatastore

1-2569

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true or false. Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

If you do not specify 'IncludeSubfolders', then the default value is false.
Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Image file extensions
character vector | cell array of character vectors | string scalar | string array

Image file extensions, specified as the comma-separated pair consisting of
'FileExtensions' and a character vector, cell array of character vectors, string scalar,
or string array. The specified extensions do not require an imformats format, and you
can use the empty quotes '' to represent files without extensions. If you do not specify
'FileExtensions', then imageDatastore automatically includes all images with
imformats extensions in the specified path. If you want to include extensions that
imformats does not recognize, then specify all extensions.
Example: 'FileExtensions','.jpg'
Example: 'FileExtensions',{'.jpg','.png'}
Data Types: char | cell | string

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

1 Alphabetical List

1-2570

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

LabelSource — Source providing label data
'none' (default) | 'foldernames'

Source providing label data, specified as the comma-separated pair consisting of
'LabelSource' and 'none' or 'foldernames'. If 'none' is specified, then the
Labels property is empty. If 'foldernames' is specified, then labels are assigned
according to the folder names and stored in the Labels property. You can later modify
the labels by accessing the Labels property directly.
Data Types: char | string

In addition to these name-value pairs, you also can specify any of the properties on this
page as name-value pairs, except for the Files property.

 imageDatastore

1-2571

Properties
ImageDatastore properties describe the data and specify how to read the data from the
datastore. You can specify the value of ImageDatastore properties using name-value
pair arguments when you create the datastore object. To view or modify a property after
creating the object, use the dot notation.

For example, you can create an ImageDatastore object and specify the 'ReadFcn'
parameter:

imds = imageDatastore('peppers.png','ReadFcn',@customreader);

Alternatively, you can assign 'ReadFcn' to @customreader after you create the
ImageDatastore:

imds = imageDatastore('peppers.png');
imds.ReadFcn = @customreader;

Files — Files included in datastore
character vector | cell array of character vectors | string scalar | string array

Files included in the datastore, resolved as a character vector, cell array of character
vectors, string scalar, or string array. Each character vector or string is a full path to a
file. The location argument in the imageDatastore and datastore functions defines
Files when the datastore is created.
Example: {'C:\dir\data\file1.jpg';'C:\dir\data\file2.jpg'}
Data Types: char | cell | string

ReadSize — Number of image files to read
1 (default) | positive integer scalar

Number of image files to read in a call to the read function, specified as a positive
integer scalar. Each call to the read function reads at most ReadSize images.

Labels — File labels
categorical, logical, or numeric vector | cell array | string array

File labels for the files in the datastore, specified as a vector, a cell array, or a string array.
The order of the labels in the array corresponds to the order of the associated files in the
datastore. If you specify 'LabelSource','foldernames' when creating the
ImageDatastore object, then the label name for a file is the name of the folder

1 Alphabetical List

1-2572

containing it. If you do not specify 'LabelSource','foldernames', then Labels is an
empty cell array or string array. If you change the Files property after the datastore is
created, then the Labels property is not automatically updated to incorporate the added
files.
Data Types: categorical | cell | logical | double | single | string

ReadFcn — Function that reads image data
@readDatastoreImage (default) | function handle

Function that reads image data, specified as a function handle. The function must take an
image file name as input, and then it outputs the corresponding image data. For example,
if customreader is the specified function to read the image data, then it must have a
signature similar to this:

function data = customreader(filename)
...
end

If more than one output argument exists, then imageDatastore uses only the first
argument and ignores the rest.

Note Using ReadFcn to transform or pre-process 2-D images is not recommended. For
file formats recognized by imformats, specifying ReadFcn slows down the performance
of imageDatastore. For more efficient ways to transform and pre-process images, see
“Preprocess Images for Deep Learning” (Deep Learning Toolbox).

Example: @customreader
Data Types: function_handle

Object Functions
countEachLabel Count files in ImageDatastore labels
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore

 imageDatastore

1-2573

readimage Read specified image from datastore
reset Reset datastore to initial state
shuffle Shuffle files in ImageDatastore
splitEachLabel Split ImageDatastore labels by proportions
subset Create subset of datastore or file-set
transform Transform datastore
combine Combine data from multiple datastores

Examples

Create ImageDatastore Object

Create an ImageDatastore object associated with all .tif files in the MATLAB® path
and its subfolders. Use the folder names as label names.

imds = imageDatastore(fullfile(matlabroot,'toolbox','matlab'),...
'IncludeSubfolders',true,'FileExtensions','.tif','LabelSource','foldernames')

imds =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\imagesci\corn.tif'
 }
 Labels: [demos; imagesci]
 ReadSize: 1
 ReadFcn: @readDatastoreImage

Specify Images to Read

Create an ImageDatastore object containing four images, and preview the first image.

imds = imageDatastore({'street1.jpg','street2.jpg','peppers.png','corn.tif'})

imds =

1 Alphabetical List

1-2574

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street1.jpg';
 ' ...\matlab\toolbox\matlab\demos\street2.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\peppers.png'
 ... and 1 more
 }
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage

imshow(preview(imds));

 imageDatastore

1-2575

Read only the second and third images, one at a time.

for i = 2:3
 img = readimage(imds,i);
end

Read all four images and view the third image.

imgs = readall(imds);
imshow(imgs{3})

1 Alphabetical List

1-2576

Limitations
• Using ReadFcn to transform or pre-process 2-D images is not recommended. For file

formats recognized by imformats, specifying ReadFcn slows down the performance
of imageDatastore. For more efficient ways to transform and pre-process images,
see “Preprocess Images for Deep Learning” (Deep Learning Toolbox).

 imageDatastore

1-2577

Alternatives
You also can create an ImageDatastore object using the datastore function. For
example, ds = datastore(location,'Type','image') creates a datastore from a
collection of files specified by location.

See Also
datastore | imformats | mapreduce | tall

Topics
“Read and Analyze Image Files”
“Getting Started with Datastore”
“Work with Remote Data”
“Set Up Datastore for Processing on Different Machines or Clusters”

Introduced in R2015b

1 Alphabetical List

1-2578

KeyValueDatastore
Datastore for key-value pair data for use with mapreduce

Description
KeyValueDatastore objects are associated with files containing key-value pair data that
are outputs of or inputs to mapreduce. Use the KeyValueDatastore properties to
specify how you want to access the data. Use dot notation to view or modify a particular
property of a KeyValueDatastore object:

ds = datastore('mapredout.mat');
ds.ReadSize = 20;

You also can specify the value of KeyValueDatastore properties using name-value pair
arguments when you create a datastore using the datastore function:

ds = datastore('mapredout.mat','ReadSize',20);

Creation
Create KeyValueDatastore objects using the datastore function.

Properties
Files — Files included in datastore
cell array of character vectors | string array

Files included in the datastore, specified as an n-by-1 cell array of character vectors or
string array, where each character vector or string is a full path to a file. These are the
files defined by the location argument to the datastore function. The location
argument contains full paths to files on a local file system, a network file system, or a
supported remote location such as Amazon S3™, Windows Azure® Blob Storage, and
HDFS. For more information, see “Work with Remote Data”.

 KeyValueDatastore

1-2579

The files must be either MAT-files or Sequence files generated by the mapreduce
function.
Example: {'C:\dir\data\file1.mat';'C:\dir\data\file2.mat'}
Example: {'s3://bucketname/path_to_files/your_file01.mat';'s3://
bucketname/path_to_files/your_file02.mat'}

Data Types: cell | string

FileType — File type
'mat' (default) | 'seq'

File type, specified as either 'mat' for MAT-files or 'seq' for sequence files. By default,
the output of mapreduce running against Hadoop® is a datastore containing sequence
files. By default, the output of all other mapreduce operations is a datastore containing
MAT-files.
Data Types: cell | string

ReadSize — Maximum number of key-value pairs to read
1 (default) | positive integer

Maximum number of key-value pairs to read in a call to the read or preview functions,
specified as a positive integer.

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]
• To associate multiple sets of root paths that are equivalent for the datastore, specify

'AlternateFileSystemRoots' as a cell array containing multiple rows where each

1 Alphabetical List

1-2580

row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

Object Functions
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state
transform Transform datastore
combine Combine data from multiple datastores

 KeyValueDatastore

1-2581

Examples

Set Number of Key-Value Pairs to Read

Create a datastore from the sample file, mapredout.mat, which is an output file of the
mapreduce function.

ds = datastore('mapredout.mat')

ds =

 KeyValueDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\mapredout.mat'
 }
 ReadSize: 1 key-value pairs
 FileType: 'mat'

Set the ReadSize property to 8 so that each call to read reads at most 8 key-value pairs.

ds.ReadSize = 8

ds =

 KeyValueDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\mapredout.mat'
 }
 ReadSize: 8 key-value pairs
 FileType: 'mat'

Read 8 key-value pairs at a time using the read function in a while loop. The loop
executes until there is no more data available to read and hasdata(ds) returns false.

while hasdata(ds)
 T = read(ds);
end

1 Alphabetical List

1-2582

Show the last set of key-value pairs read.

T

T =

 Key Value
 ____ ______

 'OO' [3090]
 'TZ' [216]
 'XE' [2357]
 '9E' [521]
 'YV' [849]

See Also
datastore | mapreduce

Topics
“Read and Analyze MAT-File with Key-Value Data”
“Read and Analyze Hadoop Sequence File”
“Process Large Set of Images Using MapReduce Framework and Hadoop” (Image
Processing Toolbox)
“Set Up Datastore for Processing on Different Machines or Clusters”

Introduced in R2014b

 KeyValueDatastore

1-2583

numpartitions
Package: matlab.io.datastore

Number of datastore partitions

Syntax
n = numpartitions(ds)
n = numpartitions(ds,pool)

Description
n = numpartitions(ds) returns the default number of partitions for datastore ds.

n = numpartitions(ds,pool) returns a number of partitions to parallelize datastore
access over the parallel pool specified by pool. To parallelize datastore access, you must
have Parallel Computing Toolbox installed.

Examples

Number of Partitions

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Get the default number of partitions.

n = numpartitions(ds)

n = 1

By default, there is only one partition in ds because it contains only one small file.

1 Alphabetical List

1-2584

Partition the datastore and return the datastore corresponding to the first part.

subds = partition(ds,n,1);

Read the data in subds.

while hasdata(subds)
 data = read(subds);
end

Number of Partitions for Parallel Datastore Access

Get a number of partitions to parallelize datastore access over the current parallel pool.
You must have Parallel Computing Toolbox installed.

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Get a number of partitions to parallelize datastore access over the current parallel pool.

n = numpartitions(ds, gcp);

Partition the datastore and read the data in each part.

parfor ii=1:n
 subds = partition(ds,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use the datastore function to create a datastore object from
your data.

 numpartitions

1-2585

pool — Parallel pool
parallel pool object

Parallel pool object.
Example: gcp

See Also
datastore | partition

Topics
“Partition a Datastore in Parallel” (Parallel Computing Toolbox)

Introduced in R2015a

1 Alphabetical List

1-2586

parquetDatastore
Datastore for collection of Parquet files

Description
Use a ParquetDatastore object to manage a collection of Parquet files, where each
individual Parquet file fits in memory, but the entire collection of files does not necessarily
fit. You can create a ParquetDatastore object using the parquetDatastore function,
specify its properties, and then import and process the data using object functions.

Creation

Syntax
pds = parquetDatastore(location)
pds = parquetDatastore(location,Name,Value)

Description
pds = parquetDatastore(location) creates a datastore pds from the collection of
Parquet files specified by location.

pds = parquetDatastore(location,Name,Value) specifies additional parameters
and properties for pds using one or more name-value pair arguments.

Input Arguments
location — Files or folders to include in datastore
path | DsFileSet object

Files or folders included in the datastore, specified as a path or a DsFileSet object.

 parquetDatastore

1-2587

• path — Specify the path as a character vector, cell array of character vectors, string
scalar, or a string array, containing the location of files or folders that are local or
remote.

• Local files or folders — Specify location as a local path to files or folders. If the
files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the
datastore. You can use the wildcard character (*) when specifying the local path.
This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify location to be the full paths of the files or
folders as an internationalized resource identifier (IRI) of the form hdfs:///
path_to_file. For more information, see “Work with Remote Data”.

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats
and ignores any other format. To specify a custom list of file extensions to include in your
datastore, see the FileExtensions property.

The parquetDatastore function supports the .parquet file format.
Example: 'myfile.parquet'
Example: '../dir/data/myfile.parquet'
Example: {'C:\dir\data\myfile01.parquet','C:\dir\data
\myfile02.parquet'}

Example: 's3://bucketname/path_to_files/*.parquet'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IncludeSubfolders',true

FileExtensions — Extensions to include in datastore
character vector | cell array of character vectors | string scalar | string array

1 Alphabetical List

1-2588

Extensions to include in datastore, specified as the comma-separated pair consisting of
'FileExtensions' and a character vector, cell array of character vectors, string scalar,
or string array.

• If you do not specify 'FileExtensions', then parquetDatastore automatically
includes all files with .parquet and .parq extensions in the specified path.

• If you want to include parquet files with non-standard file extensions in the
parquetDatastore, then specify those extensions explicitly.

• If you want to create a parquetDatastore for files without any extensions, then
specify 'FileExtensions' as an empty character vector, ''.

Example: 'FileExtensions',{'.parquet','.parq'}
Example: 'FileExtensions','.myformat'
Example: 'FileExtensions',''
Data Types: char | cell | string

IncludeSubfolders — Subfolder inclusion flag
false (default) | true

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true or false. Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

If you do not specify 'IncludeSubfolders', then the default value is false.
Example: 'IncludeSubfolders',true
Data Types: logical | double

OutputType — Output datatype
'auto' (default) | 'table' | 'timeable'

Output datatype, specified as the comma-separated pair consisting of 'OutputType' and
'auto', 'table', or 'timeable'.

• 'auto' — Return a table or a timetable. The parquetDatastore detects if the
output should be a table or a timetable based on other name-value pairs that you
specify. When you specify the RowTimes name-value pair, the parquetDatastore
infers that the output is a timetable.

• 'table' — Return a table. For more information on the table datatype, see table.

 parquetDatastore

1-2589

• 'timetable' — Return a timetable. For more information on the timetables, see
timetable.

The value of OutputType selects the data type returned from the preview, read, and
readall functions.
Example: 'OutputType','timetable'
Data Types: char | string

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

1 Alphabetical List

1-2590

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

Properties
ParquetDatastore properties describe the format of the files in a datastore object, and
control how the data is read from the datastore. With the exception of the Files
property, you can specify the value of ParquetDatastore properties using name-value
pair arguments when you create the datastore object. To view or modify a property after
creating the object, use the dot notation.

Files — Files included in datastore
cell array of character vectors | string array

Files included in the datastore, resolved as a cell array of character vectors or a string
array, where each character vector or string is a full path to a file. The location
argument defines these files.

The first file specified in the cell array determines the variable names and format
information for all files in the datastore.
Example: {'C:\dir\data\file1.ext';'C:\dir\data\file2.ext'}
Data Types: cell | string

ReadSize — Amount of data to read
'rowgroup' (default) | 'file' | positive integer

Amount of data to read in a call to the read function, specified as 'rowgroup', 'file',
or a positive integer.

 parquetDatastore

1-2591

• 'rowgroup' — Each call to read reads the number of rows specified in the row
groups of the Parquet file. To get the number of rows in row groups, see the
RowGroupHeights property of the ParquetInfo object.

• 'file' — Each call to read reads all of the data in one file.
• positive integer — Each call to read reads a maximum of ReadSize rows.

When you change ReadSize from a positive integer to 'file' or 'rowgroup', or vice
versa, MATLAB resets the datastore to an unread state where no data has been read from
it.
Data Types: double | char | string

VariableNames — Names of variables
character vector | cell array of character vectors | string scalar | string array

Names of variables in the datastore, specified as a character vector, cell array of
character vectors, string scalar, or string array. Specify the variable names in the order in
which they appear in the files. If you do not specify the variable names, the datastore
detects them from the first nonheader line in the first file. You can specify
VariableNames with a character vector or string scalar, however the datastore converts
and stores the property value to a cell array of character vectors. When modifying the
VariableNames property, the number of new variable names must match the number of
original variable names.

If ReadVariableNames is false, then VariableNames defaults to
{'Var1','Var2', ...}.
Example: {'Time','Date','Quantity'}
Data Types: char | cell | string

SelectedVariableNames — Variables to read
cell array of character vectors | string array

Variables to read from the file, specified as a cell array of character vectors or a string
array, where each character vector or string contains the name of one variable. You can
specify the variable names in any order.
Example: {'Var3','Var7','Var4'}
Data Types: cell | string

RowTimes — Name of row times variable
character vector | string scalar

1 Alphabetical List

1-2592

Name of the row times variable in the Parquet data, specified as the comma-separated
pair consisting of 'RowTimes' and a character vector or string array containing the
variable name.

RowTimes is a timetable related parameter. Each row of a timetable is associated with a
time, which is captured in a time vector for the timetable. The variable specified in
RowTimes, must contain a datetime or a duration vector.

By default, parquetDatastore uses the first datetime or duration variable as row
times for the timetable.

Object Functions
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state
transform Transform datastore
combine Combine data from multiple datastores

Examples

Create ParquetDatastore Object

Create a ParquetDatastore object containing the file outages.parquet.

pds = parquetDatastore('outages.parquet')

pds =
 ParquetDatastore with properties:

 Files: {
 'B:\matlab\toolbox\matlab\demos\outages.parquet'
 }
 VariableNames: {1x6 cell}
 SelectedVariableNames: {1x6 cell}

 parquetDatastore

1-2593

 ReadSize: 'rowgroup'
 OutputType: 'table'
 RowTimes: []
 AlternateFileSystemRoots: {}

Specify Read Size for ParquetDatastore

Create a datastore for a sample Parquet file, and then read data from the file with
different ReadSize values.

Create a datastore for airlinesmall.parquet, set ReadSize to 10 rows, and then
read from the datastore. The value of ReadSize determines how many rows of data are
read from the datastore with each call to the read function.

pds = parquetDatastore('outages.parquet','ReadSize',10);
read(pds)

ans=10×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ____________________ ______ __________ ____________________ _________________

 "SouthWest" 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00 "winter storm"
 "SouthEast" 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT "winter storm"
 "SouthEast" 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00 "winter storm"
 "West" 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00 "equipment fault"
 "MidWest" 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00 "severe storm"
 "West" 18-Jun-2003 02:49:00 0 0 18-Jun-2003 10:54:00 "attack"
 "West" 20-Jun-2004 14:39:00 231.29 NaN 20-Jun-2004 19:16:00 "equipment fault"
 "West" 06-Jun-2002 19:28:00 311.86 NaN 07-Jun-2002 00:51:00 "equipment fault"
 "NorthEast" 16-Jul-2003 16:23:00 239.93 49434 17-Jul-2003 01:12:00 "fire"
 "MidWest" 27-Sep-2004 11:09:00 286.72 66104 27-Sep-2004 16:37:00 "equipment fault"

Set the ReadSize property value to 'file' and read from the datastore. Every call to
the read function reads all the data from the datastore.

pds.ReadSize ='file';
data = read(pds)

data=1468×6 table
 Region OutageTime Loss Customers RestorationTime Cause

1 Alphabetical List

1-2594

 ___________ ____________________ ______ __________ ____________________ _________________

 "SouthWest" 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00 "winter storm"
 "SouthEast" 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT "winter storm"
 "SouthEast" 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00 "winter storm"
 "West" 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00 "equipment fault"
 "MidWest" 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00 "severe storm"
 "West" 18-Jun-2003 02:49:00 0 0 18-Jun-2003 10:54:00 "attack"
 "West" 20-Jun-2004 14:39:00 231.29 NaN 20-Jun-2004 19:16:00 "equipment fault"
 "West" 06-Jun-2002 19:28:00 311.86 NaN 07-Jun-2002 00:51:00 "equipment fault"
 "NorthEast" 16-Jul-2003 16:23:00 239.93 49434 17-Jul-2003 01:12:00 "fire"
 "MidWest" 27-Sep-2004 11:09:00 286.72 66104 27-Sep-2004 16:37:00 "equipment fault"
 "SouthEast" 05-Sep-2004 17:48:00 73.387 36073 05-Sep-2004 20:46:00 "equipment fault"
 "West" 21-May-2004 21:45:00 159.99 NaN 22-May-2004 04:23:00 "equipment fault"
 "SouthEast" 01-Sep-2002 18:22:00 95.917 36759 01-Sep-2002 19:12:00 "severe storm"
 "SouthEast" 27-Sep-2003 07:32:00 NaN 3.5517e+05 04-Oct-2003 07:02:00 "severe storm"
 "West" 12-Nov-2003 06:12:00 254.09 9.2429e+05 17-Nov-2003 02:04:00 "winter storm"
 "NorthEast" 18-Sep-2004 05:54:00 0 0 NaT "equipment fault"
 ⋮

You also can set the value of ReadSize property to 'rowgroup'. For more information,
see the ReadSize property of the ParquetDatastore object reference page.

Limitations
If you use parquetread or datastore to read the files, then the result might not have
the same format or contents as the original table. For more information, see “Apache
Parquet Data Type Mappings”.

Alternatives
You also can create a ParquetDatastore object using the datastore function. For
example, ds = datastore(location,'Type','parquet') creates a datastore from
a collection of files specified by location.

See Also
datastore | mapreduce | parquetinfo | parquetread | tall

 parquetDatastore

1-2595

Introduced in R2019a

1 Alphabetical List

1-2596

partition
Package: matlab.io.datastore

Partition a datastore

Syntax
subds = partition(ds,n,index)

subds = partition(ds,'Files',index)
subds = partition(ds,'Files',filename)

Description
subds = partition(ds,n,index) partitions datastore ds into the number of parts
specified by n and returns the partition corresponding to the index index.

subds = partition(ds,'Files',index) partitions the datastore by files and returns
the partition corresponding to the file of index index in the Files property.

subds = partition(ds,'Files',filename) partitions the datastore by files and
returns the partition corresponding to the file specified by filename.

Examples

Partition Datastore into Specific Number of Parts

Create a datastore for a large collection of files. For this example, use ten copies of the
sample file airlinesmall.csv. To handle missing fields in the tabular data, specify the
name-value pairs TreatAsMissing and MissingValue.

files = repmat({'airlinesmall.csv'},1,10);
ds = tabularTextDatastore(files,...
 'TreatAsMissing','NA','MissingValue',0);

 partition

1-2597

Partition the datastore into three parts and return the first partition. The partition
function returns approximately the first third of the data from the datastore ds.

subds = partition(ds,3,1)

subds =
 TabularTextDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv';
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv';
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'
 ... and 1 more
 }
 FileEncoding: 'UTF-8'
 AlternateFileSystemRoots: {}
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: 'NA'
 MissingValue: 0

 Advanced Text Format Properties:
 TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
 TextType: 'char'
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
 ReadSize: 20000 rows

The Files property of the datastore contains a list of files included in the datastore.
Check the number of files in the Files property of the datastore ds and the partitioned
datastore subds. The datastore ds contains ten files and the partition subds contains the
first four files.

1 Alphabetical List

1-2598

length(ds.Files)

ans = 10

length(subds.Files)

ans = 4

Partition Datastore into Default Number of Parts

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Get the default number of partitions for ds.

n = numpartitions(ds);

Partition the datastore into the default number of partitions and return the datastore
corresponding to the first partition.

subds = partition(ds,n,1);

Read the data in subds.

while hasdata(subds)
 data = read(subds);
end

Partition Datastore by Files

Create a datastore that contains three image files.

ds = imageDatastore({'street1.jpg','peppers.png','corn.tif'})

ds =

 ImageDatastore with properties:

 partition

1-2599

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street1.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\peppers.png';
 ' ...\matlab\toolbox\matlab\imagesci\corn.tif'
 }
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage

Partition the datastore by files and return the part corresponding to the second file.

subds = partition(ds,'Files',2)

subds =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\imagesci\peppers.png'
 }
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage

subds contains one file.

Partition Data in Parallel

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Partition the datastore into three parts on three workers in a parallel pool.

numWorkers = 3;
p = parpool('local',numWorkers);
n = numpartitions(ds,p);

1 Alphabetical List

1-2600

parfor ii=1:n
 subds = partition(ds,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use the datastore function to create a datastore object from
your data.

n — Number of partitions
positive integer

Number of partitions, specified as a positive integer.
Example: 3
Data Types: double

index — Index
positive integer

Index, specified as a positive integer.
Example: 1
Data Types: double

filename — file name
character vector | string scalar

File name, specified as a character vector or string scalar.

The value of filename must match exactly the file name contained in the Files property
of the datastore. To ensure that the file names match exactly, specify filename using
ds.Files{N} where N is the index of the file in the Files property. For example,
ds.Files{3} specifies the third file in the datastore ds.
Example: ds.Files{3}

 partition

1-2601

Example: 'file1.csv'
Example: '../dir/data/file1.csv'
Example: 'hdfs://myserver:7867/data/file1.txt'
Data Types: char

Output Arguments
subds — Output datastore
datastore

Output datastore. The output datastore is of the same type as the input datastore ds.

See Also
datastore | numpartitions

Topics
“Partition a Datastore in Parallel” (Parallel Computing Toolbox)

Introduced in R2015a

1 Alphabetical List

1-2602

preview
Package: matlab.io

Subset of data in datastore

Syntax
data = preview(ds)

Description
data = preview(ds) returns a subset of data from datastore ds without changing its
current position.

Examples

Preview Data in TabularTextDatastore

Create a datastore from the sample file, airlinesmall.csv, which contains tabular
data.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');

Modify the SelectedVariableNames property to specify the variables of interest.

ds.SelectedVariableNames = {'DepTime','ArrTime','ActualElapsedTime'};

Preview the data for the selected variables.

data = preview(ds)

data=8×3 table
 DepTime ArrTime ActualElapsedTime
 _______ _______ _________________

 preview

1-2603

 642 735 53
 1021 1124 63
 2055 2218 83
 1332 1431 59
 629 746 77
 1446 1547 61
 928 1052 84
 859 1134 155

Preview Data in KeyValueDatastore

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Preview the data in the datastore.

data = preview(ds)

data=1×2 table
 Key Value
 ____ _______

 'AA' [14930]

Preview Data in CombinedDatastore

Create a datastore that maintains parity between the pair of images of the underlying
datastores. For instance, create two separate image datastores, and then create a
combined datastore representing the two underlying datastores.

Create an image datastore imds1 representing a collection of three images.

imds1 = imageDatastore({'street1.jpg','street2.jpg','peppers.png'});

Create a second datastore imds2 by transforming the images of imds1 to grayscale and
then reflecting the images horizontally.

1 Alphabetical List

1-2604

imds2 = transform(imds1,@(x) fliplr(rgb2gray(x)));

Create a combined datastore from imds1 and imds2.

imdsCombined = combine(imds1,imds2);

Preview the data in the combined datastore. The output is a 1-by-2 cell array. The two
columns represent the first subset of data from the two underlying datastores imds1 and
imds2, respectively.

dataOut = preview(imdsCombined)

dataOut = 1x2 cell array
 {480x640x3 uint8} {480x640 uint8}

Display the previewed data as a pair of tiled images.

tile = imtile(dataOut);
imshow(tile)

 preview

1-2605

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use these datastores as input to the preview method.

• MATLAB datastores — Datastores created using MATLAB datastore functions. For
example, create a datastore for a collection of images using ImageDatastore. For a
complete list of datastores, see “Select Datastore for File Format or Application”.

• Combined and transformed datastores — Datastores created using the combine and
transform functions.

• Custom datastores — Datastores created using the custom datastore framework. See
“Develop Custom Datastore”.

Output Arguments
data — Subset of data
table | array

Subset of data, returned as a table or an array depending on the type of ds.

Type of Datastore Data type of
data

Description

TabularTextDatastore
and
SpreadsheetDatastore

Table Table with variables specified by the
SelectedVariableNames property.
The table contains at most eight rows.

1 Alphabetical List

1-2606

Type of Datastore Data type of
data

Description

ImageDatastore Integer array Array of integers corresponding to the
first image. The dimensions of the
integer array depend on the type of
image:

• For grayscale images, data is m-by-
n.

• For truecolor images, data is m-by-
n-by-3.

• For CMYK Tiff images, data is m-by-
n-by-4.

The preview function supports all
image types supported by the imread
function. For more information on the
supported image types, see imread.

KeyValueDatastore Table Table with the variables Key and Value.
FileDatastore Table Table containing the output returned by

the read function, specified by the
'ReadFcn' parameter in the
fileDatastore function.

TransformedDatastore Varies The output is the same as the output
returned by the underlying datastore
specified by the
UnderlyingDatastore property. For
example, if the underlying datastore is
an image datastore with a ReadSize
property value of 1, then data is
returned as a integer array.

CombinedDatastore Cell array Each element of the cell array contains
the output returned by the
corresponding underlying datastore
specified by the
UnderlyingDatastores property.

 preview

1-2607

See Also
datastore | hasdata

Introduced in R2014b

1 Alphabetical List

1-2608

read
Package: matlab.io

Read data in datastore

Syntax
data = read(ds)
[data,info] = read(ds)

Description
data = read(ds) returns data from a datastore. Subsequent calls to the read function
continue reading from the endpoint of the previous call.

[data,info] = read(ds) also returns information about the extracted data in info,
including metadata.

Examples

Read Data in TabularTextDatastore

Create a datastore from the sample file, airlinesmall.csv, which contains tabular
data.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA','MissingValue',0);

Modify the SelectedVariableNames property to specify the variables of interest.

ds.SelectedVariableNames = {'DepTime','ArrTime','ActualElapsedTime'};

While there is data available to be read from the datastore, read one block of data at a
time and analyze the data. In this example, sum the actual elapsed time.

 read

1-2609

sumElapsedTime = 0;
while hasdata(ds)
 T = read(ds);
 sumElapsedTime = sumElapsedTime + sum(T.ActualElapsedTime);
end

View the sum of the actual elapsed time.

sumElapsedTime

sumElapsedTime = 14531797

Read Data in KeyValueDatastore

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Read a subset of data in the datastore.

T = read(ds)

T=1×2 table
 Key Value
 ____ _______

 'AA' [14930]

Change the number of key-value pairs to read at a time, by changing the ReadSize
property of the datastore.

ds.ReadSize = 5;

Read the next five key-value pairs in the datastore.

T = read(ds)

T=5×2 table
 Key Value
 ____ _______

1 Alphabetical List

1-2610

 'AS' [2910]
 'CO' [8138]
 'DL' [16578]
 'EA' [920]
 'HP' [3660]

Read Data in CombinedDatastore

Create a datastore that maintains parity between the pair of images of the underlying
datastores. For instance, create two separate image datastores, and then create a
combined datastore representing the two underlying datastores.

Create an image datastore imds1 representing a collection of three images.

imds1 = imageDatastore({'street1.jpg','street2.jpg','peppers.png'});

Create a second datastore imds2 containing a mask of the bright regions of the three
images. To create this datastore, first transform the images of imds1 to grayscale. Then
convert each image to a binary mask by mapping bright pixels (with a value greater than
250) to white and dark pixels to black.

imds2 = transform(imds1,@(x) rgb2gray(x)>250);

Create a combined datastore from imds1 and imds2.

imdsCombined = combine(imds1,imds2);

Read the first subset of data from the combined datastore. The output is a 1-by-2 cell
array. The two columns represent the first subset of data read from the two underlying
datastores imds1 and imds2, respectively.

dataOut = read(imdsCombined)

dataOut = 1x2 cell array
 {480x640x3 uint8} {480x640 logical}

Display the read data from the combined datastore as a pair of tiled images.

tile = imtile(dataOut);
imshow(tile)

 read

1-2611

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use these datastores as input to the read method.

• MATLAB datastores — Datastores created using MATLAB datastore functions. For
example, create a datastore for a collection of images using ImageDatastore. For a
complete list of datastores, see “Select Datastore for File Format or Application”.

• Combined and transformed datastores — Datastores created using the combine and
transform functions.

• Custom datastores — Datastores created using the custom datastore framework. See
“Develop Custom Datastore”.

Output Arguments
data — Output data
table

1 Alphabetical List

1-2612

Output data, returned as a table or an array depending on the type of ds.

Type of Datastore Data type of
data

Description

TabularTextDatastore
and
SpreadsheetDatastore

Table The SelectedVariableNames
property determines the table variables.

ImageDatastore Integer array The dimensions of the integer array
depend on the type of image:

• For grayscale images, data is m-by-
n.

• For truecolor images, data is m-by-
n-by-3.

• For CMYK Tiff images, data is m-by-
n-by-4.

If the ReadSize property is greater
than 1, then data is a cell array of
image data corresponding to each
image. The read function supports all
image types supported by the imread
function. For more information on the
supported image types, see imread.

KeyValueDatastore Table The table variable names are Key and
Value.

FileDatastore Varies The output is the same as the output
returned by the custom read function,
specified by the 'ReadFcn' value.

TransformedDatastore Varies The output is the same as the output of
the transformation function @fcn
specified in the transform method
used to create the
TransformedDatastore.

CombinedDatastore Varies Contains the horizontal concatenation of
the output of read from the
corresponding underlying datastores.

 read

1-2613

info — Information about read data
structure array | cell array

Information about read data, returned as a structure array or a cell array of structure
arrays.

• For MATLAB datastores and TransformedDatastore, info is a structure array that
has fields with information about the datastore.

• For CombinedDatastore, info is a cell array of structure arrays. Each element of
the cell array contains a structure with the relevant fields of the corresponding
underlying datastore.

Information in the structure array depends on the type of the input datastore. The
structure array can contain the following fields.

Field Name Datastore Types Description
Filename All Filename is a fully resolved path

containing the path string, name
of the file, and file extension. For
ImageDatastore objects whose
ReadSize property is greater
than 1, Filename is a cell array
of file names corresponding to
each image.

1 Alphabetical List

1-2614

Field Name Datastore Types Description
FileSize All Total file size, in bytes.

For ImageDatastore objects
whose ReadSize property is
greater than 1, FileSize is a
vector of file sizes corresponding
to each image.

For MAT-files, the value of
FileSize depends on the type of
the datastore.

• KeyValueDatastore and
TallDatastore — The
FileSize field contains the
total number of key-value
pairs in the file.

• FileDatastore — The
FileSize field contains the
total file size in bytes.

FileType KeyValueDatastore
only

The type of file from which data is
read, either 'mat' for MAT-files
or 'seq' for sequence files.

Label ImageDatastore only Image label name. If the
ReadSize property is greater
than 1, then Label is a vector of
label names corresponding to
each image. If the Labels
property is empty, then Label is
an empty cell array.

NumCharactersRead TabularTextDatasto
re only

Number of characters read.

NumDataRows SpreadsheetDatasto
re only

Vector containing number of rows
read from each sheet.

 read

1-2615

Field Name Datastore Types Description
Offset KeyValueDatastore

and
TabularTextDatasto
re only

Starting position of the read
operation, in bytes. For MAT-files,
Offset is the index of the first
key and value read.

SheetNames SpreadsheetDatasto
re only

Names of sheets read.

SheetNumbers SpreadsheetDatasto
re only

Numbering associated with
sheets read.

See Also
datastore | hasdata | imread | readall

Introduced in R2014b

1 Alphabetical List

1-2616

readall
Package: matlab.io

Read all data in datastore

Syntax
data = readall(ds)

Description
data = readall(ds) returns all the data in the datastore specified by ds.

If all the data in the datastore does not fit in memory, then readall returns an error.

Examples

Read All Data in TabularTextDatastore

Create a datastore from the sample file airlinesmall.csv, which contains tabular
data.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');

Modify the SelectedVariableNames property to specify the variables of interest.

ds.SelectedVariableNames = {'DepTime','ArrTime','ActualElapsedTime'};

Read all the data in the datastore.

T = readall(ds);

readall returns all the data in a table.

View information about the table.

 readall

1-2617

T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'DepTime' 'ArrTime' 'ActualElapsedTime'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

View a summary of the output table.

summary(T)

Variables:

 DepTime: 123523x1 double

 Values:

 Min 1
 Median 1335
 Max 2505
 NumMissing 2351

 ArrTime: 123523x1 double

 Values:

 Min 1
 Median 1522
 Max 2608
 NumMissing 2656

 ActualElapsedTime: 123523x1 double

 Values:

1 Alphabetical List

1-2618

 Min 11
 Median 102
 Max 1650
 NumMissing 2657

Read All Data in KeyValueDatastore

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Read all the data in the datastore.

T = readall(ds);

View a summary of the output table.

summary(T)

Variables:

 Key: 29x1 cell array of character vectors

 Value: 29x1 cell

Read All Data in CombinedDatastore

Create a datastore that maintains parity between the pair of images of the underlying
datastores. For instance, create two separate image datastores, and then create a
combined datastore representing the two underlying datastores.

Create an image datastore imds1 representing a collection of three images.

imds1 = imageDatastore({'street1.jpg','street2.jpg','peppers.png'});

Create a second datastore imds2 by transforming the images of imds1 to grayscale and
then downsizing the images.

imds2 = transform(imds1,@(x) imresize(rgb2gray(x),0.5));

 readall

1-2619

Create a combined datastore from imds1 and imds2.

imdsCombined = combine(imds1,imds2);

Read all of the data from the combined datastore. The output is a 3-by-2 cell array. The
two columns represent all of the read data from the two underlying datastores imds1 and
imds2, respectively.

dataOut = readall(imdsCombined)

dataOut = 3x2 cell array
 {480x640x3 uint8} {240x320 uint8}
 {480x640x3 uint8} {240x320 uint8}
 {384x512x3 uint8} {192x256 uint8}

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use these datastores as input to the readall method.

• MATLAB datastores — Datastores created using MATLAB datastore functions. For
example, create a datastore for a collection of images using ImageDatastore. For a
complete list of datastores, see “Select Datastore for File Format or Application”.

• Combined and transformed datastores — Datastores created using the combine and
transform functions.

• Custom datastores — Datastores created using the custom datastore framework. See
“Develop Custom Datastore”.

Output Arguments
data — All data in the datastore
table | cell array

All data in the datastore, returned as a table or a cell array depending on the type of ds.

1 Alphabetical List

1-2620

Type of Datastore Data type of
data

Description

TabularTextDatastore
and
SpreadsheetDatastore

Table The SelectedVariableNames
property determines the table variables.

ImageDatastore Cell array Each element in the cell array contains
the image data for one image. The
readall function supports all image
types supported by the imread
function. For more information on the
supported image types, see imread.

KeyValueDatastore Table The table variable names are Key and
Value.

FileDatastore Cell array Each element in the cell array contains
the data read from one file using the
custom read function specified by the
ReadFcn property.

TransformedDatastore Varies The output is the same as the output
returned by the underlying datastore
specified by the
UnderlyingDatastore property. For
example, if the underlying datastore is
an image datastore, then data is
returned as a cell array where each
element in the cell array contains the
image data for one image.

 readall

1-2621

Type of Datastore Data type of
data

Description

CombinedDatastore Cell array Each column of the cell array contains
the result from calling readall on the
corresponding underlying datastore
specified by the
UnderlyingDatastores property.

If the number of subsets of data in the
underlying datastores differs, then
readall only returns data while all
underlying datastores have data. For
example, suppose a combined datastore
has two underlying datastores, one with
m subsets of data and one with n
subsets of data, where m > n. The
output is a cell array with two columns
and n rows.

See Also
datastore | hasdata | read

Introduced in R2014b

1 Alphabetical List

1-2622

readimage
Package: matlab.io.datastore

Read specified image from datastore

Syntax
img = readimage(imds,I)
[img,fileinfo] = readimage(imds,I)

Description
img = readimage(imds,I) reads the Ith image file from the datastore imds and
returns the image data img. The size and data type of the img array depends on the
image formats of the files in the datastore. The image formats supported by readimage
function are those formats supported by imread. For more information on the supported
formats, see imread.

[img,fileinfo] = readimage(imds,I) also returns a struct fileinfo that
contains two file information fields:

• Filename — Name of the file from which the image is read.
• FileSize — Size of the file in bytes.

Examples

Read Specified Image

Create an ImageDatastore object containing two images, and then read and view the
second image.

imds = imageDatastore({'street1.jpg','street2.jpg'});
img = readimage(imds,2);
imshow(img)

 readimage

1-2623

File Information

Create a datastore object containing two images and read the second image.

imds = imageDatastore({'street1.jpg','street2.jpg'});
[img,info] = readimage(imds,2);

The info structure contains the following information for the second image: Filename,
FileSize, and Label. To display the filename and path, type info.Filename in the
command window. To display the file size, type info.FileSize.

1 Alphabetical List

1-2624

Input Arguments
imds — Input datastore
ImageDatastore object

Input datastore. You can use the imageDatastore function or the datastore function
to create a datastore object from your data.

I — Image file index
positive integer

Image file index, specified as a positive integer.
Data Types: double

Output Arguments
img — Image data
multidimensional array of integers

Image data, returned as a multidimensional array of integers. The size of img depends on
the image format:

• m-by-n array for grayscale images
• m-by-n-by-3 array for truecolor images
• m-by-n-by-4 array for CMYK Tiff images

The readimage function supports the image formats that imread supports. For more
information on the supported formats, see imread.
Data Types: double

fileinfo — File information
structure array

File information, returned as a structure array containing two fields:

• Filename — Name of the file from which the image is read.

 readimage

1-2625

• FileSize — Size of the file in bytes.

Data Types: struct

See Also
ImageDatastore | datastore | imread | read | readall

Introduced in R2015b

1 Alphabetical List

1-2626

reset
Package: matlab.io

Reset datastore to initial state

Syntax
reset(ds)

Description
reset(ds) resets the datastore specified by ds to the state where no data has been read
from it. Resetting allows re-reading from the same datastore.

Examples

Reset Datastore to Initial State

Create a datastore from the sample file, mapredout.mat, which is the output file of the
mapreduce function.

ds = datastore('mapredout.mat');

Read the first key-value pair.

T = read(ds);

Reset the datastore to the state where no data has been read from it.

reset(ds)

 reset

1-2627

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use these datastores as input to the reset method.

• MATLAB datastores — Datastores created using MATLAB datastore functions. For
example, create a datastore for a collection of images using ImageDatastore. For a
complete list of datastores, see “Select Datastore for File Format or Application”.

• Combined or transformed datastores — Datastores created using the combine and
transform functions.

• Custom datastores — Datastores created using the custom datastore framework. See
“Develop Custom Datastore”.

See Also
datastore

Introduced in R2014b

1 Alphabetical List

1-2628

sheetnames
Package: matlab.io.datastore

Query sheet names from datastore

Syntax
names = sheetnames(ssds,filename)
names = sheetnames(ssds,I)

Description
names = sheetnames(ssds,filename) returns the sheet names from a specified file
in the datastore ssds.

names = sheetnames(ssds,I) returns the sheet names from a specified file index.

Examples

Query Sheet Names

Create a datastore containing the file airlinesmall_subset.xlsx.

ssds = spreadsheetDatastore('airlinesmall_subset.xlsx')

ssds =

 SpreadsheetDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall_subset.xlsx'
 }
 AlternateFileSystemRoots: {}
 Sheets: ''

 sheetnames

1-2629

 Range: ''
 ReadFailureRule: 'error'
 MaxFailures: Inf

 Sheet Format Properties:
 NumHeaderLines: 0
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 VariableTypes: {'double', 'double', 'double' ... and 26 more}

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedVariableTypes: {'double', 'double', 'double' ... and 26 more}
 ReadSize: 'file'

Query the sheet names of the first (and only) file in the datastore.

sheetnames(ssds,1)

ans =

 13×1 string array

 "1996"
 "1997"
 "1998"
 "1999"
 "2000"
 "2001"
 "2002"
 "2003"
 "2004"
 "2005"
 "2006"
 "2007"

1 Alphabetical List

1-2630

 "2008"

Input Arguments
ssds — Input datastore
SpreadsheetDatastore object

Input datastore, specified as a SpreadsheetDatastore object. Use the
spreadsheetDatastore function or the datastore function to create a datastore
object from your data.

filename — File in datastore
character vector | string scalar

File in datastore, specified as a character vector or string scalar containing the name of
the file to query.

The value of filename must match exactly the file name contained in the Files property
of the datastore. To ensure that the file names match exactly, specify filename using
ssds.Files{N} where N is the index of the file in the Files property.
Example: names = sheetnames(ssds,ssds.Files{1}) returns sheet names
contained in the first file specified in the Files property of the datastore ssds.
Data Types: char | string

I — File index
positive integer

File index, specified as a positive integer. I cannot exceed the number of files in ssds.
Data Types: double

Output Arguments
names — Sheet names
string array

Sheet names, returned as a string array containing the sheet names in the specified file.

 sheetnames

1-2631

Data Types: string

See Also
spreadsheetDatastore

Introduced in R2016a

1 Alphabetical List

1-2632

shuffle
Package: matlab.io.datastore

Shuffle files in ImageDatastore

Syntax
imdsrand = shuffle(imds)

Description
imdsrand = shuffle(imds) returns an ImageDatastore object containing a random
ordering of the files from imds.

Examples

Shuffle Files

Create an ImageDatastore object imds. Shuffle the files to create a new datastore
containing the same files in random order.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),'LabelSource','foldernames','FileExtensions', {'.jpg', '.png', '.tif'})

imds =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg'
 ... and 5 more
 }
 Labels: [demos; demos; demos ... and 5 more categorical]

 shuffle

1-2633

 ReadFcn: @readDatastoreImage

imdsrand = shuffle(imds)

imdsrand =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street2.jpg';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\corn.tif'
 ... and 5 more
 }
 Labels: [demos; demos; imagesci ... and 5 more categorical]
 ReadFcn: @readDatastoreImage

Input Arguments
imds — Input datastore
ImageDatastore object

Input datstore, specified as an ImageDatastore object. To create an ImageDatstore
from your image data, use the imageDatastore function.

Output Arguments
imdsrand — Output datastore
ImageDatastore object

Output datastore, returned as an ImageDatastore object containing randomly ordered
files from imds.

See Also
ImageDatastore | datastore

1 Alphabetical List

1-2634

Introduced in R2016a

 shuffle

1-2635

spliteachlabel
Package: matlab.io.datastore

Split ImageDatastore labels by proportions

Syntax
[imds1,imds2] = splitEachLabel(imds,p)
[imds1,...,imdsM] = splitEachLabel(imds,p1,...,pN)
___ = splitEachLabel(___ ,'randomized')
___ = splitEachLabel(___ ,Name,Value)

Description
[imds1,imds2] = splitEachLabel(imds,p) splits the image files in imds into two
new datastores, imds1 and imds2. The new datastore imds1 contains the first p files
from each label and imds2 contains the remaining files from each label. p can be either a
number between 0 and 1 indicating the percentage of the files from each label to assign
to imds1, or an integer indicating the absolute number of files from each label to assign
to imds1.

[imds1,...,imdsM] = splitEachLabel(imds,p1,...,pN) splits the datastore into
N+1 new datastores. The first new datastore imds1 contains the first p1 files from each
label, the next new datastore imds2 contains the next p2 files, and so on. If p1,...,pN
represent numbers of files, then their sum must be no more than the number of files in
the smallest label in the original datastore imds.

___ = splitEachLabel(___ ,'randomized') randomly assigns the specified
proportion of files from each label to the new datastores.

___ = splitEachLabel(___ ,Name,Value) specifies the properties of the new
datastores using one or more name-value pair arguments. For example, you can specify
which labels to split with 'Include','labelname'.

1 Alphabetical List

1-2636

Examples

Split Labels by Percentage

Create an ImageDatastore object and label each image according to the name of the
folder it is in. The resulting label names are demos and imagesci.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),...
'LabelSource', 'foldernames', 'FileExtensions', {'.jpg', '.png', '.tif'});

imds.Labels

ans =

 demos
 demos
 demos
 demos
 demos
 demos
 imagesci
 imagesci

Create two new datastores from the files in imds. The first datastore imds60 contains the
first 60% of files with the demos label and the first 60% of files with the imagesci label.
The second datastore imds40 contains the remaining 40% of files from each label. If the
percentage applied to a label does not result in a whole number of files,
splitEachLabel rounds down to the nearest whole number.

[imds60,imds40] = splitEachLabel(imds,0.6)

imds60 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg'
 ... and 2 more

 spliteachlabel

1-2637

 }
 Labels: [demos; demos; demos ... and 2 more categorical]
 ReadFcn: @readDatastoreImage

imds40 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street1.jpg';
 ' ...\matlab\toolbox\matlab\demos\street2.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\peppers.png'
 }
 Labels: [demos; demos; imagesci]
 ReadFcn: @readDatastoreImage

Split Labels by Number of Files

Create an ImageDatastore object and label each image according to the name of the
folder it is in. The resulting label names are demos and imagesci.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),...
'LabelSource', 'foldernames', 'FileExtensions', {'.jpg', '.png', '.tif'});

imds.Labels

ans =

 demos
 demos
 demos
 demos
 demos
 demos
 imagesci
 imagesci

1 Alphabetical List

1-2638

Create two new datastores from the files in imds. The first datastore imds1 contains the
first file with the demos label and the first file with the imagesci label. The second
datastore imds2 contains the remaining files from each label.

[imds1,imds2] = splitEachLabel(imds,1)

imds1 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\corn.tif'
 }
 Labels: [demos; imagesci]
 ReadFcn: @readDatastoreImage

imds2 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg';
 ' ...\matlab\toolbox\matlab\demos\ngc6543a.jpg'
 ... and 3 more
 }
 Labels: [demos; demos; demos ... and 3 more categorical]
 ReadFcn: @readDatastoreImage

Split Labels Several Ways by Percentage

Create an ImageDatastore object and label each image according to the name of the
folder it is in. The resulting label names are demos and imagesci.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),...
'LabelSource', 'foldernames', 'FileExtensions', {'.jpg', '.png', '.tif'});

imds.Labels

 spliteachlabel

1-2639

ans =

 demos
 demos
 demos
 demos
 demos
 demos
 imagesci
 imagesci

Create three new datastores from the files in imds. The first datastore imds60 contains
the first 60% of files with the demos label and the first 60% of files with the imagesci
label. The second datastore imds10 contains the next 10% of files from each label. The
third datastore imds30 contains the remaining 30% of files from each label. If the
percentage applied to a label does not result in a whole number of files,
splitEachLabel rounds down to the nearest whole number.

[imds60, imds10, imds30] = splitEachLabel(imds,0.6,0.1)

imds60 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg'
 ... and 2 more
 }
 Labels: [demos; demos; demos ... and 2 more categorical]
 ReadFcn: @readDatastoreImage

imds10 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street1.jpg'
 }

1 Alphabetical List

1-2640

 Labels: demos
 ReadFcn: @readDatastoreImage

imds30 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street2.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\peppers.png'
 }
 Labels: [demos; imagesci]
 ReadFcn: @readDatastoreImage

Split Labels Several Ways by Number of Files

Create an ImageDatastore object and label each image according to the name of the
folder it is in. The resulting label names are demos and imagesci.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),...
'LabelSource', 'foldernames', 'FileExtensions', {'.jpg', '.png', '.tif'});

imds.Labels

ans =

 demos
 demos
 demos
 demos
 demos
 demos
 imagesci
 imagesci

Create three new datastores from the files in imds. The first datastore imds1 contains
the first file with the demos label and the first file with the imagesci label. The second
datastore imds2 contains the next file from each label. The third datastore imds3
contains the remaining files from each label.

 spliteachlabel

1-2641

[imds1, imds2, imds3] = splitEachLabel(imds,1,1)

imds1 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\corn.tif'
 }
 Labels: [demos; imagesci]
 ReadFcn: @readDatastoreImage

imds2 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\imagesci\peppers.png'
 }
 Labels: [demos; imagesci]
 ReadFcn: @readDatastoreImage

imds3 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg';
 ' ...\matlab\toolbox\matlab\demos\ngc6543a.jpg';
 ' ...\matlab\toolbox\matlab\demos\street1.jpg'
 ... and 1 more
 }
 Labels: [demos; demos; demos ... and 1 more categorical]
 ReadFcn: @readDatastoreImage

1 Alphabetical List

1-2642

Randomly Split Labels

Create an ImageDatastore object and label each image according to the name of the
folder it is in. The resulting label names are demos and imagesci.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),...
'LabelSource', 'foldernames', 'FileExtensions', {'.jpg', '.png', '.tif'});

imds.Labels

ans =

 demos
 demos
 demos
 demos
 demos
 demos
 imagesci
 imagesci

Create two new datastores from the files in imds by randomly drawing from each label.
The first datastore imds1 contains one random file with the demos label and one random
file with the imagesci label. The second datastore imds2 contains the remaining files
from each label.

[imds1, imds2] = splitEachLabel(imds,1,'randomized')

imds1 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street2.jpg';
 ' ...\matlab\toolbox\matlab\imagesci\corn.tif'
 }
 Labels: [demos; imagesci]
 ReadFcn: @readDatastoreImage

imds2 =

 spliteachlabel

1-2643

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg'
 ... and 3 more
 }
 Labels: [demos; demos; demos ... and 3 more categorical]
 ReadFcn: @readDatastoreImage

Include and Exclude Specified Labels

Create an ImageDatastore object and label each image according to the name of the
folder it is in. The resulting label names are demos and imagesci.

imds = imageDatastore(fullfile(matlabroot, 'toolbox', 'matlab', {'demos','imagesci'}),...
'LabelSource', 'foldernames', 'FileExtensions', {'.jpg', '.png', '.tif'});

imds.Labels

ans =

 demos
 demos
 demos
 demos
 demos
 demos
 imagesci
 imagesci

Create two new datastores from the files in imds, including only the files with the demos
label. The first datastore imds60 contains the first 60% of files with the demos label and
the second datastore imds40 contains the remaining 40% of files with the demos label.

[imds60, imds40] = splitEachLabel(imds,0.6,'Include','demos')

imds60 =

1 Alphabetical List

1-2644

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg'
 ... and 1 more
 }
 Labels: [demos; demos; demos ... and 1 more categorical]
 ReadFcn: @readDatastoreImage

imds40 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street1.jpg';
 ' ...\matlab\toolbox\matlab\demos\street2.jpg'
 }
 Labels: [demos; demos]
 ReadFcn: @readDatastoreImage

Equivalently, you can split only the demos label by excluding the imagesci label.

[imds60, imds40] = splitEachLabel(imds,0.6,'Exclude','imagesci')

imds60 =

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\cloudCombined.jpg';
 ' ...\matlab\toolbox\matlab\demos\example.tif';
 ' ...\matlab\toolbox\matlab\demos\landOcean.jpg'
 ... and 1 more
 }
 Labels: [demos; demos; demos ... and 1 more categorical]
 ReadFcn: @readDatastoreImage

imds40 =

 spliteachlabel

1-2645

 ImageDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\street1.jpg';
 ' ...\matlab\toolbox\matlab\demos\street2.jpg'
 }
 Labels: [demos; demos]
 ReadFcn: @readDatastoreImage

Input Arguments
imds — Input datastore
ImageDatastore object

Input datastore, specified as an ImageDatastore object. To create an ImageDatstore
from your image data, use the imageDatastore function.

p — Proportion of files to split
scalar in interval (0,1) | positive integer scalar

Proportion of files to split, specified as a scalar in the interval (0,1) or a positive integer
scalar.

• If p is in the interval (0,1), then it represents the percentage of the files from each
label to assign to imds1. If p does not result in a whole number of files, then
splitEachLabel rounds down to the nearest whole number.

• If p is an integer, then it represents the absolute number of files from each label to
assign to imds1. There must be at least p files associated with each label.

Data Types: double

p1,...,pN — List of proportions
scalars in interval (0,1) | positive integer scalars

List of proportions, specified as scalars in the interval (0,1) or positive integer scalars. If
the proportions are in the interval (0,1), then they represent the percentage of the files
from each label to assign to the output datastores. If the proportions are integers, then
they indicate the absolute number of files from each label to assign to the output
datastores. When the proportions represent percentages, their sum must be no more than

1 Alphabetical List

1-2646

1. When the proportions represent numbers of files, there must be enough files associated
with each label to satisfy each proportion.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [imds1 imds2] = splitEachLabel(imds,0.5,'Exclude','demos')

Include — Labels to include
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to include, specified as the comma-separated pair consisting of 'Include' and a
vector, cell array, or string array of label names with the same type as the Labels
property. Each name must match one of the labels in the Labels property of the
datastore.
Data Types: char | cell | string

Exclude — Labels to exclude
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to exclude, specified as the comma-separated pair consisting of 'Exclude' and a
vector, cell array, or string array of label names with the same type as the Labels
property. Each name defines a label associated with the datastore and must match the
names in Labels. This option cannot be used with the 'Include' option.
Data Types: char | cell | string

Output Arguments
imds1,imds2 — Output datastores
ImageDatastore objects

Output datastores, returned as ImageDatastore objects. imds1 contains the specified
proportion of files from each label in imds, and imds2 contains the remaining files.

 spliteachlabel

1-2647

imds1,...,imdsM — List of output datastores
ImageDatastore objects

List of output datastores, returned as ImageDatastore objects. The number of elements
in the list is one more than the number of listed proportions. Each of the new datastores
contains the proportion of each label in imds defined by p1,...,pN. Any files left over
are assigned to the Mth datastore.

See Also
ImageDatastore | countEachLabel | datastore

Introduced in R2016a

1 Alphabetical List

1-2648

spreadsheetDatastore
Datastore for spreadsheet files

Description
Use a SpreadsheetDatastore object to manage large collections of spreadsheet files
where the collection does not necessarily fit in memory. You can create a
SpreadsheetDatastore object using the spreadsheetDatastore function, specify its
properties, and then import the data using object functions.

Creation

Syntax
ssds = spreadsheetDatastore(location)
ssds = spreadsheetDatastore(location,Name,Value)

Description
ssds = spreadsheetDatastore(location) creates a spreadsheet datastore from
the collection of data specified by location.

ssds = spreadsheetDatastore(location,Name,Value) specifies additional
parameters and properties for ssds using one or more name-value pair arguments. For
example, spreadsheetDatastore(location,'FileExtensions',
{'.xlsx','.xls'}) specifies which files to include in the datastore depending on the
file extensions.

Input Arguments
location — Files or folders to include in datastore
path | DsFileSet object

 spreadsheetDatastore

1-2649

Files or folders included in the datastore, specified as a path or a DsFileSet object.

• path — Specify the path as a character vector, cell array of character vectors, string
scalar, or a string array, containing the location of files or folders that are local or
remote.

• Local files or folders — Specify location as a local path to files or folders. If the
files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the
datastore. You can use the wildcard character (*) when specifying the local path.
This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify location to be the full paths of the files or
folders as an internationalized resource identifier (IRI) of the form hdfs:///
path_to_file. For more information, see “Work with Remote Data”.

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats
and ignores any other format. To specify a custom list of file extensions to include in your
datastore, see the FileExtensions property.

The spreadsheetDatastore function supports these
extensions: .xls, .xlsx, .xlsm, .xltx, and .xltm.
Example: 'file1.xlsx'
Example: '../dir/data/file1.xlsx'
Example: {'C:\dir\data\file1.xlsx','C:\dir\data\file2.xlsx'}
Example: 's3://bucketname/path_to_files/*.xls'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ssds = spreadsheetDatastore('C:\dir
\spreadsheetdata','FileExtensions',{'.xls','.xlsm'})

1 Alphabetical List

1-2650

IncludeSubfolders — Subfolder inclusion flag
true or false | 0 or 1

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true, false, 0, or 1. Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

If you do not specify 'IncludeSubfolders', then the default value is false.
Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Spreadsheet file extensions
character vector | cell array of character vectors | string scalar | string array

Spreadsheet file extensions, specified as the comma-separated pair consisting of
'FileExtensions' and a character vector, cell array of character vectors, string scalar,
or string array.

• If you do not specify 'FileExtensions', then spreadsheetDatastore
automatically includes all files with .xls, .xlsx, .xlsm, .xltx, and .xltm
extensions in the specified path.

• If you want to include spreadsheets with non-standard file extensions in the
SpreadsheetDatastore, then specify those extensions explicitly.

• If you want to create a SpreadsheetDatastore for files without any extensions, then
specify 'FileExtensions' as an empty character vector, ''.

Example: 'FileExtensions',''
Example: 'FileExtensions','.xls'
Example: 'FileExtensions',{'.xlsx','.xlsm'}
Data Types: char | cell | string

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating

 spreadsheetDatastore

1-2651

system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

TextType — Output data type of text variables
'char' (default) | 'string'

1 Alphabetical List

1-2652

Output data type of text variables, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'.

• If the output table from the read, readall, or preview functions contains text
variables, then 'TextType' specifies the data type of those variables.

• If 'TextType' is 'char', then the output is a cell array of character vectors.
• If 'TextType' is 'string', then the output has type string.

Data Types: char | string

In addition to these name-value pairs, you also can specify any of the properties on this
page as name-value pairs. Except for the Files property.

Properties
SpreadsheetDatastore properties describe the format of the files in a datastore object,
and control how the data is read from the datastore. You can specify the value of
SpreadsheetDatastore properties using name-value pair arguments when you create
the datastore object. Except for the Files property. To view or modify a property after
creating the object, use the dot notation.

File Properties

Files — Files included in datastore
cell array of character vectors | string array

Files included in the datastore, resolved as a cell array of character vectors or a string
array, where each character vector or string is a full path to a file. The location
argument in the spreadsheetDatastore and datastore functions define these files.

The first file specified in the cell array determines the variable names and format
information for all files in the datastore.
Example: {'C:\dir\data\file1.xls';'C:\dir\data\file2.xls'}
Data Types: cell | string

NumHeaderLines — Number of lines to skip
0 (default) | positive integer

 spreadsheetDatastore

1-2653

Number of lines to skip at the beginning of each sheet when reading, specified as a
positive integer. When you also specify the Range property, NumHeaderLines is the
number of lines to skip at the beginning of the specified block of data.
Data Types: double

Sheets — Sheets in files
'' (default) | sheet names | sheet indices

Sheets in files, specified as a character vector, cell array of character vectors, string
scalar, or string array containing sheet names, or as a numeric vector of sheet indices.
The empty character vector '' indicates that all sheets in the files are included.
Example: {'sheet1','sheet7'}
Example: [3 5 7]
Data Types: char | cell | string | double

Range — Row and column bounds
'' (default) | character vector | string scalar

Row and column bounds, specified as a character vector or string scalar that defines a
rectangular block of data in the sheets. The empty character vector '' indicates that the
bounds are the beginning of the file and the end of the data.
Example: 'B1:T7'
Example: 'A:C'
Data Types: char | string

ReadVariableNames — Indicator for reading variable names
true (default) | false | 1 | 0

Indicator for reading the first row of the first file in the datastore as variable names,
specified as either true (1) or false (0).

• If true, then the first nonheader row of the first file determines the variable names for
the data.

• If false, then the first nonheader row of the first file contains the first row of data.
Default variable names are assigned as Var1, Var2, and so on.

Data Types: logical | double

1 Alphabetical List

1-2654

VariableNames — Names of variables
character vector | cell array of character vectors | string scalar | string array

Names of variables in the datastore, specified as a character vector, cell array of
character vectors, string scalar, or string array. Specify the variable names in the order in
which they appear in the files. If you do not specify the variable names, the datastore
detects them from the first nonheader line in the first file. You can specify
VariableNames with a character vector or string scalar, however the datastore converts
and stores the property value to a cell array of character vectors. When modifying the
VariableNames property, the number of new variable names must match the number of
original variable names.

If ReadVariableNames is false, then VariableNames defaults to
{'Var1','Var2', ...}.
Example: {'Time','Date','Quantity'}
Data Types: char | cell | string

VariableTypes — Variable types
'double' | 'char' | 'string' | 'categorical' | 'datetime'

Variable types, specified as 'double', 'char', 'string', 'categorical', or
'datetime', which indicates the type of each variable when reading the data.

The list of variable types corresponds with the variables in VariableNames. Types
double, char, and datetime can be automatically detected from the data. You can
specify VariableTypes as a character vector or string scalar, however
spreadsheetDatastore automatically converts it to a cell array of character vectors or
a string array.
Example: {'char','categorical'}
Data Types: char | cell | string

Properties for preview, read, readall Table

SelectedVariableNames — Variables to read
character vector | cell array of character vectors | string scalar | string array

Variables to read from the file, specified as a character vector, cell array of character
vectors, string scalar, or string array. Each character vector or string contains the name
of one variable. You can specify the variable names in any order. You can specify
SelectedVariableNames with a character vector or string scalar, however

 spreadsheetDatastore

1-2655

spreadsheetDatastore automatically converts it to a cell array of character vectors or
a string array.
Example: {'Var3','Var7','Var4'}
Data Types: char | cell | string

SelectedVariableTypes — Selected variable types
'double' | 'char' | 'string' | 'categorical' | 'datetime'

Selected variable types, specified as 'double', 'char', 'string', 'categorical', or
'datetime', which indicates the type of each selected variable when reading the data.
The list of variable types corresponds with the variables in SelectedVariableNames.
Types double, char, and datetime can be automatically detected from the data. You
can specify SelectedVariableTypes as a character vector or string scalar, however it
is automatically converted to a cell array of character vectors or string array.
Example: {'double','datetime'}
Data Types: char | cell | string

ReadSize — Amount of data to read
'file' (default) | 'sheet' | positive integer scalar

Amount of data to read in a call to the read function, specified as 'file' or 'sheet', or
as a positive integer scalar.

• If ReadSize is 'file', then each call to read reads all the data one file at a time.
• If ReadSize is 'sheet', then each call to read reads all the data one sheet at a time.
• If ReadSize is a positive integer, then each call to read reads the rows specified by

ReadSize, or fewer if it reaches the end of the data.

When you change ReadSize from an integer scalar to 'file' or 'sheet', or
conversely, the datastore resets using the reset function.
Data Types: char | string | double

Object Functions
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore

1 Alphabetical List

1-2656

preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state
sheetnames Query sheet names from datastore
transform Transform datastore
combine Combine data from multiple datastores

Examples

Create SpreadsheetDatastore Object

ssds = datastore('airlinesmall_subset.xlsx')

ssds =

 SpreadsheetDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall_subset.xlsx'
 }
 Sheets: ''
 Range: ''

 Sheet Format Properties:
 NumHeaderLines: 0
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 VariableTypes: {'double', 'double', 'double' ... and 26 more}

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedVariableTypes: {'double', 'double', 'double' ... and 26 more}
 ReadSize: 'file'

 spreadsheetDatastore

1-2657

Read Spreadsheet File

Create a SpreadsheetDatastore object containing the file
airlinesmall_subset.xlsx.

ssds = spreadsheetDatastore('airlinesmall_subset.xlsx')

ssds =

 SpreadsheetDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall_subset.xlsx'
 }
 Sheets: ''
 Range: ''

 Sheet Format Properties:
 NumHeaderLines: 0
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 VariableTypes: {'double', 'double', 'double' ... and 26 more}

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedVariableTypes: {'double', 'double', 'double' ... and 26 more}
 ReadSize: 'file'

Display the sheet names for the file. The file contains one sheet per year.

sheetnames(ssds,1)

ans =

 Columns 1 through 7

 '1996' '1997' '1998' '1999' '2000' '2001' '2002'

 Columns 8 through 13

 '2003' '2004' '2005' '2006' '2007' '2008'

1 Alphabetical List

1-2658

Specify the variable FlightNum in the second sheet as the data of interest, and preview
the first eight rows.

ssds.Sheets = 2;
ssds.SelectedVariableNames = 'FlightNum';
preview(ssds)

ans =

 FlightNum

 1014
 1201
 702
 1184
 1310
 1759
 1242
 1558

Read only the first three rows of variables DepTime and ArrTime in the first sheet.

ssds.ReadSize = 3;
ssds.Sheets = 1;
ssds.SelectedVariableNames = {'DepTime','ArrTime'};
read(ssds)

ans =

 DepTime ArrTime
 _______ _______

 2117 2305
 1252 1511
 1441 1708

Read all of sheets four, five, and six.

 spreadsheetDatastore

1-2659

ssds.Sheets = 4:6;
readall(ssds);

Alternatives
You also can create a SpreadsheetDatastore object using the datastore function.
For example, ds = datastore(location,'Type','spreadsheet') creates a
datastore from a collection of files specified by location.

See Also
datastore | mapreduce | readtable | tall

Topics
“Getting Started with Datastore”
“Work with Remote Data”
“Set Up Datastore for Processing on Different Machines or Clusters”

Introduced in R2016a

1 Alphabetical List

1-2660

subset
Package: matlab.io.datastore

Create subset of datastore or file-set

Syntax
subds = subset(ds,indices)

Description
subds = subset(ds,indices) returns a subset containing files corresponding to
indices. The subset subds is of the same type as the input.

• if the input ds is a datastore, then the output outds is a datastore of the same type.
• if the input ds is a DsFileSet object, then the output subds is also a DsFileSet

object.

Examples

Create Subset of ImageDatastore

Make an image datastore object and then create a subset of that image datastore.

Create an image datastore imds for all the image files in a sample folder. Then, display
the Files property of imds.

folders = fullfile(matlabroot,'toolbox','matlab',{'demos','imagesci'});
exts = {'.jpg','.png','.tif'};
imds = imageDatastore(folders,'LabelSource','foldernames','FileExtensions',exts);
imds.Files

ans =

 subset

1-2661

 8×1 cell array

 {'...\matlab\toolbox\matlab\demos\cloudCombined.jpg'}
 {'...\matlab\toolbox\matlab\demos\example.tif' }
 {'...\matlab\toolbox\matlab\demos\landOcean.jpg' }
 {'...\matlab\toolbox\matlab\demos\ngc6543a.jpg' }
 {'...\matlab\toolbox\matlab\demos\street1.jpg' }
 {'...\matlab\toolbox\matlab\demos\street2.jpg' }
 {'...\matlab\toolbox\matlab\imagesci\corn.tif' }
 {'...\matlab\toolbox\matlab\imagesci\peppers.png' }

Create a subset datastore subimds that contains the first four files of imds and examine
the Files property of subimds.

indices = 1:4;
subimds = subset(imds,indices);
subimds.Files

ans =

 4×1 cell array

 {'...\matlab\toolbox\matlab\demos\cloudCombined.jpg'}
 {'...\matlab\toolbox\matlab\demos\example.tif' }
 {'...\matlab\toolbox\matlab\demos\landOcean.jpg' }
 {'...\matlab\toolbox\matlab\demos\ngc6543a.jpg' }

Create Subset Datastore with Randomly Selected Files

Make an image datastore, and then create subset datastore containing only a specified
percentage of files, randomly selected from the original datastore.

Create imageDatastore for all the image files in a sample folder and display the Files
property. This datastore contains 8 files.

folders = fullfile(matlabroot,'toolbox','matlab',{'demos','imagesci'});
exts = {'.jpg','.png','.tif'};
imds = imageDatastore(folders,'LabelSource','foldernames','FileExtensions',exts);
imds.Files

ans =

 8×1 cell array

1 Alphabetical List

1-2662

 {'...\matlab\toolbox\matlab\demos\cloudCombined.jpg'}
 {'...\matlab\toolbox\matlab\demos\example.tif' }
 {'...\matlab\toolbox\matlab\demos\landOcean.jpg' }
 {'...\matlab\toolbox\matlab\demos\ngc6543a.jpg' }
 {'...\matlab\toolbox\matlab\demos\street1.jpg' }
 {'...\matlab\toolbox\matlab\demos\street2.jpg' }
 {'...\matlab\toolbox\matlab\imagesci\corn.tif' }
 {'...\matlab\toolbox\matlab\imagesci\peppers.png' }

Create a set of indices that represents randomly selected subset containing 60% of the
files.

nFiles = length(imds.Files);
RandIndices = randperm(nFiles);
nSixtyPercent = round(0.6*nFiles);
indices = RandIndices(1:nSixtyPercent)

indices =

 8 6 4 5 1

Create a subset datastore submids using indices and examine its Files property.

subimds = subset(imds,indices);
subimds.Files

ans =

 5×1 cell array

 {'...\matlab\toolbox\matlab\imagesci\peppers.png' }
 {'...\matlab\toolbox\matlab\demos\street2.jpg' }
 {'...\matlab\toolbox\matlab\demos\ngc6543a.jpg' }
 {'...\matlab\toolbox\matlab\demos\street1.jpg' }
 {'...\matlab\toolbox\matlab\demos\cloudCombined.jpg'}

Input Arguments
ds — Input datastore or file-set
ImageDatastore object | DsFileSet object

Input datastore or file-set, specified as ImageDatastore object or a DsFileSet object.

 subset

1-2663

• To create an ImageDatastore object, use imageDatastore.
• To create a DsFileSet object, use matlab.io.datastore.DsFileSet.

indices — Indices of files to include in subset
vector of indices | logical vector

Indices of files to include in subset, specified as a vector of indices or a logical vector.

• The vector of indices must contain the indices of files to include in the subset subds.
• The logical vector must be of the same length as the number of files in the input ds.

The subset method creates a subset subds containing files corresponding to the
elements in the logical vector that have a value of true.

Elements of indices must be unique.
Data Types: double | logical

See Also
DsFileSet | ImageDatastore | splitEachLabel

Introduced in R2019a

1 Alphabetical List

1-2664

tabularTextDatastore
Datastore for tabular text files

Description
Use a TabularTextDatastore object to manage large collections of text files containing
column-oriented or tabular data where the collection does not necessarily fit in memory.
Tabular data is data that is arranged in a rectangular fashion with each row having the
same number of entries. You can create a TabularTextDatastore object using the
tabularTextDatastore function, specify its properties, and then import and process
the data using object functions.

Creation

Syntax
ttds = tabularTextDatastore(location)
ttds = tabularTextDatastore(location,Name,Value)

Description
ttds = tabularTextDatastore(location) creates a datastore from the collection
of data specified by location.

ttds = tabularTextDatastore(location,Name,Value) specifies additional
parameters and properties for ttds using one or more name-value pair arguments. For
example, tabularTextDatastore(location,'FileExtensions',
{'.txt','.csv'}) creates a datastore from only the files in location with
extensions .txt and .csv.

 tabularTextDatastore

1-2665

Input Arguments
location — Files or folders included in datastore
path | DsFileSet object

Files or folders included in the datastore, specified as a path or a DsFileSet object.

• path — Specify the path as a character vector, cell array of character vectors, string
scalar, or a string array, containing the location of files or folders that are local or
remote.

• Local files or folders — Specify location as a local path to files or folders. If the
files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the
datastore. You can use the wildcard character (*) when specifying the local path.
This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify location to be the full paths of the files or
folders as an internationalized resource identifier (IRI) of the form hdfs:///
path_to_file. For more information, see “Work with Remote Data”.

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats
and ignores any other format. To specify a custom list of file extensions to include in your
datastore, see the FileExtensions property.

The tabularTextDatastore function supports these
extensions: .txt, .csv, .dat, .dlm, .asc, .text, or no extension.
Example: 'file1.csv'
Example: '../dir/data/file1'
Example: {'C:\dir\data\file1.csv','C:\dir\data\file2.dat'}
Example: 'C:\dir\data*.text'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-2666

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ttds = tabularTextDatastore('C:\dir
\textdata','FileExtensions',{'.csv','.txt'})

IncludeSubfolders — Subfolder inclusion flag
true or false | 0 or 1

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true, false, 0, or 1. Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

When you do not specify 'IncludeSubfolders', then the default value is false.
Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Text file extensions
character vector | cell array of character vectors | string scalar | string array

Text file extensions, specified as the comma-separated pair consisting of
'FileExtensions' and a character vector, cell array of character vectors, string scalar,
or string array. The specified extensions do not require a supported format. If you want to
include unsupported extensions, then specify all extensions. Use empty quotes '' to
represent files without extensions.
Example: 'FileExtensions','.txt'
Example: 'FileExtensions',{'.text','.csv'}
Data Types: char | cell | string

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

 tabularTextDatastore

1-2667

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

TextType — Output data type of text variables
'char' (default) | 'string'

Output data type of text variables, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'. If the output table from the read,
readall, or preview functions contains text variables, then 'TextType' specifies the
data type of those variables for TabularTextDatastore. If 'TextType' is 'char',

1 Alphabetical List

1-2668

then the output is a cell array of character vectors. If 'TextType' is 'string', then the
output has type string.
Data Types: char | string

DatetimeType — Type for imported date and time data
'datetime' (default) | 'text'

Type for imported date and time data, specified as the comma-separated pair consisting
of 'DatetimeType' and one of these values: 'datetime' or 'text'.

Value Type for Imported Date and Time Data
'datetime' MATLAB datetime data type

For more information, see datetime.
'text' If 'DatetimeType' is specified as 'text', then the type

for imported date and time data depends on the value
specified in the 'TextType' property:

• If 'TextType' is 'char', then the
tabularTextdatastore imports dates as a cell array
of character vectors.

• If 'TextType' is 'string', then the
tabularTextdatastore imports dates as an array of
strings.

If the specified TextscanFormats property contains a %D, then the
tabularTextdatastore ignores the value specified in DatetimeType.
Example: 'DatetimeType','datetime'
Data Types: char | string

DurationType — Output data type of duration data
'duration' (default) | 'text'

Output data type of duration data, specified as the comma-separated pair consisting of
'DurationType' and either 'duration' or 'text'.

 tabularTextDatastore

1-2669

Value Type for Imported Duration Data
'duration' MATLAB duration data type

For more information, see duration.
'text' If 'DurationType' is specified as 'text', then the type

for imported duration data depends on the value specified
in the 'TextType' parameter:

• If 'TextType' is 'char', then the importing function
returns duration data as a cell array of character
vectors.

• If 'TextType' is 'string', then the importing
function returns duration data as an array of strings.

Data Types: char | string

DatetimeLocale — Locale to interpret dates
'en_US' (default) | character vector | string scalar

Locale to interpret dates, specified as a character vector or string scalar. The
DatetimeLocale value determines how the importing function interprets text that
represents dates and times.

When specifying the DatetimeLocale, use the form xx_YY, where xx is a lowercase ISO
639-1 two-letter code that specifies a language, and YY is an uppercase ISO 3166-1
alpha-2 code that specifies a country.

This table lists some common values for the locale.

Locale Language Country
'de_DE' German Germany
'en_GB' English United Kingdom
'en_US' English United States
'es_ES' Spanish Spain
'fr_FR' French France
'it_IT' Italian Italy
'ja_JP' Japanese Japan

1 Alphabetical List

1-2670

Locale Language Country
'ko_KR' Korean Korea
'nl_NL' Dutch Netherlands
'zh_CN' Chinese (simplified) China

Note The Locale value determines how input values are interpreted. The display format
and language is specified by the Locale option in the Datetime format section of the
Preferences panel. To change the default datetime locale, see “Set Command Window
Preferences”.

Data Types: char | string

In addition to these name-value pairs, you also can specify the properties on this page as
name-value pairs, with the exception of the Files property.

Properties
TabularTextDatastore properties describe the files associated with a
TabularTextDatastore object. Specifically, the properties describe the format of the
data in the files and control how the data should be read from the datastore. When you
create a TabularTextDatastore object, the datastore function uses the first file in the
Files property to determine the values of the properties. With the exception of the
Files property, you can specify the value of TabularTextDatastore properties using
name-value pair arguments when you create the datastore object. To view or modify a
property after creating the object, use the dot notation:

ds = datastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.MissingValue = 0;

File Properties

Files — Files included in datastore
cell array of character vectors | string array

Files included in the datastore, resolved as a cell array of character vectors or a string
array, where each character vector or string is a full path to a file. The location
argument in the tabularTextDatastore and datastore functions define these files.

 tabularTextDatastore

1-2671

The first file specified by the Files property determines the variable names and format
information for all files in the datastore.

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Example: {'C:\dir\data\mydata1.csv';'C:\dir\data\mydata2.csv'}
Data Types: cell | string

FileEncoding — File encoding
'UTF-8' (default) | 'US-ASCII''Macintosh' | ...

File encoding, specified as a character vector or a string scalar like one of these values.

'IBM866' 'ISO-8859-1' 'windows-847'
'KOI8-R' 'ISO-8859-2' 'windows-1250'
'KOI8-U' 'ISO-8859-3' 'windows-1251'
'Macintosh' 'ISO-8859-4' 'windows-1252'
'US-ASCII' 'ISO-8859-5' 'windows-1253'
'UTF-8' 'ISO-8859-6' 'windows-1254'
 'ISO-8859-7' 'windows-1255'
 'ISO-8859-8' 'windows-1256'
 'ISO-8859-9' 'windows-1257'
 'ISO-8859-11' 'windows-1258'
 'ISO-8859-13'
 'ISO-8859-15'

If each file in the datastore fits into memory, then FileEncoding also can be one of these
values.

'Big5' 'EUC-KR' 'GB18030' 'Shift_JIS'
'Big5-HKSCS' 'EUC-JP' 'GB2312' 'windows-949'
'CP949' 'EUC-TW' 'GBK'

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.

1 Alphabetical List

1-2672

Data Types: char | string

ReadVariableNames — Read variable names
true | false

Read variable names, specified as a logical true or false.

• If unspecified, the tabularTextDatastore function detects the presence of variable
names automatically.

• If true, then the first nonheader row of the first file determines the variable names for
the data.

• If false, then the first nonheader row of the first file contains the first row of data.
The data is assigned default variable names, Var1, Var2, and so on.

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Data Types: logical

VariableNames — Names of variables
cell array of character vectors | string array

Names of variables in the datastore, specified as a cell array of character vectors or a
string array. Specify the variable names in the order in which they appear in the files. If
you do not specify the variable names, they are detected from the first nonheader line in
the first file of the datastore. When modifying the VariableNames property, the number
of new variable names must match the number of original variable names.

If ReadVariableNames is false, then VariableNames defaults to
{'Var1','Var2', ...}.
Example: {'Time','Name','Quantity'}
Data Types: cell | string

Text Format Properties

NumHeaderLines — Number of lines to skip
non-negative integer

Number of lines to skip at the beginning of the file, specified as a nonnegative integer. If
unspecified, the tabularTextDatastore function detects the number of lines to skip
automatically.

 tabularTextDatastore

1-2673

The tabularTextDatastore function ignores the specified number of header lines
before reading the variable names or data.

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Data Types: double

Delimiter — Field delimiter characters
character vector | cell array of character vectors | string scalar | string array

Field delimiter characters, specified as a character vector, cell array of character vectors,
string scalar, or string array. Specify multiple delimiters in a cell array of character
vectors or a string array. If unspecified, the tabularTextDatastore function detects
the delimiter automatically.
Example: '|'
Example: {';','*'}

Repeated delimiter characters in a file are interpreted as separate delimiters with empty
fields between them. If unspecified, the read function detects the delimiter automatically
by default.

When you specify one of the following escape sequences as a delimiter, it is converted to
the corresponding control character.

\b Backspace
\n Newline
\r Carriage return
\t Tab
\\ Backslash (\)

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Data Types: char | cell | string

RowDelimiter — Row delimiter character
\r\n (default) | character vector | string scalar

Row delimiter character, specified as a character vector or string scalar that must be
either a single character or one of '\r', '\n', or '\r\n'.

1 Alphabetical List

1-2674

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Example: ':'
Data Types: char | string

TreatAsMissing — Numeric values to treat as missing
'' (default) | character vector | cell array of character vectors | string scalar | string
array

Numeric values to treat as missing values, specified as a single character vector, cell
array of character vectors, string scalar, or string array. Values specified as
TreatAsMissing are substituted with the value defined in the MissingValue property.
For instance, if MissingValue is defined to be a NaN, and the TreatAsMissing is
specified as 'NA'. Then, in the imported data, all occurrences of 'NA' are replaced by
NaN.

This option only applies to numeric fields. Also, this property is equivalent to the
TreatAsEmpty name-value pair argument for the textscan function.

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Example: 'NA'
Example: '-99'
Example: {'-',''}
Data Types: char | cell | string

MissingValue — Value for missing numeric fields
NaN (default) | scalar

Value for missing numeric fields in delimited text files, specified as a scalar. This property
is equivalent to the EmptyValue name-value pair argument for the textscan function.
Data Types: double

Advanced Text Format Properties

TextscanFormats — Data field format
cell array of character vectors | string array

 tabularTextDatastore

1-2675

Data field format, specified as a cell array of character vectors or a string array, where
each character vector or string contains one conversion specifier.

When you specify or modify the TextscanFormats property, you can use the same
conversion specifiers that the textscan function accepts for the formatSpec argument.
Valid values for TextscanFormats include conversion specifiers that skip fields using an
asterisk (*) character and ones that skip literal text. The number of conversion specifiers
must match the number of variables in the VariableNames property.

• If the value of TextscanFormats includes conversion specifiers that skip fields using
asterisk characters (*), then the value of the SelectedVariableNames property
automatically updates. MATLAB uses the %*q conversion specifier to skip fields
omitted by the SelectedVariableNames property and treats the field contents as
literal character vectors. For fixed-width files, indicate a skipped field using the
appropriate conversion specifier along with the field width. For example, %*52c skips
a field that contains 52 characters.

• If you do not specify a value for TextscanFormats, then datastore determines the
format of the data fields by scanning text from the first nonheader line in the first file
of the datastore.

Example: {'%s','%s','%f'}
Data Types: cell | string

ExponentCharacters — Exponent characters
'eEdD' (default) | character vector | string scalar

Exponent characters, specified as a character vector or string scalar. The default
exponent characters are e, E, d, and D.
Data Types: char | string

CommentStyle — Style of comments
'' (default) | character vector | cell array of character vectors | string scalar | string
array

Style of comments in the file, specified as a character vector, cell array of character
vectors, string scalar, or string array.

For example, specify '%' to ignore characters following the text on the same line. Specify
{'/*','*/'} to ignore characters between the text.

1 Alphabetical List

1-2676

When reading from a TabularTextDatastore, the read function checks for comments
only at the start of each field, not within a field.

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Example: 'CommentStyle',{'/*', '*/'}
Data Types: char | cell | string

Whitespace — White-space characters
' \b\t' (default) | character vector | string scalar

White-space characters, specified as a character vector or a string scalar of one or more
characters.

When you specify one of the following escape sequences as any white-space character, the
datastore function converts that sequence to the corresponding control character.

\b Backspace
\n Newline
\r Carriage return
\t Tab
\\ Backslash (\)

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.
Example: ' \b\t'
Data Types: char | string

MultipleDelimitersAsOne — Multiple delimiter handling
0 (false) (default) | 1 (true)

Multiple delimiter handling, specified as either true or false. If true, then datastore
treats consecutive delimiters as a single delimiter. Repeated delimiters separated by
white-space are also treated as a single delimiter.

When you change the value of this property, the datastore function reevaluates the values
of the TabularTextDatastore properties.

 tabularTextDatastore

1-2677

Properties That Control Table Returned by preview, read, readall

SelectedVariableNames — Variables to read
cell array of character vectors | string array

Variables to read from the file, specified as a cell array of character vectors or a string
array, where each character vector or string contains the name of one variable. You can
specify the variable names in any order.
Example: {'Var3','Var7','Var4'}
Data Types: cell | string

SelectedFormats — Formats of selected variables
cell array of character vectors | string array

Formats of the selected variables to read, specified as a cell array of character vectors or
a string array, where each character vector or string contains one conversion specifier.
The variables to read are indicated by the SelectedVariableNames property. The
number of character vectors or strings in SelectedFormats must match the number of
variables to read.

You can use the same conversion specifiers that the textscan function accepts, including
specifiers that skip literal text. However, you cannot use a conversion specifier that skips
a field. That is, the conversion specifier cannot include an asterisk character (*).
Example: {'%d','%d'}
Data Types: cell | string

ReadSize — Amount of data to read
20000 (default) | positive scalar | 'file'

Amount of data to read in a call to the read function, specified as a positive scalar or
'file'.

• If ReadSize is a positive integer, then each call to read reads at most ReadSize
rows.

• If ReadSize is 'file', then each call to read reads all of the data in one file.

When you change ReadSize from a numeric scalar to 'file' or vice versa, MATLAB
resets the datastore to the state where no data has been read from it.
Data Types: double | char | string

1 Alphabetical List

1-2678

TextType — Output data type of text variables
'char' (default) | 'string'

Output data type of text variables, specified as 'char' or 'string'. TextType specifies
the data type of text variables formatted with %s, %q, or [...].

• If TextType is 'char', then the output is a cell array of character vectors.
• If TextType is 'string', then the output has type string.

Data Types: char | string

Object Functions
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state
transform Transform datastore
combine Combine data from multiple datastores

Examples

Create TabularTextDatastore Object

Create a TabularTextDatastore object containing the text file airlinesmall.csv.

ttds = tabularTextDatastore('airlinesmall.csv')

ttds =

 TabularTextDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'
 }

 tabularTextDatastore

1-2679

 FileEncoding: 'UTF-8'
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: ''
 MissingValue: NaN

 Advanced Text Format Properties:
 TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
 ReadSize: 20000 rows

Select Variables to Read

Create a datastore from the sample file airlinesmall.csv, which contains tabular
data.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');

View the variables in the datastore.

ds.VariableNames

ans = 1x29 cell array
 Columns 1 through 5

 {'Year'} {'Month'} {'DayofMonth'} {'DayOfWeek'} {'DepTime'}

 Columns 6 through 9

 {'CRSDepTime'} {'ArrTime'} {'CRSArrTime'} {'UniqueCarrier'}

1 Alphabetical List

1-2680

 Columns 10 through 13

 {'FlightNum'} {'TailNum'} {'ActualElapsedTime'} {'CRSElapsedTime'}

 Columns 14 through 18

 {'AirTime'} {'ArrDelay'} {'DepDelay'} {'Origin'} {'Dest'}

 Columns 19 through 22

 {'Distance'} {'TaxiIn'} {'TaxiOut'} {'Cancelled'}

 Columns 23 through 25

 {'CancellationCode'} {'Diverted'} {'CarrierDelay'}

 Columns 26 through 28

 {'WeatherDelay'} {'NASDelay'} {'SecurityDelay'}

 Column 29

 {'LateAircraftDelay'}

Modify the SelectedVariableNames property to specify the variables of interest.

ds.SelectedVariableNames = {'Year','Month','Cancelled'};

Alternatively, you can specify the variables of interest when you create the datastore.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA','SelectedVariableNames',{'Year','Month','Cancelled'});

Specify Format of Data to Read

Create a datastore from the sample file airlinesmall.csv, which contains tabular
data.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');

Specify the variables of interest.

 tabularTextDatastore

1-2681

ds.SelectedVariableNames = {'Year','Month','UniqueCarrier'};

View the SelectedFormats property.

ds.SelectedFormats

ans = 1x3 cell array
 {'%f'} {'%f'} {'%q'}

The SelectedFormats property indicates that the Year and Month variables will be
interpreted as columns of floating-point values, and the UniqueCarrier variable will be
interpreted as a column of text.

Specify that the first two variables should be read as signed integers, and the third
variable should be read as a categorical value by modifying the SelectedFormats
property.

ds.SelectedFormats = {'%d','%d','%C'};

Preview the data.

T = preview(ds)

T=8×3 table
 Year Month UniqueCarrier
 ____ _____ _____________

 1987 10 PS
 1987 10 PS
 1987 10 PS
 1987 10 PS
 1987 10 PS
 1987 10 PS
 1987 10 PS
 1987 10 PS

Limitations
• Datetime data containing day, month, or time zone names in a language foreign to the

en_US locale are not supported. For unrecognized datetime formats, specify the
format using the TextscanFormats parameter.

1 Alphabetical List

1-2682

Alternatives
You also can create a TabularTextDatastore object using the datastore function.
For example, ds = datastore(location,'Type','tabulartext') creates a
datastore from a collection of files specified by location.

See Also
datastore | mapreduce | readtable | reset | tall | textscan

Topics
“Read and Analyze Large Tabular Text File”
“Getting Started with Datastore”
“Work with Remote Data”
“Set Up Datastore for Processing on Different Machines or Clusters”

Introduced in R2014b

 tabularTextDatastore

1-2683

TallDatastore
Datastore for checkpointing tall arrays

Description
TallDatastore objects are for recreating tall arrays from binary files written to disk
by the write function. You can use the object to recreate the original tall array, or you
can access and manage the data by specifying TallDataStore properties and using the
object functions.

Creation
Create TallDatastore objects using the datastore function. For example, tds =
datastore(location,'Type','tall') creates a datastore from a collection of files
specified by location.

Properties
Files — Files included in datastore
character vector | cell array of character vectors | string scalar | string array

Files included in the datastore, resolved as a character vector, cell array of character
vectors, string scalar, or string array, where each character vector or string is a full path
to a file.

The location argument of the datastore function defines the Files property when
the datastore is created. The location argument contains full paths to files on a local
file system, a network file system, or a supported remote location such as Amazon S3,
Windows Azure Blob Storage, and HDFS. For more information, see “Work with Remote
Data”.

The files must be either MAT-files or Sequence files generated by the write function.
Example: {'C:\dir\data\file1.ext';'C:\dir\data\file2.ext'}

1 Alphabetical List

1-2684

Example: {'s3://bucketname/path_to_files/your_file01.ext';'s3://
bucketname/path_to_files/your_file02.ext'}

Data Types: char | cell | string

FileType — File type
'mat' | 'seq'

File type, specified as either 'mat' for MAT-files or 'seq' for sequence files. By default,
the type of file in the provided location determines the FileType.
Data Types: char | string

ReadSize — Maximum number of data rows to read
positive integer

Maximum number of data rows to read in a call to the read or preview functions,
specified as a positive integer. When the datastore function creates a TallDatastore,
it determines and assigns the best possible value for ReadSize.

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

 TallDatastore

1-2685

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

Object Functions
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state
transform Transform datastore
combine Combine data from multiple datastores

Examples

1 Alphabetical List

1-2686

Recreate tall Arrays from Files Saved Using write Function

Use TallDatastore objects to reconstruct tall arrays directly from files on disk rather
than re-executing all of the commands that produced the tall array. Create a tall array and
save it to disk using write function. Retrieve the tall array using datastore and then
convert it back to tall.

Create a simple tall double.

t = tall(rand(500,1))

t =

 500×1 tall double column vector

 0.8147
 0.9058
 0.1270
 0.9134
 0.6324
 0.0975
 0.2785
 0.5469
 :
 :

Save the results to a new folder named ExampleData on the C:\ disk. (You might want
to specify a different write location, especially if you are not using a Windows®
computer.)

location = 'C:\ExampleData';
write(location, t);

Writing tall data to folder C:\ExampleData
Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0 sec

To recover the tall array that was written to disk, first create a new datastore that
references the same directory. Then convert the datastore into a tall array.

tds = datastore(location);
t1 = tall(tds)

 TallDatastore

1-2687

t1 =

 M×1 tall double column vector

 0.8147
 0.9058
 0.1270
 0.9134
 0.6324
 0.0975
 0.2785
 0.5469
 :
 :

See Also
datastore | write

Topics
“Set Up Datastore for Processing on Different Machines or Clusters”

Introduced in R2016b

1 Alphabetical List

1-2688

transform
Package: matlab.io

Transform datastore

Syntax
dsnew = transform(ds,@fcn)
dsnew = transform(ds,@fcn,'IncludeInfo',IncludeInfo)

Description
dsnew = transform(ds,@fcn) transforms an input datastore ds using the
transformation function fcn and returns the transformed datastore dsnew.

dsnew = transform(ds,@fcn,'IncludeInfo',IncludeInfo) uses an alternative
definition of the transform function fcn. The alternative definition enables you to use the
additional information returned by the read function of the datastore.

Examples

Apply Transformation to Collection of Images

Create a datastore for a collection of images and apply the same transformation to all the
images in the datastore. For instance, resize all the images in a collection to a specified
target size.

Create an ImageDatastore with two images.

imds = imageDatastore({'street1.jpg','peppers.png'})

imds =
 ImageDatastore with properties:

 transform

1-2689

 Files: {
 'B:\matlab\toolbox\matlab\demos\street1.jpg';
 'B:\matlab\toolbox\matlab\imagesci\peppers.png'
 }
 AlternateFileSystemRoots: {}
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage

Read all the images. Notice that the datastore contains images of different sizes.

img1 = read(imds); % reads the first image
img2 = read(imds); % reads the next image
whos img1 img2

 Name Size Bytes Class Attributes

 img1 480x640x3 921600 uint8
 img2 384x512x3 589824 uint8

Transform all the images in the datastore to a specified target size.

targetSize = [224,224];
imdsReSz = transform(imds,@(x) imresize(x,targetSize));

Read the images and display their sizes.

imgReSz1 = read(imdsReSz);
imgReSz2 = read(imdsReSz);
whos imgReSz1 imgReSz2

 Name Size Bytes Class Attributes

 imgReSz1 224x224x3 150528 uint8
 imgReSz2 224x224x3 150528 uint8

Display the resized images.

subplot(121); imshow(imgReSz1); axis on; title('Resized Street1.jpg');
subplot(122); imshow(imgReSz2); axis on; title('Resized peppers.png');

1 Alphabetical List

1-2690

Input Arguments
ds — Input datastore
datastore

Input datastore. For a complete list of built-in datastores, see “Select Datastore for File
Format or Application”. You can also specify a custom datastore.

@fcn — Function that transforms data
function handle

 transform

1-2691

Function that transforms the data, specified as a function handle. The function takes data
as an input and returns the transformed data, based on the transformations defined in
fcn.

The transform function must have this signature and dataIn must be of the same form as
the data that is returned by using the read function.

function dataOut = transformFcn(dataIn)
..
end

Alternatively, you can define your transform function fcn to use additional information
about the data returned by the read function. To use this alternative definition, you must
specify the value of IncludeInfo to be true. In this case, the transformation function
must have this signature.

function [dataOut,infoOut] = transformFcn(dataIn,infoIn)
..
end

Example: @transformFcn
Data Types: function_handle

IncludeInfo — Include information from read function
true | false

Include information from read function, specified as either true or false. The read
function returns information about the extracted data in an info struct. For more
information, see the read function page.

When you set the value of IncludeInfo to true, you must use the alternative signature
for your transform function fcn.

Output Arguments
dsnew — New datastore with transformed data
TransformedDatastore object

New datastore with transformed data, returned as a TransformedDatastore object.

1 Alphabetical List

1-2692

See Also
TransformedDatastore | combine | datastore | hasdata | preview | read |
readall | reset

Topics
“Select Datastore for File Format or Application”

Introduced in R2019a

 transform

1-2693

TransformedDatastore
Datastore to transform underlying datastore

Description
Use a TransformedDatastore object to transform, or process, data read from an
underlying datastore.

Creation
You can create a TransformedDatastore object using the transform function. For
example, dsnew = transform(ds,@fcn) creates a datastore that transforms datastore
ds using the transformation function fcn.

Properties
UnderlyingDatastore — Underlying datastore
datastore object

Underlying datastore, specified as a datastore object.

TransformSet — Set of transform functions
cell array

Set of transformation functions, specified as a cell array of function handles.
Data Types: cell

IncludeInfo — Include information from read function
logical vector

Include information from read function, specified as a logical vector. For each value of
IncludeInfo that is true, the transformed datastore uses the alternative signature of
the corresponding transform function in transformSet.

1 Alphabetical List

1-2694

The read function returns information about the extracted data in an info struct. For
more information, see the read function page.
Data Types: logical

Object Functions
combine Combine data from multiple datastores
hasdata Determine if data is available to read
preview Subset of data in datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state
transform Transform datastore

Examples

Apply Transformation to Collection of Images

Create a datastore for a collection of images and apply the same transformation to all the
images in the datastore. For instance, resize all the images in a collection to a specified
target size.

Create an ImageDatastore with two images.

imds = imageDatastore({'street1.jpg','peppers.png'})

imds =
 ImageDatastore with properties:

 Files: {
 'B:\matlab\toolbox\matlab\demos\street1.jpg';
 'B:\matlab\toolbox\matlab\imagesci\peppers.png'
 }
 AlternateFileSystemRoots: {}
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage

Read all the images. Notice that the datastore contains images of different sizes.

 TransformedDatastore

1-2695

img1 = read(imds); % reads the first image
img2 = read(imds); % reads the next image
whos img1 img2

 Name Size Bytes Class Attributes

 img1 480x640x3 921600 uint8
 img2 384x512x3 589824 uint8

Transform all the images in the datastore to a specified target size.

targetSize = [224,224];
imdsReSz = transform(imds,@(x) imresize(x,targetSize));

Read the images and display their sizes.

imgReSz1 = read(imdsReSz);
imgReSz2 = read(imdsReSz);
whos imgReSz1 imgReSz2

 Name Size Bytes Class Attributes

 imgReSz1 224x224x3 150528 uint8
 imgReSz2 224x224x3 150528 uint8

Display the resized images.

subplot(121); imshow(imgReSz1); axis on; title('Resized Street1.jpg');
subplot(122); imshow(imgReSz2); axis on; title('Resized peppers.png');

1 Alphabetical List

1-2696

See Also
datastore

Topics
“Getting Started with Datastore”

Introduced in R2019a

 TransformedDatastore

1-2697

matlab.io.Datastore class
Package: matlab.io

Base datastore class

Description
matlab.io.Datastore is an abstract class for creating a custom datastore. A datastore
helps access large collections of data iteratively, especially when data is too large to fit in
memory. The Datastore abstract class declares and captures the interface expected for
all custom datastores in MATLAB. Derive your class using this syntax:

classdef MyDatastore < matlab.io.Datastore
 ...
end

To implement your custom datastore:

• Inherit from the class matlab.io.Datastore
• Define the four required methods: hasdata, read, reset, and progress

For more details and steps to create your custom datastore, see “Develop Custom
Datastore”.

1 Alphabetical List

1-2698

Methods
read Read data from the datastore.

[data,info] = read(ds)

The data output can be any data type and must be
vertically concatenateable. Best practice is to return
the info output as a structure.

The data type of the output data dictates the data
type of the output of the tall function.

Access: Public, Abstract: true
hasdata Determine if data is available to read. The output is

of type logical.

tf = hasdata(ds)

Access: Public, Abstract: true
reset Reset the datastore to an initial state before any data

is read.

reset(ds)

Access: Public, Abstract: true
progress Determine how much data is already read.

The output is a scalar double between 0 and 1. A
return value of 0.55 means that you have read 55%
of the data.

p = progress(ds)

Access: Public, Abstract: true,
Hidden:true

 matlab.io.Datastore class

1-2699

preview Return a subset of the data.

data = preview(ds)

The default implementation returns the first eight
rows of data. The output has the same data type as
the output of read.

The default implementation of the preview method
is not optimized for tall array construction. For
improved tall array performance, optimize your
implementation based on your data.

Access: Public
readall Read all data in the datastore.

data = readall(ds)

The output has the same data type as the output of
read. If the data does not fit in memory, readall
returns an error.

The default implementation of the readall method
is not optimized for tall array construction. For
improved tall array performance, optimize your
implementation based on your data.

Access: Public

Properties
To add handle properties to your custom datastore, you must implement the
copyElement method. For example, if you use the DsFileSet object as a property in
your custom datastore, then implement the copyElement method. Implementing the
copyElement method enables you to create a deep copy of the datastore object. For
more information, see “Customize Copy Operation”. For an example implementation of
the copyElement method, see “Develop Custom Datastore”.

1 Alphabetical List

1-2700

Attributes
Sealed false

For information on class attributes, see “Class Attributes”.

Examples
Build Datastore to Read Binary Files

Build a datastore to bring your custom or proprietary data into MATLAB® for serial
processing.

Create a .m class definition file that contains the code implementing your custom
datastore. You must save this file in your working folder or in a folder that is on the
MATLAB® path. The name of the .m file must be the same as the name of your object
constructor function. For example, if you want your constructor function to have the name
MyDatastore, then the name of the .m file must be MyDatastore.m. The .m class
definition file must contain the following steps:

• Step 1: Inherit from the datastore classes.
• Step 2: Define the constructor and the required methods.
• Step 3: Define your custom file reading function.

In addition to these steps, define any other properties or methods that you need to
process and analyze your data.

%% STEP 1: INHERIT FROM DATASTORE CLASSES
classdef MyDatastore < matlab.io.Datastore

 properties(Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

 % Property to support saving, loading, and processing of
 % datastore on different file system machines or clusters.
 % In addition, define the methods get.AlternateFileSystemRoots()
 % and set.AlternateFileSystemRoots() in the methods section.

 matlab.io.Datastore class

1-2701

 properties(Dependent)
 AlternateFileSystemRoots
 end

%% STEP 2: DEFINE THE CONSTRUCTOR AND THE REQUIRED METHODS
 methods
 % Define your datastore constructor
 function myds = MyDatastore(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

 % Define the hasdata method
 function tf = hasdata(myds)
 % Return true if more data is available
 tf = hasfile(myds.FileSet);
 end

 % Define the read method
 function [data,info] = read(myds)
 % Read data and information about the extracted data
 % See also: MyFileReader()
 if ~hasdata(myds)
 error(sprintf(['No more data to read.\nUse the reset ',...
 'method to reset the datastore to the start of ' ,...
 'the data. \nBefore calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.']))
 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);
 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

1 Alphabetical List

1-2702

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end
 end

 % Define the reset method
 function reset(myds)
 % Reset to the start of the data
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

 % Getter for AlternateFileSystemRoots property
 function altRoots = get.AlternateFileSystemRoots(myds)
 altRoots = myds.FileSet.AlternateFileSystemRoots;
 end

 % Setter for AlternateFileSystemRoots property
 function set.AlternateFileSystemRoots(myds,altRoots)
 try
 % The DsFileSet object manages the AlternateFileSystemRoots
 % for your datastore
 myds.FileSet.AlternateFileSystemRoots = altRoots;

 % Reset the datastore
 reset(myds);
 catch ME
 throw(ME);
 end
 end
 end

 methods (Hidden = true)
 % Define the progress method
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else
 frac = 1;

 matlab.io.Datastore class

1-2703

 end
 end
 end

 methods(Access = protected)
 % If you use the FileSet property in the datastore,
 % then you must define the copyElement method. The
 % copyElement method allows methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end

 end
end

%% STEP 3: IMPLEMENT YOUR CUSTOM FILE READING FUNCTION
function data = MyFileReader(fileInfoTbl)
% create a reader object using FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);

end

Your custom datastore is now ready. Use MyDatastore to create a datastore object for
reading your binary data files.

Create Datastore Object Using Custom Datastore And Read Data

Use custom datastore to preview and read your proprietary data into MATLAB for serial
processing.

This example uses a simple data set to illustrate a workflow using your custom datastore.
The data set is a collection of 15 binary (.bin) files where each file contains a column (1
variable) and 10000 rows (records) of unsigned integers.

dir('*.bin')

1 Alphabetical List

1-2704

binary_data01.bin binary_data05.bin binary_data09.bin binary_data13.bin
binary_data02.bin binary_data06.bin binary_data10.bin binary_data14.bin
binary_data03.bin binary_data07.bin binary_data11.bin binary_data15.bin
binary_data04.bin binary_data08.bin binary_data12.bin

Create a datastore object using the MyDatastore function. For implementation details of
MyDatastore, see the example Build Datastore to Read Binary Files.

folder = fullfile('*.bin');
ds = MyDatastore(folder);

Preview the data from the datastore.

preview(ds)

ans = 8x1 uint8 column vector

 113
 180
 251
 91
 29
 66
 254
 214

Read the data in a while loop and use the hasdata method to check if more data is
available to read.

while hasdata(ds)
 data = read(ds);
 % do something
end

Reset the datastore to its initial state and read the data from the start of the datastore.

reset(ds);
data = read(ds);

Alternatively, if your data collection fits in memory, then read all the data in the datastore.
Since the folder contains 15 files with 10000 records in each file, the size of the output
should be 150000 records.

dataAll = readall(ds);
whos dataAll

 matlab.io.Datastore class

1-2705

 Name Size Bytes Class Attributes

 dataAll 150000x1 150000 uint8

Save and Load Datastore on Different Platforms

Create custom datastore object, save it on a Windows machine, and then load and process
it on a Linux machine.

Before creating and saving your custom datastore, identify the root path of your data on
the different platforms. The root paths differ based on the machine or file system. For
example, if you access the data using these root paths:

• "Z:\DataSet" on your local Windows machine
• "/nfs-bldg001/DataSet" on your Linux cluster

Then, associate these root paths using the AlternateFileSystemRoots property. For
implementation details of MyDatastore, see the example Build Datastore to Read
Binary Files.

altRoots = ["Z:\DataSet","/nfs-bldg001/DataSet"];
ds = MyDatastore('Z:\DataSet*.bin',altRoots);

Examine the files in the datastore.

fileTbl = resolve(ds.Fileset);
fileTbl.FileName

ans =

 12×1 cell array

 {'Z:\DataSet\binary_data01.bin'}
 {'Z:\DataSet\binary_data02.bin'}
 {'Z:\DataSet\binary_data03.bin'}
 .
 .
 .

Save the datastore.

save ds_saved_on_Windows.mat ds

1 Alphabetical List

1-2706

Load the datastore on a Linux platform and examine the files in the datastore. Since the
root path 'Z:\DataSet' is not accessible on the Linux cluster at load time, the datastore
function automatically updates the root paths based on the values specified in the
AlternateFileSystemRoots property.

load ds_saved_on_Windows.mat
fileTbl = resolve(ds.Fileset);
fileTbl.FileName

ans =

 12×1 cell array

 {'/nfs-bldg001/DataSet/binary_data01.bin'}
 {'/nfs-bldg001/DataSet/binary_data02.bin'}
 {'/nfs-bldg001/DataSet/binary_data03.bin'}
 .
 .
 .

You can now process and analyze this datastore on your Linux machine.

See Also
datastore | mapreduce | matlab.io.datastore.DsFileReader |
matlab.io.datastore.DsFileSet |
matlab.io.datastore.HadoopLocationBased |
matlab.io.datastore.Partitionable

Topics
“Develop Custom Datastore”
“Customize Copy Operation”

Introduced in R2017b

 matlab.io.Datastore class

1-2707

progress
Class: matlab.io.Datastore
Package: matlab.io

Determine how much data has been read

Syntax
p = progress(ds)

Description
p = progress(ds) returns the percentage of the data that you have read from the
matlab.io.Datastore object specified by ds. The p output is a number between 0 and
1. A return value of 0.55 means you have read 55% of the data.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

Output Arguments
p — Percentage of data
scalar double

Percentage of data that you have read from the datastore, returned as a scalar double.
Data Types: double

1 Alphabetical List

1-2708

Attributes
Abstract true
Access public
Hidden false
Sealed false
Static false

To learn about attributes of methods, see Method Attributes.

Tips
• You must implement the progress method by deriving a subclass from the

matlab.io.Datastore class. For more information, see “Develop Custom
Datastore”.

See Also
hasdata | matlab.io.Datastore | preview | progress | read | readall | reset

Topics
“Develop Custom Datastore”

Introduced in R2017b

 progress

1-2709

dataTipInteraction
Data tip interaction

Description
A data tip interaction allows you to display data tips within a chart without having to
select any buttons in the axes toolbar. To enable data tips, set the Interactions
property of the axes to a dataTipInteraction object. When this interaction is enabled,
the data tips appear when you hover, click, or tap within the chart.

To enable multiple interactions, set the Interactions property to an array of objects.

Creation

Syntax
d = dataTipInteraction

Description
d = dataTipInteraction creates a data tip interaction object.

Examples

Axes with Data Tip and Pan Interactions

Create a surface plot. Get the current axes and replace the default interactions with the
data tip and pan interactions. Then hover over the surface to display data tips. Click and
drag or tap and drag to pan.

1 Alphabetical List

1-2710

surf(peaks)
ax = gca;
ax.Interactions = [dataTipInteraction panInteraction];

Limitations
The dataTipInteraction function is not supported in the Live Editor.

 dataTipInteraction

1-2711

Tips
• To customize the content of the data tips, set the DataTipTemplate property of the

chart object. For more information, see “Create Custom Data Tips”.
• In most cases, the axes have a default set of interactions which depend on the type of

chart you are displaying. You can replace the default set with a new set of interactions,
but you cannot access or modify any of the interactions in the default set.

See Also
disableDefaultInteractivity | enableDefaultInteractivity |
panInteraction | regionZoomInteraction | rotateInteraction |
rulerPanInteraction | zoomInteraction

Topics
“Control Chart Interactivity”
“Create Custom Data Tips”

Introduced in R2019a

1 Alphabetical List

1-2712

date
Current date as character vector

Syntax
c = date

Description
c = date returns the current date as a character vector in the format dd-MMM-yyyy.

This format represents the day of the month (dd) as a number, the month name (MMM) as
its three-letter abbreviation, and the year (yyyy) as a number.

Examples

Return Current Date

To return the current date as a character vector, use the date function.

c = date

c =
'02-Mar-2019'

Limitations
• date always returns the English abbreviation for the month name. The function does

not take your system locale into account when determining the month name.
• MATLAB Online determines the current date from Coordinated Universal Time (UTC)

rather than from local time.

 date

1-2713

https://www.mathworks.com/products/matlab-online.html

Tips
• As an alternative, use the datetime function to represent the current date.

d = datetime('today')

The datetime function takes your locale into account. Also, you can specify the
format that a datetime array uses to represent its values.

See Also
datestr | datetime | now

Topics
“Represent Dates and Times in MATLAB”
“Convert Between Datetime Arrays, Numbers, and Text”

Introduced before R2006a

1 Alphabetical List

1-2714

datenum
Convert date and time to serial date number

The datenum function creates a numeric array that represents each point in time as the
number of days from January 0, 0000. The numeric values also can represent elapsed
time in units of days. However, the best way to represent points in time is by using the
datetime data type. The best way to represent elapsed time is by using the duration or
calendarDuration data types.

Syntax
DateNumber = datenum(t)

DateNumber = datenum(DateString)
DateNumber = datenum(DateString,formatIn)
DateNumber = datenum(DateString,PivotYear)
DateNumber = datenum(DateString,formatIn,PivotYear)

DateNumber = datenum(DateVector)
DateNumber = datenum(Y,M,D)
DateNumber = datenum(Y,M,D,H,MN,S)

Description
DateNumber = datenum(t) converts the datetime or duration values in the input array
t to serial date numbers.

A serial date number represents the whole and fractional number of days from a fixed,
preset date (January 0, 0000) in the proleptic ISO calendar.

DateNumber = datenum(DateString) converts text representing dates and times to
serial date numbers. If the format used in the text is known, specify the format as
formatIn. Syntaxes without formatIn are significantly slower than syntaxes that
include it.

 datenum

1-2715

DateNumber = datenum(DateString,formatIn) uses formatIn to interpret the
dates and times represented by DateString.

DateNumber = datenum(DateString,PivotYear) uses PivotYear to interpret text
that specifies the year as two characters. If the format used in the text is known, specify
the format as formatIn. Syntaxes without formatIn are significantly slower than
syntaxes that include it.

DateNumber = datenum(DateString,formatIn,PivotYear) uses formatIn to
interpret the dates and times represented by DateString, and PivotYear to interpret
text that specifies the year as two characters. You can specify formatIn and PivotYear
in either order.

DateNumber = datenum(DateVector) converts date vectors to serial date numbers,
and returns a column vector of m date numbers, where m is the total number of date
vectors in DateVector.

DateNumber = datenum(Y,M,D) returns the serial date numbers for corresponding
elements of the Y, M, and D (year, month, day) arrays. The arrays must be of the same size
(or any can be a scalar). You also can specify the input arguments as a date vector,
[Y,M,D].

DateNumber = datenum(Y,M,D,H,MN,S) additionally returns the serial date numbers
for corresponding elements of the H, MN, and S (hour, minute, and second) arrays. The
arrays must be of the same size (or any can be a scalar). You also can specify the input
arguments as a date vector, [Y,M,D,H,MN,S].

Examples

Convert datetime Array to Date Numbers
format long

t = [datetime('now');datetime('tomorrow')]

t = 2x1 datetime array
 02-Mar-2019 09:46:48
 03-Mar-2019 00:00:00

DateNumber = datenum(t)

1 Alphabetical List

1-2716

DateNumber = 2×1
105 ×

 7.374864075106598
 7.374870000000000

Convert Text Representing Date to Date Number
DateString = '19-May-2001';
formatIn = 'dd-mmm-yyyy';
datenum(DateString,formatIn)

ans = 730990

datenum returns a date number for text representing a date with the format 'dd-mmm-
yyyy'.

Convert Text with Multiple Dates to Date Numbers

Pass several dates as character vectors in a cell array. All input dates must use the same
format.

DateString = {'09/16/2007';'05/14/1996';'11/29/2010'};
formatIn = 'mm/dd/yyyy';
datenum(DateString,formatIn)

ans = 3×1

 733301
 729159
 734471

Convert Text Representing Date to Date Number Using Pivot Year

Convert text representing a date to a serial date number using the default pivot year.

 datenum

1-2717

n = datenum('12-jun-17','dd-mmm-yy')

n = 736858

The text that represents this date number is '12-Jun-2017'.

Convert the same text to a serial date number using 1400 as the pivot year.

n = datenum('12-jun-17','dd-mmm-yy',1400)

n = 517712

The text that represents this date number is '12-Jun-1417'.

Convert Date Vector to Date Number

datenum([2009,4,2,11,7,18])

ans = 7.3387e+05

Convert Year, Month, and Day to Date Number

Convert a date specified by year, month and day values to a serial date number.

n = datenum(2001,12,19)

n = 731204

Input Arguments
t — Dates and times
array of datetime or duration values

Dates and times, specified as an array of datetime or duration values. The datenum
function does not account for time zone information in t and does not adjust datetime
values that occur during Daylight Saving Time. That is, datenum treats the TimeZone

1 Alphabetical List

1-2718

property of datetime arrays as empty and converts the remaining date and time
information to a serial date number.
Data Types: datetime | duration

DateVector — Date vectors
matrix

Date vectors, specified as an m-by-6 or m-by-3 matrix containing m full or partial date
vectors, respectively. A full date vector has six elements, specifying year, month, day, hour,
minute, and second, in that order. A partial date vector has three elements, specifying
year, month, and day, in that order. Each element of DateVector must be a positive or
negative integer value except for the seconds element, which can be fractional. If an
element falls outside the conventional range, datenum adjusts both that date vector
element and the previous element. For example, if the minutes element is 70, then
datenum adjusts the hours element by 1 and sets the minutes element to 10. If the
minutes element is -15, then datevec decreases the hours element by 1 and sets the
minutes element to 45. Month values are an exception. The datenum function sets month
values less than 1 to 1.
Example: [2003,10,24,12,45,07]
Data Types: double

DateString — Text representing dates and times
character array | cell vector of character vectors | string vector

Text representing dates and times, specified as a character array where each row
contains text representing one point in time, as a cell vector of character vectors, or as a
string vector. All rows of a character array, or all elements of a cell vector or string vector,
must have the same format.
Example: '24-Oct-2003 12:45:07'
Example: ['19-Sep-2013';'20-Sep-2013';'21-Sep-2013']
Example: {'15-Oct-2010' '20-Nov-2012'}

If the format used in the text is known, you should also specify formatIn. If you do not
specify formatIn, then DateString must be in one of the following formats.

 datenum

1-2719

Format of Text Representing Dates and
Times

Example

'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17
'dd-mmm-yyyy' 01-Mar-2000
'mm/dd/yyyy' 03/01/2000
'mm/dd/yy' 03/01/00
'mm/dd' 03/01
'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17
'mmm.dd,yyyy' Mar.01,2000
'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17
'yyyy-mm-dd' 2000-03-01
'yyyy/mm/dd' 2000/03/01
'HH:MM:SS' 15:45:17
'HH:MM:SS PM' 3:45:17 PM
'HH:MM' 15:45
'HH:MM PM' 3:45 PM

Note The symbolic identifiers describing date and time formats are different from those
that describe the display formats of datetime arrays.

Certain formats might not contain enough information to convert text representations of
dates and times. In those cases, hours, minutes, and seconds default to 0, days default to
1, months default to January, and years default to the current year. datevec and
datenum consider two-character years (e.g., '79') to fall within the 100-year range
centered around the current year.

When you do not specify formatIn, note the following:

• For the formats that specify the month as two digits (mm), the month value must not be
greater than 12.

• However, for the format 'mm/dd/yy', if the first entry in the text is greater than 12
and the second entry is less than or equal to 12, then datenum considers the text to be
in 'yy/mm/dd' format.

1 Alphabetical List

1-2720

formatIn — Format of input text representing dates and times
character vector | string scalar

Format of the input text representing dates and times, specified as a character vector or
string scalar of symbolic identifiers.
Example: 'dddd, mmm dd, yyyy'

The following table shows symbolic identifiers that you can use to construct the
formatIn character vector. You can include characters such as a hyphen, space, or colon
to separate the fields.

Note The symbolic identifiers describing date and time formats are different from the
identifiers that describe the display formats of datetime arrays.

Symbolic
Identifier

Description Example

yyyy Year in full 1990, 2002
yy Year in two digits 90, 02
QQ Quarter year using letter Q and

one digit
Q1

mmmm Month using full name March, December
mmm Month using first three letters Mar, Dec
mm Month in two digits 03, 12
m Month using capitalized first

letter
M, D

dddd Day using full name Monday, Tuesday
ddd Day using first three letters Mon, Tue
dd Day in two digits 05, 20
d Day using capitalized first letter M, T
HH Hour in two digits

(no leading zeros when symbolic
identifier AM or PM is used)

05, 5 AM

MM Minute in two digits 12, 02

 datenum

1-2721

Symbolic
Identifier

Description Example

SS Second in two digits 07, 59
FFF Millisecond in three digits 057
AM or PM AM or PM inserted in text

representing time
3:45:02 PM

The formatIn value must follow these guidelines:

• You cannot specify any field more than once. For example, you cannot use 'yy-mmm-
dd-m' because it has two month identifiers. The one exception to this is that you can
combine one instance of dd with one instance of any of the other day identifiers. For
example, 'dddd mmm dd yyyy' is a valid input.

• When you use AM or PM, the HH field is also required.
• You only can use QQ alone or with a year specifier.

PivotYear — Start year of 100-year date range
present minus 50 years (default) | integer

Start year of the 100-year date range in which a two-character year resides, specified as
an integer. Use a pivot year to interpret dates that specify the year as two characters.

If formatIn contains the time of day, the pivot year is computed from the current time of
the current day, month, and year. Otherwise it is computed from midnight of the current
day, month, and year.
Example: 2000

Note If the input date format specifies a four-character year, then the last two characters
are truncated, and the first two characters specify the year. For example, if the date and
pivot year are specified as ('25122015','ddmmyyyy',2000), then the resulting date is
25-12-2020, not 25-12-2015.

Data Types: double

Y,M,D — Year, month, and day arrays
numeric arrays

1 Alphabetical List

1-2722

Year, month, and day arrays specified as numeric arrays. These arrays must be the same
size, or any one can be a scalar. The values in Y,M,D must be integer values.

If Y,M,D are all scalars or all column vectors, you can specify the input arguments as a
date vector, [Y,M,D].
Example: 2003,10,24
Data Types: double

Y,M,D,H,MN,S — Year, month, day, hour, minute, and second arrays
numeric arrays

Year, month, day, hour, minute, and second arrays specified as numeric arrays. These
arrays must be the same size, or any one can be a scalar. datenum does not accept
milliseconds as a separate input, but as a fractional part of the seconds input, S. The
values in Y,M,D,H,MN must be integer values.

If Y,M,D,H,MN,S are all scalars or all column vectors, you can specify the input
arguments as a date vector, [Y,M,D,H,MN,S].
Example: 2003,10,24,12,45,07.451
Data Types: double

Output Arguments
DateNumber — Serial date numbers
scalar | vector

Serial date numbers, returned as a column vector of length m, where m is the total number
of input date vectors or character vectors representing dates and times.

Tips
• To create arbitrarily shaped output, use the datenum(Y,M,D) and

datenum(Y,M,D,H,MN,S) syntaxes. The datenum(DateVector) syntax creates
only a column vector of date numbers.

datenum(2013,[1 3; 2 4],ones(2,2))

 datenum

1-2723

ans =

 735235 735294
 735266 735325

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datestr | datetime | datevec

Topics
“Represent Dates and Times in MATLAB”
“Carryover in Date Vectors and Strings”

Introduced before R2006a

1 Alphabetical List

1-2724

DatePicker Properties
Control appearance and behavior of date picker

Description
Date pickers allow users to select dates from an interactive calendar. The uidatepicker
function creates a date picker and sets any required properties before displaying it. By
changing property values of a date picker, you can modify certain aspects of its
appearance and behavior. Use dot notation to refer to a specific object and property:

uf = uifigure;
d = uidatepicker(uf);
d.DisplayFormat = 'M/d/yyyy';

Properties
Date Picker

Value — Selected date
NaT (default) | datetime object

Selected date, specified as a datetime object within the range of the Limits property.
To make the selected date unspecified, set this property to NaT.

If the specified datetime object contains time information, only the date information is
preserved in the Value property.
Example: d = uidatepicker('Value',datetime('today'))
Data Types: datetime

Limits — Selection limits
1-by-2 datetime array

Selection limits, specified as a 1-by-2 datetime array. The second value in this array
must be later than the first value. The default value is [datetime(0000,1,1)
datetime(9999,12,31)]. This default value starts at the earliest possible date and
ends at the latest possible date that DatePicker supports.

 DatePicker Properties

1-2725

In the running app, the date picker allows the user to select dates on the closed interval
defined by this property. If there are disabled dates or disabled days within the interval,
then those dates and days are excluded.
Example: d = uidatepicker('Limits',[datetime('today')
datetime(2050,1,1)])

Data Types: datetime

DisplayFormat — Display format
character vector | string scalar

Display format for the date picker text field, specified as a character vector or string
scalar. The default format depends on the locale of the system running the app.

The format you specify must use valid letter identifiers that correspond to the Unicode
Locale Data Markup Language (LDML) standard for dates and times. To separate fields,
you can include nonletter characters such as a hyphen, space, colon, or any non-ASCII
characters.
Example: d = uidatepicker('DisplayFormat','dd/MM/yy')

Examples of Common Formats

This table lists common display formats. The examples show formatted output for the
date, Wednesday, April 9, 2014.

Value of Format Example
'yyyy-MM-dd' 2014-04-09
'dd/MM/yyyy' 09/04/2014
'dd.MM.yyyy' 09.04.2014
'yyyy年 MM月 dd日' 2014年 04月 09日

'MMMM d, yyyy' April 9, 2014

All Date and Time Formats

Use these letter identifiers to create a display format. The third column of this table
shows output for the date, Wednesday, April 9, 2014.

1 Alphabetical List

1-2726

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. 2014
yy Year, using last two digits. 14
yyy, yyyy ... Year, using at least as many digits

as there are instances of 'y'
For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year, a single number
designating the year.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2
QQQQ Quarter, full name 2nd quarter
M Month, numerical, using one or two

digits
4

MM Month, numerical, using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A
W Week of the month, using one digit 2
d Day of the month, using one or two

digits
9

dd Day of the month, using two digits 09
D Day of the year, using one, two, or

three digits
99

DD Day of the year, using two digits 99
DDD Day of the year using three digits 099
e Day of the week, numerical, using

one or two digits
4, where Sunday is the first day of
the week

 DatePicker Properties

1-2727

Letter
Identifier

Description Display

ee Day of the week, numerical, using
two digits

04

eee Day, abbreviated name Wed
eeee Day, full name Wednesday
eeeee Day, capitalized first letter W

Note

• The edit field in the running app accepts delimited numeric values, even when the
DisplayFormat includes words. For instance, if the month format is specified as
'MMMM', the app accepts a numeric month such as 04, but will display a month name
such as 'April'.

• If the user specifies a day-of-year number in the running app, and the format contains
identifiers for both the day of year (D) and Gregorian year (y), then datetime might
not read the day-of-year number correctly. Use ISO year (u) in place of y.

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

DisabledDates — Disabled dates
empty datetime array (default) | m-by-1 datetime array

Disabled dates, specified as an m-by-1 datetime array. This property specifies dates that
are not available for selection in the running app.
Example: d = uidatepicker('DisabledDates',datetime(2018,1,1)) disables
January 1, 2018.

The datetime array cannot not contain any NaT values, and the dates must be sorted in
ascending order.

To reenable all previously disabled dates, call NaT(0) to create an empty datetime
array:

d.DisabledDates = NaT(0);

Data Types: datetime

1 Alphabetical List

1-2728

DisabledDaysOfWeek — Disabled days of week
[] (default) | vector of integers in the range [1, 7] | cell array of character vectors | string
vector

Disabled days of the week, specified as one of the following:

• Empty array [], which enables all days of the week.
• Vector of whole numbers in the range [1, 7]. The numbers correspond to the days of

the week. For example, [1 3] disables Sundays and Tuesdays.
• 1-D cell array of character vectors, where the array elements contain localized day

names. Partial day names must be unambiguous. For example, {'F','Sa'} disables
Fridays and Saturdays.

• String vector containing full or partial localized day names.

When you specify day names using a cell array or string vector, the code works only in the
locale that you write the code. To make the code work in any locale, specify this property
as a vector of numbers.
Data Types: double | cell | string

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

 DatePicker Properties

1-2729

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

1 Alphabetical List

1-2730

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.96 .96 .96] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 DatePicker Properties

1-2731

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Component visibility
'on' (default) | 'off'

Component visibility, specified as 'on' or 'off'. When the Visible property is set to
'off', the component is not visible in the UI, but you can query and set its properties.

Editable — Allow edit field changes
'on' (default) | 'off'

1 Alphabetical List

1-2732

Allow edit field changes, specified as 'on' or 'off'. Set this property to 'on' to allow
the user to change the date in the edit field at run time. The Enable property must also
be set to 'on' to allow changes in the edit field.

Enable — Enable interactions
'on' (default) | 'off'

Enable interactions, specified as 'on' or 'off'. Set this property to 'off' to make the
component appear dim, indicating that the user cannot interact with it.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size
[100 100 150 22] (default) | [left bottom width height]

Location and size of the collapsed date picker relative to the parent container, specified as
a vector of the form [left bottom width height]. This table describes each element
in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the date picker
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the date picker
width Distance between the right and left outer edges of the date

picker

 DatePicker Properties

1-2733

Element Description
height Distance between the top and bottom outer edges of the

date picker

All measurements are in pixel units.

InnerPosition — Location and size
[100 100 150 22] (default) | [left bottom width height]

Location and size of the collapsed date picker relative to the parent container, specified as
a vector of the form [left bottom width height]. This property value is identical to
the Position property.

OuterPosition — Location and size
[100 100 150 22] (default) | [left bottom width height]

Location and size of the collapsed date picker relative to the parent container, specified as
a vector of the form [left bottom width height]. This property value is identical to
the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a date picker in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
d = uidatepicker(g);
d.Layout.Row = 3;
d.Layout.Column = 2;

To make the date picker span multiple rows or columns, specify the Row or Column
property as a two-element vector. For example, this date picker spans columns 2 through
3:

1 Alphabetical List

1-2734

d.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed function
'' (default) | function handle | cell array | character vector

Value changed function, specified as one of the following:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

The ValueChangedFcn callback executes when the user changes the date by typing in
the text field or by expanding the date picker and selecting a date.

This callback function can access specific information about the user’s interaction with
the date picker. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can get the object properties using dot notation. For example,
event.PreviousValue gets the previously selected date. The ValueChangedData
object is not available to callback functions specified as character vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value New selected date
PreviousValue Previously selected date
Source Component that executes the callback
EventName 'ValueChanged'

The ValueChangedFcn callback does not execute when the user re-selects or re-types
the currently selected date. The callback also does not execute when the Value property
changes programmatically.

For more information about creating callbacks in App Designer, see “Write Callbacks in
App Designer”.

 DatePicker Properties

1-2735

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.

1 Alphabetical List

1-2736

If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

 DatePicker Properties

1-2737

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

1 Alphabetical List

1-2738

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

 DatePicker Properties

1-2739

Identifiers

Type — Type of graphics object
'uidatepicker'

This property is read-only.

Type of graphics object, returned as 'uidatepicker'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
NaT | appdesigner | datetime | uidatepicker

Introduced in R2018a

1 Alphabetical List

1-2740

dateshift
Shift date or generate sequence of dates and time

Syntax
t2 = dateshift(t,'start',unit)
t2 = dateshift(t,'end',unit)
t2 = dateshift(t,'dayofweek',dow)

t2 = dateshift(___ ,rule)

Description
t2 = dateshift(t,'start',unit) shifts each value in the datetime array t back to
the beginning of the unit of time specified by unit. The output t2 is the same size as t.

t2 = dateshift(t,'end',unit) shifts the values ahead to the end of the unit of time
specified by unit. The end of a day, hour, minute, or second is also the beginning of the
next one. For example, the end of a day occurs at midnight at the beginning of the next
day. The end of a year, quarter, month, or week is midnight at the beginning of the last
day of that time period.

t2 = dateshift(t,'dayofweek',dow) returns the next occurrence of the specified
day of the week on or after each datetime in array t. If the date in t falls on the specified
day of the week, then dateshift returns the same date.

t2 = dateshift(___ ,rule) shifts each value in array t according to the pattern
specified by rule. You can use this syntax with any of the arguments in the previous
syntaxes.

Examples

 dateshift

1-2741

Shift Current Date to End of Current Month

Define the current date.

t = datetime('today')

t = datetime
 02-Mar-2019

Shift the date to the end of the same month.

t2 = dateshift(t,'end','month')

t2 = datetime
 31-Mar-2019

Shift Current Date to Next Month

Define the current date.

t = datetime('today')

t = datetime
 02-Mar-2019

Shift the date to the start of the next month.

t2 = dateshift(t,'start','month','next')

t2 = datetime
 01-Apr-2019

Shift the date to the end of the next month.

t2 = dateshift(t,'end','month','next')

t2 = datetime
 30-Apr-2019

1 Alphabetical List

1-2742

Shift Dates to Specific Day of Week

Shift an array of dates forward to the next Friday.

t = datetime([2014,08,03;2014,04,15])

t = 2x1 datetime array
 03-Aug-2014
 15-Apr-2014

t2 = dateshift(t,'dayofweek','Friday')

t2 = 2x1 datetime array
 08-Aug-2014
 18-Apr-2014

Shift the array of dates backward to the previous Monday.

t2 = dateshift(t,'dayofweek','Monday','previous')

t2 = 2x1 datetime array
 28-Jul-2014
 14-Apr-2014

Determine Future Date

Find the date that falls at the end of the fifth week from today.

t = datetime('today')

t = datetime
 02-Mar-2019

t2 = dateshift(t,'end','week',5)

 dateshift

1-2743

t2 = datetime
 06-Apr-2019

Create Sequence of Dates Falling on Specific Day of Week

Generate a sequence of dates consisting of the next three occurrences of Friday.

t = datetime('today')

t = datetime
 02-Mar-2019

t2 = dateshift(t,'dayofweek','Friday',1:3)

t2 = 1x3 datetime array
 08-Mar-2019 15-Mar-2019 22-Mar-2019

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

unit — Unit of time
'year' | 'quarter' | 'month' | 'week' | 'day' | 'hour' | 'minute' | 'second'

Unit of time, specified as one of the following values:

• 'year'
• 'quarter'
• 'month'
• 'week'
• 'day'

1 Alphabetical List

1-2744

• 'hour'
• 'minute'
• 'second'

dow — Day of Week
scalar integer | character vector | string scalar

Day of the week, specified as a scalar integer indicating the day of week number, or a
character vector or string scalar containing a localized day name.
Example: 'Sunday'
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

rule — Rule for shifting datetime values
character vector | string scalar | scalar integer | array of integer values

Rule for shifting datetime values, specified as a character vector, string scalar, scalar
integer, or an array of integer values. If rule is a character vector or string, it must be
one of the following.

Value of rule Description
'next' Shift datetime to next unit of time or

specified day.
(Default rule for day of week.)

'previous' Shift datetime to previous unit of time or
specified day.

'nearest' Shift datetime to nearest occurrence of unit
of time or specified day.

'current' Shift datetime within the current unit of
time, or to the specified day in the current
week.
(Default rule for unit of time.)

If rule is an integer or an array of integers, then:

 dateshift

1-2745

• When used with the input argument, unit, 0 corresponds to the start or end of the
current unit for each datetime, 1 corresponds to the next unit, -1 corresponds to the
previous unit, and so on.

• When used with the input argument, dow, 0 corresponds to the specified day in the
current week for each datetime, 1 corresponds to the next occurrence of the specified
day, -1 corresponds to the previous occurrence, and so on.

• t and rule must be the same size, or one must be a scalar.

If you specify 'dayofweek' and t contains datetime values that fall on that day of the
week, then dateshift treats those datetime values as the next or previous occurrences
of the specified day of the week. For example,
dateshift(datetime(2015,12,24),'dayofweek','thu',rule) returns a datetime
value with a date of December 24, 2015 if rule is 'next', 'previous', 1, or -1,
because December 24, 2015 is a Thursday.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
between | colon

Introduced in R2014b

1 Alphabetical List

1-2746

datestr
Convert date and time to string format

The datestr function creates a character array that displays one or more points in time.
However, the best way to represent points in time is by using the datetime data type.

Syntax
DateString = datestr(t)
DateString = datestr(DateVector)
DateString = datestr(DateNumber)

DateString = datestr(___ ,formatOut)

DateString = datestr(DateStringIn)
DateString = datestr(DateStringIn,formatOut,PivotYear)

DateString = datestr(___ ,'local')

Description
DateString = datestr(t) converts the datetime values in the input array t to text
representing dates and times. However, you also can represent datetime values as text
using the char, cellstr, or string functions.

The datestr function returns a character array with m rows, where m is the total number
of datetime values in t. By default, datestr returns text in the format, day-month-year
hour:minute:second. If hour:minute:second is 00:00:00, then the text returned has the
format, day-month-year.

DateString = datestr(DateVector) converts date vectors to text representing
dates and times. The datestr function returns a character array with m rows, where m is
the total number of date vectors in DateVector.

DateString = datestr(DateNumber) converts serial date numbers to text
representing dates and times. The datestr function returns a character array with m
rows, where m is the total number of date numbers in DateNumber.

 datestr

1-2747

DateString = datestr(___ ,formatOut) specifies the format of the output text
using formatOut. You can use formatOut with any of the input arguments in the
previous syntaxes.

DateString = datestr(DateStringIn) converts DateStringIn to text in the
format, day-month-year hour:minute:second. All dates and times represented in
DateStringIn must have the same format.

DateString = datestr(DateStringIn,formatOut,PivotYear) converts
DateStringIn to DateString, in the format specified by formatOut, and using
optional PivotYear to interpret dates that specify the year as two characters.

DateString = datestr(___ ,'local') returns the date in the language of the
current locale. This language is the language you select by means of your computer's
operating system. If you leave 'local' out of the argument list, datestr returns text in
the default language, which is US English. Use 'local' with any of the previous
syntaxes. The 'local' argument must be last in the argument sequence.

Examples

Convert datetime Array to Date Strings

t = [datetime('now');datetime('tomorrow')]

t = 2x1 datetime array
 02-Mar-2019 09:47:19
 03-Mar-2019 00:00:00

DateString = datestr(t)

DateString = 2x20 char array
 '02-Mar-2019 09:47:19'
 '03-Mar-2019 00:00:00'

datestr returns text representing the dates and times in the format, day-month-year
hour:minute:second.

1 Alphabetical List

1-2748

Convert Date Vector to Text
DateVector = [2009,4,2,11,7,18];

datestr(DateVector)

ans =
'02-Apr-2009 11:07:18'

datestr returns text representing the date and time in the default format.

Convert Date and Time to Specific Format

Format the current date in the mm/dd/yy format.

You can specify this format using symbolic identifiers.

formatOut = 'mm/dd/yy';
datestr(now,formatOut)

ans =
'03/02/19'

Alternatively, you can specify this format using a numeric identifier.

formatOut = 2;
datestr(now,formatOut)

ans =
'03/02/19'

You can reformat the date and time, and also show milliseconds.

dt = datestr(now,'mmmm dd, yyyy HH:MM:SS.FFF AM')

dt =
'March 02, 2019 9:46:55.076 AM'

Convert 12-Hour Time String to 24-Hour Equivalent

Convert the 12-hour time 05:32 p.m. to its 24-hour equivalent.

 datestr

1-2749

datestr('05:32 PM','HH:MM')

ans =
'17:32'

Convert the 24-hour time 05:32 to its 12-hour equivalent.

datestr('05:32','HH:MM PM')

ans =
' 5:32 AM'

The use of AM or PM in the formatOut output text does not influence which characters
actually become part of the text; they only determine whether or not to include the
characters. MATLAB® selects AM or PM based on the time entered.

Convert Date String from Custom Format

Call datenum inside of datestr to specify the format of the input text representing a
date.

formatOut = 'dd mmm yyyy';
datestr(datenum('16-04-55','dd-mm-yy',1900),formatOut)

ans =
'16 Apr 1955'

Convert Multiple Date Strings

Convert multiple character vectors representing dates by passing them in a cell array.

All input dates must use the same format. For example, the following command passes
three dates that all use the mm/dd/yyyy format.

datestr(datenum({'09/16/2007';'05/14/1996';'11/29/2010'}, ...
 'mm/dd/yyyy'))

ans = 3x11 char array
 '16-Sep-2007'
 '14-May-1996'

1 Alphabetical List

1-2750

 '29-Nov-2010'

datestr returns a character array of converted dates in the format, day-month-year.

Convert Date String with Values Outside Normal Range

Call datenum inside of datestr to return the expected value, because the date below
uses a value outside its normal range (month=13).

datestr(datenum('13/24/88','mm/dd/yy'))

ans =
'24-Jan-1989'

Use Pivot Year

Change the pivot year to change the year range.

Use a pivot year of 1900.

DateStringIn = '4/16/55';
formatOut = 1;
PivotYear = 1900;
datestr(DateStringIn,formatOut,PivotYear)

ans =
'16-Apr-1955'

For the same date, use a pivot year of 2000.

PivotYear = 2000;
datestr(DateStringIn,formatOut,PivotYear)

ans =
'16-Apr-2055'

 datestr

1-2751

Return Date String in Local Language

Convert a date number to text in the language of the current locale.

Use the 'local' argument in a French locale.

DateNumber = 725935;
formatOut = 'mmmm-dd-yyyy';
str = datestr(DateNumber,formatOut,'local')

str =
Juillet-17-1987

You can make the same call without specifying 'local'.

str = datestr(DateNumber,formatOut)

str =
July-17-1987

In this case, the output defaults to the English language.

Input Arguments
t — Dates and times
datetime array

Dates and times, specified as a datetime array.
Data Types: datetime

DateVector — Date vectors
matrix

Date vectors, specified as an m-by-6 matrix, where m is the number of full (six-element)
date vectors. Each element of DateVector must be a positive or negative integer value
except for the seconds element, which can be fractional. If an element falls outside the
conventional range, datestr adjusts both that date vector element and the previous
element. For example, if the minutes element is 70, then datestr adjusts the hours
element by 1 and sets the minutes element to 10. If the minutes element is -15, then
datestr decreases the hours element by 1 and sets the minutes element to 45. Month
values are an exception. datestr sets month values less than 1 to 1.

1 Alphabetical List

1-2752

Example: [2003,10,24,12,45,07]
Data Types: double

DateNumber — Serial date numbers
array of positive double-precision numbers

Serial date numbers, specified as an array of positive double-precision numbers.
Example: 731878
Data Types: double

formatOut — Format of the output representing dates and times
-1 (default) | character vector | string scalar | integer

Format of the output representing dates and times, specified as a character vector or
string scalar of symbolic identifiers or an integer that corresponds to a predefined format.
If you do not specify formatOut, then datestr returns text in the default format dd-
mmm-yyyy HH:MM:SS (day-month-year hour:minute:second). By default, if HH:MM:SS =
00:00:00 then the text returned has the format dd-mmm-yyyy.

The following table shows symbolic identifiers that you can use to construct the
formatOut character vector. You can include characters such as a hyphen, space, or
colon to separate the fields.

Note The symbolic identifiers describing date and time formats are different from the
identifiers that describe the display formats of datetime arrays.

Symbolic
Identifier

Description Example

yyyy Year in full 1990, 2002
yy Year in two digits 90, 02
QQ Quarter year using letter Q and

one digit
Q1

mmmm Month using full name March, December
mmm Month using first three letters Mar, Dec
mm Month in two digits 03, 12

 datestr

1-2753

Symbolic
Identifier

Description Example

m Month using capitalized first
letter

M, D

dddd Day using full name Monday, Tuesday
ddd Day using first three letters Mon, Tue
dd Day in two digits 05, 20
d Day using capitalized first letter M, T
HH Hour in two digits

(no leading zeros when symbolic
identifier AM or PM is used)

05, 5 AM

MM Minute in two digits 12, 02
SS Second in two digits 07, 59
FFF Millisecond in three digits 057
AM or PM AM or PM inserted in text

representing time
3:45:02 PM

The formatOut character vector must follow these guidelines:

• You cannot specify any field more than once. For example, you cannot use 'yy-mmm-
dd-m' because it has two month identifiers. The one exception to this is that you can
combine one instance of dd with one instance of any of the other day identifiers. For
example, 'dddd mmm dd yyyy' is a valid input.

• When you use AM or PM, the HH field is also required.
• You only can use QQ alone or with a year specifier.

This table lists predefined date formats that you can use with datestr.

Numeric Identifier Date and Time Format Example
-1 (default) 'dd-mmm-yyyy HH:MM:SS' or

'dd-mmm-yyyy' if
'HH:MM:SS'= 00:00:00

01-Mar-2000 15:45:17 or
01-Mar-2000

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17
1 'dd-mmm-yyyy' 01-Mar-2000

1 Alphabetical List

1-2754

Numeric Identifier Date and Time Format Example
2 'mm/dd/yy' 03/01/00
3 'mmm' Mar
4 'm' M
5 'mm' 03
6 'mm/dd' 03/01
7 'dd' 01
8 'ddd' Wed
9 'd' W
10 'yyyy' 2000
11 'yy' 00
12 'mmmyy' Mar00
13 'HH:MM:SS' 15:45:17
14 'HH:MM:SS PM' 3:45:17 PM
15 'HH:MM' 15:45
16 'HH:MM PM' 3:45 PM
17 'QQ-YY' Q1-01
18 'QQ' Q1
19 'dd/mm' 01/03
20 'dd/mm/yy' 01/03/00
21 'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17
22 'mmm.dd,yyyy' Mar.01,2000
23 'mm/dd/yyyy' 03/01/2000
24 'dd/mm/yyyy' 01/03/2000
25 'yy/mm/dd' 00/03/01
26 'yyyy/mm/dd' 2000/03/01
27 'QQ-YYYY' Q1-2001
28 'mmmyyyy' Mar2000

 datestr

1-2755

Numeric Identifier Date and Time Format Example
29 'yyyy-mm-dd'

(ISO 8601)
2000-03-01

30 'yyyymmddTHHMMSS'
(ISO 8601)

20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

DateStringIn — Text representing dates and times to convert
character vector | cell array | string array

Text representing dates and times to convert, specified as a single character vector, a cell
array of character vectors, or a string array, where each row corresponds to one date and
time.

datestr considers two-character years (for example, '79') to fall within the 100-year
range centered around the current year.

All text representing dates and times must have the same date format, and they must be
in one of the following date formats.

Format of Text Representing Dates and
Times

Example

'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17
'dd-mmm-yyyy' 01-Mar-2000
'mm/dd/yyyy' 03/01/2000
'mm/dd/yy' 03/01/00
'mm/dd' 03/01
'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17
'mmm.dd,yyyy' Mar.01,2000
'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17
'yyyy-mm-dd' 2000-03-01
'yyyy/mm/dd' 2000/03/01
'HH:MM:SS' 15:45:17
'HH:MM:SS PM' 3:45:17 PM

1 Alphabetical List

1-2756

Format of Text Representing Dates and
Times

Example

'HH:MM' 15:45
'HH:MM PM' 3:45 PM

Note When converting from one date and time format to another, first pass the text to
the datenum function, so that you can specify the format of the inputs. This approach
ensures that the format of the input dates and times is correctly interpreted. For example,
see “Convert Date String from Custom Format” on page 1-2750.

PivotYear — Start year of 100-year date range
present minus 50 years (default) | integer

Start year of the 100-year date range in which a two-character year resides, specified as
an integer. Use a pivot year to interpret dates that specify the year as two characters.

If formatIn contains the time of day, the pivot year is computed from the current time of
the current day, month, and year. Otherwise it is computed from midnight of the current
day, month, and year.
Example: 2000

Note If the input date format specifies a four-character year, then the last two characters
are truncated, and the first two characters specify the year. For example, if the date and
pivot year are specified as ('25122015','ddmmyyyy',2000), then the resulting date is
25-12-2020, not 25-12-2015.

Data Types: double

Output Arguments
DateString — Text representing dates and times
character vector | two-dimensional character array

Text representing dates and times, returned as a character array with m rows, where m is
the total number of input dates and times. The default output format is dd-mmm-yyyy

 datestr

1-2757

HH:MM:SS (day-month-year hour:minute:second) unless the hours, minutes, and seconds
are all 0 in which case HH:MM:SS is suppressed.

Tips
• To convert text not in a predefined MATLAB date format, first convert the text to a

date number, using either the datenum or datevec functions.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The first argument must be a column vector or an array returned by datevec.
• If the first argument is a datevec array, then the rows must be within the year range

1500:2499.

For more information, see “Tall Arrays”.

See Also
cellstr | char | datenum | datetime | datevec | string

Topics
“Represent Dates and Times in MATLAB”
“Converting Date Vector Returns Unexpected Output”

Introduced before R2006a

1 Alphabetical List

1-2758

datetick
Date formatted tick labels

For 2-D line plots, it is more convenient to plot datetime values using the plot function.
You can then format the tick labels using the xtickformat and ytickformat functions.
datetick is useful when plotting numeric values that are serial date numbers.

Syntax
datetick(tickaxis)
datetick(tickaxis,dateFormat)

datetick(___ ,'keeplimits')

datetick(___ ,'keepticks')

datetick(axes_handle, ___)

Description
datetick(tickaxis) labels the tick lines of the axis specified by tickaxis using
dates, replacing the default numeric labels. datetick selects a label format based on the
minimum and maximum limits of the specified axis. The axis data values should be serial
date numbers, as returned by the datenum function.

datetick(tickaxis,dateFormat) formats the labels according to dateFormat.

datetick(___ ,'keeplimits') changes the tick labels to date-based labels while
preserving the axis limits. Append 'keeplimits' to any of the previous syntaxes.

datetick(___ ,'keepticks') changes the tick labels to date-based labels while
preserving their locations. Append 'keepticks' to any of the previous syntaxes.

datetick(axes_handle, ___) labels the tick lines of an axis on the axes specified by
axes_handle. The axes_handle argument can precede any of the input argument
combinations in the previous syntaxes.

 datetick

1-2759

Examples

Label x-Axis Ticks with 2-digit Years

Graph population data for the 20th Century taken from the 1990 US census and label x-
axis ticks with 2-digit years.

Create time data by decade.

t = (1900:10:1990)';

Enter total population counts for the USA.

p = [75.995 91.972 105.711 123.203 131.669 ...
 150.697 179.323 203.212 226.505 249.633]';

Convert years to serial date numbers using the datenum function, and then create a bar
graph of the data.

figure
bar(datenum(t,1,1),p)

1 Alphabetical List

1-2760

Replace x-axis ticks with 2-digit years. The numeric identifier 11 corresponds to the
predefined MATLAB® date format 'yy'.

dateFormat = 11;
datetick('x',dateFormat)

 datetick

1-2761

Label x-Axis Ticks with Hours of the Day

Plot traffic count data against date ticks for hours of the day showing AM and PM.

Get traffic count data.

load count.dat

Create arrays for an arbitrary date, for example, April 18, 1995.

n = length(count);
year = repmat(1995,1,n);

1 Alphabetical List

1-2762

month = repmat(4,1,n);
day = repmat(18,1,n);

Create arrays for each of 24 hours.

hour = 1:n;
minutes = zeros(1,n);

Get the serial date numbers for the date arrays.

sdate = datenum(year,month,day,hour,minutes,minutes);

Plot a 3-D bar graph of the traffic data against the serial date numbers.

bar3(sdate,count)

 datetick

1-2763

Label the tick lines of the graph's y-axis with the hours of the day.

datetick('y','HHPM')

Label x-Axis and Preserve Axis Limits

Select a starting date.

startDate = datenum('02-01-1962');

Select an ending date.

1 Alphabetical List

1-2764

endDate = datenum('11-15-2012');

Create a variable, xdata, that corresponds to the number of years between the start and
end dates.

xData = linspace(startDate,endDate,50);

Plot random data.

figure
stem(xData,rand(1,50))

Label the x-axis with 4-digit years, preserving the x-axis limits by using the
'keeplimits' option.

 datetick

1-2765

datetick('x','yyyy','keeplimits')

Add Month Labels to Plot and Preserve Number of Ticks

Select a starting date.

startDate = datenum('01-01-2009');

Select an ending date.

endDate = datenum('12-31-2009');

1 Alphabetical List

1-2766

Create a variable, xdata, that corresponds to the number of months between the start
and end dates.

xData = linspace(startDate,endDate,12);

Plot random data.

figure
stairs(xData,rand(1,12))

Set the number of XTicks to the number of points in xData.

ax = gca;
ax.XTick = xData;

 datetick

1-2767

Label the x-axis with month names, preserving the total number of ticks by using the
'keepticks' option.

datetick('x','mmm','keepticks')

1 Alphabetical List

1-2768

Create Multiple Plots Within Figure and Label Axis with Month Names

Select a starting date and an ending date.

startDate = datenum('01-01-2009');
endDate = datenum('12-31-2009');

Create a variable, xdata, that corresponds to the number of months between the start
and end dates.

xData = linspace(startDate,endDate,12);

 datetick

1-2769

Plot random data.

ax1 = subplot(2,1,1);
bar(xData,rand(1,12))
ax2 = subplot(2,1,2);
bar(xData,rand(1,12))

Set the number of XTicks to the number of points in xData. Label the x-axis of each
subplot with month names, referring to each subplot using its axes handle. Preserve the
total number of ticks by using the 'keepticks' option. Starting in R2014b, you can use
dot notation to set properties. If you are using an earlier release, use the set function
instead.

1 Alphabetical List

1-2770

ax1.XTick = xData;
datetick(ax1,'x','mm','keepticks')

ax2.XTick = xData;
datetick(ax2,'x','mmm','keepticks')

Input Arguments
tickaxis — Axis to label
'x' (default) | 'y' | 'z'

Axis to label with dates, specified as 'x', 'y', or 'z'.

 datetick

1-2771

dateFormat — Format of tick line labels
character vector | integer

Format of the tick line labels, specified as a character vector of symbolic identifiers or an
integer that corresponds to a predefined format.

The following table shows symbolic identifiers that you can use to construct the format.
You can include characters such as a hyphen, space, or colon to separate the fields. For
example, to display the day of the month followed by the three-letter abbreviation of the
day of the week in parentheses, use dateFormat = 'dd (ddd)'.

Note The letter identifiers that datetick accepts are different from the identifiers used
by the datetime function.

Symbolic
Identifier

Description Example

yyyy Year in full 1990, 2002
yy Year in two digits 90, 02
QQ Quarter year using letter Q and

one digit
Q1

mmmm Month using full name March, December
mmm Month using first three letters Mar, Dec
mm Month in two digits 03, 12
m Month using capitalized first

letter
M, D

dddd Day using full name Monday, Tuesday
ddd Day using first three letters Mon, Tue
dd Day in two digits 05, 20
d Day using capitalized first letter M, T
HH Hour in two digits

(no leading zeros when symbolic
identifier AM or PM is used)

05, 5 AM

MM Minute in two digits 12, 02

1 Alphabetical List

1-2772

Symbolic
Identifier

Description Example

SS Second in two digits 07, 59
FFF Millisecond in three digits 057
AM or PM AM or PM inserted in text

representing time
3:45:02 PM

The following table lists predefined MATLAB date formats.

Numeric Identifier Date and Time Format Example
-1 (default) 'dd-mmm-yyyy HH:MM:SS' or

'dd-mmm-yyyy' if
'HH:MM:SS'= 00:00:00

01-Mar-2000 15:45:17 or
01-Mar-2000

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17
1 'dd-mmm-yyyy' 01-Mar-2000
2 'mm/dd/yy' 03/01/00
3 'mmm' Mar
4 'm' M
5 'mm' 03
6 'mm/dd' 03/01
7 'dd' 01
8 'ddd' Wed
9 'd' W
10 'yyyy' 2000
11 'yy' 00
12 'mmmyy' Mar00
13 'HH:MM:SS' 15:45:17
14 'HH:MM:SS PM' 3:45:17 PM
15 'HH:MM' 15:45
16 'HH:MM PM' 3:45 PM
17 'QQ-YY' Q1-01

 datetick

1-2773

Numeric Identifier Date and Time Format Example
18 'QQ' Q1
19 'dd/mm' 01/03
20 'dd/mm/yy' 01/03/00
21 'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17
22 'mmm.dd,yyyy' Mar.01,2000
23 'mm/dd/yyyy' 03/01/2000
24 'dd/mm/yyyy' 01/03/2000
25 'yy/mm/dd' 00/03/01
26 'yyyy/mm/dd' 2000/03/01
27 'QQ-YYYY' Q1-2001
28 'mmmyyyy' Mar2000
29 'yyyy-mm-dd'

(ISO 8601)
2000-03-01

30 'yyyymmddTHHMMSS'
(ISO 8601)

20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

Tips
• To change the tick spacing and locations, set the appropriate axes property (that is,

XTick, YTick, or ZTick) before calling datetick.
• Calling datetick sets the TickMode of the specified axis to 'manual'. This means

that after zooming, panning or otherwise changing axis limits, you should call
datetick again to update the ticks and labels.

• The best way to work with dates and times in MATLAB is to use datetime values,
which offer more features than serial date numbers. Plot datetime values using the
plot function. Use the DatetimeTickFormat name-value pair argument to modify
the format of the axis tick labels.

1 Alphabetical List

1-2774

Algorithms
datetick calls the datestr function to convert date numbers to text.

See Also
datenum | datestr | datetime | plot

Topics
“Plot Dates and Durations”

Introduced before R2006a

 datetick

1-2775

datetime
Arrays that represent points in time

Description
datetime arrays represent points in time using the proleptic ISO calendar. datetime
values have flexible display formats up to nanosecond precision and can account for time
zones, daylight saving time, and leap seconds.

Creation

Syntax
t = datetime
t = datetime(relativeDay)

t = datetime(DateStrings)
t = datetime(DateStrings,'InputFormat',infmt)

t = datetime(DateVectors)
t = datetime(Y,M,D)
t = datetime(Y,M,D,H,MI,S)
t = datetime(Y,M,D,H,MI,S,MS)

t = datetime(X,'ConvertFrom',dateType)

t = datetime(___ ,Name,Value)

Description
t = datetime returns a scalar datetime array corresponding to the current date and
time.

1 Alphabetical List

1-2776

t = datetime(relativeDay) uses the date specified by relativeDay. The
relativeDay input can be 'today', 'tomorrow', 'yesterday', or 'now'.

t = datetime(DateStrings) creates an array of datetime values from the text in
DateStrings representing points in time.

t = datetime(DateStrings,'InputFormat',infmt) interprets DateStrings
using the format specified by infmt. All values in DateStrings must have the same
format.

To avoid ambiguities between similar formats, specify 'InputFormat' and its
corresponding value, infmt.

t = datetime(DateVectors) creates a column vector of datetime values from the
date vectors in DateVectors.

t = datetime(Y,M,D) creates an array of datetime values for corresponding elements
of the Y, M, and D (year, month, day) arrays. The arrays must be of the same size (or any
can be a scalar). You also can specify the input arguments as a date vector, [Y M D].

t = datetime(Y,M,D,H,MI,S) also creates H, MI, and S (hour, minute, and second)
arrays. All arrays must be of the same size (or any can be a scalar). You also can specify
the input arguments as a date vector, [Y M D H MI S].

t = datetime(Y,M,D,H,MI,S,MS) adds an MS (millisecond) array. All arrays must be
of the same size (or any can be a scalar).

t = datetime(X,'ConvertFrom',dateType) converts the numeric values in X to a
datetime array t. The dateType argument specifies the type of values in X.

If X contains POSIX® times or Julian dates that represent local times, then specify the
appropriate time zone for t using the 'TimeZone' name-value pair argument. If you do
not specify a time zone, then the POSIX times or Julian dates in X are treated as UTC
times, not local times.

t = datetime(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments, in addition to any of the input arguments in the previous
syntaxes. For example, you can specify the display format of t using the 'Format' name-
value pair argument.

For best performance when creating datetime values from text, specify either 'Format'
or 'InputFormat' and its corresponding value, infmt.

 datetime

1-2777

Input Arguments
relativeDay — Day relative to current date
'yesterday' | 'today' | 'tomorrow' | 'now'

Day relative to the current date, specified as one of the following values.

Value of relativeDay Description
'yesterday' Date of the previous day, at midnight
'today' Current date, at midnight
'tomorrow' Date of the following day, at midnight
'now' Current date and time

DateStrings — Text representing dates and times
character array | cell array of character vectors | string array

Text representing dates and times, specified as a character array, a cell array of character
vectors, or a string array. The datetime function first attempts to match the format of
DateStrings to common formats. If you know the format, specify 'InputFormat' and
its corresponding infmt value, or the 'Format' name-value pair argument.
Example: '24-Oct-2014 12:45:07'
Example: {'15-Oct-2013','20-Nov-2014'}
Example: ["11-Nov-2016","12-Dec-2016"]
Data Types: char | cell | string

infmt — Format of input text
character vector | string scalar

Format of the input text representing dates and times, specified as a character vector or
string scalar that contains letter identifiers:

• If infmt does not include a date specifier, then datetime assumes that the values in
DateStrings occur during the current day.

• If infmt does not include a time specifier, then datetime assumes that the values in
DateStrings occur at midnight.

This table shows several common input formats and includes examples of the formatted
input for the date, Saturday, April 19, 2014 at 9:41:06.12345 PM in New York City.

1 Alphabetical List

1-2778

Value of infmt Example
'yyyy-MM-dd' 2014-04-19
'dd/MM/yyyy' 19/04/2014
'dd.MM.yyyy' 19.04.2014
'yyyy年 MM月 dd日' 2014年 04月 19日 (Characters for

Japanese locale, ja_JP)
'MMMM d, yyyy' April 19, 2014
'eeee, MMMM d, yyyy h:mm a' Saturday, April 19, 2014 9:41 PM
'MMMM d, yyyy HH:mm:ss Z' April 19, 2014 21:41:06 -0400
'yyyy-MM-dd''T''HH:mmXXX' 2014-04-19T21:41-04:00
'yyyy-MM-dd HH:mm:ss.SSS' 2014-04-19 21:41:06.123

For input text that represents fractional seconds, you can specify infmt with up to nine S
characters to indicate fractional second digits. For example, 'yyyy-MM-dd
HH:mm:ss.SSS' is a format for text that represents dates and times to millisecond
precision.

For a complete list of valid letter identifiers, see the Format property for datetime arrays.

Note The letter identifiers that datetime accepts are different from the identifiers used
by the datestr, datenum, and datevec functions.

Data Types: char | string

DateVectors — Date vectors
matrix

Date vectors, specified as an m-by-6 or m-by-3 matrix containing m full or partial date
vectors, respectively. A full date vector has six elements, specifying year, month, day, hour,
minute, and second, in that order. A partial date vector has three elements, specifying
year, month, and day, in that order. Each element of DateVector should be a positive or
negative integer value except for the seconds element, which can be fractional. If an
element falls outside the conventional range, datetime adjusts both that date vector
element and the previous element. For example, if the minutes element is 70, then
datetime adjusts the hours element by 1 and sets the minutes element to 10. If the

 datetime

1-2779

minutes element is -15, then datetime decreases the hours element by 1 and sets the
minutes element to 45.
Example: [2014 10 24 12 45 07]
Example: [2014 10 24]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y,M,D — Year, month, and day arrays
numeric arrays

Year, month, and day arrays specified as numeric arrays. These arrays must be the same
size, or any one can be a scalar. Y,M,D should be integer values.

• If Y,M,D are all scalars or all column vectors, then you can specify the input
arguments as a date vector, [Y M D].

• If an element of the Y, M, or D inputs falls outside the conventional range, then
datetime adjusts both that element and the same element of the previous input. For
details, see the description for the DateVectors input argument.

Example: 2003,10,24
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y,M,D,H,MI,S — Year, month, day, hour, minute, and second arrays
numeric arrays

Year, month, day, hour, minute, and second arrays specified as numeric arrays. These
arrays must be the same size, or any one can be a scalar. Specify fractional seconds as
part of the seconds input, S. The Y,M,D,H,MI arrays must contain integer values.

• If Y,M,D,H,MI,S are all scalars or all column vectors, then you can specify the input
arguments as a date vector[Y M D H MI S].

• If an element of the Y, M, D, H, MI, or S inputs falls outside the conventional range,
then datetime adjusts both that element and the same element of the previous input.
For details, see the description for the DateVectors input argument.

Example: 2003,10,24,12,45,07.451
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-2780

Y,M,D,H,MI,S,MS — Year, month, day, hour, minute, second, and millisecond
arrays
numeric arrays

Year, month, day, hour, minute, second, and millisecond arrays, specified as numeric
arrays. These arrays must be the same size, or any one can be a scalar. The
Y,M,D,H,MI,S arrays must contain integer values. MS can contain fractional
milliseconds.

If an element of the Y, M, D, H, MI, S, or MS inputs falls outside the conventional range,
then datetime adjusts both that element and the same element of the previous input. For
details, see the description for the DateVectors input argument.
Example: 2003,10,24,12,45,07,10.52
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

X — Numeric values
array

Numeric values, specified as an array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

dateType — Type of values in X
'datenum' | 'excel' | 'excel1904' | 'juliandate' | ...

Type of values in X, specified as one of these values.

Value of dateType Type of Values in X
'datenum' Number of days since 0-Jan-0000 (proleptic

ISO calendar).

 datetime

1-2781

Value of dateType Type of Values in X
'excel' Number of days since 0-Jan-1900.

Excel date numbers are rounded to the
nearest microsecond.

Note: Excel incorrectly assumes that the
year 1900 is a leap year. Therefore, when
computing Excel date numbers there is a
discontinuity of one extra day between
February 28, 1900 and March 1, 1900.

'excel1904' Number of days since 0-Jan-1904.

Excel date numbers are rounded to the
nearest microsecond.

Note: Excel incorrectly assumes that the
year 1900 is a leap year. Therefore, when
computing Excel date numbers there is a
discontinuity of one extra day between
February 28, 1900 and March 1, 1900.

1 Alphabetical List

1-2782

Value of dateType Type of Values in X
'juliandate' Number of days since noon UTC 24-

Nov-4714 BCE (proleptic Gregorian
calendar).

If you convert X to a datetime array
without specifying a time zone, then the
datetime values represent UTC times, not
local times. To represent local times,
specify a time zone using the 'TimeZone'
name-value pair argument.

Example: Convert X using the time zone
for New York.

T = datetime(X,'ConvertFrom','juliandate',...
'TimeZone','America/New_York')

Then, you can convert T to an unzoned
datetime array representing local times
by assigning an empty character vector to
TimeZone.

T.TimeZone = ''

 datetime

1-2783

Value of dateType Type of Values in X
'modifiedjuliandate' Number of days since midnight UTC 17-

Nov-1858.

If you convert X to a datetime array
without specifying a time zone, then the
datetime values represent UTC times, not
local times. To represent local times,
specify a time zone using the 'TimeZone'
name-value pair argument.

Example: Convert X using the time zone
for New York.

T = datetime(X,'ConvertFrom','modifiedjuliandate',...
'TimeZone','America/New_York')

Then, you can convert T to an unzoned
datetime array representing local times
by assigning an empty character vector to
TimeZone.

T.TimeZone = ''

1 Alphabetical List

1-2784

Value of dateType Type of Values in X
'posixtime' Number of seconds since 1-Jan-1970

00:00:00 UTC, not counting leap seconds.

If you convert X to a datetime array
without specifying a time zone, then the
datetime values represent UTC times, not
local times. To represent local times,
specify a time zone using the 'TimeZone'
name-value pair argument.

Example: Convert X using the time zone
for New York.

T = datetime(X,'ConvertFrom','posixtime',...
'TimeZone','America/New_York')

Then, you can convert T to an unzoned
datetime array representing local times
by assigning an empty character vector to
TimeZone.

T.TimeZone = ''

'yyyymmdd' Dates as YYYYMMDD numeric values. For
example, 20140402 represents April 2,
2014.

'ntp' Number of "clock ticks" since 1-Jan-1900
00:00:00 UTC, where each clock tick is
2^-32 seconds.

'.net' Number of "clock ticks" since 1-Jan-0001
00:00:00 UTC, where each clock tick is 100
ns.

'ntfs' Number of "clock ticks" since 1-Jan-1601
00:00:00 UTC, where each clock tick is 100
ns.

 datetime

1-2785

Value of dateType Type of Values in X
'epochtime','Epoch',epochValue Number of seconds since an epoch.

You must also specify epochValue, which
is a scalar datetime, or a character vector
or string scalar representing the epoch
time.

Example: Return the number of days since
January 1, 2000.

T = datetime(X,'ConvertFrom',...
'epochtime','Epoch','2000-01-01')

'epochtime','Epoch',epochValue,'T
icksPerSecond',n

Number of "clock ticks" since an epoch.

In addition to specifying epochValue, you
also can specify n, which is a scalar integer
that specifies the number of "clock ticks"
per second.

Example: Return the number of days since
January 1, 2000, where X represents the
time in milliseconds since or before that
date.

T = datetime(X,'ConvertFrom',...
'epochtime','Epoch','2000-01-01','TicksPerSecond',1000)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Format','eeee MMMM d, y','TimeZone','local' applies a display
format to datetime values and specifies the local time zone.

Format — Display format
'default' | 'defaultdate' | 'preserveinput' | character vector | string scalar

1 Alphabetical List

1-2786

Display format of the values in the output array, specified as the comma-separated pair
consisting of 'Format' and one of the following values.

Value of Format Description
'default' Use the default display format.
'defaultdate' Use the default display format for datetime

values created without time components.
'preserveinput' Use the format specified by the input

format, infmt. If you do not specify infmt,
then datetime determines the format
automatically.

character vector or string scalar Use a format you specify with a character
vector or string scalar.

If you specify your own format, then you must use valid letter identifiers. For a complete
list of valid letter identifiers, see the Format property.

The factory default format depends on your system locale. To change the default display
format, see “Default datetime Format”.

If you specify a DateStrings input but do not specify the 'InputFormat' parameter,
then datetime tries to use the Format value to interpret DateStrings.
Example: 'Format','eeee, MMMM d, yyyy HH:mm:ss' displays a date and time such
as Wednesday, April 9, 2014 21:41:06.
Data Types: char | string

Locale — Locale of DateStrings
character vector | string scalar

Locale of DateStrings input argument values, specified as the comma-separated pair
consisting of 'Locale' and a character vector or string scalar. The Locale value
determines how datetime interprets DateStrings. However, it does not determine how
the output datetime values display.

The Locale value can be:

• 'system', to specify your system locale.

 datetime

1-2787

• A character vector or string scalar in the form xx_YY, where xx is a lowercase ISO
639-1 two-letter code that specifies a language, and YY is an uppercase ISO 3166-1
alpha-2 code that specifies a country.

This table lists some common values for the locale.

Locale Language Country
'de_DE' German Germany
'en_GB' English United Kingdom
'en_US' English United States
'es_ES' Spanish Spain
'fr_FR' French France
'it_IT' Italian Italy
'ja_JP' Japanese Japan
'ko_KR' Korean Korea
'nl_NL' Dutch Netherlands
'zh_CN' Chinese (simplified) China

You can use the 'Locale' name-value pair only when you use the DateStrings input
argument.
Example: 'Locale','de_DE'

Note The Locale value determines how input text values are interpreted. The output
datetime values always display in the language specified by the Locale option in the
Datetime format section of the Preferences panel.

• To change the default datetime locale for display, see “Set Command Window
Preferences”.

• To convert datetime values to text using a different locale, use the char, cellstr, or
string functions.

Data Types: char | string

1 Alphabetical List

1-2788

PivotYear — Start year of 100-year date range
year(datetime('now'))-50 (default) | integer

Start year of the 100-year date range in which a two-character year resides, specified as
the comma-separated pair consisting of 'PivotYear' and an integer. Use a pivot year to
interpret dates that specify the year as two characters. That is, the pivot year has an
effect only when the infmt argument includes y or yy.

You can use the 'PivotYear' name-value pair only when you use the DateStrings
input argument.
Example: 'PivotYear',1900
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TimeZone — Time zone
'' (default) | character vector | string scalar

Time zone, specified as the comma-separated pair consisting of 'TimeZone' and a
character vector or string scalar that specifies the TimeZone property.
Data Types: char | string

Properties
Format — Display format
'default' | 'defaultdate' | character vector | string scalar

Display format, specified as 'default', 'defaultdate', a character vector, or a string
scalar.

Value of Format Description
'default' Use the default display format.
'defaultdate' Use the default display format for datetime

values created without time components.
character vector or string scalar Use a format you specify with a character

vector or string scalar.

 datetime

1-2789

If you specify a format of your own, then it must use valid letter identifiers that
correspond to the Unicode Locale Data Markup Language (LDML) standard for dates and
times.
Example: 'eeee, MMMM d, yyyy HH:mm:ss' displays a date and time such as
Wednesday, April 9, 2014 21:41:06.

To separate fields, you can include nonletter characters such as a hyphen, space, colon, or
any non-ASCII characters. To include the letters A-Z and a-z as literal characters in the
format, enclose them in single quotes.
Example: 'uuuu-MM-dd''T''HH:mm:ss' displays a date and time, such as
2014-04-09T21:41:06.

Note The letter identifiers that datetime accepts are different from the identifiers used
by the datestr, datenum, and datevec functions.

The factory default format depends on your system locale. To change the default display
format, see “Default datetime Format”.

Examples of Common Formats

This table lists common display formats. The examples show formatted output for the
date, Wednesday, April 9, 2014 at 9:41:06.12345 PM, in New York City.

Value of Format Example
'yyyy-MM-dd' 2014-04-09
'dd/MM/yyyy' 09/04/2014
'dd.MM.yyyy' 09.04.2014
'yyyy年 MM月 dd日' 2014年 04月 09日 (Characters for

Japanese locale, ja_JP)
'MMMM d, yyyy' April 9, 2014
'eeee, MMMM d, yyyy h:mm a' Wednesday, April 9, 2014 9:41 PM
'MMMM d, yyyy HH:mm:ss Z' April 9, 2014 21:41:06 -0400
'yyyy-MM-dd''T''HH:mmXXX' 2014-04-09T21:41-04:00
'yyyy-MM-dd HH:mm:ss.SSS' 2014-04-09 21:41:06.123

1 Alphabetical List

1-2790

All Date and Time Formats

Use these identifiers to specify the display formats of date and time fields. The display
formats show output for the date, Wednesday, April 9, 2014 at 9:41:06.12345 PM, in New
York City.

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. See the

Note that follows this table.
2014

yy Year, using last two digits. See the
Note that follows this table.

14

yyy, yyyy ... Year, using at least the number of
digits specified by the number of
instances of 'y'

For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year. A single number
designating the year. An ISO year
value assigns positive values to CE
years and negative values to BCE
years, with 1 BCE being year 0.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2
QQQQ Quarter, full name 2nd quarter
M Month, numerical using one or two

digits
4

MM Month, numerical using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A
W Week of the month, using one digit 2
d Day of the month, using one or two

digits
9

 datetime

1-2791

Letter
Identifier

Description Display

dd Day of the month using two digits 09
D Day of the year, using one, two, or

three digits
99

DD Day of the year using two digits 99
DDD Day of the year using three digits 099
e Day of the week (numerical, using

one or two digits)
4, where Sunday is the first day of
the week.

ee Day of the week (numerical, using
two digits)

04

eee Day, abbreviated name Wed
eeee Day, full name Wednesday
eeeee Day, capitalized first letter W
a Day period (AM or PM) PM
h Hour, 12-hour clock notation using

one or two digits
9

hh Hour, 12-hour clock notation using
two digits

09

H Hour, 24-hour clock notation using
one or two digits

21

HH Hour, 24-hour clock notation using
two digits

21

m Minute, using one or two digits 41
mm Minute, using two digits 41
s Second, using one or two digits 6
ss Second, using two digits 06
S, SS, ...,
SSSSSSSSS

Fractional second, using the
number of digits specified by the
number of instances of 'S' (up to 9
digits).

'SSS' truncates 6.12345 seconds
to 6.123.

1 Alphabetical List

1-2792

Note

• If you read a two-digit year number and specify the format as y or yy, then the pivot
year determines the century to which the year belongs.

• If you read a day-of-year number and specify a format that contains identifiers for both
the day of year (D) and Gregorian year (y), then datetime might not read the day-of-
year number correctly. Use ISO year (u) in place of y.

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

• Datetime values later than 144683 years CE or before 140743 BCE display only the
year numbers, regardless of the specified Format value.

Time Zone Offset Formats

Use these identifiers to specify the display format of the time zone offset. A time zone
offset is the amount of time that a specific datetime is offset from UTC. A time zone has
rules for determining the time zone offset, and the offset can differ at different times of
the year. Include a time zone offset identifier in the display format for a datetime array
when you want to ensure that the time components are displayed unambiguously.

Letter
Identifier

Description Display

z Abbreviated name of the time zone
offset. If this value is not available,
then the time zone offset uses the
short UTC format, such as UTC-4.

EDT

Z ISO 8601 basic format with hours,
minutes, and optional seconds
fields.

-0400

ZZZZ Long UTC format. UTC-04:00
ZZZZZ ISO 8601 extended format with

hours, minutes, and optional
seconds fields. A time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

 datetime

1-2793

Letter
Identifier

Description Display

x or X ISO 8601 basic format with hours
field and optional minutes field. If
you specify X, then a time offset of
zero is displayed as the ISO 8601
UTC indicator “Z”.

-04

xx or XX ISO 8601 basic format with hours
and minutes fields. If you specify
XX, then a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-0400

xxx or XXX ISO 8601 extended format with
hours and minutes fields. If you
specify XXX, then a time offset of
zero is displayed as the ISO 8601
UTC indicator “Z”.

-04:00

xxxx or XXXX ISO 8601 basic format with hours,
minutes, and optional seconds
fields. If you specify XXXX, then a
time offset of zero is displayed as
the ISO 8601 UTC indicator “Z”.

-0400

xxxxx or
XXXXX

ISO 8601 extended format with
hours, minutes, and optional
seconds fields. If you specify
XXXXX, then a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

TimeZone — Time zone
'' (default) | character vector | string scalar

Time zone, specified as a character vector or string scalar. The value of TimeZone
specifies the time zone that the datetime function uses to interpret the input data.
TimeZone also specifies the time zone of the output array. If the input data are character
vectors or strings that include a time zone, then the datetime function converts all
values to the specified time zone.

1 Alphabetical List

1-2794

The value of TimeZone can be:

• '', to create an “unzoned” datetime array that does not belong to a specific time
zone.

• The name of a time zone region from the IANA Time Zone Database; for example,
'America/Los_Angeles'. The name of a time zone region accounts for the current
and historical rules for standard and daylight offsets from UTC that are observed in a
geographic region.

• An ISO 8601 character vector of the form +HH:mm or -HH:mm; for example, '+01:00',
to specify a time zone that is a fixed offset from UTC.

• 'UTC', to create a datetime array in Universal Coordinated Time.
• 'UTCLeapSeconds', to create a datetime array in Universal Coordinated Time that

accounts for leap seconds.
• 'local', to create a datetime array in the system time zone. When you query the

TimeZone property, the IANA value is returned.

This table lists some common names of time zone regions from the IANA Time Zone
Database.

Value of TimeZone UTC Offset UTC DST Offset
'Africa/Johannesburg' +02:00 +02:00
'America/Chicago' −06:00 −05:00
'America/Denver' −07:00 −06:00
'America/Los_Angeles' −08:00 −07:00
'America/New_York' −05:00 −04:00
'America/Sao_Paulo' −03:00 −02:00
'Asia/Hong_Kong' +08:00 +08:00
'Asia/Kolkata' +05:30 +05:30
'Asia/Tokyo' +09:00 +09:00
'Australia/Sydney' +10:00 +11:00
'Europe/London' +00:00 +01:00
'Europe/Zurich' +01:00 +02:00

You also can use the timezones function to display a list of IANA time zone names that
the datetime function accepts.

 datetime

1-2795

Data Types: char

Year — Year number
numeric array

Year number of each value in the datetime array, specified as a numeric array that is the
same size and shape as the datetime array. Each year number is an integer value based
on the ISO calendar. Years in the current era are positive and years in the previous era
are zero or negative. For example, the year number of 1 BCE is 0.

If you set the Year property to a nonleap year for a datetime value that occurs on a leap
day (February 29), then the Day and Month properties change to March 1.

Month — Month number
numeric array

Month number of each value in the datetime array, specified as a numeric array that is
the same size and shape as the datetime array. Each month number is an integer value
from 1 to 12. If you set a value outside that range, then the Year property adjusts
accordingly, and the Month property stays within the range 1 to 12. For example, month 0
corresponds to month 12 of the previous year. For historical dates, the month number is
based on the proleptic Gregorian calendar.

Day — Day-of-month number
numeric array

Day-of-month number of each value in the datetime array, specified as a numeric array
that is the same size and shape as the datetime array. Each day-of-month number is an
integer value from 1 to 28, 29, 30, or 31, depending on the month and year. If you set a
value outside that range, then the Month and Year properties adjust accordingly, and the
Day property stays within the appropriate range. For example, day 0 corresponds to the
last day of the previous month. For historical dates, the day number is based on the
proleptic Gregorian calendar.

Hour — Hour number
numeric array

Hour number of each value in the datetime array, specified as a numeric array that is
the same size and shape as the datetime array. Each hour number is an integer value
from 0 to 23. If you set a value outside that range, then the Day, Month, and Year
properties adjust accordingly, and the Hour property stays within the appropriate range.
For example, hour -1 corresponds to hour 23 of the previous day.

1 Alphabetical List

1-2796

These conditions apply to datetime arrays with a specific time zone that follows daylight
saving time:

• When you specify a value for the Hour property that would create a nonexistent
datetime in the hour gap when daylight saving time begins, the value of the Hour
property adjusts to the next hour.

• When you specify a value for the Hour property that would create an ambiguous
datetime in the hour overlap when daylight saving time ends, the datetime adjusts to
the second of the two times (in standard time) with that hour.

Minute — Minute number
numeric array

Minute number of each value in the datetime array, specified as a numeric array that is
the same size and shape as the datetime array. Each minute number is an integer value
from 0 to 59. If you specify a value outside that range, then the Hour, Day, Month, and
Year properties adjust accordingly, and the Minute property stays within the appropriate
range. For example, minute -1 corresponds to minute 59 of the previous hour.

Second — Second number
numeric array

Second number of each value in the datetime array, specified as a numeric array that is
the same size and shape as the datetime array. Each second value is a floating-point
value ordinarily ranging from 0 to less than 60. If you set a value outside that range, then
the Minute, Hour, Day, Month, and Year properties adjust accordingly, and the Second
property stays within the appropriate range. For example, second -1 corresponds to
second 59 of the previous minute.

A datetime array with a TimeZone value of 'UTCLeapSeconds' has seconds ranging
from 0 to less than 61. The values from 60 to 61 represent datetimes that occur during a
leap second.

SystemTimeZone — System time zone setting
character vector | string scalar

This property is read-only.

System time zone setting, specified as a character vector or string scalar. The system
where MATLAB is running determines this time zone setting.
Example: America/New_York

 datetime

1-2797

Examples

Current Date and Time in Specific Time Zone

Specify the current date and time in the local system time zone.

t = datetime('now','TimeZone','local','Format','d-MMM-y HH:mm:ss Z')

t = datetime
 2-Mar-2019 09:47:45 -0500

Specify the current date and time in the time zone represented by Seoul, Korea

t = datetime('now','TimeZone','Asia/Seoul','Format','d-MMM-y HH:mm:ss Z')

t = datetime
 2-Mar-2019 23:47:45 +0900

Date and Time from Character Vectors

Create a datetime array from a cell array of character vectors.

DateStrings = {'2014-05-26';'2014-08-03'};
t = datetime(DateStrings,'InputFormat','yyyy-MM-dd')

t = 2x1 datetime array
 26-May-2014
 03-Aug-2014

The datetime values in t display using the default format, and not the format of the input
dates.

1 Alphabetical List

1-2798

Date and Time from String Array

Starting in R2016b, you can create string arrays with the string function and convert
them to datetime values.

str = string({'2016-03-24','2016-04-19'})

str = 1x2 string array
 "2016-03-24" "2016-04-19"

Convert the strings, specifying the input format as yyyy-MM-dd. The format must be
specified as a character vector, even though str is a string array.

t = datetime(str,'InputFormat','yyyy-MM-dd')

t = 1x2 datetime array
 24-Mar-2016 19-Apr-2016

Time from Text Representing Fractional Seconds

Create a datetime value from text that represents a date and time to millisecond
precision. To convert text in a format that the datetime function cannot parse without
more information, specify the 'InputFormat' name-value pair argument.

d = '2018-06-25 11:23:37.712';
t = datetime(d,'InputFormat','yyyy-MM-dd HH:mm:ss.SSS')

t = datetime
 25-Jun-2018 11:23:37

The conversion does keep the fractional seconds. However, by default datetime arrays
do not display fractional seconds. To display them, specify either the 'Format' name-
value pair or the Format property.

t.Format = 'MMM dd, yyyy HH:mm:ss.SSS'

t = datetime
 Jun 25, 2018 11:23:37.712

 datetime

1-2799

The 'InputFormat' argument applies only to conversions from input text. The Format
property specifies the display for any datetime array.

Date and Time from Text with Literal Characters

Convert dates in ISO 8601 format to datetime values.

Create a cell array of character vectors containing dates in ISO 8601 format. In this
format, the letter T is used as a delimiter that separates a date and a time. Each character
vector includes a time zone offset. The letter Z indicates no offset from UTC.

DateStrings = {'2014-05-26T13:30-05:00';'2014-08-26T13:30-04:00';'2014-09-26T13:30Z'}

DateStrings = 3x1 cell array
 {'2014-05-26T13:30-05:00'}
 {'2014-08-26T13:30-04:00'}
 {'2014-09-26T13:30Z' }

Convert the character vectors to datetime values. When specifying the input format,
enclose the letter T in single quotes to indicate that it is a literal character. Specify the
time zone of the output datetime array using the TimeZone name-value pair argument.

t = datetime(DateStrings,'InputFormat','uuuu-MM-dd''T''HH:mmXXX','TimeZone','UTC')

t = 3x1 datetime array
 26-May-2014 18:30:00
 26-Aug-2014 17:30:00
 26-Sep-2014 13:30:00

The datetime values in t display in the default format.

Date and Time from Text in Foreign Language

Create a cell array of character vectors containing dates in French.

C = {'8 avril 2013','9 mai 2013';'10 juin 2014','11 juillet 2014'}

1 Alphabetical List

1-2800

C = 2x2 cell array
 {'8 avril 2013'} {'9 mai 2013' }
 {'10 juin 2014'} {'11 juillet 2014'}

Convert the character vectors in C to datetime values. If your computer is set to a locale
that uses English, you must specify the 'Locale' name-value pair argument to indicate
that the strings are in French.

t = datetime(C,'InputFormat','d MMMM yyyy','Locale','fr_FR')

t = 2x2 datetime array
 08-Apr-2013 09-May-2013
 10-Jun-2014 11-Jul-2014

The datetime values in t display in the default format, and in the language MATLAB uses
depending on your system locale.

Date and Time from Vectors

Create a datetime array from individual arrays of year, month, and day values.

Create sample numeric arrays of year values Y and day values D. In this case, the month
value M is a scalar.

Y = [2014;2013;2012];
M = 01;
D = [31;30;31];

Create the datetime array.

t = datetime(Y,M,D)

t = 3x1 datetime array
 31-Jan-2014
 30-Jan-2013
 31-Jan-2012

Specify a custom display format for the output, using the Format name-value pair
argument.

 datetime

1-2801

t = datetime(Y,M,D,'Format','eeee, MMMM d, y')

t = 3x1 datetime array
 Friday, January 31, 2014
 Wednesday, January 30, 2013
 Tuesday, January 31, 2012

Convert Excel Date Number to Datetime

Create a sample array of Excel® date numbers that represent a number of days since
January 0, 1900.

X = [39558, 39600; 39700, 39800]

X = 2×2

 39558 39600
 39700 39800

Convert the values in X to datetime values.

t = datetime(X,'ConvertFrom','excel')

t = 2x2 datetime array
 20-Apr-2008 00:00:00 01-Jun-2008 00:00:00
 09-Sep-2008 00:00:00 18-Dec-2008 00:00:00

Tips
• For a list of datetime functions, see “Dates and Time”.
• For a list of core MATLAB functions that accept datetime arrays as input arguments,

see “Core Functions Supporting Date and Time Arrays”.

1 Alphabetical List

1-2802

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Always specify the input datetime format when creating a tall datetime array for a
string array or character vectors in a cell array.

• If you specify 'Format' as 'preserveinput', then MATLAB might need to evaluate
the tall array to determine the format.

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• When you create a datetime array from the text in DateStrings, specify the input
format infmt.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
NaT | calendarDuration | cellstr | char | duration | string | timezones

Topics
“Represent Dates and Times in MATLAB”
“Set Date and Time Display Format”
“Specify Time Zones”
“Generate Sequence of Dates and Time”

 datetime

1-2803

Introduced in R2014b

1 Alphabetical List

1-2804

DatetimeRuler Properties
Control axis with datetime values

Description
DatetimeRuler properties control the appearance and behavior of an x-axis, y-axis, or z-
axis that shows datetime values. Each individual axis has its own ruler object. By
changing property values of the ruler, you can modify certain aspects of a specific axis.

Use dot notation to refer to a particular ruler and property. Access the ruler objects
through the XAxis, YAxis, and ZAxis properties of the Axes object.

ax = gca;
co = ax.XAxis.Color;
ax.XAxis.Color = 'blue';

Properties
Appearance

Color — Color of axis line and labels
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the axis line and labels, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 DatetimeRuler Properties

1-2805

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note The Color property for the ruler and the associated XColor, YColor, or ZColor
property for the parent axes always have the same value. Setting one also sets the other.

LineWidth — Width of axis line and tick marks
0.5 (default) | positive value

1 Alphabetical List

1-2806

Width of axis line and tick marks, specified as a positive value in point units. One point
equals 1/72 inch.
Example: ax.XAxis.LineWidth = 2;

Note Setting the LineWidth property for the parent axes sets the LineWidth property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Label — Axis label
text object (default)

Axis label, which is a text object. To display text or change existing text, set the String
property for the text object. Use other properties to change the text appearance, such as
the font style or color.

ax = gca;
ax.XAxis.Label.String = 'X Axis';
ax.XAxis.Label.FontSize = 12;

For a full list of options, see Text.

Alternatively, add or modify the axis labels using the xlabel, ylabel, and zlabel
functions.

Note The text object is not a child of the ruler object, so it cannot be returned by
findobj and it does not use the default text property values.

Visible — Axis visibility
'on' (default) | 'off'

Axis visibility, specified as one of these values:

• 'on' — Display the axis.
• 'off' — Hide the axis without deleting it. You still can access properties of an

invisible axis using the ruler object.

Example: ax.XAxis.Visible = 'off';

 DatetimeRuler Properties

1-2807

Scale and Direction

Limits — Minimum and maximum axis limits
two-element vector of the form [min max]

Minimum and maximum axis limits, specified as a two-element vector of the form [min
max], where min and max are datetime values. For example:

t = datetime(2014,6,28) + caldays(1:10);
y = rand(1,10);
plot(t,y);
ax = gca;
ax.XAxis.Limits = [t(2) t(8)];

Alternatively, set the limits using the xlim, ylim, and zlim functions.

If you assign a value to this property, then MATLAB sets the associated mode to
'manual'.

Note The Limits property for the ruler and the associated XLim, YLim, or ZLim
property for the parent axes always have the same value. Setting one also sets the other.

LimitsMode — Selection mode for Limits property
'auto' (default) | 'manual'

Selection mode for the Limits property, specified as one of these values:

• 'auto' — Automatically select the axis limits based on the data plotted.
• 'manual' — Use axis limit values that you specify. To specify the axis limits, set the

Limits property.

Note The LimitsMode property for the ruler and the associated XLimMode, YLimMode,
or ZLimMode property for the parent axes always have the same value. Setting one also
sets the other.

Scale — Scale of values along axis
'linear' (default)

Scale of values along axis, returned as 'linear'. DatetimeRuler objects do not
support log scales.

1 Alphabetical List

1-2808

Direction — Direction of increasing values
'normal' (default) | 'reverse'

Direction of increasing values, specified as one of these values:

• 'normal' — Values increase from left to right or bottom to top.
• 'reverse' — Values increase from right to left or top to bottom.

Note The Direction property for the ruler and the associated XDir, YDir, or ZDir
property for the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.Direction = 'reverse';

Tick Values and Labels

TickValues — Tick mark locations along the axis
[] (default) | vector of datetime values

Tick mark locations along the axis, specified as a vector of datetime values. For example:

t = datetime(2014,6,28) + caldays(1:10);
y = rand(1,10);
plot(t,y);
ax = gca;
ax.XAxis.TickValues = [t(1) t(3) t(5) t(10)];

If you assign a value to this property, then MATLAB sets the TickValuesMode property
to 'manual'.

Alternatively, use the xticks, yticks, and zticks functions.

Note The TickValues property for the ruler and the associated XTick, YTick, or
ZTick property for the parent axes always have the same value. Setting one also sets the
other.

TickValuesMode — Selection mode for TickValues property
'auto' (default) | 'manual'

Selection mode for the TickValues property, specified as one of these values:

 DatetimeRuler Properties

1-2809

• 'auto' — Automatically select the tick values based on the data plotted.
• 'manual' — Use tick values that you specify. To specify the values, set the

TickValues property.

Note The TickValuesMode property for the ruler and the associated XTickMode,
YTickMode, or ZTickMode property for the parent axes always have the same value.
Setting one also sets the other.

TickLabels — Tick mark labels
'' (default) | cell array of character vectors | string array | categorical array

Tick mark labels, specified as a cell array of character vectors, string array, or categorical
array. If you do not specify enough labels for all of the tick values, then the labels repeat.
The labels support TeX and LaTeX markup. See the TickLabelInterpreter property
for more information.
Example: ax.XAxis.TickLabels =
{'January','February','March','April','May'}';

Example: ax.YAxis.TickLabels = {'\pi','2\pi','3\pi'}'

If you set this property, then MATLAB sets the TickLabelsMode property to 'manual'.

Alternatively, specify the tick labels using the xticklabels, yticklabels, and
zticklabels functions.

Note

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

• The TickLabels property for the ruler and the associated XTickLabel,
YTickLabel, or ZTickLabel property for the parent axes always have the same
value. Setting one also sets the other.

Data Types: char | string | categorical

TickLabelsMode — Selection mode for TickLabels property
'auto' (default) | 'manual'

1 Alphabetical List

1-2810

Selection mode for the TickLabels property, specified as one of these values:

• 'auto' — Automatically select the tick labels.
• 'manual' — Use tick labels that you specify. To specify the labels, set the

TickLabels property.

Note The TickLabelsMode property for the ruler and the associated XTickLabelMode,
YTickLabelMode, or ZTickLabelMode property for the parent axes always have the
same value. Setting one also sets the other.

TickLabelInterpreter — Interpretation of tick label characters
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

Note Setting the TickLabelInterpreter property for the parent axes sets the
TickLabelInterpreter property for the ruler to the same value. However, setting the
ruler property does not set the axes property. To prevent the axes property value from
overriding the ruler property value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.TickLabelInterpreter = 'latex';

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the text.

This table lists the supported modifiers with the TickLabelInterpreter property set to
'tex'. Modifiers remain in effect until the end of the text. Superscripts and subscripts
are an exception because they only modify the next character or the text within the curly
braces {}.

 DatetimeRuler Properties

1-2811

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞

1 Alphabetical List

1-2812

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂

 DatetimeRuler Properties

1-2813

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. Use dollar
symbols around the labels, for example, use '$\int_1^{20} x^2 dx$' for inline mode
or '$$\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup
within the text. The maximum size of the text that you can use with the LaTeX interpreter
is 1200 characters. For multiline text, the maximum size of the text reduces by about 10
characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

TickLabelFormat — Tick label format
character vector | string

Tick label format, specified as a character vector or string. The default format is based on
the data.
Example: ax.XAxis.TickLabelFormat = 'yyyy-MM-dd'; displays a date and time
such as 2014-04-19.
Example: ax.XAxis.TickLabelFormat = 'eeee, MMMM d, yyyy HH:mm:ss';
displays a date and time such as Saturday, April 19, 2014 21:41:06.
Example: ax.XAxis.TickLabelFormat = 'MMMM d, yyyy HH:mm:ss Z'; displays a
date and time such as April 19, 2014 21:41:06 -0400.

1 Alphabetical List

1-2814

https://www.latex-project.org
https://www.latex-project.org

The following tables show the letter identifiers that you can use to construct the format.
To separate the fields, use nonletter characters such as a hyphen, space, colon, or any
non-ASCII character. The identifiers correspond to the Unicode Locale Data Markup
Language (LDML) standard for dates.

Date and Time Formats

Use these identifiers to specify the display formats of the date and time fields.

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. See the

Note that follows this table.
2014

yy Year, using last two digits. See the
Note that follows this table.

14

yyy, yyyy ... Year, using at least the number of
digits specified by the number of
instances of 'y'

For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year. A single number
designating the year. An ISO year
value assigns positive values to CE
years and negative values to BCE
years, with 1 BCE being year 0.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2
QQQQ Quarter, full name 2nd quarter
M Month, numerical using one or two

digits
4

MM Month, numerical using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A
W Week of the month 1

 DatetimeRuler Properties

1-2815

Letter
Identifier

Description Display

d Day of the month, using one or two
digits

5

dd Day of the month using two digits 05
D Day of the year, using one, two or

three digits
95

DD Day of the year using two digits 95
DDD Day of the year using three digits 095
e Day of the week, numerical using

one or two digits.
7, where Sunday is the first day of
the week.

ee Day of the week, numerical using
two digits

07

eee Day, abbreviated name Sat
eeee Day, full name Saturday
eeeee Day, capitalized first letter S
a Day period (AM or PM) PM
h Hour, 12-hour clock notation using

one or two digits
9

hh Hour, 12-hour clock notation using
two digits

09

H Hour, 24-hour clock notation using
one or two digits

21

HH Hour, 24-hour clock notation using
two digits

21

m Minute, using one or two digits 41
mm Minute, using two digits 41
s Second, using one or two digits 6
ss Second, using two digits 06

1 Alphabetical List

1-2816

Letter
Identifier

Description Display

S, SS, ...,
SSSSSSSSS

Fractional second, using the
number of digits specified by the
number of instances of 'S' (up to 9
digits).

'SSS' truncates 6.12345 seconds
to 123.

Some tips and considerations:

• If you read a two-digit year number and specify the format as y or yy, then the pivot
year determines the century to which the year belongs.

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

• Datetime values later than 144683 years CE or before 140743 BCE display only the
year numbers, regardless of the specified format value.

Time Zone Offset Formats

Use these identifiers to specify the display format of the time zone offset. A time zone
offset is the amount of time that a specific date and time is offset from UTC. This is
different from a time zone, which comprises rules that determine the offsets for specific
times of the year. Include a time zone offset identifier when you want to ensure that the
time components are displayed unambiguously.

Letter
Identifier

Description Display

z Abbreviated name of the time zone
offset. If this value is not available,
then the time zone offset uses the
short UTC format, such as UTC-4.

EDT

Z ISO 8601 basic format with hours,
minutes, and optional seconds
fields.

-0400

ZZZZ Long UTC format. UTC-04:00

 DatetimeRuler Properties

1-2817

Letter
Identifier

Description Display

ZZZZZ ISO 8601 extended format with
hours, minutes, and optional
seconds fields. A time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

x or X ISO 8601 basic format with hours
field and optional minutes field. If
you specify X, a time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04

xx or XX ISO 8601 basic format with hours
and minutes fields. If you specify
XX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-0400

xxx or XXX ISO 8601 extended format with
hours and minutes fields. If you
specify XXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

xxxx or XXXX ISO 8601 basic format with hours,
minutes, and optional seconds
fields. If you specify XXXX, a time
offset of zero is displayed as the
ISO 8601 UTC indicator “Z”.

-0400

xxxxx or
XXXXX

ISO 8601 extended format with
hours, minutes, and optional
seconds fields. If you specify
XXXXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

TickLabelFormatMode — Selection mode for TickLabelFormat property
'auto' (default) | 'manual'

Selection mode for the TickLabelFormat property, specified as one of these values:

1 Alphabetical List

1-2818

• 'auto' — Automatically select the tick label format.
• 'manual' — Use a tick label format that you specify. To specify the format, set the

TickLabelFormat property.

TickLabelRotation — Rotation of tick labels
scalar value in degrees

Rotation of tick labels, specified as a scalar value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation.

Alternatively, you can rotate the tick labels using the xtickangle, ytickangle, and
ztickangle functions.

Note The TickLabelRotation property for the ruler and the associated
XTickLabelRotation, YTickLabelRotation, or ZTickLabelRotation property for
the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.TickLabelRotation = 45;
Example: ax.YAxis.TickLabelRotation = -45;

TickLabelRotationMode — Selection mode for TickLabelRotation property
'auto' (default) | 'manual'

Selection mode for the TickLabelRotation property, specified as one of these values:

• 'auto' — Automatically select the tick label rotation.
• 'manual' — Use a tick label rotation that you specify. To specify the rotation, set the

TickLabelRotation property.

TickDirection — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values:

• 'in' — Direct the tick marks inward from the axis lines. This is the default for 2-D
views.

• 'out' — Direct the tick marks outward from the axis lines. This is the default for 3-D
views.

 DatetimeRuler Properties

1-2819

• 'both' — Center the tick marks over the axis lines.

If you assign a value to this property, then MATLAB sets the TickDirectionMode
property to 'manual'.

Note Setting the TickDir property for the parent axes sets the TickDirection
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickDirection = 'out';

TickDirectionMode — Selection mode for TickDirection property
'auto' (default) | 'manual'

Selection mode for the TickDirection property, specified as one of these values:

• 'auto' — Automatically select the tick direction.
• 'manual' — Use a tick direction that you specify. To specify the tick direction, set the

TickDirection property.

TickLength — Tick mark length
two-element vector

Tick mark length, specified as a two-element vector of the form [2Dlength 3Dlength].
The first element is the tick mark length in 2-D views. The second element is the tick
mark length in 3-D views. Specify the values in units normalized relative to the longest
axes dimension.

Note Setting the TickLength property for the parent axes sets the TickLength
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickLength = [0.02 0.035];

MinorTick — Minor tick mark display
'off' (default) | 'on'

1 Alphabetical List

1-2820

Minor tick mark display, specified as one of these values:

• 'off' — Do not display minor tick marks. This is the default value for an axis with a
linear scale.

• 'on' — Display minor tick marks between the major tick marks on the axis. This is the
default value for an axis with a log scale. The space between the major tick marks
determines the number of minor tick marks. If the MinorTickValues property is set
to empty [], then no minor tick marks appear. Specify the tick mark locations by
setting the MinorTickValues property.

Note The MinorTick property for the ruler and the associated XMinorTick,
YMinorTick, or ZMinorTick property for the parent axes always have the same value.
Setting one also sets the other.

Example: ax.XAxis.MinorTick = 'on';

MinorTickValues — Minor tick mark locations
[] (default) | vector of increasing values

Minor tick mark locations, specified as a vector of increasing datetime values.

If you assign values to this property, then MATLAB sets the MinorTickValuesMode
property to 'manual'.

MinorTickValuesMode — Selection mode for MinorTickValues property
'auto' (default) | 'manual'

Selection mode for the MinorTickValues property, specified as one of these values:

• 'auto' — Use automatically calculated minor tick values.
• 'manual' — Use minor tick values that you specify. To specify the values, set the

MinorTickValues property.

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific system and locale. To use a fixed-width font that renders

 DatetimeRuler Properties

1-2821

well, specify 'FixedWidth'. The actual fixed-width font used depends on the
FixedWidthFontName property of the root object.

Note Setting the FontName property for the parent axes sets the FontName property for
the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontName = 'Cambria';

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The default font size depends on the
specific operating system and locale.

Note Setting the FontSize property for the parent axes sets the FontSize property for
the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontSize = 12;

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font.
• 'bold' — Thicker character outlines than normal.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note Setting the FontWeight property for the parent axes sets the FontWeight
property for the ruler to the same value. However, setting the ruler property does not set

1 Alphabetical List

1-2822

the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontWeight = 'bold';

FontAngle — Text character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font can look the same as the normal font.

Note Setting the FontAngle property for the parent axes sets the FontAngle property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontAngle = 'italic';

FontSmoothing — Text antialiasing
'on' (default) | 'off'

Text smoothing, specified as one of these values:

• 'on' — Enable text antialiasing to reduce the jagged appearance of text characters
and make the text easier to read. In certain cases, smoothed text blends against the
background color and can make the text appear blurry.

• 'off' — Disable text antialiasing. Use this setting if the text seems blurry.

Note Setting the FontSmoothing property for the parent axes sets the FontSmoothing
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontSmoothing = 'off';

 DatetimeRuler Properties

1-2823

Parent/Child

Parent — Ruler parent
Axes object

Ruler parent, specified as an Axes object.

Note Ruler objects are not listed in the Children property of the parent Axes object.

Children — Ruler children
empty GraphicsPlaceholder array

The ruler has no children. You cannot set this property.

See Also
Axes

Introduced in R2016b

1 Alphabetical List

1-2824

dataTipTextRow
Add row to data tips

Description
Use the dataTipTextRow function to create a new data tip row with a particular label,
value source, and value format. After you create the new data tip row, you must attach it
to the DataTipTemplate property of the plotted object.

Creation

Syntax
r = dataTipTextRow(label,value)
r = dataTipTextRow(label,value,format)

Description
r = dataTipTextRow(label,value) creates a new data tip row that uses the
specified label and value source.

r = dataTipTextRow(label,value,format) additionally specifies the format for the
displayed values.

Properties
Label — Label
character vector | string scalar

Label, specified as a character vector or string scalar.
Example: 'My Label'

 dataTipTextRow

1-2825

Value — Value source
character vector | string scalar | vector | function handle

Value source, specified as a character vector or string scalar containing the name of a
data property (such as 'XData'), the name of a workspace or table variable, a vector, or
a function handle. The number of source values must match the number of data points.
Example: 'XData' specifies the value source as the XData property of the plotted object.
Example: [1 2 3 4 5] specifies the value source as a vector.
Example: @(x)sin(x) specifies a function handle where x is the XData values of the
object.
Example: @(x,y)sin(y) specifies a function handle where y is the YData values of the
object.

Format — Value format
'auto' (default) | character vector | string scalar

Value format, specified as 'auto' or a character vector or string scalar with a numeric,
datetime, or duration format. The type of format that you specify must match the type of
values in the Value property.
Example: r = dataTipTextRow(label,value,'usd') specifies a predefined numeric
format for U.S. dollars.
Example: r = dataTipTextRow(label,value,'%#4.4g') specifies a numeric format.
Example: r = dataTipTextRow(label,value,'yyyy-MM-dd') specifies a datetime
format.
Example: r = dataTipTextRow(label,value,'hh:mm:ss') specifies a duration
format.

Numeric Formats

You can specify one of the predefined formats listed in this table. Alternatively, you can
specify a custom numeric format.

1 Alphabetical List

1-2826

Predefined Format Description
'usd' U.S. dollars. This option is equivalent using

'$%,.2f'. If the labels use scientific
notation, this option sets the exponent
value to 0.

'eur' Euro. This option is equivalent to using
'\x20AC%,.2f' with an exponent value of
0.

'gbp' British pound. This option is equivalent to
using '\x00A3%,.2f' with an exponent
value of 0.

'jpy' Japanese yen. This option is equivalent to
using '\x00A5%,d' with an exponent
value of 0.

'degrees' Display degree symbol after values. This
option is equivalent to using '%g\x00B0'
with the default exponent value.

'percentage' Display percent sign after values. This
option is equivalent to using '%g%%' with
the default exponent value.

'auto' Default format of '%g' with the default
exponent value.

If none of the formats mentioned in the table gives the format you want, then create a
custom character vector or string with identifiers.

Identifiers are optional, except the percent sign and conversion character. Construct the
format in this order:

 dataTipTextRow

1-2827

• One or more flags — Options such as adding a plus sign before positive values. For a
full list of options, see the table of optional flags.

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

• Conversion character — Value type. For a full list of options, see the table of
conversion characters. If you specify a conversion that does not fit the data, MATLAB
overrides the specified conversion and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

• '$%.2f' — Display a dollar sign before each value and use fixed-point notation with
two decimal values.

• '%.3f Million' — Display Million after each value and use fixed-point notation
with three decimal values.

Optional Flag Description Example of Numeric
Format

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left-justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

1 Alphabetical List

1-2828

Optional Flag Description Example of Numeric
Format

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

Conversion Character Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

Datetime Formats

This table shows several common formats and includes examples of the formatted input
for the date, Saturday, April 19, 2014 at 9:41:06.12345 PM in New York City.

Format Example
'yyyy-MM-dd' 2014-04-19
'dd/MM/yyyy' 19/04/2014
'dd.MM.yyyy' 19.04.2014

 dataTipTextRow

1-2829

Format Example
'yyyy年 MM月 dd日' 2014年 04月 19日 (Characters for

Japanese locale, ja_JP)
'MMMM d, yyyy' April 19, 2014
'eeee, MMMM d, yyyy h:mm a' Saturday, April 19, 2014 9:41 PM
'MMMM d, yyyy HH:mm:ss Z' April 19, 2014 21:41:06 -0400
'yyyy-MM-dd''T''HH:mmXXX' 2014-04-19T21:41-04:00
'yyyy-MM-dd HH:mm:ss.SSS' 2014-04-19 21:41:06.123

The following tables show the letter identifiers that you can use to construct datetime
formats. To separate the fields, use nonletter characters such as a hyphen, space, colon,
or any non-ASCII character. The identifiers correspond to the Unicode Locale Data
Markup Language (LDML) standard for dates.

Use the identifiers in this table to specify the display formats of the date and time fields.

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. See the

Note that follows this table.
2014

yy Year, using last two digits. See the
Note that follows this table.

14

yyy, yyyy ... Year, using at least the number of
digits specified by the number of
instances of 'y'

For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year. A single number
designating the year. An ISO year
value assigns positive values to CE
years and negative values to BCE
years, with 1 BCE being year 0.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2

1 Alphabetical List

1-2830

Letter
Identifier

Description Display

QQQQ Quarter, full name 2nd quarter
M Month, numerical using one or two

digits
4

MM Month, numerical using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A
W Week of the month 1
d Day of the month, using one or two

digits
5

dd Day of the month using two digits 05
D Day of the year, using one, two or

three digits
95

DD Day of the year using two digits 95
DDD Day of the year using three digits 095
e Day of the week, numerical using

one or two digits.
7, where Sunday is the first day of
the week.

ee Day of the week, numerical using
two digits

07

eee Day, abbreviated name Sat
eeee Day, full name Saturday
eeeee Day, capitalized first letter S
a Day period (AM or PM) PM
h Hour, 12-hour clock notation using

one or two digits
9

hh Hour, 12-hour clock notation using
two digits

09

H Hour, 24-hour clock notation using
one or two digits

21

 dataTipTextRow

1-2831

Letter
Identifier

Description Display

HH Hour, 24-hour clock notation using
two digits

21

m Minute, using one or two digits 41
mm Minute, using two digits 41
s Second, using one or two digits 6
ss Second, using two digits 06
S, SS, ...,
SSSSSSSSS

Fractional second, using the
number of digits specified by the
number of instances of 'S' (up to 9
digits).

'SSS' truncates 6.12345 seconds
to 123.

Some tips and considerations:

• If you read a two-digit year number and specify the format as y or yy, then the pivot
year determines the century to which the year belongs.

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

• Datetime values later than 144683 years CE or before 140743 BCE display only the
year numbers, regardless of the specified format value.

Use the identifiers in this table to specify the display format of the time zone offset. A
time zone offset is the amount of time that a specific date and time is offset from UTC.
This is different from a time zone, which comprises rules that determine the offsets for
specific times of the year. Include a time zone offset identifier when you want to ensure
that the time components are displayed unambiguously.

Letter
Identifier

Description Display

z Abbreviated name of the time zone
offset. If this value is not available,
then the time zone offset uses the
short UTC format, such as UTC-4.

EDT

1 Alphabetical List

1-2832

Letter
Identifier

Description Display

Z ISO 8601 basic format with hours,
minutes, and optional seconds
fields.

-0400

ZZZZ Long UTC format. UTC-04:00
ZZZZZ ISO 8601 extended format with

hours, minutes, and optional
seconds fields. A time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

x or X ISO 8601 basic format with hours
field and optional minutes field. If
you specify X, a time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04

xx or XX ISO 8601 basic format with hours
and minutes fields. If you specify
XX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-0400

xxx or XXX ISO 8601 extended format with
hours and minutes fields. If you
specify XXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

xxxx or XXXX ISO 8601 basic format with hours,
minutes, and optional seconds
fields. If you specify XXXX, a time
offset of zero is displayed as the
ISO 8601 UTC indicator “Z”.

-0400

 dataTipTextRow

1-2833

Letter
Identifier

Description Display

xxxxx or
XXXXX

ISO 8601 extended format with
hours, minutes, and optional
seconds fields. If you specify
XXXXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

Duration Formats

Duration formats can be either a single number with time units (such as '0.5 yrs') or a
digital timer (such as 'hh:mm:ss' for hours, minutes, and seconds).

For numbers with time units, specify one of the following:

• 'y' — Fixed-length years, where one year equals 365.2425 days
• 'd' — Fixed-length days, where one day equals 24 hours
• 'h' — Hours
• 'm' — Minutes
• 's' — Seconds

For digital timer formats, specify one of the following:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'
• Any of the first three formats, with up to nine S characters to indicate fractional

second digits, such as 'hh:mm:ss.SSSS'

Examples

Add Row to Data Tips

Load sample accident data and create a scatter plot. Then add a third row to the default
data tips. For the label, use State. For the value source, use the statelabel workspace

1 Alphabetical List

1-2834

variable. After you create the new row, add it to the DataTipTemplate property for the
Scatter object.

load('accidents.mat','hwydata','statelabel')
s = scatter(hwydata(:,14),hwydata(:,4));
row = dataTipTextRow('State',statelabel);
s.DataTipTemplate.DataTipRows(end+1) = row;

Change Format for Displayed Values

Create a line plot of sine values. Add a third row to the default data tips to show the
cosine values. Specify the numeric format for the displayed cosine values. In this case,

 dataTipTextRow

1-2835

use '%+4.4g' to include the sign character (+) for positive values. After you create the
new row, add it to the DataTipTemplate property for the Line object.

x = linspace(0,10);
y1 = sin(x);
y2 = cos(x);
p = plot(x,y1);
row = dataTipTextRow('Cosine',y2,'%+4.4g');
p.DataTipTemplate.DataTipRows(end+1) = row;

See Also
DataTipTemplate Properties

1 Alphabetical List

1-2836

Topics
“Create Custom Data Tips”

Introduced in R2019a

 dataTipTextRow

1-2837

DataTipTemplate Properties
Data tip content and appearance

Description
DataTipTemplate properties control the content and appearance of data tips. By
changing property values, you can modify certain aspects of data tips.

p = plot(1:10);
dtt = p.DataTipTemplate

Properties
Content

DataTipRows — Row content
array of DataTipTextRow objects

Row content, specified as an array of DataTipTextRow objects. The default data tips
have two or three rows, depending on the plotted data.

You can modify the existing rows by setting properties of the DataTipTextRow objects.
Access a particular row by indexing into the array of objects.
Example: dtt.DataTipRows(1).Label = 'My label' changes the label for the first
row.
Example: dtt.DataTipRows(1).Value = 'YData' changes the value source for the
first row to use the YData property of the plotted object.
Example: dtt.DataTipRows(1).Format = 'usd' changes the value format for the
first row.

Alternatively, you can add new rows to the data tip using the dataTipTextRow function.
Example: dtt.DataTipRows(end+1) = dataTipTextRow(label,value) adds a new
row to the data tip with the specified label and value source.

1 Alphabetical List

1-2838

Font

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch.
Example: dtt.FontSize = 12;

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'

 DataTipTemplate Properties

1-2839

Modifier Description Example
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

1 Alphabetical List

1-2840

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

 DataTipTemplate Properties

1-2841

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

See Also
dataTipTextRow

Introduced in R2019a

1 Alphabetical List

1-2842

https://www.latex-project.org
https://www.latex-project.org

datevec
Convert date and time to vector of components

The datevec function creates a numeric array whose values represent the date and time
components of years, months, days, hours, minutes, and seconds. However, the best way
to represent points in time is by using the datetime data type. The best way to represent
elapsed time is by using the duration or calendarDuration data types.

Syntax
DateVector = datevec(t)
DateVector = datevec(DateNumber)

DateVector = datevec(DateString)
DateVector = datevec(DateString,formatIn)
DateVector = datevec(DateString,PivotYear)
DateVector = datevec(DateString,formatIn,PivotYear)

[Y,M,D,H,MN,S] = datevec(___)

Description
DateVector = datevec(t) converts the datetime or duration values in the input array
t to date vectors. The datevec function returns an m-by-6 matrix where each row
corresponds to a value in t.

DateVector = datevec(DateNumber) converts one or more date numbers to date
vectors. The datevec function returns an m-by-6 matrix containing m date vectors, where
m is the total number of date numbers in DateNumber.

DateVector = datevec(DateString) converts text representing dates and times to
date vectors. If the format used in the text is known, specify the format as formatIn.
Syntaxes without formatIn are significantly slower than syntaxes that include it.

DateVector = datevec(DateString,formatIn) uses formatIn to interpret the
dates and times represented by DateString.

 datevec

1-2843

DateVector = datevec(DateString,PivotYear) uses PivotYear to interpret text
that specifies the year as two characters. If the format used in the text is known, specify
the format as formatIn. Syntaxes without formatIn are significantly slower than
syntaxes that include it.

DateVector = datevec(DateString,formatIn,PivotYear) uses formatIn to
interpret the dates and times represented by DateString, and PivotYear to interpret
text that specifies the year as two characters. You can specify formatIn and PivotYear
in either order.

[Y,M,D,H,MN,S] = datevec(___) returns the components of the date vector as
individual variables Y, M, D, H, MN, and S (year, month, day, hour, minutes, and seconds).
The datevec function returns milliseconds as a fractional part of the seconds (S) output.

Examples

Convert datetime Array to Date Vectors
format short g

t = [datetime('now');datetime('tomorrow')]

t = 2x1 datetime array
 02-Mar-2019 09:48:02
 03-Mar-2019 00:00:00

DateVector = datevec(t)

DateVector = 2×6

 2019 3 2 9 48 2.376
 2019 3 3 0 0 0

Convert Date Number to Date Vector
format short g

1 Alphabetical List

1-2844

n = 733779.651;
datevec(n)

ans = 1×6

 2009 1 6 15 37 26.4

Convert Text Representing Date to Date Vector

DateString = '28.03.2005';
formatIn = 'dd.mm.yyyy';
datevec(DateString,formatIn)

ans = 1×6

 2005 3 28 0 0 0

datevec returns a date vector for text representing a date with the format
'dd.mm.yyyy'.

Convert Multiple Date Strings to Date Vectors

Pass multiple dates as character vectors in a cell array. All input dates must use the same
format.

DateString = {'09/16/2007';'05/14/1996';'11/29/2010'};
formatIn = 'mm/dd/yyyy';
datevec(DateString,formatIn)

ans = 3×6

 2007 9 16 0 0 0
 1996 5 14 0 0 0
 2010 11 29 0 0 0

 datevec

1-2845

Convert Date with Milliseconds to Date Vector
datevec('11:21:02.647','HH:MM:SS.FFF')

ans = 1×6
103 ×

 2.0190 0.0010 0.0010 0.0110 0.0210 0.0026

In the output date vector, milliseconds are a fractional part of the seconds field. The text
'11:21:02.647' does not contain enough information to convert to a full date vector.
The days default to 1, months default to January, and years default to the current year.

Convert Date String to Date Vector Using Pivot Year

Convert text representing a date to a date vector using the default pivot year.

DateString = '12-jun-17';
formatIn = 'dd-mmm-yy';
DateVector = datevec(DateString,formatIn)

DateVector = 1×6

 2017 6 12 0 0 0

Convert the same date to a date vector using 1800 as the pivot year.

DateVector = datevec(DateString,formatIn,1800)

DateVector = 1×6

 1817 6 12 0 0 0

Assign Elements of Returned Date Vector

Convert text representing a date to a date vector and return the components of the date
vector.

1 Alphabetical List

1-2846

[y, m, d, h, mn, s] = datevec('01.02.12','dd.mm.yy')

y = 2012

m = 2

d = 1

h = 0

mn = 0

s = 0

Input Arguments
t — Dates and times
array of datetime or duration values

Dates and times, specified as an array of datetime or duration values.
Data Types: datetime | duration | calendarDuration

DateNumber — Serial date number
array of positive double-precision numbers

Serial date number, specified as an array of positive double-precision numbers.
Example: 731878
Data Types: double

DateString — Text representing dates and times
character array | cell vector of character vectors | string vector

Text representing dates and times, specified as a character array where each row
contains text representing one point in time, as a cell vector of character vectors, or as a
string vector. All rows of a character array, or all elements of a cell vector or string vector,
must have the same format.
Example: '24-Oct-2003 12:45:07'
Example: ['19-Sep-2013';'20-Sep-2013';'21-Sep-2013']

 datevec

1-2847

Example: {'15-Oct-2010' '20-Nov-2012'}

If the format used in the text is known, you should also specify formatIn. If you do not
specify formatIn, then DateString must be in one of the following formats.

Format of Text Representing Dates and
Times

Example

'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17
'dd-mmm-yyyy' 01-Mar-2000
'mm/dd/yyyy' 03/01/2000
'mm/dd/yy' 03/01/00
'mm/dd' 03/01
'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17
'mmm.dd,yyyy' Mar.01,2000
'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17
'yyyy-mm-dd' 2000-03-01
'yyyy/mm/dd' 2000/03/01
'HH:MM:SS' 15:45:17
'HH:MM:SS PM' 3:45:17 PM
'HH:MM' 15:45
'HH:MM PM' 3:45 PM

Note The symbolic identifiers describing date and time formats are different from those
that describe the display formats of datetime arrays.

Certain formats might not contain enough information to convert text representations of
dates and times. In those cases, hours, minutes, and seconds default to 0, days default to
1, months default to January, and years default to the current year. datevec and
datenum consider two-character years (e.g., '79') to fall within the 100-year range
centered around the current year.

When you do not specify formatIn, note the following:

1 Alphabetical List

1-2848

• For the formats that specify the month as two digits (mm), the month value must not be
greater than 12.

• However, for the format 'mm/dd/yy', if the first entry in the text is greater than 12
and the second entry is less than or equal to 12, then datevec considers the text to be
in 'yy/mm/dd' format.

formatIn — Format of the input text representing dates and times
character vector | string scalar

Format of the input text representing dates and times, specified as a character vector or
string scalar of symbolic identifiers.
Example: 'dddd, mmm dd, yyyy'

The following table shows symbolic identifiers that you can use to construct the
formatIn character vector. You can include characters such as a hyphen, space, or colon
to separate the fields.

Note The symbolic identifiers describing date and time formats are different from the
identifiers that describe the display formats of datetime arrays.

Symbolic
Identifier

Description Example

yyyy Year in full 1990, 2002
yy Year in two digits 90, 02
QQ Quarter year using letter Q and

one digit
Q1

mmmm Month using full name March, December
mmm Month using first three letters Mar, Dec
mm Month in two digits 03, 12
m Month using capitalized first

letter
M, D

dddd Day using full name Monday, Tuesday
ddd Day using first three letters Mon, Tue
dd Day in two digits 05, 20

 datevec

1-2849

Symbolic
Identifier

Description Example

d Day using capitalized first letter M, T
HH Hour in two digits

(no leading zeros when symbolic
identifier AM or PM is used)

05, 5 AM

MM Minute in two digits 12, 02
SS Second in two digits 07, 59
FFF Millisecond in three digits 057
AM or PM AM or PM inserted in text

representing time
3:45:02 PM

The formatIn value must follow these guidelines:

• You cannot specify any field more than once. For example, you cannot use 'yy-mmm-
dd-m' because it has two month identifiers. The one exception to this is that you can
combine one instance of dd with one instance of any of the other day identifiers. For
example, 'dddd mmm dd yyyy' is a valid input.

• When you use AM or PM, the HH field is also required.
• datevec does not accept formats that include 'QQ'

PivotYear — Start year of 100-year date range
present minus 50 years (default) | integer

Start year of the 100-year date range in which a two-character year resides, specified as
an integer. Use a pivot year to interpret dates that specify the year as two characters.

If formatIn contains the time of day, the pivot year is computed from the current time of
the current day, month, and year. Otherwise it is computed from midnight of the current
day, month, and year.
Example: 2000

Note If the input date format specifies a four-character year, then the last two characters
are truncated, and the first two characters specify the year. For example, if the date and
pivot year are specified as ('25122015','ddmmyyyy',2000), then the resulting date is
25-12-2020, not 25-12-2015.

1 Alphabetical List

1-2850

Data Types: double

Output Arguments
DateVector — Date vectors
vector | matrix

Date vectors, returned as an m-by-6 matrix, where each row corresponds to one date
vector, and m is the total number of input date numbers or character vectors representing
dates and times.

[Y,M,D,H,MN,S] — Components of the date vector
numeric scalars | numeric vectors

Components of the date vector (year, month, day, hour, minute, and second), returned as
numeric scalars or numeric vectors. Milliseconds are a fractional part of the seconds
output. When converting a datetime array t, these components are equal to the values
of the Year, Month, Day, Hour, Minute, and Second properties. For example, Y =
t.Year.

Limitations
• When computing date vectors, datevec sets month values less than 1 to 1. Day

values, D, less than 1 are set to the last day of the previous month minus |D|. However,
if 0 ≤ DateNumber < 1, then datevec(DateNumber) returns a date vector of the
form [0 0 0 H MN S], where H, MN, and S are hours, minutes, and seconds,
respectively.

Tips
• The vectorized calling syntax can offer significant performance improvement for large

arrays.

 datevec

1-2851

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• First argument must be a column vector, character vector, or character array.

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• Only these syntaxes are supported:

DateVector = datevec(t)

[Y,M,D,H,MN,S] = datevec(t)

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
datenum | datestr | datetime

Topics
“Represent Dates and Times in MATLAB”
“Carryover in Date Vectors and Strings”

Introduced before R2006a

1 Alphabetical List

1-2852

day
Day number or name

Syntax
d = day(t)
d = day(t,dayType)

Description
d = day(t) returns the day-of-month numbers for the datetime values in t. The d output
contains integer values from 1 to 31, depending on the month and year.

d = day(t,dayType) returns the type of day number or name specified by dayType.

The day function returns the day numbers or names of datetime values. To assign day
values to datetime array t, use t.Day and modify the Day property.

Examples

Extract Day Number from Dates

Extract the day of month numbers from an array of dates.

t = [datetime('yesterday');datetime('today');datetime('tomorrow')]

t = 3x1 datetime array
 01-Mar-2019
 02-Mar-2019
 03-Mar-2019

d = day(t)

d = 3×1

 day

1-2853

 1
 2
 3

Determine Day of Week

Determine the day of the week for an arbitrary date, by specifying 'name' as the second
input to the day function.

t = datetime(2014,05,16)

t = datetime
 16-May-2014

d = day(t,'name')

d = 1x1 cell array
 {'Friday'}

Alternatively, specify 'dayofweek' to return the day of the week as a number.

d = day(t,'dayofweek')

d = 6

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

dayType — Type of day values
'dayofmonth' (default) | 'dayofweek' | 'dayofyear' | 'name' | 'shortname'

Type of day values, specified as a value in the table.

1 Alphabetical List

1-2854

Value of dayType Description
'dayofmonth' Day-of-month number, from 1 to 28, 29, 30,

or 31. The range depends on the month.
'dayofweek' Day-of-week number, from 1 to 7, where

day 1 of the week is Sunday.
'dayofyear' Day-of-year number, from 1 to 365 or 366,

depending on the year.
'name' Full day names, for example, Sunday. For

NaT datetime values, the day name is the
empty character vector, ''.

'shortname' Abbreviated day names, for example, Sun.
For NaT datetime values, the day name is
the empty character vector, ''.

Note day returns day names in the language specified by the Locale option in the
Datetime format section of the Preferences panel. To change the default datetime
locale, see “Set Command Window Preferences”.

Output Arguments
d — Day number or name
double array | cell array of character vectors

Day number or name, returned as a numeric array of integers of type double, or a cell
array of character vectors. d is the same size as t.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 day

1-2855

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datetime | isweekend | month | quarter | week | year | ymd

Introduced in R2014b

1 Alphabetical List

1-2856

days
Duration in days

Syntax
D = days(X)

Description
D = days(X) returns an array of days equivalent to the values in X.

• If X is a numeric array, then D is a duration array in units of fixed-length days. A
fixed-length day is equal to 24 hours.

• If X is a duration array, then D is a double array with each element equal to the
number of fixed-length (24-hour) days in the corresponding element of X.

The days function converts between duration and double values. To display a duration
in units of days, set its Format property to 'd'.

Examples

Create Duration Array of Fixed-Length Days

X = magic(2);
D = days(X)

D = 2x2 duration array
 1 day 3 days
 4 days 2 days

Add each number of fixed-length days to the current date and time.

t = datetime('now') + D

 days

1-2857

t = 2x2 datetime array
 03-Mar-2019 22:01:37 05-Mar-2019 22:01:37
 06-Mar-2019 22:01:37 04-Mar-2019 22:01:37

Convert Durations to Numeric Array of Days

Create a duration array.

X = hours(23:20:95) + minutes(45)

X = 1x4 duration array
 23.75 hr 43.75 hr 63.75 hr 83.75 hr

Convert each duration in X to a number of days.

D = days(X)

D = 1×4

 0.9896 1.8229 2.6563 3.4896

Input Arguments
X — Input array
numeric array | duration array | logical array

Input array, specified as a numeric array, duration array, or logical array.

Tips
• days creates fixed-length (24 hour) days. To create days that account for Daylight

Saving Time shifts when used in calendar calculations, use the caldays function.

1 Alphabetical List

1-2858

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
caldays | duration

Introduced in R2014b

 days

1-2859

dbclear
Remove breakpoints

Syntax
dbclear all

dbclear in file
dbclear in file at location

dbclear if condition

Description
dbclear all removes all breakpoints in all MATLAB code files, and all breakpoints set
for errors, caught errors, caught error identifiers, warnings, warning identifiers, and
naninf.

dbclear in file removes all breakpoints in the specified file. The in keyword is
optional.

dbclear in file at location removes the breakpoint set at the specified location
in the specified file. The at and in keywords are optional.

dbclear if condition removes all breakpoints set using the specified condition,
such as dbstop if error or dbstop if naninf.

Examples

Clear Breakpoints in File

Set and then clear breakpoints in a program file.

Create a file, buggy.m, that contains these statements.

1 Alphabetical List

1-2860

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Add breakpoints at line 2 and line 3. List all breakpoints using dbstatus.

dbstop in buggy at 2
dbstop in buggy at 3
dbstatus

Breakpoints for buggy are on lines 2, 3.

Remove all the breakpoints in buggy.m. Call dbstatus to confirm that all breakpoints
are cleared.

dbclear in buggy
dbstatus

Clear Breakpoints in File at Location

Set and then clear breakpoints in a program file at a certain location.

Create a file, buggy.m, that contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Add breakpoints at line 2 and line 3. List all breakpoints using dbstatus.

dbstop in buggy at 2
dbstop in buggy at 3
dbstatus

Breakpoints for buggy are on lines 2, 3.

Remove the breakpoint at line 3 and call dbstatus.

dbclear in buggy at 3
dbstatus

Breakpoint for buggy is on line 2.

 dbclear

1-2861

Clear Error Breakpoints

Set and clear an error breakpoint.

Create a file, buggy.m, that requires an input vector.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Set an error breakpoint, and call buggy with a matrix input instead of a vector.

dbstop if error
buggy(magic(3))

A run-time error occurs, and MATLAB goes into debug mode, pausing at line 3 in
buggy.m.

Error using ./
Matrix dimensions must agree.

Error in buggy at 3
z = (1:n)./x;
3 z = (1:n)./x;

Call dbquit to exit debug mode.

Clear the breakpoint, and call buggy again with a matrix input instead of a vector.

dbclear if error
buggy(magic(3))

A run-time error occurs, and MATLAB pauses execution immediately, without going into
debug mode.

Error using ./
Matrix dimensions must agree.

1 Alphabetical List

1-2862

Error in buggy (line 3)
z = (1:n)./x;

Input Arguments
file — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The file name can include a
partial path, but must be in a folder on the search path, or in the current folder.
Example: myfile.m

If the file name is followed by the -completenames option, then the file does not need to
be on the search path, as long as the file name is a fully qualified name.
Example: c:\Program Files\MATLAB\myfile.m -completenames

In addition, file can include a filemarker (>) to specify the path to a particular local
function or to a nested function within the file.
Example: myfile>myfunction
Data Types: char | string

location — Location in file
line number | line number and anonymous function number | local function name

Location in file of breakpoint to clear, specified as follows:

• Line number in file specified as a character vector or string scalar. The default is 1.
• Line number in file, at the anonymous function number, specified as a character

vector or string scalar. For example, 1@2 specifies the second anonymous function on
line number 1. If no anonymous function number is specified, then the default is 1.

• Name of a local function in file specified as a character vector or string scalar.

Data Types: char | string

condition — Type of error breakpoint
error | caught error | warning | naninf | ...

Type of error breakpoint, specified as follows:

 dbclear

1-2863

• error — Run-time error that occurs outside a try/catch block. If you want to clear
a breakpoint set for a specific error, then specify the message id. For example:

• dbclear if error clears all breakpoints set with the dbstop if error
command, including breakpoints with a specified message id.

• dbclear if error MATLAB:ls:InputsMustBeStrings clears the error with a
message ID of MATLAB:ls:InputsMustBeStrings.

• caught error — Run-time error that occurs within the try portion of a try/catch
block. If you want to clear a breakpoint set for a specific error, then specify the
message id.

• warning — Run-time warning. If you want to clear a breakpoint set for a specific
warning, then specify the message id.

This condition has no effect when you disable warnings with the warning off all
command or when you disable warnings for the specified message id. For more
information about disabling warnings, see warning.

• naninf — Not-a-number error or infinite value error. These errors occur when code
returns an infinite value (Inf) or a value that is not a number (NaN) as a result of an
operator, function call, or scalar assignment.

See Also
dbquit | dbstack | dbstatus | dbstop | filemarker

Topics
“Debug a MATLAB Program”

Introduced before R2006a

1 Alphabetical List

1-2864

dbcont
Resume execution

Syntax
dbcont

Description
dbcont resumes execution of a MATLAB code file after pausing. Execution continues
until another breakpoint is encountered, a pause condition is met, an error occurs, or
execution completes successfully.

Note If you want to edit a file as a result of debugging, then it is a good practice to first
quit debugging. Otherwise, you can get unexpected results.

Examples

Resume Execution While Debugging

Resume the execution of a program while debugging using the dbcont command.

Create a file, buggy.m, that contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Add a breakpoint at line 2 and run the code. MATLAB pauses execution at the breakpoint.

dbstop in buggy at 2
buggy(5)

 dbcont

1-2865

Run the dbcont command to continue execution to the end of the program and end
debugging.

dbcont

See Also
dbclear | dbquit | dbstatus | dbstep | dbstop

Topics
“Debug a MATLAB Program”

Introduced before R2006a

1 Alphabetical List

1-2866

dbdown
Reverse dbup workspace shift

Syntax
dbdown

Description
dbdown changes the current workspace and function context to the workspace and
function context of the called MATLAB function or script in debug mode. You must issue
the dbup command at least once before you issue this command. dbdown is the opposite
of dbup.

Multiple dbdown commands change the workspace and function context to each
successively executed MATLAB function or script on the stack until the current
workspace and function context is the line at which MATLAB is paused. You do not have
to move back to the paused line to continue execution or to step to the next line.

Examples

View Current and Calling Function Workspaces

Use the dbup and dbdown commands to view the current and calling function workspace
of a function.

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);

function z = myfunction(y)
z = 2 / y ;

 dbdown

1-2867

Set a breakpoint at myfunction and run myfile with an input of 1. MATLAB pauses in
the function myfunction, at the line z = 2 / y. Call whos to view the variables in the
current workspace.

dbstop in myfile>myfunction
myfile(1);
whos

Name Size Bytes Class Attributes

 y 1x1 8 double

The workspace contains the variable y, which is in the workspace context for
myfunction.

Run the dbup command to switch to the workspace of the calling function, myfile. Call
whos to view the variables in the new workspace.

dbup
whos

In workspace belonging to myfile (line 2)

 Name Size Bytes Class Attributes

 x 1x1 8 double

The workspace contains the variable x, which is in the workspace context for myfile.

Run the dbdown command, and then call whos.

dbdown
whos

In workspace belonging to myfile>myfunction (line 5)

 Name Size Bytes Class Attributes

 y 1x1 8 double

1 Alphabetical List

1-2868

The workspace once again contains the variable y, which is in the workspace context for
myfunction.

See Also
dbstack | dbup | whos

Topics
“Examine Values While Debugging”

Introduced before R2006a

 dbdown

1-2869

dblquad
(Not recommended) Numerically evaluate double integral over rectangle

Note dblquad is not recommended. Use integral2 instead.

Syntax
q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

Description
q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to evaluate the
double integral fun(x,y) over the rectangle xmin <= x <= xmax, ymin <= y <=
ymax. The input argument, fun, is a function handle that accepts a vector x, a scalar y,
and returns a vector of integrand values.

“Parameterizing Functions” explains how to provide additional parameters to the function
fun, if necessary.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol instead of the
default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the quadrature
function specified as method, instead of the default quad. Valid values for method are
@quadl or the function handle of a user-defined quadrature method that has the same
calling sequence as quad and quadl.

Examples
Pass function handle @integrnd to dblquad:

Q = dblquad(@integrnd,pi,2*pi,0,pi);

1 Alphabetical List

1-2870

where the function integrnd.m is:

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

Pass anonymous function handle F to dblquad:

F = @(x,y)y*sin(x)+x*cos(y);
Q = dblquad(F,pi,2*pi,0,pi);

The integrnd function integrates y*sin(x)+x*cos(y) over the square pi <= x <=
2*pi, 0 <= y <= pi. Note that the integrand can be evaluated with a vector x and a
scalar y.

Nonsquare regions can be handled by setting the integrand to zero outside of the region.
For example, the volume of a hemisphere is:

dblquad(@(x,y)sqrt(max(1-(x.^2+y.^2),0)), -1, 1, -1, 1)

or

dblquad(@(x,y)sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1), -1, 1, -1, 1)

See Also
integral | integral2 | integral3 | quad | quad2d | quadgk | quadl | triplequad

Topics
“Create Function Handle”
“Anonymous Functions”

Introduced before R2006a

 dblquad

1-2871

dbmex
Enable MEX-file debugging on UNIX platforms

Syntax
dbmex state

Description
dbmex state enables or disables MEX-file debugging or returns to the debugger prompt
on UNIX platforms.

To use this option, first start MATLAB from a debugger by typing matlab -Ddebugger,
where debugger is the name of the debugger program. If you have already loaded the
MEX file, remove it from memory using the clear function. Then call dbmex on before
calling your MEX file.

Examples

Debug yprime.c with gdb
For instructions on debugging the yprime.c MEX file with the GNU® Debugger gdb, see
“Debug on Linux Platforms”.

Input Arguments
state — Debug setting
'on' | 'off' | 'stop'

Debug control indicator specified as 'on', 'off', or 'stop'. Use 'on' or 'off' to
enable or disable MEX-file debugging. Use 'stop' to return to the debugger prompt.

1 Alphabetical List

1-2872

See Also
clear

Topics
“Debugging and Analysis”
“Debug on Mac Platforms”
“Debug on Linux Platforms”

Introduced before R2006a

 dbmex

1-2873

dbquit
Quit debug mode

Syntax
dbquit
dbquit all

Description
dbquit terminates debug mode. The Command Window then displays the standard
prompt (>>). The file being executed is not completed and no result is returned. All
breakpoints remain in effect.

If MATLAB is in debug mode for more than one function, dbquit only terminates
debugging for the active function. For example, if you debug file1 and also debug
file2, then running dbquit terminates debugging for file2, while file1 remains in
debug mode until you run dbquit again. However, if you debug file3 and step into
file4, then running dbquit terminates debugging for both file.

dbquit all ends debugging for all files simultaneously.

Examples

Quit Debugging Multiple Files

Create a file, buggy.m, that contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Create a second file, buggy2.m, that contains these statements.

1 Alphabetical List

1-2874

function z2 = buggy2(y)
m = length(y);
z2 = (1:m).*y;

Set breakpoints in buggy and buggy2 and run both files. MATLAB pauses at the first line
in buggy and buggy2.

dbstop in buggy
dbstop in buggy2
buggy(5)
buggy2(5)

Call the dbstack command to check the debugging status.

dbstack

In buggy2 (line 2)
In buggy (line 2)

Quit debugging. MATLAB ends debugging for buggy2, while buggy remains in debug
mode.

dbquit
dbstack

In buggy (line 2)

Run dbquit again to exit debug mode for buggy.

Alternatively, dbquit all ends debugging for both files simultaneously.

See Also
dbclear | dbcont | dbstack | dbstatus | dbstep | dbstop

Topics
“Debug a MATLAB Program”

Introduced before R2006a

 dbquit

1-2875

dbstack
Function call stack

Syntax
dbstack
dbstack(n)
dbstack(___ , '-completenames')
ST = dbstack(___)
[ST,I] = dbstack(___)

Description
dbstack displays the line numbers and file names of the function calls that led to the
current pause condition, listed in the order in which they execute. The display starts with
the currently executing functions and continues until it reaches the topmost function.
Each line number is a hyperlink to that line in the Editor. The notation
functionname>localfunctionname describes the location of a local function.

dbstack(n) omits the first n stack frames from the display. This syntax can be useful, for
example, when issuing a dbstack from within an error handler.

dbstack(___ , '-completenames') outputs the fully qualified name of each function
in the stack.

You can specify '-completenames' with any of the input arguments in the previous
syntaxes.

ST = dbstack(___) returns the stack trace information in an m-by-1 structure, ST.

[ST,I] = dbstack(___) also returns I, the current workspace index.

Examples

1 Alphabetical List

1-2876

View Stack Trace Information While Debugging

While debugging a MATLAB code file, issue the dbstack command to view the stack
trace information.

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);
end

function z = myfunction(y)
z = 2 / y;
end

Set a breakpoint at myfunction and run myfile with an input of 1. While executing
myfunction, MATLAB pauses at the line z = 2/y.

dbstop in myfile>myfunction
myfile(1);

Run the dbstack command. MATLAB displays the line numbers and file names of the
function calls that led to the current breakpoint.

dbstack

In myfile>myfunction (line 5)
In myfile (line 2)

Store Complete Names for Each Function in Stack

Store the complete file name, function name, and line number for each function in the
stack while debugging a file.

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);
end

function z = myfunction(y)
z = 2 / y;
end

 dbstack

1-2877

Set a breakpoint at myfunction and run myfile with an input of 1. While executing
myfunction, MATLAB pauses at the line z = 2/y.

dbstop in myfile>myfunction
myfile(1);

Run the dbstack command, omitting the first frame and requesting complete names.
MATLAB returns the stack trace information in the specified structure ST.

[ST, I] = dbstack('-completenames', 1)

ST =

 file: 'C:\myProject\myfile.m'
 name: 'myfile'
 line: 2

I =

 1

Input Arguments
n — Number of frames to omit
nonnegative integer

Number of frames to omit, specified as a nonnegative integer.

Output Arguments
ST — Stack trace information
structure array

Stack trace information, returned as an m-by-1 structure, where m is the number of
functions in the call stack. The structure has these fields.

file File in which the function appears. This field is empty if there is no file.
name Function name within the file.

1 Alphabetical List

1-2878

line Line number of function call.

Note If you step past the end of a file, dbstack returns a negative line number value to
identify that special case. For example, if the last line to be executed is line 15, then the
dbstack line number is 15 before you execute that line and -15 after.

I — Current workspace index
positive integer

Current workspace index, returned as a positive integer. The index represents the number
of workspaces between your current workspace and the workspace in which MATLAB is
currently paused or executing.

See Also
dbdown | dbquit | dbstep | dbstop | dbup | evalin | mfilename | whos

Topics
“Examine Values While Debugging”

Introduced before R2006a

 dbstack

1-2879

dbstatus
List all breakpoints

Syntax
dbstatus
dbstatus file
dbstatus -completenames
dbstatus file -completenames
b = dbstatus(___)

Description
dbstatus lists all the breakpoints in effect, including errors, caught errors, warnings,
and naninfs. For nonerror breakpoints, MATLAB displays the line number for which the
breakpoint is set. Each line number is a hyperlink that you can click to go directly to that
line in the Editor.

dbstatus file lists all breakpoints in effect for the specified file.

dbstatus -completenames displays, for each breakpoint, the fully qualified name of
the function or file containing the breakpoint.

dbstatus file -completenames displays, for each breakpoint in the specified file,
the fully qualified name for the function or file containing the breakpoint.

b = dbstatus(___) returns breakpoint information in an m-by-1 structure. To save the
current breakpoints to restore them later using dbstop(b), use this syntax. You also can
specify the file name and 'completenames'.

Examples

1 Alphabetical List

1-2880

List All Breakpoints

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);

function z = myfunction(y)
z = 2/y ;

Set an error breakpoint, and a standard breakpoint at the first line in myfile.

dbstop if error
dbstop in myfile

Run the dbstatus command. MATLAB displays the active breakpoints: the standard
breakpoint inmyfile, and the error breakpoint.

dbstatus

Breakpoint for myfile is on line 2.
Stop if error.

List All Breakpoints in File

List all breakpoints in a specified file, showing complete names.

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);

function z = myfunction(y)
z = 2 / y ;

Set an error breakpoint and a standard breakpoint at the first line in myfile.

dbstop if error
dbstop in myfile

Run the dbstatus command, specifying the file myfile and requesting complete names.
MATLAB displays the active breakpoints: the standard breakpoint inmyfile, and the
error breakpoint.

 dbstatus

1-2881

dbstatus myfile -completenames

Breakpoint for C:\myProject\myfile.m>myfile is on line 2.

Notice that the error breakpoint is not listed. Only breakpoints specific to the specified
file are included in the list.

Restore Saved Breakpoints

Set, save, clear, and then restore saved breakpoints.

Create a file, buggy.m, which contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Set an error breakpoint and a standard breakpoint at the second line in buggy.

dbstop at 2 in buggy
dbstop if error

Run dbstatus. MATLAB describes the breakpoints you set.

dbstatus

Breakpoint for buggy is on line 2.
Stop if error.

Assign a structure representing the breakpoints to the variable b, and then save b to the
MAT-file buggybrkpnts. Use b=dbstatus('-completenames') to save absolute paths
and the breakpoint function nesting sequence.

b = dbstatus('-completenames');
save buggybrkpnts b

Clear all breakpoints.

dbclear all

Restore the breakpoints by loading the MAT-file and calling dbstop with the saved
structure, b.

1 Alphabetical List

1-2882

load buggybrkpnts
dbstop(b)

Input Arguments
file — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The file name can include a
partial path, but must be in a folder on the search path, or in the current folder.
Example: myfile.m

When specifying methods, private functions, or private methods, use the / character.
Example: myclass/myfunction
Example: private/myfunction
Example: myclass/private/myfunction

In addition, file can include a filemarker (>) to specify the path to a particular local
function or to a nested function within the file.
Example: myfile>myfunction
Data Types: char | string

Output Arguments
b — List of breakpoints
structure array

List of breakpoints currently in effect, returned as a m-by-1 structure, where m is the
number of breakpoints. This table shows the fields in the structure.

name Function name.
file Full path for file containing breakpoints.
line Vector of breakpoint line numbers.

 dbstatus

1-2883

anonymous Vector of integers representing the anonymous functions in the
line numbers represented by the line field. For example, 2
means the second anonymous function in that line. A value of 0
means that the breakpoint is at the start of the line, not in an
anonymous function.

expression Cell vector of character vectors, containing the breakpoint
conditional expressions corresponding to line numbers in the
line field.

cond Character vector containing the condition ('error', 'caught
error', 'warning', or 'naninf').

identifier If cond is 'error', 'caught error', or 'warning', a cell
vector of character vectors containing MATLAB message
identifiers for which the particular cond state is set.

See Also
dbclear | dbcont | dbquit | dbstop | error | warning

Introduced before R2006a

1 Alphabetical List

1-2884

dbstep
Execute next executable line from current breakpoint

Syntax
dbstep
dbstep in
dbstep out
dbstep nlines

Description
dbstep executes the next executable line of the current file during debugging, skipping
any breakpoints set in functions called by the current line.

dbstep in steps to the next executable line. If that line contains a call to another
MATLAB code file function, then execution steps to the first executable line of the called
function. If no call exists to a MATLAB code file on that line, dbstep in is the same as
dbstep.

dbstep out runs the rest of the current function and pauses just after leaving the
function. MATLAB pauses execution at any breakpoint it encounters.

dbstep nlines executes the specified number of executable lines. MATLAB pauses
execution at any breakpoint it encounters.

Examples

Step Over Called Functions

Use dbstep to step over a called local function.

Create a file, myfile.m, that contains these statements.

 dbstep

1-2885

function n = myfile(x)
n = myfunction(x-1);

function z = myfunction(y)
z = 2/y;

Set a breakpoint at the first line in myfile and run myfile with an input of 1. MATLAB
pauses in the function myfile, at the line n = myfunction(x-1).

dbstop in myfile
myfile(2);

2 n = myfunction(x-1);

Step to the next execution line. MATLAB reaches the end of the function myfile.

K>> dbstep

End of function myfile.

Step once more to complete the execution of myfile and end debugging.

Step Through Called Functions

Use dbstep to step through a called local function.

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);

function z = myfunction(y)
z = 2/y;

Set a breakpoint at the first line in myfile and run myfile with an input of 2. MATLAB
pauses in the function myfile, at the line n = myfunction(x-1).

dbstop in myfile
myfile(2);

2 n = myfunction(x-1);

Step into myfunction. MATLAB enters myfunction and pauses at the first line in the
function.

1 Alphabetical List

1-2886

K>> dbstep in

5 z = 2/y;

Step through the next four lines of code, completing the execution of myfile and ending
debugging.

K>> dbstep 4

ans =

 2

Step Into and Out of Called Functions

Use dbstep to step into and out of a called local function.

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);

function z = myfunction(y)
z = 2/y;

Set a breakpoint at the first line in myfile and run myfile with an input of 2. MATLAB
pauses in the function myfile, at the line n = myfunction(x-1).

dbstop in myfile
myfile(2);

Step into myfunction. MATLAB enters myfunction and pauses at the first line in the
function.

K>> dbstep in

5 z = 2/y;

Step out of myfunction. MATLAB finishes executing myfunction and returns to the
calling function myfile.

K>> dbstep out

2 n = myfunction(x-1);

 dbstep

1-2887

Step out one more time to complete the execution of myfile and end debugging.

Input Arguments
nlines — Number of executable lines
positive integer

Number of executable lines to execute, specified as a positive integer.

See Also
dbclear | dbcont | dbquit | dbstatus | dbstop

Topics
“Debug a MATLAB Program”

Introduced before R2006a

1 Alphabetical List

1-2888

dbstop
Set breakpoints for debugging

Syntax
dbstop in file
dbstop in file at location
dbstop in file if expression
dbstop in file at location if expression

dbstop if condition

dbstop(b)

Description
dbstop in file sets a breakpoint at the first executable line in file. When you run
file, MATLAB enters debug mode, pauses execution at the breakpoint, and displays the
line where it is paused.

dbstop in file at location sets a breakpoint at the specified location. MATLAB
execution pauses immediately before that location, unless the location is an anonymous
function. If the location is an anonymous function, then execution pauses just after the
breakpoint.

dbstop in file if expression sets a conditional breakpoint at the first executable
line of the file. Execution pauses only if expression evaluates to true (1).

dbstop in file at location if expression sets a conditional breakpoint at the
specified location. Execution pauses at or just before that location only if the
expression evaluates to true.

dbstop if condition pauses execution at the line that meets the specified
condition, such as error or naninf. Unlike other breakpoints, you do not set this
breakpoint at a specific line in a specific file. MATLAB pauses at any line in any file when
the specified condition occurs.

 dbstop

1-2889

dbstop(b) restores breakpoints you previously saved to b. The files containing the saved
breakpoints must be on the search path or in the current folder. MATLAB assigns
breakpoints by line number, so the lines in the file must be the same as when you saved
the breakpoints.

Examples

Pause at First Executable Line

Set a breakpoint and pause execution at the first executable line of a program.

Create a file, buggy.m, that contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Issue the dbstop command and run buggy.

dbstop in buggy
buggy(1:5)

MATLAB displays the line where it pauses and enters debug mode.

2 n = length(x);
K>>

Type dbquit to exit debug mode.

Pause at Function in File

Set a breakpoint in a program at the first executable line of a local function.

Create a file, myfile.m, that contains these statements

function n = myfile(x)
n = myfunction(x);

function y = myfunction(x)
y = x + 1;

1 Alphabetical List

1-2890

Set a breakpoint at myfunction.

 dbstop in myfile>myfunction

Pause in File After n Loop Iterations

Set a breakpoint in a program that causes MATLAB to pause after some iterations of a
loop.

Create a file, myprogram.m, that contains these statements

x = ones(1,10);

for n = 1:10
x(n) = x(n) + 1;
end

Set a breakpoint to pause when n >= 4, and run the code.

dbstop in myprogram at 4 if n>=4
myprogram

MATLAB pauses at line 4 after 3 iterations of the loop, when n = 4.

4 x(n) = x(n) + 1;
K>>

Type dbquit to exit debug mode.

Pause If Error

Set a breakpoint and pause execution if a run-time error occurs.

Create a file, mybuggyprogram.m, that contains these statements.

x = ones(1,10);

for n = 1:10
x(n) = x(n+1) + 1;
end

Set an error breakpoint, and call mybuggyprogram.

 dbstop

1-2891

dbstop if error
mybuggyprogram

A run-time error occurs, and MATLAB goes into debug mode, pausing at line 4 in
mybuggyprogram.m.

Index exceeds matrix dimensions.
Error in mybuggyprogram (line 4)
x(n) = x(n+1) + 1;
4 x(n) = x(n+1) + 1;

Type dbquit to exit debug mode.

Run MException.last to obtain the error message identifier generated by the program.

MException.last

ans =

 MException with properties:

 identifier: 'MATLAB:badsubscript'
 message: 'Index exceeds matrix dimensions.'
 cause: {}
 stack: [1×1 struct]

Clear the error breakpoint and set a new error breakpoint specifying the identifier of the
error message to catch. Call mybuggyprogram.

dbclear if error
dbstop if error MATLAB:badsubscript
mybuggyprogram

The same run-time error occurs, and MATLAB goes into debug mode, pausing at line 4 in
mybuggyprogram.m.

Index exceeds matrix dimensions.
Error in mybuggyprogram (line 4)
x(n) = x(n+1) + 1;
4 x(n) = x(n+1) + 1;

Type dbquit to exit debug mode.

1 Alphabetical List

1-2892

Pause If NanInf

Set a breakpoint and pause execution if the code returns a NaN value.

Create a file, buggy.m, that requires an input vector.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Set a warning breakpoint, and call buggy with an input vector containing a 0 as one of its
elements.

dbstop if naninf
buggy(0:2)

A division by zero error occurs, and MATLAB goes into debug mode, pausing at line 3 in
buggy.m.

NaN/Inf breakpoint hit for buggy on line 3.

Type dbquit to exit debug mode.

Restore Saved Breakpoints

Set, save, clear, and then restore saved breakpoints.

Create a file, buggy.m, which contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Set an error breakpoint and a standard breakpoint at the second line in buggy.

dbstop at 2 in buggy
dbstop if error

Run dbstatus. MATLAB describes the breakpoints you set.

dbstatus

Breakpoint for buggy is on line 2.
Stop if error.

 dbstop

1-2893

Assign a structure representing the breakpoints to the variable b, and then save b to the
MAT-file buggybrkpnts. Use b=dbstatus('-completenames') to save absolute paths
and the breakpoint function nesting sequence.

b = dbstatus('-completenames');
save buggybrkpnts b

Clear all breakpoints.

dbclear all

Restore the breakpoints by loading the MAT-file and calling dbstop with the saved
structure, b.

load buggybrkpnts
dbstop(b)

Input Arguments
file — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The file name can include a
partial path, but must be in a folder on the search path or in the current folder.
Example: myfile.m

If the file name includes the -completenames option, then the file does not need to be
on the search path, as long as the file name is a “Fully Qualified Name” on page 1-2896.
Example: c:\Program Files\MATLAB\myfile.m -completenames

In addition, file can include a filemarker (>) to specify the path to a particular local
function or to a nested function within the file.
Example: myfile>myfunction

If file is not a MATLAB code file (for instance, it is a built-in or MDL-file), then MATLAB
issues a warning. MATLAB cannot pause in the file, so it pauses before executing the file.
Data Types: char | string

location — Breakpoint location
line number | line number and anonymous function number | local function name

1 Alphabetical List

1-2894

Breakpoint location to set in file, specified as one of these options:

• Line number in file specified as a character vector or string scalar. The default is 1.
• Line number in file, located at the anonymous function number and specified as a

character vector or string scalar. For example, 1@2 specifies line number 1 at the
second anonymous function. The default anonymous function number is 1.

• Name of a local function in file, specified as a character vector or string scalar.

Note When setting a breakpoint, you cannot specify location if file includes a
filemarker. For example, the command dbstop in myfile>myfilefunction at 5 is
invalid.

Data Types: char | string

expression — Logical expression
character vector | string scalar

Logical expression that evaluates to a scalar logical value of 1 or 0, specified as a
character vector or string scalar.
Example: n >= 4
Data Types: char | string

condition — Pause condition
error | caught error | warning | naninf | ...

Pause condition, specified as one of these options:

• error — Run-time error that occurs outside a try/catch block. You cannot resume
execution after an uncaught run-time error.

If you want execution to pause only if a specific error occurs, specify the message id.
For example:

• dbstop if error pauses execution at the first run-time error that occurs outside
a try/catch block.

• dbstop if error MATLAB:ls:InputsMustBeStrings pauses execution at the
first run-time error outside a try/catch block that has a message ID of
MATLAB:ls:InputsMustBeStrings.

 dbstop

1-2895

• caught error — Run-time error that occurs within the try portion of a try/catch
block. If you want execution to pause only if a specific error occurs, specify the
message id.

• warning — Run-time warning occurs. If you want execution to pause only if a specific
warning occurs, specify the message id.

This condition has no effect if you disable warnings with the warning off all
command or if you disable warnings for the specified id. For more information about
disabling warnings, see warning.

• naninf — The code returns an infinite value (Inf) or a value that is not a number
(NaN) as a result of an operator, function call, or scalar assignment.

b — List of breakpoints
structure array

List of breakpoints previously saved to a structure array using b=dbstatus.

Definitions

Fully Qualified Name
A fully qualified name is an exact file name that is uniquely specified such that it cannot
be mistaken for any other file on your system.

• Windows platforms — A file name that begins with two back slashes (\\) or with a
drive letter followed by a colon (:).

• UNIX platforms — A file name that begins with a slash (/) or a tilde (~).

Tips
• Before you begin debugging, make sure that your program is saved and that the

program and any files it calls exist on your search path or in the current folder.
• To resume execution after a breakpoint pauses execution, use dbcont or dbstep. To

exit debug mode, use dbquit. To remove all the breakpoints in the file, use dbclear
in filename. To remove all breakpoints in all files, use dbclear all. For more
information, see dbclear.

1 Alphabetical List

1-2896

• MATLAB can become unresponsive when it pauses at a breakpoint while displaying a
modal dialog box or figure created by your program. To exit debug mode and return to
the MATLAB prompt (>>), use Ctrl+C.

See Also
dbclear | dbcont | dbquit | dbstack | dbstatus | dbstep | dbtype | keyboard

Topics
“Debug a MATLAB Program”

Introduced before R2006a

 dbstop

1-2897

dbtype
Display file with line numbers

Syntax
dbtype filename
dbtype filename start:end

Description
dbtype filename displays the contents of filename with line numbers preceding each
line. This is helpful when setting breakpoints in a program file with dbstop. You cannot
use dbtype to display the source code of built-in functions.

dbtype filename start:end displays the portion of the file starting at line number
start and ending at line number end. To display a single line, you can specify only the
start value.

Examples

View File with Line Numbers

Display the example file buggy.m with line numbers preceding each line.

dbtype buggy

1 function z = buggy(x)
2 n = length(x);
3 z = (1:n)./x;

1 Alphabetical List

1-2898

View Function Arguments

View the input and output arguments for an example function, buggy, by displaying the
first line of the file. Since start and end are the same in this case, you can omit the end
value.

dbtype buggy 1

1 function z = buggy(x)

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The file name can be a partial
path, but it must be in a folder on the search path or in the current folder. Otherwise,
specify the full path name.
Data Types: char | string

start — Starting line number
positive integer

Starting line number, specified as a positive integer.

end — Ending line number
positive integer

Ending line number, specified as a positive integer.

See Also
dbclear | dbstatus | dbstop

Introduced before R2006a

 dbtype

1-2899

dbup
Shift current workspace to workspace of caller in debug mode

Syntax
dbup

Description
dbup changes the current workspace and function context to the workspace and function
context of the calling function or script in debug mode. Then you can examine the calling
MATLAB function or script to determine what caused the arguments to be passed to the
called function.

Each dbup command changes the workspace and function context to an earlier calling
function or script on the stack until the base workspace and function context is reached.
You do not need to return to the line at which MATLAB is paused to continue execution or
to step to the next line.

Examples

View Current and Calling Function Workspaces

Create a file, myfile.m, that contains these statements.

function n = myfile(x)
n = myfunction(x-1);

function z = myfunction(y)
z = 2 / y ;

Set a breakpoint at myfunction and run myfile with an input of 1. MATLAB pauses in
the function myfunction, at the line z = 2 / y. Call whos to view the variables in the
current workspace.

1 Alphabetical List

1-2900

dbstop in myfile>myfunction
myfile(1);
whos

Name Size Bytes Class Attributes

 y 1x1 8 double

The workspace contains the variable y, which is in the workspace context for
myfunction.

Run the dbup command to switch to the workspace of the calling function, myfile. Then,
call whos.

dbup
whos

In workspace belonging to myfile (line 2)

 Name Size Bytes Class Attributes

 x 1x1 8 double

The workspace contains the variable x, which is in the workspace context for myfile.

Tips
• If you receive an error message such as the following, it means that the parent

workspace is under construction so that the value of x is unavailable:

??? Reference to a called function result under construction x

See Also
dbdown | dbstack | whos

Topics
“Examine Values While Debugging”

Introduced before R2006a

 dbup

1-2901

dde23
Solve delay differential equations (DDEs) with constant delays

Syntax
sol = dde23(ddefun,lags,history,tspan)
sol = dde23(ddefun,lags,history,tspan,options)

Arguments
ddefun Function handle that evaluates the right side of the

differential equations y′(t) = f t, y(t), y(t − τ1), ..., y(t − τk) .
The function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current t, y is a column vector
that approximates y(t), and Z(:,j) approximates y(t – τj)
for delay τj = lags(j). The output is a column vector
corresponding to f t, y(t), y(t − τ1), ..., y(t − τk) .

lags Vector of constant, positive delays τ1, ..., τk.
history Specify history in one of three ways:

• A function of t such that y = history(t) returns the
solution y(t) for t ≤ t0 as a column vector

• A constant column vector, if y(t) is constant
• The solution sol from a previous integration, if this call

continues that integration
tspan Interval of integration from t0=tspan(1) to

tf=tspan(end) with t0 < tf.
options Optional integration argument. A structure you create

using the ddeset function. See ddeset for details.

1 Alphabetical List

1-2902

Description
sol = dde23(ddefun,lags,history,tspan) integrates the system of DDEs

y′(t) = f t, y(t), y(t − τ1), ..., y(t − τk)

on the interval [t0,tf], where τ1, ..., τk are constant, positive delays and t0,tf. The input
argument, ddefun, is a function handle.

“Parameterizing Functions” explains how to provide additional parameters to the function
ddefun, if necessary.

dde23 returns the solution as a structure sol. Use the auxiliary function deval and the
output sol to evaluate the solution at specific points tint in the interval tspan =
[t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol.x Mesh selected by dde23
sol.y Approximation to y(x) at the mesh points in sol.x.
sol.yp Approximation to y′(x) at the mesh points in sol.x
sol.solver Solver name, 'dde23'

sol = dde23(ddefun,lags,history,tspan,options) solves as above with default
integration properties replaced by values in options, an argument created with ddeset.
See ddeset and “Delay Differential Equations” for more information.

Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by default)
and vector of absolute error tolerances 'AbsTol' (all components are 1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in the history or solution.
Set this option to a vector that contains the locations of discontinuities in the solution
prior to t0 (the history) or in coefficients of the equations at known values of t after t0.

Use the 'Events' option to specify a function that dde23 calls to find where functions
g t, y(t), y(t − τ1), ..., y(t − τk) vanish. This function must be of the form

[value,isterminal,direction] = events(t,y,Z)

 dde23

1-2903

and contain an event function for each event to be tested. For the kth event function in
events:

• value(k) is the value of the kth event function.
• isterminal(k) = 1 if you want the integration to terminate at a zero of this event

function and 0 otherwise.
• direction(k) = 0 if you want dde23 to compute all zeros of this event function, +1

if only zeros where the event function increases, and -1 if only zeros where the event
function decreases.

If you specify the 'Events' option and events are detected, the output structure sol
also includes fields:

sol.xe Row vector of locations of all events, i.e., times when an event
function vanished

sol.ye Matrix whose columns are the solution values corresponding to
times in sol.xe

sol.ie Vector containing indices that specify which event occurred at
the corresponding time in sol.xe

Examples
This example solves a DDE on the interval [0, 5] with lags 1 and 0.2. The function
ddex1de computes the delay differential equations, and ddex1hist computes the history
for t <= 0.

Note The file, ddex1.m, contains the complete code for this example. To see the code in
an editor, type edit ddex1 at the command line. To run it, type ddex1 at the command
line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the interval [0,5], then
plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

1 Alphabetical List

1-2904

matlab:edit ddex1

ddex1 shows how you can code this problem using local functions. For more examples
see ddex2.

Algorithms
dde23 tracks discontinuities and integrates with the explicit Runge-Kutta (2,3) pair and
interpolant of ode23. It uses iteration to take steps longer than the lags.

References
[1] Shampine, L.F. and S. Thompson, “Solving DDEs in MATLAB,” Applied Numerical

Mathematics, Vol. 37, 2001, pp. 441-458.

[2] Kierzenka, J., L.F. Shampine, and S. Thompson, “Solving Delay Differential Equations
with dde23”

See Also
ddeget | ddensd | ddesd | ddeset | deval

Topics
“Create Function Handle”

Introduced before R2006a

 dde23

1-2905

https://www.mathworks.com/matlabcentral/fileexchange/3899-tutorial-on-solving-ddes-with-dde23
https://www.mathworks.com/matlabcentral/fileexchange/3899-tutorial-on-solving-ddes-with-dde23

ddeget
Extract properties from delay differential equations options structure

Syntax
val = ddeget(options,'name')
val = ddeget(options,'name',default)

Description
val = ddeget(options,'name') extracts the value of the named property from the
structure options, returning an empty matrix if the property value is not specified in
options. It is sufficient to type only the leading characters that uniquely identify the
property. Case is ignored for property names. [] is a valid options argument.

val = ddeget(options,'name',default) extracts the named property as above, but
returns val = default if the named property is not specified in options. For example,

val = ddeget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also
dde23 | ddensd | ddesd | ddeset

Introduced before R2006a

1 Alphabetical List

1-2906

ddensd
Solve delay differential equations (DDEs) of neutral type

Syntax
sol = ddensd(ddefun,dely,delyp,history,tspan)
sol = ddensd(ddefun,dely,delyp,history,tspan,options)

Description
sol = ddensd(ddefun,dely,delyp,history,tspan) integrates a system of delay
differential equations of neutral type, that has the form

y '(t) = f(t, y(t), y(dy1),..., y(dyp), y '(dyp1),..., y '(dypq)) (1-1)

where

• t is the independent variable representing time.
• dyi is any of p solution delays.
• dypj is any of q derivative delays.

sol = ddensd(ddefun,dely,delyp,history,tspan,options) replaces default
integration parameters with those specified in options, a structure created with the
ddeset function.

Examples

Neutral DDE with Two Delays

Solve the following neutral DDE, presented by Paul, for .

 ddensd

1-2907

The solution history is for .

Create a new program file in the editor. This file will contain a main function and four
local functions.

Define the first-order DDE as a local function named ddefun.

function yp = ddefun(t,y,ydel,ypdel)
 yp = 1 + y - 2*ydel^2 - ypdel;
end

Define the solution delay as a local function named dely.

function dy = dely(t,y)
 dy = t/2;
end

Define the derivative delay as a local function named delyp.

function dyp = delyp(t,y)
 dyp = t-pi;
end

Define the solution history as a local function named history.

function y = history(t)
 y = cos(t);
end

Define the interval of integration and solve the DDE using ddensd. Add this code to the
main function.

tspan = [0 pi];
sol = ddensd(@ddefun,@dely,@delyp,@history,tspan);

Evaluate the solution at 100 equally spaced points between and . Add this code to the
main function.

1 Alphabetical List

1-2908

tn = linspace(0,pi);
yn = deval(sol,tn);

Plot the results. Add this code to the main function.

plot(tn,yn);
xlim([0 pi]);
ylim([-1.2 1.2]);
xlabel('time t');
ylabel('solution y');

 ddensd

1-2909

Run your entire program to calculate the solution and display the plot. The file ddex4.m
contains the complete code for this example. To see the code in an editor, type edit
ddex4 at the command line.

Input Arguments
ddefun — Derivative function
function handle

Derivative function, specified as a function handle whose syntax is yp =
ddefun(t,y,ydel,ypdel). The arguments for ddefun are described in the table
below.

ddefun Argument Description
t A scalar value representing the current value of time, t.
y A vector that represents y(t) in “Equation 1-1”. The size of this

vector is n-by-1, where n is the number of equations in the
system you want to solve.

ydel A matrix whose columns, ydel(:,i), represent y(dyi). The size
of this matrix is n-by-p, where n is the number of equations in
the system you want to solve, and p is the number of y(dy) terms
in “Equation 1-1”.

ypdel A matrix whose columns, ypdel(:,j) represent y '(dypj). The
size of this matrix is n-by-q, where n is the number of equations
in the system you want to solve, and q is the number of y '(dyp)
terms in “Equation 1-1”.

yp The result returned by ddefun. It is an n-by-1 vector whose
elements represent the right side of “Equation 1-1”.

dely — Solution delays
function handle | vector

Solution delays, specified as a function handle, which returns dy1,..., dyp in
“Equation 1-1”. Alternatively, you can pass constant delays in the form of a vector.

If you specify dely as a function handle, the syntax must be dy = dely(t,y). The
arguments for this function are described in the table below.

1 Alphabetical List

1-2910

dely Argument Description
t A scalar value representing the current value of time, t.
y A vector that represents y(t) in “Equation 1-1”. The size of this

vector is n-by-1, where n is the number of equations in the
system you want to solve.

dy A vector returned by the dely function whose values are the
solution delays, dyi , in “Equation 1-1”. The size of this vector is
p-by-1, where p is the number of solution delays in the equation.
Each element must be less than or equal to t.

If you want to specify constant solution delays having the form dyi = t – τi, then dely
must be a vector, where dely(i) = τi. Each value in this vector must be greater than or
equal to zero.

If dy is not present in the problem, set dely to [].
Data Types: function_handle | single | double

delyp — Derivative delays
function handle | vector

Derivative delays, specified as a function handle, which returns dyp1,..., dypq in
“Equation 1-1”. Alternatively, you can pass constant delays in the form of a vector.

If delyp is a function handle, its syntax must be dyp = delyp(t,y). The arguments for
this function are described in the table below.

delyp Argument Description
t A scalar value representing the current value of time, t.
y A vector that represents y(t) in “Equation 1-1”. The size of this

vector is n-by-1, where n is the number of equations in the
system you want to solve.

 ddensd

1-2911

delyp Argument Description
dyp A vector returned by the delyp function whose values are the

derivative delays, dypj, in “Equation 1-1”. The size of this vector
must be q-by-1, where q is the number of solution delays, dypj,
in the equation. Each element of dyp must be less than t. There
is one exception to this restriction: if you are solving an initial
value DDE, the value of dyp can equal t at t = t0. For more
information, see “Initial Value Neutral Delay Differential
Equations” on page 1-2914.

If you want specify constant derivative delays having the form dypj = t – τj, then delyp
must be a vector, where delyp(j) = τj. Each value in this vector must be greater than
zero. An exception to this restriction occurs when you solve initial value problems for
DDEs of neutral type. In such cases, a value in delyp can equal zero at t = t0. See “Initial
Value Neutral Delay Differential Equations” on page 1-2914 for more information.

If dyp is not present in the problem, set delyp to [].
Data Types: function_handle | single | double

history — Solution history
function handle | column vector | structure (sol, from previous integration) | 1-by-2 cell
array

Solution history, specified as a function handle, column vector, sol structure (from a
previous integration), or a cell array. This is the solution at t ≤ t0.

• If the history varies with time, specify the solution history as a function handle whose
syntax is y = history(t). This function returns an n-by-1 vector that approximates
the solution, y(t), for t <= t0. The length of this vector, n, is the number of equations in
the system you want to solve.

• If y(t) is constant, you can specify history as an n-by-1 vector of the constant values.
• If you are calling ddensd to continue a previous integration to t0, you can specify

history as the output, sol, from the previous integration.
• If you are solving an initial value DDE, specify history as a cell array, {y0, yp0}. The
first element, y0, is a column vector of initial values, y(t0). The second element, yp0, is
a column vector whose elements are the initial derivatives, y '(t0). These vectors must
be consistent, meaning that they satisfy “Equation 1-1” at t0. See “Initial Value Neutral
Delay Differential Equations” on page 1-2914 for more information.

Data Types: function_handle | single | double | struct | cell

1 Alphabetical List

1-2912

tspan — Interval of integration
1-by-2 vector

Interval of integration, specified as the vector [t0 tf]. The first element, t0, is the
initial value of t. The second element, tf, is the final value of t. The value of t0 must be
less than tf.
Data Types: single | double

options — Optional integration parameters
structure returned by ddeset

Optional integration parameters, specified as a structure created and returned by the
ddeset function. Some commonly used properties are: 'RelTol', 'AbsTol', and
'Events'. See the ddeset reference page for more information about specifying
options.

Output Arguments
sol — Solution
structure

Solution, returned as a structure containing the following fields.

sol.x Mesh selected by ddensd.
sol.y An approximation to y(t) at the mesh points.
sol.yp An approximation to y '(t) at the mesh points.
sol.solver A character vector identifying the solver, 'ddensd'.

You can pass sol to the deval function to evaluate the solution at specific points. For
example, y = deval(sol, 0.5*(sol.x(1) + sol.x(end))) evaluates the solution
at the midpoint of the interval of integration.

 ddensd

1-2913

Definitions

Initial Value Neutral Delay Differential Equations
An initial value DDE has dyi≥t0 and dypj≥t0, for all i and j. At t = t0, all delayed terms
reduce to y(dyi) = y(t0) and y '(dypj) = y '(t0):

y '(t0) = f(t0, y(t0), y(t0),..., y(t0), y '(t0),..., y '(t0)) (1-2)

For t > t0, all derivative delays must satisfy dyp < t.

When you solve initial value neutral DDEs, you must supply y '(t0) to ddensd. To do this,
specify history as a cell array {Y0,YP0}. Here, Y0 is the column vector of initial values,
y(t0), and YP0 is a column vector of initial derivatives, y '(t0). These vectors must be
consistent, meaning that they satisfy “Equation 1-2” at t0.

Algorithms
For information about the algorithm used in this solver, see Shampine [2].

References
[1] Paul, C.A.H. “A Test Set of Functional Differential Equations.” Numerical Analysis

Reports. No. 243. Manchester, UK: Math Department, University of Manchester,
1994.

[2] Shampine, L.F. “Dissipative Approximations to Neutral DDEs.” Applied Mathematics &
Computation. Vol. 203, Number 2, 2008, pp. 641–648.

See Also
dde23 | ddesd | ddeset | deval

Topics
“Create Function Handle”

1 Alphabetical List

1-2914

Introduced in R2012b

 ddensd

1-2915

ddesd
Solve delay differential equations (DDEs) with general delays

Syntax
sol = ddesd(ddefun,delays,history,tspan)
sol = ddesd(ddefun,delays,history,tspan,options)

Arguments
ddefun Function handle that evaluates the right side of the differential

equations y′(t) = f(t,y(t),y(d(1),...,y(d(k))). The function must
have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current t, y is a column vector that
approximates y(t), and Z(:,j) approximates y(d(j)) for delay
d(j) given as component j of delays(t,y). The output is a
column vector corresponding to f(t,y(t),y(d(1),...,y(d(k))).

delays Function handle that returns a column vector of delays d(j).
The delays can depend on both t and y(t). ddesd imposes the
requirement that d(j) ≤ t by using min(d(j),t).

If all the delay functions have the form d(j) = t – τj, you can set
the argument delays to a constant vector delays(j) = τj.
With delay functions of this form, ddesd is used exactly like
dde23.

1 Alphabetical List

1-2916

history Specify history in one of three ways:

• A function of t such that y = history(t) returns the
solution y(t) for t ≤ t0 as a column vector

• A constant column vector, if y(t) is constant
• The solution sol from a previous integration, if this call

continues that integration
tspan Interval of integration from t0=tspan(1) to tf=tspan(end)

with t0 < tf.
options Optional integration argument. A structure you create using

the ddeset function. See ddeset for details.

Description
sol = ddesd(ddefun,delays,history,tspan) integrates the system of DDEs

y′(t) = f t, y(t), y(d(1)), ..., y(d(k))

on the interval [t0,tf], where delays d(j) can depend on both t and y(t), and t0 < tf. Inputs
ddefun and delays are function handles. See “Create Function Handle” for more
information.

“Parameterizing Functions” explains how to provide additional parameters to the
functions ddefun, delays, and history, if necessary.

ddesd returns the solution as a structure sol. Use the auxiliary function deval and the
output sol to evaluate the solution at specific points tint in the interval tspan =
[t0,tf].

yint = deval(sol,tint)

The structure sol returned by ddesd has the following fields.

sol.x Mesh selected by ddesd
sol.y Approximation to y(x) at the mesh points in sol.x.
sol.yp Approximation to y′(x) at the mesh points in sol.x
sol.solver Solver name, 'ddesd'

 ddesd

1-2917

sol = ddesd(ddefun,delays,history,tspan,options) solves as above with
default integration properties replaced by values in options, an argument created with
ddeset. See ddeset and “Delay Differential Equations” for more information.

Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by default)
and vector of absolute error tolerances 'AbsTol' (all components are 1e-6 by default).

Use the 'Events' option to specify a function that ddesd calls to find where functions
g(t,y(t),y(d(1)),...,y(d(k))) vanish. This function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth event function in
events:

• value(k) is the value of the kth event function.
• isterminal(k) = 1 if you want the integration to terminate at a zero of this event

function and 0 otherwise.
• direction(k) = 0 if you want ddesd to compute all zeros of this event function, +1

if only zeros where the event function increases, and -1 if only zeros where the event
function decreases.

If you specify the 'Events' option and events are detected, the output structure sol
also includes fields:

sol.xe Row vector of locations of all events, i.e., times when an event
function vanished

sol.ye Matrix whose columns are the solution values corresponding to
times in sol.xe

sol.ie Vector containing indices that specify which event occurred at the
corresponding time in sol.xe

Examples
The equation

sol = ddesd(@ddex1de,@ddex1delays,@ddex1hist,[0,5]);

1 Alphabetical List

1-2918

solves a DDE on the interval [0,5] with delays specified by the function ddex1delays
and differential equations computed by ddex1de. The history is evaluated for t ≤ 0 by the
function ddex1hist. The solution is evaluated at 100 equally spaced points in [0,5]:

tint = linspace(0,5);
yint = deval(sol,tint);

and plotted with

plot(tint,yint);

This problem involves constant delays. The delay function has the form

function d = ddex1delays(t,y)
%DDEX1DELAYS Delays for using with DDEX1DE.
d = [t - 1
 t - 0.2];

The problem can also be solved with the syntax corresponding to constant delays

delays = [1, 0.2];
sol = ddesd(@ddex1de,delays,@ddex1hist,[0, 5]);

or using dde23:

sol = dde23(@ddex1de,delays,@ddex1hist,[0, 5]);

For more examples of solving delay differential equations see ddex2 and ddex3.

References
[1] Shampine, L.F., “Solving ODEs and DDEs with Residual Control,” Applied Numerical

Mathematics, Vol. 52, 2005, pp. 113-127.

See Also
dde23 | ddeget | ddensd | ddeset | deval

Topics
“Create Function Handle”

 ddesd

1-2919

matlab:edit ddex2
matlab:edit ddex3

ddeset
Create or alter delay differential equations options structure

Syntax
options = ddeset('name1',value1,'name2',value2,...)
options = ddeset(oldopts,'name1',value1,...)
options = ddeset(oldopts,newopts)
ddeset

Description
options = ddeset('name1',value1,'name2',value2,...) creates an integrator
options structure options in which the named properties have the specified values. Any
unspecified properties have default values. It is sufficient to type only the leading
characters that uniquely identify the property. ddeset ignores case for property names.

options = ddeset(oldopts,'name1',value1,...) alters an existing options
structure oldopts. This overwrites any values in oldopts that are specified using name/
value pairs and returns the modified structure as the output argument.

options = ddeset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any values set in newopts overwrite the
corresponding values in oldopts.

ddeset with no input arguments displays all property names and their possible values,
indicating defaults with braces {}.

You can use the function ddeget to query the options structure for the value of a
specific property.

DDE Properties
The following sections describe the properties that you can set using ddeset. There are
several categories of properties:

1 Alphabetical List

1-2920

• Error control on page 1-2921
• Solver output on page 1-2922
• Step size on page 1-2925
• Event location on page 1-2927
• Discontinuities on page 1-2929

Error Control Properties
At each step, the DDE solvers estimate an error e. The dde23 function estimates the local
truncation error, and the other solvers estimate the residual. In either case, this error
must be less than or equal to the acceptable error, which is a function of the specified
relative tolerance, RelTol, and the specified absolute tolerance, AbsTol.

|e(i)|*max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, the solvers deliver accuracy roughly equivalent to the accuracy you
request. They deliver less accuracy for problems integrated over “long” intervals and
problems that are moderately unstable. Difficult problems may require tighter tolerances
than the default values. For relative accuracy, adjust RelTol. For the absolute error
tolerance, the scaling of the solution components is important: if |y| is somewhat smaller
than AbsTol, the solver is not constrained to obtain any correct digits in y. You might
have to solve a problem more than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all solution
components except those smaller than thresholds AbsTol(i). Even if you are not
interested in a component y(i) when it is small, you may have to specify AbsTol(i)
small enough to get some correct digits in y(i) so that you can accurately compute more
interesting components.

The following table describes the error control properties.

 ddeset

1-2921

DDE Error Control Properties

Property Value Description
RelTol Positive scalar

{1e-3}
A relative error tolerance that applies to all components of the
solution vector y. It is a measure of the error relative to the
size of each solution component. Roughly, it controls the
number of correct digits in all solution components except
those smaller than thresholds AbsTol(i). The default, 1e-3,
corresponds to 0.1% accuracy.

The estimated error in each integration step satisfies |e(i)|
max(RelTol*abs(y(i)),AbsTol(i)).

AbsTol Positive scalar or
vector {1e-6}

Absolute error tolerances that apply to the individual
components of the solution vector. AbsTol(i) is a threshold
below which the value of the ith solution component is
unimportant. The absolute error tolerances determine the
accuracy when the solution approaches zero. Even if you are
not interested in a component y(i) when it is small, you may
have to specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more
interesting components.

If AbsTol is a vector, the length of AbsTol must be the same
as the length of the solution vector y. If AbsTol is a scalar,
the value applies to all components of y.

NormControl on | {off} Control error relative to norm of solution. Set this property on
to request that the solvers control the error in each
integration step with norm(e)<=
max(RelTol*norm(y),AbsTol). By default, the solvers use
a more stringent component-wise error control.

Solver Output Properties
You can use the solver output properties to control the output that the solvers generate.

1 Alphabetical List

1-2922

DDE Solver Output Properties

Property Value Description
OutputFcn Function handle

{@odeplot}
The output function is a function that the solver calls after
every successful integration step. To specify an output
function, set 'OutputFcn' to a function handle. For
example,

options = ddeset('OutputFcn',...
@myfun)

sets 'OutputFcn' to @myfun, a handle to the function
myfun. See “Create Function Handle” for more information.

The output function must be of the form

status = myfun(t,y,flag)

“Parameterizing Functions” explains how to provide
additional parameters to myfun, if necessary.

The solver calls the specified output function with the
following flags. Note that the syntax of the call differs with
the flag. The function must respond appropriately:

• init — The solver calls myfun([tspan(1)
tspan(end)],y0,'init') before beginning the
integration to allow the output function to initialize.
tspan is the input argument to the solvers. y0 is the
initial value of the solution, either from history(t0) or
specified in the initialY option.

• {none} — The solver calls status = myfun(t,y) after
each integration step on which output is requested. t
contains points where output was generated during the
step, and y is the numerical solution at the points in t. If
t is a vector, the ith column of y corresponds to the ith
element of t.

myfun must return a status output value of 0 or 1. If
status = 1, the solver halts integration. You can use

 ddeset

1-2923

Property Value Description
this mechanism, for instance, to implement a Stop
button.

• done — The solver calls myfun([],[],'done') when
integration is complete to allow the output function to
perform any cleanup chores.

You can use these general purpose output functions or you
can edit them to create your own. Type help
functionname at the command line for more information.

• odeplot – time series plotting (default when you call
the solver with no output argument and you have not
specified an output function)

• odephas2 – two-dimensional phase plane plotting
• odephas3 – three-dimensional phase plane plotting
• odeprint – print solution as the solver computes it

OutputSel Vector of indices Vector of indices specifying which components of the
solution vector the solvers pass to the output function. For
example, if you want to use the odeplot output function,
but you want to plot only the first and third components of
the solution, you can do this using

options = ddeset...
('OutputFcn',@odeplot,...
'OutputSel',[1 3]);

By default, the solver passes all components of the solution
to the output function.

Stats on | {off} Specifies whether the solver should display statistics about
its computations. By default, Stats is off. If it is on, after
solving the problem the solver displays:

• The number of successful steps
• The number of failed attempts
• The number of times the DDE function was called

1 Alphabetical List

1-2924

Step Size Properties
The step size properties let you specify the size of the first step the solver tries,
potentially helping it to better recognize the scale of the problem. In addition, you can
specify bounds on the sizes of subsequent time steps.

The following table describes the step size properties.

 ddeset

1-2925

DDE Step Size Properties

Property Value Description
InitialStep Positive scalar Suggested initial step size. InitialStep sets an upper

bound on the magnitude of the first step size the solver
tries. If you do not set InitialStep, the solver bases the
initial step size on the slope of the solution at the initial
time tspan(1). The initial step size is limited by the
shortest delay. If the slope of all solution components is
zero, the procedure might try a step size that is much too
large. If you know this is happening or you want to be sure
that the solver resolves important behavior at the start of
the integration, help the code start by providing a suitable
InitialStep.

MaxStep Positive scalar
{0.1*
abs(t0-tf)}

Upper bound on solver step size. If the differential equation
has periodic coefficients or solutions, it may be a good idea
to set MaxStep to some fraction (such as 1/4) of the period.
This guarantees that the solver does not enlarge the time
step too much and step over a period of interest. Do not
reduce MaxStep:

• When the solution does not appear to be accurate
enough. Instead, reduce the relative error tolerance
RelTol, and use the solution you just computed to
determine appropriate values for the absolute error
tolerance vector AbsTol. (See “Error Control
Properties” on page 1-2921 for a description of the error
tolerance properties.)

• To make sure that the solver doesn't step over some
behavior that occurs only once during the simulation
interval. If you know the time at which the change
occurs, break the simulation interval into two pieces and
call the solver twice. If you do not know the time at
which the change occurs, try reducing the error
tolerances RelTol and AbsTol. Use MaxStep as a last
resort.

1 Alphabetical List

1-2926

Event Location Property
In some DDE problems, the times of specific events are important. While solving a
problem, the solvers can detect such events by locating transitions to, from, or through
zeros of user-defined functions.

The following table describes the Events property.

 ddeset

1-2927

DDE Events Property

Property Value Description
Events Function

handle
A function handle that includes one or more event functions. For
dde23 and ddesd, this function has the following syntax:

[value,isterminal,direction] = events(t,y,YDEL)

For ddensd, the syntax is:

[value,isterminal,direction] = events(t,y,YDEL,YPDEL)

The output arguments, value, isterminal, and direction,
are vectors for which the ith element corresponds to the ith
event function:

• value(i) is the value of the ith event function.
• isterminal(i) = 1 if you want the integration to terminate

at a zero of this event function, and 0 otherwise.
• direction(i) = 0 if you want the solver to locate all zeros

(the default), +1 if only zeros where the event function is
increasing, and -1 if only zeros where the event function is
decreasing.

If you specify an events function and events are detected, the
solver returns three additional fields in the solution structure
sol:

• sol.xe is a row vector of times at which events occur.
• sol.ye is a matrix whose columns are the solution values

corresponding to times in sol.xe.
• sol.ie is a vector containing indices that specify which

event occurred at the corresponding time in sol.xe.

For examples that use an event function while solving ordinary
differential equation problems, see “ODE Event Location”.

1 Alphabetical List

1-2928

Discontinuity Properties
The solver functions can solve problems with discontinuities in the history or in the
coefficients of the equations. The following properties enable you to provide these solvers
with a different initial value, and, for dde23, locations of known discontinuities. For more
information, see “Discontinuities in DDEs” .

The following table describes the discontinuity properties.

DDE Discontinuity Properties

Property Value Description
Jumps Vector Location of discontinuities. Points t where the

history or solution may have a jump discontinuity in
a low-order derivative. This applies only to the
dde23 solver.

InitialY Vector Initial value of solution. By default the initial value
of the solution is the value returned by history at
the initial point. Supply a different initial value as
the value of the InitialY property.

Examples
To create an options structure that changes the relative error tolerance of the solver from
the default value of 1e-3 to 1e-4, enter

options = ddeset('RelTol',1e-4);

To recover the value of 'RelTol' from options, enter

ddeget(options,'RelTol')

ans =

 1.0000e-004

See Also
dde23 | ddeget | ddensd | ddesd

 ddeset

1-2929

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-2930

deal
Distribute inputs to outputs

Note Beginning with MATLAB® Version 7.0 software, you can access the contents of cell
arrays and structure fields without using the deal function. See Example 3, below.

Syntax
[Y1, Y2, Y3, ...] = deal(X)
[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...)
[S.field] = deal(X)
[X{:}] = deal(A.field)
[Y1, Y2, Y3, ...] = deal(X{:})
[Y1, Y2, Y3, ...] = deal(S.field)

Description
[Y1, Y2, Y3, ...] = deal(X) copies the single input to all the requested outputs. It
is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...) is the same as Y1 = X1; Y2 = X2;
Y3 = X3; ...

Examples

Example 1 — Assign Data From a Cell Array
Use deal to copy the contents of a 4-element cell array into four separate output
variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

 deal

1-2931

a =
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

b =
 1
 1
 1

c =
 1 0 0
 0 1 0
 0 0 1

d =
 0
 0
 0

Example 2 — Assign Data From Structure Fields
Use deal to obtain the contents of all the name fields in a structure array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =
 Pat

name2 =
 Tony

Example 3 — Doing the Same Without deal
Beginning with MATLAB Version 7.0 software, you can, in most cases, access the contents
of cell arrays and structure fields without using the deal function. The two commands
shown below perform the same operation as those used in the previous two examples,
except that these commands do not require deal.

[a,b,c,d] = C{:}
[name1,name2] = A(:).name

1 Alphabetical List

1-2932

Tips
deal is most useful when used with cell arrays and structures via comma-separated list
expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the structure array S
to the value X. If S doesn't exist, use [S(1:m).field] = deal(X).

[X{:}] = deal(A.field) copies the values of the field with name field to the cell
array X. If X doesn't exist, use [X{1:m}] = deal(A.field).

[Y1, Y2, Y3, ...] = deal(X{:}) copies the contents of the cell array X to the
separate variables Y1, Y2, Y3, ...

[Y1, Y2, Y3, ...] = deal(S.field) copies the contents of the fields with the
name field to separate variables Y1, Y2, Y3, ...

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cell | cell2struct | celldisp | fieldnames | iscell | isfield | isstruct |
orderfields | rmfield | struct | struct2cell

Introduced before R2006a

 deal

1-2933

deblank
Remove trailing whitespace from ends of strings

Syntax
newStr = deblank(str)

Description
newStr = deblank(str) removes trailing whitespace and null characters from str
and returns the result as newStr. However, deblank does not remove significant
whitespace characters. For example, deblank removes trailing space and tab characters,
but does not remove the nonbreaking space character, char(160).

Examples

Remove Trailing Blanks from Character Vector

Create a character vector that contains space, tab, and null characters.

chr = sprintf(' \t MathWorks \t');
chr = [chr char(0)];

Display chr between | characters.

['|' chr '|']

ans =
'| MathWorks |'

Remove the trailing blanks and display newChr between | characters.

newChr = deblank(chr);
['|' newChr '|']

1 Alphabetical List

1-2934

ans =
'| MathWorks|'

Convert Character Array and Remove Trailing Spaces

Create a character array that contains multiple pieces of text. When a character array
contains multiple rows, it is often necessary to pad the array with space characters.

chr = ['Mercury';
 'Apollo ';
 'ISS ']

chr = 3x7 char array
 'Mercury'
 'Apollo '
 'ISS '

Convert chr to a string array. The elements of str include the trailing space characters
that padded chr.

str = string(chr)

str = 3x1 string array
 "Mercury"
 "Apollo "
 "ISS "

To remove the trailing spaces, use the deblank function.

newStr = deblank(str)

newStr = 3x1 string array
 "Mercury"
 "Apollo"
 "ISS"

 deblank

1-2935

Remove Trailing Blanks from Cell Array

Remove trailing blanks from all the character vectors in a cell array and display them.

A = {'MATLAB ','SIMULINK ';
 'Toolboxes ','MathWorks '}

A = 2x2 cell array
 {'MATLAB ' } {'SIMULINK ' }
 {'Toolboxes '} {'MathWorks '}

B = deblank(A)

B = 2x2 cell array
 {'MATLAB' } {'SIMULINK' }
 {'Toolboxes'} {'MathWorks'}

Keep Trailing Nonbreaking Space Character

Create a character vector that includes the nonbreaking space character, char(160), as
a trailing blank character.

chr = ' MathWorks';
chr = [chr char(160) ' '];

Display chr between | symbols to show the leading and trailing whitespace.

['|' chr '|']

ans =
'| MathWorks |'

Remove the trailing whitespace characters.

newChr = deblank(chr);

Display newChr between | symbols. deblank removes the trailing space characters, but
leaves the nonbreaking space at the end of newChr.

['|' newChr '|']

1 Alphabetical List

1-2936

ans =
'| MathWorks |'

Input Arguments
str — Input text
string array | character array | cell array of character arrays

Input text, specified as a string array, a character array, or as a cell array of character
arrays.

Algorithms
deblank does not remove significant whitespace characters.

This table shows the most common characters that are significant whitespace characters
and their descriptions. For more information, see Whitespace character.

Significant Whitespace Character Description
char(133) Next line
char(160) Nonbreaking space
char(8199) Figure space
char(8239) Narrow no-break space

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 deblank

1-2937

https://en.wikipedia.org/wiki/Whitespace_character

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be specified as a character array. Cell arrays are not supported.
• Input values must be in the range 0–127.

See Also
cellstr | isspace | strjust | strtrim

Introduced before R2006a

1 Alphabetical List

1-2938

dec2base
Convert decimal number to character vector representing base N number

Syntax
str = dec2base(d, base)
str = dec2base(d, base, n)

Description
str = dec2base(d, base) converts the nonnegative integer d to the specified base. d
must be a nonnegative integer smaller than the value returned by flintmax, and base
must be an integer between 2 and 36. The returned argument str is a character vector.

str = dec2base(d, base, n) produces a representation with at least n digits.

Examples
The expression dec2base(23, 2) converts 2310 to base 2, returning the character
vector '10111'.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
base2dec | dec2bin | dec2hex | flintmax

 dec2base

1-2939

Introduced before R2006a

1 Alphabetical List

1-2940

dec2bin
Convert decimal number to character vector representing binary number

Syntax
str = dec2bin(d)
str = dec2bin(d,n)

Description
str = dec2bin(d) returns the binary representation of d as a character vector. d must
be a nonnegative integer. If d is greater than the value returned by flintmax, then
dec2bin might not return an exact representation of d.

str = dec2bin(d,n) produces a binary representation with at least n bits.

The output of dec2bin is independent of the endian settings of the computer you are
using.

Examples
Decimal 23 converts to binary 010111:

dec2bin(23)
ans =
 10111

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 dec2bin

1-2941

Usage notes and limitations:

• If input d is double, then it must be less than 2^52.
• If input d is single, then it must be less than 2^23.
• Unless you specify input n to be constant and n is large enough that the output has a
fixed number of columns regardless of the input values, this function requires
variable-sizing support. Without variable-sizing support, n must be at least 52 for
double, 23 for single, 16 for char, 32 for int32, 16 for int16, and so on.

See Also
bin2dec | dec2base | dec2hex | flintmax

1 Alphabetical List

1-2942

dec2hex
Convert decimal number to character vector representing hexadecimal number

Syntax
str = dec2hex(d)
str = dec2hex(d, n)

Description
str = dec2hex(d) returns the hexadecimal representation of d as a character vector. d
must be a nonnegative integer. If d is an integer greater than the value returned by
flintmax, then dec2hex might not return an exact representation. MATLAB converts
noninteger inputs, such as those of class double or char, to their integer equivalents
before converting to hexadecimal.

str = dec2hex(d, n) produces a hexadecimal representation with at least n digits.

Examples
To convert decimal 1023 to hexadecimal,

dec2hex(1023)
ans =
 3FF

dec2hex(1023, 6)
ans =
0003FF

Convert 2-by-5 array A to hexadecimal:

A = [3487, 125, 8997, 1433, 189; ...
 771, 84832, 118, 9366, 212];

 A(:) dec2hex(A)

 dec2hex

1-2943

ans = ans =
 3487 00D9F
 771 00303
 125 0007D
 84832 14B60
 8997 02325
 118 00076
 1433 00599
 9366 02496
 189 000BD
 212 000D4

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If input d is double, then d must be less than 2^52.
• If input d is single, then d must be less than 2^23.
• Unless you specify input n to be constant, and n is large enough that the output has a
fixed number of columns regardless of the input values, this function requires
variable-sizing support. Without variable-sizing support, n must be at least 13 for
double, 6 for single, 4 for char, 8 for int32, 4 for int16, and so on.

See Also
dec2base | dec2bin | flintmax | format | hex2dec | hex2num

1 Alphabetical List

1-2944

decic
Compute consistent initial conditions for ode15i

Syntax
[y0_new,yp0_new] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
[y0_new,yp0_new] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,
options)
[y0_new,yp0_new,resnrm] = decic(___)

Description
[y0_new,yp0_new] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0) uses y0
and yp0 as guesses for the initial conditions of the fully implicit function odefun, holds
the components specified by fixed_y0 and fixed_yp0 as fixed, then computes values
for the nonfixed components. The result is a complete set of consistent initial conditions.
The new values yo_new and yp0_new satisfy odefun(t0,y0_new,yp0_new) = 0 and
are suitable to be used as initial conditions with ode15i.

[y0_new,yp0_new] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,
options) also uses the options structure options to specify values for AbsTol and
RelTol. Create the options structure using odeset.

[y0_new,yp0_new,resnrm] = decic(___) returns the norm of
odefun(t0,y0_new,yp0_new) as resnrm. If the norm seems unduly large, then use
options to decrease the relative error tolerance RelTol, which has a default value of
1e-3.

Examples

Compute Consistent Initial Conditions for Implicit Equations

Consider the implicit system of equations

 decic

1-2945

0 = 2y1′ − y2
0 = y1 + y2

These equations are straightforward enough that it is simple to read off consistent initial
conditions for the variables. For example, if you fix y1 = 1, then y2 = − 1 according to the
second equation and y1′ = − 1/2 according to the first equation. Since these values of y1,
y1′ , and y2 satisfy the equations, they are consistent.

Confirm these values by using decic to compute consistent initial conditions for the
equations, fixing the value y1 = 1. Use guesses of y0 = [1 0] and yp0 = [0 0], which
do not satisfy the equations and are thus inconsistent.

odefun = @(t,y,yp) [2*yp(1)-y(2); y(1)+y(2)];
t0 = 0;
y0 = [1 0];
yp0 = [0 0];
[y0,yp0] = decic(odefun,t0,y0,[1 0],yp0,[])

y0 = 2×1

 1
 -1

yp0 = 2×1

 -0.5000
 0

Solve Weissinger Implicit ODE

Calculate consistent initial conditions and solve an implicit ODE with ode15i.

Weissinger's equation is

ty2 y′ 3− y3 y′ 2 + t t2 + 1 y′− t2y = 0.

Since the equation is in the generic form f t, y, y′ = 0, you can use the ode15i function
to solve the implicit differential equation.

1 Alphabetical List

1-2946

Code Equation

To code the equation in a form suitable for ode15i, you need to write a function with
inputs for t, y, and y′ that returns the residual value of the equation. The function
@weissinger encodes this equation. View the function file.

type weissinger

function res = weissinger(t,y,yp)
%WEISSINGER Evaluate the residual of the Weissinger implicit ODE
%
% See also ODE15I.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

res = t*y^2 * yp^3 - y^3 * yp^2 + t*(t^2 + 1)*yp - t^2 * y;

Calculate Consistent Initial Conditions

The ode15i solver requires consistent initial conditions, that is, the initial conditions
supplied to the solver must satisfy

f t0, y, y′ = 0.

Since it is possible to supply inconsistent initial conditions, and ode15i does not check
for consistency, it is recommended that you use the helper function decic to compute
such conditions. decic holds some specified variables fixed and computes consistent
initial values for the unfixed variables.

In this case, fix the initial value y t0 = 3
2 and let decic compute a consistent initial

value for the derivative y′ t0 , starting from an initial guess of y′ t0 = 0.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0)

y0 = 1.2247

yp0 = 0.8165

Solve Equation

 decic

1-2947

Use the consistent initial conditions returned by decic with ode15i to solve the ODE
over the time interval 1 10 .

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);

Plot Results

The exact solution of this ODE is

y t = t2 + 1
2 .

Plot the numerical solution y computed by ode15i against the analytical solution ytrue.

ytrue = sqrt(t.^2 + 0.5);
plot(t,y,'*',t,ytrue,'-o')
legend('ode15i', 'exact')

1 Alphabetical List

1-2948

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle that defines the functions to be
integrated. odefun represents the system of implicit differential equations that you want
to solve using ode15i.

The function f = odefun(t,y,yp), for a scalar t and column vectors y and yp, must
return a column vector f of data type single or double that corresponds to f t, y, y′ .

 decic

1-2949

odefun must accept all three input arguments, t, y, and yp even if one of the arguments
is not used in the function.

For example, to solve y′− y = 0, use this function.

function f = odefun(t,y,yp)
f = yp - y;

For a system of equations, the output of odefun is a vector. Each equation becomes an
element in the solution vector. For example, to solve

y′1− y2 = 0
y′2 + 1 = 0 ,

use this function.

function dy = odefun(t,y,yp)
dy = zeros(2,1);
dy(1) = yp(1)-y(2);
dy(2) = yp(2)+1;

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

t0 — Initial time
scalar

Initial time, specified as a scalar. decic uses the initial time to compute consistent initial
conditions that satisfy odefun(t0,y0_new,yp0_new) = 0.
Data Types: single | double

y0 — Initial guesses for y-components
vector

Initial guesses for y-components, specified as a vector. Each element in y0 specifies an
initial condition for one dependent variable yn in the system of equations defined by
odefun.
Data Types: single | double

1 Alphabetical List

1-2950

fixed_y0 — y-components to hold fixed
vector of 1s and 0s | []

y-components to hold fixed, specified as a vector of 1s and 0s, or as [].

• Set fixed_y0(i) = 1 if no change is permitted in the guess for y0(i).
• Set fixed_y0 = [] if any entry can be changed.

You cannot fix more than length(yp0) components. Depending on the specific problem,
it is not always possible to fix certain components of y0 or yp0. It is a best practice not to
fix more components than is necessary.

yp0 — Initial guesses for y'-components
vector

Initial guesses for y'-components, specified as a vector. Each element in yp0 specifies an
initial condition for one differentiated dependent variable y′n in the system of equations
defined by odefun.
Data Types: single | double

fixed_yp0 — y'-components to hold fixed
vector of 1s and 0s | []

y'-components to hold fixed, specified as a vector of 1s and 0s, or as [].

• Set fixed_yp0(i) = 1 if no change is permitted in the guess for yp0(i).
• Set fixed_yp0 = [] if any entry can be changed.

You cannot fix more than length(yp0) components. Depending on the specific problem,
it is not always possible to fix certain components of y0 or yp0. It is a best practice not to
fix more components than is necessary.

options — Options structure
structure array

Options structure, specified as a structure array. Use the odeset function to create or
modify the options structure. The relevant options for use with the decic function are
RelTol and AbsTol, which control the error thresholds used to compute the initial
conditions.
Example: options = odeset('RelTol',1e-5)

 decic

1-2951

Data Types: struct

Output Arguments
y0_new — Consistent initial conditions for y0
vector

Consistent initial conditions for y0, returned as a vector. If the value of resnrm is small,
then yo_new and yp0_new satisfy odefun(t0,y0_new,yp0_new) = 0 and are suitable
to be used as initial conditions with ode15i.

yp0_new — Consistent initial conditions for yp0
vector

Consistent initial conditions for yp0, returned as a vector. If the value of resnrm is small,
then yo_new and yp0_new satisfy odefun(t0,y0_new,yp0_new) = 0 and are suitable
to be used as initial conditions with ode15i.

resnrm — Norm of residual
vector

Norm of residual, returned as a vector. resnrm is the norm of
odefun(t0,y0_new,yp0_new).

• A small value of resnrm indicates that decic successfully computed consistent initial
conditions that satisfy odefun(t0,y0_new,yp0_new) = 0.

• If the value of resnrm is large, try adjusting the error thresholds RelTol and AbsTol
using the options input.

Tips
• The ihb1dae and iburgersode example files use decic to compute consistent initial

conditions before solving with ode15i. Type edit ihb1dae or edit iburgersode
to view the code.

• You can additionally use decic to compute consistent initial conditions for DAEs
solved by ode15s or ode23t. To do this, follow these steps.

1 Rewrite the system of equations in fully implicit form f(t,y,y') = 0.

1 Alphabetical List

1-2952

2 Call decic to compute consistent initial conditions for the equations.
3 Specify y0_new as the initial condition in the call to the solver, and specify

yp_new as the value of the InitialSlope option of odeset.

See Also
ode15i | odeget | odeset

Introduced before R2006a

 decic

1-2953

decomposition
Matrix decomposition for solving linear systems

Description
decomposition creates reusable matrix decompositions (LU, LDL, Cholesky, QR, and
more) that enable you to solve linear systems (Ax = b or xA = b) more efficiently. For
example, after computing dA = decomposition(A) the call dA\b returns the same
vector as A\b, but is typically much faster. decomposition objects are well-suited to
solving problems that require repeated solutions, since the decomposition of the
coefficient matrix does not need to be performed multiple times.

You can use a decomposition object dA with many of the same operators you might use
on the original coefficient matrix A:

• Complex conjugate transpose dA'
• Negation -dA
• Multiply or divide by a scalar using c*dA or dA/c.
• Solve a linear system Ax = b using x = dA\b.
• Solve a linear system xA = b using x = b/dA.

Creation

Syntax
dA = decomposition(A)
dA = decomposition(A,type)
dA = decomposition(A,type,triangularFlag)
dA = decomposition(___ ,Name,Value)

1 Alphabetical List

1-2954

Description
dA = decomposition(A) returns a decomposition of matrix A that you can use to solve
linear systems more efficiently. The decomposition type is automatically chosen based on
the properties of the input matrix.

dA = decomposition(A,type) specifies the type of decomposition to perform. type
can be 'qr', 'cod', 'lu', 'ldl', 'chol', 'triangular', 'permutedTriangular',
'banded', 'hessenberg', or 'diagonal'.

dA = decomposition(A,type,triangularFlag) specifies that only the upper or
lower triangular portion of A is to be used in the decomposition. triangularFlag can be
'upper' or 'lower'. With this syntax, the decomposition type must be 'ldl', 'chol',
or 'triangular'.

dA = decomposition(___ ,Name,Value) specifies additional options using one or
more Name,Value pair arguments using any of the previous syntaxes. For example, dA =
decomposition(A,'CheckCondition',false) specifies not to throw a warning
based on the condition of A while solving dA\b.

Input Arguments
A — Coefficient matrix
matrix

Coefficient matrix. The coefficient matrix appears in the system of linear equations on the
left as Ax = b or on the right as xA = b.
Data Types: single | double
Complex Number Support: Yes

type — Decomposition type
'auto' (default) | 'qr' | 'cod' | 'lu' | 'ldl' | 'chol' | 'triangular' |
'permutedTriangular' | 'banded' | 'hessenberg' | 'diagonal'

Decomposition type, specified as one of the options in these tables.

These options work for any coefficient matrix.

 decomposition

1-2955

Value Matrix Decomposition of
A

Notes

'auto' (default) N/A Automatic selection of the
matrix decomposition type
based on the properties of
the coefficient matrix. For
information about how the
decomposition is chosen,
see the “Algorithms” on
page 1-9470 section of
mldivide.

'qr' AP = QR

Q is unitary, R is upper
triangular, and P is a
permutation matrix.

QR decompositions give a
least-squares solution.

If type is 'qr', then you
cannot solve A'\B or B/A.
Instead, use 'cod' for
problems with those forms.

'cod' A = QRZ*

R is upper triangular, and
both Q and Z have
orthonormal columns.

Complete orthogonal
decompositions give a
minimum norm least-
squares solution.

For square coefficient matrices, you also can use these options.

1 Alphabetical List

1-2956

Value Matrix Decomposition of
A

Notes

'lu' Dense matrices:

PA = LU

L is lower triangular, U is
upper triangular, and P is a
permutation matrix.

Sparse matrices:

P R\A Q = LU

P and Q are permutation
matrices and R is a diagonal
scaling matrix.

'ldl' Dense matrices:

P*AP = LDL*

L is a lower triangular
matrix with 1s on the
diagonal, D is a diagonal
matrix, and P is a
permutation matrix.

Sparse matrices:

P*SASP = LDL*

S is a scaling matrix.

A must be symmetric.

 decomposition

1-2957

Value Matrix Decomposition of
A

Notes

'chol' Dense matrices:

A = LL*

L is lower triangular.

Sparse matrices:

A = PLL*P*

P is a permutation matrix.

A must be symmetric
positive definite.

'triangular' A = T

T is triangular.

A must be triangular.

'permutedTriangular' A = PTQ*

T is triangular, and both P
and Q are permutation
matrices.

A must be a permutation of
a triangular matrix.

'banded' A = P*LU

P is a permutation matrix
and both L and U are
banded.

Most effective for matrices
with a low bandwidth. See
bandwidth for more
information.

'hessenberg' A = P*LU

P is a permutation matrix, L
is banded, and U is upper
triangular.

A must have zeros below the
first subdiagonal.

'diagonal' A = D

D is diagonal.

A must be diagonal.

triangularFlag — Flag to use only upper or lower triangular portion of
coefficient matrix
'upper' | 'lower'

1 Alphabetical List

1-2958

Flag to use only upper or lower triangular portion of coefficient matrix, specified as either
'upper' or 'lower'. This option supports the 'triangular', 'chol', and 'ldl'
decomposition types.

• 'triangular' — If both an upper and lower triangular matrix are stored in the same
matrix, then use triangularFlag to specify only one of the triangular matrices.

• 'chol' and 'ldl' — Use triangularFlag to avoid symmetrizing a nearly
symmetric coefficient matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: dA = decomposition(A,'qr','CheckCondition',false) performs a QR
decomposition of A and turns off warnings about the condition of the coefficient matrix
when it is used to solve a linear system.

General Parameters

CheckCondition — Toggle to check condition of coefficient matrix
true (default) | false

Toggle to check condition of coefficient matrix, specified as the comma-separated pair
consisting of 'CheckCondition' and either logical 1 (true) or logical 0 (false). If
CheckCondition is true and the coefficient matrix is badly conditioned or of low rank,
then solving linear systems using mldivide (\) or mrdivide (/) produces warnings.
Data Types: logical

RankTolerance — Rank tolerance
nonnegative scalar

Rank tolerance, specified as a nonnegative scalar. Specifying the tolerance can help
prevent the solution from being susceptible to random noise in the coefficient matrix.

decomposition computes the rank of A as the number of diagonal elements in the R
matrix of the QR decomposition [Q,R,p] = qr(A,0) with absolute value larger than
tol. If the rank of A is k, then a low-rank approximation of A is formed by multiplying the
first k columns of Q by the first k rows of R. Changing the tolerance affects this low-rank
approximation of A.

 decomposition

1-2959

Note This option only applies when 'Type' is 'qr' or 'cod', or when 'Type' is
'auto' and A is rectangular. Otherwise, this option is ignored.

Sparse Matrix Parameters

BandDensity — Band density threshold
0.5 (default) | scalar

Band density threshold, specified as a scalar value in the range [0 1]. The value of
'BandDensity' determines how dense a sparse, banded coefficient matrix must be for
the banded solver to be used by mldivide (\) or mrdivide (/) when solving a
system of equations. If the band density of the coefficient matrix is larger than the
specified band density, then the banded solver is used.

The band density is defined as: (# nonzeros in the band) / (# elements in the band). A
value of 1.0 indicates to never use the banded solver.

LDLPivotTolerance — Pivot tolerance for LDL factorization
0.01 (default) | scalar

Pivot tolerance for LDL factorization, specified as a scalar value in the interval [0 0.5].
Using smaller values of the pivot tolerance can give faster factorization times and fewer
entries, but also can result in a less stable factorization.

This pivot tolerance is the same that ldl uses for real sparse matrices.

LUPivotTolerance — Pivot tolerance for LU factorization
[0.1 0.001] (default) | scalar | vector

Pivot tolerance for LU factorization, specified as a scalar or vector. Specify a scalar value
to change the first element in the tolerance vector, or specify a two-element vector to
change both values. Smaller pivot tolerances tend to lead to sparser LU factors, but the
solution can become inaccurate. Larger values can lead to a more accurate solution, but
not always, and usually increase the total work and memory usage.

This pivot tolerance is the same that lu uses for sparse matrices.

1 Alphabetical List

1-2960

Properties
MatrixSize — Size of coefficient matrix
vector

This property is read-only.

Size of coefficient matrix, returned as a two-element row vector.
Data Types: double

Type — Decomposition type
'qr' | 'cod' | 'lu' | 'ldl' | 'chol' | 'triangular' | 'permutedTriangular' |
'banded' | 'hessenberg' | 'diagonal'

This property is read-only.

Decomposition type, returned as 'qr', 'cod', 'lu', 'ldl', 'chol', 'triangular',
'permutedTriangular', 'banded', 'hessenberg', or 'diagonal'.
Data Types: char

CheckCondition — Toggle to check condition of coefficient matrix
true (default) | false

Toggle to check condition of coefficient matrix, specified as either logical 1 (true) or
logical 0 (false). If CheckCondition is true and the coefficient matrix is badly
conditioned or of low rank, then solving linear systems using mldivide (\) or
mrdivide (/) produces warnings.
Data Types: logical

Datatype — Data type of coefficient matrix
'double' | 'single'

This property is read-only.

Data type of coefficient matrix, returned as either 'double' or 'single'.
Data Types: char

IsConjugateTransposed — Indicator that coefficient matrix is complex
conjugate transposed
false (default) | true

 decomposition

1-2961

This property is read-only.

Indicator that coefficient matrix is complex conjugate transposed, returned as either
logical 1 (true) or logical 0 (false). This indicator is false by default for any
decomposition object constructed from the coefficient matrix. However, the value is
true if you use the ctranspose operator on a decomposition object in an expression,
such as dA'\b. In that case, dA' is the same decomposition object as dA, but with a
value of true for IsConjugateTransposed.
Data Types: logical

IsReal — Indicator that coefficient matrix is real
true | false

This property is read-only.

Indicator that coefficient matrix is real, returned as either logical 1 (true) or logical 0
(false). A value of false indicates that the coefficient matrix contains complex
numbers.
Data Types: logical

IsSparse — Indicator that coefficient matrix is sparse
true | false

This property is read-only.

Indicator that coefficient matrix is sparse, returned as either logical 1 (true) or logical 0
(false).
Data Types: logical

ScaleFactor — Multiplicative scale factor for coefficient matrix
1 (default) | scalar

This property is read-only.

Multiplicative scale factor for coefficient matrix, returned as a scalar. The default value of
1 indicates that the coefficient matrix is not scaled. However, when you multiply or divide
the decomposition object by a scalar, the value of ScaleFactor changes. For example,
3*dA is a decomposition object equivalent to dA, but with a value of 3 for
ScaleFactor.
Data Types: double

1 Alphabetical List

1-2962

Complex Number Support: Yes

Object Functions
The primary functions and operators that you can use with decomposition objects are
related to solving linear systems of equations.
ctranspose Complex conjugate transpose
mldivide Solve systems of linear equations Ax = B for x
mrdivide Solve systems of linear equations xA = B for x
isIllConditioned Determine whether matrix is ill conditioned

You also can check the condition number or rank of the underlying matrix of
decomposition objects. Since different algorithms are employed, the results of using
these functions on the decomposition object can differ compared to using the same
functions directly on the coefficient matrix.

rank • Only the 1-input form rank(dA) is
supported.

• The decomposition type must be 'qr'
or 'cod'.

• The value of the rank depends on the
choice of RankTolerance, if specified.

rcond • Runs the same condition check that
backslash \ uses to determine whether
to issue a warning.

• Supports all decomposition types except
for 'qr' and 'cod'.

Examples

Solve Linear System with Several Right-Hand Sides

Show how using decomposition objects can improve the efficiency of solving Ax = b
with many right-hand sides.

The inverse iteration is an iterative eigenvalue algorithm that solves linear systems with
many right-hand sides. It is a method to iteratively compute an eigenvalue of a matrix

 decomposition

1-2963

starting from a guess of the corresponding eigenvector. Each iteration computes x = A
\x, and then scales x by its norm.

Create a sparse matrix A and random starting vectors x1 and x2.

n = 1e3;
rng default % for reproducibility
A = sprandn(n,n,0.2) + speye(n);
x1 = randn(n,1);
x2 = x1;

Apply 100 iterations of the inverse iteration algorithm using backslash to calculate an
eigenvalue of A.

tic
for ii=1:100
 x1 = A \ x1;
 x1 = x1 / norm(x1);
end
toc

Elapsed time is 25.726129 seconds.

lambda = x1'*A*x1

lambda = -0.6707

Now use a decomposition object to solve the same problem.

tic
dA = decomposition(A);
for ii=1:100
 x2 = dA \ x2;
 x2 = x2 / norm(x2);
end
toc

Elapsed time is 0.941847 seconds.

lambda = x2'*A*x2

lambda = -0.6707

The performance of the algorithm improves dramatically because the matrix A does not
need to be factorized during each iteration. Also, even though the backslash algorithm
can be improved by performing an LU decomposition of A before the for-loop, the

1 Alphabetical List

1-2964

decomposition object gives access to all of the same performance gains without
requiring that you write complex code.

Select Decomposition Type

Choose a decomposition type to override the automatic default selection based on the
input matrix.

Create a coefficient matrix and decompose the matrix using the default selection of
decomposition type.

A = ones(3);
dA = decomposition(A)

dA =
 decomposition with properties:

 MatrixSize: [3 3]
 Type: 'ldl'

 Show all properties

Solve the linear system using a vector of ones for the right-hand side.

b = ones(3,1);
x = dA\b

Warning: Matrix is singular to working precision.

x = 3×1

 NaN
 NaN
 NaN

Specify the decomposition type to use the 'qr' method instead of the default 'ldl'
method. This forces backslash (\) to find a least-squares solution to the problem instead of
returning a vector of NaNs.

dA_qr = decomposition(A,'qr')

 decomposition

1-2965

dA_qr =
 decomposition with properties:

 MatrixSize: [3 3]
 Type: 'qr'

 Show all properties

x = dA_qr\b

Warning: Rank deficient, rank = 1, tol = 1.153778e-15.

x = 3×1

 1
 0
 0

Use Triangular Portion of Matrix

Specify 'upper' to use only the upper triangular portion of an input matrix in the
decomposition.

Create a coefficient matrix. Construct a triangular decomposition for the matrix using
only the upper triangular portion. This option can be useful in cases where both an upper
triangular and lower triangular matrix are stored in the same matrix.

A = randi([0 5],10)

A = 10×10

 4 0 3 4 2 1 4 5 2 0
 5 5 0 0 2 4 1 1 4 0
 0 5 5 1 4 3 3 4 3 3
 5 2 5 0 4 0 4 1 3 4
 3 4 4 0 1 0 5 5 5 5
 0 0 4 4 2 2 5 2 1 0
 1 2 4 4 2 5 3 1 4 3
 3 5 2 1 3 2 0 1 4 2
 5 4 3 5 4 3 0 3 2 0

1 Alphabetical List

1-2966

 5 5 1 0 4 1 1 2 3 2

dA = decomposition(A,'triangular','upper')

dA =
 decomposition with properties:

 MatrixSize: [10 10]
 Type: 'triangular'

 Show all properties

Turn Off Matrix Condition Warnings

Use the 'CheckCondition' name-value pair to turn off warnings based on the condition
of the coefficient matrix when solving a linear system using decomposition.

Create a coefficient matrix that is ill conditioned. In this matrix, averaging together the
first two columns produces the third column.

A = [1 2 1.5; 3 4 3.5; 5 6 5.5]

A = 3×3

 1.0000 2.0000 1.5000
 3.0000 4.0000 3.5000
 5.0000 6.0000 5.5000

Solve a linear system Ax = b using a vector of 1s for the right-hand side. mldivide
produces a warning about the conditioning of the coefficient matrix.

b = ones(3,1);
x = A\b

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.850372e-17.

x = 3×1

 -0.6250
 1.3750

 decomposition

1-2967

 -0.7500

Now create a decomposition object for the matrix and solve the same linear system.
Specify 'CheckCondition' as false so that mldivide does not check the condition of
the coefficient matrix. Even though the same solution is returned, mldivide does not
display the warning message.

dA = decomposition(A,'CheckCondition',false);
x = dA\b

x = 3×1

 -0.6250
 1.3750
 -0.7500

Use the isIllConditioned function to check whether the decomposition object is
based on an ill-conditioned matrix.

tf = isIllConditioned(dA)

tf = logical
 1

See Also
lsqminnorm | mldivide | mrdivide

Topics
“Systems of Linear Equations”

Introduced in R2017b

1 Alphabetical List

1-2968

isIllConditioned
Determine whether matrix is ill conditioned

Syntax
tf = isIllConditioned(dA)

Description
tf = isIllConditioned(dA) returns logical 1 (true) if the original coefficient matrix
A used to create decomposition dA is ill conditioned; otherwise, it returns logical 0
(false).

The test used depends on the type of decomposition:

• 'qr' and 'cod' decompositions — The coefficient matrix is ill conditioned if
rank(dA) < min(size(A)).

• All other decompositions — The coefficient matrix is ill conditioned if rcond(dA) <
eps.

If isIllConditioned returns logical 1 (true), then solving a linear system with either
dA\b or b/dA displays a warning. Use the CheckCondition property of the
decomposition object dA to turn off these warnings.

Examples

Check Condition of Coefficient Matrix

Create a matrix decomposition object for a 25-by-25 Hilbert coefficient matrix and then
check to see whether the underlying coefficient matrix is ill conditioned.

A = hilb(25);
dA = decomposition(A)

 isIllConditioned

1-2969

dA =
 decomposition with properties:

 MatrixSize: [25 25]
 Type: 'ldl'

 Show all properties

tf = isIllConditioned(dA)

tf = logical
 1

Check the reciprocal condition number of the coefficient matrix. In this case
isIllConditioned determines that the coefficient matrix A is ill conditioned because
rcond(dA) is smaller than eps.

rcond(dA)

ans = 2.3569e-20

Input Arguments
dA — Input decomposition
decomposition object

Input decomposition, specified as a decomposition object.
Example: dA = decomposition(A,'qr')

Tips
• isIllConditioned uses rank and condition number estimates of the decomposition

object. These estimates can differ compared to calling rank(A) or rcond(A) on the
coefficient matrix directly.

1 Alphabetical List

1-2970

See Also
decomposition | rank | rcond

Introduced in R2017b

 isIllConditioned

1-2971

deconv
Deconvolution and polynomial division

Syntax
[q,r] = deconv(u,v)

Description
[q,r] = deconv(u,v) deconvolves a vector v out of a vector u using long division, and
returns the quotient q and remainder r such that u = conv(v,q)+r. If u and v are
vectors of polynomial coefficients, then deconvolving them is equivalent to dividing the
polynomial represented by u by the polynomial represented by v.

Examples

Polynomial Division

Create two vectors u and v containing the coefficients of the polynomials
2x3 + 7x2 + 4x + 9 and x2 + 1, respectively. Divide the first polynomial by the second by
deconvolving v out of u, which results in quotient coefficients corresponding to the
polynomial 2x + 7 and remainder coefficients corresponding to 2x + 2.

u = [2 7 4 9];
v = [1 0 1];
[q,r] = deconv(u,v)

q = 1×2

 2 7

r = 1×4

1 Alphabetical List

1-2972

 0 0 2 2

Input Arguments
u,v — Input vectors
row or column vectors

Input vectors, specified as either row or column vectors. u and v can be different lengths
or data types. If one or both of u and v are of type single, then the output is also of type
single. Otherwise, deconv returns type double.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
q — Quotient
row or column vector

Quotient, returned as a row or column vector such that u = conv(v,q)+r.
Data Types: double | single

r — Remainder
row or column vector

Remainder, returned as a row or column vector such that u = conv(v,q)+r.
Data Types: double | single

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 deconv

1-2973

Usage notes and limitations:

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

See Also
conv | residue

Introduced before R2006a

1 Alphabetical List

1-2974

deg2rad
Convert angle from degrees to radians

Syntax
R = deg2rad(D)

Description
R = deg2rad(D) converts angle units from degrees to radians for each element of D.

Examples

Right Angle in Radians

Convert a 90 degree angle into radians.

R = deg2rad(90)

R = 1.5708

Surface Distance

Specify the spherical distance between Munich and Bangalore in degrees and the mean
radius of Earth in kilometers. Compute the distance (measured along the Earth's surface)
between Munich and Bangalore, in kilometers.

D = 64.7;
radEarth = 6371;
R = deg2rad(D);
dist = radEarth*R

dist = 7.1943e+03

 deg2rad

1-2975

Input Arguments
D — Angle in degrees
scalar | vector | matrix | multidimensional array

Angle in degrees, specified as a scalar, vector, matrix, or multidimensional array. If D
contains complex elements, deg2rad converts the real and imaginary parts separately.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
R — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, returned as a scalar, vector, matrix, or multidimensional array. R is the
same size as D.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-2976

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
rad2deg

Introduced in R2015b

 deg2rad

1-2977

del2
Discrete Laplacian

Syntax
L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy,...,hN)

Description
L = del2(U) returns a discrete approximation of Laplace’s differential operator on page
1-2986 applied to U using the default spacing, h = 1, between all points.

L = del2(U,h) specifies a uniform, scalar spacing, h, between points in all dimensions
of U.

L = del2(U,hx,hy,...,hN) specifies the spacing hx,hy,...,hN between points in
each dimension of U. Specify each spacing input as a scalar or a vector of coordinates.
The number of spacing inputs must equal the number of dimensions in U.

• The first spacing value hx specifies the x-spacing (as a scalar) or x-coordinates (as a
vector) of the points. If it is a vector, its length must be equal to size(U,2).

• The second spacing value hy specifies the y-spacing (as a scalar) or y-coordinates (as a
vector) of the points. If it is a vector, its length must be equal to size(U,1).

• All other spacing values specify the spacing (as scalars) or coordinates (as vectors) of
the points in the corresponding dimension in U. If, for n > 2, the nth spacing input is
a vector, then its length must be equal to size(U,n).

Examples

1 Alphabetical List

1-2978

Second Derivative of Vector

Calculate the acceleration of an object from a vector of position data.

Create a vector of position data.

p = [1 3 6 10 16 18 29];

To find the acceleration of the object, use del2 to calculate the second numerical
derivative of p. Use the default spacing h = 1 between data points.

L = 4*del2(p)

L = 1×7

 1 1 1 2 -4 9 22

Each value of L is an approximation of the instantaneous acceleration at that point.

Second Derivative of Cosine Vector

Calculate the discrete 1-D Laplacian of a cosine vector.

Define the domain of the function.

x = linspace(-2*pi,2*pi);

This produces 100 evenly spaced points in the range −2π ≤ x ≤ 2π.

Create a vector of cosine values in this domain.

U = cos(x);

Calculate the Laplacian of U using del2. Use the domain vector x to define the 1-D
coordinate of each point in U.

L = 4*del2(U,x);

Analytically, the Laplacian of this function is equal to ΔU = − cos(x).

Plot the results.

 del2

1-2979

plot(x,U,x,L)
legend('U(x)','L(x)','Location','Best')

The graph of U and L agrees with the analytic result for the Laplacian.

Laplacian of Multivariate Function

Calculate and plot the discrete Laplacian of a multivariate function.

Define the x and y domain of the function.

[x,y] = meshgrid(-5:0.25:5,-5:0.25:5);

1 Alphabetical List

1-2980

Define the function U(x, y) = 1
3 x4 + y4 over this domain.

U = 1/3.*(x.^4+y.^4);

Calculate the Laplacian of this function using del2. The spacing between the points in U
is equal in all directions, so you can specify a single spacing input, h.

h = 0.25;
L = 4*del2(U,h);

Analytically, the Laplacian of this function is equal to ΔU(x, y) = 4x2 + 4y2.

Plot the discrete Laplacian, L.

figure
surf(x,y,L)
grid on
title('Plot of $\Delta U(x,y) = 4x^2+4y^2$','Interpreter','latex')
xlabel('x')
ylabel('y')
zlabel('z')
view(35,14)

 del2

1-2981

The graph of L agrees with the analytic result for the Laplacian.

Laplacian of Natural Logarithm Function

Calculate the discrete Laplacian of a natural logarithm function.

Define the x and y domain of the function on a grid of real numbers.

[x,y] = meshgrid(-5:5,-5:0.5:5);

Define the function U(x, y) = 1
2log x2y over this domain.

1 Alphabetical List

1-2982

U = 0.5*log(x.^2.*y);

The logarithm is complex-valued when the argument y is negative.

Use del2 to calculate the discrete Laplacian of this function. Specify the spacing between
grid points in each direction.

hx = 1;
hy = 0.5;
L = 4*del2(U,hx,hy);

Analytically, the Laplacian is equal to ΔU(x, y) = − 1/x2 + 1/2y2 . This function is not
defined on the lines x = 0 or y = 0.

Plot the real parts of U and L on the same graph.

figure
surf(x,y,real(L))
hold on
surf(x,y,real(U))
grid on
title('Plot of U(x,y) and Δ U(x,y)','Interpreter','latex')
xlabel('x')
ylabel('y')
zlabel('z')
view(41,58)

 del2

1-2983

The top surface is U and the bottom surface is L.

Input Arguments
U — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-2984

h — Spacing in all dimensions
1 (default) | scalar

Spacing in all dimensions, specified as 1 (default), or a scalar.
Data Types: single | double
Complex Number Support: Yes

hx,hy,...,hN — Spacing in each dimension (as separate arguments)
scalars | vectors

Spacing in each dimension, specified as separate arguments of scalars (for uniform
spacing) or vectors (for nonuniform spacing). The number of spacing inputs must be equal
to the number of dimensions in U. Each spacing input defines the spacing between points
in one dimension of U:

• The first spacing value hx specifies the x-spacing (as a scalar) or x-coordinates (as a
vector) of the points. If it is a vector, its length must be equal to size(U,2).

• The second spacing value hy specifies the y-spacing (as a scalar) or y-coordinates (as a
vector) of the points. If it is a vector, its length must be equal to size(U,1).

• All other spacing values specify the spacing (as scalars) or coordinates (as vectors) of
the points in the corresponding dimension in U. If, for n > 2, the nth spacing input is
a vector, then its length must be equal to size(U,n).

Data Types: single | double
Complex Number Support: Yes

Output Arguments
L — Discrete Laplacian approximation
vector | matrix | multidimensional array

Discrete Laplacian approximation, returned as a vector, matrix, or multidimensional array.
L is the same size as the input, U.

 del2

1-2985

Definitions

Laplace’s differential operator
If a matrix U is a function U(x,y) that is evaluated at the points of a square grid, then
4*del2(U) is a finite difference approximation of Laplace's differential operator applied
to U,

L = ΔU
4 = 1

4
∂2U
∂x2 + ∂2U

∂y2 .

For functions of more variables, U(x,y,z,...), the discrete Laplacian del2(U) calculates
second-derivatives in each dimension,

L = ΔU
2N = 1

2N
∂2U
∂x2 + ∂2U

∂y2 + ∂2U
∂z2 + ... ,

where N is the number of dimensions in U and N ≥ 2.

Algorithms
If the input U is a matrix, the interior points of L are found by taking the difference
between a point in U and the average of its four neighbors:

Li j =
ui + 1, j + ui− 1, j + ui, j + 1 + ui, j− 1

4 − ui, j .

Then, del2 calculates the values on the edges of L by linearly extrapolating the second
differences from the interior. This formula is extended for multidimensional U.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-2986

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
diff | gradient

Introduced before R2006a

 del2

1-2987

DelaunayTri class
Superclasses:

(Not recommended) Delaunay triangulation in 2-D and 3-D

Note DelaunayTri is not recommended. Use delaunayTriangulation instead.

Description
DelaunayTri creates a Delaunay triangulation object from a set of points. You can
incrementally modify the triangulation by adding or removing points. In 2-D
triangulations you can impose edge constraints. You can perform topological and
geometric queries, and compute the Voronoi diagram and convex hull.

Construction

DelaunayTri (Not recommended) Construct Delaunay triangulation

Methods

convexHull (Not recommended) Convex hull
inOutStatus (Not recommended) Status of triangles in 2-D constrained Delaunay

triangulation
nearestNeighbor (Not recommended) Point closest to specified location
pointLocation (Not recommended) Simplex containing specified location
voronoiDiagram (Not recommended) Voronoi diagram

1 Alphabetical List

1-2988

Inherited methods
baryToCart (Not recommended) Convert point coordinates from barycentric to

Cartesian
cartToBary (Not recommended) Convert point coordinates from Cartesian to

barycentric
circumcenters (Not recommended) Circumcenters of specified simplices
edgeAttachments (Not recommended) Simplices attached to specified edges
edges (Not recommended) Triangulation edges
faceNormals (Not recommended) Unit normals to specified triangles
featureEdges (Not recommended) Sharp edges of surface triangulation
freeBoundary (Not recommended) Facets referenced by only one simplex
incenters (Not recommended) Incenters of specified simplices
isEdge (Not recommended) Test if vertices are joined by edge
neighbors (Not recommended) Simplex neighbor information
size (Not recommended) Size of triangulation matrix
vertexAttachments (Not recommended) Return simplices attached to specified vertices

Properties
Constraints Constraints is a numc-by-2 matrix that defines the

constrained edge data in the triangulation, where numc is the
number of constrained edges. Each constrained edge is defined
in terms of its endpoint indices into X.

The constraints can be specified when the triangulation is
constructed or can be imposed afterwards by directly editing the
constraints data.

This feature is only supported for 2-D triangulations.

 DelaunayTri class

1-2989

X The dimension of X is mpts-by-ndim, where mpts is the number
of points and ndim is the dimension of the space where the
points reside. If column vectors of x,y or x,y,z coordinates are
used to construct the triangulation, the data is consolidated into
a single matrix X.

Triangulation Triangulation is a matrix representing the set of simplices
(triangles or tetrahedra etc.) that make up the triangulation. The
matrix is of size mtri-by-nv, where mtri is the number of
simplices and nv is the number of vertices per simplex. The
triangulation is represented by standard simplex-vertex format;
each row specifies a simplex defined by indices into X, where X
is the array of point coordinates.

Instance Hierarchy
DelaunayTri is a subclass of TriRep.

Copy Semantics
Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

Definitions

2-D Delaunay Triangulation
The 2-D Delaunay triangulation of a set of points is the triangulation in which no point of
the set is contained in the circumcircle for any triangle in the triangulation. The definition
extends naturally to higher dimensions.

See Also
delaunayTriangulation | scatteredInterpolant | triangulation

1 Alphabetical List

1-2990

DelaunayTri
Class: DelaunayTri

(Not recommended) Construct Delaunay triangulation

Note DelaunayTri is not recommended. Use delaunayTriangulation instead.

Syntax
DT = DelaunayTri()
DT = DelaunayTri(X)
DT = DelaunayTri(x,y)
DT = DelaunayTri(x,y,z)
DT = DelaunayTri(..., C)

Description
DT = DelaunayTri() creates an empty Delaunay triangulation.

DT = DelaunayTri(X), DT = DelaunayTri(x,y) and DT = DelaunayTri(x,y,z)
create a Delaunay triangulation from a set of points. The points can be specified as an
mpts-by-ndim matrix X, where mpts is the number of points and ndim is the dimension of
the space where the points reside, where ndim is 2 or 3. Alternatively, the points can be
specified as column vectors (x,y) or (x,y,z) for 2-D and 3-D input.

DT = DelaunayTri(..., C) creates a constrained Delaunay triangulation. The edge
constraints C are defined by an numc-by-2 matrix, numc being the number of constrained
edges. Each row of C defines a constrained edge in terms of its endpoint indices into the
point set X. This feature is only supported for 2-D triangulations.

 DelaunayTri

1-2991

Examples
Compute the Delaunay triangulation of twenty random points located within a unit
square.

x = rand(20,1);
y = rand(20,1);
dt = DelaunayTri(x,y)
triplot(dt);

For more examples, type help demoDelaunayTri at the MATLAB command-line
prompt.

1 Alphabetical List

1-2992

Definitions

2-D Delaunay Triangulation
The 2-D Delaunay triangulation of a set of points is the triangulation in which no point of
the set is contained in the circumcircle for any triangle in the triangulation. The definition
extends naturally to higher dimensions.

See Also
delaunayTriangulation | scatteredInterpolant | triangulation

 DelaunayTri

1-2993

delaunay
Delaunay triangulation

Note Qhull-specific options are no longer supported. Remove the OPTIONS argument
from all instances in your code that pass it to delaunay.

Syntax
TRI = delaunay(X,Y)
TRI = delaunay(X,Y,Z)
TRI = delaunay(X)

Description
TRI = delaunay(X,Y) creates a 2-D Delaunay triangulation of the points (X,Y), where X
and Y are column-vectors. TRI is a matrix representing the set of triangles that make up
the triangulation. The matrix is of size mtri-by-3, where mtri is the number of triangles.
Each row of TRI specifies a triangle defined by indices with respect to the points.

TRI = delaunay(X,Y,Z) creates a 3-D Delaunay triangulation of the points (X,Y,Z),
where X, Y, and Z are column-vectors. TRI is a matrix representing the set of tetrahedra
that make up the triangulation. The matrix is of size mtri-by-4, where mtri is the
number of tetrahedra. Each row of TRI specifies a tetrahedron defined by indices with
respect to the points.

TRI = delaunay(X) creates a 2-D or 3-D Delaunay triangulation from the point
coordinates X. This variant supports the definition of points in matrix format. X is of size
mpts-by-ndim, where mpts is the number of points and ndim is the dimension of the
space where the points reside, 2 ≦ ndim ≦ 3. The output triangulation is equivalent to that
of the dedicated functions supporting the 2-input or 3-input calling syntax.

delaunay produces an isolated triangulation, useful for applications like plotting
surfaces via the trisurf function. If you wish to query the triangulation; for example, to

1 Alphabetical List

1-2994

perform nearest neighbor, point location, or topology queries, use
delaunayTriangulation instead.

Visualization
Use one of these functions to plot the output of delaunay:

triplot Displays the triangles defined in the m-by-3 matrix TRI.
trisurf Displays each triangle defined in the m-by-3 matrix TRI as a surface

in 3-D space. To see a 2-D surface, you can supply a vector of some
constant value for the third dimension. For example

trisurf(TRI,x,y,zeros(size(x)))
trimesh Displays each triangle defined in the m-by-3 matrix TRI as a mesh in

3-D space. To see a 2-D surface, you can supply a vector of some
constant value for the third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except in 3-D space.
tetramesh Plots a triangulation composed of tetrahedra.

Examples

Plot Delaunay Triangulation

Plot the Delaunay triangulation of a large dataset.

load seamount
tri = delaunay(x,y);
trisurf(tri,x,y,z);

 delaunay

1-2995

Definitions

Delaunay Triangulation
delaunay creates a Delaunay triangulation of a set of points in 2-D or 3-D space. A 2-D
Delaunay triangulation ensures that the circumcircle associated with each triangle
contains no other point in its interior. This definition extends naturally to higher
dimensions.

1 Alphabetical List

1-2996

See Also
delaunayTriangulation | plot | scatteredInterpolant | trimesh | triplot |
trisurf

Introduced before R2006a

 delaunay

1-2997

delaunayn
N-D Delaunay triangulation

Syntax
T = delaunayn(X)
T = delaunayn(X,options)

Description
T = delaunayn(X) computes a set of simplices such that no data points of X are
contained in any circumspheres of the simplices. The set of simplices forms the Delaunay
triangulation. X is an m-by-n array representing m points in n-dimensional space. T is a
numt-by-(n+1) array where each row contains the indices into X of the vertices of the
corresponding simplex.

T = delaunayn(X,options) specifies a cell array of options. The default options are:

• {'Qt','Qbb','Qc'} for 2- and 3-dimensional input
• {'Qt','Qbb','Qc','Qx'} for 4 and higher-dimensional input

If options is [], the default options used. If options is {''}, no options are used, not
even the default.

Visualization
Plotting the output of delaunayn depends of the value of n:

• For n = 2, use triplot, trisurf, or trimesh as you would for delaunay.
• For n = 3, use tetramesh.

For more control over the color of the facets, use patch to plot the output.
• You cannot plot delaunayn output for n > 3.

1 Alphabetical List

1-2998

Examples

3-D Delaunay Triangulation

This example generates an n-dimensional Delaunay triangulation, where n = 3.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes = 12×4

 4 3 9 1
 4 9 2 1
 7 9 3 1
 7 5 9 1
 7 9 4 3
 7 8 4 9
 6 2 9 1
 6 9 5 1
 6 4 9 2
 6 4 8 9
 ⋮

You can use tetramesh to visualize the tetrahedrons that form the corresponding
simplex. camorbit rotates the camera position to provide a meaningful view of the
figure.

tetramesh(Tes,X);
camorbit(20,0)

 delaunayn

1-2999

See Also
camorbit | convhulln | delaunayTriangulation | tetramesh | voronoin

Introduced before R2006a

1 Alphabetical List

1-3000

delaunayTriangulation
Delaunay triangulation in 2-D and 3-D

Description
Use the delaunayTriangulation object to create a 2-D or 3-D Delaunay triangulation
on page 1-3007 from a set of points. For 2-D data, you can also specify edge constraints.

You can perform a variety of topological and geometric queries on a
delaunayTriangulation, including any triangulation query. For example, locate a
facet that contains a specific point, find the vertices of the convex hull, or compute the
Voronoi Diagram.

Creation
To create a delaunayTriangulation object, use the delaunayTriangulation
function with input arguments that define the triangulation's points and constrained
edges.

Syntax
DT = delaunayTriangulation(P)
DT = delaunayTriangulation(P,C)
DT = delaunayTriangulation(x,y)
DT = delaunayTriangulation(x,y,C)
DT = delaunayTriangulation(x,y,z)
DT = delaunayTriangulation()

Description
DT = delaunayTriangulation(P) creates a Delaunay triangulation from the points in
P. The matrix P has 2 or 3 columns, depending on whether your points are in 2-D or 3-D
space.

 delaunayTriangulation

1-3001

DT = delaunayTriangulation(P,C) specifies the edge constraints in the matrix C for
the 2-D points in P. Each row of C defines the start and end vertex IDs of a constrained
edge. Vertex IDs are the row numbers of the corresponding vertices in the property
DT.Points.

DT = delaunayTriangulation(x,y) creates a 2-D Delaunay triangulation from the
point coordinates in the column vectors x and y.

DT = delaunayTriangulation(x,y,C) specifies the edge constraints in a matrix C.

DT = delaunayTriangulation(x,y,z) creates a 3-D Delaunay triangulation from the
point coordinates in the column vectors x, y, and z.

DT = delaunayTriangulation() creates an empty Delaunay triangulation.

Input Arguments
P — Points
matrix

Points, specified as a matrix whose columns are the x-coordinates, y-coordinates, and
(possibly) z-coordinates of the triangulation points. The row numbers of P are the vertex
IDs in the triangulation.

x — x-coordinates
column vector

x-coordinates of triangulation points, specified as a column vector.

y — y-coordinates
column vector

y-coordinates of triangulation points, specified as a column vector.

z — z-coordinates
column vector

z-coordinates of triangulation points, specified as a column vector.

C — Vertex IDs of constrained edges
2-column matrix

1 Alphabetical List

1-3002

Vertex IDs of constrained edges, specified as a 2-column matrix. Each row of C
corresponds to a constrained edge and contains two IDs:

• C(j,1) is the ID of the vertex at the start of an edge.
• C(j,2) is the ID of the vertex at end of the edge.

You can specify edge constraints for 2-D triangulations only.

Properties
Points — Triangulation points
matrix

Points in the triangulation, represented as a matrix with the following characteristics:

• Each row in DT.Points contains the coordinates of a vertex.
• Each row number of DT.Points is a vertex ID.

ConnectivityList — Triangulation connectivity list
matrix

Triangulation connectivity list, represented as a matrix with the following characteristics:

• Each element in DT.ConnectivityList is a vertex ID.
• Each row represents a triangle or tetrahedron in the triangulation.
• Each row number of DT.ConnectivityList is a triangle or tetrahedron ID.

Constraints — Constrained edges
2-column matrix of vertex IDs

Constrained edges, represented as a 2-column matrix of vertex IDs. Each row of
DT.Constraints corresponds to a constrained edge and contains two IDs:

• DT.Constraints(j,1) is the ID of the vertex at the start of an edge.
• DT.Constraints(j,2) is the ID of the vertex at end of the edge.

DT.Constraints is an empty matrix when the triangulation has no constrained edges.

 delaunayTriangulation

1-3003

Object Functions
convexHull Convex hull of Delaunay triangulation
isInterior Query interior points of Delaunay triangulation
voronoiDiagram Voronoi diagram of Delaunay triangulation
barycentricToCartesian Convert coordinates from barycentric to Cartesian
cartesianToBarycentric Convert coordinates from Cartesian to barycentric
circumcenter Circumcenter of triangle or tetrahedron
edgeAttachments Triangles or tetrahedra attached to specified edge
edges Triangulation edges
faceNormal Triangulation unit normal vectors
featureEdges Handle sharp edges of triangulation
freeBoundary Free boundary facets
incenter Incenter of triangulation elements
isConnected Test if two vertices are connected by an edge
nearestNeighbor Closest vertex
neighbors Triangle or tetrahedron neighbors
pointLocation Triangle or tetrahedron enclosing point
size Size of triangulation connectivity list
vertexAttachments Triangles or tetrahedra attached to vertex
vertexNormal Triangulation vertex normal

Examples

2-D Delaunay Triangulation

Create a 2-D delaunayTriangulation for 30 random points.

P = gallery('uniformdata',[30 2],0);
DT = delaunayTriangulation(P)

DT =
 delaunayTriangulation with properties:

 Points: [30x2 double]
 ConnectivityList: [50x3 double]
 Constraints: []

Compute the center points of each triangle, and plot the triangulation with the center
points.

1 Alphabetical List

1-3004

IC = incenter(DT);
triplot(DT)
hold on
plot(IC(:,1),IC(:,2),'*r')

3-D Delaunay Triangulation

Create a 3-D delaunayTriangulation for 30 random points.

x = gallery('uniformdata',[30 1],0);
y = gallery('uniformdata',[30 1],1);

 delaunayTriangulation

1-3005

z = gallery('uniformdata',[30 1],2);
DT = delaunayTriangulation(x,y,z)

DT =
 delaunayTriangulation with properties:

 Points: [30x3 double]
 ConnectivityList: [111x4 double]
 Constraints: []

Plot the triangulation.

tetramesh(DT,'FaceAlpha',0.3);

1 Alphabetical List

1-3006

Compute and plot the convex hull of the triangulation.

[K,v] = convexHull(DT);
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3))

Definitions
Delaunay Triangulation
In a 2-D Delaunay triangulation, the circumcircle associated with each triangle does not
contain any points in its interior. Similarly, a 3-D Delaunay triangulation does not have

 delaunayTriangulation

1-3007

any points in the interior of the circumsphere associated with each tetrahedron. This
definition extends to N-D, although delaunayTriangulation supports only 2-D and 3-
D.

See Also
delaunay | delaunayn | triangulation

Topics
“Delaunay Triangulation”

Introduced in R2013a

1 Alphabetical List

1-3008

convexHull
Convex hull of Delaunay triangulation

Syntax
C = convexHull(DT)
[C,v] = convexHull(DT)

Description
C = convexHull(DT) returns the vertices of the convex hull of a Delaunay
triangulation.

[C,v] = convexHull(DT) also returns the area or volume bounded by the convex hull.

Examples

2-D Delaunay Triangulation

Compute and plot the convex hull of a 2-D Delaunay triangulation.

Create a Delaunay triangulation from a set of 2-D points.

x = gallery('uniformdata',[10,1],0);
y = gallery('uniformdata',[10,1],1);
DT = delaunayTriangulation(x,y);

Compute the convex hull.

C = convexHull(DT);

Plot the triangulation and highlight the convex hull in red.

 convexHull

1-3009

plot(DT.Points(:,1),DT.Points(:,2),'.','MarkerSize',10)
hold on
plot(DT.Points(C,1),DT.Points(C,2),'r')

3-D Delaunay Triangulation

Compute and plot the convex hull of a 3-D Delaunay Triangulation.

Create a Delaunay triangulation from a 3-D set of points.

P = gallery('uniformdata',[25,3],1);
DT = delaunayTriangulation(P);

1 Alphabetical List

1-3010

Compute the convex hull and the volume bounded by the convex hull.

[C,v] = convexHull(DT);

Display the volume and plot the convex hull.

v

v = 0.3561

trisurf(C,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3), ...
 'FaceColor','cyan')

 convexHull

1-3011

Input Arguments
DT — Delaunay triangulation
scalar

Delaunay triangulation, specified as a scalar delaunayTriangulation object.
Data Types: delaunayTriangulation

Output Arguments
C — Convex hull vertices
column vector | matrix

Convex hull vertices, returned as a column vector or matrix of vertex IDs.

• When DT is a 2-D triangulation, C is a column vector containing the sequence of vertex
IDs around the convex hull. The vertex IDs are the row numbers of the vertices in the
Points property.

• When DT is 3-D triangulation, C is a 3-column matrix containing the connectivity list of
triangle vertices in the convex hull.

Data Types: double

v — Area or volume
scalar

Area or volume of the convex hull, returned as a scalar.
Data Types: double

See Also
delaunayTriangulation

Introduced in R2013a

1 Alphabetical List

1-3012

isInterior
Query interior points of Delaunay triangulation

Syntax
TF = isInterior(DT)

Description
TF = isInterior(DT) returns a column vector of logical values that indicate whether
the triangles in a 2-D constrained Delaunay triangulation are inside a bounded geometric
domain. An element of TF is 1 (true) when the corresponding triangle in DT is inside the
domain and 0 (false) otherwise.

Examples

Triangles in Specified Boundary

Compute and plot the triangles of a 2-D constrained Delaunay triangulation within a
specified boundary.

Create a geometric domain whose shape is a square frame.

outerprofile = [-5 -5; -3 -5; -1 -5; 1 -5;
 3 -5; 5 -5; 5 -3; 5 -1;
 5 1; 5 3; 5 5; 3 5;
 1 5; -1 5; -3 5; -5 5;
 -5 3; -5 1; -5 -1; -5 -3];
innerprofile = outerprofile.*0.5;
P = [outerprofile; innerprofile];

Define the edge constraints.

 isInterior

1-3013

outercons = [(1:19)' (2:20)'; 20 1;];
innercons = [(21:39)' (22:40)'; 40 21];
C = [outercons; innercons];

Create the constrained Delaunay triangulation.

DT = delaunayTriangulation(P,C);

Plot the triangulation, highlighting the inner and outer squares in red.

triplot(DT)
hold on
plot(DT.Points(innercons',1),DT.Points(innercons',2), ...
 '-r','LineWidth',2)
plot(DT.Points(outercons',1),DT.Points(outercons',2), ...
 '-r','LineWidth',2)
axis equal

1 Alphabetical List

1-3014

Plot only the triangles between the inner and outer squares, highlighting the inner and
outer squares in red.

figure
TF = isInterior(DT);
triplot(DT.ConnectivityList(TF,:),DT.Points(:,1),DT.Points(:,2))
hold on
plot(DT.Points(outercons',1),DT.Points(outercons',2), ...
 '-r','LineWidth',2)
plot(DT.Points(innercons',1),DT.Points(innercons',2), ...
 '-r','LineWidth',2)
axis equal

 isInterior

1-3015

Input Arguments
DT — Constrained Delaunay triangulation
scalar

Constrained Delaunay triangulation, specified as a scalar 2-D delaunayTriangulation
object with a set of constrained edges that define a bounded geometric domain. A
bounded domain is a region enclosed by multiple constrained edges that do not intersect
or overlap.
Data Types: delaunayTriangulation

1 Alphabetical List

1-3016

Tips
• isInterior can produce incorrect or inconsistent results when boundary constraints

intersect or overlap. To avoid this behavior, use constraints that form one or multiple
closed boundaries that do not intersect or overlap. When boundary constraints are
nested without intersections or overlaps, the inside or outside status alternates across
the boundaries.

See Also
delaunayTriangulation

Introduced in R2013a

 isInterior

1-3017

voronoiDiagram
Voronoi diagram of Delaunay triangulation

Syntax
[V,r] = voronoiDiagram(DT)

Description
[V,r] = voronoiDiagram(DT) returns the Voronoi vertices V and the Voronoi regions
r of the points in a Delaunay triangulation. Each region in r represents the points
surrounding a triangulation vertex that are closer to that vertex than any other vertex in
the triangulation. The collection of Voronoi regions make up a Voronoi diagram.

Examples

2-D Delaunay Triangulation

Compute the Voronoi vertices and regions of a 2-D Delaunay triangulation.

Create a Delaunay triangulation from a set of 2-D points.

P = [0.5 0
 0 0.5
 -0.5 -0.5
 -0.2 -0.1
 -0.1 0.1
 0.1 -0.1
 0.1 0.1];
DT = delaunayTriangulation(P);

Compute the Voronoi vertices and regions.

[V,r] = voronoiDiagram(DT);

1 Alphabetical List

1-3018

Display the connectivity of the Voronoi region associated with the 3rd point in the
triangulation.

r{3}

ans = 1×4

 1 10 7 4

Display the coordinates of the Voronoi vertices bounding the 3rd region. The Inf values
indicate that the region contains points on the convex hull.

V(r{3},:)

ans = 4×2

 Inf Inf
 0.7000 -1.6500
 -0.0500 -0.5250
 -1.7500 0.7500

Input Arguments
DT — Delaunay triangulation
scalar

Delaunay triangulation, specified as a scalar delaunayTriangulation object.
Data Types: delaunayTriangulation

Output Arguments
V — Voronoi vertices
matrix

Voronoi vertices, returned as a 2-column matrix (2-D) or a 3-column matrix (3-D). Each
row of V contains the coordinates of a Voronoi vertex.

 voronoiDiagram

1-3019

The Voronoi regions associated with points that lie on the convex hull of the triangulation
vertices are unbounded. Bounding edges of these regions radiate to infinity. The first
vertex in V represents the vertex at infinity and is designated with Inf.
Data Types: double

r — Voronoi regions
cell array

Voronoi regions, returned as a cell array whose elements contain the connectivity of the
Voronoi vertices in V. The points in each row of r form the bounding region associated
with the corresponding row in the Points property.
Data Types: double

See Also
delaunayTriangulation

Introduced in R2013a

1 Alphabetical List

1-3020

delete
Delete files or objects

Syntax
delete filename
delete filename1 ... filenameN
delete(obj)

Description
delete filename deletes filename from disk, without requesting verification. To
change whether the specified file is permanently deleted or sent to the recycle bin,
change the Deleting files preference. To do so, go to the Home tab and in the
Environment section, click Preferences. Select MATLAB > General. Then, choose
from one of the two options in the Deleting files section. By default, the Delete
permanently option is selected.

Note On Mac platforms, the Deleting files preference is not applied to files deleted from
network drives. All files are deleted permanently.

delete filename1 ... filenameN deletes the specified files from disk.

delete(obj) deletes the specified object. If obj is an array, then delete deletes all
objects in the array. obj remains in the workspace, but is no longer valid.

Examples

Delete Files in Folder

Delete all files in the current folder with a .mat extension.

 delete

1-3021

delete *.mat

Delete Graphics Objects

Delete a graphics object and a graphics object array.

Create a bar chart and plot five lines. Then delete the bar chart.

b = bar(1:5);
hold on
P = plot(magic(5));
delete(b)

1 Alphabetical List

1-3022

The Bar object variable b remains in the workspace, but no longer refers to an object.

display(b)

b =
 handle to deleted Bar

Delete all the Line objects created by plot.

delete(P)

 delete

1-3023

Input Arguments
filename — File name
character vector | string scalar

File name to delete, specified as a character vector or string scalar. filename can be an
absolute or relative path and can include wildcards (*).
Data Types: char | string

obj — Object
single object | array of objects

Object to delete, specified as a single object or an array of objects.

See Also
clear | delete | dir | recycle | rmdir

Topics
“Specify File Names”

Introduced before R2006a

1 Alphabetical List

1-3024

delete
Delete file on FTP server

Syntax
delete(ftpobj,filename)

Description
delete(ftpobj,filename) deletes the specified file from the current folder on the
FTP server associated with ftpobj.

Examples

Delete File

Connect to an FTP server and delete a file. This example shows a hypothetical FTP
session on ftp.example.com, a machine that does not exist. If you have an account on
an FTP server that grants you permission to upload and delete files on that server, then
you can use the delete function as shown in this example.

First, connect to the server.

ftpobj = ftp('ftp.example.com')

ftpobj =

 FTP Object
 host: ftp.example.com
 user: anonymous
 dir: /
 mode: binary

Display the contents of the current folder on the FTP server.

 delete

1-3025

dir(ftpobj)

myscript.m README.txt pub

Delete the file named README.txt.

delete(ftpobj,'README.txt')

Display the updated contents of the current folder. The README.txt file is no longer
available for download.

dir(ftpobj)

myscript.m pub

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

filename — Name of file to delete
character vector | string scalar

Name of the file to delete, specified as a character vector or string scalar.

See Also
ftp | rmdir

Introduced before R2006a

1 Alphabetical List

1-3026

delete (serial)
Remove serial port object from memory

Syntax
delete(obj)

Description
delete(obj) removes obj from memory, where obj is a serial port object or an array of
serial port objects.

Examples
This example creates the serial port object s on a Windows platform, connects s to the
device, writes and reads text data, disconnects s from the device, removes s from
memory using delete, and then removes s from the workspace using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

Tips
When you delete obj, it becomes an invalid object. Because you cannot connect an invalid
serial port object to the device, you should remove it from the workspace with the clear
command. If multiple references to obj exist in the workspace, then deleting one
reference invalidates the remaining references.

 delete (serial)

1-3027

If obj is connected to the device, it has a Status property value of open. If you issue
delete while obj is connected, then the connection is automatically broken. You can also
disconnect obj from the device with the fclose function.

See Also
Status | clear | fclose | isvalid

Introduced before R2006a

1 Alphabetical List

1-3028

deleteproperty
Remove custom property from COM object

Syntax
deleteproperty(c,name)

Description
deleteproperty(c,name) deletes property specified by name from custom properties
belonging to object or interface c.

You can only delete properties created with the addproperty function.

Examples

Delete Custom Property from mwsamp Control

Create an instance of the control and add custom property Position.

f = figure('position',[100 200 200 200]);
c = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);addproperty(h,'Position')
h.Position = [200 120];
get(h)

Add a custom property named Position and assign a value.

addproperty(h,'Position')
h.Position = [200 120];
get(h)

Label: 'Label'
 Radius: 20
 Position: [200 120]

Delete the custom property. MATLAB displays the original list of properties.

 deleteproperty

1-3029

deleteproperty(h,'Position')
get(h)

Label: 'Label'
 Radius: 20

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

name — Property name
character vector

Property name, specified as a character vector.
Example: 'Position'

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
Property Inspector | addproperty | get | set

Introduced before R2006a

1 Alphabetical List

1-3030

delevent
Remove event from timeseries

Syntax
tsout = delevent(tsin,eventname)
tsout = delevent(tsin,eventname,n)

Description
tsout = delevent(tsin,eventname) removes a tsdata.event object from the
tsin.Events property of a timeseries object tsin. The eventname argument can be
a character vector containing the name of a single event or a cell array containing a
collection of event names.

tsout = delevent(tsin,eventname,n) removes the nth tsdata.event object from
the tsin.Events property for the event named eventname.

Examples

Remove Event

Create a timeseries and an event, and add the event to the timeseries.

tsin = timeseries((1:5)');
tsevent = tsdata.event('MyEvent',1);
tsin = addevent(tsin,tsevent);
tsin.Events

 EventData: []
 Name: 'MyEvent'
 Time: 1
 Units: 'seconds'
 StartDate: ''

 delevent

1-3031

Remove the event named MyEvent.

tsout = delevent(tsin,'MyEvent');
tsout.Events

ans =

 1x0 empty handle

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

eventname — Event name
character vector | cell array

Event name, specified as a character vector containing the name of a tsdata.event
object or a cell array containing multiple event names.
Data Types: char | cell

n — Event number
scalar integer

Event number, specified as a scalar integer corresponding to the nth tsdata.event of a
timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
addevent | timeseries | tsdata.event

Introduced before R2006a

1 Alphabetical List

1-3032

delsamplefromcollection
Delete sample from tscollection

Syntax
tscout = delsamplefromcollection(tscin,'Index',ind)
tscout = delsamplefromcollection(tscin,'Value',timevals)

Description
tscout = delsamplefromcollection(tscin,'Index',ind) deletes samples from
a tscollection object. ind specifies the indices of the tscin time vector
corresponding to the samples to delete.

tscout = delsamplefromcollection(tscin,'Value',timevals) deletes the
samples corresponding to the time values in timeval.

Examples

Delete Sample

Create a tscollection object from two timeseries objects. Then, remove the fifth
sample.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,...
 'Name','Acceleration');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,...
 'Name','Speed');
tscin = tscollection({ts1;ts2});
tscout = delsamplefromcollection(tscin,'Index',5)

Time Series Collection Object: unnamed

Time vector characteristics

 delsamplefromcollection

1-3033

 Start time 1 seconds
 End time 4 seconds

Member Time Series Objects:

 Acceleration
 Speed

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

ind — Time vector indices
scalar | vector

Time vector indices, specified as a scalar or vector.

timevals — Sample times
scalar | vector

Sample times, specified as a numeric scalar or vector, or a cell array of date character
vectors. Valid date character vectors and strings can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM

1 Alphabetical List

1-3034

Format Example
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

See Also
addsampletocollection | timeseries | tscollection

Introduced before R2006a

 delsamplefromcollection

1-3035

demo
Access product examples in Help browser

Syntax
demo
demo type
demo type name

Description
demo displays a list of featured MATLAB and Simulink examples in the Help browser.

demo type lists the examples for the specified product. Valid values for type are
matlab or simulink.

demo type name lists the examples for products other than MATLAB or Simulink. Valid
values for type include matlab, simulink, toolbox, or blockset.

Examples

Open MATLAB Examples

demo matlab

Open Statistics and Machine Learning Toolbox Examples

demo toolbox statistics

1 Alphabetical List

1-3036

Open Communications System Toolbox Examples

demo toolbox 'communications system'

Open Simulink Control Design Examples

demo simulink 'simulink control design'

Input Arguments
type — Product name or type
matlab (default) | simulink | toolbox | blockset

Product name or type, specified as 'matlab', 'simulink', 'toolbox', or
'blockset'. For products other than MATLAB or Simulink, you must also specify a name
input that corresponds to the product name.
Example: matlab
Example: toolbox statistics

name — Product name other than MATLAB or Simulink
character vector

Product name other than MATLAB or Simulink, specified as a character vector. If name
requires multiple words, enclose it in single quotes.
Example: statistics
Example: 'communications system'

Tips
• To access third-party and custom examples without using the demo command, open

the Help browser and navigate to the documentation home page. Then, at the bottom
of the page, click Supplemental Software.

 demo

1-3037

See Also
doc | echodemo | grabcode | help

Introduced before R2006a

1 Alphabetical List

1-3038

DensityPlot Properties
Control appearance and behavior of density plot

Description
DensityPlot properties control the appearance and behavior of a DensityPlot object.
By changing property values, you can modify certain aspects of a density plot.

Properties
Density

Radius — Radius of influence on density calculation
numeric scalar

Radius of influence on density calculation, specified as a numeric scalar. When used in a
GeographicAxes, the value is measured in meters.

RadiusMode — Radius calculation
'auto' (default) | 'manual'

Radius calculation, specified as 'auto' or 'manual'.

Radius Mode
Value Description
'auto' DensityPlot determines the size of the radius

value.
'manual' You specify size of radius. When used in a

GeographicAxes, this value is measured in
meters.

WeightData — Weights for data
[] (default) | numeric scalar | numeric vector

Weights assigned to data, specified as an empty array, a numeric scalar, or a numeric
vector. If you specify a numeric vector, the vector must be the same length as the

 DensityPlot Properties

1-3039

LatitudeData and LongitudeData vectors. The WeightData vector is typically
additional data you have related to the location data in LatitudeData and
LongitudeData.

WeightDataSource — Workspace variable linked to WeightData
'' (default) | character vector | string

Workspace ariable linked to WeightData, specified as a character vector, or string
containing a MATLAB workspace variable name. MATLAB evaluates the variable in the
base workspace to generate the WeightData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the WeightData values immediately. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning.
geodensityplot will not render the graph until you have changed all data source
properties to appropriate values.

Color and Transparency

FaceAlpha — Face transparency
'interp' (default) | scalar in range [0,1]

Face transparency, specified as one of these values:

• Scalar in range [0,1] — Use uniform transparency across all the faces. A value of 1 is
fully opaque and 0 is completely transparent. Values between 0 and 1 are
semitransparent.

• 'interp' — Use interpolated transparency for each face. The transparency varies
across each face by interpolating the values at the vertices.

FaceColor — Face color
'interp' | ColorSpec value | RGB triplet | ...

Face color, specified as one of the values in this table.

1 Alphabetical List

1-3040

Value Description
'interp' Use interpolated coloring based on density

values. Colors area chosen from the parent
axes colormap.

RGB triplet Three-element row vector whose elements
specify the intensities of the red, green, and
blue components of the color. The
intensities must be in the range [0,1], for
example, [0.4 0.6 0.7].

ColorSpec MATLABColorSpec (Color
Specification). You can specify some
common colors by name.

Geographic Coordinate Data

LatitudeData — Latitude coordinates of data points
real, finite, numeric vector | []

Latitude coordinates of data points, specified as a real, finite, numeric vector in degrees,
in the range [-90,90], or as an empty ([]) array. LatitudeData must be the same size as
LongitudeData and can contain NaNs.
Data Types: single | double

LatitudeDataSource — Variable linked to LatitudeData
'' (default) | character vector | string scalar

Variable linked to latitudeData, specified as a character vector or string scalar
containing a MATLAB workspace variable name. MATLAB evaluates the variable in the
base workspace to generate the LatitudeData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the LatitudeData values immediately. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning.
geodensityplot will not render the graph until you have changed all data source
properties to appropriate values.

 DensityPlot Properties

1-3041

LongitudeData — Longitude coordinates of data points
real, finite numeric vector | []

Longitude coordinates of data points, specified as a real, finite, numeric vector of values
in degrees, in the range (-Inf,Inf), or as an empty ([]) array. LongitudeData must
be the same size as LatitudeData and can contain NaNs.

Longitudes must span less than (or equal to) 360 degrees.
Data Types: single | double

LongitudeDataSource — Variable linked to LongitudeData
'' (default) | character vector | string

Variable linked to LongitudeData, specified as a character vector, or string containing a
MATLAB workspace variable name. MATLAB evaluates the variable in the base
workspace to generate the LongitudeData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the LongitudeData values immediately.
To force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning.
geodensityplot will not render the graph until you have changed all data source
properties to appropriate values.

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. If you do not specify the
text, the legend uses a label of the form 'dataN'. The legend does not display until you
call the legend command.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

1 Alphabetical List

1-3042

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

 DensityPlot Properties

1-3043

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

1 Alphabetical List

1-3044

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments

 DensityPlot Properties

1-3045

• Character vector that is a valid MATLAB command or function, which is evaluated in
the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the DensityPlot object. The Interruptible property has
two values:

1 Alphabetical List

1-3046

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the DensityPlot object tries to interrupt a running callback that cannot
be interrupted, then the BusyAction property determines if it is discarded or put in the
queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

• 'cancel' — Discard the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

 DensityPlot Properties

1-3047

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the DensityPlot object responds
to the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off'. The HitTest property determines if the DensityPlot object
responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the DensityPlot object passes the
click to the object below it in the current view of the figure window, which is typically
the axes or the figure. The HitTest property has no effect.

If you want an object to be clickable when it is underneath other objects that you do not
want to be clickable, then set the PickableParts property of the other objects to
'none' so that the click passes through them.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the DensityPlot object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the DensityPlot object
that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the DensityPlot object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn

1 Alphabetical List

1-3048

property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

Parent/Child

Parent — Parent
GeographicAxes object

Parent, specified as a GeographicAxes object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

 DensityPlot Properties

1-3049

Identifiers

Type — Type of graphics object
'densityplot' (default)

This property is read-only.

Type of graphics object, returned as 'densityplot'. Use this property to find all objects
of a given type within a plotting hierarchy, for example, searching for the type using
findobj.

This property is read-only.

Tag — User-specified tag
'' (default) | character vector | string scalar

Tag to associate with the DensityPlot object, specified as a character vector or string
scalar.

Use this property to find DensityPlot objects in a hierarchy. For example, you can use
the findobj function to find densityplot objects that have a specific Tag property
value.
Example: 'January Data'

UserData — User data
[] (default) | any MATLAB data

User data to associate with the DensityPlot object, specified as any MATLAB data, for
example, a scalar, vector, matrix, cell array, character array, table, or structure. MATLAB
does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

See Also
geodensityplot

Introduced in R2018b

1 Alphabetical List

1-3050

det
Matrix determinant

Syntax
d = det(A)

Description
d = det(A) returns the determinant of square matrix A.

Examples

Calculate Determinant of Matrix

Create a 3-by-3 square matrix, A.

A = [1 -2 4; -5 2 0; 1 0 3]

A = 3×3

 1 -2 4
 -5 2 0
 1 0 3

Calculate the determinant of A.

d = det(A)

d = -32

 det

1-3051

Determine if Matrix Is Singular

Examine why the determinant is not an accurate measure of singularity.

Create a 10-by-10 matrix by multiplying an identity matrix, eye(10), by a small number.

A = eye(10)*0.0001;

The matrix A has very small entries along the main diagonal. However, A is not singular,
because it is a multiple of the identity matrix.

Calculate the determinant of A.

d = det(A)

d = 1.0000e-40

The determinant is extremely small. A tolerance test of the form abs(det(A)) < tol is
likely to flag this matrix as singular. Although the determinant of the matrix is close to
zero, A is actually not ill conditioned. Therefore, A is not close to being singular. The
determinant of a matrix can be arbitrarily close to zero without conveying information
about singularity.

To investigate if A is singular, use either the cond or rcond functions.

Calculate the condition number of A.

c = cond(A)

c = 1

The result confirms that A is not ill conditioned.

Compute Determinant of Inverse of Ill-Conditioned Matrix

Examine how to calculate the determinant of the matrix inverse A^(-1), for an ill-
conditioned matrix A, without explicitly calculating A^(-1).

Create a 10-by-10 Hilbert matrix, A.

A = hilb(10);

1 Alphabetical List

1-3052

Find the condition number of A.

c = cond(A)

c = 1.6025e+13

The large condition number suggests that A is close to being singular, so calculating
inv(A) might produce inaccurate results. Therefore, the inverse determinant calculation
det(inv(A)) is also inaccurate.

Calculate the determinant of the inverse of A by exploiting the fact that

det A−1 = 1
det A

d1 = 1/det(A)

d1 = 4.6202e+52

This method avoids computing the inverse of the matrix, A.

Calculate the determinant of the exact inverse of the Hilbert matrix, A, using invhilb.
Compare the result to d1 to find the relative error in d1.

d = det(invhilb(10));
relError = abs(d1-d)/abs(d)

relError = 1.0443e-04

The relative error in d1 is reasonably small. Avoiding the explicit computation of the
inverse of A minimizes it.

For comparison, also calculate the determinant of the inverse of A by explicitly calculating
the inverse. Compare the result to d to see the relative error.

d2 = det(inv(A));
relError2 = abs(d2-d)/abs(d)

relError2 = 2.2039e-05

The relative error in the calculation of d2 is many orders of magnitude larger than that of
d1.

 det

1-3053

Find Determinant of Singular Matrix

Examine a matrix that is exactly singular, but which has a large nonzero determinant. In
theory, the determinant of any singular matrix is zero, but because of the nature of
floating-point computation, this ideal is not always achievable.

Create a 13-by-13 diagonally dominant singular matrix A and view the pattern of nonzero
elements.

A = diag([24 46 64 78 88 94 96 94 88 78 64 46 24]);
S = diag([-13 -24 -33 -40 -45 -48 -49 -48 -45 -40 -33 -24],1);
A = A + S + rot90(S,2);
spy(A)

1 Alphabetical List

1-3054

A is singular because the rows are linearly dependent. For instance, sum(A) produces a
vector of zeros.

Calculate the determinant of A.

d = det(A)

d = 1.0597e+05

The determinant of A is quite large despite the fact that A is singular. In fact, the
determinant of A should be exactly zero! The inaccuracy of d is due to an aggregation of
round-off errors in the MATLAB® implementation of the LU decomposition, which det
uses to calculate the determinant. This result demonstrates a few important aspects of
calculating numeric determinants. See the “Limitations” on page 1-3055 section for more
details.

Input Arguments
A — Input matrix
square numeric matrix

Input matrix, specified as a square numeric matrix.
Data Types: single | double
Complex Number Support: Yes

Limitations
Avoid using det to examine if a matrix is singular because of the following limitations.
Use cond or rcond instead.

Limitation Result
The magnitude of the determinant is
typically unrelated to the condition number
of a matrix.

The determinant of a matrix can be
arbitrarily large or small without changing
the condition number.

 det

1-3055

Limitation Result
det uses the LU decomposition to calculate
the determinant, which is susceptible to
floating-point round-off errors.

The determinant calculation is sometimes
numerically unstable. For example, det can
produce a large-magnitude determinant for
a singular matrix, even though it should
have a magnitude of 0.

Algorithms
det computes the determinant from the triangular factors obtained by Gaussian
elimination with the lu function.

[L,U] = lu(X)
s = det(L) % This is always +1 or -1
det(X) = s*prod(diag(U))

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-3056

See Also
cond | condest | inv | lu | mldivide | rcond | rref

Introduced before R2006a

 det

1-3057

details
Display array details

Syntax
details(A)

Description
details(A) displays detailed information about the array, A.

When A is a MATLAB object array, details displays more information than the default
display. This information includes:

• Fully qualified class name, including package names
• Link to class documentation
• Link to handle class documentation for classes that subclass handle
• List of all properties that have public get access
• List of property values if the array is scalar
• Link to list of public methods
• Link to list of events
• Link to list of all nonhidden superclasses

Examples

Display Object Details

Display object details for a class that overloads its own object display. The details
function never calls overloaded display methods. Therefore, you can use this function to
obtain information about the object array in all cases.

1 Alphabetical List

1-3058

Suppose PolyNom is a class that provides a specialized default display for polynomials.
Use details to display information about the object.

Create an object using the polynomial coefficients:

pn = PolyNom([1,2,3,0,4])

The overloaded disp method displays the code for evaluating the polynomial:

pn =

x^4 + 2*x^3 + 3*x^2 + 4

Calling the details function provides information about the object:

details(pn)

 PolyNom with properties:

 coef: [1 2 3 0 4]

 Methods

Input Arguments
A — Input array
scalar or nonscalar array of any type

Input array, specified as a scalar or nonscalar array of any type. The details function
displays detailed information about this array.

See Also
classdef | disp | display

Introduced in R2013b

 details

1-3059

detectImportOptions
Create import options based on file content

Syntax
opts = detectImportOptions(filename)
opts = detectImportOptions(filename,Name,Value)

Description
opts = detectImportOptions(filename) locates a table in a file and returns the
import options for importing the table. You can modify the options object and use it with
readtable to control how MATLAB imports tabular data. The type of the options
returned depends on the file extension. For example, the function returns a
SpreadsheetImportOptions object if filename is a spreadsheet file. However, the
function returns a DelimitedTextImportOptions or FixedWidthImportOptions
object if filename is a text file.

opts = detectImportOptions(filename,Name,Value) locates a table in a file with
the help of additional parameters specified by one or more Name,Value pair arguments.

Examples

Detect and Use Import Options for Spreadsheet Files

Detect import options for a spreadsheet file, specify the variables to import, and then
read the data.

Create an import options object from a file.

opts = detectImportOptions('patients.xls')

opts =
 SpreadsheetImportOptions with properties:

1 Alphabetical List

1-3060

 Sheet Properties:
 Sheet: ''

 Replacement Properties:
 MissingRule: 'fill'
 ImportErrorRule: 'fill'

 Variable Import Properties: Set types by name using setvartype
 VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 VariableTypes: {'char', 'char', 'double' ... and 7 more}
 SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 VariableOptions: Show all 10 VariableOptions
 Access VariableOptions sub-properties using setvaropts/getvaropts

 Range Properties:
 DataRange: 'A2' (Start Cell)
 VariableNamesRange: 'A1'
 RowNamesRange: ''
 VariableUnitsRange: ''
 VariableDescriptionsRange: ''
 To display a preview of the table, use preview

Modify the options object to specify which variables to import.

opts.SelectedVariableNames = {'Systolic','Diastolic'};

Use readtable along with the options object to import the specified variables.

T = readtable('patients.xls',opts);
summary(T)

Variables:

 Systolic: 100x1 double

 Values:

 Min 109
 Median 122
 Max 138

 Diastolic: 100x1 double

 detectImportOptions

1-3061

 Values:

 Min 68
 Median 81.5
 Max 99

Detect and Use Import Options for Text Files

Create import options, tailor the data types for multiple variables, and then read the data.

Create an import options object from a text file.

opts = detectImportOptions('airlinesmall.csv')

opts =
 DelimitedTextImportOptions with properties:

 Format Properties:
 Delimiter: {','}
 Whitespace: '\b\t '
 LineEnding: {'\n' '\r' '\r\n'}
 CommentStyle: {}
 ConsecutiveDelimitersRule: 'split'
 LeadingDelimitersRule: 'keep'
 EmptyLineRule: 'skip'
 Encoding: 'windows-1252'

 Replacement Properties:
 MissingRule: 'fill'
 ImportErrorRule: 'fill'
 ExtraColumnsRule: 'addvars'

 Variable Import Properties: Set types by name using setvartype
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 VariableTypes: {'double', 'double', 'double' ... and 26 more}
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 VariableOptions: Show all 29 VariableOptions
 Access VariableOptions sub-properties using setvaropts/getvaropts

 Location Properties:
 DataLines: [2 Inf]
 VariableNamesLine: 1

1 Alphabetical List

1-3062

 RowNamesColumn: 0
 VariableUnitsLine: 0
 VariableDescriptionsLine: 0
 To display a preview of the table, use preview

Examine the Type property of variables TaxiIn and TaxiOut.

getvaropts(opts,{'TaxiIn','TaxiOut'})

ans =
 1x2 TextVariableImportOptions array with properties:

 Name
 Type
 FillValue
 TreatAsMissing
 QuoteRule
 Prefixes
 Suffixes
 EmptyFieldRule
 WhitespaceRule

Change the type of the variables TaxiIn and TaxiOut to double.

 opts = setvartype(opts,{'TaxiIn','TaxiOut'},'double');

Specify the subset of variables to import and examine.

opts.SelectedVariableNames = {'TaxiIn','TaxiOut'};

Use the readtable function along with the options object to import the selected
variables. Display a summary of the table.

T = readtable('airlinesmall.csv',opts);
summary(T)

Variables:

 TaxiIn: 123523x1 double

 Values:

 Min 0

 detectImportOptions

1-3063

 Median 5
 Max 1451
 NumMissing 37383

 TaxiOut: 123523x1 double

 Values:

 Min 0
 Median 13
 Max 755
 NumMissing 37364

Designate Data Type for Imported Text Data

Import text data as a string data type by specifying import options.

Create an options object for the file.

opts = detectImportOptions('outages.csv');

Specify which variables to import using readtable, and then show a summary. The data
type of the selected variables is char.

opts.SelectedVariableNames = {'Region','Cause'};
T = readtable('outages.csv',opts);
summary(T)

Variables:

 Region: 1468x1 cell array of character vectors

 Cause: 1468x1 cell array of character vectors

Import text data as a string data type, and then create import options by specifying the
TextType name-value pair.

opts = detectImportOptions('outages.csv','TextType','string');

Specify which variables to import using readtable, and then show a summary. The data
type of the selected variables is now string.

1 Alphabetical List

1-3064

opts.SelectedVariableNames = {'Region','Cause'};
T = readtable('outages.csv',opts);
summary(T)

Variables:

 Region: 1468x1 string

 Cause: 1468x1 string

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or string scalar.

Depending on the location of your file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myFile.txt'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name in
filename.

Example: 'C:\myFolder\myFile.xlsx'

Example: '\imgDir\myFile.txt'

 detectImportOptions

1-3065

Location Form
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.csv'

If filename includes the file extension, then detectImportOptions determines the file
format from the extension. Otherwise, you must specify the 'FileType' name-value pair
to indicate the type of file.

The detectImportOptions function supports these file
extensions: .txt, .dat, .csv, .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, and .ods.

Note File extensions .xlsb and .ods are only supported on platforms with Excel for
Windows.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-3066

Example: 'FileType','text'

Parameters

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and either
'text' or 'spreadsheet'.

Specify the 'FileType' name-value pair argument when the filename does not include
the file extension or if the extension is other than one of these:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

Note File extensions .xlsb and .ods are only supported on platforms with Excel for
Windows.

Example: 'FileType','text'
Data Types: char | string

TextType — Type for imported text data
'char' (default) | 'string'

Type for imported text data, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'.

• 'char' — Import text data into MATLAB as character vectors.
• 'string' — Import text data into MATLAB as string arrays.

Example: 'TextType','char'

DatetimeType — Type for imported date and time data
'datetime' (default) | 'text' | 'exceldatenum' (spreadsheet files only)

Type for imported date and time data, specified as the comma-separated pair consisting
of 'DatetimeType' and one of these values: 'datetime', 'text', or
'exceldatenum'. The value 'exceldatenum' is applicable only for spreadsheet files,
and is not valid for text files.

 detectImportOptions

1-3067

Value Type for Imported Date and Time Data
'datetime' MATLAB datetime data type

For more information, see datetime.
'text' If 'DatetimeType' is specified as 'text', then the type

for imported date and time data depends on the value
specified in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns dates as a cell array of character
vectors.

• If 'TextType' is set to 'string', then the importing
function returns dates as an array of strings.

'exceldatenum' Excel serial date numbers

A serial date number is a single number equal to the
number of days from a given reference date. Excel serial
date numbers use a different reference date than MATLAB
serial date numbers. For more information on Excel dates,
see https://support.microsoft.com/en-us/kb/
214330.

Data Types: char | string

ExpectedNumVariables — Expected number of variables
positive integer

Expected number of variables, specified as the comma-separated pair consisting of
'ExpectedNumVariables' and a positive integer. If unspecified, the importing function
automatically detects the number of variables.
Data Types: single | double

Range — Portion of data to read
character vector | string scalar | numeric vector

Portion of the data to read from text or spreadsheet files, specified as the comma
separated pair consisting of 'Range' and a character vector, string scalar, or numeric
vector in one of these forms.

1 Alphabetical List

1-3068

https://support.microsoft.com/en-us/kb/214330
https://support.microsoft.com/en-us/kb/214330

Ways to specify Range Description
Starting Cell

'Cell' or [row col]

Specify the starting cell for the data as a character
vector or string scalar or a two element numeric vector.

• Character vector or string scalar containing a
column letter and row number using Excel A1
notation. For example, A5 is the identifier for the
cell at the intersection of column A and row 5.

• Two element numeric vector of the form [row col]
indicating the starting row and column.

Using the starting cell, the importing function
automatically detects the extent of the data by
beginning the import at the start cell and ending at the
last empty row or footer range.

Example: 'A5' or [5 1]
Rectangular Range

'Corner1:Corner2' or [r1
c1 r2 c2]

Specify the exact range to read using the rectangular
range in one of these forms.

• 'Corner1:Corner2' — Specify the range using
Corner1 and Corner2 which are the two opposing
corners that define the region to read in Excel A1
notation. For example, 'C2:N15'.

• [r1 c1 r2 c2] — Specify the range using a four
element numeric vector containing start-row, start-
column, end-row, and end-column. For example, [2
3 15 13].

The importing function only reads the data contained in
the specified range. Any empty fields within the
specified range are imported as missing cells.

 detectImportOptions

1-3069

Ways to specify Range Description
Row Range or Column Range

'Row1:Row2' or
'Column1:Column2'

Specify the range by identifying the beginning and
ending rows using Excel row numbers.

Using the specified row range, the importing function
automatically detects the column extent by reading
from the first nonempty column to the end of the data,
and creates one variable per column.

Example: '5:500'

Alternatively, specify the range by identifying the
beginning and ending columns using Excel column
letters or numbers.

Using the specified column range, the import function
automatically detects the row extent by reading from
the first nonempty row to the end of the data or the
footer range.

The number of columns in the specified range must
match the number specified in the
ExpectedNumVariables property.

Example: 'A:K'
Starting Row Number

n

Specify the first row containing the data using the
positive scalar row index.

Using the specified row index, the importing function
automatically detects the extent of the data by reading
from the specified first row to the end of the data or the
footer range.

Example:5

1 Alphabetical List

1-3070

Ways to specify Range Description
Excel’s Named Range

'NamedRange'

In Excel, you can create names to identify ranges in the
spreadsheet. For instance, you can select a rectangular
portion of the spreadsheet and call it 'myTable'. If
such named ranges exist in a spreadsheet, then the
importing function can read that range using its name.

Example: 'Range','myTable'
Unspecified or Empty

''

If unspecified, the importing function automatically
detects the used range.

Example: 'Range',''

Note: Used Range refers to the rectangular portion of
the spreadsheet that actually contains data. The
importing function automatically detects the used
range by trimming any leading and trailing rows and
columns that do not contain data. Text that is only
white space is considered data and is captured within
the used range.

Data Types: char | string | double

NumHeaderLines — Number of header lines
positive integer

Number of header lines in the file, specified as the comma-separated pair consisting of
'NumHeaderLines' and a positive integer. If unspecified, the importing function
automatically detects the number of header lines in the file.
Example: 'NumHeaderLines',7
Data Types: single | double

ReadVariableNames — Read first row as variable names
true | false

Indicator for reading the first row as variable names, specified as the comma-separated
pair consisting of 'ReadVariableNames' and either true or false. If unspecified,
readtable automatically detects the presence of variable names.

 detectImportOptions

1-3071

Indicator Description
true Use when the first row of the region to read contains the variable

names for the table. readtable creates a variable, with the
detected variable name, for each column in T.

false Use when the first row of the region to read contains data in the
table. readtable creates default variable names of the form
'Var1',...,'VarN', where N is the number of variables.

unspecified When left unspecified, the importing function automatically detects
true or false and proceeds accordingly.

Data Types: logical

ReadRowNames — Indicator for reading the first column as row names
false (default) | true

Indicator for reading first column as row names, specified as the comma-separated pair
consisting of 'ReadRowNames' and either false or true.

Indicator Description
false Use when the first column of the region to read contains data, and

not the row names for the table.
true Use when the first column of the region to read contains the row

names for the table.
unspecified When left unspecified, the importing function assumes false.

Data Types: logical

Parameters for Spreadsheet Files Only

Sheet — Sheet to read from
'' empty character array (default) | character vector | string scalar | positive scalar
integer

Sheet to read from, specified as an empty character array, a character vector or string
scalar containing the sheet name, or a positive scalar integer denoting the sheet index.
Based on the value specified for the Sheet property, the import function behaves as
described in the table.

1 Alphabetical List

1-3072

Specification Behavior
'' (default) Import data from the first sheet.
Name Import data from the matching sheet name, regardless of

order of sheets in the spreadsheet file.
Integer Import data from sheet in the position denoted by the

integer, regardless of the sheet names in the spreadsheet
file.

Data Types: char | string | single | double

Parameters for Text Files Only

Delimiter — Field delimiter characters
character vector | string scalar | cell array of character vectors | string array

Field delimiter characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'Delimiter','|'
Example: 'Delimiter',{';','*'}
Data Types: char | string | cell

Whitespace — Characters to treat as white space
character vector | string scalar

Characters to treat as white space, specified as a character vector or string scalar
containing one or more characters.
Example: 'Whitespace',' _'
Example: 'Whitespace','?!.,'

LineEnding — End-of-line characters
{'\n','\r','\r\n'} (default) | character vector | string scalar | cell array of character
vectors | string array

End-of-line characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'LineEnding','\n'
Example: 'LineEnding','\r\n'

 detectImportOptions

1-3073

Example: 'LineEnding',{'\b',':'}
Data Types: char | string | cell

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name, such as one of the values in this table.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' uses the system default encoding.
Data Types: char | string

CommentStyle — Style of comments
character vector | string scalar | cell array of character vectors | string array

Style of comments, specified as a character vector, string scalar, cell array of character
vectors, or string array.

For example, to ignore the text following a percent sign on the same line, specify
CommentStyle as '%'.

1 Alphabetical List

1-3074

Example: 'CommentStyle',{'/*'}
Data Types: char | string | cell

DurationType — Output data type of duration data
'duration' (default) | 'text'

Output data type of duration data from text files, specified as the comma-separated pair
consisting of 'DurationType' and either 'duration' or 'text'.

Value Type for Imported Duration Data
'duration' MATLAB duration data type

For more information, see duration.
'text' If 'DurationType' is specified as 'text', then the type

for imported duration data depends on the value specified
in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns duration data as a cell array of
character vectors.

• If 'TextType' is set to 'string', then the importing
function returns duration data as an array of strings.

Data Types: char | string

ConsecutiveDelimitersRule — Procedure to handle consecutive delimiters
'split' | 'join' | 'error'

Procedure to handle consecutive delimiters, specified as one of the values in this table.

Consecutive Delimiters
Rule

Behavior

'split' Split the consecutive delimiters into multiple fields.
'join' Join the delimiters into one delimiter.
'error' Return an error and abort the import operation.

Data Types: char | string

 detectImportOptions

1-3075

LeadingDelimitersRule — Procedure to manage leading delimiters
'keep' | 'ignore' | 'error'

Procedure to manage leading delimiters, specified as one of the values in this table.

Leading Delimiters Rule Behavior
'keep' Keep the delimiter.
'ignore' Ignore the delimiter.
'error' Return an error and abort the import operation.

TreatAsMissing — Text to interpret as missing data
character vector | string scalar | cell array of character vectors | string array

Text to interpret as missing data, specified as a character vector, string scalar, cell array
of character vectors, or string array.

When the importing function finds missing instances, it uses the specification in the
MissingRule property to determine the appropriate action.
Example: 'TreatAsMissing',{'NA','TBD'} instructs the importing function to treat
any occurrence of NA or TBD as a missing fields.
Data Types: char | string | cell

ThousandsSeparator — Characters that indicate the thousands grouping
character vector | string scalar

Characters that indicate the thousands grouping in numeric variables, specified as a
character vector or string scalar. The thousands grouping characters act as visual
separators, grouping the number at every three place values. The importing function uses
the characters in the ThousandsSeparator property to interpret the numbers being
imported.
Data Types: char | string

DecimalSeparator — Characters indicating decimal separator
character vector | string scalar

Characters indicating the decimal separator in numeric variables, specified as a character
vector or string scalar. The importing function uses the DecimalSeparator property to
distinguish the integer part of a number from the decimal part.

1 Alphabetical List

1-3076

When converting to integer data types, numbers with a decimal part are rounded to the
nearest integer.
Data Types: char | string

TrimNonNumeric — Remove nonnumeric characters
false (default) | true

Remove nonnumeric characters from a numeric variable, specified as a logical true or
false.
Data Types: logical

Output Arguments
opts — Import options for file
SpreadsheetImportOptions | DelimitedtextImportOptions |
FixedWidthImportOptions

Import options for the specified file, returned as a SpreadsheetImportOptions object
or a DelimitedTextImportOptions object. The type of options object depends on the
type of file specified. For text files (.txt, .dat, or .csv), the detectImportOptions
function returns a DelimitedTextImportOptions or FixedWidthImportOptions
object. For spreadsheet files (.xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods), the
detectImportOptions function returns a SpreadsheetImportOptions object.

Based on the contents of the specified file, the detectImportOptions function
automatically detects and sets these parameters.

For Spreadsheet Files For Text Files
VariableNames (if any) VariableNames (if any)
VariableTypes VariableTypes
DataRange DataLine
VariableNamesRange VariableNamesLine
 Delimiter
 LeadingDelimitersRule (if space is

delimiter)

 detectImportOptions

1-3077

For Spreadsheet Files For Text Files
 ConsecutiveDelimitersRule (if space is

delimiter)
 PartialFieldRule (for fixed-width files)

See Also
DelimitedTextImportOptions | FixedWidthImportOptions |
SpreadsheetImportOptions | readtable

Topics
“Define Import Options for Tables”

Introduced in R2016b

1 Alphabetical List

1-3078

detrend
Remove polynomial trend

Syntax
y = detrend(x)
y = detrend(x,n)
y = detrend(x,n,bp)
y = detrend(___ ,Name,Value)

Description
y = detrend(x) removes the best straight-fit line from the data in x.

• If x is a vector, then detrend subtracts the trend from the elements of x.
• If x is a matrix, then detrend operates on each column separately, subtracting each

trend from the corresponding column.

y = detrend(x,n) removes the nth-degree polynomial trend. For example, when n =
0, detrend removes the mean value from x. When n = 1, detrend removes the linear
trend, which is equivalent to the previous syntax. When n = 2, detrend removes the
quadratic trend.

y = detrend(x,n,bp) removes a continuous, piecewise trend with segments defined
by the break points bp.

y = detrend(___ ,Name,Value) specifies additional parameters for any of the
previous syntaxes using one or more name-value pairs. For example,
detrend(x,1,bp,'Continuous','false') specifies that the fitted trend can have
discontinuities.

Examples

 detrend

1-3079

Continuous Linear Trend

Create a vector of data, and remove the continuous linear trend. Plot the original data,
the detrended data, and the linear trend.

t = 0:20;
x = 3*sin(t) + t;
y = detrend(x);
plot(t,x,t,y,t,x-y,':k')
legend('Input Data','Detrended Data','Trend','Location','northwest')

1 Alphabetical List

1-3080

Continuous Quadratic Trend

Create a vector of data, and remove the continuous quadratic trend. Plot the original
data, the detrended data, and the trend.

t = 0:20;
x = 20*sin(t) + t.^2;
y = detrend(x,2);
plot(t,x,t,y,t,x-y,':k')
legend('Input Data','Detrended Data','Trend','Location','northwest')

 detrend

1-3081

Discontinuous Linear Trend

Create a vector of data, and remove the piecewise linear trend using a break point at 0.
Specify that the resulting output can be discontinuous. Plot the original data, the
detrended data, and the trend.

t = -10:10;
x = t.^3 + 6*t.^2 + 4*t + 3;
bp = 0;
y = detrend(x,1,bp,'SamplePoints',t,'Continuous',false);
plot(t,x,t,y,t,x-y,':k')
legend('Input Data','Detrended Data','Trend','Location','northwest')

1 Alphabetical List

1-3082

Input Arguments
x — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. When x is a
multidimensional array, detrend operates column-wise across all dimensions.
Data Types: double | single | duration
Complex Number Support: Yes

n — Polynomial degree
non-negative integer scalar | 'constant' | 'linear'

Polynomial degree, specified as a non-negative integer scalar, or as 'constant'
(equivalent to 0) or 'linear' (equivalent to 1).

bp — Break points
vector

Break points, specified as a vector containing one of the following:

• Sample point values indicating the location of the break points. Sample point values
are contained either in the default sample points vector [1 2 3 ...] or in the vector
specified by the 'SamplePoints' parameter.

• Logical values where logical 1 (true) indicates a break point in the corresponding
element of the input data. If bp contains logical values, it must be the same length as
the sample points.

Data Types: double | single | datetime | duration | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: y = detrend(x,'SamplePoints',1:10:1000)

Continuous — Continuity constraint
true (default) | false

 detrend

1-3083

Continuity constraint, specified as the comma-separated pair consisting of
'Continuous' and one of the following:

• true — The fitted trend must be continuous everywhere.
• false — The fitted trend can contain discontinuities.

SamplePoints — Sample points
[1 2 3 ...] (default) | vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the locations of the input data on the x-axis,
and they must be unique and sorted.
Data Types: double | single | datetime | duration

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If supplied and not empty, the input argument bp must satisfy the following
requirements:

• Be real.
• Be sorted in ascending order.
• Restrict elements to integers in the interval [1,m-2]. Here, m is the number of

elements in a column of the input argument x, or the number of elements in x
when x is a row vector.

• Contain all unique values.
• Removing polynomial trends of degree 2 or higher is not supported.
• Name-value pairs are not supported.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

1 Alphabetical List

1-3084

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
polyfit

Topics
“Detrending Data”

Introduced before R2006a

 detrend

1-3085

deval
Evaluate differential equation solution structure

Syntax
y = deval(sol,x)
y = deval(x,sol)
y = deval(___ ,idx)
[y,yp] = deval(___)

Description
y = deval(sol,x) and y = deval(x,sol) evaluate the solution sol of a differential
equation problem at the points contained in x.

y = deval(___ ,idx) returns only the solution components with indices listed in the
vector idx. You can use either of the previously listed input argument combinations.

[y,yp] = deval(___) also returns yp, which is the first derivative of the numeric
solution produced by the solver.

Examples

Evaluate DDE with Constant Delays

This example solves the DDE equation y' = ddex1de(t,y,Z) using dde23, then plots
the solution.

Solve the system using dde23.

sol = dde23(@ddex1de, [1 0.2], @ddex1hist, [0 5]);

Evaluate the solution at 100 points in the interval [0 5].

1 Alphabetical List

1-3086

x = linspace(0,5);
y = deval(sol,x);

Plot the solution.

plot(x,y)

Evaluate van der Pol Equation

This example solves the system y' = vdp1(t,y) using ode45, then plots the first
component of the solution.

 deval

1-3087

Solve the system using ode45.

sol = ode45(@vdp1, [0 20], [2 0]);

Evaluate the first component of the solution at 100 points in the interval [0 20].

x = linspace(0,20,100);
y = deval(sol,x,1);

Plot the solution.

plot(x,y)

1 Alphabetical List

1-3088

Slope of Interpolating Function

Solve the simple ODE y' = t^2 with initial condition y0 = 0 in the interval [0, 3] using
ode23.

sol = ode23(@(t,y) t^2, [0 3], 0);

Evaluate the solution at seven points. The solution structure sol contains an
interpolating function that deval uses to produce a continuous solution at these points.
Specify a second output argument with deval to also return the derivative of the
interpolating function at the specified points.

x = linspace(0,3,7);
[y,yp] = deval(sol,x)

y = 1×7

 0 0.0417 0.3333 1.1250 2.6667 5.2083 9.0000

yp = 1×7

 0 0.2500 1.0000 2.2500 4.0000 6.2500 9.0000

Input Arguments
sol — Solution structure
structure

Solution structure, specified as a structure returned by one of these differential equation
solvers.

• Initial value problem solver — ode45, ode23, ode113, ode15s, ode23s, ode23t,
ode23tb, ode15i

• Delay differential equations solver — dde23, ddesd, or ddensd
• Boundary value problem solver — bvp4c or bvp5c

Example: sol = ode45(@myode,tspan,y0)
Data Types: struct

 deval

1-3089

x — Evaluation points
vector

Evaluation points, specified as a vector. x specifies the points at which you want the value
of the solution. The elements of x must be contained in the original integration interval,
[sol.x(1) sol.x(end)]. For each index i, the solution y(:,i) corresponds to x(i).
Example: 0:0.1:1
Example: [2 3 5 8]
Data Types: single | double

idx — Solution components to return
vector

Solution components to return, specified as a vector. Use this input when you are only
interested in certain components of the solution.
Example: y = deval(sol,x,[2 3]) returns only the second and third solution
components.
Data Types: single | double

Output Arguments
y — Interpolated solution
vector | matrix

Interpolated solution, returned as a vector or matrix. The number of rows in y is equal to
the number of solution components being returned.

For multipoint boundary value problems, the solution obtained by bvp4c or bvp5c might
be discontinuous at the interfaces. For an interface point xc, the deval function returns
the average of the limits from the left and right of xc. To get the limit values, set the
value of x to be slightly larger or smaller than xc.

yp — Derivative of continuous solution produced by sol
vector | matrix

Derivative of continuous solution produced by sol, returned as a vector or matrix. yp is
the same size as y and indicates the slope of the interpolating function used by sol at
each solution point in y.

1 Alphabetical List

1-3090

See Also
bvp4c | bvp5c | dde23 | ddensd | ddesd | ode113 | ode15i | ode15s | ode23 | ode23s
| ode23t | ode23tb | ode45

Introduced before R2006a

 deval

1-3091

diag
Create diagonal matrix or get diagonal elements of matrix

Syntax
D = diag(v)
D = diag(v,k)

x = diag(A)
x = diag(A,k)

Description
D = diag(v) returns a square diagonal matrix with the elements of vector v on the main
diagonal.

D = diag(v,k) places the elements of vector v on the kth diagonal. k=0 represents the
main diagonal, k>0 is above the main diagonal, and k<0 is below the main diagonal.

x = diag(A) returns a column vector of the main diagonal elements of A.

x = diag(A,k) returns a column vector of the elements on the kth diagonal of A.

Examples

Create Diagonal Matrices

Create a 1-by-5 vector.

v = [2 1 -1 -2 -5];

Use diag to create a matrix with the elements of v on the main diagonal.

D = diag(v)

1 Alphabetical List

1-3092

D = 5×5

 2 0 0 0 0
 0 1 0 0 0
 0 0 -1 0 0
 0 0 0 -2 0
 0 0 0 0 -5

Create a matrix with the elements of v on the first super diagonal (k=1).

D1 = diag(v,1)

D1 = 6×6

 0 2 0 0 0 0
 0 0 1 0 0 0
 0 0 0 -1 0 0
 0 0 0 0 -2 0
 0 0 0 0 0 -5
 0 0 0 0 0 0

The result is a 6-by-6 matrix. When you specify a vector of length n as an input, diag
returns a square matrix of size n+abs(k).

Get Diagonal Elements

Get the elements on the main diagonal of a random 6-by-6 matrix.

A = randi(10,6)

A = 6×6

 9 3 10 8 7 8
 10 6 5 10 8 1
 2 10 9 7 8 3
 10 10 2 1 4 1
 7 2 5 9 7 1
 1 10 10 10 2 9

x = diag(A)

 diag

1-3093

x = 6×1

 9
 6
 9
 1
 7
 9

Get the elements on the first subdiagonal (k=-1) of A. The result has one fewer element
than the main diagonal.

x1 = diag(A,-1)

x1 = 5×1

 10
 10
 2
 9
 2

Calling diag twice returns a diagonal matrix composed of the diagonal elements of the
original matrix.

A1 = diag(diag(A))

A1 = 6×6

 9 0 0 0 0 0
 0 6 0 0 0 0
 0 0 9 0 0 0
 0 0 0 1 0 0
 0 0 0 0 7 0
 0 0 0 0 0 9

Input Arguments
v — Diagonal elements
vector

1 Alphabetical List

1-3094

Diagonal elements, specified as a vector. If v is a vector with N elements, then diag(v,k)
is a square matrix of order N+abs(k).

diag([]) returns an empty matrix, [].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

A — Input matrix
matrix

Input matrix. diag returns an error if ndims(A) > 2.

diag([]) returns an empty matrix, [].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

k — Diagonal number
integer

Diagonal number, specified as an integer. k=0 represents the main diagonal, k>0 is above
the main diagonal, and k<0 is below the main diagonal.

For an m-by-n matrix, k is in the range (−m + 1) ≤ k ≤ (n− 1) .

 diag

1-3095

Tips
• The trace of a matrix is equal to sum(diag(A)).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you supply k, then it must be a real and scalar integer value.
• For variable-size inputs that are variable-length vectors (1-by-: or :-by-1), diag:

• Treats the input as a vector input
• Returns a matrix with the given vector along the specified diagonal

• For variable-size inputs that are not variable-length vectors, diag:

• Treats the input as a matrix
• Does not support inputs that are vectors at run time
• Returns a variable-length vector

If the input is variable-size (:m-by-:n) and has shape 0-by-0 at run time, then the output
is 0-by-1 not 0-by-0. However, if the input is a constant size 0-by-0, then the output is
[].

• For variable-size inputs that are not variable-length vectors (1-by-: or :-by-1), diag
treats the input as a matrix from which to extract a diagonal vector. This behavior
occurs even if the input array is a vector at run time. To force diag to build a matrix
from variable-size inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

1 Alphabetical List

1-3096

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
blkdiag | isdiag | istril | istriu | spdiags | tril | triu

Introduced before R2006a

 diag

1-3097

matlab.unittest.diagnostics Package
Summary of classes in MATLAB Diagnostics Interface

Description
Use diagnostics to communicate relevant information in the event of a failure. To add a
diagnostic message to a test case, use the diagnostic argument in any of the
matlab.unittest.qualifications methods. The framework also displays diagnostic
messages related to the nature of the qualification failure. The
matlab.unittest.diagnostics package consists of the following classes.

Classes
matlab.unittest.diagnostics.ConstraintDiagnostic Diagnostic with fields common

to most constraints
matlab.unittest.diagnostics.Diagnostic Fundamental interface class

for matlab.unittest diagnostics
matlab.unittest.diagnostics.DiagnosticResult Result of a diagnosed

Diagnostic instance
matlab.unittest.diagnostics.DisplayDiagnostic Diagnostic using a value's

displayed output
matlab.unittest.diagnostics.FigureDiagnostic Diagnostic to save specified

figure
matlab.unittest.diagnostics.FileArtifact Artifact associated with a file

on disk
matlab.unittest.diagnostics.FrameworkDiagnostic Diagnostic provided by testing

framework
matlab.unittest.diagnostics.FunctionHandleDiagnostic Diagnostic using a function's

displayed output
matlab.unittest.diagnostics.LoggedDiagnosticEventData Event data for

DiagnosticLogged event
listeners

matlab.unittest.diagnostics.ScreenshotDiagnostic Diagnostic to capture screen
as image file

matlab.unittest.diagnostics.StringDiagnostic Diagnostic using string

1 Alphabetical List

1-3098

See Also
Introduced in R2013a

 matlab.unittest.diagnostics Package

1-3099

matlab.unittest.diagnostics.ConstraintDiagn
ostic class
Package: matlab.unittest.diagnostics
Superclasses:

Diagnostic with fields common to most constraints

Description
The ConstraintDiagnostic class provides various textual fields that are common to
most constraints. These fields may be turned on or off depending on their applicability.

The ConstraintDiagnostic class is a helper class for displaying diagnostics when
using constraints. The ConstraintDiagnostic class provides custom constraint
authors a way to add a common look and feel to diagnostics produced by the
getDiagnosticFor method of constraints.

Constraint diagnostics are displayed in the following order: Description, Conditions,
Actual Value, and Expected Value.

Properties
ActVal

The actual value passed to the constraint for testing.

ActValHeader

Header information for the actual value property, ActVal, specified as a character vector.
The default header is 'Actual Value:'.

Conditions

Formatted list of conditions, specified as a single character vector. Each condition starts
on a new line and begins with an arrow (-->) delimiter. Conditions are added to the list
using the addCondition and addConditionsFrom methods.

1 Alphabetical List

1-3100

ConditionsCount

Number of conditions in the condition list. This is a read-only property generated from the
conditions list. The conditions list is defined in the Conditions property.

Description

General diagnostic information, specified as a character vector.

DisplayActVal

Indicator whether to display the actual value property, ActVal, specified as a boolean. By
default, the actual value is not displayed and the value of this property is false.

DisplayConditions

Indicator of whether to display the Conditions property, specified as a boolean. By
default, the conditions are not displayed and the value of this property is false. Even if
DisplayConditions is set to true, if there are no conditions on the conditions list,
neither the conditions header or the conditions list are displayed.

DisplayDescription

Indicator of whether to display the Description property, specified as a boolean. By
default, the description is not displayed and the value of this property is false.

DisplayExpVal

Indicator whether to display the expected value property, ExpVal, specified as a boolean.
By default, the expected value is not displayed and the value of this property is false.

ExpVal

If applicable, the expected value. This property can be turned off if the associated
constraint does not contain an expected value.

ExpValHeader

Header information for the expected value property, ExpVal, specified as a character
vector. The default header is 'Expected Value:'.

 matlab.unittest.diagnostics.ConstraintDiagnostic class

1-3101

Inherited Properties
Artifacts

The artifacts produced during the last diagnostic evaluation, returned as an array of
FileArtifact instances.

DiagnosticText

The DiagnosticText property provides the means by which the actual diagnostic
information is communicated to consumers of diagnostics, such as testing frameworks.
The property is a character vector that is defined during evaluation of the diagnose
method.

Methods
addCondition Add condition to condition list
addConditionsFrom Add condition from another ConstraintDiagnostic to

condition list
getDisplayableString Convert object to string for display
getPreDescriptionString Returns text to be displayed prior to description
getPostDescriptionString Returns text to be displayed following description
getPostConditionString Returns text to be displayed following conditions list
getPostActValString Returns text to be displayed following actual value
getPostExpValString Returns text to be displayed following expected value

Inherited Methods
diagnose Execute diagnostic action
join Join multiple diagnostics into a single array

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

1 Alphabetical List

1-3102

See Also
Diagnostic | matlab.unittest.constraints | matlab.unittest.diagnostics

 matlab.unittest.diagnostics.ConstraintDiagnostic class

1-3103

addCondition
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Add condition to condition list

Syntax
addCondition(diag, cond)

Description
addCondition(diag, cond) adds the condition, cond, to the condition list. Add
conditions to the condition list one at a time. When the condition list is displayed, each
condition is preceded by an arrow (-->) delimiter and indented.

Input Arguments
cond

Condition, specified as a character vector or string scalar containing information specific
to the cause of the constraint failure or another Diagnostic instance, which acts as a
“subdiagnostic”. To set multiple conditions, specify cond as a string array or array of
Diagnostic instances.

diag

matlab.unittest.diagnostics.Diagnostic instance.

See Also
addConditionsFrom

1 Alphabetical List

1-3104

addConditionsFrom
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Add condition from another ConstraintDiagnostic to condition list

Syntax
addConditionsFrom(constDiag, otherConstDiag)

Description
addConditionsFrom(constDiag, otherConstDiag) adds the conditions from the
ConstraintDiagnostic instance, constDiag, to the condition list in the Diagnostic
instance, diag. This is useful when a constraints composes another constraint, and needs
to use the conditions produced in the diagnostics of the composed constraint.

Input Arguments
constDiag

Diagnostic to add conditions to, specified as a
matlab.unittest.diagnostics.ConstraintDiagnostic instance

otherConstDiag

Diagnostic to add conditions from, specified as a
matlab.unittest.diagnostics.ConstraintDiagnostic instance

Examples

 addConditionsFrom

1-3105

Add Conditions from a Constraint

% This demonstrates a constraint that composes another constraint
% and uses the addConditionsFrom method to utilize the conditions
% from the composed ConstraintDiagnostic.
classdef IsDouble < matlab.unittest.constraints.Constraint

 properties(Constant, GetAccess=private)
 DoubConst = matlab.unittest.constraints.IsInstanceOf(?double);
 end

 methods
 function tf = satisfiedBy(constraint, actual)
 tf = constraint.DoubConst.satisfiedBy(actual);
 end
 function diag = getDiagnosticFor(constraint, actual)
 diag = ConstraintDiagnostic;

 % Now add conditions from the IsInstanceOf
 % Diagnostic
 otherDiag = constraint.DoubConst.getDiagnosticFor(actual);
 diag.addConditionsFrom(otherDiag)

 % ...
 end
 end
end

See Also
addCondition

1 Alphabetical List

1-3106

matlab.unittest.diagnostics.ConstraintDiagn
ostic.getDisplayableString
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Convert object to string for display

Syntax
str =
matlab.unittest.diagnostics.ConstraintDiagnostic.getDisplayableStrin
g(value)

Description
str =
matlab.unittest.diagnostics.ConstraintDiagnostic.getDisplayableStrin
g(value) converts the object, obj to a character vector, str for display in a diagnostic
result. This conversion determines if hotlinks should be included in the character vector
and truncates large numeric or cell arrays.

Input Arguments
value

Object of arbitrary class

See Also

 matlab.unittest.diagnostics.ConstraintDiagnostic.getDisplayableString

1-3107

getPreDescriptionString
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Returns text to be displayed prior to description

Syntax
str = getPreDescriptionString(constDiag)

Description
str = getPreDescriptionString(constDiag) returns text to be displayed prior to
the description. This method can be overridden to inject character vectors prior to
displaying the Description property of the ConstraintDiagnostic. The location of
this text is tied to the Description property. Its placement relative to other fields is not
guaranteed.

Input Arguments
constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic instance.

See Also
ConstraintDiagnostic | getPostActValString | getPostConditionString |
getPostDescriptionString | getPostExpValString

1 Alphabetical List

1-3108

getPostDescriptionString
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Returns text to be displayed following description

Syntax
str = getPostDescriptionString(constDiag)

Description
str = getPostDescriptionString(constDiag) returns text to be displayed
following the description. This method can be overridden to inject character vectors
subsequent to displaying the Description property of the ConstraintDiagnostic.
The location of this text is tied to the Description property. Its placement relative to
other fields is not guaranteed.

Input Arguments
constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic instance.

See Also
ConstraintDiagnostic | getPostActValString | getPostConditionString |
getPostExpValString | getPreDescriptionString

 getPostDescriptionString

1-3109

getPostConditionString
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Returns text to be displayed following conditions list

Syntax
str = getPostConditionsString(constDiag)

Description
str = getPostConditionsString(constDiag) returns text to be displayed
following the conditions list. This method can be overridden to inject character vectors
subsequent to displaying the Conditions property of the ConstraintDiagnostic. The
location of this text is tied to the Conditions property. Its placement relative to other
fields is not guaranteed.

Input Arguments
constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic instance.

See Also
ConstraintDiagnostic | getPostActValString | getPostDescriptionString |
getPostExpValString | getPreDescriptionString

1 Alphabetical List

1-3110

getPostActValString
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Returns text to be displayed following actual value

Syntax
str = getPostActualValString(constDiag)

Description
str = getPostActualValString(constDiag) returns text to be displayed following
the actual value. This method can be overridden to inject character vectors subsequent to
displaying the ActVal property of the ConstraintDiagnostic. The location of this text
is tied to the ActVal property. Its placement relative to other fields is not guaranteed.

Input Arguments
constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic instance.

See Also
ConstraintDiagnostic | getPostConditionString |
getPostDescriptionString | getPostExpValString |
getPreDescriptionString

 getPostActValString

1-3111

getPostExpValString
Class: matlab.unittest.diagnostics.ConstraintDiagnostic
Package: matlab.unittest.diagnostics

Returns text to be displayed following expected value

Syntax
str = getPostExpValString(constDiag)

Description
str = getPostExpValString(constDiag) returns text to be displayed following the
expected value. This method can be overridden to inject character vectors subsequent to
displaying the ExpVal property of the ConstraintDiagnostic. The location of this text
is tied to the ExpVal property. Its placement relative to other fields is not guaranteed.

Input Arguments
constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic instance.

See Also
ConstraintDiagnostic | getPostActValString | getPostConditionString |
getPostDescriptionString | getPreDescriptionString

1 Alphabetical List

1-3112

matlab.unittest.diagnostics.Diagnostic class
Package: matlab.unittest.diagnostics

Fundamental interface class for matlab.unittest diagnostics

Description
The Diagnostic interface class is the means by which the matlab.unittest
framework and its clients package diagnostic information. All diagnostics are derived
from Diagnostic, whether they are user-supplied test diagnostics for an individual
comparison or diagnostics associated with the Constraint used in the comparison.

Classes which derive from Diagnostic encode the diagnostic actions to be performed.
They produce a diagnostic result that is displayed appropriately by the test running
framework. In exchange for meeting this requirement, any Diagnostic implementation
can be used directly with matlab.unittest qualifications. These qualifications execute
the diagnostic action and store the result for the test running framework to use.

As a convenience, the framework creates appropriate diagnostic instances for arrays of
character vectors, strings, and function handles when they are user supplied test
diagnostics. To retain good performance, these values are only converted into
Diagnostic instances when a qualification failure occurs or when the test running
framework is explicitly observing passing qualifications. The default test runner does not
explicitly observe passing qualifications.

Properties
Artifacts

The artifacts produced during the last diagnostic evaluation, returned as an array of
artifacts.

DiagnosticText

The DiagnosticText property provides the means by which the actual diagnostic
information is communicated to consumers of diagnostics, such as testing frameworks.

 matlab.unittest.diagnostics.Diagnostic class

1-3113

The property is a character vector that is defined during evaluation of the diagnose
method.

Methods
diagnose Execute diagnostic action
join Join multiple diagnostics into a single array

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Use Diagnostic Result

import matlab.unittest.constraints.IsEqualTo

% Create a TestCase for interactive use
testCase = matlab.unittest.TestCase.forInteractiveUse;

% Create StringDiagnostic upon failure
testCase.verifyThat(1, IsEqualTo(2), 'User supplied Diagnostic')

% Create FunctionHandleDiagnostic upon failure
testCase.verifyThat(1, IsEqualTo(2), @() system('ps'))

% Usage of user defined Diagnostic upon failure (see definition below)
testCase.verifyThat(1, IsEqualTo(2), ProcessStatusDiagnostic...
 ('Could not close my third party application!'))

%%%
% Diagnostic definition
%%%
classdef ProcessStatusDiagnostic < matlab.unittest.diagnostics.Diagnostic
 % ProcessStatusDiagnostic - an example diagnostic
 %

1 Alphabetical List

1-3114

 % Simple example to demonstrate how to create a custom
 % diagnostic.

 properties

 % HeaderText - user-supplied header to display
 HeaderText = '(No header supplied)';
 end

 methods
 function diag = ProcessStatusDiagnostic(header)
 % Constructor - construct a ProcessStatusDiagnostic
 %
 % The ProcessStatusDiagnostic constructor takes an
 % optional header to be displayed along with process
 % information.
 if (nargin >0)
 diag.HeaderText = header;
 end
 end

 function diagnose(diag)

 [status, processInfo] = system('ps');
 if (status ~= 0)
 processInfo = sprintf(...
 ['!!! Could not obtain status diagnostic information!!!'...
 ' [exit status code: %d]\n%s'], status, processInfo);
 end
 diag.DiagnosticText = sprintf('%s\n%s', diag.HeaderText,...
 processInfo);
 end
 end

end % classdef

See Also
FunctionHandleDiagnostic | StringDiagnostic |
matlab.unittest.constraints.Constraint | matlab.unittest.diagnostics |
matlab.unittest.plugins.DiagnosticsValidationPlugin

 matlab.unittest.diagnostics.Diagnostic class

1-3115

Topics
“Types of Qualifications”

1 Alphabetical List

1-3116

diagnose
Class: matlab.unittest.diagnostics.Diagnostic
Package: matlab.unittest.diagnostics

Execute diagnostic action

Syntax
diagnose(diag)

Description
diagnose(diag) executes diagnostic action for the
matlab.unittest.diagnostics.Diagnostic instance, diag. The diagnose method
is the means by which individual Diagnostic implementations can perform their
respective diagnostic evaluations. Each concrete implementation is responsible for
populating the DiagnosticText property of the Diagnostic object. Typically, text
printed to the Command Window during diagnostic evaluation is not considered part of
the diagnostic result and is ignored by the testing framework.

See Also
Diagnostic

 diagnose

1-3117

join
Class: matlab.unittest.diagnostics.Diagnostic
Package: matlab.unittest.diagnostics

Join multiple diagnostics into a single array

Syntax
diagArray = join(diag1,...,diagN)

Description
diagArray = join(diag1,...,diagN) joins multiple diagnostics, specified by diag1
through diagN, into a single array, diagArray.

Input Arguments
diag

Diagnostic content, specified as an instance of a Diagnostic object, a string array, a
character array, a function handle, or an arbitrary type.

Output Arguments
diagArray

Array of joined diagnostic content.

• If diagN is an object that derives from Diagnostic, it is included in the array
unmodified.

• If diagN is a char or a string, it is formed into a StringDiagnostic and included
in the array.

1 Alphabetical List

1-3118

• If diagN is a function_handle, it is formed into a FunctionHandleDiagnostic
and included in the array.

• If diagN is any other type, it is formed into a DisplayDiagnostic and included in
the array.

Examples

Join Diagnostic Content
 % The following example creates a diagnostic array of length 4,
 % demonstrating standard Diagnostic conversions. Note:
 % MyCustomDiagnostic is for example purposes and is not executable
 % code.

 import matlab.unittest.diagnostics.Diagnostic
 import matlab.unittest.constraints.IsTrue

 arbitraryValue = 5;
 testCase.verifyThat(false, IsTrue, ...
 Diagnostic.join(...
 'should have been true', ...
 @() system('ps'), ...
 arbitraryValue, ...
 MyCustomDiagnostic))

Alternatives
You can use array concatenation join diagnostics into an array if at least one of the values
is a diagnostic. The join method prevents the need to have any Diagnostics in the
array. Considering the following example.

arbitraryValue = 5;
testCase.verifyThat(false, IsTrue, ...
 ['should have been true', ...
 @() system('ps'), ...
 arbitraryValue, ...
 MyCustomDiagnostic]);

Since MyCustomDiagnostic is a Diagnostic, the other values are correctly converted
to diagnostics as well.

 join

1-3119

See Also
matlab.mixin.Heterogeneous

1 Alphabetical List

1-3120

matlab.unittest.diagnostics.DiagnosticResult
class
Package: matlab.unittest.diagnostics

Result of a diagnosed Diagnostic instance

Description
A DiagnosticResult object captures the result of a diagnosed Diagnostic instance. It
is safer to work with DiagnosticResult instances than to work directly with the
Diagnostic instances.

Only the test framework constructs this class directly. The test framework assigns
property values to the DiagnosticResult instance from the property values of objects
of the QualificationEventData, LoggedDiagnosticEventData,
QualificationDiagnosticRecord, and LoggedDiagnosticRecord classes.

Properties
Artifacts — Artifacts produced during last diagnostic evaluation
array of artifacts

The artifacts produced during the last diagnostic evaluation of a Diagnostic, returned
as an array of artifacts. After the test framework diagnoses the Diagnostic object, it
copies the value of the Artifacts property to the DiagnosticResult instance.

DiagnosticText — Result of diagnostic evaluation
character vector

Result of a diagnostic evaluation of a Diagnostic object, returned as a character vector.
After the test framework diagnoses the Diagnostic object, it copies the value of the
DiagnosticText property to the DiagnosticResult instance.
Data Types: char

 matlab.unittest.diagnostics.DiagnosticResult class

1-3121

See Also
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.diagnostics.LoggedDiagnosticEventData |
matlab.unittest.plugins.diagnosticrecord.LoggedDiagnosticRecord |
matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticReco
rd | matlab.unittest.qualifications.QualificationEventData

Introduced in R2017a

1 Alphabetical List

1-3122

matlab.unittest.diagnostics.DisplayDiagnosti
c class
Package: matlab.unittest.diagnostics
Superclasses:

Diagnostic using a value's displayed output

Description
The DisplayDiagnostic class provides a diagnostic result that uses a value’s displayed
output. This output is the same text displayed using the display function. When the
diagnostic information is accessible through a variable in the current workspace, the
DisplayDiagnostic class is a means to provide quick diagnostic information.

Construction
DisplayDiagnostic(diagValue) creates a new DisplayDiagnostic instance.

Input Arguments
diagValue

The value that the Diagnostic uses to generate diagnostic information.

The resulting diagnostic information is equivalent to displaying this value at the MATLAB
command prompt. The result is packaged for consumption by the testing framework,
which may or may not display the information at the command prompt.

Properties
Value

The value that the Diagnostic uses to generate diagnostic information, specified in the
diagValue input argument. This property is read-only.

 matlab.unittest.diagnostics.DisplayDiagnostic class

1-3123

Inherited Properties
DiagnosticText

The DiagnosticText property provides the means by which the actual diagnostic
information is communicated to consumers of diagnostics, such as testing frameworks.
The property is a character vector that is defined during evaluation of the diagnose
method.

Methods

Inherited Methods

diagnose Execute diagnostic action
join Join multiple diagnostics into a single array

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create DisplayDiagnostic Object

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.diagnostics.DisplayDiagnostic

testCase = TestCase.forInteractiveUse;

Use a DisplayDiagnostic to display diagnostic information upon test failure.

testCase.verifyThat(1, IsEqualTo(2), DisplayDiagnostic(inputParser))

1 Alphabetical List

1-3124

Verification failed.

Test Diagnostic:

 inputParser with properties:

 FunctionName: ''
 CaseSensitive: 0
 KeepUnmatched: 0
 PartialMatching: 1
 StructExpand: 1
 Parameters: {1x0 cell}
 Results: [1x1 struct]
 Unmatched: [1x1 struct]
 UsingDefaults: {1x0 cell}

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 1 2 -1 -0.5

Actual double:
 1
Expected double:
 2

In the test diagnostic section of the output, the output from inputParser object is the
same as MATLAB displays at the command prompt.

See Also
FunctionHandleDiagnostic | StringDiagnostic |
matlab.unittest.diagnostics

 matlab.unittest.diagnostics.DisplayDiagnostic class

1-3125

Introduced in R2013a

1 Alphabetical List

1-3126

matlab.unittest.diagnostics.FigureDiagnosti
c class
Package: matlab.unittest.diagnostics

Diagnostic to save specified figure

Description
Use the FigureDiagnostic class to create a diagnostic that saves a figure to a file. The
file persists after MATLAB completes the test run, and so it is available for post-test
inspection.

Construction
FigureDiagnostic(fig) creates a diagnostic to save a specified figure. When the
testing framework diagnoses the FigureDiagnostic instance, it saves fig to a FIG file
and to a PNG file. Each file has a unique name consisting of a prefix ('Figure_', by
default), an automatically generated identifier, and the file extension. An example file
name is Figure_cf95fe7f-5a7c-4310-9c19-16c0c17a969f.png. To view the
location of the file, access the FileArtifact object through the TestResult instance.

FigureDiagnostic(fig,Name,Value) creates a diagnostic with additional options
specified by one or more Name,Value pair arguments. You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN. For example,
FigureDiagnostic(fig,'Prefix','LoggedFigure_','Formats','png') saves
fig as a PNG file only, and uses the prefix 'LoggedFigure_' instead of 'Figure_'.

Input Arguments
fig — Figure to save
Figure object

Figure to save when the testing framework diagnoses the FigureDiagnostic instance,
specified as a Figure object.

 matlab.unittest.diagnostics.FigureDiagnostic class

1-3127

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: FigureDiagnostic(testFig,'Formats','fig')

Formats — File format of figure
["fig" "png"] (default) | "fig" | "png"

File format of figure, specified as ["fig" "png"], "fig", or "png". You can specify
these values as character vectors, as {'fig','png'}, 'fig', or 'png'. Within the
object, MATLAB stores them as strings.

Prefix — File name prefix
'Figure_' (default) | text

File name prefix, specified as text. If you do not specify a prefix, the default prefix is
'Figure_'. Specify the value as a character vector or string scalar. Within the object,
MATLAB stores it as character vectors.
Example: 'LoggedFigure_'
Example: "TestFig-"

Properties
Figure — Figure to save
Figure object

Figure to save when the testing framework diagnoses the FigureDiagnostic instance,
returned as a Figure object. The Figure property is read-only, and its value is set during
construction.

Formats — File format for the saved figure
["fig" "png"] (default) | "fig" | "png"

File format for the saved figure, returned as ["fig" "png"], "fig", or "png". The
Formats property is read-only, and its value is set during construction.

1 Alphabetical List

1-3128

Prefix — File name prefix
'Figure_' (default) | character vector

File name prefix, returned as a character vector. The default prefix is 'Figure_'. The
Prefix property is read-only, and its value is set during construction.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create FigureDiagnostic Object

Create a TestCase for interactive use.

import matlab.unittest.TestCase
testCase = TestCase.forInteractiveUse;

Create a figure.

fig = figure;
ax = axes(fig);
surf(ax,peaks)

Use a FigureDiagnostic to save the figure as a test diagnostic. Verify that the figure
has no children. This qualification fails and MATLAB displays the test diagnostic.

import matlab.unittest.diagnostics.FigureDiagnostic
testCase.verifyEmpty(fig.Children,FigureDiagnostic(fig))

Interactive verification failed.

Test Diagnostic:

Figure saved to:
--> C:\work\Temp\Figure_0b3da19f-5248-442b-aebf-3fb6d707fd1b.fig
--> C:\work\Temp\Figure_0b3da19f-5248-442b-aebf-3fb6d707fd1b.png

 matlab.unittest.diagnostics.FigureDiagnostic class

1-3129

Framework Diagnostic:

verifyEmpty failed.
--> The value must be empty.
--> The value has a size of [1 1].

Actual matlab.graphics.axis.Axes:
 Axes with properties:

 XLim: [0 50]
 YLim: [0 60]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.130000000000000 0.110000000000000 0.775000000000000 0.815000000000000]
 Units: 'normalized'

 Use get to show all properties

Specify Format and Prefix for FigureDiagnostic

Create a TestCase for interactive use.

import matlab.unittest.TestCase
testCase = TestCase.forInteractiveUse;

Create a figure.

fig = figure;
membrane(6)

Use a FigureDiagnostic to log the figure as a test diagnostic. Save the file only as a
PNG and use a custom prefix for the file name.

import matlab.unittest.diagnostics.FigureDiagnostic
testCase.log(FigureDiagnostic(fig,'Formats',{'png'},'Prefix','LoggedFigure_'))

Interactive diagnostic logged.
Figure saved to:
--> C:\work\Temp\LoggedFigure_0a02faa1-3e14-4783-9954-b56caa6b326d.png

1 Alphabetical List

1-3130

Create Test Report That Includes Artifacts

In a file in your current working folder, create the FigurePropTest test class. If the
failingTest test method fails (it always does in this example), it uses a
FigureDiagnostic to save the figure so you can examine it later.

classdef FigurePropTest < matlab.unittest.TestCase
 properties
 TestFigure
 end
 methods(TestMethodSetup)
 function createFigure(testCase)
 testCase.TestFigure = figure;
 end
 end
 methods(TestMethodTeardown)
 function closeFigure(testCase)
 close(testCase.TestFigure)
 end
 end
 methods(Test)
 function defaultCurrentPoint(testCase)
 cp = testCase.TestFigure.CurrentPoint;
 testCase.verifyEqual(cp,[0 0], ...
 'Default current point is incorrect')
 end
 function defaultCurrentObject(testCase)
 import matlab.unittest.constraints.IsEmpty
 co = testCase.TestFigure.CurrentObject;
 testCase.verifyThat(co,IsEmpty, ...
 'Default current object should be empty')
 end
 function failingTest(testCase)
 import matlab.unittest.diagnostics.FigureDiagnostic
 fig = testCase.TestFigure;
 ax = axes(fig);
 surf(ax,peaks)
 testCase.verifyEmpty(testCase.TestFigure.Children, ...
 FigureDiagnostic(testCase.TestFigure))
 end
 end
end

At the command prompt, create a test suite.

 matlab.unittest.diagnostics.FigureDiagnostic class

1-3131

suite = testsuite('FigurePropTest');

Create a silent test runner that records diagnostics and generates a PDF report.

import matlab.unittest.plugins.DiagnosticsRecordingPlugin
import matlab.unittest.plugins.TestReportPlugin
runner = matlab.unittest.TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin);
runner.addPlugin(TestReportPlugin.producingPDF('MyTestReport.pdf'));

Change the default artifact root to your current working folder.

runner.ArtifactsRootFolder = pwd;

Run the tests. The third test fails.

results = runner.run(suite)

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\work\MyTestReport.pdf

results =

 1×3 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 1 Failed, 0 Incomplete.
 1.2295 seconds testing time.

Display the test diagnostic results for the third test. The test framework saved two
artifacts related to the third test. By default, a FigureDiagnostic object saves a figure
as both a PNG file and a FIG file.

results(3).Details.DiagnosticRecord.TestDiagnosticResults

1 Alphabetical List

1-3132

ans =

 DiagnosticResult with properties:

 Artifacts: [1×2 matlab.unittest.diagnostics.FileArtifact]
 DiagnosticText: 'Figure saved to:↵--> C:\work\715b5416-5c52-4a53-bbec-837a5db57392\Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.fig↵--> C:\work\715b5416-5c52-4a53-bbec-837a5db57392\Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.png'

Display the stored location of the first artifact.

results(3).Details.DiagnosticRecord.TestDiagnosticResults.Artifacts(1)

ans =

 FileArtifact with properties:

 Name: "Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.fig"
 Location: "C:\work\715b5416-5c52-4a53-bbec-837a5db57392"
 FullPath: "C:\work\715b5416-5c52-4a53-bbec-837a5db57392\Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.fig"

To inspect the image related to the failed test, open the file at the location shown in the
FullPath field. Additionally, since you generated a PDF test report, the image is
captured in MyTestReport.pdf. The test report also contains the path to the artifacts.

Tips
• The location of the saved figure is a folder with a name unique to a test run within the

folder contained in the ArtifactsRootFolder. If you are running a test without a
TestRunner, for example with
matlab.unittest.TestCase.forInteractiveUse, the root folder is the value
returned by tempdir().

• To determine the path of the saved figure, access the FileArtifact object for a
particular test result. For example, assume that res is a TestResult array.
Determine the location of the saved figure for the first element of the array as follows.

res(1).Details.DiagnosticRecord.TestDiagnosticResults.Artifacts

ans =

 FileArtifact with properties:

 Name: "Figure_3984704d-b884-44c2-b3ee-7ed10d36e967.png"

 matlab.unittest.diagnostics.FigureDiagnostic class

1-3133

 Location: "C:\mywork\Temp\a1f80242-8f8a-4678-9124-415980432d08"
 FullPath: "C:\mywork\Temp\a1f80242-8f8a-4678-9124-415980432d08\Figure_3984704d-b884-44c2-b3ee-7ed10d36e967.png"

See Also
matlab.unittest.TestRunner | matlab.unittest.diagnostics.FileArtifact

Introduced in R2017a

1 Alphabetical List

1-3134

matlab.unittest.diagnostics.FileArtifact class
Package: matlab.unittest.diagnostics

Artifact associated with a file on disk

Description
Use the FileArtifact class to reference files on disk and to copy the files to a new
location conveniently.

Construction
artifact = FileArtifact(filename) creates an artifact associated with a
particular file on disk.

Input Arguments
filename — Name of file
character vector | string scalar

Name of file on disk, specified as a character vector or string scalar.
Example: "myFile.txt"

Properties
Name — Artifact name
string scalar

Artifact name, returned as a string scalar. For example, if the full path of a file artifact is
"C:\Hello\World.txt", the value of Name would be "World.txt".

Location — Parent folder
string scalar

 matlab.unittest.diagnostics.FileArtifact class

1-3135

The parent folder where the artifact is located, returned as a string scalar.
Example: If the full path of a file artifact is "C:\Hello\World.txt", the value of
Location is "C:\Hello".

FullPath — Full path to artifact
string scalar

The full path to the artifact, returned as a string scalar.
Example: "C:\Hello\World.txt"

Methods
copyTo Copy artifacts to new location

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create FileArtifact Instance

Create a file and write data to it.

filename = "MyFile.txt";
fileID = fopen(filename,'w');
fwrite(fileID,rand(5));
fclose(fileID);

Create a FileArtifact instance. In this example, the current working folder is
"C:\work".

import matlab.unittest.diagnostics.FileArtifact;
artifact = FileArtifact(filename)

artifact =

1 Alphabetical List

1-3136

 FileArtifact with properties:

 Name: "MyFile.txt"
 Location: "C:\work\Desktop"
 FullPath: "C:\work\Desktop\MyFile.txt"

See Also
matlab.unittest.diagnostics.DiagnosticResult |
matlab.unittest.diagnostics.FigureDiagnostic |
matlab.unittest.diagnostics.ScreenshotDiagnostic

Introduced in R2017a

 matlab.unittest.diagnostics.FileArtifact class

1-3137

copyTo
Class: matlab.unittest.diagnostics.FileArtifact
Package: matlab.unittest.diagnostics

Copy artifacts to new location

Syntax
newArtifacts = copyTo(artifact,destination)

Description
newArtifacts = copyTo(artifact,destination) copies artifacts to a new location
and returns an array of updated matlab.unittest.diagnostics.Artifact
instances. The copyTo method sets the Location property on each instance of
newArtifacts to destination.

Input Arguments
artifact — Artifacts to copy to new location
array of matlab.unittest.diagnostics.FileArtifact instances

Artifacts to copy to a new location, specified as an array of
matlab.unittest.diagnostics.FileArtifact instances.

destination — New location for artifacts
character vector | string scalar

New location for the artifacts, specified as a character vector or string scalar.
Example: tempdir()
Example: "mySubFolder
Example: 'C:\work'

1 Alphabetical List

1-3138

Examples

Copy Artifacts to New Location

Create an array of file artifacts. This example assumes that files called someFile.m and
anotherFile.m exist in your current working folder.

import matlab.unittest.diagnostics.FileArtifact;
fileArtifact1 = FileArtifact('someFile.m');
fileArtifact2 = FileArtifact('anotherFile.m');
artifacts = [fileArtifact1 fileArtifact2];

Copy the artifacts to a temporary folder.

destination = tempdir();
newArtifacts = artifacts.copyTo(destination);

See Also
Introduced in R2017a

 copyTo

1-3139

matlab.unittest.diagnostics.FrameworkDiagn
ostic class
Package: matlab.unittest.diagnostics
Superclasses:

Diagnostic provided by testing framework

Description
The FrameworkDiagnostic class provides a diagnostic result from certain testing
framework comparators, constraints, and tolerances. Only the test framework constructs
this class directly.

See Also
matlab.unittest.diagnostics.Diagnostic

Introduced in R2018b

1 Alphabetical List

1-3140

matlab.unittest.diagnostics.FunctionHandle
Diagnostic class
Package: matlab.unittest.diagnostics
Superclasses:

Diagnostic using a function's displayed output

Description
The FunctionHandleDiagnostic class provides a diagnostic result using a function’s
displayed output. This output is the same as the text displayed at the command prompt
when MATLAB executes the function handle. When the diagnostic information is
accessible through information displayed as output of the function handle, the
FunctionHandleDiagnostic is a means to provide quick diagnostic information.

When using matlab.unittest qualifications, a function handle can be supplied directly
as a test diagnostic. In this case, the testing framework automatically creates a
FunctionHandleDiagnostic object.

Construction
FunctionHandleDiagnostic(fcnHandle) creates a new
FunctionHandleDiagnostic instance.

Input Arguments
fcnHandle

The function handle that the Diagnostic uses to generate diagnostic information.

The resulting diagnostic information is equivalent to output displayed at the MATLAB
command prompt. The result is packaged for consumption by the testing framework,
which may or may not display the information at the command prompt.

 matlab.unittest.diagnostics.FunctionHandleDiagnostic class

1-3141

Properties
Fcn

The function handle that the Diagnostic uses to generate diagnostic information,
specified in the fcnHandle input argument. This property is read-only.

Inherited Properties
DiagnosticText

The DiagnosticText property provides the means by which the actual diagnostic
information is communicated to consumers of diagnostics, such as testing frameworks.
The property is a character vector that is defined during evaluation of the diagnose
method.

Methods

Inherited Methods
diagnose Execute diagnostic action
join Join multiple diagnostics into a single array

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create FunctionHandleDiagnostic Object

Create a diagnostic result that displays the output of the dir function when a test fails.

Create a folder in your current working folder.

1 Alphabetical List

1-3142

mkdir('subfolderInCurrentFolder')

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.diagnostics.FunctionHandleDiagnostic

testCase = TestCase.forInteractiveUse;

Use a FunctionHandleDiagnostic to display diagnostic information upon test failure.

testCase.verifyThat(1, IsEqualTo(2), FunctionHandleDiagnostic(@dir))

Verification failed.

Test Diagnostic:

. .. subfolderInCurrentFolder

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 1 2 -1 -0.5

Actual double:
 1
Expected double:
 2

Upon test failure, the diagnostic displays the contents of the current working folder. In
this example output, the folder only contains the subfolder
subfolderInCurrentFolder.

Alternatively, the test framework can create a FunctionHandleDiagnostic object for
you from a function handle input to the verifyThat qualification.

testCase.verifyThat(1, IsEqualTo(2), @dir)

Verification failed.

Test Diagnostic:

 matlab.unittest.diagnostics.FunctionHandleDiagnostic class

1-3143

. .. subfolderInCurrentFolder

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 1 2 -1 -0.5

Actual double:
 1
Expected double:
 2

The testing framework only creates the FunctionHandleDiagnostic object as needed,
typically only in the event of a test failure.

See Also
StringDiagnostic | matlab.unittest.diagnostics |
matlab.unittest.plugins.DiagnosticsValidationPlugin

Introduced in R2013a

1 Alphabetical List

1-3144

matlab.unittest.diagnostics.LoggedDiagnosti
cEventData class
Package: matlab.unittest.diagnostics

Event data for DiagnosticLogged event listeners

Description
The LoggedDiagnosticEventData class holds event data for DiagnosticLogged
event listeners. Invoking the log method within your tests triggers the
DiagnosticLogged event listeners. Only the test framework constructs this class
directly.

Properties
Verbosity

Verbosity level of the logged message, represented as a matlab.unittest.Verbosity
enumeration.

Timestamp

Date and time of the call to the log method, represented as a datetime value.

Diagnostic

Diagnostic specified in the call to the log method, represented as a character vector,
string, function handle, or instance of matlab.unittest.diagnostics.Diagnostic.

Stack

Function call stack leading up to the call to the log method, represented as a structure
array.

 matlab.unittest.diagnostics.LoggedDiagnosticEventData class

1-3145

DiagnosticResults

Results of diagnostics specified in a matlab.unittest.TestCase.log or
matlab.unittest.fixtures.Fixture.log method call, represented as an array of
DiagnosticResult instances.

See Also
matlab.unittest.TestCase | matlab.unittest.TestCase.log |
matlab.unittest.fixtures.Fixture |
matlab.unittest.fixtures.Fixture.log

1 Alphabetical List

1-3146

matlab.unittest.diagnostics.ScreenshotDiag
nostic class
Package: matlab.unittest.diagnostics

Diagnostic to capture screen as image file

Description
Use the ScreenshotDiagnostic class to create a diagnostic that captures available
screens as image files. The files persist after MATLAB completes the test run, and so they
are available for post-test inspection.

Construction
ScreenshotDiagnostic() creates a diagnostic that captures available screens as
image files. When the testing framework diagnoses the ScreenshotDiagnostic
instance, it saves the screenshots to PNG files. The files each have a unique name
consisting of a prefix (Screenshot_', by default), an automatically generated identifier,
and the file extension. An example file name is
Screenshot_cf95fe7f-5a7c-4310-9c49-16c0c18a969f.png. To view the location
of the files, access the FileArtifact object through the TestResult instance.

ScreenshotDiagnostic('Prefix',prefix) creates a diagnostic that saves
screenshots to files with names that begin with a specified prefix.

Input Arguments
prefix — File name prefix
'Screenshot_' (default) | text

File name prefix, specified as text. If you do not specify a prefix, the default prefix is
'Screenshot_'. Specify the value as a character vector or string scalar. Within the
object, MATLAB stores them as character vectors.
Example: 'LoggedScreenshot_'

 matlab.unittest.diagnostics.ScreenshotDiagnostic class

1-3147

Example: "TestScreenshot-"

Properties
Prefix — File name prefix
'Screenshot_' (default) | character vector

File name prefix, returned as a character vector. The default prefix is 'Screenshot_'.
The Prefix property is read-only, and its value is set during construction.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create ScreenshotDiagnostic Object

Create a TestCase for interactive use.

import matlab.unittest.TestCase
testCase = TestCase.forInteractiveUse;

Use a ScreenshotDiagnostic to save an image of the desktop as a test diagnostic.

import matlab.unittest.diagnostics.ScreenshotDiagnostic
testCase.verifyTrue(false,ScreenshotDiagnostic)

Interactive verification failed.

Test Diagnostic:

Screenshot captured to:
--> C:\work\Temp\Screenshot_e99834ed-75e9-4ee1-9596-2f95e64b0ff1.png

Framework Diagnostic:

1 Alphabetical List

1-3148

verifyTrue failed.
--> The value must evaluate to "true".

Actual logical:
 0

Specify Prefix for ScreenshotDiagnostic Object

Create a TestCase for interactive use.

import matlab.unittest.TestCase
testCase = TestCase.forInteractiveUse;

Use a ScreenshotDiagnostic to log an image of the desktop as a test diagnostic with a
custom prefix

import matlab.unittest.diagnostics.ScreenshotDiagnostic
testCase.log(ScreenshotDiagnostic('Prefix','LoggedScreenshot_'))

Interactive diagnostic logged.
Screenshot captured to:
--> C:\work\Temp\LoggedScreenshot_35bb1ecb-441a-4f79-9f59-8b18ac3f9d12.png

Create Test with Screenshot Artifacts

In a file in your current working folder, create the ScreenShotExampleTest test class.
When the failingTest test method fails (it always does in this example), it uses a
ScreenshotDiagnostic to capture an image of the screen so you can examine it later.
The logScreenshotTest test always captures an image of the screen and saves it in a
file prefixed with LoggedScreenshot_.

classdef ScreenShotExampleTest < matlab.unittest.TestCase
 methods (Test)
 function passingTest(testCase)
 testCase.verifyEqual(7,4+3);
 end
 function failingTest(testCase)
 import matlab.unittest.diagnostics.ScreenshotDiagnostic
 testCase.verifyFalse(true,ScreenshotDiagnostic);
 end

 matlab.unittest.diagnostics.ScreenshotDiagnostic class

1-3149

 function logScreenshotTest(testCase)
 import matlab.unittest.diagnostics.ScreenshotDiagnostic
 testCase.verifySubstring("Some Long Message","sage");
 testCase.log(1,ScreenshotDiagnostic('Prefix','LoggedScreenshot_'));
 end
 end
end

Run the tests.

res = runtests('ScreenShotExampleTest');

Running ScreenShotExampleTest
.
==
Verification failed in ScreenShotExampleTest/failingTest.

 Test Diagnostic:

 Screenshot captured to:
 --> C:\Temp\bf0e26d1-8d47-4462-b1f2-673c7d35c236\Screenshot_b24f2219-61a4-4cf8-b4da-fe7e10da92bd.png

 Framework Diagnostic:

 verifyFalse failed.
 --> The value must evaluate to "false".

 Actual logical:
 1

 Stack Information:

 In C:\work\ScreenShotExampleTest.m (ScreenShotExampleTest.failingTest) at 8
==
. [Terse] Diagnostic logged (2016-12-22T11:21:54):
Screenshot captured to:
--> C:\Temp\bf0e26d1-8d47-4462-b1f2-673c7d35c236\LoggedScreenshot_26def240-9a9d-4147-9d3e-c399ae157c0f.png

.
Done ScreenShotExampleTest

1 Alphabetical List

1-3150

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ScreenShotExampleTest/failingTest X Failed by verification.

The framework diagnostics in the Command Window indicate the captured screenshots.
You can also access these locations programmatically through the diagnostic records of
the test results.

Since the second test fails, the screenshot is saved as part of the test diagnostics. Access
the path to the screenshot through the Artifacts object on the
TestDiagnosticResults.

res(2).Details.DiagnosticRecord.TestDiagnosticResults.Artifacts.FullPath

ans =

 "C:\Temp\bf0e26d1-8d47-4462-b1f2-673c7d35c236\Screenshot_b24f2219-61a4-4cf8-b4da-fe7e10da92bd.png"

The third test passes, and the screenshot is saved as part of a logged diagnostic (through
the log method on the TestCase). Access the path to the screenshot through the
Artifacts object on the LoggedDiagnosticResults.

res(3).Details.DiagnosticRecord.LoggedDiagnosticResults.Artifacts.FullPath

ans =

 "C:\Temp\bf0e26d1-8d47-4462-b1f2-673c7d35c236\LoggedScreenshot_26def240-9a9d-4147-9d3e-c399ae157c0f.png"

Tips
• The location of the saved screenshots is a folder with a name unique to a test run

within the folder contained in the ArtifactsRootFolder. If you are running a test
interactively, the location of the root folder is the value returned by tempdir().

• To determine the path of the saved screenshots, access the FileArtifact object for
a particular test result. For example, assume that you have a TestResult array, res.
Determine the location of the saved figure for the first element of the array as follows.

res(1).Details.DiagnosticRecord.TestDiagnosticResults.Artifacts

ans =

 matlab.unittest.diagnostics.ScreenshotDiagnostic class

1-3151

 FileArtifact with properties:

 Name: "Screenshot_f51601ef-86bc-499c-bcec-203969f72a85.png"
 Location: "C:\work\Temp\1f4d3b64-3201-4bde-92ed-ad6859e97051"
 FullPath: "C:\work\Temp\1f4d3b64-3201-4bde-92ed-ad6859e97051\Screenshot_f51601ef-86bc-499c-bcec-203969f72a85.png"

See Also
matlab.unittest.TestRunner | matlab.unittest.diagnostics.FileArtifact

Introduced in R2017a

1 Alphabetical List

1-3152

matlab.unittest.diagnostics.StringDiagnostic
class
Package: matlab.unittest.diagnostics
Superclasses:

Diagnostic using string

Description
The StringDiagnostic class provides a diagnostic result that uses a string. When the
diagnostic information is known at the time of construction, the StringDiagnostic is a
means to provide quick diagnostic information.

When using matlab.unittest qualifications, a string can be supplied directly as a test
diagnostic. In this case, the testing framework automatically creates a
StringDiagnostic object.

Construction
StringDiagnostic(diagString) creates a new StringDiagnostic instance.

Input Arguments
diagString

The string that the Diagnostic uses to generate diagnostic information.

 matlab.unittest.diagnostics.StringDiagnostic class

1-3153

Methods

Inherited Methods
diagnose Execute diagnostic action
join Join multiple diagnostics into a single array

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create StringDiagnostic Object

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEqualTo
import matlab.unittest.diagnostics.StringDiagnostic

testCase = TestCase.forInteractiveUse;

Use a StringDiagnostic to display diagnostic information upon test failure.

testCase.verifyThat(1, IsEqualTo(2), ...
 StringDiagnostic('actual was supposed to be equal to expected'))

Verification failed.

 Test Diagnostic:

 actual was supposed to be equal to expected

 Framework Diagnostic:

 IsEqualTo failed.
 --> NumericComparator failed.

1 Alphabetical List

1-3154

 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________
 1 2 -1 -0.5

 Actual Value:
 1
 Expected Value:
 2

Alternatively, the test framework can create a StringDiagnostic object for you from a
string input to the verifyThat qualification.

testCase.verifyThat(1, IsEqualTo(2), ...
 'actual was supposed to be equal to expected')

Verification failed.

 Test Diagnostic:

 actual was supposed to be equal to expected

 Framework Diagnostic:

 IsEqualTo failed.
 --> NumericComparator failed.
 --> The numeric values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________
 1 2 -1 -0.5

 Actual Value:
 1
 Expected Value:
 2

The testing framework only creates the StringDiagnostic object as needed, typically
only in the event of a test failure.

See Also
FunctionHandleDiagnostic | matlab.unittest.diagnostics

 matlab.unittest.diagnostics.StringDiagnostic class

1-3155

Introduced in R2013a

1 Alphabetical List

1-3156

dialog
Create empty modal dialog box

Syntax
d = dialog
d = dialog(Name,Value)

Description
d = dialog creates an empty dialog box and returns d, a Figure object. Use the
uicontrol function to add user interface controls to a dialog.

d = dialog(Name,Value) specifies one or more Figure property names and
corresponding values. Use this syntax to override the default properties.

Examples

Dialog Containing Text and a Button

Use the uicontrol function to add user interface controls to a dialog box. For instance,
create a program file called mydialog.m that displays a dialog containing text and a
button.

function mydialog
 d = dialog('Position',[300 300 250 150],'Name','My Dialog');

 txt = uicontrol('Parent',d,...
 'Style','text',...
 'Position',[20 80 210 40],...
 'String','Click the close button when you''re done.');

 btn = uicontrol('Parent',d,...
 'Position',[85 20 70 25],...

 dialog

1-3157

 'String','Close',...
 'Callback','delete(gcf)');
end

Next, run the mydialog function from the Command Window.

mydialog

Dialog That Returns Output

Use the uiwait function to return output based on user selections in the dialog box. For
instance, create a program file called choosedialog.m to perform these tasks:

• Call the dialog function to create dialog with a specific size, location, and the title,
“Select One”.

• Call the uicontrol function three times to add text, a pop-up menu, and a button,
respectively.

• Define the function, popup_callback, to serve as the callback function for the
button.

• Call the uiwait function to wait for the user to close the dialog before returning the
output to the command line.

function choice = choosedialog

 d = dialog('Position',[300 300 250 150],'Name','Select One');
 txt = uicontrol('Parent',d,...
 'Style','text',...

1 Alphabetical List

1-3158

 'Position',[20 80 210 40],...
 'String','Select a color');

 popup = uicontrol('Parent',d,...
 'Style','popup',...
 'Position',[75 70 100 25],...
 'String',{'Red';'Green';'Blue'},...
 'Callback',@popup_callback);

 btn = uicontrol('Parent',d,...
 'Position',[89 20 70 25],...
 'String','Close',...
 'Callback','delete(gcf)');

 choice = 'Red';

 % Wait for d to close before running to completion
 uiwait(d);

 function popup_callback(popup,event)
 idx = popup.Value;
 popup_items = popup.String;
 % This code uses dot notation to get properties.
 % Dot notation runs in R2014b and later.
 % For R2014a and earlier:
 % idx = get(popup,'Value');
 % popup_items = get(popup,'String');
 choice = char(popup_items(idx,:));
 end
end

Run the choosedialog function from the Command Window. Then, select a color in the
dialog.

color = choosedialog

 dialog

1-3159

choosedialog returns the last selected color when you close the dialog.

color =

Blue

Note The uiwait function blocks the MATLAB thread. Although uiwait works well in a
simple modal dialog, it not recommended for use in more sophisticated applications.

Input Arguments

Name-Value Pair Arguments
Example: 'WindowStyle','normal' sets the WindowStyle property to 'normal'.

The properties listed here are only a subset. For a complete list, see Figure.

Position — Location and size of drawable area
[left bottom width height]

Location and size of the drawable area, specified as a vector of the form [left bottom
width height]. This area excludes the figure borders, title bar, menu bar, and tool bars.

This table describes each element in the Position vector.

1 Alphabetical List

1-3160

Element Description
left Distance from the left edge of the primary display to the

inner left edge of the window. This value can be negative
on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

bottom Distance from the bottom edge of the primary display to
the inner bottom edge of the window. This value can be
negative on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

width Distance between the right and left inner edges of the
dialog.

height Distance between the top and bottom inner edges of the
window.

All measurements are in units specified by the Units property.

You cannot specify the figure Position property when the figure is docked.

In MATLAB Online, the bottom and left elements of the Position vector are ignored.

To place the full window, including the borders, title bar, menu bar, tool bars, use the
OuterPosition property.

Note The Windows operating system enforces a minimum window width and a maximum
window size. If you specify a figure size outside of those limits, the displayed figure will
conform to the limits instead of the size you specified.

ButtonDownFcn — Button down callback
'' (default) | function handle | cell array | character vector

Button down callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 dialog

1-3161

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

This callback executes whenever the user clicks a blank area of the figure.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

Use the SelectionType property to determine whether the user pressed modifier keys.

WindowStyle — Window style
'normal' (default) | 'modal' | 'docked'

Window style, specified as one of the following:

• 'normal' — The figure window is independent of other windows, and the other
windows are accessible while the figure is displaying.

• 'modal' — The figure displays on top of all existing figure windows, making them
inaccessible as long as the top figure exists and remains modal. However, any new
figures created after a modal figure will display.

When multiple modal windows exist, the most recently created window keeps focus
and stays above all other windows until it becomes invisible, or is returned to a normal
window style, or is deleted. At that time, focus reverts to the window that last had
focus.

• 'docked' — The figure displays in the desktop or a document window. When the
WindowStyle property is set to 'docked', you cannot set the DockControls
property to 'off'. The 'docked' option is not supported in MATLAB Online.

Note These are some important characteristics of the WindowStyle property and some
recommended best practices:

• When you create UI windows, always specify the WindowStyle property. If you also
want to set the Resize, Position, or OuterPosition properties of the figure, then
set the WindowStyle property first.

• You can change the WindowStyle property of a figure at any time, including when the
figure is visible and contains children. However on some systems, setting this property
might cause the figure to flash or disappear and reappear, depending on the system's
implementation of normal and modal windows. For best visual results, set the
WindowStyle property at creation time or when the figure is invisible.

1 Alphabetical List

1-3162

• Calling reset on a figure does not change the value of the WindowStyle property.

Modal Window Style Behavior

When WindowStyle is set to 'modal', the figure window traps all keyboard and mouse
actions over all MATLAB windows as long as the windows are visible. Windows belonging
to applications other than MATLAB are unaffected.

Typing Ctrl+C when a modal figure has focus causes that figure to revert to a 'normal'
WindowStyle property setting. This allows the user to type at the command line.

Figures with the WindowStyle property set to 'modal' and the Visible property set to
'off' do not behave modally until MATLAB makes them visible. Therefore, you can hide
a modal window for later reuse, instead of destroying it.

Modal figures do not display menu children, built-in menus, or toolbars. But, it is not an
error to create menus in a modal figure or to change the WindowStyle property setting
to 'modal' on a figure with menu children. The Menu objects exist and the figure retains
them. If you reset the figure's WindowStyle property to 'normal', the menus display.

Output Arguments
d — Dialog window
Figure object

Dialog window, returned as a Figure object with these properties values set.

Property Value
ButtonDownFcn 'if isempty(allchild(gcbf)),

close(gcbf), end'
Colormap []
DockControls 'off'
HandleVisibility 'callback'
IntegerHandle 'off'
InvertHardcopy 'off'

 dialog

1-3163

Property Value
MenuBar 'none'
Number []
NumberTitle 'off'
PaperPositionMode 'auto'
Resize 'off'
WindowStyle 'modal'

See Also
Figure | errordlg | msgbox | questdlg | waitfor | warndlg

Introduced before R2006a

1 Alphabetical List

1-3164

diary
Log Command Window text to file

Syntax
diary
diary filename
diary off
diary on

Description
diary toggles logging on and off. When logging in on, MATLAB captures entered
commands, keyboard input, and text output from the Command Window. It saves the
resulting log to the current folder as an ASCII text file named diary.

To see whether logging is on, type get(0,'Diary'). MATLAB returns either 'on' or
'off'.

diary filename saves the resulting log to filename. If the file already exists, MATLAB
appends the text to the end of the file. To see the name of the current diary file, type
get(0,'DiaryFile').

diary off disables logging.

diary on enables logging using the current diary file name.

Examples

Log Statements and Output

Create a diary file and record several statements and their output.

Enable logging and save the resulting log to myDiaryFile.

 diary

1-3165

diary myDiaryFile

Perform a calculation, and create and display a matrix of ones in the Command Window.

a = 1;
b = sin(a);

x = ones(4)

x =

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

Disable logging and display the log file in the Command Window.

diary off
type myDiaryFile

a = 1;
b = sin(a);
x = ones(4)

x =

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

diary off

Input Arguments
filename — Log file name
character vector | string

Log file name, specified as a character vector or string. filename can include a full path
or a path relative to the current folder. Otherwise, MATLAB saves filename in the
current folder.

1 Alphabetical List

1-3166

Limitations
Because the output of diary is plain text, the log file does not exactly mirror what you
see on screen:

• The diary file does not include graphics (figure windows).
• The diary file does not preserve syntax highlighting and font preferences.
• The diary file shows hidden components in the Command Window, such as hyperlink

information generated with matlab:, in plain text. For example, if you enter this
statement in the Command Window

str = sprintf('%s%s', ...
 '', ...
 'Generate magic square');
disp(str)

MATLAB displays

However, the diary file, when viewed in a text editor, shows

str = sprintf('%s%s', ...
 '', ...
 'Generate magic square');
disp(str)
Generate magic square

Tips
• To view the contents of the diary file with syntax highlighting, use the type function.

See Also
evalc | type

Topics
“Write to a Diary File”
“Set Command History Preferences”

 diary

1-3167

Introduced before R2006a

1 Alphabetical List

1-3168

diff
Differences and approximate derivatives

Syntax
Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description
Y = diff(X) calculates differences between adjacent elements of X along the first array
dimension whose size does not equal 1:

• If X is a vector of length m, then Y = diff(X) returns a vector of length m-1. The
elements of Y are the differences between adjacent elements of X.

Y = [X(2)-X(1) X(3)-X(2) ... X(m)-X(m-1)]

• If X is a nonempty, nonvector p-by-m matrix, then Y = diff(X) returns a matrix of
size (p-1)-by-m, whose elements are the differences between the rows of X.

Y = [X(2,:)-X(1,:); X(3,:)-X(2,:); ... X(p,:)-X(p-1,:)]

• If X is a 0-by-0 empty matrix, then Y = diff(X) returns a 0-by-0 empty matrix.

Y = diff(X,n) calculates the nth difference by applying the diff(X) operator
recursively n times. In practice, this means diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference calculated along the dimension specified by
dim. The dim input is a positive integer scalar.

Examples

 diff

1-3169

Differences Between Vector Elements

Create a vector, then compute the differences between the elements.

X = [1 1 2 3 5 8 13 21];
Y = diff(X)

Y = 1×7

 0 1 1 2 3 5 8

Note that Y has one fewer element than X.

Differences Between Matrix Rows

Create a 3-by-3 matrix, then compute the first difference between the rows.

X = [1 1 1; 5 5 5; 25 25 25];
Y = diff(X)

Y = 2×3

 4 4 4
 20 20 20

Y is a 2-by-3 matrix.

Multiple Differences

Create a vector and compute the second-order difference between the elements.

X = [0 5 15 30 50 75 105];
Y = diff(X,2)

Y = 1×5

 5 5 5 5 5

1 Alphabetical List

1-3170

Differences Between Matrix Columns

Create a 3-by-3 matrix, then compute the first-order difference between the columns.

X = [1 3 5;7 11 13;17 19 23];
Y = diff(X,1,2)

Y = 3×2

 2 2
 4 2
 2 4

Y is a 3-by-2 matrix.

Approximate Derivatives with diff

Use the diff function to approximate partial derivatives with the syntax Y =
diff(f)/h, where f is a vector of function values evaluated over some domain, X, and h
is an appropriate step size.

For example, the first derivative of sin(x) with respect to x is cos(x), and the second
derivative with respect to x is -sin(x). You can use diff to approximate these
derivatives.

h = 0.001; % step size
X = -pi:h:pi; % domain
f = sin(X); % range
Y = diff(f)/h; % first derivative
Z = diff(Y)/h; % second derivative
plot(X(:,1:length(Y)),Y,'r',X,f,'b', X(:,1:length(Z)),Z,'k')

 diff

1-3171

In this plot the blue line corresponds to the original function, sin. The red line
corresponds to the calculated first derivative, cos, and the black line corresponds to the
calculated second derivative, -sin.

Differences Between Datetime Values

Create a sequence of equally-spaced datetime values, and find the time differences
between them.

1 Alphabetical List

1-3172

t1 = datetime('now');
t2 = t1 + minutes(5);
t = t1:minutes(1.5):t2

t = 1x4 datetime array
Columns 1 through 3

 02-Mar-2019 20:53:06 02-Mar-2019 20:54:36 02-Mar-2019 20:56:06

Column 4

 02-Mar-2019 20:57:36

dt = diff(t)

dt = 1x3 duration array
 00:01:30 00:01:30 00:01:30

diff returns a duration array.

Input Arguments
X — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. X can be a numeric
array, logical array, datetime array, or duration array.
Complex Number Support: Yes

n — Difference order
positive integer scalar | []

Difference order, specified as a positive integer scalar or []. The default value of n is 1.

It is possible to specify n sufficiently large so that dim reduces to a single (size(X,dim)
= 1) dimension. When this happens, diff continues calculating along the next array
dimension whose size does not equal 1. This process continues until a 0-by-0 empty
matrix is returned.

 diff

1-3173

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional p-by-m input array, A:

• diff(A,1,1) works on successive elements in the columns of A and returns a (p-1)-
by-m difference matrix.

• diff(A,1,2) works on successive elements in the rows of A and returns a p-by-(m-1)
difference matrix.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
Y — Difference array
scalar | vector | matrix | multidimensional array

Difference array, returned as a scalar, vector, matrix, or multidimensional array. If X is a
nonempty array, then the dimension of X acted on by diff is reduced in size by n in the
output.

1 Alphabetical List

1-3174

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

You must use the three-input syntax Y = diff(X,N,dim).

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If supplied, the arguments representing the number of times to apply diff and the
dimension along which to calculate the difference must be constants.

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 diff

1-3175

See Also
cumsum | gradient | prod | sum

Introduced before R2006a

1 Alphabetical List

1-3176

diffuse
Calculate diffuse reflectance

Syntax
R = diffuse(Nx,Ny,Nz,S)

Description
R = diffuse(Nx,Ny,Nz,S) returns the reflectance of a surface with normal vector
components [Nx,Ny,Nz]. S specifies the direction to the light source. You can specify
these directions as three vectors[x,y,z] or two vectors [Theta Phi (in spherical
coordinates).

Lambert's Law: R = cos(PSI) where PSI is the angle between the surface normal and
light source.

See Also
specular | surfl | surfnorm

Topics
“Lighting Overview”

 diffuse

1-3177

condensation
Graph condensation

Syntax
C = condensation(G)

Description
C = condensation(G) returns a directed graph C whose nodes represent the strongly
connected components in G. This reduction provides a simplified view of the connectivity
between components.

Examples

Condense Strongly Connected Components into Single Nodes

Create and plot a graph that contains several strongly connected components. Highlight
the strongly connected components.

s = [1 1 2 3 3 4 4 4 4 5 5 6 6 6 7 8 8 9 9 10 10 10 11 11 12 13 13 14 15];
t = [1 3 1 2 5 1 2 12 13 6 8 7 8 10 10 9 10 5 11 9 11 14 12 14 13 11 15 13 14];
G = digraph(s,t);
p = plot(G);

1 Alphabetical List

1-3178

bins = conncomp(G);
p.MarkerSize = 7;
p.NodeCData = bins;
colormap(hsv(4))

 condensation

1-3179

Use condensation to represent each component as a single node. Color the nodes based
on the components they represent.

C = condensation(G);
p2 = plot(C);
p2.MarkerSize = 7;
p2.NodeCData = 1:4;
colormap(hsv(4))

1 Alphabetical List

1-3180

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

 condensation

1-3181

Output Arguments
C — Condensation graph
digraph object

Condensation graph, returned as a digraph object. C is a directed acyclic graph (DAG),
and is topologically sorted. The node numbers in C correspond to the bin numbers
returned by conncomp.

condensation determines the nodes and edges in C by the components and connectivity
in G:

• C contains a node for each strongly connected component in G.
• C contains an edge between node I and node J if there is an edge from any node in

component I to any node in component J of G.

See Also
bctree | conncomp

Topics
“Directed and Undirected Graphs”
“Visualize Breadth-First and Depth-First Search”

Introduced in R2016b

1 Alphabetical List

1-3182

flipedge
Reverse edge directions

Syntax
H = flipedge(G)
H = flipedge(G,s,t)
H = flipedge(G,idx)

Description
H = flipedge(G) returns a directed graph that has the same edges as G, but with
reversed directions. H contains the same node and edge properties as G.

H = flipedge(G,s,t) reverses a subset of edges using the node pairs s and t.

H = flipedge(G,idx) reverses a subset of edges using the edge indices idx.

Examples

Reverse All Edges in Graph

Create and plot a directed graph. Then reverse the direction of all of the edges in the
graph.

G = digraph([1 1 1 1],[2 3 4 5]);
plot(G)

 flipedge

1-3183

H = flipedge(G);
plot(H)

1 Alphabetical List

1-3184

Reverse Subset of Graph Edges

Create and plot a directed graph. Specify custom xy node coordinates for the plot.

G = digraph([1 1 2 2 3],[2 3 3 4 5]);
x = [1 0 2 -1 3];
y = [1 2 2 2.5 2.5];
plot(G,'XData',x,'YData',y)

 flipedge

1-3185

Reverse the direction of the edges (2,4) and (3,5), and then replot the graph.

H = flipedge(G,[2 3],[4 5]);
plot(H,'XData',x,'YData',y)

1 Alphabetical List

1-3186

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

s,t — Node pairs (as separate arguments)
node indices | node names

 flipedge

1-3187

Node pairs, specified as separate arguments of node indices or node names. Similarly
located elements in s and t specify the source and target nodes for edges in the graph.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: H = flipedge(G,[1 4],[2 3]) reverses the direction of the edges (1,2) and
(4,3).
Example: H = flipedge(G,{'a' 'd'},{'b' 'c'}) reverses the direction of the
edges (a,b) and (d,c).

idx — Edge indices
scalar | vector

Edge indices, specified as a scalar or vector of positive integers. Each edge index
corresponds to a row in the G.Edges table of the graph G.Edges(idx,:).
Example: H = flipedge(G,3) flips the direction of edge G.Edges(3,:).

Output Arguments
H — Output graph
digraph object

Output graph, returned as a digraph object. Compared to G, H has the same nodes but
some or all of the edges are in reversed direction. H also has the same node and edge
properties as G.

1 Alphabetical List

1-3188

See Also
addedge | digraph | findedge | rmedge

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”

Introduced in R2016b

 flipedge

1-3189

indegree
In-degree of nodes

Syntax
D = indegree(G)
D = indegree(G,nodeIDs)

Description
D = indegree(G) returns a column vector containing the in-degree of each node in G.

D = indegree(G,nodeIDs) returns the in-degree of the nodes specified by nodeIDs.

Examples

In-degree of All Graph Nodes

Create and plot a directed graph, and then compute the in-degree of every node in the
graph. The in-degree of a node is equal to the number of edges with that node as the
target.

s = [1 3 2 2 4 5 1 2];
t = [2 2 4 5 6 6 6 6];
G = digraph(s,t);
plot(G)

1 Alphabetical List

1-3190

indeg = indegree(G)

indeg = 6×1

 0
 2
 0
 1
 1
 4

indeg(j) indicates the in-degree of node j.

 indegree

1-3191

In-degree of Subset of Graph Nodes

Create and plot a directed graph with named nodes. Then compute the number of edges
that have the 'a', 'b', and 'f' nodes as their target.

s = {'a' 'c' 'b' 'b' 'd' 'e' 'a' 'b'};
t = {'b' 'b' 'd' 'e' 'f' 'f' 'f' 'f'};
G = digraph(s,t);
plot(G)

nodeID = {'a' 'b' 'f'}';
indeg = indegree(G,nodeID)

1 Alphabetical List

1-3192

indeg = 3×1

 0
 2
 4

indeg(j) indicates the in-degree of node nodeID(j).

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

nodeIDs — Node identifiers
node indices | node names

Node identifiers, specified as one or more node indices or node names.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: indegree(G,1)

 indegree

1-3193

Example: indegree(G,["A" "B" "C"])

Output Arguments
D — In-degree of nodes
array

In-degree of nodes, returned as a numeric array. D is a column vector unless you specify
nodeIDs, in which case D has the same size as nodeIDs.

See Also
digraph | outdegree | predecessors

Introduced in R2015b

1 Alphabetical List

1-3194

inedges
Incoming edges to node

Syntax
eid = inedges(G,nodeID)
[eid,nid] = inedges(G,nodeID)

Description
eid = inedges(G,nodeID) returns the indices of all incoming edges to node nodeID
in directed graph G.

[eid,nid] = inedges(G,nodeID) additionally returns the node IDs of the
predecessor nodes connected to nodeID by the edges in eid.

Examples

Incoming Edges of Selected Node

Create a multigraph with three nodes and four edges. Find the incoming edges of node 3.

G = digraph([1 1 1 2],[2 2 3 3]);
G.Edges

ans=4×1 table
 EndNodes

 1 2
 1 2
 1 3
 2 3

 inedges

1-3195

eid = inedges(G,3)

eid = 2×1

 3
 4

G.Edges(eid,:)

ans=2×1 table
 EndNodes

 1 3
 2 3

Find Incoming Edges and Node Predecessors

Plot a graph and highlight the incoming edges and predecessors of a selected node.

Create and plot a directed graph using the bucky adjacency matrix. Highlight node 1 for
reference.

G = digraph(bucky);
p = plot(G);
highlight(p,1,'NodeColor','r','MarkerSize',10)

1 Alphabetical List

1-3196

Determine the incoming edges and predecessors of node 1. Highlight these nodes and
edges.

[eid,nid] = inedges(G,1)

eid = 3×1

 4
 13
 16

nid = 3×1

 inedges

1-3197

 2
 5
 6

X = G.Edges(eid,:)

X=3×2 table
 EndNodes Weight
 ________ ______

 2 1 1
 5 1 1
 6 1 1

highlight(p,nid,'NodeColor','g','MarkerSize',9)
highlight(p,'Edges',eid,'EdgeColor','g')

1 Alphabetical List

1-3198

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

nodeID — Node identifier
node index | node name

 inedges

1-3199

Node identifier, specified as one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: inedges(G,1)
Example: inedges(G,'A')

Output Arguments
eid — Edge indices
column vector

Edge indices, returned as a column vector. You can use the edge indices to index into the
edges table of the graph with G.Edges(eid,:).

nid — Node IDs of predecessors
node indices | node names

Node IDs of predecessors, returned as node indices if nodeID is numeric, or as node
names if nodeID is a node name. Use findnode(G,nid) to convert node names into
node indices. You can use node indices to index into the nodes table of the graph with
G.Nodes(nid,:).

The node IDs in nid are the same as those returned by the predecessors function.
However, if there are multiple incoming edges from the same node, this node is listed
more than once in nid.

Tips
• By convention, for undirected graphs, all edges incident to a node are considered to be

outgoing edges. Use outedges with undirected graphs.
• For graphs with multiple edges, inedges and predecessors can return arrays of
different lengths, since there can be multiple incoming edges from some of the
predecessors.

1 Alphabetical List

1-3200

See Also
digraph | outedges | predecessors

Introduced in R2018a

 inedges

1-3201

isdag
Determine if graph is acyclic

Syntax
tf = isdag(G)

Description
tf = isdag(G) returns logical 1 (true) if G is a directed acyclic graph on page 1-3204;
otherwise, it returns logical 0 (false).

Examples

Determine if Directed Graph is Acyclic

Create and plot a directed graph, and then test the graph to determine if it is acyclic.

s = [1 1 2 2 3 3 4 4 4 5];
t = [2 3 4 5 6 7 8 9 10 4];
G = digraph(s,t)

G =
 digraph with properties:

 Edges: [10x1 table]
 Nodes: [10x0 table]

plot(G)

1 Alphabetical List

1-3202

tf = isdag(G)

tf = logical
 1

Input Arguments
G — Input graph
digraph object

 isdag

1-3203

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

Definitions

Directed Acyclic Graph (DAG)
A directed graph is acyclic if it contains no cycles. That is, starting at any node in the
graph, no sequence of edges exists that can be followed to loop back to that starting
node. As a result, directed acyclic graphs do not contain any self-loops.

See Also
digraph | reordernodes | toposort

Introduced in R2015b

1 Alphabetical List

1-3204

outdegree
Out-degree of nodes

Syntax
D = outdegree(G)
D = outdegree(G,nodeIDs)

Description
D = outdegree(G) returns a column vector containing the out-degree of each node in
G.

D = outdegree(G,nodeIDs) returns the out-degree of the nodes specified by
nodeIDs.

Examples

Out-degree of All Graph Nodes

Create and plot a directed graph, and then compute the out-degree of every node in the
graph. The out-degree of a node is equal to the number of edges with that node as the
source.

s = [1 3 2 2 4 5 1 2];
t = [2 2 4 5 6 6 6 6];
G = digraph(s,t);
plot(G)

 outdegree

1-3205

outdeg = outdegree(G)

outdeg = 6×1

 2
 3
 1
 1
 1
 0

outdeg(j) indicates the out-degree of node j.

1 Alphabetical List

1-3206

Out-degree of Subset of Graph Nodes

Create and plot a directed graph with named nodes. Then compute the number of edges
that have the 'a', 'b', and 'f' nodes as their source.

s = {'a' 'c' 'b' 'b' 'd' 'e' 'a' 'b'};
t = {'b' 'b' 'd' 'e' 'f' 'f' 'f' 'f'};
G = digraph(s,t);
plot(G)

nodeID = {'a' 'b' 'f'}';
outdeg = outdegree(G,nodeID)

 outdegree

1-3207

outdeg = 3×1

 2
 3
 0

outdeg(j) indicates the out-degree of node nodeID(j).

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

nodeIDs — Node identifiers
node indices | node names

Node identifiers, specified as one or more node indices or node names.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: outdegree(G,1)

1 Alphabetical List

1-3208

Example: outdegree(G,["A" "B" "C"])

Output Arguments
D — Out-degree of nodes
array

Out-degree of nodes, returned as a numeric array. D is a column vector unless you specify
nodeIDs, in which case D has the same size as nodeIDs.

See Also
digraph | indegree | successors

Introduced in R2015b

 outdegree

1-3209

predecessors
Node predecessors

Syntax
preIDs = predecessors(G,nodeID)

Description
preIDs = predecessors(G,nodeID) returns the predecessor nodes of the node in
directed graph G specified by nodeID. The predecessor nodes form directed edges with
preIDs as the source nodes, and nodeID as the target node.

Examples

Node Predecessors

Create and plot a directed graph and determine the predecessor nodes of node 'e'.

s = [1 1 1 2 2 3 3 7 8];
t = [2 3 4 5 6 7 8 5 5];
names = {'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h'};
G = digraph(s,t,[],names);
plot(G)

1 Alphabetical List

1-3210

preIDs = predecessors(G,'e')

preIDs = 3x1 cell array
 {'b'}
 {'g'}
 {'h'}

Input Arguments
G — Input graph
digraph object

 predecessors

1-3211

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

nodeID — Node identifier
node index | node name

Node identifier, specified as one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: preIDs = predecessors(G,3) finds the predecessor nodes of node 3.

Output Arguments
preIDs — Predecessor node IDs
node indices | node names

Predecessor node IDs, returned as a node indices or node names.

• If nodeID is a numeric node index, then preIDs contains numeric node indices.
• If nodeID is a node name, then preIDs contains node names.

Tips
• For multigraphs with multiple edges between the same two nodes, the output of

inedges can be longer than that of predecessors, since there can be multiple
incoming edges from some of the predecessors.

See Also
digraph | indegree | inedges | neighbors | successors

1 Alphabetical List

1-3212

Introduced in R2015b

 predecessors

1-3213

successors
Node successors

Syntax
sucIDs = successors(G,nodeID)

Description
sucIDs = successors(G,nodeID) returns the successor nodes of the node in directed
graph G specified by nodeID. The successor nodes form directed edges with nodeID as
the source node, and sucIDs as the target nodes.

Examples

Node Successors

Create and plot a directed graph and determine the successor nodes of node 'a'.

s = [1 1 1 2 2 3 3 7 8];
t = [2 3 4 5 6 7 8 5 5];
names = {'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h'};
G = digraph(s,t,[],names);
plot(G)

1 Alphabetical List

1-3214

sucIDs = successors(G,'a')

sucIDs = 3x1 cell array
 {'b'}
 {'c'}
 {'d'}

Input Arguments
G — Input graph
digraph object

 successors

1-3215

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

nodeID — Node identifier
node index | node name

Node identifier, specified as one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: sucIDs = successors(G,3) finds the successor nodes of node 3.

Output Arguments
sucIDs — Successor node IDs
node indices | node names

Successor node IDs, returned as a node indices or node names.

• If nodeID is a numeric node index, then sucIDs contains numeric node indices.
• If nodeID is a node name, then sucIDs contains node names.

Tips
• For multigraphs with multiple edges between the same two nodes, the output of

outedges can be longer than that of successors, since there can be multiple
outgoing edges to some of the successors.

See Also
digraph | neighbors | outdegree | outedges | predecessors

1 Alphabetical List

1-3216

Introduced in R2015b

 successors

1-3217

toposort
Topological order of directed acyclic graph

Syntax
n = toposort(G)
n = toposort(G,'Order',algorithm)
[n,H] = toposort(___)

Description
n = toposort(G) returns the topological order on page 1-3223 of the nodes in G such
that i < j for every edge (n(i),n(j)) in G. The directed graph G cannot have any
cycles.

n = toposort(G,'Order',algorithm) specifies the ordering algorithm. For example,
toposort(G,'Order','stable') uses a stable ordering algorithm based on the
lexicographical order of the nodes.

[n,H] = toposort(___) additionally returns directed graph H whose nodes are in the
given topological order. You can use any of the input argument combinations in previous
syntaxes.

Examples

Topological Sort of Nodes

Create and plot a graph that represents a progression of university-level Mathematics
courses. An edge between two courses signifies a course requirement.

A = [0 1 1 0 0 0 0
 0 0 0 1 0 0 0
 0 1 0 1 0 0 1
 0 0 0 0 1 1 0

1 Alphabetical List

1-3218

 0 0 0 0 0 0 0
 0 0 0 0 1 0 0
 0 0 0 0 1 0 0];
names = {'Calculus I','Linear Algebra','Calculus II', ...
 'Multivariate Calculus','Topology', ...
 'Differential Equations','Real Analysis'};
G = digraph(A,names);
plot(G)

Find the topological sorting of the courses to determine the proper order in which they
should be completed.

N = toposort(G)

 toposort

1-3219

N = 1×7

 1 3 7 2 4 6 5

G.Nodes.Name(N,:)

ans = 7x1 cell array
 {'Calculus I' }
 {'Calculus II' }
 {'Real Analysis' }
 {'Linear Algebra' }
 {'Multivariate Calculus' }
 {'Differential Equations'}
 {'Topology' }

Stable Topological Sort

Create a directed graph using a logical adjacency matrix, and then plot the graph.

rng default;
A = tril(sprand(10, 10, 0.3), -1)~=0;
G = digraph(A);
[~,G] = toposort(G);
plot(G)

1 Alphabetical List

1-3220

Find the topological sorting of the graph nodes. Even though G is already in topological
order, (1 2 3 4 5 6 7 8 9 10), toposort reorders the nodes.

toposort(G)

ans = 1×10

 2 1 4 10 9 8 5 7 3 6

Specify Order as 'stable' to use the stable ordering algorithm, so that the sort orders
the nodes with smaller indices first. Stable sort does not rearrange G if it is already in
topological order.

toposort(G,'Order','stable')

 toposort

1-3221

ans = 1×10

 1 2 3 4 5 6 7 8 9 10

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. G must be a directed acyclic graph. Use
isdag to confirm that G does not contain cycles.

Use digraph to create a directed graph.
Example: G = digraph([1 2],[2 3])

algorithm — Ordering algorithm
'fast' (default) | 'stable'

Ordering algorithm, specified as 'fast' or 'stable':

'fast' (default) Based on a depth-first search. A node is
added to the beginning of the list after
considering all of its descendents.

If G is already in topological order, this
method might still reorder the nodes.

'stable' Based on lexicographical order. n(1) is the
node with smallest index, n(2) the next
smallest given n(1), and so on.

If G is in topological order then H is
unchanged and n is 1:numnodes(G).

Example: [n,H] = toposort(G,'Order','stable')

1 Alphabetical List

1-3222

Output Arguments
n — Node indices
row vector

Node indices, returned as a row vector.

H — Topologically sorted graph
digraph object

Topologically sorted graph, returned as a digraph object. H is the same graph as G, but
has the nodes reordered according to n.

Definitions

Topological Order
The topological ordering of a directed graph is an ordering of the nodes in the graph such
that each node appears before its successors (descendents).

Consider a directed graph whose nodes represent tasks and whose edges represent
dependencies that certain tasks must be completed before others. For such a graph, the
topological sorting of the graph nodes produces a valid sequence in which the tasks could
be performed.

See Also
digraph | isdag | reordernodes

Introduced in R2015b

 toposort

1-3223

transclosure
Transitive closure

Syntax
H = transclosure(G)

Description
H = transclosure(G) returns the transitive closure on page 1-3227 of graph G as a
new graph, H. The nodes in H are the same as those in G, but H has additional edges. If
there is a path from node i to node j in G, then there is an edge between node i and
node j in H. For multigraphs with multiple edges between the same two nodes, the output
graph replaces these with a single edge.

Examples

Transitive Closure of Graph

Create and plot a directed graph.

G = digraph([1 2 3 4 4 4 5 5 5 6 7 8],[2 3 5 1 3 6 6 7 8 9 9 9]);
plot(G)

1 Alphabetical List

1-3224

Find the transitive closure of graph G and plot the resulting graph. H contains the same
nodes as G, but has additional edges.

H = transclosure(G);
plot(H)

 transclosure

1-3225

The transitive closure information in H can be used to answer reachability questions about
the original graph, G.

Determine the nodes in G that can be reached from node 1. These nodes are the
successors of node 1 in the transitive closure graph, H.

N = successors(H,1)

N = 7×1

 2
 3
 5
 6

1 Alphabetical List

1-3226

 7
 8
 9

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

Output Arguments
H — Transitive closure of G
digraph object

Transitive closure of G, returned as a digraph object. The table G.Nodes is copied to H,
but any properties in G.Edges are dropped.

Use successors(H,n) to determine the nodes in G that are reachable from node n.

Definitions

Transitive Closure
The transitive closure of a graph describes the paths between the nodes. If there is a path
from node i to node j in a graph, then an edge exists between node i and node j in the
transitive closure of that graph. Thus, for a given node in the graph, the transitive closure
turns any reachable node into a direct successor (descendent) of that node.

 transclosure

1-3227

See Also
conncomp | digraph | predecessors | successors | transreduction

Introduced in R2015b

1 Alphabetical List

1-3228

transreduction
Transitive reduction

Syntax
H = transreduction(G)

Description
H = transreduction(G) returns the transitive reduction on page 1-3236 of graph G as
a new graph, H. The nodes in H are the same as those in G, but H has different edges. H
contains the fewest number of edges such that if there is a path from node i to node j in
G, then there is also a path from node i to node j in H.

Examples

Transitive Reduction of Complete Graph

Create and plot a complete graph of order four.

G = digraph([1 1 1 2 2 2 3 3 3 4 4 4],[2 3 4 1 3 4 1 2 4 1 2 3]);
plot(G)

 transreduction

1-3229

Find the transitive reduction and plot the resulting graph. Since the reachability in a
complete graph is extensive, there are theoretically several possible transitive reductions,
as any cycle through the four nodes is a candidate.

H = transreduction(G);
plot(H)

1 Alphabetical List

1-3230

Two graphs with the same reachability also have the same transitive reduction.
Therefore, any cycle of four nodes produces the same transitive reduction as H.

Create a directed graph that contains a different four node cycle: (1,3,4,2,1).

G1 = digraph([1 3 4 2],[3 4 2 1]);
plot(G1)

 transreduction

1-3231

Find the transitive reduction of G1. The cycle in G1 is reordered so that the transitive
reductions H and H1 have the same cycle, (1,2,3,4,1).

H1 = transreduction(G1);
plot(H1)

1 Alphabetical List

1-3232

Unique Transitive Reduction

Create and plot a directed acyclic graph.

s = [1 1 1 1 2 3 3 4];
t = [2 3 4 5 4 4 5 5];
G = digraph(s,t);
plot(G)

 transreduction

1-3233

Confirm that G does not contain any cycles.

tf = isdag(G)

tf = logical
 1

Find the transitive reduction of the graph. Since the graph does not contain cycles, the
transitive reduction is unique and is a subgraph of G.

H = transreduction(G);
plot(H)

1 Alphabetical List

1-3234

Input Arguments
G — Input graph
digraph object

Input graph, specified as a digraph object. Use digraph to create a directed graph
object.
Example: G = digraph([1 2],[2 3])

 transreduction

1-3235

Output Arguments
H — Transitive reduction of G
digraph object

Transitive reduction of G, returned as a digraph object. The table G.Nodes is copied to
H, but any properties in G.Edges are dropped. H might contain new edges not present in
G.

H contains the fewest number of edges that still preserve the reachability of graph G. In
other words, transclosure(H) is the same as transclosure(G).

If isdag(G) is true, then H is unique and is a subgraph of G.

Definitions

Transitive Reduction
The transitive reduction of graph G is the graph with the fewest edges that still shares the
same reachability as G. Therefore, of all the graphs that have the same transitive closure
as G, the transitive reduction is the one with the fewest edges. If two directed graphs
have the same transitive closure, they also have the same transitive reduction.

See Also
conncomp | digraph | transclosure

Introduced in R2015b

1 Alphabetical List

1-3236

digraph
Graph with directed edges

Description
digraph objects represent directed graphs, which have directional edges connecting the
nodes. After you create a digraph object, you can learn more about the graph by using
the object functions to perform queries against the object. For example, you can add or
remove nodes or edges, determine the shortest path between two nodes, or locate a
specific node or edge.

G = digraph([1 1], [2 3])
e = G.Edges
G = addedge(G,2,3)
G = addnode(G,4)
plot(G)

Creation

Syntax
G = digraph

G = digraph(A)
G = digraph(A,nodenames)
G = digraph(A,NodeTable)
G = digraph(A, ___ ,'omitselfloops')

G = digraph(s,t)
G = digraph(s,t,weights)
G = digraph(s,t,weights,nodenames)
G = digraph(s,t,weights,NodeTable)
G = digraph(s,t,weights,num)
G = digraph(s,t, ___ ,'omitselfloops')
G = digraph(s,t,EdgeTable, ___)

 digraph

1-3237

G = digraph(EdgeTable)
G = digraph(EdgeTable,NodeTable)
G = digraph(EdgeTable, ___ ,'omitselfloops')

Description
G = digraph creates an empty directed graph object, G, which has no nodes or edges.

G = digraph(A) creates a weighted directed graph using a square adjacency matrix, A.
The location of each nonzero entry in A specifies an edge for the graph, and the weight of
the edge is equal to the value of the entry. For example, if A(2,1) = 10, then G contains
an edge from node 2 to node 1 with a weight of 10.

G = digraph(A,nodenames) additionally specifies node names. The number of
elements in nodenames must be equal to size(A,1).

G = digraph(A,NodeTable) specifies node names (and possibly other node attributes)
using a table, NodeTable. The table must have the same number of rows as A. Specify
node names using the table variable Name.

G = digraph(A, ___ ,'omitselfloops') ignores the diagonal elements of A and
returns a graph without any self-loops. You can use any of the input argument
combinations in previous syntaxes.

G = digraph(s,t) specifies directed graph edges (s,t) in pairs to represent the
source and target nodes. s and t can specify node indices or node names.

G = digraph(s,t,weights) also specifies edge weights with the array weights.

G = digraph(s,t,weights,nodenames) additionally specifies node names using the
cell array of character vectors or string array, nodenames. s and t cannot contain node
names that are not in nodenames.

G = digraph(s,t,weights,NodeTable) specifies node names (and possibly other
node attributes) using a table, NodeTable. Specify node names using the Name table
variable. s and t cannot contain node names that are not in NodeTable.

G = digraph(s,t,weights,num) specifies the number of nodes in the graph with the
numeric scalar num.

1 Alphabetical List

1-3238

G = digraph(s,t, ___ ,'omitselfloops') does not add any self-loops to the graph.
That is, any k that satisfies s(k) == t(k) is ignored. You can use any of the input
argument combinations in previous syntaxes.

G = digraph(s,t,EdgeTable, ___) uses a table to specify edge attributes instead of
specifying weights. The EdgeTable input must be a table with a row for each
corresponding pair of elements in s and t. Specify edge weights using the table variable
Weight.

G = digraph(EdgeTable) uses the table EdgeTable to define the graph. With this
syntax, the first variable in EdgeTable must be named EndNodes, and it must be a two-
column array defining the edge list of the graph.

G = digraph(EdgeTable,NodeTable) additionally specifies the names (and possibly
other attributes) of the graph nodes using a table, NodeTable.

G = digraph(EdgeTable, ___ ,'omitselfloops') does not add self-loops to the
graph. That is, any k that satisfies EdgeTable.EndNodes(k,1) ==
EdgeTable.EndNodes(k,2) is ignored. You must specify EdgeTable and optionally can
specify NodeTable.

Input Arguments
A — Adjacency matrix
matrix

Adjacency matrix, specified as a full or sparse, numeric matrix. The entries in A specify
the network of connections (edges) between the nodes of the graph. The location of each
nonzero entry in A specifies an edge between two nodes. The value of that entry provides
the edge weight. A logical adjacency matrix results in an unweighted graph.

Nonzero entries on the main diagonal of A specify self-loops, or nodes that are connected
to themselves with an edge. Use the 'omitselfloops' input option to ignore diagonal
entries.
Example: A = [0 1 0; 0 0 0; 5 0 0] describes a graph with three nodes and two
edges. The edge from node 1 to node 2 has a weight of 1, and the edge from node 3 to
node 1 has a weight of 5.
Data Types: single | double | logical

 digraph

1-3239

nodenames — Node names
cell array of character vectors | string array

Node names, specified as a cell array of character vectors or string array. nodenames
must have length equal to numnodes(G) so that it contains a nonempty, unique name for
each node in the graph.
Example: G = digraph(A,{'n1','n2','n3'}) specifies three node names for a 3-
by-3 adjacency matrix, A.
Data Types: cell | string

s,t — Source and target node pairs (as separate arguments)
node indices | node names

Source and target node pairs, specified as node indices or node names. digraph creates
directed edges between the corresponding nodes in s and t, which must both be numeric,
or both be character vectors, cell arrays of character vectors, categorical arrays, or string
arrays. In all cases, s and t must have the same number of elements.

• If s and t are numeric, then they correspond to indices of graph nodes. Numeric node
indices must be positive integers greater than or equal to 1.

• If s and t are character vectors, cell arrays of character vectors, or string arrays, then
they specify names for the nodes. The Nodes property of the graph is a table
containing a Name variable with the node names, G.Nodes.Name.

• If s and t are categorical arrays, then the categories in s and t are used as the node
names in the graph. This can include categories that are not elements in s or t.

• If s and t specify multiple edges between the same two nodes, then the result is a
multigraph.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]

1 Alphabetical List

1-3240

Form Single Node Multiple Nodes
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]
Categorical array

Example:
categorical("A")

Categorical array

Example:
categorical(["A" "B"
"C"])

Example: G = digraph([1 2 3],[2 4 5]) creates a graph with five nodes and three
edges.
Example: G = digraph({'Boston' 'New York' 'Washington D.C.'},{'New
York' 'New Jersey' 'Pittsburgh'}) creates a graph with five named nodes and
three edges.

weights — Edge weights
scalar | vector | matrix | multidimensional array | []

Edge weights, specified as a scalar, vector, matrix, or multidimensional array. weights
must be a scalar or an array with the same number of elements as s and t.

digraph stores the edge weights as a Weight variable in the G.Edges property table. To
add or change weights after creating a graph, you can modify the table variable directly,
for example, G.Edges.Weight = [25 50 75]'.

If you specify weights as an empty array [], then it is ignored.
Example: G = digraph([1 2],[2 3],[100 200]) creates a graph with three nodes
and two edges. The edges have weights of 100 and 200.
Data Types: single | double

num — Number of graph nodes
positive scalar integer

 digraph

1-3241

Number of graph nodes, specified as a positive scalar integer. num must be greater than
or equal to the largest elements in s and t.
Example: G = digraph([1 2],[2 3],[],5) creates a graph with three connected
nodes and two isolated nodes.

EdgeTable — Table of edge information
table

Table of edge information. If you do not specify s and t, then the first variable in
EdgeTable is required to be a two-column matrix, cell array of character vectors, or
string array called EndNodes that defines the graph edges. For edge weights, use the
variable Weight, since this table variable name is used by some graph functions. If there
is a variable Weight, then it must be a numeric column vector. See table for more
information on constructing a table.

After creating a graph, query the edge information table using G.Edges.
Example: EdgeTable = table([1 2; 2 3; 3 5; 4 5],'VariableNames',
{'EndNodes'})

Data Types: table

NodeTable — Table of node information
table

Table of node information. NodeTable can contain any number of variables to describe
attributes of the graph nodes. For node names, use the variable Name, since this variable
name is used by some graph functions. If there is a variable Name, then it must be a cell
array of character vectors or string array specifying a unique name in each row. See
table for more information on constructing a table.

After the graph is created, query the node information table using G.Nodes.
Example: NodeTable = table({'a'; 'b'; 'c'; 'd'},'VariableNames',
{'Name'})

Data Types: table

Output Arguments
G — Directed graph
digraph object

1 Alphabetical List

1-3242

Directed graph, returned as a digraph object. For more information, see digraph.

Properties
Edges — Edges of graph
table

Edges of graph, returned as a table. By default this is an M-by-1 table, where M is the
number of edges in the graph.

• To add new edge properties to the graph, create a new variable in the Edges table.
• To add or remove edges from the graph, use the addedge or rmedge object functions.

Example: G.Edges returns a table listing the edges in the graph
Example: G.Edges.Weight returns a numeric vector of the edge weights.
Example: G.Edges.Weight = [10 20 30 55]' specifies new edge weights for the
graph.
Example: G.Edges.NormWeight = G.Edges.Weight/sum(G.Edges.Weight) adds a
new edge property to the table containing the normalized weights of the edges.
Data Types: table

Nodes — Nodes of graph
table

Nodes of graph, returned as a table. By default this is an empty N-by-0 table, where N is
the number of nodes in the graph.

• To add new node properties to the graph, create a new variable in the Nodes table.
• To add or remove nodes from the graph, use the addnode or rmnode object functions.

Example: G.Nodes returns a table listing the node properties of the graph. This table is
empty by default.
Example: G.Nodes.Names = {'Montana', 'New York', 'Washington',
'California'}' adds node names to the graph by adding the variable Names to the
Nodes table.
Example: G.Nodes.WiFi = logical([1 0 0 1 1]') adds the variable WiFi to the
Nodes table. This property specifies that certain airports have wireless internet coverage.

 digraph

1-3243

Data Types: table

Object Functions

Access and Modify Nodes and Edges
addedge Add new edge to graph
rmedge Remove edge from graph
flipedge Reverse edge directions
addnode Add new node to graph
rmnode Remove node from graph
findedge Locate edge in graph
findnode Locate node in graph
numedges Number of edges in graph
numnodes Number of nodes in graph
edgecount Number of edges between two nodes
reordernodes Reorder graph nodes
subgraph Extract subgraph

Search and Structure
bfsearch Breadth-first graph search
dfsearch Depth-first graph search
centrality Measure node importance
toposort Topological order of directed acyclic graph
transclosure Transitive closure
transreduction Transitive reduction
isdag Determine if graph is acyclic
conncomp Connected graph components
condensation Graph condensation
maxflow Maximum flow in graph
isisomorphic Determine whether two graphs are isomorphic
isomorphism Compute isomorphism between two graphs
ismultigraph Determine whether graph has multiple edges
simplify Reduce multigraph to simple graph

Shortest Path
shortestpath Shortest path between two single nodes

1 Alphabetical List

1-3244

shortestpathtree Shortest path tree from node
distances Shortest path distances of all node pairs

Matrix Representation
adjacency Graph adjacency matrix
incidence Graph incidence matrix

Node Information
indegree In-degree of nodes
outdegree Out-degree of nodes
predecessors Node predecessors
successors Node successors
nearest Nearest neighbors within radius
inedges Incoming edges to node
outedges Outgoing edges from node

Visualization
plot Plot graph nodes and edges

Examples

Create and Modify Digraph Object

Create a digraph object with three nodes and three edges. One edge is from node 1 to
node 2, another is from node 1 to node 3, and the third is from node 2 to node 1.

G = digraph([1 1 2],[2 3 1])

G =
 digraph with properties:

 Edges: [3x1 table]
 Nodes: [3x0 table]

View the edge table of the graph. For directed graphs, the first column indicates the
source nodes of each edge, and the second column indicates the target nodes.

 digraph

1-3245

G.Edges

ans=3×1 table
 EndNodes

 1 2
 1 3
 2 1

Add node names to the graph, then view the new node and edge tables. The source and
target nodes of each edge are now expressed using their node names.

G.Nodes.Name = {'A' 'B' 'C'}';
G.Nodes

ans=3×1 table
 Name

 'A'
 'B'
 'C'

G.Edges

ans=3×1 table
 EndNodes

 'A' 'B'
 'A' 'C'
 'B' 'A'

You can add or modify extra variables in the Nodes and Edges tables to describe
attributes of the graph nodes or edges. However, you cannot directly change the number
of nodes or edges in the graph by modifying these tables. Instead, use the addedge,
rmedge, addnode, or rmnode functions to modify the number of nodes or edges in a
graph.

For example, add an edge to the graph between nodes 2 and 3 and view the new edge list.

1 Alphabetical List

1-3246

G = addedge(G,2,3)

G =
 digraph with properties:

 Edges: [4x1 table]
 Nodes: [3x1 table]

G.Edges

ans=4×1 table
 EndNodes

 'A' 'B'
 'A' 'C'
 'B' 'A'
 'B' 'C'

Adjacency Matrix Graph Construction

Create a symmetric adjacency matrix, A, that creates a complete directed graph of order
4. Use a logical adjacency matrix to create a graph without weights.

A = ones(4) - diag([1 1 1 1])

A = 4×4

 0 1 1 1
 1 0 1 1
 1 1 0 1
 1 1 1 0

G = digraph(A~=0)

G =
 digraph with properties:

 Edges: [12x1 table]

 digraph

1-3247

 Nodes: [4x0 table]

View the edge list of the graph.

G.Edges

ans=12×1 table
 EndNodes

 1 2
 1 3
 1 4
 2 1
 2 3
 2 4
 3 1
 3 2
 3 4
 4 1
 4 2
 4 3

Adjacency Matrix Construction with Node Names

Create an adjacency matrix.

A = magic(4);
A(A>10) = 0

A = 4×4

 0 2 3 0
 5 0 10 8
 9 7 6 0
 4 0 0 1

Create a graph with named nodes using the adjacency matrix. Specify 'omitselfloops'
to ignore the entries on the diagonal of A.

1 Alphabetical List

1-3248

names = {'alpha' 'beta' 'gamma' 'delta'};
G = digraph(A,names,'omitselfloops')

G =
 digraph with properties:

 Edges: [8x2 table]
 Nodes: [4x1 table]

View the edge and node information.

G.Edges

ans=8×2 table
 EndNodes Weight
 __________________ ______

 'alpha' 'beta' 2
 'alpha' 'gamma' 3
 'beta' 'alpha' 5
 'beta' 'gamma' 10
 'beta' 'delta' 8
 'gamma' 'alpha' 9
 'gamma' 'beta' 7
 'delta' 'alpha' 4

G.Nodes

ans=4×1 table
 Name

 'alpha'
 'beta'
 'gamma'
 'delta'

Edge List Graph Construction

Create and plot a cube graph using a list of the end nodes of each edge.

 digraph

1-3249

s = [1 1 1 2 2 3 3 4 5 5 6 7];
t = [2 4 8 3 7 4 6 5 6 8 7 8];
G = digraph(s,t)

G =
 digraph with properties:

 Edges: [12x1 table]
 Nodes: [8x0 table]

plot(G,'Layout','force')

1 Alphabetical List

1-3250

Edge List Graph Construction with Node Names and Edge Weights

Create and plot a cube graph using a list of the end nodes of each edge. Specify node
names and edge weights as separate inputs.

s = [1 1 1 2 2 3 3 4 5 5 6 7];
t = [2 4 8 3 7 4 6 5 6 8 7 8];
weights = [10 10 1 10 1 10 1 1 12 12 12 12];
names = {'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H'};
G = digraph(s,t,weights,names)

G =
 digraph with properties:

 Edges: [12x2 table]
 Nodes: [8x1 table]

plot(G,'Layout','force','EdgeLabel',G.Edges.Weight)

 digraph

1-3251

Edge List Construction with Extra Nodes

Create a weighted graph using a list of the end nodes of each edge. Specify that the
graph should contain a total of 10 nodes.

s = [1 1 1 1 1];
t = [2 3 4 5 6];
weights = [5 5 5 6 9];
G = digraph(s,t,weights,10)

G =
 digraph with properties:

1 Alphabetical List

1-3252

 Edges: [5x2 table]
 Nodes: [10x0 table]

Plot the graph. The extra nodes are disconnected from the primary connected component.

plot(G)

Add Nodes and Edges to Empty Graph

Create an empty digraph object, G.

 digraph

1-3253

G = digraph;

Add three nodes and three edges to the graph. The corresponding entries in s and t
define the source and target nodes of the edges. addedge automatically adds the
appropriate nodes to the graph if they are not already present.

s = [1 2 1];
t = [2 3 3];
G = addedge(G,s,t)

G =
 digraph with properties:

 Edges: [3x1 table]
 Nodes: [3x0 table]

View the edge list. Each row describes an edge in the graph.

G.Edges

ans=3×1 table
 EndNodes

 1 2
 1 3
 2 3

For the best performance, construct graphs all at once using a single call to digraph.
Adding nodes or edges in a loop can be slow for large graphs.

Graph Construction with Tables

Create an edge table that contains the variables EndNodes, Weight, and Code. Then
create a node table that contains the variables Name and Country. The variables in each
table specify properties of the graph nodes and edges.

s = [1 1 1 2 2 3];
t = [2 3 4 3 4 4];
weights = [6 6.5 7 11.5 12 17]';

1 Alphabetical List

1-3254

code = {'1/44' '1/49' '1/33' '44/49' '44/33' '49/33'}';
EdgeTable = table([s' t'],weights,code, ...
 'VariableNames',{'EndNodes' 'Weight' 'Code'})

EdgeTable=6×3 table
 EndNodes Weight Code
 ________ ______ _______

 1 2 6 '1/44'
 1 3 6.5 '1/49'
 1 4 7 '1/33'
 2 3 11.5 '44/49'
 2 4 12 '44/33'
 3 4 17 '49/33'

names = {'USA' 'GBR' 'DEU' 'FRA'}';
country_code = {'1' '44' '49' '33'}';
NodeTable = table(names,country_code,'VariableNames',{'Name' 'Country'})

NodeTable=4×2 table
 Name Country
 _____ _______

 'USA' '1'
 'GBR' '44'
 'DEU' '49'
 'FRA' '33'

Create a graph using the node and edge tables. Plot the graph using the country codes as
node and edge labels.

G = digraph(EdgeTable,NodeTable);
plot(G,'NodeLabel',G.Nodes.Country,'EdgeLabel',G.Edges.Code)

 digraph

1-3255

Compatibility Considerations

Change in handling of duplicate edges
Behavior changed in R2018a

graph, digraph, and addedge no longer produce errors when they encounter duplicate
edges. Instead, the duplicate edges are added to the graph and the result is a multigraph.
The ismultigraph function is useful to detect this situation, and simplify provides an
easy way to remove the extra edges.

1 Alphabetical List

1-3256

See Also
graph | subgraph

Topics
“Build Watts-Strogatz Small World Graph Model”
“Use PageRank Algorithm to Rank Websites”
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”
“Graph Plotting and Customization”

Introduced in R2015b

 digraph

1-3257

dir
List folder contents

Syntax
dir
dir name
listing = dir(name)

Description
dir lists files and folders in the current folder.

dir name lists files and folders that match name. When name is a folder, dir lists the
contents of the folder. Specify name using absolute or relative path names. The name
argument can include the * wildcard in the file name, and both the * and the ** wildcard
in the path name. Characters next to a ** wildcard must be file separators.

listing = dir(name) returns attributes about name.

Examples

View Contents of Folder

List the contents of a folder.

Create a folder, myfolder, that contains the files myfile1.m, myfile2.m, and
myfile3.m.

mkdir myfolder
movefile myfile1.m myfolder
movefile myfile2.m myfolder
movefile myfile3.m myfolder

List the files in myfolder.

1 Alphabetical List

1-3258

dir myfolder

. .. myfile1.m myfile2.m myfile3.m

Find Files Matching Specified Name

List all files with a .m extension that contain the term my.

Create a folder, myfolder, that contains the files myfile1.m, myfile2.m, and
myfile3.txt.

mkdir myfolder
movefile myfile1.m myfolder
movefile myfile2.m myfolder
movefile myfile3.txt myfolder

List the matching files in myfolder.

cd myfolder
dir *my*.m

myfile1.m myfile2.m

Find Files in Subfolders

List all files in the current folder and all of the subfolders of the current folder.

Create a folder, myfolder1, that contains these files and folders:

myfile1.m
myfolder2
 myfile2.m
 myfolder3.m
 myfile3.m

mkdir myfolder1
mkdir myfolder1/myfolder2
mkdir myfolder1/myfolder2/myfolder3

movefile myfile1.m myfolder1

 dir

1-3259

movefile myfile2.m myfolder1/myfolder2
movefile myfile3.m myfolder1/myfolder2/myfolder3

List all files with a .m extension in myfolder1 and all of the subfolders of myfolder1.

cd myfolder1
dir **/*.m

Files Found in Current Folder:

myfile1.m

Files Found in: myfolder2

myfile2.m

Files Found in: myfolder2\myfolder3

myfile3.m

Find Information in the Return Structure

Return the folder listing of myfolder to the variable MyFolderInfo.

Create a folder, myfolder, that contains the files myfile1.m, myfile2.m, and
myfile3.m.

mkdir myfolder
movefile myfile1.m myfolder
movefile myfile2.m myfolder
movefile myfile3.m myfolder

Get a list of the files in myfolder. MATLAB returns the information in a structure array.

MyFolderInfo = dir('myfolder')

MyFolderInfo = 5x1 struct array with fields:
 name
 folder
 date
 bytes
 isdir

1 Alphabetical List

1-3260

 datenum

Index into the structure to access a particular item.

MyFolderInfo(3).name

ans =
'myfile1.m'

Find Date File Last Modified

Get the serial date number for the date and time a file was last modified.

Use the datenum field of the structure returned by the dir command. Do not use the
datenum function to convert the date field of the structure to a number. The results of
the datenum function vary depending on the locale. Instead, use the datenum field.

MyFileInfo = dir('myfile1.m');
FileDate = MyFileInfo.datenum

FileDate = 7.3647e+05

Input Arguments
name — File or folder name
character vector | string scalar

File or folder name, specified as a character vector or string scalar.

Note If name is a string, enclose it in parentheses. For example, dir("FolderName").

To search for multiple files, use wildcards in the file name. For example, dir *.txt lists
all files with a txt extension in the current folder. To search through folders and
subfolders on the path recursively, use wildcards in the path name. For example, dir */
*.txt lists all files with a txt extension exactly one folder under the current folder, and

 dir

1-3261

dir **/*.txt lists all files with a txt extension zero or more folders under the current
folder. Characters next to a ** wildcard must be file separators.

Note MATLAB always treats the * character as a wildcard, even on file systems that
support * in file names.

The MATLAB dir function is consistent with the Microsoft Windows operating system
dir command in that both support short file names generated by DOS.

Output Arguments
listing — File attributes
structure array

File attributes, returned as a n-by-1 structure array, where n is the number of files and
folders returned by the dir command.

This table shows the fields in the structure.

Field
Name

Description Class

name File or folder name char
folder Location of file or folder char
date Modification date timestamp char
bytes Size of the file in bytes double
isdir 1 if name is a folder; 0 if name is a file logical
datenum Modification date as serial date

number.
double

Tips
• To exclude invalid entries returned by the dir command, use the cellfun function.

MyFolderInfo = dir;
MyFolderInfo = MyFolderInfo(~cellfun('isempty', {MyFolderInfo.date}));

1 Alphabetical List

1-3262

Invalid entries occur when you run dir with an output argument and the results
include a nonexistent file or a file that dir cannot query for some other reason. In this
case, dir returns the following default values.

date: ''
bytes: []
isdir: 0
datenum: []

Invalid entries most commonly occur on UNIX platforms when dir queries a symbolic
link pointing to a nonexistent target. A nonexistent target is a target that is moved,
removed, or renamed.

• To obtain a list of available drives on Microsoft Windows platforms, use the DOS net
use command at the command line.

dos('net use')

Or type

[s,r] = dos('net use')

MATLAB returns the results to the character array r.

See Also
cd | fileattrib | isfolder | ls | mkdir | rmdir | what

Topics
“Specify File Names”

Introduced before R2006a

 dir

1-3263

dir
List folder contents on FTP server

Syntax
dir(ftpobj)
dir(ftpobj,folder)

listing = dir(___)

Description
dir(ftpobj) lists the contents of the current folder on the FTP server associated with
ftpobj. The contents of the current folder can be files and other folders.

dir(ftpobj,folder) lists the contents of the specified folder.

listing = dir(___) returns a structure array that contains the name, modification
date, and size of each item. You can use this syntax with the input arguments of either of
the previous syntaxes.

Examples

List Contents of Folder

List the contents of a folder and a subfolder on an FTP server.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object

1 Alphabetical List

1-3264

 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

List the contents of the current folder on the server. At the start of a session, the current
folder is the highest level folder to which you have access.

dir(ftpobj)

DMSP dmsp4alan ionosonde
INDEX.txt ftp.html mgg
README.txt geomag pub
STP google12c4c939d7b90761.html tmp
Snow_Ice hazards wdc
Solid_Earth index.html
coastwatch international

Specify a subfolder and list its contents.

dir(ftpobj,'pub')

WebCD coast glac_lib krm outgoing results rgon

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

List Details of Contents

List details of the contents on an FTP server. The dir function can return a structure
array that contains the name, modification date, and size of each item in the specified
folder.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 dir

1-3265

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

Return details about the items in the top-level folder on the FTP server. Some items are
files and the others are folders.

listing = dir(ftpobj)

listing = 19×1 struct array with fields:
 name
 bytes
 isdir
 date
 datenum

Display details about the first item in the current folder, which is a folder named DSMP.

listing(1)

ans = struct with fields:
 name: 'DMSP'
 bytes: 32
 isdir: 1
 date: '10-Sep-2012 00:00:00'
 datenum: 735122

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

folder — Name of target folder
character vector | string scalar

1 Alphabetical List

1-3266

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Name of the target folder on the FTP server, specified as a character vector or string
scalar. To specify the folder above the current one, use '..'.

Output Arguments
listing — Content attributes
structure array

Content attributes, returned as an m-by-1 structure array, where m is the number of items
in the folder.

This table shows the fields in the structure.

Field Name Description Data Type
name File or folder name char
bytes Size of the item in bytes double
isdir 1 if name is a folder; 0 if name is a

file
logical

date Modification date timestamp char
datenum Modification date as serial date

number (for more information, see
datenum)

double

Tips
• The dir function might return a structure array in which the last four fields are empty

or missing. When dir returns a structure with missing information, it might mean the
FTP object is not configured for the operating system that is running on the FTP
server. By default, an FTP object is configured to connect to a server running a UNIX
operating system.

To configure an FTP object for a connection to a server running Windows, call the ftp
function and specify the 'System','WINDOWS' name-value pair. Then call dir using
the new FTP object.

 dir

1-3267

See Also
cd | ftp | mkdir | rmdir

Introduced before R2006a

1 Alphabetical List

1-3268

disableDefaultInteractivity
Disable built-in axes interactions

Syntax
disableDefaultInteractivity(ax)

Description
disableDefaultInteractivity(ax) disables the built-in interactions on page 1-3270
for the specified axes. You can use this function to disable the default axes interactions or
a custom set of axes interactions. After disabling the interactions, you can still use the
buttons in the axes toolbar to interact with the plot.

Examples

Disable and Reenable Default Axes Interactions

Create a plot. Some interactions are enabled by default, such as scrolling to zoom.
Disable these interactions.

plot(magic(10))
ax = gca;
disableDefaultInteractivity(ax)

Then, reenable the interactions.

enableDefaultInteractivity(ax)

Disable Custom Axes Interactions

Create a plot, and replace the default set of axes interactions with just the rotate and
zoom interactions.

 disableDefaultInteractivity

1-3269

plot(magic(10))
ax = gca;
ax.Interactions = [rotateInteraction zoomInteraction];

Then, disable the interactions you created.

disableDefaultInteractivity(ax)

Input Arguments
ax — Axes
Axes object | PolarAxes object

Axes, specified as an Axes or PolarAxes object.

Definitions

Built-In Axes Interactions
These interactions are for exploring charts using gestures, such as dragging to pan or
scrolling to zoom. They are built into the parent axes and are available without having to
select any of the buttons in the axes toolbar. Most types axes include a default set of built-
in interactions, but you can customize them by setting the Interactions property of the
axes.

If you do not want any of the interactions enabled, use the
disableDefaultInteractivity function to disable them. To enable them if they are
not already enabled, use the enableDefaultInteractivity function.

See Also
enableDefaultInteractivity

Topics
“Control Chart Interactivity”

1 Alphabetical List

1-3270

Introduced in R2018b

 disableDefaultInteractivity

1-3271

discretize
Group data into bins or categories

Syntax
Y = discretize(X,edges)
[Y,E] = discretize(X,N)
[Y,E] = discretize(X,dur)
[___] = discretize(___ ,values)

[___] = discretize(___ ,'categorical')
[___] = discretize(___ ,'categorical',displayFormat)
[___] = discretize(___ ,'categorical',categoryNames)

[___] = discretize(___ ,'IncludedEdge',side)

Description
Y = discretize(X,edges) returns the indices of the bins that contain the elements of
X. The jth bin contains element X(i) if edges(j) <= X(i) < edges(j+1) for 1 <= j
< N, where N is the number of bins and length(edges) = N+1. The last bin contains
both edges such that edges(N) <= X(i) <= edges(N+1).

[Y,E] = discretize(X,N) divides the range of X into N uniform bins, and also returns
the bin edges E.

[Y,E] = discretize(X,dur), where X is a datetime or duration array, divides X into
uniform bins of dur length of time. dur can be a scalar duration or
calendarDuration, or a unit of time. For example, [Y,E] = discretize(X,'hour')
divides X into bins with a uniform duration of 1 hour.

[___] = discretize(___ ,values) returns the corresponding element in values
rather than the bin number, using any of the previous input or output argument
combinations. For example, if X(1) is in bin 5, then Y(1) is values(5) rather than 5.
values must be a vector with length equal to the number of bins.

1 Alphabetical List

1-3272

[___] = discretize(___ ,'categorical') creates a categorical array where each
bin is a category. In most cases, the default category names are of the form “[A,B)” (or
“[A,B]” for the last bin), where A and B are consecutive bin edges. If you specify dur as
a character vector, then the default category names might have special formats. See Y for
a listing of the display formats.

[___] = discretize(___ ,'categorical',displayFormat), for datetime or
duration array inputs, uses the specified datetime or duration display format in the
category names of the output.

[___] = discretize(___ ,'categorical',categoryNames) also names the
categories in Y using the cell array of character vectors, categoryNames. The length of
categoryNames must be equal to the number of bins.

[___] = discretize(___ ,'IncludedEdge',side), where side is 'left' or
'right', specifies whether each bin includes its right or left bin edge. For example, if
side is 'right', then each bin includes the right bin edge, except for the first bin which
includes both edges. In this case, the jth bin contains an element X(i) if edges(j) <
X(i) <= edges(j+1), where 1 < j <= N and N is the number of bins. The first bin
includes the left edge such that it contains edges(1) <= X(i) <= edges(2). The
default for side is 'left'.

Examples

Group Data into Bins

Use discretize to group numeric values into discrete bins. edges defines five bin
edges, so there are four bins.

data = [1 1 2 3 6 5 8 10 4 4]

data = 1×10

 1 1 2 3 6 5 8 10 4 4

edges = 2:2:10

edges = 1×5

 discretize

1-3273

 2 4 6 8 10

Y = discretize(data,edges)

Y = 1×10

 NaN NaN 1 1 3 2 4 4 2 2

Y indicates which bin each element of data belongs to. Since the value 1 falls outside the
range of the bins, Y contains NaN values for those elements.

Group Data into Specified Number of Bins

Group random data into three bins. Specify a second output to return the bin edges
calculated by discretize.

X = randn(10,1);
[Y,E] = discretize(X,3)

Y = 10×1

 2
 2
 1
 2
 2
 1
 1
 2
 3
 2

E = 1×4

 -3 0 3 6

1 Alphabetical List

1-3274

Group Datetime Data by Month

Create a 10-by-1 datetime vector with random dates in the year 2016. Then, group the
datetime values by month and return the result as a categorical array.

X = datetime(2016,1,randi(365,10,1))

X = 10x1 datetime array
 24-Oct-2016
 26-Nov-2016
 16-Feb-2016
 29-Nov-2016
 18-Aug-2016
 05-Feb-2016
 11-Apr-2016
 18-Jul-2016
 15-Dec-2016
 18-Dec-2016

Y = discretize(X,'month','categorical')

Y = 10x1 categorical array
 Oct-2016
 Nov-2016
 Feb-2016
 Nov-2016
 Aug-2016
 Feb-2016
 Apr-2016
 Jul-2016
 Dec-2016
 Dec-2016

Change Display Format of Duration Values

Group duration values by hour and return the result in a variety of display formats.

Group some random duration values by hour and return the results as a categorical array.

X = hours(abs(randn(1,10)))'

 discretize

1-3275

X = 10x1 duration array
 0.53767 hr
 1.8339 hr
 2.2588 hr
 0.86217 hr
 0.31877 hr
 1.3077 hr
 0.43359 hr
 0.34262 hr
 3.5784 hr
 2.7694 hr

Y = discretize(X,'hour','categorical')

Y = 10x1 categorical array
 [0 hr, 1 hr)
 [1 hr, 2 hr)
 [2 hr, 3 hr)
 [0 hr, 1 hr)
 [0 hr, 1 hr)
 [1 hr, 2 hr)
 [0 hr, 1 hr)
 [0 hr, 1 hr)
 [3 hr, 4 hr]
 [2 hr, 3 hr)

Change the display of the results to be a number of minutes.

Y = discretize(X,'hour','categorical','m')

Y = 10x1 categorical array
 [0 min, 60 min)
 [60 min, 120 min)
 [120 min, 180 min)
 [0 min, 60 min)
 [0 min, 60 min)
 [60 min, 120 min)
 [0 min, 60 min)
 [0 min, 60 min)
 [180 min, 240 min]
 [120 min, 180 min)

Change the format again to display as a number of hours, minutes and seconds.

1 Alphabetical List

1-3276

Y = discretize(X,'hour','categorical','hh:mm:ss')

Y = 10x1 categorical array
 [00:00:00, 01:00:00)
 [01:00:00, 02:00:00)
 [02:00:00, 03:00:00)
 [00:00:00, 01:00:00)
 [00:00:00, 01:00:00)
 [01:00:00, 02:00:00)
 [00:00:00, 01:00:00)
 [00:00:00, 01:00:00)
 [03:00:00, 04:00:00]
 [02:00:00, 03:00:00)

Assign Bin Values

Use the right edge of each bin as the values input. The values of the elements in each
bin are always less than the bin value.

X = randi(100,1,10);
edges = 0:25:100;
values = edges(2:end);
Y = discretize(X,edges,values)

Y = 1×10

 100 100 25 100 75 25 50 75 100 100

Include Right Edge of Each Bin

Use the 'IncludedEdge' input to specify that each bin includes its right bin edge. The
first bin includes both edges. Compare the result to the default inclusion of left bin edges.

X = 1:2:11;
edges = [1 3 4 7 10 11];
Y = discretize(X,edges,'IncludedEdge','right')

Y = 1×6

 discretize

1-3277

 1 1 3 3 4 5

Z = discretize(X,edges)

Z = 1×6

 1 2 3 4 4 5

Group Data into Categorical Array

Group numeric data into a categorical array. Use the result to confirm the amount of data
that falls within 1 standard deviation of the mean value.

Group normally distributed data into bins according to the distance from the mean,
measured in standard deviations.

X = randn(1000,1);
edges = std(X)*(-3:3);
Y = discretize(X,edges, 'categorical', ...
 {'-3sigma', '-2sigma', '-sigma', 'sigma', '2sigma', '3sigma'});

Y contains undefined categorical values for the elements in X that are farther than 3
standard deviations from the mean.

Preview the values in Y.

Y(1:15)

ans = 15x1 categorical array
 sigma
 2sigma
 -3sigma
 sigma
 sigma
 -2sigma
 -sigma
 sigma
 <undefined>
 3sigma
 -2sigma

1 Alphabetical List

1-3278

 <undefined>
 sigma
 -sigma
 sigma

Confirm that approximately 68% of the data falls within one standard deviation of the
mean.

nnz(Y=='-sigma' | Y=='sigma')/numel(Y)

ans = 0.6910

Input Arguments
X — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. X contains the data
that you want to distribute into bins.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

edges — Bin edges
numeric vector

Bin edges, specified as a monotonically increasing numeric vector. Consecutive elements
in edges form discrete bins, which discretize uses to partition the data in X. By
default, each bin includes the left bin edge, except for the last bin, which includes both
bin edges.

edges must have at least two elements, since edges(1) is the left edge of the first bin
and edges(end) is the right edge of the last bin.
Example: Y = discretize([1 3 5],[0 2 4 6]) distributes the values 1, 3, and 5
into three bins, which have edges [0,2), [2,4), and [4,6].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

 discretize

1-3279

N — Number of bins
scalar integer

Number of bins, specified as a scalar integer. discretize divides the range of the data
into N uniform bins. If the data is unevenly distributed, then some of the intermediate bins
can be empty. However, the first and last bin always include at least one piece of data.
Example: [Y,E] = discretize(X,5) distributes the data in X into 5 bins with a
uniform width.

dur — Uniform bin duration
scalar duration | scalar calendarDuration | 'second' | 'minute' | 'hour' | 'day'
| 'week' | 'month' | 'quarter' | 'year' | 'decade' | 'century'

Uniform bin duration, specified as a scalar duration or calendarDuration, or as one
of the values in the table.

If you specify dur, then discretize can use a maximum of 65,536 bins (or 216). If the
specified bin duration requires more bins, then discretize uses a larger bin width
corresponding to the maximum number of bins.

Value Works with... Description
'second' Datetime or duration values Each bin is 1 second.
'minute' Datetime or duration values Each bin is 1 minute.
'hour' Datetime or duration values Each bin is 1 hour.
'day' Datetime or duration values • For datetime inputs,

each bin is 1 calendar
day. This value accounts
for Daylight Saving Time
shifts.

• For duration inputs, each
bin is 1 fixed-length day
(24 hours).

'week' Datetime values Each bin is 1 calendar week.
'month' Datetime values Each bin is 1 calendar

month.
'quarter' Datetime values Each bin is 1 calendar

quarter.

1 Alphabetical List

1-3280

Value Works with... Description
'year' Datetime or duration values • For datetime inputs,

each bin is 1 calendar
year. This value accounts
for leap days.

• For duration inputs, each
bin is 1 fixed-length year
(365.2425 days).

'decade' Datetime values Each bin is 1 decade (10
calendar years).

'century' Datetime values Each bin is 1 century (100
calendar years).

Example: [Y,E] = discretize(X,'hour') divides X into bins with a uniform duration
of 1 hour.
Data Types: char | duration | calendarDuration

values — Bin values
vector

Bin values, specified as a vector of any data type. values must have the same length as
the number of bins, length(edges)-1. The elements in values replace the normal bin
index in the output. That is, if X(1) falls into bin 2, then discretize returns Y(1) as
values(2) rather than 2.

If values is a cell array, then all the input data must belong to a bin.
Example: Y = discretize(randi(5,10,1),[1 1.5 3 5],diff([1 1.5 3 5]))
returns the widths of the bins, rather than indices ranging from 1 to 3.

displayFormat — Datetime and duration display format
character vector

Datetime and duration display format, specified as a character vector. The
displayFormat value does not change the values in Y, only their display. You can specify
displayFormat using any valid display format for datetime and duration arrays. For
more information about the available options, see “Set Date and Time Display Format”.
Example: discretize(X,'day','categorical','h') specifies a display format for a
duration array.

 discretize

1-3281

Example: discretize(X,'day','categorical','yyyy-MM-dd') specifies a display
format for a datetime array.
Data Types: char

categoryNames — Categorical array category names
cell array of character vectors

Categorical array category names, specified as a cell array of character vectors.
categoryNames must have length equal to the number of bins.
Example: Y = discretize(randi(5,10,1),[1 1.5 3 5],'categorical',{'A'
'B' 'C'}) distributes the data into three categories, A, B, and C.
Data Types: cell

side — Edges to include in each bin
'left' (default) | 'right'

Edges to include in each bin, specified as one of these values:

• 'left' — All bins include the left bin edge, except for the last bin, which includes
both edges. This is the default.

• 'right' — All bins include the right bin edge, except for the first bin, which includes
both edges.

Example: Y = discretize(randi(11,10,1),1:2:11,'IncludedEdge','right')
includes the right bin edge in each bin.

Output Arguments
Y — Bins
vector | matrix | multidimensional array | ordinal categorical array

Bins, returned as a numeric vector, matrix, multidimensional array, or ordinal categorical
array. Y is the same size as X, and each element describes the bin placement for the
corresponding element in X. If values is specified, then the data type of Y is the same as
values. Out-of-range elements are expressed differently depending on the data type of
the output:

• For numeric outputs, Y contains NaN values for out-of-range elements in X (where
X(i) < edges(1) or X(i) > edges(end)), or where X contains a NaN.

1 Alphabetical List

1-3282

• If Y is a categorical array, then it contains undefined elements for out-of-range or NaN
inputs.

• If values is a vector of an integer data type, then Y contains 0 for out-of-range or NaN
inputs.

The default category name formats in Y for the syntax
discretize(X,dur,'categorical') are:

Value of dur Default Category Name
Format

Format Example

'second' global default format 28-Jan-2016 10:32:06
'minute'
'hour'
'day' global default date format 28-Jan-2016
'week' [global_default_date_

format,
global_default_date_f
ormat)

[24-Jan-2016, 30-
Jan-2016)

'month' 'MMM-uuuu' Jun-2016
'quarter' 'QQQ uuuu' Q4 2015
'year' 'uuuu' 2016
'decade' '[uuuu, uuuu)' [2010, 2020)
'century'

E — Bin edges
vector

Bin edges, returned as a vector. Specify this output to see the bin edges that discretize
calculates in cases where you do not explicitly pass in the bin edges.

Tips
• The behavior of discretize is similar to that of the histcounts function. Use

histcounts to find the number of elements in each bin. On the other hand, use
discretize to find which bin each element belongs to (without counting).

 discretize

1-3283

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The categorical option is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The categorical option is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
categorical | histcounts | histogram

Topics
“Replace Discouraged Instances of hist and histc”

Introduced in R2015a

1 Alphabetical List

1-3284

disp
Display value of variable

Syntax
disp(X)

Description
disp(X) displays the value of variable X without printing the variable name. Another way
to display a variable is to type its name, which displays a leading “X =” before the value.

If a variable contains an empty array, disp returns without displaying anything.

Examples

Display Variable Values

Create a variable with numbers and another variable with text.

A = [15 150];
S = 'Hello World.';

Display the value of each variable.

disp(A)

 15 150

disp(S)

Hello World.

 disp

1-3285

Display Matrix with Column Labels

Display a matrix and label the columns as Corn, Oats, and Hay.

X = rand(5,3);
disp(' Corn Oats Hay')

 Corn Oats Hay

disp(X)

 0.8147 0.0975 0.1576
 0.9058 0.2785 0.9706
 0.1270 0.5469 0.9572
 0.9134 0.9575 0.4854
 0.6324 0.9649 0.8003

Display Hyperlink in Command Window

Display a link to a Web page by including HTML hyperlink code as input to disp. For
example, display a link to the MathWorks Web site.

X = 'MathWorks Web Site';
disp(X)

MathWorks Web Site

Display Multiple Variables on Same Line

Here are three ways to display multiple variable values on the same line in the Command
Window.

Concatenate multiple character vectors together using the [] operator. Convert any
numeric values to characters using the num2str function. Use disp to display the result.

name = 'Alice';
age = 12;
X = [name,' will be ',num2str(age),' this year.'];
disp(X)

Alice will be 12 this year.

1 Alphabetical List

1-3286

https://www.mathworks.com

Use sprintf to create text, and then display it with disp.

name = 'Alice';
age = 12;
X = sprintf('%s will be %d this year.',name,age);
disp(X)

Alice will be 12 this year.

Use fprintf to directly display the text without creating a variable. However, to
terminate the display properly, you must end the text with the newline (\n)
metacharacter.

name = 'Alice';
age = 12;
fprintf('%s will be %d this year.\n',name,age);

Alice will be 12 this year.

Input Arguments
X — Input array
array

Input array.

To display more than one array, you can use concatenation or the sprintf or fprintf
functions as shown in the example, “Display Multiple Variables on Same Line” on page 1-
3286.

See Also
format | fprintf | int2str | num2str | sprintf

Introduced before R2006a

 disp

1-3287

disp (serial)
Serial port object summary information

Syntax
obj
disp(obj)

Description
obj or disp(obj) displays summary information for obj, a serial port object or an array
of serial port objects.

Examples
The following commands display summary information for the serial port object s. on a
Windows platform

s = serial('COM1')
s.BaudRate = 300
s

Tips
In addition to the syntax shown above, you can display summary information for obj by
excluding the semicolon when:

• Creating a serial port object
• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings, communication
state information, and information associated with read and write operations.

1 Alphabetical List

1-3288

Introduced before R2006a

 disp (serial)

1-3289

display
Show information about variable or expression result

Syntax
display(X)

Description
display(X) is called by MATLAB when a statement or expression is not terminated by a
semicolon. Omit the terminating semicolon from a statement or expression when you
want to see an intermediate result.

MATLAB calls the display function to show information about an intermediate result,
such as the values, size, type, and variable name.

To show the value of a variable or to show program output in the command window, use
the disp function.

To customize the display of user-defined objects, use the techniques described in the
“Customize Object Display for Classes” topic.

Examples

Unterminated Variable Assignment

MATLAB calls display when you make an assignment to a variable without terminating
the statement with a semicolon. In this example, display shows the variable name and
the value.

a = 7

1 Alphabetical List

1-3290

a =

 7

Terminated Variable Assignment

MATLAB does not call display when you make an assignment to a variable and the
statement is terminated with a semicolon.

a = 7;

Unterminated Expression

When you execute an expression without a semicolon, MATLAB assigns the result to a
variable called ans, which the display function shows in the command window.

format long
sqrt(2)

ans =

 1.414213562373095

Input Arguments
X — Result of executing a statement or expression
variable | expression

Result of executing a statement or expression, passed to the display function by
MATLAB.

Definitions
Assignment to ans
Executing an expression without terminating the expression with a semicolon causes the
result to be displayed in the command window. MATLAB assigns the result of an

 display

1-3291

expression to a variable named ans when the result is not assigned to a variable
explicitly.

4 * 5 - 13

ans =

 7

To display the result in the command window without displaying ans, use the disp
function.

disp(4 * 5 - 13)

7

If an expression is terminated by a semicolon, MATLAB does not display a value, but still
assigns the result to the ans variable.

4 * 5 - 13;
ans

ans =

 7

Display Results in Command Window
Omitting the terminating semicolon is useful when you want to see intermediate results
from statements in a program. For example, compare these two statements by omitting
the semicolon. The display function shows the results in the command window.

result1 = 4 * 5 - 13

result1 =

 7

result2 = 4 * (5 - 13)

result2 =

 -32

1 Alphabetical List

1-3292

Information Shown by the display Function
The display function provides information about the kind of values that are the result of
executing a statement or expression. This information is useful for understanding how a
program or script works.

For example, this statement assigns a uint8 vector of values 1 2 3 4 to the variable
named a. The display function shows the variable name, the size and type, and the
values.

a = uint8([1 2 3 4])

a =

 1×4 uint8 row vector

 1 2 3 4

For empty values (numeric types, char, struct, and cell) the display function
displays:

• [] — for numeric types
• "0x0 struct array with no fields." — for empty structs.
• "0x0 empty cell array" — for empty cell arrays.
• "0x0 empty char array" — for empty char arrays
• "0x0 empty string array" — for empty string arrays

To show the actual values that are the intended output from a program, like text and
numbers, call the disp function. The disp function does not display the variable name or
ans. Also, disp displays nothing for built-in types (numeric types, char, struct, and
cell) when the value is empty.

See Also
ans | disp | fprintf | matlab.mixin.CustomDisplay | sprintf

Topics
“Customize Object Display for Classes”

 display

1-3293

Introduced before R2006a

1 Alphabetical List

1-3294

dissect
Nested dissection permutation

Syntax
p = dissect(A)
p = dissect(A,Name,Value)

Description
p = dissect(A) returns a permutation vector computed using nested dissection of the
sparsity structure of A.

p = dissect(A,Name,Value) specifies additional options using one or more name-
value pair arguments. For example, dissect(A,'NumIterations',15) uses 15
refinement iterations in the nested dissection algorithm instead of 10.

Examples

Reorder Sparse Matrix Columns

Reorder a sparse matrix with several methods and compare the fill-in incurred by the LU
decomposition of the reordered matrices.

Load the west0479 matrix, which is a real-valued 479-by-479 sparse matrix with both
real and complex pairs of conjugate eigenvalues. View the sparsity structure.

load west0479.mat
A = west0479;
spy(A)

 dissect

1-3295

Calculate several different permutations of the matrix columns, including the nested
dissection ordering.

p1 = dissect(A);
p2 = amd(A);
p3 = symrcm(A);

Compare the sparsity structures of the LU decomposition of A using the different ordering
methods. The dissect function produces the reordering that incurs the least amount of
fill-in.

subplot(1,2,1)
spy(A)
title('Original Matrix')

1 Alphabetical List

1-3296

subplot(1,2,2)
spy(lu(A))
title('LU Decomposition')

figure
subplot(1,2,1)
spy(A(p3,p3))
title('Reverse Cuthill-McKee')
subplot(1,2,2)
spy(lu(A(p3,p3)))
title('LU Decomposition')

 dissect

1-3297

figure
subplot(1,2,1)
spy(A(p2,p2))
title('Approximate Minimum Degree')
subplot(1,2,2)
spy(lu(A(p2,p2)))
title('LU Decomposition')

1 Alphabetical List

1-3298

figure
subplot(1,2,1)
spy(A(p1,p1))
title('Nested Dissection')
subplot(1,2,2)
spy(lu(A(p1,p1)))
title('LU Decomposition')

 dissect

1-3299

Filter Out Dense Columns

An arrowhead matrix is a sparse matrix that has a few dense columns. Use the
'MaxDegreeThreshold' name-value pair to filter the dense columns to the end of the
reordered matrix.

Create an arrowhead sparse matrix and view the sparsity pattern.

A = speye(100) + diag(ones(1,99),1) + diag(ones(1,98),2);
A(1:5,:) = ones(5,100);
A = A + A';
spy(A)

1 Alphabetical List

1-3300

Calculate the nested dissection ordering, and filter out the columns that have more than
10 nonzero elements.

p = dissect(A,'MaxDegreeThreshold',10);

View the sparsity pattern of the reordered matrix. dissect places the dense columns at
the end of the reordered matrix.

spy(A(p,p))

 dissect

1-3301

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square matrix. A can be either full or sparse. If A is
nonsymmetric, then dissect symmetrizes it.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

1 Alphabetical List

1-3302

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: p = dissect(A,'NumIterations',15,'NumSeparators',2) uses 15
refinement iterations and 2 separators in the nested dissection algorithm.

VertexWeights — Vertex weights
vector

Vertex weights, specified as the comma-separated pair consisting of 'VertexWeights'
and a vector. The vector of weights must have length equal to size(A,1) so that a
weight is specified for each vertex. Use this option to specify how the graph vertices
(matrix columns) are weighted, which affects how the algorithm computes the balance
between partitions.

By default, the nested dissection algorithm weights all vertices equally.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NumSeparators — Number of separators
1 (default) | positive integer

Number of separators, specified as the comma-separated pair consisting of
'NumSeparators' and a positive integer. Use this option to specify how many partitions
the graph is split into during each partitioning step. Increasing the number of separators
in the nested dissection algorithm can result in a higher quality permutation at the cost of
additional execution time.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NumIterations — Number of refinement iterations
10 (default) | positive integer

Number of refinement iterations, specified as the comma-separated pair consisting of
'NumIterations' and a positive integer. More refinement iterations can result in a
higher quality permutation at the cost of increased execution time.

 dissect

1-3303

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MaxImbalance — Threshold for partition imbalance
1.2 (default) | scalar

Threshold for partition imbalance, specified as the comma-separated pair consisting of
'MaxImbalance' and a scalar value that is an integer multiple of 0.001 greater than or
equal to 1.001 and less than or equal to 1.999. Larger threshold values might reduce
execution time by allowing the algorithm to accept a worse permutation.
Data Types: single | double

MaxDegreeThreshold — Threshold for vertex degree
0 (default) | nonnegative integer

Threshold for vertex degree, specified as the comma-separated pair consisting of
'MaxDegreeThreshold' and a nonnegative integer. The nested dissection algorithm
ignores vertices with degree larger than threshold*(avg degree)/10 during
ordering. dissect places vertices ignored in this way at the end of the permutation. This
effectively places any vertices with degree greater than the threshold in the first, top-
level separator. Filtering out highly connected vertices can sometimes improve the speed
and accuracy of the ordering.

The default value of 0 means that all vertices are ordered.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
p — Permutation vector
vector

Permutation vector, returned as a vector. Use the permutation vector to reorder the
columns of A using the indexing expression A(p,p). For example, the Cholesky
factorization chol(A(p,p)) tends to be sparser than that of A.

1 Alphabetical List

1-3304

Algorithms
The nested dissection ordering algorithm described in [1] is a multilevel graph
partitioning algorithm that is used to produce fill-reducing orderings of sparse matrices.
The input matrix is treated as the adjacency matrix of a graph. The algorithm coarsens
the graph by collapsing vertices and edges, reorders the smaller graph, and then uses
refinement steps to uncoarsen the small graph and produce a reordering of the original
graph.

The name-value pairs for dissect enable you to control various stages of the algorithm:

• Coarsening

In this phase, the algorithm creates successively smaller graphs from the original
graph by collapsing together adjacent pairs of vertices. 'MaxDegreeThreshold'
enables you to filter out highly connected graph vertices (which are dense columns in
the matrix) by ordering them last.

• Partitioning

After the graph is coarsened, the algorithm completely reorders the smaller graph. At
each partitioning step, the algorithm attempts to partition the graph into equal parts:
'NumSeparators' specifies how many parts to partition the graph into,
'VertexWeights' optionally assigns weights to the vertices, and 'MaxImbalance'
specifies the threshold for the difference in weight between the different partitions.

• Refinement

After the smallest graph is reordered, the algorithm makes projections to enlarge the
graph back to the original size by expanding the vertices that were previously
combined. After each projection step, a refinement step is performed that moves
vertices between partitions to improve the quality of the solution. 'NumIterations'
controls how many refinement steps are used during this uncoarsening phase.

References
[1] Karypis, George and Vipin Kumar. "A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs." SIAM Journal on Scientific Computing. Vol. 20,
Number 1, 1999, pp. 359–392.

 dissect

1-3305

See Also
amd | colamd | colperm | symamd | symrcm

Topics
“Permutations and Reordering”

Introduced in R2017b

1 Alphabetical List

1-3306

dither
Convert image, increasing apparent color resolution by dithering

Syntax
X = dither(RGB,map)
X = dither(RGB,map,Qm,Qe)
BW = dither(I)

Description
X = dither(RGB,map) creates an indexed image approximation of the RGB image by
dithering the colors in the colormap map.

X = dither(RGB,map,Qm,Qe) also specifies the number Qm of quantization bits to use
along each color axis for the inverse color map, and the number Qe of quantization bits to
use for the color space error calculations.

BW = dither(I) converts the grayscale image I to the binary (black and white) image
BW by dithering.

Examples

Convert Grayscale Image to Binary Image Using Dithering

Read the grayscale image from the corn.tif file into the MATLAB® workspace. The
grayscale version of the image is the third image in the file.

corn_gray = imread('corn.tif',3);

Display the grayscale image using imshow.

imshow(corn_gray)

 dither

1-3307

Convert the image to binary by using the dither function.

corn_bw = dither(corn_gray);

Display the binary image. Although pixels in the binary image only have the value 0 or 1,
the image appears to have shades of gray because of dithering.

imshow(corn_bw)

1 Alphabetical List

1-3308

Input Arguments
RGB — RGB image
m-by-n-by-3 array of nonnegative numbers

 dither

1-3309

RGB image, specified as an m-by-n-by-3 array of nonnegative numbers. If you specify an
image of data type double, then values must be in the range [0, 1].
Data Types: single | double | uint8 | uint16

map — Input colormap
c-by-3 matrix

Input colormap, specified as a c-by-3 matrix with values in the range [0, 1]. Each row of
map is a three-element RGB triplet that specifies the red, green, and blue components of a
single color of the colormap. The colormap has a maximum of 65,536 colors.
Data Types: double

Qm — Quantization bits along each color axis
5 (default) | positive integer

Quantization bits along each color axis for the inverse color map, specified as a positive
integer. If Qe is less than Qm, then dithering cannot be performed and the dither
function returns an undithered indexed image in X.
Data Types: double

Qe — Quantization bits for color space error calculations
8 (default) | positive integer

Quantization bits for the color space error calculations, specified as a positive integer. If
Qe is less than Qm, then dithering cannot be performed and the dither function returns
an undithered indexed image in X.
Data Types: double

I — Grayscale image
m-by-n matrix of nonnegative numbers

Grayscale image, specified as an m-by-n matrix of nonnegative numbers. If you specify an
image of data type double, then values must be in the range [0, 1].
Data Types: single | double | int16 | uint8 | uint16

1 Alphabetical List

1-3310

Output Arguments
X — Indexed image
m-by-n matrix of nonnegative integers

Indexed image, returned as an m-by-n matrix of nonnegative integers. If the length of map
is less than or equal to 256, then the output image is of class uint8. Otherwise, the
output image is of class uint16. The value 0 in the output array X corresponds to the
first color in the colormap.

Note The values in image X are indexes into the colormap map and should not be used in
mathematical processing, such as filtering operations.

Data Types: uint8 | uint16

BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

Algorithms
dither increases the apparent color resolution of an image by applying Floyd-
Steinberg's error diffusion dither algorithm [1].

References
[1] Floyd, R. W., and L. Steinberg, "An Adaptive Algorithm for Spatial Gray Scale,"

International Symposium Digest of Technical Papers, Society for Information
Displays, 1975, p. 36.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,
Prentice Hall, 1990, pp. 469–476.

 dither

1-3311

See Also
imapprox | rgb2ind

Topics
“Image Types”
“Reduce the Number of Colors in an Image” (Image Processing Toolbox)

Introduced before R2006a

1 Alphabetical List

1-3312

divergence
Compute divergence of vector field

Syntax
div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description
div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D vector field
having vector components U, V, W.

The arrays X, Y, and Z, which define the coordinates for the vector components U, V, and
W, must be monotonic, but do not need to be uniformly spaced. X, Y, and Z must have the
same number of elements.

div = divergence(U,V,W) assumes X, Y, and Z are determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector field U, V.

The arrays X and Y, which define the coordinates for U and V, must be monotonic, but do
not need to be uniformly spaced. X and Y must have the same number of elements, as if
produced by meshgrid.

div = divergence(U,V) assumes X and Y are determined by the expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

 divergence

1-3313

Examples

Divergence of Vector Volume Data as Slice Planes

Display the divergence of vector volume data as slice planes. Use color to indicate
divergence.

load wind
div = divergence(x,y,z,u,v,w);
h = slice(x,y,z,div,[90 134],59,0);
colormap('jet');
shading interp
daspect([1 1 1]);
axis tight
camlight
set([h(1),h(2)],'ambientstrength',.6);

1 Alphabetical List

1-3314

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 divergence

1-3315

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
curl | isosurface | streamtube

Topics
“Overview of Volume Visualization”
“Displaying Divergence with Stream Tubes”

Introduced before R2006a

1 Alphabetical List

1-3316

dlmread
(Not recommended) Read ASCII-delimited file of numeric data into matrix

Note dlmread is not recommended. Use readmatrix instead. For more information,
see Compatibility Considerations.

Syntax
M = dlmread(filename)
M = dlmread(filename,delimiter)
M = dlmread(filename,delimiter,R1,C1)
M = dlmread(filename,delimiter,[R1 C1 R2 C2])

Description
M = dlmread(filename) reads an ASCII-delimited numeric data file into matrix M. The
dlmread function detects the delimiter from the file and treats repeated white spaces as
a single delimiter.

M = dlmread(filename,delimiter) reads data from the file using the specified
delimiter and treats repeated delimiter characters as separate delimiters.

M = dlmread(filename,delimiter,R1,C1) starts reading at row offset R1 and
column offset C1. For example, the offsets R1=0, C1=0 specify the first value in the file.

To specify row and column offsets without specifying a delimiter, use an empty character
as a placeholder, for example, M = dlmread(filename,'',2,1).

M = dlmread(filename,delimiter,[R1 C1 R2 C2]) reads only the range bounded
by row offsets R1 and R2 and column offsets C1 and C2. Another way to define the range
is to use spreadsheet notation, such as 'A1..B7' instead of [0 0 6 1].

Examples

 dlmread

1-3317

Read Entire Delimited File

Read the sample file, count.dat.

M = dlmread('count.dat')

M = 24×3

 11 11 9
 7 13 11
 14 17 20
 11 13 9
 43 51 69
 38 46 76
 61 132 186
 75 135 180
 38 88 115
 28 36 55
 ⋮

dlmread detects the delimiter from the file and returns a matrix.

Read File Containing Empty Delimited Fields

Write two matrices to a file, and then read the entire file using dlmread.

Export a matrix to a file named myfile.txt. Then, append an additional matrix to the
file that is offset one row below the first.

X = magic(3);
dlmwrite('myfile.txt',[X*5 X/5],' ')
dlmwrite('myfile.txt',X,'-append', ...
 'roffset',1,'delimiter',' ')

View the file contents.

type myfile.txt

40 5 30 1.6 0.2 1.2
15 25 35 0.6 1 1.4
20 45 10 0.8 1.8 0.4

1 Alphabetical List

1-3318

8 1 6
3 5 7
4 9 2

Read the entire file using dlmread.

M = dlmread('myfile.txt')

M = 6×6

 40.0000 5.0000 30.0000 1.6000 0.2000 1.2000
 15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
 20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
 8.0000 1.0000 6.0000 0 0 0
 3.0000 5.0000 7.0000 0 0 0
 4.0000 9.0000 2.0000 0 0 0

When dlmread imports a file containing nonrectangular data, it fills empty fields with
zeros.

Read Delimited File Starting At Specific Row and Column Offset

Create a file named dlmlist.txt that contains column headers and space-delimited
values.

test max min direction
10 27.7 12.4 12
11 26.9 13.5 18
12 27.4 16.9 31
13 25.1 12.7 29

Read the numeric values in the file. Specify a space delimiter, a row offset of 1, and a
column offset of 0.

filename = 'dlmlist.txt';
M = dlmread(filename,' ',1,0)

M =

 10.0000 27.7000 12.4000 12.0000

 dlmread

1-3319

 11.0000 26.9000 13.5000 18.0000
 12.0000 27.4000 16.9000 31.0000
 13.0000 25.1000 12.7000 29.0000

Read Specific Range from Delimited File

Create a file named dlmlist.txt that contains column headers and space-delimited
values.

test max min direction
10 27.7 12.4 12
11 26.9 13.5 18
12 27.4 16.9 31
13 25.1 12.7 29

Read only the last two rows of numeric data from the file.

M = dlmread('dlmlist.txt',' ',[3 0 4 3])

M =

 12.0000 27.4000 16.9000 31.0000
 13.0000 25.1000 12.7000 29.0000

Input Arguments
filename — File name
character vector | string

File name, specified as a character vector or string.
Example: 'myFile.dat' or "myFile.dat"
Data Types: char | string

delimiter — Field delimiter character
character vector | string

Field delimiter character, specified as a character vector or string. Use '\t' to specify a
tab delimiter.
Example: ',' or ","

1 Alphabetical List

1-3320

Example: ' ' or " "
Data Types: char | string

R1 — Starting row offset
0 (default) | nonnegative integer

Starting row offset, specified as a nonnegative integer. The first row has an offset of 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C1 — Starting column offset
0 (default) | nonnegative integer

Starting column offset, specified as a nonnegative integer. The first column has an offset
of 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

R2 — Ending row offset
nonnegative integer

Ending row offset, specified as a nonnegative integer. The first row has an offset of 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C2 — Ending column offset
nonnegative integer

Ending column offset, specified as a nonnegative integer. The first column has an offset of
0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
• Skip header rows or columns by specifying row and column offsets. All values in the
file other than headers must be numeric.

 dlmread

1-3321

Algorithms
dlmread fills empty delimited fields with zero. When the dlmread function reads data
files with lines that end with a nonspace delimiter, such as a semicolon, it returns a
matrix, M, that has an additional last column of zeros.

dlmread imports any complex number as a whole into a complex numeric field. This table
shows valid forms for a complex number.

Form Example
±<real>±<imag>i|j 5.7-3.1i
±<imag>i|j -7j

Embedded white space in a complex number is invalid and dlmread regards it as a field
delimiter.

Compatibility Considerations

dlmread is not recommended
Not recommended starting in R2019a

dlmread is not recommended. Use readmatrix instead. There are no plans to remove
dlmread.

Starting in R2019a, use the readmatrix function to read a matrix from a delimited text
file. The readmatrix function has these advantages over the dlmread function:

• Better cross-platform support and performance
• Automatic detection of data format and types
• Ability to use import options to control the data import process, including the handling

of errors and missing data

This table shows typical usages of dlmread and how to update your code to use
readmatrix instead.

1 Alphabetical List

1-3322

Not Recommended Recommended
M = dlmread(filename) M = readmatrix(filename)

See Also
dlmwrite | readmatrix | readtable | textscan | uiimport

Topics
“Ways to Import Text Files”

Introduced before R2006a

 dlmread

1-3323

dlmwrite
(Not recommended) Write matrix to ASCII-delimited file

Note dlmwrite is not recommended. Use writematrix instead. For more information,
see Compatibility Considerations.

Syntax
dlmwrite(filename,M)
dlmwrite(filename,M,'-append')

dlmwrite(___ ,Name,Value)

dlmwrite(filename,M,delimiter)
dlmwrite(filename,M,delimiter,row,col)

Description
dlmwrite(filename,M) writes numeric data in array M to an ASCII format file,
filename, using the default delimiter (,) to separate array elements. If the file,
filename, already exists, dlmwrite overwrites the file.

dlmwrite(filename,M,'-append') appends the data to the end of the existing file,
filename.

dlmwrite(___ ,Name,Value) additionally specifies delimiter, newline character, offset,
and precision options using one or more name-value pair arguments.

dlmwrite(filename,M,delimiter) writes array M to the file, filename, using the
specified delimiter, delimiter, to separate array elements.

dlmwrite(filename,M,delimiter,row,col) writes the array starting at the
specified row and column row and col, in the destination file. Empty elements separated
by delimiter fill the leading rows and columns.

1 Alphabetical List

1-3324

Examples

Write Comma-Separated Data

Create an array of sample data, M.

M = magic(3);

Write matrix M to a file myFile.txt.

dlmwrite('myFile.txt',M)

View the data in the file.

type('myFile.txt')

8,1,6
3,5,7
4,9,2

Write Tab-Delimited Data and Specify Precision

Create an array of sample data, M.

M = magic(3)*pi

M = 3×3

 25.1327 3.1416 18.8496
 9.4248 15.7080 21.9911
 12.5664 28.2743 6.2832

Write matrix M to a file, 'myFile.txt', delimited by the tab character and using a
precision of 3 significant digits.

dlmwrite('myFile.txt',M,'delimiter','\t','precision',3)

View the data in the file.

type('myFile.txt')

 dlmwrite

1-3325

25.1 3.14 18.8
9.42 15.7 22
12.6 28.3 6.28

Write and Append Data to File

Create two arrays of sample numeric data.

M = magic(5);
N = magic(3);

Export matrix M to a file and use whitespace as the delimiter.

dlmwrite('myFile.txt',M,'delimiter',' ');

Append matrix N to the file, offset from the existing data by one row. Then, view the file.

dlmwrite('myFile.txt',N,'-append',...
'delimiter',' ','roffset',1)
type('myFile.txt')

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

8 1 6
3 5 7
4 9 2

Read the data in 'myFile.txt' using dlmread.

dlmread('myFile.txt')

ans = 8×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9
 8 1 6 0 0

1 Alphabetical List

1-3326

 3 5 7 0 0
 4 9 2 0 0

When dlmread reads the two matrices from the file, it pads the smaller matrix with
zeros.

Write Data and Specify Precision

Create an array of sample numeric data.

M = magic(3);

Export matrix M to a file using a precision of 6 decimal places.

dlmwrite('myFile.txt',M,'precision','%.6f');

View the data in the file.

type('myFile.txt')

8.000000,1.000000,6.000000
3.000000,5.000000,7.000000
4.000000,9.000000,2.000000

Input Arguments
filename — Name of file to write
character vector | string

Name of file to write, specified as a character vector or string.
Example: 'myFile.txt' or "myFile.txt"
Data Types: char | string

M — Numeric data to write
matrix | cell array of numeric values

 dlmwrite

1-3327

Numeric data to write, specified as a matrix or a cell array of numeric values with one
value per cell.
Example: [1,2,3;4,5,6]
Example: {1,2,3;4,5,6}
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | cell
Complex Number Support: Yes

delimiter — Delimiter to separate array elements
',' (default) | character vector | string

Delimiter to separate array elements, specified as a character vector or string, containing
a single character or characters of a control sequence. Use '\t' to produce tab-delimited
files.
Example: ';' or ";"
Example: '\t' or "\t"
Data Types: char | string

row — Row offset
0 (default) | scalar

Row offset, specified as a scalar. The row offset indicates the number of rows to skip
before writing the numeric data. row is zero-based, so that row = 0 instructs MATLAB to
begin writing in the first row of the destination file. Skipped rows are populated with the
specified delimiter.

col — Column offset
0 (default) | scalar

Column offset, specified as a scalar. The column offset indicates the number of columns to
skip before writing the numeric data. col is zero-based, so that col = 0 instructs
MATLAB to begin writing in the first column of the destination file. Skipped columns are
separated with the specified delimiter.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-3328

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: dlmwrite('myFile.txt',M,'precision',4,'delimiter',' ') writes
the numeric values in array M with four significant digits and delimited using the
whitespace character.

delimiter — Delimiter to separate array elements
',' (default) | character vector | string

Delimiter to separate array elements, specified as the comma-separated pair consisting of
'delimiter' and a character vector or string, containing a single character or
characters of a control sequence. Use '\t' to produce tab-delimited files.
Example: 'delimiter',';' or 'delimiter',";"
Example: 'delimiter','\t' or 'delimiter',"\t"
Data Types: char | string

roffset — Row offset
0 (default) | scalar

Row offset, specified as the comma-separated pair consisting of 'roffset' and a scalar.
The row offset indicates the number of rows to skip before writing the numeric data.
These rows are populated with the specified delimiter. When appending to an existing file,
the new data is offset from the end of the existing data.

The row offset is zero-based, so that 'roffset',0 instructs MATLAB to begin writing in
the first row of the destination file, which is the default. However, when appending to a
file, 'roffset',0 instructs MATLAB to begin writing in the first row immediately
following existing data.
Example: 'roffset',2

coffset — Column offset
0 (default) | scalar

Column offset from the left side of the destination file, specified as the comma-separated
pair consisting of 'coffset' and a scalar. The column offset indicates the number of
columns to skip before writing the numeric data. These columns are separated with the
specified delimiter.

The column offset is zero-based, so that 'coffset',0 instructs MATLAB to begin writing
in the first column of the destination file, which is the default.

 dlmwrite

1-3329

Example: 'coffset',1

precision — Numeric precision
5 (default) | scalar | C-style format specifier | character vector

Numeric precision to use in writing data to the file, specified as the comma-separated pair
consisting of 'precision' and a scalar or a C-style format specifier that begins with %,
such as '%10.5f'. If the value of precision is a scalar, then it indicates the number of
significant digits.
Example: 'precision',3
Example: 'precision','%10.5f'
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char

newline — Line terminator
'pc' | 'unix'

Line terminator, specified as the comma-separated pair consisting of 'newline' and
either 'pc' to use a carriage return/line feed (CR/LF), or 'unix' to use a line feed (LF).
Example: 'newline','pc'

Tips
• dlmwrite writes a file that spreadsheet programs can read. Alternatively, if your

system has Excel for Windows installed, you can create a spreadsheet using
xlswrite.

Compatibility Considerations

dlmwrite is not recommended
Not recommended starting in R2019a

dlmwrite is not recommended. Use writematrix instead. There are no plans to remove
dlmwrite.

1 Alphabetical List

1-3330

Starting in R2019a, use the writematrix function to write a matrix to a delimited text
file. The writematrix function has better cross-platform support and performance over
the dlmwrite function.

This table shows typical usages of dlmwrite and how to update your code to use
writematrix instead.

Not Recommended Recommended
dlmwrite('mydata.txt',M) writematrix(M,'mydata.txt')

See Also
dlmread | writematrix | writetable | xlswrite

Introduced before R2006a

 dlmwrite

1-3331

dmperm
Dulmage-Mendelsohn decomposition

Syntax
p = dmperm(A)
[p,q,r,s,cc,rr] = dmperm(A)

Description
p = dmperm(A) finds a vector p such that p(j) = i if column j is matched to row i, or
zero if column j is unmatched. If A is a square matrix with full structural rank, p is a
maximum matching row permutation and A(p,:) has a zero-free diagonal. The structural
rank of A is sprank(A) = sum(p>0).

[p,q,r,s,cc,rr] = dmperm(A) where A need not be square or full structural rank,
finds the Dulmage-Mendelsohn decomposition of A. p and q are row and column
permutation vectors, respectively, such that A(p,q) has a block upper triangular form. r
and s are index vectors indicating the block boundaries for the fine decomposition. cc
and rr are vectors of length five indicating the block boundaries of the coarse
decomposition.

C = A(p,q) is split into a 4-by-4 set of coarse blocks:

A11 A12 A13 A14
0 0 A23 A24
0 0 0 A34
0 0 0 A44

where A12, A23, and A34 are square with zero-free diagonals. The columns of A11 are the
unmatched columns, and the rows of A44 are the unmatched rows. Any of these blocks
can be empty. In the coarse decomposition, the (i,j)th block is C(rr(i):rr(i
+1)-1,cc(j):cc(j+1)-1). If A is square and structurally nonsingular, then A23 = C.
That is, all of the other coarse blocks are 0-by-0.

For a linear system:

1 Alphabetical List

1-3332

• [A11 A12] is the underdetermined part of the system—it is always rectangular and
with more columns than rows, or is 0-by-0.

• A23 is the well-determined part of the system—it is always square. The A23 submatrix
is further subdivided into block upper triangular form via the fine decomposition (the
strongly connected components of A23).

• [A34; A44] is the overdetermined part of the system—it is always rectangular with
more rows than columns, or is 0-by-0.

The structural rank of A is sprank(A) = rr(4)-1, which is an upper bound on the
numerical rank of A. sprank(A) = rank(full(sprand(A))) with probability 1 in
exact arithmetic.

C(r(i):r(i+1)-1,s(j):s(j+1)-1) is the (i,j)th block of the fine decomposition.
The (1,1) block is the rectangular block [A11 A12], unless this block is 0-by-0. The
(b,b) block is the rectangular block [A34 ; A44], unless this block is 0-by-0, where b
= length(r)-1. All other blocks of the form C(r(i):r(i+1)-1,s(i):s(i+1)-1) are
diagonal blocks of A23, and are square with a zero-free diagonal.

Tips
If A is a reducible matrix, the linear system Ax = b can be solved by permuting A to a
block upper triangular form, with irreducible diagonal blocks, and then performing block
backsubstitution. Only the diagonal blocks of the permuted matrix need to be factored,
saving fill and arithmetic in the blocks above the diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the bipartite graph
of A, and the diagonal blocks of A(p,q) correspond to the strong Hall components of that
graph. The output of dmperm can also be used to find the connected or strongly
connected components of an undirected or directed graph. For more information see
Pothen and Fan [1].

References

[1] Pothen, Alex and Chin-Ju Fan “Computing the Block Triangular Form of a Sparse
Matrix” ACM Transactions on Mathematical Software Vol 16, No. 4 Dec. 1990, pp.
303-324.

 dmperm

1-3333

See Also
sprank

Introduced before R2006a

1 Alphabetical List

1-3334

doc
Reference page in Help browser

Syntax
doc
doc name

Description
doc opens the Help browser. If the Help browser is already open, but not visible, then
doc brings it to the foreground and opens a new tab.

doc name displays documentation for the functionality specified by name, such as a
function, class, or block.

• If name corresponds to a MathWorks reference page, then doc displays the page in the
Help browser. The doc command does not display third-party or custom HTML
documentation.

• If name does not correspond to a reference page, then doc searches for help text in a
file named name.m or name.mlx. If help text is available, doc displays it in the Help
browser.

• If name does not correspond to a reference page and there is no associated help text,
then doc searches the documentation for name and displays the search results in the
Help browser.

Examples

Display Function Reference Page

Display the reference page for the abs function.

doc abs

 doc

1-3335

Several products include different versions of abs. If your Help preferences support
displaying documentation for those products, then the Help browser displays the
MATLAB® abs reference page and a message with links to other versions of abs. This
message appears at the top of the page.

Class and Method Reference Pages

Display the reference page for the handle class.

doc handle

Display the reference page for the findobj method in the handle class.

doc handle.findobj

Display the reference page for the Map class in the containers package.

doc containers.Map

Custom Class Pages

Display formatted help text for a custom class.

The class file sads.m is an example file that shows how to create a class. Add the
example folder to the path and request the documentation for sads.

addpath(...
 fullfile(matlabroot,'help','techdoc','matlab_env',...
 'examples'))
doc sads

Display the help for the steer method of the sads class. Because the help text follows
MATLAB conventions, MATLAB formats the display in the browser.

doc sads.steer

1 Alphabetical List

1-3336

Input Arguments
name — Name of functionality
character vector

Name of functionality, such as function, class, or block, specified as a character vector.
Alternatively, an operator symbol.

Some classes and other packaged items require that you specify the package name.
Events, properties, and some methods require that you specify the class name. Separate
the components of the name with periods, such as:

doc className.name
doc packageName.name
doc packageName.className.name

Methods for some classes are not accessible using the doc command; instead, use links
on the class reference page.

Tips
• To access third-party or custom documentation, open the Help browser and navigate

to the documentation home page. Then, at the bottom of the page, click
Supplemental Software.

See Also
help | web

Topics
“Ways to Get Function Help”
“Add Help for Your Program”
“Display Custom Documentation”

Introduced before R2006a

 doc

1-3337

docsearch
Help browser search

Syntax
docsearch
docsearch expression

Description
docsearch opens the Help browser and displays the documentation home page. If the
Help browser is already open, but not visible, then docsearch brings it to the
foreground.

docsearch expression searches the documentation for pages with words that match
the specified expression and highlights them. To clear highlighting, press the Esc key. To
search third-party or custom documentation, you must first run the builddocsearchdb
command to build a search database for the additional help files.

Examples

Search for Single Words

Find all documentation pages that contain the word plot.

docsearch plot

Search for Multiple Words

Find documentation pages containing the words plot and tools.

docsearch plot tools

1 Alphabetical List

1-3338

Expand the search to include variations of the word plot, such as plotting or plots, using a
wildcard character (*).

docsearch plot* tools

Find pages containing either word, but not necessarily both words, using the OR operator.

docsearch plot OR tools

Narrow the search to pages that include an exact phrase by enclosing the phrase in
quotation marks.

docsearch('"plot tools"')

Input Arguments
expression — Expression that defines search terms
character vector

Expression that defines search terms, specified as a character vector. Expressions can
include:

• Quotation marks to specify exact phrases, such as "plot tools"
• Boolean operator keywords in uppercase (listed here in order of precedence): NOT, OR,

AND
• Asterisk (*) wildcard characters, except at the beginning of a word or in an exact

phrase (Searches require that at least two characters in the expression are not
wildcard characters)

Tips
• To access third-party or custom documentation without the docsearch command,

open the Help browser and navigate to the documentation home page. Then, at the
bottom of the page, click Supplemental Software.

See Also
builddocsearchdb | doc

 docsearch

1-3339

Topics
“Search Syntax and Tips”

Introduced before R2006a

1 Alphabetical List

1-3340

dos
Execute DOS command and return output

Note For platform-independent code, use the system command.

Syntax
[status,cmdout] = dos(command)

Description
[status,cmdout] = dos(command) calls the operating system to execute the
specified command and returns the output of the DOS command to cmdout.

For more examples, tips, and information about limitations, see system.

Examples

Display Operating System Command Status and Output

Display the current folder using the cd command. A status of zero indicates that the
command completed successfully. MATLAB returns a character vector containing the
current folder in cmdout.

command = 'cd';
[status,cmdout] = dos(command)

Input Arguments
command — MS-DOS® command
string | character vector

 dos

1-3341

MS-DOS command, specified as a string or a character vector. The command can be a
Windows UI program that opens a user interface, or a DOS console command that you
typically run in a DOS command window. The command executes in a DOS shell, which
might not be the shell from which you started MATLAB.
Example: 'dir'

Output Arguments
status — Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When the command is
successful, status is 0. Otherwise, status is a nonzero integer.

• If command includes the ampersand character (&), then status is the exit status when
command starts

• If command does not include the ampersand character (&), then status is the exit
status upon command completion.

cmdout — Output of operating system command
character vector

Output of the operating system command, returned as a character vector. The system
shell might not properly represent non-Unicode characters.

See Also
computer | perl | system | winopen

Topics
! (exclamation point)

Introduced before R2006a

1 Alphabetical List

1-3342

dot
Dot product

Syntax
C = dot(A,B)
C = dot(A,B,dim)

Description
C = dot(A,B) returns the scalar dot product on page 1-3347 of A and B.

• If A and B are vectors, then they must have the same length.
• If A and B are matrices or multidimensional arrays, then they must have the same size.

In this case, the dot function treats A and B as collections of vectors. The function
calculates the dot product of corresponding vectors along the first array dimension
whose size does not equal 1.

C = dot(A,B,dim) evaluates the dot product of A and B along dimension, dim. The dim
input is a positive integer scalar.

Examples

Dot Product of Real Vectors

Create two simple, three-element vectors.

A = [4 -1 2];
B = [2 -2 -1];

Calculate the dot product of A and B.

C = dot(A,B)

C = 8

 dot

1-3343

The result is 8 since

C = A(1)*B(1) + A(2)*B(2) + A(3)*B(3)

Dot Product of Complex Vectors

Create two complex vectors.

A = [1+i 1-i -1+i -1-i];
B = [3-4i 6-2i 1+2i 4+3i];

Calculate the dot product of A and B.

C = dot(A,B)

C = 1.0000 - 5.0000i

The result is a complex scalar since A and B are complex. In general, the dot product of
two complex vectors is also complex. An exception is when you take the dot product of a
complex vector with itself.

Find the inner product of A with itself.

D = dot(A,A)

D = 8

The result is a real scalar. The inner product of a vector with itself is related to the
Euclidean length of the vector, norm(A).

Dot Product of Matrices

Create two matrices.

A = [1 2 3;4 5 6;7 8 9];
B = [9 8 7;6 5 4;3 2 1];

Find the dot product of A and B.

C = dot(A,B)

1 Alphabetical List

1-3344

C = 1×3

 54 57 54

The result, C, contains three separate dot products. dot treats the columns of A and B as
vectors and calculates the dot product of corresponding columns. So, for example, C(1)
= 54 is the dot product of A(:,1) with B(:,1).

Find the dot product of A and B, treating the rows as vectors.

D = dot(A,B,2)

D = 3×1

 46
 73
 46

In this case, D(1) = 46 is the dot product of A(1,:) with B(1,:).

Dot Product of Multidimensional Arrays

Create two multidimensional arrays.

A = cat(3,[1 1;1 1],[2 3;4 5],[6 7;8 9])

A =
A(:,:,1) =

 1 1
 1 1

A(:,:,2) =

 2 3
 4 5

A(:,:,3) =

 dot

1-3345

 6 7
 8 9

B = cat(3,[2 2;2 2],[10 11;12 13],[14 15; 16 17])

B =
B(:,:,1) =

 2 2
 2 2

B(:,:,2) =

 10 11
 12 13

B(:,:,3) =

 14 15
 16 17

Calculate the dot product of A and B along the third dimension (dim = 3).

C = dot(A,B,3)

C = 2×2

 106 140
 178 220

The result, C, contains four separate dot products. The first dot product, C(1,1) = 106,
is equal to the dot product of A(1,1,:) with B(1,1,:).

Input Arguments
A,B — Input arrays
numeric arrays

1 Alphabetical List

1-3346

Input arrays, specified as numeric arrays.
Data Types: single | double
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
the default is the first array dimension whose size does not equal 1.

Consider two 2-D input arrays, A and B:

• dot(A,B,1) treats the columns of A and B as vectors and returns the dot products of
corresponding columns.

• dot(A,B,2) treats the rows of A and B as vectors and returns the dot products of
corresponding rows.

dot returns conj(A).*B if dim is greater than ndims(A).

Definitions

Scalar Dot Product
The scalar dot product of two real vectors of length n is equal to

u · v = ∑
i = 1

n
uivi = u1v1 + u2v2 + ... + unvn .

 dot

1-3347

This relation is commutative for real vectors, such that dot(u,v) equals dot(v,u). If
the dot product is equal to zero, then u and v are perpendicular.

For complex vectors, the dot product involves a complex conjugate. This ensures that the
inner product of any vector with itself is real and positive definite.

u · v = ∑
i = 1

n
uivi .

Unlike the relation for real vectors, the complex relation is not commutative, so
dot(u,v) equals conj(dot(v,u)).

Algorithms
• When inputs A and B are real or complex vectors, the dot function treats them as

column vectors and dot(A,B) is the same as sum(conj(A).*B).
• When the inputs are matrices or multidimensional arrays, the dim argument

determines which dimension the sum function operates on. In this case, dot(A,B) is
the same as sum(conj(A).*B,dim).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

For the syntax dot(A,B), the arrays A and B must have the same size, even if they are
vectors.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-3348

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
conj | cross | norm | sum

Introduced before R2006a

 dot

1-3349

double
Double-precision arrays

Description
By default, MATLAB stores all numeric variables as double-precision floating-point values
that are 8 bytes (64 bits). These variables have data type (class) double. For example:

x = 10;
whos x

 Name Size Bytes Class Attributes

 x 1x1 8 double

For more information on floating-point values, see “Floating-Point Numbers”.

Creation
You can create a double-precision array using the [] operator, such as A = [1 2 3; 4
5 6]. In addition, many functions return double-precision arrays, such as sin.

If you have an array of a different type, such as single or int8, then you can convert
that array to double precision using the double function.

Syntax
Y = double(X)

Description
Y = double(X) converts the values in X to double precision.

1 Alphabetical List

1-3350

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char | string

Examples

Create Double-Precision Variable

By default, numbers in MATLAB are of the data type double. You can use the class
function to verify a variable's type.

x = 100;
xtype = class(x)

xtype =
'double'

Use the double function to convert variables that are not double precision to type
double.

y = true

y = logical
 1

ydouble = double(y);
ynewtype = class(ydouble)

ynewtype =
'double'

 double

1-3351

Tips
• When you are creating a class, overload double when it makes sense to convert an

object of that class to a double-precision value.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | single | str2double | typecast

1 Alphabetical List

1-3352

Topics
“Floating-Point Numbers”
“Identifying Numeric Classes”

Introduced before R2006a

 double

1-3353

dragrect
Drag rectangles with mouse

Syntax
[finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description
[finalrect] = dragrect(initialrect) tracks one or more rectangles anywhere on
the screen. The n-by-4 matrix initialrect defines the rectangles. Each row of
initialrect must contain the initial rectangle position as [left bottom width
height] values. dragrect returns the final position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the rectangles in
increments of stepsize. The lower left corner of the first rectangle is constrained to a
grid of size equal to stepsize starting at the lower left corner of the figure, and all other
rectangles maintain their original offset from the first rectangle.

[finalrect] = dragrect(...) returns the final positions of the rectangles when the
mouse button is released. The default step size is 1.

Examples
Drag a rectangle with dimensions of 50-by-100 pixels on page 1-3355.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

1 Alphabetical List

1-3354

Definitions

Pixels
Distances in pixels are independent of your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your system resolution.

Tips
dragrect returns immediately if a mouse button is not currently pressed. Use dragrect
in a ButtonDownFcn, or from the command line in conjunction with
waitforbuttonpress, to ensure that the mouse button is down when dragrect is
called. dragrect returns when you release the mouse button.

If the drag ends over a figure window, the positions of the rectangles are returned in that
figure's coordinate system. If the drag ends over a part of the screen not contained within
a figure window, the rectangles are returned in the coordinate system of the figure over
which the drag began.

Note You cannot use normalized figure units with dragrect.

See Also
rbbox | waitforbuttonpress

Introduced before R2006a

 dragrect

1-3355

drawnow
Update figures and process callbacks

Syntax
drawnow
drawnow limitrate
drawnow nocallbacks
drawnow limitrate nocallbacks

drawnow update
drawnow expose

Description
drawnow updates figures and processes any pending callbacks. Use this command if you
modify graphics objects and want to see the updates on the screen immediately.

drawnow limitrate limits the number of updates to 20 frames per second. If it has
been fewer than 50 milliseconds since the last update, or if the graphics renderer is busy
with the previous change, then drawnow discards the new updates. Use this command if
you are updating graphics objects in a loop and do not need to see every update on the
screen. Skipping updates can create faster animations. Pending callbacks are processed,
so you can interact with figures during animations.

drawnow nocallbacks defers callbacks, such as the ButtonDownFcn callback, until
the next full drawnow command. Use this option if you want to prevent callbacks from
interrupting your code. Deferring callbacks temporarily disables figure interactions, such
as mouse clicks or resizing the figure. Deferring callbacks does not affect animation
speed.

drawnow limitrate nocallbacks limits the number of updates to 20 frames per
second and skips updates if the renderer is busy. This syntax also prevents callbacks from
interrupting your code, which temporarily disables figure interactions.

1 Alphabetical List

1-3356

drawnow update skips updates if the renderer is busy and defers callbacks. This syntax
is not recommended. Use the limitrate option instead.

drawnow expose updates figures, but defers callbacks. This syntax is not recommended.
Use the nocallbacks option instead.

Examples

Create Animation of Streaming Data

Create an animation of a line growing as it accumulates 2,000 data points. Use drawnow
to display the changes on the screen after each iteration through the loop.

h = animatedline;
axis([0 4*pi -1 1])
x = linspace(0,4*pi,2000);

for k = 1:length(x)
 y = sin(x(k));
 addpoints(h,x(k),y);
 drawnow
end

 drawnow

1-3357

Skip Updates for Faster Animation

Create an animation of a line growing as it accumulates 10,000 points. Since there are
10,000 points, drawing each update on the screen is slow. Create a faster, smooth
animation by limiting the number of updates using drawnow limitrate. Then, display
the final updates on the screen by calling drawnow after the loop ends.

h = animatedline;
axis([0 4*pi -1 1])
x = linspace(0,4*pi,10000);

for k = 1:length(x)

1 Alphabetical List

1-3358

 y = sin(x(k));
 addpoints(h,x(k),y);
 drawnow limitrate
end
drawnow

Precompute Data, Then Create Animation

Compute all the data before the animation loop.

h = animatedline;
axis([0 4*pi -1 1])

 drawnow

1-3359

x = linspace(0,4*pi,10000);
y = sin(x);

for k = 1:length(x)
 addpoints(h,x(k),y(k));
 drawnow limitrate
end
drawnow

If you have long computations, precomputing the data can improve performance.
Precomputing minimizes the computation time by letting the computation run without

1 Alphabetical List

1-3360

interruptions. Additionally, it helps ensure a smooth animation by focusing on only
graphics code in the animation loop.

Definitions

Actions Equivalent to drawnow
These actions are equivalent to calling a full drawnow command:

• Returning to the MATLAB prompt.
• Using the getframe, pause, and waitfor functions.
• Using functions that wait for user input, such as waitforbuttonpress, input,

keyboard, or ginput.

Tips
• The nocallbacks option always adds interrupting callbacks to the queue. If you want

to discard interrupting callbacks, then use the Interruptible and BusyAction
properties instead.

See Also
pause | refreshdata | waitfor

Introduced before R2006a

 drawnow

1-3361

dsearchn
N-D nearest point search

Syntax
k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description
k = dsearchn(X,T,XI) returns the indices k of the closest points in X for each point in
XI. X is an m-by-n matrix representing m points in n-dimensional space. XI is a p-by-n
matrix, representing p points in n-dimensional space. T is a numt-by-n+1 matrix, a
triangulation of the data X generated by delaunayn. The output k is a column vector of
length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest points in X for
each point in XI, unless a point is outside the convex hull. If XI(J,:) is outside the
convex hull, then K(J) is assigned outval, a scalar double. Inf is often used for
outval. If outval is [], then k is the same as in the case k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a triangulation. With large X
and small XI, this approach is faster and uses much less memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest points. d is a
column vector of length p.

Algorithms
dsearchn is based on Qhull [1]. For information about Qhull, see http://
www.qhull.org/. For copyright information, see http://www.qhull.org/
COPYING.txt.

1 Alphabetical List

1-3362

http://www.qhull.org/
http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.qhull.org/COPYING.txt

References
[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull Algorithm for Convex

Hulls,” ACM Transactions on Mathematical Software, Vol. 22, No. 4, Dec. 1996, p.
469–483.

See Also
delaunayTriangulation

Introduced before R2006a

 dsearchn

1-3363

matlab.io.datastore.DsFileReader class
Package: matlab.io.datastore

File-reader object for files in a datastore

Description
The DsFileReader object enables low-level file reading access for files in your datastore.

Construction
fr = matlab.io.datastore.DsFileReader(filename) returns a DsFileReader
object for read access to the file specified by filename.

fr = matlab.io.datastore.DsFileReader(filename,'TextEncoding',
encoding) specifies the character encoding scheme associated with the file. Additionally,
specifying encoding sets the TextEncoding property of the DsFileReader object.

Input Arguments
filename — File name
character vector | string scalar

File name, including the file extension, specified as a character vector or a string scalar. If
the file is not in the current folder, filename must include a full or a relative path.

The Name property of the DsFileReader object stores the file name.
Example: 'myFile.txt'
Data Types: char | string

encoding — Character encoding scheme
'UTF-8' (default) | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the name of a standard,
character-encoding scheme listed in this table.

1 Alphabetical List

1-3364

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

The TextEncoding property of the DsFileReader object stores the value specified in
encoding.
Example: 'Shift_JIS'
Data Types: char | string

Properties
Name — File name
character vector | string scalar

File name, specified as a character vector or string scalar.
Example: fr.Name returns the file name.
Data Types: char | string

Size — File size
numeric scalar

File size in bytes, returned as a numeric scalar integer.

 matlab.io.datastore.DsFileReader class

1-3365

Example: fr.Size
Data Types: double

TextEncoding — Character encoding scheme
'UTF-8' (default) | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the name of a standard,
character-encoding scheme. To set the value for the TextEncoding property, see the
description of the encoding input argument.
Example: 'TextEncoding','Shift_JIS'

Position — Position pointer location
integer

Position pointer location in the file, specified as an integer. The position pointer is a zero-
based integer that tracks the number of bytes from the beginning of the file.

If a file has n bytes of data, then those n bytes are in positions 0 through n-1.

You can set the Position property using the seek method. Calls to the read method
begin reading the file from the location indicated by the Position property. When
reading a file iteratively, the read method automatically updates the position pointer.
Subsequent calls to the read method begin reading from the end position of the previous
read operation.
Data Types: double

Methods
hasdata Determine if data is available to read
read Read bytes from file
seek Seek to a position in the file

Examples
Read File Portion Specified by Starting Position and Size
Create a file-reader object for a file, seek to the desired starting position, and read a
portion of the file.

1 Alphabetical List

1-3366

Create a DsFileReader object for airlinesmall.csv.

fr = matlab.io.datastore.DsFileReader('airlinesmall.csv');

The airlinesmall.csv file has variable names at the beginning of the file. The variable
names line ends at the position marked by 299 bytes. To get past the variable names line,
use the seek method to move the read pointer to the starting position.

seek(fr,299,'RespectTextEncoding',true);

Read the first 1000 characters.

 if hasdata(fr)
 d = read(fr,1000,'SizeMethod','OutputSize','OutputType','char');
 end

See Also
matlab.io.Datastore | matlab.io.datastore.DsFileSet |
matlab.io.datastore.HadoopLocationBased |
matlab.io.datastore.Partitionable

Introduced in R2017b

 matlab.io.datastore.DsFileReader class

1-3367

hasdata
Class: matlab.io.datastore.DsFileReader
Package: matlab.io.datastore

Determine if data is available to read

Syntax
tf = hasdata(fr)

Description
tf = hasdata(fr) returns logical 1 (true) if there is data available to read from the
file-reader object specified by fr. Otherwise, hasdata returns logical 0 (false).

Input Arguments
fr — File-reader object
matlab.io.datastore.DsFileReader object

File-reader object, specified as a matlab.io.datastore.DsFileReader object. To
create a DsFileReader object, see matlab.io.datastore.DsFileReader.

Examples

Determine if File-Reader Object Has Data to Read
Create a file-reader object for a file, check if the file has data to read, and then read the
data.

Create a DsFileReader object for airlinesmall.csv.

fr = matlab.io.datastore.DsFileReader('airlinesmall.csv');

1 Alphabetical List

1-3368

Check if the file has data to read using the hasdata method. Then, read the first 1000
characters.

 if hasdata(fr)
 d = read(fr,1000,'SizeMethod','OutputSize','OutputType','char');
 end

See Also
matlab.io.datastore.DsFileReader | read | seek

Introduced in R2017b

 hasdata

1-3369

read
Class: matlab.io.datastore.DsFileReader
Package: matlab.io.datastore

Read bytes from file

Syntax
A = read(fr,size)
A = read(fr,size,Name,Value)
[A,count] = read(___)

Description
A = read(fr,size) returns data, from the file represented by the file-reader object fr.
The number of bytes specified in size determines the amount of data that is read.

A = read(fr,size,Name,Value)specifies additional parameters using one or more
name-value pair arguments. For example, you can specify the output type from the read
operation to be char by specifying 'OutputType','char'.

[A,count] = read(___) returns a count of the number of bytes of data that were
actually read by the read method.

Input Arguments
fr — File-reader object
matlab.io.datastore.DsFileReader object

File-reader object, specified as a matlab.io.datastore.DsFileReader object. To
create a DsFileReader object, see matlab.io.datastore.DsFileReader.

size — Size of data to read
integer

1 Alphabetical List

1-3370

Size of data to read, specified as an integer that represents the number of bytes to read.
Example: read(fr,20)
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'OutputType','uint8'

OutputType — Output data type
'uint8' (default) | 'int8' | 'int16' | 'int32' | 'int64' | 'uint16' | 'uint32' | 'uint64' | 'single' |
'double' | 'char'

Output data type, specified as the comma-separated pair consisting of 'OutputType'
and a character vector or string scalar containing one of these values: 'uint8', 'int8',
'int16', 'int32', 'int64', 'uint16', 'uint32', 'uint64', 'single', 'double',
or 'char'.
Example: 'OutputType','uint8'
Data Types: char | string

SizeMethod — Interpret size input
'NumBytes' (default) | 'OutputSize'

Interpret size input, specified as the comma-separated pair consisting of 'SizeMethod'
and one of these values:

• 'NumBytes' - Interpret the size input argument as the number of bytes to read from
the file.

• 'OutputSize' - Interpret the size input argument as the size of the output A from
the read method.

Example: 'SizeMethod','OutputSize'
Data Types: char | string

 read

1-3371

Output Arguments
A — Output data
array

Output data, returned as an array.

count — Number of bytes read
integer

Number of bytes read, returned as a numeric scalar integer.

• If the 'SizeMethod' property is unspecified or set to 'NumBytes', then count is the
number of bytes read.

• If the 'SizeMethod' property is set to 'OutputSize', then count is equal to
size(A).

Data Types: double

Examples

Read Portion of File Specified by Starting Position and Size
Create a file-reader object for a file, seek to the desired starting position, and read a
portion of the file.

Create a DsFileReader object for airlinesmall.csv.

fr = matlab.io.datastore.DsFileReader('airlinesmall.csv');

The airlinesmall.csv file has variable names at the beginning of the file. The variable
names line ends at the position marked by 299 bytes. To get past the variable names line,
use the seek method to move the read pointer to the starting position.

seek(fr,299,'RespectTextEncoding',true);

Check if the file has data to read using the hasdata method. The read method reads
1000 bytes from the file and interprets them as characters.

1 Alphabetical List

1-3372

if hasdata(fr)
 [d,count] = read(fr,1000,'OutputType','char');
end

Read enough bytes from the file to fill 1000 characters by setting the SizeMethod
parameter to OutputSize.

if hasdata(fr)
 [d,count] = read(fr,1000,'SizeMethod','OutputSize',...
 'OutputType','char');
end

See Also
hasdata | matlab.io.datastore.DsFileReader | seek

Introduced in R2017b

 read

1-3373

seek
Class: matlab.io.datastore.DsFileReader
Package: matlab.io.datastore

Seek to a position in the file

Syntax
numBytes = seek(fr,n)
numBytes = seek(fr,n,Name,Value)

Description
numBytes = seek(fr,n) moves the file position indicator by n bytes past current
position in the file specified by the fr object. seek returns the actual number of bytes by
which the position indicator was moved.

numBytes = seek(fr,n,Name,Value) specifies additional parameters using one or
more name-value pair arguments. For example, you can specify the starting position of
the seek operation by specifying 'Origin','start-of-file'.

Input Arguments
fr — File-reader object
matlab.io.datastore.DsFileReader object

File-reader object, specified as a matlab.io.datastore.DsFileReader object. To
create a DsFileReader object, see matlab.io.datastore.DsFileReader.

n — Number of bytes
integer

Number of bytes, specified as an integer. The seek method moves the file position
indicator n bytes from current position in the specified file. If n is negative, seek will
move the position indicator backwards in the file.

1 Alphabetical List

1-3374

Example: seek(fr,20)
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RespectTextEncoding',true

RespectTextEncoding — Respect character boundaries
false (default) | true

Respect character boundaries, specified as the comma-separated pair consisting of
'RespectTextEncoding' followed by true or false.

• true - Respect character boundaries of multibyte characracters.
• false - Do not respect character boundaries of multibyte characters.

Example: 'RespectTextEncoding',true
Data Types: logical

Origin — Starting position
'currentposition' (default) | 'start-of-file' | 'end-of-file'

Starting position, specified as the comma-separated pair consisting of 'Origin' followed
by one of these values.

• 'currentposition' - Start the seek operation from the current position indicator
in the file.

• 'start-of-file' - Starts the seek operation from position zero.
• 'end-of-file' - Starts the seek operation from the end of the file.

Example: 'Origin','start-of-file'
Data Types: char | string

 seek

1-3375

Examples

Seek to Position in File and Read
Create a file-reader object for a file, seek to the desired starting position, and read a
portion of the file.

Create a DsFileReader object for airlinesmall.csv.

fr = matlab.io.datastore.DsFileReader('airlinesmall.csv');

The airlinesmall.csv file has variable names at the beginning of the file. The variable
names line ends at the position marked by 299 bytes. To get past the variable names line,
use the seek method to move the read pointer to the starting position.

seek(fr,299,'RespectTextEncoding',true);

Read the first 1000 characters.

 if hasdata(fr)
 d = read(fr,1000,'SizeMethod','OutputSize','OutputType','char');
 end

See Also
hasdata | matlab.io.datastore.DsFileReader | read

Introduced in R2017b

1 Alphabetical List

1-3376

matlab.io.datastore.DsFileSet class
Package: matlab.io.datastore

File-set object for collection of files in datastore

Description
The DsFileSet object helps you manage the iterative processing of large collections of
files. Use the DsFileSet object together with the DsFileReader object to manage and
read files from your datastore.

Construction
fs = matlab.io.datastore.DsFileSet(location) returns a DsFileSet object for
a collection of files based on the specified location.

fs = matlab.io.datastore.DsFileSet(location,Name,Value) specifies
additional parameters for the DsFileSet object using one or more name-value pair
arguments. Name also can be a property name, and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
location — Files or folders to include
character vector | cell array of character vectors | string | struct

Files or folders to include in the file-set object, specified as a character vector, cell array
of character vectors, string, or a struct. If the files are not in the current folder, then
location must be full or relative paths. Files within subfolders of the specified folder are
not automatically included in the file-set object.

Typically for a Hadoop workflow, when you specify location as a struct, it must contain
the fields FileName, Offset, and Size. This requirement enables you to use the
location argument directly with the initializeDatastore method of the

 matlab.io.datastore.DsFileSet class

1-3377

matlab.io.datastore.HadoopLocationBased class. For an example, see “Add
Support for Hadoop”.

You can use the wildcard character (*) when specifying location. Specifying this
character includes all matching files or all files in the matching folders in the file-set
object.

If the files are not available locally, then the full path of the files or folders must be an
internationalized resource identifier (IRI), such as
hdfs://hostname:portnumber/path_to_file.
Data Types: char | cell | string | struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FileExtensions',{'.jpg','.tif'} includes all files with a .jpg or .tif
extension in the FileSet object.

FileExtensions — File extensions
character vector | cell array of character vectors | string

File extensions, specified as the comma-separated pair consisting of 'FileExtensions'
and a character vector, cell array of character vectors, or string. You can use the empty
quotes '' to represent files without extensions.

If 'FileExtensions' is not specified, then DsFileSet automatically includes all file
extensions.
Example: 'FileExtensions','.jpg'
Example: 'FileExtensions',{'.txt','.csv'}
Data Types: char | cell | string

IncludeSubfolders — Subfolder inclusion flag
false (default) | true

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true or false. Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

1 Alphabetical List

1-3378

Example: 'IncludeSubfolders',true
Data Types: logical | double

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server, and the data is stored on your local machines with a copy of the
data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.

 matlab.io.datastore.DsFileSet class

1-3379

• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

Properties
NumFiles — Number of files
numeric scalar

This property is read-only.

Number of files in the file-set object, specified as a numeric scalar.
Example: fs.NumFiles
Data Types: double

FileSplitSize — Split Size
'file' (default) | numeric scalar

This property is read-only.

Split size, specified as 'file' or a numeric scalar.

The value assigned to FileSplitSize dictates the output from the nextfile method.

• If FileSplitSize is 'file', then the nextfile method returns a table with
FileName, FileSize, Offset, and SplitSize. The value of SplitSize is set equal
to the FileSize.

• If FileSplitSize is a numeric scalar n, then the nextfile method returns
FileName, FileSize, Offset, and SplitSize. The value of SplitSize is set equal
to the FileSplitSize. This information is used to read n bytes of the file.
Subsequent calls to the nextfile method return information to help read the next n
bytes of the same file until the end of the file.

Example: 'FileSplitSize',20
Data Types: double | char

1 Alphabetical List

1-3380

Methods
hasfile Determine if more files are available in file-set object
maxpartitions Maximum number of partitions
nextfile Information on next file or file chunk
partition Partition file-set object
subset Create subset of datastore or file-set
reset Reset the file-set object
resolve Information on all files in file-set object

Examples
Get File Information for Collection of Files

Create a file-set object, get file information one file at time, or get information for all the
files in the file-set object.

Create a file-set object for all the .mat files from the demos folder.

folder = fullfile(matlabroot,'toolbox','matlab','demos');
fs = matlab.io.datastore.DsFileSet(folder,...
 'IncludeSubfolders',true,...
 'FileExtensions','.mat');

Obtain information for the first and second file from the file-set object.

fTable1 = nextfile(fs) ; % first file
fTable2 = nextfile(fs) ; % second file

Obtain information on all the files by getting information for one file at a time and collect
the information into a table.

ft = cell(fs.NumFiles,1); % using cell for efficiency
i = 1;
reset(fs); % reset to the beginning of the fileset
while hasfile(fs)
 ft{i} = nextfile(fs);
 i = i + 1;
end
allFiles = vertcat(ft{:});

Alternatively, obtain information on all files at the same time.

 matlab.io.datastore.DsFileSet class

1-3381

allfiles = resolve(fs);

Tips
• If you use the DsFileSet object as a property in your custom datastore, then

implement the copyElement method. Implementing the copyElement method
enables you to create a deep copy of the datastore object. For more information, see
“Customize Copy Operation”. For an example implementation of the copyElement
method, see “Develop Custom Datastore”.

See Also
matlab.io.Datastore | matlab.io.datastore.DsFileReader |
matlab.io.datastore.HadoopLocationBased |
matlab.io.datastore.Partitionable

Introduced in R2017b

1 Alphabetical List

1-3382

hasfile
Class: matlab.io.datastore.DsFileSet
Package: matlab.io.datastore

Determine if more files are available in file-set object

Syntax
tf = hasfile(fs)

Description
tf = hasfile(fs) returns logical 1 (true) if any more files are available to process in
the DsFileSet object specified by fs. Otherwise, it returns logical 0 (false).

Input Arguments
fs — Input file set
matlab.io.datastore.DsFileSet object

Input file set, specified as a matlab.io.datastore.DsFileSet object. To create a
DsFileSet object, see matlab.io.datastore.DsFileSet.
Example: hasfile(fs)

Examples

Check if File-set Object has More Files
Create a file-set object, check if the file-set object has any files, and then read the data
iteratively.

Create a file-set object for all the .mat files in the demos folder.

 hasfile

1-3383

folder = fullfile(matlabroot,'toolbox','matlab','demos');
fs = matlab.io.datastore.DsFileSet(folder,...
 'IncludeSubfolders',true,...
 'FileExtensions','.mat');

Use the hasfile method to check if the file-set object has more files to read. Get the file
information, one file at a time, while files remain in the file-set object.

while hasfile(fs)
 file = nextfile(fs);
end

See Also
matlab.io.datastore.DsFileSet | maxpartitions | nextfile | partition |
reset | resolve

Topics
“Develop Custom Datastore”

Introduced in R2017b

1 Alphabetical List

1-3384

maxpartitions
Class: matlab.io.datastore.DsFileSet
Package: matlab.io.datastore

Maximum number of partitions

Syntax
N = maxpartitions(fs)

Description
N = maxpartitions(fs) returns the maximum number of partitions for a given
DsFileSet object fs.

Input Arguments
fs — Input file-set object
matlab.io.datastore.DsFileSet object

Input file-set object, specified as a matlab.io.datastore.DsFileSet object. To create
a DsFileSet object, see matlab.io.datastore.DsFileSet.

Output Arguments
N — Number of partitions
positive integer

Number of partitions, returned as an integer. The value of N depends on the
FileSplitSize property of the DsFileSet object.

• If FileSplitSize contains 'file', then maxpartitions sets N equal to the total
number of files in fs.

 maxpartitions

1-3385

• If FileSplitSize contains a numeric value, then maxpartitions determines N as
the sum of the ceil of the file sizes of each file divided by the FileSplitSize.

Examples

Get Maximum Number of Partitions for the File-Set Object
Create a file-set object and get the number of partitions for different values of the
FileSplitSize property.

Create a file-set object for all .mat files in a folder and check the number of files.

folder = fullfile(matlabroot,'toolbox','matlab','demos');
fs = matlab.io.datastore.DsFileSet(folder,'FileExtensions','.mat');
fs.NumFiles

ans =

 40

The FileSplitSize property of the DSFileSet object is set to 'file'. Therefore,
maxpartitions returns a value equal to the number of files.

maxpartitions(fs)

ans =

 40

Set the FileSplitSize property to a numeric size (2000 bytes) and compute
maxpartitions.

fs = matlab.io.datastore.DsFileSet(folder,...
 'FileExtensions','.mat',...
 'FileSplitSize',2000);
n = maxpartitions(fs)

n =

 1752

1 Alphabetical List

1-3386

See Also
hasfile | matlab.io.datastore.DsFileSet | nextfile | partition | reset |
resolve

Introduced in R2017b

 maxpartitions

1-3387

nextfile
Class: matlab.io.datastore.DsFileSet
Package: matlab.io.datastore

Information on next file or file chunk

Syntax
fileInfo = nextfile(fs)

Description
fileInfo = nextfile(fs) returns the information on the next file available in the file
set object fs. Subsequent calls to the nextfile function continue reading from the
endpoint of the previous call.

Input Arguments
fs — Input file-set object
matlab.io.datastore.DsFileSet object

Input file-set object, specified as a matlab.io.datastore.DsFileSet object. To create
a DsFileSet object, see matlab.io.datastore.DsFileSet.

Output Arguments
fileInfo — File information
table

File information, returned as a table. The table contains columns FileName, FileSize,
Offset, and SplitSize.

1 Alphabetical List

1-3388

Examples

Get File Information One File at a Time
Create a file-set object and get the file information iteratively, one file at a time.

Create a file-set object for all .mat files in the demos folder.

folder = fullfile(matlabroot,'toolbox','matlab','demos');
fs = matlab.io.datastore.DsFileSet(folder,...
 'IncludeSubfolders',true,...
 'FileExtensions','.mat');

Get the file information from the file-set object fs, one file at a time.

while hasfile(fs)
 file = nextfile(fs);
end

Tips
• The nextfile method returns an error if no more files exist in the file-set object fs.

To avoid this error, use nextfile along with hasfile and reset. The hasfile
method checks if files still remain in the file-set object, while the reset method resets
the internal file pointer to the beginning of the file-set object.

See Also
hasfile | matlab.io.datastore.DsFileSet | maxpartitions | partition |
reset | resolve

Introduced in R2017b

 nextfile

1-3389

partition
Class: matlab.io.datastore.DsFileSet
Package: matlab.io.datastore

Partition file-set object

Syntax
subfs = partition(fs,n,index)

Description
subfs = partition(fs,n,index) partitions file set fs into the number of parts
specified by n and returns the partition corresponding to the index index.

Input Arguments
fs — Input file-set object
matlab.io.datastore.DsFileSet object

Input file-set object, specified as a matlab.io.datastore.DsFileSet object. To create
a DsFileSet object, see matlab.io.datastore.DsFileSet.

n — Number of partitions
positive integer

Number of partitions, specified as a positive integer.
Example: 3
Data Types: double

index — Index
positive integer

Index, specified as a positive integer.

1 Alphabetical List

1-3390

Example: 1
Data Types: double

Output Arguments
subfs — Output file-set object
matlab.io.datastore.DsFileSet object

Output file-set object, specified as a matlab.io.datastore.DsFileSet object. The
output file-set object subfs is a subset of the file-set object fs.

Examples
Partition File-Set Object and Get One Partition
Create a file-set object, partition the file-set object, and get the files contained in a
specified partition.

Create a file-set object for all .mat files in a folder.

folder = fullfile(matlabroot,'toolbox','matlab','demos');
fs = matlab.io.datastore.DsFileSet(folder,'FileExtensions','.mat');

Partition the 40 files into five partitions and obtain the first partition. Then, get the file
information of all files in the first partition.

subfsA = partition(fs,5,1) % first 8 files
subfsA_fileInfo = resolve(subfsA)

Obtain the second partition and files information for files in this partition.

subfsB = partition(fs,5,2) % next 8 files
subfsB_fileInfo = resolve(subfsB)

Tips
• Use the NumFiles property of the DsFileSet object to find the number of files in fs

and use that number to estimate a reasonable number of partitions for the datastore.

 partition

1-3391

See Also
hasfile | matlab.io.datastore.DsFileSet | maxpartitions | nextfile | reset
| resolve

Introduced in R2017b

1 Alphabetical List

1-3392

reset
Class: matlab.io.datastore.DsFileSet
Package: matlab.io.datastore

Reset the file-set object

Syntax
reset(fs)

Description
reset(fs) resets the file-set object fs to the state where no file has been read from it.
Resetting enables rereading from the same file-set object.

Input Arguments
fs — Input file-set object
matlab.io.datastore.DsFileSet object

Input file-set object, specified as a matlab.io.datastore.DsFileSet object. To create
a DsFileSet object, see matlab.io.datastore.DsFileSet.

Examples
Reset File-Set Object
Create a file-set object, get file information from the file-set object, and then reset the file-
set object to its original state.

Create a file-set object for all the .mat files in the demos folder.

folder = fullfile(matlabroot,'toolbox','matlab','demos');
fs = matlab.io.datastore.DsFileSet(folder,...

 reset

1-3393

 'IncludeSubfolders',true,...
 'FileExtensions','.mat');

While there are files in the file-set object, get the file information one file at a time.

while hasfile(fs)
 file = nextfile(fs);
end

The nextfile operation changes the position pointer in the file-set object. To get the
information on the first file, you must first reset the file-set object.

reset(fs);
fTable1 = nextfile(fs); % first file information

See Also
hasfile | matlab.io.datastore.DsFileSet | maxpartitions | nextfile |
partition | resolve

Introduced in R2017b

1 Alphabetical List

1-3394

resolve
Class: matlab.io.datastore.DsFileSet
Package: matlab.io.datastore

Information on all files in file-set object

Syntax
allFilesInfo = resolve(fs)

Description
allFilesInfo = resolve(fs) returns file information on all the files from the file-set
object fs.

Input Arguments
fs — Input file-set object
matlab.io.datastore.DsFileSet object

Input file-set object, specified as a matlab.io.datastore.DsFileSet object. To create
a DsFileSet object, see matlab.io.datastore.DsFileSet.

Output Arguments
allFilesInfo — File information for all files
table

File information for all files in the file set, returned as a table. The table contains the
columns FileName and FileSize.

 resolve

1-3395

Examples

Get File Information on All Files
Create a file-set object and get information for all the files in the file-set object at the
same time.

Create a file-set object for all .mat files in a folder.

folder = fullfile(matlabroot,'toolbox','matlab','demos');
fs = matlab.io.datastore.DsFileSet(folder,'FileExtensions','.mat');

Obtain a table with information on all the files using resolve. The table contains
columns for FileName and FileSize.

allfiles = resolve(fs);

See Also
hasfile | matlab.io.datastore.DsFileSet | maxpartitions | nextfile |
partition | reset

Introduced in R2017b

1 Alphabetical List

1-3396

duration
Lengths of time in fixed-length units

Description
The values in a duration array represent elapsed times in units of fixed length, such as
hours, minutes, and seconds. You also can create elapsed times in terms of fixed-length
(24-hour) days and fixed-length (365.2425-day) years.

Work with duration arrays as you would work with numeric arrays. You can add, subtract,
sort, compare, concatenate, and plot duration arrays. Use duration arrays to simplify
calculations on datetime arrays that involve time units such as hours and minutes.

Creation
You can create duration arrays that have specified time units using the years, days,
hours, minutes, seconds, and milliseconds functions. For example, to create an
array that has elapsed times of 1, 2, and 3 hours, use the hours function.

D = hours(1:3)

D =

 1×3 duration array

 1 hr 2 hr 3 hr

You also can create a duration array using the duration function, described below.

Syntax
D = duration(H,MI,S)
D = duration(H,MI,S,MS)
D = duration(X)

D = duration(TimeStrings)

 duration

1-3397

D = duration(TimeStrings,'InputFormat',infmt)

D = duration(___ ,'Format',displayFormat)

Description
D = duration(H,MI,S) creates a duration array from numeric arrays containing the
number of hours, minutes, and seconds specified by H, MI, and S.

D = duration(H,MI,S,MS) adds milliseconds to the duration array, specified by MS.

D = duration(X) creates a column vector of durations from a numeric matrix.

D = duration(TimeStrings) converts text that represents elapsed times into a
duration array. TimeStrings must represent times using either the 'hh:mm:ss' or the
'dd:hh:mm:ss' format.

D = duration(TimeStrings,'InputFormat',infmt) converts text using the format
specified by infmt.

D = duration(___ ,'Format',displayFormat) additionally specifies a display
format for D. This property changes the display of D, but not its values. You can use this
syntax with any of the arguments from the previous syntaxes.

Input Arguments
H,MI,S — Hour, minute, and second arrays
numeric arrays

Hour, minute, and second arrays, specified as numeric arrays. Any of these arrays can be
a scalar. All arrays that are not scalars must be the same size.
Example: duration(12,45,7) returns a duration of 12 hours, 45 minutes, and 7
seconds.

MS — Millisecond array
numeric array

Millisecond array, specified as a numeric array. MS either must be a scalar or the same
size as the H, MI, and S input arguments.

1 Alphabetical List

1-3398

Example: duration(12,45,30,35) returns a duration of 12 hours, 45 minutes, 30
seconds, and 35 milliseconds.

X — Input matrix
numeric matrix

Input matrix, specified as a numeric matrix. X must have three columns, containing the
numbers of hours, minutes, and seconds, respectively.
Example: duration([12 30 16]) returns a duration of 12 hours, 30 minutes, and 16
seconds.

TimeStrings — Text representing elapsed times
character vector | cell array of character vectors | string array

Text representing elapsed times, specified as a character vector, a cell array of character
vectors, or a string array. The duration function attempts to match the format of
TimeStrings to either the 'hh:mm:ss' or 'dd:hh:mm:ss' formats, where dd, hh, mm,
and ss represent days, hours, minutes, and seconds. The last field can include digits to
the right of the decimal mark representing fractional seconds.

If you know the format, specify 'InputFormat' and its corresponding infmt value.
Example: duration('12:30:16') returns a duration of 12 hours, 30 minutes, and 16
seconds.
Example: duration('00:05:23.86') returns a duration of 5 minutes and 23.86
seconds.
Example: duration({'01:34:21';'23:16:54'}) returns a column vector containing
two durations.

infmt — Format of input text
character vector | string scalar

Format of the input text, specified as a character vector or string scalar.

Specify infmt as any of the following formats, where dd, hh, mm, and ss represent days,
hours, minutes, and seconds:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'

 duration

1-3399

• 'hh:mm'
• Any of the first three formats, with up to nine S characters to indicate fractional

second digits, such as 'hh:mm:ss.SSSS'

Properties
Format — Display format
'hh:mm:ss' (default) | character vector | string scalar

Display format, specified as a character vector or string scalar. The format can be either a
single number with time units (such as '0.5 yrs') or a digital timer (such as
'hh:mm:ss' for hours, minutes, and seconds).

For numbers with time units, specify one of the following:

• 'y' — Fixed-length years, where one year equals 365.2425 days
• 'd' — Fixed-length days, where one day equals 24 hours
• 'h' — Hours
• 'm' — Minutes
• 's' — Seconds

For digital timer formats, specify one of the following:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'
• Any of the first three formats, with up to nine S characters to indicate fractional

second digits, such as 'hh:mm:ss.SSSS'

Example: D.Format = 'm' displays each value in D as a number of minutes.

Examples

1 Alphabetical List

1-3400

Use Durations with Datetime Values

Create a datetime value.

D = datetime('today')

D = datetime
 02-Mar-2019

Create a datetime array in which each value has the same date but different time
components. One convenient way to create such an array is to add a duration array to D.

First, create an array of hours using the hours function. Each element is two hours
longer than the previous element.

H = hours(0:2:6)

H = 1x4 duration array
 0 hr 2 hr 4 hr 6 hr

Then, add D and H.

T = D + H

T = 1x4 datetime array
Columns 1 through 3

 02-Mar-2019 00:00:00 02-Mar-2019 02:00:00 02-Mar-2019 04:00:00

Column 4

 02-Mar-2019 06:00:00

Use duration arrays for arithmetic operations with datetime arrays and fixed lengths of
time.

Create Duration Array

Create a duration array, specifying hours, minutes, and seconds as input arguments.
Since the second argument is an array, output D is an array that has the same size.

 duration

1-3401

D = duration(1,30:33,0)

D = 1x4 duration array
 01:30:00 01:31:00 01:32:00 01:33:00

Convert Matrix

Create a numeric matrix with three columns. The columns represent hours, minutes, and
seconds respectively.

X = [12 17 54;9 32 3]

X = 2×3

 12 17 54
 9 32 3

Convert the matrix to a duration array.

D = duration(X)

D = 2x1 duration array
 12:17:54
 09:32:03

Convert Text to Duration Arrays

Convert a character vector representing a time as hours, minutes, and seconds.

T = '6:34:12';
D = duration(T)

D = duration
 06:34:12

Convert a cell array of character vectors.

1 Alphabetical List

1-3402

T = {'12:54:37','8:03:12'};
D = duration(T)

D = 1x2 duration array
 12:54:37 08:03:12

Convert text that also has a day component. For display, the default format for duration
arrays converts the number of days to hours.

T = '1:00:54:21';
D = duration(T)

D = duration
 24:54:21

Specify Input Format of Text

Specify the format of text representing elapsed times, and then convert them to duration
arrays.

Convert a character vector. The input format represents minutes and seconds. The output
argument is a duration value, whose format represents hours, minutes, and seconds.

T = '78:34';
infmt = 'mm:ss';
D = duration(T,'InputFormat',infmt)

D = duration
 01:18:34

Create a cell array of character vectors whose format represents minutes, seconds, and
fractions of a second to three decimal places.

infmt = 'mm:ss.SSS';
T = {'1:34.862' '67:07.218'}

T = 1x2 cell array
 {'1:34.862'} {'67:07.218'}

 duration

1-3403

Convert T to a duration array. Specify that the format of the duration array represents
hours, minutes, seconds, and fractions of a second.

outfmt = 'hh:mm:ss.SSS';
D = duration(T,'InputFormat',infmt,'Format',outfmt)

D = 1x2 duration array
 00:01:34.862 01:07:07.218

Specify Output Format of Duration Array

Create a duration array from a matrix. The three columns specify hours, minutes, and
seconds, respectively. Display the values in digital timer format showing minutes and
seconds.

X = [2 3 16;1 5 59;1 45 0]

X = 3×3

 2 3 16
 1 5 59
 1 45 0

D = duration(X,'Format','mm:ss')

D = 3x1 duration array
 123:16
 65:59
 105:00

Tips
• For more information on functions that accept or return duration arrays, see “Dates

and Time”.

1 Alphabetical List

1-3404

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
calendarDuration | cellstr | char | datetime | isduration | string

Topics
“Generate Sequence of Dates and Time”
“Compare Dates and Time”
“Date and Time Arithmetic”
“Plot Dates and Durations”

Introduced in R2014b

 duration

1-3405

DurationRuler Properties
Control axis with duration values

Description
DurationRuler properties control the appearance and behavior of an x-axis, y-axis, or z-
axis that shows duration values. Each individual axis has its own ruler object. By
changing property values of the ruler, you can modify certain aspects of a specific axis.

Use dot notation to refer to a particular ruler and property. Access the ruler objects
through the XAxis, YAxis, and ZAxis properties of the Axes object.

ax = gca;
co = ax.XAxis.Color;
ax.XAxis.Color = 'blue';

Properties
Appearance

Color — Color of axis line and labels
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the axis line and labels, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-3406

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note The Color property for the ruler and the associated XColor, YColor, or ZColor
property for the parent axes always have the same value. Setting one also sets the other.

LineWidth — Width of axis line and tick marks
0.5 (default) | positive value

 DurationRuler Properties

1-3407

Width of axis line and tick marks, specified as a positive value in point units. One point
equals 1/72 inch.
Example: ax.XAxis.LineWidth = 2;

Note Setting the LineWidth property for the parent axes sets the LineWidth property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Label — Axis label
text object (default)

Axis label, which is a text object. To display text or change existing text, set the String
property for the text object. Use other properties to change the text appearance, such as
the font style or color.

ax = gca;
ax.XAxis.Label.String = 'X Axis';
ax.XAxis.Label.FontSize = 12;

For a full list of options, see Text.

Alternatively, add or modify the axis labels using the xlabel, ylabel, and zlabel
functions.

Note The text object is not a child of the ruler object, so it cannot be returned by
findobj and it does not use the default text property values.

Visible — Axis visibility
'on' (default) | 'off'

Axis visibility, specified as one of these values:

• 'on' — Display the axis.
• 'off' — Hide the axis without deleting it. You still can access properties of an

invisible axis using the ruler object.

Example: ax.XAxis.Visible = 'off';

1 Alphabetical List

1-3408

Scale and Direction

Limits — Minimum and maximum axis limits
two-element vector of the form [min max]

Minimum and maximum axis limits, specified as a two-element vector of the form [min
max], where min and max are duration values. For example:

d = duration(1,40:45,0);
y = rand(6,1);
plot(d,y)
ax = gca;
ax.XAxis.Limits = [d(2) d(5)];

You can specify both limits, or specify one limit and let the ruler automatically calculate
the other using an Inf or -Inf duration value, such as days(Inf).

Alternatively, set the limits using the xlim, ylim, and zlim functions.

If you assign a value to this property, then MATLAB sets the associated mode to
'manual'.

Note The Limits property for the ruler and the associated XLim, YLim, or ZLim
property for the parent axes always have the same value. Setting one also sets the other.

LimitsMode — Selection mode for Limits property
'auto' (default) | 'manual'

Selection mode for the Limits property, specified as one of these values:

• 'auto' — Automatically select the axis limits based on the data plotted.
• 'manual' — Use axis limit values that you specify. To specify the axis limits, set the

Limits property.

Note The LimitsMode property for the ruler and the associated XLimMode, YLimMode,
or ZLimMode property for the parent axes always have the same value. Setting one also
sets the other.

Scale — Scale of values along axis
'linear' (default)

 DurationRuler Properties

1-3409

Scale of values along axis, returned as 'linear'. DurationRuler objects do not
support log scales.

Direction — Direction of increasing values
'normal' (default) | 'reverse'

Direction of increasing values, specified as one of these values:

• 'normal' — Values increase from left to right or bottom to top.
• 'reverse' — Values increase from right to left or top to bottom.

Note The Direction property for the ruler and the associated XDir, YDir, or ZDir
property for the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.Direction = 'reverse';

Tick Values and Labels

TickValues — Tick mark locations along the axis
[] (default) | vector of duration values

Tick mark locations along the axis, specified as a vector of duration values. For example:

d = duration(1,40:45,0);
y = rand(6,1);
plot(d,y)
ax = gca;
ax.XAxis.TickValues = [d(1) d(3) d(5)];

If you assign a value to this property, then MATLAB sets the TickValuesMode property
to 'manual'.

Alternatively, use the xticks, yticks, and zticks functions.

Note The TickValues property for the ruler and the associated XTick, YTick, or
ZTick property for the parent axes always have the same value. Setting one also sets the
other.

TickValuesMode — Selection mode for TickValues property
'auto' (default) | 'manual'

1 Alphabetical List

1-3410

Selection mode for the TickValues property, specified as one of these values:

• 'auto' — Automatically select the tick values based on the data plotted.
• 'manual' — Use tick values that you specify. To specify the values, set the

TickValues property.

Note The TickValuesMode property for the ruler and the associated XTickMode,
YTickMode, or ZTickMode property for the parent axes always have the same value.
Setting one also sets the other.

Exponent — Exponential notation common to all tick values
integer value

Exponential notation common to all tick values, specified as an integer value. The
Exponent property applies only to tick labels that show a single unit of time, such as
seconds, minutes, or hours. It does not apply to tick labels that show mixed units of time.
When applicable, the ruler displays an exponent label showing the base and exponent
value.

The base value is always 10. You can change the exponent value by setting the Exponent
property. If the exponent value is 0, then the exponent label is not displayed.

For example, this code changes the exponent value to 8.

x = hours((1:10)*1e10);
plot(x,1:10)

 DurationRuler Properties

1-3411

ax = gca;
ax.XAxis.Exponent = 8;

If you assign a value to this property, then MATLAB sets the ExponentMode property to
'manual'.

ExponentMode — Selection mode for Exponent property
'auto' (default) | 'manual'

Selection mode for the Exponent property, specified as one of these values:

• 'auto' — Automatically select the exponent value based on the axis limits.
• 'manual' — Use an exponent value that you specify. To specify the value, set the

Exponent property.

TickLabels — Tick mark labels
'' (default) | cell array of character vectors | string array | categorical array

Tick mark labels, specified as a cell array of character vectors, string array, or categorical
array. If you do not specify enough labels for all of the tick values, then the labels repeat.
The labels support TeX and LaTeX markup. See the TickLabelInterpreter property
for more information.
Example: ax.XAxis.TickLabels =
{'January','February','March','April','May'}';

Example: ax.YAxis.TickLabels = {'\pi','2\pi','3\pi'}'

If you set this property, then MATLAB sets the TickLabelsMode property to 'manual'.

Alternatively, specify the tick labels using the xticklabels, yticklabels, and
zticklabels functions.

Note

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

• The TickLabels property for the ruler and the associated XTickLabel,
YTickLabel, or ZTickLabel property for the parent axes always have the same
value. Setting one also sets the other.

1 Alphabetical List

1-3412

Data Types: char | string | categorical

TickLabelsMode — Selection mode for TickLabels property
'auto' (default) | 'manual'

Selection mode for the TickLabels property, specified as one of these values:

• 'auto' — Automatically select the tick labels.
• 'manual' — Use tick labels that you specify. To specify the labels, set the

TickLabels property.

Note The TickLabelsMode property for the ruler and the associated XTickLabelMode,
YTickLabelMode, or ZTickLabelMode property for the parent axes always have the
same value. Setting one also sets the other.

TickLabelInterpreter — Interpretation of tick label characters
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

Note Setting the TickLabelInterpreter property for the parent axes sets the
TickLabelInterpreter property for the ruler to the same value. However, setting the
ruler property does not set the axes property. To prevent the axes property value from
overriding the ruler property value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.TickLabelInterpreter = 'latex';
TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the text.

This table lists the supported modifiers with the TickLabelInterpreter property set to
'tex'. Modifiers remain in effect until the end of the text. Superscripts and subscripts

 DurationRuler Properties

1-3413

are an exception because they only modify the next character or the text within the curly
braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~

1 Alphabetical List

1-3414

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅

 DurationRuler Properties

1-3415

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. Use dollar
symbols around the labels, for example, use '$\int_1^{20} x^2 dx$' for inline mode
or '$$\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup
within the text. The maximum size of the text that you can use with the LaTeX interpreter
is 1200 characters. For multiline text, the maximum size of the text reduces by about 10
characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

TickLabelFormat — Tick label format
character vector | string scalar

Tick label format, specified as a character vector or string scalar.

To display a duration as a single number that includes a fractional part (for example,
1.234 hours), specify one of the following formats.

1 Alphabetical List

1-3416

https://www.latex-project.org
https://www.latex-project.org

Format Description
'y' Number of exact, fixed-length years. A fixed-length

year is equal to 365.2425 days.
'd' Number of exact, fixed-length days. A fixed-length day

is equal to 24 hours.
'h' Number of hours
'm' Number of minutes
's' Number of seconds

To display a duration in the form of a digital timer, specify one of these formats:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'

In addition, you can display up to nine fractional second digits by appending up to nine S
characters. For example, 'hh:mm:ss.SSS' displays the milliseconds of a duration value
to three digits.

TickLabelRotation — Rotation of tick labels
scalar value in degrees

Rotation of tick labels, specified as a scalar value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation.

Alternatively, you can rotate the tick labels using the xtickangle, ytickangle, and
ztickangle functions.

Note The TickLabelRotation property for the ruler and the associated
XTickLabelRotation, YTickLabelRotation, or ZTickLabelRotation property for
the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.TickLabelRotation = 45;
Example: ax.YAxis.TickLabelRotation = -45;

 DurationRuler Properties

1-3417

TickLabelRotationMode — Selection mode for TickLabelRotation property
'auto' (default) | 'manual'

Selection mode for the TickLabelRotation property, specified as one of these values:

• 'auto' — Automatically select the tick label rotation.
• 'manual' — Use a tick label rotation that you specify. To specify the rotation, set the

TickLabelRotation property.

TickDirection — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values:

• 'in' — Direct the tick marks inward from the axis lines. This is the default for 2-D
views.

• 'out' — Direct the tick marks outward from the axis lines. This is the default for 3-D
views.

• 'both' — Center the tick marks over the axis lines.

If you assign a value to this property, then MATLAB sets the TickDirectionMode
property to 'manual'.

Note Setting the TickDir property for the parent axes sets the TickDirection
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickDirection = 'out';

TickDirectionMode — Selection mode for TickDirection property
'auto' (default) | 'manual'

Selection mode for the TickDirection property, specified as one of these values:

• 'auto' — Automatically select the tick direction.
• 'manual' — Use a tick direction that you specify. To specify the tick direction, set the

TickDirection property.

1 Alphabetical List

1-3418

TickLength — Tick mark length
two-element vector

Tick mark length, specified as a two-element vector of the form [2Dlength 3Dlength].
The first element is the tick mark length in 2-D views. The second element is the tick
mark length in 3-D views. Specify the values in units normalized relative to the longest
axes dimension.

Note Setting the TickLength property for the parent axes sets the TickLength
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickLength = [0.02 0.035];

MinorTick — Minor tick mark display
'off' (default) | 'on'

Minor tick mark display, specified as one of these values:

• 'off' — Do not display minor tick marks. This is the default value for an axis with a
linear scale.

• 'on' — Display minor tick marks between the major tick marks on the axis. This is the
default value for an axis with a log scale. The space between the major tick marks
determines the number of minor tick marks. If the MinorTickValues property is set
to empty [], then no minor tick marks appear. Specify the tick mark locations by
setting the MinorTickValues property.

Note The MinorTick property for the ruler and the associated XMinorTick,
YMinorTick, or ZMinorTick property for the parent axes always have the same value.
Setting one also sets the other.

Example: ax.XAxis.MinorTick = 'on';

MinorTickValues — Minor tick mark locations
[] (default) | vector of increasing values

Minor tick mark locations, specified as a vector of increasing duration values.

 DurationRuler Properties

1-3419

If you assign values to this property, then MATLAB sets the MinorTickValuesMode
property to 'manual'.

MinorTickValuesMode — Selection mode for MinorTickValues property
'auto' (default) | 'manual'

Selection mode for the MinorTickValues property, specified as one of these values:

• 'auto' — Use automatically calculated minor tick values.
• 'manual' — Use minor tick values that you specify. To specify the values, set the

MinorTickValues property.

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific system and locale. To use a fixed-width font that renders
well, specify 'FixedWidth'. The actual fixed-width font used depends on the
FixedWidthFontName property of the root object.

Note Setting the FontName property for the parent axes sets the FontName property for
the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontName = 'Cambria';

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The default font size depends on the
specific operating system and locale.

Note Setting the FontSize property for the parent axes sets the FontSize property for
the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

1 Alphabetical List

1-3420

Example: ax.XAxis.FontSize = 12;

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font.
• 'bold' — Thicker character outlines than normal.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note Setting the FontWeight property for the parent axes sets the FontWeight
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontWeight = 'bold';

FontAngle — Text character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font can look the same as the normal font.

Note Setting the FontAngle property for the parent axes sets the FontAngle property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontAngle = 'italic';

FontSmoothing — Text antialiasing
'on' (default) | 'off'

Text smoothing, specified as one of these values:

 DurationRuler Properties

1-3421

• 'on' — Enable text antialiasing to reduce the jagged appearance of text characters
and make the text easier to read. In certain cases, smoothed text blends against the
background color and can make the text appear blurry.

• 'off' — Disable text antialiasing. Use this setting if the text seems blurry.

Note Setting the FontSmoothing property for the parent axes sets the FontSmoothing
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontSmoothing = 'off';

Parent/Child

Parent — Ruler parent
Axes object

Ruler parent, specified as an Axes object.

Note Ruler objects are not listed in the Children property of the parent Axes object.

Children — Ruler children
empty GraphicsPlaceholder array

The ruler has no children. You cannot set this property.

See Also
Axes

Introduced in R2016b

1 Alphabetical List

1-3422

dynamicprops class

Superclass for classes that support dynamic properties

Description
dynamicprops is an abstract class derived from the handle class. Subclass
dynamicprops to define classes that support dynamic properties.

Dynamic properties are associated with a specific object of the class, but are not part of
the class definition. Use dynamic properties to attach temporary data to objects. For
information on using dynamic properties, see “Dynamic Properties — Adding Properties
to an Instance”.

Note The isequal function always returns false when comparing objects that have
dynamic properties, even if the properties have the same name and value. If you need to
compare objects that contain dynamic properties, overload isequal as a method of your
class.

The dynamicprops class is a handle class.

Class Attributes
Abstract

true
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

 dynamicprops class

1-3423

Methods

Public Methods
<infotypegroup type="method"> addprop </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
PropertyAdded When property is

added
event.DynamicPro
pertyEvent

NotifyAccess =
private,
ListenAccess =
public

PropertyRemoved When property is
removed

event.DynamicPro
pertyEvent

NotifyAccess =
private,
ListenAccess =
public

Examples

Subclass dynamicprops
Derive a class from the dynamicprops class:

classdef InstanceProperty < dynamicprops
end

Add a property to an object of the class using the addprop method and assign a value to
the property.

obj = InstanceProperty;
obj.addprop('NewProperty');
obj.NewProperty = 1:10

obj =

 InstanceProperty with properties:

1 Alphabetical List

1-3424

 NewProperty: [1 2 3 4 5 6 7 8 9 10]

See Also
handle

Topics
“Dynamic Properties — Adding Properties to an Instance”
“Set and Get Methods for Dynamic Properties”
“Dynamic Property Events”
“Dynamic Properties and ConstructOnLoad”

Introduced in R2008a

 dynamicprops class

1-3425

echo
Display statements during function execution

Syntax
echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description
The echo command controls the display (or echoing) of statements in a function during
their execution. Normally, statements in a function file are not displayed on the screen
during execution. Command echoing is useful for debugging or for demonstrations,
allowing the commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script files and function
files. For script files, the use of echo is simple; echoing can be either on or off, in which
case any script used is affected.

echo on turns on the echoing of commands in all script files.
echo off turns off the echoing of commands in all script files.
echo toggles the echo state.

When you turn on echoing for a script or function file, each line in the file is displayed as
it is executed. Since this results in inefficient execution, use echo only for debugging.

echo fcnname on turns on echoing of the named function file.
echo fcnname off turns off echoing of the named function file.

1 Alphabetical List

1-3426

echo fcnname toggles the echo state of the named function file.
echo on all sets echoing on for all function files.
echo off all sets echoing off for all function files.

Tips
• To avoid confusing syntax, do not use on or off as a function name.

See Also
function

Introduced before R2006a

 echo

1-3427

echodemo
Run example script step-by-step in Command Window

Syntax
echodemo filename
echodemo(filename,index)

Description
echodemo filename runs the script specified by filename step-by-step in the
Command Window. If file contains sections, echodemo treats each section as a step and
pauses after each one. For more information about sections, see “Code Sections”.

At each step, you can click links in the Command Window to proceed or stop. If the
Command Window is not large enough to show the links, scroll up to see them.

Caution If variables in your base workspace have the same name as variables that the
example file creates, the example could overwrite your data. Preserve your data by saving
it to a MAT-file before running the example.

echodemo(filename,index) starts with the section number specified by index. If the
example relies on results of previous steps, using this syntax can produce errors or
unexpected results.

Examples

Run Script Step-by-Step in Command Window

Run an example script that demonstrates how to work with multidimensional arrays step-
by-step.

1 Alphabetical List

1-3428

echodemo MultidimensionalArraysDemo

Click Next to continue or Stop to end MultidimensionalArraysDemo.m (1/10)

 MANIPULATING MULTIDIMENSIONAL ARRAYS

 This example shows how to work with arrays having more than two dimensions.
 Multidimensional arrays can be numeric, character, cell, or structure arrays.

 Multidimensional arrays can be used to represent multivariate data. MATLAB®
 provides a number of functions that directly support multidimensional arrays.

Start Script from Specified Section

Run an example script that demonstrates how to work with multidimensional arrays step-
by-step, starting from the third section.

filename = 'MultidimensionalArraysDemo';
index = 3;
echodemo(filename,index)

Click Next to continue or Stop to end MultidimensionalArraysDemo.m (3/10)

 The |cat| function is a useful tool for building multidimensional arrays.
 |B = cat(DIM,A1,A2,...)| builds a multidimensional array by concatenating |A1,
 A2 ...| along the dimension |DIM|.

B = cat(3, [2 8; 0 5], [1 3; 7 9], [2 3; 4 6])

B(:,:,1) =

 2 8
 0 5

B(:,:,2) =

 1 3
 7 9

 echodemo

1-3429

B(:,:,3) =

 2 3
 4 6

Input Arguments
filename — Script file name
character vector | string scalar

Script file name, specified as a character vector or string scalar.

index — Section index
scalar integer

Section index, specified as a scalar integer.

The link text in the Command Window shows the current section number, n, and the total
number of sections, m, as n/m.

Limitations
• echodemo does not support functions or live code files (*.mlx). echodemo can run

any script (*.m) that you can execute, but only scripts with sections pause between
steps.

See Also
demo | doc | publish

Topics
“Code Sections”

Introduced before R2006a

1 Alphabetical List

1-3430

edgeAttachments
Class: TriRep

(Not recommended) Simplices attached to specified edges

Note edgeAttachments(TriRep) is not recommended. Use
edgeAttachments(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
SI = edgeAttachments(TR, V1, V2)
SI = edgeAttachments(TR, EDGE)

Description
SI = edgeAttachments(TR, V1, V2) returns the simplices SI attached to the edges
specified by (V1, V2). (V1, V2) represents the start and end vertices of the edges to
be queried.

SI = edgeAttachments(TR, EDGE) specifies edges in matrix format.

Input Arguments
TR Triangulation representation.
V1,V2 Column vectors of vertex indices into the array of points representing the

vertex coordinates.
EDGE Matrix specifying edge start and end points. EDGE is of size m-by-2, m

being the number of edges to query.

 edgeAttachments

1-3431

Output Arguments
SI Vector cell array of indices into the triangulation matrix. SI is a cell array

because the number of simplices associated with each edge can vary.

Examples

Example 1
Load a 3-D triangulation to compute the tetrahedra attached to an edge.

load tetmesh
trep = TriRep(tet, X);
v1 = [15 21]';
v2 = [936 716]';
t1 = edgeAttachments(trep, v1, v2);

You can also specify the input as edges.

e = [v1 v2];
t2 = edgeAttachments(trep, e);
isequal(t1,t2);

Example 2
Create a triangulation with DelaunayTri.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
dt = DelaunayTri(x,y);

Query the triangles attached to edge (1,5).

t = edgeAttachments(dt, 1,5);
t{:};

1 Alphabetical List

1-3432

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher dimensional equivalent.

See Also
delaunayTriangulation | edges | triangulation

 edgeAttachments

1-3433

edges
Class: TriRep

(Not recommended) Triangulation edges

Note edges(TriRep) is not recommended. Use edges(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
E = edges(TR)

Description
E = edges(TR) returns the edges in the triangulation in an n-by-2 matrix. n is the
number of edges. The vertices of the edges index into TR.X, the array of points
representing the vertex coordinates.

Input Arguments
TR Triangulation representation.

Output Arguments
E Edge matrix.

1 Alphabetical List

1-3434

Examples

Example 1
Load a 2-D triangulation.

load trimesh2d
trep = TriRep(tri, x,y);

Return all edges.

e = edges(trep);

Example 2
Query a 2-D DelaunayTri-generated triangulation.

X = rand(10,2);
dt = DelaunayTri(X);
e = edges(dt);

See Also
delaunayTriangulation | edgeAttachments | triangulation

 edges

1-3435

edit
Edit or create file

Syntax
edit
edit file
edit file1 ... fileN

Description
edit opens a new file called Untitled.m in the Editor. MATLAB does not automatically
save Untitled.m.

edit file opens the specified file in the Editor. If file does not already exist, MATLAB
asks if you want to create it. file can include a partial path, complete path, relative
path, or no path. If file includes a partial path or no path, edit will look for the file on
the search path. You must have write permission to the path to create file. Otherwise,
MATLAB ignores the argument.

You must specify the extension to open .mat and .mdl files. MATLAB cannot directly edit
binary files, such as .p and .mex files.

edit file1 ... fileN opens each file, file1 ... fileN, in the Editor.

Examples

Open New File

Create and open a new file titled Untitled.m in the MATLAB® Editor (or default editor).
Untitled.m does not appear in your Current Folder.

1 Alphabetical List

1-3436

edit

Create New Files

Create two new files in a new folder.

Create a file in a new directory using a character vector. A dialog box appears, asking if
you want to create new_script.m. Click Yes to create and open tests/new_script.m.

mkdir tests
edit tests/new_script.m

Create a second file using a string. Click Yes to create and open tests/new_script2.m.

S = "tests/new_script2.m";
edit(S)

Open Files

Create and open the files file1, file2, file3, and file4 in sequence.

edit file1 file2 file3 file4

Input Arguments
file — Name of file
character vector | string

Name of file, specified as a character vector or string. If file specifies a path that
contains a nonexistent folder, MATLAB throws an error. Specify multiple files on the same
line by separating file names with a space.

If you do not specify the extension and MATLAB is unable to find file, then edit creates
a file with the specified name and a .m extension.

If file is overloaded (that is, appears in multiple folders on the search path), then
include a partial path to edit the correct page, such as:

edit folderName/file

 edit

1-3437

If the file is part of a class or package, then either specify the path and extension or
separate the components of the name with periods, such as:

edit className.name
edit packageName.name
edit packageName.className.name
edit packageName.name

Data Types: char | string

See Also
open | type

Topics
“Editor/Debugger Preferences”

Introduced before R2006a

1 Alphabetical List

1-3438

matlab.editor Settings
Editor settings, including language, backup, and display settings

You can customize the visual appearance and behavior of the Editor using
matlab.editor settings. Access matlab.editor settings using the root
SettingsGroup object returned by the settings function. For example, set the
temporary value for the maximum column width for comments to 80.
s = settings;
s.matlab.editor.language.matlab.comments.MaxWidth.TemporaryValue = 80

For more information about settings, see “Access and Modify Settings”.

Most matlab.editor settings do not apply in the Live Editor.

Settings
matlab.editor

UseMATLABEditor — Use the MATLAB Editor
1 (default) | 0

Use the MATLAB Editor, specified as 1 or 0.

Set to 1 if you want the MATLAB desktop to use the MATLAB Editor when you edit a file.
Example: s.matlab.editor.UseMATLABEditor.TemporaryValue = 0

OtherEditor — Other editor name
character vector

Other editor name, specified as a character vector.

If UseMATLABEditor is set to 0, specify the full path for the editor application you want
to use, such as Emacs or vi.
Example: s.matlab.editor.OtherEditor.TemporaryValue = 'c:\Applications
\Emacs.exe'

RecentFileListSize — Number of recent files to display
8 (default) | positive integer

 matlab.editor Settings

1-3439

Number of recent files to display in the Open menu, specified as a positive integer.
Example: s.matlab.editor.RecentFileListSize.TemporaryValue = 5

ReopenFilesOnRestart — Reopen files on restart
1 (default) | 0

Reopen files on restart, specified as 1 or 0.

Set to 1 if you want the Editor and the files it contained during your last MATLAB session
to reopen when you restart MATLAB.
Example: s.matlab.editor.AddLineTerminationOnsave.TemporaryValue = 0

OpenFileAtBreakpoint — Open a file at a breakpoint
1 (default) | 0

Open a file at a breakpoint, specified as 1 or 0.

Set to 1 to open a running program file when MATLAB encounters a breakpoint in that
file.
Example: s.matlab.editor.OpenFileAtBreakpoint.TemporaryValue = 0

SaveFilesOnClickAway — Save files on click away
1 (default) | 0

Save files on click away, specified as 1 or 0.

Set to 1 if you want the Editor to automatically save changes to a file in the Editor when
you click away from the Editor. For the changes to be automatically saved upon clicking
away from the Editor, you must have already saved the file at least once.
Example: s.matlab.editor.SaveFilesOnClickAway.TemporaryValue = 0

ReloadFilesOnChange — Reload files when they change
1 (default) | 0

Reload files when they change, specified as 1 or 0.

Set to 1 if you want the Editor to automatically reload the new version of a file that you
opened and edited outside of MATLAB. MATLABonly reloads the file if it contains no
unsaved changes.
Example: s.matlab.editor.ReloadFilesOnChange.TemporaryValue = 0

1 Alphabetical List

1-3440

AddLineTerminationOnSave — Add a new empty line on save
1 (default) | 0

Add a new empty line on save, specified as 1 or 0.

Set to 1 to have MATLAB add a new empty line (sometimes referred to as a <CR>) to the
end of a file automatically if the last line in the file is not empty.
Example: s.matlab.editor.AddLineTerminationOnSave.TemporaryValue = 0

OnlyStepInToUserFunctions — Step only into user-defined functions
1 (default) | 0

Step only into user-defined functions and scripts when debugging in the Live Editor,
specified as 1 or 0.

Set to 1 to only step into user-defined functions and scripts when debugging in the Live
Editor. Set to 0 to step into MathWorks functions as well.
Example: s.matlab.editor.OnlyStepInToUserFunctions.TemporaryValue = 0

AllowFigureAnimation — Enable animations in Live Editor
0 (default) | 1

Enable animations in the Live Editor, specified as 1 or 0.

Set to 1 to enable for-loop animations in the Live Editor and show changes in plotted data
over time.

Note Enabling animations disables support for uicontrol in the Live Editor.

Example: s.matlab.editor.AllowFigureAnimation.TemporaryValue = 1

matlab.editor.displaysettings

HighlightCurrentLine — Highlight the current line
1 (default) | 0

Highlight the current line, specified as 1 or 0.

Set to 1 to highlight the current line. The current line is the line with the cursor (also
called the caret).

 matlab.editor Settings

1-3441

Example:
s.matlab.editor.displaysettings.HighlightCurrentLine.TemporaryValue
= 0

HighlightCurrentLineColor — Current line color
[222 238 216] (default) | RGB triplet

Current line color, specified as an RGB triplet with values in the range [0,255]. The
current line is the line with the cursor (also called the caret).

HighlightCurrentLine must be set to 1 to see the change in the current line color.
Example:
s.matlab.editor.displaysettings.HighlightCurrentLineColor.TemporaryV
alue = [222 230 200]

ShowLineNumbers — Show line numbers
1 | 0

Show line numbers, specified as 1 or 0. This setting applies in both the Editor and Live
Editor.

Set to 1 to display line numbers along the left edge of the Editor window.
Example:
s.matlab.editor.displaysettings.ShowLineNumbers.TemporaryValue = 0

DataTipsInEditMode — Enable data tips when editing
1 (default) | 0

Enable data tips when editing, specified as 1 or 0.

Set to 1 to display data tips when you are editing a MATLAB code file. (Data tips are
always enabled in debug mode.)
Example:
s.matlab.editor.displaysettings.DataTipsInEditMode.TemporaryValue =
0

matlab.editor.displaysettings.linelimit

ShowLine — Display the line limit
1 (default) | 0

1 Alphabetical List

1-3442

Display the line limit, specified as 1 or 0.

Set to 1 to display a vertical line at a specified column in the Editor to denote the right-
hand text limit. LineColumn specifies the location of the line, and LineWidth specifies
the width of the line.
Example:
s.matlab.editor.displaysettings.linelimit.ShowLine.TemporaryValue =
0

LineColumn — Location of the line limit
75 (default) | positive integer

Location of the line limit, specified as a positive integer. Specify the location as a column
number.
Example:
s.matlab.editor.displaysettings.linelimit.LineColumn.TemporaryValue
= 80

LineWidth — Width of line limit
1 (default) | positive integer

Width of the line limit, specified as a positive integer.

s.matlab.editor.displaysettings.linelimit.LineWidth.TemporaryValue =
2

matlab.editor.tab

TabSize — Tab size
4 (default) | positive integer

Tab size (the number of spaces inserted when you press the Tab key), specified as a
positive integer.

When you change the TabSize, it changes the tab size for existing lines in that file,
unless you also set InsertSpaces to 1.
Example: s.matlab.editor.tab.TabSize.TemporaryValue = 5

IndentSize — Indent size for smart indenting
4 (default) | positive integer

 matlab.editor Settings

1-3443

Indent size for smart indenting, specified as a positive integer. For more information
about smart indenting, see “Improve Code Readability”.
Example: s.matlab.editor.tab.IndentSize.TemporaryValue = 5

InsertSpaces — Insert spaces
1 (default) | 0

Insert spaces when you press the Tab key, specified as a 1 or 0.

Set to 1 to insert a series of spaces when you press the Tab key. Otherwise, a tab acts as
one space whose length is equal to the TabSize.
Example: s.matlab.editor.tab.InsertSpaces.TemporaryValue = 0

EmacsStyle — Use Emacs indenting style
1 (default) | 0

Use Emacs indenting style, specified as 1 or 0.

Set to 1 to use an indenting style similar to the style that the Emacs editor uses.
Example: s.matlab.editor.tab.IndentSize.TemporaryValue = 5

matlab.editor.language.matlab

EnableSyntaxHighlighting — Enable syntax highlighting
1 (default) | 0

Enable syntax highlighting, specified as 1 or 0.

Set to 1 to have the Editor use different colors for different language constructs. Then,
adjust the colors you want to use for each language element. For more information, see
“Syntax Highlighting”.
Example:
s.matlab.editor.language.matlab.EnableSyntaxHighlighting.TemporaryVa
lue = 0

EnableVariableAndFunctionRenaming — Enable variable and function renaming
1 (default) | 0

Enable variable and function renaming, specified as 1 or 0.

1 Alphabetical List

1-3444

Set to 1 to have MATLAB prompt you to rename all instances of a function or variable in a
file when you rename a single instance.
Example:
s.matlab.editor.language.matlab.EnableVariableAndFunctionRenaming.Te
mporaryValue = 0

matlab.editor.language.matlab.comments

MaxWidth — Maximum number of characters
75 (default) | positive integer

Maximum number of characters in a comment line, specified as a positive integer.

Specify FromCommentStart to select where you want counting to begin.
Example:
s.matlab.editor.language.matlab.comments.MaxWidth.TemporaryValue =
80

FromCommentStart — Count maximum width from comment start
1 (default) | 0

Count maximum width from comment start, specified as 1 or 0.

Set to 1 to count width from the beginning of a comment. This is useful when comments
are indented, and you want each block of comments to have the same indent and width.

Set to 0 to count width from the beginning of a line. This is useful when the absolute
width of the comments is important. For example, set the maximum width to 75 columns
and set FromCommentStart to 0 to make your code fit on a printed page when you use
the default font for the Editor.
Example:
s.matlab.editor.language.matlab.comments.FromCommentStart.TemporaryV
alue = 0

WrapAutomatically — Wrap comments automatically
1 (default) | 0

Wrap comments automatically, specified as 1 or 0.

Set to 1 to automatically wrap comments after MaxWidth columns when you type
comments in an Editor document.

 matlab.editor Settings

1-3445

Example:
s.matlab.editor.language.matlab.comments.WrapAutomatically.Temporary
Value = 0

matlab.editor.codefolding

EnableCodeFolding — Enable code folding
1 (default) | 0

Enable code folding, specified as 1 or 0.

Set to 1 to enable code folding.
Example: s.matlab.editor.codefolding.EnableCodeFolding.TemporaryValue
= 0

matlab.editor.backup

EnableFileBackup — Enable file backups
1 (default) | 0

Enable file backups, specified as 1 or 0.

Set to 1 to automatically save copies of the files you are currently editing.
Example: s.matlab.editor.backup.EnableFileBackup.TemporaryValue = 0

Frequency — How often to create backups of files
5 (default) | positive integer

How often to create backups of files you are editing, specified in minutes as a positive
integer.
Example: s.matlab.editor.backup.Frequency.TemporaryValue = 6

SaveUntiltled — Create backups of untitled files
1 (default) | 0

Create backups of untitled files, specified as 1 or 0.

Set to 1 to save a copy of a new, untitled, file to Untitled.asv. When there is more than
one untitled file, each additional file is saved to Untitledn.asv (where n is an integer
value).
Example: s.matlab.editor.backup.SaveUntitled.TemporaryValue = 0

1 Alphabetical List

1-3446

DeleteOnClose — Delete backup files on close
1 (default) | 0

Delete backup files on close, specified as 1 or 0.

Set to 1 to direct MATLAB to delete the backup file when you close the source file in the
Editor.
Example: s.matlab.editor.backup.DeleteOnClose.TemporaryValue = 0

FileExtensionToReplace — File extension of backup file to replace
'asv' (default) | character vector

File extension of backup file to replaces the original file name extension with, specified as
a character vector.
Example: s.matlab.editor.backup.FileExtensionToReplace.TemporaryValue
= 'asv'

FileExtensionToAppend — File extension of backup file to append
'~' (default) | character vector

File extension of backup file to append to the original file name, specified as a character
vector.
Example: s.matlab.editor.backup.FileExtensionToAppend.TemporaryValue =
'~'

SaveIntoSourceFolder — Save backup files to the source folder
1 (default) | 0

Save backup files to the source folder, specified as 1 or 0.

Set to 1 to store backup files in the same folder as the files being edited. Otherwise,
MATLAB saves the backup files in the folder specified by SaveToFolder.
Example: s.matlab.editor.backup.SaveIntoSourceFolder.TemporaryValue =
0

SaveToFolder — Folder name in which to store all backup files
character vector

Folder name in which to store all backup files, specified as a character vector.

Specify the full path to that folder and be sure you have write permissions for it.

 matlab.editor Settings

1-3447

SaveIntoSourceFolder must be set to 0. Otherwise, MATLAB stores backup files in the
same folder as the files being edited.
Example: s.matlab.editor.backup.SaveToFolder.TemporaryValue =
'C:\backups'

matlab.editor.autoformat

EnableAutoFormatting — Enable autoformatting
1 (default) | 0

Enable autoformatting, specified as 1 or 0.

Set to 1 to enable autoformatting in the Live Editor. Once enabled, specific types of
formatting can then be enabled or disabled individually.
Example:
s.matlab.editor.autoformat.EnableAutoFormatting.TemporaryValue = 0

AsteriskForItalicAndBold — Enable italic and bold formatting using asterisks
1 (default) | 0

Enable italic and bold formatting using asterisks, specified as 1 or 0.

Set to 1 to enable bold and italic formatting using asterisks (*).
Example:
s.matlab.editor.autoformat.AsteriskForItalicAndBold.TemporaryValue =
0

UnderscoreForItalicAndBold — Enable italic and bold formatting using
underscores
1 (default) | 0

Enable italic and bold formatting using underscores, specified as 1 or 0.

Set to 1 to enable bold and italic formatting using underscores (_).
Example:
s.matlab.editor.autoformat.UnderscoreForItalicAndBold.TemporaryValue
= 0

BacktickAndBarForMonospace — Enable monospace formatting using backticks
or bars
1 (default) | 0

1 Alphabetical List

1-3448

Enable monospace formatting using backticks or bars, specified as 1 or 0.

Set to 1 to enable monospace formatting using backticks (`) or bars (|).
Example:
s.matlab.editor.autoformat.BacktickAndBarForMonospace.TemporaryValue
= 0

SectionBreak — Enable autoformatting for section breaks
1 (default) | 0

Enable autoformatting for section breaks, specified as 1 or 0.

Set to 1 to enable inserting section breaks by entering %%, ***, or --- and then Enter.
Example: s.matlab.editor.autoformat.SectionBreak.TemporaryValue = 0

SectionBreakAndHeading — Enable autoformatting for section breaks with
headings
1 (default) | 0

Enable autoformatting for section breaks with headings, specified as 1 or 0.

Set to 1 to enable inserting section breaks with headings by entering %%text and then
Enter.
Example:
s.matlab.editor.autoformat.SectionBreakAndHeading.TemporaryValue = 0

DollarSignForLatex — Enable autoformatting for LaTeX expressions
1 (default) | 0

Enable autoformatting for LaTeX expressions, specified as 1 or 0.

Set to 1 to enable converting LaTeX expressions into equations using the format $LaTeX
$.
Example: s.matlab.editor.autoformat.DollarSignForLatex.TemporaryValue
= 0

URLToHyperlink — Enable autoformatting for URLs
1 (default) | 0

Enable autoformatting for URLs, specified as 1 or 0.

 matlab.editor Settings

1-3449

Set to 1 to enable converting URLs automatically to hyperlinks.
Example: s.matlab.editor.autoformat.URLToHyperlink.TemporaryValue = 0

AngleBracketsForHyperlink — Enable autoformatting for URLs using angle
brackets
1 (default) | 0

Enable autoformatting for URLs using angle brackets, specified as 1 or 0.

Set to 1 to enable converting URLs to hyperlinks using the format <URL>.
Example:
s.matlab.editor.autoformat.AngleBracketsForHyperlink.TemporaryValue
= 0

LabelURLToHyperlink — Enable autoformatting for labeled hyperlinks
1 (default) | 0

Enable autoformatting for labeled hyperlinks, specified as 1 or 0.

Set to 1 to enable converting URLs to labeled hyperlinks using the format [Label]
(URL).
Example: s.matlab.editor.autoformat.LabelURLToHyperlink.TemporaryValue
= 0

TrademarkCopyrightSymbol — Enable autoformatting for trademark and
copyright symbols
1 (default) | 0

Enable autoformatting for trademark and copyright symbols, specified as 1 or 0.

Set to 1 to enable inserting trademark and copyright symbols (™, ℠, ®, and ©) using the
format (TM), (SM), (R), and (C).
Example:
s.matlab.editor.autoformat.TrademarkCopyrightSymbol.TemporaryValue =
0

HashtagForTitle — Enable inserting titles using hashtags
1 (default) | 0

Enable inserting titles using hashtags, specified as 1 or 0.

1 Alphabetical List

1-3450

Set to 1 to enable inserting titles using the format #text.
Example: s.matlab.editor.autoformat.HashtagForTitle.TemporaryValue = 0

HashtagsForHeading — Enable inserting headings using hashtags
1 (default) | 0

Enable inserting headings using hashtags, specified as 1 or 0.

Set to 1 to enable inserting headings using the format ##text for heading 1, ###text
for heading 2, or ####text for heading 3.
Example: s.matlab.editor.autoformat.HashtagsForHeading.TemporaryValue
= 0

AutomaticBulletedList — Enable creating bulleted lists automatically
1 (default) | 0

Enable creating bulleted lists automatically, specified as 1 or 0.

Set to 1 to enable creating bulleted lists by entering *, +, or - followed by a space.
Example:
s.matlab.editor.displaysettings.AutomaticBulletedList.TemporaryValue
= 0

AutomaticNumberedList — Enable creating numbered lists automatically
1 (default) | 0

Enable creating numbered lists automatically, specified as 1 or 0.

Set to 1 to enable creating numbered lists by entering 1., 2., and so on, followed by a
space.
Example:
s.matlab.editor.displaysettings.AutomaticNumberedList.TemporaryValue
= 0

matlab.editor.autocoding

EnableAutoCoding — Enable autocoding
1 (default) | 0

Enable autocoding, specified as 1 or 0.

 matlab.editor Settings

1-3451

Set to 1 to enable autocoding in the Live Editor and in App Designer. Once enabled,
options can be enabled or disabled individually.
Example: s.matlab.editor.autocoding.EnableAutoCoding.TemporaryValue =
0

Parentheses — Autocomplete parentheses
1 (default) | 0

Autocomplete parentheses, specified as 1 or 0.

Set to 1 to enable autocompletion of parentheses.
Example: s.matlab.editor.autocoding.Parentheses.TemporaryValue = 0

CurlyBraces — Autocomplete curly braces
1 (default) | 0

Autocomplete curly braces, specified as 1 or 0.

Set to 1 to enable autocompletion of curly braces.
Example: s.matlab.editor.autocoding.CurlyBraces.TemporaryValue = 0

SquareBrackets — Autocomplete square brackets
1 (default) | 0

Autocomplete square brackets, specified as 1 or 0.

Set to 1 to enable autocompletion of square brackets.
Example: s.matlab.editor.autocoding.SquareBrackets.TemporaryValue = 0

SingleQuotes — Autocomplete single quotes
1 (default) | 0

Autocomplete single quotes, specified as 1 or 0.

Set to 1 to enable autocompletion of single quotes.
Example: s.matlab.editor.autocoding.SingleQuotes.TemporaryValue = 0

DoubleQuotes — Autocomplete double quotes
1 (default) | 0

1 Alphabetical List

1-3452

Autocomplete double quotes, specified as 1 or 0.

Set to 1 to enable autocompletion of double quotes.
Example: s.matlab.editor.autocoding.DoubleQuotes.TemporaryValue = 0

Comments — Autocomplete comments
1 (default) | 0

Autocomplete comments, specified as 1 or 0.

Set to 1 to enable autocompletion of comments when split across two lines.
Example: s.matlab.editor.autocoding.Comments.TemporaryValue = 0

CharacterVectors — Autocomplete character vectors
1 (default) | 0

Autocomplete character vectors, specified as 1 or 0.

Set to 1 to enable autocompletion of character vectors when split across two lines.
Example: s.matlab.editor.autocoding.CharacterVectors.TemporaryValue =
0

Strings — Autocomplete strings
1 (default) | 0

Autocomplete strings, specified as 1 or 0. Set to 1 to enable autocompletion of strings
when split across two lines.
Example: s.matlab.editor.autocoding.Strings.TemporaryValue = 0

ControlFlows — Autocomplete control flow statements
1 (default) | 0

Autocomplete control flow statements, specified as 1 or 0. Set to 1 to enable
autocompletion of control flow statements such as if and for.
Example: s.matlab.editor.autocoding.ControlFlows.TemporaryValue = 0

Definitions — Autocomplete function and class definitions
1 (default) | 0

 matlab.editor Settings

1-3453

Autocomplete function and class definitions, specified as 1 or 0. Set to 1 to enable
autocompletion of function and class definitions.
Example: s.matlab.editor.autocoding.Definitions.TemporaryValue = 0

See Also
settings

Topics
“Access and Modify Settings”
“Editor/Debugger Preferences”

Introduced in R2018a

1 Alphabetical List

1-3454

eig
Eigenvalues and eigenvectors

Syntax
e = eig(A)
[V,D] = eig(A)
[V,D,W] = eig(A)

e = eig(A,B)
[V,D] = eig(A,B)
[V,D,W] = eig(A,B)

[___] = eig(A,balanceOption)
[___] = eig(A,B,algorithm)

[___] = eig(___ ,eigvalOption)

Description
e = eig(A) returns a column vector containing the eigenvalues of square matrix A.

[V,D] = eig(A) returns diagonal matrix D of eigenvalues and matrix V whose columns
are the corresponding right eigenvectors, so that A*V = V*D.

[V,D,W] = eig(A) also returns full matrix W whose columns are the corresponding left
eigenvectors, so that W'*A = D*W'.

The eigenvalue problem is to determine the solution to the equation Av = λv, where A is
an n-by-n matrix, v is a column vector of length n, and λ is a scalar. The values of λ that
satisfy the equation are the eigenvalues. The corresponding values of v that satisfy the
equation are the right eigenvectors. The left eigenvectors, w, satisfy the equation w’A =
λw’.

e = eig(A,B) returns a column vector containing the generalized eigenvalues of square
matrices A and B.

 eig

1-3455

[V,D] = eig(A,B) returns diagonal matrix D of generalized eigenvalues and full matrix
V whose columns are the corresponding right eigenvectors, so that A*V = B*V*D.

[V,D,W] = eig(A,B) also returns full matrix W whose columns are the corresponding
left eigenvectors, so that W'*A = D*W'*B.

The generalized eigenvalue problem is to determine the solution to the equation Av =
λBv, where A and B are n-by-n matrices, v is a column vector of length n, and λ is a
scalar. The values of λ that satisfy the equation are the generalized eigenvalues. The
corresponding values of v are the generalized right eigenvectors. The left eigenvectors,
w, satisfy the equation w’A = λw’B.

[___] = eig(A,balanceOption), where balanceOption is 'nobalance', disables
the preliminary balancing step in the algorithm. The default for balanceOption is
'balance', which enables balancing. The eig function can return any of the output
arguments in previous syntaxes.

[___] = eig(A,B,algorithm), where algorithm is 'chol', uses the Cholesky
factorization of B to compute the generalized eigenvalues. The default for algorithm
depends on the properties of A and B, but is generally 'qz', which uses the QZ algorithm.

If A is Hermitian and B is Hermitian positive definite, then the default for algorithm is
'chol'.

[___] = eig(___ ,eigvalOption) returns the eigenvalues in the form specified by
eigvalOption using any of the input or output arguments in previous syntaxes. Specify
eigvalOption as 'vector' to return the eigenvalues in a column vector or as
'matrix' to return the eigenvalues in a diagonal matrix.

Examples

Eigenvalues of Matrix

Use gallery to create a symmetric positive definite matrix.

A = gallery('lehmer',4)

A = 4×4

 1.0000 0.5000 0.3333 0.2500

1 Alphabetical List

1-3456

 0.5000 1.0000 0.6667 0.5000
 0.3333 0.6667 1.0000 0.7500
 0.2500 0.5000 0.7500 1.0000

Calculate the eigenvalues of A. The result is a column vector.

e = eig(A)

e = 4×1

 0.2078
 0.4078
 0.8482
 2.5362

Alternatively, use eigvalOption to return the eigenvalues in a diagonal matrix.

D = eig(A,'matrix')

D = 4×4

 0.2078 0 0 0
 0 0.4078 0 0
 0 0 0.8482 0
 0 0 0 2.5362

Eigenvalues and Eigenvectors of Matrix

Use gallery to create a circulant matrix.

A = gallery('circul',3)

A = 3×3

 1 2 3
 3 1 2
 2 3 1

Calculate the eigenvalues and right eigenvectors of A.

 eig

1-3457

[V,D] = eig(A)

V = 3×3 complex

 -0.5774 + 0.0000i 0.2887 - 0.5000i 0.2887 + 0.5000i
 -0.5774 + 0.0000i -0.5774 + 0.0000i -0.5774 + 0.0000i
 -0.5774 + 0.0000i 0.2887 + 0.5000i 0.2887 - 0.5000i

D = 3×3 complex

 6.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i -1.5000 + 0.8660i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i -1.5000 - 0.8660i

Verify that the results satisfy A*V = V*D.

A*V - V*D

ans = 3×3 complex
10-14 ×

 -0.2665 + 0.0000i -0.0333 + 0.1110i -0.0333 - 0.1110i
 0.0888 + 0.0000i 0.0000 + 0.1221i 0.0000 - 0.1221i
 -0.0444 + 0.0000i -0.0111 + 0.1221i -0.0111 - 0.1221i

Ideally, the eigenvalue decomposition satisfies the relationship. Since eig performs the
decomposition using floating-point computations, then A*V can, at best, approach V*D. In
other words, A*V - V*D is close to, but not exactly, 0.

Sorted Eigenvalues and Eigenvectors

By default eig does not always return the eigenvalues and eigenvectors in sorted order.
Use the sort function to put the eigenvalues in ascending order and reorder the
corresponding eigenvectors.

Calculate the eigenvalues and eigenvectors of a 5-by-5 magic square matrix.

A = magic(5)

1 Alphabetical List

1-3458

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

[V,D] = eig(A)

V = 5×5

 -0.4472 0.0976 -0.6330 0.6780 -0.2619
 -0.4472 0.3525 0.5895 0.3223 -0.1732
 -0.4472 0.5501 -0.3915 -0.5501 0.3915
 -0.4472 -0.3223 0.1732 -0.3525 -0.5895
 -0.4472 -0.6780 0.2619 -0.0976 0.6330

D = 5×5

 65.0000 0 0 0 0
 0 -21.2768 0 0 0
 0 0 -13.1263 0 0
 0 0 0 21.2768 0
 0 0 0 0 13.1263

The eigenvalues of A are on the diagonal of D. However, the eigenvalues are unsorted.

Extract the eigenvalues from the diagonal of D using diag(D), then sort the resulting
vector in ascending order. The second output from sort returns a permutation vector of
indices.

[d,ind] = sort(diag(D))

d = 5×1

 -21.2768
 -13.1263
 13.1263
 21.2768
 65.0000

 eig

1-3459

ind = 5×1

 2
 3
 5
 4
 1

Use ind to reorder the diagonal elements of D. Since the eigenvalues in D correspond to
the eigenvectors in the columns of V, you must also reorder the columns of V using the
same indices.

Ds = D(ind,ind)

Ds = 5×5

 -21.2768 0 0 0 0
 0 -13.1263 0 0 0
 0 0 13.1263 0 0
 0 0 0 21.2768 0
 0 0 0 0 65.0000

Vs = V(:,ind)

Vs = 5×5

 0.0976 -0.6330 -0.2619 0.6780 -0.4472
 0.3525 0.5895 -0.1732 0.3223 -0.4472
 0.5501 -0.3915 0.3915 -0.5501 -0.4472
 -0.3223 0.1732 -0.5895 -0.3525 -0.4472
 -0.6780 0.2619 0.6330 -0.0976 -0.4472

Both (V,D) and (Vs,Ds) produce the eigenvalue decomposition of A. The results of
A*V-V*D and A*Vs-Vs*Ds agree, up to round-off error.

e1 = norm(A*V-V*D);
e2 = norm(A*Vs-Vs*Ds);
e = abs(e1 - e2)

e = 1.8933e-29

1 Alphabetical List

1-3460

Left Eigenvectors

Create a 3-by-3 matrix.

 A = [1 7 3; 2 9 12; 5 22 7];

Calculate the right eigenvectors, V, the eigenvalues, D, and the left eigenvectors, W.

[V,D,W] = eig(A)

V = 3×3

 -0.2610 -0.9734 0.1891
 -0.5870 0.2281 -0.5816
 -0.7663 -0.0198 0.7912

D = 3×3

 25.5548 0 0
 0 -0.5789 0
 0 0 -7.9759

W = 3×3

 -0.1791 -0.9587 -0.1881
 -0.8127 0.0649 -0.7477
 -0.5545 0.2768 0.6368

Verify that the results satisfy W'*A = D*W'.

W'*A - D*W'

ans = 3×3
10-13 ×

 0.1155 -0.0711 -0.0711
 -0.0033 -0.0215 -0.0408
 0.0022 0.0266 0.0178

Ideally, the eigenvalue decomposition satisfies the relationship. Since eig performs the
decomposition using floating-point computations, then W'*A can, at best, approach D*W'.
In other words, W'*A - D*W' is close to, but not exactly, 0.

 eig

1-3461

Eigenvalues of Nondiagonalizable (Defective) Matrix

Create a 3-by-3 matrix.

A = [3 1 0; 0 3 1; 0 0 3];

Calculate the eigenvalues and right eigenvectors of A.

[V,D] = eig(A)

V = 3×3

 1.0000 -1.0000 1.0000
 0 0.0000 -0.0000
 0 0 0.0000

D = 3×3

 3 0 0
 0 3 0
 0 0 3

A has repeated eigenvalues and the eigenvectors are not independent. This means that A
is not diagonalizable and is, therefore, defective.

Verify that V and D satisfy the equation, A*V = V*D, even though A is defective.

A*V - V*D

ans = 3×3
10-15 ×

 0 0.8882 -0.8882
 0 0 0.0000
 0 0 0

Ideally, the eigenvalue decomposition satisfies the relationship. Since eig performs the
decomposition using floating-point computations, then A*V can, at best, approach V*D. In
other words, A*V - V*D is close to, but not exactly, 0.

1 Alphabetical List

1-3462

Generalized Eigenvalues

Create two matrices, A and B, then solve the generalized eigenvalue problem for the
eigenvalues and right eigenvectors of the pair (A,B).

A = [1/sqrt(2) 0; 0 1];
B = [0 1; -1/sqrt(2) 0];
[V,D]=eig(A,B)

V = 2×2 complex

 1.0000 + 0.0000i 1.0000 + 0.0000i
 0.0000 - 0.7071i 0.0000 + 0.7071i

D = 2×2 complex

 0.0000 + 1.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 - 1.0000i

Verify that the results satisfy A*V = B*V*D.

A*V - B*V*D

ans = 2×2

 0 0
 0 0

The residual error A*V - B*V*D is exactly zero.

Generalized Eigenvalues Using QZ Algorithm for Badly Conditioned Matrices

Create a badly conditioned symmetric matrix containing values close to machine
precision.

format long e
A = diag([10^-16, 10^-15])

 eig

1-3463

A = 2×2

 1.000000000000000e-16 0
 0 1.000000000000000e-15

Calculate the generalized eigenvalues and a set of right eigenvectors using the default
algorithm. In this case, the default algorithm is 'chol'.

[V1,D1] = eig(A,A)

V1 = 2×2

 1.000000000000000e+08 0
 0 3.162277660168380e+07

D1 = 2×2

 9.999999999999999e-01 0
 0 1.000000000000000e+00

Now, calculate the generalized eigenvalues and a set of right eigenvectors using the 'qz'
algorithm.

[V2,D2] = eig(A,A,'qz')

V2 = 2×2

 1 0
 0 1

D2 = 2×2

 1 0
 0 1

Check how well the 'chol' result satisfies A*V1 = A*V1*D1.

format short
A*V1 - A*V1*D1

ans = 2×2
10-23 ×

1 Alphabetical List

1-3464

 0.1654 0
 0 -0.6617

Now, check how well the 'qz' result satisfies A*V2 = A*V2*D2.

A*V2 - A*V2*D2

ans = 2×2

 0 0
 0 0

When both matrices are symmetric, eig uses the 'chol' algorithm by default. In this
case, the QZ algorithm returns more accurate results.

Generalized Eigenvalues Where One Matrix is Singular

Create a 2-by-2 identity matrix, A, and a singular matrix, B.

A = eye(2);
B = [3 6; 4 8];

If you attempt to calculate the generalized eigenvalues of the matrix B−1A with the
command [V,D] = eig(B\A), then MATLAB® returns an error because B\A produces
Inf values.

Instead, calculate the generalized eigenvalues and right eigenvectors by passing both
matrices to the eig function.

[V,D] = eig(A,B)

V = 2×2

 -0.7500 -1.0000
 -1.0000 0.5000

D = 2×2

 eig

1-3465

 0.0909 0
 0 Inf

It is better to pass both matrices separately, and let eig choose the best algorithm to
solve the problem. In this case, eig(A,B) returns a set of eigenvectors and at least one
real eigenvalue, even though B is not invertible.

Verify Av = λBv for the first eigenvalue and the first eigenvector.

eigval = D(1,1);
eigvec = V(:,1);
A*eigvec - eigval*B*eigvec

ans = 2×1
10-15 ×

 0.1110
 0.2220

Ideally, the eigenvalue decomposition satisfies the relationship. Since the decomposition
is performed using floating-point computations, then A*eigvec can, at best, approach
eigval*B*eigvec, as it does in this case.

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a real or complex square matrix.
Data Types: double | single
Complex Number Support: Yes

B — Generalized eigenvalue problem input matrix
square matrix

Generalized eigenvalue problem input matrix, specified as a square matrix of real or
complex values. B must be the same size as A.
Data Types: double | single

1 Alphabetical List

1-3466

Complex Number Support: Yes

balanceOption — Balance option
'balance' (default) | 'nobalance'

Balance option, specified as: 'balance', which enables a preliminary balancing step, or
'nobalance' which disables it. In most cases, the balancing step improves the
conditioning of A to produce more accurate results. However, there are cases in which
balancing produces incorrect results. Specify 'nobalance' when A contains values
whose scale differs dramatically. For example, if A contains nonzero integers, as well as
very small (near zero) values, then the balancing step might scale the small values to
make them as significant as the integers and produce inaccurate results.

'balance' is the default behavior. For more information about balancing, see balance.

algorithm — Generalized eigenvalue algorithm
'chol' | 'qz'

Generalized eigenvalue algorithm, specified as 'chol' or 'qz', which selects the
algorithm to use for calculating the generalized eigenvalues of a pair.

algorithm Description
'chol' Computes the generalized eigenvalues of A and B using the

Cholesky factorization of B.
'qz' Uses the QZ algorithm, also known as the generalized Schur

decomposition. This algorithm ignores the symmetry of A and
B.

In general, the two algorithms return the same result. The QZ algorithm can be more
stable for certain problems, such as those involving badly conditioned matrices.

When you omit the algorithm argument, the eig function selects an algorithm based on
the properties of A and B. It uses the 'chol' algorithm for symmetric (Hermitian) A and
symmetric (Hermitian) positive definite B. Otherwise, it uses the 'qz' algorithm.

Regardless of the algorithm you specify, the eig function always uses the QZ algorithm
when A or B are not symmetric.

eigvalOption — Eigenvalue option
'vector' | 'matrix'

 eig

1-3467

Eigenvalue option, specified as 'vector' or 'matrix'. This option allows you to specify
whether the eigenvalues are returned in a column vector or a diagonal matrix. The
default behavior varies according to the number of outputs specified:

• If you specify one output, such as e = eig(A), then the eigenvalues are returned as a
column vector by default.

• If you specify two or three outputs, such as [V,D] = eig(A), then the eigenvalues
are returned as a diagonal matrix, D, by default.

Example: D = eig(A,'matrix') returns a diagonal matrix of eigenvalues with the one
output syntax.

Output Arguments
e — Eigenvalues (returned as vector)
column vector

Eigenvalues, returned as a column vector containing the eigenvalues (or generalized
eigenvalues of a pair) with multiplicity.

When A is real and symmetric or complex Hermitian, the values of e that satisfy Av = λv
are real.

V — Right eigenvectors
square matrix

Right eigenvectors, returned as a square matrix whose columns are the right
eigenvectors of A or generalized right eigenvectors of the pair, (A,B). The form and
normalization of V depends on the combination of input arguments:

• [V,D] = eig(A) returns matrix V, whose columns are the right eigenvectors of A
such that A*V = V*D. The eigenvectors in V are normalized so that the 2-norm of
each is 1.

If A is real symmetric, then the right eigenvectors, V, are orthonormal.
• [V,D] = eig(A,'nobalance') also returns matrix V. However, the 2-norm of each

eigenvector is not necessarily 1.
• [V,D] = eig(A,B) and [V,D] = eig(A,B,algorithm) returns V as a matrix

whose columns are the generalized right eigenvectors that satisfy A*V = B*V*D. The

1 Alphabetical List

1-3468

2-norm of each eigenvector is not necessarily 1. In this case, D contains the
generalized eigenvalues of the pair, (A,B), along the main diagonal.

When eig uses the 'chol' algorithm with symmetric (Hermitian) A and symmetric
(Hermitian) positive definite B, it normalizes the eigenvectors in V so that the B-norm
of each is 1.

Different machines and releases of MATLAB can produce different eigenvectors that are
still numerically accurate:

• For real eigenvectors, the sign of the eigenvectors can change.
• For complex eigenvectors, the eigenvectors can be multiplied by any complex number

of magnitude 1.
• For a multiple eigenvalue, its eigenvectors can be recombined through linear

combinations. For example, if Ax = λx and Ay = λy, then A(x+y) = λ(x+y), so x+y also
is an eigenvector of A.

D — Eigenvalues (returned as matrix)
diagonal matrix

Eigenvalues, returned as a diagonal matrix with the eigenvalues of A on the main
diagonal or the eigenvalues of the pair, (A,B), with multiplicity, on the main diagonal.

When A is real and symmetric or complex Hermitian, the values of D that satisfy Av = λv
are real.

W — Left eigenvectors
square matrix

Left eigenvectors, returned as a square matrix whose columns are the left eigenvectors of
A or generalized left eigenvectors of the pair, (A,B). The form and normalization of W
depends on the combination of input arguments:

• [V,D,W] = eig(A) returns matrix W, whose columns are the left eigenvectors of A
such that W'*A = D*W'. The eigenvectors in W are normalized so that the 2-norm of
each is 1. If A is symmetric, then W is the same as V.

• [V,D,W] = eig(A,'nobalance') also returns matrix W. However, the 2-norm of
each eigenvector is not necessarily 1.

• [V,D,W] = eig(A,B) and [V,D,W] = eig(A,B,algorithm) returns W as a matrix
whose columns are the generalized left eigenvectors that satisfy W'*A = D*W'*B. The

 eig

1-3469

2-norm of each eigenvector is not necessarily 1. In this case, D contains the
generalized eigenvalues of the pair, (A,B), along the main diagonal.

If A and B are symmetric, then W is the same as V.

Different machines and releases of MATLAB can produce different eigenvectors that are
still numerically accurate:

• For real eigenvectors, the sign of the eigenvectors can change.
• For complex eigenvectors, the eigenvectors can be multiplied by any complex number

of magnitude 1.
• For a multiple eigenvalue, its eigenvectors can be recombined through linear

combinations. For example, if Ax = λx and Ay = λy, then A(x+y) = λ(x+y), so x+y also
is an eigenvector of A.

Tips
• The eig function can calculate the eigenvalues of sparse matrices that are real and

symmetric. To calculate the eigenvectors of a sparse matrix, or to calculate the
eigenvalues of a sparse matrix that is not real and symmetric, use the eigs function.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• V might represent a different basis of eigenvectors. The eigenvalues in D might not be
in the same order as in MATLAB.

• For the generalized eigenvalue problem, [V,D] = eig(A,B), code generation
always uses the 'qz' option.

• For the standard eigenvalue problem, [V,D] = eig(A), when A is Hermitian,
code generation uses schur to calculate V and D. Otherwise, the results of [V,D]
= eig(A) are similar to the results obtained by using [V,D] =

1 Alphabetical List

1-3470

eig(A,eye(size(A)),'qz') in MATLAB, except that the columns of V are
normalized.

• The 'balance'and 'nobalance' options are not supported for the standard
eigenvalue problem.

• The 'chol' option is not supported for the symmetric generalized eigenvalue
problem.

• The option to calculate left eigenvectors is not supported.
• Outputs are complex.
• When the input matrix contains a nonfinite value, the generated code does not issue

an error. Instead, the output contains NaN values.
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Only these one input argument syntaxes are supported:

e = eig(A)

[V,D] = eig(A)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• For the generalized case, eig(A,B), A and B must be real symmetric or complex
Hermitian. Additionally, B must be positive definite.

• These syntaxes are not supported for full distributed arrays:

 eig

1-3471

[__] = eig(A,'balance')

[__] = eig(A,B,'qz')

[V,D,W] = eig(A,B)

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
balance | condeig | eigs | hess | qz | schur

Introduced before R2006a

1 Alphabetical List

1-3472

eigs
Subset of eigenvalues and eigenvectors

Syntax
d = eigs(A)
d = eigs(A,k)
d = eigs(A,k,sigma)
d = eigs(A,k,sigma,Name,Value)
d = eigs(A,k,sigma,opts)

d = eigs(A,B, ___)

d = eigs(Afun,n, ___)

[V,D] = eigs(___)
[V,D,flag] = eigs(___)

Description
d = eigs(A) returns a vector of the six largest magnitude eigenvalues of matrix A. This
is most useful when computing all of the eigenvalues with eig is computationally
expensive, such as with large sparse matrices.

d = eigs(A,k) returns the k largest magnitude eigenvalues.

d = eigs(A,k,sigma) returns k eigenvalues based on the value of sigma. For
example, eigs(A,k,'smallestabs') returns the k smallest magnitude eigenvalues.

d = eigs(A,k,sigma,Name,Value) specifies additional options with one or more
name-value pair arguments. For example, eigs(A,k,sigma,'Tolerance',1e-3)
adjusts the convergence tolerance for the algorithm.

d = eigs(A,k,sigma,opts) specifies options using a structure.

d = eigs(A,B, ___) solves the generalized eigenvalue problem A*V = B*V*D. You
can optionally specify k, sigma, opts, or name-value pairs as additional input arguments.

 eigs

1-3473

d = eigs(Afun,n, ___) specifies a function handle Afun instead of a matrix. The
second input n gives the size of matrix A used in Afun. You can optionally specify B, k,
sigma, opts, or name-value pairs as additional input arguments.

[V,D] = eigs(___) returns diagonal matrix D containing the eigenvalues on the main
diagonal, and matrix V whose columns are the corresponding eigenvectors. You can use
any of the input argument combinations in previous syntaxes.

[V,D,flag] = eigs(___) also returns a convergence flag. If flag is 0, then all the
eigenvalues converged.

Examples

Largest Eigenvalues of Sparse Matrix

The matrix A = delsq(numgrid('C',15)) is a symmetric positive definite matrix with
eigenvalues reasonably well-distributed in the interval (0 8). Compute the six largest
magnitude eigenvalues.

A = delsq(numgrid('C',15));
d = eigs(A)

d = 6×1

 7.8666
 7.7324
 7.6531
 7.5213
 7.4480
 7.3517

Specify a second input to compute a specific number of the largest eigenvalues.

d = eigs(A,3)

d = 3×1

 7.8666
 7.7324
 7.6531

1 Alphabetical List

1-3474

Smallest Eigenvalues of Sparse Matrix

The matrix A = delsq(numgrid('C',15)) is a symmetric positive definite matrix with
eigenvalues reasonably well-distributed in the interval (0 8). Compute the five smallest
eigenvalues.

A = delsq(numgrid('C',15));
d = eigs(A,5,'smallestabs')

d = 5×1

 0.1334
 0.2676
 0.3469
 0.4787
 0.5520

Eigenvalues Using Function Handle

Create a 1500-by-1500 random sparse matrix with a 25% approximate density of nonzero
elements.

n = 1500;
A = sprand(n,n,0.25);

Find the LU factorization of the matrix, returning a permutation vector p that satisfies
A(p,:) = L*U.

[L,U,p] = lu(A,'vector');

Create a function handle Afun that accepts a vector input x and uses the results of the
LU decomposition to, in effect, return A\x.

Afun = @(x) U\(L\(x(p)));

Calculate the six smallest magnitude eigenvalues using eigs with the function handle
Afun. The second input is the size of A.

 eigs

1-3475

d = eigs(Afun,1500,6,'smallestabs')

d = 6×1 complex

 0.1423 + 0.0000i
 0.4859 + 0.0000i
 -0.3323 - 0.3881i
 -0.3323 + 0.3881i
 0.1019 - 0.5381i
 0.1019 + 0.5381i

Types of Eigenvalues

west0479 is a real-valued 479-by-479 sparse matrix with both real and complex pairs of
conjugate eigenvalues.

Load the west0479 matrix, then compute and plot all of the eigenvalues using eig. Since
the eigenvalues are complex, plot automatically uses the real parts as the x-coordinates
and the imaginary parts as the y-coordinates.

load west0479
A = west0479;
d = eig(full(A));
plot(d,'+')

1 Alphabetical List

1-3476

The eigenvalues are clustered along the real line (x-axis), particularly near the origin.

eigs has several options for sigma that can pick out the largest or smallest eigenvalues
of varying types. Compute and plot some eigenvalues for each of the available options for
sigma.

figure
plot(d, '+')
hold on
la = eigs(A,6,'largestabs');
plot(la,'ro')
sa = eigs(A,6,'smallestabs');
plot(sa,'go')
hold off

 eigs

1-3477

legend('All eigenvalues','Largest magnitude','Smallest magnitude')
xlabel('Real axis')
ylabel('Imaginary axis')

figure
plot(d, '+')
hold on
ber = eigs(A,4,'bothendsreal');
plot(ber,'r^')
bei = eigs(A,4,'bothendsimag');
plot(bei,'g^')
hold off
legend('All eigenvalues','Both ends real','Both ends imaginary')

1 Alphabetical List

1-3478

xlabel('Real axis')
ylabel('Imaginary axis')

figure
plot(d, '+')
hold on
lr = eigs(A,3,'largestreal');
plot(lr,'ro')
sr = eigs(A,3,'smallestreal');
plot(sr,'go')
li = eigs(A,3,'largestimag','SubspaceDimension',45);
plot(li,'m^')
si = eigs(A,3,'smallestimag','SubspaceDimension',45);
plot(si,'c^')

 eigs

1-3479

hold off
legend('All eigenvalues','Largest real','Smallest real','Largest imaginary','Smallest imaginary')
xlabel('Real axis')
ylabel('Imaginary axis')

Difference Between 'smallestabs' and 'smallestreal' Eigenvalues

Create a symmetric positive definite sparse matrix.

A = delsq(numgrid('C', 150));

1 Alphabetical List

1-3480

Compute the six smallest real eigenvalues using 'smallestreal', which employs a
Krylov method using A.

tic
d = eigs(A, 6, 'smallestreal')

d = 6×1

 0.0013
 0.0025
 0.0033
 0.0045
 0.0052
 0.0063

toc

Elapsed time is 3.005848 seconds.

Compute the same eigenvalues using 'smallestabs', which employs a Krylov method
using the inverse of A.

tic
dsm = eigs(A, 6, 'smallestabs')

dsm = 6×1

 0.0013
 0.0025
 0.0033
 0.0045
 0.0052
 0.0063

toc

Elapsed time is 0.352939 seconds.

The eigenvalues are clustered near zero. The 'smallestreal' computation struggles to
converge using A since the gap between the eigenvalues is so small. Conversely, the
'smallestabs' option uses the inverse of A, and therefore the inverse of the
eigenvalues of A, which have a much larger gap and are therefore easier to compute. This
improved performance comes at the cost of factorizing A, which is not necessary with
'smallestreal'.

 eigs

1-3481

Sigma Value Near Eigenvalue

Compute eigenvalues near a numeric sigma value that is nearly equal to an eigenvalue.

The matrix A = delsq(numgrid('C',30)) is a symmetric positive definite matrix of
size 632 with eigenvalues reasonably well-distributed in the interval (0 8), but with 18
eigenvalues repeated at 4.0. To calculate some eigenvalues near 4.0, it is reasonable to
try the function call eigs(A,20,4.0). However, this call computes the largest
eigenvalues of the inverse of A - 4.0*I, where I is an identity matrix. Because 4.0 is an
eigenvalue of A, this matrix is singular and therefore does not have an inverse. eigs fails
and produces an error message. The numeric value of sigma cannot be exactly equal to
an eigenvalue. Instead, you must use a value of sigma that is near but not equal to 4.0 to
find those eigenvalues.

Compute all of the eigenvalues using eig, and the 20 eigenvalues closest to 4 - 1e-6 using
eigs to compare results. Plot the eigenvalues calculated with each method.

A = delsq(numgrid('C',30));
sigma = 4 - 1e-6;
d = eig(A);
D = sort(eigs(A,20,sigma));

plot(d(307:326),'ks')
hold on
plot(D,'k+')
hold off
legend('eig(A)','eigs(A,20,sigma)')
title('18 Repeated Eigenvalues of A')

1 Alphabetical List

1-3482

Eigenvalues of Permuted Cholesky Factor

Create sparse random matrices A and B that both have low densities of nonzero elements.

B = sprandn(1e3,1e3,0.001) + speye(1e3);
B = B'*B;
A = sprandn(1e3,1e3,0.005);
A = A+A';

Find the Cholesky decomposition of matrix B, using three outputs to return the
permutation vector s and test value p.

 eigs

1-3483

[R,p,s] = chol(B,'vector');
p

p = 0

Since p is zero, B is a symmetric positive definite matrix that satisfies B(s,s) = R'*R.

Calculate the six largest magnitude eigenvalues and eigenvectors of the generalized
eigenvalue problem involving A and R. Since R is the Cholesky factor of B, specify
'IsCholesky' as true. Furthermore, since B(s,s) = R'*R and thus R =
chol(B(s,s)), use the permutation vector s as the value of 'CholeskyPermutation'.

[V,D,flag] = eigs(A,R,6,'largestabs','IsCholesky',true,'CholeskyPermutation',s);
flag

flag = 0

Since flag is zero, all of the eigenvalues converged.

Input Arguments
A — Input matrix
matrix

Input matrix, specified as a square matrix. A is typically, but not always, a large and
sparse matrix.

If A is symmetric, then eigs uses a specialized algorithm for that case. If A is nearly
symmetric, then consider using A = (A+A')/2 to make A symmetric before calling eigs.
This ensures that eigs calculates real eigenvalues instead of complex ones.
Data Types: double
Complex Number Support: Yes

B — Input matrix
matrix

Input matrix, specified as a square matrix of the same size as A. When B is specified, eigs
solves the generalized eigenvalue problem A*V = B*V*D.

1 Alphabetical List

1-3484

If B is symmetric positive definite, then eigs uses a specialized algorithm for that case. If
B is nearly symmetric positive definite, then consider using B = (B+B')/2 to make B
symmetric before calling eigs.

When A is scalar, you can specify B as an empty matrix eigs(A,[],k) to solve the
standard eigenvalue problem and disambiguate between B and k.
Data Types: double
Complex Number Support: Yes

k — Number of eigenvalues to compute
scalar

Number of eigenvalues to compute, specified as a positive scalar integer.
Example: eigs(A,2) returns the two largest eigenvalues of A.

sigma — Type of eigenvalues
'largestabs' (default) | 'smallestabs' | 'largestreal' | 'smallestreal' |
'bothendsreal' | 'largestimag' | 'smallestimag' | 'bothendsimag' | scalar

Type of eigenvalues, specified as one of the values in the table.

sigma Description sigma (R2017a and
earlier)

scalar (real or complex,
including 0)

The eigenvalues closest to
the number sigma.

No change

'largestabs' (default) Largest magnitude. 'lm'
'smallestabs' Smallest magnitude. Same

as sigma = 0.
'sm'

'largestreal' Largest real. 'lr', 'la'
'smallestreal' Smallest real. 'sr', 'sa'
'bothendsreal' Both ends, with k/2 values

with largest and smallest
real part respectively (one
more from high end if k is
odd).

'be'

For nonsymmetric problems, sigma also can be:

 eigs

1-3485

sigma Description sigma (R2017a and
earlier)

'largestimag' Largest imaginary part. 'li' if A is complex.
'smallestimag' Smallest imaginary part. 'si' if A is complex.
'bothendsimag' Both ends, with k/2 values

with largest and smallest
imaginary part (one more
from high end if k is odd).

'li' if A is real.

Example: eigs(A,k,1) returns the k eigenvalues closest to 1.
Example: eigs(A,k,'smallestabs') returns the k smallest magnitude eigenvalues.
Data Types: double | char | string

opts — Options structure
structure

Options structure, specified as a structure containing one or more of the fields in this
table.

Note Use of the options structure to specify options is not recommended. Use name-
value pairs instead.

Option Field Description Name-Value Pair
issym Symmetry of Afun matrix. 'IsFunctionSymmetric'
tol Convergence tolerance. 'Tolerance'
maxit Maximum number of

iterations.
'MaxIterations'

p Number of Lanczos basis
vectors.

'SubspaceDimension'

v0 Starting vector. 'StartVector'
disp Diagnostic information

display level.
'Display'

1 Alphabetical List

1-3486

Option Field Description Name-Value Pair
fail Treatment of nonconverged

eigenvalues in the output.
'FailureTreatment'

spdB Is B symmetric positive
definite?

'IsSymmetricDefinite'

cholB Is B the Cholesky factor
chol(B)?

'IsCholesky'

permB Specify the permutation
vector permB if sparse B is
really
chol(B(permB,permB)).

'CholeskyPermutation'

Example: opts.issym = 1, opts.tol = 1e-10 creates a structure with values set
for the fields issym and tol.
Data Types: struct

Afun — Matrix function
function handle

Matrix function, specified as a function handle. The function y = Afun(x) must return
the proper value depending on the sigma input:

• A*x — If sigma is unspecified or any text option other than 'smallestabs'.
• A\x — If sigma is 0 or 'smallestabs'.
• (A-sigma*I)\x — If sigma is a nonzero scalar (for standard eigenvalue problem).
• (A-sigma*B)\x — If sigma is a nonzero scalar (for generalized eigenvalue problem).

For example, the following Afun works when calling eigs with sigma =
'smallestabs':

[L,U,p] = lu(A,'vector');
Afun = @(x) U\(L\(x(p)));
d = eigs(Afun,100,6,'smallestabs')

For a generalized eigenvalue problem, add matrix B as follows (B cannot be represented
by a function handle):

d = eigs(Afun,100,B,6,'smallestabs')

 eigs

1-3487

A is assumed to be nonsymmetric unless 'IsFunctionSymmetric' (or opts.issym)
specifies otherwise. Setting 'IsFunctionSymmetric' to true ensures that eigs
calculates real eigenvalues instead of complex ones.

For information on how to provide additional parameters to the Afun function, see
“Parameterizing Functions”.

Tip Call eigs with the 'Display' option turned on to see what output is expected from
Afun.

n — Size of square matrix represented by Afun
scalar

Size of square matrix A that is represented by Afun, specified as a positive scalar integer.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: d = eigs(A,k,sigma,'Tolerance',1e-10,'MaxIterations',100)
loosens the convergence tolerance and uses fewer iterations.

General Options

Tolerance — Convergence tolerance
1e-14 (default) | positive real scalar

Convergence tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive real numeric scalar.
Example: s = eigs(A,k,sigma,'Tolerance',1e-3)

MaxIterations — Maximum number of algorithm iterations
300 (default) | positive integer

Maximum number of algorithm iterations, specified as the comma-separated pair
consisting of 'MaxIterations' and a positive integer.

1 Alphabetical List

1-3488

Example: d = eigs(A,k,sigma,'MaxIterations',350)

SubspaceDimension — Maximum size of Krylov subspace
max(2*k,20) (default) | nonnegative integer

Maximum size of Krylov subspace, specified as the comma-separated pair consisting of
'SubspaceDimension' and a nonnegative integer. The 'SubspaceDimension' value
must be greater than or equal to k + 1 for real symmetric problems, and k + 2
otherwise, where k is the number of eigenvalues.

The recommended value is p >= 2*k, or for real nonsymmetric problems, p >= 2*k+1.
If you do not specify a 'SubspaceDimension' value, then the default algorithm uses at
least 20 Lanczos vectors.

For problems where eigs fails to converge, increasing the value of
'SubspaceDimension' can improve the convergence behavior. However, increasing the
value too much can cause memory issues.
Example: d = eigs(A,k,sigma,'SubspaceDimension',25)

StartVector — Initial starting vector
random vector (default) | vector

Initial starting vector, specified as the comma-separated pair consisting of
'StartVector' and a numeric vector.

The primary reason to specify a different random starting vector is when you want to
control the random number stream used to generate the vector.

Note eigs selects the starting vectors in a reproducible manner using a private random
number stream. Changing the random number seed does not affect the starting vector.

Example: d = eigs(A,k,sigma,'StartVector',randn(m,1)) uses a random
starting vector that draws values from the global random number stream.
Data Types: double

FailureTreatment — Treatment of nonconverged eigenvalues
'replacenan' (default) | 'keep' | 'drop'

 eigs

1-3489

Treatment of nonconverged eigenvalues, specified as the comma-separated pair
consisting of 'FailureTreatment' and one of the options: 'replacenan', 'keep', or
'drop'.

The value of 'FailureTreatment' determines how eigs displays nonconverged
eigenvalues in the output.

Option Affect on output
'replacenan' Replace nonconverged eigenvalues with

NaN values.
'keep' Include nonconverged eigenvalues in the

output.
'drop' Remove nonconverged eigenvalues from

the output. This option can result in eigs
returning fewer eigenvalues than
requested.

Example: d = eigs(A,k,sigma,'FailureTreatment','drop') removes
nonconverged eigenvalues from the output.
Data Types: char | string

Display — Toggle for diagnostic information display
false or 0 (default) | true or 1

Toggle for diagnostic information display, specified as the comma-separated pair
consisting of 'Display' and a numeric or logical 1 (true) or 0 (false). Specify a value
of true or 1 to turn on the display of diagnostic information during the calculation.

Options for Afun

IsFunctionSymmetric — Symmetry of Afun matrix
true or 1 | false or 0

Symmetry of Afun matrix, specified as the comma-separated pair consisting of
'IsFunctionSymmetric' and a numeric or logical 1 (true) or 0 (false).

This option specifies whether the matrix that Afun applies to its input vector is
symmetric. Specify a value of true or 1 to indicate that eigs should use a specialized
algorithm for the symmetric matrix and return real eigenvalues.

1 Alphabetical List

1-3490

Options for generalized eigenvalue problem A*V = B*V*D

IsCholesky — Cholesky decomposition toggle for B
true or 1 | false or 0

Cholesky decomposition toggle for B, specified as the comma-separated pair consisting of
'IsCholesky' and a numeric or logical 1 (true) or 0 (false).

This option specifies whether the input for matrix B in the call eigs(A,B,___) is
actually the Cholesky factor R produced by R = chol(B).

Note Do not use this option if sigma is 'smallestabs' or a numeric scalar.

CholeskyPermutation — Cholesky permutation vector
1:n (default) | vector

Cholesky permutation vector, specified as the comma-separated pair consisting of
'CholeskyPermutation' and a numeric vector. Specify the permutation vector permB
if sparse matrix B is reordered before factorization according to
chol(B(permB,permB)).

You also can use the three-output syntax of chol for sparse matrices to directly obtain
permB with [R,p,permB] = chol(B,'vector').

Note Do not use this option if sigma is 'smallestabs' or a numeric scalar.

IsSymmetricDefinite — Symmetric-positive-definiteness toggle for B
true or 1 | false or 0

Symmetric-positive-definiteness toggle for B, specified as the comma-separated pair
consisting of 'IsSymmetricDefinite' and a numeric or logical 1 (true) or 0 (false).
Specify true or 1 when you know that B is symmetric positive definite, that is, it is a
symmetric matrix with strictly positive eigenvalues.

If B is symmetric positive semi-definite (some eigenvalues are zero), then specifying
'IsSymmetricDefinite' as true or 1 forces eigs to use the same specialized
algorithm that it uses when B is symmetric positive definite.

 eigs

1-3491

Note To use this option, the value of sigma must be numeric or 'smallestabs'.

Output Arguments
d — Eigenvalues
column vector

Eigenvalues, returned as a column vector. d is sorted differently depending on the value
of sigma.

Value of sigma Output sorting
'largestabs' Descending order by magnitude
'largestreal' Descending order by real part
'largestimag' Descending order by imaginary part
'smallestabs' Ascending order by magnitude
'smallestreal'

'bothendsreal'

Ascending order by real part

'smallestimag' Ascending order by imaginary part
'bothendsimag' Descending order by absolute value of

imaginary part

V — Eigenvectors
matrix

Eigenvectors, returned as a matrix. The columns in V correspond to the eigenvalues along
the diagonal of D. The form and normalization of V depends on the combination of input
arguments:

• [V,D] = eigs(A) returns matrix V, whose columns are the eigenvectors of A such
that A*V = V*D. The eigenvectors in V are normalized so that the 2-norm of each is 1.

If A is symmetric, then the eigenvectors, V, are orthonormal.
• [V,D] = eigs(A,B) returns V as a matrix whose columns are the generalized

eigenvectors that satisfy A*V = B*V*D. The 2-norm of each eigenvector is not
necessarily 1.

1 Alphabetical List

1-3492

If B is symmetric positive definite, then the eigenvectors in V are normalized so that
the B-norm of each is 1. If A is also symmetric, then the eigenvectors are B-
orthonormal.

Different machines, releases of MATLAB, or parameters (such as the starting vector and
subspace dimension) can produce different eigenvectors that are still numerically
accurate:

• For real eigenvectors, the sign of the eigenvectors can change.
• For complex eigenvectors, the eigenvectors can be multiplied by any complex number

of magnitude 1.
• For a multiple eigenvalue, its eigenvectors can be recombined through linear

combinations. For example, if Ax = λx and Ay = λy, then A(x+y) = λ(x+y), so x+y also
is an eigenvector of A.

D — Eigenvalue matrix
matrix

Eigenvalue matrix, returned as a diagonal matrix with the eigenvalues on the main
diagonal.

flag — Convergence flag
0 | 1

Convergence flag, returned as 0 or 1. A value of 0 indicates that all the eigenvalues
converged. Otherwise, not all of the eigenvalues converged.

Use of this convergence flag output suppresses warnings about failed convergence.

Tips
• eigs generates the default starting vector using a private random number stream to

ensure reproducibility across runs. Setting the random number generator state using
rng before calling eigs does not affect the output.

• Using eigs is not the most efficient way to find a few eigenvalues of small, dense
matrices. For such problems, it might be quicker to use eig(full(A)). For example,
finding three eigenvalues in a 500-by-500 matrix is a relatively small problem that is
easily handled with eig.

 eigs

1-3493

• If eigs fails to converge for a given matrix, increase the number of Lanczos basis
vectors by increasing the value of 'SubspaceDimension'. As secondary options,
adjusting the maximum number of iterations, 'MaxIterations', and the
convergence tolerance, 'Tolerance', also can help with convergence behavior.

Compatibility Considerations

Behavior and algorithm change
Behavior changed in R2017b

• Changes to sorting order of output

eigs now sorts the output according to the value of sigma. For example, the
command eigs(A,k,'largestabs') produces k eigenvalues sorted in descending
order by magnitude.

Previously, the sorting order of the output produced by eigs was not guaranteed.
• Reproducibility

Calling eigs multiple times in succession now produces the same result. Set
'StartVector' to a random vector to change this behavior.

• Display

A display value of 2 no longer returns timing information. Instead, eigs treats a value
of 2 the same as a value of 1. Also, the messages shown by the 'Display' option
have changed. The new messages show the residual in each iteration, instead of the
Ritz values.

References
[1] Stewart, G.W. "A Krylov-Schur Algorithm for Large Eigenproblems." SIAM Journal of

Matrix Analysis and Applications. Vol. 23, Issue 3, 2001, pp. 601–614.

[2] Lehoucq, R.B., D.C. Sorenson, and C. Yang. ARPACK Users' Guide. Philadelphia, PA:
SIAM, 1998.

1 Alphabetical List

1-3494

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• For the syntax [__] = eigs(A,B,k,sigma), if B is sparse and is not diagonal and
not triangular, then sigma cannot be 'largesttabs', 'largestreal',
'smallestreal', 'bothendsreal', , 'largestimag', 'smallestimag', or
'bothendsimag'

• For the syntax [__] = eigs(A,B,k,sigma), if A-sigma*B is sparse and is not
diagonal and not triangular, then sigma cannot be ,'smallestabs' or numeric.

• For the syntax [__] = eigs(A,k,sigma), if A is sparse and is not diagonal and not
triangular, then sigma cannot be ,'smallestabs' or numeric.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
eig | svds

Introduced before R2006a

 eigs

1-3495

ellipj
Jacobi elliptic functions

Syntax
[SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Description
[SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN, CN, and DN
evaluated for corresponding elements of argument U and parameter M. Inputs U and M
must be the same size, or either U or M must be scalar.

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions to accuracy
tol. The default value of tol is eps. Increase tol for a less accurate but more quickly
computed answer.

Examples

Find the Jacobi Elliptic Functions

Find the Jacobi elliptic functions for U = 0.5 and M = 0.25.

[s,c,d] = ellipj(0.5,0.25)

s = 0.4751

c = 0.8799

d = 0.9714

1 Alphabetical List

1-3496

Plot the Jacobi Elliptic Functions

Plot the Jacobi elliptic functions for -5≤U≤5 and M = 0.7.

M = 0.7;
U = -5:0.01:5;
[S,C,D] = ellipj(U,M);
plot(U,S,U,C,U,D);
legend('SN','CN','DN','Location','best')
grid on
title('Jacobi Elliptic Functions sn,cn,dn')

 ellipj

1-3497

Generate a Surface Plot of the Jacobi Elliptic sn Function

Generate a surface plot of the Jacobi elliptic sn function for the allowed range of M and
-5≤U≤5.

[M,U] = meshgrid(0:0.1:1,-5:0.1:5);
S = ellipj(U,M);
surf(U,M,S)
xlabel('U')
ylabel('M')
zlabel('sn')
title('Surface Plot of Jacobi Elliptic Function sn')

1 Alphabetical List

1-3498

Faster Calculations of Jacobi Elliptic Integrals by Changing Tolerance

The default value of tol is eps. Find the run time with the default value for arbitrary M
using tic and toc. Increase tol by a factor of 1000 and find the run time. Compare the
run times.

tic
ellipj(0.253,0.937)

ans = 0.2479

toc

Elapsed time is 0.049334 seconds.

tic
ellipj(0.253,0.937,eps*1000)

ans = 0.2479

toc

Elapsed time is 0.013138 seconds.

ellipj runs significantly faster when tolerance is significantly increased.

Input Arguments
U — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. U is limited to
real values. If U is nonscalar, M must be a scalar or a nonscalar of the same size as U.
Data Types: single | double

M — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. M can take
values 0≤ m ≤1. If M is a nonscalar, U must be a scalar or a nonscalar of the same size as
M. Map other values of M into this range using the transformations described in [1],
equations 16.10 and 16.11.

 ellipj

1-3499

Data Types: single | double

tol — Accuracy of result
eps (default) | nonnegative real number

Accuracy of result, specified as a nonnegative real number. The default value is eps.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
SN — Jacobi elliptic function sn
scalar | vector | matrix | multidimensional array

Jacobi elliptic function sn, returned as a scalar, vector, matrix, or multidimensional array.

CN — Jacobi elliptic function cn
scalar | vector | matrix | multidimensional array

Jacobi elliptic function cn, returned as a scalar, vector, matrix, or multidimensional array.

DN — Jacobi elliptic function dn
scalar | vector | matrix | multidimensional array

Jacobi elliptic function dn, returned as a scalar, vector, matrix, or multidimensional array.

Definitions
Jacobi Elliptic Functions
The Jacobi elliptic functions are defined in terms of the integral

u =∫0 ϕ dθ
1−msin2θ

.

Then

sn(u) = sinϕ, cn(u) = cosϕ, dn(u) = 1−msin2ϕ .

1 Alphabetical List

1-3500

Some definitions of the elliptic functions use the elliptical modulus k or modular angle α
instead of the parameter m. They are related by

k2 = m = sin2a .

The Jacobi elliptic functions obey many mathematical identities. For a good sample, see
[1].

Algorithms
ellipj computes the Jacobi elliptic functions using the method of the arithmetic-
geometric mean of [1]. It starts with the triplet of numbers

a0 = 1, b0 = 1−m, c0 = m .

ellipj computes successive iterations using

ai = 1
2(ai− 1 + bi− 1)

bi = (ai− 1

ci = 1
2(ai− 1− bi− 1) .

Next, it calculates the amplitudes in radians using

sin(2ϕn− 1− ϕn) =
cn
an

sin(ϕn),

being careful to unwrap the phases correctly. The Jacobian elliptic functions are then
simply

sn(u) = sinϕ0
cn(u) = cosϕ0

dn(u) = 1−m ⋅ sn(u)2 .

 ellipj

1-3501

References
[1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover

Publications, 1965, 17.6.

See Also
ellipke

Introduced before R2006a

1 Alphabetical List

1-3502

ellipke
Complete elliptic integrals of first and second kind

Syntax
K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Description
K = ellipke(M) returns the complete elliptic integral of the first kind for each element
in M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first and second kind.

[K,E] = ellipke(M,tol) computes the complete elliptic integral to accuracy tol.
The default value of tol is eps. Increase tol for a less accurate but more quickly
computed answer.

Examples

Find Complete Elliptic Integrals of First and Second Kind

Find the complete elliptic integrals of the first and second kind for M = 0.5.

M = 0.5;
[K,E] = ellipke(M)

K = 1.8541

E = 1.3506

 ellipke

1-3503

Plot Complete Elliptic Integrals of First and Second Kind

Plot the complete elliptic integrals of the first and second kind for the allowed range of M.

M = 0:0.01:1;
[K,E] = ellipke(M);
plot(M,K,M,E)
grid on
xlabel('M')
title('Complete Elliptic Integrals of First and Second Kind')
legend('First kind','Second kind')

1 Alphabetical List

1-3504

Faster Calculations of the Complete Elliptic Integrals by Changing the Tolerance

The default value of tol is eps. Find the runtime with the default value for arbitrary M
using tic and toc. Increase tol by a factor of thousand and find the runtime. Compare
the runtimes.

tic
ellipke(0.904561)

ans = 2.6001

toc

Elapsed time is 0.039012 seconds.

tic
ellipke(0.904561,eps*1000)

ans = 2.6001

toc

Elapsed time is 0.011040 seconds.

ellipke runs significantly faster when tolerance is significantly increased.

Input Arguments
M — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. M is limited to
values 0≤m≤1.
Data Types: single | double

tol — Accuracy of result
eps (default) | nonnegative real number

Accuracy of result, specified as a nonnegative real number. The default value is eps.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 ellipke

1-3505

Output Arguments
K — Complete elliptic integral of first kind
scalar | vector | matrix | multidimensional array

Complete elliptic integral of the first kind, returned as a scalar, vector, matrix, or
multidimensional array.

E — Complete elliptic integral of second kind
scalar | vector | matrix | multidimensional array

Complete elliptic integral of the second kind, returned as a scalar, vector, matrix, or
multidimensional array.

Definitions
Complete Elliptic Integrals of the First and Second Kind
The complete elliptic integral of the first kind is

[K(m)] =∫0 1
[(1− t2)(1−mt2)]−

1
2dt .

where m is the first argument of ellipke.

The complete elliptic integral of the second kind is

E(m) =∫0 1
(1− t2)−

1
2(1−mt2)

1
2dt .

Some definitions of the elliptic functions use the elliptical modulus k or modular angle α
instead of the parameter m. They are related by

k2 = m = sin2α .

References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. Dover

Publications, 1965.

1 Alphabetical List

1-3506

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ellipj

Introduced before R2006a

 ellipke

1-3507

ellipsoid
Generate ellipsoid

Syntax
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr)
ellipsoid(axes_handle,...)
ellipsoid(...)

Description
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates a surface mesh described
by three n+1-by-n+1 matrices, enabling surf(x,y,z) to plot an ellipsoid with center
(xc,yc,zc) and semi-axis lengths (xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr) uses n = 20.

ellipsoid(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

ellipsoid(...) with no output arguments plots the ellipsoid as a surface.

Examples

Surface Plot of Ellipsoid

Generate data for an ellipsoid with a center at (0,0,0) and semi-axis lengths
(5.9,3.25,3.25). Use surf to plot the ellipsoid.

[x, y, z] = ellipsoid(0,0,0,5.9,3.25,3.25,30);
figure
surf(x, y, z)
axis equal

1 Alphabetical List

1-3508

Algorithms
ellipsoid generates the data using the following equation:

x− xc 2

xr2 + y − yc 2

yr2 + z − zc 2

zr2 = 1

Note that ellipsoid(0,0,0,1,1,1) is equivalent to a unit sphere.

 ellipsoid

1-3509

See Also
cylinder | sphere | surf

Introduced before R2006a

1 Alphabetical List

1-3510

empty
Create empty array of specified class

Use the empty method to create empty arrays of a specific class. You can use empty with
any MATLAB fundamental type or class.

Syntax
A = ClassName.empty
A = ClassName.empty(sz1,...,szN)
A = ClassName.empty(sizeVector)

Description
A = ClassName.empty returns an empty 0-by-0 array of the class named by
ClassName. Replace ClassName with the actual name of the class.

A = ClassName.empty(sz1,...,szN) returns an empty array with the specified
dimensions. At least one of the dimensions must be 0.

A = ClassName.empty(sizeVector) returns an empty array with the specified
dimensions. At least one of the dimensions must be 0. Use this syntax to define an empty
array that is the same size as an existing empty array. Pass the values returned by the
size function as inputs.

Examples

Create Empty Character Array

This example shows how to create an empty character array using the default dimensions,
0-by-0.

A = char.empty

 empty

1-3511

A =

 0x0 empty char array

Empty int16 Array with Nonzero Dimension

This example shows how to create an empty int16 array with nonzero dimensions.
Specify the 5-by-0 dimensions as inputs to the empty method.

Aint = int16.empty(5,0)

Aint =

 5x0 empty int16 matrix

Use Size of Existing Array

Use the size of an existing empty array to create an array of the same size.

Aint = int16.empty(5,0);
Bdouble = double.empty(size(Aint))

Bdouble =

 5x0 empty double matrix

Input Arguments
sz1,...,szN — Dimensions of array
0 (default) | integers

Dimensions of array, specified as integers. At least one dimension must be 0. Negative
values are treated as 0. Trailing dimensions of 1 are not included in the size of the array

1 Alphabetical List

1-3512

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

sizeVector — Vector of dimensions
0 (default) | row vector

Vector of dimensions, specified as a row vector of nonnegative integers. At least one
element must be 0. Negative values are treated as 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
A — Empty array
empty array

Empty array, returned as an empty array of the specified dimensions and of the class used
in the method invocation.

Definitions

Class of Empty Object Array
The empty method enables you to initialize arrays of a specific class:

C = char.empty(0,7)

C =

 Empty matrix: 0-by-7

disp(class(C))
char

Initializing an array with empty brackets ([]) produces an empty array of class double:

a = [];

 empty

1-3513

disp(class(a))
double

You can initialize an empty array of a user-defined class. For example, the empty static
method is a hidden method of the RGBColor class defined here.

classdef ColorInRGB
 properties
 Color (1,3) = [1,0,0];
 end
 methods
 function obj = ColorInRGB(c)
 if nargin > 0
 obj.Color = c;
 end
 end
 end
end

To create an empty 0-by-5 array of class ColorInRGB, call the empty method:

A = ColorInRGB.empty(0,5);

Identify Empty Arrays
You can use the isempty, size, and length functions to identify empty object arrays.
For example, create an empty array of the ColorInRGB class defined in the previous
section.

A = ColorInRGB.empty(0,5);
isempty(A)

ans =

 logical

 1

size(A)

ans =

 0 5

length(A)

1 Alphabetical List

1-3514

ans =

 0

Concatenation and Indexing of Empty Arrays
Empty arrays follow array concatenation behavior. For example, create an empty array of
the ColorInRGB class defined in the previous section and for a new array by
concatenating instances into another array.

A = ColorInRGB.empty(0,5);
B = [A A]

B =

 0×10 ColorInRGB array with properties:

 Color

You cannot index into an empty array.

B(0,3)

Index in position 1 is invalid. Array indices must be positive integers or logical values.

Tips
• empty is a hidden, public, static method of all nonabstract MATLAB classes. You can

override the empty method in class definitions.

See Also
isempty | length | size

Topics
“Empty Arrays”

Introduced in R2008a

 empty

1-3515

enableNETfromNetworkDrive
Enable access to .NET commands from network drive

Syntax
enableNETfromNetworkDrive

Description
enableNETfromNetworkDrive adds an entry for the MATLAB interface to .NET module
to the security policy on your machine. You must have administrative privileges to change
your configuration.

Note Use enableNETfromNetworkDrive for MATLAB® releases R2012b or earlier,
which support installed versions 2.0, 3.0, and 3.5 of the Microsoft® .NET Framework.

See Also

Topics
“Troubleshooting Security Policy Settings from Network Drives”

Introduced in R2009b

1 Alphabetical List

1-3516

enableservice
Enable, disable, or report status of MATLAB Automation server

Syntax
state = enableservice('AutomationServer',enable)
state = enableservice('AutomationServer')

Description
state = enableservice('AutomationServer',enable) enables or disables the
MATLAB Automation server. If enable is true (logical 1), enableservice converts an
existing MATLAB session into an Automation server. If enable is false (logical 0),
enableservice disables the MATLAB Automation server. state indicates the previous
state of the Automation server. If state = 1, MATLAB was an Automation server. If
state = 0, MATLAB was not an Automation server.

state = enableservice('AutomationServer') returns the current state of the
Automation server. If state is logical 1 (true), MATLAB is an Automation server.

COM functions are available on Microsoft Windows systems only.

Examples
Enable the Automation server in the current MATLAB session:

state = enableservice('AutomationServer',true);

Show the current state of the MATLAB session. MATLAB displays true:

state = enableservice('AutomationServer')

Enable the Automation server and show the previous state. MATLAB displays true. The
previous state can be the same as the current state:

state = enableservice('AutomationServer',true)

 enableservice

1-3517

To enable the Automation server every time you run MATLAB, see “Manually Create
Automation Server”.

See Also
actxserver

Topics
“MATLAB COM Automation Server Interface”

Introduced before R2006a

1 Alphabetical List

1-3518

enableDefaultInteractivity
Enable built-in axes interactions

Syntax
enableDefaultInteractivity(ax)

Description
enableDefaultInteractivity(ax) enables the built-in interactions on page 1-3520
for the specified axes, if they are not already enabled. You can use this function to enable
the default set of interactions or a custom set of interactions.

Examples

Disable and Reenable Default Axes Interactions

Create a plot. Some interactions are enabled by default, such as scrolling to zoom.
Disable these default interactions.

plot(magic(10))
ax = gca;
disableDefaultInteractivity(ax)

Then, reenable the interactions.

enableDefaultInteractivity(ax)

Disable and Reenable Custom Axes Interactions

Create a plot, and replace the default set of axes interactions with just the rotate and
zoom interactions. Then disable the interactions.

 enableDefaultInteractivity

1-3519

plot(magic(10))
ax = gca;
ax.Interactions = [rotateInteraction zoomInteraction];
disableDefaultInteractivity(ax)

Reenable the interactions you created.

enableDefaultInteractivity(ax)

Input Arguments
ax — Axes
Axes object | PolarAxes object

Axes, specified as an Axes or PolarAxes object.

Definitions

Built-In Axes Interactions
These interactions are for exploring charts using gestures, such as dragging to pan or
scrolling to zoom. They are built into the parent axes and are available without having to
select any of the buttons in the axes toolbar. Most types axes include a default set of built-
in interactions, but you can customize them by setting the Interactions property of the
axes.

If you do not want any of the interactions enabled, use the
disableDefaultInteractivity function to disable them. To enable them if they are
not already enabled, use the enableDefaultInteractivity function.

See Also
disableDefaultInteractivity

Topics
“Control Chart Interactivity”

1 Alphabetical List

1-3520

Introduced in R2018b

 enableDefaultInteractivity

1-3521

end
Terminate block of code, or indicate last array index

Syntax
end

Description
end terminates for, while, switch, try, if, and parfor statements. Without an end
statement, for, while, switch, try, if, and parfor wait for further input. Each end is
paired with the closest previous unpaired for, while, switch, try, if, or parfor and
serves to delimit its scope.

end also marks the termination of a function. Although it is sometimes optional, use end
for better code readability. If your function contains one or more nested functions, then
you must terminate every function in the file, whether nested or not, with end. This
includes primary, nested, private, and local functions.

If your script contains local functions, then you must terminate every local function in the
file with end.

The end function also serves as the last index in an indexing expression. In that context,
end is the same as size(X,k) when used as part of the kth index into array X. Examples
of this use are X(3:end) to select the third through final elements of the array, and
X(1,1:2:end-1) to select all even elements of the first row, excluding the last element.
When using end to grow an array, as in X(end+1)=5, make sure X exists first.

Examples

For Loops and Conditional Statements

Use end to close a for loop and an if statement.

1 Alphabetical List

1-3522

a = [0 0 1 1 0 0 0 1 0];
for k = 1:length(a)
 if a(k) == 0
 a(k) = 2;
 end
end

Indexing Expressions

Access the last row of a matrix A using end.

A = magic(3)

A = 3×3

 8 1 6
 3 5 7
 4 9 2

B = A(end,1:end)

B = 1×3

 4 9 2

Tips
• Classes can overload the end function to implement specialized behavior. For more

information, see “end as Object Index”.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

 end

1-3523

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
break | for | if | parfor | return | switch | try | while

Introduced before R2006a

1 Alphabetical List

1-3524

EndInvoke
Retrieve result of asynchronous call initiated by .NET System.Delegate BeginInvoke
method

Syntax
result = EndInvoke(asyncResult)
[res0,...,resN] = EndInvoke(res0,...,resN,asyncResult)

Description
result = EndInvoke(asyncResult) retrieves result of asynchronous call initiated by
BeginInvoke method.

[res0,...,resN] = EndInvoke(res0,...,resN,asyncResult) for methods with
out and/or ref parameters.

Input Arguments
asyncResult

.NET System.IAsyncResult object returned by BeginInvoke.

res0,...,resN

For methods with out and/or ref parameters, results of the asynchronous call. The
number of arguments is the sum of:

• Number of return values (0 or 1).
• Number of out and ref arguments.

 EndInvoke

1-3525

https://msdn.microsoft.com/en-us/library/system.iasyncresult.aspx

Output Arguments
result

Results of the asynchronous call.

res0,...,resN

For methods with out and/or ref parameters, results of the asynchronous call,

Examples
The following examples show how to call delegates with various input and output
arguments. Each example contains:

1 The C# delegate signature. In order to execute the MATLAB code, build the delegate
code into an assembly named SignatureExamples and load it into MATLAB. For
information, see “Build a .NET Application for MATLAB Examples”.

2 An example MATLAB function to use with the delegate, which must exist on your
path.

3 The BeginInvoke and EndInvoke signatures MATLAB creates. To display the
signatures, create a delegate instance, myDel, and call the methodsview function.

4 Simple MATLAB example.

This example shows how to use a delegate that has no return value.

1 C# delegate:

public delegate void delint(Int32 arg);
2 MATLAB function to call:

% Display input argument
function dispfnc(A)
% A = number
['Input is ' num2str(A)]
end

3 MATLAB creates the following signatures. For BeginInvoke:

System.IAsyncResult RetVal
 BeginInvoke (

1 Alphabetical List

1-3526

 SignatureExamples.delint this,
 int32 scalar arg,
 System.AsyncCallback callback,
 System.Object object)

The EndInvoke signature:

 EndInvoke (
 SignatureExamples.delint this,
 System.IAsyncResult result)

4 Call dispfnc:

myDel = SignatureExamples.delint(@dispfnc);
asyncRes = myDel.BeginInvoke(6, [], []);
while asyncRes.IsCompleted ~= true
 pause(0.05) % Use pause() to let MATLAB process event
end
myDel.EndInvoke(asyncRes)

Input is 6

This example shows how to use a delegate with a return value. The delegate does not
have out or ref parameters.

1 C# delegate:

public delegate Int32 del2int(Int32 arg1, Int32 arg2);
2 MATLAB function to call:

% Add input arguments
function res = addfnc(A, B)
% A and B are numbers
res = A + B;
end

3 MATLAB creates the following signatures. For BeginInvoke:

System.IAsyncResult RetVal
 BeginInvoke (
 SignatureExamples.del2int this,
 int32 scalar arg1,
 int32 scalar arg2,
 System.AsyncCallback callback,
 System.Object object)

The EndInvoke signature:

 EndInvoke

1-3527

int32 scalar RetVal
 EndInvoke (
 SignatureExamples.del2int this,
 System.IAsyncResult result)

4 Call addfnc.

myDel = SignatureExamples.del2int(@addfnc);
asyncRes = myDel.BeginInvoke(6,8,[],[]);
while asyncRes.IsCompleted ~= true
 pause(0.05) % Use pause() to let MATLAB process event
end
result = myDel.EndInvoke(asyncRes)

result =
 14

This example shows how to use a delegate with a ref parameter, refArg, and no return
value.

1 C# delegate:

public delegate void delrefvoid(ref Double refArg);
2 MATLAB maps the ref argument as both RHS and LHS arguments. MATLAB

function to call.

% Increment input argument
function res = incfnc(A)
% A = number
res = A + 1;
end

3 MATLAB creates the following signatures. For BeginInvoke:

[System.IAsyncResult RetVal,
double scalar refArg]
 BeginInvoke (
 SignatureExamples.delrefvoid this,
 double scalar refArg,
 System.AsyncCallback callback,
 System.Object object)

The EndInvoke signature:

double scalar refArg
 EndInvoke (

1 Alphabetical List

1-3528

 SignatureExamples.delrefvoid this,
 double scalar refArg,
 System.IAsyncResult result)

4 Call incfnc.

x = 6;
myDel = SignatureExamples.delrefvoid(@incfnc);
asyncRes = myDel.BeginInvoke(x,[],[]);
while asyncRes.IsCompleted ~= true
 pause(0.05) % Use pause() to let MATLAB process event
end
myRef = 0;
result = myDel.EndInvoke(myRef,asyncRes);
disp(['Increment of ' num2str(x) ' = ' num2str(result)]);

Increment of 6 = 7

This example shows how to use a delegate with an out parameter, argOut, and one
return value.

1 C# delegate:

public delegate Single deloutsingle(Single argIn, out Single argOut);
2 MATLAB maps the out argument as a return value for a total of two return values.

MATLAB function to call.

% Double input argument
function [res1,res2] = times2fnc(A)
res1 = A*2;
res2 = res1;
end

3 MATLAB creates the following signatures. For BeginInvoke.

[System.IAsyncResult RetVal,
single scalar argOut]
 BeginInvoke (
 SignatureExamples.deloutsingle this,
 single scalar argIn,
 System.AsyncCallback callback,
 System.Object object)

The EndInvoke signature is:

[single scalar RetVal,
single scalar argOut]

 EndInvoke

1-3529

 EndInvoke (
 SignatureExamples.deloutsingle this,
 System.IAsyncResult result)

4 Call times2fnc.

myDel = SignatureExamples.deloutsingle(@times2fnc);
asyncRes = myDel.BeginInvoke(6,[],[]);
while asyncRes.IsCompleted ~= true
 pause(0.05) % Use pause() to let MATLAB process event
end
[a1,a2] = myDel.EndInvoke(asyncRes);
a1

a1 =
 12

Tips
• If the delegate contains out or ref parameters, the signature for the EndInvoke

method follows the MATLAB mapping rules. For information, see “.NET Delegates
With out and ref Type Arguments”.

See Also
BeginInvoke

Topics
“Calling .NET Methods Asynchronously”

External Websites
MSDN Calling Synchronous Methods Asynchronously

Introduced in R2011a

1 Alphabetical List

1-3530

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/calling-synchronous-methods-asynchronously

endsWith
Determine if strings end with pattern

Syntax
TF = endsWith(str,pattern)
TF = endsWith(str,pattern,'IgnoreCase',true)

Description
TF = endsWith(str,pattern) returns 1 (true) if str ends with the specified pattern,
and returns 0 (false) otherwise.

If pattern is an array containing multiple patterns, then endsWith returns 1 if it finds
that str ends with any element of pattern.

TF = endsWith(str,pattern,'IgnoreCase',true) ignores case when determining
if str ends with pattern.

Examples

Determine If String Ends with Pattern

Create a string array that contains file names. Determine which file names end with
the .gz extension.

Starting in R2017a, you can create strings using double quotes.

str = ["abstract.docx","data.tar.gz","mycode.m"; ...
 "data-analysis.ppt","results.ptx","temp-archive.gz"]

str = 2x3 string array
 "abstract.docx" "data.tar.gz" "mycode.m"
 "data-analysis.ppt" "results.ptx" "temp-archive.gz"

 endsWith

1-3531

Return a logical array where the position of each element equal to 1 corresponds to the
position of a string in str that ends with .gz.

pattern = ".gz";
TF = endsWith(str,pattern)

TF = 2x3 logical array

 0 1 0
 0 0 1

Display the file names that end with .gz. Index back into str using TF.

str(TF)

ans = 2x1 string array
 "data.tar.gz"
 "temp-archive.gz"

Test End of String Against Multiple Patterns

Create a string array that contains file names. Determine which file names end with
the .docx, .xlsx, or .gz extensions.

Starting in R2017a, you can create strings using double quotes.

str = ["data.tar.gz","mycode.m","outputs.xlsx","results.pptx"]

str = 1x4 string array
 "data.tar.gz" "mycode.m" "outputs.xlsx" "results.pptx"

pattern = [".docx",".xlsx",".gz"];
TF = endsWith(str,pattern)

TF = 1x4 logical array

 1 0 1 0

Display the file names that end with .docx, .xlsx, or .gz. Index back into str using TF.

1 Alphabetical List

1-3532

str(TF)

ans = 1x2 string array
 "data.tar.gz" "outputs.xlsx"

Ignore Case When Testing End of String

Create a string array that contains file names. Determine which file names end with
the .gz extension, ignoring case.

Starting in R2017a, you can create strings using double quotes.

str = ["DATA.TAR.GZ","mycode.m","SUMMARY.PPT","tmp.gz"]

str = 1x4 string array
 "DATA.TAR.GZ" "mycode.m" "SUMMARY.PPT" "tmp.gz"

pattern = ".gz";
TF = endsWith(str,pattern,'IgnoreCase',true)

TF = 1x4 logical array

 1 0 0 1

Display the file names that end with .gz. Index back into str using TF.

str(TF)

ans = 1x2 string array
 "DATA.TAR.GZ" "tmp.gz"

Determine if Character Vector Ends With Pattern

Create a character vector that contains the name of a file. Determine whether the name
ends with specified extensions.

 endsWith

1-3533

chr = 'MyLatestPaper.docx'

chr =
'MyLatestPaper.docx'

TF = endsWith(chr,'docx')

TF = logical
 1

TF = endsWith(chr,'gz')

TF = logical
 0

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.

pattern — Search pattern
string array | character vector | cell array of character vectors

Search pattern, specified as a string array, a character vector, or a cell array of character
vectors.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-3534

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and pattern must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
contains | find | regexp | startsWith | strcmp | strfind

Topics
“Create String Arrays”
“Search and Replace Text”
“Compare Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

 endsWith

1-3535

eomday
Last day of month

Syntax
E = eomday(Y,M)

Description
E = eomday(Y,M) returns the last day of the year and month given by corresponding
elements of the numeric arrays Y and M.

Examples
Show the end of month for January through September for the year 1900:

eomday(1900, 1:9)
ans =
 31 28 31 30 31 30 31 31 30

Find the number of days during that period:

sum(eomday(1900, 1:9))
ans =
 273

Because 1996 is a leap year, the statement eomday(1996,2) returns 29. To show all the
leap years in the twentieth century, try:

y = 1900:1999;
E = eomday(y,2);
y(E == 29)

ans =
 Columns 1 through 6
 1904 1908 1912 1916 1920 1924

1 Alphabetical List

1-3536

 Columns 7 through 12
 1928 1932 1936 1940 1944 1948

 Columns 13 through 18
 1952 1956 1960 1964 1968 1972

 Columns 19 through 24
 1976 1980 1984 1988 1992 1996

See Also
datenum | datevec | weekday

Introduced before R2006a

 eomday

1-3537

enumeration
Class enumeration members and names

Syntax
enumeration ClassName
enumeration(obj)
m = enumeration(___)
[m,s] = enumeration(___)

Description
enumeration ClassName displays the names of the enumeration members for the
MATLAB class with the name ClassName.

enumeration(obj) displays the names of the enumeration members for the class of
obj.

m = enumeration(___) returns the enumeration members in the column vector m.

[m,s] = enumeration(___) returns the enumeration members in the column vector
m and the member names in the cell array s. The names in s correspond element-wise to
the enumeration members in m.

Examples

Display Enumeration Member Names

Display the enumeration member names for the matlab.lang.OnOffSwitchState class.

enumeration matlab.lang.OnOffSwitchState

Enumeration members for class 'matlab.lang.OnOffSwitchState':

1 Alphabetical List

1-3538

 off
 on

Display Enumeration Member Names from Object

Display the enumeration member names for the matlab.lang.OnOffSwitchState class
using an enumeration member object.

e = matlab.lang.OnOffSwitchState.off;
enumeration(e)

Enumeration members for class 'matlab.lang.OnOffSwitchState':

 off
 on

Get Enumeration Members

Return the enumeration members for the matlab.lang.OnOffSwitchState class in a column
vector.

m = enumeration('matlab.lang.OnOffSwitchState')

Get Enumeration Members and Names

Return the enumeration members of the matlab.lang.OnOffSwitchState class in a column
vector and the enumeration names in a cell array.

[m,s] = enumeration('matlab.lang.OnOffSwitchState')

Input Arguments
ClassName — Enumeration class name
character vector | string

 enumeration

1-3539

Enumeration class name, specified as a character vector or string scalar.
Data Types: char | string

obj — Instance of enumeration class
object

Instance of enumeration class.

Output Arguments
m — Enumeration members
column vector

Enumeration members, returned as a column vector.

s — Enumeration member names
cell array

Enumeration member names, returned as a cell array of character vectors.

Definitions

Behavior Description
Behavior of the enumeration function.

• An enumeration class that derives from a built-in class can specify more than one
name for a given enumeration member.

• When you call the enumeration function with no output arguments, MATLAB displays
only the first name for each enumeration member (as specified in the class definition).
To see all available enumeration members and their names, use the two output
arguments. For example, [m,s] = enumeration(obj);.

1 Alphabetical List

1-3540

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
classdef

Topics
“Define Enumeration Classes”

Introduced in R2009b

 enumeration

1-3541

eps
Floating-point relative accuracy

Syntax
d = eps
d = eps(x)
d = eps(datatype)

Description
d = eps returns the distance from 1.0 to the next larger double-precision number, that
is, 2-52.

d = eps(x), where x has data type single or double, returns the positive distance
from abs(x) to the next larger floating-point number of the same precision as x. If x has
type duration, then eps(x) returns the next larger duration value. The command
eps(1.0) is equivalent to eps.

d = eps(datatype) returns eps according to the data type specified by datatype,
which can be either 'double' or 'single'. The syntax eps('double') (default) is
equivalent to eps, and eps('single') is equivalent to eps(single(1.0)).

Examples

Accuracy in Double Precision

Display the distance from 1.0 to the next largest double-precision number.

d = eps

d = 2.2204e-16

eps is equivalent to eps(1.0) and eps('double').

1 Alphabetical List

1-3542

Compute log2(eps).

d = log2(eps)

d = -52

In base 2, eps is equal to 2^-52.

Find the distance from 10.0 to the next largest double-precision number.

d = eps(10.0)

d = 1.7764e-15

Accuracy in Single Precision

Display the distance from 1.0 to the next largest single-precision number.

d = eps('single')

d = single
 1.1921e-07

eps('single') is equivalent to eps(single(1.0)).

Compute log2(eps('single')).

d = log2(eps('single'))

d = single
 -23

In base 2, single-precision eps is equal to 2^-23.

Find the distance from the single-precision representation of 10.0 to the next largest
single-precision number.

d = eps(single(10.0))

d = single
 9.5367e-07

 eps

1-3543

Input Arguments
x — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. d is the same
size as x. For all x, eps(x) = eps(-x) = eps(abs(x)). If x is complex, d is the
distance to the next larger floating-point number in magnitude. If x is Inf or NaN, then
eps(x) returns NaN.
Data Types: single | double | duration
Complex Number Support: Yes

datatype — Output data type
'double' (default) | 'single'

Output data type, specified as 'double' or 'single'.

• eps('double') is equivalent to eps and eps(1.0).
• eps('single') is equivalent to eps(single(1.0)) and single(2^-23).

Data Types: char

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-3544

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
double | duration | intmax | realmax | realmin | single

Topics
Floating-Point Numbers

Introduced before R2006a

 eps

1-3545

eq, ==
Determine equality

Syntax
A == B
eq(A,B)

Description
A == B returns a logical array with elements set to logical 1 (true) where arrays A and B
are equal; otherwise, the element is logical 0 (false). The test compares both real and
imaginary parts of numeric arrays. eq returns logical 0 (false) where A or B have NaN
or undefined categorical elements.

eq(A,B) is an alternative way to execute A == B, but is rarely used. It enables operator
overloading for classes.

Examples

Equality of Two Vectors

Create two vectors containing both real and imaginary numbers, then compare the
vectors for equality.

A = [1+i 3 2 4+i];
B = [1 3+i 2 4+i];
A == B

ans = 1x4 logical array

 0 0 1 1

1 Alphabetical List

1-3546

The eq function tests both real and imaginary parts for equality, and returns logical 1
(true) only where both parts are equal.

Find Characters

Create a character vector.

M = 'masterpiece';

Test for the presence of a specific character using ==.

M == 'e'

ans = 1x11 logical array

 0 0 0 0 1 0 0 0 1 0 1

The value of logical 1 (true) indicates the presence of the character 'e'.

Find Values in Categorical Array

Create a categorical array with two values: 'heads' and 'tails'.

A = categorical({'heads' 'heads' 'tails'; 'tails' 'heads' 'tails'})

A = 2x3 categorical array
 heads heads tails
 tails heads tails

Find all values in the 'heads' category.

A == 'heads'

ans = 2x3 logical array

 1 1 0
 0 1 0

 eq, ==

1-3547

A value of logical 1 (true) indicates a value in the category.

Compare the rows of A for equality.

A(1,:) == A(2,:)

ans = 1x3 logical array

 0 1 1

A value of logical 1 (true) indicates where the rows have equal category values.

Compare Floating-Point Numbers

Many numbers expressed in decimal text cannot be represented exactly as binary floating
numbers. This leads to small differences in results that the == operator reflects.

Perform a few subtraction operations on numbers expressed in decimal and store the
result in C.

C = 0.5-0.4-0.1

C = -2.7756e-17

With exact decimal arithmetic, C should be equal to exactly 0. Its small value is due to the
nature of binary floating-point arithmetic.

Compare C to 0 for equality.

C == 0

ans = logical
 0

Compare floating-point numbers using a tolerance, tol, instead of using ==.

tol = eps(0.5);
abs(C-0) < tol

1 Alphabetical List

1-3548

ans = logical
 1

The two numbers, C and 0, are closer to one another than two consecutive floating-point
numbers near 0.5. In many situations, C may act like 0.

Compare Datetime Values

Compare the elements of two datetime arrays.

Create two datetime arrays in different time zones.

t1 = [2014,04,14,9,0,0;2014,04,14,10,0,0];
A = datetime(t1,'TimeZone','America/Los_Angeles');
A.Format = 'd-MMM-y HH:mm:ss Z'

A = 2x1 datetime array
 14-Apr-2014 09:00:00 -0700
 14-Apr-2014 10:00:00 -0700

t2 = [2014,04,14,12,0,0;2014,04,14,12,30,0];
B = datetime(t2,'TimeZone','America/New_York');
B.Format = 'd-MMM-y HH:mm:ss Z'

B = 2x1 datetime array
 14-Apr-2014 12:00:00 -0400
 14-Apr-2014 12:30:00 -0400

Check where elements in A and B are equal.

A==B

ans = 2x1 logical array

 1
 0

 eq, ==

1-3549

Input Arguments
A — Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is a categorical array, the other input can be a categorical array, a cell
array of character vectors, or a single character vector. A single character vector
expands into a cell array of character vectors of the same size as the other input. If
both inputs are ordinal categorical arrays, they must have the same sets of categories,
including their order. If both inputs are categorical arrays that are not ordinal, they
can have different sets of categories. See “Compare Categorical Array Elements” for
more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

B — Right array
scalar | vector | matrix | multidimensional array

Right array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

1 Alphabetical List

1-3550

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is a categorical array, the other input can be a categorical array, a cell
array of character vectors, or a single character vector. A single character vector
expands into a cell array of character vectors of the same size as the other input. If
both inputs are ordinal categorical arrays, they must have the same sets of categories,
including their order. If both inputs are categorical arrays that are not ordinal, they
can have different sets of categories. See “Compare Categorical Array Elements” for
more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

Tips
• When comparing handle objects, use == to test whether objects have the same handle.

Use isequal to determine if objects with different handles have equal property
values.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 eq, ==

1-3551

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support using eq to test equality between an enumeration
member and a string array, a character array, or a cell array of character arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ge | gt | le | lt | ne

Topics
“Array Comparison with Relational Operators”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-3552

equilibrate
Matrix scaling for improved conditioning

Syntax
[P,R,C] = equilibrate(A)

Description
[P,R,C] = equilibrate(A) permutes and rescales matrix A such that the new matrix
B = R*P*A*C has a diagonal with entries of magnitude 1, and its off-diagonal entries are
not greater than 1 in magnitude.

Examples

Equilibrate Matrix for Improved Conditioning

Equilibrate a matrix with a large condition number to improve the efficiency and stability
of a linear system solution with the iterative solver gmres.

Load the west0479 matrix, which is a real-valued 479-by-479 sparse matrix. Use
condest to calculate the estimated condition number of the matrix.

load west0479
A = west0479;
c1 = condest(A)

c1 = 1.4244e+12

Try to solve the linear system Ax = b using gmres with 450 iterations and a tolerance of
1e-11. Specify five outputs so that gmres returns the residual norms of the solution at
each iteration (using ~ to suppress unneeded outputs). Plot the residual norms in a
semilog plot. The plot shows that gmres is not able to achieve a reasonable residual
norm, and so the calculated solution for x is not reliable.

 equilibrate

1-3553

b = ones(size(A,1),1);
tol = 1e-11;
maxit = 450;
[x,flx,~,~,rvx] = gmres(A,b,[],tol,maxit);
semilogy(rvx)
title('Residual Norm at Each Iteration')

Use equilibrate to permute and rescale A. Create a new matrix B = R*P*A*C, which
has a better condition number and diagonal entries of only 1 and -1.

[P,R,C] = equilibrate(A);
B = R*P*A*C;
c2 = condest(B)

c2 = 5.1036e+04

1 Alphabetical List

1-3554

Using the outputs returned by equilibrate, you can reformulate the problem Ax = b
into By = d, where B = RPAC and d = RPb. In this form you can recover the solution to
the original system with x = Cy.

Use gmres to solve By = d for y, and then replot the residual norms at each iteration. The
plot shows that equilibrating the matrix improves the stability of the problem, with gmres
converging to the desired tolerance of 1e-11 in fewer than 200 iterations.

d = R*P*b;
[y,fly,~,~,rvy] = gmres(B,d,[],tol,maxit);
hold on
semilogy(rvy)
legend('Original', 'Equilibrated', 'Location', 'southeast')
title('Relative Residual Norms (No Preconditioner)')
hold off

 equilibrate

1-3555

Improve Solution with Preconditioner

After you obtain the matrix B, you can improve the stability of the problem even further
by calculating a preconditioner for use with gmres. The numerical properties of B are
better than those of the original matrix A, so you should use the equilibrated matrix to
calculate the preconditioner.

Calculate two different preconditioners with ilu, and use these as inputs to gmres to
solve the problem again. Plot the residual norms at each iteration on the same plot as the
equilibrated norms for comparison. The plot shows that calculating preconditioners with
the equilibrated matrix greatly increases the stability of the problem, with gmres
achieving the desired tolerance in fewer than 30 iterations.

1 Alphabetical List

1-3556

semilogy(rvy)
hold on

[L1,U1] = ilu(B,struct('type','ilutp','droptol',1e-1,'thresh',0));
[yp1,flyp1,~,~,rvyp1] = gmres(B,d,[],tol,maxit,L1,U1);
semilogy(rvyp1)

[L2,U2] = ilu(B,struct('type','ilutp','droptol',1e-2,'thresh',0));
[yp2,flyp2,~,~,rvyp2] = gmres(B,d,[],tol,maxit,L2,U2);
semilogy(rvyp2)

legend('No preconditioner', 'ILUTP(1e-1)', 'ILUTP(1e-2)')
title('Relative Residual Norms with ILU Preconditioner (Equilibrated)')
hold off

 equilibrate

1-3557

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square matrix. A can be dense or sparse, but must be
structurally nonsingular, as determined by sprank.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-3558

Output Arguments
P — Permutation matrix
sparse matrix

Permutation matrix, returned as a sparse matrix. P*A is the permutation of A that
maximizes the absolute value of the product of its diagonal elements.

R — Row scaling
sparse diagonal matrix

Row scaling, returned as a sparse diagonal matrix. The diagonal entries in R and C are
real and positive.

C — Column scaling
sparse diagonal matrix

Column scaling, returned as a sparse diagonal matrix. The diagonal entries in R and C are
real and positive.

See Also
balance | gmres | ichol | ilu | matchpairs | sprank

Introduced in R2019a

 equilibrate

1-3559

erase
Delete substrings within strings

Syntax
newStr = erase(str,match)

Description
newStr = erase(str,match) deletes all occurrences of match in str. The erase
function returns the remaining text as newStr.

If match is a string array or a cell array of character vectors, then erase deletes every
occurrence of every element of match in str. The str and match arguments do not need
to be the same size.

Examples

Delete Substrings from String Array

Create a string array and delete substrings from it. Starting in R2017a, you can create
strings using double quotes.

str = ["the quick brown fox jumps";
 "over the lazy dog"]

str = 2x1 string array
 "the quick brown fox jumps"
 "over the lazy dog"

Delete the substring "the " from str. The erase function deletes both instances.

newStr = erase(str,"the ")

1 Alphabetical List

1-3560

newStr = 2x1 string array
 "quick brown fox jumps"
 "over lazy dog"

Delete multiple substrings from str.

match = ["the ","quick ","lazy "];
newStr = erase(str,match)

newStr = 2x1 string array
 "brown fox jumps"
 "over dog"

Delete Substring from Character Vector

Create a character vector. Delete the substring, ' World', including the space character.

chr = 'Hello World'

chr =
'Hello World'

newChr = erase(chr,' World')

newChr =
'Hello'

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.

match — Text to delete
string array | character vector | cell array of character vectors

 erase

1-3561

Text to delete, specified as a string array, a character vector, or a cell array of character
vectors.

Tips
• To delete multiple occurrences of a match when the occurrences overlap, use the

strrep function. erase only deletes the first occurrence when occurrences overlap.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and match must be a string scalar, a character vector, or a cell array containing
not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-3562

See Also
count | eraseBetween | extractAfter | extractBefore | extractBetween |
insertAfter | insertBefore | join | pad | replace | replaceBetween | size |
split | strlength | strsplit

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

 erase

1-3563

eraseBetween
Delete substrings between start and end points

Syntax
newStr = eraseBetween(str,startStr,endStr)
newStr = eraseBetween(str,startPos,endPos)
newStr = eraseBetween(___ ,'Boundaries',bounds)

Description
newStr = eraseBetween(str,startStr,endStr) deletes all characters from str
that occur between the substrings startStr and endStr, but does not delete startStr
and endStr themselves. eraseBetween returns the remaining text as newStr.

If str is a string array or a cell array of character vectors, then eraseBetween deletes
characters from each element of str. The output argument newStr has the same data
type as str.

newStr = eraseBetween(str,startPos,endPos) deletes all characters from str
that occur between the positions startPos and endPos, including the characters at
those positions.

newStr = eraseBetween(___ ,'Boundaries',bounds) forces the starts and ends
specified in any of the previous syntaxes to be either inclusive or exclusive. They are
inclusive when bounds is 'inclusive', and exclusive when bounds is 'exclusive'.
For example, eraseBetween(str,startStr,endStr,'Boundaries','inclusive')
deletes startStr, endStr, and all the text between them.

Examples

Delete Text Between Substrings

Create string arrays. Then delete text that occurs between substrings.

1 Alphabetical List

1-3564

Create a string. Starting in R2017a, you can create strings using double quotes.

str = "The quick brown fox"

str =
"The quick brown fox"

Delete the text that occurs between the substrings "quick" and " fox". The
eraseBetween function deletes the text but does not delete "quick" or " fox".

newStr = eraseBetween(str,"quick"," fox")

newStr =
"The quick fox"

Delete substrings from each element of a string array. When you specify different
substrings as start and end indicators, they must be contained in a string array or a cell
array of character vectors that is the same size as str.

str = ["The quick brown fox jumps";"over the lazy dog"]

str = 2x1 string array
 "The quick brown fox jumps"
 "over the lazy dog"

startPos = ["quick";"the"];
endPos = [" fox";" dog"];
newStr = eraseBetween(str,startPos,endPos)

newStr = 2x1 string array
 "The quick fox jumps"
 "over the dog"

Delete Substrings Between Start and End Positions

Create string arrays and delete substrings between start and end positions that are
specified as numbers.

Create a string that contains a name. Starting in R2017a, you can create strings using
double quotes.

 eraseBetween

1-3565

str = "Edgar Allen Poe"

str =
"Edgar Allen Poe"

Delete a substring. To delete the middle name and one of the space characters, specify
the sixth and 11th positions in the string. The deleted substring includes the sixth and
11th characters.

newStr = eraseBetween(str,6,11)

newStr =
"Edgar Poe"

Delete substrings from each element of a string array. When you specify different start
and end positions with numeric arrays, they must be the same size as the input string
array.

str = ["Edgar Allen Poe";"Louisa May Alcott"]

str = 2x1 string array
 "Edgar Allen Poe"
 "Louisa May Alcott"

startsPos = [6;7];
endPos = [11;10];
newStr = eraseBetween(str,startsPos,endPos)

newStr = 2x1 string array
 "Edgar Poe"
 "Louisa Alcott"

Delete Text with Inclusive and Exclusive Boundaries

Delete text from string arrays with boundaries that are forced to be inclusive or exclusive.
eraseBetween deletes the boundaries when they are inclusive. eraseBetween returns
the boundaries as part of the output string array when they are exclusive.

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = "small|medium|large"

1 Alphabetical List

1-3566

str =
"small|medium|large"

Delete the text between sixth and 13th positions, but do not delete the characters at those
positions.

newStr = eraseBetween(str,6,13,'Boundaries','exclusive')

newStr =
"small||large"

Delete the text between two substrings, and also the substrings themselves.

str = "The quick brown fox jumps over the lazy dog"

str =
"The quick brown fox jumps over the lazy dog"

newStr = eraseBetween(str," brown","lazy",'Boundaries','inclusive')

newStr =
"The quick dog"

Delete Text Between Positions in Character Vector

Create a character vector and delete text between start and end positions.

chr = 'mushrooms, peppers, and onions'

chr =
'mushrooms, peppers, and onions'

newChr = eraseBetween(chr,10,19)

newChr =
'mushrooms and onions'

Delete text between substrings.

newChr = eraseBetween(chr,'mushrooms',' and')

newChr =
'mushrooms and onions'

 eraseBetween

1-3567

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

startStr — String that indicates start of substring to delete
string array | character vector | cell array of character vectors

String that indicates the start of the substring to delete, specified as a string array, a
character vector, or a cell array of character vectors.

If str is a string array or a cell array of character vectors, then startStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Example: eraseBetween(str,"AB","YZ") deletes all characters between AB and YZ in
each element of str.
Example: If str is a 2-by-1 string array, then eraseBetween(str,["AB";"FG"],
["YZ";"ST"]) deletes all characters between AB and YZ in str(1), and between FG
and ST in str(2).
Data Types: string | char | cell

endStr — String that indicates end of substring to delete
string array | character vector | cell array of character vectors

String that indicates the end of the substring to delete, specified as a string array, a
character vector, or a cell array of character vectors.

If str is a string array or a cell array of character vectors, then endStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Example: eraseBetween(str,"AB","YZ") deletes all characters between AB and YZ in
each element of str.
Example: If str is a 2-by-1 string array, then eraseBetween(str,["AB";"FG"],
["YZ";"ST"]) deletes all characters between AB and YZ in str(1), and between FG
and ST in str(2).
Data Types: string | char | cell

1 Alphabetical List

1-3568

startPos — Start position of substring to delete
numeric array

Start position of substring to delete, specified as a numeric array.

If str is a string array or a cell array of character vectors, then startPos can be a
numeric scalar or a numeric array of the same size as str.
Example: eraseBetween(str,5,9) deletes all characters from the fifth through the
ninth positions in each element of str.
Example: If str is a 2-by-1 string array, then eraseBetween(str,[5;10],[9;21])
deletes all characters from the fifth through the ninth positions in str(1), and from the
10th through the 21st positions in str(2).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

endPos — End position of substring to delete
numeric array

End position of substring to delete, specified as a numeric array.

If str is a string array or a cell array of character vectors, then endPos can be a numeric
scalar or a numeric array of the same size as str.
Example: eraseBetween(str,5,9) deletes all characters from the fifth through the
ninth positions in each element of str.
Example: If str is a 2-by-1 string array, then eraseBetween(str,[5;10],[9;21])
deletes all characters from the fifth through the ninth positions in str(1), and from the
10th through the 21st positions in str(2).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors. str and newStr have the same data type.

 eraseBetween

1-3569

Data Types: string | char | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str, startStr, and endStr must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
count | erase | extractAfter | extractBefore | extractBetween | insertAfter |
insertBefore | join | replace | replaceBetween | size | split | strlength

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

1 Alphabetical List

1-3570

Introduced in R2016b

 eraseBetween

1-3571

erf
Error function

Syntax
erf(x)

Description
erf(x) returns the “Error Function” on page 1-3577 evaluated for each element of x.

Examples

Find Error Function

Find the error function of a value.

erf(0.76)

ans = 0.7175

Find the error function of the elements of a vector.

V = [-0.5 0 1 0.72];
erf(V)

ans = 1×4

 -0.5205 0 0.8427 0.6914

Find the error function of the elements of a matrix.

M = [0.29 -0.11; 3.1 -2.9];
erf(M)

1 Alphabetical List

1-3572

ans = 2×2

 0.3183 -0.1236
 1.0000 -1.0000

Find Cumulative Distribution Function of Normal Distribution

The cumulative distribution function (CDF) of the normal, or Gaussian, distribution with
standard deviation σ and mean μ is

ϕ(x) = 1
2 1 + erf x− μ

σ 2 .

Note that for increased computational accuracy, you can rewrite the formula in terms of
erfc . For details, see “Tips” on page 1-3577.

Plot the CDF of the normal distribution with μ = 0 and σ = 1.

x = -3:0.1:3;
y = (1/2)*(1+erf(x/sqrt(2)));
plot(x,y)
grid on
title('CDF of normal distribution with \mu = 0 and \sigma = 1')
xlabel('x')
ylabel('CDF')

 erf

1-3573

Calculate Solution of Heat Equation with Initial Condition

Where u(x, t) represents the temperature at position x and time t, the heat equation is

∂u
∂t = c∂

2u
∂x2 ,

where c is a constant.

For a material with heat coefficient k, and for the initial condition u(x, 0) = a for x > b and
u(x, 0) = 0 elsewhere, the solution to the heat equation is

1 Alphabetical List

1-3574

u(x, t) = a
2 erf x− b

4kt .

For k = 2, a = 5, and b = 1, plot the solution of the heat equation at times t = 0.1,
5, and 100.

x = -4:0.01:6;
t = [0.1 5 100];
a = 5;
k = 2;
b = 1;
figure(1)
hold on
for i = 1:3
 u(i,:) = (a/2)*(erf((x-b)/sqrt(4*k*t(i))));
 plot(x,u(i,:))
end
grid on
xlabel('x')
ylabel('Temperature')
legend('t = 0.1','t = 5','t = 100','Location','best')
title('Temperatures across material at t = 0.1, t = 5, and t = 100')

 erf

1-3575

Input Arguments
x — Input
real number | vector of real numbers | matrix of real numbers | multidimensional array of
real numbers

Input, specified as a real number, or a vector, matrix, or multidimensional array of real
numbers. x cannot be sparse.
Data Types: single | double

1 Alphabetical List

1-3576

Definitions

Error Function
The error function erf of x is

erf(x)= 2
π∫0

x
e−t2dt .

Tips
• You can also find the standard normal probability distribution using the Statistics and

Machine Learning Toolbox™ function normcdf. The relationship between the error
function erf and normcdf is

normcdf x = 1
2 1− erf −x

2 .

• For expressions of the form 1 - erf(x), use the complementary error function erfc
instead. This substitution maintains accuracy. When erf(x) is close to 1, then 1 -
erf(x) is a small number and might be rounded down to 0. Instead, replace 1 -
erf(x) with erfc(x).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 erf

1-3577

• Strict single-precision calculations are not supported. In the generated code, single-
precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
erfc | erfcinv | erfcx | erfinv

Introduced before R2006a

1 Alphabetical List

1-3578

erfc
Complementary error function

Syntax
erfc(x)

Description
erfc(x) returns the “Complementary Error Function” on page 1-3582 evaluated for each
element of x. Use the erfc function to replace 1 - erf(x) for greater accuracy when
erf(x) is close to 1.

Examples

Find Complementary Error Function

Find the complementary error function of a value.

erfc(0.35)

ans = 0.6206

Find the complementary error function of the elements of a vector.

V = [-0.5 0 1 0.72];
erfc(V)

ans = 1×4

 1.5205 1.0000 0.1573 0.3086

Find the complementary error function of the elements of a matrix.

 erfc

1-3579

M = [0.29 -0.11; 3.1 -2.9];
erfc(M)

ans = 2×2

 0.6817 1.1236
 0.0000 2.0000

Find Bit Error Rate of Binary Phase-Shift Keying

The bit error rate (BER) of binary phase-shift keying (BPSK), assuming additive white
Gaussian noise (AWGN), is

Pb = 1
2erfc

Eb
N0

.

Plot the BER for BPSK for values of Eb/N0 from 0dB to 10dB.

EbN0_dB = 0:0.1:10;
EbN0 = 10.^(EbN0_dB/10);
BER = 1/2.*erfc(sqrt(EbN0));
semilogy(EbN0_dB,BER)
grid on
ylabel('BER')
xlabel('E_b/N_0 (dB)')
title('Bit Error Rate for Binary Phase-Shift Keying')

1 Alphabetical List

1-3580

Avoid Roundoff Errors Using Complementary Error Function

You can use the complementary error function erfc in place of 1 - erf(x) to avoid
roundoff errors when erf(x) is close to 1.

Show how to avoid roundoff errors by calculating 1 - erf(10) using erfc(10). The
original calculation returns 0 while erfc(10) returns the correct result.

1 - erf(10)

ans = 0

 erfc

1-3581

erfc(10)

ans = 2.0885e-45

Input Arguments
x — Input
real number | vector of real numbers | matrix of real numbers | multidimensional array of
real numbers

Input, specified as a real number, or a vector, matrix, or multidimensional array of real
numbers. x cannot be sparse.
Data Types: single | double

Definitions
Complementary Error Function
The complementary error function of x is defined as

erfc(x) = 2
π∫x

∞
e−t2dt

= 1− erf(x) .

It is related to the error function as

erfc x = 1− erf(x) .

Tips
• You can also find the standard normal probability distribution using the Statistics and

Machine Learning Toolbox function normcdf. The relationship between the error
function erfc and normcdf is

normcdf(x) = 1
2 × erfc −x

2

1 Alphabetical List

1-3582

• For expressions of the form 1 - erfc(x), use the error function erf instead. This
substitution maintains accuracy. When erfc(x) is close to 1, then 1 - erfc(x) is a
small number and might be rounded down to 0. Instead, replace 1 - erfc(x) with
erf(x).

• For expressions of the form exp(x^2)*erfc(x), use the scaled complementary error
function erfcx instead. This substitution maintains accuracy by avoiding roundoff
errors for large values of x.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Strict single-precision calculations are not supported. In the generated code, single-
precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 erfc

1-3583

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
erf | erfcinv | erfcx | erfinv

Introduced before R2006a

1 Alphabetical List

1-3584

erfcinv
Inverse complementary error function

Syntax
erfcinv(x)

Description
erfcinv(x) returns the value of the “Inverse Complementary Error Function” on page
1-3587 for each element of x. For inputs outside the interval [0 2], erfcinv returns
NaN. Use the erfcinv function to replace expressions containing erfinv(1-x) for
greater accuracy when x is close to 1.

Examples

Find Inverse Complementary Error Function
erfcinv(0.3)

ans = 0.7329

Find the inverse complementary error function of the elements of a vector.

V = [-10 0 0.5 1.3 2 Inf];
erfcinv(V)

ans = 1×6

 NaN Inf 0.4769 -0.2725 -Inf NaN

Find the inverse complementary error function of the elements of a matrix.

M = [0.1 1.2; 1 0.9];
erfcinv(M)

 erfcinv

1-3585

ans = 2×2

 1.1631 -0.1791
 0 0.0889

Avoid Roundoff Errors Using Inverse Complementary Error Function

You can use the inverse complementary error function erfcinv in place of erfinv(1-x)
to avoid roundoff errors when x is close to 0.

Show how to avoid roundoff by calculating erfinv(1-x) using erfcinv(x) for x =
1e-100. The original calculation returns Inf while erfcinv(x) returns the correct
result.

x = 1e-100;
erfinv(1-x)

ans = Inf

erfcinv(x)

ans = 15.0656

Input Arguments
x — Input
real number | vector of real numbers | matrix of real numbers | multidimensional array of
real numbers

Input, specified as a real number, or a vector, matrix, or multidimensional array of real
numbers. x cannot be sparse.
Data Types: single | double

1 Alphabetical List

1-3586

Definitions

Inverse Complementary Error Function
The inverse complementary error function erfcinv(x) is defined as erfcinv erfc x = x .

Tips
• You can also find the inverse standard normal probability distribution using the

Statistics and Machine Learning Toolbox function norminv. The relationship between
the inverse complementary error function erfcinv and norminv is

norminv(p) = − 2 × erfcinv(2p) .
• For expressions of the form erfcinv(1-x), use the inverse error function erfinv

instead. This substitution maintains accuracy. When x is close to 1, then 1 - x is a
small number and might be rounded down to 0. Instead, replace erfcinv(1-x) with
erfinv(x).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Strict single-precision calculations are not supported. In the generated code, single-
precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

 erfcinv

1-3587

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
erf | erfc | erfcx | erfinv

Introduced before R2006a

1 Alphabetical List

1-3588

erfcx
Scaled complementary error function

Syntax
erfcx(x)

Description
erfcx(x) returns the value of the “Scaled Complementary Error Function” on page 1-
3591 for each element of x. Use the erfcx function to replace expressions containing
exp(x^2)*erfc(x) to avoid underflow or overflow errors.

Examples

Find Scaled Complementary Error Function

erfcx(5)

ans = 0.1107

Find the scaled complementary error function of the elements of a vector.

V = [-Inf -1 0 1 10 Inf];
erfcx(V)

ans = 1×6

 Inf 5.0090 1.0000 0.4276 0.0561 0

Find the scaled complementary error function of the elements of a matrix.

M = [-0.5 15; 3.2 1];
erfcx(M)

 erfcx

1-3589

ans = 2×2

 1.9524 0.0375
 0.1687 0.4276

Avoid Roundoff Errors Using Scaled Complementary Error Function

You can use the scaled complementary error function erfcx in place of
exp(x^2)*erfc(x) to avoid underflow or overflow errors.

Show how to avoid roundoff errors by calculating exp(35^2)*erfc(35) using
erfcx(35). The original calculation returns NaN while erfcx(35) returns the correct
result.

x = 35;
exp(x^2)*erfc(x)

ans = NaN

erfcx(x)

ans = 0.0161

Input Arguments
x — Input
real number | vector of real numbers | matrix of real numbers | multidimensional array of
real numbers

Input, specified as a real number, or a vector, matrix, or multidimensional array of real
numbers. x cannot be sparse.
Data Types: single | double

1 Alphabetical List

1-3590

Definitions

Scaled Complementary Error Function
The scaled complementary error function erfcx(x) is defined as

erfcx(x) = ex2erfc(x) .

For large X, erfcx(X) is approximately 1
π

1
x .

Tips
• For expressions of the form exp(-x^2)*erfcx(x), use the complementary error

function erfc instead. This substitution maintains accuracy by avoiding roundoff
errors for large values of x.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Strict single-precision calculations are not supported. In the generated code, single-
precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

 erfcx

1-3591

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
erf | erfc | erfcinv | erfinv

Introduced before R2006a

1 Alphabetical List

1-3592

erfinv
Inverse error function

Syntax
erfinv(x)

Description
erfinv(x) returns the “Inverse Error Function” on page 1-3597 evaluated for each
element of x. For inputs outside the interval [-1 1], erfinv returns NaN.

Examples

Find Inverse Error Function of Value

erfinv(0.25)

ans = 0.2253

For inputs outside [-1,1], erfinv returns NaN. For -1 and 1, erfinv returns -Inf and
Inf, respectively.

erfinv([-2 -1 1 2])

ans = 1×4

 NaN -Inf Inf NaN

Find the inverse error function of the elements of a matrix.

M = [0 -0.5; 0.9 -0.2];
erfinv(M)

 erfinv

1-3593

ans = 2×2

 0 -0.4769
 1.1631 -0.1791

Plot the Inverse Error Function

Plot the inverse error function for -1 < x < 1.

x = -1:0.01:1;
y = erfinv(x);
plot(x,y)
grid on
xlabel('x')
ylabel('erfinv(x)')
title('Inverse Error Function for -1 < x < 1')

1 Alphabetical List

1-3594

Generate Gaussian Distributed Random Numbers

Generate Gaussian distributed random numbers using uniformly distributed random
numbers. To convert a uniformly distributed random number x to a Gaussian distributed
random number y, use the transform

y = 2erf−1(x) .

Note that because x has the form -1 + 2*rand(1,10000), you can improve accuracy
by using erfcinv instead of erfinv. For details, see “Tips” on page 1-3597.

 erfinv

1-3595

Generate 10,000 uniformly distributed random numbers on the interval [-1,1].
Transform them into Gaussian distributed random numbers. Show that the numbers
follow the form of the Gaussian distribution using a histogram plot.

rng('default')
x = -1 + 2*rand(1,10000);
y = sqrt(2)*erfinv(x);
h = histogram(y);

1 Alphabetical List

1-3596

Input Arguments
x — Input
real number | vector of real numbers | matrix of real numbers | multidimensional array of
real numbers

Input, specified as a real number, or a vector, matrix, or multidimensional array of real
numbers. x cannot be sparse.
Data Types: single | double

Definitions

Inverse Error Function
The inverse error function erfinv is defined as the inverse of the error function, such that

erfinv erf x = x .

Tips
• For expressions of the form erfinv(1-x), use the complementary inverse error

function erfcinv instead. This substitution maintains accuracy. When x is close to 1,
then 1 - x is a small number and may be rounded down to 0. Instead, replace
erfinv(1-x) with erfcinv(x).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 erfinv

1-3597

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Strict single-precision calculations are not supported. In the generated code, single-
precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
erf | erfc | erfcinv | erfcx

Introduced before R2006a

1 Alphabetical List

1-3598

error
Throw error and display message

Syntax
error(msg)
error(msg,A1,...,An)
error(msgID, ___)

error(errorStruct)

Description
error(msg) throws an error and displays an error message.

error(msg,A1,...,An) displays an error message that contains formatting conversion
characters, such as those used with the MATLAB sprintf function. Each conversion
character in msg is converted to one of the values A1,...,An.

error(msgID, ___) includes an error identifier on the exception. The identifier enables
you to distinguish errors and to control what happens when MATLAB encounters the
errors. You can include any of the input arguments in the previous syntaxes.

error(errorStruct) throws an error using the fields in a scalar structure.

Examples

Throw Error

msg = 'Error occurred.';
error(msg)

Error occurred.

 error

1-3599

Throw Error with Formatted Message

Throw a formatted error message with a line break. You must specify more than one input
argument with error if you want MATLAB to convert special characters (such as \n) in
the error message. Include information about the class of variable n in the error message.

n = 7;
if ~ischar(n)
 error('Error. \nInput must be a char, not a %s.',class(n))
end

Error.
Input must be a char, not a double.

If you only use one input argument with error, then MATLAB does not convert \n to a
line break.

if ~ischar(n)
 error('Error. \nInput must be a char.')
end

Error. \nInput must be a char.

Throw an error with an identifier.

if ~ischar(n)
 error('MyComponent:incorrectType',...
 'Error. \nInput must be a char, not a %s.',class(n))
end

Error.
Input must be a char, not a double.

Use the MException.last to view the last uncaught exception.

exception = MException.last

exception =

 MException with properties:

 identifier: 'MyComponent:incorrectType'
 message: 'Error.
Input must be a char, not a double.'

1 Alphabetical List

1-3600

 cause: {0x1 cell}
 stack: [0x1 struct]

Throw Error Using Structure

Create structure with message and identifier fields. To keep the example simple, do not
use the stack field.

errorStruct.message = 'Data file not found.';
errorStruct.identifier = 'MyFunction:fileNotFound';

errorStruct =

 message: 'Data file not found.'
 identifier: 'MyFunction:fileNotFound'

Throw the error.

error(errorStruct)

Data file not found.

Input Arguments
msg — Information about error
character vector | string scalar

Information about the error, specified as a character vector or string scalar. This message
displays as the error message. To format the message, use escape sequences, such as \t
or \n. You also can use any format specifiers supported by the sprintf function, such as
%s or %d. Specify values for the conversion specifiers via the A1,...,An input
arguments. For more information, see “Formatting Text”.

Note You must specify more than one input argument with error if you want MATLAB to
convert special characters (such as \t, \n, %s, and %d) in the error message.

Example: 'File not found.'

 error

1-3601

msgID — Identifier for error
character vector | string scalar

Identifier for the error, specified as a character vector or string scalar. Use the error
identifier to help identify the source of the error or to control a selected subset of the
errors in your program.

The error identifier includes a component and mnemonic. The identifier must always
contain a colon and follows this simple format: component:mnemonic. The component
and mnemonic fields must each begin with a letter. The remaining characters can be
alphanumerics (A–Z, a–z, 0–9) and underscores. No whitespace characters can appear
anywhere in msgID. For more information, see “Message Identifiers”.
Example: 'MATLAB:singularMatrix'
Example: 'MATLAB:narginchk:notEnoughInputs'

A1,...,An — Values
character vector | string scalar | numeric scalar

Values that replace the conversion specifiers in msg, specified as a character vector,
string scalar, or numeric scalar.

errorStruct — Error reporting information
scalar structure

Error reporting information, specified as a scalar structure. The structure must contain at
least one of these fields.

message Error message. For more information, see msg.
identifier Error message identifier. For more information, see msgID.
stack Stack field for the error. When errorStruct includes a stack field,

error uses it to set the stack field of the error. When you specify
stack, use the absolute file name and the entire sequence of
functions that nests the function in the stack frame. This character
vector is the same as the one returned by dbstack('-
completenames').

1 Alphabetical List

1-3602

Tips
• When you throw an error, MATLAB captures information about it and stores it in a

data structure that is an object of the MException class. You can access information
in the exception object by using try/catch. Or, if your program terminates because
of an exception and returns control to the Command Prompt, you can use
MException.last.

• MATLAB does not cease execution of a program if an error occurs within a try block.
In this case, MATLAB passes control to the catch block.

• If all inputs to error are empty, MATLAB does not throw an error.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Has no effect in standalone code even when run-time error detection is enabled. See
“Run-Time Error Detection and Reporting in Standalone C/C++ Code” (MATLAB Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

See Also
MException | MException.last | assert | dbstack | errordlg | try | warning

Topics
“Capture Information About Exceptions”

 error

1-3603

Introduced before R2006a

1 Alphabetical List

1-3604

errorbar
Line plot with error bars

Syntax
errorbar(y,err)
errorbar(x,y,err)
errorbar(x,y,neg,pos)
errorbar(___ ,ornt)

errorbar(x,y,yneg,ypos,xneg,xpos)

errorbar(___ ,linespec)
errorbar(___ ,Name,Value)
errorbar(ax, ___)
e = errorbar(___)

Description
errorbar(y,err) creates a line plot of the data in y and draws a vertical error bar at
each data point. The values in err determine the lengths of each error bar above and
below the data points, so the total error bar lengths are double the err values.

errorbar(x,y,err) plots y versus x and draws a vertical error bar at each data point.

errorbar(x,y,neg,pos) draws a vertical error bar at each data point, where neg
determines the length below the data point and pos determines the length above the data
point, respectively.

errorbar(___ ,ornt) sets the orientation of the error bars. Specify ornt as
'horizontal' for horizontal error bars or 'both' for both horizontal and vertical error
bars. The default for ornt is 'vertical', which draws vertical error bars. Use this
option after any of the previous input argument combinations.

errorbar(x,y,yneg,ypos,xneg,xpos) plots y versus x and draws both horizontal
and vertical error bars. The yneg and ypos inputs set the lower and upper lengths of the

 errorbar

1-3605

vertical error bars, respectively. The xneg and xpos inputs set the left and right lengths
of the horizontal error bars.

errorbar(___ ,linespec) sets the line style, marker symbol, and color. For example,
'--ro' plots a dashed, red line with circle markers. The line style affects only the line
and not the error bars.

errorbar(___ ,Name,Value) modifies the appearance of the line and error bars using
one or more name-value pair arguments. For example, 'CapSize',10 sets the lengths of
the caps at the end of each error bar to 10 points.

errorbar(ax, ___) creates the plot in the axes specified by ax instead of in the current
axes. Specify the axes as the first input argument.

e = errorbar(___) returns one ErrorBar object when y is a vector. If y is a matrix,
then it returns one ErrorBar object per column in y. Use e to modify properties of a
specific ErrorBar object after it is created. For a list of properties, see Errorbar.

Examples

Plot Vertical Error Bars of Equal Length

Create vectors x and y. Plot y versus x. At each data point, display vertical error bars that
are equal in length.

x = 1:10:100;
y = [20 30 45 40 60 65 80 75 95 90];
err = 8*ones(size(y));
errorbar(x,y,err)

1 Alphabetical List

1-3606

Plot Vertical Error Bars that Vary in Length

Create a line plot with error bars at each data point. Vary the lengths of the error bars.

x = 1:10:100;
y = [20 30 45 40 60 65 80 75 95 90];
err = [5 8 2 9 3 3 8 3 9 3];
errorbar(x,y,err)

 errorbar

1-3607

Plot Horizontal Error Bars

Create a line plot with horizontal error bars at each data point.

x = 1:10:100;
y = [20 30 45 40 60 65 80 75 95 90];
err = [1 3 5 3 5 3 6 4 3 3];
errorbar(x,y,err,'horizontal')

1 Alphabetical List

1-3608

Plot Vertical and Horizontal Error Bars

Create a line plot with both vertical and horizontal error bars at each data point.

x = 1:10:100;
y = [20 30 45 40 60 65 80 75 95 90];
err = [4 3 5 3 5 3 6 4 3 3];
errorbar(x,y,err,'both')

 errorbar

1-3609

Plot Error Bars with No Line

Plot vectors y versus x. At each data point, display a circle marker with both vertical and
horizontal error bars. Do not display the line that connects the data points by omitting the
line style option for the linespec input argument.

x = 1:10:100;
y = [20 30 45 40 60 65 80 75 95 90];
err = [4 3 5 3 5 3 6 4 3 3];
errorbar(x,y,err,'both','o')

1 Alphabetical List

1-3610

Control Error Bars Lengths in All Directions

Display both vertical and horizontal error bars at each data point. Control the lower and
upper lengths of the vertical error bars using the yneg and ypos input argument options,
respectively. Control the left and right lengths of the horizontal error bars using the xneg
and xpos input argument options, respectively.

x = 1:10:100;
y = [20 30 45 40 60 65 80 75 95 90];
yneg = [1 3 5 3 5 3 6 4 3 3];
ypos = [2 5 3 5 2 5 2 2 5 5];

 errorbar

1-3611

xneg = [1 3 5 3 5 3 6 4 3 3];
xpos = [2 5 3 5 2 5 2 2 5 5];
errorbar(x,y,yneg,ypos,xneg,xpos,'o')

Add Colored Markers to Each Data Point

Create a line plot with error bars. At each data point, display a marker. Control the
appearance of the marker using name-value pair arguments. Use MarkerSize to specify
the marker size in points. Use MarkerEdgeColor and MarkerFaceColor to specify the
marker outline and interior colors, respectively. Set the colors to either a character vector
of a color name, such as 'red', or an RGB triplet.

1 Alphabetical List

1-3612

x = linspace(0,10,15);
y = sin(x/2);
err = 0.3*ones(size(y));
errorbar(x,y,err,'-s','MarkerSize',10,...
 'MarkerEdgeColor','red','MarkerFaceColor','red')

Control Error Bar Cap Size

Control the size of the caps at the end of each error bar by setting the CapSize property
to a positive value in points.

 errorbar

1-3613

x = linspace(0,2,15);
y = exp(x);
err = 0.3*ones(size(y));
errorbar(x,y,err,'CapSize',18)

Modify Error Bars After Creation

Create a line plot with error bars. Assign the errorbar object to the variable e.

x = linspace(0,10,10);
y = sin(x/2);

1 Alphabetical List

1-3614

err = 0.3*ones(size(y));
e = errorbar(x,y,err)

e =
 ErrorBar with properties:

 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 XData: [1x10 double]
 YData: [1x10 double]
 XNegativeDelta: [1x0 double]
 XPositiveDelta: [1x0 double]

 errorbar

1-3615

 YNegativeDelta: [1x10 double]
 YPositiveDelta: [1x10 double]

 Show all properties

Use e to access properties of the errorbar object after it is created. Starting in R2014b,
you can use dot notation to set properties. If you are using an earlier release, use the set
function instead.

e.Marker = '*';
e.MarkerSize = 10;
e.Color = 'red';
e.CapSize = 15;

1 Alphabetical List

1-3616

Input Arguments
y — y values
vector | matrix

y values, specified as a vector or a matrix.

• If y is a vector, then errorbar plots one line.
• If y is a matrix, then errorbar plots a separate line for each column in y.

Example: y = [4 3 5 2 2 4];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

x — x values
vector | matrix

x values, specified as a vector or a matrix. x must be the same size as y.
Example: x = 0:10:100;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

err — Error bar lengths for symmetrical error bars
vector | matrix

Error bar lengths for symmetrical error bars, specified as a vector or a matrix. err must
be the same size as y. If you do not want to draw an error bar at a particular data point,
then specify the length as NaN.
Example: err = [.4 .3 .5 .2 .4 .5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

neg — Error bar lengths in negative direction
vector | matrix | []

Error bar lengths in the negative direction, specified as a vector or matrix the same size
as y or as an empty array [].

 errorbar

1-3617

• For vertical error bars, neg sets the length of the error bars below the data points.
• For horizontal error bars, neg sets the length of the error bars to the left of the data

points.

If you do not want to draw the lower part of the error bar at a particular data point, then
specify the length as NaN. If you do not want to draw the lower part of the error bar at
any data point, then set neg to an empty array.
Example: neg = [.4 .3 .5 .2 .4 .5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

pos — Error bar lengths in positive direction
vector | matrix | []

Error bar lengths in the positive direction, specified as a vector or matrix the same size as
y or as an empty array [].

• For vertical error bars, pos sets the length of the error bars above the data points.
• For horizontal error bars, pos sets the length of the error bars to the right of the data

points.

If you do not want to draw the upper part of the error bar at a particular data point, then
specify the length as NaN. If you do not want to draw the upper part of the error bar at
any data point, then set pos to an empty array.
Example: pos = [.4 .3 .5 .2 .4 .5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yneg — Vertical error bar lengths below data points
vector | matrix | []

Vertical error bar lengths below the data points, specified as a vector or matrix the same
size as y or as an empty array []. Specify the values in data units.

If you do not want to draw the lower part of the error bar at a particular data point, then
specify the value as NaN. If you do not want to draw the lower part of the error bar at any
data point, then set yneg to an empty array.
Example: yneg = [.4 .3 .5 .2 .4 .5];

1 Alphabetical List

1-3618

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ypos — Vertical error bar lengths above data points
vector | matrix | []

Vertical error bar lengths above the data points, specified as a vector or matrix the same
size as y or as an empty array []. Specify the values in data units.

If you do not want to draw the upper part of the error bar at a particular data point, then
specify the length as NaN. If you do not want to draw the upper part of the error bar at
any data point, then set ypos to an empty array.
Example: ypos = [.4 .3 .5 .2 .4 .5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

xneg — Horizontal error bar lengths to left of data points
vector | matrix | []

Horizontal error bar lengths to the left of the data points, specified as a vector or matrix
the same size as y or as an empty array []. Specify the values in data units.

If you do not want to draw the left part of the error bar at a particular data point, then
specify the length as NaN. If you do not want to draw the left part of the error bar at any
data point, then set xneg to an empty array.
Example: xneg = [.4 .3 .5 .2 .4 .5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

xpos — Horizontal error bar lengths to right of data points
vector | matrix | []

Horizontal error bar lengths to the right of the data points, specified as a vector or matrix
the same size as y or as an empty array []. Specify the values in data units.

If you do not want to draw the right part of the error bar at a particular data point, then
specify the length as NaN. If you do not want to draw the right part of the error bar at any
data point, then set xpos to an empty array.
Example: xpos = [.4 .3 .5 .2 .4 .5];

 errorbar

1-3619

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ornt — Error bar orientation
'vertical' (default) | 'horizontal' | 'both'

Error bar orientation, specified as one of these values:

• 'vertical' — Vertical error bars
• 'horizontal' — Horizontal error bars
• 'both' — Vertical and horizontal error bars

Example: errorbar(x,y,err,'horizontal')

linespec — Line style, marker symbol, and color
character vector | string

Line style, marker symbol, and color, specified as a character vector or string containing
symbols. The symbols can appear in any order. You do not need to specify all three
characteristics (line style, marker symbol, and color). For example, if you omit the line
style and specify the marker, then the plot shows only the markers and no line. The line
style affects only the line and not the error bars.
Example: errorbar(x,y,err,'--or') plots a red, dashed line with circle markers and
red error bars at the data points.

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point

1 Alphabetical List

1-3620

Marker Description
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Axes object
current axes (default) | axes object

Axes object. If you do not specify the axes, then errorbar plots into the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are only a subset. For a complete list, see Errorbar.

 errorbar

1-3621

Example: errorbar(y,err,'LineWidth',2) specifies a line width of 2 points.

CapSize — Length of caps at end of error bars
6 (default) | positive value in points

Length of caps at end of error bars, specified as a positive value in points.
Example: errorbar(x,y,err,'CapSize',10)

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

1 Alphabetical List

1-3622

See Also
Functions
bar | corrcoef | plot | std

Properties
Errorbar

Introduced before R2006a

 errorbar

1-3623

ErrorBar Properties
Error bar chart appearance and behavior

Description
ErrorBar properties control the appearance and behavior of an ErrorBar object. By
changing property values, you can modify certain aspects of the error bar chart.

Starting in R2014b, you can use dot notation to query and set properties.

e = errorbar(...);
s = e.LineStyle;
e.LineStyle = ':';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Line color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-3624

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

 ErrorBar Properties

1-3625

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

CapSize — Length of caps at end of error bars
6 (default) | positive value in points

Length of caps at end of error bars, specified as a positive value in points.
Example: errorbar(x,y,err,'CapSize',10)

AlignVertexCenters — Sharp vertical and horizontal lines
'on' (default) | 'off'

Sharp vertical and horizontal lines, specified as 'on' or 'off'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.
• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in

thickness or color.

1 Alphabetical List

1-3626

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

 ErrorBar Properties

1-3627

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-3628

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

 ErrorBar Properties

1-3629

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Line Data

XData — x values
[] (default) | vector

x values, specified as a vector. The input argument X to the errorbar function sets the x
values. If you do not specify X, then errorbar uses the indices of YData as the x values.
XData and YData must have equal lengths.
Example: 1:10

XDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for XData, specified as one of these values:

1 Alphabetical List

1-3630

• 'auto' — Use the indices of the values in YData.
• 'manual' — Use manually specified values. To specify the values, set the XData

property or specify the input argument X to the plotting function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y values
[] (default) | vector

y values, specified as a vector. The input argument Y to the errorbar function sets the y
values. XData and YData must have equal lengths.

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

 ErrorBar Properties

1-3631

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

Error Bar Data

YNegativeDelta — Vertical error bar lengths below data points
vector | []

Vertical error bar lengths below the data points, specified as a vector the same length as
YData or as an empty array []. Specify the values in data units.

• If you do not want to draw the lower part of the error bar at a particular data point,
then specify the value as NaN.

• If you do not want to draw the lower part of the error bar at any data point, then set
the property to an empty array.

Example: e.YNegativeDelta = [.4 .3 .5 .2 .4 .5];

YNegativeDeltaSource — Variable linked to YNegativeDelta
'' (default) | character vector or string containing MATLAB workspace variable

Variable linked to YNegativeDelta, specified as a character vector or string containing
a MATLAB workspace variable. MATLAB evaluates the variable to generate the
YNegativeDelta values.

By default, there is no linked variable, so the value is an empty character vector, ''.
When you change the variable for this property, MATLAB does not update the
YNegativeDelta values. To force an update of the data values, use the refreshdata
function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning. To render the
graph, you must change all data source properties to appropriate values.

YPositiveDelta — Vertical error bar lengths above data points
vector | []

1 Alphabetical List

1-3632

Vertical error bar lengths above the data points, specified as a vector the same length as
YData or as an empty array []. Specify the values in data units.

• If you do not want to draw the upper part of the error bar at a particular data point,
then specify the value as NaN.

• If you do not want to draw the upper part of the error bar at any data point, then set
the property to an empty array.

Example: e.YPositiveDelta = [.4 .3 .5 .2 .4 .5];

YPositiveDeltaSource — Variable linked to YPositiveDelta
'' (default) | character vector or string containing MATLAB workspace variable

Variable linked to YPositiveDelta, specified as a character vector or string containing
a MATLAB workspace variable. MATLAB evaluates the variable to generate the
YPositiveDelta values.

By default, there is no linked variable, so the value is an empty character vector, ''.
When you change the variable for this property, MATLAB does not update the
YPositiveDelta values. To force an update of the data values, use the refreshdata
function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning. To render the
graph, you must change all data source properties to appropriate values.

XNegativeDelta — Horizontal error bar lengths to left of data points
vector | []

Horizontal error bar lengths to the left of the data points, specified as a vector the same
length as YData or as an empty array []. Specify the values in data units.

• If you do not want to draw the left part of the error bar at a particular data point, then
specify the value as NaN.

• If you do not want to draw the left part of the error bar at any data point, then set the
property to an empty array.

Example: e.XNegativeDelta = [.4 .3 .5 .2 .4 .5];

 ErrorBar Properties

1-3633

XNegativeDeltaSource — Variable linked to XNegativeDelta
'' (default) | character vector or string containing MATLAB workspace variable

Variable linked to XNegativeDelta, specified as a character vector or string containing
a MATLAB workspace variable. MATLAB evaluates the variable to generate the
XNegativeDelta values.

By default, there is no linked variable, so the value is an empty character vector, ''.
When you change the variable for this property, MATLAB does not update the
XNegativeDelta values. To force an update of the data values, use the refreshdata
function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning. To render the
graph, you must change all data source properties to appropriate values.

XPositiveDelta — Horizontal error bar lengths to right of data points
vector | []

Horizontal error bar lengths to the right of the data points, specified as a vector the same
length as YData or as an empty array []. Specify the values in data units.

• If you do not want to draw the right part of the error bar at a particular data point,
then specify the value as NaN.

• If you do not want to draw the right part of the error bar at any data point, then set
the property to an empty array.

Example: e.XPositiveDelta = [.4 .3 .5 .2 .4 .5];

XPositiveDeltaSource — Variable linked to XPositiveDelta
'' (default) | character vector or string containing MATLAB workspace variable

Variable linked to XPositiveDelta, specified as a character vector or string containing
a MATLAB workspace variable. MATLAB evaluates the variable to generate the
XPositiveDelta values.

By default, there is no linked variable, so the value is an empty character vector, ''.
When you change the variable for this property, MATLAB does not update the
XPositiveDelta values. To force an update of the data values, use the refreshdata
function.

1 Alphabetical List

1-3634

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning. To render the
graph, you must change all data source properties to appropriate values.

LData — Error bar lengths below data points (not recommended)
[] (default) | vector

Note This property is not recommended. Use the YNegativeDelta property instead.

Errorbar lengths below the data points, specified as a vector with length equal to XData
and YData. Specify the values in data units.
Example: 1:10

LDataSource — Variable linked to LData (not recommended)
'' (default) | character vector or string containing MATLAB workspace variable

Note This property is not recommended. Use the YNegativeDeltaSource property
instead.

Variable linked to LData, specified as a character vector or string containing a MATLAB
workspace variable. MATLAB evaluates the variable to generate the LData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
change the variable for this property, then MATLAB does not update the LData values. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

UData — Error bar lengths above data points (not recommended)
[] (default) | vector

Note This property is not recommended. Use the YPositiveDelta property instead.

 ErrorBar Properties

1-3635

Error bar lengths above the data points, specified as a vector with length equal to XData
and YData. Specify the values in data units.
Example: 1:10

UDataSource — Variable linked to UData (not recommended)
'' (default) | character vector or string containing MATLAB workspace variable

Note This property is not recommended. Use the YPositiveDeltaSource property
instead.

Variable linked to UData, specified as a character vector or string containing a MATLAB
workspace variable. MATLAB evaluates the variable to generate the UData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
change the variable for this property, then MATLAB does not update the UData values. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

1 Alphabetical List

1-3636

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

 ErrorBar Properties

1-3637

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

1 Alphabetical List

1-3638

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

 ErrorBar Properties

1-3639

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

1 Alphabetical List

1-3640

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 ErrorBar Properties

1-3641

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the ErrorBar object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the ErrorBar object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the ErrorBar object passes the
click to the object below it in the current view of the figure window. The HitTest
property of the ErrorBar object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the ErrorBar object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the ErrorBar object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

1 Alphabetical List

1-3642

Note The PickableParts property determines if the ErrorBar object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

 ErrorBar Properties

1-3643

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'errorbar'

This property is read-only.

Type of graphics object, returned as 'errorbar'. Use this property to find all objects of
a given type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
errorbar

1 Alphabetical List

1-3644

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 ErrorBar Properties

1-3645

errordlg
Create error dialog box

Note If you are using App Designer or creating apps with the uifigure function,
then use uialert instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Syntax
f = errordlg(msg)
f = errordlg(msg,title)
f = errordlg(msg,title,opts)
f = errordlg

Description
f = errordlg(msg) creates a nonmodal on page 1-3652 error dialog box with the
specified error message and returns the dialog box figure object f. The message text
wraps to fit the dialog box. The dialog box title is Error Dialog.

f = errordlg(msg,title) specifies a custom dialog box title.

f = errordlg(msg,title,opts) specifies the window style when opts is set to
'non-modal', 'modal', or 'replace'. It specifies the window style and an interpreter
for the msg argument when opts is a structure array.

f = errordlg creates an error dialog box with a default title and message as follows.

• Default title: Error Dialog
• Default message: This is the default error

Examples

1 Alphabetical List

1-3646

Specify Message and Title for Error Dialog Box

f = errordlg('File not found','File Error');

Interpret Message for Modal Error Dialog Box

Create a structure,opts, to specify a modal on page 1-3652 window style and the TeX
interpreter. Then, create an error dialog box specifying the opts structure as an input
argument. The TeX interpreter renders the ^2 characters in the message text as a
superscript.

opts = struct('WindowStyle','modal',...
 'Interpreter','tex');
f = errordlg('Try this equation instead: f(x) = x^2',...
 'Equation Error', opts);

Input Arguments
msg — Error message
'This is the default error' (default) | character vector | cell array of character
vectors | string array

 errordlg

1-3647

Error message, specified as a character vector, cell array of character vectors, or a string
array.

• If you specify the message as a character vector, then MATLAB wraps the text to fit
the dialog box.

• If you specify the message a cell array, then MATLAB wraps the text after each cell
array element. MATLAB wraps the text of long cell array elements to fit the dialog box.

Example: 'Input must be a scalar value.'

title — Dialog box title
'Error Dialog' (default) | character vector | string scalar

Dialog box title, specified as a character vector or string scalar.
Example: 'Input Error'

opts — Dialog box settings
'non-modal' | 'modal' | 'replace' | structure array

Dialog box settings specified as a window style only or a structure. The structure specifies
the window style and an interpreter for the msg argument.

To specify the window style only, set opts to one of the values in this table.

Value Description
'non-modal' Create an error dialog box that is nonmodal on page 1-

3652. This dialog box has no effect on other open dialog
boxes.

'modal' Specify an error dialog box that is modal on page 1-3652.

If other error dialog boxes have the same title, then
MATLAB modifies the most recently active one with the
current specifications. MATLAB deletes all other open
error, message, and warning dialog boxes with the same
dialog box title as the most recently active error dialog
box. The affected dialog boxes can be modal or
nonmodal.

Message and warning dialog boxes are created with the
msgbox, and warndlg functions, respectively.

1 Alphabetical List

1-3648

Value Description
'replace' Specify an error dialog box that is nonmodal.

If other error dialog boxes have the same title, then
MATLAB modifies the most recently active one with the
current specifications. MATLAB deletes all other open
error, message, or warning dialog boxes with the same
title as the most recently active error dialog box. The
affected dialog boxes can be modal or nonmodal.

Message and warning dialog boxes are created with the
msgbox, and warndlg functions, respectively.

To specify the window style and an interpreter for the error dialog box message, create an
opts structure with the fields WindowStyle and Interpreter. This table shows valid
values for the fields. The structure must include both fields.

Field Values
WindowStyle 'non-modal','modal', or 'replace'.
Interpreter 'none' or 'tex'. If set to 'tex', then MATLAB renders the

message using the TeX interpreter.

Use TeX markup to add superscripts and subscripts, modify the font
type and color, and include special characters in the message text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

 errordlg

1-3649

Modifier Description Example
\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠

1 Alphabetical List

1-3650

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\zeta ζ \Theta Θ \leftright
arrow

↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅

 errordlg

1-3651

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

Example: opts = 'modal'
Example: opts.WindowStyle = 'non-modal'; opts.Interpreter = 'tex';

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Nonmodal Dialog Box
A nonmodal dialog box enables a user to interact with other MATLAB windows before
responding to the nonmodal dialog box. A nonmodal dialog box is also referred to as
normal.

Tips
• MATLAB program execution continues even when a modal Error dialog box is active.

To block program execution until the user closes the dialog box, use the uiwait
function.

See Also
dialog | helpdlg | msgbox | warndlg

Introduced before R2006a

1 Alphabetical List

1-3652

etime
Time elapsed between date vectors

Syntax
e = etime(t2,t1)

Description
e = etime(t2,t1) returns the number of seconds between two date vectors or
matrices of date vectors, t1 and t2.

Examples

Compute Elapsed Time

Compute the time elapsed between a specific time and the current time, to 0.01-second
accuracy.

Define the initial date and time and convert to date vector form.

format shortg
str = 'March 28, 2012 11:51:00';
t1 = datevec(str,'mmmm dd, yyyy HH:MM:SS')

t1 = 1×6

 2012 3 28 11 51 0

Determine the current date and time.

t2 = clock

t2 = 1×6

 etime

1-3653

 2019 3 2 21 22 53.53

The clock function returns the current date and time as a date vector.

Use etime to compute the number of seconds between t1 and t2.

e = etime(t2,t1)

e =
 2.1863e+08

Input Arguments
t2,t1 — Date vectors
1-by-6 vector | m-by-6 matrix

Date vectors, specified as 1-by-6 vectors or m-by-6 matrices containing m full date vectors
in the format:[Year Month Day Hour Minute Second].
Example: [2012 03 27 11 50 01]
Data Types: double

Tips
• To time the duration of an event, use the timeit or tic and toc functions instead of

clock and etime. The clock function is based on the system time, which can be
adjusted periodically by the operating system, and thus might not be reliable in time
comparison operations.

Algorithms
etime does not account for the following:

• Leap seconds.
• Daylight savings time adjustments.

1 Alphabetical List

1-3654

• Differences in time zones.

See Also
clock | cputime | now | tic | timeit | toc

Introduced before R2006a

 etime

1-3655

etree
Elimination tree

Syntax
p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description
p = etree(A) returns an elimination tree for the square symmetric matrix whose upper
triangle is that of A. p(j) is the parent of column j in the tree, or 0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'*A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also
etreeplot | treelayout | treeplot

Introduced before R2006a

1 Alphabetical List

1-3656

etreeplot
Plot elimination tree

Syntax
etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description
etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters nodeSpec and
edgeSpec to set the node or edge color, marker, and linestyle. Use '' to omit one or
both.

See Also
etree | treelayout | treeplot

Introduced before R2006a

 etreeplot

1-3657

eval
Execute MATLAB expression in text

Syntax
eval(expression)
[output1,...,outputN] = eval(expression)

Description
eval(expression) evaluates the MATLAB code represented by expression. If you use
eval within an anonymous function, nested function, or function that contains a nested
function, the evaluated expression cannot create a variable.

[output1,...,outputN] = eval(expression) stores output from expression in
the specified variables.

Input Arguments
expression

Character vector or string scalar that contains a valid MATLAB expression.

To include a numeric value in the expression, convert it to a character vector or string
scalar.

Output Arguments
output1,...,outputN

Outputs from the evaluated expression.

1 Alphabetical List

1-3658

Examples

Variable Name Evaluation

Select a matrix to plot at runtime.

This example requires that you have a matrix in the current workspace. For example:

aMatrix = magic(5);

Interactively request the name of a matrix to plot, and call eval to use its value.

expression = input('Enter the name of a matrix: ','s');
if (exist(expression,'var'))
 mesh(eval(expression))
end

If you type aMatrix at the input prompt, this code creates a mesh plot of magic(5).

Tips
• Many common uses of the eval function are less efficient and are more difficult to

read and debug than other MATLAB functions and language constructs. For more
information, see “Alternatives to the eval Function”.

• Whenever possible, do not include output arguments within the input to the eval
function, such as eval(['output = ',expression]). The preferred syntax,

 output = eval(expression)

allows the MATLAB parser to perform stricter checks on your code, preventing
untrapped errors and other unexpected behavior.

See Also
assignin | evalc | evalin | feval | try

Topics
“Alternatives to the eval Function”

 eval

1-3659

“Variables in Nested and Anonymous Functions”

Introduced before R2006a

1 Alphabetical List

1-3660

evalc
Evaluate MATLAB expression with capture

Syntax
T = evalc(expression)
[T,output1,...,outputN] = evalc(expression)

Description
T = evalc(expression) is the same as eval(expression) except that anything that
would normally be written to the command window, except for error messages, is
captured and returned in the character array T (lines in T are separated by \n
characters).

[T,output1,...,outputN] = evalc(expression) is the same as
[output1,...,outputN] = eval(expression) except that any output is captured
into T.

Input Arguments
expression

Character vector or string scalar that contains a valid MATLAB expression.

To include a numeric value in the expression, convert it to a character vector or string
scalar.

 evalc

1-3661

Output Arguments
T

Output normally written to the command window during the evaluation of expression,
except for error messages, returned in a character array. The lines in T are separated by
\n characters.

output1,...,outputN

Outputs from the evaluated expression.

Tips
When you are using evalc, functions diary, more, and input are disabled.

See Also
assignin | diary | eval | evalin | feval | input | more

Introduced before R2006a

1 Alphabetical List

1-3662

evalin
Execute MATLAB expression in specified workspace

Syntax
evalin(ws, expression)
[a1, a2, a3, ...] = evalin(ws, expression)

Description
evalin(ws, expression) executes expression, a character vector or string scalar
containing any valid MATLAB expression using variables in the workspace ws. ws can
have a value of 'base' or 'caller' to denote the MATLAB base workspace or the
workspace of the caller function.

[a1, a2, a3, ...] = evalin(ws, expression) executes expression and
returns the results in the specified output variables. Using the evalin output argument
list is recommended over including the output arguments in the expression:

evalin(ws,'[a1, a2, a3, ...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can produce
untrapped errors and other unexpected behavior.

Examples
This example extracts the value of the variable var in the MATLAB base workspace and
captures the value in the local variable v:

v = evalin('base', 'var');

 evalin

1-3663

Limitation
evalin cannot be used recursively to evaluate an expression. For example, a sequence of
the form evalin('caller', 'evalin(''caller'', ''x'')') doesn't work.

Tips
The MATLAB base workspace is the workspace that is seen from the MATLAB command
line (when not in the debugger). The caller workspace is the workspace of the function
that called the currently running function. Note that the base and caller workspaces are
equivalent in the context of a function that is invoked from the MATLAB command line.

evalin('caller', expression) finds only variables in the caller's workspace; it does
not find functions in the caller. For this reason, you cannot use evalin to construct a
handle to a function that is defined in the caller.

If you use evalin('caller', expression) in the MATLAB debugger after having
changed your local workspace context with dbup or dbdown, MATLAB evaluates the
expression in the context of the function that is one level up in the stack from your
current workspace context.

See Also
assignin | eval | evalc | feval | try

Introduced before R2006a

1 Alphabetical List

1-3664

event.DynamicPropertyEvent class
Package: event
Superclasses:

Event data for dynamic property events

Description
The event.DynamicPropertyEvent class defines the event data passed to listeners of
the dynamicprops PropertyAdded and PropertyRemoved events.

event.DynamicPropertyEvent is a subclass of event.EventData. The
event.DynamicPropertyEvent class is sealed (cannot be subclassed) and its
constructor is private.

Properties
PropertyName — Name of dynamic property
property name

Name of dynamic property that is added or removed

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

Source — Event source
object

Object that is the source of the event

 event.DynamicPropertyEvent class

1-3665

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

EventName — Name of event
PropertyAdded | PropertyRemoved

Name of event triggered on the source object

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

Events
ObjectBeingDestroyed Triggered when object is destroyed.

Attributes
Sealed true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

See Also
event.EventData

1 Alphabetical List

1-3666

Topics
“Dynamic Property Events”
Class Attributes
Property Attributes

Introduced in R2016a

 event.DynamicPropertyEvent class

1-3667

event.EventData class
Package: event
Superclasses:

Base class for event data

Description
The event.EventData class is the base class for all data objects passed to listeners.
When you trigger an event using the notify handle class method, MATLAB assigns
values to the properties of an event.EventData object and passes that object to the
listener callback function (the event handler).

To provide additional information to event listeners, subclass event.EventData. For
more information on custom event data, see “Define Event-Specific Data”.

Note Subclasses of event.EventData must set the class ConstructOnLoad attribute
to true.

The event.EventData class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

1 Alphabetical List

1-3668

Creation
The notify handle class method creates an event.EventData object when called to
trigger an event. The event.EventData constructor accepts no input arguments so
subclasses of event.EventData cannot pass arguments to the superclass constructor.

Properties
Source — Event source
object

Event source object, specified as a handle to the object that triggered the event.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

EventName — Name of event
character vector

Name of the event, specified as a character vector.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

 event.EventData class

1-3669

SetObservable
true

Data Types: char

Examples

Access Event Data

Get the event source object handle and the event name from the event.EventData
object passed to this callback function when the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 ...
end

See Also
event.DynamicPropertyEvent | event.listener

Topics
“Listener Callback Syntax”
“Define Event-Specific Data”

Introduced in R2008a

1 Alphabetical List

1-3670

event.hasListener
Determine if listeners exist for event

Syntax
tf = event.hasListener(src,EventName)

Description
tf = event.hasListener(src,EventName) returns true if listeners exist for the
specified event on the object src. Otherwise, it returns false. When src is an array,
event.hasListener returns a logical array the same size as src.

The class of src must define or inherit the specified event. If src is a heterogeneous
array, the specified event must exist on the class of the array. event.hasListener
cannot find listeners for events that are defined by some, but not all objects in the
heterogeneous array.

event.hasListener respects the value of the event.listener object Enabled
property. If you set the listener Enabled property to false, event.hasListener
returns false for that listener.

Examples

Determine If There Are Listeners

Determine if there are there listeners for MyEvent on object src:

tf = event.hasListener(src,'MyEvent');

 event.hasListener

1-3671

If tf is true, then one or more listeners are attached to src for event MyEvent.

Input Arguments
src — Event source
object array

Event source, specified as a scalar or array of objects. The event source is the object to
which the listener is attached.

EventName — Event name
char array

Event name, specified as a char array.

Output Arguments
tf — true if listeners exist
logical array

true if listeners exist for the specified event on the specified objects. false if listeners
do not exist.
Data Types: logical

Limitations
• event.hasListener must have NotifyAccess for the event in question.
• event.hasListener does not work with the predefined property events, PreSet,

PostSet, PreGet, PostGet.
• event.hasListener does not work with the predefined dynamic property events

PropertyAdded and PropertyRemoved.
• Use event.hasListener only with user-defined events.

See Also
addlistener | notify

1 Alphabetical List

1-3672

Topics
“Determine If Event Has Listeners”
“Event Attributes”

Introduced in R2016a

 event.hasListener

1-3673

event.listener class
Package: event

Class defining listener objects

Description
The event.listener class defines listener objects. Listener objects respond to a
specific event by executing a callback function when the event is triggered. You can use
the event.listener class to construct a listener object. Also, you can create listeners
using the handle addlistener and listener methods.

Use the handle notify method to trigger an event.

The event.listener class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

Creation

Description
eListener = event.listener(eventSource,eventName,callbackFcn) creates a
listener for the specified event name on the specified source objects and identifies a
function handle to the callback function.

1 Alphabetical List

1-3674

If eventSource is an array of object handles, the listener responds to the named event
on any of the objects in the array.

Input Arguments
eventSource — Event source
handle object | cell array of handle objects

Event source, specified as a handle object array or a cell array of object handles. Use a
cell array when the source objects cannot form an array because their classes differ. All
source objects must define the specified event.

eventName — Event name
character vector | string scalar

Event name, specified as the literal name of the event.

callbackFcn — Callback function
function handle

Callback function, specified by a function handle. For more information, see “Listener
Callback Syntax”

Properties
Source — Event source objects
handle object array or a cell array of handle objects.

Event source objects, specified as the handles of the objects that this listener responds to
when the event is triggered.
Attributes:

GetAccess
public

SetAccess
public

GetObservable
true

 event.listener class

1-3675

SetObservable
true

Data Types: handle object | cell array

EventName — Name of event
character vector | string scalar

Name of the event that the listener responds to when triggered on the specified source
objects.

Attributes:

GetAccess
public

SetAccess
public

GetObservable
true

SetObservable
true

Data Types: char | string

Callback — Event callback
function handle

Event callback, specified as a function handle. The function executes when the event is
triggered.

Attributes:

GetAccess
public

SetAccess
public

GetObservable
true

1 Alphabetical List

1-3676

SetObservable
true

Data Types: function_handle

Enabled — Enable or disable listener
true (default) | false

If Enabled is set to true (the default), the callback executes when the event occurs. To
disable callback execution for this listener, set Enabled to false.
Attributes:

GetAccess
public

SetAccess
public

GetObservable
true

SetObservable
true

Data Types: logical

Recursive — Execute callback recursively
false (default) | true

When false (the default), the listener does not execute its callback recursively.
Therefore, if the callback triggers its own event, the listener does not respond again.

When true, the listener callback can cause the same event that triggered the callback.
This scheme can lead to infinite recursion, which ends when the MATLAB recursion limit
eventually throws an error.
Attributes:

GetAccess
public

SetAccess
public

 event.listener class

1-3677

GetObservable
true

SetObservable
true

Data Types: logical

Examples

Define Listener

Define a listener for an event named EOL with a callback function named EOLCallback
that is triggered on an object in the array textReader.

listenerHandle = event.listener(textReader,"EOL",@EOLCallback);

Definitions

Listener Callback Signature
The listener callback function must accept at least two input arguments.

function CallbackFunction(source,eventData)
 ...
end

• source is the object that is the source of the event.
• eventData is an event.EventData object or an instance of a subclass of

event.EventData.

For more information about listener callbacks, see “Listener Callback Syntax”, “Callback
Execution”, and “Define Custom Event Data”.

1 Alphabetical List

1-3678

Limiting Listener Lifecycle
You can create listener object using the event.listener class constructor, or using the
handle class addlistener or listener method.

When you create a listener using addlistener, the event source object holds a
reference to the listener. When the source is destroyed, MATLAB also destroys the
listener. You do not need to store a reference to the listener object to manage its lifecycle.

When you create a listener using event.listener or the listener method, the
listener's lifecycle is not coupled to the event source. Because the event source object
does not hold a reference to the listener, you have more control over the listener lifecycle.
However, if the listener object goes out of scope, the listener no longer exists.

For more information on listener lifecycle, see “Listener Lifecycle”.

Removing a Listener
If you call delete(lh) on the listener object, the listener ceases to exist, which means
the event no longer causes the listener callback function to execute.

Disabling a Listener
You can enable or disable a listener by setting the value of the listener Enabled property.

See Also
event.proplistener | handle.addlistener | handle.delete | handle.listener

Topics
“Restore Listeners”
“Events”

Introduced in R2008a

 event.listener class

1-3679

event.PropertyEvent class
Package: event

Data for property events

Description
The event.PropertyEvent class defines the event data objects passed to listeners of
these predefined property events:

• PreGet
• PostGet
• PreSet
• PostSet

Predefined property events enable listeners to respond to changes made to property
values. For more information, see “Listen for Changes to Property Values”.

The event.PropertyEvent class is a sealed subclass of event.EventData (that is, you
cannot subclass event.PropertyEvent). The class constructor is private. MATLAB
creates an event.PropertyEvent object to pass to listeners of property events.

The event.PropertyEvent class is a handle class.

Class Attributes
Sealed

true
ConstructOnLoad

true
HandleCompatible

true
RestrictsSubclassing

true

1 Alphabetical List

1-3680

For information on class attributes, see “Class Attributes”.

Properties
AffectedObject — Object whose property is affected
handle object

Object whose property is affected, specified as the object handle.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Data Types: handle object

Source — Property that triggers the event
meta.property

Property that triggers the event, specified as the meta.property object for the property.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

 event.PropertyEvent class

1-3681

Data Types: meta.property

EventName — Name of property event
PreGet | PostGet | PreSet | PostSet

Name of the property event, specified as one of the four event names.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Data Types: char

Examples

Listen for Property Event
Define the propEventClass class with the PropOne GetObservable and
SetObservable attributes enabling observation of property events. The class
constructor adds listeners for these events.

classdef propEventClass < handle
 % Class to observe property events
 properties (GetObservable,SetObservable)
 PropOne string = "default"
 end
 methods
 function obj = propEventClass
 addlistener(obj,'PropOne','PreGet',@propEventHandler);
 addlistener(obj,'PropOne','PostSet',@propEventHandler);
 end

1 Alphabetical List

1-3682

 end
end

The propEventHandler function serves as the callback for the PreGet and PostSet
events.

The event.PropertyEvent object Source property contains the meta.property
object for PropOne. Access the meta.property Name property to get the name of the
property on which the event is triggered. Switch on the property name when the callback
handles multiple properties.

The event.PropertyEvent object EventName property contains the name of the event.
To handle multiple property events from the callback, switch on the event name.

function propEventHandler(~,eventData)
 switch eventData.Source.Name % Get property name
 case 'Prop1'
 switch eventData.EventName % Get the event name
 case 'PreGet'
 fprintf('%s\n','***PreGet triggered***')
 case 'PostSet'
 fprintf('%s\n','***PostSet triggered***')
 disp(eventData.AffectedObject.(eventData.Source.Name));
 end
 end
end

Referencing the PropOne property value results in a response from the
propEventHandler to the PreGet event.

obj = propEventClass;
obj.PropOne

PreGet triggered

ans =

 "default"

Assigning to the PropOne property results in a response from the propEventHandler to
the PostSet event.

Because the callback gets the property value to display the new value after the PostSet
event, the PreGet event is triggered. Also, because the assignment statement is not

 event.PropertyEvent class

1-3683

terminated by a semicolon, MATLAB gets the property value to display the object in the
command window, which triggers the PreGet event again.

obj.PropOne = "New string"

PostSet triggered
PreGet triggered
New string

obj =

PreGet triggered
 propEventClass with properties:

 PropOne: "New string"

See Also
event.EventData | meta.property

Topics
“Listen for Changes to Property Values”

Introduced in R2008a

1 Alphabetical List

1-3684

event.proplistener
Define listener object for property events

Syntax
lh =
event.proplistener(Hobj,Properties,'PropEvent',@CallbackFunction)

Description
lh =
event.proplistener(Hobj,Properties,'PropEvent',@CallbackFunction)
creates a property listener object for one or more properties on the specified object.

• Hobj — handle of object whose property or properties are to be listened to. If Hobj is
an array, the listener responds to the named event on all objects in the array.

• Properties — an object array or a cell array of meta.property object handles
representing the properties to which you want to listen.

• PropEvent — must be one of the following: PreSet, PostSet, PreGet, PostGet
• @CallbackFunction — function handle to the callback function that executes when

the event occurs.

The event.proplistener class defines property event listener objects. It is a subclass
of the event.listener class and adds one property to those defined by
event.listener:

• Object — Cell array of objects whose property events are being listened to.

You can call the event.proplistener constructor instead of calling addlistener to
create a property listener. However, when you do not use addlistener, the listener's
lifecycle is not tied to the object(s) being listened to.

The event.proplistener class is a handle class. The event.proplistener and the
event.listener classes are part of the same heterogeneous hierarchy. Therefore, you

 event.proplistener

1-3685

can create arrays that contain objects of both classes. The class of an array containing
both classes of objects is event.listener.

See “Listen for Changes to Property Values”.

See “Get Information About Properties” for more information on using meta.property
objects.

See Also
event.listener | handle.addlistener | handle.listener

Topics
“Restore Listeners”

Introduced in R2008a

1 Alphabetical List

1-3686

eventlisteners
List event handler functions associated with COM object events

Syntax
info = eventlisteners(c)

Description
info = eventlisteners(c) lists the events and their event handler routines
registered with a COM object. You can register events either when you create the control
using actxcontrol, or after creating the control using registerevent.

Examples

Add Events to mwsamp Control

Create an mwsamp control and add an event handler function named myclick to the
Click event.

f = figure('position',[100 200 200 200]);
C = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f,{'Click' 'myclick'});
eventlisteners(C)

ans = 'Click' 'myclick'

Register handlers for two more events, DblClick and MouseDown.

registerevent(C,{'DblClick', 'my2click'; 'MouseDown' 'mymoused'})
eventlisteners(C)

ans =
 'Click' 'myclick'

 eventlisteners

1-3687

 'Dblclick' 'my2click'
 'Mousedown' 'mymoused'

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

Output Arguments
info — List of event handler functions
cell array of character vectors | empty cell array

List of event handler functions, returned as a cell array of character vectors. Each row
contains the name of a registered event and the handler routine for that event. If the
object has no registered events, eventlisteners returns an empty cell array.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
actxcontrol | events (COM) | isevent | registerevent | unregisterallevents
| unregisterevent

Introduced before R2006a

1 Alphabetical List

1-3688

events
Event names

Syntax
events(ClassName)
events(obj)
e = events(___)

Description
events(ClassName) displays the names of the public events for the MATLAB class
classname, including events inherited from superclasses.

events(obj) displays the names of the public events for the class of obj, where obj is
an instance of a MATLAB class. obj can be a scalar object or an array of objects.

e = events(___) returns the event names in a cell array.

Examples

Get Event Names from Class Name

Get the names of the public events of the handle class and store the result in a cell array
of character vectors.

eventNames = events('handle');

List Object Events

List the events defined by the containers.Map class from an instance of this class.

 events

1-3689

m = containers.Map('May',70);
events(m)

Events for class containers.Map:

 ObjectBeingDestroyed

Input Arguments
ClassName — Class name
character vector | string scalar

Class name, specified as a character vector or string.
Data Types: char | string

obj — Object
MATLAB object

MATLAB object specified as a scalar object or an object array.

Output Arguments
e — Event names
cell array

Event names contained in a cell array of character vectors.

Definitions

Public Events
An event is public when the value of its ListenAccess attribute is public and its
Hidden attribute value is false (default values for both attributes). See “Event
Attributes” for a complete list of attributes.

1 Alphabetical List

1-3690

Events Keyword
events is also a MATLAB class-definition keyword. See classdef for more information
on class definition keywords.

See Also
classdef | methods | properties

Topics
“Events”

Introduced in R2008a

 events

1-3691

exceltime
Convert MATLAB datetime to Excel date number

Syntax
e = exceltime(t)
e = exceltime(t,dateType)

Description
e = exceltime(t) returns a double array containing Excel serial date numbers
equivalent to the datetime values in t. Excel serial date numbers are the number of days
and fractional days since 0-January-1900 00:00:00, and do not take into account time zone
and leap seconds.

e = exceltime(t,dateType) returns the type of Excel serial date numbers specified
by dateType. For example, you can convert datetime values to the number of days since
1-January-1904 00:00:00.

Examples

Convert Datetime Array to Excel Date Numbers

Create a datetime array. Then, convert the dates to the equivalent Excel® serial date
numbers.

t = datetime('now') + calmonths(1:3)

t = 1x3 datetime array
 02-Apr-2019 16:28:14 02-May-2019 16:28:14 02-Jun-2019 16:28:14

e = exceltime(t)

e = 1×3
104 ×

1 Alphabetical List

1-3692

 4.3558 4.3588 4.3619

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

dateType — Type of Excel serial date numbers
'1900' (default) | '1904'

Type of Excel serial date numbers, specified as either '1900' or '1904'.

• If dateType is '1900', then exceltime converts the datetime values in t to the
equivalent the number of days and fractional days since 0-January-1900 00:00:00.

• If dateType is '1904', then exceltime converts the datetime values in t to the
equivalent the number of days and fractional days since 1-January-1904 00:00:00.

exceltime does not account for time zone.

Output Arguments
e — Excel serial date numbers
scalar | vector | matrix | multidimensional array

Excel serial date numbers, returned as a scalar, vector, matrix, or multidimensional array
of type double. Excel serial date numbers are not defined prior to their epoch (0-
January-1900 or 1-January-1904). Excel serial date numbers treat 1900 as a leap year.
Therefore, dates after February 28, 1900 are offset by one day relative to MATLAB serial
date numbers, and there is a discontinuity of one day between February 28, 1900 and
March 1, 1900.

 exceltime

1-3693

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datenum | datetime | juliandate | posixtime | yyyymmdd

Introduced in R2014b

1 Alphabetical List

1-3694

Execute
Execute MATLAB command in Automation server

Syntax

IDL Method Signature
BSTR Execute([in] BSTR command)

Microsoft Visual Basic Client
Execute(command As String) As String

MATLAB Client
result = Execute(h,'command')

Description
The Execute function executes the MATLAB statement specified by command in the
MATLAB Automation server attached to h. To call a function with arguments, use Feval.

The server returns output from the command and any MATLAB warning or error
messages in result. If you terminate the MATLAB command with a semicolon and there
are no warnings or error messages, result might be empty.

COM functions are available on Microsoft Windows systems only.

Examples

 Execute

1-3695

Modify Matrix in MATLAB® Workspace from Visual Basic® .NET Client

This example shows how to execute a command on a MATLAB matrix and return the
result to the Visual Basic® .NET client. The example creates a matrix in the client and
modifies the contents in the MATLAB workspace.

type comexecute.vb

Dim Matlab As Object
Dim data(6) As Double
Dim B As Object
B = Nothing
Matlab = CreateObject("matlab.application")
For i = 0 To 6
 data(i) = i * 15
Next i
Matlab.PutWorkspaceData("A", "base", data)
Matlab.Execute("A = A.*2;")
Matlab.GetWorkspaceData("A", "base", B)
MsgBox("Doubled second value of A = " & B(0, 1))

Modify Matrix in MATLAB® Workspace from VBA Client

This example shows how to execute a command on a MATLAB matrix and return the
result to the VBA client. The example creates a matrix in the client and modifies the
contents in the MATLAB workspace.

type comexecute.vba

Dim Matlab As Object
Dim MATLAB_version As String
Dim data(6) As Double
Set Matlab = CreateObject("matlab.application")
For i = 0 To 6
 data(i) = i * 15
Next i
x = Matlab.PutWorkspaceData("A", "base", data)
Matlab.Execute ("A = A.*2;")
y = Matlab.GetWorkspaceData("A", "base", B)
MsgBox ("Doubled second value of A = " & B(0, 1))

1 Alphabetical List

1-3696

Tips
• To display output from Execute in the client window, specify an output variable,

result.
• If there is an error, the Execute function returns the MATLAB error message with the

characters ??? prepended to the text.

See Also
Feval | GetFullMatrix | PutFullMatrix

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

 Execute

1-3697

exist
Check existence of variable, script, function, folder, or class

Syntax
exist name
exist name searchType
A = exist(___)

Description
exist name returns the type of name as a number. This list describes the type associated
with each value:

• 0 — name does not exist or cannot be found for other reasons. For example, if name
exists in a restricted folder to which MATLAB does not have access, exist returns 0.

• 1 — name is a variable in the workspace.
• 2 — name is a file with extension .m, .mlx, or .mlapp, or name is the name of a file

with a non-registered file extension (.mat, .fig, .txt).
• 3 — name is a MEX-file on your MATLAB search path.
• 4 — name is a loaded Simulink model or a Simulink model or library file on your

MATLAB search path.
• 5 — name is a built-in MATLAB function. This does not include classes.
• 6 — name is a P-code file on your MATLAB search path.
• 7 — name is a folder.
• 8 — name is a class. (exist returns 0 for Java classes if you start MATLAB with the -

nojvm option.)

MATLAB searches starting at the top of the search path, and moving down until a result is
found or the last folder on the path is reached. If more than one name exists in a folder,
MATLAB displays the first instance of name, according to the “Function Precedence
Order”. Folders are an exception to the function precedence rules. They have precedence
over all types except for variables and built-in functions.

1 Alphabetical List

1-3698

For example, if name matches both a file with a .m extension and a P-code file, then
exist returns 6, identifying it as a P-code file. If name matches both a variable and a P-
code file, exists returns 1, identifying it as a variable. If name matches both a folder and a
MATLAB function, exist returns 7, identifying it as a folder.

exist name searchType returns the type of name, restricting results to the specified
type, searchType. If name of type searchType does not exist, MATLAB returns 0.

A = exist(___) returns the type of name to A.

Examples

Check Existence of Workspace Variable

Create a variable named testresults, and then confirm its existence in the workspace.

testresults = magic(5);
exist testresults

ans = 1

A variable named testresults exists in the workspace.

Check Existence of Folder

Create the folder myfolder, and then check its existence as a folder.

mkdir myfolder;
exist myfolder dir

ans = 7

If you specify the type as file, MATLAB® searches for both files and folders, therefore
returning the same result.

exist myfolder file

ans = 7

 exist

1-3699

Check if MATLAB Function is Built-In Function

Check whether the plot function is a built-in function or a file.

A = exist('plot')

A = 5

This indicates that plot is a built-in MATLAB function.

Input Arguments
name — name of variable, script, function, folder, or class
character vector | string scalar

Name of variable, script, function, folder, or class, specified as a character vector or
string scalar.

name can include a partial path, but must be one of these:

• A folder on the search path
• In a folder on the search path
• The current folder
• In the current folder

Subfolders of folders on the path are not searched.

Otherwise, name must include a full path.

If name specifies a file with a non-registered file extension (.mat, .fig, .txt), include
the extension. You can also include an extension to prevent conflict with other similar file
names. For example, exist file.txt or exist("file.txt").

Note MATLAB does not examine the contents or internal structure of a file and relies
solely on the file extension for classification.

Data Types: char | string

1 Alphabetical List

1-3700

searchType — Type of results to search for
builtin | class | dir | file | var

Type of results to search for, specified as one of these values:

searchType Description Possible Return Values
builtin Checks only for built-in functions. 5, 0
class Checks only for classes. 8, 0
dir Checks only for folders. 7, 0
file Checks only for files or folders. 2, 3, 4, 6, 7, 0
var Checks only for variables. 1, 0

Alternative Functionality
• To check the existence of a file or folder, you also can use the isfolder or isfile

functions. exist searches for files and folders on the search path, which can lead to
unexpected results. isfolder and isfile search for files or folders only on the
specified path or in the current folder, which can lead to clearer and faster results.

See Also
dir | inmem | is* | isfile | isfolder | what | which | who

Topics
“Function Precedence Order”
“What Is the MATLAB Search Path?”

Introduced before R2006a

 exist

1-3701

exit
Terminate MATLAB program (same as quit)

Syntax
exit

Description
exit terminates the current session of MATLAB. This function is equivalent to the quit
function and takes the same options. For more information, see quit..

See Also
quit

Introduced before R2006a

1 Alphabetical List

1-3702

exp
Exponential

Syntax
Y = exp(X)

Description
Y = exp(X) returns the exponential ex for each element in array X. For complex
elements z = x + iy, it returns the complex exponential

ez = ex cosy + isiny .

Use expm to compute a matrix exponential.

Examples

Numeric Representation of e

Calculate the exponential of 1, which is Euler's number, e.

exp(1)

ans = 2.7183

Euler's Identity

Euler's identity is the equality eiπ + 1 = 0.

Compute the value of eiπ.

 exp

1-3703

Y = exp(1i*pi)

Y = -1.0000 + 0.0000i

Plot Exponential Function

Plot y = ex/2 for x values in the range [− 2, 10].

X = -2:0.5:10;
Y = exp(X/2);
plot(X,Y)

1 Alphabetical List

1-3704

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Exponential values
scalar | vector | matrix | multidimensional array

Exponential values, returned as a scalar, vector, matrix, or multidimensional array.

For real values of X in the interval (-Inf, Inf), Y is in the interval (0,Inf). For complex
values of X, Y is complex. The data type of Y is the same as that of X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 exp

1-3705

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
expint | expm | expm1 | log | log10 | mpower | power

Introduced before R2006a

1 Alphabetical List

1-3706

expint
Exponential integral

Syntax
Y = expint(X)

Description
Y = expint(X) evaluates the exponential integral for each element of X.

Definitions

Exponential Integral
The exponential integral computed by this function is defined as

E1(x) = ∫
x

∞
e−t/t dt

Another common definition of the exponential integral function is the Cauchy principal
value integral

Ei(x) = ∫
−∞

x
et/t dt

which, for real positive x, is related to expint as

E1(− x) = − Ei(x)− iπ

 expint

1-3707

References

[1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions. Chapter 5,
New York: Dover Publications, 1965.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

Introduced before R2006a

1 Alphabetical List

1-3708

expm
Matrix exponential

Syntax
Y = expm(X)

Description
Y = expm(X) computes the matrix exponential of X. Although it is not computed this
way, if X has a full set of eigenvectors V with corresponding eigenvalues D, then [V,D] =
eig(X) and

expm(X) = V*diag(exp(diag(D)))/V

Use exp for the element-by-element exponential.

Examples

Compare Exponentials

Compute and compare the exponential of A with the matrix exponential of A.

A = [1 1 0; 0 0 2; 0 0 -1];
exp(A)

ans = 3×3

 2.7183 2.7183 1.0000
 1.0000 1.0000 7.3891
 1.0000 1.0000 0.3679

expm(A)

 expm

1-3709

ans = 3×3

 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679

Notice that the diagonal elements of the two results are equal, which is true for any
triangular matrix. The off-diagonal elements, including those below the diagonal, are
different.

Input Arguments
X — Input matrix
square matrix

Input matrix, specified as a square matrix.
Data Types: single | double
Complex Number Support: Yes

Algorithms
The algorithm expm uses is described in [1] and [2].

Note The files, expmdemo1.m, expmdemo2.m, and expmdemo3.m illustrate the use of
Padé approximation, Taylor series approximation, and eigenvalues and eigenvectors,
respectively, to compute the matrix exponential. References [3] and [4] describe and
compare many algorithms for computing a matrix exponential.

References
[1] Higham, N. J., “The Scaling and Squaring Method for the Matrix Exponential

Revisited,” SIAM J. Matrix Anal. Appl., 26(4) (2005), pp. 1179–1193.

[2] Al-Mohy, A. H. and N. J. Higham, “A new scaling and squaring algorithm for the matrix
exponential,” SIAM J. Matrix Anal. Appl., 31(3) (2009), pp. 970–989.

1 Alphabetical List

1-3710

matlab:edit expmdemo1
matlab:edit expmdemo2
matlab:edit expmdemo3

[3] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns Hopkins University
Press, 1983.

[4] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the Exponential
of a Matrix,” SIAM Review 20, 1978, pp. 801–836. Reprinted and updated as
“Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five
Years Later,” SIAM Review 45, 2003, pp. 3–49.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
eig | exp | expm1 | funm | logm | sqrtm

Introduced before R2006a

 expm

1-3711

expm1
Compute exp(x)-1 accurately for small values of x

Syntax
y = expm1(x)

Description
y = expm1(x) computes exp(x)-1, compensating for the roundoff in exp(x).

For small x, expm1(x) is approximately x, whereas exp(x)-1 can be zero.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-3712

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
exp | expm | log1p

Introduced before R2006a

 expm1

1-3713

export2wsdlg
Create dialog box for exporting variables to workspace

Syntax
export2wsdlg(labels,vars,vals)
export2wsdlg(labels,vars,vals,title)
export2wsdlg(labels,vars,vals,title,defs)
export2wsdlg(labels,vars,vals,title,defs,helpfcn)
export2wsdlg(labels,vars,vals,title,defs,helpfcn,flist)
f = export2wsdlg(___)
[f,tf] = export2wsdlg(___)

Description
export2wsdlg(labels,vars,vals) creates a modal on page 1-3721 dialog box with a
series of check boxes and edit fields. For each check box, there is a corresponding edit
field. The arguments are:

• labels – the labels for the check boxes.

The number of labels determines how many check boxes and edit fields appear in the
dialog box. One edit field appears after each check box label; for example:

• vars – the default variable names that appear in the edit fields, such as sumA shown
in the preceding image.

• vals – the values to store in the variables.

The labels, vars, and vals must specify the same number of items. If labels, vars,
and vals each specify one item, then the dialog box displays a label and an edit field only.
For example:

1 Alphabetical List

1-3714

export2wsdlg(labels,vars,vals,title) specifies a title for the dialog box.

export2wsdlg(labels,vars,vals,title,defs) specifies which check boxes are
selected when the dialog box opens.

export2wsdlg(labels,vars,vals,title,defs,helpfcn) adds a Help button to
the dialog box. The helpfcn is a callback that displays help.

export2wsdlg(labels,vars,vals,title,defs,helpfcn,flist) specifies a cell
array of functions and optional arguments that calculate, and then return the values to
export to vars. When you specify an flist, MATLAB uses it instead of vals. However,
you must specify the vals argument as a syntax placeholder. The flist must be the
same length as labels.

f = export2wsdlg(___) returns the Figure object in which the dialog box displays
to f. You can request this output with any of the input argument combinations in the
previous syntaxes.

[f,tf] = export2wsdlg(___) returns tf as 1 (true) if the user clicks OK, or 0 if the
user closes the dialog box by clicking Cancel or the close button (X) in the dialog box title
bar. When tf is 0, f is returned as an empty array ([]). The export2swdlg function
does not return until the user closes the dialog box.

Examples

Save Variables to Base Workspace

Create a dialog box that enables the user to save the variables sumA, or meanA, or both to
the base workspace.

A = randn(10,1);
labels = {'Save sum of A to variable named:' ...
 'Save mean of A to variable named:'};
vars = {'sumA','meanA'};
values = {sum(A),mean(A)};
export2wsdlg(labels,vars,values);

 export2wsdlg

1-3715

If the user enters an invalid variable name, such as 2 and clicks OK, then MATLAB
automatically returns an error dialog box. After clicking OK in the error dialog box, the
user has an opportunity to enter a valid variable name in the Export to Workspace dialog
box.

Specify Default Check Box Selections

Define the input variable, defs, to specify that no check box is selected when the dialog
box opens.

A = randn(10,1);
labels = {'Save sum of A to variable named:' ...
 'Save mean of A to variable named:'};
vars = {'sumA','meanA'};
vals = {sum(A),mean(A)};
title = ('Save Sums to Workspace');
defs = logical([0 0]);
export2wsdlg(labels,vars,vals,...
 title,defs);

1 Alphabetical List

1-3716

If the user clicks OK when no check boxes are selected, MATLAB automatically returns
an error dialog box. After clicking OK in the error dialog box, the user has the
opportunity to correct the error in the Export to Workspace dialog box.

Add Help Button and Callback

Add a Help button to the dialog box by specifying a callback input argument. Clicking the
Help button runs the callback. In this code, the callback function is smhelp, which
creates a Help dialog box. For more information, see “Write Callbacks for Apps Created
Programmatically”.

function expsm
A = randn(10,1);
labels = {'Save sum of A to variable named:' ...
 'Save mean of A to variable named:'};
vars = {'sumA','meanA'};
vals = {sum(A),mean(A)};
title = ('Save Sums to Workspace');
defs = logical([1 0]);
export2wsdlg(labels,vars,vals,...
 title,defs,{@smhelp});

 export2wsdlg

1-3717

 function smhelp
 helpdlg({'Select one or both check boxes.',...
 'Change the variable names, if desired,',...
 'and then click OK.'});
 end
 end

To run this example, copy and paste the preceding code into a text editor. Save the file as
exspm.m to a folder on your MATLAB path. When you run the code and click the Help
button, the Help Dialog box opens on top of the Save Sums to Workspace dialog box. The
following image shows the two dialog boxes side by side.

Specify Function List

Create a dialog box to create and export figure objects to the workspace. Specify a
function list to create figure windows in the specified colors when the user selects the
corresponding check boxes, and then clicks OK. The vals input argument is a syntax
placeholder only. Therefore, the cell array items specified by the value of vals are
unused.

labels = {'Red Figure Window',...
 'Blue Figure Window',...
 'Green Figure Window'};
vars = {'fRed','fBlue','fGreen'};
vals = {0,0,0};
title = 'Figure Color Samples';
defs = [false false false];
flist = {{@figure,'color','r'},...
 {@figure,'color','b'},...
 {@figure,'color','g'}};
export2wsdlg(labels,vars,vals,title,defs,{@doc,'figure'},flist);

1 Alphabetical List

1-3718

After the user makes check box selections and clicks OK, MATLAB does the following for
the selected check boxes:

• Runs the corresponding functions (each of which creates a figure)
• Returns the figure objects to the vars variables
• Exports the variables to the base workspace.

Input Arguments
labels — Check box labels
cell array of character vectors | string array

Check box labels, specified as a cell array of character vectors or a string array. If there is
only one item in the array, then export2wsdlg creates an edit field instead of a check
box. The lengths of labels, vars, vals, and defs must all be equal.
Example: {'Temperature (Celsius)','Mass (Grams)'}

vars — Edit field variable names
cell array of character vectors | string array

Edit field variable names that appear in the edit fields by default when the dialog box
opens, specified as a cell array of character vectors or a string array. The number of array
elements is the same as the number specified in labels. The lengths of labels, vars,
vals, and defs must all be equal.

The variable names in vars must be unique.

 export2wsdlg

1-3719

The dialog box user can edit the variable names displayed in the edit fields. If the user
specifies the same name in multiple edit fields, then MATLAB creates a structure using
that name. It then uses the defaultvars items as field names for that structure.
Example: {'Longitude','Latitude'}

vals — Variable values
cell array

Variable values, specified as a cell array. The lengths of labels, vars, vals, and defs
must all be equal.
Example: {100,200}
Example: {sin(A),cos(A)}

title — Dialog box title
'Export to Workspace' (default) | character vector | string scalar

Dialog box title, specified as a character vector or string scalar.
Example: 'Save to Workspace'

defs — Default check box selections
logical array

Default check box selections, specified as a logical array. The lengths of labels, vars,
vals, and defs must all be equal.

By default all check boxes are selected when the dialog box opens.
Example: [true, false] specifies that when the dialog box opens the first check box is
selected and the second is not.

helpfcn — Help button callback
function handle | cell array | character vector

Help button callback specified as a function handle, cell array, or character vector (not
recommended). When you specify a Help button callback, MATLAB adds a Help button to
the dialog box. For more information, see “Write Callbacks for Apps Created
Programmatically”
Example: @myfun specifies the callback function as a function handle.
Example: {@myfun,x} specifies the callback function as a cell array. In this case, the
function accepts the input argument x.

1 Alphabetical List

1-3720

flist — List of function calls
cell array

A list of function calls, specified as a cell array of function names and optional arguments
that calculate and then return the value to export. flist must be the same length as
labels.
Example: {{@myfun1,x},{@myfun2,x,y}}

Output Arguments
f — Figure object
Figure object | []

Figure object in which the dialog box is displayed. If two return arguments are
requested, then f is returned as an empty array [] and the export2wsdlg function does
not return values until the user closes the dialog box.

tf — True or false result
1 | 0

True or false result, returned as 1 or 0. The function returns 1 (true) if the user clicks the
OK button; otherwise, it returns 0. The export2wsdlg function does not return values
until the user closes the dialog box.

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Tips
• MATLAB program execution continues even when a modal Export to Workspace dialog

box is active. To block program execution until the user closes the dialog box, use the
uiwait function.

 export2wsdlg

1-3721

See Also
Workspace Browser

Introduced in R2006b

1 Alphabetical List

1-3722

exportsetupdlg
Open figure Export Setup dialog box

Syntax
exportsetupdlg(f)
exportsetupdlg

Description
exportsetupdlg(f) displays the export settings dialog box. MATLAB applies your
selections to the figure, f.

exportsetupdlg applies your selections to the current figure. If no figure exists,
MATLAB creates a new figure.

Examples

Export Setting for a Figure

Create a figure and display the Export Setup dialog.

f = figure;
exportsetupdlg(f);

 exportsetupdlg

1-3723

Input Arguments
f — Target figure
figure object

Target figure, specified as a figure object.

See Also
printdlg | printpreview

Topics
“Customize Figure Before Saving”

Introduced in R2006b

1 Alphabetical List

1-3724

extractAfter
Extract substrings after specified positions

Syntax
newStr = extractAfter(str,startStr)
newStr = extractAfter(str,startPos)

Description
newStr = extractAfter(str,startStr) extracts the substring that begins after
startStr and ends with the last character of str. If startStr occurs multiple times in
str, then newStr is str from the first occurrence of startStr to the end.

If str is a string array or a cell array of character vectors, then extractAfter extracts
substrings from each element of str. The output argument newStr has the same data
type as str.

newStr = extractAfter(str,startPos) extracts the substring that begins after the
position specified by startPos and ends with the last character of str.

Examples

Select Text After Substring

Create string arrays and select text that occurs after substrings.

Starting in R2017a, you can create strings using double quotes.

str = "The quick brown fox"

str =
"The quick brown fox"

 extractAfter

1-3725

Extract the substring that occurs after the substring "quick ". The extractAfter
function selects the new text but does not include "quick " in the output.

newStr = extractAfter(str,"quick ")

newStr =
"brown fox"

Create a new string array from the elements of a string array. When you specify different
substrings as positions, they must be contained in a string array or a cell array that is the
same size as the input string array.

str = ["The quick brown fox jumps";"over the lazy dog"]

str = 2x1 string array
 "The quick brown fox jumps"
 "over the lazy dog"

newStr = extractAfter(str,["quick ";"the "])

newStr = 2x1 string array
 "brown fox jumps"
 "lazy dog"

You also can specify one substring as a position that is applied to all elements of the input
string array.

Select Substrings After Position

Create strings after specified positions.

Starting in R2017a, you can create strings using double quotes.

str = "Edgar Allen Poe"

str =
"Edgar Allen Poe"

Select the substring after the 12th character.

newStr = extractAfter(str,12)

1 Alphabetical List

1-3726

newStr =
"Poe"

Select substrings from each element of a string array. When you specify different
positions with numeric arrays, they must be the same size as the input string array.

str = ["Edgar Allen Poe";"Louisa May Alcott"]

str = 2x1 string array
 "Edgar Allen Poe"
 "Louisa May Alcott"

newStr = extractAfter(str,[12;11])

newStr = 2x1 string array
 "Poe"
 "Alcott"

Select substrings from each element and specify the same position.

newStr = extractAfter(str,6)

newStr = 2x1 string array
 "Allen Poe"
 " May Alcott"

Select Text After Position in Character Vector

Create a character vector. Then create new character vectors that are substrings of chr.

chr = 'peppers and onions'

chr =
'peppers and onions'

Select text after the 12th position.

newChr = extractAfter(chr,12)

newChr =
'onions'

 extractAfter

1-3727

Select text after a substring.

newChr = extractAfter(chr,'and ')

newChr =
'onions'

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

startStr — String that indicates start of substring to extract
string array | character vector | cell array of character vectors

String that indicates the start of the substring to extract, specified as a string array, a
character vector, or a cell array of character vectors. extractAfter excludes startStr
from the substring to extract.

If str is a string array or cell array of character vectors, then startStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Data Types: string | char | cell

startPos — Start position of substring to extract
numeric array

Start position of substring to extract, specified as a numeric array. extractAfter
excludes the character at start from the substring to extract.

If str is a string array or cell array of character vectors, then startPos can be a
numeric scalar or a numeric array of the same size as str.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-3728

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and startStr must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 extractAfter

1-3729

See Also
count | erase | eraseBetween | extractBefore | extractBetween | insertAfter |
insertBefore | join | replace | replaceBetween | size | split | strlength

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

1 Alphabetical List

1-3730

extractBefore
Extract substrings before specified positions

Syntax
newStr = extractBefore(str,endStr)
newStr = extractBefore(str,endPos)

Description
newStr = extractBefore(str,endStr) extracts the substring that begins with the
first character of str and ends before endStr. If endStr occurs multiple times in str,
then newStr is str from the start of str up to the first occurrence of endStr

If str is a string array or a cell array of character vectors, then extractBefore extracts
substrings from each element of str. The output argument newStr has the same data
type as str.

newStr = extractBefore(str,endPos) extracts the substring that begins with the
first character of str and ends before the position specified by endPos.

Examples

Select Text Before Substring

Create string arrays and select text that occurs before substrings.

Starting in R2017a, you can create strings using double quotes.

str = "The quick brown fox"

str =
"The quick brown fox"

 extractBefore

1-3731

Extract the substring that occurs before the substring " brown". The extractBefore
function selects the text but does not include " brown" in the output.

newStr = extractBefore(str," brown")

newStr =
"The quick"

Create a new string array from the elements of a string array. When you specify different
substrings as positions, they must be contained in a string array or a cell array that is the
same size as str.

str = ["The quick brown fox jumps";"over the lazy dog"]

str = 2x1 string array
 "The quick brown fox jumps"
 "over the lazy dog"

newStr = extractBefore(str,[" brown";" dog"])

newStr = 2x1 string array
 "The quick"
 "over the lazy"

You also can specify one substring as a position that is applied to all elements of the input
string array.

Select Substrings Before Position

Create strings before specified positions.

Starting in R2017a, you can create strings using double quotes.

str = "Edgar Allen Poe"

str =
"Edgar Allen Poe"

Select the substring before the sixth character.

newStr = extractBefore(str,6)

1 Alphabetical List

1-3732

newStr =
"Edgar"

Select substrings from each element of a string array. When you specify different
positions with numeric arrays, they must be the same size as the input string array.

str = ["Edgar Allen Poe";"Louisa May Alcott"]

str = 2x1 string array
 "Edgar Allen Poe"
 "Louisa May Alcott"

newStr = extractBefore(str,[6;7])

newStr = 2x1 string array
 "Edgar"
 "Louisa"

Select substrings from each element and specify the same position.

newStr = extractBefore(str,12)

newStr = 2x1 string array
 "Edgar Allen"
 "Louisa May "

Select Text Before Position in Character Vector

Create a character vector. Then create new character vectors that are substrings of chr.

chr = 'peppers and onions'

chr =
'peppers and onions'

Select the substring before the eighth position.

newChr = extractBefore(chr,8)

newChr =
'peppers'

 extractBefore

1-3733

Select text before a substring.

newChr = extractBefore(chr,' and')

newChr =
'peppers'

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

endStr — String that indicates end of substring to extract
string array | character vector | cell array of character vectors

String that indicates end of substring to extract, specified as a string array, a character
vector, or a cell array of character vectors. extractBefore excludes endStr from the
substring to extract.

If str is a string array or cell array of character vectors, then endStr can be a character
vector, a string scalar, or a string array or a cell array of the same size as str.
Data Types: string | char | cell

endPos — End position of substring to extract
numeric array

End position of substring to extract, specified as a numeric array.

If str is a string array or cell array of character vectors, then endPos can be a numeric
scalar or a numeric array of the same size as str.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-3734

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and endStr must be a string scalar, a character vector, or a cell array containing
not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 extractBefore

1-3735

See Also
count | erase | eraseBetween | extractAfter | extractBetween | insertAfter |
insertBefore | join | replace | replaceBetween | size | split | strlength

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

1 Alphabetical List

1-3736

extractBetween
Extract substrings between start and end points

Syntax
newStr = extractBetween(str,startStr,endStr)
newStr = extractBetween(str,startPos,endPos)
newStr = extractBetween(___ ,'Boundaries',bounds)

Description
newStr = extractBetween(str,startStr,endStr) extracts the substring from str
that occurs between the substrings startStr and endStr. The extracted substring does
not include startStr and endStr.

newStr is a string array if str is a string array. Otherwise, newStr is a cell array of
character vectors.

If str is a string array or a cell array of character vectors, then extractBetween
extracts substrings from each element of str.

newStr = extractBetween(str,startPos,endPos) extracts the substring from str
that occurs between the positions startPos and endPos, including the characters at
those positions. extractBetween returns the substring as newStr.

newStr = extractBetween(___ ,'Boundaries',bounds) forces the starts and
ends specified in any of the previous syntaxes to be either inclusive or exclusive. They are
inclusive when bounds is 'inclusive', and exclusive when bounds is 'exclusive'.
For example,
extractBetween(str,startStr,endStr,'Boundaries','inclusive') returns
startStr, endStr, and all the text between them as newStr.

Examples

 extractBetween

1-3737

Select Text Between Substrings

Create string arrays and select text that occurs between substrings.

Starting in R2017a, you can create strings using double quotes.

str = "The quick brown fox"

str =
"The quick brown fox"

Select the text that occurs between the substrings "quick " and " fox". The
extractBetween function selects the text but does not include "quick " or " fox" in
the output.

newStr = extractBetween(str,"quick "," fox")

newStr =
"brown"

Select substrings from each element of a string array. When you specify different
substrings as start and end indicators, they must be contained in a string array or a cell
array that is the same size as str.

str = ["The quick brown fox jumps";"over the lazy dog"]

str = 2x1 string array
 "The quick brown fox jumps"
 "over the lazy dog"

newStr = extractBetween(str,["quick ";"the "],[" fox";" dog"])

newStr = 2x1 string array
 "brown"
 "lazy"

Select Substrings Between Start and End Positions

Create string arrays and select substrings between start and end positions that are
specified as numbers.

1 Alphabetical List

1-3738

Starting in R2017a, you can create strings using double quotes.

str = "Edgar Allen Poe"

str =
"Edgar Allen Poe"

Select the middle name. Specify the seventh and 11th positions in the string.

newStr = extractBetween(str,7,11)

newStr =
"Allen"

Select substrings from each element of a string array. When you specify different start
and end positions with numeric arrays, they must be the same size as the input string
array.

str = ["Edgar Allen Poe";"Louisa May Alcott"]

str = 2x1 string array
 "Edgar Allen Poe"
 "Louisa May Alcott"

newStr = extractBetween(str,[7;8],[11;10])

newStr = 2x1 string array
 "Allen"
 "May"

Select Text with Inclusive and Exclusive Boundaries

Select text from string arrays with boundaries that are forced to be inclusive or exclusive.
extractBetween includes the boundaries with the selected text when the boundaries
are inclusive. extractBetween does not include the boundaries with the selected text
when the boundaries are exclusive.

Create a string array. Starting in R2017a, you can create strings using double quotes.

str1 = "small|medium|large"

 extractBetween

1-3739

str1 =
"small|medium|large"

Select the text between sixth and 13th positions, but do not include the characters at
those positions.

newStr = extractBetween(str1,6,13,'Boundaries','exclusive')

newStr =
"medium"

Select the text between two substrings, and also the substrings themselves.

str2 = "The quick brown fox jumps over the lazy dog"

str2 =
"The quick brown fox jumps over the lazy dog"

newStr = extractBetween(str2," brown","jumps",'Boundaries','inclusive')

newStr =
" brown fox jumps"

Select Text Between Positions in Character Vector

Create a character vector and select text between start and end positions.

chr = 'mushrooms, peppers, and onions'

chr =
'mushrooms, peppers, and onions'

newChr = extractBetween(chr,12,18)

newChr = 1x1 cell array
 {'peppers'}

Select text between substrings.

newChr = extractBetween(chr,'mushrooms, ',', and')

1 Alphabetical List

1-3740

newChr = 1x1 cell array
 {'peppers'}

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

startStr — String that indicates start of substring to extract
string array | character vector | cell array of character vectors

String that indicates the start of the substring to extract, specified as a string array, a
character vector, or a cell array of character vectors.

If str is a string array or cell array of character vectors, then startStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Example: extractBetween(str,"AB","YZ") extracts the substrings between AB and
YZ in each element of str.
Example: If str is a 2-by-1 string array, then extractBetween(str,["AB";"FG"],
["YZ";"ST"]) extracts the substrings between AB and YZ in str(1), and between FG
and ST in str(2).
Data Types: string | char | cell

endStr — String that indicates end of substring to extract
string array | character vector | cell array of character vectors

String that indicates the end of the substring to extract, specified as a string array, a
character vector, or a cell array of character vectors.

If str is a string array or cell array of character vectors, then endStr can be a character
vector, a string scalar, or a string array or a cell array of the same size as str.
Example: extractBetween(str,"AB","YZ") extracts the substrings between AB and
YZ in each element of str.

 extractBetween

1-3741

Example: If str is a 2-by-1 string array, then extractBetween(str,["AB";"FG"],
["YZ";"ST"]) extracts the substrings between AB and YZ in str(1), and between FG
and ST in str(2).
Data Types: string | char | cell

startPos — Start position of substring to extract
numeric array

Start position of substring to extract, specified as a numeric array.

If str is an array with multiple pieces of text, then startPos can be a numeric scalar or
a numeric array of the same size as str.
Example: extractBetween(str,5,9) extracts the substrings from the fifth through the
ninth positions in each element of str.
Example: If str is a 2-by-1 string array, then extractBetween(str,[5;10],[9;21])
extracts the substring from the fifth through the ninth positions in str(1), and from the
10th through the 21st positions in str(2).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

endPos — End position of substring to extract
numeric array

End position of substring to extract, specified as a numeric array.

If str is an array with multiple pieces of text, then endPos can be a numeric scalar or a
numeric array of the same size as str.
Example: extractBetween(str,5,9) extract the substrings from the fifth through the
ninth positions in each element of str.
Example: If str is a 2-by-1 string array, then extractBetween(str,[5;10],[9;21])
extracts the substrings from the fifth through the ninth positions in str(1), and from the
10th through the 21st positions in str(2).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-3742

Output Arguments
newStr — Output text
string array | cell array of character vectors

Output text, returned as a string array or a cell array of character vectors.
Data Types: string | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

Expansion in the first dimension is not supported with tall arrays.

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
count | erase | eraseBetween | extractAfter | extractBefore | insertAfter |
insertBefore | join | replace | replaceBetween | size | split | strlength

Topics
“Create String Arrays”
“Search and Replace Text”

 extractBetween

1-3743

“Test for Empty Strings and Missing Values”

Introduced in R2016b

1 Alphabetical List

1-3744

eye
Identity matrix

Syntax
I = eye
I = eye(n)
I = eye(n,m)
I = eye(sz)

I = eye(classname)
I = eye(n,classname)
I = eye(n,m,classname)
I = eye(sz,classname)

I = eye('like',p)
I = eye(n,'like',p)
I = eye(n,m,'like',p)
I = eye(sz,'like',p)

Description
I = eye returns the scalar, 1.

I = eye(n) returns an n-by-n identity matrix with ones on the main diagonal and zeros
elsewhere.

I = eye(n,m) returns an n-by-m matrix with ones on the main diagonal and zeros
elsewhere.

I = eye(sz) returns an array with ones on the main diagonal and zeros elsewhere. The
size vector, sz, defines size(I). For example, eye([2,3]) returns a 2-by-3 array with
ones on the main diagonal and zeros elsewhere.

I = eye(classname) returns a scalar, 1, where classname specifies the data type. For
example, eye('int8') returns a scalar, 8-bit integer.

 eye

1-3745

I = eye(n,classname) returns an n-by-n identity matrix of data type classname.

I = eye(n,m,classname) returns an n-by-m matrix of data type classname with ones
on the main diagonal and zeros elsewhere.

I = eye(sz,classname) returns a matrix with ones on the main diagonal and zeros
elsewhere. The size vector, sz, defines size(I) and classname defines class(I).

I = eye('like',p) returns a scalar, 1, with the same data type, sparsity, and
complexity (real or complex) as the numeric variable, p.

I = eye(n,'like',p) returns an n-by-n identity matrix like p.

I = eye(n,m,'like',p) returns an n-by-m matrix like p.

I = eye(sz,'like',p) returns a matrix like p where the size vector, sz, defines
size(I).

Examples

Square Identity Matrix

Create a 4-by-4 identity matrix.

I = eye(4)

I = 4×4

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

Rectangular Matrix

Create a 2-by-3 identity matrix.

I = eye(2,3)

1 Alphabetical List

1-3746

I = 2×3

 1 0 0
 0 1 0

Identity Vector

Create a 3-by-1 identity vector.

sz = [3,1];
I = eye(sz)

I = 3×1

 1
 0
 0

Nondefault Numeric Data Type

Create a 3-by-3 identity matrix whose elements are 32-bit unsigned integers.

I = eye(3,'uint32'),

I = 3x3 uint32 matrix

 1 0 0
 0 1 0
 0 0 1

class(I)

ans =
'uint32'

 eye

1-3747

Complex Identity Matrix

Create a 2-by-2 identity matrix that is not real valued, but instead is complex like an
existing array.

Define a complex vector.

p = [1+2i 3i];

Create an identity matrix that is complex like p.

I = eye(2,'like',p)

I = 2×2 complex

 1.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 1.0000 + 0.0000i

Sparse Identity Matrix

Define a 5-by-5 sparse matrix.

p = sparse(5,5,pi);

Create a 5-by-5 identity matrix that is sparse like P.

I = eye(5,'like',p)

I =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1
 (5,5) 1

Size and Numeric Data Type Defined by Existing Array

Define a 2-by-2 matrix of single precision.

1 Alphabetical List

1-3748

p = single([1 3 ; 2 4]);

Create an identity matrix that is the same size and data type as P.

I = eye(size(p),'like',p),

I = 2x2 single matrix

 1 0
 0 1

class(I)

ans =
'single'

Input Arguments
n — Size of first dimension of I
integer value

Size of first dimension of I, specified as an integer value.

• If n is the only integer input argument, then I is a square n-by-n identity matrix.
• If n is 0, then I is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

m — Size of second dimension of I
integer value

Size of second dimension of I, specified as an integer value.

• If m is 0, then I is an empty matrix.
• If m is negative, then it is treated as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 eye

1-3749

sz — Size of I
row vector of no more than two integer values

Size of I, specified as a row vector of no more than two integer values.

• If an element of sz is 0, then I is an empty matrix.
• If an element of sz is negative, then the element is treated as 0.

Example: sz = [2,3] defines I as a 2-by-3 matrix.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

classname — Output class
'double' (default) | 'single' | 'logical' | 'int8' | 'uint8' | ...

Output class, specified as 'double', 'single', logical, 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', or 'uint64'.
Data Types: char

p — Prototype
numeric variable

Prototype, specified as a numeric variable.
Data Types: double | single | logical | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• classname must be a built-in MATLAB numeric type. Does not invoke the static eye
method for other classes. For example, eye(m, n, 'myclass') does not invoke
myclass.eye(m,n).

1 Alphabetical List

1-3750

• Size arguments must have a fixed size.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See eye in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See eye in the Parallel Computing Toolbox documentation.

See Also
ones | speye | zeros

Topics
“Class Support for Array-Creation Functions”

Introduced before R2006a

 eye

1-3751

ezcontour
(Not recommended) Easy-to-use contour plotter

Note ezcontour is not recommended. Use fcontour instead.

Syntax
ezcontour(fun)
ezcontour(fun,domain)
ezcontour(...,n)
ezcontour(axes_handle,...)
h = ezcontour(...)

Description
ezcontour(fun) plots the contour lines of fun(x,y) using the contour function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for a MATLAB file function or an anonymous function (see
“Create Function Handle” and “Anonymous Functions”), a character vector, or a string
(see Tips on page 1-3754).

ezcontour(fun,domain) plots fun(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where
min < x < max, min < y < max).

ezcontour(...,n) plots fun over the default domain using an n-by-n grid. The default
value for n is 60.

ezcontour(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

h = ezcontour(...) returns the handle to a contour object in h.

ezcontour automatically adds a title and axis labels.

1 Alphabetical List

1-3752

Examples

Create Contour Plot of Mathematical Expression

This mathematical expression defines a function of two variables, x and y.

f (x, y) = 3(1− x)2e−x2− (y + 1)2− 10 x
5 − x3− y5 e−x2− y2− 1

3e−(x + 1)2− y2

The ezcontour function requires a function handle argument. Write this mathematical
expression in MATLAB® syntax as an anonymous function with handle f. You can define
an anonymous function in the command window without creating a separate file. For
convenience, write the function on three lines.

f = @(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
 - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
 - 1/3*exp(-(x+1).^2 - y.^2);

Pass the function handle, f, to ezcontour. Specify a domain from -3 to 3 in both the x-
direction and y-direction and use a 49-by-49 computational grid.

ezcontour(f,[-3,3],49)

 ezcontour

1-3753

In this particular case, the title is too long to fit at the top of the graph so MATLAB®
abbreviates it.

Tips

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezcontour. For example, the MATLAB syntax for a contour plot of the
expression

1 Alphabetical List

1-3754

sqrt(x.^2 + y.^2)

is written as

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the character vector or string you pass to
ezcontour.

If the function to be plotted is a function of the variables u and v (rather than x and y), the
domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontour('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over 0 < u
< 1, 3 < v < 6.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezcontour.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontour(fh)

When using function handles, you must use the array power, array multiplication, and
array division operators (.^, .*, ./) since ezcontour does not alter the syntax, as in
the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then use an anonymous function to specify that parameter:

ezcontour(@(x,y)myfun(x,y,2))

 ezcontour

1-3755

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
contour | fcontour | fmesh | fplot | fplot3 | fsurf

Introduced before R2006a

1 Alphabetical List

1-3756

ezcontourf
(Not recommended) Easy-to-use filled contour plotter

Note ezcontourf is not recommended. Use fcontour instead.

Syntax
ezcontourf(fun)
ezcontourf(fun,domain)
ezcontourf(...,n)
ezcontourf(axes_handle,...)
h = ezcontourf(...)

Description
ezcontourf(fun) plots the contour lines of fun(x,y) using the contourf function.
fun is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle, a character vector, or a string (see Tips on page 1-3759).

ezcontourf(fun,domain) plots fun(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max], where
min < x < max, min < y < max).

ezcontourf(...,n) plots fun over the default domain using an n-by-n grid. The default
value for n is 60.

ezcontourf(axes_handle,...) plots into the axes with the handle axes_handle
instead of into the current axes (gca).

h = ezcontourf(...) returns the handle to a contour object in h.

ezcontourf automatically adds a title and axis labels.

 ezcontourf

1-3757

Examples

Create Filled Contour Plot of Mathematical Expression

This mathematical expression defines a function of two variables, x and y.

f (x, y) = 3(1− x)2e−x2− (y + 1)2− 10 x
5 − x3− y5 e−x2− y2− 1

3e−(x + 1)2− y2

The ezcontourf function requires a function handle argument. Write this mathematical
expression in MATLAB® syntax as an anonymous function with handle f. You can define
an anonymous function in the command window without creating a separate file. For
convenience, write the function on three lines.

f = @(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
 - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
 - 1/3*exp(-(x+1).^2 - y.^2);

Pass the function handle, f, to ezcontourf. Specify a domain from -3 to 3 in both the x-
direction and y-direction and use a 49-by-49 computational grid.

ezcontourf(f,[-3,3],49)

1 Alphabetical List

1-3758

In this particular case, the title is too long to fit at the top of the graph so MATLAB®
abbreviates it.

Tips

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezcontourf. For example, the MATLAB syntax for a filled contour plot of the
expression

 ezcontourf

1-3759

sqrt(x.^2 + y.^2);

is written as

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the character vector or string you pass to
ezcontourf.

If the function to be plotted is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontourf('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over 0 < u
< 1, 3 < v < 6.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezcontourf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontourf(fh)

When using function handles, you must use the array power, array multiplication, and
array division operators (.^, .*, ./) since ezcontourf does not alter the syntax, as in
the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezcontourf(@(x,y)myfun(x,y,2))

1 Alphabetical List

1-3760

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
contourf | fcontour | fmesh | fplot | fplot3 | fsurf

Topics
Anonymous Functions

Introduced before R2006a

 ezcontourf

1-3761

ezmesh
(Not recommended) Easy-to-use 3-D mesh plotter

Note ezmesh is not recommended. Use fmesh instead.

Syntax
ezmesh(fun)
ezmesh(fun,domain)
ezmesh(funx,funy,funz)
ezmesh(funx,funy,funz,[smin,smax,tmin,tmax])
ezmesh(funx,funy,funz,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')
ezmesh(axes_handle,...)
h = ezmesh(...)

Description
ezmesh(fun) creates a graph of fun(x,y) using the mesh function. fun is plotted over
the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle, a character vector, or a string (see the Tips on page 1-3765
section).

ezmesh(fun,domain) plots fun over the specified domain. domain can be either a 4-
by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min < x <
max, min < y < max).

ezmesh(funx,funy,funz) plots the parametric surface funx(s,t), funy(s,t), and
funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmesh(funx,funy,funz,[smin,smax,tmin,tmax]) or ezmesh(funx,funy,funz,
[min,max]) plots the parametric surface using the specified domain.

1 Alphabetical List

1-3762

ezmesh(...,n) plots fun over the default domain using an n-by-n grid. The default
value for n is 60.

ezmesh(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

h = ezmesh(...) returns the handle to a surface object in h.

Examples

Mesh Plot of Mathematical Function

Create a mesh plot of the function f (x, y) = xe−x2− y2 over a 40-by-40 grid.

fh = @(x,y) x.*exp(-x.^2-y.^2);
ezmesh(fh,40)

 ezmesh

1-3763

Set the mesh lines to a uniform blue color by setting the colormap to a single color.

colormap([0 0 1])

1 Alphabetical List

1-3764

Tips

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezmesh. For example, the MATLAB syntax for a mesh plot of the expression

sqrt(x.^2 + y.^2);

is written as

 ezmesh

1-3765

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the character vector or string you pass to ezmesh.

If the function to be plotted is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmesh('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezmesh.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmesh(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezmesh does not alter
the syntax, as in the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezmesh(@(x,y)myfun(x,y,2))

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-3766

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | mesh

Topics
Anonymous Functions

Introduced before R2006a

 ezmesh

1-3767

ezmeshc
(Not recommended) Easy-to-use combination mesh/contour plotter

Note ezmeshc is not recommended. Use fmesh instead.

Syntax
ezmeshc(fun)
ezmeshc(fun,domain)
ezmeshc(funx,funy,funz)
ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax])
ezmeshc(funx,funy,funz,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')
ezmesh(axes_handle,...)
h = ezmeshc(...)

Description
ezmeshc(fun) creates a graph of fun(x,y) using the meshc function. fun is plotted
over the default domain -2π < x < 2π, -2π < y < 2π.

fun can be a function handle, a character vector, or a string (see the Tips on page 1-3770
section).

ezmeshc(fun,domain) plots fun over the specified domain. domain can be either a 4-
by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min < x <
max, min < y < max).

ezmeshc(funx,funy,funz) plots the parametric surface funx(s,t), funy(s,t), and
funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmeshc(funx,funy,funz,[min,max]) plots the parametric surface using the
specified domain.

1 Alphabetical List

1-3768

ezmeshc(...,n) plots fun over the default domain using an n-by-n grid. The default
value for n is 60.

ezmeshc(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

h = ezmeshc(...) returns the handle to a surface object in h.

Examples

Mesh and Contour Plot of Mathematical Function

Create a mesh/contour plot of the expression f (x, y) = x2 + y2 over the domain
−5 < x < 5 and −2π < y < 2π with a computational grid size of 35-by-35.

ezmeshc('sqrt(x^2 + y^2)',[-5,5,-2*pi,2*pi],35)

 ezmeshc

1-3769

Tips
Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezmeshc. For example, the MATLAB syntax for a mesh/contour plot of the
expression

sqrt(x.^2 + y.^2);

is written as

1 Alphabetical List

1-3770

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the character vector or string you pass to ezmeshc.

If the function to be plotted is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmeshc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezmeshc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmeshc(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezmeshc does not alter
the syntax, as in the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezmeshc(@(x,y)myfun(x,y,2))

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 ezmeshc

1-3771

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | mesh

Topics
Anonymous Functions

1 Alphabetical List

1-3772

ezplot
(Not recommended) Easy-to-use function plotter

Note ezplot is not recommended. Use fplot instead.

Syntax
ezplot(fun)
ezplot(fun,[xmin,xmax])
ezplot(fun2)
ezplot(fun2,[xymin,xymax])
ezplot(fun2,[xmin,xmax,ymin,ymax])
ezplot(funx,funy)
ezplot(funx,funy,[tmin,tmax])
ezplot(...,fig)
ezplot(ax,...)
h = ezplot(...)

Description
ezplot(fun) plots the expression fun(x) over the default domain -2π < x < 2π, where
fun(x) is an explicit function of only x.

fun can be a function handle, a character vector, or a string.

ezplot(fun,[xmin,xmax]) plots fun(x) over the domain: xmin < x < xmax.

For an implicit function, fun2(x,y):

ezplot(fun2) plots fun2(x,y) = 0 over the default domain -2π < x < 2π, -2π < y <
2π.

ezplot(fun2,[xymin,xymax]) plots fun2(x,y) = 0 over xymin < x < xymax and
xymin < y < xymax.

 ezplot

1-3773

ezplot(fun2,[xmin,xmax,ymin,ymax]) plots fun2(x,y) = 0 over xmin < x <
xmax and ymin < y < ymax.

ezplot(funx,funy) plots the parametrically defined planar curve funx(t) and
funy(t) over the default domain 0 < t < 2π.

ezplot(funx,funy,[tmin,tmax]) plots funx(t) and funy(t) over tmin < t <
tmax.

ezplot(...,fig) plots into the figure window identified by fig. Use any of the input
argument combinations in the previous syntaxes that include a domain. The domain
options are [xmin xmax], [xymin xymax], [xmin xmax ymin ymax], and [tmin
tmax].

ezplot(ax,...) plots into the axes ax instead of the current axes (gca).

h = ezplot(...) returns either a chart line or contour object.

Examples

Plot an Explicit Function

Plot the explicit function x2 over the domain [− 2π, 2π].

ezplot('x^2')

1 Alphabetical List

1-3774

The default domain is [− 2π, 2π].

Plot an Implicit Function

Plot the implicitly defined function x2− y4 = 0 over the domain [− 2π, 2π].

ezplot('x^2-y^4')

 ezplot

1-3775

The default domain is [− 2π, 2π].

Tips

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezplot. For example, the MATLAB syntax for a plot of the expression

x.^2 - y.^2

1 Alphabetical List

1-3776

which represents an implicitly defined function, is written as

ezplot('x^2 - y^2')

That is, x^2 is interpreted as x.^2 in the character vector or string you pass to ezplot.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezplot.

fh = @(x,y) x.^2 + y.^3 - 2*y - 1;
ezplot(fh)
axis equal

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezplot does not alter
the syntax, as in the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezplot(@(x,y)myfun(x,y,2))

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 ezplot

1-3777

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | plot

Topics
Anonymous Functions

Introduced before R2006a

1 Alphabetical List

1-3778

ezplot3
(Not recommended) Easy-to-use 3-D parametric curve plotter

Note ezplot3 is not recommended. Use fplot3 instead.

Syntax
ezplot3(funx,funy,funz)
ezplot3(funx,funy,funz,[tmin,tmax])
ezplot3(...,'animate')
ezplot3(axes_handle,...)
h = ezplot3(...)

Description
ezplot3(funx,funy,funz) plots the spatial curve funx(t), funy(t), and funz(t)
over the default domain 0 < t < 2π.

funx, funy, and funz can be function handles, character vectors, or strings (see the Tips
on page 1-3781 section).

ezplot3(funx,funy,funz,[tmin,tmax]) plots the curve funx(t), funy(t), and
funz(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial curve.

ezplot3(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

h = ezplot3(...) returns the handle to the plotted objects in h.

Examples

 ezplot3

1-3779

Plot a Parametric Curve

Plot this parametric curve over the domain [0, 6π].

x = sin(t), y = cos(t), z = t

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

1 Alphabetical List

1-3780

Tips

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezplot3. For example, the MATLAB syntax for a plot of the expression

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as

ezplot3('s/2','2*s','s^2')

That is, s/2 is interpreted as s./2 in the character vector or string you pass to ezplot3.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezplot3.

fh1 = @(s) s./2; fh2 = @(s) 2.*s; fh3 = @(s) s.^2;
ezplot3(fh1,fh2,fh3)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezplot3 does not alter
the syntax, as in the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example k in myfuntk:

function s = myfuntk(t,k)
s = t.^k.*sin(t);

then you can use an anonymous function to specify that parameter:

ezplot3(@cos,@(t)myfuntk(t,1),@sqrt)

 ezplot3

1-3781

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | plot3

Topics
Anonymous Functions

Introduced before R2006a

1 Alphabetical List

1-3782

ezpolar
Easy-to-use polar coordinate plotter

Syntax
ezpolar(fun)
ezpolar(fun,[a,b])
ezpolar(axes_handle,...)
h = ezpolar(...)

Description
ezpolar(fun) plots the polar curve rho = fun(theta) over the default domain 0 <
theta < 2π.

fun can be a function handle, a character vector, or a string (see the Tips on page 1-3784
section).

ezpolar(fun,[a,b]) plots fun for a < theta < b.

ezpolar(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

h = ezpolar(...) returns the handle to a line object in h.

Examples

Polar Plot of Mathematical Function

Plot the function 1 + cos(t) over the domain [0, 2π].

figure
ezpolar('1+cos(t)')

 ezpolar

1-3783

Tips

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezpolar. For example, the MATLAB syntax for a plot of the expression

t.^2.*cos(t)

which represents an implicitly defined function, is written as

1 Alphabetical List

1-3784

ezpolar('t^2*cos(t)')

That is, t^2 is interpreted as t.^2 in the character vector or string you pass to ezpolar.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezpolar.

fh = @(t) t.^2.*cos(t);
ezpolar(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezpolar does not alter
the syntax, as in the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example k1 and k2 in myfun:

function s = myfun(t,k1,k2)
s = sin(k1*t).*cos(k2*t);

then you can use an anonymous function to specify the parameters:

ezpolar(@(t)myfun(t,2,3))

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

 ezpolar

1-3785

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | polarplot

Topics
Anonymous Functions

Introduced before R2006a

1 Alphabetical List

1-3786

ezsurf
(Not recommended) Easy-to-use 3-D colored surface plotter

Note ezsurf is not recommended. Use fsurf instead.

Syntax
ezsurf(fun)
ezsurf(fun,domain)
ezsurf(funx,funy,funz)
ezsurf(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurf(funx,funy,funz,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')
ezsurf(axes_handle,...)
h = ezsurf(...)

Description
ezsurf(fun) creates a graph of fun(x,y) using the surf function. fun is plotted over
the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle, a character vector, or a string (see the Tips on page 1-3790
section).

ezsurf(fun,domain) plots fun over the specified domain. domain must be a vector.
See the “Algorithms” on page 1-3791 section for details on vector inputs vs axes limit
outputs.

ezsurf(funx,funy,funz) plots the parametric surface funx(s,t), funy(s,t), and
funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurf(funx,funy,funz,[smin,smax,tmin,tmax]) or ezsurf(funx,funy,funz,
[min,max]) plots the parametric surface using the specified domain.

 ezsurf

1-3787

ezsurf(...,n) plots fun over the default domain using an n-by-n grid. The default
value for n is 60.

ezsurf(...,'circ') plots fun over a disk centered on the domain.

ezsurf(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

h = ezsurf(...) returns the handle to a surface object in h.

Examples

Surface Plot of Mathematical Function

Plot the function f (x, y) = real(atan(x + iy)) over the domain −2π < x < 2π and
−2π < y < 2π. The ezsurf function does not plot points where the mathematical function
is not defined. These points are set to NaN so that they do not plot.

figure
ezsurf('real(atan(x+i*y))')

1 Alphabetical List

1-3788

Use surf to plot the same data without filtering discontinuities.

figure
[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+1i.*y));
surf(x,y,z)

 ezsurf

1-3789

Tips
ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezsurf. For example, the MATLAB syntax for a surface plot of the expression

sqrt(x.^2 + y.^2);

1 Alphabetical List

1-3790

is written as

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the character vector or string you pass to ezsurf.

If the function to be plotted is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurf('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezsurf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezsurf does not alter
the syntax, as in the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

then you can use an anonymous function to specify that parameter:

ezsurf(@(x,y)myfun(x,y,2,2,4))

Algorithms
ezsurf determines the x- and y-axes limits in different ways depending on how you input
the domain (if at all). In the following table, R is the vector [xmin, xmax, ymin, ymax] and
v is the manually entered domain vector.

 ezsurf

1-3791

Number of domain
values specified:

Resulting domain vector:

v = []; R = [-2*pi, 2*pi, -2*pi, 2*pi];

v = [v(1)]; R = double([-abs(v),abs(v),-abs(v),abs(v)]);

v = [v(1) v(2)]; R = double([v(1),v(2),v(1),v(2)]);

v = [v(1) v(2)
v(3)];

R = double([-v(1),v(2),-abs(v(3)),abs(v(3))]);

v = [v(1) v(2)
v(3) v(4)];

R = double(v);

v = [v(1)..v(n)];
n>4

R = double([-abs(v(1)), abs(v(1)), -abs(v(1)), abs(v(1))]);

If you specify a single number in non-vector format (without square brackets, []), ezsurf
interprets it as the n, the number of points desired between the axes max and min values.

By default, ezsurf uses 60 points between the max and min values of an axes. When the
min and max values are the default values (R = [-2*pi, 2*pi, -2*pi, 2*pi];),
ezsurf ensures the 60 points fall within the non-complex range of the specified equation.
For example, 1− x2− y2 is only real when x2− y2 ≤ 1. The default graph of this function
looks like this:

ezsurf('sqrt(1-x^2-y^2)')

1 Alphabetical List

1-3792

You can see that there are 60 points between the minimum and maximum values for
which 1− x2− y2has real values. However, when you specify the domain values to be the
same as the default (R = [-2*pi, 2*pi, -2*pi, 2*pi];), a different result appears:

ezsurf('sqrt(1-x^2-y^2)',[-2*pi 2*pi])

 ezsurf

1-3793

In this case, the graphic limits are the same, but ezsurf used 60 points between the
user-defined limits instead of checking to see if all those points would have real answers.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-3794

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | surf

Topics
Anonymous Functions

Introduced before R2006a

 ezsurf

1-3795

ezsurfc
(Not recommended) Easy-to-use combination surface/contour plotter

Note ezsurfc is not recommended. Use fsurf instead.

Syntax
ezsurfc(fun)
ezsurfc(fun,domain)
ezsurfc(funx,funy,funz)
ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurfc(funx,funy,funz,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')
ezsurfc(axes_handle,...)
h = ezsurfc(...)

Description
ezsurfc(fun) creates a graph of fun(x,y) using the surfc function. The function fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle, a character vector, or a string (see the Tips on page 1-3798
section).

ezsurfc(fun,domain) plots fun over the specified domain. domain can be either a 4-
by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min < x <
max, min < y < max).

ezsurfc(funx,funy,funz) plots the parametric surface funx(s,t), funy(s,t), and
funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurfc(funx,funy,funz,[min,max]) plots the parametric surface using the
specified domain.

1 Alphabetical List

1-3796

ezsurfc(...,n) plots f over the default domain using an n-by-n grid. The default value
for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

ezsurfc(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

h = ezsurfc(...) returns the handles to the graphics objects in h.

Examples

Surface and Contour Plot of Mathematical Function

Create a surface/contour plot of the expression f (x, y) = x2 + y2 over the domain
−5 < x < 5 and −2π < y < 2π with a computational grid size of 35-by-35.

ezsurfc('sqrt(x^2 + y^2)',[-5,5,-2*pi,2*pi],35)

 ezsurfc

1-3797

Tips
ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a Character Vector or String
Array multiplication, division, and exponentiation are always implied in the expression
you pass to ezsurfc. For example, the MATLAB syntax for a surface/contour plot of the
expression

sqrt(x.^2 + y.^2);

1 Alphabetical List

1-3798

is written as

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the character vector or string you pass to ezsurfc.

If the function to be plotted is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurfc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax. For
example, the following statements define an anonymous function and pass the function
handle fh to ezsurfc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezsurfc does not alter
the syntax, as in the case with character vector or string inputs.

Passing Additional Arguments
If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

then you can use an anonymous function to specify that parameter:

ezsurfc(@(x,y)myfun(x,y,2,2,4))

 ezsurfc

1-3799

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | surfc

Topics
Anonymous Functions

Introduced before R2006a

1 Alphabetical List

1-3800

faceNormals
Class: TriRep

(Not recommended) Unit normals to specified triangles

Note faceNormals(TriRep) is not recommended. Use
faceNormal(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
FN = faceNormals(TR, TI)

Description
FN = faceNormals(TR, TI) returns the unit normal vector to each of the specified
triangles TI.

Note This query is only applicable to triangular surface meshes.

Input Arguments
TR Triangulation representation.
TI Column vector of indices that index into the triangulation matrix

TR.Triangulation.

 faceNormals

1-3801

Output Arguments
FN m-by-3 matrix. m = length(TI), the number of triangles to be queried.

Each row FN(i,:) represents the unit normal vector to triangle TI(i).

If TI is not specified the unit normal information for the entire triangulation
is returned, where the normal associated with triangle i is the i'th row of
FN.

Examples
Triangulate a sample of random points on the surface of a sphere and use the TriRep to
compute the normal to each triangle:

numpts = 100;
thetha = rand(numpts,1)*2*pi;
phi = rand(numpts,1)*pi;
x = cos(thetha).*sin(phi);
y = sin(thetha).*sin(phi);
z = cos(phi);
dt = DelaunayTri(x,y,z);
[tri Xb] = freeBoundary(dt);
tr = TriRep(tri, Xb);
P = incenters(tr);
fn = faceNormals(tr);
trisurf(tri,Xb(:,1),Xb(:,2),Xb(:,3), ...
 'FaceColor', 'cyan', 'faceAlpha', 0.8);
axis equal;
hold on;

Display the result using a quiver plot:

quiver3(P(:,1),P(:,2),P(:,3), ...
 fn(:,1),fn(:,2),fn(:,3),0.5, 'color','r');
hold off;

1 Alphabetical List

1-3802

See Also
delaunayTriangulation | freeBoundary | triangulation

 faceNormals

1-3803

factor
Prime factors

Syntax
f = factor(n)

Description
f = factor(n) returns a row vector containing the prime factors of n. Vector f is of the
same data type as n.

Examples

Prime Factors of Double Integer Value

f = factor(200)

f = 1×5

 2 2 2 5 5

Multiply the elements of f to reproduce the input value.

prod(f)

ans = 200

Prime Factors of Unsigned Integer Value

n = uint16(138);
f = factor(n)

1 Alphabetical List

1-3804

f = 1x3 uint16 row vector

 2 3 23

Multiply the elements of f to reproduce n.

prod(f)

ans = 138

Input Arguments
n — Input value
real, nonnegative integer scalar

Input value, specified as a real, nonnegative integer scalar.
Example: 10
Example: int16(64)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The maximum double precision input is 2^33.
• The maximum single precision input is 2^25.
• The input n cannot have type int64 or uint64.

 factor

1-3805

See Also
isprime | primes

Introduced before R2006a

1 Alphabetical List

1-3806

factorial
Factorial of input

Syntax
f = factorial(n)

Description
f = factorial(n) returns the product of all positive integers less than or equal to n,
where n is a nonnegative integer value. If n is an array, then f contains the factorial of
each value of n. The data type and size of f is the same as that of n.

The factorial of n is commonly written in math notation using the exclamation point
character as n!. Note that n! is not a valid MATLAB syntax for calculating the factorial of
n.

Examples

10!
f = factorial(10)

f = 3628800

22!
format long
f = factorial(22)

f =
 1.124000727777608e+21

 factorial

1-3807

In this case, f is accurate up to 15 digits, 1.12400072777760e+21, because double-
precision numbers are only accurate up to 15 digits.

Reset the output format to the default.

format

Factorial of Array Elements
n = [0 1 2; 3 4 5];
f = factorial(n)

f = 2×3

 1 1 2
 6 24 120

Factorial of Unsigned Integer Values
n = uint64([5 10 15 20]);
f = factorial(n)

f = 1x4 uint64 row vector

 120 3628800 1307674368000 2432902008176640000

Input Arguments
n — Input values
scalar, vector, or array of real, nonnegative integer values

Input values, specified as a scalar, vector, or array of real, nonnegative integers.
Example: 5
Example: [0 1 2 3 4]

1 Alphabetical List

1-3808

Example: int16([10 15 20])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
Limitations

• For double-precision inputs, the result is exact when n is less than or equal to 21.
Larger values of n produce a result that has the correct order of magnitude and is
accurate for the first 15 digits. This is because double-precision numbers are only
accurate up to 15 digits.

• For single-precision inputs, the result is exact when n is less than or equal to 13.
Larger values of n produce a result that has the correct order of magnitude and is
accurate for the first 8 digits. This is because single-precision numbers are only
accurate up to 8 digits.

Saturation

• The table below describes the saturation behavior of each data type when used with
the factorial function. The values in the last column indicate the saturation point;
that is, the first positive integer whose actual factorial is larger than the maximum
representable value in the middle column. For single and double, all values larger
than the maximum value are returned as Inf. For the integer data types, the
saturation value is equal to the maximum value in the middle column.

Data type Maximum Value Factorial Saturation
Threshold

double realmax factorial(171)
single realmax('single') factorial(single(35)

)
uint64 264-1 factorial(uint64(21)

)
int64 263-1 factorial(int64(21))
uint32 232-1 factorial(uint32(13)

)

 factorial

1-3809

Data type Maximum Value Factorial Saturation
Threshold

int32 231-1 factorial(int32(13))
uint16 216-1 factorial(uint16(9))
int16 215-1 factorial(int16(8))
uint8 28-1 factorial(uint8(6))
int8 27-1 factorial(int8(6))

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

1 Alphabetical List

1-3810

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
prod

Introduced before R2006a

 factorial

1-3811

false
Logical 0 (false)

Syntax
false
F = false(n)
F = false(sz)
F = false(sz1,...,szN)
F = false(___ ,'like',p)

Description
false is shorthand for the logical value 0.

F = false(n) is an n-by-n array of logical zeros.

F = false(sz) is an array of logical zeros where the size vector, sz, defines size(F).
For example, false([2 3]) returns a 2-by-3 array of logical zeros.

F = false(sz1,...,szN) is a sz1-by-...-by-szN array of logical zeros where
sz1,...,szN indicates the size of each dimension. For example, false(2,3) returns a
2-by-3 array of logical zeros.

F = false(___ ,'like',p) returns an array of logical zeros of the same sparsity as
the logical variable p using any of the previous size syntaxes.

Examples

Generate Square Matrix of Logical Zeros

Use false to generate a 3-by-3 square matrix of logical zeros.

A = false(3)

1 Alphabetical List

1-3812

A = 3x3 logical array

 0 0 0
 0 0 0
 0 0 0

class(A)

ans =
'logical'

The result is of class logical.

Generate Array of Logical Zeros with Arbitrary Dimensions

Use false to generate a 3-by-2-by-2 array of logical zeros.

false(3,2,2)

ans = 3x2x2 logical array
ans(:,:,1) =

 0 0
 0 0
 0 0

ans(:,:,2) =

 0 0
 0 0
 0 0

Alternatively, use a size vector to specify the size of the matrix.

false([3 2 2])

ans = 3x2x2 logical array
ans(:,:,1) =

 0 0

 false

1-3813

 0 0
 0 0

ans(:,:,2) =

 0 0
 0 0
 0 0

Note that specifying multiple vector inputs returns an error.

Execute Logic Statement

false along with true can be used to execute logic statements.

Test the logical statement

~(A and B) = (~A) or (~B)

for A = false and B = true.

~(false & true) == (~false) | (~true)

ans = logical
 1

The result is logical 1 (true), since the logical statements on both sides of the equation
are equivalent. This logical statement is an instance of De Morgan's Law.

Generate Logical Array of Selected Sparsity

Generate a logical array of the same data type and sparsity as the selected array.

A = logical(sparse(5,3));
whos A

1 Alphabetical List

1-3814

 Name Size Bytes Class Attributes

 A 5x3 41 logical sparse

F = false(4,'like',A);
whos F

 Name Size Bytes Class Attributes

 F 4x4 49 logical sparse

The output array F has the same sparse attribute as the specified array A.

Input Arguments
n — Size of square matrix
integer

Size of square matrix, specified as an integer. n sets the output array size to n-by-n. For
example, false(3) returns a 3-by-3 array of logical zeros.

• If n is 0, then F is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Size vector
row vector of integers

Size vector, specified as a row vector of integers. For example, false([2 3)] returns a
2-by-3 array of logical zeros.

• If the size of any dimension is 0, then F is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• If any trailing dimensions greater than 2 have a size of 1, then the output, F, does not

include those dimensions.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz1,...,szN — Size inputs
comma-separated list of integers

 false

1-3815

Size inputs, specified by a comma-separated list of integers. For example, false(2,3)
returns a 2-by-3 array of logical zeros.

• If the size of any dimension is 0, then F is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• If any trailing dimensions greater than 2 have a size of 1, then the output, F, does not

include those dimensions.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
logical variable

Prototype, specified as a logical variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
F — Output of logical zeros
scalar | vector | matrix | N-D array

Output of logical zeros, returned as a scalar, vector, matrix, or N-D array.
Data Types: logical

Tips
• false(n) is much faster and more memory efficient than logical(zeros(n)).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-3816

Usage notes and limitations:

• Dimensions must be real, nonnegative, integers.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See false in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See false in the Parallel Computing Toolbox documentation.

See Also
logical | true

Topics
“Class Support for Array-Creation Functions”

Introduced before R2006a

 false

1-3817

fclose
Close one or all open files

Syntax
fclose(fileID)
fclose('all')
status = fclose(___)

Description
fclose(fileID) closes an open file.

fclose('all') closes all open files.

status = fclose(___) returns a status of 0 when the close operation is successful.
Otherwise, it returns -1. You can use this syntax with any of the input arguments of the
previous syntaxes.

Examples

Open and Close File

Open the badpoem.txt file, read the first line, and then close the file.

1 Alphabetical List

1-3818

Use fopen to open the file. This function assigns a unique file id to use for reading and
writing to the file.

fid = fopen('badpoem.txt')

fid = 3

Read the first line from the file using fgetl.

fgetl(fid)

ans =
'Oranges and lemons,'

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. Before closing a file with fclose,
you must use fopen to open the file and obtain its fileID.
Data Types: double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
feof | ferror | fopen | fprintf | fread | frewind | fscanf | fseek | ftell |
fwrite

 fclose

1-3819

Topics
“Import Text Data Files with Low-Level I/O”

Introduced before R2006a

1 Alphabetical List

1-3820

fclose (serial)
Disconnect serial port object from device

Syntax
fclose(obj)

Description
fclose(obj) disconnects obj from the device, where obj is a serial port object or an
array of serial port objects.

Examples
This example creates the serial port object s on a Windows platform, connects s to the
device, writes and reads text data, and then disconnects s from the device using fclose.

s = serial('COM1');
fopen(s)
fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

At this point, the device is available to be connected to a serial port object. If you no
longer need s, you should remove from memory with the delete function, and remove it
from the workspace with the clear command.

Tips
If obj was successfully disconnected, then the Status property is configured to closed
and the RecordStatus property is configured to off. You can reconnect obj to the
device using the fopen function.

 fclose (serial)

1-3821

An error is returned if you issue fclose while data is being written asynchronously. In
this case, you should abort the write operation with the stopasync function, or wait for
the write operation to complete.

See Also
RecordStatus | Status | clear | delete | fopen | stopasync

Introduced before R2006a

1 Alphabetical List

1-3822

fcontour
Plot contours

Syntax
fcontour(f)
fcontour(f,xyinterval)

fcontour(___ ,LineSpec)
fcontour(___ ,Name,Value)
fcontour(ax, ___)
fc = fcontour(___)

Description
fcontour(f) plots the contour lines of the function z = f(x,y) for constant levels of z
over the default interval [-5 5] for x and y.

fcontour(f,xyinterval) plots over the specified interval. To use the same interval for
both x and y, specify xyinterval as a two-element vector of the form [min max]. To
use different intervals, specify a four-element vector of the form [xmin xmax ymin
ymax].

fcontour(___ ,LineSpec) sets the line style and color for the contour lines. For
example, '-r' specifies red lines. Use this option after any of the previous input
argument combinations.

fcontour(___ ,Name,Value) specifies line properties using one or more name-value
pair arguments.

fcontour(ax, ___) plots into the axes specified by ax instead of the current axes.

fc = fcontour(___) returns a FunctionContour object. Use fc to query and modify
properties of a specific FunctionContour object. For a list of properties, see
FunctionContour.

 fcontour

1-3823

Examples

Plot Contours of Function

Plot the contours of f (x, y) = sin(x) + cos(y) over the default interval of −5 < x < 5 and
−5 < y < 5.

f = @(x,y) sin(x) + cos(y);
fcontour(f)

1 Alphabetical List

1-3824

Specify Plotting Interval and Plot Piecewise Contour Plot

Specify the plotting interval as the second argument of fcontour. When you plot
multiple inputs over different intervals in the same axes, the axis limits adjust to display
all the data. This behavior lets you plot piecewise inputs.

Plot the piecewise input

erf(x) + cos(y) −5 < x < 0
sin(x) + cos(y) 0 < x < 5

over −5 < y < 5.

fcontour(@(x,y) erf(x) + cos(y),[-5 0 -5 5])
hold on
fcontour(@(x,y) sin(x) + cos(y),[0 5 -5 5])
hold off
grid on

 fcontour

1-3825

Change Line Style and Width

Plot the contours of x2− y2 as dashed lines with a line width of 2.

f = @(x,y) x.^2 - y.^2;
fcontour(f,'--','LineWidth',2)

1 Alphabetical List

1-3826

Plot Multiple Contour Plots

Plot sin(x) + cos(y) and x− y on the same axes by using hold on.

fcontour(@(x,y) sin(x)+cos(y))
hold on
fcontour(@(x,y) x-y)
hold off

 fcontour

1-3827

Modify Contour Plot After Creation

Plot the contours of e−(x/3)2− (y/3)2 + e−(x + 2)2− (y + 2)2. Assign the function contour object
to a variable.

f = @(x,y) exp(-(x/3).^2-(y/3).^2) + exp(-(x+2).^2-(y+2).^2);
fc = fcontour(f)

1 Alphabetical List

1-3828

fc =
 FunctionContour with properties:

 Function: @(x,y)exp(-(x/3).^2-(y/3).^2)+exp(-(x+2).^2-(y+2).^2)
 LineColor: 'flat'
 LineStyle: '-'
 LineWidth: 0.5000
 Fill: 'off'
 LevelList: [0.2000 0.4000 0.6000 0.8000 1 1.2000 1.4000]

 Show all properties

 fcontour

1-3829

Change the line width to 1 and the line style to a dashed line by using dot notation to set
properties of the function contour object. Show contours close to 0 and 1 by setting the
LevelList property. Add a colorbar.

fc.LineWidth = 1;
fc.LineStyle = '--';
fc.LevelList = [1 0.9 0.8 0.2 0.1];
colorbar

Fill Area Between Contours

Create a plot that looks like a sunset by filling the area between the contours of

1 Alphabetical List

1-3830

erf((y + 2)3)− e(− 0 . 65((x− 2)2 + (y − 2)2)) .

f = @(x,y) erf((y+2).^3) - exp(-0.65*((x-2).^2+(y-2).^2));
fcontour(f,'Fill','on');

If you want interpolated shading instead, use the fsurf function and set its
'EdgeColor' option to 'none' followed by the command view(0,90).

Specify Levels for Contour Lines

Set the values at which fcontour draws contours by using the 'LevelList' option.

 fcontour

1-3831

f = @(x,y) sin(x) + cos(y);
fcontour(f,'LevelList',[-1 0 1])

Control Resolution of Contour Lines

Control the resolution of contour lines by using the 'MeshDensity' option. Increasing
'MeshDensity' can make smoother, more accurate plots, while decreasing it can
increase plotting speed.

Divide a figure into two using subplot. In the first subplot, plot the contours of
sin(x)sin(y). The corners of the squares do not meet. To fix this issue, increase

1 Alphabetical List

1-3832

'MeshDensity' to 200 in the second subplot. The corners now meet, showing that by
increasing 'MeshDensity' you increase the resolution.

f = @(x,y) sin(x).*sin(y);
subplot(2,1,1)
fcontour(f)
title('Default Mesh Density (71)')

subplot(2,1,2)
fcontour(f,'MeshDensity',200)
title('Custom Mesh Density (200)')

 fcontour

1-3833

Add Title and Axis Labels and Format Ticks

Plot xsin(y)− ycos(x). Display the grid lines, add a title, and add axis labels.

fcontour(@(x,y) x.*sin(y) - y.*cos(x), [-2*pi 2*pi], 'LineWidth', 2);
grid on
title({'xsin(y) - ycos(x)','-2\pi < x < 2\pi and -2\pi < y < 2\pi'})
xlabel('x')
ylabel('y')

Set the x-axis tick values and associated labels by setting the XTickLabel and XTick
properties of the axes object. Access the axes object using gca. Similarly, set the y-axis
tick values and associated labels.

1 Alphabetical List

1-3834

ax = gca;
ax.XTick = ax.XLim(1):pi/2:ax.XLim(2);
ax.XTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'};
ax.YTick = ax.YLim(1):pi/2:ax.YLim(2);
ax.YTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'};

Input Arguments
f — Function to plot
function handle

Function to plot, specified as a function handle to a named or anonymous function.

 fcontour

1-3835

Specify a function of the form z = f(x,y). The function must accept two matrix input
arguments and return a matrix output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: f = @(x,y) sin(x) + cos(y);

xyinterval — Plotting interval for x and y
[–5 5 -5 5] (default) | vector of form [min max] | vector of form [xmin xmax ymin
ymax]

Plotting interval for x and y, specified in one of these forms:

• Vector of form [min max] — Use the interval [min max] for both x and y.
• Vector of form [xmin xmax ymin ymax] — Use the interval [xmin xmax] for x and

[ymin ymax] for y.

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the fcontour uses the current
axes.

LineSpec — Line style and color
character vector | string

Line style and color, specified as a character vector or string containing a line style
specifier, a color specifier, or both.
Example: '--r' specifies red dashed lines

These two tables list the line style and color options.

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

1 Alphabetical List

1-3836

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MeshDensity',30

The properties listed here are only a subset. For a full list, see FunctionContour.

MeshDensity — Number of evaluation points per direction
71 (default) | number

Number of evaluation points per direction, specified as a number. The default is 71.
Because fcontour uses adaptive evaluation, the actual number of evaluation points is
greater.
Example: 30

Fill — Fill between contour lines
'off' (default) | 'on'

Fill between contour lines, specified as one of these values:

• 'off' — Do not fill the spaces between contour lines with a color.
• 'on' — Fill the spaces between contour lines with color.

 fcontour

1-3837

LevelList — Contour levels
vector of z values

Contour levels, specified as a vector of z values. By default, the fcontour function
chooses values that span the range of values in the ZData property.

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LevelStep — Spacing between contour lines
0 (default) | scalar numeric value

Spacing between contour lines, specified as a scalar numeric value. For example, specify
a value of 2 to draw contour lines at increments of 2. By default, LevelStep is
determined by using the ZData values.

Setting this property sets the associated mode property to 'manual'.
Example: 3.4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LineColor — Color of contour lines
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of contour lines, specified as 'flat', an RGB triplet, a hexadecimal color code, a
color name, or a short name. To use a different color for each contour line, specify
'flat'. The color is determined by the contour value of the line, the colormap, and the
scaling of data values into the colormap. For more information on color scaling, see
caxis.

To use the same color for all the contour lines, specify an RGB triplet, a hexadecimal color
code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

1 Alphabetical List

1-3838

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineWidth — Line width
0.5 (default) | positive value

 fcontour

1-3839

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Output Arguments
fc — One or more FunctionContour objects
scalar | vector

One or more FunctionContour objects, returned as a scalar or a vector. You can use
these objects to query and modify the properties of a specific contour plot. For a list of
properties, see FunctionContour.

See Also
Functions
fmesh | fplot | fplot3 | fsurf | title

Properties
FunctionContour

Introduced in R2016a

1 Alphabetical List

1-3840

feather
Plot velocity vectors

Syntax
feather(U,V)
feather(Z)
feather(...,LineSpec)
feather(axes_handle,...)
h = feather(...)

Description
A feather plot displays vectors emanating from equally spaced points along a horizontal
axis. You express the vector components relative to the origin of the respective vector.

feather(U,V) displays the vectors specified by U and V, where U contains the x
components as relative coordinates, and V contains the y components as relative
coordinates.

feather(Z) displays the vectors specified by the complex numbers in Z. This is
equivalent to feather(real(Z),imag(Z)).

feather(...,LineSpec) draws a feather plot using the line type, marker symbol, and
color specified by LineSpec.

feather(axes_handle,...) plots into the axes with the handle axes_handle instead
of into the current axes (gca).

h = feather(...) returns the handles to line objects in h.

 feather

1-3841

Examples

Create Feather Plot

Define theta as values between −2π and 2π. Define r as a vector the same size as
theta.

theta = -pi/2:pi/16:pi/2;
r = 2*ones(size(theta));

Create a feather plot showing the direction of theta. Since feather uses Cartesian
coordinates, convert theta and r to Cartesian coordinates using pol2cart.

[u,v] = pol2cart(theta,r);
feather(u,v)

1 Alphabetical List

1-3842

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 feather

1-3843

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
LineSpec | compass | rose

Introduced before R2006a

1 Alphabetical List

1-3844

featureEdges
Class: TriRep

(Not recommended) Sharp edges of surface triangulation

Note featureEdges(TriRep) is not recommended. Use
featureEdges(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
FE = featureEdges(TR, filterangle)

Description
FE = featureEdges(TR, filterangle) returns an edge matrix FE. This method is
typically used to extract the sharp edges in the surface mesh for the purpose of display.
Edges that are shared by only one triangle and edges that are shared by more than two
triangles are considered to be feature edges by default.

Note This query is only applicable to triangular surface meshes.

Input Arguments
TR Triangulation representation.
filterangle The threshold angle in radians. Must be in the range (0, π).

featureEdges will return adjacent triangles that have a dihedral
angle that deviates from π by an angle greater than filterangle.

 featureEdges

1-3845

Output Arguments
FE Edges of the triangulation. FE is of size m-by-2 where m is the number

of computed feature edges in the mesh. The vertices of the edges
index into the array of points representing the vertex coordinates,
TR.X.

Examples
Create a surface triangulation:

x = [0 0 0 0 0 3 3 3 3 3 3 6 6 6 6 6 9 9 9 9 9 9]';
y = [0 2 4 6 8 0 1 3 5 7 8 0 2 4 6 8 0 1 3 5 7 8]';
dt = DelaunayTri(x,y);
tri = dt(:,:);

Elevate the 2-D mesh to create a surface:

z = [0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0]';
subplot(1,2,1);
trisurf(tri,x,y,z, 'FaceColor', 'cyan');
axis equal;
% TRISURF display of surface mesh
% showing mesh edges

Compute the feature edges using a filter angle of pi/6:

tr = TriRep(tri, x,y,z);
fe = featureEdges(tr,pi/6)';
subplot(1,2,2);
trisurf(tr, 'FaceColor', 'cyan', 'EdgeColor','none', ...
 'FaceAlpha', 0.8); axis equal;

Add the feature edges to the plot:

hold on;
plot3(x(fe), y(fe), z(fe), 'k', 'LineWidth',1.5);
hold off;
% TRISURF display of surface mesh
% suppressing mesh edges
% and showing feature edges

1 Alphabetical List

1-3846

See Also
delaunayTriangulation | edges | triangulation

 featureEdges

1-3847

feof
Test for end of file

Syntax
status = feof(fileID)

Description
status = feof(fileID) returns the status of the end-of-file indicator. The feof
function returns a 1 if a previous operation set the end-of-file indicator for the specified
file. Otherwise, feof returns a 0.

Examples

Read to End of File

From this badpoem.txt file, read one line at a time to the end of the file.

Use fopen to open the file. This function assigns a unique file id to use for reading and
writing to the file.

fid = fopen('badpoem.txt');

Read and display one line at a time until you reach the end of the file.

1 Alphabetical List

1-3848

while ~feof(fid)
 tline = fgetl(fid);
 disp(tline)
end

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. Before testing for the end-of-file
status, you must use fopen to open the file and obtain a valid file identifier fileID.
Data Types: double

Tips
• Opening an empty file does not set the end-of-file indicator. Read operations, and other

operations like fseek and frewind, move the file position indicator.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 feof

1-3849

See Also
fclose | ferror | fopen | frewind | fseek | ftell

Topics
“Import Text Data Files with Low-Level I/O”

Introduced before R2006a

1 Alphabetical List

1-3850

ferror
File I/O error information

Syntax
message = ferror(fileID)
[message,errnum] = ferror(fileID)
[message,errnum] = ferror(fileID,'clear')

Description
message = ferror(fileID) returns the error message for the most recent file I/O
operation on the specified file.

[message,errnum] = ferror(fileID) returns the error number that is associated
with the error message.

[message,errnum] = ferror(fileID,'clear') clears the error indicator for the
specified file. Specify the literal clear as a character vector or a string scalar. When you
clear the error indicator, succeeding calls to ferror behave as if the most recent I/O
operation is successful.

Examples

Get Most Recent Error Message

Return the details for the most recent file I/O error on a file that you specify.

Open the file to read.

fid = fopen('outages.csv','r');

 ferror

1-3851

Set the read position to -5 bytes from the beginning of the file. Since no data exists
before the beginning of the file, fseek returns -1 indicating that the operation was
unsuccessful.

status = fseek(fid,-5,'bof')

status = -1

Get the details on the most recent error message on the file using its file identifier fid.

error = ferror(fid)

error =
'Offset is bad - before beginning-of-file.'

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. fileID can be one of these values:

• N — Input or output from a file with a valid file identifier generated by the fopen
function. N is equal to or greater than 3.

• 0 — Input from a standard input device.
• 1 — Output to a standard output device.
• 2 — Standard error.

Data Types: double

Output Arguments
message — Error message
character vector

1 Alphabetical List

1-3852

Error message, returned as character vector containing the error message associated
with the most recent I/O operation. If the most recent I/O operation is successful or if you
clear it manually, then message is an empty character vector.

errnum — Error number
integer

Error number, returned as an integer code associated with the error from most recent file
I/O operation. If the most recent file I/O operation is successful, then errnum is 0. A
nonzero errnum indicates an error:

• Negative values correspond to MATLAB error messages.
• Positive values correspond to C library error messages for your system.

See Also
fclose | feof | fopen | fprintf | fread | fscanf | fseek | ftell | fwrite

Introduced before R2006a

 ferror

1-3853

feval
Evaluate function

Syntax
[y1,...,yN] = feval(fun,x1,...,xM)

Description
[y1,...,yN] = feval(fun,x1,...,xM) evaluates a function using its name or its
handle, and using the input arguments x1,...,xM.

The feval function follows the same scoping and precedence rules as calling a function
handle directly. For more information, see “Create Function Handle”.

Examples

Evaluate Function with Function Name as Character Vector

Round the value of pi to the nearest integer using the name of the function.

fun = 'round';
x1 = pi;
y = feval(fun,x1)

y = 3

Round the value of pi to two digits to the right of the decimal point.

x2 = 2;
y = feval(fun,x1,x2)

y = 3.1400

1 Alphabetical List

1-3854

Input Arguments
fun — Function to evaluate
function name | function handle

Function to evaluate, specified as a function name or a handle to a function. The function
accepts M input arguments, and returns N output arguments. To specify fun as a function
name, do not include path information.

Invoking feval with a function handle is equivalent to invoking the function handle
directly.
Example: fun = 'cos'
Example: fun = @sin

x1,...,xM — Inputs to evaluated function
depends on function

Inputs to the evaluated function. The types of the inputs depend on the function, fun.

Output Arguments
y1,...,yN — Outputs from evaluated function
depends on function

Outputs from evaluated function. The types of the outputs depend on the function, fun.

Tips
• If you have a function handle, it is not necessary to use feval because you can invoke

the function handle directly. The results of the following statements are equivalent.

fh = @eig;
[V,D] = fh(A)

[V,D] = feval(@eig,A)
• To evaluate a nested or local function using feval, use a function handle instead of

the function name. For more information, see “Call Local Functions Using Function
Handles”.

 feval

1-3855

See Also
assignin | builtin | eval | evalin | functions

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-3856

fewerbins
Package: matlab.graphics.chart.primitive

Decrease number of histogram bins

Syntax
N = fewerbins(h)
N = fewerbins(h,direction)

Description
N = fewerbins(h) decreases the number of bins in histogram h by 10% (rounded down
to the nearest integer) and returns the new number of bins.

For bivariate histograms, this decreases the bin count in both the x and y directions.

N = fewerbins(h,direction), where h must be a histogram2 object, only
decreases the number of bins in the dimension specified by direction. The direction
option can be 'x', 'y', or 'both'. The default value is 'both'.

Examples

Decrease Number of Histogram Bins

Plot a histogram of 1,000 random numbers and return a handle to the histogram object.

x = randn(1000,1);
h = histogram(x)

 fewerbins

1-3857

h =
 Histogram with properties:

 Data: [1000x1 double]
 Values: [1x23 double]
 NumBins: 23
 BinEdges: [1x24 double]
 BinWidth: 0.3000
 BinLimits: [-3.3000 3.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

1 Alphabetical List

1-3858

 Show all properties

Use fewerbins to decrease the number of bins in the histogram.

fewerbins(h);
fewerbins(h)

ans = 18

 fewerbins

1-3859

Input Arguments
h — Input histogram
histogram object | histogram2 object

Input histogram, specified as a histogram or histogram2 object.

h cannot be a categorical histogram.

direction — Direction to decrease number of bins
'both' (default) | 'x' | 'y'

Direction to decrease the number of bins, specified as 'x', 'y', or 'both'. Specify 'x'
or 'y' to only decrease the number of bins in that direction while leaving the number of
bins in the other direction constant.

Output Arguments
N — Number of bins
scalar | vector

Number of bins, returned as a scalar or vector. N is the new number of bins for the
histogram after increase. For bivariate histogram plots, N is a two-element vector, [nx
ny].

See Also
histcounts | histcounts2 | histogram | histogram2 | morebins

Introduced in R2014b

1 Alphabetical List

1-3860

Feval (COM)
Execute MATLAB function in Automation server

Syntax

IDL Method Signature
HRESULT Feval([in] BSTR functionname, [in] long nargout,
[out] VARIANT* result, [in, optional] VARIANT arg1, arg2, ...)

Microsoft Visual Basic Client
Feval(String functionname, long numout,
arg1, arg2, ...) As Object

MATLAB Client
result = Feval(h,'functionName',numout,arg1,arg2,...)

Description
result = Feval(h,'functionName',numout,arg1,arg2,...) executes MATLAB
function functionName in the Automation server attached to h. The function name is
case-sensitive. If functionName does not have input arguments, consider calling
Execute instead.

COM functions are available on Microsoft Windows systems only.

Indicate the number of outputs returned by the function in a 1-by-1 double array,
numout. The server returns output from the function in the cell array, result.

You can specify as many as 32 input arguments to be passed to the function. These
arguments follow numout in the Feval argument list. The following table shows ways to
pass an argument.

 Feval (COM)

1-3861

Passing Mechanism Description
Pass the value itself To pass any numeric or character value, specify the value in the

Feval argument list:

a = Feval(h,'sin',1,-pi:0.01:pi);

Pass a client variable To pass an argument assigned to a variable in the client, specify the
variable name alone:

x = -pi:0.01:pi;
a = Feval(h,'sin',1,x);

Reference a server variable To reference a variable defined in the server, specify the variable
name followed by an equals (=) sign:

PutWorkspaceData(h,'x','base',-pi:0.01:pi);
a = Feval(h,'sin',1,'x=');

MATLAB does not reassign the server variable.

Examples

Call strcat from Visual Basic .NET Client

This example shows how to pass string arguments to the MATLAB strcat command
using Feval.

Create a Visual Basic .NET application with the following code.

type fevalPassingArguments.vb

Dim Matlab As Object
Dim out As Object
out = Nothing
Matlab = CreateObject("matlab.application")
Matlab.Feval("strcat",1,out,"hello"," world")
Dim clistr As String
clistr = " world"
Matlab.Feval("strcat",1,out,"hello",clistr)
Matlab.PutCharArray("srvstr","base"," world")
Matlab.Feval("strcat",1,out,"hello","srvstr=")

1 Alphabetical List

1-3862

Defining Feval Return Values

This example shows how to return the filepath, name, and ext arguments from the
fileparts function.

Feval returns data from the evaluated function in a cell array. The cell array has one row
for every return value. You control the number of return values using the Feval numout
argument.

Create a Visual Basic .NET client with the following code.

type fevalDefiningFevalReturnValues.vb

Dim Matlab As Object
Dim out As Object
Matlab = CreateObject("matlab.application")
Matlab.Feval("fileparts",3,out,"d:\work\ConsoleApp.cpp")

Modified Server Variables

This example shows how to return a modified server variable.

Create a matrix, A, in the server.

Reshape A.MATLAB interprets A in the expression 'A=' as a server variable name.

The reshape function does not modify variable A. A is unchanged.

To get the result of the reshape function, use the numout argument to assign the value
to C.

Create a Visual Basic .NET application with the following code.

type fevalModifiedServerVariables.vb

Dim Matlab As Object
Dim rows As Double
Dim cols As Double
Dim out As Object
out = Nothing

 Feval (COM)

1-3863

Dim data(7) As Double
For i = 0 To 7
 data(i) = i * 15
Next i
Matlab = CreateObject("matlab.application")
Matlab.PutWorkspaceData("A", "base", data)
rows = 4
cols = 2
Matlab.Feval("reshape", 1, out, "A=", rows, cols)

Tips
• To display the output from Feval in the client window, assign a return value.

See Also
Execute | GetCharArray | GetFullMatrix | PutCharArray | PutFullMatrix

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

1 Alphabetical List

1-3864

fft
Fast Fourier transform

Syntax
Y = fft(X)
Y = fft(X,n)
Y = fft(X,n,dim)

Description
Y = fft(X) computes the discrete Fourier transform on page 1-3878 (DFT) of X using a
fast Fourier transform (FFT) algorithm.

• If X is a vector, then fft(X) returns the Fourier transform of the vector.
• If X is a matrix, then fft(X) treats the columns of X as vectors and returns the

Fourier transform of each column.
• If X is a multidimensional array, then fft(X) treats the values along the first array

dimension whose size does not equal 1 as vectors and returns the Fourier transform of
each vector.

Y = fft(X,n) returns the n-point DFT. If no value is specified, Y is the same size as X.

• If X is a vector and the length of X is less than n, then X is padded with trailing zeros
to length n.

• If X is a vector and the length of X is greater than n, then X is truncated to length n.
• If X is a matrix, then each column is treated as in the vector case.
• If X is a multidimensional array, then the first array dimension whose size does not

equal 1 is treated as in the vector case.

Y = fft(X,n,dim) returns the Fourier transform along the dimension dim. For
example, if X is a matrix, then fft(X,n,2) returns the n-point Fourier transform of each
row.

 fft

1-3865

Examples

Noisy Signal

Use Fourier transforms to find the frequency components of a signal buried in noise.

Specify the parameters of a signal with a sampling frequency of 1 kHz and a signal
duration of 1.5 seconds.

Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period
L = 1500; % Length of signal
t = (0:L-1)*T; % Time vector

Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of
amplitude 1.

S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

Corrupt the signal with zero-mean white noise with a variance of 4.

X = S + 2*randn(size(t));

Plot the noisy signal in the time domain. It is difficult to identify the frequency
components by looking at the signal X(t).

plot(1000*t(1:50),X(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')

1 Alphabetical List

1-3866

Compute the Fourier transform of the signal.

Y = fft(X);

Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based
on P2 and the even-valued signal length L.

P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

Define the frequency domain f and plot the single-sided amplitude spectrum P1. The
amplitudes are not exactly at 0.7 and 1, as expected, because of the added noise. On
average, longer signals produce better frequency approximations.

 fft

1-3867

f = Fs*(0:(L/2))/L;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

Now, take the Fourier transform of the original, uncorrupted signal and retrieve the exact
amplitudes, 0.7 and 1.0.

Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

1 Alphabetical List

1-3868

plot(f,P1)
title('Single-Sided Amplitude Spectrum of S(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

Gaussian Pulse

Convert a Gaussian pulse from the time domain to the frequency domain.

Define signal parameters and a Gaussian pulse, X.

 fft

1-3869

Fs = 100; % Sampling frequency
t = -0.5:1/Fs:0.5; % Time vector
L = length(t); % Signal length

X = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));

Plot the pulse in the time domain.

plot(t,X)
title('Gaussian Pulse in Time Domain')
xlabel('Time (t)')
ylabel('X(t)')

1 Alphabetical List

1-3870

To use the fft function to convert the signal to the frequency domain, first identify a new
input length that is the next power of 2 from the original signal length. This will pad the
signal X with trailing zeros in order to improve the performance of fft.

n = 2^nextpow2(L);

Convert the Gaussian pulse to the frequency domain.

Y = fft(X,n);

Define the frequency domain and plot the unique frequencies.

f = Fs*(0:(n/2))/n;
P = abs(Y/n);

plot(f,P(1:n/2+1))
title('Gaussian Pulse in Frequency Domain')
xlabel('Frequency (f)')
ylabel('|P(f)|')

 fft

1-3871

Cosine Waves

Compare cosine waves in the time domain and the frequency domain.

Specify the parameters of a signal with a sampling frequency of 1kHz and a signal
duration of 1 second.

Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector

1 Alphabetical List

1-3872

Create a matrix where each row represents a cosine wave with scaled frequency. The
result, X, is a 3-by-1000 matrix. The first row has a wave frequency of 50, the second row
has a wave frequency of 150, and the third row has a wave frequency of 300.

x1 = cos(2*pi*50*t); % First row wave
x2 = cos(2*pi*150*t); % Second row wave
x3 = cos(2*pi*300*t); % Third row wave

X = [x1; x2; x3];

Plot the first 100 entries from each row of X in a single figure in order and compare their
frequencies.

for i = 1:3
 subplot(3,1,i)
 plot(t(1:100),X(i,1:100))
 title(['Row ',num2str(i),' in the Time Domain'])
end

 fft

1-3873

For algorithm performance purposes, fft allows you to pad the input with trailing zeros.
In this case, pad each row of X with zeros so that the length of each row is the next higher
power of 2 from the current length. Define the new length using the nextpow2 function.

n = 2^nextpow2(L);

Specify the dim argument to use fft along the rows of X, that is, for each signal.

dim = 2;

Compute the Fourier transform of the signals.

Y = fft(X,n,dim);

Calculate the double-sided spectrum and single-sided spectrum of each signal.

1 Alphabetical List

1-3874

P2 = abs(Y/L);
P1 = P2(:,1:n/2+1);
P1(:,2:end-1) = 2*P1(:,2:end-1);

In the frequency domain, plot the single-sided amplitude spectrum for each row in a
single figure.

for i=1:3
 subplot(3,1,i)
 plot(0:(Fs/n):(Fs/2-Fs/n),P1(i,1:n/2))
 title(['Row ',num2str(i),' in the Frequency Domain'])
end

 fft

1-3875

Input Arguments
X — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

If X is an empty 0-by-0 matrix, then fft(X) returns an empty 0-by-0 matrix.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical
Complex Number Support: Yes

n — Transform length
[] (default) | nonnegative integer scalar

Transform length, specified as [] or a nonnegative integer scalar. Specifying a positive
integer scalar for the transform length can increase the performance of fft. The length
is typically specified as a power of 2 or a value that can be factored into a product of
small prime numbers. If n is less than the length of the signal, then fft ignores the
remaining signal values past the nth entry and returns the truncated result. If n is 0, then
fft returns an empty matrix.
Example: n = 2^nextpow2(size(X,1))
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

• fft(X,[],1) operates along the columns of X and returns the Fourier transform of
each column.

1 Alphabetical List

1-3876

• fft(X,[],2) operates along the rows of X and returns the Fourier transform of each
row.

If dim is greater than ndims(X), then fft(X,[],dim) returns X. When n is specified,
fft(X,n,dim) pads or truncates X to length n along dimension dim.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Output Arguments
Y — Frequency domain representation
vector | matrix | multidimensional array

Frequency domain representation returned as a vector, matrix, or multidimensional array.

If X is of type single, then fft natively computes in single precision, and Y is also of
type single. Otherwise, Y is returned as type double.

The size of Y is as follows:

• For Y = fft(X) or Y = fft(X,[],dim), the size of Y is equal to the size of X.

 fft

1-3877

• For Y = fft(X,n,dim), the value of size(Y,dim) is equal to n, while the size of all
other dimensions remains as in X.

If X is real, then Y is conjugate symmetric, and the number of unique points in Y is
ceil((n+1)/2).
Data Types: double | single

Definitions
Discrete Fourier Transform of Vector
Y = fft(X) and X = ifft(Y) implement the Fourier transform and inverse Fourier
transform, respectively. For X and Y of length n, these transforms are defined as follows:

Y(k) = ∑
j = 1

n
X(j) Wn

(j− 1)(k− 1)

X(j) = 1
n ∑k = 1

n
Y(k) Wn−(j− 1)(k− 1),

where

Wn = e(− 2πi)/n

is one of n roots of unity.

Tips
• The execution time for fft depends on the length of the transform. Transform lengths

that have only small prime factors are significantly faster than those that are prime or
have large prime factors.

• For most values of n, real-input DFTs require roughly half the computation time of
complex-input DFTs. However, when n has large prime factors, there is little or no
speed difference.

• You can potentially increase the speed of fft using the utility function, fftw. This
function controls the optimization of the algorithm used to compute an FFT of a
particular size and dimension.

1 Alphabetical List

1-3878

Algorithms
The FFT functions (fft, fft2, fftn, ifft, ifft2, ifftn) are based on a library called
FFTW [1] [2].

References
[1] FFTW (http://www.fftw.org)

[2] Frigo, M., and S. G. Johnson. “FFTW: An Adaptive Software Architecture for the FFT.”
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing. Vol. 3, 1998, pp. 1381-1384.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For limitations related to variable-size data, see “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” (MATLAB Coder).

• For MEX output, MATLAB Coder™ uses the library that MATLAB uses for FFT
algorithms. For standalone C/C++ code, by default, the code generator produces code
for FFT algorithms instead of producing FFT library calls. To generate calls to a
specific installed FFTW library, provide an FFT library callback class. For more
information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

• For simulation of a MATLAB Function block, the simulation software uses the library
that MATLAB uses for FFT algorithms. For C/C++ code generation, by default, the
code generator produces code for FFT algorithms instead of producing FFT library
calls. To generate calls to a specific installed FFTW library, provide an FFT library
callback class. For more information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

 fft

1-3879

http://www.fftw.org

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The output Y is always complex even if all the imaginary parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• For distributed arrays, instead of using a parallel FFT algorithm, fft gathers vectors
on a single worker to perform prime length FFTs. For large prime-length vector FFTs,
out-of-memory errors can result.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
fft2 | fftn | fftshift | fftw | ifft

Topics
“Fourier Transforms”

Introduced before R2006a

1 Alphabetical List

1-3880

fft2
2-D fast Fourier transform

Syntax
Y = fft2(X)
Y = fft2(X,m,n)

Description
Y = fft2(X) returns the two-dimensional Fourier transform on page 1-3885 of a matrix
using a fast Fourier transform algorithm, which is equivalent to computing
fft(fft(X).').'. If X is a multidimensional array, then fft2 takes the 2-D transform
of each dimension higher than 2. The output Y is the same size as X.

Y = fft2(X,m,n) truncates X or pads X with trailing zeros to form an m-by-n matrix
before computing the transform. Y is m-by-n. If X is a multidimensional array, then fft2
shapes the first two dimensions of X according to m and n.

Examples

2-D Transform

The 2-D Fourier transform is useful for processing 2-D signals and other 2-D data such as
images.

Create and plot 2-D data with repeated blocks.

P = peaks(20);
X = repmat(P,[5 10]);
imagesc(X)

 fft2

1-3881

Compute the 2-D Fourier transform of the data. Shift the zero-frequency component to
the center of the output, and plot the resulting 100-by-200 matrix, which is the same size
as X.

Y = fft2(X);
imagesc(abs(fftshift(Y)))

1 Alphabetical List

1-3882

Pad X with zeros to compute a 128-by-256 transform.

Y = fft2(X,2^nextpow2(100),2^nextpow2(200));
imagesc(abs(fftshift(Y)));

 fft2

1-3883

Input Arguments
X — Input array
matrix | multidimensional array

Input array, specified as a matrix or a multidimensional array. If X is of type single, then
fft2 natively computes in single precision, and Y is also of type single. Otherwise, Y is
returned as type double.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

1 Alphabetical List

1-3884

Complex Number Support: Yes

m — Number of transform rows
positive integer scalar

Number of transform rows, specified as a positive integer scalar.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

n — Number of transform columns
positive integer scalar

Number of transform columns, specified as a positive integer scalar.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Definitions

2-D Fourier Transform
This formula defines the discrete Fourier transform Y of an m-by-n matrix X:

Y Xp q m
jp

n
kq

j k

k

n

j

m

+ + + +

=

-

=

-

= ÂÂ1 1 1 1

0

1

0

1

, ,w w

ωm and ωn are complex roots of unity:

w

w

p

p

m

i m

n
i n

e

e

=

=

-

-

2

2

/

/

i is the imaginary unit. p and j are indices that run from 0 to m–1, and q and k are indices
that run from 0 to n–1. This formula shifts the indices for X and Y by 1 to reflect matrix
indices in MATLAB.

 fft2

1-3885

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For MEX output, MATLAB Coder uses the library that MATLAB uses for FFT
algorithms. For standalone C/C++ code, by default, the code generator produces code
for FFT algorithms instead of producing FFT library calls. To generate calls to a
specific installed FFTW library, provide an FFT library callback class. For more
information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

• For simulation of a MATLAB Function block, the simulation software uses the library
that MATLAB uses for FFT algorithms. For C/C++ code generation, by default, the
code generator produces code for FFT algorithms instead of producing FFT library
calls. To generate calls to a specific installed FFTW library, provide an FFT library
callback class. For more information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The output Y is always complex even if all the imaginary parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

1 Alphabetical List

1-3886

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fft | fftn | fftw | ifft2

Introduced before R2006a

 fft2

1-3887

fftn
N-D fast Fourier transform

Syntax
Y = fftn(X)
Y = fftn(X,sz)

Description
Y = fftn(X) returns the multidimensional Fourier transform on page 1-3890 of an N-D
array using a fast Fourier transform algorithm. The N-D transform is equivalent to
computing the 1-D transform along each dimension of X. The output Y is the same size as
X.

Y = fftn(X,sz) truncates X or pads X with trailing zeros before taking the transform
according to the elements of the vector sz. Each element of sz defines the length of the
corresponding transform dimensions. For example, if X is a 5-by-5-by-5 array, then Y =
fftn(X,[8 8 8]) pads each dimension with zeros resulting in an 8-by-8-by-8 transform
Y.

Examples

3-D Transform

You can use the fftn function to compute a 1-D fast Fourier transform in each dimension
of a multidimensional array.

Create a 3-D signal X. The size of X is 20-by-20-by-20.

x = (1:20)';
y = 1:20;
z = reshape(1:20,[1 1 20]);
X = cos(2*pi*0.01*x) + sin(2*pi*0.02*y) + cos(2*pi*0.03*z);

1 Alphabetical List

1-3888

Compute the 3-D Fourier transform of the signal, which is also a 20-by-20-by-20 array.

Y = fftn(X);

Pad X with zeros to compute a 32-by-32-by-32 transform.

m = nextpow2(20);
Y = fftn(X,[2^m 2^m 2^m]);
size(Y)

ans = 1×3

 32 32 32

Input Arguments
X — Input array
matrix | multidimensional array

Input array, specified as a matrix or a multidimensional array. If X is of type single, then
fftn natively computes in single precision, and Y is also of type single. Otherwise, Y is
returned as type double.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical
Complex Number Support: Yes

sz — Length of transform dimensions
vector of positive integers

Length of the transform dimensions, specified as a vector of positive integers. The
elements of sz correspond to the transformation lengths of the corresponding dimensions
of X. length(sz) must be equal to ndims(X).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

 fftn

1-3889

Definitions

N-D Fourier Transform
The discrete Fourier transform Y of an N-D array X is defined as

Yp1, p2, ..., pN = ∑
j1 = 0

m1− 1
ωm1

p1 j1 ∑
j2 = 0

m2− 1
ωm2

p2 j2... ∑
jN

mN − 1
ωmN

pN jNX j1, j2, ..., jN .

Each dimension has length mk for k = 1,2,...,N, and ωmk = e−2πi/mk are complex roots of
unity where i is the imaginary unit.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The sz argument must have a fixed size.
• For MEX output, MATLAB Coder uses the library that MATLAB uses for FFT

algorithms. For standalone C/C++ code, by default, the code generator produces code
for FFT algorithms instead of producing FFT library calls. To generate calls to a
specific installed FFTW library, provide an FFT library callback class. For more
information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

• For simulation of a MATLAB Function block, the simulation software uses the library
that MATLAB uses for FFT algorithms. For C/C++ code generation, by default, the
code generator produces code for FFT algorithms instead of producing FFT library
calls. To generate calls to a specific installed FFTW library, provide an FFT library
callback class. For more information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

1 Alphabetical List

1-3890

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The output Y is always complex even if all the imaginary parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fft | fft2 | fftw | ifftn

Introduced before R2006a

 fftn

1-3891

fftshift
Shift zero-frequency component to center of spectrum

Syntax
Y = fftshift(X)
Y = fftshift(X,dim)

Description
Y = fftshift(X) rearranges a Fourier transform X by shifting the zero-frequency
component to the center of the array.

• If X is a vector, then fftshift swaps the left and right halves of X.
• If X is a matrix, then fftshift swaps the first quadrant of X with the third, and the

second quadrant with the fourth.
• If X is a multidimensional array, then fftshift swaps half-spaces of X along each

dimension.

Y = fftshift(X,dim) operates along the dimension dim of X. For example, if X is a
matrix whose rows represent multiple 1-D transforms, then fftshift(X,2) swaps the
halves of each row of X.

Examples

Shift Vector Elements

Swap the left and right halves of a row vector. If a vector has an odd number of elements,
then the middle element is considered part of the left half of the vector.

Xeven = [1 2 3 4 5 6];
fftshift(Xeven)

1 Alphabetical List

1-3892

ans = 1×6

 4 5 6 1 2 3

Xodd = [1 2 3 4 5 6 7];
fftshift(Xodd)

ans = 1×7

 5 6 7 1 2 3 4

Shift 1-D Signal

When analyzing the frequency components of signals, it can be helpful to shift the zero-
frequency components to the center.

Create a signal S, compute its Fourier transform, and plot the power.

fs = 100; % sampling frequency
t = 0:(1/fs):(10-1/fs); % time vector
S = cos(2*pi*15*t);
n = length(S);
X = fft(S);
f = (0:n-1)*(fs/n); %frequency range
power = abs(X).^2/n; %power
plot(f,power)

 fftshift

1-3893

Shift the zero-frequency components and plot the zero-centered power.

Y = fftshift(X);
fshift = (-n/2:n/2-1)*(fs/n); % zero-centered frequency range
powershift = abs(Y).^2/n; % zero-centered power
plot(fshift,powershift)

1 Alphabetical List

1-3894

Shift Signals in Matrix

You can process multiple 1-D signals by representing them as rows in a matrix. Then use
the dimension argument to compute the Fourier transform and shift the zero-frequency
components for each row.

Create a matrix A whose rows represent two 1-D signals, and compute the Fourier
transform of each signal. Plot the power for each signal.

fs = 100; % sampling frequency
t = 0:(1/fs):(10-1/fs); % time vector

 fftshift

1-3895

S1 = cos(2*pi*15*t);
S2 = cos(2*pi*30*t);
n = length(S1);
A = [S1; S2];
X = fft(A,[],2);
f = (0:n-1)*(fs/n); % frequency range
power = abs(X).^2/n; % power
plot(f,power(1,:),f,power(2,:))

Shift the zero-frequency components, and plot the zero-centered power of each signal.

Y = fftshift(X,2);
fshift = (-n/2:n/2-1)*(fs/n); % zero-centered frequency range

1 Alphabetical List

1-3896

powershift = abs(Y).^2/n; % zero-centered power
plot(fshift,powershift(1,:),fshift,powershift(2,:))

Input Arguments
X — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, a matrix, or a multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

 fftshift

1-3897

Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then fftshift swaps along all dimensions.

• Consider an input matrix Xc. The operation fftshift(Xc,1) swaps halves of each
column of Xc.

• Consider a matrix Xr. The operation fftshift(Xr,2) swaps halves of each row of
Xr.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-3898

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fft | fft2 | fftn | fftw | ifftshift

Introduced before R2006a

 fftshift

1-3899

fftw
Define method for determining FFT algorithm

Syntax
method = fftw('planner')
previous = fftw('planner',method)

fftinfo = fftw(wisdom)
previous = fftw(wisdom,fftinfo)

Description
method = fftw('planner') returns the method that the fast Fourier transform
functions fft, fft2, fftn, ifft, ifft2, and ifftn use to determine a transform
algorithm. The default method is 'estimate', which determines the algorithm based on
the size of the data.

previous = fftw('planner',method) sets the method and optionally returns the
previous method. For example, fftw('planner','measure') chooses the fastest
algorithm based on the size and type of the data.

fftinfo = fftw(wisdom) returns the optimal transform parameters established in the
current MATLAB session for the precision specified in wisdom. For example, fftinfo =
fftw('dwisdom') saves the current double-precision transform parameters.

previous = fftw(wisdom,fftinfo) applies the parameters in fftinfo to the
transform algorithm for the precision specified in wisdom.

Examples

1 Alphabetical List

1-3900

Optimal Fourier Transform Workflow

The fftw function can improve the performance of Fourier transform functions by trying
to optimize computation based on the size and type of the data.

Clear any existing double-precision transform parameters.

fftw('dwisdom',[]);

Set the method for optimizing Fourier transforms within the current MATLAB® session to
'measure'.

fftw('planner','measure');

Define a random vector and use the fft function to compute the Fourier transform. fft
uses an algorithm that tries to optimize computation for the 500-by-1 transform. The first
call to fft can be slower than normal, but subsequent calls will be significantly faster.

X = rand(500,1);
tic; fft(X); toc;

Elapsed time is 0.017644 seconds.

tic; fft(X); toc;

Elapsed time is 0.000140 seconds.

Assign the current double-precision transform algorithm parameters to the variable
fftinfo for later use.

fftinfo = fftw('dwisdom');

Apply the parameter information stored in the variable fftinfo to future transform
function calls.

fftw('dwisdom',fftinfo);

Input Arguments
method — Method for setting transform parameters
'estimate' (default) | 'measure' | 'patient' | 'exhaustive' | 'hybrid'

Method for setting transform parameters, specified as one of the following:

 fftw

1-3901

• 'estimate' — Determine a best-guess transform algorithm based on the size of
problem.

• 'measure' — Find a better algorithm by computing multiple transforms and
measuring the run times.

• 'patient' — Run a wider range of testing compared to 'measure', resulting in a
better transform algorithm, but at the expense of higher computational cost to
determine the parameters.

• 'exhaustive' — Runs all tests including ones unlikely to be optimal, resulting in the
best algorithm, but with the highest computational cost to determine the parameters.

• 'hybrid' — Use a combination of 'measure' for transforms with dimension length
8192 or smaller and 'estimate' for transforms with dimension length larger than
8192.

Data Types: char | string

wisdom — Transform parameter precision
'swisdom' | 'dwisdom'

Transform parameter precision, specified as either 'swisdom' or 'dwisdom'. The option
'swisdom' specifies transform parameters for single-precision computation, and
'dwisdom' specifies parameters for double-precision computation.
Data Types: char

fftinfo — Transform parameters
character array | []

Transform parameters, specified as a character array of transform parameters returned
by fftw(wisdom) or the empty array []. The empty array [] clears the database.
Data Types: char

Tips
• Transform parameters returned by fftw are most useful when saved and applied on

one computer using the same version of MATLAB each session. Transferring saved
parameters between computers can result in degraded performance, even if both
computers have the same operating system and MATLAB version.

1 Alphabetical List

1-3902

Algorithms
• For transform lengths that are powers of 2 between 214 and 222, MATLAB uses pre-

loaded information from its internal database to optimize the transform computation.
Tuning is not executed for exact powers of 2 unless you clear the database using the
command fftw(wisdom,[]).

References
[1] FFTW (http://www.fftw.org)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation with MATLAB Coder supports fftw only for MEX output. For
standalone C/C++ code, to select a planning method for FFT library calls, implement a
getPlanMethod method in an FFT library callback class. For more information about
an FFT library callback class, see coder.fftw.StandaloneFFTW3Interface.

• In a MATLAB Function block, fftw is supported only for simulation. For C/C++ code
generation, to select a planning method for FFT library calls, implement a
getPlanMethod method in an FFT library callback class. For more information about
an FFT library callback class, see coder.fftw.StandaloneFFTW3Interface.

See Also
fft | fft2 | fftn | ifft | ifft2 | ifftn

Introduced before R2006a

 fftw

1-3903

http://www.fftw.org

fgetl
Read line from file, removing newline characters

Syntax
tline = fgetl(fileID)

Description
tline = fgetl(fileID) returns the next line of the specified file, removing the
newline characters.

• If the file is nonempty, then fgetl returns tline as a character vector.
• If the file is empty and contains only the end-of-file marker, then fgetl returns tline

as a numeric value -1.

Examples

Read File One Line at a Time

Read a single line from a file, first excluding newline characters, and then including them.
Use the following file.

1 Alphabetical List

1-3904

To read the first line from the file badpoem.txt, use fopen to open the file. Then read
the first line using fgetl, which excludes the newline character.

fid = fopen('badpoem.txt');
line_ex = fgetl(fid) % read line excluding newline character

line_ex =
'Oranges and lemons,'

To reread the same line from the file, first reset the read position indicator back to the
beginning of the file.

frewind(fid);

Use the fgets function to read the first line from the file badpoem.txt, which reads the
line including the newline character.

line_in = fgets(fid) % read line including newline character

line_in =
 'Oranges and lemons,
 '

Compare the output by examining the lengths of the lines returned by the fgetl and
fgets functions.

length(line_ex)

ans = 19

length(line_in)

ans = 20

fgetl returns an output that displays in one line, while fgets returns an output that
includes the newline character and, therefore, displays it in two lines.

line_ex

line_ex =
'Oranges and lemons,'

line_in

line_in =
 'Oranges and lemons,

 fgetl

1-3905

 '

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. Before using fgetl to read a line
from the file, you must use fopen to open the file and obtain its fileID.
Data Types: double

Tips
• fgetl reads characters using the encoding scheme associated with the file. To specify

the encoding scheme, use fopen.

See Also
fclose | feof | ferror | fgets | fopen | fprintf | fread | fscanf | fwrite |
textscan

Topics
“Import Text Data Files with Low-Level I/O”

Introduced before R2006a

1 Alphabetical List

1-3906

fgetl (serial)
Read line of ASCII text from device and discard terminator

Syntax
tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

Description
tline = fgetl(obj) reads one line of ASCII text from the device connected to the
serial port object, obj, and returns the data to tline. This returned data does not
include the terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count, including
the terminator.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the read
operation was unsuccessful.

Examples
On a Windows platform, create the serial port object s, connect s to a Tektronix® TDS
210 oscilloscope, and write the RS232? command with the fprintf function. RS232?
instructs the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is continuous, data is
automatically returned to the input buffer.

s.BytesAvailable

 fgetl (serial)

1-3907

ans =
 17

Use fgetl to read the data returned from the previous write operation, and discard the
terminator.

settings = fgetl(s)

settings =
9600;0;0;NONE;LF

length(settings)

ans =
 16

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Tips
Before you can read text from the device, it must be connected to obj with the fopen
function. A connected serial port object has a Status property value of open. An error is
returned if you attempt to perform a read operation while obj is not connected to the
device.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read –
including the terminator – each time fgetl is issued.

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

Rules for Completing a Read Operation with fgetl
A read operation with fgetl blocks access to the MATLAB command line until:

1 Alphabetical List

1-3908

• The terminator specified by the Terminator property is reached.
• The time specified by the Timeout property passes.
• The input buffer is filled.

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

See Also
BytesAvailable | InputBufferSize | ReadAsyncMode | Status | Terminator | Timeout |
ValuesReceived | fgets | fopen

Introduced before R2006a

 fgetl (serial)

1-3909

fgets
Read line from file, keeping newline characters

Syntax
tline = fgets(fileID)
tline = fgets(fileID,nchar)
[tline,ltout] = fgets(___)

Description
tline = fgets(fileID) reads the next line of the specified file, including the newline
characters.

tline = fgets(fileID,nchar) returns up to nchar characters of the next line.

[tline,ltout] = fgets(___) also returns the line terminators, if any, in ltout.

Examples

Read File One Line at a Time

Read a single line from a file, first excluding newline characters, and then including them.
Use the following file.

1 Alphabetical List

1-3910

To read the first line from the file badpoem.txt, use fopen to open the file. Then read
the first line using fgetl, which excludes the newline character.

fid = fopen('badpoem.txt');
line_ex = fgetl(fid) % read line excluding newline character

line_ex =
'Oranges and lemons,'

To reread the same line from the file, first reset the read position indicator back to the
beginning of the file.

frewind(fid);

Use the fgets function to read the first line from the file badpoem.txt, which reads the
line including the newline character.

line_in = fgets(fid) % read line including newline character

line_in =
 'Oranges and lemons,
 '

Compare the output by examining the lengths of the lines returned by the fgetl and
fgets functions.

length(line_ex)

ans = 19

length(line_in)

ans = 20

fgetl returns an output that displays in one line, while fgets returns an output that
includes the newline character and, therefore, displays it in two lines.

line_ex

line_ex =
'Oranges and lemons,'

line_in

line_in =
 'Oranges and lemons,

 fgets

1-3911

 '

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. Before using fgets to read a line
from the file, you must use fopen to open the file and obtain its fileID.
Data Types: double

nchar — Number of characters
integer

Number of characters to read from the next line, specified as an integer. fgets returns at
most nchar characters of the next line. If the number of characters specified by nchar
includes characters beyond the newline character or the end-of-file marker, then fgets
does not return any characters beyond the new line character or the end-of-file marker.
Data Types: double

Output Arguments
tline — Next line in file
character vector | numeric scalar

Next line in file, returned as a character vector or numeric scalar.

• If the file is nonempty, then fgets returns tline as a character vector.
• If the file is empty and contains only the end-of-file marker, then fgets returns tline

as a numeric value -1.

ltout — Line terminators
integer

1 Alphabetical List

1-3912

Line terminators, returned as an integer.

The integers from 0 to 65535 correspond to Unicodecharacters. You can convert integers
to their corresponding Unicode representations using the char function.

Tips
• tline does not include any characters after the newline characters or the end-of-file

marker.
• fgets reads characters using the encoding scheme associated with the file. To specify

the encoding scheme, use fopen.

See Also
fclose | feof | ferror | fgetl | fopen | fprintf | fread | fscanf | fwrite |
textscan

Topics
“Import Text Data Files with Low-Level I/O”

Introduced before R2006a

 fgets

1-3913

fgets (serial)
Read line of text from device and include terminator

Syntax
tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

Description
tline = fgets(obj) reads one line of text from the device connected to the serial port
object, obj, and returns the data to tline. This returned data includes the terminator
with the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count, including
the terminator.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the read
operation was unsuccessful.

Examples
Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope, and write
the RS232? command with the fprintf function. RS232? instructs the scope to return
serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is continuous, data is
automatically returned to the input buffer.

s.BytesAvailable

1 Alphabetical List

1-3914

ans =
 17

Use fgets to read the data returned from the previous write operation, and include the
terminator.

settings = fgets(s)

settings =
9600;0;0;NONE;LF

length(settings)

ans =
 17

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Tips
Before you can read text from the device, it must be connected to obj with the
fopenfunction. A connected serial port object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not connected to
the device.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read –
including the terminator – each time fgets is issued.

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

Rules for Completing a Read Operation with fgets
A read operation with fgets blocks access to the MATLAB command line until:

 fgets (serial)

1-3915

• The terminator specified by the Terminator property is reached.
• The time specified by the Timeout property passes.
• The input buffer is filled.

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

See Also
BytesAvailable | BytesAvailableFcn | InputBufferSize | Status | Terminator | Timeout |
ValuesReceived | fgetl | fopen

Introduced before R2006a

1 Alphabetical List

1-3916

fieldnames
Field names of structure, or public fields of Java or Microsoft COM object

Syntax
fields = fieldnames(S)
fields = fieldnames(obj,'-full')

Description
fields = fieldnames(S) returns the field names of the structure array S in a cell
array.

fields = fieldnames(obj,'-full') returns a cell array of character vectors
containing the name, type, attributes, and inheritance of the properties of obj. The input
argument obj is a Java or Microsoft COM object.

Examples

Return Field Names and Values

Create a structure array.

S(1,1).x = linspace(0,2*pi);
S(1,1).y = sin(S(1,1).x);
S(1,1).title = 'y = sin(x)';
S(2,1).x = linspace(0,2*pi);
S(2,1).y = cos(S(2,1).x);
S(2,1).title = 'y = cos(x)'

S = 2x1 struct array with fields:
 x
 y
 title

 fieldnames

1-3917

Return the field names in a cell array using the fieldnames function.

fields = fieldnames(S)

fields = 3x1 cell array
 {'x' }
 {'y' }
 {'title'}

To return the values of the fields, use the struct2cell function. struct2cell and
fieldnames return the values and the field names in the same order.

values = struct2cell(S)

values = 3x2 cell array
 {1x100 double} {1x100 double}
 {1x100 double} {1x100 double}
 {'y = sin(x)'} {'y = cos(x)'}

Input Arguments
S — Input structure array
structure array

Input structure array.

obj — Input object
Java object | Microsoft COM object

Input object, specified as a Java object or Microsoft COM object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-3918

Usage notes and limitations:

• The input must be a structure. Objects are not supported.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
getfield | isfield | orderfields | properties | rmfield | setfield |
struct2cell

Topics
“Generate Field Names from Variables”

Introduced before R2006a

 fieldnames

1-3919

figure
Create figure window

Syntax
figure
figure(Name,Value)
f = figure(___)

figure(f)
figure(n)

Description
figure creates a new figure window using default property values. The resulting figure
is the current figure on page 1-3929.

figure(Name,Value) modifies properties of the figure using one or more name-value
pair arguments. For example, figure('Color','white') sets the background color to
white.

f = figure(___) returns the Figure object. Use f to query or modify properties of
the figure after it is created.

figure(f) makes the figure specified by f the current figure and displays it on top of all
other figures.

figure(n) finds a figure in which the Number property is equal to n, and makes it the
current figure. If no figure exists with that property value, MATLAB creates a new figure
and sets its Number property to n.

Examples

1 Alphabetical List

1-3920

Specify Figure Title

Create a figure, and specify the Name property. By default, the resulting title includes the
figure number.

figure('Name','Measured Data');

Specify the Name property again, but this time, set the NumberTitle property to 'off'.
The resulting title does not include the figure number.

figure('Name','Measured Data','NumberTitle','off');

 figure

1-3921

Working with Multiple Figures Simultaneously

Create two figures, and then create a line plot. By default, the plot command targets the
current figure.

f1 = figure;
f2 = figure;
plot([1 2 3],[2 4 6]);

1 Alphabetical List

1-3922

Set the current figure to f1, so that it is the target for the next plot. Then create a scatter
plot.

figure(f1);
scatter((1:20),rand(1,20));

 figure

1-3923

Input Arguments
f — Target figure
Figure object

Target figure, specified as a Figure object.

1 Alphabetical List

1-3924

n — Target figure number
scalar integer value

Target figure number, specified as a scalar integer value. When you specify this argument,
MATLAB searches for an existing figure in which the Number property is equal to n. If no
figure exists with that property value, MATLAB creates a new figure and sets its Number
property to n. By default, the Number property value is displayed in the title of the figure.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.
Example: figure('Color','white') creates a figure with a white background.

Note The properties listed here are only a subset. For a full list, see Figure.

Name — Name
'' (default) | character vector | string scalar

Name of the figure, specified as a character vector or a string scalar.
Example: figure('Name','Results') sets the name of the figure to 'Results'.

By default, the name is 'Figure n', where n is an integer. When you specify the Name
property, the title of the figure becomes 'Figure n: name'. If you want only the Name
value to appear, set IntegerHandle or NumberTitle to 'off'.

Color — Background color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name. If you specify 'none', the background color appears black on screen, but if
you print the figure, the background prints as though the figure window is transparent.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 figure

1-3925

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-3926

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

Position — Location and size of drawable area
[left bottom width height]

Location and size of the drawable area, specified as a vector of the form [left bottom
width height]. This area excludes the figure borders, title bar, menu bar, and tool bars.

This table describes each element in the Position vector.

Element Description
left Distance from the left edge of the primary display to the

inner left edge of the window. This value can be negative
on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

bottom Distance from the bottom edge of the primary display to
the inner bottom edge of the window. This value can be
negative on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

width Distance between the right and left inner edges of the
figure.

height Distance between the top and bottom inner edges of the
window.

All measurements are in units specified by the Units property.

You cannot specify the figure Position property when the figure is docked.

In MATLAB Online, the bottom and left elements of the Position vector are ignored.

To place the full window, including the borders, title bar, menu bar, tool bars, use the
OuterPosition property.

 figure

1-3927

Note The Windows operating system enforces a minimum window width and a maximum
window size. If you specify a figure size outside of those limits, the displayed figure will
conform to the limits instead of the size you specified.

Units — Units of measurement
'pixels' (default) | 'normalized' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified as one of the values from this table.

Units Value Description
'pixels' (default) Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'normalized' These units are normalized with respect to
the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.

1 Alphabetical List

1-3928

Units Value Description
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

This property affects the Position property. If you change the Units property, consider
returning its value to the default value after completing your computation to avoid
affecting other functions that assume the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units before the Position property, then MATLAB sets Position
using the units you specify.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position value to the
equivalent value in the units you specify.

Definitions

Current Figure
The current figure is the target for graphics commands such as axes and colormap.
Typically, it is the last figure created or the last figure clicked with the mouse. The gcf
command returns the current figure.

 figure

1-3929

See Also
Functions
axes | cla | clf | gca | gcf | shg

Properties
Figure

Introduced before R2006a

1 Alphabetical List

1-3930

Figure Properties
Control appearance and behavior of figure window

Note The properties listed here are valid for figures used in GUIDE or figures
created with the figure function. For figures created with the uifigure function, see
UI Figure Properties.

Description
Figures are containers for graphics or user interface components. Figure properties
control the appearance and behavior of a particular instance of a figure. To modify
aspects of a figure, change property values.

Starting in R2014b, you can use dot notation to query and set properties.

f = figure;
u = f.Units;
f.Units = 'inches';

If you are using an earlier release, use the get and set functions instead.

Properties
Window Appearance

MenuBar — Figure menu bar display
'figure' (default) | 'none'

Figure menu bar display, specified as 'figure' or 'none'. The MenuBar property
enables you to display or hide the default menus at the top of a figure window. Specify
'figure' to display the menu bar. Specify 'none' to hide it.

This property affects only default menus, and does not affect menus defined with the
uimenu command.

Menu bars do not appear in figures whose WindowStyle property is set to 'Modal'. If a
figure containing uimenu children is changed to 'Modal', the uimenu children still exist

 Figure Properties

1-3931

in the Children property of the figure. However, the uimenus do not display while
WindowStyle is set to 'Modal'.

Note If you do not want to display the default menus in the figure, then set this property
to 'none' when you create the figure.

ToolBar — Figure toolbar display
'auto' (default) | 'figure' | 'none'

Figure toolbar display, specified as one of the following:

• 'auto' — Uses the same value as the MenuBar property.
• 'figure' — Toolbar displays.
• 'none' — Toolbar does not display.

This property affects only the default toolbar. It does not affect other toolbars such as, the
Camera Toolbar or Plot Edit Toolbar. Selecting Figure Toolbar from the figure View
menu sets this property to 'figure'.

Toolbars do not appear in figures whose WindowStyle property is set to 'Modal'. If a
figure containing a toolbar is changed to 'Modal', the tool bar children still exist in the
Children property of the figure. However, the toolbar does not display while
WindowStyle is set to 'Modal'.

Note If you want to hide the default tool bar, then set this property to 'none' when you
create the figure.

DockControls — Interactive figure docking
'on' (default) | 'off'

Interactive figure docking, specified as one of the following:

• 'on' — Figure can be docked in the MATLAB desktop. The Desktop > Dock Figure
menu item and the Dock Figure button in the menu bar are enabled.

• 'off' — MATLAB disables the Desktop > Dock Figure menu item and does not
display the figure dock button.

1 Alphabetical List

1-3932

You cannot set the DockControls property to 'off' if the WindowStyle is set to
'docked'.

Setting the DockControls property is not supported in MATLAB Online.

Color — Background color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name. If you specify 'none', the background color appears black on screen, but if
you print the figure, the background prints as though the figure window is transparent.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

 Figure Properties

1-3933

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

WindowStyle — Window style
'normal' (default) | 'modal' | 'docked'

Window style, specified as one of the following:

• 'normal' — The figure window is independent of other windows, and the other
windows are accessible while the figure is displaying.

• 'modal' — The figure displays on top of all existing figure windows, making them
inaccessible as long as the top figure exists and remains modal. However, any new
figures created after a modal figure will display.

When multiple modal windows exist, the most recently created window keeps focus
and stays above all other windows until it becomes invisible, or is returned to a normal
window style, or is deleted. At that time, focus reverts to the window that last had
focus.

• 'docked' — The figure displays in the desktop or a document window. When the
WindowStyle property is set to 'docked', you cannot set the DockControls
property to 'off'. The 'docked' option is not supported in MATLAB Online.

Note These are some important characteristics of the WindowStyle property and some
recommended best practices:

1 Alphabetical List

1-3934

• When you create UI windows, always specify the WindowStyle property. If you also
want to set the Resize, Position, or OuterPosition properties of the figure, then
set the WindowStyle property first.

• You can change the WindowStyle property of a figure at any time, including when the
figure is visible and contains children. However on some systems, setting this property
might cause the figure to flash or disappear and reappear, depending on the system's
implementation of normal and modal windows. For best visual results, set the
WindowStyle property at creation time or when the figure is invisible.

• Calling reset on a figure does not change the value of the WindowStyle property.

Modal Window Style Behavior

When WindowStyle is set to 'modal', the figure window traps all keyboard and mouse
actions over all MATLAB windows as long as the windows are visible. Windows belonging
to applications other than MATLAB are unaffected.

Typing Ctrl+C when a modal figure has focus causes that figure to revert to a 'normal'
WindowStyle property setting. This allows the user to type at the command line.

Figures with the WindowStyle property set to 'modal' and the Visible property set to
'off' do not behave modally until MATLAB makes them visible. Therefore, you can hide
a modal window for later reuse, instead of destroying it.

Modal figures do not display menu children, built-in menus, or toolbars. But, it is not an
error to create menus in a modal figure or to change the WindowStyle property setting
to 'modal' on a figure with menu children. The Menu objects exist and the figure retains
them. If you reset the figure's WindowStyle property to 'normal', the menus display.

WindowState — Window state
'normal' (default) | 'minimized' | 'maximized' | 'fullscreen'

Window state, specified as one of these values:

• 'normal' — The window displays in a normal state.
• 'minimized' — The window is collapsed, but you can still execute commands to get

or set its properties, to add children, or to create plots in the window.
• 'maximized' — The window fills the screen. The minimize, restore, and close buttons

provided by the operating system appear in the corner of the window. If the window
has menus and tool bars in the normal state, they are present in this state.

 Figure Properties

1-3935

• 'fullscreen' — The window fills the screen. However, the minimize, restore, and
close buttons provided by the operating system are hidden. If the window has menus
and tool bars in the normal state, they are present in this state.

Clicking the minimize, maximize, or restore button provided by the operating system sets
the WindowState property accordingly. Pressing Ctrl+F11 (Windows and Linux) or Ctrl
+Command+f (Mac OS) toggles the 'fullscreen' state.

Setting the WindowState property on a docked figure or in MATLAB Online is not
supported.

Position

Position — Location and size of drawable area
[left bottom width height]

Location and size of the drawable area, specified as a vector of the form [left bottom
width height]. This area excludes the figure borders, title bar, menu bar, and tool bars.

This table describes each element in the Position vector.

Element Description
left Distance from the left edge of the primary display to the

inner left edge of the window. This value can be negative
on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

bottom Distance from the bottom edge of the primary display to
the inner bottom edge of the window. This value can be
negative on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

width Distance between the right and left inner edges of the
figure.

height Distance between the top and bottom inner edges of the
window.

All measurements are in units specified by the Units property.

You cannot specify the figure Position property when the figure is docked.

1 Alphabetical List

1-3936

In MATLAB Online, the bottom and left elements of the Position vector are ignored.

To place the full window, including the borders, title bar, menu bar, tool bars, use the
OuterPosition property.

Note The Windows operating system enforces a minimum window width and a maximum
window size. If you specify a figure size outside of those limits, the displayed figure will
conform to the limits instead of the size you specified.

Units — Units of measurement
'pixels' (default) | 'normalized' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified as one of the values from this table.

Units Value Description
'pixels' (default) Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'normalized' These units are normalized with respect to
the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.

 Figure Properties

1-3937

Units Value Description
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

This property affects the Position property. If you change the Units property, consider
returning its value to the default value after completing your computation to avoid
affecting other functions that assume the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units before the Position property, then MATLAB sets Position
using the units you specify.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position value to the
equivalent value in the units you specify.

InnerPosition — Location and size of drawable area
[left bottom width height]

Location and size of the drawable area, specified as a vector of the form [left bottom
width height]. This area excludes the figure borders, title bar, menu bar, and tool bars.
All measurements are in units specified by the Units property.

This property value is identical to the Position property value.

OuterPosition — Location and size of outer bounds
[left bottom width height]

1 Alphabetical List

1-3938

Location and size of the outer bounds, specified as a vector of the form [left bottom
width height]. This property defines the region enclosed by the figure’s outer bounds
(which includes the borders, title bar, menu bar, and tool bars).

This table describes each element in the vector.

Element Description
left Distance from the left edge of the primary display to the

outer left edge of the figure window. This value can be
negative on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

bottom Distance from the bottom edge of the primary display to
the outer bottom edge of the figure window. This value can
be negative on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

width Distance between the right and left outer edges of the
figure.

height Distance between the top and bottom outer edges of the
figure.

All measurements are in units specified by the Units property.

You cannot specify the figure OuterPosition property when the figure is docked.

Note The Windows operating system enforces a minimum window width and a maximum
window size. If you specify a figure size outside of those limits, the displayed figure will
conform to the limits instead of the size you specified.

Clipping — Clipping of child components (not recommended)
'on' (default) | 'off'

This property has no effect on figures.

Resize — Resizable
'on' (default) | 'off'

 Figure Properties

1-3939

Resizable figure, specified as 'on' or 'off'. When this property is set to 'on', the
figure is resizable. Otherwise, it is not resizable.

Plotting

Colormap — Color map for axes content of figure
parula (default) | m-by-3 array of RGB triplets

Color map for axes content of a figure, specified as an m-by-3 array of RGB (red, green,
blue) triplets that define m individual colors.
Example: figure('Colormap',[1 0 1; 0 0 1; 1 1 0]) sets the color map to three
colors: magenta, blue, and yellow.

MATLAB accesses these colors by their row number.

Color maps affect the rendering of objects created with the surface, image, and patch
functions, but generally do not affect other graphics objects.

When you set the Colormap property of the figure, then axes and charts in the figure use
the same colormap.

Alphamap — Transparency map for Axes content
array of 64 values from 0 to 1 (default) | array of finite alpha values from 0 to 1

Transparency map for Axes content, specified as an array of finite alpha values that
progress linearly from 0 to 1. The size of the array can be m-by-1 or 1-by-m. MATLAB
accesses alpha values by their index in the array. Alphamaps can be any length.

Alphamaps affect the rendering of objects created with the surface, image, and patch
functions, but do not affect other graphics objects.

When you set the Alphamap property of the figure, then axes and charts in the figure use
the same alpha map.

NextPlot — Directive on how to add next plot
'add' (default) | 'new' | 'replace' | 'replacechildren'

Directive on how to add next plot, specified as 'add', 'new', 'replace', or
'replacechildren'.

This table describes the effects of each value.

1 Alphabetical List

1-3940

Property Value Effect
'new' Creates a new figure and uses it as the

current figure.
'add' Adds new graphics objects without clearing

or resetting the current figure.
'replacechildren' Removes all axes objects who are not

hidden before adding new objects. Does not
reset figure properties.

Equivalent to using the clf command.
'replace' Removes all axes objects and resets figure

properties to their defaults before adding
new graphics objects.

Equivalent to using the clf reset
command.

Consider using the newplot function to handle the NextPlot property. For more
information, see the axes NextPlot property and “Prepare Figures and Axes for Graphs”.

Renderer — Renderer
'opengl' (default) | 'painters'

Renderer for screen display and printing, specified as one of these values:

• 'opengl' — OpenGL® renderer. This option enables MATLAB to access graphics
hardware if it is available on your system. The OpenGL renderer displays objects
sorted in front to back order, as seen on the monitor. Lines always draw in front of
faces when at the same location on the plane of the monitor.

• 'painters' — Painters renderer. This option works well for axes in a 2-D view. In 2-
D, the Painters renderer sorts graphics objects by child order (order specified). In 3-D,
the Painters renderer sorts objects in front to back order. However, it might not
correctly draw intersecting polygons in 3-D.

Note The 'zbuffer' option has been removed. Use 'opengl' or 'painters' instead.

Setting the Renderer property is not supported in MATLAB Online.

 Figure Properties

1-3941

OpenGL Hardware and Software Implementations

OpenGL is available on all computers that run MATLAB since a software version of
OpenGL is built-into MATLAB. However, if you have graphics hardware that supports a
hardware-accelerated version of OpenGL, then MATLAB automatically uses the hardware-
accelerated version to increase performance.

In some cases, MATLAB automatically uses software OpenGL even if a hardware version
is available. For example, MATLAB uses the software version if it detects graphics
hardware with known driver issues or detects that you are using a virtual machine or
remote desktop on Windows.

MATLAB issues a warning if it cannot find a usable OpenGL library.
Software OpenGL Selection

To switch from hardware to software OpenGL, do the following:

• On Linux systems, start MATLAB with the command matlab -softwareopengl.
• On Windows systems, execute the command opengl software in MATLAB or start

MATLAB with the command matlab -softwareopengl.
• On Macintosh systems, software OpenGL is not supported.

The following software versions are available:

• On Linux systems, MATLAB uses the software implementation of OpenGL that is
included in the MATLAB distribution.

• On Windows, OpenGL is available as part of the operating system. If you experience
problems with OpenGL, contact your graphics driver vendor to obtain the latest
qualified version of OpenGL.

• On Macintosh systems, software OpenGL is not available.

Determine OpenGL Library Version

To determine the version and vendor of the OpenGL library that MATLAB is using on your
system, call the rendererinfo function. For example, this command gets the
information for the current axes and stores it in a structure called info.

info = rendererinfo(gca)

This structure also provides the name of the graphics renderer in the
GraphicsRenderer field. For example, if MATLAB is using hardware-accelerated

1 Alphabetical List

1-3942

OpenGL, the field returns 'OpenGL Hardware'. If MATLAB is using software OpenGL,
the field returns 'OpenGL Software'.

XServer Connection Lost

When using Linux, if there is a break in the connection to the XServer, MATLAB can crash
with a segmentation violation . If this happens, ensure that the system has the latest
XServer installed.

On a Linux system, you also can try upgrading the OpenGL driver or starting MATLAB
with software OpenGL using this command:

 matlab -softwareopengl

RendererMode — Renderer selection
'auto' (default) | 'manual'

Renderer selection, specified as:

• 'auto' — MATLAB selects the rendering method for printing and screen display
based on the size and complexity of the graphics objects in the figure.

• 'manual' — MATLAB uses the renderer specified with the Renderer property.

MATLAB sets the RendererMode property to 'manual' if you explicitly set the
Renderer property to 'painters' or 'opengl'.

GraphicsSmoothing — Axes graphics smoothing
'on' (default) | 'off'

Axes graphics smoothing, specified as 'on' or 'off'. Smoothing reduces the
appearance of jagged lines in an axes graphic. MATLAB applies a smoothing technique to
an axes graphic (and the axes rulers) if GraphicsSmoothing is set to 'on', and either of
these conditions is true:

• The Renderer property is set to 'painters'.
• The Renderer property is set to 'opengl' and your hardware card supports

OpenGL.

If your axes graphic contains mostly vertical or horizontal lines, consider setting the
GraphicsSmoothing property to 'on' and the line or lines AlignVertexCenters
property to 'on'. The smoothing technique sacrifices some sharpness for smoothness,
which might be particularly noticeable in such graphics.

 Figure Properties

1-3943

Note Graphics smoothing has no affect on text. MATLAB smooths text regardless of the
value of the GraphicsSmoothing property.

Setting the GraphicsSmoothing property is not supported in MATLAB Online.

Printing and Exporting

PaperPosition — Figure size and location on page when printing or saving
four-element vector of the form [left bottom width height]

Figure size and location on page when printing or saving, specified as a four-element
vector of the form [left bottom width height].

• left and bottom values — Control the distance from the lower left corner of the page
to the lower left corner of the figure. These values are ignored when saving a figure to
a nonpage format, such as a PNG or EPS format.

• width and height values — Control the figure size. If the width and height values are
too large, then the figure might not reach the specified size. If the figure does not
reach the specific size, then any UI components on the figure, such as uicontrols or a
uitable, might not save or print as expected.

The PaperUnits property determines the units of measurement of the PaperPosition
values. Consider setting the PaperUnits property to 'normalized'. This setting
enables MATLAB to automatically size the figure to occupy the same relative amount of
the printed page, regardless of the page size.
Example: figure('PaperPosition',[.25 .25 8 6]) set the figure’s size and
location for printing to [.25 .25 8 6].

PaperPositionMode — Directive to use displayed figure size when printing or
saving
'auto' (default) | 'manual'

Directive to use displayed figure size when printing or saving, specified as either 'auto'
or 'manual'.

• 'auto' — Printed or saved figure size matches the displayed figure size. The width
and height values of the PaperPosition property equal the figure size on the
display. The left and bottom values center the figure. If the figure size changes on
the display, the PaperPosition property automatically updates to the appropriate
size and location values.

1 Alphabetical List

1-3944

• 'manual' — Printed or saved figure size might not match the displayed figure size.
Use this option if you want to print or save the figure using a size that differs from the
display, or if you do not want the figure centered on the printed or saved page. Set the
PaperPosition property to the desired size and location. If the figure size changes
on the display, the PaperPosition property does not automatically update.

To generate output that has the same size and resolution (DPI) as the displayed figure, set
the PaperPositionMode property of the figure to 'auto' and save the figure using
print with the -r0 option. The -r0 option ensures that the output resolution is the same
as the display resolution. If the resolutions are different, then the generated output size
matches the displayed figure size in measured units (inches, centimeters, points), but not
in pixels. For example, if the display resolution is 100 DPI, then a 4-by-5 inch figure is
400-by-500 pixels. If the output resolution is 200 DPI, then the printed or saved figure is
the same size in inches, but 800-by-1000 pixels.

Note Starting in R2016a, the default value is 'auto'. Previously, the default value was
'manual'.

To change the default value, use one of these techniques.

• Set a print preference. Print preferences persist across MATLAB sessions. You can set
the print preference to either 'auto' or 'manual', for example:

matlab.graphics.internal.setPrintPreferences('DefaultPaperPositionMode','manual')

To query the current print preference value, use the following command. If you set a
preference, the command returns 'auto' or 'manual'. If you did not set a
preference, the command returns 'unset'.

matlab.graphics.internal.getPrintPreferences

• Set the default value on the root object. This option affects only new figures in the
current MATLAB session, for example:

set(groot,'defaultFigurePaperPositionMode','manual')

PaperSize — Custom page size
two-element vector of the form [width height]

Custom page size when printing the figure or saving it to a paged format (PDF and
PostScript® formats), specified as a two-element vector of the form [width height]. In

 Figure Properties

1-3945

the United States, the default value is [8.5 11]. In Europe and Asia, the default value is
[21 29.7].

Note If you are saving the figure to a file, the PaperSize property only affects PDF and
PostScript file formats. Other file formats ignore this property. Use the PaperPosition
property to control the size of the saved figure.

The PaperUnits property determines the units of measurement for the PaperSize
property. You cannot set the PaperSize property if the PaperUnits property is set to
'normalized'. Attempting to do so results in an error.

Specifying the PaperSize property sets the PaperType property to the corresponding
type, if one exists, or to 'custom' otherwise.

PaperUnits — Units used for PaperSize and PaperPosition
'inches' | 'centimeters' | 'normalized' | 'points'

Units used for PaperSize and PaperPosition, specified as one of these values:

• 'inches' — Value in inches. This is the default when the locale is the United States.
• 'normalized' — Normalized units. The lower left corner of the page maps to (0,0)

and the upper right corner maps to (1,1).
• 'centimeters' — Value in centimeters. This is the default when the locale is Europe

or Asia.
• 'points' — Value in points. One point equals 1/72 of an inch.

Note If you change the value of the PaperUnits property, it is good practice to return
the property to its original value after completing your computation so as not to affect
other functions that assume the PaperUnits property has not changed.

PaperOrientation — Orientation of page
'portrait' (default) | 'landscape'

Orientation of page when printing figure or saving it to a paged format (PDF and
PostScript formats), specified as one of these values:

• 'portrait' — Orient the longest page dimension vertically.

1 Alphabetical List

1-3946

• 'landscape' — Orient the longest page dimension horizontally.

See the orient function for more information.

Note When using File > Save As, only PDF and full-page PS formats use the
PaperOrientation property. Other formats ignore these values.

PaperType — Standard page sizes
'usletter' | 'uslegal' | 'tabloid' | 'a0' | 'a1' | 'a2' | 'a3' | ...

Standard page sizes when printing the figure or saving it to a paged format (PDF and
PostScript formats), specified as one of the values in this table. Specifying the PaperType
property sets the PaperSize property to the corresponding page size.

Value Page Size (Width x Height)
'usletter' 8.5-by-11 in (default in US)
'uslegal' 8.5-by-14 in
'tabloid' 11-by-17 in
'a0' 84.1-by-118.9 cm
'a1' 59.4-by-84.1 cm
'a2' 42-by-59.4 cm
'a3' 29.7-by-42 cm
'a4' 21-by-29.7 cm (default in Europe and Asia)
'a5' 14.8-by-21 cm
'b0' 102.9-by-145.6 cm
'b1 72.8-by-102.8 cm
'b2' 51.4-by-72.8 cm
'b3' 36.4-by-51.4 cm
'b4' 25.7-by-36.4 cm
'b5' 18.2-by-25.7 cm
'arch-a' 9-by-12 in
'arch-b' 12-by-18 in

 Figure Properties

1-3947

Value Page Size (Width x Height)
'arch-c' 18-by-24 in
'arch-d' 24-by-36 in
'arch-e' 36-by-48 in
'a' 8.5-by-11 in
'b' 11-by-17 in
'c' 17-by-22 in
'd' 22-by-34 in
'e' 34-by-43 in
'custom' Custom page size. Specifying a non-standard

page size using the PaperSize property sets
PaperPosition to this value.

InvertHardcopy — Figure background color when printing or saving
'on' (default) | 'off'

Figure background color when saving or printing, specified as one of these values:

• 'on' — Change the figure background and axes background colors to white.
• 'off' — Use the same colors as the colors on the display. To change the figure

background color on the display, use the Color property of the figure. To change the
axes background color, use the Color property of the axes.

Mouse Pointer

Pointer — Pointer symbol
'arrow' (default) | 'ibeam' | 'crosshair' | 'watch' | 'topl' | 'custom' | ...

Pointer symbol, specified as one of the symbol names in the following table or as
'custom'. The appearance of the symbol is operating-system dependent.

Symbol Name Resulting Symbol (System Dependent)
'arrow'

1 Alphabetical List

1-3948

Symbol Name Resulting Symbol (System Dependent)
'ibeam'

'crosshair'

'watch' (busy system)

'topl' or 'botr'

'topr' or 'botl'

'circle'

'cross'

'fleur'

'left' or 'right'

'top' or 'bottom'

'hand'

Note The 'fullcrosshair' option was removed in R2014b.

 Figure Properties

1-3949

Custom Pointer Symbol

To create a custom pointer symbol, set the Pointer property to 'custom' and use the
PointerShapeCData property to define the symbol. See the PointerShapeCData
property for more information.

PointerShapeCData — Custom pointer symbol
32-by-32 matrix | 16-by-16 matrix

Custom pointer symbol, specified as a 32-by-32 matrix (for a 32-by-32 pixel pointer) or as
a 16-by-16 matrix (for a 16-by-16 pixel pointer). The figure uses this pointer symbol when
you set the Pointer property to 'custom'.

Each element in the matrix defines the brightness level for 1 pixel in the pointer. Element
(1,1) of the matrix corresponds to the pixel in the upper left corner in the pointer. Set
the matrix elements to one of these values:

• 1 — Black pixel.
• 2 — White pixel.
• NaN — Transparent pixel, such that underlying screen shows through.

PointerShapeHotSpot — Active pixel of pointer
[1 1] (default) | two-element vector

Active pixel of the pointer, specified as a two-element vector. The vector contains the row
and column indices of a particular element in the PointerShapeCData matrix that
corresponds to the desired active pixel. The default value of [1 1] corresponds to the
pixel in the upper left corner of the pointer.

If you specify a value outside the range of the PointerShapeCData matrix, then the
pointer uses the default active pixel of [1 1] instead.

This property applies only when the Pointer property is set to 'custom'.

Interactivity

CurrentAxes — Target axes in current figure
Axes object | PolarAxes object | graphics object

Target axes in the current figure, specified as an Axes object, a PolarAxes object, or a
graphics object such as a HeatmapChart.

1 Alphabetical List

1-3950

In all figures for which axes children exist, there is always a current axes. The current
axes does not have to be the topmost axes, and setting an axes to be the current axes
does not restack it above all other axes. If a figure contains no axes, the
get(gcf,'CurrentAxes') command returns an empty array.

Query the CurrentAxes property to get the current axes object without forcing the
creation of an axes if one does not exist.

CurrentObject — Current object
child object of figure

Current object, returned as a child object of the figure. MATLAB sets the
CurrentObject property to the last object clicked in the figure. This object is the front-
most object in the view.

The HitTest property of the child object controls whether that object can become the
CurrentObject.

Clicking an object whose HandleVisibility property is 'off' sets the
CurrentObject property to an empty GraphicsPlaceholder array. To avoid returning
the empty array when users click a hidden object, set HitTest property of the hidden
object to 'off'.

Use the gco command as an alternative for getting the value of this property.

CurrentPoint — Current point
two-element vector

Current point, returned as a two-element vector. The vector contains the (x, y)
coordinates of the mouse pointer, measured from the lower-left corner of the figure. The
values are in units specified by the Units property.

The coordinates update when you do any of the following:

• Press the mouse button within the figure.
• Release the mouse button after pressing it within the figure.
• Press the mouse button within the figure, and then release it outside the figure.
• Rotate the scroll wheel within the figure.
• Move the mouse within the figure (without pressing any buttons), provided that the

WindowButtonMotionFcn property is not empty.

 Figure Properties

1-3951

If the figure has a callback that responds to mouse interactions, and you trigger that
callback faster than the system can execute the code, the coordinates might not reflect
the actual location of the pointer. Instead, they are the location when the callback began
execution.

If you use the CurrentPoint property to plot points, the coordinate values might contain
rounding error.

CurrentCharacter — Current character
'' (default) | character

Current character, returned as the character of the last key pressed. This property
updates when the figure has focus while the user presses a key.

Selected — Selection state (not recommended)
'off' (default) | 'on'

Note The behavior of the Selected property changed in R2014b, and it is not
recommended. It no longer has any effect on Figure objects. This property might be
removed in a future release.

SelectionHighlight — Display of selection handles (not recommended)
'on' (default) | 'off'

Note Use of the SelectionHighlight property is not recommended. This property
might be removed in a future release.

This property has no effect on figures.

SelectionType — Mouse selection type
'normal' (default) | 'extend' | 'alt' | 'open'

Mouse selection type, returned as 'normal', 'extend', 'alt', or 'open'. This
property provides information about the last mouse button press that occurred in the
figure.

This table lists the possible SelectionType values and the user actions that produce
those values.

1 Alphabetical List

1-3952

Value Corresponding Action
'normal' Click the left mouse button.
'extend' Any of the following:

• Shift-click the left mouse button.
• Click the middle mouse button.
• Click both left and right mouse buttons.

'alt' Either of the following:

• Control-click the left mouse button.
• Click the right mouse button.

'open' Double-click any mouse button.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | uicontextmenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when the user right-clicks on a UI component. Create the context menu using the
uicontextmenu function.

Visible — Figure visibility
'on' (default) | 'off'

Figure visibility, specified as 'on' or 'off'. The Visible property determines whether
the figure displays on the screen. If the Visible property of a figure is set to 'off', the
entire figure is invisible, but you can still specify and access its properties.

Changing the size of an invisible figure triggers the SizeChangedFcn callback when the
figure becomes visible.

Note Changing the Visible property of a figure does not change the Visible property
of its child components even though hiding the figure prevents its children from
displaying.

Common Callbacks

ButtonDownFcn — Button down callback
'' (default) | function handle | cell array | character vector

 Figure Properties

1-3953

Button down callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes whenever the user clicks a blank area of the figure.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

Use the SelectionType property to determine whether the user pressed modifier keys.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-3954

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

Keyboard Callbacks

KeyPressFcn — Key-press callback
'' (default) | function handle | cell array | character vector

Key-press callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user presses a key while the figure or a child
object has focus. If the user presses a key on a UIControl or Table component, the
callback does not execute unless the Enable property is set to 'off'.

If the user presses multiple keys at approximately the same time, MATLAB detects all the
keys.

The KeyPressFcn callback can access specific information about the user’s interaction
with the keyboard. MATLAB passes this information in a KeyData object as the second
argument to your callback function. This table lists the properties of this object.

 Figure Properties

1-3955

Property Description
Character The character that appears as a result of pressing the key or keys.

Pressing certain keys or modifying keys with the Ctrl key might put
unprintable characters in the Character property.

Pressing certain keys alone (such as Ctrl, Alt, Shift) does not
generate Character data.

Modifier Cell array containing the names of the modifier keys pressed, such
as control, alt, or shift. If no modifier keys are pressed, the cell
array is empty.

Key The key pressed, identified by the lowercase label on the key, or a
descriptive word such as 'space'.

Source The object that has focus when the user presses the key.
EventName 'KeyPress'

For more information about specifying callback property values and using callback
arguments, see “How to Specify Callback Property Values”.

The CurrentCharacter property also returns character information.

KeyReleaseFcn — Key-release callback
'' (default) | function handle | cell array | character vector

Key-release callback, specified as one of these values

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user presses a key while the figure or a child
object has focus. If the user releases a key on a UIControl or Table component, the
callback does not execute unless the Enable property is set to 'off'.

The KeyReleaseFcn callback can access specific information about the user’s
interaction with the keyboard. MATLAB passes this information in a KeyData object as

1 Alphabetical List

1-3956

the second argument to your callback function. This table lists the properties of this
object.

Property Description
Character Character that corresponds to the key or keys that are released.

Certain keys or key combinations might return unprintable characters in
this property.

Pressing and releasing certain keys alone (such as Ctrl, Alt, Shift) does
not generate Character data.

Modifier Cell array containing the names of the modifier keys released, such as
control, alt, or shift. If no modifier keys are released, the cell array is
empty.

Key Key released, identified by the (lowercase) label on the key, or a
descriptive word such as 'space'.

Source Object that has focus when the key is released.
EventName 'KeyRelease'

For more information about specifying callback property values and using callback
arguments, see “How to Specify Callback Property Values”.

Window Callbacks

CloseRequestFcn — Close request callback
'closereq' (default) | function handle | cell array | character vector

Close request callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

 Figure Properties

1-3957

This callback executes whenever a user attempts to close a figure window. You can, for
example, display a dialog box to ask a user to confirm or cancel the close operation or to
prevent users from closing a figure that contains a UI.

The basic mechanism is:

1 A user issues the close or close all command from the command line, closes the
figure from the computer window manager menu, or closes the figure by quitting
MATLAB.

2 The close operation executes the function defined by the figure CloseRequestFcn
property. The default function is closereq.

The closereq function unconditionally deletes the current figure, destroying the
window. The closereq function takes advantage of the fact that the close
command makes each figure specified as an argument the current figure before
calling its respective close request function.

The closereq function honors the ShowHiddenHandles property setting during figure
deletion and does not delete hidden figures.

Unless the close request function calls the delete or close function, MATLAB never
closes the figure. (You can call delete(f) from the command line if you have created a
window with a nondestructive close request function.)

Example: Code CloseRequestFcn to Display Dialog Box

This example shows how to code the close request function to display a question dialog
box asking the user to confirm the close operation. Save the code to a writable folder on
your system.

function my_closereq(src,callbackdata)
% Close request function
% to display a question dialog box
 selection = questdlg('Close This Figure?',...
 'Close Request Function',...
 'Yes','No','Yes');
 switch selection
 case 'Yes'
 delete(gcf)
 case 'No'
 return
 end
end

1 Alphabetical List

1-3958

Now, create a figure specifying my_closereq for the CloseRequestFcn:

figure('CloseRequestFcn',@my_closereq)

Close the figure window and the question dialog box displays.

SizeChangedFcn — Size changed callback
'' (default) | function handle | cell array | character vector

Size changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.
• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible
property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

 Figure Properties

1-3959

Tip As an easy alternative to specifying a SizeChangedFcn callback, you can set the
Units property of all the objects you put inside a container to 'normalized'. Doing so
makes those components scale proportionally with the container.

Example: Edit Field With Constant Height

Use the SizeChangedFcn callback to constrain the size of UI components. For instance,
the following code creates a UI that has an edit field at the top of the window. As the user
resizes the window, the sbar function restricts its height to 20 pixels. The function also
sets the edit field’s width to the width of the figure.

If you are using R2014b or later, use dot notation to set and query properties:

function myui
f = figure('Visible','off','SizeChangedFcn',@sbar);
u = uicontrol('Style','edit','Tag','StatusBar');
f.Visible = 'on';
 function sbar(src,callbackdata)
 old_units = src.Units;
 src.Units = 'pixels';
 sbar_units = u.Units;
 u.Units = 'pixels';
 fpos = src.Position;
 upos = [1 fpos(4) - 20 fpos(3) 20];
 u.Position = upos;
 u.Units = sbar_units;
 src.Units = old_units;
 u.Visible = 'on';
 end
end

If you are using R2014a or an earlier release, use this code instead.

function myui
f = figure('Visible','off','SizeChangedFcn',@sbar);
u = uicontrol('Style','edit','Tag','StatusBar');
set(f,'Visible','on');
 function sbar(src,callbackdata)
 old_units = get(src,'Units');
 set(src,'Units','pixels');
 sbar_units = get(u,'Units');
 set(u,'Units','pixels');
 fpos = get(src,'Position');

1 Alphabetical List

1-3960

 upos = [1 fpos(4) - 20 fpos(3) 20];
 set(u,'Position',upos);
 set(u,'Units',sbar_units);
 set(src,'Units',old_units);
 set(u,'Visible','on');
 end
end

WindowButtonDownFcn — Window button down callback
'' (default) | function handle | cell array | character vector

Window button down callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user clicks anywhere in the figure or one of its child
objects. If the user clicks a UIControl or Table component, the callback does not
execute unless the Enable property is set to 'off'.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

WindowButtonMotionFcn — Window button motion callback
'' (default) | function handle | cell array | character vector

Window button motion callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Typically, this callback function executes whenever the user moves the pointer within the
figure. However, if the user clicks and holds the mouse button and moves the pointer
outside the figure, the WindowButtonMotionFcn callback executes while the pointer is
outside the figure.

 Figure Properties

1-3961

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

Example: Simple Drawing App

This example shows how to create a drawing app that uses the
WindowButtonMotionFcn callback. Copy and paste the following code into the editor
and run it. Then use the mouse to draw a set of connected line segments:

• Click and drag inside the axes to draw the first line segment.
• Click again to define an anchor point for the line segment.
• Move the mouse to add another line segment.
• Right-click to end drawing mode.

function drawing_app
figure('WindowButtonDownFcn',@wbdcb)
ah = axes('SortMethod','childorder');
axis ([1 10 1 10])
title('Click and drag')
 function wbdcb(src,callbackdata)
 seltype = src.SelectionType;
 % This code uses dot notation to set properties
 % Dot notation runs in R2014b and later.
 % For R2014a and earlier: seltype = get(src,'SelectionType');
 if strcmp(seltype,'normal')
 src.Pointer = 'circle';
 cp = ah.CurrentPoint;
 % For R2014a and earlier:
 % set(src,'Pointer','circle');
 % cp = get(ah,'CurrentPoint');
 xinit = cp(1,1);
 yinit = cp(1,2);
 hl = line('XData',xinit,'YData',yinit,...
 'Marker','p','color','b');
 src.WindowButtonMotionFcn = @wbmcb;
 src.WindowButtonUpFcn = @wbucb;
 % For R2014a and earlier:
 % set(src,'WindowButtonMotionFcn',@wbmcb);
 % set(src,'WindowButtonUpFcn',@wbucb);

 end

 function wbmcb(src,callbackdata)

1 Alphabetical List

1-3962

 cp = ah.CurrentPoint;
 % For R2014a and earlier:
 % cp = get(ah,'CurrentPoint');
 xdat = [xinit,cp(1,1)];
 ydat = [yinit,cp(1,2)];
 hl.XData = xdat;
 hl.YData = ydat;
 % For R2014a and earlier:
 % set(hl,'XData',xdat);
 % set(hl,'YData',ydat);
 drawnow
 end

 function wbucb(src,callbackdata)
 last_seltype = src.SelectionType;
 % For R2014a and earlier:
 % last_seltype = get(src,'SelectionType');
 if strcmp(last_seltype,'alt')
 src.Pointer = 'arrow';
 src.WindowButtonMotionFcn = '';
 src.WindowButtonUpFcn = '';
 % For R2014a and earlier:
 % set(src,'Pointer','arrow');
 % set(src,'WindowButtonMotionFcn','');
 % set(src,'WindowButtonUpFcn','');
 else
 return
 end
 end
 end
end

WindowButtonUpFcn — Window button-up callback
'' (default) | function handle | cell array | character vector

Window button-up callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

 Figure Properties

1-3963

This callback executes when the user releases the mouse button anywhere in the figure or
one of its child objects. If the user releases the mouse button on a UIControl or Table
component, the callback does not execute unless the Enable property is set to 'off'.

The button-up actions are associated with button-down actions in the figure. The mouse
pointer must be inside the figure when the button-down action occurs, but it can be
outside the figure when the button-up action occurs.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

WindowKeyPressFcn — Window key-press callback
'' (default) | function handle | cell array | character vector

Window key-press callback, specified as one of these values

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user presses a key while the figure or a child
object has focus.

This callback function can access specific information about the user’s interaction with
the keyboard. MATLAB passes this information in a KeyData object as the second
argument to your callback function. This table lists the properties of this object.

Property Description
Character The character that appears as a result of pressing the key or keys.

Pressing certain keys or modifying keys with the Ctrl key might return
unprintable characters in this property.

Pressing and releasing certain keys alone (such as Ctrl, Alt, Shift) does
not generate Character data.

Modifier Cell array containing the names of the modifier keys released, such as
control, alt, or shift. If no modifier keys are released, the cell array is
empty.

1 Alphabetical List

1-3964

Property Description
Key Key released, identified by the (lowercase) label on the key, or a

descriptive word such as 'space'.
Source Object that has focus when the key is released.
EventName 'KeyRelease'

For more information about specifying callback property values and using callback
arguments, see “How to Specify Callback Property Values”.

WindowKeyReleaseFcn — Window key-release callback
'' (default) | function handle | cell array | character vector

Window key-release callback, specified as one of these values

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user releases a key while the figure or a child
object has focus.

This callback function can access specific information about the user’s interaction with
the keyboard. MATLAB passes this information in a KeyData object as the second
argument to your callback function. This table lists the properties of this object.

Property Description
Character Character that corresponds to the key or keys that are released.

Certain keys or key combinations might return unprintable characters in
this property.

Pressing and releasing certain keys alone (such as Ctrl, Alt, Shift) does
not generate Character data.

Modifier Cell array containing the names of the modifier keys released, such as
control, alt, or shift. If no modifier keys are released, the cell array is
empty.

 Figure Properties

1-3965

Property Description
Key Key released, identified by the (lowercase) label on the key, or a

descriptive word such as 'space'.
Source Object that has focus when the key is released.
EventName 'KeyRelease'

For more information about specifying callback property values and using callback
arguments, see “How to Specify Callback Property Values”.

WindowScrollWheelFcn — Window scroll wheel callback
'' (default) | function handle | cell array | character vector

Window scroll wheel callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user moves the scroll wheel while the figure or any if its
children have focus. However, other objects can capture scroll wheel movement and
interfere with the execution of this callback.

Executing this callback has no effect on the CurrentObject and SelectionType
properties.

The WindowScrollWheelFcn callback can access specific information when the user
rotates the scroll wheel. MATLAB passes this information in a ScrollWheelData object
as the second argument to your callback function. This table lists the properties of the
ScrollWheelData object.

1 Alphabetical List

1-3966

P
r
o
p
e
r
t
y

Contents

V
e
r
t
i
c
a
l
S
c
r
o
l
l
C
o
u
n
t

A positive or negative number that indicates the direction and number of scroll wheel
clicks. Scrolling down returns a positive value. Scrolling up returns a negative value.

The vertical scroll count is the sum of all scroll wheel clicks that occurred since the last
time the callback executed. Typically, the value is 1 or -1. However, the scroll count can
have a larger magnitude if the WindowScrollWheelFcn callback takes a long time to
return, or if the user spins the scroll wheel very fast.

 Figure Properties

1-3967

P
r
o
p
e
r
t
y

Contents

V
e
r
t
i
c
a
l
S
c
r
o
l
l
A
m
o
u
n
t

The number of lines scrolled for each click of the scroll wheel. Typically, the value is 3,
but some systems might return a different value depending on how the mouse is
configured.

S
o
u
r
c
e

Object that executes the callback.

1 Alphabetical List

1-3968

P
r
o
p
e
r
t
y

Contents

E
v
e
n
t
N
a
m
e

'WindowScrollWheel'

For more information about specifying callback property values and using callback
arguments, see “How to Specify Callback Property Values”.

Example: App for Changing x-Axis Limits

This example shows how to create an app that displays a plot. The user can scroll to
change the limits of the x-axis. Copy and paste the following code into the editor and run
it.
function scroll_wheel
% Shows how to use WindowScrollWheelFcn property
%
 f = figure('WindowScrollWheelFcn',@figScroll,'Name','Scroll Wheel Demo');
 x = [0:.1:40];
 y = 4.*cos(x)./(x+2);
 a = axes;
 h = plot(x,y);
 title('Rotate the scroll wheel')

 function figScroll(src,callbackdata)
 if callbackdata.VerticalScrollCount > 0
 xd = h.XData;
 % This code uses dot notation to set properties
 % Dot notation runs in R2014b and later.
 % For R2014a and earlier: xd = get(h,'XData');
 inc = xd(end)/20;
 x = [0:.1:xd(end)+inc];
 re_eval(x)

 Figure Properties

1-3969

 elseif callbackdata.VerticalScrollCount < 0
 xd = h.XData;
 % For R2014a and earlier: xd = get(h,'XData');
 inc = xd(end)/20;
 x = [0:.1:xd(end)-inc+.1]; % Don't let xd = 0;
 re_eval(x)
 end
 end

 function re_eval(x)
 y = 4.*cos(x)./(x+2);
 h.YData = y;
 h.XData = x;
 a.XLim = [0 x(end)];
 % For R2014a and earlier:
 % set(h,'YData',y);
 % set(h,'XData',x);
 % set(a,'XLim',[0 x(end)]);
 drawnow
 end
end

ResizeFcn — Resize callback function (not recommended)
'' (default) | function handle | cell array | character vector

Resize callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Note Use of the ResizeFcn property is not recommended. It might be removed in a
future release. Use SizeChangedFcn instead.

Data Types: function_handle | cell | char

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

1 Alphabetical List

1-3970

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

 Figure Properties

1-3971

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

HitTest — Ability to become current object
'on' (default) | 'off'

Ability to become current object, specified as 'on' or 'off':

• 'on' — Sets the current object to the Figure when the user clicks the component in
the running app. Both the CurrentObject property of the Figure and the gco
function return the Figure as the current object.

• 'off' — The current object does not update when the user clicks the figure in the
running app.

BeingDeleted — Deletion status
'off' | 'on'

1 Alphabetical List

1-3972

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Figure parent
root object

Figure parent, returned as a root object.

Children — Children of figure
empty GraphicsPlaceholder array (default) | 1-D array of objects

Children of the Figure, returned as an empty GraphicsPlaceholder or a 1-D array of
objects.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the children. The order of the children reflects the
front-to-back order (stacking order) of the components on the screen. MATLAB might not
allow you to change the order of certain objects. For example, UIControl and Legend
objects are always in front of Axes objects.

To add a child to this list, set the Parent property of the child component to be the
Figure object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of figure object
'on' (default) | 'callback' | 'off'

Visibility of figure object, specified as 'on', 'callback', or 'off'.

This property determines whether a figure is in its parent’s (the root’s) list of children.
HandleVisibility is useful for preventing command-line users from accidentally
drawing into, or deleting a figure that contains only user interface components (such as a
dialog box).

 Figure Properties

1-3973

If an object is not in its parent's list of children, functions that find objects by searching
the object hierarchy or querying properties cannot return that object. Such functions
include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When the HandleVisibility property value is restricted using the 'callback' or
'off' settings, the object does not appear in the parent object Children property,
figures do not appear in the root CurrentFigure property, objects do not appear in the
root CallbackObject property or in the figure CurrentObject property, and axes do
not appear in their parent CurrentAxes property.

Set the root ShowHiddenHandles property to 'on' to make all objects visible,
regardless of their HandleVisibility settings (this does not affect the values of the
HandleVisibility properties).

Identifiers

Name — Name
'' (default) | character vector | string scalar

Name of the figure, specified as a character vector or a string scalar.
Example: figure('Name','Results') sets the name of the figure to 'Results'.

By default, the name is 'Figure n', where n is an integer. When you specify the Name
property, the title of the figure becomes 'Figure n: name'. If you want only the Name
value to appear, set IntegerHandle or NumberTitle to 'off'.

Number — Number
integer | []

This property is read-only.

Number of the figure, returned as an integer or empty array. You can refer to a figure
using this value. For example, figure(2) makes the figure with a Number property value
of 2 the current figure.

If the IntegerHandle property is set to 'off', the Number property is empty.

If IntegerHandle is 'on', the Number property is an integer. When you delete the
figure, MATLAB reuses the number for the next figure.

NumberTitle — Use number title
'on' (default) | 'off'

1 Alphabetical List

1-3974

Number title, specified as 'on' or 'off'. When you set this property to 'on', the title of
the figure includes the phrase 'Figure n', where n is the value of the Number property.

Both the NumberTitle and IntegerHandle must be set to 'on' to show to show the
number in the title.

IntegerHandle — Use integer handle
'on' (default) | 'off'

Use integer handle, specified as 'on' or 'off'.

If you set the IntegerHandle property to 'on', MATLAB finds the lowest integer value
that is not used by an existing figure and sets the Number property to that value. If you
delete a figure, MATLAB can reuse its number on a new figure.

If you set the IntegerHandle property to 'off', MATLAB does not assign an integer
value to the figure, and it sets the Number property to an empty array.

To show the figure number in the title bar, both IntegerHandle and NumberTitle must
be set to 'on'.

FileName — File name
character vector | string scalar

File name for saving the figure, specified as a character vector or a string scalar. GUIDE
uses this property to store the name of the UI layout file that it saves.
Example: figure('FileName','myfile.fig') sets the file name to myfile.fig.

Type — Type of Figure object
'figure'

This property is read-only.

Type of Figure object, returned as 'figure'. Use this property to find all objects of a
given type within a plotting hierarchy.

Tag — Figure identifier
' ' (default) | character vector

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for any component object in your app. When you need

 Figure Properties

1-3975

access to the object elsewhere in your code, you can use the findobj function to search
for the object based on the Tag value.
Example: figure('Tag','plotwindow') creates a figure whose tag identifier is
'plotwindow'.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
figure | gcf

Topics
“Access Property Values”
“Default Property Values”

Introduced before R2006a

1 Alphabetical List

1-3976

figurepalette
Show or hide Figure Palette

Syntax
figurepalette('show')
figurepalette('hide')
figurepalette
figurepalette(figure_handle,...)

Description
figurepalette('show') displays the palette on the current figure.

figurepalette('hide') hides the palette on the current figure.

figurepalette toggles the visibility of the palette on the current figure. You can also
use figurepalette('toggle') instead for the same functionality.

figurepalette(figure_handle,...) shows or hides the palette on the figure
specified by figure_handle.

Examples

Open Figure Palette
Plot a line and open the figure palette.

plot(1:10)
figurepalette('show')

 figurepalette

1-3977

Tips
If you call figurepalette in a MATLAB program and subsequent lines depend on the
Figure Palette being fully initialized, follow it by drawnow to ensure complete
initialization.

1 Alphabetical List

1-3978

Alternatives
Open or close the Figure Palette tool from the figure's View menu.

See Also
plotbrowser | plottools | propertyeditor

Introduced before R2006a

 figurepalette

1-3979

fileattrib
Set or get attributes of file or folder

Syntax
fileattrib
fileattrib filename

fileattrib filename attribs
fileattrib filename attribs users
fileattrib filename attribs users s

[status,values] = fileattrib(filename)
[status,msg,msgID] = fileattrib(filename,attribs, ___)

Description
fileattrib lists the attribute values for the current folder. The values are listed using
this structure:

Name
archive
system
hidden
directory
UserRead
UserWrite
UserExecute
GroupRead
GroupWrite
GroupExecute
OtherRead
OtherWrite
OtherExecute

1 Alphabetical List

1-3980

The first field, Name, displays the file or folder name. The remaining fields display a value
of 0 if the attribute is off, 1 if the attribute is on, and NaN if the attribute does not apply.

fileattrib is similar to the DOS attrib command, or the UNIX chmod command.

Note In Windows, setting the write access attribute ('w') to read-only does not
necessarily prevent write access. Therefore, the value for UserWrite may differ from
what is expected.

fileattrib filename lists the attribute values for the named file or folder.

fileattrib filename attribs sets the specified attributes for the named file or
folder.

fileattrib filename attribs users sets the file or folder attributes for the
specified subset of users.

fileattrib filename attribs users s sets the specified attributes for the
specified users for the contents of the named folder.

[status,values] = fileattrib(filename) returns the status and the last
successfully set attribute values for the named file or folder. If the file exists, status is 1.
Otherwise, status is 0.

[status,msg,msgID] = fileattrib(filename,attribs, ___) sets the specified
file attributes and returns the status of the operation as well as an error message and
error message identifier if the set operation is unsuccessful.

Examples

View Current Folder Attributes on Windows

View attributes of the current folder on a Windows system, assuming the current folder is
C:\my_MATLAB_files. The attributes indicate that you have read, write, and execute
permissions for the current folder.

fileattrib

 fileattrib

1-3981

 Name: 'C:\my_MATLAB_files'
 archive: 0
 system: 0
 hidden: 0
 directory: 1
 UserRead: 1
 UserWrite: 1
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

View File Attributes on Windows

View attributes of the file myfile.m on a Windows system. The attributes indicate that
the specified item is a file. You can read and execute the file, but cannot update it. The file
is archived.

fileattrib myfile.m

 Name: 'C:\my_MATLAB_files\myfile.m'
 archive: 1
 system: 0
 hidden: 0
 directory: 0
 UserRead: 1
 UserWrite: 0
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

1 Alphabetical List

1-3982

View Folder Attributes on Windows

View attributes for the folder C:\my_MATLAB_files\doc. The attributes indicate that
you have read, write, and execute permissions for the folder.

fileattrib C:\my_MATLAB_files\doc

ans =

 Name: 'C:\my_MATLAB_files\doc'
 archive: 0
 system: 0
 hidden: 0
 directory: 1
 UserRead: 1
 UserWrite: 1
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

View Folder Attributes on UNIX

View attributes for the folder /public on a UNIX system. The attributes indicate that you
have read, write, and execute permissions for the folder. In addition, users in your UNIX
group and all others have read and execute permissions for the folder, but not write
permissions.

fileattrib /public

ans =

 Name: '/public'
 archive: NaN
 system: NaN
 hidden: NaN
 directory: 1
 UserRead: 1
 UserWrite: 1
 UserExecute: 1

 fileattrib

1-3983

 GroupRead: 1
 GroupWrite: 0
 GroupExecute: 1
 OtherRead: 1
 OtherWrite: 0
 OtherExecute: 1

Set File Attributes on Windows

Make myfile.m writable.

fileattrib('myfile.m','+w')

Set File Attributes for All Users on UNIX

Make the folder /home/work/results a read-only folder for all users on UNIX
platforms. The minus (-) preceding the write attribute, w, removes the write access,
making the file read-only.

fileattrib('/home/work/results','-w','a')

Set Attributes for Folder and Its Contents on Windows

Make the folder D:\work\results and all its contents read-only and hidden. Because a
value for the users argument is not applicable on Windows systems, users is specified
as an empty character vector, ''. The 's' argument applies the hidden and write access
attributes to the contents of the folder and to the folder itself.

fileattrib('D:\work\results','+h -w','','s')

Get Attributes Structure for a Folder on Windows

Get the attributes for the folder results and return them as a structure. A status value
of 1 indicates that the operation is successful. The structure values contains the
attributes of the folder.

[status,values] = fileattrib('results')

1 Alphabetical List

1-3984

status =
 1

values =
 Name: 'D:\work\results'
 archive: 0
 system: 0
 hidden: 0
 directory: 1
 UserRead: 1
 UserWrite: 1
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

Access the name attribute value in the structure. MATLAB returns the path for results.

values.Name

ans =
D:\work\results

Get Attributes Structure for Multiple Files on Windows

Get the attributes for all files in the current folder with names that begin with new. The
returned 1x3 structure array values indicates that there are three matching files.

[status,values] = fileattrib('new*')

status =
 1

values =
1x3 struct array with fields:
 Name
 archive
 system
 hidden
 directory

 fileattrib

1-3985

 UserRead
 UserWrite
 UserExecute
 GroupRead
 GroupWrite
 GroupExecute
 OtherRead
 OtherWrite
 OtherExecute

View the file names.

values.Name

ans =
D:\work\results\newname.m

ans =
D:\work\results\newone.m

ans =
D:\work\results\newtest.m

View just the second file name.

values(2).Name

ans =
D:\work\results\newname.m

Successfully Set Attributes for a File and Get Messages on Windows

Show output that results when an attempt to set file attributes is successful. The status
value of 1 indicates that the set operation was successful. Therefore, no error msg or
msgID is returned.

[status,msg,msgID] = fileattrib('C:\my_MATLAB_files\doc',...
'+h -w','','s')

status =

 1

1 Alphabetical List

1-3986

msg =

 ''

msgID =

 ''

Unsuccessfully Set Attributes for a File and Get Messages on Windows

Show output that results when an attempt to set file attributes is unsuccessful. The
status value of 0 indicates that the set operation was unsuccessful. The minus sign
incorrectly appears after w, instead of before it. msg describes the error that occurred
and msgID contains the message identifier for the error that occurred.

[status,msg,msgID] = fileattrib('C:\my_MATLAB_files\doc',...
'+h w-','','s')

status =

 0

msg =

Illegal file mode characters on the current platform.

msgID =

MATLAB:FILEATTRIB:ModeSyntaxError

Input Arguments
filename — File or folder name
character vector | string scalar

File or folder name, specified as a character vector or string scalar. You can specify an
absolute or relative path. filename can include wildcards (*).
Example: fileattrib('myfile.m')

 fileattrib

1-3987

Data Types: char | string

attribs — File or folder attribute values
character vector | string scalar

File or folder attribute values, specified as a character vector or string scalar consisting
of one or more of these values separated by spaces:

Value Description
'a' Archive (Microsoft Windows platform only).
'h' Hidden file (Windows platform only).
's' System file (Windows platform only).
'w' Write access (Windows and UNIX platforms). Results differ by platform

and application. For example, even though fileattrib disables the
“write” privilege for a folder, making it read-only, files in the folder
could be writable for some platforms or applications.

'x' Executable (UNIX platform only).

Use the plus (+) qualifier before an attribute to set it, and the minus (-) qualifier before
an attribute to clear it.
Example: fileattrib('myfile.m', '+w -h')
Data Types: char | string

users — Subset of users
'a' | 'g' | 'o' | 'u' | ''

Subset of users (on UNIX platforms only), specified as one of these values:

Value for UNIX
Systems

Description

'a' All users
'g' Group of users
'o' All other users
'u' Current user

Specify an empty value '' for all platforms other than UNIX. This value is not returned by
fileattrib get operations.

1 Alphabetical List

1-3988

Example: fileattrib('/home/work/results','-w','a')

Output Arguments
status — Indication of whether attempt to set or get attributes was successful
0 | 1

Indication of whether attempt to set or get attributes was successful, specified as 0 or 1.
If the attempt to set or get attributes was successful, status is 1. Otherwise, status is
0.

values — Attribute structure
structure array

Attribute structure, specified as a structure array containing these fields and possible
values:

Field name Possible Values
Name Character vector containing name of file or

folder
archive 0 (not set), 1 (set), or NaN (not applicable)
system 0 (not set), 1 (set), or NaN (not applicable)
hidden 0 (not set), 1 (set), or NaN (not applicable)
directory 0 (not set), 1 (set), or NaN (not applicable)
UserRead 0 (not set), 1 (set), or NaN (not applicable)
UserWrite 0 (not set), 1 (set), or NaN (not applicable)
UserExecute 0 (not set), 1 (set), or NaN (not applicable)
GroupRead 0 (not set), 1 (set), or NaN (not applicable)
GroupWrite 0 (not set), 1 (set), or NaN (not applicable)
GroupExecute 0 (not set), 1 (set), or NaN (not applicable)
OtherRead 0 (not set), 1 (set), or NaN (not applicable)
OtherWrite 0 (not set), 1 (set), or NaN (not applicable)
OtherExecute 0 (not set), 1 (set), or NaN (not applicable)

 fileattrib

1-3989

Note On Windows systems, setting the write access attribute ('w') to read-only does not
necessarily prevent write access. Therefore, the value for UserWrite may differ from
what is expected.

msg — Error message
character vector

Error message, specified as a character vector. If status is 0, msg contains the message
text of the error. If status is 1, msg is empty, ''.

msgID — Error message identifier
character vector

Error message identifier, specified as a character vector. If status is 0, msgID contains
the message id of the error. If status is 1, msgID is empty, ''.

See Also
cd | copyfile | delete | dir | ls | mkdir | movefile | rmdir

Introduced before R2006a

1 Alphabetical List

1-3990

Current Folder Browser
Open Current Folder browser

Description
The Current Folder browser enables you to interactively manage files and folders in
MATLAB. Use the Current Folder browser to view, create, open, move, and rename files
and folders in the current folder.

Open the Current Folder Browser
To open the Current Folder browser if it is not currently visible, do one of the following:

• MATLAB Toolstrip: On the Home tab, in the Environment section, click Layout.
Then, in the Show section, select Current Folder.

• MATLAB command prompt: Enter filebrowser.

Examples

Create New Live Script

Create a new live script in the current folder.

In the Current Folder browser, right-click in white space, and then select New Live
Script.

 Current Folder Browser

1-3991

MATLAB creates and selects a live script named Untitledn.mlx in the current folder.

Enter a name for the live script and press Enter. For example, type myLiveScript and
then press Enter. MATLAB renames the live script to myLiveScript.mlx

Programmatic Use
filebrowser opens the Current Folder browser. If the Current Folder browser is already
open, MATLAB selects the tool.

1 Alphabetical List

1-3992

See Also
cd | ls | pwd

Topics
“Manage Files and Folders”
“Enter Statements in Command Window”

Introduced before R2006a

 Current Folder Browser

1-3993

filemarker
Character to separate file name from local or nested function name

Syntax
m = filemarker

Description
m = filemarker returns the character (> by default) used to separate the file name
from the local or nested function name when referring to the function.

Examples

Get Help For Local Function

Get the help text for the local function validateSizes defined in imwrite.m.

help(['imwrite' filemarker 'validateSizes'])

 How many bytes does each element occupy in memory?

You can also use the filemarker character with the same result.

help('imwrite>validateSizes')

 How many bytes does each element occupy in memory?

Stop at Local and Nested Functions in File

Set a breakpoint in a program at the first executable line of a local function and of a
nested function.

1 Alphabetical List

1-3994

Create a file, myfile.m, that contains these statements

function n = myfile(x)
n = myfunction(x);
myfunction2;

 function z = myfunction2(x)
 z = x + 1;
 end

end

function y = myfunction(x)
y = x + 1;
end

Set a breakpoint at the local function myfunction using the filemarker character.

dbstop in myfile>myfunction

Set a breakpoint at the nested function myfunction2 using the filemarker character.

dbstop in myfile>myfunction2

See Also
dbstop | filesep

Introduced in R2006a

 filemarker

1-3995

fileparts
Get parts of file name

Syntax
[filepath,name,ext] = fileparts(filename)

Description
[filepath,name,ext] = fileparts(filename) returns the path name, file name,
and extension for the specified file.

fileparts only parses the specified filename. It does not verify that the file exists.

Examples

Get Parts of File Name for Windows
file = 'H:\user4\matlab\myfile.txt';
[filepath,name,ext] = fileparts(file)

filepath =
'H:\user4\matlab'

name =
'myfile'

ext =
'.txt'

Get Parts of Dotfile Name for Linux

Get the parts of a user .cshrc file name for a Linux® system.

1 Alphabetical List

1-3996

fileparts interprets the entire file name as an extension because it begins with a
period.

[filepath,name,ext] = fileparts('/home/jsmith/.cshrc')

filepath =
'/home/jsmith'

name =

 1x0 empty char array

ext =
'.cshrc'

Input Arguments
filename — File name
string scalar | character vector

File name, specified as a string scalar or character vector. filename can include a path
and file extension.

On Microsoft Windows systems, you can use either forward slashes (/) or backslashes (\)
as path delimiters, even within the same file name. On UNIX and Macintosh systems, use
only / as a delimiter.
Data Types: char | string

Output Arguments
filepath — File path
string scalar | character vector

File path, returned as a string scalar or character vector. filepath has the same data
type as the input argument filename. If the name of the file to parse does not specify a
path, filepath is empty ('').
Data Types: char | string

 fileparts

1-3997

name — File name
string scalar | character vector

File name, returned as a string scalar or character vector. name has the same data type as
the input argument filename.

The extension is not included. fileparts interprets all characters following the
rightmost delimiter as the name of the file plus extension.
Data Types: char | string

ext — File extension
string scalar | character vector

File extension, returned as a string scalar or character vector. ext has the same data type
as the input argument filename.

ext begins with a period (.). If the name of the file to parse does not specify an
extension, ext is empty ('').
Data Types: char | string

Tips
• To reconstruct a file name from the output of fileparts, use strcat to concatenate

the file name and the extension that begins with a period (.) without a path separator.
Then, use fullfile to build the file name with the platform-dependent file separators
where necessary. For example, fullfile(filepath, strcat(name,ext)).

• To specify a folder name only, be sure that the rightmost character in filename is a
delimiter (/ or \). Otherwise, fileparts parses the trailing portion of filename as
the name of the file and returns it in name instead of in filepath.

See Also
filesep | fullfile | pathsep

Topics
“Specify File Names”

1 Alphabetical List

1-3998

Introduced before R2006a

 fileparts

1-3999

fileread
Read contents of file as text

Syntax
text = fileread(filename)

Description
text = fileread(filename) returns contents of the file filename as a character
vector.

Examples

Search File for Text

Read a file and search it for text of interest.

First, read the file Contents.m into a character vector.

filetext = fileread('fileread.m');

Then, define the text to search for.

expr = '[^\n]*fileread[^\n]*';

Find and return all lines that contain the text 'fileread'.

matches = regexp(filetext,expr,'match');

Display the first matching line.

disp(matches{1})

function out=fileread(filename)

1 Alphabetical List

1-4000

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or string scalar.
Example: 'myFile.dat'
Data Types: char | string

See Also
fgetl | fgets | fread | fscanf | importdata | textscan | type

Introduced before R2006a

 fileread

1-4001

filesep
File separator for current platform

Syntax
f = filesep

Description
f = filesep returns the platform-specific file separator character. The file separator is
the character that separates individual folder and file names in a path.

Examples

Create Path for Folder on Windows

Create a path to the iofun folder on a Microsoft® Windows® platform.

iofun_dir = ['toolbox' filesep 'matlab' filesep 'iofun']

iofun_dir =

 'toolbox\matlab\iofun'

Create Path for Folder on Linux

Create a path to the iofun folder on a Linux® platform.

iofun_dir = ['toolbox' filesep 'matlab' filesep 'iofun']

iofun_dir =
'toolbox\matlab\iofun'

1 Alphabetical List

1-4002

See Also
fileparts | fullfile | pathsep

Introduced before R2006a

 filesep

1-4003

fill
Filled 2-D polygons

Syntax
fill(X,Y,C)
fill(X,Y,ColorSpec)
fill(X1,Y1,C1,X2,Y2,C2,...)
fill(...,'PropertyName',PropertyValue)
fill(ax,...)
h = fill(...)

Description
The fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with vertex color specified
by C. C is a vector or matrix used as an index into the colormap. If C is a row vector,
length(C) must equal size(X,2) and size(Y,2); if C is a column vector, length(C)
must equal size(X,1) and size(Y,1). If necessary, fill closes the polygon by
connecting the last vertex to the first. The values in X and Y can be numeric, datetime,
duration, or categorical values.

fill(X,Y,ColorSpec) fills two-dimensional polygons specified by X and Y with the
color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional filled areas.

fill(...,'PropertyName',PropertyValue) allows you to specify property names
and values for a patch graphics object.

1 Alphabetical List

1-4004

fill(ax,...) creates the polygons in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

h = fill(...) returns a vector of patch objects.

Examples

Create Red Octagon

Define the data.

t = (1/16:1/8:1)'*2*pi;
x = cos(t);
y = sin(t);

Create a red octagon using the fill function.

fill(x,y,'r')
axis square

 fill

1-4005

Tips
If X or Y is a matrix, and the other is a column vector with the same number of elements
as rows in the matrix, fill replicates the column vector argument to produce a matrix of
the required size. fill forms a vertex from corresponding elements in X and Y and
creates one polygon from the data in each column.

If X or Y contains one or more NaN values, then fill does not fill the polygons.

1 Alphabetical List

1-4006

The type of color shading depends on how you specify color in the argument list. If you
specify color using ColorSpec, fill generates flat-shaded polygons by setting the patch
object's FaceColor property to the corresponding RGB triplet.

If you specify color using C, fill scales the elements of C by the values specified by the
axes property CLim. After scaling C, C indexes the current colormap.

If C is a row vector, fill generates flat-shaded polygons where each element determines
the color of the polygon defined by the respective column of the X and Y matrices. Each
patch object’s FaceColor property is set to 'flat'. Each row element becomes the
CData property value for the nth patch object, where n is the corresponding column in X
or Y.

If C is a column vector or a matrix, fill uses a linear interpolation of the vertex colors to
generate polygons with interpolated colors. It sets the patch graphics object FaceColor
property to 'interp' and the elements in one column become the CData property value
for the respective patch object. If C is a column vector, fill replicates the column vector
to produce the required sized matrix.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

 fill

1-4007

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
ColorSpec | axis | caxis | colormap | fill3 | patch

Properties
Patch

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

1 Alphabetical List

1-4008

fill3
Filled 3-D polygons

Syntax
fill3(X,Y,Z,C)
fill3(X,Y,Z,ColorSpec)
fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...)
fill3(...,'PropertyName',PropertyValue)
fill3(ax,...)
h = fill3(...)

Description
The fill3 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,C) fills three-dimensional polygons. X, Y, and Z triplets specify the
polygon vertices. If X, Y, or Z is a matrix, fill3 creates n polygons, where n is the
number of columns in the matrix. fill3 closes the polygons by connecting the last vertex
to the first when necessary. The values in X, Y, and Z can be numeric, datetime, duration,
or categorical values.

C specifies color, where C is a vector or matrix of indices into the current colormap. If C is
a row vector, length(C) must equal size(X,2) and size(Y,2); if C is a column vector,
length(C) must equal size(X,1) and size(Y,1).

fill3(X,Y,Z,ColorSpec) fills three-dimensional polygons defined by X, Y, and Z with
color specified by ColorSpec.

fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...) specifies multiple filled three-dimensional
areas.

 fill3

1-4009

fill3(...,'PropertyName',PropertyValue) allows you to set values for specific
patch properties.

fill3(ax,...) creates the polygons in the axes specified by ax instead of in the
current axes (gca). The option ax can precede any of the input argument combinations in
the previous syntaxes.

h = fill3(...) returns a vector of patch objects.

Examples

Create Filled 3-D Polygon

Create four triangles with interpolated colors.

X = [0 1 1 2; 1 1 2 2; 0 0 1 1];
Y = [1 1 1 1; 1 0 1 0; 0 0 0 0];
Z = [1 1 1 1; 1 0 1 0; 0 0 0 0];
C = [0.5000 1.0000 1.0000 0.5000;
 1.0000 0.5000 0.5000 0.1667;
 0.3330 0.3330 0.5000 0.5000];

figure
fill3(X,Y,Z,C)

1 Alphabetical List

1-4010

Algorithms
If X, Y, and Z are matrices of the same size, fill3 forms a vertex from the corresponding
elements of X, Y, and Z (all from the same matrix location), and creates one polygon from
the data in each column.

If X, Y, or Z is a matrix, fill3 replicates any column vector argument to produce
matrices of the required size.

If you specify color using ColorSpec, fill3 generates flat-shaded polygons and sets the
patch object FaceColor property to an RGB triplet.

 fill3

1-4011

If you specify color using C, fill3 scales the elements of CLim by the axes property
CLim, which specifies the color axis scaling parameters, before indexing the current
colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets the FaceColor
property of the patch objects to 'flat'. Each element becomes the CData property
value for the respective patch object.

If C is a column vector or a matrix, fill3 generates polygons with interpolated colors
and sets the patch object FaceColor property to 'interp'. fill3 uses a linear
interpolation of the vertex colormap indices when generating polygons with interpolated
colors. The elements in one column become the CData property value for the respective
patch object. If C is a column vector, fill3 replicates the column vector to produce the
required sized matrix.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

1 Alphabetical List

1-4012

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
ColorSpec | axis | caxis | colormap | fill | patch

Properties
Patch

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

 fill3

1-4013

fillmissing
Fill missing values

Syntax
F = fillmissing(A,'constant',v)
F = fillmissing(A,method)
F = fillmissing(A,movmethod,window)
F = fillmissing(___ ,dim)
F = fillmissing(___ ,Name,Value)
[F,TF] = fillmissing(___)

Description
F = fillmissing(A,'constant',v) fills missing entries of an array or table with the
constant value v. If A is a matrix or multidimensional array, then v can be either a scalar
or a vector. When v is a vector, each element specifies the fill value in the corresponding
column of A. If A is a table or timetable, then v can also be a cell array.

Missing values are defined according to the data type of A:

• NaN — double, single, duration, and calendarDuration
• NaT — datetime
• <missing>—string
• <undefined> — categorical
• ' ' — char
• {''} — cell of character arrays

If A is a table, then the data type of each column defines the missing value for that
column.

F = fillmissing(A,method) fills missing entries using the method specified by
method, which can be one of the following:

1 Alphabetical List

1-4014

• 'previous' — previous non-missing value
• 'next' — next non-missing value
• 'nearest' — nearest non-missing value
• 'linear' — linear interpolation of neighboring, non-missing values (numeric,

duration, and datetime data types only)
• 'spline' — piecewise cubic spline interpolation (numeric, duration, and datetime

data types only)
• 'pchip' — shape-preserving piecewise cubic spline interpolation (numeric,

duration, and datetime data types only)

F = fillmissing(A,movmethod,window) fills missing entries using a moving window
mean or median with window length window. For example,
fillmissing(A,'movmean',5) fills data with a moving average using a window length
of 5.

F = fillmissing(___ ,dim) specifies the dimension of A to operate along. By default,
fillmissing operates along the first dimension whose size does not equal 1. For
example, if A is a matrix, then fillmissing(A,2) operates across the columns of A,
filling missing data row by row.

F = fillmissing(___ ,Name,Value) specifies additional parameters for filling
missing values using one or more name-value pair arguments. For example, if t is a
vector of time values, then fillmissing(A,'linear','SamplePoints',t)
interpolates the data in A relative to the times in t.

[F,TF] = fillmissing(___) also returns a logical array corresponding to the entries
of A that were filled.

Examples

Vector with NaN Values

Create a vector that contains NaN values and replace each NaN with the previous non-
missing value.

A = [1 3 NaN 4 NaN NaN 5];
F = fillmissing(A,'previous')

 fillmissing

1-4015

F = 1×7

 1 3 3 4 4 4 5

Interpolate Missing Data

Use interpolation to replace NaN values in non-uniformly sampled data.

Define a vector of non-uniform sample points and evaluate the sine function over the
points.

x = [-4*pi:0.1:0, 0.1:0.2:4*pi];
A = sin(x);

Inject NaN values into A.

A(A < 0.75 & A > 0.5) = NaN;

Fill the missing data using linear interpolation, and return the filled vector F and the
logical vector TF. The value 1 (true) in entries of TF corresponds to the values of F that
were filled.

[F,TF] = fillmissing(A,'linear','SamplePoints',x);

Plot the original data and filled data.

plot(x,A,'.', x(TF),F(TF),'o')
xlabel('x');
ylabel('sin(x)')
legend('Original Data','Filled Missing Data')

1 Alphabetical List

1-4016

Replace NaN with Moving Median

Use a moving median to fill missing numeric data.

Create a vector of sample points x and a vector of data A that contains missing values.

x = linspace(0,10,200);
A = sin(x) + 0.5*(rand(size(x))-0.5);
A([1:10 randi([1 length(x)],1,50)]) = NaN;

Replace NaN values in A using a moving median with a window of length 10, and plot both
the original data and the filled data.

 fillmissing

1-4017

F = fillmissing(A,'movmedian',10);
plot(x,F,'r.-',x,A,'b.-')
legend('Filled Missing Data','Original Data')

Matrix with Missing Endpoints

Create a matrix with missing entries and fill across the columns (second dimension) one
row at a time using linear interpolation. For each row, fill leading and trailing missing
values with the nearest non-missing value in that row.

1 Alphabetical List

1-4018

A = [NaN NaN 5 3 NaN 5 7 NaN 9 NaN;
 8 9 NaN 1 4 5 NaN 5 NaN 5;
 NaN 4 9 8 7 2 4 1 1 NaN]

A = 3×10

 NaN NaN 5 3 NaN 5 7 NaN 9 NaN
 8 9 NaN 1 4 5 NaN 5 NaN 5
 NaN 4 9 8 7 2 4 1 1 NaN

F = fillmissing(A,'linear',2,'EndValues','nearest')

F = 3×10

 5 5 5 3 4 5 7 8 9 9
 8 9 5 1 4 5 5 5 5 5
 4 4 9 8 7 2 4 1 1 1

Table with Multiple Data Types

Fill missing values for table variables with different data types.

Create a table whose variables include categorical, double, and char data types.

A = table(categorical({'Sunny';'Cloudy';''}),[66;NaN;54],{'';'N';'Y'},[37;39;NaN],...
 'VariableNames',{'Description' 'Temperature' 'Rain' 'Humidity'})

A=3×4 table
 Description Temperature Rain Humidity
 ___________ ___________ ____ ________

 Sunny 66 '' 37
 Cloudy NaN 'N' 39
 <undefined> 54 'Y' NaN

Replace all missing entries with the value from the previous entry. Since there is no
previous element in the Rain variable, the missing character vector is not replaced.

F = fillmissing(A,'previous')

 fillmissing

1-4019

F=3×4 table
 Description Temperature Rain Humidity
 ___________ ___________ ____ ________

 Sunny 66 '' 37
 Cloudy 66 'N' 39
 Cloudy 54 'Y' 39

Replace the NaN values from the Temperature and Humidity variables in A with 0.

F = fillmissing(A,'constant',0,'DataVariables',{'Temperature','Humidity'})

F=3×4 table
 Description Temperature Rain Humidity
 ___________ ___________ ____ ________

 Sunny 66 '' 37
 Cloudy 0 'N' 39
 <undefined> 54 'Y' 0

Alternatively, use the isnumeric function to identify the numeric variables to operate on.

F = fillmissing(A,'constant',0,'DataVariables',@isnumeric)

F=3×4 table
 Description Temperature Rain Humidity
 ___________ ___________ ____ ________

 Sunny 66 '' 37
 Cloudy 0 'N' 39
 <undefined> 54 'Y' 0

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable.

1 Alphabetical List

1-4020

If A is a timetable, then only table values are filled. If the associated vector of row times
contains a NaT or NaN value, then fillmissing produces an error. Row times must be
unique and listed in ascending order.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | table | timetable |
categorical | datetime | duration | calendarDuration

v — Fill constant
scalar | vector | cell array

Fill constant, specified as a scalar, vector, or cell array. v can be a vector when A is a
matrix or multidimensional array. v can be a cell array when A is a table or timetable.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | cell | categorical | datetime | duration

method — Fill method
'previous' | 'next' | 'nearest' | 'linear' | 'spline' | 'pchip' | 'makima'

Fill method, specified as one of the following:

Method Description
'previous' previous non-missing value
'next' next non-missing value
'nearest' nearest non-missing value
'linear' linear interpolation of neighboring, non-

missing values (numeric, duration, and
datetime data types only)

'spline' piecewise cubic spline interpolation
(numeric, duration, and datetime data
types only)

'pchip' shape-preserving piecewise cubic spline
interpolation (numeric, duration, and
datetime data types only)

'makima' modified Akima cubic Hermite interpolation
(numeric, duration, and datetime data
types only)

 fillmissing

1-4021

movmethod — Moving method
'movmean' | 'movmedian'

Moving method to fill missing data, specified as one of the following:

Method Description
'movmean' Moving average over a window of length

window (numeric data types only)
'movmedian' Moving median over a window of length

window (numeric data types only)

window — Window length
positive integer scalar | two-element vector of positive integers | positive duration scalar |
two-element vector of positive durations

Window length, specified as a positive integer scalar, a two-element vector of positive
integers, a positive duration scalar, or a two-element vector of positive durations.

When window is a positive integer scalar, then the window is centered about the current
element and contains window-1 neighboring elements. If window is even, then the
window is centered about the current and previous elements. If window is a two-element
vector of positive integers [b f], then the window contains the current element, b
elements backward, and f elements forward.

When A is a timetable or 'SamplePoints' is specified as a datetime or duration
vector, window must be of type duration, and the windows are computed relative to the
sample points.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

When A is a table or timetable, dim is not supported. fillmissing operates along each
table or timetable variable separately.

Consider a two-dimensional input array, A.

1 Alphabetical List

1-4022

• If dim=1, then fillmissing fills A column by column.

• If dim=2, then fillmissing fills A row by row.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: fillmissing(A,'DataVariables',{'Temperature','Altitude'}) fills
only the columns corresponding to the Temperature and Altitude variables of an input
table

EndValues — Method for handling endpoints
'extrap' (default) | 'previous' | 'next' | 'nearest' | 'none' | scalar

 fillmissing

1-4023

Method for handling endpoints, specified as the comma-separated pair consisting of
'EndValues' and one of 'extrap', 'previous', 'next', 'nearest', 'none', or a
constant scalar value. The endpoint fill method handles leading and trailing missing
values based on the following definitions:

Method Description
'extrap' same as method
'previous' previous non-missing value
'next' next non-missing value
'nearest' nearest non-missing value
'none' no fill value
scalar constant value (numeric, duration, and

datetime data types only)

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

SamplePoints — Sample points
vector

Sample points for fill method, specified as the comma-separated pair consisting of
'SamplePoints' and a vector. The sample points represent the location of the data in A,
and must be sorted and contain unique elements. Sample points do not need to be
uniformly sampled. If A is a timetable, then the default sample points vector is the vector
of row times. Otherwise, the default vector is [1 2 3 ...].

Moving windows are defined relative to the sample points. For example, if t is a vector of
times corresponding to the input data, then
fillmissing(rand(1,10),'movmean',3,'SamplePoints',t) has a window that
represents the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

This name-value pair is not supported when the input data is a timetable.
Data Types: double | single | datetime | duration

1 Alphabetical List

1-4024

DataVariables — Table variables to fill
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables to fill, specified as the comma-separated pair consisting of
'DataVariables' and a variable name, a cell array of variable names, a numeric vector,
a logical vector, or a function handle. The 'DataVariables' value indicates which
columns of the input table to fill, and can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that returns a logical scalar, such as @isnumeric

Example: 'Age'
Example: {'Height','Weight'}
Example: @iscategorical
Data Types: char | cell | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | function_handle

MissingLocations — Known missing indicator
vector | matrix | multidimensional array

Known missing indicator, specified as the comma-separated pair consisting of
'MissingLocations' and a logical vector, matrix, or multidimensional array of the
same size as A. The indicator elements can be true to indicate a missing value in the
corresponding location of A or false otherwise.
Data Types: logical

Output Arguments
F — Filled data
vector | matrix | multidimensional array | table | timetable

 fillmissing

1-4025

Filled data, returned as a vector, matrix, multidimensional array, table, or timetable. F is
the same size as A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | table | timetable |
categorical | datetime | duration | calendarDuration

TF — Filled data indicator
vector | matrix | multidimensional array

Filled data indicator, returned as a vector, matrix, or multidimensional array. TF is a
logical array where 1 (true) corresponds to entries in F that were filled and 0 (false)
corresponds to unchanged entries. TF is the same size as A and F.
Data Types: logical

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The 'spline' and 'makima' methods are not supported.
• The 'SamplePoints' and 'MissingLocations' name-value pairs are not

supported.
• The 'DataVariables' name-value pair cannot specify a function handle.
• The 'EndValues' name-value pair can only specify 'extrap'.
• The syntax fillmissing(A,movmethod,window) is not supported when A is a tall

timetable.
• The syntax fillmissing(A,'constant',v) must specify a scalar value for v.
• The syntax fillmissing(A,___) does not support character vector variables when

A is a tall table or tall timetable.

For more information, see “Tall Arrays”.

1 Alphabetical List

1-4026

See Also
filloutliers | ismissing | isnan | missing | rmmissing | standardizeMissing

Topics
“Missing Data in MATLAB”

Introduced in R2016b

 fillmissing

1-4027

filloutliers
Detect and replace outliers in data

Syntax
B = filloutliers(A,fillmethod)
B = filloutliers(A,fillmethod,findmethod)
B = filloutliers(A,fillmethod,'percentiles',threshold)
B = filloutliers(A,fillmethod,movmethod,window)
B = filloutliers(___ ,dim)
B = filloutliers(___ ,Name,Value)
[B,TF,L,U,C] = filloutliers(___)

Description
B = filloutliers(A,fillmethod) finds outliers in A and replaces them according to
fillmethod. For example, filloutliers(A,'previous') replaces outliers with the
previous non-outlier element. By default, an outlier is a value that is more than three
scaled median absolute deviations (MAD) on page 1-4043 away from the median. If A is a
matrix or table, then filloutliers operates on each column separately. If A is a
multidimensional array, then filloutliers operates along the first dimension whose
size does not equal 1.

B = filloutliers(A,fillmethod,findmethod) specifies a method for detecting
outliers. For example, filloutliers(A,'previous','mean') defines an outlier as an
element of A more than three standard deviations from the mean.

B = filloutliers(A,fillmethod,'percentiles',threshold) defines outliers as
points outside of the percentiles specified in threshold. The threshold argument is a
two-element row vector containing the lower and upper percentile thresholds, such as
[10 90].

B = filloutliers(A,fillmethod,movmethod,window) specifies a moving method
for detecting local outliers according to a window length defined by window. For
example, filloutliers(A,'previous','movmean',5) identifies outliers as elements

1 Alphabetical List

1-4028

more than three local standard deviations away from the local mean within a five-element
window.

B = filloutliers(___ ,dim) operates along dimension dim of A for any of the
previous syntaxes. For example, filloutliers(A,'linear',2) operates on each row
of a matrix A.

B = filloutliers(___ ,Name,Value) specifies additional parameters for detecting
and replacing outliers using one or more name-value pair arguments. For example,
filloutliers(A,'previous','SamplePoints',t) detects outliers in A relative to
the corresponding elements of a time vector t.

[B,TF,L,U,C] = filloutliers(___) also returns information about the position of
the outliers and thresholds computed by the detection method. TF is a logical array
indicating the location of the outliers in A. The L, U, and C arguments represent the lower
and upper thresholds and the center value used by the outlier detection method.

Examples

Interpolate Outliers

Create a vector of data containing an outlier, and use linear interpolation to replace the
outlier. Plot the original and filled data.

A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
B = filloutliers(A,'linear');
plot(1:15,A,1:15,B,'o')
legend('Original Data','Interpolated Data')

 filloutliers

1-4029

Determine Outliers with Mean

Create a vector containing an outlier, and define outliers as points outside three standard
deviations from the mean. Replace the outlier with the nearest element that is not an
outlier, and plot the original data and the interpolated data.

A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
B = filloutliers(A,'nearest','mean');
plot(1:15,A,1:15,B,'o')
legend('Original Data','Interpolated Data')

1 Alphabetical List

1-4030

Determine Outliers with Sliding Window

Use a moving median to find local outliers within a sine wave that corresponds to a time
vector.

Create a vector of data containing a local outlier.

x = -2*pi:0.1:2*pi;
A = sin(x);
A(47) = 0;

Create a time vector that corresponds to the data in A.

 filloutliers

1-4031

t = datetime(2017,1,1,0,0,0) + hours(0:length(x)-1);

Define outliers as points more than three local scaled MAD away from the local median
within a sliding window. Find the location of the outlier in A relative to the points in t
with a window size of 5 hours. Fill the outlier with the computed threshold value using
the method 'clip', and plot the original and filled data.

[B,TF,U,L,C] = filloutliers(A,'clip','movmedian',hours(5),'SamplePoints',t);
plot(t,A,t,B,'o')
legend('Original Data','Filled Data')

Display the threshold value that replaced the outlier.

L(TF)

1 Alphabetical List

1-4032

ans = -0.8779

Matrix of Data

Fill outliers for each row of a matrix.

Create a matrix of data containing outliers along the diagonal.

A = randn(5,5) + diag(1000*ones(1,5))

A = 5×5
103 ×

 1.0005 -0.0013 -0.0013 -0.0002 0.0007
 0.0018 0.9996 0.0030 -0.0001 -0.0012
 -0.0023 0.0003 1.0007 0.0015 0.0007
 0.0009 0.0036 -0.0001 1.0014 0.0016
 0.0003 0.0028 0.0007 0.0014 1.0005

Fill outliers with zeros based on the data in each row, and display the new values.

[B,TF,lower,upper,center] = filloutliers(A,0,2);
B

B = 5×5

 0 -1.3077 -1.3499 -0.2050 0.6715
 1.8339 0 3.0349 -0.1241 -1.2075
 -2.2588 0.3426 0 1.4897 0.7172
 0.8622 3.5784 -0.0631 0 1.6302
 0.3188 2.7694 0.7147 1.4172 0

You can directly access the detected outlier values and their filled values using TF as an
index vector.

[A(TF) B(TF)]

ans = 5×2
103 ×

 1.0005 0

 filloutliers

1-4033

 0.9996 0
 1.0007 0
 1.0014 0
 1.0005 0

Outlier Thresholds

Find the outlier in a vector of data, and replace it using the 'clip' method. Plot the
original data, the filled data, and the thresholds and center value determined by the
detection method. 'clip' replaces the outlier with the upper threshold value.

x = 1:10;
A = [60 59 49 49 58 100 61 57 48 58];
[B,TF,lower,upper,center] = filloutliers(A,'clip');
plot(x,A,x,B,'o',x,lower*ones(1,10),x,upper*ones(1,10),x,center*ones(1,10))
legend('Original Data','Filled Data','Lower Threshold','Upper Threshold','Center Value')

1 Alphabetical List

1-4034

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable.

If A is a table, then its variables must be of type double or single, or you can use the
'DataVariables' name-value pair to list double or single variables explicitly.
Specifying variables is useful when you are working with a table that contains variables
with data types other than double or single.

 filloutliers

1-4035

If A is a timetable, then filloutliers operates only on the table elements. Row times
must be unique and listed in ascending order.

Data Types: double | single | table | timetable

fillmethod — Fill method
numeric scalar | 'center' | 'clip' | 'previous' | 'next' | 'nearest' | 'linear' |
'spline' | 'pchip' | 'makima'

Fill method for replacing outliers, specified as a numeric scalar or one of the following:

Fill Method Description
Numeric scalar Fills with specified scalar value
'center' Fills with the center value determined by

findmethod
'clip' Fills with the lower threshold value for

elements smaller than the lower threshold
determined by findmethod. Fills with the
upper threshold value for elements larger
than the upper threshold determined by
findmethod

'previous' Fills with the previous non-outlier value
'next' Fills with the next non-outlier value
'nearest' Fills with the nearest non-outlier value
'linear' Fills using linear interpolation of

neighboring, non-outlier values
'spline' Fills using piecewise cubic spline

interpolation
'pchip' Fills using shape-preserving piecewise

cubic spline interpolation
'makima' modified Akima cubic Hermite interpolation

(numeric, duration, and datetime data
types only)

Data Types: double | single | char

findmethod — Method for detecting outliers
'median' (default) | 'mean' | 'quartiles' | 'grubbs' | 'gesd'

1 Alphabetical List

1-4036

Method for detecting outliers, specified as one of the following:

Method Description
'median' Outliers are defined as elements more than

three scaled MAD from the median. The
scaled MAD is defined as
c*median(abs(A-median(A))), where
c=-1/(sqrt(2)*erfcinv(3/2)).

'mean' Outliers are defined as elements more than
three standard deviations from the mean.
This method is faster but less robust than
'median'.

'quartiles' Outliers are defined as elements more than
1.5 interquartile ranges above the upper
quartile (75 percent) or below the lower
quartile (25 percent). This method is useful
when the data in A is not normally
distributed.

'grubbs' Outliers are detected using Grubbs’s test,
which removes one outlier per iteration
based on hypothesis testing. This method
assumes that the data in A is normally
distributed.

'gesd' Outliers are detected using the generalized
extreme Studentized deviate test for
outliers. This iterative method is similar to
'grubbs', but can perform better when
there are multiple outliers masking each
other.

threshold — Percentile thresholds
two-element row vector

Percentile thresholds, specified as a two-element row vector whose elements are in the
interval [0,100]. The first element indicates the lower percentile threshold and the second
element indicates the upper percentile threshold. For example, a threshold of [10 90]
defines outliers as points below the 10th percentile and above the 90th percentile. The
first element of threshold must be less than the second element.

 filloutliers

1-4037

movmethod — Moving method
'movmedian' | 'movmean'

Moving method for detecting outliers, specified as one of the following:

Method Description
'movmedian' Outliers are defined as elements more than

three local scaled MAD from the local
median over a window length specified by
window.

'movmean' Outliers are defined as elements more than
three local standard deviations from the
local mean over a window length specified
by window.

window — Window length
positive integer scalar | two-element vector of positive integers | positive duration scalar |
two-element vector of positive durations

Window length, specified as a positive integer scalar, a two-element vector of positive
integers, a positive duration scalar, or a two-element vector of positive durations.

When window is a positive integer scalar, the window is centered about the current
element and contains window-1 neighboring elements. If window is even, then the
window is centered about the current and previous elements.

When window is a two-element vector of positive integers [b f], the window contains
the current element, b elements backward, and f elements forward.

When A is a timetable or 'SamplePoints' is specified as a datetime or duration
vector, window must be of type duration, and the windows are computed relative to the
sample points.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

1 Alphabetical List

1-4038

Consider a matrix A.

filloutliers(A,fillmethod,1) fills outliers according to the data in each column.

filloutliers(A,fillmethod,2) fills outliers according to the data in each row.

When A is a table or timetable, dim is not supported. filloutliers operates along each
table or timetable variable separately.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: filloutliers(A,'center','mean','ThresholdFactor',4)

 filloutliers

1-4039

ThresholdFactor — Detection threshold factor
nonnegative scalar

Detection threshold factor, specified as the comma-separated pair consisting of
'ThresholdFactor' and a nonnegative scalar.

For methods 'median' and 'movmedian', the detection threshold factor replaces the
number of scaled MAD, which is 3 by default.

For methods 'mean' and 'movmean', the detection threshold factor replaces the number
of standard deviations from the mean, which is 3 by default.

For methods 'grubbs' and 'gesd', the detection threshold factor is a scalar ranging
from 0 to 1. Values close to 0 result in a smaller number of outliers and values close to 1
result in a larger number of outliers. The default detection threshold factor is 0.5.

For the 'quartiles' method, the detection threshold factor replaces the number of
interquartile ranges, which is 1.5 by default.

This name-value pair is not supported when the specified method is 'percentiles'.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SamplePoints — Sample points
vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the location of the data in A, and must be
sorted and contain unique elements. Sample points do not need to be uniformly sampled.
If A is a timetable, then the default sample points vector is the vector of row times.
Otherwise, the default vector is [1 2 3 ...].

Moving windows are defined relative to the sample points. For example, if t is a vector of
times corresponding to the input data, then
filloutliers(rand(1,10),'previous','movmean',3,'SamplePoints',t) has a
window that represents the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.
Data Types: single | double | datetime | duration

1 Alphabetical List

1-4040

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. The 'DataVariables' value indicates which columns of the input
table to detect outliers in, and can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes the table as input and returns a logical scalar

Example: 'Age'
Example: {'Height','Weight'}
Example: @isnumeric
Data Types: char | cell | double | single | logical | function_handle

MaxNumOutliers — Maximum outlier count
positive scalar

Maximum outlier count, for the 'gesd' method only, specified as the comma-separated
pair consisting of 'MaxNumOutliers' and a positive scalar. The 'MaxNumOutliers'
value specifies the maximum number of outliers returned by the 'gesd' method. For
example, filloutliers(A,'linear','gesd','MaxNumOutliers',5) returns no
more than five outliers.

The default value for 'MaxNumOutliers' is the integer nearest to 10 percent of the
number of elements in A. Setting a larger value for the maximum number of outliers can
ensure that all outliers are detected, but at the cost of reduced computational efficiency.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

OutlierLocations — Known outlier indicator
vector | matrix | multidimensional array

 filloutliers

1-4041

Known outlier indicator, specified as the comma-separated pair consisting of
'OutlierLocations' and a logical vector, matrix, or multidimensional array of the
same size as A. The known outlier indicator elements can be true to indicate an outlier in
the corresponding location of A or false otherwise. Specifying 'OutlierLocations'
turns off the default outlier detection method, and uses only the elements of the known
outlier indicator to define outliers.

The 'OutlierLocations' name-value pair cannot be specified when findmethod is
specified.

The output TF is the same as the 'OutlierLocations' value.
Data Types: logical

Output Arguments
B — Filled outlier array
vector | matrix | multidimensional array | table | timetable

Filled outlier array, returned as a vector, matrix, multidimensional array, table, or
timetable. The elements of B are the same as those of A, but with all outliers replaced
according to fillmethod.

Data Types: double | single | table | timetable

TF — Outlier indicator
vector | matrix | multidimensional array

Outlier indicator, returned as a vector, matrix, or multidimensional array. An element of
TF is true when the corresponding element of A is an outlier and false otherwise. TF is
the same size as A.
Data Types: logical

L — Lower threshold
scalar | vector | matrix | multidimensional array | table | timetable

Lower threshold used by the outlier detection method, returned as a scalar, vector,
matrix, multidimensional array, table, or timetable. For example, the lower value of the
default outlier detection method is three scaled MAD below the median of the input data.
L has the same size as A in all dimensions except for the operating dimension where the
length is 1.

1 Alphabetical List

1-4042

Data Types: double | single | table | timetable

U — Upper threshold
scalar | vector | matrix | multidimensional array | table | timetable

Upper threshold used by the outlier detection method, returned as a scalar, vector,
matrix, multidimensional array, table, or timetable. For example, the upper value of the
default outlier detection method is three scaled MAD above the median of the input data.
U has the same size as A in all dimensions except for the operating dimension where the
length is 1.
Data Types: double | single | table | timetable

C — Center value
scalar | vector | matrix | multidimensional array | table | timetable

Center value used by the outlier detection method, returned as a scalar, vector, matrix,
multidimensional array, table, or timetable. For example, the center value of the default
outlier detection method is the median of the input data. C has the same size as A in all
dimensions except for the operating dimension where the length is 1.
Data Types: double | single | table | timetable

Definitions

Median Absolute Deviation
For a random variable vector A made up of N scalar observations, the median absolute
deviation (MAD) is defined as

MAD = median Ai−median A

for i = 1,2,...,N.

The scaled MAD is defined as c*median(abs(A-median(A))) where c=-1/
(sqrt(2)*erfcinv(3/2)).

 filloutliers

1-4043

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The 'percentiles', 'grubs', and 'gesd' methods are not supported.
• The 'movmedian' and 'movmean' methods do not support tall timetables.
• The 'SamplePoints' and 'MaxNumOutliers' name-value pairs are not supported.
• The value of 'DataVariables' cannot be a function handle.
• Computation of filloutliers(A,fillmethod),

filloutliers(A,fillmethod,'median',…) or
filloutliers(A,fillmethod,'quartiles',…) along the first dimension is only
supported when A is a tall column vector.

• The syntaxes filloutliers(A,'spline',…) and filloutliers(A,'makima',…)
are not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'movmean' and 'movmedian' methods do not support the 'SamplePoints'
name-value pair argument.

• To use the 'spline' and 'pchip' fill methods, you must enable support for variable-
size arrays.

• String and character array inputs must be constant.
• The 'percentiles' and 'makima' options are not supported.

See Also
fillmissing | ismissing | isoutlier | rmoutliers

1 Alphabetical List

1-4044

Topics
“Data Smoothing and Outlier Detection”

Introduced in R2017a

 filloutliers

1-4045

filter
1-D digital filter

Syntax
y = filter(b,a,x)
y = filter(b,a,x,zi)
y = filter(b,a,x,zi,dim)
[y,zf] = filter(___)

Description
y = filter(b,a,x) filters the input data x using a rational transfer function on page 1-
4055 defined by the numerator and denominator coefficients b and a.

If a(1) is not equal to 1, then filter normalizes the filter coefficients by a(1).
Therefore, a(1) must be nonzero.

• If x is a vector, then filter returns the filtered data as a vector of the same size as x.
• If x is a matrix, then filter acts along the first dimension and returns the filtered

data for each column.
• If x is a multidimensional array, then filter acts along the first array dimension

whose size does not equal 1.

y = filter(b,a,x,zi) uses initial conditions zi for the filter delays. The length of zi
must equal max(length(a),length(b))-1.

y = filter(b,a,x,zi,dim) acts along dimension dim. For example, if x is a matrix,
then filter(b,a,x,zi,2) returns the filtered data for each row.

[y,zf] = filter(___) also returns the final conditions zf of the filter delays, using
any of the previous syntaxes.

1 Alphabetical List

1-4046

Examples

Moving-Average Filter

A moving-average filter is a common method used for smoothing noisy data. This example
uses the filter function to compute averages along a vector of data.

Create a 1-by-100 row vector of sinusoidal data that is corrupted by random noise.

t = linspace(-pi,pi,100);
rng default %initialize random number generator
x = sin(t) + 0.25*rand(size(t));

A moving-average filter slides a window of length windowSize along the data, computing
averages of the data contained in each window. The following difference equation defines
a moving-average filter of a vector x:

y(n) = 1
windowSize x(n) + x(n− 1) + . . . + x(n− (windowSize− 1)) .

For a window size of 5, compute the numerator and denominator coefficients for the
rational transfer function.

windowSize = 5;
b = (1/windowSize)*ones(1,windowSize);
a = 1;

Find the moving average of the data and plot it against the original data.

y = filter(b,a,x);

plot(t,x)
hold on
plot(t,y)
legend('Input Data','Filtered Data')

 filter

1-4047

Filter Matrix Rows

This example filters a matrix of data with the following rational transfer function.

H(z) = b(1)
a(1) + a(2)z−1 = 1

1− 0 . 2z−1

Create a 2-by-15 matrix of random input data.

rng default %initialize random number generator
x = rand(2,15);

1 Alphabetical List

1-4048

Define the numerator and denominator coefficients for the rational transfer function.

b = 1;
a = [1 -0.2];

Apply the transfer function along the second dimension of x and return the 1-D digital
filter of each row. Plot the first row of original data against the filtered data.

y = filter(b,a,x,[],2);

t = 0:length(x)-1; %index vector

plot(t,x(1,:))
hold on
plot(t,y(1,:))
legend('Input Data','Filtered Data')
title('First Row')

 filter

1-4049

Plot the second row of input data against the filtered data.

figure
plot(t,x(2,:))
hold on
plot(t,y(2,:))
legend('Input Data','Filtered Data')
title('Second Row')

1 Alphabetical List

1-4050

Filter Data in Sections

Use initial and final conditions for filter delays to filter data in sections, especially if
memory limitations are a consideration.

Generate a large random data sequence and split it into two segments, x1 and x2.

x = randn(10000,1);

x1 = x(1:5000);
x2 = x(5001:end);

 filter

1-4051

The whole sequence, x, is the vertical concatenation of x1 and x2.

Define the numerator and denominator coefficients for the rational transfer function,

H(z) = b(1) + b(2)z−1

a(1) + a(2)z−1 = 2 + 3z−1

1 + 0 . 2z−1 .

b = [2,3];
a = [1,0.2];

Filter the subsequences x1 and x2 one at a time. Output the final conditions from filtering
x1 to store the internal status of the filter at the end of the first segment.

[y1,zf] = filter(b,a,x1);

Use the final conditions from filtering x1 as initial conditions to filter the second segment,
x2.

y2 = filter(b,a,x2,zf);

y1 is the filtered data from x1, and y2 is the filtered data from x2. The entire filtered
sequence is the vertical concatenation of y1 and y2.

Filter the entire sequence simultaneously for comparison.

y = filter(b,a,x);

isequal(y,[y1;y2])

ans = logical
 1

Input Arguments
b — Numerator coefficients of rational transfer function
vector

Numerator coefficients of the rational transfer function on page 1-4055, specified as a
vector.

1 Alphabetical List

1-4052

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

a — Denominator coefficients of rational transfer function
vector

Denominator coefficients of the rational transfer function on page 1-4055, specified as a
vector.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

x — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

zi — Initial conditions for filter delays
[] (default) | vector | matrix | multidimensional array

Initial conditions for filter delays, specified as a vector, matrix, or multidimensional array.

• If zi is a vector, then its length must be max(length(a),length(b))-1.
• If zi is a matrix or multidimensional array, then the size of the leading dimension must

be max(length(a),length(b))-1. The size of each remaining dimension must
match the size of the corresponding dimension of x. For example, consider using
filter along the second dimension (dim = 2) of a 3-by-4-by-5 array x. The array zi
must have size [max(length(a),length(b))-1]-by-3-by-5.

The default value, specified by [], initializes all filter delays to zero.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

 filter

1-4053

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, x.

• If dim = 1, then filter(b,a,x,zi,1)works along the rows of x and returns the
filter applied to each column.

• If dim = 2, then filter(b,a,x,zi,2) works along the columns of x and returns
the filter applied to each row.

If dim is greater than ndims(x), then filter returns x.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
y — Filtered data
vector | matrix | multidimensional array

Filtered data, returned as a vector, matrix, or multidimensional array of the same size as
the input data, x.

1 Alphabetical List

1-4054

If x is of type single, then filter natively computes in single precision, and y is also of
type single. Otherwise, y is returned as type double.
Data Types: double | single

zf — Final conditions for filter delays
vector | matrix | multidimensional array

Final conditions for filter delays, returned as a vector, matrix, or multidimensional array.

• If x is a vector, then zf is a column vector of length max(length(a),length(b))-1.
• If x is a matrix or multidimensional array, then zf is an array of column vectors of

length max(length(a),length(b))-1, such that the number of columns in zf is
equivalent to the number of columns in x. For example, consider using filter along
the second dimension (dim = 2) of a 3-by-4-by-5 array x. The array zf has size
[max(length(a),length(b))-1]-by-3-by-5.

Data Types: double | single

Definitions

Rational Transfer Function
The input-output description of the filter operation on a vector in the Z-transform
domain is a rational transfer function. A rational transfer function is of the form

Y(z) =
b(1) + b(2)z−1 + ... + b(nb + 1)z−nb

1 + a(2)z−1 + ... + a(na + 1)z−na
X(z),

which handles both FIR and IIR filters [1]. na is the feedback filter order, and nb is the
feedforward filter order. Due to normalization, assume a(1) = 1.

You also can express the rational transfer function as the difference equation

a(1)y(n) = b(1)x(n) + b(2)x(n− 1) + ... + b(nb + 1)x(n− nb)
−a(2)y(n− 1)− ...− a(na + 1)y(n− na) .

Furthermore, you can represent the rational transfer function using its direct-form II
transposed implementation, as in the following diagram. Here, na = nb.

 filter

1-4055

The operation of filter at sample m is given by the time-domain difference equations

y(m) = b(1)x(m) + w1(m− 1)
w1(m) = b(2)x(m) + w2(m− 1)− a(2)y(m)
 ⋮ = ⋮ ⋮
wn− 2(m) = b(n− 1)x(m) + wn− 1(m− 1)− a(n− 1)y(m)
wn− 1(m) = b(n)x(m)− a(n)y(m) .

Tips
• If you have Signal Processing Toolbox™, use y = filter(d,x) to filter an input

signal x with a digitalFilter object d. To generate d based on frequency-response
specifications, use designfilt.

• To use the filter function with the b coefficients from an FIR filter, use y =
filter(b,1,x).

• See Digital Filtering (Signal Processing Toolbox) for more on filtering functions.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal

Processing. Upper Saddle River, NJ: Prentice-Hall, 1999.

1 Alphabetical List

1-4056

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

The two-output syntax [y,zf] = filter(___) is not supported when dim > 1.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If supplied, dim must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Supported syntaxes:

Y = filter(B,A,X)

Y = filter(B,A,X,[],dim)

[Y,zf] = filter(B,A,X,zi)

[Y,zf] = filter(B,A,X,zi,dim)
• If A is not scalar, then A and B must each have no more than 10 elements.

 filter

1-4057

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
conv | filter2

Topics
“Filter Data”

Introduced before R2006a

1 Alphabetical List

1-4058

filter2
2-D digital filter

Syntax
Y = filter2(H,X)
Y = filter2(H,X,shape)

Description
Y = filter2(H,X) applies a finite impulse response filter to a matrix of data X
according to coefficients in a matrix H.

Y = filter2(H,X,shape) returns a subsection of the filtered data according to shape.
For example, Y = filter2(H,X,'valid') returns only filtered data computed without
zero-padded edges.

Examples

2-D Pedestal

You can digitally filter images and other 2-D data using the filter2 function, which is
closely related to the conv2 function.

Create and plot a 2-D pedestal with interior height equal to one.

A = zeros(10);
A(3:7,3:7) = ones(5);
mesh(A)

 filter2

1-4059

Filter the data in A according to a filter coefficient matrix H, and return the full matrix of
filtered data.

H = [1 2 1; 0 0 0; -1 -2 -1];
Y = filter2(H,A,'full');
mesh(Y)

1 Alphabetical List

1-4060

Rotate H 180 degrees and convolve the result with A. The output is equivalent to filtering
the data in A with the coefficients in H.

C = conv2(A,rot90(H,2));
mesh(C)

 filter2

1-4061

Input Arguments
H — Coefficients of rational transfer function
matrix

Coefficients of the rational transfer function, specified as a matrix.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

1 Alphabetical List

1-4062

X — Input data
matrix

Input data, specified as a matrix. If one or both of X and H are of type single, then the
output is also of type single. Otherwise, filter2 returns type double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

shape — Subsection of filtered data
'same' (default) | 'full' | 'valid'

Subsection of the filtered data, specified as one of these values:

• 'same' — Return the central part of the filtered data, which is the same size as X.
• 'full' — Return the full 2-D filtered data.
• 'valid' — Return only parts of the filtered data that are computed without zero-

padded edges.

Algorithms
The filter2 function filters data by taking the 2-D convolution of the input X and the
coefficient matrix H rotated 180 degrees. Specifically, filter2(H,X,shape) is
equivalent to conv2(X,rot90(H,2),shape).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 filter2

1-4063

Usage notes and limitations:

• The inputs H and X must be single or double arrays. Both real and complex types are
supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
conv2 | filter | rot90

Introduced before R2006a

1 Alphabetical List

1-4064

fimplicit
Plot implicit function

Syntax
fimplicit(f)
fimplicit(f,interval)
fimplicit(ax, ___)

fimplicit(___ ,LineSpec)
fimplicit(___ ,Name,Value)
fp = fimplicit(___)

Description
fimplicit(f) plots the implicit function defined by f(x,y) = 0 over the default
interval [-5 5] for x and y.

fimplicit(f,interval) specifies the plotting interval for x and y.

fimplicit(ax, ___) plots into the axes specified by ax instead of into the current
axes. Specify the axes as the first input argument, prior to any of the previous input
arguments.

fimplicit(___ ,LineSpec) specifies the line style, marker symbol, and line color. For
example, '-r' plots a red line.

fimplicit(___ ,Name,Value) specifies line properties using one or more name-value
pair arguments. For example, 'LineWidth',2 specifies a line width of 2 points.

fp = fimplicit(___) returns the ImplicitFunctionLine object. Use fp to access
and modify properties of the line after it is created. For a list of properties, see
ImplicitFunctionLine.

 fimplicit

1-4065

Examples

Plot Implicit Function

Plot the hyperbola described by the function x2− y2− 1 = 0 over the default interval of
[-5 5] for x and y.

fimplicit(@(x,y) x.^2 - y.^2 - 1)

1 Alphabetical List

1-4066

Specify Plotting Interval

Plot the function x2 + y2− 3 = 0 over the intervals [-3 0] for x and [-2 2] for y.

f = @(x,y) x.^2 + y.^2 - 3;
fimplicit(f,[-3 0 -2 2])

 fimplicit

1-4067

Modify Appearance of Implicit Plot

Plot two circles centered at (0,0) with different radius values. For the first circle, use a
dotted, red line. For the second circle, use a dashed, green line with a line width of 2
points.

f1 = @(x,y) x.^2 + y.^2 - 1;
fimplicit(f1,':r')

hold on
f2 = @(x,y) x.^2 + y.^2 - 2;
fimplicit(f2,'--g','LineWidth',2)
hold off

1 Alphabetical List

1-4068

Modify Implicit Plot After Creation

Plot the implicit function ysin(x) + xcos(y)− 1 = 0 and assign the implicit function line
object to the variable fp.

fp = fimplicit(@(x,y) y.*sin(x) + x.*cos(y) - 1)

fp =
 ImplicitFunctionLine with properties:

 Function: @(x,y)y.*sin(x)+x.*cos(y)-1
 Color: [0 0.4470 0.7410]

 fimplicit

1-4069

 LineStyle: '-'
 LineWidth: 0.5000

 Show all properties

Use fp to access and modify properties of the implicit function line object after it is
created. For example, change the color, line style, and line width.

fp.Color = 'r';
fp.LineStyle = '--';
fp.LineWidth = 2;

1 Alphabetical List

1-4070

Input Arguments
f — Implicit function to plot
function handle

Implicit function to plot, specified as a function handle to a named or anonymous
function.

Specify a function of the form z = f(x,y). The function must accept two matrix input
arguments and return a matrix output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: fimplicit(@(x,y) x.^2 - y.^2 + 1)

interval — Plotting interval for x and y
[-5 5] (default) | two-element vector | four-element vector

Plotting interval for x and y, specified in one of these forms:

• Two-element vector of the form [min max] — Use the same plotting interval of [min
max] for both x and y.

• Four-element vector of the form [xmin xmax ymin ymax] — Use different plotting
intervals for x and y. Plot over the interval [xmin xmax] for x and [ymin ymax] for
y.

Example: fimplicit(f,[-2 3 -5 0])

LineSpec — Line style, marker symbol, and color
character vector | string

Line style, marker symbol, and color, specified as a character vector or string containing
symbols. The symbols can appear in any order. You do not need to specify all three
characteristics (line style, marker symbol, and color). For example, if you omit the line
style and specify the marker, then the plot shows only the markers and no line.
Example: fimplicit(f,'--or') plots a red, dashed line with circle markers.

Line Style Description
- Solid line (default)
-- Dashed line

 fimplicit

1-4071

Line Style Description
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Axes object
axes object

1 Alphabetical List

1-4072

Axes object. If you do not specify the axes, then fimplicit uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: fimplicit(f,'MeshDensity',50,'LineWidth',2) specifies the number
of evaluation points and the line width.

The ImplicitFunctionLine properties listed here are only a subset. For a complete
list, see ImplicitFunctionLine.

MeshDensity — Number of evaluation points per direction
151 (default) | scalar

Number of evaluation points per direction, specified as a scalar.

Color — Line color
[0 0 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 fimplicit

1-4073

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

1 Alphabetical List

1-4074

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table. By default, the line
does not have markers. Specifying a marker symbol adds markers at selected points along
the line.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle

 fimplicit

1-4075

Value Description
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

1 Alphabetical List

1-4076

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 fimplicit

1-4077

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]

1 Alphabetical List

1-4078

Example: 'green'
Example: '#D2F9A7'

Tips
• Use element-wise operators for the best performance and to avoid a warning message.

For example, use x.*y instead of x*y. For more information, see “Array vs. Matrix
Operations”.

• When you zoom in on the chart, fimplicit recalculates the data, which can reveal
hidden details.

See Also
Functions
fcontour | fimplicit3 | fplot | fplot3 | fsurf

Properties
ImplicitFunctionLine

Introduced in R2016b

 fimplicit

1-4079

fimplicit3
Plot 3-D implicit function

Syntax
fimplicit3(f)
fimplicit3(f,interval)
fimplicit3(ax, ___)

fimplicit3(___ ,LineSpec)
fimplicit3(___ ,Name,Value)
fs = fimplicit3(___)

Description
fimplicit3(f) plots the 3-D implicit function defined by f(x,y,z) = 0 over the
default interval [-5 5] for x, y, and z.

fimplicit3(f,interval) specifies the plotting interval for x, y, and z.

fimplicit3(ax, ___) plots into the axes specified by ax instead of into the current
axes. Specify the axes as the first input argument, prior to any of the previous input
arguments.

fimplicit3(___ ,LineSpec) specifies the line style, marker symbol, and line color.
For example, '-r' specifies red lines.

fimplicit3(___ ,Name,Value) specifies surface properties using one or more name-
value pair arguments. For example, 'FaceAlpha',0.6 specifies a transparency value of
0.6 for a semi-transparent surface.

fs = fimplicit3(___) returns the ImplicitFunctionSurface object. Use fs to
access and modify properties of the surface after it is created. For a list of properties, see
ImplicitFunctionSurface.

1 Alphabetical List

1-4080

Examples

Plot 3-D Implicit Function

Plot the hyperboloid x2 + y2− z2 = 0 over the default interval of [− 5, 5] for x, y, and z.

f = @(x,y,z) x.^2 + y.^2 - z.^2;
fimplicit3(f)

 fimplicit3

1-4081

Specify Plotting Interval

Plot the upper half of the hyperboloid x2 + y2− z2 = 0 by specifying the plotting interval
as [0 5] for z. For x and y, use the default interval [-5 5].

f = @(x,y,z) x.^2 + y.^2 - z.^2;
interval = [-5 5 -5 5 0 5];
fimplicit3(f,interval)

1 Alphabetical List

1-4082

Modify Appearance of Implicit Surface

Plot the implicit surface x2 + y2− z2 = 0. Remove the lines by setting the EdgeColor
property to 'none'. Add transparency by setting the FaceAlpha property to a value
between 0 and 1.

f = @(x,y,z) x.^2 + y.^2 - z.^2;
fimplicit3(f,'EdgeColor','none','FaceAlpha',.5)

 fimplicit3

1-4083

Modify Implicit Surface After Creation

Plot an implicit surface and assign the implicit surface object to the variable fs.

f = @(x,y,z) 1/x.^2 - 1/y.^2 + 1/z.^2;
fs = fimplicit3(f)

fs =
 ImplicitFunctionSurface with properties:

 Function: @(x,y,z)1/x.^2-1/y.^2+1/z.^2
 EdgeColor: [0 0 0]
 LineStyle: '-'
 FaceColor: 'interp'

1 Alphabetical List

1-4084

 Show all properties

Use fs to access and modify properties of the implicit surface after it is created. For
example, show only the positive x values by setting the XRange property to [0 5].
Remove the lines by setting the EdgeColor property to 'none'. Add transparency by
setting the FaceAlpha property to 0.8.

fs.XRange = [0 5];
fs.EdgeColor = 'none';
fs.FaceAlpha = 0.8;

 fimplicit3

1-4085

Input Arguments
f — 3-D implicit function to plot
function handle

3-D implicit function to plot, specified as a function handle to a named or anonymous
function.

Specify a function of the form w = f(x,y,z). The function must accept three 3-D array
input arguments and return a 3-D array output argument of the same size. Use array
operators instead of matrix operators for the best performance. For example, use .*
(times) instead of * (mtimes).
Example: fimplicit3(@(x,y,z) x.^2 + y.^2 - z.^2)

interval — Plotting interval for x, y, and z
[-5 5] (default) | two-element vector | six-element vector

Plotting interval for x, y, and z, specified in one of these forms:

• Two-element vector of form [min max] — Use the same plotting interval of [min
max] for x, y, and z.

• Six-element vector of form [xmin xmax ymin ymax zmin zmax] — Use different
plotting intervals for x, y, and z. Plot over the interval [xmin xmax] for x, over
[ymin ymax] for y, and over [zmin zmax] for z.

Example: fimplicit3(f,[-2 3 -4 5 -3 3])

LineSpec — Line style, marker symbol, and color
character vector | string

Line style, marker symbol, and color, specified as a character vector or string containing
symbols. The symbols can appear in any order. You do not need to specify all three
characteristics (line style, marker symbol, and color). For example, if you omit the line
style and specify the marker, then the plot shows only the markers and no line.
Example: fimplicit3(f,'--or') plots a red, dashed line with circle markers.

Line Style Description
- Solid line (default)
-- Dashed line

1 Alphabetical List

1-4086

Line Style Description
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Axes object
axes object

 fimplicit3

1-4087

Axes object. If you do not specify the axes, then fimplicit3 uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: fimplicit3(f,'MeshDensity',50,'FaceAlpha',0.5) specifies the
number of evaluation points and a transparency value.

The ImplicitFunctionSurface properties listed here are only a subset. For a
complete list, see ImplicitFunctionSurface.

MeshDensity — Number of evaluation points per direction
35 (default) | scalar

Number of evaluation points per direction, specified as a scalar.

FaceAlpha — Face transparency
1 (default) | scalar in range [0 1]

Face transparency, specified as a scalar in the range [0,1]. Use uniform transparency
across all of the faces. A value of 1 is fully opaque and 0 is completely transparent. Values
between 0 and 1 are semitransparent.

FaceColor — Face color
'interp' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Face color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'interp' interpolates the colors based on
the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

1 Alphabetical List

1-4088

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

EdgeColor — Line color
[0 0 0] (default) | 'interp' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

 fimplicit3

1-4089

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black.
The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

1 Alphabetical List

1-4090

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Tips
• Use element-wise operators for the best performance and to avoid a warning message.

For example, use x.*y instead of x*y. For more information, see “Array vs. Matrix
Operations”.

• When you zoom in on the chart, fimplicit3 recalculates the data, which can reveal
hidden details.

 fimplicit3

1-4091

See Also
Functions
fcontour | fimplicit | fplot | fplot3 | fsurf

Properties
ImplicitFunctionSurface

Introduced in R2016b

1 Alphabetical List

1-4092

find
Find indices and values of nonzero elements

Syntax
k = find(X)
k = find(X,n)
k = find(X,n,direction)

[row,col] = find(___)
[row,col,v] = find(___)

Description
k = find(X) returns a vector containing the linear indices on page 1-4101 of each
nonzero element in array X.

• If X is a vector, then find returns a vector with the same orientation as X.
• If X is a multidimensional array, then find returns a column vector of the linear

indices of the result.
• If X contains no nonzero elements or is empty, then find returns an empty array.

k = find(X,n) returns the first n indices corresponding to the nonzero elements in X.

k = find(X,n,direction), where direction is 'last', finds the last n indices
corresponding to nonzero elements in X. The default for direction is 'first', which
finds the first n indices corresponding to nonzero elements.

[row,col] = find(___) returns the row and column subscripts of each nonzero
element in array X using any of the input arguments in previous syntaxes.

[row,col,v] = find(___) also returns vector v, which contains the nonzero
elements of X.

 find

1-4093

Examples

Zero and Nonzero Elements in Matrix

Find the nonzero elements in a 3-by-3 matrix.

X = [1 0 2; 0 1 1; 0 0 4]

X = 3×3

 1 0 2
 0 1 1
 0 0 4

k = find(X)

k = 5×1

 1
 5
 7
 8
 9

Use the logical not operator on X to locate the zeros.

k2 = find(~X)

k2 = 4×1

 2
 3
 4
 6

Elements Satisfying a Condition

Find the first five elements that are less than 10 in a 4-by-4 magic square matrix.

1 Alphabetical List

1-4094

X = magic(4)

X = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

k = find(X<10,5)

k = 5×1

 2
 3
 4
 5
 7

View the corresponding elements of X.

X(k)

ans = 5×1

 5
 9
 4
 2
 7

Elements Equal to Specific Values

To find a specific integer value, use the == operator. For instance, find the element equal
to 13 in a 1-by-10 vector of odd integers.

x = 1:2:20

x = 1×10

 find

1-4095

 1 3 5 7 9 11 13 15 17 19

k = find(x==13)

k = 7

To find a noninteger value, use a tolerance value based on your data. Otherwise, the
result is sometimes an empty matrix due to floating-point roundoff error.

y = 0:0.1:1

y = 1×11

 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

k = find(y==0.3)

k =

 1x0 empty double row vector

k = find(abs(y-0.3) < 0.001)

k = 4

Last Several Nonzero Elements

Create a 6-by-6 magic square matrix with all of the odd-indexed elements equal to zero.

X = magic(6);
X(1:2:end) = 0

X = 6×6

 0 0 0 0 0 0
 3 32 7 21 23 25
 0 0 0 0 0 0
 8 28 33 17 10 15
 0 0 0 0 0 0
 4 36 29 13 18 11

1 Alphabetical List

1-4096

Locate the last four nonzeros.

k = find(X,4,'last')

k = 4×1

 30
 32
 34
 36

Elements Satisfying Multiple Conditions

Find the first three elements in a 4-by-4 matrix that are greater than 0 and less than 10.
Specify two outputs to return the row and column subscripts to the elements.

X = [18 3 1 11; 8 10 11 3; 9 14 6 1; 4 3 15 21]

X = 4×4

 18 3 1 11
 8 10 11 3
 9 14 6 1
 4 3 15 21

[row,col] = find(X>0 & X<10,3)

row = 3×1

 2
 3
 4

col = 3×1

 1
 1
 1

 find

1-4097

The first instance is X(2,1), which is 8.

Subscripts and Values for Nonzero Elements

Find the nonzero elements in a 3-by-3 matrix. Specify three outputs to return the row
subscripts, column subscripts, and element values.

X = [3 2 0; -5 0 7; 0 0 1]

X = 3×3

 3 2 0
 -5 0 7
 0 0 1

[row,col,v] = find(X)

row = 5×1

 1
 2
 1
 2
 3

col = 5×1

 1
 1
 2
 3
 3

v = 5×1

 3
 -5
 2
 7

1 Alphabetical List

1-4098

 1

Subscripts of Multidimensional Array

Find the nonzero elements in a 4-by-2-by-3 array. Specify two outputs, row and col, to
return the row and column subscripts of the nonzero elements. When the input is a
multidimensional array (N > 2), find returns col as a linear index over the N-1 trailing
dimensions of X.

X = zeros(4,2,3);
X([1 12 19 21]) = 1

X =
X(:,:,1) =

 1 0
 0 0
 0 0
 0 0

X(:,:,2) =

 0 0
 0 0
 0 0
 1 0

X(:,:,3) =

 0 1
 0 0
 1 0
 0 0

[row,col] = find(X)

row = 4×1

 find

1-4099

 1
 4
 3
 1

col = 4×1

 1
 3
 5
 6

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. If X is an
empty array or has no nonzero elements, then k is an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

n — Number of nonzeros to find
positive integer scalar

Number of nonzeros to find, specified as a positive integer scalar. By default, find(X,n)
looks for the first n nonzero elements in X.

direction — Search direction
'first' (default) | 'last'

Search direction, specified as the string 'first' or 'last'. Look for the last n nonzero
elements in X using find(X,n,'last').

1 Alphabetical List

1-4100

Output Arguments
k — Indices to nonzero elements
vector

Indices to nonzero elements, returned as a vector. If X is a row vector, then k is also a row
vector. Otherwise, k is a column vector. k is an empty array when X is an empty array or
has no nonzero elements.

You can return the nonzero values in X using X(k).

row — Row subscripts
vector

Row subscripts, returned as a vector. Together, row and col specify the X(row,col)
subscripts corresponding to the nonzero elements in X.

col — Column subscripts
vector

Column subscripts, returned as a vector. Together, row and col specify the X(row,col)
subscripts corresponding to the nonzero elements in X.

If X is a multidimensional array with N > 2, then col is a linear index over the N-1
trailing dimensions of X. This preserves the relation X(row(i),col(i)) == v(i).

v — Nonzero elements of X
vector

Nonzero elements of X, returned as a vector.

Definitions

Linear Indices
A linear index allows use of a single subscript to index into an array, such as A(k).
MATLAB treats the array as a single column vector with each column appended to the
bottom of the previous column. Thus, linear indexing numbers the elements in the
columns from top to bottom, left to right.

 find

1-4101

For example, consider a 3-by-3 matrix. You can reference the A(2,2) element with A(5),
and the A(2,3) element with A(8). The linear index changes depending on the size of
the array; A(5) returns a differently located element for a 3-by-3 matrix than it does for a
4-by-4 matrix.

The sub2ind and ind2sub functions are useful in converting between subscripts and
linear indices.

Tips
• To find array elements that meet a condition, use find in conjunction with a relational

expression. For example, find(X<5) returns the linear indices to the elements in X
that are less than 5.

• To directly find the elements in X that satisfy the condition X<5, use X(X<5). Avoid
function calls like X(find(X<5)), which unnecessarily use find on a logical matrix.

• When you execute find with a relational operation like X>1, it is important to
remember that the result of the relational operation is a logical matrix of ones and
zeros. For example, the command [row,col,v] = find(X>1) returns a column
vector of logical 1 (true) values for v.

• The row and column subscripts, row and col, are related to the linear indices in k by
k = sub2ind(size(X),row,col).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• X must be a tall column vector.

For more information, see “Tall Arrays”.

1 Alphabetical List

1-4102

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If a variable-size input becomes a row vector at run time, then code generation ends
with an error. This limitation does not apply when the input is scalar or is a variable-
length row vector.

• For variable-size inputs, the shape of empty outputs (0-by-0, 0-by-1, or 1-by-0) depends
on the upper bounds of the size of the input. When the input array is a scalar or [] at
run time, the output might not match MATLAB. If the input is a variable-length row
vector, then the size of an empty output is 1-by-0. Otherwise, the size is 0-by-1.

• The generated code always returns a variable-length vector. Even when you provide
the output vector k, the output is not fixed-size because the output can contain fewer
than k elements. For example, find(x,1) returns a variable-length vector with one
or zero elements.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
Logical Operators: Short-Circuit | ind2sub | ismember | nonzeros | strfind
| sub2ind

 find

1-4103

Topics
“Find Array Elements That Meet a Condition”
“Array Indexing”
“Relational Operations”
“Sparse Matrices”

Introduced before R2006a

1 Alphabetical List

1-4104

findall
Find all graphics objects

Syntax
object_handles = findall(handle_list)
object_handles = findall(handle_list,'property','value',...)

Description
object_handles = findall(handle_list) returns the handles, including hidden
handles, of all objects in the hierarchy under the objects identified in handle_list.

object_handles = findall(handle_list,'property','value',...) returns
the handles of all objects in the hierarchy under the objects identified in handle_list
that have the specified properties set to the specified values.

Examples

Find Object with Hidden Handle

Use findall to find the text object for the x-axis label. Unlike findobj, the findall
function finds objects even if the HandleVisibility property is set to 'off'.

plot(1:10)
txt = xlabel('My x-axis label');

 findall

1-4105

txt.HandleVisibility

ans =
'off'

a = findall(gcf,'Type','text')

a =
 3x1 Text array:

 Text (My x-axis label)
 Text
 Text

1 Alphabetical List

1-4106

d = findobj(gcf,'Type','text')

d =
 0x0 empty GraphicsPlaceholder array.

Tips
findall is similar to findobj, except that it finds objects even if their
HandleVisibility is set to off.

See Also
allchild | findobj

Introduced before R2006a

 findall

1-4107

findfigs
Find visible offscreen figures

Syntax
findfigs

Description
findfigs finds all visible figure windows whose display area is off the screen and
positions them on the screen.

A window appears to the MATLAB software to be offscreen when its display area (the
area not covered by the window's title bar, menu bar, and toolbar) does not appear on the
screen.

This function is useful when you are bringing an application from a larger monitor to a
smaller one (or one with lower resolution). Windows visible on the larger monitor may
appear offscreen on a smaller monitor. Using findfigs ensures that all windows appear
on the screen.

See Also
Introduced before R2006a

1 Alphabetical List

1-4108

findgroups
Find groups and return group numbers

Syntax
G = findgroups(A)
G = findgroups(A1,...,AN)

[G,ID] = findgroups(A)
[G,ID1,...,IDN] = findgroups(A1,...,AN)

G = findgroups(T)
[G,TID] = findgroups(T)

Description
G = findgroups(A) returns G, a vector of group numbers created from the grouping
variable A. The output argument G contains integer values from 1 to N, indicating N
distinct groups for the N unique values in A. For example, if A is {'b','a','a','b'},
then findgroups returns G as [2 1 1 2]. You can use G to split groups of data out of
other variables. Use G as an input argument to splitapply in the “Split-Apply-Combine
Workflow” on page 1-4117.

findgroups treats empty character vectors and NaN, NaT, and undefined categorical
values in A as missing values and returns NaN as the corresponding elements of G.

G = findgroups(A1,...,AN) creates group numbers from A1,...,AN. The
findgroups function defines groups as the unique combinations of values across
A1,...,AN. For example, if A1 is {'a','a','b','b'} and A2 is [0 1 0 0], then
findgroups(A1,A2) returns G as [1 2 3 3], because the combination 'b' 0 occurs
twice.

[G,ID] = findgroups(A) also returns the unique values for each group in ID. For
example, if A is {'b','a','a','b'}, then findgroups returns G as [2 1 1 2] and ID
as {'a','b'}. The arguments A and ID are the same data type, but need not be the
same size.

 findgroups

1-4109

[G,ID1,...,IDN] = findgroups(A1,...,AN) also returns the unique values for
each group across ID1,...,IDN. The values across ID1,...,IDN define the groups. For
example, if A1 is {'a','a','b','b'} and A2 is [0 1 0 0], then
findgroups(A1,A2) returns G as [1 2 3 3], and ID1 and ID2 as {'a','a','b'}
and [0 1 0].

G = findgroups(T) returns G, a vector of group numbers created from the variables in
table T. The findgroups function treats all the variables in T as grouping variables.

[G,TID] = findgroups(T) also returns TID, a table that contains the unique values
for each group. TID contains the unique combinations of values across the variables of T.
The variables in T and TID have the same names, but the tables need not have the same
number of rows.

Examples

Use Group Numbers to Split Data

Use group numbers to split patient height measurements into groups by gender. Then
calculate the mean height for each group.

Load patient heights and genders from the data file patients.mat.

load patients
whos Gender Height

 Name Size Bytes Class Attributes

 Gender 100x1 12212 cell
 Height 100x1 800 double

Specify groups by gender with findgroups.

G = findgroups(Gender);

Compare the first five elements of Gender and G. Where Gender contains 'Female', G
contains 1. Where Gender contains 'Male', G contains 2.

Gender(1:5)

ans = 5x1 cell array
 {'Male' }

1 Alphabetical List

1-4110

 {'Male' }
 {'Female'}
 {'Female'}
 {'Female'}

G(1:5)

ans = 5×1

 2
 2
 1
 1
 1

Split the Height variable into two groups of heights using G. Apply the mean function.
The groups contain the mean heights of female and male patients, respectively.

splitapply(@mean,Height,G)

ans = 2×1

 65.1509
 69.2340

Use Two Grouping Variables to Split Data

Calculate mean blood pressures for groups of patients from measurements grouped by
gender and status as a smoker.

Load blood pressure readings, gender, and smoking data for patients from the data file
patients.mat.

load patients
whos Systolic Diastolic Gender Smoker

 Name Size Bytes Class Attributes

 Diastolic 100x1 800 double

 findgroups

1-4111

 Gender 100x1 12212 cell
 Smoker 100x1 100 logical
 Systolic 100x1 800 double

Specify groups using gender and smoking information about the patients. G contains
integers from one to four because there are four possible combinations of values from
Smoker and Gender.

G = findgroups(Smoker,Gender);
G(1:10)

ans = 10×1

 4
 2
 1
 1
 1
 1
 3
 2
 2
 1

Calculate the mean blood pressure for each group.

meanSystolic = splitapply(@mean,Systolic,G);
meanDiastolic = splitapply(@mean,Diastolic,G);
mBP = [meanSystolic,meanDiastolic]

mBP = 4×2

 119.4250 79.0500
 119.3462 79.8846
 129.0000 89.2308
 129.5714 90.3333

Use Unique Group Values in Output Table

Calculate the median heights for groups of patients, and display the results in a table. To
define the groups of patients, use the additional output argument from findgroups.

1 Alphabetical List

1-4112

Load patient heights and genders from the data file patients.mat.

load patients
whos Gender Height

 Name Size Bytes Class Attributes

 Gender 100x1 12212 cell
 Height 100x1 800 double

Specify groups by gender with findgroups. The values in the output argument gender
define the groups that findgroups finds in the grouping variable.

[G,gender] = findgroups(Gender);

Calculate the median heights. Create a table that contains the median heights.

medianHeight = splitapply(@median,Height,G);
T = table(gender,medianHeight)

T=2×2 table
 gender medianHeight
 ________ ____________

 'Female' 65
 'Male' 69

Use Unique Values from Two Grouping Variables

Calculate mean blood pressures for groups of patients, and display the results in a table.
To define the groups of patients, use the additional output arguments from findgroups.

Load blood pressure readings, gender, and smoking data for 100 patients from the data
file patients.mat.

load patients
whos Systolic Diastolic Gender Smoker

 Name Size Bytes Class Attributes

 Diastolic 100x1 800 double

 findgroups

1-4113

 Gender 100x1 12212 cell
 Smoker 100x1 100 logical
 Systolic 100x1 800 double

Specify groups using gender and smoking information about the patients. Calculate mean
blood pressure for each group. The values across the output arguments gender and
smoker define the groups that findgroups finds in the grouping variables.

[G,gender,smoker] = findgroups(Gender,Smoker);
meanSystolic = splitapply(@mean,Systolic,G);
meanDiastolic = splitapply(@mean,Diastolic,G);

Create a table with the mean blood pressure for each group of patients.

T = table(gender,smoker,meanSystolic,meanDiastolic)

T=4×4 table
 gender smoker meanSystolic meanDiastolic
 ________ ______ ____________ _____________

 'Female' false 119.42 79.05
 'Female' true 129 89.231
 'Male' false 119.35 79.885
 'Male' true 129.57 90.333

Group by Table Variables

Calculate mean blood pressures for patients using grouping variables that are in a table.

Load gender and smoking data for 100 patients into a table.

load patients
T = table(Gender,Smoker);
T(1:5,:)

ans=5×2 table
 Gender Smoker
 ________ ______

 'Male' true
 'Male' false

1 Alphabetical List

1-4114

 'Female' false
 'Female' false
 'Female' false

Specify groups of patients using the Gender and Smoker variables in T.

G = findgroups(T);

Calculate mean blood pressures from the data variables Systolic and Diastolic.

meanSystolic = splitapply(@mean,Systolic,G);
meanDiastolic = splitapply(@mean,Diastolic,G);
mBP = [meanSystolic,meanDiastolic]

mBP = 4×2

 119.4250 79.0500
 129.0000 89.2308
 119.3462 79.8846
 129.5714 90.3333

Group from Table and Create Output Table

Create a table of mean blood pressures for patients grouped by gender and status as a
smoker or nonsmoker.

Load gender and smoking data for patients into a table.

load patients
T = table(Gender,Smoker);

Specify groups of patients using the Gender and Smoker variables in T. The output table
TID identifies the groups.

[G,TID] = findgroups(T);
TID

TID=4×2 table
 Gender Smoker
 ________ ______

 findgroups

1-4115

 'Female' false
 'Female' true
 'Male' false
 'Male' true

Calculate mean blood pressures from the data variables Systolic and Diastolic.
Append mean blood pressures to TID.

TID.meanSystolic = splitapply(@mean,Systolic,G);
TID.meanDiastolic = splitapply(@mean,Diastolic,G)

TID=4×4 table
 Gender Smoker meanSystolic meanDiastolic
 ________ ______ ____________ _____________

 'Female' false 119.42 79.05
 'Female' true 129 89.231
 'Male' false 119.35 79.885
 'Male' true 129.57 90.333

Input Arguments
A — Grouping variable
vector | cell array of character vectors | string array

Grouping variable, specified as a vector, a cell array of character vectors, or a string
array. The unique values in A identify groups.

If A is a vector, then it can be numeric or of data type categorical,
calendarDuration, datetime, duration, logical, or string.

T — Grouping variables
table

Grouping variables, specified as a table. findgroups treats each table variable as a
separate grouping variable. The variables can be numeric or of data type categorical,
calendarDuration, datetime, duration, logical, or string.

1 Alphabetical List

1-4116

Output Arguments
G — Group numbers
vector of positive integers

Group numbers, returned as a vector of positive integers. For N groups identified in the
grouping variables, every integer between 1 and N specifies a group. G contains NaN
where any grouping variable contains an empty character vector or a NaN, NaT, or
undefined categorical value.

• If the grouping variables are vectors, then G and the grouping variables all are the
same size.

• If the grouping variables are in a table, the length of G is equal to the number of rows
of the table.

ID — Values that identify each group
vector of unique values | cell array of character vectors

Values that identify each group, returned as a vector or cell array of character vectors.
The values of ID are the sorted unique values of A.

TID — Table of unique values that identify each group
table

The unique values that identify each group, returned as a table. The variables of TID have
the sorted unique values from the corresponding variables of T. However, TID and T need
not have the same number of rows.

Definitions

Split-Apply-Combine Workflow
The Split-Apply-Combine workflow is common in data analysis. In this workflow, the
analyst splits the data into groups, applies a function to each group, and combines the
results. The diagram shows a typical example of the workflow and the parts of the
workflow implemented by findgroups and splitapply.

 findgroups

1-4117

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• Tall tables are not supported.
• The order of the group numbers in G might be different compared to in-memory

findgroups calculations.

For more information, see “Tall Arrays”.

See Also
accumarray | arrayfun | discretize | groupsummary | histcounts | ismember |
rowfun | splitapply | unique | varfun

Topics
“Split Table Data Variables and Apply Functions”

1 Alphabetical List

1-4118

“Split Data into Groups and Calculate Statistics”
“Calculations on Tables”
“Grouping Variables To Split Data”

Introduced in R2015b

 findgroups

1-4119

findobj
Locate graphics objects with specific properties

Syntax
findobj
h = findobj
h = findobj('PropertyName',PropertyValue,...)
h = findobj('PropertyName',PropertyValue,'-logicaloperator',
'PropertyName',PropertyValue,...)
h = findobj('-regexp','PropertyName','regexp',...)
h = findobj('-property','PropertyName')
h = findobj(objhandles,...)
h = findobj(objhandles,'-depth',d,...)
h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)

Description
findobj returns handles of the root object and all its descendants without assigning the
result to a variable.

h = findobj returns handles of the root object and all its descendants.

h = findobj('PropertyName',PropertyValue,...) returns handles of all graphics
objects having the property PropertyName, set to the value PropertyValue. You can
specify more than one property/value pair, in which case, findobj returns only those
objects having all specified values.

h = findobj('PropertyName',PropertyValue,'-logicaloperator',
'PropertyName',PropertyValue,...) applies the logical operator to the property
value matching. Possible values for -logicaloperator are:

• -and
• -or
• -xor

1 Alphabetical List

1-4120

• -not

For more information on logical operators, see “Logical Operations”.

h = findobj('-regexp','PropertyName','regexp',...) matches objects using
regular expressions as if the value of you passed the property PropertyName to the
regexp function as

regexp(PropertyValue,'regexp')

If a match occurs, findobj returns the object handle. See the regexp function for
information on how the MATLAB software uses regular expressions. The '-regexp'
option does not work for all types of properties.

h = findobj('-property','PropertyName') finds all objects having the specified
property.

h = findobj(objhandles,...) restricts the search to objects listed in objhandles
and their descendants.

h = findobj(objhandles,'-depth',d,...) specifies the depth of the search. The
depth argument d controls how many levels under the handles in objhandles MATLAB
traverses. Specify d as inf to get the default behavior of all levels. Specify d as 0 to get
the same behavior as using the flat argument.

h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)
restricts the search to those objects listed in objhandles and does not search
descendants.

findobj returns an error if a handle refers to a nonexistent graphics object.

findobj correctly matches any legal property value. For example,

findobj('Color','r')

finds all objects having a Color property set to red, r, or [1 0 0].

When a graphics object is a descendant of more than one object identified in
objhandles, MATLAB searches the object each time findobj encounters its handle.
Therefore, implicit references to a graphics object can result in multiple returns of its
handle.

 findobj

1-4121

Note findobj does not return graphics objects that have the HandleVisibility
property set to 'off'. For more information, see the HandleVisibility property
description.

Examples
Find all line objects in the current axes:

h = findobj(gca,'Type','line')

Find all objects having a Label set to 'foo' and a String property set to 'bar':

h = findobj('Label','foo','-and','String','bar');

Find all objects whose String property is not 'foo' and is not 'bar':

h = findobj('-not','String','foo','-not','String','bar');

Find all objects having a String property set to 'foo' and a Tag property set to
'button one' and whose Color property is not 'red' or 'blue':

h = findobj('String','foo','-and','Tag','button one',...
 '-and','-not',{'Color','red','-or','Color','blue'})

Find all objects for which you have assigned a value to the Tag property (that is, the value
is not the empty character vector ''):

h = findobj('-regexp','Tag','[^'']')

Find all children of the current figure that have their BackgroundColor property set to
a certain shade of gray ([.7 .7 .7]). This statement also searches the current figure for
the matching property value pair.

h = findobj(gcf,'-depth',1,'BackgroundColor',[.7 .7 .7])

See Also
copyobj | findall | findobj | gca | gcbo | gcf | gco | get | regexp | set

Topics
“Find Objects”

1 Alphabetical List

1-4122

Introduced before R2006a

 findobj

1-4123

findstr
(Not recommended) Find string within another, longer string

Note findstr is not recommended. Use contains or strfind instead.

Syntax
k = findstr(str1, str2)

Description
k = findstr(str1, str2) searches the longer of the two input arguments for any
occurrences of the shorter argument, returning the starting index of each such
occurrence in the double array k. If no occurrences are found, then findstr returns the
empty array, []. The input arguments str1 and str2 can be character vectors or string
scalars.

The search performed by findstr is case sensitive. Any leading and trailing blanks in
either input argument are explicitly included in the comparison.

Unlike the contains or strfind functions, the order of the input arguments to
findstr is not important. This can be useful if you are not certain which of the two input
arguments is the longer one.

Examples
s = 'Find the starting indices of the shorter character vector.';

findstr(s, 'the')
ans =
 6 30

findstr('the', s)
ans =
 6 30

1 Alphabetical List

1-4124

See Also
contains | regexp | regexpi | regexprep | strcmp | strcmpi | strfind | strncmp |
strncmpi | strtok

Introduced before R2006a

 findstr

1-4125

finish
User-defined termination script for MATLAB

Syntax
finish

Description
finish executes user-specified commands when exiting. MATLAB calls the finish.m
script, if defined, whenever you do one of the following.

• Click the close button on the MATLAB desktop on Microsoft Windows platforms or
the equivalent on UNIX platforms.

• Type quit or exit at the command prompt.

If an error occurs in the finish script, then quit is canceled so that you can correct
your finish.m file without losing your workspace.

Examples

Save Workspace to MAT-File

Use the MATLAB sample file finishsav.m to save the workspace to a MAT-file when
MATLAB quits.

To view the contents or edit the file, open the finishsav.m file in the editor.
edit(fullfile(matlabroot,'toolbox','local','finishsav.m'));

Copy the file to the search path and rename it to finish.m.
copyfile(fullfile(matlabroot,'toolbox','local','finishsav.m'),fullfile(userpath,'finish.m'))

1 Alphabetical List

1-4126

Display Quit Dialog Box

Use the MATLAB sample file finishdlg.m to display a custom dialog box allowing you to
cancel when MATLAB quits.

To view the contents or edit the file, open the finishdlg.m file in the editor.
edit(fullfile(matlabroot,'toolbox','local','finishsav.m'));

Copy the file to the search path and rename it to finish.m.
copyfile(fullfile(matlabroot,'toolbox','local','finishdlg.m'),fullfile(userpath,'finish.m'))

To display this confirmation dialog box, set the Confirm before exiting MATLAB option
in “General Preferences”.

Tips
• When using graphics objects in finish.m, call uiwait, waitfor, or drawnow so that
figures are visible.

See Also
exit | quit | startup

Topics
“Exit MATLAB”

Introduced before R2006a

 finish

1-4127

fitsdisp
Display FITS metadata

Syntax
fitsdisp(filename)
fitsdisp(filename,Name,Value)

Description
fitsdisp(filename) displays metadata for all the Header/Data Units (HDUs) found in
the FITS file specified by filename.

fitsdisp(filename,Name,Value) displays metadata for all the Header/Data Units
(HDUs) found in the FITS file with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
filename

Name of an existing FITS file specified as a character vector or string scalar.

Default:

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Index

Positive scalar value or vector specifying the HDUs.

1 Alphabetical List

1-4128

Default:

Mode

Specified as one of the following:

• 'standard' – Display standard keywords
• 'min' – Display only HDU types and sizes
• 'full' – Display all HDU keywords

Default: 'standard'

Examples
Display metadata in the 2nd HDU in the FITS file.

fitsdisp('tst0012.fits','Index',2);

Display the metadata in the 1st, 3rd, and 5th HDUs in a file.

fitsdisp('tst0012.fits','Index',[1 3 5]);

Display all metadata in the 5th HDU in a file

fitsdisp('tst0012.fits','Index',5,'Mode','full');

References
For copyright information, see the cfitsiocopyright.txt file.

See Also
fitsinfo | fitsread | fitswrite

Introduced in R2012a

 fitsdisp

1-4129

fitsinfo
Information about FITS file

Syntax
info = fitsinfo(filename)

Description
info = fitsinfo(filename) returns the structure, info, with fields that contain
information about the contents of a Flexible Image Transport System (FITS) file.
filename is a character vector or string scalar that specifies the name of the FITS file.

The info structure contains the following fields, listed in the order they appear in the
structure. In addition, the info structure can also contain information about any number
of optional file components, called extensions in FITS terminology. For more information,
see “FITS File Extensions” on page 1-4131.

Field Name Description Return Type
Filename Name of the file Character vector
FileModDate File modification date Character vector
FileSize Size of the file in bytes double
Contents List of extensions in the file in the order

that they occur
Cell array of character
vectors

PrimaryData Information about the primary data in the
FITS file

Structure array

PrimaryData
The PrimaryData field is a structure that describes the primary data in the file. The
following table lists the fields in the order they appear in the structure.

1 Alphabetical List

1-4130

Field Name Description Return Type
DataType Precision of the data Character vector
Size Size of each dimension. The number of

rows correspond to the value of the
NAXIS2 keyword, while the number of
columns correspond to the value of the
NAXIS1 keyword. Any further dimensions
correspond to NAXIS3, NAXIS4, and so
on.

double array

DataSize Size of the primary data in bytes double
MissingDataValue Value used to represent undefined data double
Intercept Value, used with Slope, to calculate

actual pixel values from the array pixel
values, using the equation:
actual_value = Slope*array_value
+ Intercept

double

Slope Value, used with Intercept, to calculate
actual pixel values from the array pixel
values, using the equation:
actual_value = Slope*array_value
+ Intercept

double

Offset Number of bytes from beginning of the
file to the location of the first data value

double

Keywords A number-of-keywords-by-3 cell array
containing keywords, values, and
comments of the header in each column

Cell array of
character vectors

FITS File Extensions
A FITS file can also include optional extensions. If the file contains any of these
extensions, the info structure can contain these additional fields.

• AsciiTable on page 1-4132 — Numeric information in tabular format, stored as ASCII
characters

• BinaryTable on page 1-4133 — Numeric information in tabular format, stored in binary
representation

 fitsinfo

1-4131

• Image on page 1-4134 — A multidimensional array of pixels
• Unknown on page 1-4135 — Nonstandard extension

AsciiTable Extension
The AsciiTable structure contains the following fields, listed in the order they appear in
the structure.

Field Name Description Return Type
Rows Number of rows in the table double
RowSize Number of characters in each row double
NFields Number of fields in each row double array
FieldFormat A 1-by-NFields cell containing formats in

which each field is encoded. The formats
are FORTRAN-77 format codes.

Cell array of
character vectors

FieldPrecision A 1-by-NFields cell containing precision
of the data in each field

Cell array of
character vectors

FieldWidth A 1-by-NFields array containing the
number of characters in each field

double array

FieldPos A 1-by-NFields array of numbers
representing the starting column for each
field

double array

DataSize Size of the data in the table in bytes double
MissingDataValue A 1-by-NFields array of numbers used to

represent undefined data in each field
Cell array of
character vectors

Intercept A 1-by-NFields array of numbers used
along with Slope to calculate actual data
values from the array data values using
the equation: actual_value =
Slope*array_value+Intercept

double array

Slope A 1-by-NFields array of numbers used
with Intercept to calculate true data
values from the array data values using
the equation: actual_value =
Slope*array_value+Intercept

double array

1 Alphabetical List

1-4132

Field Name Description Return Type
Offset Number of bytes from beginning of the

file to the location of the first data value
in the table

double

Keywords A number-of-keywords-by-3 cell array
containing all the Keywords, Values and
Comments in the ASCII table header

Cell array of
character vectors

BinaryTable Extension
The BinaryTable structure contains the following fields, listed in the order they appear
in the structure.

Field Name Description Return Type
Rows Number of rows in the table double
RowSize Number of bytes in each row double
NFields Number of fields in each row double
FieldFormat A 1-by-NFields cell array containing the

data type of the data in each field. The
data type is represented by a FITS
binary table format code.

Cell array of
character vectors

FieldPrecision A 1-by-NFields cell containing precision
of the data in each field

Cell array of
character vectors

FieldSize A 1-by-NFields array, where each
element contains the number of values in
the Nth field

double array

DataSize Size of the data in the Binary Table, in
bytes. Includes any data past the main
table.

double

MissingDataValue An 1-by-NFields array of numbers used
to represent undefined data in each field

Cell array of
double

 fitsinfo

1-4133

Field Name Description Return Type
Intercept A 1-by-NFields array of numbers used

along with Slope to calculate actual data
values from the array data values using
the equation: actual_value =
slope*array_value+Intercept

double array

Slope A 1-by-NFields array of numbers used
with Intercept to calculate true data
values from the array data values using
the equation: actual_value =
Slope*array_value+Intercept

double array

Offset Number of bytes from beginning of the
file to the location of the first data value

double

ExtensionSize Size of any data past the main table, in
bytes

double

ExtensionOffset Number of bytes from the beginning of
the file to any data past the main table

double

Keywords A number-of-keywords-by-3 cell array
containing all the Keywords, values, and
comments in the Binary Table header

Cell array of
character vectors

Image Extension
The Image structure contains the following fields, listed in the order they appear in the
structure.

Field Name Description Return Type
DataType Precision of the data Character vector
Size Size of each dimension. The number of

rows correspond to the value of the
NAXIS2 keyword, while the number of
columns correspond to the value of the
NAXIS1 keyword. Any further dimensions
correspond to NAXIS3, NAXIS4, and so
on.

double array

1 Alphabetical List

1-4134

Field Name Description Return Type
DataSize Size of the data in the Image extension in

bytes
double

Offset Number of bytes from the beginning of
the file to the first data value

double

MissingDataValue Value used to represent undefined data double
Intercept Value, used with Slope, to calculate

actual pixel values from the array pixel
values, using the equation:
actual_value = Slope*array_value
+Intercept

double

Slope Value, used with Intercept, to calculate
actual pixel values from the array pixel
values, using the equation:
actual_value = Slope*array_value
+ Intercept

double

Keywords A number-of-keywords-by-3 cell array
containing all the Keywords, values, and
comments in the Binary Table header

Cell array of
character vectors

Unknown Structure
The Unknown structure contains the following fields, listed in the order they appear in the
structure.

Field Name Description Return Type
DataType Precision of the data Character vector
Size Sizes of each dimension double array
DataSize Size of the data in nonstandard

extensions, in bytes
double

Offset Number of bytes from beginning of the
file to the first data value

double

MissingDataValue Representation of undefined data double

 fitsinfo

1-4135

Field Name Description Return Type
Intercept Value, used with Slope, to calculate

actual data values from the array data
values, using the equation:
actual_value =
Slope*array_value+Intercept

double

Slope Value, used with Intercept, to
calculate actual data values from the
array data values, using the equation:
actual_value =
Slope*array_value+Intercept

double

Keywords A number-of-keywords-by-3 cell array
containing all the Keywords, values, and
comments in the Binary Table header

Cell array of
character vectors

Examples

Get Information About FITS File

Use fitsinfo to obtain information about the FITS file tst0012.fits. The returned
structure contains Filename, FileModDate, FileSize, Contents, and PrimaryData.
In addition to its primary data, the file also contains an example of the extensions
BinaryTable, Unknown, Image, and AsciiTable.

S = fitsinfo('tst0012.fits');

View the PrimaryData field.

S.PrimaryData

ans = struct with fields:
 DataType: 'single'
 Size: [109 102]
 DataSize: 44472
 MissingDataValue: []
 Intercept: 0
 Slope: 1
 Offset: 2880

1 Alphabetical List

1-4136

 Keywords: {25x3 cell}

The PrimaryData field describes the data in the file. For example, the Size field
indicates the data is a 109-by-102 matrix.

View the AsciiTable field.

S.AsciiTable

ans = struct with fields:
 Rows: 53
 RowSize: 59
 NFields: 8
 FieldFormat: {1x8 cell}
 FieldPrecision: {1x8 cell}
 FieldWidth: [9 6.2000 3 10.4000 20.1500 5 1 4]
 FieldPos: [1 11 18 22 33 54 54 55]
 DataSize: 3127
 MissingDataValue: {'*' '---.--' ' *' [] '*' '*' '*' ''}
 Intercept: [0 0 -70.2000 0 0 0 0 0]
 Slope: [1 1 2.1000 1 1 1 1 1]
 Offset: 103680
 Keywords: {65x3 cell}

The AsciiTable field describes the AsciiTable extension. For example, using the
FieldWidth and FieldPos fields you can determine the length and location of each field
within a row.

See Also
fitsdisp | fitsread | fitswrite

Introduced before R2006a

 fitsinfo

1-4137

fitsread
Read data from FITS file

Syntax
data = fitsread(filename)
data = fitsread(filename,extname)
data = fitsread(filename,extname,index)
data = fitsread(filename,Name,Value)

Description
data = fitsread(filename) reads the primary data of the Flexible Image Transport
System (FITS) file. filename is specified as a character vector or string scalar. The
function replaces undefined data values with NaN and scales numeric data by the slope
and intercept values, always returning double precision values.

data = fitsread(filename,extname) reads data from the FITS file extension
specified by extname.

data = fitsread(filename,extname,index) reads data from the FITS file
extension specified by extname . If there is more than one of the specified extensions in
the file, index specifies the one to read.

data = fitsread(filename,Name,Value) reads data from the FITS file with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
filename

Character vector or string scalar specifying the name of a FITS file.

Default:

1 Alphabetical List

1-4138

extname

The name of a data array or extension in the FITS file, specified as one of the character
vectors or string scalars in the table that follows. To determine the contents of a FITS,
view the Contents field of the structure returned by fitsinfo.

Data Arrays or Extensions

Extname Description
'primary' Read data from the primary data array.
'asciitable' Read data from the ASCII Table extension. The return value,

data, is a 1-D cell array.
'binarytable' Read data from the Binary Table extension. The return value,

data, is a 1-D cell array.
'image' Read data from the Image extension.
'unknown' Read data from the Unknown extension.

Default:

index

Numeric value specifying which extension to read, if more than one exists in the file.

Default:

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

info

info structure returned by fitsinfo specifying the location of data to read.

Note Using the info structure returned by fitsinfo to specify the location of data in a
FITS file can significantly improve performance, especially when reading multiple images
from the file.

 fitsread

1-4139

Default:

PixelRegion

Cell array {rows,cols,...} specifying the boundaries of a subimage region to read
from the file. Each dimension (rows, cols) is a vector of 1-based indices given either as
START, [START STOP], or [START INCREMENT STOP]. This parameter is valid only for
primary or image extensions.

Default:

raw

Specifies that fitsread should not scale the data read from the file or replace undefined
values with NaN. Data read from the file is the same class as it is stored in the file.

Default:

TableColumns

Vector of 1-based indices specifying the columns to read from the ASCII or Binary table
extension. This vector should contain unique and valid indices into the table data
specified in increasing order. This parameter is valid only for ASCII or Binary extensions.

Default:

TableRows

Vector of 1-based indices specifying the rows to read from the ASCII or Binary table
extension. This vector should contain unique and valid indices into the table data
specified in increasing order. This parameter is valid only for ASCII or Binary extensions.

Default:

Output Arguments
data

Data returned from the FITS file.

1 Alphabetical List

1-4140

Examples
Read primary data from FITS file

data = fitsread('tst0012.fits');

Name Size Bytes Class Attributes

data 109x102 88944 double

Inspect available extensions, read 'image' extension using the extname option.

info = fitsinfo('tst0012.fits');
 % List of contents, includes any extensions if present.
 disp(info.Contents);
 imageData = fitsread('tst0012.fits','image');

Subsample the fifth plane of 'image' extension by 2.

info = fitsinfo('tst0012.fits');
 rowend = info.Image.Size(1);
 colend = info.Image.Size(2);
 primaryData = fitsread('tst0012.fits','image',...
 'Info', info,...
 'PixelRegion',{[1 2 rowend], [1 2 colend], 5 });

Read every other row from an ASCII table.

info = fitsinfo('tst0012.fits');
rowend = info.AsciiTable.Rows;
tableData = fitsread('tst0012.fits','asciitable',...
 'Info',info,...
 'TableRows',[1:2:rowend]);

Read all data for the first, second and fifth columns of the Binary table.

info = fitsinfo('tst0012.fits');
rowend = info.BinaryTable.Rows;
tableData = fitsread('tst0012.fits','binarytable',...
 'Info',info,...
 'TableColumns',[1 2 5]);

 fitsread

1-4141

Definitions

extension
A FITS file contains primary data and can optionally contain any number of optional
components, called extensions in FITS terminology.

See Also
fitsdisp | fitsinfo | fitswrite

Topics
“Importing Flexible Image Transport System (FITS) Files”

Introduced before R2006a

1 Alphabetical List

1-4142

fitswrite
Write image to FITS file

Syntax
fitswrite(imagedata,filename)
fitswrite(imagedata,filename,Name,Value)

Description
fitswrite(imagedata,filename) writes imagedata to the FITS file specified by
filename. If filename does not exist, fitswrite creates the file as a simple FITS file.
If filename exists, fitswrite overwrites the file or appends the image to the end of the
file, depending on the value of the writemode argument.

fitswrite(imagedata,filename,Name,Value) writes imagedata to the FITS file
specified by filename with additional options specified by one or more Name,Value pair
arguments.

Input Arguments
imagedata

Image array.

Default:

filename

Character vector or string scalar specifying the name of an existing FITS file or the name
you want to assign to a new FITS file.

Default:

 fitswrite

1-4143

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

WriteMode

Specified as one of the following:

• 'overwrite'
• 'append'

Default: 'overwrite'

Compression

Specified as one of the following:

• 'none'
• 'gzip'
• 'rice'
• 'hcompress'
• 'plio'

Default: 'none'

Examples
Create a FITS file containing the red channel of an RGB image.

X = imread('ngc6543a.jpg');
R = X(:,:,1);
fitswrite(R,'myfile.fits');
fitsdisp('myfile.fits');

Create a FITS file with three images constructed from the channels of an RGB image.

X = imread('ngc6543a.jpg');
R = X(:,:,1); G = X(:,:,2); B = X(:,:,3);

1 Alphabetical List

1-4144

fitswrite(R,'myfile.fits');
fitswrite(G,'myfile.fits','writemode','append');
fitswrite(B,'myfile.fits','writemode','append');
fitsdisp('myfile.fits');

References
For copyright information, see the cfitsiocopyright.txt file.

See Also
fitsinfo | fitsread

Introduced in R2012a

 fitswrite

1-4145

fix
Round toward zero

Syntax
Y = fix(X)

Description
Y = fix(X) rounds each element of X to the nearest integer toward zero. For positive X,
the behavior of fix is the same as floor. For negative X, the behavior of fix is the same
as ceil.

Examples

Round Matrix Elements Toward Zero

X = [-1.9 -3.4; 1.6 2.5; -4.5 4.5]

X = 3×2

 -1.9000 -3.4000
 1.6000 2.5000
 -4.5000 4.5000

Y = fix(X)

Y = 3×2

 -1 -3
 1 2
 -4 4

1 Alphabetical List

1-4146

Round Complex Numbers Toward Zero

X = [1.4+2.3i 3.1-2.2i -5.3+10.9i]

X = 1×3 complex

 1.4000 + 2.3000i 3.1000 - 2.2000i -5.3000 +10.9000i

Y = fix(X)

Y = 1×3 complex

 1.0000 + 2.0000i 3.0000 - 2.0000i -5.0000 +10.0000i

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. For complex X,
fix treats the real and imaginary parts independently.

fix converts logical and char elements of X into double values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | logical
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 fix

1-4147

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support char or logical data types for X.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ceil | floor | round

Topics
“Integers”
“Floating-Point Numbers”

Introduced before R2006a

1 Alphabetical List

1-4148

matlab.unittest.fixtures Package
Summary of classes in MATLAB Fixtures Interface

Description
Fixtures ease creation of setup and teardown code. The matlab.unittest.fixtures
package consists of the following customized MATLAB fixtures.

Classes
matlab.unittest.fixtures.CurrentFolderFixture Fixture for changing current

working folder
matlab.unittest.fixtures.Fixture Interface class for test fixtures
matlab.unittest.fixtures.PathFixture Fixture for adding a folder to the

MATLAB path
matlab.unittest.fixtures.ProjectFixture Fixture for loading project
matlab.unittest.fixtures.SuppressedWarningsFixture Fixture to suppress display of

warnings
matlab.unittest.fixtures.TemporaryFolderFixture Fixture for creating a temporary

folder
matlab.unittest.fixtures.WorkingFolderFixture Fixture for creating and changing

to temporary working folder

See Also

Topics
“Write Tests Using Shared Fixtures”
“Create Basic Custom Fixture”
“Create Advanced Custom Fixture”

Introduced in R2013a

 matlab.unittest.fixtures Package

1-4149

matlab.unittest.fixtures.CurrentFolderFixtur
e class
Package: matlab.unittest.fixtures

Fixture for changing current working folder

Description
The CurrentFolderFixture class provides a fixture for changing the current working
folder. When the test framework sets up the fixture, it changes the working folder. When
the test framework tears down the fixture, it restores the working folder to its previous
state.

Construction
matlab.unittest.fixtures.CurrentFolderFixture(folder) constructs a fixture
for changing the current working folder to folder.

Input Arguments
folder — Folder to make the current working folder
character vector

Folder to make the current working folder, specified as a character vector. MATLAB
throws an error if folder does not exist.

Properties
Folder

Folder to make the current working folder, specified as a character vector in the folder
input argument.

1 Alphabetical List

1-4150

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Fixture to Change Current Working Folder

Create the following changeFolderFixtureTest class definition on your MATLAB path.
This example assumes that the subfolder helperFiles exists in your working folder.
Create the changeToFolderin your working folder if it does not exist.

The test1 function includes a call to pwd to demonstrate the current path changed to the
helperFiles folder.

classdef changeFolderFixtureTest < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 import matlab.unittest.fixtures.CurrentFolderFixture

 changeToFolder = 'helperFiles';
 testCase.applyFixture(CurrentFolderFixture ...
 (changeToFolder));
 pwd
 end
 end
end

At the command prompt, run the test. For the purposes of this example, call pwd before
and after run to show the fixture was properly torn down and the path returned to the
pre-test state.

currentFolderBeforeTest = pwd
run(changeFolderFixtureTest);
currentFolderAfterTest = pwd

currentFolderBeforeTest =

H:\Documents\doc_examples

Running changeFolderFixtureTest

 matlab.unittest.fixtures.CurrentFolderFixture class

1-4151

ans =

H:\Documents\doc_examples\helperFiles

.
Done changeFolderFixtureTest

currentFolderAfterTest =

H:\Documents\doc_examples

See Also
matlab.unittest.TestCase.applyFixture | matlab.unittest.fixtures |
matlab.unittest.fixtures.PathFixture |
matlab.unittest.fixtures.WorkingFolderFixture

1 Alphabetical List

1-4152

matlab.unittest.fixtures.ProjectFixture class
Package: matlab.unittest.fixtures
Superclasses:

Fixture for loading project

Description
ProjectFixture is a fixture for loading a project during execution of a test suite.

The test framework constructs this class. When the test framework sets up the fixture, it
loads the project if not already loaded. When the test framework tears down the fixture,
the project is closed if the fixture loaded it, otherwise the project remains loaded.

The matlab.unittest.fixtures.ProjectFixture class is a handle class.

Class Attributes
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

Creation
Instances of this class are created only by the testing framework.

Properties
ProjectFolder — Project root folder
path to project root folder

Project root folder, specified as a string scalar. ProjectFolder contains the absolute
path to the root folder of the project that is loaded when the fixture is set up.

 matlab.unittest.fixtures.ProjectFixture class

1-4153

Example: C:/projects/project1/

Attributes:

GetAccess
public

SetAccess
immutable

Data Types: string

Limitations
• You cannot use the fromProject method in compiled applications created with the

MATLAB Compiler™. For more information, see “Functions not supported by MATLAB
Compiler / MATLAB Compiler SDK” (MATLAB Compiler).

See Also
matlab.unittest.TestCase.applyFixture | matlab.unittest.fixtures

Introduced in R2019a

1 Alphabetical List

1-4154

matlab.unittest.fixtures.Fixture class
Package: matlab.unittest.fixtures

Interface class for test fixtures

Description
The Fixture interface class is the means by which test authors create custom fixtures.
Fixtures configure the environment state required for tests.

Classes deriving from the Fixture interface must implement the setup method. This
method executes the changes to the environment. A fixture should restore the
environment to its initial state when it is torn down. To restore the environment, use the
addTeardown method in the setup method or implement the fixture’s teardown
method.

Subclasses can set the SetupDescription and TeardownDescription properties in
their constructors to provide descriptions for the actions performed by the setup and
teardown methods. The testing framework can display these descriptions when setting
up and tearing down the fixture.

A class that derives from Fixture must implement the isCompatible method if its
constructor accepts any input arguments or is otherwise configurable. Fixture
subclasses use this method to define a notion of interchangeability of fixtures. Two
matlab.unittest.fixtures instances of the same class are considered to be
interchangeable if the isCompatible method returns true. The TestRunner uses the
result of isCompatible to determine whether two fixture instances of the same class
correspond to the same shared test fixture state.

Properties
SetupDescription

Description of fixture setup actions, specified as a character vector. The
SetupDescription property describes the actions the fixture performs when the testing
framework invokes the fixture’s setup method.

 matlab.unittest.fixtures.Fixture class

1-4155

TeardownDescription

Description of fixture teardown actions, specified as a character vector. The
TeardownDescription property describes the actions the fixture performs when the
testing framework invokes the fixture’s teardown method.

Methods
applyFixture Set up fixture to delegate work to another fixture
log Record diagnostic information
onFailure Dynamically add diagnostics for test failures
setup Set up fixture
teardown Tear down fixture
addTeardown Dynamically add teardown routine
isCompatible Determine if two fixtures of the same class are interchangeable

Events
AssertionFailed Triggered upon failing assertion. A

QualificationEventData object is
passed to listener callback functions.

AssertionPassed Triggered upon passing assertion. A
QualificationEventData object is
passed to listener callback functions.

AssumptionFailed Triggered upon failing assumption. A
QualificationEventData object is
passed to listener callback functions.

AssumptionPassed Triggered upon passing assumption. A
QualificationEventData object is
passed to listener callback functions.

FatalAssertionFailed Triggered upon failing fatal assertion. A
QualificationEventData object is
passed to listener callback functions.

1 Alphabetical List

1-4156

FatalAssertionPassed Triggered upon passing fatal assertion. A
QualificationEventData object is
passed to listener callback functions.

ExceptionThrown Triggered by the TestRunner when an
exception is thrown. An
ExceptionEventData object is passed to
listener callback functions.

DiagnosticLogged Triggered by the TestRunner upon a call
to the log method. A
LoggedDiagnosticEventData object is
passed to the listener callback functions.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
addTeardown | matlab.unittest.TestCase.applyFixture |
matlab.unittest.TestCase.getSharedTestFixtures |
matlab.unittest.diagnostics.LoggedDiagnosticEventData |
matlab.unittest.fixtures |
matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Topics
“Create Basic Custom Fixture”
“Create Advanced Custom Fixture”

 matlab.unittest.fixtures.Fixture class

1-4157

applyFixture
Class: matlab.unittest.fixtures.Fixture
Package: matlab.unittest.fixtures

Set up fixture to delegate work to another fixture

Syntax
applyFixture(fixture1,fixture2)

Description
applyFixture(fixture1,fixture2) sets up fixture2 for use with fixture1. To
delegate work to fixture2, call this method from the setup method of fixture1.

The applyFixture method ties the lifecycle of fixture2 to the lifecycle of fixture1.
When the testing framework tears down fixture1, it also tears down fixture2.

Input Arguments
fixture1 — Primary fixture
instance of matlab.unittest.fixtures.Fixture

Primary fixture, specified as an instance of matlab.unittest.fixtures.Fixture.

fixture2 — Fixture applied to primary fixture
instance of matlab.unittest.fixtures.Fixture

Fixture for setting up the primary fixture, specified as an instance of
matlab.unittest.fixtures.Fixture. The primary fixture delegates work to this
fixture.

Examples

1 Alphabetical List

1-4158

Create Fixture That Uses Another Fixture

Construct a fixture that creates a temporary text file. The fixture uses a
TemporaryFolderFixture fixture to create a temporary folder, and then creates a text
file within that folder. As part of the TemporaryTextFileFixture teardown, the
framework also tears down the TemporaryFolderFixture at the appropriate time,
which deletes the folder and its contents.

classdef TemporaryTextFileFixture < matlab.unittest.fixtures.Fixture

 properties (SetAccess=private)
 File
 end

 methods
 function setup(fixture)
 import matlab.unittest.fixtures.TemporaryFolderFixture;
 import matlab.unittest.qualifications.FatalAssertable;

 % Delegate to TemporaryFolderFixture to create a temporary folder
 tempFolder = fixture.applyFixture(TemporaryFolderFixture);

 fixture.File = fullfile(tempFolder.Folder, 'file.txt');

 fid = fopen(fixture.File, 'wt');
 fixture.fatalAssertNotEqual(fid,-1);

 status = fclose(fid);
 fixture.fatalAssertEqual(status,0);
 end
 end
end

See Also
matlab.unittest.TestCase.applyFixture | matlab.unittest.fixtures

Introduced in R2016a

 applyFixture

1-4159

log
Class: matlab.unittest.fixtures.Fixture
Package: matlab.unittest.fixtures

Record diagnostic information

Syntax
log(f,diagnostic)
log(f,v,diagnostic)

Description
log(f,diagnostic) logs the supplied diagnostic. The log method provides a means for
tests to log information during fixture setup and teardown routines. The testing
framework displays logged messages only if you configure it to do so by adding an
appropriate plugin, such as the matlab.unittest.plugins.LoggingPlugin.

log(f,v,diagnostic) logs the diagnostic at the specified verbosity level, v.

Input Arguments
f — Instance of fixture
matlab.unittest.fixtures.Fixture instance

Instance of fixture, specified as a matlab.unittest.fixtures.Fixture.

diagnostic — Diagnostic information to display upon a failure
string | character vector | function handle |
matlab.unittest.diagnostics.Diagnostic instance

Diagnostic information to display upon a failure, specified as a string, character vector,
function handle, or matlab.unittest.diagnostics.Diagnostic instance.

1 Alphabetical List

1-4160

v — Verbosity level
2 (default) | 1 | 3 | 4 | matlab.unittest.Verbosity enumeration

Verbosity level, specified as an integer value between 1 and 4 or a
matlab.unittest.Verbosity enumeration object. The default verbosity level for
diagnostic messages is Concise. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

Examples

Log Diagnostic Information

In a file, FormatHexFixture.m, in your current working folder, create the following
fixture.

classdef FormatHexFixture < matlab.unittest.fixtures.Fixture
 properties (Access=private)
 OriginalFormat
 end
 methods
 function setup(fixture)
 fixture.OriginalFormat = get(0,'Format');
 fixture.log(['The previous format setting was ',...
 fixture.OriginalFormat])
 log(fixture,'Setting Format')
 set(0,'Format','hex')
 log(fixture,3,'Format Set')
 end
 function teardown(fixture)

 log

1-4161

 log(fixture,'Resetting Format')
 set(0,'Format',fixture.OriginalFormat)
 log(fixture,3,'Original Format Restored')
 end
 end
end

In a file, SampleTest.m, in your current working folder, create the following test class.

classdef SampleTest < matlab.unittest.TestCase
 methods (Test)
 function test1(testCase)
 testCase.applyFixture(FormatHexFixture);
 actStr = getColumnForDisplay([1;2;3], 'Small Integers');
 expStr = ['Small Integers '
 '3ff0000000000000'
 '4000000000000000'
 '4008000000000000'];
 testCase.verifyEqual(actStr, expStr)
 end
 end
end

function str = getColumnForDisplay(values, title)
elements = cell(numel(values)+1, 1);
elements{1} = title;
for idx = 1:numel(values)
 elements{idx+1} = displayNumber(values(idx));
end
str = char(elements);
end

function str = displayNumber(n)
str = strtrim(evalc('disp(n);'));
end

Run the test.

result = run(SampleTest);

Running SampleTest
.
Done SampleTest

1 Alphabetical List

1-4162

None of the logged messages are displayed because the default test runner has a
verbosity level of 1 (Terse) and the default log message is at level 2 (Concise).

Create a test runner to report the diagnostics at levels 1, 2, and 3 and rerun the test.

import matlab.unittest.TestRunner
import matlab.unittest.plugins.LoggingPlugin

ts = matlab.unittest.TestSuite.fromClass(?SampleTest);
runner = TestRunner.withNoPlugins;
p = LoggingPlugin.withVerbosity(3);
runner.addPlugin(p);

results = runner.run(ts);

 [Concise] Diagnostic logged (2014-04-23T13:17:35): The previous format setting was short
 [Concise] Diagnostic logged (2014-04-23T13:17:35): Setting Format
[Detailed] Diagnostic logged (2014-04-23T13:17:35): Format Set
 [Concise] Diagnostic logged (2014-04-23T13:17:35): Resetting Format
[Detailed] Diagnostic logged (2014-04-23T13:17:35): Original Format Restored

See Also
matlab.unittest.Verbosity | matlab.unittest.plugins.LoggingPlugin

Introduced in R2014b

 log

1-4163

onFailure
Class: matlab.unittest.fixtures.Fixture
Package: matlab.unittest.fixtures

Dynamically add diagnostics for test failures

Note In release R2019a, onFailure method has protected access.

Syntax
onFailure(fixture,failureDiag)
onFailure(fixture,failureDiag,'IncludingAssumptionFailures',tf)

Description
onFailure(fixture,failureDiag) adds diagnostics for failures during fixture setup
and teardown routines. If the test framework encounters a failure, then it executes the
diagnostics. By default, these diagnostics execute upon verification failures, assertion
failures, fatal assertion failures, and uncaught exceptions.

onFailure(fixture,failureDiag,'IncludingAssumptionFailures',tf)
indicates if the test framework also executes diagnostics upon assumption failures. To
execute diagnostics upon assumption failures also, set tf to true.

Input Arguments
fixture — Instance of fixture
matlab.unittest.fixtures.Fixture instance

Instance of fixture, specified as a matlab.unittest.fixtures.Fixture.

failureDiag — Diagnostic information
character vector | string array | function handle | array of
matlab.unittest.diagnostics.Diagnostic instances

1 Alphabetical List

1-4164

Diagnostic information to display upon a failure, specified as a character vector, string
array, function handle, or array of matlab.unittest.diagnostics.Diagnostic
instances.
Example: @() disp('Failure Detected')
Example: matlab.unittest.diagnostics.ScreenshotDiagnostic

tf — React to assumption failures
false (default) | true

React to assumption failures, specified as false (logical 0) or true (logical 1). By
default, this value is false and the test framework executes diagnostics upon verification
failures, assertion failures, fatal assertion failures, and uncaught exceptions. However, the
test framework does not execute diagnostics upon assumption failures. To execute
additional diagnostics upon assumption failures, specify this value as true.

Examples

Add Diagnostics for Fixture Failure

In your current working folder, create the FormatHexFixture fixture. The test
framework encounters an assertion failure during fixture setup and displays the
diagnostic message upon failure.
classdef FormatHexFixture < matlab.unittest.fixtures.Fixture
 properties (Access=private)
 OriginalFormat
 end
 methods
 function setup(fixture)
 fixture.OriginalFormat = get(0,'Format');
 set(0,'Format','hex')
 fixture.addTeardown(@set,0,'Format',fixture.OriginalFormat)

 fixture.onFailure(['Failure detected in ' mfilename('class')])
 fixture.assertEqual(get(0,'Format'),'short')
 end
 end
end

Create the following test class, SampleTest.m, in your current working folder.

classdef SampleTest < matlab.unittest.TestCase
 methods (Test)
 function test1(testCase)

 onFailure

1-4165

 testCase.applyFixture(FormatHexFixture);
 actStr = getColumnForDisplay([1;2;3], 'Small Integers');
 expStr = ['Small Integers '
 '3ff0000000000000'
 '4000000000000000'
 '4008000000000000'];
 testCase.verifyEqual(actStr, expStr)
 end
 end
end

function str = getColumnForDisplay(values, title)
elements = cell(numel(values)+1, 1);
elements{1} = title;
for idx = 1:numel(values)
 elements{idx+1} = displayNumber(values(idx));
end
str = char(elements);
end

function str = displayNumber(n)
str = strtrim(evalc('disp(n);'));
end

Run the test. Note the onFailure diagnostics appear under the "Additional Diagnostics"
heading.

results = runtests('SampleFixtureTest');

Running SampleFixtureTest

==
Assertion failed in SampleFixtureTest/test1 and it did not run to completion.

 Framework Diagnostic:

 assertEqual failed.
 --> The character arrays are not equal.

 Actual char:
 hex
 Expected char:
 short

 Additional Diagnostic:

 Failure Detected in FormatHexFixture

1 Alphabetical List

1-4166

 Stack Information:

 In C:\work\FormatHexFixture.m (FormatHexFixture.setup) at 11
==
.
Done SampleFixtureTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 SampleFixtureTest/test1 X X Failed by assertion.

Compatibility Considerations

Access changed to protected
Behavior changed in R2019a

In release R2019a, the onFailure method Access attribute is changed from public to
protected. This change restricts the use of onFailure to classes derived from
matlab.unittest.fixtures.Fixture.

See Also
matlab.unittest.diagnostics

Introduced in R2017b

 onFailure

1-4167

setup
Class: matlab.unittest.fixtures.Fixture
Package: matlab.unittest.fixtures

Set up fixture

Syntax
setup(f)

Description
setup(f) sets up a fixture by performing the defined environment modifications. Classes
deriving from the Fixture interface must implement the setup method. This method
executes the changes to the environment. A fixture should restore the environment to its
initial state when it is torn down. To restore the environment, use the addTeardown
method in the setup method or implement the fixture's teardown method.

Input Arguments
f

matlab.unittest.fixtures.Fixture instance

See Also
matlab.unittest.fixtures.Fixture |
matlab.unittest.fixtures.Fixture.addTeardown |
matlab.unittest.fixtures.Fixture.teardown

Topics
“Create Basic Custom Fixture”

1 Alphabetical List

1-4168

“Create Advanced Custom Fixture”

 setup

1-4169

teardown
Class: matlab.unittest.fixtures.Fixture
Package: matlab.unittest.fixtures

Tear down fixture

Syntax
teardown(f)

Description
teardown(f) tears down a fixture by performing the defined actions to restore the
environment to the initial state.

Input Arguments
f

matlab.unittest.fixtures.Fixture instance

Alternatives
Instead of defining a teardown method, you can define teardown actions within the
setup method by implementing the addTeardown method.

See Also
matlab.unittest.fixtures.Fixture |
matlab.unittest.fixtures.Fixture.addTeardown |
matlab.unittest.fixtures.Fixture.setup

1 Alphabetical List

1-4170

Topics
“Create Basic Custom Fixture”
“Create Advanced Custom Fixture”

 teardown

1-4171

addTeardown
Class: matlab.unittest.fixtures.Fixture
Package: matlab.unittest.fixtures

Dynamically add teardown routine

Syntax
addTeardown(fixture,tearDownFcn)
addTeardown(fixture,tearDownFcn,arg1,...,argN)

Description
addTeardown(fixture,tearDownFcn) adds the tearDownFcn function handle that
defines fixture teardown code to the fixture instance. The teardown code is executed in
the reverse order to which it is added. This is known as LIFO (or last-in, first-out).

addTeardown(fixture,tearDownFcn,arg1,...,argN) provides input arguments to
the tearDownFcn.

Input Arguments
fixture

matlab.unittest.fixtures.Fixture instance

tearDownFcn

Function that defines the fixture teardown code, specified as a function handle.

arg1,...,argN

Input arguments required by tearDownFcn, specified by any type. The argument type is
specified by the tearDownFcn function argument list.

1 Alphabetical List

1-4172

Alternatives
Instead of defining teardown actions within the setup method by implementing the
addTeardown method, you can implement the teardown method.

See Also
matlab.unittest.fixtures.Fixture |
matlab.unittest.fixtures.Fixture.setup |
matlab.unittest.fixtures.Fixture.teardown

Topics
“Create Advanced Custom Fixture”

 addTeardown

1-4173

isCompatible
Class: matlab.unittest.fixtures.Fixture
Package: matlab.unittest.fixtures

Determine if two fixtures of the same class are interchangeable

Syntax
TF = isCompatible(f1, f2)

Description
TF = isCompatible(f1, f2) determines if two fixtures of the same class are
interchangeable. The isCompatible method returns either logical 1 (true) or logical 0
(false).

A class that derives from Fixture must implement the isCompatible method if its
constructor accepts any input arguments or is otherwise configurable. Fixture
subclasses use this method to define a notion of interchangeability of fixtures. Two
matlab.unittest.fixtures instances of the same class are considered to be
interchangeable if the isCompatible method returns true. The test framework uses the
result of isCompatible to determine whether two fixture instances of the same class
correspond to the same shared test fixture state. The test framework always calls the
isCompatible method with two fixture instances of the same class, so the fixture author
does not need to implement code to handle the case where the second fixture is a
different fixtures class.

Input Arguments
f

matlab.unittest.fixtures.Fixture instance

1 Alphabetical List

1-4174

Attributes
Access Protected

To learn about attributes of methods, see Method Attributes.

See Also
matlab.unittest.fixtures.Fixture

Topics
“Create Advanced Custom Fixture”

 isCompatible

1-4175

matlab.unittest.fixtures.PathFixture class
Package: matlab.unittest.fixtures

Fixture for adding a folder to the MATLAB path

Description
The PathFixture class provides a fixture for adding a folder to the MATLAB path. When
the test framework sets up the fixture, it adds the specified folder to the path. When the
test framework tears down the fixture, it restores the MATLAB path to its previous state.

Construction
matlab.unittest.fixtures.PathFixture(folder) constructs a fixture for adding
a folder to the MATLAB path. When the test framework sets up the fixture, it adds
folder to the path. When it tears down the fixture, it restores the MATLAB path to its
previous state.

matlab.unittest.fixtures.PathFixture(folder,Name,Value) constructs a
fixture with additional options specified by one or more Name,Value pair arguments. For
example,
matlab.unittest.fixtures.PathFixture('myFolder','IncludingSubfolders
',true) constructs a fixture that adds myFolder and any of its subfolders to the path.

Input Arguments
folder — Folder to add to the MATLAB path
character vector

Folder to add to the MATLAB path, specified as a character vector. If folder does not
exist, MATLAB throws an error.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-4176

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IncludingSubfolders — Setting to include subfolders on path
false (default) | true

Setting to include subfolders of folder on the path, specified
as false or true (logical 0 or 1). This value is false by default. If you specify it as
true, the test framework includes subfolders of folder on the path. Package, class, and
private folders are not added to the path, even when this property is true.

Position — Location of where on the path to add the folder
'begin' (default) | 'end'

Location of where on the path to add the folder, specified as 'begin' or 'end'. The
default value is 'begin', which adds folder to the beginning (top) of the path.

If you use this option with IncludingSubfolders, the fixture adds the folder and its
subfolders to the top or bottom of the path as a single block with folder on the top.

Properties
Folder

Folder to add to the MATLAB path, specified as a character vector in the folder input
argument.

IncludeSubfolders

Indicator to include subfolders of folder on the path, specified
as false or true (logical 0 or 1). This property is read only. It is false by default, but
you can specify it as true during construction.

Position

Indicator of where on the path to add folder, specified as 'begin' or 'end'. This
property is read only. It is 'begin' by default, but you can specify it as 'end' during
construction.

 matlab.unittest.fixtures.PathFixture class

1-4177

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Add Folder to MATLAB Path for Testing

Create the following addPathFixtureTest class definition on your MATLAB path. This
example assumes that the subfolder,helperFiles, exists in your working folder. If it
does not, define addFolder to be a folder that exists within your current folder.
classdef addPathFixtureTest < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 import matlab.unittest.fixtures.PathFixture

 addFolder = 'helperFiles';
 f = testCase.applyFixture(PathFixture(addFolder));
 disp(['Added to path: ' f.Folder])
 end
 end
end

At the command prompt, run the test.

run(addPathFixtureTest);

Running addPathFixtureTest
Added to path: H:\Documents\doc_examples\helperFiles
.
Done addPathFixtureTest

After the tests finish running, the framework removes the folder from the path.

Add Folder to Path Using Shared Test Fixture

Create the following sharedAddPathFixtureTest class definition on your MATLAB
path. This example assumes that the subfolder, helperFiles, exists in your working
folder.
classdef (SharedTestFixtures={ ...
 matlab.unittest.fixtures.PathFixture('helperFiles')}) ...
 sharedAddPathFixtureTest < matlab.unittest.TestCase

1 Alphabetical List

1-4178

 methods(Test)
 function test1(testCase)
 f = testCase.getSharedTestFixtures;
 disp(['Added to path: ' f.Folder])
 end
 end
end

At the command prompt, run the test.

run(sharedAddPathFixtureTest);

Setting up PathFixture
Done setting up PathFixture: Added 'H:\Documents\doc_examples\helperFiles' to the path.

Running sharedAddPathFixtureTest
Added to path: H:\Documents\doc_examples\helperFiles
.
Done sharedAddPathFixtureTest

Tearing down PathFixture
Done tearing down PathFixture: Restored the path to its original state.

After the tests finish running, the framework removes the folder from the path.

See Also
matlab.unittest.TestCase.applyFixture | matlab.unittest.fixtures |
matlab.unittest.fixtures.CurrentFolderFixture |
matlab.unittest.fixtures.WorkingFolderFixture

 matlab.unittest.fixtures.PathFixture class

1-4179

matlab.unittest.fixtures.SuppressedWarning
sFixture class
Package: matlab.unittest.fixtures

Fixture to suppress display of warnings

Description
The SuppressedWarningsFixture class provides a fixture to suppress the display of
warnings. When set up, SuppressedWarningsFixture disables one or more specified
warnings. When torn down, the fixture restores the states of warnings to their previous
values.

Construction
matlab.unittest.fixtures.SuppressedWarningsFixture(warnIDs) constructs
a fixture to suppress the display of one or more warnings.

Input Arguments
warnIDs — Identifier for warnings disabled when the fixture is set up
character vector | cell array of character vectors

Warning identifiers for the warnings to be suppressed, specified as a character vector or
cell array of character vectors.

Properties
Warnings

Warning identifiers describing warnings to suppress specified as a cell array of character
vectors in the warnings input argument.

1 Alphabetical List

1-4180

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Fixture to Suppress Warnings

Suppress the warning that occurs when you try to remove a folder from the search path
that is not on the search path.

Remove the folder, folderthatisnotonpath from your path, assuming it does not exist.

 rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58

A warning appears because rmpath cannot find the folder.

Suppress the warning during testing by creating the following suppressWarningsTest
class definition on your MATLAB path.

classdef suppressWarningsTest < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 import matlab.unittest.fixtures.SuppressedWarningsFixture

 testCase.applyFixture(...
 SuppressedWarningsFixture('MATLAB:rmpath:DirNotFound'));

 % would otherwise cause warning
 rmpath('folderthatisnotonpath')
 end
 end
end

At the command prompt, run the test. For the purposes of this example, call rmpath
before and after running the test to show the warning is not suppressed outside execution
of the test.

 matlab.unittest.fixtures.SuppressedWarningsFixture class

1-4181

rmpath('folderthatisnotonpath')
run(suppressWarningsTest);
rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58
Running suppressWarningsTest
.
Done suppressWarningsTest

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58

Note that the call to rmpath within suppressWarningsTest does not result in a
warning.

See Also
matlab.unittest.TestCase.applyFixture | matlab.unittest.fixtures |
warning

1 Alphabetical List

1-4182

matlab.unittest.fixtures.TemporaryFolderFixt
ure class
Package: matlab.unittest.fixtures

Fixture for creating a temporary folder

Description
The matlab.unittest.fixtures.TemporaryFolderFixture provides a fixture to
create a temporary folder. When the testing framework sets up the fixture, it creates the
temporary folder. When it tears down the fixture, it deletes the folder and all its contents.
Before it deletes the folder, the fixture clears from memory the definitions of any
MATLAB-files, P-files, and MEX-files that are defined in the temporary folder.

Both the TemporaryFolderFixture and WorkingFolderFixture fixtures create a
temporary folder. Unlike the WorkingFolderFixture, the TemporaryFolderFixture
does not set the folder as the current working folder.

Construction
matlab.unittest.fixtures.TemporaryFolderFixture constructs a fixture for
creating a temporary folder.

matlab.unittest.fixtures.TemporaryFolderFixture(Name,Value) constructs
a fixture for creating a temporary folder with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 matlab.unittest.fixtures.TemporaryFolderFixture class

1-4183

PreservingOnFailure — Preservation state of temporary folder and contents
after test failure
false (default) | true

Indicator of whether the temporary folder and its contents are preserved in the event of a
test failure, specified as false or true (logical 0 or 1). This property is false by
default. You can specify it as true during fixture construction.
Data Types: logical

WithSuffix — Suffix for temporary folder name
character vector (default)

Suffix for temporary folder name, specified as a character vector.

Properties
Folder

Absolute path of the folder created by the fixture, specified as a character vector.

PreserveOnFailure

Indicator of whether the temporary folder and its contents are preserved in the event of a
test failure. This property is logical(0) or logical(1). It is logical(0) by default
but is set to logical(1) if the 'PreservingOnFailure' input value is set to true
during fixture construction.

Suffix

Suffix used for temporary folder, specified as a character vector in the Name,Value pair
argument, 'WithSuffix'.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

1 Alphabetical List

1-4184

Examples

Create Temporary Folder Fixture

Create the following tempFolderFixtureTest class definition on your MATLAB path.
classdef tempFolderFixtureTest < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 import matlab.unittest.fixtures.TemporaryFolderFixture

 tempFolder = testCase.applyFixture(TemporaryFolderFixture);

 disp(['The temporary folder: ' tempFolder.Folder])
 end
 end
end

At the command prompt, run the test.
run(tempFolderFixtureTest);

Running tempFolderFixtureTest
The temporary folder: C:\Temp\tpfb1ae2cf_c9de_4de3_9557_00d52bfcc1b2
.
Done tempFolderFixtureTest

The name of the temporary folder varies.

Create Temporary Folder Fixture Persisting Through Test Failure

Create the following anotherTempFolderFixtureTest class definition on your
MATLAB path. For the purposes of this example, the test1 function contains an assertion
that causes test failure.
classdef anotherTempFolderFixtureTest < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 import matlab.unittest.fixtures.TemporaryFolderFixture

 testCase.applyFixture(TemporaryFolderFixture(...
 'PreservingOnFailure',true,'WithSuffix','TestData'));

 % Failed assertion, preserved temporary folder
 testCase.assertEqual(1,2)
 end
 end
end

At the command prompt, run the test.

 matlab.unittest.fixtures.TemporaryFolderFixture class

1-4185

run(anotherTempFolderFixtureTest);

Running anotherTempFolderFixtureTest

==
Assertion failed in anotherTempFolderFixtureTest/test1 and it did not run to completion.

 Framework Diagnostic:

 assertEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 1 2 -1 -0.5

 Actual double:
 1
 Expected double:
 2

 Stack Information:

 In C:\Documents\anotherTempFolderFixtureTest.m (anotherTempFolderFixtureTest.test1) at 10
==
 [Terse] Diagnostic logged (2014-04-01T13:50:51):
Because of a failure in the test using the TemporaryFolderFixture, the following folder will not be deleted:
C:\Temp\tp9f5aa9f1_ead1_4462_91f2_08bbe7d0316cTestData

.
Done anotherTempFolderFixtureTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 anotherTempFolderFixtureTest/test1 X X Failed by assertion.

The test failed and the temporary folder persists. You can open the temporary folder,
shown here as C:\Temp\tp9f5aa9f1_ead1_4462_91f2_08bbe7d0316cTestData,
and examine any contents.

See Also
matlab.unittest.TestCase.applyFixture | matlab.unittest.fixtures |
matlab.unittest.fixtures.CurrentFolderFixture |

1 Alphabetical List

1-4186

matlab.unittest.fixtures.PathFixture |
matlab.unittest.fixtures.WorkingFolderFixture

Introduced in R2013b

 matlab.unittest.fixtures.TemporaryFolderFixture class

1-4187

matlab.unittest.fixtures.WorkingFolderFixtur
e class
Package: matlab.unittest.fixtures

Fixture for creating and changing to temporary working folder

Description
The matlab.unittest.fixtures.WorkingFolderFixture creates a temporary
folder and sets it as the current working folder. The test or the product under test can
create files and modify the contents of the folder without affecting the source code or test
folder structure.

When the testing framework sets up the fixture, it adds the current folder to the path.
Then, the fixture creates a temporary folder, and changes the current working folder to
the temporary folder. When the testing framework tears down the fixture, by default, it
deletes the temporary folder and all folder contents. The testing framework restores the
current working folder to its previous state.

Both the WorkingFolderFixture and TemporaryFolderFixture fixtures create a
temporary folder. However, the WorkingFolderFixture also sets the folder as the
current working folder.

Construction
matlab.unittest.fixtures.WorkingFolderFixture constructs a fixture for
creating and changing to a temporary working folder.

matlab.unittest.fixtures.WorkingFolderFixture(Name,Value) constructs a
fixture with additional options specified by one or more Name,Value pair arguments. For
example,
matlab.unittest.fixtures.WorkingFolderFixture('PreservingOnFailure',
true) constructs a fixture that does not delete the temporary folder in the event of an
error.

1 Alphabetical List

1-4188

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PreservingOnFailure — Setting to preserve temporary folder and contents
after test failure
false (default) | true

Setting to preserve the temporary folder and contents after test failure, specified as
false or true (logical 0 or 1). This value is false by default. You can specify it as
true during fixture construction.

If you specify 'PreservingOnFailure' as true and a test using the fixture encounters
a failure, the testing framework displays a message in the Command Window and does
not delete the folder. Failures include verification, assertion, or fatal assertion
qualification failures and uncaught errors within the tests that use the fixture. Preserving
the temporary folder and its contents can aid in investigation of the cause of the test
failure.
Data Types: logical

WithSuffix — Suffix for temporary folder name
character vector

Suffix for temporary folder name, specified as a character vector. The value of this
parameter is appended to the name of the temporary folder.
Example: WorkingFolderFixture('WithSuffix','_ProductA')

Properties
Folder — Absolute path of the folder created by the fixture
character vector

Absolute path of the folder created by the fixture, specified as a character vector.

 matlab.unittest.fixtures.WorkingFolderFixture class

1-4189

PreserveOnFailure — Indicator to preserve temporary folder
false (default) | true

Indicator to preserve the temporary folder and its contents in the event of a test failure,
specified as false or true. Set this property through the constructor via the name-value
pair argument 'PreservingOnFailure'.

Suffix — Suffix for temporary folder name
character vector

Suffix for the temporary folder name, specified as a character vector. Set this
property through the constructor via the name-value pair argument 'WithSuffix'.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Temporary Working Folder

Create the following ExampleTest class definition on your MATLAB path.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 import matlab.unittest.fixtures.WorkingFolderFixture;

 testCase.applyFixture(WorkingFolderFixture);

 x = 1:10;

 % Save a file in the temporary folder
 save('data.mat','x');

 disp(['The temporary working folder: ' pwd])
 ls
 end
 end
end

1 Alphabetical List

1-4190

At the command prompt, run the test.

run(ExampleTest);

Running ExampleTest
The temporary working folder: C:\AppData\Local\Temp\tp6ff2cadf_9eed_4e90_88c1_5ff9ee8abb25

. .. data.mat

.
Done ExampleTest

The name of the temporary folder varies.

Specify Suffix for Temporary Working Folder Name

Create the following ExampleTest2 class definition on your MATLAB path.

classdef ExampleTest2 < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 import matlab.unittest.fixtures.WorkingFolderFixture;

 f = WorkingFolderFixture('WithSuffix','_ProductA');
 testCase.applyFixture(f);

 x = 1:10;

 % Save a file in the temporary folder
 save('data.mat','x');

 disp(['The temporary working folder: ' pwd])
 ls
 end
 end
end

At the command prompt, run the test.

run(ExampleTest2);

Running ExampleTest2
The temporary working folder: C:\AppData\Local\Temp\tp72c6ce7c_a380_4f5e_be3b_4f7191a6cd2c_ProductA

 matlab.unittest.fixtures.WorkingFolderFixture class

1-4191

. .. data.mat

.
Done ExampleTest2

The name of the temporary folder varies, but it ends with _ProductA.

See Also
matlab.unittest.TestCase.applyFixture | matlab.unittest.fixtures |
matlab.unittest.fixtures.CurrentFolderFixture |
matlab.unittest.fixtures.PathFixture |
matlab.unittest.fixtures.TemporaryFolderFixture

Introduced in R2016a

1 Alphabetical List

1-4192

flag
Flag colormap array

Syntax
c = flag
c = flag(m)

Description
c = flag returns the flag colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = flag(m) returns the colormap with m colors.

Examples

Downsample the Flag Colormap

Create a scatter plot using the default colors.

x = [3.5 3.3 5 6.1 4 2];
y = [14 5.7 12 6 8 9];
sz = 100*[6 100 20 3 15 20];
c = [3 1 2 3 1 2];
scatter(x,y,sz,c,'filled','MarkerEdgeColor','k','MarkerFaceAlpha',.7);
xlim([1 7]);
ylim([1 16]);

 flag

1-4193

Get the flag colormap array with three entries. Then replace the colormap in the scatter
plot.

c = flag(3);
colormap(c);

1 Alphabetical List

1-4194

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 flag

1-4195

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-4196

flintmax
Largest consecutive integer in floating-point format

Syntax
f = flintmax
f = flintmax(precision)

Description
f = flintmax returns the largest consecutive integer in IEEE double precision, which is
2^53. Above this value, double-precision format does not have integer precision, and not
all integers can be represented exactly.

f = flintmax(precision) returns the largest consecutive integer in IEEE single or
double precision. flintmax returns single(2^24) for single precision and 2^53 for
double precision.

Examples

Double Precision

Return the largest consecutive integer in IEEE® double precision, 2^53.

format long e
f = flintmax

f =
 9.007199254740992e+15

 flintmax

1-4197

Single Precision

Return the largest consecutive integer in IEEE® single precision, single(2^24).

f = flintmax('single')

f = single
 16777216

Check the class of f.

class(f)

ans =
'single'

Limit of Integer Single Precision

Above the value returned by flintmax('single'), not all integers can be represented
exactly with single precision.

Return the largest consecutive integer in IEEE® single precision, single(2^24).

f = flintmax('single')

f = single
 16777216

Add 1 to the value returned from flintmax.

f1 = f+1

f1 = single
 16777216

f1 is the same as f.

isequal(f,f1)

ans = logical
 1

1 Alphabetical List

1-4198

Add 2 to the value returned from flintmax. The number 16777218 is represented
exactly in single precision while 16777217 is not.

f2 = f+2

f2 = single
 16777218

Input Arguments
precision — Floating-point precision type
'double' (default) | 'single'

Floating-point precision type, specified as 'double' or 'single'.
Data Types: char

Output Arguments
f — Largest consecutive integer in floating-point format
scalar constant

Largest consecutive integer in floating-point format returned as a scalar constant. This
constant is 2^53 for double precision and single(2^24) for single precision.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eps | format | intmax | realmax

 flintmax

1-4199

Topics
“Floating-Point Numbers”

Introduced in R2013a

1 Alphabetical List

1-4200

flip
Flip order of elements

Syntax
B = flip(A)
B = flip(A,dim)

Description
B = flip(A) returns array B the same size as A, but with the order of the elements
reversed. The dimension that is reordered in B depends on the shape of A:

• If A is vector, then flip(A) reverses the order of the elements along the length of the
vector.

• If A is a matrix, then flip(A) reverses the elements in each column.
• If A is an N-D array, then flip(A) operates on the first dimension of A in which the

size value is not 1.

B = flip(A,dim) reverses the order of the elements in A along dimension dim. For
example, if A is a matrix, then flip(A,1) reverses the elements in each column, and
flip(A,2) reverses the elements in each row.

Examples

Flip Character Vector

A = 'no word, no bond, row on.';
B = flip(A)

B =
'.no wor ,dnob on ,drow on'

 flip

1-4201

Flip Column Vector
A = [1;2;3];
B = flip(A)

B = 3×1

 3
 2
 1

Flip Matrix

Create a diagonal matrix, A.

A = diag([100 200 300])

A = 3×3

 100 0 0
 0 200 0
 0 0 300

Flip A without specifying the dim argument.

B = flip(A)

B = 3×3

 0 0 300
 0 200 0
 100 0 0

Now, flip A along the second dimension.

B = flip(A,2)

B = 3×3

1 Alphabetical List

1-4202

 0 0 100
 0 200 0
 300 0 0

Flip N-D Array

Create a 1-by-3-by-2 array.

A = zeros(1,3,2);
A(:,:,1) = [1 2 3];
A(:,:,2) = [4 5 6];
A

A =
A(:,:,1) =

 1 2 3

A(:,:,2) =

 4 5 6

Flip A without specifying the dim argument.

B = flip(A)

B =
B(:,:,1) =

 3 2 1

B(:,:,2) =

 6 5 4

Now, flip A along the third dimension.

B = flip(A,3)

 flip

1-4203

B =
B(:,:,1) =

 4 5 6

B(:,:,2) =

 1 2 3

Flip Cell Array

Create a 3-by-2 cell array.

A = {'foo',1000; 999,true; 'aaa','bbb'}

A = 3x2 cell array
 {'foo'} {[1000]}
 {[999]} {[1]}
 {'aaa'} {'bbb' }

Flip A without specifying the dim argument.

B = flip(A)

B = 3x2 cell array
 {'aaa'} {'bbb' }
 {[999]} {[1]}
 {'foo'} {[1000]}

Now, flip A along the second dimension.

B = flip(A,2)

B = 3x2 cell array
 {[1000]} {'foo'}
 {[1]} {[999]}
 {'bbb' } {'aaa'}

1 Alphabetical List

1-4204

Input Arguments
A — Input array
vector | matrix | multidimensional array | table | timetable

Input array, specified as a vector, matrix, multidimensional array, table, or timetable.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | table | timetable |
categorical | datetime | duration | calendarDuration
Example: [1 2 3 4]
Example: ['abcde']
Example: [1 2; 3 4]
Example: {'abcde',[1 2 3]}
Example: table(rand(1,5),rand(1,5))

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

The following illustration shows the difference between dim=1 and dim=2 when A is a
matrix.

 flip

1-4205

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• If specified, the dim argument must be greater than 1.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays for the first argument.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fliplr | flipud | permute | rot90 | transpose

1 Alphabetical List

1-4206

Introduced in R2013b

 flip

1-4207

flipdim
(Not recommended) Flip array along specified dimension

Note flipdim is not recommended. Use flip instead.

Syntax
B = flipdim(A,dim)

Description
B = flipdim(A,dim) returns A with dimension dim flipped.

When the value of dim is 1, the array is flipped row-wise down. When dim is 2, the array
is flipped columnwise left to right. flipdim(A,1) is the same as flipud(A), and
flipdim(A,2) is the same as fliplr(A).

Examples
flipdim(A,1) where

A =

 1 4
 2 5
 3 6

produces

 3 6
 2 5
 1 4

1 Alphabetical List

1-4208

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• If specified, the dim argument must be greater than 1.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays for the first argument.

See Also
flip | fliplr | flipud | permute | rot90

Introduced before R2006a

 flipdim

1-4209

fliplr
Flip array left to right

Syntax
B = fliplr(A)

Description
B = fliplr(A) returns A with its columns flipped in the left-right direction (that is,
about a vertical axis).

If A is a row vector, then fliplr(A) returns a vector of the same length with the order of
its elements reversed. If A is a column vector, then fliplr(A) simply returns A. For
multidimensional arrays, fliplr operates on the planes formed by the first and second
dimensions.

Examples

Flip Row Vector

Create a row vector.

A = 1:10

A = 1×10

 1 2 3 4 5 6 7 8 9 10

Use fliplr to flip the elements of A in the horizontal direction.

B = fliplr(A)

B = 1×10

1 Alphabetical List

1-4210

 10 9 8 7 6 5 4 3 2 1

The order of the elements in B is reversed compared to A.

Flip Cell Array of Characters

Create a 3-by-3 cell array of characters.

A = {'a' 'b' 'c'; 'd' 'e' 'f'; 'g' 'h' 'i'}

A = 3x3 cell array
 {'a'} {'b'} {'c'}
 {'d'} {'e'} {'f'}
 {'g'} {'h'} {'i'}

Change the order of the columns in the horizontal direction by using fliplr.

B = fliplr(A)

B = 3x3 cell array
 {'c'} {'b'} {'a'}
 {'f'} {'e'} {'d'}
 {'i'} {'h'} {'g'}

The order of the first and third columns of A is switched in B, while the second column
remains unchanged.

Flip Multidimensional Array

Create a multidimensional array.

A = cat(3, [1 2; 3 4], [5 6; 7 8])

A =
A(:,:,1) =

 1 2

 fliplr

1-4211

 3 4

A(:,:,2) =

 5 6
 7 8

A is an array of size 2-by-2-by-2.

Flip the elements on each page of A in the horizontal direction.

B = fliplr(A)

B =
B(:,:,1) =

 2 1
 4 3

B(:,:,2) =

 6 5
 8 7

The result, B, is the same size as A, but the horizontal order of the elements is flipped.
The operation flips the elements on each page independently.

Input Arguments
A — Input array
vector | matrix | multidimensional array | table | timetable

Input array, specified as a vector, matrix, multidimensional array, table, or timetable.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | table | timetable |
categorical | datetime | duration | calendarDuration
Complex Number Support: Yes

1 Alphabetical List

1-4212

Tips
• fliplr(A) is equivalent to flip(A,2).
• Use the flipud function to flip arrays in the vertical direction (that is, about a

horizontal axis).
• The flip function can flip arrays in any direction.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 fliplr

1-4213

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
flip | flipud | rot90

Introduced before R2006a

1 Alphabetical List

1-4214

flipud
Flip array up to down

Syntax
B = flipud(A)

Description
B = flipud(A) returns A with its rows flipped in the up-down direction (that is, about a
horizontal axis).

If A is a column vector, then flipud(A) returns a vector of the same length with the
order of its elements reversed. If A is a row vector, then flipud(A) simply returns A. For
multidimensional arrays, flipud operates on the planes formed by the first and second
dimensions.

Examples

Flip Column Vector

Create a column vector.

A=(1:10)'

A = 10×1

 1
 2
 3
 4
 5
 6
 7
 8

 flipud

1-4215

 9
 10

Use flipud to flip the elements of A in the vertical direction.

B = flipud(A)

B = 10×1

 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

The order of the elements in B is reversed compared to A.

Flip Cell Array of Characters

Create a 3-by-3 cell array of characters.

A = {'a' 'b' 'c'; 'd' 'e' 'f'; 'g' 'h' 'i'}

A = 3x3 cell array
 {'a'} {'b'} {'c'}
 {'d'} {'e'} {'f'}
 {'g'} {'h'} {'i'}

Change the order of the rows in the vertical direction by using flipud.

B = flipud(A)

B = 3x3 cell array
 {'g'} {'h'} {'i'}
 {'d'} {'e'} {'f'}

1 Alphabetical List

1-4216

 {'a'} {'b'} {'c'}

The order of the first and third rows of A is switched in B, while the second row remains
unchanged.

Flip Multidimensional Array

Create a multidimensional array.

A = cat(3, [1 2; 3 4], [5 6; 7 8])

A =
A(:,:,1) =

 1 2
 3 4

A(:,:,2) =

 5 6
 7 8

A is an array of size 2-by-2-by-2.

Flip the elements on each page of A in the vertical direction.

B = flipud(A)

B =
B(:,:,1) =

 3 4
 1 2

B(:,:,2) =

 7 8
 5 6

 flipud

1-4217

The result, B, is the same size as A, but the vertical order of the elements is flipped. The
operation flips the elements on each page independently.

Input Arguments
A — Input array
vector | matrix | multidimensional array | table | timetable

Input array, specified as a vector, matrix, multidimensional array, table, or timetable.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | table | timetable |
categorical | datetime | duration | calendarDuration
Complex Number Support: Yes

Tips
• flipud(A) is equivalent to flip(A,1).
• Use the fliplr function to flip arrays in the horizontal direction (that is, about a

vertical axis).
• The flip function can flip arrays in any direction.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays.

1 Alphabetical List

1-4218

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
flip | fliplr | rot90

Introduced before R2006a

 flipud

1-4219

floor
Round toward negative infinity

Syntax
Y = floor(X)

Y = floor(t)
Y = floor(t,unit)

Description
Y = floor(X) rounds each element of X to the nearest integer less than or equal to that
element.

Y = floor(t) rounds each element of the duration array t to the nearest number of
seconds less than or equal to that element.

Y = floor(t,unit) rounds each element of t to the nearest number of the specified
unit of time less than or equal to that element.

Examples

Round Matrix Elements Toward Negative Infinity

X = [-1.9 -0.2 3.4; 5.6 7.0 2.4+3.6i];
Y = floor(X)

Y = 2×3 complex

 -2.0000 + 0.0000i -1.0000 + 0.0000i 3.0000 + 0.0000i
 5.0000 + 0.0000i 7.0000 + 0.0000i 2.0000 + 3.0000i

1 Alphabetical List

1-4220

Round Duration Values Toward Negative Infinity

Round each value in a duration array to the nearest number of seconds less than or
equal to that value.

t = hours(8) + minutes(29:31) + seconds(1.23);
t.Format = 'hh:mm:ss.SS'

t = 1x3 duration array
 08:29:01.23 08:30:01.23 08:31:01.23

Y1 = floor(t)

Y1 = 1x3 duration array
 08:29:01.00 08:30:01.00 08:31:01.00

Round each value in t to the nearest number of hours less than or equal to that value.

Y2 = floor(t,'hours')

Y2 = 1x3 duration array
 08:00:00.00 08:00:00.00 08:00:00.00

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. For complex X,
floor treats the real and imaginary parts independently.

floor converts logical and char elements of X into double values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | logical
Complex Number Support: Yes

 floor

1-4221

t — Input duration
duration array

Input duration, specified as a duration array.

unit — Unit of time
'seconds' (default) | 'minutes' | 'hours' | 'days' | 'years'

Unit of time, specified as 'seconds', 'minutes', 'hours', 'days', or 'years'. A
duration of 1 year is equal to exactly 365.2425 24-hour days.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support char or logical data types for X.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-4222

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ceil | fix | round

Topics
“Integers”
“Floating-Point Numbers”

Introduced before R2006a

 floor

1-4223

flow
Simple function of three variables

Syntax
v = flow
v = flow(n)
v = flow(x,y,z)
[x,y,z,v] = flow(...)

Description
flow, a function of three variables, generates fluid-flow data that is useful for
demonstrating slice, interp3, and other functions that visualize scalar volume data.

v = flow produces a 25-by-50-by-25 array.

v = flow(n) produces a n-by-2n-by-n array.

v = flow(x,y,z) evaluates the speed profile at the points x, y, and z.

[x,y,z,v] = flow(...) returns the coordinates as well as the volume data.

See Also
interp3 | slice

Topics
“Slicing Fluid Flow Data”

Introduced before R2006a

1 Alphabetical List

1-4224

fmesh
Plot 3-D mesh

Syntax
fmesh(f)
fmesh(f,xyinterval)

fmesh(funx,funy,funz)
fmesh(funx,funy,funz,uvinterval)

fmesh(___ ,LineSpec)
fmesh(___ ,Name,Value)
fmesh(ax, ___)
fs = fmesh(___)

Description
fmesh(f) creates a mesh plot of the expression z = f(x,y) over the default interval
[-5 5] for x and y.

fmesh(f,xyinterval) plots over the specified interval. To use the same interval for
both x and y, specify xyinterval as a two-element vector of the form [min max]. To
use different intervals, specify a four-element vector of the form [xmin xmax ymin
ymax].

fmesh(funx,funy,funz) plots the parametric mesh defined by x = funx(u,v), y =
funy(u,v), z = funz(u,v) over the default interval [-5 5] for u and v.

fmesh(funx,funy,funz,uvinterval) plots the parametric mesh over the specified
interval. To use the same interval for both u and v, specify uvinterval as a two-element
vector of the form [min max]. To use different intervals, specify a four-element vector of
the form [umin umax vmin vmax].

 fmesh

1-4225

fmesh(___ ,LineSpec) sets the line style, marker symbol, and color of the mesh. For
example, '-r' specifies red lines. Use this option after any of the previous input
argument combinations.

fmesh(___ ,Name,Value) specifies properties of the mesh using one or more name-
value pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes.

fmesh(ax, ___) plots into the axes specified by ax instead of the current axes gca.

fs = fmesh(___) returns a FunctionSurface object or a
ParameterizedFunctionSurface object, depending on the inputs. Use fs to query
and modify properties of a specific surface. For a list of properties, see FunctionSurface
or ParameterizedFunctionSurface.

Examples

3-D Mesh Plot of Expression

Plot a mesh of the input sin(x) + cos(y) over the default interval −5 < x < 5 and
−5 < y < 5.

fmesh(@(x,y) sin(x)+cos(y))

1 Alphabetical List

1-4226

Parameterized Mesh Plot

Plot the parameterized mesh

x = rcos(s)sin(t)
y = rsin(s)sin(t)

z = rcos(t)
where r = 2 + sin(7s + 5t)

for 0 < s < 2π and 0 < t < π. Make the mesh partially transparent using alpha.

 fmesh

1-4227

r = @(s,t) 2 + sin(7.*s + 5.*t);
x = @(s,t) r(s,t).*cos(s).*sin(t);
y = @(s,t) r(s,t).*sin(s).*sin(t);
z = @(s,t) r(s,t).*cos(t);
fmesh(x,y,z,[0 2*pi 0 pi])

alpha(0.8)

Specify Interval of Mesh Plot and Plot Piecewise Input

Plot the piecewise input

1 Alphabetical List

1-4228

erf(x) + cos(y) −5 < x < 0
sin(x) + cos(y) 0 < x < 5

over the interval −5 < y < 5 .

Specify the plotting interval as the second argument of fmesh. When you plot multiple
inputs over different intervals in the same axes, the axis limits adjust to include all the
data.

fmesh(@(x,y) erf(x)+cos(y),[-5 0 -5 5])
hold on
fmesh(@(x,y) sin(x)+cos(y),[0 5 -5 5])
hold off

 fmesh

1-4229

Specify Mesh Plot Properties

Create a mesh plot using red lines.

fmesh(@(x,y) sin(x)+cos(y),'EdgeColor','red')

Input Arguments
f — 3-D function to plot
function handle

1 Alphabetical List

1-4230

3-D function to plot, specified as a function handle to a named or anonymous function.

Specify a function of the form z = f(x,y). The function must accept two matrix input
arguments and return a matrix output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: f = @(x,y) sin(x) + cos(y);

xyinterval — Plotting interval for x and y
[-5 5 -5 5] (default) | vector of form [min max] | vector of form [xmin xmax ymin
ymax]

Plotting interval for x and y, specified in one of these forms:

• Vector of form [min max] — Use the interval [min max] for both x and y
• Vector of form [xmin xmax ymin ymax] — Use the interval [xmin xmax] for x and

[ymin ymax] for y.

funx — Parametric function for x coordinates
function handle

Parametric function for x coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form x = funx(u,v). The function must accept two matrix
input arguments and return a matrix output argument of the same size. Use array
operators instead of matrix operators for the best performance. For example, use .*
(times) instead of * (mtimes).
Example: funx = @(u,v) u.*sin(v);

funy — Parametric function for y coordinates
function handle

Parametric function for y coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form y = funy(u,v). The function must accept two matrix
input arguments and return a matrix output argument of the same size. Use array
operators instead of matrix operators for the best performance. For example, use .*
(times) instead of * (mtimes).

 fmesh

1-4231

Example: funy = @(t) @(u,v) -u.*cos(v);

funz — Parametric function for z coordinates
function handle

Parametric function for z coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form z = funz(u,v). The function must accept two matrix
input arguments and return a matrix output argument of the same size. Use array
operators instead of matrix operators for the best performance. For example, use .*
(times) instead of * (mtimes).
Example: funz = @(u,v) v;

uvinterval — Plotting interval for u and v
[-5 5 -5 5] (default) | vector of form [min max] | vector of form [umin umax vmin
vmax]

Plotting interval for u and v, specified in one of these forms:

• Vector of form [min max] — Use the interval [min max] for both u and v.
• Vector of form [umin umax vmin vmax] — Use the interval [umin umax] for u and

[vmin vmax] for v.

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fmesh uses the current axes.

LineSpec — Line specification
character vector | string

Line specification, specified as a character vector or string with a line style, marker, and
color. The elements can appear in any order, and you can omit one or more options. To
show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers

Line Style Specifier Description
- Solid line (default)

1 Alphabetical List

1-4232

Line Style Specifier Description
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Specifier Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

 fmesh

1-4233

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','o','MarkerFaceColor','red'

The properties listed here are only a subset. For a full list, see FunctionSurface.

MeshDensity — Number of evaluation points per direction
35 (default) | number

Number of evaluation points per direction, specified as a number. The default is 35.
Because fmesh objects use adaptive evaluation, the actual number of evaluation points is
greater.
Example: 100

ShowContours — Display contour plot under plot
'off' (default) | 'on'

Display contour plot under plot, specified as 'off' (default) or 'on'.

EdgeColor — Line color
'interp' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'interp' colors the edges based on the
ZData property values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-4234

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

 fmesh

1-4235

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle

1 Alphabetical List

1-4236

Value Description
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
EdgeColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

 fmesh

1-4237

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

1 Alphabetical List

1-4238

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

 fmesh

1-4239

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fs — One or more FunctionSurface or ParameterizedFunctionSurface objects
scalar | vector

One or more FunctionSurface or ParameterizedFunctionSurface objects,
returned as a scalar or a vector.

• If you use the fmesh(f) syntax or a variation of this syntax, then fmesh returns
FunctionSurface objects.

• If you use the fmesh(funx,funy,funz) syntax or a variation of this syntax, then
fmesh returns ParameterizedFunctionSurface objects.

You can use these objects to query and modify properties of a specific mesh. For a list of
properties, see FunctionSurface and ParameterizedFunctionSurface.

See Also
Functions
fcontour | fplot | fplot3 | fsurf

Properties
FunctionSurface | ParameterizedFunctionSurface

Introduced in R2016a

1 Alphabetical List

1-4240

fminbnd
Find minimum of single-variable function on fixed interval

fminbnd is a one-dimensional minimizer that finds a minimum for a problem specified by

min
x

f (x) such that x1 < x < x2 .

x, x1, and x2 are finite scalars, and f(x) is a function that returns a scalar.

Syntax
x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(problem)
[x,fval] = fminbnd(___)
[x,fval,exitflag] = fminbnd(___)
[x,fval,exitflag,output] = fminbnd(___)

Description
x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the scalar
valued function that is described in fun in the interval x1 < x < x2.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization options specified
in options. Use optimset to set these options.

x = fminbnd(problem) finds the minimum for problem, where problem is a
structure.

[x,fval] = fminbnd(___), for any input arguments, returns the value of the
objective function computed in fun at the solution x.

[x,fval,exitflag] = fminbnd(___) additionally returns a value exitflag that
describes the exit condition.

 fminbnd

1-4241

[x,fval,exitflag,output] = fminbnd(___) additionally returns a structure
output that contains information about the optimization.

Examples

Minimum of sin

Find the point where the sin(x) function takes its minimum in the range 0 < x < 2π.

fun = @sin;
x1 = 0;
x2 = 2*pi;
x = fminbnd(fun,x1,x2)

x = 4.7124

To display precision, this is the same as the correct value x = 3π/2.

3*pi/2

ans = 4.7124

Minimize a Function Specified by a File

Minimize a function that is specified by a separate function file. A function accepts a point
x and returns a real scalar representing the value of the objective function at x.

Write the following function as a file, and save the file as scalarobjective.m on your
MATLAB® path.

function f = scalarobjective(x)
f = 0;
for k = -10:10
 f = f + (k+1)^2*cos(k*x)*exp(-k^2/2);
end

Find the x that minimizes scalarobjective on the interval 1 <= x <= 3.

1 Alphabetical List

1-4242

x = fminbnd(@scalarobjective,1,3)

x =

 2.0061

Minimize with Extra Parameter

Minimize a function when there is an extra parameter. The function sin(x− a) has a
minimum that depends on the value of the parameter a. Create an anonymous function of
x that includes the value of the parameter a. Minimize this function over the interval
0 < x < 2π.

a = 9/7;
fun = @(x)sin(x-a);
x = fminbnd(fun,1,2*pi)

x = 5.9981

This answer is correct; the theoretical value is

3*pi/2 + 9/7

ans = 5.9981

For more information about including extra parameters, see “Parameterizing Functions”.

Monitor Iterations

Monitor the steps fminbnd takes to minimize the sin(x) function for 0 < x < 2π.

fun = @sin;
x1 = 0;
x2 = 2*pi;
options = optimset('Display','iter');
x = fminbnd(fun,x1,x2,options)

 Func-count x f(x) Procedure

 fminbnd

1-4243

 1 2.39996 0.67549 initial
 2 3.88322 -0.67549 golden
 3 4.79993 -0.996171 golden
 4 5.08984 -0.929607 parabolic
 5 4.70582 -0.999978 parabolic
 6 4.7118 -1 parabolic
 7 4.71239 -1 parabolic
 8 4.71236 -1 parabolic
 9 4.71242 -1 parabolic

Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04

x = 4.7124

Find Minimum Location and Function Value

Find the location of the minimum of sin(x) and the value of the minimum for 0 < x < 2π.

fun = @sin;
[x,fval] = fminbnd(fun,1,2*pi)

x = 4.7124

fval = -1.0000

Obtain All Information

Return all information about the fminbnd solution process by requesting all outputs.
Also, monitor the solution process using a plot function.

fun = @sin;
x1 = 0;
x2 = 2*pi;
options = optimset('PlotFcns',@optimplotfval);
[x,fval,exitflag,output] = fminbnd(fun,x1,x2,options)

1 Alphabetical List

1-4244

x = 4.7124

fval = -1.0000

exitflag = 1

output = struct with fields:
 iterations: 8
 funcCount: 9
 algorithm: 'golden section search, parabolic interpolation'
 message: 'Optimization terminated:...'

 fminbnd

1-4245

Input Arguments
fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function
that accepts a real scalar x and returns a real scalar f (the objective function evaluated at
x).

Specify fun as a function handle for a file:

x = fminbnd(@myfun,x1,x2)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fminbnd(@(x)norm(x)^2,x1,x2);

Example: fun = @(x)-x*exp(-3*x)
Data Types: char | function_handle | string

x1 — Lower bound
finite real scalar

Lower bound, specified as a finite real scalar.
Example: x1 = -3
Data Types: double

x2 — Upper bound
finite real scalar

Upper bound, specified as a finite real scalar.
Example: x2 = 5
Data Types: double

options — Optimization options
structure such as optimset returns

1 Alphabetical List

1-4246

Optimization options, specified as a structure such as optimset returns. You can use
optimset to set or change the values of these fields in the options structure. See “Set
Options” for detailed information.

Display Level of display (see “Iterative Display”):

• 'notify' (default) displays output only if the function
does not converge.

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration.
• 'final' displays just the final output.

FunValCheck Check whether objective function values are valid. The
default 'off' allows fminbnd to proceed when the
objective function returns a value that is complex or NaN.
The 'on' setting throws an error when the objective
function returns a value that is complex or NaN.

MaxFunEvals Maximum number of function evaluations allowed, a positive
integer. The default is 500. See “Tolerances and Stopping
Criteria”.

MaxIter Maximum number of iterations allowed, a positive integer.
The default is 500. See “Tolerances and Stopping Criteria”.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Functions”.

PlotFcns Plots various measures of progress while the algorithm
executes, select from predefined plots or write your own.
Pass a function handle or a cell array of function handles.
The default is none ([]).

• @optimplotx plots the current point
• @optimplotfunccount plots the function count
• @optimplotfval plots the function value

For information on writing a custom plot function, see “Plot
Functions”.

 fminbnd

1-4247

TolX Termination tolerance on x, a positive scalar. The default is
1e-4. See “Tolerances and Stopping Criteria”.

Example: options = optimset('Display','iter')
Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
objective Objective function
x1 Left endpoint
x2 Right endpoint
solver 'fminbnd'
options Options structure such as returned by optimset

The simplest way to obtain a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments
x — Solution
real scalar

Solution, returned as a real scalar. Typically, x is a local solution to the problem when
exitflag is positive.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally,
fval = fun(x).

1 Alphabetical List

1-4248

exitflag — Reason fminbnd stopped
integer

Reason fminbnd stopped, returned as an integer.

1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIter or

number of function evaluations exceeded
options.MaxFunEvals.

-1 Stopped by an output function or plot function.
-2 The bounds are inconsistent, meaning x1 > x2.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
algorithm 'golden section search, parabolic

interpolation'
message Exit message

Limitations
• The function to be minimized must be continuous.
• fminbnd might only give local solutions.
• fminbnd can exhibit slow convergence when the solution is on a boundary of the

interval.

Algorithms
fminbnd is a function file. The algorithm is based on golden section search and parabolic
interpolation. Unless the left endpoint x1 is very close to the right endpoint x2, fminbnd
never evaluates fun at the endpoints, so fun need only be defined for x in the interval x1
< x < x2.

 fminbnd

1-4249

If the minimum actually occurs at x1 or x2, fminbnd returns a point x in the interior of the
interval (x1,x2) that is close to the minimizer. In this case, the distance of x from the
minimizer is no more than 2*(TolX + 3*abs(x)*sqrt(eps)). See [1] or [2] for details
about the algorithm.

References
[1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical

Computations. Englewood Cliffs, NJ: Prentice Hall, 1976.

[2] Brent, Richard. P. Algorithms for Minimization without Derivatives. Englewood Cliffs,
NJ: Prentice-Hall, 1973.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation:

• fminbnd does not support the problem structure argument.
• fminbnd ignores the Display option and does not give iterative display or an exit

message. To check solution quality, examine the exit flag.
• The output structure does not include the algorithm or message fields.
• fminbnd ignores the OutputFcn and PlotFcns options.

See Also
fminsearch | fzero | optimset

Topics
“Minimizing Functions of One Variable”
“Create Function Handle”
“Anonymous Functions”

1 Alphabetical List

1-4250

Introduced before R2006a

 fminbnd

1-4251

fminsearch
Find minimum of unconstrained multivariable function using derivative-free method

Nonlinear programming solver. Searches for the minimum of a problem specified by

min
x

f (x)

f(x) is a function that returns a scalar, and x is a vector or a matrix.

Syntax
x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(problem)
[x,fval] = fminsearch(___)
[x,fval,exitflag] = fminsearch(___)
[x,fval,exitflag,output] = fminsearch(___)

Description
x = fminsearch(fun,x0) starts at the point x0 and attempts to find a local minimum
x of the function described in fun.

x = fminsearch(fun,x0,options) minimizes with the optimization options specified
in the structure options. Use optimset to set these options.

x = fminsearch(problem) finds the minimum for problem, where problem is a
structure.

[x,fval] = fminsearch(___), for any previous input syntax, returns in fval the
value of the objective function fun at the solution x.

[x,fval,exitflag] = fminsearch(___) additionally returns a value exitflag
that describes the exit condition.

1 Alphabetical List

1-4252

[x,fval,exitflag,output] = fminsearch(___) additionally returns a structure
output with information about the optimization process.

Examples

Minimize Rosenbrock's Function

Minimize Rosenbrock's function, a notoriously difficult optimization problem for many
algorithms:

f (x) = 100(x2− x1
2)2 + (1− x1)2 .

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using
fminsearch.

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
x0 = [-1.2,1];
x = fminsearch(fun,x0)

x = 1×2

 1.0000 1.0000

Monitor Optimization Process

Set options to monitor the process as fminsearch attempts to locate a minimum.

Set options to plot the objective function at each iteration.

options = optimset('PlotFcns',@optimplotfval);

Set the objective function to Rosenbrock's function,

f (x) = 100(x2− x1
2)2 + (1− x1)2 .

 fminsearch

1-4253

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using
fminsearch.

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
x0 = [-1.2,1];
x = fminsearch(fun,x0,options)

x = 1×2

 1.0000 1.0000

1 Alphabetical List

1-4254

Minimize a Function Specified by a File

Minimize an objective function whose values are given by executing a file. A function file
must accept a real vector x and return a real scalar that is the value of the objective
function.

Copy the following code and include it as a file named objectivefcn1.m on your
MATLAB® path.

function f = objectivefcn1(x)
f = 0;
for k = -10:10
 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));
end

Start at x0 = [0.25,-0.25] and search for a minimum of objectivefcn.

x0 = [0.25,-0.25];
x = fminsearch(@objectivefcn1,x0)

x =

 -0.1696 -0.5086

Minimize with Extra Parameters

Sometimes your objective function has extra parameters. These parameters are not
variables to optimize, they are fixed values during the optimization. For example, suppose
that you have a parameter a in the Rosenbrock-type function

f (x, a) = 100(x2− x1
2)2 + (a− x1)2 .

This function has a minimum value of 0 at x1 = a, x2 = a2. If, for example, a = 3, you can
include the parameter in your objective function by creating an anonymous function.

Create the objective function with its extra parameters as extra arguments.

 fminsearch

1-4255

f = @(x,a)100*(x(2) - x(1)^2)^2 + (a-x(1))^2;

Put the parameter in your MATLAB® workspace.

a = 3;

Create an anonymous function of x alone that includes the workspace value of the
parameter.

fun = @(x)f(x,a);

Solve the problem starting at x0 = [-1,1.9].

x0 = [-1,1.9];
x = fminsearch(fun,x0)

x = 1×2

 3.0000 9.0000

For more information about using extra parameters in your objective function, see
“Parameterizing Functions”.

Find Minimum Location and Value

Find both the location and value of a minimum of an objective function using
fminsearch.

Write an anonymous objective function for a three-variable problem.

x0 = [1,2,3];
fun = @(x)-norm(x+x0)^2*exp(-norm(x-x0)^2 + sum(x));

Find the minimum of fun starting at x0. Find the value of the minimum as well.

[x,fval] = fminsearch(fun,x0)

x = 1×3

 1.5359 2.5645 3.5932

1 Alphabetical List

1-4256

fval = -5.9565e+04

Inspect Optimization Process

Inspect the results of an optimization, both while it is running and after it finishes.

Set options to provide iterative display, which gives information on the optimization as the
solver runs. Also, set a plot function to show the objective function value as the solver
runs.

options = optimset('Display','iter','PlotFcns',@optimplotfval);

Set an objective function and start point.

function f = objectivefcn1(x)
f = 0;
for k = -10:10
 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));
end

Include the code for objectivefcn1 as a file on your MATLAB® path.

x0 = [0.25,-0.25];
fun = @objectivefcn1;

Obtain all solver outputs. Use these outputs to inspect the results after the solver finishes.

[x,fval,exitflag,output] = fminsearch(fun,x0,options)

 Iteration Func-count min f(x) Procedure
 0 1 -6.70447
 1 3 -6.89837 initial simplex
 2 5 -7.34101 expand
 3 7 -7.91894 expand
 4 9 -9.07939 expand
 5 11 -10.5047 expand
 6 13 -12.4957 expand
 7 15 -12.6957 reflect
 8 17 -12.8052 contract outside

 fminsearch

1-4257

 9 19 -12.8052 contract inside
 10 21 -13.0189 expand
 11 23 -13.0189 contract inside
 12 25 -13.0374 reflect
 13 27 -13.122 reflect
 14 28 -13.122 reflect
 15 29 -13.122 reflect
 16 31 -13.122 contract outside
 17 33 -13.1279 contract inside
 18 35 -13.1279 contract inside
 19 37 -13.1296 contract inside
 20 39 -13.1301 contract inside
 21 41 -13.1305 reflect
 22 43 -13.1306 contract inside
 23 45 -13.1309 contract inside
 24 47 -13.1309 contract inside
 25 49 -13.131 reflect
 26 51 -13.131 contract inside
 27 53 -13.131 contract inside
 28 55 -13.131 contract inside
 29 57 -13.131 contract outside
 30 59 -13.131 contract inside
 31 61 -13.131 contract inside
 32 63 -13.131 contract inside
 33 65 -13.131 contract outside
 34 67 -13.131 contract inside
 35 69 -13.131 contract inside

Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04

x =

 -0.1696 -0.5086

fval =

 -13.1310

exitflag =

1 Alphabetical List

1-4258

 1

output =

 struct with fields:

 iterations: 35
 funcCount: 69
 algorithm: 'Nelder-Mead simplex direct search'
 message: 'Optimization terminated:...'

 fminsearch

1-4259

The value of exitflag is 1, meaning fminsearch likely converged to a local minimum.

The output structure shows the number of iterations. The iterative display and the plot
show this information as well. The output structure also shows the number of function
evaluations, which the iterative display shows, but the chosen plot function does not.

Input Arguments
fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function
that accepts a vector or array x and returns a real scalar f (the objective function
evaluated at x).

Specify fun as a function handle for a file:

x = fminsearch(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fminsearch(@(x)norm(x)^2,x0);

Example: fun = @(x)-x*exp(-3*x)
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements
in, and size of, x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

options — Optimization options
structure such as optimset returns

1 Alphabetical List

1-4260

Optimization options, specified as a structure such as optimset returns. You can use
optimset to set or change the values of these fields in the options structure. See “Set
Options” for detailed information.

Display Level of display (see “Iterative Display”):

• 'notify' (default) displays output only if the function
does not converge.

• 'final' displays just the final output.
• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration.

FunValCheck Check whether objective function values are valid. 'on'
displays an error when the objective function returns a value
that is complex or NaN. The default 'off' displays no error.

MaxFunEvals Maximum number of function evaluations allowed, a positive
integer. The default is 200*numberOfVariables. See
“Tolerances and Stopping Criteria”.

MaxIter Maximum number of iterations allowed, a positive integer.
The default value is 200*numberOfVariables. See
“Tolerances and Stopping Criteria”.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Functions”.

PlotFcns Plots various measures of progress while the algorithm
executes. Select from predefined plots or write your own.
Pass a function handle or a cell array of function handles.
The default is none ([]):

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.

For information on writing a custom plot function, see “Plot
Functions”.

 fminsearch

1-4261

TolFun Termination tolerance on the function value, a positive
scalar. The default is 1e-4. See “Tolerances and Stopping
Criteria”. Unlike other solvers, fminsearch stops when it
satisfies both TolFun and TolX.

TolX Termination tolerance on x, a positive scalar. The default
value is 1e-4. See “Tolerances and Stopping Criteria”.
Unlike other solvers, fminsearch stops when it satisfies
both TolFun and TolX.

Example: options = optimset('Display','iter')
Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
objective Objective function
x0 Initial point for x
solver 'fminsearch'
options Options structure such as returned by optimset

Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of
x0. Typically, x is a local solution to the problem when exitflag is positive.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally,
fval = fun(x).

1 Alphabetical List

1-4262

exitflag — Reason fminsearch stopped
integer

Reason fminsearch stopped, returned as an integer.

1 The function converged to a solution x.
0 Number of iterations exceeded options.MaxIter or

number of function evaluations exceeded
options.MaxFunEvals.

-1 The algorithm was terminated by the output function.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations
funcCount Number of function evaluations
algorithm 'Nelder-Mead simplex direct

search'
message Exit message

Tips
• fminsearch only minimizes over the real numbers, that is, the vector or array x must

only consist of real numbers and f(x) must only return real numbers. When x has
complex values, split x into real and imaginary parts.

• Use fminsearch to solve nondifferentiable problems or problems with discontinuities,
particularly if no discontinuity occurs near the solution.

Algorithms
fminsearch uses the simplex search method of Lagarias et al. [1]. This is a direct search
method that does not use numerical or analytic gradients as in fminunc. The algorithm is
described in detail in “fminsearch Algorithm”. The algorithm is not guaranteed to
converge to a local minimum.

 fminsearch

1-4263

References
[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. “Convergence Properties of

the Nelder-Mead Simplex Method in Low Dimensions.” SIAM Journal of
Optimization. Vol. 9, Number 1, 1998, pp. 112–147.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation:

• fminsearch ignores the Display option and does not give iterative display or an exit
message. To check solution quality, examine the exit flag.

• The output structure does not include the algorithm or message fields.
• fminsearch ignores the OutputFcn and PlotFcns options.

See Also
fminbnd | optimset

Topics
“Minimizing Functions of Several Variables”
“Curve Fitting via Optimization”
“Create Function Handle”
“Anonymous Functions”

Introduced before R2006a

1 Alphabetical List

1-4264

matlab.fonts Settings
Code font settings

The default font that MATLAB uses for a particular tool depends upon its content. You can
change the default font using the matlab.fonts settings. Access matlab.fonts using
the root SettingsGroup object returned by the settings function. For example, set the
temporary value for the code font name to 'Times New Roman' (where the default is
'Monospaced').

s = settings;
s.matlab.fonts.codefont.Name.TemporaryValue = 'Times New Roman'

For more information about settings, see “Access and Modify Settings”.

Settings
matlab.fonts.codefont

Name — Code font name
'Monospaced' (default) | character vector

Code font name, specified as a character vector.
Example: s.matlab.fonts.codefont.Name.TemporaryValue = 'Arial'

Style — Code font style
0 (default) | 1 | 2 | 3

Code font style, specified as the positive integer 0, 1, 2, or 3.

The values are define as follows:

• 0 — Plain
• 1 — Bold
• 2 — Italic
• 3 — Bold Italic

Example: s.matlab.fonts.codefont.Style.TemporaryValue = 1

 matlab.fonts Settings

1-4265

Size — Code font size
10 (default) | positive integer

Code font size, specified as a positive integer.
Example: s.matlab.fonts.codefont.Size.TemporaryValue = 12

See Also
settings

Topics
“Access and Modify Settings”
“Change Fonts”

Introduced in R2018a

1 Alphabetical List

1-4266

fopen
Open file, or obtain information about open files

Syntax
fileID = fopen(filename)
fileID = fopen(filename,permission)
fileID = fopen(filename,permission,machinefmt,encodingIn)
[fileID,errmsg] = fopen(___)

fIDs = fopen('all')

filename = fopen(fileID)
[filename,permission,machinefmt,encodingOut] = fopen(fileID)

Description
fileID = fopen(filename) opens the file, filename, for binary read access, and
returns an integer file identifier equal to or greater than 3. MATLAB reserves file
identifiers 0, 1, and 2 for standard input, standard output (the screen), and standard
error, respectively.

If fopen cannot open the file, then fileID is -1.

fileID = fopen(filename,permission) opens the file with the type of access
specified by permission.

fileID = fopen(filename,permission,machinefmt,encodingIn) additionally
specifies the order for reading or writing bytes or bits in the file using the machinefmt
argument. The optional encodingIn argument specifies the character encoding scheme
associated with the file.

[fileID,errmsg] = fopen(___) additionally returns a system-dependent error
message if fopen fails to open the file. Otherwise, errmsg is an empty character vector.
You can use this syntax with any of the input arguments of the previous syntaxes.

 fopen

1-4267

fIDs = fopen('all') returns a row vector containing the file identifiers of all open
files. The identifiers reserved for standard input, output, and error are not included. The
number of elements in the vector is equal to the number of open files.

filename = fopen(fileID) returns the file name that a previous call to fopen used
when it opened the file specified by fileID. The output filename is resolved to the full
path. The fopen function does not read information from the file to determine the output
value.

[filename,permission,machinefmt,encodingOut] = fopen(fileID)
additionally returns the permission, machine format, and encoding that a previous call to
fopen used when it opened the specified file. If the file was opened in binary mode,
permission includes the letter 'b'. The encodingOut output is a standard encoding
scheme name. fopen does not read information from the file to determine these output
values. An invalid fileID returns empty character vectors for all output arguments.

Examples

Open File and Pass Identifier to File I/O Function

Open a file and pass the file identifier to the fgetl function to read data.

Open the file, tsunamis.txt, and obtain the file identifier.

fileID = fopen('tsunamis.txt');

Pass the fileID to the fgetl function to read one line from the file.

tline = fgetl(fileID)

tline =

 'A global tsunami data set in xlsx format, comprising the following file:'

Close the file.

fclose(fileID)

1 Alphabetical List

1-4268

Request Name of File to Open

Create a prompt to request the name of a file to open. If fopen cannot open the file,
display the relevant error message.

fileID = -1;
errmsg = '';
while fileID < 0
 disp(errmsg);
 filename = input('Open file: ', 's');
 [fileID,errmsg] = fopen(filename);
end

Open File for Writing and Specify Access Type, Writing Order, Character Encoding

Open a file to write to a file using the Shift-JIS character encoding.

fileID = fopen('japanese_out.txt','w','n','Shift_JIS');

The 'w' input specifies write access, the 'n' input specifies native byte ordering, and
'Shift_JIS' specifies the character encoding scheme.

Get Information About Open Files

Suppose you previously opened a file using fopen.

fileID = fopen('tsunamis.txt');

Get the file identifiers of all open files.

fIDs = fopen('all')

fIDs =

 3

Get the file name and character encoding for the open file. Use ~ in place of output
arguments you want to omit.

[filename,~,~,encoding] = fopen(fileID)

 fopen

1-4269

filename =

 'matlabroot\toolbox\matlab\demos\tsunamis.txt'

encoding =

 'windows-1252'

The output shown here is representative. Your results might differ.

Input Arguments
filename — Name of file to open
character vector or string scalar

Name of the file to open, including the file extension, specified as a character row vector
or a string scalar. If the file is not in the current folder, filename must include a full or a
relative path.

On UNIX systems, if filename begins with '~/' or '~username/', the fopen function
expands the path to the current or specified user's home directory, respectively.

• If you open a file with read access and the file is not in the current folder, then fopen
searches along the MATLAB search path.

• If you open a file with write or append access and the file is not in the current folder,
then fopen creates a file in the current directory.

Example: 'myFile.txt'
Data Types: char | string

permission — File access type
'r' (default) | 'w' | 'a' | 'r+' | 'w+' | 'a+' | 'A' | 'W' | ...

File access type, specified as a character vector or a string scalar. You can open a file in
binary mode or in text mode. On UNIX systems, both translation modes have the same
effect. To open a file in binary mode, specify one of the following.

'r' Open file for reading.

1 Alphabetical List

1-4270

'w' Open or create new file for writing. Discard existing contents, if any.
'a' Open or create new file for writing. Append data to the end of the file.
'r+' Open file for reading and writing.
'w+' Open or create new file for reading and writing. Discard existing

contents, if any.
'a+' Open or create new file for reading and writing. Append data to the

end of the file.
'A' Open file for appending without automatic flushing of the current

output buffer.
'W' Open file for writing without automatic flushing of the current output

buffer.

To open files in text mode, attach the letter 't' to the permission argument, such as
'rt' or 'wt+'.

On Windows systems, in text mode:

• Read operations that encounter a carriage return followed by a newline character
('\r\n') remove the carriage return from the input.

• Write operations insert a carriage return before any newline character in the output.

Open or create a new file in text mode if you want to write to it in MATLAB and then open
it in Microsoft Notepad, or any text editor that does not recognize '\n' as a newline
sequence. When writing to the file, end each line with '\r\n'. For an example, see
fprintf. Otherwise, open files in binary mode for better performance.

To read and write to the same file:

• Open the file with a value for permission that includes a plus sign, '+'.
• Call fseek or frewind between read and write operations. For example, do not call

fread followed by fwrite, or fwrite followed by fread, unless you call fseek or
frewind between them.

Data Types: char | string

machinefmt — Order for reading or writing bytes or bits
'n' (default) | 'b' | 'l' | 's' | 'a' | ...

 fopen

1-4271

Order for reading or writing bytes or bits in the file, specified as one of the following
character vectors or string scalars.

'n' or 'native' Your system byte ordering (default)
'b' or 'ieee-be' Big-endian ordering
'l' or 'ieee-le' Little-endian ordering
's' or 'ieee-be.l64' Big-endian ordering, 64-bit long data type
'a' or 'ieee-le.l64' Little-endian ordering, 64-bit long data type

By default, all currently supported platforms use little-endian ordering for new files.
Existing binary files can use either big-endian or little-endian ordering.
Data Types: char | string

encodingIn — Character encoding
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding to use for subsequent read and write operations, including fscanf,
fprintf, fgetl, fgets, fread, and fwrite, specified as a character vector or a string
scalar. The character vector or string scalar must contain a standard character encoding
scheme name such as the following.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'

1 Alphabetical List

1-4272

 'Macintosh' 'UTF-8'
 'Shift_JIS'

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. For more information, see “Opening Files with Different
Character Encodings”.

If you specify a value for encoding that is not in the list of supported values, MATLAB
issues a warning. Specifying other encoding names sometimes (but not always) produces
correct results.
Data Types: char | string

fileID — File identifier of an open file
integer

File identifier of an open file, specified as an integer.
Data Types: double

Tips
• In most cases, it is not necessary to open a file in text mode. MATLAB import

functions, all UNIX applications, and Microsoft Word and WordPad recognize '\n' as
a newline indicator.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support:

• The input arguments machinefmt, encodingIn, or fileID.

 fopen

1-4273

• The output argument errmsg.
• The syntax fopen('all').
• Opening a file in text mode. That is the permission argument must not contain

the letter t. For example, the value cannot be 'rt'.
• The permission argument can contain three characters at most. The characters must

be unique.
• If you disable extrinsic calls, then you cannot return file identifiers created with fopen

to MATLAB functions or extrinsic functions. Use these file identifiers only internally.
• When generating C/C++ executables, static libraries, or dynamic libraries, you can

open up to 20 files.
• The generated code does not report errors from invalid file identifiers. Write your own
file open error handling in your MATLAB code. Test whether fopen returns -1, which
indicates that the file open failed. For example:

...
fid = fopen(filename, 'r');
if fid == -1
 % fopen failed

else
% fopen successful, okay to call fread
A = fread(fid);
...

• The behavior of the generated code for fread is compiler-dependent when you:

1 Open a file using fopen with a permission of a+.
2 Read the file using fread before calling an I/O function, such as fseek or

frewind, that sets the file position indicator.

See Also
fclose | feof | ferror | fprintf | fread | frewind | fscanf | fseek | ftell |
fwrite

Introduced before R2006a

1 Alphabetical List

1-4274

fopen (serial)
Connect serial port object to device

Syntax
fopen(obj)

Description
fopen(obj) connects the serial port object, obj to the device.

Examples
This example creates the serial port object s, connects s to the device using fopen,
writes and reads text data, and then disconnects s from the device. This example works
on a Windows platform.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)

Tips
Before you can perform a read or write operation, obj must be connected to the device
with the fopen function. When obj is connected to the device:

• Data remaining in the input buffer or the output buffer is flushed.
• The Status property is set to open.
• The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput

properties are set to 0.

 fopen (serial)

1-4275

An error is returned if you attempt to perform a read or write operation while obj is not
connected to the device. You can connect only one serial port object to a given device.

Some properties are read-only while the serial port object is open (connected), and must
be configured before using fopen. Examples include InputBufferSize and
OutputBufferSize. Refer to the property reference pages to determine which
properties have this constraint.

The values for some properties are verified only after obj is connected to the device. If
any of these properties are incorrectly configured, then an error is returned when fopen
is issued and obj is not connected to the device. Properties of this type include
BaudRate, and are associated with device settings.

See Also
BytesAvailable | BytesToOutput | Status | ValuesReceived | ValuesSent | fclose

Introduced before R2006a

1 Alphabetical List

1-4276

for
for loop to repeat specified number of times

Syntax
for index = values
 statements
end

Description
for index = values, statements, end executes a group of statements in a loop
for a specified number of times. values has one of the following forms:

• initVal:endVal — Increment the index variable from initVal to endVal by 1,
and repeat execution of statements until index is greater than endVal.

• initVal:step:endVal — Increment index by the value step on each iteration, or
decrements index when step is negative.

• valArray — Create a column vector, index, from subsequent columns of array
valArray on each iteration. For example, on the first iteration, index =
valArray(:,1). The loop executes a maximum of n times, where n is the number of
columns of valArray, given by numel(valArray(1,:)). The input valArray can
be of any MATLAB data type, including a character vector, cell array, or struct.

Examples

Assign Matrix Values

Create a Hilbert matrix of order 10.

s = 10;
H = zeros(s);

 for

1-4277

for c = 1:s
 for r = 1:s
 H(r,c) = 1/(r+c-1);
 end
end

Decrement Values

Step by increments of -0.2, and display the values.

for v = 1.0:-0.2:0.0
 disp(v)
end

 1

 0.8000

 0.6000

 0.4000

 0.2000

 0

Execute Statements for Specified Values
for v = [1 5 8 17]
 disp(v)
end

 1

 5

 8

 17

1 Alphabetical List

1-4278

Repeat Statements for Each Matrix Column

for I = eye(4,3)
 disp('Current unit vector:')
 disp(I)
end

Current unit vector:
 1
 0
 0
 0

Current unit vector:
 0
 1
 0
 0

Current unit vector:
 0
 0
 1
 0

Tips
• To programmatically exit the loop, use a break statement. To skip the rest of the

instructions in the loop and begin the next iteration, use a continue statement.
• Avoid assigning a value to the index variable within the loop statements. The for

statement overrides any changes made to index within the loop.
• To iterate over the values of a single column vector, first transpose it to create a row

vector.

 for

1-4279

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Suppose that the loop end value is equal to or close to the maximum or minimum value
for the loop index data type. In the generated code, the last increment or decrement of
the loop index might cause the index variable to overflow. The index overflow might
result in an infinite loop. See “Loop Index Overflow” (MATLAB Coder).

See Also
break | colon | continue | end | if | parfor | return | switch

Introduced before R2006a

1 Alphabetical List

1-4280

format
Set Command Window output display format

Syntax
format style
format

Description
format style changes the output display format in the Command Window to the format
specified by style.

format, by itself, resets the output format to the default, which is the short, fixed-decimal
format for floating-point notation and loose line spacing for all output lines.

Numeric formats affect only how numbers appear in Command Window output, not how
MATLAB computes or saves them.

Examples

Long Format

Set the output format to the long fixed-decimal format and display the value of pi.

format long
pi

ans =
 3.141592653589793

 format

1-4281

Reset Format to Default

Set the output format to the short engineering format with compact line spacing, and
then reset the format to the default.

format shortEng
format compact
x = rand(3)

x = 3×3

 814.7237e-003 913.3759e-003 278.4982e-003
 905.7919e-003 632.3592e-003 546.8815e-003
 126.9868e-003 97.5404e-003 957.5068e-003

format
x

x = 3×3

 0.8147 0.9134 0.2785
 0.9058 0.6324 0.5469
 0.1270 0.0975 0.9575

Hexadecimal Format

Display the maximum values for integers and real numbers in hexadecimal format.

format hex
intmax('uint64')

ans = uint64
 ffffffffffffffff

realmax

ans =
 7fefffffffffffff

1 Alphabetical List

1-4282

Short and Long Engineering Notation

Display the difference between shortEng and longEng formats.

Set the output format to shortEng.

format shortEng

Create a variable and increase its value by a multiple of 10 each time through a for loop.

A = 5.123456789;
for k = 1:10
 disp(A)
 A = A*10;
end

 5.1235e+000

 51.2346e+000

 512.3457e+000

 5.1235e+003

 51.2346e+003

 512.3457e+003

 5.1235e+006

 51.2346e+006

 512.3457e+006

 5.1235e+009

The values display with 4 digits after the decimal point and an exponent that is a multiple
of 3.

Set the output format to the long engineering format and view the same values.

format longEng

 format

1-4283

A = 5.123456789;
for k = 1:10
 disp(A)
 A = A*10;
end

 5.12345678900000e+000

 51.2345678900000e+000

 512.345678900000e+000

 5.12345678900000e+003

 51.2345678900000e+003

 512.345678900000e+003

 5.12345678900000e+006

 51.2345678900000e+006

 512.345678900000e+006

 5.12345678900000e+009

The values display with 15 digits and an exponent that is a multiple of 3.

Large Data Range Format

Use the shortG format when some of the values in an array are short numbers and some
have large exponents. The shortG format picks whichever short fixed-decimal format or
short scientific notation has the most compact display.

Create a variable and display output in the short format, which is the default.

x = [25 56.31156 255.52675 9876899999];
format short
x

x = 1×4
109 ×

1 Alphabetical List

1-4284

 0.0000 0.0000 0.0000 9.8769

Set the format to shortG and redisplay the values.

format shortG
x

x = 1×4

 25 56.312 255.53 9.8769e+09

Get Current Format

Get the current numeric format.

f = get(0,'Format')

f =

shortG

Get the current line spacing, which can be set to loose or compact.

S = get(0,'FormatSpacing')

S =

loose

Input Arguments
style — Output display format
short (default) | long | shortE | longE | ...

Output display format, specified as one of these options.
Numeric Format

These styles control the output display format for numeric variables.

 format

1-4285

Style Result Example
short
(default)

Short, fixed-decimal format with 4 digits
after the decimal point.

3.1416

long Long, fixed-decimal format with 15 digits
after the decimal point for double values,
and 7 digits after the decimal point for
single values.

3.141592653589793

shortE Short scientific notation with 4 digits after
the decimal point.

3.1416e+00

longE Long scientific notation with 15 digits after
the decimal point for double values, and 7
digits after the decimal point for single
values.

3.141592653589793e
+00

shortG Short, fixed-decimal format or scientific
notation, whichever is more compact, with a
total of 5 digits.

3.1416

longG Long, fixed-decimal format or scientific
notation, whichever is more compact, with a
total of 15 digits for double values, and 7
digits for single values.

3.14159265358979

shortEng Short engineering notation (exponent is a
multiple of 3) with 4 digits after the decimal
point.

3.1416e+000

longEng Long engineering notation (exponent is a
multiple of 3) with 15 significant digits.

3.14159265358979e
+000

+ Positive/Negative format with +, -, and
blank characters displayed for positive,
negative, and zero elements.

+

bank Currency format with 2 digits after the
decimal point.

3.14

hex Hexadecimal representation of a binary
double-precision number.

400921fb54442d18

rat Ratio of small integers. 355/113

1 Alphabetical List

1-4286

Line Spacing Format

Style Result Example
compact Suppress excess blank lines to show more output on

a single screen.
theta = pi/2
theta =
 1.5708

loose Add blank lines to make output more readable. theta = pi/2
theta =
 1.5708

Tips
• The specified format applies only to the current MATLAB session. To maintain a format

across sessions, choose a Numeric format or Numeric display option in the
Command Window Preferences.

• You can insert a space between short or long and the presentation type, for
instance, format short E.

• MATLAB always displays integer data types to the appropriate number of digits for the
data type. For example, MATLAB uses 3 digits to display int8 data types (for instance,
-128:127). Setting the output format to short or long does not affect the display of
integer-type variables.

• Integer-valued, floating-point numbers with a maximum of 9 digits do not display in
scientific notation.

• If you are displaying a matrix with a wide range of values, consider using shortG. See
“Large Data Range Format” on page 1-4284.

See Also
disp | fprintf | rat

Topics
“Format Output”

Introduced before R2006a

 format

1-4287

fplot
Plot expression or function

Syntax
fplot(f)
fplot(f,xinterval)

fplot(funx,funy)
fplot(funx,funy,tinterval)

fplot(___ ,LineSpec)
fplot(___ ,Name,Value)
fplot(ax, ___)
fp = fplot(___)
[x,y] = fplot(___)

Description
fplot(f) plots the curve defined by the function y = f(x) over the default interval [-5
5] for x.

fplot(f,xinterval) plots over the specified interval. Specify the interval as a two-
element vector of the form [xmin xmax].

fplot(funx,funy) plots the curve defined by x = funx(t) and y = funy(t) over
the default interval [-5 5] for t.

fplot(funx,funy,tinterval) plots over the specified interval. Specify the interval as
a two-element vector of the form [tmin tmax].

fplot(___ ,LineSpec) specifies the line style, marker symbol, and line color. For
example, '-r' plots a red line. Use this option after any of the input argument
combinations in the previous syntaxes.

fplot(___ ,Name,Value) specifies line properties using one or more name-value pair
arguments. For example, 'LineWidth',2 specifies a line width of 2 points.

1 Alphabetical List

1-4288

fplot(ax, ___) plots into the axes specified byax instead of the current axes (gca).
Specify the axes as the first input argument.

fp = fplot(___) returns a FunctionLine object or a
ParameterizedFunctionLine object, depending on the inputs. Use fp to query and
modify properties of a specific line. For a list of properties, see FunctionLine or
ParameterizedFunctionLine.

[x,y] = fplot(___) returns the abscissas and ordinates for the function without
creating a plot. This syntax will be removed in a future release. Use the XData and YData
properties of the line object, fp, instead.

Note fplot no longer supports input arguments for specifying the error tolerance or the
number of evaluation points. To specify the number of evaluation points, use the
MeshDensity property.

Examples

Plot Expression

Plot sin(x) over the default x interval [-5 5].

fplot(@(x) sin(x))

 fplot

1-4289

Plot Parametric Curve

Plot the parametric curve x = cos(3t) and y = sin(2t).

xt = @(t) cos(3*t);
yt = @(t) sin(2*t);
fplot(xt,yt)

1 Alphabetical List

1-4290

Specify Plotting Interval and Plot Piecewise Functions

Plot the piecewise function

ex −3 < x < 0
cos(x) 0 < x < 3 .

Plot multiple lines using hold on. Specify the plotting intervals using the second input
argument of fplot. Specify the color of the plotted lines as blue using 'b'. When you
plot multiple lines in the same axes, the axis limits adjust to incorporate all the data.

 fplot

1-4291

fplot(@(x) exp(x),[-3 0],'b')
hold on
fplot(@(x) cos(x),[0 3],'b')
hold off
grid on

Specify Line Properties and Display Markers

Plot three sine waves with different phases. For the first, use a line width of 2 points. For
the second, specify a dashed red line style with circle markers. For the third, specify a
cyan, dash-dotted line style with asterisk markers.

1 Alphabetical List

1-4292

fplot(@(x) sin(x+pi/5),'Linewidth',2);
hold on
fplot(@(x) sin(x-pi/5),'--or');
fplot(@(x) sin(x),'-.*c')
hold off

Modify Line Properties After Creation

Plot sin(x) and assign the function line object to a variable.

fp = fplot(@(x) sin(x))

 fplot

1-4293

fp =
 FunctionLine with properties:

 Function: @(x)sin(x)
 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000

 Show all properties

Change the line to a dotted red line by using dot notation to set properties. Add cross
markers and set the marker color to blue.

1 Alphabetical List

1-4294

fp.LineStyle = ':';
fp.Color = 'r';
fp.Marker = 'x';
fp.MarkerEdgeColor = 'b';

Plot Multiple Lines in Same Axes

Plot two lines using hold on.

fplot(@(x) sin(x))
hold on

 fplot

1-4295

fplot(@(x) cos(x))
hold off

Add Title and Axis Labels and Format Ticks

Plot sin(x) from −2π to 2π using a function handle. Display the grid lines. Then, add a title
and label the x-axis and y-axis.

fplot(@sin,[-2*pi 2*pi])
grid on
title('sin(x) from -2\pi to 2\pi')

1 Alphabetical List

1-4296

xlabel('x');
ylabel('y');

Use gca to access the current axes object. Display tick marks along the x-axis at intervals
of π/2. Format the x-axis tick values by setting the XTick and XTickLabel properties of
the axes object. Similar properties exist for the y-axis.

ax = gca;
ax.XTick = -2*pi:pi/2:2*pi;
ax.XTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'};

 fplot

1-4297

Input Arguments
f — Function to plot
function handle

Function to plot, specified as a function handle to a named or anonymous function.

Specify a function of the form y = f(x). The function must accept a vector input
argument and return a vector output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).

1 Alphabetical List

1-4298

Note Support for character vector inputs will be removed in a future release. Use
function handles instead.

Example: f = @(x) sin(x);

xinterval — Interval for x
[–5 5] (default) | two-element vector of form [xmin xmax]

Interval for x, specified as a two-element vector of the form [xmin xmax].

funx — Parametric function for x coordinates
function handle

Parametric function for x coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form x = funx(t). The function must accept a vector input
argument and return a vector output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: funx = @(t) sin(2*t);

funy — Parametric function for y coordinates
anonymous function | function handle

Parametric function for y coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form y = funy(t). The function must accept a vector input
argument and return a vector output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: funy = @(t) cos(3*t);

tinterval — Interval for t
[-5 5] (default) | two-element vector of form [tmin tmax]

Interval for t, specified as a two-element vector of the form [tmin tmax].

ax — Axes object
axes object

 fplot

1-4299

Axes object. If you do not specify an axes object, then fplot uses the current axes (gca).

LineSpec — Line specification
character vector | string

Line specification, specified as a character vector or string with a line style, marker, and
color. The elements can appear in any order, and you can omit one or more options. To
show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Specifier Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

1 Alphabetical List

1-4300

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are only a subset. For a complete list, see FunctionLine or
ParameterizedFunctionLine.
Example: 'Marker','o','MarkerFaceColor','red'

MeshDensity — Number of evaluation points
23 (default) | number

Number of evaluation points, specified as a number. The default is 23. Because fplot
uses adaptive evaluation, the actual number of evaluation points is greater.

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 fplot

1-4301

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'

1 Alphabetical List

1-4302

Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross

 fplot

1-4303

Value Description
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

1 Alphabetical List

1-4304

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 fplot

1-4305

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]

1 Alphabetical List

1-4306

Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fp — One or more FunctionLine or ParameterizedFunctionLine objects
scalar | vector

One or more FunctionLine or ParameterizedFunctionLine objects, returned as a
scalar or a vector.

• If you use the fplot(f) syntax or a variation of this syntax, then fplot returns
FunctionLine objects.

• If you use the fplot(funx,funy) syntax or a variation of this syntax, then fplot
returns ParameterizedFunctionLine objects.

You can use these objects to query and modify properties of a specific line. For a list of
properties, see FunctionLine and ParameterizedFunctionLine.

Tips
• Use element-wise operators for the best performance and to avoid a warning message.

For example, use x.*y instead of x*y. For more information, see “Array vs. Matrix
Operations”.

• When you zoom in on the chart, fplot replots the data, which can reveal hidden
details.

 fplot

1-4307

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
fcontour | fimplicit | fmesh | fplot3 | fsurf | hold | title

Properties
FunctionLine | ParameterizedFunctionLine

Introduced before R2006a

1 Alphabetical List

1-4308

fplot3
3-D parametric curve plotter

Syntax
fplot3(funx,funy,funz)
fplot3(funx,funy,funz,tinterval)

fplot3(___ ,LineSpec)
fplot3(___ ,Name,Value)
fplot3(ax, ___)
fp = fplot3(___)

Description
fplot3(funx,funy,funz) plots the parametric curve defined by x = funx(t), y =
funy(t), and z = funz(t) over the default interval [-5,5] for t.

fplot3(funx,funy,funz,tinterval) plots over the specified interval. Specify the
interval as a two-element vector of the form [tmin tmax].

fplot3(___ ,LineSpec) sets the line style, marker symbol, and line color. For example,
'-r' specifies a red line. Use this option after any of the previous input argument
combinations.

fplot3(___ ,Name,Value) specifies line properties using one or more name-value pair
arguments. For example, 'LineWidth',2 specifies a line width of 2 points.

fplot3(ax, ___) plots into the axes specified by ax instead of the current axes. Specify
the axes as the first input argument.

fp = fplot3(___) returns a ParameterizedFunctionLine object. Use the object to
query and modify properties of a specific line. For a list of properties, see
ParameterizedFunctionLine.

 fplot3

1-4309

Examples

Plot 3-D Parametric Line

Plot the 3-D parametric line

x = sin(t)
y = cos(t)

z = t

over the default parameter range [-5 5].

xt = @(t) sin(t);
yt = @(t) cos(t);
zt = @(t) t;
fplot3(xt,yt,zt)

1 Alphabetical List

1-4310

Specify Parameter Range

Plot the parametric line

x = e−t/10sin(5t)
y = e−t/10cos(5t)

z = t

over the parameter range [-10 10] by specifying the fourth input argument of fplot3.

 fplot3

1-4311

xt = @(t) exp(-t/10).*sin(5*t);
yt = @(t) exp(-t/10).*cos(5*t);
zt = @(t) t;
fplot3(xt,yt,zt,[-10 10])

Specify Line Properties and Display Markers

Plot the same 3-D parametric curve three times over different intervals of the parameter.
For the first interval, use a line width of 2 points. For the second, specify a dashed red
line style with circle markers. For the third, specify a cyan, dash-dotted line style with
asterisk markers.

1 Alphabetical List

1-4312

fplot3(@(t)sin(t), @(t)cos(t), @(t)t, [0 2*pi], 'LineWidth', 2)
hold on
fplot3(@(t)sin(t), @(t)cos(t), @(t)t, [2*pi 4*pi], '--or')
fplot3(@(t)sin(t), @(t)cos(t), @(t)t, [4*pi 6*pi], '-.*c')
hold off

Plot Multiple Lines in Same Axes

Plot multiple lines in the same axes using hold on.

fplot3(@(t)t, @(t)t, @(t)t)
hold on

 fplot3

1-4313

fplot3(@(t)-t, @(t)t, @(t)-t)
hold off

Modify 3-D Parametric Line After Creation

Plot the parametric line

x = e− t /10sin(5 t)

y = e− t /10cos(5 t)
z = t .

1 Alphabetical List

1-4314

Assign the parameterized function line object to a variable.

xt = @(t)exp(-abs(t)/10).*sin(5*abs(t));
yt = @(t)exp(-abs(t)/10).*cos(5*abs(t));
zt = @(t)t;
fp = fplot3(xt,yt,zt)

fp =
 ParameterizedFunctionLine with properties:

 XFunction: @(t)exp(-abs(t)/10).*sin(5*abs(t))
 YFunction: @(t)exp(-abs(t)/10).*cos(5*abs(t))
 ZFunction: @(t)t
 Color: [0 0.4470 0.7410]

 fplot3

1-4315

 LineStyle: '-'
 LineWidth: 0.5000

 Show all properties

Change the range of parameter values to [-10 10] and change the line color to red.

fp.TRange = [-10 10];
fp.Color = 'r';

1 Alphabetical List

1-4316

Add Title and Axis Labels and Format Ticks

For t values in the range −2π to 2π, plot the parametric line

x = t
y = t/2

z = sin(6t) .

Add a title, x-axis label, and y-axis label. Additionally, change the view of the axes and
display the axes box outline.

xt = @(t)t;
yt = @(t)t/2;
zt = @(t)sin(6*t);
fplot3(xt,yt,zt,[-2*pi 2*pi],'MeshDensity',30,'LineWidth',1);

title('x=t, y=t/2, z=sin(6t) for -2\pi<t<2\pi')
xlabel('x');
ylabel('y');
view(52.5,30)
box on

 fplot3

1-4317

Access the axes object using gca. Specify the x-axis tick values and associated labels
using the XTick and XTickLabel properties of the axes object. Similarly, specify the y-
axis tick values and associated labels.

ax = gca;
ax.XTick = -2*pi:pi/2:2*pi;
ax.XTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'};
ax.YTick = -pi:pi/2:pi;
ax.YTickLabel = {'-\pi','-\pi/2','0','\pi/2','\pi'};

1 Alphabetical List

1-4318

Input Arguments
funx — Parametric function for x coordinates
function handle

Parametric function for x coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form x = funx(t). The function must accept a vector input
argument and return a vector output argument of the same size. Use array operators

 fplot3

1-4319

instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: funx = @(t) sin(2*t);

funy — Parametric function for y coordinates
function handle

Parametric function for y coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form y = funy(t). The function must accept a vector input
argument and return a vector output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: funy = @(t) cos(2*t);

funz — Parametric function for z coordinates
function handle

Parametric function for z coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form z = funz(t). The function must accept a vector input
argument and return a vector output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: funz = @(t) t;

tinterval — Interval for parameter t
[–5 5] (default) | two-element vector of form [tmin tmax]

Interval for parameter t, specified as a two-element vector of the form [tmin tmax].

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fplot3 uses the current axes
(gca).

LineSpec — Line specification
character vector | string

1 Alphabetical List

1-4320

Line specification, specified as a character vector or string with a line style, marker, and
color. The elements can appear in any order, and you can omit one or more options. To
show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Specifier Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Specifier Description
y yellow
m magenta
c cyan
r red

 fplot3

1-4321

Color Specifier Description
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','o','MarkerFaceColor','red'

The properties listed here are only a subset. For a complete list, see
ParameterizedFunctionLine.

MeshDensity — Number of evaluation points
23 (default) | number

Number of evaluation points, specified as a number. The default is 23. Because fplot3
uses adaptive evaluation, the actual number of evaluation points is greater.

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-4322

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

 fplot3

1-4323

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle

1 Alphabetical List

1-4324

Value Description
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

 fplot3

1-4325

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'none' Not
applicable

Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-4326

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

 fplot3

1-4327

Output Arguments
fp — One or more ParameterizedFunctionLine objects
scalar | vector

One or more ParameterizedFunctionLine objects, returned as a scalar or a vector.
You can use these objects to query and modify properties of a specific
ParameterizedFunctionLine object. For details, see ParameterizedFunctionLine.

See Also
Functions
fcontour | fimplicit | fimplicit3 | fmesh | fplot | fsurf | hold | title

Properties
ParameterizedFunctionLine

Introduced in R2016a

1 Alphabetical List

1-4328

fprintf
Write data to text file

Syntax
fprintf(fileID,formatSpec,A1,...,An)
fprintf(formatSpec,A1,...,An)

nbytes = fprintf(___)

Description
fprintf(fileID,formatSpec,A1,...,An) applies the formatSpec to all elements
of arrays A1,...An in column order, and writes the data to a text file. fprintf uses the
encoding scheme specified in the call to fopen.

fprintf(formatSpec,A1,...,An) formats data and displays the results on the
screen.

nbytes = fprintf(___) returns the number of bytes that fprintf writes, using any
of the input arguments in the preceding syntaxes.

Examples

Print Literal Text and Array Values

Print multiple numeric values and literal text to the screen.

A1 = [9.9, 9900];
A2 = [8.8, 7.7 ; ...
 8800, 7700];
formatSpec = 'X is %4.2f meters or %8.3f mm\n';
fprintf(formatSpec,A1,A2)

 fprintf

1-4329

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

%4.2f in the formatSpec input specifies that the first value in each line of output is a
floating-point number with a field width of four digits, including two digits after the
decimal point. %8.3f in the formatSpec input specifies that the second value in each
line of output is a floating-point number with a field width of eight digits, including three
digits after the decimal point. \n is a control character that starts a new line.

Print Double-Precision Values as Integers

Explicitly convert double-precision values with fractions to integer values.

a = [1.02 3.04 5.06];
fprintf('%d\n',round(a));

1
3
5

%d in the formatSpec input prints each value in the vector, round(a), as a signed
integer. \n is a control character that starts a new line.

Write Tabular Data to Text File

Write a short table of the exponential function to a text file called exp.txt.

x = 0:.1:1;
A = [x; exp(x)];

fileID = fopen('exp.txt','w');
fprintf(fileID,'%6s %12s\n','x','exp(x)');
fprintf(fileID,'%6.2f %12.8f\n',A);
fclose(fileID);

The first call to fprintf prints header text x and exp(x), and the second call prints the
values from variable A.

1 Alphabetical List

1-4330

If you plan to read the file with Microsoft Notepad, use '\r\n' instead of '\n' to move
to a new line. For example, replace the calls to fprintf with the following:

fprintf(fileID,'%6s %12s\r\n','x','exp(x)');
fprintf(fileID,'%6.2f %12.8f\r\n',A);

MATLAB import functions, all UNIX applications, and Microsoft Word and WordPad
recognize '\n' as a newline indicator.

View the contents of the file with the type command.

type exp.txt

 x exp(x)
 0.00 1.00000000
 0.10 1.10517092
 0.20 1.22140276
 0.30 1.34985881
 0.40 1.49182470
 0.50 1.64872127
 0.60 1.82211880
 0.70 2.01375271
 0.80 2.22554093
 0.90 2.45960311
 1.00 2.71828183

Get Number of Bytes Written to File

Write data to a file and return the number of bytes written.

Write an array of data, A, to a file and get the number of bytes that fprintf writes.

A = magic(4);

fileID = fopen('myfile.txt','w');
nbytes = fprintf(fileID,'%5d %5d %5d %5d\n',A)

nbytes = 96

The fprintf function wrote 96 bytes to the file.

Close the file.

fclose(fileID);

 fprintf

1-4331

View the contents of the file with the type command.

type('myfile.txt')

 16 5 9 4
 2 11 7 14
 3 10 6 15
 13 8 12 1

Display Hyperlinks in Command Window

Display a hyperlink (The MathWorks Web Site) on the screen.

url = 'https://www.mathworks.com';
sitename = 'The MathWorks Web Site';

fprintf('%s\n',url,sitename)

%s in the formatSpec input indicates that the values of the variables url and sitename,
should be printed as text.

Input Arguments
fileID — File identifier
1 (default) | 2 | scalar

File identifier, specified as one of the following:

• A file identifier obtained from fopen.
• 1 for standard output (the screen).
• 2 for standard error.

Data Types: double

formatSpec — Format of output fields
formatting operators

Format of the output fields, specified using formatting operators. formatSpec also can
include ordinary text and special characters.

1 Alphabetical List

1-4332

https://www.mathworks.com

formatSpec can be a character vector in single quotes, or, starting in R2016b, a string
scalar.

Formatting Operator

A formatting operator starts with a percent sign, %, and ends with a conversion character.
The conversion character is required. Optionally, you can specify identifier, flags, field
width, precision, and subtype operators between % and the conversion character. (Spaces
are invalid between operators and are shown here only for readability).

% 3$ 0� 12 .5 b u

Conversion characterIdentifier

Flags

PrecisionField width

Subtype

Conversion Character

This table shows conversion characters to format numeric and character data as text.

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters

a–f
%X Same as %x, uppercase letters A–F

Floating-point number %f Fixed-point notation (Use a precision
operator to specify the number of digits
after the decimal point.)

%e Exponential notation, such as
3.141593e+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

 fprintf

1-4333

Value Type Conversion Details
%E Same as %e, but uppercase, such as

3.141593E+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%g The more compact of %e or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

%G The more compact of %E or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

Characters or strings %c Single character
%s Character vector or string array. The

type of the output text is the same as the
type of formatSpec.

Optional Operators

The optional identifier, flags, field width, precision, and subtype operators further define
the format of the output text.

• Identifier

Order for processing the function input arguments. Use the syntax n$, where n
represents the positions of the other input arguments in the function call.

Example: ('%3$s %2$s %1$s %2$s','A','B','C') prints input arguments 'A',
'B', 'C' as follows: C B A B.

Note: If an input argument is an array, you cannot use identifiers to specify particular
array elements from that input argument.

• Flags

'–' Left-justify.
Example: %-5.2f
Example: %-10s

1 Alphabetical List

1-4334

'+' Always print a sign character (+ or –) for any numeric value.
Example: %+5.2f
Right-justify text.
Example: %+10s

' ' Insert a space before the value.
Example: % 5.2f

'0' Pad to field width with zeros before the value.
Example: %05.2f

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.
• For %f, %e, or %E, print decimal point even when precision is 0.
• For %g or %G, do not remove trailing zeros or decimal point.

Example: %#5.0f
• Field Width

Minimum number of characters to print. The field width operator can be a number, or
an asterisk (*) to refer to an input argument.

When you specify * as the field width operator, the other input arguments must
provide both a width and a value to be printed. Widths and values can be pairs of
arguments or pairs within a numeric array. With * as the field width operator, you can
print different values with different widths.

Example: The input arguments ('%12d',intmax) are equivalent to
('%*d',12,intmax).

Example: The input arguments ('%*d',[2 10 5 100]) return '10 100', with two
spaces allocated for 10 and five spaces for 100. As an alternative, you also can specify
the field widths and values as multiple arguments, as in ('%*d',2,10,5,100).

The function pads to field width with spaces before the value unless otherwise
specified by flags.

• Precision

For %f, %e, or %E Number of digits to the right of the decimal point
Example: '%.4f' prints pi as '3.1416'

 fprintf

1-4335

For %g or %G Number of significant digits
Example: '%.4g' prints pi as '3.142'

The precision operator can be a number, or an asterisk (*) to refer to an argument.

When you specify * as the field precision operator, the other input arguments must
provide both a precision and a value to be printed. Precisions and values can be pairs
of arguments, or pairs within a numeric array. With * as the precision operator, you
can print different values to different precisions.

When you specify *.* as field width and precision operators, you must specify field
widths, precisions, and values as triplets.

Example: The input arguments ('%.4f',pi) are equivalent to ('%.*f',4,pi).

Example: The input arguments ('%6.4f',pi) are equivalent to ('%.*f',6,4,pi).

Example: The input arguments ('%*.*f',6,4,pi,9,6,exp(1)) return '3.1416
2.718282', with 9 and 6 as the field width and precision for the output of exp(1).

Note If you specify a precision operator for floating-point values that exceeds the
precision of the input numeric data type, the results might not match the input values
to the precision you specified. The result depends on your computer hardware and
operating system.

• Subtypes

You can use a subtype operator to print a floating-point value as its octal, decimal, or
hexadecimal value. The subtype operator immediately precedes the conversion
character. This table shows the conversions that can use subtypes.

Input Value Type Subtype and
Conversion Character

Output Value Type

Floating-point number %bx or %bX
%bo
%bu

Double-precision
hexadecimal, octal, or
decimal value
Example: %bx prints pi
as 400921fb54442d18

1 Alphabetical List

1-4336

Input Value Type Subtype and
Conversion Character

Output Value Type

%tx or %tX
%to
%tu

Single-precision
hexadecimal, octal, or
decimal value
Example: %tx prints pi
as 40490fdb

Text Before or After Formatting Operators

formatSpec can also include additional text before a percent sign, %, or after a
conversion character. The text can be:

• Ordinary text to print.
• Special characters that you cannot enter as ordinary text. This table shows how to

represent special characters in formatSpec.

Special Character Representation
Single quotation mark ''
Percent character %%
Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v
Character whose Unicode numeric value can be
represented by the hexadecimal number, N

\xN

Example:
sprintf('\x5A') returns
'Z'

 fprintf

1-4337

Special Character Representation
Character whose Unicode numeric value can be
represented by the octal number, N

\N

Example:
sprintf('\132') returns
'Z'

Notable Behavior of Conversions with Formatting Operators

• Numeric conversions print only the real component of complex numbers.
• If you specify a conversion that does not fit the data, such as a text conversion for a

numeric value, MATLAB overrides the specified conversion, and uses %e.

Example: '%s' converts pi to 3.141593e+00.
• If you apply a text conversion (either %c or %s) to integer values, MATLAB converts

values that correspond to valid character codes to characters.

Example: '%s' converts [65 66 67] to ABC.

Data Types: char | string

A1,...,An — Numeric or character arrays
scalar | vector | matrix | multidimensional array

Numeric or character arrays, specified as a scalar, vector, matrix, or multidimensional
array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

Output Arguments
nbytes — Number of bytes
scalar

Number of bytes that fprintf writes, returned as a scalar. When writing to a file,
nbytes is determined by the character encoding. When printing data to the screen,
nbytes is the number of characters displayed on the screen.

1 Alphabetical List

1-4338

Tips
• Format specifiers for the reading functions sscanf and fscanf differ from the

formats for the writing functions sprintf and fprintf. The reading functions do not
support a precision field. The width field specifies a minimum for writing, but a
maximum for reading.

References
[1] Kernighan, B. W., and D. M. Ritchie, The C Programming Language, Second Edition,

Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430 Broadway,
New York, NY 10018.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The formatSpec parameter must be constant.
• In formatSpec, hexadecimal numbers must be in the range [0 7F] and octal numbers

must be in the range [0 177].
• If fileID has a constant value of 1 or 2 and extrinsic calls are not possible, the code

generator produces a C printf call. Extrinsic calls are not possible when extrinsic
calls are disabled or when fprintf is called inside a parfor loop.

• The behavior of fprintf in the generated code matches the C compiler behavior
instead of the MATLAB behavior in these cases:

• The format specifier has a corresponding C format specifier, for example, %e or %E.
• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

 fprintf

1-4339

• These options and capabilities are not supported:

• The n$ position identifier for reordering input values
• Printing arrays
• Using subtypes to print a floating-point number as its octal, decimal, or

hexadecimal value
• When you call fprintf with the format specifier %s, you cannot put a null character

in the middle of the input character vector. To write a null character, use
fprintf(fid, '%c', char(0)).

• Input argument types must match their format types. For example, if n is a double,
code generation does not allow the following code:

str = sprintf('%d',n)

For code generation, first cast n to a signed integer type such as int8.

str = sprintf('%d',int8(n))
• When you call fprintf with an integer format specifier, the type of the integer

argument must be a type that the target hardware can represent as a native C type.
For example, if you call fprintf('%d', int64(n)), then the target hardware must
have a native C type that supports a 64-bit integer.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-4340

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
disp | fclose | ferror | fopen | fread | fscanf | fseek | ftell | fwrite | sprintf

Topics
“Export Cell Array to Text File”
“Append To or Overwrite Existing Text Files”
“Formatting Text”

Introduced before R2006a

 fprintf

1-4341

fprintf (serial)
Write text to device

Syntax
fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Description
fprintf(obj,'cmd') writes the string cmd to the device connected to the serial port
object, obj. The default format is %s\n. The write operation is synchronous and blocks
the command line until execution completes. The cmd can be either a SCPI command you
provide, or a command you provide based on instructions from your device vendor.

fprintf(obj,'format','cmd') writes the string using the format specified by
format.

fprintf(obj,'cmd','mode') writes the string with command-line access specified by
mode. mode specifies if cmd is written synchronously or asynchronously.

fprintf(obj,'format','cmd','mode') writes the string using the specified format.
format is a C language conversion specification.

You need an open connection from the serial port object, obj, to the device before
performing read or write operations.

To open a connection to the device, use the fopen function. When obj has an open
connection to the device, it has a Status property value of open. Refer to
“Troubleshooting Common Errors” for fprintf errors.

To understand the use of fprintf, refer to “Completing a Write Operation with fprintf”
and “Rules for Writing the Terminator”.

1 Alphabetical List

1-4342

Input Arguments
format

ANSI C conversion specification includes these conversion characters.

Specifier Description
%c Single character
%d or %i Decimal notation (signed)
%e Exponential notation (using lowercase e as in 3.1415e+00)
%E Exponential notation (using uppercase E as in 3.1415E+00)
%f Fixed-point notation
%g The more compact of %e or %f. Insignificant zeros do not print.
%G Same as %g, but using uppercase E
%o Octal notation (unsigned)
%s String of characters
%u Decimal notation (unsigned)
%x Hexadecimal notation (using lowercase letters a–f)
%X Hexadecimal notation (using uppercase letters A–F)

cmd

Specifies the string cmd, which can be either a SCPI command you provide, or a command
you provide based on instructions from your device vendor.

mode

Specifies whether the string cmd is written synchronously or asynchronously:

• sync: cmd is written synchronously and the command line is blocked.
• async: cmd is written asynchronously and the command line is not blocked.

If mode is not specified, the write operation is synchronous.

If you specify asynchronous mode, when the write operation occurs:

 fprintf (serial)

1-4343

• The BytesToOutput property value continuously updates to reflect the number of
bytes in the output buffer.

• The MATLAB file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

To determine whether an asynchronous write operation is in progress, use the
TransferStatus property.

For more information on synchronous and asynchronous write operations, see “Write and
Read Data”.

Examples
Create a serial port object s and connect it to a Tektronix TDS 210 oscilloscope. Write the
RS232? command with fprintf. RS232? instructs the scope to return serial port
communications settings. This example works on a Windows platform.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Specify a format for the data that does not include the terminator, or configure the
terminator to empty.

s = serial('COM1');
fopen(s)
fprintf(s,'%s','RS232?')

The default format for fprintf is %s\n. Therefore, the terminator specified by the
Terminator property is automatically written. However, sometimes you might want to
suppress writing the terminator.

Specify an array of formats and commands:

s = serial('COM1');
fopen(s)
fprintf(s,['ch:%d scale:%d'],[1 20e-3],'sync')

1 Alphabetical List

1-4344

See Also
BytesToOutput | OutputBufferSize | OutputEmptyFcn | Status | TransferStatus |
ValuesSent | fopen | fwrite | stopasync

Topics
Writing and Reading Data

Introduced before R2006a

 fprintf (serial)

1-4345

frame2im
Return image data associated with movie frame

Syntax
RGB = frame2im(F)
[X,map] = frame2im(F)

Description
RGB = frame2im(F) returns the truecolor (RGB) image from the single movie frame F.

[X,map] = frame2im(F) returns the indexed image data X and associated colormap
map from the single movie frame F.

Examples

Convert Movie Frame to Image Data

Create a surface plot. The data tip gives the x-, y- and z-coordinate of points along the
surface.

surf(peaks)

1 Alphabetical List

1-4346

Use getframe to capture the plot as a movie frame. The 'colormap' field is empty,
therefore the movie frame contains a truecolor (RGB) image.

F = getframe

F =

 struct with fields:

 cdata: [344x436x3 uint8]
 colormap: []

 frame2im

1-4347

Convert the captured movie frame to image data.

RGB = frame2im(F);

Display the truecolor image. The data tip gives information about the column and row
indices and RGB value of pixels.

figure
imshow(RGB)

1 Alphabetical List

1-4348

Input Arguments
F — Movie frame
structure

Movie frame, specified as a structure with two fields:

• cdata — The image data stored as an array of uint8 values.
• colormap — The colormap. If the movie frame contains a truecolor (RGB) images,

then this field is empty ([]).

 frame2im

1-4349

You can create a move frame structure by using the functions im2frame and getframe.

Output Arguments
RGB — Truecolor image
m-by-n-by-3 numeric array

Truecolor image, returned as an m-by-n-by-3 numeric array.
Data Types: uint8

X — Indexed image
m-by-n numeric matrix

Indexed image, returned as an m-by-n numeric matrix.
Data Types: uint8

map — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, returned as a c-by-3 numeric matrix with
values in the range [0, 1]. Each row of map is a three-element RGB triplet that specifies
the red, green, and blue components of a single color of the colormap.
Data Types: double

See Also
getframe | im2frame | ind2rgb | movie

Topics
“Image Types”

Introduced before R2006a

1 Alphabetical List

1-4350

fread
Read data from binary file

Syntax
A = fread(fileID)
A = fread(fileID,sizeA)
A = fread(fileID,sizeA,precision)
A = fread(fileID,sizeA,precision,skip)
A = fread(fileID,sizeA,precision,skip,machinefmt)
[A,count] = fread(___)

Description
A = fread(fileID) reads data from an open binary file into column vector A and
positions the file pointer at the end-of-file marker. The binary file is indicated by the file
identifier, fileID. Use fopen to open the file and obtain the fileID value. When you
finish reading, close the file by calling fclose(fileID).

A = fread(fileID,sizeA) reads file data into an array, A, with dimensions, sizeA,
and positions the file pointer after the last value read. fread populates A in column order.

A = fread(fileID,sizeA,precision) interprets values in the file according to the
form and size described by precision. The sizeA argument is optional.

A = fread(fileID,sizeA,precision,skip) skips the number of bytes or bits
specified by skip after reading each value in the file. The sizeA argument is optional.

A = fread(fileID,sizeA,precision,skip,machinefmt) additionally specifies the
order for reading bytes or bits in the file. The sizeA and skip arguments are optional.

[A,count] = fread(___) additionally returns the number of characters that fread
reads into A. You can use this syntax with any of the input arguments of the previous
syntaxes.

 fread

1-4351

Examples

Read Entire File of uint8 Data

Write a nine-element vector to a sample file, nine.bin.

fileID = fopen('nine.bin','w');
fwrite(fileID,[1:9]);
fclose(fileID);

Read all the data in the file into a vector of class double. By default, fread reads a file 1
byte at a time, interprets each byte as an 8-bit unsigned integer (uint8), and returns a
double array.

fileID = fopen('nine.bin');
A = fread(fileID)

A = 9×1

 1
 2
 3
 4
 5
 6
 7
 8
 9

fread returns a column vector, with one element for each byte in the file.

View information about A.

whos A

 Name Size Bytes Class Attributes

 A 9x1 72 double

Close the file.

fclose(fileID);

1 Alphabetical List

1-4352

Read Entire File of Double-Precision Data

Create a file named doubledata.bin, containing nine double-precision values.

fileID = fopen('doubledata.bin','w');
fwrite(fileID,magic(3),'double');
fclose(fileID);

Open the file, doubledata.bin, and read the data in the file into a 3-by-3 array, A.
Specify that the source data is class double.

fileID = fopen('doubledata.bin');
A = fread(fileID,[3 3],'double')

A = 3×3

 8 1 6
 3 5 7
 4 9 2

Close the file.

fclose(fileID);

Read Text File

Read the contents of the file, fread.m. Transpose the output array, A so that it is a row
vector.

fileID = fopen('fread.m');
A = fread(fileID,'*char')';
fclose(fileID);

fread returns the character array, A.

 fread

1-4353

Read Selected Rows or Columns from File

Create a file named nine.bin, containing the values from 1 to 9. Write the data as
uint16 values.

fileID = fopen('nine.bin','w');
fwrite(fileID,[1:9],'uint16');
fclose(fileID);

Read the first six values into a 3-by-2 array. Specify that the source data is class uint16.

fileID = fopen('nine.bin');
A = fread(fileID,[3,2],'uint16')

A = 3×2

 1 4
 2 5
 3 6

fread returns an array populated column-wise with the first six values from the file,
nine.bin.

Return to the beginning of the file.

frewind(fileID)

Read two values at a time, and skip one value before reading the next values. Specify this
format using the precision value, '2*uint16'. Because the data is class uint16, one
value is represented by 2 bytes. Therefore, specify the skip argument as 2.

precision = '2*uint16';
skip = 2;
B = fread(fileID,[2,3],precision,skip)

B = 2×3

 1 4 7
 2 5 8

fread returns a 2-by-3 array populated column-wise with the values from nine.bin.

Close the file.

1 Alphabetical List

1-4354

fclose(fileID);

Read Digits of Binary Coded Decimal Values

Create a file with binary coded decimal (BCD) values.

str = ['AB'; 'CD'; 'EF'; 'FA'];

fileID = fopen('bcd.bin','w');
fwrite(fileID,hex2dec(str),'ubit8');
fclose(fileID);

Read 1 byte at a time.

fileID = fopen('bcd.bin');
onebyte = fread(fileID,4,'*ubit8');

Display the BCD values.

disp(dec2hex(onebyte))

AB
CD
EF
FA

Return to the beginning of the file using frewind. If you read 4 bits at a time on a little-
endian system, your results appear in the wrong order.

frewind(fileID)

err = fread(fileID,8,'*ubit4');
disp(dec2hex(err))

B
A
D
C
F
E
A
F

 fread

1-4355

Return to the beginning of the file using frewind. Read the data 4 bits at a time as
before, but specify a big-endian ordering to display the correct results.

frewind(fileID)

correct = fread(fileID,8,'*ubit4','ieee-be');
disp(dec2hex(correct))

A
B
C
D
E
F
F
A

Close the file.

fclose(fileID);

Input Arguments
fileID — File identifier
integer

File identifier of an open binary file, specified as an integer. Before reading a file with
fread, you must use fopen to open the file and obtain the fileID.
Data Types: double

sizeA — Dimensions of output array
Inf (default) | integer | two-element row vector

Dimensions of the output array, A, specified as Inf, an integer, or a two-element row
vector.

Form of the sizeA Input Dimensions of the output array, A
Inf Column vector, with each element

containing a value in the file.

1 Alphabetical List

1-4356

Form of the sizeA Input Dimensions of the output array, A
n Column vector with n elements.
[m,n] m-by-n matrix, filled in column order. n can

be Inf, but m cannot.

precision — Class and size of values to read
'uint8=>double' (default) | character vector or string scalar

Class and size in bits of the values to read, specified as a character vector or a string
scalar in one of the following forms. Optionally the input specifies the class of the output
matrix, A.

Form of the precision Input Description
source Input values are of the class specified by

source. Output matrix A is class double.
Example: 'int16'

source=>output Input values are of the class specified by
source. The class of the output matrix, A,
is specified by output.
Example: 'int8=>char'

*source The input values and the output matrix, A,
are of the class specified by source. For
bitn or ubitn precisions, the output has
the smallest class that can contain the
input.
Example: '*ubit18'
This is equivalent to 'ubit18=>uint32'

N*source or
N*source=>output

Read N values before skipping the number
of bytes specified by the skip argument.
Example: '4*int8'

The following table shows possible values for source and output.

Value Type Precision Bits (Bytes)
Integers, unsigned 'uint' 32 (4)

'uint8' 8 (1)

 fread

1-4357

Value Type Precision Bits (Bytes)
'uint16' 16 (2)
'uint32' 32 (4)
'uint64' 64 (8)
'uchar' 8 (1)
'unsigned char' 8 (1)
'ushort' 16 (2)
'ulong' 32 (4)
'ubitn' 1 ≤ n ≤ 64

Integers, signed 'int' 32 (4)
'int8' 8 (1)
'int16' 16 (2)
'int32' 32 (4)
'int64' 64 (8)
'integer*1' 8 (1)
'integer*2' 16 (2)
'integer*4' 32 (4)
'integer*8' 64 (8)
'schar' 8 (1)
'signed char' 8 (1)
'short' 16 (2)
'long' 32 (4)
'bitn' 1 ≤ n ≤ 64

Floating-point numbers 'single' 32 (4)
'double' 64 (8)
'float' 32 (4)
'float32' 32 (4)
'float64' 64 (8)
'real*4' 32 (4)

1 Alphabetical List

1-4358

Value Type Precision Bits (Bytes)
'real*8' 64 (8)

Characters 'char*1' 8 (1)
'char' Depends on the encoding

scheme associated with the
file. Set encoding with
fopen.

For most values of source, if fread reaches the end of the file before reading a complete
value, it does not return a result for the final value. However, if source is bitn or ubitn,
then fread returns a partial result for the final value.

Note To preserve NaN and Inf values in MATLAB, read and write data of class double
or single.

Data Types: char | string

skip — Number of bytes to skip
0 (default) | scalar

Number of bytes to skip after reading each value, specified as a scalar. If you specify a
precision of bitn or ubitn, specify skip in bits.

Use the skip argument to read data from noncontiguous fields in fixed-length records.

machinefmt — Order for reading bytes
'n' (default) | 'b' | 'l' | 's' | 'a' | ...

Order for reading bytes in the file, specified as a character vector or a string scalar.
Specify machinefmt as one of the values in the table that follows. For bitn and ubitn
precisions, machinefmt specifies the order for reading bits within a byte, but the order
for reading bytes remains your system byte ordering.

'n' or 'native' Your system byte ordering (default)
'b' or 'ieee-be' Big-endian ordering
'l' or 'ieee-le' Little-endian ordering

 fread

1-4359

's' or 'ieee-be.l64' Big-endian ordering, 64-bit long data type
'a' or 'ieee-le.l64' Little-endian ordering, 64-bit long data type

By default, all currently supported platforms use little-endian ordering for new files.
Existing binary files can use either big-endian or little-endian ordering.
Data Types: char | string

Output Arguments
A — File data
column vector | matrix

File data, returned as a column vector. If you specified the sizeA argument, then A is a
matrix of the specified size. Data in A is class double unless you specify a different class
in the precision argument.

count — Number of characters read
scalar

Number of characters read, returned as a scalar value.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument precision must be a constant.
• The source and output classes that precision specifies cannot have these values:

'long', 'ulong', 'unsigned long', 'bitn', or 'ubitn'.
• You cannot use the machinefmt input.
• If the source or output that precision specifies is a C type, for example, int, then

the target and production sizes for that type must:

1 Alphabetical List

1-4360

• Match.
• Map directly to a MATLAB type.

• The source type that precision specifies must map directly to a C type on the
target hardware.

• If the fread call reads the entire file, then all of the data must fit in the largest array
available for code generation.

• If sizeA is not constant or contains a nonfinite element, then dynamic memory
allocation is required.

• The code generator for the fread function treats the char value for source or
output as a signed 8-bit integer. Use values between 0 and 127 only.

• The generated code does not report file read errors. Therefore, you must write your
own file read error handling in your MATLAB code. In your error handling code,
consider checking that the number of bytes read matches the number of bytes that
you requested. For example:

...
N = 100;
[vals, numRead] = fread(fid, N, '*double');
if numRead ~= N
 % fewer elements read than expected
end
...

See Also
fclose | fgetl | fopen | fprintf | fscanf | fseek | ftell | fwrite

Topics
“Import Binary Data with Low-Level I/O”

Introduced before R2006a

 fread

1-4361

fread (serial)
Read binary data from device

Syntax
A = fread(obj)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

Description
A = fread(obj) and A = fread(obj,size) read binary data from the device
connected to the serial port object, obj, and returns the data to A. The maximum number
of values to read is specified by size. If size is not specified, the maximum number of
values to read is determined by the object's InputBufferSize property. Valid options
for size are:

n Read at most n values into a column vector.
[m,n] Read at most m-by-n values filling an m–by–n matrix in column

order.

size cannot be inf, and an error is returned if the specified number of values cannot be
stored in the input buffer. You specify the size, in bytes, of the input buffer with the
InputBufferSize property. A value is defined as a byte multiplied by the precision
(see below).

A = fread(obj,size,'precision') reads binary data with precision specified by
precision.

precision controls the number of bits read for each value and the interpretation of
those bits as integer, floating-point, or character values. If precision is not specified,
uchar (an 8-bit unsigned character) is used. By default, numeric values are returned in
double-precision arrays. The supported values for precision are listed below in Tips on
page 1-4363.

1 Alphabetical List

1-4362

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read operation
was unsuccessful.

Tips
Before you can read data from the device, it must be connected to obj with the fopen
function. A connected serial port object has a Status property value of open. An error is
returned if you attempt to perform a read operation while obj is not connected to the
device.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read, each
time fread is issued.

Rules for Completing a Binary Read Operation
A read operation with fread blocks access to the MATLAB command line until:

• The specified number of values are read.
• The time specified by the Timeout property passes.

Note The Terminator property is not used for binary read operations.

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character

schar 8-bit signed character
char 8-bit signed or unsigned character

Integer int8 8-bit integer

 fread (serial)

1-4363

Data Type Precision Interpretation
int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point
float32 32-bit floating point
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

See Also
BytesAvailable | BytesAvailableFcn | InputBufferSize | Status | Terminator |
ValuesReceived | fgetl | fgets | fopen | fscanf

Introduced before R2006a

1 Alphabetical List

1-4364

freeBoundary
Class: TriRep

(Not recommended) Facets referenced by only one simplex

Note freeBoundary(TriRep) is not recommended. Use
freeBoundary(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
FF = freeBoundary(TR)
[FF XF] = freeBoundary(TR)

Description
FF = freeBoundary(TR) returns a matrix FF that represents the free boundary facets
of the triangulation. A facet is on the free boundary if it is referenced by only one simplex
(triangle/tetrahedron, etc). FF is of size m-by-n, where m is the number of boundary facets
and n is the number of vertices per facet. The vertices of the facets index into the array of
points representing the vertex coordinates TR.X. The array FF could be empty as in the
case of a triangular mesh representing the surface of a sphere.

[FF XF] = freeBoundary(TR) returns a matrix of free boundary facets

Input Arguments
TR Triangulation representation.

 freeBoundary

1-4365

Output Arguments
FF FF that has vertices defined in terms of a compact array of coordinates XF.
XF XF is of size m-by-ndim where m is the number of free facets, and ndim is

the dimension of the space where the triangulation resides

Examples

Example 1
Use TriRep to compute the boundary triangulation of an imported triangulation.

Load a 3-D triangulation:

load tetmesh;
trep = TriRep(tet, X);

Compute the boundary triangulation:

 [tri xf] = freeBoundary(trep);

Plot the boundary triangulation:

trisurf(tri, xf(:,1),xf(:,2),xf(:,3), ...
 'FaceColor','cyan', 'FaceAlpha', 0.8);

1 Alphabetical List

1-4366

Example 2
Perform a direct query of a 2-D triangulation created with DelaunayTri.

Plot the mesh:

 x = rand(20,1);
 y = rand(20,1);
 dt = DelaunayTri(x,y);
 fe = freeBoundary(dt)';
 triplot(dt);
 hold on;

Display the free boundary edges in red:

plot(x(fe), y(fe), '-r', 'LineWidth',2) ;
hold off;

In this instance the free edges correspond to the convex hull of (x, y).

 freeBoundary

1-4367

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

Facet
A facet is an edge of a triangle or a face of a tetrahedron.

See Also
convexHull | delaunayTriangulation | faceNormal | featureEdges |
triangulation

1 Alphabetical List

1-4368

freqspace
Frequency spacing for frequency response

Syntax
[f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,'meshgrid')
f = freqspace(N)
f = freqspace(N,'whole')

Description
freqspace returns the implied frequency range for equally spaced frequency responses.
freqspace is useful when creating desired frequency responses for various one- and
two-dimensional applications.

[f1,f2] = freqspace(n) returns the two-dimensional frequency vectors f1 and f2
for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both f1 and f2 are [-n:2:n-2]/n.

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency vectors f1 and
f2 for an m-by-n matrix.

[x1,y1] = freqspace(...,'meshgrid') is equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

f = freqspace(N) returns the one-dimensional frequency vector f assuming N evenly
spaced points around the unit circle. For N even or odd, f is (0:2/N:1). For N even,
freqspace therefore returns (N+2)/2 points. For N odd, it returns (N+1)/2 points.

 freqspace

1-4369

f = freqspace(N,'whole') returns N evenly spaced points around the whole unit
circle. In this case, f is 0:2/N:2*(N-1)/N.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
meshgrid

Introduced before R2006a

1 Alphabetical List

1-4370

frewind
Move file position indicator to beginning of open file

Syntax
frewind(fileID)

Description
frewind(fileID) sets the file position indicator to the beginning of a file.

Examples

Reset File Position Indicator

Open the following file, perform a read operation, and then move the file position
indicator back to the beginning of the file.

Use fopen to open the file, and then use fgetl to read the first two lines.

fid = fopen('badpoem.txt');
tline1 = fgetl(fid) % read first line

tline1 =
'Oranges and lemons,'

 frewind

1-4371

tline2 = fgetl(fid) % read second line

tline2 =
'Pineapples and tea.'

The previous two read operations moved the position indicator to the beginning of line 3
in the poem. As a result, the next read operation using fgetl returns line 3.

tline3 = fgetl(fid)

tline3 =
'Orangutans and monkeys,'

To reread the first line of the file. Reset the position indicator using the frewind
function, and then perform the read operation.

frewind(fid)
fgetl(fid)

ans =
'Oranges and lemons,'

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. Before using frewind you must use
fopen to open the file and obtain its fileID.
Data Types: double

Tips
If the file is on a tape device and the rewind operation fails, frewind does not return an
error message.

1 Alphabetical List

1-4372

Alternatives
frewind(fileID) is equivalent to:

fseek(fileID, 0, 'bof');

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fclose | feof | ferror | fopen | fprintf | fread | fscanf | fseek | ftell | fwrite

Introduced before R2006a

 frewind

1-4373

fscanf
Read data from text file

Syntax
A = fscanf(fileID,formatSpec)
A = fscanf(fileID,formatSpec,sizeA)
[A,count] = fscanf(___)

Description
A = fscanf(fileID,formatSpec) reads data from an open text file into column
vector A and interprets values in the file according to the format specified by
formatSpec. The fscanf function reapplies the format throughout the entire file and
positions the file pointer at the end-of-file marker. If fscanf cannot match formatSpec
to the data, it reads only the portion that matches and stops processing.

The text file is indicated by the file identifier, fileID. Use fopen to open the file, specify
the character encoding, and obtain the fileID value. When you finish reading, close the
file by calling fclose(fileID).

A = fscanf(fileID,formatSpec,sizeA) reads file data into an array, A, with
dimensions, sizeA, and positions the file pointer after the last value read. fscanf
populates A in column order. sizeA must be a positive integer or have the form [m n],
where m and n are positive integers.

[A,count] = fscanf(___) additionally returns the number of fields that fscanf
reads into A. For numeric data, this is the number of values read. You can use this syntax
with any of the input arguments of the previous syntaxes.

Examples

1 Alphabetical List

1-4374

Read File Contents into Column Vector

Create a sample text file that contains floating-point numbers.

x = 100*rand(8,1);
fileID = fopen('nums1.txt','w');
fprintf(fileID,'%4.4f\n',x);
fclose(fileID);

View the contents of the file.

type nums1.txt

81.4724
90.5792
12.6987
91.3376
63.2359
9.7540
27.8498
54.6882

Open the file for reading, and obtain the file identifier, fileID.

fileID = fopen('nums1.txt','r');

Define the format of the data to read. Use '%f' to specify floating-point numbers.

formatSpec = '%f';

Read the file data, filling output array, A, in column order. fscanf reapplies the format,
formatSpec, throughout the file.

A = fscanf(fileID,formatSpec)

A = 8×1

 81.4724
 90.5792
 12.6987
 91.3376
 63.2359
 9.7540
 27.8498
 54.6882

 fscanf

1-4375

A is a column vector containing data from the file.

Close the file.

fclose(fileID);

Read File Contents into Array

Create a sample text file that contains integers and floating-point numbers.

x = 1:1:5;
y = [x;rand(1,5)];
fileID = fopen('nums2.txt','w');
fprintf(fileID,'%d %4.4f\n',y);
fclose(fileID);

View the contents of the file.

type nums2.txt

2 0.9058
3 0.1270
4 0.9134
5 0.6324

Open the file for reading, and obtain the file identifier, fileID.

fileID = fopen('nums2.txt','r');

Define the format of the data to read and the shape of the output array.

formatSpec = '%d %f';
sizeA = [2 Inf];

Read the file data, filling output array, A, in column order. fscanf reuses the format,
formatSpec, throughout the file.

A = fscanf(fileID,formatSpec,sizeA)

A = 2×5

 1.0000 2.0000 3.0000 4.0000 5.0000

1 Alphabetical List

1-4376

 0.8147 0.9058 0.1270 0.9134 0.6324

fclose(fileID);

Transpose the array so that A matches the orientation of the data in the file.

A = A'

A = 5×2

 1.0000 0.8147
 2.0000 0.9058
 3.0000 0.1270
 4.0000 0.9134
 5.0000 0.6324

Skip Specific Characters in File

Skip specific characters in a sample file, and return only numeric data.

Create a sample text file containing temperature values.

str = '78°C 72°C 64°C 66°C 49°C';
fileID = fopen('temperature.dat','w');
fprintf(fileID,'%s',str);
fclose(fileID);

Read the numbers in the file, skipping the text, °C. Also return the number of values that
fscanf reads. The extended ASCII code 176 represents the degree sign.

fileID = fopen('temperature.dat','r');
degrees = char(176);
[A,count] = fscanf(fileID, ['%d' degrees 'C'])
fclose(fileID);

A =

 78
 72
 64
 66

 fscanf

1-4377

 49

count =

 5

A is a vector containing the numeric values in the file. count indicates that fscanf read
five values.

Input Arguments
fileID — File identifier
integer

File identifier of an open text file, specified as an integer. Before reading a file with
fscanf, you must use fopen to open the file and obtain the fileID.
Data Types: double

formatSpec — Format of data fields
character vector | string scalar

Format of the data fields in the file, specified as a character vector or string scalar of one
or more conversion specifiers. When fscanf reads a file, it attempts to match the data to
the format specified by formatSpec.

Numeric Fields

This table lists available conversion specifiers for numeric inputs. fscanf converts values
to their decimal (base 10) representation.

Numeric Field Type Conversion
Specifier

Details

Integer, signed %d Base 10

1 Alphabetical List

1-4378

Numeric Field Type Conversion
Specifier

Details

%i The values in the file determine the base:

• The default is base 10.
• If the initial digits are 0x or 0X, then the

values are hexadecimal (base 16).
• If the initial digit is 0, then values are octal

(base 8).
%ld or %li 64-bit values, base 10, 8, or 16

Integer, unsigned %u Base 10
%o Base 8 (octal)
%x Base 16 (hexadecimal)
%lu, %lo, %lx 64-bit values, base 10, 8, or 16

Floating-point number %f Floating-point fields can contain any of the
following (not case sensitive): Inf, -Inf, NaN,
or -NaN.

%e
%g

Character Fields

This table lists available conversion specifiers for character inputs.

Character Field Type Conversion
Specifier

Description

Character vector or
string scalar

%s Read all characters excluding white spaces.
%c Read any single character, including white

space.
To read multiple characters at a time, specify
field width.

Pattern-matching %[...] Read only characters in the brackets up to the
first nonmatching character or white space.

Example: %[mus] reads 'summer ' as
'summ'.

 fscanf

1-4379

If formatSpec contains a combination of numeric and character specifiers, then fscanf
converts each character to its numeric equivalent. This conversion occurs even when the
format explicitly skips all numeric values (for example, formatSpec is '%*d %s').

Optional Operators

• Fields and Characters to Ignore

fscanf reads all numeric values and characters in your file in sequence, unless you
tell it to ignore a particular field or a portion of a field. To skip fields, insert an asterisk
(*) after the percent sign (%). For example, to skip integers, specify %*d.

• Field Width

To specify the maximum number of digits or text characters to read at a time, insert a
number after the percent character. For example, %10c reads up to 10 characters at a
time, including white space. %4f reads up to 4 digits at a time, including the decimal
point.

• Literal Text to Ignore

fscanf ignores specified text appended to the formatSpec conversion specifier.

Example: Level%u reads 'Level1' as 1.

Example: %uStep reads '2Step' as 2.

sizeA — Dimensions of output array
Inf (default) | integer | two-element row vector

Dimensions of the output array, A, specified as Inf, an integer, or a two-element row
vector.

Form of the sizeA Input Description
Inf Read to the end of the file.

For numeric data, the output, A, is a column vector.
For text data, A is a character vector.

n Read at most n numeric values or character fields.
For numeric data, the output, A, is a column vector.
For text data, A, is a character vector.

1 Alphabetical List

1-4380

Form of the sizeA Input Description
[m,n] Read at most m*n numeric values or character fields.

n can be Inf, but m cannot. The output, A, is m-by-n,
filled in column order.

Output Arguments
A — File data
column vector | matrix | character vector | character array

File data, returned as a column vector, matrix, character vector or character array. The
class and size of A depend on the formatSpec input:

• If formatSpec contains only numeric specifiers, then A is numeric. If you specify the
sizeA argument, then A is a matrix of the specified size. Otherwise, A is a column
vector. If the input contains fewer than sizeA values, then fscanf pads A with zeros.

• If formatSpec contains only 64-bit signed integer specifiers, then A is of class
int64.

• If formatSpec contains only 64-bit unsigned integer specifiers, then A is of class
uint64.

• Otherwise, A is of class double.
• If formatSpec contains only character or text specifiers (%c or %s), then A is a

character array. If you specify sizeA and the input contains fewer characters, then
fscanf pads A with char(0).

• If formatSpec contains a combination of numeric and character specifiers, then A is
numeric, of class double, and fscanf converts each text characters to its numeric
equivalent. This occurs even when formatSpec explicitly skips all numeric fields (for
example, formatSpec is '%*d %s').

• If MATLAB cannot match the file data to formatSpec, then A can be numeric or a
character array. The class of A depends on the values that fscanf reads before it
stops processing.

count — Number of characters read
scalar

Number of characters read, returned as a scalar value.

 fscanf

1-4381

Tips
• Format specifiers for the reading functions sscanf and fscanf differ from the

formats for the writing functions sprintf and fprintf. The reading functions do not
support a precision field. The width field specifies a minimum for writing but a
maximum for reading.

Algorithms
MATLAB reads characters using the encoding scheme associated with the file. You specify
the encoding when you open the file using the fopen function.

See Also
fgetl | fgets | fopen | fprintf | fread | sscanf | textscan

Topics
“Import Text Data Files with Low-Level I/O”

Introduced before R2006a

1 Alphabetical List

1-4382

fscanf (serial)
Read ASCII data from device, and format as text

Syntax
A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)

Description
A = fscanf(obj) reads ASCII data from the device connected to the serial port object,
obj, and returns it to A. The data is converted to text using the %c format. For binary
data, use fread.

A = fscanf(obj,'format') reads data and converts it according to format. format
is a C language conversion specification. Conversion specifications involve the %
character and the conversion characters d, i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the
sscanf file I/O format specifications or a C manual for more information.

A = fscanf(obj,'format',size) reads the number of values specified by size.
Valid options for size are:

n Read at most n values into a column vector.
[m,n] Read at most m-by-n values filling an m–by–n matrix in column order.

size cannot be inf, and an error is returned if the specified number of values cannot be
stored in the input buffer. If size is not of the form [m,n], and a character conversion is
specified, then A is returned as a row vector. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. An ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

 fscanf (serial)

1-4383

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

Examples
Create the serial port object s and connect s to a Tektronix TDS 210 oscilloscope, which
is displaying sine wave. This example works on a Windows platform.

s = serial('COM1');
fopen(s)

Use the fprintf function to configure the scope to measure the peak-to-peak voltage of
the sine wave, return the measurement type, and return the peak-to-peak voltage.

fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VALUE?')

Because the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input buffer.

s.BytesAvailable

ans =
 21

Use fscanf to read the measurement type. The operation will complete when the first
terminator is read.

meas = fscanf(s)

meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number, and exclude the
terminator.

pk2pk = fscanf(s,'%e',14)

pk2pk =
 2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

1 Alphabetical List

1-4384

fclose(s)
delete(s)
clear s

Tips
Before you can read data from the device, it must be connected to obj with the fopen
function. A connected serial port object has a Status property value of open. An error is
returned if you attempt to perform a read operation while obj is not connected to the
device.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read –
including the terminator – each time fscanf is issued.

Rules for Completing a Read Operation with fscanf
A read operation with fscanf blocks access to the MATLAB command line until:

• The terminator specified by the Terminator property is read.
• The time specified by the Timeout property passes.
• The number of values specified by size is read.
• The input buffer is filled (unless size is specified)

See Also
BytesAvailable | BytesAvailableFcn | InputBufferSize | Status | Terminator | Timeout |
fgetl | fgets | fopen | fread | textscan

Introduced before R2006a

 fscanf (serial)

1-4385

fseek
Move to specified position in file

Syntax
fseek(fileID, offset, origin)
status = fseek(___)

Description
fseek(fileID, offset, origin) sets the file position indicator offset bytes from
origin in the specified file.

status = fseek(___) returns 0 when the operation is successful. Otherwise, fseek
returns -1. Use any of the previous input argument combinations.

Examples

Move to New Position in File

Open the following badpoem.txt file and perform read operations (which advance the
position pointer) and then use seek to move to a new position in the file.

Use fopen to open the file. Then, use ftell to query the current position.

1 Alphabetical List

1-4386

fid = fopen('badpoem.txt');
ftell(fid)

ans = 0

Read the first three lines and query the position in the file after each read. Use fgetl to
read and fseek to examine the current position after the read operation.

tline1 = fgetl(fid) % read the first line

tline1 =
'Oranges and lemons,'

ftell(fid)

ans = 20

Read the second line and examine the current position.

tline2 = fgetl(fid) % read the second line

tline2 =
'Pineapples and tea.'

ftell(fid)

ans = 40

Read the third line and examine the current position.

tline3 = fgetl(fid) % read the third line

tline3 =
'Orangutans and monkeys,'

ftell(fid)

ans = 64

To read line 2, set the position in the file to point to the beginning of line 2. Use fseek to
set the position, and then perform a read operation.

fseek(fid,20,'bof');
fgetl(fid)

ans =
'Pineapples and tea.'

 fseek

1-4387

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. Before using fseek, you must use
fopen to open the file and obtain its fileID.
Data Types: double

offset — Number of bytes
integer

Number of bytes to move from origin, specified as an integer. The value of offset can
be positive, negative, or zero.
Data Types: double

origin — Starting location
integer | character vector | string

Starting location in the file, specified as a character vector, string scalar, or a scalar
number.

'bof' or -1 Beginning of file
'cof' or 0 Current position in file
'eof' or 1 End of file

Data Types: double | char | string

Tips
• If a file has n bytes of data, then those n bytes are in positions 0 through n-1.

1 Alphabetical List

1-4388

Alternatives
To move to the beginning of a file, call

frewind(fileID)

This call is identical to

fseek(fileID, 0, 'bof')

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When the MATLAB behavior differs from the C compiler behavior, the generated code
matches the C compiler behavior. Examples include:

• Seeking past the end of a file.
• Seeking away from the end of a file opened with append access.

• The offset is passed to the C run-time environment as a signed long data type.
Therefore, the offset value must fit in the long data type on the target hardware.

See Also
fclose | feof | ferror | fopen | fprintf | fread | frewind | fscanf | ftell |
fwrite

Topics
“Import Binary Data with Low-Level I/O”

Introduced before R2006a

 fseek

1-4389

fsurf
Plot 3-D surface

Syntax
fsurf(f)
fsurf(f,xyinterval)

fsurf(funx,funy,funz)
fsurf(funx,funy,funz,uvinterval)

fsurf(___ ,LineSpec)
fsurf(___ ,Name,Value)
fsurf(ax, ___)
fs = fsurf(___)

Description
fsurf(f) creates a surface plot of the function z = f(x,y) over the default interval
[-5 5] for x and y.

fsurf(f,xyinterval) plots over the specified interval. To use the same interval for
both x and y, specify xyinterval as a two-element vector of the form [min max]. To
use different intervals, specify a four-element vector of the form [xmin xmax ymin
ymax].

fsurf(funx,funy,funz) plots the parametric surface defined by x = funx(u,v), y
= funy(u,v), z = funz(u,v) over the default interval [-5 5] for u and v.

fsurf(funx,funy,funz,uvinterval) plots over the specified interval. To use the
same interval for both u and v, specify uvinterval as a two-element vector of the form
[min max]. To use different intervals, specify a four-element vector of the form [umin
umax vmin vmax].

1 Alphabetical List

1-4390

fsurf(___ ,LineSpec) sets the line style, marker symbol, and surface color. For
example, '-r' specifies red lines. Use this option after any of the previous input
argument combinations.

fsurf(___ ,Name,Value) specifies surface properties using one or more name-value
pair arguments. Use this option after any of the input argument combinations in the
previous syntaxes.

fsurf(ax, ___) plots into the axes specified by ax instead of the current axes (gca).

fs = fsurf(___) returns a FunctionSurface object or
ParameterizedFunctionSurface object, depending on the inputs. Use fs to query
and modify properties of a specific surface. For a list of properties, see FunctionSurface
or ParameterizedFunctionSurface.

Examples

3-D Surface Plot of Expression

Plot the expression sin(x) + cos(y) over the default interval −5 < x < 5 and −5 < y < 5.

fsurf(@(x,y) sin(x)+cos(y))

 fsurf

1-4391

Specify Interval of Surface Plot and Plot Piecewise Expression

Plot the piecewise expression

erf(x) + cos(y) −5 < x < 0
sin(x) + cos(y) 0 < x < 5

over −5 < y < 5 .

1 Alphabetical List

1-4392

Specify the plotting interval as the second input argument of fsurf. When you plot
multiple surfaces over different intervals in the same axes, the axis limits adjust to
include all the data.

f1 = @(x,y) erf(x)+cos(y);
fsurf(f1,[-5 0 -5 5])
hold on
f2 = @(x,y) sin(x)+cos(y);
fsurf(f2,[0 5 -5 5])
hold off

 fsurf

1-4393

Parameterized Surface Plot

Plot the parameterized surface

x = rcos(u)sin(v)
y = rsin(u)sin(v)

z = rcos(v)
where r = 2 + sin(7u + 5v)

for 0 < u < 2π and 0 < v < π. Add light to the surface using camlight.

r = @(u,v) 2 + sin(7.*u + 5.*v);
funx = @(u,v) r(u,v).*cos(u).*sin(v);
funy = @(u,v) r(u,v).*sin(u).*sin(v);
funz = @(u,v) r(u,v).*cos(v);
fsurf(funx,funy,funz,[0 2*pi 0 pi])
camlight

1 Alphabetical List

1-4394

Add Title and Axis Labels and Format Ticks

For x and y from −2π to 2π, plot the 3-D surface ysin(x)− xcos(y). Add a title and axis
labels and display the axes outline.

fsurf(@(x,y) y.*sin(x)-x.*cos(y),[-2*pi 2*pi])
title('ysin(x) - xcos(y) for x and y in [-2\pi,2\pi]')
xlabel('x');
ylabel('y');
zlabel('z');
box on

 fsurf

1-4395

Set the x-axis tick values and associated labels using the XTickLabel and XTick
properties of axes object. Access the axes object using gca. Similarly, set the y-axis tick
values and associated labels.

ax = gca;
ax.XTick = -2*pi:pi/2:2*pi;
ax.XTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'};

ax.YTick = -2*pi:pi/2:2*pi;
ax.YTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'};

1 Alphabetical List

1-4396

Specify Surface Properties

Plot the parametric surface x = usin(v), y = − ucos(v), z = v with different line styles for
different values of v. For −5 < v < − 2, use a dashed green line for the surface edges. For
−2 < v < 2, turn off the edges by setting the EdgeColor property to 'none'.

funx = @(u,v) u.*sin(v);
funy = @(u,v) -u.*cos(v);
funz = @(u,v) v;

fsurf(funx,funy,funz,[-5 5 -5 -2],'--','EdgeColor','g')

 fsurf

1-4397

hold on
fsurf(funx,funy,funz,[-5 5 -2 2],'EdgeColor','none')
hold off

Modify Surface After Creation

Plot the parametric surface

1 Alphabetical List

1-4398

x = e− u /10sin(5 v)

y = e− u /10cos(5 v)
z = u .

Assign the parameterized function surface object to a variable.

x = @(u,v) exp(-abs(u)/10).*sin(5*abs(v));
y = @(u,v) exp(-abs(u)/10).*cos(5*abs(v));
z = @(u,v) u;
fs = fsurf(x,y,z)

fs =
 ParameterizedFunctionSurface with properties:

 fsurf

1-4399

 XFunction: @(u,v)exp(-abs(u)/10).*sin(5*abs(v))
 YFunction: @(u,v)exp(-abs(u)/10).*cos(5*abs(v))
 ZFunction: @(u,v)u
 EdgeColor: [0 0 0]
 LineStyle: '-'
 FaceColor: 'interp'

 Show all properties

Change the plotting interval for u to [-30 30] by setting the URange property of object.
Add transparency to the surface by setting the FaceAlpha property to a value between 0
(transparent) and 1 (opaque).

fs.URange = [-30 30];

1 Alphabetical List

1-4400

fs.FaceAlpha = .5;

Show Contours Below Surface Plot

Show contours below a surface plot by setting the 'ShowContours' option to 'on'.

f = @(x,y) 3*(1-x).^2.*exp(-(x.^2)-(y+1).^2)...
 - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2)...
 - 1/3*exp(-(x+1).^2 - y.^2);
fsurf(f,[-3 3],'ShowContours','on')

 fsurf

1-4401

Control Resolution of Surface Plot

Control the resolution of a surface plot using the 'MeshDensity' option. Increasing
'MeshDensity' can make smoother, more accurate plots while decreasing it can
increase plotting speed.

Divide a figure into two using subplot. In the first subplot, plot the parametric surface
x = sin(s), y = cos(s), z = (t/10)sin(1/s). The surface has a large gap. Fix this issue by
increasing the 'MeshDensity' to 40 in the second subplot. fsurf fills the gap, showing
that by increasing 'MeshDensity' you increased the resolution.

1 Alphabetical List

1-4402

subplot(2,1,1)
fsurf(@(s,t) sin(s), @(s,t) cos(s), @(s,t) t/10.*sin(1./s))
view(-172,25)
title('Default MeshDensity = 35')

subplot(2,1,2)
fsurf(@(s,t) sin(s), @(s,t) cos(s), @(s,t) t/10.*sin(1./s),'MeshDensity',40)
view(-172,25)
title('Increased MeshDensity = 40')

 fsurf

1-4403

Input Arguments
f — 3-D function to plot
function handle

3-D function to plot, specified as a function handle to a named or anonymous function.

Specify a function of the form z = f(x,y). The function must accept two matrix input
arguments and return a matrix output argument of the same size. Use array operators
instead of matrix operators for the best performance. For example, use .* (times)
instead of * (mtimes).
Example: f = @(x,y) sin(x) + cos(y);

xyinterval — Plotting interval for x and y
[-5 5 -5 5] (default) | vector of form [min max] | vector of form [xmin xmax ymin
ymax]

Plotting interval for x and y, specified in one of these forms:

• Vector of form [min max] — Use the interval [min max] for both x and y
• Vector of form [xmin xmax ymin ymax] — Use the interval [xmin xmax] for x and

[ymin ymax] for y.

funx — Parametric function for x coordinates
function handle

Parametric function for x coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form x = funx(u,v). The function must accept two matrix
input arguments and return a matrix output argument of the same size. Use array
operators instead of matrix operators for the best performance. For example, use .*
(times) instead of * (mtimes).
Example: funx = @(u,v) u.*sin(v);

funy — Parametric function for y coordinates
function handle

Parametric function for y coordinates, specified as a function handle to a named or
anonymous function.

1 Alphabetical List

1-4404

Specify a function of the form y = funy(u,v). The function must accept two matrix
input arguments and return a matrix output argument of the same size. Use array
operators instead of matrix operators for the best performance. For example, use .*
(times) instead of * (mtimes).
Example: funy = @(t) @(u,v) -u.*cos(v);

funz — Parametric function for z coordinates
function handle

Parametric function for z coordinates, specified as a function handle to a named or
anonymous function.

Specify a function of the form z = funz(u,v). The function must accept two matrix
input arguments and return a matrix output argument of the same size. Use array
operators instead of matrix operators for the best performance. For example, use .*
(times) instead of * (mtimes).
Example: funz = @(u,v) v;

uvinterval — Plotting interval for u and v
[-5 5 -5 5] (default) | vector of form [min max] | vector of form [umin umax vmin
vmax]

Plotting interval for u and v, specified in one of these forms:

• Vector of form [min max] — Use the interval [min max] for both u and v
• Vector of form [umin umax vmin vmax] — Use the interval [umin umax] for u and

[vmin vmax] for v.

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fsurf uses the current axes.

LineSpec — Line specification
character vector | string

Line specification, specified as a character vector or string with a line style, marker, and
color. The elements can appear in any order, and you can omit one or more options. To
show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers

 fsurf

1-4405

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Specifier Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

1 Alphabetical List

1-4406

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','o','MarkerFaceColor','red'

The properties list here are only a subset. For a full list, see FunctionSurface
orParameterizedFunctionSurface.

MeshDensity — Number of evaluation points per direction
35 (default) | number

Number of evaluation points per direction, specified as a number. The default is 35.
Because fsurf objects use adaptive evaluation, the actual number of evaluation points is
greater.
Example: 100

ShowContours — Display contour plot under plot
'off' (default) | 'on'

Display contour plot under plot, specified as 'off' (default) or 'on'.

EdgeColor — Line color
[0 0 0] (default) | 'interp' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black.
The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 fsurf

1-4407

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

1 Alphabetical List

1-4408

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at the intersection
points of mesh lines.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle

 fsurf

1-4409

Value Description
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fs — One or more FunctionSurface or ParameterizedFunctionSurface objects
scalar | vector

One or more FunctionSurface or ParameterizedFunctionSurface objects,
returned as a scalar or a vector.

• If you use the fsurf(f) syntax or a variation of this syntax, then fsurf returns
FunctionSurface objects.

• If you use the fsurf(funx,funy,funz) syntax or a variation of this syntax, then
fsurf returns ParameterizedFunctionSurface objects.

You can use these objects to query and modify properties of a specific surface. For a list of
properties, see FunctionSurface and ParameterizedFunctionSurface.

See Also
Functions
fcontour | fimplicit3 | fmesh | fplot | fplot3 | hold | title

Properties
FunctionSurface | ParameterizedFunctionSurface

1 Alphabetical List

1-4410

Introduced in R2016a

 fsurf

1-4411

ftell
Current position

Syntax
position = ftell(fileID)

Description
position = ftell(fileID) returns the current location of the position pointer in the
specified file.

• If the query is successful, then position is a zero-based integer that indicates the
number of bytes from the beginning of the file.

• If the query is unsuccessful, then position is -1.

Examples

Find Current Position in File

When you open a file, MATLAB® creates a pointer to indicate the current position within
the file. Open the following badpoem.txt file and perform a read operation (which
advances the position pointer). Then, query the final position in the file after the read
operation.

1 Alphabetical List

1-4412

Use fopen to open the file. Then, use ftell to query the current position.

fid = fopen('badpoem.txt');
ftell(fid)

ans = 0

Using fgetl, read the first line and examine the current position after the read
operation.

tline1 = fgetl(fid) % read the first line

tline1 =
'Oranges and lemons,'

ftell(fid)

ans = 20

Read the second line and examine the current position.

tline2 = fgetl(fid) % read the second line

tline2 =
'Pineapples and tea.'

ftell(fid)

ans = 40

Close the file.

fclose(fid);

Input Arguments
fileID — File identifier
integer

File identifier of an open file, specified as an integer. To open a file and obtain its valid
identifier use the fopen function.
Data Types: double

 ftell

1-4413

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When the MATLAB behavior differs from the C compiler behavior, the generated code
usually matches the C compiler behavior. For example, if you use fseek to seek past the
end of a file, the behavior of ftell in the generated code matches the C compiler
behavior.

See Also
fclose | feof | ferror | fopen | fprintf | fread | frewind | fscanf | fseek |
fwrite

Topics
“Import Binary Data with Low-Level I/O”

Introduced before R2006a

1 Alphabetical List

1-4414

ftp
Object to connect to FTP server and access its files

Description
Connect to an FTP server by calling the ftp function, which creates an FTP object. To
access a particular FTP account on the server, specify a user name and password. Then
use the FTP object to upload and download files. You also can create, delete, and navigate
to different folders on the server. To close the connection, use the close function.

Note Because FTP is not a secure protocol, the FTP object does not encrypt your user
name, your password, or any data you download from or upload to an FTP server. If you
require a secure FTP connection, then use an SFTP client provided by your system.

Creation

Syntax
ftpobj = ftp(host)
ftpobj = ftp(host,username,password)
ftpobj = ftp(host,username,password,Name,Value)

Description
ftpobj = ftp(host) opens a connection to the FTP server host and stores the
connection in FTP object ftpobj. To use this syntax, host must support anonymous
connections.

ftpobj = ftp(host,username,password) accesses the FTP account with the
specified user name and password.

ftpobj = ftp(host,username,password,Name,Value) specifies additional input
arguments using one or more name-value pair arguments. For example, you can specify

 ftp

1-4415

the value of 'System' as 'WINDOWS' to connect to an FTP server that runs a Windows
operating system. You also can specify the value of 'LocalDataConnectionMethod' to
change the connection mode from passive to active mode.

Input Arguments
host — Name of FTP server
character vector | string scalar

Name of the FTP server, specified as a character vector or string scalar.

To specify an alternate port number for the connection, append a colon (:) and the port
number to host. The default port number for FTP servers is 21.

Typically, the name of the server starts with 'ftp', as in 'ftp.example.com'.
However, this practice is a convention, not a technical requirement. If the name of the
FTP server starts with a different prefix, then you simply specify host as that name. Do
not append 'ftp://' to the name to specify the FTP protocol.
Example: ftpobj = ftp('ftp.example.com') opens an anonymous connection to
ftp.example.com.
Example: ftpobj = ftp('www.example.com') opens a connection if the server
www.example.com is configured to provide FTP service.
Example: ftpobj = ftp('ftp.example.com:34') opens a connection using port
number 34.

username — Name of authorized account
character vector | string scalar

Name of an authorized account on the FTP server, specified as a character vector or
string scalar. The FTP object sends username as plain text.

password — Password for authorized account
character vector | string scalar

Password for an authorized account, specified as a character vector or string scalar. The
FTP object sends password as plain text.
Example: ftpobj = ftp('ftp.example.com','nlee','mypassword') opens a
connection for the user nlee using the password mypassword.

1 Alphabetical List

1-4416

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ftpobj =
ftp('ftp.example.com','nlee','mypassword','System','WINDOWS') opens a
connection to an FTP server that runs a Windows-based operating system.

System — Type of system running on FTP server
'UNIX' (default) | 'WINDOWS'

Type of operating system running on the FTP server, specified as the comma-separated
pair consisting of 'System' and either 'UNIX' or 'WINDOWS'.

LocalDataConnectionMethod — Connection mode
'passive' (default) | 'active'

Connection mode, specified as the comma-separated pair consisting of
'LocalDataConnectionMethod' and either 'passive' or 'active'.

There are two modes for establishing an FTP connection.

• 'active' — Your machine establishes a channel for commands, but the FTP server
establishes a channel for data. Active mode can be a problem if, for example, your
machine is protected by a firewall and does not allow unauthorized session requests
from external sources.

• 'passive' — Your machine establishes both channels. After establishing the
command channel, your machine requests that the FTP server start listening on a port,
so that your machine can connect to that port.

The default mode is 'passive' because most modern FTP implementations use passive
mode. But to connect to some legacy servers, you might need to specify active mode.

Object Functions
ascii Set FTP transfer mode to ASCII
binary Set FTP transfer mode to binary
cd Change or view current folder on FTP server

 ftp

1-4417

close Close connection to FTP server
delete Delete file on FTP server
dir List folder contents on FTP server
mget Download files from FTP server
mkdir Make new folder on FTP server
mput Upload file or folder to FTP server
rename Rename file on FTP server
rmdir Remove folder on FTP server

Examples

Download File and List Contents of Folders

To open a connection to an FTP server, create an FTP object. Use the FTP object to
download a file and list the contents of subfolders on the server. At the end of the FTP
session, close the connection.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

List the contents of the top-level folder.

dir(ftpobj)

DMSP Solid_Earth google12c4c939d7b90761.html mgg
INDEX.txt coastwatch hazards pub
README.txt dmsp4alan index.html tmp
STP ftp.html international wdc
Snow_Ice geomag ionosonde

1 Alphabetical List

1-4418

Download the README.txt file from the FTP server. The mget function downloads a copy
to your current MATLAB® folder.

mget(ftpobj,'README.txt');

Read the contents of your copy of README.txt using the fileread function. Split the
text into lines using the splitlines function and display the first four lines.

readme = fileread('README.txt');
readme = splitlines(readme);
readme(1:4)

ans = 4×1 cell array
 {' Welcome to the ' }
 {' NOAA/National Centers for Environmental Information (NCEI), '}
 {' formerly the National Geophysical Data Center (NGDC)' }
 {' FTP area' }

List the contents of a subfolder using the dir function.

dir(ftpobj,'STP')

ANOMALIES NOAA Solid_Earth publications
DMSP SEIS aavso_22nov16 satellite_data
ECLIPSE SGD aeronomy space-weather
GEOMAGNETIC_DATA SOLAR_DATA cdroms space_environment_modeling
GOIN SPIDR goesr swpc_products
GPS_GNSS STEP ionosonde tivoli
IONOSPHERE SWA log.txt

Change to a subfolder using the cd function. The output from cd is the path to the
current folder on the FTP server, not your current MATLAB folder.

cd(ftpobj,'STP/space-weather')

ans =
'/STP/space-weather'

List the contents of the current folder.

dir(ftpobj)

aurora-airglow documentation interplanetary-data online-publications solar-data

 ftp

1-4419

denig-files geomagnetic-data ionospheric-data satellite-data spacecraft-environments

Close the connection to the FTP server. You also can close the connection by deleting the
FTP object or letting the connection time out.

close(ftpobj)

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Tips
• The FTP object does not support proxy server settings.
• While it is unnecessary to specify the 'System',systemKey name-value pair, the FTP

dir function might return less information if the FTP object is not configured for the
operating system running on the FTP server. In such cases, dir might return a
structure array with some empty fields. In that case, call ftp again and specify the
correct value for systemKey.

Algorithms
The code for the FTP object is based on code from the Apache™ Project.

In particular, the ftp function configures properties for FTP connections as specified by
the Apache FTPClientConfig class. Any settable property of the FTPClientConfig
class can be set using the ftp function with the corresponding name-value pair
argument.

See Also
sendmail | urlread | urlwrite | webread | websave

Topics
“Perform FTP File Operations”

1 Alphabetical List

1-4420

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html
https://commons.apache.org/proper/commons-net/apidocs/org/apache/commons/net/ftp/FTPClientConfig.html

Introduced before R2006a

 ftp

1-4421

full
Convert sparse matrix to full storage

Syntax
A = full(S)

Description
A = full(S) converts sparse matrix S to full storage organization, such that
issparse(A) returns logical 0 (false).

Examples

Convert Sparse Matrix to Full Storage

Change the storage format of a matrix and compare the storage requirements.

Create a random sparse matrix. The display of sparse matrices in MATLAB ® omits all
zeros and shows the location and value of nonzero elements.

rng default %for reproducibility
S = sprand(8,8,0.3)

S =
 (2,1) 0.0344
 (7,1) 0.4456
 (8,1) 0.7547
 (2,2) 0.4387
 (4,3) 0.7655
 (7,3) 0.6463
 (8,4) 0.2760
 (1,6) 0.9502
 (5,6) 0.1869
 (8,6) 0.6797

1 Alphabetical List

1-4422

 (3,7) 0.3816
 (4,7) 0.7952
 (8,7) 0.6551
 (6,8) 0.4898
 (7,8) 0.7094

Convert the matrix to full storage. The MATLAB display of the matrix reflects the new
storage format.

A = full(S)

A = 8×8

 0 0 0 0 0 0.9502 0 0
 0.0344 0.4387 0 0 0 0 0 0
 0 0 0 0 0 0 0.3816 0
 0 0 0.7655 0 0 0 0.7952 0
 0 0 0 0 0 0.1869 0 0
 0 0 0 0 0 0 0 0.4898
 0.4456 0 0.6463 0 0 0 0 0.7094
 0.7547 0 0 0.2760 0 0.6797 0.6551 0

Compare the storage requirements of the two formats:

• A uses storage for 64 doubles (8 bytes each), or 64 ⋅ 8 = 512 bytes.
• S uses storage for 15 nonzero elements, as well as 24 integers describing their

positions, for a total of 39 ⋅ 8 = 312 bytes.

whos

 Name Size Bytes Class Attributes

 A 8x8 512 double
 S 8x8 312 double sparse

Input Arguments
S — Sparse matrix to convert
matrix

 full

1-4423

Sparse matrix to convert, specified as a matrix. If S is already a full matrix, then A is
identical to S.

Tips
• If X is an m-by-n matrix with nz nonzero elements, then full(X) requires space to

store m*n elements. On the other hand, sparse(X) requires space to store nz
elements and (nz+n+1) integers.

The density of a matrix (nnz(X)/numel(X)) determines whether it is more efficient to
store the matrix as sparse or full. The exact crossover point depends on the matrix
class, as well as the platform. For example, in 32-bit MATLAB, a double sparse matrix
with less than about 2/3 density requires less space than the same matrix in full
storage. In 64-bit MATLAB, however, double matrices with fewer than half of their
elements nonzero are more efficient to store as sparse matrices.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

1 Alphabetical List

1-4424

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
issparse | sparse

Topics
“Constructing Sparse Matrices”

Introduced before R2006a

 full

1-4425

fullfile
Build full file name from parts

Syntax
f = fullfile(filepart1,...,filepartN)

Description
f = fullfile(filepart1,...,filepartN) builds a full file specification from the
specified folder and file names. fullfile inserts platform-dependent file separators
where necessary, but does not add a trailing file separator. On Windows platforms, the file
separator character is a backslash (\). On other platforms, the file separator might be a
different character.

fullfile replaces all forward slashes (/) with backslashes (\) on Windows. On UNIX
platforms, the backlash (\) character is a valid character in file names and is not
replaced.

fullfile does not trim leading or trailing separators. fullfile collapses inner
repeated file separators unless they appear at the beginning of the full file specification.
fullfile also collapses relative directories indicated by the dot symbol, unless they
appear at the end of the full file specification. Relative directories indicated by the
double-dot symbol are not collapsed.

Examples

Create a Full File Path on Windows

fullfile returns a character vector containing the full path to the file. On Windows®
platforms, the file separator character is a backslash (\).

f = fullfile('myfolder','mysubfolder','myfile.m')

1 Alphabetical List

1-4426

f =

 'myfolder\mysubfolder\myfile.m'

Create a Full File Path on UNIX

fullfile returns a character vector containing the full path to the file. On UNIX®
platforms, the file separator character is a forward slash (/).

f = fullfile('myfolder','mysubfolder','myfile.m')

f =
'myfolder\mysubfolder\myfile.m'

Create Paths to Multiple Files on Windows

fullfile returns a cell array containing paths to the files myfile1.m and myfile2.m.

f = fullfile('c:\','myfiles','matlab',{'myfile1.m';'myfile2.m'})

f =

 2×1 cell array

 'c:\myfiles\matlab\myfile1.m'
 'c:\myfiles\matlab\myfile2.m'

Collapse File Separators and Dot Symbols on Windows

Create paths to folders using file separators and dot symbols.

fullfile does not trim leading or trailing file separators. filesep returns the platform-
specific file separator character.

f = fullfile('c:\','myfiles','matlab',filesep)

 fullfile

1-4427

f =

c:\myfiles\matlab\

fullfile collapses repeated file separators unless they appear at the beginning of the
full file specification.

f = fullfile('c:\folder1', '\\\folder2\\')

f =

c:\folder1\folder2\

fullfile collapses relative directories indicated by the dot symbol unless they appear at
the end of the full file specification. Relative directories indicated by the double-dot
symbol are not collapsed.

f = fullfile('c:\folder1', '.\folder2', '..\folder3\.')

f =

c:\folder1\folder2\..\folder3\.

Input Arguments
filepart1,...,filepartN — Folder or file names
character vectors | string arrays | cell arrays of character vectors

Folder or file names, specified as character vectors, string arrays, or cell arrays of
character vectors. Any nonscalar cell arrays and nonscalar strings must be of the same
size.
Example: 'folder1'
Example: 'myfile.m, myfile2.m'
Example: {'folder1';'folder2'}

1 Alphabetical List

1-4428

Data Types: char | cell | string

Output Arguments
f — full file specification
character array | string array | cell array of character vectors

Full file specification, returned as a character array, a string array, or a cell array of
character vectors. If any input argument is a string array, f is a string array. Otherwise, if
any input argument is a cell array of character vectors, f is a cell array of character
vectors. Otherwise, f is a character array.
Data Types: char | cell | string

Tips
• To split a full file name into folder parts, use the split function.

See Also
fileparts | filesep | genpath | path | pathsep | split

Introduced before R2006a

 fullfile

1-4429

func2str
Construct character vector from function handle

Syntax
c = func2str(fh)

Description
c = func2str(fh) constructs a character vector, c, that contains the name of the
function associated with the function handle, fh. If fh is associated with an anonymous
function, func2str returns a character vector that represents the anonymous function.

Examples

Convert Function Handle to Character Vector

Create function handles for both the cos function and for an anonymous function, and
then convert them to character vectors.

fh = @cos;
c = func2str(fh)

c =
'cos'

fh = @(x,y)sqrt(x.^2+y.^2);
c = func2str(fh);

disp(['Anonymous function: ' c])

Anonymous function: @(x,y)sqrt(x.^2+y.^2)

1 Alphabetical List

1-4430

Programmatically Display Function Handle Name as Character Vector

Create a function that evaluates a function handle for a single input.

Create the following function in a file, evaluateHandle.m, in your working folder.

function evaluateHandle(fh,x)

y = fh(x);
str = func2str(fh);

disp('For input value: ')
disp(x)
disp(['The function ' str ' evaluates to:'])
disp(y)

end

Use a function handle to evaluate the sin function at pi/2.

fh = @sin;
x = pi/2;
evaluateHandle(fh,x)

For input value:
 1.5708

The function sin evaluates to:
 1

Use a function handle to evaluate for the specified matrix, A.

fh = @(x) x.^2+7;
A = [1 2;0 1];
evaluateHandle(fh,A)

For input value:
 1 2
 0 1

The function @(x)x.^2+7 evaluates to:
 8 11

 func2str

1-4431

 7 8

Input Arguments
fh — Handle to convert to character vector
function handle

Handle to convert to a character vector, specified as a function handle.

Tips
• You lose variables stored in the function handle when you convert it to a character

vector using func2str, and then back to a handle using str2func.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the input argument is associated with an anonymous function, then the generated
code returns the character vector '@(...)...'.

See Also
functions | str2func

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-4432

function
Declare function name, inputs, and outputs

Syntax
function [y1,...,yN] = myfun(x1,...,xM)

Description
function [y1,...,yN] = myfun(x1,...,xM) declares a function named myfun that
accepts inputs x1,...,xM and returns outputs y1,...,yN. This declaration statement
must be the first executable line of the function. Valid function names begin with an
alphabetic character, and can contain letters, numbers, or underscores.

You can save your function:

• In a function file which contains only function definitions. The name of the file should
match the name of the first function in the file.

• In a script file which contains commands and function definitions. Functions must be
at the end of the file. Script files cannot have the same name as a function in the file.
Functions are supported in scripts in R2016b or later.

Files can include multiple local functions or nested functions. For readability, use the end
keyword to indicate the end of each function in a file. The end keyword is required when:

• Any function in the file contains a nested function.
• The function is a local function within a function file, and any local function in the file

uses the end keyword.
• The function is a local function within a script file.

Examples

 function

1-4433

Function with One Output

Define a function in a file named average.m that accepts an input vector, calculates the
average of the values, and returns a single result.

function y = average(x)
if ~isvector(x)
 error('Input must be a vector')
end
y = sum(x)/length(x);
end

Call the function from the command line.

z = 1:99;
average(z)

ans =
 50

Function in a Script File

Define a script in a file named integrationScript.m that computes the value of the
integrand at and computes the area under the curve from 0 to . Include a local
function that defines the integrand, .

Note: Including functions in scripts requires MATLAB® R2016b or later.

% Compute the value of the integrand at 2*pi/3.
x = 2*pi/3;
y = myIntegrand(x)

% Compute the area under the curve from 0 to pi.
xmin = 0;
xmax = pi;
f = @myIntegrand;
a = integral(f,xmin,xmax)

function y = myIntegrand(x)
y = sin(x).^3;
end

1 Alphabetical List

1-4434

y =

 0.6495

a =

 1.3333

Function with Multiple Outputs

Define a function in a file named stat.m that returns the mean and standard deviation of
an input vector.

function [m,s] = stat(x)
n = length(x);
m = sum(x)/n;
s = sqrt(sum((x-m).^2/n));
end

Call the function from the command line.

values = [12.7, 45.4, 98.9, 26.6, 53.1];
[ave,stdev] = stat(values)

ave =
 47.3400
stdev =
 29.4124

Multiple Functions in a Function File

Define two functions in a file named stat2.m, where the first function calls the second.

function [m,s] = stat2(x)
n = length(x);
m = avg(x,n);
s = sqrt(sum((x-m).^2/n));
end

 function

1-4435

function m = avg(x,n)
m = sum(x)/n;
end

Function avg is a local function. Local functions are only available to other functions
within the same file.

Call function stat2 from the command line.

values = [12.7, 45.4, 98.9, 26.6, 53.1];
[ave,stdev] = stat2(values)

ave =
 47.3400
stdev =
 29.4124

See Also
nargin | nargout | pcode | return | varargin | varargout | what | which

Topics
“Create Functions in Files”
“Add Functions to Scripts”
“Local Functions”
“Nested Functions”
“Base and Function Workspaces”
“Function Precedence Order”

Introduced before R2006a

1 Alphabetical List

1-4436

functions
Information about function handle

Syntax
s = functions(fh)

Description
s = functions(fh) returns information about a function handle. This information
includes the function name, type, and file name.

Use the functions function for querying and debugging purposes only.

Note Do not use functions programmatically because its behavior could change in
subsequent MATLAB releases.

Examples

Display Information About Named Function Handle

Create a function handle and display its information.

fh = @cos;
s = functions(fh)

s = struct with fields:
 function: 'cos'
 type: 'simple'
 file: ''

 functions

1-4437

Display Information About Anonymous Function Handle

Create a function handle to an anonymous function. Display its information and values of
required variables.

Create a handle to the function x2 + y, and invoke the function using the handle.

y = 7;
fh = @(x)x.^2+y;
z = fh(2)

z =

 11

Display information about the function handle.

s = functions(fh)

s =

 function: '@(x)x.^2+y'
 type: 'anonymous'
 file: ''
 workspace: {[1x1 struct]}
 within_file_path: '__base_function'

The function handle contains the required value of y.

s.workspace{1}

ans =

 y: 7

Display Information About Nested and Local Function Handle

Create a function that returns handles to local and nested functions. Display their
information.

Create the following function in a file, functionsExample.m, in your working folder.
The function returns handles to a nested and local function.

1 Alphabetical List

1-4438

function [hNest,hLocal] = functionsExample(v)

hNest = @nestFunction;
hLocal = @localFunction;

 function y = nestFunction(x)
 y = x + v;
 end

end

function y = localFunction(z)
y = z + 1;
end

Invoke the function.

[hNest,hLocal] = functionsExample(13)

hNest =

 @functionsExample/nestFunction

hLocal =

 @localFunction

Display information about the handle to the nested function.

s1 = functions(hNest)

s1 =

 function: 'functionsExample/nestFunction'
 type: 'nested'
 file: 'C:\work\functionsExample.m'
 workspace: {[1x1 struct]}

Display information about the handle to the local function.

s2 = functions(hLocal)

s2 =

 function: 'localFunction'

 functions

1-4439

 type: 'scopedfunction'
 file: 'C:\work\functionsExample.m'
 parentage: {'localFunction' 'functionsExample'}

Input Arguments
fh — Handle to query
function handle

Handle to query, specified as a function handle.

Output Arguments
s — Information about function handle
structure

Information about a function handle, returned as a structure. The structure contains the
following fields.

Field Name Field Description
function Function name. If the function associated with the handle is a nested

function, the function name takes the form main_function/
nested_function.

type Function type. For example 'simple', 'nested',
'scopedfunction', or 'anonymous'.

file Full path to the function with the file extension.

• If the function is a local or nested function, then file is the full
path to the main function.

• If the function is built-in MATLAB function or an anonymous
function, then file is an empty character array ('').

• If you load a saved function handle, then file is an empty
character array ('').

The structure has additional fields depending on the type of function associated with the
handle. For example, a local function has a parentage field, and an anonymous function

1 Alphabetical List

1-4440

has a workspace field. Use the information in s for querying and debugging purposes
only.

See Also
func2str | str2func

Topics
“Create Function Handle”
“Compare Function Handles”

Introduced before R2006a

 functions

1-4441

functiontests
Create array of tests from handles to local functions

Syntax
tests = functiontests(f)

Description
tests = functiontests(f) creates an array of tests, tests, from a cell array of
handles to local functions, f. To apply defined setup and teardown functions, include their
function handles in f.

Local test functions must include ‘test’ at the beginning or end of the function name.
functiontests must be called from within a test file.

Examples

Create Test Array

Create the file exampleTest.m in your MATLAB® path. In the main function, create a
test array. Use local functions to define setup, teardown, and two function tests. Your file
should look like this.

function tests = exampleTest
tests = functiontests(localfunctions);

function setup(testCase)
function teardown(testCase)
function exampleOneTest(testCase)
function testExampleTwo(testCase)

From the command line, call the exampleTest function.

1 Alphabetical List

1-4442

tests = exampleTest

tests =

 1x2 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Access the test suite to verify the names of the two function tests.

tests.Name

ans =

 'exampleTest/exampleOneTest'

ans =

 'exampleTest/testExampleTwo'

Input Arguments
f — Handles to local test functions
cell array of function handles

Handles to local test functions, specified as a cell array. Use f=localfunctions in your
working file to automatically generate a cell array of function handles for that file. If you
want explicit test enumeration, construct f by listing individual functions. f must include
any setup or teardown functions necessary for your test.

 functiontests

1-4443

Example: f = localfunctions;
Example: f = {@setup,@exampleOneTest,@teardown};

See Also
localfunctions | matlab.unittest.Test | runtests

Topics
“Write Function-Based Unit Tests”
“Write Simple Test Case Using Functions”
“Write Test Using Setup and Teardown Functions”

Introduced in R2013b

1 Alphabetical List

1-4444

funm
Evaluate general matrix function

Syntax
F = funm(A,fun)
F = funm(A,fun,options)
F = funm(A,fun,options,p1,p2,...)
[F,exitflag] = funm(...)
[F,exitflag,output] = funm(...)

Description
F = funm(A,fun) evaluates the user-defined function fun at the square matrix
argument A. F = fun(x,k) must accept a vector x and an integer k, and return a vector
f of the same size of x, where f(i) is the kth derivative of the function fun evaluated at
x(i). The function represented by fun must have a Taylor series with an infinite radius of
convergence, except for fun = @log, which is treated as a special case.

You can also use funm to evaluate the special functions listed in the following table at the
matrix A.

Function Syntax for Evaluating Function at Matrix A
exp funm(A, @exp)
log funm(A, @log)
sin funm(A, @sin)
cos funm(A, @cos)
sinh funm(A, @sinh)
cosh funm(A, @cosh)

For matrix square roots, use sqrtm(A) instead. For matrix exponentials, which of
expm(A) or funm(A, @exp) is the more accurate depends on the matrix A.

 funm

1-4445

The function represented by fun must have a Taylor series with an infinite radius of
convergence. The exception is @log, which is treated as a special case. “Parameterizing
Functions” explains how to provide additional parameters to the function fun, if
necessary.

F = funm(A,fun,options) sets the algorithm's parameters to the values in the
structure options.

The following table lists the fields of options.

Field Description Values
options.Display Level of display 'off' (default), 'on',

'verbose'
options.TolBlk Tolerance for blocking Schur

form
Positive scalar. The default is
0.1.

options.TolTay Termination tolerance for
evaluating the Taylor series of
diagonal blocks

Positive scalar. The default is
eps.

options.MaxTerms Maximum number of Taylor
series terms

Positive integer. The default is
250.

options.MaxSqrt When computing a logarithm,
maximum number of square
roots computed in inverse
scaling and squaring method.

Positive integer. The default is
100.

options.Ord Specifies the ordering of the
Schur form T.

A vector of length length(A).
options.Ord(i) is the index
of the block into which T(i,i)
is placed. The default is [].

F = funm(A,fun,options,p1,p2,...) passes extra inputs p1,p2,... to the
function.

[F,exitflag] = funm(...) returns a scalar exitflag that describes the exit
condition of funm. exitflag can have the following values:

• 0 — The algorithm was successful.
• 1 — One or more Taylor series evaluations did not converge, or, in the case of a

logarithm, too many square roots are needed. However, the computed value of F might
still be accurate.

1 Alphabetical List

1-4446

[F,exitflag,output] = funm(...) returns a structure output with the following
fields:

Field Description
output.terms Vector for which output.terms(i) is the number of Taylor

series terms used when evaluating the ith block, or, in the case
of the logarithm, the number of square roots of matrices of
dimension greater than 2.

output.ind Cell array for which the (i,j) block of the reordered Schur
factor T is T(output.ind{i}, output.ind{j}).

output.ord Ordering of the Schur form, as passed to ordschur
output.T Reordered Schur form

If the Schur form is diagonal then output = struct('terms',ones(n,1),'ind',
{1:n}).

Examples

Example 1
The following command computes the matrix sine of the 3-by-3 magic matrix.

F=funm(magic(3), @sin)

F =

 -0.3850 1.0191 0.0162
 0.6179 0.2168 -0.1844
 0.4173 -0.5856 0.8185

Example 2
The statements

S = funm(X,@sin);
C = funm(X,@cos);

produce the same results to within roundoff error as

 funm

1-4447

E = expm(i*X);
C = real(E);
S = imag(E);

In either case, the results satisfy S*S+C*C = I, where I = eye(size(X)).

Example 3
To compute the function exp(x) + cos(x) at A with one call to funm, use

F = funm(A,@fun_expcos)

where fun_expcos is the following function.

function f = fun_expcos(x, k)
% Return kth derivative of exp + cos at X.
 g = mod(ceil(k/2),2);
 if mod(k,2)
 f = exp(x) + sin(x)*(-1)^g;
 else
 f = exp(x) + cos(x)*(-1)^g;
 end

Algorithms
The algorithm funm uses is described in [1].

References
[1] Davies, P. I. and N. J. Higham, “A Schur-Parlett algorithm for computing matrix

functions,” SIAM J. Matrix Anal. Appl., Vol. 25, Number 2, pp. 464-485, 2003.

[2] Golub, G. H. and C. F. Van Loan, Matrix Computation, Third Edition, Johns Hopkins
University Press, 1996, p. 384.

[3] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the Exponential
of a Matrix, Twenty-Five Years Later” SIAM Review 20, Vol. 45, Number 1, pp.
1-47, 2003.

1 Alphabetical List

1-4448

See Also
expm | logm | sqrtm

Topics
“Create Function Handle”

Introduced before R2006a

 funm

1-4449

fwrite
Write data to binary file

Syntax
fwrite(fileID,A)
fwrite(fileID,A,precision)
fwrite(fileID,A,precision,skip)
fwrite(fileID,A,precision,skip,machinefmt)

count = fwrite(___)

Description
fwrite(fileID,A) write the elements of array A as 8-bit unsigned integers to a binary
file in column order. The binary file is indicated by the file identifier, fileID. Use fopen
to open the file and obtain the fileID value. When you finish reading, close the file by
calling fclose(fileID).

fwrite(fileID,A,precision) writes the values in A in the form and size described by
precision.

fwrite(fileID,A,precision,skip) skips the number of bytes or bits specified by
skip before writing each value.

fwrite(fileID,A,precision,skip,machinefmt) additionally specifies the order for
writing bytes or bits to the file. The skip argument is optional.

count = fwrite(___) returns the number of elements of A that fwrite successfully
writes to the file. You can use this syntax with any of the input arguments of the previous
syntaxes.

Examples

1 Alphabetical List

1-4450

Write uint8 Data to Binary File

Open a file named nine.bin for writing. Specify write access using 'w' in the call to
fopen.

fileID = fopen('nine.bin','w');

fopen returns a file identifier, fileID.

Write the integers from 1 to 9 as 8-bit unsigned integers.

fwrite(fileID,[1:9]);

Close the file.

fclose(fileID);

Write 4-byte Integers to Binary File

Open a file named magic5.bin for writing.

fileID = fopen('magic5.bin','w');

Write the 25 elements of the 5-by-5 magic square. Use the precision argument,
'integer*4', to write 4-byte integers.

fwrite(fileID,magic(5),'integer*4');

Close the file.

fclose(fileID);

Append Data to Binary File

Write a binary file containing the elements of the 4-by-4 magic square, stored as double-
precision floating-point numbers.

fileID = fopen('magic4.bin','w');
fwrite(fileID,magic(4),'double');
fclose(fileID);

 fwrite

1-4451

Open the file, magic4.bin, with write-access that enables appending to the file. Specify
the file-access type, 'a', in the call to fopen.

fileID = fopen('magic4.bin','a');

Append a 4-by-4 matrix of zeros to the file. Then, close the file.

fwrite(fileID,zeros(4),'double');
fclose(fileID);

Write Binary File with Big-Endian Byte Ordering

Write random double-precision numbers to a file named myfile.bin for use on a big-
endian system. Specify a machinefmt value of 'ieee-be' in the call to fwrite, to
indicate big-endian byte ordering.

fileID = fopen('myfile.bin','w');
fwrite(fileID,rand(4),'double','ieee-be');
fclose(fileID);

Input Arguments
fileID — File identifier
integer | 1 | 2

File identifier, specified as an integer obtained from fopen, 1 for standard output (the
screen), or 2 for standard error.

A — Data to write
numeric array | character array | string array

Data to write, specified as a numeric, character, or string array.
Example: [1,2,3;4,5,6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string
Complex Number Support: Yes

1 Alphabetical List

1-4452

precision — Class and size of values to write
'uint8' (default) | character vector | string scalar

Class and size in bits of the values to write, specified as one of the character vectors or
string scalars listed in the Precision column.

Value Type Precision Bits (Bytes)
Integers, unsigned 'uint' 32 (4)

'uint8' 8 (1)
'uint16' 16 (2)
'uint32' 32 (4)
'uint64' 64 (8)
'uchar' 8 (1)
'unsigned char' 8 (1)
'ushort' 16 (2)
'ulong' 32 (4)
'ubitn' 1 ≤ n ≤ 64

Integers, signed 'int' 32 (4)
'int8' 8 (1)
'int16' 16 (2)
'int32' 32 (4)
'int64' 64 (8)
'integer*1' 8 (1)
'integer*2' 16 (2)
'integer*4' 32 (4)
'integer*8' 64 (8)
'schar' 8 (1)
'signed char' 8 (1)
'short' 16 (2)
'long' 32 (4)
'bitn' 1 ≤ n ≤ 64

 fwrite

1-4453

Value Type Precision Bits (Bytes)
Floating-point numbers 'single' 32 (4)

'double' 64 (8)
'float' 32 (4)
'float32' 32 (4)
'float64' 64 (8)
'real*4' 32 (4)
'real*8' 64 (8)

Characters 'char*1' 8 (1)
'char' Depends on the encoding

scheme associated with the
file. Set encoding with
fopen.

If you specify a precision of bitn or ubitn, then fwrite saturates for all values outside
the range.

Note To preserve NaN and Inf values in MATLAB, read and write data of class double
or single.

skip — Number of bytes to skip
0 (default) | scalar

Number of bytes to skip before writing each value, specified as a scalar. If you specify a
precision of bitn or ubitn, specify skip in bits.

Use the skip argument to insert data into noncontiguous fields in fixed-length records.

machinefmt — Order for writing bytes
'n' (default) | 'b' | 'l' | 's' | 'a'

Order for writing bytes within the file, specified as one of the character vectors or string
scalars in the table that follows. For bitn and ubitn precisions, machinefmt specifies
the order for writing bits within a byte, but the order for writing bytes remains your
system byte ordering.

1 Alphabetical List

1-4454

'n' or 'native' Your system byte ordering (default)
'b' or 'ieee-be' Big-endian ordering
'l' or 'ieee-le' Little-endian ordering
's' or 'ieee-be.l64' Big-endian ordering, 64-bit long data type
'a' or 'ieee-le.l64' Little-endian ordering, 64-bit long data type

By default, all currently supported platforms use little-endian ordering for new files.
Existing binary files can use either big-endian or little-endian ordering.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The precision argument must be a constant.
• Does not support precision types 'long', 'ulong', 'unsigned long', 'bitn', and

'ubitn'.
• Does not support the machine format (order for writing bytes) input argument.
• If the precision is a C type such as int, the target and production sizes for that type

must:

• Match.
• Map directly to a MATLAB integer type.

• Treats a char type as a signed 8-bit integer. Use values from 0 through 127 only.
• When appending to a file and using a skip argument, it must be possible for the C run-

time fseek to seek beyond the end of the file and initialize unwritten bytes to 0. This
behavior matches the behavior of POSIX and Windows.

See Also
fclose | ferror | fopen | fprintf | fread | fscanf | fseek | ftell

 fwrite

1-4455

Topics
“Export Binary Data with Low-Level I/O”

Introduced before R2006a

1 Alphabetical List

1-4456

fwrite (serial)
Write binary data to device

Syntax
fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,'mode')
fwrite(obj,A,'precision','mode')

Description
fwrite(obj,A) writes the binary data A to the device connected to the serial port
object, obj.

fwrite(obj,A,'precision') writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the interpretation of
those bits as integer, floating-point, or character values. If precision is not specified,
uchar (an 8-bit unsigned character) is used. The supported values for precision are
listed in Tips on page 1-4457.

fwrite(obj,A,'mode') writes binary data with command-line access specified by
mode. If mode is sync, A is written synchronously and the command line is blocked. If
mode is async, A is written asynchronously and the command line is not blocked. If mode
is not specified, the write operation is synchronous.

fwrite(obj,A,'precision','mode') writes binary data with precision specified by
precision and command-line access specified by mode.

Tips
Before you can write data to the device, it must be connected to obj with the fopen
function. A connected serial port object has a Status property value of open. An error is

 fwrite (serial)

1-4457

returned if you attempt to perform a write operation while obj is not connected to the
device.

The ValuesSent property value is increased by the number of values written each time
fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You can specify
the size of the output buffer with the OutputBufferSize property.

If you set the FlowControl property to hardware on a serial object, and a hardware
connection is not detected, fwrite returns an error message. This occurs if a device is
not connected, or a connected device is not asserting that is ready to receive data. Check
the remote device status and flow control settings to see if hardware flow control is
causing errors in MATLAB.

Note If you want to check to see if the device is asserting that it is ready to receive data,
set the FlowControl to none. Once you connect to the device, check the PinStatus
structure for ClearToSend. If ClearToSend is off, there is a problem on the remote
device side. If ClearToSend is on, there is a hardware FlowControl device prepared to
receive data and you can execute fwrite.

Synchronous Versus Asynchronous Write Operations
By default, data is written to the device synchronously and the command line is blocked
until the operation completes. You can perform an asynchronous write by configuring the
mode input argument to be async. For asynchronous writes:

• The BytesToOutput property value is continuously updated to reflect the number of
bytes in the output buffer.

• The callback function specified for the OutputEmptyFcn property is executed when
the output buffer is empty.

You can determine whether an asynchronous write operation is in progress with the
TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail in “Write
and Read Data”.

1 Alphabetical List

1-4458

Rules for Completing a Write Operation with fwrite
A binary write operation using fwrite completes when:

• The specified data is written.
• The time specified by the Timeout property passes.

Note The Terminator property is not used with binary write operations.

Supported Precisions
The following table shows the supported values for precision.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character

schar 8-bit signed character
char 8-bit signed or unsigned character

Integer int8 8-bit integer
int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point
float32 32-bit floating point

 fwrite (serial)

1-4459

Data Type Precision Interpretation
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

See Also
BytesToOutput | OutputBufferSize | OutputEmptyFcn | Status | Timeout | TransferStatus |
ValuesSent | fopen | fprintf

Introduced before R2006a

1 Alphabetical List

1-4460

fzero
Root of nonlinear function

Syntax
x = fzero(fun,x0)
x = fzero(fun,x0,options)

x = fzero(problem)

[x,fval,exitflag,output] = fzero(___)

Description
x = fzero(fun,x0) tries to find a point x where fun(x) = 0. This solution is where
fun(x) changes sign—fzero cannot find a root of a function such as x^2.

x = fzero(fun,x0,options) uses options to modify the solution process.

x = fzero(problem) solves a root-finding problem specified by problem.

[x,fval,exitflag,output] = fzero(___) returns fun(x) in the fval output,
exitflag encoding the reason fzero stopped, and an output structure containing
information on the solution process.

Examples

Root Starting From One Point

Calculate π by finding the zero of the sine function near 3.

fun = @sin; % function
x0 = 3; % initial point
x = fzero(fun,x0)

 fzero

1-4461

x = 3.1416

Root Starting From an Interval

Find the zero of cosine between 1 and 2.

fun = @cos; % function
x0 = [1 2]; % initial interval
x = fzero(fun,x0)

x = 1.5708

Note that cos(1) and cos(2) differ in sign.

Root of a Function Defined by a File

Find a zero of the function f(x) = x3 – 2x – 5.

First, write a file called f.m.

function y = f(x)
y = x.^3 - 2*x - 5;

Save f.m on your MATLAB path.

Find the zero of f(x) near 2.

fun = @f; % function
x0 = 2; % initial point
z = fzero(fun,x0)

z =
 2.0946

Since f(x) is a polynomial, you can find the same real zero, and a complex conjugate pair
of zeros, using the roots command.

roots([1 0 -2 -5])

 ans =
 2.0946

1 Alphabetical List

1-4462

 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

Root of Function with Extra Parameter

Find the root of a function that has an extra parameter.

myfun = @(x,c) cos(c*x); % parameterized function
c = 2; % parameter
fun = @(x) myfun(x,c); % function of x alone
x = fzero(fun,0.1)

x = 0.7854

Nondefault Options

Plot the solution process by setting some plot functions.

Define the function and initial point.

fun = @(x)sin(cosh(x));
x0 = 1;

Examine the solution process by setting options that include plot functions.

options = optimset('PlotFcns',{@optimplotx,@optimplotfval});

Run fzero including options.

x = fzero(fun,x0,options)

 fzero

1-4463

x = 1.8115

Solve Problem Structure

Solve a problem that is defined by a problem structure.

Define a structure that encodes a root-finding problem.

problem.objective = @(x)sin(cosh(x));
problem.x0 = 1;
problem.solver = 'fzero'; % a required part of the structure
problem.options = optimset(@fzero); % default options

1 Alphabetical List

1-4464

Solve the problem.

x = fzero(problem)

x = 1.8115

More Information from Solution

Find the point where exp(-exp(-x)) = x, and display information about the solution
process.

fun = @(x) exp(-exp(-x)) - x; % function
x0 = [0 1]; % initial interval
options = optimset('Display','iter'); % show iterations
[x fval exitflag output] = fzero(fun,x0,options)

 Func-count x f(x) Procedure
 2 1 -0.307799 initial
 3 0.544459 0.0153522 interpolation
 4 0.566101 0.00070708 interpolation
 5 0.567143 -1.40255e-08 interpolation
 6 0.567143 1.50013e-12 interpolation
 7 0.567143 0 interpolation

Zero found in the interval [0, 1]

x = 0.5671

fval = 0

exitflag = 1

output = struct with fields:
 intervaliterations: 0
 iterations: 5
 funcCount: 7
 algorithm: 'bisection, interpolation'
 message: 'Zero found in the interval [0, 1]'

fval = 0 means fun(x) = 0, as desired.

 fzero

1-4465

Input Arguments
fun — Function to solve
function handle | function name

Function to solve, specified as a handle to a scalar-valued function or the name of such a
function. fun accepts a scalar x and returns a scalar fun(x).

fzero solves fun(x) = 0. To solve an equation fun(x) = c(x), instead solve
fun2(x) = fun(x) - c(x) = 0.

To include extra parameters in your function, see the example “Root of Function with
Extra Parameter” on page 1-4463 and the section “Parameterizing Functions”.
Example: 'sin'
Example: @myFunction
Example: @(x)(x-a)^5 - 3*x + a - 1
Data Types: char | function_handle | string

x0 — Initial value
scalar | 2-element vector

Initial value, specified as a real scalar or a 2-element real vector.

• Scalar — fzero begins at x0 and tries to locate a point x1 where fun(x1) has the
opposite sign of fun(x0). Then fzero iteratively shrinks the interval where fun
changes sign to reach a solution.

• 2-element vector — fzero checks that fun(x0(1)) and fun(x0(2)) have opposite
signs, and errors if they do not. It then iteratively shrinks the interval where fun
changes sign to reach a solution. An interval x0 must be finite; it cannot contain ±Inf.

Tip Calling fzero with an interval (x0 with two elements) is often faster than calling it
with a scalar x0.

Example: 3
Example: [2,17]
Data Types: double

1 Alphabetical List

1-4466

options — Options for solution process
structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options
structure using optimset. fzero uses these options structure fields.

Display Level of display:

• 'off' displays no output.
• 'iter' displays output at each iteration.
• 'final' displays just the final output.
• 'notify' (default) displays output only if the function does not

converge.
FunValCheck Check whether objective function values are valid.

• 'on' displays an error when the objective function returns a
value that is complex, Inf, or NaN.

• The default, 'off', displays no error.
OutputFcn Specify one or more user-defined functions that an optimization

function calls at each iteration, either as a function handle or as a
cell array of function handles. The default is none ([]). See “Output
Functions”.

PlotFcns Plot various measures of progress while the algorithm executes.
Select from predefined plots or write your own. Pass a function
handle or a cell array of function handles. The default is none ([]).

• @optimplotx plots the current point.
• @optimplotfval plots the function value.

For information on writing a custom plot function, see “Plot
Functions”.

TolX Termination tolerance on x, a positive scalar. The default is eps,
2.2204e–16.

Example: options = optimset('FunValCheck','on')
Data Types: struct

 fzero

1-4467

problem — Root-finding problem
structure

Root-finding problem, specified as a structure with all of the following fields.

objective Objective function
x0 Initial point for x, real scalar or 2-element vector
solver 'fzero'
options Options structure, typically created using optimset

For an example, see “Solve Problem Structure” on page 1-4464.
Data Types: struct

Output Arguments
x — Location of root or sign change
real scalar

Location of root or sign change, returned as a scalar.

fval — Function value at x
real scalar

Function value at x, returned as a scalar.

exitflag — Integer encoding the exit condition
integer

Integer encoding the exit condition, meaning the reason fzero stopped its iterations.

1 Function converged to a solution x.
-1 Algorithm was terminated by the output function or plot function.
-3 NaN or Inf function value was encountered while searching for an

interval containing a sign change.
-4 Complex function value was encountered while searching for an interval

containing a sign change.

1 Alphabetical List

1-4468

-5 Algorithm might have converged to a singular point.
-6 fzero did not detect a sign change.

output — Information about root-finding process
structure

Information about root-finding process, returned as a structure. The fields of the
structure are:

intervaliteration
s

Number of iterations taken to find an interval containing a root

iterations Number of zero-finding iterations
funcCount Number of function evaluations
algorithm 'bisection, interpolation'
message Exit message

Algorithms
The fzero command is a function file. The algorithm, created by T. Dekker, uses a
combination of bisection, secant, and inverse quadratic interpolation methods. An Algol
60 version, with some improvements, is given in [1]. A Fortran version, upon which fzero
is based, is in [2].

References
[1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, 1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, 1976.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 fzero

1-4469

For C/C++ code generation:

• The fun input argument must be a function handle, and not a structure or character
vector.

• fzero ignores all options except for TolX and FunValCheck.
• fzero does not support the fourth output argument, the output structure.

See Also
fminbnd | optimset | roots

Topics
“Roots of Scalar Functions”
“Parameterizing Functions”

Introduced before R2006a

1 Alphabetical List

1-4470

matlab.unittest.FunctionTestCase class
Package: matlab.unittest
Superclasses:

TestCase used for function-based tests

Description
The FunctionTestCase class is a subclass of TestCase that allows function-based tests
to use qualification functions in the matlab.unittest.qualifications package. For
each test function, MATLAB creates an instance of the FunctionTestCase class and
passes it to the test function.

The functiontests function constructs FunctionTestCase instances, so there is no
need for test authors to construct this class directly.

See Also
functiontests | matlab.unittest.TestCase | runtests

Introduced in R2013b

 matlab.unittest.FunctionTestCase class

1-4471

gallery
Test matrices

Syntax
[A,B,C,...] = gallery(matname,P1,P2,...)
[A,B,C,...] = gallery(matname,P1,P2,...,classname)
gallery(3)
gallery(5)

Description
[A,B,C,...] = gallery(matname,P1,P2,...) returns the test matrices specified
by matname. The matname input is the name of a matrix family selected from the table
below. P1,P2,... are input parameters required by the individual matrix family. The
number of optional parameters P1,P2,... used in the calling syntax varies from matrix
to matrix. The exact calling syntaxes are detailed in the individual matrix descriptions
below.

[A,B,C,...] = gallery(matname,P1,P2,...,classname) produces a matrix of
class classname. The classname input must be either 'single' or 'double' (unless
matname is 'integerdata', in which case 'int8', 'int16', 'int32', 'uint8',
'uint16', and 'uint32' are also allowed). If classname is not specified, then the class
of the matrix is determined from those arguments among P1,P2,... that do not specify
dimensions or select an option. If any of these arguments is of class single then the
matrix is single; otherwise the matrix is double.

gallery(3) is a badly conditioned 3-by-3 matrix and gallery(5) is an interesting
eigenvalue problem.

The gallery holds over fifty different test matrix functions useful for testing algorithms
and other purposes.

1 Alphabetical List

1-4472

binomial — Multiple of involutory matrix
A = gallery('binomial',n) returns an n-by-n matrix,with integer entries such that
A^2 = 2^(n-1)*eye(n).

Thus, B = A*2^((1-n)/2) is involutory, that is, B^2 = eye(n).

cauchy — Cauchy matrix
C = gallery('cauchy',x,y) returns an n-by-n matrix, C(i,j) = 1/(x(i)+y(j)).
Arguments x and y are vectors of length n. If you pass in scalars for x and y, they are
interpreted as vectors 1:x and 1:y.

C = gallery('cauchy',x) returns the same as above with y = x. That is, the
command returns C(i,j) = 1/(x(i)+x(j)).

Explicit formulas are known for the inverse and determinant of a Cauchy matrix. The
determinant det(C) is nonzero if x and y both have distinct elements. C is totally positive
if 0 < x(1) <... < x(n) and 0 < y(1) < ... < y(n).

chebspec — Chebyshev spectral differentiation matrix
C = gallery('chebspec',n,switch) returns a Chebyshev spectral differentiation
matrix of order n. Argument switch is a variable that determines the character of the
output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (C^n = 0) and has the null
vector ones(n,1). The matrix C is similar to a Jordan block of size n with eigenvalue
zero.

For switch = 1, C is nonsingular and well-conditioned, and its eigenvalues have negative
real parts.

The eigenvector matrix of the Chebyshev spectral differentiation matrix is ill-conditioned.

 gallery

1-4473

chebvand — Vandermonde-like matrix for the Chebyshev
polynomials
C = gallery('chebvand',p) produces the (primal) Chebyshev Vandermonde matrix
based on the vector of points p, which define where the Chebyshev polynomial is
calculated.

C = gallery('chebvand',m,p) where m is scalar, produces a rectangular version of
the above, with m rows.

If p is a vector, then C(i,j) = Ti – 1(p(j)) where Ti – 1 is the Chebyshev polynomial of degree i
– 1. If p is a scalar, then p equally spaced points on the interval [0,1] are used to
calculate C.

chow — Singular Toeplitz lower Hessenberg matrix
A = gallery('chow',n,alpha,delta) returns A such that A = H(alpha) +
delta*eye(n), where Hi,j(α) = α(i – j + 1) and argument n is the order of the Chow matrix.
Default value for scalars alpha and delta are 1 and 0, respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The rest of the
eigenvalues are equal to 4*alpha*cos(k*pi/(n+2))^2, k=1:n-p.

circul — Circulant matrix
C = gallery('circul',v) returns the circulant matrix whose first row is the vector v.

A circulant matrix has the property that each row is obtained from the previous one by
cyclically permuting the entries one step forward. It is a special Toeplitz matrix in which
the diagonals “wrap around.”

If v is a scalar, then C = gallery('circul',1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root of unity, then the
inner product of v and w = [1 t t2 ... t(n – 1)] is an eigenvalue of C and w(n:-1:1) is an
eigenvector.

clement — Tridiagonal matrix with zero diagonal entries
A = gallery('clement',n,k) returns an n-by-n tridiagonal matrix with zeros on its
main diagonal and known eigenvalues. It is singular if n is odd. About 64 percent of the

1 Alphabetical List

1-4474

entries of the inverse are zero. The eigenvalues include plus and minus the numbers n-1,
n-3, n-5, ..., (1 or 0).

For k=0 (the default), A is nonsymmetric. For k=1, A is symmetric.

gallery('clement',n,1) is diagonally similar to gallery('clement',n).

For odd N = 2*M+1, M+1 of the singular values are the integers sqrt((2*M+1)^2 -
(2*K+1).^2) for K = 0:M.

Note Similar properties hold for gallery('tridiag',x,y,z) where y =
zeros(n,1). The eigenvalues still come in plus/minus pairs but they are not known
explicitly.

compar — Comparison matrices
A = gallery('compar',A,1) returns A with each diagonal element replaced by its
absolute value, and each off-diagonal element replaced by minus the absolute value of the
largest element in absolute value in its row. However, if A is triangular compar(A,1) is
too.

gallery('compar',A) is diag(B) - tril(B,-1) - triu(B,1), where B =
abs(A). compar(A) is often denoted by M(A) in the literature.

gallery('compar',A,0) is the same as gallery('compar',A).

condex — Counter-examples to matrix condition number
estimators
A = gallery('condex',n,k,theta) returns a “counter-example” matrix to a
condition estimator. It has order n and scalar parameter theta (default 100).

The matrix, its natural size, and the estimator to which it applies are specified by k:

k = 1 4-by-4 LINPACK
k = 2 3-by-3 LINPACK
k = 3 arbitrary LINPACK (rcond) (independent of theta)

 gallery

1-4475

k = 4 n >= 4 LAPACK (RCOND) (default). It is the inverse of this
matrix that is a counter-example.

If n is not equal to the natural size of the matrix, then the matrix is padded out with an
identity matrix to order n.

cycol — Matrix whose columns repeat cyclically
A = gallery('cycol',[m n],k) returns an m-by-n matrix with cyclically repeating
columns, where one “cycle” consists of randn(m,k). Thus, the rank of matrix A cannot
exceed k, and k must be a scalar.

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery('cycol',n,k), where n is a scalar, is the same as gallery('cycol',
[n n],k).

dorr — Diagonally dominant, ill-conditioned, tridiagonal
matrix
[c,d,e] = gallery('dorr',n,theta) returns the vectors defining an n-by-n, row
diagonally dominant, tridiagonal matrix that is ill-conditioned for small nonnegative
values of theta. The default value of theta is 0.01. The Dorr matrix itself is the same as
gallery('tridiag',c,d,e).

A = gallery('dorr',n,theta) returns the matrix itself, rather than the defining
vectors.

dramadah — Matrix of zeros and ones whose inverse has large
integer entries
A = gallery('dramadah',n,k) returns an n-by-n matrix of 0's and 1's for which
mu(A) = norm(inv(A),'fro') is relatively large, although not necessarily maximal.
An anti-Hadamard matrix A is a matrix with elements 0 or 1 for which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of the output matrix:

1 Alphabetical List

1-4476

k = 1 Default. A is Toeplitz, with abs(det(A)) = 1, and mu(A) >
c(1.75)^n, where c is a constant. The inverse of A has integer entries.

k = 2 A is upper triangular and Toeplitz. The inverse of A has integer entries.
k = 3 A has maximal determinant among lower Hessenberg (0,1) matrices.

det(A) = the nth Fibonacci number. A is Toeplitz. The eigenvalues have
an interesting distribution in the complex plane.

fiedler — Symmetric matrix
A = gallery('fiedler',c), where c is a length n vector, returns the n-by-n
symmetric matrix with elements abs(n(i)-n(j)). For scalar c, A =
gallery('fiedler',1:c).

Matrix A has a dominant positive eigenvalue and all the other eigenvalues are negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic Numerical
Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and Academic Press, New
York, 1977, p. 159] and attributed to Fiedler. These indicate that inv(A) is tridiagonal
except for nonzero (1,n) and (n,1) elements.

forsythe — Perturbed Jordan block
A = gallery('forsythe',n,alpha,lambda) returns the n-by-n matrix equal to the
Jordan block with eigenvalue lambda, excepting that A(n,1) = alpha. The default
values of scalars alpha and lambda are sqrt(eps) and 0, respectively.

The characteristic polynomial of A is given by:

det(A-t*I) = (lambda-t)^N - alpha*(-1)^n.

frank — Matrix with ill-conditioned eigenvalues
F = gallery('frank',n,k) returns the Frank matrix of order n. It is upper
Hessenberg with determinant 1. If k = 1, the elements are reflected about the anti-
diagonal (1,n) — (n,1). The eigenvalues of F may be obtained in terms of the zeros of
the Hermite polynomials. They are positive and occur in reciprocal pairs; thus if n is odd,
1 is an eigenvalue. F has floor(n/2) ill-conditioned eigenvalues — the smaller ones.

 gallery

1-4477

gcdmat — Greatest common divisor matrix
A = gallery('gcdmat',n) returns the n-by-n matrix with (i,j) entry gcd(i,j).
MatrixA is symmetric positive definite, and A.^r is symmetric positive semidefinite for
all nonnegative r.

gearmat — Gear matrix
A = gallery('gearmat',n,i,j) returns the n-by-n matrix with ones on the sub- and
super-diagonals, sign(i) in the (1,abs(i)) position, sign(j) in the (n,n+1-
abs(j)) position, and zeros everywhere else. Arguments i and j default to n and -n,
respectively.

Matrix A is singular, can have double and triple eigenvalues, and can be defective.

All eigenvalues are of the form 2*cos(a) and the eigenvectors are of the form [sin(w
+a), sin(w+2*a), ..., sin(w+n*a)], where a and w are given in Gear, C. W., “A
Simple Set of Test Matrices for Eigenvalue Programs,” Math. Comp., Vol. 23 (1969), pp.
119-125.

grcar — Toeplitz matrix with sensitive eigenvalues
A = gallery('grcar',n,k) returns an n-by-n Toeplitz matrix with -1s on the
subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The default is k = 3. The
eigenvalues are sensitive.

hanowa — Matrix whose eigenvalues lie on a vertical line in
the complex plane
A = gallery('hanowa',n,d) returns an n-by-n block 2-by-2 matrix of the form:

[d*eye(m) -diag(1:m)
diag(1:m) d*eye(m)]

Argument n is an even integer n=2*m. Matrix A has complex eigenvalues of the form d ±
k*i, for 1 <= k <= m. The default value of d is -1.

1 Alphabetical List

1-4478

house — Householder matrix
[v,beta,s] = gallery('house',x,k) takes x, an n-element column vector, and
returns V and beta such that H*x = s*e1. In this expression, e1 is the first column of
eye(n), abs(s) = norm(x), and H = eye(n) - beta*V*V' is a Householder matrix.

k determines the sign of s:

k = 0 sign(s) = -sign(x(1)) (default)
k = 1 sign(s) = sign(x(1))
k = 2 sign(s) = 1 (x must be real)

If x is complex, then sign(x) = x./abs(x) when x is nonzero.

If x = 0, or if x = alpha*e1 (alpha >= 0) and either k = 1 or k = 2, then V = 0,
beta = 1, and s = x(1). In this case, H is the identity matrix, which is not strictly a
Householder matrix.

[v, beta] = gallery('house',x) takes x, a scalar or n-element column vector, and
returns v and beta such that eye(n,n) - beta*v*v' is a Householder matrix. A
Householder matrix H satisfies the relationship

H*x = -sign(x(1))*norm(x)*e1

where e1 is the first column of eye(n,n). Note that if x is complex, then sign(x) =
exp(i*arg(x)) (which equals x./abs(x) when x is nonzero).

If x = 0, then v = 0 and beta = 1.

integerdata — Array of arbitrary data from uniform
distribution on specified range of integers
A = gallery('integerdata',imax,[m,n,...],j) returns an m-by-n-by-... array A
whose values are a sample from the uniform distribution on the integers 1:imax. j must
be an integer value in the interval [0, 2^32-1]. Calling
gallery('integerdata', ...) with different values of J will return different arrays.
Repeated calls to gallery('integerdata',...) with the same imax, size vector and j
inputs will always return the same array.

 gallery

1-4479

In any call to gallery('integerdata', ...) you can substitute individual inputs
m,n,... for the size vector input [m,n,...]. For example, gallery('integerdata',7,
[1,2,3,4],5) is equivalent to gallery('integerdata',7,1,2,3,4,5).

A = gallery('integerdata',[imin imax],[m,n,...],j) returns an m-by-n-by-...
array A whose values are a sample from the uniform distribution on the integers
imin:imax.

[A,B,...] = gallery('integerdata',[imin imax],[m,n,...],j) returns
multiple m-by-n-by-... arrays A, B, ..., containing different values.

A = gallery('integerdata',[imin imax],[m,n,...],j,classname)produces
an array of class classname. classname must be 'uint8', 'uint16', 'uint32',
'int8', 'int16', int32', 'single' or 'double'.

invhess — Inverse of an upper Hessenberg matrix
A = gallery('invhess',x,y), where x is a length n vector and y is a length n-1
vector, returns the matrix whose lower triangle agrees with that of ones(n,1)*x' and
whose strict upper triangle agrees with that of [1 y]*ones(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i, and its inverse is
an upper Hessenberg matrix. Argument y defaults to -x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

invol — Involutory matrix
A = gallery('invol',n) returns an n-by-n involutory (A*A = eye(n)) and ill-
conditioned matrix. It is a diagonally scaled version of hilb(n).

B = (eye(n)-A)/2 and B = (eye(n)+A)/2 are idempotent (B*B = B).

ipjfact — Hankel matrix with factorial elements
[A,d] = gallery('ipjfact',n,k) returns A, an n-by-n Hankel matrix, and d, the
determinant of A, which is known explicitly. If k = 0 (the default), then the elements of A
are A(i,j) = (i+j)!. If k = 1, then the elements of A are A(i,j) = 1/(i+j).

Note that the inverse of A is also known explicitly.

1 Alphabetical List

1-4480

jordbloc — Jordan block
A = gallery('jordbloc',n,lambda) returns the n-by-n Jordan block with
eigenvalue lambda. The default value for lambda is 1.

kahan — Upper trapezoidal matrix
A = gallery('kahan',n,theta,pert) returns an upper trapezoidal matrix that has
interesting properties regarding estimation of condition and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is n-by-n. The useful
range of theta is 0 < theta < pi, with a default value of 1.2.

To ensure that the QR factorization with column pivoting does not interchange columns in
the presence of rounding errors, the diagonal is perturbed by
pert*eps*diag([n:-1:1]). The default pert is 25, which ensures no interchanges for
gallery('kahan',n) up to at least n = 90 in IEEE arithmetic.

kms — Kac-Murdock-Szego Toeplitz matrix
A = gallery('kms',n,rho) returns the n-by-n Kac-Murdock-Szego Toeplitz matrix
such that A(i,j) = rho^(abs(i-j)), for real rho.

For complex rho, the same formula holds except that elements below the diagonal are
conjugated. rho defaults to 0.5.

The KMS matrix A has these properties:

• An LDL' factorization with L = inv(gallery('triw',n,-rho,1))', and D(i,i)
= (1-abs(rho)^2)*eye(n), except D(1,1) = 1.

• Positive definite if and only if 0 < abs(rho) < 1.
• The inverse inv(A) is tridiagonal.

krylov — Krylov matrix
B = gallery('krylov',A,x,j) returns the Krylov matrix

[x, Ax, A^2x, ..., A^(j-1)x]

 gallery

1-4481

where A is an n-by-n matrix and x is a length n vector. The defaults are x = ones(n,1),
and j = n.

B = gallery('krylov',n) is the same as gallery('krylov',randn(n)).

lauchli — Rectangular matrix
A = gallery('lauchli',n,mu) returns the (n+1)-by-n matrix

[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other problems that
indicates the dangers of forming A'*A. Argument mu defaults to sqrt(eps).

lehmer — Symmetric positive definite matrix
A = gallery('lehmer',n) returns the symmetric positive definite n-by-n matrix such
that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

• A is totally nonnegative.
• The inverse inv(A) is tridiagonal and explicitly known.
• The order n <= cond(A) <= 4*n*n.

leslie — Matrix of birth numbers and survival rates
L = gallery('leslie',a,b) is the n-by-n matrix from the Leslie population model
with average birth numbers a(1:n) and survival rates b(1:n-1). It is zero, apart from
the first row (which contains the a(i)) and the first subdiagonal (which contains the
b(i)). For a valid model, the a(i) are nonnegative and the b(i) are positive and
bounded by 1, i.e., 0 < b(i) <= 1.

L = gallery('leslie',n) generates the Leslie matrix with a = ones(n,1), b =
ones(n-1,1).

lesp — Tridiagonal matrix with real, sensitive eigenvalues
A = gallery('lesp',n) returns an n-by-n matrix whose eigenvalues are real and
smoothly distributed in the interval approximately [-2*N-3.5, -4.5].

1 Alphabetical List

1-4482

The sensitivities of the eigenvalues increase exponentially as the eigenvalues grow more
negative. The matrix is similar to the symmetric tridiagonal matrix with the same
diagonal entries and with off-diagonal entries 1, via a similarity transformation with D =
diag(1!,2!,...,n!).

lotkin — Lotkin matrix
A = gallery('lotkin',n) returns the Hilbert matrix with its first row altered to all
ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and has many negative
eigenvalues of small magnitude. Its inverse has integer entries and is known explicitly.

minij — Symmetric positive definite matrix
A = gallery('minij',n) returns the n-by-n symmetric positive definite matrix with
A(i,j) = min(i,j).

The minij matrix has these properties:

• The inverse inv(A) is tridiagonal and equal to -1 times the second difference matrix,
except its (n,n) element is 1.

• Givens' matrix, 2*A-ones(size(A)), has tridiagonal inverse and eigenvalues
0.5*sec((2*r-1)*pi/(4*n))^2, where r=1:n.

• (n+1)*ones(size(A))-A has elements that are max(i,j) and a tridiagonal
inverse.

moler — Symmetric positive definite matrix
A = gallery('moler',n,alpha) returns the symmetric positive definite n-by-n matrix
U'*U, where U = gallery('triw',n,alpha).

For the default alpha = -1, A(i,j) = min(i,j)-2, and A(i,i) = i. One of the
eigenvalues of A is small.

neumann — Singular matrix from the discrete Neumann
problem (sparse)
C = gallery('neumann',n) returns the sparse n-by-n singular, row diagonally
dominant matrix resulting from discretizing the Neumann problem with the usual five-

 gallery

1-4483

point operator on a regular mesh. Argument n is a perfect square integer n = m2 or a two-
element vector. C is sparse and has a one-dimensional null space with null vector
ones(n,1).

normaldata — Array of arbitrary data from standard normal
distribution
A = gallery('normaldata',[m,n,...],j) returns an m-by-n-by-... array A. The
values of A are a random sample from the standard normal distribution. j must be an
integer value in the interval [0, 2^32-1]. Calling gallery('normaldata', ...)
with different values of j will return different arrays. Repeated calls to
gallery('normaldata',...) with the same size vector and j inputs will always
return the same array.

In any call to gallery('normaldata', ...) you can substitute individual inputs m,n,...
for the size vector input [m,n,...]. For example, gallery('normaldata',
[1,2,3,4],5) is equivalent to gallery('normaldata',1,2,3,4,5).

[A,B,...] = gallery('normaldata',[m,n,...],j) returns multiple m-by-n-by-...
arrays A, B, ..., containing different values.

A = gallery('normaldata',[m,n,...],j, classname) produces a matrix of class
classname. classname must be either 'single' or 'double'.

Generate the arbitrary 6-by-4 matrix of data from the standard normal distribution N(0,
1) corresponding to j = 2:.

x = gallery('normaldata', [6, 4], 2);

Generate the arbitrary 1-by-2-by-3 single array of data from the standard normal
distribution N(0, 1) corresponding to j = 17:.

y = gallery('normaldata', 1, 2, 3, 17, 'single');

orthog — Orthogonal and nearly orthogonal matrices
Q = gallery('orthog',n,k) returns the kth type of matrix of order n, where k > 0
selects exactly orthogonal matrices, and k < 0 selects diagonal scalings of orthogonal
matrices. Available types are:

1 Alphabetical List

1-4484

k = 1 Q(i,j) = sqrt(2/(n+1)) * sin(i*j*pi/(n+1))

Symmetric eigenvector matrix for second difference matrix. This is the
default.

k = 2 Q(i,j) = 2/(sqrt(2*n+1)) * sin(2*i*j*pi/(2*n+1))

Symmetric.
k = 3 Q(r,s) = exp(2*pi*i*(r-1)*(s-1)/n) / sqrt(n)

Unitary, the Fourier matrix. Q^4 is the identity. This is essentially the
same matrix as fft(eye(n))/sqrt(n)!

k = 4 Helmert matrix: a permutation of a lower Hessenberg matrix, whose first
row is ones(1:n)/sqrt(n).

k = 5 Q(i,j) = sin(2*pi*(i-1)*(j-1)/n) +
cos(2*pi*(i-1)*(j-1)/n)

Symmetric matrix arising in the Hartley transform.
k = 6 Q(i,j) = sqrt(2/n)*cos((i-1/2)*(j-1/2)*pi/n)

Symmetric matrix arising as a discrete cosine transform.
k = -1 Q(i,j) = cos((i-1)*(j-1)*pi/(n-1))

Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).
k = -2 Q(i,j) = cos((i-1)*(j-1/2)*pi/n)

Chebyshev Vandermonde-like matrix, based on zeros of T(n).

parter — Toeplitz matrix with singular values near pi
C = gallery('parter',n) returns the matrix C such that C(i,j) = 1/(i-j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of C are very close
to pi.

 gallery

1-4485

pei — Pei matrix
A = gallery('pei',n,alpha), where alpha is a scalar, returns the symmetric matrix
alpha*eye(n) + ones(n). The default for alpha is 1. The matrix is singular for alpha
equal to either 0 or -n.

poisson — Block tridiagonal matrix from Poisson's equation
(sparse)
A = gallery('poisson',n) returns the block tridiagonal (sparse) matrix of order n^2
resulting from discretizing Poisson's equation with the 5-point operator on an n-by-n
mesh.

prolate — Symmetric, ill-conditioned Toeplitz matrix
A = gallery('prolate',n,w) returns the n-by-n prolate matrix with parameter w. It
is a symmetric Toeplitz matrix.

If 0 < w < 0.5 then A is positive definite

• The eigenvalues of A are distinct, lie in (0,1), and tend to cluster around 0 and 1.
• The default value of w is 0.25.

randcolu — Random matrix with normalized cols and specified
singular values
A = gallery('randcolu',n) is a random n-by-n matrix with columns of unit 2-norm,
with random singular values whose squares are from a uniform distribution.

A'*A is a correlation matrix of the form produced by gallery('randcorr',n).

gallery('randcolu',x) where x is an n-vector (n > 1), produces a random n-by-n
matrix having singular values given by the vector x. The vector x must have nonnegative
elements whose sum of squares is n.

gallery('randcolu',x,m) where m >= n, produces an m-by-n matrix.

gallery('randcolu',x,m,k) provides a further option:

1 Alphabetical List

1-4486

k = 0 diag(x) is initially subjected to a random two-sided orthogonal
transformation, and then a sequence of Givens rotations is applied
(default).

k = 1 The initial transformation is omitted. This is much faster, but the
resulting matrix may have zero entries.

For more information, see [4].

randcorr — Random correlation matrix with specified
eigenvalues
gallery('randcorr',n) is a random n-by-n correlation matrix with random
eigenvalues from a uniform distribution. A correlation matrix is a symmetric positive
semidefinite matrix with 1s on the diagonal (see corrcoef).

gallery('randcorr',x) produces a random correlation matrix having eigenvalues
given by the vector x, where length(x) > 1. The vector x must have nonnegative
elements summing to length(x).

gallery('randcorr',x,k) provides a further option:

k = 0 The diagonal matrix of eigenvalues is initially subjected to a random
orthogonal similarity transformation, and then a sequence of Givens
rotations is applied (default).

k = 1 The initial transformation is omitted. This is much faster, but the
resulting matrix may have some zero entries.

For more information, see [3] and [4].

randhess — Random, orthogonal upper Hessenberg matrix
H = gallery('randhess',n) returns an n-by-n real, random, orthogonal upper
Hessenberg matrix.

H = gallery('randhess',x) if x is an arbitrary, real, length n vector with n > 1,
constructs H nonrandomly using the elements of x as parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

 gallery

1-4487

randjorth — Random J-orthogonal matrix
A = gallery('randjorth', n), for a positive integer n, produces a random n-by-n J-
orthogonal matrix A, where

• J = blkdiag(eye(ceil(n/2)),-eye(floor(n/2)))
• cond(A) = sqrt(1/eps)

J-orthogonality means that A'*J*A = J. Such matrices are sometimes called hyperbolic.

A = gallery('randjorth', n, m), for positive integers n and m, produces a random
(n+m)-by-(n+m) J-orthogonal matrix A, where

• J = blkdiag(eye(n),-eye(m))
• cond(A) = sqrt(1/eps)

A = gallery('randjorth',n,m,c,symm,method)

uses the following optional input arguments:

• c — Specifies cond(A) to be the scalar c.
• symm — Enforces symmetry if the scalar symm is nonzero.
• method — calls qr to perform the underlying orthogonal transformations if the scalar

method is nonzero. A call to qr is much faster than the default method for large
dimensions

rando — Random matrix composed of elements -1, 0 or 1
A = gallery('rando',n,k) returns a random n-by-n matrix with elements from one
of the following discrete distributions:

k = 1 A(i,j) = 0 or 1 with equal probability (default).
k = 2 A(i,j) = -1 or 1 with equal probability.
k = 3 A(i,j) = -1, 0 or 1 with equal probability.

Argument n may be a two-element vector, in which case the matrix is n(1)-by-n(2).

1 Alphabetical List

1-4488

randsvd — Random matrix with preassigned singular values
A = gallery('randsvd',n,kappa,mode,kl,ku) returns a banded (multidiagonal)
random matrix of order n with cond(A) = kappa and singular values from the
distribution mode. If n is a two-element vector, A is n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper off-diagonals, respectively,
in A. If they are omitted, a full matrix is produced. If only kl is present, ku defaults to kl.

Distribution mode can be:

1 One large singular value.
2 One small singular value.
3 Geometrically distributed singular values (default).
4 Arithmetically distributed singular values.
5 Random singular values with uniformly distributed logarithm.
< 0 If mode is -1, -2, -3, -4, or -5, then randsvd treats mode as abs(mode),

except that in the original matrix of singular values the order of the diagonal
entries is reversed: small to large instead of large to small.

Condition number kappa defaults to sqrt(1/eps). In the special case where kappa <
0, A is a random, full, symmetric, positive definite matrix with cond(A) = -kappa and
eigenvalues distributed according to mode. Arguments kl and ku, if present, are ignored.

A = gallery('randsvd',n,kappa,mode,kl,ku,method) specifies how the
computations are carried out. method = 0 is the default, while method = 1 uses an
alternative method that is much faster for large dimensions, even though it uses more
flops.

redheff — Redheffer's matrix of 1s and 0s
A = gallery('redheff',n) returns an n-by-n matrix of 0's and 1's defined by A(i,j)
= 1, if j = 1 or if i divides j, and A(i,j) = 0 otherwise.

The Redheffer matrix has these properties:

• (n-floor(log2(n)))-1 eigenvalues equal to 1
• A real eigenvalue (the spectral radius) approximately sqrt(n)

 gallery

1-4489

• A negative eigenvalue approximately -sqrt(n)
• The remaining eigenvalues are provably “small.”
• The Riemann hypothesis is true if and only if det(A) = O(n1/2 + ε) for every ε > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside the unit circle
abs(Z) = 1,” and a proof of this conjecture, together with a proof that some eigenvalue
tends to zero as n tends to infinity, would yield a new proof of the prime number theorem.

riemann — Matrix associated with the Riemann hypothesis
A = gallery('riemann',n) returns an n-by-n matrix for which the Riemann
hypothesis is true if and only if

det(A) = O(n!n−1/2 + ε)

for every ε > 0.

The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)

where B(i,j) = i-1 if i divides j, and B(i,j) = -1 otherwise.

The Riemann matrix has these properties:

• Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, where m = n+1.
• i <= e(i) <= i+1 with at most m-sqrt(m) exceptions.
• All integers in the interval (m/3, m/2] are eigenvalues.

ris — Symmetric Hankel matrix
A = gallery('ris',n) returns a symmetric n-by-n Hankel matrix with elements

A(i,j) = 0.5/(n-i-j+1.5)

The eigenvalues of A cluster around π/2 and –π/2. This matrix was invented by F.N. Ris.

1 Alphabetical List

1-4490

sampling — Nonsymmetric matrix with ill-conditioned integer
eigenvalues.
A = gallery('sampling',x), where x is an n-vector, is the n-by-n matrix with
A(i,j) = X(i)/(X(i)-X(j)) for i ~= j and A(j,j) the sum of the off-diagonal
elements in column j. A has eigenvalues 0:n-1. For the eigenvalues 0 and n–1,
corresponding eigenvectors are X and ones(n,1), respectively.

The eigenvalues are ill-conditioned. A has the property that A(i,j) + A(j,i) = 1 for
i ~= j.

Explicit formulas are available for the left eigenvectors of A. For scalar n,
gallery('sampling',n) is the same as gallery('sampling',1:n). A special case
of this matrix arises in sampling theory.

smoke — Complex matrix with a 'smoke ring' pseudospectrum
A = gallery('smoke',n) returns an n-by-n matrix with 1's on the superdiagonal, 1 in
the (n,1) position, and powers of roots of unity along the diagonal.

A = gallery('smoke',n,1) returns the same except that element A(n,1) is zero.

The eigenvalues of gallery('smoke',n,1) are the nth roots of unity; those of
gallery('smoke',n) are the nth roots of unity times 2^(1/n).

toeppd — Symmetric positive definite Toeplitz matrix
A = gallery('toeppd',n,m,w,theta) returns an n-by-n symmetric, positive semi-
definite (SPD) Toeplitz matrix composed of the sum of m rank 2 (or, for certain theta,
rank 1) SPD Toeplitz matrices. Specifically,

T = w(1)*T(theta(1)) + ... + w(m)*T(theta(m))

where T(theta(k)) has (i,j) element cos(2*pi*theta(k)*(i-j)).

By default: m = n, w = rand(m,1), and theta = rand(m,1).

 gallery

1-4491

toeppen — Pentadiagonal Toeplitz matrix (sparse)
P = gallery('toeppen',n,a,b,c,d,e) returns the n-by-n sparse, pentadiagonal
Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1) = b, P(1,1) = c, P(1,2) =
d, and P(1,3) = e, where a, b, c, d, and e are scalars.

By default, (a,b,c,d,e) = (1,-10,0,10,1), yielding a matrix of Rutishauser. This
matrix has eigenvalues lying approximately on the line segment 2*cos(2*t) +
20*i*sin(t).

tridiag — Tridiagonal matrix (sparse)
A = gallery('tridiag',c,d,e) returns the tridiagonal matrix with subdiagonal c,
diagonal d, and superdiagonal e. Vectors c and e must have length(d)-1.

A = gallery('tridiag',n,c,d,e), where c, d, and e are all scalars, yields the
Toeplitz tridiagonal matrix of order n with subdiagonal elements c, diagonal elements d,
and superdiagonal elements e. This matrix has eigenvalues

d + 2*sqrt(c*e)*cos(k*pi/(n+1))

where k = 1:n. (see [1].)

A = gallery('tridiag',n) is the same as A = gallery('tridiag',n,-1,2,-1),
which is a symmetric positive definite M-matrix (the negative of the second difference
matrix).

triw — Upper triangular matrix discussed by Wilkinson and
others
A = gallery('triw',n,alpha,k) returns the upper triangular matrix with ones on
the diagonal and alphas on the first k >= 0 superdiagonals.

Order n may be a 2-element vector, in which case the matrix is n(1)-by-n(2) and upper
trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices,” J. Reine Angew.
Math., 1954] shows that

cond(gallery('triw',n,2)) = cot(pi/(4*n))^2,

1 Alphabetical List

1-4492

and, for large abs(alpha), cond(gallery('triw',n,alpha)) is approximately
abs(alpha)^n*sin(pi/(4*n-2)).

Adding -2^(2-n) to the (n,1) element makes triw(n) singular, as does adding
-2^(1-n) to all the elements in the first column.

uniformdata — Array of arbitrary data from standard uniform
distribution
A = gallery('uniformdata',[m,n,...],j) returns an m-by-n-by-... array A. The
values of A are a random sample from the standard uniform distribution. j must be an
integer value in the interval [0, 2^32-1]. Calling gallery('uniformdata', ...)
with different values of j will return different arrays. Repeated calls to
gallery('uniformdata',...) with the same size vector and j inputs will always
return the same array.

In any call to gallery('uniformdata', ...) you can substitute individual inputs
m,n,... for the size vector input [m,n,...]. For example, gallery('uniformdata',
[1,2,3,4],5) is equivalent to gallery('uniformdata',1,2,3,4,5).

[A,B,...] = gallery('uniformdata',[m,n,...],j) returns multiple m-by-n-by-...
arrays A, B, ..., containing different values.

A = gallery('uniformdata',[m,n,...],j, classname) produces a matrix of
class classname. classname must be either 'single' or 'double'.

Generate the arbitrary 6-by-4 matrix of data from the uniform distribution on [0, 1]
corresponding to j = 2.

x = gallery('uniformdata', [6, 4], 2);

Generate the arbitrary 1-by-2-by-3 single array of data from the uniform distribution on
[0, 1] corresponding to j = 17.

y = gallery('uniformdata', 1, 2, 3, 17, 'single');

wathen — Finite element matrix (sparse, random entries)
A = gallery('wathen',nx,ny) returns a sparse, random, n-by-n finite element
matrix where n = 3*nx*ny + 2*nx + 2*ny + 1.

 gallery

1-4493

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny grid of 8-node
(serendipity) elements in two dimensions. A is symmetric, positive definite for any
(positive) values of the “density,” rho(nx,ny), which is chosen randomly in this routine.

A = gallery('wathen',nx,ny,1) returns a diagonally scaled matrix such that

0.25 <= eig(inv(D)*A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any densities
rho(nx,ny).

wilk — Various matrices devised or discussed by Wilkinson
gallery('wilk',n) returns a different matrix or linear system depending on the value
of n.

n = 3 Upper triangular system Ux=b illustrating inaccurate solution.
n = 4 Lower triangular system Lx=b, ill-conditioned.
n = 5 hilb(6)(1:5,2:6)*1.8144. A symmetric positive definite

matrix.
n = 21 W21+, a tridiagonal matrix. eigenvalue problem. For more detail,

see [2].

References

[1] The MATLAB gallery of test matrices is based upon the work of Nicholas J. Higham at
the Department of Mathematics, University of Manchester, Manchester, England.
Further background can be found in the books MATLAB Guide, Second Edition,
Desmond J. Higham and Nicholas J. Higham, SIAM, 2005, and Accuracy and
Stability of Numerical Algorithms, Nicholas J. Higham, SIAM, 1996.

[2] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, London,
1965, p.308.

[3] Bendel, R. B. and M. R. Mickey, “Population Correlation Matrices for Sampling
Experiments,” Commun. Statist. Simulation Comput., B7, 1978, pp. 163-182.

1 Alphabetical List

1-4494

[4] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of Correlation Matrices
and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

See Also
hadamard | hilb | invhilb | magic | wilkinson

Introduced before R2006a

 gallery

1-4495

gamma
Gamma function

Syntax
Y = gamma(X)

Description
Y = gamma(X) returns the gamma function evaluated at the elements of X.

Examples

Evaluate Gamma Function

Evaluate the gamma function with a scalar and a vector.

Evaluate Γ(0 . 5), which is equal to π.

y = gamma(0.5)

y = 1.7725

Evaluate several values of the gamma function between [-3.5 3.5].

x = -3.5:3.5;
y = gamma(x)

y = 1×8

 0.2701 -0.9453 2.3633 -3.5449 1.7725 0.8862 1.3293 3.3234

1 Alphabetical List

1-4496

Plot Gamma Function

Plot the gamma function and its inverse.

Use fplot to plot the gamma function and its inverse. The gamma function increases
quickly for positive arguments and has simple poles at all negative integer arguments (as
well as 0). The function does not have any zeros. Conversely, the inverse gamma function
has zeros at all negative integer arguments (as well as 0).

fplot(@gamma)
hold on
fplot(@(x) 1./gamma(x))
legend('\Gamma(x)','1/\Gamma(x)')
hold off
grid on

 gamma

1-4497

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. The elements
of X must be real.
Data Types: single | double

1 Alphabetical List

1-4498

Definitions

Gamma Function
The gamma function is defined for real x > 0 by the integral:

Γ(x) =∫0 ∞e−ttx− 1dt

The gamma function interpolates the factorial function. For integer n:

gamma(n+1) = factorial(n) = prod(1:n)

The domain of the gamma function extends to negative real numbers by analytic
continuation, with simple poles at the negative integers. This extension arises from
repeated application of the recursion relation

Γ n− 1 = Γ n
n− 1 .

Algorithms
The computation of gamma is based on algorithms outlined in [1].

References
[1] Cody, J., An Overview of Software Development for Special Functions, Lecture Notes

in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson (ed.), Springer
Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, National
Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965, sec.
6.5.

 gamma

1-4499

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
factorial | gammainc | gammaincinv | gammaln | psi

Introduced before R2006a

1 Alphabetical List

1-4500

gammainc
Incomplete gamma function

Syntax
Y = gammainc(X,A)
Y = gammainc(X,A,tail)
Y = gammainc(X,A,'scaledlower')
Y = gammainc(X,A,'scaledupper')

Description
Y = gammainc(X,A) returns the incomplete gamma function of corresponding elements
of X and A. The elements of A must be nonnegative. Furthermore, X and A must be real
and the same size (or either can be scalar).

Y = gammainc(X,A,tail) specifies the tail of the incomplete gamma function. The
choices for tail are 'lower' (the default) and 'upper'. The upper incomplete gamma
function is defined as:

gammainc x,a,'upper' = 1
Γ(a)∫

x

∞
ta− 1e−tdt

When the upper tail value is close to 0, the 'upper' option provides a way to compute
that value more accurately than by subtracting the lower tail value from 1.

Y = gammainc(X,A,'scaledlower') and Y = gammainc(X,A,'scaledupper')
return the incomplete gamma function, scaled by

Γ(a + 1) ex

xa .

These functions are unbounded above, but are useful for values of X and A where
gammainc(X,A,'lower') or gammainc(X,A,'upper') underflow to zero.

 gammainc

1-4501

Note When X is negative, Y can be inaccurate for abs(X)>A+1. This applies to all
syntaxes.

Definitions

Incomplete Gamma Function
The incomplete gamma function is

gammainc x,a = 1
Γ(a)∫0 x

ta− 1e−tdt

where Γ a is the gamma function, gamma(a).

For any A ≥ 0, gammainc(X,A) approaches 1 as X approaches infinity. For small X and A,
gammainc(X,A) is approximately equal to X^A, so gammainc(0,0) = 1.

References
[1] Cody, J., An Overview of Software Development for Special Functions, Lecture Notes

in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson (ed.), Springer
Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, National
Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965, sec.
6.5.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-4502

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Output is always complex.
• Strict single-precision calculations are not supported. In the generated code, single-

precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The elements of X must be nonnegative.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
gamma | gammaincinv | gammaln | psi

Introduced before R2006a

 gammainc

1-4503

gammaincinv
Inverse incomplete gamma function

Syntax
x = gammaincinv(y,a)
x = gammaincinv(y,a,tail)

Description
x = gammaincinv(y,a) evaluates the inverse incomplete gamma function for
corresponding elements of y and a, such that y = gammainc(x,a). The elements of y
must be in the closed interval [0,1], and those of a must be nonnegative. y and a must
be real and the same size (or either can be a scalar).

x = gammaincinv(y,a,tail) specifies the tail of the incomplete gamma function.
Choices are 'lower' (the default) to use the integral from 0 to x, or 'upper' to use the
integral from x to infinity.

These two choices are related as:

gammaincinv(y,a,'upper') = gammaincinv(1-y,a,'lower').

When y is close to 0, the 'upper' option provides a way to compute x more accurately
than by subtracting y from 1.

Definitions

Inverse Incomplete Gamma Function
The lower incomplete gamma function is defined as:

gammainc x,a = 1
Γ(a)∫0 x

ta− 1e−tdt

1 Alphabetical List

1-4504

where Γ a is the gamma function, gamma(a). The upper incomplete gamma function is
defined as:

gammainc x,a,'upper' = 1
Γ(a)∫

x

∞
ta− 1e−tdt

gammaincinv computes the inverse of the incomplete gamma function with respect to
the integration limit x using Newton's method.

For any a>0, as y approaches 1, gammaincinv(y,a) approaches infinity. For small x and
a, gammainc(x,a)≅ xa, so gammaincinv(1,0) = 0.

References
[1] Cody, J., An Overview of Software Development for Special Functions, Lecture Notes

in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson (ed.), Springer
Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, National
Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965, sec.
6.5.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 gammaincinv

1-4505

• Output is always complex.
• Strict single-precision calculations are not supported. In the generated code, single-

precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
gamma | gammainc | gammaln | psi

1 Alphabetical List

1-4506

gammaln
Logarithm of gamma function

Syntax
Y = gammaln(A)

Description
Y = gammaln(A) returns the logarithm of the gamma function, gammaln(A) =
log(gamma(A)). Input A must be nonnegative and real. The gammaln command avoids
the underflow and overflow that may occur if it is computed directly using
log(gamma(A)).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 gammaln

1-4507

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
gamma | gammainc | gammaincinv | psi

Introduced before R2006a

1 Alphabetical List

1-4508

gather
Collect tall array into memory after executing queued operations

Syntax
Y = gather(X)
[Y1,Y2,Y3,...] = gather(X1,X2,X3,...)

Description
Y = gather(X) executes all queued operations required to calculate unevaluated tall
array X and collects the results into memory as Y.

MATLAB can run out of memory if the result of the gather calculation is too large. If you
are unsure whether the result can fit in memory, use gather(head(X)) or
gather(tail(X)) to perform the full calculation, but bring only a small portion of the
result into memory.

Use gather sparingly to ensure that extra passes through the data are combined during
the calculations whenever possible. For more information, see “Deferred Evaluation of
Tall Arrays”.

[Y1,Y2,Y3,...] = gather(X1,X2,X3,...) gathers multiple unevaluated tall arrays
X1, X2, X3,... into the corresponding outputs Y1, Y2, Y3,....

Examples

Evaluate Deferred Tall Array Calculation

Create a datastore for the airlinesmall.csv data set. Select a subset of variables to
work with, and treat 'NA' values as missing data so that datastore replaces them with
NaN values. Convert the datastore into a tall table.

varnames = {'Year','ArrDelay','UniqueCarrier'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA',...

 gather

1-4509

 'SelectedVariableNames',varnames);
T = tall(ds)

T =

 Mx3 tall table

 Year ArrDelay UniqueCarrier
 ____ ________ _____________

 1987 8 'PS'
 1987 8 'PS'
 1987 21 'PS'
 1987 13 'PS'
 1987 4 'PS'
 1987 59 'PS'
 1987 3 'PS'
 1987 11 'PS'
 : : :
 : : :

Calculate the size of the tall table.

sz = size(T)

sz =

 1x2 tall double row vector

 ? ?

MATLAB® does not immediately evaluate most operations on tall arrays. Instead,
MATLAB remembers the operations you perform as you enter them and optimizes the
calculations in the background.

When you use gather on an unevaluated tall array, MATLAB executes all of the queued
operations using the minimum number of passes through the data. This optimization
greatly reduces the execution time of large calculations. For this reason, you should use
gather only when you need to see a result.

Use gather to execute the calculation and collect the result into memory.

S = gather(sz)

1 Alphabetical List

1-4510

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 0.96 sec

S = 1×2

 123523 3

Evaluate Multiple Tall Arrays

Use gather with several inputs to simultaneously evaluate several tall arrays.

Create a tall array from an in-memory array of random integers between 1 and 1000.
Calculate the maximum and minimum values in each column.

A = tall(randi(1000,100,7))

A =

 100x7 tall double matrix

 815 163 645 60 423 583 851
 906 795 379 682 95 541 561
 127 312 812 43 599 870 930
 914 529 533 72 471 265 697
 633 166 351 522 696 319 583
 98 602 940 97 700 120 816
 279 263 876 819 639 940 880
 547 655 551 818 34 646 989
 : : : : : : :
 : : : : : : :

b = min(A);
c = max(A);

Use the results to determine the overall minimum and maximum values in the array.
Collect the final result into memory.

[mnA,mxA] = gather(min(b),max(c));

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0.078 sec

 gather

1-4511

valRange = [mnA mxA]

valRange = 1×2

 1 1000

Input Arguments
X — Unevaluated tall array
tall array

Unevaluated tall array. An unevaluated tall array is any tall array on which you perform
calculations without using gather to fully evaluate those calculations.

Output Arguments
Y — In-memory array
array

In-memory array. The data type of Y is the same as the underlying data type of the
unevaluated tall array X.

Tips
• If you have Parallel Computing Toolbox, see gather for information about gathering

distributed and gpuArray computations.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-4512

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See gather in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See gather in the Parallel Computing Toolbox documentation.

See Also
head | tail | tall | topkrows

Topics
“Tall Arrays”
“Deferred Evaluation of Tall Arrays”

Introduced in R2016b

 gather

1-4513

gca
Current axes or chart

Syntax
ax = gca

Description
ax = gca returns the current axes or chart for the current figure, which is typically the
last one created or clicked with the mouse. Graphics functions, such as title, target the
current axes or chart. Use ax to access and modify properties of the axes or chart. If axes
or charts do not exist, then gca creates Cartesian axes.

Examples

Specify Properties for Current Axes

Plot a sine wave.

x = linspace(0,10);
y = sin(4*x);
plot(x,y)

1 Alphabetical List

1-4514

Set the font size, tick direction, tick length, and y-axis limits for the current axes. Use gca
to refer to the current axes.

Note: Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, such as set(ax,'FontSize',12).

ax = gca; % current axes
ax.FontSize = 12;
ax.TickDir = 'out';
ax.TickLength = [0.02 0.02];
ax.YLim = [-2 2];

 gca

1-4515

Output Arguments
ax — Current axes or chart
Axes object | PolarAxes object | graphics object

Current axes or chart, returned as an Axes object, a PolarAxes object, or a graphics
object whose parent is a Figure, Tab, or Panel object, instead of an Axes object.

For example, a HeatmapChart object can be the current chart since the parent is
typically a Figure object. A Stem object cannot be the current chart since the parent is
an Axes object.

1 Alphabetical List

1-4516

Tips
• User interaction can change the current axes or chart. It is better to assign the axes or

chart to a variable when you create it instead of relying on gca.
• Changing the current figure also changes the current axes or chart.
• Set axes properties after plotting since some plotting functions reset axes properties.
• To access the current axes or chart without forcing the creation of Cartesian axes,

query the figure CurrentAxes property. MATLAB returns an empty array if there is
no current axes.

fig = gcf;
ax = fig.CurrentAxes;

Starting in R2014b, you can query properties using dot notation. If you are using an
earlier release, use the get function instead, such as ax =
get(fig,'CurrentAxes').

See Also
Functions
axes | cla | findobj | gcf | get | set | shg

Properties
Axes | Polar Axes

Introduced before R2006a

 gca

1-4517

gcbf
Handle of figure containing object whose callback is executing

Syntax
fig = gcbf

Description
fig = gcbf returns the handle of the figure that contains the object whose callback is
currently executing. This object can be the figure itself, in which case, gcbf returns the
figure's handle.

When no callback is executing, gcbf returns the empty matrix, [].

The value returned by gcbf is identical to the figure output argument returned by
gcbo.

See Also
gca | gcbo | gcf | gco

Introduced before R2006a

1 Alphabetical List

1-4518

gcbo
Handle of object whose callback is executing

Syntax
h = gcbo
[h,figure] = gcbo

Description
h = gcbo returns the handle of the graphics object whose callback is executing.

[h,figure] = gcbo returns the handle of the current callback object and the handle of
the figure containing this object.

Tips
The MATLAB software stores the handle of the object whose callback is executing in the
root CallbackObject property. If a callback interrupts another callback, MATLAB
replaces the CallbackObject value with the handle of the object whose callback is
interrupting. When that callback completes, MATLAB restores the handle of the object
whose callback was interrupted.

The root CallbackObject property is read only, so its value is always valid at any time
during callback execution. The root CurrentFigure property, and the figure
CurrentAxes and CurrentObject properties (returned by gcf, gca, and gco,
respectively) are user settable, so they can change during the execution of a callback,
especially if that callback is interrupted by another callback. Therefore, those functions
are not reliable indicators of which object's callback is executing.

When you write callback routines for the CreateFcn and DeleteFcn of any object and
the figure SizeChangedFcn, you must use gcbo since those callbacks do not update the
root's CurrentFigure property, or the figure's CurrentObject or CurrentAxes
properties; they only update the root's CallbackObject property.

 gcbo

1-4519

When no callbacks are executing, gcbo returns [] (an empty matrix).

See Also
gca | gcf | gco | groot

Introduced before R2006a

1 Alphabetical List

1-4520

gcd
Greatest common divisor

Syntax
G = gcd(A,B)
[G,U,V] = gcd(A,B)

Description
G = gcd(A,B) returns the greatest common divisors of the elements of A and B. The
elements in G are always nonnegative, and gcd(0,0) returns 0. This syntax supports
inputs of any numeric type.

[G,U,V] = gcd(A,B) also returns the Bézout coefficients, U and V, which satisfy: A.*U
+ B.*V = G. The Bézout coefficients are useful for solving Diophantine equations. This
syntax supports double, single, and signed integer inputs.

Examples

Greatest Common Divisors of Double Values

A = [-5 17; 10 0];
B = [-15 3; 100 0];
G = gcd(A,B)

G = 2×2

 5 1
 10 0

gcd returns positive values, even when the inputs are negative.

 gcd

1-4521

Greatest Common Divisors of Unsigned Integers

A = uint16([255 511 15]);
B = uint16([15 127 1023]);
G = gcd(A,B)

G = 1x3 uint16 row vector

 15 1 3

Solution to Diophantine Equation

Solve the Diophantine equation, 30x + 56y = 8 for x and y.

Find the greatest common divisor and a pair of Bézout coefficients for 30 and 56.

[g,u,v] = gcd(30,56)

g = 2

u = -13

v = 7

u and v satisfy the Bézout's identity, (30*u) + (56*v) = g.

Rewrite Bézout's identity so that it looks more like the original equation. Do this by
multiplying by 4. Use == to verify that both sides of the equation are equal.

(30*u*4) + (56*v*4) == g*4

ans = logical
 1

Calculate the values of x and y that solve the problem.

x = u*4

x = -52

1 Alphabetical List

1-4522

y = v*4

y = 28

Input Arguments
A,B — Input values
scalars, vectors, or arrays of real integer values

Input values, specified as scalars, vectors, or arrays of real integer values. A and B can be
any numeric type, and they can be of different types within certain limitations:

• If A or B is of type single, then the other can be of type single or double.
• If A or B belongs to an integer class, then the other must belong to the same class or it

must be a double scalar value.

A and B must be the same size or one must be a scalar.
Example: [20 -3 13],[10 6 7]
Example: int16([100 -30 200]),int16([20 15 9])
Example: int16([100 -30 200]),20
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
G — Greatest common divisor
real, nonnegative integer values

Greatest common divisor, returned as an array of real nonnegative integer values. G is the
same size as A and B, and the values in G are always real and nonnegative. G is returned
as the same type as A and B. If A and B are of different types, then G is returned as the
nondouble type.

U,V — Bézout coefficients
real integer values

 gcd

1-4523

Bézout coefficients, returned as arrays of real integer values that satisfy the equation,
A.*U + B.*V = G. The data type of U and V is the same type as that of A and B. If A and
B are of different types, then U and V are returned as the nondouble type.

Algorithms
g = gcd(A,B) is calculated using the Euclidian algorithm.[1]

[g,u,v] = gcd(A,B) is calculated using the extended Euclidian algorithm.[1]

References
[1] Knuth, D. “Algorithms A and X.” The Art of Computer Programming, Vol. 2, Section

4.5.2. Reading, MA: Addison-Wesley, 1973.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
lcm

Introduced before R2006a

1 Alphabetical List

1-4524

gcf
Current figure handle

Syntax
fig = gcf

Description
fig = gcf returns the current figure on page 1-4526 handle. If a figure does not exist,
then gcf creates a figure and returns its handle. You can use the figure handle to query
and modify figure properties. For more information, see Figure.

Examples

Specify Properties for Current Figure

Set the background color and remove the toolbar for the current figure. Use the gcf
command to get the current figure handle.

surf(peaks)
fig = gcf; % current figure handle
fig.Color = [0 0.5 0.5];
fig.ToolBar = 'none';

 gcf

1-4525

Definitions

Current Figure
The current figure is the target for graphics output. It is the figure window in which
graphics commands such as plot, title, and surf draw their results. It is typically the
last figure created or the last figure clicked with the mouse.

1 Alphabetical List

1-4526

User interaction can change the current figure. If you need to access a specific figure,
store the figure handle in your program code when you create the figure and use this
handle instead of gcf.

Tips
• To get the handle of the current figure without forcing the creation of a figure if one

does not exist, query the CurrentFigure property on the root object.

fig = get(groot,'CurrentFigure');

MATLAB returns fig as an empty array if there is no current figure.

See Also
Figure | clf | figure | gca | get | set | shg

Introduced before R2006a

 gcf

1-4527

gcmr
Get current mapreducer configuration

Syntax
mr = gcmr
mr = gcmr('nocreate')

Description
mr = gcmr returns an object representing the current global execution environment for
mapreduce.

• If no global execution environment exists, then gcmr calls mapreducer to set the
global execution environment to be the default.

• If a global execution environment currently exists, then gcmr returns the last visible
MapReducer object created.

When you create a MapReducer object using mapreducer, the object sets the global
execution environment. The global execution environment persists even if the object
representing it is later deleted.

• If the global execution environment is deleted or invalid, then gcmr returns the next
visible MapReducer object available. For example, delete(gcmr) deletes the current
global execution environment.

The gcmr function defines the global execution environment for mapreduce, and is most
likely used with Parallel Computing Toolbox, MATLAB Parallel Server, or MATLAB
Compiler.

If you do not specify a configuration to use in your call to mapreduce, then by default
mapreduce uses the configuration returned (or generated) by gcmr.

mr = gcmr('nocreate') returns the current global execution environment for
mapreduce, if one already exists. If no global execution environment exists, then gcmr
returns [].

1 Alphabetical List

1-4528

Tips
• If you have Parallel Computing Toolbox, see the mapreducer function reference page

for related information.
• If you have MATLAB Compiler, see the mapreducer function reference page for

related information.

See Also
mapreduce | mapreducer

Topics
“Speed Up and Deploy MapReduce Using Other Products”

Introduced in R2014b

 gcmr

1-4529

gco
Handle of current object

Syntax
h = gco
h = gco(figure_handle)

Description
h = gco returns the handle of the current object.

h = gco(figure_handle) returns the handle of the current object in the figure
specified by figure_handle.

Tips
The current object is the last object clicked or selected via keyboard interaction,
excluding uimenus. If the mouse click did not occur over a figure child object, the figure
becomes the current object. The MATLAB software stores the handle of the current object
in the figure's CurrentObject property.

An object can become the current object as a result of pressing the space bar to invoke a
callback in a dialog when a uicontrol in that dialog has focus (usually the result of using
the Tab key to change focus).

The CurrentObject of the CurrentFigure does not always indicate the object whose
callback is being executed. Interruptions of callbacks by other callbacks can change the
CurrentObject or even the CurrentFigure. Some callbacks, such as CreateFcn and
DeleteFcn, and uimenu Callback, intentionally do not update CurrentFigure or
CurrentObject.

gcbo provides the only completely reliable way to retrieve the handle to the object whose
callback is executing, at any point in the callback function, regardless of the type of
callback or of any previous interruptions.

1 Alphabetical List

1-4530

See Also
gca | gcbo | gcf

Introduced before R2006a

 gco

1-4531

ge, >=
Determine greater than or equal to

Syntax
A >= B
ge(A,B)

Description
A >= B returns a logical array with elements set to logical 1 (true) where A is greater
than or equal to B; otherwise, the element is logical 0 (false). The test compares only
the real part of numeric arrays. ge returns logical 0 (false) where A or B have NaN or
undefined categorical elements.

ge(A,B) is an alternate way to execute A >= B, but is rarely used. It enables operator
overloading for classes.

Examples

Test Vector Elements

Find which vector elements are greater than or equal to a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are greater than or equal to 11.

A >= 11

ans = 1x8 logical array

1 Alphabetical List

1-4532

 0 1 1 0 0 1 0 1

The result is a vector with values of logical 1 (true) where the elements of A satisfy the
expression.

Use the vector of logical values as an index to view the values in A that are greater than
or equal to 11.

A(A >= 11)

ans = 1×4

 12 18 11 15

The result is a subset of the elements in A.

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Replace all values greater than or equal to 9 with the value 10.

A(A >= 9) = 10

A = 4×4

 10 2 3 10
 5 10 10 8
 10 7 6 10
 4 10 10 1

 ge, >=

1-4533

The result is a new matrix whose largest element is 10.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A = 2x3 categorical array
 large medium small
 medium small large

The array has three categories: 'small', 'medium', and 'large'.

Find all values greater than or equal to the category 'medium'.

A >= 'medium'

ans = 2x3 logical array

 1 1 0
 1 0 1

A value of logical 1 (true) indicates a value greater than or equal to the category
'medium'.

Compare the rows of A.

A(1,:) >= A(2,:)

ans = 1x3 logical array

 1 1 0

The function returns logical 1 (true) where the first row has a category value greater
than or equal to the second row.

1 Alphabetical List

1-4534

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are greater than or equal to 2.

A(A >= 2)

ans = 1×2 complex

 2.0000 - 2.0000i 5.0000 - 1.0000i

ge compares only the real part of the elements in A.

Use abs to find which elements are outside a radius of 2 from the origin.

A(abs(A) >= 2)

ans = 1×4 complex

 2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2.0000i 5.0000 - 1.0000i

The result has more elements since abs accounts for the imaginary part of the numbers.

Test Duration Values

Create a duration array.

d = hours(21:25) + minutes(75)

d = 1x5 duration array
 22.25 hr 23.25 hr 24.25 hr 25.25 hr 26.25 hr

Test the array for elements that are greater than or equal to one standard day.

d >= 1

ans = 1x5 logical array

 ge, >=

1-4535

 0 0 1 1 1

Input Arguments
A — Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

B — Right array
scalar | vector | matrix | multidimensional array

Right array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for

1 Alphabetical List

1-4536

example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

Tips
• Some floating-point numbers cannot be represented exactly in binary form. This leads

to small differences in results that the >= operator reflects. For more information, see
“Avoiding Common Problems with Floating-Point Arithmetic”.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 ge, >=

1-4537

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | gt | le | lt | ne

Topics
“Array Comparison with Relational Operators”
“Ordinal Categorical Arrays”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-4538

genpath
Generate path name

Syntax
p = genpath
p = genpath(folderName)

Description
p = genpath returns a character vector containing a path name that includes all the
folders and subfolders below matlabroot/toolbox, including empty subfolders.

p = genpath(folderName) returns a character vector containing a path name that
includes folderName and multiple levels of subfolders below folderName. The path
name does not include folders named private, folders that begin with the @ character
(class folders), folders that begin with the + character (package folders), or subfolders
within any of these.

Examples

Add Folder and Subfolders to Search Path

Use genpath in conjunction with addpath to add a folder and its subfolders to the
search path.

Create a folder myfolder containing a subfolder mysubfolder.

mkdir myfolder;
cd myfolder;
mkdir mysubfolder;
cd ..

Generate a path that includes myfolder and all folders below it.

 genpath

1-4539

p = genpath('myfolder')

p =
'myfolder;myfolder\mysubfolder;'

Add the folder and its subfolders to the search path.

addpath(p)

Input Arguments
folderName — Folder name
character vector | string scalar

Folder name, specified as a character vector or string scalar.
Example: 'c:/matlab/myfiles'
Data Types: char | string

See Also
addpath | path | rmpath

Topics
“What Is the MATLAB Search Path?”

Introduced before R2006a

1 Alphabetical List

1-4540

genvarname
Construct valid variable name from string

Note genvarname will be removed in a future release. Use
matlab.lang.makeValidName and matlab.lang.makeUniqueStrings instead.

Syntax
varname = genvarname(str)
varname = genvarname(str, exclusions)

Description
varname = genvarname(str) constructs a string or character vector varname that is
similar to or the same as the str input, and can be used as a valid variable name. str
can be a string, a string array, a character array, a cell array of character vectors. If str
is a string array or cell array of character vectors, genvarname returns a string array or
cell array of character vectors in varname. The elements returned by genvarname are
guaranteed to be different from each other.

varname = genvarname(str, exclusions) returns a valid variable name that is
different from any name listed in the exclusions input. The exclusions input can be a
string, a string array, a character array, a cell array of character vectors. Specify the
function who in exclusions to create a variable name that will be unique in the current
MATLAB workspace (see “Example 4” on page 1-4543, below).

Note genvarname does not create a variable in the MATLAB workspace. You cannot,
therefore, assign a value to the output of genvarname.

 genvarname

1-4541

Examples
Example 1
Create four similar variable names that do not conflict with each other:

v = genvarname({'A', 'A', 'A', 'A'})
v =
 'A' 'A1' 'A2' 'A3'

Example 2
Read a column header hdr from worksheet trial2 in Excel spreadsheet myproj_apr23:

[data hdr] = xlsread('myproj_apr23.xls', 'trial2');

Make a variable name from the text of the column header that will not conflict with other
names:

v = genvarname(['Column ' hdr{1,3}]);

Assign data taken from the spreadsheet to the variable in the MATLAB workspace:

eval([v '= data(1:7, 3);']);

Example 3
Collect readings from an instrument once every minute over the period of an hour into
different fields of a structure. Simulate instrument readings using a random number.
genvarname not only generates unique fieldnames, but also creates the structure and
fields in the MATLAB workspace.
for k = 1:60
record.(genvarname(['reading' datestr(clock, 'HHMMSS')])) = rand(1);
pause(60)
end

After the program ends, display the recorded data from the workspace:

record

record =

1 Alphabetical List

1-4542

 reading092610: 0.6541
 reading092710: 0.6892
 reading092811: 0.7482
 reading092911: 0.4505
 reading093011: 0.0838
 .
 .
 .

Example 4
Generate variable names that are unique in the MATLAB workspace by putting the output
from the who function in the exclusions list.

for k = 1:5
 t = clock;
 pause(uint8(rand * 10));
 v = genvarname('time_elapsed', who);
 eval([v ' = etime(clock,t)'])
 end

As this code runs, you can see that the variables created by genvarname are unique in
the workspace:

time_elapsed =
 5.0070
time_elapsed1 =
 2.0030
time_elapsed2 =
 7.0010
time_elapsed3 =
 8.0010
time_elapsed4 =
 3.0040

After the program completes, use the who function to view the workspace variables:

who

k time_elapsed time_elapsed2 time_elapsed4
t time_elapsed1 time_elapsed3 v

 genvarname

1-4543

Example 5
If you try to make a variable name from a MATLAB keyword, genvarname creates a
variable name that capitalizes the keyword and precedes it with the letter x:

v = genvarname('global')
v =
 xGlobal

Example 6
If you enter a character vector that is longer than the value returned by the
namelengthmax function, genvarname truncates the resulting variable name character
vector:

namelengthmax
ans =
 63

vstr = genvarname(sprintf('%s%s', ...
 'This name truncates because it contains ', ...
 'more than the maximum number of characters'))
vstr =
ThisNameTruncatesBecauseItContainsMoreThanTheMaximumNumberOfCha

Tips
A valid MATLAB variable name is a character vector of letters, digits, and underscores,
such that the first character is a letter, and the length of the vector is less than or equal to
the value returned by the namelengthmax function. Any character vector that exceeds
namelengthmax is truncated in the varname output. See “Example 6” on page 1-4544,
below.

The variable name returned by genvarname is not guaranteed to be different from other
variable names currently in the MATLAB workspace unless you use the exclusions
input in the manner shown in “Example 4” on page 1-4543, below.

If you use genvarname to generate a field name for a structure, MATLAB does create a
variable for the structure and field in the MATLAB workspace. See “Example 3” on page
1-4542, below.

1 Alphabetical List

1-4544

If the str input contains any whitespace characters, genvarname removes then and
capitalizes the next alphabetic character in str. If str contains any nonalphanumeric
characters, genvarname translates these characters into their hexadecimal value.

See Also
iskeyword | isletter | isvarname | namelengthmax | regexp | who

Introduced before R2006a

 genvarname

1-4545

geoaxes
Create geographic axes

Syntax
geoaxes
geoaxes(Name,Value)
geoaxes(parent, ___)
gx = geoaxes(___)
geoaxes(gx)

Description
geoaxes creates a geographic axes in the current figure using default property values,
and makes it the current axes.

A geographic axes displays data in geographic coordinates (latitude/longitude) on a map.
The map is live, that is, you can pan to view other geographic locations and zoom in and
out on the map to view regions in more detail.

geoaxes(Name,Value) specifies values for properties of the GeographicAxes object
using one or more name-value pair arguments.

geoaxes(parent, ___) creates the geographic axes in the figure, panel, or tab
specified by parent, instead of in the current figure.

gx = geoaxes(___) returns the GeographicAxes object. Use gx to modify properties
of the axes after you create it.

geoaxes(gx) makes the GeographicAxes object gx the current axes.

Examples

1 Alphabetical List

1-4546

Plot Data in Geographic Axes

Create a geographic axes.

figure;
gx = geoaxes;

Plot your data, using the geoplot function. You can specify the geographic axes you
created to geoplot. The example also specifies the type and color of the line in the plot
and changes the basemap to a non-default basemap.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;

 geoaxes

1-4547

lonAnchorage = -149.9;
geoplot(gx,[latSeattle latAnchorage],[lonSeattle lonAnchorage],'g-*')
geobasemap(gx,'colorterrain')

Input Arguments
parent — Parent
Figure object | Panel object | Tab object

Parent, specified as a Figure, Panel, or Tab object.

gx — Geographic axes to be made current axes
GeographicAxes object

1 Alphabetical List

1-4548

Geographic axes to be made current axes, specified as a GeographicAxes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are only a subset. For a complete list, see GeographicAxes
Properties.
Example: gx = geoaxes('Basemap','colorterrain')

Basemap — Map on which to plot data
'darkwater' (default) | character vector | string scalar | 'none'

Map on which to plot data, specified as one of the string scalars or character vectors in
the following table, or 'none'.

MathWorks offers six basemaps for use with geographic axes and charts. The basemaps
provide a variety of display options, from two-tone, land-ocean raster maps to color
terrain maps. By default, geographic axes or charts use the 'darkwater' basemap,
which is installed with the product. If you choose one of the other basemaps, the
geographic axes or chart accesses the map over the Internet.

If you do not have consistent access to the Internet, you can download the basemaps
hosted by MathWorks onto your local system. For more information about downloading
basemaps, see “Access Basemaps in MATLAB”.

If you specify 'none', the geographic axes or chart plots your data with latitude-
longitude grid, ticks, and labels, but does not include a map.

 geoaxes

1-4549

Basemaps

'darkwater'
(default)

Land areas: light-to-
moderate gray

Ocean and water
areas: darker gray

Hosted by
MathWorks.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green
and arid lowlands
brown.

Hosted by
MathWorks.

'grayland'

Land areas: light-to-
moderate gray land

Ocean and water
areas: white

Hosted by
MathWorks.

'grayterrain'

Worldwide terrain
depicted
monochromatically in
shades of gray,
combining shaded
relief that
emphasizes both
high mountains and
the micro terrain
found in lowlands.

Hosted by
MathWorks.

1 Alphabetical List

1-4550

'bluegreen'

Land areas: light
green

Ocean and water
areas: light blue

Hosted by
MathWorks.

'landcover'

Satellite-derived land
cover data and
shaded relief
presented with a
light, natural palette
suitable for making
thematic and
reference maps
(includes ocean-
bottom relief).

Hosted by
MathWorks.

Example: gx = geoaxes(__,'Basemap','bluegreen')
Example: gx.Basemap = 'bluegreen'
Data Types: char | string

Position — Size and location, excluding margin for labels
four-element vector

Size and location, excluding margin for labels, specified as a four-element vector of the
form [left bottom width height]. For more information, see “Control Axes Layout”.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0), and the upper right corner maps to
(1,1).

'inches' Inches

 geoaxes

1-4551

Units Description
'centimeters' Centimeters
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
OuterPosition.

Output Arguments
gx — Geographic axes
GeographicAxes object

Geographic axes, returned as a GeographicAxes object.

1 Alphabetical List

1-4552

Tips
• If you have Mapping Toolbox™, you can specify basemaps of your own choosing by

using the addCustomBasemap function.
• Some graphics functions reset axes properties when plotting. To plot additional data in

a geographic axes, use the hold on command before calls to plotting functions.
• You cannot plot data that requires Cartesian axes in a geographic chart.

See Also
Functions
axes | cla | figure | gca | geobasemap | geolimits | geoplot | geoscatter |
subplot

Properties
GeographicAxes Properties

Introduced in R2018b

 geoaxes

1-4553

GeographicAxes Properties
Control geographic axes appearance and behavior

Description
GeographicAxes properties control the appearance and behavior of a GeographicAxes
object. By changing property values, you can modify certain aspects of the geographic
axes. Set axes properties after plotting since some graphics functions reset axes
properties.

Some graphics functions create geographic axes when plotting. Use gca to access the
newly created axes. To create a geographic axes with default values for all properties, use
the geoaxes function.

gx = geoaxes;

Properties
Maps

Basemap — Map on which to plot data
'darkwater' (default) | character vector | string scalar | 'none'

Map on which to plot data, specified as one of the string scalars or character vectors in
the following table, or 'none'.

MathWorks offers six basemaps for use with geographic axes and charts. The basemaps
provide a variety of display options, from two-tone, land-ocean raster maps to color
terrain maps. By default, geographic axes or charts use the 'darkwater' basemap,
which is installed with the product. If you choose one of the other basemaps, the
geographic axes or chart accesses the map over the Internet.

If you do not have consistent access to the Internet, you can download the basemaps
hosted by MathWorks onto your local system. For more information about downloading
basemaps, see “Access Basemaps in MATLAB”.

1 Alphabetical List

1-4554

If you specify 'none', the geographic axes or chart plots your data with latitude-
longitude grid, ticks, and labels, but does not include a map.

 GeographicAxes Properties

1-4555

Basemaps

'darkwater'
(default)

Land areas: light-to-
moderate gray

Ocean and water
areas: darker gray

Hosted by
MathWorks.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green
and arid lowlands
brown.

Hosted by
MathWorks.

'grayland'

Land areas: light-to-
moderate gray land

Ocean and water
areas: white

Hosted by
MathWorks.

'grayterrain'

Worldwide terrain
depicted
monochromatically in
shades of gray,
combining shaded
relief that
emphasizes both
high mountains and
the micro terrain
found in lowlands.

Hosted by
MathWorks.

1 Alphabetical List

1-4556

'bluegreen'

Land areas: light
green

Ocean and water
areas: light blue

Hosted by
MathWorks.

'landcover'

Satellite-derived land
cover data and
shaded relief
presented with a
light, natural palette
suitable for making
thematic and
reference maps
(includes ocean-
bottom relief).

Hosted by
MathWorks.

Example: gx = geoaxes(__,'Basemap','bluegreen')
Example: gx.Basemap = 'bluegreen'
Data Types: char | string

LatitudeLimits — Latitude limits of map
1-by-2 vector of real, finite values

This property is read-only.

Latitude limits of map, specified as a 1-by-2 vector of real, finite values of the form
[southern_limit northern_limit] in the range [-90,90]. Use the geolimits
function to change latitude limits.
Example: [-85 85]

LongitudeLimits — Longitude limits of map
1-by-2 vector of real, finite values

This property is read-only.

Longitude limits of map, specified as a 1-by-2 vector of real, finite values of the form
[western_limit eastern_limit]. Values must be in the range (-Inf, Inf). Use
the geolimits function to change longitude limits.
Example: [-100 100]

 GeographicAxes Properties

1-4557

MapCenter — Center point of map in latitude and longitude
two-element numeric vector of real, finite values

Center point of map in latitude and longitude, specified as a two-element vector of real,
finite values of the form [center_latitude center_longitude].
Example: [38.6292 -95.2520]

MapCenterMode — Selection mode for map center
'auto' (default) | 'manual'

Selection mode for the map center, specified as one of these values:

• 'auto' — Object automatically selects the map center based on the range of data.
• 'manual' — If you specify a value for MapCenter, the object sets this property to

'manual' automatically.

Example: gx.MapCenterMode = 'auto'

ZoomLevel — Magnification level of map
real, finite, numeric scalar between 0 and 25, inclusive

Magnification level of map, specified as a real, finite, numeric scalar from 0 through 25,
inclusive. The value is a base 2 logarithmic map scale. Increasing the ZoomLevel value
by one doubles the map scale.

ZoomLevelMode — Selection mode for zoom level
'auto' (default) | 'manual'

Selection mode for zoom level, specified as one of these values:

• 'auto' — Object selects the zoom level based on the range of data.
• 'manual' — If you specify a value for ZoomLevel, the object sets this property to

'manual' automatically.

Example: gx.ZoomLevelMode = 'manual'

Scalebar — Scale bar showing proportional distances on map
GeographicScalebar object

This property is read-only.

Scale bar showing proportional distances on a map, specified as a GeographicScalebar
object. To modify the appearance and behavior of the scale bar, such as its visibility, use

1 Alphabetical List

1-4558

properties of the GeographicScalebar object. For more information about these
properties, see GeographicScalebar Properties.
Example: sbar = gx.Scalebar returns the GeographicScalebar object.
Example: gx.Scalebar.Visible = 'off'; sets the value of the
GeographicScalebar property.

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The font size affects the title, tick labels,
legends, colorbars, and scale bar associated with the axes. The default font size depends
on the specific operating system and locale. By default, the font size is measured in
points. To change the units, set the FontUnits property.

MATLAB automatically scales some of the text to a percentage of the axes font size.

• Titles — 110% of the axes font size by default. To control the scaling, use the
TitleFontSizeMultiplier and LabelFontSizeMultiplier properties.

• Legends and colorbars — 90% of the axes font size by default. To specify a different
font size, set the FontSize property for the Legend or Colorbar object instead.

• Scale bar — 80% of the axes font size by default.

Example: gx.FontSize = 12

FontSizeMode — Selection mode for font size
'auto' (default) | 'manual'

 GeographicAxes Properties

1-4559

Selection mode for the font size, specified as one of these values:

• 'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the
default size, the font size might scale down to improve readability and layout.

• 'manual' — Font size specified manually. Do not scale the font size as the axes size
changes. To specify the font size, set the FontSize property.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

LabelFontSizeMultiplier — Scale factor for label font size
1.1 (default) | numeric value greater than 0

Scale factor for the label font size, specified as a numeric value greater than 0. The scale
factor is applied to the value of the FontSize property to determine the font size for the
label.
Example: gx.LabelFontSizeMultiplier = 1.75

TitleFontSizeMultiplier — Scale factor for title font size
1.1 (default) | numeric value greater than 0

Scale factor for the title font size, specified as a numeric value greater than 0. The scale
factor is applied to the value of the FontSize property to determine the font size for the
title.
Example: gx.TitleFontSizeMultiplier = 1.75

1 Alphabetical List

1-4560

TitleFontWeight — Title character thickness
'bold' (default) | 'normal'

Title character thickness, specified as one of these values:

• 'bold' — Thicker characters outlines than normal
• 'normal' — Default weight as defined by the particular font

Example: gx.TitleFontWeight = 'normal'

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'normalized' | 'pixels'

Font size units, specified as one of these values.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the axes

height. If you resize the axes, the font size
modifies accordingly. For example, if the
FontSize is 0.1 in normalized units, then
the text is 1/10 of the height value stored in
the axes Position property.

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

 GeographicAxes Properties

1-4561

To set both the font size and the font units in a single function call, you first must set the
FontUnits property so that the Axes object correctly interprets the specified font size.

Ticks

TickDir — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values.

Value Description Example
'in' Direct the tick marks inward

from the axis lines.

'out' Direct the tick marks
outward from the axis lines.

'both' Center the tick marks over
the axis lines.

Example: gx.TickDir = 'out';

TickDirMode — Selection mode for tick mark direction
'manual' (default) | 'auto'

Selection mode for tick mark direction set by the TickDir property, specified as one of
these values.

• 'auto' — Automatically select the tick direction based on the current view.
• 'manual' — Manually specify the tick direction. To specify the tick direction, set the

TickDir property.

Example: gx.TickDirMode = 'auto';

TickLength — Tick mark length
[0.01 0.025] (default) | two-element vector

Tick mark length, specified as a two-element vector of the form [length unused].
length is the tick mark length. Specify the values in units normalized relative to the

1 Alphabetical List

1-4562

longest axes dimension. The GeographicRuler object uses a two-element vector to be
consistent with the value of this property in other ruler objects but the second element is
unused.

Note Setting the TickLength property automatically sets the TickLength property in
the GeographicRuler objects associated with the LatitudeAxis and LongitudeAxis
properties to the same value. Conversely, setting the TickLength property in the
GeographicRuler objects does not automatically set the same property in the axes
object. To prevent the axes property value from overriding the ruler property value, set
the axes property value first, and then set the ruler property value.

Example: gx.TickLength = [0.02 0.0];

TickLabelFormat — Tick label format
'dms' (default) | 'dd' | 'dm' | '-dd' | '-dm' | '-dms'

Tick label format, specified as one of the following values.

Format Description Example
'dd' Decimal degrees plus

compass direction
23°N

'dm' Degrees and decimal
minutes plus compass
direction

18°30'W

'dms' (default) Degrees, minutes, and
decimal seconds plus
compass direction

110°06'18.5"E

'-dd' Decimal degrees with a
minus sign (-) to indicate
south and west

-115.25°

'-dm' Degrees and decimal
minutes with a minus sign
(-) to indicate south and
west

-5°45.5'

 GeographicAxes Properties

1-4563

Format Description Example
'-dms' Degrees, minutes, and

decimal seconds with a
minus sign (-) to indicate
south and west

-3°21'05"

The default label format includes degrees, minutes, and seconds. However, the minutes
and seconds part of the tick label is not included until you zoom in on the map to at least
a zoom level of 14.
Example: gx.TickLabelFormat = '-dm';

Rulers

LatitudeAxis — Latitude ruler
GeographicRuler object

Latitude ruler, specified as a GeographicRuler object. Use properties of the
GeographicRuler object to control the appearance and behavior of the axis ruler. For
more information, see GeographicRuler Properties.

1 Alphabetical List

1-4564

Example: latruler = gx.LatitudeAxis;
Example: gx.LatitudeAxis.TickLabelRotation = 45;

LongitudeAxis — Longitude ruler
GeographicRuler

Longitude ruler, specified as a GeographicRuler object. Use properties of the
GeographicRuler object to control the appearance and behavior of the axis ruler. For
more information, see GeographicRuler Properties.

 GeographicAxes Properties

1-4565

Example: lonruler = gx.LongitudeAxis;
Example: gx.LongitudeAxis.TickDirection = 'out';

AxisColor — Color of axis lines, tick values, and labels
[0.1500 0.1500 0.1500] (default) | RGB triplet | hexadecimal color code | color name
| short color name

Color of axis lines, tick values, and labels, specified as an RGB triplet, hexadecimal color
code, color name, or short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-4566

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 GeographicAxes Properties

1-4567

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Note Setting the AxisColor property automatically sets the Color property in the
GeographicRuler and GeographicScalebar objects to the same value. The
GeographicRuler object controls the behavior and appearance of the rulers in the
geographic axes. The GeographicScalebar object controls the scale bar in the
geographic axes. Conversely, setting the Color property in the GeographicRuler or
GeographicScalebar object does not automatically set the AxisColor property in the
axes object. To prevent the axes property value from overriding the ruler or scale bar
property value, set the axes property value first, and then set the ruler or scale bar
property value.

Example: gx.AxisColor = [0 0 1];
Example: gx.AxisColor = 'b';
Example: gx.AxisColor = 'blue';
Example: gx.AxisColor = '#0000FF';

Grids

Grid — Visibility of latitude and longitude lines on the map
'on' (default) | 'off'

Visibility of latitude and longitude lines on map, specified as 'on', show grid lines, or
'off', do not show grid lines.
Example: gx.Grid = 'off';

GridLineStyle — Line style for grid lines
'-' (default) | '--' | ':' | '-.' | 'none'

Line style for grid lines, specified as one of the line styles in this table.

Line Style Description Resulting Line
'-' Solid line

1 Alphabetical List

1-4568

Line Style Description Resulting Line
'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

To display the grid lines, use the grid on command or set the Grid property to 'on'.
Example: gx.GridLineStyle = '--'

GridColor — Color of grid lines
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | color name | short
color name

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

 GeographicAxes Properties

1-4569

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-4570

Example: gx.GridColor = [0 0 1];
Example: gx.GridColor = 'b';
Example: gx.GridColor = 'blue';
Example: gx.GridColor = '#0000FF';

GridColorMode — Property for setting grid color
'auto' (default) | 'manual'

Property for setting the grid color, specified as one of these values:

 GeographicAxes Properties

1-4571

• 'auto' — Object automatically selects the color.
• 'manual' — To set the grid line color for all directions, use GridColor.

GridAlpha — Grid-line transparency
0.15 (default) | value in the range [0,1]

Grid-line transparency, specified as a value in the range [0,1]. A value of 1 means
opaque and a value of 0 means completely transparent.
Example: gx.GridAlpha = 0.5

GridAlphaMode — Selection mode for GridAlpha
'auto' (default) | 'manual'

Selection mode for the GridAlpha property, specified as one of these values:

• 'auto' — Object selects the transparency value.
• 'manual' — To specify the transparency value, use the GridAlpha property.

Example: gx.GridAlphaMode = 'auto'

Labels

Title — Axes title
Text object | categorical

Axes title, specified as a Text object or a categorical value.

If you use a Text object, specify the title as the value of the String property of the Text
object: gx.Title.String = 'My Geographic Plot'. To change the title appearance,
such as the font style or color, use other Text object properties. For a complete list of
properties, see Text Properties.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.

You can also use the title function to specify a title.

1 Alphabetical List

1-4572

Example: gx.Title.String = 'My Geographic Plot'

LatitudeLabel — Latitude axis label
Text object

Latitude axis label, specified as a Text object. To specify a label, set the String property
of the Text object. To change the label appearance, such as the font style or color, set
other Text object properties. For a complete list of properties, see Text Properties.

 GeographicAxes Properties

1-4573

Example: gx.LatitudeLabel.String = 'My Latitude'

LongitudeLabel — Longitude axis label
Text object

Longitude axis label, specified as a Text object. To specify a label, set the String
property of the text object. To change the label appearance, such as the font style or
color, set other Text object properties. For a complete list of properties, see Text
Properties.

1 Alphabetical List

1-4574

Example: gx.LongitudeLabel.String = 'My Longitude'

Legend — Legend associated with geographic axes
empty GraphicsPlaceholder (default) | Legend object

This property is read-only.

Legend associated with a geographic axes, specified as a Legend object. To add a legend
to the geographic axes, use the legend function. Then, you can use this property to
modify the legend. For a complete list of properties, see Legend.

 GeographicAxes Properties

1-4575

geoplot(rand(3))
legend({'Line 1','Line 2','Line 3'},'FontSize',12)
gx = gca;
gx.Legend.TextColor = 'red';

You also can use this property to determine if the geographic axes has a legend.

gx = gca;
lgd = gx.Legend
if ~isempty(lgd)
 disp('Legend Exists')
end

Multiple Plots

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. Each row of the matrix
defines one color in the color order. The default color order has seven colors.

Default Color Order Associated RGB Triplets
 [0 0.4470 0.7410
 0.8500 0.3250 0.0980
 0.9290 0.6940 0.1250
 0.4940 0.1840 0.5560
 0.4660 0.6740 0.1880
 0.3010 0.7450 0.9330
 0.6350 0.0780 0.1840]

ColorOrderIndex — Next color
1 (default) | positive integer

Next color to use in the color order, specified as a positive integer. For example, if this
property is set to 1, then the next plot added to the axes uses the first color in the color
order. If the index value exceeds the number of colors in the color order, the index value
modulo of the number of colors determines the next color used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
the color order index value increases every time a new plot is added. Reset the color
order by setting the ColorOrderIndex property to 1.
Example: gx.ColorOrderIndex = 5

1 Alphabetical List

1-4576

LineStyleOrder — Line-style order
'-' solid line (default) | character vector | cell array of character vectors | string array

Line-style order, specified as a character vector, a cell array of character vectors, or a
string array. Create each element using one or more of the line-style specifiers listed in
the table. You can combine a line and a marker specifier in a single element, such as '-
*'.

MATLAB cycles through the line styles only after using all the colors contained in the
ColorOrder property. The default LineStyleOrder has only one line style, '-'.

Specifier Line Style
'-' (default) Solid line
'--' Dashed line
':' Dotted line
'-.' Dash-dotted line
'+' Plus sign markers
'o' Circle markers
'*' Star markers
'.' Point markers
'x' Cross markers
's' Square markers
'd' Diamond markers
'^' Upward-pointing triangle markers
'v' Downward-pointing triangle markers
'>' Right-pointing triangle markers
'<' Left-pointing triangle markers
'p' Five-pointed star (pentagram) markers
'h' Six-pointed star (hexagram) markers

Example: {'-*',':','o'}

LineStyleOrderIndex — Next line style
1 (default) | positive integer

 GeographicAxes Properties

1-4577

Next line style to use in the line-style order, specified as a positive integer. For example, if
this property is set to 1, then the next plot added to the axes uses the first line style in the
line-style order. If the index value exceeds the number of line styles in the line-style order,
then the index value modulo of the number of line styles determines the next line style
used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
then the index value increases every time you add a new plot. Subsequent plots cycle
through the line-style order. Reset the line-style order by setting the
LineStyleOrderIndex property to 1.
Example: gx.LineStyleOrderIndex = 1

NextPlot — Properties to reset
'replace' (default) | 'add' | 'replacechildren' | 'replaceall'

Properties to reset when adding a new plot to the axes, specified as one of these values:

• 'add' — Add new plots to the existing axes. Do not delete existing plots or reset axes
properties before displaying the new plot.

• 'replacechildren' — Delete existing plots before displaying the new plot. Reset
the ColorOrderIndex and LineStyleOrderIndex properties to 1, but do not reset
other axes properties. The next plot added to the axes uses the first color and line
style based on the ColorOrder and LineStyle order properties. This value is similar
to using cla before every new plot.

• 'replace' — Delete existing plots and reset axes properties, except Position and
Units, to their default values before displaying the new plot.

• 'replaceall' — Delete existing plots and reset axes properties, except Position
and Units, to their default values before displaying the new plot. This value is similar
to using cla reset before every new plot.

Figures also have a NextPlot property. Alternatively, you can use the newplot function
to prepare figures and axes for subsequent graphics commands.

SortMethod — Order for rendering objects
'childorder' (default) | 'depth'

Order for rendering objects, specified as one of these values:

• 'depth' — Draw objects in back-to-front order based on the current view. Use this
value to ensure that objects in front of other objects are drawn correctly.

1 Alphabetical List

1-4578

• 'childorder' — Draw objects in the order in which they are created by graphics
functions, without considering the relationship of the objects in three dimensionsThis
value can result in faster rendering, particularly if the figure is very large, but also can
result in improper depth sorting of the objects displayed.

Color and Transparency Maps

Colormap — Colormap
parula (default) | m-by-3 array of RGB triplets

Colormap, specified as an m-by-3 array of RGB (red, green, blue) triplets that define m
individual colors. Alternatively, you can use the colormap function to change the color
map.

MATLAB accesses these colors by their row number.
Example: gx.Colormap = [1 0 1; 0 0 1; 1 1 0] sets the color map to three
colors: magenta, blue, and yellow.

ColorScale — Scale for color mapping
'linear' (default) | 'log'

Scale for color mapping, specified as one of these values:

• 'linear' — Linear scale. The tick values along the colorbar also use a linear scale.
• 'log' — Log scale. The tick values along the colorbar also use a log scale.

Example: gx.ColorScale = 'log'

CLim — Color limits for colormap
[0 1] (default) | two-element vector of the form [cmin cmax]

Color limits for the colormap, specified as a two-element vector of the form [cmin
cmax].

If the associated mode property is set to 'auto', then MATLAB chooses the color limits.
If you assign a value to this property, then MATLAB sets the mode to 'manual' and does
not automatically choose the color limits.

CLimMode — Selection mode for CLim
'auto' (default) | 'manual'

Selection mode for the CLim property, specified as one of these values:

 GeographicAxes Properties

1-4579

• 'auto' — Automatically select the limits based on the color data of the graphics
objects contained in the axes.

• 'manual' — Manually specify the values. To specify the values, set the CLim property.
The values do not change when the limits of the axes children change.

Alphamap — Transparency map
array of 64 values from 0 to 1 (default) | array of finite alpha values from 0 to 1

Transparency map, specified as an array of finite alpha values that progress linearly from
0 to 1. The size of the array can be m-by-1 or 1-by-m. MATLAB accesses alpha values by
their index in the array. An alphamap can be any length.

AlphaScale — Scale for transparency mapping
'linear' (default) | 'log'

Scale for transparency mapping, specified as one of these values:

• 'linear' — Linear scale
• 'log' — Log scale

Example: gx.AlphaScale = 'log'

ALim — Alpha limits for alphamap
[0 1] (default) | two-element vector of the form [amin amax]

Alpha limits for alphamap, specified as a two-element vector of the form [amin amax].

If the associated mode property is set to 'auto', then MATLAB chooses the alpha limits.
If you set this property, then MATLAB sets the mode to 'manual' and does not
automatically choose the alpha limits.

ALimMode — Selection mode for ALim
'auto' (default) | 'manual'

Selection mode for the ALim property, specified as one of these values:

• 'auto' — Automatically select the limits based on the AlphaData values of the
graphics objects contained in the axes.

• 'manual' — Manually specify the alpha limits. To specify the alpha limits, set the
ALim property.

1 Alphabetical List

1-4580

Box Styling

Color — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | color name | color short name
| ...

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a color short name. The background color is only visible when the Basemap property is
set to 'none'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 GeographicAxes Properties

1-4581

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: gx.Color = [0 0 1];
Example: gx.Color = 'b';
Example: gx.Color = 'blue';
Example: gx.Color = '#0000FF';

LineWidth — Width of lines
0.5 (default) | positive scalar value

Width of lines, specified as a positive scalar value in point units. One point equals 1/72
inch.
Example: gx.LineWidth = 1.5

Box — Outline around geographic axes
'on' (default) | 'off'

Outline around the geographic axes, specified as either 'on' or 'off'.

1 Alphabetical List

1-4582

Example: gx.Box = 'off'

Position

OuterPosition — Size and position of geographic axes, including labels and
margins
[0 0 1 1] (default) | four-element vector

Size and position of the geographic axes, including the labels and margins, specified as a
four-element vector of the form [left bottom width height]. This vector defines the
extents of the rectangle that encloses the outer bounds of the geographic axes. The left
and bottom elements define the distance from the lower-left corner of the figure or panel

 GeographicAxes Properties

1-4583

that contains the geographic axes to the lower-left corner of the rectangle. The width
and height elements are the rectangle dimensions.

By default, the values are measured in units normalized to the container. To change the
units, set the Units property. The default value of [0 0 1 1] includes the whole interior
of the container.

Position — Size and position of geographic axes, not including labels or
margins
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector

Size and position of the geographic axes, not including labels or margins, specified as a
four-element vector of the form [left bottom width height]. This vector defines the
extents of the tightest bounding rectangle that encloses the geographic axes. The left
and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the rectangle. The width and height elements are the rectangle
dimensions.

By default, the values are measured in units normalized to the container. To change the
units, set the Units property.
Example: gx.Position = [0 0 1 1] specifies no distance between the lower-left
corner of the container to the rectangle and width and height to fill the entire container.

TightInset — Margins for text labels
four-element vector of the form [left bottom right top]

This property is read-only.

Margins for the text labels, returned as a four-element vector of the form [left bottom
right top]. This property is read-only.

The elements define the distances between the bounds of the Position property and the
extent of the geographic axes text labels and title. By default, the values are measured in
units normalized to the figure or uipanel that contains the geographic axes. To change the
units, set the Units property.

The Position property and the TightInset property define the tightest bounding box
that encloses the geographic axes and its labels and title.

ActivePositionProperty — Active position property
'outerposition' (default) | 'position'

1 Alphabetical List

1-4584

Active position property during resize operation, specified as one of these values:

• 'outerposition' — Hold the OuterPosition property constant.
• 'position' — Hold the Position property constant.

A figure can change size if you interactively resize it or during a printing or exporting
operation.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0) and the upper right corner maps to
(1,1).

'inches' Inches
'centimeters' Centimeters
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.

 GeographicAxes Properties

1-4585

Units Description
'pixels' Pixels.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a Name,Value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
Position.

Interactivity

Toolbar — Data exploration toolbar
AxesToolbar object

Data exploration toolbar, specified as an AxesToolbar object. The toolbar appears at the
top-right corner of the geographic axes when you hover over it. The toolbar provides
quick access to data exploration tools, such as zooming, restore view, and datatips.

If you do not want the toolbar to appear when you hover over the geographic axes, set the
Visible property of the AxesToolbar object to 'off'. For more information about the
properties of an AxesToolbar object, see AxesToolbar Properties.
Example: gx.Toolbar.Visible = 'off'

Visible — State of visibility
'on' (default) | 'off'

State of visibility of the geographic axes, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

CurrentPoint — Location of mouse pointer
2-by-3 array

This property is read-only.

1 Alphabetical List

1-4586

Location of mouse pointer, specified as a 2-by-3 array of the form:

[lat lon 0
 lat lon 0]

The CurrentPoint property contains the latitude (lat) and longitude (lon) coordinates
of the mouse pointer with respect to the geographic axes. The (lat,lon) points indicate
the location of the last mouse click. However, if the figure has a
WindowButtonMotionFcn callback defined, then the (lat,lon) points indicate the last
location of the mouse pointer.

The format of the return value is consistent with the return value of the CurrentPoint
property of the Axes object. For geographic axes, the third column of the return value is
always zero. The latitude and longitude values in the second row are duplicates of the
values in the first row.
Example: [52.1411 -125.1167 0; 52.1411 -125.1167 0]

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

 GeographicAxes Properties

1-4587

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle

1 Alphabetical List

1-4588

• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

 GeographicAxes Properties

1-4589

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the GeographicAxes object. The Interruptible property
has two values:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

1 Alphabetical List

1-4590

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the GeographicAxes object tries to interrupt a running callback that
cannot be interrupted, then the BusyAction property determines if it is discarded or put
in the queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

• 'cancel' — Discard the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the GeographicAxes object
responds to the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off'. The HitTest property determines if the GeographicAxes
object responds to the click or if an ancestor does.

 GeographicAxes Properties

1-4591

• 'none' — Cannot capture mouse clicks. Clicking the GeographicAxes object passes
the click to the object below it in the current view of the figure window, which is
typically the axes or the figure. The HitTest property has no effect.

If you want an object to be clickable when it is underneath other objects that you do not
want to be clickable, then set the PickableParts property of the other objects to
'none' so that the click passes through them.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the GeographicAxes object. If you
have defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the GeographicAxes
object that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the GeographicAxes object can
capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

1 Alphabetical List

1-4592

Parent/Child

Parent — Parent of geographic axes
Figure object | Panel object | Tab object

Parent of geographic axes, specified as Figure object, Panel object, or Tab object.

Children — Children
empty GraphicsPlaceholder array | array of graphics objects

Children, returned as an array of graphics objects. Use this property to view a list of the
children or to reorder the children by setting the property to a permutation of itself.

You cannot add or remove children using the Children property. To add a child to this
list, set the Parent property of the child graphics object to the GeographicAxes object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

 GeographicAxes Properties

1-4593

Identifiers

Type — Type of graphics object
'geoaxes' (default)

This property is read-only.

Type of graphics object, returned as 'geoaxes'.

Tag — Tag to associate with geographic axes
'' (default) | character vector | string scalar

Tag to associate with the Geographic Axes object, specified as a character vector or
string scalar.

Use this property to find Geographic Axes objects in a hierarchy. For example, you can
use the findobj function to find Geographic Axes objects that have a specific Tag
property value.
Example: 'January Data'

UserData — User data
[] (default) | any MATLAB data

User data to associate with the Geographic Axes object, specified as any MATLAB data,
for example, a scalar, vector, matrix, cell array, character array, table, or structure.
MATLAB does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

See Also
cla | gca | geoaxes | geobasemap | geolimits | geotickformat

Topics
“Graphics Object Properties”

Introduced in R2018b

1 Alphabetical List

1-4594

geobasemap
Set or query basemap

Syntax
geobasemap(Basemap)
geobasemap(gx,Basemap)
basemap_out = geobasemap
basemap_out = geobasemap(gx)

Description
geobasemap(Basemap) sets the basemap of the current geographic axes or chart to the
value specified by Basemap. You can specify any of the values supported by the Basemap
property of the geographic axes or chart.

geobasemap(gx,Basemap) sets the basemap of the geographic axes or chart specified
by gx.

basemap_out = geobasemap returns the value of the Basemap property of the current
geographic axes or chart.

basemap_out = geobasemap(gx) returns the value of the Basemap property of the
geographic axes or chart specified by gx.

Examples

Specify Basemap of Geographic Axes or Chart

Create a geographic bubble chart.

tsunamis = readtable('tsunamis.xlsx');
geobubble(tsunamis,'Latitude','Longitude','SizeVariable','MaxHeight');

 geobasemap

1-4595

Get the name of the current basemap, using the geobasemap function. By default, the
geographic bubble chart uses the 'darkwater' basemap.

current_basemap = geobasemap

current_basemap =

 'darkwater'

Change the basemap used in the geographic bubble chart, using the geobasemap
function to specify the name of another basemap.

geobasemap colorterrain

1 Alphabetical List

1-4596

Input Arguments
Basemap — Map on which to plot data
'darkwater' (default) | character vector | string scalar | 'none'

Map on which to plot data, specified as one of the string scalars or character vectors in
the following table, or 'none'.

MathWorks offers six basemaps for use with geographic axes and charts. The basemaps
provide a variety of display options, from two-tone, land-ocean raster maps to color
terrain maps. By default, geographic axes or charts use the 'darkwater' basemap,

 geobasemap

1-4597

which is installed with the product. If you choose one of the other basemaps, the
geographic axes or chart accesses the map over the Internet.

If you do not have consistent access to the Internet, you can download the basemaps
hosted by MathWorks onto your local system. For more information about downloading
basemaps, see “Access Basemaps in MATLAB”.

If you specify 'none', the geographic axes or chart plots your data with latitude-
longitude grid, ticks, and labels, but does not include a map.

1 Alphabetical List

1-4598

Basemaps

'darkwater'
(default)

Land areas: light-to-
moderate gray

Ocean and water
areas: darker gray

Hosted by
MathWorks.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green
and arid lowlands
brown.

Hosted by
MathWorks.

'grayland'

Land areas: light-to-
moderate gray land

Ocean and water
areas: white

Hosted by
MathWorks.

'grayterrain'

Worldwide terrain
depicted
monochromatically in
shades of gray,
combining shaded
relief that
emphasizes both
high mountains and
the micro terrain
found in lowlands.

Hosted by
MathWorks.

 geobasemap

1-4599

'bluegreen'

Land areas: light
green

Ocean and water
areas: light blue

Hosted by
MathWorks.

'landcover'

Satellite-derived land
cover data and
shaded relief
presented with a
light, natural palette
suitable for making
thematic and
reference maps
(includes ocean-
bottom relief).

Hosted by
MathWorks.

Example: gx = geoaxes(__,'Basemap','bluegreen')
Example: gx.Basemap = 'bluegreen'
Data Types: char | string

gx — Geographic axes or chart
gca (default) | GeographicAxes object | GeographicBubbleChart object

Geographic axes or chart, specified as a GeographicAxes object or
GeographicBubbleChart object.

Output Arguments
basemap_out — Current basemap
character vector

Current basemap, returned as a character vector. basemap_out is the value of the
Basemap property of the geographic axes or chart.

See Also
geoaxes | geobubble | geodensityplot | geoplot | geoscatter

1 Alphabetical List

1-4600

Introduced in R2018b

 geobasemap

1-4601

geobubble
Visualize data values at specific geographic locations

Syntax
gb = geobubble(tbl,latvar,lonvar)
gb = geobubble(tbl,latvar,lonvar,Name,Value)

gb = geobubble(lat,lon)
gb = geobubble(lat,lon,sizedata)
gb = geobubble(lat,lon,sizedata,colordata)
gb = geobubble(___ ,Name,Value)

gb = geobubble(parent, ___)

Description
gb = geobubble(tbl,latvar,lonvar) creates a geographic bubble chart with filled
circles (“bubbles”) representing the geographic locations specified in the table tbl
displayed on a map. latvar identifies the table variable (column) that specifies bubble
latitudes. lonvar identifies the table variable that specifies bubble longitudes. By default,
the bubbles are all the same size and the same color. The function returns gb, a
GeographicBubbleChart object. To modify this object, use the properties described in
GeographicBubbleChart Properties.

The geographic bubble chart displays your data on a map, called a basemap. Initially, the
chart sets the geographic limits of the chart to encompass all of your data. The map is
live, that is, you can pan the basemap to view other geographic locations. You can also
zoom in and out on the map to view regions in more detail. The chart updates the map as
you pan and zoom. For more information about geographic bubble charts and basemaps,
see “Geographic Bubble Charts Overview”.

gb = geobubble(tbl,latvar,lonvar,Name,Value) uses additional options
specified by one or more name-value pair arguments to set the values of geographic
bubble chart properties. Two key properties are 'SizeVariable' and

1 Alphabetical List

1-4602

'ColorVariable', which specify the table variables that determine the size and color of
the bubbles.

gb = geobubble(lat,lon) creates a geographic bubble chart where lat and lon
specify the geographic locations. By default, the bubbles are all the same size and color.

gb = geobubble(lat,lon,sizedata) scales the areas of the bubbles according to
the numeric values in sizedata.

gb = geobubble(lat,lon,sizedata,colordata) uses the categorical data in
colordata to determine the color of the bubbles. geobubble chooses a color for each
category in colordata, plus one additional color if any element of colordata is
undefined. Colors are drawn from an ordered list of 7 standard colors. If there are more
than seven categories (more than six, if undefined values are present), the colors repeat
cyclically.

gb = geobubble(___ ,Name,Value) specifies additional options for the geographic
bubble chart using one or more name-value pair arguments. Specify the options after all
other input arguments. For a list of properties, see GeographicBubbleChart Properties.

gb = geobubble(parent, ___) creates the geographic bubble chart in the figure,
panel, or tab specified by parent.

Examples

Display Data from Tsunamis Table on Geographic Bubble Chart

Read data about tsunamis into the workspace as a table. The rows represent individual
tsunami occurrences. The columns represent data about a set of variables for each
tsunami, such as their locations (latitude and longitude), causes, and wave heights.

tsunamis = readtable('tsunamis.xlsx');

Convert one of the table variables into a categorical variable to specify the color of the
bubbles. The Cause variable attributes a cause to each tsunami, such as, 'Earthquake',
'Volcano', or 'Earthquake and Landslide'. Convert the Cause variable from a cell
array of character vectors into a categorical variable.

tsunamis.Cause = categorical(tsunamis.Cause);

 geobubble

1-4603

Create a geographic bubble chart, plotting the locations of the tsunamis on a map.
Specify the names of the table variables that hold location information: Latitude and
Longitude. Use the MaxHeight table variable to specify the size of the bubbles. The
example uses the Cause variable, converted earlier into a categorical variable, to specify
the color of the bubbles.

gb = geobubble(tsunamis,'Latitude','Longitude', ...
 'SizeVariable','MaxHeight','ColorVariable','Cause')

gb =
 GeographicBubbleChart with properties:

 Basemap: 'darkwater'
 MapLayout: 'normal'

1 Alphabetical List

1-4604

 SourceTable: [162x20 table]
 LatitudeVariable: 'Latitude'
 LongitudeVariable: 'Longitude'
 SizeVariable: 'MaxHeight'
 ColorVariable: 'Cause'

 Show all properties

Display Tsunami Data Using Bubble Size to Indicate Tsunami Size

Read data about tsunamis into the workspace as a table. The rows represent individual
tsunami occurrences. The columns represent data about a set of variables for each
tsunami, such as their locations (latitude and longitude), causes, and wave heights.

tsunamis = readtable('tsunamis.xlsx');

Create a geographic bubble chart, plotting the locations of the tsunamis on a map. Use
the data from the MaxHeight variable to specify the size of the bubble. In this example,
you pass the data directly to geobubble. Alternatively, you can also pass geobubble the
name of the table and then specify the data by table variable names.

gb = geobubble(tsunamis.Latitude,tsunamis.Longitude,tsunamis.MaxHeight)

 geobubble

1-4605

gb =
 GeographicBubbleChart with properties:

 Basemap: 'darkwater'
 MapLayout: 'normal'
 LatitudeData: [162x1 double]
 LongitudeData: [162x1 double]
 SizeData: [162x1 double]
 ColorData: []

 Show all properties

1 Alphabetical List

1-4606

Display Tsunami Data Using Bubble Color to Indicate Tsunami Cause

Read data about tsunamis into the workspace as a table. The rows represent individual
tsunami occurrences. The columns represent data about each occurrence, such as the
cause of each tsunami.

tsunamis = readtable('tsunamis.xlsx');

Create a categorical variable because the data that controls the color of the bubbles must
be a categorical variable. The tsunami table variable Cause already categorizes the
tsunamis by seven criteria: Earthquake, Earthquake and Landslide, Volcano, Volcano and
Landslide, Landslide, Meteorological, and Unknown Cause. Put the Cause variable data
into a categorical variable.

cause = categorical(tsunamis.Cause);

Create a geographic bubble chart, plotting the locations of the tsunamis on a map. Use
bubble size to indicate the size of the wave, and use bubble color to indicate the cause.
When you pass in the data, rather than specifying the names of table variables that
contain the data, geobubble does not automatically add titles to the size and color
legends.

gb = geobubble(tsunamis.Latitude,tsunamis.Longitude,tsunamis.MaxHeight,cause)

 geobubble

1-4607

gb =
 GeographicBubbleChart with properties:

 Basemap: 'darkwater'
 MapLayout: 'normal'
 LatitudeData: [162x1 double]
 LongitudeData: [162x1 double]
 SizeData: [162x1 double]
 ColorData: [162x1 categorical]

 Show all properties

1 Alphabetical List

1-4608

Add Legend Titles Using Geographic Bubble Chart Properties

Read data about tsunamis into the workspace as a table. The rows represent individual
tsunami occurrences. The columns represent data about a set of variables for each
tsunami, such as its location (latitude and longitude), cause, and maximum height of the
wave.

tsunamis = readtable('tsunamis.xlsx');

Turn one of the table variables into a categorical variable to specify the color of the
bubbles. The Cause variable attributes a cause to each tsunami, such as, 'Earthquake',
'Volcano', or 'Earthquake and Landslide'. Convert the Cause variable from a cell
array of character vectors into a categorical variable.

colordata = categorical(tsunamis.Cause);

Create a geographic bubble chart, plotting the locations of the tsunamis on a map. Use
bubble size to indicate the size of the wave, and use bubble color to indicate the cause of
the tsunami. Also set the basemap and the title using name-value pair arguments.

gb = geobubble(tsunamis.Latitude,tsunamis.Longitude,tsunamis.MaxHeight,colordata,'Title','Tsunamis')

 geobubble

1-4609

gb =
 GeographicBubbleChart with properties:

 Basemap: 'darkwater'
 MapLayout: 'normal'
 LatitudeData: [162x1 double]
 LongitudeData: [162x1 double]
 SizeData: [162x1 double]
 ColorData: [162x1 categorical]

 Show all properties

1 Alphabetical List

1-4610

Use properties of the geographic bubble chart to modify the chart. For example, add titles
to the size and color legends. (If you specify the table as an argument, geobubble adds
legend titles automatically, using the names of table variables.)

gb.SizeLegendTitle = 'Max Height';
gb.ColorLegendTitle = 'Cause'

gb =
 GeographicBubbleChart with properties:

 Basemap: 'darkwater'
 MapLayout: 'normal'
 LatitudeData: [162x1 double]
 LongitudeData: [162x1 double]

 geobubble

1-4611

 SizeData: [162x1 double]
 ColorData: [162x1 categorical]

 Show all properties

Input Arguments
tbl — Table containing data to be plotted
table | timetable

Table containing data to be plotted, specified as a table or timetable. You can import data
as a table using the readtable function or create a table from workspace variables using
the table function. You can create a timetable from workspace variables using the
timetable function.

The SourceTable property of the GeographicBubbleChart object stores the table
containing data to be plotted.
Data Types: table

latvar — Table variable for latitude
character vector | string scalar | numeric scalar | logical vector

Table variable for latitude, specified in one of these forms:

• String scalar or character vector specifying one of the table variable names. For
example, geobubble(tbl,'Latitude','Longitude') selects the variable named
'Latitude' for latvar.

• Numeric scalar indicating the table variable index. For example,
geobubble(tbl,1,2) selects the first variable in the table for latitude.

• Logical vector containing one true element.

The LatitudeVariable property of the GeographicBubbleChart object stores the
selected variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

lonvar — Table variable for longitude
character vector | string scalar | numeric scalar | logical vector

1 Alphabetical List

1-4612

Table variable for longitude, specified in one of these forms:

• String scalar or character vector specifying one of the table variable names. For
example, geobubble(tbl,'Latitude','Longitude') selects the variable named
'Longitude' for lonvar.

• Numeric scalar indicating the table variable index. For example,
geobubble(tbl,1,2) selects the second variable in the table for longitude.

• Logical vector containing one true element.

The LongitudeVariable property of the GeographicBubbleChart object stores the
selected variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

lat — Latitude coordinates in degrees
real, numeric, finite vector within the range [-90 90]

Latitude coordinates in degrees, specified as a real, numeric, finite vector within the
range [-90 90]. The vector can contain embedded NaNs. lat must be the same size as
lon.
Example: [43.0327 38.8921 44.0435]
Data Types: single | double

lon — Longitude coordinates in degrees
real, numeric, finite vector

Longitude coordinates in degrees, specified as a real, numeric, finite vector. The vector
can contain embedded NaNs. lon must be the same size as lat.
Example: [-107.5556 -77.0269 -72.5565]
Data Types: single | double

sizedata — Data that determines bubble size
real, numeric, finite vector | real, numeric, finite scalar | []

Data that determines bubble size, specified as a real, numeric, finite vector or scalar, or
an empty ([]) array. If you specify a vector, sizedata must be the same size as lat and
lon. If you specify a scalar value, the geographic bubble chart treats the value with
scalar expansion. sizedata can contain NaNs.

 geobubble

1-4613

Example: [99 133 150]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

colordata — Data categories that determine bubble color
categorical

Data categories that determine bubble color, specified as a categorical variable. The
categories are typically bins that data fall into.
Data Types: categorical

parent — Parent of geographic bubble chart
figure object | tab object | panel object

Parent container in which to plot the geographic bubble chart, specified as a figure,
panel, or tab object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: p =
geobubble(tbl,latvar,lonvar,'SizeVariable','MaxHeight','ColorVariabl
e','Cause')

Note The geographic bubble chart properties listed here are frequently used properties.
For a complete list, see GeographicBubbleChart Properties.

Basemap — Map on which to plot data
'darkwater' (default) | character vector | string scalar | 'none'

Map on which to plot data, specified as one of the string scalars or character vectors in
the following table, or 'none'.

MathWorks offers six basemaps for use with geographic axes and charts. The basemaps
provide a variety of display options, from two-tone, land-ocean raster maps to color

1 Alphabetical List

1-4614

terrain maps. By default, geographic axes or charts use the 'darkwater' basemap,
which is installed with the product. If you choose one of the other basemaps, the
geographic axes or chart accesses the map over the Internet.

If you do not have consistent access to the Internet, you can download the basemaps
hosted by MathWorks onto your local system. For more information about downloading
basemaps, see “Access Basemaps in MATLAB”.

If you specify 'none', the geographic axes or chart plots your data with latitude-
longitude grid, ticks, and labels, but does not include a map.

 geobubble

1-4615

Basemaps

'darkwater'
(default)

Land areas: light-to-
moderate gray

Ocean and water
areas: darker gray

Hosted by
MathWorks.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green
and arid lowlands
brown.

Hosted by
MathWorks.

'grayland'

Land areas: light-to-
moderate gray land

Ocean and water
areas: white

Hosted by
MathWorks.

'grayterrain'

Worldwide terrain
depicted
monochromatically in
shades of gray,
combining shaded
relief that
emphasizes both
high mountains and
the micro terrain
found in lowlands.

Hosted by
MathWorks.

1 Alphabetical List

1-4616

'bluegreen'

Land areas: light
green

Ocean and water
areas: light blue

Hosted by
MathWorks.

'landcover'

Satellite-derived land
cover data and
shaded relief
presented with a
light, natural palette
suitable for making
thematic and
reference maps
(includes ocean-
bottom relief).

Hosted by
MathWorks.

Example: gx = geoaxes(__,'Basemap','bluegreen')
Example: gx.Basemap = 'bluegreen'
Data Types: char | string

ColorVariable — Table variable used to determine bubble color
character vector | string scalar | numeric scalar | logical vector

Table variable used to determine bubble color, specified in one of these forms:

• A string scalar or character vector specifying the name of the table variable you want
to use for color information. For example,
geobubble(__,'ColorVariable','Cause') specifies the variable named
'Cause'.

• A numeric scalar indicating the table variable index. For example,
geobubble(__,'ColorVariable',12) specifies the 12th variable in the table.

• A logical vector containing one true element. For example, sizevar = logical([0
0 0 0 0 0 0 0 0 0 0 1]) specifies the 12th variable in the table.

You can use this property only when specifying a table as input. The values associated
with this table variable must be categorical. When you specify the color variable,
geobubble stores the data values associated with this variable in the ColorData
property and sets the ColorData property to read-only.

 geobubble

1-4617

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

MapLayout — Layout of map
'normal' (default) | 'maximized'

Layout of map, including insets and decorations, specified as either of the following.

Value Description Illustration
'normal' Map is inset from the edges of the chart,

as defined by its OuterPosition
property. Axes labels ('Latitude' and
'Longitude'), ticks, and tick labels are
visible. If the Title property value is set,
the chart includes a title. Legends, if
present, appear outside and to the right of
the map.

1 Alphabetical List

1-4618

Value Description Illustration
'maximized' Map fills the entire space, defined by the

OuterPosition property. Axes labels,
ticks, and tick labels are hidden. The title
is hidden, even if the Title property is
set. The grid is hidden, even if
GridVisible is set to 'on'. Legends, if
present, appear within the map, toward
the upper-right corner.

Example: gb = geobubble(__,'MapLayout','maximized')
Example: gb.MapLayout = 'maximized'
Data Types: char | string

SizeVariable — Table variable used to determine bubble size
character vector | string scalar | numeric scalar | logical vector

Table variable used to determine bubble size, specified in one of these forms:

• A string scalar or character vector specifying the name of the table variable you want
to use for size information. For example,
geobubble(__,'SizeVariable','MaxHeight') specifies the variable named
'MaxHeight'.

• A numeric scalar indicating the table variable index. For example,
geobubble(__,'SizeVariable',16) specifies the sixteenth variable in the table.

• A logical vector containing one true element. For example, sizevar = logical([0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]) specifies the 16th variable in the table.

 geobubble

1-4619

This property can only be used when specifying a table as input. The values associated
with this table variable must be of a numeric type. When you specify this variable,
geobubble stores the data values associated with this variable in the 'SizeData'
property and sets the property to read-only.

Output Arguments
gb — Geographic bubble chart
GeographicBubbleChart object

Geographic bubble chart, returned as a GeographicBubbleChart object.

Tips
• To bring focus to a geographic bubble chart programmatically, use the axes function,

axes(gb).

See Also
Functions
categorical | geobasemap | geodensityplot | geolimits | geoplot | geoscatter
| readtable | table

Properties
GeographicBubbleChart Properties

Topics
“Access Data in a Table”
“Create Geographic Bubble Chart from Tabular Data”
“Use Geographic Bubble Chart Properties”
“Deploy Geographic Axes and Charts”
“Access Basemaps in MATLAB”
“Troubleshoot Geographic Axes or Chart Basemap Connection”
“Geographic Bubble Charts Overview”

1 Alphabetical List

1-4620

Introduced in R2017b

 geobubble

1-4621

geodensityplot
Geographic density plot

Syntax
geodensityplot(lat,lon)
geodensityplot(lat,lon,weights)
geodensityplot(___ ,Name,Value)
geodensityplot(gx, ___)
dp = geodensityplot(___)

Description
geodensityplot(lat,lon) creates a density plot in a geographic axes from locations
specified (in degrees) by the coordinate vectors lat and lon. lat and lon must be the
same size.

geodensityplot(lat,lon,weights) specifies weights for the data points in
weights.

geodensityplot(___ ,Name,Value) specifies DensityPlot properties using one or
more Name,Value pair arguments.

geodensityplot(gx, ___) plots in the geographic axes specified by gx instead of the
current axes.gx.

dp = geodensityplot(___) returns a DensityPlot object.

Examples

Create Geographic Density Plot

Set up latitude and longitude data.

1 Alphabetical List

1-4622

lon = linspace(-170,170,3000) + 10*rand(1,3000);
lat = 50 * cosd(3*lon) + 10*rand(size(lon));

Specify weights for each data point.

weights = 101 + 100*(sind(2*lon));

Create the geographic density plot, specifying the colors used with the plot.

geodensityplot(lat,lon,weights,'FaceColor','interp')

 geodensityplot

1-4623

Input Arguments
lat — Latitude coordinates of data points
real, numeric, finite vector within the range [-90 90]

Latitude coordinates of data points, specified as a real, numeric, finite vector in degrees,
within the range [-90 90]. The vector can contain embedded NaNs. lat must be the same
size as lon.
Example: [43.0327 38.8921 44.0435]
Data Types: single | double

1 Alphabetical List

1-4624

lon — Longitude coordinates in degrees
real, numeric, finite vector

Longitude coordinates in degrees, specified as a real, numeric, finite vector. The vector
can contain embedded NaNs. lon must be the same size as lat.

Longitudes must span less than (or equal to) 360 degrees.
Example: [-107.5556 -77.0269 -72.5565]
Data Types: single | double

weights — Weights assigned to data
[] (default) | scalar | numeric vector

Weights assigned to data, specified as an empty array, a scalar, or a numeric array. If you
specify a numeric vector, the vector must be the same length as the lat and lon vectors.
The weights vector is typically additional data you have related to the location data in
lat and lon.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

gx — Target geographic axes
GeographicAxes object

Target geographic axes, specified as a GeographicAxes object. You can modify the
appearance and behavior of a GeographicAxes object by setting its properties. For a list
of properties, see GeographicAxes Properties.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: dp = geodensityplot(lat,lon,weights,'FaceColor','g')

Note The density plot properties listed here are frequently used properties. For a
complete list, see DensityPlot Properties.

 geodensityplot

1-4625

FaceAlpha — Face transparency
'interp' (default) | scalar in range [0,1]

Face transparency, specified as one of these values:

• Scalar in range [0,1] — Use uniform transparency across all the faces. A value of 1 is
fully opaque and 0 is completely transparent. Values between 0 and 1 are
semitransparent.

• 'interp' — Use interpolated transparency for each face. The transparency varies
across each face by interpolating the values at the vertices. Transparency values are
chosen from the parent axes alphamap.

FaceColor — Face color
'interp' | ColorSpec value | RGB triplet | ...

Face color, specified as one of the values in this table.

Value Description
'interp' Use interpolated coloring based on density

values. Colors are chosen from the parent
axes colormap.

RGB triplet Three-element row vector whose elements
specify the intensities of the red, green, and
blue components of the color. The
intensities must be in the range [0,1], for
example, [0.4 0.6 0.7].

ColorSpec MATLABColorSpec (Color
Specification). You can specify some
common colors by name.

Radius — Radius of influence each point has on density calculation
numeric scalar

Radius of influence each point has on density calculation, specified as a numeric scalar.
When used in a GeographicAxes, the value is measured in meters.

1 Alphabetical List

1-4626

Output Arguments
dp — Geographic density plot
DensityPlot

Geographic density plot, returned as a DensityPlot object.

Tips
• To customize the geographic axes, modify geographic axes properties. For a list of

properties, see GeographicAxes Properties.
• if you have Mapping Toolbox, you can specify basemaps of your own choosing using

the addCustomBasemap function.

See Also
DensityPlot Properties | alphamap | colormap | geoaxes

Topics
“View Cyclone Track Data in Geographic Density Plot”
“View Density of Cellular Tower Placement”

Introduced in R2018b

 geodensityplot

1-4627

GeographicBubbleChart Properties
Control geographic bubble chart appearance and behavior

Description
GeographicBubbleChart properties control the appearance and behavior of a
GeographicBubbleChart object. By changing property values, you can modify aspects
of the chart display. Use dot notation to refer to a particular object and property. The
following example specifies the name of the size legend by using the SizeLegendTitle
property.

tsunamis = readtable('tsunamis.xlsx');
tsunamis.Cause = categorical(tsunamis.Cause);
figure
gb = geobubble(tsunamis,'Latitude','Longitude', ...
 'SizeVariable','MaxHeight','ColorVariable','Cause', ...
 'Basemap','colorterrain')
geolimits([10 65],[-180 -80])
title 'Tsunamis in North America';
gb.SizeLegendTitle = 'Maximum Height';

Properties
Bubble Location

LatitudeData — Latitude coordinates of bubble locations
real, finite, numeric vector | []

Latitude coordinates of bubble locations, specified as a real, finite, numeric vector of
values in the range [-90,90], or as an empty ([]) array. LatitudeData must be the same
size as LongitudeData and can contain NaNs.

Bubbles with latitudes outside the approximate limits [-85 85], beyond which the basemap
tiles do not extend, are permissible. However these values are not typically seen unless
the map extent is controlled manually using the MapCenter and ZoomLevel properties.
Also, bubbles very close to 90 degrees and -90 degrees can never be seen, because they
map to infinite or near-infinite y-values.

1 Alphabetical List

1-4628

Data Types: single | double

LatitudeVariable — Table variable used for bubble latitude
character vector | string scalar | numeric scalar | logical vector

Table variable used for bubble latitude, specified in one of these forms:

• A string scalar or character vector specifying the name of the table variable you want
to use for latitude. For example,
geobubble(__,'LatitudeVariable','Latitude') specifies the variable named
'Latitude'.

• A numeric scalar indicating the table variable index. For example,
geobubble(__,'LatitudeVariable',1) specifies the first variable in the table for
latitudes.

• A logical vector containing one true element.

The values associated with this table variable must be numeric. You can use this property
only when specifying a table as input. geobubble stores the value of this variable in the
'LatitudeData' property and sets the 'LatitudeData' property to read-only.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

LongitudeData — Longitude coordinates of bubble locations
real, finite numeric vector | []

Longitude coordinates of bubble locations, specified as a real, finite, numeric vector of
values in the range (-Inf,Inf), or as an empty ([]) array. LongitudeData must be the
same size as LatitudeData and can contain NaNs.
Data Types: single | double

LongitudeVariable — Table variable used for bubble longitude
character vector | string scalar | numeric scalar | logical vector

Table variable used for bubble longitude, specified in one of these forms:

• A string or character vector specifying the name of the table variable you want to use
for longitude information. For example,
geobubble(__,'LongitudeVariable','Longitude') specifies the table variable
named 'Longitude'.

 GeographicBubbleChart Properties

1-4629

• A numeric scalar indicating the table variable index. For example,
geobubble(__,'LongitudeVariable',16) specifies the sixteenth variable in the
table for longitudes.

• A logical vector containing one true element.

The values associated with this table variable must be numeric. You can use this property
only when specifying a table as input. geobubble stores the value of this variable in the
'LongitudeData' property and sets the 'LongitudeData' property to read-only.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

Bubble Size

BubbleWidthRange — Minimum and maximum width of bubbles
[5 20] (default) | numeric scalar | 1-by-2 numeric vector

Minimum and maximum width of bubbles, measured in points, specified as a numeric
scalar or a 1-by-2 numeric vector. Values must be nondescending. Use a scalar when you
want all the bubbles to have the same (uniform) size. Values must fall within the range [1
100].
Example: [4 10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SizeData — Data controlling bubble size
numeric vector | numeric scalar | []

Data controlling bubble size, specified as a numeric vector or scalar in the range (-
Inf,Inf), or as an empty ([]) array. If you specify a vector, SizeData must be the same
size as LatitudeData and LongitudeData. If you specify a scalar value, the geographic
bubble chart treats the value with scalar expansion. sizedata can contain NaNs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SizeLimits — Limits for mapping SizeData values to bubble width
1-by-2 vector of real, finite values

Limits for mapping SizeData values to bubble width, specified as a 1-by-2 vector of real,
finite, numeric values, or as an empty ([]) matrix. Values must be nondescending. To
create bubbles that are all the same size, specify the same value for each element.

1 Alphabetical List

1-4630

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SizeVariable — Table variable used to determine bubble size
character vector | string scalar | numeric scalar | logical vector

Table variable used to determine bubble size, specified in one of these forms:

• A string scalar or character vector specifying the name of the table variable you want
to use for size information. For example,
geobubble(__,'SizeVariable','MaxHeight') specifies the variable named
'MaxHeight'.

• A numeric scalar indicating the table variable index. For example,
geobubble(__,'SizeVariable',16) specifies the sixteenth variable in the table.

• A logical vector containing one true element. For example, sizevar = logical([0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]) specifies the 16th variable in the table.

This property can only be used when specifying a table as input. The values associated
with this table variable must be of a numeric type. When you specify this variable,
geobubble stores the data values associated with this variable in the 'SizeData'
property and sets the property to read-only.

Bubble Color

BubbleColorList — Colors used to display bubbles and color code by category
MATLAB color specification | cell array of strings | string vector of colors | m-by-3 RGB
color matrix

The BubbleColorList property controls the colors used for the bubbles. The value is an
m-by-3 array where each row is an RGB color triplet, where m equals the number
categories in the ColorData vector, or the number of categories plus 1 if any elements of
ColorData are undefined, or 1 if ColorData is empty. By default, geobubble selects
colors from an ordered list of 7 standard colors. If m is greater than 7, the colors repeat
cyclically. To change the colors used, use one of the MATLAB colormap functions, such as
parula or jet, or specify a custom list of your own RGB values.
Data Types: cell | double

ColorData — Data controlling bubble color
categorical vector | []

Data controlling bubble color, specified as a categorical vector or as empty array ([]).
Bubbles assigned to the same category have the same color on the map. The geographic

 GeographicBubbleChart Properties

1-4631

bubble chart assigns a color to each category, using the colors listed in the
BubbleColorList property. The size of ColorData must match LatitudeData and
LongitudeData, except when you specify an empty array.

If you use a color legend, the geographic bubble chart displays the category values in the
legend. If any of the values contain TeX markup characters, such as an underscore (_),
you might see unexpected formatting in your color legend. MATLAB® uses a subset of
TeX markup for the text displayed in legends. To use a TeX markup character in regular
text, edit the name of the category (using renamecats) and insert the TeX escape
character, the backslash (\), before the character you want to include. For information
about using TeX markup to add superscripts and subscripts, modify font type and color,
and include special characters in the text, see the “Interpreter” on page 1-0 property
of the text object.
Data Types: categorical

ColorVariable — Table variable used to determine bubble color
character vector | string scalar | numeric scalar | logical vector

Table variable used to determine bubble color, specified in one of these forms:

• A string scalar or character vector specifying the name of the table variable you want
to use for color information. For example,
geobubble(__,'ColorVariable','Cause') specifies the variable named
'Cause'.

• A numeric scalar indicating the table variable index. For example,
geobubble(__,'ColorVariable',12) specifies the 12th variable in the table.

• A logical vector containing one true element. For example, sizevar = logical([0
0 0 0 0 0 0 0 0 0 0 1]) specifies the 12th variable in the table.

You can use this property only when specifying a table as input. The values associated
with this table variable must be categorical. When you specify the color variable,
geobubble stores the data values associated with this variable in the ColorData
property and sets the ColorData property to read-only.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

1 Alphabetical List

1-4632

Labels

Title — Title of geographic bubble chart
'' (default) | character array | cell array of character vectors | string scalar | string array
| numeric value | categorical

Title of geographic bubble chart, specified as a character vector, cell array of character
vectors, scalar string, string array, numeric value, or a categorical value. If you specify
this property as a categorical array, MATLAB uses the values in the array, not the
categories. You can also use the title function to set this value.

By default, MATLAB® supports a subset of TeX markup for the text you specify. To add
superscripts and subscripts, modify the font type and color, and include special characters
in the text, use TeX markup. To use a TeX markup character in regular text, such as an
underscore (_), insert the TeX escape character the backslash (\), before the character
you want to include. For more information, see the “Interpreter” on page 1-0 property
of the text object.

ColorLegendTitle — Text to display as title of color legend
'' (default) | character vector | string scalar | string array | cell array of character
vectors | numeric value | categorical

Text to display as title of color legend, specified as a character vector, string scalar, string
array, cell array of character vectors, numeric value, or categorical value. If you
specify this property as a categorical array, MATLAB uses the values in the array, not
the categories.

By default, MATLAB® supports a subset of TeX markup for the text you specify. To add
superscripts and subscripts, modify the font type and color, and include special characters
in the text, use TeX markup. To use a TeX markup character in regular text, such as an
underscore (_), insert the TeX escape character, the backslash (\), before the character
you want to include. For more information, see the “Interpreter” on page 1-0 property
of the text object.
Data Types: char | cell | string | single | double | int8 | int16 | int32 | int64 |
uint8 | uint16 | uint32 | uint64 | logical

SizeLegendTitle — Size legend title
'' (default) | character vector | string scalar | string array | cell array of character
vectors | numeric value | categorical

 GeographicBubbleChart Properties

1-4633

Size legend title, specified as a character vector, string scalar, string array, cell array of
character vectors, numeric value, or categorical value. If you specify this property as a
categorical array, MATLAB uses the values in the array, not the categories.

By default, MATLAB® supports a subset of TeX markup for the text you specify. To add
superscripts and subscripts, modify the font type and color, and include special characters
in the text, use TeX markup. To use a TeX markup character in regular text, such as an
underscore (_), insert the TeX escape character the backslash (\), before the character
you want to include. For more information, see the “Interpreter” on page 1-0 property
of the text object.

LegendVisible — Visibility of bubble size and color legends
'on' (default) | 'off' | true | false

Visibility of bubble size and color legends, specified as 'on' or 'off' or the logical
values true or false. You can also toggle the visibility of the legends by using the
legend function.
Data Types: char | string | logical

Font

FontName — Font used in the geographic bubble chart
character vector | string scalar | 'FixedWidth'

Font used in the geographic bubble chart, specified as a string scalar or character vector.
To display and print properly, the font name must be a font that your system supports. The
default font depends on the specific operating system and locale. To use a fixed-width font
that looks good in any locale, use 'FixedWidth'. The 'FixedWidth' value relies on the
root FixedWidthFontName property. Setting the root FixedWidthFontName property
causes an immediate update of the display to use the new font.
Example: 'Cambria'
Data Types: char | string

FontSize — Font size used in geographic bubble chart
system dependent (default) | real, finite, positive, numeric scalar

Font size used in geographic bubble chart, specified as a real, finite, positive, numeric
scalar. The value is in point units, where one point equals 1/72 inches.

1 Alphabetical List

1-4634

Map

Basemap — Map on which to plot data
'darkwater' (default) | character vector | string scalar | 'none'

Map on which to plot data, specified as one of the string scalars or character vectors in
the following table, or 'none'.

MathWorks offers six basemaps for use with geographic axes and charts. The basemaps
provide a variety of display options, from two-tone, land-ocean raster maps to color
terrain maps. By default, geographic axes or charts use the 'darkwater' basemap,
which is installed with the product. If you choose one of the other basemaps, the
geographic axes or chart accesses the map over the Internet.

If you do not have consistent access to the Internet, you can download the basemaps
hosted by MathWorks onto your local system. For more information about downloading
basemaps, see “Access Basemaps in MATLAB”.

If you specify 'none', the geographic axes or chart plots your data with latitude-
longitude grid, ticks, and labels, but does not include a map.

 GeographicBubbleChart Properties

1-4635

Basemaps

'darkwater'
(default)

Land areas: light-to-
moderate gray

Ocean and water
areas: darker gray

Hosted by
MathWorks.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green
and arid lowlands
brown.

Hosted by
MathWorks.

'grayland'

Land areas: light-to-
moderate gray land

Ocean and water
areas: white

Hosted by
MathWorks.

'grayterrain'

Worldwide terrain
depicted
monochromatically in
shades of gray,
combining shaded
relief that
emphasizes both
high mountains and
the micro terrain
found in lowlands.

Hosted by
MathWorks.

1 Alphabetical List

1-4636

'bluegreen'

Land areas: light
green

Ocean and water
areas: light blue

Hosted by
MathWorks.

'landcover'

Satellite-derived land
cover data and
shaded relief
presented with a
light, natural palette
suitable for making
thematic and
reference maps
(includes ocean-
bottom relief).

Hosted by
MathWorks.

Example: gx = geoaxes(__,'Basemap','bluegreen')
Example: gx.Basemap = 'bluegreen'
Data Types: char | string

SourceTable — Table containing data to be plotted
table

Table containing data to be plotted, specified as a table.
Data Types: table

GridVisible — Visibility of the latitude and longitude lines on the map
'on' (default) | 'off' | true | false

Visibility of the latitude and longitude lines on the map, specified as 'on' or 'off', or
the logical values true or false. You can also use the grid function to toggle grid
visibility.
Data Types: logical | char | string

LatitudeLimits — Latitude limits of map
1-by-2 vector of real, finite values

This property is read-only.

 GeographicBubbleChart Properties

1-4637

Latitude limits of map, specified as a 1-by-2 vector of real, finite values of the form
[southern_limit northern_limit] in the range [-90,90]. To set latitude limits use
the geolimits function.
Data Types: double

LongitudeLimits — Longitude limits of map
1-by-2 vector of real, finite values

This property is read-only.

Longitude limits of map, specified as a 1-by-2 vector of real, finite values of the form
[western_limit eastern_limit]. Values must be in the range (-Inf, Inf). To set
longitude limits use the geolimits function.
Example: [-100 100]
Data Types: double

MapCenter — Center point of map in latitude and longitude
two-element numeric vector of real, finite values

Center point of map in latitude and longitude, specified as a two-element vector of real,
finite values of the form [center_latitude center_longitude]. Values must be in
the range [(-90,90),(-Inf, Inf)].
Example: [38.6292 -95.2520]
Data Types: single | double

MapLayout — Layout of map
'normal' (default) | 'maximized'

Layout of map, including insets and decorations, specified as either of the following.

1 Alphabetical List

1-4638

Value Description Illustration
'normal' Map is inset from the edges of the chart,

as defined by its OuterPosition
property. Axes labels ('Latitude' and
'Longitude'), ticks, and tick labels are
visible. If the Title property value is set,
the chart includes a title. Legends, if
present, appear outside and to the right of
the map.

'maximized' Map fills the entire space, defined by the
OuterPosition property. Axes labels,
ticks, and tick labels are hidden. The title
is hidden, even if the Title property is
set. The grid is hidden, even if
GridVisible is set to 'on'. Legends, if
present, appear within the map, toward
the upper-right corner.

Example: gb = geobubble(__,'MapLayout','maximized')

 GeographicBubbleChart Properties

1-4639

Example: gb.MapLayout = 'maximized'
Data Types: char | string

ScalebarVisible — Visibility of the scale bar on the map
'on' (default) | 'off' | true | false

Visibility of the scale bar on the map, specified as 'on' or 'off', or the logical values
true or false.
Data Types: logical | char | string

ZoomLevel — Magnification level of map
real, finite, numeric scalar between 0 and 25, inclusive

Magnification level of map, specified as a real, finite, numeric scalar between 0 and 25,
inclusive. The value is a base 2 logarithmic map scale. Increasing the ZoomLevel value
by 1 doubles the map scale.
Data Types: single | double

Position

ActivePositionProperty — Position property to hold constant
'outerposition' (default) | 'innerposition'

Position property to hold constant during resize operations, specified as
'outerposition' or 'innerposition'. The default value of 'outerposition'
means that the OuterPosition property remains constant. The InnerPosition
property value can change when the parent container changes size, the data changes, or
the labels change. The InnerPosition property value also can change when you display
or remove the size legend or the color legend.

The following figure shows the innerposition and outerposition definitions for a
geographic bubble chart. innerposition does not include the title or axis labels.

1 Alphabetical List

1-4640

Example: gb.ActivePositionProperty = 'outerposition'

InnerPosition — Inner size and position
four-element vector

Inner size and position of the geographic bubble chart within the parent container
(typically a figure, panel, or tab), returned as a four-element vector of the form [left
bottom width height]. The inner position does not include the title or axis labels.

• The left and bottom elements define the distance from the lower left corner of the
container to the lower left corner of the geographic bubble chart.

 GeographicBubbleChart Properties

1-4641

• The width and height elements are the geographic bubble chart dimensions.

For an illustration, see “ActivePositionProperty” on page 1-0 .

OuterPosition — Size and position of geographic bubble chart within parent
[0 0 1 1] (default) | four-element vector

Size and position of the geographic bubble chart within its parent, specified as a four-
element numeric vector of the form [left bottom width height]. The default value
of [0 0 1 1] includes the whole interior of the container.

For an illustration, see “ActivePositionProperty” on page 1-0 .

Position — Inner size and position
four-element vector

Inner size and position of the geographic bubble chart within the parent container
(typically a figure, panel, or tab) returned as a four-element vector of the form [left
bottom width height]. This property is equivalent to the “InnerPosition” on page 1-
0 property.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0), and the upper right corner maps to
(1,1).

'inches' Inches
'centimeters' Centimeters

1 Alphabetical List

1-4642

Units Description
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
OuterPosition.

Visible — Visibility of the geographic bubble chart
'on' (default) | 'off' | true | false

Visibility of the geographic bubble chart, specified as 'on' or 'off' or as the logical
values true or false.

Parent/Child

Parent — Parent of geographic bubble chart
figure object | panel object | tab object

Parent of the geographic bubble chart, specified as a figure, panel, or tab object.

 GeographicBubbleChart Properties

1-4643

See Also
geobubble | geolimits

Topics
“Create Geographic Bubble Chart from Tabular Data”
“Use Geographic Bubble Chart Properties”
“Deploy Geographic Axes and Charts”
“Access Basemaps in MATLAB”
“Troubleshoot Geographic Axes or Chart Basemap Connection”
“Geographic Bubble Charts Overview”

Introduced in R2017b

1 Alphabetical List

1-4644

geolimits
Set or query geographic limits

Syntax
geolimits(latlim,lonlim)
[latitudeLimits,longitudeLimits] = geolimits
geolimits('auto')
geolimits('manual')
[latitudeLimits,longitudeLimits] = geolimits(___)
___ = geolimits(gx, ___)

Description
geolimits(latlim,lonlim) adjusts the geographic limits of the current geographic
axes or chart to include latitudes ranging from latlim(1) to latlim(2) and longitudes
from lonlim(1) to lonlim(2). If there is no current geographic axes or chart,
geolimits constructs a default GeographicAxes and sets its limits.

[latitudeLimits,longitudeLimits] = geolimits returns the latitude limits and
longitude limits of the current geographic axes or chart.

geolimits('auto') lets the geographic axes or chart choose its geographic limits
based on its data locations.

geolimits('manual') requests that the axes or chart preserve its current limits as
closely as possible when the map is resized or when its data locations change.

[latitudeLimits,longitudeLimits] = geolimits(___) adjusts the geographic
limits and returns the actual limits of the map.

Note Typically, the actual limits chosen by geolimits are greater in extent than the
requested limits because geolimits manages the limits to maintain a correct north-
south/east-west aspect.

 geolimits

1-4645

___ = geolimits(gx, ___) operates on the geographic axes or chart specified by gx.

Examples

Set Geographic Limits of Geographic Bubble Chart

Read tsunami data from a spreadsheet into a table.

tsunamis = readtable('tsunamis.xlsx');

Get the latitude and longitude data from the table. This data specifies the locations of the
tsunamis. In addition, get data about the size of the tsunami from the table.

lat = tsunamis.Latitude;
lon = tsunamis.Longitude;
sizedata = tsunamis.MaxHeight;

Create a geographic bubble chart with the tsunami data. The example sets the title of the
size legend.

gb = geobubble(lat,lon,sizedata,'SizeLegendTitle','Maximum Height');

1 Alphabetical List

1-4646

Get the current geographic limits of the chart. By default, geobubble sets the map limits
large enough to encompass all the locations in the data.

[latlim, lonlim] = geolimits

latlim = 1×2

 -85.4923 85.4923

lonlim = 1×2

 -295.8338 37.8079

 geolimits

1-4647

Modify the geographic limits to get a closer look at tsunami activity in Alaska. The
example also specifies a title for the geographic bubble chart.

geolimits([50 65],[-175 -130])
gb.Title = 'Tsunamis in Alaska'

gb =
 GeographicBubbleChart with properties:

 Basemap: 'darkwater'
 MapLayout: 'normal'
 LatitudeData: [162x1 double]
 LongitudeData: [162x1 double]
 SizeData: [162x1 double]

1 Alphabetical List

1-4648

 ColorData: []

 Show all properties

Get the actual geographic limits used by the chart. Due to zoom level quantization and
aspect ratio preservation, the actual limits may differ from the requested limits.

[latlim, lonlim] = geolimits

latlim = 1×2

 42.5540 69.1908

lonlim = 1×2

 -175.0000 -130.0000

Input Arguments
latlim — Limits of the geographic axes or chart in latitude
two-element vector

Limits of the geographic axes or chart in latitude, specified as a two-element vector.
Example: [50 65]
Data Types: single | double

lonlim — Limits of the geographic axes or chart in longitude
two-element vector

Limits of the geographic axes or chart in longitude, specified as a two-element vector.
Example: [-175 -130]
Data Types: single | double

gx — Geographic axes or chart
gca (default) | GeographicAxes object | GeographicBubbleChart object

 geolimits

1-4649

Geographic axes or chart, specified as a GeographicAxes object or
GeographicBubbleChart object.

Output Arguments
latitudeLimits — Actual latitude limits of map
two-element vector

Actual latitude limits of map, returned as two-element vector.

longitudeLimits — Actual longitude limits of map
two-element vector

Actual longitude limits of map, returned as two-element vector.

See Also
GeographicBubbleChart Properties | geoaxes | geobasemap | geobubble

Topics
“Specify Map Limits with Geographic Axes”
“Plot in Geographic Coordinates”
“Deploy Geographic Axes and Charts”

Introduced in R2017b

1 Alphabetical List

1-4650

geoplot
Plot line in geographic coordinates

Syntax
geoplot(lat,lon)
geoplot(lat,lon,LineSpec)
geoplot(lat1,lon1,...,latN,lonN)
geoplot(lat1,lon1,LineSpec1,...,latN,lonN,LineSpecN)

geoplot(___ ,Name,Value)
geoplot(gx, ___)
h = geoplot(___)

Description
geoplot(lat,lon) plots a line in a geographic axes with vertices at the latitude-
longitude locations specified (in degrees) by the vectors lat and lon. The lat and lon
inputs must be the same size. By default, geoplot draws a solid line, with no markers,
using colors specified by the ColorOrder property of the Geographic axes object.

geoplot(lat,lon,LineSpec) sets the style, marker symbol, and color for the line.

geoplot(lat1,lon1,...,latN,lonN) combines the plots specified by several sets of
latitude-longitude locations.

geoplot(lat1,lon1,LineSpec1,...,latN,lonN,LineSpecN) combines the plots
specified by several sets of latitude-longitude locations, with a separate LineSpec for
each line.

geoplot(___ ,Name,Value) specifies properties of the chart line using one or more
Name,Value pair arguments.

geoplot(gx, ___) plots in the geographic axes specified by gx instead of the current
axes.

 geoplot

1-4651

h = geoplot(___) returns a column vector of Chart Line objects. Each object
corresponds to a plotted line. Use h to modify the properties of the Chart line objects.

Examples

Create Geographic Plot

Plot a straight line between two points on a map. Specify the latitude and longitude (in
degrees) of two cities, Seattle and Anchorage, as the endpoints of the line.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;
lonAnchorage = -149.9;

Plot the data on a map. Use a LineSpec to specify the color and other qualities of the line.

geoplot([latSeattle latAnchorage],[lonSeattle lonAnchorage],'g-*')

1 Alphabetical List

1-4652

Add Text to Geographic Plot

Plot a straight line between two points on a map. Specify the latitude and longitude (in
degrees) of two cities, Seattle and Anchorage, as the endpoints of the line.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;
lonAnchorage = -149.9;

Plot the data on a map. Use a LineSpec to specify the color and other qualities of the
line.

 geoplot

1-4653

geoplot([latSeattle latAnchorage],[lonSeattle lonAnchorage],'g-*')

Add a text label to identify Anchorage in the plot.

text(latAnchorage,lonAnchorage,'Anchorage');

1 Alphabetical List

1-4654

Add a text label to identify Seattle in the plot. Use properties of the Text object to specify
the alignment of the text label.

text(latSeattle,lonSeattle,'Seattle',...
 'HorizontalAlignment','right',...
 'VerticalAlignment','bottom');

 geoplot

1-4655

Plot Multiple Lines on Map with Individual LineSpecs

Set up the latitude and longitudes for three cities: Seattle, Anchorage, and Point Barrow.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;
lonAnchorage = -149.9;
latPtBarrow = 71.38;
lonPtBarrow = -156.47;

1 Alphabetical List

1-4656

Plot straight lines from Seattle to each of the other two cities. Draw a solid yellow line
from Seattle to Anchorage and a dotted blue line between Seattle and Point Barrow.

geoplot([latSeattle latAnchorage],[lonSeattle lonAnchorage],'y-',...
 [latSeattle latPtBarrow],[lonSeattle lonPtBarrow],'b:')

Use a Text object to add text labels identifying each city.

text(latAnchorage,lonAnchorage,'Anchorage');
text(latPtBarrow,lonPtBarrow,'Point Barrow');
text(latSeattle,lonSeattle,'Seattle',...
 'VerticalAlignment','bottom');

 geoplot

1-4657

Use Chart Line Properties to Customize Appearance of the Line

Plot a straight line between two points on a map. Specify the latitude and longitude (in
degrees) of two cities, Seattle and Anchorage, as the endpoints of the line.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;
lonAnchorage = -149.9;

Plot the line, using Chart Line properties to specify aspects of the appearance of the line.

1 Alphabetical List

1-4658

geoplot([latSeattle latAnchorage],[lonSeattle lonAnchorage],...
 'LineWidth',2,'Color',[.6 0 0])

Change Basemap Used in Geographic Plot

Plot a straight line between two points on a map. Specify the latitude and longitude (in
degrees) of two cities, Seattle and Anchorage, as the endpoints of the line.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;
lonAnchorage = -149.9;

 geoplot

1-4659

Plot the line on the map.

geoplot([latSeattle latAnchorage],[lonSeattle lonAnchorage])

Change the basemap used in the plot using the geobasemap function.

geobasemap('colorterrain')

1 Alphabetical List

1-4660

Input Arguments
lat — Latitude coordinates in degrees
real, numeric, finite vector

Latitude coordinates in degrees, specified as a real, numeric, finite vector. The vector can
contain embedded NaNs. lat must be the same size as lon.
Example: [43.0327 38.8921 44.0435]
Data Types: single | double

 geoplot

1-4661

lon — Longitude coordinates in degrees
real, numeric, finite vector

Longitude coordinates in degrees, specified as a real, numeric, finite vector. The vector
can contain embedded NaNs. lon must be the same size as lat.
Example: [-107.5556 -77.0269 -72.5565]
Data Types: single | double

LineSpec — Line specification
character vector | string

Line specification, specified as a character vector or string containing a line style, marker,
and color specifier. The elements can appear in any order, and you can omit one or more
options. If you omit the line style and specify the marker, the plot shows only markers
with no line connecting them. For more information, see LineSpec (Line
Specification).
Example: '--or' is a red dashed line with circular markers
Data Types: char | string

gx — Target geographic axes
GeographicAxes object

Target geographic axes, specified as a GeographicAxes object. You can modify the
appearance and behavior of a GeographicAxes object by setting its properties. For a list
of properties, see GeographicAxes Properties.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note Property settings apply to all the lines in the plot. To set the properties of an
individual line, retrieve the handle to the line in the geoplot return value h and use dot
notation.

The name-value pairs listed here are only a subset. For a full list, see Chart Line.

1 Alphabetical List

1-4662

Example: h = geoplot(lat,lon,'Color','g')

Color — Line color
[0 1 0] (default) | MATLAB ColorSpec | ...

Line color, specified as a MATLAB ColorSpec (Color Specification). If specifying
an RGB triplet, the intensities must be in the range [0,1].
Example: 'green'
Example: 'g'
Example: [0 1 0]

LineStyle — Line style
'-' (default) | MATLAB LineSpec | ...

Line style, specified as a MATLAB LineSpec (Line Specification).
Example: '--' (dashed line)
Example: ':' (dotted line)

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers in this table. By default, a chart line does
not have markers. Add markers at each data point along the line by specifying a marker
symbol.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross

 geoplot

1-4663

Value Description
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerFaceColor — Marker face color
'none' (default) | 'auto' | MATLAB ColorSpec | ...

Marker face color, specified as 'none', 'auto' or a MATLAB ColorSpec (Color
Specification). The 'auto' value uses the same color as the Color name-value pair
for the axes. If you specify an RGB triplet, the intensities must be in the range [0,1].
Example: 'green'
Example: 'g'
Example: [0 1 0]

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
h — Geographic plot
column vector of Line objects

Geographic plot, returned as a column vector of Line objects. Each object corresponds to
a plotted line. Use h to modify the properties of the objects after they area created.

1 Alphabetical List

1-4664

Tips
• To customize certain aspects of your plot, use properties of the geographic axes. For a

list of properties, see GeographicAxes Properties.
• If you have Mapping Toolbox, you can specify basemaps of your own choosing by using

the addCustomBasemap function.
• To plot additional data in the geographic axes, use the hold on command.
• You cannot plot data that requires Cartesian axes in a geographic axes.

See Also
Functions
geoaxes | geobasemap | geobubble | geoscatter | plot

Properties
Chart Line | GeographicAxes Properties

Introduced in R2018b

 geoplot

1-4665

GeographicRuler Properties
Control appearance and behavior of axis with geographic values

Description
GeographicRuler properties control the appearance and behavior of the latitude axis
and the longitude axis in a GeographicAxes. Each individual axis is a
GeographicRuler object. By changing property values of the ruler, you can modify
certain aspects of a specific axis.

For certain ruler properties, you can customize the appearance of both rulers (latitude
axis and longitude axis) by setting properties on the geographic axes instead of setting
properties of each individual ruler. For example, using the GeographicRuler properties,
you can specify a different color for each ruler. Typically, it's preferable, and simpler, to
specify the color of both rulers using the GeographicAxes property, and keep the rulers
consistent in appearance.

Use dot notation to refer to a ruler property. Access the ruler object through the
LatitudeAxis or LongitudeAxis property of the GeographicAxes object.

% Create a GeographicAxes.
gx = geoaxes;

% View GeographicRuler object.
latruler = gx.LatitudeAxis

latruler =

 GeographicRuler with properties:

 Limits: [-85.0511 85.0511]
 TickValues: [-75 -45 0 45 75]
 TickLabelFormat: 'dms'

 Show all properties

1 Alphabetical List

1-4666

Properties
Appearance

Limits — Minimum and maximum axis limits
two-element vector of the form [min max]

Minimum and maximum axis limits, specified as a two-element vector of the form [min
max]. Limits is a read-only property.

To set the limits of a GeographicAxes, use the geolimits function.

Note The Limits property for the latitude and longitude GeographicRuler objects
always has the same value as the LatitudeLimits property and the Longitudelimits
properties of the parent GeographicAxes object, respectively.

Example: latlim = gx.LatitudeAxis.Limits;

Color — Color of axis line and labels
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | color name | short
color name

Color of the axis line and labels, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 GeographicRuler Properties

1-4667

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note Setting the AxisColor property for the parent GeographicAxes sets the Color
property for the GeographicRuler objects to the same value. These ruler objects are
associated with the LatitudeAxis and LongitudeAxis properties of the
GeographicAxes. Conversely, setting these GeographicRuler properties does not set
the GeographicAxes property. To prevent the axes property value from overriding the
ruler property value, set the axes value first, and then set the ruler value.

1 Alphabetical List

1-4668

Example: gx.LatitudeAxis.Color = 'b'
Example: gx.LatitudeAxis.Color = 'blue'
Example: gx.LatitudeAxis.Color = [0.1 0.7 0.8];
Example: gx.LatitudeAxis.Color = '#0000FF';

LineWidth — Width of axis line and tick marks
0.5 (default) | positive value

Width of axis line and tick marks, specified as a positive value in point units. One point
equals 1/72 inch.

Note Setting the LineWidth property for the parent GeographicAxes sets the
LineWidth property for the GeographicRuler objects to the same value. These ruler
objects are associated with the LatitudeAxis and LongitudeAxis properties of the
GeographicAxes. Conversely, setting a ruler property does not set the axes property. To
prevent the axes property value from overriding the ruler property value, set the axes
value first, and then set the ruler value.

Example: gx.LatitudeAxis.LineWidth = 2;

Label — Axis label
Text object

Axis label, specified as a Text object.

 GeographicRuler Properties

1-4669

To change existing text, set the String property of the Text object. Use other Text
object properties to change the text appearance, such as the font style or color.

gx.LatitudeAxis.Label.String = 'Latitude Axis';
gx.LatitudeAxis.Label.FontSize = 16;

For a full list of options, see the Text object property reference page.

Note The Text object is not a child of the ruler object and, thus, it does not appear in the
list of objects returned by findobj. This Text object does not use default Text property
values.

1 Alphabetical List

1-4670

Visible — Axis ruler visibility
'on' (default) | 'off'

Axis ruler visibility, specified as one of these values:

• 'on' — Display the axis ruler.
• 'off' — Hide the axis ruler without deleting it. You still can access properties of an

invisible axis ruler using the ruler object.

Example: gx.LatitudeAxis.Visible = 'off';

Tick Values and Labels

TickValues — Tick mark locations along the axis
vector of increasing values

Tick mark locations along the axis, specified as a vector of increasing values.

If you assign a value to this property, MATLAB sets the TickValuesMode property to
'manual'.
Example: gx.LatitudeAxis.TickValues = [-15 -10 0 10 15];
Example: gx.LongitudeAxis.TickValues = 0:10:100;

TickValuesMode — Selection mode for TickValues property
'auto' (default) | 'manual'

Selection mode for the TickValues property, specified as one of these values:

• 'auto' — Automatically select the tick values based on the limits of the map and the
position (size) of the axes.

• 'manual' — Use tick values that you specify. To specify the values, set the
TickValues property.

TickLabels — Tick mark labels
cell array of character vectors | string array

Tick mark labels, specified as a cell array of character vectors or a string array. If you do
not specify enough labels for all of the tick values, then the labels repeat. The labels
support TeX and LaTeX markup. See the TickLabelInterpreter property for more
information.

 GeographicRuler Properties

1-4671

Example: gx.TickValues = [-66.5 -23.5 0 23.5
66.5];gx.LatitudeAxis.TickLabels = {'Antarctic Circle','Tropic of
Capricorn','Equator','Tropic of Cancer','Artic Circle'};

If you set this property, MATLAB sets the TickLabelsMode property to 'manual'.
Data Types: char | string

TickLabelsMode — Selection mode for TickLabels property
'auto' (default) | 'manual'

Selection mode for the TickLabels property, specified as one of these values:

• 'auto' — Automatically select the tick labels.
• 'manual' — Use tick labels that you specify. To specify the labels, set the

TickLabels property.

TickLabelInterpreter — Interpretation of tick label characters
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

For more information about these interpreters, see the Interpreter property on the
Text Properties reference page.
Example: gx.LatitudeAxis.TickLabelInterpreter = 'latex';

TickLabelFormat — Tick label format
'dms' (default) | 'dd' | 'dm' | -'dd' | '-dm' | '-dms'

Tick label format, specified as one of the following values.

Format Description Example
'dd' Decimal degrees plus

compass direction
23°N

1 Alphabetical List

1-4672

Format Description Example
'dm' Degrees and (decimal)

minutes plus compass
direction

18°30'W

'dms' Degrees, minutes, and
(decimal) seconds plus
compass direction

110°06'18.5"E

'-dd' Decimal degrees with minus
sign (-) to indicate south and
west.

-115.25°

'-dm' Degrees and (decimal)
minutes with minus sign (-)
to indicate south and west.

-5°45.5'

'-dms' Degrees, minutes, and
(decimal) seconds with
minus sign (-) to indicate
south and west.

-3°21'05"

You can also specify the tick label format using the geotickformat function.

Note Setting the TickLabelFormat property for the parent GeographicAxes sets the
TickLabelFormat property for the GeographicRuler objects to the same value. These
ruler objects are associated with the LatitudeAxis and LongitudeAxis properties of
the GeographicAxes. Conversely, setting either of the ruler properties does not set the
axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: gx.LatitudeAxis.TickLabelFormat = 'dd';

TickLabelRotation — Rotation of tick labels
scalar value in degrees

Rotation of tick labels, specified as a scalar value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation. For example, specify

 GeographicRuler Properties

1-4673

gx.LatitudeAxis.TickLabelRotation = 45; to rotate the tick labels 45 degrees in

a counterclockwise direction,

If you assign a value to this property, then MATLAB sets the TickLabelRotation
property to 'manual'.
Example: gx.LatitudeAxis.TickLabelRotation = -45;

TickLabelRotationMode — Selection mode for TickLabelRotation property
'auto' (default) | 'manual'

Selection mode for the TickLabelRotation property, specified as one of these values:

• 'auto' — Object automatically selects the tick label rotation.
• 'manual' — Use a tick label rotation that you specify. To specify the rotation, set the

TickLabelRotation property.

TickDirection — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values:

Value Description Example
'in' Direct the tick marks inward

from the axis lines.

'out' Direct the tick marks
outward from the axis lines.

'both' Center the tick marks over
the axis lines.

If you assign a value to this property, MATLAB sets the TickDirectionMode property to
'manual'.

Note Setting the TickDir property for the parent GeographicAxes sets the
TickDirection property for the GeographicRuler object to the same value. The

1 Alphabetical List

1-4674

GeographicRuler object is associated with the LatitudeAxis and LongitudeAxis
properties of the GeographicAxes. Conversely, setting one of the ruler properties does
not set the axes property. To prevent the axes property value from overriding the ruler
property value, set the axes value first, and then set the ruler value.

Example: gx.LatitudeAxis.TickDirection = 'out';

TickDirectionMode — Selection mode for TickDirection property
'auto' (default) | 'manual'

Selection mode for the TickDirection property, specified as one of these values:

• 'auto' — Automatically select the tick direction.
• 'manual' — Use a tick direction that you specify. To specify the tick direction, set the

TickDirection property.

TickLength — Tick mark length
two-element vector

Tick mark length, specified as a two-element vector of the form [length unused]. (The
GeographicRuler object uses a two-element vector to be consistent with the value of
this property in other ruler objects.) The first element is the tick mark length. Specify the
values in units normalized relative to the longest axes dimension.

Note Setting the TickLength property for the parent GeographicAxes sets the
TickLength property for the GeographicRuler objects to the same value. The
GeographicRuler objects are associated with the LatitudeAxis and LongitudeAxis.
Conversely, setting the ruler property does not set the axes property. To prevent the axes
property value from overriding the ruler property value, set the axes value first, and then
set the ruler value.

Example: gx.LatitudeAxis.TickLength = [0.04 0];

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific system and locale. To use a fixed-width font that looks good

 GeographicRuler Properties

1-4675

in any locale, specify 'FixedWidth'. The actual fixed-width font used depends on the
FixedWidthFontName property of the root object.

Note Setting the FontName property for the parent axes sets the FontName property for
the GeographicRuler objects to the same value. The GeographicRuler objects are
associated with LatitudeAxis and LongitudeAxis. Conversely, setting the ruler
property does not set the axes property. To prevent the axes property value from
overriding the ruler property value, set the axes value first, and then set the ruler value.

Example: gx.LatitudeAxis.FontName = 'Cambria';

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The default font size depends on the
specific operating system and locale.

Note Setting the FontSize property for the parent axes sets the FontSize property for
the GeographicRuler objects to the same value. The GeographicRuler objects are
associated with LatitudeAxis and LongitudeAxis properties. Conversely, setting the
ruler properties does not set the axes property. To prevent the axes property value from
overriding the value of the ruler properties, set the axes value first, and then set the ruler
value.

Example: gx.LatitudeAxis.FontSize = 12;

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font.
• 'bold' — Thicker character outlines than normal.

MATLAB uses the FontWeight property to select a font from the fonts available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

1 Alphabetical List

1-4676

Note Setting the FontWeight property for the parent axes sets the FontWeight
property for the GeographicRuler objects to the same value. The GeographicRuler
objects are associated with the LatitudeAxis and LongitudeAxis properties.
Conversely, setting the ruler properties does not set the axes property. To prevent the
axes property value from overriding the ruler property values, set the axes value first, and
then set the ruler value.

Example: gx.LatitudeAxis.FontWeight = 'bold';

FontAngle — Text character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font can look the same as the normal font.

Note Setting the FontAngle property for the parent axes sets the FontAngle property
for the GeographicRuler objects for both the LatitudeAxis and LongitudeAxis to
the same value. Conversely, setting the ruler property does not set the axes property. To
prevent the axes property value from overriding the ruler property values, set the axes
value first, and then set the ruler value.

Example: gx.LatitudeAxis.FontAngle = 'italic';

FontSmoothing — Text antialiasing
'on' (default) | 'off'

Text smoothing, specified as one of these values:

• 'on' — Enable text antialiasing to reduce the jagged appearance of text characters
and make the text easier to read. In certain cases, smoothed text blends against the
background color and can make the text appear blurry.

• 'off' — Disable text antialiasing. Use this setting if the text seems blurry.

Example: gx.LatitudeAxis.FontSmoothing = 'off';

Parent/Child

Parent — Ruler parent
Axes object

 GeographicRuler Properties

1-4677

Ruler parent, specified as an Axes object.

Note Ruler objects are not listed in the Children property of the parent Axes object.

Children — Ruler children
empty GraphicsPlaceholder array

The ruler has no children. You cannot set this property.

See Also
GeographicAxes Properties

Introduced in R2019a

1 Alphabetical List

1-4678

GeographicScalebar Properties
Control appearance and behavior of scale bar in geographic axes

Description
GeographicScalebar properties control the appearance and behavior of the scale bar
included in a GeographicAxes object.

Access the GeographicScalebar object through the Scalebar property of the
GeographicAxes object. Use dot notation to refer to the GeographicScalebar
properties.

% Create a Geographic Axes.
gx = geoaxes;

% Get the GeographicScalebar object.
sb = gx.Scalebar;

% Set a GeographicScalebar object property.
gx.Scalebar.Visible = 'off';

Properties
Appearance

BackgroundAlpha — Transparency of scale bar background
0.45 (default) | scalar

Transparency of scale bar background, specified as a scalar between 0 and 1, inclusive. A
value of 1 means the scale bar background is fully opaque and 0 means it is completely
transparent (invisible).
Example: gx.Scalebar.BackgroundAlpha = 0.2;

BackgroundColor — Background color of scale bar
[1 1 1] (default) | RGB triplet | hexadecimal color code | color name | short color name

 GeographicScalebar Properties

1-4679

Background color of scale bar, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

1 Alphabetical List

1-4680

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: gx.Scalebar.BackgroundColor = [0 0 1];
Example: gx.Scalebar.BackgroundColor = 'b';
Example: gx.Scalebar.BackgroundColor = 'none';
Example: gx.Scalebar.BackgroundColor = '#0000FF';

EdgeColor — Color of lines in scale bar
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | color name | short
color name

Color of lines in scale bar, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

 GeographicScalebar Properties

1-4681

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note Setting the AxisColor property for the parent geographic axes sets the
EdgeColor property for the scale bar to the same value. Conversely, setting the scale bar
property does not set the AxisColor property. To prevent the axis property value from
overriding the scale bar property value, set the axis value first, and then set the scale bar
property value.

Example: gx.Scalebar.EdgeColor = 'b';
Example: gx.Scalebar.EdgeColor = 'blue';
Example: gx.Scalebar.EdgeColor = [0 0 1];

1 Alphabetical List

1-4682

Example: gx.Scalebar.EdgeColor = '#0000FF';

LineWidth — Width of lines in scale bar
0.5 (default) | positive value

Width of lines in scale bar, specified as a positive value in point units. One point equals
1/72 inch.
Example: gx.Scalebar.LineWidth = 2;

Note Setting the LineWidth property for the parent geographic axes sets the
LineWidth property for the scale bar to the same value. Conversely, setting the scale bar
property does not set the axes property. To prevent the axes property value from
overriding the scale bar property value, set the axes value first, and then set the scale bar
property value.

Visible — Visibility of scale bar
'on' (default) | 'off'

Visibility of scale bar, specified as one of these values:

• 'on' — Display the scale bar.
• 'off' — Hide the scale bar without deleting it. You can still access properties of an

invisible scale bar by using the GeographicScalebar object.

Example: gx.Scalebar.Visible = 'off';

Font

FontName — Font name
system-supported font name | 'FixedWidth'

Font name, specified as a system-supported font name or 'FixedWidth'. The default
font depends on the specific system and locale. To use a fixed-width font that works well
in any locale, specify 'FixedWidth'. The actual fixed-width font used depends on the
FixedWidthFontName property of the root object.

Note Setting the FontName property for the parent geographic axes sets the FontName
property for the scale bar to the same value. Conversely, setting the scale bar property
does not set the axes property. To prevent the axes property value from overriding the

 GeographicScalebar Properties

1-4683

scale bar property value, set the axes value first, and then set the scale bar property
value.

Example: gx.Scalebar.FontName = 'Cambria';

FontSize — Font size
8 (default) | scalar numeric value

Font size, specified as a scalar numeric value.

Note Setting the FontSize property for the parent geographic axes sets the FontSize
property for the scale bar object. Conversely, setting the scale bar property does not set
the parent axes property. To prevent the axes property value from overriding the scale bar
property value, set the axes value first, and then set the scale bar property value.

When using the font size specified by the parent geographic axes, the scale bar scales the
font size to 80% of the parent font size.

Example: gx.Scalebar.FontSize = 12;

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than default weight

MATLAB uses the FontWeight property to select a font from those fonts available on
your system. Not all fonts have a bold font weight. Therefore, specifying a bold font
weight still can result in the normal font weight.

Note Setting the FontWeight property for the parent geographic axes sets the
FontWeight property for the scale bar to the same value. Conversely, setting the scale
bar property does not set the parent axes property. To prevent the axes property value
from overriding the scale bar property value, set the axes value first, and then set the
scale bar property value.

1 Alphabetical List

1-4684

Example: gx.Scalebar.FontWeight = 'bold';

FontColor — Font color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | color name | short
color name

Font color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 GeographicScalebar Properties

1-4685

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note Setting the AxisColor property for the parent geographic axes sets the
FontColor property for the scale bar to the same value. Conversely, setting the scale bar
property does not set the parent axes property. To prevent the parent axes property value
from overriding the scale bar property value, set the axes value first, and then set the
scale bar property value.

Example: gx.Scalebar.FontColor = 'b';
Example: gx.Scalebar.FontColor = 'blue';
Example: gx.Scalebar.FontColor = [0 0 1];
Example: gx.Scalebar.FontColor = '#0000FF';

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font can look the same as the normal font.

Note Setting the FontAngle property for the parent geographic axes sets the
FontAngle property for the scale bar to the same value. Conversely, setting the scale bar
property does not set the parent axes property. To prevent the parent axes property value
from overriding the scale bar property value, set the axes value first, and then set the
scale bar property value.

Example: gx.Scalebar.FontAngle = 'italic';

1 Alphabetical List

1-4686

FontSmoothing — Character smoothing
'on' (default) | 'off'

Character smoothing, specified as one of these values:

• 'on' — Enable text antialiasing, or character smoothing, to reduce the jagged
appearance of text characters and make the text easier to read. In certain cases,
smoothed text blends against the background color and can make the text appear
blurry.

• 'off' — Disable text antialiasing. Use this setting if the text appears blurry.

Example: gx.Scalebar.FontSmoothing = 'off';

Parent/Child

Parent — Scale bar parent
GeographicAxes

This property is read-only.

Scale bar parent, specified as a GeographicAxes object.

Note Scale bar objects are not listed in the Children property of the parent
GeographicAxes object.

Children — Scale bar children
empty GraphicsPlaceholder array

This property is read-only.

Scale bar children, specified as an empty GraphicsPlaceholder array. The scale bar
has no children.

See Also
GeographicAxes Properties

Introduced in R2019a

 GeographicScalebar Properties

1-4687

geoscatter
Scatter chart in geographic coordinates

Syntax
geoscatter(lat,lon)
geoscatter(lat,lon,A)
geoscatter(lat,lon,A,C)

geoscatter(___ ,M)
geoscatter(___ ,'filled')
geoscatter(___ ,Name,Value)
geoscatter(gx, ___)
s = geoscatter(___)

Description
geoscatter(lat,lon) displays colored circles in a geographic axes at the latitude-
longitude locations specified (in degrees) by the vectors lat and lon. lat and lon must
be the same size.

geoscatter(lat,lon,A) uses A to specify the area of each marker (in points^2). To
draw all the markers with the same size, specify A as a scalar. To draw the markers with
different sizes, specify A as a vector the same length as lat and lon. If you do not specify
A, geoscatter uses the default size.

geoscatter(lat,lon,A,C) uses C to specify the color of each marker.

geoscatter(___ ,M) creates a scatter plot where M specifies the marker used. By
default, geoscatter uses circles as the marker.

geoscatter(___ ,'filled') fills the markers.

geoscatter(___ ,Name,Value) specifies properties of the scatter plot using one or
more Name,Value pair arguments. The property settings apply to all the scatter plots.

1 Alphabetical List

1-4688

geoscatter(gx, ___) plots into the geographic axes specified by gx instead of into the
current axes.

s = geoscatter(___) returns the Scatter object. Use S to modify properties of the
object after it is created.

Examples

Create Geographic Scatter Plot Controlling Color, Size, and Shape of Markers

Set up latitude and longitude data.

lon = (-170:10:170);
lat = 50 * cosd(3*lon);

Define data that controls the area of each marker.

A = 101 + 100*(sind(2*lon));

Define data to control the color of each marker.

C = cosd(4*lon);

Plot the data on a geographic scatter plot, specifying the marker size data and the color
data. Specify the marker as a triangle, rather than the default circle.

geoscatter(lat,lon,A,C,'^')

 geoscatter

1-4689

Create Geographic Scatter Plot Specifying Basemap

Set up latitude and longitude data.

lon = (-170:10:170);
lat = 50 * cosd(3*lon);

Define the data that controls the area of each marker.

A = 101 + 100*(sind(2*lon));

Define the data that controls the color of each marker.

1 Alphabetical List

1-4690

C = cosd(4*lon);

Create the scatter plot on a geographic axes, specifying the marker size data and the
color data. The example specifies the marker as a triangle, rather than the default circle.

geoscatter(lat,lon,A,C,'^')

Change the basemap in the geographic scatter plot.

geobasemap('colorterrain')

 geoscatter

1-4691

Input Arguments
lat — Latitude coordinates in degrees
real, numeric, finite vector within the range [-90 90]

Latitude coordinates in degrees, specified as a real, numeric, finite vector within the
range [-90 90]. The vector can contain embedded NaNs. lat must be the same size as
lon.
Example: [43.0327 38.8921 44.0435]
Data Types: single | double

1 Alphabetical List

1-4692

lon — Longitude coordinates in degrees
real, numeric, finite vector

Longitude coordinates in degrees, specified as a real, numeric, finite vector. The vector
can contain embedded NaNs. lon must be the same size as lat.
Example: [-107.5556 -77.0269 -72.5565]
Data Types: single | double

A — Marker sizes in points squared
36 (default) | scalar | vector | []

Marker sizes in points squared, specified in one of these forms:

• Scalar — Uniform marker size. For example, A = 100 creates all markers with an
area of 100 points squared.

• Vector — Different marker size for each data point. The vector must be the same
length as lat and lon.

• Empty brackets [] — Default marker size with an area of 36 points squared. Use this
option if you want to specify the color input argument, but use the default marker
area; for example, geoscatter(lat,lon,[],c).

The SizeData property of the scatter object stores the marker sizes.
Example: 50
Example: [36 25 25 17 46]

C — Marker color
three-column matrix of RGB triplets | vector | RGB triplet | ColorSpec value | ...

Marker color, specified as a MATLAB ColorSpec (Color Specification) value, a
vector of ColorSpecs, or a three-column matrix of RGB triplets. Use a vector or three-
column matrix to specify different marker colors for each data point. When using a vector,
geoscatter performs a linear mapping of the values in C to colors in the colormap.
Whether specifying a vector or three-column matrix, the vector or matrix must be the
same length as lat and lon. If you specify an RGB triplet, the intensities must be in the
range [0,1].
Example: 'green'
Example: 'g'
Example: [0 1 0]

 geoscatter

1-4693

When you specify marker colors, geoscatter sets the MarkerFaceColor property of
the Scatter object to 'flat' and stores the marker colors in the CData property.

M — Marker symbol
'o' (default) | '+' | '*' | '.' | 'x' | 's' | ...

Marker symbol, specified as a character vector or string containing a marker specifier.
For more about marker specifiers, see LineSpec (Line Specification).

When you specify marker type, geoscatter sets the Marker property of the Scatter
object.

'filled' — Option to fill the interior of the markers
'filled'

Option to fill the interior of the markers, specified as 'filled'. Use this option with
markers that have a face, for example, 'o' or 'square'.

gx — Parent geographic axes object
GeographicAxes object

Parent geographic axes object, specified as a GeographicAxes object. You can modify
the appearance and behavior of a GeographicAxes object by setting its properties. For a
list of properties, see GeographicAxes Properties.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The scatter object properties listed here are only a subset. For a complete list, see
Scatter.
Example: geoscatter(lat,lon,'filled','MarkerFaceAlpha',.5) creates filled,
semi-transparent markers.

Marker — Marker type
'o' (default) | '+' | '*' | '.' | 'x' | ...

1 Alphabetical List

1-4694

Marker symbol, specified as a character vector or string containing a marker specifier.
For more about marker specifiers, see LineSpec (Line Specification).

MarkerEdgeColor — Marker outline color
'flat' (default) | 'none' | RGB triplet | ColorSpec value | ...

Marker outline color, specified as 'none','flat', an RGB triplet, or a MATLAB
ColorSpec value. The default value of 'flat' uses colors from the CData property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and
short color name options and the equivalent RGB triplet values.

When you specify marker edge color, geoscatter sets the MarkerEdgeColor property
of the Scatter object and stores the marker colors in the CData property.
Example: 'green'
Example: 'g'
Example: [0 1 0]

MarkerFaceColor — Marker fill color
'none' (default) | 'flat' | 'auto' | RGB triplet | ColorSpec value | ...

Marker fill color, specified as 'none', 'flat', 'auto', an RGB triplet, or a MATLAB
ColorSpec (Color Specification).

• 'flat' — geoscatter uses the CData values.
• 'auto' — geoscatter uses the same color as the Color property for the axes.

Example: [0.3 0.2 0.1]
Example: 'green'

LineWidth — Width of marker edge
0.5 (default) | positive value

Width of marker edge, specified as a positive value in point units.
Example: 0.75

 geoscatter

1-4695

Output Arguments
s — Geographic scatter plot
Scatter object

Geographic scatter plot, returned as a Scatter object. Use s to access and modify
properties of the geographic scatter plot after it has been created.

Tips
• To customize the geographic axes containing your scatter object, obtain the object's

parent, gx = s.Parent, and modify its properties. For a list of properties, see
GeographicAxes Properties.

• If you have Mapping Toolbox, you can specify basemaps of your own choosing by using
the addCustomBasemap function.

See Also
Functions
geoaxes | geobasemap | geobubble | geolimits | geoplot | scatter

Properties
GeographicAxes Properties | Scatter

Introduced in R2018b

1 Alphabetical List

1-4696

geotickformat
Set or query geographic tick label format

Syntax
tickLabelFormat = geotickformat
tickLabelFormat = geotickformat(fmt)
tickLabelFormat = geotickformat(gx)
tickLabelFormat = geotickformat(gx,fmt)

Description
tickLabelFormat = geotickformat returns the tick label format of the current
geographic axes.

tickLabelFormat = geotickformat(fmt) sets the format of the latitude and
longitude tick labels in the current geographic axes. fmt is a label format string, such as
'dd'. For example, you can choose to display decimal degrees, such as 40.5°W. You can
optionally specify a return value.

tickLabelFormat = geotickformat(gx) returns the tick label format of the
geographic axes specified by gx.

tickLabelFormat = geotickformat(gx,fmt) applies the format specified by fmt to
the geographic axes specified by gx. You can optionally specify a return value.

Examples

Set Geographic Tick Label Format

Mark the three largest cities in Brazil.

lat = [-23.5500 -22.9083 -15.7939];
lon = [-46.6333 -43.1964 -47.8828];

 geotickformat

1-4697

geoplot(lat,lon,'r.','MarkerSize',8)
geolimits([-25 -16], [-54 -38])
text(lat,lon,{' Sao Paulo',' Rio de Janeiro',' Brasilia'})

Set the tick label format to decimal degrees with a minus sign for south or west.

geotickformat('-dd')

1 Alphabetical List

1-4698

Input Arguments
fmt — Tick label format
'dms' (default) | 'dd' | 'dm' | -'dd' | '-dm' | '-dms'

Tick label format, specified as one of the following values.

Format Description Example
'dd' Decimal degrees plus

compass direction
23.5°N

 geotickformat

1-4699

Format Description Example
'dm' Degrees and decimal

minutes plus compass
direction

18°30'W

'dms' (default) Degrees, minutes, and
decimal seconds plus
compass direction

110°06'18.5"E

'-dd' Decimal degrees with a
minus sign (-) to indicate
south and west

-115.25°

'-dm' Degrees and decimal
minutes with a minus sign
(-) to indicate south and
west

-5°45.5'

'-dms' Degrees, minutes, and
decimal seconds with a
minus sign (-) to indicate
south and west

-3°21'05"

Data Types: char | string

gx — Target geographic axes
GeographicAxes object

Target geographic axes, specified as a GeographicAxes object.

Output Arguments
tickLabelFormat — Tick label format of geographic axes
string scalar | character vector

Tick label format of geographic axes, returned as one of the values described in the input
fmt.
Data Types: char | string

1 Alphabetical List

1-4700

Tips
• The value returned from geotickformat is the value of the TickLabelFormat

property of the geographic axes. You can override this format value on an individual
axis by setting the TickLabelFormat property of the GeographicRuler object
associated with the axis. In this case, the value returned by geotickformat does not
match the format value of the axis or the actual display. Setting the
TickLabelFormat of an individual axis is not recommended.

See Also
GeographicAxes Properties | GeographicRuler Properties | geoaxes

Introduced in R2019a

 geotickformat

1-4701

get
Query graphics object properties

Syntax
v = get(h)
v = get(h,propertyName)
v = get(h,propertyArray)
v = get(h,'default')
v = get(h,defaultTypeProperty)
v = get(groot,'factory')
v = get(groot,factoryTypeProperty)

Description

Note Do not use the get function on Java objects as it will cause a memory leak. For
more information, see “Access Public and Private Data”.

v = get(h) returns all properties and property values for the graphics object identified
by h. v is a structure whose field names are the property names and whose values are the
corresponding property values. h can be a single object or an m-by-n array of objects. If h
is a single object and you do not specify an output argument, then MATLAB displays the
information on the screen.

v = get(h,propertyName) returns the value for the specific property, propertyName.
Use single quotes around the property name, for example, get(h,'Color'). If you do
not specify an output argument, then MATLAB displays the information on the screen.

v = get(h,propertyArray) returns an m-by-n cell array, where m is equal to
length(h) and n is equal to the number of property names contained in
propertyArray.

v = get(h,'default') returns all default values currently defined on object h in a
structure array. The field names are the object property names and the field values are

1 Alphabetical List

1-4702

the corresponding property values. If you do not specify an output argument, MATLAB
displays the information on the screen.

v = get(h,defaultTypeProperty) returns the current default value for a specific
property. The argument defaultTypeProperty is the word default concatenated with
the object type (e.g., Figure) and the property name (e.g., Color) in single quotes. For
example, get(groot,'defaultFigureColor').

v = get(groot,'factory') returns the factory-defined values of all user-settable
properties in a structure array. The field names are the object property names and the
field values are the corresponding property values. If you do not specify an output
argument, MATLAB displays the information on the screen.

v = get(groot,factoryTypeProperty) returns the factory-defined value for a
specific property. The argument factoryTypeProperty is the word factory
concatenated with the object type (e.g., Figure) and the property name (e.g., Color) in
single quotes. For example, get(groot,'factoryFigureColor').

Examples

List All Property Values for Specific Object
Create a line plot and return the chart line object as p. List all the properties of the line
and the current property values.

p = plot(1:10);
get(p)

 AlignVertexCenters: 'off'
 Annotation: [1x1 matlab.graphics.eventdata.Annotation]
 BeingDeleted: 'off'
 BusyAction: 'queue'
 ButtonDownFcn: ''
 Children: []
 Clipping: 'on'
 Color: [0.9290 0.6940 0.1250]
 CreateFcn: ''
 DeleteFcn: ''
 DisplayName: ''
 HandleVisibility: 'on'
 HitTest: 'on'

 get

1-4703

 Interruptible: 'on'
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerEdgeColor: 'auto'
 MarkerFaceColor: 'none'
 MarkerSize: 6
 Parent: [1x1 Axes]
 PickableParts: 'visible'
 Selected: 'off'
 SelectionHighlight: 'on'
 Tag: ''
 Type: 'line'
 UIContextMenu: []
 UserData: []
 Visible: 'on'
 XData: [1 2 3 4 5 6 7 8 9 10]
 XDataMode: 'auto'
 XDataSource: ''
 YData: [1 2 3 4 5 6 7 8 9 10]
 YDataSource: ''
 ZData: [1x0 double]
 ZDataSource: ''

Query Specific Property of Specific Object
Create a line plot and return the chart line object as p. Use get to return the current
value of the LineWidth property.

p = plot(1:10);
get(p,'LineWidth')

ans =

 0.5000

Query Set of Properties for Specific Object
Create a line plot with circle markers and return the chart line object as p. Use get to
return the current values of the LineWidth, Marker, and MarkerSize properties for the
object.

1 Alphabetical List

1-4704

p = plot(1:10,'ro-');
props = {'LineWidth','Marker','MarkerSize'};
get(p,props)

ans =

 [0.5000] 'o' [6]

Query Default Property Value on Root
Return the default value of the LineWidth property defined on the root for all line
graphics objects.

get(groot,'DefaultLineLineWidth')

ans =

 0.5000

See Also
findobj | gca | gcf | gco | set

Topics
“Graphics Object Properties”

Introduced before R2006a

 get

1-4705

get
Query property values for audioplayer object

Syntax
Value = get(obj,Name)
Values = get(obj,{Name1,...,NameN})
Values = get(obj)
get(obj)

Description
Value = get(obj,Name) returns the value of the specified property for object obj.

Values = get(obj,{Name1,...,NameN}) returns the values of the specified
properties in a 1-by-N cell array.

Values = get(obj) returns a scalar structure that contains the values of all properties
of obj. Each field name corresponds to a property name.

get(obj) displays all property names and their current values.

Examples
Create an audioplayer object from the example file handel.mat and query the object
properties:

load handel.mat;
handelObj = audioplayer(y, Fs);

% Display all properties.
get(handelObj)

% Display only the SampleRate property.
get(handelObj, 'SampleRate')

1 Alphabetical List

1-4706

% Create a cell array that contains
% values for two properties.
info = get(handelObj, {'BitsPerSample', 'NumChannels'});

Alternatives
To access a single property, you can use dot notation. Reference each property as though
it is a field of a structure array. For example, find the value of the TotalSamples
property for an object named handelObj (as created in the Example):

numSamples = handelObj.TotalSamples;

This command is exactly equivalent to:

numSamples = get(handelObj, 'TotalSamples');

See Also
audioplayer | set

 get

1-4707

get
Query property values for audiorecorder object

Syntax
Value = get(obj,Name)
Values = get(obj,{Name1,...,NameN})
Values = get(obj)
get(obj)

Description
Value = get(obj,Name) returns the value of the specified property for object obj.

Values = get(obj,{Name1,...,NameN}) returns the values of the specified
properties in a 1-by-N cell array.

Values = get(obj) returns a scalar structure that contains the values of all properties
of obj. Each field name corresponds to a property name.

get(obj) displays all property names and their current values.

Examples
Create an audiorecorder object and query the object properties:

recorderObj = audiorecorder;

% Display all properties.
get(recorderObj)

% Display only the SampleRate property.
get(recorderObj, 'SampleRate')

% Create a cell array that contains

1 Alphabetical List

1-4708

% values for two properties.
info = get(recorderObj, {'BitsPerSample', 'NumChannels'});

Alternatives
To access a single property, you can use dot notation. Reference each property as though
it is a field of a structure array. For example, find the value of the TotalSamples
property for an object named recorderObj (as created in the Example):

numSamples = recorderObj.TotalSamples;

This command is exactly equivalent to:

numSamples = get(recorderObj, 'TotalSamples');

See Also
audiorecorder | set

 get

1-4709

get (RandStream)
Random stream properties

Class
RandStream

parallel.gpu.RandStream

Syntax
get(s)
P = get(s)
P = get(s,'PropertyName')

Description
get(s) prints the list of properties for the random stream s.

P = get(s) returns all properties of s in a scalar structure.

P = get(s,'PropertyName') returns the property 'PropertyName'.

See Also
RandStream | parallel.gpu.RandStream | set (RandStream)

1 Alphabetical List

1-4710

get (serial)
Serial port object properties

Syntax
get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Description
get(obj) returns all property names and their current values to the command line for
the serial port object, obj.

out = get(obj) returns the structure out where each field name is the name of a
property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property specified by
PropertyName for obj. If PropertyName is replaced by a 1-by-n or n-by-1 cell array of
strings containing property names, then get returns a 1-by-n cell array of values to out.
If obj is an array of serial port objects, then out will be a m-by-n cell array of property
values where m is equal to the length of obj and n is equal to the number of properties
specified.

Examples
This example illustrates some of the ways you can use get to return property values for
the serial port object s on a Windows platform.

s = serial('COM1');
out1 = get(s);
out2 = get(s,{'BaudRate','DataBits'});
s.Parity

ans =
none

 get (serial)

1-4711

Tips
Refer to “Property Reference” for a list of serial port object properties that you can return
with get.

When you specify a property name, you can do so without regard to case. For example, if
s is a serial port object, then these commands are equivalent.

out = s.BaudRate;
out = s.baudrate;

See Also
set

Introduced before R2006a

1 Alphabetical List

1-4712

get
Query tscollection properties

Syntax
tscinfo = get(tsc)
tscinfo = get(tsc,propname)

Description
tscinfo = get(tsc) returns all properties of the tscollection object tsc.

tscinfo = get(tsc,propname) returns the value of the property propname. For a full
list of tscollection property names, see tscollection.

Examples

Display Properties

Create a tscollection object from two timeseries objects and display its properties.

ts1 = timeseries(rand(5,1),'Name','ts1');
ts2 = timeseries(rand(5,1),'Name','ts2');
tsc = tscollection({ts1,ts2});
tscinfo = get(tsc)

tscinfo = struct with fields:
 Name: 'unnamed'
 Time: [5x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Length: 5
 ts1: [1x1 timeseries]
 ts2: [1x1 timeseries]

 get

1-4713

Display only the Length property.

tsclength = get(tsc,'Length')

tsclength = 5

Input Arguments
tsc — Input tscollection
scalar

Input tscollection, specified as a scalar.

propname — Property name
character vector

Property name, specified as a character vector. For a full list of tscollection property
names, see tscollection.
Data Types: char

See Also
set | timeseries | tscollection

Introduced before R2006a

1 Alphabetical List

1-4714

getabstime
Convert tscollection time vector to cell array

Syntax
tsctime = get(tsc)

Description
tsctime = get(tsc) returns a cell array whose elements are the dates in the time
vector associated with a tscollection object tsin.

Examples

Absolute Times

Create a tscollection object and define its start date.

tsc = tscollection(timeseries([3 6 8 0 10]'));
tsc.TimeInfo.StartDate = '10/27/2005 07:05:36';

Display the vector of absolute time values.

tsctime = getabstime(tsc)

tsctime = 5x1 cell array
 {'27-Oct-2005 07:05:36'}
 {'27-Oct-2005 07:05:37'}
 {'27-Oct-2005 07:05:38'}
 {'27-Oct-2005 07:05:39'}
 {'27-Oct-2005 07:05:40'}

 getabstime

1-4715

Input Arguments
tsc — Input tscollection
scalar

Input tscollection, specified as a scalar.

Tips
• To define the tscollection time vector relative to a calendar date, set the

TimeInfo.StartDate property to a valid date character vector. Valid dates can have
the following formats:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

See Also
timeseries | tscollection

Introduced before R2006a

1 Alphabetical List

1-4716

getappdata
Retrieve application-defined data

Use this function to retrieve data stored using the setappdata function. Both of these
functions provide a convenient way to share data between callbacks or between separate
UIs.

Syntax
val = getappdata(obj,name)
vals = getappdata(obj)

Description
val = getappdata(obj,name) returns a value stored in the graphics object, obj. The
name identifier, name, uniquely identifies the value to retrieve.

vals = getappdata(obj) returns all values stored in the graphics object with their
name identifiers.

Examples

Store and Retrieve Date and Time

Create a figure window.

f = figure;

Get the current date and time as separate variables.

dt = fix(clock);
currdate = dt(1:3);
currtime = dt(4:6);

Store currdate and currtime using the setappdata function.

 getappdata

1-4717

setappdata(f,'todaysdate',currdate);
setappdata(f,'presenttime',currtime);

Retrieve the date information.

getappdata(f,'todaysdate')

ans =

 2014 12 23

Retrieve all data associated with figure f.

getappdata(f)

ans =

 todaysdate: [2014 12 23]
 presenttime: [16 51 5]

Input Arguments
obj — Graphics object containing the value
figure | uipanel | uibuttongroup | uicontrol | ...

Graphics object containing the value, specified as any graphics object (except an ActiveX
component). This is the same graphics object passed to setappdata during the storage
operation.

name — Name identifier
character vector

Name identifier, specified as a character vector. This is the same name identifier passed
to setappdata during the storage operation.
Data Types: char

Output Arguments
val — Stored value
any MATLAB data type

1 Alphabetical List

1-4718

Stored value, returned as the same value and data type that was originally stored.

vals — All values stored in the graphics object with name identifiers
structure

All values stored in the graphics object with name identifiers, returned as a structure.
Each field in the structure corresponds to a stored value. The field names of the structure
correspond to the name identifiers assigned when each value was stored.

See Also
guidata | isappdata | rmappdata | setappdata

Topics
“Share Data Among Callbacks”

Introduced before R2006a

 getappdata

1-4719

getaudiodata
Store recorded audio signal in numeric array

Syntax
y = getaudiodata(recorder)
y = getaudiodata(recorder,dataType)

Description
y = getaudiodata(recorder) returns recorded audio data associated with
audiorecorder object recorder in a double array y.

y = getaudiodata(recorder,dataType) converts the signal data to the specified
data type.

Examples

Get Data from Audio Recorder Object

Create a recording using the audiorecorder object and then get the audio signal as a
numeric array of different data types.

Create an audiorecorder object and record a five second audio clip from your
microphone.

recObj = audiorecorder;
disp('Start speaking.')

Start speaking.

recordblocking(recObj,5);
disp('End of Recording.');

End of Recording.

1 Alphabetical List

1-4720

Get the audio signal as a double array and plot the data.

doubleArray = getaudiodata(recObj);
plot(doubleArray);
title('Audio Signal (double)');

Get the audio signal as an int8 array and plot the data. Based on the data type specified,
the same audio signal is returned with a different range of values . In this case, the values
in the int8 array can span between -128 and 127.

int8Array = getaudiodata(recObj,'int8');
plot(int8Array);
title('Audio Signal (int8)');

 getaudiodata

1-4721

Input Arguments
recorder — Audio recorder object
audiorecorder object

Audio recorder object, specified as an audiorecorder object. Use the audiorecorder
function to create the object.

dataType — Data type
'double' (default) | 'single' | 'int16' | 'int8' | 'uint8'

1 Alphabetical List

1-4722

Data type of the output audio signal, specified as one of these values: 'double',
'single', 'int16', 'int8', or 'uint8'.
Data Types: char | string

Output Arguments
y — Audio signal data
numeric array

Audio signal data, returned as a numeric array.

The number of columns in y depends on the number of channels in the recording: one for
mono and two for stereo.

The value range of y depends on the specified dataType.

Data Type Sample Value Range
int8 -128 to 127
uint8 0 to 255
int16 -32768 to 32767
single -1 to 1
double -1 to 1

See Also
audiorecorder

Topics
“Record and Play Audio”
“Supported Video and Audio File Formats”

Introduced in R2006a

 getaudiodata

1-4723

GetCharArray
Character array from Automation server

Syntax

IDL Method Signature
HRESULT GetCharArray([in] BSTR varName, [in] BSTR Workspace,
 [out, retval] BSTR *mlString)

Microsoft Visual Basic Client
GetCharArray(varname As String, workspace As String) As String

MATLAB Client
str = GetCharArray(h,'varname','workspace')

Description
str = GetCharArray(h,'varname','workspace') gets the character array stored
in varname from the specified workspace of the server attached to handle h and returns
it in str. The values for workspace are base or global.

Examples

Get Character Input in Visual Basic® .NET Client

This example shows how to pass character data between MATLAB® and a Visual
Basic® .NET client. Create an application with the following code.

type getchararray.vb

1 Alphabetical List

1-4724

Dim Matlab As Object
Dim S As String
Matlab = CreateObject("matlab.application")
MsgBox("In MATLAB, type" & vbCrLf _
 & "str='new text';")
Try
 S = Matlab.GetCharArray("str", "base")
 MsgBox("str = " & S)
Catch ex As Exception
 MsgBox("You did not set 'str' in MATLAB")
End Try

Open the MATLAB window, then type:

str='new text';

Click OK. The Visual Basic MsgBox command displays what you typed in MATLAB.

Get Character Input in VBA Client

This example shows how to pass character data between MATLAB® and a VBA client.
Create an application with the following code.

type getchararray.vba

Dim Matlab As Object
Dim S As String
Set Matlab = CreateObject("matlab.application")
MsgBox("In MATLAB, type" & vbCrLf & "str='new text';")
S = Matlab.GetCharArray("str", "base")
MsgBox("str = " & S)

Open the MATLAB window, then type:

str='new text';

Click OK. The VBA MsgBox command displays what you typed in MATLAB.

See Also
GetVariable | GetWorkspaceData | PutCharArray

 GetCharArray

1-4725

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

1 Alphabetical List

1-4726

getenv
Environment variable

Syntax
value = getenv(name)

Description
value = getenv(name) searches the operating system environment variable list for
text of the form name=value.

On UNIX platforms, the shell you use to start MATLAB determines the operating system
environment. For example, starting MATLAB on a Mac platform from the Applications
folder creates a different shell environment from starting MATLAB from Terminal.

Examples

Display System Root Directory on Windows

res = getenv('SYSTEMROOT')

res = 'C:\windows'

Input Arguments
name — Environment variable name
string | character vector

Environment variable name, specified as a string or a character vector.
Example: 'PATH'

 getenv

1-4727

Output Arguments
value — Environment variable value
character vector | []

Environment variable value, returned as a character vector. If name is not found, then
MATLAB returns an empty matrix.

See Also
computer | path | pwd | setenv | ver

Introduced before R2006a

1 Alphabetical List

1-4728

getfield
Field of structure array

Syntax
value = getfield(S,field)
value = getfield(S,field1,...,fieldN)
value = getfield(S,idx,field1,...,fieldN)
value = getfield(S,idx,field1,idx1,...,fieldN,idxN)

Description
value = getfield(S,field) returns the value in the specified field of the structure S.
For example, if S.a = 1, then getfield(S,'a') returns 1.

As an alternative to getfield, use dot notation, value = S.field. Dot notation is
typically more efficient.

If S is nonscalar, then getfield returns the value in the first element of the array,
equivalent to S(1).field.

value = getfield(S,field1,...,fieldN) returns the value stored in a nested
structure. For example, if S.a.b.c = 1, then getfield(S,'a','b','c') returns 1.

value = getfield(S,idx,field1,...,fieldN) specifies the element of the
structure array. For example, if S(3,4).a = 1, then getfield(S,{3,4},'a') returns
1.

value = getfield(S,idx,field1,idx1,...,fieldN,idxN) specifies elements of
fields. For example, if S.a(2) = 1, then getfield(S,'a',{2}) returns 1. Similarly, if
S(3,4).a(2).b = 1, then getfield(S,{3,4},'a',{2},'b') returns 1.

Examples

 getfield

1-4729

Access Field of Scalar Structure

Get the value of a field from a structure returned by the what function. what returns a
scalar structure with fields containing the path to the specified folder and the names of
various kinds of files in the folder.

S = what('C:\Temp')

S = struct with fields:
 path: 'C:\Temp'
 m: {'testFunc1.m'}
 mlapp: {0×1 cell}
 mlx: {'testFunc2.mlx'}
 mat: {2×1 cell}
 mex: {0×1 cell}
 mdl: {0×1 cell}
 slx: {0×1 cell}
 p: {0×1 cell}
 classes: {0×1 cell}
 packages: {0×1 cell}

Return the names of all Live Scripts listed in the mlx field. When you use the getfield
function, you can access a field of the structure returned by a function without using a
temporary variable to hold that structure.

value = getfield(what('C:\Temp'),'mlx')

value = 1×1 cell array
 {'testFunc2.mlx'}

You also can access a field using dot notation.

value = S.mlx

value = 1×1 cell array
 {'testFunc2.mlx'}

1 Alphabetical List

1-4730

Field of Nested Structure

Access a field of a nested structure. In a nested structure, a structure at any level can
have fields that are structures, and other fields that are not structures.

First, create a nested structure.

S.a.b.c = 1;
S.a.b.d = 'two';
S.a.b.e = struct('f',[3 4],'g','five');
S.h = 50

S = struct with fields:
 a: [1x1 struct]
 h: 50

While S is a structure, the fields S.a, S.a.b, and S.a.b.e are also structures.

S.a

ans = struct with fields:
 b: [1x1 struct]

S.a.b

ans = struct with fields:
 c: 1
 d: 'two'
 e: [1x1 struct]

S.a.b.e

ans = struct with fields:
 f: [3 4]
 g: 'five'

Return the value of S.a.b.d using the getfield function. When you specify a comma-
separated list of nested structure names, you must include the structures at every level
between the structure at the top and the field name you specify. In this case, the comma-
separated list of structure names is 'a','b' and the field name is 'd'.

value = getfield(S,'a','b','d')

 getfield

1-4731

value =
'two'

You also can use dot notation to access the same field.

value = S.a.b.d

value =
'two'

Field of Element of Structure Array

Get the value of a field from an element of a structure array returned by the dir function.
dir returns a structure array whose elements each contain information about a file in the
specified folder.

Return information about files in the folder C:\Temp. There are 5 files in the folder.

S = dir('C:\Temp')

S = 5×1 struct array with fields:
 name
 folder
 date
 bytes
 isdir
 datenum

To display information about the 5th file, index into S.

S(5)

ans = struct with fields:
 name: 'testFunc2.mlx'
 folder: 'C:\Temp'
 date: '19-Jul-2018 09:43:53'
 bytes: 2385
 isdir: 0
 datenum: 7.3726e+05

1 Alphabetical List

1-4732

Return the name of the file described by the 5th element of S using the getfield
function. When you use getfield, specify indices in a cell array.

value = getfield(S,{5},'name')

value =
'testFunc2.mlx'

As an alternative, index into the structure array, and then use dot notation to specify a
field.

value = S(5).name

value =
'testFunc2.mlx'

Indices of Nested Structure Array

Access a field of a nested structure, in which the structures at some levels are structure
arrays. In this example, S is a 1-by-2 structure array. The second element, S(2), has a
nested structure a.b, where b is a 1-by-3 structure array.

First, create a nested structure. After creating the structure using dot notation, create
another nonscalar structure array using the struct function and add it as a field.

S.a = 1;
S(2).a.b = struct('d',{5,10,20});
S

S = 1x2 struct array with fields:
 a

S(2).a.b

ans = 1x3 struct array with fields:
 d

Return the value of d from the third element of b using the getfield function. You must
specify the indices of both S and b using cell arrays.

value = getfield(S,{2},'a','b',{3},'d')

 getfield

1-4733

value = 20

You also can use dot notation to access the same field.

value = S(2).a.b(3).d

value = 20

Elements of Field

Create a structure with a field whose value is an array.

S.a = [5 10 15 20 25]

S = struct with fields:
 a: [5 10 15 20 25]

Return elements of the array using the getfield function. To return a subarray, specify
indices after the name of the field. You must specify the indices within a cell array.

value = getfield(S,'a',{[2:4]})

value = 1×3

 10 15 20

You also can use dot notation and array indexing to access the same elements.

value = S.a(2:4)

value = 1×3

 10 15 20

Input Arguments
S — Structure array
structure array

1 Alphabetical List

1-4734

Structure array. If S is nonscalar, then each element of S is a structure, and all elements
have the same fields with the same names.

field — Field name
character vector | string scalar

Field name, specified as a character vector or string scalar.

idx — Indices
cell array of numeric values

Indices, specified as a cell array of numeric or logical values. Indices for S and fields 1
through N-1 specify elements of structure arrays. Indices for field N specify elements of
the array in that field, which can be of any type.
Example: getfield(S,{1,2},'a') is equivalent to S(1,2).a.
Example: If S.a = [5 10 20], then getfield(S,'a',{[2,3]}) returns [10 20].

See Also
fieldnames | isfield | orderfields | rmfield | setfield | struct

Topics
“Access Data in a Structure Array”
“Generate Field Names from Variables”

Introduced before R2006a

 getfield

1-4735

getframe
Capture axes or figure as movie frame

Syntax
F = getframe
F = getframe(ax)
F = getframe(fig)
F = getframe(___ ,rect)

Description
F = getframe captures the current axes as it appears on the screen as a movie frame. F
is a structure containing the image data. getframe captures the axes at the same size
that it appears on the screen. It does not capture tick labels or other content outside the
axes outline.

F = getframe(ax) captures the axes identified by ax instead of the current axes.

F = getframe(fig) captures the figure identified by fig. Specify a figure if you want
to capture the entire interior of the figure window, including the axes title, labels, and tick
marks. The captured movie frame does not include the figure menu and tool bars.

F = getframe(___ ,rect) captures the area within the rectangle defined by rect.
Specify rect as a four-element vector of the form [left bottom width height]. Use
this option with either the ax or fig input arguments in the previous syntaxes.

Examples

Capture Contents of Current Axes

Create a plot of random data. Capture the axes and return the image data. getframe
captures the interior of the axes and the axes outline. It does not capture content that
extends beyond the axes outline.

1 Alphabetical List

1-4736

plot(rand(5))
F = getframe;

F is a structure with the field cdata that contains the captured image data.

Display the captured image data using imshow.

figure
imshow(F.cdata)

 getframe

1-4737

Capture Contents of Figure

Create a surface plot. Capture the interior of the figure window, excluding the menu and
tool bars.

surf(peaks)
F = getframe(gcf);

1 Alphabetical List

1-4738

F is a structure with the field cdata that contains the captured image data.

Display the captured image data using imshow.

figure
imshow(F.cdata)

 getframe

1-4739

Specify Rectangular Region to Capture

Capture the interior of an axes plus a margin of 30 pixels in each direction. The added
margin is necessary to include the tick labels in the capture frame. Depending on the size
of the tick labels, the margin might need to be adjusted.

Create a plot of random data.

plot(rand(5))

1 Alphabetical List

1-4740

Change the axes units to pixels and return the current axes position. The third and fourth
elements of the position vector specify the axes width and height in pixels.

drawnow
ax = gca;
ax.Units = 'pixels';
pos = ax.Position

pos =

 73.8000 47.2000 434.0000 342.3000

Create a four-element vector, rect, that defines a rectangular area covering the axes plus
the desired margin. The first two elements of rect specify the lower left corner of the

 getframe

1-4741

rectangle relative to the lower left corner of the axes. The last two elements of rect
specify the width and height of the rectangle. Reset the axes units to the default value of
'normalized'.

marg = 30;
rect = [-marg, -marg, pos(3)+2*marg, pos(4)+2*marg];
F = getframe(gca,rect);
ax.Units = 'normalized';

Display the captured image data using imshow.

figure
imshow(F.cdata)

1 Alphabetical List

1-4742

Calculate Region to Include Title and Labels

Calculate a margin around the axes so that the captured image data includes the title,
axis labels, and tick labels.

Create a plot with a title and an x-axis label.

plot(rand(5))
xlabel('x values')
title('Plot of Random Data')

 getframe

1-4743

Change the axes units to pixels and store the Position and TightInset property
values for the axes. The TighInset property is a four-element vector of the form [left
bottom right top]. The values are the margins used around the axes for the tick
values and text labels.

drawnow
ax = gca;
ax.Units = 'pixels';
pos = ax.Position;
ti = ax.TightInset;

Create a four-element vector, rect, that defines a rectangular area covering the axes plus
the automatically calculated margin. The first two elements of rect specify the lower left

1 Alphabetical List

1-4744

corner of the rectangle relative to the lower left corner of the axes. The last two elements
of rect specify the width and height of the rectangle.

rect = [-ti(1), -ti(2), pos(3)+ti(1)+ti(3), pos(4)+ti(2)+ti(4)];
F = getframe(ax,rect);

Display the captured image data using imshow.

figure
imshow(F.cdata)

 getframe

1-4745

Capture Specific Subplot Axes

Create a figure with two subplots. In the upper subplot, plot a blue line. In the lower
subplot, plot a red line.

ax1 = subplot(2,1,1);
plot(1:10,'b')

1 Alphabetical List

1-4746

ax2 = subplot(2,1,2);
plot(1:10,'r')

Capture the contents of the lower subplot. getframe captures the interior and border of
the subplot. It does not capture tick values or labels that extend beyond the outline of the
subplot.

F = getframe(ax2);

Display the captured image data using imshow.

figure
imshow(F.cdata)

 getframe

1-4747

Record Frames and Play Movie

Record frames of the peaks function vibrating by using getframe in a loop. Preallocate
an array to store the movie frames.

Z = peaks;
surf(Z)
axis tight manual
ax = gca;
ax.NextPlot = 'replaceChildren';

loops = 40;
F(loops) = struct('cdata',[],'colormap',[]);
for j = 1:loops
 X = sin(j*pi/10)*Z;
 surf(X,Z)
 drawnow
 F(j) = getframe(gcf);
end

Playback the movie two times.

1 Alphabetical List

1-4748

fig = figure;
movie(fig,F,2)

Input Arguments
ax — Axes to capture
axes object

Axes to capture, specified as an axes object. Use this option if you want to capture an
axes that is not the current axes.

getframe captures the content within the smallest rectangle that encloses the axes
outline. If you want to capture all the tick values and labels, then use the fig input
argument instead.
Example: F = getframe(ax);

fig — Figure to capture
figure object

Figure to capture, specified as a figure object. Use gcf to capture the current figure.
Example: F = getframe(gcf);

rect — Rectangular area to capture
four-element vector of the form [left bottom width height]

Rectangular area to capture, specified as a four-element vector of the form [left
bottom width height] in pixels on page 1-4750. The left and bottom elements
define the position of the lower left corner of the rectangle. The position is relative to the
figure or axes that is specified as the first input argument to getframe. The width and
height elements define the dimensions of the rectangle.

Specify a rectangle that is fully contained within the figure window.
Example: F = getframe(gcf,[0 0 560 420]);

Output Arguments
F — Movie frame
structure

 getframe

1-4749

Movie frame, returned as a structure with two fields:

• cdata — The image data stored as an array of uint8 values. The size of the image
data array depends on your screen resolution.

• colormap — The colormap. On true color systems, this field is empty.

Note These are some important considerations about the size of cdata:

• If you query the size of the region that getframe captures (either the figure, the axes,
or the region specified by rect), the size in pixels on page 1-4750 might not match the
number of elements in cdata. This difference is because the number of elements in
cdata depends on your screen resolution (and operating system settings), but pixels
in MATLAB might not correspond to the actual pixels on your screen.

• Starting in R2015b, if you are using a high-resolution system, then the size of cdata
might be larger than in previous releases or on other systems.

Definitions
Pixels
Distances in pixels are independent of your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your system resolution.

Tips
• For the fastest performance when using getframe, make sure that the figure is visible

on the screen. If the figure is not visible, getframe can still capture the figure, but
performance can be slower.

• For more control over the resolution of the image data, use the print function
instead. The cdata output argument with print returns the image data. The
resolution input argument controls the resolution of the image.

1 Alphabetical List

1-4750

See Also
frame2im | im2frame | image | imshow | movie | print

Introduced before R2006a

 getframe

1-4751

GetFullMatrix
Matrix from Automation server workspace

Syntax
IDL Method Signature
GetFullMatrix([in] BSTR varname, [in] BSTR workspace,
 [in, out] SAFEARRAY(double) *pr, [in, out] SAFEARRAY(double) *pi)

Microsoft Visual Basic Client
GetFullMatrix(varname As String, workspace As String,
 [out] XReal As Double, [out] XImag As Double

MATLAB Client
[xreal ximag] = GetFullMatrix(h,'varname','workspace',zreal,zimag)

Description
[xreal ximag] = GetFullMatrix(h,'varname','workspace',zreal,zimag)
gets matrix stored in variable varname from the specified workspace of the server
attached to handle h. The function returns the real part in xreal and the imaginary part
in ximag. The values for workspace are base or global.

The zreal and zimag arguments are matrices of the same size as the real and imaginary
matrices (xreal and ximag) returned from the server. The zreal and zimag matrices
are commonly set to zero.

Use GetFullMatrix for 2-D matrices with values of type double only. Use
GetVariable or GetWorkspaceData for other types. To use higher dimensional
matrices, reshape the 2-D matrix after receiving it from MATLAB.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData functions to
pass numeric data to and from the MATLAB workspace. These functions use the variant

1 Alphabetical List

1-4752

data type instead of the safearray data type used by GetFullMatrix and
PutFullMatrix. VBScript does not support safearray.

Examples

Read Complex Double Matrix in VBA Client

This example shows how to read a complex double matrix from a MATLAB Automation
server.

type getfullmatrix.vba

Dim MatLab As Object
Dim Result As String
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim i, j As Integer

Set MatLab = CreateObject("matlab.application")
Result = MatLab.Execute("M = rand(5);")
MsgBox("In MATLAB, type" & vbCrLf & "M(3,4)")
x = MatLab.GetFullMatrix("M", "base", XReal, XImag)
' Display element (3,4). The array in VBA
' is 0-based.
i = 2
j = 3
MsgBox("XReal(" & i + 1 & "," & j + 1 & ")" & _
 " = " & XReal(i, j))

Read Complex Double Matrix in VB .NET Client

This example shows how to read a complex double matrix from a MATLAB Automation
server.

type getfullmatrix.vb

Dim MatLab As Object
Dim Result As String
Dim XReal(4, 4) As Double

 GetFullMatrix

1-4753

Dim XImag(4, 4) As Double
Dim i, j As Integer

MatLab = CreateObject("matlab.application")
Result = MatLab.Execute("M = rand(5);")
MsgBox("In MATLAB, type" & vbCrLf & "M(3,4)")
MatLab.GetFullMatrix("M", "base", XReal, XImag)
' Display element (3,4). The array in VB .NET
' is 0-based.
i = 2
j = 3
MsgBox("XReal(" & i + 1 & "," & j + 1 & ")" & _
 " = " & XReal(i, j))

See Also
Execute | GetVariable | GetWorkspaceData | PutFullMatrix

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

1 Alphabetical List

1-4754

getnext
Package: matlab.mapreduce

Get next value from ValueIterator

Syntax
X = getnext(ValIter)

Description
X = getnext(ValIter) returns the next available value in ValIter. Use the hasnext
function to confirm availability of values in ValIter before calling getnext.

Examples

Get Values from ValueIterator in Reduce Function

Use the hasnext and getnext functions in a while loop within the reduce function to
iteratively get values from the ValueIterator object. For example,

function MeanDistReduceFun(sumLenKey, sumLenIter, outKVStore)
 sumLen = [0 0];
 while hasnext(sumLenIter)
 sumLen = sumLen + getnext(sumLenIter);
 end
 add(outKVStore, 'Mean', sumLen(1)/sumLen(2));
end

 getnext

1-4755

Always call hasnext before getnext to confirm availability of a value. mapreduce
returns an error if you call getnext with no remaining values in the ValueIterator
object.

Input Arguments
ValIter — Intermediate value iterator
ValueIterator object

Intermediate value iterator, specified as a ValueIterator object. The mapreduce
function automatically creates this object during execution. The second input to the
reduce function specifies the variable name for the ValueIterator object, which is the
variable name to use with the hasnext and getnext functions.

For more information, see ValueIterator.

See Also
hasnext | mapreduce

Topics
ValueIterator
“Build Effective Algorithms with MapReduce”

Introduced in R2014b

1 Alphabetical List

1-4756

getpixelposition
Get component position in pixels

Note

Use this function only with GUIDE, or with apps created using the figure
function.

Syntax
position = getpixelposition(handle)
position = getpixelposition(handle,recursive)

Description
position = getpixelposition(handle) gets the position, in pixels on page 1-4759,
of the component specified by handle. MATLAB returns the position as a four-element
vector that specifies the location and size of the component: [distance from left, distance
from bottom, width, height].

position = getpixelposition(handle,recursive) gets the position as above. If
recursive is true, the returned position is relative to the parent figure of handle.

Use the getpixelposition function only to obtain coordinates for children of figures
created with the figure function, or for child containers of the figure (such as panels or
button groups). Results are not reliable for children of axes or other graphics objects.

Examples
This example creates a push button within a panel, and then retrieves its position, in
pixels, relative to the panel.

f = figure('Position',[300 300 300 200]);
p = uipanel('Position',[.2 .2 .6 .6]);

 getpixelposition

1-4757

h1 = uicontrol(p,'Style','PushButton',...
 'Units','Normalized',...
 'String','Push Button',...
 'Position',[.1 .1 .5 .2]);
drawnow;
pos1 = getpixelposition(h1)

pos1 =

 18.6000 12.6000 88.0000 23.2000

The following statement retrieves the position of the push button, in pixels, relative to the
figure.

pos1 = getpixelposition(h1,true)

pos1 =
 78.6000 52.6000 88.0000 23.2000

1 Alphabetical List

1-4758

Definitions

Pixels
Distances in pixels are independent of your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your system resolution.

See Also
figure | setpixelposition | uicontrol | uipanel

 getpixelposition

1-4759

getpoints
Return points that define animated line

Syntax
[x,y] = getpoints(an)
[x,y,z] = getpoints(an)

Description
[x,y] = getpoints(an) returns the x and y coordinates for the points that define the
animated line specified by an. Create an animated line with the animatedline function.

[x,y,z] = getpoints(an) returns the coordinates for the 3-D animated line specified
by an. If the line does not have any z values, then getpoints returns z as a vector of
zeros the same length as x and y.

Examples

Return Points from Animated Line

Create an animated line with 10 points. Then, return the points stored in the animated
line.

h = animatedline(1:10,1:10);

1 Alphabetical List

1-4760

[x,y] = getpoints(h)

x = 1×10

 1 2 3 4 5 6 7 8 9 10

y = 1×10

 1 2 3 4 5 6 7 8 9 10

 getpoints

1-4761

Input Arguments
an — AnimatedLine object
AnimatedLine object

AnimatedLine object. Create an AnimatedLine object using the animatedline
function.

Output Arguments
x — x values
vector

x values that define the animated line, returned as vector.

y — y values
vector

y values that define the animated line, returned as vector.

z — z values
vector

z values that define the 3-D animated line, returned as vector.

See Also
Functions
addpoints | animatedline | clearpoints

Properties
AnimatedLine

Introduced in R2014b

1 Alphabetical List

1-4762

getpref
Get custom preference value

Syntax
value = getpref(group,pref)

Description
value = getpref(group,pref) returns the value of the specified preference in the
specified group. value can be any MATLAB data type, including numeric types, character
vectors, cell arrays, structures, and objects. If pref specifies multiple preferences,
getpref returns the values in a cell array. If the specified preference does not exist,
MATLAB returns an error.

Examples

Get Value of Existing Preference

Add a preference called version to the mytoolbox group of preferences and then get
the preference value.

addpref('mytoolbox','version','1.0')
getpref('mytoolbox','version')

ans =
 '1.0'

Input Arguments
group — Custom preference group name
character vector | string scalar

 getpref

1-4763

Custom preference group name, specified as a character vector or a string scalar.
Example: 'mytoolbox'
Data Types: char | string

pref — Custom preference name
character vector | cell array of character vectors | string array

Custom preference name, specified as a character vector, a cell array of character
vectors, or a string array.
Example: 'version'
Example: {'version','modifieddate','docpath'}
Data Types: char | string

See Also
addpref | ispref | rmpref | setpref | uigetpref | uisetpref

Topics
“Preferences”

Introduced before R2006a

1 Alphabetical List

1-4764

getsampleusingtime
Subset of tscollection data

Syntax
tscout = getsampleusingtime(tscin,timeval)
tscout = getsampleusingtime(tscin,
timeval,'AllowDuplicateTimes',true)
tscout = getsampleusingtime(tscin,starttime,endtime)

Description
tscout = getsampleusingtime(tscin,timeval) returns a tscollection object
that contains the single data sample of an input tscollection corresponding to the
time timeval.

tscout = getsampleusingtime(tscin,
timeval,'AllowDuplicateTimes',true) includes multiple data samples with the
same time value specified in timeval.

tscout = getsampleusingtime(tscin,starttime,endtime) includes samples of
tscin between the times starttime and endtime.

Examples

Subset of tscollection

Create a tscollection object from two timeseries objects and extract the data
samples corresponding to the 2nd through 4th time values.

ts1 = timeseries(rand(5,1),'Name','ts1');
ts2 = timeseries(rand(5,1),'Name','ts2');
tscin = tscollection({ts1,ts2});

 getsampleusingtime

1-4765

tscout = getsampleusingtime(tscin,2,4);
tscout.Time

ans = 3×1

 2
 3
 4

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

timeval — Sample time
scalar | vector

Sample time, specified as a numeric scalar, date character vector, or datenum scalar.
Valid date character vectors can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

1 Alphabetical List

1-4766

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

starttime — Start time
scalar | vector

Start time, specified as a numeric scalar, date character vector, or datenum scalar.

endtime — End time
scalar | vector

End time, specified as a numeric scalar, date character vector, or datenum scalar.

Tips
• If the time vector in tscin is not relative to a calendar date, then starttime and

endtime must be numeric.
• If the time vector in tscin is relative to a calendar date, then starttime and

endtime values must be date character vectors or datenum values.

See Also
timeseries | tscollection

Introduced before R2006a

 getsampleusingtime

1-4767

getTag
Value of specified tag

Syntax
tagValue = getTag(t,tagID)

Description
tagValue = getTag(t,tagID) retrieves the value of the tag specified by tagID from
the TIFF file associated with the Tiff object t.

Examples

Get Tag Value

Open a TIFF file and get the value of its tags in multiple ways.

Create a Tiff object for the file.

t = Tiff('example.tif','r');

Get the tag value for the ImageWidth tag by specifying the tag by its name.

tagval = getTag(t,'ImageWidth')

tagval = 600

Alternatively, specify the tag by its numeric identifier.

tagval1 = getTag(t,256)

tagval1 = 600

Another way to specify the tag is to use the Tiff.TagID structure. The names of the
fields of the Tiff.TagID structure are valid tag names that contain the corresponding

1 Alphabetical List

1-4768

tag numeric identifiers. For instance the field Tiff.TagID.ImageWidth contains the
value 256.

tagval2 = getTag(t,Tiff.TagID.ImageWidth)

tagval2 = 600

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

tagID — Tag ID
character vector | string scalar | numeric identifier

Tag ID of a Tiff object, specified as a character vector or string scalar, or a numeric
identifier.

For example, you can specify tagId for the ImageWidth tag as any of these:

• Character vector or string scalar containing the tag name 'ImageWidth'
• Numeric identifier 256 for the ImageWidth tag defined by the TIFF specification
• Field of the Tiff.TagID structure Tiff.TagID.ImageWidth.

The names of the fields of the Tiff.TagID structure are valid tag names that contain the
corresponding tag numeric identifiers. For instance, the field Tiff.TagID.ImageWidth
contains the value 256. To see a list of all the tags along with their numeric identifiers,
type Tiff.TagID in the command window.
Example: 'ImageWidth'
Example: 256
Example: Tiff.TagID.ImageWidth
Data Types: double | char | string

 getTag

1-4769

Algorithms

References
This function corresponds to the TIFFGetField function in the LibTIFF C API. To use
this function, you must be familiar with the TIFF specification and technical notes. View
this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | Tiff.getTagNames | setTag

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-4770

http://www.simplesystems.org/libtiff/

Tiff.getTagNames
List of recognized TIFF tags

Syntax
tagNames = Tiff.getTagNames()

Description
tagNames = Tiff.getTagNames() returns a cell array of TIFF tags recognized by the
Tiff object.

Examples

Get Tag Names

Retrieve a list of TIFF tags recognized by the Tiff object.

Tiff.getTagNames

ans = 73x1 cell array
 {'SubFileType' }
 {'ImageWidth' }
 {'ImageLength' }
 {'BitsPerSample' }
 {'Compression' }
 {'Photometric' }
 {'Thresholding' }
 {'FillOrder' }
 {'DocumentName' }
 {'ImageDescription' }
 {'Make' }
 {'Model' }
 {'StripOffsets' }
 {'Orientation' }

 Tiff.getTagNames

1-4771

 {'SamplesPerPixel' }
 {'RowsPerStrip' }
 {'StripByteCounts' }
 {'MinSampleValue' }
 {'MaxSampleValue' }
 {'XResolution' }
 {'YResolution' }
 {'PlanarConfiguration' }
 {'PageName' }
 {'XPosition' }
 {'YPosition' }
 {'Group3Options' }
 {'Group4Options' }
 {'ResolutionUnit' }
 {'PageNumber' }
 {'TransferFunction' }
 {'Software' }
 {'DateTime' }
 {'Artist' }
 {'HostComputer' }
 {'WhitePoint' }
 {'PrimaryChromaticities' }
 {'ColorMap' }
 {'HalfToneHints' }
 {'TileWidth' }
 {'TileLength' }
 {'TileOffsets' }
 {'TileByteCounts' }
 {'SubIFD' }
 {'InkSet' }
 {'InkNames' }
 {'NumberOfInks' }
 {'DotRange' }
 {'TargetPrinter' }
 {'ExtraSamples' }
 {'SampleFormat' }
 {'SMinSampleValue' }
 {'SMaxSampleValue' }
 {'YCbCrCoefficients' }
 {'YCbCrSubSampling' }
 {'YCbCrPositioning' }
 {'ReferenceBlackWhite' }
 {'XMP' }
 {'ImageDepth' }

1 Alphabetical List

1-4772

 {'Copyright' }
 {'ModelPixelScaleTag' }
 {'RichTIFFIPTC' }
 {'ModelTiepointTag' }
 {'ModelTransformationTag'}
 {'Photoshop' }
 {'ICCProfile' }
 {'GeoKeyDirectoryTag' }
 {'GeoDoubleParamsTag' }
 {'GeoASCIIParamsTag' }
 {'SToNits' }
 {'JPEGQuality' }
 {'JPEGColorMode' }
 {'ZipQuality' }
 {'SGILogDataFmt' }

See Also
Tiff | getTag | setTag

Topics
“Exporting Image Data and Metadata to TIFF Files”
“Reading Image Data and Metadata from TIFF Files”

Introduced in R2009b

 Tiff.getTagNames

1-4773

gettimeseriesnames
Names of timeseries in tscollection

Syntax
tsnames = gettimeseriesnames(tsc)

Description
tsnames = gettimeseriesnames(tsc) returns a cell array of character vectors
containing the names of the timeseries objects in the tscollection object tsc.

Examples

timeseries Names

Create a tscollection object from two timeseries objects. Then, display the names
of the timeseries in the tscollection.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,...
 'Name','Acceleration');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,...
 'Name','Speed');
tsc = tscollection({ts1;ts2});
tsnames = gettimeseriesnames(tsc)

tsnames = 1x2 cell array
 {'Acceleration'} {'Speed'}

1 Alphabetical List

1-4774

Input Arguments
tsc — Input tscollection
scalar

Input tscollection, specified as a scalar.

See Also
timeseries | tscollection

Introduced before R2006a

 gettimeseriesnames

1-4775

gettsafteratevent
Create timeseries at or after event

Syntax
tsout = gettsafteratevent(tsin,tsevent)
tsout = gettsafteratevent(tsin,tsevent,n)

Description
tsout = gettsafteratevent(tsin,tsevent) returns a timeseries object with
samples occurring at and after the event tsevent in the input timeseries tsin. The
argument tsevent can be either a tsdata.event object or a character vector
containing the name of the event. When tsevent is a tsdata.event object, the time
defined by tsevent specifies the time. When tsevent is a character vector, the first
tsdata.event object in the Events property of tsin that matches the event name
specifies the time.

tsout = gettsafteratevent(tsin,tsevent,n) returns a timeseries object with
samples at and after an event in tsin, where n is the number of the event occurrence for
the event tsevent.

Examples

timeseries from Event

Create a timeseries object with an event occurring at time sample 2.

tsin = timeseries((1:5)');
tsevent = tsdata.event('MyEvent',2);
tsin = addevent(tsin,tsevent);
tsin.Events

 EventData: []
 Name: 'MyEvent'

1 Alphabetical List

1-4776

 Time: 2
 Units: 'seconds'
 StartDate: ''

Create a new timeseries object that contains the data from the event sample of tsin
and all samples after the event.

tsout = gettsafteratevent(tsin,'MyEvent');
tsout.Time

ans = 3×1

 2
 3
 4

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

tsevent — Event
scalar | character vector

Event, specified as a scalar tsdata.event object or a character vector containing the
name of an event.

n — Event number
scalar integer

Event number, specified as a scalar integer corresponding to the nth tsdata.event of a
timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 gettsafteratevent

1-4777

Tips
• When the input timeseries object tsin contains date character vectors and

tsevent uses numeric time, the time selected by tsevent is treated as a date that is
calculated relative to the StartDate property in tsin.TimeInfo.

• When tsin uses numeric time and tsevent uses calendar dates, the time selected by
tsevent is treated as a numeric value that is not associated with a calendar date.

See Also
gettsafterevent | gettsbeforeevent | gettsbetweenevents | timeseries |
tsdata.event

Introduced before R2006a

1 Alphabetical List

1-4778

gettsafterevent
Create timeseries after event

Syntax
tsout = gettsafterevent(tsin,tsevent)
tsout = gettsafterevent(tsin,tsevent,n)

Description
tsout = gettsafterevent(tsin,tsevent) returns a timeseries object with
samples occurring after the event tsevent in the input timeseries tsin. The
argument tsevent can be either a tsdata.event object or a character vector
containing the name of the event. When tsevent is a tsdata.event object, the time
defined by tsevent specifies the time. When tsevent is a character vector, the first
tsdata.event object in the Events property of tsin that matches the event name
specifies the time.

tsout = gettsafterevent(tsin,tsevent,n) returns a timeseries object with
samples after an event in tsin, where n is the number of the event occurrence for the
event tsevent.

Examples

timeseries after Event

Create a timeseries object with an event occurring at time sample 2.

tsin = timeseries((1:5)');
tsevent = tsdata.event('MyEvent',2);
tsin = addevent(tsin,tsevent);
tsin.Events

 EventData: []
 Name: 'MyEvent'

 gettsafterevent

1-4779

 Time: 2
 Units: 'seconds'
 StartDate: ''

Create a new timeseries object that contains the data after the event sample.

tsout = gettsafterevent(tsin,'MyEvent');
tsout.Time

ans = 2×1

 3
 4

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

tsevent — Event
scalar | character vector

Event, specified as a scalar tsdata.event object or a character vector containing the
name of an event.

n — Event number
scalar integer

Event number, specified as a scalar integer corresponding to the nth tsdata.event of a
timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-4780

Tips
• When the input timeseries object tsin contains date character vectors and

tsevent uses numeric time, the time selected by tsevent is treated as a date that is
calculated relative to the StartDate property in tsin.TimeInfo.

• When tsin uses numeric time and tsevent uses calendar dates, the time selected by
tsevent is treated as a numeric value that is not associated with a calendar date.

See Also
gettsafteratevent | gettsbeforeevent | gettsbetweenevents | timeseries |
tsdata.event

Introduced before R2006a

 gettsafterevent

1-4781

gettsatevent
Create timeseries at event

Syntax
tsout = gettsatevent(tsin,tsevent)
tsout = gettsatevent(tsin,tsevent,n)

Description
tsout = gettsatevent(tsin,tsevent) returns a timeseries object with samples
occurring at the event tsevent in the input timeseries tsin. The argument tsevent
can be either a tsdata.event object or a character vector containing the name of the
event. When tsevent is a tsdata.event object, the time defined by tsevent specifies
the time. When tsevent is a character vector, the first tsdata.event object in the
Events property of tsin that matches the event name specifies the time.

tsout = gettsatevent(tsin,tsevent,n) returns a timeseries object with
samples occurring at the event in tsin, where n is the number of the event occurrence
for the event tsevent.

Examples

timeseries at Event

Create a timeseries object with an event occurring at time sample 2.

tsin = timeseries((1:5)');
tsevent = tsdata.event('MyEvent',2);
tsin = addevent(tsin,tsevent);
tsin.Events

 EventData: []
 Name: 'MyEvent'

1 Alphabetical List

1-4782

 Time: 2
 Units: 'seconds'
 StartDate: ''

Create a new timeseries object that contains the data at the event sample.

tsout = gettsatevent(tsin,'MyEvent');
tsout.Time

ans = 2

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

tsevent — Event
scalar | character vector

Event, specified as a scalar tsdata.event object or a character vector containing the
name of an event.

n — Event number
scalar integer

Event number, specified as a scalar integer corresponding to the nth tsdata.event of a
timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
• When the input timeseries object tsin contains date character vectors and

tsevent uses numeric time, the time selected by tsevent is treated as a date that is
calculated relative to the StartDate property in tsin.TimeInfo.

 gettsatevent

1-4783

• When tsin uses numeric time and tsevent uses calendar dates, the time selected by
tsevent is treated as a numeric value that is not associated with a calendar date.

See Also
gettsafteratevent | gettsafterevent | gettsbeforeevent |
gettsbetweenevents | timeseries | tsdata.event

Introduced before R2006a

1 Alphabetical List

1-4784

gettsbeforeatevent
Create timeseries at or before event

Syntax
tsout = gettsbeforeatevent(tsin,tsevent)
tsout = gettsbeforeatevent(tsin,tsevent,n)

Description
tsout = gettsbeforeatevent(tsin,tsevent) returns a timeseries object with
samples occurring at and before the event tsevent in the input timeseries tsin. The
argument tsevent can be either a tsdata.event object or a character vector
containing the name of the event. When tsevent is a tsdata.event object, the time
defined by tsevent specifies the time. When tsevent is a character vector, the first
tsdata.event object in the Events property of tsin that matches the event name
specifies the time.

tsout = gettsbeforeatevent(tsin,tsevent,n) returns a timeseries object
with samples at and before an event in tsin, where n is the number of the event
occurrence for the event tsevent.

Examples

timeseries from Event

Create a timeseries object with an event occurring at time sample 2.

tsin = timeseries((1:5)');
tsevent = tsdata.event('MyEvent',2);
tsin = addevent(tsin,tsevent);
tsin.Events

 EventData: []
 Name: 'MyEvent'

 gettsbeforeatevent

1-4785

 Time: 2
 Units: 'seconds'
 StartDate: ''

Create a new timeseries object that contains the data from the event sample of tsin
and all samples before the event.

tsout = gettsbeforeatevent(tsin,'MyEvent');
tsout.Time

ans = 3×1

 0
 1
 2

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

tsevent — Event
scalar | character vector

Event, specified as a scalar tsdata.event object or a character vector containing the
name of an event.

n — Event number
scalar integer

Event number, specified as a scalar integer corresponding to the nth tsdata.event of a
timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-4786

Tips
• When the input timeseries object tsin contains date character vectors and

tsevent uses numeric time, the time selected by tsevent is treated as a date that is
calculated relative to the StartDate property in tsin.TimeInfo.

• When tsin uses numeric time and tsevent uses calendar dates, the time selected by
tsevent is treated as a numeric value that is not associated with a calendar date.

See Also
gettsafterevent | gettsbeforeevent | gettsbetweenevents | timeseries |
tsdata.event

Introduced before R2006a

 gettsbeforeatevent

1-4787

gettsbeforeevent
Create timeseries before event

Syntax
tsout = gettsbeforeevent(tsin,tsevent)
tsout = gettsbeforeevent(tsin,tsevent,n)

Description
tsout = gettsbeforeevent(tsin,tsevent) returns a timeseries object with
samples occurring before the event tsevent in the input timeseries tsin. The
argument tsevent can be either a tsdata.event object or a character vector
containing the name of the event. When tsevent is a tsdata.event object, the time
defined by tsevent specifies the time. When tsevent is a character vector, the first
tsdata.event object in the Events property of tsin that matches the event name
specifies the time.

tsout = gettsbeforeevent(tsin,tsevent,n) returns a timeseries object with
samples before an event in tsin, where n is the number of the event occurrence for the
event tsevent.

Examples

timeseries before Event

Create a timeseries object with an event occurring at time sample 2.

tsin = timeseries((1:5)');
tsevent = tsdata.event('MyEvent',2);
tsin = addevent(tsin,tsevent);
tsin.Events

 EventData: []
 Name: 'MyEvent'

1 Alphabetical List

1-4788

 Time: 2
 Units: 'seconds'
 StartDate: ''

Create a new timeseries object that contains the data before the event sample.

tsout = gettsbeforeevent(tsin,'MyEvent');
tsout.Time

ans = 2×1

 0
 1

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

tsevent — Event
scalar | character vector

Event, specified as a scalar tsdata.event object or a character vector containing the
name of an event.

n — Event number
scalar integer

Event number, specified as a scalar integer corresponding to the nth tsdata.event of a
timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 gettsbeforeevent

1-4789

Tips
• When the input timeseries object tsin contains date character vectors and

tsevent uses numeric time, the time selected by tsevent is treated as a date that is
calculated relative to the StartDate property in tsin.TimeInfo.

• When tsin uses numeric time and tsevent uses calendar dates, the time selected by
tsevent is treated as a numeric value that is not associated with a calendar date.

See Also
gettsafterevent | gettsbeforeatevent | gettsbetweenevents | timeseries |
tsdata.event

Introduced before R2006a

1 Alphabetical List

1-4790

gettsbetweenevents
Create timeseries between events

Syntax
tsout = gettsbetweenevents(tsin,tsevent1,tsevent2)
tsout = gettsbeforeevent(tsin,tsevent1,tsevent2,n1,n2)

Description
tsout = gettsbetweenevents(tsin,tsevent1,tsevent2) returns a timeseries
object with samples occurring between the events tsevent1 and tsevent2 in the input
timeseries tsin. The arguments tsevent1 and tsevent2 can be either
tsdata.event objects or character vectors containing the names of the events. When
tsevent1 and tsevent2 are tsdata.event objects, the times defined by the events
specify the time. When tsevent1 and tsevent2 are character vectors, the first
tsdata.event object in the Events property of tsin that matches the event names
specifies the time.

tsout = gettsbeforeevent(tsin,tsevent1,tsevent2,n1,n2) returns a
timeseries object with samples between two events in tsin, where n1 is the number of
the event occurrence for tsevent1 and n2 is the number of the event occurrence for
tsevent2.

Examples

timeseries Between Events

Create a timeseries object with events occurring at time samples 1 and 3.

tsin = timeseries((1:5)');
tsevent1 = tsdata.event('StartEvent',1);
tsevent2 = tsdata.event('EndEvent',3);
tsin = addevent(tsin,[tsevent1 tsevent2]);

 gettsbetweenevents

1-4791

Create a new timeseries object that contains the data between the two event samples.

tsout = gettsbetweenevents(tsin,'StartEvent','EndEvent');
tsout.Time

ans = 3×1

 1
 2
 3

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

tsevent1 — Start event
scalar | character vector

Start event, specified as a scalar tsdata.event object or a character vector containing
the name of an event.

tsevent2 — End event
scalar | character vector

End event, specified as a scalar tsdata.event object or a character vector containing
the name of an event.

n1 — Start event number
scalar integer

Start event number, specified as a scalar integer corresponding to the n1 tsdata.event
of a timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-4792

n2 — End event number
scalar integer

End event number, specified as a scalar integer corresponding to the n2 tsdata.event
of a timeseries object.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
• When the input timeseries object tsin contains date character vectors and

tsevent1 and tsevent2 use numeric time, the time selected is treated as a date that
is calculated relative to the StartDate property in tsin.TimeInfo.

• When tsin uses numeric time and tsevent1 and tsevent2 use calendar dates, the
time selected is treated as a numeric value that is not associated with a calendar date.

See Also
gettsafterevent | gettsbeforeevent | timeseries | tsdata.event

Introduced before R2006a

 gettsbetweenevents

1-4793

GetVariable
Data from variable in Automation server workspace

Syntax

IDL Method Signature
HRESULT GetVariable([in] BSTR varname, [in] BSTR workspace,
 [out, retval] VARIANT* pdata)

Microsoft Visual Basic Client
GetVariable(varname As String, workspace As String) As Object

MATLAB Client
D = GetVariable(h,'varname','workspace')

Description
D = GetVariable(h,'varname','workspace') gets data stored in variable
varname from the specified workspace of the server attached to handle h and returns it
in output argument D. The values for workspace are base or global.

Do not use GetVariable on sparse arrays, structures, or function handles.

If your scripting language requires the explicit return of a result, then use the
GetVariable function in place of GetWorkspaceData, GetFullMatrix, or
GetCharArray.

Examples

1 Alphabetical List

1-4794

Read Cell Array in VB .NET Client

This example shows how to read a cell array from a MATLAB Automation server.

type getvariable.vb

Dim Matlab As Object
Dim Result As String
Dim C2 As Object
Matlab = CreateObject("matlab.application")
Result = Matlab.Execute("C1 = {25.72, 'hello', rand(4)};")
C2 = Matlab.GetVariable("C1", "base")
MsgBox("Second item in cell array: " & C2(0, 1))

Read Cell Array in VBA

This example shows how to read a cell array from a MATLAB Automation server.

type getvariable.vba

Dim Matlab As Object
Dim Result As String
Dim C2 As Variant
Set Matlab = CreateObject("matlab.application")
Result = Matlab.Execute("C1 = {25.72, 'hello', rand(4)};")
C2 = Matlab.GetVariable("C1", "base")
MsgBox ("Second item in cell array: " & C2(0, 1))

See Also
Execute | GetCharArray | GetFullMatrix | GetWorkspaceData

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

 GetVariable

1-4795

Tiff.getVersion
LibTIFF library version

Syntax
versionString = Tiff.getVersion()

Description
versionString = Tiff.getVersion() returns a character vector containing the
version number of the LibTIFF library.

Examples

Get Version

Display the version of LibTIFF library.

Tiff.getVersion

ans =
 'LIBTIFF, Version 4.0.0
 Copyright (c) 1988-1996 Sam Leffler
 Copyright (c) 1991-1996 Silicon Graphics, Inc.'

1 Alphabetical List

1-4796

Algorithms

References
This function corresponds to the TIFFGetVersion function in the LibTIFF C API. To use
this function, you must be familiar with the TIFF specification and technical notes. View
this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff

Introduced in R2009b

 Tiff.getVersion

1-4797

http://www.simplesystems.org/libtiff/

GetWorkspaceData
Data from Automation server workspace

Syntax

IDL Method Signature
HRESULT GetWorkspaceData([in] BSTR varname, [in] BSTR workspace,
 [out] VARIANT* pdata)

Microsoft Visual Basic Client
GetWorkspaceData(varname As String, workspace As String) As Object

MATLAB Client
D = GetWorkspaceData(h,'varname','workspace')

Description
D = GetWorkspaceData(h,'varname','workspace') gets data stored in variable
varname from the specified workspace of the server attached to handle h and returns it
in output argument D. The values for workspace are base or global. Use this syntax
when writing VBA code.

Use GetWorkspaceData instead of GetFullMatrix and GetCharArray to get numeric
and character array data, respectively. Do not use GetWorkspaceData on sparse arrays,
structures, or function handles.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData functions to
pass numeric data to and from the MATLAB workspace. These functions use the variant
data type instead of the safearray data type used by GetFullMatrix and
PutFullMatrix. VBScript does not support safearray.

1 Alphabetical List

1-4798

Examples

Read data from MATLAB Automation Server

This example shows how to use a Visual Basic® .NET client to read data from a MATLAB
Automation server.

type getworkspacedata.vb

Dim Matlab As Object
Dim C2 As Object
Dim Result As String
Matlab = CreateObject("matlab.application")
Result = MatLab.Execute("C1 = {25.72, 'hello', rand(4)};")
MsgBox("In MATLAB, type" & vbCrLf & "C1")
Matlab.GetWorkspaceData("C1", "base", C2)
MsgBox("second value of C1 = " & C2(0, 1))

Read data from MATLAB Automation Server With VBA

This example shows how to use a VBA client to read data from a MATLAB Automation
server.

type getworkspacedata.vba

Dim Matlab As Object
Dim C2 As Variant
Dim Result As String
Set Matlab = CreateObject("matlab.application")
Result = MatLab.Execute("C1 = {25.72, 'hello', rand(4)};")
MsgBox("In MATLAB, type" & vbCrLf & "C1")
X = Matlab.GetWorkspaceData("C1", "base", C2)
MsgBox("second value of C1 = " & C2(0, 1))

See Also
Execute | GetCharArray | GetFullMatrix | GetVariable | PutWorkspaceData

 GetWorkspaceData

1-4799

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

1 Alphabetical List

1-4800

matlab.general Settings
General settings including matfile settings

You can customize MATLAB using the matlab.general settings. Access
matlab.general settings using the root SettingsGroup object returned by the
settings function. For example, set the temporary value for the MAT-file save format to
'v7.3' (where the default is 'v7').

s = settings;
s.matlab.general.matfile.SaveFormat.TemporaryValue = 'v7.3'

For more information about settings, see “Access and Modify Settings”.

Settings
matlab.general.matfile

SaveFormat — MAT-File version
'v7' (default) | 'v7.3' | 'v6'

MAT-File version to save MAT-files to, specified as 'v7.3', 'v7', or 'v6'.

For more information about MAT-file versions, see “MAT-File Versions”.
Example: s.matlab.general.matfile.SaveFormat.TemporaryValue = 'v7.3'

See Also
settings

Topics
“Access and Modify Settings”
“MAT-File Versions”

Introduced in R2018a

 matlab.general Settings

1-4801

ginput
Identify axes coordinates

Syntax
[x,y] = ginput(n)
[x,y] = ginput
[x,y,button] = ginput(___)

Description
[x,y] = ginput(n) allows you to identify the coordinates of n points. To choose a
point, move your cursor to the desired location and press either a mouse button or a key
on the keyboard. Press the Return key to stop before all n points are selected. MATLAB
returns the coordinates of your selected points. If there are no current axes, calling
ginput creates a set of Cartesian axes.

[x,y] = ginput allows you to select an unlimited number of points until you press the
Return key.

[x,y,button] = ginput(___) also returns the mouse button or key on the keyboard
used to select each point.

Examples

Identify Points and Plot Coordinates

Identify four points in a set of axes using ginput. To select each point, move the cursor
to your desired location and press a mouse button or key.

[x,y] = ginput(4)

1 Alphabetical List

1-4802

x =

 0.3699
 0.4425
 0.5450
 0.6130

y =

 0.6690
 0.5605
 0.4719
 0.6025

 ginput

1-4803

Plot the points.

plot(x,y);

Return Buttons Used to Select Coordinates

Identify five coordinates in a set of axes using ginput. To select each point, move the
cursor to your desired location and press a mouse button, lowercase letter, uppercase
letter, number, or the space bar. Return the mouse buttons or ASCII numbers of the keys
used to select each point.

[x,y,button] = ginput(5);
button

1 Alphabetical List

1-4804

button =

 3
 104
 32
 51
 82

In this case, the coordinates were identified using the right mouse button (3), the
lowercase letter h (104), the space bar (32), the number 3 (51), and the uppercase letter
R (82).

Identify Points on Geographic Axes

Create geographic axes and identify the latitude and longitude coordinates of four points.
Then, plot the points that you identify.

geoaxes;
[lat,lon] = ginput(4);

 ginput

1-4805

Use the hold on command and the geolimits function to maintain the map limits. Plot
the identified points.

hold on
geolimits('manual')
geoscatter(lat,lon,'filled','b')

1 Alphabetical List

1-4806

Input Arguments
n — Number of points
positive integer

Number of points to identify, specified as a positive integer.

Output Arguments
x — First components of identified coordinates
scalar | column vector

 ginput

1-4807

First components of the identified coordinates, returned as a scalar or column vector.

• If the current axes are Cartesian, the values are x-coordinates.
• If the current axes are geographic, the values are latitudes. Positive values correspond

to north and negative values correspond to south.

If you choose points outside the axes limits, values are still returned relative to the axes
origin.

y — Second components of identified coordinates
scalar | column vector

Second components of the identified coordinates, returned as a scalar or column vector.

• If the current axes are Cartesian, the values are y-coordinates.
• If the current axes are geographic, the values are longitudes. Positive values

correspond to locations east of the origin and negative values correspond to locations
west of the origin.

If you choose points outside the axes limits, values are still returned relative to the axes
origin.

button — Keys or mouse buttons used to identify points
scalar | column vector

Keys or mouse buttons used to identify points, returned as a scalar or column vector.
Mouse buttons are indicated by 1 for the left button, 2 for the middle, and 3 for the right.
Keys on the keyboard are indicated by their corresponding ASCII numbers. Taps on a
screen are indicated by 1.

See Also
Functions
gtext

Introduced before R2006a

1 Alphabetical List

1-4808

global
Declare variables as global

Syntax
global var1 ... varN

Description
global var1 ... varN declares variables var1 ... varN as global in scope.

Ordinarily, each MATLAB function has its own local variables, which are separate from
those of other functions and from those of the base workspace. However, if several
functions all declare a particular variable name as global, then they all share a single
copy of that variable. Any change of value to that variable, in any function, is visible to all
the functions that declare it as global.

If the global variable does not exist the first time you issue the global statement, it is
initialized to an empty 0x0 matrix.

If a variable with the same name as the global variable already exists in the current
workspace, MATLAB issues a warning and changes the value of that variable and its
scope to match the global variable.

Examples

Share Global Variable Between Functions

Create a function in your current working folder that sets the value of a global variable.

function setGlobalx(val)
global x
x = val;

 global

1-4809

Create a function in your current working folder that returns the value of a global
variable. These two functions have separate function workspaces, but they both can
access the global variable.

function r = getGlobalx
global x
r = x;

Set the value of the global variable, x, and obtain it from a different workspace.

setGlobalx(1138)
r = getGlobalx

r =

 1138

Share Global Variable Between Function and Command Line

Assign a value to the global variable using the function that you defined in the previous
example.

clear all
setGlobalx(42)

Display the value of the global variable, x. Even though the variable is global, it is not
accessible at the command line.

x

Undefined function or variable 'x'.

Declare x as a global variable at the command line, and display its value.

global x
x

x =

 42

Change the value of x and use the function that you defined in the previous example to
return the global value from a different workspace.

1 Alphabetical List

1-4810

x = 1701;
r = getGlobalx

r =

 1701

Tips
• To clear a global variable from all workspaces, use clear global variable.
• To clear a global variable from the current workspace but not other workspaces, use

clear variable.

See Also
clear | persistent | who

Topics
“Share Data Between Workspaces”

Introduced before R2006a

 global

1-4811

gmres
Generalized minimum residual method (with restarts)

Syntax
x = gmres(A,b)
gmres(A,b,restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol,maxit)
gmres(A,b,restart,tol,maxit,M)
gmres(A,b,restart,tol,maxit,M1,M2)
gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag] = gmres(A,b,...)
[x,flag,relres] = gmres(A,b,...)
[x,flag,relres,iter] = gmres(A,b,...)
[x,flag,relres,iter,resvec] = gmres(A,b,...)

Description
x = gmres(A,b) attempts to solve the system of linear equations A*x = b for x. The n-
by-n coefficient matrix A must be square and should be large and sparse. The column
vector b must have length n. A can be a function handle, afun, such that afun(x)
returns A*x. For this syntax, gmres does not restart; the maximum number of iterations
is min(n,10).

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If gmres converges, a message to that effect is displayed. If gmres fails to converge after
the maximum number of iterations or halts for any reason, a warning message is printed
displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at
which the method stopped or failed.

gmres(A,b,restart) restarts the method every restart inner iterations. The
maximum number of outer iterations is min(n/restart,10). The maximum number of

1 Alphabetical List

1-4812

total iterations is restart*min(n/restart,10). If restart is n or [], then gmres
does not restart and the maximum number of total iterations is min(n,10).

gmres(A,b,restart,tol) specifies the tolerance of the method. If tol is [], then
gmres uses the default, 1e-6.

gmres(A,b,restart,tol,maxit) specifies the maximum number of outer iterations,
i.e., the total number of iterations does not exceed restart*maxit. If maxit is [] then
gmres uses the default, min(n/restart,10). If restart is n or [], then the maximum
number of total iterations is maxit (instead of restart*maxit).

gmres(A,b,restart,tol,maxit,M) and gmres(A,b,restart,tol,maxit,M1,M2)
use preconditioner M or M = M1*M2 and effectively solve the system inv(M)*A*x =
inv(M)*b for x. If M is [] then gmres applies no preconditioner. M can be a function
handle mfun such that mfun(x) returns M\x.

gmres(A,b,restart,tol,maxit,M1,M2,x0) specifies the first initial guess. If x0 is
[], then gmres uses the default, an all-zero vector.

[x,flag] = gmres(A,b,...) also returns a convergence flag:

flag = 0 gmres converged to the desired tolerance tol within maxit outer
iterations.

flag = 1 gmres iterated maxit times but did not converge.
flag = 2 Preconditioner M was ill-conditioned.
flag = 3 gmres stagnated. (Two consecutive iterates were the same.)

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = gmres(A,b,...) also returns the relative residual norm(b-
A*x)/norm(b). If flag is 0, relres <= tol. The third output, relres, is the relative
residual of the preconditioned system.

[x,flag,relres,iter] = gmres(A,b,...) also returns both the outer and inner
iteration numbers at which x was computed, where 0 <= iter(1) <= maxit and 0 <=
iter(2) <= restart.

 gmres

1-4813

[x,flag,relres,iter,resvec] = gmres(A,b,...) also returns a vector of the
residual norms at each inner iteration. These are the residual norms for the
preconditioned system.

Examples

Using gmres with a Matrix Input
A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = gmres(A,b,10,tol,maxit,M1);

displays the following message:

gmres(10) converged at outer iteration 2 (inner iteration 9) to
a solution with relative residual 3.3e-013

Using gmres with a Function Handle
This example replaces the matrix A in the previous example with a handle to a matrix-
vector product function afun, and the preconditioner M1 with a handle to a backsolve
function mfun. The example is contained in a function run_gmres that

• Calls gmres with the function handle @afun as its first argument.
• Contains afun and mfun as nested functions, so that all variables in run_gmres are

available to afun and mfun.

The following shows the code for run_gmres:

function x1 = run_gmres
n = 21;
b = afun(ones(n,1));
tol = 1e-12; maxit = 15;
x1 = gmres(@afun,b,10,tol,maxit,@mfun);

 function y = afun(x)

1 Alphabetical List

1-4814

 y = [0; x(1:n-1)] + ...
 [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
 [x(2:n); 0];
 end

 function y = mfun(r)
 y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];
 end
end

When you enter

x1 = run_gmres;

MATLAB software displays the message

gmres(10) converged at outer iteration 2 (inner iteration 10)
to a solution with relative residual 1.1e-013.

Using a Preconditioner without Restart
This example demonstrates the use of a preconditioner without restarting gmres.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Set the tolerance and maximum number of iterations.

tol = 1e-12;
maxit = 20;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));
[x0,fl0,rr0,it0,rv0] = gmres(A,b,[],tol,maxit);

fl0 is 1 because gmres does not converge to the requested tolerance 1e-12 within the
requested 20 iterations. The best approximate solution that gmres returns is the last one
(as indicated by it0(2) = 20). MATLAB stores the residual history in rv0.

Plot the behavior of gmres.

 gmres

1-4815

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

The plot shows that the solution converges slowly. A preconditioner may improve the
outcome.

Use ilu to form the preconditioner, since A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

1 Alphabetical List

1-4816

Note MATLAB cannot construct the incomplete LU as it would result in a singular factor,
which is useless as a preconditioner.

As indicated by the error message, try again with a reduced drop tolerance.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = gmres(A,b,[],tol,maxit,L,U);

fl1 is 0 because gmres drives the relative residual to 9.5436e-14 (the value of rr1).
The relative residual is less than the prescribed tolerance of 1e-12 at the sixth iteration
(the value of it1(2)) when preconditioned by the incomplete LU factorization with a
drop tolerance of 1e-6. The output, rv1(1), is norm(M\b), where M = L*U. The output,
rv1(7), is norm(U\(L\(b-A*x1))).

Follow the progress of gmres by plotting the relative residuals at each iteration starting
from the initial estimate (iterate number 0).

semilogy(0:it1(2),rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

 gmres

1-4817

Using a Preconditioner with Restart
This example demonstrates the use of a preconditioner with restarted gmres.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

1 Alphabetical List

1-4818

Construct an incomplete LU preconditioner as in the previous example.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));

The benefit to using restarted gmres is to limit the amount of memory required to
execute the method. Without restart, gmres requires maxit vectors of storage to keep
the basis of the Krylov subspace. Also, gmres must orthogonalize against all of the
previous vectors at each step. Restarting limits the amount of workspace used and the
amount of work done per outer iteration. Note that even though preconditioned gmres
converged in six iterations above, the algorithm allowed for as many as twenty basis
vectors and therefore, allocated all of that space up front.

Execute gmres(3), gmres(4), and gmres(5)

tol = 1e-12;
maxit = 20;
re3 = 3;
[x3,fl3,rr3,it3,rv3] = gmres(A,b,re3,tol,maxit,L,U);
re4 = 4;
[x4,fl4,rr4,it4,rv4] = gmres(A,b,re4,tol,maxit,L,U);
re5 = 5;
[x5,fl5,rr5,it5,rv5] = gmres(A,b,re5,tol,maxit,L,U);

fl3, fl4, and fl5 are all 0 because in each case restarted gmres drives the relative
residual to less than the prescribed tolerance of 1e-12.

The following plots show the convergence histories of each restarted gmres method.
gmres(3) converges at outer iteration 5, inner iteration 3 (it3 = [5, 3]) which would
be the same as outer iteration 6, inner iteration 0, hence the marking of 6 on the final tick
mark.

figure
semilogy(1:1/3:6,rv3/norm(b),'-o');
h1 = gca;
h1.XTick = [1:1/3:6];
h1.XTickLabel = ['1';' ';' ';'2';' ';' ';'3';' ';' ';'4';' ';' ';'5';' ';' ';'6';];
title('gmres(3)')
xlabel('Iteration number');
ylabel('Relative residual');

 gmres

1-4819

figure
semilogy(1:1/4:3,rv4/norm(b),'-o');
h2 = gca;
h2.XTick = [1:1/4:3];
h2.XTickLabel = ['1';' ';' ';' ';'2';' ';' ';' ';'3'];
title('gmres(4)')
xlabel('Iteration number');
ylabel('Relative residual');

1 Alphabetical List

1-4820

figure
semilogy(1:1/5:2.8,rv5/norm(b),'-o');
h3 = gca;
h3.XTick = [1:1/5:2.8];
h3.XTickLabel = ['1';' ';' ';' ';' ';'2';' ';' ';' ';' '];
title('gmres(5)')
xlabel('Iteration number');
ylabel('Relative residual');

 gmres

1-4821

References
Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., July 1986, Vol. 7,
No. 3, pp. 856-869.

1 Alphabetical List

1-4822

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When input A is a sparse matrix:

• Only one sparse matrix preconditioner M is supported.
• For a sparse matrix preconditioner, resvec returns the residual norms norm(B-

A*X) without applying the preconditioner.
• If you use two preconditioners, M1 and M2, then both preconditioners must be

functions.
• For GPU arrays, gmres does not detect stagnation (Flag 3). Instead, it reports

failure to converge (Flag 1).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | cgs | ilu | lsqr | minres | mldivide | pcg | qmr | symmlq

 gmres

1-4823

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-4824

gobjects
Initialize array for graphics objects

Syntax
H = gobjects(n)
H = gobjects(s1,...,sn)
H = gobjects(v)

H = gobjects
H = gobjects(0)

Description
H = gobjects(n) returns an n-by-n graphics object array. Use the gobjects function
instead of the ones or zeros functions to preallocate an array to store graphics objects.

H = gobjects(s1,...,sn) returns an s1-by-...-by-sn graphics object array, where the
list of integers s1,...,sn defines the dimensions of the array. For example,
gobjects(2,3) returns a 2-by-3 array.

H = gobjects(v) returns a graphics object array where the elements of the row vector,
v, define the dimensions of the array. For example, gobjects([2,3,4]) returns a 2-
by-3-by-4 array.

H = gobjects returns a 1-by-1 graphics object array.

H = gobjects(0) returns an empty graphics object array.

Examples

Specify Array Dimensions

Preallocate a 4-by-1 array to store graphics handles.

 gobjects

1-4825

H = gobjects(4,1)

H =
 4x1 GraphicsPlaceholder array:

 GraphicsPlaceholder
 GraphicsPlaceholder
 GraphicsPlaceholder
 GraphicsPlaceholder

Specify Array Dimensions with Size of Existing Array

Create an array to store graphics handles using the size of an existing array.

Define A as a 3-by-4 array.

A = [1,2,3,2; 4,5,6,6; 7,8,9,7];

Create an array of graphics handles using the size of A.

v = size(A);
H = gobjects(v);

The dimensions of the graphics handle array are the same as the dimensions of A.

isequal(size(H),size(A))

ans = logical
 1

Return Empty Handle Array

Use the gobjects function to return an empty array.

H = gobjects(0)

H =
 0x0 empty GraphicsPlaceholder array.

1 Alphabetical List

1-4826

Input Arguments
n — defines n-by-n array
integer value

Size of the object array, specified as an integer value. Negative integers are treated as 0.
The array has dimensions n-by-n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

s1,...,sn — Size of each array dimension
two or more integer values

Size of each array dimension, specified as a list of two or more integer values. Negative
integers are treated as 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

v — Size of each array dimension
row vector of integer values

Size of each array dimension, specified as a row vector of integer values. Negative
integers are treated as 0.
Example: [2,4,6,7]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

0 — Define an empty array
one or more dimensions equal to 0

Define an empty array by specifying one or more dimension equal to 0

Output Arguments
H — Initialized graphics object array
graphics object array of specified size

 gobjects

1-4827

Initialized graphics object array of type GraphicsPlaceholder. Use this array to
contain any type of graphics object.

See Also

Topics
“Graphics Arrays”

Introduced in R2013a

1 Alphabetical List

1-4828

gplot
Plot nodes and links representing adjacency matrix

Syntax
gplot(A,Coordinates)
gplot(A,Coordinates,LineSpec)
[X,Y] = gplot(A,Coordinates)

Description
The gplot function graphs a set of coordinates using an adjacency matrix.

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates according
to the n-by-n adjacency matrix A, where n is the number of nodes. Coordinates is an n-
by-2 matrix, where n is the number of nodes and each coordinate pair represents one
node.

gplot(A,Coordinates,LineSpec) plots the nodes using the line type, marker symbol,
and color specified by LineSpec.

[X,Y] = gplot(A,Coordinates) returns the NaN-punctuated vectors X and Y without
generating a plot. Use X and Y to generate a plot at a later time using plot(X,Y). To use
this syntax, Coordinates must be of type single or double.

Examples

Plot Graph of Nodes Using Asterisks

Plot half of a "Bucky ball" carbon molecule, placing asterisks at each node.

k = 1:30;
[B,XY] = bucky;

 gplot

1-4829

gplot(B(k,k),XY(k,:),'-*')
axis square

Tips
For two-dimensional data, Coordinates(i,:) = [x(i) y(i)] denotes node i, and
Coordinates(j,:) = [x(j)y(j)] denotes node j. If node i and node j are
connected, A(i,j) or A(j,i) is nonzero; otherwise, A(i,j) and A(j,i) are zero.

1 Alphabetical List

1-4830

See Also
LineSpec | digraph | graph | sparse | spy

Introduced before R2006a

 gplot

1-4831

grabcode
Extract MATLAB code from file published to HTML

Syntax
grabcode filename
grabcode url
code = grabcode(filename)

Description
grabcode filename copies the MATLAB code from the HTML file filename and pastes
it into an untitled document in the Editor. Use grabcode to get MATLAB code from
published files when the source code is not readily available. filename is the HTML file
created by publishing a MATLAB code file (*.m) or exporting a live script (*.mlx) to
HTML. In both cases, the MATLAB code from the file appears as HTML comments at the
end of filename.

grabcode url copies MATLAB code from the page or file specified by url and pastes it
into an untitled document in the Editor.

code = grabcode(filename) returns the MATLAB code from filename to a
character array.

Examples

Get MATLAB Code from HTML File

Use grabcode to get MATLAB® code from an existing HTML file.

Extract the MATLAB code from my_sine_wave.html into the variable code. To view the
contents of the file, double-click my_sine_wave.html in your current folder.

code = grabcode('my_sine_wave.html')

1 Alphabetical List

1-4832

code =
 '%% Plot Sine Wave
 % Calculate and plot a sine wave.

 %% Calculate and Plot Sine Wave
 % Calculate and plot |y = sin(x)|.

 function sine_wave_f(x)

 y = sin(x);
 plot(x,y)

 %% Modify Plot Properties

 title('Sine Wave', 'FontWeight','bold')
 xlabel('x')
 ylabel('sin(x)')
 set(gca, 'Color', 'w')
 set(gcf, 'MenuBar', 'none') '

Input Arguments
filename — Name of HTML file
character vector

Name of the HTML file, specified as a character vector.
Example: name.html

url — Web page address or location of the HTML file
character vector

Web page address or location of HTML file, specified as a character vector.
Example: https://www.mathworks.com/matlabcode.html

 grabcode

1-4833

Limitations
• MATLAB Online only supports copying MATLAB code into a character array using the

syntax code = grabcode(filename). Copying MATLAB code from an HTML page
or file into an untitled document in the Editor is not supported.

See Also
publish

Topics
“Publish and Share MATLAB Code”
“Share Live Scripts and Functions”

Introduced before R2006a

1 Alphabetical List

1-4834

https://www.mathworks.com/products/matlab-online.html

gradient
Numerical gradient

Syntax
FX = gradient(F)
[FX,FY] = gradient(F)
[FX,FY,FZ,...,FN] = gradient(F)
[___] = gradient(F,h)
[___] = gradient(F,hx,hy,...,hN)

Description
FX = gradient(F) returns the one-dimensional numerical gradient on page 1-4841 of
vector F. The output FX corresponds to ∂F/∂x, which are the differences in the x
(horizontal) direction. The spacing between points is assumed to be 1.

[FX,FY] = gradient(F) returns the x and y components of the two-dimensional
numerical gradient on page 1-4841 of matrix F. The additional output FY corresponds to
∂F/∂y, which are the differences in the y (vertical) direction. The spacing between points
in each direction is assumed to be 1.

[FX,FY,FZ,...,FN] = gradient(F) returns the N components of the numerical
gradient on page 1-4841 of F, where F is an array with N dimensions.

[___] = gradient(F,h) uses h as a uniform spacing between points in each
direction. You can specify any of the output arguments in previous syntaxes.

[___] = gradient(F,hx,hy,...,hN) specifies N spacing parameters for the spacing
in each dimension of F.

Examples

 gradient

1-4835

Gradient of Vector

Calculate the gradient of a monotonically increasing vector.

x = 1:10

x = 1×10

 1 2 3 4 5 6 7 8 9 10

fx = gradient(x)

fx = 1×10

 1 1 1 1 1 1 1 1 1 1

Contour Plot of Vector Field

Calculate the 2-D gradient of xe−x2− y2 on a grid.

x = -2:0.2:2;
y = x';
z = x .* exp(-x.^2 - y.^2);
[px,py] = gradient(z);

Plot the contour lines and vectors in the same figure.

figure
contour(x,y,z)
hold on
quiver(x,y,px,py)
hold off

1 Alphabetical List

1-4836

Linear Function Approximation

Use the gradient at a particular point to linearly approximate the function value at a
nearby point and compare it to the actual value.

The equation for linear approximation of a function value is

f (x) ≈ f (x0) + ∇ f x0 ⋅ (x− x0) .

 gradient

1-4837

That is, if you know the value of a function f (x0) and the slope of the derivative ∇ f x0 at a
particular point x0, then you can use this information to approximate the value of the
function at a nearby point f (x) = f (x0 + ϵ).

Calculate some values of the sine function between -1 and 0.5. Then calculate the
gradient.

y = sin(-1:0.25:0.5);
yp = gradient(y,0.25);

Use the function value and derivative at x = 0.5 to predict the value of sin(0.5005).

y_guess = y(end) + yp(end)*(0.5005 - 0.5)

y_guess = 0.4799

Compute the actual value for comparison.

y_actual = sin(0.5005)

y_actual = 0.4799

Compute Gradient at Specified Point

Find the value of the gradient of a multivariate function at a specified point.

Consider the multivariate function f (x, y) = x2y3.

x = -3:0.2:3;
y = x';
f = x.^2 .* y.^3;
surf(x,y,f)
xlabel('x')
ylabel('y')
zlabel('z')

1 Alphabetical List

1-4838

Calculate the gradient on the grid.

[fx,fy] = gradient(f,0.2);

Extract the value of the gradient at the point (1,-2). To do this, first obtain the indices
of the point you want to work with. Then, use the indices to extract the corresponding
gradient values from fx and fy.

x0 = 1;
y0 = -2;
t = (x == x0) & (y == y0);
indt = find(t);
f_grad = [fx(indt) fy(indt)]

 gradient

1-4839

f_grad = 1×2

 -16.0000 12.0400

The exact value of the gradient of f (x, y) = x2y3 at the point (1,-2) is

∇ f (1, − 2) = 2xy3i + 3x2y2 j

= − 16i + 12 j .

Input Arguments
F — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

h — Uniform spacing between points
1 (default) | scalar

Uniform spacing between points in all directions, specified as a scalar.
Example: [FX,FY] = gradient(F,2)
Data Types: single | double
Complex Number Support: Yes

hx, hy, hN — Spacing between points (as separate inputs)
1 (default) | scalars | vectors

Spacing between points in each direction, specified as separate inputs of scalars or
vectors. The number of inputs must match the number of array dimensions of F. Each
input can be a scalar or vector:

• A scalar specifies a constant spacing in that dimension.
• A vector specifies the coordinates of the values along the corresponding dimension of

F. In this case, the length of the vector must match the size of the corresponding
dimension.

1 Alphabetical List

1-4840

Example: [FX,FY] = gradient(F,0.1,2)
Example: [FX,FY] = gradient(F,[0.1 0.3 0.5],2)
Example: [FX,FY] = gradient(F,[0.1 0.3 0.5],[2 3 5])
Data Types: single | double
Complex Number Support: Yes

Output Arguments
FX, FY, FZ, FN — Numerical gradients
arrays

Numerical gradients, returned as arrays of the same size as F. The first output FX is
always the gradient along the 2nd dimension of F, going across columns. The second
output FY is always the gradient along the 1st dimension of F, going across rows. For the
third output FZ and the outputs that follow, the Nth output is the gradient along the Nth
dimension of F.

Definitions

Numerical Gradient
The numerical gradient of a function is a way to estimate the values of the partial
derivatives in each dimension using the known values of the function at certain points.

For a function of two variables, F(x,y), the gradient is

∇F = ∂F
∂x i + ∂F

∂y j .

The gradient can be thought of as a collection of vectors pointing in the direction of
increasing values of F. In MATLAB, you can compute numerical gradients for functions
with any number of variables. For a function of N variables, F(x,y,z, ...), the gradient is

∇F = ∂F
∂x i + ∂F

∂y j + ∂F
∂z k + ... + ∂F

∂Nn .

 gradient

1-4841

Tips
• Use diff or a custom algorithm to compute multiple numerical derivatives, rather

than calling gradient multiple times.

Algorithms
gradient calculates the central difference for interior data points. For example, consider
a matrix with unit-spaced data, A, that has horizontal gradient G = gradient(A). The
interior gradient values, G(:,j), are

G(:,j) = 0.5*(A(:,j+1) - A(:,j-1));

The subscript j varies between 2 and N-1, with N = size(A,2).

gradient calculates values along the edges of the matrix with single-sided differences:

G(:,1) = A(:,2) - A(:,1);
G(:,N) = A(:,N) - A(:,N-1);

If you specify the point spacing, then gradient scales the differences appropriately. If
you specify two or more outputs, then the function also calculates differences along other
dimensions in a similar manner. Unlike the diff function, gradient returns an array
with the same number of elements as the input.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-4842

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
del2 | diff

Topics
“Calculate Tangent Plane to Surface”

Introduced before R2006a

 gradient

1-4843

addedge
Add new edge to graph

Syntax
H = addedge(G,s,t)
H = addedge(G,s,t,w)
H = addedge(G,s,t,EdgeTable)
H = addedge(G,EdgeTable)

Description
H = addedge(G,s,t) adds an edge to graph G between nodes s and t. If a node
specified by s or t is not present in G, then that node is added. The new graph, H, is
equivalent to G, but includes the new edge and any required new nodes.

H = addedge(G,s,t,w) also specifies weights, w, for the edges between s and t.

H = addedge(G,s,t,EdgeTable) adds edges between the nodes s and t with
attributes specified by the table, EdgeTable.

H = addedge(G,EdgeTable) adds edges with attributes specified by the table,
EdgeTable. The EdgeTable input must be able to be concatenated with G.Edges.

Examples

Add Edges to Graph

Add two new edges to an existing graph. Since one of the new edges references a node
that does not exist, addedge automatically adds the required fourth node to the graph.

G = graph([1 2],[2 3])

G =
 graph with properties:

1 Alphabetical List

1-4844

 Edges: [2x1 table]
 Nodes: [3x0 table]

G = addedge(G,[2 1],[4 3])

G =
 graph with properties:

 Edges: [4x1 table]
 Nodes: [4x0 table]

Add Weighted Edges to Graph

Create a directed graph with weighted edges.

G = digraph({'A' 'B' 'C'}, {'D' 'C' 'D'}, [10 20 45])

G =
 digraph with properties:

 Edges: [3x2 table]
 Nodes: [4x1 table]

Add three new weighted edges to the graph. addedge also automatically adds any
required new nodes to the graph.

G = addedge(G, {'A' 'D' 'E'}, {'E' 'B' 'D'}, [5 30 5])

G =
 digraph with properties:

 Edges: [6x2 table]
 Nodes: [5x1 table]

 addedge

1-4845

Add Edges with Attributes to Graph

Create a graph whose edges have the attributes Weight and Power. Use an edge table to
create the graph.

EdgeTable = table([1 2; 2 3; 2 4; 2 5; 5 6; 5 7; 5 8], ...
 {'on','off','off','on','on','on','off'}',[10 20 20 10 10 10 20]', ...
 'VariableNames',{'EndNodes','Power','Weight'});
G = graph(EdgeTable)

G =
 graph with properties:

 Edges: [7x3 table]
 Nodes: [8x0 table]

Add two new edges to the graph by creating a smaller table that can be concatenated to
G.Edges. Note that this smaller table must use the same order of variables as G.Edges.

NewEdges = table([5 9; 3 6], {'on' 'off'}', [10 20]', ...
 'VariableNames',{'EndNodes','Power','Weight'});
G = addedge(G,NewEdges)

G =
 graph with properties:

 Edges: [9x3 table]
 Nodes: [9x0 table]

View the new edge list of the graph, which includes the added edges.

G.Edges

ans=9×3 table
 EndNodes Power Weight
 ________ _____ ______

 1 2 'on' 10
 2 3 'off' 20
 2 4 'off' 20
 2 5 'on' 10
 3 6 'off' 20
 5 6 'on' 10

1 Alphabetical List

1-4846

 5 7 'on' 10
 5 8 'off' 20
 5 9 'on' 10

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

s,t — Node pairs (as separate arguments)
node indices | node names

Node pairs, specified as separate arguments of node indices or node names. Similarly
located elements in s and t specify the source and target nodes for edges in the graph.

If you add edges using node names that are not already present in the graph, then
addedge adds the new node names to the bottom of the g.Nodes.Name table. If s and t
are categorical arrays, then the categories of s and t are used as node names. This can
include categories that are not elements in s or t.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}

 addedge

1-4847

Form Single Node Multiple Nodes
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]
Categorical array

Example:
categorical("A")

Categorical array

Example:
categorical(["A" "B"
"C"])

Example: G = addedge(G, [1 2], [3 4]) adds two edges to the graph: one from
node 1 to node 3, and one from node 2 to node 4.
Example: G = addedge(G, {'a' 'a'; 'b' 'c'}, {'b' 'c'; 'c' 'e'}) adds
four edges to the graph, the first of which goes from 'a' to 'b'.

w — Edge weights
scalar | vector | matrix

Edge weights, specified as a scalar, vector, or matrix.

• If w is a scalar or row vector, then it is scalar expanded to specify a weight for each
edge in s and t.

• If w is a column vector, then it must have the same length as s(:) and t(:).
• If w is a matrix, then it must have the same number of elements as s(:) and t(:).

Example: G = addedge(G, [2 2], [4 5], [1 100]') adds two edges with weights
of 1 and 100.
Data Types: single | double
Complex Number Support: Yes

EdgeTable — Edge attributes
table

Edge attributes, specified as a table. If you do not specify s and t to define the graph
edges being added, then the first variable in EdgeTable is required to be a two-column
matrix called EndNodes that defines the graph edges being added.

EdgeTable must have these general properties:

1 Alphabetical List

1-4848

• For weighted graphs, EdgeTable must contain a variable Weight.
• If the graph has other edge attributes, then EdgeTable must contain all of the same

variables as G.Edges to ensure compatibility.
• The order of variables in EdgeTable must be the same as that of G.Edges.

Data Types: table

Output Arguments
H — Output graph
graph object | digraph object

Output graph, returned as a graph or digraph object.

Compatibility Considerations

Change in handling of duplicate edges
Behavior changed in R2018a

graph, digraph, and addedge no longer produce errors when they encounter duplicate
edges. Instead, the duplicate edges are added to the graph and the result is a multigraph.
The ismultigraph function is useful to detect this situation, and simplify provides an
easy way to remove the extra edges.

See Also
addnode | digraph | graph | numedges | rmedge

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”

Introduced in R2015b

 addedge

1-4849

addnode
Add new node to graph

Syntax
H = addnode(G,nodeIDs)
H = addnode(G,numNodes)
H = addnode(G,NodeProps)

Description
H = addnode(G,nodeIDs) adds the nodes specified by nodeIDs to graph G. The node
names in nodeIDs must not refer to nodes already present in G.

H = addnode(G,numNodes) adds a number of new nodes to G equal to numNodes. If G
contains nodes with names, then the new nodes are assigned sequential names indicating
their row placement in G.Nodes.Name. For example, 'Node5' is located at
G.Nodes.Name(5).

H = addnode(G,NodeProps) adds new nodes to G with the node properties in
NodeProps. One node is added for each row in NodeProps. The NodeProps table must
be able to be concatenated to G.Nodes, so that the result is H.Nodes = [G.Nodes;
NodeProps].

Examples

Add Nodes to Graph

Add two nodes to a graph that does not have node names.

G = graph([1 2 3],[2 3 4])

G =
 graph with properties:

1 Alphabetical List

1-4850

 Edges: [3x1 table]
 Nodes: [4x0 table]

G = addnode(G,2)

G =
 graph with properties:

 Edges: [3x1 table]
 Nodes: [6x0 table]

Add node names to the graph, and then add five additional new nodes. The auto-
generated names for the new nodes indicate their placement in G.Nodes.Name.

G.Nodes.Name = {'A' 'B' 'C' 'D' 'E' 'F'}'

G =
 graph with properties:

 Edges: [3x1 table]
 Nodes: [6x1 table]

G = addnode(G,5);
G.Nodes

ans=11×1 table
 Name

 'A'
 'B'
 'C'
 'D'
 'E'
 'F'
 'Node7'
 'Node8'
 'Node9'
 'Node10'
 'Node11'

 addnode

1-4851

Add Named Nodes to Graph

Create a directed graph with named nodes, and then add two named nodes to the graph.

G = digraph({'A' 'B' 'C'},{'D' 'C' 'D'})

G =
 digraph with properties:

 Edges: [3x1 table]
 Nodes: [4x1 table]

G = addnode(G,{'E' 'F'})

G =
 digraph with properties:

 Edges: [3x1 table]
 Nodes: [6x1 table]

If the graph does not already have node names, then adding named nodes to the graph
automatically generates names for the other nodes.

Create a directed graph without node names, and then add two named nodes to the
graph.

H = digraph([1 2 3],[4 3 4])

H =
 digraph with properties:

 Edges: [3x1 table]
 Nodes: [4x0 table]

H = addnode(H,{'E','F'});
H.Nodes

ans=6×1 table
 Name

1 Alphabetical List

1-4852

 'Node1'
 'Node2'
 'Node3'
 'Node4'
 'E'
 'F'

Add Nodes with Attributes to Graph

Create a graph whose nodes represent airports.

G = graph({'JFK' 'LAX'}, {'LAX' 'DEN'})

G =
 graph with properties:

 Edges: [2x1 table]
 Nodes: [3x1 table]

Add a node attribute to indicate whether each airport has free WIFI.

G.Nodes.WIFI = [false true true]';
G.Nodes

ans=3×2 table
 Name WIFI
 _____ _____

 'JFK' false
 'LAX' true
 'DEN' true

Add two new nodes to the graph by creating a table, NodeProps, containing the node
name and WIFI status of each new node. Use addnode to concatenate NodeProps to
G.Nodes.

NodeProps = table({'ATL' 'ANC'}', [false true]', ...
 'VariableNames', {'Name' 'WIFI'});
G = addnode(G, NodeProps);

 addnode

1-4853

View the modified node table.

G.Nodes

ans=5×2 table
 Name WIFI
 _____ _____

 'JFK' false
 'LAX' true
 'DEN' true
 'ATL' false
 'ANC' true

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

nodeIDs — Node names
one or more node names

Node names, specified as one or more node names in one of these forms:

• Single Node — Character vector 'A' or string scalar "A".
• Multiple Nodes — Cell array of character vectors {'A' 'B' 'C'} or string array

["A" "B" "C"].

Example: H = addnode(G,'A')
Example: H = addnode(G,["A" "B" "C"])
Data Types: char | cell | string

1 Alphabetical List

1-4854

numNodes — Number of nodes to add
nonnegative numeric scalar

Number of nodes to add, specified as a nonnegative numeric scalar.

NodeProps — Node attributes
table

Node attributes, specified as a table. NodeProps can contain any number of variables to
describe attributes of the graph nodes, but must be able to be concatenated to G.Nodes,
so that the result is H.Nodes = [G.Nodes; NodeProps]. For node names, use the
variable Name, since this variable name is used by some graph functions. If there is a
variable Name, then it must be a cell array of character vectors or string array specifying
a unique name in each row. See table for more information on constructing a table.
Data Types: table

Output Arguments
H — Output graph
graph object | digraph object

Output graph, returned as a graph or digraph object.

See Also
addedge | digraph | graph | numnodes | rmnode

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”

Introduced in R2015b

 addnode

1-4855

adjacency
Graph adjacency matrix

Syntax
A = adjacency(G)

A = adjacency(G,'weighted')
A = adjacency(G,weights)

Description
A = adjacency(G) returns the sparse adjacency matrix for graph G. If (i,j) is an edge
in G, then A(i,j) = 1. Otherwise, A(i,j) = 0.

A = adjacency(G,'weighted') returns a weighted adjacency matrix, where for each
edge (i,j), the value A(i,j) contains the weight of the edge. If the graph has no edge
weights, then A(i,j) is set to 1. For this syntax, G must be a simple graph such that
ismultigraph(G) returns false.

A = adjacency(G,weights) returns a weighted adjacency matrix with edge weights
given by the vector weights. For each edge (i,j) in G, the adjacency matrix has value
A(i,j) = weights(findedge(G,i,j)). For this syntax, G must be a simple graph
such that ismultigraph(G) returns false.

Examples

Adjacency Matrix of Graph

Create a directed graph using an edge list, and then find the equivalent adjacency matrix
representation of the graph. The adjacency matrix is returned as a sparse matrix.

1 Alphabetical List

1-4856

s = [1 1 1 2 2 3];
t = [2 3 4 5 6 7];
G = digraph(s,t)

G =
 digraph with properties:

 Edges: [6x1 table]
 Nodes: [7x0 table]

A = adjacency(G)

A =
 (1,2) 1
 (1,3) 1
 (1,4) 1
 (2,5) 1
 (2,6) 1
 (3,7) 1

Adjacency Matrix of Weighted Graph

Create an undirected graph using an upper triangular adjacency matrix. When
constructing a graph with an adjacency matrix, the nonzero values in the matrix
correspond to edge weights.

A = [0 5 3 0;0 0 1 2; 0 0 0 11; 0 0 0 0]

A = 4×4

 0 5 3 0
 0 0 1 2
 0 0 0 11
 0 0 0 0

G = graph(A,'upper')

G =
 graph with properties:

 adjacency

1-4857

 Edges: [5x2 table]
 Nodes: [4x0 table]

G.Edges

ans=5×2 table
 EndNodes Weight
 ________ ______

 1 2 5
 1 3 3
 2 3 1
 2 4 2
 3 4 11

Use adjacency to return the adjacency matrix of the graph. Regardless of the form of
adjacency matrix used to construct the graph, the adjacency function always returns a
symmetric and sparse adjacency matrix containing only 1s and 0s.

B = adjacency(G)

B =
 (2,1) 1
 (3,1) 1
 (1,2) 1
 (3,2) 1
 (4,2) 1
 (1,3) 1
 (2,3) 1
 (4,3) 1
 (2,4) 1
 (3,4) 1

Reconstruct Weighted Adjacency Matrix

Create a weighted graph.

G = digraph([1 1 1 2 3 4],[2 3 4 4 2 3],[5 6 7 8 9 10]);
G.Edges

1 Alphabetical List

1-4858

ans=6×2 table
 EndNodes Weight
 ________ ______

 1 2 5
 1 3 6
 1 4 7
 2 4 8
 3 2 9
 4 3 10

Find the adjacency matrix of the graph.

A = adjacency(G)

A =
 (1,2) 1
 (3,2) 1
 (1,3) 1
 (4,3) 1
 (1,4) 1
 (2,4) 1

This form of the adjacency matrix does not include the edge weights. Use the
'weighted' option to include the edge weights in the adjacency matrix.

A = adjacency(G,'weighted')

A =
 (1,2) 5
 (3,2) 9
 (1,3) 6
 (4,3) 10
 (1,4) 7
 (2,4) 8

Preview a full storage version of the matrix. Since G is a directed graph, the adjacency
matrix is not symmetric. However, the adjacency matrix is symmetric for undirected
graphs.

B = full(A)

 adjacency

1-4859

B = 4×4

 0 5 6 7
 0 0 0 8
 0 9 0 0
 0 0 10 0

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

weights — Edge weights
vector

Edge weights, specified as a vector.
Example: A = adjacency(G,[1 2 3 4])
Data Types: double | logical
Complex Number Support: Yes

Output Arguments
A — Adjacency matrix
sparse matrix

Adjacency matrix, returned as a sparse matrix. The size of A is numnodes(G)-by-
numnodes(G).

1 Alphabetical List

1-4860

Tips
• Edges with weight zero are not visible in the sparse adjacency matrix returned by

adjacency. This means that a weighted adjacency matrix can represent a weighted
graph only if there are no edges of weight zero.

See Also
digraph | graph | incidence | laplacian

Introduced in R2015b

 adjacency

1-4861

bctree
Block-cut tree graph

Syntax
tree = bctree(G)
[tree,ind] = bctree(G)

Description
tree = bctree(G) returns the block-cut tree of graph G, such that each node in tree
represents either a biconnected component on page 1-4867 or cut vertex on page 1-4869
of G. A node representing a cut vertex is connected to all nodes representing biconnected
components that contain that cut vertex.

[tree,ind] = bctree(G) also returns a vector of numeric node indices mapping the
nodes of G into the nodes of tree.

Examples

Compute Block-Cut Tree of Graph

Compute the block-cut tree of a graph, view the resulting node properties, and then
highlight the cut vertices in the graph plot.

Create and plot a graph.

s = [1 1 2 2 3 4 4 5 6 6 7 7 8];
t = [2 3 3 4 4 5 7 6 7 10 8 9 9];
G = graph(s,t);
p = plot(G);

1 Alphabetical List

1-4862

Compute the block-cut tree of the graph and view the node properties.

tree = bctree(G);
tree.Nodes

ans=7×3 table
 IsComponent ComponentIndex CutVertexIndex
 ___________ ______________ ______________

 true 1 0
 true 2 0
 true 3 0
 true 4 0
 false 0 4

 bctree

1-4863

 false 0 6
 false 0 7

Plot the block-cut tree using red diamond markers for the nodes that represent cut
vertices. The circular nodes represent the biconnected components in the original graph.

p2 = plot(tree,'MarkerSize',9);
highlight(p2,5:7,'Marker','d','NodeColor','r')

1 Alphabetical List

1-4864

Return Node Indices for Block-Cut Tree

Create and plot a graph.

s = [1 1 2 2 3 4 4 5 6 6 7 7 8];
t = [2 3 3 4 4 5 7 6 7 10 8 9 9];
G = graph(s,t);
p = plot(G);

Compute the block-cut tree tr of the graph, and specify a second output ix to return the
node indices.

[tr,ix] = bctree(G)

 bctree

1-4865

tr =
 graph with properties:

 Edges: [6x1 table]
 Nodes: [7x3 table]

ix = 1×10

 4 4 4 5 3 6 7 1 1 2

Each index ix(j) indicates the node in the block-cut tree that represents node j in the
input graph. For example, node 4 in tr represents a component in G that contains nodes
1, 2, and 3, so the first three entries in ix are all 4.

Input Arguments
G — Input graph
graph object

Input graph, specified as a graph object. Use graph to create an undirected graph
object.
Example: G = graph(1,2)

Output Arguments
tree — Block-cut tree graph
graph object

Block-cut tree graph, returned as a graph object. tree contains a node for each cut
vertex in G and a node for each biconnected component in G. The nodes table
tree.Nodes contains additional node attributes to describe what each node represents:

• tree.Nodes.IsComponent(i) — Value equal to logical 1 (true) if node i
represents a biconnected component. Otherwise, the value is equal to and logical 0
(false).

• tree.Nodes.ComponentIndex(i) — Index indicating the component represented
by node i. The value is zero if node i represents a cut vertex.

1 Alphabetical List

1-4866

• tree.Nodes.CutVertexIndex(i) — Index indicating the cut vertex represented by
node i. The value is zero if node i represents a biconnected component.

ind — Node indices
vector

Node indices, returned as a numeric vector. ind(i) is the node in the output graph tree
that represents node i in the input graph G:

• If node i is a cut vertex in graph G, then ind(i) is the associated node in tree.
• If node i is not a cut vertex, but belongs to one of the biconnected components in

graph G, then ind(i) is the node in tree representing that biconnected component.
• If node i is an isolated node in graph G, then ind(i) is zero.

Definitions

Biconnected Components
A biconnected component of a graph is a maximally biconnected subgraph. A graph is
biconnected if it does not contain any cut vertices.

Decomposing a graph into its biconnected components helps to measure how well-
connected the graph is. You can decompose any connected graph into a tree of
biconnected components, called the block-cut tree. The blocks in the tree are attached at
shared vertices, which are the cut vertices.

The illustration depicts:

• (a) An undirected graph with 11 nodes.
• (b) Five biconnected components of the graph, with the cut vertices of the original

graph colored for each component to which they belong.
• (c) Block-cut tree of the graph, which contains a node for each biconnected component

(as large circles) and a node for each cut vertex (as smaller multicolored circles). In
the block-cut tree, an edge connects each cut vertex to each component to which it
belongs.

 bctree

1-4867

1 Alphabetical List

1-4868

Cut Vertices
Also known as articulation points, cut vertices are graph nodes whose removal increases
the number of connected components. In the previous illustration, the cut vertices are
those nodes with more than one color: nodes 4, 6, and 7.

See Also
biconncomp | condensation

Topics
“Directed and Undirected Graphs”
“Visualize Breadth-First and Depth-First Search”

Introduced in R2016b

 bctree

1-4869

bfsearch
Breadth-first graph search

Syntax
v = bfsearch(G,s)
T = bfsearch(G,s,events)
[T,E] = bfsearch(G,s,events)
[___] = bfsearch(___ ,'Restart',tf)

Description
v = bfsearch(G,s) applies breadth-first search on page 1-4886 to graph G starting at
node s. The result is a vector of node IDs in order of their discovery.

T = bfsearch(G,s,events) customizes the output of the breadth-first search by
flagging one or more search events. For example, T = bfsearch(G,s,'allevents')
returns a table containing all flagged events, and X = bfsearch(G,s,'edgetonew')
returns a matrix or cell array of edges.

[T,E] = bfsearch(G,s,events) additionally returns a vector of edge indices E when
events is set to 'edgetonew', 'edgetodiscovered', or 'edgetofinished'. The
edge indices are for unique identification of edges in a multigraph.

[___] = bfsearch(___ ,'Restart',tf), where tf is true, restarts the search if
no new nodes are reachable from the discovered nodes. You can use any of the input or
output argument combinations in previous syntaxes. This option ensures that the breadth-
first search reaches all nodes and edges in the graph, even if they are not reachable from
the starting node, s.

Examples

1 Alphabetical List

1-4870

Perform Breadth-First Graph Search

Create and plot a graph.

s = [1 1 1 1 2 2 2 2 2];
t = [3 5 4 2 6 10 7 9 8];
G = graph(s,t);
plot(G)

Perform a breadth-first search of the graph starting at node 2. The result indicates the
order of node discovery.

v = bfsearch(G,2)

 bfsearch

1-4871

v = 10×1

 2
 1
 6
 7
 8
 9
 10
 3
 4
 5

Breadth-First Graph Search with All Events

Create and plot a directed graph.

s = [1 1 1 2 3 3 3 4 6];
t = [2 4 5 5 6 7 4 1 4];
G = digraph(s,t);
plot(G)

1 Alphabetical List

1-4872

Perform a breadth-first search on the graph starting at node 1. Specify 'allevents' to
return a table containing all of the events in the algorithm.

T = bfsearch(G,1,'allevents')

T=14×4 table
 Event Node Edge EdgeIndex
 ________________ ____ __________ _________

 startnode 1 NaN NaN NaN
 discovernode 1 NaN NaN NaN
 edgetonew NaN 1 2 1
 discovernode 2 NaN NaN NaN
 edgetonew NaN 1 4 2

 bfsearch

1-4873

 discovernode 4 NaN NaN NaN
 edgetonew NaN 1 5 3
 discovernode 5 NaN NaN NaN
 finishnode 1 NaN NaN NaN
 edgetodiscovered NaN 2 5 4
 finishnode 2 NaN NaN NaN
 edgetofinished NaN 4 1 8
 finishnode 4 NaN NaN NaN
 finishnode 5 NaN NaN NaN

To follow the steps in the algorithm, read the events in the table from top to bottom. For
example:

1 The algorithm begins at node 1
2 An edge is discovered between node 1 and node 2
3 Node 2 is discovered
4 and so on...

Breadth-First Graph Search with Multiple Components

Perform a breadth-first search of a graph with multiple components, and then highlight
the graph nodes and edges based on the search results.

Create and plot a directed graph. This graph has two weakly connected components.

s = [1 1 2 2 2 3 4 7 8 8 8 8];
t = [3 4 7 5 6 2 6 2 9 10 11 12];
G = digraph(s,t);
p = plot(G,'Layout','layered');

1 Alphabetical List

1-4874

c = conncomp(G,'Type','weak')

c = 1×12

 1 1 1 1 1 1 1 2 2 2 2 2

Perform a breadth-first search of the graph starting at node 2, and flag the
'edgetonew', 'edgetofinished', and 'startnode' events. Specify Restart as
true to make the search restart whenever there are remaining nodes that cannot be
reached.

events = {'edgetonew','edgetofinished','startnode'};
T = bfsearch(G,2,events,'Restart',true)

 bfsearch

1-4875

T=15×4 table
 Event Node Edge EdgeIndex
 ______________ ____ __________ _________

 startnode 2 NaN NaN NaN
 edgetonew NaN 2 5 3
 edgetonew NaN 2 6 4
 edgetonew NaN 2 7 5
 edgetofinished NaN 7 2 8
 startnode 1 NaN NaN NaN
 edgetonew NaN 1 3 1
 edgetonew NaN 1 4 2
 edgetofinished NaN 3 2 6
 edgetofinished NaN 4 6 7
 startnode 8 NaN NaN NaN
 edgetonew NaN 8 9 9
 edgetonew NaN 8 10 10
 edgetonew NaN 8 11 11
 edgetonew NaN 8 12 12

When Restart is true, the 'startnode' event returns information about where and
when the algorithm restarts the search.

Highlight the graph based on event:

• Color the starting nodes red.
• Green edges are for 'edgetonew'
• Black edges are for 'edgetofinished'

highlight(p, 'Edges', T.EdgeIndex(T.Event == 'edgetonew'), 'EdgeColor', 'g')
highlight(p, 'Edges', T.EdgeIndex(T.Event == 'edgetofinished'), 'EdgeColor', 'k')
highlight(p,T.Node(~isnan(T.Node)),'NodeColor','r')

1 Alphabetical List

1-4876

Determine if Graph is Bipartite

Use breadth-first search to determine that a graph is bipartite, and return the relevant
partitions. A bipartite graph is a graph that has nodes you can divide into two sets, A and
B, with each edge in the graph connecting a node in A to a node in B.

Create and plot a directed graph.

s = [1 1 1 1 2 2 4 5 6 7 8];
t = [2 3 6 8 5 10 6 6 10 3 10];
g = digraph(s,t);
plot(g);

 bfsearch

1-4877

Use a breadth-first search on the graph to determine if it is bipartite, and if so, return the
relevant partitions.

events = {'edgetonew', 'edgetodiscovered', 'edgetofinished'};
T = bfsearch(g, 1, events, 'Restart', true);
partitions = false(1, numnodes(g));
is_bipart = true;
is_edgetonew = T.Event == 'edgetonew';
ed = T.Edge;

for ii=1:size(T, 1)
 if is_edgetonew(ii)
 partitions(ed(ii, 2)) = ~partitions(ed(ii, 1));
 else

1 Alphabetical List

1-4878

 if partitions(ed(ii, 1)) == partitions(ed(ii, 2))
 is_bipart = false;
 break;
 end
 end
end

is_bipart

is_bipart = logical
 1

Since g is bipartite, the partitions variable contains the information about which
partition each node belongs to.

Plot the bipartite graph with the 'layered' layout, using the partitions variable to
specify the source nodes that appear in the first layer.

partitions

partitions = 1x10 logical array

 0 1 1 0 0 1 0 1 0 0

plot(g, 'Layout', 'layered', 'Source', find(partitions));

 bfsearch

1-4879

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

1 Alphabetical List

1-4880

s — Starting node
node index | node name

Starting node, specified as one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: bfsearch(G,1)

events — Flagged search events
'discovernode' (default) | 'startnode' | 'finishnode' | 'edgetonew' |
'edgetodiscovered' | 'edgetofinished' | 'allevents' | cell array | string array

Flagged search events, specified as one of the options in the following table.

• To flag single events, use the flag names.
• To flag a subset of events, put two or more flag names into a cell array or string array.
• To flag all events, use 'allevents'.

Note Depending on the value of events, the output of bfsearch varies. See the last
column in the following table for information about the output returned by each option.

Value of events Description Output
'discovernode' (default) A new node has been

discovered.
Return a vector of node IDs:

• If s is a numeric node
index, then the vector
contains numeric node
indices.

• If s is a node name, then
the vector is a cell array
containing node names.

'finishnode' All outgoing edges from the
node have been visited.

 bfsearch

1-4881

Value of events Description Output
'startnode' This flag indicates the

starting node in the search.

If 'Restart' is true, then
'startnode' flags the
starting node each time the
search restarts.

'edgetonew' Edge connects to an
undiscovered node.

Return a matrix or cell array
of size N-by-2 that specifies
the end nodes of edges in
the graph:

• If s is a numeric node
index, then the matrix
contains numeric node
indices.

• If s is a node name, then
the matrix is a cell array
containing node names.

Additionally, you can specify
a second output with [T,E]
= bfsearch(…) that
returns a vector of edge
indices E.

'edgetodiscovered' Edge connects to a
previously discovered node.

'edgetofinished' Edge connects to a finished
node.

cell array Specify two or more flags in
a cell array to only flag
those events during the
search.

Return a table, T, which
contains the variables
T.Event, T.Node, T.Edge,
and T.EdgeIndex:

• T.Event is a categorical
vector containing the
flags in order of their
occurrence.

• T.Node contains the
node ID of the
corresponding node for
the events

1 Alphabetical List

1-4882

Value of events Description Output
'allevents' All events are flagged. 'discovernode',

'finishnode', and
'startnode'.

• T.Edge contains the
corresponding edge for
the events
'edgetonew',
'edgetodiscovered',
and
'edgetofinished'.

• T.EdgeIndex contains
the edge index for the
events 'edgetonew',
'edgetodiscovered',
and
'edgetofinished'.
The edge index is for
unique identification of
repeated edges in a
multigraph.

• Unused elements of
T.Node and T.Edge are
set to NaN.

• If s is a numeric node
index, then T.Node and
T.Edge contain numeric
node indices.

• If s is a node name, then
T.Node and T.Edge are
cell arrays containing
node names.

Example: v = bfsearch(G,3) begins the search at the third node and returns a vector,
v, containing the nodes in order of discovery. This is the same as v =
bfsearch(G,3,'discovernode').

 bfsearch

1-4883

Example: X = bfsearch(G,'A','edgetonew') begins at the node named 'A' and
returns a cell array, X, indicating each of the edges that connects to an undiscovered node
during the search.
Example: T = bfsearch(G,s,{'discovernode','finishnode'}) returns a table, T,
but only flags when new nodes are discovered or when a node is marked finished.
Example: T = bfsearch(G,s,'allevents') flags all search events and returns a
table, T.
Data Types: char | string | cell

tf — Toggle to restart search
false (default) | true

Toggle to restart search, specified as false (default) or true. This option is useful if the
graph contains nodes that are unreachable from the starting node. If 'Restart' is true,
then the search restarts whenever undiscovered nodes remain that are unreachable from
the discovered nodes. The new start node is the node with smallest index that is still
undiscovered. The restarting process repeats until bfsearch discovers all nodes.

'Restart' is false by default, so that the search only visits nodes that are reachable
from the starting node.

When 'Restart' is true, the 'discovernode' and 'finishnode' events occur once
for each node in the graph. Also, each edge in the graph is flagged once by
'edgetonew', 'edgetodiscovered', or 'edgetofinished'. The edges flagged by
'edgetonew' form one or more trees.
Example: T = bfsearch(graph([1 3],[2 4]),1,'Restart',true) searches both
of the connected components in the graph.
Data Types: logical

Output Arguments
v — Node IDs
numeric column vector | cell vector

Node IDs, returned in one of the following formats:

• If you use a numeric node ID to specify the starting node s, then v is a numeric
column vector of node indices.

1 Alphabetical List

1-4884

• If s is a character vector or string containing a node name, then v is a cell vector
containing node names.

The node IDs in v reflect the order of discovery by the breadth-first graph search.

T — Search results
table | vector | matrix | cell array of node names

Search results, returned in one of the following formats:

• If events is not specified or is 'discovernode', 'finishnode', or 'startnode',
then T is a vector of node IDs similar to v.

• If events is 'edgetonew', 'edgetodiscovered', or 'edgetofinished', then T
is a matrix or cell array of size N-by-2 indicating the source and target nodes for each
relevant edge.

• If events is a cell array of search events or 'allevents', then T is a table
containing the flagged search events. The table contains the search event flags in
T.Event, relevant node IDs in T.Node, and relevant edges in T.Edge and
T.EdgeIndex.

In all cases:

• The order of the elements or rows of T indicates their order of occurrence during the
search.

• If you specify s as a numeric node ID, then T also refers to nodes using their numeric
IDs.

• If you specify s as a node name, then T also refers to nodes using their names.

E — Edge indices
vector

Edge indices, returned as a vector.

Specify this output to get a vector of edge indices for the events 'edgetonew',
'edgetodiscovered', or 'edgetofinished'. The N-by-1 vector of edge indices
corresponds with T, which is a matrix or cell array of size N-by-2 indicating the source
and target nodes for each relevant edge.
Example: [T,E] = bfsearch(G,s,'edgetonew')

 bfsearch

1-4885

Tips
• dfsearch and bfsearch treat undirected graphs the same as directed graphs. An

undirected edge between nodes s and t is treated like two directed edges, one from s
to t and one from t to s.

Algorithms
The Breadth-First search algorithm begins at the starting node, s, and inspects all of its
neighboring nodes in order of their node index. Then for each of those neighbors, it visits
their unvisited neighbors in order. The algorithm continues until all nodes that are
reachable from the starting node have been visited.

In pseudo-code, the algorithm can be written as:

Event startnode(S)
Event discovernode(S)
NodeList = {S}

WHILE NodeList is not empty

 C = NodeList{1}
 Remove first element from NodeList

 FOR edge E from outgoing edges of node C, connecting to node N
 Event edgetonew(C,E), edgetodiscovered(C,E) or edgetofinished(C,E)
 (depending on the state of node N)
 IF event was edgetonew
 Event discovernode(N)
 Append N to the end of NodeList
 END
 END

 Event finishnode(C)
END

bfsearch can return flags to describe the different events in the algorithm, such as when
a new node is discovered or when all of the outgoing edges of a node have been visited.
The event flags are listed here.

1 Alphabetical List

1-4886

Event Flag Event Description
'discovernode' A new node has been discovered.
'finishnode' All outgoing edges from the node have been

visited.
'startnode' This flag indicates the starting node in the

search.
'edgetonew' Edge connects to an undiscovered node
'edgetodiscovered' Edge connects to a previously discovered

node
'edgetofinished' Edge connects to a finished node

For more information, see the input argument description for events.

Note In cases where the input graph contains nodes that are unreachable from the
starting node, the 'Restart' option provides a way to make the search visit every node
in the graph. In that case, the 'startnode' event indicates the starting node each time
the search restarts.

See Also
conncomp | dfsearch | digraph | graph

Topics
“Visualize Breadth-First and Depth-First Search”

Introduced in R2015b

 bfsearch

1-4887

biconncomp
Biconnected graph components

Syntax
bins = biconncomp(G)
bins = biconncomp(G,'OutputForm',form)
[bins,iC] = biconncomp(___)

Description
bins = biconncomp(G) returns the biconnected components on page 1-4895 of graph
G as bins. The bin numbers indicate which biconnected component each edge in the graph
belongs to. Each edge in G belongs to a single biconnected component, whereas the nodes
in G can belong to more than one biconnected component. Two nodes belong to the same
biconnected component if removing any one node from the graph does not disconnect
them.

bins = biconncomp(G,'OutputForm',form), where form is 'cell', returns the
output as a cell array such that bins{j} contains the node IDs of all nodes in component
j. The default for form is 'vector'.

[bins,iC] = biconncomp(___) additionally returns the node indices iC indicating
which nodes are cut vertices on page 1-4898 (also called articulation points).

Examples

Highlight Biconnected Components

Create and plot a graph. Color the edges based on which biconnected component each
edge belongs to.

s = [1 1 2 2 3 4 4 5 6 6 7 7 8];
t = [2 3 3 4 4 5 7 6 7 10 8 9 9];

1 Alphabetical List

1-4888

G = graph(s,t);
p = plot(G,'LineWidth',2);

p.EdgeCData = biconncomp(G);

 biconncomp

1-4889

Extract Biconnected Components as Subgraphs

This example shows how to extract the biconnected components from a graph as
subgraphs, and then label the nodes in each subgraph using the node indices in the
original graph.

Create and plot a graph.

s = [1 1 2 2 3 4 4 5 6 6 7 7 8];
t = [2 3 3 4 4 5 7 6 7 10 8 9 9];
G = graph(s,t);
plot(G)

1 Alphabetical List

1-4890

Group the graph nodes into bins based on which biconnected component(s) each node
belongs to. Then, loop through each of the bins and extract a subgraph for each
biconnected component. Label the nodes in each subgraph using their original node
indices.

bincell = biconncomp(G, 'OutputForm', 'cell');
n = length(bincell);

for ii = 1:n
 subplot(2,2,ii)
 plot(subgraph(G, bincell{ii}), 'NodeLabel', bincell{ii});
end

 biconncomp

1-4891

Identify Cut Vertices

Identify the cut vertices in a graph and then highlight those vertices in the graph plot.

Create and plot a graph. Calculate which biconnected component each graph edge
belongs to, and specify a second output to return a vector identifying the cut vertices.

s = [1 1 2 2 3 4 4 5 6 6 7 7 8];
t = [2 3 3 4 4 5 7 6 7 10 8 9 9];
G = graph(s,t);
p = plot(G);

1 Alphabetical List

1-4892

[edgebins,iC] = biconncomp(G)

edgebins = 1×13

 4 4 4 4 4 3 3 3 3 2 1 1 1

iC = 1×3

 4 6 7

Nodes 4, 6, and 7 are the cut vertices of graph G. Use highlight to enlarge the cut
vertices referenced in iC.

 biconncomp

1-4893

highlight(p, iC)

Input Arguments
G — Input graph
graph object

Input graph, specified as a graph object. Use graph to create an undirected graph
object.
Example: G = graph(1,2)

1 Alphabetical List

1-4894

form — Type of output
'vector' (default) | 'cell'

Type of output, specified as one of these values:

Option Output
'vector' (default) bins is a numeric vector indicating which

biconnected component each edge belongs
to.

'cell' bins is a cell array, and bins{j} contains
the node IDs for all nodes that belong to
component j.

Output Arguments
bins — Biconnected components
vector | cell array

Biconnected components, returned as a vector or cell array. The bin numbers assign each
edge or node in the graph to a biconnected component:

• If OutputForm is 'vector' (default), then bins is a numeric vector indicating which
connected component (bin) each edge belongs to.

• If OutputForm is 'cell', then bins is a cell array, with bins{j} containing the
node IDs for all nodes that belong to component j.

iC — Indices of cut vertices
vector

Indices of cut vertices, returned as a vector of numeric node IDs.

Definitions

Biconnected Components
A biconnected component of a graph is a maximally biconnected subgraph. A graph is
biconnected if it does not contain any cut vertices.

 biconncomp

1-4895

Decomposing a graph into its biconnected components helps to measure how well-
connected the graph is. You can decompose any connected graph into a tree of
biconnected components, called the block-cut tree. The blocks in the tree are attached at
shared vertices, which are the cut vertices.

The illustration depicts:

• (a) An undirected graph with 11 nodes.
• (b) Five biconnected components of the graph, with the cut vertices of the original

graph colored for each component to which they belong.
• (c) Block-cut tree of the graph, which contains a node for each biconnected component

(as large circles) and a node for each cut vertex (as smaller multicolored circles). In
the block-cut tree, an edge connects each cut vertex to each component to which it
belongs.

1 Alphabetical List

1-4896

 biconncomp

1-4897

Cut Vertices
Also known as articulation points, cut vertices are graph nodes whose removal increases
the number of connected components. In the previous illustration, the cut vertices are
those nodes with more than one color: nodes 4, 6, and 7.

See Also
bctree | condensation | conncomp

Topics
“Directed and Undirected Graphs”
“Visualize Breadth-First and Depth-First Search”

Introduced in R2016b

1 Alphabetical List

1-4898

centrality
Measure node importance

Syntax
C = centrality(G,type)
C = centrality(___ ,Name,Value)

Description
C = centrality(G,type) computes the node centrality specified by type for each
node in the graph.

C = centrality(___ ,Name,Value) uses additional options specified by one or more
Name-Value pair arguments. For example, centrality(G,'closeness','Cost',c)
specifies the cost of traversing each edge.

Examples

Page Rank of 6 Websites

Create and plot a graph containing six fictitious websites.

s = [1 1 2 2 3 3 3 4 5];
t = [2 5 3 4 4 5 6 1 1];
names = {'http://www.example.com/alpha', 'http://www.example.com/beta', ...
 'http://www.example.com/gamma', 'http://www.example.com/delta', ...
 'http://www.example.com/epsilon', 'http://www.example.com/zeta'};
G = digraph(s,t,[],names);
plot(G,'NodeLabel',{'alpha','beta','gamma','delta','epsilon','zeta'})

 centrality

1-4899

Calculate the page rank of each website using the centrality function. Append this
information to the Nodes table of the graph as an attribute of the graph nodes.

pg_ranks = centrality(G,'pagerank')

pg_ranks = 6×1

 0.3210
 0.1706
 0.1066
 0.1368
 0.2008
 0.0643

1 Alphabetical List

1-4900

G.Nodes.PageRank = pg_ranks;
G.Nodes

ans=6×2 table
 Name PageRank
 ________________________________ ________

 'http://www.example.com/alpha' 0.32098
 'http://www.example.com/beta' 0.17057
 'http://www.example.com/gamma' 0.10657
 'http://www.example.com/delta' 0.13678
 'http://www.example.com/epsilon' 0.20078
 'http://www.example.com/zeta' 0.06432

Also determine which nodes are hubs and authorities using centrality and append the
scores to the Nodes table.

hub_ranks = centrality(G,'hubs');
auth_ranks = centrality(G,'authorities');
G.Nodes.Hubs = hub_ranks;
G.Nodes.Authorities = auth_ranks;

G.Nodes

ans=6×4 table
 Name PageRank Hubs Authorities
 ________________________________ ________ __________ ___________

 'http://www.example.com/alpha' 0.32098 0.24995 7.3237e-05
 'http://www.example.com/beta' 0.17057 0.24995 0.099993
 'http://www.example.com/gamma' 0.10657 0.49991 0.099993
 'http://www.example.com/delta' 0.13678 9.1536e-05 0.29998
 'http://www.example.com/epsilon' 0.20078 9.1536e-05 0.29998
 'http://www.example.com/zeta' 0.06432 0 0.19999

Degree Centrality of Random Graph

Create and plot a weighted graph using a random sparse adjacency matrix. Since there
are a lot of edges, use a very small value for EdgeAlpha to make the edges mostly
transparent.

 centrality

1-4901

A = sprand(1000,1000,0.15);
A = A + A';
G = graph(A,'omitselfloops');
p = plot(G,'Layout','force','EdgeAlpha',0.005,'NodeColor','r');

Calculate the degree centrality of each node. Specify the importance of each edge using
the edge weights.

deg_ranks = centrality(G,'degree','Importance',G.Edges.Weight);

Use discretize to place the nodes into 7 equally-spaced bins based on their centrality
scores.

edges = linspace(min(deg_ranks),max(deg_ranks),7);
bins = discretize(deg_ranks,edges);

1 Alphabetical List

1-4902

Make the size of each node in the plot proportional to its centrality score. The marker size
of each node is equal to the bin number (1-7).

p.MarkerSize = bins;

Closeness and Betweenness of Minnesota Roads

Load the data in minnesota.mat, which contains a graph object G representing the
network of roads in Minnesota. The graph nodes have xy coordinates contained in the
XCoord and YCoord variables of the G.Nodes table.

 centrality

1-4903

load minnesota.mat
xy = [G.Nodes.XCoord G.Nodes.YCoord];

Add edge weights to the graph that roughly correspond to the length of the roads,
calculated using the Euclidean distance between the xy coordinates of the end nodes of
each edge.

[s,t] = findedge(G);
G.Edges.Weight = hypot(xy(s,1)-xy(t,1), xy(s,2)-xy(t,2));

Plot the graph using the xy coordinates for the nodes.

p = plot(G,'XData',xy(:,1),'YData',xy(:,2),'MarkerSize',5);
title('Minnesota Road Network')

1 Alphabetical List

1-4904

Compute the closeness centrality of each node. Scale the node color NodeCData to be
proportional to the centrality score.

ucc = centrality(G,'closeness');
p.NodeCData = ucc;
colormap jet
colorbar
title('Closeness Centrality Scores - Unweighted')

Also compute the weighted closeness centrality score, using the edge weights as the cost
of traversing each edge. Using the road lengths as edge weights improves the score
quality, since distances are now measured as the sum of the lengths of all traveled edges,
rather than the number of edges traveled.

 centrality

1-4905

wcc = centrality(G,'closeness','Cost',G.Edges.Weight);
p.NodeCData = wcc;
title('Closeness Centrality Scores - Weighted')

Compute the weighted betweenness centrality scores for the graph to determine the
roads most often found on the shortest path between two nodes. Normalize the centrality
scores with the factor (n− 2)(n− 1)

2 so that the score represents the probability that a
traveler along a shortest path between two random nodes will travel through a given
node. The plot indicates that there are a few very important roads leading into and out of
the city.

wbc = centrality(G,'betweenness','Cost',G.Edges.Weight);
n = numnodes(G);

1 Alphabetical List

1-4906

p.NodeCData = 2*wbc./((n-2)*(n-1));
colormap(flip(autumn,1));
title('Betweenness Centrality Scores - Weighted')

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.

 centrality

1-4907

Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

type — Type of node centrality
'degree' | 'outdegree' | 'indegree' | 'closeness' | 'incloseness' |
'outcloseness' | 'betweenness' | 'pagerank' | 'eigenvector' | 'hubs' |
'authorities'

Type of node centrality, specified as one of the options in the table. The table also lists the
compatible Name-Value pairs that work with each type. Each variety of node centrality
offers a different measure of node importance in a graph.

Option Graph type Description Name-Value Pairs
'degree' Undirected The 'degree',

'outdegree', and
'indegree'
centrality types are
based on the number
of edges connecting
to each node:

• 'degree' —
Number of edges
connecting to
each node. A self-
loop counts as
two edges
connecting to the
node.

• 'indegree' —
Number of
incoming edges to
each node. A self-
loop counts as
one incoming
edge.

• 'outdegree' —
Number of
outgoing edges

'Importance'

1 Alphabetical List

1-4908

Option Graph type Description Name-Value Pairs
'indegree'

'outdegree'

Directed from each node. A
self-loop counts
as one outgoing
edge.

If you specify
'Importance' edge
weights, then the
algorithm uses the
sum of the edge
weights rather than
the number of
connecting edges.

'closeness' Undirected The 'closeness',
'incloseness',
and
'outcloseness'
centrality types use
the inverse sum of
the distance from a
node to all other
nodes in the graph. If
not all nodes are
reachable, then the
centrality of node i
is:

c i

=
A i

N − 1
2 1
Ci

.

Ai is the number of
reachable nodes
from node i (not
counting i), N is the
number of nodes in
G, and Ci is the sum

'Cost'

 centrality

1-4909

Option Graph type Description Name-Value Pairs
'incloseness'

'outcloseness'

Directed of distances from
node i to all
reachable nodes.

• If no nodes are
reachable from
node i, then
c(i) is zero.

• For
'incloseness',
the distance
measure is from
all nodes to node
i.

• 'Cost' edge
weights specify
the length of the
edges.

1 Alphabetical List

1-4910

Option Graph type Description Name-Value Pairs
'betweenness' Undirected or

Directed
The 'betweenness'
centrality type
measures how often
each graph node
appears on a shortest
path between two
nodes in the graph.
Since there can be
several shortest
paths between two
graph nodes s and t,
the centrality of node
u is:

c u

= ∑
s, t ≠ u

nst u
Nst

.

nst u is the number
of shortest paths
from s to t that pass
through node u, and
Nst is the total
number of shortest
paths from s to t.

• If the graph is
undirected, then
the paths from s
to t and from t to
s count only as
one path (divide
the formula by
two).

• 'Cost' edge
weights specify
the length of the

'Cost'

 centrality

1-4911

Option Graph type Description Name-Value Pairs
edges and help
determine the
shortest paths
between nodes s
and t.

1 Alphabetical List

1-4912

Option Graph type Description Name-Value Pairs
'pagerank' Undirected or

Directed
The 'pagerank'
centrality type
results from a
random walk of the
network. At each
node in the graph,
the next node is
chosen with
probability
'FollowProbabili
ty' from the set of
successors of the
current node
(neighbors for the
undirected case).
Otherwise, or when a
node has no
successors, the next
node is chosen from
all nodes. The
centrality score is
the average time
spent at each node
during the random
walk.

• If a node has a
self-loop, then
there is a chance
that the algorithm
traverses it.
Therefore self-
loops increase the
pagerank
centrality score of
the node they
attach to.

'Importance'

'FollowProbabili
ty'

'Tolerance'

'MaxIterations'

 centrality

1-4913

Option Graph type Description Name-Value Pairs
• In multigraphs

with multiple
edges between
the same two
nodes, nodes with
multiple edges
are more likely to
be chosen.

• 'Importance'
edge weights
affect how the
algorithm chooses
successors.
Nodes with
higher
importance are
more likely to be
chosen.

1 Alphabetical List

1-4914

Option Graph type Description Name-Value Pairs
'eigenvector' Undirected The 'eigenvector'

centrality type uses
the eigenvector
corresponding to the
largest eigenvalue of
the graph adjacency
matrix. The scores
are normalized such
that the sum of all
centrality scores is 1.

• If there are
several
disconnected
components, then
the algorithm
computes the
eigenvector
centrality
individually for
each component,
then scales the
scores according
to the percentage
of graph nodes in
that component.

• The centrality
score of
disconnected
nodes is 1/
numnodes(G).

• Specify
'Importance'
edge weights to
use a weighted
adjacency matrix
in the calculation.

'Importance'

'Tolerance'

'MaxIterations'

 centrality

1-4915

Option Graph type Description Name-Value Pairs
'hubs'

'authorities'

Directed The 'hubs' and
'authorities'
centrality scores are
two linked centrality
measures that are
recursive. The hubs
score of a node is the
sum of the
authorities scores of
all its successors.
Similarly, the
authorities score is
the sum of the hubs
scores of all its
predecessors. The
sum of all hubs
scores is 1 and the
sum of all authorities
scores is 1.

• These scores can
be interpreted as
the left (hubs)
and right
(authorities)
singular vectors
corresponding to
the largest
singular value of
the adjacency
matrix.

• The centrality
score of
disconnected
nodes is 1/
numnodes(G).

• Specify
'Importance'

'Importance'

'Tolerance'

'MaxIterations'

1 Alphabetical List

1-4916

Option Graph type Description Name-Value Pairs
edge weights to
use a weighted
sum, rather than
the simple sum of
all successor/
predecessor
scores. This is
equivalent to
using the singular
vectors of the
weighted
adjacency matrix.

• If there are
several
disconnected
components (in
the weakly
connected sense),
then the
algorithm
computes the
hubs and
authorities scores
individually for
each component.
The scores are
then rescaled
according to the
percentage of
graph nodes in
that component
so that the overall
sum is still 1.

Note The centrality function assumes all edge weights are equal to 1. To change this,
specify edge weights for use with the 'Cost' or 'Importance' name-value pairs.

 centrality

1-4917

Example: centrality(G,'degree')
Example: centrality(G,'hubs','Tolerance',tol)

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: C = centrality(G,'closeness','Cost',edgeCosts) computes the
closeness centrality using edgeCosts as the cost (weight) of traversing each edge in the
graph.

Cost — Cost of edge traversal
vector

Cost of edge traversal, specified as the comma-separated pair consisting of 'Cost' and a
vector of positive edge weights. The ith edge weight specifies the cost associated with
traversing the edge findedge(G,i). All edge weights must be greater than zero.

'Cost' edge weights are smaller when the connection is shorter, or faster, or cheaper.
Some examples of 'Cost' edge weights are:

• Length of a path
• Travel time
• Cost of a ticket

Note 'Cost' only applies to the 'closeness', 'outcloseness', 'incloseness',
and 'betweenness' centrality types.

Example: centrality(G,'closeness','Cost',c)

FollowProbability — Probability of selecting a successor node
0.85 (default) | scalar between 0 and 1

Probability of selecting a successor node, specified as the comma-separated pair
consisting of 'FollowProbability' and a scalar between 0 and 1. The follow
probability is the probability that the next node selected in the traversal by the pagerank

1 Alphabetical List

1-4918

algorithm is chosen among the successors of the current node, and not at random from all
nodes. For websites, this probability corresponds to clicking a link on the current web
page instead of surfing to another random web page.

Note 'FollowProbability' only applies to the 'pagerank' centrality type.

Example: centrality(G,'pagerank','FollowProbability',0.5)

Importance — Edge importance
vector

Edge importance, specified as the comma-separated pair consisting of 'Importance'
and a vector of nonnegative edge weights. The ith edge weight specifies the importance
of the edge findedge(G,i). An edge weight of zero is equivalent to removing that edge
from the graph.

For multigraphs with multiple edges between two nodes, centrality adds the multiple
edges together and treats them as a single edge with the combined weight.

'Importance' edge weights are larger when the connection is stronger. Some examples
of 'Importance' edge weights are:

• Number of travellers per day
• Number of clicks on a link
• Number of papers published together

Note 'Importance' only applies to the 'degree', 'outdegree', 'indegree',
'pagerank', 'eigenvector', 'hubs', and 'authorities' centrality types.

Example: centrality(G,'degree','Importance',x)

MaxIterations — Maximum number of iterations
100 (default) | scalar

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a scalar. The centrality algorithm runs until the tolerance is
met or the maximum number of iterations is reached, whichever comes first.

 centrality

1-4919

Note 'MaxIterations' only applies to the 'pagerank', 'eigenvector', 'hubs',
and 'authorities' centrality types.

Example: centrality(G,'pagerank','MaxIterations',250)

Tolerance — Stopping criterion for iterative solvers
1e-4 (default) | scalar

Stopping criterion for iterative solvers, specified as the comma-separated pair consisting
of 'Tolerance' and a scalar. The centrality algorithm runs until the tolerance is met
or the maximum number of iterations is reached, whichever comes first.

Note 'Tolerance' only applies to the 'pagerank', 'eigenvector', 'hubs', and
'authorities' centrality types.

Example: centrality(G,'pagerank','Tolerance',1e-5)

Output Arguments
C — Node centrality scores
column vector

Node centrality scores, returned as a column vector. C(i) is the centrality score of node
i. The interpretation of the node centrality score depends on the type of centrality
computation selected. The more central a node is, the larger its centrality score.

See Also
digraph | graph

Introduced in R2016a

1 Alphabetical List

1-4920

conncomp
Connected graph components

Syntax
bins = conncomp(G)
bins = conncomp(G,Name,Value)
[bins,binsizes] = conncomp(___)

Description
bins = conncomp(G) returns the connected components on page 1-4930 of graph G as
bins. The bin numbers indicate which component each node in the graph belongs to.

• If G is an undirected graph, then two nodes belong to the same component if there is a
path connecting them.

• If G is a directed graph, then two nodes belong to the same strong component only if
there is a path connecting them in both directions.

bins = conncomp(G,Name,Value) uses additional options specified by one or more
Name-Value pair arguments. For example, conncomp(G,'OutputForm','cell')
returns a cell array to describe the connected components.

[bins,binsizes] = conncomp(___) also returns the size of the connected
components. binsizes(i) gives the number of nodes in component i.

Examples

Find Graph Components

Create and plot an undirected graph with three connected components. Use conncomp to
determine which component each node belongs to.

 conncomp

1-4921

G = graph([1 1 4],[2 3 5],[1 1 1],6);
plot(G)

bins = conncomp(G)

bins = 1×6

 1 1 1 2 2 3

1 Alphabetical List

1-4922

Strong and Weak Graph Components

Create and plot a directed graph, and then compute the strongly connected components
and weakly connected components. Weakly connected components ignore the direction of
connecting edges.

s = [1 2 2 3 3 3 4 5 5 5 8 8];
t = [2 3 4 1 4 5 5 3 6 7 9 10];
G = digraph(s,t);
plot(G,'Layout','layered')

str_bins = conncomp(G)

str_bins = 1×10

 conncomp

1-4923

 4 4 4 4 4 6 5 1 3 2

weak_bins = conncomp(G,'Type','weak')

weak_bins = 1×10

 1 1 1 1 1 1 1 2 2 2

Discard Graph Components Based on Size

Use the second output of conncomp to extract the largest component of a graph or to
remove components below a certain size.

Create and plot a directed graph. The graph has one large component, one small
component, and several components that contain only a single node.

s = [1 2 2 3 3 3 4 5 5 5 8 8 9];
t = [2 3 4 1 4 5 5 3 6 7 9 10 10];
G = digraph(s,t,[],20);
plot(G,'Layout','layered')

1 Alphabetical List

1-4924

Calculate the weakly connected components and specify two outputs to conncomp to get
the size of each component.

[bin,binsize] = conncomp(G,'Type','weak')

bin = 1×20

 1 1 1 1 1 1 1 2 2 2 3 4 5 6 7 8 9 10 11 12

binsize = 1×12

 7 3 1 1 1 1 1 1 1 1 1 1

 conncomp

1-4925

Use binsize to extract the largest component from the graph. idx is a logical index
indicating whether each node belongs to the largest component. The subgraph function
extracts the nodes selected by idx from G.

idx = binsize(bin) == max(binsize);
SG = subgraph(G, idx);
plot(SG)

A similar use of binsizes is to filter out components based on size. The procedure is
similar to extracting the largest component, however in this case each node can belong to
any component that meets the size requirement.

Filter out any components in G that have fewer than 3 nodes. idx is a logical index
indicating whether each node belongs to a component with 3 or more nodes.

1 Alphabetical List

1-4926

idx = binsize(bin) >= 3;
SG = subgraph(G, idx);
plot(SG)

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.

 conncomp

1-4927

Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: bins = conncomp(G,'OutputForm','cell')

OutputForm — Type of output
'vector' (default) | 'cell'

Type of output, specified as the comma-separated pair consisting of 'OutputForm' and
either 'vector' or 'cell'.

Option Output
'vector' (default) bins is a numeric vector indicating which

connected component each node belongs
to.

'cell' bins is a cell array, and bins{j} contains
the node IDs for all nodes that belong to
component j.

Type — Type of connected components
'strong' (default) | 'weak'

Note The 'Type' option is supported only for directed graphs created using digraph.

Type of connected components, specified as the comma-separated pair consisting of
'Type' and either 'strong' (default) or 'weak'.

1 Alphabetical List

1-4928

Option Result
'strong' (default) Two nodes belong to the same connected

component only if there is a path
connecting them in both directions.

'weak' Two nodes belong to the same connected
component if there is a path connecting
them, ignoring edge directions.

Example: bins = conncomp(G,'Type','weak') computes the weakly connected
components of directed graph G.

Output Arguments
bins — Connected components
vector | cell array

Connected components, returned as a vector or cell array. The bin numbers assign each
node in the graph to a connected component:

• If OutputForm is 'vector' (default), then bins is a numeric vector indicating which
connected component (bin) each node belongs to.

• If OutputForm is 'cell', then bins is a cell array, with bins{j} containing the
node IDs for all nodes that belong to component j.

binsizes — Size of each connected component
vector

Size of each connected component, returned as a vector. binsizes(i) gives the number
of elements in component i. The length of binsizes is equal to the number of connected
components, max(bins).

 conncomp

1-4929

Definitions

Weakly Connected Components
Two nodes belong to the same weakly connected component if there is a path connecting
them (ignoring edge direction). There are no edges between two weakly connected
components.

The concepts of strong and weak components apply only to directed graphs, as they are
equivalent for undirected graphs.

Strongly Connected Components
Two nodes belong to the same strongly connected component if there are paths
connecting them in both directions. There can be edges between two strongly connected
components, but these connecting edges are never part of a cycle.

The bin numbers of strongly connected components are such that any edge connecting
two components points from the component of smaller bin number to the component with
a larger bin number.

The concepts of strong and weak components apply only to directed graphs, as they are
equivalent for undirected graphs.

See Also
digraph | graph | subgraph

Introduced in R2015b

1 Alphabetical List

1-4930

degree
Degree of graph nodes

Syntax
D = degree(G)
D = degree(G,nodeIDs)

Description
D = degree(G) returns the degree of each node in graph G. The degree is the number of
edges connected to each node.

D = degree(G,nodeIDs) returns the degree of the nodes specified by nodeIDs.

Examples

Degree of All Graph Nodes

Create and plot a graph, and then use degree to find the degree of each node in the
graph.

s = [1 1 1 4 4 6 6 6];
t = [2 3 4 5 6 7 8 9];
G = graph(s,t);
plot(G)

 degree

1-4931

deg = degree(G)

deg = 9×1

 3
 1
 1
 3
 1
 4
 1
 1
 1

1 Alphabetical List

1-4932

deg(j) indicates the degree of node j.

Degree of Subset of Graph Nodes

Create and plot a graph, and then find the degree of the first, third, and fifth nodes.

s = {'a' 'a' 'a' 'd' 'd' 'f' 'f' 'f'};
t = {'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i'};
G = graph(s,t);
plot(G)

 degree

1-4933

nodeIDs = {'a' 'c' 'e'}';
deg = degree(G,nodeIDs)

deg = 3×1

 3
 1
 1

deg(j) indicates the degree of node nodeIDs(j).

Input Arguments
G — Input graph
graph object

Input graph, specified as a graph object. Use graph to create an undirected graph
object.
Example: G = graph(1,2)

nodeIDs — Node identifiers
node indices | node names

Node identifiers, specified as one or more node indices or node names.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}

1 Alphabetical List

1-4934

Form Single Node Multiple Nodes
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: D = degree(G,[3 4])
Example: D = degree(G,{'LAX','ALB'})

Output Arguments
D — Degree of nodes
array

Degree of nodes, returned as a numeric array. D is a column vector unless you specify
nodeIDs, in which case D has the same size as nodeIDs.

A node that is connected to itself by an edge (a self-loop) is listed as its own neighbor only
once, but the self-loop adds 2 to the total degree of the node.

See Also
graph | inedges | neighbors | outedges

Introduced in R2015b

 degree

1-4935

dfsearch
Depth-first graph search

Syntax
v = dfsearch(G,s)
T = dfsearch(G,s,events)
[T,E] = dfsearch(G,s,events)
[___] = dfsearch(___ ,'Restart',tf)

Description
v = dfsearch(G,s) applies depth-first search on page 1-4952 to graph G starting at
node s. The result is a vector of node IDs in order of their discovery.

T = dfsearch(G,s,events) customizes the output of the depth-first search by
flagging one or more search events. For example, T = dfsearch(G,s,'allevents')
returns a table containing all flagged events, and X = dfsearch(G,s,'edgetonew')
returns a matrix or cell array of edges.

[T,E] = dfsearch(G,s,events) additionally returns a vector of edge indices E when
events is set to 'edgetonew', 'edgetodiscovered', or 'edgetofinished'. The
edge indices are for unique identification of edges in a multigraph.

[___] = dfsearch(___ ,'Restart',tf), where tf is true, restarts the search if
no new nodes are reachable from the discovered nodes. You can use any of the input or
output argument combinations in previous syntaxes. This option ensures that the depth-
first search reaches all nodes and edges in the graph, even if they are not reachable from
the starting node, s.

Examples

1 Alphabetical List

1-4936

Perform Depth-First Graph Search

Create and plot a graph.

s = [1 1 1 1 2 2 2 2 2];
t = [3 5 4 2 6 10 7 9 8];
G = graph(s,t);
plot(G)

Perform a depth-first search of the graph starting at node 7. The result indicates the
order of node discovery.

v = dfsearch(G,7)

 dfsearch

1-4937

v = 10×1

 7
 2
 1
 3
 4
 5
 6
 8
 9
 10

Depth-First Graph Search with All Events

Create and plot a directed graph.

A = [0 1 0 1 1 0 0;
 0 0 0 0 0 0 0;
 0 0 0 1 0 1 1;
 0 0 0 0 0 1 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0];
G = digraph(A);
plot(G)

1 Alphabetical List

1-4938

Perform a depth-first search on the graph starting at node 3. Specify 'allevents' to
return a table containing all of the events in the algorithm.

T = dfsearch(G,3,'allevents')

T=13×4 table
 Event Node Edge EdgeIndex
 ______________ ____ __________ _________

 startnode 3 NaN NaN NaN
 discovernode 3 NaN NaN NaN
 edgetonew NaN 3 4 4
 discovernode 4 NaN NaN NaN
 edgetonew NaN 4 6 7

 dfsearch

1-4939

 discovernode 6 NaN NaN NaN
 finishnode 6 NaN NaN NaN
 finishnode 4 NaN NaN NaN
 edgetofinished NaN 3 6 5
 edgetonew NaN 3 7 6
 discovernode 7 NaN NaN NaN
 finishnode 7 NaN NaN NaN
 finishnode 3 NaN NaN NaN

To follow the steps in the algorithm, read the events in the table from top to bottom. For
example:

1 The algorithm begins at node 3
2 An edge is discovered between node 3 and node 4
3 Node 4 is discovered
4 and so on...

Depth-First Graph Search with Multiple Components

Perform a depth-first search of a graph with multiple components, and then highlight the
graph nodes and edges based on the search results.

Create and plot a directed graph. This graph has two weakly connected components.

s = [1 1 2 2 2 3 4 7 8 8 8 8];
t = [3 4 7 5 6 2 6 2 9 10 11 12];
G = digraph(s,t);
p = plot(G,'Layout','layered');

1 Alphabetical List

1-4940

c = conncomp(G,'Type','weak')

c = 1×12

 1 1 1 1 1 1 1 2 2 2 2 2

Perform a depth-first search of the graph starting at node 4, and flag the 'edgetonew',
'edgetodiscovered', 'edgetofinished', and 'startnode' events. Specify
Restart as true to make the search restart whenever there are remaining nodes that
cannot be reached.

events = {'edgetonew','edgetodiscovered','edgetofinished','startnode'};
T = dfsearch(G,4,events,'Restart',true)

 dfsearch

1-4941

T=15×4 table
 Event Node Edge EdgeIndex
 ________________ ____ __________ _________

 startnode 4 NaN NaN NaN
 edgetonew NaN 4 6 7
 startnode 1 NaN NaN NaN
 edgetonew NaN 1 3 1
 edgetonew NaN 3 2 6
 edgetonew NaN 2 5 3
 edgetofinished NaN 2 6 4
 edgetonew NaN 2 7 5
 edgetodiscovered NaN 7 2 8
 edgetofinished NaN 1 4 2
 startnode 8 NaN NaN NaN
 edgetonew NaN 8 9 9
 edgetonew NaN 8 10 10
 edgetonew NaN 8 11 11
 edgetonew NaN 8 12 12

When Restart is true, the 'startnode' event returns information about where and
when the algorithm restarts the search.

Highlight the graph based on event:

• Color the starting nodes red.
• Green edges are for 'edgetonew'
• Black edges are for 'edgetofinished'
• Magenta edges are for 'edgetodiscovered'

highlight(p, 'Edges', T.EdgeIndex(T.Event == 'edgetonew'), 'EdgeColor', 'g')
highlight(p, 'Edges', T.EdgeIndex(T.Event == 'edgetofinished'), 'EdgeColor', 'k')
highlight(p, 'Edges', T.EdgeIndex(T.Event == 'edgetodiscovered'), 'EdgeColor', 'm')
highlight(p,T.Node(~isnan(T.Node)),'NodeColor','r')

1 Alphabetical List

1-4942

Remove Cycles from Graph

Make a directed graph acyclic by reversing some of its edges.

Create and plot a directed graph.

s = [1 2 3 3 3 3 4 5 6 7 8 9 9 9 10];
t = [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2];
g = digraph(s,t);
plot(g, 'Layout', 'force')

 dfsearch

1-4943

Perform a depth-first search on the graph, flagging the 'edgetodiscovered' event.
This event corresponds to edges that complete a cycle.

[e,edge_indices] = dfsearch(g, 1, 'edgetodiscovered', 'Restart', true)

e = 3×2

 3 1
 6 4
 8 7

edge_indices = 3×1

1 Alphabetical List

1-4944

 3
 9
 11

Use flipedge to reverse the direction of the flagged edges, so that they no longer
complete a cycle. This removes all cycles from the graph. Use isdag to confirm that the
graph is acyclic.

gnew = flipedge(g, edge_indices);
isdag(gnew)

ans = logical
 1

Plot the new graph and highlight the edges that were flipped.

p = plot(gnew, 'Layout', 'force');
highlight(p,'Edges',findedge(gnew,e(:,2),e(:,1)),'EdgeColor','r')

 dfsearch

1-4945

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

1 Alphabetical List

1-4946

s — Starting node
node index | node name

Starting node, specified as one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: dfsearch(G,1)

events — Flagged search events
'discovernode' (default) | 'startnode' | 'finishnode' | 'edgetonew' |
'edgetodiscovered' | 'edgetofinished' | 'allevents' | cell array | string array

Flagged search events, specified as one of the options in the following table.

• To flag single events, use the flag names.
• To flag a subset of events, put two or more flag names into a cell array or string array.
• To flag all events, use 'allevents'.

Note Depending on the value of events, the output of dfsearch varies. See the last
column in the following table for information about the output returned by each option.

Value of events Description Output
'discovernode' (default) A new node has been

discovered.
Return a vector of node IDs:

• If s is a numeric node
index, then the vector
contains numeric node
indices.

• If s is a node name, then
the vector is a cell array
containing node names.

'finishnode' All outgoing edges from the
node have been visited.

 dfsearch

1-4947

Value of events Description Output
'startnode' This flag indicates the

starting node in the search.

If 'Restart' is true, then
'startnode' flags the
starting node each time the
search restarts.

'edgetonew' Edge connects to an
undiscovered node.

Return a matrix or cell array
of size N-by-2 that specifies
the end nodes of edges in
the graph:

• If s is a numeric node
index, then the matrix
contains numeric node
indices.

• If s is a node name, then
the matrix is a cell array
containing node names.

Additionally, you can specify
a second output with [T,E]
= dfsearch(…) that
returns a vector of edge
indices E.

'edgetodiscovered' Edge connects to a
previously discovered node.

'edgetofinished' Edge connects to a finished
node.

cell array Specify two or more flags in
a cell array to only flag
those events during the
search.

Return a table, T, which
contains the variables
T.Event, T.Node, T.Edge,
and T.EdgeIndex:

• T.Event is a categorical
vector containing the
flags in order of their
occurrence.

• T.Node contains the
node ID of the
corresponding node for
the events

1 Alphabetical List

1-4948

Value of events Description Output
'allevents' All events are flagged. 'discovernode',

'finishnode', and
'startnode'.

• T.Edge contains the
corresponding edge for
the events
'edgetonew',
'edgetodiscovered',
and
'edgetofinished'.

• T.EdgeIndex contains
the edge index for the
events 'edgetonew',
'edgetodiscovered',
and
'edgetofinished'.
The edge index is for
unique identification of
repeated edges in a
multigraph.

• Unused elements of
T.Node and T.Edge are
set to NaN.

• If s is a numeric node
index, then T.Node and
T.Edge contain numeric
node indices.

• If s is a node name, then
T.Node and T.Edge are
cell arrays containing
node names.

Example: v = dfsearch(G,3) begins the search at the third node and returns a vector,
v, containing the nodes in order of discovery. This is the same as v =
dfsearch(G,3,'discovernode').

 dfsearch

1-4949

Example: X = dfsearch(G,'A','edgetonew') begins at the node named 'A' and
returns a cell array of character vectors, X, indicating each of the edges that connects to
an undiscovered node during the search.
Example: T = dfsearch(G,s,{'discovernode','finishnode'}) returns a table, T,
but only flags when new nodes are discovered or when a node is marked finished.
Example: T = dfsearch(G,s,'allevents') flags all search events and returns a
table, T.
Data Types: char | string | cell

tf — Toggle to restart search
false (default) | true

Toggle to restart search, specified as false (default) or true. This option is useful if the
graph contains nodes that are unreachable from the starting node. If 'Restart' is true,
then the search restarts whenever undiscovered nodes remain that are unreachable from
the discovered nodes. The new start node is the node with smallest index that is still
undiscovered. The restarting process repeats until dfsearch discovers all nodes.

'Restart' is false by default, so that the search only visits nodes that are reachable
from the starting node.

When 'Restart' is true, the 'discovernode' and 'finishnode' events occur once
for each node in the graph. Also, each edge in the graph is flagged once by
'edgetonew', 'edgetodiscovered', or 'edgetofinished'. The edges flagged by
'edgetonew' form one or more trees.
Example: T = dfsearch(graph([1 3],[2 4]),1,'Restart',true) searches both
of the connected components in the graph.
Data Types: logical

Output Arguments
v — Node IDs
numeric column vector | cell vector

Node IDs, returned in one of the following formats:

• If you use a numeric node ID to specify the starting node, s, then v is a numeric
column vector of node indices.

1 Alphabetical List

1-4950

• If s is a character vector or string containing a node name, then v is a cell vector
containing node names.

The node IDs in v reflect the order of discovery by the depth-first graph search.

T — Search results
table | vector | matrix | cell array of node names

Search results, returned in one of the following formats:

• If events is not specified or is 'discovernode', 'finishnode', or 'startnode',
then T is a vector of node IDs similar to v.

• If events is 'edgetonew', 'edgetodiscovered', or 'edgetofinished', then T
is a matrix or cell array of size N-by-2 indicating the source and target nodes for each
relevant edge.

• If events is a cell array of search events or 'allevents', then T is a table
containing the flagged search events. The table contains the search event flags in
T.Event, relevant node IDs in T.Node, and relevant edges in T.Edge and
T.EdgeIndex.

In all cases:

• The order of the elements or rows of T indicates their order of occurrence during the
search.

• If you specify s as a numeric node ID, then T also refers to nodes using their numeric
IDs.

• If you specify s as a node name, then T also refers to nodes using their names.

E — Edge indices
vector

Edge indices, returned as a vector.

Specify this output to get a vector of edge indices for the events 'edgetonew',
'edgetodiscovered', or 'edgetofinished'. The N-by-1 vector of edge indices
corresponds with T, which is a matrix or cell array of size N-by-2 indicating the source
and target nodes for each relevant edge.
Example: [T,E] = dfsearch(G,s,'edgetonew')

 dfsearch

1-4951

Tips
• dfsearch and bfsearch treat undirected graphs the same as directed graphs. An

undirected edge between nodes s and t is treated like two directed edges, one from s
to t and one from t to s.

Algorithms
The Depth-First search algorithm begins at the starting node, s, and inspects the
neighbor of s that has the smallest node index. Then for that neighbor, it inspects the next
undiscovered neighbor with the lowest index. This continues until the search encounters
a node whose neighbors have all been visited. At that point, the search backtracks along
the path to the nearest previously discovered node that has an undiscovered neighbor.
This process continues until all nodes that are reachable from the starting node have
been visited.

In pseudo-code, the (recursive) algorithm can be written as:

Event startnode(S)
Call DFS(S)

function DFS(C)

 Event discovernode(C)

 FOR edge E from outgoing edges of node C, connecting to node N
 Event edgetonew(C,E), edgetodiscovered(C,E) or edgetofinished(C,E)
 (depending on the state of node N)
 IF event was edgetonew
 Call DFS(N)
 END
 END

Event finishnode(C)

END

dfsearch can return flags to describe the different events in the algorithm, such as when
a new node is discovered or when all of the outgoing edges of a node have been visited.
The event flags are listed here.

1 Alphabetical List

1-4952

Event Flag Event Description
'discovernode' A new node has been discovered.
'finishnode' All outgoing edges from the node have been

visited.
'startnode' This flag indicates the starting node in the

search.
'edgetonew' Edge connects to an undiscovered node
'edgetodiscovered' Edge connects to a previously discovered

node
'edgetofinished' Edge connects to a finished node

For more information, see the input argument description for events.

Note In cases where the input graph contains nodes that are unreachable from the
starting node, the 'Restart' option provides a way to make the search visit every node
in the graph. In that case, the 'startnode' event indicates the starting node each time
the search restarts.

See Also
bfsearch | conncomp | digraph | graph

Topics
“Visualize Breadth-First and Depth-First Search”

Introduced in R2015b

 dfsearch

1-4953

distances
Shortest path distances of all node pairs

Syntax
d = distances(G)
d = distances(G,s)
d = distances(G,s,t)
d = distances(___ ,'Method',algorithm)

Description
d = distances(G) returns a matrix, d, where d(i,j) is the length of the shortest path
between node i and node j. If the graph is weighted (that is, G.Edges contains a
variable Weight), then those weights are used as the distances along the edges in the
graph. Otherwise, all edge distances are taken to be 1.

d = distances(G,s) restricts the source nodes to the nodes defined by s, such that
d(i,j) is the distance from node s(i) to node j.

d = distances(G,s,t) additionally restricts the target nodes to the nodes defined by
t, such that d(i,j) is the distance from node s(i) to node t(j).

d = distances(___ ,'Method',algorithm) optionally specifies the algorithm to use
in computing the shortest path using any of the input arguments in previous syntaxes. For
example, if G is a weighted graph, then distances(G,'Method','unweighted')
ignores the edge weights in G and instead treats all edge weights as 1.

Examples

Shortest Path Distance for All Node Pairs

Create and plot a graph.

1 Alphabetical List

1-4954

s = [1 1 1 2 5 5 5 8 9];
t = [2 3 4 5 6 7 8 9 10];
G = graph(s,t);
plot(G)

Calculate the shortest path distance between all node pairs in the graph. Since the graph
edges do not have weights, all edge distances are taken to be 1.

d = distances(G)

d = 10×10

 0 1 1 1 2 3 3 3 4 5
 1 0 2 2 1 2 2 2 3 4

 distances

1-4955

 1 2 0 2 3 4 4 4 5 6
 1 2 2 0 3 4 4 4 5 6
 2 1 3 3 0 1 1 1 2 3
 3 2 4 4 1 0 2 2 3 4
 3 2 4 4 1 2 0 2 3 4
 3 2 4 4 1 2 2 0 1 2
 4 3 5 5 2 3 3 1 0 1
 5 4 6 6 3 4 4 2 1 0

d is symmetric because G is an undirected graph. In general d(i,j) is the length of the
shortest path between node i and node j, and for undirected graphs this is equivalent to
d(j,i).

For example, find the length of the shortest path between node 1 and node 10.

d(1,10)

ans = 5

Shortest Path Distances from Specified Sources

Create and plot a graph.

s = [1 1 1 1 2 2 3 4 4 5 6];
t = [2 3 4 5 3 6 6 5 7 7 7];
G = graph(s,t);
plot(G)

1 Alphabetical List

1-4956

Find the shortest path distances from node 1, node 2, and node 3 to all other nodes in the
graph.

d = distances(G,[1 2 3])

d = 3×7

 0 1 1 1 1 2 2
 1 0 1 2 2 1 2
 1 1 0 2 2 1 2

Use d to find the shortest path distance from node 1 to node 7.

d(1,7)

 distances

1-4957

ans = 2

Shortest Path Distances to Specified Targets

Create and plot a graph.

s = [1 1 1 2 2 3 3 4 5 5 6 7 8 8 10 11];
t = [2 3 10 4 12 5 4 6 6 7 9 8 9 11 11 12];
G = graph(s,t);
plot(G)

Find the shortest path distances from nodes 5 and 7 to nodes 2 and 3.

1 Alphabetical List

1-4958

sources = [5 7];
targets = [2 3];
d = distances(G,sources,targets)

d = 2×2

 3 1
 4 2

Use d to find the shortest path distance between node 7 and node 3. In this case, d(i,j)
is the distance from node sources(i) to node targets(j).

d(2,2)

ans = 2

Ignore Edge Weights

Create and plot a directed graph with weighted edges.

s = [1 1 1 2 5 3 6 4 7 8 8 8];
t = [2 3 4 5 3 6 4 7 2 6 7 5];
weights = [100 10 10 10 10 20 10 30 50 10 70 10];
G = digraph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight)

 distances

1-4959

Find the shortest path distance between all pairs of graph nodes.

d = distances(G)

d = 8×8

 0 90 10 10 100 30 40 Inf
 Inf 0 20 50 10 40 80 Inf
 Inf 110 0 30 120 20 60 Inf
 Inf 80 100 0 90 120 30 Inf
 Inf 120 10 40 0 30 70 Inf
 Inf 90 110 10 100 0 40 Inf
 Inf 50 70 100 60 90 0 Inf

1 Alphabetical List

1-4960

 Inf 100 20 20 10 10 50 0

Since G is a directed graph, d is not symmetric, and d(i,j) corresponds to the distance
between nodes i and j. The Inf values in d correspond to nodes that are unreachable.
For example, since node 1 has no predecessors, it is not possible to reach node 1 from any
other node in the graph. So the first column of d contains many Inf values to reflect that
node 1 is unreachable.

By default, distances uses the edge weights to compute the distances. Specify
'Method' as 'unweighted' to ignore the edge weights and treat all edge distances as
1.

d1 = distances(G,'Method','unweighted')

d1 = 8×8

 0 1 1 1 2 2 2 Inf
 Inf 0 2 4 1 3 5 Inf
 Inf 4 0 2 5 1 3 Inf
 Inf 2 4 0 3 5 1 Inf
 Inf 5 1 3 0 2 4 Inf
 Inf 3 5 1 4 0 2 Inf
 Inf 1 3 5 2 4 0 Inf
 Inf 2 2 2 1 1 1 0

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

s — Source nodes
'all' (default) | node indices | node names

 distances

1-4961

Source nodes, specified as one or more node indices or node names, or 'all' to select all
source nodes.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

s and t must not specify nodes named 'all' or 'Method', since these node names
conflict with option names. Use findnode to instead pass in the node index for these
cases.
Example: distances(G,[1 2])
Example: distances(G,'all',[1 3 5])

t — Target nodes
'all' (default) | node indices | node names

Target nodes, specified as one or more node indices or node names, or 'all' to select all
target nodes.

s and t must not specify nodes named 'all' or 'Method', since these node names
conflict with option names. Use findnode to instead pass in the node index for these
cases.
Example: distances(G,[1 2])
Example: distances(G,'all',[1 3 5])

algorithm — Shortest path algorithm
'auto' (default) | 'unweighted' | 'positive' | 'mixed'

1 Alphabetical List

1-4962

Shortest path algorithm, specified as one of the options in the table.

Option Description
'auto' (default) The 'auto' option automatically selects

the algorithm:

• 'unweighted' is used for graph and
digraph inputs with no edge weights.

• 'positive' is used for all graph
inputs that have edge weights, and
requires the weights to be nonnegative.
This option is also used for digraph
inputs with nonnegative edge weights.

• 'mixed' is used for digraph inputs
whose edge weights contain some
negative values. The graph cannot have
negative cycles.

'unweighted' Breadth-First computation that treats all
edge weights as 1.

'positive' Dijkstra algorithm that requires all edge
weights to be nonnegative.

'mixed' (only for digraph) Bellman-Ford algorithm for directed graphs
that requires the graph to have no negative
cycles.

While 'mixed' is slower than 'positive'
for the same problem, 'mixed' is more
versatile as it allows some edge weights to
be negative.

Note For most graphs, 'unweighted' is the fastest algorithm, followed by
'positive', and 'mixed'.

Example: distances(G,s,t,'Method','unweighted')

 distances

1-4963

Output Arguments
d — Shortest path distances between node pairs
matrix

Shortest path distances between node pairs, returned as a matrix. The size of d is (#
source nodes)-by-(# target nodes). A value of Inf indicates a path that does not exist.

Tips
• The shortestpath, shortestpathtree, and distances functions do not support

undirected graphs with negative edge weights, or more generally any graph
containing a negative cycle, for these reasons:

• A negative cycle is a path that leads from a node back to itself, with the sum of the
edge weights on the path being negative. If a negative cycle is on a path between
two nodes, then no shortest path exists between the nodes, since a shorter path
can always be found by traversing the negative cycle.

• A single negative edge weight in an undirected graph creates a negative cycle.

See Also
digraph | graph | nearest | shortestpath | shortestpathtree

Introduced in R2015b

1 Alphabetical List

1-4964

edgecount
Number of edges between two nodes

Syntax
C = edgecount(G,s,t)

Description
C = edgecount(G,s,t) returns the number of edges between the source and target
node pairs s and t in graph G.

Examples

Number of Edges Between Nodes

Create a graph and display the edges table for reference. Find the number of edges
between node 1 and node 2.

G = graph([1 1 1 1 2 2],[2 2 2 3 4 5]);
G.Edges

ans=6×1 table
 EndNodes

 1 2
 1 2
 1 2
 1 3
 2 4
 2 5

N = edgecount(G,1,2)

 edgecount

1-4965

N = 3

You also can specify a single source node and several target nodes. Find the number of
edges between node 1 and all other nodes (including self-loops).

N = edgecount(G,1,1:numnodes(G))

N = 5×1

 0
 3
 1
 0
 0

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

s,t — Node pairs (as separate arguments)
node indices | node names

Node pairs, specified as separate arguments of node indices or node names. Similarly
located elements in s and t specify the source and target nodes for edges in the graph. s
and t must specify the same number of nodes, unless one of them specifies a single node.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

1 Alphabetical List

1-4966

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: edgecount(G,1,2)
Example: edgecount(G,1,1:5)
Example: edgecount(G,{'a' 'b' 'c'},'a')

See Also
digraph | findedge | graph | simplify

Introduced in R2018a

 edgecount

1-4967

findedge
Locate edge in graph

Syntax
[sOut,tOut] = findedge(G)
[sOut,tOut] = findedge(G,idx)
idxOut = findedge(G,s,t)
[idxOut,m] = findedge(G,s,t)

Description
[sOut,tOut] = findedge(G) returns the source and target node IDs, sOut and tOut,
for all of the edges in graph G.

[sOut,tOut] = findedge(G,idx) finds the source and target nodes of the edges
specified by idx.

idxOut = findedge(G,s,t) returns the numeric edge indices, idxOut, for the edges
specified by the source and target node pairs s and t. The edge indices correspond to the
rows G.Edges.Edge(idxOut,:) in the G.Edges table of the graph. If there are
multiple edges between s and t, then all their indices are returned. An edge index of 0
indicates an edge that is not in the graph.

[idxOut,m] = findedge(G,s,t) additionally returns a vector m indicating which
node pair (s,t) is associated with each edge index in idxOut. This is useful when there
are multiple edges between the same two nodes.

Examples

Locate Edges with Specified End Nodes

Create a graph, and then determine the edge index for the (1,2) and (3,5) edges.

1 Alphabetical List

1-4968

s = [1 1 2 2 2 3 3 3];
t = [2 3 3 4 5 6 7 5];
G = graph(s,t)

G =
 graph with properties:

 Edges: [8x1 table]
 Nodes: [7x0 table]

idxOut = findedge(G,[1 3],[2 5])

idxOut = 2×1

 1
 6

idxOut contains the row index into G.Edges.EndNodes for each specified edge.

End Nodes of All Graph Edges

Create a graph, and then determine the end nodes of all edges in the graph.

s = {'a' 'a' 'b' 'b' 'c' 'c'};
t = {'b' 'c' 'd' 'e' 'f' 'g'};
G = graph(s,t);
G.Edges

ans=6×1 table
 EndNodes

 'a' 'b'
 'a' 'c'
 'b' 'd'
 'b' 'e'
 'c' 'f'
 'c' 'g'

[sOut,tOut] = findedge(G)

 findedge

1-4969

sOut = 6×1

 1
 1
 2
 2
 3
 3

tOut = 6×1

 2
 3
 4
 5
 6
 7

Locate Edges with Specified Edge Indices

Create a graph, and then determine the end nodes for the edges whose indices are 3 and
7.

s = [1 1 1 1 2 2 3 3 4 4];
t = [2 3 4 5 6 7 8 9 10 11];
G = digraph(s,t)

G =
 digraph with properties:

 Edges: [10x1 table]
 Nodes: [11x0 table]

[sOut,tOut] = findedge(G,[3 7])

sOut = 2×1

 1
 3

1 Alphabetical List

1-4970

tOut = 2×1

 4
 8

Determine Weight of Specified Edge

Create a graph.

s = [1 1 2 3];
t = [2 3 3 4];
weights = [10 20 30 40];
G = graph(s,t,weights)

G =
 graph with properties:

 Edges: [4x2 table]
 Nodes: [4x0 table]

Find the weight of the (1,3) edge, using findedge to retrieve the index.

G.Edges.Weight(findedge(G,1,3))

ans = 20

Change Weights of Multigraph Edges

Use findedge to change the weights of several multigraph edges.

Create and plot a multigraph. This graph has two edges between node 2 and node 4.

s = [1 1 2 3 2 2];
t = [2 3 3 4 4 4];
weights = [10 20 30 40 10 10];
G = graph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight)

 findedge

1-4971

Change the weights of the edges between nodes (3,2) and (2,4). Specify two outputs to
findedge to get the end-node indices, m. This output is useful when there are multiple
edges between two nodes, since idxOut can have more elements than the number of
node pairs in s and t. The edge idxOut(1) = 3 connects the node pair (s(1),t(1))
= (3,2), and the edges idxOut(2) = 4 and idxOut(3) = 5 connect the edge
(s(2),t(2)) = (2,4).

s = [3 2];
t = [2 4];
w = [1 4];
[idxOut, m] = findedge(G, s, t)

idxOut = 3×1

1 Alphabetical List

1-4972

 3
 4
 5

m = 3×1

 1
 2
 2

G.Edges.Weight(idxOut) = w(m);
plot(G,'EdgeLabel',G.Edges.Weight)

 findedge

1-4973

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

s,t — Node pairs (as separate arguments)
node indices | node names

Node pairs, specified as separate arguments of node indices or node names. Similarly
located elements in s and t specify the source and target nodes for edges in the graph.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]
Categorical array

Example:
categorical("A")

Categorical array

Example:
categorical(["A" "B"
"C"])

Example: G = findedge(G,[1 2],[3 4])
Example: G = findedge(G,{'a' 'a'; 'b' 'c'},{'b' 'c'; 'c' 'e'})

1 Alphabetical List

1-4974

idx — Edge indices
scalar | vector

Edge indices, specified as a scalar or vector of positive integers. The edge index
corresponds to a row in the G.Edges table of the graph, G.Edges(idx,:).

Output Arguments
idxOut — Edge indices
scalar | vector

Edge indices, returned as a scalar or vector of nonnegative integers. The edge indices
correspond to rows in the G.Edges table of the graph, G.Edges(idxOut,:). An edge
index of 0 indicates an edge that is not in the graph.

The length of idxOut corresponds to the number of node pairs in the input, unless the
input graph is a multigraph.

m — End node indices
vector

End node indices, returned as a vector. The values in m connect the edge indices in
idxOut to the input node pairs (s,t). The edge idxOut(j) connects the node pair with
index m(j).

sOut,tOut — Node IDs
scalars | vectors

Node IDs, returned as separate scalars or vectors of positive integers. Similarly located
elements in sOut and tOut specify the source and target nodes that form the edges
G.Edges(idx,:).

See Also
digraph | findnode | graph | numedges

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”

 findedge

1-4975

“Add Graph Node Names, Edge Weights, and Other Attributes”

Introduced in R2015b

1 Alphabetical List

1-4976

findnode
Locate node in graph

Syntax
k = findnode(G,nodeID)

Description
k = findnode(G,nodeID) returns the numeric node ID, k, of the node in graph G
whose name or index is nodeID. The numeric node ID is zero if the node is not in the
graph.

Examples

Determine Index of Named Node

Create a graph, and then determine the numeric node index for the nodes named 'AB'
and 'BC'.

s = {'AA' 'AA' 'AA' 'AB' 'AC' 'BB'};
t = {'BA' 'BB' 'BC' 'BA' 'AB' 'BC'};
G = graph(s,t)

G =
 graph with properties:

 Edges: [6x1 table]
 Nodes: [6x1 table]

k = findnode(G,{'AB' 'BC'})

k = 2×1

 findnode

1-4977

 5
 4

k contains the row index into G.Nodes.Name for each specified node.

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

nodeID — Node identifiers
node indices | node names

Node identifiers, specified as one or more node indices or node names.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: k = findnode(G,'Chicago') returns the numeric node ID for the node in
graph G with the name 'Chicago'.

1 Alphabetical List

1-4978

Data Types: char | cell | string

Output Arguments
k — Numeric node IDs
scalar | column vector

Numeric node IDs, returned as a scalar or column vector. The values of k are indices into
G.Nodes(k,:).

See Also
digraph | findedge | graph | numnodes

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”

Introduced in R2015b

 findnode

1-4979

incidence
Graph incidence matrix

Syntax
I = incidence(G)

Description
I = incidence(G) returns the sparse incidence matrix for graph G. If s and t are the
node IDs of the source and target nodes of the jth edge in G, then I(s,j) = -1 and
I(t,j) = 1. That is, each column of I indicates the source and target nodes for a single
edge in G.

Examples

Graph Incidence Matrix

Create a graph using an edge list, and then calculate the graph incidence matrix.

s = [1 1 1 1 1];
t = [2 3 4 5 6];
G = graph(s,t);
I = incidence(G)

I =
 (1,1) -1
 (2,1) 1
 (1,2) -1
 (3,2) 1
 (1,3) -1
 (4,3) 1
 (1,4) -1
 (5,4) 1
 (1,5) -1

1 Alphabetical List

1-4980

 (6,5) 1

Each column in I contains two nonzero entries, which indicate the end nodes of a single
edge in G.

Calculate the graph Laplacian matrix, L, and confirm the relation L = I*I' for
undirected graphs.

L = laplacian(G);
L - I*I'

ans =
 All zero sparse: 6x6

Incidence Matrix of Directed Graph

Create a directed graph using an edge list, and then calculate the incidence matrix.

s = [1 2 1 3 2 3 3 3];
t = [2 1 3 1 3 4 5 6];
G = digraph(s,t)

G =
 digraph with properties:

 Edges: [8x1 table]
 Nodes: [6x0 table]

I = incidence(G)

I =
 (1,1) -1
 (2,1) 1
 (1,2) -1
 (3,2) 1
 (1,3) 1
 (2,3) -1
 (2,4) -1
 (3,4) 1
 (1,5) 1

 incidence

1-4981

 (3,5) -1
 (3,6) -1
 (4,6) 1
 (3,7) -1
 (5,7) 1
 (3,8) -1
 (6,8) 1

Each column in I represents the source and target nodes of a single edge in G.

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

Output Arguments
I — Incidence matrix
sparse matrix

Incidence matrix, returned as a sparse matrix. The size of I is numnodes(G)-by-
numedges(G). The graph incidence matrix is undefined for graphs with self-loops.

Tips
• The incidence function calculates the variety of incidence matrix commonly known

as a signed or oriented incidence matrix. The signed incidence matrix of an undirected
graph, I, is related to the graph Laplacian matrix, L, such that L == I*I'.

1 Alphabetical List

1-4982

See Also
adjacency | digraph | graph | laplacian

Introduced in R2015b

 incidence

1-4983

isomorphism
Compute isomorphism between two graphs

Syntax
P = isomorphism(G1,G2)
P = isomorphism(___ ,Name,Value)
[P,edgeperm] = isomorphism(___)

Description
P = isomorphism(G1,G2) computes a graph isomorphism on page 1-4992 equivalence
relation between graphs G1 and G2, if one exists. If no isomorphism exists, then P is an
empty array.

P = isomorphism(___ ,Name,Value) specifies additional options with one or more
name-value pair arguments. For example, you can specify 'NodeVariables' and a list of
node variables to indicate that the isomorphism must preserve these variables to be valid.

[P,edgeperm] = isomorphism(___) additionally returns a vector of edge
permutations, edgeperm. This output enables you to preserve edge variables when
working with multigraphs.

Examples

Compute Isomorphism Permutation

Create and plot two directed graphs, and then calculate the isomorphism relation
between them.

G1 = digraph([1 1 1 2 3 4],[2 3 4 4 4 1]);
G2 = digraph([3 3 3 2 1 4],[1 4 2 3 2 2]);
subplot(1,2,1)
plot(G1)

1 Alphabetical List

1-4984

subplot(1,2,2)
plot(G2)

p = isomorphism(G1,G2)

p = 4×1

 3
 1
 4
 2

The result indicates that reordernodes(G2,p) has the same structure as G1.

 isomorphism

1-4985

Compute Isomorphism Between Graphs with Different Labels and Layouts

Create and plot two graphs, G1 and G2.

G1 = graph([1 1 1 2 2 3 3 4 5 5 7 7],[2 4 5 3 6 4 7 8 6 8 6 8]);
plot(G1,'XData',[1 4 4 1 2 3 3 2],'YData',[4 4 1 1 3 3 2 2])

G2 = graph({'a' 'a' 'a' 'b' 'b' 'b' 'c' 'c' 'c' 'd' 'd' 'd'}, ...
 {'g' 'h' 'i' 'g' 'h' 'j' 'g' 'i' 'j' 'h' 'i' 'j'});
plot(G2,'XData',[1 2 2 2 1 2 1 1],'YData',[4 4 3 2 3 1 2 1])

1 Alphabetical List

1-4986

Compute the isomorphism relation between the graphs, if one exists. The result indicates
that the graph nodes can be permuted to represent the same graph despite their different
labels and layouts.

p = isomorphism(G1,G2)

p = 8×1

 1
 2
 5
 3
 4
 7

 isomorphism

1-4987

 6
 8

Compute Isomorphism and Preserve Node Properties

Compute two different isomorphism relations between two graphs. One of the relations
preserves a node property, while the other ignores it.

Create two similar graphs. Add a node property Color to each of the graphs.

G1 = graph({'d' 'e' 'f'},{'e' 'f' 'd'});
G1.Nodes.Color = {'blue' 'red' 'red'}';

G2 = graph({'a' 'b' 'c'},{'b' 'c' 'a'});
G2.Nodes.Color = {'red' 'red' 'blue'}';

Plot the graphs side-by-side in the same figure. Color the nodes red that have Color =
'red'.

subplot(1,2,1)
p1 = plot(G1);
highlight(p1,{'e' 'f'},'NodeColor','r')

subplot(1,2,2)
p2 = plot(G2);
highlight(p2,{'a' 'b'},'NodeColor','r')

1 Alphabetical List

1-4988

Compute the isomorphism between the graphs, ignoring the Color property.

p = isomorphism(G1,G2)

p = 3×1

 1
 2
 3

Compute the isomorphism again, but this time preserve the value of the Color property
in the comparison. isomorphism returns a different permutation that preserves the
Color property.

 isomorphism

1-4989

p = isomorphism(G1,G2,'NodeVariables','Color')

p = 3×1

 3
 1
 2

View the nodes in G1 and G2 that the isomorphism matches together.

[G1.Nodes.Name, G2.Nodes.Name(p)]

ans = 3x2 cell array
 {'d'} {'c'}
 {'e'} {'a'}
 {'f'} {'b'}

Input Arguments
G1,G2 — Input graphs (as separate arguments)
graph objects | digraph objects

Input graphs, specified as separate arguments of graph or digraph objects. Use graph
to create an undirected graph or digraph to create a directed graph.

G1 and G2 must be both graph objects or both digraph objects.
Example: G1 = graph(1,2)
Example: G1 = digraph([1 2],[2 3])

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: P = isomorphism(G1,G2,'NodeVariables',{'Var1' 'Var2'})

1 Alphabetical List

1-4990

EdgeVariables — Edge variables to preserve
character vector | string scalar | cell array of character vectors | string array

Edge variables to preserve, specified as the comma-separated pair consisting of
'EdgeVariables' and a character vector, string scalar, cell array of character vectors,
or string array. Use this option to specify one or more edge variables that are in both
G1.Edges and G2.Edges. The isomorphism must preserve the specified edge variables in
order to be valid.

If G is a multigraph, then you can specify the second output edgeperms to enable
reordering edge variables.
Data Types: char | string | cell

NodeVariables — Node variables to preserve
character vector | string scalar | cell array of character vectors | string array

Node variables to preserve, specified as the comma-separated pair consisting of
'NodeVariables' and a character vector, string scalar, cell array of character vectors,
or string array. Use this option to specify one or more node variables that are in both
G1.Nodes and G2.Nodes. The isomorphism must preserve the specified node variables in
order to be valid.
Data Types: char | string | cell

Output Arguments
P — Permutation vector for isomorphism
column vector | []

Permutation vector for isomorphism, returned as a column vector when an isomorphism
exists or as the empty array [] when an isomorphism does not exist. If P is not empty,
then reordernodes(G2,P) has the same structure as G1.

edgeperm — Edge permutation
column vector

Edge permutation, returned as a column vector. When working with multigraphs, the
edge permutation vector enables you to preserve edge variables specified by the
'EdgeVariables' name-value pair. Use these commands to reorder the edge variables
of repeated edges:

 isomorphism

1-4991

[p,edgeperm] = isomorphism(g1,g2,'EdgeVariables',edgevars);
g2perm = reordernodes(g2, p);
g2perm.Edges(:, 2:end) = g2perm.Edges(edgeperm, 2:end);

Definitions

Graph Isomorphism
Two graphs, G1 and G2, are isomorphic if there exists a permutation of the nodes P such
that reordernodes(G2,P) has the same structure as G1.

Two graphs that are isomorphic have similar structure. For example, if a graph contains
one cycle, then all graphs isomorphic to that graph also contain one cycle.

See Also
digraph | graph | isisomorphic | reordernodes

Topics
“Directed and Undirected Graphs”

Introduced in R2016b

1 Alphabetical List

1-4992

isisomorphic
Determine whether two graphs are isomorphic

Syntax
tf = isisomorphic(G1,G2)
tf = isisomorphic(G1,G2,Name,Value)

Description
tf = isisomorphic(G1,G2) returns logical 1 (true) if a graph isomorphism on page
1-5000 exists between graphs G1 and G2; otherwise, it returns logical 0 (false).

tf = isisomorphic(G1,G2,Name,Value) specifies additional options with one or
more name-value pair arguments. For example, you can specify 'NodeVariables' and a
list of node variables to indicate that the isomorphism must preserve these variables to be
valid.

Examples

Compare Graphs

Create and plot two directed graphs, and then determine if they are isomorphic.

G1 = digraph([1 1 1 2 3 4],[2 3 4 4 4 1]);
G2 = digraph([3 3 3 2 1 4],[1 4 2 3 2 2]);
subplot(1,2,1)
plot(G1)
subplot(1,2,2)
plot(G2)

 isisomorphic

1-4993

isisomorphic(G1,G2)

ans = logical
 1

Compare Graphs with Different Labels and Layouts

Create and plot two graphs, G1 and G2.

G1 = graph([1 1 1 2 2 3 3 4 5 5 7 7],[2 4 5 3 6 4 7 8 6 8 6 8]);
plot(G1,'XData',[1 4 4 1 2 3 3 2],'YData',[4 4 1 1 3 3 2 2])

1 Alphabetical List

1-4994

G2 = graph({'a' 'a' 'a' 'b' 'b' 'b' 'c' 'c' 'c' 'd' 'd' 'd'}, ...
 {'g' 'h' 'i' 'g' 'h' 'j' 'g' 'i' 'j' 'h' 'i' 'j'});
plot(G2,'XData',[1 2 2 2 1 2 1 1],'YData',[4 4 3 2 3 1 2 1])

 isisomorphic

1-4995

Determine whether an isomorphism exists for G1 and G2. The result indicates that the
graphs are structurally the same despite their different labels and layouts.

tf = isisomorphic(G1,G2)

tf = logical
 1

1 Alphabetical List

1-4996

Preserve Node Properties in Isomorphism Comparison

Use two different comparisons to determine if there is an isomorphism relation between
two graphs. One of the comparisons preserves a node property, while the other ignores it.

Create two similar graphs. Add a node property Color to each of the graphs.

G1 = graph({'d' 'e' 'f'},{'e' 'f' 'd'});
G1.Nodes.Color = {'red' 'red' 'blue'}';

G2 = graph({'a' 'b' 'c'},{'b' 'c' 'a'});
G2.Nodes.Color = {'blue' 'blue' 'red'}';

Plot the graphs side-by-side in the same figure. Color the nodes red that have Color =
'red'.

subplot(1,2,1)
p1 = plot(G1);
highlight(p1,{'d' 'e'},'NodeColor','r')

subplot(1,2,2)
p2 = plot(G2);
highlight(p2,'c','NodeColor','r')

 isisomorphic

1-4997

Determine if the graphs are isomorphic, ignoring the Color property.

tf = isisomorphic(G1,G2)

tf = logical
 1

Determine if the graphs are isomorphic and preserve the value of the Color property in
the comparison. In this case, there is no isomorphism since the Color property of each
graph contains different numbers of 'red' and 'blue' values.

tf = isisomorphic(G1,G2,'NodeVariables','Color')

1 Alphabetical List

1-4998

tf = logical
 0

Input Arguments
G1,G2 — Input graphs (as separate arguments)
graph objects | digraph objects

Input graphs, specified as separate arguments of graph or digraph objects. Use graph
to create an undirected graph or digraph to create a directed graph.

G1 and G2 must be both graph objects or both digraph objects.
Example: G1 = graph(1,2)
Example: G1 = digraph([1 2],[2 3])

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tf = isisomorphic(G1,G2,'NodeVariables',{'Var1' 'Var2'})

EdgeVariables — Edge variables to preserve
character vector | string scalar | cell array of character vectors | string array

Edge variables to preserve, specified as the comma-separated pair consisting of
'EdgeVariables' and a character vector, string scalar, cell array of character vectors,
or string array. Use this option to specify one or more edge variables that are in both
G1.Edges and G2.Edges. The isomorphism comparison must preserve the specified edge
variables in order to be valid. For multigraphs with multiple edges between the same two
nodes, the ordering of the edge variables for the same node pair is irrelevant.
Data Types: char | string | cell

NodeVariables — Node variables to preserve
character vector | string scalar | cell array of character vectors | string array

 isisomorphic

1-4999

Node variables to preserve, specified as the comma-separated pair consisting of
'NodeVariables' and a character vector, string scalar, cell array of character vectors,
or string array. Use this option to specify one or more node variables that are in both
G1.Nodes and G2.Nodes. The isomorphism comparison must preserve the specified node
variables in order to be valid.
Data Types: char | string | cell

Definitions

Graph Isomorphism
Two graphs, G1 and G2, are isomorphic if there exists a permutation of the nodes P such
that reordernodes(G2,P) has the same structure as G1.

Two graphs that are isomorphic have similar structure. For example, if a graph contains
one cycle, then all graphs isomorphic to that graph also contain one cycle.

See Also
digraph | graph | isomorphism | reordernodes

Topics
“Directed and Undirected Graphs”

Introduced in R2016b

1 Alphabetical List

1-5000

ismultigraph
Determine whether graph has multiple edges

Syntax
tf = ismultigraph(G)

Description
tf = ismultigraph(G) returns logical 1 (true) if G has multiple edges between any
two nodes. Otherwise, it returns logical 0 (false).

By convention, ismultigraph returns logical 0 (false) for graphs that contain self-
loops, but no repeated edges. However, a graph with multiple self-loops is considered to
be a multigraph.

Examples

Test for Multiple Edges

Use ismultigraph to determine whether an input graph has multiple edges between
two nodes.

Create a graph.

G = graph([1 1 1 1 1 2 2 2],[2 2 3 4 5 6 7 8]);
plot(G)

 ismultigraph

1-5001

Check to see if G is a multigraph. The result is logical 1 (true) because there are two
edges between nodes 1 and 2.

tf = ismultigraph(G)

tf = logical
 1

Remove Multiple Edges from Graph

Use ismultigraph to determine whether a graph needs to be simplified.

1 Alphabetical List

1-5002

It is common to encounter duplicate edges when you create an empty graph and
programmatically add edges to it with addedge. The data used for the edges needs to be
unique to avoid duplicates.

To demonstrate this, create an empty graph and a matrix with two columns of random
numbers. Since the random numbers are only between 1 and 5, this data produces
multiple edges.

G = graph;
rng default % for reproducibility
X = randi(5,15,2)

X = 15×2

 5 1
 5 3
 1 5
 5 4
 4 5
 1 4
 2 1
 3 5
 5 5
 5 4
 ⋮

Instead of cleaning the source data to ensure the rows are unique, add all of the edges to
the graph. Plot the graph for reference.

G = addedge(G,X(:,1),X(:,2));
plot(G)

 ismultigraph

1-5003

Test to see if the graph is a multigraph and, if it is, use simplify to remove repeated
edges and self-loops.

if ismultigraph(G)
 G = simplify(G);
end

Plot the resulting graph.

plot(G)

1 Alphabetical List

1-5004

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

 ismultigraph

1-5005

See Also
digraph | edgecount | graph | simplify

Topics
“Directed and Undirected Graphs”

Introduced in R2018a

1 Alphabetical List

1-5006

laplacian
Graph Laplacian matrix

Syntax
L = laplacian(G)

Description
L = laplacian(G) returns the graph Laplacian matrix, L. Each diagonal entry, L(j,j),
is given by the degree of node j, degree(G,j). The off-diagonal entries of L represent
the edges in G such that L(i,j) = L(j,i) = -1 if there is an edge between nodes i
and j; otherwise, L(i,j) = L(j,i) = 0. The input graph G cannot be a multigraph or
contain self-loops.

Examples

Graph Laplacian Matrix

Create a graph using an edge list, and then calculate the graph Laplacian matrix.

s = [1 1 1 1 1];
t = [2 3 4 5 6];
G = graph(s,t);
L = laplacian(G)

L =
 (1,1) 5
 (2,1) -1
 (3,1) -1
 (4,1) -1
 (5,1) -1
 (6,1) -1
 (1,2) -1
 (2,2) 1

 laplacian

1-5007

 (1,3) -1
 (3,3) 1
 (1,4) -1
 (4,4) 1
 (1,5) -1
 (5,5) 1
 (1,6) -1
 (6,6) 1

The diagonal elements of L indicate the degree of the nodes, such that L(j,j) is the
degree of node j.

Calculate the graph incidence matrix, I, and confirm the relation L = I*I'.

I = incidence(G);
L - I*I'

ans =
 All zero sparse: 6x6

Input Arguments
G — Input graph
graph object

Input graph, specified as a graph object. Use graph to create an undirected graph
object.
Example: G = graph(1,2)

Output Arguments
L — Laplacian matrix
matrix

Laplacian matrix. L is a square, symmetric, sparse matrix of size numnodes(G)-by-
numnodes(G). The graph Laplacian matrix is undefined for graphs with self-loops.

1 Alphabetical List

1-5008

See Also
adjacency | graph | incidence

Introduced in R2015b

 laplacian

1-5009

maxflow
Maximum flow in graph

Syntax
mf = maxflow(G,s,t)
mf = maxflow(G,s,t,algorithm)
[mf,GF] = maxflow(___)
[mf,GF,cs,ct] = maxflow(___)

Description
mf = maxflow(G,s,t) returns the maximum flow on page 1-5019 between nodes s and
t. If graph G is unweighted (that is, G.Edges does not contain the variable Weight), then
maxflow treats all graph edges as having a weight equal to 1.

mf = maxflow(G,s,t,algorithm) specifies the maximum flow algorithm to use. This
syntax is only available if G is a directed graph.

[mf,GF] = maxflow(___) also returns a directed graph object, GF, using any of the
input arguments in previous syntaxes. GF is formed using only the edges in G that have
nonzero flow values.

[mf,GF,cs,ct] = maxflow(___) additionally returns the source and target node IDs,
cs and ct, representing the minimum cut on page 1-5020 associated with the maximum
flow.

Examples

Maximum Flow in Graph

Create and plot a weighted graph. The weighted edges represent flow capacities.

s = [1 1 2 2 3 4 4 4 5 5];
t = [2 3 3 4 5 3 5 6 4 6];

1 Alphabetical List

1-5010

weights = [0.77 0.44 0.67 0.75 0.89 0.90 2 0.76 1 1];
G = digraph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight,'Layout','layered');

Determine the maximum flow from node 1 to node 6.

mf = maxflow(G,1,6)

mf = 1.2100

 maxflow

1-5011

Maximum Flow with Specified Algorithm

Create and plot a graph. The weighted edges represent flow capacities.

s = [1 1 2 2 3 3 4];
t = [2 3 3 4 4 5 5];
weights = [10 6 15 5 10 3 8];
G = digraph(s,t,weights);
H = plot(G,'EdgeLabel',G.Edges.Weight);

Find the maximum flow value between node 1 and node 5. Specify 'augmentpath' to
use the Ford-Fulkerson algorithm, and use two outputs to return a graph of the nonzero
flows.

1 Alphabetical List

1-5012

[mf,GF] = maxflow(G,1,5,'augmentpath')

mf = 11

GF =
 digraph with properties:

 Edges: [6x2 table]
 Nodes: [5x0 table]

Highlight and label the graph of nonzero flows.

H.EdgeLabel = {};
highlight(H,GF,'EdgeColor','r','LineWidth',2);
st = GF.Edges.EndNodes;
labeledge(H,st(:,1),st(:,2),GF.Edges.Weight);

 maxflow

1-5013

Minimum Cut Computation

Create and plot a weighted graph. The edge weights represent flow capacities.

s = [1 1 2 3 3 4 4 5 5];
t = [2 3 3 2 5 5 6 4 6];
weights = [0.77 0.44 0.67 0.69 0.73 2 0.78 1 1];
G = digraph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight,'Layout','layered')

1 Alphabetical List

1-5014

Find the maximum flow and minimum cut of the graph.

[mf,~,cs,ct] = maxflow(G,1,6)

mf = 0.7300

cs = 3×1

 1
 2
 3

ct = 3×1

 maxflow

1-5015

 4
 5
 6

Plot the minimum cut, using the cs nodes as sources and the ct nodes as sinks. Highlight
the cs nodes as red and the ct nodes as green. Note that the weight of the edge that
connects these two sets of nodes is equal to the maximum flow.

H = plot(G,'Layout','layered','Sources',cs,'Sinks',ct, ...
 'EdgeLabel',G.Edges.Weight);
highlight(H,cs,'NodeColor','red')
highlight(H,ct,'NodeColor','green')

1 Alphabetical List

1-5016

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

s,t — Node pair (as separate arguments)
node indices | node names

Node pair, specified as separate arguments of node indices or node names to indicate the
source node and target node. This table shows the different ways to refer to nodes either
by their node indices or by their node names.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: mf = maxflow(G,'A','B')
Example: mf = maxflow(G,1,10)
Data Types: double | char | string

algorithm — Maximum flow algorithm
'searchtrees' (default) | 'augmentpath' | 'pushrelabel'

Maximum flow algorithm, specified as one of the entries in the table.

Note You can only specify nondefault algorithm options with a directed graph.

 maxflow

1-5017

Option Description
'searchtrees' (default) Uses the Boykov-Kolmogorov algorithm.

Computes the maximum flow by
constructing two search trees associated
with nodes s and t.

'augmentpath' Uses the Ford-Fulkerson algorithm.
Computes the maximum flow iteratively by
finding an augmenting path in a residual
directed graph.

The directed graph cannot have any
parallel edges of opposite direction
between the same two nodes, unless the
weight of one of those edges is zero. So if
the graph contains edge [i j], then it can
contain the reverse edge [j i] only if the
weight of [i j] is zero and/or the weight
of [j i] is zero.

'pushrelabel' Computes the maximum flow by pushing a
node's excess flow to its neighbors and then
relabeling the node.

The directed graph cannot have any
parallel edges of opposite direction
between the same two nodes, unless the
weight of one of those edges is zero. So if
the graph contains edge [i j], then it can
contain the reverse edge [j i] only if the
weight of [i j] is zero and/or the weight
of [j i] is zero.

Example: mf = maxflow(G,'A','D','augmentpath')

Output Arguments
mf — Maximum flow
scalar

1 Alphabetical List

1-5018

Maximum flow, returned as a scalar.

GF — Directed graph of flows
digraph object

Directed graph of flows, returned as a digraph object. GF contains the same nodes as G,
but only contains those edges of G that have a nonzero flow. For multigraphs with multiple
edges between the same two nodes, GF contains a single edge reflecting the flow through
the multiple edges.

cs — Minimum cut source node IDs
node indices | node names

Minimum cut source node IDs, returned as node indices or node names.

• If s and t specify numeric node indices, then cs and ct also contain node indices.
• If s and t specify node names, then cs and ct also contain node names.

ct — Minimum cut target node IDs
scalar | vector | character vector | cell array of character vectors

Minimum cut target node IDs, returned as node indices or node names.

• If s and t specify numeric node indices, then cs and ct also contain node indices.
• If s and t specify node names, then cs and ct also contain node names.

Definitions

Maximum Flow
In the context of maximum flow, the edges in a graph are considered to have a capacity as
represented by the edge weight. The capacity of an edge is the amount of flow that can
pass through that edge. Therefore, the maximum flow between two nodes in a graph
maximizes the amount of flow passing from the source node, s, to the target node, t,
based on the capacities of the connecting edges.

 maxflow

1-5019

Minimum Cut
A minimum cut partitions the directed graph nodes into two sets, cs and ct, such that
the sum of the weights of all edges connecting cs and ct (weight of the cut) is minimized.
The weight of the minimum cut is equal to the maximum flow value, mf.

The entries in cs and ct indicate the nodes of G associated with nodes s and t,
respectively. cs and ct satisfy numel(cs) + numel(ct) = numnodes(G).

See Also
digraph | graph

Introduced in R2015b

1 Alphabetical List

1-5020

minspantree
Minimum spanning tree of graph

Syntax
T = minspantree(G)
T = minspantree(G,Name,Value)
[T,pred] = minspantree(___)

Description
T = minspantree(G) returns the minimum spanning tree on page 1-5028, T, for graph
G.

T = minspantree(G,Name,Value) uses additional options specified by one or more
Name-Value pair arguments. For example, minspantree(G,'Method','sparse') uses
Kruskal’s algorithm for calculating the minimum spanning tree.

[T,pred] = minspantree(___) also returns a vector of predecessor nodes, pred,
using any of the input arguments in previous syntaxes.

Examples

Minimum Spanning Tree of Cube Graph

Create and plot a cube graph with weighted edges.

s = [1 1 1 2 5 3 6 4 7 8 8 8];
t = [2 3 4 5 3 6 4 7 2 6 7 5];
weights = [100 10 10 10 10 20 10 30 50 10 70 10];
G = graph(s,t,weights);
p = plot(G,'EdgeLabel',G.Edges.Weight);

 minspantree

1-5021

Calculate and plot the minimum spanning tree of the graph on top of the graph. T
contains the same nodes as G, but a subset of the edges.

[T,pred] = minspantree(G);
highlight(p,T)

1 Alphabetical List

1-5022

Minimum Spanning Forest from Specified Root Node

Create and plot a graph that has multiple components.

s = {'a' 'a' 'a' 'b' 'b' 'c' 'e' 'e' 'f' 'f' 'f' 'f' 'g' 'g'};
t = {'b' 'c' 'd' 'c' 'd' 'd' 'f' 'g' 'g' 'h' 'i' 'j' 'i' 'j'};
G = graph(s,t);
p = plot(G,'Layout','layered');

 minspantree

1-5023

Find the minimum spanning forest for the graph, starting at node i. Highlight the
resulting forest in the plot. The graph node names are carried over into the minimum
spanning tree graph.

[T,pred] = minspantree(G,'Type','forest','Root',findnode(G,'i'));
highlight(p,T)

1 Alphabetical List

1-5024

Use the vector of predecessor nodes, pred, to create a directed version of the minimum
spanning forest. All of the edges in this tree are directed away from the root nodes in
each component (nodes i and a).

rootedTree = digraph(pred(pred~=0),find(pred~=0),[],G.Nodes.Name);
plot(rootedTree)

 minspantree

1-5025

Input Arguments
G — Input graph
graph object

Input graph, specified as a graph object. Use graph to create an undirected graph
object.
Example: G = graph(1,2)

1 Alphabetical List

1-5026

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [T,pred] = minspantree(G,'Method','sparse')

Method — Minimum spanning tree algorithm
'dense' (default) | 'sparse'

Minimum spanning tree algorithm, specified as the comma-separated pair consisting of
'Method' and one of the options in the table.

Option Description
'dense' (default) Prim’s algorithm. This algorithm starts at

the root node and adds edges to the tree
while traversing the graph.

'sparse' Kruskal’s algorithm. This algorithm sorts all
of the edges by weight, and then adds them
to the tree if they do not create a cycle.

Root — Root node
1 (default) | node index | node name

Root node, specified as the comma-separated pair consisting of 'Root' and a node index
or node name. The default root node is 1.

• If 'Method' is 'dense' (default), then the root node is the starting node.
• If 'Method' is 'sparse', then the root node is used only to compute pred, the

vector of predecessor nodes.

You can specify the root node in any of these formats:

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

 minspantree

1-5027

Type — Type of minimum spanning tree
'tree' (default) | 'forest'

Type of minimum spanning tree, specified as the comma-separated pair consisting of
'Type' and one of the options in the table.

Option Description
'tree' Only a single tree is returned. The tree

contains the root node.
'forest' A forest of minimum spanning trees is

returned. In other words, specify 'forest'
to calculate the minimum spanning tree of
all connected components in the graph.

Output Arguments
T — Minimum spanning tree
graph object

Minimum spanning tree, returned as a graph object.

pred — Predecessor nodes
vector

Predecessor nodes, returned as a vector of node indices. pred(I) is the node index of
the predecessor of node I. By convention, pred(rootNode) = 0. If Type is 'tree',
then pred(I) = NaN for all nodes I that are not in the same component as the root
node.

pred specifies a directed version of the minimum spanning tree, with all edges directed
away from the root node.

Definitions
Minimum Spanning Tree
For connected graphs, a spanning tree is a subgraph that connects every node in the
graph, but contains no cycles. There can be many spanning trees for any given graph. By

1 Alphabetical List

1-5028

assigning a weight to each edge, the different spanning trees are assigned a number for
the total weight of their edges. The minimum spanning tree is then the spanning tree
whose edges have the least total weight.

For graphs with equal edge weights, all spanning trees are minimum spanning trees,
since traversing n nodes requires n-1 edges.

See Also
conncomp | graph | shortestpath

Introduced in R2015b

 minspantree

1-5029

nearest
Nearest neighbors within radius

Syntax
nodeIDs = nearest(G,s,d)
nodeIDs = nearest(G,s,d,Name,Value)
[nodeIDs,dist] = nearest(___)

Description
nodeIDs = nearest(G,s,d) returns all nodes in graph G that are within distance d
from node s. If the graph is weighted (that is, if G.Edges contains a variable Weight),
then those weights are used as the distances along the edges in the graph. Otherwise, all
edge distances are taken to be 1.

nodeIDs = nearest(G,s,d,Name,Value) uses additional options specified by one or
more name-value pair arguments. For example, if G is a weighted graph, then
nearest(G,s,d,'Method','unweighted') ignores the edge weights in graph G and
instead treats all edge weights as 1.

[nodeIDs,dist] = nearest(___) additionally returns the distance to each of the
nearest neighbors, such that dist(j) is the distance from source node s to the node
nodeIDs(j). You can use any of the input argument combinations in previous syntaxes.

Examples

Nearest Nodes

Create and plot a graph with weighted edges.

s = [1 1 1 1 1 2 2 2 3 3 3 3 3];
t = [2 4 5 6 7 3 8 9 10 11 12 13 14];
weights = randi([1 10],1,13);

1 Alphabetical List

1-5030

G = graph(s,t,weights);
p = plot(G,'Layout','force','EdgeLabel',G.Edges.Weight);

Determine which nodes are within a radius of 15 from node 1.

nn = nearest(G,1,15)

nn = 9×1

 5
 7
 2
 3
 4
 6

 nearest

1-5031

 8
 12
 9

Highlight the source node as green and the nearest neighbors as red.

highlight(p,1,'NodeColor','g')
highlight(p,nn,'NodeColor','r')

1 Alphabetical List

1-5032

Distances of Nearest Nodes

Create and plot a graph with weighted edges.

s = [1 1 1 2 2 6 6 7 7 3 3 9 9 4 4 11 11 8];
t = [2 3 4 5 6 7 8 5 8 9 10 5 10 11 12 10 12 12];
weights = [10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1];
G = graph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight)

Determine which nodes are within a radius of 5 from node 3, and return the distance to
each node.

[nn,dist] = nearest(G,3,5)

 nearest

1-5033

nn = 9×1

 9
 10
 5
 11
 4
 7
 12
 6
 8

dist = 9×1

 1
 1
 2
 2
 3
 3
 3
 4
 4

Incoming Neighbor Distances in Directed Graph

Create and plot a directed graph with weighted edges.

s = {'a' 'a' 'a' 'b' 'c' 'c' 'e' 'f' 'f'};
t = {'b' 'c' 'd' 'a' 'a' 'd' 'f' 'a' 'b'};
weights = [1 1 1 2 2 2 2 2 2];
G = digraph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight)

1 Alphabetical List

1-5034

Determine the nearest nodes within a radius of 1 from node 'a', measured by outgoing
path distance from node 'a'.

nn_out = nearest(G,'a',1)

nn_out = 3x1 cell array
 {'b'}
 {'c'}
 {'d'}

Determine all of the nodes that have incoming paths leading to node 'a' by specifying
the radius as Inf.

nn_in = nearest(G,'a',Inf,'Direction','incoming')

 nearest

1-5035

nn_in = 4x1 cell array
 {'b'}
 {'c'}
 {'f'}
 {'e'}

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

s — Source node
node index | node name

Source node, specified as a node index or a node name in one of the forms in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: nearest(G,3,1)
Example: nearest(G,'a',5)

d — Neighbor distance radius
scalar

Neighbor distance radius, specified as a numeric scalar.
Example: nearest(G,3,1)
Example: nearest(G,'a',2.5)

1 Alphabetical List

1-5036

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [nodeIDs,dist] =
nearest(G,s,5,'Method','unweighted','Direction','incoming')

Direction — Direction of distance measurement
'outgoing' (default) | 'incoming'

Note The 'Direction' option can only be specified with directed graphs.

Direction of distance measurement, specified as the comma-separated pair consisting of
'Direction' and one of the options in this table.

Option Description
'outgoing' (default) Distances are calculated using paths going

out from source node s.
'incoming' Distances are calculated using paths

coming in to source node s.

Example: nearest(G,s,d,'Direction','incoming')

Method — Shortest path algorithm
'auto' (default) | 'unweighted' | 'positive' | 'mixed'

Shortest path algorithm, specified as the comma-separated pair consisting of 'Method'
and one of the options in this table.

 nearest

1-5037

Option Description
'auto' (default) The 'auto' option automatically selects

the algorithm:

• 'unweighted' is used for graph and
digraph inputs with no edge weights.

• 'positive' is used for all graph
inputs that have edge weights, and
requires the weights to be nonnegative.
This option is also used for digraph
inputs with nonnegative edge weights.

• 'mixed' is used for digraph inputs
whose edge weights contain some
negative values. The graph cannot have
negative cycles.

'unweighted' Breadth-first computation that treats all
edge weights as 1.

'positive' Dijkstra algorithm that requires all edge
weights to be nonnegative.

'mixed' (only for digraph) Bellman-Ford algorithm for directed graphs
that requires the graph to have no negative
cycles.

While 'mixed' is slower than 'positive'
for the same problem, 'mixed' is more
versatile as it allows some edge weights to
be negative.

Note For most graphs, 'unweighted' is the fastest algorithm, followed by 'positive'
and 'mixed'.

Example: nearest(G,s,d,'Method','positive')

1 Alphabetical List

1-5038

Output Arguments
nodeIDs — Nearest neighbor node IDs
node indices | node names

Nearest neighbor node IDs, returned as node indices if s is numeric, or as node names if
s is a node name. The nodes are sorted from nearest to furthest. nodeIDs is empty if no
nodes are within the specified distance. nodeIDs never contains the source node s even
if the graph has self-loops.

Use H = subgraph(G,[s; nodeIDs]) to extract a subgraph of the nearest neighbors
from the original graph G.

dist — Neighbor distances
vector

Neighbor distances, returned as a vector. dist(j) is the distance from source node s to
neighboring node nodeIDs(j).

See Also
distances | neighbors | predecessors | shortestpath | shortestpathtree |
successors

Topics
graph
digraph

Introduced in R2016a

 nearest

1-5039

neighbors
Neighbors of graph node

Syntax
N = neighbors(G,nodeID)

Description
N = neighbors(G,nodeID) returns the node IDs of all nodes connected by an edge to
the node specified by nodeID.

Examples

Neighboring Graph Nodes

Create and plot a graph, and then determine the neighbors of node 10.

G = graph(bucky);
plot(G)

1 Alphabetical List

1-5040

N = neighbors(G,10)

N = 3×1

 6
 9
 12

 neighbors

1-5041

Input Arguments
G — Input graph
graph object

Input graph, specified as a graph object. Use graph to create an undirected graph
object.
Example: G = graph(1,2)

nodeID — Node identifier
node index | node name

Node identifier, specified as one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: N = neighbors(G,3)
Example: N = neighbors(G,'A')

Output Arguments
N — Neighboring nodes
node indices | node names

Neighboring nodes, returned as node indices if nodeID is numeric, or as node names if
nodeID is a node name. A node that is connected to itself by an edge (a self-loop) is listed
as its own neighbor only once.

Compatibility Considerations

Self-loop counting change
Behavior changed in R2018a

1 Alphabetical List

1-5042

neighbors counts self-loops only once. In previous releases, if node u had a self-loop,
then neighbors(g,u) listed u twice in the output. neighbors(g,u) now returns only
one instance of u.

See Also
degree | graph | nearest | outedges

Introduced in R2015b

 neighbors

1-5043

numedges
Number of edges in graph

Syntax
N = numedges(G)

Description
N = numedges(G) returns the number of edges in graph G.

Examples

Number of Graph Edges

Use the bucky adjacency matrix to create a directed graph, and then determine how
many edges the graph contains.

G = digraph(bucky)

G =
 digraph with properties:

 Edges: [180x2 table]
 Nodes: [60x0 table]

N = numedges(G)

N = 180

1 Alphabetical List

1-5044

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

Output Arguments
N — Number of edges
scalar

Number of edges, returned as a scalar.

See Also
addedge | digraph | graph | numnodes | rmedge

Introduced in R2015b

 numedges

1-5045

numnodes
Number of nodes in graph

Syntax
N = numnodes(G)

Description
N = numnodes(G) returns the number of nodes in graph G.

Examples

Number of Graph Nodes

Use the bucky adjacency matrix to create a directed graph, and then determine how
many nodes the graph contains.

G = digraph(bucky)

G =
 digraph with properties:

 Edges: [180x2 table]
 Nodes: [60x0 table]

N = numnodes(G)

N = 60

1 Alphabetical List

1-5046

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

Output Arguments
N — Number of nodes
scalar

Number of nodes, returned as a scalar.

See Also
addnode | digraph | graph | numedges | rmnode

Introduced in R2015b

 numnodes

1-5047

outedges
Outgoing edges from node

Syntax
eid = outedges(G,nodeID)
[eid,nid] = outedges(G,nodeID)

Description
eid = outedges(G,nodeID) returns the indices of all outgoing edges from node
nodeID in graph G.

[eid,nid] = outedges(G,nodeID) additionally returns the successor nodes nid that
are connected to nodeID by the edges eid.

Examples

Outgoing Edges of Selected Node

Create an undirected multigraph with three nodes and four edges. Find the outgoing
edges of node 2.

G = graph([1 1 1 2],[2 2 3 3]);
G.Edges

ans=4×1 table
 EndNodes

 1 2
 1 2
 1 3
 2 3

1 Alphabetical List

1-5048

eid = outedges(G,2)

eid = 3×1

 1
 2
 4

The vector eid contains indices to rows in the G.Edges table. Use the vector to index
into G.Edges.

G.Edges(eid,:)

ans=3×1 table
 EndNodes

 1 2
 1 2
 2 3

For undirected graphs, the edges (1,2) and (2,1) are the same.

Find Outgoing Edges and Node Successors

Plot a graph and highlight the outgoing edges and successors of a selected node.

Create and plot a directed graph using the bucky adjacency matrix. Highlight node 10 for
reference.

G = digraph(bucky);
p = plot(G);
highlight(p,10,'NodeColor','r','MarkerSize',10)

 outedges

1-5049

Determine the outgoing edges and successors of node 10. Highlight these nodes and
edges.

[eid,nid] = outedges(G,10)

eid = 3×1

 28
 29
 30

nid = 3×1

1 Alphabetical List

1-5050

 6
 9
 12

X = G.Edges(eid,:)

X=3×2 table
 EndNodes Weight
 ________ ______

 10 6 1
 10 9 1
 10 12 1

highlight(p,nid,'NodeColor','g','MarkerSize',9)
highlight(p,'Edges',eid,'EdgeColor','g')

 outedges

1-5051

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

1 Alphabetical List

1-5052

nodeID — Node identifier
node index | node name

Node identifier, specified as one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: outedges(G,1)
Example: outedges(G,'A')

Output Arguments
eid — Edge indices
column vector

Edge indices, returned as a column vector. You can use the edge indices to index into the
edges table of the graph with G.Edges(eid,:).

nid — Node IDs of successors
node indices | node names

Node IDs of successors, returned as node indices if nodeID is numeric, or as node names
if nodeID is a node name. Use findnode(G,nid) to convert node names into node
indices. You can use node indices to index into the nodes table of the graph with
G.Nodes(nid,:).

The node IDs in nid are the same as those returned by the successors function.
However, if there are multiple outgoing edges to the same node, this node is listed more
than once in nid.

Tips
• By convention, for undirected graphs, all edges incident to a node are considered to be

outgoing edges. Use inedges to find incoming edges in a directed graph.

 outedges

1-5053

• For graphs with multiple edges, outedges and successors can return arrays of
different lengths, since there can be multiple outgoing edges to some of the
successors.

See Also
digraph | graph | inedges | successors

Introduced in R2018a

1 Alphabetical List

1-5054

highlight
Package: matlab.graphics.chart.primitive

Highlight nodes and edges in plotted graph

Syntax
highlight(H,nodeIDs)
highlight(H,G)
highlight(H,s,t)
highlight(___ ,Name,Value)

Description
highlight(H,nodeIDs) highlights the nodes specified by nodeIDs by increasing the
sizes of their markers.

highlight(H,G) highlights the nodes and edges of graph G by increasing their node
marker size and edge line width, respectively. G must have the same nodes and a subset
of the edges of the underlying graph of H. If G contains repeated edges, then they are all
highlighted. Isolated nodes with degree 0 are not highlighted.

highlight(H,s,t) highlights all edges between the specified source and target node
pairs in s and t by increasing their edge line widths. If the edge indices are available
instead of the node pairs (s,t), use highlight(H,'Edges',idx) instead.

highlight(___ ,Name,Value) uses additional options specified by one or more Name-
Value pair arguments using any of the input argument combinations in previous syntaxes.
For example, highlight(H,nodes,'NodeColor','g') highlights a subset of nodes by
changing their color to green, instead of increasing their marker size.

Examples

 highlight

1-5055

Highlight Graph Nodes

Create and plot a graph. Return a handle to the GraphPlot object, h.

s = 1;
t = 2:6;
G = graph(s,t);
h = plot(G,'Layout','force')

h =
 GraphPlot with properties:

 NodeColor: [0 0.4470 0.7410]
 MarkerSize: 4

1 Alphabetical List

1-5056

 Marker: 'o'
 EdgeColor: [0 0.4470 0.7410]
 LineWidth: 0.5000
 LineStyle: '-'
 NodeLabel: {'1' '2' '3' '4' '5' '6'}
 EdgeLabel: {}
 XData: [3.8317e-04 0.6403 0.4648 -1.3929 1.7883 -1.5009]
 YData: [9.6820e-04 1.6734 -1.7296 1.1251 -0.0922 -0.9777]
 ZData: [0 0 0 0 0 0]

 Show all properties

Highlight nodes 1 and 3 by increasing their marker size.

highlight(h,[1 3])

 highlight

1-5057

Highlight nodes 1 and 3 by changing their color.

highlight(h,[1 3],'NodeColor','g')

1 Alphabetical List

1-5058

Highlight Minimum Spanning Tree of Graph

Create and plot a graph. Return a handle to the GraphPlot object, h.

s = [1 1 1 1 1 1 2 3 4 5 6 7 7 7 7 8 9 10 11 8 6];
t = [2 3 4 5 6 7 3 4 5 6 2 8 9 10 11 10 10 11 8 1 11];
G = graph(s,t);
h = plot(G)

 highlight

1-5059

h =
 GraphPlot with properties:

 NodeColor: [0 0.4470 0.7410]
 MarkerSize: 4
 Marker: 'o'
 EdgeColor: [0 0.4470 0.7410]
 LineWidth: 0.5000
 LineStyle: '-'
 NodeLabel: {'1' '2' '3' '4' '5' '6' '7' '8' '9' '10' '11'}
 EdgeLabel: {}
 XData: [1x11 double]
 YData: [1x11 double]
 ZData: [0 0 0 0 0 0 0 0 0 0 0]

1 Alphabetical List

1-5060

 Show all properties

Calculate the minimum spanning tree of the graph. Highlight the minimum spanning tree
subgraph in the plot by increasing the line width and changing the color of the edges in
the tree.

[T,p] = minspantree(G);
highlight(h,T,'EdgeColor','r','LineWidth',1.5)

 highlight

1-5061

Highlight Shortest Path

Create and plot a graph. Return a handle to the GraphPlot object, h.

n = 10;
A = delsq(numgrid('L',n+2));
G = graph(A,'omitselfloops');
G.Edges.Weight = ones(numedges(G),1);
h = plot(G);

Highlight the shortest path between nodes 74 and 21 by changing the color of the nodes
and edges along the path to green.

path = shortestpath(G,74,21);
highlight(h,path,'NodeColor','g','EdgeColor','g')

1 Alphabetical List

1-5062

Highlight Node Neighbors

Create a graph representing a square grid with a side of 8 nodes. Plot the graph and
return a handle to the GraphPlot object, p.

n = 8;
A = delsq(numgrid('S',n+2));
G = graph(A,'omitselfloops');
p = plot(G);

 highlight

1-5063

Find the neighbors of node 36.

n36 = neighbors(G,36)

n36 = 4×1

 28
 35
 37
 44

Use highlight to change the color of node 36 to green, and the color of its neighbors
and their connecting edges to red.

1 Alphabetical List

1-5064

highlight(p,36,'NodeColor',[0 0.75 0])
highlight(p,n36,'NodeColor','red')
highlight(p,36,n36,'EdgeColor','red')

Highlight Path of Maximum Flow

Create and plot a directed graph. Return a handle to the GraphPlot object, h.

G = digraph(bucky);
h = plot(G);

 highlight

1-5065

Compute the maximum flow between nodes 1 and 56. Specify two outputs to maxflow to
return a directed graph of the nonzero flows, GF.

[mf,GF] = maxflow(G,1,56)

mf = 3

GF =
 digraph with properties:

 Edges: [28x2 table]
 Nodes: [60x0 table]

1 Alphabetical List

1-5066

Use highlight to change the color of the edges that contain nonzero flow values. Also
change the color of source node 1 and target node 56 to green.

highlight(h,GF,'EdgeColor',[0.9 0.3 0.1],'NodeColor',[0.9 0.3 0.1])
highlight(h,[1 56],'NodeColor','g')

Shortest Path in Multigraph

Plot the shortest path between two nodes in a multigraph and highlight the specific edges
that are traversed.

 highlight

1-5067

Create a weighted multigraph with five nodes. Several pairs of nodes have more than one
edge between them. Plot the graph for reference.

G = graph([1 1 1 1 1 2 2 3 3 3 4 4],[2 2 2 2 2 3 4 4 5 5 5 2],[2 4 6 8 10 5 3 1 5 6 8 9]);
p = plot(G,'EdgeLabel',G.Edges.Weight);

Find the shortest path between node 1 and node 5. Since several of the node pairs have
more than one edge between them, specify three outputs to shortestpath to return the
specific edges that the shortest path traverses.

[P,d,edgepath] = shortestpath(G,1,5)

P = 1×5

1 Alphabetical List

1-5068

 1 2 4 3 5

d = 11

edgepath = 1×4

 1 7 9 10

The results indicate that the shortest path has a total length of 11 and follows the edges
given by G.Edges(edgepath,:).

G.Edges(edgepath,:)

ans=4×2 table
 EndNodes Weight
 ________ ______

 1 2 2
 2 4 3
 3 4 1
 3 5 5

Highlight this edge path by using the highlight function with the 'Edges' name-value
pair to specify the indices of the edges traversed.

highlight(p,'Edges',edgepath)

 highlight

1-5069

Input Arguments
H — Input graph plot
GraphPlot object

Input graph plot, specified as a GraphPlot object. Use the graph or digraph functions
to create a graph, and then use plot with an output argument to return a GraphPlot
object.
Example: H = plot(G)

1 Alphabetical List

1-5070

nodeIDs — Nodes to highlight
logical vector | node indices | node names

Nodes to highlight, specified as a logical vector, or as one or more node indices or node
names. If nodeIDs is a logical vector, then it must have length numnodes(G).

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

nodeIDs must not specify node names that conflict with any of the optional parameter
names for highlight, such as 'Edges' or 'EdgeColor'. Use findnode to instead
pass in the node index for these cases.

G — Graph to highlight
graph object | digraph object

Graph to highlight, specified as a graph or digraph object. G must have the same nodes
and a subset of the edges of the underlying graph of H. Isolated nodes with degree 0 are
not highlighted.

s,t — Node pairs (as separate arguments)
node indices | node names

Node pairs, specified as separate arguments of node indices or node names. Similarly
located elements in s and t specify the source and target nodes for edges in the graph.

s and t must not specify node names that conflict with any of the optional parameter
names for highlight, such as 'Edges' or 'EdgeColor'. Use findnode to instead
pass in the node index for these cases.

 highlight

1-5071

Example: highlight(H,[1 2],[3 3]) highlights the graph edges (1,3) and (2,3).
Example: highlight(H,'a','b') highlights all edges from 'a' to 'b'.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: highlight(H,nodes,'NodeColor','y')

Edges to Highlight

Edges — Edges to highlight
scalar | vector

Edges to highlight, specified as the comma-separated pair consisting of 'Edges' and a
scalar edge index, vector of edge indices, or logical vector. Use this name-value pair to
highlight a specific edge between nodes when multiple edges exist between the same two
nodes.

The value of this name-value pair can be the third output from shortestpath or
shortestpathtree, such as [path,d,edgepath] = shortestpath(…).
Example: highlight(p,'Edges',edgepath)

Edge Properties

EdgeColor — Edge color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | color name

Edge color, specified as the comma-separated pair consisting of 'EdgeColor' and an
RGB triplet, hexadecimal color code, or color name.

• RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from

1 Alphabetical List

1-5072

0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

 highlight

1-5073

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'EdgeColor','r') creates a graph plot with red edges.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as the comma-separated pair consisting of 'LineStyle' and one of
the line styles listed in this table.

Character(s) Line Style Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Edge line width
0.5 (default) | positive value

Edge line width, specified as the comma-separated pair consisting of 'LineWidth' and a
positive value in point units.
Example: 0.75

ArrowSize — Arrow size
positive value

Arrow size, specified as a positive value in point units. The default value of ArrowSize is
7 for graphs with 100 or fewer nodes, and 4 for graphs with more than 100 nodes.

ArrowSize is used only for directed graphs.
Example: 15

1 Alphabetical List

1-5074

ArrowPosition — Position of arrow along edge
0.5 (default) | scalar

Position of arrow along edge, specified as a value in [0 1]. A value near 0 places arrows
closer to the source node, and a value near 1 places arrows closer to the target node. The
default value is 0.5 so that the arrows are halfway between the source and target nodes.

ArrowPosition is used only for directed graphs.

Node Properties

NodeColor — Node color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | color name

Node color, specified as the comma-separated pair consisting of 'NodeColor' and an
RGB triplet, hexadecimal color code, or color name.

• RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'

 highlight

1-5075

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'NodeColor','k') creates a graph plot with black nodes.

Marker — Node marker symbol
'o' (default) | character vector

Node marker symbol, specified as the comma-separated pair consisting of 'Marker' and
one of the character vectors listed in this table. The default is to use circular markers for
the graph nodes.

Value Description
'o' Circle
'+' Plus sign

1 Alphabetical List

1-5076

Value Description
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Node marker size
positive value

Node marker size, specified as the comma-separated pair consisting of 'MarkerSize'
and a positive value in point units. The default marker size is 4 for graphs with 100 or
fewer nodes, and 2 for graphs with more than 100 nodes.
Example: 10

Node and Edge Labels

NodeLabelColor — Color of node labels
[0 0 0] (default) | RGB triplet | hexadecimal color code | color name

Node label color, specified as an RGB triplet, hexadecimal color code, or color name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 highlight

1-5077

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: plot(G,'NodeLabel',C,'NodeLabelColor','m') creates a graph plot
with magenta node labels.

1 Alphabetical List

1-5078

EdgeLabelColor — Color of edge labels
[0 0 0] (default) | RGB triplet | hexadecimal color code | color name

Edge label color, specified as an RGB triplet, hexadecimal color code, or color name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'

 highlight

1-5079

RGB Triplet Hexadecimal Color Code Appearance
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: plot(G,'EdgeLabel',C,'EdgeLabelColor','m') creates a graph plot
with magenta edge labels.

Font

NodeFontName — Font name for node labels
'Helvetica' (default) | supported font name | 'FixedWidth'

Font name for node labels, specified as a supported font name or 'FixedWidth'. To
display and print properly, you must choose a font that your system supports. The default
font depends on the specific operating system and locale. For example, Windows and
Linuxsystems in English localization use the Helvetica font by default.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'.
Example: 'Cambria'

NodeFontSize — Font size for node labels
8 (default) | positive number

Font size for node labels, specified as a positive number.

NodeFontWeight — Thickness of text in node labels
'normal' (default) | 'bold'

Thickness of text in node labels, specified as 'normal' or 'bold':

• 'bold' — Thicker character outlines than normal
• 'normal' — Normal weight as defined by the particular font

Not all fonts have a bold font weight.
Data Types: cell | char | string

NodeFontAngle — Character slant of text in node labels
'normal' (default) | 'italic'

1 Alphabetical List

1-5080

Character slant of text in node labels, specified as 'normal' or 'italic':

• 'italic' — Slanted characters
• 'normal' — No character slant

Not all fonts have both font styles.
Data Types: cell | char | string

EdgeFontName — Font name for edge labels
'Helvetica' (default) | supported font name | 'FixedWidth'

Font name for edge labels, specified as a supported font name or 'FixedWidth'. To
display and print properly, you must choose a font that your system supports. The default
font depends on the specific operating system and locale. For example, Windows and
Linuxsystems in English localization use the Helvetica font by default.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'.
Example: 'Cambria'

EdgeFontSize — Font size for edge labels
8 (default) | positive number

Font size for edge labels, specified as a positive number.

EdgeFontWeight — Thickness of text in edge labels
'normal' (default) | 'bold'

Thickness of text in edge labels, specified as 'normal' or 'bold':

• 'bold' — Thicker character outlines than normal
• 'normal' — Normal weight as defined by the particular font

Not all fonts have a bold font weight.
Data Types: cell | char | string

EdgeFontAngle — Character slant of text in edge labels
'normal' (default) | 'italic'

Character slant of text in edge labels, specified as 'normal' or 'italic':

 highlight

1-5081

• 'italic' — Slanted characters
• 'normal' — No character slant

Not all fonts have both font styles.
Data Types: cell | char | string

See Also
Functions
labeledge | labelnode | layout | plot

Objects
GraphPlot

Topics
“Graph Plotting and Customization”

Introduced in R2015b

1 Alphabetical List

1-5082

labeledge
Package: matlab.graphics.chart.primitive

Label graph edges

Syntax
labeledge(H,s,t,Labels)
labeledge(H,idx,Labels)

Description
labeledge(H,s,t,Labels) labels the edges specified by (s,t) node pairs with the
character vectors or strings contained in Labels. The lengths of s, t, and Labels must
be equal, or Labels can be scalar. If there are multiple edges between s and t, then the
same label is applied to all of them.

labeledge(H,idx,Labels) specifies the edges to label using logical or numeric edge
indices.

Examples

Label Graph Edge Weight

Create and plot a graph.

s = [1 1 1 2 2];
t = [2 3 4 2 5];
G = graph(s,t);
h = plot(G);

 labeledge

1-5083

Label the edge weights using labeledge.

weights = [5 10 15 10 10];
labeledge(h,1:numedges(G),weights)

1 Alphabetical List

1-5084

Add Text Labels to Graph Edges

Create and plot a graph.

s = [1 1 2 2 3];
t = [2 3 3 4 4];
G = graph(s,t);
h = plot(G);

 labeledge

1-5085

Add text labels to three of the five graph edges.

labelText = {'ABC' 'DEF' 'GHI'};
labeledge(h,[1 1 2],[2 3 3],labelText)

1 Alphabetical List

1-5086

Input Arguments
H — Input graph plot
GraphPlot object

Input graph plot, specified as a GraphPlot object. Use the graph or digraph functions
to create a graph, and then use plot with an output argument to return a GraphPlot
object.
Example: H = plot(G)

 labeledge

1-5087

s,t — Node pairs (as separate arguments)
node indices | node names

Node pairs, specified as separate arguments of node indices or node names. Similarly
located elements in s and t specify the source and target nodes for edges in the graph.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: labeledge(H,[1 2 2],[2 3 4],{'label1' 'label2' 'label3'})
Example: labeledge(H,{'a' 'b' 'b'},{'b' 'c' 'd'},{'label1' 'label2'
'label3'})

idx — Edge indices
scalar | vector

Edge indices, specified as a scalar, vector of positive integers, or logical vector.

• A vector of positive integers specifies edge indices for a graph G corresponding to
rows in the table G.Edges, such that G.Edges(idx,:) returns the end nodes of the
edge. In this form, the maximum value for idx is numedges(G), and the number of
selected nodes is equal to the number of indices in idx.

• A logical vector specifies whether each edge is labeled. In this form, the length of the
logical vector must be numedges(G), and the number of selected nodes is equal to the
number of nonzero indices in idx.

Example: labeledge(H,[1 3 5 7],{'label1' 'label2' 'label3' 'label4'})

1 Alphabetical List

1-5088

Labels — Edge labels
character vector | string scalar | cell array of character vectors | string array

Edge labels, specified as a character vector, string scalar, cell array of character vectors,
or string array.

• If Labels is a character vector or string scalar, then labeledge uses that label for
each specified edge.

• If Labels is a cell array or string array, then it must contain a label for each specified
edge.

Data Types: char | cell | string

See Also
Functions
highlight | labelnode | layout | plot

Objects
GraphPlot

Topics
“Graph Plotting and Customization”

Introduced in R2015b

 labeledge

1-5089

labelnode
Package: matlab.graphics.chart.primitive

Label graph nodes

Syntax
labelnode(H,nodeIDs,Labels)

Description
labelnode(H,nodeIDs,Labels) labels the nodes specified by nodeIDs with the
character vectors or strings contained in Labels.

Examples

Label Graph Nodes

Create and plot a graph.

s = [1 1 2 2 3 4 5 5];
t = [2 3 3 4 4 5 1 2];
G = digraph(s,t);
h = plot(G);

1 Alphabetical List

1-5090

The plot function automatically labels the graph nodes with their node indices (or with
their node names, if available). Use text labels for some of the graph nodes instead.

labelnode(h,[1 2],{'source' 'target'})

 labelnode

1-5091

Label node 3 and node 4 as 'A'. Since the node labels do not change the underlying
graph, G, the labels can contain duplicate names (the official node names in G must
always be unique).

labelnode(h,[3 4],'A')

1 Alphabetical List

1-5092

Input Arguments
H — Input graph plot
GraphPlot object

Input graph plot, specified as a GraphPlot object. Use the graph or digraph functions
to create a graph, and then use plot with an output argument to return a GraphPlot
object.
Example: H = plot(G)

 labelnode

1-5093

nodeIDs — Node identifiers
logical vector | node indices | node names

Node identifiers, specified as a logical vector or as one or more node indices or node
names. If nodeIDs is a logical vector, then its length must match the number of nodes in
the graph.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Labels — Node labels
character vector | string scalar | cell array of character vectors | string array

Node labels, specified as a character vector or a cell array of character vectors.

• If Labels is a character vector or string scalar, then labelnode uses that label for
each node specified by nodeIDs.

• If Labels is a cell array or string array, then it must contain a label for each node
specified by nodeIDs.

Data Types: char | cell | string

See Also
Functions
highlight | labeledge | layout | plot

1 Alphabetical List

1-5094

Objects
GraphPlot

Topics
“Graph Plotting and Customization”

Introduced in R2015b

 labelnode

1-5095

layout
Package: matlab.graphics.chart.primitive

Change layout of graph plot

Syntax
layout(H)
layout(H,method)
layout(H,method,Name,Value)

Description
layout(H) changes the layout of graph plot H by using an automatic choice of layout
method based on the structure of the graph. The layout function modifies the XData
and YData properties of H.

layout(H,method) optionally specifies the layout method. method can be 'circle',
'force', 'layered', 'subspace', 'force3', or 'subspace3'.

layout(H,method,Name,Value) uses additional options specified by one or more
name-value pair arguments. For example, layout(H,'force','Iterations',N)
specifies the number of iterations to use in computing the force layout, and
layout(H,'layered','Sources',S) uses a layered layout with source nodes S
included in the first layer.

Examples

Graph Layout Based on Structure

Create and plot a graph using the 'force' layout.

s = [1 1 1 1 1 6 6 6 6 6];
t = [2 3 4 5 6 7 8 9 10 11];

1 Alphabetical List

1-5096

G = graph(s,t);
h = plot(G,'Layout','force');

Change the layout to be the default that plot determines based on the structure and
properties of the graph. The result is the same as using plot(G).

layout(h)

 layout

1-5097

Change Layout of Graph

Create and plot a graph using the 'layered' layout.

s = [1 1 1 2 2 3 3 4 5 5 6 7];
t = [2 4 5 3 6 4 7 8 6 8 7 8];
G = graph(s,t);
h = plot(G,'Layout','layered');

1 Alphabetical List

1-5098

Change the layout of the graph to use the 'subspace' method.

layout(h,'subspace')

 layout

1-5099

Refine Layout Method of Graph

Create and plot a graph using the 'layered' layout method.

s = [1 1 1 2 3 3 3 4 4];
t = [2 4 5 6 2 4 7 8 1];
G = digraph(s,t);
h = plot(G,'Layout','layered');

1 Alphabetical List

1-5100

Use the layout function to refine the hierarchical layout by specifying source nodes and
a horizontal orientation.

layout(h,'layered','Direction','right','Sources',[1 4])

 layout

1-5101

Graph Layout with Multiple Components

Plot a graph that has multiple components, and then show how to use the 'UseGravity'
option to improve the visualization.

Create and plot a graph that has 150 nodes separated into many disconnected
components. MATLAB® lays the graph components out on a grid.

s = [1 3 5 7 7 10:100];
t = [2 4 6 8 9 randi([10 100],1,91)];
G = graph(s,t,[],150);
h = plot(G);

1 Alphabetical List

1-5102

Update the layout coordinates of the graph object, and specify 'UseGravity' as true so
that the components are layed out radially around the origin, with more space allotted for
the larger components.

layout(h,'force','UseGravity',true)

 layout

1-5103

Graph Layout Based on Edge Weights

Plot a graph using the 'WeightEffect' name-value pair to make the length of graph
edges proportional to their weights.

Create and plot a directed graph with weighted edges.

s = [1 1 1 1 1 2 2 2 3 3 3 3 3];
t = [2 4 5 6 7 3 8 9 10 11 12 13 14];
weights = randi([1 20],1,13);
G = graph(s,t,weights);
p = plot(G,'Layout','force','EdgeLabel',G.Edges.Weight);

1 Alphabetical List

1-5104

Recompute the layout of the graph using the 'WeightEffect' name-value pair, so that
the length of each edge is proportional to its weight. This makes it so that the edges with
the largest weights are the longest.

layout(p,'force','WeightEffect','direct')

 layout

1-5105

Input Arguments
H — Input graph plot
GraphPlot object

Input graph plot, specified as a GraphPlot object. Use the graph or digraph functions
to create a graph, and then use plot with an output argument to return a GraphPlot
object.
Example: H = plot(G)

1 Alphabetical List

1-5106

method — Layout method
'auto' (default) | 'circle' | 'force' | 'layered' | 'subspace' | 'force3' |
'subspace3'

Layout method, specified as one of the options in the table. The table also lists compatible
name-value pairs to further refine each layout method.

Option Description Layout-Specific Name-
Value Pairs

'auto' (default) Automatic choice of layout
method based on the size
and structure of the graph.

—

'circle' Circular layout. Places the
graph nodes on a circle
centered at the origin with
radius 1.

'Center' — Center node in
circular layout

'force' Force-directed layout [1].
Uses attractive forces
between adjacent nodes and
repulsive forces between
distant nodes.

'Iterations' — Number
of force-directed layout
iterations

'WeightEffect' — Effect
of edge weights on layout

'UseGravity' — Gravity
toggle for layouts with
multiple components

'XStart' — Starting x-
coordinates for nodes

'YStart' — Starting y-
coordinates for nodes

 layout

1-5107

Option Description Layout-Specific Name-
Value Pairs

'layered' Layered layout [2], [3], [4].
Places the graph nodes into
a set of layers, revealing
hierarchical structure. By
default the layers progress
downwards (the arrows of a
directed acyclic graph point
down).

'Direction' — Direction
of layers

'Sources' — Nodes to
include in the first layer

'Sinks' — Nodes to
include in the last layer

'AssignLayers' — Layer
assignment method

'subspace' Subspace embedding layout
[5]. Plots the graph nodes in
a high-dimensional
embedded subspace, and
then projects the positions
back into 2-D. By default the
subspace dimension is
either 100 or the total
number of nodes, whichever
is smaller.

'Dimension' — Dimension
of embedded subspace

1 Alphabetical List

1-5108

Option Description Layout-Specific Name-
Value Pairs

'force3' 3-D force-directed layout. 'Iterations' — Number
of force-directed layout
iterations

'WeightEffect' — Effect
of edge weights on layout

'UseGravity' — Gravity
toggle for layouts with
multiple components

'XStart' — Starting x-
coordinates for nodes

'YStart' — Starting y-
coordinates for nodes

'ZStart' — Starting z-
coordinates for nodes

'subspace3' 3-D subspace embedding
layout.

'Dimension' — Dimension
of embedded subspace

Example: layout(H,'layered')
Example: layout(H,'force3','Iterations',10)
Example: layout(H,'subspace','Dimension',50)

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: layout(H,'subspace','Dimension',200)

 layout

1-5109

Force

Iterations — Number of force-directed layout iterations
100 (default) | positive scalar integer

Number of force-directed layout iterations, specified as the comma-separated pair
consisting of 'Iterations' and a positive scalar integer.

This option is available only when method is 'force' or 'force3'.
Example: layout(H,'force','Iterations',250)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

WeightEffect — Effect of edge weights on layout
'none' (default) | 'direct' | 'inverse'

Effect of edge weights on layout, specified as the comma-separated pair consisting of
'WeightEffect' and one of the values in this table. If there are multiple edges between
two nodes (as in a directed graph with an edge in each direction, or a multigraph), then
the weights are summed before computing 'WeightEffect'.

This option is available only when method is 'force' or 'force3'.

Value Description
'none' (default) Edge weights do not affect the layout.
'direct' Edge length is proportional to the edge

weight, G.Edges.Weight. Larger edge
weights produce longer edges.

'inverse' Edge length is inversely proportional to the
edge weight, 1./G.Edges.Weight. Larger
edge weights produce shorter edges.

Example: layout(H,'force','WeightEffect','inverse')

UseGravity — Gravity toggle for layouts with multiple components
'on' | 'off' | true | false

Gravity toggle for layouts with multiple components, specified as the comma-separated
pair consisting of 'UseGravity' and 'on', 'off', true, or false.

1 Alphabetical List

1-5110

By default, MATLAB lays out graphs with multiple components on a grid. The grid can
obscure the details of larger components since they are given the same amount of space
as smaller components. With 'UseGravity' set to 'on' or true, multiple components
are instead layed out radially around the origin. This layout spreads out the components
in a more natural way, and provides more space for larger components.

This option is available only when method is 'force' or 'force3'.
Example: layout(H,'force','UseGravity',true)
Data Types: char | logical

XStart — Starting x-coordinates for nodes
vector

Starting x-coordinates for nodes, specified as the comma-separated pair consisting of
'XStart' and a vector of node coordinates. Use this option together with 'YStart' to
specify 2-D starting coordinates (or with 'YStart' and 'ZStart' to specify 3-D starting
coordinates) before iterations of the force-directed algorithm change the node positions.

This option is available only when method is 'force' or 'force3'.
Example: layout(H,'force','XStart',x,'YStart',y)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

YStart — Starting y-coordinates for nodes
vector

Starting y-coordinates for nodes, specified as the comma-separated pair consisting of
'YStart' and a vector of node coordinates. Use this option together with 'XStart' to
specify 2-D starting coordinates (or with 'XStart' and 'ZStart' to specify 3-D starting
coordinates) before iterations of the force-directed algorithm change the node positions.

This option is available only when method is 'force' or 'force3'.
Example: layout(H,'force','XStart',x,'YStart',y)
Example: layout(H,'force','XStart',x,'YStart',y,'ZStart',z)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ZStart — Starting z-coordinates for nodes
vector

 layout

1-5111

Starting z-coordinates for nodes, specified as the comma-separated pair consisting of
'ZStart' and a vector of node coordinates. Use this option together with 'XStart' and
'YStart' to specify the starting x, y, and z node coordinates before iterations of the
force-directed algorithm change the node positions.

This option is available only when method is 'force3'.
Example: layout(H,'force','XStart',x,'YStart',y,'ZStart',z)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Layered

Direction — Direction of layers
'down' (default) | 'up' | 'left' | 'right'

Direction of layers, specified as the comma-separated pair consisting of 'Direction'
and either 'down', 'up', 'left' or 'right'. For directed acyclic (DAG) graphs, the
arrows point in the indicated direction.

This option is available only when method is 'layered'.
Example: layout(H,'layered','Direction','up')

Sources — Nodes to include in the first layer
node indices | node names

Nodes to include in the first layer, specified as the comma-separated pair consisting of
'Sources' and one or more node indices or node names.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}

1 Alphabetical List

1-5112

Form Single Node Multiple Nodes
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

This option is available only when method is 'layered'.
Example: layout(H,'layered','Sources',[1 3 5])

Sinks — Nodes to include in the last layer
node indices | node names

Nodes to include in the last layer, specified as the comma-separated pair consisting of
'Sinks' and one or more node indices or node names.

This option is available only when method is 'layered'.
Example: layout(H,'layered','Sinks',[2 4 6])

AssignLayers — Layer assignment method
'auto' (default) | 'asap' | 'alap'

Layer assignment method, specified as the comma-separated pair consisting of
'AssignLayers' and one of the options in this table.

Option Description
'auto' (default) Node assignment uses either 'asap' or

'alap', whichever is more compact.
'asap' As soon as possible. Each node is assigned

to the first possible layer, given the
constraint that all its predecessors must be
in earlier layers.

'alap' As late as possible. Each node is assigned
to the last possible layer, given the
constraint that all its successors must be in
later layers.

This option is available only when method is 'layered'.
Example: layout(H,'layered','AssignLayers','alap')

 layout

1-5113

Subspace

Dimension — Dimension of embedded subspace
positive scalar integer

Dimension of embedded subspace, specified as the comma-separated pair consisting of
'Dimension' and a positive scalar integer.

• The default integer value is min([100, numnodes(G)]).
• For the 'subspace' layout, the integer must be greater than or equal to 2.
• For the 'subspace3' layout, the integer must be greater than or equal to 3.
• In both cases, the integer must be less than the number of nodes.

This option is available only when method is 'subspace' or 'subspace3'.
Example: layout(H,'subspace','Dimension',d)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Circle

Center — Center node in circular layout
node index | node name

Center node in circular layout, specified as the comma-separated pair consisting of
'Center' and one of the values in this table.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

This option is available only when method is 'circle'.
Example: layout(H,'circle','Center',3) places node three at the center.
Example: layout(H,'circle','Center','Node1') places the node named 'Node1'
at the center.

1 Alphabetical List

1-5114

Tips
• Use the Layout name-value pair to change the layout of a graph when you plot it. For

example, plot(G,'Layout','circle') plots the graph G with a circular layout.
• When using the 'force' or 'force3' layout methods, a best practice is to use more

iterations with the algorithm instead of using XStart, YStart, and ZStart to restart
the algorithm using previous outputs. The result of executing the algorithm with 100
iterations is different in comparison to executing 50 iterations, and then restarting the
algorithm from the ending positions to execute 50 more iterations.

References
[1] Fruchterman, T., and E. Reingold,. “Graph Drawing by Force-directed Placement.”

Software — Practice & Experience. Vol. 21 (11), 1991, pp. 1129–1164.

[2] Gansner, E., E. Koutsofios, S. North, and K.-P Vo. “A Technique for Drawing Directed
Graphs.” IEEE Transactions on Software Engineering. Vol.19, 1993, pp. 214–230.

[3] Barth, W., M. Juenger, and P. Mutzel. “Simple and Efficient Bilayer Cross Counting.”
Journal of Graph Algorithms and Applications. Vol.8 (2), 2004, pp. 179–194.

[4] Brandes, U., and B. Koepf. “Fast and Simple Horizontal Coordinate Assignment.”
LNCS. Vol. 2265, 2002, pp. 31–44.

[5] Y. Koren. “Drawing Graphs by Eigenvectors: Theory and Practice.” Computers and
Mathematics with Applications. Vol. 49, 2005, pp. 1867–1888.

See Also
Functions
digraph | graph | highlight | labeledge | labelnode | plot

Objects
GraphPlot

Topics
“Graph Plotting and Customization”

 layout

1-5115

Introduced in R2015b

1 Alphabetical List

1-5116

plot
Plot graph nodes and edges

Syntax
plot(G)
plot(G,LineSpec)
plot(___ ,Name,Value)
plot(ax, ___)
h = plot(___)

Description
plot(G) plots the nodes and edges in graph G.

plot(G,LineSpec) sets the line style, marker symbol, and color. For example,
plot(G,'-or') uses red circles for the nodes and red lines for the edges.

plot(___ ,Name,Value) uses additional options specified by one or more Name-Value
pair arguments using any of the input argument combinations in previous syntaxes. For
example, plot(G,'Layout','circle') plots a circular ring layout of the graph, and
plot(G,'XData',X,'YData',Y,'ZData',Z) specifies the (X,Y,Z) coordinates of the
graph nodes.

plot(ax, ___) plots into the axes specified by ax instead of into the current axes (gca).
The option, ax, can precede any of the input argument combinations in previous syntaxes.

h = plot(___) returns a GraphPlot object. Use this object to inspect and adjust the
properties of the plotted graph.

Examples

 plot

1-5117

Plot Graph

Create a graph using a sparse adjacency matrix, and then plot the graph.

n = 10;
A = delsq(numgrid('L',n+2));
G = graph(A,'omitselfloops')

G =
 graph with properties:

 Edges: [130x2 table]
 Nodes: [75x0 table]

plot(G)

1 Alphabetical List

1-5118

Plot Graph Using Line Specifier

Create and plot a graph. Specify the LineSpec input to change the Marker, NodeColor,
and/or LineStyle of the graph plot.

G = graph(bucky);
plot(G,'-.dr','NodeLabel',{})

 plot

1-5119

Plot Graph with Specified Layout

Create a directed graph, and then plot the graph using the 'force' layout.

G = digraph(1,2:5);
G = addedge(G,2,6:15);
G = addedge(G,15,16:20)

G =
 digraph with properties:

 Edges: [19x1 table]

1 Alphabetical List

1-5120

 Nodes: [20x0 table]

plot(G,'Layout','force')

Custom Graph Node Coordinates

Create a weighted graph.

s = [1 1 1 1 1 2 2 7 7 9 3 3 1 4 10 8 4 5 6 8];
t = [2 3 4 5 7 6 7 5 9 6 6 10 10 10 11 11 8 8 11 9];

 plot

1-5121

weights = [1 1 1 1 3 3 2 4 1 6 2 8 8 9 3 2 10 12 15 16];
G = graph(s,t,weights)

G =
 graph with properties:

 Edges: [20x2 table]
 Nodes: [11x0 table]

Plot the graph using custom coordinates for the nodes. The x-coordinates are specified
using XData, the y-coordinates are specified using YData, and the z-coordinates are
specified using ZData. Use EdgeLabel to label the edges using the edge weights.

x = [0 0.5 -0.5 -0.5 0.5 0 1.5 0 2 -1.5 -2];
y = [0 0.5 0.5 -0.5 -0.5 2 0 -2 0 0 0];
z = [5 3 3 3 3 0 1 0 0 1 0];
plot(G,'XData',x,'YData',y,'ZData',z,'EdgeLabel',G.Edges.Weight)

1 Alphabetical List

1-5122

View the graph from above.

view(2)

 plot

1-5123

Edge Line Width Proportional to Edge Weight

Create a weighted graph.

s = [1 1 1 1 2 2 3 4 4 5 6];
t = [2 3 4 5 3 6 6 5 7 7 7];
weights = [50 10 20 80 90 90 30 20 100 40 60];
G = graph(s,t,weights)

G =
 graph with properties:

1 Alphabetical List

1-5124

 Edges: [11x2 table]
 Nodes: [7x0 table]

Plot the graph, labeling the edges with their weights, and making the width of the edges
proportional to their weights. Use a rescaled version of the edge weights to determine the
width of each edge, such that the widest line has a width of 5.

LWidths = 5*G.Edges.Weight/max(G.Edges.Weight);
plot(G,'EdgeLabel',G.Edges.Weight,'LineWidth',LWidths)

 plot

1-5125

Label Graph Nodes and Edges

Create a directed graph. Plot the graph with custom labels for the nodes and edges.

s = [1 1 1 2 2 3 3 4 4 5 6 7];
t = [2 3 4 5 6 5 7 6 7 8 8 8];
G = digraph(s,t)

G =
 digraph with properties:

 Edges: [12x1 table]
 Nodes: [8x0 table]

eLabels = {'x' 'y' 'z' 'y' 'z' 'x' 'z' 'x' 'y' 'z' 'y' 'x'};
nLabels = {'{0}','{x}','{y}','{z}','{x,y}','{x,z}','{y,z}','{x,y,z}'};
plot(G,'Layout','force','EdgeLabel',eLabels,'NodeLabel',nLabels)

1 Alphabetical List

1-5126

Adjust GraphPlot Properties

Create and plot a directed graph. Specify an output argument to plot to return a handle
to the GraphPlot object.

s = [1 1 1 2 2 3 3 4 5 5 6 7 7 8 8 9 10 11];
t = [2 3 10 4 12 4 5 6 6 7 9 8 10 9 11 12 11 12];
G = digraph(s,t)

G =
 digraph with properties:

 plot

1-5127

 Edges: [18x1 table]
 Nodes: [12x0 table]

p = plot(G)

p =
 GraphPlot with properties:

 NodeColor: [0 0.4470 0.7410]
 MarkerSize: 4
 Marker: 'o'
 EdgeColor: [0 0.4470 0.7410]

1 Alphabetical List

1-5128

 LineWidth: 0.5000
 LineStyle: '-'
 NodeLabel: {1x12 cell}
 EdgeLabel: {}
 XData: [2.5000 1.5000 2.5000 2 3 2 3 3 2.5000 4 3.5000 2.5000]
 YData: [7 6 6 5 5 4 4 3 2 3 2 1]
 ZData: [0 0 0 0 0 0 0 0 0 0 0 0]

 Show all properties

Change the color and marker of the nodes.

p.Marker = 's';
p.NodeColor = 'r';

 plot

1-5129

Increase the size of the nodes.

p.MarkerSize = 7;

1 Alphabetical List

1-5130

Change the line style of the edges.

p.LineStyle = '--';

 plot

1-5131

Change the x and y coordinates of the nodes.

p.XData = [2 4 1.5 3.5 1 3 1 2.1 3 2 3.1 4];
p.YData = [3 3 3.5 3.5 4 4 2 2 2 1 1 1];

1 Alphabetical List

1-5132

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

 plot

1-5133

LineSpec — Line style, marker symbol, and color
character vector | string vector

Line style, marker symbol, and color, specified as a character vector or string vector of
symbols. The symbols can appear in any order, and you can omit one or more of the
characteristics. If you omit the line style, then the plot shows solid lines for the graph
edges.
Example: '--or' uses red circle node markers and red dashed lines as edges.
Example: 'r*' uses red asterisk node markers and solid red lines as edges.

Symbol Line Style
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Symbol Marker
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

1 Alphabetical List

1-5134

Symbol Color
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Axes object
object

Axes object. If you do not specify an axes object, then plot uses the current axes (gca).

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: p = plot(G,'EdgeColor','r','NodeColor','k','LineStyle','--')

The graph properties listed here are only a subset. For a complete list, see GraphPlot.

ArrowSize — Arrow size
positive value

Note ArrowSize only affects the display of directed graphs created using digraph.

Arrow size, specified as the comma-separated pair consisting of 'ArrowSize' and a
positive value in point units. The default value of ArrowSize is 7 for graphs with 100 or
fewer nodes, and 4 for graphs with more than 100 nodes.
Example: 15

 plot

1-5135

EdgeCData — Color data of edge lines
vector

Color data of edge lines, specified as the comma-separated pair consisting of
'EdgeCData' and a vector with length equal to the number of edges in the graph. The
values in EdgeCData map linearly to the colors in the current colormap, resulting in
different colors for each edge in the plotted graph.

EdgeColor — Edge color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | color name |
matrix | 'flat' | 'none'

Edge color, specified as the comma-separated pair consisting of 'EdgeColor' and one of
these values:

• 'none' — Edges are not drawn.
• 'flat' — Color of each edge depends on the value of EdgeCData.
• matrix — Each row is an RGB triplet representing the color of one edge. The size of

the matrix is numedges(G)-by-3.
• RGB triplet, hexadecimal color code, or color name — Edges use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

1 Alphabetical List

1-5136

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'EdgeColor','r') creates a graph plot with red edges.

EdgeLabel — Edge labels
{} (default) | vector | cell array of character vectors | string array

Edge labels, specified as the comma-separated pair consisting of 'EdgeLabel' and a
numeric vector, cell array of character vectors, or string array. The length of EdgeLabel

 plot

1-5137

must be equal to the number of edges in the graph. By default EdgeLabel is an empty
cell array (no edge labels are displayed).
Example: {'A', 'B', 'C'}
Example: [1 2 3]
Example: plot(G,'EdgeLabel',G.Edges.Weight) labels the graph edges with their
weights.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell | string

Layout — Graph layout method
'auto' (default) | 'circle' | 'force' | 'layered' | 'subspace' | 'force3' |
'subspace3'

Graph layout method, specified as the comma-separated pair consisting of 'Layout' and
one of the options in the table. The table also lists compatible name-value pairs to further
refine each layout method. See the layout reference page for more information on these
layout-specific name-value pairs.

Option Description Layout-Specific Name-
Value Pairs

'auto' (default) Automatic choice of layout
method based on the size
and structure of the graph.

—

'circle' Circular layout. Places the
graph nodes on a circle
centered at the origin with
radius 1.

'Center' — Center node in
circular layout

1 Alphabetical List

1-5138

Option Description Layout-Specific Name-
Value Pairs

'force' Force-directed layout [1].
Uses attractive forces
between adjacent nodes and
repulsive forces between
distant nodes.

'Iterations' — Number
of force-directed layout
iterations

'WeightEffect' — Effect
of edge weights on layout

'UseGravity' — Gravity
toggle for layouts with
multiple components

'XStart' — Starting x-
coordinates for nodes

'YStart' — Starting y-
coordinates for nodes

'layered' Layered node layout [2], [3],
[4]. Places the graph nodes
into a set of layers,
revealing hierarchical
structure. By default the
layers progress downwards
(the arrows of a directed
acyclic graph point down).

'Direction' — Direction
of layers

'Sources' — Nodes to
include in the first layer

'Sinks' — Nodes to
include in the last layer

'AssignLayers' — Layer
assignment method

'subspace' Subspace embedding node
layout [5]. Plots the graph
nodes in a high-dimensional
embedded subspace, and
then projects the positions
back into 2-D. By default the
subspace dimension is
either 100 or the total
number of nodes, whichever
is smaller.

'Dimension' — Dimension
of embedded subspace

 plot

1-5139

Option Description Layout-Specific Name-
Value Pairs

'force3' 3-D force-directed layout. 'Iterations' — Number
of force-directed layout
iterations

'WeightEffect' — Effect
of edge weights on layout

'UseGravity' — Gravity
toggle for layouts with
multiple components

'XStart' — Starting x-
coordinates for nodes

'YStart' — Starting y-
coordinates for nodes

'ZStart' — Starting z-
coordinates for nodes

'subspace3' 3-D subspace embedding
layout.

'Dimension' — Dimension
of embedded subspace

Example: plot(G,'Layout','force3','Iterations',10)
Example: plot(G,'Layout','subspace','Dimension',50)
Example: plot(G,'Layout','layered')

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none' | cell array | string vector

Line style, specified as the comma-separated pair consisting of 'LineStyle' and one of
the line styles listed in this table, or as a cell array or string vector of such values. Specify
a cell array of character vectors or string vector to use different line styles for each edge.

Character(s) Line Style Resulting Line
'-' Solid line

1 Alphabetical List

1-5140

Character(s) Line Style Resulting Line
'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Edge line width
0.5 (default) | positive value | vector

Edge line width, specified as the comma-separated pair consisting of 'LineWidth' and a
positive value in point units or a vector of such values. Specify a vector to use a different
line width for each edge in the graph.
Example: 0.75

Marker — Node marker symbol
'o' (default) | character vector | cell array | string vector

Node marker symbol, specified as the comma-separated pair consisting of 'Marker' and
one of the character vectors listed in this table, or as a cell array or string vector of such
values. The default is to use circular markers for the graph nodes. Specify a cell array of
character vectors or string vector to use different markers for each node.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle

 plot

1-5141

Value Description
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Node marker size
positive value | vector

Node marker size, specified as the comma-separated pair consisting of 'MarkerSize'
and a positive value in point units or as a vector of such values. Specify a vector to use
different marker sizes for each node in the graph. The default value of MarkerSize is 4
for graphs with 100 or fewer nodes, and 2 for graphs with more than 100 nodes.
Example: 10

NodeCData — Color data of node markers
vector

Color data of node markers, specified as the comma-separated pair consisting of
'NodeCData' and a vector with length equal to the number of nodes in the graph. The
values in NodeCData map linearly to the colors in the current colormap, resulting in
different colors for each node in the plotted graph.

NodeColor — Node color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | color name |
matrix | 'flat' | 'none'

Node color, specified as the comma-separated pair consisting of 'NodeColor' and one of
these values:

• 'none' — Nodes are not drawn.
• 'flat' — Color of each node depends on the value of NodeCData.
• matrix — Each row is an RGB triplet representing the color of one node. The size of

the matrix is numnodes(G)-by-3.

1 Alphabetical List

1-5142

• RGB triplet, hexadecimal color code, or color name — Nodes use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

 plot

1-5143

RGB Triplet Hexadecimal Color Code Appearance
[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'NodeColor','k') creates a graph plot with black nodes.

NodeLabel — Node labels
node IDs (default) | vector | cell array of character vectors | string array

Node labels, specified as the comma-separated pair consisting of 'NodeLabel' and a
numeric vector, cell array of character vectors, or string array. The length of NodeLabel
must be equal to the number of nodes in the graph. By default NodeLabel is a cell array
containing the node IDs for the graph nodes:

• For nodes without names (that is, G.Nodes does not contain a Name variable), the
node labels are the values unique(G.Edges.EndNodes) contained in a cell array.

• For named nodes, the node labels are G.Nodes.Name'.

Example: {'A', 'B', 'C'}
Example: [1 2 3]
Example: plot(G,'NodeLabel',G.Nodes.Name) labels the nodes with their names.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell | string

XData — x-coordinate of nodes
vector

Note XData and YData must be specified together so that each node has a valid (x,y)
coordinate. Optionally, you can also specify ZData for 3-D coordinates.

1 Alphabetical List

1-5144

x-coordinate of nodes, specified as the comma-separated pair consisting of 'XData' and
a vector with length equal to the number of nodes in the graph.

YData — y-coordinate of nodes
vector

Note XData and YData must be specified together so that each node has a valid (x,y)
coordinate. Optionally, you can also specify ZData for 3-D coordinates.

y-coordinate of nodes, specified as the comma-separated pair consisting of 'YData' and
a vector with length equal to the number of nodes in the graph.

ZData — z-coordinate of nodes
vector

Note XData and YData must be specified together so that each node has a valid (x,y)
coordinate. Optionally, you can also specify ZData for 3-D coordinates.

z-coordinate of nodes, specified as the comma-separated pair consisting of 'ZData' and
a vector with length equal to the number of nodes in the graph.

Output Arguments
h — Graph plot
GraphPlot object

Graph plot, returned as an object. For more information, see GraphPlot.

Compatibility Considerations
Self-loop display change
Behavior changed in R2018a

Self-loops in the plot of a simple graph are now shaped like a leaf or teardrop. In previous
releases, self-loops were displayed as circles.

 plot

1-5145

References
[1] Fruchterman, T., and E. Reingold. “Graph Drawing by Force-directed Placement.”

Software — Practice & Experience. Vol. 21 (11), 1991, pp. 1129–1164.

[2] Gansner, E., E. Koutsofios, S. North, and K.-P Vo. “A Technique for Drawing Directed
Graphs.” IEEE Transactions on Software Engineering. Vol.19, 1993, pp. 214–230.

[3] Barth, W., M. Juenger, and P. Mutzel. “Simple and Efficient Bilayer Cross Counting.”
Journal of Graph Algorithms and Applications. Vol.8 (2), 2004, pp. 179–194.

[4] Brandes, U., and B. Koepf. “Fast and Simple Horizontal Coordinate Assignment.”
LNCS. Vol. 2265, 2002, pp. 31–44.

[5] Y. Koren. “Drawing Graphs by Eigenvectors: Theory and Practice.” Computers and
Mathematics with Applications. Vol. 49, 2005, pp. 1867–1888.

See Also
Functions
digraph | graph | highlight | labeledge | labelnode | layout

Objects
GraphPlot

Properties
GraphPlot

Topics
“Graph Plotting and Customization”
“Add Node Properties to Graph Plot Data Cursor”

Introduced in R2015b

1 Alphabetical List

1-5146

rmedge
Remove edge from graph

Syntax
H = rmedge(G,s,t)
H = rmedge(G,idx)

Description
H = rmedge(G,s,t) removes the edges specified by the node pairs s and t from graph
G. If there are multiple edges specified by s and t, then they are all removed.

H = rmedge(G,idx) specifies which edges to remove with edge indices idx. The edge
indices are row numbers in the G.Edges table.

Examples

Remove Edges with Specified End Nodes

Create and plot a graph.

s = [1 1 1 2 2 3 3 4 5 5 6 7];
t = [2 4 5 3 6 4 7 8 6 8 7 8];
G = graph(s,t);
plot(G)

 rmedge

1-5147

Remove several edges from the graph and plot the result.

G = rmedge(G,[1 2 3 4],[5 6 7 8]);
plot(G)

1 Alphabetical List

1-5148

Remove Edge with Specified Index

Create a graph and view the edge list.

s = {'BOS' 'NYC' 'NYC' 'NYC' 'LAX'};
t = {'NYC' 'LAX' 'DEN' 'LAS' 'DCA'};
G = digraph(s,t);
G.Edges

ans=5×1 table
 EndNodes

 rmedge

1-5149

 'BOS' 'NYC'
 'NYC' 'LAX'
 'NYC' 'DEN'
 'NYC' 'LAS'
 'LAX' 'DCA'

Remove the edge between nodes 'NYC' and 'DEN' using the edge index.

G = rmedge(G,3);
G.Edges

ans=4×1 table
 EndNodes

 'BOS' 'NYC'
 'NYC' 'LAX'
 'NYC' 'LAS'
 'LAX' 'DCA'

Remove Self-Loops

This example shows how to remove all of the self-loops from a graph. Self-loops are edges
that connect a node to itself.

Create a graph that has two self-loops.

G = graph([1 1 1 2],[1 2 3 2]);
plot(G)

1 Alphabetical List

1-5150

Use rmedge to remove all self-loops from the graph. Even though G has only two self-
loops, this technique removes all self-loops from any directed or undirected graph.

G = rmedge(G, 1:numnodes(G), 1:numnodes(G));
plot(G)

 rmedge

1-5151

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

1 Alphabetical List

1-5152

s,t — Node pairs (as separate arguments)
node indices | node names

Node pairs, specified as separate arguments of node indices or node names. Similarly
located elements in s and t specify the source and target nodes for edges in the graph.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: G = rmedge(G,1,2) removes the edge between node 1 and node 2 from
graph G.
Example: G = rmedge(G,{'a' 'b'},{'d' 'c'}) removes two edges from graph G,
the first of which is between node 'a' and node 'd'.

idx — Edge indices
scalar | vector

Edge indices, specified as a scalar or vector. The edge indices are nonnegative integers
that are row numbers in the G.Edges table.
Example: G = rmedge(G,[1 3 5]) removes the first, third, and fifth edges (rows) from
G.Edges.

Output Arguments
H — Output graph
graph object | digraph object

 rmedge

1-5153

Output graph, returned as a graph or digraph object.

See Also
addedge | digraph | graph | numedges | rmnode

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”

Introduced in R2015b

1 Alphabetical List

1-5154

rmnode
Remove node from graph

Syntax
H = rmnode(G,nodeIDs)

Description
H = rmnode(G,nodeIDs) removes the nodes specified by nodeIDs from graph G. Any
edges incident upon the nodes in nodeIDs are also removed. rmnode refreshes the
numbering of the nodes in H.

Examples

Remove Node from Graph

Create and plot a graph.

s = [1 1 1 2 2 3];
t = [2 3 4 3 4 4];
G = graph(s,t);
plot(G)

 rmnode

1-5155

Remove node 1 from the graph and plot the result. The nodes in the new graph are
automatically renumbered.

G = rmnode(G,1);
plot(G)

1 Alphabetical List

1-5156

Remove Several Named Nodes from Graph

Create and plot a graph with named nodes.

s = [1 1 1 1 2 2 3 3 3 5 5];
t = [2 3 4 6 1 5 4 5 6 4 6];
names = {'New York' 'Los Angeles' 'Washington D.C.' 'Pittsburgh' ...
 'Denver' 'Austin'};
G = digraph(s,t,[],names);
plot(G)

 rmnode

1-5157

Remove the nodes 'New York' and 'Pittsburgh' from the graph, then replot the
result.

G = rmnode(G,{'New York' 'Pittsburgh'});
plot(G,'Layout','force')

1 Alphabetical List

1-5158

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

 rmnode

1-5159

nodeIDs — Node identifiers
node indices | node names

Node identifiers, specified as one or more node indices or node names.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: G = rmnode(G,[1 2]) removes node 1 and node 2 from graph G.

Output Arguments
H — Output graph
graph object | digraph object

Output graph, returned as a graph or digraph object.

See Also
addnode | digraph | graph | numnodes | rmedge

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”

1 Alphabetical List

1-5160

Introduced in R2015b

 rmnode

1-5161

reordernodes
Reorder graph nodes

Syntax
H = reordernodes(G,order)
[H,idx] = reordernodes(G,order)

Description
H = reordernodes(G,order) reorders the nodes in graph G according to order. This
reordering corresponds to a symmetric permutation of the adjacency matrix of G.

[H,idx] = reordernodes(G,order) also returns the permutation vector for the edge
indices, idx. For example, if G.Edges has a variable Weight, then H.Edges.Weight ==
G.Edges.Weight(idx).

Examples

Reorder Graph Nodes

Create and plot a graph.

s = [1 1 1 2 5 3 6 4 7 8 8 8];
t = [2 3 4 5 3 6 4 7 2 6 7 5];
G = graph(s,t);
plot(G)

1 Alphabetical List

1-5162

Reorder the graph nodes using a permutation vector.

order = [7 2 3 4 8 1 5 6];
G = reordernodes(G,order);
plot(G)

 reordernodes

1-5163

Reorder Graph Nodes by Degree

Create and plot a weighted graph.

s = [1 1 1 2 2 2 2 3 4];
t = [3 4 2 3 4 5 6 5 6];
weights = [6 7 6 3 2 8 7 1 1];
G = digraph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight)

1 Alphabetical List

1-5164

Reorder the graph nodes based on the out-degree, such that node 1 has the largest out-
degree.

[~,order] = sort(outdegree(G),'descend')

order = 6×1

 2
 1
 3
 4
 5
 6

 reordernodes

1-5165

[H,idx] = reordernodes(G,order);
plot(H,'EdgeLabel',H.Edges.Weight)

idx describes the permutation of the rows in G.Edges. Confirm this correspondence
using the Weight variable.

isequal(H.Edges.Weight, G.Edges.Weight(idx))

ans = logical
 1

1 Alphabetical List

1-5166

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

order — Node order
node indices | node names

Node order, specified as node indices or node names. order specifies a symmetric
permutation of the adjacency matrix of G. If A = adjacency(G), then A(order,order)
produces adjacency(H).

order can be one of:

• Numeric vector of node indices, such as [1 3 2].
• A cell array of character vectors or string array of node names, such as {'A' 'C'

'B'} or ["A" "C" "B"].

Example: H = reordernodes(G,[3 1 2])

Output Arguments
H — Output graph
graph object | digraph object

Output graph, returned as a graph or digraph object. H contains the same Nodes and
Edges properties as G, but with the rows of H.Nodes and H.Edges permuted:

• H.Nodes is the same as G.Nodes(order,:).
• H.Edges is similar to G.Edges(idx,:), except that the nodes are renumbered.

idx — Permutation vector of edge indices
vector

 reordernodes

1-5167

Permutation vector of edge indices, returned as a vector. The values in idx describe the
permutation of the rows in G.Edges.

See Also
addnode | digraph | findnode | graph | rmnode | subgraph

Introduced in R2015b

1 Alphabetical List

1-5168

shortestpath
Shortest path between two single nodes

Syntax
P = shortestpath(G,s,t)
P = shortestpath(G,s,t,'Method',algorithm)
[P,d] = shortestpath(___)
[P,d,edgepath] = shortestpath(___)

Description
P = shortestpath(G,s,t) computes the shortest path starting at source node s and
ending at target node t. If the graph is weighted (that is, G.Edges contains a variable
Weight), then those weights are used as the distances along the edges in the graph.
Otherwise, all edge distances are taken to be 1.

P = shortestpath(G,s,t,'Method',algorithm) optionally specifies the algorithm
to use in computing the shortest path. For example, if G is a weighted graph, then
shortestpath(G,s,t,'Method','unweighted') ignores the edge weights in G and
instead treats all edge weights as 1.

[P,d] = shortestpath(___) additionally returns the length of the shortest path, d,
using any of the input arguments in previous syntaxes.

[P,d,edgepath] = shortestpath(___) additionally returns the edge indices
edgepath of all edges on the shortest path from s to t.

Examples

Shortest Path Between Specified Nodes

Create and plot a directed graph.

 shortestpath

1-5169

s = [1 1 2 3 3 4 4 6 6 7 8 7 5];
t = [2 3 4 4 5 5 6 1 8 1 3 2 8];
G = digraph(s,t);
plot(G)

Calculate the shortest path between nodes 7 and 8.

P = shortestpath(G,7,8)

P = 1×5

 7 1 3 5 8

1 Alphabetical List

1-5170

Shortest Path in Weighted Graph

Create and plot a graph with weighted edges.

s = [1 1 1 2 2 6 6 7 7 3 3 9 9 4 4 11 11 8];
t = [2 3 4 5 6 7 8 5 8 9 10 5 10 11 12 10 12 12];
weights = [10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1];
G = graph(s,t,weights);
plot(G,'EdgeLabel',G.Edges.Weight)

Find the shortest path between nodes 3 and 8, and specify two outputs to also return the
length of the path.

 shortestpath

1-5171

[P,d] = shortestpath(G,3,8)

P = 1×5

 3 9 5 7 8

d = 4

Since the edges in the center of the graph have large weights, the shortest path between
nodes 3 and 8 goes around the boundary of the graph where the edge weights are
smallest. This path has a total length of 4.

Shortest Path Ignoring Edge Weights

Create and plot a graph with weighted edges, using custom node coordinates.

s = [1 1 1 1 1 2 2 7 7 9 3 3 1 4 10 8 4 5 6 8];
t = [2 3 4 5 7 6 7 5 9 6 6 10 10 10 11 11 8 8 11 9];
weights = [1 1 1 1 3 3 2 4 1 6 2 8 8 9 3 2 10 12 15 16];
G = graph(s,t,weights);

x = [0 0.5 -0.5 -0.5 0.5 0 1.5 0 2 -1.5 -2];
y = [0 0.5 0.5 -0.5 -0.5 2 0 -2 0 0 0];
p = plot(G,'XData',x,'YData',y,'EdgeLabel',G.Edges.Weight);

1 Alphabetical List

1-5172

Find the shortest path between nodes 6 and 8 based on the graph edge weights. Highlight
this path in green.

[path1,d] = shortestpath(G,6,8)

path1 = 1×5

 6 3 1 4 8

d = 14

highlight(p,path1,'EdgeColor','g')

 shortestpath

1-5173

Specify Method as unweighted to ignore the edge weights, instead treating all edges as
if they had a weight of 1. This method produces a different path between the nodes, one
that previously had too large of a path length to be the shortest path. Highlight this path
in red.

[path2,d] = shortestpath(G,6,8,'Method','unweighted')

path2 = 1×3

 6 9 8

d = 2

highlight(p,path2,'EdgeColor','r')

1 Alphabetical List

1-5174

Shortest Path in Multigraph

Plot the shortest path between two nodes in a multigraph and highlight the specific edges
that are traversed.

Create a weighted multigraph with five nodes. Several pairs of nodes have more than one
edge between them. Plot the graph for reference.

G = graph([1 1 1 1 1 2 2 3 3 3 4 4],[2 2 2 2 2 3 4 4 5 5 5 2],[2 4 6 8 10 5 3 1 5 6 8 9]);
p = plot(G,'EdgeLabel',G.Edges.Weight);

 shortestpath

1-5175

Find the shortest path between node 1 and node 5. Since several of the node pairs have
more than one edge between them, specify three outputs to shortestpath to return the
specific edges that the shortest path traverses.

[P,d,edgepath] = shortestpath(G,1,5)

P = 1×5

 1 2 4 3 5

d = 11

edgepath = 1×4

1 Alphabetical List

1-5176

 1 7 9 10

The results indicate that the shortest path has a total length of 11 and follows the edges
given by G.Edges(edgepath,:).

G.Edges(edgepath,:)

ans=4×2 table
 EndNodes Weight
 ________ ______

 1 2 2
 2 4 3
 3 4 1
 3 5 5

Highlight this edge path by using the highlight function with the 'Edges' name-value
pair to specify the indices of the edges traversed.

highlight(p,'Edges',edgepath)

 shortestpath

1-5177

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

1 Alphabetical List

1-5178

s,t — Source and target node IDs (as separate arguments)
node indices | node names

Source and target node IDs, specified as separate arguments of node indices or node
names.

Value Example
Scalar node index 1
Character vector node name 'A'
String scalar node name "A"

Example: shortestpath(G,2,5) computes the shortest path between node 2 and node
5.
Example: shortestpath(G,'node1','node2') computes the shortest path between
the named nodes node1 and node2.

algorithm — Shortest path algorithm
'auto' (default) | 'unweighted' | 'positive' | 'mixed' | 'acyclic'

Shortest path algorithm, specified as one of the options in the table.

Option Description
'auto' (default) The 'auto' option automatically selects

the algorithm:

• 'unweighted' is used for graph and
digraph inputs with no edge weights.

• 'positive' is used for all graph
inputs that have edge weights, and
requires the weights to be nonnegative.
This option is also used for digraph
inputs with nonnegative edge weights.

• 'mixed' is used for digraph inputs
whose edge weights contain some
negative values. The graph cannot have
negative cycles.

 shortestpath

1-5179

Option Description
'unweighted' Breadth-First computation that treats all

edge weights as 1.
'positive' Dijkstra algorithm that requires all edge

weights to be nonnegative.
'mixed' (only for digraph) Bellman-Ford algorithm for directed graphs

that requires the graph to have no negative
cycles.

While 'mixed' is slower than 'positive'
for the same problem, 'mixed' is more
versatile as it allows some edge weights to
be negative.

'acyclic' (only for digraph) Algorithm designed to improve
performance for directed, acyclic graphs
(DAGs) with weighted edges.

Use isdag to confirm if a directed graph is
acyclic.

Note For most graphs, 'unweighted' is the fastest algorithm, followed by 'acyclic',
'positive', and 'mixed'.

Example: shortestpath(G,s,t,'Method','acyclic')

Output Arguments
P — Shortest path between nodes
node indices | node names

Shortest path between nodes, returned as a vector of node indices or an array of node
names. P is empty, {}, if there is no path between the nodes.

• If s and t contain numeric node indices, then P is a numeric vector of node indices.
• If s and t contain node names, then P is a cell array or string array containing node

names.

1 Alphabetical List

1-5180

If there are multiple shortest paths between s and t, then P contains only one of the
paths. The path that is returned can change depending on which algorithm Method
specifies.

d — Shortest path distance
scalar

Shortest path distance, returned as a numeric scalar. d is the summation of the edge
weights between consecutive nodes in P. If there is no path between the nodes, then d is
Inf.

edgepath — Edges on shortest path
vector of edge indices

Edges on shortest path, returned as a vector of edge indices. For multigraphs, this output
indicates which edge between two nodes is on the path. This output is compatible with
the 'Edges' name-value pair of highlight, for example:
highlight(p,'Edges',edgepath).

Tips
• The shortestpath, shortestpathtree, and distances functions do not support

undirected graphs with negative edge weights, or more generally any graph
containing a negative cycle, for these reasons:

• A negative cycle is a path that leads from a node back to itself, with the sum of the
edge weights on the path being negative. If a negative cycle is on a path between
two nodes, then no shortest path exists between the nodes, since a shorter path
can always be found by traversing the negative cycle.

• A single negative edge weight in an undirected graph creates a negative cycle.

See Also
digraph | distances | graph | nearest | shortestpathtree

Introduced in R2015b

 shortestpath

1-5181

shortestpathtree
Shortest path tree from node

Syntax
TR = shortestpathtree(G,s)
TR = shortestpathtree(G,s,t)
TR = shortestpathtree(___ ,Name,Value)
[TR,D] = shortestpathtree(___)
[TR,D,E] = shortestpathtree(___)

Description
TR = shortestpathtree(G,s) returns a directed graph, TR, that contains the tree of
shortest paths from source node s to all other nodes in the graph. If the graph is
weighted (that is, G.Edges contains a variable Weight), then those weights are used as
the distances along the edges in the graph. Otherwise, all edge distances are taken to be
1.

TR = shortestpathtree(G,s,t) computes the tree of shortest paths between
multiple source or target nodes:

• s can be a single source node, and t can specify multiple target nodes.
• s can specify several source nodes, and t can specify a single target node.

TR = shortestpathtree(___ ,Name,Value) uses additional options specified by one
or more Name-Value pair arguments, using any of the input argument combinations in
previous syntaxes. For example, shortestpathtree(G,s,'OutputForm','vector')
returns a numeric vector that describes the shortest path tree.

[TR,D] = shortestpathtree(___) additionally returns the shortest path distance
between nodes in the tree.

[TR,D,E] = shortestpathtree(___) additionally returns a logical vector E that
indicates whether each graph edge is in TR.

1 Alphabetical List

1-5182

Examples

Shortest Paths from Specified Source Node

Find the shortest paths from a source node to each of the other reachable nodes in a
graph, and plot the results.

Create a directed graph.

s = [1 1 2 3 3 4 4 6 6 7 8 7 5];
t = [2 3 4 4 5 5 6 1 8 1 3 2 8];
G = digraph(s,t)

G =
 digraph with properties:

 Edges: [13x1 table]
 Nodes: [8x0 table]

Calculate the shortest paths from node 1 to each of the other reachable nodes in the
graph. Then, plot the resulting tree on top of the graph.

TR = shortestpathtree(G,1);
p = plot(G);
highlight(p,TR,'EdgeColor','r')

 shortestpathtree

1-5183

Since there is no path from node 1 to node 7, node 7 is disconnected from the tree.

Shortest Paths to Specified Target Node

Find the shortest paths from each node in a graph to a target node, and plot the results.

Create and plot a graph.

s = [1 1 1 1 1 1 1 2 2 7 7 7 7 9 9 3 3 1 6 4 8 10 6 8 4 5];
t = [2 3 4 5 6 8 7 6 7 5 6 8 9 6 8 6 10 10 10 10 10 11 11 11 8 8];
G = graph(s,t);

1 Alphabetical List

1-5184

x = [0 0.5 -0.5 -0.5 0.5 0 1.5 0 2 -1.5 -2];
y = [0 0.5 0.5 -0.5 -0.5 2 0 -2 0 0 0];
plot(G,'XData',x,'YData',y)

Find the shortest paths from each node in the graph to node 10. Plot the resulting tree.

TR = shortestpathtree(G,'all',10);
plot(TR)

 shortestpathtree

1-5185

Subset of Shortest Paths with Specified Source Node

Find the shortest paths and path lengths from a single source node to several target
nodes.

Create and plot a graph.

G = digraph(bucky);
plot(G)

1 Alphabetical List

1-5186

Find the shortest paths from node 23 to several other nodes. Specify OutputForm as
cell to return the shortest paths in a cell array. Specify two outputs to also return the
shortest path distances.

target = [1 5 13 32 44];
[TR,D] = shortestpathtree(G,23,target,'OutputForm','cell')

TR = 5x1 cell array
 {1x6 double}
 {1x5 double}
 {1x8 double}
 {1x6 double}
 {1x6 double}

 shortestpathtree

1-5187

D = 1×5

 5 4 7 5 5

tree{j} is the shortest path from node 23 to node target(j) with length D(j).

Find the path and path length from node 21 to node 5.

path = TR{2}

path = 1×5

 23 22 21 4 5

path_length = D(2)

path_length = 4

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

s — Source node(s)
node indices | node names | 'all'

Source node(s), specified as one or more node indices or node names, or as all nodes in
the graph with 'all'.

• When used alone, s must specify a single source node.
• When used together with t, the s and t inputs must satisfy:

• s can be a single source node, and t can specify multiple target nodes.

1 Alphabetical List

1-5188

• s can specify several source nodes, and t can specify a single target node.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

s must not specify the node name 'all', since this node name conflicts with an option
name. Use findnode to instead pass in the node index for this case.
Example: shortestpathtree(G,'a')
Example: shortestpathtree(G,[1 2 3],8)

t — Target node(s)
'all' (default) | node indices | node names

Target node(s), specified as one or more node indices or node names, or as all nodes in
the graph with 'all'.

The s and t inputs must satisfy:

• s can be a single source node, and t can specify multiple target nodes.
• s can specify several source nodes, and t can specify a single target node.

t must not specify nodes named 'all', 'Method', or 'OutputForm', since these node
names conflict with option names. Use findnode to instead pass in the node index for
these cases.
Example: shortestpathtree(G,[1 2 3],8)
Example: shortestpathtree(G,{'a','b','c'},{'f'})

 shortestpathtree

1-5189

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [TR,D] =
shortestpathtree(G,s,t,'Method','unweighted','OutputForm','vector')

OutputForm — Format of output
'tree' (default) | 'cell' | 'vector'

Format of output, specified as the comma-separated pair consisting of 'OutputForm'
and one of the options in the table.

Option Description
'tree' (default) TR is a directed graph representing the

shortest path tree. If specified, the third
output E is a logical vector indicating
whether each edge is in TR.

'cell' TR is a cell array, and TR{k} contains the
path from s to t(k) or from s(k) to t. If
there is no path between the nodes, then
TR{k} is empty.

If s and t are node names, then TR{k} is a
cell array of character vectors. Otherwise,
TR{k} is a numeric vector.

If specified, the third output E is a cell
array indicating the edges on each
corresponding path in TR.

1 Alphabetical List

1-5190

Option Description
'vector' TR is a vector that describes the tree:

• If s contains a single source node, then
TR(k) is the ID of the node that
precedes node k on the path from s to k.
By convention, TR(s) = 0.

• If s contains multiple source nodes, then
TR(k) is the ID of the node that
succeeds node k on the path from k to t.
By convention, TR(t) = 0.

In each case TR(k) is NaN if node k is not
part of the tree.

If specified, the third output E is a vector
where E(k) gives the index of the edge of
the shortest path tree connecting node k
and node TR(k).

Example: shortestpathtree(G,s,'OutputForm','vector')

Method — Shortest path algorithm
'auto' (default) | 'unweighted' | 'positive' | 'mixed' | 'acyclic'

Shortest path algorithm, specified as the comma-separated pair consisting of 'Method'
and one of the options in the table.

 shortestpathtree

1-5191

Option Description
'auto' (default) The 'auto' option automatically selects

the algorithm:

• 'unweighted' is used for graph and
digraph inputs with no edge weights.

• 'positive' is used for all graph
inputs that have edge weights, and
requires the weights to be nonnegative.
This option is also used for digraph
inputs with nonnegative edge weights.

• 'mixed' is used for digraph inputs
whose edge weights contain some
negative values. The graph cannot have
negative cycles.

'unweighted' Breadth-First computation that treats all
edge weights as 1.

'positive' Dijkstra algorithm that requires all edge
weights to be nonnegative.

'mixed' (only for digraph) Bellman-Ford algorithm for directed graphs
that requires the graph to have no negative
cycles.

While 'mixed' is slower than 'positive'
for the same problem, 'mixed' is more
versatile as it allows some edge weights to
be negative.

'acyclic' (only for digraph) Algorithm designed to improve
performance for directed, acyclic graphs
(DAGs) with weighted edges.

Use isdag to confirm if a directed graph is
acyclic.

Note For most graphs, 'unweighted' is the fastest algorithm, followed by 'acyclic',
'positive', and 'mixed'.

1 Alphabetical List

1-5192

Example: shortestpath(G,s,t,'Method','acyclic')

Output Arguments
TR — Shortest path tree
digraph object (default) | cell array | vector

Shortest path tree, returned as a digraph object, cell array, or vector, depending on the
value of 'OutputForm'. Use the highlight function to visualize the shortest path tree
on top of a plot of the graph, or use plot(TR) to visualize the shortest path tree on its
own.

If there are multiple shortest paths between two nodes, then TR contains only one of the
paths. The path that is returned can change depending on which algorithm is specified by
Method. The TR output is a graph with zero edges if there are no paths connecting any of
the specified nodes.

D — Distance between source and target nodes
vector

Distance between source and target nodes, returned as a vector. A value of Inf indicates
there is no path between two nodes.

E — Edges in tree or on path
logical vector (default) | cell array | vector

Edges in tree or on path, returned as a logical vector, cell array, or vector, depending on
the value of 'OutputForm':

• If you don't specify 'OutputForm' or specify a value of 'tree', then E is a logical
vector indicating whether each graph edge is in directed graph TR. This output is
compatible with the 'Edges' name-value pair of highlight, for example:
highlight(p,'Edges',E).

• If 'OutputForm' is 'cell', then E is a cell array containing the edges on the
corresponding paths in TR.

• If 'OutputForm' is 'vector', then E is a vector which, for each node, gives the
index of the edge connecting it to its parent node in the shortest path tree.

 shortestpathtree

1-5193

Tips
• The shortestpath, shortestpathtree, and distances functions do not support

undirected graphs with negative edge weights, or more generally any graph
containing a negative cycle, for these reasons:

• A negative cycle is a path that leads from a node back to itself, with the sum of the
edge weights on the path being negative. If a negative cycle is on a path between
two nodes, then no shortest path exists between the nodes, since a shorter path
can always be found by traversing the negative cycle.

• A single negative edge weight in an undirected graph creates a negative cycle.

See Also
digraph | distances | graph | nearest | shortestpath

Introduced in R2015b

1 Alphabetical List

1-5194

simplify
Reduce multigraph to simple graph

Syntax
H = simplify(G)
H = simplify(G,pickmethod)
H = simplify(G,aggregatemethod)
H = simplify(___ ,selfloopflag)
H = simplify(___ ,Name,Value)
[H,eind,ecount] = simplify(___)

Description
H = simplify(G) returns a graph without multiple edges or self-loops. When several
edges occur between the same two nodes, only the first edge (as defined in G.Edges) is
kept. Edge properties are preserved.

H = simplify(G,pickmethod) specifies a method to choose between multiple edges.
Edge properties are preserved. pickmethod can be 'first' (default), 'last', 'min',
or 'max'.

H = simplify(G,aggregatemethod) specifies a method to combine the edge weights
of multiple edges into the weight of a single new edge. All other edge properties in G are
dropped. aggregatemethod can be 'sum' or 'mean'.

H = simplify(___ ,selfloopflag) specifies whether to preserve or remove self-
loops from the graph using any of the input argument combinations in previous syntaxes.
For example, 'keepselfloops' specifies that nodes with one or more self-loops will
have one self-loop in the simplified graph.

H = simplify(___ ,Name,Value) specifies additional options with one or more name-
value pair arguments. For example, you can specify 'PickVariable' and a variable in
G.Edges to use that variable with the 'min' or 'max' selection methods.

 simplify

1-5195

[H,eind,ecount] = simplify(___) additionally returns edge indices eind and
edge counts ecount:

• H.Edges(eind(i),:) is the edge in H that represents edge i in G.
• ecount(j) is the number of edges in G that correspond to edge j in H.

Examples

Simplify Multigraph to Simple Graph

Create a weighted, undirected multigraph with several edges between node 1 and node 2.

G = graph([1 1 1 1 2 3],[2 2 2 3 3 4], 1:6);
G.Edges

ans=6×2 table
 EndNodes Weight
 ________ ______

 1 2 1
 1 2 2
 1 2 3
 1 3 4
 2 3 5
 3 4 6

Simplify the multigraph into a simple graph, such that there is only one edge between
node 1 and node 2. simplify keeps the first edge between those two nodes,
G.Edges(1,:), and drops the others.

G = simplify(G);
G.Edges

ans=4×2 table
 EndNodes Weight
 ________ ______

 1 2 1
 1 3 4
 2 3 5

1 Alphabetical List

1-5196

 3 4 6

Pick or Combine Multiple Graph Edges

Use the second input of simplify to select a method that picks between multiple edges
or combines multiple edges into one.

Create a weighted multigraph. In this graph, five edges occur between node 3 and node
4, but the edges have random weights. View the edges table and plot the graph for
reference.

G = graph([1 2 3 3 3 3 3 3],[2 3 1 4 4 4 4 4],randi(10,1,8));
G.Edges

ans=8×2 table
 EndNodes Weight
 ________ ______

 1 2 9
 1 3 2
 2 3 10
 3 4 10
 3 4 7
 3 4 1
 3 4 3
 3 4 6

plot(G,'EdgeLabel',G.Edges.Weight)

 simplify

1-5197

The command simplify(G) keeps the first of the repeated edges. However, you can
specify a different pick/combine method with the second input.

The options for picking between multiple edges are: 'first' (default), 'last', 'min',
and 'max'. Keep the repeated edge with maximum weight.

H_pick = simplify(G,'max');
plot(H_pick,'EdgeLabel',H_pick.Edges.Weight)

1 Alphabetical List

1-5198

The options for combining multiple edges into one are: 'sum' and 'mean'. Sum repeated
edges together to produce a single edge with a larger weight.

H_comb = simplify(G,'sum');
plot(H_comb,'EdgeLabel',H_comb.Edges.Weight)

 simplify

1-5199

Preserve Self-Loops in Graph

Simplify a graph while preserving self-loops using the 'keepselfloops' option.

Create a multigraph with two nodes and several self-loops. Simplify the graph and
preserve self-loops.

G = graph([1 1 1 1 1 1 1 2 2 2 2],[1 1 1 1 2 2 2 2 2 2 2]);
plot(G)
axis equal

1 Alphabetical List

1-5200

G = simplify(G,'keepselfloops');
plot(G)
axis equal

 simplify

1-5201

Edge Indices and Counts of Repeated Edges

Use the second and third outputs of simplify to get information about how many (and
which) edges are combined.

Create an undirected multigraph with three nodes and four edges.

G = graph([1 1 1 2],[2 2 3 3]);
G.Edges

ans=4×1 table
 EndNodes

1 Alphabetical List

1-5202

 1 2
 1 2
 1 3
 2 3

Simplify the graph and specify three outputs to get additional information about the
combined edges.

[G,ei,ec] = simplify(G)

G =
 graph with properties:

 Edges: [3x1 table]
 Nodes: [3x0 table]

ei = 4×1

 1
 1
 2
 3

ec = 3×1

 2
 1
 1

ei(i) is the edge in the simplified graph that represents edge i in the old graph. Since
the first two edges are repeated, ei(1) = ei(2) = 1. Also, ec(1) = 2, since there
are two edges in the new graph corresponding to edge 1 in the old graph.

Simplify Graph Using Specific Edge Variables

Show how to simplify a multigraph using the 'PickVariable' and
'AggregationVariables' name-value pairs.

 simplify

1-5203

Create a multigraph where the nodes represent locations and the edges represent modes
of transport. The edges have properties that reflect the cost and time of each mode of
transportation. Preview the edges table.

G = graph([1 1 1 1 1 1 2 2 2],[2 2 2 3 3 3 3 3 3],[],{'New York', 'Boston', 'Washington D.C.'});
G.Edges.Mode = categorical([1 2 3 1 2 3 1 2 3],[1 2 3],{'Air' 'Train' 'Bus'})';
G.Edges.Cost = [400 80 40 250 100 75 325 150 100]';
G.Edges.Time = [1 7 5 1.5 10 8 1.75 11 9]';
G.Edges

ans=9×4 table
 EndNodes Mode Cost Time
 _______________________________ _____ ____ ____

 'New York' 'Boston' Air 400 1
 'New York' 'Boston' Train 80 7
 'New York' 'Boston' Bus 40 5
 'New York' 'Washington D.C.' Air 250 1.5
 'New York' 'Washington D.C.' Train 100 10
 'New York' 'Washington D.C.' Bus 75 8
 'Boston' 'Washington D.C.' Air 325 1.75
 'Boston' 'Washington D.C.' Train 150 11
 'Boston' 'Washington D.C.' Bus 100 9

Plot the graph for reference. Label the transportation mode on each edge, make the edge
line widths proportional to the time, and the color of each edge proportional to the cost.

plot(G,'EdgeLabel',cellstr(G.Edges.Mode),'LineWidth',G.Edges.Time./min(G.Edges.Time),'EdgeCData',G.Edges.Cost)
colorbar

1 Alphabetical List

1-5204

Use the 'min' selection method and specify the value of 'PickVariable' as the
'Time' variable to find the quickest mode of transport between each set of nodes.

t = simplify(G,'min','PickVariable','Time');
plot(t,'EdgeLabel',cellstr(t.Edges.Mode))

 simplify

1-5205

Use the 'sum' aggregation method and specify the value of 'AggregationVariables'
as 'Cost' to compute how much money is made on each connection.

c = simplify(G,'sum','AggregationVariables','Cost');
plot(c,'EdgeLabel',c.Edges.Cost)

1 Alphabetical List

1-5206

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

 simplify

1-5207

pickmethod — Edge picking method
'first' (default) | 'last' | 'min' | 'max'

Edge picking method, specified as 'first', 'last', 'min', or 'max'. The edge picking
method provides a way to choose which of several edges to preserve when more than one
edge exists between the same two nodes.

• If the method is 'first' or 'last', then simplify preserves only the first or last
edge that occurs in the edges table G.Edges.

• If the method is 'min' or 'max', then simplify preserves only the edge with
minimum or maximum weight. The Weight variable must exist in G.Edges, unless you
use the 'PickVariable' name-value pair to base the selection on a different
variable.

Example: simplify(G,'last')

aggregatemethod — Aggregation method
'sum' | 'mean'

Aggregation method, specified as either 'sum' or 'mean'. The aggregation method
provides a way to combine several edges into a single edge when there is more than one
edge between the same two nodes.

By default, simplify only sums or averages the edge weights in the graph and drops all
other edge properties. However, you can use the 'AggregationVariables' name-value
pair to specify which numeric variables in G.Edges to preserve and aggregate.
Example: simplify(G,'sum')

selfloopflag — Toggle to keep self-loops
'omitselfloops' (default) | 'keepselfloops'

Toggle to keep self-loops, specified as either:

• 'omitselfloops' — Remove all self-loops from the graph. This is the default.
• 'keepselfloops' — Nodes with one or more self-loops have a single self-loop in the
simplified graph.

Example: simplify(G,'sum','keepselfloops')

1 Alphabetical List

1-5208

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: H = simplify(G,'sum','AggregationVariables',{'Var1' 'Var2'})

PickVariable — Variable to base edge selection on
'Weight' (default) | variable name | numeric index

Variable to base edge selection on, specified as the comma-separated pair consisting of
'PickVariable' and a variable name or numeric index. Use this name-value pair to
select an edge variable in G.Edges other than 'Weight' to use with the 'min' or 'max'
picking methods. simplify preserves only the edge with the minimum or maximum
value of the selected variable when there are several edges between the same two nodes.
Example: simplify(G,'min','PickVariable',3)
Example: simplify(G,'min','PickVariable','var3')
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

AggregationVariables — Variables to aggregate
'Weight' (default) | variable name | cell array of variable names | string array | numeric
vector | logical vector | function handle

Variables to aggregate, specified as the comma-separated pair consisting of
'AggregationVariables' and a variable name, cell array of variable names, string
array, numeric vector, logical vector, or function handle. Use this name-value pair to
select one or more edge variables in G.Edges that can be combined with the 'sum' or
'mean' aggregation methods. simplify combines the values of these variables into a
single value for one new edge when there are several edges between the same two nodes.
The value of 'AggregationVariables' can be one of the following:

• Character vector specifying a single table variable name
• Cell array of character vectors where each element is a table variable name
• String array specifying one or more variable names
• Vector of table variable indices

 simplify

1-5209

• Logical vector whose elements correspond to table variables, where true includes the
corresponding variable and false excludes it

• A function handle that takes the G.Edges table as input and returns a logical scalar,
such as @isnumeric

Example: simplify(G,'sum','AggregationVariables',[4 5 6])
Example: simplify(G,'mean','AggregationVariables',{'var5 var7'})
Example: simplify(G,'mean','AggregationVariables',@isnumeric)
Data Types: single | double | logical | function_handle | char | string | cell

Output Arguments
H — Simplified graph
graph object | digraph object

Simplified graph, returned as a graph or digraph object. H does not contain any
repeated edges between the same two nodes, such that ismultigraph(H) returns
logical 0 (false). Self-loops also are removed, unless you specify the 'keepselfloops'
option.

eind — Edge indices
vector

Edge indices, returned as a vector. The edge in H that represents edge i in G is given by
H.Edges(eind(i),:). If edge i in G is a self-loop that was removed, then eind(i) is 0.

ecount — Edge counts
vector

Edge counts, returned as a vector. ecount(i) is the number of edges in G that
correspond to edge i in H.

See Also
digraph | graph | ismultigraph

Introduced in R2018a

1 Alphabetical List

1-5210

subgraph
Extract subgraph

Syntax
H = subgraph(G,nodeIDs)
H = subgraph(G,idx)

Description
H = subgraph(G,nodeIDs) returns a subgraph of G that contains only the nodes
specified by nodeIDs.

H = subgraph(G,idx) specifies the subgraph nodes using a logical vector.

Examples

Extract Subgraph

Create and plot a graph.

s = [1 1 1 1 2 2 2 2 2 2 2 2 2 2 15 15 15 15 15];
t = [3 5 4 2 14 6 11 12 13 10 7 9 8 15 16 17 19 18 20];
G = graph(s,t);
plot(G,'Layout','force')

 subgraph

1-5211

Extract a subgraph from G by specifying which nodes to include. The node numbering in
the subgraph is reset.

idx = [2 15 16 17 18 19 20 1 3 4 5];
H = subgraph(G,idx);
plot(H,'Layout','force')

1 Alphabetical List

1-5212

Subgraph with Node and Edge Properties

Create and plot a weighted graph with named nodes.

s = [1 1 1 2 2 2 8 8 8 8];
t = [2 3 4 5 6 7 9 10 11 12];
weights = [10 30 40 80 60 60 20 30 90 80];
names = {'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L'};
G = graph(s,t,weights,names);
plot(G,'EdgeLabel',G.Edges.Weight)

 subgraph

1-5213

Extract a subgraph that contains node 'B' and all of its neighbors. subgraph preserves
the node names and edge weights. However, the numeric node IDs in H are renumbered
compared to G.

N = neighbors(G,'B');
H = subgraph(G, ['B'; N]);
plot(H,'EdgeLabel',H.Edges.Weight)

1 Alphabetical List

1-5214

Input Arguments
G — Input graph
graph object | digraph object

Input graph, specified as either a graph or digraph object. Use graph to create an
undirected graph or digraph to create a directed graph.
Example: G = graph(1,2)
Example: G = digraph([1 2],[2 3])

 subgraph

1-5215

nodeIDs — Node identifiers
node indices | node names

Node identifiers, specified as one or more node indices or node names. nodeIDs selects a
subset of the nodes in G to generate the subgraph, H.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]

Example: H = subgraph(G,[1 2 5])
Example: H = subgraph(G,{'A' 'B' 'E'})

idx — Node selection vector
vector

Node selection vector, specified as a logical vector. The subgraph contains only the nodes
J for which idx(J) is logical 1 (true). The index of node J in H is I(J), where I =
find(idx).
Example: subgraph(G,degree(G)>2)
Data Types: logical

Output Arguments
H — Subgraph
graph object | digraph object

1 Alphabetical List

1-5216

Subgraph, returned as a graph or digraph object. H contains only the nodes that were
selected with nodeIDs or idx. Other nodes in G (and the edges connecting to those
nodes) are discarded. The node properties and edge properties of the selected nodes and
edges are carried over from G into H.

See graph or digraph for more information about graph objects.

See Also
digraph | graph | reordernodes

Topics
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”

Introduced in R2015b

 subgraph

1-5217

graph
Graph with undirected edges

Description
graph objects represent undirected graphs, which have direction-less edges connecting
the nodes. After you create a graph object, you can learn more about the graph by using
object functions to perform queries against the object. For example, you can add or
remove nodes or edges, determine the shortest path between two nodes, or locate a
specific node or edge.

G = graph([1 1], [2 3]);
e = G.Edges
G = addedge(G,2,3)
G = addnode(G,4)
plot(G)

Creation

Syntax
G = graph

G = graph(A)
G = graph(A,nodenames)
G = graph(A,NodeTable)
G = graph(A, ___ ,type)
G = graph(A, ___ ,'omitselfloops')

G = graph(s,t)
G = graph(s,t,weights)
G = graph(s,t,weights,nodenames)
G = graph(s,t,weights,NodeTable)
G = graph(s,t,weights,num)
G = graph(s,t, ___ ,'omitselfloops')

1 Alphabetical List

1-5218

G = graph(s,t,EdgeTable, ___)

G = graph(EdgeTable)
G = graph(EdgeTable,NodeTable)
G = graph(EdgeTable, ___ ,'omitselfloops')

Description
G = graph creates an empty undirected graph object, G, which has no nodes or edges.

G = graph(A) creates a weighted graph using a square, symmetric adjacency matrix, A.
The location of each nonzero entry in A specifies an edge for the graph, and the weight of
the edge is equal to the value of the entry. For example, if A(2,1) = 10, then G contains
an edge between node 2 and node 1 with a weight of 10.

G = graph(A,nodenames) additionally specifies node names. The number of elements
in nodenames must be equal to size(A,1).

G = graph(A,NodeTable) specifies node names (and possibly other node attributes)
using a table, NodeTable. The table must have the same number of rows as A. Specify
node names using the table variable Name.

G = graph(A, ___ ,type) specifies a triangle of the adjacency matrix to use in
constructing the graph. You must specify A and optionally can specify nodenames or
NodeTable. To use only the upper or lower triangle of A to construct the graph, type can
be either 'upper' or 'lower'.

G = graph(A, ___ ,'omitselfloops') ignores the diagonal elements of A and
returns a graph without any self-loops. You can use any of the input argument
combinations in previous syntaxes.

G = graph(s,t) specifies graph edges (s,t) in node pairs. s and t can specify node
indices or node names.

G = graph(s,t,weights) also specifies edge weights with the array weights.

G = graph(s,t,weights,nodenames) specifies node names using the cell array of
character vectors or string array, nodenames. s and t cannot contain node names that
are not in nodenames.

 graph

1-5219

G = graph(s,t,weights,NodeTable) specifies node names (and possibly other node
attributes) using a table, NodeTable. Specify node names using the Name table variable.
s and t cannot contain node names that are not in NodeTable.

G = graph(s,t,weights,num) specifies the number of nodes in the graph with the
numeric scalar num.

G = graph(s,t, ___ ,'omitselfloops') does not add any self-loops to the graph.
That is, any k that satisfies s(k) == t(k) is ignored. You can use any of the input
argument combinations in previous syntaxes.

G = graph(s,t,EdgeTable, ___) uses a table to specify edge attributes instead of
specifying weights. The EdgeTable input must be a table with a row for each
corresponding pair of elements in s and t. Specify edge weights using the table variable
Weight.

G = graph(EdgeTable) uses the table EdgeTable to define the graph. With this
syntax, the first variable in EdgeTable must be named EndNodes, and it must be a two-
column array defining the edge list of the graph.

G = graph(EdgeTable,NodeTable) additionally specifies the names (and possibly
other attributes) of the graph nodes using a table, NodeTable.

G = graph(EdgeTable, ___ ,'omitselfloops') does not add self-loops to the
graph. That is, any k that satisfies EdgeTable.EndNodes(k,1) ==
EdgeTable.EndNodes(k,2) is ignored. You must specify EdgeTable and optionally can
specify NodeTable.

Input Arguments
A — Adjacency matrix
matrix

Adjacency matrix, specified as a full or sparse, numeric matrix. The entries in A specify
the network of connections (edges) between the nodes of the graph. The location of each
nonzero entry in A specifies an edge between two nodes. The value of that entry provides
the edge weight. A logical adjacency matrix results in an unweighted graph.

Nonzero entries on the main diagonal of A specify self-loops, or nodes that are connected
to themselves with an edge. Use the 'omitselfloops' input option to ignore diagonal
entries.

1 Alphabetical List

1-5220

A must be symmetric unless the type input is specified. Use issymmetric to confirm
matrix symmetry. For triangular adjacency matrices, specify type to use only the upper
or lower triangle.
Example: A = [0 1 5; 1 0 0; 5 0 0] describes a graph with three nodes and two
edges. The edge between node 1 and node 2 has a weight of 1, and the edge between
node 1 and node 3 has a weight of 5.
Data Types: single | double | logical

nodenames — Node names
cell array of character vectors | string array

Node names, specified as a cell array of character vectors or string array. nodenames
must have length equal to numnodes(G) so that it contains a nonempty, unique name for
each node in the graph.
Example: G = graph(A,{'n1','n2','n3'}) specifies three node names for a 3-by-3
adjacency matrix, A.
Data Types: cell | string

type — Type of adjacency matrix
'upper' | 'lower'

Type of adjacency matrix, specified as either 'upper' or 'lower'.
Example: G = graph(A,'upper') uses only the upper triangle of A to construct the
graph, G.

s,t — Node pairs (as separate arguments)
node indices | node names

Node pairs, specified as node indices or node names. graph creates edges between the
corresponding nodes in s and t, which must both be numeric, or both be character
vectors, cell arrays of character vectors, string arrays, or categorical arrays. In all cases,
s and t must have the same number of elements.

• If s and t are numeric, then they correspond to indices of graph nodes. Numeric node
indices must be positive integers greater than or equal to 1.

• If s and t are character vectors, cell arrays of character vectors, or string arrays, then
they specify names for the nodes. The Nodes property of the graph is a table
containing a Name variable with the node names, G.Nodes.Name.

 graph

1-5221

• If s and t are categorical arrays, then the categories in s and t are used as the node
names in the graph. This can include categories that are not elements in s or t.

• If s and t specify multiple edges between the same two nodes, then the result is a
multigraph.

This table shows the different ways to refer to one or more nodes either by their numeric
node indices or by their node names.

Form Single Node Multiple Nodes
Node index Scalar

Example: 1

Vector

Example: [1 2 3]
Node name Character vector

Example: 'A'

Cell array of character
vectors

Example: {'A' 'B' 'C'}
String scalar

Example: "A"

String array

Example: ["A" "B" "C"]
Categorical array

Example:
categorical("A")

Categorical array

Example:
categorical(["A" "B"
"C"])

Example: G = graph([1 2 3],[2 4 5]) creates a graph with five nodes and three
edges.
Example: G = graph({'Boston' 'New York' 'Washington D.C.'},{'New York'
'New Jersey' 'Pittsburgh'}) creates a graph with five named nodes and three
edges.

weights — Edge weights
scalar | vector | matrix | multidimensional array | []

Edge weights, specified as a scalar, vector, matrix, or multidimensional array. weights
must be a scalar or an array with the same number of elements as s and t.

graph stores the edge weights as a Weight variable in the G.Edges property table. To
add or change weights after creating a graph, you can modify the table variable directly,
for example, G.Edges.Weight = [25 50 75]'.

1 Alphabetical List

1-5222

If you specify weights as an empty array [], then it is ignored.
Example: G = graph([1 2],[2 3],[100 200]) creates a graph with three nodes and
two edges. The edges have weights of 100 and 200.
Data Types: single | double

num — Number of graph nodes
positive scalar integer

Number of graph nodes, specified as a positive scalar integer. num must be greater than
or equal to the largest elements in s and t.
Example: G = graph([1 2],[2 3],[],5) creates a graph with three connected nodes
and two isolated nodes.

EdgeTable — Table of edge information
table

Table of edge information. If you do not specify s and t, then the first variable in
EdgeTable is required to be a two-column matrix, cell array of character vectors, or
string array called EndNodes that defines the graph edges. For edge weights, use the
variable Weight, since this table variable name is used by some graph functions. If there
is a variable Weight, then it must be a numeric column vector. See table for more
information on constructing a table.

After creating a graph, query the edge information table using G.Edges.
Example: EdgeTable = table([1 2; 2 3; 3 5; 4 5],'VariableNames',
{'EndNodes'})

Data Types: table

NodeTable — Table of node information
table

Table of node information. NodeTable can contain any number of variables to describe
attributes of the graph nodes. For node names, use the variable Name, since this variable
name is used by some graph functions. If there is a variable Name, then it must be a cell
array of character vectors or string array specifying a unique name in each row. See
table for more information on constructing a table.

After the graph is created, query the node information table using G.Nodes.

 graph

1-5223

Example: NodeTable = table({'a'; 'b'; 'c'; 'd'},'VariableNames',
{'Name'})

Data Types: table

Output Arguments
G — Undirected graph
graph object

Undirected graph, returned as a graph object. For more information, see graph.

Properties
Edges — Edges of graph
table

Edges of graph, returned as a table. By default this is an M-by-1 table, where M is the
number of edges in the graph.

• To add new edge properties to the graph, create a new variable in the Edges table.
• To add or remove edges from the graph, use the addedge or rmedge object functions.

Example: G.Edges returns a table listing the edges in the graph
Example: G.Edges.Weight returns a numeric vector of the edge weights.
Example: G.Edges.Weight = [10 20 30 55]' specifies new edge weights for the
graph.
Example: G.Edges.NormWeight = G.Edges.Weight/sum(G.Edges.Weight) adds a
new edge property to the table containing the normalized weights of the edges.
Data Types: table

Nodes — Nodes of graph
table

Nodes of graph, returned as a table. By default this is an empty N-by-0 table, where N is
the number of nodes in the graph.

• To add new node properties to the graph, create a new variable in the Nodes table.

1 Alphabetical List

1-5224

• To add or remove nodes from the graph, use the addnode or rmnode object functions.

Example: G.Nodes returns a table listing the node properties of the graph. This table is
empty by default.
Example: G.Nodes.Names = {'Montana', 'New York', 'Washington',
'California'}' adds node names to the graph by adding the variable Names to the
Nodes table.
Example: G.Nodes.WiFi = logical([1 0 0 1 1]') adds the variable WiFi to the
Nodes table. This property specifies that certain airports have wireless internet coverage.
Data Types: table

Object Functions

Access and Modify Nodes and Edges
addedge Add new edge to graph
rmedge Remove edge from graph
addnode Add new node to graph
rmnode Remove node from graph
findedge Locate edge in graph
findnode Locate node in graph
numedges Number of edges in graph
numnodes Number of nodes in graph
edgecount Number of edges between two nodes
reordernodes Reorder graph nodes
subgraph Extract subgraph

Search and Structure
bfsearch Breadth-first graph search
dfsearch Depth-first graph search
centrality Measure node importance
conncomp Connected graph components
biconncomp Biconnected graph components
bctree Block-cut tree graph
maxflow Maximum flow in graph
minspantree Minimum spanning tree of graph
isisomorphic Determine whether two graphs are isomorphic

 graph

1-5225

isomorphism Compute isomorphism between two graphs
ismultigraph Determine whether graph has multiple edges
simplify Reduce multigraph to simple graph

Shortest Path
shortestpath Shortest path between two single nodes
shortestpathtree Shortest path tree from node
distances Shortest path distances of all node pairs

Matrix Representation
adjacency Graph adjacency matrix
incidence Graph incidence matrix
laplacian Graph Laplacian matrix

Node Information
degree Degree of graph nodes
neighbors Neighbors of graph node
nearest Nearest neighbors within radius
outedges Outgoing edges from node

Visualization
plot Plot graph nodes and edges

Examples

Create and Modify Graph Object

Create a graph object with three nodes and two edges. One edge is between node 1 and
node 2, and the other edge is between node 1 and node 3.

G = graph([1 1],[2 3])

G =
 graph with properties:

 Edges: [2x1 table]

1 Alphabetical List

1-5226

 Nodes: [3x0 table]

View the edge table of the graph.

G.Edges

ans=2×1 table
 EndNodes

 1 2
 1 3

Add node names to the graph, and then view the new node and edge tables. The end
nodes of each edge are now expressed using their node names.

G.Nodes.Name = {'A' 'B' 'C'}';
G.Nodes

ans=3×1 table
 Name

 'A'
 'B'
 'C'

G.Edges

ans=2×1 table
 EndNodes

 'A' 'B'
 'A' 'C'

You can add or modify extra variables in the Nodes and Edges tables to describe
attributes of the graph nodes or edges. However, you cannot directly change the number
of nodes or edges in the graph by modifying these tables. Instead, use the addedge,
rmedge, addnode, or rmnode functions to modify the number of nodes or edges in a
graph.

 graph

1-5227

For example, add an edge to the graph between nodes 2 and 3 and view the new edge list.

G = addedge(G,2,3)

G =
 graph with properties:

 Edges: [3x1 table]
 Nodes: [3x1 table]

G.Edges

ans=3×1 table
 EndNodes

 'A' 'B'
 'A' 'C'
 'B' 'C'

Adjacency Matrix Graph Construction

Create a symmetric adjacency matrix, A, that creates a complete graph of order 4. Use a
logical adjacency matrix to create a graph without weights.

A = ones(4) - diag([1 1 1 1])

A = 4×4

 0 1 1 1
 1 0 1 1
 1 1 0 1
 1 1 1 0

G = graph(A~=0)

G =
 graph with properties:

 Edges: [6x1 table]

1 Alphabetical List

1-5228

 Nodes: [4x0 table]

View the edge list of the graph.

G.Edges

ans=6×1 table
 EndNodes

 1 2
 1 3
 1 4
 2 3
 2 4
 3 4

Adjacency Matrix Construction with Node Names

Create an upper triangular adjacency matrix.

A = triu(magic(4))

A = 4×4

 16 2 3 13
 0 11 10 8
 0 0 6 12
 0 0 0 1

Create a graph with named nodes using the adjacency matrix. Specify 'omitselfloops'
to ignore the entries on the diagonal of A, and specify type as 'upper' to indicate that A
is upper-triangular.

names = {'alpha' 'beta' 'gamma' 'delta'};
G = graph(A,names,'upper','omitselfloops')

G =
 graph with properties:

 graph

1-5229

 Edges: [6x2 table]
 Nodes: [4x1 table]

View the edge and node information.

G.Edges

ans=6×2 table
 EndNodes Weight
 __________________ ______

 'alpha' 'beta' 2
 'alpha' 'gamma' 3
 'alpha' 'delta' 13
 'beta' 'gamma' 10
 'beta' 'delta' 8
 'gamma' 'delta' 12

G.Nodes

ans=4×1 table
 Name

 'alpha'
 'beta'
 'gamma'
 'delta'

Edge List Graph Construction

Create and plot a cube graph using a list of the end nodes of each edge.

s = [1 1 1 2 2 3 3 4 5 5 6 7];
t = [2 4 8 3 7 4 6 5 6 8 7 8];
G = graph(s,t)

G =
 graph with properties:

1 Alphabetical List

1-5230

 Edges: [12x1 table]
 Nodes: [8x0 table]

plot(G)

Edge List Graph Construction with Node Names and Edge Weights

Create and plot a cube graph using a list of the end nodes of each edge. Specify node
names and edge weights as separate inputs.

 graph

1-5231

s = [1 1 1 2 2 3 3 4 5 5 6 7];
t = [2 4 8 3 7 4 6 5 6 8 7 8];
weights = [10 10 1 10 1 10 1 1 12 12 12 12];
names = {'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H'};
G = graph(s,t,weights,names)

G =
 graph with properties:

 Edges: [12x2 table]
 Nodes: [8x1 table]

plot(G,'EdgeLabel',G.Edges.Weight)

1 Alphabetical List

1-5232

Edge List Construction with Extra Nodes

Create a weighted graph using a list of the end nodes of each edge. Specify that the
graph should contain a total of 10 nodes.

s = [1 1 1 1 1];
t = [2 3 4 5 6];
weights = [5 5 5 6 9];
G = graph(s,t,weights,10)

G =
 graph with properties:

 Edges: [5x2 table]
 Nodes: [10x0 table]

Plot the graph. The extra nodes are disconnected from the primary connected component.

plot(G)

 graph

1-5233

Add Nodes and Edges to Empty Graph

Create an empty graph object, G.

G = graph;

Add three nodes and three edges to the graph. The corresponding entries in s and t
define the end nodes of the graph edges. addedge automatically adds the appropriate
nodes to the graph if they are not already present.

1 Alphabetical List

1-5234

s = [1 2 1];
t = [2 3 3];
G = addedge(G,s,t)

G =
 graph with properties:

 Edges: [3x1 table]
 Nodes: [3x0 table]

View the edge list. Each row describes an edge in the graph.

G.Edges

ans=3×1 table
 EndNodes

 1 2
 1 3
 2 3

For the best performance, construct graphs all at once using a single call to graph.
Adding nodes or edges in a loop can be slow for large graphs.

Graph Construction with Tables

Create an edge table that contains the variables EndNodes, Weight, and Code. Then
create a node table that contains the variables Name and Country. The variables in each
table specify properties of the graph nodes and edges.

s = [1 1 1 2 3];
t = [2 3 4 3 4];
weights = [6 6.5 7 11.5 17]';
code = {'1/44' '1/49' '1/33' '44/49' '49/33'}';
EdgeTable = table([s' t'],weights,code, ...
 'VariableNames',{'EndNodes' 'Weight' 'Code'})

EdgeTable=5×3 table
 EndNodes Weight Code

 graph

1-5235

 ________ ______ _______

 1 2 6 '1/44'
 1 3 6.5 '1/49'
 1 4 7 '1/33'
 2 3 11.5 '44/49'
 3 4 17 '49/33'

names = {'USA' 'GBR' 'DEU' 'FRA'}';
country_code = {'1' '44' '49' '33'}';
NodeTable = table(names,country_code,'VariableNames',{'Name' 'Country'})

NodeTable=4×2 table
 Name Country
 _____ _______

 'USA' '1'
 'GBR' '44'
 'DEU' '49'
 'FRA' '33'

Create a graph using the node and edge tables. Plot the graph using the country codes as
node and edge labels.

G = graph(EdgeTable,NodeTable);
plot(G,'NodeLabel',G.Nodes.Country,'EdgeLabel',G.Edges.Code)

1 Alphabetical List

1-5236

Compatibility Considerations

Change in handling of duplicate edges
Behavior changed in R2018a

graph, digraph, and addedge no longer produce errors when they encounter duplicate
edges. Instead, the duplicate edges are added to the graph and the result is a multigraph.
The ismultigraph function is useful to detect this situation, and simplify provides an
easy way to remove the extra edges.

 graph

1-5237

See Also
digraph | subgraph

Topics
“Build Watts-Strogatz Small World Graph Model”
“Use PageRank Algorithm to Rank Websites”
“Directed and Undirected Graphs”
“Modify Nodes and Edges of Existing Graph”
“Add Graph Node Names, Edge Weights, and Other Attributes”
“Graph Plotting and Customization”

Introduced in R2015b

1 Alphabetical List

1-5238

GraphPlot
Graph plot for directed and undirected graphs

Description
Graph plots are the primary way to visualize graphs and networks created using the
graph and digraph functions. After you create a GraphPlot object, you can modify
aspects of the plot by changing its property values. This is particularly useful for
modifying the display of the graph nodes or edges.

Creation
To create a GraphPlot object, specify an output argument with the plot function. For
example:

G = graph([1 1 1 1 5 5 5 5],[2 3 4 5 6 7 8 9]);
h = plot(G)

Properties
GraphPlot Graph plot appearance and behavior

Object Functions
layout Change layout of graph plot
highlight Highlight nodes and edges in plotted graph
labelnode Label graph nodes
labeledge Label graph edges

Examples

 GraphPlot

1-5239

Adjust Properties of GraphPlot Object

Create a GraphPlot object, and then show how to adjust the properties of the object to
affect the output display.

Create and plot a graph.

s = [1 1 1 1 1 1 1 9 9 9 9 9 9 9];
t = [2 3 4 5 6 7 8 2 3 4 5 6 7 8];
G = graph(s,t);
h = plot(G)

h =
 GraphPlot with properties:

1 Alphabetical List

1-5240

 NodeColor: [0 0.4470 0.7410]
 MarkerSize: 4
 Marker: 'o'
 EdgeColor: [0 0.4470 0.7410]
 LineWidth: 0.5000
 LineStyle: '-'
 NodeLabel: {'1' '2' '3' '4' '5' '6' '7' '8' '9'}
 EdgeLabel: {}
 XData: [1x9 double]
 YData: [1x9 double]
 ZData: [0 0 0 0 0 0 0 0 0]

 Show all properties

Use custom node coordinates for the graph nodes.

h.XData = [0 -3 -2 -1 0 1 2 3 0];
h.YData = [2 0 0 0 0 0 0 0 -2];

 GraphPlot

1-5241

Make the graph nodes red.

h.NodeColor = 'r';

1 Alphabetical List

1-5242

Use dashed lines for the graph edges.

h.LineStyle = '--';

 GraphPlot

1-5243

Increase the size of the nodes.

h.MarkerSize = 8;

1 Alphabetical List

1-5244

Saving and Loading GraphPlot Objects

Use the savefig function to save a graph plot figure.

s = [1 1 1 2 2 3 3 4 5 5 6 7];
t = [2 4 5 3 6 4 7 8 6 8 7 8];
G = graph(s,t);
h = plot(G);
savefig('cubegraph.fig');

 GraphPlot

1-5245

clear all
close all

Use openfig to load the graph plot figure back into MATLAB. openfig also returns a
handle to the figure, y.

y = openfig('cubegraph.fig');

Use the findobj function to locate the correct object handle using one of the property
values. Using findobj allows you to continue manipulating the original GraphPlot
object used to generate the figure.

1 Alphabetical List

1-5246

h = findobj('Marker','o')

h =
 GraphPlot with properties:

 NodeColor: [0 0.4470 0.7410]
 MarkerSize: 4
 Marker: 'o'
 EdgeColor: [0 0.4470 0.7410]
 LineWidth: 0.5000
 LineStyle: '-'
 NodeLabel: {'1' '2' '3' '4' '5' '6' '7' '8'}
 EdgeLabel: {}
 XData: [-0.2052 -1.1020 0.8023 1.7577 -0.8023 -1.7577 0.2052 1.1020]
 YData: [-0.4749 1.3919 1.9185 0.1892 -1.9185 -0.1892 0.4749 -1.3919]
 ZData: [0 0 0 0 0 0 0 0]

 Show all properties

Compatibility Considerations
Change to default text interpreter
Behavior changed in R2018b

The new GraphPlot property Interpreter has a default value of 'tex'. In previous
releases, graph node and edge labels displayed text as the literal characters instead of
interpreting the text using TeX markup. If you do not want node and edge labels to use
TeX markup, then set the Interpreter property to 'none'.

Self-loop display change
Behavior changed in R2018a

Self-loops in the plot of a simple graph are now shaped like a leaf or teardrop. In previous
releases, self-loops were displayed as circles.

See Also
digraph | graph

 GraphPlot

1-5247

Topics
GraphPlot
“Graph Plotting and Customization”
“Add Node Properties to Graph Plot Data Cursor”

Introduced in R2015b

1 Alphabetical List

1-5248

GraphPlot Properties
Graph plot appearance and behavior

Description
GraphPlot properties control the appearance and behavior of plotted graphs. By
changing property values, you can modify aspects of the graph display. Use dot notation
to refer to a particular object and property:

G = graph([1 1 1 1 5 5 5 5],[2 3 4 5 6 7 8 9]);
h = plot(G);
c = h.EdgeColor;
h.EdgeColor = 'k';

Properties
Nodes

NodeColor — Node color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | color name |
matrix | 'flat' | 'none'

Node color, specified as one of these values:

• 'none' — Nodes are not drawn.
• 'flat' — Color of each node depends on the value of NodeCData.
• matrix — Each row is an RGB triplet representing the color of one node. The size of

the matrix is numnodes(G)-by-3.
• RGB triplet, hexadecimal color code, or color name — All nodes use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

 GraphPlot Properties

1-5249

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

1 Alphabetical List

1-5250

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'NodeColor','k') creates a graph plot with black nodes.

Marker — Node marker symbol
'o' (default) | character vector | cell array | string vector

Node marker symbol, specified as one of the values listed in this table, or as a cell array
or string vector of such values. The default is to use circular markers for the graph nodes.
Specify a cell array of character vectors or string vector to use different markers for each
node.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Node marker size
positive value | vector

 GraphPlot Properties

1-5251

Node marker size, specified as a positive value in point units or as a vector of such values.
Specify a vector to use different marker sizes for each node in the graph. The default
value of MarkerSize is 4 for graphs with 100 or fewer nodes, and 2 for graphs with more
than 100 nodes.
Example: 10

NodeCData — Color data of node markers
vector

Color data of node markers, specified as a vector with length equal to the number of
nodes in the graph. The values in NodeCData map linearly to the colors in the current
colormap, resulting in different colors for each node in the plotted graph.

Edges

EdgeColor — Edge color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | color name |
matrix | 'flat' | 'none'

Edge color, specified as one of these values:

• 'none' — Edges are not drawn.
• 'flat' — Color of each edge depends on the value of EdgeCData.
• matrix — Each row is an RGB triplet representing the color of one edge. The size of

the matrix is numedges(G)-by-3.
• RGB triplet, hexadecimal color code, or color name — All edges use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-5252

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'EdgeColor','r') creates a graph plot with red edges.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none' | cell array | string vector

 GraphPlot Properties

1-5253

Line style, specified as one of the line styles listed in this table, or as a cell array or string
vector of such values. Specify a cell array of character vectors or string vector to use
different line styles for each edge.

Character(s) Line Style Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Edge line width
0.5 (default) | positive value | vector

Edge line width, specified as a positive value in point units, or as a vector of such values.
Specify a vector to use a different line width for each edge in the graph.
Example: 0.75

EdgeAlpha — Transparency of graph edges
0.5 (default) | scalar value between 0 and 1 inclusive

Transparency of graph edges, specified as a scalar value between 0 and 1 inclusive. A
value of 1 means fully opaque and 0 means completely transparent (invisible).
Example: 0.25

EdgeCData — Color data of edge lines
vector

Color data of edge lines, specified as a vector with length equal to the number of edges in
the graph. The values in EdgeCData map linearly to the colors in the current colormap,
resulting in different colors for each edge in the plotted graph.

ArrowSize — Arrow size
positive value | vector of positive values

Arrow size, specified as a positive value in point units or as a vector of such values. As a
vector, ArrowSize specifies the size of the arrow for each edge in the graph. The default

1 Alphabetical List

1-5254

value of ArrowSize is 7 for graphs with 100 or fewer nodes, and 4 for graphs with more
than 100 nodes.

ArrowSize only affects directed graphs.
Example: 15

ArrowPosition — Position of arrow along edge
0.5 (default) | scalar | vector

Position of arrow along edge, specified as a value in the range [0 1] or as a vector of
such values with length equal to the number of edges. A value near 0 places arrows closer
to the source node, and a value near 1 places arrows closer to the target node. The
default value is 0.5 so that the arrows are halfway between the source and target nodes.

ArrowPosition only affects directed graphs.

ShowArrows — Toggle display of arrows on directed edges
'on' | 'off'

Toggle display of arrows on directed edges, specified as 'on' or 'off'. For directed
graphs the default value is 'on' so that arrows are displayed, but you can specify a value
of 'off' to hide the arrows on the directed edges. For undirected graphs ShowArrows is
always 'off'.

Position

XData — x-coordinate of nodes
vector

Note XData and YData must be specified together so that each node has a valid (x,y)
coordinate. Optionally, you can specify ZData for 3-D coordinates.

x-coordinate of nodes, specified as a vector with length equal to the number of nodes in
the graph.

YData — y-coordinate of nodes
vector

Note XData and YData must be specified together so that each node has a valid (x,y)
coordinate. Optionally, you can specify ZData for 3-D coordinates.

 GraphPlot Properties

1-5255

y-coordinate of nodes, specified as a vector with length equal to the number of nodes in
the graph.

ZData — z-coordinate of nodes
vector

Note XData and YData must be specified together so that each node has a valid (x,y)
coordinate. Optionally, you can specify ZData for 3-D coordinates.

z-coordinate of nodes, specified as a vector with length equal to the number of nodes in
the graph.

Node and Edge Labels

NodeLabel — Node labels
node IDs (default) | vector | cell array of character vectors

Node labels, specified as a numeric vector or cell array of character vectors. The length of
NodeLabel must be equal to the number of nodes in the graph. By default NodeLabel is
a cell array containing the node IDs for the graph nodes:

• For nodes without names (that is, G.Nodes does not contain a Name variable), the
node labels are the values unique(G.Edges.EndNodes) contained in a cell array.

• For named nodes, the node labels are G.Nodes.Name'.

Example: {'A', 'B', 'C'}
Example: [1 2 3]
Example: plot(G,'NodeLabels',G.Nodes.Name) labels the nodes with their names.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

NodeLabelMode — Selection mode for node labels
'auto' (default) | 'manual'

Selection mode for node labels, specified as 'auto' (default) or 'manual'. Specify
NodeLabelMode as 'auto' to populate NodeLabel with the node IDs for the graph
nodes (numeric node indices or node names). Specifying NodeLabelMode as 'manual'
does not change the values in NodeLabel.

1 Alphabetical List

1-5256

NodeLabelColor — Color of node labels
[0 0 0] (default) | RGB triplet | hexadecimal color code | color name | matrix

Node label color, specified as one of these values:

• matrix — Each row is an RGB triplet representing the color of one node label. The size
of the matrix is numnodes(G)-by-3.

• RGB triplet, hexadecimal color code, or color name — All node labels use the specified
color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 GraphPlot Properties

1-5257

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'NodeLabel',C,'NodeLabelColor','m') creates a graph plot
with magenta node labels.

EdgeLabel — Edge labels
{} (default) | vector | cell array of character vectors

Edge labels, specified as a numeric vector or cell array of character vectors. The length of
EdgeLabel must be equal to the number of edges in the graph. By default EdgeLabel is
an empty cell array (no edge labels are displayed).
Example: {'A', 'B', 'C'}
Example: [1 2 3]
Example: plot(G,'EdgeLabels',G.Edges.Weight) labels the graph edges with their
weights.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

EdgeLabelMode — Selection mode for edge labels
'manual' (default) | 'auto'

Selection mode for edge labels, specified as 'manual' (default) or 'auto'. Specify
EdgeLabelMode as 'auto' to populate EdgeLabel with the edge weights in

1 Alphabetical List

1-5258

G.Edges.Weight (if available), or the edge indices G.Edges(k,:) (if no weights are
available). Specifying EdgeLabelMode as 'manual' does not change the values in
EdgeLabel.

EdgeLabelColor — Color of edge labels
[0 0 0] (default) | RGB triplet | hexadecimal color code | color name | matrix

Edge label color, specified as one of these values:

• matrix — Each row is an RGB triplet representing the color of one edge label. The size
of the matrix is numedges(G)-by-3.

• RGB triplet, hexadecimal color code, or color name — All edge labels use the specified
color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

 GraphPlot Properties

1-5259

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: plot(G,'EdgeLabel',C,'EdgeLabelColor','m') creates a graph plot
with magenta edge labels.

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

1 Alphabetical List

1-5260

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

 GraphPlot Properties

1-5261

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

1 Alphabetical List

1-5262

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

 GraphPlot Properties

1-5263

https://www.latex-project.org
https://www.latex-project.org

Font

NodeFontName — Font name for node labels
'Helvetica' (default) | supported font name | 'FixedWidth'

Font name for node labels, specified as a supported font name or 'FixedWidth'. For
labels to display and print properly, you must choose a font that your system supports.
The default font depends on the specific operating system and locale. For example,
Windows and Linuxsystems in English localization use the Helvetica font by default.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'.
Example: 'Cambria'

NodeFontSize — Font size for node labels
8 (default) | positive number | vector of positive numbers

Font size for node labels, specified as a positive number or a vector of positive numbers. If
NodeFontSize is a vector, then each element specifies the font size of one node label.

NodeFontWeight — Thickness of text in node labels
'normal' (default) | 'bold' | vector | cell array

Thickness of text in node labels, specified as 'normal', 'bold', or as a string vector or
cell array of character vectors specifying 'normal' or 'bold' for each node.

• 'bold' — Thicker character outlines than normal
• 'normal' — Normal weight as defined by the particular font

Not all fonts have a bold font weight.
Data Types: cell | char | string

NodeFontAngle — Character slant of text in node labels
'normal' (default) | 'italic' | vector | cell array

Character slant of text in node labels, specified as 'normal', 'italic', or as a string
vector or cell array of character vectors specifying 'normal' or 'italic' for each
node.

• 'italic' — Slanted characters
• 'normal' — No character slant

Not all fonts have both font styles.

1 Alphabetical List

1-5264

Data Types: cell | char | string

EdgeFontName — Font name for edge labels
'Helvetica' (default) | supported font name | 'FixedWidth'

Font name for edge labels, specified as a supported font name or 'FixedWidth'. For
labels to display and print properly, you must choose a font that your system supports.
The default font depends on the specific operating system and locale. For example,
Windows and Linuxsystems in English localization use the Helvetica font by default.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'.
Example: 'Cambria'

EdgeFontSize — Font size for edge labels
8 (default) | positive number | vector of positive numbers

Font size for edge labels, specified as a positive number or a vector of positive numbers. If
EdgeFontSize is a vector, then each element specifies the font size of one edge label.

EdgeFontWeight — Thickness of text in edge labels
'normal' (default) | 'bold' | vector | cell array

Thickness of text in edge labels, specified as 'normal', 'bold', or as a string vector or
cell array of character vectors specifying 'normal' or 'bold' for each edge.

• 'bold' — Thicker character outlines than normal
• 'normal' — Normal weight as defined by the particular font

Not all fonts have a bold font weight.
Data Types: cell | char | string

EdgeFontAngle — Character slant of text in edge labels
'normal' (default) | 'italic' | vector | cell array

Character slant of text in edge labels, specified as 'normal', 'italic', or as a string
vector or cell array of character vectors specifying 'normal' or 'italic' for each
edge.

• 'italic' — Slanted characters
• 'normal' — No character slant

 GraphPlot Properties

1-5265

Not all fonts have both font styles.
Data Types: cell | char | string

Legend

DisplayName — Text used by legend
'' (default) | character vector

Text used by the legend, specified as a character vector. The text appears next to an icon
of the GraphPlot.
Example: 'Text Description'

For multiline text, create the character vector using sprintf with the new line character
\n.
Example: sprintf('line one\nline two')

Alternatively, you can specify the legend text using the legend function.

• If you specify the text as an input argument to the legend function, then the legend
uses the specified text and sets the DisplayName property to the same value.

• If you do not specify the text as an input argument to the legend function, then the
legend uses the text in the DisplayName property. If the DisplayName property does
not contain any text, then the legend generates a character vector. The character
vector has the form 'dataN', where N is the number assigned to the GraphPlot object
based on its location in the list of legend entries.

If you edit interactively the character vector in an existing legend, then MATLAB updates
the DisplayName property to the edited character vector.

Annotation — Legend icon display style
Annotation object

This property is read-only.

Legend icon display style, returned as an Annotation object. Use this object to include
or exclude the GraphPlot from a legend.

1 Query the Annotation property to get the Annotation object.
2 Query the LegendInformation property of the Annotation object to get the

LegendEntry object.

1 Alphabetical List

1-5266

3 Specify the IconDisplayStyle property of the LegendEntry object to one of these
values:

• 'on' — Include the GraphPlot object in the legend as one entry (default).
• 'off' — Do not include the GraphPlot object in the legend.
• 'children' — Include only children of the GraphPlot object as separate entries

in the legend.

If a legend already exists and you change the IconDisplayStyle setting, then you must
call legend to update the display.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the GraphPlot.
• 'off' — Hide the GraphPlot without deleting it. You still can access the properties of

an invisible GraphPlot object.

UIContextMenu — Context menu
uicontextmenu object

Context menu, specified as a uicontextmenu object. Use this property to display a context
menu when you right-click the GraphPlot. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the GraphPlot when in plot edit mode, then MATLAB
sets its Selected property to 'on'. If the SelectionHighlight property also is set
to 'on', then MATLAB displays selection handles around the GraphPlot.

 GraphPlot Properties

1-5267

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the GraphPlot. If you specify this
property using a function handle, then MATLAB passes two arguments to the callback
function when executing the callback:

• The GraphPlot object — You can access properties of the GraphPlot object from within
the callback function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

Example: @myCallback

1 Alphabetical List

1-5268

Example: {@myCallback,arg3}

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the GraphPlot. Setting the CreateFcn
property on an existing GraphPlot has no effect. You must define a default value for this
property, or define this property using a Name,Value pair during GraphPlot creation.
MATLAB executes the callback after creating the GraphPlot and setting all of its
properties.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• The GraphPlot object — You can access properties of the GraphPlot object from within
the callback function. You also can access the GraphPlot object through the
CallbackObject property of the root, which can be queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.
Example: @myCallback
Example: {@myCallback,arg3}

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments

 GraphPlot Properties

1-5269

• Character vector that is a valid MATLAB command or function, which is evaluated in
the base workspace (not recommended)

Use this property to execute code when you delete the GraphPlot. MATLAB executes the
callback before destroying the GraphPlot so that the callback can access its property
values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• The GraphPlot object — You can access properties of the GraphPlot object from within
the callback function. You also can access the GraphPlot object through the
CallbackObject property of the root, which can be queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.
Example: @myCallback
Example: {@myCallback,arg3}

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put
in the queue.

1 Alphabetical List

1-5270

If the ButtonDownFcn callback of the GraphPlot is the running callback, then the
Interruptible property determines if it another callback can interrupt it:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue, such as when there is a drawnow, figure, getframe, waitfor, or pause
command.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put
in the queue.

If the ButtonDownFcn callback of the GraphPlot tries to interrupt a running callback that
cannot be interrupted, then the BusyAction property determines if it is discarded or put
in the queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. This is the default behavior.

 GraphPlot Properties

1-5271

• 'cancel' — Discard the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Can capture mouse clicks only when visible. The Visible property
must be set to 'on'. The HitTest property determines if the GraphPlot responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the GraphPlot passes the click to the
object below it in the current view of the figure window. The HitTest property of the
GraphPlot has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the GraphPlot. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the GraphPlot that has a
HitTest property set to 'on' and a PickableParts property value that enables the
ancestor to capture mouse clicks.

Note The PickableParts property determines if the GraphPlot object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status of GraphPlot
'off' (default) | 'on'

This property is read-only.

Deletion status of GraphPlot, returned as 'on' or 'off'. MATLAB sets the
BeingDeleted property to 'on' when the delete function of the GraphPlot begins
execution (see the DeleteFcn property). The BeingDeleted property remains set to
'on' until the GraphPlot no longer exists.

Check the value of the BeingDeleted property to verify that the GraphPlot is not about
to be deleted before querying or modifying it.

1 Alphabetical List

1-5272

Parent/Child

Parent — Parent of GraphPlot
axes object | group object | transform object

Parent of GraphPlot, specified as an axes, group, or transform object.

Children — Children of GraphPlot
empty GraphicsPlaceholder array

The GraphPlot has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of GraphPlot object handle in the Children property of the parent, specified as
one of these values:

• 'on' — The GraphPlot object handle is always visible.
• 'off' — The GraphPlot object handle is invisible at all times. This option is useful for

preventing unintended changes to the UI by another function. Set the
HandleVisibility to 'off' to temporarily hide the handle during the execution of
that function.

• 'callback' — The GraphPlot object handle is visible from within callbacks or
functions invoked by callbacks, but not from within functions invoked from the
command line. This option blocks access to the GraphPlot at the command-line, but
allows callback functions to access it.

If the GraphPlot object is not listed in the Children property of the parent, then
functions that obtain object handles by searching the object hierarchy or querying handle
properties cannot return it. This includes get, findobj, gca, gcf, gco, newplot, cla,
clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'graphplot'

This property is read-only.

 GraphPlot Properties

1-5273

Type of graphics object, returned as 'graphplot'. Use this property to find all objects of
a given type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Tag to associate with GraphPlot
'' (default) | character vector

Tag to associate with the GraphPlot, specified as a character vector. Tags provide a way to
identify graphics objects. Use this property to find all objects with a specific tag within a
plotting hierarchy, for example, searching for the tag using findobj.
Example: 'January Data'
Data Types: char

UserData — Data to associate with GraphPlot
[] (default) | scalar, vector, or matrix | cell array | character array | table | structure

Data to associate with the GraphPlot object, specified as a scalar, vector, matrix, cell
array, character array, table, or structure. MATLAB does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct | table | cell

See Also
digraph | graph | plot

Topics
“Access Property Values”
GraphPlot

Introduced in R2015b

1 Alphabetical List

1-5274

gray
Gray colormap array

Syntax
c = gray
c = gray(m)

Description
c = gray returns the gray colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = gray(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the gray colormap.

surf(peaks);
colormap('gray');

 gray

1-5275

Get the gray colormap array and reverse the order. Then apply the modified colormap to
the surface.

c = gray;
c = flipud(c);
colormap(c);

1 Alphabetical List

1-5276

Downsample the Gray Colormap

Get a downsampled version of the gray colormap containing only twenty colors. Then
display the contours of a paraboloid by applying the colormap and interpolated shading.

c = gray(20);
[X,Y] = meshgrid(-10:1:10);
Z = X.^2 + Y.^2;
surf(X,Y,Z);
colormap(c);
shading interp;

 gray

1-5277

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-5278

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 gray

1-5279

matlab.graphics.Graphics class
Package: matlab.graphics

Common base class for graphics objects

Description
The matlab.graphics.Graphics class is the base class of all graphics objects.
Because graphics objects are part of a heterogeneous hierarchy, you can create arrays of
mixed classes (for example, an array can contain lines, surfaces, axes, and other graphics
objects).

The class of an array of mixed objects is matlab.graphics.Graphics because this
class is common to all graphics object.

Attributes
Abstract true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

See Also
matlab.graphics.GraphicsPlaceholder

Topics
Class Attributes
Property Attributes

1 Alphabetical List

1-5280

matlab.graphics.GraphicsPlaceholder class
Package: matlab.graphics
Superclasses:

Default graphics object

Description
The matlab.graphics.GraphicsPlaceholder class defines the default graphics
object. Instances of this class appear as:

• Elements of pre-allocated arrays created with gobjects.
• Unassigned array element placeholders
• Graphics object properties that hold object handles, but are set to empty values
• Empty values returned by functions that return object handles (for example,

findobj).

Attributes
Sealed true
ConstructOnLoad true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Examples

Test for Current Figure
if isempty(get(groot,'CurrentFigure')
 ... % There is no current figure
end

 matlab.graphics.GraphicsPlaceholder class

1-5281

See Also

Topics
“Graphics Object Programming”
Class Attributes
Property Attributes

1 Alphabetical List

1-5282

graymon
Set default figure properties for grayscale monitors

Note graymon is not recommended.

Syntax
graymon

Description
graymon sets defaults for graphics properties to produce more legible displays for
grayscale monitors.

See Also
axes | figure

Introduced before R2006a

 graymon

1-5283

grid
Display or hide axes grid lines

Syntax
grid on
grid off
grid
grid minor
grid(target, ___)

Description
grid on displays the major grid lines for the current axes or chart returned by the gca
command. Major grid lines extend from each tick mark.

grid off removes all grid lines from the current axes or chart.

grid toggles the visibility of the major grid lines.

grid minor toggles the visibility of the minor grid lines. Minor grid lines lie between the
tick marks. Not all types of charts support minor grid lines.

grid(target, ___) uses the axes or chart specified by target instead of the current
axes or chart. Specify target as the first input argument. Use single quotes around other
input arguments, for example, grid(target,'on').

Examples

Display Grid Lines

Display the grid lines for a sine plot.

x = linspace(0,10);
y = sin(x);

1 Alphabetical List

1-5284

plot(x,y)
grid on

Remove Grid Lines

Create a surface plot and remove the grid lines.

[X,Y,Z] = peaks;
surf(X,Y,Z)
grid off

 grid

1-5285

Display Major and Minor Grid Lines

Display the major and minor grid lines for a sine plot.

x = linspace(0,10);
y = sin(x);
plot(x,y)
grid on
grid minor

1 Alphabetical List

1-5286

Display Grid Lines on Specific Axes

Create a figure with two subplots and assign the Axes objects to the variables ax1 and
ax2. Plot a sine wave in each subplot. Then display the grid lines on the upper subplot by
specifying ax1 as an input argument to the grid function.

x = linspace(0,10);
y = sin(x);
ax1 = subplot(2,1,1);
plot(ax1,x,y)

 grid

1-5287

y2 = sin(3*x);
ax2 = subplot(2,1,2);
plot(ax2,x,y2)

grid(ax1,'on')

1 Alphabetical List

1-5288

Input Arguments
target — Target axes or chart
Axes object | PolarAxes object | graphics object

Target axes or chart, specified as an Axes object, a PolarAxes object, or a graphics
object that has a GridVisible property. For example, you can add or remove grid lines
from a HeatmapChart object using the grid function.

If you do not specify the target, then the grid function affects the graphics object
returned by the gca command.

 grid

1-5289

Tips
• When working with Cartesian axes, some axes properties affect the appearance of the

grid lines. This table lists a subset of axes properties related to the grid lines.

Axes Property Description
XTick, YTick, ZTick Location of tick marks and major grid

lines for each axis direction
XGrid, YGrid, ZGrid Display of major grid lines for each axis

direction
XMinorGrid, YMinorGrid,
ZMinorGrid

Display of minor grid lines for each axis
direction

LineWidth Line width of grid lines, axes box
outline, and tick marks

GridLineStyle Major grid line style
MinorGridLineStyle Minor grid line style
GridColor Major grid line color
MinorGridColor Minor grid line color
GridAlpha Major grid line transparency
MinorGridAlpha Minor grid line transparency
Layer Location of grid lines in relation to the

plotted data

• When working with polar axes, some polar axes properties affect the appearance of
the grid lines. This table lists a subset of polar axes properties related to the grid lines.

PolarAxes Property Description
ThetaTick, RTick Location of tick marks and major grid

lines for each axis direction
ThetaGrid, RGrid Display of major grid lines for each axis

direction
ThetaMinorGrid, RMinorGrid Display of minor grid lines for each axis

direction

1 Alphabetical List

1-5290

PolarAxes Property Description
LineWidth Width of outline, tick marks, and grid

lines
GridLineStyle Major grid line style
MinorGridLineStyle Minor grid line style
GridColor Major grid line color
MinorGridColor Minor grid line color
GridAlpha Major grid line transparency
MinorGridAlpha Minor grid line transparency
Layer Location of grid lines in relation to the

plotted data

Algorithms
The grid function sets these graphics object properties to either 'on' or 'off':

• XGrid, YGrid, and ZGrid when working with Cartesian Axes objects.
• ThetaGrid and RGrid when working with PolarAxes objects.
• GridVisible when working with other types of graphics objects, such as a

HeatmapChart object.

See Also
Functions
axis | box | legend | title | xlabel | ylabel

Properties
Axes | PolarAxes

Topics
“Add Grid Lines and Edit Placement”

Introduced before R2006a

 grid

1-5291

griddata
Interpolate 2-D or 3-D scattered data

Syntax
vq = griddata(x,y,v,xq,yq)
vq = griddata(x,y,z,v,xq,yq,zq)
vq = griddata(___ ,method)

Description
vq = griddata(x,y,v,xq,yq) fits a surface of the form v = f(x,y) to the scattered
data in the vectors (x,y,v). The griddata function interpolates the surface at the
query points specified by (xq,yq) and returns the interpolated values, vq. The surface
always passes through the data points defined by x and y.

vq = griddata(x,y,z,v,xq,yq,zq) fits a hypersurface of the form v = f(x,y,z).

vq = griddata(___ ,method) specifies the interpolation method used to compute vq
using any of the input arguments in the previous syntaxes. method can be 'linear',
'nearest', 'natural', 'cubic', or 'v4'. The default method is 'linear'.

Note Qhull-specific options are no longer supported. Remove the options argument
from all instances in your code that pass it to griddata.

In a future release, griddata will not accept any input vectors of mixed orientation. In
addition, the following syntaxes will be removed:

[Xq,Yq,Vq] = griddata(x,y,v,xq,yq)
[Xq,Yq,Vq] = griddata(x,y,v,xq,yq, method)

To specify a grid of query points, construct a full grid with ndgrid or meshgrid before
calling griddata.

1 Alphabetical List

1-5292

Examples

Interpolate Scattered Data Over Uniform Grid

Interpolate randomly scattered data on a uniform grid of query points.

Sample a function at 200 random points between -2.5 and 2.5.

xy = -2.5 + 5*gallery('uniformdata',[200 2],0);
x = xy(:,1);
y = xy(:,2);
v = x.*exp(-x.^2-y.^2);

x, y, and v are vectors containing scattered (nonuniform) sample points and data.

Define a regular grid and interpolate the scattered data over the grid.

[xq,yq] = meshgrid(-2:.2:2, -2:.2:2);
vq = griddata(x,y,v,xq,yq);

Plot the gridded data as a mesh and the scattered data as dots.

mesh(xq,yq,vq)
hold on
plot3(x,y,v,'o')
xlim([-2.7 2.7])
ylim([-2.7 2.7])

 griddata

1-5293

Interpolate 4-D Data Set Over Grid

Interpolate a 3-D slice of a 4-D function that is sampled at randomly scattered points.

Sample a 4-D function v x, y, z at 2500 random points between -1 and 1. The vectors x,
y, and z contain the nonuniform sample points.

x = 2*rand(2500,1) - 1;
y = 2*rand(2500,1) - 1;
z = 2*rand(2500,1) - 1;
v = x.^2 + y.^3 - z.^4;

1 Alphabetical List

1-5294

Define a regular grid with xy points in the range [-1, 1], and set z = 0. Interpolating on
this grid of 2-D query points (xq,yq,0) produces a 3-D interpolated slice
(xq,yq,0,vq) of the 4-D data set (x,y,z,v).

d = -1:0.05:1;
[xq,yq,zq] = meshgrid(d,d,0);

Interpolate the scattered data on the grid. Plot the results.

vq = griddata(x,y,z,v,xq,yq,zq);
plot3(x,y,v,'ro')
hold on
surf(xq,yq,vq)

 griddata

1-5295

Comparison of Scattered Data Interpolation Methods

Compare the results of several different interpolation algorithms offered by griddata.

Create a sample data set of 50 scattered points. The number of points is artificially small
to highlight the differences between the interpolation methods.

x = -3 + 6*rand(50,1);
y = -3 + 6*rand(50,1);
v = sin(x).^4 .* cos(y);

Create a grid of query points.

[xq,yq] = meshgrid(-3:0.1:3);

Interpolate the sample data using the 'nearest', 'linear', 'natural', and 'cubic'
methods. Plot the results for comparison.

z1 = griddata(x,y,v,xq,yq,'nearest');
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z1)
title('Nearest Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

1 Alphabetical List

1-5296

z2 = griddata(x,y,v,xq,yq,'linear');
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z2)
title('Linear')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

 griddata

1-5297

z3 = griddata(x,y,v,xq,yq,'natural');
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z3)
title('Natural Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

1 Alphabetical List

1-5298

z4 = griddata(x,y,v,xq,yq,'cubic');
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z4)
title('Cubic')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

 griddata

1-5299

Plot the exact solution.

figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,sin(xq).^4 .* cos(yq))
title('Exact Solution')
legend('Sample Points','Exact Surface','Location','NorthWest')

1 Alphabetical List

1-5300

Input Arguments
x, y, z — Sample point coordinates
vectors

Sample point coordinates, specified as vectors. Corresponding elements in x, y, and z
specify the xyz coordinates of points where the sample values v are known. The sample
points must be unique.
Data Types: single | double

 griddata

1-5301

v — Sample values
vector

Sample values, specified as a vector. The sample values in v correspond to the sample
points in x, y, and z.

If v contains complex numbers, then griddata interpolates the real and imaginary parts
separately.
Data Types: single | double
Complex Number Support: Yes

xq, yq, zq — Query points
vector | array

Query points, specified as vectors or arrays. Corresponding elements in the vectors or
arrays specify the xyz coordinates of the query points. The query points are the locations
where griddata performs interpolation.

• Specify arrays if you want to pass a grid of query points. Use ndgrid or meshgrid to
construct the arrays.

• Specify vectors if you want to pass a collection of scattered points.

The specified query points must lie inside the convex hull of the sample data points.
griddata returns NaN for query points outside of the convex hull.
Data Types: single | double

method — Interpolation method
'linear' (default) | 'nearest' | 'natural' | 'cubic' | 'v4'

Interpolation method, specified as one of the methods in this table.

Method Description Continuity
'linear' Triangulation-based linear interpolation

(default) supporting 2-D and 3-D
interpolation.

C0

'nearest' Triangulation-based nearest neighbor
interpolation supporting 2-D and 3-D
interpolation.

Discontinuous

1 Alphabetical List

1-5302

Method Description Continuity
'natural' Triangulation-based natural neighbor

interpolation supporting 2-D and 3-D
interpolation. This method is an efficient
tradeoff between linear and cubic.

C1 except at sample
points

'cubic' Triangulation-based cubic interpolation
supporting 2-D interpolation only.

C2

'v4' Biharmonic spline interpolation (MATLAB 4
griddata method) supporting 2-D
interpolation only. Unlike the other methods,
this interpolation is not based on a
triangulation.

C2

Data Types: char

Output Arguments
vq — Interpolated values
vector | array

Interpolated values, returned as a vector or array. The size of vq depends on the size of
the query point inputs xq, yq, and zq:

• For 2-D interpolation, where xq and yq specify an m-by-n grid of query points, vq is an
m-by-n array.

• For 3-D interpolation, where xq, yq, and zq specify an m-by-n-by-p grid of query
points, vq is an m-by-n-by-p array.

• If xq, yq, (and zq for 3-D interpolation) are vectors that specify scattered points, then
vq is a vector of the same length.

For all interpolation methods other than 'v4', the output vq contains NaN values for
query points outside the convex hull of the sample data. The 'v4' method performs the
same calculation for all points regardless of location.

See Also
delaunay | griddatan | interpn | meshgrid | ndgrid | scatteredInterpolant

 griddata

1-5303

Introduced before R2006a

1 Alphabetical List

1-5304

griddatan
Interpolate N-D scattered data

Syntax
vq = griddatan(x,v,xq)
vq = griddatan(x,v,xq,method)
vq = griddatan(x,v,xq,method,options)

Description
vq = griddatan(x,v,xq) fits a hypersurface of the form v = f(x) to the sample points
x with values v. The griddatan function interpolates the surface at the query points
specified by xq and returns the interpolated values, vq. The surface always passes
through the data points defined by x and v.

vq = griddatan(x,v,xq,method) specifies the interpolation method used to compute
vq. Options are 'linear' or 'nearest'.

vq = griddatan(x,v,xq,method,options) specifies a cell array of character
vectors, options, to be used in Qhull via delaunayn.

Examples

Fit a Hypersurface

Interpolate a 4-D scattered data set and visualize a 3-D isosurface of the interpolated
data.

Create a scattered set of sample points.

X = 2*gallery('uniformdata',[5000 3],0)-1;
Y = sum(X.^2,2);

 griddatan

1-5305

Create x, y, and z grids to use as the 3-D set of query points, and interpolate the scattered
data at these points.

d = -0.8:0.05:0.8;
[y0,x0,z0] = ndgrid(d,d,d);
XI = [x0(:) y0(:) z0(:)];
YI = griddatan(X,Y,XI);

Since it is difficult to visualize 4-D data sets, use isosurface at 0.8 to visualize the
interpolation result.

YI = reshape(YI, size(x0));
p = patch(isosurface(x0,y0,z0,YI,0.8));
isonormals(x0,y0,z0,YI,p)
p.FaceColor = 'blue';
p.EdgeColor = 'none';
view(3)
axis equal
camlight
lighting phong

1 Alphabetical List

1-5306

Nearest Neighbor Interpolation

Use nearest neighbor interpolation on a 3-D data set.

Create a sample 3-D data set. The matrix X contains the xyz locations of the observed
data, and v contains the (randomly generated) observed data. This type of data set could
represent, for example, oxygen levels in ocean water at these locations.

X = [rand(100,1) rand(100,1) rand(100,1)];
v = rand(100,1);

 griddatan

1-5307

Use nearest neighbor interpolation to approximate the value of the underlying function at
some query points.

[xx,yy,zz] = meshgrid(0.2:0.025:0.8);
xq = [xx(:) yy(:) zz(:)];
vq = griddatan(X,v,xq,'nearest');

Plot slices of the result on top of the sample point locations.

vq = reshape(vq,size(xx));
plot3(X(:,1),X(:,2),X(:,3),'r*')
hold on
slice(xx,yy,zz,vq,[0.2 0.4 0.6 0.8],0.5,0.5)

1 Alphabetical List

1-5308

Input Arguments
x — Sample point coordinates
matrix

Sample point coordinates, specified as a matrix. Specify x as an m-by-n matrix to
represent m points in n-dimensional space. The sample points must be unique.
Data Types: single | double

v — Sample values
vector

Sample values, specified as a vector. Specify v as a vector of length m, with one value for
each sample point (row) specified in x.

If v contains complex numbers, then griddatan interpolates the real and imaginary
parts separately.
Data Types: single | double
Complex Number Support: Yes

xq — Query points
matrix

Query points, specified as a matrix. Specify xq as a p-by-n matrix to represent p points in
n-dimensional space. xq is usually created from a uniform grid produced by ndgrid.
Data Types: single | double

method — Interpolation method
'linear' (default) | 'nearest' | []

Interpolation method, specified as one of the values in this table. These methods are both
based on a Delaunay triangulation of the input data.

Option Description Continuity
'linear' (default) Triangulation-based linear

interpolation.
C0

'nearest' Nearest neighbor
interpolation.

Discontinuous

 griddatan

1-5309

If method is [], then griddatan uses the default 'linear' method.
Data Types: char

options — Qhull-specific options
cell array | [] | {''}

Qhull-specific options, specified as a cell array. For a list of supported options, see Qhull
Quick Reference.

If options is [], then griddatan uses the default options:

• {'Qt' 'Qbb' 'Qc'} for 2-D and 3-D interpolations.
• {'Qt' 'Qbb' 'Qc' 'Qx'} for interpolations in 4+ dimensions.

If options is {''}, then griddatan does not use any options, not even the defaults.
Data Types: cell

Output Arguments
vq — Interpolated values
vector

Interpolated values, returned as a vector of length p. The interpolated values in vq
correspond to the query points (rows) in xq.

Tips
• It is not practical to use griddatan for interpolation in dimensions higher than about

6-D, because the memory required by the underlying triangulation grows exponentially
with the number of dimensions.

See Also
delaunayn | griddata | meshgrid

Introduced before R2006a

1 Alphabetical List

1-5310

http://www.qhull.org/html/qh-quick.htm
http://www.qhull.org/html/qh-quick.htm

griddedInterpolant
Gridded data interpolation

Description
Use griddedInterpolant to perform interpolation on a 1-D, 2-D, 3-D, or N-D gridded
data on page 1-5330 set. griddedInterpolant returns the interpolant on page 1-5330
F for the given dataset. You can evaluate F at a set of query points, such as (xq,yq) in 2-
D, to produce interpolated values vq = F(xq,yq).

Use scatteredInterpolant to perform interpolation with scattered data on page 1-
5331.

Creation

Syntax
F = griddedInterpolant
F = griddedInterpolant(x,v)
F = griddedInterpolant(X1,X2,...,Xn,V)
F = griddedInterpolant(V)
F = griddedInterpolant(gridVecs,V)
F = griddedInterpolant(___ ,Method)
F = griddedInterpolant(___ ,Method,ExtrapolationMethod)

Description
F = griddedInterpolant creates an empty gridded data interpolant object.

F = griddedInterpolant(x,v) creates a 1-D interpolant from a vector of sample
points x and corresponding values v.

F = griddedInterpolant(X1,X2,...,Xn,V) creates a 2-D, 3-D, or N-D interpolant
using a full grid on page 1-5331 of sample points passed as a set of n-dimensional arrays

 griddedInterpolant

1-5311

X1,X2,...,Xn. The V array contains the sample values associated with the point
locations in X1,X2,...,Xn. Each of the arrays X1,X2,...,Xn must be the same size as
V.

F = griddedInterpolant(V) uses the default grid to create the interpolant. When you
use this syntax, griddedInterpolant defines the grid as a set of points whose spacing
is 1 and range is [1, size(V,i)] in the ith dimension. Use this syntax when you want to
conserve memory and are not concerned about the absolute distances between points.

F = griddedInterpolant(gridVecs,V) specifies a cell array gridVecs that
contains n grid vectors on page 1-5331 to describe an n-dimensional grid of sample
points. Use this syntax when you want to use a specific grid and also conserve memory.

F = griddedInterpolant(___ ,Method) specifies an alternative interpolation
method: 'linear', 'nearest', 'next', 'previous', 'pchip', 'cubic', 'makima',
or 'spline'. You can specify Method as the last input argument in any of the previous
syntaxes.

F = griddedInterpolant(___ ,Method,ExtrapolationMethod) specifies both the
interpolation and extrapolation methods. griddedInterpolant uses
ExtrapolationMethod to estimate the value when your query points fall outside the
domain of your sample points.

Input Arguments
x — Sample points
vector

Sample points, specified as a vector. x and v must be the same size. The sample points in
x must be unique.
Data Types: single | double

v — Sample values
vector

Sample values, specified as a vector. x and v must be the same size.
Data Types: single | double

X1, X2, Xn — Sample points in full grid form
arrays

1 Alphabetical List

1-5312

Sample points in full grid form, specified as separate n-dimensional arrays. The sample
points must be unique and sorted. You can create the arrays X1,X2,...,Xn using the
ndgrid function. These arrays are all the same size, and each one is the same size as V.
Data Types: single | double

gridVecs — Sample points in grid vector form
cell array of grid vectors

Sample points in grid vector form, specified as a cell array of grid vectors
{xg1,xg2,...,xgn}. The sample points must be unique and sorted. The vectors must
specify a grid that is the same size as V. In other words, size(V) = [length(xg1)
length(xg2),...,length(xgn)]. Use this form as an alternative to the full grid to
save memory when your grid is very large.
Data Types: single | double

V — Sample values
array

Sample values, specified as an array. The elements of V are the values that correspond to
the sample points. The size of V must be the size of the full grid of sample points.

• If you specify the sample points as a full grid consisting of N-D arrays, then V must be
the same size as any one of X1,X2,...,Xn.

• If you specify the sample points as grid vectors, then size(V) = [length(xg1)
length(xg2) ... length(xgn)].

Data Types: single | double

Method — Interpolation method
'linear' (default) | 'nearest' | 'next' | 'previous' | 'pchip' | 'cubic' |
'spline' | 'makima'

Interpolation method, specified as one of the options in this table.

 griddedInterpolant

1-5313

Method Description Continuity Comments
'linear'
(default)

Linear interpolation. The
interpolated value at a query
point is based on linear
interpolation of the values at
neighboring grid points in each
respective dimension.

C0 • Requires at least 2 grid
points in each dimension

• Requires more memory than
'nearest'

'nearest' Nearest neighbor interpolation.
The interpolated value at a
query point is the value at the
nearest sample grid point.

Discontinuous • Requires 2 grid points in
each dimension

• Fastest computation with
modest memory
requirements

'next' Next neighbor interpolation (for
1-D only). The interpolated
value at a query point is the
value at the next sample grid
point.

Discontinuous • Requires at least 2 points
• Same memory requirements

and computation time as
'nearest'

'previous' Previous neighbor interpolation
(for 1-D only). The interpolated
value at a query point is the
value at the previous sample
grid point.

Discontinuous • Requires at least 2 points
• Same memory requirements

and computation time as
'nearest'

'pchip' Shape-preserving piecewise
cubic interpolation (for 1-D
only). The interpolated value at
a query point is based on a
shape-preserving piecewise
cubic interpolation of the values
at neighboring grid points.

C1 • Requires at least 4 points
• Requires more memory and

computation time than
'linear'

1 Alphabetical List

1-5314

Method Description Continuity Comments
'cubic' Cubic interpolation. The

interpolated value at a query
point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic convolution.

C1 • Grid must have uniform
spacing, although the
spacing in each dimension
does not have to be the
same

• Requires at least 4 points in
each dimension

• Requires more memory and
computation time than
'linear'

'makima' Modified Akima cubic Hermite
interpolation. The interpolated
value at a query point is based
on a piecewise function of
polynomials with degree at
most three evaluated using the
values of neighboring grid
points in each respective
dimension. The Akima formula
is modified to avoid overshoots.

C1 • Requires at least 2 points in
each dimension

• Produces fewer undulations
than 'spline', but does
not flatten as aggressively as
'pchip'

• Computation is more
expensive than 'pchip',
but typically less than
'spline'

• Memory requirements are
similar to those of
'spline'

'spline' Cubic spline interpolation. The
interpolated value at a query
point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires 4 points in each
dimension

• Requires more memory and
computation time than
'cubic'

ExtrapolationMethod — Extrapolation method
'linear' (default) | 'nearest' | 'next' | 'previous' | 'pchip' | 'cubic' |
'spline' | 'makima' | 'none'

 griddedInterpolant

1-5315

Extrapolation method, specified as 'linear', 'nearest', 'next', 'previous',
'pchip', 'cubic', 'spline', or 'makima'. In addition, you can specify 'none' if you
want queries outside the domain of your grid to return NaN values.

If you omit ExtrapolationMethod, the default is the value you specify for Method. If
you omit both the Method and ExtrapolationMethod arguments, both values default to
'linear'.

Properties
GridVectors — Grid vectors
cell array

Grid vectors, specified as a cell array {xg1,xg2,...,xgn}. These vectors specify the
grid points (locations) for the values in Values. The grid points must be unique.

Index-based editing of the properties of F is not supported. Instead, completely replace
the GridVectors or Values arrays as necessary.
Data Types: cell

Values — Function values at sample points
array

Function values at sample points, specified as an array of values associated with the grid
points in GridVectors.

Index-based editing of the properties of F is not supported. Instead, completely replace
the GridVectors or Values arrays as necessary.
Data Types: single | double

Method — Interpolation method
'linear' (default) | 'nearest' | 'next' | 'previous' | 'pchip' | 'cubic' |
'spline' | 'makima'

Interpolation method, specified as a character vector. Method can be: 'linear',
'nearest', 'next', 'previous', 'pchip', 'cubic', 'spline', or 'makima'. See
Method for descriptions of these methods.
Data Types: char

1 Alphabetical List

1-5316

ExtrapolationMethod — Extrapolation method
'linear' | 'nearest' | 'next' | 'previous' | 'pchip' | 'cubic' | 'spline' |
'makima' | 'none'

Extrapolation method, specified as a character vector. ExtrapolationMethod can be:
'linear', 'nearest', 'next', 'previous', 'pchip', 'cubic', 'spline',
'makima', or 'none'. A value of 'none' indicates that extrapolation is disabled. The
default value is the value of Method.
Data Types: char

Evaluate Interpolant at Specific Points
Use griddedInterpolant to create the interpolant on page 1-5330, F. Then you can
evaluate F at specific points using any of the following syntaxes:

F = griddedInterpolant
F = griddedInterpolant(x,v)
F = griddedInterpolant(X1,X2,...,Xn,V)
F = griddedInterpolant(V)
F = griddedInterpolant(gridVecs,V)
F = griddedInterpolant(___ ,Method)
F = griddedInterpolant(___ ,Method,ExtrapolationMethod)
Vq = F(Xq)
Vq = F(xq1,xq2,...,xqn)
Vq = F(Xq1,Xq2,...,Xqn)
Vq = F({xgq1,xgq2,...,xgqn})

• Vq = F(Xq) specifies the query points in the matrix Xq. Each row of Xq contains the
coordinates of a query point.

• Vq = F(xq1,xq2,...,xqn) specifies the query points xq1,xq2,...,xqn as
column vectors of length m representing m points scattered in n-dimensional space.

• Vq = F(Xq1,Xq2,...,Xqn) specifies the query points using the n-dimensional
arrays Xq1,Xq2,...,Xqn, which define a full grid on page 1-5331 of points.

• Vq = F({xgq1,xgq2,...,xgqn}) specifies the query points as grid vectors on page
1-5331. Use this syntax to conserve memory when you want to query a large grid of
points.

 griddedInterpolant

1-5317

Examples

1-D Interpolation

Use griddedInterpolant to interpolate a 1-D data set.

Create a vector of scattered sample points v. The points are sampled at random 1-D
locations between 0 and 20.

x = sort(20*rand(100,1));
v = besselj(0,x);

Create a gridded interpolant object for the data. By default, griddedInterpolant uses
the 'linear' interpolation method.

F = griddedInterpolant(x,v)

F =
 griddedInterpolant with properties:

 GridVectors: {[100x1 double]}
 Values: [100x1 double]
 Method: 'linear'
 ExtrapolationMethod: 'linear'

Query the interpolant F at 500 uniformly spaced points between 0 and 20. Plot the
interpolated results (xq,vq) on top of the original data (x,v).

xq = linspace(0,20,500);
vq = F(xq);
plot(x,v,'ro')
hold on
plot(xq,vq,'.')
legend('Sample Points','Interpolated Values')

1 Alphabetical List

1-5318

3-D Interpolation Using Full Grid vs. Grid Vectors

Interpolate 3-D data using two methods to specify the query points.

Create and plot a 3-D data set representing the function z x, y =
sin x2 + y2

x2 + y2 evaluated at a

set of gridded sample points in the range [-5,5].

[x,y] = ndgrid(-5:0.8:5);
z = sin(x.^2 + y.^2) ./ (x.^2 + y.^2);
surf(x,y,z)

 griddedInterpolant

1-5319

Create a gridded interpolant object for the data.

F = griddedInterpolant(x,y,z);

Use a finer mesh to query the interpolant and improve the resolution.

[xq,yq] = ndgrid(-5:0.1:5);
vq = F(xq,yq);
surf(xq,yq,vq)

1 Alphabetical List

1-5320

In cases where there are a lot of sample points or query points, and where memory usage
becomes a concern, you can use grid vectors to improve memory usage.

• When you specify grid vectors instead of using ndgrid to create the full grid,
griddedInterpolant avoids forming the full query grid to carry out the
calculations.

• When you pass grid vectors, they are normally grouped together as cells in a cell
array, {xg1, xg2, ..., xgn}. The grid vectors are a compact way to represent the
points of the full grid.

 griddedInterpolant

1-5321

Alternatively, execute the previous commands using grid vectors.

x = -5:0.8:5;
y = x';
z = sin(x.^2 + y.^2) ./ (x.^2 + y.^2);
F = griddedInterpolant({x,y},z);
xq = -5:0.1:5;
yq = xq';
vq = F({xq,yq});
surf(xq,yq,vq)

1 Alphabetical List

1-5322

Interpolation with Default Grid

Use the default grid to perform a quick interpolation on a set of sample points. The
default grid uses unit-spaced points, so this interpolation is useful when the exact xy
spacing between the sample points is not important.

Create a matrix of sample function values and plot them against the default grid.

x = (1:0.3:5)';
y = x';
V = cos(x) .* sin(y);

 griddedInterpolant

1-5323

n = length(x);
surf(1:n,1:n,V)

Interpolate the data using the default grid.

F = griddedInterpolant(V)

F =
 griddedInterpolant with properties:

 GridVectors: {[1 2 3 4 5 6 7 8 9 10 11 12 13 14] [1x14 double]}
 Values: [14x14 double]
 Method: 'linear'
 ExtrapolationMethod: 'linear'

1 Alphabetical List

1-5324

Query the interpolant and plot the results.

[xq,yq] = ndgrid(1:0.2:n);
Vq = F(xq,yq);
surf(xq',yq',Vq)

2-D Interpolation Over Finer Grid

Interpolate coarsely sampled data using a full grid with spacing of 0.5.

Define the sample points as a full grid with range [1, 10] in both dimensions.

 griddedInterpolant

1-5325

[X,Y] = ndgrid(1:10,1:10);

Sample f (x, y) = x2 + y2 at the grid points.

V = X.^2 + Y.^2;

Create the interpolant, specifying cubic interpolation.

F = griddedInterpolant(X,Y,V,'cubic');

Define a full grid of query points with 0.5 spacing and evaluate the interpolant at those
points. Then plot the result.

[Xq,Yq] = ndgrid(1:0.5:10,1:0.5:10);
Vq = F(Xq,Yq);
mesh(Xq,Yq,Vq);

1 Alphabetical List

1-5326

1-D Extrapolation

Compare results of querying the interpolant outside the domain of F using the 'pchip'
and 'nearest' extrapolation methods.

Create the interpolant, specifying 'pchip' as the interpolation method and 'nearest'
as the extrapolation method.

x = [1 2 3 4 5];
v = [12 16 31 10 6];
F = griddedInterpolant(x,v,'pchip','nearest')

 griddedInterpolant

1-5327

F =
 griddedInterpolant with properties:

 GridVectors: {[1 2 3 4 5]}
 Values: [12 16 31 10 6]
 Method: 'pchip'
 ExtrapolationMethod: 'nearest'

Query the interpolant, and include points outside the domain of F.

xq = 0:0.1:6;
vq = F(xq);
figure
plot(x,v,'o',xq,vq,'-b');
legend ('v','vq')

1 Alphabetical List

1-5328

Query the interpolant at the same points again, this time using the pchip extrapolation
method.

F.ExtrapolationMethod = 'pchip';
figure
vq = F(xq);
plot(x,v,'o',xq,vq,'-b');
legend ('v','vq')

 griddedInterpolant

1-5329

Definitions

Interpolant
Interpolating function that you can evaluate at query points.

Gridded Data
A set of points that are axis-aligned and ordered.

1 Alphabetical List

1-5330

Scattered Data
A set of points that have no structure among their relative locations.

Full Grid
A grid represented as a set of arrays. For example, you can create a full grid using
ndgrid.

Grid Vectors
A set of vectors that serve as a compact representation of a grid in ndgrid format.

For example, [X,Y] = ndgrid(xg,yg) returns a full grid in the matrices X and Y. You
can represent the same grid using the grid vectors xg and yg.

Tips
• It is quicker to evaluate a griddedInterpolant object F at many different sets of

query points than it is to compute the interpolations separately using interp1,
interp2, interp3, or interpn. For example:

% Fast to create interpolant F and evaluate multiple times
F = griddedInterpolant(X1,X2,V)
v1 = F(Xq1)
v2 = F(Xq2)

% Slower to compute interpolations separately using interp2
v1 = interp2(X1,X2,V,Xq1)
v2 = interp2(X1,X2,V,Xq2)

See Also
fillmissing | filloutliers | interp1 | interp2 | interp3 | interpn | meshgrid |
ndgrid | scatteredInterpolant

Topics
“Resample Image with Gridded Interpolation”

 griddedInterpolant

1-5331

“Interpolating Gridded Data”

Introduced in R2011b

1 Alphabetical List

1-5332

GridLayout Properties
Control behavior of grid layout manager

Description
Grid layout managers position UI components along the rows and columns of an invisible
grid that spans the entire figure or a container within the figure. By changing property
values of a grid layout, you can modify certain aspects of its behavior. Use dot notation to
refer to a specific object and property:

uf = uifigure;
g = uigridlayout(uf);
g.ColumnWidth = {100,'1x'};

Properties
Grid

ColumnWidth — Column width
{'1x','1x'} (default) | cell array

Column width, specified as a cell array containing either numbers or numbers paired with
'x' characters. You can specify any combination of values. The number of elements in the
cell array controls the number of columns in the grid. For example, to create a 4-column
grid, specify a 1-by-4 cell array.

There are two different types of column widths:

• Fixed width in pixels — Specify a number. The column width is fixed at the number of
pixels you specify. When the parent container resizes, the column width does not
change.

• Variable width — Specify a number paired with an 'x' character (for example, '1x').
When the parent container resizes, the column width grows or shrinks. Variable-width
columns fill the remaining horizontal space that the fixed-width columns do not use.
The number you pair with the 'x' character is a weight for dividing up the remaining
space among all the variable-width columns. If the grid has only one variable-width

 GridLayout Properties

1-5333

column, then it uses all the remaining space regardless of the number. If there are
multiple variable-width columns that use the same number, then they share the space
equally. Otherwise, the amount of space is proportional to the number.

For example, {100,'2x','1x'} specifies 100 pixels for the first column, and the last
two columns share the remaining horizontal space. The second column uses twice as
much space as the third column.

Changing certain aspects of a layout can affect the value of this property. For example,
adding more components to a fully populated grid changes the size of the grid to
accommodate the new components. And if you try to delete a column that contains
components, the ColumnWidth property does not change until you move those
components out of that column.

RowHeight — Row height
{'1x','1x'} (default) | cell array

Row height, specified as a cell array containing either numbers or numbers paired with
'x' characters. You can specify any combination of values. The number of elements in the
cell array controls the number of rows in the grid. For example, to create a grid that has 4
rows, specify a 1-by-4 cell array.

There are two different types of row heights:

• Fixed height in pixels — Specify a number. The row height is fixed at the number of
pixels you specify. When the parent container resizes, the row height does not change.

• Variable height — Specify a number paired with an 'x' character (for example, '1x').
When the parent container resizes, the row grows or shrinks. Variable-height rows fill
the remaining vertical space that the fixed-height rows do not use. The number you
pair with the 'x' character is a weight for dividing up the remaining space among all
the variable-height rows. If the grid has only one variable-height row, then it uses all
the remaining space regardless of the number. If there are multiple variable-height
rows that use the same number, then they share the space equally. Otherwise, the
amount of space is proportional to the number.

For example {100,'2x','1x'} specifies 100 pixels for the first row, and the last two
rows share the remaining vertical space. The second row uses twice as much space as the
third row.

Changing certain aspects of a layout can affect the value of this property. For example,
adding more components to a fully populated grid changes the size of the grid to

1 Alphabetical List

1-5334

accommodate the new components. And if you try to delete a row that contains
components, the RowHeight property does not change until you move those components
out of that row.

ColumnSpacing — Column spacing
10 (default) | number

Column spacing, specified as a scalar number of pixels between adjacent columns in the
grid. The number you specify applies to all columns.

RowSpacing — Row spacing
10 (default) | number

Row spacing, specified as a scalar number of pixels between adjacent rows in the grid.
The number you specify applies to all rows.

Padding — Padding
[10 10 10 10] (default) | [left bottom right top]

Padding around the outer perimeter of the grid, specified as a vector of the form [left
bottom right top]. The elements of the vector are described in the table below.

Vector Element Description
left Distance in pixels between the inner left edge of the parent

container and the left edge of the grid.
bottom Distance in pixels between the inner bottom edge of the parent

container and the bottom edge of the grid.
right Distance in pixels between the inner right edge of the parent

container and the right edge of the grid.
top Distance in pixels between the inner top edge of the parent

container and the top edge of the grid. The inner top edge of the
parent container starts below all decorations such as titles, tab
labels, or menu bars.

Interactivity

Visible — Visibility of children
'on' (default) | 'off'

Visibility of children, specified as 'on' or 'off'. Set this property to 'off' to hide all
child components in the grid and their descendants. The children and their descendants

 GridLayout Properties

1-5335

are hidden regardless of the value of their Visible properties. When components are
hidden, you can get and set their properties even though they do not appear in the app.

When you set this property to 'on', the children and their descendants are visible only if
their Visible properties are also set to 'on'.

Setting the Visible property on the grid does not change the values of the Visible
properties of its descendants.

Scrollable — Ability to scroll
'off' (default) | 'on'

Ability to scroll, specified as 'off' or 'on'. Setting this property to 'on' enables
scrolling within the grid. In order to scroll, these conditions must also be met:

• The sum of the values specified for the 'RowHeight' property of the grid must be
larger than the height of the parent container.

• The sum of the values specified for the 'ColumnWidth' property of the grid must be
larger than the width of the parent container.

• At least one row or column of the grid must be set to a fixed pixel height or width.
• The grid must contain components.

Certain types of charts and axes do not support scrollable containers. However, you can
place the chart or axes in a nonscrollable panel, and then place the panel in the scrollable
container. For more information, see “Displaying Graphics in App Designer”.

Position

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for a nested grid layout container. If the grid layout is not a child of another grid
layout container (for example, it is a child of a figure or panel), then this property is
empty and has no effect. However, if the grid layout is a child of another grid layout, you
can place that child grid in the desired row and column of the parent grid by setting the
Row and Column properties on the GridLayoutOptions object.

For example, this code nests grid2 in the third row and second column of grid1.

grid1 = uigridlayout([4 3]);
grid2 = uigridlayout(grid1);

1 Alphabetical List

1-5336

grid2.Layout.Row = 3;
grid2.Layout.Column = 2;

To make the child grid span multiple rows or columns of its parent grid, specify the Row
or Column property as a two-element vector. For example, this command spans grid2
over columns 2 through 3 of grid1:

grid2.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.

 GridLayout Properties

1-5337

• Cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.

1 Alphabetical List

1-5338

MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

 GridLayout Properties

1-5339

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Children — Children
empty GraphicsPlaceholderArray | array of UI component objects

Children, returned as an array of UI component objects. Use this property to view the list
of children or to reorder the children by setting the property to a permutation of itself.
You cannot add or remove children using this property. To add a child to this list, set the
Parent property of the child UI component.

Reordering the children has no effect on the location of the components in the grid. To
change the location of a component in a grid, set its Layout property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

1 Alphabetical List

1-5340

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uigridlayout'

This property is read-only.

Type of graphics object, returned as 'uigridlayout'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

 GridLayout Properties

1-5341

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
appdesigner | scroll | uigridlayout

Topics
“Using Grid Layout Managers”

Introduced in R2018b

1 Alphabetical List

1-5342

groot
Graphics root object

Syntax
groot
r = groot

Description
groot refers to the graphics root object. Use groot to access root properties. For a list
of properties, see Root.

r = groot stores the graphics root object handle. To set root properties using dot
notation, you must store the handle first.

Examples

View Root Property Values
View a list of graphics root properties and their current values.

get(groot)

 CallbackObject: [0x0 GraphicsPlaceholder]
 Children: [0x0 GraphicsPlaceholder]
 CurrentFigure: [0x0 GraphicsPlaceholder]
 FixedWidthFontName: 'Courier New'
 HandleVisibility: 'on'
 MonitorPositions: [1 1 1280 1024]
 Parent: [0x0 GraphicsPlaceholder]
 PointerLocation: [1 1]
 ScreenDepth: 32
 ScreenPixelsPerInch: 96
 ScreenSize: [1 1 1280 1024]

 groot

1-5343

 ShowHiddenHandles: 'off'
 Tag: ''
 Type: 'root'
 Units: 'pixels'
 UserData: []

Set Root Property Values
Set graphics root property values by storing the object handle and using dot notation.

r = groot;
r.ShowHiddenHandles = 'on';

Tips
• Use the graphics root object to set default values on the root level for other types of

objects. For example, set the default colormap for all future figures to the summer
colormap.

set(groot,'DefaultFigureColormap',summer)

To restore a property to its original MATLAB default, use the 'remove' keyword.

set(groot,'DefaultFigureColormap','remove')

For more information on setting default values, see “Default Property Values”.

See Also
Functions
gca | gcf

Properties
Root

Introduced in R2014b

1 Alphabetical List

1-5344

Group Properties
Group object appearance and behavior

Description
Group object properties control the behavior of Group objects. By changing property
values, you can modify certain aspects of the Group object.

Starting in R2014b, you can use dot notation to query and set properties.

g = hggroup;
c = g.Children;
g.Visible = 'off';

If you are using an earlier release, use the get and set functions instead.

Properties
Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend.

 Group Properties

1-5345

• 'off' — Do not include the object in the legend. (default)
• 'children' — Include only children of the object as separate items in the legend.

Interactivity

Visible — Visibility
'on' (default) | 'off'

Visibility, specified as one of these values:

• 'on' — Display all objects in the Group object.
• 'off' — Hide all objects in the Group object. You still can access the properties of

invisible Group objects. Setting the Visible property for the Group object does not
change the Visible property for objects in the Group object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

1 Alphabetical List

1-5346

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 Group Properties

1-5347

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-5348

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

 Group Properties

1-5349

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Children that can capture mouse clicks
'visible' (default) | 'none'

Children that can capture mouse clicks, specified as one of these values:

• 'visible' — Any child object can capture a mouse click, depending on the
PickableParts property value of the child.

• 'none' — No child objects can capture mouse clicks, regardless of the
PickableParts property value of the child.

HitTest — Response to mouse clicks captured by children
'on' (default) | 'off'

Response to mouse clicks captured by children, specified one of these values:

1 Alphabetical List

1-5350

• 'on' — Trigger the ButtonDownFcn callback of Group object. If you have defined the
UIContextMenu property, then invoke the context menu.

• 'off' — Do not trigger the callbacks of the Group object. Instead, trigger the
callbacks for the nearest ancestor that has a HitTest property set to 'on' and a
PickableParts property value that enables the ancestor to capture mouse clicks.

A Group object cannot capture mouse clicks. However, if you click a child of the Group
object and if the child has a HitTest property set to 'off', then the child passes the
click to the Group object.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array | array of graphics objects

Children, returned as an array of graphics objects. Use this property to view a list of the
children or to reorder the children by setting the property to a permutation of itself.

You cannot add or remove children using the Children property. To add a child to this
list, set the Parent property of the child graphics object to the Group object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

 Group Properties

1-5351

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'hggroup'

This property is read-only.

Type of graphics object, returned as 'hggroup'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

1 Alphabetical List

1-5352

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
hggroup

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Group Properties

1-5353

groupcounts
Number of group elements

Syntax
G = groupcounts(T,groupvars)
G = groupcounts(T,groupvars,groupbins)
G = groupcounts(___ ,Name,Value)

B = groupcounts(A)
B = groupcounts(A,groupbins)
B = groupcounts(___ ,Name,Value)
[B,BG] = groupcounts(A, ___)

Description
G = groupcounts(T,groupvars) computes the number of elements in each group of
data in a table or timetable, and returns a table containing the groups and their counts. A
group is the set of unique combinations of grouping variables in groupvars. For
example, G = groupcounts(T,'Gender') returns the number of Male elements and
the number of Female elements in the variable Gender.

G = groupcounts(T,groupvars,groupbins) specifies how to bin the data in
groupvars. For example, G = groupcounts(T,'SaleDate','year') gives the yearly
sales counts according to SaleDate.

G = groupcounts(___ ,Name,Value) specifies additional grouping properties using
one or more name-value pairs for any of the previous syntaxes. For example, G =
groupcounts(T,'Category1','IncludeMissingGroups',false) excludes the
group made from missing categorical data indicated by <undefined>.

B = groupcounts(A) returns a vector containing the group counts for each unique
combination of grouping vectors represented in a column vector, matrix, or cell array of
column vectors A.

B = groupcounts(A,groupbins) bins the data according to groupbins.

1 Alphabetical List

1-5354

B = groupcounts(___ ,Name,Value) specifies additional grouping properties using
one or more name-value pairs.

[B,BG] = groupcounts(A, ___) also returns the groups corresponding to the counts
in B.

Examples

Group Table Variables

Compute the number of group elements from table data.

Create a table containing information about five individuals.

Gender = ["male";"female";"male";"female";"male"];
Smoker = logical([1;0;1;0;1]);
Weight = [176;163;131;133;119];
T = table(Gender,Smoker,Weight)

T=5×3 table
 Gender Smoker Weight
 ________ ______ ______

 "male" true 176
 "female" false 163
 "male" true 131
 "female" false 133
 "male" true 119

Count the number of elements in each group by gender.

G1 = groupcounts(T,'Gender')

G1=2×2 table
 Gender GroupCount
 ________ __________

 "female" 2
 "male" 3

 groupcounts

1-5355

Count the number of elements in each group by gender and smoker status. By default,
groupcounts suppresses groups with zero elements.

G2 = groupcounts(T,{'Gender','Smoker'})

G2=2×3 table
 Gender Smoker GroupCount
 ________ ______ __________

 "female" false 2
 "male" true 3

To count all groups, including those with zero elements, specify the
'IncludeEmptyGroups' parameter with value true.

G3 = groupcounts(T,{'Gender','Smoker'},'IncludeEmptyGroups',true)

G3=4×3 table
 Gender Smoker GroupCount
 ________ ______ __________

 "female" false 2
 "female" true 0
 "male" false 0
 "male" true 3

Specify Group Bins

Group data according to specified bins.

Create a timetable containing sales information for days within a single month.

TimeStamps = datetime([2017 3 4; 2017 3 2; 2017 3 15; 2017 3 10;...
 2017 3 14; 2017 3 31; 2017 3 25;...
 2017 3 29; 2017 3 21; 2017 3 18]);
Profit = [2032 3071 1185 2587 1998 2899 3112 909 2619 3085]';
TotalItemsSold = [14 13 8 5 10 16 8 6 7 11]';
TT = timetable(TimeStamps,Profit,TotalItemsSold)

TT=10×3 timetable
 TimeStamps Profit TotalItemsSold

1 Alphabetical List

1-5356

 ___________ ______ ______________

 04-Mar-2017 2032 14
 02-Mar-2017 3071 13
 15-Mar-2017 1185 8
 10-Mar-2017 2587 5
 14-Mar-2017 1998 10
 31-Mar-2017 2899 16
 25-Mar-2017 3112 8
 29-Mar-2017 909 6
 21-Mar-2017 2619 7
 18-Mar-2017 3085 11

Compute the group counts by the total items sold, binning the groups into intervals of
item numbers.

G = groupcounts(TT,'TotalItemsSold',[0 4 8 12 16])

G=3×2 table
 disc_TotalItemsSold GroupCount
 ___________________ __________

 [4, 8) 3
 [8, 12) 4
 [12, 16] 3

Compute the group counts grouped by day of the week.

G = groupcounts(TT,'TimeStamps','dayname')

G=5×2 table
 dayname_TimeStamps GroupCount
 __________________ __________

 Tuesday 2
 Wednesday 2
 Thursday 1
 Friday 2
 Saturday 3

 groupcounts

1-5357

Multiple Grouping Vectors for Vector Input

Compute the group counts for four groups based on their gender and smoker status.

Store patient information as three vectors of different types.

Gender = ["male";"female";"male";"female";"male"];
Smoker = logical([1;0;1;0;1]);
Weight = [176;163;131;133;119];

Grouping by gender and smoker status, compute the group counts. B contains the counts
for each group. BG is a cell array containing two vectors that describe the groups as you
look at their elements rowwise. For instance, the first row of BG{1} says that the patients
in the first group are female, and the first row of BG{2} says that they are nonsmokers.
The count for that group is 2, found in the corresponding row of B.

[B,BG] = groupcounts({Gender,Smoker},'IncludeEmptyGroups',true);
B

B = 4×1

 2
 0
 0
 3

BG{1}

ans = 4x1 string array
 "female"
 "female"
 "male"
 "male"

BG{2}

ans = 4x1 logical array

 0
 1
 0
 1

1 Alphabetical List

1-5358

Input Arguments
T — Input data
table | timetable

Input data, specified as a table or timetable.

A — Input vectors
column vector | matrix | cell array of column vectors

Input array, specified as a column vector, matrix, or cell array of column vectors
representing grouping vectors. When A is a matrix, the grouping vectors are columnwise.

groupvars — Grouping variables
scalar | vector | matrix | cell array | function handle

Grouping variables for table input, specified as a scalar, vector, matrix, cell array, or
function handle.

groupvars indicates which columns of the input table to use to compute the groups, and
can be one of the following:

• A character vector or scalar string specifying a single table variable name
• A cell array of character vectors or a string array, where each element is a table

variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes a table variable as input and returns a logical scalar

Example: 'Age'
Example: {'Height','Weight'}

groupbins — Binning scheme
'none' (default) | character vector | scalar | vector | cell array

Binning scheme, specified as one of the following options:

 groupcounts

1-5359

• 'none', indicating the groups are returned according to the specified grouping
variables only

• A list of bin edges, specified as a numeric vector, or a datetime vector for datetime
grouping variables or vectors

• A number of bins, specified as an integer scalar
• A time duration, specified as a scalar of type duration or calendarDuration,

indicating bin widths (for datetime or duration grouping variables or vectors only)
• A cell array listing binning rules for each grouping variable or vector
• A time bin for datetime and duration grouping variables or vectors only, specified

as one of the following character vectors:

Value Description Data Type
'second' Each bin is 1 second. datetime and duration
'minute' Each bin is 1 minute. datetime and duration
'hour' Each bin is 1 hour. datetime and duration
'day' Each bin is 1 calendar

day. This value accounts
for Daylight Saving Time
shifts.

datetime and duration

'week' Each bin is 1 calendar
week.

datetime only

'month' Each bin is 1 calendar
month.

datetime only

'quarter' Each bin is 1 calendar
quarter.

datetime only

'year' Each bin is 1 calendar
year. This value accounts
for leap days.

datetime and duration

'decade' Each bin is 1 decade (10
calendar years).

datetime only

'century' Each bin is 1 century (100
calendar years).

datetime only

'secondofminute' Bins are seconds from 0 to
59.

datetime only

1 Alphabetical List

1-5360

Value Description Data Type
'minuteofhour' Bins are minutes from 0 to

59.
datetime only

'hourofday' Bins are hours from 0 to
23.

datetime only

'dayofweek' Bins are days from 1 to 7.
The first day of the week
is Sunday.

datetime only

'dayname' Bins are full day names
such as 'Sunday'.

datetime only

'dayofmonth' Bins are days from 1 to
31.

datetime only

'dayofyear' Bins are days from 1 to
366.

datetime only

'weekofmonth' Bins are weeks from 1 to
6.

datetime only

'weekofyear' Bins are weeks from 1 to
54.

datetime only

'monthname' Bins are full month names
such as 'January'.

datetime only

'monthofyear' Bins are months from 1 to
12.

datetime only

'quarterofyear' Bins are quarters from 1
to 4.

datetime only

When multiple grouping variables or vectors are specified, you can provide a single
binning rule that is applied to all grouping variables, or a cell array containing a binning
method for each grouping variable, such as {'none',[0 2 4 Inf]}.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 groupcounts

1-5361

Example: G = groupcounts(T,groupvars,groupbins,'IncludedEdge','right')

IncludedEdge — Included bin edge
'left' (default) | 'right'

Included bin edge, specified as either 'left' or 'right', indicating which end of the
bin interval is inclusive.

This name-value pair can only be specified when groupbins is specified, and the value is
applied to all binning schemes for all grouping variables or vectors.

IncludeMissingGroups — Missing groups indicator
true or 1 (default) | false or 0

Missing groups indicator, specified as a numeric or logical 1 (true) or 0 (false). If the
parameter value is true, then groupcounts displays groups made up of missing values,
such as NaN. If the parameter value is false, then groupcounts does not display the
missing value groups.

IncludeEmptyGroups — Empty groups indicator
false or 0 (default) | true or 1

Empty groups indicator, specified as a numeric or logical 0 (false) or 1 (true). If the
parameter value is false, then groupcounts does not display groups with zero
elements. If the parameter value is true, then groupcounts displays the empty groups.

Output Arguments
G — Output table
table

Output table, returned as a table containing the computed groups and the number of
elements in each group.

B — Group counts
column vector

Group counts for non-table input data, returned as a column vector containing the
number of elements in each group.

1 Alphabetical List

1-5362

BG — Groups
column vector | cell array of column vectors

Groups for non-table input data, returned as a column vector or cell array of column
vectors.

When you provide more than one input vector, BG is a cell array containing column
vectors of equal length. The group information can be found by looking at the elements
rowwise across all vectors in BG. The count for each group is contained in the
corresponding row of the first output argument B.

Tips
• When making many calls to groupcounts, consider converting grouping variables to

type categorical or logical when possible for improved performance. For
example, if you have a grouping variable of type char (such as Gender with elements
'Male' and 'Female'), you can convert it to a categorical variable using the
command categorical(Gender).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The first input argument does not support cell arrays.
• The groupvars argument does not support function handles.
• The 'IncludeEmptyGroups' name-value pair is not supported.
• The order of the groups might be different compared to in-memory groupcounts

calculations.
• When grouping by discretized datetime arrays, the categorical group names are
different compared to in-memory groupcounts calculations.

For more information, see “Tall Arrays”.

 groupcounts

1-5363

See Also
discretize | findgroups | groupsummary | grouptransform | rowfun |
splitapply | varfun

Introduced in R2019a

1 Alphabetical List

1-5364

groupsummary
Group summary computations

Syntax
G = groupsummary(T,groupvars)
G = groupsummary(T,groupvars,method)
G = groupsummary(T,groupvars,method,datavars)
G = groupsummary(T,groupvars,groupbins)
G = groupsummary(T,groupvars,groupbins,method)
G = groupsummary(T,groupvars,groupbins,method,datavars)
G = groupsummary(___ ,Name,Value)

B = groupsummary(A,groupvars,method)
B = groupsummary(A,groupvars,groupbins,method)
B = groupsummary(___ ,Name,Value)
[B,BG] = groupsummary(A, ___)
[B,BG,BC] = groupsummary(A, ___)

Description
G = groupsummary(T,groupvars) returns a table containing the computed groups
and the number of elements in each group for data in a table or timetable T. A group
contains the unique combinations of grouping variables in groupvars. For example, G =
groupsummary(T,'Gender') returns the number of Male elements and the number of
Female elements in the variable Gender.

G = groupsummary(T,groupvars,method) also returns the computations specified in
method. For example, G = groupsummary(T,'Gender','median') returns the
median of all nongrouping variables in T for both genders, in addition to the number of
elements in each group.

G = groupsummary(T,groupvars,method,datavars) specifies the variables to
apply the computations to.

G = groupsummary(T,groupvars,groupbins) specifies how to bin the data in
groupvars. For example, G = groupsummary(T,'SaleDate','year') gives the

 groupsummary

1-5365

group counts for all sales in T within each year according to the grouping variable
SaleDate.

G = groupsummary(T,groupvars,groupbins,method) bins the data according to
groupbins for the computations specified in method.

G = groupsummary(T,groupvars,groupbins,method,datavars) bins the data
according to groupbins and specifies the variables to apply the computations to.

G = groupsummary(___ ,Name,Value) specifies additional grouping properties using
one or more name-value pairs for any of the previous syntaxes. For example, G =
groupsummary(T,'Category1','IncludeMissingGroups',false) excludes the
group made from missing categorical data indicated by <undefined>.

B = groupsummary(A,groupvars,method) returns the computations according to the
unique combinations of grouping vectors in groupvars when A is a vector or matrix.
groupvars can be a column vector, matrix, or cell array of column vectors.

B = groupsummary(A,groupvars,groupbins,method) bins the data according to
groupbins.

B = groupsummary(___ ,Name,Value) specifies additional grouping properties using
one or more name-value pairs for either of the previous array syntaxes.

[B,BG] = groupsummary(A, ___) also returns the groups for each grouping vector.

[B,BG,BC] = groupsummary(A, ___) also returns the group counts for each group.

Examples

Summary Statistics

Compute summary statistics on table variables.

Create a table T that contains information about five individuals.

Gender = ["male";"female";"female";"male";"male"];
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
T = table(Gender,Age,Height,Weight)

1 Alphabetical List

1-5366

T=5×4 table
 Gender Age Height Weight
 ________ ___ ______ ______

 "male" 38 71 176
 "female" 43 69 163
 "female" 38 64 131
 "male" 40 67 133
 "male" 49 64 119

Compute the counts of males and females by specifying 'Gender' as the grouping
variable.

G = groupsummary(T,'Gender')

G=2×2 table
 Gender GroupCount
 ________ __________

 "female" 2
 "male" 3

Compute the mean age, height, and weight of females and males separately.

G = groupsummary(T,'Gender','mean')

G=2×5 table
 Gender GroupCount mean_Age mean_Height mean_Weight
 ________ __________ ________ ___________ ___________

 "female" 2 40.5 66.5 147
 "male" 3 42.333 67.333 142.67

Still grouping by gender, compute the median height only.

G = groupsummary(T,'Gender','median','Height')

G=2×3 table
 Gender GroupCount median_Height
 ________ __________ _____________

 "female" 2 66.5

 groupsummary

1-5367

 "male" 3 67

Multiple Grouping Variables

Group table data using two grouping variables.

Create a table T that contains information about five individuals.

Gender = ["male";"female";"male";"female";"male"];
Smoker = logical([1;0;1;0;1]);
Weight = [176;163;131;133;119];
T = table(Gender,Smoker,Weight)

T=5×3 table
 Gender Smoker Weight
 ________ ______ ______

 "male" true 176
 "female" false 163
 "male" true 131
 "female" false 133
 "male" true 119

Compute the mean weight, grouped by gender and smoking status. By default, two
combinations of gender and smoking status are not represented in the output because
they are empty groups.

G = groupsummary(T,{'Gender','Smoker'},'mean','Weight')

G=2×4 table
 Gender Smoker GroupCount mean_Weight
 ________ ______ __________ ___________

 "female" false 2 148
 "male" true 3 142

Set the 'IncludeEmptyGroups' parameter value to true in order to see all group
combinations, including the empty ones.

G = groupsummary(T,{'Gender','Smoker'},'mean','Weight','IncludeEmptyGroups',true)

1 Alphabetical List

1-5368

G=4×4 table
 Gender Smoker GroupCount mean_Weight
 ________ ______ __________ ___________

 "female" false 2 148
 "female" true 0 NaN
 "male" false 0 NaN
 "male" true 3 142

Specify Group Bins

Group data according to specified bins.

Create a timetable containing sales information for days within a single month.

TimeStamps = datetime([2017 3 4; 2017 3 2; 2017 3 15; 2017 3 10;...
 2017 3 14; 2017 3 31; 2017 3 25;...
 2017 3 29; 2017 3 21; 2017 3 18]);
Profit = [2032 3071 1185 2587 1998 2899 3112 909 2619 3085]';
TotalItemsSold = [14 13 8 5 10 16 8 6 7 11]';
TT = timetable(TimeStamps,Profit,TotalItemsSold)

TT=10×2 timetable
 TimeStamps Profit TotalItemsSold
 ___________ ______ ______________

 04-Mar-2017 2032 14
 02-Mar-2017 3071 13
 15-Mar-2017 1185 8
 10-Mar-2017 2587 5
 14-Mar-2017 1998 10
 31-Mar-2017 2899 16
 25-Mar-2017 3112 8
 29-Mar-2017 909 6
 21-Mar-2017 2619 7
 18-Mar-2017 3085 11

Compute the mean profit grouped by the total items sold, binning the groups into
intervals of item numbers.

 groupsummary

1-5369

format shorte
G = groupsummary(TT,'TotalItemsSold',[0 4 8 12 16],'mean','Profit')

G=3×3 table
 disc_TotalItemsSold GroupCount mean_Profit
 ___________________ __________ ___________

 [4, 8) 3.0000e+00 2.0383e+03
 [8, 12) 4.0000e+00 2.3450e+03
 [12, 16] 3.0000e+00 2.6673e+03

Compute the mean profit grouped by day of the week.

G = groupsummary(TT,'TimeStamps','dayname','mean','Profit')

G=5×3 table
 dayname_TimeStamps GroupCount mean_Profit
 __________________ __________ ___________

 Tuesday 2.0000e+00 2.3085e+03
 Wednesday 2.0000e+00 1.0470e+03
 Thursday 1.0000e+00 3.0710e+03
 Friday 2.0000e+00 2.7430e+03
 Saturday 3.0000e+00 2.7430e+03

Group Operations with Vector Data

Create a vector of dates and a vector of corresponding profit values.

timeStamps = datetime([2017 3 4; 2017 3 2; 2017 3 15; 2017 3 10; ...
 2017 3 14; 2017 3 31; 2017 3 25; ...
 2017 3 29; 2017 3 21; 2017 3 18]);
profit = [2032 3071 1185 2587 1998 2899 3112 909 2619 3085]';

Compute the mean profit by day of the week. Display the means, the group names, and
the number of members in each group.

format shorte
[meanDailyProfit,dayOfWeek,dailyCounts] = groupsummary(profit,timeStamps,'dayname','mean')

meanDailyProfit = 5×1

1 Alphabetical List

1-5370

 2.3085e+03
 1.0470e+03
 3.0710e+03
 2.7430e+03
 2.7430e+03

dayOfWeek = 5x1 categorical array
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday

dailyCounts = 5×1

 2
 2
 1
 2
 3

Multiple Grouping Vectors for Vector Input

Compute the mean weights for four groups based on their gender and smoker status.

Store patient information as three vectors of different types.

Gender = ["male";"female";"male";"female";"male"];
Smoker = logical([1;0;1;0;1]);
Weight = [176;163;131;133;119];

Grouping by gender and smoker status, compute the mean weights. B contains the mean
for each group (NaN for empty groups). BG is a cell array containing two vectors that
describe the groups as you look at their elements rowwise. For instance, the first row of
BG{1} says that the patients in the first group are female, and the first row of BG{2} says
that they are nonsmokers. Finally, BC contains the number of members in each group for
the corresponding groups in BG.

 groupsummary

1-5371

[B,BG,BC] = groupsummary(Weight,{Gender,Smoker},'mean','IncludeEmptyGroups',true);
B

B = 4×1

 148
 NaN
 NaN
 142

BG{1}

ans = 4x1 string array
 "female"
 "female"
 "male"
 "male"

BG{2}

ans = 4x1 logical array

 0
 1
 0
 1

BC

BC = 4×1

 2
 0
 0
 3

Input Arguments
T — Input data
table | timetable

1 Alphabetical List

1-5372

Input data, specified as a table or timetable.

A — Input array
vector | matrix

Input array, specified as a vector or matrix.

groupvars — Grouping variables or vectors
scalar | vector | matrix | cell array | function handle

Grouping variables or vectors, specified as a scalar, vector, matrix, cell array, or function
handle.

For table or timetable input data, groupvars indicates which columns to use to compute
the groups, and can be one of the following:

• A character vector or scalar string specifying a single table variable name
• A cell array of character vectors or a string array, where each element is a table

variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes a table variable as input and returns a logical scalar

For array input, groupvars can be either a column vector with the same number of rows
as A or a group of column vectors arranged in a matrix or cell array.
Example: 'Age'
Example: {'Height','Weight'}

method — Computation method
'sum' | 'mean' | 'median' | 'mode' | 'var' | 'std' | 'min' | 'max' | 'range' |
'nummissing' | 'nnz' | 'all' | function handle | cell array

Computation method, specified as one of the following:

• 'sum' — sum
• 'mean' — mean
• 'median' — median

 groupsummary

1-5373

• 'mode' — mode
• 'var' — variance
• 'std' — standard deviation
• 'min' — minimum
• 'max' — maximum
• 'range' — maximum minus minimum
• 'nummissing' — number of missing elements
• 'nnz' — number of nonzero and non-NaN elements
• 'all' — all computations previously listed

You can also specify a function handle that returns one element per group. To specify
multiple computations at a time, list the options in a cell array, such as
{'mean','median'}.

datavars — Data variables
scalar | vector | cell array | function handle

Data variables for table or timetable input, specified as a scalar, vector, cell array, or
function handle. datavars indicates which columns of the input table to apply the
methods to, and can be one of the following options:

• A character vector or scalar string specifying a single table variable name
• A cell array of character vectors or string array where each element is a table variable

name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes a table variable as input and returns a logical scalar

When datavars is not specified, groupsummary applies the computations to each
nongrouping variable.
Example: 'Profit'
Example: {'Income','Expenses'}
Example: @isnumeric

1 Alphabetical List

1-5374

groupbins — Binning scheme
'none' (default) | vector | scalar | cell array

Binning scheme, specified as one of the following options:

• 'none', indicating no binning
• A list of bin edges, specified as a numeric vector, or a datetime vector for datetime

grouping variables or vectors
• A number of bins, specified as an integer scalar
• A time duration, specified as a scalar of type duration or calendarDuration

indicating bin widths (for datetime or duration grouping variables or vectors only)
• A time bin for datetime and duration grouping variables or vectors only, specified

as one of the following character vectors:

Value Description Data Type
'second' Each bin is 1 second. datetime and duration
'minute' Each bin is 1 minute. datetime and duration
'hour' Each bin is 1 hour. datetime and duration
'day' Each bin is 1 calendar

day. This value accounts
for Daylight Saving Time
shifts.

datetime and duration

'week' Each bin is 1 calendar
week.

datetime only

'month' Each bin is 1 calendar
month.

datetime only

'quarter' Each bin is 1 calendar
quarter.

datetime only

'year' Each bin is 1 calendar
year. This value accounts
for leap days.

datetime and duration

'decade' Each bin is 1 decade (10
calendar years).

datetime only

'century' Each bin is 1 century (100
calendar years).

datetime only

 groupsummary

1-5375

Value Description Data Type
'secondofminute' Bins are seconds from 0 to

59.
datetime only

'minuteofhour' Bins are minutes from 0 to
59.

datetime only

'hourofday' Bins are hours from 0 to
23.

datetime only

'dayofweek' Bins are days from 1 to 7.
The first day of the week
is Sunday.

datetime only

'dayname' Bins are full day names
such as 'Sunday'.

datetime only

'dayofmonth' Bins are days from 1 to
31.

datetime only

'dayofyear' Bins are days from 1 to
366.

datetime only

'weekofmonth' Bins are weeks from 1 to
6.

datetime only

'weekofyear' Bins are weeks from 1 to
54.

datetime only

'monthname' Bins are full month names
such as 'January'.

datetime only

'monthofyear' Bins are months from 1 to
12.

datetime only

'quarterofyear' Bins are quarters from 1
to 4.

datetime only

• A cell array listing binning rules for each grouping variable or vector

When multiple grouping variables are specified, you can provide a single binning rule that
is applied to all grouping variables, or a cell array containing a binning method for each
grouping variable such as {'none',[0 2 4 Inf]}.

1 Alphabetical List

1-5376

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: G =
groupsummary(T,groupvars,groupbins,'IncludedEdge','right')

IncludedEdge — Included bin edge
'left' (default) | 'right'

Included bin edge, specified as either 'left' or 'right', indicating which end of the
bin interval is inclusive.

This name-value pair can only be specified when groupbins is specified, and the value is
applied to all binning schemes for all grouping variables or vectors.

IncludeMissingGroups — Missing groups indicator
true (default) | false

Missing groups indicator, specified as true or false. When the parameter value is true,
groupsummary displays groups made up of missing values, such as NaN. When the
parameter value is false, groupsummary does not display the missing groups.
Data Types: logical

IncludeEmptyGroups — Empty groups indicator
false (default) | true

Empty groups indicator, specified as true or false. When the parameter value is false,
groupsummary does not display groups with zero elements. When the parameter value is
true, groupsummary displays the empty groups.
Data Types: logical

Output Arguments
G — Output table
table

 groupsummary

1-5377

Output table, returned as a table containing the specified computations for each group.

B — Output array
vector | matrix

Output array, returned as a vector or matrix containing the group computations. When
you specify multiple methods, groupsummary concatenates the computations in the
order that they were listed.

BG — Groups
column vector | cell array of column vectors

Groups for array input data, returned as a column vector or cell array of column vectors
each corresponding to a grouping vector.

When you provide more than one grouping vector, BG is a cell array containing column
vectors of equal length. The group information can be found by looking at the elements
rowwise across all vectors in BG. Each group maps to the corresponding row of the output
array B.

BC — Group counts
column vector

Group counts for array input data, returned as a column vector containing the number of
elements in each group. The length of BC is the same as the length of the group column
vectors returned in BG.

Tips
• When making many calls to groupsummary, consider converting grouping variables to

type categorical or logical when possible for improved performance. For
example, if you have a grouping variable of type char (such as Gender with elements
'Male' and 'Female'), you can convert it to a categorical value using the command
categorical(Gender).

1 Alphabetical List

1-5378

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• If A and groupvars are both tall matrices, then they must have the same number of
rows.

• If the first input is a tall matrix, then groupvars can be a cell array containing tall
grouping vectors.

• The groupvars and datavars arguments do not support function handles.
• The 'IncludeEmptyGroups' name-value pair is not supported.
• The 'median' and 'mode' methods are not supported.
• For tall datetime arrays, the 'std' method is not supported.
• If the method argument is a function handle, then it must be a valid input for

splitapply operating on a tall array.
• The order of the groups might be different compared to in-memory groupsummary

calculations.
• When grouping by discretized datetime arrays, the categorical group names are
different compared to in-memory groupsummary calculations.

For more information, see “Tall Arrays”.

See Also
discretize | findgroups | grouptransform | rowfun | splitapply | varfun

Introduced in R2018a

 groupsummary

1-5379

grouptransform
Transform by group

Syntax
G = grouptransform(T,groupvars,method)
G = grouptransform(T,groupvars,groupbins,method)
G = grouptransform(___ ,datavars)
G = grouptransform(___ ,Name,Value)

B = grouptransform(A,groupvars,method)
B = grouptransform(A,groupvars,groupbins,method)
B = grouptransform(___ ,Name,Value)
[B,BG] = grouptransform(A, ___)

Description
G = grouptransform(T,groupvars,method) transforms the data in a table or
timetable using the computations in method, grouping by the variables specified in
groupvars. The output G is a table or timetable containing the transformed data in place
of the nongrouping variables from T. For example, G =
grouptransform(T,'Gender','norm') normalizes the data in T by gender using the
2-norm.

G = grouptransform(T,groupvars,groupbins,method) bins the transformed data
according to groupbins, placing the groups at the end of the output table as additional
variables. For example, G = grouptransform(T,'SaleDate','year','rescale')
scales the data in T to the range [0,1] and bins by sale year.

G = grouptransform(___ ,datavars) specifies the table variables to transform for
either of the previous syntaxes.

G = grouptransform(___ ,Name,Value) specifies additional grouping properties
using one or more name-value pairs. For example, G =
grouptransform(T,'Temp','linearfill','ReplaceValues',false) appends

1 Alphabetical List

1-5380

the filled data as an additional variable of T instead of replacing the nongrouping
variables.

B = grouptransform(A,groupvars,method) returns the transformed data according
to the unique combinations of grouping vectors in groupvars when A is a vector or
matrix. groupvars can be a column vector, matrix, or cell array of column vectors.

B = grouptransform(A,groupvars,groupbins,method) bins the transformed data
according to groupbins.

B = grouptransform(___ ,Name,Value) specifies additional grouping properties
using one or more name-value pairs for either of the previous array syntaxes.

[B,BG] = grouptransform(A, ___) also returns the groups for each grouping vector.

Examples

Fill Missing Data by Group

Create a timetable containing a progress status for 3 teams.

timeStamp = days([1 1 1 2 2 2 3 3 3]');
teamNumber = [1 2 3 1 2 3 1 2 3]';
percentComplete = [14.2 28.1 11.5 NaN NaN 19.3 46.1 51.2 30.3]';
T = timetable(timeStamp,teamNumber,percentComplete)

T=9×3 timetable
 timeStamp teamNumber percentComplete
 _________ __________ _______________

 1 day 1 14.2
 1 day 2 28.1
 1 day 3 11.5
 2 days 1 NaN
 2 days 2 NaN
 2 days 3 19.3
 3 days 1 46.1
 3 days 2 51.2
 3 days 3 30.3

Fill missing status percentages (NaN) for each group using linear interpolation.

 grouptransform

1-5381

G = grouptransform(T,'teamNumber','linearfill','percentComplete')

G=9×3 timetable
 timeStamp teamNumber percentComplete
 _________ __________ _______________

 1 day 1 14.2
 1 day 2 28.1
 1 day 3 11.5
 2 days 1 30.15
 2 days 2 39.65
 2 days 3 19.3
 3 days 1 46.1
 3 days 2 51.2
 3 days 3 30.3

To append the filled data to the original table instead of replacing the percentComplete
variable, use the 'ReplaceValues' parameter.

Gappend = grouptransform(T,'teamNumber','linearfill','percentComplete','ReplaceValues',false)

Gappend=9×4 timetable
 timeStamp teamNumber percentComplete linearfill_percentComplete
 _________ __________ _______________ __________________________

 1 day 1 14.2 14.2
 1 day 2 28.1 28.1
 1 day 3 11.5 11.5
 2 days 1 NaN 30.15
 2 days 2 NaN 39.65
 2 days 3 19.3 19.3
 3 days 1 46.1 46.1
 3 days 2 51.2 51.2
 3 days 3 30.3 30.3

Normalize Data by Day Name

Create a table of dates and corresponding profits.

timeStamps = datetime([2017 3 4; 2017 3 2; 2017 3 15; 2017 3 10;...
 2017 3 14; 2017 3 31; 2017 3 25;...

1 Alphabetical List

1-5382

 2017 3 29; 2017 3 21; 2017 3 18]);
profit = [2032 3071 1185 2587 1998 2899 3112 909 2619 3085]';
T = table(timeStamps,profit)

T=10×2 table
 timeStamps profit
 ___________ ______

 04-Mar-2017 2032
 02-Mar-2017 3071
 15-Mar-2017 1185
 10-Mar-2017 2587
 14-Mar-2017 1998
 31-Mar-2017 2899
 25-Mar-2017 3112
 29-Mar-2017 909
 21-Mar-2017 2619
 18-Mar-2017 3085

Grouping by day name, normalize the profits by the 2-norm.

G = grouptransform(T,'timeStamps','dayname','norm')

G=10×3 table
 timeStamps profit dayname_timeStamps
 ___________ _______ __________________

 04-Mar-2017 0.42069 Saturday
 02-Mar-2017 1 Thursday
 15-Mar-2017 0.79344 Wednesday
 10-Mar-2017 0.66582 Friday
 14-Mar-2017 0.60654 Tuesday
 31-Mar-2017 0.74612 Friday
 25-Mar-2017 0.64428 Saturday
 29-Mar-2017 0.60864 Wednesday
 21-Mar-2017 0.79506 Tuesday
 18-Mar-2017 0.63869 Saturday

Group Operations with Vector Data

Create a vector of dates and a vector of corresponding profit values.

 grouptransform

1-5383

timeStamps = datetime([2017 3 4; 2017 3 2; 2017 3 15; 2017 3 10; ...
 2017 3 14; 2017 3 31; 2017 3 25; ...
 2017 3 29; 2017 3 21; 2017 3 18]);
profit = [2032 3071 1185 2587 1998 2899 3112 909 2619 3085]';

Grouping by day of the week, normalize the profit values by the 2-norm. Display the
transformed data and which group it corresponds to.

[normDailyProfit,dayOfWeek] = grouptransform(profit,timeStamps,'dayname','norm')

normDailyProfit = 10×1

 0.4207
 1.0000
 0.7934
 0.6658
 0.6065
 0.7461
 0.6443
 0.6086
 0.7951
 0.6387

dayOfWeek = 10x1 categorical array
 Saturday
 Thursday
 Wednesday
 Friday
 Tuesday
 Friday
 Saturday
 Wednesday
 Tuesday
 Saturday

Input Arguments
T — Input data
table | timetable

Input data, specified as a table or timetable.

1 Alphabetical List

1-5384

A — Input array
vector | matrix

Input array, specified as a vector or matrix.

groupvars — Grouping variables or vectors
scalar | vector | matrix | cell array | function handle

Grouping variables or vectors, specified as a scalar, vector, matrix, cell array, or function
handle.

For table or timetable input data, groupvars indicates which columns to use to compute
the groups, and can be one of the following:

• A character vector or string scalar specifying a single table variable name
• A cell array of character vectors or a string array, where each element is a table

variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes a table variable as input and returns a logical scalar

For array input, groupvars can be either a column vector with the same number of rows
as A or a group of column vectors arranged in a matrix or cell array.
Example: 'Age'
Example: {'Height','Weight'}

method — Computation method
'zscore' | 'norm' | 'meancenter' | 'rescale' | 'meanfill' | 'linearfill' |
function handle

Computation method, specified as one of the following:

Method Description
'zscore' Normalize data to have mean 0 and

standard deviation 1
'norm' Normalize data by 2-norm
'meancenter' Normalize data to have mean 0

 grouptransform

1-5385

Method Description
'rescale' Rescale range to [0,1]
'meanfill' Fill missing values with the mean of the

group data
'linearfill' Fill missing values by linear interpolation of

nonmissing group data

You can also specify a function handle that returns a scalar or a column vector with the
same number of rows as the input data. If the function returns a scalar, grouptransform
repeats the scalar for each element of the transformed output.

datavars — Data variables
scalar | vector | cell array | function handle

Data variables for table or timetable input, specified as a scalar, vector, cell array, or
function handle. datavars indicates which columns of the input table to apply the
methods to, and can be one of the following options:

• A character vector or string scalar specifying a single table variable name
• A cell array of character vectors or string array where each element is a table variable

name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes a table variable as input and returns a logical scalar

When datavars is not specified, grouptransform applies the computations to each
nongrouping variable.
Example: 'Profit'
Example: {'Income','Expenses'}
Example: @isnumeric

groupbins — Binning scheme
'none' (default) | character vector | scalar | vector | cell array

Binning scheme, specified as one of the following options:

1 Alphabetical List

1-5386

• 'none', indicating no binning
• A list of bin edges, specified as a numeric vector, or a datetime vector for datetime

grouping variables
• A number of bins, specified as an integer scalar
• A time duration, specified as a scalar of type duration or calendarDuration

indicating bin widths (for datetime or duration grouping variables only)
• A cell array listing binning rules for each grouping variable
• A time bin for datetime and duration grouping variables only, specified as one of

the following character vectors:

Value Description Data Type
'second' Each bin is 1 second. datetime and duration
'minute' Each bin is 1 minute. datetime and duration
'hour' Each bin is 1 hour. datetime and duration
'day' Each bin is 1 calendar

day. This value accounts
for Daylight Saving Time
shifts.

datetime and duration

'week' Each bin is 1 calendar
week.

datetime only

'month' Each bin is 1 calendar
month.

datetime only

'quarter' Each bin is 1 calendar
quarter.

datetime only

'year' Each bin is 1 calendar
year. This value accounts
for leap days.

datetime and duration

'decade' Each bin is 1 decade (10
calendar years).

datetime only

'century' Each bin is 1 century (100
calendar years).

datetime only

'secondofminute' Bins are seconds from 0 to
59.

datetime only

 grouptransform

1-5387

Value Description Data Type
'minuteofhour' Bins are minutes from 0 to

59.
datetime only

'hourofday' Bins are hours from 0 to
23.

datetime only

'dayofweek' Bins are days from 1 to 7.
The first day of the week
is Sunday.

datetime only

'dayname' Bins are full day names
such as 'Sunday'.

datetime only

'dayofmonth' Bins are days from 1 to
31.

datetime only

'dayofyear' Bins are days from 1 to
366.

datetime only

'weekofmonth' Bins are weeks from 1 to
6.

datetime only

'weekofyear' Bins are weeks from 1 to
54.

datetime only

'monthname' Bins are full month names
such as 'January'.

datetime only

'monthofyear' Bins are months from 1 to
12.

datetime only

'quarterofyear' Bins are quarters from 1
to 4.

datetime only

When multiple grouping variables are specified, you can provide a single binning rule that
is applied to all grouping variables, or a cell array containing a binning method for each
grouping variable such as {'none',[0 2 4 Inf]}.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-5388

Example: G =
grouptransform(T,groupvars,groupbins,'zscore','IncludedEdge','right'
)

IncludedEdge — Included bin edge
'left' (default) | 'right'

Included bin edge, specified as either 'left' or 'right', indicating which end of the
bin interval is inclusive.

This name-value pair can only be specified when groupbins is specified, and the value is
applied to all binning schemes for all grouping variables or vectors.

ReplaceValues — Transform placement indicator
true or 1 (default) | false or 0

Transform placement indicator, specified as a numeric or logical 1 (true) or 0 (false).
When the parameter value is true, grouptransform outputs a table or array with the
transformed data in place of the nongrouping variables or vectors from the input. When
the parameter value is false, grouptransform appends the transformed data as
additional matrix columns or table variables to the input data.

Output Arguments
G — Output table
table

Output table, returned as a table containing the transformed data for each group.

B — Output array
vector | matrix

Output array, returned as a vector or matrix containing the transformed data.

BG — Groups
column vector | cell array of column vectors

Groups for array input data, returned as a column vector or cell array of column vectors
each corresponding to a grouping vector.

When you provide more than one grouping vector, BG is a cell array containing column
vectors of equal length. The group information can be found by looking at the elements

 grouptransform

1-5389

rowwise across all vectors in BG. Each group maps to the corresponding row of the output
array B.

Tips
• When making many calls to grouptransform, consider converting grouping variables

to type categorical or logical when possible for improved performance. For
example, if you have a grouping variable of type char (such as Gender with elements
'Male' and 'Female'), you can convert it to a categorical value using the command
categorical(Gender).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• If A and groupvars are both tall matrices, then they must have the same number of
rows.

• If the first input is a tall matrix, then groupvars can be a cell array containing tall
grouping vectors.

• The groupvars and datavars arguments do not support function handles.
• If the method argument is a function handle, then it must be a valid input for

splitapply operating on a tall array.
• When grouping by discretized datetime arrays, the categorical group names are
different compared to in-memory grouptransform calculations.

For more information, see “Tall Arrays”.

See Also
discretize | findgroups | groupsummary | rowfun | splitapply | varfun

1 Alphabetical List

1-5390

Introduced in R2018b

 grouptransform

1-5391

gsvd
Generalized singular value decomposition

Syntax
[U,V,X,C,S] = gsvd(A,B)
[U,V,X,C,S] = gsvd(A,B,0)
sigma = gsvd(A,B)

Description
[U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a (usually) square matrix
X, and nonnegative diagonal matrices C and S so that

A = U*C*X'
B = V*S*X'
C'*C + S'*S = I

A and B must have the same number of columns, but may have different numbers of rows.
If A is m-by-p and B is n-by-p, then U is m-by-m, V is n-by-n, X is p-by-q, C is m-by-q and S is
n-by-q, where q = min(m+n,p).

The nonzero elements of S are always on its main diagonal. The nonzero elements of C are
on the diagonal diag(C,max(0,q-m)). If m >= q, this is the main diagonal of C.

[U,V,X,C,S] = gsvd(A,B,0), where A is m-by-p and B is n-by-p, produces the
“economy-sized“ decomposition where the resulting U and V have at most p columns, and
C and S have at most p rows. The generalized singular values are diag(C)./diag(S) so
long as m >= p and n >= p.

If A is m-by-p and B is n-by-p, then U is m-by-min(q,m), V is n-by-min(q,n), X is p-by-q, C
is min(q,m)-by-q and S is min(q,n)-by-q, where q = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sqrt(diag(C'*C)./diag(S'*S)). When B is square and nonsingular, the generalized
singular values, gsvd(A,B), correspond to the ordinary singular values, svd(A/B), but
they are sorted in the opposite order. Their reciprocals are gsvd(B,A).

1 Alphabetical List

1-5392

The vector sigma has length q and is in non-decreasing order.

Examples

Example 1
The matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)
A =
 1 6 11
 2 7 12
 3 8 13
 4 9 14
 5 10 15
B =
 8 1 6
 3 5 7
 4 9 2

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal V, a 3-by-3 nonsingular X,

X =
 2.8284 -9.3761 -6.9346
 -5.6569 -8.3071 -18.3301
 2.8284 -7.2381 -29.7256

and

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807
 0 0 0
 0 0 0
S =
 1.0000 0 0

 gsvd

1-5393

 0 0.9489 0
 0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.

The economy sized decomposition,

[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
 0.5700 -0.6457 -0.4279
 -0.7455 -0.3296 -0.4375
 -0.1702 -0.0135 -0.4470
 0.2966 0.3026 -0.4566
 0.0490 0.6187 -0.4661

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained with the full
decomposition.

The generalized singular values are the ratios of the diagonal elements of C and S.

sigma = gsvd(A,B)
sigma =
 0.0000
 0.3325
 5.0123

These values are a reordering of the ordinary singular values

svd(A/B)
ans =
 5.0123
 0.3325
 0.0000

Example 2
The matrices have at least as many columns as rows.

1 Alphabetical List

1-5394

A = reshape(1:15,3,5)
B = magic(5)
A =

 1 4 7 10 13
 2 5 8 11 14
 3 6 9 12 15

B =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal V, a 5-by-5 nonsingular X and

C =

 0 0 0.0000 0 0
 0 0 0 0.0439 0
 0 0 0 0 0.7432

S =

 1.0000 0 0 0 0
 0 1.0000 0 0 0
 0 0 1.0000 0 0
 0 0 0 0.9990 0
 0 0 0 0 0.6690

In this situation, the nonzero diagonal of C is diag(C,2). The generalized singular values
include three zeros.

sigma = gsvd(A,B)
sigma =

 0
 0
 0.0000

 gsvd

1-5395

 0.0439
 1.1109

Reversing the roles of A and B reciprocates these values, producing two infinities.

gsvd(B,A)
ans =

 1.0e+16 *

 0.0000
 0.0000
 8.8252
 Inf
 Inf

Tips
• In this formulation of the gsvd, no assumptions are made about the individual ranks of

A or B. The matrix X has full rank if and only if the matrix [A;B] has full rank. In fact,
svd(X) and cond(X) are equal to svd([A;B]) and cond([A;B]). Other
formulations, eg. G. Golub and C. Van Loan [1], require that null(A) and null(B) do
not overlap and replace X by inv(X) or inv(X').

Note, however, that when null(A) and null(B) do overlap, the nonzero elements of
C and S are not uniquely determined.

Algorithms
The generalized singular value decomposition uses the C-S decomposition described in
[1], as well as the built-in svd and qr functions. The C-S decomposition is implemented in
a local function in the gsvd program file.

References
[1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third Edition, Johns

Hopkins University Press, Baltimore, 1996

1 Alphabetical List

1-5396

See Also
qr | svd

Introduced before R2006a

 gsvd

1-5397

gt, >
Determine greater than

Syntax
A > B
gt(A,B)

Description
A > B returns a logical array with elements set to logical 1 (true) where A is greater
than B; otherwise, the element is logical 0 (false). The test compares only the real part
of numeric arrays. gt returns logical 0 (false) where A or B have NaN or undefined
categorical elements.

gt(A,B) is an alternate way to execute A > B, but is rarely used. It enables operator
overloading for classes.

Examples

Test Vector Elements

Determine if vector elements are greater than a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are greater than 10.

A > 10

ans = 1x8 logical array

1 Alphabetical List

1-5398

 0 1 1 0 0 1 0 1

The result is a vector with values of logical 1 (true) where the elements of A satisfy the
expression.

Use the vector of logical values as an index to view the values in A that are greater than
10.

A(A > 10)

ans = 1×4

 12 18 11 15

The result is a subset of the elements in A.

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Replace all values greater than 9 with the value 10.

A(A > 9) = 10

A = 4×4

 10 2 3 10
 5 10 10 8
 9 7 6 10
 4 10 10 1

 gt, >

1-5399

The result is a new matrix whose largest element is 10.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A = 2x3 categorical array
 large medium small
 medium small large

The array has three categories: 'small', 'medium', and 'large'.

Find all values greater than the category 'medium'.

A > 'medium'

ans = 2x3 logical array

 1 0 0
 0 0 1

A value of logical 1 (true) indicates a value greater than the category 'medium'.

Compare the rows of A.

A(1,:) > A(2,:)

ans = 1x3 logical array

 1 1 0

The function returns logical 1 (true) where the first row has a category value greater
than the second row.

1 Alphabetical List

1-5400

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are greater than 2.

A(A > 2)

ans = 5.0000 - 1.0000i

gt compares only the real part of the elements in A.

Use abs to find which elements are outside a radius of 2 from the origin.

A(abs(A) > 2)

ans = 1×4 complex

 2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2.0000i 5.0000 - 1.0000i

The result has more elements since abs accounts for the imaginary part of the numbers.

Compare Dates

Create a vector of dates.

A = datetime([2014,05,01;2014,05,31])

A = 2x1 datetime array
 01-May-2014
 31-May-2014

Find the dates that occur after May 10, 2014.

A(A > '2014-05-10')

ans = datetime
 31-May-2014

 gt, >

1-5401

Input Arguments
A — Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

B — Right array
scalar | vector | matrix | multidimensional array

Right array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

1 Alphabetical List

1-5402

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 gt, >

1-5403

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | ge | le | lt | ne

Topics
“Array Comparison with Relational Operators”
“Ordinal Categorical Arrays”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-5404

gtext
Add text to figure using mouse

Syntax
gtext(str)
gtext(str,Name,Value)

t = gtext(___)

Description
gtext(str) inserts the text, str, at the location you select with the mouse. When you
hover over the figure window, the pointer becomes a crosshair. gtext is waiting for you
to select a location. Move the pointer to the location you want and either click the figure
or press any key, except Enter.

gtext(str,Name,Value) specifies text properties using one or more name-value pair
arguments. For example, 'FontSize',14 specifies a 14-point font.

t = gtext(___) returns an array of text objects created by gtext. Use t to modify
properties of the text objects after they are created. For a list of properties and
descriptions, see Text. You can return an output argument using any of the arguments
from the previous syntaxes.

Examples

Add Text to Figure Using Mouse

Create a simple line plot and use gtext to add text to the figure using the mouse.

plot(1:10)
gtext('My Plot')

 gtext

1-5405

Click the figure to place the text at the selected location.

1 Alphabetical List

1-5406

Specify Font Size and Color

Create a simple line plot and add text to the figure using the mouse. Use a red, 14-point
font.

plot(1:10)
gtext('My Plot','Color','red','FontSize',14)

Click the figure where you want to display the text.

 gtext

1-5407

Modify Text After Creation

Create a simple line plot and add text to the figure using the mouse. Return the text
object created, t.

plot(1:10)
t = gtext('My Plot')

Click the figure to place the text and create the text object.

1 Alphabetical List

1-5408

t =

 Text (My Plot) with properties:

 String: 'My Plot'
 FontSize: 10
 FontWeight: 'normal'
 FontName: 'Helvetica'
 Color: [0 0 0]
 HorizontalAlignment: 'left'
 Position: [4.3906 5.3950 0]
 Units: 'data'

 Show all properties

 gtext

1-5409

Use t to change the font size and color of the text by setting text properties. Starting in
R2014b, you can use dot notation to set properties. If you are using an earlier release, use
the set function instead, such as set(t,'Color','red').

t.Color = 'red';
t.FontSize = 14;

Input Arguments
str — Text to display
character vector | cell array of character vectors | character array | string array

1 Alphabetical List

1-5410

Text to display, specified in one of these forms:

• Character vector — Display the text with one click, for example:

gtext('my text')

• Cell array of character vectors — Display one row of the array with each click. For
example, this code displays first with the first click and second with the second
click.

gtext({'first';'second'})

To display multiline text, specify more than one character vector per row.

gtext({'first','new line';'second','new line'})

• Character array — Display one row of the array with each click. Each row must
contain the same number of characters, for example:

gtext(['one';'two'])

• String array — Display one row of the array with each click. For example:

gtext(["one";"two"])

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols, use TeX markup. For a list of supported markup, see the
Interpreter property.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: text(.5,.5,'my text','FontSize',14,'Color','red')

The properties listed here are only a subset. For a full list, see Text.

Note You cannot specify the Position text property as a name-value pair during text
creation. gtext ignores the specified value.

 gtext

1-5411

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-5412

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'

 gtext

1-5413

Example: [0 0 1]
Example: '#0000FF'

HorizontalAlignment — Horizontal alignment of text with respect to position
point
'left' (default) | 'center' | 'right'

Horizontal alignment of the text with respect to the x value in the Position property,
specified as one of the values in this table. The vertical line indicates where the x value
lies in relation to the text.

Value Result
'left' (default)

'center'

'right'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly

1 Alphabetical List

1-5414

braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

 gtext

1-5415

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘

1 Alphabetical List

1-5416

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

Algorithms
gtext uses the ginput and text functions.

 gtext

1-5417

https://www.latex-project.org
https://www.latex-project.org

See Also
Functions
annotation | ginput | text

Properties
Text

Topics
“Add Text to Chart”

Introduced before R2006a

1 Alphabetical List

1-5418

guidata
Store or retrieve UI data

Note

Use this function only with GUIDE, or with apps created using the figure
function.

Syntax
guidata(obj,data)
data = guidata(obj)

Description
guidata(obj,data) stores the specified data in the application data of obj if it is a
figure, or the parent figure of obj if it is another component. For more information, see
“How guidata Manages Data” on page 1-5422.

data = guidata(obj) returns previously stored data, or an empty matrix if nothing is
stored.

Examples

Store Data in Programmatic UI

Create a programmatic UI that stores and retrieves counter data when you click on it.

First, create a program file called progCounter.m. Within the program file:

• Create a figure.
• Create a structure with a field value initialized to zero.

 guidata

1-5419

• Store the data in the figure.
• Define a callback function that retrieves the data from the figure, changes the data,

and stores the new data in the figure again.

Run the program and click inside the figure. The updated data appears in the Command
Window.

f = figure;
data.numberOfClicks = 0;
guidata(f,data)
f.ButtonDownFcn = @My_Callback;

function My_Callback(src,event)
data = guidata(src);
data.numberOfClicks = data.numberOfClicks + 1;
guidata(src,data)
data
end

data =

 struct with fields:

 numberOfClicks: 1

Using guidata in GUIDE

Create a button in GUIDE, and store and access data when the button is pressed. To do
this, first add a field to the handles structure and use guidata to update and manage it.
(Make sure to add the data to handles rather than overwriting it. For more information,
see “How GUIDE Uses guidata” on page 1-5422.) Then, configure a callback that uses
guidata to access and store data when the button is pressed.

To do this, first, open GUIDE and add a push button to the layout area. Then, click on the
Editor icon to open the program file for editing. Find the OpeningFcn that was
automatically created by GUIDE and add a new field to handles called
numberOfClicks.

% --- Executes just before countClicks is made visible.
function countClicks_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

1 Alphabetical List

1-5420

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to countClicks (see VARARGIN)

% Choose default command line output for countClicks
handles.output = hObject;

handles.numberOfClicks = 0;

% Update handles structure
guidata(hObject, handles);

Next, find the push button callback function that GUIDE created. Program it to access the
data stored in handles, modify it, save the changed data to the structure, and display the
new data in the Command Window. Notice that in GUIDE you use hObject, in place of
src, to refer to the object whose callback is executing.

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles.numberOfClicks = handles.numberOfClicks + 1;
guidata(hObject,handles)
data = guidata(hObject)

>> countClicks

data =

 struct with fields:

 figure1: [1×1 Figure]
 pushbutton1: [1×1 UIControl]
 output: [1×1 Figure]
 numberOfClicks: 1

Input Arguments
obj — Graphics object
graphics object

 guidata

1-5421

Graphics object, such as a Figure, Axes, Illustration, or UI object. Use this
argument to specify the figure that stores data. If the specified object is not a figure,
then the parent figure of the object will be used to store data.

data — Data
any MATLAB data

Data to store in the figure, specified as any MATLAB data. Typically, data is specified as a
structure, which enables you to add new fields as needed. For example, create a data
structure with a field called Category, store the data from the field in the structure, and
display the stored data in the Command Window:

data.Category = 'Projected Growth';
guidata(gcf,data);
data = guidata(gcf)

Algorithms

How guidata Manages Data
guidata can manage only one variable per parent figure at any time. Subsequent calls to
guidata(obj,data) overwrite the previously stored data. Store additional data by
creating a structure with multiple fields.

How GUIDE Uses guidata
GUIDE uses guidata to store and maintain the structure called handles. In a GUIDE
code file, do not overwrite the handles structure or your program will no longer work. If
you need to store other data, you can do so by adding new fields to the handles
structure.

See Also
getappdata | guide | guihandles | setappdata | struct

Introduced before R2006a

1 Alphabetical List

1-5422

guide
Create or edit UI file in GUIDE

Note App Designer is the recommended environment for building apps. For more
information, see “Migrating GUIDE Apps to App Designer”.

Syntax
guide
guide(filename)
guide(figs)

Description
guide launches GUIDE, a UI design environment. From the Quick Start dialog you can
choose to open a previously created UI or create a new one using one of the templates.

guide(filename) opens the specified MATLAB figure file for editing in GUIDE. If the
figure file is not on the MATLAB path, specify the full path. Only one filename can be
opened at a time.

guide(figs) opens each of the Figure objects in figs in a separate copy of the GUIDE
design environment. Use this syntax if you want to edit one or more preexisting figures in
GUIDE that have been saved to variables.

Examples

Open Figure in GUIDE

Open an existing figure from your MATLAB path.

guide("feedback.fig")

 guide

1-5423

Open Multiple Figures in GUIDE

Create two figures and assign them to variables f1 and f2. Then, open the two existing
figures in separate instances of GUIDE.

f1 = figure;
f2 = figure;

guide([f1 f2]);

Input Arguments
filename — File name or path of saved figure
character vector | string scalar

File name or path of saved figure, specified as a character vector or string scalar. Specify
the full path if the figure is not on your MATLAB path. Including .fig in the file name is
optional.
Example: guide("output.fig")
Example: guide('testModule')
Example: guide("C:\Documents\Controls\power.fig")

figs — Existing Figure objects
single Figure object | array of Figure objects

Existing Figure objects, specified as a single Figure object or an array of Figure
objects. Use this argument to open one or more previously saved figures in separate
instances of GUIDE. GUIDE creates figures with the figure function.
Example: guide([f1 f2]);

See Also
appdesigner

Topics
“Migrating GUIDE Apps to App Designer”
“Ways to Build Apps”

1 Alphabetical List

1-5424

“Create a Simple App Using GUIDE”
“GUIDE Templates”

Introduced before R2006a

 guide

1-5425

guihandles
Create structure containing all child objects of Figure

Note Use this function only with GUIDE, or with apps created using the figure
function. App Designer is the recommended environment for building apps. For more
information, see “Migrating GUIDE Apps to App Designer”.

Syntax
handles = guihandles(object_handle)
handles = guihandles

Description
handles = guihandles(object_handle) returns a structure containing all child
objects in a Figure. The object_handle argument can be a Figure object or any child
component of a Figure. Any UI or graphics components you placed in the Figure are
listed with field names that match their Tag property.

The handles structure typically contains one field for every child object, but there are
some exceptions:

• Objects that have an empty Tag property are not listed.
• Objects with hidden handles are listed.
• When multiple objects have the same Tag property, that field in the structure contains

a vector of objects.

handles = guihandles returns a structure containing all child objects for the current
Figure.

See Also
getappdata | guidata | guide | setappdata

1 Alphabetical List

1-5426

Introduced before R2006a

 guihandles

1-5427

gunzip
Extract contents of GNU zip file

Syntax
gunzip(gzipfilenames)
gunzip(gzipfilenames,outputfolder)
filenames = gunzip(___)

Description
gunzip(gzipfilenames) extracts the archived contents of each file in gzipfilenames
to the folder containing gzipfilenames. gunzip does not delete the original GNU zip
files.

gunzip recursively extracts the content in folders. gunzip can extract files from your
local system or files from an Internet URL.

gunzip(gzipfilenames,outputfolder) extracts gzipfilenames into
outputfolder. If outputfolder does not exist, MATLAB creates it.

filenames = gunzip(___) returns a cell array of character vectors containing the
relative path names of all resulting files. You can use this syntax with any of the input
argument combinations in the previous syntaxes.

Examples

Extract GNU Zip Files in Current Folder

Use the gunzip function to extract all the GNU zip files in the current folder.

files = gunzip('*.gz')

1 Alphabetical List

1-5428

files = 1x1 cell array
 {'membrane.m'}

Extract Archive File from URL

Download and extract an archive file from a URL to a local folder.

Suppose you have the archive file example.tar.gz stored at the URL http://
example.com/example.tar.gz. Download and extract the file to the example folder.

url = 'http://example.com/example.tar.gz';
gunzip(url, 'example');
untar('example/example.tar','example');

Input Arguments
gzipfilenames — Names of the GNU zip files
character vector | cell array of character vectors | string array

Names of the GNU zip files to extract from, specified as a character vector, a cell array of
character vectors, or a string array. File names must include a path relative to the current
folder or an absolute path.

If gzipfilenames is a URL, gzipfilenames must include the protocol type (for
example, http://). MATLAB downloads the URL to the temporary folder on your system,
and then it deletes the URL on cleanup.
Data Types: char | string

outputfolder — Target folder
character vector | string scalar

Target folder for the extracted files, specified as a character vector or a string scalar.
Data Types: char | string

 gunzip

1-5429

See Also
gzip | tar | untar | unzip

Introduced before R2006a

1 Alphabetical List

1-5430

gzip
Compress files into GNU zip files

Syntax
gzip(filenames)
gzip(filenames,outputfolder)
entrynames = gzip(___)

Description
gzip(filenames) compresses the contents of the specified files and folders into GNU
zip files with the file extension .gz. gzip recursively compresses the content in folders.
gzip places each output file to the same folder as the input file.

gzip(filenames,outputfolder) places the resulting GNU zip files into
outputfolder. If outputfolder does not exist, MATLAB creates it.

entrynames = gzip(___) returns a cell array of character vectors containing the
relative path names of all resulting files. You can use this syntax with any of the input
argument combinations in the previous syntaxes.

Examples

Compress Select Files Into GNU Zip Files

Compress all files with a .m and .mlx extension in the current folder and store the results
in the archive folder.

compressedfiles = gzip({'*.m','*.mlx'},'archive');
compressedfiles

compressedfiles = 1x1 cell array
 {'archive\CompressSelectFilesExample.mlx.gz'}

 gzip

1-5431

Create GNU Zip File of a Folder

Create a GNU zip file of a folder including all subfolders, and store the relative paths in
the file.

Create a folder myfolder containing a subfolder mysubfolder and the files
membrane.m and logo.m.

mkdir myfolder;
movefile('membrane.m','myfolder');
movefile('logo.m','myfolder');
cd myfolder;
mkdir mysubfolder;
cd ..

Create a GNU zip file of the contents of myfolder, including all subfolders.

gzippedfiles = gzip('myfolder');

Input Arguments
filenames — Names of files or folders
character vector | cell array of character vectors | string array

Names of files or folders to compress, specified as a character vector, a cell array of
character vectors, or a string array.

Files that are on the MATLAB path can include a partial path. Otherwise, files must
include a path relative to the current folder or an absolute path.

Folders must include a path relative to the current folder or an absolute path. On UNIX
systems, folders also can start with ~/ or ~username/, which expands to the current
user's home folder or the specified user's home folder, respectively. You can use the
wildcard character * when specifying files or folders, except when relying on the MATLAB
path to resolve a file name or partial path name.
Data Types: char | string

1 Alphabetical List

1-5432

outputfolder — Target folder
character vector | string scalar

Target folder for the compressed files, specified as a character vector or a string scalar.
Data Types: char | string

See Also
gunzip | tar | untar | unzip | zip

Introduced before R2006a

 gzip

1-5433

h5create
Create HDF5 data set

Syntax
h5create(filename,datasetname,size,Name,Value)

Description
h5create(filename,datasetname,size,Name,Value) creates an HDF5 data set in
the file specified by filename.

Input Arguments
filename

Character vector or string scalar specifying the name of an HDF5 file. If filename does
not already exist, h5create creates it, with additional options specified by one or more
Name,Value pair arguments.

Default:

datasetname

Character vector or string scalar specifying the name of the data set you want to create.
If datasetname is a full path name, h5create creates all intermediate groups, if they
don't already exist.

Default:

size

Array specifying the extents of the dataset. To specify an unlimited extent, set the
corresponding element of size to Inf.

1 Alphabetical List

1-5434

Default:

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Datatype

Any of the following MATLAB datatypes.

'double' 'uint64' 'uint32' 'uint16' 'uint8'
'single' 'int64' 'int32' 'int16' 'int8'

Default: 'double'

ChunkSize

Defines chunking layout.

Default: Not chunked

Deflate

Defines gzip compression level (0-9).

Default: 0

FillValue

Defines the fill value for numeric data sets.

Default:

Fletcher32

Turns on the Fletcher32 checksum filter.

Default: false

 h5create

1-5435

Shuffle

Turns on the Shuffle filter.

Default: false

TextEncoding

Character encoding, specified as 'system' or 'UTF-8'.

• 'system' — Use the system default encoding to create the dataset name.
• 'UTF-8' — Use UTF-8 encoding to create the dataset name.

Default: 'system'

Examples

Create Fixed-Size Data Set

Create a fixed-size 100-by-200 data set.

h5create('myfile.h5','/myDataset1',[100 200])
h5disp('myfile.h5')

HDF5 myfile.h5
Group '/'
 Dataset 'myDataset1'
 Size: 100x200
 MaxSize: 100x200
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: 0.000000

Create Data Set with Compression

Create a single-precision 1000-by-2000 data set with a chunk size of 50-by-80. Apply the
highest level of compression.

1 Alphabetical List

1-5436

h5create('myfile.h5','/myDataset2',[1000 2000],'Datatype','single', ...
 'ChunkSize',[50 80],'Deflate',9)
h5disp('myfile.h5')

HDF5 myfile.h5
Group '/'
 Dataset 'myDataset2'
 Size: 1000x2000
 MaxSize: 1000x2000
 Datatype: H5T_IEEE_F32LE (single)
 ChunkSize: 50x80
 Filters: deflate(9)
 FillValue: 0.000000

Create Data Set with Unlimited Dimension

Create a two-dimensional data set that is unlimited along the second extent.

h5create('myfile.h5','/myDataset3',[200 Inf],'ChunkSize',[20 20])
h5disp('myfile.h5')

HDF5 myfile.h5
Group '/'
 Dataset 'myDataset3'
 Size: 200x0
 MaxSize: 200xInf
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: 20x20
 Filters: none
 FillValue: 0.000000

See Also
h5disp | h5info | h5read | h5write

Topics
“Exporting to HDF5 Files”
“Working with Non-ASCII Characters in HDF5 Files”

 h5create

1-5437

Introduced in R2011a

1 Alphabetical List

1-5438

h5disp
Display contents of HDF5 file

Syntax
h5disp(filename)
h5disp(filename,location)
h5disp(filename,location,mode)
h5disp(___ ,'TextEncoding',encoding)

Description
h5disp(filename) displays the structure (metadata) of the entire HDF5 file,
filename.

h5disp(filename,location) displays the metadata for the specified location.

h5disp(filename,location,mode) displays the file metadata according to the value
of mode.

h5disp(___ ,'TextEncoding',encoding) specifies the text encoding to use for
reading objects in the HDF5 file.

Input Arguments
filename

Character vector or string scalar specifying the name of an HDF5 file.

Default:

 h5disp

1-5439

location

Character vector or string scalar specifying the full path to a location in an HDF5 file. To
display the metadata for the entire file, specify '/' as the value of location. If
location is a group, h5disp displays all objects below the group.

Default:

mode

Specified as one of these values:

Value Description
'min' Minimal, display only group and data set names.
'simple' Display data set metadata and attribute values, if the attribute is an

integer, floating point, or a scalar string.

Default: 'simple'

encoding

Character encoding, specified as 'system' or 'UTF-8'.

• 'system' — Use the system default encoding for names of objects and attributes.
• 'UTF-8' — Use UTF-8 encoding for names of objects and attributes.

Default: 'system'

Examples
Display the entire contents of an HDF5 file.

h5disp('example.h5')

Display metadata for one data set in an HDF5 file.

 h5disp('example.h5','/g4/world');

1 Alphabetical List

1-5440

See Also
h5info

Topics
“Using the High-Level HDF5 Functions to Import Data”
“Working with Non-ASCII Characters in HDF5 Files”

Introduced in R2011a

 h5disp

1-5441

h5info
Return information about HDF5 file

Syntax
info = h5info(filename)
info = h5info(filename,location)
info = h5info(___ ,'TextEncoding',encoding)

Description
info = h5info(filename) returns information about the entire HDF5 file, specified
by filename.

info = h5info(filename,location) returns information about the group, data set,
or named datatype specified by location in the HDF5 file, filename.

info = h5info(___ ,'TextEncoding',encoding) specifies the text encoding to use
for reading objects in the HDF5 file.

Input Arguments
filename

Character vector or string scalar specifying the name of an HDF5 file.

Default:

location

Character vector or string scalar specifying the location of a group, data set, or named
datatype in an HDF5 file.

Default:

1 Alphabetical List

1-5442

encoding

Character encoding, specified as 'system' or 'UTF-8'.

• 'system' — Use the system default encoding for names of objects and attributes.
• 'UTF-8' — Use UTF-8 encoding for names of objects and attributes.

Default: 'system'

Output Arguments
info

A structure containing information about the HDF5 file. The set of fields in the structure
depends on the location parameter. The first field is always 'Filename'. Other fields
that might be present in the info structure are as follows.

Location
Type

Field Description

Files and
Groups

 Name Character vector specifying name of the
group. If you specify only a file name,
this value is '/'.

 Groups Array of structures describing
subgroups.

 Datasets Array of structures describing data sets.
 Datatypes Array of structures describing named

datatypes.
 Links Array of structures describing soft,

external, user-defined, and certain hard
links.

 Attributes Array of structures describing group
attributes.

Data sets

 h5info

1-5443

Location
Type

Field Description

 Name Character vector specifying the name of
the data set.

 Datatype Structure describing the datatype.
 Dataspace Structure describing the size of the

dataset.
 ChunkSize Extents of the data set's chunk size, if

defined.
 FillValue Data set's fill value, if defined.
 Filter Array of structures describing any

defined filters such as compression.
 Attributes Array of structures describing data set

attributes.
Named
Datatypes

 Name Character vector specifying the name of
the datatype object.

 Class HDF5 class of the named datatype.
 Type Character vector or struct further

describing the datatype.
 Size Size of the named datatype in bytes.

Examples
Return all information.

info = h5info('example.h5');

Return information about a group and all data sets contained within the group.

info = h5info('example.h5','/g4');

Return information about a specific dataset.

info = h5info('example.h5','/g4/time');

1 Alphabetical List

1-5444

See Also
h5disp

Topics
“Using the High-Level HDF5 Functions to Import Data”
“Working with Non-ASCII Characters in HDF5 Files”

Introduced in R2011a

 h5info

1-5445

h5readatt
Read attribute from HDF5 file

Syntax
attval = h5readatt(filename,location,attr)

Description
attval = h5readatt(filename,location,attr) retrieves the value for the named
attribute attr from the given location in the HDF5 file filename.

Input Arguments
filename

Character vector or string scalar specifying the name of an HDF5 file.

Default:

location

Character vector or string scalar specifying the full path of the attribute in an HDF5 file.
location can refer to either a group or a data set.

Default:

attr

Character vector or string scalar specifying the name of an attribute in an HDF5 file.

Default:

1 Alphabetical List

1-5446

Output Arguments
attval

Value of the attribute.

Examples

Read Group Attribute

attval = h5readatt('example.h5','/','attr2')

attval = 2x2 int32 matrix

 0 2
 1 3

Read Data Set Attribute

Read the units attribute.

attval = h5readatt('example.h5','/g4/lon','units')

attval =
'degrees_east'

See Also
h5info | h5writeatt

Topics
“Using the High-Level HDF5 Functions to Import Data”

Introduced in R2011a

 h5readatt

1-5447

h5write
Write to HDF5 data set

Syntax
h5write(filename,datasetname,data)
h5write(filename,datasetname,data,start,count)
h5write(filename,datasetname,data,start,count,stride)

Description
h5write(filename,datasetname,data) writes data to an entire data set,
datasetname, in the HDF5 file, filename.

h5write(filename,datasetname,data,start,count) writes a subset of the data
to a data set, datasetname, in the HDF5 file, filename. start is a one-based index
value that specifies the first element to be written. count specifies the number of
elements to write along each dimension. h5write extends an extendable data set along
any unlimited dimensions, if necessary.

h5write(filename,datasetname,data,start,count,stride) writes a hyperslab
of data, where stride specifies the inter-element spacing along each dimension.

Input Arguments
filename

Character vector or string scalar specifying the name of an HDF5 file.

Default:

datasetname

Character vector or string scalar specifying the name of a data set in the HDF5 file.

1 Alphabetical List

1-5448

Default:

data

Data to be written to the HDF5 file. You can specify only non-sparse floating-point and
integer data sets.

Default:

start

Numeric index value specifying where in the data set to start writing to the file.

Default:

count

Numeric value specifying how much data to write to the file.

Default:

stride

Numeric value specifying the interelement spacing of data to write to the file.

Default: Vector of ones.

Examples

Write to Entire Data Set

Write random values to a data set named DS1.

h5create('myfile.h5','/DS1',[10 20])
mydata = rand(10,20);
h5write('myfile.h5', '/DS1', mydata)

Display the contents of the file.

h5disp('myfile.h5')

 h5write

1-5449

HDF5 myfile.h5
Group '/'
 Dataset 'DS1'
 Size: 10x20
 MaxSize: 10x20
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: 0.000000

Write to Block of Data Set

Write a hyperslab of data to the last 5-by-7 block of a data set.

h5create('myfile.h5','/DS2',[10 20])
mydata = rand(5,7);
h5write('myfile.h5','/DS2',mydata,[6 14],[5 7])

Append Data to Unlimited Data Set

h5create('myfile.h5','/DS3',[20 Inf],'ChunkSize',[5 5]);
for j = 1:10
 data = j*ones(20,1);
 start = [1 j];
 count = [20 1];
 h5write('myfile.h5','/DS3',data,start,count);
end
h5disp('myfile.h5');

HDF5 myfile.h5
Group '/'
 Dataset 'DS3'
 Size: 20x10
 MaxSize: 20xInf
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: 5x5
 Filters: none
 FillValue: 0.000000

1 Alphabetical List

1-5450

Limitations
• h5write supports only floating point and integer data sets. To write to string data

sets, you must use the H5D package.

Definitions

Hyperslab
A hyperslab is a collection of points in a data space. The points can be contiguous or form
a regular pattern of points or blocks in a data space.

See Also
H5D.create | H5D.write | h5create | h5disp | h5read | h5writeatt

Topics
“Exporting to HDF5 Files”

Introduced in R2011a

 h5write

1-5451

h5writeatt
Write HDF5 attribute

Syntax
h5writeatt(filename,location,attname,attvalue)
h5writeatt(filename,location,attname,attvalue,'TextEncoding',encodin
g)

Description
h5writeatt(filename,location,attname,attvalue) writes the attribute named
attname with the value attvalue to the HDF5 file filename. The parent object
location can be either a group or variable. location is the complete path name of the
group or variable to which you want to associate the attribute.

h5writeatt(filename,location,attname,attvalue,'TextEncoding',encodin
g) additionally specifies the text encoding to use when writing the attribute name or any
attribute values that are of the text data type.

Input Arguments
filename

Character vector or string scalar specifying the name of an HDF5 file.

Default:

location

Character vector or string scalar specifying the full path identifying a group or variable in
an HDF5 file.

Default:

1 Alphabetical List

1-5452

attname

Character vector or string scalar specifying the name of an attribute in an HDF5 file. If
the attribute does not exist, h5writeatt creates the attribute with the name specified.

If the specified attribute already exists but does not have a datatype or dataspace
consistent with attvalue, h5writeatt deletes the attribute and recreates it. String
attributes are created with a scalar dataspace.

Default:

attvalue

Value to be written to the attribute in an HDF5 file.

Default:

encoding

Character encoding, specified as 'system' or 'UTF-8'.

• 'system' — Use the system default encoding for the attribute name and any attribute
values that are of the text data type.

• 'UTF-8' — Use UTF-8 encoding for the attribute name and any attribute values that
are of the text data type.

Default: 'system'

Examples
Create a root group attribute whose value is the current time.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
h5writeatt('myfile.h5','/','creation_date',datestr(now));

Create a double-precision data set attribute.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');

 h5writeatt

1-5453

attData = [0 1 2 3];
h5writeatt('myfile.h5','/g4/world','attr',attData);
h5disp('myfile.h5','/g4/world');

See Also
h5disp | h5readatt | h5write

Topics
“Exporting to HDF5 Files”
“Working with Non-ASCII Characters in HDF5 Files”

Introduced in R2011a

1 Alphabetical List

1-5454

H5.close
Close HDF5 library

Syntax
H5.close()

Description
H5.close() closes the HDF5 library.

See Also
H5.open

 H5.close

1-5455

H5.garbage_collect
Free unused memory in HDF5 library

Syntax
H5.garbage_collect()

Description
H5.garbage_collect() frees unused memory in the HDF5 library.

1 Alphabetical List

1-5456

H5.get_libversion
Version of HDF5 library

Syntax
[majnum,minnum,relnum] = H5.get_libversion()

Description
[majnum,minnum,relnum] = H5.get_libversion() returns the version of the
HDF5 library in use.

 H5.get_libversion

1-5457

H5.open
Open HDF5 library

Syntax
H5.open()

Description
H5.open() opens the HDF5 library.

See Also
H5.close

1 Alphabetical List

1-5458

H5.set_free_list_limits
Set size limits on free lists

Syntax
H5.set_free_list_limits(reg_global_lim,reg_list_lim,arr_global_lim,a
rr_list_lim,blk_global_lim,blk_list_lim)

Description
H5.set_free_list_limits(reg_global_lim,reg_list_lim,arr_global_lim,a
rr_list_lim,blk_global_lim,blk_list_lim) sets size limits on all types of free
lists.

 H5.set_free_list_limits

1-5459

H5A.close
Close specified attribute

Syntax
H5A.close(attr_id)

Description
H5A.close(attr_id) terminates access to the attribute specified by attr_id,
releasing the identifier.

See Also
H5A.open

1 Alphabetical List

1-5460

H5A.create
Create attribute

Syntax
attr_id = H5A.create(loc_id,name,type_id,space_id,acpl_id)
attr_id = H5A.create(loc_id,name,type_id,space_id,acpl_id,aapl_id)

Description
attr_id = H5A.create(loc_id,name,type_id,space_id,acpl_id) creates the
attribute name that is attached to the object specified by loc_id. loc_id is a group,
dataset, or named datatype identifier. The datatype and dataspace identifiers of the
attribute, type_id and space_id, respectively, are created with the H5T and H5S
interfaces. The attribute property list, acpl_id, is currently unused and should be set to
'H5P_DEFAULT'. This interface corresponds to the 1.6.x version of H5Acreate.

attr_id = H5A.create(loc_id,name,type_id,space_id,acpl_id,aapl_id)
creates the attribute with the additional attribute access property list identifier aapl_id.
aapl_id should currently be set to 'H5P_DEFAULT'. This interface corresponds to the
1.8.x version of H5Acreate.

Examples
acpl_id = H5P.create('H5P_ATTRIBUTE_CREATE');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
space_id = H5S.create('H5S_SCALAR');
fid = H5F.create('myfile.h5');
attr_id = H5A.create(fid,'my_attr',type_id,space_id,acpl_id);
H5A.close(attr_id);
H5F.close(fid);

 H5A.create

1-5461

See Also
H5A.close | H5P.create

1 Alphabetical List

1-5462

H5A.delete
Delete attribute

Syntax
H5A.delete(loc_id,name)

Description
H5A.delete(loc_id,name) removes the attribute specified by name from the dataset,
group, or named datatype specified by loc_id.

Examples
Delete a root group attribute.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
gid = H5G.open(fid,'/');
H5A.delete(gid,'attr1');
H5G.close(gid);
H5F.close(fid);

 H5A.delete

1-5463

H5A.get_info
Information about attribute

Syntax
info = H5A.get_info(attr_id)

Description
info = H5A.get_info(attr_id) returns information about an attribute specified by
attr_id.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
info = H5A.get_info(attr_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also
H5A.open

1 Alphabetical List

1-5464

H5A.get_name
Attribute name

Syntax
attr_name = H5A.get_name(attr_id)
attr_name = H5A.get_name(attr_id,'TextEncoding',encoding)

Description
attr_name = H5A.get_name(attr_id) returns the name of the attribute specified by
attr_id.

attr_name = H5A.get_name(attr_id,'TextEncoding',encoding) specifies the
text encoding to use to interpret the attribute name. Specify encoding as
'system'(default) or 'UTF-8'.

• 'system' — Use the system default encoding to interpret the attribute name.
• 'UTF-8' — Use UTF-8 encoding to interpret the attribute name.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.1');
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_INC';
attr_id = H5A.open_by_idx(gid,'dset1.1.1',idx_type,order,0);
name = H5A.get_name(attr_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also
H5A.open_by_idx

 H5A.get_name

1-5465

Topics
“Working with Non-ASCII Characters in HDF5 Files”

1 Alphabetical List

1-5466

H5A.get_space
Copy of attribute data space

Syntax
dspace_id = H5A.get_space(attr_id)

Description
dspace_id = H5A.get_space(attr_id) returns a copy of the data space for the
attribute specified by attr_id.

Examples
Retrieve the dimensions of an attribute data space.

fid = H5F.open('example.h5');
attr_id = H5A.open(fid,'attr2');
space = H5A.get_space(attr_id);
[~,dims] = H5S.get_simple_extent_dims(space);
H5A.close(attr_id);
H5F.close(fid);

See Also
H5A.open | H5S.close

 H5A.get_space

1-5467

H5A.get_type
Copy of attribute data type

Syntax
type_id = H5A.get_type(attr_id)

Description
type_id = H5A.get_type(attr_id) returns a copy of the data type for the attribute
specified by attr_id.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
type_id = H5A.get_type(attr_id);
H5T.close(type_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also
H5A.open | H5T.close

1 Alphabetical List

1-5468

H5A.iterate
Execute function for attributes attached to object

Syntax
[status,idx_stop,cdata_out] =
H5A.iterate(obj_id,idx_type,order,idx_start,iter_func,cdata_in)
H5A.iterate(loc_id,attr_idx,iterator_func)

Description
[status,idx_stop,cdata_out] =
H5A.iterate(obj_id,idx_type,order,idx_start,iter_func,cdata_in)
executes the specified function iter_func for each attribute connected to an object.
obj_id identifies the object to which attributes are attached. idx_type is the type of
index and valid values include the following.

'H5_INDEX_NAME' An alpha-numeric index by attribute name
'H5_INDEX_CRT_ORDER' An index by creation order

order specifies the index traversal order. Valid values include the following.

'H5_ITER_INC' Iteration from beginning to end
'H5_ITER_DEC' Iteration from end to beginning
'H5_ITER_NATIVE' Iteration in the fastest available order

idx_start specifies the starting point of the iteration. idx_stop returns the point at
which iteration was stopped. This allows an interrupted iteration to be resumed.

The callback function, iter_func, must have the following signature:

[status,cdata_out] = iter_func(obj_id,attr_name,info,cdata_in)

cdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func cdata_in parameter. The cdata_out of an iteration step

 H5A.iterate

1-5469

forms the cdata_in for the next iteration step. Then, the final cdata_out at the end of
the iteration is returned to the caller as cdata_out. This form of H5A.iterate
corresponds to the H5Aiterate2 function in the HDF5 C API.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

H5A.iterate(loc_id,attr_idx,iterator_func) executes the specified function for
each attribute of the group, dataset, or named datatype specified by loc_id. The
attr_idx argument specifies where the iteration begins. iterator_func must be a
function handle.

The iterator function must have the following signature:

status = iterator_func(loc_id,attr_name)

loc_id still specifies the group, dataset, or named data type passed into H5A.iterate,
and attr_name specifies the current attribute. This form of H5A.iterate corresponds
to H5Aiterate1 function in the HDF5 C API.

1 Alphabetical List

1-5470

H5A.open
Open attribute

Syntax
attr_id = H5A.open(obj_id,attr_name)
attr_id = H5A.open(obj_id,attr_name,aapl_id)

Description
attr_id = H5A.open(obj_id,attr_name) opens an attribute for an object specified
by a parent object identifier and attribute name.

attr_id = H5A.open(obj_id,attr_name,aapl_id) opens an attribute with an
attribute access property list identifier, aapl_id. The only currently valid value for
aapl_id is 'H5P_DEFAULT'.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also
H5A.close | H5A.open_by_idx | H5A.open_by_name

 H5A.open

1-5471

H5A.open_by_idx
Open attribute specified by index

Syntax
attr_id = H5A.open_by_idx(loc_id,obj_name,idx_type,order,n)
attr_id =
H5A.open_by_idx(loc_id,obj_name,idx_type,order,n,aapl_id,lapl_id)

Description
attr_id = H5A.open_by_idx(loc_id,obj_name,idx_type,order,n) opens an
existing attribute at index n attached to an object specified by its location, loc_id, and
name, obj_name.

idx_type is the type of index and valid values include the following.

'H5_INDEX_NAME' An alpha-numeric index by attribute name
'H5_INDEX_CRT_ORDER' An index by creation order

order specifies the index traversal order. Valid values include the following.

'H5_ITER_INC' Iteration from beginning to end
'H5_ITER_DEC' Iteration from end to beginning
'H5_ITER_NATIVE' Iteration in the fastest available order

attr_id =
H5A.open_by_idx(loc_id,obj_name,idx_type,order,n,aapl_id,lapl_id)
opens an attribute with attribute access property list, aapl_id, and link access property
list, lapl_id. The aapl_id argument must currently be specified as 'H5P_DEFAULT'.
Also, lapl_id can be specified by 'H5P_DEFAULT'.

1 Alphabetical List

1-5472

Examples
Loop through a set of dataset attributes in reverse alphabetical order.

fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.1');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
info = H5O.get_info(dset_id);
for idx = 0:info.num_attrs-1
 attr_id =H5A.open_by_idx(gid,'dset1.1.1','H5_INDEX_NAME','H5_ITER_DEC',idx);
 fprintf('attribute name: %s\n',H5A.get_name(attr_id));
 H5A.close(attr_id);
end
H5G.close(gid);
H5F.close(fid);

See Also
H5A.close | H5A.open | H5A.open_by_name

 H5A.open_by_idx

1-5473

H5A.open_by_name
Open attribute specified by name

Syntax
attr_id = H5A.open_by_name(loc_id,obj_name,attr_name)
attr_id =
H5A.open_by_name(loc_id,obj_name,attr_name,aapl_id,lapl_id)

Description
attr_id = H5A.open_by_name(loc_id,obj_name,attr_name) opens an existing
attribute attr_name attached to an object specified by its location loc_id and name
obj_name.

attr_id =
H5A.open_by_name(loc_id,obj_name,attr_name,aapl_id,lapl_id) opens an
existing attribute with the attribute access property list aapl_id and link access
property list lacpl_id. aapl_id must be specified as 'H5P_DEFAULT'. lapl_id may
also be specified by 'H5P_DEFAULT'.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.1');
attr_id = H5A.open_by_name(gid,'dset1.1.1','attr1');
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also
H5A.close | H5A.open | H5A.open_by_idx

1 Alphabetical List

1-5474

H5A.read
Read attribute

Syntax
attr = H5A.read(attr_id)
attr = H5A.read(attr_id, mem_type_id)

Description
attr = H5A.read(attr_id) reads the attribute specified by attr_id. MATLAB will
determine the appropriate memory datatype.

attr = H5A.read(attr_id, mem_type_id) reads the attribute specified by
attr_id. mem_type_id specifies the attribute's memory datatype and should usually be
given as 'H5ML_DEFAULT', which specifies that MATLAB will determine the appropriate
memory datatype.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. If the HDF5 library reports the attribute size as 3-by-4-
by-5, then the corresponding MATLAB array size is 5-by-4-by-3. Please consult "Using the
MATLAB Low-Level HDF5 Functions" in the MATLAB documentation for more
information.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
data = H5A.read(attr_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

 H5A.read

1-5475

See Also
H5A.open | H5A.write

1 Alphabetical List

1-5476

H5A.write
Write attribute

Syntax
H5A.write(attr_id,type_id,buf)

Description
H5A.write(attr_id,type_id,buf) writes the data in buf into the attribute specified
by attr_id. type_id specifies the attribute's memory datatype. The memory datatype
should be 'H5ML_DEFAULT', which specifies that MATLAB should determine the
appropriate memory datatype.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. If the MATLAB array size is 5-by-4-by-3, then the HDF5
library should be reporting the attribute size as 3-by-4-by-5. Please consult "Using the
MATLAB Low-Level HDF5 Functions" in the MATLAB documentation for more
information.

Examples
Write a scalar double precision attribute.

acpl = H5P.create('H5P_ATTRIBUTE_CREATE');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
space_id = H5S.create('H5S_SCALAR');
fid = H5F.create('myfile.h5');
attr_id = H5A.create(fid,'my_attr',type_id,space_id,acpl);
H5A.write(attr_id,'H5ML_DEFAULT',10.0)
H5A.close(attr_id);
H5F.close(fid);
H5T.close(type_id);

 H5A.write

1-5477

See Also
H5A.read

1 Alphabetical List

1-5478

H5D.close
Close dataset

Syntax
H5D.close(dataset_id)

Description
H5D.close(dataset_id) ends access to a dataset specified by dataset_id and
releases resources used by it.

See Also
H5D.create | H5D.open

 H5D.close

1-5479

H5D.create
Create new dataset

Syntax
dataset_id = H5D.create(loc_id,name,type_id,space_id,plist_id)
dataset_id =
H5D.create(loc_id,name,type_id,space_id,lcpl_id,dcpl_id,dapl_id)

Description
dataset_id = H5D.create(loc_id,name,type_id,space_id,plist_id) creates
the data set specified by name in the file or in the group specified by loc_id. type_id
and space_id identify the datatype and dataspace, respectively. plist_id identifies the
dataset creation property list. This interface corresponds to the H5Dcreate1 function in
the HDF5 library C 1.6 API.

dataset_id =
H5D.create(loc_id,name,type_id,space_id,lcpl_id,dcpl_id,dapl_id)
creates the data set with three distinct property lists:

lcpl_id link creation property list
dcpl_id dataset creation property list
dapl_id dataset access property list

This interface corresponds to the H5Dcreate function in the HDF5 library C 1.8 API.

Examples
Create a 10x5 double precision dataset with default property list settings.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [10 5];

1 Alphabetical List

1-5480

h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = 'H5P_DEFAULT';
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5S.close(space_id);
H5T.close(type_id);
H5D.close(dset_id);
H5F.close(fid);
h5disp('myfile.h5');

Create a 6x3 fixed length string dataset. Each string will have a length of 4 characters.

fid = H5F.create('myfile_strings.h5');
type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,4);
dims = [6 3];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = 'H5P_DEFAULT';
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5S.close(space_id);
H5T.close(type_id);
H5D.close(dset_id);
H5F.close(fid);
h5disp('myfile_strings.h5');

See Also
H5D.close | H5S.close | H5S.create_simple | H5T.copy

 H5D.create

1-5481

H5D.get_access_plist
Copy of dataset access property list

Syntax
plist_id = H5D.get_access_plist(dataset_id)

Description
plist_id = H5D.get_access_plist(dataset_id) returns a copy of the dataset
access property list used to open the specified dataset.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dapl = H5D.get_access_plist(dset_id);
H5P.close(dapl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5D.get_create_plist | H5P.close

1 Alphabetical List

1-5482

H5D.get_create_plist
Copy of dataset creation property list

Syntax
plist_id = H5D.get_create_plist(dataset_id)

Description
plist_id = H5D.get_create_plist(dataset_id) returns the identifier to a copy of
the dataset creation property list for the dataset specified by dataset_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dcpl = H5D.get_create_plist(dset_id);
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5D.get_access_plist | H5P.close

 H5D.get_create_plist

1-5483

H5D.get_offset
Location of dataset in file

Syntax
offset = H5D.get_offset(dataset_id)

Description
offset = H5D.get_offset(dataset_id) returns the location in the file of the
dataset specified by dataset_id. The location is expressed as an offset, in bytes, from
the beginning of the file.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
offset = H5D.get_offset(dset_id);
H5D.close(dset_id);
H5F.close(fid);

1 Alphabetical List

1-5484

H5D.get_space
Copy of dataset data space

Syntax
dspace_id = H5D.get_space(dataset_id)

Description
dspace_id = H5D.get_space(dataset_id) returns an identifier for a copy of the
data space for a dataset.

Examples
Retrieve the dimensions of an attribute data space.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
space = H5D.get_space(dset_id);
[~,dims] = H5S.get_simple_extent_dims(space);
H5S.close(space);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5D.open | H5S.close

 H5D.get_space

1-5485

H5D.get_space_status
Determine if space is allocated

Syntax
status = H5D.get_space_status(dataset_id)

Description
status = H5D.get_space_status(dataset_id) determines whether space has
been allocated for the dataset specified by dataset_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
status = H5D.get_space_status(dset_id);
switch(status)
 case H5ML.get_constant_value('H5D_SPACE_STATUS_NOT_ALLOCATED')
 fprintf('Not allocated.\n');
 case H5ML.get_constant_value('H5D_SPACE_STATUS_ALLOCATED')
 fprintf('Allocated.\n');
 case H5ML.get_constant_value('H5D_SPACE_STATUS_PART_ALLOCATED')
 fprintf('Part allocated.\n');
end
H5D.close(dset_id);
H5F.close(fid);

See Also
H5D.get_space

1 Alphabetical List

1-5486

H5D.get_storage_size
Determine required storage size

Syntax
dataset_size = H5D.get_storage_size(dataset_id)

Description
dataset_size = H5D.get_storage_size(dataset_id) returns the amount of
storage that is required for the dataset specified by dataset_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dataset_size = H5D.get_storage_size(dset_id);
H5D.close(dset_id);
H5F.close(fid);

 H5D.get_storage_size

1-5487

H5D.get_type
Copy of datatype

Syntax
type_id = H5D.get_type(dataset_id)

Description
type_id = H5D.get_type(dataset_id) returns an identifier for a copy of the data
type for the dataset specified by dataset_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
type_id = H5D.get_type(dset_id);
H5T.close(type_id);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5T.close

1 Alphabetical List

1-5488

H5D.open
Open specified dataset

Syntax
dataset_id = H5D.open(loc_id,name)
dataset_id = H5D.open(loc_id,name,dapl_id)

Description
dataset_id = H5D.open(loc_id,name) opens the dataset specified by name in the
file or group specified by loc_id.

dataset_id = H5D.open(loc_id,name,dapl_id) opens the dataset specified by
name in the file or group specified by loc_id. The dataset access property list, dapl_id,
provides information regarding access to the dataset.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
dset_id = H5D.open(gid,'dset2.2');
H5D.close(dset_id);
H5F.close(fid);

See Also
H5D.close

 H5D.open

1-5489

H5D.read
Read data from HDF5 dataset

Syntax
data = H5D.read(dataset_id)
data =
H5D.read(dataset_id,mem_type_id,mem_space_id,file_space_id,dxpl)

Description
data = H5D.read(dataset_id) reads the entire dataset specified by dataset_id.

data =
H5D.read(dataset_id,mem_type_id,mem_space_id,file_space_id,dxpl) reads
the dataset specified by dataset_id. The mem_type_id input specifies the memory data
type and should usually be 'H5ML_DEFAULT' to allow MATLAB to determine the
appropriate value. mem_space_id describes how the data is to be arranged in memory
and should usually be 'H5S_ALL'. The file_space_id input describes how the data is
to be selected from the file. It also can be given as 'H5S_ALL', but this results in the
entire dataset being read into memory. dxpl is the dataset transfer property list identifier
and should usually be 'H5P_DEFAULT'.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples
Read an entire dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
data = H5D.read(dset_id);

1 Alphabetical List

1-5490

H5D.close(dset_id);
H5F.close(fid);

Read the 2x3 hyperslab starting in the 4th row and 5th column of the example dataset.

plist = 'H5P_DEFAULT';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dims = fliplr([2 3]);
mem_space_id = H5S.create_simple(2,dims,[]);
file_space_id = H5D.get_space(dset_id);
offset = fliplr([3 4]);
block = fliplr([2 3]);
H5S.select_hyperslab(file_space_id,'H5S_SELECT_SET',offset,[],[],block);
data = H5D.read(dset_id,'H5ML_DEFAULT',mem_space_id,file_space_id,plist);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5D.open | H5D.write | H5S.create_simple

 H5D.read

1-5491

H5D.set_extent
Change size of dataset dimensions

Syntax
H5D.set_extent(dset_id,h5_extents)

Description
H5D.set_extent(dset_id,h5_extents) changes the dimensions of the dataset
dset_id to the sizes specified in h5_extents.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_extents parameter assumes C-style ordering.
Please consult "Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples
Extend an unlimited one-dimensional dataset from a length of 10 to a length of 20.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
dset_id = H5D.open(fid,'/g4/time');
H5D.set_extent(dset_id,20);
H5D.close(dset_id);
H5F.close(fid);

1 Alphabetical List

1-5492

H5D.vlen_get_buf_size
Determine variable length storage requirements

Syntax
size = H5D.vlen_get_buf_size(dataset_id,type_id,space_id)

Description
size = H5D.vlen_get_buf_size(dataset_id,type_id,space_id) determines
the number of bytes required to store the VL data from the dataset, using the space_id
for the selection in the dataset on disk and the type_id for the memory representation of
the VL data in memory.

 H5D.vlen_get_buf_size

1-5493

H5D.write
Write data to HDF5 dataset

Syntax
H5D.write(dataset_id,mem_type_id,mem_space_id,file_space_id,plist_id
,buf)

Description
H5D.write(dataset_id,mem_type_id,mem_space_id,file_space_id,plist_id
,buf) writes the dataset specified by dataset_id from the application memory buffer
buf into the file. plist_id specifies the data transfer properties. mem_type_id
identifies the memory datatype of the dataset. mem_space_id and file_space_id
define the part of the dataset to write. The memory datatype should usually be
'H5ML_DEFAULT', which specifies that MATLAB should determine the appropriate
memory datatype.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples
Write to the entire 36-by-19 /g4/world example dataset.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
plist = 'H5P_DEFAULT';
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
dset_id = H5D.open(fid,'/g4/world');
dims = [36 19];
data = rand(dims);

1 Alphabetical List

1-5494

H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',plist,data);
H5D.close(dset_id);
H5F.close(fid);

Write to the entire two-element /g3/VLstring dataset.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
h5disp('myfile.h5','/g3/VLstring');
plist = 'H5P_DEFAULT';
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
dset_id = H5D.open(fid,'/g3/VLstring');
data = {'dogs'; 'dogs and cats'};
H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',plist,data);
H5D.close(dset_id);
H5F.close(fid);
data_out = h5read('myfile.h5','/g3/VLstring');

Write a 10-by-5 block of data to the location starting at row index 15 and column index 5
of the same dataset. Recall that indexing is zero-based.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
plist = 'H5P_DEFAULT';
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
dset_id = H5D.open(fid,'/g4/world');
start = [15 5];
h5_start = fliplr(start);
block = [10 5];
h5_block = fliplr(block);
mem_space_id = H5S.create_simple(2,h5_block,[]);
file_space_id = H5D.get_space(dset_id);
H5S.select_hyperslab(file_space_id,'H5S_SELECT_SET',h5_start,[],[],h5_block);
data = rand(block);
H5D.write(dset_id,'H5ML_DEFAULT',mem_space_id,file_space_id,plist,data);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5D.read

 H5D.write

1-5495

H5DS.attach_scale
Attach dimension scale to specific dataset dimension

Syntax
H5DS.attach_scale(dataset_id,dimscale_id,idx)

Description
H5DS.attach_scale(dataset_id,dimscale_id,idx) attaches a dimension scale
dimscale_id to dimension idx of the dataset dataset_id.

Note The ordering of the dimension scale indices are the same as the HDF5 library C
API.

Examples
Add the 'lon' and 'lat' dimension scales to the 'world' dataset.

plist = 'H5P_DEFAULT';
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
world_dset_id = H5D.open(fid,'/g4/world',plist);
lat_dset_id = H5D.open(fid,'/g4/lat',plist);
lon_dset_id = H5D.open(fid,'/g4/lon',plist);
H5DS.attach_scale(world_dset_id,lat_dset_id,0);
H5DS.attach_scale(world_dset_id,lon_dset_id,1);
H5D.close(lat_dset_id);
H5D.close(lon_dset_id);
H5D.close(world_dset_id);
H5F.close(fid);

1 Alphabetical List

1-5496

See Also
H5DS.detach_scale

 H5DS.attach_scale

1-5497

H5DS.detach_scale
Detach dimension scale from specific dataset dimension

Syntax
H5DS.detach_scale(dataset_id,dimscale_id,idx)

Description
H5DS.detach_scale(dataset_id,dimscale_id,idx) detaches dimension scale
dimscale_id from dimension idx of the dataset dataset_id.

Note The ordering of the dimension scale indices are the same as the HDF5 library C
API.

See Also
H5DS.attach_scale

1 Alphabetical List

1-5498

H5DS.get_label
Retrieve label from specific dataset dimension

Syntax
label = H5DS.get_label(dataset_id,idx)

Description
label = H5DS.get_label(dataset_id,idx) retrieves the label for dimension idx of
the dataset dataset_id.

Note The ordering of the dimension scale indices are the same as the HDF5 library C
API.

Examples
fid = H5F.open('example.h5');
world_dset_id = H5D.open(fid,'/g4/world');
label = H5DS.get_label(world_dset_id,0);
H5D.close(world_dset_id);
H5F.close(fid);

See Also
H5DS.set_label

 H5DS.get_label

1-5499

H5DS.get_num_scales
Number of scales attached to dataset dimension

Syntax
num_scales = H5DS.get_num_scales(dataset_id,idx)

Description
num_scales = H5DS.get_num_scales(dataset_id,idx) determines the number of
dimension scales that are attached to dimension idx of the dataset dataset_id.

Examples
fid = H5F.open('example.h5');
world_dset_id = H5D.open(fid,'/g4/world');
num_scales = H5DS.get_num_scales(world_dset_id,0);
H5D.close(world_dset_id);
H5F.close(fid);

1 Alphabetical List

1-5500

H5DS.get_scale_name
Name of dimension scale

Syntax
name = H5DS.get_scale_name(dimscale_id)

Description
name = H5DS.get_scale_name(dimscale_id) retrieves the name of the dimension
scale dimscale_id.

Examples
fid = H5F.open('example.h5');
lat_dset_id = H5D.open(fid,'/g4/lat');
scale_name = H5DS.get_scale_name(lat_dset_id);
H5D.close(lat_dset_id);
H5F.close(fid);

See Also
H5DS.set_scale

 H5DS.get_scale_name

1-5501

H5DS.is_scale
Determine if dataset is a dimension scale

Syntax
bool = H5DS.is_scale(dataset_id)

Description
bool = H5DS.is_scale(dataset_id) determines whether the dataset dataset_id
is a dimension scale.

Examples
fid = H5F.open('example.h5');
lat_dset_id = H5D.open(fid,'/g4/lat');
if H5DS.is_scale(lat_dset_id)
 fprintf('/g4/lat is a dimension scale.\n');
else
 fprintf('/g4/lat is not a dimension scale.\n');
end
H5D.close(lat_dset_id);
H5F.close(fid);

1 Alphabetical List

1-5502

H5DS.iterate_scales
Iterate on scales attached to dataset dimension

Syntax
[status,idx_out,opdata_out] =
H5DS.iterate_scales(dset_id,dim,idx_in,iter_func,opdata_in)

Description
[status,idx_out,opdata_out] =
H5DS.iterate_scales(dset_id,dim,idx_in,iter_func,opdata_in) iterates
over the scales attached to dimension dim of the dataset dset_id to perform a common
operation whose function handle is iter_func.

idx_in specifies the starting point of the iteration. idx_out returns the point at which
iteration was stopped. This allows an interrupted iteration to be resumed. If idx_in is
[], then the iterator starts at the first member.

The callback function iter_func must have the following signature:

function [status,opdata_out] =
iter_func(dset_id,dim,dimscale_id,opdata_in)

opdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func opdata_in parameter. The opdata_out of an iteration step
forms the opdata_in for the next iteration step. The final opdata_out at the end of the
iteration is then returned to the caller as opdata_out.

dimscale_id specifies the current dimension scale dataset identifier and dim is the
associated dimension.

status value returned by iter_func is interpreted as follows:

 H5DS.iterate_scales

1-5503

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

1 Alphabetical List

1-5504

H5DS.set_label
Set label for dataset dimension

Syntax
H5DS.set_label(dataset_id,idx,label)

Description
H5DS.set_label(dataset_id,idx,label) sets a label for dimension idx of the
dataset dataset_id.

Note The ordering of the dimension scale indices are the same as the HDF5 library C
API.

Examples
plist = 'H5P_DEFAULT';
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
world_dset_id = H5D.open(fid,'/g4/world',plist);
H5DS.set_label(world_dset_id,0,'latitude');
H5DS.set_label(world_dset_id,1,'longitude');
H5D.close(world_dset_id);
H5F.close(fid);

See Also
H5DS.get_label

 H5DS.set_label

1-5505

H5DS.set_scale
Convert dataset to dimension scale

Syntax
H5DS.set_scale(dataset_id,dim_name)

Description
H5DS.set_scale(dataset_id,dim_name) converts the dataset, dataset_id, to a
dimension scale with name dim_name.

Examples
Create a dimension scale with name 'xdim'. The dataset has the name, 'x'.

fid = H5F.create('myfile.h5');
space_id = H5S.create_simple(1,10,10);
dtype = 'H5T_NATIVE_INT';
dcpl = 'H5P_DEFAULT';
dset_id = H5D.create(fid,'x',dtype,space_id,dcpl);
H5DS.set_scale(dset_id,'xdim');
H5S.close(space_id);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5DS.get_scale_name

1 Alphabetical List

1-5506

H5E.clear
Clear error stack

Syntax
H5E.clear()

Description
H5E.clear() clears the error stack for the current thread.

 H5E.clear

1-5507

H5E.get_major
Description of major error number

Syntax
err_string = H5E.get_major(major_number)

Description
err_string = H5E.get_major(major_number) returns a character vector
describing an error specified by the major error number, major_number.

The HDF5 group has deprecated the use of this function.

See Also
H5E.get_minor

1 Alphabetical List

1-5508

H5E.get_minor
Description of minor error number

Syntax
err_string = H5E.get_minor(minor_number)

Description
err_string = H5E.get_minor(minor_number) returns a character vector
describing an error specified by the minor error number, minor_number.

The HDF5 group has deprecated the use of this function.

See Also
H5E.get_major

 H5E.get_minor

1-5509

H5E.walk
Walk error stack

Syntax
H5E.walk(direction,func)

Description
H5E.walk(direction,func) walks the error stack for the current thread and calls the
specified function for each error along the way. func is a function handle. direction
specifies how the error stack is traversed and can be given by one of the following
character vectors or the numeric equivalent.

'H5E_WALK_UPWARD'
'H5E_WALK_DOWNWARD'

The specified function must have the following signature:

status = func(n,error_struct)

where n is the indexed position of the error in the stack and error_struct is a structure
with the following fields:

maj_num Major error number
min_num Minor error number
func_name Function in which the error occurred
file_name File in which the error occurred
line Line in file where error occurs
desc Optional supplied description

This function corresponds to the H5Ewalk1 function in the HDF5 library C API.

1 Alphabetical List

1-5510

See Also
H5ML.get_constant_value

 H5E.walk

1-5511

H5F.close
Close HDF5 file

Syntax
H5F.close(file_id)

Description
H5F.close(file_id) terminates access to HDF5 file identified by file_id, flushing all
data to storage.

See Also
H5F.open

1 Alphabetical List

1-5512

H5F.create
Create HDF5 file

Syntax
file_id = H5F.create(filename)
file_id = H5F.create(name,flags,fcpl_id,fapl_id)

Description
file_id = H5F.create(filename) creates the file specified by filename with
default library properties if the file does not already exist.

file_id = H5F.create(name,flags,fcpl_id,fapl_id) creates the file specified
by name. flags specifies whether to truncate the file, if it already exists, or to fail if the
file already exists. flags can be specified by one of the following character vectors or
string scalars, or their numeric equivalent:

'H5F_ACC_TRUNC' overwrite any existing file by the same
name

'H5F_ACC_EXCL' do not overwrite an existing file

fcpl_id is the file creation property list identifier. fapl_id is the file access property
list identifier. A value of 'H5P_DEFAULT' for either property list indicates that the library
should use default values for the appropriate property list.

Examples
Create an HDF5 file called 'myfile.h5'.

fid = H5F.create('myfile.h5');
H5F.close(fid);

Create an HDF5 file called 'myfile.h5', overwriting any existing file by the same name.
Default file access and file creation properties shall apply.

 H5F.create

1-5513

fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5F.close | H5ML.get_constant_value | H5P.create

1 Alphabetical List

1-5514

H5F.flush
Flush buffers to disk

Syntax
H5F.flush(object_id,scope)

Description
H5F.flush(object_id,scope) causes all buffers associated with a file to be
immediately flushed to disk without removing the data from the cache. object_id can
be any object associated with the file, including the file itself, a dataset, a group, an
attribute, or a named data type. scope specifies whether the scope of the flushing action
is global or local. Specify scope as one of these character vectors or string scalars:

'H5F_SCOPE_GLOBAL'
'H5F_SCOPE_LOCAL'

 H5F.flush

1-5515

H5F.get_access_plist
File access property list

Syntax
fapl_id = H5F.get_access_plist(file_id)

Description
fapl_id = H5F.get_access_plist(file_id) returns the file access property list
identifier of the file specified by file_id.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
H5P.close(fapl);
H5F.close(fid);

See Also
H5F.get_create_plist

1 Alphabetical List

1-5516

H5F.get_create_plist
File creation property list

Syntax
fcpl_id = H5F.get_create_plist(file_id)

Description
fcpl_id = H5F.get_create_plist(file_id) returns a file creation property list
identifier identifying the creation properties used to create the file specified by file_id.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
H5P.close(fcpl);
H5F.close(fid);

See Also
H5F.get_access_plist

 H5F.get_create_plist

1-5517

H5F.get_filesize
Size of HDF5 file

Syntax
size = H5F.get_filesize(file_id)

Description
size = H5F.get_filesize(file_id) returns the size of the HDF5 file specified by
file_id.

1 Alphabetical List

1-5518

H5F.get_freespace
Amount of free space in file

Syntax
free_space = H5F.get_freespace(file_id)

Description
free_space = H5F.get_freespace(file_id) returns the amount of space that is
unused by any objects in the file specified by file_id.

 H5F.get_freespace

1-5519

H5F.get_info
Global information about file

Syntax
file_info = H5F.get_info(obj_id)

Description
file_info = H5F.get_info(obj_id) returns global information for the file
associated with the object identifier obj_id. For details about the fields of the
file_info structure, please refer to the HDF5 documentation.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'g2');
info = H5F.get_info(gid);
H5G.close(gid);
H5F.close(fid);

1 Alphabetical List

1-5520

H5F.get_mdc_config
Metadata cache configuration

Syntax
config_struct = H5F.get_mdc_config(file_id)

Description
config_struct = H5F.get_mdc_config(file_id) returns the current metadata
cache configuration for the target file.

Examples
fid = H5F.open('example.h5');
config = H5F.get_mdc_config(fid);
H5F.close(fid);

See Also
H5F.set_mdc_config

 H5F.get_mdc_config

1-5521

H5F.get_mdc_hit_rate
Metadata cache hit-rate

Syntax
hitRate = H5F.get_mdc_hit_rate(file_id)

Description
hitRate = H5F.get_mdc_hit_rate(file_id) queries the metadata cache of the
target file to obtain its hit-rate since the last time hit-rate statistics were reset. If the
cache has not been accessed since the last time the hit-rate statistics were reset, the hit-
rate is defined to be 0.0. The hit-rate is calculated as

(cache hits / (cache hits + cache misses))

Examples
fid = H5F.open('example.h5');
hit_rate = H5F.get_mdc_hit_rate(fid);
H5F.close(fid);

See Also
H5F.get_mdc_config

1 Alphabetical List

1-5522

H5F.get_mdc_size
Metadata cache size data

Syntax
[max_sz,min_clean_sz,cursz,num_cur_entries] =
H5F.get_mdc_size(fileId)

Description
[max_sz,min_clean_sz,cursz,num_cur_entries] =
H5F.get_mdc_size(fileId) queries the metadata cache of the target file to obtain
current metadata cache size information.

Examples
fid = H5F.open('example.h5');
[maxsz,minsz,cursz,nent] = H5F.get_mdc_size(fid);
H5F.close(fid);

See Also
H5F.get_mdc_config

 H5F.get_mdc_size

1-5523

H5F.get_name
Name of HDF5 file

Syntax
name = H5F.get_name(obj_id)

Description
name = H5F.get_name(obj_id) returns the name of the file to which the object
obj_id belongs. The object can be a group, dataset, attribute, or named data type.

Examples
fid = H5F.open('example.h5');
name = H5F.get_name(fid);
H5F.close(fid);

See Also
H5A.get_name | H5I.get_name

1 Alphabetical List

1-5524

H5F.get_obj_count
Number of open objects in HDF5 file

Syntax
obj_count = H5F.get_obj_count(file_id,types)

Description
obj_count = H5F.get_obj_count(file_id,types) returns the number of open
object identifiers for the file specified by file_id for the specified type. Specify types
as one of the following character vectors or string scalars.

'H5F_OBJ_FILE'
'H5F_OBJ_DATASET'
'H5F_OBJ_GROUP'
'H5F_OBJ_DATATYPE'
'H5F_OBJ_ATTR'
'H5F_OBJ_ALL'
'H5F_OBJ_LOCAL'

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
obj_count = H5F.get_obj_count(fid,'H5F_OBJ_GROUP');
H5G.close(gid);
H5F.close(fid);

 H5F.get_obj_count

1-5525

See Also
H5F.get_obj_ids

1 Alphabetical List

1-5526

H5F.get_obj_ids
List of open HDF5 file objects

Syntax
[num_obj_ids,obj_id_list] = H5F.get_obj_ids(file_id,types,max_objs)

Description
[num_obj_ids,obj_id_list] = H5F.get_obj_ids(file_id,types,max_objs)
returns a list of all open identifiers for HDF5 objects of the type specified by types in the
file specified by file_id. The max_objs input specifies the maximum number of object
identifiers to return. num_obj_ids is the total number of objects in the list. Specify
types as one of these character vectors or string scalars:

'H5F_OBJ_FILE'
'H5F_OBJ_DATASET'
'H5F_OBJ_GROUP'
'H5F_OBJ_DATATYPE'
'H5F_OBJ_ATTR'
'H5F_OBJ_ALL'
'H5F_OBJ_LOCAL'

Note If the number of objects of the specified type, that are open, exceeds max_objs,
then num_obj_ids will be greater than max_objs.

Examples
fid = H5F.open('example.h5');
gid1 = H5G.open(fid,'/g1');
gid2 = H5G.open(fid,'/g2');

 H5F.get_obj_ids

1-5527

gid3 = H5G.open(fid,'/g3');
gid4 = H5G.open(fid,'/g4');
[num_obj_ids,objs] = H5F.get_obj_ids(fid,'H5F_OBJ_GROUP',3);
H5G.close(gid1);
H5G.close(gid2);
H5G.close(gid3);
H5G.close(gid4);
H5F.close(fid);

See Also
H5F.get_obj_count

1 Alphabetical List

1-5528

H5F.is_hdf5
Determine if file is HDF5

Syntax
value = H5F.is_hdf5(name)

Description
value = H5F.is_hdf5(name) returns a positive number if the file specified by name is
in the HDF5 format, and zero if it is not. A negative return value indicates failure.

Examples
value = H5F.is_hdf5('example.tif');
if value > 0
 fprintf('example.tif is an HDF5 file\n');
else
 fprintf('example.tif is not an HDF5 file\n');
end

 H5F.is_hdf5

1-5529

H5F.mount
Mount HDF5 file onto specified location

Syntax
H5F.mount(loc_id,name,child_id,plist_id)

Description
H5F.mount(loc_id,name,child_id,plist_id) mounts the file specified by
child_id onto the group specified by loc_id and name, using the mount properties
specified by plist_id.

Examples
Mount one file with a dataset onto a group in a second file and access the dataset via the
second file.

plist = 'H5P_DEFAULT';
fid2 = H5F.create('file2.h5','H5F_ACC_TRUNC',plist,plist);
gid2 = H5G.create(fid2,'g2',plist,plist,plist);
fid1 = H5F.create('file1.h5','H5F_ACC_TRUNC','H5P_DEFAULT',...
 'H5P_DEFAULT');
space_id = H5S.create('H5S_SCALAR');
dset_id = H5D.create(fid1,'DS1','H5T_NATIVE_DOUBLE',space_id,plist);
H5S.close(space_id);
H5D.close(dset_id);
H5F.mount(fid2,'g2',fid1,plist);
dset_id1 = H5D.open(fid1,'/g2/DS1',plist);
H5D.close(dset_id1);
H5F.unmount(fid1,'g2');
H5G.close(gid2);
H5F.close(fid1);
H5F.close(fid2);

1 Alphabetical List

1-5530

See Also
H5F.unmount

 H5F.mount

1-5531

H5F.open
Open HDF5 file

Syntax
file_id = H5F.open(filename)
file_id = H5F.open(name,flags,fapl_id)

Description
file_id = H5F.open(filename) opens the file specified by filename for read-only
access and returns the file identifier, file_id.

file_id = H5F.open(name,flags,fapl_id) opens the file specified by name,
returning the file identifier, file_id. Specify the file access flags flags as one of the
these character vectors or string scalars, or their numeric equivalents:

'H5F_ACC_RDWR' read-write mode
'H5F_ACC_RDONLY' read-only mode

The file access property list, fapl_id, may be specified as 'H5P_DEFAULT', in which
case the default I/O settings are used.

Examples
Open a file in read-only mode with default file access properties.

fid = H5F.open('example.h5');
H5F.close(fid);

Open a file in read-write mode.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');

1 Alphabetical List

1-5532

fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
H5F.close(fid);

See Also
H5F.close | H5ML.get_constant_value

 H5F.open

1-5533

H5F.reopen
Reopen HDF5 file

Syntax
new_file_id = H5F.reopen(file_id)

Description
new_file_id = H5F.reopen(file_id) returns a new file identifier for the already
open HDF5 file specified by file_id.

See Also
H5F.open

1 Alphabetical List

1-5534

H5F.set_mdc_config
Configure HDF5 file metadata cache

Syntax
H5F.set_mdc_config(fileId,config)

Description
H5F.set_mdc_config(fileId,config) attempts to configure the file's metadata
cache according to the supplied configuration structure. Before using this function, you
should retrieve the current configuration using H5F.get_mdc_config.

See Also
H5F.get_mdc_config

 H5F.set_mdc_config

1-5535

H5F.unmount
Unmount file or group from mount point

Syntax
H5F.unmount(loc_id,name)

Description
H5F.unmount(loc_id,name) dissassociates the file or group specified by loc_id from
the mount point specified by name. loc_id can be a file or group identifier.

See Also
H5F.mount

1 Alphabetical List

1-5536

H5G.close
Close group

Syntax
H5G.close(group_id)

Description
H5G.close(group_id) releases resources used by the group specified by group_id.
group_id was returned by either H5G.create or H5G.open.

See Also
H5G.create | H5G.open

 H5G.close

1-5537

H5G.create
Create group

Syntax
group_id = H5G.create(loc_id,name,size_hint)
group_id = H5G.create(loc_id,name,lcpl_id,gcpl_id,gapl_id)

Description
group_id = H5G.create(loc_id,name,size_hint) creates a new group with the
name specified by name at the location specified by loc_id. loc_id can be a file or
group identifier. size_hint specifies the number of bytes to reserve for the names that
will appear in the group. This interface corresponds to the 1.6 version of H5Gcreate.

group_id = H5G.create(loc_id,name,lcpl_id,gcpl_id,gapl_id) creates a
new group with link creation, group creation, and group access property lists lcpl_id,
gcpl_id, and gapl_id. This interface corresponds to the 1.8 version of H5Gcreate.

Examples
Create an HDF5 file 'myfile.h5' with a group 'my_group' with default property list
settings.

fid = H5F.create('myfile.h5');
plist = 'H5P_DEFAULT';
gid = H5G.create(fid,'my_group',plist,plist,plist);
H5G.close(gid);
H5F.close(fid);

See Also
H5G.close | H5G.open

1 Alphabetical List

1-5538

H5G.get_info
Information about group

Syntax
info = H5G.get_info(group_id)

Description
info = H5G.get_info(group_id) retrieves information about the group specified by
group_id.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
info = H5G.get_info(gid);
H5G.close(gid);
H5F.close(fid);

See Also
H5G.create | H5G.open

 H5G.get_info

1-5539

H5G.open
Open specified group

Syntax
group_id = H5G.open(loc_id,name)
group_id = H5G.open(loc_id,name,gapl_id)

Description
group_id = H5G.open(loc_id,name) opens the group specified by name at the
location specified by loc_id. loc_id is a file or group identifier. This interface
corresponds to the 1.6 version of H5Gopen.

group_id = H5G.open(loc_id,name,gapl_id) opens the group with an additional
group access property list, gapl_id. This interface corresponds to the 1.8 version of
H5Gopen.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
H5G.close(gid);
H5F.close(fid);

See Also
H5G.close | H5P.create

1 Alphabetical List

1-5540

H5I.dec_ref
Decrement reference count

Syntax
ref_count = H5I.dec_ref(obj_id)

Description
ref_count = H5I.dec_ref(obj_id) decrements the reference count of the object
identified by obj_id and returns the new count.

See Also
H5I.get_ref | H5I.inc_ref

 H5I.dec_ref

1-5541

H5I.get_file_id
File identifier for specified object

Syntax
file_id = H5I.get_file_id(obj_id)

Description
file_id = H5I.get_file_id(obj_id) returns the identifier of the file associated
with the object referenced by obj_id.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g4');
fid2 = H5I.get_file_id(gid);
name = H5F.get_name(fid2);
fprintf('The filename is %s.\n',name);
H5G.close(gid);
H5F.close(fid);
H5F.close(fid2);

1 Alphabetical List

1-5542

H5I.get_name
Name of object

Syntax
name = H5I.get_name(obj_id)
name = H5I.get_name(obj_id,'TextEncoding',encoding)

Description
name = H5I.get_name(obj_id) returns the name of the object specified by obj_id. If
no name is attached to the object, an empty character vector is returned.

name = H5I.get_name(obj_id,'TextEncoding',encoding) additionally specifies
the text encoding to use to interpret the object name. Specify encoding as
'system'(default) or 'UTF-8'.

• 'system' — Use the system default encoding to interpret the object name.
• 'UTF-8' — Use UTF-8 encoding to interpret the object name.

Examples
Display the names of all the objects in the /g3 group in the example file by alphabetical
order.

idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_INC';
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g3');
info = H5G.get_info(gid);
for j = 1:info.nlinks
 obj_id = H5O.open_by_idx(fid,'g3',idx_type,order,j-1,'H5P_DEFAULT');
 name = H5I.get_name(obj_id);
 fprintf('Object %d: ''%s''.\n',j-1,name);
 H5O.close(obj_id);

 H5I.get_name

1-5543

end
H5G.close(gid);
H5F.close(fid);

See Also
H5A.get_name | H5F.get_name

Topics
“Working with Non-ASCII Characters in HDF5 Files”

1 Alphabetical List

1-5544

H5I.get_ref
Reference count of object

Syntax
refcount = H5I.get_ref(obj_id)

Description
refcount = H5I.get_ref(obj_id) returns the reference count of the object specified
by obj_id.

See Also
H5I.dec_ref | H5I.inc_ref

 H5I.get_ref

1-5545

H5I.get_type
Type of object

Syntax
obj_type = H5I.get_type(obj_id)

Description
obj_type = H5I.get_type(obj_id) returns the type of the object specified by
obj_id. obj_type corresponds to one of the following enumerated values.

H5I_FILE
H5I_GROUP
H5I_DATATYPE
H5I_DATASPACE
H5I_DATASET
H5I_ATTR
H5I_BADID

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g3');
dset_id = H5D.open(fid,'/g4/world');
[~,objs] = H5F.get_obj_ids(fid,'H5F_OBJ_ALL',3);
for j = 1:numel(objs)
 name = H5I.get_name(objs(j));
 fprintf('object ''%s'': ==> ',name);
 type = H5I.get_type(objs(j));
 switch(type)
 case H5ML.get_constant_value('H5I_FILE')
 fprintf('FILE identifier.\n');

1 Alphabetical List

1-5546

 case H5ML.get_constant_value('H5I_GROUP')
 fprintf('GROUP identifier.\n');
 case H5ML.get_constant_value('H5I_DATASET')
 fprintf('DATASET identifier.\n');
 otherwise
 fprintf('unknown identifier type.\n');
 end
end
H5G.close(gid);
H5F.close(fid);

See Also
H5ML.get_constant_value

 H5I.get_type

1-5547

H5I.inc_ref
Increment reference count of specified object

Syntax
ref_count = H5I.inc_ref(obj_id)

Description
ref_count = H5I.inc_ref(obj_id) increments the reference count of the object
specified by obj_id and returns the new count.

See Also
H5I.dec_ref | H5I.get_ref

1 Alphabetical List

1-5548

H5I.is_valid
Determine if specified identifier is valid

Syntax
tf = H5I.is_valid(obj_id)

Description
tf = H5I.is_valid(obj_id) determines whether the identifier obj_id is valid.

Examples
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.close(fapl);
if H5I.is_valid(fapl);
 fprintf('File access property list is valid.\n');
else
 fprintf('File access property list is not valid.\n');
end

 H5I.is_valid

1-5549

H5L.copy
Copy link from source location to destination location

Syntax
H5L.copy(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)

Description
H5L.copy(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)
copies the link specified by src_name from the file or group specified by src_loc_id to
the destination dest_loc_id. The new copy of the link is created with the name
dest_name.

dest_loc_id must refer to either the current file or a group in the current file. If
dest_loc_id is the file identifier, the copy is placed in the file's root group.

The new link is created with the creation and access property lists specified by lcpl_id
and lapl_id.

Examples
plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist_id,plist_id);
g1 = H5G.create(fid,'g1',plist_id);
g2 = H5G.create(fid,'g2',plist_id);
g11 = H5G.create(g1,'g3',plist_id);
H5L.copy(g1,'g3',g2,'g4',plist_id,plist_id);

1 Alphabetical List

1-5550

H5L.create_external
Create soft link to external object

Syntax
H5L.create_external(filename,objname,link_loc_id,link_name,lcpl_id,l
apl_id)

Description
H5L.create_external(filename,objname,link_loc_id,link_name,lcpl_id,l
apl_id) creates a soft link to an object in a different file. filename identifies the target
file containing the target object. obj_name specifies the path to the target object within
that file. obj_name must start at the target file's root group but is not interpreted until
lookup time.

link_loc_id and link_name specify the location and name, respectively, of the new
link. link_name is interpreted relative to link_loc_id.

lcpl_id and lapl_id are the link creation and access property lists associated with the
new link.

Examples
plist_id = 'H5P_DEFAULT';
fid1 = H5F.create('myfile1.h5');
g1 = H5G.create(fid1,'g1',plist_id,plist_id,plist_id);
H5G.close(g1);
H5F.close(fid1);
fid2 = H5F.create('myfile2.h5');
H5L.create_external('myfile1.h5','g1',fid2,'g2',plist_id,plist_id);

 H5L.create_external

1-5551

H5L.create_hard
Create hard link

Syntax
H5L.create_hard(obj_loc_id,obj_name,link_loc_id,link_name,lcpl_id,la
pl_id)

Description
H5L.create_hard(obj_loc_id,obj_name,link_loc_id,link_name,lcpl_id,la
pl_id) creates a new hard link to a pre-existing object in an HDF5 file. The new link may
be one of many that point to that object. obj_loc_id and obj_name specify the location
and name, respectively, of the target object, i.e., the object to which the new hard link
points.

link_loc_id and link_name specify the location and name, respectively, of the new
link. link_name is interpreted relative to link_loc_id.

lcpl_id and lapl_id are the link creation and access property lists associated with the
new link.

Examples
fid = H5F.create('myfile.h5');
gid1 = H5G.create(fid,'/g1',0);
gid2 = H5G.create(gid1,'g2',0);
gid3 = H5G.create(gid2,'g3',0);
lcpl = 'H5P_DEFAULT';
lapl = 'H5P_DEFAULT';
H5L.create_hard(gid2,'g3',gid1,'g4',lcpl,lapl);
H5G.close(gid3);
H5G.close(gid2);
H5G.close(gid1);
H5F.close(fid);

1 Alphabetical List

1-5552

See Also
H5L.create_soft

 H5L.create_hard

1-5553

H5L.create_soft
Create soft link

Syntax
H5L.create_soft(target_path,link_loc_id,link_name,lcpl_id,lapl_id)

Description
H5L.create_soft(target_path,link_loc_id,link_name,lcpl_id,lapl_id)
creates a new soft link to an object in an HDF5 file. The new link may be one of many that
point to that object. target_path specifies the path to the target object, i.e., the object
that the new soft link points to. target_path can be anything and is interpreted at
lookup time. This target_path may be absolute in the file or relative to link_loc_id.

link_loc_id and link_name specify the location and name, respectively, of the new
link. link_name is interpreted relative to link_loc_id.

lcpl_id and lapl_id are the link creation and access property lists associated with the
new link.

Examples
plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5');
gid1 = H5G.create(fid,'/g1',0);
gid3 = H5G.create(gid1,'g3',0);
gid2 = H5G.create(fid,'/g2',0);
lcpl = 'H5P_DEFAULT';
lapl = 'H5P_DEFAULT';
H5L.create_soft('/g1/g3',gid2,'g4',lcpl,lapl);
H5G.close(gid3);
H5G.close(gid2);
H5G.close(gid1);
H5F.close(fid);

1 Alphabetical List

1-5554

See Also
H5L.create_hard

 H5L.create_soft

1-5555

H5L.delete
Remove link

Syntax
H5L.delete(loc_id,name,lapl_id)

Description
H5L.delete(loc_id,name,lapl_id) removes the link specified by name from the
location loc_id. lapl_id is a link access property list identifier.

Examples
Remove the only link to the '/g3' group in example.h5.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
H5L.delete(fid,'g3','H5P_DEFAULT');
H5F.close(fid);

See Also
H5L.move

1 Alphabetical List

1-5556

H5L.exists
Determine if link exists

Syntax
bool = H5L.exists(loc_id,name,lapl_id)

Description
bool = H5L.exists(loc_id,name,lapl_id) checks if a link specified by the pairing
of an object id and name exists within a group. lapl_id is a link access property list
identifier.

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.2/g1.2.1');
if H5L.exists(gid,'slink','H5P_DEFAULT')
 fprintf('link exists\n');
else
 fprintf('link does not exist\n');
end

 H5L.exists

1-5557

H5L.get_info
Information about link

Syntax
linkStruct = H5L.get_info(location_id,link_name,lapl_id)

Description
linkStruct = H5L.get_info(location_id,link_name,lapl_id) returns
information about a link.

A file or group identifier, location_id, specifies the location of the link. link_name,
interpreted relative to link_id, specifies the link being queried.

Examples
fid = H5F.open('example.h5');
info = H5L.get_info(fid,'g3','H5P_DEFAULT');
H5F.close(fid);

1 Alphabetical List

1-5558

H5L.get_name_by_idx
Information about link specified by index

Syntax
name =
H5L.get_name_by_idx(loc_id,group_name,idx_type,order,n,lapl_id)
name =
H5L.get_name_by_idx(loc_id,group_name,idx_type,order,n,lapl_id,'Text
Encoding',encoding)

Description
name =
H5L.get_name_by_idx(loc_id,group_name,idx_type,order,n,lapl_id)
retrieves information about a link at index n, present in group group_name, at location
loc_id. The lapl_id input specifies the link access property list for querying the group.

Specify the type of index idx_type as one of these character vectors or string scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

Specify the index traversal order order as one of these character vectors or string
scalars.

'H5_ITER_INC' Iteration from beginning to end
'H5_ITER_DEC' Iteration from end to beginning
'H5_ITER_NATIVE' Iteration in the fastest available order

name =
H5L.get_name_by_idx(loc_id,group_name,idx_type,order,n,lapl_id,'Text
Encoding',encoding) additionally specifies the text encoding to use to interpret the
link name. Specify encoding as 'system'(default) or 'UTF-8'.

 H5L.get_name_by_idx

1-5559

• 'system' — Use the system default encoding to interpret the link name.
• 'UTF-8' — Use UTF-8 encoding to interpret the link name.

Examples
fid = H5F.open('example.h5');
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_DEC';
lapl_id = 'H5P_DEFAULT';
name = H5L.get_name_by_idx(fid,'g3',idx_type,order,0,lapl_id);
H5F.close(fid);

See Also

Topics
“Working with Non-ASCII Characters in HDF5 Files”

1 Alphabetical List

1-5560

H5L.get_val
Value of symbolic link

Syntax
linkval = H5L.get_val(link_loc_id,link_name,lapl_id)
linkval =
H5L.get_val(link_loc_id,link_name,lapl_id,'TextEncoding',encoding)

Description
linkval = H5L.get_val(link_loc_id,link_name,lapl_id) returns the value of
a symbolic link.

link_loc_id is a file or group identifier. link_name identifies a symbolic link and is
defined relative to link_loc_id. Symbolic links include soft and external links and some
user-defined links.

In the case of soft links, linkval is a cell array containing the path to which the link
points.

In the case of external links, linkval is a cell array consisting of the name of the target
file and the object name.

This function corresponds to the H5L.get_val and H5Lunpack_elink_val functions in
the HDF5 1.8 C API.

linkval =
H5L.get_val(link_loc_id,link_name,lapl_id,'TextEncoding',encoding)
additionally specifies the text encoding to use to interpret the link value. Specify
encoding as 'system'(default) or 'UTF-8'.

• 'system' — Use the system default encoding to interpret the link value.
• 'UTF-8' — Use UTF-8 encoding to interpret the link value.

 H5L.get_val

1-5561

Examples
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.2/g1.2.1');
linkval = H5L.get_val(gid,'slink','H5P_DEFAULT');
H5G.close(gid);
H5F.close(fid);

See Also

Topics
“Working with Non-ASCII Characters in HDF5 Files”

1 Alphabetical List

1-5562

H5L.iterate
Iterate over links

Syntax
[status,idx_out,opdata_out] =
H5L.iterate(group_id,index_type,order,idx_in,iter_func,opdata_in)

Description
[status,idx_out,opdata_out] =
H5L.iterate(group_id,index_type,order,idx_in,iter_func,opdata_in)
iterates through the links in a group, specified by group_id, to perform a common
function whose function handle is iter_func. H5L.iterate does not recursively follow
links into subgroups of the specified group.

index_type and order establish the iteration. index_type specifies the index to be
used. If the links have not been indexed by the index type, they will first be sorted by that
index then the iteration will begin. If the links have been so indexed, the sorting step will
be unnecessary, so the iteration may begin more quickly. Specify index_type as one of
these character vectors or string scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

order specifies the order in which objects are to be inspected along the index specified
in index_type. Specify order as one of these character vectors or string scalars.

'H5_ITER_INC' Increasing order
'H5_ITER_DEC' Decreasing order
'H5_ITER_NATIVE' Fastest available order

idx_in specifies the starting point of the iteration. idx_out returns the point at which
iteration was stopped. This allows an interrupted iteration to be resumed.

 H5L.iterate

1-5563

The callback function iter_func must have the following signature:

function [status,opdata_out] = iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func opdata_in parameter. The opdata_out of an iteration step
forms the opdata_in for the next iteration step. The final opdata_out at the end of the
iteration is then returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows:

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

1 Alphabetical List

1-5564

H5L.iterate_by_name
Iterate through links in group specified by name

Syntax
[status,idx_out,opdata_out] =
H5L.iterate_by_name(loc_id,group_name,index_type,order,idx_in,iter_f
unc,opdata_in,lapl_id)

Description
[status,idx_out,opdata_out] =
H5L.iterate_by_name(loc_id,group_name,index_type,order,idx_in,iter_f
unc,opdata_in,lapl_id) iterates through the links in a group to perform a common
function whose function handle is iter_func. The starting point of the iteration is
pairing of a specified by the location id and a relative group name.
H5L.iterate_by_name does not recursively follow links into subgroups of the specified
group. A link access property list, lapl_id, may affect the outcome depending upon the
type of link being traversed.

index_type and order establish the iteration. index_type specifies the index to be
used. If the links have not been indexed by the index type, they will first be sorted by that
index then the iteration will begin. If the links have been so indexed, the sorting step will
be unnecessary, so the iteration may begin more quickly. Specify index_type as one of
these character vectors or string scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

order specifies the order in which objects are to be inspected along the index specified
in index_type. Specify order as one of these character vectors or string scalars.

'H5_ITER_INC' Increasing order
'H5_ITER_DEC' Decreasing order

 H5L.iterate_by_name

1-5565

'H5_ITER_NATIVE' Fastest available order

idx_in specifies the starting point of the iteration. idx_out returns the point at which
iteration was stopped. This allows an interrupted iteration to be resumed.

The callback function iter_func must have the following signature:

function [status,opdata_out] = iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func opdata_in parameter. The opdata_out of an iteration step
forms the opdata_in for the next iteration step. The final opdata_out at the end of the
iteration is then returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows:

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

1 Alphabetical List

1-5566

H5L.move
Rename link

Syntax
H5L.move(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)

Description
H5L.move(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)
renames a link within an HDF5 file. The original link, src_name, is removed from the
group graph and the new link, dest_name, is inserted; this change is accomplished as an
atomic operation.

src_loc_id and src_name identify the existing link. src_loc_id is either a file or
group identifier; src_name is the path to the link and is interpreted relative to
src_loc_id.

dest_loc_id and dest_name identify the new link. dest_loc_id is either a file or
group identifier; dest_name is the path to the link and is interpreted relative to
dest_loc_id.

lcpl_id and lapl_id are the link creation and link access property lists, respectively,
associated with the new link, dest_name.

Examples
Rename the '/g2' group to '/g2/g3'.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
g2id = H5G.open(fid,'g2');
H5L.move(fid,'g3',g2id,'g3','H5P_DEFAULT','H5P_DEFAULT');

 H5L.move

1-5567

H5G.close(g2id);
H5F.close(fid);

See Also
H5L.delete

1 Alphabetical List

1-5568

H5L.visit
Recursively iterate through links in group specified by group identifier

Syntax
[status opdata_out] =
H5L.visit(group_id,index_type,order,iter_func,opdata_in)

Description
[status opdata_out] =
H5L.visit(group_id,index_type,order,iter_func,opdata_in) recursively
iterates through all links in and below a group, specified by group_id, to perform a
common function whose function handle is iter_func.

index_type and order establish the iteration. index_type specifies the index to be
used. If the links have not been indexed by the index type, they are first sorted by that
index, and then the iteration will begin. If the links have been so indexed, the sorting step
is unnecessary, so the iteration can begin more quickly. Specify index_type as one of
these character vectors or string scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting. If the application
passes in a value indicating iteration in creation order and a group is encountered that
was not tracked in creation order, that group will be iterated over in alpha-numeric order
by name, or name order. (Name order is the native order used by the HDF5 Library and is
always available.)

order specifies the order in which objects are to be inspected along the index specified
in index_type. Specify order as one of these character vectors or string scalars.

'H5_ITER_INC' Increasing order

 H5L.visit

1-5569

'H5_ITER_DEC' Decreasing order
'H5_ITER_NATIVE' Fastest available order

The callback function iter_func must have the following signature:

function [status,opdata_out] = iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func opdata_in parameter. The opdata_out of an iteration step
forms the opdata_in for the next iteration step. The final opdata_out at the end of the
iteration is then returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

1 Alphabetical List

1-5570

H5L.visit_by_name
Recursively iterate through links in group specified by location and group name

Syntax
[status,opdata_out] =
H5L.visit_by_name(loc_id,group_name,index_type,order,iter_func,opdat
a_in,lapl_id)

Description
[status,opdata_out] =
H5L.visit_by_name(loc_id,group_name,index_type,order,iter_func,opdat
a_in,lapl_id) recursively iterates though all links in and below a group to perform a
common function whose function handle is iter_func. The starting point of the iteration
is specified by the pairing of a location id and a relative group name. A link access
property list, lapl_id, may affect the outcome depending upon the type of link being
traversed.

index_type and order establish the iteration. index_type specifies the index to be
used. If the links have not been indexed by the index type, they are first sorted by that
index, and then the iteration will begin. If the links have been so indexed, the sorting step
is unnecessary, so the iteration can begin more quickly. Specify index_type as one of
these character vectors or string scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting. If the application
passes in a value indicating iteration in creation order and a group is encountered that
was not tracked in creation order, that group will be iterated over in alpha-numeric order
by name, or name order. (Name order is the native order used by the HDF5 Library and is
always available.)

order specifies the order in which objects are to be inspected along the index specified
in index_type. Specify order as one of these character vectors or string scalars.

 H5L.visit_by_name

1-5571

'H5_ITER_INC' Increasing order
'H5_ITER_DEC' Decreasing order
'H5_ITER_NATIVE' Fastest available order

The callback function iter_func must have the following signature:

function [status,opdata_out] = iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func opdata_in parameter. The opdata_out of an iteration step
forms the opdata_in for the next iteration step. The final opdata_out at the end of the
iteration is then returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

1 Alphabetical List

1-5572

H5ML.compare_values
Numerically compare two HDF5 values

Syntax
bEqual = H5ML.compare_values(value1,value2)

Description
bEqual = H5ML.compare_values(value1,value2) compares two values, where
either or both values may be specified by their text representation (for example,
'H5T_NATIVE_INT'). The values are compared numerically.

Function parameters:

bEqual A logical value indicating whether the two values are
equal

value1 The first value to be compared
value2 The second value to be compared

Examples
val = H5ML.get_constant_value('H5T_NATIVE_INT');
H5ML.compare_values(val,'H5T_NATIVE_INT')

 H5ML.compare_values

1-5573

H5ML.get_constant_names
Constants known by HDF5 library

Syntax
names = H5ML.get_constant_names()

Description
names = H5ML.get_constant_names() returns a list of known library constants,
definitions, and enumerations. When these names are supplied as actual parameters to
HDF5 functions, they are automatically be converted to the appropriate numeric value.

Function parameters.

names An alphabetized cell array of character
vectors containing the names.

1 Alphabetical List

1-5574

H5ML.get_constant_value
Value corresponding to a string

Syntax
value = H5ML.get_constant_value(constant)

Description
value = H5ML.get_constant_value(constant) returns the numerical value
corresponding to a given HDF5 enumeration or identifier. constant is specified as a
character vector or string scalar that contains an enumeration (for example,
'H5_ENUM_T') or a predefined identifier (for example, 'H5T_NATIVE_INT'). Since the
value corresponding to a given identifier is not guaranteed to remain the same, it is
almost always preferable to use the H5ML.compare_values() function instead.

Function parameters:

value The numerical value corresponding to the
supplied HDF5 enumeration or identifier.

constant A character vector or string scalar
containing a HDF5 enumeration or defined
value.

Examples
a = H5ML.get_constant_value('H5T_NATIVE_INT');

 H5ML.get_constant_value

1-5575

H5ML.get_function_names
Functions provided by HDF5 library

Syntax
names = H5ML.get_function_names()

Description
names = H5ML.get_function_names() returns a list of supported library functions.

Function parameters:

names An alphabetized cell array of names

1 Alphabetical List

1-5576

H5ML.get_mem_datatype
Data type for dataset ID

Syntax
DTYPE_ID = H5ML.get_mem_datatype(LOCATION_ID)

Description
DTYPE_ID = H5ML.get_mem_datatype(LOCATION_ID) returns the ID of an HDF5
memory datatype for the dataset or attribute identified by LOCATION_ID. This HDF5
memory datatype is the default used by H5D.read or H5D.write when you specify
'H5ML_DEFAULT' as a value of the memory data type parameter.

The identifier returned by H5ML.get_mem_datatype should eventually be closed by
calling H5T.close to release resources.

Examples
file_id = H5F.open('example.h5','H5F_ACC_RDONLY','H5P_DEFAULT');
dset_id = H5D.open(file_id,'/g1/g1.1/dset1.1.1');
datatype_id = H5ML.get_mem_datatype(dset_id)
H5T.close(datatype_id);
H5D.close(dset_id);
H5F.close(file_id);

 H5ML.get_mem_datatype

1-5577

H5ML.hoffset
Determine the offset of a field within a structure

Note H5ML.hoffset is not recommended. Use H5T instead.

Syntax

Description
This function is used to determine the offset (in bytes) of a structure,
H5T.insert(file_type,'a', offset(1), dtype(1));, within a field. It is used
when constructing an HDF5 COMPOUND type. It is designed to correspond to the HDF5
HOFFSET macro. For more details about the operation of the HOFFSET macro, please
consult the HDF5 documentation.

Function parameters:

offset The byte offset of the field within the
structure.

structure The structure which contains the specified
fieldname.

fieldname The field for which the offset is determined.

Examples
This function is deprecated. It can only be used in workflows that do not include a field
that is itself an HDF5 COMPOUND or of variable length. To handle these cases, the
offsets should be computed directly. For example, in the case above, a file dataspace for
such a compound could be created with:

dtype(1) = H5T.copy('H5T_NATIVE_INT');
dtype(2) = H5T.copy('H5T_NATIVE_DOUBLE');

1 Alphabetical List

1-5578

dtype(3) = H5T.copy('H5T_NATIVE_FLOAT');

for j = 1:3, sz(j,1) = H5T.get_size(dtype(j)); end

% The first offset would always be zero and the size of the last
% field does not matter.
offset(1) = 0;
offset(2:3) = cumsum(sz(1:2));

file_type = H5T.create('H5T_COMPOUND',sum(sz));

H5T.insert(file_type,'a', offset(1), dtype(1));
H5T.insert(file_type,'b', offset(2), dtype(2));
H5T.insert(file_type,'c', offset(3), dtype(3));

See Also
H5T.get_size

 H5ML.hoffset

1-5579

H5ML.sizeof
Return the size (in bytes) of a variable as stored on disk

Note H5ML.sizeof is not recommended. Use H5T instead.

Syntax

Description
This function is used to determine the size (in bytes) of a structure or other (simple)
variable. It is designed to correspond to the C sizeof() operator as it is used during the
creation of HDF5 datatypes, especially the HDF5 COMPOUND type.

Function parameters:

size The size (in bytes) of the variable as it
would be stored on disk.

arg The variable for which the size is being
sought.

Examples
This function is deprecated. It can only be used in workflows that do not include a field
that is itself an HDF5 COMPOUND or of variable length. To handle these cases, the
offsets should be computed directly. For example, in the case above, a file dataspace for
such a compound could be created with:

dtype(1) = H5T.copy('H5T_NATIVE_INT');
dtype(2) = H5T.copy('H5T_NATIVE_DOUBLE');
dtype(3) = H5T.copy('H5T_NATIVE_FLOAT');

1 Alphabetical List

1-5580

for j = 1:3, sz(j,1) = H5T.get_size(dtype(j)); end

% The first offset would always be zero and the size of the last
% field does not matter.
offset(1) = 0;
offset(2:3) = cumsum(sz(1:2));

file_type = H5T.create('H5T_COMPOUND',sum(sz));

H5T.insert(file_type,'a', offset(1), dtype(1));
H5T.insert(file_type,'b', offset(2), dtype(2));
H5T.insert(file_type,'c', offset(3), dtype(3));

See Also
H5T.get_size

 H5ML.sizeof

1-5581

H5O.close
Close object

Syntax
H5O.close(obj_id)

Description
H5O.close(obj_id) closes the object specified by obj_id. obj_id cannot be a
dataspace, attribute, property list, or file.

1 Alphabetical List

1-5582

H5O.copy
Copy object from source location to destination location

Syntax
H5O.copy(src_loc_id,src_name,dst_loc_id,dst_name,ocpypl_id,lcpl_id)

Description
H5O.copy(src_loc_id,src_name,dst_loc_id,dst_name,ocpypl_id,lcpl_id)
copies the group, dataset or named datatype specified by src_name from the file or
group specified by src_loc_id to the destination location dst_loc_id.

The destination location, as specified in dst_loc_id, may be a group in the current file
or a location in a different file. If dst_loc_id is a file identifier, the copy will be placed in
that file's root group.

The new copy will be created with the name dst_name. dst_name must not pre-exist in
the destination location. If dst_name already exists at the location dst_loc_id, the
operation will fail.

The new copy of the object is created with the object creation property and link creation
property lists ocpypl_id and lcpl_id, respectively.

Examples
Copy the group '/g3' and all its datasets to a new group '/g3.5'.

srcFile = [matlabroot '/toolbox/matlab/demos/example.h5'];
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
ocpl = H5P.create('H5P_OBJECT_COPY');
lcpl = H5P.create('H5P_LINK_CREATE');
H5P.set_create_intermediate_group(lcpl,true);
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');

 H5O.copy

1-5583

gid = H5G.open(fid,'/');
H5O.copy(gid,'g3',gid,'g3.5',ocpl,lcpl);
H5G.close(gid);
H5P.close(ocpl);
H5P.close(lcpl);
H5F.close(fid);

1 Alphabetical List

1-5584

H5O.get_comment
Get comment for object specified by object identifier

Syntax
comment = H5O.get_comment(obj_id)

Description
comment = H5O.get_comment(obj_id) retrieves the comment for the object specified
by obj_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'g4/world');
comment = H5O.get_comment(dset_id);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5O.get_comment_by_name | H5O.set_comment | H5O.set_comment_by_name

 H5O.get_comment

1-5585

H5O.get_comment_by_name
Get comment for object specified by location and object name

Syntax
comment = H5O.get_comment_by_name(loc_id,name,lapl_id)

Description
comment = H5O.get_comment_by_name(loc_id,name,lapl_id) retrieves a
comment where a location id and name together specify the object. A link access property
list can affect the outcome if a link is traversed to access the object.

Examples
fid = H5F.open('example.h5','H5F_ACC_RDONLY','H5P_DEFAULT');
comment = H5O.get_comment_by_name(fid,'g4/world','H5P_DEFAULT');
H5F.close(fid);

See Also
H5O.get_comment | H5O.set_comment | H5O.set_comment_by_name

1 Alphabetical List

1-5586

H5O.get_info
Object metadata

Syntax
info = H5O.get_info(obj_id)

Description
info = H5O.get_info(obj_id) retrieves the metadata for an object specified by
obj_id. For details about the object metadata, please refer to the HDF5 documentation.

Examples
Determine the number of attributes for a dataset.

fid = H5F.open('example.h5','H5F_ACC_RDONLY','H5P_DEFAULT');
dsetId = H5D.open(fid,'/g1/g1.1/dset1.1.1');
info = H5O.get_info(dsetId);
info.num_attrs

Determine the type of objects in the root group.

plist = 'H5P_DEFAULT';
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
root_info = H5G.get_info(gid);
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_DEC';
for j = 0:root_info.nlinks-1
 obj_id = H5O.open_by_idx(fid,'/',idx_type,order,j,plist);
 obj_info = H5O.get_info(obj_id);
 switch(obj_info.type)
 case H5ML.get_constant_value('H5G_LINK')
 fprintf('Object #%d is a link.\n',j);
 case H5ML.get_constant_value('H5G_GROUP')

 H5O.get_info

1-5587

 fprintf('Object #%d is a group.\n',j);
 case H5ML.get_constant_value('H5G_DATASET')
 fprintf('Object #%d is a dataset.\n',j);
 case H5ML.get_constant_value('H5G_TYPE')
 fprintf('Object #%d is a named datatype.\n',j);
 end
 H5O.close(obj_id);
end
H5G.close(gid);
H5F.close(fid);

See Also
H5D.open | H5F.open | H5G.open | H5T.open

1 Alphabetical List

1-5588

H5O.link
Create hard link to specified object

Syntax
H5O.link(obj_id,new_loc_id,new_link_name,lcpl_id,lapl_id)

Description
H5O.link(obj_id,new_loc_id,new_link_name,lcpl_id,lapl_id) creates a hard
link to an object, where new_loc_id and new_link_name specify the location. lcpl_id
and lapl_id are the link creation and access property lists associated with the new link.

H5O.link is designed to add additional structure to an existing file so that, for example,
an object can be shared among multiple groups.

Examples
Create a hard link from group '/g2' to the dataset '/g1/ds1'.

plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist_id,plist_id);
gid1 = H5G.create(fid,'/g1',plist_id);
space_id = H5S.create_simple(1,10,[]);
ds1 = H5D.create(gid1,'ds1','H5T_NATIVE_INT',space_id,plist_id);
gid2 = H5G.create(fid,'/g2',plist_id);
H5O.link(ds1,gid2,'ds2',plist_id,plist_id);
H5D.close(ds1);
H5S.close(space_id);
H5G.close(gid2); H5G.close(gid1);
H5F.close(fid);

 H5O.link

1-5589

See Also
H5L.create_hard | H5L.create_soft

1 Alphabetical List

1-5590

H5O.open
Open specified object

Syntax
obj_id = H5O.open(loc_id,relname,lapl_id)

Description
obj_id = H5O.open(loc_id,relname,lapl_id) opens an object specified by
location identifier and relative path name. lapl_id is the link access property list
associated with the link pointing to the object. If default link access properties are
appropriate, this can be passed in as 'H5P_DEFAULT'.

Examples
fid = H5F.open('example.h5');
obj_id = H5O.open(fid,'g3','H5P_DEFAULT');
H5O.close(obj_id);
H5F.close(fid);

See Also
H5O.close | H5O.open_by_idx

 H5O.open

1-5591

H5O.open_by_idx
Open object specified by index

Syntax
obj_id = H5O.open_by_idx(loc_id, group_name, idx_type, order, n,
lapl_id)

Description
obj_id = H5O.open_by_idx(loc_id, group_name, idx_type, order, n,
lapl_id) opens the n-th object in the group specified by loc_id and group_name.
loc_id specifies a file or group. group_name specifies the group relative to loc_id in
which the object can be found.

Two parameters are used to establish the iteration: index_type and order.
index_type specifies the type of index by which objects are ordered. Specify
index_type as one of these character vectors or string scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

order specifies the order in which the links are to be referenced for the purposes of this
function. Specify order as one of these character vectors or string scalars.

'H5_ITER_INC' Increasing order
'H5_ITER_DEC' Decreasing order
'H5_ITER_NATIVE' Fastest available order

n specifies the zero-based position of the object within the index. lapl_id specifies the
link access property list to be used in accessing the object.

1 Alphabetical List

1-5592

Examples
fid = H5F.open('example.h5');
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_DEC';
obj_id = H5O.open_by_idx(fid,'g3',idx_type,order,0,'H5P_DEFAULT');
H5O.close(obj_id);
H5F.close(fid);

See Also
H5O.close | H5O.open

 H5O.open_by_idx

1-5593

H5O.set_comment
Set comment for object specified by object identifier

Syntax
H5O.set_comment(obj_id,comment)

Description
H5O.set_comment(obj_id,comment) sets a comment for the object specified by
obj_id.

Examples
plist = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist,plist);
gid = H5G.create(fid,'/g1',plist);
H5O.set_comment(gid,'This is a group comment.');
H5G.close(gid);
H5F.close(fid);

See Also
H5O.get_comment | H5O.get_comment_by_name | H5O.set_comment_by_name

1 Alphabetical List

1-5594

H5O.set_comment_by_name
Set comment for object specified by location and object name

Syntax
H5O.set_comment_by_name(loc_id,rel_name,comment,lapl_id)

Description
H5O.set_comment_by_name(loc_id,rel_name,comment,lapl_id) sets a comment
for an object specified by a location ID and a relative name. lapl_id is a link access
property list identifier that can affect the outcome if links are traversed.

Examples
plist = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist,plist);
gid = H5G.create(fid,'/g1',plist);
H5O.set_comment_by_name(fid,'g1','This is a group comment.',plist);
H5G.close(gid);
H5F.close(fid);

See Also
H5O.get_comment | H5O.get_comment_by_name | H5O.set_comment

 H5O.set_comment_by_name

1-5595

H5O.visit
Visit objects specified by object identifier

Syntax
[status,opdata_out] =
H5O.visit(obj_id,index_type,order,iter_func,opdata_in)

Description
[status,opdata_out] =
H5O.visit(obj_id,index_type,order,iter_func,opdata_in) is a recursive
iteration function to visit the object object_id and, if object_id is a group, all objects
in and below it in an HDF5 file. This provides a mechanism for an application to perform a
common set of operations across all of those objects or a dynamically selected subset.

If object_id is a group identifier, that group serves as the root of a recursive iteration.
If object_id is a file identifier, that file's root group serves as the root of the recursive
iteration. If object_id is any other type of object, such as a dataset or named data type,
there is no iteration.

Two parameters are used to establish the iteration: index_type and order. The
index_type parameter specifies the index used. If the links in a group have not been
indexed by the index type, they are first sorted by that index, and then the iteration will
begin. If the links have been so indexed, the sorting step is unnecessary, so the iteration
can begin more quickly. Specify index_type as one of these character vectors or string
scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting. If the application
passes in a value indicating iteration in creation order and a group is encountered that
was not tracked in creation order, that group will be iterated over in alpha-numeric order
by name, or name order. (Name order is the native order used by the HDF5 Library and is

1 Alphabetical List

1-5596

always available.) order specifies the order in which objects are to be inspected along
the index specified in index_type. Specify order as one of these character vectors or
string scalars.

'H5_ITER_INC' Increasing order
'H5_ITER_DEC' Decreasing order
'H5_ITER_NATIVE' Fastest available order

The callback function iter_func must have the following signature:

function [status,opdata_out] = iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func opdata_in parameter. The opdata_out of an iteration step
forms the opdata_in for the next iteration step. The final opdata_out at the end of the
iteration is then returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

See Also
H5O.visit_by_name

 H5O.visit

1-5597

H5O.visit_by_name
Visit objects specified by location and object name

Syntax
[status,opdata_out] =
H5O.visit_by_name(loc_id,obj_name,index_type,order,iter_func,opdata_
in,lapl_id)

Description
[status,opdata_out] =
H5O.visit_by_name(loc_id,obj_name,index_type,order,iter_func,opdata_
in,lapl_id) specifies the object by the pairing of the location identifier and object
name. loc_id specifies a file or an object in a file and obj_name specifies an object in
the file with either an absolute name or relative to loc_id. A link access property list can
affect the outcome if links are involved.

Two parameters are used to establish the iteration: index_type and order. The
index_type parameter specifies the index to be used. If the links in a group have not
been indexed by the index type, they are first sorted by that index, and then the iteration
will begin; if the links have been so indexed, the sorting step is unnecessary, so the
iteration can begin more quickly. Specify index_type as one of these character vectors
or string scalars.

'H5_INDEX_NAME' Alpha-numeric index on name
'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting. If the application
passes in a value indicating iteration in creation order and a group is encountered that
was not tracked in creation order, that group will be iterated over in alpha-numeric order
by name, or name order. (Name order is the native order used by the HDF5 Library and is
always available.) order specifies the order in which objects are to be inspected along
the index specified in index_type. Specify order as one of these character vectors or
string scalars.

1 Alphabetical List

1-5598

'H5_ITER_INC' Increasing order
'H5_ITER_DEC' Decreasing order
'H5_ITER_NATIVE' Fastest available order

The callback function iter_func must have the following signature:

function [status,opdata_out] = iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the first step of the
iteration in the iter_func opdata_in parameter. The opdata_out of an iteration step
forms the opdata_in for the next iteration step. The final opdata_out at the end of the
iteration is then returned to the caller as opdata_out.

lapl_id is a link access property list. When default link access properties are
acceptable, 'H5P_DEFAULT' can be used.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero status value to the
caller if all members have been processed

positive Stops the iteration and returns the positive status value to the
caller

negative Stops the iteration and throws an error indicating failure

See Also
H5O.visit

 H5O.visit_by_name

1-5599

H5P.close
Close property list

Syntax
H5P.close(plist_id)

Description
H5P.close(plist_id) terminates access to the property list specified by plist_id.

See Also
H5P.create

1 Alphabetical List

1-5600

H5P.copy
Copy of property list

Syntax
plist_copy = H5P.copy(plist_id)

Description
plist_copy = H5P.copy(plist_id) returns a copy of the property list specified by
plist_id.

Examples
Make a copy of the file creation property list for 'example.h5'.

fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
fcpl2 = H5P.copy(fcpl);

 H5P.copy

1-5601

H5P.create
Create new property list

Syntax
plist = H5P.create(class_id)

Description
plist = H5P.create(class_id) creates a new property list as an instance of the
property list class specified by class_id. Specify class_id as one of the following
character vectors or string scalars, or their corresponding constant value.

'H5P_ATTRIBUTE_CREATE'
'H5P_DATASET_ACCESS'
'H5P_DATASET_CREATE'
'H5P_DATASET_XFER'
'H5P_DATATYPE_CREATE'
'H5P_DATATYPE_ACCESS'
'H5P_FILE_MOUNT'
'H5P_FILE_CREATE'
'H5P_FILE_ACCESS'
'H5P_GROUP_CREATE'
'H5P_GROUP_ACCESS'
'H5P_LINK_CREATE'
'H5P_LINK_ACCESS'
'H5P_OBJECT_COPY'
'H5P_OBJECT_CREATE'
'H5P_STRING_CREATE'

class_id can also be an instance of a property list class.

1 Alphabetical List

1-5602

Examples
fapl = H5P.create('H5P_FILE_ACCESS');
fid = H5F.open('example.h5','H5F_ACC_RDONLY',fapl);

See Also
H5ML.get_constant_value | H5P.close | H5P.get_class

 H5P.create

1-5603

H5P.get_class
Property list class

Syntax
plist_class = H5P.get_class(plist_id)

Description
plist_class = H5P.get_class(plist_id) returns the property list class for the
property list specified by plist_id.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
pclass = H5P.get_class(fcpl);
name = H5P.get_class_name(pclass);

See Also
H5P.get_class_name

1 Alphabetical List

1-5604

H5P.close_class
Close property list class

Syntax
H5P.close_class(class)

Description
H5P.close_class(class) closes the property list class specified by pclass_id.

 H5P.close_class

1-5605

H5P.equal
Determine equality of property lists

Syntax
value = H5P.equal(plist1_id, plist2_id)

Description
value = H5P.equal(plist1_id, plist2_id) returns a positive number if the two
property lists specified are equal, and zero if they are not. A negative value indicates
failure.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
fcpl = H5F.get_create_plist(fid);
if H5P.equal(fapl,fcpl)
 fprintf('property lists are equal\n');
else
 fprintf('property lists are not equal\n');
end

1 Alphabetical List

1-5606

H5P.exist
Determine if specified property exists in property list

Syntax
value = H5P.exist(prop_id,name)

Description
value = H5P.exist(prop_id,name) returns a positive value if the property specified
by name exists within the property list or class specified by prop_id. Specify name as a
character vector or string scalar.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
if H5P.exist(fapl,'sieve_buf_size')
 fprintf('sieve buffer size property exists\n');
else
 fprintf('sieve buffer size property does not exist\n');
end

 H5P.exist

1-5607

H5P.get
Value of specified property in property list

Syntax
value = H5P.get(plist_id,name)

Description
value = H5P.get(plist_id,name) retrieves a copy of the value of the property
specified by name in the property list specified by plist_id. Specify name as a character
vector or string scalar. The H5P.get function returns the property as an array of uint8
values. You might need to cast the value to an appropriate data type to get a meaningful
result.

Examples
plist = H5P.create('H5P_FILE_ACCESS');
val = H5P.get(plist, 'rdcc_w0');
rdcc_w0 = typecast(val,'double');

It is recommended to use alternative functions like H5P.get_chunk, H5P.get_layout,
H5P.get_size etc., where available, to get values for the common property names.

See Also
H5P.set | typecast

1 Alphabetical List

1-5608

H5P.get_class_name
Name of property list class

Syntax
classname = H5P.get_class_name(pclass_id)

Description
classname = H5P.get_class_name(pclass_id) retrieves the name of the generic
property list class. classname is a character vector. If no class is found, an empty
character vector is returned.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
pclass = H5P.get_class(fcpl);
name = H5P.get_class_name(pclass);

See Also
H5P.get_class

 H5P.get_class_name

1-5609

H5P.get_class_parent
Identifier for parent class

Syntax
pclass_obj_id = H5P.get_class_parent(pclass_id)

Description
pclass_obj_id = H5P.get_class_parent(pclass_id) returns an identifier to the
parent class object of the property class specified by pclass_id.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
fcpl_class = H5P.get_class(fcpl);
parent_class = H5P.get_class_parent(fcpl_class);
name = H5P.get_class_name(parent_class);

See Also
H5P.get_class | H5P.get_class_name

1 Alphabetical List

1-5610

H5P.get_nprops
Query number of properties in property list or class

Syntax
nprops = H5P.get_nprops(id)

Description
nprops = H5P.get_nprops(id) returns the number of properties in the property list
or class specified by id.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
nprops = H5P.get_nprops(fcpl);

 H5P.get_nprops

1-5611

H5P.get_size
Query size of property value in bytes

Syntax
sz = H5P.get_size(id,name)

Description
sz = H5P.get_size(id,name) returns the size, in bytes, of the property specified by
name in the property list or property class specified by id. Specify name as a character
vector or string scalar.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_size(fapl,'sieve_buf_size');

1 Alphabetical List

1-5612

H5P.isa_class
Determine if property list is member of class

Syntax
output = H5P.isa_class(plist_id, pclass_id)

Description
output = H5P.isa_class(plist_id, pclass_id) returns a positive number if the
property list specified by plist_id is a member of the class specified by pclass_id,
zero if it is not, and a negative value to indicate an error.

Examples
 fid = H5F.open('example.h5');
 fcpl = H5F.get_create_plist(fid);
 if H5P.isa_class(fcpl,'H5P_FILE_ACCESS')
 fprintf('fcpl is a file access property list\n');
 else
 fprintf('fcpl is not a file access property list\n');
 end

See Also
H5P.get_class

 H5P.isa_class

1-5613

H5P.iterate
Iterate over properties in property list

Syntax
[output,idx_out] = H5P.iterate(id,idx_in,iter_func)

Description
[output,idx_out] = H5P.iterate(id,idx_in,iter_func) executes the
operation iter_func on each property in the property object specified in id. The id
input can be a property list or a property class. idx_in specifies the index of the next
property to be processed. output is the value returned by the last call to iter_func.
idx_out is the index of the last property processed. iter_func is a function handle.

The iterator function must have the following signature:

status = iter_func(id,prop_name)

id still identifies the property object passed into H5P.iterate, but name identifies the
name of the current property.

1 Alphabetical List

1-5614

H5P.set
Set property list value

Syntax
H5P.set(plist_id,name,value)

Description
H5P.set(plist_id,name,value) sets the value of the property specified by name in
the property list specified by plist_id to the value specified in value. Specify name as
a character vector or string scalar. The datatype of value must be uint8.

Examples
plist = H5P.create('H5P_FILE_ACCESS');
H5P.set(plist, 'rdcc_w0', typecast(0.8, 'uint8'));

It is recommended to use alternative functions like H5P.set_chunk, H5P.set_layout,
H5P.set_size, etc., where available, to set values for the common property names.

See Also
typecast

 H5P.set

1-5615

H5P.get_btree_ratios
B-tree split ratios

Syntax
[left,middle,right] = H5P.get_btree_ratios(plist_id)

Description
[left,middle,right] = H5P.get_btree_ratios(plist_id) returns the B-tree
split ratios for the dataset transfer property list specified by plist_id. The left output
specifies the B-tree split ratio for left-most nodes. right corresponds to the right-most
nodes and lone nodes, and middle corresponds to all other nodes.

Examples
dxpl = H5P.create('H5P_DATASET_XFER');
[left,middle,right] = H5P.get_btree_ratios(dxpl);

See Also
H5P.set_btree_ratios

1 Alphabetical List

1-5616

H5P.get_chunk_cache
Raw data chunk cache parameters

Syntax
[rdcc_nslots,rdcc_nbytes,rdcc_w0] = H5P.get_chunk_cache(dapl_id)

Description
[rdcc_nslots,rdcc_nbytes,rdcc_w0] = H5P.get_chunk_cache(dapl_id)
retrieves the number of chunk slots in the raw data chunk cache hash table
(rdcc_nslots), the maximum possible number of bytes in the raw data chunk cache
(rdcc_nbytes), and the preemption policy value (rdcc_w0) on a dataset access property
list.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/vlen3D');
dapl = H5D.get_access_plist(dset_id);
[rrdcc_nslots,rdcc_nbytes,rdcc_w0] = H5P.get_chunk_cache(dapl);
H5P.close(dapl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.set_chunk_cache

 H5P.get_chunk_cache

1-5617

H5P.get_edc_check
Determine if error detection is enabled

Syntax
check = H5P.get_edc_check(plist_id)

Description
check = H5P.get_edc_check(plist_id) queries the dataset transfer property list,
specified by plist_id, to determine whether error detection is enabled for data read
operations. Returns either H5Z_ENABLE_EDC or H5Z_DISABLE_EDC.

Examples
dxpl = H5P.create('H5P_DATASET_XFER');
check = H5P.get_edc_check(dxpl);
switch(check)
 case H5ML.get_constant_value('H5Z_ENABLE_EDC')
 fprintf('error detection enabled\n');
 case H5ML.get_constant_value('H5Z_DISABLE_EDC');
 fprintf('error detection disabled\n');
end

See Also
H5P.set_edc_check

1 Alphabetical List

1-5618

H5P.get_hyper_vector_size
Number of I/O vectors

Syntax
sz = H5P.get_hyper_vector_size(dxpl_id)

Description
sz = H5P.get_hyper_vector_size(dxpl_id) returns the number of I/O vectors to
be read/written in hyperslab I/O.

Examples
dxpl = H5P.create('H5P_DATASET_XFER');
sz = H5P.get_hyper_vector_size(dxpl);

See Also
H5P.set_hyper_vector_size

 H5P.get_hyper_vector_size

1-5619

H5P.set_btree_ratios
Set B-tree split ratios for dataset transfer

Syntax
H5P.set_btree_ratios(plist_id,left,middle,right)

Description
H5P.set_btree_ratios(plist_id,left,middle,right) sets the B-tree split ratios
for the dataset transfer property list specified by plist_id. The left argument specifies
the B-tree split ratio for left-most nodes. right specifies the B-tree split ratio for right-
most nodes and lone nodes. middle specifies the B-tree split ratio for all other nodes.

Examples
dxpl = H5P.create('H5P_DATASET_XFER');
H5P.set_btree_ratios(dxpl, 0.2, 0.6, 0.95);

See Also
H5P.get_btree_ratios

1 Alphabetical List

1-5620

H5P.set_chunk_cache
Set raw data chunk cache parameters

Syntax
H5P.set_chunk_cache(dapl_id, rdcc_nslots, rdcc_nbytes, rdcc_w0)

Description
H5P.set_chunk_cache(dapl_id, rdcc_nslots, rdcc_nbytes, rdcc_w0) sets
the number of elements (rdcc_nslots), the total number of bytes (rdcc_nbytes), and
the preemption policy value (rdcc_w0) in the raw data chunk cache.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/vlen3D');
dapl = H5D.get_access_plist(dset_id);
H5P.set_chunk_cache(dapl,500,1e6,0.7);
H5P.close(dapl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.get_chunk_cache

 H5P.set_chunk_cache

1-5621

H5P.set_edc_check
Enable error detection for dataset transfer

Syntax
H5P.set_edc_check(plist_id,check)

Description
H5P.set_edc_check(plist_id,check) sets the dataset transfer property list
specified by plist_id to enable or disable error detection when reading data. Specify
check as a character vector or string scalar containing 'H5Z_ENABLE_EDC' or
'H5Z_DISABLE_EDC'.

Examples
Disable error detection for a default dataset transfer property list.

dxpl = H5P.create('H5P_DATASET_XFER');
H5P.set_edc_check(dxpl,'H5Z_DISABLE_EDC');

See Also
H5P.get_edc_check

1 Alphabetical List

1-5622

H5P.set_hyper_vector_size
Set number of I/O vectors for hyperslab I/O

Syntax
H5P.set_hyper_vector_size(dxpl_id,size)

Description
H5P.set_hyper_vector_size(dxpl_id,size) sets the number of I/O vectors to be
accumulated in memory before being issued to the lower levels of the HDF5 library for
reading or writing the actual data. dxpl_id is a dataset transfer property list identifier.
size specifies the number of I/O vectors to accumulate in memory for I/O operations.

Examples
dxpl = H5P.create('H5P_DATASET_XFER');
H5P.set_hyper_vector_size(dxpl,2048);

See Also
H5P.get_hyper_vector_size

 H5P.set_hyper_vector_size

1-5623

H5P.all_filters_avail
Determine availability of all filters

Syntax
value = H5P.all_filters_avail(dcpl_id)

Description
value = H5P.all_filters_avail(dcpl_id) returns a positive value if all of the
filters set in the dataset creation property list dcpl_id are currently available, and zero
if they are not. A negative value indicates failure.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
dcpl = H5D.get_create_plist(dset_id);
if H5P.all_filters_avail(dcpl)
 fprintf('all filters available\n');
else
 fprintf('all filters not available\n');
end
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.set_filter

1 Alphabetical List

1-5624

H5P.fill_value_defined
Determine if fill value is defined

Syntax
fvstatus = H5P.fill_value_defined(plist_id)

Description
fvstatus = H5P.fill_value_defined(plist_id) determines whether a fill value
is defined in the dataset creation property list plist_id. The fvstatus output can have
any of the following values: H5D_FILL_VALUE_UNDEFINED, H5D_FILL_VALUE_DEFAULT,
or H5D_FILL_VALUE_USER_DEFINED.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
dcpl = H5D.get_create_plist(dset_id);
fvstatus = H5P.fill_value_defined(dcpl);
switch(fvstatus)
 case H5ML.get_constant_value('H5D_FILL_VALUE_UNDEFINED')
 fprintf('fill value undefined\n');
 case H5ML.get_constant_value('H5D_FILL_VALUE_DEFAULT')
 fprintf('fill value set to default\n');
 case H5ML.get_constant_value('H5D_FILL_VALUE_USER_DEFINED')
 fprintf('fill value is user defined\n');
end

See Also
H5P.get_fill_value | H5P.set_fill_value

 H5P.fill_value_defined

1-5625

H5P.get_alloc_time
Return timing of storage space allocation

Syntax
alloc_time = H5P.get_alloc_time(plist_id)

Description
alloc_time = H5P.get_alloc_time(plist_id) retrieves the timing for storage
space allocation from the dataset creation property list specified by plist_id. The
alloc_time output can have any of the following values: H5D_ALLOC_TIME_DEFAULT,
H5D_ALLOC_TIME_EARLY, H5D_ALLOC_TIME_INCR, or H5D_ALLOC_TIME_LATE.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
alloc_time = H5P.get_alloc_time(dcpl);
switch(alloc_time)
 case H5ML.get_constant_value('H5D_ALLOC_TIME_DEFAULT')
 fprintf('allocation time is default\n');
 case H5ML.get_constant_value('H5D_ALLOC_TIME_EARLY')
 fprintf('allocation time is dataset creation time\n');
 case H5ML.get_constant_value('H5D_ALLOC_TIME_INCR')
 fprintf('allocation time is incremental\n');
 case H5ML.get_constant_value('H5D_ALLOC_TIME_LATE')
 fprintf('allocation time is when data is first written\n');
end

1 Alphabetical List

1-5626

H5P.get_chunk
Return size of chunks

Syntax
[rank,h5_chunk_dims] = H5P.get_chunk(plist_id)

Description
[rank,h5_chunk_dims] = H5P.get_chunk(plist_id) retrieves the size of chunks
for the raw data of a chunked layout dataset for the dataset creation property list
specified by plist_id.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_chunk_dims parameter assumes C-style ordering.
Please consult "Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g4/time');
dcpl = H5D.get_create_plist(dset_id);
[rank,chunk_dims] = H5P.get_chunk(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.set_chunk

 H5P.get_chunk

1-5627

H5P.get_external
Return information about external file

Syntax
[name,offset,size] = H5P.get_external(plist_id,idx)

Description
[name,offset,size] = H5P.get_external(plist_id,idx) returns information
about the external file specified by the dataset creation property list plist_id. The idx
specifies the external file index, which is a number from zero to N-1, where N is the value
returned by H5P.get_external_count. The name output returns the name of the
external file (limited by 2048 characters). The offset output returns the location in
bytes, from the beginning of the external file, where the data starts. The size output
returns the size of the external data.

See Also
H5P.get_external_count

1 Alphabetical List

1-5628

H5P.get_external_count
Return count of external files

Syntax
num_files = H5P.get_external_count(plist_id)

Description
num_files = H5P.get_external_count(plist_id) returns the number of external
files for the dataset creation property list, plist_id.

See Also
H5P.get_external

 H5P.get_external_count

1-5629

H5P.get_fill_time
Return time when fill values are written to dataset

Syntax
fill_time = H5P.get_fill_time(plist_id)

Description
fill_time = H5P.get_fill_time(plist_id) returns the time when fill values are
written to the dataset specified by the dataset creation property list plist_id. The
fill_time output is one of the following values: H5D_FILL_TIME_IFSET,
H5D_FILL_TIME_ALLOC, or H5D_FILL_TIME_NEVER.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
fill_time = H5P.get_fill_time(dcpl);
switch(fill_time)
 case H5ML.get_constant_value('H5D_FILL_TIME_IFSET')
 fprintf('upon allocation if and only if fill value set by user\n');
 case H5ML.get_constant_value('H5D_FILL_TIME_ALLOC')
 fprintf('written when storage space is allocated\n');
 case H5ML.get_constant_value('H5D_FILL_TIME_NEVER')
 fprintf('fill values are never written\n');
end

See Also
H5P.get_fill_time | H5P.set_fill_value

1 Alphabetical List

1-5630

H5P.get_fill_value
Return dataset fill value

Syntax
value = H5P.get_fill_value(plist_id,type_id)

Description
value = H5P.get_fill_value(plist_id,type_id) returns the dataset fill value
defined in the dataset creation property list plist_id. The type_id input specifies the
datatype of the returned fill value.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
type_id = H5T.copy('H5T_NATIVE_INT');
fill_value = H5P.get_fill_value(dcpl,type_id);

See Also
H5P.get_fill_time | H5P.set_fill_time | H5P.set_fill_value

 H5P.get_fill_value

1-5631

H5P.get_filter
Return information about filter in pipeline

Syntax
[filter,flags,cd_values,name] = H5P.get_filter(plist_id,index)
[filter,flags,cd_values,name,filter_config] =
H5P.get_filter(plist_id,index)

Description
[filter,flags,cd_values,name] = H5P.get_filter(plist_id,index) returns
information about the filter, specified by its filter index, in the filter pipeline, specified by
the property list with which it is associated. This interface corresponds to the 1.6 version
of H5Pget_filter in the HDF5 library.

[filter,flags,cd_values,name,filter_config] =
H5P.get_filter(plist_id,index) returns information about the filter, specified by
its filter index, in the filter pipeline, specified by the property list with which it is
associated. It also returns information about the filter. Consult the HDF5 documentation
for H5Zget_filter_info for information about filter_config. This interface
corresponds to the 1.8 version of H5Pget_filter in the HDF5 library.

See Also
H5P.get_filter_by_id | H5P.get_nfilters | H5P.modify_filter |
H5P.remove_filter

1 Alphabetical List

1-5632

H5P.get_filter_by_id
Return information about specified filter

Syntax
[flags,cd_values,name,filter_config] =
H5P.get_filter_by_id(plist_id,idx)

Description
[flags,cd_values,name,filter_config] =
H5P.get_filter_by_id(plist_id,idx) returns information about the filter specified
by the filter id, idx.

See Also
H5P.get_filter | H5P.get_nfilters | H5P.modify_filter | H5P.remove_filter

 H5P.get_filter_by_id

1-5633

H5P.get_layout
Determine layout of raw data for dataset

Syntax
layout = H5P.get_layout(dcpl)

Description
layout = H5P.get_layout(dcpl) returns the layout of the raw data for the dataset
specified by the dataset creation property list, dcpl. Possible values are: H5D_COMPACT,
H5D_CONTIGUOUS, or H5D_CHUNKED.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
layout = H5P.get_layout(dcpl);
switch(layout)
 case H5ML.get_constant_value('H5D_COMPACT')
 fprintf('layout is compact\n');
 case H5ML.get_constant_value('H5D_CONTIGUOUS')
 fprintf('layout is contiguous\n');
 case H5ML.get_constant_value('H5D_CHUNKED')
 fprintf('layout is chunked\n');
end

See Also
H5P.set_layout

1 Alphabetical List

1-5634

H5P.get_nfilters
Return number of filters in pipeline

Syntax
num_filters = H5P.get_nfilters(plist_id)

Description
num_filters = H5P.get_nfilters(plist_id) returns the number of filters defined
in the filter pipeline associated with the dataset creation property list, plist_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g4/world');
dcpl = H5D.get_create_plist(dset_id);
num_filters = H5P.get_nfilters(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.get_filter | H5P.get_filter_by_id | H5P.modify_filter |
H5P.remove_filter

 H5P.get_nfilters

1-5635

H5P.modify_filter
Modify filter in pipeline

Syntax
H5P.modify_filter(plist_id,filter_id,flags,cd_values)

Description
H5P.modify_filter(plist_id,filter_id,flags,cd_values) modifies the
specified filter in the filter pipeline. plist_id is a property list identifier. flags is a bit
vector specifying certain general properties of the filter. cd_values specifies auxiliary
data for the filter.

See Also
H5P.get_filter | H5P.get_filter_by_id | H5P.get_nfilters |
H5P.remove_filter

1 Alphabetical List

1-5636

H5P.remove_filter
Remove filter from property list

Syntax
H5P.remove_filter(plist_id,filter)

Description
H5P.remove_filter(plist_id,filter) removes the specified filter from the filter
pipeline. plist_id is the dataset creation property list identifier.

See Also
H5P.get_filter | H5P.get_filter_by_id | H5P.get_nfilters |
H5P.modify_filter

 H5P.remove_filter

1-5637

H5P.set_alloc_time
Set timing for storage space allocation

Syntax
H5P.set_alloc_time(plist_id,alloc_time)

Description
H5P.set_alloc_time(plist_id,alloc_time) sets the timing for the allocation of
storage space for a dataset's raw data. plist_id is a dataset creation property list.
Specify alloc_time as one of these character vectors or string scalars:
'H5D_ALLOC_TIME_DEFAULT', 'H5D_ALLOC_TIME_EARLY', 'H5D_ALLOC_TIME_INC',
or 'H5D_ALLOC_TIME_LATE'.

Examples
Create a 1000x500 double precision dataset with late allocation time.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [1000 500];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
alloc_time = H5ML.get_constant_value('H5D_ALLOC_TIME_LATE');
H5P.set_alloc_time(dcpl,alloc_time);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

1 Alphabetical List

1-5638

See Also
H5P.get_alloc_time

 H5P.set_alloc_time

1-5639

H5P.set_chunk
Set chunk size

Syntax
H5P.set_chunk(plist_id,h5_chunk_dims)

Description
H5P.set_chunk(plist_id,h5_chunk_dims) sets the size of the chunks used to store
a chunked layout dataset. plist_id is a dataset creation property list identifier.
h5_chunk_dims is an array specifying the size, in dataset elements, of each chunk.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_chunk_dims parameter assumes C-style ordering.
Please consult "Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples
Create a two dimensional double precision dataset that has an initial size of [512 1024],
but is also unlimited in both dimensions and has a chunk size of [512 1024].

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
unlimited = H5ML.get_constant_value('H5S_UNLIMITED');
dims = [512 1024];
h5_dims = fliplr(dims);
h5_maxdims = [unlimited unlimited];
space_id = H5S.create_simple(2,[1024 512],h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
chunk_dims = [512 1024];
h5_chunk_dims = fliplr(chunk_dims);
H5P.set_chunk(dcpl,h5_chunk_dims);

1 Alphabetical List

1-5640

dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.get_chunk

 H5P.set_chunk

1-5641

H5P.set_deflate
Set compression method and compression level

Syntax
H5P.set_deflate(plist_id,level)

Description
H5P.set_deflate(plist_id,level) sets the compression method for the dataset
creation property list specified by plist_id to H5D_COMPRESS_DEFLATE. level
specifies the compression level as a value from 0 and 9, inclusive. Lower values results in
less compression.

Examples
Create a two dimensional double precision dataset that has an initial size of [512 1024],
but is also unlimited in both dimensions and has a chunk size of [512 1024] and a
compression level of 5.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
unlimited = H5ML.get_constant_value('H5S_UNLIMITED');
dims = [512 1024];
h5_dims = fliplr(dims);
h5_maxdims = [unlimited unlimited];
space_id = H5S.create_simple(2,[1024 512],h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
chunk_dims = [512 1024];
h5_chunk_dims = fliplr(chunk_dims);
H5P.set_chunk(dcpl,h5_chunk_dims);
H5P.set_deflate(dcpl,5);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

1 Alphabetical List

1-5642

H5P.set_external
Add additional file to external file list

Syntax
H5P.set_external(plist_id,name,offset,nbytes)

Description
H5P.set_external(plist_id,name,offset,nbytes) adds the external file specified
by name to the list of external files in the dataset creation property list, plist_id. The
offset argument specifies the location, in bytes, where the data starts relative to the
beginning of the file. nbytes is the number of bytes reserved in the file for the data.
nbytes may also be given as 'H5F_UNLIMITED', in which case the external file may be
of unlimited size.

Examples
Create a dataset with an unlimited size external file.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 50];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
H5P.set_external(dcpl,'myexternalfile.dat',0,'H5F_UNLIMITED');
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
data = rand(dims);
dxpl = 'H5P_DEFAULT';
H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',dxpl,data);
H5D.close(dset_id);
H5F.close(fid);

 H5P.set_external

1-5643

See Also
H5ML.get_constant_value | H5P.get_external

1 Alphabetical List

1-5644

H5P.set_fill_time
Set time when fill values are written to dataset

Syntax
H5P.set_fill_time(plist_id,fill_time)

Description
H5P.set_fill_time(plist_id,fill_time) sets the timing for writing fill values to a
dataset in the dataset creation property list plist_id. The timing can be specified by
one of the following values: H5D_FILL_TIME_IFSET, H5D_FILL_TIME_ALLOC, or
H5D_FILL_TIME_NEVER.

Examples
fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 50];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
fill_time = H5ML.get_constant_value('H5D_FILL_TIME_ALLOC');
H5P.set_fill_time(dcpl,fill_time);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.get_fill_time | H5P.get_fill_value | H5P.set_fill_value

 H5P.set_fill_time

1-5645

H5P.set_fill_value
Set fill value for dataset creation property list

Syntax
H5P.set_fill_value(plist_id,type_id,value)

Description
H5P.set_fill_value(plist_id,type_id,value) sets the fill value for a the dataset
creation property list specified by plist_id. The value argument specifies the fill value.
type_id specifies the datatype of the fill value. Setting value to an empty array
indicates that the fill value is to be undefined.

Examples
Create a double precision dataset with a fill value of -999.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 50];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
fill_time = H5ML.get_constant_value('H5D_FILL_TIME_ALLOC');
H5P.set_fill_time(dcpl,fill_time);
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
H5P.set_fill_value(dcpl,type_id,-999);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

1 Alphabetical List

1-5646

H5P.set_filter
Add filter to filter pipeline

Syntax
H5P.set_filter(plist_id,filter,flags,cd_values)

Description
H5P.set_filter(plist_id,filter,flags,cd_values) adds the specified filter and
corresponding properties to the end of an output filter pipeline. plist_id is a property
list identifier. Specify filter as one of these character vectors or string scalars.

'H5P_FILTER_DEFLATE'
'H5P_FILTER_SHUFFLE'
'H5P_FILTER_FLETCHER32'

flags is a bit vector specifying properties of the filter. cd_values is an array that
contains auxiliary data for the filter.

See Also
H5P.set_deflate | H5P.set_fletcher32 | H5P.set_shuffle

 H5P.set_filter

1-5647

H5P.set_fletcher32
Set Fletcher32 checksum filter in dataset creation

Syntax
H5P.set_fletcher32(plist_id)

Description
H5P.set_fletcher32(plist_id) sets the Fletcher32 checksum filter in the dataset
creation property list specified by plist_id. The dataset creation property list must also
have chunking enabled.

Examples
 fid = H5F.create('myfile.h5');
 type_id = H5T.copy('H5T_NATIVE_DOUBLE');
 dims = [100 200];
 h5_dims = fliplr(dims);
 space_id = H5S.create_simple(2,dims,[]);
 dcpl = H5P.create('H5P_DATASET_CREATE');
 chunk_dims = [10 20];
 h5_chunk_dims = fliplr(chunk_dims);
 H5P.set_chunk(dcpl,h5_chunk_dims);
 H5P.set_fletcher32(dcpl);
 dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
 H5D.close(dset_id);
 H5F.close(fid);

See Also
H5P.set_deflate | H5P.set_shuffle

1 Alphabetical List

1-5648

H5P.set_layout
Set type of storage for dataset

Syntax
H5P.set_layout(dcpl,layout)

Description
H5P.set_layout(dcpl,layout) sets the type of storage used to store the raw data for
the dataset creation property list, dcpl. Specify the type of storage layout for raw data
layout as one of these character vectors or string scalars: 'H5D_COMPACT',
'H5D_CONTIGUOUS', or 'H5D_CHUNKED'.

Examples
 fid = H5F.create('myfile.h5');
 type_id = H5T.copy('H5T_NATIVE_DOUBLE');
 dims = [100 200];
 h5_dims = fliplr(dims);
 space_id = H5S.create_simple(2,dims,[]);
 dcpl = H5P.create('H5P_DATASET_CREATE');
 layout = H5ML.get_constant_value('H5D_CONTIGUOUS');
 H5P.set_layout(dcpl,layout);
 dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
 H5D.close(dset_id);
 H5F.close(fid);

See Also
H5P.get_layout | H5P.set_chunk

 H5P.set_layout

1-5649

H5P.set_nbit
Set N-Bit filter

Syntax
H5P.set_nbit(plist_id)

Description
H5P.set_nbit(plist_id) sets the N-Bit filter, H5Z_FILTER_NBIT, in the dataset
creation property list plist_id.

1 Alphabetical List

1-5650

H5P.set_scaleoffset
Set Scale-Offset filter

Syntax
H5P.set_scaleoffset(plistId,scaleType,scaleFactor)

Description
H5P.set_scaleoffset(plistId,scaleType,scaleFactor) sets the Scale-Offset
filter, H5Z_FILTER_SCALEOFFSET, for a dataset. For integer data types, the parameter
scaleType should be set to the enumerated value H5Z_SO_INT. For floating-point data
types, the scaleType should be the enumerated value H5Z_SO_FLOAT_DSCALE.
Chunking must already be enabled on the dataset creation property list.

See Also
H5P.set_chunk

 H5P.set_scaleoffset

1-5651

H5P.set_shuffle
Set shuffle filter

Syntax
H5P.set_shuffle(plist_id)

Description
H5P.set_shuffle(plist_id) sets the shuffle filter, H5Z_FILTER_SHUFFLE, in the
dataset creation property list plist_id. Compression must be enabled on the dataset
creation property list in order to use the shuffle filter, and best results are usually
obtained when the shuffle filter is set immediately prior to setting the deflate filter.

Examples
 fid = H5F.create('myfile.h5');
 type_id = H5T.copy('H5T_NATIVE_DOUBLE');
 dims = [100 200];
 h5_dims = fliplr(dims);
 space_id = H5S.create_simple(2,dims,[]);
 dcpl = H5P.create('H5P_DATASET_CREATE');
 chunk_dims = [10 20];
 h5_chunk_dims = fliplr(chunk_dims);
 H5P.set_chunk(dcpl,h5_chunk_dims);
 H5P.set_shuffle(dcpl);
 H5P.set_deflate(dcpl,5);
 dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
 H5D.close(dset_id);
 H5F.close(fid);

See Also
H5P.set_deflate

1 Alphabetical List

1-5652

H5P.get_alignment
Retrieve alignment properties

Syntax
[threshold,alignment] = H5P.get_alignment(plist_id)

Description
[threshold,alignment] = H5P.get_alignment(plist_id) retrieves the current
settings for alignment properties from the file access property list specified by plist_id.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
[threshold,alignment] = H5P.get_alignment(fapl);
H5P.close(fapl);
H5F.close(fid);

 H5P.get_alignment

1-5653

H5P.get_driver
Low-level file driver

Syntax
driver_id = H5P.get_driver(plist_id)

Description
driver_id = H5P.get_driver(plist_id) returns the identifier of the low-level file
driver associated with the file access property list or data transfer property list specified
by plist_id. See HDF5 documentation for a list of valid return values.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
driver_id = H5P.get_driver(fapl);
if (driver_id == H5ML.get_constant_value('H5FD_SEC2'))
 fprintf('File driver is H5FD_SEC2.\n');
end
H5P.close(fapl);
H5F.close(fid);

See Also
H5ML.get_constant_value

1 Alphabetical List

1-5654

H5P.get_family_offset
Offset for family file driver

Syntax
offset = H5P.get_family_offset(fapl_id)

Description
offset = H5P.get_family_offset(fapl_id) retrieves the value of offset from the
file access property list, fapl_id. offset is the offset of the data in the HDF5 file that is
stored on disk in the selected member file in a family of files.

See Also
H5P.set_family_offset

 H5P.get_family_offset

1-5655

H5P.get_fapl_core
Information about core file driver properties

Syntax
[increment,backing_store] = H5P.get_fapl_core(fapl_id)

Description
[increment,backing_store] = H5P.get_fapl_core(fapl_id) queries the
H5FD_CORE driver properties as set by H5P.set_fapl_core. The fapl_id argument
specifies a file access property list. The return value increment specifies the size, in
bytes, of memory increments. backing_store is a Boolean flag indicating whether to
write the file contents to disk when the file is closed.

See Also
H5P.set_fapl_core

1 Alphabetical List

1-5656

H5P.get_fapl_family
File access property list information

Syntax
[memb_size,memb_fapl_id] = H5P.get_fapl_family(fapl_id)

Description
[memb_size,memb_fapl_id] = H5P.get_fapl_family(fapl_id) returns the size
in bytes of each file member and the identifier of the file access property list for use with
the family driver specified by fapl_id.

See Also
H5P.set_fapl_family

 H5P.get_fapl_family

1-5657

H5P.get_fapl_multi
Information about multifile access property list

Syntax
[memb_map,memb_fapl,memb_name,memb_addr,relax] =
H5P.get_fapl_multi(fapl_id)

Description
[memb_map,memb_fapl,memb_name,memb_addr,relax] =
H5P.get_fapl_multi(fapl_id) returns information about the multifile access
property list specified by fapl_id. The memb_map output maps memory usage types to
other memory usage types. memb_fapl is a property list for each memory usage type.
memb_name is the name generator for names of member files. relax is a Boolean value
that, when non-zero, allows read-only access to incomplete file sets.

See Also
H5P.set_fapl_multi

1 Alphabetical List

1-5658

H5P.get_fclose_degree
File close degree

Syntax
degree = H5P.get_fclose_degree(fapl_id)

Description
degree = H5P.get_fclose_degree(fapl_id) returns the current setting of the file
close degree property fc_degree in the file access property list specified by fapl_id.
Possible return values are: H5F_CLOSE_DEFAULT, H5F_CLOSE_WEAK, H5F_CLOSE_SEMI,
or H5F_CLOSE_STRONG.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
degree = H5P.get_fclose_degree(fapl);
switch(degree)
 case H5ML.get_constant_value('H5F_CLOSE_DEFAULT')
 fprintf('file close degree is default\n');
 case H5ML.get_constant_value('H5F_CLOSE_WEAK')
 fprintf('file close degree is weak\n');
 case H5ML.get_constant_value('H5F_CLOSE_SEMI')
 fprintf('close degree is semi\n');
 case H5ML.get_constant_value('H5F_CLOSE_STRONG')
 fprintf('close degree is strong\n');
end
H5P.close(fapl);
H5F.close(fid);

 H5P.get_fclose_degree

1-5659

See Also
H5P.set_fclose_degree

1 Alphabetical List

1-5660

H5P.get_libver_bounds
Library version bounds settings

Syntax
[low,high] = H5P.get_libver_bounds(fapl_id)

Description
[low,high] = H5P.get_libver_bounds(fapl_id) gets bounds on library version
bounds settings that control the format versions used when creating objects in the file
with access property list fapl_id.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
[low,high] = H5P.get_libver_bounds(fapl);

See Also
H5F.get_access_plist | H5P.set_libver_bounds

 H5P.get_libver_bounds

1-5661

H5P.get_gc_references
Garbage collection references setting

Syntax
gc_ref = H5P.get_gc_references(fapl_id)

Description
gc_ref = H5P.get_gc_references(fapl_id) returns the current setting for the
garbage collection references property from the file access property list specified by
fapl_id. If gc_ref is 1, garbage collection is on; if 0, garbage collection is off.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
gc_ref = H5P.get_gc_references(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also
H5P.set_gc_references

1 Alphabetical List

1-5662

H5P.get_mdc_config
Metadata cache configuration

Syntax
config_struct = H5P.get_mdc_config(plist_id)

Description
config_struct = H5P.get_mdc_config(plist_id) returns the current metadata
cache configuration from the indicated file access property list.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
config = H5P.get_mdc_config(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also
H5P.set_mdc_config

 H5P.get_mdc_config

1-5663

H5P.get_meta_block_size
Metadata block size setting

Syntax
sz = H5P.get_meta_block_size(fapl_id)

Description
sz = H5P.get_meta_block_size(fapl_id) returns the current minimum size, in
bytes, of new metadata block allocations.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_meta_block_size(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also
H5P.set_meta_block_size

1 Alphabetical List

1-5664

H5P.get_multi_type
Type of data property for MULTI driver

Syntax
type = H5P.get_multi_type(fapl_id)

Description
type = H5P.get_multi_type(fapl_id) returns the type of data setting from the file
access or data transfer property list, fapl_id.

This function should only be used with an HDF5 file written as a set of files with the
MULTI file driver.

See Also
H5P.set_multi_type

 H5P.get_multi_type

1-5665

H5P.get_sieve_buf_size
Maximum data sieve buffer size

Syntax
sz = H5P.get_sieve_buf_size(fapl_id)

Description
sz = H5P.get_sieve_buf_size(fapl_id) returns the current maximum size of the
data sieve buffer.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_sieve_buf_size(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also
H5P.set_sieve_buf_size

1 Alphabetical List

1-5666

H5P.get_small_data_block_size
Small data block size setting

Syntax
sz = H5P.get_small_data_block_size(fapl_id)

Description
sz = H5P.get_small_data_block_size(fapl_id) returns the current setting for
the size of the small data block. fapl_id is a file access property list identifier.

Examples
fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_small_data_block_size(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also
H5P.set_small_data_block_size

 H5P.get_small_data_block_size

1-5667

H5P.set_alignment
Set alignment properties for file access property list

Syntax
H5P.set_alignment(fapl_id,threshold,alignment)

Description
H5P.set_alignment(fapl_id,threshold,alignment) sets the alignment
properties of the file access property list specified by fapl_id so that any file object
greater than or equal in size to threshold (in bytes) is aligned on an address which is a
multiple of alignment.

In most cases the default values of threshold and alignment result in the best
performance.

See Also
H5P.get_alignment

1 Alphabetical List

1-5668

H5P.set_family_offset
Set offset property for family of files

Syntax
H5P.set_family_offset(fapl_id,offset)

Description
H5P.set_family_offset(fapl_id,offset) sets offset property in the file access
property list specified by fapl_id for low-level access to a file in a family of files. offset
identifies a user-determined location from the beginning of the HDF5 file in bytes.

See Also
H5P.get_family_offset

 H5P.set_family_offset

1-5669

H5P.set_fapl_core
Modify file access to use H5FD_CORE driver

Syntax
H5P.set_fapl_core(fapl_id,increment,backing_store)

Description
H5P.set_fapl_core(fapl_id,increment,backing_store) modifies the file access
property list to use the H5FD_CORE driver. increment specifies the increment by which
allocated memory is to be increased each time more memory is required.
backing_store is a Boolean flag that, when non-zero, indicates the file contents should
be written to disk when the file is closed.

Examples
Create a file image in memory only.

plist = 'H5P_DEFAULT';
ndatasets = 20;
block_size = 1024*1024;
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_core(fapl,2^16,false);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist,fapl);
space_id = H5S.create_simple(1, block_size, []);
type_id = H5T.copy('H5T_IEEE_F64LE');
data = zeros(block_size,1);
for j = 1:ndatasets
 dsname = sprintf('dset%02d', j);
 fprintf('Writing dataset %s...\n',dsname);
 dsid = H5D.create(fid,dsname,type_id,space_id,'H5P_DEFAULT');
 H5D.write(dsid,'H5ML_DEFAULT',space_id,space_id,plist,data);
 H5D.close(dsid);
end
H5P.close(fapl);

1 Alphabetical List

1-5670

H5S.close(space_id);
H5T.close(type_id);
H5F.close(fid);
dir('myfile.h5');

See Also
H5P.get_fapl_core

 H5P.set_fapl_core

1-5671

H5P.set_fapl_family
Set file access to use family driver

Syntax
H5P.set_fapl_family(fapl_id,memb_size,memb_fapl_id)

Description
H5P.set_fapl_family(fapl_id,memb_size,memb_fapl_id) sets the file access
property list, specified by fapl_id, to use the family driver. memb_size is the size in
bytes of each file member. memb_fapl_id is the identifier of the file access property list
to be used for each family member.

Examples
plist = 'H5P_DEFAULT';
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_family(fapl, 8192, plist);
fid = H5F.create('family%d.h5','H5F_ACC_TRUNC','H5P_DEFAULT',fapl);
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [50 25];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,[]);
dset_id = H5D.create(fid,'DS',type_id,space_id,plist)
data = reshape(1:prod(dims),dims);
H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',plist,data);
H5P.close(fapl);
H5T.close(type_id);
H5S.close(space_id);
H5D.close(dset_id);
dir('*.h5');
h5disp('family%d.h5');

1 Alphabetical List

1-5672

See Also
H5P.get_fapl_family

 H5P.set_fapl_family

1-5673

H5P.set_fapl_log
Set use of logging driver

Syntax
H5P.set_fapl_log(fapl_id,logfile,flags,buf_size)

Description
H5P.set_fapl_log(fapl_id,logfile,flags,buf_size) modifies the file access
property list, fapl_id, to use the logging driver H5FD_LOG. logfile is the name of the
file in which the logging entries are to be recorded. flags is a bit mask that specifies the
types of activity to log. See the HDF5 documentation for a list of available flag settings.
buf_size specifies the size of the logging buffer.

1 Alphabetical List

1-5674

H5P.set_fapl_multi
Set use of multifile driver

Syntax
H5P.set_fapl_multi(fapl_id,relax)
H5P.set_fapl_multi(fapl_id,memb_map,memb_fapl,memb_name,memb_addr,re
lax)

Description
H5P.set_fapl_multi(fapl_id,relax) sets the file access property list, fapl_id, to
access HDF5 files created with the multi-driver with default values provided by the HDF5
library. relax is a Boolean value that allows read-only access to incomplete file sets when
set to 1.

H5P.set_fapl_multi(fapl_id,memb_map,memb_fapl,memb_name,memb_addr,re
lax) sets the file access property list to use the multifile driver. memb_map maps memory
usage types to other memory usage types. memb_fapl contains a property list for each
memory usage type. memb_name is a name generator for names of member files.
memb_addr specifies the offsets within the virtual address space at which each type of
data storage begins.

See Also
H5P.get_fapl_multi

 H5P.set_fapl_multi

1-5675

H5P.set_fapl_sec2
Set file access for sec2 driver

Syntax
H5P.set_fapl_sec2(fapl_id)

Description
H5P.set_fapl_sec2(fapl_id) modifies the file access property list, fapl_id, to use
the H5FD_SEC2 driver.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_sec2(fapl);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

1 Alphabetical List

1-5676

H5P.set_fapl_split
Set file access for emulation of split file driver

Syntax
H5P.set_fapl_split(fapl_id,meta_ext,meta_plist_id,raw_ext,raw_plist_
id)

Description
H5P.set_fapl_split(fapl_id,meta_ext,meta_plist_id,raw_ext,raw_plist_
id) is a compatibility function that enables the multi-file driver to emulate the split driver
from HDF5 Releases 1.0 and 1.2. meta_ext is a character vector or string scalar that
specifies the metadata filename extension. meta_plist_id is a file access property list
identifier for the metadata file. raw_ext is a character vector or string scalar that
specifies the raw data filename extension. raw_plist_id is the file access property list
identifier for the raw data file.

 H5P.set_fapl_split

1-5677

H5P.set_fapl_stdio
Set file access for standard I/O driver

Syntax
H5P.set_fapl_stdio(fapl_id)

Description
H5P.set_fapl_stdio(fapl_id) modifies the file access property list, fapl_id, to use
the standard I/O driver, H5FD_STDIO.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_stdio(fapl);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

1 Alphabetical List

1-5678

H5P.set_fclose_degree
Set file access for file close degree

Syntax
H5P.set_fclose_degree(fapl_id,degree)

Description
H5P.set_fclose_degree(fapl_id,degree) sets the file close degree property in the
file access property list, fapl_id, to the value specified by degree. Specify degree as
one of these character vectors or string scalars.

'H5F_CLOSE_WEAK'
'H5F_CLOSE_SEMI'
'H5F_CLOSE_STRONG'
'H5F_CLOSE_DEFAULT'

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fclose_degree(fapl,'H5F_CLOSE_STRONG');
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_fclose_degree

 H5P.set_fclose_degree

1-5679

H5P.set_gc_references
Set garbage collection references flag

Syntax
H5P.set_gc_references(fapl_id,gc_ref)

Description
H5P.set_gc_references(fapl_id,gc_ref) sets the flag for garbage collecting
references for the file specified by the file access property list identifier, fapl_id. The
gc_ref argument is a flag setting reference garbage collection to on (1) or off (0).

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_gc_references(fapl,1);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_gc_references

1 Alphabetical List

1-5680

H5P.set_libver_bounds
Set library version bounds for objects

Syntax
H5P.set_libver_bounds(fapl_id,low,high)

Description
H5P.set_libver_bounds(fapl_id,low,high) sets bounds on library versions, and
indirectly format versions, to be used when creating objects in the file with access
property list fapl_id. The low argument must be set to either of
'H5F_LIBVER_EARLIEST', 'H5F_LIBVER_18' or 'H5F_LIBVER_LATEST'. The high
argument must be set to 'H5F_LIBVER_18' or 'H5F_LIBVER_LATEST'.

Examples
Create an HDF5 file where objects are created using the latest available format for each
object.

fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_libver_bounds(fapl,'H5F_LIBVER_LATEST','H5F_LIBVER_LATEST');
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);

See Also
H5ML.get_constant_value | H5P.get_libver_bounds

 H5P.set_libver_bounds

1-5681

H5P.set_mdc_config
Set initial metadata cache configuration

Syntax
H5P.set_mdc_config(plist_id,config_struct)

Description
H5P.set_mdc_config(plist_id,config_struct) sets the initial metadata cache
configuration in the indicated file access property list to the supplied values. Before using
this function, you should retrieve the current configuration using H5P.get_mdc_config.

Many of the fields in the structure, config_struct, are intended to be used only in
close consultation with the HDF5 Group itself.

See Also
H5P.get_mdc_config

1 Alphabetical List

1-5682

H5P.set_meta_block_size
Set minimum metadata block size

Syntax
H5P.set_meta_block_size(fapl_id,size)

Description
H5P.set_meta_block_size(fapl_id,size) sets the minimum metadata block size
for the file access property list specified by fapl_id. The size argument specifies
minimum size, in bytes, of metadata block allocations.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_meta_block_size(fapl,4096);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_meta_block_size

 H5P.set_meta_block_size

1-5683

H5P.set_multi_type
Specify type of data accessed with MULTI driver

Syntax
H5P.set_multi_type(fapl_id,type)

Description
H5P.set_multi_type(fapl_id,type) sets the type of data property in the file access
or data transfer property list fapl_id. The type argument can have any of the following
values: H5FD_MEM_SUPER, H5FD_MEM_BTREE, H5FD_MEM_DRAW, H5FD_MEM_GHEAP,
H5FD_MEM_LHEAP, or H5FD_MEM_OHDR.

See Also
H5P.get_multi_type

1 Alphabetical List

1-5684

H5P.set_sieve_buf_size
Set maximum size of data sieve buffer

Syntax
H5P.set_sieve_buf_size(fapl_id,buffer_size)

Description
H5P.set_sieve_buf_size(fapl_id,buffer_size) sets buffer_size, the
maximum size in bytes of the data sieve buffer, which is used by file drivers that are
capable of using data sieving. fapl_id is a file access property list identifier.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_sieve_buf_size(fapl,131072);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_sieve_buf_size

 H5P.set_sieve_buf_size

1-5685

H5P.set_small_data_block_size
Set size of block reserved for small data

Syntax
H5P.set_small_data_block_size(fapl_id,size)

Description
H5P.set_small_data_block_size(fapl_id,size) sets the maximum size, in bytes,
of a contiguous block reserved for small data. fapl_id is a file access property list
identifier.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_small_data_block_size(fapl,4096);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_small_data_block_size

1 Alphabetical List

1-5686

H5P.get_istore_k
Return 1/2 rank of indexed storage B-tree

Syntax
ik = H5P.get_istore_k(plist_id)

Description
ik = H5P.get_istore_k(plist_id) returns the chunked storage B-tree 1/2 rank of
the file creation property list specified by plist_id.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
ik = H5P.get_istore_k(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also
H5P.set_istore_k

 H5P.get_istore_k

1-5687

H5P.get_sizes
Return size of offsets and lengths

Syntax
[sizeof_addr,sizeof_size] = H5P.get_sizes(fcpl)

Description
[sizeof_addr,sizeof_size] = H5P.get_sizes(fcpl) returns the size of the
offsets and lengths used in an HDF5 file. fcpl specifies a file creation property list.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
[soaddr, sosize] = H5P.get_sizes(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also
H5P.set_sizes

1 Alphabetical List

1-5688

H5P.get_sym_k
Return size of B-tree 1/2 rank and leaf node 1/2 size

Syntax
[ik,lk] = H5P.get_sym_k(plist_id)

Description
[ik,lk] = H5P.get_sym_k(plist_id) returns the size of the symbol table B-tree 1/2
rank, ik, and the symbol table leaf node 1/2 size, lk. The plist_id argument is a file
creation property list identifier.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
[ik, lk] = H5P.get_sym_k(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also
H5P.set_sym_k

 H5P.get_sym_k

1-5689

H5P.get_userblock
Return size of user block

Syntax
sz = H5P.get_userblock(plist_id)

Description
sz = H5P.get_userblock(plist_id) returns the size of a user block in a file
creation property list. plist_id is a property list identifier.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
sz = H5P.get_userblock(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also
H5P.set_userblock

1 Alphabetical List

1-5690

H5P.get_version
Return version information for file creation property list

Syntax
[superblock,freelist,stab,shhdr] = H5P.get_version(fcpl)

Description
[superblock,freelist,stab,shhdr] = H5P.get_version(fcpl) returns the
version of the super block, the global freelist, the symbol table, and the shared object
header. Retrieving this information requires the file creation property list.

Examples
fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
[super,freelist,stab,shhdr] = H5P.get_version(fcpl);
H5P.close(fcpl);
H5F.close(fid);

 H5P.get_version

1-5691

H5P.set_istore_k
Set size of parameter for indexing chunked datasets

Syntax
H5P.set_istore_k(plist_id,ik)

Description
H5P.set_istore_k(plist_id,ik) sets the size of the parameter used to control the
B-trees for indexing chunked datasets for the file creation property list specified by
plist_id. The ik argument is one half the rank of a tree that stores chunked raw data.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_istore_k(fcpl,64);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_istore_k

1 Alphabetical List

1-5692

H5P.set_sizes
Set byte size of offsets and lengths

Syntax
H5P.set_sizes(plist_id,sizeof_addr,sizeof_size)

Description
H5P.set_sizes(plist_id,sizeof_addr,sizeof_size) sets the byte size of the
offsets and lengths used to address objects in an HDF5 file. plist_id is a file creation
property list.

See Also
H5P.get_sizes

 H5P.set_sizes

1-5693

H5P.set_sym_k
Set size of parameters used to control symbol table nodes

Syntax
H5P.set_sym_k(plist_id,ik,lk)

Description
H5P.set_sym_k(plist_id,ik,lk) sets the size of parameters used to control the
symbol table nodes for the file access property list, plist_id. The ik argument is one
half the rank of a tree that stores a symbol table for a group. lk is one half of the number
of symbols that can be stored in a symbol table node.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_sym_k(fcpl,32,8);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_sym_k

1 Alphabetical List

1-5694

H5P.set_userblock
Set user block size

Syntax
H5P.set_userblock(plist_id,size)

Description
H5P.set_userblock(plist_id,size) sets the user block size of the file creation
property list, plist_id.

Examples
fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_userblock(fcpl,4096);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also
H5P.get_userblock

 H5P.set_userblock

1-5695

H5P.get_attr_creation_order
Return tracking order and indexing settings

Syntax
crt_order_flags = H5P.get_attr_creation_order(ocpl_id)

Description
crt_order_flags = H5P.get_attr_creation_order(ocpl_id) retrieves tracking
and indexing settings for attribute creation order. If crt_order_flags is zero, then the
attribute creation order is neither tracked or indexed. Otherwise the creation order flags
should be one of the following constant values:

H5P_CRT_ORDER_TRACKED
H5P_CRT_ORDER_INDEXED

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
flags = H5P.get_attr_creation_order(dcpl);
switch (flags)
 case 0
 fprintf('neither tracked nor indexed\n');
 case H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED')
 fprintf('tracked\n');
 case H5ML.get_constant_value('H5P_CRT_ORDER_INDEXED')
 fprintf('indexed\n');
end
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

1 Alphabetical List

1-5696

See Also
H5ML.get_constant_value | H5P.set_attr_creation_order

 H5P.get_attr_creation_order

1-5697

H5P.get_attr_phase_change
Retrieve attribute phase change thresholds

Syntax
[max_compact,min_dense] = H5P.get_attr_phase_change(ocpl_id)

Description
[max_compact,min_dense] = H5P.get_attr_phase_change(ocpl_id) retrieves
attribute phase change thresholds for the dataset or group with creation property list
ocpl_id.

max_compact is the maximum number of attributes to be stored in compact storage
(default is 8).

min_dense is the minimum number of attributes to be stored in dense storage (default is
6).

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
[max_compact,min_dense] = H5P.get_attr_phase_change(dcpl);
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also
H5P.set_attr_phase_change

1 Alphabetical List

1-5698

H5P.get_copy_object
Return properties to be used when object is copied

Syntax
copy_options = H5P.get_copy_object(ocpl_id)

Description
copy_options = H5P.get_copy_object(ocpl_id) retrieves the properties
currently specified in the object copy property list ocpl_id, which will be invoked when
a new copy is made of an existing object.

Examples
ocpl = H5P.create('H5P_OBJECT_COPY');
options = H5P.get_copy_object(ocpl);

See Also
H5P.set_copy_object

 H5P.get_copy_object

1-5699

H5P.set_attr_creation_order
Set tracking of attribute creation order

Syntax
H5P.set_attr_creation_order(gcplId,crt_order_flags)

Description
H5P.set_attr_creation_order(gcplId,crt_order_flags) sets tracking and
indexing of attribute creation order. The creation order flags should be either
H5P_CRT_ORDER_TRACKED or a bitwise-or of H5P_CRT_ORDER_TRACKED and
H5P_CRT_ORDER_INDEXED.

The default behavior is that attribute creation order is neither tracked nor indexed.

Examples
dcpl = H5P.create('H5P_DATASET_CREATE');
order = H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED');
H5P.set_attr_creation_order(dcpl,order);

See Also
H5ML.get_constant_value | H5P.get_attr_creation_order | bitor

1 Alphabetical List

1-5700

H5P.set_attr_phase_change
Set attribute storage phase change thresholds

Syntax
H5P.set_attr_phase_change(ocpl_id,max_compact,min_dense)

Description
H5P.set_attr_phase_change(ocpl_id,max_compact,min_dense) sets attribute
storage phase change thresholds for the group or dataset with creation order property
list ocpl_id.

max_compact is the maximum number of attributes to be stored in compact storage
(default is 8).

min_dense is the minimum number of attributes to be stored in dense storage (default is
6).

See Also
H5P.get_attr_phase_change

 H5P.set_attr_phase_change

1-5701

H5P.set_copy_object
Set properties to be used when objects are copied

Syntax
H5P.set_copy_object(ocp_plist_id,copy_options)

Description
H5P.set_copy_object(ocp_plist_id,copy_options) sets the properties in the
object copy property list ocp_plist_id that will be invoked when a new copy is made of
an existing object. ocp_plist_id is the object copy property list and specifies the
properties governing the copying of the object.

Specify copy_options as a character vector or string scalar containing one of these flag
names, or its equivalent numerical value.

H5O_COPY_SHALLOW_HIERARCHY_FLAG Copy only immediate members of a group.
Default behavior, without flag: Recursively
copy all objects below the group.

H5O_COPY_EXPAND_SOFT_LINK_FLAG Expand soft links into new objects. Default
behavior, without flag: Keep soft links as
they are.

H5O_COPY_EXPAND_EXT_LINK_FLAG Expand external link into new objects.
Default behavior, without flag: Keep
external links as they are.

H5O_COPY_EXPAND_REFERENCE_FLAG Copy objects that are pointed to by
references. Default behavior, without flag:
Update only the values of object references.

H5O_COPY_WITHOUT_ATTR_FLAG Copy object without copying attributes.
Default behavior, without flag: Copy object
along with all its attributes.

1 Alphabetical List

1-5702

Examples
ocp_plist_id = H5P.create ('H5P_OBJECT_COPY');
option1 = H5ML.get_constant_value('H5O_COPY_EXPAND_SOFT_LINK_FLAG');
option2 = H5ML.get_constant_value('H5O_COPY_EXPAND_REFERENCE_FLAG');
copy_options = bitor(option1,option2);
H5P.set_copy_object(ocp_plist_id,copy_options);

 H5P.set_copy_object

1-5703

H5P.get_create_intermediate_group
Determine creation of intermediate groups

Syntax
bool = H5P.get_create_intermediate_group(lcpl_id)

Description
bool = H5P.get_create_intermediate_group(lcpl_id) determines whether the
link creation property list lcpl_id is set to enable creating missing intermediate groups.

Examples
lcpl = H5P.create('H5P_LINK_CREATE');
if H5P.get_create_intermediate_group(lcpl)
 fprintf('set to enable creating intermediate groups\n');
else
 fprintf('not set to enable creating intermediate groups\n');
end

See Also
H5P.set_create_intermediate_group

1 Alphabetical List

1-5704

H5P.get_link_creation_order
Query if link creation order is tracked

Syntax
crt_order_flags = H5P.get_link_creation_order(gcpl_id)

Description
crt_order_flags = H5P.get_link_creation_order(gcpl_id) queries whether
link creation order is tracked or indexed in a group with creation property list identifier
gcpl_id. The creation order flags should be one of the following constant values:

H5P_CRT_ORDER_TRACKED
H5P_CRT_ORDER_INDEXED

Examples
tracked = H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED');
indexed = H5ML.get_constant_value('H5P_CRT_ORDER_INDEXED');
gcpl = H5P.create('H5P_GROUP_CREATE');
order = H5P.get_link_creation_order(gcpl);
if bitand(order,tracked)
 fprintf('order is tracked\n');
end
if bitand(order,indexed)
 fprintf('order is indexed\n');
end

See Also
H5ML.get_constant_value | H5P.set_link_creation_order | bitand

 H5P.get_link_creation_order

1-5705

H5P.get_link_phase_change
Query settings for conversion between groups

Syntax
[max_compact,min_dense] = H5P.get_link_phase_change(gcpl_id)

Description
[max_compact,min_dense] = H5P.get_link_phase_change(gcpl_id) retrieves
the settings for conversion between compact and dense groups.

max_compact is the maximum number of links to store as header messages in the group
header before converting the group to the dense format. Groups that are in the compact
format and exceed this number of links are automatically converted to the dense format.

min_dense is the minimum number of links to store in the dense format. Groups which
are in dense format and in which the number of links falls below this number are
automatically converted back to the compact format.

Examples
gcpl = H5P.create('H5P_GROUP_CREATE');
[max_compact, min_dense] = H5P.get_link_phase_change(gcpl);

See Also
H5P.set_link_phase_change

1 Alphabetical List

1-5706

H5P.set_create_intermediate_group
Set creation of intermediate groups

Syntax
H5P.set_create_intermediate_group(lcpl_id,flag)

Description
H5P.set_create_intermediate_group(lcpl_id,flag) specifies in the link
creation property list lcpl_id whether to create missing intermediate groups.

Examples
Enable the creation of intermediate groups.

fid = H5F.create('myfile.h5');
lcpl = H5P.create('H5P_LINK_CREATE');
H5P.set_create_intermediate_group(lcpl,1);
gid = H5G.create(fid,'/a/b/c/d',lcpl,'H5P_DEFAULT','H5P_DEFAULT');
H5G.close(gid);
H5F.close(fid);

See Also
H5P.get_create_intermediate_group

 H5P.set_create_intermediate_group

1-5707

H5P.set_link_creation_order
Set creation order tracking and indexing

Syntax
H5P.set_link_creation_order(gcplId,crt_order_flags)

Description
H5P.set_link_creation_order(gcplId,crt_order_flags) sets creation order
tracking and indexing for links in the group with group creation property list gcpl_id.

The creation order flags should be one of the following constant values:

H5P_CRT_ORDER_TRACKED
H5P_CRT_ORDER_INDEXED

If only H5P_CRT_ORDER_TRACKED is set, HDF5 will track link creation order in any group
created with the group creation property list gcpl_id. If both
H5P_CRT_ORDER_TRACKED and H5P_CRT_ORDER_INDEXED are set, HDF5 will track link
creation order in the group and index links on that property.

Examples
tracked = H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED');
indexed = H5ML.get_constant_value('H5P_CRT_ORDER_INDEXED');
order = bitor(tracked,indexed);
gcpl = H5P.create('H5P_GROUP_CREATE');
H5P.set_link_creation_order(gcpl,order);

See Also
H5ML.get_constant_value | H5P.get_link_creation_order

1 Alphabetical List

1-5708

H5P.set_link_phase_change
Set parameters for group conversion

Syntax
H5P.set_link_phase_change(gcpl_id,max_compact,min_dense)

Description
H5P.set_link_phase_change(gcpl_id,max_compact,min_dense) sets the
parameters for conversion between compact and dense groups.

max_compact is the maximum number of links to store as header messages in the group
header before converting the group to the dense format. Groups that are in the compact
format and exceed this number of links are automatically converted to the dense format.

min_dense is the minimum number of links to store in the dense format. Groups which
are in dense format and in which the number of links falls below this number are
automatically converted back to the compact format.

Examples
gcpl = H5P.create('H5P_GROUP_CREATE');
H5P.set_link_phase_change(gcpl,10,8);

See Also
H5P.get_link_phase_change

 H5P.set_link_phase_change

1-5709

H5P.get_char_encoding
Return character encoding

Syntax
encoding = H5P.get_char_encoding(propertyList)

Description
encoding = H5P.get_char_encoding(propertyList) retrieves the character
encoding used to encode strings or object names that are created with the property list
propertyList. The values returned correspond to either 'H5T_CSET_ASCII' or
'H5T_CSET_UTF8'.

See Also
H5ML.get_constant_value | H5P.set_char_encoding

1 Alphabetical List

1-5710

H5P.set_char_encoding
Set character encoding used to encode strings

Syntax
H5P.set_char_encoding(propList,encoding)

Description
H5P.set_char_encoding(propList,encoding) sets the character encoding used to
encode strings or object names that are created with the property list propList. The
values of encoding should either be 'H5T_CSET_ASCII' or 'H5T_CSET_UTF8'.

See Also
H5ML.get_constant_value | H5P.get_char_encoding

 H5P.set_char_encoding

1-5711

H5R.create
Create reference

Syntax
ref = H5R.create(loc_id,name,ref_type,space_id)

Description
ref = H5R.create(loc_id,name,ref_type,space_id) creates the reference, ref,
of the type specified in ref_type, pointing to the object specified by name located at
loc_id. The ref_type argument can be either 'H5R_OBJECT', or
'H5R_DATASET_REGION'. The space_id argument should be -1, if ref_type is
'H5R_OBJECT'.

Examples
Create a double-precision dataset and a reference dataset.

fid = H5F.create('myfile.h5');
type1_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [10 5];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space1_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = 'H5P_DEFAULT';
dset1_id = H5D.create(fid,'my_double',type1_id,space1_id,dcpl);
type2_id = 'H5T_STD_REF_OBJ';
space2_id = H5S.create('H5S_SCALAR');
dset2_id = H5D.create(fid,'my_ref',type2_id,space2_id,dcpl);
ref_data = H5R.create(fid,'my_double','H5R_OBJECT',-1);
dxpl = 'H5P_DEFAULT';
H5D.write(dset2_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',dxpl,ref_data);
H5D.close(dset1_id);
H5D.close(dset2_id);
H5F.close(fid);

1 Alphabetical List

1-5712

See Also
H5D.create

 H5R.create

1-5713

H5R.dereference
Open object specified by reference

Syntax
output = H5R.dereference(dataset,ref_type,ref)

Description
output = H5R.dereference(dataset,ref_type,ref) returns an identifier to the
object specified by ref in the dataset specified by dataset.

Examples
plist = 'H5P_DEFAULT';
space = 'H5S_ALL';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_OBJ',space,space,plist);
deref_dset_id = H5R.dereference(dset_id,'H5R_OBJECT',ref_data(:,1));
H5D.close(dset_id);
H5D.close(deref_dset_id);
H5F.close(fid);

See Also
H5I.get_name | H5R.create

1 Alphabetical List

1-5714

H5R.get_name
Name of referenced object

Syntax
name = H5R.get_name(loc_id,ref_type,ref)
name = H5R.get_name(loc_id,ref_type,ref,'TextEncoding',encoding)

Description
name = H5R.get_name(loc_id,ref_type,ref) retrieves the name for the object
identified by ref. The loc_id argument is the identifier for the dataset containing the
reference or for the group containing that dataset. ref_type specifies the type of the
reference ref. Valid values for ref_type are 'H5R_OBJECT' or
'H5R_DATASET_REGION'.

name = H5R.get_name(loc_id,ref_type,ref,'TextEncoding',encoding)
additionally specifies the text encoding to use to interpret the reference name. Specify
encoding as 'system'(default) or 'UTF-8'.

• 'system' — Use the system default encoding to interpret the reference name.
• 'UTF-8' — Use UTF-8 encoding to interpret the reference name.

Examples
plist = 'H5P_DEFAULT';
space = 'H5S_ALL';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_OBJ',space,space,plist);
name = H5R.get_name(dset_id,'H5R_OBJECT',ref_data(:,1));
H5D.close(dset_id);
H5F.close(fid);

 H5R.get_name

1-5715

See Also
H5I.get_name

Topics
“Working with Non-ASCII Characters in HDF5 Files”

1 Alphabetical List

1-5716

H5R.get_obj_type
Type of referenced object

Syntax
obj_type = H5R.get_obj_type(id,ref_type,ref)

Description
obj_type = H5R.get_obj_type(id,ref_type,ref) returns the type of object that
an object reference points to. Valid values for ref_type are: 'H5R_OBJECT' or
'H5R_DATASET_REGION'. The function returns one of these values.

'H5O_TYPE_GROUP' Object is a group.
'H5O_TYPE_DATASET' Object is a dataset.
'H5O_TYPE_NAMED_DATATYPE' Object is a named datatype.

This function corresponds to the 1.8 interface version of H5Rget_obj_type in the HDF5
library C API.

Examples
plist = 'H5P_DEFAULT';
space = 'H5S_ALL';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_OBJ',space,space,plist);
obj_type = H5R.get_obj_type(fid,'H5R_OBJECT',ref_data(:,1));
switch(obj_type)
 case H5ML.get_constant_value('H5O_TYPE_GROUP')
 fprintf('group\n');
 case H5ML.get_constant_value('H5O_TYPE_DATASET')
 fprintf('dataset\n');
 case H5ML.get_constant_value('H5O_TYPE_NAMED_DATATYPE')

 H5R.get_obj_type

1-5717

 fprintf('named datatype\n');
end
H5D.close(dset_id);
H5F.close(fid);

See Also
H5ML.get_constant_value

1 Alphabetical List

1-5718

H5R.get_region
Copy of data space of specified region

Syntax
space_id = H5R.get_region(dataset,ref_type,ref)

Description
space_id = H5R.get_region(dataset,ref_type,ref) returns a data space with
the specified region selected. dataset is used to identify the file containing the
referenced region and can be any identifier for any object in the file.

Examples
space = 'H5S_ALL';
plist = 'H5P_DEFAULT';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/region_reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_DSETREG',space,space,plist);
space_id = H5R.get_region(fid,'H5R_DATASET_REGION',ref_data(:,1));
H5S.close(space_id);
H5D.close(dset_id);
H5F.close(fid);

 H5R.get_region

1-5719

h5read
Read data from HDF5 data set

Syntax
data = h5read(filename,datasetname)
data = h5read(filename,datasetname,start,count)
data = h5read(filename,datasetname,start,count,stride)

Description
data = h5read(filename,datasetname) reads all the data from the dataset
datasetname contained in the HDF5 file filename.

data = h5read(filename,datasetname,start,count) reads a subset of data from
the dataset beginning at the location specified in start. The count argument specifies
the number of elements to read along each dimension.

data = h5read(filename,datasetname,start,count,stride) returns a subset
of data with the interval between the indices of each dimension of the dataset specified by
stride.

Examples

Read Entire HDF5 Dataset

Get the metadata for a dataset from the HDF5 file and then read the dataset.

Display the metadata for a dataset /g4/lat from the HDF5 file example.h5.

h5disp('example.h5','/g4/lat')

HDF5 example.h5
Dataset 'lat'

1 Alphabetical List

1-5720

 Size: 19
 MaxSize: 19
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: 0.000000
 Attributes:
 'units': 'degrees_north'
 'CLASS': 'DIMENSION_SCALE'
 'NAME': 'lat'

Read the dataset.

data = h5read('example.h5','/g4/lat')

data = 19×1

 -90
 -80
 -70
 -60
 -50
 -40
 -30
 -20
 -10
 0
 ⋮

Read Subset of HDF5 Dataset

Get the metadata for a dataset from the HDF5 file and then read a subset of the dataset.

Display the metadata for a dataset /g4/world from the HDF5 file example.h5.

h5disp('example.h5','/g4/world')

HDF5 example.h5
Dataset 'world'
 Size: 36x19
 MaxSize: 36x19

 h5read

1-5721

 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: 0.000000

Starting from the beginning of data, read a 5-by-3 subset of the data from the dataset.

start = [1 1];
count = [5 3];
data = h5read('example.h5','/g4/world',start,count)

data = 5×3

 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0

Read HDF5 Dataset with Specified Spacing Between Indices

Read data from a dataset, where the data is sampled at a specified spacing between the
dataset indices along each dimension.

First, display the metadata for a dataset /g4/lon from the HDF5 file example.h5. The
variable in the dataset has one dimension with 36 elements.

h5disp('example.h5','/g4/lon')

HDF5 example.h5
Dataset 'lon'
 Size: 36
 MaxSize: 36
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: 0.000000
 Attributes:
 'units': 'degrees_east'
 'CLASS': 'DIMENSION_SCALE'
 'NAME': 'lon'

1 Alphabetical List

1-5722

Start reading from the location in startLoc and read variable data at intervals specified
in stride. A value of 1 in stride, accesses adjacent values in the corresponding
dimension. Whereas, a value of 2 accesses every other value in the corresponding
dimension, and so on.

startLoc = 1;
count = 18;
stride = 2;
subsetData = h5read('example.h5','/g4/lon',startLoc,count,stride);

Examine the output variable subsetData.

whos subsetData

 Name Size Bytes Class Attributes

 subsetData 18x1 144 double

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar containing the name of a HDF5
file.
Data Types: char | string

datasetname — Dataset name
character vector | string scalar

Dataset name, specified as a character vector or string scalar containing the name of the
dataset in the HDF5 file. An HDF5 dataset is a multidimensional array of data elements,
together with supporting metadata.
Data Types: char | string

start — Starting location
vector of ones (default) | numeric vector

Starting location, specified as a numeric vector of positive integers. For an N-dimensional
dataset, start is a vector of length N containing 1-based indices.

 h5read

1-5723

If you do not specify start, then the h5read function starts reading the dataset from the
first index along each dimension.
Data Types: double

count — Number of elements
vector of Inf's (default) | numeric vector

Number of elements to read, specified as a numeric vector of positive integers. For an N-
dimensional dataset, count is a vector of length N, specifying the number of elements to
read along each dimension. If any element of count is Inf, then h5read reads until the
end of the corresponding dimension.

If you do not specify count, then the h5read function reads data until end of each
dimension.
Data Types: double

stride — Space between indices
vector of ones (default) | numeric vector

Space between the indices along each dimension of the dataset, specified as a numeric
vector of integers. For an N-dimensional variable in the dataset, stride is vector of
length N. The elements of the stride vector correspond, in order, to the variable
dimensions. A value of 1 accesses adjacent values of the variable in the corresponding
dimension. Whereas, a value of 2 accesses every other value of the variable in the
corresponding dimension, and so on.

If you do not specify stride, then the h5read function reads the data with a default
spacing of 1 along each dimension.
Data Types: double

See Also
h5disp | h5readatt | h5write | h5writeatt

Topics
“Using the High-Level HDF5 Functions to Import Data”

Introduced in R2011a

1 Alphabetical List

1-5724

H5S.copy
Create copy of data space

Syntax
output = H5S.copy(space_id)

Description
output = H5S.copy(space_id) creates a new data space, which is an exact copy of
the dataspace identified by space_id. The output argument is a data space identifier.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g2/dset2.1');
space1_id = H5D.get_space(dset_id);
space2_id = H5S.copy(space1_id);
[~,dims1] = H5S.get_simple_extent_dims(space1_id)
[~,dims2] = H5S.get_simple_extent_dims(space2_id)

See Also
H5D.get_space | H5S.get_simple_extent_dims

 H5S.copy

1-5725

H5S.create
Create new data space

Syntax
space_id = H5S.create(space_type)

Description
space_id = H5S.create(space_type) creates a new dataspace of the type
space_type. Specify space_type as one of these character vectors or string scalars.

'H5S_SCALAR'
'H5S_SIMPLE'
'H5S_NULL'

space_id is the identifier for the new dataspace.

Examples
Create a scalar dataspace.

space_id = H5S.create('H5S_SCALAR');
numpoints = H5S.get_simple_extent_npoints(space_id);

See Also
H5S.get_simple_extent_npoints

1 Alphabetical List

1-5726

H5S.close
Close data space

Syntax
H5S.close(space_id)

Description
H5S.close(space_id) releases and terminates access to a data space. space_id is a
data space identifier.

See Also
H5A.get_space | H5D.get_space

 H5S.close

1-5727

H5S.create_simple
Create new simple data space

Syntax
space_id = H5S.create_simple(rank,h5_dims,h5_maxdims)

Description
space_id = H5S.create_simple(rank,h5_dims,h5_maxdims) creates a new
simple data space and opens it for access. rank is the number of dimensions used in the
data space. h5_dims is an array specifying the size of each dimension of the dataset.
h5_maxdims is an array specifying the upper limit on the size of each dimension.
space_id is a data space identifier.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while
MATLAB uses FORTRAN-style ordering. The h5_dims and h5_maxdims parameters
assume C-style ordering. Please consult "Using the MATLAB Low-Level HDF5 Functions"
in the MATLAB documentation for more information.

Examples
Create a data space for a dataset with 10 rows and 5 columns.

dims = [10 5];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);

Create a data space for a dataset with 10 rows and 5 columns such that the dataset is
extendible along the column dimension.

dims = [10 5];
h5_dims = fliplr(dims);

1 Alphabetical List

1-5728

maxdims = [10 H5ML.get_constant_value('H5S_UNLIMITED')];
h5_maxdims = fliplr(maxdims);
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);

See Also
H5ML.get_constant_value | H5S.close | H5S.create

 H5S.create_simple

1-5729

H5S.extent_copy
Copy extent from source to destination data space

Syntax
H5S.extent_copy(dst_id,src_id)

Description
H5S.extent_copy(dst_id,src_id) copies the extent from the source data space,
src_id, to the destination data space, dst_id.

Examples
space_id1 = H5S.create('H5S_SIMPLE');
dims = [100 200];
h5_dims = fliplr(dims);
maxdims = [100 H5ML.get_constant_value('H5S_UNLIMITED')];
h5_maxdims = fliplr(maxdims);
H5S.set_extent_simple(space_id1,2,h5_dims,h5_maxdims);
space_id2 = H5S.create('H5S_SIMPLE');
H5S.extent_copy(space_id2,space_id1);

See Also
H5S.create | H5S.get_simple_extent_dims | H5S.set_extent_simple

1 Alphabetical List

1-5730

H5S.get_select_bounds
Bounding box of data space selection

Syntax
[start,finish] = H5S.get_select_bounds(space_id)

Description
[start,finish] = H5S.get_select_bounds(space_id) returns the coordinates of
the bounding box containing the current selection. start contains the starting
coordinates of the bounding box and finish contains the coordinates of the diagonally
opposite corner.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_start, h5_stride, h5_count and h5_block
parameters assume C-style ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
start = fliplr([30 40]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_OR',start,[],[],block);
[start, finish] = H5S.get_select_bounds(space_id);
matlab_start = fliplr(start);
matlab_finish = fliplr(finish);

 H5S.get_select_bounds

1-5731

See Also
H5S.create_simple | H5S.select_hyperslab

1 Alphabetical List

1-5732

H5S.get_select_elem_npoints
Number of element points in selection

Syntax
numpoints = H5S.get_select_elem_npoints(space_id)

Description
numpoints = H5S.get_select_elem_npoints(space_id) returns the number of
element points in the current data space selection.

Examples
Select the corner points of a data space.

dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
coords = [0 0; 0 199; 99 0; 99 199];
coords = fliplr(coords);
coords = coords';
H5S.select_elements(space_id,'H5S_SELECT_SET',coords)
numpoints = H5S.get_select_elem_npoints(space_id);

See Also
H5S.select_elements

 H5S.get_select_elem_npoints

1-5733

H5S.get_select_elem_pointlist
Element points in data space selection

Syntax
points =
H5S.get_select_elem_pointlist(space_id,startpoint,numpoints)

Description
points =
H5S.get_select_elem_pointlist(space_id,startpoint,numpoints) returns
the list of element points in the current data space selection. startpoint specifies the
element point to start with and numpoints specifies the total number of points.

points is a two-dimensional array of 0-based values specifying the coordinates of the
elements. If m is the rank of the dataspace, then points will have size [m x numpoints].

Note The ordering of the coordinate points is the same as the HDF5 library C API.

Examples
Determine the first two points in the current selection.

dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
coords = [0 0; 0 199; 99 0; 99 199];
coords = fliplr(coords);
coords = coords';
H5S.select_elements(space_id,'H5S_SELECT_SET',coords);
points = H5S.get_select_elem_pointlist(space_id,0,2);

1 Alphabetical List

1-5734

H5S.get_select_hyper_blocklist
List of hyperslab blocks

Syntax
blocklist =
H5S.get_select_hyper_blocklist(space_id,startblock,numblocks)

Description
blocklist =
H5S.get_select_hyper_blocklist(space_id,startblock,numblocks) returns a
list of the hyperslab blocks currently selected. space_id is a dataspace identifier.
startblock specifies the block to start with and numblocks specifies the number of
hyperslab blocks to retrieve.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_start, h5_stride, h5_count and h5_block
parameters assume C-style ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
start = fliplr([20 30]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_NOTB',start,[],[],block);
nblocks = H5S.get_select_hyper_nblocks(space_id);
for j = 1:nblocks
 hblocks{j} = H5S.get_select_hyper_blocklist(space_id,j-1,1);
end

 H5S.get_select_hyper_blocklist

1-5735

See Also
H5S.get_select_hyper_nblocks | H5S.select_hyperslab

1 Alphabetical List

1-5736

H5S.get_select_hyper_nblocks
Number of hyperslab blocks

Syntax
num_blocks = H5S.get_select_hyper_nblocks(space_id)

Description
num_blocks = H5S.get_select_hyper_nblocks(space_id) returns the number of
hyperslab blocks in the current data space selection.

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
start = fliplr([20 30]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_NOTB',start,[],[],block);
nblocks = H5S.get_select_hyper_nblocks(space_id);

See Also
H5S.get_select_hyper_blocklist | H5S.select_hyperslab

 H5S.get_select_hyper_nblocks

1-5737

H5S.get_select_npoints
Number of elements in data space selection

Syntax
num_points = H5S.get_select_npoints(space_id)

Description
num_points = H5S.get_select_npoints(space_id) returns the number of
elements in the current data space selection.

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
op = 'H5S_SELECT_SET';
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
n = H5S.get_select_npoints(space_id);

See Also
H5S.create_simple | H5S.select_hyperslab

1 Alphabetical List

1-5738

H5S.get_select_type
Type of data space selection

Syntax
sel_type = H5S.get_select_type(space_id)

Description
sel_type = H5S.get_select_type(space_id) returns the data space selection
type. Valid return values correspond to the following enumerated constants:

H5S_SEL_NONE
H5S_SEL_POINTS
H5S_SEL_HYPERSLABS
H5S_SEL_ALL

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
sel_type = H5S.get_select_type(space_id);
switch(sel_type)
 case H5ML.get_constant_value('H5S_SEL_NONE')
 fprintf('no selection\n');
 case H5ML.get_constant_value('H5S_SEL_POINTS');
 fprintf('point selection\n');
 case H5ML.get_constant_value('H5S_SEL_HYPERSLABS');
 fprintf('hyperslab selection\n');
end

 H5S.get_select_type

1-5739

See Also
H5ML.get_constant_value | H5S.select_elements | H5S.select_hyperslab

1 Alphabetical List

1-5740

H5S.get_simple_extent_dims
Data space size and maximum size

Syntax
[numdims,h5_dims,h5_maxdims] = H5S.get_simple_extent_dims(space_id)

Description
[numdims,h5_dims,h5_maxdims] = H5S.get_simple_extent_dims(space_id)
returns the number of dimensions in the data space, the size of each dimension, and the
maximum size of each dimension.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_dims and h5_maxdims assume C-style ordering.
Please consult "Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g2/dset2.2');
space_id = H5D.get_space(dset_id);
[ndims,h5_dims] = H5S.get_simple_extent_dims(space_id);
matlab_dims = fliplr(h5_dims);

 H5S.get_simple_extent_dims

1-5741

H5S.get_simple_extent_ndims
Data space rank

Syntax
output = H5S.get_simple_extent_ndims(space_id)

Description
output = H5S.get_simple_extent_ndims(space_id) returns the dimensionality
(also called the rank) of a data space.

1 Alphabetical List

1-5742

H5S.get_simple_extent_npoints
Number of elements in data space

Syntax
output = H5S.get_simple_extent_npoints(space_id)

Description
output = H5S.get_simple_extent_npoints(space_id) returns the number of
elements in the data space specified by space_id.

 H5S.get_simple_extent_npoints

1-5743

H5S.get_simple_extent_type
Data space class

Syntax
space_type = H5S.get_simple_extent_type(space_id)

Description
space_type = H5S.get_simple_extent_type(space_id) returns the data space
class of the data space specified by space_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
space_id = H5D.get_space(dset_id);
space_type = H5S.get_simple_extent_type(space_id);
switch(space_type)
 case H5ML.get_constant_value('H5S_SCALAR')
 fprintf('scalar\n');
 case H5ML.get_constant_value('H5S_SIMPLE')
 fprintf('simple\n');
 case H5ML.get_constant_value('H5S_NULL')
 fprintf('none\n');
end

See Also
H5D.get_space | H5ML.get_constant_value | H5S.create

1 Alphabetical List

1-5744

H5S.is_simple
Determine if data space is simple

Syntax
output = H5S.is_simple(space_id)

Description
output = H5S.is_simple(space_id) returns a positive value if the data space
specified by space_id is a simple data space, zero if it is not, and a negative value to
indicate failure.

Examples
Create a new data space and verify that it is simple.

dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
val = H5S.is_simple(space_id);

Create a null data space and verify that it is not simple.

space_id = H5S.create('H5S_NULL');
val = H5S.is_simple(space_id);

See Also
H5S.create | H5S.create_simple

 H5S.is_simple

1-5745

H5S.offset_simple
Set offset of simple data space

Syntax
H5S.offset_simple(space_id,offset)

Description
H5S.offset_simple(space_id,offset) specifies the offset of the simple data space
specified by space_id. This function allows the same shaped selection to be moved to
different locations within a data space without requiring it to be redefined.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_start, h5_stride, h5_count and h5_block
parameters assume C-style ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
offset = fliplr([3 5]);
H5S.offset_simple(space_id,offset)
[start,finish] = H5S.get_select_bounds(space_id);
start = fliplr(start);
finish = fliplr(finish);

1 Alphabetical List

1-5746

See Also
H5S.get_select_bounds | H5S.select_hyperslab

 H5S.offset_simple

1-5747

H5S.select_all
Select entire extent of data space

Syntax
H5S.select_all(space_id)

Description
H5S.select_all(space_id) selects the entire extent of the data space specified by
space_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
space_id = H5D.get_space(dset_id);
num_points1 = H5S.get_select_npoints(space_id);
H5S.select_none(space_id);
num_points2 = H5S.get_select_npoints(space_id);
H5S.select_all(space_id);
num_points3 = H5S.get_select_npoints(space_id);

1 Alphabetical List

1-5748

H5S.select_elements
Specify coordinates to include in selection

Syntax
H5S.select_elements(space_id,op,h5_coord)

Description
H5S.select_elements(space_id,op,h5_coord) selects the array elements to be
included in the selection for the data space specified by space_id. The op argument
determines how the new selection is to be combined with the previously existing selection
for the data space. Specify op as one of these character vectors or string scalars.

'H5S_SELECT_SET'
'H5S_SELECT_APPEND'
'H5S_SELECT_PREPEND'

h5_coord is a two-dimensional array of 0-based values specifying the coordinates of the
elements being selected. If m is the rank of the data space and if n is the number of points,
then h5_coord should be an m-by-n array.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_coord parameter assumes coordinates have C-
style ordering. Please consult "Using the MATLAB Low-Level HDF5 Functions" in the
MATLAB documentation for more information.

Examples
Select the corner points of a data space. In this case, h5_coord should have size 2x4.

dims = [100 200];
h5_dims = fliplr(dims);

 H5S.select_elements

1-5749

space_id = H5S.create_simple(2,h5_dims,h5_dims);
coords = [0 0; 0 199; 99 0; 99 199];
h5_coords = fliplr(coords);
h5_coords = h5_coords';
H5S.select_elements(space_id,'H5S_SELECT_SET',h5_coords);

See Also
H5S.create_simple | H5S.get_select_elem_npoints |
H5S.get_select_elem_pointlist

1 Alphabetical List

1-5750

H5S.select_hyperslab
Select hyperslab region

Syntax
H5S.select_hyperslab(space_id,op,h5_start,h5_stride,h5_count,h5_bloc
k)

Description
H5S.select_hyperslab(space_id,op,h5_start,h5_stride,h5_count,h5_bloc
k) selects a hyperslab region to add to the current selected region for the data space
specified by space_id. The op argument determines how the new selection is to be
combined with the previously existing selection for the data space. Specify op as one of
these character vectors or string scalars: 'H5S_SELECT_SET', 'H5S_SELECT_OR',
'H5S_SELECT_AND', 'H5S_SELECT_XOR', 'H5S_SELECT_NOTA', or
'H5S_SELECT_NOTB'.

The h5_start array determines the starting coordinates of the hyperslab to select. The
h5_count array determines how many blocks to select from the data space, in each
dimension. The h5_stride array specifies how many elements to move in each
dimension. The h5_block array determines the size of the element block selected from
the data space.

If h5_stride is specified as [], then a contiguous hyperslab is selected, as if each value
in h5_stride were set to 1. If h5_count is specified as [], the number of blocks
selected along each dimension defaults to 1. If h5_block is specified as [], then the
block size defaults to a single element in each dimension, as if each value in the block
array were set to 1.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_start, h5_stride, h5_count and h5_block
parameters assume C-style ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

 H5S.select_hyperslab

1-5751

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);

See Also
H5S.create_simple

1 Alphabetical List

1-5752

H5S.select_none
Reset selection region to include no elements

Syntax
H5S.select_none(space_id)

Description
H5S.select_none(space_id) resets the selection region for the data space space_id
to include no elements.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
space_id = H5D.get_space(dset_id);
num_points1 = H5S.get_select_npoints(space_id);
H5S.select_none(space_id);
num_points2 = H5S.get_select_npoints(space_id);

 H5S.select_none

1-5753

H5S.select_valid
Determine validity of selection

Syntax
output = H5S.select_valid(space_id)

Description
output = H5S.select_valid(space_id) returns a positive value if the selection of
the data space space_id is within the extent of that data space, and zero if it is not. A
negative value indicates failure.

Examples
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([90 190]); count = [11 11];
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],count,[]);
valid = H5S.select_valid(space_id);

See Also
H5S.create_simple | H5S.select_hyperslab

1 Alphabetical List

1-5754

H5S.set_extent_none
Remove extent from data space

Syntax
H5S.set_extent_none(space_id)

Description
H5S.set_extent_none(space_id) removes the extent from a data space and sets the
type to H5S_NO_CLASS.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer2D');
space_id = H5D.get_space(dset_id);
H5S.set_extent_none(space_id);
extent_type = H5S.get_simple_extent_type(space_id);
switch(extent_type)
 case H5ML.get_constant_value('H5S_SCALAR')
 fprintf('scalar\n');
 case H5ML.get_constant_value('H5S_SIMPLE')
 fprintf('simple\n');
 case H5ML.get_constant_value('H5S_NO_CLASS')
 fprintf('no class\n');
end

See Also
H5S.get_simple_extent_dims

 H5S.set_extent_none

1-5755

H5S.set_extent_simple
Set size of data space

Syntax
H5S.set_extent_simple(space_id,rank,h5_dims,h5_maxdims)

Description
H5S.set_extent_simple(space_id,rank,h5_dims,h5_maxdims) sets the size of
the data space identified by space_id. The rank argument is the number of dimensions
used in the data space. h5_dims is an array specifying the size of each dimension of the
dataset. h5_maxdims is an array specifying the upper limit on the size of each dimension.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_dims and h5_maxdims parameters assume C-
style ordering. Please consult "Using the MATLAB Low-Level HDF5 Functions" in the
MATLAB documentation for more information.

Examples
space_id = H5S.create('H5S_SIMPLE');
dims = [100 200];
h5_dims = fliplr(dims);
maxdims = [100 H5ML.get_constant_value('H5S_UNLIMITED')];
h5_maxdims = fliplr(maxdims);
H5S.set_extent_simple(space_id,2,h5_dims, h5_maxdims);

See Also
H5ML.get_constant_value | H5S.create | H5S.get_simple_extent_dims

1 Alphabetical List

1-5756

H5T.close
Close data type

Syntax
H5T.close(type_id)

Description
H5T.close(type_id) releases the data type specified by type_id.

See Also
H5A.get_type | H5D.get_type

 H5T.close

1-5757

H5T.commit
Commit transient data type

Syntax
H5T.commit(loc_id,name,type_id)
H5T.commit(loc_id,name,type_id,lcpl_id,tcpl_id,tapl_id)

Description
H5T.commit(loc_id,name,type_id) commits a transient data type to a file, creating
a new named data type. loc_id is a file or group identifier. name is the name of the data
type and type_id is the data type id. This interface corresponds to the 1.6.x version of
H5Tcommit.

H5T.commit(loc_id,name,type_id,lcpl_id,tcpl_id,tapl_id) commits a
transient data type to a file, creating a new named data type. loc_id is a file or group
identifier. name is the name of the data type and type_id is the data type id. lcpl_id,
tcpl_id, and tapl_id are link creation, data type creation, and data type access
property list identifiers. This interface corresponds to the 1.8.x version of H5Tcommit.

Examples
Create a named variable-length data type.

plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist_id,plist_id);
base_type_id = H5T.copy('H5T_NATIVE_DOUBLE');
vlen_type_id = H5T.vlen_create(base_type_id);
H5T.commit(fid,'MyVlen',vlen_type_id);
H5T.close(vlen_type_id);
H5T.close(base_type_id);
H5F.close(fid);

1 Alphabetical List

1-5758

See Also
H5T.close | H5T.committed

 H5T.commit

1-5759

H5T.committed
Determine if data type is committed

Syntax
output = H5T.committed(type_id)

Description
output = H5T.committed(type_id) returns a positive value to indicate that the data
type has been committed, and zero to indicate that it has not. A negative value indicates
failure.

Examples
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
is_committed = H5T.committed(type_id);

See Also
H5T.commit

1 Alphabetical List

1-5760

H5T.copy
Copy data type

Syntax
output_type_id = H5T.copy(type_id)

Description
output_type_id = H5T.copy(type_id) copies the existing data type identifier, a
dataset identifier specified by type_id, or a predefined data type such as
'H5T_NATIVE_DOUBLE'. output_type_id is a data type identifier.

Examples
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
type_size = H5T.get_size(type_id);

See Also
H5T.get_size

 H5T.copy

1-5761

H5T.create
Create new data type

Syntax
output = H5T.create(class_id,size)

Description
output = H5T.create(class_id,size) creates a new data type of the class
specified by class_id, with the number of bytes specified by size. The output
argument is a data type identifier.

Examples
Create a signed 32-bit enumerated data type.

type_id = H5T.create('H5T_ENUM',4);
H5T.set_order(type_id,'H5T_ORDER_LE');
H5T.set_sign(type_id,'H5T_SGN_2');
H5T.enum_insert(type_id,'black',0);
H5T.enum_insert(type_id,'white',1);

See Also
H5T.set_order | H5T.set_sign

1 Alphabetical List

1-5762

H5T.detect_class
Determine of data type contains specific class

Syntax
output = H5T.detect_class(type_id,class_id)

Description
output = H5T.detect_class(type_id,class_id) returns a positive value if the
data type specified in type_id contains any data types of the data type class specified in
class_id, or zero to indicate that it does not. A negative value indicates failure.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/vlen');
type_id = H5D.get_type(dset_id);
has_double = H5T.detect_class(type_id,'H5T_FLOAT');

See Also
H5D.get_type

 H5T.detect_class

1-5763

H5T.equal
Determine equality of data types

Syntax
output = H5T.equal(type1_id,type2_id)

Description
output = H5T.equal(type1_id,type2_id) returns a positive number if the data
type identifiers refer to the same data type, and zero to indicate that they do not. A
negative value indicates failure. Either of the input values could be a character vector or
string scalar specifying an HDF5 data type.

Examples
Determine if the data type of a dataset is a 32-bit little endian integer.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer2D');
dtype_id = H5D.get_type(dset_id);
if H5T.equal(dtype_id,'H5T_STD_I32LE')
 fprintf('32-bit little endian integer\n');
end

See Also
H5D.get_type

1 Alphabetical List

1-5764

H5T.get_class
Data type class identifier

Syntax
class_id = H5T.get_class(type_id)

Description
class_id = H5T.get_class(type_id) returns the data type class identifier of the
data type specified by type_id.

Valid class identifiers include:

'H5T_INTEGER'
'H5T_FLOAT'
'H5T_STRING'
'H5T_BITFIELD'
'H5T_OPAQUE'
'H5T_COMPOUND'
'H5T_ENUM'
'H5T_VLEN'
'H5T_ARRAY'

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
class_id = H5T.get_class(type_id);
switch(class_id)
 case H5ML.get_constant_value('H5T_INTEGER')

 H5T.get_class

1-5765

 fprintf('Integer\n');
 case H5ML.get_constant_value('H5T_FLOAT')
 fprintf('Floating point\n');
 case H5ML.get_constant_value('H5T_STRING')
 fprintf('String\n');
 case H5ML.get_constant_value('H5T_BITFIELD')
 fprintf('Bitfield\n');
 case H5ML.get_constant_value('H5T_OPAQUE')
 fprintf('Opaque\n');
 case H5ML.get_constant_value('H5T_COMPOUND')
 fprintf('Compound'\n');
 case H5ML.get_constant_value('H5T_ENUM')
 fprintf('Enumerated\n');
 case H5ML.get_constant_value('H5T_VLEN')
 fprintf('Variable length\n');
 case H5ML.get_constant_value('H5T_ARRAY')
 fprintf('Array\n');
end

See Also
H5ML.get_constant_value

1 Alphabetical List

1-5766

H5T.get_create_plist
Copy of data type creation property list

Syntax
plist_id = H5T.get_create_plist(datatype_id)

Description
plist_id = H5T.get_create_plist(datatype_id) returns a property list identifier
for the data type creation property list associated with the data type specified by
datatype_id.

See Also
H5D.get_create_plist | H5F.get_create_plist

 H5T.get_create_plist

1-5767

H5T.get_native_type
Native data type of dataset data type

Syntax
output = H5T.get_native_type(type_id,direction)

Description
output = H5T.get_native_type(type_id,direction) returns the equivalent
native data type for the dataset data type specified in type_id. The direction
argument indicates the order in which the library searches for a native data type match
and must be either 'H5T_DIR_ASCEND' or 'H5T_DIR_DESCEND'.

1 Alphabetical List

1-5768

H5T.get_size
Size of data type in bytes

Syntax
type_size = H5T.get_size(type_id)

Description
type_size = H5T.get_size(type_id) returns the size of a data type in bytes.
type_id is a data type identifier.

Examples
Determine the size of the data type for a specific dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/bitfield2D');
type_id = H5D.get_type(dset_id);
type_size = H5T.get_size(type_id);

See Also
H5D.get_type | H5T.set_size

 H5T.get_size

1-5769

H5T.get_super
Base data type

Syntax
super_type_id = H5T.get_super(type_id)

Description
super_type_id = H5T.get_super(type_id) returns the base data type from which
the data type type specified by type_id is derived.

Examples
Retrieve the base data type for an enumerated dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
dtype_id = H5D.get_type(dset_id);
super_type_id = H5T.get_super(dtype_id);

1 Alphabetical List

1-5770

H5T.lock
Lock data type

Syntax
H5T.lock(type_id)

Description
H5T.lock(type_id) locks the data type specified by type_id, making it read-only and
non-destructible.

 H5T.lock

1-5771

H5T.open
Open named data type

Syntax
type_id = H5T.open(loc_id,name)

Description
type_id = H5T.open(loc_id,name) opens a named data type at the location
specified by loc_id and returns an identifier for the data type. loc_id is either a file or
group identifier.

This function corresponds to the H5Topen1 function in the HDF5 library C API.

See Also
H5A.open | H5D.open | H5G.open | H5O.open | H5T.close

1 Alphabetical List

1-5772

H5T.array_create
Create array data type object

Syntax
array_type_id = H5T.array_create(base_id,h5_dims)
array_type_id = H5T.array_create(base_id,rank,h5_dims,perms)

Description
array_type_id = H5T.array_create(base_id,h5_dims) creates a new array data
type object. This interface corresponds to the 1.8 library version of H5Tarray_create.

array_type_id = H5T.array_create(base_id,rank,h5_dims,perms) creates a
new array data type object. This interface corresponds to the 1.6 library version of
H5Tarray_create. The perms parameter is not used at this time and can be omitted.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. The h5_dims parameter assumes C-style ordering. Please
consult "Using the MATLAB Low-Level HDF5 Functions" in the MATLAB documentation
for more information.

Examples
Create a 100-by-200 double precision array data type.

base_type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 200];
h5_dims = fliplr(dims);
array_type = H5T.array_create(base_type_id,h5_dims);

 H5T.array_create

1-5773

See Also
H5T.get_array_dims | H5T.get_array_ndims

1 Alphabetical List

1-5774

H5T.get_array_dims
Array dimension extents

Syntax
dimsizes = H5T.get_array_dims(type_id)
[ndims,dimsizes,perm] = H5T.get_array_dims(type_id)

Description
dimsizes = H5T.get_array_dims(type_id) returns the sizes of the dimensions and
the dimension permutations of the specified array data type object. This interface
corresponds to the 1.8 version of H5Tget_array_dims.

[ndims,dimsizes,perm] = H5T.get_array_dims(type_id) corresponds to the 1.6
version of the interface. It is strongly deprecated.

Note The HDF5 library uses C-style ordering for multidimensional arrays, while MATLAB
uses FORTRAN-style ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/array2D');
type_id = H5D.get_type(dset_id);
h5_dims = H5T.get_array_dims(type_id);
dims = fliplr(h5_dims);

See Also
H5T.array_create | H5T.get_array_ndims

 H5T.get_array_dims

1-5775

H5T.get_array_ndims
Rank of array data type

Syntax
output = H5T.get_array_ndims(type_id)

Description
output = H5T.get_array_ndims(type_id) returns the rank, the number of
dimensions, of an array data type object.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/array2D');
type_id = H5D.get_type(dset_id);
ndims = H5T.get_array_ndims(type_id);

See Also
H5T.get_array_dims

1 Alphabetical List

1-5776

H5T.get_cset
Character set of string data type

Syntax
cset = H5T.get_cset(type_id)

Description
cset = H5T.get_cset(type_id) returns the character set type of the data type
specified by type_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/string');
type_id = H5D.get_type(dset_id);
cset = H5T.get_cset(type_id);
switch(cset)
 case H5ML.get_constant_value('H5T_CSET_ASCII')
 fprintf('ASCII\n');
 case H5ML.get_constant_value('H5T_CSET_UTF8')
 fprintf('UTF-8\n');
end

See Also
H5T.set_cset

 H5T.get_cset

1-5777

H5T.get_ebias
Exponent bias of floating-point type

Syntax
output = H5T.get_ebias(type_id)

Description
output = H5T.get_ebias(type_id) returns the exponent bias of a floating-point
type. type_id is data type identifier.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
type_id = H5D.get_type(dset_id);
ebias = H5T.get_ebias(type_id);

See Also
H5T.set_ebias

1 Alphabetical List

1-5778

H5T.get_fields
Floating-point data type bit field information

Syntax
[spos,epos,esize,mpos,msize] = H5T.get_fields(type_id)

Description
[spos,epos,esize,mpos,msize] = H5T.get_fields(type_id) returns
information about the locations of the various bit fields of a floating point data type.
type_id is a data type identifier. spos is the floating-point sign bit. epos is the exponent
bit-position. esize is the size of the exponent in bits. mpos is the mantissa bit-position.
msize is the size of the mantissa in bits.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
type_id = H5D.get_type(dset_id);
[spos, epos, esize, mpos, msize] = H5T.get_fields(type_id);

 H5T.get_fields

1-5779

H5T.get_inpad
Internal padding type for floating-point data types

Syntax
pad_type = H5T.get_inpad(type_id)

Description
pad_type = H5T.get_inpad(type_id) returns the internal padding type for unused
bits in floating-point data types. type_id is a data type identifier. pad_type can be
H5T_PAD_ZERO, H5T_PAD_ONE, or H5T_PAD_BACKGROUND.

Examples
 fid = H5F.open('example.h5');
 dset_id = H5D.open(fid,'/g3/float');
 type_id = H5D.get_type(dset_id);
 pad_type = H5T.get_inpad(type_id);
 switch(pad_type)
 case H5ML.get_constant_value('H5T_PAD_ZERO')
 fprintf('pad zero\n');
 case H5ML.get_constant_value('H5T_PAD_ONE');
 fprintf('pad one\n');
 case H5ML.get_constant_value('H5T_PAD_BACKGROUND')
 fprintf('pad background\n');
 end

See Also
H5T.set_inpad

1 Alphabetical List

1-5780

H5T.get_norm
Mantissa normalization type

Syntax
norm_type = H5T.get_norm(type_id)

Description
norm_type = H5T.get_norm(type_id) returns the mantissa normalization of a
floating-point data type. type_id is a data type identifier. norm_type can be
H5T_NORM_IMPLIED, H5T_NORM_MSBSET, or H5T_NORM_NONE.

Examples
 fid = H5F.open('example.h5');
 dset_id = H5D.open(fid,'/g3/float');
 type_id = H5D.get_type(dset_id);
 norm_type = H5T.get_norm(type_id);
 switch(norm_type)
 case H5ML.get_constant_value('H5T_NORM_IMPLIED')
 fprintf('MSB of mantissa is not stored, always 1\n');
 case H5ML.get_constant_value('H5T_NORM_MSBSET');
 fprintf('MSB of mantissa is always 1\n');
 case H5ML.get_constant_value('H5T_NORM_NONE')
 fprintf('mantissa is not normalized\n');
 end

See Also
H5T.set_norm

 H5T.get_norm

1-5781

H5T.get_offset
Bit offset of first significant bit

Syntax
offset = H5T.get_offset(type_id)

Description
offset = H5T.get_offset(type_id) returns the offset of the first significant bit.
type_id is a data type identifier.

Examples
 fid = H5F.open('example.h5');
 dset_id = H5D.open(fid,'/g3/float');
 type_id = H5D.get_type(dset_id);
 offset = H5T.get_offset(type_id);

See Also
H5T.set_offset

1 Alphabetical List

1-5782

H5T.get_order
Byte order of atomic data type

Syntax
output = H5T.get_order(type_id)

Description
output = H5T.get_order(type_id) returns the byte order of an atomic data type.
type_id is a data type identifier. Possible return values are the constant values
corresponding to the following character vectors:

'H5T_ORDER_LE'
'H5T_ORDER_BE'
'H5T_ORDER_VAX'

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g2/dset2.2');
type_id = H5D.get_type(dset_id);
switch(H5T.get_order(type_id))
 case H5ML.get_constant_value('H5T_ORDER_LE')
 fprintf('little endian\n');
 case H5ML.get_constant_value('H5T_ORDER_BE')
 fprintf('big endian\n');
 case H5ML.get_constant_value('H5T_ORDER_VAX')
 fprintf('vax\n');
end

 H5T.get_order

1-5783

See Also
H5ML.get_constant_value | H5T.set_order

1 Alphabetical List

1-5784

H5T.get_pad
Padding type of least and most-significant bits

Syntax
[lsb,msb] = H5T.get_pad(type_id)

Description
[lsb,msb] = H5T.get_pad(type_id) returns the padding type of the least and most-
significant bit padding. type_id is a data type identifier. lsb is the least-significant bit
padding type. msb is the most-significant bit padding type. Values for lsb and msb can be
H5T_PAD_ZERO, H5T_PAD_ONE, or H5T_PAD_BACKGROUND.

Examples
 fid = H5F.open('example.h5');
 dset_id = H5D.open(fid,'/g3/integer');
 type_id = H5D.get_type(dset_id);
 [lsb,msb] = H5T.get_pad(type_id);
 switch(lsb)
 case H5ML.get_constant_value('H5T_PAD_ZERO')
 fprintf('lsb pad type is zeros\n');
 case H5ML.get_constant_value('H5T_PAD_ONE');
 fprintf('lsb pad type is ones\n');
 case H5ML.get_constant_value('H5T_PAD_BACKGROUND')
 fprintf('lsb pad type is background\n');
 end
 switch(msb)
 case H5ML.get_constant_value('H5T_PAD_ZERO')
 fprintf('msb pad type is zeros\n');
 case H5ML.get_constant_value('H5T_PAD_ONE');
 fprintf('msb pad type is ones\n');
 case H5ML.get_constant_value('H5T_PAD_BACKGROUND')
 fprintf('msb pad type is background\n');
 end

 H5T.get_pad

1-5785

See Also
H5T.set_pad

1 Alphabetical List

1-5786

H5T.get_precision
Precision of atomic data type

Syntax
output = H5T.get_precision(type_id)

Description
output = H5T.get_precision(type_id) returns the precision of an atomic data
type. type_id is a data type identifier.

Examples
 fid = H5F.open('example.h5');
 dset_id = H5D.open(fid,'/g3/integer');
 type_id = H5D.get_type(dset_id);
 numbits = H5T.get_precision(type_id);

See Also
H5T.set_precision

 H5T.get_precision

1-5787

H5T.get_sign
Sign type for integer data type

Syntax
sign_type = H5T.get_sign(type_id)

Description
sign_type = H5T.get_sign(type_id) returns the sign type for an integer type.
type_id is a data type identifier. Valid types are: H5T_SGN_NONE or H5T_SGN_2.

Examples
 fid = H5F.open('example.h5');
 dset_id = H5D.open(fid,'/g3/integer');
 type_id = H5D.get_type(dset_id);
 sign_type = H5T.get_sign(type_id);
 switch(sign_type)
 case H5ML.get_constant_value('H5T_SGN_NONE')
 fprintf('Unsigned integer type.\n');
 case H5ML.get_constant_value('H5T_SGN_2');
 fprintf('Signed integer type.\n');
 end

See Also
H5T.set_sign

1 Alphabetical List

1-5788

H5T.get_strpad
Storage mechanism for string data type

Syntax
output = H5T.get_strpad(type_id)

Description
output = H5T.get_strpad(type_id) returns the storage mechanism (padding type)
for a string data type. Possible values are:

'H5T_STR_NULLPAD' Pad with zeros
'H5T_STR_NULLTERM' Null-terminate
'H5T_STR_SPACEPAD' Pad with spaces

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/string');
type_id = H5D.get_type(dset_id);
padding = H5T.get_strpad(type_id);
switch(padding)
 case H5ML.get_constant_value('H5T_STR_NULLTERM')
 fprintf('null-terminated\n');
 case H5ML.get_constant_value('H5T_STR_NULLPAD')
 fprintf('padded with zeros\n');
 case H5ML.get_constant_value('H5T_STR_SPACEPAD')
 fprintf('padded with spaces\n');
end

 H5T.get_strpad

1-5789

See Also
H5T.set_strpad

1 Alphabetical List

1-5790

H5T.set_cset
Set character dataset for string data type

Syntax
H5T.set_cset(type_id,cset)

Description
H5T.set_cset(type_id,cset) sets the character encoding used to create strings.
Specify cset as 'H5T_CSET_ASCII', or its equivalent numerical value.

Examples
type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,10);
encoding = H5ML.get_constant_value('H5T_CSET_ASCII');
H5T.set_cset(type_id,encoding);

See Also
H5T.get_cset

 H5T.set_cset

1-5791

H5T.set_ebias
Set exponent bias of floating-point data type

Syntax
H5T.set_ebias(type_id,ebias)

Description
H5T.set_ebias(type_id,ebias) sets the exponent bias of a floating-point type.
type_id is a data type identifier. ebias is an exponent bias value.

Examples
type_id = H5T.copy('H5T_NATIVE_FLOAT');
H5T.set_size(type_id,32);
H5T.set_ebias(type_id,99);

See Also
H5T.get_ebias

1 Alphabetical List

1-5792

H5T.set_fields
Set sizes and locations of floating-point bit fields

Syntax
H5T.set_fields(type_id,spos,epos,esize,mpos,msize)

Description
H5T.set_fields(type_id,spos,epos,esize,mpos,msize) sets the locations and
sizes of the various floating-point bit fields. spos is the sign position. epos is the
exponent in bits. esize is the size of exponent in bits. mpos is the mantissa bit position.
msize is the size of the mantissa in bits.

Examples
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
H5T.set_fields(type_id,30,24,6,0,2);

See Also
H5T.get_fields

 H5T.set_fields

1-5793

H5T.set_inpad
Specify how unused internal bits are to be filled

Syntax
H5T.set_inpad(type_id,pad_type)

Description
H5T.set_inpad(type_id,pad_type) sets how unused internal bits of a floating point
type are filled. type_id is the identifier of the data type. Specify how to fill the bits in
pad_type which can be one of these character vectors or string scalars, or its equivalent
numerical value:
H5T_PAD_ZERO
H5T_PAD_ONE
H5T_PAD_BACKGROUND (leave background alone)

Examples
type_id = H5T.copy('H5T_NATIVE_FLOAT');
pad_type = H5ML.get_constant_value('H5T_PAD_ZERO');
H5T.set_inpad(type_id,pad_type);

See Also
H5T.get_inpad

1 Alphabetical List

1-5794

H5T.set_norm
Set mantissa normalization of floating-point data type

Syntax
H5T.set_norm(type_id,norm)

Description
H5T.set_norm(type_id,norm) sets the mantissa normalization of a floating-point data
type. Specify norm as one of these character vectors or string scalars:
'H5T_NORM_IMPLIED', 'H5T_NORM_MSBSET', or 'H5T_NORM_NONE'.

Examples
type_id = H5T.copy('H5T_NATIVE_FLOAT');
norm_type = H5ML.get_constant_value('H5T_NORM_MSBSET');
H5T.set_norm(type_id,norm_type);

See Also
H5T.get_norm

 H5T.set_norm

1-5795

H5T.set_offset
Set bit offset of first significant bit

Syntax
H5T.set_offset(type_id,offset)

Description
H5T.set_offset(type_id,offset) sets the bit offset of the first significant bit.
type_id is the identifier of the data type. offset specifies the number of bits of padding
that appear.

Examples
type_id = H5T.copy('H5T_NATIVE_INT');
H5T.set_offset(type_id,16);

See Also
H5T.get_offset

1 Alphabetical List

1-5796

H5T.set_order
Set byte ordering of atomic data type

Syntax
H5T.set_order(type_id,type_order)

Description
H5T.set_order(type_id,type_order) sets the byte ordering of an atomic data type.
Specify type_order as one of these character vectors or string scalars.

'H5T_ORDER_LE'
'H5T_ORDER_BE'
'H5T_ORDER_VAX'

Examples
Create a big endian 32-bit integer type.

type_id = H5T.copy('H5T_NATIVE_INT');
order = H5ML.get_constant_value('H5T_ORDER_BE');
H5T.set_order(type_id,order);

See Also
H5ML.get_constant_value | H5T.get_order

 H5T.set_order

1-5797

H5T.set_pad
Set padding type for least and most significant bits

Syntax
H5T.set_pad(type_id,lsb,msb)

Description
H5T.set_pad(type_id,lsb,msb) sets the padding type for the least and most-
significant bits. type_id is the identifier of the data type. lsb specifies the padding type
for least-significant bits; msb for most-significant bits. Specify padding types as one of
these character vectors or string scalars: 'H5T_PAD_ZERO', 'H5T_PAD_ONE', or
'H5T_PAD_BACKGROUND' (leave background alone).

Examples
type_id = H5T.copy('H5T_NATIVE_INT');
lsb = H5ML.get_constant_value('H5T_PAD_ONE');
msb = H5ML.get_constant_value('H5T_PAD_ZERO');
H5T.set_pad(type_id,lsb,msb);

See Also
H5T.get_pad

1 Alphabetical List

1-5798

H5T.set_precision
Set precision of atomic data type

Syntax
H5T.set_precision(type_id,prec)

Description
H5T.set_precision(type_id,prec) sets the precision of an atomic data type.
type_id is a data type identifier. prec specifies the number of bits of precision for the
data type.

 H5T.set_precision

1-5799

H5T.set_sign
Set sign property for integer data type

Syntax
H5T.set_sign(type_id,sign)

Description
H5T.set_sign(type_id,sign) sets the sign property for an integer type. type_id is
a data type identifier. Specify the sign type sign as 'H5T_SGN_NONE' or 'H5T_SGN_2'.

Examples
type_id = H5T.copy('H5T_NATIVE_LONG');
sgn = H5ML.get_constant_value('H5T_SGN_NONE');
H5T.set_sign(type_id,sgn);

See Also
H5T.get_sign

1 Alphabetical List

1-5800

H5T.set_size
Set size of data type in bytes

Syntax
H5T.set_size(type_id,type_size)

Description
H5T.set_size(type_id,type_size) sets the total size in bytes for the data type
specified by type_id. If a variable length string is desired then type_size can be
specified as 'H5T_VARIABLE'.

Examples
Create a variable length string with null termination.

type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,'H5T_VARIABLE');
H5T.set_strpad(type_id,'H5T_STR_NULLTERM');

See Also
H5T.get_size

 H5T.set_size

1-5801

H5T.set_strpad
Set storage mechanism for string data type

Syntax
H5T.set_strpad(type_id,storage_type)

Description
H5T.set_strpad(type_id,storage_type) defines the storage mechanism for the
string data type identified by type_id. The storage type may be one of the following
values.

'H5T_STR_NULLTERM' Null terminated
'H5T_STR_NULLPAD' Padded with zeros
'H5T_STR_SPACEPAD' Padded with spaces

Examples
Create a ten-character string data type with space padding.

type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,10);
H5T.set_strpad(type_id,'H5T_STR_SPACEPAD');

See Also
H5T.get_strpad

1 Alphabetical List

1-5802

H5T.get_member_class
Data type class for compound data type member

Syntax
output = H5T.get_member_class(type_id,membno)

Description
output = H5T.get_member_class(type_id,membno) returns the data type class of
the compound data type member specified by membno. The type_id argument is the data
type identifier of a compound object.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
type_id = H5D.get_type(dset_id);
member_name = H5T.get_member_name(type_id,0);
member_class = H5T.get_member_class(type_id,0);

See Also
H5T.get_member_name

 H5T.get_member_class

1-5803

H5T.get_member_index
Index of compound or enumeration type member

Syntax
idx = H5T.get_member_index(type_id,name)

Description
idx = H5T.get_member_index(type_id,name) returns the index of a field of a
compound data type or an element of an enumeration data type. type_id is a data type
identifier and name is a character vector or string scalar that specifies the target field or
element.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
type_id = H5D.get_type(dset_id);
idx = H5T.get_member_index(type_id,'b');

See Also
H5T.get_member_name

1 Alphabetical List

1-5804

H5T.get_member_name
Name of compound or enumeration type member

Syntax
name = H5T.get_member_name(type_id,membno)

Description
name = H5T.get_member_name(type_id,membno) returns the name of a field of a
compound data type or an element of an enumeration data type. type_id is a data type
identifier. membno is a zero-based index of the field or element whose name is to be
retrieved.

Examples
Determine the name of the first field of a compound dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
dtype_id = H5D.get_type(dset_id);
member_name = H5T.get_member_name(dtype_id,0);

See Also
H5T.get_member_index

 H5T.get_member_name

1-5805

H5T.get_member_offset
Offset of field of compound data type

Syntax
output = H5T.get_member_offset(type_id,membno)

Description
output = H5T.get_member_offset(type_id,membno) returns the byte offset of the
field specified by membno in the compound data type specified by type_id. Note that
zero (0) is a valid offset.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
type_id = H5D.get_type(dset_id);
idx = H5T.get_member_offset(type_id,1);

See Also
H5T.get_member_name

1 Alphabetical List

1-5806

H5T.get_member_type
Data type of specified member

Syntax
type_id = H5T.get_member_type(type_id,membno)

Description
type_id = H5T.get_member_type(type_id,membno) returns the data type of the
member specified by membno in the data type specified by type_id.

Examples
Get the size of the data type of the first member of a compound data type.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
compound_type_id = H5D.get_type(dset_id);
member_type_id = H5T.get_member_type(compound_type_id,0);
type_size = H5T.get_size(member_type_id);

See Also
H5D.get_type

 H5T.get_member_type

1-5807

H5T.get_nmembers
Number of elements in enumeration type

Syntax
output = H5T.get_nmembers(type_id)

Description
output = H5T.get_nmembers(type_id) retrieves the number of fields in a compound
data type or the number of members of an enumeration data type. type_id is a data type
identifier.

Examples
Determine the number of fields in a compound dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
dtype_id = H5D.get_type(dset_id);
nmembers = H5T.get_nmembers(dtype_id);

1 Alphabetical List

1-5808

H5T.insert
Add member to compound data type

Syntax
H5T.insert(type_id,name,offset,member_datatype)

Description
H5T.insert(type_id,name,offset,member_datatype) adds another member to
the compound data type specified by type_id. The name argument is a character vector
or string scalar that specifies the name of the new member, which must be unique in the
compound data type. offset specifies where you want to insert the new member and
member_datatype specifies the data type identifier of the new member.

Examples
type_id = H5T.create('H5T_COMPOUND',16);
H5T.insert(type_id,'first',0,'H5T_NATIVE_DOUBLE');
H5T.insert(type_id,'second',8,'H5T_NATIVE_INT');
H5T.insert(type_id,'third',12,'H5T_NATIVE_UINT');

See Also
H5T.create

 H5T.insert

1-5809

H5T.pack
Recursively remove padding from compound data type

Syntax
H5T.pack(type_id)

Description
H5T.pack(type_id) recursively removes padding from within a compound data type to
make it more efficient (space-wise) to store that data. type_id is a data type identifier.

1 Alphabetical List

1-5810

H5T.enum_create
Create new enumeration data type

Syntax
output = H5T.enum_create(parent_id)

Description
output = H5T.enum_create(parent_id) creates a new enumeration data type based
on the specified base data type, parent_id, which must be an integer type. output is a
data type identifier for the new enumeration data type.

Examples
parent_id = H5T.copy('H5T_NATIVE_UINT');
type_id = H5T.enum_create(parent_id);
H5T.enum_insert(type_id,'red',1);
H5T.enum_insert(type_id,'green',2);
H5T.enum_insert(type_id,'blue',3);
H5T.close(type_id);
H5T.close(parent_id);

See Also
H5T.enum_insert

 H5T.enum_create

1-5811

H5T.enum_insert
Insert enumeration data type member

Syntax
H5T.enum_insert(type_id,name,value)

Description
H5T.enum_insert(type_id,name,value) inserts a new enumeration data type
member into the enumeration data type specified by type_id. The name argument is a
character vector or string scalar that specifies the name of the new member of the
enumeration and value is the value of the member.

Examples
parent_id = H5T.copy('H5T_NATIVE_UINT');
type_id = H5T.enum_create(parent_id);
H5T.enum_insert(type_id,'red',1);
H5T.enum_insert(type_id,'green',2);
H5T.enum_insert(type_id,'blue',3);
H5T.close(type_id);
H5T.close(parent_id);

See Also
H5T.enum_create

1 Alphabetical List

1-5812

H5T.enum_nameof
Name of enumeration data type member

Syntax
name = H5T.enum_nameof(type_id,value)

Description
name = H5T.enum_nameof(type_id,value) returns the symbol name corresponding
to a member of an enumeration data type. type_id specifies the enumeration data type.
value identifies the member of the enumeration.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
name0 = H5T.enum_nameof(type_id,int32(0));
name1 = H5T.enum_nameof(type_id,int32(1));

See Also
H5T.enum_valueof

 H5T.enum_nameof

1-5813

H5T.enum_valueof
Value of enumeration data type member

Syntax
value = H5T.enum_valueof(type_id,member_name)

Description
value = H5T.enum_valueof(type_id,member_name) returns the value
corresponding to a specified member of an enumeration data type. type_id specifies the
enumeration data type and member_name specifies the member.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
num_members = H5T.get_nmembers(type_id);
for j = 1:num_members
 member_name{j} = H5T.get_member_name(type_id,j-1);
 member_value(j) = H5T.enum_valueof(type_id,member_name{j});
end

See Also
H5T.get_member_name | H5T.get_nmembers

1 Alphabetical List

1-5814

H5T.get_member_value
Value of enumeration data type member

Syntax
value = H5T.get_member_value(type_id,membno)

Description
value = H5T.get_member_value(type_id,membno) returns the value of the
enumeration data type member specified by membno. The type_id argument is the data
type identifier for the enumeration data type.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
num_members = H5T.get_nmembers(type_id);
for j = 1:num_members
 member_name{j} = H5T.get_member_name(type_id,j-1);
 member_value(j) = H5T.get_member_value(type_id,j-1);
end

See Also
H5T.get_member_name | H5T.get_nmembers

 H5T.get_member_value

1-5815

H5T.get_tag
Tag associated with opaque data type

Syntax
tag = H5T.get_tag(type_id)

Description
tag = H5T.get_tag(type_id) returns the tag associated with the opaque data type
specified by type_id.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/opaque');
dtype_id = H5D.get_type(dset_id);
tag = H5T.get_tag(dtype_id);

See Also
H5T.set_tag

1 Alphabetical List

1-5816

H5T.set_tag
Tag opaque data type with description

Syntax
H5T.set_tag(type_id,tag)

Description
H5T.set_tag(type_id,tag) tags the opaque data type specified by type_id, with the
descriptive text, tag. Specify tag as a character vector or string scalar.

Examples
Create an opaque data type with a length of 4 bytes and a particular tag.

type_id = H5T.create('H5T_OPAQUE',4);
H5T.set_tag(type_id,'Created by MATLAB.');

See Also
H5T.create | H5T.get_tag

 H5T.set_tag

1-5817

H5T.is_variable_str
Determine if data type is variable-length string

Syntax
output = H5T.is_variable_str(type_id)

Description
output = H5T.is_variable_str(type_id) returns a positive value if the data type
specified by type_id is a variable-length string and zero if it is not. A negative value
indicates failure.

Examples
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/VLstring2D');
type_id = H5D.get_type(dset_id);
if H5T.is_variable_str(type_id) > 0
 fprintf('variable length string\n');
end

See Also
H5D.get_type | H5T.get_size | H5T.vlen_create

1 Alphabetical List

1-5818

H5T.vlen_create
Create new variable-length data type

Syntax
vlen_type_id = H5T.vlen_create(base_id)

Description
vlen_type_id = H5T.vlen_create(base_id) creates a new variable-length (VL)
data type. base_id specifies the base type of the data type to create.

Examples
Create a variable length data type for 64-bit floating-point numbers.

base_type_id = H5T.copy('H5T_NATIVE_DOUBLE');
vlen_type_id = H5T.vlen_create(base_type_id);

See Also
H5T.is_variable_str

 H5T.vlen_create

1-5819

H5Z.filter_avail
Determine if filter is available

Syntax
output = H5Z.filter_avail(filter_id)

Description
output = H5Z.filter_avail(filter_id) determines whether the filter specified by
the filter identifier is available to the application. filter_id can be specified by one of
the following character vectors or string scalars, or its numeric equivalent.

'H5Z_FILTER_DEFLATE'
'H5Z_FILTER_SHUFFLE'
'H5Z_FILTER_FLETCHER32'
'H5Z_FILTER_SZIP'
'H5Z_FILTER_NBIT'
'H5Z_FILTER_SCALEOFFSET'

Examples
Determine if the shuffle filter is available.

bool = H5Z.filter_avail('H5Z_FILTER_SHUFFLE');

See Also
H5ML.get_constant_value

1 Alphabetical List

1-5820

H5Z.get_filter_info
Information about filter

Syntax
filter_config_flags = H5Z.get_filter_info(filter)

Description
filter_config_flags = H5Z.get_filter_info(filter) retrieves information
about the filter specified by its identifier. At present, the information returned is the
filter's configuration flags, indicating whether the filter is configured to decode data, to
encode data, neither, or both. filter_config_flags should be used with the HDF5
constant values 'H5Z_FILTER_CONFIG_ENCODE_ENABLED' and
'H5Z_FILTER_CONFIG_DECODE_ENABLED' in a bitwise AND operation. If the resulting
value is 0, then the encode or decode functionality is not available.

Examples
Determine if encoding is enabled for the deflate filter.

flags = H5Z.get_filter_info('H5Z_FILTER_DEFLATE');
functionality = H5ML.get_constant_value('H5Z_FILTER_CONFIG_ENCODE_ENABLED');
enabled = bitand(flags,functionality) > 0;

See Also
H5ML.get_constant_value | H5Z.filter_avail | bitand

 H5Z.get_filter_info

1-5821

hadamard
Hadamard matrix

Syntax
H = hadamard(n)
H = hadamard(n,classname)

Description
H = hadamard(n) returns the “Hadamard Matrix” on page 1-5823 of order n.

H = hadamard(n,classname) returns a matrix of class classname, which can be
either 'single' or 'double'.

Examples

Compute Hadamard Matrix

Compute the 4-by-4 Hadamard matrix.

H = hadamard(4)

H = 4×4

 1 1 1 1
 1 -1 1 -1
 1 1 -1 -1
 1 -1 -1 1

1 Alphabetical List

1-5822

Input Arguments
n — Matrix order
scalar, nonnegative integer

Matrix order, specified as a scalar, nonnegative integer.
Example: hadamard(5)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

classname — Matrix class
'double' (default) | 'single'

Matrix class, specified as either 'double' or 'single'.
Example: hadamard(5,'single')
Data Types: char

Limitations
• An n-by-n Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This function

handles only the cases where n, n/12, or n/20 is a power of 2.

Definitions

Hadamard Matrix
Hadamard matrices are matrices of 1's and -1's whose columns are orthogonal,

H'*H = n*I

where [n n]=size(H) and I = eye(n,n).

They have applications in several different areas, including combinatorics, signal
processing, and numerical analysis [1], [2].

 hadamard

1-5823

References
[1] Ryser, Herbert J. Combinatorial Mathematics. Mathematical Association of America,

1963.

[2] Pratt, William K. Digital Signal Processing. New York, NY: John Wiley and Sons, 1978.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• n must be a fixed-size scalar.

See Also
compan | hankel | toeplitz

Introduced before R2006a

1 Alphabetical List

1-5824

matlab.io.datastore.HadoopFileBased class
Package: matlab.io.datastore

(Not recommended) Add Hadoop file support to datastore

Note matlab.io.datastore.HadoopFileBased is not recommended. Use
matlab.io.datastore.HadoopLocationBased instead.

Description
matlab.io.datastore.HadoopFileBased is an abstract mixin class that adds Hadoop
support to your custom datastore.

To use this mixin class, you must inherit from the
matlab.io.datastore.HadoopFileBased class in addition to inheriting from the
matlab.io.Datastore base class. Type the following syntax as the first line of your
class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.HadoopFileBased
 ...
end

To add Hadoop support along with parallel processing support, use these lines in your
class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable & ...
 matlab.io.datastore.HadoopFileBased
 ...
end

To add support for Hadoop to your custom datastore, you must:

• Inherit from the additional class matlab.io.datastore.HadoopFileBased
• Define these additional methods: getLocation, initializeDatastore, and

isfullfile

 matlab.io.datastore.HadoopFileBased class

1-5825

For more details and steps to create your custom datastore with support for Hadoop, see
“Develop Custom Datastore”.

Methods
getLocation (Not recommended) Location of files in Hadoop
initializeDatastore (Not recommended) Initialize datastore with information from

Hadoop
isfullfile (Not recommended) Check if datastore reads full files

Attributes
Sealed false

For information on class attributes, see “Class Attributes”.

Examples
Build Datastore with Hadoop Support

Implement a datastore with parallel processing and Hadoop support and use it to bring
your data from the Hadoop server into MATLAB .Then use the tall and gather
functions on this data.

Create a new .m class definition file that contains the code implementing your custom
datastore. You must save this file in your working folder or in a folder that is on the
MATLAB path. The name of the .m file must be the same as the name of your object
constructor function. For example, if you want your constructor function to have the name
MyDatastoreHadoop, then the name of the script file must be MyDatastoreHadoop.m.
The .m class definition file must contain these steps:

• Step 1: Inherit from the datastore classes.
• Step 2: Define the constructor and the required methods.
• Step 3: Define your custom file reading function.

This code shows the three steps in a sample implementation of a custom datastore that
can read binary files from a Hadoop server.

1 Alphabetical List

1-5826

%% STEP 1: INHERIT FROM DATASTORE CLASSES
classdef MyDatastoreHadoop < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable & ...
 matlab.io.datastore.HadoopFileBased

 properties (Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

%% STEP 2: DEFINE THE CONSTRUCTOR AND THE REQUIRED METHODS
 methods
 % Define your datastore constructor
 function myds = MyDatastoreHadoop(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

 % Define the hasdata method
 function tf = hasdata(myds)
 % Return true if more data is available
 tf = hasfile(myds.FileSet);
 end

 % Define the read method
 function [data,info] = read(myds)
 % Read data and information about the extracted data
 % See also: MyFileReader()
 if ~hasdata(myds)
 error(sprintf(['No more data to read.\nUse the reset ',...
 'method to reset the datastore to the start of ' ,...
 'the data. \nBefore calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.']))
 end

 matlab.io.datastore.HadoopFileBased class

1-5827

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);
 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end
 end

 % Define the reset method
 function reset(myds)
 % Reset to the start of the data
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

 % Define the partition method
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end
 end

 methods (Hidden = true)

 % Define the progress method
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else
 frac = 1;
 end
 end

1 Alphabetical List

1-5828

 % Define the initializeDatastore method
 function initializeDatastore(myds,hadoopInfo)
 import matlab.io.datastore.DsFileSet;
 myds.FileSet = DsFileSet(hadoopInfo,...
 'FileSplitSize',myds.FileSet.FileSplitSize,...
 'IncludeSubfolders',true, ...
 'FileExtensions','.bin');
 reset(myds);
 end

 % Define the getLocation method
 function loc = getLocation(myds)
 loc = myds.FileSet;
 end

 % Define the isfullfile method
 function tf = isfullfile(~)
 tf = isequal(myds.FileSet.FileSplitSize,'file');
 end

 end

 methods (Access = protected)
 % If you use the FileSet property in the datastore,
 % then you must define the copyElement method. The
 % copyElement method allows methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end

 % Define the maxpartitions method
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end
end

%% STEP 3: IMPLEMENT YOUR CUSTOM FILE READING FUNCTION
function data = MyFileReader(fileInfoTbl)
% create a reader object using FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

 matlab.io.datastore.HadoopFileBased class

1-5829

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);
end

This step completes the implementation of your custom datastore.

Next, create a datastore object using your custom datastore constructor. If your data is
located at hdfs:///path_to_files, then you can use this code.

setenv('HADOOP_HOME','/path/to/hadoop/install');
ds = MyDatastoreHadoop('hdfs:///path_to_files');

To use tall arrays and the gather function on Apache Spark™ with parallel cluster
configuration, set the mapreducer and attach MyDatastoreHadoop.m to the cluster.

mr = mapreducer(cluster);
mr.Cluster.AttachedFiles = 'MyDatastoreHadoop.m';

Create tall array from datastore.

t = tall(ds);

Gather the head of the tall array.

 hd = gather(head(t));

See Also
mapreduce | matlab.io.Datastore | matlab.io.datastore.DsFileSet |
matlab.io.datastore.Partitionable | tall

Topics
“Add Support for Hadoop”
“Use Tall Arrays on a Spark Enabled Hadoop Cluster” (Parallel Computing Toolbox)
“Big Data Workflow Using Tall Arrays and Datastores” (Parallel Computing Toolbox)

Introduced in R2017b

1 Alphabetical List

1-5830

getLocation
Class: matlab.io.datastore.HadoopFileBased
Package: matlab.io.datastore

(Not recommended) Location of files in Hadoop

Note matlab.io.datastore.HadoopFileBased.getLocation is not recommended.
Use matlab.io.datastore.HadoopLocationBased.getLocation instead.

Syntax
location = getLocation(ds)

Description
location = getLocation(ds) returns the location of the files in Hadoop for the
datastore object ds.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

Output Arguments
location — Location of files in Hadoop
cell array of character vectors | matlab.io.datastore.DsFileSet object

 getLocation

1-5831

Location of files in Hadoop, returned as cell array of character vectors or a
matlab.io.datastore.DsFileSet object. To create a DsFileSet object, see
matlab.io.datastore.DsFileSet.

Attributes
Abstract true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
initializeDatastore | isfullfile | matlab.io.datastore.DsFileSet |
matlab.io.datastore.HadoopFileBased

Topics
“Add Support for Hadoop”

Introduced in R2017b

1 Alphabetical List

1-5832

initializeDatastore
Class: matlab.io.datastore.HadoopFileBased
Package: matlab.io.datastore

(Not recommended) Initialize datastore with information from Hadoop

Note matlab.io.datastore.HadoopFileBased.initializeDatastore is not
recommended. Use
matlab.io.datastore.HadoopLocationBased.initializeDatastore instead.

Syntax
initializeDatastore(ds,info)

Description
initializeDatastore(ds,info) initializes the datastore ds with the information
from Hadoop.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

info — File information
structure

File information, specified as a structure. The structure contains the following fields:
FileName, Offset, and Size. The FileName field is of the type char. The Offset and
the Size fields are of the type double.

 initializeDatastore

1-5833

Attributes
Abstract true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
getLocation | isfullfile | matlab.io.datastore.HadoopFileBased

Topics
“Add Support for Hadoop”

Introduced in R2017b

1 Alphabetical List

1-5834

isfullfile
Class: matlab.io.datastore.HadoopFileBased
Package: matlab.io.datastore

(Not recommended) Check if datastore reads full files

Note matlab.io.datastore.HadoopFileBased.isfullfile is not recommended.
Use matlab.io.datastore.HadoopLocationBased.isfullfile instead.

Syntax
tf = isfullfile(ds)

Description
tf = isfullfile(ds) returns logical 1 (true) if the datastore object specified by ds
reads an entire file with each call to the read method. Otherwise, it returns logical 0
(false).

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

Attributes
Abstract true
Hidden true

 isfullfile

1-5835

To learn about attributes of methods, see Method Attributes.

See Also
getLocation | initializeDatastore | matlab.io.datastore.HadoopFileBased

Topics
“Add Support for Hadoop”

Introduced in R2017b

1 Alphabetical List

1-5836

matlab.io.datastore.HadoopLocationBased
class
Package: matlab.io.datastore

Add Hadoop support to datastore

Description
matlab.io.datastore.HadoopLocationBased is an abstract mixin class that adds
Hadoop support for data stored in files, or other non-file-based data sources such as
databases.

To use this mixin class, you must inherit from the
matlab.io.datastore.HadoopLocationBased class in addition to inheriting from the
matlab.io.Datastore base class. Type the following syntax as the first line of your
class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.HadoopLocationBased
 ...
end

To add Hadoop support along with parallel processing support, use these lines in your
class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable & ...
 matlab.io.datastore.HadoopLocationBased
 ...
end

To add support for Hadoop to your custom datastore, you must:

• Inherit from the additional class matlab.io.datastore.HadoopLocationBased
• Define these additional methods: getLocation and initializeDatastore.

For more details and steps to create your custom datastore with support for Hadoop, see
“Develop Custom Datastore”.

 matlab.io.datastore.HadoopLocationBased class

1-5837

Methods
getLocation Location in Hadoop
initializeDatastore Initialize datastore with information from Hadoop
isfullfile Check if datastore reads full files

Attributes
Sealed false

For information on class attributes, see “Class Attributes”.

Examples

Build Datastore with Hadoop Support

Implement a datastore with parallel processing and Hadoop support and use it to bring
your data from the Hadoop server into MATLAB .Then use the tall and gather
functions on this data.

Create a new .m class definition file that contains the code implementing your custom
datastore. You must save this file in your working folder or in a folder that is on the
MATLAB path. The name of the .m file must be the same as the name of your object
constructor function. For example, if you want your constructor function to have the name
MyDatastoreHadoop, then the name of the script file must be MyDatastoreHadoop.m.
The .m class definition file must contain these steps:

• Step 1: Inherit from the datastore classes.
• Step 2: Define the constructor and the required methods.
• Step 3: Define your custom file reading function.

This code shows the three steps in a sample implementation of a custom datastore that
can read binary files from a Hadoop server.

%% STEP 1: INHERIT FROM DATASTORE CLASSES
classdef MyDatastoreHadoop < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable & ...
 matlab.io.datastore.HadoopLocationBased

1 Alphabetical List

1-5838

 properties (Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

%% STEP 2: DEFINE THE CONSTRUCTOR AND THE REQUIRED METHODS
 methods
 % Define your datastore constructor
 function myds = MyDatastoreHadoop(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

 % Define the hasdata method
 function tf = hasdata(myds)
 % Return true if more data is available
 tf = hasfile(myds.FileSet);
 end

 % Define the read method
 function [data,info] = read(myds)
 % Read data and information about the extracted data
 % See also: MyFileReader()
 if ~hasdata(myds)
 error(sprintf(['No more data to read.\nUse the reset ',...
 'method to reset the datastore to the start of ' ,...
 'the data. \nBefore calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.']))
 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);

 matlab.io.datastore.HadoopLocationBased class

1-5839

 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end
 end

 % Define the reset method
 function reset(myds)
 % Reset to the start of the data
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

 % Define the partition method
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end
 end

 methods (Hidden = true)

 % Define the progress method
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else
 frac = 1;
 end
 end

 % Define the initializeDatastore method
 function initializeDatastore(myds,hadoopInfo)
 import matlab.io.datastore.DsFileSet;
 myds.FileSet = DsFileSet(hadoopInfo,...

1 Alphabetical List

1-5840

 'FileSplitSize',myds.FileSet.FileSplitSize,...
 'IncludeSubfolders',true, ...
 'FileExtensions','.bin');
 reset(myds);
 end

 % Define the getLocation method
 function loc = getLocation(myds)
 loc = myds.FileSet;
 end

 % Define the isfullfile method
 function tf = isfullfile(~)
 tf = isequal(myds.FileSet.FileSplitSize,'file');
 end

 end

 methods (Access = protected)
 % If you use the FileSet property in the datastore,
 % then you must define the copyElement method. The
 % copyElement method allows methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end

 % Define the maxpartitions method
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end
end

%% STEP 3: IMPLEMENT YOUR CUSTOM FILE READING FUNCTION
function data = MyFileReader(fileInfoTbl)
% create a reader object using FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data

 matlab.io.datastore.HadoopLocationBased class

1-5841

data = read(reader,fileInfoTbl.SplitSize);
end

This step completes the implementation of your custom datastore.

Next, create a datastore object using your custom datastore constructor. If your data is
located at hdfs:///path_to_files, then you can use this code.

setenv('HADOOP_HOME','/path/to/hadoop/install');
ds = MyDatastoreHadoop('hdfs:///path_to_files');

To use tall arrays and the gather function on Apache Spark with parallel cluster
configuration, set the mapreducer and attach MyDatastoreHadoop.m to the cluster.

mr = mapreducer(cluster);
mr.Cluster.AttachedFiles = 'MyDatastoreHadoop.m';

Create tall array from datastore.

t = tall(ds);

Gather the head of the tall array.

 hd = gather(head(t));

See Also
mapreduce | matlab.io.Datastore | matlab.io.datastore.DsFileSet |
matlab.io.datastore.Partitionable | tall

Topics
“Add Support for Hadoop”
“Use Tall Arrays on a Spark Enabled Hadoop Cluster” (Parallel Computing Toolbox)
“Big Data Workflow Using Tall Arrays and Datastores” (Parallel Computing Toolbox)

Introduced in R2019a

1 Alphabetical List

1-5842

getLocation
Class: matlab.io.datastore.HadoopLocationBased
Package: matlab.io.datastore

Location in Hadoop

Syntax
location = getLocation(ds)

Description
location = getLocation(ds) returns the location of the data in Hadoop for the
datastore object ds.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

Output Arguments
location — Location of data in Hadoop
cell array of character vectors | DsFileSet object | table

Location of data in Hadoop, returned as a cell array of character vectors, DsFileSet
object, or a table.

• Cell array of character vectors — List of files.

 getLocation

1-5843

• DsFileSet object — To create a DsFileSet object, see
matlab.io.datastore.DsFileSet.

• table — The table must contain a variable named Hostname. The Hostname variable
must be one of these data types.

• String array containing one hostname per row.
• Cell array containing 0 or more hostnames per row.

Attributes
Abstract true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
initializeDatastore | isfullfile | matlab.io.datastore.DsFileSet |
matlab.io.datastore.HadoopLocationBased

Topics
“Add Support for Hadoop”

Introduced in R2019b

1 Alphabetical List

1-5844

initializeDatastore
Class: matlab.io.datastore.HadoopLocationBased
Package: matlab.io.datastore

Initialize datastore with information from Hadoop

Syntax
initializeDatastore(ds,info)

Description
initializeDatastore(ds,info) initializes the datastore ds with the information
from Hadoop.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

info — Hadoop data information
table

Hadoop data information, specified as a table.

• When data is file-based, info is a single row table containing the following variables:
FileName, Offset, and Size. The FileName variable is of the type string. The
Offset and the Size variables are of the type double.

• When data is non-file-based, info is one row of the output from the getLocation
method.

 initializeDatastore

1-5845

Attributes
Abstract true
Hidden true

To learn about attributes of methods, see Method Attributes.

See Also
getLocation | isfullfile | matlab.io.datastore.HadoopLocationBased

Topics
“Add Support for Hadoop”

Introduced in R2019a

1 Alphabetical List

1-5846

isfullfile
Class: matlab.io.datastore.HadoopLocationBased
Package: matlab.io.datastore

Check if datastore reads full files

Syntax
tf = isfullfile(ds)

Description
tf = isfullfile(ds) returns true if the datastore object specified by ds reads an
entire file with each call to the read method. Otherwise, it returns false.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

Attributes
Abstract true
Hidden true

To learn about attributes of methods, see Method Attributes.

 isfullfile

1-5847

Tips
• isfullfile is not required for non-file-based data.

See Also
getLocation | initializeDatastore |
matlab.io.datastore.HadoopLocationBased

Topics
“Add Support for Hadoop”

Introduced in R2019a

1 Alphabetical List

1-5848

handle class

Superclass of all handle classes

Description
The handle class is the superclass for all classes that follow handle semantics. A handle
is a variable that refers to an object of a handle class. Multiple variables can refer to the
same object.

The handle class is an abstract class, so you cannot create an instance of this class
directly. You use the handle class to derive other classes, which can be concrete classes
whose instances are handle objects.

To define a handle class, derive your class from handle using the syntax in the following
classdef code.

classdef MyHandleClass < handle
 ...
end

Deriving from the handle class enables your subclass to:

• Inherit several useful methods (“Handle Class Methods”)
• Define events and listeners (“Events and Listeners Syntax”)
• Define dynamic properties (“Dynamic Properties — Adding Properties to an Instance”)
• Implement set and get methods (“Implement Set/Get Interface for Properties”)
• Customize copy behavior (“Implement Copy for Handle Classes”)

For information about using handle classes, see “Handle Classes”

Class Attributes
Abstract

true

 handle class

1-5849

ConstructOnLoad
true

HandleCompatible
true

For information on class attributes, see “Class Attributes”.

Methods

Public Methods
<infotypegroup type="method"> addlistener listener notify findobj findprop
delete isvalid relationaloperators empty </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
ObjectBeingDestr
oyed

Triggered when the
handle object is
about to be
destroyed, but before
calling the delete
method.

event.EventData NotifyAccess:
private

ListenAccess:
public

Examples

Derive Class from handle

The MySubclass class derives from the handle class. The property set method does not
return the object passed to the method, as is required by a value class:

classdef MySubclass < handle
 properties
 Client tcpclient
 end

1 Alphabetical List

1-5850

 methods
 function set.Client(obj,c)
 if isa(c,'tcpclient')
 obj.Client = c;
 end
 end
 end
end

Create an object of MySubclass and assign a tcpclient object to the Client property.

t = MySubclass;
t.Client = tcpclient('www.mathworks.com', 80);

Definitions

Handle Object Copy Behavior
Copying a handle object does not copy the underlying data associated with the object. The
copy is another handle referring to the same object. Therefore, if a function modifies a
handle object passed as an input argument, the modification affects the original input
object in the caller's workspace.

In contrast, nonhandle objects (that is, value objects) associate data with a particular
variable. Functions must return modified value objects to change the object outside of the
function's workspace.

For information on passing objects to functions, see “Object Modification” and

Destroying Handle Objects
MATLAB destroys handle objects when there are no references to the object. You can
explicitly remove a handle object by calling its delete method. The handle class enables
you to control what happens when handle objects are destroyed, either implicitly when no
references exist or explicitly when you delete the object.

For more information, see “Handle Class Destructor”.

 handle class

1-5851

Create Listener for ObjectBeingDestroyed Event
Any code can respond to the pending deletion of a handle object by defining a listener for
that object’s ObjectBeingDestroyed event. MATLAB triggers this event before calling
the object’s delete method.

For more information on using events and listeners, see “Events and Listeners Syntax”.

See Also

Topics
“Handle Classes”
“Events”
“Handle Object Behavior”

Introduced in R2008a

1 Alphabetical List

1-5852

addlistener
Class: handle

Create event listener bound to event source

Syntax
el = addlistener(hSource,EventName,callback)
el = addlistener(hSource,PropertyName,EventName,callback)

Description
el = addlistener(hSource,EventName,callback) creates a listener for the event
EventName when triggered on the source object, hSource.

If hSource is an array, the listener responds to the named event on any object in the
hSource array. callback is a function handle referencing the callback function.

el = addlistener(hSource,PropertyName,EventName,callback) creates a
listener for one of the predefined property events. There are four predefined property
events:

Event Name Event Occurs
PreSet Immediately before the property value is set, before calling

its set access method
PostSet Immediately after the property value is set
PreGet Immediately before a property value query is serviced,

before calling its get access method
PostGet Immediately after returning the property value to the query

 addlistener

1-5853

Input Arguments
hSource — Event source
handle array

Event source is the object that is source of the event, or an array of source objects,
specified as a handle array.

EventName — Name of event
character vector | string scalar

Name of event that is triggered on the source objects, specified as case-sensitive, quoted
text. For property events, the event name is one of the four predefined property events.
Data Types: char | string

PropertyName — Name of property
character vector or meta.property

Name of the property whose property event triggers your listener, specified as one of
these values:

• A character vector or a cell array of character vectors, where each character vector is
the name of a property defined for the objects in hSource

• A scalar meta.property object
• An array of meta.property objects

You can attach listeners to property events on dynamic properties only when hSource is
scalar. If hSource is non-scalar, then the properties must belong to the class of hSource
and cannot include dynamic properties (which are not part of the class definition).

The class defining the source property must set the GetObservable and
SetObservable property attributes to enable you to listen to the property events.

callback — Listener callback
function handle

Listener callback specified as a function handle
Data Types: function_handle

1 Alphabetical List

1-5854

Output Arguments
el — Listener object
event.listener or event.proplistener

Listener object created by addlistener, specified as the handle to an event.listener
or an event.proplistener object.

Examples
Create Listener

Create a property listener for the Color property of a graphics figure window.

fig = figure;
propListener = addlistener(fig,'Color','PostSet',@(src,evnt)disp('Color changed'));

Set the value of the Color property to yellow. Setting the property triggers the
PostSet property event on the figure. The event source object is the specific figure
referenced by the handle fig.

set(fig,'Color','yellow')

Tips
• To remove a listener, delete the listener object returned by addlistener. For

example,

delete(el)

calls the handle class delete method to delete the object from the workspace and
remove the listener.

• Redefining or clearing the variable containing the handle of the listener (for example,
el) does not delete the listener. The event object (hSource) still has a reference to the
event.listener object. addlistener ties the listener's lifecycle to the object that
is the source of the event.

• To define a listener that is not tied to the event object, use the event.listener
constructor directly to create the listener.

 addlistener

1-5855

Alternatives
When you need the lifecycle of the listener object to be independent of the source object
lifecycle, use handle.listener to create listeners.

See Also
event.listener | handle.listener | handle.notify

Topics
“Events”
“Overview Events and Listeners”
“Create Property Listeners”
“Listener Lifecycle”
“Restore Listeners”

Introduced in R2008a

1 Alphabetical List

1-5856

listener
Class: handle

Create event listener without binding to event source

Syntax
eL = listener(hSource,EventName,callback)
eL = listener(hSource,PropertyName,EventName,callback)

Description
eL = listener(hSource,EventName,callback) creates a listener for the event
named EventName. hSource is a handle object that is the source of the event. callback
is a function handle that MATLAB invokes when the event is triggered.

If hSource is an array of event source objects, the listener responds to the named event
on any object in the array that is not in a deleted state.

eL = listener(hSource,PropertyName,EventName,callback) creates a listener
for one of the predefined property events. There are four predefined property events:

Event Name Event Occurs
PreSet Immediately before the property value is set, before calling

its set access method
PostSet Immediately after the property value is set
PreGet Immediately before a property value query is serviced,

before calling its get access method
PostGet Immediately after returning the property value to the query

 listener

1-5857

Input Arguments
hSource — Handle object that is the source of the event
handle array

Handle object that is the source of the event, specified as a single object or an array of
objects.

EventName — Name of the event that is triggered on the source objects
character vector or string scalar

Name of the event that is triggered on the source objects, specified as case-sensitive,
quoted text. For property events, the event name is one of the four predefined property
events.
Data Types: char | string

PropertyName — Name of property
character vector or meta.property object.

Name of the property whose property event triggers the listener, specified as one of these
values:

• A character vector or a cell array of character vectors, where each character vector is
the name of a property defined for the objects in hSource

• A scalar meta.property object or an array of meta.property objects
corresponding to properties defined for the objects in hSource

You can attach listeners to the property events of dynamic properties only when hSource
is scalar. If hSource is non-scalar, then the properties must belong to the class of
hSource and cannot include dynamic properties (which are not part of the class
definition).

The class defining the source property must set the GetObservable and
SetObservable property attributes to enable you to listen to the property events.

callback — Listener callback
function handle

Listener callback specified as a function handle
Data Types: function_handle

1 Alphabetical List

1-5858

Output Arguments
el — Listener object
event.listener or event.proplistener

Listener object, returned as the handle to an event.listener or an
event.proplistener object.

Examples
Create Listener

Create a property listener for the Color property of a graphics figure window.

fig = figure;
propListener = listener(fig,'Color','PostSet',@(src,evnt)disp('Color changed'));

Set the value of the Color property to yellow. Setting the property triggers the
PostSet property event on the figure. The event source object is the specific figure
referenced by the handle fig.

set(fig,'Color','yellow')

Delete the listener object.

delete(propListener)

Tips

Listener Lifecycle
To remove a listener, delete the listener object returned by listener. For example, this
statement calls the handle class handle.delete method to remove the listener.

delete(el)

Calling delete on the listener object destroys the listener and, therefore, the event no
longer causes the callback function to execute.

 listener

1-5859

The listener method does not bind the listener's lifecycle to the object that is the
source of the event. Destroying the event source object does not affect the lifecycle of the
listener object.

You must explicitly destroy listeners created with the listener method independently of
the source object. Calling the handle delete method on the listener variable (for example,
delete(el)) explicitly destroys the listener. Redefining or clearing the variable
containing the listener can delete the listener if there are no other references to it. To
bind the lifecycle of the listener to the lifecycle of the event source object, use
handle.addlistener.

Alternatives
Use addlistener when you want MATLABto manage the listener lifecycle.

See Also
event.listener | handle.notify

Topics
“Events”
“Overview Events and Listeners”
“Create Property Listeners”
“Listener Lifecycle”
“Restore Listeners”

Introduced in R2017b

1 Alphabetical List

1-5860

delete
Class: handle

Delete handle object

Syntax
delete(h)

Description
delete(h) deletes a handle object, but does not clear the handle variable from the
workspace. The handle variable is not valid once the handle object has been deleted.

Subclasses of handle can implement a method named delete to perform cleanup tasks
just before MATLAB destroys an object of the class. MATLAB calls the delete method of
any handle object when the object is destroyed. The subclass delete method must meet
certain criteria. For information on implementing a class destructor for a subclass of
handle, see “Handle Class Destructor”.

Input Arguments
h — Object to destroy
scalar handle object

Object to destroy, specified as a handle object variable.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

 delete

1-5861

See Also
isvalid

Topics
“Handle Class Destructor”
“Handle Object Behavior”

1 Alphabetical List

1-5862

findobj
Class: handle

Find handle objects

Syntax
Hmatch = findobj(H)
Hmatch = findobj(H,property,value,...,property,value)
Hmatch = findobj(H,'-not',property,value)
Hmatch = findobj(H,'-regexp',property,value)
Hmatch = findobj(H,property,value,'-logicaloperator',property,value)
Hmatch = findobj(H,'-function',fh)
Hmatch = findobj(H,'-function',property,fh)
Hmatch = findobj(H,'-class',class)
Hmatch = findobj(H,'-isa',class)
Hmatch = findobj(H,'-property',property)
Hmatch = findobj(H,'-method',methodname)
Hmatch = findobj(H,'-event',eventname)
Hmatch = findobj(H,'-depth',d, ___)

Description
Hmatch = findobj(H) returns the objects listed in H and all of their descendants.

Hmatch = findobj(H,property,value,...,property,value) finds handle
objects that have the specified property set to the specified value.

Hmatch = findobj(H,'-not',property,value) inverts the expression in the
following property value pair. That is, find objects whose specified property is not
equal to value.

Hmatch = findobj(H,'-regexp',property,value) treats the content of the value
argument as regular expressions.

 findobj

1-5863

Hmatch = findobj(H,property,value,'-logicaloperator',property,value)
applies the logical operator to the name/value pairs. Supported logical operators include:

• '-or' (default if you do not specify an operator)
• '-and'
• '-xor'

Hmatch = findobj(H,'-function',fh) calls the function handle fh on the objects in
H and returns the objects for which the function returns true.

Hmatch = findobj(H,'-function',property,fh) calls the function handle fh on
the specified property’s value for the objects in H and returns the objects for which the
function returns true. The function must return a scalar logical value.

Hmatch = findobj(H,'-class',class) finds all objects belonging to the specified
class.

Hmatch = findobj(H,'-isa',class) finds all objects belonging to the specified
class.

Hmatch = findobj(H,'-property',property) finds all object in H having the
named property.

Hmatch = findobj(H,'-method',methodname) finds objects that have the specified
method name.

Hmatch = findobj(H,'-event',eventname) finds objects that have the specified
event name.

Hmatch = findobj(H,'-depth',d, ___) specifies how many levels in the instance
hierarchies under the objects in H to search.

Specify all -options as character vectors or string scalars.

Input Arguments
H — Objects to search from
handle array

1 Alphabetical List

1-5864

Objects to search from, specified as an array of object handles. Unless the you specify the
'-depth' option, findobj searches the objects in the input array H and child objects in
the instance hierarchy.

property — Property name
character vector | string scalar

Property name, specified as case-sensitive, quoted text.
Data Types: char | string

class — Class of object to find
character vector | string scalar

Class of object to find, specified as case-sensitive, quoted text.
Data Types: char | string

value — Property value
any value

Property value, specified as a value or MATLAB expression.

methodname — Method name
character vector | string scalar

Method name, specified as case-sensitive quoted text.
Data Types: char | string

eventname — Event name
character vector | string scalar

Event name, specified as case-sensitive quoted text.
Data Types: char | string

d — Depth of search
integer >= 0

Depth of search, specified as an integer indicating the number of levels below any given
object in the input array H.

• d = n — Search n levels of the hierarchy below each object in H

 findobj

1-5865

• d = 0 — Search only the same level as the objects in H.
• d = inf — Search all levels below objects in H. This is the default.

fh — Function handle
function handle

Function handle, specifying the function that is evaluated for each object in the input
array H. This function must return a scalar, logical value indicating whether there is a
match (true) or not (false).

Output Arguments
Hmatch — Objects found by search
handle array

Objects found by search, returned as a handle array.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

Examples

Object with Specific Property Value
Find the object with a specific property value. Given the handle class, BasicHandle:

classdef BasicHandle < handle
 properties
 Prop1
 end
 methods
 function obj = BasicHandle(val)
 if nargin > 0
 obj.Prop1 = val;

1 Alphabetical List

1-5866

 end
 end
 end
end

Create an array of BasicHandle objects:

h(1) = BasicHandle(7);
h(2) = BasicHandle(11);
h(3) = BasicHandle(27);

Find the handle of the object whose Prop1 property has a value of 7:

h7 = findobj(h,'Prop1',7);
h7.Prop1

ans =

 7

Object with Specific Property Name
Find the object with a specific dynamic property. Given the button class:

classdef button < dynamicprops
 properties
 UiHandle
 end
 methods
 function obj = button(pos)
 if nargin > 0
 if length(pos) == 4
 obj.UiHandle = uicontrol('Position',pos,...
 'Style','pushbutton');
 else
 error('Improper position')
 end
 end
 end
 end
end

Create an array of button objects, only one element of which defines a dynamic property.
Use findobj to get the handle of the object with the dynamic property named
ButtonCoord:

 findobj

1-5867

b(1) = button([20 40 80 20]);
addprop(b(1),'ButtonCoord');
b(1).ButtonCoord = [2,3];
b(2) = button([120 40 80 20]);
b(3) = button([220 40 80 20]);

h = findobj(b,'-property','ButtonCoord');
h.ButtonCoord

ans =

 2 3

Tips
• findobj has access only to public members.
• If there are no matches, findobj returns an empty array of the same class as the

input array H.
• Logical operator precedence follows MATLAB precedence rules. For more information,

see “Operator Precedence”.
• Control precedence by grouping within cell arrays

See Also
handle.findprop

Introduced in R2008a

1 Alphabetical List

1-5868

findprop
Class: handle

Find meta.property object

Syntax
mp = findprop(h,property)

Description
mp = findprop(h,property) returns the meta.property object associated with the
named property of the object h. property can be a property defined by the class of h or
a dynamic property defined only for the object h.

Input Arguments
h — handle object
handle

Handle object, specified as a scalar handle.

property — Name of property
character vector | string scalar

Name of property, specified as case-sensitive, quoted text.
Data Types: char | string

Output Arguments
mp — meta.property object
meta.property

 findprop

1-5869

meta.property object that is associated with the named property. If findprop does not
find the property on the object h, findprop returns a 0-by-1 empty meta.property
object.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

Examples

Display Property Attributes

Display the current attribute values of the containers.Map Count property.

mp = findprop(containers.Map,'Count');
disp(mp)

 property with properties:

 Name: 'Count'
 Description: 'Number of pairs in the collection'
 DetailedDescription: ''
 GetAccess: 'public'
 SetAccess: 'private'
 Dependent: 1
 Constant: 0
 Abstract: 0
 Transient: 1
 Hidden: 0
 GetObservable: 0
 SetObservable: 0
 AbortSet: 0
 NonCopyable: 1
 GetMethod: []
 SetMethod: []
 HasDefault: 0
 Validation: [0x0 meta.Validation]
 DefiningClass: [1x1 meta.class]

1 Alphabetical List

1-5870

See Also
handle.findobj | meta.property

Topics
“Get Information About Properties”
“Dynamic Properties — Adding Properties to an Instance”

 findprop

1-5871

isvalid
Class: handle

Determine valid handles

Syntax
B = isvalid(H)

Description
B = isvalid(H) returns a logical array in which each element is true if the
corresponding element in H is a valid handle. A handle variable becomes invalid if the
object has been deleted. Within a class delete method, isvalid always returns false.

You cannot override the isvalid method in handle subclasses.

Input Arguments
H — Input array
handle array

Input array, specified as an array of object handles.

Output Arguments
B — Result of validity test
logical

Result of validity test, returned as a logical array the same size as H in which each
element is true if the corresponding element in H is a valid handle.

1 Alphabetical List

1-5872

Attributes
Access public
Sealed true

To learn about attributes of methods, see Method Attributes.

Examples

Test for Valid Handles
This example tests a handle array for valid members:

H = plot(rand(5));
delete(H(3:4))
B = isvalid(H)

B =

 1
 1
 0
 0
 1

See Also
handle.delete | isgraphics

Topics
“Test Handle Validity”
“Object Lifecycle”
“Handle Object During delete Method Execution”

 isvalid

1-5873

notify
Class: handle

Notify listeners that event is occurring

Syntax
notify(H,EventName)
notify(H,EventName,data)

Description
notify(H,EventName) notifies listeners that the named event is taking place on the
handle objects in H.

notify(H,EventName,data) includes user-defined event data.

Input Arguments
H — Event source
handle array

Event source, specified as a handle array. All of the objects in H must define the named
event.

EventName — Name of event
character vector | string scalar

Name of event, specified as case-sensitive, quoted text that is defined by the class of H.

data — User-defined event data
subclass of event.EventData

1 Alphabetical List

1-5874

User-defined event data, specified as an object that is a subclass of the
event.EventData class. For information on defining event data, see “Define Event-
Specific Data”.

Note Listener callbacks should not reuse the same event data object in subsequent calls
to notify. Always create a new event data object to pass to notify.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

See Also
handle.addlistener | handle.listener

Topics
“Events and Listeners Syntax”
“Events”

Introduced in R2008a

 notify

1-5875

relationaloperators
Class: handle

Determine equality or sort handle objects

Syntax
tf = eq(H1,H2)
tf = ne(H1,H2)
tf = lt(H1,H2)
tf = le(H1,H2)
tf = gt(H1,H2)
tf = ge(H1,H2)

Description
tf = eq(H1,H2) Equal. (H1 == H2)

tf = ne(H1,H2) Not equal. (H1 ~= H2)

tf = lt(H1,H2) Less than. (H1 < H2)

tf = le(H1,H2) Less than or equal. (H1 <= H2)

tf = gt(H1,H2) Greater than. (H1 > H2)

tf = ge(H1,H2) Greater than or equal. (H1 >= H2)

For each pair of input arrays (H1 and H2), the operation returns a logical array of the
same size. Each element in the returned array is an element-wise equality or comparison
test result. These methods perform scalar expansion in the same way as the MATLAB
built-in relational operators. For general information on relational operators, see
“Relational Operations”.

The following guidelines apply to handle comparison:

1 Alphabetical List

1-5876

• Copies of a handle variable always compare as equal.
• The repeated comparison of any two handles always yields the same result in the same

MATLAB session.
• Different handles are always not equal.
• The order of handle values is purely arbitrary and has no connection to the state of the

handle objects being compared.
• If the input arrays belong to different classes (including the case where one input

array belongs to a non-handle class such as double) then the comparison is always
false.

• If you make a comparison between a handle object and an object of a dominant class,
the method of the dominant class is invoked. You should generally test only like objects
because a dominant class might not define one of these methods.

• An error occurs if the input arrays are not the same size and neither is scalar.

Use isequal when you want to determine if different handle objects have the same data
in all object properties. Use == when you want to determine if handle variables refer to
the same object.

When comparing objects that contain dynamic properties, isequal always returns
false.

Input Arguments
H1 — Left argument to operator
handle array

Left argument to operator, specified as a handle array.

H2 — Right argument to operator
handle array

Right argument to operator, specified as a handle array.

Output Arguments
tf — Result of comparison
logical array

 relationaloperators

1-5877

Result of comparison, returned as a logical array of the same size as the input arrays,
where each element is an element-wise equality or comparison test result

• 1 — relationship is true
• 0 — relationship is not true

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

See Also
isequal

Topics
“Determining Equality of Objects”

1 Alphabetical List

1-5878

hankel
Hankel matrix

Syntax
H = hankel(c)
H = hankel(c,r)

Description
H = hankel(c) returns the square Hankel matrix whose first column is c and whose
elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and whose last row is
r. If the last element of c differs from the first element of r, the last element of c prevails.

Examples

Compute Hankel Matrix

Create the Hankel matrix whose first column is c and whose last row is r.

c = 1:3;
r = 3:6;
h = hankel(c,r)

h = 3×4

 1 2 3 4
 2 3 4 5
 3 4 5 6

 hankel

1-5879

Definitions

Hankel Matrix
A Hankel matrix is a matrix that is symmetric and constant across the anti-diagonals, and
has elements h(i,j) = p(i+j-1), where vector p = [c r(2:end)] completely
determines the Hankel matrix.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
hadamard | kron | toeplitz

Introduced before R2006a

1 Alphabetical List

1-5880

hasFactoryValue
Package: matlab.settings

Determine whether the setting has a factory value set

Syntax
hasFactoryValue(s)

Description
hasFactoryValue(s) returns 1 if the setting has a factory value set. Otherwise,
hasFactoryValue returns 0.

Examples

Determine if Setting Has Factory Value

Check whether the setting for the maximum column width for comments in MATLAB has
a factory value.

s = settings;
hasFactoryValue(s.matlab.editor.language.matlab.comments.MaxWidth)

ans =
 logical
 1

Input Arguments
s — Setting
setting object

 hasFactoryValue

1-5881

Setting, specified as a setting object. Use the settings function to access the root
settings group object and all the available settings in the tree.

See Also
settings

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-5882

hasnext
Package: matlab.mapreduce

Determine if ValueIterator has one or more values available

Syntax
tf = hasnext(ValIter)

Description
tf = hasnext(ValIter) returns logical 1 (true) if ValueIter has one or more values
available; otherwise, it returns logical 0 (false).

Examples

Get Values from ValueIterator in Reduce Function

Use the hasnext and getnext functions in a while loop within the reduce function to
iteratively get values from the ValueIterator object. For example,

function MeanDistReduceFun(sumLenKey, sumLenIter, outKVStore)
 sumLen = [0 0];
 while hasnext(sumLenIter)
 sumLen = sumLen + getnext(sumLenIter);
 end
 add(outKVStore, 'Mean', sumLen(1)/sumLen(2));
end

 hasnext

1-5883

Always call hasnext before getnext to confirm availability of a value. mapreduce
returns an error if you call getnext with no remaining values in the ValueIterator
object.

Input Arguments
ValIter — Intermediate value iterator
ValueIterator object

Intermediate value iterator, specified as a ValueIterator object. The mapreduce
function automatically creates this object during execution. The second input to the
reduce function specifies the variable name for the ValueIterator object, which is the
variable name to use with the hasnext and getnext functions.

For more information, see ValueIterator.

See Also
getnext | mapreduce

Topics
ValueIterator
“Build Effective Algorithms with MapReduce”

Introduced in R2014b

1 Alphabetical List

1-5884

hasPersonalValue
Package: matlab.settings

Determine whether the setting has a personal value set

Syntax
hasPersonalValue(s)

Description
hasPersonalValue(s) returns 1 if the setting has a personal value set. Otherwise,
hasPersonalValue returns 0.

Examples

Clear Setting Personal Value

Check whether the setting for the maximum column width for comments in MATLAB has
a personal value. If the setting has a personal value, clear the value.
s = settings;

if(hasPersonalValue(s.matlab.editor.language.matlab.comments.MaxWidth))
 clearPersonalValue(s.matlab.editor.language.matlab.comments.MaxWidth)
end

Input Arguments
s — Setting
setting object

Setting, specified as a setting object. Use the settings function to access the root
settings group object and all the available settings in the tree.

 hasPersonalValue

1-5885

See Also
settings

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-5886

hasTemporaryValue
Package: matlab.settings

Determine whether the setting has a temporary value set

Syntax
hasTemporaryValue(s)

Description
hasTemporaryValue(s) returns 1 if the setting has a temporary value set. Otherwise,
hasTemporaryValue returns 0.

Examples

Clear Setting Temporary Value

Check whether the setting for the maximum column width for comments in MATLAB has
a temporary value. If the setting has a temporary value, clear the value.
s = settings;

if(hasTemporaryValue(s.matlab.editor.language.matlab.comments.MaxWidth))
 clearTemporaryValue(s.matlab.editor.language.matlab.comments.MaxWidth)
end

Input Arguments
s — Setting
setting object

Setting, specified as a setting object. Use the settings function to access the root
settings group object and all the available settings in the tree.

 hasTemporaryValue

1-5887

See Also
settings

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-5888

hdf5info
Information about HDF5 file

Note hdf5info will be removed in a future version. Use h5info instead.

Syntax
fileinfo = hdf5info(filename)
fileinfo = hdf5info(...,'ReadAttributes',BOOL)
[...] = hdf5info(..., 'V71Dimensions', BOOL)

Description
fileinfo = hdf5info(filename) returns a structure fileinfo whose fields contain
information about the contents of the HDF5 file filename. filename is a character
vector or string scalar that specifies the name of the HDF5 file.

fileinfo = hdf5info(...,'ReadAttributes',BOOL) specifies whether hdf5info
returns the values of the attributes or just information describing the attributes. By
default, hdf5info reads in attribute values (BOOL = true).

[...] = hdf5info(..., 'V71Dimensions', BOOL) specifies whether to report the
dimensions of data sets and attributes as they were returned in previous versions of
hdf5info (MATLAB 7.1 [R14SP3] and earlier). If BOOL is true, hdf5info swaps the first
two dimensions of the data set. This behavior was intended to account for the difference
in how HDF5 and MATLAB express array dimensions. HDF5 describes data set
dimensions in row-major order; MATLAB stores data in column-major order. However,
swapping these dimensions may not correctly reflect the intent of the data in the file and
may invalidate metadata. When BOOL is false (the default), hdf5info returns data
dimensions that correctly reflect the data ordering as it is written in the file—each
dimension in the output variable matches the same dimension in the file.

 hdf5info

1-5889

Note If you use the 'V71Dimensions' parameter and intend on passing the fileinfo
structure returned to the hdf5read function, you should also specify the
'V71Dimensions' parameters with hdf5read. If you do not, hdf5read uses the new
behavior when reading the data set and certain metadata returned by hdf5info does not
match the actual data returned by hdf5read.

Examples
fileinfo = hdf5info('example.h5');

To get more information about the contents of the HDF5 file, look at the
GroupHierarchy field in the fileinfo structure returned by hdf5info.

toplevel = fileinfo.GroupHierarchy

toplevel =

 Filename: [1x64 char]
 Name: '/'
 Groups: [1x2 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [1x2 struct]

To probe further into the file hierarchy, keep examining the Groups field.

See also
hdf5read, hdf5writeh5info

1 Alphabetical List

1-5890

hdf5read
Read HDF5 file

Note hdf5read will be removed in a future version. Use h5read instead.

Syntax
data = hdf5read(filename,datasetname)
attr = hdf5read(filename,attributename)
[data, attr] = hdf5read(...,'ReadAttributes',BOOL)
data = hdf5read(hinfo)
[...] = hdf5read(..., 'V71Dimensions', BOOL)

Description
data = hdf5read(filename,datasetname) reads all the data in the data set
datasetname that is stored in the HDF5 file filename and returns it in the variable
data. To determine the names of data sets in an HDF5 file, use the hdf5info function.

The return value, data, is a multidimensional array. hdf5read maps HDF5 data types to
native MATLAB data types, whenever possible. If it cannot represent the data using
MATLAB data types, hdf5read uses one of the HDF5 data type objects. For example, if
an HDF5 file contains a data set made up of an enumerated data type, hdf5read uses the
hdf5.h5enum object to represent the data in the MATLAB workspace. The hdf5.h5enum
object has data members that store the enumerations (names), their corresponding
values, and the enumerated data.

Note hdf5read performs best when reading numeric datasets. If you need to read
string, compound, or variable length datasets, MathWorks strongly recommends that you
use the low-level HDF5 interface function, H5D.read. To read a subset of a dataset, you
must use the low-level interface.

 hdf5read

1-5891

attr = hdf5read(filename,attributename) reads all the metadata in the attribute
attributename, stored in the HDF5 file filename, and returns it in the variable attr.
To determine the names of attributes in an HDF5 file, use the hdf5info function.

[data, attr] = hdf5read(...,'ReadAttributes',BOOL) reads all the data, as
well as all of the associated attribute information contained within that data set. By
default, BOOL is false.

data = hdf5read(hinfo) reads all of the data in the data set specified in the structure
hinfo and returns it in the variable data. The hinfo structure is extracted from the
output returned by hdf5info, which specifies an HDF5 file and a specific data set.

[...] = hdf5read(..., 'V71Dimensions', BOOL) specifies whether to change the
majority of data sets read from the file. If BOOL is true, hdf5read permutes the first two
dimensions of the data set, as it did in previous releases (MATLAB 7.1 [R14SP3] and
earlier). This behavior was intended to account for the difference in how HDF5 and
MATLAB express array dimensions. HDF5 describes data set dimensions in row-major
order; MATLAB stores data in column-major order. However, permuting these dimensions
may not correctly reflect the intent of the data and may invalidate metadata. When BOOL
is false (the default), the data dimensions correctly reflect the data ordering as it is
written in the file — each dimension in the output variable matches the same dimension in
the file.

Examples
Use hdf5info to get information about an HDF5 file and then use hdf5read to read a
data set, using the information structure (hinfo) returned by hdf5info to specify the
data set.

hinfo = hdf5info('example.h5');
dset = hdf5read(hinfo.GroupHierarchy.Groups(2).Datasets(1));

See Also
h5read | hdf5info | hdf5write

Introduced before R2006a

1 Alphabetical List

1-5892

hdf5write
Write data to file in HDF5 format

Note hdf5write will be removed in a future version. Use h5write instead.

Syntax
hdf5write(filename,location,dataset)
hdf5write(filename,details,dataset)
hdf5write(filename,details,attribute)
hdf5write(filename, details1, dataset1, details2, dataset2,...)
hdf5write(filename,...,'WriteMode',mode,...)
hdf5write(..., 'V71Dimensions', BOOL)

Description
hdf5write(filename,location,dataset) writes the data dataset to the HDF5 file,
filename. If filename does not exist, hdf5write creates it. If filename exists,
hdf5write overwrites the existing file, by default, but you can also append data to an
existing file using an optional syntax.

location defines where to write the data set in the file. HDF5 files are organized in a
hierarchical structure similar to a UNIX directory structure. location is specified as a
character vector or string scalar that resembles a UNIX path.

hdf5write maps the data in dataset to HDF5 data types according to rules outlined
below.

hdf5write(filename,details,dataset) writes dataset to filename using the
values in the details structure. For a data set, the details structure can contain the
following fields.

 hdf5write

1-5893

Field Name Description Data Type
Location Location of the data set in the file Character vector or string scalar
Name Name to attach to the data set Character vector or string scalar

hdf5write(filename,details,attribute) writes the metadata attribute to
filename using the values in the details structure. For an attribute, the details
structure can contain following fields.

Field Name Description Data Type
AttachedTo Location of the object this

attribute modifies
Structure array

AttachType Identifies what kind of object this
attribute modifies; possible values
are 'group' and 'dataset'

Character vector or string scalar

Name Name to attach to the data set Character vector or string scalar

hdf5write(filename, details1, dataset1, details2, dataset2,...) writes
multiple data sets and associated attributes to filename in one operation. Each data set
and attribute must have an associated details structure.

hdf5write(filename,...,'WriteMode',mode,...) specifies whether hdf5write
overwrites the existing file (the default) or appends data sets and attributes to the file.
Possible values for mode are 'overwrite' and 'append'.

hdf5write(..., 'V71Dimensions', BOOL) specifies whether to change the majority
of data sets written to the file. If BOOL is true, hdf5write permutes the first two
dimensions of the data set, as it did in previous releases (MATLAB 7.1 [R14SP3] and
earlier). This behavior was intended to account for the difference in how HDF5 and
MATLAB express array dimensions. HDF5 describes data set dimensions in row-major
order; MATLAB stores data in column-major order. However, permuting these dimensions
may not correctly reflect the intent of the data and may invalidate metadata. When BOOL
is false (the default), the data written to the file correctly reflects the data ordering of the
data sets — each dimension in the file's data sets matches the same dimension in the
corresponding MATLAB variable.

1 Alphabetical List

1-5894

Data Type Mappings
The following table lists how hdf5write maps the data type from the workspace into an
HDF5 file. If the data in the workspace that is being written to the file is a MATLAB data
type, hdf5write uses the following rules when translating MATLAB data into HDF5 data
objects.

MATLAB Data Type HDF5 Data Set or Attribute
Numeric Corresponding HDF5 native data type. For example, if the workspace

data type is uint8, the hdf5write function writes the data to the file
as 8-bit integers. The size of the HDF5 dataspace is the same size as
the MATLAB array.

Character vector or string
scalar

Single, null-terminated string

Cell array of character
vectors or string array

Multiple, null-terminated strings, each the same length. Length is
determined by the length of the longest string in the cell array. The
size of the HDF5 dataspace is the same size as the cell array.

Cell array of numeric data Numeric array, the same dimensions as the cell array. The elements of
the array must all have the same size and type. The data type is
determined by the first element in the cell array.

Structure array HDF5 compound type. Individual fields in the structure employ the
same data translation rules for individual data types. For example, a
cell array of strings becomes a multiple, null-terminated strings.

HDF5 objects If the data being written to the file is composed of HDF5 objects,
hdf5write uses the same data type when writing to the file. For all
HDF5 objects, except HDF5.h5enum objects, the dataspace has the
same dimensions as the array of HDF5 objects passed to the function.
For HDF5.h5enum objects, the size and dimensions of the data set in
the HDF5 file is the same as the object's Data field.

Examples
Write a 5-by-5 data set of uint8 values to the root group.

hdf5write('myfile.h5', '/dataset1', uint8(magic(5)))

Write a 2-by-2 data set of text entries into a subgroup.

 hdf5write

1-5895

dataset = {'north', 'south'; 'east', 'west'};
hdf5write('myfile2.h5', '/group1/dataset1.1', dataset);

Write a data set and attribute to an existing group.

dset = single(rand(10,10));
dset_details.Location = '/group1/dataset1.2';
dset_details.Name = 'Random';

attr = 'Some random data';
attr_details.Name = 'Description';
attr_details.AttachedTo = '/group1/dataset1.2/Random';
attr_details.AttachType = 'dataset';

hdf5write('myfile2.h5', dset_details, dset, ...
 attr_details, attr, 'WriteMode', 'append');

Write a data set using objects.

dset = hdf5.h5array(magic(5));
hdf5write('myfile3.h5', '/g1/objects', dset);

See Also
hdf5info | hdf5read

Introduced before R2006a

1 Alphabetical List

1-5896

hdfan
Gateway to HDF multifile annotation (AN) interface

Syntax
[out1,...,outN] = hdfan(funcstr,input1,...,inputN)

Description
hdfan is the MATLAB gateway to the HDF multifile annotation (AN) interface.

[out1,...,outN] = hdfan(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the AN function in the HDF library specified by functstr.

There is a one-to-one correspondence between AN functions in the HDF library and valid
values for funcstr. For example, hdfan('endaccess',annot_id) corresponds to the
C library call ANendaccess(annot_id).

Access Functions
Access functions initialize the interface and provide and terminate access to annotations.

Value of funcstr Function Syntax Description
'start' AN_id =

hdfan('start',file_id)
Initializes the multifile
annotation interface.

'select' annot_id =
hdfan('select',AN_id,
index,annot_type)

Selects and returns the identifier
for the annotation identified by
the given index value and
annotation type.

'end' status =
hdfan('end',AN_id)

Terminates access to the
multifile annotation interface.

 hdfan

1-5897

Value of funcstr Function Syntax Description
'create' annot_id =

hdfan('create',AN_id,tag,r
ef,annot_type)

Creates a data annotation for the
object identified by the specified
tag and reference number.
annot_type can be
'data_label' or
'data_desc'.

'createf' annot_id =
hdfan('createf',AN_id,anno
t_type)

Creates a file label or file
description annotation.
annot_type can be
'file_label' or
'file_desc'.

'endaccess' status =
hdfan('endaccess',annot_id
)

Terminates access to an
annotation.

Read/Write Functions
Read/write functions read and write file or object annotations.

Value of funcstr Function Syntax Description
'writeann' status =

hdfan('writeann',annot_id,
annot_string)

Writes the annotation
corresponding to the given
annotation identifier.

'readann' [annot_string,status] =
hdfan('readann',annot_id)

Reads the annotation
corresponding to the given
annotation identifier;

[annot_string,status] =
hdfan('readann',annot_id,m
ax_str_length)

Reads the annotation
corresponding to the given
annotation identifier.
annot_string will not be
longer than max_str_length.

General Inquiry Functions
General inquiry functions return information about the annotations in a file.

1 Alphabetical List

1-5898

Value of funcstr Function Syntax Description
'numann' num_annot =

hdfan('numann',AN_id,annot
_type,tag,ref)

Gets number of annotations of
specified type corresponding to
given tag/ref pair.

'annlist' [ann_list,status] =
hdfan('annlist',AN_id,anno
t_type,tag,ref)

Gets the list of annotations of
given type in the file
corresponding to a given tag/ref
pair.

'annlen' length =
hdfan('annlen',annot_id)

Gets the length of annotation
corresponding to the given
annotation identifier.

'fileinfo' [nfl,nfd,ndl,ndd,status] =
hdfan('fileinfo',AN_id)

Gets number of file label, file
description, data label, and data
description annotations in the
file corresponding to AN_id.

'get_tagref' [tag,ref,status] =
hdfan('get_tagref',AN_id,i
ndex,annot_type)

Gets the tag/ref pair for the
specified annotation type and
index.

'id2tagref' [tag,ref,status] =
hdfan('id2tagref',annot_id
)

Gets the tag/ref pair
corresponding to the specified
annotation identifier.

'tagref2id' annot_id =
hdfan('tagref2id',AN_id,ta
g,ref)

Gets the annotation identifier
corresponding to the specified
tag/ref pair.

'atype2tag' tag =
hdfan('atype2tag',annot_ty
pe)

Gets the tag corresponding to
the specified annotation type.

'tag2atype' annot_type =
hdfan('tag2atype',tag)

Gets the annotation type
corresponding to the specified
tag.

Input/Output Arguments
A status or identifier output of -1 indicates that the operation failed.

In general, the input argument annot_type can be one of these values:

 hdfan

1-5899

• 'file_label'
• 'file_desc'
• 'data_label'
• 'data_desc'

AN_id refers to the multifile annotation interface identifier.

annot_id refers to an individual annotation identifier.

You must terminate access to all opened identifiers using either hdfan('end',AN_id)
or hdfan('endaccess',annot_id). Otherwise, the HDF library might not properly
write all data to the file.

See Also
hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

1 Alphabetical List

1-5900

hdfdf24
Gateway to HDF 24-bit raster image (DF24) interface

Syntax
[out1,...,outN] = hdfdf24(funcstr,input1,...,inputN)

Description
hdfdf24 is the MATLAB gateway to the HDF 24-bit raster image interface.

[out1,...,outN] = hdfdf24(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the DF24 function in the HDF library specified by functstr.

There is a one-to-one correspondence between DF24 functions in the HDF library and
valid values for funcstr. For example, hdfdf24('lastref') corresponds to the C
library call DF24lastref().

Write Functions
Write functions create raster image sets and store them in new files or append them to
existing files.

Value of funcstr Function Syntax Description
'addimage' status =

hdfdf24('addimage',filena
me,RGB)

Appends a 24-bit raster image to
a file.

'putimage' status =
hdfdf24('putimage',filena
me,RGB)

Writes a 24-bit raster image to
file by overwriting all existing
data.

 hdfdf24

1-5901

Value of funcstr Function Syntax Description
'setcompress' status =

hdfdf24('setcompress',com
press_type,...)

Sets the compress method for
the next raster image written to
the file. compress_type can be
'none', 'rle', 'jpeg', or
'imcomp'. If compress_type is
'jpeg', then two additional
parameters must be specified:
quality (a scalar between 0
and 100) and force_baseline
(either 0 or 1). Other
compression types do not have
additional parameters.

'setdims' status =
hdfdf24('setdims',width,h
eight)

Sets the dimensions for the next
raster image written to the file.

'setil' status =
hdfdf24('setil',interlace
)

Sets the interlace format of the
next raster image written to the
file. interlace can be
'pixel', 'line', or
'component'.

'lastref' ref = hdfdf24('lastref') Reports the last reference
number assigned to a 24-bit
raster image.

Read Functions
Read functions determine the dimensions and interlace format of an image set, read the
actual image data, and provide sequential or random read access to any raster image set.

Value of funcstr Function Syntax Description
'getdims' [width,height,interlace,s

tatus] =
hdfdf24('getdims',filenam
e)

Retrieves the dimensions before
reading the next raster image.
interlace can be 'pixel',
'line', or 'component'.

1 Alphabetical List

1-5902

Value of funcstr Function Syntax Description
'getimage' [RGB,status] =

hdfdf24('getimage',filena
me)

Reads the next 24-bit raster
image.

'reqil' status =
hdfdf24('reqil',interlace
)

Specifies the interlace format
before reading the next raster
image. interlace can be
'pixel', 'line', or
'component'.

'readref' status =
hdfdf24('readref',filenam
e,ref)

Reads 24-bit raster image with
the specified raster number.

'restart' status =
hdfdf24('restart')

Returns to the first 24-bit raster
image in the file.

'nimages' num_images =
hdfdf24('nimages',filenam
e)

Reports the number of 24-bit
raster images in a file.

Input/Output Arguments
A status or identifier output of -1 indicates that the operation failed.

HDF uses C-style ordering of elements, in which elements along the last dimension vary
fastest. MATLAB uses FORTRAN-style ordering, in which elements along the first
dimension vary fastest. hdfdf24 does not automatically convert from C-style ordering to
MATLAB style ordering, which means that MATLAB image arrays need to be permuted
when using hdfdf24 to read or write from HDF files. The exact permutation depends on
the interlace format specified by, for example, hdfdf24('setil',...). The following
calls to permute converts HDF arrays to MATLAB arrays, according to the specified
interlace format.

RGB = permute(RGB,[3 2 1]); 'pixel' interlace
RGB = permute(RGB,[3 1 2]); 'line' interlace
RGB = permute(RGB,[2 1 3]); 'component' interlace

 hdfdf24

1-5903

See Also
hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

1 Alphabetical List

1-5904

hdfdfr8
Gateway to HDF 8-bit raster image (DFR8) interface

Syntax
[out1,...,outN] = hdfdfr8(funcstr,input1,...,inputN)

Description
hdfdfr8 is the MATLAB gateway to the HDF 8-bit raster image (DFR8) interface.

[out1,...,outN] = hdfdfr8(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the DFR8 function in the HDF library specified by functstr.

There is a one-to-one correspondence between DFR8 functions in the HDF library and
valid values for funcstr. For example, hdfdfr8('setpalette',map) corresponds to
the C library call DFR8setpalette(map).

Write Functions
Write functions create raster image sets and store them in new files or append them to
existing files.

Value of funcstr Function Syntax Description
'writeref' status =

hdfdfr8('writeref',filena
me,ref)

Stores the raster image using
the specified reference number.

'setpalette' status =
hdfdfr8('setpalette',colo
rmap)

Sets palette for multiple 8-bit
raster images.

'addimage' status =
hdfdfr8('addimage',filena
me,X,compress)

Appends an 8-bit raster image to
a file. compress can be 'none',
'rle', 'jpeg', or 'imcomp'.

 hdfdfr8

1-5905

Value of funcstr Function Syntax Description
'putimage' status =

hdfdfr8('putimage',filena
me,X,compress)

Writes an 8-bit raster image to
an existing file or creates the
file. compress can be 'none',
'rle', 'jpeg', or 'imcomp'.

'setcompress' status =
hdfdfr8('setcompress',com
press_type,...)

Sets the compression type.
compress_type can be
'none', 'rle', 'jpeg', or
'imcomp'. If compress_type is
'jpeg', then two additional
parameters must be passed in:
quality (a scalar between 0
and 100) and force_baseline
(either 0 or 1). Other
compression types do not have
additional parameters.

Read Functions
Read functions determine the dimension and palette assignment for an image set, read
the actual image data, and provide sequential or random read access to any raster image
set.

Value of funcstr Function Syntax Description
'getdims' [width,height,hasmap,stat

us] =
hdfdfr8('getdims',filenam
e)

Retrieves dimensions for an 8-bit
raster image.

'getimage' [X,map,status] =
hdfdfr8('getimage',filena
me)

Retrieves an 8-bit raster image
and its palette.

'readref' status =
hdfdfr8('readref',filenam
e,ref)

Gets the next raster image with
the specified reference number.

'restart' status =
hdfdfr8('restart')

Ignores information about last
file accessed and restarts from
beginning.

1 Alphabetical List

1-5906

Value of funcstr Function Syntax Description
'nimages' num_images =

hdfdfr8('nimages',filenam
e)

Returns number of raster images
in a file.

'lastref' ref = hdfdfr8('lastref') Returns reference number of last
element accessed.

Input/Output Arguments
A status or identifier output of -1 indicates that the operation failed.

HDF uses C-style ordering of elements, in which elements along the last dimension vary
fastest.MATLAB uses FORTRAN-style ordering, in which elements along the first
dimension vary fastest. hdfdfr8 does not automatically convert from C-style ordering to
MATLAB style ordering, which means that MATLAB image and colormap matrices must
be transposed when using hdfdfr8 to read or write from HDF files.

Functions in hdfdfr8 that read and write palette information expect to use uint8 data
in the range [0,255], while MATLAB colormaps contain double-precision values in the
range [0,1]. Therefore, HDF palettes must be converted to double and scaled to be used
as MATLAB colormaps.

See Also
hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

 hdfdfr8

1-5907

hdfh
Gateway to HDF H interface

Syntax
[out1,...,outN] = hdfh(funcstr,input1,...,inputN)

Description
hdfh is the MATLAB gateway to the HDF H interface.

[out1,...,outN] = hdfh(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the H function in the HDF library specified by functstr.

There is a one-to-one correspondence between H functions in the HDF library and valid
values for funcstr. For example, hdfh('close',file_id) corresponds to the C
library call Hclose(file_id).

Functions
Value of
funcstr

Function Syntax Description

'appendable' status =
hdfh('appendable',access_id)

Specifies that the element can
be appended to.

'close' status =
hdfh('close',file_id)

Closes the access path to the
file.

'deldd' status =
hdfh('deldd',file_id,tag,ref
)

Deletes a tag and reference
number from the data
descriptor list.

'dupdd' status =
hdfh('dupdd',file_id,tag,ref
,old_tag,old_ref)

1 Alphabetical List

1-5908

Value of
funcstr

Function Syntax Description

'endaccess' status =
hdfh('endaccess',access_id)

Terminates access to a data
object by disposing of the
access identifier.

'fidinquire' [filename,access_mode,attach
,status] =
hdfh('fidinquire',file_id)

Returns information about
specified file.

'find' [tag,ref,offset,length,statu
s] = hdfh('find',file_id,...
search_tag,search_ref,search
_type,dir)

Locates the next object to be
searched for in an HDF file.
search_type can be 'new'
or 'continue'. The dir input
can be 'forward' or
'backward'.

'getelement' [data,status] =
hdfh('getelement',file_id,ta
g,ref)

Reads the data element for the
specified tag and reference
number.

'getfileversi
on'

[major,minor,release,info,st
atus] =
hdfh('getfileversion',file_i
d)

Returns version information
for an HDF file.

'getlibversio
n'

[major,minor,release,info,st
atus] =
hdfh('getlibversion')

Returns version information
for the current HDF library.

'inquire' [file_id,tag,ref,length,offs
et,position,access,...
special,status] =
hdfh('inquire',access_id)

Returns access information
about a data element.

'ishdf' tf = hdfh('ishdf',filename) Determines if a file is an HDF
file.

'length' length =
hdfh('length',file_id,tag,re
f)

Returns the length of a data
object specified by the tag and
reference number.

 hdfh

1-5909

Value of
funcstr

Function Syntax Description

'newref' ref = hdfh('newref',file_id) Returns a reference number
that can be used with any tag
to product a unique tag/
reference number pair.

'nextread' status =
hdfh('nextread',access_id,ta
g,ref,origin)

Searches for the next data
descriptor that matches the
specified tag and reference
number. origin can be
'start' or 'current'.

'number' num =
hdfh('number',file_id,tag)

Returns the number of
instances of a tag in a file.

'offset' offset =
hdfh('offset',file_id,tag,re
f)

Returns the offset of a data
element in the file.

'open' file_id =
hdfh('open',filename,access,
n_dds)

Provides an access path to an
HDF file by reading all the
data descriptor blocks into
memory.

'putelement' count =
hdfh('putelement',file_id,ta
g,ref,X)

Writes a data element or
replaces an existing data
element in an HDF file. X must
be a uint8 array.

'read' X =
hdfh('read',access_id,length
)

Reads the next segment in a
data element.

'seek' status =
hdfh('seek',access_id,offset
,origin)

Sets the access pointer to an
offset within a data element.
origin can be 'start' or
'current'.

'startread' access_id =
hdfh('startread',file_id,tag
,ref)

1 Alphabetical List

1-5910

Value of
funcstr

Function Syntax Description

'startwrite' access_id =
hdfh('startwrite',file_id,ta
g,ref,length)

'sync' status =
hdfh('sync',file_id)

'trunc' length =
hdfh('trunc',access_id,trunc
_len)

Truncates the specified data
object to the given length.

'write' count =
hdfh('write',access_id,X)

Writes the next data segment
to a specified data element. X
must be a uint8 array.

Output Arguments
A status or identifier output of -1 indicates that the operation failed.

Limitations
• hdfh does not support these functions in the NCSA H interface:

• Hcache
• Hendbitaccess
• Hexist
• Hflushdd
• Hgetbit
• Hputbit
• Hsetlength
• Hshutdown
• Htagnewref

 hdfh

1-5911

See Also
hdfan | hdfdf24 | hdfdfr8 | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

1 Alphabetical List

1-5912

hdfhd
Gateway to HDF HD interface

Syntax
[out1,...,outN] = hdfhd(funcstr,input1,...,inputN)

Description
hdfhd is the MATLAB gateway to the HDF HD interface.

[out1,...,outN] = hdfhd(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the HD function in the HDF library specified by functstr.

There is a one-to-one correspondence between HD functions in the HDF library and valid
values for funcstr.

Functions
Value of funcstr Function Syntax Description
'gettagsname' tag_name =

hdfhd('gettagsname',tag)
Gets the name of the specified
tag.

Output Arguments
A status or identifier output of -1 indicates that the operation failed.

See Also
hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

 hdfhd

1-5913

Introduced before R2006a

1 Alphabetical List

1-5914

hdfhe
Gateway to HDF HE interface

Syntax
[out1,...,outN] = hdfhe(funcstr,input1,...,inputN)

Description
hdfhe is the MATLAB gateway to the HDF HE interface.

This is a stub page.

[out1,...,outN] = hdfhe(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the HE function in the HDF library specified by functstr.

There is a one-to-one correspondence between HE functions in the HDF library and valid
values for funcstr.

Functions
Value of funcstr Function Syntax Description
'clear' hdfhe('clear') Clears all information on

reported errors from the
error stack.

'print' hdfhe('print',level) Prints information in error
stack. If level is 0, then
the entire error stack is
printed.

'string' error_text =
hdfhe('string',error_
code)

Returns the error message
associated with the specified
error code.

 hdfhe

1-5915

Value of funcstr Function Syntax Description
'value' error_code =

hdfhe('value',stack_o
ffset)

Returns an error code from
the specified level of the
error stack. A
stack_offset value of 1
gets the most recent error
code.

Output Arguments
A status or identifier output of -1 indicates that the operation failed.

Limitations
• hdfhe does not support these functions:

• HEpush
• HEreport

See Also
hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

1 Alphabetical List

1-5916

hdfhx
Gateway to HDF external data (HX) interface

Syntax
[out1,...,outN] = hdfhx(funcstr,input1,...,inputN)

Description
hdfhx is the MATLAB gateway to the HDF interface for manipulating linked and external
data elements.

[out1,...,outN] = hdfhx(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the HX function in the HDF library specified by functstr.

There is a one-to-one correspondence between HX functions in the HDF library and valid
values for funcstr. For example, hdfhx('setdir',pathname); corresponds to the C
library call HXsetdir(pathname).

Functions
Value of funcstr Function Syntax Description
'create' access_id =

hdfhx('create',file_id,t
ag,ref,extern_name,offse
t,length)

Creates a new external file
special data element.

'setcreatedir' status =
hdfhx('setcreatedir',pat
hname);

Sets the directory location for
writing external file.

'setdir' status =
hdfhx('setdir',pathname)
;

Sets the directory for locating
external files. pathname can
contain multiple directories
separated by vertical bars.

 hdfhx

1-5917

Input/Output Arguments
A status or identifier output of -1 indicates that the operation failed.

In cases where the HDF C library accepts NULL for certain inputs, an empty matrix ([] or
'') can be used.

See Also
hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

1 Alphabetical List

1-5918

hdfinfo
Information about HDF4 or HDF-EOS file

Syntax
S = hdfinfo(filename)
S = hdfinfo(filename,mode)

Description
S = hdfinfo(filename) returns a structure S whose fields contain information about
the contents of an HDF4 or HDF-EOS file. Specify filename as a character vector or
string scalar containing the name of the HDF4 file.

S = hdfinfo(filename,mode) reads the file as an HDF4 file, if mode is 'hdf', or as
an HDF-EOS file, if mode is 'eos'. If mode is 'eos', only HDF-EOS data objects are
queried. To retrieve information on the entire contents of a file containing both HDF4 and
HDF-EOS objects, mode must be 'hdf'.

Note hdfinfo can be used on Version 4.x HDF files or Version 2.x HDF-EOS files. To get
information about an HDF5 file, use hdf5info.

The set of fields in the returned structure S depends on the individual file. Fields that can
be present in the S structure are shown in the following table.

Mode Field Name Description Return Type
HDF Attributes on page

1-5921
Attributes of the data set Structure array

 Description Annotation description Cell array
 Filename Name of the file Character vector
 Label Annotation label Cell array

 hdfinfo

1-5919

Mode Field Name Description Return Type
 Raster8 on page

1-5921
Description of 8-bit raster
images

Structure array

 Raster24 on page
1-5921

Description of 24-bit raster
images

Structure array

 SDS on page 1-
5922

Description of scientific data
sets

Structure array

 Vdata on page 1-
5922

Description of Vdata sets Structure array

 Vgroup on page 1-
5922

Description of Vgroups Structure array

EOS Filename Name of the file Character vector
 Grid on page 1-5923 Grid data Structure array
 Point on page 1-

5923
Point data Structure array

 Swath on page 1-
5924

Swath data Structure array

Those fields in the table above that contain structure arrays are further described in the
tables shown below.

Fields Common to Returned Structure Arrays
Structure arrays returned by hdfinfo contain some common fields. These are shown in
the table below. Not all structure arrays will contain all of these fields.

Field Name Description Data Type
Attributes Data set attributes. Contains fields

Name and Value.
Structure array

Description Annotation description Cell array
Filename Name of the file Character vector
Label Annotation label Cell array
Name Name of the data set Character vector

1 Alphabetical List

1-5920

Field Name Description Data Type
Rank Number of dimensions of the data set Double
Ref Data set reference number Double
Type Type of HDF or HDF-EOS object Character vector

Fields Specific to Certain Structures
Structure arrays returned by hdfinfo also contain fields that are unique to each
structure. These are shown in the tables below.

Fields of the Attribute Structure

Field Name Description Data Type
Name Attribute name Character vector
Value Attribute value or description Numeric or Text

Fields of the Raster8 and Raster24 Structures

Field Name Description Data Type
HasPalette 1 (true) if the image has an associated

palette, otherwise 0 (false) (8-bit only)
Logical

Height Height of the image, in pixels Number
Interlace Interlace mode of the image (24-bit

only)
Character vector

Name Name of the image Character vector
Width Width of the image, in pixels Number

 hdfinfo

1-5921

Fields of the SDS Structure

Field Name Description Data Type
DataType Data precision Character vector
Dims Dimensions of the data set. Contains

fields Name, DataType, Size, Scale,
and Attributes. Scale is an array of
numbers to place along the dimension
and demarcate intervals in the data set.

Structure array

Index Index of the SDS Number

Fields of the Vdata Structure

Field Name Description Data Type
DataAttributes Attributes of the entire data set.

Contains fields Name and Value.
Structure array

Class Class name of the data set Character vector
Fields Fields of the Vdata. Contains fields

Name and Attributes.
Structure array

NumRecords Number of data set records Double
IsAttribute 1 (true) if Vdata is an attribute,

otherwise 0 (false)
Logical

Fields of the Vgroup Structure

Field Name Description Data Type
Class Class name of the data set Character vector
Raster8 Description of the 8-bit raster image Structure array
Raster24 Description of the 24-bit raster image Structure array
SDS Description of the Scientific Data sets Structure array
Tag Tag of this Vgroup Number
Vdata Description of the Vdata sets Structure array
Vgroup Description of the Vgroups Structure array

1 Alphabetical List

1-5922

Fields of the Grid Structure

Field Name Description Data Type
Columns Number of columns in the grid Number
DataFields Description of the data fields in each

Grid field of the grid. Contains
fields Name, Rank, Dims,
NumberType, FillValue, and
TileDims.

Structure array

LowerRight Lower right corner location, in
meters

Number

Origin Code Origin code for the grid Number
PixRegCode Pixel registration code Number
Projection Projection code, zone code, sphere

code, and projection parameters of
the grid. Contains fields ProjCode,
ZoneCode, SphereCode, and
ProjParam.

Structure

Rows Number of rows in the grid Number
UpperLeft Upper left corner location, in meters Number

Fields of the Point Structure

Field Name Description Data Type
Level Description of each level of the

point. Contains fields Name,
NumRecords, FieldNames,
DataType, and Index.

Structure

 hdfinfo

1-5923

Fields of the Swath Structure

Field Name Description Data Type
DataFields Data fields in the swath. Contains

fields Name, Rank, Dims,
NumberType, and FillValue.

Structure array

GeolocationField
s

Geolocation fields in the swath.
Contains fields Name, Rank, Dims,
NumberType, and FillValue.

Structure array

IdxMapInfo Relationship between indexed
elements of the geolocation mapping.
Contains fields Map and Size.

Structure

MapInfo Relationship between data and
geolocation fields. Contains fields
Map, Offset, and Increment.

Structure

Examples
To retrieve information about the file example.hdf,

fileinfo = hdfinfo('example.hdf')

fileinfo =
 Filename: 'example.hdf'
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

And to retrieve information from this about the scientific data set in example.hdf,

sds_info = fileinfo.SDS

sds_info =
 Filename: 'example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}

1 Alphabetical List

1-5924

 Description: {}
 Index: 0

See Also
hdfread

Introduced before R2006a

 hdfinfo

1-5925

hdfml
Utilities for working with MATLAB HDF gateway functions

Syntax
hdfml('closeall')
hdfml('listinfo')
tag = hdfml('tagnum',tagname)
nbytes = hdfml('sizeof',data_type)
hdfml('defaultchartype',char_type)

Description
hdfml('closeall') closes all open registered HDF file and data object identifiers.

hdfml('listinfo') prints information about all open registered HDF file and data
object identifiers.

tag = hdfml('tagnum',tagname) returns the tag number corresponding to the tag
name specified by tagname.

nbytes = hdfml('sizeof',data_type) returns size in bytes of specified data type.

hdfml('defaultchartype',char_type) defines the HDF data type for text data in
MATLAB. Valid values for char_type are 'char8' or 'uchar8'. The change persists
until the MATLAB HDF gateway function is cleared from memory. Text data in MATLAB
are mapped to char8 by default.

The MATLAB HDF gateway functions maintain lists of certain HDF file and data object
identifiers so that, for example, HDF objects and files can be properly closed when a user
issues the command:

clear mex

These lists are updated whenever these identifiers are created or closed.

1 Alphabetical List

1-5926

See Also
hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

 hdfml

1-5927

hdfpt
Interface to HDF-EOS Point object

Syntax
[out1,...,outN] = hdfpt(funcstr,input1,...,inputN)

Description
hdfpt is the MATLAB gateway to the Point functions in the HDF-EOS C library, which is
developed and maintained by EOSDIS (Earth Observing System Data and Information
System). A Point data set comprises a series of data records taken at (possibly) irregular
time intervals and at scattered geographic locations. Each data record consists of a set of
one or more data values representing the state of a point in time and/or space.

[out1,...,outN] = hdfpt(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the Point function in the HDF-EOS library specified by
functstr.

There is a one-to-one correspondence between PT functions in the HDF-EOS C library and
valid values for funcstr. For example, hdfpt('detach',point_id) corresponds to
the C library call PTdetach(point_id).

Programming Model
The programming model for accessing a point data set through hdfpt is as follows:

1 Open the file and initialize the PT interface by obtaining a file id from a file name.
2 Open or create a point data set by obtaining a point id from a point name.
3 Perform desired operations on the data set.
4 Close the point data set by disposing of the point id.
5 Terminate point access to the file by disposing of the file id.

1 Alphabetical List

1-5928

To access a single point data set that already exists in an HDF-EOS file, use the following
MATLAB commands:

fileid = hdfpt('open',filename,access);
pointid = hdfpt('attach',fileid,pointname);

% Optional operations on the data set...

status = hdfpt('detach',pointid);
status = hdfpt('close',fileid);

To access several files at the same time, obtain a separate file identifier for each file to be
opened. To access more than one point data set, obtain a separate point id for each data
set.

It is important to properly dispose of point id's and file id's so that buffered operations are
written completely to disk. If you quit MATLAB or clear all MEX-files with PT identifiers
still open, MATLAB issues a warning and automatically disposes of them.

Note that file identifiers returned by hdfpt are not interchangeable with file identifiers
returned by any other HDF-EOS or HDF function.

Access Routines
Access routines initialize and terminate access to the PT interface and point data sets
(including opening and closing files).

Value of funcstr Function Syntax Description
'open' file_id =

hdfpt('open',filename,acc
ess)

Given the filename and desired
access mode, opens or creates
an HDF file in order to create,
read, or write a point. access
can be 'read', 'readwrite',
or 'create'. file_id is -1 if
the operation fails.

 hdfpt

1-5929

Value of funcstr Function Syntax Description
'create' point_id =

hdfpt('create',file_id,po
intname)

Creates a point data set with the
specified name. pointname is a
character vector or string scalar
containing the name of the point
data set. point_id is -1 if the
operation fails.

'attach' point_id =
hdfpt('attach',file_id,po
intname)

Attaches to an existing point
data set within the file.
point_id is -1 if the operation
fails.

'detach' status =
hdfpt('detach',point_id)

Detaches from point data set.

'close' status =
hdfpt('close',file_id)

Closes file.

Definition Routines
Definition routines allow the user to set key features of a point data set.

1 Alphabetical List

1-5930

Value of funcstr Function Syntax Description
'deflevel' status =

hdfpt('deflevel',point_id
,levelname,...
fieldList,fieldTypes,fiel
dOrders)

Defines a new level within a
point data set. levelname is the
name of the level to be defined.
fieldList is a cell array of
character vectors or string array
containing field names in the
new level. fieldTypes is also a
cell array of character vectors or
string array containing the
number type for each field in the
fieldList. Valid number types
include 'uchar8', 'uchar',
'char8', 'char', 'double',
'uint8', 'uint16', 'uint32',
'float', 'int8', 'int16',
and 'int32'. fieldOrders is a
vector containing the order for
each field.

'deflinkage' status =
hdfpt('deflinkage',point_
id,parent,child,linkfield
)

Defines a linkfield between two
adjacent levels. parent is the
name of the parent level. child
is the name of the child level.
linkfield is the name of a field
that is defined at both levels.

Basic I/O Routines
Basic I/O routines read and write data and metadata to a point data set.

 hdfpt

1-5931

Value of funcstr Function Syntax Description
'writelevel' status =

hdfpt('writelevel',point_
id,level,data)

Appends new records to the
specified level in a point data
set. level is the desired level
index (zero-based). data must
be a P-by-1 cell array where P is
the number of fields defined for
the specified level. Each cell of
data must contain an M(k)-by-N
matrix of data, where M(k) is
the order of the k-th field (the
number of scalar values in the
field) and N is the number of
records. The MATLAB class of
the cells must match the HDF
data type defined for the
corresponding fields. Text data
in MATLAB is automatically
converted to match any of the
HDF char types. Other data
types must match exactly.

'readlevel' [data,status] =
hdfpt('readlevel',point_i
d,...
level,fieldList,records)

Reads data from a given level in
a point data set. level is the
index (zero-based) of the desired
level. fieldList is a cell array
of character vectors or string
array specifying the list of the
fields to read. records is a
vector containing the indices
(zero-based) of the records to
read. data is a P-by-1 cell array
where P is the number of
requested fields. Each cell of
data contains an M(k)-by-N
matrix of data where M(k) is the
order of the k-th field and N is
the number of records, or
length(records).

1 Alphabetical List

1-5932

Value of funcstr Function Syntax Description
'updatelevel' status =

hdfpt('updatelevel',point
_id,...
level,fieldList,records,d
ata)

Updates (corrects) data in a
particular level of a point data
set. level is the index (zero-
based) of the desired level.
fieldList is a cell array of
character vectors or string array
specifying the list of field names
to update. records is a vector
containing the indices (zero-
based) of the records to update.
data is a P-by-1 cell array where
P is the number of specified
fields. Each cell of data must
contain an M(k)-by-N matrix of
data, where M(k) is the order of
the k-th field (the number of
scalar values in the field) and N
is the number of records, or
length(records). The
MATLAB class of the cells must
match the HDF data type defined
for the corresponding fields. Text
data in MATLAB is automatically
converted to match any of the
HDF char types. Other data
types must match exactly.

'writeattr' status =
hdfpt('writeattr',point_i
d,attrname,data)

Writes or updates the point data
set attribute with the specified
name. If the attribute does not
already exist, it is created.

'readattr' [data,status] =
hdfpt('readattr',point_id
,attrname)

Reads the attribute data from
the specified attribute.

Inquiry Routines
Inquiry routines return information about data contained in a point data set.

 hdfpt

1-5933

Value of funcstr Function Syntax Description
'nlevels' nlevels =

hdfpt('nlevels',point_id)
Returns the number of levels in a
point data set. nlevels is -1 if
the operation fails.

'nrecs' nrecs =
hdfpt('nrecs',point_id,le
vel)

Returns the number of records
in the specified level. nrecs is -1
if the operation fails.

'nfields' [numfields,strbufsize] =
hdfpt('nfields',point_id,
level)

Returns the number of fields in
the specified level. strbufsize
is the length of array containing
the field names. numfields is -1
and strbufsize is [] if the
operation fails.

'levelinfo' [numfields,fieldList,fiel
d Type,fieldOrder] = ...
hdfpt('levelinfo',point_i
d,level)

Returns information on fields for
a specified level. fieldList is a
cell array of character vectors or
string array containing the field
names. fieldType is a cell
array of character vectors that
defined the data type for each
field. fieldOrder is a vector
containing the order (number of
scalar values) associated with
each field. If the operation fails,
numfields is -1 and the other
outputs are empty.

'levelindx' level =
hdfpt('levelindx',point_i
d,levelname)

Returns the level index (zero-
based) of the level with the
specified name. level is -1 if
the operation fails.

'bcklinkinfo' [linkfield,status] =
hdfpt('bcklinkinfo',point
_id,level)

Returns the linkfield to the
previous level. status is -1 and
linkfield is [] if the operation
fails.

1 Alphabetical List

1-5934

Value of funcstr Function Syntax Description
'fwdlinkinfo' [linkfield,status] =

hdfpt('fwdlinkinfo',point
_id,level)

Returns the linkfield to the
following level. status is -1 and
linkfield is [] if the operation
fails.

'getlevelname' [levelname,status] =
hdfpt('getlevelname',poin
t_id,level)

Returns the name of a level
given the level index. status is
-1 and levelname is [] if the
operation fails.

'sizeof' [byteSize,fieldLevels] =
hdfpt('sizeof',point_id,f
ieldList)

Returns the size in bytes and
field levels of the specified fields.
fieldList is a cell array of
character vectors or string array
containing the field names.
byteSize is the total size of
bytes of the specified fields, and
fieldLevels is a vector
containing the level index
corresponding to each field.
byteSize is -1 and
fieldLevels is [] if the
operation fails.

'attrinfo' [numberType,count,status]
= ...
hdfpt('attrinfo',point_id
,attrname)

Returns the number type and
size in bytes of the specified
attribute. attrname is the name
of the attribute. numberType is
a character vector containing the
name of the corresponding HDF
data type of the attribute. count
is the number of bytes used by
the attribute data. status is -1
and numberType and count are
[] if the operation fails.

 hdfpt

1-5935

Value of funcstr Function Syntax Description
'inqattrs' [nattrs,attrnames] =

hdfpt('inqattrs',point_id
)

Retrieve information about
attributes defined in a point data
set. nattrs and attrnames are
the number and names of all the
defined attributes, respectively.
If the operation fails, nattrs is
-1 and attrnames is [].

'inqpoint' [numpoints,pointnames] =
hdfpt('inqpoint',filename
)

Retrieve number and names of
point data sets defined in an
HDF-EOS file. pointnames is a
cell array of character vectors
containing a the point names.
numpoints is -1 and
pointnames is [] if the
operation fails.

Utility Routines
Placeholder.

Value of funcstr Function Syntax Description
'getrecnums' [outRecords,status] =

hdfpt('getrecnums',...
point_id,inLevel,outLevel
,inRecords)

Returns the record numbers in
outLevel corresponding the
group of records specified by
inRecords in level inLevel.
The inLevel and outLevel
arguments are zero-based level
indices. inRecords is a vector
of zero-based record indices.
status is -1 and outRecords is
[] if the operation fails.

Subset Routines
Subset routines allow reading of data from a specified geographic region.

1 Alphabetical List

1-5936

Value of funcstr Function Syntax Description
'defboxregion' region_id =

hdfpt('defboxregion',poin
t_id,cornerLon,cornerLat)

Defines a longitude-latitude box
region for a point. cornerLon is
a two-element vector containing
the longitudes of opposite box
corners. cornerLat is a two-
element vector containing the
latitudes of opposite box corners.
region_idis -1 if the operation
fails.

'defvrtregion' period_id =
hdfpt('defvrtregion',poin
t_id,region_id,...
vert_field,range)

Defines a vertical region for a
point. vert_field is the name
of the field to subset. range is a
two-element vector containing
the minimum and maximum
vertical values. period_id is -1
if the operation fails.

'regioninfo' [byteSize,status] =
hdfpt('regioninfo',point_
id,...
region_id,level,fieldList
)

Returns the data size in bytes of
the subset period of the specified
level. fieldlist is a cell array
of character vectors or string
array specifying the list of fields
to extract. status and
byteSize are -1 if the operation
fails.

'regionrecs' [numRec,recNumbers,status
] =
hdfpt('regionrecs',...
point_id,region_id,level)

Returns the records numbers
within the subsetted region of
the specified level. status and
numrec are -1 and recNumbers
is [] if the operation fails.

 hdfpt

1-5937

Value of funcstr Function Syntax Description
'extractregion' [data,status] =

hdfpt('extractregion',poi
nt_id,...
region_id,level,fieldList
)

Reads data from the specified
subset region. fieldList is a
cell array of character vectors or
string array specifying the list of
requested fields. data is a P-
by-1 cell array where P is the
number of requested fields. Each
cell of data contains an M(k)-
by-N matrix of data where M(k)
is the order of the k-th field and
N is the number of records.
status is -1 and data is [] if
the operation fails.

'deftimeperiod' period_id =
hdfpt('deftimeperiod',poi
nt_id,startTime,stopTime)

Defines a time period for a point
data set. period_id is -1 if the
operation fails.

'periodinfo' [byteSize,status] =
hdfpt('periodinfo',point_
id,...
period_id,level,fieldList
)

Retrieves the size in bytes of the
subsetted period. fieldList is
a cell array of character vectors
or string array specifying the list
of field names. byteSize and
status are -1 if the operation
fails.

'periodrecs' [numRec,recNumbers,status
] =
hdfpt('periodrecs',...
point_id,period_id,level)

Returns the records numbers
within the subsetted time period
of the specified level. numRec
and status are -1 if the
operation fails.

1 Alphabetical List

1-5938

Value of funcstr Function Syntax Description
'extractperiod' [data,status] =

hdfpt('extractperiod',...
point_id,period_id,level,
fieldList)

Reads data from the specified
subsetted time period.
fieldList is a cell array of
character vectors or string array
specifying the list of requested
fields. data is a P-by-1 cell array
where P is the number of
requested fields. Each cell of
data contains an M(k)-by-N
matrix of data where M(k) is the
order of the k-th field and N is
the number of records. status
is -1 and data is [] if the
operation fails.

Input/Output Arguments
Most routines return the flag, status, which is 0 when the routine succeeds and -1 when
the routine fails. Routines with syntaxes which do not contain status return failure
information in one of its outputs as notated in the function syntaxes.

levelName is a character vector or string scalar.

Some of the C library functions accept input values that are defined in terms of C macros.
For example, the C PTopen() function requires an access mode input that can be
DFACC_READ, DFACC_RDWR, or DFACC_CREATE, where these symbols are defined in
the appropriate C header file. Where macro definitions are used in the C library, the
equivalent MATLAB syntaxes use text derived from the macro names. You can either use
text containing the entire macro name, or you can omit the common prefix. You can use
either upper or lower case. For example, this C function call:

status = PTopen("PointFile.hdf",DFACC_CREATE)

is equivalent to these MATLAB function calls:

status = hdfpt('open','PointFile.hdf','DFACC_CREATE')
status = hdfpt('open','PointFile.hdf','dfacc_create')
status = hdfpt('open','PointFile.hdf','CREATE')
status = hdfpt('open','PointFile.hdf','create')

 hdfpt

1-5939

In cases where a C function returns a value with a macro definition, the equivalent
MATLAB function returns the value as text containing the lowercase short form of the
macro.

HDF number types are specified as: 'uchar8', 'uchar', 'char8', 'char', 'double',
'uint8', 'uint16', 'uint32', 'float', 'int8', 'int16', and 'int32'.

In cases where the HDF-EOS library accepts NULL, use an empty matrix ([]).

See Also
matlab.io.hdfeos.sw

Introduced before R2006a

1 Alphabetical List

1-5940

hdfread
Read data from HDF4 or HDF-EOS file

Syntax
data = hdfread(filename, datasetname)
data = hdfread(hinfo)
data = hdfread(...,param,value,...)
data = hdfread(filename,EOSname,param,value,...)
[data,map] = hdfread(...)

Description
data = hdfread(filename, datasetname) returns all the data in the data set
specified by datasetname from the HDF4 or HDF-EOS file specified by filename. To
determine the name of a data set in an HDF4 file, use the hdfinfo function.

Note hdfread can be used on Version 4.x HDF files or Version 2.x HDF-EOS files. To
read data from an HDF5 file, use h5read.

data = hdfread(hinfo) returns all the data in the data set specified by the
structurehinfo, returned by the hdfinfo function. Specify the field in the hinfo
structure that relates to a particular type of data set, and use indexing to specify which
data set, when there are more than one. See “Specify data set to read” on page 1-5949 for
more information.

data = hdfread(...,param,value,...) returns subsets of the data according to
the specified parameter and value pairs. See the tables below to find the valid parameters
and values for different types of data sets.

data = hdfread(filename,EOSname,param,value,...) subsets the data field from
the HDF-EOS point, grid, or swath specified by EOSname.

[data,map] = hdfread(...) returns the image data and the colormap map for an 8-
bit raster image.

 hdfread

1-5941

Subsetting Parameters
The following tables show the subsetting parameters that can be used with the hdfread
function for certain types of HDF4 data. These data types are

• HDF Scientific Data (SD) on page 1-5942
• HDF Vdata (V) on page 1-5943
• HDF-EOS Grid Data on page 1-5944
• HDF-EOS Point Data on page 1-5946
• HDF-EOS Swath Data on page 1-5946

Note the following:

• If a parameter requires multiple values, use a cell array to store the values. For
example, the 'Index' parameter requires three values: start, stride, and edge.
Enclose these values in curly braces as a cell array.

hdfread(..., 'Index', {start,stride,edge})
• All values that are indices are 1-based.

Subsetting Parameters for HDF Scientific Data (SD) Data Sets
When you are working with HDF SD files, hdfread supports the parameters listed in this
table.

1 Alphabetical List

1-5942

Parameter Description
'Index' Three-element cell array, {start,stride,edge}, specifying the location,

range, and values to be read from the data set

• start — A 1-based array specifying the position in the file to begin
reading

Default: 1, start at the first element of each dimension. The values
specified must not exceed the size of any dimension of the data set.

• stride — A 1-based array specifying the interval between the values to
read

Default: 1, read every element of the data set.
• edge — A 1-based array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding dimensions

For example, this code reads the data set Example SDS from the HDF file example.hdf.
The 'Index' parameter specifies that hdfread start reading data at the beginning of
each dimension, read until the end of each dimension, but only read every other data
value in the first dimension.
data = hdfread('example.hdf','Example SDS','Index',{[],[2 1],[]})

Subsetting Parameters for HDF Vdata Sets
When you are working with HDF Vdata files, hdfread supports these parameters.

Parameter Description
'Fields' Character vector or string scalar specifying the name of the field to be read.

When specifying multiple field names, use a cell array of character vectors or
a string array.

'FirstRecord' 1-based number specifying the record from which to begin reading
'NumRecords' Number specifying the total number of records to read

For example, this code reads the Vdata set Example Vdata from the HDF file
example.hdf.
data = hdfread('example.hdf','Example Vdata','FirstRecord', 2,'NumRecords', 5)

 hdfread

1-5943

Subsetting Parameters for HDF-EOS Grid Data
When you are working with HDF-EOS grid data, hdfread supports three types of
parameters:

• Required parameters
• Optional parameters
• Mutually exclusive parameters — You can only specify one of these parameters in a

call to hdfread, and you cannot use these parameters in combination with any
optional parameter.

Parameter Description
Required Parameter
'Fields' Character vector or string scalar specifying the field to be read. You can

specify only one field name for a Grid data set.
Mutually Exclusive Optional Parameters
'Index' Three-element cell array, {start,stride,edge}, specifying the

location, range, and values to be read from the data set

start — An array specifying the position in the file to begin reading

Default: 1, start at the first element of each dimension. The values must
not exceed the size of any dimension of the data set.

stride — An array specifying the interval between the values to read

Default: 1, read every element of the data set.

edge — An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

'Interpolate' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude points that define a region for bilinear
interpolation. Each element is an N-length vector specifying longitude
and latitude coordinates.

1 Alphabetical List

1-5944

Parameter Description
'Pixels' Two-element cell array, {longitude,latitude}, specifying the

longitude and latitude coordinates that define a region. Each element is
an N-length vector specifying longitude and latitude coordinates. This
region is converted into pixel rows and columns with the origin in the
upper left corner of the grid.

Note: This is the pixel equivalent of reading a 'Box' region.
'Tile' Vector specifying the coordinates of the tile to read, for HDF-EOS Grid

files that support tiles
Optional Parameters
'Box' Two-element cell array, {longitude,latitude}, specifying the

longitude and latitude coordinates that define a region. longitude and
latitude are each two-element vectors specifying longitude and
latitude coordinates.

'Time' Two-element cell array, [start stop], where start and stop are
numbers that specify the start and end-point for a period of time

'Vertical' Two-element cell array, {dimension, range}

dimension — Character vector or string scalar specifying the name of
the data set field to be read from. You can specify only one field name for
a Grid data set.

range — Two-element array specifying the minimum and maximum
range for the subset. If dimension is a dimension name, then range
specifies the range of elements to extract. If dimension is a field name,
then range specifies the range of values to extract.

'Vertical' subsetting can be used alone or in conjunction with 'Box'
or 'Time'. To subset a region along multiple dimensions, vertical
subsetting can be used up to eight times in one call to hdfread.

For example,
data = hdfread('grid.hdf','PolarGrid','Fields','ice_temp','Index', {[5 10],[],[15 20]})

 hdfread

1-5945

Subsetting Parameters for HDF-EOS Point Data
When you are working with HDF-EOS Point data, hdfread has two required parameters
and three optional parameters.

Parameter Description
Required Parameters
'Fields' Character vector or string scalar containing the name of the data set field

to be read. For multiple field names, use a cell array of character vectors
or a string array.

'Level' 1-based number specifying which level to read from in an HDF-EOS Point
data set

Mutually Exclusive Optional Parameters
'Box' Two-element cell array, {longitude,latitude}, specifying the

longitude and latitude coordinates that define a region. longitude and
latitude are each two-element vectors specifying longitude and latitude
coordinates.

'RecordNumbers' Vector specifying the record numbers to read
'Time' Two-element cell array, [start stop], where start and stop are

numbers that specify the start and endpoint for a period of time

For example,
hdfread(...,'Fields',{field1, field2},...
 'Level',level,'RecordNumbers',[1:50, 200:250])

Subsetting Parameters for HDF-EOS Swath Data
When you are working with HDF-EOS Swath data, hdfread supports three types of
parameters:

• Required parameters
• Optional parameters
• Mutually exclusive

You can only use one of the mutually exclusive parameters in a call to hdfread, and you
cannot use these parameters in combination with any optional parameter.

1 Alphabetical List

1-5946

Parameter Description
Required Parameter
'Fields' Character vector or string scalar containing the name of the data set field

to be read. You can specify only one field name for a Swath data set.
Mutually Exclusive Optional Parameters
'Index' Three-element cell array, {start,stride,edge}, specifying the location,

range, and values to be read from the data set

• start — An array specifying the position in the file to begin reading

Default: 1, start at the first element of each dimension. The values must
not exceed the size of any dimension of the data set.

• stride — An array specifying the interval between the values to read

Default: 1, read every element of the data set.
• edge — An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

'Time' Three-element cell array, {start, stop, mode}, where start and stop
specify the beginning and the endpoint for a period of time, and mode is a
character vector or string scalar which defines the criterion for the
inclusion of a cross track in a region. The cross track is within a region if
any of these conditions is met:

• Its midpoint is within the box (mode='midpoint').
• Either endpoint is within the box (mode='endpoint').

Optional Parameters

 hdfread

1-5947

Parameter Description
'Box' Three-element cell array, {longitude, latitude, mode} specifying

the longitude and latitude coordinates that define a region. longitude
and latitude are two-element vectors that specify longitude and latitude
coordinates. mode is a character vector or string scalar which defines the
criterion for the inclusion of a cross track in a region. The cross track is
within a region if any of these conditions is met:

• Its midpoint is within the box (mode='midpoint').
• Either endpoint is within the box (mode='endpoint').
• Any point is within the box (mode='anypoint').

'Vertical' Two-element cell array, {dimension, range}

• dimension is a character vector or string scalar specifying either a
dimension name or field name to subset the data by.

• range is a two-element vector specifying the minimum and maximum
range for the subset. If dimension is a dimension name, then range
specifies the range of elements to extract. If dimension is a field name,
then range specifies the range of values to extract.

'Vertical' subsetting can be used alone or in conjunction with
'Box' or 'Time'. To subset a region along multiple dimensions,
vertical subsetting can be used up to eight times in one call to
hdfread.

For example,
hdfread('swath.hdf', 'Example Swath', 'Fields', 'Temperature', ...
 'Time', {5000, 6000, 'midpoint'})

Examples

Read Data Set in HDF File

Specify the name of the HDF file and the name of the data set. This example reads a data
set named temperature from a sample HDF file.

data = hdfread('sd.hdf','temperature');

1 Alphabetical List

1-5948

Specify data set to read

Call hdfinfo to retrieve information about the contents of the HDF file.

fileinfo = hdfinfo('sd.hdf')

fileinfo = struct with fields:
 Filename: 'B:\matlab\toolbox\matlab\imagesci\sd.hdf'
 Attributes: [1x1 struct]
 SDS: [1x2 struct]
 Vdata: [1x1 struct]

Extract the structure containing information about the particular data set you want to
import from the data returned by hdfinfo. This example uses the structure in the SDS
field to retrieve a scientific data set.

sds_info = fileinfo.SDS(2)

sds_info = struct with fields:
 Filename: 'B:\matlab\toolbox\matlab\imagesci\sd.hdf'
 Type: 'Scientific Data Set'
 Name: 'temperature'
 Rank: 2
 DataType: 'double'
 Attributes: [1x11 struct]
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 1

Pass this structure to hdfread to import the data in the data set.

data = hdfread(sds_info);

Read Data from HDF-EOS Grid Field

Read data from the HDF-EOS global grid field, TbOceanRain, in the example file,
example.hdf.

 hdfread

1-5949

data1 = hdfread('example.hdf','MonthlyRain','Fields','TbOceanRain');

Read data for the northern hemisphere for the same field. Use the Box parameter to
specify the longitude and latitude coordinates for that region.

data2 = hdfread('example.hdf','MonthlyRain', ...
'Fields','TbOceanRain', ...
'Box', {[0 360],[0 90]});

Read Subset of Data in Data Set

Retrieve info about the example file, example.hdf.

fileinfo = hdfinfo('example.hdf');

Retrieve information about Scientific Data Set in example.hdf.

data_set_info = fileinfo.SDS;

Check the size of the data set.

data_set_info.Dims.Size

ans = 16

ans = 5

Read a subset of the data in the data set using the 'index' parameter with hdfread.
This example specifies a starting index of [3 3], an interval of 1 between values ([]
meaning the default value of 1), and a length of 10 rows and 2 columns.

data = hdfread(data_set_info,'Index',{[3 3],[],[10 2]});
data(:,1)

ans = 10x1 int16 column vector

 7
 8
 9
 10
 11
 12
 13

1 Alphabetical List

1-5950

 14
 15
 16

data(:,2)

ans = 10x1 int16 column vector

 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

Access Data in Fields of Vdata

Use the Vdata field from the information returned by hdfinfo to read three fields of the
data, Idx, Temp, and Dewpt.

s = hdfinfo('example.hdf');
data = hdfread(s.Vdata(1),'Fields',{'Idx','Temp','Dewpt'})

data = 3x1 cell array
 {1x10 int16}
 {1x10 int16}
 {1x10 int16}

See Also
hdfinfo

 hdfread

1-5951

Introduced before R2006a

1 Alphabetical List

1-5952

hdftool
(Not recommended) Browse and import data from HDF4 or HDF-EOS files

Syntax

Note hdftool is not recommended. Use hdfread instead.

Syntax
hdftool
hdftool(filename)
h = hdftool(___)

Description
hdftool starts the HDF Import Tool, a graphical user interface used to browse the
contents of HDF4 and HDF-EOS files and import data and subsets of data from these files.
To open an HDF4 or HDF-EOS file, select Open from the Home tab. You can open
multiple files in the HDF Import Tool by selecting Open from the Home tab.

hdftool(filename) opens the HDF4 or HDF-EOS file specified by filename in the
HDF Import Tool.

h = hdftool(___) returns a handle h to the HDF Import Tool. To close the tool from
the command line, use close(h).

Examples
hdftool('example.hdf');

 hdftool

1-5953

See Also
hdfinfo | hdfread | uiimport

Introduced before R2006a

1 Alphabetical List

1-5954

hdfv
Gateway to HDF Vgroup (V) interface

Syntax
[out1,...,outN] = hdfv(funcstr,input1,...,inputN)

Description
hdfv is the MATLAB gateway to the HDF Vgroup (V) interface.

[out1,...,outN] = hdfv(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the V function in the HDF library specified by functstr.

There is a one-to-one correspondence between V functions in the HDF library and valid
values for funcstr. For example, hdfv('nattrs',vgroup_id) corresponds to the C
library call Vnattrs(vgroup_id).

Access Functions
Access functions open files, initialize the Vgroup interface, and access individual groups.
They also terminate access to vgroups and the Vgroup interface and close HDF files.

Value of funcstr Function Syntax Description
'start' status =

hdfv('start',file_id)
Initializes the V interface.

'attach' vgroup_id =
hdfv('attach',file_id,vgr
oup_ref,access)

Establishes access to a vgroup.
access can be 'r' or 'w'.

'detach' status =
hdfv('detach',vgroup_id)

Terminates access to a vgroup.

'end' status =
hdfv('end',file_id)

Terminates access to the V
interface.

 hdfv

1-5955

Create Functions
Create functions organize, label, and add data objects to vgroups.

Value of funcstr Function Syntax Description
'setclass' status =

hdfv('setclass',vgroup_id
,class)

Assigns a class to a vgroup.

'setname' status =
hdfv('setname',vgroup_id,
name)

Assigns a name to a vgroup.

'insert' ref =
hdfv('insert',vgroup_id,
id)

Adds a vgroup or vdata to an
existing group. id can be a
vdata id or a vgroup id.

'addtagref' status =
hdfv('addtagref',vgroup_i
d,tag,ref)

Adds any HDF data object to an
existing vgroup.

'setattr' status =
hdfv('setattr',vgroup_id,
name,A)

Sets the attribute of a vgroup.

File Inquiry Functions
File inquiry functions return information about how vgroups are stored in a file. They are
useful for locating vgroups in a file.

Value of funcstr Function Syntax Description
'lone' [refs,count] =

hdfv('lone',file_id,maxsi
ze)

Returns the reference numbers
of vgroups not included in other
vgroups.

'getid' next_ref =
hdfv('getid',file_id,vgro
up_ref)

Returns the reference number
for the next vgroup in the HDF
file.

1 Alphabetical List

1-5956

Value of funcstr Function Syntax Description
'find' vgroup_ref =

hdfv('find',file_id,vgrou
p_name)

Returns the reference number
of the vgroup with the specified
name if successful and zero
otherwise.

'findclass' vgroup_ref =
hdfv('findclass',file_id,
class)

Returns the reference number
of the vgroup with the specified
class.

Vgroup Inquiry Functions
Vgroup inquiry functions provide specific information about a specific vgroup. This
information includes the class, name, member count, and additional member information.

Value of funcstr Function Syntax Description
'getclass' [class_name,status] =

hdfv('getclass',vgroup_id
)

Returns the name of the class of
the specified group.

'getname' [vgroup_name,status] =
hdfv('getname',vgroup_id)

Returns the name of the
specified group.

'inquire' [num_entries,name,status]
=
hdfv('inquire',vgroup_id)

Returns the number of entries
and the name of a vgroup.

'isvg' status =
hdfv('isvg',vgroup_id,ref
)

Checks if the object specified by
ref refers to a child vgroup of
the vgroup specified by
vgroup_id.

'isvs' status =
hdfv('isvs',vgroup_id,vda
ta_ref)

Checks if the object specified by
vdata_ref refers to a child
vdata of the vgroup specified by
vgroup_id.

'gettagref' [tag,ref,status] =
hdfv('gettagref',vgroup_i
d,index)

Retrieves a tag/reference
number pair for a data object in
the specified vgroup.

 hdfv

1-5957

Value of funcstr Function Syntax Description
'ntagrefs' count =

hdfv('ntagrefs',vgroup_id
)

Returns the number of tag/
reference number pairs
contained in the specified
vgroup.

'gettagrefs' [tag,refs,count] =
hdfv('gettagrefs',vgroup_
id,maxsize)

Retrieves the tag/reference
pairs of all the data objects
within a vgroup.

'inqtagref' tf =
hdfv('inqtagref',vgroup_i
d,tag,ref)

Checks if an object belongs to a
vgroup.

'getversion' version =
hdfv('getversion',vgroup_
id)

Queries the vgroup version of a
given vgroup.

'nattrs' count =
hdfv('nattrs',vgroup_id)

Queries the total number of
vgroup attributes.

'attrinfo' [name,data_type,count,nby
tes,status] =
hdfv('attrinfo',vgroup_id
,... attr_index)

Queries information on a given
vgroup attribute.

'getattr' [values,status] =
hdfv('getattr',vgroup_id,
attr_index)

Queries the values of a given
attribute.

'Queryref' ref =
hdfv('Queryref',vgroup_id
)

Returns the reference number
of the specified vgroup.

'Querytag' tag =
hdfv('Querytag',vgroup_id
)

Returns the tag of the specified
vgroup.

'flocate' vdata_ref =
hdfv('flocate',vgroup_id,
field)

Returns the reference number
of the vdata containing the
specified field name in the
specified vgroup.

1 Alphabetical List

1-5958

Value of funcstr Function Syntax Description
'nrefs' count =

hdfv('nrefs',vgroup_id,ta
g)

Returns the number of data
objects with the specified tag in
the specified vgroup.

Output Arguments
A status or identifier output of -1 indicates that the operation failed.

See Also
hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

 hdfv

1-5959

hdfvf
Gateway to VF functions in HDF Vdata interface

Syntax
[out1,...,outN] = hdfvf(funcstr,input1,...,inputN)

Description
hdfvf is the MATLAB gateway to the VF unctions in the HDF Vdata interface.

[out1,...,outN] = hdfvf(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the VF function in the HDF library specified by functstr.

There is a one-to-one correspondence between VF functions in the HDF library and valid
values for funcstr. For example, hdfvf('nfields',vdata_id) corresponds to the C
library call VFnfields(vdata_id).

Field Inquiry Functions
Field inquiry functions provide specific information about the fields in a given vdata,
including the field's size, name, order, type, and number of fields in the vdata.

Value of
funcstr

Function Syntax Description

'fieldesize' fsize =
hdfvf('fieldesize',vdata_i
d,field_index)

Retrieves the field size (as stored
in a file) of a specified field.

'fieldisize' fsize =
hdfvf('fieldisize',vdata_i
d,field_index)

Retrieves the field size (as stored
in memory) of a specified field.

1 Alphabetical List

1-5960

Value of
funcstr

Function Syntax Description

'fieldname' name =
hdfvf('fieldname',vdata_id
,field_index)

Retrieves the name of the
specified field in the given vdata.

'fieldorder' order =
hdfvf('fieldorder',vdata_i
d,field_index)

Retrieves the order of the
specified field in the given vdata.

'fieldtype' data_type =
hdfvf('fieldtype',vdata_id
,field_index)

Retrieves the data type for the
specified field in the given vdata.

'nfields' count =
hdfvf('nfields',vdata_id)

Retrieves the total number of
fields in the specified vdata.

Output Arguments
A status or identifier output of -1 indicates that the operation failed.

See Also
hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

 hdfvf

1-5961

hdfvh
Gateway to VH functions in HDF Vdata interface

Syntax
[out1,...,outN] = hdfvh(funcstr,input1,...,inputN)

Description
hdfvh is the MATLAB gateway to VH functions in the HDF Vdata interface.

[out1,...,outN] = hdfvh(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the VH function in the HDF library specified by functstr.

There is a one-to-one correspondence between VH functions in the HDF library and valid
values for funcstr.

High-level Vdata Functions
High-level Vdata functions write data to single-field vdatas.

Value of funcstr Function Syntax Description
'makegroup' vgroup_ref =

hdfvh('makegroup',file_id
,tags,refs,..
vgroup_name,vgroup_class)

Groups a collection of data
objects within a vgroup.

'storedata' count =
hdfvh('storedata',file_id
,fieldname,data,...
vdata_name,vdata_class)

Creates vdatas containing
records limited to one field with
one component per field.

1 Alphabetical List

1-5962

Value of funcstr Function Syntax Description
'storedatam' count =

hdfvh('storedatam',file_i
d,fieldname,data,...
vdata_name,vdata_class)

Creates vdatas containing
records with one field containing
one or more components.

Output Arguments
A status or identifier output of -1 indicates that the operation failed.

See Also
hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

Introduced before R2006a

 hdfvh

1-5963

hdfvs
Gateway to VS functions in HDF Vdata interface

Syntax
[out1,...,outN] = hdfvs(funcstr,input1,...,inputN)

Description
hdfvs is the MATLAB gateway to the VS functions in the HDF Vdata interface.

[out1,...,outN] = hdfvs(funcstr,input1,...,inputN) returns one or more
outputs corresponding to the VS function in the HDF library specified by functstr.

There is a one-to-one correspondence between VS functions in the HDF library and valid
values for funcstr. For example, hdfvs('detach',vdata_id) corresponds to the C
library call VSdetach(vdata_id).

Access Functions
Access functions attach, or allow access, to vdatas. Data transfer can only occur after a
vdata has been accessed. These routines also detach from, or properly terminate access
to, vdatas when data transfer has been completed.

Value of funcstr Function Syntax Description
'attach' vdata_id =

hdfvs('attach',file_id,v
data_ref,access)

Establishes access to a specified
vdata. access can be 'r' or
'w'.

'detach' status =
hdfvs('detach',vdata_id)

Terminates access to a specified
vdata.

Read and Write Functions
Read and write functions read and write the contents of a vdata.

1 Alphabetical List

1-5964

Value of funcstr Function Syntax Description
'fdefine' status =

hdfvs('fdefine',vdata_id
,fieldname,data_type,ord
er)

Defines a new vdata field.
data_type is character vector
or string scalar containing the
HDF number type. Specify
data_type as one of these
values: 'uchar8', 'uchar',
'char8', 'char', 'double',
'uint8', 'uint16',
'uint32', 'float', 'int8',
'int16', or 'int32'.

'setclass' status =
hdfvs('setclass',vdata_i
d,class)

Assigns a class to a vdata.

'setfields' status =
hdfvs('setfields',vdata_
id,fields)

Specifies the vdata fields to be
written.

'setinterlace' status =
hdfvs('setinterlace',vda
ta_id,interlace)

Sets the interlace mode for a
vdata. interlace can be
'full' or 'no'.

'setname' status =
hdfvs('setname',vdata_id
,name)

Assigns a name to a vdata.

'write' count = hdfvs('write',
vdata_id, data)

Writes to a vdata. data must be
an nfields-by-1 cell array.
Each cell must contain an
order(i)-by-n vector of data
where order(i) is the number
of scalar values in each field.
The types of the data must
match the field types set via
hdfvs('setfields') or the
fields in an already existing
vdata.

 hdfvs

1-5965

Value of funcstr Function Syntax Description
'read' [data,count] =

hdfvs('read',vdata_id,n)
Reads from a vdata. Data is
returned in a nfields-by-1 cell
array. Each cell contains a
order(i)-by-n vector of data
where order is the number of
scalar values in each field. The
fields are returned in the same
order as specified in
hdfvs('setfields',...).

'seek' pos =
hdfvs('seek',vdata_id,re
cord)

Seeks to a specified record in a
vdata.

'setattr' status =
hdfvs('setattr',vdata_id
,field_index,name,A)

Sets the attribute of a vdata
field or vdata.

'setexternalfile' status =
hdfvs('setexternalfile',
vdata_id,filename,offset
)

Stores vdata information in an
external file.

'getattr' [value,status] =
hdfvs('getattr',vdata_id
,field_index,attr_index)

Reads the value of an attribute
attached to a vdata or a vdata
field. Set field_index to
'vdata' to retrieve an
attribute attached to the field
itself. Set field_index to the
numerical index of the field to
retrieve an attribute attached to
a vdata field.

'setattr' status =
hdfvs('setattr',vdata_id
,field_index,name,A)

Sets the attribute of a vdata
field or vdata.field_index
can be an index number or
'vdata'.

1 Alphabetical List

1-5966

File Inquiry Functions
File inquiry functions provide information about how vdatas are stored in a file. They are
useful for locating vdatas in a file.

Value of funcstr Function Syntax Description
'find' vdata_ref =

hdfvs('find',file_id,vda
ta_name)

Searches for a given vdata
name in the specified HDF file.

'findclass' vdata_ref =
hdfvs('findclass',file_i
d,vdata_class)

Returns the reference number
of the first vdata corresponding
to the specified vdata class.

'getid' next_ref =
hdfvs('getid',file_id,vd
ata_ref)

Returns the identifier of the
next vdata in the file.

'lone' [refs,count] =
hdfvs('lone',file_id,max
size)

Returns the reference numbers
of the vdatas that are not linked
into vgroups.

Vdata Inquiry Functions
Vdata inquiry functions provide specific information about a given vdata, including the
vdata's name, class, number of fields, number of records, tag and reference pairs,
interlace mode, and size.

Value of funcstr Function Syntax Description
'fexist' status =

hdfvs('fexist',vdata_id,
fields)

Tests for the existence of fields
in the specified vdata.

'inquire' [n,interlace,fields,nbyt
es,vdata_name,status]
= ...
hdfvs('inquire',vdata_id
)

Returns information about the
specified vdata.

'elts' count =
hdfvs('elts',vdata_id)

Returns the number of records
in the specified vdata.

 hdfvs

1-5967

Value of funcstr Function Syntax Description
'getclass' [class_name,status] =

hdfvs('getclass',vdata_i
d)

Returns the HDF class of the
specified vdata.

'getfields' [field_names,count] =
hdfvs('getfields',vdata_
id)

Returns all field names within
the specified vdata.

'getinterlace' [interlace,status] =
hdfvs('getinterlace',vda
ta_id)

Retrieves the interlace mode of
the specified vdata.

'getname' [vdata_name,status] =
hdfvs('getname',vdata_id
)

Retrieves the name of the
specified vdata.

'getversion' version =
hdfvs('getversion',vdata
_id)

Returns the version number of a
vdata.

'sizeof' nbytes =
hdfvs('sizeof',vdata_id,
fields)

Returns the fields sizes of the
specified vdata.

'Queryfields' [fields,status] =
hdfvs('Queryfields',vdat
a_id)

Returns the field names of the
specified vdata.

'Queryname' [name,status] =
hdfvs('Queryname',vdata_
id)

Returns the name of the
specified vdata.

'Queryref' ref =
hdfvs('Queryref',vdata_i
d)

Retrieves the reference number
of the specified vdata.

'Querytag' tag =
hdfvs('Querytag',vdata_i
d)

Retrieves the tag of the
specified vdata.

'Querycount' [count,status] =
hdfvs('Querycount',vdata
_id)

Returns the number of records
in the specified vdata.

1 Alphabetical List

1-5968

Value of funcstr Function Syntax Description
'Queryinterlace' [interlace,status] =

hdfvs('Queryinterlace',v
data_id)

Returns the interlace mode of
the specified vdata.

'Queryvsize' vsize =
hdfvs('Queryvsize',vdata
_id)

Retrieves the local size in bytes
of the specified vdata record.

'findex' [field_index,status] =
hdfvs('findex',vdata_id,
fieldname)

Queries the index of a vdata
field given the field name.

'nattrs' count =
hdfvs('nattrs',vdata_id)

Returns the number of
attributes of the specified vdata
and the vdata fields contained
in it.

'fnattrs' count =
hdfvs('fnattrs',vdata_id
,field_index)

Queries the total number of
vdata attributes.

'findattr' attr_index =
hdfvs('findattr',vdata_i
d,field_index,attr_name)

Retrieves the index of an
attribute given the attribute
name.

'isattr' tf =
hdfvs('isattr',vdata_id)

Determines if the given vdata is
an attribute.

'attrinfo' [name,data_type,count,nb
ytes,status] =
hdfvs('attrinfo',...
vdata_id,field_index,att
r_index)

Returns the name, data type,
number of values, and the size
of the values of the specified
attributes of the specified vdata
field or vdata.

Output Arguments
A status or identifier output of -1 indicates that the operation failed.

See Also
hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe | hdfhx | hdfml | hdfv | hdfvf | hdfvh |
hdfvs | matlab.io.hdf4.sd

 hdfvs

1-5969

Introduced before R2006a

1 Alphabetical List

1-5970

heatmap
Create heatmap chart

Syntax
h = heatmap(tbl,xvar,yvar)
h = heatmap(tbl,xvar,yvar,'ColorVariable',cvar)

h = heatmap(cdata)
h = heatmap(xvalues,yvalues,cdata)

h = heatmap(___ ,Name,Value)
h = heatmap(parent, ___)

Description
h = heatmap(tbl,xvar,yvar) creates a heatmap from the table tbl and returns the
HeatmapChart object. The xvar input indicates the table variable to display along the x-
axis. The yvar input indicates the table variable to display along the y-axis. The default
colors are based on a count aggregation, which totals the number of times each pair of x
and y values appears together in the table. Use h to modify the heatmap after it is
created. For a list of properties, see HeatmapChart.

h = heatmap(tbl,xvar,yvar,'ColorVariable',cvar) uses the table variable
specified by cvar to calculate the color data. The default calculation method is a mean
aggregation.

h = heatmap(cdata) creates a heatmap from matrix cdata. The heatmap has one cell
for each value in cdata.

h = heatmap(xvalues,yvalues,cdata) specifies the labels for the values that
appear along the x-axis and y-axis.

h = heatmap(___ ,Name,Value) specifies additional options for the heatmap using
one or more name-value pair arguments. Specify the options after all other input
arguments. For a list of properties, see HeatmapChart.

 heatmap

1-5971

h = heatmap(parent, ___) creates the heatmap in the figure, panel, or tab specified
by parent.

Examples

Create Heatmap from Tabular Data

Create a heatmap from a table of data for medical patients.

Load the patients data set and create a table from a subset of the variables loaded into
the workspace. Then create a heatmap that counts the total number of patients with the
same set of Smoker and SelfAssessedHealthStatus values.

load patients
tbl = table(LastName,Age,Gender,SelfAssessedHealthStatus,...
 Smoker,Weight,Location);
h = heatmap(tbl,'Smoker','SelfAssessedHealthStatus');

1 Alphabetical List

1-5972

Reorder Heatmap Labels

Create a heatmap and reorder the labels along the y-axis.

Load the patients data set and create a heatmap from the data. Assign the
HeatmapChart object to the variable h.

load patients
tbl = table(LastName,Age,Gender,SelfAssessedHealthStatus,...
 Smoker,Weight,Location);
h = heatmap(tbl,'Smoker','SelfAssessedHealthStatus');

 heatmap

1-5973

Reorder the labels along the y-axis.

h.YDisplayData = {'Excellent','Good','Fair','Poor'};

1 Alphabetical List

1-5974

Alternatively, you can reorder the labels by changing the data to categorical data and
then reordering the categories using the reordercats function. Similarly, you can add,
remove, or rename the heatmap labels using the addcats, removecats, or renamecats
functions, respectively.

Specify Table Variable for Heatmap Colors

Create a heatmap and specify the table variable to use when determining the heatmap
cell colors.

 heatmap

1-5975

Load the patients data set and create a heatmap from the data. Color each cell using
the average age of patients with a particular pair of Smoker and
SelfAssessedHealthStatus values by setting the ColorVariable option to 'Age'.

load patients
tbl = table(LastName,Age,Gender,SelfAssessedHealthStatus,...
 Smoker,Weight,Location);
h = heatmap(tbl,'Smoker','SelfAssessedHealthStatus','ColorVariable','Age');

1 Alphabetical List

1-5976

Specify Calculation Method for Color Data

Create a heatmap and specify the table variable and calculation method to use when
determining the heatmap cell colors.

Load the patients data set and create a heatmap from the data. Color each cell using the
median age of patients with a particular pair of Smoker and
SelfAssessedHealthStatus values. Specify the ColorVariable option as 'Age' and
the ColorMethod option as 'median'.

load patients
tbl = table(LastName,Age,Gender,SelfAssessedHealthStatus,...
 Smoker,Weight,Location);
h = heatmap(tbl,'Smoker','SelfAssessedHealthStatus','ColorVariable','Age','ColorMethod','median');

 heatmap

1-5977

Create Heatmap from Matrix Data

Create a matrix of data. Then create a heatmap of the matrix values. The default labels
along the x-axis and y-axis appear as 1, 2, 3, and so on.

cdata = [45 60 32; 43 54 76; 32 94 68; 23 95 58];
h = heatmap(cdata);

1 Alphabetical List

1-5978

Create Heatmap from Matrix Data Using Custom Axis Labels

Create a matrix of data. Then create a heatmap of the matrix values. Use custom labels
along the x-axis and y-axis by specifying the first two input arguments as the labels you
want. Specify the title and axis labels by setting properties of the HeatmapChart object.

cdata = [45 60 32; 43 54 76; 32 94 68; 23 95 58];
xvalues = {'Small','Medium','Large'};
yvalues = {'Green','Red','Blue','Gray'};
h = heatmap(xvalues,yvalues,cdata);

h.Title = 'T-Shirt Orders';
h.XLabel = 'Sizes';
h.YLabel = 'Colors';

 heatmap

1-5979

Normalize Colors Along Each Row or Column

Create a heatmap and normalize the colors along each column or row by setting the
ColorScaling property.

Read the sample file outages.csv into a table. The sample file contains data
representing electric utility outages in the Unites States. The table contains six columns:
Region, OutageTime, Loss, Customers, RestorationTime, and Cause. Display the
first five rows of each column.

T = readtable('outages.csv');
T(1:5,:)

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 'West' 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 'MidWest' 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'

Create a heatmap that shows the different regions along the x-axis and the different
outage causes along the y-axis. In each cell, show how many times each region
experienced a power outage due to a particular cause.

h = heatmap(T,'Region','Cause');

1 Alphabetical List

1-5980

Normalize the colors along each column. The smallest value in each column maps to the
first color in the colormap and the largest value maps to the last color. The last color
indicates the cause that caused the most power outages for each region.

h.ColorScaling = 'scaledcolumns';

 heatmap

1-5981

Normalize the colors along each row instead. The smallest value in each row maps to the
first color in the colormap and the largest value maps to the last color. The last color
indicates the region that experienced the most power outages due to each cause.

h.ColorScaling = 'scaledrows';

1 Alphabetical List

1-5982

Compute Color Data Using Custom Aggregation Method

Create a heatmap and color the cells using data computed with a custom aggregation
method. Use the accumarray function to compute the color data.

Read the sample file Temperature.csv into a table. The file contains three columns:
Month, Year, and TemperatureF.

tbl = readtable(fullfile(matlabroot,'examples','graphics','TemperatureData.csv'));

Create categorical arrays from the Month and Year columns of the table. Then determine
the unique months and years to use as labels along the x-axis and y-axis.

 heatmap

1-5983

months = categorical(tbl.Month);
years = categorical(tbl.Year);
xlabels = categories(months);
ylabels = categories(years);

Determine the final size of the resulting color data based on the number of unique months
and years.

nummonths = numel(xlabels);
numyears = numel(ylabels);

Convert the categorical months and years arrays into numeric indices to use with the
accumarray function. Compute the color data as the maximum temperature for each
month and year combination using the accumarray function. Use NaN for missing month
and year combinations.

x = double(months);
y = double(years);
temps = tbl.TemperatureF;
cdata = accumarray([y,x],temps,[numyears,nummonths],@max,NaN);

Create the heatmap. Label the x-axis and y-axis with the months and years, respectively.
Color the heatmap cells using the computed matrix data.

h = heatmap(xlabels,ylabels,cdata);

1 Alphabetical List

1-5984

Note: You can use the reordercats function for categorical arrays to reorder the axis
labels.

Input Arguments
tbl — Source table
table | timetable

Source table, specified as a table or timetable.

 heatmap

1-5985

You can create a table from workspace variables using the table function, or you can
import data as a table using the readtable function. You can create a timetable from
workspace variables using the timetable function.

The SourceTable property of the HeatmapChart object stores the source table.

xvar — Table variable for x-axis
character vector | string scalar | numeric scalar | logical vector

Table variable for x-axis, specified in one of these forms:

• Character vector or string scalar indicating one of the variable names. For example,
heatmap(tbl,'HealthStatus','Gender') selects the variable named
'HealthStatus' for the x-axis.

• Numeric scalar indicating the table variable index. For example, heatmap(tbl,2,3)
selects the second variable in the table for the x-axis.

• Logical vector containing one true element.

The values associated with your table variable must be grouped into a finite set of
discrete categories that the categorical function accepts. If the values are not grouped
into a finite set of categories, use the discretize function to group them.

The labels that appear along the x-axis are in alphabetical order. You can customize the
labels using categorical arrays. For an example, see “Create Heatmap from Tabular
Data”.

The XVariable property of the HeatmapChart object stores the selected variable.

yvar — Table variable for y-axis
character vector | string scalar | numeric scalar | logical vector

Table variable for y-axis, specified in one of these forms:

• Character vector or string scalar of one of the variable names. For example,
heatmap(tbl,'HealthStatus','Gender') selects the variable named
'HealthStatus' for the y-axis.

• Numeric scalar indicating the table variable index. For example, heatmap(tbl,2,3)
selects the third variable in the table for the y-axis.

• Logical vector containing one true element.

1 Alphabetical List

1-5986

The values associated with your table variable must be grouped into a finite set of
discrete categories that the categorical function accepts. If the values are not grouped
into a finite set of categories, use the discretize function to group them.

The labels that appear along the y-axis are in alphabetical order. You can customize the
labels using categorical arrays. For an example, see “Create Heatmap from Tabular
Data”.

The YVariable property of the HeatmapChart object stores the selected variable.

cvar — Table variable for color data
character vector | string scalar | numeric scalar | logical vector

Table variable for color data, specified in one of these forms:

• A character vector or string scalar of one of the variable names. For example,
heatmap(__,'ColorVariable,'HealthStatus') selects the variable named
'HealthStatus' for the y-axis.

• A numeric scalar indicating the table variable index. For example,
heatmap(__,'ColorVariable',1) selects the third variable in the table for the y-
axis.

• A logical vector containing one true element.

The values associated with your table variable must be of a numeric type or logical.

The property value is empty [] when using matrix data. The ColorVariable property of
the HeatmapChart object stores the selected variable. The ColorData property
populates with data based on the selected variable.

By default, heatmap calculates the color data based on a mean aggregation. To change
the calculation method, set the ColorMethod property.

cdata — Color data
matrix

Color data for the heatmap cells, specified as a matrix.

The ColorData property of the HeatmapChart object stores the values.
Example: [40 24 68; 68 37 58; 49 23 46]

xvalues — Values appearing along x-axis
categorical array | string array | numeric array | cell array of character vectors

 heatmap

1-5987

Values appearing along the x-axis, specified as a categorical array, string array, numeric
array, or cell array of character vectors.
Example: {'small','medium','large'}
Example: categorical({'small','medium','large'})

yvalues — Values appearing along y-axis
categorical array | string array | numeric array | cell array of character vectors

Values appearing along y-axis, specified as a categorical array, string array, numeric array,
or cell array of character vectors.
Example: {'small','medium','large'}
Example: categorical({'small','medium','large'})

parent — Parent container
Figure object | Panel object | Tab object

Parent container in which to plot, specified as a Figure, Panel, or Tab object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
heatmap(tbl,xvar,yvar,'ColorVariable','Temperatures','ColorMethod','
median')

Note The properties listed here are only a subset. For a complete list, see HeatmapChart.

Title — Chart title
character vector | string scalar | ''

Chart title, specified as a character vector, a string scalar, or '' for no title. For tabular
data, the default chart has an autogenerated title.

By default, heatmaps support a subset of TeX markup for the text you specify. Use TeX
markup to add superscripts and subscripts, modify the font type and color, and include

1 Alphabetical List

1-5988

special characters in the text. If you want a TeX markup character in regular text, such as
an underscore (_), then insert a backslash (\) before the character you want to include.
The backslash is the TeX escape character. For more information, see the “Interpreter” on
page 1-0 property of the text object.
Example: h = heatmap(__,'Title','My Title Text')
Example: h.Title = 'My Title Text'

ColorMethod — Method to calculate color data
'count' | 'mean' | 'median' | 'sum' | 'none'

Method to calculate the color data values (stored in ColorData), specified as 'count',
'mean', 'median', 'sum', or 'none'.

If you do not want to use a third variable from the table for the color data, then specify
the method in this table.

Method Description
'count' Count the number of times each pair of x

and y values appears in the source table.
The heatmap does not use the
ColorVariable property. This value is the
default value when you are using tabular
data and do not specify the
ColorVariable parameter.

If you want to use a third variable from the table for the color data, then set the
ColorVariable property to the variable you want and specify the ColorMethod
property as one of the methods listed in this table. For each pair of x and y values, the
methods use the corresponding values in the ColorVariable column of the source table
to calculate the data.

Method Description
'mean' Calculate the average value. This value is

the default value when you specify the
ColorVariable property.

'median' Calculate the median value.
'sum' Sum the values.

 heatmap

1-5989

Method Description
'none' Use the value exactly. The table cannot

contain more than one instance of each pair
of x and y values. This value is the default
value when using matrix data.

If you want to compute your own matrix of aggregated data, use the accumarray
function. Specify the matrix as input to the heatmap function.
Example: h = heatmap(__,'ColorMethod','median')
Example: h.ColorMethod = 'median'

Tips
• To interactively explore the data in your heatmap, use these options.

• Zoom — Use the scroll wheel or the + and - keys to zoom.
• Pan — Click and drag the heatmap or use the arrow keys to pan across the rows or

columns.
• Data tips — Hover over the heatmap to display a data tip.
• Rearrange rows and columns — Click and drag a row or column label to move it to

a different position.
• Sort values — Click the icon that appears when you hover over the row or column

label. Click once to sort the values in ascending order, twice to sort the values in
descending order, and a third time to reset the order.

Compatibility Considerations
Heatmaps interpret text using TeX markup
Behavior changed in R2019a

Starting in R2019a, heatmaps interpret text using TeX markup instead of displaying the
literal characters. If you want to use a TeX markup character in regular text, such as an
underscore (_), then insert a backslash (\) before the character you want to include. The
backslash is the TeX escape character. For more information on using TeX markup, see
the “Interpreter” on page 1-0 property of the text object.

1 Alphabetical List

1-5990

See Also
Functions
categorical | readtable | sortx | sorty | table

Properties
HeatmapChart

Topics
“Create Heatmap from Tabular Data”
“Access Data in a Table”

Introduced in R2017a

 heatmap

1-5991

HeatmapChart Properties
Heatmap chart appearance and behavior

Description
HeatmapChart properties control the appearance and behavior of a HeatmapChart
object. By changing property values, you can modify certain aspects of the heatmap chart.
For example, you can add a title:

h = heatmap([1 3 5; 2 4 6]);
h.Title = 'My Heatmap Title';

Properties
Labels

Title — Chart title
character vector | string scalar | ''

Chart title, specified as a character vector, a string scalar, or '' for no title. For tabular
data, the default chart has an autogenerated title.

By default, heatmaps support a subset of TeX markup for the text you specify. Use TeX
markup to add superscripts and subscripts, modify the font type and color, and include
special characters in the text. If you want a TeX markup character in regular text, such as
an underscore (_), then insert a backslash (\) before the character you want to include.
The backslash is the TeX escape character. For more information, see the “Interpreter” on
page 1-0 property of the text object.
Example: h = heatmap(__,'Title','My Title Text')
Example: h.Title = 'My Title Text'

XLabel — Label for x-axis
character vector | string scalar | ''

Label for the x-axis, specified as a character vector, string scalar, or '' for no label. For
tabular data, the default chart has an autogenerated label.

1 Alphabetical List

1-5992

By default, heatmaps support a subset of TeX markup for the text you specify. Use TeX
markup to add superscripts and subscripts, modify the font type and color, and include
special characters in the text. If you want a TeX markup character in regular text, such as
an underscore (_), then insert a backslash (\) before the character you want to include.
The backslash is the TeX escape character. For more information, see the “Interpreter” on
page 1-0 property of the text object.
Example: h = heatmap(__,'XLabel','My Label')
Example: h.XLabel = 'My Label'

YLabel — Label for y-axis
character vector | string scalar | ''

Label for the y-axis, specified as a character vector, string scalar, or '' for no label. For
tabular data, the default chart has an autogenerated label.

By default, heatmaps support a subset of TeX markup for the text you specify. Use TeX
markup to add superscripts and subscripts, modify the font type and color, and include
special characters in the text. If you want a TeX markup character in regular text, such as
an underscore (_), then insert a backslash (\) before the character you want to include.
The backslash is the TeX escape character. For more information, see the “Interpreter” on
page 1-0 property of the text object.
Example: h = heatmap(__,'YLabel','My Label')
Example: h.YLabel = 'My Label'

MissingDataLabel — Label for missing data icon
'NaN' (default) | character vector

Label for missing data icon that displays below the colorbar, specified as a character
vector. If you do not want a label to display, use an empty character vector ''.

By default, heatmaps support a subset of TeX markup for the text you specify. Use TeX
markup to add superscripts and subscripts, modify the font type and color, and include
special characters in the text. If you want a TeX markup character in regular text, such as
an underscore (_), then insert a backslash (\) before the character you want to include.
The backslash is the TeX escape character. For more information, see the “Interpreter” on
page 1-0 property of the text object.
Example: h = heatmap(__,'MissingDataLabel','No data')
Example: h.MissingDataLabel = 'No data'

 HeatmapChart Properties

1-5993

Color and Styling

Colormap — Colormap for coloring heatmap cells
predefined colormap name | m-by-3 array of RGB triplets

Colormap for coloring heatmap cells, specified as a predefined colormap name or an m-
by-3 array of RGB (red, green, blue) triplets that define m individual colors. You can
specify one of the predefined colormaps, or you can create a custom one.

• Predefined colormaps — Specify the colormap name in command form, such as
parula or summer. For a full list of options, see colormap.

• Custom colormap — Specify an m-by-3 array of RGB triplets.

Example: h = heatmap(__,'Colormap',summer)
Example: h.Colormap = parula

ColorMethod — Method to calculate color data
'count' | 'mean' | 'median' | 'sum' | 'none'

Method to calculate the color data values (stored in ColorData), specified as 'count',
'mean', 'median', 'sum', or 'none'.

If you do not want to use a third variable from the table for the color data, then specify
the method in this table.

Method Description
'count' Count the number of times each pair of x

and y values appears in the source table.
The heatmap does not use the
ColorVariable property. This value is the
default value when you are using tabular
data and do not specify the
ColorVariable parameter.

If you want to use a third variable from the table for the color data, then set the
ColorVariable property to the variable you want and specify the ColorMethod
property as one of the methods listed in this table. For each pair of x and y values, the
methods use the corresponding values in the ColorVariable column of the source table
to calculate the data.

1 Alphabetical List

1-5994

Method Description
'mean' Calculate the average value. This value is

the default value when you specify the
ColorVariable property.

'median' Calculate the median value.
'sum' Sum the values.
'none' Use the value exactly. The table cannot

contain more than one instance of each pair
of x and y values. This value is the default
value when using matrix data.

If you want to compute your own matrix of aggregated data, use the accumarray
function. Specify the matrix as input to the heatmap function.
Example: h = heatmap(__,'ColorMethod','median')
Example: h.ColorMethod = 'median'

ColorScaling — Mapping of color data to colormap colors
'scaled' (default) | 'scaledcolumns' | 'scaledrows' | 'log'

Mapping of color data to colormap colors, specified as one of these values:

• 'scaled' — Map values in the ColorData property that are less than or equal to the
minimum color limit to the first color in the colormap. Map values greater than or
equal to the maximum color limit to the last color. The ColorLimits property
contains the color limit values.

• 'scaledcolumns' — Normalize each column in the ColorData property to values
from 0 through 1. Map the smallest value to the first color in the colormap and the
largest value to the last color. If all the values in a column are the same, then the
heatmap uses the middle color of the colormap.

• 'scaledrows' — Normalize each row in the ColorData property to values from 0 to
1. Map the smallest value to the first color in the colormap and the largest value to the
last color. If all the values in a row are the same, then the heatmap uses the middle
color of the colormap.

• 'log' — Calculate the log of each value in the ColorData property before mapping
the values to colors in the colormap. Negative values appear as missing data.
However, if all the values are negative, then this option uses -log(-value).

The heatmap ignores NaN, Inf, and -Inf values when determining the color scaling.

 HeatmapChart Properties

1-5995

When ColorScaling is set to 'scaledcolumns' or 'scaledrows', the default tick
labels on the colorbar range from 0 to 1. The smallest value within a column or row of the
heatmap chart maps to 0 on the colorbar. The largest value within a column or row maps
to 1 on the colorbar.
Example: h = heatmap(__,'ColorScaling','scaledcolumns')
Example: h.ColorScaling = 'scaledcolumns'

ColorLimits — Color limits
two-element vector

Color limits, specified as a two-element vector of the form [min max]. The color limits
indicate the color data values that map to the first and last colors in the colormap.

Note The default values of min and max reflect the range of your data after the
ColorScaling option is applied.

Example: h = heatmap(__,'ColorLimits',[0 10])
Example: h.ColorLimits = [0 10]

MissingDataColor — Color for cells with no data value
[0.1500 0.1500 0.1500] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

Color for cells with no data value, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-5996

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: h = heatmap(__,'MissingDataColor',[0.8 0.8 0.8])
Example: h.MissingDataColor = [0.8 0.8 0.8]

ColorbarVisible — Display of colorbar
'on' (default) | 'off'

Display of colorbar, specified as 'on' or 'off'.
Example: h = heatmap(__,'ColorbarVisible','off')
Example: h.ColorbarVisible = 'off'

 HeatmapChart Properties

1-5997

GridVisible — Display of grid lines
'on' (default) | 'off'

Display of grid lines, specified as 'on' or 'off'.
Example: h = heatmap(__,'GridVisible','off')
Example: h.GridVisible = 'off'

CellLabelColor — Text color for data labels
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color for data labels, specified as 'auto', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The default value of 'auto' chooses an appropriate text
color, depending on the color of each heatmap cell. If you do not want the labels to
display, specify 'none'.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

1 Alphabetical List

1-5998

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: h = heatmap(__,'CellLabelColor','blue')
Example: h.CellLabelColor = 'blue'

CellLabelFormat — Format for data labels
'%0.4g' (default) | character vector of format options

Format for data labels, specified as a character vector of format options.

Most elements of the character vector are optional, except the percent sign and
conversion character. Construct the character vector in this order:

• One or more flags — Options. For example, add a plus sign before positive values. For
a full list of options, see the table of Optional Flags.

 HeatmapChart Properties

1-5999

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

• Conversion character — Value type. For a full list of options, see the table of
Conversion Characters. If you specify a conversion that does not fit the data, then
MATLAB overrides the specified conversion, and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

Example: h.CellLabelFormat = '%.2f' displays the values using fixed-point
notation with two decimal places.

Example: h.CellLabelFormat ='$%.2f' displays a dollar sign before each value.

Example: h.CellLabelFormat = '%.2f lbs' displays lbs after each value.

1 Alphabetical List

1-6000

Optional Flags

Identifier Description Example of Numeric
Format

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

 HeatmapChart Properties

1-6001

Conversion Characters

Identifier Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

FontColor — Text color for title, axis labels, and tick labels
[0.1500 0.1500 0.1500] (default) | color name | RGB triplet

Text color for title, axis labels, and tick labels, specified as a color name or an RGB triplet.
Example: h = heatmap(__,'FontColor','blue')
Example: h.FontColor = 'blue'

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.
Example: h = heatmap(__,'FontName','Cambria')
Example: h.FontName = 'Cambria'

FontSize — Font size
scalar numeric value

1 Alphabetical List

1-6002

Font size used for the title, axis labels, and cell labels, specified as a scalar value. The
default font depends on the specific operating system and locale.

The title and axis labels use a slightly larger font size (scaled up by 10%). If there is not
enough room to display the text within each cell, then the text might use a smaller font
size or the text might not appear.
Example: h = heatmap(__,'FontSize',12)
Example: h.FontSize = 12

Table Data

SourceTable — Source table
table | timetable

Source table, specified as a table or a timetable.

You can create a table from workspace variables using the table function, or you can
import data as a table using the readtable function. You can create a timetable from
workspace variables using the timetable function.

Note The property is ignored and read-only when you use matrix data.

XVariable — Table variable for x-axis
character vector | string | numeric scalar | logical vector

Table variable for x-axis, specified in one of these forms:

• Character vector or string indicating one of the variable names
• Numeric scalar indicating the table variable index
• Logical vector containing one true element

The values associated with your table variable must be grouped into a finite set of
discrete categories that the categorical function accepts. If the values are not grouped
into a finite set of categories, use the discretize function to group them.

If you set the XVariable property value, then the XData and XDisplayData properties
automatically update to appropriate values.

 HeatmapChart Properties

1-6003

The labels that appear along the x-axis are in alphabetical order. You can customize the
labels using XDisplayData, yDisplayData, or categorical arrays. For an example, see
“Create Heatmap from Tabular Data”.

Note The property is ignored and read-only when you use matrix data.

Example: h.XVariable = 'Location' specifies the variable named 'Location'.

YVariable — Table variable for y-axis
character vector | string | numeric scalar | logical vector

Table variable for y-axis, specified in one of these forms:

• Character vector or string indicating one of the variable names
• Numeric scalar indicating the table variable index
• Logical vector containing one true element

The values associated with your table variable must be grouped into a finite set of
discrete categories that the categorical function accepts. If the values are not grouped
into a finite set of categories, use the discretize function to group them.

If you set the YVariable property value, then the YData and YDisplayData properties
automatically update to appropriate values.

The labels that appear along the y-axis are in alphabetical order. You can customize the
labels using categorical arrays. For an example, see “Create Heatmap from Tabular
Data”.

Note The property is ignored and read-only when you use matrix data.

Example: h.YVariable = 'Location' specifies the variable named 'Location'.

ColorVariable — Table variable for color data
character vector | string | numeric scalar | logical vector

Table variable for color data, specified in one of these forms:

• Character vector or string indicating one of the variable names.

1 Alphabetical List

1-6004

• Numeric scalar indicating the table variable index.
• Logical vector containing one true element.

The values associated with your table variable must be of a numeric type or logical.

When you specify the color variable, MATLAB updates the ColorData property values.
Also, the ColorMethod property changes to 'mean', unless you previously specified a
different value.

Note This property is ignored and read-only when you use matrix data. It is also ignored
when the ColorMethod property is set to 'count'.

Example: h = heatmap(__,'ColorVariable','Temperature')
Example: h.ColorVariable = 'Temperature'

Matrix Data

ColorData — Data to color each heatmap cell
matrix of numeric values

Data to color each heatmap cell, specified as a matrix of numeric values.

If you are using tabular data, you cannot set this property. The ColorData values
automatically populate based on the table variable you select with the ColorVariable
property.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

XData — x values
cell array of character vectors | string array | categorical array

x values associated with the color data matrix columns, specified as a cell array of
character vectors, a string array, or a categorical array. The XDisplayData property
controls the order in which the values appear along the x-axis in the chart.

If you change the XData property value, then the XDisplayData property automatically
updates to appropriate values.

 HeatmapChart Properties

1-6005

If you are using tabular data, you cannot set this property. The XData values
automatically populate based on the table variable you select with the XVariable
property.
Example: h.XData = {'small','large','medium'}
Data Types: char | string | cell | categorical

YData — y values
cell array of character vectors | string array | categorical array

y values associated with the color data matrix rows, specified as a cell array of character
vectors, a string array, or a categorical array. The YDisplayData property controls the
order in which the values appear along the y-axis in the chart.

If you change the YData property value, then the YDisplayData property automatically
updates to appropriate values.

If you are using tabular data, you cannot set this property. The YData values
automatically populate based on the table variable you select with the YVariable
property.
Example: h.YData = {'small','large','medium'}
Data Types: char | string | cell | categorical

Displayed Data

ColorDisplayData — Sorted color data
matrix

This property is read-only.

Sorted color data, returned as a matrix of values as they appear in the heatmap chart.
The values are sorted based on the XDisplayData and YDisplayData properties.
Data Types: double

XDisplayData — Display order of x-axis values
cell array of character vectors | string array | categorical array

Display order of x-axis values, specified as a cell array of character vectors, a string array,
or a categorical array. You can set this property to a subset, superset, or permutation of
the values in XData. By default, the values are the same as the XData values.

1 Alphabetical List

1-6006

If you specify a value that is not in XData, then the heatmap shows a row of either NaN
values or zeros.

• If the ColorMethod property is 'sum' or 'count', then the heatmap shows a row of
zeros.

• If the ColorMethod property is 'mean', 'median', or 'none', then the heatmap
shows a row of NaN values.

If you want to specify the XDisplayData as a name-value pair during object creation,
you must specify the XDisplayData property before specifying the XDisplayLabels or
XLimits properties. Use the XDisplayLabels property to change the displayed text.
Example: h.XDisplayData = {'small','medium','large'}
Data Types: char | string | cell | categorical

YDisplayData — Display order of y-axis values
cell array of character vectors | string array | categorical array

Display order of y-axis values, specified as a cell array of character vectors, a string array,
or a categorical array. You can set this property to a subset, superset, or permutation of
the values in YData. By default, the values are the same as the YData values.

If you specify a value that is not in YData, then the heatmap shows a row of either NaN
values or zeros.

• If the ColorMethod property is 'sum' or 'count', then the heatmap shows a row of
zeros.

• If the ColorMethod property is 'mean', 'median', or 'none', then the heatmap
shows a row of NaN values.

If you want to specify YDisplayData as a name-value pair during object creation, you
must specify the YDisplayData property before specifying the YDisplayLabels or
YLimits properties. Use the YDisplayLabels property to change the displayed text.
Example: h.YDisplayData = {'small','medium','large'}
Data Types: char | string | cell | categorical

XDisplayLabels — Labels for x-axis values
cell array of character vectors | string array | categorical array

Labels for the x-axis values, specified as a cell array of character vectors, string array, or
categorical array. The array must be a column vector the same size as the XDisplayData

 HeatmapChart Properties

1-6007

vector. Specify one label for each value in XDisplayData. By default, the values are the
same as the XDisplayData values. When you specify this property as a categorical array,
MATLAB uses the values in the array, not the categories.

If you add a value, delete a value, or rearrange the values in the XDisplayData property,
then this property updates accordingly to maintain the pairings of values and labels. If
you want to specify both XDisplayLabels and XDisplayData as name-value pairs
during object creation, then specify the XDisplayData property first.

By default, heatmaps support a subset of TeX markup for the text you specify. Use TeX
markup to add superscripts and subscripts, modify the font type and color, and include
special characters in the text. If you want a TeX markup character in regular text, such as
an underscore (_), then insert a backslash (\) before the character you want to include.
The backslash is the TeX escape character. For more information, see the “Interpreter” on
page 1-0 property of the text object.
Example: h.XDisplayLabels = {'SM','MED','LG'}
Data Types: char | string | cell | categorical

YDisplayLabels — Labels for y-axis values
cell array of character vectors | string array | categorical array

Labels for the y-axis values, specified as a cell array of character vectors, string array, or
categorical array. The array must be a column vector the same size as the YDisplayData
vector. Specify one label for each value in YDisplayData. By default, the values are the
same as the YDisplayData values. When you specify this property as a categorical array,
MATLAB uses the values in the array, not the categories.

If you add a value, delete a value, or rearrange the values in the YDisplayData property,
then this property updates accordingly to maintain the pairings of values and labels. If
you want to specify both YDisplayLabels and YDisplayData as name-value pairs
during object creation, then specify the YDisplayData property first.

By default, heatmaps support a subset of TeX markup for the text you specify. Use TeX
markup to add superscripts and subscripts, modify the font type and color, and include
special characters in the text. If you want a TeX markup character in regular text, such as
an underscore (_), then insert a backslash (\) before the character you want to include.
The backslash is the TeX escape character. For more information, see the “Interpreter” on
page 1-0 property of the text object.
Example: h.YDisplayLabels = {'SM','MED','LG'}

1 Alphabetical List

1-6008

Data Types: char | string | cell | categorical

XLimits — x-axis limits
two-element row vector

x-axis limits, specified as a two-element row vector of values from XDisplayData.

If you want to specify both XLimits and XDisplayData as name-value pairs during
object creation, then specify the XDisplayData property first.
Example: h.XLimits = {'small','medium'}
Data Types: char | string | cell | categorical

YLimits — y-axis limits
two-element row vector

y-axis limits, specified as a two-element row vector of values from YDisplayData.

If you want to specify both YLimits and YDisplayData as name-value pairs during
object creation, then specify the YDisplayData property first.
Example: h.YLimits = {'small','medium'}
Data Types: char | string | cell | categorical

Position

ActivePositionProperty — Position property to hold constant
'outerposition' (default) | 'innerposition'

Position property to hold constant during resize operations, specified as
'outerposition' or 'innerposition'. The default value of 'outerposition'
means that the OuterPosition property remains constant. The InnerPosition
property value can change when the parent container changes size, the data changes, or
the labels change. The InnerPosition property value also can change when you display
or remove the colorbar.
Example: h.ActivePositionProperty = 'outerposition'

OuterPosition — Outer size and position
[0 0 1 1] (default) | four-element vector

 HeatmapChart Properties

1-6009

Outer size and position of the heatmap within the parent container (typically a figure,
panel, or tab), specified as a four-element vector of the form [left bottom width
height]. The outer position includes the colorbar, title, and axis labels.

• The left and bottom elements define the distance from the lower left corner of the
container to the lower left corner of the heatmap.

• The width and height elements are the heatmap dimensions, which include the
heatmap cells, plus a margin for the surrounding text and colorbar.

The default value of [0 0 1 1] is the whole interior of the container.

By default, the values are normalized to the container. To change the units, set the Units
property.

InnerPosition — Inner size and position
four-element vector

Inner size and position of the heatmap within the parent container (typically a figure,
panel, or tab) returned as a four-element vector of the form [left bottom width
height]. The inner position does not include the colorbar, title, or axis labels.

• The left and bottom elements define the distance from the lower left corner of the
container to the lower left corner of the heatmap.

• The width and height elements are the heatmap dimensions, which include only the
heatmap cells.

Position — Inner size and position
four-element vector

Inner size and position of the heatmap within the parent container (typically a figure,
panel, or tab) returned as a four-element vector of the form [left bottom width
height]. This property is equivalent to the InnerPosition property.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

1 Alphabetical List

1-6010

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0), and the upper right corner maps to
(1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
OuterPosition.

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

 HeatmapChart Properties

1-6011

• 'on' — Display the heatmap.
• 'off' — Hide the heatmap without deleting it. You still can access the properties of

an invisible HeatmapChart object.

Parent/Child

Parent — Parent container
figure object | panel object | tab object

Parent container, specified as a figure, panel, or tab object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of HeatmapChart object handle in the Children property of the parent,
specified as one of these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. To temporarily hide the handle
during the execution of that function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command-line, but allows callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. This includes get, findobj, gca, gcf, gco, newplot, cla, clf, and
close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles, regardless of their HandleVisibility property setting.

See Also
heatmap

Topics
“Access Property Values”

1 Alphabetical List

1-6012

Introduced in R2017a

 HeatmapChart Properties

1-6013

head
Get top rows of table, timetable, or tall array

Syntax
B = head(A)
B = head(A,k)

Description
B = head(A) returns the first eight rows of table or timetable A.

B = head(A,k) returns the first k rows of A.

Examples

Preview Table

Create a table that contains 100 rows and five variables.

load patients
T = table(LastName,Gender,Age,Height,Weight);
size(T)

ans = 1×2

 100 5

Preview the first eight rows.

T2 = head(T)

T2=8×5 table
 LastName Gender Age Height Weight

1 Alphabetical List

1-6014

 __________ ________ ___ ______ ______

 'Smith' 'Male' 38 71 176
 'Johnson' 'Male' 43 69 163
 'Williams' 'Female' 38 64 131
 'Jones' 'Female' 40 67 133
 'Brown' 'Female' 49 64 119
 'Davis' 'Female' 46 68 142
 'Miller' 'Female' 33 64 142
 'Wilson' 'Male' 40 68 180

Preview Contents of Tall Table

Create a tall table and preview the first few rows of data.

Create a tall table for the airlinesmall.csv data set. Select a subset of the variables
to work with. Use head to extract the first few rows of data.

varnames = {'Year','Month','ArrDelay','DepDelay','UniqueCarrier'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames',varnames);
T = tall(ds)

T =

 Mx5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'
 : : : : :
 : : : : :

tt = head(T)

 head

1-6015

tt =

 8x5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'

Collect the results into memory to view the data.

t8 = gather(tt)

t8=8×5 table
 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'

Retrieve Specified Number of Rows in Tall Array

Preview the first 20 rows of data in a tall table.

Create a tall table for the airlinesmall.csv data set. Select a subset of the variables
to work with, and treat 'NA' values as missing data so that datastore replaces them
with NaN values. Use head to view the first 20 rows of data.

1 Alphabetical List

1-6016

varnames = {'Year','Month','ArrDelay','DepDelay','UniqueCarrier'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames',varnames);
T = tall(ds)

T =

 Mx5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'
 : : : : :
 : : : : :

tt = head(T,20)

tt =

 20x5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'
 : : : : :
 : : : : :

Collect the results into memory to view the data.

t20 = gather(tt)

 head

1-6017

t20=20×5 table
 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'
 1987 10 3 3 'PS'
 1987 10 2 1 'PS'
 1987 10 16 15 'PS'
 1987 10 3 9 'PS'
 1987 10 39 15 'PS'
 1987 10 57 32 'TW'
 1987 10 0 -3 'TW'
 1987 10 -14 0 'TW'
 ⋮

Input Arguments
A — Input array
table | timetable

Input array, specified as a table or timetable.

Data Types: table | timetable

k — Number of rows to extract
scalar

Number of rows to extract, specified as a positive scalar integer. If A has fewer than k
rows, then head returns all of A.

1 Alphabetical List

1-6018

Output Arguments
B — Requested rows
table | timetable

Requested rows, returned as a table or timetable. The data type of B is the same as A.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

You can use head and tail with tall arrays of any valid underlying data type (single,
double, int8, datetime, table, and so on).

If you are unsure whether the result returned by gather(A) will fit in memory, then use
gather(head(A)) or gather(tail(A)). These commands still fully evaluate the tall
array A, but only return a small subset of the result in memory.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 head

1-6019

See Also
gather | summary | table | tail | tall | timetable | topkrows

Topics
“Index and View Tall Array Elements”

Introduced in R2016b

1 Alphabetical List

1-6020

height
Number of table rows

Syntax
H = height(T)

Description
H = height(T) returns the number of rows in the table, T.

height(T) is equivalent to size(T,1).

Examples

Number of Table Rows

Create a table, T.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

T = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

T=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Smith 38 71 176 124 93
 Johnson 43 69 163 109 77
 Williams 38 64 131 125 83
 Jones 40 67 133 117 75

 height

1-6021

 Brown 49 64 119 122 80

Find the number of rows in table T.

H = height(T)

H = 5

T contains five rows; height does not count the variable names.

Input Arguments
T — Input table
table

Input table, specified as a table.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
numel | size | width

1 Alphabetical List

1-6022

Introduced in R2013b

 height

1-6023

help
Help for functions in Command Window

Syntax
help name
help

Description
help name displays the help text for the functionality specified by name, such as a
function, method, class, toolbox, or variable.

Note Some help text displays the names of functions in uppercase characters to make
them stand out from the rest of the text. When typing these function names, use
lowercase. For function names that appear in mixed case (such as javaObject), type the
names as shown.

help displays content relevant to your previous actions.

Examples

Display Function and Overloaded Method Help

Display help for the MATLAB delete function.

help delete

delete Delete file or graphics object.
 delete file_name deletes the named file from disk. Wildcards
 may be used. For example, delete *.p deletes all P-files from the
 current directory.
...

1 Alphabetical List

1-6024

Because delete is the name of a function and of several methods, the help text includes
a link to a list of the methods with the same name.

Request help for the delete method of the handle class.

help handle/delete

Display Package, Class, and Method Help

Display help for the containers package, the Map class, and the isKey method.

help containers
help containers.Map
help containers.Map.isKey

Not all packages, classes, and associated methods or events require complete
specification. For example, display the help text for the throwAsCaller method of the
MException class.

help throwAsCaller

Display Variable Help

Display help for a variable of type datetime.

t = datetime
help t

Because t is of type datetime, the help command displays help text for the datetime
class.

Request help for Day, a method of the datetime class.

help t.Day

Display Help for Functions in Folder

List all of the functions in the folder matlabroot/toolbox/matlab/timefun by
specifying a partial path.

 help

1-6025

help timefun

Input Arguments
name — Functionality name
character vector | string scalar

Functionality name, such as the name of a function, method, class, toolbox, or variable,
specified as a character vector or string scalar. name also can be an operator symbol
(such as +).

If name is a variable, help displays the help text for the class of that variable.

To get help for a method of a class, specify the class name and the method name,
separated with a period. For example, to get help for the methodname method of the
classname class, type help classname.methodname.

Some classes and other packaged items require that you specify the package name.
Events, properties, and some methods require that you specify the class name. Separate
the components of the name with periods. For example, to get help for the
propertyname property of the classname class, type classname.propertyname. To
get help for the classname class in the packagename package, type
packagename.methodname. To get help for the methodname method of the classname
class in the packagename package, type packagename.classname.methodname.

If name appears in multiple folders on the MATLAB search path, help displays the help
text for the first instance of name found on the search path.

If name is overloaded, help displays a link to a list of the methods with the same name.

If name specifies the name or partial path of a folder:

• If the folder contains a nonempty Contents.m file, the help function displays the file.
Contents.m contains a list of MATLAB program files in the folder and their
descriptions.

• If the folder contains an empty Contents.m file, the help function displays name is
a folder.

• If the folder does not contain a Contents.m file, the help function lists the first line
of help text for each program file in the folder.

1 Alphabetical List

1-6026

• If name is the name of both a folder and a function, the help function displays the
associated text for both the folder and the function.

Tips
• To prevent long descriptions from scrolling off the screen before you have time to read

them, enter more on, and then enter the help statement.
• To identify the package name for a class, create an instance of the class, and then call

class(obj).

Alternative Functionality
View more extensive help using the doc command or the Function Browser.

See Also
doc | lookfor | more | what | which | whos

Topics
“Ways to Get Function Help”
“Add Help for Your Program”

Introduced before R2006a

 help

1-6027

helpbrowser
Open Help browser to access online documentation

Note helpbrowser will be removed in a future release. Use doc instead.

Syntax
helpbrowser

Description
helpbrowser displays the Help browser, open to its default startup page.

See Also
doc | help

Topics
“Ways to Get Function Help”

Introduced before R2006a

1 Alphabetical List

1-6028

helpdesk
Open Help browser

Note helpdesk will be removed in a future release. Use doc instead.

Syntax
helpdesk

Description
helpdesk opens the Help browser to the default startup page. In previous releases,
helpdesk displayed the Help Desk, which was the precursor to the Help browser.

See Also
doc

Introduced before R2006a

 helpdesk

1-6029

helpdlg
Create help dialog box

Note If you are using App Designer or creating apps with the uifigure function,
then use uialert instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Syntax
helpdlg
helpdlg(msg)
helpdlg(msg,title)
f = helpdlg(___)

Description
helpdlg creates a nonmodal on page 1-6033 Help dialog box with the default title, Help
Dialog, and the default message, This is the default help.

helpdlg(msg) specifies custom message text. If a dialog box with a matching dialog box
title already exists, then MATLAB brings it to the front.

helpdlg(msg,title) specifies a custom title for the dialog box.

f = helpdlg(___) returns the figure object. You can use this syntax with any of the
input arguments from the previous syntaxes.

Examples

Specify Custom Message
helpdlg('Consider using a cell array.');

1 Alphabetical List

1-6030

Specify Message with Line Breaks
Specify the help dialog box text using a cell array of character vectors. Line breaks occur
after each array element.
helpdlg({'Valid data types are:','int8',...
 'int16','int32','int64'});

Specify Custom Title and Message
Create a dialog box with a custom title and message.

helpdlg('Choose 10 points from the figure',...
 'Point Selection');

 helpdlg

1-6031

If the dialog box is not visible, it might be buried under other windows. Issue the
command again to bring it to the front

helpdlg('Choose 10 points from the figure',...
 'Point Selection');

Now, change the message by calling helpdlg again using the same title with a different
message.

helpdlg('Choose 5 points from the figure',...
 'Point Selection')

After you create a dialog box, each time you call helpdlg and specify the same title,
MATLAB brings that dialog box to the front. If the dialog box title is unchanged, then
MATLAB only creates a new dialog box if you close the dialog box between calls to
helpdlg.

Input Arguments
msg — Help message
'This is the default help' (default) | character vector | cell array of character
vectors | string array

Help message, specified as a character vector, cell array of character vectors, or string
array.

• If you specify the help message as a character vector, then a long message wraps to fit
the dialog box.

• If you specify the help message as a cell array of character vectors, then lines breaks
occur between each array element. Long elements wrap to fit the dialog box.

Example: 'This value is required.'
Example: {'Valid data types are:','int8','int16','int32','int64'}

title — Dialog box title
'Help Dialog' (default) | character vector | string array

Dialog box title, specified as a character vector or a string array.
Example: 'Value Specification'

1 Alphabetical List

1-6032

Definitions

Nonmodal Dialog Box
A nonmodal dialog box does not prevent the user to interact with other MATLAB windows
before responding.

Tips
• MATLAB program execution continues even when a modal Help dialog box is active.

To block program execution until the user closes the dialog box, use the uiwait
function.

See Also
dialog | errordlg | msgbox | warndlg

Introduced before R2006a

 helpdlg

1-6033

helpwin
Provide access to help comments for all functions

Note helpwin will be removed in a future release. Use doc instead.

Syntax
helpwin
helpwin topic

Description
helpwin lists topics for groups of functions in the MATLAB Help browser. It shows brief
descriptions of the topics and provides links to display help comments for the functions.
You cannot follow links in the helpwin list of functions if the MATLAB software is busy
(for example, running a program).

helpwin topic displays help information for the topic. If topic is a folder, it displays
all functions in the folder. If topic is a function, helpwin displays help for that function.
From the page, you can access a list of folders (Default Topics link) as well as the
reference page help for the function (Go to online doc link). You cannot follow links in
the helpwin list of functions if MATLAB is busy (for example, running a program).

Examples
Typing

helpwin datafun

displays the functions in the datafun folder and a brief description of each.

Typing

1 Alphabetical List

1-6034

helpwin fft

displays the help for the fft function.

See Also
doc | help

Introduced before R2006a

 helpwin

1-6035

hess
Hessenberg form of matrix

Syntax
H = hess(A)
[P,H] = hess(A)
[AA,BB,Q,Z] = hess(A,B)

Description
H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix P so that A =
P*H*P' and P'*P = eye(size(A)) .

[AA,BB,Q,Z] = hess(A,B) for square matrices A and B, produces an upper
Hessenberg matrix AA, an upper triangular matrix BB, and unitary matrices Q and Z such
that Q*A*Z = AA and Q*B*Z = BB.

Examples
H is a 3-by-3 eigenvalue test matrix:

H =
 -149 -50 -154
 537 180 546
 -27 -9 -25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
 -149.0000 42.2037 -156.3165
 -537.6783 152.5511 -554.9272
 0 0.0728 2.4489

1 Alphabetical List

1-6036

Definitions

Hessenberg Matrix
A Hessenberg matrix contains zeros below the first subdiagonal. If the matrix is
symmetric or Hermitian, then the form is tridiagonal. This matrix has the same
eigenvalues as the original, but less computation is needed to reveal them.

See Also
eig | qz | schur

Introduced before R2006a

 hess

1-6037

matlab.mixin.Heterogeneous class
Package: matlab.mixin

Superclass for heterogeneous array formation

Description
matlab.mixin.Heterogeneous is an abstract class that supports forming
heterogeneous arrays. A heterogeneous array is an array of objects that differ in their
specific class, but are all derived from or are instances of a root class. The root class
derives directly from matlab.mixin.Heterogeneous.

Class Attributes
Abstract

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

Methods

Public Methods
<infotypegroup type="method"> cat horzcat vertcat </infotypegroup>

Protected Methods
<infotypegroup type="method">
matlab.mixin.Heterogeneous.getDefaultScalarElement </infotypegroup>

1 Alphabetical List

1-6038

Definitions

Heterogeneous Hierarchy
Use matlab.mixin.Heterogeneous to define hierarchies of classes whose instances
you can combine into heterogeneous arrays.

The following class definition enables the formation of heterogeneous arrays that combine
instances of any classes derived from HierarchyRoot.

classdef HierarchyRoot < matlab.mixin.Heterogeneous
 % HierarchyRoot is a direct subclass of matlab.mixin.Heterogeneous.
 % HierarchyRoot is the root of this heterogeneous hierarchy.
end

Deriving the HierarchyRoot class directly from matlab.mixin.Heterogeneous
enables the HierarchyRoot class to become the root of a hierarchy of classes. You can
combine instances of the members of this hierarchy into a heterogeneous array. Only
instances of classes derived from the same root class can combine to form a valid
heterogeneous array.

Class of a Heterogeneous Array
The class of a heterogeneous array is always the class of the most specific superclass
common to all objects in the array. For example, suppose you define the following class
hierarchy:

 matlab.mixin.Heterogeneous class

1-6039

Forming an array containing an instance of LeafA with an instance of LeafB creates an
array of class Middle.

harray = [LeafA LeafB];
class(harray)

ans =
Middle

Forming an array containing an instance of LeafC with an instance of LeafD creates an
array of class HierarchyRoot.

harray = [LeafC LeafD];
class(harray)

ans =
HierarchyRoot

Forming an array containing an instance of LeafA with another instance of LeafA
creates a homogeneous array of class LeafA.

harray = [LeafA LeafA];
class(harray)

ans =
LeafA

1 Alphabetical List

1-6040

Restrictions on Heterogeneous Array Formation

You can form heterogeneous arrays only with objects that are derived from the same
hierarchy root (for example, the HierarchyRoot class in the hierarchy shown
previously).

You can form heterogeneous arrays with objects that derive from multiple superclasses,
but only one branch in the hierarchy can define a heterogeneous root.

Forming a Heterogeneous Array

Heterogeneous arrays are the result of operations that produce arrays containing
instances of two or more classes from the heterogeneous hierarchy. Usually, the operation
is concatenation or indexed assignment. For example, these statements form a
heterogeneous array using indexed assignment.

harray(1) = LeafA;
harray(2) = LeafC;
class(harray)

ans =
Middle

Growing the Array Can Change Its Class

If an array contains objects derived from matlab.mixin.Heterogeneous, assigning
new objects into it can change the class of the array. For example, consider a
homogeneous array containing objects only of the LeafA class.

harray = [LeafA,LeafA,LeafA];
class(harray)

ans =
LeafA

Adding an object of a different class derived from the same root to a homogeneous array
converts the array's class to the most specific superclass.

harray(4) = LeafB;
class(harray)

ans =
Middle

 matlab.mixin.Heterogeneous class

1-6041

Method Dispatching
When MATLAB invokes a method for which the dominant argument is a heterogeneous
array:

• The method must be defined for the class of the heterogeneous array, either directly
by the class of the array or by inheritance from a superclass.

• The method must be Sealed = true (that is, cannot be overridden by a subclass). If
you need to seal an inherited method, see Sealing Inherited Methods.

As with a homogeneous array, the class of the heterogeneous array determines which
class method executes for any given method invocation. MATLAB does not consider the
class of individual elements in the array when dispatching to methods.

Sealing Inherited Methods

The requirement that methods called on a heterogeneous array be Sealed = true
ensures correct and predictable behavior with all array elements.

You must override methods that are inherited from outside the heterogeneous hierarchy if
these methods are not Sealed = true and you want to call these methods on
heterogeneous arrays.

For example, suppose you define a heterogeneous array by subclassing
matlab.mixin.SetGet, in addition to matlab.mixin.Heterogeneous. Override the
set method to call the matlab.mixin.SetGet superclass method as required by your
class design.
classdef HeterogeneousSetGet < matlab.mixin.SetGet & matlab.mixin.Heterogeneous
 properties
 P
 end
 methods(Sealed)
 function varargout = set(obj,varargin)
 [varargout{1:nargout}] = set@matlab.mixin.SetGet(obj,varargin{:});
 end
 end
end

Method implementations can take advantage of the fact that, given a heterogeneous array
harray and a scalar index n, the expression

harray(n)

is not a heterogeneous array. Therefore, when invoking a method on a single element of a
heterogeneous array, special requirements for heterogeneous arrays do not apply.

1 Alphabetical List

1-6042

Defining the Default Object
When working with object arrays (both heterogeneous and homogeneous), MATLAB
creates default objects to fill in missing array elements by calling the class constructor
with no arguments. Filling in missing array elements becomes necessary in cases such as
these:

• Indexed assignment creating an array with gaps. For example, if harray is not
previously defined:

harray(5) = LeafA;
• Loading a heterogeneous array from a MAT-file when MATLAB cannot find the class
definition of a specific object.

The matlab.mixin.Heterogeneous class provides a default implementation of a
method called getDefaultScalarElement. This method returns an instance of the root
class of the heterogeneous hierarchy, unless the root class is abstract.

If the root class is abstract or is not an appropriate default object for the classes in the
heterogeneous hierarchy, you can override the getDefaultScalarElement method to
return an instance of class that is derived from the root class.

Defining the getDefaultScalarElement Method

Specify the class of the default object by overriding the matlab.mixin.Heterogeneous
method called getDefaultScalarElement in the root class of the heterogeneous
hierarchy. You can override getDefaultScalarElement only in the root class.

The getDefaultScalarElement method has the following signature:

methods (Static, Sealed, Access = protected)
 function defaultObject = getDefaultScalarElement
 ...
 end
end

The getDefaultScalarElement method must satisfy these criteria:

• Static — MATLAB calls this method without an object.
• Protected — MATLAB calls this method; object users do not.
• Sealed (not required) — Seal this method to ensure users of the heterogeneous

hierarchy do not change the intended behavior of the class.

 matlab.mixin.Heterogeneous class

1-6043

• It must return a scalar object
• Its returned value must pass the isa test for the root class, that is

(isa(getDefaultScalarElement,'HierarchyRoot')

where HierarchyRoot is the name of the heterogeneous hierarchy root class. This
means the default object can be an instance of any class derived from the root class.

Cannot Redefine Indexing or Concatenation
Heterogeneous arrays require consistent indexing and concatenation behaviors.
Therefore, subclasses of matlab.mixin.Heterogeneous cannot change their default
indexed-reference, indexed-assignment, or concatenation behavior.

You cannot override the following methods in your subclasses:

• cat
• horzcat
• vertcat
• subsref
• subsasgn

In cases involving multiple inheritance in which your subclass inherits from superclasses
in addition to matlab.mixin.Heterogeneous, the superclasses cannot define any of
these methods.

Default Concatenation Behavior

Statements of the form

a = [obj1 obj2 ...];

create an array, a, containing the objects listed in brackets.

Concatenating Heterogeneous objects of the same specific class preserves the class of
the objects and does not form a heterogeneous array.

Concatenating Heterogeneous objects that are derived from the same root superclass,
but that are of different specific classes, yields a heterogeneous array. MATLAB does not
attempt to convert the class of any array members if all are part of the same root
hierarchy.

1 Alphabetical List

1-6044

Indexed Assignment Behavior

Statements of the form

a(m:n) = [objm ... objn];

assign the right-hand side objects to the array elements (m:n), specified on the left side of
the assignment.

Indexed assignment to a heterogeneous array can do any of these:

• Increase or decrease the size of the array.
• Overwrite existing array elements.
• Change property values of objects within the array.
• Change the class of the array.
• Change whether the array is heterogeneous.

Indexed Reference Behavior

Statements of the form

a = harray(m:n);

assign the elements of harray referenced by indices m:n, to array a.

Indexed reference on a heterogeneous array returns a sub-range of the original array.
Depending on the specific elements within that sub-range (m:n), the result might have a
different class than the original array, and might not be heterogeneous.

Converting Nonmember Objects
If you attempt to form a heterogeneous array with objects that are not derived from the
same root class, MATLAB calls the convertObject method, if it exists, to convert
objects to the dominant class. Implementing a convertObject method enables the
formation of heterogeneous arrays containing objects that are not part of the
heterogeneous hierarchy.

 matlab.mixin.Heterogeneous class

1-6045

When Is Conversion Necessary

Suppose there are two classes A and B, where B is not derived from
matlab.mixin.Heterogeneous, or where A and B are derived from different root
classes that are derived from matlab.mixin.Heterogeneous.

MATLAB attempts to call the convertObject method implemented by the root class of A
in the following cases:

• Indexed assignment A(k) = B
• Horizontal and vertical concatenations [A B] and [A;B]

[A,B] and [A;B]

Implement a convertObject method if you want to support conversion of objects whose
class is not defined in your heterogeneous hierarchy. You do not need to implement this
method if your class design does not require this conversion.

Implementing convertObject

Only the root class of the heterogeneous hierarchy can implement a convertObject
method.

The convertObject method must have the following signature.

methods (Static, Sealed, Access = protected)
 function cobj = convertObject(DomClass,objToConvert)
 ...
 end
end

Where for indexed assignment A(k) = B and concatenation [A B]:

• DomClass is the name of the class of the array A.
• objToConvert is the object to be converted, B in this case.
• cobj is a legal member of the heterogeneous hierarchy to which A belongs.

convertObject must return a valid object of class A or MATLAB issues an error.

1 Alphabetical List

1-6046

Handle Compatibility
The matlab.mixin.Heterogeneous class is handle compatible. It can be combined
with either handle or value classes when defining a subclass using multiple superclasses.
See “Handle Compatible Classes” for information on handle compatibility.

The matlab.mixin.Heterogeneous class is a value class. To learn how value classes
affect copy operations, see Copying Objects in the MATLAB Programming Fundamentals
documentation.

See Also

Topics
“A Class Hierarchy for Heterogeneous Arrays”
“Designing Heterogeneous Class Hierarchies”
“Design Subclass Constructors”

Introduced in R2011a

 matlab.mixin.Heterogeneous class

1-6047

cat
Class: matlab.mixin.Heterogeneous
Package: matlab.mixin

Concatenation for heterogeneous arrays

Syntax
C = cat(dim,A,B)

Description
C = cat(dim,A,B) concatenates objects A and B along the dimension dim. The class of
object arrays A and B must be derived from the same root class of a
matlab.mixin.Heterogeneous hierarchy.

• If A and B are of the same class, the class of the resulting array is unchanged.
• If A and B are of different subclasses of a common superclass that is derived from

matlab.mixin.Heterogeneous, then the result is a heterogeneous array and the
array's class is that of the most specific superclass shared by A and B.

The cat method is sealed in the class matlab.mixin.Heterogeneous and, therefore,
you cannot override it in subclasses.

Input Arguments
dim

Scalar dimension along which to concatenate arrays

Default:

1 Alphabetical List

1-6048

A

Object array derived from the same root subclass of matlab.mixin.Heterogeneous as
B

B

Object array derived from the same root subclass of matlab.mixin.Heterogeneous as
A

Output Arguments
C

Array resulting from the specified concatenation. The class of this array is that of the
most specific superclass shared by A and B.

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes.

See Also
cat | matlab.mixin.Heterogeneous

 cat

1-6049

matlab.mixin.Heterogeneous.getDefaultScal
arElement
Class: matlab.mixin.Heterogeneous
Package: matlab.mixin

Return default object for heterogeneous array operations

Syntax
defaultObject = getDefaultScalarElement

Description
defaultObject = getDefaultScalarElement returns the default object for a
heterogeneous hierarchy. Override this method if the root class is abstract or is not an
appropriate default object for the classes in the heterogeneous hierarchy.
getDefaultScalarElement must return an instance of another member of the
heterogeneous hierarchy.

The implementation of getDefaultScalarElement inherited from the
matlab.mixin.Heterogeneous class returns an instance of the root class. If the root
class is abstract, you must implement getDefaultScalarElement in the root class to
return a default object. For more information, see “Root Class” on page 1-6052.

MATLAB calls the getDefaultScalarElement method when requiring a default object.
For more information on heterogeneous arrays and default objects, see
matlab.mixin.Heterogeneous.

Output Arguments
defaultObject

The default object for heterogeneous array operations.

1 Alphabetical List

1-6050

Attributes
Static true
Access Protected
Sealed true not required

To learn about attributes of methods, see Method Attributes.

Examples
This example describes a heterogeneous hierarchy with a root class
(FinancialObjects) that is an abstract class and cannot, therefore, be used for the
default object. The FinancialObjects class definition includes an override of the
getDefaultScalarElement method which returns an instance of the Assets class as
the default object.

The root class can override the getDefaultScalarElement method that is defined in
matlab.mixin.Heterogeneous class and return an Assets object as the default
object.

 matlab.mixin.Heterogeneous.getDefaultScalarElement

1-6051

classdef FinancialObjects < matlab.mixin.Heterogeneous
 methods (Abstract)
 val = determineCurrentValue(obj)
 end
 methods (Static, Sealed, Access = protected)
 function default_object = getDefaultScalarElement
 default_object = Assets;
 end
 end
end

Definitions

Root Class
Root class – The direct subclass of matlab.mixin.Heterogeneous that forms the root
of a heterogeneous hierarchy. Classes of objects that you can combine into heterogeneous
arrays must derive from this root class.

Tips
• Override getDefaultScalarElement only if the root class is not suitable as a

default object.
• Override getDefaultScalarElement only in the root class of the heterogeneous

hierarchy.
• getDefaultScalarElement must return a scalar object.
• getDefaultScalarElement must be a static method with protected access. While

not required by MATLAB, you can seal this method to prevent overriding by other
classes.

• MATLAB returns an error if the value returned by getDefaultScalarElement is not
scalar or is not an instance of a class that is a valid member of the hierarchy.

See Also
matlab.mixin.Heterogeneous

1 Alphabetical List

1-6052

horzcat
Class: matlab.mixin.Heterogeneous
Package: matlab.mixin

Horizontal concatenation for heterogeneous arrays

Syntax
C = horzcat(A1,A2,...)

Description
C = horzcat(A1,A2,...) concatenates the matlab.mixin.Heterogeneous objects
A1, A2, and so on, to form the array C. All input arrays must have the same number of
rows.

The class of object arrays A1,A2,... must be derived from the same root class of a
matlab.mixin.Heterogeneous hierarchy.

MATLAB calls:

C = horzcat(A1,A2,...)

for the expressions:

C = [A1,A2,...]
C = [A1 A2 ...]

when A1 is an array of matlab.mixin.Heterogeneous objects.

If all input arguments are of the same specific class, the class of the resulting array is
unchanged. If all input arguments are of different subclasses of a common superclass that
is derived from matlab.mixin.Heterogeneous, then the result is a heterogeneous
array. The array's class is that of the most specific superclass shared by all input
arguments.

 horzcat

1-6053

If all input arguments are not members of the same heterogeneous hierarchy, MATLAB
calls the convertObjects method, if defined by the dominant root class (the first
argument or the left-most element in the concatenation if no other class is dominant).

The horzcat method is sealed in the class matlab.mixin.Heterogeneous and,
therefore, you cannot override it in subclasses.

Input Arguments
A1

Object array of class matlab.mixin.Heterogeneous

A2

Object array of class matlab.mixin.Heterogeneous

Output Arguments
C

Array resulting from the specified concatenation. The class of this array is that of the
most specific superclass shared by the input arguments.

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes.

See Also
horzcat | matlab.mixin.Heterogeneous

1 Alphabetical List

1-6054

vertcat
Class: matlab.mixin.Heterogeneous
Package: matlab.mixin

Vertical concatenation for heterogeneous arrays

Syntax
C = vertcat(A1,A2,...)

Description
C = vertcat(A1,A2,...) concatenates the matlab.mixin.Heterogeneous objects
A1, A2, and so on, to form the array C. All input arrays must have the same number of
columns.

The class of object arrays A1,A2,... must be derived from the same root class of a
matlab.mixin.Heterogeneous hierarchy.

MATLAB calls:

C = vertcat(A1,A2,...)

for the expression:

C = [A1;A2;...]

when A1 and A2, and so on are arrays of matlab.mixin.Heterogeneous objects.

If all input arguments are of the same specific class, the class of the resulting array is
unchanged. If all input arguments are of different subclasses of a common superclass that
is derived from matlab.mixin.Heterogeneous, then the result is a heterogeneous
array. The array's class is that of the most specific superclass shared by all input
arguments.

 vertcat

1-6055

If all input arguments are not members of the same heterogeneous hierarchy, MATLAB
calls the convertObjects method, if defined by the dominant root class (the first
argument or the left-most element in the concatenation if no other class is dominant).

The horzcat method is sealed in the class matlab.mixin.Heterogeneous and,
therefore, you cannot override it in subclasses.

Input Arguments
A1

Object array of class matlab.mixin.Heterogeneous

A2

Object array of class matlab.mixin.Heterogeneous

Output Arguments
C

Array resulting from the specified vertical concatenation. The class of this array is that of
the most specific superclass shared by the input arguments.

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes.

See Also
matlab.mixin.Heterogeneous | vertcat

1 Alphabetical List

1-6056

hex2dec
Convert text representation of hexadecimal number to decimal number

Syntax
d = hex2dec('hex_value')

Description
d = hex2dec('hex_value') converts hex_value to its floating-point integer
representation. The argument hex_value is a hexadecimal integer stored as text. If the
value of hex_value is greater than the hexadecimal equivalent of the value returned by
flintmax, then hex2dec might not return an exact conversion.

The input argument hex_value can be a character array, cell array of character vectors,
or string array.

• If hex_value is a character array, each row is interpreted as a double-precision
number, and d is returned as a column vector.

• If hex_value is a cell array of character vectors, each element is interpreted as a
double-precision number, and d is returned as a column vector.

• If hex_value is a string array, each element is interpreted as a double-precision
number, and d is returned as a numeric array with the same size as hex_value.

Examples
hex2dec('3ff')

ans =

 1023

For a character array S,

 hex2dec

1-6057

S =
0FF
2DE
123
hex2dec(S)

ans =

255
734
291

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be specified as a character array. Cell arrays are not supported.

See Also
base2dec | bin2dec | dec2hex | flintmax | format | hex2num | sprintf

1 Alphabetical List

1-6058

hex2num
Convert IEEE hexadecimal string to double-precision number

Syntax
n = hex2num(S)

Description
n = hex2num(S), where S contains 16 characters representing a hexadecimal number,
returns the IEEE double-precision floating-point number n that it represents. Fewer than
16 characters are padded on the right with zeros. S can be a character array, a cell array
of character vectors, or a string array.

• If S is a character array, each row is interpreted as a double-precision number, and n is
returned as a column vector.

• If S is a cell array of character vectors, each element is interpreted as a double-
precision number, and n is returned as a column vector.

• If S is a string array, each element is interpreted as a double-precision number, and n
is returned as a numeric array with the same size as S.

NaNs, infinities and denorms are handled correctly.

Examples
hex2num('400921fb54442d18')

returns Pi.

hex2num('bff')

returns

 hex2num

1-6059

ans =

 -1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be specified as a character array. Cell arrays are not supported.
• For n = hex2num(S), size(S,2) <= length(num2hex(0)).

See Also
format | hex2dec | num2hex | sprintf

Introduced before R2006a

1 Alphabetical List

1-6060

hgexport
Export figure

Syntax
hgexport(fig,filename)
hgexport(fig,'-clipboard')

Description
hgexport(fig,filename) writes figure fig to the EPS file filename.

hgexport(fig,'-clipboard') writes figure fig to the Microsoft Windows clipboard.
The format in which the figure is exported is determined by which renderer you use. The
Painters renderer generates a metafile. The OpenGL renderer generate a bitmap.

Alternatives
Use the File > Export Setup dialog. Use Edit > Copy Figure to copy the figure’s
content to the system clipboard. For details, see “Customize Figure Before Saving” and
“Copy Figure to Clipboard from Edit Menu”.

See Also
print

Introduced before R2006a

 hgexport

1-6061

hggroup
Create group object

Syntax
h = hggroup
h = hggroup(...,'PropertyName',propertyvalue,...)
h = hggroup(ax,...)

Properties
For a list of properties, see Group.

Description
h = hggroup creates a Group object as a child of the current axes and returns its
handle, h.

h = hggroup(...,'PropertyName',propertyvalue,...) creates a Group object
with the property values specified in the argument list.

h = hggroup(ax,...) creates the Group object in the axes specified by ax instead of
in the current axes (gca). The option ax can precede any of the input argument
combinations in the previous syntaxes.

A Group object can be the parent of any axes, as well as other Group objects. Use Group
objects to form a group of child objects that can be treated as a single object.

Examples
Plot random data and parented the lines to the Group object.

hg = hggroup;
plot(randn(5),randn(5),'Parent',hg)

1 Alphabetical List

1-6062

Instance Diagram for This Example
The following diagram shows the object hierarchy created by this example.

See Also
hgtransform

Topics
“Create Object Groups”

Introduced before R2006a

 hggroup

1-6063

hgload
Load graphics object hierarchy from file

Syntax
h = hgload(filename)
[h,old_prop_values] = hgload(...,property_structure)

Description

Note hgload is not recommended. Use openfig instead.

h = hgload(filename) loads graphics object hierarchy from the FIG-file specified by
filename and returns handles to the top-level objects. Specify filename as a character
vector or string. If filename contains no extension, then MATLAB adds the .fig
extension.

[h,old_prop_values] = hgload(...,property_structure) overrides the
properties on the top-level objects stored in the FIG-file with the values in
property_structure, and returns their previous values in old_prop_values.

property_structure must be a structure having field names that correspond to
property names and values that are the new property values.

old_prop_values is a cell array equal in length to h, containing the old values of the
overridden properties for each object. Each cell contains a structure having field names
that are property names, each of which contains the original value of each property that
has been changed. Any property specified in property_structure that is not a
property of a top-level object in the FIG-file is not included in old_prop_values.

Nonserializable objects (such as the default toolbars and the default menus) are not saved
because they are created when the figure is created. This allows revisions of the default
menus and toolbars to occur without affecting existing FIG-files.

1 Alphabetical List

1-6064

Alternatives
Use the File > Open on the figure window menu to access figure files with the Open
dialog.

See Also
hgsave | open

Introduced before R2006a

 hgload

1-6065

hgsave
Save graphics object hierarchy to file

Syntax
hgsave(filename)
hgsave(h,filename)
hgsave(...,'-v6')
hgsave(...,'-v7.3')

Description

Note hgsave is not recommended. Use savefig instead.

hgsave(filename) saves the current figure to a file named filename. Specify
filename as a character vector or string.

hgsave(h,filename) saves the objects identified by the array of handles h to a file
named filename. If you do not specify an extension for filename, then the
extension .fig is appended. If h is a vector, none of the handles in h may be ancestors or
descendents of any other handles in h.

hgsave(...,'-v6') saves the FIG-file in a format that can be loaded by versions prior
to MATLAB 7.

hgsave(...,'-v7.3') saves the FIG-file in a format that can be loaded only by
MATLAB versions 7.3 and above. This format, based on HDF5 files, is intended for saving
FIG-files larger than 2 GB.

Backward Compatibility
When creating a figure you want to save and use in a MATLAB version prior to MATLAB
7, use the 'v6' option with the plotting function and the '-v6' option for hgsave.
Check the reference page for the plotting function you are using for more information.

1 Alphabetical List

1-6066

In MATLAB release R2014b or later, you cannot open a save FIG-file in earlier versions of
MATLAB. Use savefig to save figures that are compatible with earlier versions of
MATLAB.

Alternatives
Use the File > Export Setup dialog. Use Edit > Copy Figure to copy the figure’s
content to the system clipboard. For details, see “Customize Figure Before Saving” and
“Copy Figure to Clipboard from Edit Menu”.

See Also
hgload | open | save | savefig

Introduced before R2006a

 hgsave

1-6067

hgsetget
Abstract class used to derive handle class with set and get methods

Note hgsetget will be removed in a future release. Use matlab.mixin.SetGet
instead.

Syntax
classdef myclass < hgsetget

Description
classdef myclass < hgsetget makes myclass a subclass of the hgsetget class,
which is a subclass of the handle class.

Use the hgsetget class to derive classes that inherit set and get methods that behave
like Handle Graphics® set and get functions.

Methods
When you derive a class from the hgsetget class, your class inherits the following
methods.

Method Purpose
set Assigns values to the specified properties or returns a cell array

of possible values for writable properties.
get Returns value of specified property or a struct with all

property values.

1 Alphabetical List

1-6068

Method Purpose
setdisp Called when set is called with no output arguments and a

handle array, but no property name. Override this method to
change what set displays.

getdisp Called when get is called with no output arguments and handle
array, but no property name. Override this method to change
what get displays.

See Also

Topics
“Implement Set/Get Interface for Properties”

 hgsetget

1-6069

hgtransform
Create transform object

Syntax
h = hgtransform
h = hgtransform('PropertyName',propertyvalue,...)
h = hgtransform(ax,...)

Properties
For a list of properties, see Transform.

Description
h = hgtransform creates a Transform object and returns its handle.

h = hgtransform('PropertyName',propertyvalue,...) creates a Transform
object with the property value settings specified in the argument list. For a description of
the properties, see Transform.

h = hgtransform(ax,...) creates the Transform object in the axes specified by ax
instead of in the current axes (gca). The option ax can precede any of the input argument
combinations in the previous syntaxes.

Transform objects can contain other objects, which lets you treat the Transform object
and its children as a single entity with respect to visibility, size, orientation, etc. You can
group objects by parenting them to a single Transform object (i.e., setting the object's
Parent property to the transform object's handle):

h = hgtransform;
surface('Parent',h,...)

1 Alphabetical List

1-6070

The primary advantage of parenting objects to a Transform object is that you can
perform transforms (for example, translation, scaling, rotation, etc.) on the child objects
in unison.

The parent of a Transform object is either an Axes object or another Transform object.

Although you cannot see a Transform object, setting its Visible property to off makes
all its children invisible as well.

Exceptions and Limitations
• A Transform object can be the parent of any number of axes child objects belonging

to the same axes, except for light objects.
• Transform objects can never be the parent of axes objects and therefore can contain

objects only from a single axes.
• Transform objects can be the parent of other transform objects within the same axes.
• You cannot transform Image objects because images are not true 3-D objects. Texture

mapping the image data to a surface CData enables you to produce the effect of
transforming an image in 3-D space.

• Transforms do not affect text objects unless the text object uses data units. If a Text
object has a position specified in data units, then the transform moves the lower left
corner of the text. The transform does not affect the font size or orientation. To change
the font size and orientation, use text properties.

Note Many plotting functions clear the axes (remove axes children) before drawing the
graph. Clearing the axes also deletes any Transform objects in the axes.

Examples

Transforming a Group of Objects

This example shows how to create a 3-D star with a group of surface objects parented to a
single transform object. The transform object then rotates the object about the z-axis
while scaling its size.

Create an axes and adjust the view. Set the axes limits to prevent auto limit selection
during scaling.

 hgtransform

1-6071

ax = axes('XLim',[-1.5 1.5],'YLim',[-1.5 1.5],'ZLim',[-1.5 1.5]);
view(3)
grid on

Create the objects you want to parent to the transform object.

[x,y,z] = cylinder([.2 0]);
h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');
h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

1 Alphabetical List

1-6072

Create a transform object and parent the surface objects to it. Initialize the rotation and
scaling matrix to the identity matrix (eye).

t = hgtransform('Parent',ax);
set(h,'Parent',t)

Rz = eye(4);
Sxy = Rz;

 hgtransform

1-6073

Form the z-axis rotation matrix and the scaling matrix. Rotate group and scale by using
the increasing values of r.

for r = 1:.1:2*pi
 % Z-axis rotation matrix
 Rz = makehgtform('zrotate',r);
 % Scaling matrix
 Sxy = makehgtform('scale',r/4);
 % Concatenate the transforms and
 % set the transform Matrix property
 set(t,'Matrix',Rz*Sxy)
 drawnow
end
pause(1)

1 Alphabetical List

1-6074

Reset to the original orientation and size using the identity matrix.

set(t,'Matrix',eye(4))

 hgtransform

1-6075

Transforming Objects Independently

This example creates two transform objects to illustrate how to transform each
independently within the same axes. A translation transformation moves one transform
object away from the origin.

Create and set up the axes object that will be the parent of both transform objects. Set
the limits to accommodate the translated object.

ax = axes('XLim',[-3 1],'YLim',[-3 1],'ZLim',[-1 1]);
view(3)
grid on

1 Alphabetical List

1-6076

Create the surface objects to group.

[x,y,z] = cylinder([.3 0]);
h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');
h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

 hgtransform

1-6077

Create the transform objects and parent them to the same axes. Then, parent the surfaces
to transform t1. Copy the surface objects and parent the copies to transform t2. This
figure should not change.

t1 = hgtransform('Parent',ax);
t2 = hgtransform('Parent',ax);

set(h,'Parent',t1)
h2 = copyobj(h,t2);

1 Alphabetical List

1-6078

Translate the second transform object away from the first transform object and display
the result.

Txy = makehgtform('translate',[-1.5 -1.5 0]);
set(t2,'Matrix',Txy)
drawnow

 hgtransform

1-6079

Rotate both transform objects in opposite directions.

Rotate 10 times (2pi radians = 1 rotation)

for r = 1:.1:20*pi
 % Form z-axis rotation matrix
 Rz = makehgtform('zrotate',r);
 % Set transforms for both transform objects
 set(t1,'Matrix',Rz)
 set(t2,'Matrix',Txy*inv(Rz))
 drawnow
end

1 Alphabetical List

1-6080

See Also
hggroup | makehgtform

Topics
“Create Object Groups”

Introduced before R2006a

 hgtransform

1-6081

hidden
Remove hidden lines from mesh plot

Syntax
hidden on
hidden off
hidden
hidden(ax,...)

Description
Hidden line removal draws only those lines that are not obscured by other objects in a 3-
D view. The hidden function only applies to surface plot objects that have a uniform
FaceColor.

hidden on turns on hidden line removal for the current mesh plot so lines in the back of
a mesh are hidden by those in front. This is the default behavior.

hidden off turns off hidden line removal for the current mesh plot.

hidden toggles the hidden line removal state.

hidden(ax,...) modifies surface objects in the axes specified by ax instead of the
current axes.

Examples

Show Obscured Lines

Create a mesh plot of the peaks function.

figure
mesh(peaks)

1 Alphabetical List

1-6082

By default, MATLAB® hides obscured lines from the view. Show the obscured parts of the
mesh by setting the hidden line removal to off.

hidden off

 hidden

1-6083

Algorithms
When a surface graphics object has a uniform FaceColor matching the Color property
of the axes, hidden off sets the FaceColor of the surface object to 'none'.

hidden on sets the FaceColor property of such surface objects to match the axes
Color property (or to match that of the figure, if axes Color is 'none').

See Also
mesh | shading

1 Alphabetical List

1-6084

Introduced before R2006a

 hidden

1-6085

hilb
Hilbert matrix

Syntax
H = hilb(n)
H = hilb(n,classname)

Description
H = hilb(n) returns the Hilbert matrix of order n. The Hilbert matrix is a notable
example of a poorly conditioned matrix. The elements of Hilbert matrices are given by
H(i,j) = 1/(i + j – 1).

H = hilb(n,classname) returns a matrix of class classname, which can be either
'single' or 'double'.

Examples

Fourth-Order Hilbert Matrix

Compute the fourth-order Hilbert matrix and its condition number to see that it is poorly
conditioned.

H = hilb(4)

H = 4×4

 1.0000 0.5000 0.3333 0.2500
 0.5000 0.3333 0.2500 0.2000
 0.3333 0.2500 0.2000 0.1667
 0.2500 0.2000 0.1667 0.1429

cond(H)

1 Alphabetical List

1-6086

ans = 1.5514e+04

Input Arguments
n — Matrix order
scalar, nonnegative integer

Matrix order, specified as a scalar, nonnegative integer.
Example: hilb(10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

classname — Matrix class
'double' (default) | 'single'

Matrix class, specified as either 'double' or 'single'.
Example: hilb(10,'single')
Data Types: char

References
[1] Forsythe, G. E. and C. B. Moler. Computer Solution of Linear Algebraic Systems.

Englewood Cliffs, NJ: Prentice-Hall, 1967.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
invhilb

 hilb

1-6087

Introduced before R2006a

1 Alphabetical List

1-6088

hist
Histogram plot (not recommended; use histogram)

Note hist is not recommended. Use histogram instead.

For more information, including suggestions on updating code, see “Replace Discouraged
Instances of hist and histc”.

Syntax
hist(x)
hist(x,nbins)
hist(x,xbins)

hist(ax, ___)

counts = hist(___)
[counts,centers] = hist(___)

Description
hist(x) creates a histogram bar chart of the elements in vector x. The elements in x are
sorted into 10 equally spaced bins along the x-axis between the minimum and maximum
values of x. hist displays bins as rectangles, such that the height of each rectangle
indicates the number of elements in the bin.

If the input is a multi-column array, hist creates histograms for each column of x and
overlays them onto a single plot.

If the input is of data type categorical, each bin is a category of x.

hist(x,nbins) sorts x into the number of bins specified by the scalar nbins.

hist(x,xbins) sorts x into bins with intervals or categories determined by the vector
xbins.

 hist

1-6089

• If xbins is a vector of evenly spaced values, then hist uses the values as the bin
centers.

• If xbins is a vector of unevenly spaced values, then hist uses the midpoints between
consecutive values as the bin edges.

• If x is of data type categorical, then xbins must be a categorical vector or cell
array of character vectors that specifies categories. hist plots bars only for those
categories.

The length of the vector xbins is equal to the number of bins.

hist(ax, ___) plots into the axes specified by ax instead of into the current axes (gca).
The option ax can precede any of the input argument combinations in the previous
syntaxes.

counts = hist(___) returns a row vector, counts, containing the number of
elements in each bin.

[counts,centers] = hist(___) returns an additional row vector, centers,
indicating the location of each bin center on the x-axis.

Examples

Histogram of Vector

x = [0 2 9 2 5 8 7 3 1 9 4 3 5 8 10 0 1 2 9 5 10];
hist(x)

1 Alphabetical List

1-6090

hist sorts the values in x among 10 equally spaced bins between the minimum and
maximum values in the vector, which are 0 and 10 in this example.

Histogram of Multiple Columns

Generate three columns of 1,000 random numbers and plot the three column overlaid
histogram.

x = randn(1000,3);
hist(x)

 hist

1-6091

The values in x are sorted among 10 equally spaced bins between the minimum and
maximum values. hist sorts and bins the columns of x separately and plots each column
with a different color.

Specify Number of Histogram Bins

Plot a histogram of 1,000 random numbers sorted into 50 equally spaced bins.

x = randn(1000,1);
nbins = 50;
hist(x,nbins)

1 Alphabetical List

1-6092

Specify Histogram Bin Intervals

Plot three histograms of the same data using different bin intervals:

• In the upper subplot, specify the bin centers using a vector of evenly spaced values
that span the values in x.

• In the middle subplot, specify the bin centers using a vector of evenly spaced values
that do not span the values in x. The first and last bins extend to cover the minimum
and maximum values in x.

 hist

1-6093

• In the lower subplot, specify the bin intervals using a vector of unevenly spaced
values. The hist function uses the midpoints between consecutive values as the bin
edges and indicates the specified values by markers along the x-axis.

x = randn(1000,1);
subplot(3,1,1)
xbins1 = -4:4;
hist(x,xbins1)

subplot(3,1,2)
xbins2 = -2:2;
hist(x,xbins2)

subplot(3,1,3)
xbins3 = [-4 -2.5 0 0.5 1 3];
hist(x,xbins3)

1 Alphabetical List

1-6094

Specify Histogram Axes

Create a figure with two subplots. In the upper subplot, plot a histogram of 1,000 random
numbers sorted into 50 equally spaced bins. In the lower subplot, plot a histogram of the
same data and use bins with centers at -3, 0, and 3.

x = randn(1000,1);
ax1 = subplot(2,1,1);
hist(ax1,x,50)

ax2 = subplot(2,1,2);

 hist

1-6095

xbins = [-3 0 3];
hist(ax2,x,xbins)

Use hist to Calculate Only

Generate 1,000 random numbers. Count how many numbers are in each of 10 equally
spaced bins. Return the bin counts and bin centers.

x = randn(1000,1);
[counts,centers] = hist(x)

1 Alphabetical List

1-6096

counts = 1×10

 4 27 88 190 270 243 123 38 13 4

centers = 1×10

 -2.8915 -2.2105 -1.5294 -0.8484 -0.1673 0.5137 1.1947 1.8758 2.5568 3.2379

Use bar to plot the histogram.

bar(centers,counts)

 hist

1-6097

Specify Histogram Colors

Generate 1,000 random numbers and create a histogram.

data = randn(1000,1);
hist(data)

Get the handle to the patch object that creates the histogram plot.

h = findobj(gca,'Type','patch');

Set the face color of the bars plotted to an RGB triplet value of [0 0.5 0.5]. Set the
edge color to white.

1 Alphabetical List

1-6098

h.FaceColor = [0 0.5 0.5];
h.EdgeColor = 'w';

Input Arguments
x — Input array
vector or matrix

Input vector or matrix.

• If x is a vector, then hist creates one histogram.

 hist

1-6099

• If x is a matrix, then hist creates a separate histogram for each column and plots the
histograms using different colors.

If the input array contains NaNs or undefined categorical values, hist does not include
these values in the bin counts.

If the input array contains the infinite values -Inf or Inf, then hist sorts -Inf into the
first bin and Inf into the last bin. If you do not specify the bin intervals, then hist
calculates the bin intervals using only the finite values in the input array.

Data Types: single|double|logical|categorical

nbins — Number of bins
10 (default) | scalar

Number of bins. Input x must be numeric, not categorical.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|
uint64

xbins — Bin locations or categories
vector

Bin locations or categories, specified as a vector.

If x is numeric or logical, then xbins must be of type single or double.

• If the elements in xbins are equally spaced, then these elements are the bin centers.
• If the elements in xbins are not equally spaced, then these elements are indicated by

markers along the x-axis, but are not the actual bin centers. Instead, hist calculates
the bin edges as the midpoints between consecutive elements in vector xbins. To
specify the bin edges directly, use histc.

• xbins must contain only finite values. The first and last bins extend to cover the
minimum and maximum values in x.

If x is categorical, then xbins must be a categorical vector or cell array of character
vectors that specifies categories. hist plots bars only for those categories specified by
xbins.

ax — Axes object
axes object

1 Alphabetical List

1-6100

Axes object. Use ax to plot the histogram in a specific axes instead of the current axes
(gca).

Output Arguments
counts — Counts of the number of elements in each bin
row vector

Counts of the number of elements in each bin, returned as a row vector.

centers — Bin centers or categories
vector

Bin centers or categories, returned as a vector. If used with the syntax
[counts,centers] = hist(x,xbins), then the centers output has the same
elements as the xbins input.

• If x is numeric or logical, then centers is a numeric row vector.
• If x is categorical, then centers is a cell array of character vectors.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support creation of histogram bar charts. Call hist with at
least one output argument.

• If you supply nbins, then it must be a constant, scalar value.
• The values in the input array must be real.
• The orientation of vector outputs might not match the orientation in MATLAB.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

 hist

1-6101

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bar | histc | histcounts | histogram | mode | patch | rose | stairs

Introduced before R2006a

1 Alphabetical List

1-6102

histc
Histogram bin counts (not recommended; use histcounts)

Note histc is not recommended. Use histcounts instead.

For more information, including suggestions on updating code, see “Replace Discouraged
Instances of hist and histc”.

Syntax
bincounts = histc(x,binranges)
bincounts = histc(x,binranges,dim)
[bincounts,ind]= histc(___)

Description
bincounts = histc(x,binranges) counts the number of values in x that are within
each specified bin range. The input, binranges, determines the endpoints for each bin.
The output, bincounts, contains the number of elements from x in each bin.

• If x is a vector, then histc returns bincounts as a vector of histogram bin counts.
• If x is a matrix, then histc operates along each column of x and returns bincounts

as a matrix of histogram bin counts for each column.

To plot the histogram, use bar(binranges,bincounts,'histc').

bincounts = histc(x,binranges,dim) operates along the dimension dim.

[bincounts,ind]= histc(___) returns ind, an array the same size as x indicating
the bin number that each entry in x sorts into. Use this syntax with any of the previous
input argument combinations.

Examples

 histc

1-6103

Create Histogram Plot

Initialize the random number generator to make the output of randn repeatable.

rng(0,'twister')

Define x as 100 normally distributed random numbers. Define bin ranges between -4 and
4. Determine the number of values in x that are within each specified bin range. Return
the number of elements in each bin in bincounts.

x = randn(100,1);
binranges = -4:4;
[bincounts] = histc(x,binranges)

bincounts = 9×1

 0
 2
 17
 28
 32
 16
 3
 2
 0

To plot the histogram, use the bar function.

figure
bar(binranges,bincounts,'histc')

1 Alphabetical List

1-6104

Return Bin Numbers for Histogram

Defined ages as a vector of ages. Sort ages into bins with varying ranges between 0 and
75.

ages = [3,12,24,15,5,74,23,54,31,23,64,75];
binranges = [0,10,25,50,75];

[bincounts,ind] = histc(ages,binranges)

bincounts = 1×5

 histc

1-6105

 2 5 1 3 1

ind = 1×12

 1 2 2 2 1 4 2 4 3 2 4 5

bincounts contains the number of values in each bin. ind indicates the bin numbers.

Input Arguments
x — Values to be sorted
vector | matrix

Values to be sorted, specified as a vector or a matrix. The bin counts do not include values
in x that are NaN or that lie outside the specified bin ranges. If x contains complex values,
then histc ignores the imaginary parts and uses only the real parts.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

binranges — Bin ranges
vector | matrix

Bin ranges, specified as a vector of monotonically nondecreasing values or a matrix of
monotonically nondecreasing values running down each successive column. The values in
binranges determine the left and right endpoints for each bin. If binranges contains
complex values, then histc ignores the imaginary parts and uses only the real parts.

If binranges is a matrix, then histc determines the bin ranges by using values running
down successive columns. Each bin includes the left endpoint, but does not include the
right endpoint. The last bin consists of the scalar value equal to last value in binranges.

For example, if binranges equals the vector [0,5,10,13], then histc creates four
bins. The first bin includes values greater than or equal to 0 and strictly less than 5. The
second bin includes values greater than or equal to 5 and less than 10, and so on. The last
bin contains the scalar value 13.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

dim — Dimension along which to operate
scalar

1 Alphabetical List

1-6106

Dimension along which to operate, specified as a scalar.

Output Arguments
bincounts — Number of elements in each bin
vector | matrix

Number of elements in each bin, returned as a vector or a matrix. The last entry in
bincounts is the number of values in x that equal the last entry in binranges.

ind — Bin index numbers
vector | matrix

Bin index numbers, returned as a vector or a matrix that is the same size as x.

Tips
• If values in x lie outside the specified bin ranges, then histc does not include these

values in the bin counts. Start and end the binranges vector with -inf and inf to
ensure that all values in x are included in the bin counts.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The output of a variable-size array that becomes a column vector at run time is a
column-vector, not a row-vector.

• If supplied, dim must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

 histc

1-6107

See Also
bar | hist | histcounts | histogram | mode

Introduced before R2006a

1 Alphabetical List

1-6108

histcounts
Histogram bin counts

Syntax
[N,edges] = histcounts(X)
[N,edges] = histcounts(X,nbins)
[N,edges] = histcounts(X,edges)
[N,edges,bin] = histcounts(___)

N = histcounts(C)
N = histcounts(C,Categories)
[N,Categories] = histcounts(___)

[___] = histcounts(___ ,Name,Value)

Description
[N,edges] = histcounts(X) partitions the X values into bins, and returns the count
in each bin, as well as the bin edges. The histcounts function uses an automatic
binning algorithm that returns bins with a uniform width, chosen to cover the range of
elements in X and reveal the underlying shape of the distribution.

[N,edges] = histcounts(X,nbins) uses a number of bins specified by the scalar,
nbins.

[N,edges] = histcounts(X,edges) sorts X into bins with the bin edges specified by
the vector, edges. The value X(i) is in the kth bin if edges(k) ≤ X(i) < edges(k+1).
The last bin also includes the right bin edge, so that it contains X(i) if edges(end-1) ≤
X(i) ≤ edges(end).

[N,edges,bin] = histcounts(___) also returns an index array, bin, using any of
the previous syntaxes. bin is an array of the same size as X whose elements are the bin
indices for the corresponding elements in X. The number of elements in the kth bin is
nnz(bin==k), which is the same as N(k).

 histcounts

1-6109

N = histcounts(C), where C is a categorical array, returns a vector, N, that indicates
the number of elements in C whose value is equal to each of C’s categories. N has one
element for each category in C.

N = histcounts(C,Categories) counts only the elements in C whose value is equal
to the subset of categories specified by Categories.

[N,Categories] = histcounts(___) also returns the categories that correspond to
each count in N using either of the previous syntaxes for categorical arrays.

[___] = histcounts(___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments using any of the input or output argument
combinations in previous syntaxes. For example, you can specify 'BinWidth' and a
scalar to adjust the width of the bins for numeric data. For categorical data, you can
specify 'Normalization' and either 'count', 'countdensity', 'probability',
'pdf', 'cumcount', or 'cdf'.

Examples

Bin Counts and Bin Edges

Distribute 100 random values into bins. histcounts automatically chooses an
appropriate bin width to reveal the underlying distribution of the data.

X = randn(100,1);
[N,edges] = histcounts(X)

N = 1×7

 2 17 28 32 16 3 2

edges = 1×8

 -3 -2 -1 0 1 2 3 4

1 Alphabetical List

1-6110

Specify Number of Bins

Distribute 10 numbers into 6 equally spaced bins.

X = [2 3 5 7 11 13 17 19 23 29];
[N,edges] = histcounts(X,6)

N = 1×6

 2 2 2 2 1 1

edges = 1×7

 0 4.9000 9.8000 14.7000 19.6000 24.5000 29.4000

Specify Bin Edges

Distribute 1,000 random numbers into bins. Define the bin edges with a vector, where the
first element is the left edge of the first bin, and the last element is the right edge of the
last bin.

X = randn(1000,1);
edges = [-5 -4 -2 -1 -0.5 0 0.5 1 2 4 5];
N = histcounts(X,edges)

N = 1×10

 0 24 149 142 195 200 154 111 25 0

Normalized Bin Counts

Distribute all of the prime numbers less than 100 into bins. Specify 'Normalization' as
'probability' to normalize the bin counts so that sum(N) is 1. That is, each bin count
represents the probability that an observation falls within that bin.

X = primes(100);
[N,edges] = histcounts(X, 'Normalization', 'probability')

 histcounts

1-6111

N = 1×4

 0.4000 0.2800 0.2800 0.0400

edges = 1×5

 0 30 60 90 120

Determine Bin Placement

Distribute 100 random integers between -5 and 5 into bins, and specify 'BinMethod' as
'integers' to use unit-width bins centered on integers. Specify a third output for
histcounts to return a vector representing the bin indices of the data.

X = randi([-5,5],100,1);
[N,edges,bin] = histcounts(X,'BinMethod','integers');

Find the bin count for the third bin by counting the occurrences of the number 3 in the
bin index vector, bin. The result is the same as N(3).

count = nnz(bin==3)

count = 8

Categorical Bin Counts

Create a categorical vector that represents votes. The categories in the vector are 'yes',
'no', or 'undecided'.

A = [0 0 1 1 1 0 0 0 0 NaN NaN 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1];
C = categorical(A,[1 0 NaN],{'yes','no','undecided'})

C = 1x27 categorical array
 Columns 1 through 9

 no no yes yes yes no no no no

1 Alphabetical List

1-6112

 Columns 10 through 16

 undecided undecided yes no no no yes

 Columns 17 through 25

 no yes no yes no no no yes yes

 Columns 26 through 27

 yes yes

Determine the number of elements that fall into each category.

[N,Categories] = histcounts(C)

N = 1×3

 11 14 2

Categories = 1x3 cell array
 {'yes'} {'no'} {'undecided'}

Input Arguments
X — Data to distribute among bins
vector | matrix | multidimensional array

Data to distribute among bins, specified as a vector, matrix, or multidimensional array. If
X is not a vector, then histcounts treats it as a single column vector, X(:).

histcounts ignores all NaN values. Similarly, histcounts ignores Inf and -Inf values
unless the bin edges explicitly specify Inf or -Inf as a bin edge.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

C — Categorical data
categorical array

 histcounts

1-6113

Categorical data, specified as a categorical array. histcounts ignores undefined
categorical values.
Data Types: categorical

nbins — Number of bins
positive integer

Number of bins, specified as a positive integer. If you do not specify nbins, then
histcounts automatically calculates how many bins to use based on the values in X.
Example: [N,edges] = histcounts(X,15) uses 15 bins.

edges — Bin edges
vector

Bin edges, specified as a vector. edges(1) is the left edge of the first bin, and
edges(end) is the right edge of the last bin.

For datetime and duration data, edges must be a datetime or duration vector in
monotonically increasing order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

Categories — Categories included in count
all categories (default) | cell vector of character vectors | categorical vector

Categories included in count, specified as a cell vector of character vectors or a
categorical vector. By default, histcounts uses a bin for each category in categorical
array C. Use Categories to specify a unique subset of the categories instead.
Example: h = histcounts(C,{'Large','Small'}) counts only the categorical data
in the categories 'Large' and 'Small'.
Data Types: cell | categorical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-6114

Example: [N,edges] = histcounts(X,'Normalization','probability')
normalizes the bin counts in N, such that sum(N) is 1.

BinLimits — Bin limits
two-element vector

Bin limits, specified as a two-element vector, [bmin,bmax]. This option bins only the
values in X that fall between bmin and bmax inclusive; that is, X(X>=bmin & X<=bmax).

This option does not apply to categorical data.
Example: [N,edges] = histcounts(X,'BinLimits',[1,10]) bins only the values
in X that are between 1 and 10 inclusive.

BinMethod — Binning algorithm
'auto' (default) | 'scott' | 'fd' | 'integers' | 'sturges' | 'sqrt' | ...

Binning algorithm, specified as one of the values in this table.

Value Description
'auto' The default 'auto' algorithm chooses a

bin width to cover the data range and
reveal the shape of the underlying
distribution.

'scott' Scott’s rule is optimal if the data is close to
being normally distributed, but is also
appropriate for most other distributions. It
uses a bin width of
3.5*std(X(:))*numel(X)^(-1/3).

'fd' The Freedman-Diaconis rule is less
sensitive to outliers in the data, and may be
more suitable for data with heavy-tailed
distributions. It uses a bin width of
2*IQR(X(:))*numel(X)^(-1/3), where
IQR is the interquartile range of X.

 histcounts

1-6115

Value Description
'integers' The integer rule is useful with integer data,

as it creates a bin for each integer. It uses a
bin width of 1 and places bin edges halfway
between integers. To prevent from
accidentally creating too many bins, a limit
of 65536 bins (216) can be created with this
rule. If the data range is greater than
65536, then wider bins are used instead.

Note 'integers' does not support
datetime or duration data.

'sturges' Sturges’ rule is a simple rule that is popular
due to its simplicity. It chooses the number
of bins to be ceil(1 +
log2(numel(X))).

'sqrt' The Square Root rule is another simple rule
widely used in other software packages. It
chooses the number of bins to be
ceil(sqrt(numel(X))).

histcounts does not always choose the number of bins using these exact formulas.
Sometimes the number of bins is adjusted slightly so that the bin edges fall on "nice"
numbers.

For datetime data, the bin method can be one of these units of time:

'second' 'month'
'minute' 'quarter'
'hour' 'year'
'day' 'decade'
'week' 'century'

For duration data, the bin method can be one of these units of time:

'second' 'day'

1 Alphabetical List

1-6116

'minute' 'year'
'hour'

If you specify BinMethod with datetime or duration data, then histcounts can use a
maximum of 65,536 bins (or 216). If the specified bin duration requires more bins, then
histcounts uses a larger bin width corresponding to the maximum number of bins.

This option does not apply to categorical data.
Example: [N,edges] = histcounts(X,'BinMethod','integers') uses bins
centered on integers.

BinWidth — Width of bins
scalar

Width of bins, specified as a scalar. If you specify BinWidth, then histcounts can use a
maximum of 65,536 bins (or 216). If the specified bin width requires more bins, then
histcounts uses a larger bin width corresponding to the maximum number of bins.

For datetime and duration data, the value of 'BinWidth' can be a scalar duration or
calendar duration.

This option does not apply to categorical data.
Example: [N,edges] = histcounts(X,'BinWidth',5) uses bins with a width of 5.

Normalization — Type of normalization
'count' (default) | 'probability' | 'countdensity' | 'pdf' | 'cumcount' | 'cdf'

Type of normalization, specified as one of the values in this table. For each bin i:

• vi is the bin value.
• ci is the number of elements in the bin.
• wi is the width of the bin.
• N is the number of elements in the input data. This value can be greater than the

binned data if the data contains NaN, NaT, or <undefined> values, or if some of the
data lies outside the bin limits.

 histcounts

1-6117

Value Bin Values Notes
'count' (default) vi = ci • Count or frequency of

observations.
• Sum of bin values is less

than or equal to
numel(X). The sum is
less than numel(X) only
when some of the input
data is not included in
the bins.

• For categorical data, sum
of bin values is either
numel(X) or
sum(ismember(X(:),C
ategories)).

'countdensity'
vi =

ci
wi

• Count or frequency
scaled by width of bin.

• For categorical data, this
the same as 'count'.

Note 'countdensity'
does not support datetime
or duration data.

1 Alphabetical List

1-6118

Value Bin Values Notes
'cumcount'

vi = ∑
j = 1

i
c j

• Cumulative count. Each
bin value is the
cumulative number of
observations in that bin
and all previous bins.

• The value of the last bin
is less than or equal to
numel(X).

• For categorical data, the
value of the last bin is
less than or equal to
numel(X) or
sum(ismember(X(:),C
ategories)).

'probability'
vi =

ci
N

• Relative probability.
• The sum of the bin

values is less than or
equal to 1.

'pdf'
vi =

ci
N ⋅ wi

• Probability density
function estimate.

• For categorical data, this
is the same as
'probability'.

Note 'pdf' does not
support datetime or
duration data.

'cdf'
vi = ∑

j = 1

i c j
N

• Cumulative density
function estimate.

• N(end) is less than or
equal to 1.

Example: [N,edges] = histcounts(X,'Normalization','pdf') bins the data
using the probability density function estimate.

 histcounts

1-6119

Output Arguments
N — Bin counts
row vector

Bin counts, returned as a row vector.

edges — Bin edges
vector

Bin edges, returned as a vector. edges(1) is the left edge of the first bin, and
edges(end) is the right edge of the last bin.

bin — Bin indices
array

Bin indices, returned as an array of the same size as X. Each element in bin describes
which numbered bin contains the corresponding element in X.

A value of 0 in bin indicates an element which does not belong to any of the bins (for
example, a NaN value).

Categories — Categories included in count
cell vector of character vectors

Categories included in count, returned as a cell vector of character vectors. Categories
contains the categories in C that correspond to each count in N.

Tips
• The behavior of histcounts is similar to that of the discretize function. Use

histcounts to find the number of elements in each bin. On the other hand, use
discretize to find which bin each element belongs to (without counting).

1 Alphabetical List

1-6120

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• Some input options are not supported. The allowed options are:

• 'BinWidth'
• 'BinLimits'
• 'Normalization'
• 'BinMethod' — The 'auto' and 'scott' bin methods are the same. The 'fd'

bin method is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you do not supply bin edges, then code generation might require variable-size arrays
and dynamic memory allocation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 histcounts

1-6121

See Also
discretize | histcounts2 | histogram | histogram2

Topics
“Replace Discouraged Instances of hist and histc”

Introduced in R2014b

1 Alphabetical List

1-6122

histcounts2
Bivariate histogram bin counts

Syntax
[N,Xedges,Yedges] = histcounts2(X,Y)
[N,Xedges,Yedges] = histcounts2(X,Y,nbins)
[N,Xedges,Yedges] = histcounts2(X,Y,Xedges,Yedges)
[N,Xedges,Yedges] = histcounts2(___ ,Name,Value)
[N,Xedges,Yedges,binX,binY] = histcounts2(___)

Description
[N,Xedges,Yedges] = histcounts2(X,Y) partitions the values in X and Y into 2-D
bins, and returns the bin counts, as well as the bin edges in each dimension. The
histcounts2 function uses an automatic binning algorithm that returns uniform bins
chosen to cover the range of values in X and Y and reveal the underlying shape of the
distribution.

[N,Xedges,Yedges] = histcounts2(X,Y,nbins) specifies the number of bins to
use in each dimension.

[N,Xedges,Yedges] = histcounts2(X,Y,Xedges,Yedges) partitions X and Y into
bins with the bin edges specified by Xedges and Yedges.

N(i,j) counts the value [X(k),Y(k)] if Xedges(i) ≤ X(k) < Xedges(i+1) and
Yedges(j) ≤ Y(k) < Yedges(j+1). The last bins in each dimension also include the
last (outer) edge. For example, [X(k),Y(k)] falls into the ith bin in the last row if
Xedges(end-1) ≤ X(k) ≤ Xedges(end) and Yedges(i) ≤ Y(k) < Yedges(i+1).

[N,Xedges,Yedges] = histcounts2(___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments using any of the input arguments
in previous syntaxes. For example, you can specify 'BinWidth' and a two-element vector
to adjust the width of the bins in each dimension.

[N,Xedges,Yedges,binX,binY] = histcounts2(___) also returns index arrays
binX and binY, using any of the previous syntaxes. binX and binY are arrays of the

 histcounts2

1-6123

same size as X and Y whose elements are the bin indices for the corresponding elements
in X and Y. The number of elements in the (i,j)th bin is equal to nnz(binX==i &
binY==j), which is the same as N(i,j) if Normalization is 'count'.

Examples

Bin Counts and Bin Edges

Distribute 100 pairs of random numbers into bins. histcounts2 automatically chooses
an appropriate bin width to reveal the underlying distribution of the data.

x = randn(100,1);
y = randn(100,1);
[N,Xedges,Yedges] = histcounts2(x,y)

N = 7×6

 0 0 0 2 0 0
 1 2 10 4 0 0
 1 4 9 9 5 0
 1 4 10 11 5 1
 1 4 6 3 1 1
 0 0 1 2 0 0
 0 0 1 0 1 0

Xedges = 1×8

 -3 -2 -1 0 1 2 3 4

Yedges = 1×7

 -3 -2 -1 0 1 2 3

Specify Number of Bins in Each Dimension

Distribute 10 pairs of numbers into 12 bins. Specify 3 bins in the x-dimension, and 4 bins
in the y-dimension.

1 Alphabetical List

1-6124

x = [1 1 2 3 2 2 1 1 2 3];
y = [5 6 3 8 9 1 2 7 5 1];
nbins = [3 4];
[N,Xedges,Yedges] = histcounts2(x,y,nbins)

N = 3×4

 1 0 2 1
 1 1 1 1
 1 0 0 1

Xedges = 1×4

 0.6000 1.4000 2.2000 3.0000

Yedges = 1×5

 0 2.3000 4.6000 6.9000 9.2000

Specify Bin Edges

Distribute 1,000 pairs of random numbers into bins. Define the bin edges with two
vectors: one each for the x and y dimensions. The first element in each vector specifies
the first edge of the first bin, and the last element is the last edge of the last bin.

x = randn(1000,1);
y = randn(1000,1);
Xedges = -5:5;
Yedges = [-5 -4 -2 -1 -0.5 0 0.5 1 2 4 5];
N = histcounts2(x,y,Xedges,Yedges)

N = 10×10

 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 0 0 0
 0 0 5 5 3 5 1 2 0 0
 0 2 19 23 29 25 26 20 5 0
 0 10 36 51 59 71 54 46 10 0
 0 7 43 46 79 64 60 46 9 0

 histcounts2

1-6125

 0 3 12 18 21 23 19 9 6 0
 0 0 5 3 2 8 2 2 0 0
 0 0 0 1 1 1 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Normalized Bin Counts

Distribute 1,000 pairs of random numbers into bins. Specify Normalization as
'probability' to normalize the bin counts such that sum(N(:)) is 1. That is, each bin
count represents the probability that an observation falls within that bin.

x = randn(1000,1);
y = randn(1000,1);
[N,Xedges,Yedges] = histcounts2(x,y,6,'Normalization','probability')

N = 6×6

 0 0 0.0020 0.0020 0 0
 0 0.0110 0.0320 0.0260 0.0070 0.0010
 0.0010 0.0260 0.1410 0.1750 0.0430 0.0060
 0 0.0360 0.1620 0.1940 0.0370 0.0040
 0 0.0040 0.0300 0.0370 0.0100 0.0010
 0 0.0030 0.0040 0.0040 0.0010 0

Xedges = 1×7

 -4.0000 -2.7000 -1.4000 -0.1000 1.2000 2.5000 3.8000

Yedges = 1×7

 -4.0000 -2.7000 -1.4000 -0.1000 1.2000 2.5000 3.8000

1 Alphabetical List

1-6126

Determine Bin Placement

Distribute 1,000 random integer pairs between -10 and 10 into bins, and specify
BinMethod as 'integers' to use unit-width bins centered on integers. Specify five
outputs for histcounts2 to return vectors representing the bin placement of the data.

x = randi([-10,10],1000,1);
y = randi([-10,10],1000,1);
[N,Xedges,Yedges,binX,binY] = histcounts2(x,y,'BinMethod','integers');

Determine which bin the value (x(3),y(3)) falls into.

[x(3),y(3)]

ans = 1×2

 -8 10

bin = [binX(3) binY(3)]

bin = 1×2

 3 21

Input Arguments
X,Y — Data to distribute among bins (as separate arguments)
vectors | matrices | multidimensional arrays

Data to distribute among bins, specified as separate arguments of vectors, matrices, or
multidimensional arrays. X and Y must have the same size.

Corresponding elements in X and Y specify the x and y coordinates of 2-D data points,
[X(k),Y(k)]. The data types of X and Y can be different.

histcounts2 ignores all NaN values. Similarly, histcounts2 ignores Inf and -Inf
values unless the bin edges explicitly specify Inf or -Inf as a bin edge.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

 histcounts2

1-6127

nbins — Number of bins in each dimension
scalar | vector

Number of bins in each dimension, specified as a positive scalar integer or two-element
vector of positive integers. If you do not specify nbins, then histcounts2 automatically
calculates how many bins to use based on the values in X and Y:

• If nbins is a scalar, then histcounts2 uses that many bins in each dimension.
• If nbins is a vector, then nbins(1) specifies the number of bins in the x-dimension

and nbins(2) specifies the number of bins in the y-dimension.

Example: [N,Xedges,Yedges] = histcounts2(X,Y,[15 20]) uses 15 bins in the x-
dimension and 20 bins in the y-dimension.

Xedges — Bin edges in x-dimension
vector

Bin edges in x-dimension, specified as a vector. Xedges(1) is the first edge of the first
bin in the x-dimension, and Xedges(end) is the outer edge of the last bin.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Yedges — Bin edges in y-dimension
vector

Bin edges in y-dimension, specified as a vector. Yedges(1) is the first edge of the first
bin in the y-dimension, and Yedges(end) is the outer edge of the last bin.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [N,Xedges,Yedges] =
histcounts2(X,Y,'Normalization','probability') normalizes the bin counts in
N, such that sum(N) is 1.

1 Alphabetical List

1-6128

BinMethod — Binning algorithm
'auto' (default) | 'scott' | 'fd' | 'integers'

Binning algorithm, specified as one of the values in this table.

Value Description
'auto' The default 'auto' algorithm chooses a

bin width to cover the data range and
reveal the shape of the underlying
distribution.

'scott' Scott’s rule is optimal if the data is close to
being jointly normally distributed. This rule
is appropriate for most other distributions,
as well. It uses a bin size of
[3.5*std(X(:))*numel(X)^(-1/4),
3.5*std(Y(:))*numel(Y)^(-1/4)].

'fd' The Freedman-Diaconis rule is less
sensitive to outliers in the data, and might
be more suitable for data with heavy-tailed
distributions. It uses a bin size of
[2*IQR(X(:))*numel(X)^(-1/4),
2*IQR(Y(:))*numel(Y)^(-1/4)],
where IQR is the interquartile range.

'integers' The integer rule is useful with integer data,
as it creates bins centered on pairs of
integers. It uses a bin width of 1 for each
dimension and places bin edges halfway
between integers.

To avoid accidentally creating too many
bins, you can use this rule to create a limit
of 1024 bins (210). If the data range for
either dimension is greater than 1024, then
the integer rule uses wider bins instead.

histcounts2 does not always choose the number of bins using these exact formulas.
Sometimes the number of bins is adjusted slightly so that the bin edges fall on "nice"
numbers.

 histcounts2

1-6129

Example: [N,Xedges,Yedges] = histcounts2(X,Y,'BinMethod','integers')
uses 2-D bins centered on each pair of integers.

BinWidth — Width of bins in each dimension
vector

Width of bins in each dimension, specified as a two-element vector of positive integers,
[xWidth yWidth].

If you specify BinWidth, then histcounts2 can use a maximum of 1024 bins (210) along
each dimension. If the specified bin width requires more bins, then histcounts2 uses a
larger bin width corresponding to the maximum number of bins.
Example: [N,Xedges,Yedges] = histcounts2(X,Y,'BinWidth',[5 10]) uses
bins with size 5 in the x-dimension and size 10 in the y-dimension.

XBinLimits — Bin limits in x-dimension
two-element vector

Bin limits in x-dimension, specified as a two-element vector, [xbmin,xbmax]. The vector
indicates the first and last bin edges in the x-dimension.

This option only bins data that falls within the bin limits inclusively, X>=xbmin &
X<=xbmax.

YBinLimits — Bin limits in y-dimension
two-element vector

Bin limits in y-dimension, specified as a two-element vector, [ybmin,ybmax]. The vector
indicates the first and last bin edges in the y-dimension.

This option only bins data that falls within the bin limits inclusively, Y>=ybmin &
Y<=ybmax.

Normalization — Type of normalization
'count' (default) | 'probability' | 'countdensity' | 'pdf' | 'cumcount' | 'cdf'

Type of normalization, specified as one of the values in this table. For each bin i:

• vi is the bin value.

• ci is the number of elements in the bin.

1 Alphabetical List

1-6130

• Ai = wxi ⋅wyi is the area of each bin, computed using the x and y bin widths.
• N is the number of elements in the input data. This value can be greater than the

binned data if the data contains NaN values, or if some of the data lies outside the bin
limits.

Value Bin Values Notes
'count' (default) vi = ci • Count or frequency of

observations.
• Sum of bin values is less

than or equal to
numel(X) and
numel(y). The sum is
less than numel(X) only
when some of the input
data is not included in
the bins.

'countdensity'
vi =

ci
Ai

• Count or frequency
scaled by area of bin.

• The sum of the bin
volumes, (N value * Area
of bin), is less than or
equal to numel(X) and
numel(Y).

'cumcount'
vi = ∑

j = 1

i
c j

• Cumulative count. Each
bin value is the
cumulative number of
observations in each bin
and all previous bins in
both the x and y
dimensions.

• N(end,end) is less than
or equal to numel(X)
and numel(Y).

'probability'
vi =

ci
N

• Relative probability.
• sum(N(:)) is less than

or equal to 1.

 histcounts2

1-6131

Value Bin Values Notes
'pdf'

vi =
ci

N ⋅ Ai

• Probability density
function estimate.

• The sum of the bin
volumes, (N value * Area
of bin), is less than or
equal to 1.

'cdf'
vi = ∑

j = 1

i c j
N

• Cumulative density
function estimate.

• N(end,end) is less than
or equal to 1.

Example: [N,Xedges,Yedges] = histcounts2(X,Y,'Normalization','pdf')
bins the data using the probability density function estimate for X and Y.

Output Arguments
N — Bin counts
array

Bin counts, returned as a numeric array.

The bin inclusion scheme for the different numbered bins in N, as well as their relative
orientation to the x-axis and y-axis, is

1 Alphabetical List

1-6132

For example, the (1,1) bin includes values that fall on the first edge in each dimension,
and the last bin in the bottom right includes values that fall on any of its edges.

Xedges — Bin edges in x-dimension
vector

Bin edges in x-dimension, returned as a vector. Xedges(1) is the first bin edge in the x-
dimension and Xedges(end) is the last bin edge.

Yedges — Bin edges in y-dimension
vector

Bin edges in y-dimension, returned as a vector. Yedges(1) is the first bin edge in the y-
dimension and Yedges(end) is the last bin edge.

binX — Bin index in x-dimension
array

Bin index in x-dimension, returned as a numeric array of the same size as X.
Corresponding elements in binX and binY describe which numbered bin contains the
corresponding values in X and Y. A value of 0 in binX or binY indicates an element that
does not belong to any of the bins (such as a NaN value).

For example, binX(1) and binY(1) describe the bin placement for the value
[X(1),Y(1)].

 histcounts2

1-6133

binY — Bin index in y-dimension
array

Bin index in y-dimension, returned as a numeric array of the same size as Y.
Corresponding elements in binX and binY describe which numbered bin contains the
corresponding values in X and Y. A value of 0 in binX or binY indicates an element that
does not belong to any of the bins (such as a NaN value).

For example, binX(1) and binY(1) describe the bin placement for the value
[X(1),Y(1)].

See Also
discretize | fewerbins | histcounts | histogram | histogram2 | morebins

Introduced in R2015b

1 Alphabetical List

1-6134

histogram
Histogram plot

Description
Histograms are a type of bar plot for numeric data that group the data into bins. After you
create a Histogram object, you can modify aspects of the histogram by changing its
property values. This is particularly useful for quickly modifying the properties of the bins
or changing the display.

Creation

Syntax
histogram(X)
histogram(X,nbins)
histogram(X,edges)
histogram('BinEdges',edges,'BinCounts',counts)

histogram(C)
histogram(C,Categories)
histogram('Categories',Categories,'BinCounts',counts)

histogram(___ ,Name,Value)
histogram(ax, ___)
h = histogram(___)

Description
histogram(X) creates a histogram plot of X. The histogram function uses an automatic
binning algorithm that returns bins with a uniform width, chosen to cover the range of
elements in X and reveal the underlying shape of the distribution. histogram displays
the bins as rectangles such that the height of each rectangle indicates the number of
elements in the bin.

 histogram

1-6135

histogram(X,nbins) uses a number of bins specified by the scalar, nbins.

histogram(X,edges) sorts X into bins with the bin edges specified by the vector,
edges. Each bin includes the left edge, but does not include the right edge, except for the
last bin which includes both edges.

histogram('BinEdges',edges,'BinCounts',counts) manually specifies bin edges
and associated bin counts. histogram plots the specified bin counts and does not do any
data binning.

histogram(C), where C is a categorical array, plots a histogram with a bar for each
category in C.

histogram(C,Categories) plots only the subset of categories specified by
Categories.

histogram('Categories',Categories,'BinCounts',counts) manually specifies
categories and associated bin counts. histogram plots the specified bin counts and does
not do any data binning.

histogram(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments using any of the previous syntaxes. For example, you can
specify 'BinWidth' and a scalar to adjust the width of the bins, or 'Normalization'
with a valid option ('count', 'probability', 'countdensity', 'pdf', 'cumcount',
or 'cdf') to use a different type of normalization. For a list of properties, see Histogram.

histogram(ax, ___) plots into the axes specified by ax instead of into the current axes
(gca). The option ax can precede any of the input argument combinations in the previous
syntaxes.

h = histogram(___) returns a Histogram object. Use this to inspect and adjust the
properties of the histogram. For a list of properties, see Histogram.

Input Arguments
X — Data to distribute among bins
vector | matrix | multidimensional array

Data to distribute among bins, specified as a vector, matrix, or multidimensional array. If
X is not a vector, then histogram treats it as a single column vector, X(:), and plots a
single histogram.

1 Alphabetical List

1-6136

histogram ignores all NaN and NaT values. Similarly, histogram ignores Inf and -Inf
values, unless the bin edges explicitly specify Inf or -Inf as a bin edge. Although NaN,
NaT, Inf, and -Inf values are typically not plotted, they are still included in
normalization calculations that include the total number of data elements, such as
'probability'.

Note If X contains integers of type int64 or uint64 that are larger than flintmax,
then it is recommended that you explicitly specify the histogram bin edges. histogram
automatically bins the input data using double precision, which lacks integer precision for
numbers greater than flintmax.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

C — Categorical data
categorical array

Categorical data, specified as a categorical array. histogram does not plot undefined
categorical values. However, undefined categorical values are still included in
normalization calculations that include the total number of data elements, such as
'probability'.
Data Types: categorical

nbins — Number of bins
positive integer

Number of bins, specified as a positive integer. If you do not specify nbins, then
histogram automatically calculates how many bins to use based on the values in X.
Example: histogram(X,15) creates a histogram with 15 bins.

edges — Bin edges
vector

Bin edges, specified as a vector. edges(1) is the left edge of the first bin, and
edges(end) is the right edge of the last bin.

The value X(i) is in the kth bin if edges(k) ≤ X(i) < edges(k+1). The last bin also
includes the right bin edge, so that it contains X(i) if edges(end-1) ≤ X(i) ≤
edges(end).

 histogram

1-6137

For datetime and duration data, edges must be a datetime or duration vector in
monotonically increasing order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | datetime | duration

Categories — Categories included in histogram
cell array of character vectors | categorical vector

Note This option only applies to categorical histograms.

Categories included in histogram, specified as a cell array of character vectors or
categorical vector.

• If you specify an input categorical array C, then by default, histogram plots a bar for
each category in C. In that case, use Categories to specify a unique subset of the
categories instead.

• If you specify bin counts, then Categories specifies the associated category names
for the histogram.

Example: h = histogram(C,{'Large','Small'}) plots only the categorical data in
the categories 'Large' and 'Small'.
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
18 3]) plots a histogram that has three categories with the associated bin counts.
Example: h.Categories queries the categories that are in histogram object h.
Data Types: cell | categorical

counts — Bin counts
vector

Bin counts, specified as a vector. Use this input to pass bin counts to histogram when
the bin counts calculation is performed separately and you do not want histogram to do
any data binning.

The length of counts must be equal to the number of bins.

• For numeric histograms, the number of bins is length(edges)-1.
• For categorical histograms, the number of bins is equal to the number of categories.

1 Alphabetical List

1-6138

Example: histogram('BinEdges',-2:2,'BinCounts',[5 8 15 9])
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
18 3])

ax — Target axes
Axes object | PolarAxes object

Target axes, specified as an Axes object or a PolarAxes object. If you do not specify the
axes and if the current axes are Cartesian axes, then the histogram function uses the
current axes (gca). To plot into polar axes, specify the PolarAxes object as the first
input argument or use the polarhistogram function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: histogram(X,'BinWidth',5)

The histogram properties listed here are only a subset. For a complete list, see
Histogram.

BarWidth — Relative width of categorical bars
0.9 (default) | scalar in range [0,1]

Note This option only applies to histograms of categorical data.

Relative width of categorical bars, specified as a scalar value in the range [0,1]. Use this
property to control the separation of categorical bars within the histogram. The default
value is 0.9, which means that the bar width is 90% of the space from the previous bar to
the next bar, with 5% of that space on each side.

If you set this property to 1, then adjacent bars touch.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 histogram

1-6139

BinLimits — Bin limits
two-element vector

Bin limits, specified as a two-element vector, [bmin,bmax]. This option plots a histogram
using the values in the input array, X, that fall between bmin and bmax inclusive. That is,
X(X>=bmin & X<=bmax).

This option does not apply to histograms of categorical data.
Example: histogram(X,'BinLimits',[1,10]) plots a histogram using only the values
in X that are between 1 and 10 inclusive.

BinLimitsMode — Selection mode for bin limits
'auto' (default) | 'manual'

Selection mode for bin limits, specified as 'auto' or 'manual'. The default value is
'auto', so that the bin limits automatically adjust to the data.

If you explicitly specify either BinLimits or BinEdges, then BinLimitsMode is
automatically set to 'manual'. In that case, specify BinLimitsMode as 'auto' to
rescale the bin limits to the data.

This option does not apply to histograms of categorical data.

BinMethod — Binning algorithm
'auto' (default) | 'scott' | 'fd' | 'integers' | 'sturges' | 'sqrt' | ...

Binning algorithm, specified as one of the values in this table.

Value Description
'auto' The default 'auto' algorithm chooses a

bin width to cover the data range and
reveal the shape of the underlying
distribution.

'scott' Scott’s rule is optimal if the data is close to
being normally distributed. This rule is
appropriate for most other distributions, as
well. It uses a bin width of
3.5*std(X(:))*numel(X)^(-1/3).

1 Alphabetical List

1-6140

Value Description
'fd' The Freedman-Diaconis rule is less

sensitive to outliers in the data, and might
be more suitable for data with heavy-tailed
distributions. It uses a bin width of
2*IQR(X(:))*numel(X)^(-1/3), where
IQR is the interquartile range of X.

'integers' The integer rule is useful with integer data,
as it creates a bin for each integer. It uses a
bin width of 1 and places bin edges halfway
between integers. To avoid accidentally
creating too many bins, you can use this
rule to create a limit of 65536 bins (216). If
the data range is greater than 65536, then
the integer rule uses wider bins instead.

Note 'integers' does not support
datetime or duration data.

'sturges' Sturges’ rule is popular due to its simplicity.
It chooses the number of bins to be ceil(1
+ log2(numel(X))).

'sqrt' The Square Root rule is widely used in
other software packages. It chooses the
number of bins to be
ceil(sqrt(numel(X))).

histogram does not always choose the number of bins using these exact formulas.
Sometimes the number of bins is adjusted slightly so that the bin edges fall on "nice"
numbers.

For datetime data, the bin method can be one of these units of time:

'second' 'month'
'minute' 'quarter'
'hour' 'year'
'day' 'decade'

 histogram

1-6141

'week' 'century'

For duration data, the bin method can be one of these units of time:

'second' 'day'
'minute' 'year'
'hour'

If you specify BinMethod with datetime or duration data, then histogram can use a
maximum of 65,536 bins (or 216). If the specified bin duration requires more bins, then
histogram uses a larger bin width corresponding to the maximum number of bins.

This option does not apply to histograms of categorical data.

Note If you set the BinLimits, NumBins, BinEdges, or BinWidth property, then the
BinMethod property is set to 'manual'.

Example: histogram(X,'BinMethod','integers') creates a histogram with the bins
centered on integers.

BinWidth — Width of bins
scalar

Width of bins, specified as a scalar. When you specify BinWidth, then histogram can
use a maximum of 65,536 bins (or 216). If instead the specified bin width requires more
bins, then histogram uses a larger bin width corresponding to the maximum number of
bins.

For datetime and duration data, the value of 'BinWidth' can be a scalar duration or
calendar duration.

This option does not apply to histograms of categorical data.
Example: histogram(X,'BinWidth',5) uses bins with a width of 5.

DisplayOrder — Category display order
'data' (default) | 'ascend' | 'descend'

1 Alphabetical List

1-6142

Category display order, specified as 'ascend', 'descend', or 'data'. With 'ascend'
or 'descend', the histogram displays with increasing or decreasing bar heights. The
default 'data' value uses the category order in the input data, C.

This option only works with categorical data.

DisplayStyle — Histogram display style
'bar' (default) | 'stairs'

Histogram display style, specified as either 'bar' or 'stairs'. Specify 'stairs' to
display a stairstep plot, which displays the outline of the histogram without filling the
interior.

The default value of 'bar' displays a histogram bar plot.
Example: histogram(X,'DisplayStyle','stairs') plots the outline of the
histogram.

EdgeAlpha — Transparency of histogram bar edges
1 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bar edges, specified as a scalar value between 0 and 1
inclusive. A value of 1 means fully opaque and 0 means completely transparent (invisible).
Example: histogram(X,'EdgeAlpha',0.5) creates a histogram plot with semi-
transparent bar edges.

EdgeColor — Histogram edge color
[0 0 0] or black (default) | 'none' | 'auto' | RGB triplet | hexadecimal color code |
color name

Histogram edge color, specified as one of these values:

• 'none' — Edges are not drawn.
• 'auto' — Color of each edge is chosen automatically.
• RGB triplet, hexadecimal color code, or color name — Edges use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

 histogram

1-6143

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

1 Alphabetical List

1-6144

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780
0.1840]

'#A2142F'

Example: histogram(X,'EdgeColor','r') creates a histogram plot with red bar
edges.

FaceAlpha — Transparency of histogram bars
0.6 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bars, specified as a scalar value between 0 and 1 inclusive.
histogram uses the same transparency for all the bars of the histogram. A value of 1
means fully opaque and 0 means completely transparent (invisible).
Example: histogram(X,'FaceAlpha',1) creates a histogram plot with fully opaque
bars.

FaceColor — Histogram bar color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name

Histogram bar color, specified as one of these values:

• 'none' — Bars are not filled.
• 'auto' — Histogram bar color is chosen automatically (default).
• RGB triplet, hexadecimal color code, or color name — Bars are filled with the specified

color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 histogram

1-6145

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

If you specify DisplayStyle as 'stairs', then histogram does not use the
FaceColor property.
Example: histogram(X,'FaceColor','g') creates a histogram plot with green bars.

1 Alphabetical List

1-6146

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of bar outlines
0.5 (default) | positive value

Width of bar outlines, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Normalization — Type of normalization
'count' (default) | 'probability' | 'countdensity' | 'pdf' | 'cumcount' | 'cdf'

Type of normalization, specified as one of the values in this table. For each bin i:

• vi is the bin value.

• ci is the number of elements in the bin.

• wi is the width of the bin.

• N is the number of elements in the input data. This value can be greater than the
binned data if the data contains NaN, NaT, or <undefined> values, or if some of the
data lies outside the bin limits.

 histogram

1-6147

Value Bin Values Notes
'count' (default) vi = ci • Count or frequency of

observations.
• Sum of bin values is less

than or equal to
numel(X). The sum is
less than numel(X) only
when some of the input
data is not included in
the bins.

• For categorical data, sum
of bin values is less than
or equal to either
numel(X) or
sum(ismember(X(:),C
ategories)).

'countdensity'
vi =

ci
wi

• Count or frequency
scaled by width of bin.

• The area (height * width)
of each bar is the
number of observations
in the bin. The sum of
the bar areas is less than
or equal to numel(X).

• For categorical
histograms, this is the
same as 'count'.

Note 'countdensity'
does not support datetime
or duration data.

1 Alphabetical List

1-6148

Value Bin Values Notes
'cumcount'

vi = ∑
j = 1

i
c j

• Cumulative count. Each
bin value is the
cumulative number of
observations in that bin
and all previous bins.

• The height of the last bar
is less than or equal to
numel(X).

• For categorical
histograms, the height of
the last bar is less than
or equal to numel(X) or
sum(ismember(X(:),C
ategories)).

'probability'
vi =

ci
N

• Relative probability.
• The sum of the bar

heights is less than or
equal to 1.

'pdf'
vi =

ci
N ⋅ wi

• Probability density
function estimate.

• The area of each bar is
the relative number of
observations. The sum of
the bar areas is less than
or equal to 1.

• For categorical
histograms, this is the
same as
'probability'.

Note 'pdf' does not
support datetime or
duration data.

 histogram

1-6149

Value Bin Values Notes
'cdf'

vi = ∑
j = 1

i c j
N

• Cumulative density
function estimate.

• The height of each bar is
equal to the cumulative
relative number of
observations in the bin
and all previous bins.
The height of the last bar
is less than or equal to 1.

• For categorical data, the
height of each bar is
equal to the cumulative
relative number of
observations in each
category and all previous
categories.

Example: histogram(X,'Normalization','pdf') plots an estimate of the probability
density function for X.

NumDisplayBins — Number of categories to display
scalar

Number of categories to display, specified as a scalar. You can change the ordering of
categories displayed in the histogram using the 'DisplayOrder' option.

This option only works with categorical data.

Orientation — Orientation of bars
'vertical' (default) | 'horizontal'

Orientation of bars, specified as 'vertical' or 'horizontal'.
Example: histogram(X,'Orientation','horizontal') creates a histogram plot
with horizontal bars.

ShowOthers — Toggle summary display of data belonging to undisplayed
categories
'off' (default) | 'on'

1 Alphabetical List

1-6150

Toggle summary display of data belonging to undisplayed categories, specified as 'off'
or 'on'. Set this option to 'on' to display an additional bar in the histogram with the
name 'Others'. This extra bar counts all elements that do not belong to categories
displayed in the histogram.

You can change the number of categories displayed in the histogram, as well as their
order, using the 'NumDisplayBins' and 'DisplayOrder' options.

This option only works with categorical data.

Output Arguments
h — Histogram
object

Histogram, returned as an object. For more information, see histogram .

Properties
Histogram Histogram appearance and behavior

Object Functions
morebins Increase number of histogram bins
fewerbins Decrease number of histogram bins

Examples

Histogram of Vector

Generate 10,000 random numbers and create a histogram. The histogram function
automatically chooses an appropriate number of bins to cover the range of values in x and
show the shape of the underlying distribution.

x = randn(10000,1);
h = histogram(x)

 histogram

1-6151

h =
 Histogram with properties:

 Data: [10000x1 double]
 Values: [1x37 double]
 NumBins: 37
 BinEdges: [1x38 double]
 BinWidth: 0.2000
 BinLimits: [-3.8000 3.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

1 Alphabetical List

1-6152

 Show all properties

When you specify an output argument to the histogram function, it returns a histogram
object. You can use this object to inspect the properties of the histogram, such as the
number of bins or the width of the bins.

Find the number of histogram bins.

nbins = h.NumBins

nbins = 37

Specify Number of Histogram Bins

Plot a histogram of 1,000 random numbers sorted into 25 equally spaced bins.

x = randn(1000,1);
nbins = 25;
h = histogram(x,nbins)

 histogram

1-6153

h =
 Histogram with properties:

 Data: [1000x1 double]
 Values: [1x25 double]
 NumBins: 25
 BinEdges: [1x26 double]
 BinWidth: 0.2800
 BinLimits: [-3.4000 3.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

1 Alphabetical List

1-6154

 Show all properties

Find the bin counts.

counts = h.Values

counts = 1×25

 1 3 0 6 14 19 31 54 74 80 92 122 104 115 88 80 38 32 21 9 5 5 5 0 2

Change Number of Histogram Bins

Generate 1,000 random numbers and create a histogram.

X = randn(1000,1);
h = histogram(X)

 histogram

1-6155

h =
 Histogram with properties:

 Data: [1000x1 double]
 Values: [1x23 double]
 NumBins: 23
 BinEdges: [1x24 double]
 BinWidth: 0.3000
 BinLimits: [-3.3000 3.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

1 Alphabetical List

1-6156

 Show all properties

Use the morebins function to coarsely adjust the number of bins.

Nbins = morebins(h);
Nbins = morebins(h)

Nbins = 29

Adjust the bins at a fine grain level by explicitly setting the number of bins.

h.NumBins = 31;

 histogram

1-6157

Specify Bin Edges of Histogram

Generate 1,000 random numbers and create a histogram. Specify the bin edges as a
vector with wide bins on the edges of the histogram to capture the outliers that do not
satisfy x < 2. The first vector element is the left edge of the first bin, and the last vector
element is the right edge of the last bin.

x = randn(1000,1);
edges = [-10 -2:0.25:2 10];
h = histogram(x,edges);

1 Alphabetical List

1-6158

Specify the Normalization property as 'countdensity' to flatten out the bins
containing the outliers. Now, the area of each bin (rather than the height) represents the
frequency of observations in that interval.

h.Normalization = 'countdensity';

 histogram

1-6159

Plot Categorical Histogram

Create a categorical vector that represents votes. The categories in the vector are 'yes',
'no', or 'undecided'.

A = [0 0 1 1 1 0 0 0 0 NaN NaN 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1];
C = categorical(A,[1 0 NaN],{'yes','no','undecided'})

C = 1x27 categorical array
 Columns 1 through 9

1 Alphabetical List

1-6160

 no no yes yes yes no no no no

 Columns 10 through 16

 undecided undecided yes no no no yes

 Columns 17 through 25

 no yes no yes no no no yes yes

 Columns 26 through 27

 yes yes

Plot a categorical histogram of the votes, using a relative bar width of 0.5.

h = histogram(C,'BarWidth',0.5)

 histogram

1-6161

h =
 Histogram with properties:

 Data: [1x27 categorical]
 Values: [11 14 2]
 NumDisplayBins: 3
 Categories: {'yes' 'no' 'undecided'}
 DisplayOrder: 'data'
 Normalization: 'count'
 DisplayStyle: 'bar'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

1 Alphabetical List

1-6162

 Show all properties

Histogram with Specified Normalization

Generate 1,000 random numbers and create a histogram using the 'probability'
normalization.

x = randn(1000,1);
h = histogram(x,'Normalization','probability')

 histogram

1-6163

h =
 Histogram with properties:

 Data: [1000x1 double]
 Values: [1x23 double]
 NumBins: 23
 BinEdges: [1x24 double]
 BinWidth: 0.3000
 BinLimits: [-3.3000 3.6000]
 Normalization: 'probability'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

 Show all properties

Compute the sum of the bar heights. With this normalization, the height of each bar is
equal to the probability of selecting an observation within that bin interval, and the height
of all of the bars sums to 1.

S = sum(h.Values)

S = 1

Plot Multiple Histograms

Generate two vectors of random numbers and plot a histogram for each vector in the
same figure.

x = randn(2000,1);
y = 1 + randn(5000,1);
h1 = histogram(x);
hold on
h2 = histogram(y);

1 Alphabetical List

1-6164

Since the sample size and bin width of the histograms are different, it is difficult to
compare them. Normalize the histograms so that all of the bar heights add to 1, and use a
uniform bin width.

h1.Normalization = 'probability';
h1.BinWidth = 0.25;
h2.Normalization = 'probability';
h2.BinWidth = 0.25;

 histogram

1-6165

Adjust Histogram Properties

Generate 1,000 random numbers and create a histogram. Return the histogram object to
adjust the properties of the histogram without recreating the entire plot.

x = randn(1000,1);
h = histogram(x)

1 Alphabetical List

1-6166

h =
 Histogram with properties:

 Data: [1000x1 double]
 Values: [1x23 double]
 NumBins: 23
 BinEdges: [1x24 double]
 BinWidth: 0.3000
 BinLimits: [-3.3000 3.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

 histogram

1-6167

 Show all properties

Specify exactly how many bins to use.

h.NumBins = 15;

Specify the edges of the bins with a vector. The first value in the vector is the left edge of
the first bin. The last value is the right edge of the last bin.

h.BinEdges = [-3:3];

1 Alphabetical List

1-6168

Change the color of the histogram bars.

h.FaceColor = [0 0.5 0.5];
h.EdgeColor = 'r';

 histogram

1-6169

Determine Underlying Probability Distribution

Generate 5,000 normally distributed random numbers with a mean of 5 and a standard
deviation of 2. Plot a histogram with Normalization set to 'pdf' to produce an
estimation of the probability density function.

x = 2*randn(5000,1) + 5;
histogram(x,'Normalization','pdf')

1 Alphabetical List

1-6170

In this example, the underlying distribution for the normally distributed data is known.
You can, however, use the 'pdf' histogram plot to determine the underlying probability
distribution of the data by comparing it against a known probability density function.

The probability density function for a normal distribution with mean μ, standard deviation
σ, and variance σ2 is

f (x, μ, σ) = 1
σ 2π exp − (x− μ)2

2σ2 .

Overlay a plot of the probability density function for a normal distribution with a mean of
5 and a standard deviation of 2.

 histogram

1-6171

hold on
y = -5:0.1:15;
mu = 5;
sigma = 2;
f = exp(-(y-mu).^2./(2*sigma^2))./(sigma*sqrt(2*pi));
plot(y,f,'LineWidth',1.5)

Saving and Loading Histogram Objects

Use the savefig function to save a histogram figure.

1 Alphabetical List

1-6172

y = histogram(randn(10));
savefig('histogram.fig');

clear all
close all

Use openfig to load the histogram figure back into MATLAB. openfig also returns a
handle to the figure, h.

h = openfig('histogram.fig');

 histogram

1-6173

Use the findobj function to locate the correct object handle from the figure handle. This
allows you to continue manipulating the original histogram object used to generate the
figure.

y = findobj(h, 'type', 'histogram')

y =
 Histogram with properties:

 Data: [10x10 double]
 Values: [2 17 28 32 16 3 2]
 NumBins: 7
 BinEdges: [-3 -2 -1 0 1 2 3 4]
 BinWidth: 1
 BinLimits: [-3 4]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

 Show all properties

Tips
• Histogram plots created using histogram have a context menu in plot edit mode that

enables interactive manipulations in the figure window. For example, you can use the
context menu to interactively change the number of bins, align multiple histograms, or
change the display order.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• Some input options are not supported. The allowed options are:

1 Alphabetical List

1-6174

• 'BinWidth'
• 'BinLimits'
• 'Normalization'
• 'DisplayStyle'
• 'BinMethod' — The 'auto' and 'scott' bin methods are the same. The 'fd'

bin method is not supported.
• 'EdgeAlpha'
• 'EdgeColor'
• 'FaceAlpha'
• 'FaceColor'
• 'LineStyle'
• 'LineWidth'
• 'Orientation'

• Additionally, there is a cap on the maximum number of bars. The default maximum is
100.

• The morebins and fewerbins methods are not supported.
• Editing properties of the histogram object that require recomputing the bins is not

supported.

For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 histogram

1-6175

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Histogram | discretize | fewerbins | histcounts | histcounts2 | histogram2 |
morebins

Topics
“Plot Categorical Data”
“Control Categorical Histogram Display”
“Replace Discouraged Instances of hist and histc”

Introduced in R2014b

1 Alphabetical List

1-6176

Histogram Properties
Histogram appearance and behavior

Description
Histogram properties control the appearance and behavior of the histogram. By changing
property values, you can modify aspects of the histogram. Use dot notation to refer to a
particular object and property:

h = histogram(randn(10,1));
c = h.BinWidth;
h.BinWidth = 2;

Properties
Bins

NumBins — Number of bins
positive integer

Number of bins, specified as a positive integer. If you do not specify NumBins, then
histogram automatically calculates how many bins to use based on the values in Data.

This option does not apply to histograms of categorical data.

BinWidth — Width of bins
scalar

Width of bins, specified as a scalar. When you specify BinWidth, then histogram can
use a maximum of 65,536 bins (or 216). If instead the specified bin width requires more
bins, then histogram uses a larger bin width corresponding to the maximum number of
bins.

For datetime and duration data, the value of 'BinWidth' can be a scalar duration or
calendar duration.

This option does not apply to histograms of categorical data.

 Histogram Properties

1-6177

Example: histogram(X,'BinWidth',5) uses bins with a width of 5.

BinEdges — Edges of bins
numeric vector

Edges of bins, specified as a numeric vector. The first vector element specifies the left
edge of the first bin. The last element specifies the right edge of the last bin. If you do not
specify the bin edges, then histogram automatically determines the location of the bin
edges.

This option does not apply to histograms of categorical data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

BinLimits — Bin limits
two-element vector

Bin limits, specified as a two-element vector, [bmin,bmax]. This option plots a histogram
using the values in the input array, X, that fall between bmin and bmax inclusive. That is,
X(X>=bmin & X<=bmax).

This option does not apply to histograms of categorical data.
Example: histogram(X,'BinLimits',[1,10]) plots a histogram using only the values
in X that are between 1 and 10 inclusive.

BinLimitsMode — Selection mode for bin limits
'auto' (default) | 'manual'

Selection mode for bin limits, specified as 'auto' or 'manual'. The default value is
'auto', so that the bin limits automatically adjust to the data.

If you explicitly specify either BinLimits or BinEdges, then BinLimitsMode is
automatically set to 'manual'. In that case, specify BinLimitsMode as 'auto' to
rescale the bin limits to the data.

This option does not apply to histograms of categorical data.

BinMethod — Binning algorithm
'auto' (default) | 'scott' | 'fd' | 'integers' | 'sturges' | 'sqrt' | ...

Binning algorithm, specified as one of the values in this table.

1 Alphabetical List

1-6178

Value Description
'auto' The default 'auto' algorithm chooses a

bin width to cover the data range and
reveal the shape of the underlying
distribution.

'scott' Scott’s rule is optimal if the data is close to
being normally distributed. This rule is
appropriate for most other distributions, as
well. It uses a bin width of
3.5*std(X(:))*numel(X)^(-1/3).

'fd' The Freedman-Diaconis rule is less
sensitive to outliers in the data, and might
be more suitable for data with heavy-tailed
distributions. It uses a bin width of
2*IQR(X(:))*numel(X)^(-1/3), where
IQR is the interquartile range of X.

'integers' The integer rule is useful with integer data,
as it creates a bin for each integer. It uses a
bin width of 1 and places bin edges halfway
between integers. To avoid accidentally
creating too many bins, you can use this
rule to create a limit of 65536 bins (216). If
the data range is greater than 65536, then
the integer rule uses wider bins instead.

Note 'integers' does not support
datetime or duration data.

'sturges' Sturges’ rule is popular due to its simplicity.
It chooses the number of bins to be ceil(1
+ log2(numel(X))).

'sqrt' The Square Root rule is widely used in
other software packages. It chooses the
number of bins to be
ceil(sqrt(numel(X))).

 Histogram Properties

1-6179

histogram does not always choose the number of bins using these exact formulas.
Sometimes the number of bins is adjusted slightly so that the bin edges fall on "nice"
numbers.

For datetime data, the bin method can be one of these units of time:

'second' 'month'
'minute' 'quarter'
'hour' 'year'
'day' 'decade'
'week' 'century'

For duration data, the bin method can be one of these units of time:

'second' 'day'
'minute' 'year'
'hour'

If you specify BinMethod with datetime or duration data, then histogram can use a
maximum of 65,536 bins (or 216). If the specified bin duration requires more bins, then
histogram uses a larger bin width corresponding to the maximum number of bins.

This option does not apply to histograms of categorical data.

Note If you set the BinLimits, NumBins, BinEdges, or BinWidth property, then the
BinMethod property is set to 'manual'.

Example: histogram(X,'BinMethod','integers') creates a histogram with the bins
centered on integers.

Categories

Categories — Categories included in histogram
cell array of character vectors | categorical vector

Note This option only applies to categorical histograms.

1 Alphabetical List

1-6180

Categories included in histogram, specified as a cell array of character vectors or
categorical vector.

• If you specify an input categorical array C, then by default, histogram plots a bar for
each category in C. In that case, use Categories to specify a unique subset of the
categories instead.

• If you specify bin counts, then Categories specifies the associated category names
for the histogram.

Example: h = histogram(C,{'Large','Small'}) plots only the categorical data in
the categories 'Large' and 'Small'.
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
18 3]) plots a histogram that has three categories with the associated bin counts.
Example: h.Categories queries the categories that are in histogram object h.
Data Types: cell | categorical

DisplayOrder — Category display order
'data' (default) | 'ascend' | 'descend'

Category display order, specified as 'ascend', 'descend', or 'data'. With 'ascend'
or 'descend', the histogram displays with increasing or decreasing bar heights. The
default 'data' value uses the category order in the input data, C.

This option only works with categorical data.

NumDisplayBins — Number of categories to display
scalar

Number of categories to display, specified as a scalar. You can change the ordering of
categories displayed in the histogram using the 'DisplayOrder' option.

This option only works with categorical data.

ShowOthers — Toggle summary display of data belonging to undisplayed
categories
'off' (default) | 'on'

Toggle summary display of data belonging to undisplayed categories, specified as 'off'
or 'on'. Set this option to 'on' to display an additional bar in the histogram with the
name 'Others'. This extra bar counts all elements that do not belong to categories
displayed in the histogram.

 Histogram Properties

1-6181

You can change the number of categories displayed in the histogram, as well as their
order, using the 'NumDisplayBins' and 'DisplayOrder' options.

This option only works with categorical data.

Data

Data — Data to distribute among bins
vector | matrix | multidimensional array | categorical array

Data to distribute among bins, specified as a vector, matrix, multidimensional array, or
categorical array. If Data is not a vector, then histogram treats it as a single column
vector, Data(:), and plots a single histogram.

histogram ignores all NaN, NaT, and undefined categorical values. Similarly, histogram
ignores Inf and -Inf values unless the bin edges explicitly specify Inf or -Inf as a bin
edge. Although NaN, NaT, Inf, -Inf, and <undefined> values are typically not plotted,
they are still included in normalization calculations that include the total number of data
elements, such as 'probability'.

If you change the values in the Data property of a histogram object, then the bin edges
are not automatically updated. To recompute the bins, adjust a bin-related property such
as BinMethod or NumBins. You can only specify categorical values for Data if the
histogram object was originally created using categoricals.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | categorical | datetime | duration

Values — Bin values
numeric vector

This property is read-only.

Bin values, returned as a numeric vector. If Normalization is 'count' (the default),
then the kth element in Values specifies how many elements of Data fall in the kth bin
interval (bin counts). The last bin includes values that are on either bin edge, but all other
bins only include values that fall on the left edge.

Depending on the value of Normalization, the Values property can instead contain a
normalized variant of the bin counts.

Normalization — Type of normalization
'count' (default) | 'probability' | 'countdensity' | 'pdf' | 'cumcount' | 'cdf'

1 Alphabetical List

1-6182

Type of normalization, specified as one of the values in this table. For each bin i:

• vi is the bin value.
• ci is the number of elements in the bin.
• wi is the width of the bin.
• N is the number of elements in the input data. This value can be greater than the

binned data if the data contains NaN, NaT, or <undefined> values, or if some of the
data lies outside the bin limits.

Value Bin Values Notes
'count' (default) vi = ci • Count or frequency of

observations.
• Sum of bin values is less

than or equal to
numel(X). The sum is
less than numel(X) only
when some of the input
data is not included in
the bins.

• For categorical data, sum
of bin values is less than
or equal to either
numel(X) or
sum(ismember(X(:),C
ategories)).

 Histogram Properties

1-6183

Value Bin Values Notes
'countdensity'

vi =
ci
wi

• Count or frequency
scaled by width of bin.

• The area (height * width)
of each bar is the
number of observations
in the bin. The sum of
the bar areas is less than
or equal to numel(X).

• For categorical
histograms, this is the
same as 'count'.

Note 'countdensity'
does not support datetime
or duration data.

'cumcount'
vi = ∑

j = 1

i
c j

• Cumulative count. Each
bin value is the
cumulative number of
observations in that bin
and all previous bins.

• The height of the last bar
is less than or equal to
numel(X).

• For categorical
histograms, the height of
the last bar is less than
or equal to numel(X) or
sum(ismember(X(:),C
ategories)).

'probability'
vi =

ci
N

• Relative probability.
• The sum of the bar

heights is less than or
equal to 1.

1 Alphabetical List

1-6184

Value Bin Values Notes
'pdf'

vi =
ci

N ⋅ wi

• Probability density
function estimate.

• The area of each bar is
the relative number of
observations. The sum of
the bar areas is less than
or equal to 1.

• For categorical
histograms, this is the
same as
'probability'.

Note 'pdf' does not
support datetime or
duration data.

'cdf'
vi = ∑

j = 1

i c j
N

• Cumulative density
function estimate.

• The height of each bar is
equal to the cumulative
relative number of
observations in the bin
and all previous bins.
The height of the last bar
is less than or equal to 1.

• For categorical data, the
height of each bar is
equal to the cumulative
relative number of
observations in each
category and all previous
categories.

Example: histogram(X,'Normalization','pdf') plots an estimate of the probability
density function for X.

 Histogram Properties

1-6185

BinCounts — Bin counts
vector

Bin counts, specified as a vector. Use this input to pass bin counts to histogram when
the bin counts calculation is performed separately and you do not want histogram to do
any data binning.

The length of counts must be equal to the number of bins.

• For numeric histograms, the number of bins is length(edges)-1.
• For categorical histograms, the number of bins is equal to the number of categories.

Compared to the Values property, BinCounts is not normalized. If Normalization is
'count', then Values and BinCounts are equivalent.
Example: histogram('BinEdges',-2:2,'BinCounts',[5 8 15 9])
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
18 3])

BinCountsMode — Selection mode for bin counts
'auto' (default) | 'manual'

Selection mode for bin counts, specified as 'auto' or 'manual'. The default value is
'auto', so that the bin counts are automatically computed from Data and BinEdges.

If you specify BinCounts, then BinCountsMode is automatically set to 'manual'.
Similarly, if you specify Data, then BinCountsMode is automatically set to 'auto'.

Color and Styling

DisplayStyle — Histogram display style
'bar' (default) | 'stairs'

Histogram display style, specified as either 'bar' or 'stairs'. Specify 'stairs' to
display a stairstep plot, which displays the outline of the histogram without filling the
interior.

The default value of 'bar' displays a histogram bar plot.
Example: histogram(X,'DisplayStyle','stairs') plots the outline of the
histogram.

1 Alphabetical List

1-6186

Orientation — Orientation of bars
'vertical' (default) | 'horizontal'

Orientation of bars, specified as 'vertical' or 'horizontal'.
Example: histogram(X,'Orientation','horizontal') creates a histogram plot
with horizontal bars.

BarWidth — Relative width of categorical bars
0.9 (default) | scalar in range [0,1]

Note This option only applies to histograms of categorical data.

Relative width of categorical bars, specified as a scalar value in the range [0,1]. Use this
property to control the separation of categorical bars within the histogram. The default
value is 0.9, which means that the bar width is 90% of the space from the previous bar to
the next bar, with 5% of that space on each side.

If you set this property to 1, then adjacent bars touch.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FaceColor — Histogram bar color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name

Histogram bar color, specified as one of these values:

• 'none' — Bars are not filled.
• 'auto' — The histogram bar color is chosen automatically (default).
• RGB triplet, hexadecimal color code, or color name — Bars are filled with the specified

color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

 Histogram Properties

1-6187

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

1 Alphabetical List

1-6188

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780
0.1840]

'#A2142F'

If you specify DisplayStyle as 'stairs', then histogram does not utilize the
FaceColor property.
Example: histogram(X,'FaceColor','g') creates a histogram plot with green bars.

EdgeColor — Histogram edge color
[0 0 0] or black (default) | 'none' | 'auto' | RGB triplet | hexadecimal color code |
color name

Histogram edge color, specified as one of these values:

• 'none' — Edges are not drawn.
• 'auto' — The color of each edge is chosen automatically.
• RGB triplet, hexadecimal color code, or color name — Edges use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

 Histogram Properties

1-6189

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: histogram(X,'EdgeColor','r') creates a histogram plot with red bar
edges.

FaceAlpha — Transparency of histogram bars
0.6 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bars, specified as a scalar value between 0 and 1 inclusive.
histogram uses the same transparency for all the bars of the histogram. A value of 1
means fully opaque and 0 means completely transparent (invisible).

1 Alphabetical List

1-6190

Example: histogram(X,'FaceAlpha',1) creates a histogram plot with fully opaque
bars.

EdgeAlpha — Transparency of histogram bar edges
1 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bar edges, specified as a scalar value between 0 and 1
inclusive. A value of 1 means fully opaque and 0 means completely transparent (invisible).
Example: histogram(X,'EdgeAlpha',0.5) creates a histogram plot with semi-
transparent bar edges.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of bar outlines
0.5 (default) | positive value

Width of bar outlines, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Legend

DisplayName — Text used by legend
variable name of Data or '' (default) | character vector

 Histogram Properties

1-6191

Text used by the legend, specified as a character vector. The text appears next to an icon
of the histogram.
Example: 'Text Description'

For multiline text, create the character vector using sprintf with the new line character
\n.
Example: sprintf('line one\nline two')

Alternatively, you can specify the legend text using the legend function.

• If you specify the text as an input argument to the legend function, then the legend
uses the specified text and sets the DisplayName property to the same value.

• If you do not specify the text as an input argument to the legend function, then the
legend uses the text in the DisplayName property. The default value of DisplayName
is one of these values.

• For numeric inputs, DisplayName is a character vector representing the variable
name of the input data used to construct the histogram. If the input data does not
have a variable name, then DisplayName is empty, ''.

• For categorical array inputs, DisplayName is empty, ''.

If the DisplayName property does not contain any text, then the legend generates a
character vector. The character vector has the form 'dataN', where N is the number
assigned to the histogram object based on its location in the list of legend entries.

If you edit interactively the character vector in an existing legend, then MATLAB updates
the DisplayName property to the edited character vector.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

1 Alphabetical List

1-6192

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

 Histogram Properties

1-6193

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

1 Alphabetical List

1-6194

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

 Histogram Properties

1-6195

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the Histogram object. The Interruptible property has
two values:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

1 Alphabetical List

1-6196

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the Histogram object tries to interrupt a running callback that cannot be
interrupted, then the BusyAction property determines if it is discarded or put in the
queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

• 'cancel' — Discard the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Histogram object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Histogram object passes the
click to the object behind it in the current view of the figure window. The HitTest
property of the Histogram object has no effect.

 Histogram Properties

1-6197

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Histogram object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Histogram object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Histogram object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

1 Alphabetical List

1-6198

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'histogram' | 'categoricalhistogram'

This property is read-only.

Type of graphics object, returned as either 'histogram' or
'categoricalhistogram'. Use this property to find all objects of a given type within a
plotting hierarchy, such as searching for the type using findobj.

Tag — Tag to associate with histogram
'' (default) | character vector

Tag to associate with the histogram object, specified as a character vector or string
scalar.

Use this property to find histogram objects in a hierarchy. For example, you can use the
findobj function to find histogram objects that have a specific Tag property value.

 Histogram Properties

1-6199

Example: 'January Data'
Data Types: char

UserData — User data
[] (default) | any MATLAB data

User data to associate with the histogram object, specified as any MATLAB data, for
example, a scalar, vector, matrix, cell array, character array, table, or structure. MATLAB
does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

See Also
histogram

Topics
“Access Property Values”

Introduced in R2014b

1 Alphabetical List

1-6200

histogram2
Bivariate histogram plot

Description
Bivariate histograms are a type of bar plot for numeric data that group the data into 2-D
bins. After you create a Histogram2 object, you can modify aspects of the histogram by
changing its property values. This is particularly useful for quickly modifying the
properties of the bins or changing the display.

Creation

Syntax
histogram2(X,Y)
histogram2(X,Y,nbins)
histogram2(X,Y,Xedges,Yedges)
histogram2('XBinEdges',Xedges,'YBinEdges',Yedges,'BinCounts',counts)

histogram2(___ ,Name,Value)
histogram2(ax, ___)
h = histogram2(___)

Description
histogram2(X,Y) creates a bivariate histogram plot of X and Y. The histogram2
function uses an automatic binning algorithm that returns bins with a uniform area,
chosen to cover the range of elements in X and Y and reveal the underlying shape of the
distribution. histogram2 displays the bins as 3-D rectangular bars such that the height
of each bar indicates the number of elements in the bin.

histogram2(X,Y,nbins) specifies the number of bins to use in each dimension of the
histogram.

 histogram2

1-6201

histogram2(X,Y,Xedges,Yedges) specifies the edges of the bins in each dimension
using the vectors Xedges and Yedges.

histogram2('XBinEdges',Xedges,'YBinEdges',Yedges,'BinCounts',counts)
manually specifies the bin counts. histogram2 plots the specified bin counts and does
not do any data binning.

histogram2(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments using any of the previous syntaxes. For example, you can
specify 'BinWidth' and a two-element vector to adjust the width of the bins in each
dimension, or 'Normalization' with a valid option ('count', 'probability',
'countdensity', 'pdf', 'cumcount', or 'cdf') to use a different type of
normalization. For a list of properties, see Histogram2.

histogram2(ax, ___) plots into the axes specified by ax instead of into the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

h = histogram2(___) returns a Histogram2 object. Use this to inspect and adjust
properties of the bivariate histogram. For a list of properties, see Histogram2.

Input Arguments
X,Y — Data to distribute among bins (as separate arguments)
vectors | matrices | multidimensional arrays

Data to distribute among bins, specified as separate arguments of vectors, matrices, or
multidimensional arrays. X and Y must be the same size. If X and Y are not vectors, then
histogram2 treats them as single column vectors, X(:) and Y(:), and plots a single
histogram.

Corresponding elements in X and Y specify the x and y coordinates of 2-D data points,
[X(k),Y(k)]. The data types of X and Y can be different, but histogram2 concatenates
these inputs into a single N-by-2 matrix of the dominant data type.

histogram2 ignores all NaN values. Similarly, histogram2 ignores Inf and -Inf
values, unless the bin edges explicitly specify Inf or -Inf as a bin edge. Although NaN,
Inf, and -Inf values are typically not plotted, they are still included in normalization
calculations that include the total number of data elements, such as 'probability'.

1 Alphabetical List

1-6202

Note If X or Y contain integers of type int64 or uint64 that are larger than flintmax,
then it is recommended that you explicitly specify the histogram bin edges.histogram2
automatically bins the input data using double precision, which lacks integer precision for
numbers greater than flintmax.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

nbins — Number of bins in each dimension
scalar | vector

Number of bins in each dimension, specified as a positive scalar integer or two-element
vector of positive integers. If you do not specify nbins, then histogram2 automatically
calculates how many bins to use based on the values in X and Y.

• If nbins is a scalar, then histogram2 uses that many bins in each dimension.
• If nbins is a vector, then nbins(1) specifies the number of bins in the x-dimension

and nbins(2) specifies the number of bins in the y-dimension.

Example: histogram2(X,Y,20) uses 20 bins in each dimension.
Example: histogram2(X,Y,[10 20]) uses 10 bins in the x-dimension and 20 bins in
the y-dimension.

Xedges — Bin edges in x-dimension
vector

Bin edges in x-dimension, specified as a vector. Xedges(1) is the first edge of the first
bin in the x-dimension, and Xedges(end) is the outer edge of the last bin.

The value [X(k),Y(k)] is in the (i,j)th bin if Xedges(i) ≤ X(k) < Xedges(i+1)
and Yedges(j) ≤ Y(k) < Yedges(j+1). The last bins in each dimension also include
the last (outer) edge. For example, [X(k),Y(k)] falls into the ith bin in the last row if
Xedges(end-1) ≤ X(k) ≤ Xedges(end) and Yedges(i) ≤ Y(k) < Yedges(i+1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Yedges — Bin edges in y-dimension
vector

 histogram2

1-6203

Bin edges in y-dimension, specified as a vector. Yedges(1) is the first edge of the first
bin in the y-dimension, and Yedges(end) is the outer edge of the last bin.

The value [X(k),Y(k)] is in the (i,j)th bin if Xedges(i) ≤ X(k) < Xedges(i+1)
and Yedges(j) ≤ Y(k) < Yedges(j+1). The last bins in each dimension also include
the last (outer) edge. For example, [X(k),Y(k)] falls into the ith bin in the last row if
Xedges(end-1) ≤ X(k) ≤ Xedges(end) and Yedges(i) ≤ Y(k) < Yedges(i+1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

counts — Bin counts
matrix

Bin counts, specified as a matrix. Use this input to pass bin counts to histogram2 when
the bin counts calculation is performed separately and you do not want histogram2 to
do any data binning.

counts must be a matrix of size [length(XBinEdges)-1 length(YBinEdges)-1] so
that it specifies a bin count for each bin.
Example: histogram2('XBinEdges',-1:1,'YBinEdges',-2:2,'BinCounts',[1 2
3 4; 5 6 7 8])

ax — Axes object
object

Axes object. If you do not specify an axes, then the histogram2 function uses the current
axes (gca).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: histogram2(X,Y,'BinWidth',[5 10])

The properties listed here are only a subset. For a complete list, see Histogram2.

BinMethod — Binning algorithm
'auto' (default) | 'scott' | 'fd' | 'integers'

1 Alphabetical List

1-6204

Binning algorithm, specified as one of the values in this table.

Value Description
'auto' The default 'auto' algorithm chooses a

bin width to cover the data range and
reveal the shape of the underlying
distribution.

'scott' Scott’s rule is optimal if the data is close to
being jointly normally distributed. This rule
is appropriate for most other distributions,
as well. It uses a bin size of
[3.5*std(X(:))*numel(X)^(-1/4),
3.5*std(Y(:))*numel(Y)^(-1/4)].

'fd' The Freedman-Diaconis rule is less
sensitive to outliers in the data, and might
be more suitable for data with heavy-tailed
distributions. It uses a bin size of
[2*IQR(X(:))*numel(X)^(-1/4),
2*IQR(Y(:))*numel(Y)^(-1/4)],
where IQR is the interquartile range.

'integers' The integer rule is useful with integer data,
as it creates bins centered on pairs of
integers. It uses a bin width of 1 for each
dimension and places bin edges halfway
between integers.

To avoid accidentally creating too many
bins, you can use this rule to create a limit
of 1024 bins (210). If the data range for
either dimension is greater than 1024, then
the integer rule uses wider bins instead.

histogram2 does not always choose the number of bins using these exact formulas.
Sometimes the number of bins is adjusted slightly so that the bin edges fall on "nice"
numbers.

Note If you set the NumBins, XBinEdges, YBinEdges, BinWidth, or BinLimits
property, then the BinMethod property is set to 'manual'.

 histogram2

1-6205

Example: histogram2(X,Y,'BinMethod','integers') creates a bivariate histogram
with the bins centered on pairs of integers.

BinWidth — Width of bins in each dimension
vector

Width of bins in each dimension, specified as a two-element vector of positive integers,
[xWidth yWidth].

If you specify BinWidth, then histogram2 can use a maximum of 1024 bins (210) along
each dimension. If instead the specified bin width requires more bins, then histogram2
uses a larger bin width corresponding to the maximum number of bins.
Example: histogram2(X,Y,'BinWidth',[5 10]) uses bins with size 5 in the x-
dimension and size 10 in the y-dimension.

DisplayStyle — Histogram display style
'bar3' (default) | 'tile'

Histogram display style, specified as either 'bar3' or 'tile'. Specify 'tile' to display
the histogram as a rectangular array of tiles with colors indicating the bin values.

The default value of 'bar3' displays the histogram using 3-D bars.
Example: histogram2(X,Y,'DisplayStyle','tile') plots the histogram as a
rectangular array of tiles.

EdgeAlpha — Transparency of histogram bar edges
1 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bar edges, specified as a scalar value between 0 and 1
inclusive. A value of 1 means fully opaque and 0 means completely transparent (invisible).
Example: histogram2(X,Y,'EdgeAlpha',0.5) creates a bivariate histogram plot with
semi-transparent bar edges.

EdgeColor — Histogram edge color
[0.15 0.15 0.15] (default) | 'none' | 'auto' | RGB triplet | hexadecimal color code |
color name

Histogram edge color, specified as one of these values:

• 'none' — Edges are not drawn.

1 Alphabetical List

1-6206

• 'auto' — Color of each edge is chosen automatically.
• RGB triplet, hexadecimal color code, or color name — Edges use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

 histogram2

1-6207

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: histogram2(X,Y,'EdgeColor','r') creates a 3-D histogram plot with red
bar edges.

FaceAlpha — Transparency of histogram bars
1 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bars, specified as a scalar value between 0 and 1 inclusive.
histogram2 uses the same transparency for all the bars of the histogram. A value of 1
means fully opaque and 0 means completely transparent (invisible).
Example: histogram2(X,Y,'FaceAlpha',0.5) creates a bivariate histogram plot with
semi-transparent bars.

FaceColor — Histogram bar color
'auto' (default) | 'flat' | 'none' | RGB triplet | hexadecimal color code | color name

Histogram bar color, specified as one of these values:

• 'none' — Bars are not filled.
• 'flat' — Bar colors vary with height. Bars with different height have different colors.

The colors are selected from the figure or axes colormap.
• 'auto' — Bar color is chosen automatically (default).
• RGB triplet, hexadecimal color code, or color name — Bars are filled with the specified

color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

1 Alphabetical List

1-6208

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

 histogram2

1-6209

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

If you specify DisplayStyle as 'stairs', then histogram2 does not use the
FaceColor property.
Example: histogram2(X,Y,'FaceColor','g') creates a 3-D histogram plot with
green bars.

FaceLighting — Lighting effect on histogram bars
'lit' (default) | 'flat' | 'none'

Lighting effect on histogram bars, specified as one of the values in this table.

Value Description
'lit' Histogram bars display a pseudo-lighting

effect, where the sides of the bars use
darker colors relative to the tops. The bars
are unaffected by other light sources in the
axes.

This is the default value when
DisplayStyle is 'bar3'.

'flat' Histogram bars are not lit automatically. In
the presence of other light objects, the
lighting effect is uniform across the bar
faces.

'none' Histogram bars are not lit automatically,
and lights do not affect the histogram bars.

FaceLighting can only be 'none' when
DisplayStyle is 'tile'.

1 Alphabetical List

1-6210

Example: histogram2(X,Y,'FaceLighting','none') turns off the lighting of the
histogram bars.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of bar outlines
0.5 (default) | positive value

Width of bar outlines, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Normalization — Type of normalization
'count' (default) | 'probability' | 'countdensity' | 'pdf' | 'cumcount' | 'cdf'

Type of normalization, specified as one of the values in this table. For each bin i:

• vi is the bin value.
• ci is the number of elements in the bin.
• Ai = wxi ⋅wyi is the area of each bin, computed using the x and y bin widths.
• N is the number of elements in the input data. This value can be greater than the

binned data if the data contains NaN values, or if some of the data lies outside the bin
limits.

 histogram2

1-6211

Value Bin Values Notes
'count' (default) vi = ci • Count or frequency of

observations.
• Sum of bin values is less

than or equal to
numel(X) and
numel(y). The sum is
less than numel(X) and
numel(y) only when
some of the input data is
not included in the bins.

'countdensity'
vi =

ci
Ai

• Count or frequency
scaled by area of bin.

• The volume (height *
area) of each bar is the
number of observations
in the bin. The sum of
the bar volumes is less
than or equal to
numel(X) and
numel(y).

'cumcount'
vi = ∑

j = 1

i
c j

• Cumulative count. Each
bin value is the
cumulative number of
observations in each bin
and all previous bins in
both the x and y
dimensions.

• The height of the last bar
is less than or equal to
numel(X) and
numel(Y).

'probability'
vi =

ci
N

• Relative probability.
• The sum of the bar

heights is less than or
equal to 1.

1 Alphabetical List

1-6212

Value Bin Values Notes
'pdf'

vi =
ci

N ⋅ Ai

• Probability density
function estimate.

• The volume of each bar
is the relative number of
observations. The sum of
the bar volumes is less
than or equal to 1.

'cdf'
vi = ∑

j = 1

i c j
N

• Cumulative density
function estimate.

• The height of each bar is
equal to the cumulative
relative number of
observations in each bin
and all previous bins in
both the x and y
dimensions. The height
of the last bar is less
than or equal to 1.

Example: histogram2(X,Y,'Normalization','pdf') plots an estimate of the
probability density function for X and Y.

ShowEmptyBins — Toggle display of empty bins
'off' (default) | 'on'

Toggle display of empty bins, specified as either 'off' or 'on'. The default value is
'off'.
Example: histogram2(X,Y,'ShowEmptyBins','on') turns on the display of empty
bins.

XBinLimits — Bin limits in x-dimension
vector

Bin limits in x-dimension, specified as a two-element vector, [xbmin,xbmax]. The vector
indicates the first and last bin edges in the x-dimension.

histogram2 only plots data that falls within the bin limits inclusively,
Data(Data(:,1)>=xbmin & Data(:,1)<=xbmax).

 histogram2

1-6213

XBinLimitsMode — Selection mode for bin limits in x-dimension
'auto' (default) | 'manual'

Selection mode for bin limits in x-dimension, specified as 'auto' or 'manual'. The
default value is 'auto', so that the bin limits automatically adjust to the data along the x-
axis.

If you explicitly specify either XBinLimits or XBinEdges, then XBinLimitsMode is set
automatically to 'manual'. In that case, specify XBinLimitsMode as 'auto' to rescale
the bin limits to the data.

YBinLimits — Bin limits in y-dimension
vector

Bin limits in y-dimension, specified as a two-element vector, [ybmin,ybmax]. The vector
indicates the first and last bin edges in the y-dimension.

histogram2 only plots data that falls within the bin limits inclusively,
Data(Data(:,2)>=ybmin & Data(:,2)<=ybmax).

YBinLimitsMode — Selection mode for bin limits in y-dimension
'auto' (default) | 'manual'

Selection mode for bin limits in y-dimension, specified as 'auto' or 'manual'. The
default value is 'auto', so that the bin limits automatically adjust to the data along the y-
axis.

If you explicitly specify either YBinLimits or YBinEdges, then YBinLimitsMode is set
automatically to 'manual'. In that case, specify YBinLimitsMode as 'auto' to rescale
the bin limits to the data.

Output Arguments
h — Bivariate histogram
object

Bivariate histogram, returned as an object. For more information, see Histogram2
Properties.

1 Alphabetical List

1-6214

Properties
Histogram2 Histogram2 appearance and behavior

Object Functions
morebins Increase number of histogram bins
fewerbins Decrease number of histogram bins

Examples

Histogram of Vectors

Generate 10,000 pairs of random numbers and create a bivariate histogram. The
histogram2 function automatically chooses an appropriate number of bins to cover the
range of values in x and y and show the shape of the underlying distribution.

x = randn(10000,1);
y = randn(10000,1);
h = histogram2(x,y)

h =
 Histogram2 with properties:

 Data: [10000x2 double]
 Values: [25x28 double]
 NumBins: [25 28]
 XBinEdges: [1x26 double]
 YBinEdges: [1x29 double]
 BinWidth: [0.3000 0.3000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0.1500 0.1500 0.1500]

 Show all properties

xlabel('x')
ylabel('y')

 histogram2

1-6215

When you specify an output argument to the histogram2 function, it returns a
histogram2 object. You can use this object to inspect the properties of the histogram, such
as the number of bins or the width of the bins.

Find the number of histogram bins in each dimension.

nXnY = h.NumBins

nXnY = 1×2

 25 28

1 Alphabetical List

1-6216

Specify Number of Histogram Bins

Plot a bivariate histogram of 1,000 pairs of random numbers sorted into 25 equally
spaced bins, using 5 bins in each dimension.

x = randn(1000,1);
y = randn(1000,1);
nbins = 5;
h = histogram2(x,y,nbins)

h =
 Histogram2 with properties:

 Data: [1000x2 double]

 histogram2

1-6217

 Values: [5x5 double]
 NumBins: [5 5]
 XBinEdges: [-4 -2.4000 -0.8000 0.8000 2.4000 4]
 YBinEdges: [-4 -2.4000 -0.8000 0.8000 2.4000 4]
 BinWidth: [1.6000 1.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0.1500 0.1500 0.1500]

 Show all properties

Find the resulting bin counts.

counts = h.Values

counts = 5×5

 0 2 3 1 0
 2 40 124 47 4
 1 119 341 109 10
 1 32 117 33 1
 0 4 8 1 0

Adjust Number of Histogram Bins

Generate 1,000 pairs of random numbers and create a bivariate histogram.

x = randn(1000,1);
y = randn(1000,1);
h = histogram2(x,y)

1 Alphabetical List

1-6218

h =
 Histogram2 with properties:

 Data: [1000x2 double]
 Values: [15x15 double]
 NumBins: [15 15]
 XBinEdges: [1x16 double]
 YBinEdges: [1x16 double]
 BinWidth: [0.5000 0.5000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0.1500 0.1500 0.1500]

 histogram2

1-6219

 Show all properties

Use the morebins function to coarsely adjust the number of bins in the x dimension.

nbins = morebins(h,'x');
nbins = morebins(h,'x')

nbins = 1×2

 19 15

Use the fewerbins function to adjust the number of bins in the y dimension.

1 Alphabetical List

1-6220

nbins = fewerbins(h,'y');
nbins = fewerbins(h,'y')

nbins = 1×2

 19 11

Adjust the number of bins at a fine grain level by explicitly setting the number of bins.

h.NumBins = [20 10];

 histogram2

1-6221

Color Histogram Bars by Height

Create a bivariate histogram using 1,000 normally distributed random numbers with 12
bins in each dimension. Specify FaceColor as 'flat' to color the histogram bars by
height.

h = histogram2(randn(1000,1),randn(1000,1),[12 12],'FaceColor','flat');
colorbar

1 Alphabetical List

1-6222

Tiled Histogram View

Generate random data and plot a bivariate tiled histogram. Display the empty bins by
specifying ShowEmptyBins as 'on'.

x = 2*randn(1000,1)+2;
y = 5*randn(1000,1)+3;
h = histogram2(x,y,'DisplayStyle','tile','ShowEmptyBins','on');

 histogram2

1-6223

Specify Bin Edges of Histogram

Generate 1,000 pairs of random numbers and create a bivariate histogram. Specify the
bin edges using two vectors, with infinitely wide bins on the boundary of the histogram to
capture all outliers that do not satisfy x < 2.

x = randn(1000,1);
y = randn(1000,1);
Xedges = [-Inf -2:0.4:2 Inf];
Yedges = [-Inf -2:0.4:2 Inf];
h = histogram2(x,y,Xedges,Yedges)

1 Alphabetical List

1-6224

h =
 Histogram2 with properties:

 Data: [1000x2 double]
 Values: [12x12 double]
 NumBins: [12 12]
 XBinEdges: [1x13 double]
 YBinEdges: [1x13 double]
 BinWidth: 'nonuniform'
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0.1500 0.1500 0.1500]

 histogram2

1-6225

 Show all properties

When the bin edges are infinite, histogram2 displays each outlier bin (along the
boundary of the histogram) as being double the width of the bin next to it.

Specify the Normalization property as 'countdensity' to remove the bins
containing the outliers. Now the volume of each bin represents the frequency of
observations in that interval.

h.Normalization = 'countdensity';

1 Alphabetical List

1-6226

Normalized Histogram

Generate 1,000 pairs of random numbers and create a bivariate histogram using the
'probability' normalization.

x = randn(1000,1);
y = randn(1000,1);
h = histogram2(x,y,'Normalization','probability')

h =
 Histogram2 with properties:

 Data: [1000x2 double]
 Values: [15x15 double]

 histogram2

1-6227

 NumBins: [15 15]
 XBinEdges: [1x16 double]
 YBinEdges: [1x16 double]
 BinWidth: [0.5000 0.5000]
 Normalization: 'probability'
 FaceColor: 'auto'
 EdgeColor: [0.1500 0.1500 0.1500]

 Show all properties

Compute the total sum of the bar heights. With this normalization, the height of each bar
is equal to the probability of selecting an observation within that bin interval, and the
heights of all of the bars sum to 1.

S = sum(h.Values(:))

S = 1.0000

Adjust Histogram Properties

Generate 1,000 pairs of random numbers and create a bivariate histogram. Return the
histogram object to adjust the properties of the histogram without recreating the entire
plot.

x = randn(1000,1);
y = randn(1000,1);
h = histogram2(x,y)

1 Alphabetical List

1-6228

h =
 Histogram2 with properties:

 Data: [1000x2 double]
 Values: [15x15 double]
 NumBins: [15 15]
 XBinEdges: [1x16 double]
 YBinEdges: [1x16 double]
 BinWidth: [0.5000 0.5000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0.1500 0.1500 0.1500]

 histogram2

1-6229

 Show all properties

Color the histogram bars by height.

h.FaceColor = 'flat';

Change the number of bins in each direction.

h.NumBins = [10 25];

1 Alphabetical List

1-6230

Display the histogram as a tile plot.

h.DisplayStyle = 'tile';
view(2)

 histogram2

1-6231

Saving and Loading Histogram2 Objects

Use the savefig function to save a histogram2 figure.

y = histogram2(randn(100,1),randn(100,1));
savefig('histogram2.fig');

1 Alphabetical List

1-6232

clear all
close all

Use openfig to load the histogram figure back into MATLAB. openfig also returns a
handle to the figure, h.

h = openfig('histogram2.fig');

Use the findobj function to locate the correct object handle from the figure handle. This
allows you to continue manipulating the original histogram object used to generate the
figure.

 histogram2

1-6233

y = findobj(h, 'type', 'histogram2')

y =
 Histogram2 with properties:

 Data: [100x2 double]
 Values: [7x6 double]
 NumBins: [7 6]
 XBinEdges: [-3 -2 -1 0 1 2 3 4]
 YBinEdges: [-3 -2 -1 0 1 2 3]
 BinWidth: [1 1]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0.1500 0.1500 0.1500]

 Show all properties

Tips
• Histogram plots created using histogram2 have a context menu in plot edit mode

that enables interactive manipulations in the figure window. For example, you can use
the context menu to interactively change the number of bins, align multiple
histograms, or change the display order.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• Some input options are not supported. The allowed options are:

• 'BinWidth'
• 'XBinLimits'

1 Alphabetical List

1-6234

• 'YBinLimits'
• 'Normalization'
• 'DisplayStyle'
• 'BinMethod' — The 'auto' and 'scott' bin methods are the same. The 'fd'

bin method is not supported.
• 'EdgeAlpha'
• 'EdgeColor'
• 'FaceAlpha'
• 'FaceColor'
• 'LineStyle'
• 'LineWidth'
• 'Orientation'

• Additionally, there is a cap on the maximum number of bars. The default maximum is
100.

• The morebins and fewerbins methods are not supported.
• Editing properties of the histogram object that require recomputing the bins is not

supported.

For more information, see “Tall Arrays”.

See Also
Histogram2 | bar3 | discretize | fewerbins | histcounts | histcounts2 |
morebins

Introduced in R2015b

 histogram2

1-6235

Histogram2 Properties
Histogram2 appearance and behavior

Description
Histogram2 properties control the appearance and behavior of the histogram. By
changing property values, you can modify aspects of the histogram. Use dot notation to
refer to a particular object and property:

h = histogram2(randn(10,1),randn(10,1));
c = h.NumBins;
h.NumBins = [4 7];

Properties
Bins

NumBins — Number of bins in each dimension
vector

Number of bins in each dimension, specified as a two-element vector of positive integers,
[nX nY]. If you do not specify NumBins, then histogram2 automatically calculates how
many bins to use based on the values in X and Y.
Example: histogram2(X,Y,[10 20])
Example: h.NumBins = [10 20]

BinWidth — Width of bins in each dimension
vector

Width of bins in each dimension, specified as a two-element vector. The first element in
the vector gives the width of the bins in the x-dimension, and the second element gives
the width of the bins in the y-dimension.

When you specify BinWidth, then histogram2 can use a maximum of 1024 bins (210)
along each dimension. If instead the specified bin width requires more bins, then
histogram2 uses a larger bin width corresponding to the maximum number of bins.

1 Alphabetical List

1-6236

Example: histogram2(X,Y,'BinWidth',[5 10]) uses bins with size 5 in the x-
dimension and size 10 in the y-dimension.

XBinEdges — Bin edges in x-dimension
vector

Bin edges in x-dimension, specified as a vector. Xedges(1) is the first edge of the first
bin in the x-dimension, and Xedges(end) is the outer edge of the last bin.

The value [X(k),Y(k)] is in the (i,j)th bin if Xedges(i) ≤ X(k) < Xedges(i+1)
and Yedges(j) ≤ Y(k) < Yedges(j+1). The last bins in each dimension also include
the last (outer) edge. For example, [X(k),Y(k)] falls into the ith bin in the last row if
Xedges(end-1) ≤ X(k) ≤ Xedges(end) and Yedges(i) ≤ Y(k) < Yedges(i+1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

YBinEdges — Bin edges in y-dimension
vector

Bin edges in y-dimension, specified as a vector. Yedges(1) is the first edge of the first
bin in the y-dimension, and Yedges(end) is the outer edge of the last bin.

The value [X(k),Y(k)] is in the (i,j)th bin if Xedges(i) ≤ X(k) < Xedges(i+1)
and Yedges(j) ≤ Y(k) < Yedges(j+1). The last bins in each dimension also include
the last (outer) edge. For example, [X(k),Y(k)] falls into the ith bin in the last row if
Xedges(end-1) ≤ X(k) ≤ Xedges(end) and Yedges(i) ≤ Y(k) < Yedges(i+1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

XBinLimits — Bin limits in x-dimension
vector

Bin limits in x-dimension, specified as a two-element vector, [xbmin,xbmax]. The vector
indicates the first and last bin edges in the x-dimension.

histogram2 only plots data that falls within the bin limits inclusively,
Data(Data(:,1)>=xbmin & Data(:,1)<=xbmax).

XBinLimitsMode — Selection mode for bin limits in x-dimension
'auto' (default) | 'manual'

 Histogram2 Properties

1-6237

Selection mode for bin limits in x-dimension, specified as 'auto' or 'manual'. The
default value is 'auto', so that the bin limits automatically adjust to the data along the x-
axis.

If you explicitly specify either XBinLimits or XBinEdges, then XBinLimitsMode is set
automatically to 'manual'. In that case, specify XBinLimitsMode as 'auto' to rescale
the bin limits to the data.

YBinLimits — Bin limits in y-dimension
vector

Bin limits in y-dimension, specified as a two-element vector, [ybmin,ybmax]. The vector
indicates the first and last bin edges in the y-dimension.

histogram2 only plots data that falls within the bin limits inclusively,
Data(Data(:,2)>=ybmin & Data(:,2)<=ybmax).

YBinLimitsMode — Selection mode for bin limits in y-dimension
'auto' (default) | 'manual'

Selection mode for bin limits in y-dimension, specified as 'auto' or 'manual'. The
default value is 'auto', so that the bin limits automatically adjust to the data along the y-
axis.

If you explicitly specify either YBinLimits or YBinEdges, then YBinLimitsMode is set
automatically to 'manual'. In that case, specify YBinLimitsMode as 'auto' to rescale
the bin limits to the data.

BinMethod — Binning algorithm
'auto' (default) | 'scott' | 'fd' | 'integers'

Binning algorithm, specified as one of the values in this table.

Value Description
'auto' The default 'auto' algorithm chooses a

bin width to cover the data range and
reveal the shape of the underlying
distribution.

1 Alphabetical List

1-6238

Value Description
'scott' Scott’s rule is optimal if the data is close to

being jointly normally distributed. This rule
is appropriate for most other distributions,
as well. It uses a bin size of
[3.5*std(X(:))*numel(X)^(-1/4),
3.5*std(Y(:))*numel(Y)^(-1/4)].

'fd' The Freedman-Diaconis rule is less
sensitive to outliers in the data, and might
be more suitable for data with heavy-tailed
distributions. It uses a bin size of
[2*IQR(X(:))*numel(X)^(-1/4),
2*IQR(Y(:))*numel(Y)^(-1/4)],
where IQR is the interquartile range.

'integers' The integer rule is useful with integer data,
as it creates a bin for each pair of integers
X and Y. It uses a bin width of 1 for each
dimension and places bin edges halfway
between integers. To avoid accidentally
creating too many bins, you can use this
rule to create a limit of 1024 bins (210). If
the data range for either dimension is
greater than 1024, then the integer rule
uses wider bins instead.

Note If you set the NumBins, XBinEdges, YBinEdges, BinWidth, or BinLimits
property, then the BinMethod property is set to 'manual'.

Example: histogram2(X,Y,'BinMethod','integers') creates a bivariate histogram
with the bins centered on integers.

ShowEmptyBins — Toggle display of empty bins
'off' (default) | 'on'

Toggle display of empty bins, specified as either 'off' or 'on'. The default value is
'off'.

 Histogram2 Properties

1-6239

Example: histogram2(X,Y,'ShowEmptyBins','on') turns on the display of empty
bins.

Data

Data — Data to distribute among bins
matrix

Data to distribute among bins, specified as a matrix of size m-by-2. The X and Y inputs to
histogram2 correspond to the columns in Data, that is, Data(:,1) is X(:) and
Data(:,2) is Y(:).

histogram2 ignores all NaN values. Similarly,histogram2 ignores Inf and -Inf values,
unless the bin edges explicitly specify Inf or -Inf as a bin edge. Although NaN, Inf, and
-Inf values are typically not plotted, they are still included in normalization calculations
that include the total number of data elements, such as 'probability'.

If you change the values in the Data property of a histogram2 object, then the bin
edges are not automatically updated. To recompute the bins, adjust a bin-related property
such as BinMethod or NumBins.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Values — Bin values
matrix

This property is read-only.

Bin values, returned as a numeric matrix. If Normalization is 'count', then the
(i,j)th entry in Values specifies the bin count for the bin whose x edges are
[Xedges(i), Xedges(i+1)] and whose y edges are [Yedges(j), Yedges(j+1)].

Depending on the value of Normalization, the Values property instead can contain a
normalized variant of the bin counts.

The bin inclusion scheme for the different numbered bins in Values, as well as their
relative orientation to the x-axis and y-axis, is

1 Alphabetical List

1-6240

For example, the (1,1) bin includes values that fall on the first edge in each dimension,
and the last bin in the bottom right includes values that fall on any of its edges.

Normalization — Type of normalization
'count' (default) | 'probability' | 'countdensity' | 'pdf' | 'cumcount' | 'cdf'

Type of normalization, specified as one of the values in the table.

Value Description
'count' Default normalization scheme. The height

of each bar is the number of observations in
each bin. The sum of the bar heights is
equal to numel(X) and numel(Y).

'probability' The height of each bar is the relative
number of observations, (Number of
observations in bin / Total number of
observations). The sum of the bar heights is
1.

'countdensity' The height of each bar is (Number of
observations in bin) / (Area of bin). The
volume (Height * Area) of each bar is the
number of observations in the bin. The sum
of the bar volumes is equal to numel(X)
and numel(Y).

 Histogram2 Properties

1-6241

Value Description
'pdf' Probability density function estimate. The

height of each bar is, (Number of
observations in the bin) / (Total number of
observations * Area of bin). The volume of
each bar is the relative number of
observations. The sum of the bar volumes is
1.

'cumcount' The height of each bar is the cumulative
number of observations in each bin and all
previous bins in both the x and y
dimensions. The height of the last bar is
equal to numel(X) and numel(Y).

'cdf' Cumulative density function estimate. The
height of each bar is equal to the
cumulative relative number of observations
in each bin and all previous bins in both the
x and y dimensions. The height of the last
bar is 1.

Example: histogram2(X,Y,'Normalization','pdf') plots an estimate of the
probability density function for X and Y.

BinCounts — Bin counts
matrix

Bin counts, specified as a matrix. Use this input to pass bin counts to histogram2 when
the bin counts calculation is performed separately and you do not want histogram2 to
do any data binning.

counts must be a matrix of size [nbinsX nbinsY] so that it specifies a bin count for
each bin.

The number of bins in the x-dimension is length(XBinEdges)-1, and the number of
bins in the y-dimension is length(YBinEdges)-1.

Compared to the Values property, BinCounts is not normalized. If Normalization is
'count', then Values and BinCounts are equivalent.
Example: histogram2('XBinEdges',-1:1,'YBinEdges',-2:2,'BinCounts',[1 2
3 4; 5 6 7 8])

1 Alphabetical List

1-6242

BinCountsMode — Selection mode for bin counts
'auto' (default) | 'manual'

Selection mode for bin counts, specified as 'auto' or 'manual'. The default value is
'auto', so that the bin counts are automatically computed from Data, XBinEdges, and
YBinEdges.

If you specify BinCounts, then BinCountsMode is automatically set to 'manual'.
Similarly, if you specify Data, then BinCountsMode is automatically set to 'auto'.

Color and Styling

DisplayStyle — Histogram display style
'bar3' (default) | 'tile'

Histogram display style, specified as either 'bar3' or 'tile'. Specify 'tile' to display
the histogram as a rectangular array of tiles with colors indicating the bin values.

The default value of 'bar3' displays the histogram using 3-D bars.
Example: histogram2(X,Y,'DisplayStyle','tile') plots the histogram as a
rectangular array of tiles.

FaceColor — Histogram bar color
'auto' (default) | 'flat' | 'none' | RGB triplet | hexadecimal color code | color name

Histogram bar color, specified as one of these values:

• 'none' — Bars are not filled.
• 'flat' — Bar colors vary with height. Bars with different height have different colors.

The colors are selected from the figure or axes colormap.
• 'auto' — Bar color is chosen automatically (default).
• RGB triplet, hexadecimal color code, or color name — Bars are filled with the specified

color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from

 Histogram2 Properties

1-6243

0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

1 Alphabetical List

1-6244

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780
0.1840]

'#A2142F'

If you specify DisplayStyle as 'stairs', then histogram2 does not use the
FaceColor property.
Example: histogram2(X,Y,'FaceColor','g') creates a histogram plot with green
bars.

EdgeColor — Histogram edge color
[0.15 0.15 0.15] (default) | 'none' | 'auto' | RGB triplet | hexadecimal color code |
color name

Histogram edge color, specified as one of these values:

• 'none' — Edges are not drawn.
• 'auto' — Color of each edge is chosen automatically.
• RGB triplet, hexadecimal color code, or color name — Edges use the specified color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the
range [0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from
0 to F. The values are not case sensitive. Thus, the color codes '#FF8800',
'#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

 Histogram2 Properties

1-6245

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta
'

'm' [1 0 1] '#FF00FF'

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250
0.0980]

'#D95319'

[0.9290 0.6940
0.1250]

'#EDB120'

[0.4940 0.1840
0.5560]

'#7E2F8E'

[0.4660 0.6740
0.1880]

'#77AC30'

[0.3010 0.7450
0.9330]

'#4DBEEE'

[0.6350 0.0780
0.1840]

'#A2142F'

Example: histogram2(X,Y,'EdgeColor','r') creates a histogram plot with red bar
edges.

FaceAlpha — Transparency of histogram bars
1.0 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bars, specified as a scalar value between 0 and 1 inclusive.
histogram2 uses the same transparency for all the bars of the histogram. A value of 1
means fully opaque and 0 means completely transparent (invisible).

1 Alphabetical List

1-6246

Example: histogram2(X,Y,'FaceAlpha',0.5) creates a bivariate histogram plot with
semi-transparent bars.

EdgeAlpha — Transparency of histogram bar edges
1 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bar edges, specified as a scalar value between 0 and 1
inclusive. A value of 1 means fully opaque and 0 means completely transparent (invisible).
Example: histogram2(X,Y,'EdgeAlpha',0.5) creates a bivariate histogram plot with
semi-transparent bar edges.

FaceLighting — Lighting effect on histogram bars
'lit' (default) | 'flat' | 'none'

Lighting effect on histogram bars, specified as one of the values in the table.

Value Description
'lit' Histogram bars display a pseudo-lighting

effect, where the sides of the bars use
darker colors relative to the tops. The bars
are unaffected by other light sources in the
axes.

This is the default value when
DisplayStyle is 'bar3'.

'flat' Histogram bars are not lit automatically. In
the presence of other light objects, the
lighting effect is uniform across the bar
faces.

'none' Histogram bars are not lit automatically,
and lights do not affect the histogram bars.

FaceLighting can only be 'none' when
DisplayStyle is 'tile'.

Example: histogram2(X,Y,'FaceLighting','none') turns off the lighting of the
histogram bars.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

 Histogram2 Properties

1-6247

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of bar outlines
0.5 (default) | positive value

Width of bar outlines, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Legend

DisplayName — Text used by legend
variable names of Data or '' (default) | character vector

Text used by the legend, specified as a character vector. The text appears next to an icon
of the histogram2.
Example: 'Text Description'

For multiline text, create the character vector using sprintf with the new line character
\n.
Example: sprintf('line one\nline two')

Alternatively, you can specify the legend text using the legend function.

• If you specify the text as an input argument to the legend function, then the legend
uses the specified text and sets the DisplayName property to the same value.

1 Alphabetical List

1-6248

• If you do not specify the text as an input argument to the legend function, then the
legend uses the text in the DisplayName property. By default, DisplayName is a
character vector representing the variable names of the x and y input data used to
construct the histogram. If one or both of the inputs do not have variable names, then
DisplayName is empty, ''.

If the DisplayName property does not contain any text, then the legend generates a
character vector. The character vector has the form 'dataN', where N is the number
assigned to the histogram2 object based on its location in the list of legend entries.

If you edit interactively the character vector in an existing legend, then MATLAB updates
the DisplayName property to the edited character vector.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

 Histogram2 Properties

1-6249

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

1 Alphabetical List

1-6250

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

 Histogram2 Properties

1-6251

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

1 Alphabetical List

1-6252

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the Histogram2 object. The Interruptible property has
two values:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback

 Histogram2 Properties

1-6253

determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the Histogram2 object tries to interrupt a running callback that cannot
be interrupted, then the BusyAction property determines if it is discarded or put in the
queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

• 'cancel' — Discard the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Histogram2 object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Histogram2 object passes the
click to the object behind it in the current view of the figure window. The HitTest
property of the Histogram2 object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Histogram2 object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Histogram2 object
that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Histogram2 object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

1 Alphabetical List

1-6254

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties

 Histogram2 Properties

1-6255

cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'histogram2' (default)

This property is read-only.

Type of graphics object, returned as 'histogram2'. Use this property to find all objects
of a given type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Tag to associate with histogram2
'' (default) | character vector

Tag to associate with the histogram2 object, specified as a character vector or string
scalar.

Use this property to find histogram2 objects in a hierarchy. For example, you can use
the findobj function to find histogram2 objects that have a specific Tag property
value.
Example: 'January Data'
Data Types: char

UserData — User data
[] (default) | any MATLAB data

User data to associate with the histogram2 object, specified as any MATLAB data, for
example, a scalar, vector, matrix, cell array, character array, table, or structure. MATLAB
does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

1 Alphabetical List

1-6256

See Also
histogram2

Topics
“Access Property Values”

Introduced in R2015b

 Histogram2 Properties

1-6257

hms
Hour, minute, and second numbers of datetime or duration

Syntax
[h,m,s] = hms(t)

Description
[h,m,s] = hms(t) returns the hour, minute, and second values of the datetime or
duration values in t as separate numeric arrays. The h and m outputs contain integer
values, and the s output can contain a fractional part. h, m, and s are the same size as t.

Calling hms on a datetime array is equivalent to calling the hour, minute, and second
functions.

Examples

Find Hour, Minute, and Second Numbers of datetime Array

t1 = datetime('now','Format','HH:mm:ss.SSS');
t = t1 + minutes(0:45:135)

t = 1x4 datetime array
 09:53:34.946 10:38:34.946 11:23:34.946 12:08:34.946

[h,m,s] = hms(t)

h = 1×4

 9 10 11 12

1 Alphabetical List

1-6258

m = 1×4

 53 38 23 8

s = 1×4

 34.9460 34.9460 34.9460 34.9460

hms returns the hour, minute, and second numbers in separate arrays.

Input Arguments
t — Input dates and times
datetime or duration array

Input dates and times, specified as a datetime or duration array.
Data Types: datetime | duration

Output Arguments
h — Hour numbers
numeric array

Hour numbers, returned as a numeric array of integer values from 0 to 23. The h output
is of type double and is the same size as t.

m — Minute numbers
numeric array

Minute numbers, returned as a numeric array of integer values from 0 to 59. The m output
is of type double and is the same size as t.

s — Second numbers
numeric array

Second numbers, returned as a numeric array of values from 0 to less than 60, and can
include a fractional part. For datetime values whose time zone is UTCLeapSeconds, the s

 hms

1-6259

output can contain a value between 60 and 61 for times that fall during a leap second
occurrence. The s output is of type double and is the same size as t.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
hour | minute | second | ymd

Introduced in R2014b

1 Alphabetical List

1-6260

hold
Retain current plot when adding new plots

Syntax
hold on
hold off
hold all
hold

hold(ax, ___)

Description
hold on retains plots in the current axes so that new plots added to the axes do not
delete existing plots. New plots use the next colors and line styles based on the
ColorOrder and LineStyleOrder properties of the axes. MATLAB adjusts axes limits,
tick marks, and tick labels to display the full range of data. If axes do not exist, then the
hold command creates them.

hold off sets the hold state to off so that new plots added to the axes clear existing
plots and reset all axes properties. The next plot added to the axes uses the first color and
line style based on the ColorOrder and LineStyleOrder properties of the axes. This
option is the default behavior.

hold all is the same as hold on. This syntax will be removed in a future release. Use
hold on instead.

hold toggles the hold state between on and off.

hold(ax, ___) sets the hold state for the axes specified by ax instead of the current
axes. Specify the axes as the first input argument for any of the previous syntaxes. Use
single quotes around the 'on' and 'off' inputs, such as hold(ax,'on').

 hold

1-6261

Examples

Add Line Plot to Existing Axes

Create a line plot. Use hold on to add a second line plot without deleting the existing
line plot. The new plot uses the next color and line style based on the ColorOrder and
LineStyleOrder properties of the axes. Then reset the hold state to off.

x = linspace(-pi,pi);
y1 = sin(x);
plot(x,y1)

hold on
y2 = cos(x);
plot(x,y2)
hold off

1 Alphabetical List

1-6262

When the hold state is off, new plots delete existing plots. New plots start from the
beginning of the color order and line style order.

y3 = sin(2*x);
plot(x,y3)

 hold

1-6263

Specify Hold State for Specific Axes

Create a figure with two subplots and assign the Axes objects to the variables ax1 and
ax2. Add a line plot to each subplot. Then add a second line plot to the upper subplot.

ax1 = subplot(2,1,1);
x = linspace(0,10);
y1 = sin(x);
plot(ax1,x,y1)

ax2 = subplot(2,1,2);

1 Alphabetical List

1-6264

y2 = cos(x);
plot(ax2,x,y2)

hold(ax1,'on')
y3 = sin(2*x);
plot(ax1,x,y3)
hold(ax1,'off')

 hold

1-6265

Input Arguments
ax — Target axes
Axes object | PolarAxes object

Target axes, specified as an Axes object or a PolarAxes object. If you do not specify the
axes, then hold sets the hold state for the current axes.

1 Alphabetical List

1-6266

Tips
• Use the ishold function to test the hold state.

Algorithms
The hold function sets the NextPlot property of the Axes or PolarAxes object to
either 'add' or 'replace'.

See Also
Functions
axes | cla | figure | ishold | newplot | subplot

Properties
Axes | PolarAxes

Topics
“Combine Multiple Plots”

Introduced before R2006a

 hold

1-6267

home
Send cursor home

Syntax
home

Description
home moves the cursor to the upper-left corner of the Command Window. home also
scrolls all visible text in the Command Window out of view, giving the appearance of
clearing the screen without deleting any text. After running the home command, you can
use the scroll bar to view the previously displayed text.

Use home in a MATLAB code file to always display output in the same starting position on
the screen without clearing the Command Window.

Examples

Move Cursor to Home Position

Use the magic function to create and display a 5-by-5 integer matrix in the Command
Window.

magic(5)

ans = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

1 Alphabetical List

1-6268

Run the home function to scroll the displayed matrix and any other visible text out of view
and to move the cursor to the upper-left corner of the Command Window.

home

Use the Command Window scroll bar to scroll back up and see the hidden text.

See Also
clc

Introduced before R2006a

 home

1-6269

horzcat
Concatenate arrays horizontally

Syntax
C = horzcat(A,B)
C = horzcat(A1,A2,…,An)

Description
C = horzcat(A,B) concatenates B horizontally to the end of A when A and B have
compatible sizes (the lengths of the dimensions match except in the second dimension).

C = horzcat(A1,A2,…,An) concatenates A1, A2, … , An horizontally.

horzcat is equivalent to using square brackets for horizontally concatenating arrays. For
example, [A,B] or [A B] is equal to horzcat(A,B) when A and B are compatible
arrays.

Examples

Two Matrices

Create two matrices and concatenate them horizontally, first by using square bracket
notation, and then by using horzcat.

A = [1 2; 3 4]

A = 2×2

 1 2
 3 4

B = [4 5 6; 7 8 9]

1 Alphabetical List

1-6270

B = 2×3

 4 5 6
 7 8 9

C = [A,B]

C = 2×5

 1 2 4 5 6
 3 4 7 8 9

D = horzcat(A,B)

D = 2×5

 1 2 4 5 6
 3 4 7 8 9

Two Tables

Create a table A with three rows and two variables.

A = table([5;6;5],['M';'M';'M'],...
 'VariableNames',{'Age' 'Gender'},...
 'RowNames',{'Thomas' 'Gordon' 'Percy'})

A=3×2 table
 Age Gender
 ___ ______

 Thomas 5 M
 Gordon 6 M
 Percy 5 M

Create a table B with three rows and three variables.

 horzcat

1-6271

B = table([45;41;40],[45;32;34],{'NY';'CA';'MA'},...
 'VariableNames',{'Height' 'Weight' 'Birthplace'},...
 'RowNames',{'Percy' 'Gordon' 'Thomas'})

B=3×3 table
 Height Weight Birthplace
 ______ ______ __________

 Percy 45 45 'NY'
 Gordon 41 32 'CA'
 Thomas 40 34 'MA'

Horizontally concatenate A and B. The order of rows in C matches the order in A.

C = horzcat(A,B)

C=3×5 table
 Age Gender Height Weight Birthplace
 ___ ______ ______ ______ __________

 Thomas 5 M 40 34 'MA'
 Gordon 6 M 41 32 'CA'
 Percy 5 M 45 45 'NY'

Dates with Different Types

Concatenate a date character vector, a string date, and a datetime into a single row of
dates. The result is a datetime row vector.

chardate = '2016-03-24';
strdate = "2016-04-19";
t = datetime('2016-05-10','InputFormat','yyyy-MM-dd');
C = horzcat(chardate,strdate,t)

C = 1x3 datetime array
 24-Mar-2016 19-Apr-2016 10-May-2016

1 Alphabetical List

1-6272

String Array

Concatenate three string arrays into a single array.

A1 = ["str1"; "str2"];
A2 = ["str3"; "str4"];
A3 = ["str5"; "str6"];
C = horzcat(A1,A2,A3)

C = 2x3 string array
 "str1" "str3" "str5"
 "str2" "str4" "str6"

Matrices in a Cell Array

Create a cell array containing two matrices. Horizontally concatenate the matrices from
the cell array into one matrix.

M1 = [1 2; 3 4];
M2 = [5 6 7; 8 9 10];
A1 = {M1,M2};
C = horzcat(A1{:})

C = 2×5

 1 2 5 6 7
 3 4 8 9 10

Input Arguments
A — First input
scalar | vector | matrix | multidimensional array | table | timetable

First input, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

B — Second input
scalar | vector | matrix | multidimensional array | table | timetable

 horzcat

1-6273

Second input, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

• The elements of B are concatenated to the end of the first input along the second
dimension. The sizes of the input arguments must be compatible. For example, if the
first input is a matrix of size 3-by-2, then B must have 3 rows.

• All table inputs must have unique variable names. When present, row names must be
identical, except for order.

• All timetable inputs must have the same row times and all columns must have different
names.

• You can concatenate valid combinations of different types. For more information, see
“Valid Combinations of Unlike Classes”.

A1,A2,…,An — List of inputs
comma-separated list

List of inputs, specified as a comma-separated list of elements to concatenate in the order
they are specified.

• The inputs must have compatible sizes. For example, if A1 is a column vector of length
m, then the remaining inputs must each have m rows to concatenate horizontally.

• All table inputs must have unique variable names. When present, row names must be
identical, except for order.

• All timetable inputs must have the same row times and all columns must have different
names.

• You can concatenate valid combinations of different types. For more information, see
“Valid Combinations of Unlike Classes”.

Tips
• To construct text by horizontally concatenating strings, character vectors, or cell

arrays of character vectors, use the strcat function.
• To construct a single piece of delimited text from a cell array of character vectors or a

string array, use the strjoin function.

1 Alphabetical List

1-6274

Algorithms
For table inputs, horzcat concatenates by matching row names when present, or by
matching table positions. horzcat assigns values for the Description and UserData
properties of the output using the first nonempty values of the corresponding properties
of the input.

When concatenating an empty array to a nonempty array, horzcat omits the empty array
in the output. For example, horzcat([1 2],[]) returns the row vector [1 2].

If all input arguments are empty and have compatible sizes, then horzcat returns an
empty array whose size is equal to the output size as when the inputs are nonempty. For
example, horzcat(zeros(0,1),zeros(0,2)) returns a 0-by-3 empty array. If the
input sizes are not compatible, then horzcat returns a 0-by-0 empty array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 horzcat

1-6275

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cat | strcat | strjoin | vertcat

Topics
“Creating, Concatenating, and Expanding Matrices”
“Valid Combinations of Unlike Classes”
“Combine Categorical Arrays”
“Concatenating Objects of Different Classes”
“Concatenation Methods”

Introduced before R2006a

1 Alphabetical List

1-6276

horzcat
Horizontally concatenate tscollection objects

Syntax
tscout = horzcat(tsc1,tsc2,…,tscN)

Description
tscout = horzcat(tsc1,tsc2,…,tscN) horizontally concatenates the
tscollection objects tsc1, tsc2,…, tscN, which contains the timeseries from the
concatenated objects. Each tscollection in the list must have the same time vector.

Examples

Horizontal Concatenation

Create two tscollection objects and horizontally concatenate them.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,...
 'Name','Acceleration');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,...
 'Name','Speed');
tsc1 = tscollection(ts1);
tsc2 = tscollection(ts2);
tscout = horzcat(tsc1,tsc2)

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 5 seconds

Member Time Series Objects:

 horzcat

1-6277

 Acceleration
 Speed

Input Arguments
tsc1,tsc2,…,tscN — List of tscollection objects
comma-separated list

List of tscollection objects to concatenate, specified as a comma-separated list of
scalar tscollection objects.

See Also
timeseries | tscollection | vertcat

Introduced before R2006a

1 Alphabetical List

1-6278

hour
Hour number

Syntax
h = hour(t)

Description
h = hour(t) returns the hour numbers of the datetime values in t. The h output is a
double array the same size as t and contains integer values from 0 to 23.

The hour function returns the hour numbers of datetime values. To assign hour values to
a datetime array, t, use t.Hour and modify the Hour property.

Examples

Find Hour Number of Datetime Values

t = datetime('today'):hours(8):datetime('tomorrow');
t.Format = 'MMM dd, HH:mm'

t = 1x4 datetime array
 Mar 02, 00:00 Mar 02, 08:00 Mar 02, 16:00 Mar 03, 00:00

h = hour(t)

h = 1×4

 0 8 16 0

 hour

1-6279

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
hms | minute | second | timeofday

Introduced in R2014b

1 Alphabetical List

1-6280

hours
Duration in hours

Syntax
H = hours(X)

Description
H = hours(X) returns an array of hours equivalent to the values in X.

• If X is a numeric array, then H is a duration array in units of hours.
• If X is a duration array, then H is a double array with each element equal to the

number of hours in the corresponding element of X.

The hours function converts between duration and double values. To display a
duration in units of hours, set its Format property to 'h'.

Examples

Create Duration Array of Hours

X = magic(4);
H = hours(X)

H = 4x4 duration array
 16 hr 2 hr 3 hr 13 hr
 5 hr 11 hr 10 hr 8 hr
 9 hr 7 hr 6 hr 12 hr
 4 hr 14 hr 15 hr 1 hr

 hours

1-6281

Convert Durations to Numeric Array of Hours

Create a duration array.

X = hours(2:10:38) + minutes(30)

X = 1x4 duration array
 2.5 hr 12.5 hr 22.5 hr 32.5 hr

Convert each duration in X to a number of hours.

H = hours(X)

H = 1×4

 2.5000 12.5000 22.5000 32.5000

View the data type of H

whos H

 Name Size Bytes Class Attributes

 H 1x4 32 double

Input Arguments
X — Input array
numeric array | duration array | logical array

Input array, specified as a numeric array, duration array, or logical array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-6282

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
duration

Topics
“Set Date and Time Display Format”

Introduced in R2014b

 hours

1-6283

hot
Hot colormap array

Syntax
c = hot
c = hot(m)

Description
c = hot returns the hot colormap as a three-column array with the same number of rows
as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = hot(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the hot colormap.

surf(peaks);
colormap('hot');

1 Alphabetical List

1-6284

Get the hot colormap array and reverse the order. Then apply the modified colormap to
the surface.

c = hot;
c = flipud(c);
colormap(c);

 hot

1-6285

Downsample the Hot Colormap

Get a downsampled version of the hot colormap containing only twenty colors. Then
display the contours of the peaks function by applying the colormap and interpolated
shading.

c = hot(20);
surf(peaks);
colormap(c);
shading interp;

1 Alphabetical List

1-6286

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 hot

1-6287

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-6288

hsv
HSV colormap array

Syntax
c = hsv
c = hsv(m)

Description
c = hsv returns the hsv colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = hsv(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the hsv colormap.

surf(peaks);
colormap('hsv');

 hsv

1-6289

Get the hsv colormap array and reverse the order. Then apply the modified colormap to
the surface.

c = hsv;
c = flipud(c);
colormap(c);

1 Alphabetical List

1-6290

Downsample the hsv Colormap

Get a downsampled version of the hsv colormap containing only ten colors. Then display
the contours of the peaks function by applying the colormap and interpolated shading.

c = hsv(10);
surf(peaks);
colormap(c);
shading interp;

 hsv

1-6291

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-6292

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 hsv

1-6293

hsv2rgb
Convert HSV colors to RGB

Syntax
RGB = hsv2rgb(HSV)
rgbmap = hsv2rgb(hsvmap)

Description
RGB = hsv2rgb(HSV) converts the hue, saturation, and value (HSV) values of an HSV
image to red, green, and blue values of an RGB image.

rgbmap = hsv2rgb(hsvmap) converts an HSV colormap to an RGB colormap.

Examples

Convert HSV Matrix to a Colormap

Create a three-column HSV matrix that specifies five shades of blue. In this case, hue and
value are constant, while saturation varies between 1.0 and 0.0.

hsv = [.6 1 1; .6 .7 1; .6 .5 1; .6 .3 1; .6 0 1];

Convert the HSV matrix to a colormap by calling hsv2rgb. Then use that colormap in a
surface plot.

rgb = hsv2rgb(hsv);
surf(peaks);
colormap(rgb);
colorbar

1 Alphabetical List

1-6294

Convert 3-D HSV Array to a Truecolor Image

Create a 2-by2-by-3 HSV array that specifies four shades of blue.

hsv(:,:,1) = ones(2,2)*.6;
hsv(:,:,2) = [1 .7; .3 0];
hsv(:,:,3) = ones(2,2);

Convert the HSV array to a truecolor image using hsv2rgb. Then display the image.

rgb = hsv2rgb(hsv);
image(rgb);

 hsv2rgb

1-6295

Input Arguments
HSV — HSV image
m-by-n-by-3 numeric array

HSV image, specified as an m-by-n-by-3 numeric array with values in the range [0, 1]. The
third dimension of HSV defines the hue, saturation, and value for each pixel, respectively,
as described in the table.

1 Alphabetical List

1-6296

Attribute Description
Hue Value from 0 to 1 that corresponds to the color’s position on a

color wheel. As hue increases from 0 to 1, the color transitions
from red to orange, yellow, green, cyan, blue, magenta, and finally
back to red.

Saturation Amount of hue or departure from neutral. 0 indicates a neutral
shade, whereas 1 indicates maximum saturation.

Value Maximum value among the red, green, and blue components of a
specific color.

Data Types: double | single | logical

hsvmap — HSV colormap
c-by-3 numeric matrix

HSV colormap, specified as a c-by-3 numeric matrix with values in the range [0, 1]. Each
row of hsvmap is a three-element HSV triplet that specifies the hue, saturation, and value
components of a single color of the colormap.
Data Types: double

Output Arguments
RGB — RGB image
m-by-n-by-3 numeric array

RGB image, returned as an m-by-n-by-3 numeric array with values in the range [0, 1]. The
third dimension of RGB defines the red, green, and blue intensity of each pixel,
respectively. The image has the same data type as the HSV image, HSV.
Data Types: double | single

rgbmap — RGB colormap
c-by-3 numeric matrix

RGB colormap, returned as a c-by-3 numeric matrix with values in the range [0, 1]. Each
row of rgbmap is a three-element RGB triplet that specifies the ref, green, and blue
components of a single color of the colormap. The colormap has the same data type as the
HSV colormap, hsvmap.

 hsv2rgb

1-6297

Data Types: double | single

References
[1] Smith, A. R. “Color Gamut Transform Pairs”. SIGGRAPH 78 Conference Proceedings.

1978, pp. 12–19.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
hsv | rgb2hsv

Introduced before R2006a

1 Alphabetical List

1-6298

matlab.net.http Package
Summary of packages and classes in MATLAB HTTP interface

Description

Classes
matlab.net.http.AuthenticationScheme HTTP Authentication scheme
AuthInfo Authentication or authorization information in

HTTP messages
Cookie HTTP cookie received from server
CookieInfo HTTP cookie information
Credentials Credentials for authenticating HTTP requests
Disposition Results in HTTP log record
HeaderField Header field of HTTP message
HTTPException Exception thrown by HTTP services
HTTPOptions Options controlling HTTP message exchange
LogRecord HTTP history log record
MediaType Internet media type used in HTTP headers
Message HTTP request or response message
MessageBody Body of HTTP message
MessageType HTTP message type
ProgressMonitor Progress monitor for HTTP message exchange
ProtocolVersion HTTP protocol version
RequestLine First line of HTTP request message
RequestMessage HTTP request message
RequestMethod HTTP request method
ResponseMessage HTTP response message
StartLine First line of HTTP message
StatusClass Status class of HTTP response
StatusCode Status code in HTTP response
StatusLine First line of HTTP response message

 matlab.net.http Package

1-6299

Packages

See Also
Introduced in R2016b

1 Alphabetical List

1-6300

matlab.net.http.AuthenticationScheme class
Package: matlab.net.http

HTTP Authentication scheme

Description
The AuthenticationScheme enumeration class provides identifiers for supported
authentication schemes. If MATLAB does not implement a scheme automatically and you
want to use the scheme, then you must implement your own challenge responses.

Numeric
Representati
on

Enumeration
Member Name

Description

0 Basic User name and password are transmitted in the
header of an HTTP message. This scheme is
implemented automatically when you supply the
appropriate Credentials property in an
HTTPOptions object when sending a message,
and the server requests Basic authentication.

1 Digest User is authenticated with a name and
password, but more secure because the
password is not transmitted over the
connection. This scheme is implemented
automatically when you supply the appropriate
Credentials property in an HTTPOptions
object when sending a message, and the server
requests Digest authentication.

-2 Bearer Based on OAuth. MATLAB does not support this
scheme.

-3 HOBA Not support by MATLAB.
-4 Negotiate Not support by MATLAB.
-5 OAuth Not support by MATLAB.

 matlab.net.http.AuthenticationScheme class

1-6301

Numeric
Representati
on

Enumeration
Member Name

Description

-6 Token Not support by MATLAB.

Methods

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

string Authentication scheme as string
char Authentication scheme as character vector

See Also
AuthInfo | AuthenticateField | AuthorizationField | Credentials |
HTTPOptions | ResponseMessage

External Websites
RFC 2617 — HTTP Authentication: Basic and Digest Access Authentication

Introduced in R2016b

1 Alphabetical List

1-6302

https://tools.ietf.org/html/rfc2617

matlab.net.http.AuthInfo class
Package: matlab.net.http

Authentication or authorization information in HTTP messages

Description
MATLAB automatically handles authentication in request messages when you provide
credentials in an HTTPOptions object. Use the AuthInfo class to examine
authentication, to specify authorization information, or to implement an authentication
protocol not supported by the MATLAB HTTP interface.

The AuthInfo class represents one authentication challenge returned when:

• You call the AuthenticateField.convert method for a response message.
• You insert credentials in an AuthorizationField header field into a request

message. When you store an AuthInfo object in an Authorization field, MATLAB
automatically encloses values in quotes where required, and inserts escape characters
as needed.

• A server returns auth-info data in an AuthenticationInfoField header field.

The AuthenticateField and AuthorizationField convert methods convert each
name=value pair attribute in the field to parameter name-and-value pairs in the
Parameters property. Escape characters and any quotes surrounding values are
removed.

For more information, see RFC 7235 Authentication and RFC 2617 Host-Imp Interface
(for Basic and Digest authentication).

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

 matlab.net.http.AuthInfo class

1-6303

https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7

Creation

Description
obj = matlab.net.http.AuthInfo(Scheme,paramName,paramValue) creates an
AuthInfo object that includes the Scheme property and optional
paramName,paramValue parameters. You can specify several argument pairs in any
order as paramName1,paramValue1,...,paramNameN,paramValueN.

obj = matlab.net.http.AuthInfo(paramName,paramValue) creates an
AuthInfo object with an empty Scheme value.

obj = matlab.net.http.AuthInfo(pStruct) copies parameters and values from
the fields of pStruct.

obj = matlab.net.http.AuthInfo(pStr) creates an AuthInfo from pStr.

Input Arguments
paramName — Parameter name
string | character vector

Parameter name, specified as a string or a character vector. The web service defines
paramName,paramValue pairs that it accepts as part of a request. A paramName
argument represents parameters that are converted to name=value parameters when
you convert an AuthInfo object to a string.
Data Types: char | string

paramValue — Parameter value
type required by paramName

Parameter value, specified as a type required by paramName. There is no constraint on
paramValue types, but values must support a string or char method.

pStruct — Parameters and values
MATLAB structure

Parameters and values, specified as fields in a MATLAB structure. The structure should
have at least a Scheme field. MATLAB omits fields with empty values.

1 Alphabetical List

1-6304

Data Types: struct

pStr — Parameters and values
string

Parameters and values, specified as strings. For pStr syntax:

• If pStr is a credential or challenge, then see RFC 7235, section 2.1.
• If pStr is an auth-info in an Authentification-Info header, then see RFC 2617,

Section 3.2.3.

pStr is one of these formats. The values are optionally enclosed in quotes and escape
characters are inserted as needed.

SCHEME token
SCHEME param1=value1, param2=value2, ...
param1=value1, param2=value2, ...

Data Types: string

Properties
Scheme — Authentication scheme
AuthenticationScheme.Basic (default) |
matlab.net.http.AuthenticationScheme object | string | empty

Authentication scheme, specified as a matlab.net.http.AuthenticationScheme
object or a string naming the scheme.

• If Scheme is a string, then MATLAB attempts to convert it to an
AuthenticationScheme enumeration.

• If the AuthInfo object is a challenge in an AuthenticateField header field and
Scheme is not an AuthenticationScheme enumeration, then Scheme is a string.
Otherwise, Scheme is a AuthenticationScheme object.

• If AuthInfo is in an AuthorizationField header field, then Scheme is an
AuthenticationScheme object.

• If AuthInfo is in an AuthenticationInfoField header field, then Scheme might
be empty.

 matlab.net.http.AuthInfo class

1-6305

https://tools.ietf.org/html/rfc7235#section-2.1
https://tools.ietf.org/html/rfc2617#section-3.2.3
https://tools.ietf.org/html/rfc2617#section-3.2.3

Attributes:

GetAccess
public

SetAccess
public

Parameters — Parameter names and values
n-by-2 cell array

Parameter names and values, specified as an n-by-2 cell array. Parameters{i,1} is the
name of the ith parameter and is a string. Parameters{i,2} is its value. The type
depends on the parameter. To get or set this property, use the getParameter or
setParameter methods.

The Parameters property depends on the Scheme property and the attributes that follow
Scheme in the header field. Parameter name matching is case-insensitive. Use the
addParameter, setParameter, and removeParameter methods to access the values in
the Parameters array.

Some parameter properties have special meanings and syntax, which MATLAB enforces
based on the Scheme. Parameters with special meanings are listed here. All other
parameters are string objects.

• If Scheme is AuthenticationScheme.Basic, then one parameter is expected.

• In an AuthenticateField (a challenge from a server), the property name is
realm. The server provides the realm for a user prompt, which is matched with the
Credentials.Realm property. An AuthInfo returned by the
AuthenticateField.convert method always has a realm property.

• In an AuthorizationField (the credentials in a response from a client), the
property name is encoded. The Encoded property is a base64-encoded sequence
of characters representing the user name and password as it appears in the header
field following Scheme. If you set this parameter, then you must encode it yourself
using the base64encode function.

• If Scheme is AuthenticationScheme.Digest, then the number of properties is
variable and corresponds to name=value attributes in the header field.

• For an AuthenticateField, see properties listed in RFC 2617, section-3.2.1.

1 Alphabetical List

1-6306

https://tools.ietf.org/html/rfc2617#section-3.2.1

• For an AuthorizationField, see properties listed in RFC 2617, section-3.2.2.
• If Scheme is any other AuthenticationScheme property or a string, then all

attribute names and values are acceptable, as long as they can be converted to
strings.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> getParameter removeParameter setParameter </
infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

eq and isequal Two AuthInfo objects are equal if:

• They have the same Scheme property
and parameter names. Parameter name
matching is case-insensitive.

• The parameter values are equal using
isequal, regardless of the order of the
parameters. Both values must be
scalars.

 matlab.net.http.AuthInfo class

1-6307

https://tools.ietf.org/html/rfc2617#section-3.2.2

string AuthInfo as string as it appears in a header
field

char AuthInfo as character vector

See Also
AuthenticateField | AuthenticationInfoField | AuthenticationScheme |
AuthorizationField | StatusCode | matlab.net.URI |
matlab.net.base64encode

External Websites
RFC 7235 Authentication
RFC 2617 Host-Imp Interface

Introduced in R2016b

1 Alphabetical List

1-6308

https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7

getParameter
Class: matlab.net.http.AuthInfo
Package: matlab.net.http

Return value of AuthInfo parameter

Syntax
value = getParameter(authinfo,name)

Description
value = getParameter(authinfo,name) returns the value of parameter name. If the
parameter does not exist, then getParameter returns empty ([]).

Input Arguments
authinfo — AuthInfo
matlab.net.http.AuthInfo object

AuthInfo, specified as a matlab.net.http.AuthInfo object. If authinfo is nonscalar,
then value is a cell array of values with the same size and shape as authinfo.

name — Parameter name
string | character vector

Parameter name, specified as a string or a character vector. Name matching is case-
insensitive. If name is 'Scheme', then getParameter returns the value of the Scheme
property.

 getParameter

1-6309

See Also
Introduced in R2016b

1 Alphabetical List

1-6310

removeParameter
Class: matlab.net.http.AuthInfo
Package: matlab.net.http

Remove AuthInfo parameter

Syntax
newinfo = removeParameter(authinfo,name)

Description
newinfo = removeParameter(authinfo,name) removes the named parameter and
returns the modified AuthInfo object. If the parameter does not exist, then
removeParameter does nothing.

Input Arguments
authinfo — AuthInfo
matlab.net.http.AuthInfo object

AuthInfo, specified as a matlab.net.http.AuthInfo object.

name — Parameter
string | character vector

Parameter, specified as a string or a character vector. Name matching is case-insensitive.

See Also
Introduced in R2016b

 removeParameter

1-6311

setParameter
Class: matlab.net.http.AuthInfo
Package: matlab.net.http

Set value of AuthInfo parameter

Syntax
newinfo = setParameter(authinfo,name,value)

Description
newinfo = setParameter(authinfo,name,value) sets the value of the parameter
name and returns the modified AuthInfo object. If a parameter does not exist, then the
method adds it.

If you use this method to set the value of the Scheme property, the method changes the
value of the property instead of adding a Scheme parameter. To set the Scheme, type
obj.Scheme = value.

If you have a parameter named Encoded, then it must be the only parameter in this
object. This usage is for an AuthorizationField object only.

Input Arguments
authinfo — AuthInfo
matlab.net.http.AuthInfo object

AuthInfo, specified as a matlab.net.http.AuthInfo object.

name — Parameter name
string | character vector

Parameter name, specified as a string or a character vector.

1 Alphabetical List

1-6312

Name matching is not case-sensitive, but value is case-sensitive. If name matches an
existing parameter, but with a different case, then the parameter name is changed to the
case of the specified name.

value — Parameter value
string | character vector | any type that has string or char method | type supported by
name

Parameter value, specified a string, character vector, any type that has a string or char
method, or a type supported by the name.

Do not enclose a value with double-quotes or insert any escape characters. When you
insert this AuthInfo object in an AuthenticateField, AuthenticationInfoField
or AuthorizationField object, then the value is converted to a string and quotes and
escape characters are automatically inserted as needed. If value is an array of strings or
a cell array of character vectors, then its members are separated by spaces.

Output Arguments
newinfo — Updated parameter value
type specified by parameter

Updated parameter value, returned as any type that was set for the parameter. If value
is [], then setParameter does not change the value of the name property. However, if
value is an empty character vector or string, then the method sets VALUE to an empty
string.

See Also
matlab.net.http.field.AuthenticateField |
matlab.net.http.field.AuthenticationInfoField |
matlab.net.http.field.AuthorizationField

Introduced in R2016b

 setParameter

1-6313

matlab.net.http.Cookie class
Package: matlab.net.http

HTTP cookie received from server

Description
The Cookie class represents an HTTP cookie. You obtain a Cookie object from a
SetCookieField header in a ResponseMessage object. Then you send it back to the
server in a RequestMessage CookieField header.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.Cookie(name,value) creates a Cookie object with the
specified name and value properties on page 1-6314. Use this constructor for testing.

Properties
Name — Cookie name
string

Cookie name, specified as a string.
Example: "SESSIONID"

1 Alphabetical List

1-6314

Attributes:

GetAccess
public

SetAccess
private

Value — Cookie value
string

Cookie value, specified as a string. The value only has meaning to the server that sent the
cookie.
Example: "688412d8ed15f4a736dc6ab3"

Attributes:

GetAccess
public

SetAccess
private

Methods

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

string Cookie as string as it appears in a header
field

char Cookie as character vector

Examples

 matlab.net.http.Cookie class

1-6315

Test for Expected Cookie Value

This example assumes a server returns specific values in the variable response. You
cannot run this code in MATLAB. You can, however, use these coding patterns to test
values from your web service responses.

Create a cookie object test containing values you expect from a server.

test = matlab.net.http.Cookie('cookie1','ID:33445566')

test =

 Cookie with properties:

 Name: "cookie1"
 Value: "ID:33445566"

Send a message to a server; this example does not show this code. Assume that the server
responds to your request message with this information in the response message.

setCookieFields = response.getFields('Set-Cookie')

setCookieFields =
 SetCookieField with properties:

 Name: "Set-Cookie"
 Value: "cookie1=ID:33445566; Path=/"

Extract the cookie information.

cookieInfos = setCookieFields.convert;

Compare the cookie with your test cookie.

string(cookieInfos.Cookie) == string(test)

ans =

 1

The cookies match.

See Also
CookieField | RequestMessage | ResponseMessage | SetCookieField

1 Alphabetical List

1-6316

Topics
“Manage Cookies”

External Websites
RFC 6265 HTTP State Management Mechanism

Introduced in R2016b

 matlab.net.http.Cookie class

1-6317

https://tools.ietf.org/html/rfc6265

matlab.net.http.CookieInfo class
Package: matlab.net.http

HTTP cookie information

Description
The CookieInfo class contains a Cookie object and information about the cookie that
you can use for cookie management. To obtain a CookieInfo object, call the convert
method of a SetCookieField object in a response message.

Unlike browsers, MATLAB does not provide an automatic cookie store. You must save
cookies on your own and send them back to servers as needed.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.CookieInfo(Name,Value) creates a CookieInfo object
with additional properties specified by one, or more name-value pair arguments. Name is
the property name and Value is the corresponding value. You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Unspecified
properties are set to their default values.

Use this constructor for testing.

1 Alphabetical List

1-6318

Properties
Cookie — Cookie
matlab.net.http.Cookie object

Cookie, specified as a matlab.net.http.Cookie object. Insert the Cookie into a
request message CookieField property.

Attributes:

GetAccess
public

SetAccess
public

Expires — Cookie expiration time
datetime | NaT

Cookie expiration time, specified as a datetime object. If there is an Expires attribute
in the header field, then the Expires property is set. If the Expires attribute cannot be
parsed, then Expires is NaT.

Attributes:

GetAccess
public

SetAccess
public

Data Types: datetime

MaxAge — Duration of cookie
integer | NaN

Duration of cookie, specified as an integer or NaN. If there is a Max-Age attribute in the
header field, then the MaxAge property is set. If the Max-Age attribute cannot be parsed,
then MaxAge is NaN.

 matlab.net.http.CookieInfo class

1-6319

Attributes:

GetAccess
public

SetAccess
public

Domain — Cookie domain
string

Cookie domain, specified as a string. If the Set-Cookie field does not specify a Domain
attribute, then the Domain property is set to the request message URI.Host property
and HostOnly is set to true. Domain never begins with a period, as described in RFC
6265 — HTTP State Management Mechanism, Section 5.2.3.

Attributes:

GetAccess
public

SetAccess
public

Data Types: string

Path — Path attribute in Set-Cookie field
string

Path attribute in a Set-Cookie field, specified as a string. The Path property is the value
of the Path attribute in the Set-Cookie field. If the field does not contain a path attribute,
then the Path property is set to default-path based on the request message URI.Path
property. For a description of default-path, see RFC 6265 — HTTP State Management
Mechanism, Section 5.1.4. Paths and Path-Match. Path always begins with a slash (/)
character.

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6320

https://www.rfc-editor.org/rfc/rfc6265.txt
https://www.rfc-editor.org/rfc/rfc6265.txt
https://tools.ietf.org/html/rfc6265#section-5.1.4
https://tools.ietf.org/html/rfc6265#section-5.1.4

Data Types: string

Secure — Secure attribute status
false (default) | true

Secure attribute status, where the Secure property is specified as true or false. The
Secure property indicates that the Set-Cookie field contains a Secure attribute.

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

HttpOnly — HttpOnly attribute status
false (default) | true

HttpOnly attribute status, where the HttpOnly property is specified as true or false.
The HttpOnly property indicates that the Set-Cookie field contains an HttpOnly
attribute.

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

Extensions — Values of extension-av attributes
string

Values of extension-av attributes, specified as a string. The entire attribute is a single
string, even if its syntax is of the form name=value.

 matlab.net.http.CookieInfo class

1-6321

Attributes:

GetAccess
public

SetAccess
public

Data Types: string

HostOnly — Domain attribute status
true (default) | false

Domain attribute status, where the HostOnly property is specified as true or false. If
the Set-Cookie field contains a Domain attribute, then HostOnly is true.

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

ExpirationTime — Cookie expiration
datetime

Cookie expiration, specified as a datetime object.

• If the Set-Cookie field contains either an Expires or a Max-Age attribute, then
ExpirationTime is set to the attribute.

• If neither attribute appears, then ExpirationTime is set to datetime('Inf') and
the cookie is retained until the current session is over.

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6322

Data Types: datetime

CreationTime — Time cookie was created
datetime

Time the cookie was created, specified as a datetime object. The
SetCookieField.convert method sets CreationTime to the current time.

If a new CookieInfo object matches an existing one, then the new object replaces the
old one. However, the CreationTime property does not change. This behavior is
specified in RFC 6265 — HTTP State Management Mechanism, Section 5.3 Storage
Model, step 11.3. The CookieInfo objects match when the Cookie.Name,
CookieInfo.Domain, and CookieInfo.Path (if specified) properties are equal.

Attributes:

GetAccess
public

SetAccess
public

Data Types: datetime

Methods

Public Methods
<infotypegroup type="method"> matlab.net.http.CookieInfo.collectFromLog
</infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

 matlab.net.http.CookieInfo class

1-6323

https://www.rfc-editor.org/rfc/rfc6265.txt
https://www.rfc-editor.org/rfc/rfc6265.txt

string Cookie info as string as it appears in a
SetCookieField header field. This string
might not exactly match the string that
appeared in the field from which this
CookieInfo was created, but it has the
same semantic meaning.

char Cookie info as character vector

See Also
SetCookieField | datetime | duration

External Websites
RFC 6265 — HTTP State Management Mechanism, Section 5.3 Storage Model
RFC 6265 — HTTP State Management Mechanism, Section 5.2.3. The Domain Attribute
RFC 6265 — HTTP State Management Mechanism, Section 5.1.4 Default Base URI

Introduced in R2016b

1 Alphabetical List

1-6324

https://www.rfc-editor.org/rfc/rfc6265.txt
https://www.rfc-editor.org/rfc/rfc6265.txt
https://tools.ietf.org/html/rfc3986#section-5.1.4

matlab.net.http.CookieInfo.collectFromLog
Class: matlab.net.http.CookieInfo
Package: matlab.net.http

Latest CookieInfo objects from HTTP response message history

Syntax
infos = matlab.net.http.CookieInfo.collectFromLog(history)

Description
infos = matlab.net.http.CookieInfo.collectFromLog(history) returns
CookieInfo objects for all the valid cookies found in the Set-Cookie header fields of the
response message history. Use collectFromLog to obtain the latest cookies from a
history of messages, such as those exchanged during a transaction involving
authentication or redirection. If a server sends multiple versions of the same cookie, then
collectFromLog returns only the most recent. This method also eliminates cookies that
might not be valid for the URI of the server, that is, whose Domain is inconsistent with the
request URI.

Input Arguments
history — Log records
vector of matlab.net.http.LogRecord objects

Log records, specified as a vector of matlab.net.http.LogRecord objects. The
RequestMessage.send method returns a LogRecord as an optional argument.

Attributes
Sealed true

 matlab.net.http.CookieInfo.collectFromLog

1-6325

Static true

Examples

Reduce Message Exchanges

Eliminate message redirection by reusing cookies.

Send a message to a fictional website using redirection. Multiple messages are
exchanged. To execute this code, you must provide a valid URI.

import matlab.net.http.*
import matlab.net.http.field.*
r = RequestMessage;
[resp,~,history] = r.send('http://www.somewebsite.com');
disp(length(history))

4

Extract the cookies from the message history.

cookieInfos = CookieInfo.collectFromLog(history);
if ~isempty(cookieInfos)
 cookies = [cookieInfos.Cookie];
end

Apply the cookies to the next request. Only one message is exchanged.

r = RequestMessage([],CookieField(cookies));
[resp,~,history] = r.send('http://www.somewebsite.com');
disp(length(history))

1

See Also
matlab.net.http.LogRecord | matlab.net.http.RequestMessage.send |
matlab.net.http.ResponseMessage | matlab.net.http.field.CookieField

Introduced in R2016b

1 Alphabetical List

1-6326

matlab.net.http.Credentials class
Package: matlab.net.http
Superclasses:

Credentials for authenticating HTTP requests

Description
The Credentials class specifies authentication credentials for sending a request
message. Specify a Credentials object in an HTTPOptions object.

The RequestMessage.send method uses credentials to respond to authentication
challenges from servers or proxies. The authentication challenge is in an
AuthenticateField header field and specifies one or more authentication schemes that
the server or proxy accepts to satisfy the request.

The behavior depends on the authentication scheme. In general, MATLAB searches the
vector of Credentials objects for one that applies to the request URI and which
supports the specified authentication scheme. MATLAB then resends the original request
with the appropriate credentials in an AuthorizationField header. If multiple
credentials apply, then MATLAB uses the most specific Credentials object for the
strongest scheme. If duplicate Credentials objects exist, then MATLAB uses the first
one.

MATLAB only implements the Basic and Digest authentication schemes. If the server
requires other schemes, or you do not supply credentials for the required scheme, then
the authentication response message returns a StatusCode object of 401 or 407. In
which case, you must implement the appropriate response yourself.

After a successful authentication, MATLAB saves the information in the Credentials
object. If you apply these credentials on subsequent requests to the same server, then
MATLAB does not wait for an authentication challenge from the server. To apply the
credentials, provide the same Credentials object for every request.

Credentials objects are handle objects and internally accumulate information about
prior successful authentications. Therefore, you can reuse the information for subsequent
messages. If you insert this object into multiple HTTPOptions objects, then the

 matlab.net.http.Credentials class

1-6327

Credentials object might be updated upon each use. If you copy Credentials using
its copy method, then MATLAB copies only the visible properties that you set, and not the
internal state.

The matlab.net.http.Credentials class is a handle class.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.Credentials(Name,Value) creates HTTP credentials with
additional properties specified by one, or more name-value pair arguments. Name is the
property name and Value is the corresponding value. You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN. Unspecified
properties are set to their default values.

Properties
Scheme — Authentication schemes for credentials
[AuthenticationScheme.Basic, AuthenticationScheme.Digest] (default) |
vector of matlab.net.http.AuthenticationScheme objects | empty

Authentication schemes for credentials, specified as a vector of
matlab.net.http.AuthenticationScheme objects. The default value is
AuthenticationScheme.Basic and AuthenticationScheme.Digest. If Scheme is
empty, then the credentials apply to all authentication schemes.

If Scheme is set to Basic only, then these credentials might be applied to a request
whether or not the server requests authentication. A Basic-only scheme avoids an extra
round trip responding to an authentication challenge. However, if the server does not

1 Alphabetical List

1-6328

require Basic authentication, this scheme unnecessarily exposes the Username and
Password properties to the server.

If one of the options is Digest or if Scheme is empty, then the first message to which
these credentials potentially apply is sent without an Authorization header field. The
message is chosen based on the Scope property and the request URI. These
Credentials are used only after the server responds with a challenge and if the Scope
and Realm properties match the URI and the server challenge.
Attributes:

GetAccess
public

SetAccess
public

Scope — URIs to which credentials apply
empty (default) | vector of matlab.net.URI objects | string | character vector

URIs to which credentials apply, specified as a vector of matlab.net.URI objects or
strings or character vectors. Strings must be acceptable to the URI constructor or of the
form host/path/....

An empty Scope value, or an empty Host or Path in this vector matches all Host or
Path properties. Do not leave Scope empty if Scheme is set to Basic only, unless you
only access trusted servers. This combination of settings sends Username and Password
to any server you access using the HTTPOptions containing these Credentials.

MATLAB compares the values in Scope with the request message URI to determine if
these credentials apply. Credentials apply if the request URI refers to the same host at a
path at or deeper than one of the URIs in this Scope. A Scope containing a URI naming a
host with no path applies to all paths on that host.

For example, a mathworks.com host name in a Scope matches a request to
www.mathworks.com and anything.mathworks.com. A mathworks.com/products/
stateflow URI matches a request to www.mathworks.com/products/stateflow/
features but not to www.mathworks.com/products. The /products path is not at or
deeper than /products/stateflow.

Only the Host, Port, and Path properties of the Scope URIs are used. Typically you only
specify a Host name, such as www.mathworks.com. If you know that the credentials are
needed only for some paths within a host, then add a Path or a portion of a path.

 matlab.net.http.Credentials class

1-6329

Attributes:

GetAccess
public

SetAccess
public

Realm — Authentication realms for credentials
[] empty (default) | string array | character vector | cell array of character vectors

Authentication realms for credentials, specified as a string array, character vector, or cell
array of character vectors containing regular expressions describing the realms for the
credentials. The default value is empty ([]), which matches all realms. If any value is an
empty string, then it only matches an empty or unspecified Realm. To anchor the regular
expression to the start or end of the authentication Realm string, include the ^ or $
characters as appropriate.

A Realm contains text to display so that the user knows what name and password to
enter. The server specifies the Realm in an AuthenticateField. Use a Realm when a
server requires different login values for different URIs and you want to specify
programmatically different credentials for different realms on the same server. If you
prompt for a name and password, do not set this property. Instead, display the Realm
property from the AuthenticateField in your prompt so that the user knows which
credentials to enter.

MATLAB compares the expressions in Realm against the authentication Realm in
AuthenticateField to determine if these credentials apply. Once MATLAB carries out a
successful authentication using one of these realms, MATLAB caches information about
the authentication in Credentials. A subsequent request to a host and path that applies
to these Credentials uses this cached information for authentication. This avoids the
overhead of an authentication challenge or a call to the GetCredentialsFcn function.
Attributes:

GetAccess
public

SetAccess
public

Username — User name for Basic or Digest authentication schemes
string | character vector | []

1 Alphabetical List

1-6330

User name for Basic or Digest authentication schemes, specified as a string or a
character vector. If you set the Username and Password properties to any string
(including an empty one), then Username is used for authentication to any request for
which these credentials apply, unless GetCredentialsFcn is specified. If you set this
property to [], then you must specify GetCredentialsFcn or authentication is not
attempted.
Attributes:

GetAccess
public

SetAccess
public

Password — Password for Basic or Digest authentication schemes
string | character vector | []

Password for Basic or Digest authentication schemes, specified as a string or a
character vector. Use the Password property to authenticate any request for which these
credentials apply, unless the GetCredentialsFcn property is specified. If the Password
value is [], then no password is provided.
Attributes:

GetAccess
public

SetAccess
public

GetCredentialsFcn — Function returning Username and Password
function handle

Function returning the Username and Password for authentication, specified as a
function handle. MATLAB calls the GetCredentialsFcn function to obtain the name and
password to use for the authentication response. MATLAB ignores the Username or
Password properties in Credentials.

The function signature for GetCredentialsFcn is:
[username,password] = GetCredentialsFcn(cred,req,resp,authInfo,prevUsername,prevPasswd)

where the arguments are specified as:

 matlab.net.http.Credentials class

1-6331

• cred — Handle to this Credentials object
• req — Last sent request message that provoked this authentication request.
• resp — Response message from the server containing an AuthenticateField. If

the cred.Scheme property is set to only Basic, then the resp argument might be
empty.

• authInfo (optional) — One element in the vector of AuthInfo objects returned by
the AuthenticateField.convert method that MATLAB selects to match these
credentials. Each object in this array has Scheme and Realm fields.

• prevUsername, prevPasswd (optional) — Initially empty arguments. If set, these
arguments are the values the GetCredentialsFcn function returned in a previous
invocation, which the server did not accept. If you are not prompting for credentials,
then compare these values to the ones you plan to return. If they are the same, set
username to [] to indicate an authentication failure. If you prompt the user for
credentials, then you do not need to specify these arguments.

• username — User name to use. If a server requires only a password, not a user name,
then set username to an empty string (''). If the username value is [], then the
authentication failed.

• password — Password to use.

By implementing the GetCredentialsFcn function and leaving the Username and/or
Password properties in Credentials empty, you can implement a prompt to obtain
these values from the user without embedding them in your program. In your prompt,
display the request URI or the authInfo.Realm property. A convenient pattern is to set
the Username property and prompt only for the password. Your prompt can display the
existing Username, or prevUsername, if set, and give the user the option to change it.

The GetCredentialsFcn function can examine the credentials in the cred argument
and the header fields in the request and response messages to determine which resource
is being accessed. Thus, the function can prompt the user for the correct credentials. In
general, the prompt should display authInfo.Realm to let the user know the context of
the authentication.

Since the cred argument is a handle, the GetCredentialsFcn function stores the user
name and password in the object. You can use that object in future requests without
calling the function again. MATLAB saves the name and password internally to apply
them to future requests. However, MATLAB might not always be able to determine
whether the same user name and password apply to different requests using these
credentials.

1 Alphabetical List

1-6332

If authentication is denied, then GetCredentialsFcn returns an empty array [] (not an
empty string '') for the user name. MATLAB returns the server authentication failure in
the response message. This behavior is appropriate if you implement a user prompt and
the user clicks cancel in the prompt. If prevUsername and prevPasswd are identical to
the name and password that you would return, then when you programmatically supply
the name and password, you must return []. This value indicates that your credentials
are not accepted and you have no alternative choice. Otherwise, an infinite loop might
occur calling your GetCredentaislFcn function repeatedly.
Attributes:

GetAccess
public

SetAccess
public

Data Types: function_handle

Examples

Create Credentials

Create credentials that are sent to only the appropriate server.

import matlab.net.http.Credentials
scope = URI('http://my.server.com');
creds = Credentials('Username','John','Password','secret','Scope',scope);
options = HTTPOptions('Credentials',creds);

Send the message. If the server requires authentication, then the transaction involves an
exchange of several messages.

resp = RequestMessage().send(scope,options);
...

Next, reuse the options that contain the same credentials. Since the credentials already
have been used successfully, this transaction requires a single message.

resp = RequestMessage().send(scope,options)

 matlab.net.http.Credentials class

1-6333

Prompt User for Name and Password

Create a function that prompts for credentials, using the Username property from the
Credentials object as a default. MATLAB calls this function to obtain the name and
password to use for the authentication response.

Create the getMyCredentials function.

function [u,p] = getMyCredentials(cred,req,resp,authInfo)
 u = cred.Username;
 prompt{1} = 'Username:';
 prompt{2} = 'Password:';
 defAns = {char(u), ''};
 title = ['Credentials needed for ' char(getParameter(authInfo,'realm'))];
 answer = inputdlg(prompt, title, [1, 60], defAns, 'on');
 if isempty(answer)
 u = [];
 p = [];
 else
 u = answer{1};
 p = answer{2};
 end
end

Create the request message.

cred = matlab.net.http.Credentials('GetCredentialsFcn',@getMyCredentials);
options = matlab.net.http.HTTPOptions('Credentials',cred);
req = matlab.net.http.RequestMessage;

Send the message to httpbin.org.

uri = 'httpbin.org/basic-auth/user/passwd';
resp = req.send(uri,options)

Enter any text. To quit, select Cancel.

See Also
AuthenticationScheme | HTTPOptions | RequestMessage | StatusCode

Introduced in R2016b

1 Alphabetical List

1-6334

matlab.net.http.Disposition class
Package: matlab.net.http

Results in HTTP log record

Description
The Disposition enumeration class provides results in an HTTP log record.

Enumeration
Member Name

Description

ConversionError An error occurred converting the data of the response. The
request was received, but there was an error trying to
automatically convert the payload of the response. This
condition indicates that the MessageBody.Payload property of
LogRecord.Response contains the raw payload and the Data
property is empty. The LogRecord.Exception property
contains the exception.

This error does not occur if a ContentConsumer was involved.
Done A request and response were successfully sent and received.

Done indicates the log record contains both the
RequestMessage and ResponseMessage. It does not imply
anything about the StatusCode in the response.

Interrupt The user interrupted the operation, for example, pressing Ctrl
+C. A LogRecord with this Disposition appears only if the
operation was interrupted after transmission of the
RequestMessage has begun. LogRecord.Exception is empty
in this case. LogRecord might be partially populated,
depending on when the interrupt occurred. If the interrupt
occurred after receipt of a response header, then
LogRecord.Response contains the header, and might also
contain partial data processed during receipt of the payload,
depending on the particular data converter or
ContentConsumer that was being used.

 matlab.net.http.Disposition class

1-6335

Enumeration
Member Name

Description

TransmissionError An error occurred sending or receiving the message. The failure
could be due to an I/O error or a failure in a ContentProvider
or ContentConsumer. The LogRecord.Exception property
contains the exception that occurred.

If the error occurred sending the request, LogRecord.Request
contains the completed RequestMessage object and the
LogRecord.Response property is empty.

If the error occurred receiving the response,
LogRecord.Response might be empty if complete headers
were not received. If headers were received but the payload
could not be read, the ResponseMessage object contains only
the headers.

See Also
LogRecord | MessageBody | RequestMessage | ResponseMessage | StatusCode

Introduced in R2016b

1 Alphabetical List

1-6336

matlab.net.http.HeaderField class
Package: matlab.net.http

Header field of HTTP message

Description
Use the HeaderField class to implement a header field for an HTTP message. The class
provides conversions between strings in the header and MATLAB objects, arrays, and
structures. Although you can set the HeaderField properties to arbitrary values, HTTP
header fields have constraints on the allowed characters.

The Name property defines the header field type. MATLAB provides subclasses for
commonly used fields in the matlab.net.http.field package. To see a list of
supported subclasses, call the HeaderField.displaySubclasses method.

Creation
Description
obj = matlab.net.http.HeaderField(name,value) creates a header field with the
Name property set to name and the Value property set to value. Either argument can be
an empty double, []. You can specify several argument pairs in any order as
name1,value1,...,nameN,valueN. If the last value argument is missing, then
HeaderField treats it as empty.

Properties
Name — Header field name
string | character vector

Header field name, specified as a string or character vector. Name determines the type of
the field, which determines valid values for the Value property. If you set Name to [] or
an empty string, then Value is [].

 matlab.net.http.HeaderField class

1-6337

If this object is an instance of a subclass implementing a specific header field type, then
that class enforces constraints on the Name property.
Example: 'Content-Type'

Attributes:

GetAccess
public

SetAccess
public

Value — Header field value
string | any type valid for Name

Header field value, specified as a string or any type valid for the Name property.

When you read this property, Value is a string representing the value in the field.

When you set this property, Value is any type acceptable to the field based on the Name
property and/or the class of this object. The result is converted to a string. If a field type
has a default value, set Value to an empty string ('' or string('')). If you specify an
empty double, [], then the request message send and complete methods do not add
this field to the message.
Example: 'text/html'

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

1 Alphabetical List

1-6338

Methods

Public Methods
<infotypegroup type="method"> convert convertLike parse addFields
removeFields changeFields replaceFields getFields eq displaySubclasses
</infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal Return true if two header field arrays are
the same size and the corresponding
elements are equal as described by the eq
method.

string Array of header fields as a string, as it
appears in a message. Newline characters
are inserted between the fields but not at
the end of all the fields.

char Array of header fields as a character vector,
as described by the string method

Examples

Choose Header Field Constructor

To create a Content-Type header field, use either the HeaderField class or the
ContentTypeField class constructor.

When you use the HeaderField class constructor, you specify the Name property as
'Content-Type'. However, if you misspell the field name, you might not find out about
the error until the server rejects the message. Some servers silently ignore unknown field
names.

f1 = matlab.net.http.HeaderField('Content-Type','text/plain');

 matlab.net.http.HeaderField class

1-6339

Using the ContentTypeField class constructor is preferred because you cannot
misspell the field name.

f2 = matlab.net.http.field.ContentTypeField('text/plain');

If the Value properties are the same, then the fields are equal, regardless of which
constructor you use.

f1 == f2

ans = 1

Find Value in HTTP HeaderField Array

This example shows how to locate a specific header field Cache-Control in a response
from mathworks.com.

Send a message to mathworks.com.

request = matlab.net.http.RequestMessage;
uri = matlab.net.URI('https://www.mathworks.com');
response = send(request,uri);

Search for Cache-Control and display the value.

field = response.getFields('Cache-Control');
value = field.Value

value =
"max-age=14400"

Tips
• The HeaderField constructor creates fields of class HeaderField. To create a field

of a class defined in the matlab.net.http.field package, use the subclass
constructor instead. For a list of subclasses, call the
HeaderField.displaySubclasses method.

For example, the matlab.net.http.field.DateField subclass creates a Date
header field. If you use the HeaderField class to create a Date field, the DateField

1 Alphabetical List

1-6340

class interprets and enforces the value, even though HeaderField is not an instance
of DateField. Likewise, if you convert the field value to a MATLAB datetime value,
the DateField.convert method is used.

• If the HeaderField constructor rejects the Name and Value arguments, use the
GenericField class constructor instead.

See Also
matlab.net.http.field.GenericField

Introduced in R2016b

 matlab.net.http.HeaderField class

1-6341

convert
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Convert header field value to MATLAB type

Syntax
value = convert(fields)

Description
value = convert(fields) converts the Value property of each element of fields to
a MATLAB type.

For each header field in fields, MATLAB checks the matlab.net.http.field
package for a class that supports a name with the same value as the fields.Name
property. If the package contains a class for this field, then convert invokes the convert
method of that class. To see the classes in the field package, call the
matlab.net.http.HeaderField.displaySubclasses method.

If the conversion fails or if no class supports one of the fields.Name properties, then
convert throws an exception.

This method does not work on heterogeneous arrays. All members of fields must be the
same class.

Input Arguments
fields — Header fields
vector of class objects from the matlab.net.http.field package

Header fields, specified as a vector of class objects from the matlab.net.http.field
package. All members of fields must be the same class.

1 Alphabetical List

1-6342

Output Arguments
value — Header field values
vector of MATLAB types

Header field values, returned as a vector of MATLAB types. The types returned depend on
the value of the specific class convert method.

Examples

Display datetime Value in Header Field

Send a message to the Hubble Heritage website and display the year an image was
modified.

uri = matlab.net.URI('http://heritage.stsci.edu/2007/14/images/p0714aa.jpg');
req = matlab.net.http.RequestMessage;
r = send(req,uri);
d = convert(getFields(r,'Last-Modified'));
LastModified = d.Year

LastModified =

 2007

See Also
matlab.net.http.HeaderField.displaySubclasses

Introduced in R2016b

 convert

1-6343

convertLike
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Convert header field value like another header field

Syntax
value = convertLike(fields,other)

Description
value = convertLike(fields,other) converts the Value property of each element
of fields to a MATLAB type, using conversion rules of the field other.

For each header field in fields, MATLAB checks the matlab.net.http.field
package for a class that supports a name with the same value as the fields.Name
property. If the package contains a class for this field, then convert invokes the convert
method of that class. To see the classes in the field package, call the
matlab.net.http.HeaderField.displaySubclasses method.

If the conversion fails or if no class supports one of the fields.Name properties, then
convertLike throws an exception.

This method does not support heterogeneous arrays. All members of fields must be the
same class.

Input Arguments
fields — Header fields
vector of matlab.net.HeaderField objects

Header fields, specified as a vector of matlab.net.http.HeaderField objects. All
members of fields must be the same class.

1 Alphabetical List

1-6344

other — Field to use for conversion rules
string | character vector | matlab.net.http.HeaderField object | meta.class
identifying a HeaderField subclass

Field to use for conversion rules, specified as string, character vector, HeaderField
object, or meta.class identifying a HeaderField subclass in the
matlab.net.http.field package.

Output Arguments
value — Header field values
vector of MATLAB types

Header field values, returned as a vector of MATLAB types. The types returned depend on
the value of the specific class convert method.

Examples

Get datetime Value from Created-Date Header Field

The response variable is a message that has a Created-Date header field. Its value is
formatted like an HTTPDateField object, which returns a datetime object.

myField = response.getFields('Created-Date');
date = myField.convertLike(?matlab.net.http.field.HTTPDateField);

See Also
matlab.net.http.HeaderField.convert |
matlab.net.http.HeaderField.displaySubclasses

Introduced in R2016b

 convertLike

1-6345

matlab.net.http.HeaderField.displaySubclass
es
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Display supported HeaderField subclasses

Syntax
matlab.net.http.HeaderField.displaySubclasses
[fields,names] = matlab.net.http.HeaderField.displaySubclasses

Description
matlab.net.http.HeaderField.displaySubclasses displays all subclasses of the
HeaderField class in the matlab.net.http.field package and the names of the
header fields they support. Use these subclasses to construct common header fields.

[fields,names] = matlab.net.http.HeaderField.displaySubclasses returns
the subclass names in fields as an array of strings. The method returns the header field
names that the subclasses support in names, a cell array of string vectors that the
subclasses support. names{i} contains the names supported by fields(i). If
fields(i) has no constraints on supported names, then names{i} is empty.

Attributes
Sealed true
Static true

Examples

1 Alphabetical List

1-6346

Display Reserved Header Field Names

Display all header field names from classes in the matlab.net.http.field package.
Use this command when you chose a name for an IntegerField or
URIReferenceField header field object. The Name property for these objects cannot be
one of the names in this list.

matlab.net.http.HeaderField.displaySubclasses

Available classes in matlab.net.http.field and names they support:
AcceptField Accept
AuthenticateField WWW-Authenticate, Proxy-Authenticate
AuthenticationInfoField Authentication-Info, Proxy-Authentication-Info
AuthorizationField Authorization, Proxy-Authorization
ConnectionField Connection
ContentLengthField Content-Length
ContentLocationField Content-Location
ContentTypeField Content-Type
CookieField Cookie
DateField Date
GenericField
HTTPDateField Date, Expires, Retry-After, Accept-Datetime, Last-Modified, If-Modified-Since
HostField Host
IntegerField
LocationField Location
SetCookieField Set-Cookie
URIReferenceField

Display Header Field Names Supported by HTTPDateField

Show the header fields that you can create using the HTTPDateField class.

[fields,names] = matlab.net.http.HeaderField.displaySubclasses;
for i = 1:numel(fields)
 if (strcmp(fields(i),'HTTPDateField'))
 disp(names{i})
 break
 end
end

 Columns 1 through 4

 "Date" "Expires" "Retry-After" "Accept-Datetime"

 Columns 5 through 6

 "Last-Modified" "If-Modified-Since"

 matlab.net.http.HeaderField.displaySubclasses

1-6347

See Also

Topics
Method Attributes

Introduced in R2016b

1 Alphabetical List

1-6348

eq
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Compare two HeaderField arrays

Syntax
field1 == field2
tf = eq(field1,field2)

Description
field1 == field2 compares two HeaderField arrays element by element, returning
an array of logical values indicating matching elements. The arrays must have the same
dimensions, unless one is a scalar.

Two header fields are equal if they are functionally equivalent, even if they are not
identical. Functionally equivalent means both of these conditions are true:

• Name properties match using a case-insensitive comparison
• Value properties match. If the convert method is supported for the HeaderField

type, MATLAB uses the isequal method on the results of convert. If convert is not
supported, comparisons are based on a case-sensitive match of the Value strings.

The == method compares the Name and Value properties only. The method ignores the
actual classes of field1 and field2, since both are instances of the HeaderField
class.

tf = eq(field1,field2) is an alternative way to execute field1 == field2. The
method returns a logical scalar or array.

 eq

1-6349

Input Arguments
field1 — Header field
matlab.net.http.HeaderField object

Header field, specified as a matlab.net.http.HeaderField object or a vector of
HeaderField objects.

field2 — Header field
matlab.net.http.HeaderField object

Header field, specified as a matlab.net.http.HeaderField object or a vector of
HeaderField objects.

Examples

Different Header Field Classes Are Equivalent

This comparison evaluates to true, even though one object being compared is a
HeaderField object and the other is a DateField object.

import matlab.net.http.HeaderField
import matlab.net.http.field.DateField
dt = datetime('now');
HeaderField('Date',dt) == DateField(dt)

ans = logical
 1

See Also
convert | displaySubclasses

Introduced in R2016b

1 Alphabetical List

1-6350

parse
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Parse header field value and return as strings

Syntax
value = parse(obj)

value = parse(obj,fields)

value = parse(___ ,Name,Value)

Description
value = parse(obj) parses the Value property of the header field and returns
strings. Use this method to process header fields for which there is no class in the
matlab.net.http.field package. Use the
matlab.net.http.HeaderField.displaySubclasses method to display classes in
the package. For classes in the package, use the corresponding convert method to parse
the value.

The parsing rules are based on sections 3.2.4-3.2.6 of RFC 7230 Message Syntax and
Routing and are augmented to interpret multiple values.

value = parse(obj,fields) specifies the names to use for unnamed struct fields.

If the Nth field of a struct has no name, the corresponding Nth name in fields exists
and is nonempty. It is used instead of Arg_N. Using this syntax forces the returned value
to be a struct (or vector of struct objects) with at least as many fields as the length of
fields. Typically this pattern occurs in header fields that begin with a token followed by
attribute pairs.

value = parse(___ ,Name,Value) specifies one or more delimiters. The default
delimiters are commas and semicolons. You can use any of the input arguments in the
previous syntaxes.

 parse

1-6351

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230

Input Arguments
obj — Header field
matlab.net.http.HeaderField object

Header field, specified as a matlab.net.http.HeaderField object or a vector of
HeaderField objects.

fields — Names of struct fields
string vector | character vector | cell array of character vectors

Names of struct fields, specified as a string vector, a character vector, or a cell array of
character vectors.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ArrayDelimiters — Delimiters separating array elements
string vector | character vector | cell vector of regular expressions | '' | []

Delimiters separating array elements, specified as:

• A string vector, character vector, or cell vector of regular expressions specifying the
possible delimiters, interpreted in the order they appear in the vector.

• '' — Do not parse obj as an array. MATLAB inserts quotes and escape characters.
• [] — Do not parse obj as an array. MATLAB does not insert quotes or escape

characters into array elements.

MemberDelimiters — Delimiters separating structure fields
string vector | character vector | cell vector of regular expressions | '' | []

Delimiters separating structure fields, specified as:

• A string vector, character vector, or cell vector of regular expressions specifying the
possible delimiters, interpreted in the order they appear in the vector.

• '' — Do not parse obj as a struct. MATLAB inserts quotes and escape characters.

1 Alphabetical List

1-6352

• [] — Do not parse obj as a struct. MATLAB does not insert quotes or escape
characters into struct values.

Output Arguments
value — Header field Value property
string vector | struct array | cell array of struct

Header field Value property, returned as a string vector, a struct array, or a cell array
of struct values.

MATLAB parses the Value property as a list of comma-separated strings. Each string
becomes an element of the value vector. An element is one of the following:

• struct of name=value pairs
• struct of semicolon-separated values
• string, if the field does not contain a semicolon or an equal sign or does not appear to

be a structure.

parse converts the name of each struct field to a valid MATLAB identifier using
matlab.lang.makeValidName. For the following Value property, parse creates field
name x_p1 from _p1.

To resolve duplicate names, parse calls matlab.lang.makeUniqueStrings. For the
following Value property, parse creates field name p11 from duplicate field name p1.

If a struct field contains only a Value, but not a name=value pair, then the field name
is Arg_N. The N is the ordinal position of the field in the struct. For the following Value
property, parse creates field name Arg_2 for the missing name.

Value Property Output Argument Description
"p1=first
p2=second"

 p1: "first"
 p2: "second"

parse returns a struct for
name=value pairs.

"first;second" Arg_1: "first"
 Arg_2: "second"

parse returns a struct and
assigns default field names for
semicolon-separated values.

 parse

1-6353

Value Property Output Argument Description
"first second" "first second" parse returns a string if the field

does not contain a semicolon or an
equal sign or does not appear to be
a structure.

"_p1=first
p2=second"

 x_p1: "first"
 p2: "second"

parse converts invalid field name
_p1 to x_p1.

"p1=first
p1=second"

 p1: "first"
 p11: "second"

parse converts duplicate field name
p1 to p11.

"p1=first;
second"

 p1: "first"
 Arg_2: "second"

parse creates field name Arg_2 for
the missing name for Value
second.

"p1=first; p3=(a
comment here)"

 p1: "first"
 p3: "(a comment here)"

parse retains comments.

If obj is a vector of header fields, then the parse method concatenates the results of
parsing each of the fields into a single array. If the values are not of the same type, then
value is a cell array.

Value Property of Header Field Vector Element of Cell Array Output Argument
"p1=first p2=second" x{1} =

 p1: "first"
 p2: "second"

"third" x{2} =

third

Examples

Change Default Field Name

Assume that you receive a header field H in a response message from a server with the
Value property media-type; name1=value1; name2=value2. To run this example,
create the variable H.

1 Alphabetical List

1-6354

H = matlab.net.http.HeaderField('Test-Name','media-type; name1=value1; name2=value2')

H =

 HeaderField with properties:

 Name: "Test-Name"
 Value: "media-type; name1=value1; name2=value2"

Parse the Value property of H. MATLAB creates a default field name Arg_1.

var = parse(H)

var =

 struct with fields:

 Arg_1: "media-type"
 name1: "value1"
 name2: "value2"

Change the default to a more meaningful name MediaType.

var = parse(H,'MediaType')

var =

 struct with fields:

 MediaType: "media-type"
 name1: "value1"
 name2: "value2"

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes.

 parse

1-6355

See Also
matlab.lang.makeUniqueStrings | matlab.lang.makeValidName

External Websites
RFC 7230 Message Syntax and Routing

Introduced in R2016b

1 Alphabetical List

1-6356

https://tools.ietf.org/html/rfc7230

addFields
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Add fields to HeaderField array

Syntax
fields = addFields(fields,newFields)
fields = addFields(msg,fName,fValue)
fields = addFields(fields,fName1,fValue1,...,fNameN,fValueN)
fields = addFields(fields,index, ___)

Description
fields = addFields(fields,newFields) adds newFields to the end of the
HeaderField array fields and returns the updated array. addFields does not check
for duplicate fields.

fields = addFields(msg,fName,fValue) adds field with name fName and value
fValue.

fields = addFields(fields,fName1,fValue1,...,fNameN,fValueN) adds fields
specified by fName, fValue pair arguments, in the order specified.

fields = addFields(fields,index, ___) inserts fields at index and can include
any of the input arguments in previous syntaxes.

Input Arguments
fields — Header fields
matlab.net.http.HeaderField

Header fields, specified as an array of matlab.net.http.HeaderField objects.

 addFields

1-6357

newFields — Fields to add
matlab.net.http.HeaderField

Fields to add, specified as a vector or comma-separated list of one or more
matlab.net.http.HeaderField objects.

fName — Header field name
string

Header field name, specified as a string.

fValue — Header field value
string | any type valid for fName

Header field value, specified as a string or any type valid for fName. To use the default
value for the field, set fValue to ''. If the last value is missing, then it is the same as
specifying [].

index — Location in header field array
integer

Location in header field array, specified as an integer. If index is greater than the length
of the header or index is 0, the method adds fields to the end. If index is negative, the
method counts from the end of the header.

See Also
Introduced in R2018a

1 Alphabetical List

1-6358

changeFields
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Change existing values in HeaderField array

Syntax
fields = changeFields(fields,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN)
fields = changeFields(fields,newFields)

Description
fields = changeFields(fields,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN) changes the existing
fields in each header field with the specified names to the indicated values and returns
the updated array.

Name matching is case-insensitive. However, if you specify a name that differs in case
from the existing field name, then the field name changes to the specified name. This
usage does not change the class of an existing field.

This method throws an error when:

• All the specified fields are not already in the header.
• There is more than one field with the specified name.

fields = changeFields(fields,newFields) changes the existing fields in each
header field to the names, values, and types specified in fields. This syntax might
change the class of an existing field if the field name is a case-insensitive match to a name
in fields.

 changeFields

1-6359

Input Arguments
fields — Header fields
matlab.net.http.HeaderField

Header fields, specified as an array of matlab.net.http.HeaderField objects.

FieldName — Header field name
string

Header field name, specified as a string.

FieldValue — Header field value
string | any type valid for fName

Header field value, specified as a string or any type valid for fName. To use the default
value for the field, set fValue to ''. If the last value is missing, then it is the same as
specifying [].

newFields — Fields to add
matlab.net.http.HeaderField

Fields to add, specified as a vector or comma-separated list of one or more
matlab.net.http.HeaderField objects.

See Also
replaceFields

Introduced in R2018a

1 Alphabetical List

1-6360

getFields
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Return header fields matching name or class

Syntax
[fields,indices] = getFields(headers,ids)

Description
[fields,indices] = getFields(headers,ids) returns fields and their indices in
the header fields that match the given IDs.

Input Arguments
headers — Header fields
vector of matlab.net.http.HeaderField objects

Header fields, specified as a vector of matlab.net.http.HeaderField objects.

ids — Names to match
strings | matlab.net.http.HeaderField objects | meta.class objects

Names to match, specified as one of the following.

• String vector, character vector, cell array of character vectors, or comma-separated
list of strings or character vectors containing the names of the fields to return. Names
are not case-sensitive.

• Vector or comma-separated list of one or more matlab.net.http.HeaderField
objects whose Name properties are used to determine which fields to return. Names
are not case-sensitive. Header field values in these objects are ignored.

 getFields

1-6361

• Vector or comma-separated list of meta.class objects that are subclasses of
HeaderField.

The getFields method searches for names that match names supported by the
specified classes, regardless of the class. If a subclass does not have a specific set of
supported names, all header fields of that subclass are matched regardless of their
names. Call the HeaderField.displaySubclasses method to see supported
names.

Output Arguments
fields — Fields matching input
array of matlab.net.http.HeaderField objects

Fields matching input, returned as an array of matlab.net.http.HeaderField
objects. If no matches exist, getFields returns an empty HeaderField array. The name
search is case-insensitive.

indices — Index values of fields
array of integers | []

Index values of fields, returned as an array of integers, or [] if no match.

If messages is a vector, then getFields returns fields matching ids from all messages.
indices is a cell array of vectors, where indices{i} contains the indices of the
matching fields in messages{i}.

See Also
Introduced in R2018a

1 Alphabetical List

1-6362

removeFields
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Remove fields from header field array

Syntax
fields = removeFields(fields,ids)

Description
fields = removeFields(fields,ids) removes all header fields matching ids and
returns the updated array.

Input Arguments
fields — Header fields
matlab.net.http.HeaderField

Header fields, specified as an array of matlab.net.http.HeaderField objects.

ids — Names to match
strings | matlab.net.http.HeaderField objects | meta.class objects

Names to match, specified as one of the following.

• String vector, character vector, cell array of character vectors, or comma-separated
list of strings or character vectors containing the names of the fields to remove.
Names are not case-sensitive.

• Vector or comma-separated list of one or more HeaderField objects whose Name
properties are used to determine which fields to remove. Names are not case-
sensitive. Header field values are ignored.

 removeFields

1-6363

• Vector or comma-separated list of meta.class objects that are subclasses of
HeaderField.

The removeFields method searches for names that match names supported by the
specified classes, regardless of the class. If a subclass does not have a specific set of
supported names, all header fields of that subclass are matched regardless of their
names. Call the HeaderField.displaySubclasses method to see supported
names.

See Also
Introduced in R2018a

1 Alphabetical List

1-6364

replaceFields
Class: matlab.net.http.HeaderField
Package: matlab.net.http

Change values in or add fields to array of HeaderFields

Syntax
fields = replaceFields(fields,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN)
fields = replaceFields(fields,newFields)

Description
fields = replaceFields(fields,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN) changes the existing
fields in each header field with the specified names to the indicated values and returns
the updated array. This method is the same as changeFields, but if a field does not
exist, then replaceFields adds it to the end of fields.

fields = replaceFields(fields,newFields) changes the existing fields in each
header field to the names, values, and types specified in fields. This syntax might
change the class of an existing field if the field name is a case-insensitive match to a name
in fields.

Input Arguments
fields — Header fields
matlab.net.http.HeaderField

Header fields, specified as an array of matlab.net.http.HeaderField objects.

FieldName — Header field name
string

 replaceFields

1-6365

Header field name, specified as a string.

FieldValue — Header field value
string | any type valid for fName

Header field value, specified as a string or any type valid for fName. To use the default
value for the field, set fValue to ''. If the last value is missing, then it is the same as
specifying [].

newFields — Fields to add
matlab.net.http.HeaderField

Fields to add, specified as a vector or comma-separated list of one or more
matlab.net.http.HeaderField objects.

See Also
changeFields

Introduced in R2018a

1 Alphabetical List

1-6366

matlab.net.http.HTTPException class
Package: matlab.net.http
Superclasses:

Exception thrown by HTTP services

Description
The HTTPException class contains information about errors.

The RequestMessage.send method throws an HTTP exception when an error occurs
after it attempts to send a message. For instance, the method throws an exception when:

• Something fails during transmission and the server does not receive the message.
Possible causes of failure include a network problem, timeout, or bad URI.

• The server receives the message, but something fails while it is sending a response.
• The server receives the message and sends a response, but the response cannot be

converted based on its Content-Type. For example, a bad JSON string is received.

If an error occurs before the RequestMessage.send method attempts to send the
message, then it throws a standard MException instead.

The HTTPException describes the error in the MException.cause property and
returns a history of the transaction. The History property contains the message that was
sent and the message that was received, if any.

Properties
Request — Request message as completed
matlab.net.http.RequestMessage object

Request message as completed, specified as a matlab.net.http.RequestMessage
object. Request contains the last message that was sent or would have been sent. If this
message header was successfully sent, then it is the same as the last entry in the
History.Request property. Otherwise, the last entry in the History property does not
contain the message you attempted to send.

 matlab.net.http.HTTPException class

1-6367

Attributes:

GetAccess
public

SetAccess
private

URI — URI for last message
matlab.net.URI object

URI for the last message that was sent or would have been sent, specified as a
matlab.net.URI object.
Attributes:

GetAccess
public

SetAccess
private

History — History of transaction
vector of matlab.net.http.LogRecord objects

History of the transaction, specified as a vector of matlab.net.http.LogRecord
objects. History only contains messages whose headers were successfully sent or
received. If an exception occurs when sending or receiving a message header, then
History does not contain that message. If an error occurs while sending or receiving the
payload, or during conversion of the data to or from the payload, then the MessageBody
Payload property and/or Data properties might not be set.
Attributes:

GetAccess
public

SetAccess
private

Examples

1 Alphabetical List

1-6368

Response Payload Not Valid Format for Content-Type

Send a message to the website in the url variable. This destination returns a message
whose Payload property contains an invalid JPEG image for Content-Type image/jpeg.

try
 resp = RequestMessage().send(url);
catch e
 if isa(e,'matlab.net.http.HTTPException')
 response = e.History(end).Response;
 if ~isempty(response)
 data = response.Body.Data;
 payload = resonse.Body.Payload
 end
 end
end

The payload variable contains the bytes that were received as a uint8 vector. Since the
Content-Type is not character-based, the data variable is empty.

See Also
LogRecord | MException | RequestMessage.send | matlab.net.uri

Introduced in R2016b

 matlab.net.http.HTTPException class

1-6369

matlab.net.http.HTTPOptions class
Package: matlab.net.http

Options controlling HTTP message exchange

Description
Use the HTTPOptions class to create options for HTTP request messages. Use this object
to specify options that are constant across several requests.

Creation

Description
obj = matlab.net.http.HTTPOptions creates HTTP options with default property
values.

obj = matlab.net.http.HTTPOptions(Name,Value) creates HTTP options with
additional properties specified by one or more name-value pair arguments. Name is the
property name and Value is the corresponding value. You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN. Unspecified
properties are set to their default values.

Properties
Authenticate — Whether Credentials used for authentication
true (default) | false

Whether Credentials are used for authentication, specified as true or false.

If Authenticate is true, then implement the supported authentication method requested
by the server or proxy. The authentication is based on the Credentials property and the
proxy user name and password set in MATLAB Web Preferences, if any. MATLAB supports
Basic and Digest authentication only.

1 Alphabetical List

1-6370

The response message contains the server or proxy authentication challenge when any of
these conditions exist.

• Authenticate is false.
• No appropriate Credentials properties are found for this request.
• Authentication fails.

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

CertificateFilename — File name of root certificates
string | character vector | 'default'

File name of root certificates, specified as a string or character vector denoting the
location of a file containing certificates. The file is in privacy-enhanced mail (PEM)
format. The location must be in the current folder, in a folder on the MATLAB path, or a
full or relative path to a file. If you specify the value 'default', then
CertificateFilename is set to the path of the certificate file that ships with MATLAB.
To determine the path, create an empty weboptions or HTTPOptions object and look at
the default value of CertificateFilename.

If you request an HTTPS connection, then the certificate from the server is validated
against the certification authority certificates in the PEM file. Standard HTTPS
mechanisms use this validation to validate the signature on the server certificate and the
entire certificate chain. If verification fails, a connection is not allowed. You can disable
the verification in cases where the server's certificate does not match the URI used to
access it, by creating a matlab.net.http.RequestMessage and setting the
matlab.net.http.HTTPOptions.VerifyServerName property to false. Use this
option if you are confident that you are communicating directly with the intended server.

To add certificates to rootcerts.pem, copy the file to a working folder, edit the file, and
add your certificates to it. PEM files are ASCII files which are easily modified. Since
security of HTTPS connections depends on the integrity of this file, protect it
appropriately. MATLAB does not manage certificates or certificate files, but there are
third-party tools for managing PEM files.

 matlab.net.http.HTTPOptions class

1-6371

If CertificateFilename is empty, then MATLAB checks if the certificate domain of the
server matches the host name of the server and that it is not expired. The signature is not
validated.

Set CertificateFilename to empty ('') only if you cannot establish a connection due
to a missing or expired certificate.

Attributes:

GetAccess
public

SetAccess
public

Data Types: char | string

ConnectTimeout — Seconds to wait for initial server connection
10 (default) | integer | Inf

Seconds to wait for initial server connection, specified as an integer. The default is 10
seconds. If the timeout period is exceeded, then ConnectTimeout throws an error. To
disable timeouts, set ConnectTimeout to Inf.

ConnectTimeout determines how long to wait to complete a connection attempt with a
server before throwing an error. This timeout does not limit how long it takes to receive a
complete response.

Some operating systems have a maximum timeout enforced by the system. This timeout
takes effect even if the value of ConnectTimeout is greater than the maximum. For
example, on Windows 10, this timeout is 21 seconds.

Attributes:

GetAccess
public

SetAccess
public

ConvertResponse — How to process raw payload from server
true (default) | false

1 Alphabetical List

1-6372

How to process raw payload received from a server in a ResponseMessage, specified as
true or false.

If ConvertResponse is true, then

• If a ContentConsumer is specified, then the uint8 payload is passed to the
ContentConsumer for further processing.

• Otherwise, MATLAB converts the payload in the MessageBody.Payload property to
MATLAB data based on the Content-Type in the response message. See the
MessageBody.Data property for conversion rules. If the conversion is successful, then
Data contains the converted data and Payload is empty.

If ConvertResponse is false, then any specified ContentConsumer is ignored and the
behavior depends on whether the Content-Type specifies character data.

• If the Content-Type has an explicit or default charset attribute, then the payload is
converted to text and stored in Data without further processing.

• If the Content-Type does not specify character data or there is no charset, and
MATLAB does not support the Content-Type, then Data contains the raw uint8
payload.

In all cases, the Payload property is deleted unless you also set the SavePayload
property to true.

ConvertResponse is ignored if the message was encoded (compressed) and one of
these:

• Decoding failed
• DecodeResponse property is false

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

DecodeResponse — Whether to decode compressed data
true (default) | false

 matlab.net.http.HTTPOptions class

1-6373

Whether to decode compressed data, specified as true or false. Decoding means to
decompress (decode) the response payload when the server returns compressed
(encoded) data. Decoding occurs before conversion based on the Content-Type field.

A message is encoded when there is a Content-Encoding field that specifies a
compression algorithm. MATLAB supports content coding values gzip, x-gzip, and
deflate. The value identity means that there is no encoding, which is equivalent to
the message having no Content-Encoding field. If MATLAB does not support the Content-
Encoding type, decoding does not occur even if DecodeResponse is true.

If DecodeResponse is false and the data is encoded, then:

• The MessageBody.Payload property contains the raw unencoded payload.
• The MessageBody.Data property remains empty.
• No conversion occurs, regardless of the setting of the ConvertResponse property.

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

Credentials — Authentication credentials
empty (default) | vector of matlab.net.http.Credentials objects

Authentication credentials, specified as a vector of matlab.net.http.Credentials
objects. Credentials are used only if the Authenticate property is true.

When you access the same server multiple times during a session, for maximum
performance specify the same Credentials vector or same HTTPOptions object for
each request. Credentials contains cached information that speeds up subsequent
authentications.

Attributes:

GetAccess
public

1 Alphabetical List

1-6374

SetAccess
public

MaxRedirects — Number of redirects allowed
20 (default) | 0 | integer

Number of redirects allowed, specified as an integer for a given request. The default
number of redirects is 20. Set to 0 to disable redirection.

If MaxRedirects is nonzero, then cookies received from the server in each redirect
response are copied into the redirected message. After MaxRedirects, the response
message contains the next redirect message.

Attributes:

GetAccess
public

SetAccess
public

ProgressMonitorFcn — Progress monitor handler
function handle | empty

Progress monitor handler, specified as a function handle to a
matlab.net.http.ProgressMonitor object. If UseProgressMonitor is true, then
MATLAB calls the ProgressMonitor function to report the progress of a transfer. If
UseProgressMonitor is false or ProgressMonitorFcn is empty, then no progress is
reported.

Attributes:

GetAccess
public

SetAccess
public

Data Types: function_handle

ProxyURI — Proxy server address
empty (default) | matlab.net.URI | string

 matlab.net.http.HTTPOptions class

1-6375

Proxy server address, specified as a matlab.net.URI object or a string of the form
host:port or //host:port.

ProxyURI is used only if the UseProxy property is true. ProxyURI overrides the proxy
specified in MATLAB Web Preferences and any proxy set in Windows system settings.
Attributes:

GetAccess
public

SetAccess
public

SavePayload — Whether Payload saved
false (default) | true

Whether Payload is saved, specified as true or false. The payload is the raw bytes
received from or sent to the server, saved in the MessageBody.Payload property.

In a request message, setting SavePayload to true saves the payload after data
conversion. In a response message, the bytes are saved before conversion.

Use SavePayload as a debugging tool. For example, the server cannot process the body
of a request, or there is a failure converting a response body to a MATLAB type. Setting
SavePayload to true might consume a considerable amount of memory because the
payload is at least equal to the size of the converted data.

To retrieve the response payload without conversion, set the ConvertResponse property
to false and read MessageBody.Data instead.

If an HTTPException occurs during message processing, then the payload received up to
the point of failure is in HTTPException.History(end).Response.Body.Payload.

If RequestMessage.Body is a ContentProvider object, then MATLAB saves the
provider's converted data in Body.Payload.
Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6376

Data Types: logical

UseProgressMonitor — Whether to display progress
false (default) | true

Whether to display progress, specified as true or false. Set UseProgressMonitor to
true to report progress of a transfer using the function specified by the
ProgressMonitorFcn property.

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

UseProxy — Whether using proxy
true (default) | false

Whether using a proxy, specified as true or false.

If UseProxy is true, then MATLAB selects the first one of these proxies.

• The value in the ProxyURI property, if any.
• The proxy specified in MATLAB Web Preferences, if any.
• The proxy specified in your system preferences (Windows only).

All requests go directly to the destination URI without a proxy when any of the following
is true.

• UseProxy is false.
• UseProxy is true but ProxyURI is empty and there is no proxy set in preferences.

MATLAB automatically diverts a message to a proxy when UseProxy is true.

Attributes:

GetAccess
public

 matlab.net.http.HTTPOptions class

1-6377

SetAccess
public

Data Types: logical

VerifyServerName — Whether server name matches certificate
true (default) | false

Whether server name matches certificate, specified as true or false.

In a secure connection using https protocol, MATLAB verifies that the name of the
server in the certificate matches the Host property in the URI of the request, or in the
URI of the latest redirect request. This verification ensures that you are communicating
with the intended server. To disable the verification in cases where the server certificate
does not match the URI used to access it, set this property to false. For example, you want
to access the server using an IP address or "localhost" and you are confident that you are
communicating directly with the intended server.

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

Examples

Extend Connection Timeout

Increase connection timeout to 20 seconds.

Change the default timeout option for the request message specified in the variable
request sent to the server specified in the variable url.

1 Alphabetical List

1-6378

options = matlab.net.http.HTTPOptions('ConnectTimeout',20);
response = request.send(url,options);

See Also
Credentials | MessageBody | ProgressMonitor | RequestMessage.send |
matlab.net.URI | matlab.net.http.io.ContentConsumer |
matlab.net.http.io.ContentProvider

Topics
Web Preferences

Introduced in R2016b

 matlab.net.http.HTTPOptions class

1-6379

matlab.net.http.LogRecord class
Package: matlab.net.http

HTTP history log record

Description
A vector of LogRecord objects represents a history of request-response message pairs
exchanged between client and server during an HTTP operation, such as
RequestMessage.send. The send method returns history as an output argument. When
an error occurs, the HTTPException object contains a History property.

Use the LogRecord class for debugging.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Properties
URI — URI of request
matlab.net.URI

URI of the request, specified as a matlab.net.URI object.

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6380

Request — Request message
matlab.net.http.RequestMessage object

Request message, specified as a matlab.net.http.RequestMessage object. Request
contains a value if MATLAB attempted to send the header of the request message, even if
an exception occurs in the process of sending the payload. If an exception occurs, then
the Exception property contains the MException.

The Request.Body property contains the body of the request message, if any. The
Request.Body.Payload property is set only if you specify the SavePayload property
in an HTTPOptions object.

Attributes:

GetAccess
public

SetAccess
public

RequestTime — Start and end times of request message
pair of datetime objects

Start and end times of a request message, specified as a pair of datetime objects.
RequestTime contains a value only if the Request property is set.

The RequestTime values are an approximation of the times when the first and last bytes,
including the payload, of a request message were sent. If an exception occurs during
transmission, then the end time is the time of the exception, and the Exception property
contains the MException.

Attributes:

GetAccess
public

SetAccess
public

Data Types: datetime

Response — Response message
matlab.net.http.ResponseMessage object

 matlab.net.http.LogRecord class

1-6381

Response message, specified as a matlab.net.http.ResponseMessage object.
Response contains a value only if the complete header of the response is received
successfully, even if an exception occurs receiving the payload. If an exception occurs
while trying to send the request or during receipt of the header, then Response might be
empty. If an exception occurs, then the Exception property contains the MException
object.

The Response.Body property is set if you specify the SavePayload property in an
HTTPOptions object and the response has a body. If Response.Body is set, then the
Response.Body.Payload property is also set.

Attributes:

GetAccess
public

SetAccess
public

ResponseTime — Start and end times of response message
pair of datetime objects

Start and end times of the response message, specified as a pair of datetime objects.
ResponseTime contains a value only if the Response property is set.

The ResponseTime values are an approximation of the times when the first and last
bytes of the response message are received. If an exception occurs during receipt, then
the end time is the time of the exception, and the Exception property contains the
MException object.

Attributes:

GetAccess
public

SetAccess
public

Data Types: datetime

Disposition — Disposition of exchange
matlab.net.http.Disposition enumeration

1 Alphabetical List

1-6382

Disposition of the exchange, specified as a matlab.net.http.Disposition
enumeration, indicating the result of the exchange. If the Disposition value is Done,
then the Exception property is empty and all fields of the LogRecord contain their final
values.

Some values of Disposition imply that an exception was saved in the Exception
property. If an exception occurs, the Response or Request properties might not be set.
When these values are set depends on whether the exception occurs before or during the
transmission of the headers or the payload.

Attributes:

GetAccess
public

SetAccess
public

Exception — Exception
MException

Exception, specified as an MException object that occurred during processing of the
exchange. If an error occurred during the transmission, receipt, or processing of the
response, this property is the MException containing the exception. The value of the
Disposition property determines whether this property is set.

Attributes:

GetAccess
public

SetAccess
public

Methods

Public Methods
<infotypegroup type="method"> show </infotypegroup>

 matlab.net.http.LogRecord class

1-6383

See Also
Disposition | RequestMessage.send | ResponseMessage | StartLine |
matlab.net.URI

Introduced in R2016b

1 Alphabetical List

1-6384

show
Class: matlab.net.http.LogRecord
Package: matlab.net.http

Display or return human-readable version of vector of LogRecords

Syntax
show(records)
show(records,maxlength)

strs = show(___)

Description
show(records) displays the entire contents of the records array.

show(records,maxlength) displays maxlength characters of the message bodies. If a
message body contains fewer than maxlength characters, then the method displays the
entire message body.

strs = show(___) returns the output as a string instead of displaying it and can
include any of the input arguments in previous syntaxes. strs contains one string for
each LogRecord object in records.

Input Arguments
records — Log records
array of matlab.net.http.LogRecord objects

Log records, specified as an array of matlab.net.http.LogRecord objects.

maxlength — Number of bytes
integer

 show

1-6385

Number of bytes to convert, specified as an integer.

Examples

Display Last Log Record for Message Sent to mathworks.com.

import matlab.net.*
import matlab.net.http.*
import matlab.net.http.field.*

r = RequestMessage;
uri = URI('https://www.mathworks.com')
[resp,~,hist] = r.send(uri);

show(hist(end),100)

REQUEST 1 to https://www.mathworks.com/?requestedDomain=www.mathworks.com at 29-Apr-2016 09:30:35 - 29-Apr-2016 09:30:35 (0.132 sec): Done
GET /?requestedDomain=www.mathworks.com HTTP/1.1
Cookie: Bjava-apache-all-ah=2831032236.0.0000; X_MW_DOMAIN=www.mathworks.com; JSESSIONID=236bd3c6939d903ca917331c1b60
User-Agent: MATLAB/9.0.0.379006 (R2016b)
Date: Fri, 29 Apr 2016 13:30:33 GMT
Connection: Close
Host: www.mathworks.com

RESPONSE 1 at 29-Apr-2016 09:30:35 - 29-Apr-2016 09:30:36 (0.141 sec)
HTTP/1.1 200 OK
Date: Fri, 29 Apr 2016 13:30:35 GMT
Server: MathworksServer_08
X-Powered-By: Servlet/3.0 JSP/2.2 (MathworksServer_08 Java/Oracle Corporation/1.7)
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Expires: Sun, 26 Apr 2015 11:56:16 GMT
Content-Type: text/html;charset=utf-8
Via: 1.1 www.mathworks.com
Vary: Accept-Encoding
Transfer-Encoding: chunked
Connection: close

<!DOCTYPE HTML>
<html>
<head>
<title>MathWorks - Makers of MATLAB and Simulink</title>
<meta char

<< 46590 total characters of text/html UTF-8 data >>

1 Alphabetical List

1-6386

The information displayed depends on your system.

See Also
Introduced in R2016b

 show

1-6387

matlab.net.http.MediaType class
Package: matlab.net.http

Internet media type used in HTTP headers

Description
The MediaType class represents an internet media type, as defined in RFC 7231 — Media
Type, section 3.1.1.1. The MediaType class also represents the contents of a Content-
Type field or an Accept field.

Creation
Description
obj = matlab.net.http.MediaType(type,paramName,paramValue) creates a
MediaType object given by type, with additional options specified by one or more
paramName,paramValue pair arguments. You can specify several
paramName,paramValue pair arguments in any order as
paramName1,paramValue1,...,paramNameN,paramValueN.

obj = matlab.net.http.MediaType(text) parses text to create a media type.
Quotes and escape characters within the values of parameters are removed. This
constructor does not prevent creating a MediaType object with duplicate parameter
names.

Input Arguments
type — Media type
string

Media type, specified as a string. The type must have the syntax of type/subtype.

paramName — Parameter name
string

1 Alphabetical List

1-6388

https://tools.ietf.org/html/rfc7231#section-3.1.1
https://tools.ietf.org/html/rfc7231#section-3.1.1

Parameter name, specified as a nonempty string.

paramValue — Parameter value
string | type acceptable to the string function

Parameter value, specified as a nonempty string or type acceptable to the string
function. The string function adds quotes and escapes as needed. Do not include
quotation or escape characters within paramValue.

text — Media type
string

Media type, specified as a string.

Properties
Type — Primary type
string

Primary type, specified as a nonempty string.

Attributes:

GetAccess
public

SetAccess
public

Data Types: string

Subtype — Subtype
string

Subtype, specified as a nonempty string.

Attributes:

GetAccess
public

 matlab.net.http.MediaType class

1-6389

SetAccess
public

Data Types: string

Parameters — Parameters
nx2 string matrix

Parameters, specified as an nx2 string matrix. Parameters(i,1) is the name of the ith
parameter and Parameters(i,2) is its value. Use the setParameter method to add or
change parameter values. To reorder or remove parameters, construct a new MediaType
object with the parameters you want to use from an existing MediaType object.

Attributes:

GetAccess
public

SetAccess
private

Data Types: string

MediaInfo — Media type portion
matlab.net.http.MediaType object

Media type portion, specified as a matlab.net.http.MediaType object. MediaInfo
contains the MediaType object without the parameters at or following the first q
parameter.

Attributes:

GetAccess
public

SetAccess
immutable

Dependent
true

Weight — Weight parameter q
double | empty | NaN

1 Alphabetical List

1-6390

Weight parameter q, specified as double. If there is no q parameter, then Weight is
empty. If the parameter cannot be converted to a double, then Weight is NaN. If you set
this property, it must have a value in the range 0–1. Setting this value modifies the final q
parameter in the object or adds one to the end of the parameter list.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> getParameter setParameter </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

 matlab.net.http.MediaType class

1-6391

eq Element by element comparisons between
two MediaType arrays, returned as a
logical array of the same dimensions. If the
arrays are not the same dimensions, one
must be a scalar, and then scalar-expansion
is used.

Two MediaType arrays are considered
equal if they have the same Type and
Subtype properties using a case-
insensitive comparison. In addition, they
have the same Parameters property
names and values, where parameter names
are case-insensitive and values are case-
sensitive, except for 'charset' values, as
described in RFC 2046 — Charset
Parameter, section 4.1.2. Parameter order is
not significant.

isequal Compare two MediaType arrays with same
dimensions and corresponding elements
according to eq

string MediaType as string
char MediaType as character vector

See Also

External Websites
RFC 7231 — Media Type, section 3.1.1.1

Introduced in R2016b

1 Alphabetical List

1-6392

https://tools.ietf.org/html/rfc2046#section-4.1.2
https://tools.ietf.org/html/rfc2046#section-4.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.1

getParameter
Class: matlab.net.http.MediaType
Package: matlab.net.http

Value of media type parameter

Syntax
value = getParameter(obj,name)

Description
value = getParameter(obj,name) returns the value of a MediaType parameter
name. Parameter name matching is case-insensitive.

Input Arguments
obj — Media type
matlab.net.http.MediaType object

Media type, specified as a matlab.net.http.MediaType object.

name — Parameter name
string

Parameter name, specified as a string.

Output Arguments
value — Parameter value
array of strings | empty

 getParameter

1-6393

Parameter value, returned as an array of nonempty strings. Parameter name matching is
case-insensitive. If the parameter appears more than once, then value contains multiple
elements. If the parameter does not exist, then value is empty.

See Also
matlab.net.http.MediaType.setParameter

Introduced in R2016b

1 Alphabetical List

1-6394

setParameter
Class: matlab.net.http.MediaType
Package: matlab.net.http

Set value of media type parameter

Syntax
newType = setParameter(mediaType,name,value)

Description
newType = setParameter(mediaType,name,value) returns a copy of the specified
mediaType parameter with the parameter name set to value, creating one if it does not
exist. Parameter name matching is case-insensitive. If a parameter exists with the same
name, but different case, the case is changed to the specified name. If more than one
match is found, only the last value is set.

A new parameter is added to the end of the list of parameters. If a q parameter exists in
the list, the new parameter is treated as part of the accept-params rather than the
media-type.

Input Arguments
mediaType — Media type
matlab.net.http.MediaType object

Media type, specified as a matlab.net.http.MediaType object.

name — Parameter name
string

Parameter name, specified as a string.

 setParameter

1-6395

value — Parameter value
scalar string | character vector | any type supporting the string method

Parameter value, specified as a scalar string, character vector, or any type supporting the
string method. The resulting string must not be empty.

If value is empty or an empty string, parameter name is removed.

There is no validation of value.

Output Arguments
newType — Updated media type
matlab.net.http.MediaType object

Updated media type, returned as a matlab.net.http.MediaType object.

See Also
matlab.net.http.MediaType.getParameter

Introduced in R2016b

1 Alphabetical List

1-6396

matlab.net.http.Message class
Package: matlab.net.http

HTTP request or response message

Description
The Message class is an abstract class used as a base class to create HTTP messages.

Properties
StartLine — First line of message
matlab.net.http.StartLine object

First line of message, specified as a matlab.net.http.StartLine object, if any.
Attributes:

GetAccess
public

SetAccess
public

Header — Message header
[] (default) | matlab.net.http.HeaderField object

Message header, specified as a matlab.net.http.HeaderField object or a vector of
HeaderField objects. When you set the Header property, MATLAB checks the fields of
the header to ensure that they are appropriate for the message type. The
RequestMessage send and complete methods fill in any required header fields for a
properly formed request.
Attributes:

GetAccess
public

 matlab.net.http.Message class

1-6397

SetAccess
public

Body — Message body
[] (default) | matlab.net.http.MessageBody object |
matlab.net.http.io.ContentProvider

Message body, specified as a matlab.net.http.MessageBody object,
matlab.net.http.io.ContentProvider, or data acceptable to the MessageBody
constructor. By default, Body is empty (set to []). A request message containing a Body
property normally uses a method such as 'PUT' or 'POST', not the default value 'GET',
but this convention is not enforced.

In a completed or received message, if the message has a ContentTypeField header
field, then the MessageBody.ContentType property is set to that value. Otherwise,
ContentType is unchanged or empty.

Attributes:

GetAccess
public

SetAccess
public

Completed — Whether message is complete
false (default) | true

Whether message is complete, specified as true or false. A true value means that the
message is complete.

RequestMessage methods that validate messages (send and complete) set the
Completed property to true when:

• The message is valid.
• The processing is complete. For example, required header fields are added and the

data is converted.

If the property is true, then these methods do not modify the message, and the send
method sends the message without checking it for validity. Any later changes to this
message change the value of Completed back to false.

1 Alphabetical List

1-6398

Methods that return messages set Completed to true when:

• The Body or Body.Data properties are empty.
• The Body.Payload property contains the raw data.

If a request message contains data (Body.Data is not empty), then the property is true
only if Body.Payload contains the raw data.

In a response message, the payload is set only if you set the
HTTPOptions.SavePayload property to true.

Attributes:

GetAccess
public

SetAccess
public

Transient
true

Data Types: logical

Methods

Public Methods
<infotypegroup type="method"> addFields changeFields getFields
removeFields replaceFields show </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

 matlab.net.http.Message class

1-6399

string Message Header, Body and StartLine
properties, as string. For multiple
messages, returns a string array.

If Body contains binary data that cannot be
converted to characters, then the method
displays a message indicating the length of
the data in bytes.

The string is an approximate representation
of what the message looks like when sent or
received.

Use for logging, diagnostics, or debugging.

For a formatted version of messages, use
show.

char Same as string, except returns message
as character vector.

isequal Returns true if the visible public
properties of all messages in the two
message arrays are equal.

Tips
• To send arbitrary headers and data in a request message, set the Completed property

to true to prevent the send method from modifying the message. You still can use the
complete method to validate the message, but the send method does not validate the
message.

See Also
ContentTypeField | HeaderField | MessageBody | RequestMessage |
ResponseMessage

Introduced in R2016b

1 Alphabetical List

1-6400

char
Class: matlab.net.http.Message
Package: matlab.net.http

Return message as character vector

Syntax
str = char(msg)

Description
str = char(msg) returns a message as a MATLAB character vector or a cell array of
character vectors.

Input Arguments
msg — Message
matlab.net.http.Message object

Message, specified as a matlab.net.http.Message object or vector of Message
objects.

See Also
matlab.net.http.Message.show | matlab.net.http.Message.string

Introduced in R2016b

 char

1-6401

string
Class: matlab.net.http.Message
Package: matlab.net.http

Return message as string

Syntax
str = string(msg)

Description
str = string(msg) returns a message, including the Header and Body properties, as
a string.

Use for diagnostics or debugging.

Input Arguments
msg — Message
matlab.net.http.Message object

Message, specified as a matlab.net.http.Message object or vector of Message
objects.

Output Arguments
str — Message
string or array of strings

Message, returned as a string or an array of strings.

If the Body property contains text, then the method displays the entire contents. Use the
Message.show method to limit the amount of displayed text.

1 Alphabetical List

1-6402

If Body does not contain text, then the method displays a message indicating the length
of the data.

See Also
matlab.net.http.Message.show

Introduced in R2016b

 string

1-6403

addFields
Class: matlab.net.http.Message
Package: matlab.net.http

Add fields to message header

Syntax
msg = addFields(msg,fields)
msg = addFields(msg,fName,fValue)
msg = addFields(msg,fName1,fValue1,...,fNameN,fValueN)
msg = addFields(msg,index, ___)

Description
msg = addFields(msg,fields) adds fields to the end of the header of each
message and returns the updated message.

addFields does not check for duplicate fields, but the RequestMessage send and
complete methods might reject inappropriate duplicates.

To prevent the send or complete methods from automatically adding a particular header
field, call addFields for that field with an empty ([]) Value property.

msg = addFields(msg,fName,fValue) adds field with name fName and value
fValue.

msg = addFields(msg,fName1,fValue1,...,fNameN,fValueN) adds fields
specified by fName, fValue pair arguments, in the order specified.

msg = addFields(msg,index, ___) inserts fields at index and can include any of
the input arguments in previous syntaxes.

1 Alphabetical List

1-6404

Input Arguments
msg — Message
matlab.net.http.Message object

Message, specified as a matlab.net.http.Message object.

fields — Fields to add
one or more matlab.net.http.HeaderField objects

Fields to add, specified as a vector or comma-separated list of one or more
matlab.net.http.HeaderField objects.
Example: matlab.net.http.HeaderField('Accept','text/plain')

fName — Header field name
string

Header field name, specified as a string.
Example: 'Accept'

fValue — Header field value
string | any type valid for fName

Header field value, specified as a string or any type valid for fName. To use the default
value for the field, set fValue to ''. If the last value is missing, then it is the same as
specifying [].
Example: 'text/plain'

index — Location in message header
integer

Location in the message header, specified as an integer. If index is greater than the
length of the header or index is 0, the method adds fields to the end. If index is
negative, the method counts from the end of the header.
Example: -1 inserts fields before the last field

Examples

 addFields

1-6405

Add HTTP Accept Header Field

Create an Accept header field with value 'text/plain' and add it to a default request
message.

field = matlab.net.http.HeaderField('Accept','text/plain');
m = matlab.net.http.RequestMessage('get');
msg = addFields(m,field);
show(msg)

GET
Accept: text/plain

Add Multiple HTTP Header Fields

Add two header fields to a request message.

m = matlab.net.http.RequestMessage('get');
msg = addFields(m,'Accept','text/plain','Cache-Control','no-store, no-cache');
show(msg)

GET
Accept: text/plain
Cache-Control: no-store, no-cache

Insert HTTP Header Field

Create a request message with two header fields.

m = matlab.net.http.RequestMessage('get');
msg = addFields(m,'Accept','text/plain','Cache-Control','no-store, no-cache');

Insert a Content-Type header field before the last header field in a message.

f = matlab.net.http.HeaderField('Content-Type','text/plain');
msg = addFields(msg,-1,f);
show(msg)

GET
Accept: text/plain

1 Alphabetical List

1-6406

Content-Type: text/plain
Cache-Control: no-store, no-cache

See Also
matlab.net.http.HeaderField | matlab.net.http.RequestMessage

Introduced in R2016b

 addFields

1-6407

changeFields
Class: matlab.net.http.Message
Package: matlab.net.http

Change existing fields in message header

Syntax
msg = changeFields(msg,fields)
msg = changeFields(msg,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN)

Description
msg = changeFields(msg,fields) changes the existing fields in each message to the
names, values, and types specified in fields and returns the updated message. This
syntax might change the class of an existing field if the field name is a case-insensitive
match to a name in fields.

This method throws an error when:

• All the specified fields are not already in the header.
• There is more than one field with the specified name.

msg = changeFields(msg,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN) changes fields with the
specified names to the indicated values.

Name matching is case-insensitive. However, if you specify a name that differs in case
from the existing field name, then the field name changes to the specified name. This
usage does not change the class of an existing field.

1 Alphabetical List

1-6408

Input Arguments
msg — Message
matlab.net.http.Message object

Message, specified as a matlab.net.http.Message object.

fields — Fields to change
matlab.net.http.HeaderField objects

Fields to change, specified as a vector or comma-separated list of one or more
matlab.net.http.HeaderField objects.
Example: 'Accept','text/plain'

FieldName1,FieldValue1,...,FieldNameN,FieldValueN — Fields defined by
name-value pairs
name-value pairs

Fields defined by name-value pairs. FieldName is specified as a string or character
vector, and FieldValue is specified as any type valid for FieldName.

To use the default value for the field, set FieldValue to ''.

If the last value is missing, it is the same as specifying empty ([]).

Examples

Show How Changing Field Value Changes Field Class

Create two Content-Length fields using the HeaderField class and its subclass,
ContentLengthField. Change the value of the Content-Length field in a message,
which changes the class of the field, depending on how you create the original header
field.

Create two header files with the same properties. The fields have the same value, but the
classes are different.

 changeFields

1-6409

h1 = matlab.net.http.HeaderField('Content-Length',5);
h2 = matlab.net.http.field.ContentLengthField(5);
compareNames = eq(h1.Name,h2.Name)

compareNames = logical
 1

compareValues = eq(h1.Value,h2.Value)

compareValues = logical
 1

Create a request message using the h1 header field and display its class.

r = matlab.net.http.RequestMessage;
r.Header= h1;
h1Class = class(r.Header)

h1Class =
'matlab.net.http.HeaderField'

Change the Content-Length header field using the h2 header field. The header field class
changes.

r1 = r.changeFields(h2);
h2Class = class(r1.Header)

h2Class =
'matlab.net.http.HeaderField'

Change the Content-Length header field using a name-value pair. The header field class
does not change.

r1 = r.changeFields('Content-length',5);
class(r1.Header)

ans =
'matlab.net.http.HeaderField'

See Also
matlab.net.http.HeaderField | matlab.net.http.RequestMessage.complete |
matlab.net.http.RequestMessage.send

1 Alphabetical List

1-6410

Introduced in R2016b

 changeFields

1-6411

getFields
Class: matlab.net.http.Message
Package: matlab.net.http

Return message header fields matching name or class

Syntax
[fields,indices] = getFields(messages,ids)

Description
[fields,indices] = getFields(messages,ids) returns fields and their indices in
the messages that match the given IDs.

Input Arguments
messages — Messages
vector of matlab.net.http.Message objects

Messages, specified as a vector of matlab.net.http.Message objects.
Example: getFields([msg1,msg2],'Date')

ids — Names to match
strings | matlab.net.http.HeaderField objects | meta.class objects

Names to match, specified as one of the following.

• String vector, character vector, cell array of character vectors, or comma-separated
list of strings or character vectors containing the names of the fields to return. Names
are not case-sensitive.

• Vector or comma-separated list of one or more matlab.net.http.HeaderField
objects whose Name properties are used to determine which fields to return. Names
are not case-sensitive. Header field values in these objects are ignored.

1 Alphabetical List

1-6412

• Vector or comma-separated list of meta.class objects that are subclasses of
HeaderField.

The getFields method searches for names that match names supported by the
specified classes, regardless of the class. If a subclass does not have a specific set of
supported names, all header fields of that subclass are matched regardless of their
names. Call the HeaderField.displaySubclasses method to see supported
names.

Example: getFields(response,'Date','Content-Type')

Output Arguments
fields — Fields matching input
array of matlab.net.http.HeaderField objects

Fields matching input, returned as an array of matlab.net.http.HeaderField
objects. If no matches exist, getFields returns an empty HeaderField array. The name
search is case-insensitive.

indices — Index values of fields
array of integers | []

Index values of fields, returned as an array of integers, or [] if no match.

If messages is a vector, then getFields returns fields matching ids from all messages.
indices is a cell array of vectors, where indices{i} contains the indices of the
matching fields in messages{i}.

Examples

Verify Required Field Added to Request Message

Add a missing Date header field to a request message using the
RequestMessage.complete method.

Create a request message to get text from the MathWorks website.

 getFields

1-6413

uri = matlab.net.URI('https://www.mathworks.com');
req = matlab.net.http.RequestMessage;

Verify the message contains a Date field. The date value reflects your system information.
The value indices{1} = [] indicates that req does not contain a Date field.

request = complete(req,uri);
[fields,indices] = getFields([req,request],?matlab.net.http.field.HTTPDateField)

fields =
 DateField with properties:

 Name: "Date"
 Value: "Sat, 02 Mar 2019 14:48:19 GMT"

indices = 1x2 cell array
 {0x0 double} {[3]}

See Also
matlab.net.http.HeaderField |
matlab.net.http.HeaderField.displaySubclasses

Introduced in R2016b

1 Alphabetical List

1-6414

removeFields
Class: matlab.net.http.Message
Package: matlab.net.http

Remove fields from message header

Syntax
msg = removeFields(msg,ids)

Description
msg = removeFields(msg,ids) removes all header fields matching ids and returns
the updated message.

Input Arguments
msg — Message
matlab.net.http.Message object

Message, specified as a matlab.net.http.Message object.

ids — Names to match
strings | matlab.net.http.HeaderField objects | meta.class objects

Names to match, specified as one of the following.

• String vector, character vector, cell array of character vectors, or comma-separated
list of strings or character vectors containing the names of the fields to remove.
Names are not case-sensitive.

• Vector or comma-separated list of one or more HeaderField objects whose Name
properties are used to determine which fields to remove. Names are not case-
sensitive. Header field values are ignored.

 removeFields

1-6415

• Vector or comma-separated list of meta.class objects that are subclasses of
HeaderField.

The removeFields method searches for names that match names supported by the
specified classes, regardless of the class. If a subclass does not have a specific set of
supported names, all header fields of that subclass are matched regardless of their
names. Call the HeaderField.displaySubclasses method to see supported
names.

Example: getFields(response,'Date','Content-Type')

Examples

Remove Header Field from Request Message

Create a request message with two header fields, Cache-Control and Content-Type, and
display the message.

import matlab.net.http.HeaderField

m = matlab.net.http.RequestMessage('get');
f1 = HeaderField('Cache-Control','no-store, no-cache');
f2 = HeaderField('Content-Type','text/html;charset=utf-8');
m = addFields(m,f1,f2);
show(m)

GET
Cache-Control: no-store, no-cache
Content-Type: text/html;charset=utf-8

Remove the Cache-Control field and display the updated message.

msg = removeFields(m,'Cache-Control');
show(msg)

GET
Content-Type: text/html;charset=utf-8

1 Alphabetical List

1-6416

Remove Header Field Subclasses

The MediaRangeField class has two subclasses, AcceptField and
ContentTypeField. An ID that specifies the MediaRangeField class matches all fields
of class MediaRangeField, AcceptField, and ContentTypeField, plus any fields
with the Name property 'Accept' or 'Content-Type'.

Create message m with a ContentTypeField header field.

m = matlab.net.http.RequestMessage('get');
f = matlab.net.http.HeaderField('Content-Type','text/html;charset=utf-8');
m = addFields(m,f);

Remove all header fields that are subclasses of the MediaRangeField class and display
the updated message.

id = ?matlab.net.http.field.MediaRangeField;
msg = removeFields(m,id);
show(msg)

GET

See Also
matlab.net.http.HeaderField |
matlab.net.http.HeaderField.displaySubclasses

Introduced in R2016b

 removeFields

1-6417

replaceFields
Class: matlab.net.http.Message
Package: matlab.net.http

Change values in or add fields to message header

Syntax
msg = replaceFields(msg,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN)
msg = replaceFields(msg,newFields)

Description
msg = replaceFields(msg,
FieldName1,FieldValue1,...,FieldNameN,FieldValueN)replaces fields with the
specified names to the indicated values specified in
FieldName1,FieldValue1,...,FieldNameN,FieldValueN and returns the updated
message.

This method is the same as the changeFields method, but if a field does not exist which
matches the name or class, then the method adds a new one to the end of the header
instead of throwing an error.

msg = replaceFields(msg,newFields) replaces the existing fields in each message
to the names, values, and types specified in newFields and returns the updated
message.

Input Arguments
msg — Message
matlab.net.http.Message object

Message, specified as a matlab.net.http.Message object.

1 Alphabetical List

1-6418

FieldName1,FieldValue1,...,FieldNameN,FieldValueN — Fields defined by
name-value pairs
name-value pairs

Fields defined by name-value pairs. FieldName is specified as a string or character
vector, and FieldValue is specified as any type valid for FieldName.

To use the default value for the field, set FieldValue to ''.

If the last value is missing, it is the same as specifying empty ([]).

newFields — Names to match
strings | matlab.net.http.HeaderField objects | meta.class objects

Names to match, specified as one of the following.

• String vector, character vector, cell array of character vectors, or comma-separated
list of strings or character vectors containing the names of the fields to replace.
Names are not case-sensitive.

• Vector or comma-separated list of one or more HeaderField objects whose Name
properties are used to determine which fields to replace. Names are not case-
sensitive. Header field values are ignored.

• Vector or comma-separated list of meta.class objects that are subclasses of
HeaderField.

The replaceFields method searches for names that match names supported by the
specified classes, regardless of the class. If a subclass does not have a specific set of
supported names, all header fields of that subclass are matched regardless of their
names. Call the HeaderField.displaySubclasses method to see supported
names.

See Also
matlab.net.http.HeaderField |
matlab.net.http.HeaderField.displaySubclasses

Introduced in R2016b

 replaceFields

1-6419

show
Class: matlab.net.http.Message
Package: matlab.net.http

Display or return formatted version of message

Syntax
show(msg)
show(msg,maxlength)

str = show(___)

Description
show(msg) displays the whole message in the Command Window, including the Header
and Body properties. If Body contains binary data that cannot be converted to characters,
then the method displays a message indicating the length of the data in bytes.

Use this syntax for diagnostics or debugging.

show(msg,maxlength) displays the first maxlength characters of Body. If Body is
longer than maxlength characters, then the method displays the total length of the data.

str = show(___) returns a string containing the information to be displayed, and can
include any of the input arguments in previous syntaxes.

Input Arguments
msg — Message
matlab.net.http.Message object

Message, specified as a matlab.net.http.Message object or vector of Message
objects.

1 Alphabetical List

1-6420

maxlength — Number of bytes
integer

Number of bytes, specified as an integer to convert.

Examples

Show Contents of HTTP Request Message Containing Image Data

When a message body contains image/jpeg data, MATLAB displays the number of bytes in
the image.

Send a message to the heritage.stsci.edu website requesting an image of Jupiter. Display
the response message.

request = matlab.net.http.RequestMessage;
uri = matlab.net.URI('http://heritage.stsci.edu/2007/14/images/p0714aa.jpg');
r = send(request,uri);
show(r)

HTTP/1.1 200 OK
Date: Tue, 09 Aug 2016 19:58:56 GMT
Server: Apache/2.2.15 Red Hat mod_ssl/2.2.15 OpenSSL/1.0.1e-fips Phusion_Passenger/4.0.23 DAV/2 PHP/5.4.16
Last-Modified: Thu, 08 Mar 2007 18:56:52 GMT
ETag: "1ca16a7-31265-42b2edeb90500"
Accept-Ranges: bytes
Content-Length: 201317
Connection: close
Content-Type: image/jpeg

<< 201317 bytes of image/jpeg data >>

Show 100 Characters of HTTP Message Content

Display the first 100 characters only of the body of a message from mathworks.com.
MATLAB displays text indicating the total number of characters in the message body.

request = matlab.net.http.RequestMessage;
uri = matlab.net.URI('https://www.mathworks.com');

 show

1-6421

r = send(request,uri);
show(r,100)

HTTP/1.1 200 OK
Date: Mon, 02 Oct 2017 12:55:05 GMT
Server: Apache/2.2.15 (CentOS)
Host-ID: wcxm4
X-Content-Type-Options: nosniff
Last-Modified: Sun, 01 Oct 2017 16:57:27 GMT
ETag: "f4b6"
Accept-Ranges: bytes
Cache-Control: max-age=14400
Expires: Mon, 02 Oct 2017 16:55:05 GMT
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 9500
Content-Type: text/html; charset=UTF-8
Connection: close

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-w

<< 62581 total characters of text/html UTF-8 data >>

See Also
matlab.net.http.Message.string

Introduced in R2016b

1 Alphabetical List

1-6422

matlab.net.http.MessageBody class
Package: matlab.net.http

Body of HTTP message

Description
A MessageBody object contains the body of an HTTP message. In a request message, set
the Body property to your data or to a MessageBody object containing your data. In a
response message, this object contains the received data.

Message data is represented by two properties. The Payload property contains the raw
bytes sent to or received from the network. The Data property contains the Payload as a
MATLAB type. Often only one of these two properties is set.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation
A MessageBody object contains the body of an HTTP message. In a request message, set
the Body property to your data or to a MessageBody object containing your data. In a
response message, this object contains the received data.

Message data is represented by two properties. The Payload property contains the raw
bytes sent to or received from the network. The Data property contains the Payload as a
MATLAB type. Often only one of these two properties is set.

 matlab.net.http.MessageBody class

1-6423

Properties
Data — Message data
uint8 vector or array | character array | string | structure array | image data | XML DOM
| audio data | table

Message data, specified as one of the following MATLAB data types. For conversion
details, see “HTTP Data Type Conversion”.

• uint8 vector — Data not converted.
• character array or scalar string — Data converted based on the media type and its

charset attribute in the Content-Type header.
• structure array — Data converted to or from JSON string using webread and

webwrite.
• image — Data converted to or from an image using imread and imwrite.
• XML DOM — Data converted to or from a string using xmlread and xmlwrite.
• audio data — Data converted using audioread and audiowrite.
• table — Data converted using xmlread and xmlwrite.
• Other type of array or cell array — Data converted to or from JSON using

jsonencode and jsondecode.

In a request message, the Data property is the MATLAB data before conversion to a
uint8 payload. Data conversion happens when you call the RequestMessage send or
complete methods. The conversion depends on the Content-Type you specify in the
message and the type of Data. If you do not specify a Content-Type, then the send and
complete methods try to deduce the type from the data and add the appropriate
ContentTypeField to the request message.

In a response message, Data represents the uint8 payload converted to a MATLAB type
based on the Content-Type specified by the server. If conversion fails, then Data remains
empty and the raw data appears in the Payload property.

To suppress automatic conversion of the response Payload, set the
HTTPOptions.ConvertResponse property to false. In that case, Data contains either
a string for character data or a uint8 vector of bytes.

1 Alphabetical List

1-6424

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

ContentType — Content-Type of data
MediaType object

Content-Type of the Data property, specified as a read-only
matlab.net.http.MediaType object. This property determines how contents of the
Data property was converted to or from the payload. If the Content-Type has a
MediaType with a charset attribute, then the charset determines the encoding.

This property usually has the same values as the result of calling convert on the
Content-Type field in the message containing this MessageBody.

You do not set ContentType in a request message. When you create a MessageBody
object, this property is empty. When you copy MessageBody into a request message,
ContentType is set to the value of the ContentTypeField in the message, if there is
one. The RequestMessage send and complete methods set ContentType based on the
type of Data and the value of the ContentTypeField in the request message.

In a response message, ContentType is based on the ContentTypeField of the
message.

Attributes:

GetAccess
public

SetAccess
public

Transient
true

 matlab.net.http.MessageBody class

1-6425

ContentCoding — Content-Encoding of payload
string

This property is set to indicate that the Payload property of a ResponseMessage is
encoded. When ContentCoding is set, no processing was done on the payload and the
Data property is empty.

If MATLAB receives a message whose payload is encoded using a compression algorithm
that it supports, such as gzip or deflate, it automatically decodes that payload before
attempting any other conversions. If decoding was successful, it optionally stores the
decoded payload in Payload and the converted payload (if any) in Data. In that case, this
property is empty to indicate that the Payload is not encoded.

If the payload was encoded but decoding was not successful, or you suppressed decoding
by setting the HTTPOptions.DecodePayload property to false, then the unprocessed
still-encoded payload is returned in Payload, Data is left empty, and ContentCoding is
set to a vector of strings representing the value of the Content-Encoding header field in
the response message. In this case, you can save the Payload as is (for example, write it
to a file), or process it according to the compression algorithms specified in
ContentCoding. For example, if the value is gzip, you can write the data to a file and
use the gunzip command to process the data.

Attributes:

GetAccess
public

SetAccess
public

Transient
true

Data Types: string

Payload — Raw bytes sent in message
empty (default) | uint8 vector | scalar string | character vector

Raw bytes sent in a message, specified as a uint8 vector, scalar string, or character
vector. As a convenience in a request message, you can set Payload to a scalar string or
character vector. MATLAB converts the value to a uint8 vector. In a response message,
Payload is always a uint8 vector.

1 Alphabetical List

1-6426

In a request message:

• A scalar string or character vector is converted using the charset specified in or
implied by the ContentType property, if any, or the UTF-8 encoding if none was set.
To use a different encoding, encode it yourself, for example, using the
unicode2native function, and assign the resulting uint8 vector to Payload.

• If you do not want output conversion on the byte array, then set Payload instead of
the Data property. If you set Data instead, then Payload is filled in with the bytes
that were sent if you specify a request or history return argument for
RequestMessage.send, in the return value of RequestMessage.complete, or in a
ResponseMessage if you set the HTTPOptions.SavePayload property.

• When you set Payload, Data is cleared. If you send a message where both Data and
Payload are set, then Payload is sent and Data is ignored. Only response messages
and request messages returned by the send or complete methods can have both
properties set at the same time.

In a response message, Payload is the raw bytes received in these cases:

• You specify a history return argument in the RequestMessage.send method.
• You set the HTTPOptions.SavePayload property to true.
• Payload is always set for messages appearing in a LogRecord
• If conversion of the payload to MATLAB data failed. For information, check the

HTTPException.History property.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods
Public Methods
<infotypegroup type="method"> show </infotypegroup>

 matlab.net.http.MessageBody class

1-6427

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

string MessageBody.Data property as a string.
Use for diagnostics or debugging.

If the Data property contains text, then the
method displays the entire contents. Use
the MessageBody.show method to limit
the amount of displayed text.

If Data does not contain text, then the
method displays a message indicating the
length of the data in bytes.

If MessageBody is an array, then returns
an array of the same size.

char Data property as a character vector, similar
to the string method. However, if
MessageBody is an array, then the method
returns a cell array of character vectors of
the same size.

See Also
ContentTypeField | MediaType | MessageBody.Data | RequestMessage |
ResponseMessage | imread | imwrite

Topics
“HTTP Data Type Conversion”

External Websites
RFC 2616, section 14.17 Content-Type

Introduced in R2016b

1 Alphabetical List

1-6428

https://tools.ietf.org/html/rfc2616#section-14.17

show
Class: matlab.net.http.MessageBody
Package: matlab.net.http

Display or return formatted version of message body data

Syntax
show(body)
show(body,maxlength)

str = show(___)

Description
show(body) displays the entire Data property of a message body if Data is a scalar
string or character vector. For other types, the method displays a message indicating the
length of the data in bytes, if known. If length is unknown, then the value displayed is the
length of the data if body were sent in a request message.

The show method formats Data when possible. For example, the method puts separators
between parts of a multipart message and separately converts each part to a string. If
Data is a string or character vector, then the string and show methods return the same
value.

Use this method for diagnostics or debugging.

show(body,maxlength) displays the first maxlength characters of Data. If Data is
longer than maxlength characters, then the method displays the total length of the data.

str = show(___) returns a string containing the information to be displayed, and can
include any of the input arguments in previous syntaxes.

 show

1-6429

Input Arguments
body — Message body
matlab.net.http.MessageBody object

Message body, specified as a matlab.net.http.MessageBody object.

maxlength — Number of bytes
integer

Number of bytes to convert, specified as an integer.

Examples

Display Information About Image Data

Display data about an image received from the Hubble Heritage website.

req = matlab.net.http.RequestMessage;
uri = matlab.net.URI('http://heritage.stsci.edu/2007/14/images/p0714aa.jpg');
r = send(req,uri);
show(r.Body)

<< 201317 bytes of image/jpeg data >>

Display First 100 Characters of HTML Body

Request the MATLAB webread documentation from mathworks.com.

uri = matlab.net.URI('https://www.mathworks.com/help/matlab/ref/webread.html');
request = matlab.net.http.RequestMessage;
r = send(request,uri);

Display the first 100 characters of the message body.

show(r.Body,100)

<!DOCTYPE HTML>
<html>

1 Alphabetical List

1-6430

<head>
<title>Read content from RESTful web service - MATLAB webread</title>

<< 94866 total characters of text/html UTF-8 data >>

See Also
Introduced in R2016b

 show

1-6431

matlab.net.http.MessageType class
Package: matlab.net.http

HTTP message type

Description
The MessageType enumeration class identifies the message type.

Enumeration Member Name
Request
Response

See Also
ProgressMonitor

Introduced in R2016b

1 Alphabetical List

1-6432

matlab.io.datastore.Partitionable class
Package: matlab.io.datastore

Add parallelization support to datastore

Description
matlab.io.datastore.Partitionable is an abstract mixin class that adds
parallelization support to your custom datastore for use with Parallel Computing Toolbox
and MATLAB Parallel Server.

To use this mixin class, you must inherit from matlab.io.datastore.Partitionable
class, in addition to inheriting from the matlab.io.Datastore base class. Type the
following syntax as the first line of your class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable
 ...
end

To add support for parallel processing to your custom datastore, you must:

• Inherit from the additional class matlab.io.datastore.Partitionable.
• Define these additional methods: maxpartitions and partition.

For more details and steps to create your custom datastore with parallel processing
support, see “Develop Custom Datastore”.

Methods
maxpartitions Maximum number of partitions possible
numpartitions Default number of partitions
partition Partition a datastore

 matlab.io.datastore.Partitionable class

1-6433

Attributes
Sealed false

For information on class attributes, see “Class Attributes”.

Examples
Build Datastore with Parallel Processing Support

Build a datastore with parallel processing support and use it to bring your custom or
proprietary data into MATLAB®. Then, process the data in a parallel pool.

Create a .m class definition file that contains the code implementing your custom
datastore. You must save this file in your working folder or in a folder that is on the
MATLAB® path. The name of the .m file must be the same as the name of your object
constructor function. For example, if you want your constructor function to have the name
MyDatastorePar, then the name of the .m file must be MyDatastorePar.m. The .m class
definition file must contain the following steps:

• Step 1: Inherit from the datastore classes.
• Step 2: Define the constructor and the required methods.
• Step 3: Define your custom file reading function.

In addition to these steps, define any other properties or methods that you need to
process and analyze your data.

%% STEP 1: INHERIT FROM DATASTORE CLASSES
classdef MyDatastorePar < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable

 properties(Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

 % Property to support saving, loading, and processing of
 % datastore on different file system machines or clusters.
 % In addition, define the methods get.AlternateFileSystemRoots()

1 Alphabetical List

1-6434

 % and set.AlternateFileSystemRoots() in the methods section.
 properties(Dependent)
 AlternateFileSystemRoots
 end

%% STEP 2: DEFINE THE CONSTRUCTOR AND THE REQUIRED METHODS
 methods
 % Define your datastore constructor
 function myds = MyDatastorePar(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

 % Define the hasdata method
 function tf = hasdata(myds)
 % Return true if more data is available
 tf = hasfile(myds.FileSet);
 end

 % Define the read method
 function [data,info] = read(myds)
 % Read data and information about the extracted data
 % See also: MyFileReader()
 if ~hasdata(myds)
 msgII = ['Use the reset method to reset the datastore ',...
 'to the start of the data.'];
 msgIII = ['Before calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.'];
 error('No more data to read.\n%s\n%s',msgII,msgIII);
 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);
 info.FileName = fileInfoTbl.FileName;

 matlab.io.datastore.Partitionable class

1-6435

 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end
 end

 % Define the reset method
 function reset(myds)
 % Reset to the start of the data
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

 % Define the partition method
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end

 % Getter for AlternateFileSystemRoots property
 function altRoots = get.AlternateFileSystemRoots(myds)
 altRoots = myds.FileSet.AlternateFileSystemRoots;
 end

 % Setter for AlternateFileSystemRoots property
 function set.AlternateFileSystemRoots(myds,altRoots)
 try
 % The DsFileSet object manages AlternateFileSystemRoots
 % for your datastore
 myds.FileSet.AlternateFileSystemRoots = altRoots;

 % Reset the datastore
 reset(myds);
 catch ME
 throw(ME);
 end
 end

 end

1 Alphabetical List

1-6436

 methods (Hidden = true)
 % Define the progress method
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else
 frac = 1;
 end
 end
 end

 methods(Access = protected)
 % If you use the FileSet property in the datastore,
 % then you must define the copyElement method. The
 % copyElement method allows methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end

 % Define the maxpartitions method
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end
end

%% STEP 3: IMPLEMENT YOUR CUSTOM FILE READING FUNCTION
function data = MyFileReader(fileInfoTbl)
% create a reader object using FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);

end

 matlab.io.datastore.Partitionable class

1-6437

Your custom datastore is now ready. Use your custom datastore to read and process the
data in a parallel pool.

Read Data Using Custom Datastore And Process in Parallel Pool

Use custom datastore to preview and read your proprietary data into MATLAB for parallel
processing.

This example uses a simple data set to illustrate a workflow using your custom datastore.
The data set is a collection of 15 binary (.bin) files where each file contains a column (1
variable) and 10000 rows (records) of unsigned integers.

dir('*.bin')

binary_data01.bin binary_data05.bin binary_data09.bin binary_data13.bin
binary_data02.bin binary_data06.bin binary_data10.bin binary_data14.bin
binary_data03.bin binary_data07.bin binary_data11.bin binary_data15.bin
binary_data04.bin binary_data08.bin binary_data12.bin

Create a datastore object using the MyDatastorePar function. For implementation
details of MyDatastorePar, see the example Build Datastore with Parallel
Processing Support.

folder = fullfile('*.bin');
ds = MyDatastorePar(folder);

Preview the data from the datastore.

preview(ds)

ans = 8x1 uint8 column vector

 113
 180
 251
 91
 29
 66
 254
 214

Identify the number of partitions for your datastore. If you have Parallel Computing
Toolbox (PCT), then you can use n = numpartitions(ds,myPool), where myPool is
gcp or parpool.

1 Alphabetical List

1-6438

n = numpartitions(ds);

Partition the datastore into n parts and n workers in a parallel pool.

parfor ii = 1:n
 subds = partition(ds,n,ii);
 while hasdata(subds)
 data = read(subds);
 % do something
 end
end

Process Datastore on Different Platforms

To process your datastore with parallel and distributed computing that involves different
platform cloud or cluster machines, you must pre-define
'AlternateFileSystemRoots' parameter. For instance, create a datastore on your
local machine, and analyze a small portion of the data. Then, scale up your analysis to the
entire dataset using Parallel Computing Toolbox and MATLAB Parallel Server.

Create a datastore using MyDatastorePar and assign a value to the
'AlternateFileSystemRoots' property. For implementation details of
MyDatastorePar, see the example Build Datastore with Parallel Processing
Support.

To set the value for the 'AlternateFileSystemRoots' property, identify the root paths
for your data on the different platforms. The root paths differ based on the machine or file
system. For instance, if you access your data using these root paths:

• "Z:\DataSet" from the Windows machine.
• "/nfs-bldg001/DataSet" from the MATLAB Parallel Server Linux cluster.

Then, associate these root paths using the AlternateFileSystemRoots property.

altRoots = ["Z:\DataSet","/nfs-bldg001/DataSet"];
ds = MyDatastorePar('Z:\DataSet',altRoots);

Analyze a small portion of the data on your local machine. For instance, get a partitioned
subset of the data and clean the data by removing any missing entries. Then, examine a
plot of the variables.

tt = tall(partition(ds,100,1));
summary(tt);

 matlab.io.datastore.Partitionable class

1-6439

% analyze your data
tt = rmmissing(tt);
plot(tt.MyVar1,tt.MyVar2)

Scale up your analysis to the entire dataset by using MATLAB Parallel Server cluster
(Linux cluster). For instance, start a worker pool using the cluster profile, and then
perform analysis on the entire dataset by using parallel and distributed computing
capabilities.

parpool('MyMjsProfile')
tt = tall(ds);
summary(tt);
% analyze your data
tt = rmmissing(tt);
plot(tt.MyVar1,tt.MyVar2)

Tips
• For your custom datastore implementation, best practice is not to implement the

numpartitions method.

See Also
datastore | mapreduce | matlab.io.Datastore |
matlab.io.datastore.HadoopLocationBased

Topics
“Develop Custom Datastore”
“Tall Arrays”
“Partition a Datastore in Parallel” (Parallel Computing Toolbox)

Introduced in R2017b

1 Alphabetical List

1-6440

maxpartitions
Class: matlab.io.datastore.Partitionable
Package: matlab.io.datastore

Maximum number of partitions possible

Syntax
n = maxpartitions(ds)

Description
n = maxpartitions(ds) returns the maximum number of partitions for datastore ds.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

Attributes
Abstract true
Access protected

To learn about attributes of methods, see Method Attributes.

 maxpartitions

1-6441

Examples
Build Datastore with Parallel Processing Support

Build a datastore with parallel processing support and use it to bring your custom or
proprietary data into MATLAB®. Then, process the data in a parallel pool.

Create a .m class definition file that contains the code implementing your custom
datastore. You must save this file in your working folder or in a folder that is on the
MATLAB® path. The name of the .m file must be the same as the name of your object
constructor function. For example, if you want your constructor function to have the name
MyDatastorePar, then the name of the .m file must be MyDatastorePar.m. The .m class
definition file must contain the following steps:

• Step 1: Inherit from the datastore classes.
• Step 2: Define the constructor and the required methods.
• Step 3: Define your custom file reading function.

In addition to these steps, define any other properties or methods that you need to
process and analyze your data.

%% STEP 1: INHERIT FROM DATASTORE CLASSES
classdef MyDatastorePar < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable

 properties(Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

 % Property to support saving, loading, and processing of
 % datastore on different file system machines or clusters.
 % In addition, define the methods get.AlternateFileSystemRoots()
 % and set.AlternateFileSystemRoots() in the methods section.
 properties(Dependent)
 AlternateFileSystemRoots
 end

%% STEP 2: DEFINE THE CONSTRUCTOR AND THE REQUIRED METHODS
 methods
 % Define your datastore constructor

1 Alphabetical List

1-6442

 function myds = MyDatastorePar(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

 % Define the hasdata method
 function tf = hasdata(myds)
 % Return true if more data is available
 tf = hasfile(myds.FileSet);
 end

 % Define the read method
 function [data,info] = read(myds)
 % Read data and information about the extracted data
 % See also: MyFileReader()
 if ~hasdata(myds)
 msgII = ['Use the reset method to reset the datastore ',...
 'to the start of the data.'];
 msgIII = ['Before calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.'];
 error('No more data to read.\n%s\n%s',msgII,msgIII);
 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);
 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end
 end

 maxpartitions

1-6443

 % Define the reset method
 function reset(myds)
 % Reset to the start of the data
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

 % Define the partition method
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end

 % Getter for AlternateFileSystemRoots property
 function altRoots = get.AlternateFileSystemRoots(myds)
 altRoots = myds.FileSet.AlternateFileSystemRoots;
 end

 % Setter for AlternateFileSystemRoots property
 function set.AlternateFileSystemRoots(myds,altRoots)
 try
 % The DsFileSet object manages AlternateFileSystemRoots
 % for your datastore
 myds.FileSet.AlternateFileSystemRoots = altRoots;

 % Reset the datastore
 reset(myds);
 catch ME
 throw(ME);
 end
 end

 end

 methods (Hidden = true)
 % Define the progress method
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else

1 Alphabetical List

1-6444

 frac = 1;
 end
 end
 end

 methods(Access = protected)
 % If you use the FileSet property in the datastore,
 % then you must define the copyElement method. The
 % copyElement method allows methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end

 % Define the maxpartitions method
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end
end

%% STEP 3: IMPLEMENT YOUR CUSTOM FILE READING FUNCTION
function data = MyFileReader(fileInfoTbl)
% create a reader object using FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);

end

Your custom datastore is now ready. Use your custom datastore to read and process the
data in a parallel pool.

Tips
• If a datastore is based on files and uses the matlab.io.datastore.DsFileSet

object, then use the maxpartitions method of the DsFileSet object.

 maxpartitions

1-6445

See Also
matlab.io.datastore.Partitionable | numpartitions | partition

Introduced in R2017b

1 Alphabetical List

1-6446

numpartitions
Class: matlab.io.datastore.Partitionable
Package: matlab.io.datastore

Default number of partitions

Syntax
n = numpartitions(ds)
n = numpartitions(ds,pool)

Description
n = numpartitions(ds) returns the default number of partitions for datastore ds.

n = numpartitions(ds,pool) returns a reasonable number of partitions to parallelize
datastore access over the parallel pool specified by pool. To parallelize datastore access,
you must have Parallel Computing Toolbox installed.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

pool — Parallel pool
parallel pool object

Parallel pool, specified as a parallel pool object.
Example: gcp

 numpartitions

1-6447

Attributes
Sealed true
Abstract false

To learn about attributes of methods, see Method Attributes.

Examples
Build Datastore with Parallel Processing Support

Build a datastore with parallel processing support and use it to bring your custom or
proprietary data into MATLAB®. Then, process the data in a parallel pool.

Create a .m class definition file that contains the code implementing your custom
datastore. You must save this file in your working folder or in a folder that is on the
MATLAB® path. The name of the .m file must be the same as the name of your object
constructor function. For example, if you want your constructor function to have the name
MyDatastorePar, then the name of the .m file must be MyDatastorePar.m. The .m class
definition file must contain the following steps:

• Step 1: Inherit from the datastore classes.
• Step 2: Define the constructor and the required methods.
• Step 3: Define your custom file reading function.

In addition to these steps, define any other properties or methods that you need to
process and analyze your data.

%% STEP 1: INHERIT FROM DATASTORE CLASSES
classdef MyDatastorePar < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable

 properties(Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

 % Property to support saving, loading, and processing of
 % datastore on different file system machines or clusters.

1 Alphabetical List

1-6448

 % In addition, define the methods get.AlternateFileSystemRoots()
 % and set.AlternateFileSystemRoots() in the methods section.
 properties(Dependent)
 AlternateFileSystemRoots
 end

%% STEP 2: DEFINE THE CONSTRUCTOR AND THE REQUIRED METHODS
 methods
 % Define your datastore constructor
 function myds = MyDatastorePar(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

 % Define the hasdata method
 function tf = hasdata(myds)
 % Return true if more data is available
 tf = hasfile(myds.FileSet);
 end

 % Define the read method
 function [data,info] = read(myds)
 % Read data and information about the extracted data
 % See also: MyFileReader()
 if ~hasdata(myds)
 msgII = ['Use the reset method to reset the datastore ',...
 'to the start of the data.'];
 msgIII = ['Before calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.'];
 error('No more data to read.\n%s\n%s',msgII,msgIII);
 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);

 numpartitions

1-6449

 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end
 end

 % Define the reset method
 function reset(myds)
 % Reset to the start of the data
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

 % Define the partition method
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end

 % Getter for AlternateFileSystemRoots property
 function altRoots = get.AlternateFileSystemRoots(myds)
 altRoots = myds.FileSet.AlternateFileSystemRoots;
 end

 % Setter for AlternateFileSystemRoots property
 function set.AlternateFileSystemRoots(myds,altRoots)
 try
 % The DsFileSet object manages AlternateFileSystemRoots
 % for your datastore
 myds.FileSet.AlternateFileSystemRoots = altRoots;

 % Reset the datastore
 reset(myds);
 catch ME
 throw(ME);
 end
 end

 end

1 Alphabetical List

1-6450

 methods (Hidden = true)
 % Define the progress method
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else
 frac = 1;
 end
 end
 end

 methods(Access = protected)
 % If you use the FileSet property in the datastore,
 % then you must define the copyElement method. The
 % copyElement method allows methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end

 % Define the maxpartitions method
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end
end

%% STEP 3: IMPLEMENT YOUR CUSTOM FILE READING FUNCTION
function data = MyFileReader(fileInfoTbl)
% create a reader object using FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);

end

 numpartitions

1-6451

Your custom datastore is now ready. Use your custom datastore to read and process the
data in a parallel pool.

Tips
• For your custom datastore implementation, we recommend that you do not implement

the numpartitions method.

Algorithms
In the default implementation, the number of partitions, n, is selected as the minimum
between these two values:

• Value returned by the maxpartitions method on the datastore object.
• Three times the number of workers available.

See Also
matlab.io.datastore.Partitionable | maxpartitions | partition

Introduced in R2017b

1 Alphabetical List

1-6452

partition
Class: matlab.io.datastore.Partitionable
Package: matlab.io.datastore

Partition a datastore

Syntax
subds = partition(ds,n,index)

Description
subds = partition(ds,n,index) partitions datastore ds into the number of parts
specified by n and returns the partition corresponding to the index index. The
partitioned datastore subds is of the same type as the input datastore ds.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object. To create a Datastore
object, see matlab.io.Datastore.

n — Number of partitions
positive integer

Number of partitions, specified as a positive integer. To get a reasonable value for n, use
the numpartitions function.

When you specify a value of n that is not in the range of partitions available for the
datastore, the partition method returns an empty datastore. For more information, see
“Empty Datastores” on page 1-6458. For instance, if a datastore can hold up to 10
partitions, then the output of the partition method depends on the value of n.

 partition

1-6453

• If the specified value of n is less than or equal to 10, then the partition method
returns the partition specified by the index. For example, partition(ds,10,1)
returns a copy of the first partition of the original datastore ds.

• If the specified value of n is greater than 10, then the partition method returns an
empty datastore. For example, partition(ds,100,11) returns an empty datastore.

Example: 3
Data Types: double

index — Index
positive integer

Index, specified as a positive integer.
Example: 1
Data Types: double

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Examples

Build Datastore with Parallel Processing Support

Build a datastore with parallel processing support and use it to bring your custom or
proprietary data into MATLAB®. Then, process the data in a parallel pool.

Create a .m class definition file that contains the code implementing your custom
datastore. You must save this file in your working folder or in a folder that is on the
MATLAB® path. The name of the .m file must be the same as the name of your object
constructor function. For example, if you want your constructor function to have the name
MyDatastorePar, then the name of the .m file must be MyDatastorePar.m. The .m class
definition file must contain the following steps:

1 Alphabetical List

1-6454

• Step 1: Inherit from the datastore classes.
• Step 2: Define the constructor and the required methods.
• Step 3: Define your custom file reading function.

In addition to these steps, define any other properties or methods that you need to
process and analyze your data.

%% STEP 1: INHERIT FROM DATASTORE CLASSES
classdef MyDatastorePar < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable

 properties(Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

 % Property to support saving, loading, and processing of
 % datastore on different file system machines or clusters.
 % In addition, define the methods get.AlternateFileSystemRoots()
 % and set.AlternateFileSystemRoots() in the methods section.
 properties(Dependent)
 AlternateFileSystemRoots
 end

%% STEP 2: DEFINE THE CONSTRUCTOR AND THE REQUIRED METHODS
 methods
 % Define your datastore constructor
 function myds = MyDatastorePar(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

 % Define the hasdata method
 function tf = hasdata(myds)
 % Return true if more data is available

 partition

1-6455

 tf = hasfile(myds.FileSet);
 end

 % Define the read method
 function [data,info] = read(myds)
 % Read data and information about the extracted data
 % See also: MyFileReader()
 if ~hasdata(myds)
 msgII = ['Use the reset method to reset the datastore ',...
 'to the start of the data.'];
 msgIII = ['Before calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.'];
 error('No more data to read.\n%s\n%s',msgII,msgIII);
 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);
 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end
 end

 % Define the reset method
 function reset(myds)
 % Reset to the start of the data
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

 % Define the partition method
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end

 % Getter for AlternateFileSystemRoots property

1 Alphabetical List

1-6456

 function altRoots = get.AlternateFileSystemRoots(myds)
 altRoots = myds.FileSet.AlternateFileSystemRoots;
 end

 % Setter for AlternateFileSystemRoots property
 function set.AlternateFileSystemRoots(myds,altRoots)
 try
 % The DsFileSet object manages AlternateFileSystemRoots
 % for your datastore
 myds.FileSet.AlternateFileSystemRoots = altRoots;

 % Reset the datastore
 reset(myds);
 catch ME
 throw(ME);
 end
 end

 end

 methods (Hidden = true)
 % Define the progress method
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else
 frac = 1;
 end
 end
 end

 methods(Access = protected)
 % If you use the FileSet property in the datastore,
 % then you must define the copyElement method. The
 % copyElement method allows methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end

 % Define the maxpartitions method

 partition

1-6457

 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end
end

%% STEP 3: IMPLEMENT YOUR CUSTOM FILE READING FUNCTION
function data = MyFileReader(fileInfoTbl)
% create a reader object using FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);

end

Your custom datastore is now ready. Use your custom datastore to read and process the
data in a parallel pool.

Definitions

Empty Datastores
An empty datastore is a datastore object that does not contain any records. For an empty
datastore, your custom datastore methods must satisfy these conditions:

• hasdata must return false.
• read must return an error.
• numpartitions and maxpartitions must return 0.
• partition must return an empty datastore.
• preview and readall must return empty data that preserves the non-tall

dimensions. For example, if the read method on a nonempty datastore returns data
that is of size 5-by-15-by-25, then the preview and readall methods must return
empty data of size 0-by-15-by-25.

1 Alphabetical List

1-6458

Non-Tall Dimensions
Dimensions other than the first dimension of the array. For an array of size 5-by-15-by-25,
the tall dimension is 5 and the non-tall dimensions are 15 and 25.

Tips
• In your implementation of the partition method, you must include these steps.

• Before creating a partitioned datastore subds, create a deep copy of the original
datastore ds.

• At the end of the partition method, reset the partitioned datastore subds.

For a sample implementation of the partition method, see “Add Support for Parallel
Processing”.

• When a partition of a datastore contains no readable record, the read method must
return empty data. The non-tall dimensions of this empty data must match the non-tall
dimensions of the read method output on a partition with readable records. This
requirement ensures that the behavior of the readall method matches the behavior
of the gather function.

See Also
gather | maxpartitions | numpartitions | readall

Introduced in R2017b

 partition

1-6459

parula
Parula colormap array

Syntax
c = parula
c = parula(m)

Description
c = parula returns the parula colormap as a three-column array with the same number
of rows as the colormap for the current figure. If no figure exists, then the number of
rows is equal to the default length of 64. Each row in the array contains the red, green,
and blue intensities for a specific color. The intensities are in the range [0,1], and the
color scheme looks like this image.

Note Starting in R2017a, the colors in this colormap are slightly different than in
previous releases.

c = parula(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface with the default parula colormap.

surf(peaks);

1 Alphabetical List

1-6460

Get the parula colormap array and reverse the order. Then apply the modified colormap
to the surface.

c = parula;
c = flipud(c);
colormap(c);

 parula

1-6461

Downsample the Parula Colormap

Get a downsampled version of the parula colormap containing only ten colors. Then
display the contours of the peaks function by applying the colormap and interpolated
shading.

c = parula(10);
surf(peaks);
colormap(c);
shading interp;

1 Alphabetical List

1-6462

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 parula

1-6463

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced in R2014b

1 Alphabetical List

1-6464

parquetinfo
Get information about Parquet file

Description
The ParquetInfo object contains information about a Parquet file such as file size,
variable names, variable types, and compression schemes. To get information about a
Parquet file, create the ParquetInfo object using the parquetinfo function.

Creation

Syntax
info = parquetinfo(filename)

Description
info = parquetinfo(filename) returns a info object for the Parquet file specified
by filename.

Input Arguments
filename — Name of Parquet file
character vector | string scalar

Name of Parquet file, specified as a character vector or string scalar. ParquetInfo
works with Parquet 1.0 or Parquet 2.0 files.

Depending on the location of the file, filename can take on one of these forms.

 parquetinfo

1-6465

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'data.parquet'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name.

Example: 'C:\myFolder\data.parquet'

Example: 'myDir\myFile.ext'
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
data.parquet'

Data Types: char | string

Properties
Filename — Absolute path to Parquet file
string scalar

This property is read-only.

1 Alphabetical List

1-6466

Absolute path to Parquet file, specified as a string scalar.
Data Types: string

FileSize — File size in bytes
double

This property is read-only.

File size in bytes, specified as double.
Data Types: double

NumRowGroups — Number of row groups
double

This property is read-only.

Number of row groups, specified as a double.
Data Types: double

RowGroupHeights — Number of rows in each row group
double

This property is read-only.

Number of rows in each row group, specified as a double.
Data Types: double

VariableNames — Variable names
string array

This property is read-only.

Variable names, specified as a string array. If the Parquet file contains N variables, then
VariableNames is an array of size 1-by-N containing the names of the variables.
Data Types: string

VariableTypes — Variable data types
string array

This property is read-only.

 parquetinfo

1-6467

Variable data types, specified as a string array. If the Parquet file contains N variables,
then VariableTypes is an array of size 1-by-N containing datatype names for each
variable.

Each element in the array is the name of the MATLAB datatype to which the
corresponding variable in the Parquet file maps.
Data Types: string

VariableCompression — Variable compression algorithm
string array

This property is read-only.

Variable compression algorithm, specified as a string array. If the Parquet file contains N
variables, then VariableCompression is an array of size 1-by-N containing compression
algorithm names.

Each element in the array corresponds to the compression algorithm used to compress
that variable in the Parquet file.

Examples

Get Information About Parquet File

Use the praquetinfo function to create a ParquetInfo object containing information
about the file.

info = parquetinfo('outages.parquet')

info =
 ParquetInfo with properties:

 Filename: "B:\matlab\toolbox\matlab\demos\outages.parquet"
 FileSize: 44202
 NumRowGroups: 1
 RowGroupHeights: 1468
 VariableNames: [1x6 string]
 VariableTypes: [1x6 string]
 VariableCompression: [1x6 string]

1 Alphabetical List

1-6468

Display the name, type, and compression scheme for the third variable in the file.

disp([info.VariableNames(3) info.VariableTypes(3) info.VariableCompression(3)])

 "Loss" "double" "snappy"

See Also
parquetDatastore | parquetread | parquetwrite

Introduced in R2019a

 parquetinfo

1-6469

parquetread
Read columnar data from a Parquet file

Syntax
T = parquetread(filename)
T = parquetread(filename,Name,Value)

Description
T = parquetread(filename) reads the Parquet file specified in filename into a table
or timetable T.

T = parquetread(filename,Name,Value) reads the Parquet file into a table or
timetable with additional options specified by one or more name-value pair arguments.

Examples

Read Parquet File into Table

Get information about a Parquet file, read the data from the file into a table, and then
read a subset of the variables into a table.

Create a ParquetInfo object for the file outages.parquet.

info = parquetinfo('outages.parquet')

info =
 ParquetInfo with properties:

 Filename: "B:\matlab\toolbox\matlab\demos\outages.parquet"
 FileSize: 44202
 NumRowGroups: 1
 RowGroupHeights: 1468
 VariableNames: [1x6 string]

1 Alphabetical List

1-6470

 VariableTypes: [1x6 string]
 VariableCompression: [1x6 string]

Read data from the file into a table and display the first 10 rows.

T = parquetread('outages.parquet');
T(1:10,:)

ans=10×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ____________________ ______ __________ ____________________ _________________

 "SouthWest" 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00 "winter storm"
 "SouthEast" 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT "winter storm"
 "SouthEast" 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00 "winter storm"
 "West" 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00 "equipment fault"
 "MidWest" 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00 "severe storm"
 "West" 18-Jun-2003 02:49:00 0 0 18-Jun-2003 10:54:00 "attack"
 "West" 20-Jun-2004 14:39:00 231.29 NaN 20-Jun-2004 19:16:00 "equipment fault"
 "West" 06-Jun-2002 19:28:00 311.86 NaN 07-Jun-2002 00:51:00 "equipment fault"
 "NorthEast" 16-Jul-2003 16:23:00 239.93 49434 17-Jul-2003 01:12:00 "fire"
 "MidWest" 27-Sep-2004 11:09:00 286.72 66104 27-Sep-2004 16:37:00 "equipment fault"

Select and import the variables Region, OutageTime, and Cause into a table and display
the first 10 rows.

SelVarNames = {'Region','OutageTime','Cause'};
T_subset = parquetread('outages.parquet','SelectedVariableNames',SelVarNames);
T_subset(1:10,:)

ans=10×3 table
 Region OutageTime Cause
 ___________ ____________________ _________________

 "SouthWest" 01-Feb-2002 12:18:00 "winter storm"
 "SouthEast" 23-Jan-2003 00:49:00 "winter storm"
 "SouthEast" 07-Feb-2003 21:15:00 "winter storm"
 "West" 06-Apr-2004 05:44:00 "equipment fault"
 "MidWest" 16-Mar-2002 06:18:00 "severe storm"
 "West" 18-Jun-2003 02:49:00 "attack"
 "West" 20-Jun-2004 14:39:00 "equipment fault"
 "West" 06-Jun-2002 19:28:00 "equipment fault"
 "NorthEast" 16-Jul-2003 16:23:00 "fire"

 parquetread

1-6471

 "MidWest" 27-Sep-2004 11:09:00 "equipment fault"

Read Parquet File into Timetable

Read the data from the file into a timetable, and then use timetable functions to
determine if the timetable regular and sorted.

Read data from outages.parquet into a timetable and display the first 10 rows. Use the
second variable OutageTime in the data as the time vector for the timetable.

TT = parquetread('outages.parquet','RowTimes','OutageTime');
TT(1:10,:)

ans=10×6 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ____________________ ___________ ______ __________ ____________________ _________________

 01-Feb-2002 12:18:00 "SouthWest" 458.98 1.8202e+06 07-Feb-2002 16:50:00 "winter storm"
 23-Jan-2003 00:49:00 "SouthEast" 530.14 2.1204e+05 NaT "winter storm"
 07-Feb-2003 21:15:00 "SouthEast" 289.4 1.4294e+05 17-Feb-2003 08:14:00 "winter storm"
 06-Apr-2004 05:44:00 "West" 434.81 3.4037e+05 06-Apr-2004 06:10:00 "equipment fault"
 16-Mar-2002 06:18:00 "MidWest" 186.44 2.1275e+05 18-Mar-2002 23:23:00 "severe storm"
 18-Jun-2003 02:49:00 "West" 0 0 18-Jun-2003 10:54:00 "attack"
 20-Jun-2004 14:39:00 "West" 231.29 NaN 20-Jun-2004 19:16:00 "equipment fault"
 06-Jun-2002 19:28:00 "West" 311.86 NaN 07-Jun-2002 00:51:00 "equipment fault"
 16-Jul-2003 16:23:00 "NorthEast" 239.93 49434 17-Jul-2003 01:12:00 "fire"
 27-Sep-2004 11:09:00 "MidWest" 286.72 66104 27-Sep-2004 16:37:00 "equipment fault"

Determine if the timetable is regular and sorted. A regular timetable has the same time
interval between consecutive row times and a sorted timetable has a row time vector is in
ascending order.

isregular(TT)

ans = logical
 0

issorted(TT)

1 Alphabetical List

1-6472

ans = logical
 0

Sort the timetable on its row times using the sortrows function and display the first 10
rows of the sorted data.

TT = sortrows(TT);
TT(1:10,:)

ans=10×6 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ____________________ ___________ ______ __________ ____________________ __________________

 01-Feb-2002 12:18:00 "SouthWest" 458.98 1.8202e+06 07-Feb-2002 16:50:00 "winter storm"
 05-Mar-2002 17:53:00 "MidWest" 96.563 2.8666e+05 10-Mar-2002 14:41:00 "wind"
 16-Mar-2002 06:18:00 "MidWest" 186.44 2.1275e+05 18-Mar-2002 23:23:00 "severe storm"
 26-Mar-2002 01:59:00 "MidWest" 388.04 5.6422e+05 28-Mar-2002 19:55:00 "winter storm"
 20-Apr-2002 16:46:00 "MidWest" 23141 NaN NaT "unknown"
 08-May-2002 20:34:00 "SouthWest" 50.732 34481 08-May-2002 22:21:00 "thunder storm"
 18-May-2002 11:04:00 "MidWest" 1389.1 1.3447e+05 21-May-2002 01:22:00 "unknown"
 20-May-2002 10:57:00 "NorthEast" 9116.6 2.4983e+06 21-May-2002 15:22:00 "unknown"
 27-May-2002 09:44:00 "SouthEast" 237.28 1.7101e+05 27-May-2002 16:19:00 "wind"
 02-Jun-2002 16:11:00 "SouthEast" 0 0 05-Jun-2002 05:55:00 "energy emergency"

Copyright 2018 The MathWorks, Inc.

Input Arguments
filename — Name of Parquet file
character vector | string scalar

Name of Parquet file, specified as a character vector or string scalar. parquetread
works with Parquet 1.0 or Parquet 2.0 files.

Depending on the location of the file, filename can take on one of these forms.

 parquetread

1-6473

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'data.parquet'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name.

Example: 'C:\myFolder\data.parquet'

Example: 'myDir\myFile.ext'
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
data.parquet'

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'OutputType','table' imports the data in the Parquet file as a table.

1 Alphabetical List

1-6474

OutputType — Output datatype
'auto' (default) | 'table' | 'timeable'

Output datatype, specified as the comma-separated pair consisting of 'OutputType' and
'auto', 'table', or 'timeable'.

• 'auto' — Return a table or a timetable. The parquetread detects if the output
should be a table or a timetable based on other name-value pairs that you specify. For
example, when you set timetable related name-value pairs, then parquetread infers
that the output is a timetable. Setting these name-value pairs indicates that the output
is a timetable: RowTimes, StartTime, SampleRate, or TimeStep.

• 'table' — Return a table. For more information on the table datatype, see table.
• 'timetable' — Return a timetable. For more information on the timetable datatype,

see timetable.

Example: 'OutputType','timetable'
Data Types: char | string

SelectedVariableNames — Subset of variables to import
character vector | string scalar | cell array of character vectors | string array

Subset of variables to import, specified as the comma-separated pair consisting of
'SelectedVariableNames' and a character vector, string scalar, cell array of character
vectors, or a string array.

• SelectedVariableNames must be a subset of variable names contained in the
Parquet file. To get the names of all the variables in the file, use the VariableNames
property of the ParquetInfo object.

• If you do not specify the SelectedVariableNames name-value pair, parquetread
reads all the variables from the file.

Data Types: char | string | cell

RowTimes — Row times variable
variable name | time vector

Row times variable, specified as the comma-separated pair consisting of 'RowTimes' and
a variable name or a time vector.

• Variable name must be a character vector or string scalar containing the name of any
variable in the input table that contains datetime or duration values. The variable

 parquetread

1-6475

specified by the variable name provides row time labels for the rows. The remaining
variables of the input table become the variables of the timetable.

• Time vector must be a datetime vector or a duration vector. The number of
elements of time vector must equal the number of rows of the input table. The time
values in the time vector do not need to be unique, sorted, or regular. All the variables
of the input table become variables of the timetable.

Data Types: char | string | datetime | duration

StartTime — Start time of row times
datetime scalar | duration scalar

Start time of the row times, specified as the comma-separated pair consisting of
StartTime and a datetime scalar or duration scalar.

• If the start time is a datetime, then the row times of T are datetime values.
• If the start time is a duration, then the row times of T are duration values.
• If the time step is a calendar duration, then the start time must be a datetime value.

StartTime is a timetable related parameter. The parquetread function uses
StartTime along with SampleRate or TimeStep to define the time vector for the output
T.
Data Types: datetime | duration

SampleRate — Sample rate
positive numeric scalar

Sample rate, specified as the comma-separated pair consisting of 'SampleRate' and a
positive numeric scalar. The sample rate is the number of samples per second (Hz) of the
time vector of the output timetable T.

SampleRate is a timetable related parameter. The parquetread function uses
SampleRate along with other timetable parameters to define the time vector for the
output T.
Data Types: double

TimeStep — Time step of time vector
duration | calendarDuration

Time step of time vector, specified as the comma-separated pair consisting of
'TimeStep' and a duration scalar.

1 Alphabetical List

1-6476

• If you specify the time step as a calendar duration (for example, calendar months),
then the vector of row times must be a datetime vector.

• If you specify the time step as a duration (for example, seconds), then the vector of
row times can either be a datetime or duration vector.

TimeStep is a timetable related parameter. The parquetread function uses TimeStep
along with other timetable parameters to define the time vector for the output T.

Output Arguments
T — Output data
table | timetable

Output data, returned as a table or timetable. The output of the parquetread function
depends on the value of the OutputType name-value pair. For more information, see the
name-value pair description for OutputType.

Limitations
In some cases, parquetwrite creates files that do not represent the original array T
exactly. If you use parquetread or datastore to read the files, then the result might
not have the same format or contents as the original table. For more information, see
“Apache Parquet Data Type Mappings”.

See Also
parquetDatastore | parquetInfo | parquetwrite | table | timetable

Introduced in R2019a

 parquetread

1-6477

parquetwrite
Write columnar data to Parquet file

Syntax
parquetwrite(filename,T)
parquetwrite(filename,T,'VariableCompression',VariableCompression)

Description
parquetwrite(filename,T) writes a table or timetable T to a Parquet 2.0 file with the
filename specified in filename.

parquetwrite(filename,T,'VariableCompression',VariableCompression)
specifies the compression schemes to use when writing variables to the output file. The
Parquet file format enables you to specify the compression schemes on a per-
variable(column) level allowing very efficient compression and encoding of data.

Examples

Write Table or Timetable to Parquet File

Write tabular data into a Parquet file and compare the size of the same tabular data
in .csv and .parquet file formats.

Read the tabular data from the file outages.csv into a table.

T = readtable('outages.csv');

Write the data to Parquet file format. By default, the parquetwrite function uses the
Snappy compresion scheme. To specify other compression schemes see
'VariableCompression' name-value pair.

parquetwrite('outagesDefault.parquet',T)

1 Alphabetical List

1-6478

Get the file sizes and compute the ratio of the size of tabluar data in the .csv format to
size of the same data in .parquet format.

Get size of .csv file.

fcsv = dir(which('outages.csv'));
size_csv = fcsv.bytes

size_csv = 101040

Get size of .parquet file.

fparquet = dir('outagesDefault.parquet');
size_parquet = fparquet.bytes

size_parquet = 44202

Compute the ratio.

sizeRatio = (size_parquet/size_csv)*100 ;
disp(['Size Ratio = ', num2str(sizeRatio) '% of original size'])

Size Ratio = 43.747% of original size

Input Arguments
filename — Name of output Parquet file
character vector | string scalar

Name of output Parquet file, specified as a character vector or string scalar.

Depending on the location you are writing to, filename can take on one of these forms.

Location Form
Current folder To write to the current folder, specify the name of the file in

filename.

Example: 'myData.parquet'

 parquetwrite

1-6479

Location Form
Other folders To write to a folder different from the current folder, specify

the full or relative path name in filename.

Example: 'C:\myFolder\myData.parquet'

Example: 'dataDir\myData.parquet'
Remote Location To write to a remote location, filename must contain the full

path of the file specified as an internationalized resource
identifier (IRI) of the form:

scheme_name://path_to_file/myData.parquet

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
myData.parquet'

Data Types: char | string

T — Input data
table | timetable

Input data, specified as a table or timetable.

VariableCompression — Compression scheme names
'Snappy' (default) | 'Brotli' | 'Gzip' | 'Uncompressed' | cell array of character
vectors | string vector

Compression scheme names, specified as one of these values:

1 Alphabetical List

1-6480

• 'Snappy', 'Brotli', 'Gzip', or 'Uncompressed'. If you specify one compression
algorithm then parquetwrite compresses all variables using the same algorithm.

• Alternatively, you can specify a cell array of character vectors or a string vector
containing the names of the compression algorithms to use for each variable.

In general, 'Snappy' has better performance for reading and writing, 'Gzip' has a
higher compression ratio at the cost of more CPU processing time, and 'Brotli'
typically produces the smallest file size at the cost of compression speed.

parquetwrite writes Parquet 2.0 files using the Parquet dictionary encoding scheme.
This encoding scheme is most efficient when the number of unique values is not too large.
If the size of the dictionary or number of unique values grows to be too big, then the
encoding automatically falls back to plain encoding.
Example: parquetwrite('myData.parquet', T, 'VariableCompression',
'Brotli')

Example: parquetwrite('myData.parquet', T, 'VariableCompression',
{'Brotli' 'Snappy' 'Gzip'})

Limitations
In some cases, parquetwrite creates files that do not represent the original array T
exactly. If you use parquetread or datastore to read the files, then the result might
not have the same format or contents as the original table. For more information, see
“Apache Parquet Data Type Mappings”.

See Also
parquetDatastore | parquetInfo | parquetread

Introduced in R2019a

 parquetwrite

1-6481

matlab.net.http.ProgressMonitor class
Package: matlab.net.http
Superclasses:

Progress monitor for HTTP message exchange

Description
Use the ProgressMonitor class to implement a progress monitor for an HTTP request
message. A progress monitor listens to changes in the properties of this class to
implement a display or update of your choice.

To implement a progress monitor, create a subclass of this class. Then create an
HTTPOptions object, specify that subclass as the ProgressMonitorFcn property, and
set the UseProgressMonitor property to true.

An HTTP request starts when you call the RequestMessage.send method. The process
might involve multiple messages in both directions in the case of redirects and
authentication. MATLAB calls the done method when all transfers have been completed.

During a transfer:

• MATLAB sets the Max, CancelFcn, and Direction properties when you call
RequestMessage.send.

• MATLAB sets the Value property repeatedly as the body of the request message is
sent to indicate the number of bytes transferred.

• When receipt of the ResponseMessage begins, MATLAB sets Direction to
Response and again sets Value repeatedly.

• To cancel the transfer at any time, call the CancelFcn function. This action is the
same as interrupting the send function in the Command Window.

You can display a graphical progress indicator or other indication of progress after
Direction changes to Response. For each subsequent Value, update the indicator to
the current Value. You can also use this mechanism to monitor progress
programmatically.

1 Alphabetical List

1-6482

Construction
obj = matlab.net.http.ProgressMonitor(Name,Value) creates a progress
monitor with additional properties specified by one, or more name-value pair arguments.
Name is the property name and Value is the corresponding value. You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Unspecified properties are set to their default values.

Properties
Interval — Seconds to first call and maximum interval between calls
2 seconds (default) | double

Seconds to first call and maximum interval between calls, specified as double.

Interval is the amount of time in seconds after the start of transfer before the first
setting of the Value property. Interval is a suggested maximum amount of time
between settings of Value, regardless of progress. If the total time to transfer the data is
less than Interval seconds, then Value is not set. If no data has been transferred in
Interval seconds since the last setting of Value, then Value might be set again to the
same value. In this way, your ProgressMonitor object can cancel a transfer (by calling
CancelFcn) even if there is no progress.

The Interval value is a suggested value. There is no guarantee that MATLAB sets
Value within Interval seconds if there has been no progress.

The default interval is two seconds. To specify a different value, set Interval in your
constructor. The minimum interval between consecutive settings of Value when there is
no progress is 0.1 seconds. However, if Value changes, it might be set more often than
this interval.

After setting Value the first time, there is no delay in setting Value for subsequent
messages in the same exchange.

InUse — Monitor is in use indicator (read-only)
true | false

Monitor is in use indicator, specified as true or false. MATLAB sets this property to
indicate whether it is using this ProgressMonitor object during a transfer. InUse
prevents you from reusing this object for more than one transfer at a time.

 matlab.net.http.ProgressMonitor class

1-6483

Data Types: logical

CancelFcn — Function to call to cancel transfer (read-only)
function handle

Function to call to cancel a transfer, specified as a function handle. MATLAB sets
CancelFcn to the function your ProgressMonitor should call to cancel a transfer.
Calling this function has the same effect as interrupting the transfer in the Command
Window.

Max — Maximum length of the transfer (read-only)
uint64 | []

Maximum length of the transfer, specified as uint64. If the maximum length is not
known, Max is []. Max is the maximum value for your displayed progress indicator.

MATLAB sets Max at the beginning of each send and receive operation to the expected
number of bytes to be transferred, based on the Content-Length header field.

If the message does not contain a Content-Length field, Max is []. In this case, you cannot
determine the proportion of the transfer that has been completed. You can, however, still
monitor changes in the Value property.

Direction — Direction of transfer
matlab.net.http.MessageType object | empty

Direction of transfer, specified as a matlab.net.http.MessageType object. MATLAB
sets Direction to indicate whether progress is monitored for a request message or a
response message. If no transfer is taking place, then Direction is empty.

Value — Number of bytes transferred so far
uint64 | empty

Number of bytes transferred so far, specified as uint64. MATLAB sets Value repeatedly
to the total number of bytes transferred for the current message. However, it delays
setting this property the first time in an exchange until at least Interval seconds have
elapsed since the start of the message.

Implement a set.Value method for this property to monitor progress of the transfer. You
can also implement the ability to cancel the transfer from within the progress monitor in
the set.Value method.

1 Alphabetical List

1-6484

MATLAB might set Value to empty at the end of a given transfer, to indicate that transfer
in the current direction has ended. MATLAB always sets Value to empty at the
conclusion of all transfers before calling the done method.

You cannot control the frequency at which MATLAB updates the Value property.
However, MATLAB might set Value at least once every Interval seconds, even if there
is no progress. This behavior allows you to call the CancelFcn if a transfer is not
progressing. Value might be zero if no bytes have been transferred for Interval
seconds since transfer began.

Methods
done Indicate all message transfers completed

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also

Topics
“Display Progress Monitor for HTTP Message”

Introduced in R2016b

 matlab.net.http.ProgressMonitor class

1-6485

done
Class: matlab.net.http.ProgressMonitor
Package: matlab.net.http

Indicate all message transfers completed

Syntax
done(obj)

Description
done(obj) indicates that all message transfers are completed. MATLAB calls this
method when all transfers for a given RequestMessage.send operation have been
completed. This method indicates that MATLAB is no longer using the ProgressMonitor
object. Use this method to delete windows or other objects you create to display progress.

See Also

Topics
“Display Progress Monitor for HTTP Message”

Introduced in R2016b

1 Alphabetical List

1-6486

matlab.net.http.ProtocolVersion class
Package: matlab.net.http

HTTP protocol version

Description
If you use 'HTTP/1.1', you do not need to create a protocol version. To use a different
protocol, use the ProtocolVersion class to create the protocol version and add it to the
request line of a request message.

The server returns a ProtocolVersion object in the status line of a response message.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.ProtocolVersion(name,major,minor) creates the
protocol version with the specified properties on page 1-6488. This constructor enforces
proper syntax of the parameters. For test purposes, create a ProtocolVersion object in
a request message. Then use the isequal method to compare this value with the value
returned by the server in the response message.

obj = matlab.net.http.ProtocolVersion(str) creates the version from str.

 matlab.net.http.ProtocolVersion class

1-6487

Input Arguments
str — Protocol version
string | character vector

Protocol version, specified as a string or a character vector acceptable to the
ProtocolVersion constructor. str should have the syntax of name plus major and
minor version numbers, but no error occurs if it does not.

Properties
Name — Protocol name
HTTP (default) | string | character vector

Protocol name, specified as a string or character vector.
Example: 'HTTP'
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Major — Major version number
1 (default) | integer 0–9

Major version number, specified as an integer value from 0 through 9.
Example: 1
Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6488

Dependent
true

Minor — Minor version number
1 (default) | integer 0–9

Minor version number, specified as an integer value from 0 through 9.
Example: 1
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods
Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

eq, isequal true if protocol versions are functionally
equivalent. The comparison ignores the
case of the Name property and uses numeric
comparisons for the Major and Minor
properties.

string Protocol version as string
char Protocol version as character vector

Examples

 matlab.net.http.ProtocolVersion class

1-6489

Display Protocol Version in Response Message

Send an HTTP request message to mathworks.com using default values. Display the
protocol version in the response message.

request = matlab.net.http.RequestMessage;
uri = matlab.net.URI('https://www.mathworks.com');
response = send(request,uri);
version = string(response.StatusLine.ProtocolVersion)

version =

 "HTTP/1.1"

See Also
RequestLine | RequestMessage | ResponseMessage | StatusLine

Introduced in R2016b

1 Alphabetical List

1-6490

matlab.net.http.RequestLine class
Package: matlab.net.http
Superclasses:

First line of HTTP request message

Description
The RequestLine class represents the first line of a request message. A request line is
automatically created when you send or complete a message. You also can create a
request line and pass it to the RequestMessage.send method in place of the URI
argument.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj =
matlab.net.http.RequestLine(method,requestTarget,protocolVersion)
creates a request line with the specified properties on page 1-6492. You can omit trailing
arguments and use [] to specify any placeholders.

obj = matlab.net.http.RequestLine(str) creates a request line by parsing str.

 matlab.net.http.RequestLine class

1-6491

Input Arguments
str — Request line
string | character vector

Request line, specified as a string or a character vector. str consists of 1-3 parts,
separated by white space, specifying the Method, RequestTarget, and
ProtocolVersion properties.

Properties
Method — Request method
[] (default) | matlab.net.http.RequestMethod enumeration | string | character
vector

Request method, specified as a matlab.net.http.RequestMethod enumeration or a
string or character vector representing a request method. To send a message, set the
RequestMessage.Method property or the RequestLine.Method property.
Example: 'GET'

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

ProtocolVersion — Protocol version
[] (default) | matlab.net.http.ProtocolVersion object | string

Protocol version, specified as a matlab.net.http.ProtocolVersion object or as a
string acceptable to the constructor.
Example: 'HTTP/1.1'

1 Alphabetical List

1-6492

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

RequestTarget — Target URI
matlab.net.URI object | string | character vector

Target URI, specified as a matlab.net.URI object, or as a string or a character vector
acceptable to the constructor. The RequestTarget value must be consistent with the
URI you specify in a request message send or complete method.

RequestTarget contains at least a leading forward slash (/) for the Path property, even
if the path is relative or empty.

When using a proxy, RequestTarget is a full URI with Scheme and Authority
properties. When not using a proxy, RequestTarget must be an absolute path with an
optional Query property. You specify a proxy in an HTTPOptions object.
Example: 'http://heritage.stsci.edu/2007/14/images/p0714aa.jpg'

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

 matlab.net.http.RequestLine class

1-6493

Methods

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

char Request line as character vector
string Request line as string

Examples

Create Request Line for Hubble Heritage Project Image

Create an HTTP request line to get an image from the Hubble Heritage Project website.

import matlab.net.http.RequestLine
url = 'http://heritage.stsci.edu/2007/14/images/p0714aa.jpg';
reqline = RequestLine('get',url,'HTTP/1.1');
string(reqline)

ans =
"GET http://heritage.stsci.edu/2007/14/images/p0714aa.jpg HTTP/1.1"

See Also
matlab.net.URI | matlab.net.http.RequestMessage.complete |
matlab.net.http.RequestMessage.send | matlab.net.http.RequestMethod

Introduced in R2016b

1 Alphabetical List

1-6494

matlab.net.http.RequestMessage class
Package: matlab.net.http
Superclasses:

HTTP request message

Description
Use the RequestMessage class to format HTTP request messages to send to a server for
processing. Use the send method to send the message, or the complete method to
validate the message before sending. These methods fill in any necessary header fields
and other message properties.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.RequestMessage creates a request message with default
values. When you send or complete a message, the default Method property is
RequestMethod.GET.

obj = matlab.net.http.RequestMessage(method,header,body) specifies one or
more optional message properties on page 1-6496. You can omit trailing arguments and
use [] to specify any placeholders.

obj = matlab.net.http.RequestMessage(requestLine,header,body) sets the
RequestLine property to requestLine. Use this syntax if you need control over the

 matlab.net.http.RequestMessage class

1-6495

contents of the request line. For example, to send a message explicitly to a proxy, set the
RequestLine.RequestTarget property to the full URI. Otherwise, MATLAB chooses
the proxy based on your proxy settings, and the send method sets the RequestTarget
to the Path property of the URI.

obj = matlab.net.http.RequestMessage(requestLine,header,provider) gets
the message body data from a matlab.net.http.io.ContentProvider.

Properties
RequestLine — Request line
matlab.net.http.RequestLine object | string | character vector

Request line, specified as a matlab.net.http.RequestLine object, or a string or a
character vector that contains the method, target, and protocol version. This line is
automatically created when you send a message, based on the method and URI you
specify. If you set this property explicitly, then its contents are used as the request line.
The value might be set to a RequestLine object or to a string which is parsed and
converted to a RequestLine object.
Example: 'GET HTTP/1.1'
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Method — Request method
[] (default) | matlab.net.http.RequestMethod enumeration | string | character
vector

Request method, specified as a matlab.net.http.RequestMethod enumeration or a
string or character vector representing a request method. To send a message, set the
RequestMessage.Method property or the RequestLine.Method property.
Example: 'GET'

1 Alphabetical List

1-6496

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Message header
[] (default) | matlab.net.http.HeaderField object

Message header, specified as a matlab.net.http.HeaderField object or a vector of
HeaderField objects. When you set the Header property, MATLAB checks the fields of
the header to ensure that they are appropriate for the message type. The
RequestMessage send and complete methods fill in any required header fields for a
properly formed request.

Attributes:

GetAccess
public

SetAccess
public

Body — Message body
[] (default) | matlab.net.http.MessageBody object |
matlab.net.http.io.ContentProvider

Message body, specified as a matlab.net.http.MessageBody object,
matlab.net.http.io.ContentProvider, or data acceptable to the MessageBody
constructor. By default, Body is empty (set to []). A request message containing a Body
property normally uses a method such as 'PUT' or 'POST', not the default value 'GET',
but this convention is not enforced.

In a completed or received message, if the message has a ContentTypeField header
field, then the MessageBody.ContentType property is set to that value. Otherwise,
ContentType is unchanged or empty.

 matlab.net.http.RequestMessage class

1-6497

Attributes:

GetAccess
public

SetAccess
public

Completed — Whether message is complete
false (default) | true

Whether message is complete, specified as true or false. A true value means that the
message was completed.

Methods that validate messages (RequestMessage.send and
RequestMessage.complete) set the Completed property to true after:

• Determining that the message is valid.
• Completing processing, such as adding required header fields and converting the data.

If the property is true, then these methods do not modify the message, and the send
method sends the message without checking it for validity. Any change to this message
after that changes the Completed property back to false.

To send arbitrary headers and data in a request message, set Completed to true to
prevent the send method from modifying the message. You can still use the complete
method to validate the message, but the send method sends it whether it is valid.

If a request message contains data (the Body.Data property is not empty), then
Completed is set to true only if Body.Payload contains the raw data. In a response
message, the payload is set only if you specify the HTTPOptions.SavePayload property.

Attributes:

GetAccess
public

SetAccess
public

Transient
true

1 Alphabetical List

1-6498

Data Types: logical

StartLine — Message start line
matlab.net.http.StartLine

Message start line, specified as a matlab.net.http.StartLine object.

Attributes:

GetAccess
public

SetAccess
public

Methods

Public Methods
<infotypegroup type="method"> complete send addFields changeFields
getFields removeFields replaceFields show </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

 matlab.net.http.RequestMessage class

1-6499

string Message Header, Body and StartLine
properties, as string. For multiple
messages, returns a string array.

If Body contains binary data that cannot be
converted to characters, then the method
displays a message indicating the length of
the data in bytes.

The string is an approximate representation
of what the message looks like when sent or
received.

Use for logging, diagnostics, or debugging.

For a formatted version of messages, use
show.

char Same as string, except returns message
as character vector.

isequal Returns true if the visible public
properties of all messages in the two
message arrays are equal.

Examples

Create HTTP Request Message

Format an HTTP message requesting a server to add text to a website. This example only
formats the message and does not send the data.

Add content to the message body.

data = 'Data to send';
body = matlab.net.http.MessageBody(data);
body.show

Data to send

Create a Content-Type header field describing the data type of the body.

1 Alphabetical List

1-6500

contentTypeField = matlab.net.http.field.ContentTypeField('text/plain');

Create an Accept header field specifying the data types acceptable in the response
message.

type1 = matlab.net.http.MediaType('text/*');
type2 = matlab.net.http.MediaType('application/json','q','.5');
acceptField = matlab.net.http.field.AcceptField([type1 type2]);

Create a request header containing the two header fields.

header = [acceptField contentTypeField];

Specify that this message is a PUT request.

method = matlab.net.http.RequestMethod.PUT;

Create the request message and display the contents.

request = matlab.net.http.RequestMessage(method,header,body);
show(request)

PUT
Accept: text/*, application/json; q=.5
Content-Type: text/plain

Data to send

See Also
MessageBody | RequestLine | RequestMethod | ResponseMessage |
matlab.net.URI | webread

Introduced in R2016b

 matlab.net.http.RequestMessage class

1-6501

complete
Class: matlab.net.http.RequestMessage
Package: matlab.net.http

Validate and complete HTTP request message without sending

Syntax
[completedrequest,target] = complete(request,uri)
[completedrequest,target] = complete(request,uri,options)

Description
[completedrequest,target] = complete(request,uri) adds and validates
message header fields and converts data like the RequestMessage.send method, but
does not send the message. complete assumes a default HTTPOptions object to
determine how to complete and validate the request.

Use the complete method to examine the contents of a request message for debugging
purposes.

To fill in and validate the Header and RequestLine properties, this method ignores the
Completed property in request. The method always returns a modified
completedrequest. If request is not completed, then the method errors. You can use
this behavior to determine whether a manually completed request is valid.

If Completed is not set, then this method always converts Data in request.Body and
stores the result in completedrequest.Body.Payload, overwriting any previous
contents of Payload. This means that both Data and Payload in
completedrequest.Body contain values. This is different from the behavior of the send
which does not save the Payload unless HTTPOptions.SavePayload is set. If the
message contains a large amount of data, then memory usage and conversion time might
be a factor.

1 Alphabetical List

1-6502

However, if request.Body contains a ContentProvider, then complete does not call
the provider to create data. completedrequest.Body contains the same
ContentProvider.

[completedrequest,target] = complete(request,uri,options) provides
additional options for validating and completing the request message.

If you intend to send completedrequest to avoid the cost of a repeat validation, send it
to target instead of uri, using the same options. Time-dependent header fields such
as Date which are added by the send method, are not updated when sent again using
completedrequest.

Input Arguments
request — Request message
matlab.net.http.RequestMessage object

Request message, specified as a matlab.net.http.RequestMessage object.

uri — Message destination
matlab.net.URI object | string | character vector

Message destination, specified as a matlab.net.URI object or a string or character
vector acceptable to the constructor.

options — Additional options
matlab.net.http.HTTPOptions object

Additional options, specified as a matlab.net.http.HTTPOptions object, for
processing request and response messages.

Output Arguments
completedrequest — Completed and validated request
matlab.net.http.RequestMessage object

Completed and validated request, returned as a matlab.net.http.RequestMessage
object. The Completed property is true.

 complete

1-6503

target — Completed URI
matlab.net.URI object

Completed URI, returned as a matlab.net.URI object.

Examples

Validate Request Message

Create a request message for a fictional website. Then, validate and complete the request
without sending it.

request = matlab.net.http.RequestMessage();
url = 'myschool.edu/campus.jpg';
options = matlab.net.http.HTTPOptions('SavePayload',true);
[request,url] = complete(request,url,options);
show(request)

GET /campus.jpg HTTP/1.1
Host: myschool.edu
User-Agent: MATLAB/9.0.0.366741 (R2016b)
Date: Wed, 13 Jul 2016 17:21:08 GMT
Connection: close

MATLAB displays User-Agent and Date values relevant to your system.

Show the updated URL.

string(url)

ans = http://myschool.edu/campus.jpg

Limitations
• A completed request does not add any authorization header fields that might be

needed for authentication to a server or proxy, even if the Authenticate property is
set in options. It might not be possible to determine what the server requires
without sending the message. To see what was sent in an authentication exchange,
examine the completedrequest or history arguments returned by the send
method.

1 Alphabetical List

1-6504

Tips
• To send the same request message repeatedly, send completedrequest. Otherwise,

if you send request, then MATLAB repeatedly validates the message. Also be sure to
specify target as the URI and the same options input argument. Time-dependent
header fields such as Date, which the send method adds, are not updated when
sending completedrequest.

• To complete a message without converting the data, set the Completed property to
true before calling the complete method. If Completed is true and request.Body
is a MessageBody object, then the complete method assumes that the current value
of request.Body.Payload is the desired one, even if it is empty.

This behavior differs from the send method. If request.Body.Payload is empty,
then send converts and sends nonempty Body.Data values, even if Completed is
true.

See Also
HTTPOptions | MessageBody | RequestMessage.send | matlab.net.URI

Introduced in R2016b

 complete

1-6505

send
Class: matlab.net.http.RequestMessage
Package: matlab.net.http

Send HTTP request message and receive response

Syntax
[response,completedrequest,history] = send(request,uri)
[response,completedrequest,history] = send(request,uri,options,
consumer)

Description
[response,completedrequest,history] = send(request,uri) sends the
request message to the web service specified by uri and returns the response, if any.
If no request.Method property is specified, then the send method sets the property to
'GET'.

By default, send verifies the semantic correctness of the headers and other parts of the
message and completes the uri. The method also fills in any required header fields for a
properly formed request. If request.Body is a MessageBody whose Payload property
is not already set, then send calls appropriate conversion functions to convert any
request.Body.Data to a vector of bytes representing an HTTP payload to be sent, as
described for MessageBody.Data. Normally, a 'GET' request does not contain data, but
the method sends the Body regardless of the RequestMethod. If the server returns data
in its response and no consumer is specified, then send converts that data to MATLAB
data and saves it in response.Body.Data. See MessageBody.Data for more
information on data conversion.

If request.Body is a ContentProvider, then MATLAB calls the provider to get the
data to be sent.

If the header already contains a field that the method normally adds, then send verifies
that the field has the expected value. You can override the default behavior as follows.

1 Alphabetical List

1-6506

• To send a message as is without any checking or alteration of the header, set the
request.Completed property to true before sending. If you used the complete
method to complete the request, then you should specify the same value of uri and
options that you provided to complete, or there might be unpredictable results.
Even if Completed is set, unspecified fields in the RequestLine will be filled in with
default values.

• To allow the send method to check and alter the header, but suppress adding a
particular header field that send or a ContentProvider might add, add that field to
request.Header with an empty value ([]). For example, send automatically adds a
User-Agent header field. If you do not want this behavior, then add
HeaderField('User-Agent') to the header. Header fields with empty values are
not included in the message. The Host and Connection fields cannot be suppressed.

• To override the value that the send method adds for a given header field, add your
own instance of that field before sending or completing the message. However, this
will not override a header field that a ContentProvider might add. However, for
some header field types, send might still reject the message if the value is not valid.
To prevent any checking of the value of a given field, or to override a field that a
ContentProvider adds, add a field of type matlab.http.field.GenericField to
the header with the desired name and value. Neither send nor a ContentProvider
will add any header fields with names equal to any GenericField headers and will
not check their correctness.

• To send raw binary data without conversion, you can insert a uint8 vector into either
Body.Data or Body.Payload. The only difference is that data in Body.Data is
subject to conversion based on the Content-Type field in the message, while
Body.Payload is not. send always tries to convert nonempty Body.Data if
Body.Payload is empty, even if Completed is already set. See MessageBody.Data
for conversion rules.

[response,completedrequest,history] = send(request,uri,options,
consumer) provides additional options for processing the request and response
messages.

Input Arguments
request — Request message
matlab.net.http.RequestMessage object

Request message, specified as a matlab.net.http.RequestMessage object.

 send

1-6507

uri — Message destination
matlab.net.URI object | string | character vector

Message destination, specified as a matlab.net.URI object or a string or character
vector acceptable to the constructor. If the value is a URI object, then it must name a
Host. If it is a string and it does not include a Scheme, then 'http' is assumed. For
example, 'www.somewebsite.com' and '//www.somewebsite.com' are both treated
as 'http://www.somewebsite.com'.

options — Additional options
matlab.net.http.HTTPOptions object

Additional options, specified as a matlab.net.http.HTTPOptions object, for
processing request and response messages. If not specified, or if the value is empty, then
send uses default options.

consumer — Content consumer
matlab.net.http.io.ContentConsumer object | function handle

Content consumer to process the returned payload, specified as a
matlab.net.http.io.ContentConsumer object or a handle to a function that returns
a ContentConsumer.

The send method calls the ContentConsumer to process or store buffers of data in real
time as the data is being received. The consumer can store the data in
response.Body.Data or handle it in some other way. For example, a consumer can
display the data in a figure window or save it in a file. When a consumer is specified,
MATLAB does not automatically set MessageBody.Data, but it will set
MessageBody.Payload to the unconverted payload if options.SavePayload is true.
For example, a FileConsumer saves the data to a file, not in MessageBody.Data.

Using a ContentConsumer provides more flexibility in converting or storing the
response data than the default MATLAB response data conversion. For a description of
the default conversion of received data, see MessageBody.Data. For a list of
ContentConsumer types provided by MATLAB, type:

mp = ?matlab.net.http.io.ContentConsumer;
{mp.ContainingPackage.ClassList.Name}'

In addition, software developers can create their own ContentConsumer subclasses to
process data as it is being received.

1 Alphabetical List

1-6508

The consumer is used only if it accepts the message, based on various factors such as the
Content-Type header in the response and whether response.StatusCode is OK. Each
consumer has its own criteria for accepting a message.

If the payload is compressed with a supported encoding, and options is unspecified or
options.DecodePayload is true, then the consumer gets the decompressed data. If
payload is compressed and options.DecodePayload is false, or the payload is
compressed with an unsupported encoding, then the consumer is not used and there is no
default processing of the data.

In all cases where the consumer is not used, the payload is processed and converted as if
no consumer was specified.

If consumer is a function handle, the function is called to instantiate a consumer only
after MATLAB determines that the response has a payload.

When specifying consumer but no options, add a placeholder [] argument for
options to use default options.

Output Arguments
response — Message received from server
matlab.net.http.ResponseMessage object

Message received from a server, returned as a matlab.net.http.ResponseMessage
object. There might be intermediate requests and responses exchanged between MATLAB
and the proxy or server if redirections and/or authentications are involved.

completedrequest — Request that was sent
matlab.net.http.RequestMessage object

Request that was sent before receiving the response argument, returned as a
matlab.net.http.RequestMessage object. The send method augments the
completedrequest argument with authentication or redirection information.

If request.Body is a ContentProvider, then completedrequest.Body is normally
empty because ContentProvider payloads are not saved. However, if
options.SavePayload is true, then the completedrequest.Body is a MessageBody
whose Payload has the data sent from the provider as a uint8 vector. In some cases,
when the Content-Type of the request indicates that it is character-based, the
MessageBody.Data property contains the payload represented as a string.

 send

1-6509

After sending an HTTP request, examine the completedrequest argument to see what
was sent. The server might send multiple messages, for example, if there were
redirections or an authentication exchange occurred. If there are multiple messages, then
completedrequest contains the last request. To see the first, or intermediate messages,
look at the history argument.

To send the same request multiple times, call the RequestMessage.complete method:

[completedrequest,target] = complete(request,uri)

Then, call the send method with these output arguments:

resp = send(completedrequest,target)

history — Log of messages
vector of matlab.net.http.LogRecord objects

Log of messages, returned as a vector of matlab.net.http.LogRecord objects that
were exchanged to satisfy this send request. If you have a single request and response,
then the history argument contains one record. In the case of an authentication
containing multiple messages, the history can contain multiple log records for each
redirection.

Use the history to obtain all Set-Cookie headers from response messages. You can send
these headers back to the server in subsequent requests.

The last record in the history contains the same properties as the completedrequest
and response arguments, except for the Body property. To log message bodies, specify
the SavePayload property in the options argument.

The history also can be useful for debugging.

Examples

Send HTTP Message

Send an HTTP message to read the MathWorks Contact Support web page and display
the message status code.

import matlab.net.*
import matlab.net.http.*

1 Alphabetical List

1-6510

r = RequestMessage;
uri = URI('https://www.mathworks.com/support/contact_us');
resp = send(r,uri);
status = resp.StatusCode

status =

 OK

Do Not Allow HTTP Message Redirects

Prevent message redirects from mathworks.com website by setting the HTTP option
MaxRedirects to zero. Then display status code information.

import matlab.net.*
import matlab.net.http.*
r = RequestMessage;
uri = URI('https://www.mathworks.com/support/contact_us');
options = HTTPOptions('MaxRedirects',0);
[resp,~,hist] = send(r,uri,options);
status = getReasonPhrase(resp.StatusCode)

status =

 'Moved Permanently'

Error Handling
Always check the response Status property to determine whether the request was
accepted. Error conditions are:

• MException — Message is not well formed and cannot be completed.
• HTTPException — Message is completed, but the web service is unreachable or does

not respond within the timeout period specified in options.

 send

1-6511

• Status property of response — Web service responds and returns an HTTP error
status. send returns normally, setting the Status property to the error returned from
the server.

See Also
HTTPException | HTTPOptions | LogRecord | RequestMessage.complete |
matlab.net.URI | matlab.net.http.field.GenericField |
matlab.net.http.io.ContentConsumer |
matlab.net.http.io.ContentProvider

Introduced in R2016b

1 Alphabetical List

1-6512

matlab.net.http.RequestMethod class
Package: matlab.net.http

HTTP request method

Description
The RequestMethod enumeration class provides identifiers for request methods. Use
these values for the Method property in a request message. The methods supported are
those listed in the IANA Hypertext Transfer Protocol (HTTP) Method Registry as of May
1, 2016.

Enumeration Member Name
ACL
BASELINECONTROL
BIND
CHECKIN
CHECKOUT
CONNECT
COPY
DELETE
GET
HEAD
LABEL
LINK
LOCK
MERGE
MKACTIVITY
MKCALENDAR

 matlab.net.http.RequestMethod class

1-6513

https://www.iana.org/assignments/http-methods/http-methods.xhtml

Enumeration Member Name
MKCOL
MKREDIRECTREF
MKWORKSPACE
MOVE
OPTIONS
ORDERPATCH
PATCH
POST
PRI
PROPFIND
PROPPATCH
PUT
REBIND
REPORT
SEARCH
TRACE
UNBIND
UNCHECKOUT
UNLINK
UNLOCK
UPDATE
UPDATEREDIRECTREF
VERSIONCONTROL

Examples

1 Alphabetical List

1-6514

Display Method for Default Request Message

r = matlab.net.http.RequestMessage;
uri = 'https://www.mathworks.com';
r = complete(r,uri);
reqmethod = r.Method

reqmethod =
GET

See Also
matlab.net.http.RequestMessage

External Websites
Hypertext Transfer Protocol (HTTP) Method Registry

Introduced in R2016b

 matlab.net.http.RequestMethod class

1-6515

https://www.iana.org/assignments/http-methods/http-methods.xhtml

matlab.net.http.ResponseMessage class
Package: matlab.net.http
Superclasses:

HTTP response message

Description
The ResponseMessage class formats HTTP response messages returned by a server.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation
The RequestMessage.send method creates a response message.

Properties
StatusLine — Status line from server
StatusLine object

Status line from server, specified as a matlab.net.http.StatusLine object.
Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6516

Dependent
true

StatusCode — HTTP status code
StatusCode object

HTTP status code, specified as a matlab.net.http.StatusCode object. Same as the
StatusLine.StatusCode property.
Attributes:

GetAccess
public

SetAccess
immutable

Dependent
true

Header — Message header
[] (default) | matlab.net.http.HeaderField object

Message header, specified as a matlab.net.http.HeaderField object or a vector of
HeaderField objects. When you set the Header property, MATLAB checks the fields of
the header to ensure that they are appropriate for the message type. The
RequestMessage send and complete methods fill in any required header fields for a
properly formed request.
Attributes:

GetAccess
public

SetAccess
public

Body — Message body
[] (default) | matlab.net.http.MessageBody object |
matlab.net.http.io.ContentProvider

Message body, specified as a matlab.net.http.MessageBody object,
matlab.net.http.io.ContentProvider, or data acceptable to the MessageBody

 matlab.net.http.ResponseMessage class

1-6517

constructor. By default, Body is empty (set to []). A request message containing a Body
property normally uses a method such as 'PUT' or 'POST', not the default value 'GET',
but this convention is not enforced.

In a completed or received message, if the message has a ContentTypeField header
field, then the MessageBody.ContentType property is set to that value. Otherwise,
ContentType is unchanged or empty.

Attributes:

GetAccess
public

SetAccess
public

Completed — Whether message is completed
false (default) | true

Whether message is completed, specified as true or false. A true value means that the
message was completed. Methods that return messages set the Completed property to
true when:

• The Body or Body.Data properties are empty.
• The Body.Payload property contains the raw data.

Attributes:

GetAccess
public

SetAccess
public

Transient
true

Data Types: logical

1 Alphabetical List

1-6518

Methods

Public Methods
<infotypegroup type="method"> complete addFields changeFields getFields
removeFields replaceFields show </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

string Message Header, Body and StartLine
properties, as string. For multiple
messages, returns a string array.

If Body contains binary data that cannot be
converted to characters, then the method
displays a message indicating the length of
the data in bytes.

The string is an approximate representation
of what the message looks like when sent or
received.

Use for logging, diagnostics, or debugging.

For a formatted version of messages, use
show.

char Same as string, except returns message
as character vector.

isequal Returns true if the visible public
properties of all messages in the two
message arrays are equal.

Examples

 matlab.net.http.ResponseMessage class

1-6519

Request Image from Website

Send a message to the Hubble Heritage website requesting an image of Jupiter.

Format an HTTP request message and display the Content-Type of the response message
body. The server returns a JPEG image.

request = matlab.net.http.RequestMessage;
uri = matlab.net.URI('http://heritage.stsci.edu/2007/14/images/p0714aa.jpg');
r = send(request,uri);
r.Body.ContentType

ans =

 MediaType with properties:

 Type: "image"
 Subtype: "jpeg"
 Parameters: []
 MediaInfo: "image/jpeg"
 Weight: []

Display the image using the imshow function. MATLAB resizes the image to fit on the
screen.

warning('off','Images:initSize:adjustingMag');
imshow(r.Body.Data)

1 Alphabetical List

1-6520

See Also
MessageBody | RequestMessage | RequestMessage.send | StatusCode |

 matlab.net.http.ResponseMessage class

1-6521

StatusLine

Introduced in R2016b

1 Alphabetical List

1-6522

complete
Class: matlab.net.http.ResponseMessage
Package: matlab.net.http

Process or reprocess response payload Content-Type

Syntax
msg = complete(msg)
msg = complete(msg,consumer)

Description
msg = complete(msg) converts the msg.Body.Payload property to msg.Body.Data
using the current value of the Content-Type header field in msg.

msg = complete(msg,consumer) returns a copy of the message with
msg.Body.Payload processed by a matlab.net.http.io.ContentConsumer. The
consumer might store its result in msg.Body.Data or process it in some other manner.

Use the complete method when:

• Body.Data was unset or not set properly because the server inserted the wrong
Content-Type in the message or the Content-Type was missing.

• You set the ConvertResponse HTTPOptions.ConvertResponse property to false to
prevent conversion of the data when it was originally received.

• You specified the wrong consumer when sending the message.

If there was an exception processing the received message, or if you set the
HTTPOptions.SavePayload property when you sent the request, the Body.Payload in
this response message contains the original payload (if any). In this case, modify the
header of this message to add or correct the Content-Type field. Then call the complete
method to process the response as if the server had inserted that Content-Type field
originally. The result is new contents in Body.Data and/or Data processed by the
specified consumer.

 complete

1-6523

If Body.Payload is set, then this method ignores the current value of Body.Data and
reprocesses that payload based on Content-Type. This case occurs for a conversion error
or if you specified SavePayload. But if conversion of the incoming data succeeded
originally, but was incorrect, Body.Data is set and Body.Payload might be empty. In
this case, change the ContentTypeField in the received message to the desired type and
then call this method. complete attempts to convert the data back to a payload based on
the Body.ContentType property used to convert it originally. Then it is reconverted
using the new Content-Type header in the response message. If Data is not empty, then
the returned Body.Payload is set.

If you specified SavePayload when sending the message, complete uses the original
payload that was preserved in Body.Payload instead, with no loss of information.

If the ResponseMessage.Completed property is set, complete does nothing. In a
message that contains a Body, this property is normally set only if msg.Body.Payload
has been set.

Input Arguments
msg — Response message
matlab.net.http.ResponseMessage object

Response message, specified as a matlab.net.http.ResponseMessage object.

Output Arguments
msg — Completed response message
matlab.net.http.ResponseMessage object

Completed response message, returned as a matlab.net.http.ResponseMessage
object.

Examples

Convert a text/plain Content-Type Field

Assume that the server returned a response containing a JSON string but specified a
Content-Type field of text/plain instead of application/json. In this case,

1 Alphabetical List

1-6524

Body.Payload is empty and msg.Body.Data contains an ASCII string (since the default
charset for text/plain is us-ascii). To process this data and obtain a JSON structure:

response = response.changeFields('Content-Type','application/json');
response = response.complete();
data = response.Body.Data;

The call to complete converts Body.Data to Body.Payload using us-ascii encoding.
The method then reconverts Body.Payload to utf-8 before processing it as a JSON
string and storing the result in Body.Data. This conversion does not retain any non-
ASCII characters that were garbled when converting the original payload using text/
plain but preserves the original ASCII data.

See Also
matlab.net.http.HTTPOptions.ConvertResponse |
matlab.net.http.HTTPOptions.SavePayload | matlab.net.http.ResponseMessage.Completed
| matlab.net.http.io.ContentConsumer

Introduced in R2016b

 complete

1-6525

matlab.net.http.StartLine class
Package: matlab.net.http

First line of HTTP message

Description
The StartLine class is an abstract class used as a base class for creating
matlab.net.http.RequestLine and matlab.net.http.StatusLine elements.

Methods

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

string Start line as string
char Start line as character vector as it would

appear in first line of HTTP message

See Also
RequestLine | StatusLine

Introduced in R2016b

1 Alphabetical List

1-6526

matlab.net.http.StatusClass class
Package: matlab.net.http

Status class of HTTP response

Description
The StatusClass enumeration class provides identifiers for status classes.

Numeric Representation Enumeration Member Name
100 Informational
200 Successful
300 Redirection
400 ClientError
500 ServerError

Methods

Public Methods
<infotypegroup type="method"> getReasonPhrase </infotypegroup>

See Also
StatusCode

Introduced in R2016b

 matlab.net.http.StatusClass class

1-6527

getReasonPhrase
Class: matlab.net.http.StatusClass
Package: matlab.net.http

StatusClass name as text phrase

Syntax
meaning = getReasonPhrase(class)

Description
meaning = getReasonPhrase(class) returns the status class name as an English-
language string with spaces between words.

Input Arguments
class — Status class
matlab.net.http.StatusClass object

Status class, specified as a matlab.net.http.StatusClass object.

Examples

Display HTTP Status Code Category

Send a message to mathworks.com and display the status code category.

uri = matlab.net.URI('https://www.mathworks.com');
req = matlab.net.http.RequestMessage;
resp = send(req, uri);
sc = getClass(resp.StatusCode);
disp(getReasonPhrase(sc))

1 Alphabetical List

1-6528

Successful

See Also
matlab.net.http.ResponseMessage | matlab.net.http.StatusLine

Introduced in R2016b

 getReasonPhrase

1-6529

matlab.net.http.StatusCode class
Package: matlab.net.http

Status code in HTTP response

Description
The StatusCode enumeration class provides identifiers for status codes.

Integer
Repres
en-
tation

Enumeration
Member
Name

Integer
Repres
en-
tation

Enumeration
Member Name

Intege
r
Repres
en-
tation

Enumeration Member
Name

100 Continue 400 BadRequest 500 InternalServerError
101 SwitchingPr

otocols
401 Unauthorized 501 NotImplemented

102 Processing 402 PaymentRequir
ed

502 BadGateway

 403 Forbidden 503 ServiceUnavailable
200 OK 404 NotFound 504 GatewayTimeout
201 Created 405 MethodNotAllo

wed
505 HTTPVersionNotSuppo

rted
202 Accepted 406 NotAcceptable 506 VariantAlsoNegotiat

es
203 NonAuthorit

ativeInform
ation

407 ProxyAuthenti
cationRequire
d

507 InsufficientStorage

204 NoContent 408 RequestTimeou
t

508 LoopDetected

205 ResetConten
t

409 Conflict 509 Unassigned

1 Alphabetical List

1-6530

Integer
Repres
en-
tation

Enumeration
Member
Name

Integer
Repres
en-
tation

Enumeration
Member Name

Intege
r
Repres
en-
tation

Enumeration Member
Name

206 PartialCont
ent

410 Gone 510 NotExtended

207 MultiStatus 411 LengthRequire
d

511 HTTPVersionNotSuppo
rted

208 AlreadyRepo
rted

412 PreconditionF
ailed

226 IMUsed 413 PayloadTooLar
ge

 414 URITooLong
300 MultipleCho

ices
415 UnsupportedMe

diaType

301 MovedPerman
ently

416 RangeNotSatis
fiable

302 Found 417 ExpectationFa
iled

303 SeeOther 421 MisdirectedRe
quest

304 NotModified 422 Unprocessable
Entity

305 UseProxy 423 Locked
306 SwitchProxy 424 FailedDepende

ncy

307 TemporaryRe
direct

426 UpgradeRequir
ed

308 PermanentRe
direct

428 PreconditionR
equired

 429 TooManyReques
ts

 matlab.net.http.StatusCode class

1-6531

Integer
Repres
en-
tation

Enumeration
Member
Name

Integer
Repres
en-
tation

Enumeration
Member Name

Intege
r
Repres
en-
tation

Enumeration Member
Name

 431 RequestHeader
FieldsTooLarg
e

Methods
Public Methods
<infotypegroup type="method"> matlab.net.http.StatusCode.fromValue
matlab.net.http.StatusCode.getClass
matlab.net.http.StatusCode.getReasonPhrase </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

char Name of status code as character vector
string Three-digit value of status code as string

Examples

Display HTTP Error Code Information

Use the status code to provide error information.

Send a PUT message to the mathworks.com website.

uri = matlab.net.URI('https://www.mathworks.com');
header = matlab.net.http.field.ContentTypeField('text/plain');
req = matlab.net.http.RequestMessage('put',header,'Data');
resp = send(req, uri);

1 Alphabetical List

1-6532

The website does not allow PUT methods. Display a user-friendly message.

sc = resp.StatusCode;
if sc ~= matlab.net.http.StatusCode.OK
 disp([getReasonPhrase(getClass(sc)),': ',getReasonPhrase(sc)])
 disp(resp.StatusLine.ReasonPhrase)
end

Client Error: Method Not Allowed
Method Not Allowed

How to Choose a Status Code Conversion Method

The StatusCode methods - char, string, getReasonPhrase, and getClass - provide
information about the code and its meaning. Choose a method based on your
requirements.

Suppose that your response message contains status code 307. To run this example,
create the code.

sc = matlab.net.http.StatusCode(307);

Use the char and the getReasonPhrase methods to return text for the status code
meaning. The getReasonPhrase method creates a phrase you can use in messages.

txt = char(sc)

txt =
'TemporaryRedirect'

msg = getReasonPhrase(sc)

msg =
'Temporary Redirect'

Use the string method to return the integer value of the status code as a string.

value = string(sc)

value =
"307"

If your code processes status codes based on status class, use the getClass method.

 matlab.net.http.StatusCode class

1-6533

class = getClass(sc)

class =
Redirection

Display All HTTP Status Codes

enumeration matlab.net.http.StatusCode

Enumeration members for class 'matlab.net.http.StatusCode':

 Continue
 SwitchingProtocols
 Processing
 OK
 Created
 Accepted
 NonAuthoritativeInformation
 NoContent
 ResetContent
 PartialContent
 MultiStatus
 AlreadyReported
 IMUsed
 MultipleChoices
 MovedPermanently
 Found
 SeeOther
 NotModified
 UseProxy
 SwitchProxy
 TemporaryRedirect
 PermanentRedirect
 BadRequest
 Unauthorized
 PaymentRequired
 Forbidden
 NotFound
 MethodNotAllowed
 NotAcceptable
 ProxyAuthenticationRequired
 RequestTimeout

1 Alphabetical List

1-6534

 Conflict
 Gone
 LengthRequired
 PreconditionFailed
 PayloadTooLarge
 URITooLong
 UnsupportedMediaType
 RangeNotSatisfiable
 ExpectationFailed
 MisdirectedRequest
 UnprocessableEntity
 Locked
 FailedDependency
 UpgradeRequired
 PreconditionRequired
 TooManyRequests
 RequestHeaderFieldsTooLarge
 InternalServerError
 NotImplemented
 BadGateway
 ServiceUnavailable
 GatewayTimeout
 HTTPVersionNotSupported
 VariantAlsoNegotiates
 InsufficientStorage
 LoopDetected
 Unassigned
 NotExtended
 NetworkAuthenticationRequired

See Also
ResponseMessage | StatusClass

Introduced in R2016b

 matlab.net.http.StatusCode class

1-6535

matlab.net.http.StatusCode.fromValue
Class: matlab.net.http.StatusCode
Package: matlab.net.http

Create StatusCode object from string or number

Syntax
code = matlab.net.http.StatusCode.fromValue(value)

Description
code = matlab.net.http.StatusCode.fromValue(value) converts value to a
StatusCode enumeration. Use this method to create a StatusCode object for
comparisons.

Input Arguments
value — Number to convert
positive integer | positive integer string

Number to convert, specified as a positive integer or a positive integer string.

Attributes
Static true

Examples

1 Alphabetical List

1-6536

Compare Response Status with Code from External Source

Compare a response status code with a value from an external source that lists status
codes as numbers or strings.

Assume that you have the status code from a response message.

class(resp.StatusCode)

ans = matlab.net.http.StatusCode

Compare the code with value 401 from the table using the fromValue method.

theValue = '401';
if resp.StatusCode == matlab.net.http.StatusCode.fromValue(theValue)
 % do something
end

See Also

Topics
Method Attributes

Introduced in R2016b

 matlab.net.http.StatusCode.fromValue

1-6537

getClass
Class: matlab.net.http.StatusCode
Package: matlab.net.http

StatusClass for StatusCode

Syntax
class = getClass(code)

Description
class = getClass(code) converts status code to matlab.net.http.StatusClass
object.

Input Arguments
code — Status code
matlab.net.http.StatusCode object

Status code, specified as a matlab.net.http.StatusCode object.

Examples

Display Class for HTTP Status Code 503

sc = matlab.net.http.StatusCode(503);
res = getClass(sc)

res =
ServerError

1 Alphabetical List

1-6538

See Also
matlab.net.http.StatusClass

Introduced in R2016b

 getClass

1-6539

getReasonPhrase
Class: matlab.net.http.StatusCode
Package: matlab.net.http

StatusCode identifier as text phrase

Syntax
meaning = getReasonPhrase(code)

Description
meaning = getReasonPhrase(code) returns the status code identifier as a string
(English only) with punctuation and spacing added. The meaning is based on the numeric
code. meaning is not necessarily the same as the ReasonPhrase property that the
server inserts into the status line of a response message.

Input Arguments
code — Status code
matlab.net.http.StatusCode object

Status code, specified as a matlab.net.http.StatusCode object.

Examples

Display Meaning of HTTP Status Code
sc = matlab.net.http.StatusCode(500);
res = getReasonPhrase(sc)

res =
'Internal Server Error'

1 Alphabetical List

1-6540

See Also
matlab.net.http.StatusLine

Introduced in R2016b

 getReasonPhrase

1-6541

matlab.net.http.StatusLine class
Package: matlab.net.http
Superclasses:

First line of HTTP response message

Description
The server inserts a StatusLine object into every HTTP response message. For
information about a status line, see RFC 7230 Status Line, section 3.1.2.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation
obj = StatusLine(protocolVersion,statusCode,reasonPhrase) creates a
status line with the specified properties on page 1-6543. Use constructors for testing.

obj = StatusLine(str) creates a status line by parsing str.

Input Arguments
str — Status line
string | character vector

Status line, specified as a string or a character vector.

1 Alphabetical List

1-6542

https://tools.ietf.org/html/rfc7230#section-3.1.2

Properties
ProtocolVersion — Protocol version
matlab.net.http.ProtocolVersion

Protocol version, specified as a matlab.net.http.ProtocolVersion object.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

StatusCode — Status code
matlab.net.http.StatusCode enumeration | string | integer

Status code, specified as a matlab.net.http.StatusCode enumeration, string, or
integer. The value is a StatusCode object if the server returns one of its enumeration
values. If the server returns a number, then the value is an integer.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

ReasonPhrase — Reason phrase from server
string

Reason phrase from server, specified as a string. ReasonPhrase is empty if the server
does not provide a reason. This value is not necessarily the same as the value returned by
the StatusCode.getReasonPhrase method.

 matlab.net.http.StatusLine class

1-6543

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

string Status line as string
char Status line as character vector

See Also
ProtocolVersion | StatusCode | getReasonPhrase

External Websites
RFC 7230 Status Line, section 3.1.2

Introduced in R2016b

1 Alphabetical List

1-6544

https://tools.ietf.org/html/rfc7230#section-3.1.2

matlab.net.http.field Package
Summary of header field classes in MATLAB HTTP interface

Description

Classes
AcceptField HTTP Accept header field
AuthenticateField HTTP WWW-Authenticate or Proxy-Authenticate header

field
AuthenticationInfoField HTTP Authentication-Info header field in response message
AuthorizationField HTTP Authorization or Proxy-Authorization header field
ContentDispositionField HTTP Content-Disposition header field
ContentLengthField HTTP Content-Length field
ContentLocationField HTTP Content-Location header field
ContentTypeField HTTP Content-Type header field
CookieField HTTP Cookie header field
DateField HTTP Date header field
GenericField HTTP header field with any name and value
GenericParameterizedField GenericField to support parameterized syntax
HTTPDateField HTTP header field containing date
IntegerField Base class for HTTP header fields containing nonnegative

integers
LocationField HTTP Location header field
MediaRangeField Base class for HTTP Content-Type and Accept header fields
SetCookieField HTTP Set-Cookie header field
URIReferenceField Base class for HTTP header fields containing URI

components

See Also
Introduced in R2016b

 matlab.net.http.field Package

1-6545

matlab.net.http.field.AcceptField class
Package: matlab.net.http.field
Superclasses: ,

HTTP Accept header field

Description
An AcceptField object is an HTTP header field in a request message. The field contains
one or more media type specifications indicating the type of content acceptable to the
client.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.AcceptField(value) creates an Accept header
field with the Value property set to value.

Use an Accept field if the server can return different MediaType objects and you want to
receive only certain types. If you do not specify an Accept field, the server might assume
that you are willing to receive any type.

1 Alphabetical List

1-6546

Properties
Name — Header field name
'Accept'

Header field name, specified as 'Accept'.

Attributes:

GetAccess
public

SetAccess
public

Value — Media type
vector of matlab.net.http.MediaType objects | vector of strings | cell array of
character vectors

Media type, specified as a vector of matlab.net.http.MediaType objects, a vector of
strings, or a cell array of character vectors. All strings must be acceptable to the
MediaType constructor. Each Value represents a media type containing an optional
quality ('q') parameter. The Value property of the field is a comma-separated list of the
MediaType objects converted to strings.
Example: MediaType('application/json','q','.5')

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

 matlab.net.http.field.AcceptField class

1-6547

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Parse AcceptField as a comma-separated

list of values and converts each Value
property to a MediaType object. Each
value is a media-type expression as defined
in RFC 7231 Media Type, section 3.1.1.1.

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method.

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method.

See Also
MediaType | RequestMessage | ResponseMessage

External Websites
RFC 7231 Semantics and Content, section 5.3.2 Accept

1 Alphabetical List

1-6548

https://tools.ietf.org/html/rfc7231#section-3.1.1
https://tools.ietf.org/html/rfc7231#section-5.3.2

RFC 7231 Media Type, section 3.1.1.1

Introduced in R2016b

 matlab.net.http.field.AcceptField class

1-6549

https://tools.ietf.org/html/rfc7231#section-3.1.1

matlab.net.http.field.AuthenticateField class
Package: matlab.net.http.field
Superclasses:

HTTP WWW-Authenticate or Proxy-Authenticate header field

Description
An AuthenticateField object contains one or more challenges from a server asking for
authentication information. A server or proxy creates an AuthenticateField in a
response message.

When you send a request message to a server or through a proxy that requires
authentication, MATLAB automatically tries to authenticate to the server or proxy when:

• HTTPOptions.Authenticate property is true (default)
• HTTPOptions.Credentials property contains the necessary names and passwords.

If authentication is successful, then the response message returns an OK status and does
not contain an authentication field.

If you disable authentication or if authentication failed, then the response message
returns an authentication field. In that case, the status code of the response message is
either 401 (Unauthorized) or 407 (ProxyAuthenticationRequired). Examine the
AuthInfo object and respond by adding the appropriate AuthorizationField to the
request message containing your credentials. Or resend the request by setting the correct
Credentials property in HTTPOptions.

If the server or proxy requires an authentication scheme that MATLAB does not support,
you must implement the authentication protocol yourself. Create a request message with
the appropriate credentials and other information.

Class Attributes
Sealed

true

1 Alphabetical List

1-6550

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.AuthenticateField(name,value) creates an
authentication header field with the Name property set to name and the Value property
set to value.

A server creates this field in a response message. Use this constructor for test purposes.

Properties
Name — Header field name
'WWW-Authenticate' | 'Proxy-Authenticate'

Header field name, specified as 'WWW-Authenticate' or 'Proxy-Authenticate'.

Attributes:

GetAccess
public

SetAccess
public

Value — Challenges
vector of AuthInfo objects | string

A comma-separated list of challenges, specified as a vector of
matlab.net.http.AuthInfo objects or a string in the format defined by RFC 7235 and
RFC 2617. Use the AuthenticateField.convert method to parse this field.

Attributes:

GetAccess
public

 matlab.net.http.field.AuthenticateField class

1-6551

https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc2617

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Value property of AuthenticateField as

vector of AuthInfo objects, one for each
challenge in the header field, in the order
they appear in AuthenticateField.

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the same size and corresponding
elements are equal, as described by eq method

string Array of header fields as string, as it appears in a message. Inserts
newline characters between fields but not at the end of all fields.

char Array of header fields as character vector, as described by string
method

See Also
AuthInfo | Credentials | HTTPOptions | RequestMessage | ResponseMessage |
StatusCode | matlab.net.http.field.AuthorizationField

1 Alphabetical List

1-6552

External Websites
RFC 7235 Hypertext Transfer Protocol (HTTP/1.1): Authentication
RFC 2617 HTTP Authentication: Basic and Digest Access Authentication

Introduced in R2016b

 matlab.net.http.field.AuthenticateField class

1-6553

https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc2617

matlab.net.http.field.AuthenticationInfoField
class
Package: matlab.net.http.field
Superclasses:

HTTP Authentication-Info header field in response message

Description
An AuthenticationInfoField object contains information about a successful Digest
authentication. A server or proxy creates an Authentication-Info header field in a
response message.

Since this field appears only in response messages, you do not normally create one of
these fields. Use this field only if you are implementing your own authentication protocol
or one that MATLAB does not automatically support.

If you use the automatic authentication provided by MATLAB by specifying the
Credentials property in HTTPOptions, you do not need to access this field.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.AuthenticationInfoField(name) creates an
Authentication-Info header field with the Name property set to name with no value.

1 Alphabetical List

1-6554

obj = matlab.net.http.field.AuthenticationInfoField(name,value)
creates a header field with the Value property set to value.

Properties
Name — Header field name
'Authentication-Info' | 'Proxy-Authentication-Info'

Header field name, specified as 'Authentication-Info' or 'Proxy-
Authentication-Info'.

Attributes:

GetAccess
public

SetAccess
public

Value — Header field value
string

Header field value, specified as a comma-separated list of token=value strings.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

 matlab.net.http.field.AuthenticationInfoField class

1-6555

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Value property of

AuthenticationInfoField as vector of
AuthInfo objects containing tokens and
values

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the same size and
corresponding elements are equal, as described by eq
method

string Array of header fields as string, as it appears in a
message. Inserts newline characters between fields but
not at the end of all fields.

char Array of header fields as character vector, as described by
string method

See Also
AuthInfo | HTTPOptions

External Websites
RFC 7615 — HTTP Authentication-Info and Proxy-Authentication-Info Response Header
Fields
RFC 2617 — section 3.2.3 The Authentication-Info Header

1 Alphabetical List

1-6556

https://tools.ietf.org/html/rfc7615
https://tools.ietf.org/html/rfc7615
https://tools.ietf.org/html/rfc2617#section-3.2.3

RFC 2617 — section 3.6 Proxy-Authentication and Proxy-Authorization

Introduced in R2016b

 matlab.net.http.field.AuthenticationInfoField class

1-6557

https://tools.ietf.org/html/rfc2617#section-3.6

matlab.net.http.field.AuthorizationField
class
Package: matlab.net.http.field
Superclasses:

HTTP Authorization or Proxy-Authorization header field

Description
An AuthorizationField object contains credentials in a request message in response
to a challenge from a server in an AuthenticateField. The credentials are in the form
of an AuthInfo object. For a description of these fields, see RFC 7235 section 4.2 and
section 4.4.

MATLAB automatically creates this field when:

• HTTPOptions.Authenticate property is true (default) in a request message.
• You have specified appropriate credentials in the HTTPOptions.Credentials

property.
• MATLAB supports the authentication scheme requested by the server.

You create this field explicitly when you disable automatic authentication or implement an
unsupported authentication protocol. If you create this field explicitly, then set the Value
property to a valid authorization string or an AuthInfo object.

To see the AuthorizationField that was sent to the server for automatic
authentication, examine the completed request or history arguments returned by the
RequestMessage.send method.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

1 Alphabetical List

1-6558

https://tools.ietf.org/html/rfc7235#section-4.2
https://tools.ietf.org/html/rfc7235#section-4.4

Creation

Description
obj = matlab.net.http.field.AuthorizationField(name,value) creates an
authorization header field with the Name property set to name and the Value property set
to value. Create this field if you disabled automatic authentication or to implement an
unsupported authentication protocol.

Properties
Name — Header field name
'Authorization' | 'Proxy-Authorization'

Header field name, specified as 'Authorization' or 'Proxy-Authorization'.

Attributes:

GetAccess
public

SetAccess
public

Value — Authorization
string | matlab.net.http.AuthInfo object

Authorization, specified as a valid authorization string or a
matlab.net.http.AuthInfo object.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

 matlab.net.http.field.AuthorizationField class

1-6559

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Value property of AuthorizationField

as vector of AuthInfo objects.

There is only one AuthInfo object in an
AuthorizationField. If you pass in a
vector of AuthorizationField objects,
convert returns an equal-size vector of
AuthInfo objects. The parameters in
AuthInfo correspond to parameters of the
credentials in the AuthorizationField.
This set of parameters varies depending on
the AuthInfo.Scheme property, which is
the first token in the field.

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the same size and
corresponding elements are equal, as described by eq method

string Array of header fields as string, as it appears in a message.
Inserts newline characters between fields but not at the end of all
fields.

char Array of header fields as character vector, as described by
string method

1 Alphabetical List

1-6560

Examples

View AuthorizationField Credentials in Request

import matlab.net.http.*
creds = Credentials('Username','MyName','Password','MyPassword');
options = HTTPOptions('Credentials', creds);
[response, request] = RequestMessage().send('http://myhost.com',options);
authorizationField = request.getFields('Authorization');
authInfo = authorizationField.convert;
disp(string(authInfo));

See Also

External Websites
RFC 7235, section 4.2 Authorization
RFC 7235, section 4.4 Proxy-Authorization

Introduced in R2016b

 matlab.net.http.field.AuthorizationField class

1-6561

https://tools.ietf.org/html/rfc7235#section-4.2
https://tools.ietf.org/html/rfc7235#section-4.4

matlab.net.http.field.ContentDispositionFiel
d class
Package: matlab.net.http.field
Superclasses:

HTTP Content-Disposition header field

Description
Use a ContentDispositionField object to specify a Content-Disposition header field,
which is commonly used in multipart form requests.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.ContentDispositionField(value) creates a
Content-Disposition header field with the Value property set to value.

Properties
Name — Header field name
'Content-Disposition'

Header field name, specified as 'Content-Disposition'.

1 Alphabetical List

1-6562

Attributes:

GetAccess
public

SetAccess
public

Value — Media type
matlab.net.http.MediaType object | string

Media type specified as a single matlab.net.http.MediaType object or string
acceptable to the MediaType constructor. The value must not contain a quality 'q'
parameter.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> getParameter setParameter removeParameter
addFields removeFields changeFields replaceFields getFields eq
convertLike parse displaySubclasses </infotypegroup>

 matlab.net.http.field.ContentDispositionField class

1-6563

Specialized for Subclass
convert Value property of

ContentDispositionField as matrix of
parameter names and values. Column 1
contains the name of the parameter and
column 2 is its value. For an unnamed
parameter, for example the Type property,
column 1 contains "".

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
MediaType

Introduced in R2018a

1 Alphabetical List

1-6564

matlab.net.http.field.ContentLengthField
class
Package: matlab.net.http.field
Superclasses: ,

HTTP Content-Length field

Description
A ContentLengthField object is an HTTP header field in a request or a response
message that specifies the length of the payload in bytes.

MATLAB requires all outbound messages with a payload to contain a Content-Length
field. If a message contains a nonempty body, MATLAB creates a Content-Length field
based on the length of the data. For more information, see RFC 7231, section 3.3.2.
Content-Length.

Response messages might or might not contain this field.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.ContentLengthField(value) creates a Content-
Length header field with the Value property set to value.

 matlab.net.http.field.ContentLengthField class

1-6565

https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7230#section-3.3.2

Properties
Name — Header field name
'Content-Length'

Header field name, specified as 'Content-Length'.

Attributes:

GetAccess
public

SetAccess
public

Value — Length of payload
nonnegative integer | string

Length of payload in bytes, specified as a nonnegative integer or a string that evaluates to
a nonnegative integer.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

1 Alphabetical List

1-6566

Specialized for Subclass
convert Return Value property of

ContentLengthField as integer of type
double

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also

External Websites
RFC 7231, section 3.3.2. Content-Length

Introduced in R2016b

 matlab.net.http.field.ContentLengthField class

1-6567

https://tools.ietf.org/html/rfc7230#section-3.3.2

matlab.net.http.field.ContentLocationField
class
Package: matlab.net.http.field
Superclasses: ,

HTTP Content-Location header field

Description
A ContentLocationField object contains a uniform resource identifier (URI). A server
inserts a Content-Location field in a response message.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Properties
Name — Header field name
'Content-Location'

Header field name, specified as 'Content-Location'.

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6568

Value — URI
matlab.net.URI object | string

URI, specified as a matlab.net.URI object or a string acceptable to the URI
constructor. Value must not contain a Fragment property.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Return Value of ContentLocationField

as matlab.net.URI object

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

 matlab.net.http.field.ContentLocationField class

1-6569

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
matlab.net.URI

Introduced in R2016b

1 Alphabetical List

1-6570

matlab.net.http.field.ContentTypeField class
Package: matlab.net.http.field
Superclasses: ,

HTTP Content-Type header field

Description
A ContentTypeField object is an HTTP header field in a request or response message.
The field contains a single media type specification indicating the type of content in the
body of the message.

In a request message, a Content-Type field determines how data specified in the
MessageBody.Data property is converted. For information on this conversion, see
“HTTP Data Type Conversion”. If a request message contains a nonempty body, but does
not contain a Content-Type field, then MATLAB creates a Content-Type field based on the
data type.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.ContentTypeField(value) creates a Content-
Type header field with the Value property set to value.

 matlab.net.http.field.ContentTypeField class

1-6571

Properties
Name — Header field name
'Content-Type'

Header field name, specified as 'Content-Type'.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Value — Media type
matlab.net.http.MediaType object | string

Media type, specified as a matlab.net.http.MediaType object or a string acceptable
to the MediaType constructor. Value cannot contain a quality ('q') parameter.
Example: 'text/html;charset=utf-8'

Attributes:

GetAccess
public

SetAccess
public

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

1 Alphabetical List

1-6572

Specialized for Subclass
convert Parse ContentTypeField as a comma-

separated list of values and converts each
Value property to a MediaType object.
Each value is a media-type expression as
defined in RFC 7231 Media Type, section
3.1.1.1.

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method.

string Array of header fields as string, as it
appears in a message. Insert newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method.

See Also
MediaType | MessageBody | RequestMessage | ResponseMessage

Topics
“HTTP Data Type Conversion”

External Websites
RFC 7231 Semantics and Content, section 3.1.1.5. Content-Type
RFC 7231 Media Type, section 3.1.1.1

Introduced in R2016b

 matlab.net.http.field.ContentTypeField class

1-6573

https://tools.ietf.org/html/rfc7231#section-3.1.1
https://tools.ietf.org/html/rfc7231#section-3.1.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1

matlab.net.http.field.CookieField class
Package: matlab.net.http.field
Superclasses:

HTTP Cookie header field

Description
If there are cookies in a Set-Cookie field, then you can send them to a server by including
a CookieField object in your request message. For more information, see RFC 6265
HTTP State Management Mechanism.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.CookieField(value) creates a Cookie header field
with the Value property set to value.

Properties
Name — Header field name
'Cookie'

Header field name, specified as 'Cookie'.

1 Alphabetical List

1-6574

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265

Attributes:

GetAccess
public

SetAccess
public

Value — Cookie
string

Cookie, specified as a string.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Vector of Cookie objects in CookieField

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

 matlab.net.http.field.CookieField class

1-6575

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

Examples

Send All Received HTTP Cookies Back to Server

This example sends all cookies to a server. In practice, you would send only unexpired
cookies.

If the initial exchange involves multiple messages for authentication and redirection, you
might want to obtain the CookieInfo object from the history containing all these
messages. For more information, see CookieInfo.collectFromLog.

r = matlab.net.http.RequestMessage;
resp = send(r,'https://www.mathworks.com');
setCookieFields = resp.getFields('Set-Cookie');
if ~isempty(setCookieFields)
 % fetch all CookieInfos from Set-Cookie fields and add to request
 cookieInfos = setCookieFields.convert;
 r = r.addFields(matlab.net.http.field.CookieField([cookieInfos.Cookie]));
end
resp = r.send('https://www.mathworks.com');

See Also
Cookie | CookieInfo | RequestMessage | ResponseMessage |
matlab.net.http.field.SetCookieField

External Websites
RFC 6265 HTTP State Management Mechanism

1 Alphabetical List

1-6576

https://tools.ietf.org/html/rfc6265

Introduced in R2016b

 matlab.net.http.field.CookieField class

1-6577

matlab.net.http.field.DateField class
Package: matlab.net.http.field
Superclasses: ,

HTTP Date header field

Description
A DateField object represents an HTTP Date header field. A Date field is an optional
field that represents the date and time a request or a response message was originally
sent. If you do not specify a Date field in a request message, then MATLAB inserts one
when you send it.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.DateField(value) creates a Date header field
with the Value property set to value.

obj = matlab.net.http.field.DateField sets the field value to the current date
and time.

1 Alphabetical List

1-6578

Properties
Name — Header field name
'Date'

Header field name, specified as 'Date'.

Attributes:

GetAccess
public

SetAccess
public

Value — Date and time
current date and time (default) | datetime | string

Date and time, specified as a datetime object or a string in a valid HTTP date format.
The default is the current date and time. Value must not be in the future. If the time zone
is missing, then the local time zone is assumed. The datetime Format property is
ignored.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

 matlab.net.http.field.DateField class

1-6579

Specialized for Subclass
convert Value property of DateField as array of

MATLAB datetime objects

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
datetime

External Websites
RFC 7231 Semantics and Content, section 7.1.1.2 Date

Introduced in R2016b

1 Alphabetical List

1-6580

https://tools.ietf.org/html/rfc7231#section-7.1.1.2

matlab.net.http.field.GenericField class
Package: matlab.net.http.field
Superclasses:

HTTP header field with any name and value

Description
Use a GenericField header field for testing or to work around a built-in restriction that
might not be appropriate for your application. The HeaderField class and its subclasses
validate the Value property for the given Name property. To override a Value that might
otherwise be rejected, create a GenericField header field.

If a header field in a response message contains a value that is not valid for the field
name, then MATLAB creates a GenericField object.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Creation

Description
obj = matlab.net.http.field.GenericField(name,value) creates an HTTP
header field with the Name property set to name and the Value property set to value.

 matlab.net.http.field.GenericField class

1-6581

Properties
Name — Header field name
string | character vector

Header field name, specified as a string or character vector.

Attributes:

GetAccess
public

SetAccess
public

Value — Header value
string | character vector

Header value, specified as a string or character vector.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> getParameter setParameter removeParameter
addFields removeFields changeFields replaceFields getFields eq
convertLike parse displaySubclasses </infotypegroup>

1 Alphabetical List

1-6582

Specialized for Subclass
convert Value property of header field as MATLAB

type.

MATLAB checks the
matlab.net.http.field package for a
class with the GenericField.Name
property. If there is a class for this field,
then convert invokes the convert
method of that class.

If the conversion fails or if no class
supports this Name property, then convert
throws an exception.

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the same size and
corresponding elements are equal, as described by eq method

string Array of header fields as string, as it appears in a message.
Inserts newline characters between fields but not at the end of
all fields.

char Array of header fields as character vector, as described by
string method

Examples

Override Content-Length Header Field Value

A Content-Length header field must contain a number.

The following statement generates an error.

field = matlab.net.http.field.ContentLengthField('abc');

 matlab.net.http.field.GenericField class

1-6583

For a character value, create a GenericField object.

field = matlab.net.http.field.GenericField('Content-Length','abc');

See Also
HeaderField | RequestMessage | ResponseMessage |
matlab.net.http.field.ContentLengthField

Introduced in R2016b

1 Alphabetical List

1-6584

getParameter
Class: matlab.net.http.field.GenericField
Package: matlab.net.http.field

Return value of parameter in field

Syntax
[value,actname] = getParameter(field,name)

Description
[value,actname] = getParameter(field,name) returns the value of parameter
name. If the parameter does not exist, then getParameter returns empty ([]).

Input Arguments
field — Header field
matlab.net.http.field.GenericField object

Header field, specified as a matlab.net.http.field.GenericField object.

name — Parameter name
string | character vector | "" | ''

Parameter name, specified as a string or a character vector.

The name must be a valid token, containing only characters defined in RFC 7230 Field
Value Components, section 3.2.6. To set an unnamed parameter, use "" or ''.

Name matching is not case-sensitive, but value is case-sensitive. If name matches an
existing parameter, but with a different case, then the parameter name is changed to the
case of the specified name.

If there are multiple matching parameters, then all are changed to value.

 getParameter

1-6585

https://tools.ietf.org/html/rfc7230#section-3.2.6
https://tools.ietf.org/html/rfc7230#section-3.2.6

Output Arguments
value — Parameter value
string | string vector | empty string

Parameter value returned as a string. If there are multiple matches, then value and
actname are string vectors. If there are no matches, then value and actname are empty
string arrays. The method removes quotes surrounding the parameter value from value.

actname — Actual parameter name
string | string vector | empty string

Actual parameter name returned as a string, string vector, or empty string.

See Also
Introduced in R2018a

1 Alphabetical List

1-6586

removeParameter
Class: matlab.net.http.field.GenericField
Package: matlab.net.http.field

Remove parameter from field

Syntax
field = removeParameter(field,name)

Description
field = removeParameter(field,name) removes all instances of the named
parameter and its value and returns the modified field. If the parameter does not exist,
then removeParameter does nothing.

Input Arguments
field — Header field
matlab.net.http.field.GenericField object

Header field, specified as a matlab.net.http.field.GenericField object.

name — Parameter name
string | character vector

Parameter name, specified as a string or a character vector.

Name matching is not case-sensitive, but value is case-sensitive. If name matches an
existing parameter, but with a different case, then the parameter name is changed to the
case of the specified name. If there are multiple matching parameters, then all are
removed.

 removeParameter

1-6587

See Also
Introduced in R2018a

1 Alphabetical List

1-6588

setParameter
Class: matlab.net.http.field.GenericField
Package: matlab.net.http.field

Set value of parameter in field

Syntax
field = setParameter(field,name,value)

Description
field = setParameter(field,name,value) sets the value of the parameter name
and returns the modified field.

The returned field.Value might be reformatted to remove extraneous whitespace in
the original value.

Input Arguments
field — Header field
matlab.net.http.field.GenericField object

Header field, specified as a matlab.net.http.field.GenericField object.

name — Parameter name
string | character vector | "" | ''

Parameter name, specified as a string or a character vector.

The name must be a valid token, containing only characters defined in RFC 7230 Field
Value Components, section 3.2.6. To set an unnamed parameter, use "" or ''.

 setParameter

1-6589

https://tools.ietf.org/html/rfc7230#section-3.2.6
https://tools.ietf.org/html/rfc7230#section-3.2.6

Name matching is not case-sensitive, but value is case-sensitive. If name matches an
existing parameter, but with a different case, then the parameter name is changed to the
case of the specified name.

If there are multiple matching parameters, then all are changed to value.

value — Parameter value
string | character vector

Parameter value, specified a string or character vector. value can contain any
characters. If it contains characters not allowed in a token, and is not already quoted, the
method adds quotes. An empty string is inserted as paired double-quotes ("").

See Also
Introduced in R2018a

1 Alphabetical List

1-6590

matlab.net.http.field.GenericParameterizedF
ield class
Package: matlab.net.http.field
Superclasses:

GenericField to support parameterized syntax

Description
A GenericParameterizedField object is a version of a GenericField object that
supports the following parameterized syntax.

Type; param1=value1; param2=value2; param3=value3; ...

Type is a token and each param=value pair represents the name and value of a
parameter. Type is optional, though subclasses can require it. Unlike GenericField,
this field only supports a single set of parameters (collectively called an "element"), not a
comma-separated list of elements.

Creation

Description
obj = GenericParameterizedField(name,value) creates an HTTP header field
with the Name property set to name and the Value property set to value. If value is a
string or character vector, then value is used as is. Otherwise, MATLAB attempts to
convert it to a string.

value should contain a type and semicolon-separated list of parameters in the following
form, where type is the value of the Type property and each param=value defines a
parameter. However, MATLAB does not enforce this syntax of value.

type; param1=value1; param2=value2; param3=value3; ...

 matlab.net.http.field.GenericParameterizedField class

1-6591

If value is an Nx2 string matrix, each row of the matrix represents a param=value
parameter of the field, in the form:

"" type
param1 value1
param2 value2

Any row with an empty name appears in the field as a value without a name. Normally the
first row is the Type. When using this form of the constructor, MATLAB checks that the
param names and the type are legal tokens. For param=value pairs, MATLAB quotes
values that contain reserved characters, if they are not already quoted, and escapes
double-quotes.

The type is optional. If not set, then it can be set later using the Type property or by
calling the method setParameter(obj,"",type).

obj = GenericParameterizedField(name,type,Name,Value) creates a header
field with the Type property set to type and parameters with additional options specified
by one or more Name,Value pair arguments.

This syntax is roughly the same as specifying the following string matrix argument:

obj = GenericParameterizedField(NAME, ["" TYPE; PARAM1 VALUE1; PARAM2 VALUE2; ...])

Properties
Type — Field Type property
string | string array

Field Type property specified as a string. The value is equal to any token in the field's
value that is not part of a name=value pair. If there is more than one, then Type is a
string array containing all such tokens. There is normally one token at the start of the
value that is considered the type of the value.

For example, in the following statement, the Type property is MYTYPE.

MYTYPE; foo=bar; abc=def; hij=klm

In the following statement, there is no Type, so the Type property is "".

foo=bar; abc=def; hij=klm

1 Alphabetical List

1-6592

To remove all tokens, set Type to an empty array or an empty string.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Name — Field name
string | character vector

Field name specified as a string or character vector. This property is inherited from
superclass matlab.net.http.HeaderField.

Attributes:

GetAccess
public

SetAccess
public

Value — Field value
string | any type valid for Name

Field value specified as a string or any type valid for the Name property. This property is
inherited from superclass matlab.net.http.HeaderField.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

 matlab.net.http.field.GenericParameterizedField class

1-6593

Methods

Public Methods
<infotypegroup type="method"> getParameter setParameter removeParameter
addFields removeFields changeFields replaceFields getFields eq
convertLike parse displaySubclasses </infotypegroup>

Specialized for Subclass
convert Value property as matrix of parameter

names and values. Column 1 contains the
name of the parameter and column 2 is its
value. For an unnamed parameter, for
example the Type property, column 1
contains "".

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
Introduced in R2018a

1 Alphabetical List

1-6594

matlab.net.http.field.HTTPDateField class
Package: matlab.net.http.field
Superclasses:

HTTP header field containing date

Description
An HTTPDateField object is an HTTP header field containing a date. The fields
implemented by this class contain a single date in standard HTTP date format.

Creation

Description
obj = matlab.net.http.field.HTTPDateField(name) creates an HTTP date
header field with the Name property set to name.

obj = matlab.net.http.field.HTTPDateField(name,value) sets the Value
property to value.

Properties
Name — Date field name
'Date' | 'Expires' | 'Retry-After' | 'Accept-Datetime' | 'Last-Modified' |
'If-Modified-Since'

Date field name, specified as a string of one of these values: 'Date', 'Expires',
'Retry-After', 'Accept-Datetime', 'Last-Modified', or 'If-Modified-
Since'.

To create a Date field, use the matlab.net.http.field.DateField subclass.

 matlab.net.http.field.HTTPDateField class

1-6595

Attributes:

GetAccess
public

SetAccess
public

Value — Date
datetime | string

Date, specified as a datetime object or a string in a valid HTTP date format as specified
in RFC 7231 Semantics and Content, section 7.1.1.1. Date/Time Formats. If a datetime
object does not have a time zone, then it is assumed to be local.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Value property of HTTPDateField as

array of MATLAB datetime objects.
convert interprets the field as a comma-
separated list of quoted HTTP dates.

1 Alphabetical List

1-6596

https://tools.ietf.org/html/rfc7231#section-7.1.1.1

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
matlab.net.http.field.DateField

External Websites
RFC 7231 Semantics and Content, section 7.1.1.1. Date/Time Formats

Introduced in R2016b

 matlab.net.http.field.HTTPDateField class

1-6597

https://tools.ietf.org/html/rfc7231#section-7.1.1.1

matlab.net.http.field.IntegerField class
Package: matlab.net.http.field
Superclasses:

Base class for HTTP header fields containing nonnegative integers

Description
Use the IntegerField class to construct a header field containing a nonnegative
integer, for which there is no existing class in the matlab.net.http.field package.

Creation

Description
obj = matlab.net.http.field.IntegerField(name,value) creates an HTTP
header field with the Name property set to name and the Value property set to value.

Properties
Name — Header field name
string

Header field name, specified as a string. Any Name, except names shown by the
matlab.net.http.HeaderField.displaySubclasses method, can be used.

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6598

Value — Integer value
string

Integer value, specified as a string representing any real, nonnegative numeric type.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Value property of IntegerField as

integer of type double

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

 matlab.net.http.field.IntegerField class

1-6599

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
matlab.net.http.HeaderField.displaySubclasses

Introduced in R2016b

1 Alphabetical List

1-6600

matlab.net.http.field.LocationField class
Package: matlab.net.http.field
Superclasses: ,

HTTP Location header field

Description
A LocationField object contains the message uniform resource identifier (URI). The
server adds a Location field to a response message to tell you to redirect messages to
another URI. The meaning of this field depends on the status code of the response.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Properties
Name — Header field name
'Location'

Header field name, specified as 'Location'.
Attributes:

GetAccess
public

SetAccess
public

Value — URI
matlab.net.URI object | string

 matlab.net.http.field.LocationField class

1-6601

URI, specified as a matlab.net.URI object or a string acceptable to the URI
constructor.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> convertLike parse addFields removeFields
changeFields replaceFields getFields eq displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Return Value property of LocationField

as matlab.net.URI object

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

1 Alphabetical List

1-6602

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
matlab.net.URI | matlab.net.http.StatusCode

External Websites
RFC 3986 — Uniform Resource Identifier (URI): Generic Syntax

Introduced in R2016b

 matlab.net.http.field.LocationField class

1-6603

https://tools.ietf.org/html/rfc3986

matlab.net.http.field.MediaRangeField class
Package: matlab.net.http.field
Superclasses:

Base class for HTTP Content-Type and Accept header fields

Description
The MediaRangeField class is the base class for Content-Type and Accept header fields.
Fields in a MediaRangeField object contain a comma-separated list of strings, which the
MediaType class interprets.

Properties
Name — Header field name
string

Header field name, specified as a string.

Attributes:

GetAccess
public

SetAccess
public

Value — Header field value
string

Header field value, specified as a string.

Attributes:

GetAccess
public

1 Alphabetical List

1-6604

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Parse MediaRangeField as a comma-

separated list of values and converts each
Value property to a MediaType object.
Each value is a media-type expression as
defined in RFC 7231 Media Type, section
3.1.1.1.

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method.

string Array of header fields as string, as it
appears in a message. Insert newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method.

 matlab.net.http.field.MediaRangeField class

1-6605

https://tools.ietf.org/html/rfc7231#section-3.1.1
https://tools.ietf.org/html/rfc7231#section-3.1.1

See Also
matlab.net.http.MediaType | matlab.net.http.field.AcceptField |
matlab.net.http.field.ContentTypeField

External Websites
RFC 7231 Media Type, section 3.1.1.1

Introduced in R2016b

1 Alphabetical List

1-6606

https://tools.ietf.org/html/rfc7231#section-3.1.1

matlab.net.http.field.SetCookieField class
Package: matlab.net.http.field
Superclasses:

HTTP Set-Cookie header field

Description
A SetCookieField object appears in a response message created by the server. A
message can have one or more Set-Cookie fields. To extract the Value property as a
CookieInfo object, call the convert method.

Class Attributes
Sealed

true

For information on class attributes, see “Class Attributes”.

Properties
Name — Header field name
'Set-Cookie'

Header field name, specified as 'Set-Cookie'.
Attributes:

GetAccess
public

SetAccess
public

Value — Header field value
string

 matlab.net.http.field.SetCookieField class

1-6607

Header field value, specified as a string.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods
Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convert convertLike parse displaySubclasses
</infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

string Array of header fields as string, as it
appears in a message. Insert newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method.

Examples

Obtain Information from All Set-Cookie Fields in HTTP Message
r = matlab.net.http.RequestMessage();
uri = matlab.net.URI('http://httpbin.org/cookies/set?xxx=zzz&abc=def');

1 Alphabetical List

1-6608

opts = matlab.net.http.HTTPOptions('MaxRedirects',0);
resp = r.send(uri,opts);
setCookieFields = resp.getFields('Set-Cookie');
if ~isempty(setCookieFields)
 cookieInfos = setCookieFields.convert(uri);
 r = r.addFields(matlab.net.http.field.CookieField([cookieInfos.Cookie]));
end
resp = r.send('http://httpbin.org/cookies');
disp(resp.Body.Data.cookies)

 abc: 'def'
 xxx: 'zzz'

See Also
Cookie | CookieInfo | ResponseMessage

Introduced in R2016b

 matlab.net.http.field.SetCookieField class

1-6609

convert
Class: matlab.net.http.field.SetCookieField
Package: matlab.net.http.field

Returns CookieInfo object for each Set-Cookie field

Syntax
value = convert(fields)
value = convert(fields,uri)

Description
value = convert(fields) returns a CookieInfo object for each Set-Cookie field. A
SetCookieField contains information about one cookie. If the server sends multiple
cookies, then there are multiple SetCookieField objects.

value = convert(fields,uri) compares uri against or initializes the
CookieInfo.Domain property.

Input Arguments
fields — Set-Cookie header field
matlab.net.http.field.SetCookieField object

Set-Cookie header field, specified as a matlab.net.http.field.SetCookieField
object.

uri — URI
matlab.net.URI object

URI, specified as a matlab.net.URI object. The URI is that of the request, used to
compare against or initialize the CookieInfo.Domain property.

1 Alphabetical List

1-6610

If the SetCookieField does not contain a Domain attribute, then the
CookieInfo.Domain property is set to the URI.Host property.

If there is a Domain attribute, its value must domain-match the URI.Host or no
CookieInfo is returned for that SetCookieField. If it matches, then the Domain
property is set to the Domain attribute. For information on domain matching, see RFC
6265 section 5.1.3 and section 5.3, step 6.

If you do not specify a URI, then the CookieInfo.Domain property is not set or checked.
Use this syntax if you do not intend to use the Domain attribute to manage your cookie
store.

Output Arguments
value — CookieInfo
vector of matlab.net.http.CookieInfo objects

CookieInfo object, returned as a vector of matlab.net.http.CookieInfo objects
corresponding to the Set-Cookie fields in the fields vector.

See Also

External Websites
RFC 6265, section 5.1.3 Domain Matching
RFC 6265, section 5.3 Storage Model step 6

Introduced in R2016b

 convert

1-6611

https://tools.ietf.org/html/rfc6265#section-5.1.3
https://tools.ietf.org/html/rfc6265#section-5.3

matlab.net.http.field.URIReferenceField
class
Package: matlab.net.http.field
Superclasses:

Base class for HTTP header fields containing URI components

Description
The URIReferenceField class is a base class for creating Location and Content-
Location header fields. Use the URIReferenceField class to construct different header
fields containing a single URI or a portion of a URI.

Creation
obj = matlab.net.http.field.URIReferenceField(name,value) creates an
HTTP header field with the Name property set to name and the Value property set to
value.

Properties
Name — Header field name
string

Header field name, specified as a string. Any Name, except names shown by the
matlab.net.http.HeaderField.displaySubclasses method, can be used.

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6612

Value — URI
matlab.net.URI | string

URI, specified as a matlab.net.URI object or a string acceptable to the URI
constructor.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Methods

Public Methods
<infotypegroup type="method"> addFields removeFields changeFields
replaceFields getFields eq convertLike parse displaySubclasses </
infotypegroup>

Specialized for Subclass
convert Value property of URIReferenceField as

matlab.net.URI object

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

isequal true if two header field arrays are the
same size and corresponding elements are
equal, as described by eq method

 matlab.net.http.field.URIReferenceField class

1-6613

string Array of header fields as string, as it
appears in a message. Inserts newline
characters between fields but not at the
end of all fields.

char Array of header fields as character vector,
as described by string method

See Also
matlab.net.URI | matlab.net.http.HeaderField.displaySubclasses |
matlab.net.http.field.ContentLocationField |
matlab.net.http.field.LocationField

External Websites
RFC 3986 — Uniform Resource Identifier (URI): Generic Syntax

Introduced in R2016b

1 Alphabetical List

1-6614

https://tools.ietf.org/html/rfc3986

matlab.net.ArrayFormat class
Package: matlab.net

Convert arrays in HTTP queries

Description
Use an ArrayFormat enumeration with the matlab.net.QueryParameter class to
control the format used to convert query values representing multiple values.

Enumeration Member Name Description
csv Format that generates a comma-separated

list, such as parm=1,2,3
json Format that generates a JSON-like array,

such as parm=[1,2,3]
php Format that generates a name with

brackets and multiple values, such as
parm[]=1&[]=2&[]=3

repeating Format that generates repeating name/
value pairs, such as parm=1&=2&=3

A query value is considered to contain multiple values when it is one of the following:

• Nonscalar number, string, logical, or datetime (Each element is a value.)
• m-by-n character array, where each row is interpreted as a string
• Cell vector, where each element is a value

Query values, except for character arrays, with more than one dimension are not
supported. In cell vectors, each element must be a scalar or character vector.

Attributes
Sealed true

 matlab.net.ArrayFormat class

1-6615

See Also
matlab.net.QueryParameter | matlab.net.URI

Topics
Class Attributes

Introduced in R2016b

1 Alphabetical List

1-6616

matlab.net.QueryParameter class
Package: matlab.net

Parameter in query portion of uniform resource identifier (URI)

Description
Use the QueryParameter class to create a URI query string of the form:

name1=value1&name2=value2&name3=value3

where each name=value segment is a QueryParameter object, converted to a string
using the string method. The string method on a vector of QueryParameter objects
joins the results using the & character. The string method converts any values to strings
and performs all necessary encoding of special characters in the result.

Construction
obj = matlab.net.QueryParameter creates an empty query parameter.

obj = matlab.net.QueryParameter(paramName,paramValue) creates a query
parameter vector of paramName,paramValue pair arguments. You can specify several
argument pairs in any order as
paramName1,paramValue1,...,paramNameN,paramValueN.

obj = matlab.net.QueryParameter(qStruct) creates a query parameter vector
from a structure.

obj = matlab.net.QueryParameter(queryStr) parses queryStr into the query.

obj = matlab.net.QueryParameter(___ ,Format) specifies the format to be used
for nonscalar values, and can include any of the input arguments in previous syntaxes.

 matlab.net.QueryParameter class

1-6617

Input Arguments
paramName — Parameter name
string | character vector

Parameter name, specified as a string or a character vector.

paramValue — Parameter value
type required by paramName

Parameter value, specified as a type required by paramName.

qStruct — Parameter names and values
structure

Parameter names and values, specified as a structure. The fields of qStruct define the
parameter names and values.
Data Types: struct

queryStr — Parameter names and values
string | character vector

Parameter names and values, specified as a string or a character vector. The queryStr is
a completed, encoded query as it would appear in a URI, with an optional leading ?
character.

queryStr is split at the & characters into individual name=value query parameters. The
Name property is set to name and the Value property is set to value.

A triplet of characters of the form % and two hex digits represents a percent-encoded
byte. A sequence of these bytes is treated as UTF-8 encoded characters, which are
decoded to form the Name and Value properties of the QueryParameters. Also, any plus
sign '+' in queryStr is treated as a space '%20'. When the QueryParameter is
converted back to a string, any required percent-encoding is performed only on
characters that should be encoded. This action is done whether or not those characters
were originally encoded in queryStr, so the result from the string method might not
exactly match queryStr. The meaning, however, is the same when used in a URI.

For example, the UTF-8 encoding for the euro sign € is E2 82 AC.

q1 = matlab.net.QueryParameter('V=%e2%82%ac')

1 Alphabetical List

1-6618

q1 =

 QueryParameter with properties:

 Name: "V"
 Value: "€"
 Format: csv

The + and %20 characters are treated as spaces.

q2 = matlab.net.QueryParameter('V=a+b%20c')

q2 =

 QueryParameter with properties:

 Name: "V"
 Value: "a b c"
 Format: csv

The string method implements percent-encoding on characters that require encoding.
For example, the € is encoded.

string(q1)

ans = V=%E2%82%AC

However, the characters in the queryStr argument 'V=a+b%20c' do not need encoding.

q3 = string(q2)

q3 = V=a+b+c

Although the result from the string method does not match queryStr, the values are
identical when used in a URI.

Properties
Name — Parameter name
string | character vector

Parameter name, specified as a string or a character vector.

 matlab.net.QueryParameter class

1-6619

Value — Parameter value
real number | logical | datetime | string | character vector

Parameter value, specified as a real number, logical, datetime (with value other than
NaT), string, character vector, or a vector or cell vector of these values. If Value is any
other type, then Value must support string or char methods that convert the value to a
character vector. If empty, Value is treated as an empty string.

Format — Encoding format
matlab.netArrayFormat.csv (default) | matlab.netArrayFormat enumeration

Encoding format, specified as a matlab.net.ArrayFormat enumeration, to use for
encoding Value if it is a vector.

Methods
char Encoded query parameter as character vector
string Encoded query parameter as string

Attributes
Sealed true

Examples

Create HTTP Query Parameters from Structure

Create a structure field name this and set it to the value that.

qStruct.this = 'that';
QP = matlab.net.QueryParameter(qStruct)

QP =
 QueryParameter with properties:

 Name: "this"

1 Alphabetical List

1-6620

 Value: 'that'
 Format: csv

Create HTTP Query Parameters from Character Vector

Create a character vector with two queries, this=that and one=2. The
QueryParameter method splits qStr at the & character into two QueryParameter
objects.

qStr = '?this=that&one=2';
QPs = matlab.net.QueryParameter(qStr);

The name=value pairs in qStr define the Name and Value properties.

name1 = QPs(1).Name

name1 =
"this"

value1 = QPs(1).Value

value1 =
"that"

name2 = QPs(2).Name

name2 =
"one"

value2 = QPs(2).Value

value2 =
"2"

See Also
matlab.net.ArrayFormat | matlab.net.URI

Topics
Class Attributes

 matlab.net.QueryParameter class

1-6621

Introduced in R2016b

1 Alphabetical List

1-6622

char
Class: matlab.net.QueryParameter
Package: matlab.net

Encoded query parameter as character vector

Syntax
str = char(obj)

Description
str = char(obj) returns a QueryParameter object as an encoded MATLAB character
vector.

Input Arguments
obj — Query parameter
matlab.net.QueryParameter object

Query parameter, specified as one or more matlab.net.QueryParameter objects.

Output Arguments
str — Query parameter
character vector

Query parameter, returned as a character vector. For more information, see string.

See Also
string

 char

1-6623

Introduced in R2016b

1 Alphabetical List

1-6624

string
Class: matlab.net.QueryParameter
Package: matlab.net

Encoded query parameter as string

Syntax
str = string(obj)

Description
str = string(obj) returns a QueryParameter object as an encoded string.

Input Arguments
obj — Query parameter
matlab.net.QueryParameter object

Query parameter, specified as one or more matlab.net.QueryParameter objects. If
obj is a vector of QueryParameter objects, then the method returns a single string
joining the encoded members with & character. If obj is empty, then the method returns
"".

Output Arguments
str — Query parameter
string

Query parameter, returned as a string.

str is of the form name=value, where name is the Name property and value is the
Value property, represented as a string. If Value is a cell array or nonscalar other than a

 string

1-6625

character vector, it is converted based on the Format property. The conversion might
result in multiple name=value pairs separated by the & character and including other
punctuation. Special characters in Name or Value that are not permitted in a query are
percent-encoded (%), except for space, which is encoded as +. For more information on
encoding, see the qStr argument to the QueryParameter constructor.

See Also
matlab.net.ArrayFormat | matlab.net.QueryParameter

Introduced in R2016b

1 Alphabetical List

1-6626

matlab.net.URI class
Package: matlab.net

Uniform resource identifier (URI)

Description
The matlab.net.URI class constructs an internet uniform resource identifier (URI),
such as a web address or a URL. An internet URI is a string divided into components.
Each component is represented by a property of the URI class. The following text shows
the properties and their associated punctuation, separated by spaces for clarity. The
spaces do not appear in the encoded URI. The associated punctuation is not part of the
property value.

Scheme: //Authority /Path(1) /Path(2) ... /Path(end) ?Query #Fragment

where Authority contains these properties:

UserInfo@ Host :Port

Use the matlab.net.URI string or char methods to create an internet URI. These
methods encode the properties by adding punctuation to nonempty properties and by
escaping reserved characters.

All properties are optional. However, different uses might require certain properties to be
set.

To eliminate a property and its punctuation from the output string, set the property value
to [].

Construction
obj = matlab.net.URI creates an empty URI.

obj = matlab.net.URI(destination) creates the URI specified by destination.

 matlab.net.URI class

1-6627

obj = matlab.net.URI(destination,queryVector) sets the Query property to
queryVector. Query values are appended to any query parameters already specified in
destination.

obj = matlab.net.URI(destination,queryName,queryValue) adds one or more
queryName,queryValue parameters to the Query property.

obj = matlab.net.URI(destination,queryVector,queryName,queryValue)
adds queryVector and the queryName,queryValue parameters to the Query property.

obj = matlab.net.URI(___ ,format) specifies the format of the output when an
array appears in a queryValue argument. You can use any of the input arguments in the
previous syntaxes.

obj = matlab.net.URI(___ ,'literal') indicates that destination is already
encoded. Use this option if you copy and paste an already-encoded URI, for example, from
the address bar of a browser. When you read properties of this URI directly, you see the
decoded version. The 'literal' option does not permit you to construct an illegal URI.
It prevents reencoding of '%' characters. Characters that must always be encoded, such
as '\' and ' ' in the Host or Path, are still percent-encoded.

This option has no effect on Query (matlab.net.QueryParameter) arguments.

Input Arguments
destination — Destination
string | character vector | matlab.net.URI object

Destination, specified as a string or a character vector specifying a URI or portions of
one, or a matlab.net.URI object. If destination is a matlab.net.URI object, then
destination must be the only argument.
Example: https://user:pwd@www.mathworks.com:8000/product/matlab?
abc=def&this=that#xyz All properties
Example: Host and Scheme properties: https://www.mathworks.com
Example: Host only: //www.mathworks.com
Example: Host and Path: //www.mathworks.com/products/matlab/
Example: Path only: products/matlab/live-editor

1 Alphabetical List

1-6628

Example: Host and Query: //www.mathworks.com/search/site_search.html?
q=weboptions

queryVector — Query property
matlab.net.QueryParameter object

Query property, specified as a vector of matlab.net.QueryParameter objects. A query
is of the form:

name1=value1&name2=value2&name3=value3

Example: matlab.net.QueryParameter('hl','en','ie','utf8','num',50)

queryName — Query name
string | character vector

Query name, specified as a string or a character vector. The web service defines
queryName,queryValue pairs that it accepts as part of a request. Do not encode
characters in queryName.

queryValue — Query value
character array | numeric | logical | datetime

Query value, specified as a character array, or a numeric, logical, or datetime value or
array. Do not encode characters in queryValue.

format — Output format
matlab.net.ArrayFormat object

Output format, specified as a matlab.net.ArrayFormat object when an array appears
in a queryValue argument. For allowed values, see ArrayFormat.

The format argument does not affect the format of values in the queryVector
argument.

Properties
Scheme — URI scheme
string | character vector

URI scheme, sometimes called protocol, appearing before the :// characters, specified
as a string or a character vector. Scheme always returns a string. If not empty, then

 matlab.net.URI class

1-6629

Scheme must be http or https. However, this convention is not enforced. MATLAB does
not support other schemes, such as file.
Example: http
Example: https

UserInfo — User information
string | character vector

User information, specified as a string or a character vector. UserInfo appears before
the Host property followed by an @ character. The string method percent-encodes
special characters. When setting UserInfo, do not encode the value.
Example: name
Example: name:password

Host — Host name
string or character vector in DNS name format | IPv4 or IPv6 address

Host name, specified as a string or a character vector. The value is in Domain Name
System (DNS) format or as an Internet Protocol version 4 (IPv4) or version 6 (IPv6)
address. The string method percent-encodes characters that are not allowed in the host
portion of a URI. Period characters (.) are unchanged. When setting Host, do not encode
the value.
Example: www.mathworks.com
Example: 2222:7344:0db8:0000:0100:8a2e:0370:85a3 IPv6 address

Port — Port number
number | string | character vector

Port number, specified as a number, or as a string or a character vector representing a
number in the range 0–65535, stored as a uint16.
Example: 8000

Path — Path segments
string | string vector | character vector | cell array of character vectors

Path segments, specified as a string or string vector or as a character vector or cell array
of character vectors. The result is always a vector of strings. To see the value of the
encoded path, use the EncodedPath property.

1 Alphabetical List

1-6630

A path in a URI is specified by the EncodedPath property. EncodedPath is a series of
segments separated by the / character, where each of those segments is a member of
Path.

Path(1)/Path(2)/Path(3)/.../Path(end)

The / characters do not appear in Path, but EncodedPath contains them. For example,

uri = matlab.net.URI;
uri.Path = {'products' 'matlab'};
P = uri.Path

P =
 "products" "matlab"

EP = uri.EncodedPath

EP = products/matlab

If you set Path to a character vector or scalar string that contains a / character, then the
value is split into segments at the / characters. The result is the same as specifying a
vector of strings or cell array of character vectors.

uri.Path = 'products/matlab';
P = uri.Path

P =
 "products" "matlab"

There is always one more Path segment than the number of / characters in
EncodedPath. Any segment can be an empty string. If Path(1) is an empty string, then
EncodedPath begins with /. If Path(end) is an empty string, then EncodedPath ends
with /.

uri.Path = '/products/matlab/';
EP = uri.EncodedPath

EP = /products/matlab/

When setting Path to a nonscalar string or cell array, characters not allowed in the path
portion of a URI are percent-encoded in EncodedPath. To include the # character,

uri.Path = {'foo#bar'};EP = uri.EncodedPath

EP = foo%23bar

 matlab.net.URI class

1-6631

Do not encode the # character. If you do, then the encoded characters are encoded again.

uri.Path = {'foo%23Fbar'};
EP = uri.EncodedPath

EP = foo%2523Fbar

Path can be relative or absolute. An absolute path is one with more than one segment,
whose first segment is empty. It is encoded as a string beginning with / character
followed by the second string. This definition of absolute path corresponds to path-
absolute, defined in RFC 3986 section 3.3. A relative path is one whose first string is
nonempty. It is encoded without a leading /. For example, create an absolute path:

uri1 = matlab.net.URI;
uri1.Path = {'' 'products' 'matlab'};
EP = uri1.EncodedPath

EP = /products/matlab

Create a relative path:

uri2 = matlab.net.URI;
uri2.Path = {'products' 'matlab'};
EP = uri2.EncodedPath

EP = products/matlab

If the URI contains a Scheme, Host, UserInfo or Port property, and Path is not empty,
then EncodedPath has a leading /. The / character separates Path from the other
properties. Therefore, the distinction between absolute and relative paths exists only for
URIs that do not contain Scheme, Host, UserInfo, or Port properties. For example,
uri1 is an absolute path.

uri1.EncodedPath

ans = /products/matlab

Set the Host:

uri1.Host = 'www.mathworks.com';
disp(string(uri1))

//www.mathworks.com/products/matlab

Set Host of relative path uri2:

1 Alphabetical List

1-6632

https://tools.ietf.org/html/rfc3986#section-3.3

uri2.EncodedPath

ans = products/matlab

uri2.Host = 'www.mathworks.com';
disp(string(uri2))

//www.mathworks.com/products/matlab

To create a URI with a path that points to the root, set Path to string.empty or [""
""].

uri.Path = {'products' 'matlab' ''};
EP = uri.EncodedPath

EP = products/matlab/

To set Path to a folder, add an empty string to the end of the vector. This convention adds
a trailing / to EncodedPath.

uri.Path = {'products' 'matlab' ''};
EP = uri.EncodedPath

EP = products/matlab/

Query — Query of URI
matlab.net.QueryParameter object | string

Query of URI, specified as a vector of matlab.net.QueryParameter objects or a string
containing the encoded query with an optional leading ? character.

Fragment — Direction to secondary resource
string | character vector

Direction to a secondary resource, specified as a string or a character vector. The string
method percent-encodes characters that are not allowed in the fragment portion of a URI.
When setting Fragment, do not encode the value.
Example: In the URI https://www.mathworks.com/help/matlab/ref/
weboptions.html#examples, the Fragment property is examples.

Absolute — Whether URI is absolute (read-only)
true | false

Whether URI is absolute, specified as true or false. An absolute URI has a nonempty
Scheme property. If the URI is not absolute, then it is relative. For a definition of

 matlab.net.URI class

1-6633

absolute-URI, see RFC 3986 Uniform Resource Identifier (URI): Generic Syntax —
Section 4.3 Absolute URI.

The Path property in an absolute URI is always treated as an absolute path and the
EncodedPath property always contains a leading / character. To send a message, the
URI must be absolute and must also contain a nonempty Host property.
Data Types: logical

EncodedAuthority — Encoded authority portion of URI
string | character vector

Encoded authority portion of a URI, specified as a string or a character vector with
associated punctuation appearing only if the property is nonempty. The format of
EncodedAuthority is UserInfo@Host:Port. Setting EncodedAuthority is a
shortcut to setting the UserInfo, Host, and Port properties, except that you must
encode special characters.
Example: In the URI https://user:pwd@www.mathworks.com:8000/product/
matlab?abc=def&this=that#xyz, the EncodedAuthority property is
user:pwd@www.mathworks.com:8000.

EncodedPath — Encoded path
string | character vector

Encoded path, specified as a string or a character vector. Read this property to obtain the
Path property as an encoded string as it would appear in the encoded URI. If you have an
already-encoded path as a string, then set the EncodedPath property instead of the Path
property to prevent further encoding. When reading EncodedPath, it has a leading / if
Path is not [] and there are nonempty components in the URI before Path.

Setting EncodedPath to an empty array ('', [] or string.empty) is equivalent to
setting Path to that value.

If there is no Path property in an encoded URI, then EncodedPath returns an empty
string, "". However, EncodedPath is never an empty array.
Example: In the URI https://www.mathworks.com/solutions/robotics, the
EncodedPath property is /solutions/robotics.

EncodedQuery — Encoded query
string | character vector

1 Alphabetical List

1-6634

https://tools.ietf.org/html/rfc3986#section-4.3
https://tools.ietf.org/html/rfc3986#section-4.3

Encoded query, specified as a string or a character vector. EncodedQuery returns the
same value as calling the string method on the Query property. Setting EncodedQuery
is equivalent to setting the Query property.
Example: In the URI https://www.mathworks.com/support/
search_results.html?q=+weboptions+product:"MATLAB+Compiler", the
EncodedQuery property is q=+weboptions+product:%22MATLAB+Compiler%22.

EncodedURI — Entire encoded URI
string | character vector

Entire encoded URI, specified as a string or a character vector. EncodedURI returns the
same value as the matlab.net.URI.string method. Setting EncodedURI is equivalent
to calling the URI constructor with the 'literal' argument.

Methods
These methods implement the equivalent MATLAB functionality for this class.

eq Compare URIs for equality. Two URIs are
considered equal if they refer to the same
resource. An empty string or empty Path
property is considered equal to [].

char URI as character vector
string URI as string

Examples

Search mathworks.com for Term weboptions

Create a URI.

U = matlab.net.URI('https://www.mathworks.com');
U.Query = matlab.net.QueryParameter('q','weboptions');
U.Path = 'search/site_search.html';

Display the search results containing weboptions.

 matlab.net.URI class

1-6635

 web(char(U))

Create URI for Simulink Product Web Page

U = matlab.net.URI('//www.mathworks.com/products/simulink/');
U.EncodedURI

ans =

 string

 "//www.mathworks.com/products/simulink/"

See Also
QueryParameter | RequestMessage | webread | websave | webwrite

External Websites
RFC 3986 Uniform Resource Identifier (URI): Generic Syntax — Section 3.1. Scheme
RFC 3986 Uniform Resource Identifier (URI): Generic Syntax — Section 4.3 Absolute URI

Introduced in R2016b

1 Alphabetical List

1-6636

https://tools.ietf.org/html/rfc3986#section-3.1
https://tools.ietf.org/html/rfc3986#section-4.3

matlab.net.base64decode
Base 64 decoding of string

Syntax
res = base64decode(V)

Description
res = base64decode(V) decodes V, which was encoded using base 64 encoding, and
returns the decoded byte array. For more information, see RFC 4648 — Section 4, Base 64
Encoding. Base 64 encoding is used in some contexts in internet messages where
arbitrary data must be transmitted in the form of ASCII characters.

In the input string, any characters not in the set of 65 characters defined for base 64
encoding are ignored. Decoding stops at the end of the string or at the first occurrence of
an equal sign character (=).

If you know that the encoded data was a character string, you can convert it back to a
string using the MATLAB native2unicode(res) function. This function uses the user
default encoding in effect at the time the string was encoded.

Input Arguments
V — Text encoded using base 64
string | character vector

Text encoded using base 64, specified as a string or character vector.

See Also
matlab.net.base64encode | native2unicode

 matlab.net.base64decode

1-6637

https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc4648#section-4

External Websites
RFC 4648 — Section 4, Base 64 Encoding

Introduced in R2016b

1 Alphabetical List

1-6638

https://tools.ietf.org/html/rfc4648#section-4

matlab.net.base64encode
Base 64 encoding of byte string or vector

Syntax
res = base64encode(V)

Description
res = base64encode(V) encodes V using base 64 encoding and returns the encoded
characters as a string. For more information, see RFC 4648 — Section 4, Base 64
Encoding. Base 64 encoding is used in some contexts in internet messages where data
must be transmitted in a limited set of ASCII characters. Use base64encode to encode
strings containing special characters that might be misinterpreted as control characters
by the transmission protocol. base64encode can encode arbitrary binary data.

If V is a string or character vector, base64encode first converts it to bytes using the user
default encoding. To use a different character encoding, call the MATLAB
unicode2native function to convert V to a uint8 vector before passing it to
base64encode.

Input Arguments
V — Data to encode
string | character vector | numeric vector

Data to encode, specified as a string, character vector, or numeric vector.

See Also
matlab.net.base64decode | unicode2native

 matlab.net.base64encode

1-6639

https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc4648#section-4

External Websites
RFC 4648 — Section 4, Base 64 Encoding

Introduced in R2016b

1 Alphabetical List

1-6640

https://tools.ietf.org/html/rfc4648#section-4

matlab.net.http.io Package
Streaming content consumers and providers for HTTP messages

Description

Classes
matlab.net.http.io.BinaryConsumer Consumer for binary data in HTTP messages
matlab.net.http.io.ContentConsumer Consumer for HTTP message payloads
matlab.net.http.io.ContentProvider ContentProvider for HTTP message payloads
matlab.net.http.io.FileConsumer Consumer for files in HTTP messages
matlab.net.http.io.FileProvider ContentProvider to send files
matlab.net.http.io.FormProvider ContentProvider that sends form data
matlab.net.http.io.GenericConsumer Consumer for multiple content types in HTTP

messages
matlab.net.http.io.GenericProvider Generic ContentProvider for HTTP payloads
matlab.net.http.io.ImageConsumer Consumer for image data in HTTP payloads
matlab.net.http.io.ImageProvider ContentProvider to send MATLAB image data
matlab.net.http.io.JSONConsumer Content consumer that converts JSON input

into MATLAB data
matlab.net.http.io.JSONProvider ContentProvider to send MATLAB data as

JSON string
matlab.net.http.io.MultipartConsumer Helper for multipart content types in HTTP

messages
matlab.net.http.io.MultipartFormProvider ContentProvider to send multipart/form-data

messages
matlab.net.http.io.MultipartProvider ContentProvider to send multipart/mixed

HTTP messages
matlab.net.http.io.StringConsumer String consumer for HTTP payloads
matlab.net.http.io.StringProvider ContentProvider to send MATLAB strings

 matlab.net.http.io Package

1-6641

See Also
Introduced in R2018a

1 Alphabetical List

1-6642

matlab.net.http.io.BinaryConsumer class
Package: matlab.net.http.io
Superclasses:

Consumer for binary data in HTTP messages

Description
Use a BinaryConsumer object to copy the raw payload to the Response.Body.Data
property. A BinaryConsumer is the default consumer for a GenericConsumer if no
specified consumer matches the type.

The BinaryConsumer class is provided for subclass authors to examine and process raw
binary data while it is being received, possibly converting it to MATLAB array data to be
stored in Response.Body.Data.

The matlab.net.http.io.BinaryConsumer class is a handle class.

Creation
consumer = BinaryConsumer constructs a consumer to receive binary data from a
ResponseMessage.

You can create a subclass of this consumer to examine raw data as it is being received,
and then delegate to this class to store the data in Response.Body.Data.

Properties
Public Properties
AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or

 matlab.net.http.io.BinaryConsumer class

1-6643

larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

MATLAB sets this property before calling the start method for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

ContentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8

Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

1 Alphabetical List

1-6644

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the
matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'
Attributes:

GetAccess
public

SetAccess
public

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by
a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

 matlab.net.http.io.BinaryConsumer class

1-6645

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the
Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

1 Alphabetical List

1-6646

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and
Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Protected Properties
AppendFcn — Function called by putData to append additional data
function handle

 matlab.net.http.io.BinaryConsumer class

1-6647

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to
append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update
consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of
data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.
Example: @customAppend where @customAppend is defined by the consumer
Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

1 Alphabetical List

1-6648

MATLAB sets CurrentDelegate to [] before calling initialize.

Attributes:

GetAccess
protected

SetAccess
protected

CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.
If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is
used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.

 matlab.net.http.io.BinaryConsumer class

1-6649

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> initialize start putData delegateTo </
infotypegroup>

Examples

1 Alphabetical List

1-6650

Process uint8 Data

The following consumer combines each pair of uint8 bytes received into an int16, and
stores the int16 array in the response.
 classdef MyBinaryConsumer < matlab.net.http.io.BinaryConsumer
 properties
 ExtraByte uint8
 end
 methods
 function [len, stop] = putData(obj, data)
 if isempty(data)
 [len, stop] = obj.putData@matlab.net.http.io.BinaryConsumer(data);
 else
 if ~isempty(obj.ExtraByte)
 data = [obj.ExtraByte; data];
 end
 len = length(data);
 if mod(len,2) > 0
 obj.ExtraByte = data(end);
 len = len - 1;
 else
 obj.ExtraByte = uint8.empty;
 end
 res(1:len/2) = bitshift(uint16(data(1:2:len)),8)+uint16(data(2:2:len));
 [len, stop] = obj.putData@matlab.net.http.io.BinaryConsumer(res);
 end
 end
 end
 methods(Access=protected)
 function bs = start(obj)
 obj.ExtraByte = uint8.empty;
 bs = obj.start@matlab.net.http.io.BinaryConsumer();
 end

 matlab.net.http.io.BinaryConsumer class

1-6651

 end
 end

Definitions
Class Hierarchy

1 Alphabetical List

1-6652

See Also
ContentConsumer | GenericConsumer

Introduced in R2018a

 matlab.net.http.io.BinaryConsumer class

1-6653

putData
Class: matlab.net.http.io.BinaryConsumer
Package: matlab.net.http.io

Save next buffer of data for BinaryConsumer

Syntax
[len,stop] = putData(consumer,data)

Description
[len,stop] = putData(consumer,data) stores the next buffer of data. This method
is an overridden method of ContentConsumer.putData.

Input Arguments
consumer — Content consumer
matlab.net.http.io.BinaryConsumer

Content consumer, specified as a matlab.net.http.io.BinaryConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a
nonempty uint8 vector, uint8.empty, or []. For more information about these values,
see the “data” on page 1-0 input argument for the ContentConsumer.putData
method.

When MATLAB calls this function, it provides data as a uint8 vector. This function
appends the vector at the position CurrentLength+1 in Response.Body.Data,
increasing the size of data, if necessary, to make room for future data.

1 Alphabetical List

1-6654

If you call this method to store your own data, then you can provide data of any type that
is compatible with data already inResponse.Body.Data.

Output Arguments
len — Length of data processed
double | [] (empty double)

Length of data processed, returned as double or empty double. For more information, see
the “size” on page 1-0 argument in ContentConsumer.putData.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, returned as true or false.
For more information, see the “stop” on page 1-0 argument in
ContentConsumer.putData.

Attributes
Access public

See Also
ContentConsumer.CurrentLength | ContentConsumer.Response |
ContentConsumer.putData

Introduced in R2018a

 putData

1-6655

start
Class: matlab.net.http.io.BinaryConsumer
Package: matlab.net.http.io

Start HTTP transfer from BinaryConsumer

Syntax
bufsize = start(consumer)

Description
bufsize = start(consumer) starts receipt of data.

This method is an abstract method of ContentConsumer that is called by MATLAB. For
more information, see the ContentConsumer.start method.

Input Arguments
consumer — Content consumer
matlab.net.http.io.BinaryConsumer

Content consumer, specified as a matlab.net.http.io.BinaryConsumer object.

Output Arguments
bufsize — Maximum buffer size
[]

Maximum buffer size, returned as [] to indicate that there is no preferred buffer size.

1 Alphabetical List

1-6656

Attributes
Access protected

See Also
ContentConsumer.start

Introduced in R2018a

 start

1-6657

matlab.net.http.io.ContentConsumer class
Package: matlab.net.http.io
Superclasses: ,

Consumer for HTTP message payloads

Description
A ContentConsumer is an object that converts or processes data received in an HTTP
ResponseMessage object. MATLAB calls the consumer repeatedly during receipt of a
response message to process buffers of the payload as it is being received. You can act on
or display this streamed data while it is being received. You also can abort the transfer
before receiving the entire message. Using a consumer can improve latency (the delay
between receiving an instruction and the beginning of the transfer of data) when the time
to process the data is comparable to the speed of the network. It also allows you to
receive unbounded streamed response messages.

ContentConsumer is an abstract class. To process incoming data received in an HTTP
response message, use one of the ContentConsumer subclasses:

• FileConsumer
• StringConsumer
• JSONConsumer
• ImageConsumer
• MultipartConsumer
• BinaryConsumer
• GenericConsumer

You also can write you own subclass of the ContentConsumer class or extend one of the
subclasses.

The matlab.net.http.io.ContentConsumer class is a handle class.

1 Alphabetical List

1-6658

Properties
Public Properties
ContentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8
Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the
matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

 matlab.net.http.io.ContentConsumer class

1-6659

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'

Attributes:

GetAccess
public

SetAccess
public

AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or
larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

MATLAB sets this property before calling the start method for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

1 Alphabetical List

1-6660

Attributes:

GetAccess
public

SetAccess
public

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the
Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

 matlab.net.http.io.ContentConsumer class

1-6661

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and
Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by
a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

1 Alphabetical List

1-6662

Attributes:

GetAccess
public

SetAccess
public

Protected Properties
CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.
If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is
used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.

 matlab.net.http.io.ContentConsumer class

1-6663

Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

MATLAB sets CurrentDelegate to [] before calling initialize.

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.

Attributes:

GetAccess
protected

1 Alphabetical List

1-6664

SetAccess
protected

AppendFcn — Function called by putData to append additional data
function handle

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to
append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update
consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of
data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.
Example: @customAppend where @customAppend is defined by the consumer

Attributes:

GetAccess
protected

SetAccess
protected

 matlab.net.http.io.ContentConsumer class

1-6665

Methods

Public Methods
<infotypegroup type="method"> initialize start putData delegateTo </
infotypegroup>

Definitions

Top-Level Consumer
When you specify a ContentConsumer in the call to RequestMessage.send, the
consumer is a top-level consumer. MATLAB passes the entire payload as it is being
received, a buffer at a time. For example:

req = RequestMesage;
resp = req.send(url, [], MyConsumer);

Delegate
A consumer invoked by another consumer to handle all or part of the data in a message is
a delegate.

In the following code, mp is the top-level consumer that receives the entire payload of a
multipart message.
mp = MultipartConsumer('image/*', ImageConsumer, 'text/*', StringConsumer);
resp = req.send(url, [], mp);

ImageConsumer and StringConsumer objects are delegate consumers that get only
those parts of the payload that are images or text. A GenericConsumer also uses
delegates. A ContentConsumer normally does not care whether it is a top-level
consumer or a delegate. Any consumer in the matlab.net.http.io package can work
as a delegate.

1 Alphabetical List

1-6666

Class Hierarchy

See Also
BinaryConsumer | ContentLengthField | ContentProvider | ContentTypeField |
FileConsumer | GenericConsumer | HeaderField | ImageConsumer |

 matlab.net.http.io.ContentConsumer class

1-6667

JSONConsumer | MediaType | MultipartConsumer | RequestMessage |
ResponseMessage | StringConsumer | matlab.net.URI

Introduced in R2018a

1 Alphabetical List

1-6668

delegateTo
Class: matlab.net.http.io.ContentConsumer
Package: matlab.net.http.io

Delegate to another consumer

Syntax
[OK,bufsize] = delegateTo(consumer,delegate,header)

Description
[OK,bufsize] = delegateTo(consumer,delegate,header) prepares delegate
as a consumer to process subsequent payloads based on header. consumer becomes the
delegator and delegate becomes the delegate.

To prepare a delegate, delegateTo sets the following properties.

• Set consumer.CurrentDelegate to delegate
• Set delegate.Header to the value of header
• Set delegate.MyDelegator to consumer
• Set delegate properties, such as Request, Response, and URI, to the

corresponding consumer properties

delegateTo then calls the delegate's initialize method. If initialize returns
true, indicating that the delegate accepts the message, then delegateTo calls the
start method.

Do not call delegateTo in a different delegate without telling the first delegate that the
data has ended. To do this, call delegate.putData(uint8.empty).

The delegate's initialize method sets OK and its start method sets bufsize.
bufsize is valid only if OK is true. If OK is false, then the start method was not called
and this consumer should not invoke putData in that delegate.

 delegateTo

1-6669

Input Arguments
consumer — Content consumer
matlab.net.http.io.ContentConsumer

Content consumer, specified as a matlab.net.http.io.ContentConsumer object.

delegate — Consumer to process payload
matlab.net.http.io.ContentConsumer | function handle

Consumer to process payload, specified as a matlab.net.http.io.ContentConsumer
object or a handle to a function that returns a ContentConsumer. If a function, then it
has no input arguments.

header — Header of payload
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Output Arguments
OK — Indicate whether consumer accepts or rejects message payload
true (default) | false

Indicate whether the consumer accepts or rejects the payload of the message, returned as
true or false. The default is true if the status code of the ResponseMessage is
StatusCode.OK.

If OK is true, then the caller must call delegate.putData explicitly to feed data to the
delegate, and, if desired, to copy any data that the delegate inserts in its Response.Body
back into the caller's Response, on each call or before switching to a new delegate or at
the end of the message.

If OK is false, or if the previous delegate has been told that the data has ended, then a
consumer can call delegateTo to invoke another delegate for subsequent (or the same)
data in the same message.

bufsize — Maximum buffer size
double

1 Alphabetical List

1-6670

Maximum buffer size, returned as double.

Attributes
Access protected

See Also
ContentConsumer.CurrentDelegate | ContentConsumer.Header |
ContentConsumer.MyDelegator | ContentConsumer.initialize |
ContentConsumer.start

Introduced in R2018a

 delegateTo

1-6671

initialize
Class: matlab.net.http.io.ContentConsumer
Package: matlab.net.http.io

Prepare consumer for new HTTP payload

Syntax
OK = initialize(consumer)

Description
OK = initialize(consumer) prepares a ContentConsumer for use with a new HTTP
payload.

MATLAB calls initialize after receipt of the header of a ResponseMessage that
might contain a payload, to prepare the consumer for that payload. It is not invoked for
messages not expected to contain a payload, such as those with an explicit Content-
Length of 0, or in error cases where a complete header was not received.

The delegateTo method in a delegate consumer also calls initialize.

If you subclass a ContentConsumer, then you should at least check the ContentType
property to verify that the response is of the type you are prepared to handle. You can
override this method to, for example:

• Initialize your own properties
• Determine if you want to process the payload
• Process a payload that has a Response.StatusCode other than OK

It is up to you whether to perform any subsequent initializations in this method or delay
them until the start method.

Even if initialize is called, MATLAB might not call the consumer's start method if
the message has no payload.

1 Alphabetical List

1-6672

The default implementation returns true if the Response.StatusCode is OK and false
otherwise. Subclasses that override this method should invoke this superclass method
first and check the return value, unless they want to process messages with a status other
than OK. Subclasses that invoke putData in this class must call this method.

Consumer subclasses should be prepared to be reused for subsequent messages. MATLAB
calls initialize before each message and then start for each message that has a
nonempty payload. Once MATLAB calls start, it does not call initialize until the
message has ended, an exception was thrown, or an interrupt occurred during message
processing. All these cases are indicated by a call to putData(uint8.empty).

Input Arguments
consumer — Content consumer
matlab.net.http.io.ContentConsumer

Content consumer, specified as a matlab.net.http.io.ContentConsumer object.

Output Arguments
OK — Indicate whether consumer accepts or rejects message payload
true (default) | false

Indicate whether the consumer accepts or rejects the payload of the message, returned as
true or false.

• If the status code of the ResponseMessage is StatusCode.OK, then the default is
true.

• If OK is true, then the consumer accepted the message and processes the payload, if
any. MATLAB then calls the consumer's start method when the first byte of the
payload arrives, followed by one or more calls to putData, passing a buffer of data on
each call.

• If OK is false, then the consumer does not want to process the message, in which
case MATLAB processes the payload as if no consumer had been specified (which
might mean default conversion of payload to data).

 initialize

1-6673

If you override the initialize method and reject the message and you want to abort
receipt of the message instead of processing it in a default manner, then throw an error
from this method instead of returning false.

Attributes
Access protected

See Also
ContentConsumer.CurrentLength | ContentConsumer.Response |
ContentConsumer.delegateTo | ContentConsumer.putData |
ContentConsumer.start | matlab.net.http.RequestMessage |
matlab.net.http.StatusCode

Introduced in R2018a

1 Alphabetical List

1-6674

putData
Class: matlab.net.http.io.ContentConsumer
Package: matlab.net.http.io

Process or save next buffer of data for ContentConsumer

Syntax
[size,stop] = putData(consumer,data)

Description
[size,stop] = putData(consumer,data) provides a buffer of data read from the
server to the consumer.

MATLAB calls putData. Subclass consumers can override this method to receive
streamed data. Your consumer should return the length of data that it actually processed
in size, and a true/false indication in stop to specify whether it wants to receive further
data from this message.

When MATLAB calls putData with an empty data argument, it means that the message
or message part in the case of a multipart message has ended.

If you create a subclass of a consumer that implements this method, your putData
method can call its superclass putData to take advantage of any conversions or
processing that the superclass implements.

MATLAB limits the size of data buffers to the bufsize value returned by the start
method or an internal buffer size if bufsize is []. Also, if the server sends a chunk-
encoded message, then a given call to putData never provides more than one chunk.
This allows the consumer to obtain slowly arriving chunks in a timely manner even if
bufsize is much larger than the chunk size.

Default behavior of putData() in this base class:

Subclass consumers have the option of storing their possibly converted content directly in
Response.Body.Data, either incrementally or all at once, or disposing of it in some

 putData

1-6675

other way. The subclass consumer does not need to call this putData method to store
data. As a convenience, consumers that want to store content incrementally in
Response.Body.Data can call this method to do so. This method appends data to
Response.Body.Data using the AppendFcn, attempting to do so efficiently by
incrementally allocating capacity. The actual length of stored data is maintained in the
CurrentLength property, which can be smaller than the actual length of
Response.Body.Data. At the end of the transfer (for example, when
putData(consumer,[]) or putData(consumer,uint8.empty) is called,
Response.Body.Data is truncated to CurrentLength. You can define your own
AppendFcn to implement an alternative append method.

By default this method always returns size equal to the numel(data) and stop equal
to false.

If you intend to use this method to store data and you know the maximum length of data
to be stored, then you should set Response.Body.Data to a vector of the desired size
filled with default values (for example, zeros), before calling this method for the first time.
This method starts storing data at the beginning of your data area and then truncates it to
the length of data at the end of the message, maintaining the length of data stored in
CurrentLength.

Consumers that call this method in this base class to store data incrementally can provide
data of any type that supports horzcat or vertcat, including structures and cell
arrays. If you provide a cell array, the existing Data is converted to a cell array if it is not
already, and elements of the cell array are inserted into the existing cell array at the
linear index beginning at CurrentLength+1.

If you call this method in ContentConsumer to store data, then you should let this
method manage Response.Body.Data or CurrentLength and not modify them
directly.

ContentConsumers that call this method in their superclass should be prepared to do
any cleanup, such as closing windows or deleting temporary files, if the superclass throws
an exception.

Input Arguments
consumer — Content consumer
matlab.net.http.io.ContentConsumer

1 Alphabetical List

1-6676

Content consumer, specified as a matlab.net.http.io.ContentConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a one
of the following:

• nonempty uint8 vector - A normal buffer of data read from the server.
• uint8.empty - End of data. This is the normal way MATLAB indicates that the

response message has ended. This is an indication for the consumer to clean up (for
example, delete temporary files or truncate response data to current length) and be
prepared for a possible future call to initialize for a subsequent message. In response,
the consumer should return stop=true and size=0 to indicate that processing was
successful with no new bytes processed. If a consumer returns size=[], then the
consumer had a problem finalizing the data and MATLAB throws an HTTPException
back to the caller of RequestMessage.send.

• [] (empty double) - The server, a network problem, or the user (using Ctrl+C) aborted
the transfer. The consumer should generally clean up exactly as if uint8.empty was
received, but some consumers might delete any incomplete data already received. On
return from putData, MATLAB throws an HTTPException whose
History.Response contains any data that the consumer stored in its Response
property.

Most consumers that do not care about the difference between [] and uint8.empty can
simply check isempty(data) and clean up appropriately. In every case where data is
empty, consumers must call their superclass putData with that same empty value, even if
they are not using their superclass putData to store data, as that is the only way the
superclass knows to clean up. After receiving an empty value of data, implementations
must ignore subsequent calls to putData with empty values, until the next call to start.
Typically they should return stop=false and size=0 on subsequent calls and not carry
out any additional processing.

Output Arguments
size — Length of data processed
double | [] (empty double)

Length of data processed, returned as double or empty double. If the value of size is:

 putData

1-6677

• size >= 0, size <= length(data) - The number of bytes of data processed by
this call to putData. The number is used only for the benefit of subclasses of this
consumer to know how much data was processed. It has no effect on future calls to
putData. If data is empty, then size is ignored.

• size < 0 - The result of abs(size) is the number of bytes processed. Same as the
previous case, but in addition, MATLAB silently skips the remainder of the data,
making one more call to putData(uint8.empty) at the end of the data. If a
MultipartConsumer is not being used, this is similar to returning stop=true,
except for the additional call to putData at the end. If MultipartConsumer is being
used, a negative value of size only ends the part, and does not affect processing of
subsequent parts of the message, so the connection is not closed until the next part or
end of message is reached.

• size = [] (empty double) - The consumer has decided something went wrong with
the transfer and further transfers from the server should be terminated. This is similar
to stop=true, but it is considered an error, causing a standard HTTPException to be
thrown to the caller of RequestMessage.send indicating that the consumer aborted
the connection. In this case, the only way the caller can get the partially processed
ResponseMessage is through HTTPException.History.

As an alternative to returning size=[] to throw a standard exception, your putData
method can directly throw its own exception, which MATLAB wraps as a cause in an
HTTPException returned to the caller of RequestMessage.send.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, specified as true or false.
If stop is true, then the MATLAB stops processing the rest of the message, including
any subsequent parts of a multipart message being processed by MultipartConsumer,
silently proceeding as if the end of the message has been reached, even if the message
has more data. This immediately closes the connection to the server and no error is
returned to the caller of RequestMessage.send. This is not considered an error
condition and is the normal way to terminate receipt of an arbitrary-length stream
gracefully. If stop=true and data is not already empty, then MATLAB makes one
additional call to putData with empty data. stop=true might be set whether or not
data is empty.

Consumers should not normally set stop=true at the end of data, because, if they are
multipart delegates, that would terminate processing for the rest of the message. To
terminate processing just for their own part of the message, consumers should return
size < 0 to indicate that they do not want to receive more data for their part.

1 Alphabetical List

1-6678

Attributes
Access public

See Also
ContentConsumer.AppendFcn | ContentConsumer.CurrentLength |
ContentConsumer.Response | ContentConsumer.start | MultipartConsumer |
matlab.net.http.HTTPException | matlab.net.http.HTTPOptions |
matlab.net.http.RequestMessage | matlab.net.http.ResponseMessage

Introduced in R2018a

 putData

1-6679

start
Class: matlab.net.http.io.ContentConsumer
Package: matlab.net.http.io

Start HTTP data transfer to ContentConsumer

Syntax
bufsize = start(consumer)

Description
bufsize = start(consumer) signals the start of an HTTP transfer.

MATLAB calls start when it is ready to send data to the consumer, after it calls the
initialize method that returned true. All consumers must implement this abstract
method.

The start method differs from initialize in that it is invoked only if the message
contains a payload. MATLAB calls initialize as soon as it receives the message
header. Hence, it might be better to perform initializations in start rather than
initialize, so that it is not done if the message is empty.

Input Arguments
consumer — Content consumer
matlab.net.http.io.ContentConsumer

Content consumer, specified as a matlab.net.http.io.ContentConsumer object.

Output Arguments
bufsize — Maximum buffer size
double | []

1 Alphabetical List

1-6680

Maximum buffer size that MATLAB passes to each call to the putData method, returned
as double. The method returns the maximum size of the buffer, although MATLAB might
pass in a smaller size.

start returns [] if the consumer can always process all of the data immediately,
regardless of the size, to let MATLAB choose the best size. Specifying a smaller size is
useful for slowly arriving data, as it allows you to receive data in a more timely manner
rather than waiting for a large buffer to be filled.

If the server sends chunked-encoded messages, and if you want to be sure that each call
to putData contains a whole chunk, then return [] or a value larger than the maximum
chunk size. MATLAB never provides more than a single chunk at a time in one call to
putData, but it might provide a part of a chunk if the chunk is larger than bufsize or
MATLAB's internal buffer size.

Attributes
Abstract protected

See Also
ContentConsumer.Response | ContentConsumer.initialize |
ContentConsumer.putData

Introduced in R2018a

 start

1-6681

matlab.net.http.io.FileConsumer class
Package: matlab.net.http.io
Superclasses:

Consumer for files in HTTP messages

Description
The FileConsumer class provides a convenient way to download a file from a web
service, or to save data received from the web in a file. You can specify the name of the
file, or let MATLAB determine the name from information sent by the server or file named
in the URI.

The matlab.net.http.io.FileConsumer class is a handle class.

Creation

Description
consumer = FileConsumer(filename,permission,machineformat,encoding)
constructs a FileConsumer that creates or overwrites a file with the payload of the
response from the server. The parameters have the same meaning as those of the fopen
function, and all are optional.

consumer = FileConsumer(FID) sets the FileIdentifier property to FID and
writes to that file. FID must be the identifier of a file you opened for writing. MATLAB
writes to the file at the current position indicator, so if you open an existing file using 'a
+' permission, for example, MATLAB appends to the file. When transfer is completed,
MATLAB leaves the position indicator at the end of the file and does not close the file.

Input Arguments
filename — File or folder name
character vector | string scalar

1 Alphabetical List

1-6682

File or folder name, including full path and optional extension, specified as a character
vector or a string scalar. To determine the name of the file that MATLAB creates, see the
Filename property.

If filename specifies a file in an existing folder, then MATLAB:

• Opens the file using fopen(filename,permission,...).
• If permission is not specified, then opens the file using fopen(filename,'w+').
• If filename does not include an extension, then MATLAB adds one based on the

Content-Type and/or Content-Disposition header field in the received message or the
extension of the file name in the URI of the request, if any.

If filename specifies an existing, writable folder, then MATLAB creates a file in the
folder with a name derived from the Content-Disposition header field in the response or
from the URI, possibly adding an extension based on Content-Type if that name does not
contain one.

If filename is missing or empty, then MATLAB creates a file in the current folder. This is
equivalent to filename = '.'. The current folder is the folder at the time this
FileConsumer was created, not the time this consumer is used in a send request.
Example: 'myTextFile.txt'
Data Types: char | string

permission — File access type
w+ (default) | u+ | u | T | value allowed by fopen function

File access type, specified as a string. If permission is specified, it must allow write
access. The default value is 'w+', which opens or creates a file for reading and writing
and discards existing contents, if any.

permission can be any value allowed by the fopen function. The following additional
values of permission are supported:

 matlab.net.http.io.FileConsumer class

1-6683

'u+', 'u' Same as 'w' and 'w+', but if the file exists, then a file is created with
a unique name derived from the filename argument. The name of
the new file has a hyphen and a sequence number appended to the
part of its name excluding the extension.

For example, if filename is 'MyFile.txt' but the file exists, then
MATLAB creates the file MyFile-1.txt. The Filename property
contains the new file's full path name.

'T' When appended to a permission, behaves similarly to text mode 't'
but uses text mode only if the Content-Type of the data indicates it is
character-based. This includes any type specifying a charset
parameter or types MATLAB knows to be character-based, such as
"application/json".

In all cases, for 'w' and 'w+' permissions (or if permission is not specified), MATLAB
does not overwrite an existing file unless the file name is exactly equal to filename.
Example: 'a''w+T'
Data Types: char | string

machineformat — Order for reading or writing bytes or bits
any value allowed by fopen

Order for reading or writing bytes or bits, specified as any value allowed by the fopen
function.
Data Types: char | string

encoding — Character encoding
any value allowed by fopen

Character encoding, specified as any value allowed by the fopen function.
Data Types: char | string

1 Alphabetical List

1-6684

Properties

Public Properties
FileIdentifier — File identifier
double

Identifier of the file (FID) being written, specified as double. If the consumer was
constructed with an FID argument, then this property is the identifier. Data is written to
the current file position indicator associated with this identifier, so subclasses should be
careful not to change the position accidentally when using this identifier. At the
conclusion of the transfer, the file remains open and the position remains at the end of the
file.

If the constructor was called with a filename argument, or with no arguments, then this
property is the read-only file identifier for that file. This allows subclasses to read the file
during transfer without disturbing the position indicator used for writing. At the
conclusion of the transfer, this identifier is closed.

Attributes:

GetAccess
public

SetAccess
private

Filename — File path name
string.empty (default) | string

Full path name of the file being written, specified as a string. If the consumer was
constructed with an FID argument, then this property is the name of the file. Otherwise,
this value might not be set until MATLAB has begun writing to the file during receipt of a
response message, since the file name cannot necessarily be determined until all headers
have been received. Use this property to determine the file that was written. Filename is
also stored in the Response.Body.Data property.

Attributes:

GetAccess
public

 matlab.net.http.io.FileConsumer class

1-6685

SetAccess
private

AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or
larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

MATLAB sets this property before calling the start method for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

ContentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8

1 Alphabetical List

1-6686

Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the
matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'

Attributes:

GetAccess
public

SetAccess
public

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by

 matlab.net.http.io.FileConsumer class

1-6687

a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the

1 Alphabetical List

1-6688

Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and
Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

 matlab.net.http.io.FileConsumer class

1-6689

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Protected Properties
AppendFcn — Function called by putData to append additional data
function handle

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to
append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update
consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of
data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.

1 Alphabetical List

1-6690

Example: @customAppend where @customAppend is defined by the consumer

Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

MATLAB sets CurrentDelegate to [] before calling initialize.

Attributes:

GetAccess
protected

SetAccess
protected

CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.
If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

 matlab.net.http.io.FileConsumer class

1-6691

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is
used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.
Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.
Attributes:

GetAccess
protected

SetAccess
protected

1 Alphabetical List

1-6692

Methods

Public Methods
<infotypegroup type="method"> initialize start putData delegateTo </
infotypegroup>

 matlab.net.http.io.FileConsumer class

1-6693

Definitions

Class Hierarchy

1 Alphabetical List

1-6694

See Also
ContentConsumer | ContentTypeField | FileProvider | RequestMessage |
ResponseMessage | fopen

Introduced in R2018a

 matlab.net.http.io.FileConsumer class

1-6695

putData
Class: matlab.net.http.io.FileConsumer
Package: matlab.net.http.io

Save next buffer of data to file for FileConsumer

Syntax
[size,stop] = putData(consumer,data)

Description
[size,stop] = putData(consumer,data) stores the next buffer of data read from
the server, writes data to the file, and returns the number of bytes written. This method
is an overridden method of ContentConsumer.putData called by MATLAB.

Input Arguments
consumer — Content consumer
matlab.net.http.io.FileConsumer

Content consumer, specified as a matlab.net.http.io.FileConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a
nonempty uint8 vector, uint8.empty, or []. For more information about these values,
see the “data” on page 1-0 input argument for the ContentConsumer.putData
method.

1 Alphabetical List

1-6696

Output Arguments
size — Number of bytes written
double | [] (empty double)

Number of bytes written to the file, returned as double or empty double. For more
information, see the “size” on page 1-0 argument in ContentConsumer.putData.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, returned as true or false.
For more information, see the “stop” on page 1-0 argument in
ContentConsumer.putData.

Attributes
Access public

See Also
ContentConsumer.putData

Introduced in R2018a

 putData

1-6697

start
Class: matlab.net.http.io.FileConsumer
Package: matlab.net.http.io

Start transfer of file to FileConsumer

Syntax
bufsize = start(consumer)

Description
bufsize = start(consumer) signals the start of the receipt of a file.

This method is an abstract method of ContentConsumer that MATLAB calls to start the
receipt of the data. The method returns the maximum buffer size as a double. For more
information, see the ContentConsumer.start method.

Input Arguments
consumer — Content consumer
matlab.net.http.io.FileConsumer

Content consumer, specified as a matlab.net.http.io.FileConsumer object.

Attributes
Access protected

See Also
ContentConsumer.start

1 Alphabetical List

1-6698

Introduced in R2018a

 start

1-6699

matlab.net.http.io.GenericConsumer class
Package: matlab.net.http.io
Superclasses:

Consumer for multiple content types in HTTP messages

Description
Use this consumer to handle streaming for multiple content types when you cannot
predict in advance which types the server returns.

The matlab.net.http.io.GenericConsumer class is a handle class.

Creation
Description
consumer = GenericConsumer constructs a GenericConsumer using default
consumers.

consumer = GenericConsumer(types,consumer) constructs a GenericConsumer
to handle the specified types using the corresponding consumer. You can specify several
argument pairs in any order as types1,consumer1,...,typesN,consumerN. MATLAB
searches the types in the order they appear and uses the first match. If there are no
matches among the specified types, MATLAB uses the default set of consumers,
depending on the type.

consumer = GenericConsumer(puthandle) constructs a ContentConsumer that
calls the function specified by puthandle for each call to this consumer's putData
method.

Input Arguments
types — Content types
string array | character vector | cell array of character vectors

1 Alphabetical List

1-6700

Content types, specified as a string array, character vector, or cell array of character
vectors. types specifies content types using the syntax "type/subtype".

The type and subtype components in each element of types are treated as regular
expressions, matched against the type/subtype of the ContentTypeField in the
response, with the addition that a lone '*' for a type or subtype matches any type or
subtype, and all searches are anchored to both the start and end of the string. For
example,

Type/Subtype Matches
text/* Type 'text' and any subtype
*/.*json.* Any type with subtype that contains

'json'
*/.*json Any type with subtype that ends with

'json'
/ Any type or subtype

If the subtype is '*', you can omit the trailing '/*'. text is the same as 'text/*'.

types are searched in order they appear, and the first match is used. If there are no
matches among the specified types, a default set of consumers is used, depending on the
type, in this order:

Type/Subtype Default Consumer
multipart/* MultipartConsumer
image/* ImageConsumer
.*/.*json.* JSONConsumer
/ StringConsumer
/ BinaryConsumer

While both StringConsumer and BinaryConsumer are used for any type,
StringConsumer only accepts types for which it can determine a charset, specified as
text/*, any type with a charset attribute, or one of the types MATLAB knows is
character-based, such as "application/xml" and "application/javascript". If
StringConsumer rejects the type, then BinaryConsumer accepts the type and stores
the unconverted payload in Response.Body.Data as a uint8 vector.

 matlab.net.http.io.GenericConsumer class

1-6701

When this consumer chooses a matching delegate based on this search criteria, it invokes
the delegate's initialize method to see if the delegate accepts the payload. If the
method returns false to indicate that the delegate does not accept, then this consumer
continues searching the list to find the next matching delegate.

consumer — Content consumer
matlab.net.http.io.ContentConsumer | function handle

Content consumer, specified as a matlab.net.http.io.ContentConsumer object that
can handle one of the specified types, or a handle to a function returning a
ContentConsumer that can handle those types.

puthandle — putData function
function handle

Handle to a function with the following ContentConsumer.putData syntax:

[length,stop] = putData(data)

where data a uint8 array and length is the length of that array.

Use this syntax to process all input from the server using a single function, when you
know the type of data that the server returns. The function does not have access to the
ResponseMessage or any information about this consumer.

Properties

Public Properties
AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or
larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

MATLAB sets this property before calling the start method for the convenience of
subclasses.

1 Alphabetical List

1-6702

Attributes:

GetAccess
public

SetAccess
public

ContentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8

Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the
matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

 matlab.net.http.io.GenericConsumer class

1-6703

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'

Attributes:

GetAccess
public

SetAccess
public

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by
a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

1 Alphabetical List

1-6704

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the
Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and

 matlab.net.http.io.GenericConsumer class

1-6705

Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Protected Properties
PutMethod — putData method
function handle | []

putData method of the delegate, specified as a function handle, or specified as [] if
CurrentDelegate is set.

1 Alphabetical List

1-6706

This property is set by delegateTo. Subclasses should invoke this function in their
putData method to send data to the delegate or to end the delegate's portion of the data
by sending uint8.empty:

[len, stop] = obj.PutMethod(data);

At the end of the message, after the above call to any delegate to end the message,
subclasses should set PutMethod to empty and invoke the call putData(uint8.empty)
in their superclass so that this class knows the message has ended. This putData call will
leave PutMethod empty or set it back to the puthandle argument passed to the
constructor.

Attributes:

GetAccess
protected

SetAccess
protected

Dependent
true

AppendFcn — Function called by putData to append additional data
function handle

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to
append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update
consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of

 matlab.net.http.io.GenericConsumer class

1-6707

data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.
Example: @customAppend where @customAppend is defined by the consumer
Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

MATLAB sets CurrentDelegate to [] before calling initialize.
Attributes:

GetAccess
protected

SetAccess
protected

CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.

1 Alphabetical List

1-6708

If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is
used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

 matlab.net.http.io.GenericConsumer class

1-6709

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> initialize start putData delegateTo </
infotypegroup>

1 Alphabetical List

1-6710

Definitions

Class Hierarchy

 matlab.net.http.io.GenericConsumer class

1-6711

See Also
ContentConsumer | ContentTypeField | FileProvider | RequestMessage |
ResponseMessage | fopen

Introduced in R2018a

1 Alphabetical List

1-6712

putData
Class: matlab.net.http.io.GenericConsumer
Package: matlab.net.http.io

Save next buffer of data for GenericConsumer

Syntax
[len,stop] = putData(consumer,data)

Description
[len,stop] = putData(consumer,data) stores the next buffer of data. This method
is an overridden method of ContentConsumer.putData.

putData determines what method to call based on the following:

• If this GenericConsumer was created using the GenericConsumer(puthandle)
constructor or delegateTo returned a delegate that accepted the message, then
putData calls the function in GenericConsumer.PutMethod with data as an
argument.

• If there was consumer that accepted the message, then putData calls
ContentConsumer.putData, which appends data to Response.Body.Data.

Input Arguments
consumer — Content consumer
matlab.net.http.io.GenericConsumer

Content consumer, specified as a matlab.net.http.io.GenericConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

 putData

1-6713

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a
nonempty uint8 vector, uint8.empty, or []. For more information about these values,
see the “data” on page 1-0 input argument for the ContentConsumer.putData
method.

If data is [] to indicate that the message has ended and there was a delegate, then
putData copies the Response from the delegate to this object's Response.

Output Arguments
len — Length of data processed
double | [] (empty double)

Length of data processed, returned as double or empty double. For more information, see
the “size” on page 1-0 argument in ContentConsumer.putData.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, returned as true or false.
For more information, see the “stop” on page 1-0 argument in
ContentConsumer.putData.

Attributes
Access public

See Also
ContentConsumer.Response | ContentConsumer.delegateTo |
ContentConsumer.putData | GenericConsumer.PutMethod

Introduced in R2018a

1 Alphabetical List

1-6714

start
Class: matlab.net.http.io.GenericConsumer
Package: matlab.net.http.io

Start data transfer to GenericConsumer

Syntax
bufsize = start(consumer)

Description
bufsize = start(consumer) returns the maximum buffer size for calls to the
putData method.

This method is an abstract method of ContentConsumer.start that prepares a
consumer for receipt of data. If the GenericConsumer object was creating using the
putDataHandle argument, then start does nothing and returns []. Otherwise, start
determines which ContentConsumer to delegate to, based on the ContentType property
and types argument used by the object constructor. If the delegate was specified as a
function handle returning a consumer instance, then start calls the function to obtain a
delegate consumer instance. start then calls the delegateTo method, passing in the
consumer instance, which calls the initialize method in that consumer. If
initialize returns false to indicate it does not accept the message, then start tries
the next delegate in the list. If a delegate accepts, then it calls start in that delegate. In
that case, the caller of start is obligated to send that delegate the data from the
message, or terminate the delegate by calling its putData(uint8.empty) method. If all
delegates reject the message, then start throws an exception.

When a delegate accepts the message, start saves the delegate instance for that
Content-Type. Therefore, if this method is called again with a Content-Type that matches
the same types entry, then start uses the same delegate instance.

For more information, see ContentConsumer.start.

 start

1-6715

Input Arguments
consumer — Generic consumer
matlab.net.http.io.GenericConsumer

Generic consumer, specified as a matlab.net.http.io.GenericConsumer object.

Output Arguments
bufsize — Maximum buffer size
double | []

Maximum buffer size, returned as double. If the GenericConsumer object was creating
using the putDataHandle argument, then start does nothing and returns [].

Attributes
Access protected

See Also
ContentConsumer.ContentType | ContentConsumer.Response |
ContentConsumer.delegateTo | ContentConsumer.initialize |
ContentConsumer.start

Introduced in R2018a

1 Alphabetical List

1-6716

matlab.net.http.io.ImageConsumer class
Package: matlab.net.http.io
Superclasses:

Consumer for image data in HTTP payloads

Description
This consumer reads image data from the web and converts it to MATLAB image data. It
stores the result in the Body property of the ResponseMessage to which it is applied.
Specified directly as a consumer in RequestMessage.send, it provides the same
functionality for image content types that is provided by the default send method when
no consumer is specified, saving the converted image, plus a possible colormap and alpha
channel, in Body.Data, based on the Content-Type of the message. For more information
on conversion of image data in a response, see the description for image/* Content-
Types in “HTTP Data Type Conversion”.

This consumer only accepts data for which it can determine a format based on headers in
the response message or the extension of the file name in the URI of the request (if any).
You can override this behavior by specifying the expected format in the Format property.

This consumer returns the data as a MATLAB image in one of the formats described for
the return value of the imread function. To store the original data in a file without
converting it, use a FileConsumer.

The matlab.net.http.io.ImageConsumer class is a handle class.

Creation

Description
consumer = ImageConsumer constructs a consumer for HTTP images.

consumer = ImageConsumer(fmt) constructs an ImageConsumer using the specified
format.

 matlab.net.http.io.ImageConsumer class

1-6717

consumer = ImageConsumer(___ ,arg1,...,argn) passes additional arguments
used by imread to convert the response data.

Input Arguments
fmt — Image format
string | character vector

Image format, specified as a string or a character vector, which is accepted by imread.
This value overrides any format specification in the message header. This constructor sets
the Format property to the value of fmt.
Example: 'png'

arg1,...,argn — imread arguments
valid types

One or more input arguments to the imread function, specified as valid argument types.
Do not specify filename or fmt arguments.
Example: 'PixelRegion',{[1 100],[4 500]}

Properties

Public Properties
Info — Image information
structure

Image information as required for the imfinfo function, specified as a structure.
MATLAB sets this property only after a successful conversion. The Filename field in this
structure is empty.

Attributes:

GetAccess
public

SetAccess
private

1 Alphabetical List

1-6718

PartialData — Partial image data
uint16

Partial image data, specified as uint16. If the conversion failed or the transfer was
interrupted, then MATLAB sets PartialData to the raw received data, which is a uint8
vector. PartialData might not contain any data during a transfer or in successful cases.
Attributes:

GetAccess
public

SetAccess
private

Format — Image format
empty (default) | string | character vector

Image format, specified as a string or character vector. This consumer rejects messages
whose format is not one of those specified in the EXT column of the imformats function.
The default value of this property is empty, which attempts to derive the format from the
Content-Type field or the extension of the file name in the Content-Disposition field of the
response, or the URI of the request. If you want to force this consumer to process the
data using a specific format, set this property before applying this consumer to a
RequestMessage.send method.

If the server does not properly indicate the format, set this property to the correct format.
Attributes:

GetAccess
public

SetAccess
public

AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or
larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

 matlab.net.http.io.ImageConsumer class

1-6719

MATLAB sets this property before calling the start method for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

ContentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8

Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the

1 Alphabetical List

1-6720

matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'

Attributes:

GetAccess
public

SetAccess
public

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by
a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

 matlab.net.http.io.ImageConsumer class

1-6721

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the
Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

1 Alphabetical List

1-6722

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and
Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Protected Properties
AppendFcn — Function called by putData to append additional data
function handle

 matlab.net.http.io.ImageConsumer class

1-6723

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to
append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update
consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of
data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.
Example: @customAppend where @customAppend is defined by the consumer
Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

1 Alphabetical List

1-6724

MATLAB sets CurrentDelegate to [] before calling initialize.

Attributes:

GetAccess
protected

SetAccess
protected

CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.
If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is
used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.

 matlab.net.http.io.ImageConsumer class

1-6725

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> initialize start putData delegateTo </
infotypegroup>

1 Alphabetical List

1-6726

Definitions

Class Hierarchy

 matlab.net.http.io.ImageConsumer class

1-6727

See Also
ContentConsumer | FileConsumer | ImageProvider | MessageBody |
RequestMessage | ResponseMessage | imfinfo | imformats | imread |
matlab.net.URI

Topics
“HTTP Data Type Conversion”

Introduced in R2018a

1 Alphabetical List

1-6728

initialize
Class: matlab.net.http.io.ImageConsumer
Package: matlab.net.http.io

Prepare ImageConsumer for new image in HTTP message

Syntax
OK = initialize(consumer)

Description
OK = initialize(consumer) initializes this ImageConsumer for receipt of a new
image. This method is an overridden method of ContentConsumer.initialize.

Input Arguments
consumer — Content consumer
matlab.net.http.io.ImageConsumer

Content consumer, specified as a matlab.net.http.io.ImageConsumer object.

Output Arguments
OK — Indicate whether consumer accepts or rejects message payload
true (default) | false

Indicate whether consumer accepts or rejects message payload, returned as true or
false. initialize returns false if one of the following occurs:

• A Content-Type header field is present and its Type is not "image".
• The Format property is empty and the subtype is not one of those that the imread

function accepts as a file extension.

 initialize

1-6729

Attributes
Access protected

See Also
ContentConsumer.ContentType | ContentConsumer.initialize |
ImageConsumer.Format | imread

Introduced in R2018a

1 Alphabetical List

1-6730

putData
Class: matlab.net.http.io.ImageConsumer
Package: matlab.net.http.io

Save data for ImageConsumer

Syntax
[len,stop] = putData(consumer,data)

Description
[len,stop] = putData(consumer,data) processes buffers of data, based on the
ContentType property, and returns the result as MATLAB image data in the
Response.Body.Data property. This method is an overridden method of
ContentConsumer.putData. Use this method in subclasses of ImageConsumer.

After all the data in the message, the result is RGB data or a cell array containing image
data, colormap, and possible transparency, as documented for the imread function. For
more information on image conversion, see the input conversion section of the
matlab.net.http.MessageBody.Data property.

This consumer does not guarantee that Response.Body.Data has a useful result until
the end of the data is reached (after putData is passed empty data). Subclasses that
override this method, that want to examine the data stream while it is being received,
should look at data, not Response.Body.Data.

Subclasses that only want to see the result after conversion to MATLAB image data can
examine Response.Body.Data after calling this method with empty data.

After the end of data, this method sets the ImageConsumer.Info property.

 putData

1-6731

Input Arguments
consumer — Content consumer
matlab.net.http.io.ImageConsumer

Content consumer, specified as a matlab.net.http.io.ImageConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a
nonempty uint8 vector, uint8.empty, or []. For more information about these values,
see the “data” on page 1-0 input argument for the ContentConsumer.putData
method.

Output Arguments
len — Length of data processed
double | [] (empty double)

Length of data processed, returned as double or empty double. For more information, see
the “size” on page 1-0 argument in ContentConsumer.putData.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, returned as true or false.
For more information, see the “stop” on page 1-0 argument in
ContentConsumer.putData.

Attributes
Access public

See Also
ContentConsumer.ContentType | ContentConsumer.putData | ImageConsumer.Info |
imread | matlab.net.http.MessageBody

1 Alphabetical List

1-6732

Introduced in R2018a

 putData

1-6733

matlab.net.http.io.JSONConsumer class
Package: matlab.net.http.io
Superclasses:

Content consumer that converts JSON input into MATLAB data

Description
This ContentConsumer receives messages whose content is JSON. It converts the JSON
data to MATLAB and stores the result in the body of the response message.

This consumer should only be applied to incoming content that is JSON (for example,
response messages or parts of multipart messages with a Content-Type of
"application/json"), though it does not check the incoming Content-Type.

By default, MATLAB automatically converts a message with a Content-Type
"application/json", so you do not need to specify this consumer for that type, or any
other type that obviously indicates JSON. For more information, see input conversions for
MessageBody.Data. Specify this provider explicitly if you know that the incoming data is
JSON even if the Content-Type might not indicate this. For example, sometimes a file
containing JSON data has a name with a .txt extension. When downloading such a file
the server might specify a Content-Type of "text/plain" based on that extension, even
though it contains JSON data.

If an error occurs converting the data, Response.Body.Data in the HTTPException
thrown on the error contains any intermediate result of the decoding process.

The matlab.net.http.io.JSONConsumer class is a handle class.

Creation

Description
consumer = JSONConsumer creates a consumer that converts a JSON string received in
a ResponseMessage to MATLAB data using jsondecode.

1 Alphabetical List

1-6734

Properties
Public Properties
Charset — Character set
empty (default) | string

The character set used to convert the data, specified as a string. This value is initially
empty. If you leave it empty, then this value is set when a message is received, based on
the specified or default charset in the Content-Type field of the message. If you want to
force conversion using a different charset, then you can do so by specifying a charset in
the StringConsumer constructor, or directly setting this property. Subclasses can set
this property at any time, including in the middle of a message. If you change this value
after calling putData, then the new value is used in subsequent calls to putData. The
existing contents of Response.Body.Data is not changed.

When receipt of a response begins, if this property was initially left empty, then MATLAB
sets this property to the chosen charset based on the Content-Type. If you reuse this
consumer for a different message, then a new charset can be chosen. If you set this
property to a nonempty value, MATLAB never changes it.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or
larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

MATLAB sets this property before calling the start method for the convenience of
subclasses.

 matlab.net.http.io.JSONConsumer class

1-6735

Attributes:

GetAccess
public

SetAccess
public

ContentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8

Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the
matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

1 Alphabetical List

1-6736

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'

Attributes:

GetAccess
public

SetAccess
public

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by
a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

 matlab.net.http.io.JSONConsumer class

1-6737

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the
Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and

1 Alphabetical List

1-6738

Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Protected Properties
AppendFcn — Function called by putData to append additional data
function handle

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to

 matlab.net.http.io.JSONConsumer class

1-6739

append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update
consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of
data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.
Example: @customAppend where @customAppend is defined by the consumer

Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

MATLAB sets CurrentDelegate to [] before calling initialize.

1 Alphabetical List

1-6740

Attributes:

GetAccess
protected

SetAccess
protected

CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.
If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is
used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.

 matlab.net.http.io.JSONConsumer class

1-6741

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> convert initialize putData start </
infotypegroup>

1 Alphabetical List

1-6742

Definitions

Class Hierarchy

 matlab.net.http.io.JSONConsumer class

1-6743

See Also
ContentConsumer | JSONProvider | MessageBody | StringConsumer | jsondecode

Introduced in R2018a

1 Alphabetical List

1-6744

initialize
Class: matlab.net.http.io.JSONConsumer
Package: matlab.net.http.io

Prepare JSONConsumer for new HTTP message

Syntax
OK = initialize(consumer)

Description
OK = initialize(consumer) initializes a JSONConsumer for a new HTTP message.

MATLAB calls initialize to prepare this consumer for receipt of a message. This
method tries to determine the charset of the data from the Content-Type in the Header
property. If it cannot do so, it assumes UTF-8. This method is an overridden method of
StringConsumer.initialize.

initialize returns true if the consumer can process the data. Otherwise, it returns
false.

Input Arguments
consumer — Content consumer
matlab.net.http.io.JSONConsumer

Content consumer, specified as a matlab.net.http.io.JSONConsumer object.

Attributes
Access protected

 initialize

1-6745

See Also
StringConsumer.initialize

Introduced in R2018a

1 Alphabetical List

1-6746

putData
Class: matlab.net.http.io.JSONConsumer
Package: matlab.net.http.io

Save next buffer of JSON data for JSONConsumer

Syntax
[len,stop] = putData(consumer,data)

Description
[len,stop] = putData(consumer,data) passes data to the superclass to convert
the uint8 buffer to a string, and then uses jsondecode to decode it and insert it into
Response.Body.Data.

This method might not store the decoded JSON data until the entire message has been
read.

This method is an overridden method of StringConsumer.putData. You can override
this method to examine or alter the uint8 data before conversion, or the JSON data after
decoding.

Input Arguments
consumer — Content consumer
matlab.net.http.io.JSONConsumer

Content consumer, specified as a matlab.net.http.io.JSONConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a
nonempty uint8 vector, uint8.empty, or []. For more information about these values,

 putData

1-6747

see the “data” on page 1-0 input argument for the ContentConsumer.putData
method.

Output Arguments
len — Length of data processed
double | [] (empty double)

Length of data processed, returned as double or empty double. For more information, see
the “size” on page 1-0 argument in ContentConsumer.putData.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, returned as true or false.
For more information, see the “stop” on page 1-0 argument in
ContentConsumer.putData.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

See Also
StringConsumer.putData | jsondecode

Introduced in R2018a

1 Alphabetical List

1-6748

matlab.net.http.io.MultipartConsumer class
Package: matlab.net.http.io
Superclasses:

Helper for multipart content types in HTTP messages

Description
This consumer processes multipart HTTP response messages. A multipart message is one
whose Content-Type header field specifies "multipart", and whose body contains one
or more parts. Each part contains its own set of header fields describing the part, the
most important of which is a Content-Type field.

The matlab.net.http.io.MultipartConsumer class is a handle class.

Subclass Authors
If you are writing your own ContentConsumer, it will generally work whether it is a top
level consumer (specified as the 3rd argument to the RequestMessage.send method) or
a part of a multipart message (when specified as a "delegate" in the
MultipartConsumer constructor call). MultipartConsumer makes it appear to each
delegate as if it was handling the entire response message, while actually assembling the
results into an array of ResponseMessages stored in the returned
response.Body.Data property.

The following describes the MultipartConsumer behavior:

Each time this MultipartConsumer receives a complete part of a message from the
server, it parses any headers in the part and then invokes the appropriate delegate
consumer appropriate for the Content-Type field in the part. If there is no Content-Type
field in the part, it assumes the type is text/plain. If there is no delegate able to handle
the type, it uses default processing for the part based on the Content-Type, as described
for GenericConsumer.

MultipartConsumer does not invoke a delegate until it receives a complete part.
MultipartConsumer buffers the data for a part, and at the end of receipt of the part, it
copies all the visible properties of ContentConsumer from this consumer to the

 matlab.net.http.io.MultipartConsumer class

1-6749

delegate, clears the delegate's Response.Body, sets the delegate's Header to the
header of the part, and then calls the delegate's initialize and start methods,
followed by one or more calls to the delegate's putData method containing the payload
of the part, followed by a call to putData(uint8.empty) to indicate end-of-data. If the
delegate's initialize method returns false to indicate it does not want to handle the
part, the payload of the part is processed using default behavior for the Content-Type of
the part, as described for GenericConsumer.

If the delegate's start method returns [] to indicate that there is no maximum desired
buffer size, MultipartConsumer makes just one call to putData that provides the
entire payload of the part, followed by the end-of-data call. Otherwise it calls putData
enough times to supply the entire payload in units of the buffer size.

If the delegate's putData method sets the STOP return value to true to indicate that it
does not want any more data, then MultipartConsumer closes the connection to end
the transfer, as if the message had ended. In this way the delegate controls whether the
remainder of the original message should be processed. If putData returns a SIZE of [],
then the message also ends, but with an exception thrown to the caller of
RequestMessage.send.

If the consumer for a part was specified as a function handle rather than a
ContentConsumer instance, then the function is called only the first time the consumer
is needed, and subsequently the same consumer instance is used for any appropriate
parts of the same response message. For parts processed by a function handle, the
corresponding ResponseMessage in Response.Body.Data contains only a header for
the part, because the function does not have access to the ResponseMessage body.

A delegated consumer can access this consumer and its properties through its
MyDelegator property, though that is rarely necessary.

Creation

Description
consumer = MultipartConsumer(types,consumer) constructs a
MultipartConsumer to handle the specified types using the corresponding consumer.
You can specify several argument pairs in any order as
types1,consumer1,...,typesN,consumerN. MATLAB searches the types in the

1 Alphabetical List

1-6750

order they appear and uses the first match. If there are no matches among the specified
types, MATLAB uses the default set of consumers, depending on the type.

consumer = MultipartConsumer(puthandle) constructs a ContentConsumer that
calls the function specified by puthandle for each call to this consumer's putData
method.

Input Arguments
types — Content types
string array | character vector | cell array of character vectors

Content types, specified as a string array, character vector, or cell array of character
vectors. types specifies content types using the syntax "type/subtype". For more
information, see matlab.net.http.io.GenericConsumer.

consumer — Content consumer
matlab.net.http.io.ContentConsumer | function handle

Content consumer, specified as a matlab.net.http.io.ContentConsumer object that
can handle the specified types, or a handle to a function returning a ContentConsumer
that can handle those types.

puthandle — putData function
function handle

Handle to a putData function with the following ContentConsumer.putData syntax:

[length,stop] = putData(data)

where data is a uint8 array and length is the length of that array.

Use this syntax to process all input from the server using a single function, when you
know the type of data that the server returns. The function does not have access to the
ResponseMessage or any information about this consumer.

 matlab.net.http.io.MultipartConsumer class

1-6751

Properties

Public Properties
Preamble — Content before first delimiter
uint8

The part of the multipart message before the first boundary delimiter, if any, specified as
uint8. The consumer sets Preamble before calling the start method in a delegate.
Once set, the Preamble value never changes.

Attributes:

GetAccess
public

SetAccess
private

Epilogue — Content after last delimiter
uint8

The part of the multipart message following the last boundary delimiter, if any, specified
as uint8. The consumer sets Epilogue when the message ends, after all calls to
delegates. It is not set if a delegate terminates the transfer before the end of the
message. You can examine this property after the transfer is complete, for example, when
RequestMessage.send returns.

Attributes:

GetAccess
public

SetAccess
private

AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or

1 Alphabetical List

1-6752

larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

MATLAB sets this property before calling the start method for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

ContentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8

Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

 matlab.net.http.io.MultipartConsumer class

1-6753

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the
matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'
Attributes:

GetAccess
public

SetAccess
public

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by
a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6754

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the
Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

 matlab.net.http.io.MultipartConsumer class

1-6755

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and
Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Protected Properties
PutMethod — Handle to delegate's putData method
function handle | []

1 Alphabetical List

1-6756

putData method of the delegate, specified as a function handle, or specified as [] if
CurrentDelegate is set.

Attributes:

GetAccess
protected

SetAccess
protected

AppendFcn — Function called by putData to append additional data
function handle

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to
append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update
consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of
data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.
Example: @customAppend where @customAppend is defined by the consumer

 matlab.net.http.io.MultipartConsumer class

1-6757

Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

MATLAB sets CurrentDelegate to [] before calling initialize.
Attributes:

GetAccess
protected

SetAccess
protected

CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.
If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is

1 Alphabetical List

1-6758

used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.

Attributes:

GetAccess
protected

SetAccess
protected

 matlab.net.http.io.MultipartConsumer class

1-6759

Methods

Public Methods
<infotypegroup type="method"> initialize start putData delegateTo </
infotypegroup>

1 Alphabetical List

1-6760

Definitions

Class Hierarchy

 matlab.net.http.io.MultipartConsumer class

1-6761

See Also
FileConsumer | GenericConsumer | ImageConsumer | MediaType | MessageBody |
MultipartProvider | RequestMessage | ResponseMessage

Introduced in R2018a

1 Alphabetical List

1-6762

initialize
Class: matlab.net.http.io.MultipartConsumer
Package: matlab.net.http.io

Prepare MultipartConsumer for new HTTP message

Syntax
OK = initialize(consumer)

Description
OK = initialize(consumer) prepares this MultipartConsumer for a new message.
This method verifies that the matlab.net.http.field.ContentTypeField of the
message, if present, has a matlab.net.http.MediaType object whose Type property
is "multipart", and that it has a "boundary" parameter indicating the delimiter between
parts. initialize ignores the subtype.

If the ContentTypeField is missing, then this consumer stores the raw data in the
Payload property of the message.

initialize returns true if it can process the message. Otherwise, it returns false.

This method is an overridden method of ContentConsumer.initialize.

Input Arguments
consumer — Content consumer
matlab.net.http.io.MultipartConsumer

Content consumer, specified as a matlab.net.http.io.MultipartConsumer object.

 initialize

1-6763

Attributes
Access protected

See Also
ContentConsumer.initialize | matlab.net.http.MediaType |
matlab.net.http.field.ContentTypeField

Introduced in R2018a

1 Alphabetical List

1-6764

putData
Class: matlab.net.http.io.MultipartConsumer
Package: matlab.net.http.io

Process next buffer of data for MultipartConsumer

Syntax
[length,stop] = putData(consumer,data)

Description
[length,stop] = putData(consumer,data) accumulates buffers of data until an
entire part of a multipart message has been assembled. It then uses the Content-Type
field in the part's header to find an appropriate ContentConsumer delegate that can
handle that type, sets the delegate's Header property to the header of the part, and then
calls initialize and start in that delegate. It follows that with one or more putData
calls, passing in the part's payload, and then calls putData(uint8.empty) to indicate
the end of the payload.

After the final call to the delegate's putData, this method creates a ResponseMessage
containing the header of the part and a Body copied from Response.Body in the
delegate. (That Body might or might not contain data, depending on what the delegate
does.) It adds that new ResponseMessage to the array of ResponseMessage objects in
this consumer's Response.Body.Data property, which, when the end of the message
has been reached, contains one ResponseMessage for every part.

This method is an overridden method of ContentConsumer.putData. If you override
this method and return stop=true before the end of the message (if data is not empty)
in order to terminate receipt of the message before the normal end of message, you
should avoid calling this superclass method on the subsequent putData(uint8.empty)
call that MATLAB normally makes after you set stop. Failure to do so results in an invalid
message exception from MultipartConsumer due to a premature end of message.

 putData

1-6765

Input Arguments
consumer — Content consumer
matlab.net.http.io.MultipartConsumer

Content consumer, specified as a matlab.net.http.io.MultipartConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a
nonempty uint8 vector, uint8.empty, or []. For more information about these values,
see the “data” on page 1-0 input argument for the ContentConsumer.putData
method.

If data is [] to indicate that the message has ended and there was a delegate, copies the
Response property from the delegate to this object's Response.

Output Arguments
length — Length of data processed
double | [] (empty double)

Length of data processed, returned as double or empty double. For more information, see
the “size” on page 1-0 argument in ContentConsumer.putData.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, returned as true or false.
For more information, see the “stop” on page 1-0 argument in
ContentConsumer.putData.

Attributes
Access public

1 Alphabetical List

1-6766

See Also
ContentConsumer.putData | matlab.net.http.MessageBody |
matlab.net.http.ResponseMessage |
matlab.net.http.field.ContentTypeField

Introduced in R2018a

 putData

1-6767

start
Class: matlab.net.http.io.MultipartConsumer
Package: matlab.net.http.io

Start data transfer to MultipartConsumer

Syntax
bufsize = start(consumer)

Description
bufsize = start(consumer) prepares consumer for receipt of data. The method
returns [] to indicate that it has no preferred buffer size. This method is an abstract
method of ContentConsumer.start.

Input Arguments
consumer — Content consumer
matlab.net.http.io.MultipartConsumer

Content consumer, specified as a matlab.net.http.io.MultipartConsumer object.

Attributes
Access protected

See Also
ContentConsumer.start

1 Alphabetical List

1-6768

Introduced in R2018a

 start

1-6769

matlab.net.http.io.StringConsumer class
Package: matlab.net.http.io
Superclasses:

String consumer for HTTP payloads

Description
A StringConsumer stores character data in a response message, decoded according to
the charset based on the Content-Type, in the response body. You can specify this
consumer directly when sending a RequestMessage to specify a string conversion for
the data with certain parameters.

For an example subclassing this consumer, see the PricesStreamer class in “Display
Streamed Data in Figure Window”.

The matlab.net.http.io.StringConsumer class is a handle class.

Creation

Description
consumer = StringConsumer constructs a consumer that converts input to a scalar
string using the character set specified in the Content-Type of the message.

consumer = StringConsumer(Name,Value) constructs a consumer with options
specified by one or more Name,Value pair arguments. Name is the property name
Charset or TextType and Value is the corresponding value. You can specify the name-
value pair arguments in any order as Name1,Value1,Name2,Value2.

If you do not specify a Charset property, then this consumer tries to derive the charset
from the ContentType property, which MATLAB sets based on the Content-Type field in
the Response. StringConsumer knows the charset if ContentType has an explicit
charset parameter, or if it is one of the types for which MATLAB knows the default
charset:

1 Alphabetical List

1-6770

• "text/*" - US-ASCII or UTF-8 depending on the subtype.
• "application/*" - UTF-8 for subtypes: json, xml, javascript, css, x-www-form-

urlencoded; unknown otherwise.

If this consumer cannot determine the charset from the ContentType in the message,
then this consumer rejects the message and it is not converted. In that case, the
ResponseMessage.Body contains only a uint8 payload. If you want to convert a
message with an unknown charset, then set Charset in this consumer before applying it
to a message (or, if you are a subclass author, before calling the initialize method). A
good one to use is UTF-8 because that is a superset of US-ASCII and some other charsets.

Properties

Public Properties
Charset — Character set
empty (default) | string

The character set used to convert the data, specified as a string. This value is initially
empty. If you leave it empty, then this value is set when a message is received, based on
the specified or default charset in the Content-Type field of the message. If you want to
force conversion using a different charset, then you can do so by specifying a charset in
the StringConsumer constructor, or directly setting this property. Subclasses can set
this property at any time, including in the middle of a message. If you change this value
after calling putData, then the new value is used in subsequent calls to putData. The
existing contents of Response.Body.Data is not changed.

When receipt of a response begins, if this property was initially left empty, then MATLAB
sets this property to the chosen charset based on the Content-Type. If you reuse this
consumer for a different message, then a new charset can be chosen. If you set this
property to a nonempty value, MATLAB never changes it.

Attributes:

GetAccess
public

SetAccess
public

 matlab.net.http.io.StringConsumer class

1-6771

Dependent
true

TextType — Data return type
"string" (default) | "char"

The type of data to return, specified as "string" or "char". The value is from the
'TextType' parameter to the constructor. Default is "string". If you change this value after
data is already stored in Response.Body.Data, then that data is converted to the new
type.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

AllocationLength — Suggested buffer size
uint64

Suggested buffer size, specified as uint64. MATLAB sets AllocationLength to the
anticipated size of buffers of data passed to putData. The actual size might be smaller or
larger. To improve performance, the consumer can use this value to preallocate space to
handle the data.

MATLAB sets this property before calling the start method for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

ContentLength — Expected length of payload
uint64 | empty

1 Alphabetical List

1-6772

Expected length of the payload, specified as uint64. The property normally is the Value
property of the matlab.net.http.field.ContentLengthField in the Header
property.

If ContentLength is empty, then the length is not known. The payload ends when
putData(uint8.empty) is called.

MATLAB sets this property before calling initialize, for the convenience of subclasses
that might benefit from knowing the length of the data.

If this ContentConsumer is a delegate of a top-level consumer, then the value of
ContentLength might be different from the ContentLength value of the top-level
consumer.
Example: numel(someData) where someData is type uint8

Attributes:

GetAccess
public

SetAccess
public

ContentType — Media type of payload
matlab.net.http.MediaType | empty

Media type of payload, specified as a matlab.net.http.MediaType object. The
property normally is the Value property of the
matlab.net.http.field.ContentTypeField in the Header property. If the
ContentType property is empty, then the ContentTypeField is empty or nonexistent.

MATLAB sets this property before calling initialize for the convenience of subclasses
that might want to examine the MediaType. Subclasses can set this property if they
determine from the data that it is of a different MediaType.

At the end of the transfer, MATLAB copies this value into the
Response.Body.ContentType property.
Example: 'application/octet-stream'

 matlab.net.http.io.StringConsumer class

1-6773

Attributes:

GetAccess
public

SetAccess
public

Header — Header of payload currently being processed
matlab.net.http.HeaderField

Header of the payload currently being processed, specified as a
matlab.net.http.HeaderField object.

Consumers use this header to determine how to process the payload that is being sent to
them. For a top-level consumer, this value is the same as Response.Header. For a
delegate, the value might be different. For example, in a multipart message processed by
a MultipartConsumer, it is the header of the part that this delegate is processing. The
delegate can still examine Response.Header for headers of the original message.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

Attributes:

GetAccess
public

SetAccess
public

Request — Completed RequestMessage that was sent
matlab.net.http.RequestMessage

The completed RequestMessage that was sent, specified as a
matlab.net.http.RequestMessage object. This is the final RequestMessage after all
redirections, which is the completedrequest return value from the send method.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.

1 Alphabetical List

1-6774

Attributes:

GetAccess
public

SetAccess
public

Response — ResponseMessage being processed
matlab.net.http.ResponseMessage

The ResponseMessage being processed, specified as a
matlab.net.http.ResponseMessage object.

MATLAB sets the Response property before calling initialize. The value is the
ResponseMessage after headers have been received but before receiving any payload.
At the start of the response message processing (or the start of a part for multipart
messages), the ResponseMesssage.Body property is a MessageBody object with empty
Data and Payload properties. To store received data, consumers can modify the
Response and MessageBody.Data properties during data transfer. Usually, consumers
that process and then store data set Response.Body.Data to their processed payload,
though this is not required. At the completion of the transfer, MATLAB returns this
Response to the caller of send. Consumers should not modify other Response
properties, such as Header or StatusLine, as those changes are returned to the caller
of send.

The Response.Body.Payload property is empty during the transfer and consumers
should not attempt to modify it. If the HTTPOptions.SavePayload property is set, then
MATLAB sets Payload to the received payload at the end of the transfer of the message
or the part (after the call to putData(uint8.empty)) or when an exception occurs.

If an exception occurs in the consumer during message processing, then MATLAB throws
an HTTPException object. The History property contains this Response value.

If the consumer is a delegate that is processing part of a multipart message, then
Response.Header contains the header of the whole message, and the Payload and
Data properties of Response.Body are cleared before invoking the ContentConsumer
for each part. At the conclusion of each part, a new ResponseMessage is added to the
end of the array of ResponseMessage objects in the original response's Body.Data
containing the Header from this object and the Body from this property. The next
delegate sees a fresh Response with an empty MessageBody, not the previous
delegate's MessageBody.

 matlab.net.http.io.StringConsumer class

1-6775

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

URI — Destination of request being processed
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. This
value is the original destination URI as determined by send. It is not the URI of a proxy
or the final URI after redirections.

MATLAB sets this property before calling initialize, for the convenience of
subclasses.
Attributes:

GetAccess
public

SetAccess
public

Protected Properties
AppendFcn — Function called by putData to append additional data
function handle

Function, specified as a function handle, called by the putData method to append
additional data. The putData method in this class calls the AppendFcn function to
append data it receives in its data argument to existing data in the response message.
The function must have the signature:

AppendFcn(consumer,newdata)

where newdata is the data to be appended to the array at
consumer.Response.Body.Data. It is the responsibility of this method to update

1 Alphabetical List

1-6776

consumer.CurrentLength to reflect the new length of Data. If newdata is empty,
which indicates the end of the stream, then the function should update
Response.Body.Data to its final value.

The default behavior, if this property is empty, uses an internal function that treats Data
as an array of arbitrary values supporting the horzcat function. It efficiently adds
newdata by preallocating space, maintaining CurrentLength to be the actual length of
data stored. At the end of the message, it truncates Response.Body.Data to
CurrentLength.

Subclasses can change this property if horzcat is not appropriate for the append
process. For example, when a StringConsumer builds a scalar string, it would add to the
string using the plus function instead of horzcat.

Subclasses that do not invoke ContentConsumer.putData to append data, or which are
satisfied with horzcat behavior when appending data, can ignore this property.
Example: @customAppend where @customAppend is defined by the consumer
Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentConsumer to which this consumer is delegating
matlab.net.http.io.ContentConsumer | []

The ContentConsumer to which this consumer is delegating, specified as a
matlab.net.http.io.ContentConsumer object. The delegateTo method of the
calling consumer (the delegator) sets the CurrentDelegate property. If there is no
current delegation, then the value is [].

MATLAB sets CurrentDelegate to [] before calling initialize.
Attributes:

GetAccess
protected

SetAccess
protected

 matlab.net.http.io.StringConsumer class

1-6777

CurrentLength — Length of data currently in Response.Body.Data
uint64.empty (default) | uint64

Length of data currently in the Response.Body.Data property, specified as uint64.

This property is used when Response.Body.Data has been preallocated to a size larger
than the actual amount of data currently stored, to indicate the length of that stored data.
If this property is empty, then it means that all of Response.Body.Data contains the
stored data or that a ContentConsumer subclass is disposing of the data in some way
other than storing it in Response.Body.Data.

This property is used and set by the putData method in this base class when the
AppendFcn property is empty. It is for the benefit of subclasses that call putData and
want to examine already-stored data, and/or any implementations of AppendFcn that
maintain results in Response.Body.Data.

Subclasses that use putData also can modify this property to reset the position in the
buffer where the data is stored. For example, when the default AppendFcn function is
used, a subclass that processes all of Response.Body.Data on each call to putData
might no longer have a use for the original data, so it can reset the CurrentLength
property to 1 so that the next putData call overwrites the buffer with new data. There is
no need to clear elements in the buffer past the end of the new data.

Subclasses that do not call putData can use this property to track their own data, or can
leave it unset (empty). MATLAB does not place any constraints on the value that can be
set here and does not use it for any purpose other than to determine where the default
AppendFcn should store the next buffer of data, and where to truncate the data at the
end of the message. Set this property to empty before the final call to
putData(uint8.empty) to prevent truncation of the data.

MATLAB sets this property to empty before each call to initialize.

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentConsumer that delegated to this consumer
matlab.net.http.io.ContentConsumer | empty

1 Alphabetical List

1-6778

The ContentConsumer that delegated to this consumer, specified as a
matlab.net.http.io.ContentConsumer object. If this consumer is a delegate that
was invoked by another consumer, such as a GenericConsumer or
MultipartConsumer, then this is the calling consumer. It is empty in a top-level
consumer specified in the call to send.

Delegates can use this property to access properties of their delegators, for example, to
determine which consumer delegated to them.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> initialize start putData convert delegateTo
</infotypegroup>

 matlab.net.http.io.StringConsumer class

1-6779

Definitions

Class Hierarchy

1 Alphabetical List

1-6780

See Also
ContentConsumer | ContentTypeField | ResponseMessage |
StringConsumer.initialize | StringConsumer.putData | StringProvider

Topics
“Display Streamed Data in Figure Window”

Introduced in R2018a

 matlab.net.http.io.StringConsumer class

1-6781

initialize
Class: matlab.net.http.io.StringConsumer
Package: matlab.net.http.io

Prepare StringConsumer for new HTTP message

Syntax
OK = initialize(consumer)

Description
OK = initialize(consumer) prepares this StringConsumer for receipt of a
message.

MATLAB calls this method, which is an overridden method of
ContentConsumer.initialize.

initialize returns true if one of the following occurs. Otherwise, it returns false.

• Response.Status is OK and the Charset property is not empty.
• ContentType is set to a MediaType with a known or default charset.

You can process a message with an empty Charset property or with an unknown
matlab.net.http.MediaType. To do this, set Charset after creating the consumer or
write a subclass that overrides this method to set Charset before invoking initialize.

See the StringConsumer constructor for a list of known default charsets.

Input Arguments
consumer — Content consumer
matlab.net.http.io.StringConsumer

Content consumer, specified as a matlab.net.http.io.StringConsumer object.

1 Alphabetical List

1-6782

Attributes
Access protected

See Also
ContentConsumer.ContentType | ContentConsumer.Response |
ContentConsumer.initialize | matlab.net.http.MediaType

Introduced in R2018a

 initialize

1-6783

putData
Class: matlab.net.http.io.StringConsumer
Package: matlab.net.http.io

Append next buffer of string data to response

Syntax
[len,stop] = putData(consumer,data)

Description
[len,stop] = putData(consumer,data) converts data to a Unicode string using
the current value of the Charset property and appends the results to
Response.Body.Data. During this process the currently converted string is at
Response.Body.Data. If the TextType property is 'char', then only characters up to
CurrenLength are valid.

If data is [], it indicates the end of the message. On return, Response.Body.Data
contains the entire converted string or character vector.

For multibyte encodings such as UTF-8, it is possible that a given buffer of data ends
with a partial multibyte character. In that case Response.Body.Data might be missing
that last character, until the next call to putData completes it.

This method is an overridden method of ContentConsumer.putData. If you implement
a subclass of this consumer and want to examine the raw bytes before the charset
conversion, then override this method, examine data, change the Charset property if
necessary, and then pass data to this superclass method for conversion and storage in
Response.Body.Data. If you change Charset after putData has already been called to
process previous buffers, be aware that a partial multibyte character at the end of the
previous buffer that has not yet been converted could be lost. This would not occur if all
characters previously received are single-byte (for example, US-ASCII or the ASCII subset
of UTF-8).

1 Alphabetical List

1-6784

A more likely scenario is that you want to examine each buffer of data as it arrives after
charset conversion. To do so, override this method as follows (this works whether
TextType is char or string):

function [len, stop] = putData(obj, data)
 oldLength = obj.CurrentLength;
 % send raw bytes to StringConsumer for conversion
 [len, stop] = obj.putData@matlab.net.http.io.StringConsumer(data);
 newData = obj.Response.Body.Data.extractAfter(oldLength);
 % ...process newData...

Now newData contains the most recently added data, after conversion. Note that the
above pattern still stores the resulting string in Response.Body.Data.

If your subclass wants to stream its own results into the response after processing the
string, use the convert method to convert your data based on the TextType and
Charset in this object. In that case, call this putData method only at the end of the data,
with an empty argument.

Input Arguments
consumer — Content consumer
matlab.net.http.io.StringConsumer

Content consumer, specified as a matlab.net.http.io.StringConsumer object.

data — Buffer of raw data in ResponseMessage
nonempty uint8 vector | uint8.empty | [] (empty double)

Buffer of raw data in a matlab.net.http.ResponseMessage object, specified as a
nonempty uint8 vector, uint8.empty, or []. For more information about these values,
see the “data” on page 1-0 input argument for the ContentConsumer.putData
method.

Output Arguments
len — Length of data processed
double | [] (empty double)

 putData

1-6785

Length of data processed, returned as double or empty double. For more information, see
the “size” on page 1-0 argument in ContentConsumer.putData.

stop — Indicate whether to receive further data
false (default) | true

Indicate whether to receive further data from this message, returned as true or false.
For more information, see the “stop” on page 1-0 argument in
ContentConsumer.putData.

Attributes
Access public

Examples
For an example subclassing this method, see the PricesStreamer class putData
method in “Display Streamed Data in Figure Window”.

See Also
ContentConsumer.Response | ContentConsumer.putData | StringConsumer.Charset |
StringConsumer.TextType | StringConsumer.convert

Introduced in R2018a

1 Alphabetical List

1-6786

start
Class: matlab.net.http.io.StringConsumer
Package: matlab.net.http.io

Start data transfer to StringConsumer

Syntax
bufsize = start(consumer)

Description
bufsize = start(consumer) prepares consumer for receipt of data. By default,
start accumulates the converted string or character vector in Response.Body.Data.
This method returns [] to indicate it has no preferred buffer size.

This method is an abstract method of ContentConsumer. If you override this method,
you should call the ContentConsumer.start method as well.

Input Arguments
consumer — Content consumer
matlab.net.http.io.StringConsumer

Content consumer, specified as a matlab.net.http.io.StringConsumer object.

Attributes
Access protected

 start

1-6787

Examples
For an example subclassing this method, see the PricesStreamer class start method
in “Display Streamed Data in Figure Window”.

See Also
ContentConsumer.start

Introduced in R2018a

1 Alphabetical List

1-6788

convert
Class: matlab.net.http.io.StringConsumer
Package: matlab.net.http.io

Convert data to string in StringConsumer

Syntax
str = convert(consumer,data)

Description
str = convert(consumer,data) converts a buffer of data to a string or character
vector, str, based on the current values of Charset and TextType. This has the same
behavior as putData, but returns the converted string instead of storing it in
Response.Body.Data. It does not update CurrentLength.

This is a utility method for the benefit of subclasses that want to interpret the data as a
string, and then process the results and store their own data in Response.Body.Data.
Subclasses that use this method should not call putData except to pass in empty data at
the end of the stream to tell this class that input has ended.

If data ends with a partial multibyte character, that partial character is saved internally
and not returned until the next call to convert that provides the remainder of the bytes.

Input Arguments
consumer — Content consumer
matlab.net.http.io.StringConsumer

Content consumer, specified as a matlab.net.http.io.StringConsumer object.

data — Buffer of raw data
nonempty uint8 vector | uint8.empty | [] (empty double)

 convert

1-6789

Buffer of raw data in ResponseMessage, specified as a nonempty uint8 vector,
uint8.empty, or [].

Output Arguments
str — Text
string | character vector

Text, returned as a string or character vector.

Attributes
Access protected

See Also
Charset | TextType | putData

Introduced in R2018a

1 Alphabetical List

1-6790

matlab.net.http.io.ContentProvider class
Package: matlab.net.http.io
Superclasses: ,

ContentProvider for HTTP message payloads

Description
A ContentProvider supplies data for an HTTP RequestMessage while the message is
being sent. A simple provider converts data from a MATLAB type to a byte stream. More
complex providers can stream data to the server, obtaining or generating the data at the
same time it is being sent, which avoids the need to have all the data in memory before
the start of the message.

Normally, when sending data to a web service (typically in a PUT or POST request), you
would create a RequestMessage and insert data in the form of a MessageBody object in
the RequestMessage.Body property. When you send that message using
RequestMessage.send, MATLAB converts that data into a byte stream to be sent to the
server, converting it based on the Content-Type of the message and the type of data in
Body.Data. See MessageBody.Data for these conversion rules.

Instead of inserting a MessageBody object into the RequestMessage.Body property,
you can create a ContentProvider object and insert that instead. Then, when you send
the message, MATLAB calls methods in the ContentProvider to obtain buffers of data
to send, while the message is being sent.

Whether you insert a MessageBody or a ContentProvider into the message, the call to
RequestMessage.send does not return (that is, it is blocked) until the entire message
has been sent and a response has been received, or an error has occurred. But with a
ContentProvider, MATLAB makes periodic callbacks into the provider to obtain buffers
of data to send, during the time send is blocked. In these callbacks, your
ContentProvider can obtain data from any source such as a file, a MATLAB array, a
hardware sensor, a MATLAB function, etc. The provider's job is to convert that data to a
byte stream, in the form of uint8 buffers, that can be sent to the web.

ContentProvider is an abstract class designed for class authors to subclass with their
own data generator or converter, or you can use (or subclass) one of the MATLAB

 matlab.net.http.io.ContentProvider class

1-6791

providers that generate the data for you from various sources, without writing a subclass.
These providers have options that give you more flexible control over how data is
obtained and converted, compared to the automatic conversions that occur when you
insert data directly into a MessageBody. Use one of the ContentProvider subclasses:

• FileProvider
• StringProvider
• JSONProvider
• ImageProvider
• FormProvider
• MultipartProvider
• MultipartFormProvider
• GenericProvider

Even if you do not need to stream data, using one of these providers can simplify the
process of sending certain types of content, as they convert data from an internal form
into a uint8 stream. For example, FormProvider lets you send form responses to a
server, where you can conveniently express the data as an array of QueryParameter
objects. MultipartFormProvider lets you send multipart form responses, simplifying
the creation of responses to multipart forms. To use any ContentProvider, you need to
understand the type of content that the server expects you to send.

The matlab.net.http.io.ContentProvider class is a handle class.

Subclass Authors
The simplest possible ContentProvider need only implement a getData method to
provide buffers of data as MATLAB requests them. To use your provider, insert it into in
the Body property of the RequestMessage. In this example, the third argument to the
RequestMessage constructor, a MyProvider object, goes into the Body:

provider = MyProvider;
req = matlab.net.http.RequestMessage('put', headers, provider);
resp = req.send(uri);

Here is an example a MyProvider class that reads from a file name passed in as an
argument to the constructor and sends it to the web. For good measure, we close the file
at the end or when this provider is deleted.

1 Alphabetical List

1-6792

 classdef MyProvider < matlab.net.http.io.ContentProvider
 properties
 FileID double
 end

 methods
 function obj = MyProvider(name)
 obj.FileID = fopen(name);
 end

 function [data, stop] = getData(obj, length)
 [data, len] = fread(obj.FileID, length, '*uint8');
 stop = len < length;
 if (stop)
 fclose(obj.FileID);
 obj.FileID = [];
 end
 end

 function delete(obj)
 if ~isempty(obj.FileID)
 fclose(obj.FileID);
 obj.FileID = [];
 end
 end
 end
 end

MATLAB calls a provider's complete method when it is forming a new message to send.
The purpose is to allow the provider to prepare for a new message and add any required
header fields to the message. MATLAB calls a provider's start method when it is time to
send the data, but before the first call to getData.

Properties
Public Properties
Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

 matlab.net.http.io.ContentProvider class

1-6793

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.
Attributes:

GetAccess
public

1 Alphabetical List

1-6794

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.

Attributes:

GetAccess
public

SetAccess
public

 matlab.net.http.io.ContentProvider class

1-6795

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

1 Alphabetical List

1-6796

The complete methods set this property to empty.
Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.
Attributes:

GetAccess
protected

SetAccess
protected

Methods
Public Methods
<infotypegroup type="method"> string show </infotypegroup>

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

 matlab.net.http.io.ContentProvider class

1-6797

Abstract Methods
<infotypegroup type="method"> getData </infotypegroup>

Definitions

Restartability and Reusability
A provider can be restartable and/or reusable. Restartable means that the provider is able
to resend the same message multiple times, with the same data stream each time
MATLAB calls start, even if the previous use did not end in a normal completion. This
behavior is needed because the server can redirect a message to a different server, which
means the data needs to be retransmitted. In that case MATLAB calls start without
calling complete again. MATLAB calls the restartable method to determine whether a
provider can be restarted. If false, MATLAB throws an exception if it needs to call start
on a provider that has already been started, if there was no intervening call to complete
(which happens only on a new message).

Reusable means that the provider can be reused for a different (or the same) message,
each time MATLAB calls its complete method. MATLAB calls the reusable method to
determine whether a provider can be reused. If false, then MATLAB throws an
exception if it needs to call complete on a provider that has already been started. If a
provider is reusable, then the assumption is that the next call to start should succeed,
even if the provider is restartable.

ContentProvider returns false for both restartable and reusable, so if you are
extending this base class directly with a restartable or reusable provider, you should
override one or both of these methods to return true. All concrete subclasses of
ContentProvider in the matlab.net.http.io package are both restartable and
reusable, so they return true for these methods. If you are extending one of those
subclasses with a provider that is not reusable or restartable, override one or both of
those methods to return false.

The MyProvider class in this example is not restartable or reusable, because the
provider closes the file at the end of the message. To make it reusable, the fopen call
should take place in the complete method instead of the constructor, thereby restoring
the provider's state back to what it was before it was used for a message.

 classdef MyProvider < matlab.net.http.io.ContentProvider
 properties

1 Alphabetical List

1-6798

 FileID double
 Name string
 end

 methods
 function obj = MyProvider(name)
 obj.Name = name;
 end

 function [data, stop] = getData(obj, length)
 ...as above...
 end

 function complete(obj, uri)
 obj.FileID = fopen(name);
 obj.complete@matlab.net.http.io.ContentProvider();
 end

 function tf = reusable(~)
 tf = true;
 end

 function delete(obj)
 ...as above...
 end
 end
 end

To make the provider restartable, add restartable and start methods and issue an
fseek in the start method to "rewind" the file:

 function start(obj)
 obj.start@matlab.net.http.io.ContentProvider();
 fseek(obj.FileID, 0, -1);
 end

 function tf = restartable(~)
 tf = true;
 end

When you call complete or send on a RequestMessage that contains a
ContentProvider in its body, MATLAB sets the Request property in the provider to the
RequestMessage in which the provider was placed and the Header property to the

 matlab.net.http.io.ContentProvider class

1-6799

headers in the Request, before adding automatic fields. It then calls the following
methods in the provider, in this order:

• complete - called on message completion, which usually happens once per message,
when you call RequestMessage.send or RequestMessage.complete. The provider
is expected to set its Header property to any header fields to be added to the message
specific to the provider. If MATLAB calls this method a subsequent time, the provider
should assume it is being used for a new message. Most providers need to implement
this method to add their headers and then, if they are not a direct subclass of this
abstract class, they should call their superclass complete to invoke any additional
default behavior. MATLAB does not call complete more than once in a provider,
unless its reusable method returns true. This abstract class is not reusable by default,
but all concrete providers in the matlab.net.http.io package are reusable.

• preferredBufferSize/expectedContentLength - called from
RequestMessage.send, sometime after complete, before a call to start. Most
providers need not implement these methods, as the default behavior is appropriate.
However, providers can override this to support the force argument.

After return from these methods, MATLAB sends the header of the RequestMessage to
the server. When it is time to send the body, MATLAB calls these methods.

• start - called from RequestMessage.send, sometime after calling the previous
methods, when MATLAB has determined that the server is ready to receive the body of
the request message. If MATLAB calls this a subsequent time, without an intervening
complete, the provider should assume it is being asked to resend the body of the same
message (with the same headers) once again. MATLAB does not call start more than
once since the last call to complete, unless the provider's restartable method
returns true. This abstract class is not restartable by default, but all concrete
providers in the matlab.net.http.io package, are restartable.

• getData - called multiple times after the call to start, while
RequestMessage.send is blocked, each time MATLAB determines that the server is
ready for a new buffer of data. The method must return a uint8 vector of data. The
provider signals the end of the data by returning a stop indicator. All providers must
implement this method.

After getData returns a stop indicator, MATLAB ends the request message and awaits a
response from the server.

1 Alphabetical List

1-6800

Delegation
A ContentProvider that is inserted into a RequestMessage.Body can delegate to one
or more other providers to provide all or some of the data for the message. For example, a
MultipartProvider creates a message with multiple parts, each of which are provided
by various other providers specified to the MultipartProvider constructor. In this
case, MultipartProvider is the delegator, and the other providers are the delegates,
each one being called in turn to provide its own header fields and its portion of the data.

A provider delegates to another by calling delegateTo, which sets CurrentDelegate
to the delegate and the delegate's MyDelegator to the current provider (that is, the
delegator), and then calls the delegate's complete and start methods. Then the
delegator's getData method calls CurrentDelegate.getData to obtain the data,
possibly altering it before returning it to MATLAB. Providers generally do not have to
check whether they are delegates, or who delegated to them.

 matlab.net.http.io.ContentProvider class

1-6801

Class Hierarchy

1 Alphabetical List

1-6802

See Also
ContentConsumer | FileProvider | FormProvider | ImageProvider |
JSONProvider | MessageBody | MultipartFormProvider | MultipartProvider |
QueryParameter | RequestMessage | StringProvider

Introduced in R2018a

 matlab.net.http.io.ContentProvider class

1-6803

complete
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Complete HTTP header for ContentProvider

Syntax
complete(provider,URI)

Description
complete(provider,URI) augments the header of the message with header fields
required by this provider. The RequestMessage.send and
RequestMessage.complete methods call this method before validating the header or
adding any default fields, and before calling other methods in this class except for
expectedContentLength.

This is where subclasses can add any fields to Header that depend on the content, such as
Content-Type. See the description of the Header property for more information.

The RequestMessage methods do not call this method if the message has already been
completed (that is, if RequestMessage.Completed is true). However, a subsequent
change to the message after completion resets the RequestMessage.Completed
property, allowing those methods to invoke this method again. Therefore, providers
should be prepared for more than one call to complete before a call to start. Once
start has been called, MATLAB does not reinvoke complete in this provider unless
reusable returns true to indicate that this provider can be reused for another message.

A ContentProvider that extends another ContentProvider should first call its
superclass complete method to add header fields to Header that the superclass needs,
and then, on return, modify those fields if desired.

The default behavior of this method does nothing, but throws an exception if this provider
has been started and is not reusable. Providers that override this method should always
invoke their superclass.

1 Alphabetical List

1-6804

If this provider is not a multipart delegate, and you want to include a Content-Length field
in the message (thereby avoiding chunked transfer coding), then you should return a
nonempty value in expectedContentLength or implement this method to insert a
Content-Length field in the Header.

This method is not invoked on messages with a Completed property set to true, which
generally means that this method is invoked only once per message, even if this message
is resent multiple times. Implementations of this method should, therefore, perform any
initialization that needs to be done only once per message. Costly initialization that does
not need to be done until the data is ready to be sent should be performed in the start
method.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

URI — Uniform resource identifier
matlab.net.URI

Uniform resource identifier, specified as a matlab.net.URI object.

Attributes
Access protected

Examples
Extend Class Provider

The following is a coding pattern for a ContentProvider that extends a
SuperclassProvider and adds the HeaderField myField .

function complete(obj, uri)
 complete@SuperclassProvider(obj, uri);

 complete

1-6805

 field = obj.Header.getFields('My-Field');
 if isempty(field)
 myField = HeaderField('My-Field', value);
 obj.Header = obj.Header.addFields(myField);
 end

See Also
ContentProvider.Header | ContentProvider.Request | expectedContentLength |
matlab.net.URI | matlab.net.http.RequestMessage | start

Introduced in R2018a

1 Alphabetical List

1-6806

delegateTo
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Delegate to another provider

Syntax
[getDataFnc,length] = delegateTo(provider,delegate,URI)
[getDataFnc,length] = delegateTo(___ ,force)

Description
[getDataFnc,length] = delegateTo(provider,delegate,URI) sets up a
delegate ContentProvider to provide all or part of the subsequent data in a
RequestMessage. This method initializes properties in the delegate using properties of
this object and supplied parameters, as if a new message was about to be transmitted
using that delegate, and invokes the complete, expectedContentLength, and start
methods in the delegate. It returns a handle to a function, getDataFnc, that you invoke
to obtain data from the delegate:

[data, stop] = getDataFcn(length)

where the arguments are as described for getData. You can use any value of length,
but normally you make this call in your getData method, passing the same value that
was passed to your method.

To delegate to a provider that provides the entire contents of a message, call
delegateTo in your start method. If you use the delegate to obtain part of the message
content, then call delegateTo at the appropriate time in your putData method.

To obtain data from the delegate, always use the returned getDataFnc. Do not call the
delegate's getData directly because the delegate might provide its data through some
other means.

[getDataFnc,length] = delegateTo(___ ,force) indicates if the
expectedContentLength method should return the length of the data.

 delegateTo

1-6807

Input Arguments
provider — Content Provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

delegate — Provider for subsequent data
matlab.net.http.io.ContentProvider

Provider for subsequent data, specified as a matlab.net.http.io.ContentProvider
object.

URI — Request destination
matlab.net.URI

Destination of the request being processed, specified as a matlab.net.URI object. The
value is the URI provided to the caller's complete method.

force — Indicate whether to return length of data
false (default) | true

Indicate whether the expectedContentLength method should return the length of
data, specified as true or false. The delegateTo method passes this value to
expectedContentLength.

Output Arguments
getDataFnc — Function to get data
function handle

Function to get data from a delegate, returned as a function handle.

length — Value returned by expectedContentLength
[] (default) | bytes

Value returned by the expectedContentLength method, returned as bytes. For more
information, see the length output argument for
ContentProvider.expectedContentLength.

1 Alphabetical List

1-6808

Attributes
Access protected

See Also
complete | expectedContentLength | getData | matlab.net.URI | start

Introduced in R2018a

 delegateTo

1-6809

expectedContentLength
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Content length of ContentProvider

Syntax
length = expectedContentLength(provider)
length = expectedContentLength(provider,force)

Description
length = expectedContentLength(provider) returns the expected content length
in bytes. This method is intended to be overridden by subclasses that want to report their
content length to MATLAB. RequestMessage.send and RequestMessage.complete
call this method and use the return value to set the Content-Length header field in the
RequestMessage. If the message already has a Content-Length field with a value, and
length is nonempty, then its value must be equal to the value in that Content-Length
field. length might be 0 to indicate there is no contents, in which case the first call to
getData should return empty data and stop=true.

MATLAB calls this method from RequestMessage.send, RequestMessage.complete
and in the delegate by delegateTo. MATLAB calls this after
ContentProvider.complete and before ContentProvider.start. If this method is
called before calling complete, then the return value might be invalid, because a
provider cannot necessarily determine the length of its converted data without seeing all
the header fields that control the conversion.

If you do not choose to have a Content-Length header field in your message (the message
is being sent using chunked transfer coding), then the only reason to override this method
and return a nonempty value is as a double-check to insure that your provider returns the
expected length of data.

In cases where the length of the data is known (that is, when this method returns a
number or the Content-Length field is nonempty), this provider's getData method must

1 Alphabetical List

1-6810

return stop=true after exactly that number of bytes have been returned. MATLAB
always calls getData repeatedly, even if length=0, until getData returns stop=true.
In cases where the length is not known, if this is a top level provider (not a multipart
delegate), then MATLAB uses chunked transfer coding to send the contents and the
provider is free to return any length of data, including none, prior to setting stop=true.

You should return [] if you do not know the length of the data in advance, or if computing
the length of the data would be time-consuming. It is harmless (and perfectly normal) to
allow any message to use chunked transfer coding, even if you know the length. If this
provider is a multipart delegate, a nonempty return value is only used to force an error in
case getData returns more or fewer bytes, and will not cause a Content-Length header
field to appear in the part. See MultipartProvider for more information.

length = expectedContentLength(provider,force), if force is true, requires
that you return the length of the data, computing it if necessary, even if you would
otherwise return [], unless computing the length is impossible. If returning this number
requires a lengthy computation or generation of all the data in the message, then you
should cache the data so that you do not have to recompute it in subsequent getData
calls. The force argument is provided for use by subclasses who must know the length of
the data in advance. MATLAB never sets this option when calling this method, and if you
know that your provider is never used as a subclass that might set this option, then you
can ignore the force argument.

Callers of this method who get [] in response to setting force to true can either
consider it an error, or behave in a way that is compatible with content of unknown
length.

Specifying force can negate the benefit of streaming (sending data as it is being
generated) if it requires all the data to be generated to compute length, so this option is
best used for special cases, e.g. debugging, or when the length of data is known to be
small.

An example of the use of force is a hypothetical CompressProvider that optionally
compresses the output of any other provider, but only if that output is greater than a
certain length (because compression is inefficient for short messages). To determine the
length, the CompressProvider needs to invoke the other provider's
expectedContentLength with force set to true. If that other provider is a streaming
JSONProvider, expectedContentLength normally returns [], because determining
the length of a JSON string requires processing all of the input data. With force set to
true, the JSONProvider's expectedContentLength method processes all of the data

 expectedContentLength

1-6811

(perhaps caching the output string internally for later use by its putData method), and
returns that string's length.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

force — Indicate whether to return length of data
false (default) | true

Indicate whether to return the length of the data, specified as true or false.

If true, the expectedContentLength must return the length of the data, computing it
if necessary, even if you would otherwise return [], unless computing the length is
impossible. If returning this number requires a lengthy computation or generation of all
the data in the message, then you should cache the data so that you do not have to
recompute it in subsequent getData calls. The force argument is provided for use by
subclasses who must know the length of the data in advance. MATLAB never sets this
option when calling this method, and if you know that your provider is never used as a
subclass that might set this option, then you can ignore the force argument.

Callers of this method who get [] in response to setting force to true can either
consider it an error, or behave in a way that is compatible with content of unknown
length.

Specifying force can negate the benefit of streaming (sending data as it is being
generated) if it requires all the data to be generated to compute length, so this option is
best used for special cases, for example, debugging, or when the length of data is known
to be small.

Output Arguments
length — Expected content length
[] (default) | bytes

1 Alphabetical List

1-6812

Expected content length, in bytes. If you do not override this method, then
expectedContentLength returns []. MATLAB determines the content length as
follows.

• If this ContentProvider is not a multipart delegate (see MultipartProvider), and
the message has a Content-Length field with a nonempty value (inserted in the
original RequestMessage or added to the Header property by the complete
method), then that Content-Length field is the length of the contents.

• If there is no Content-Length field (or this provider is a multipart delegate), then the
payload (or data in the part) ends when this provider's getData method sets the stop
return value. In that case, the content length need not be specified.

Attributes
Access protected

See Also
ContentProvider.Header | ContentProvider.Request | ContentProvider.complete |
ContentProvider.getData | JSONProvider | MultipartProvider |
matlab.net.http.RequestMessage

Introduced in R2018a

 expectedContentLength

1-6813

getData
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Next buffer of data to send in HTTP request message from ContentProvider

Syntax
[data,stop] = getData(provider,length)

Description
[data,stop] = getData(provider,length) returns a buffer of data to send in an
HTTP request message.

MATLAB calls this method multiple times during RequestMessage.send, after calling
start, and sends each buffer of data to the server immediately. If the message is
chunked (for example, expectedContentLength returned empty and there is no
Content-Length field in the message), then the size of the chunk is the length of data.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

length — Length of data
double

Length of data that the provider should return for optimum interactive behavior, specified
as double.

The value is a suggested length based on the value of preferredBufferSize, if
specified, and the internal buffer sizes. The provider can, however, return more or fewer

1 Alphabetical List

1-6814

bytes, and if your provider wants to send chunks of specific sizes, it can ignore length.
MATLAB does not guarantee that any specific value of length is specified, but it always
is a finite number greater than zero. Returning a large buffer of data might cause
MATLAB to block for a considerable time while sending the data, during which you cannot
interrupt the operation using Ctrl+C. This might not be an issue for non-interactive
applications, where larger buffers are efficient.

Output Arguments
data — Next buffer of data
uint8 vector | empty

Next buffer of data, returned as a uint8 vector or empty. If data is empty and stop is
not set, then MATLAB calls this method repeatedly to get more data (after a small delay).
To end the message, return stop=true. However, you can also throw an exception to
abort the message, which is returned to the caller of RequestMessage.send.

If the Content-Length header field was included in the message header or returned by
expectedContentLength (that is, the message is not being sent using chunked transfer
coding), then the total number of bytes returned in data over multiple calls, ending with
stop=true, must be equal to that number. If stop=true is returned prematurely, or the
total amount of data returned is greater than that number, then MATLAB throws an
exception and closes the connection.

stop — Indicate whether to end transmission
false (default) | true

Indicate whether to end transmission, returned as a logical that the provider must set. If
false, then MATLAB calls this getData again to get more data when it is ready to send
the next buffer. If true, then this indicates that the provider has no more data to send,
beyond what is returned in data, and tells MATLAB to end the message. This is the
normal way to end the RequestMessage and prepare MATLAB to receive a
ResponseMessage.

Attributes
Access public

 getData

1-6815

See Also
MultipartProvider | expectedContentLength |
matlab.net.http.RequestMessage | preferredBufferSize | start

Introduced in R2018a

1 Alphabetical List

1-6816

preferredBufferSize
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Preferred buffer size for ContentProvider

Syntax
size = preferredBufferSize(provider)

Description
size = preferredBufferSize(provider) returns the preferred size of data buffers
of this provider. MATLAB should use this value in the length parameter to the getData
method.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

Output Arguments
size — Preferred buffer size
[] (default) | bytes

Preferred buffer size, returned as bytes. By default this returns [], which indicates that
this provider does not care what size of buffers are requested and MATLAB should choose
a size. Since getData can always return fewer or more bytes than this, this value is an
optimization to minimize the number of getData calls and amount of data copying that
might take place.

 preferredBufferSize

1-6817

See Also
expectedContentLength | getData

Introduced in R2018a

1 Alphabetical List

1-6818

restartable
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Indicate whether ContentProvider is restartable

Syntax
TF = restartable(provider)

Description
TF = restartable(provider) indicates whether ContentProvider is restartable.
The method returns true if the ContentProvider can restart transmission of the same
data, by accepting a subsequent call to the start method without an intervening call to
complete. For more information on restartability, see the class description of
ContentProvider. By default, restartable returns false, but most concrete
subclasses return true.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

Attributes
Access protected

 restartable

1-6819

See Also
ContentProvider | complete | reusable | start

Introduced in R2018a

1 Alphabetical List

1-6820

reusable
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Indicate whether ContentProvider is reusable

Syntax
TF = reusable(provider)

Description
TF = reusable(provider) indicates whether ContentProvider is reusable. The
method returns true if the ContentProvider can be reused for a new message, by
accepting a subsequent call to the complete method. For more information on
reusability, see the class description of ContentProvider. By default reusable returns
false, but most concrete subclasses return true.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

Attributes
Access protected

See Also
ContentProvider | complete | restartable | start

 reusable

1-6821

Introduced in R2018a

1 Alphabetical List

1-6822

show
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Display ContentProvider information

Syntax
show(provider)
show(provider,maxlength)
str = show(___)

Description
show(provider) displays information about the provider and possibly its data.

Use this method for debugging. If the Body property in a RequestMessage contains this
provider, then MATLAB calls show. In this abstract class, show returns the value of the
string method, but limits the output to maxlength characters.

show(provider,maxlength) displays up to maxlength characters of data. If the data
is longer than maxlength, then show displays a message indicating the total length in
characters.

str = show(___) returns the information as a string.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

maxlength — Number of characters
double

 show

1-6823

Number of characters to display, specified as double.

Attributes
Access public

See Also
string

Introduced in R2018a

1 Alphabetical List

1-6824

start
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Start data transfer from ContentProvider

Syntax
start(provider)

Description
start(provider) is called each time MATLAB is ready to start the transfer of a data
stream by calling getData one or more times. Each time this is called, the provider is
expected to reset so that the next call to getData goes back to the beginning of the data
stream.

Calling start indicates that a connection to the server has been established and transfer
of data is about to start. A subsequent call to start (without an intervening call to the
complete method) might indicate that the server requested a redirect to a different
server, or requires another try with authentication credentials, and this could occur
before, during, or after transmission of the data stream.

If your provider is restartable, reset your provider so that the next call to getData
returns to the beginning of the data stream, and insure that the restartable method
returns true.

If your provider is not restartable for the same message, but can be reused for a new
message, insure restartable returns false.

Subclasses that override this method should always call their superclass method first. If
the provider was already started and is not restartable, then start throws an exception
by default.

This method is the best place to implement costly initialization that is not needed until the
server is ready to receive data, as opposed to the complete method, which must do

 start

1-6825

initialization necessary to create the message header. If the server cannot be contacted or
rejects the message, then MATLAB does not call start.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

See Also
complete | getData | restartable | reusable

Introduced in R2018a

1 Alphabetical List

1-6826

string
Class: matlab.net.http.io.ContentProvider
Package: matlab.net.http.io

Show ContentProvider as string

Syntax
str = string(provider)

Description
str = string(provider) returns information about the provider as a string.

Use this method for debugging. It is also invoked by calling in string in MessageBody
or RequestMessage that contains this provider. In this abstract class, string returns
the class of the provider. Subclasses can override this method to return the provider data,
if any, or other information about the provider.

Input Arguments
provider — Content provider
matlab.net.http.io.ContentProvider

Content provider, specified as a matlab.net.http.io.ContentProvider object.

Output Arguments
str — Data in text format
string

Data in text format, returned as a string.

 string

1-6827

Attributes
Access public

See Also
matlab.net.http.MessageBody | matlab.net.http.RequestMessage

Introduced in R2018a

1 Alphabetical List

1-6828

matlab.net.http.io.FileProvider class
Package: matlab.net.http.io
Superclasses: ,

ContentProvider to send files

Description
Use a FileProvider object as a convenient way to send one or more files to a server.

The matlab.net.http.io.FileProvider class is a handle class.

Creation

Description
providers = FileProvider(files) constructs an array of FileProviders, one for
each file in the files array. Each entry sends one file to the server.

To terminate the file transfer before reaching the end of the file, set the FileSize
property to the number of bytes desired. To decide where to end the transfer based on the
file contents while it is being read, write a subclass and override getData to examine the
data being read and set the stop return value to end the transfer.

providers = FileProvider(files,permission,machineformat,encoding)
specifies options for opening the files.

providers = FileProvider(fileIds) constructs FileProviders specified by file
identifiers. The files are read starting at the current file position indicator to the end of
the file. The file identifiers are not closed when the transfer is complete. This method is
useful if the file is already open, or when you want to transfer just the trailing part of the
file. To do this, open the file, set the file position indicator to the start of the data in the
file that you want to transfer, and then pass that file identifier into this constructor. You
can also set FileSize to limit the total number of bytes or write a subclass to control
when to end the transfer.

 matlab.net.http.io.FileProvider class

1-6829

Input Arguments
files — File names
string | string array | character vector | cell array of character vectors

One or more file names, specified as a string, string array, character vector, or cell array
of character vectors. For more information about the use of file names, see fopen.
Data Types: char | string

permission — File access type
w+ (default) | u+ | u | T | value allowed by fopen function

File access type, specified as a string. If permission is specified, it must allow write
access. The default value is 'w+', which opens or creates a file for reading and writing
and discards existing contents, if any.
Data Types: char | string

machineformat — Order for reading or writing bytes or bits
any value allowed by fopen

Order for reading or writing bytes or bits, specified as any value allowed by the fopen
function.
Data Types: char | string

encoding — Character encoding
any value allowed by fopen

Character encoding, specified as any value allowed by the fopen function.
Data Types: char | string

fileIds — File identifiers
double | array of double

One or more file identifiers, specified as a double or an array of double.

1 Alphabetical List

1-6830

Properties
Public Properties
Filename — Full path of file
string

Full path of the file, derived from the input argument, specified as a string.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

FileSize — Number of bytes to transmit
empty (default) | double

Number of bytes to transmit, specified as double.
Attributes:

GetAccess
public

SetAccess
public

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

 matlab.net.http.io.FileProvider class

1-6831

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to

1 Alphabetical List

1-6832

the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.
Attributes:

GetAccess
public

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

 matlab.net.http.io.FileProvider class

1-6833

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.

Attributes:

GetAccess
public

SetAccess
public

Protected Properties
CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

The complete methods set this property to empty.

1 Alphabetical List

1-6834

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

 matlab.net.http.io.FileProvider class

1-6835

string FileProvider information as string
show Display FileProvider information

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

1 Alphabetical List

1-6836

Definitions

Class Hierarchy

 matlab.net.http.io.FileProvider class

1-6837

See Also
FileConsumer | FileProvider.getData | MessageBody | MultipartFormProvider
| MultipartProvider | RequestMessage | fopen

Introduced in R2018a

1 Alphabetical List

1-6838

getData
Class: matlab.net.http.io.FileProvider
Package: matlab.net.http.io

Next buffer of data to send in HTTP request message from FileProvider

Syntax
[data,stop] = getData(provider,length)

Description
[data,stop] = getData(provider,length) returns the next buffer of data from the
file. This method is an overridden method of ContentProvider.getData.

Input Arguments
provider — Content provider
matlab.net.http.io.FileProvider

Content provider, specified as a matlab.net.http.io.FileProvider object.

length — Length of data
double

Length of data that the provider should return, specified as double. For more information,
see the length argument in ContentProvider.getData.

Output Arguments
data — Next buffer of data
uint8 vector | empty

Next buffer of data, returned as a uint8 vector or empty.

 getData

1-6839

stop — Indicate whether to end transmission
false (default) | true

Indicate whether to end transmission, returned as a logical that the provider must set.
getData sets stop to true if the end of file has been reached or FileSize bytes have
been returned, whichever comes first.

Attributes
Access public

See Also
ContentProvider.getData

Introduced in R2018a

1 Alphabetical List

1-6840

string
Class: matlab.net.http.io.FileProvider
Package: matlab.net.http.io

Show FileProvider as string

Syntax
str = string(provider)

Description
str = string(provider) returns information about this provider in a string. Use the
string method for debugging. The ContentProvider.show method displays the same
information.

Input Arguments
provider — Content provider
matlab.net.http.io.FileProvider

Content provider specified as a matlab.net.http.io.FileProvider object.

Attributes
Access public

See Also
ContentProvider.show

 string

1-6841

Introduced in R2018a

1 Alphabetical List

1-6842

matlab.net.http.io.FormProvider class
Package: matlab.net.http.io
Superclasses:

ContentProvider that sends form data

Description
This provider creates data suitable for a request message whose Content-Type is
"application/x-www-form-urlencoded", as required by many servers that expect
users to fill in HTML forms.

Using this provider in the Body of a RequestMessage is optional, because you can insert
a QueryParameter vector directly into the Body of a RequestMessage to get the same
conversion done automatically.

Subclass authors can create a FormProvider subclass to create the data dynamically
only when the message is ready to be transmitted, or during transmission.

The matlab.net.http.io.FormProvider class is a handle class.

Creation

Description
provider = FormProvider(queryparams) constructs a provider that sends a vector
of QueryParameter objects specified as queryparams. This constructor sets the
Parameters property to the value of queryparams.

provider = FormProvider(arg1,...,argn) sends an arbitrary list of arguments to
the matlab.net.QueryParameter constructor to obtain a QueryParameter vector.
This syntax a shortcut for:

FormProvider(QueryParameter(arg1,...,argn))

 matlab.net.http.io.FormProvider class

1-6843

Input Arguments
arg1,...,argn — QueryParameter constructor arguments
valid types

One or more input arguments to the matlab.net.QueryParameter constructor,
specified as valid argument types. If your arguments are already encoded, append a
'literal' argument to the end of the list.

Properties

Public Properties
Parameters — Query parameters
vector or cell array of matlab.net.QueryParameter

Query parameters, specified as a vector or cell array of matlab.net.QueryParameter
objects as passed into or derived from the arguments to the constructor. To see the body
of the message, use the string method.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any

1 Alphabetical List

1-6844

matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.
Attributes:

GetAccess
public

SetAccess
public

 matlab.net.http.io.FormProvider class

1-6845

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.
Attributes:

GetAccess
public

SetAccess
public

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

1 Alphabetical List

1-6846

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

The complete methods set this property to empty.

 matlab.net.http.io.FormProvider class

1-6847

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

1 Alphabetical List

1-6848

string FormProvider information as string
show Display FormProvider information

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

 matlab.net.http.io.FormProvider class

1-6849

Definitions

Class Hierarchy

1 Alphabetical List

1-6850

See Also
matlab.net.QueryParameter | matlab.net.http.io.MultipartFormProvider

Introduced in R2018a

 matlab.net.http.io.FormProvider class

1-6851

string
Class: matlab.net.http.io.FormProvider
Package: matlab.net.http.io

FormProvider Data property

Syntax
str = string(provider)

Description
str = string(provider) returns the contents of the Data property as a string. This
information is also displayed by the show method.

Input Arguments
provider — Content provider
matlab.net.http.io.FormProvider

Content provider specified as a matlab.net.http.io.FormProvider object.

Attributes
Access public

See Also
ContentProvider.show

Introduced in R2018a

1 Alphabetical List

1-6852

matlab.net.http.io.GenericProvider class
Package: matlab.net.http.io
Superclasses:

Generic ContentProvider for HTTP payloads

Description
Use a GenericProvider object to stream custom data generated by a function instead
of creating a ContentProvider subclass.

The matlab.net.http.io.GenericProvider class is a handle class.

Creation

Description
provider = GenericProvider(getDataFcn) constructs a ContentProvider using
function getDataFcn to obtain buffers of data. This constructor sets the GetDataFcn
property to getDataFcn.

provider = GenericProvider(getDataFcn,contentLength) adds a Content-
Length field to the header of the message whose value is contentLength. Use this
syntax as an alternative to adding a Content-Length field to the header directly. In this
case, the length of the data returned by getDataFcn, before stop=true is set, must
exactly equal this length.

provider = GenericProvider(getDataFcn,contentLength,bufferSize)
constructs a ContentProvider with additional options. If contentLength is not empty,
then the constructor sets the length of the data. If bufferSize is not empty, then the
constructor sets the maximum size of the data buffer.

 matlab.net.http.io.GenericProvider class

1-6853

Input Arguments
contentLength — Expected length of payload
uint64 | empty

Expected length of the payload, specified as uint64.

bufferSize — Buffer size
double

Buffer size, specified as double.

Properties

Public Properties
GetDataFcn — Function to get data
function handle

Function to get data, specified as a function handle.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this

1 Alphabetical List

1-6854

property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.

Attributes:

GetAccess
public

 matlab.net.http.io.GenericProvider class

1-6855

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.

Attributes:

GetAccess
public

SetAccess
public

1 Alphabetical List

1-6856

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

 matlab.net.http.io.GenericProvider class

1-6857

The complete methods set this property to empty.
Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.
Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

1 Alphabetical List

1-6858

string GenericProvider information as string
show Display GenericProvider information

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

 matlab.net.http.io.GenericProvider class

1-6859

Definitions

Class Hierarchy

1 Alphabetical List

1-6860

See Also
GenericConsumer | MessageBody | RequestMessage

Introduced in R2018a

 matlab.net.http.io.GenericProvider class

1-6861

expectedContentLength
Class: matlab.net.http.io.GenericProvider
Package: matlab.net.http.io

Content length of GenericProvider

Syntax
length = expectedContentLength(provider,force)

Description
length = expectedContentLength(provider,force) returns the value of the
contentLength argument provided to the constructor. If none was provided, then
expectedContentLength returns [], which results in chunked transfer coding if the
message has no Content-Length field. This method is an overridden method of
ContentProvider.expectedContentLength.

Input Arguments
provider — Content provider
matlab.net.http.io.GenericProvider

Content provider, specified as a matlab.net.http.io.GenericProvider object.

force — Indicate whether to return length of data
false (default) | true

Indicate whether to return the length of the data, specified as true or false. For more
information, see the force argument in ContentProvider.expectedContentLength.

1 Alphabetical List

1-6862

Output Arguments
length — Expected content length
[] (default) | bytes

Expected content length, returned as bytes. If you do not override this method, then
expectedContentLength returns []. For more information, see the length argument in
ContentProvider.expectedContentLength.

Attributes
Access protected

See Also
ContentProvider.expectedContentLength

Introduced in R2018a

 expectedContentLength

1-6863

getData
Class: matlab.net.http.io.GenericProvider
Package: matlab.net.http.io

Next buffer of data to send in HTTP request message from GenericProvider

Syntax
[data,stop] = getData(provider,length)

Description
[data,stop] = getData(provider,length) calls the getDataFcn function,
specified by the argument to the GenericProvider constructor. getData is an
overridden method of ContentProvider.getData.

Input Arguments
provider — Content provider
matlab.net.http.io.GenericProvider

Content provider, specified as a matlab.net.http.io.GenericProvider object.

length — Length of data
double

Length of data that the provider should return, specified as double. For more information,
see the length argument in ContentProvider.getData.

Output Arguments
data — Next buffer of data
uint8 vector | empty

1 Alphabetical List

1-6864

Next buffer of data, returned as a uint8 vector or empty.

stop — Indicate whether to end transmission
false (default) | true

Indicate whether to end transmission, returned as a logical that the provider must set.

Attributes
Access public

See Also
ContentProvider.getData

Introduced in R2018a

 getData

1-6865

preferredBufferSize
Class: matlab.net.http.io.GenericProvider
Package: matlab.net.http.io

Preferred buffer size for GenericProvider

Syntax
size = preferredBufferSize(provider)

Description
size = preferredBufferSize(provider) returns the value of the bufferSize
argument provided to the constructor. If none was provided, then
preferredBufferSize returns [], which uses a default buffer size. This method is an
overridden method of ContentProvider.preferredBufferSize.

Input Arguments
provider — Content provider
matlab.net.http.io.GenericProvider

Content provider, specified as a matlab.net.http.io.GenericProvider object.

Output Arguments
size — Preferred buffer size
[] (default) | bytes

Preferred buffer size, returned as bytes. For more information, see the size argument in
ContentProvider.preferredBufferSize.

1 Alphabetical List

1-6866

Attributes
Access protected

See Also
ContentProvider.preferredBufferSize

Introduced in R2018a

 preferredBufferSize

1-6867

restartable
Class: matlab.net.http.io.GenericProvider
Package: matlab.net.http.io

Indicate whether GenericProvider is restartable

Syntax
TF = restartable(provider)

Description
TF = restartable(provider) returns true if the GetDataFcn argument specified to
the GenericProvider constructor takes more than one input argument. Otherwise, the
method returns false.This method is an overridden method of
ContentProvider.restartable.

Input Arguments
provider — Content provider
matlab.net.http.io.GenericProvider

Content provider, specified as a matlab.net.http.io.GenericProvider object.

Attributes
Access protected

See Also
ContentProvider.restartable | GenericProvider.reusable

1 Alphabetical List

1-6868

Introduced in R2018a

 restartable

1-6869

reusable
Class: matlab.net.http.io.GenericProvider
Package: matlab.net.http.io

Indicate whether GenericProvider is reusable

Syntax
TF = reusable(provider)

Description
TF = reusable(provider) returns true if the GetDataFcn argument specified to the
GenericProvider constructor takes more than one input argument. Otherwise, the
method returns false. This method is an overridden method of
ContentProvider.reusable.

Input Arguments
provider — Content provider
matlab.net.http.io.GenericProvider

Content provider, specified as a matlab.net.http.io.GenericProvider object.

Attributes
Access protected

See Also
ContentProvider.reusable | GenericProvider.restartable

1 Alphabetical List

1-6870

Introduced in R2018a

 reusable

1-6871

matlab.net.http.io.ImageProvider class
Package: matlab.net.http.io
Superclasses:

ContentProvider to send MATLAB image data

Description
Use an ImageProvider object to convert and send MATLAB image data in an HTTP
RequestMessage. This provider converts the data to one of the standard types, as
specified by the Content-Type of the request or properties in this object. This provider
also converts an image file to a different format.

By default, if you specify an image Content-Type in the RequestMessage, for example
"image/jpeg" and RequestMessage.Body is a MessageBody containing your image
data, then MATLAB assumes that MessageBody.Data is image data and tries to convert
it appropriately. To control how your data is converted, use an ImageProvider in
RequestMessage.Body.

If the RequestMessage does not contain a Content-Type header field, then this provider
adds the appropriate image Content-Type to the header. Otherwise, the header field is not
modified and conversion is done as specified in the properties of this object, even if its
value is inconsistent with the Content-Type field.

The matlab.net.http.io.ImageProvider class is a handle class.

Creation

Description
provider = ImageProvider(data,arg1,...,argN) creates a provider that
converts MATLAB image data to the format specified by arg1,...,argN, setting the
Data property to data and the Arguments property to arg1,...,argN.

1 Alphabetical List

1-6872

provider = ImageProvider(filename,arg1,...,argN) obtains the image data
from the file filename and sends it in the format specified in arg1,...,argN or the
Content-Type field, setting the Filename property to filename.

While this provider can convert a file in one format to data in another format, it is not
designed to send an image file as is. To send a file without changing its type, use a
FileProvider.

Properties
Public Properties
Data — MATLAB data to be converted
MATLAB type

This is the value specified as the Data argument to the constructor, if any, or the data
converted from the filename argument. Set this value to a string scalar or character
vector before sending the message containing this provider.

If a subclass author wants to set this property before MATLAB calls the start method,
then set the value in the complete method. If you change this property, then the change
takes effect with the next call to start.
Attributes:

GetAccess
public

SetAccess
public

Arguments — Arguments to imwrite function
cell array

Arguments to the imwrite function, specified as a cell array. This is the value specified to
the constructor containing a list of arguments as documented for imwrite, but omitting
the image data and file name arguments.

Subclass authors can set this property before MATLAB calls start, for example, in
complete. If you change these values, then the changes do not take effect until the next
call to start.

 matlab.net.http.io.ImageProvider class

1-6873

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Filename — File containing image data
string

Name of the file containing the image data, specified as a string. This is the value
specified as the filename argument to the constructor, if any. It is read-only.

The format of filename is derived from the file name extension, which might be different
from the fmt argument in arg1,...,argN or the Content-Type in the message. This
constructor syntax allows you to send an image file in one format to a server that expects
it in a different format. However, some conversions are incompatible. For example, you
cannot convert an RGB file like JPEG to a GIF format.
Attributes:

GetAccess
public

SetAccess
private

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a

1 Alphabetical List

1-6874

MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.
Attributes:

GetAccess
public

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

 matlab.net.http.io.ImageProvider class

1-6875

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.
Attributes:

GetAccess
public

SetAccess
public

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in

1 Alphabetical List

1-6876

whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

The complete methods set this property to empty.
Attributes:

GetAccess
protected

 matlab.net.http.io.ImageProvider class

1-6877

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

string ImageProvider information as string
show Display ImageProvider information

1 Alphabetical List

1-6878

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

 matlab.net.http.io.ImageProvider class

1-6879

Definitions

Class Hierarchy

1 Alphabetical List

1-6880

See Also
ContentProvider | FileProvider | ImageConsumer | MessageBody |
RequestMessage | imwrite

Introduced in R2018a

 matlab.net.http.io.ImageProvider class

1-6881

complete
Class: matlab.net.http.io.ImageProvider
Package: matlab.net.http.io

Complete HTTP header for ImageProvider

Syntax
complete(provider,URI)

Description
complete(provider,URI) completes the header of the message, or, in the case of a
multipart message, the part for which this provider is being used. If there is no Content-
Type field, then complete adds one specifying the MediaType derived from the
arguments to the constructor. If there is a Content-Type field, then the method sets the
MediaType. If the MediaType cannot be determined from either the Content-Type or the
arguments, then the method tries to derive it from the suffix of the file name in the
Content-Disposition field. If that algorithm does not work, then MediaType is set to
"image/jpeg".

This method is an overridden method of ContentProvider.complete.

Input Arguments
provider — Content provider
matlab.net.http.io.ImageProvider

Content provider, specified as a matlab.net.http.io.ImageProvider object.

URI — Uniform resource identifier
matlab.net.URI

Uniform resource identifier, specified as a matlab.net.URI object.

1 Alphabetical List

1-6882

Attributes
Access protected

See Also
ContentProvider.complete | matlab.net.URI | matlab.net.http.MediaType

Introduced in R2018a

 complete

1-6883

restartable
Class: matlab.net.http.io.ImageProvider
Package: matlab.net.http.io

Indicate whether ImageProvider is restartable

Syntax
TF = restartable(provider)

Description
TF = restartable(provider) indicates whether this ImageProvider is restartable.
This method is an overridden method of ContentProvider.restartable, and it always
returns true.

Input Arguments
provider — Content provider
matlab.net.http.io.ImageProvider

Content provider, specified as a matlab.net.http.io.ImageProvider object.

Attributes
Access protected

See Also
ContentProvider.restartable | ImageProvider.reusable

1 Alphabetical List

1-6884

Introduced in R2018a

 restartable

1-6885

reusable
Class: matlab.net.http.io.ImageProvider
Package: matlab.net.http.io

Indicate whether ImageProvider is reusable

Syntax
TF = reusable(provider)

Description
TF = reusable(provider) indicates whether this ImageProvider is reusable. This
method is an overridden method of ContentProvider.reusable, and it always returns
true.

Input Arguments
provider — Content provider
matlab.net.http.io.ImageProvider

Content provider, specified as a matlab.net.http.io.ImageProvider object.

Attributes
Access protected

See Also
ContentProvider.reusable | ImageProvider.restartable

1 Alphabetical List

1-6886

Introduced in R2018a

 reusable

1-6887

start
Class: matlab.net.http.io.ImageProvider
Package: matlab.net.http.io

Start data transfer from ImageProvider

Syntax
start(provider)

Description
start(provider) is called by MATLAB to prepare this provider for a new transfer. This
method is an overridden method of ContentProvider.start

Input Arguments
provider — Content provider
matlab.net.http.io.ImageProvider

Content provider, specified as a matlab.net.http.io.ImageProvider object.

Attributes
Access protected

See Also
ContentProvider.start

Introduced in R2018a

1 Alphabetical List

1-6888

matlab.net.http.io.JSONProvider class
Package: matlab.net.http.io
Superclasses:

ContentProvider to send MATLAB data as JSON string

Description
Use a JSONProvider object to convert MATLAB data to a JSON string and send it in a
RequestMessage. Conversion is done using jsonencode.

If the RequestMessage contains no Content-Type header field, then this provider adds
one specifying "application/json". Otherwise, the header field is not modified and
conversion is done even if its value is inconsistent with JSON data.

For nonmultipart messages, you do not usually specify this provider explicitly, as the
contents of MessageBody.Data is automatically converted to JSON if the Content-Type
of the message is "application/json". For more information, see
MessageBody.Data. Specify this provider explicitly to send JSON data for other Content-
Types, or to send JSON data as a part in a multipart message.

The matlab.net.http.io.JSONProvider class is a handle class.

Creation

Description
provider = JSONProvider(data) constructs a ContentProvider with the
JSONData property set to data.

 matlab.net.http.io.JSONProvider class

1-6889

Properties

Public Properties
JSONData — MATLAB data to convert
MATLAB data

MATLAB data to convert. The value, if any, is specified in the constructor.

Subclass authors can set this value any time before MATLAB calls the start method. If
you change the value, it does not take effect until the next call to start.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields

1 Alphabetical List

1-6890

in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.

Attributes:

GetAccess
public

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send

 matlab.net.http.io.JSONProvider class

1-6891

the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.

Attributes:

GetAccess
public

SetAccess
public

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

1 Alphabetical List

1-6892

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

The complete methods set this property to empty.

Attributes:

GetAccess
protected

SetAccess
protected

 matlab.net.http.io.JSONProvider class

1-6893

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.
Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

string Provider information as string
show Display provider information

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

1 Alphabetical List

1-6894

Definitions

Class Hierarchy

 matlab.net.http.io.JSONProvider class

1-6895

See Also
ContentProvider | JSONConsumer | MessageBody | RequestMessage |
StringProvider | jsonencode

Introduced in R2018a

1 Alphabetical List

1-6896

complete
Class: matlab.net.http.io.JSONProvider
Package: matlab.net.http.io

Complete HTTP header for JSONProvider

Syntax
complete(provider,URI)

Description
complete(provider,URI) completes the header of the message, or, in the case of a
multipart message, the part for which this provider is being used. If there is no Content-
Type field, then complete adds one specifying "application/json". If there is already
a Content-Type field that does not contain a charset parameter, and this object's Charset
property is different from the default for that Content-Type, then a charset parameter is
added to the header field.

This method is an overridden method of ContentProvider.complete.

Input Arguments
provider — Content provider
matlab.net.http.io.JSONProvider

Content provider, specified as a matlab.net.http.io.JSONProvider object.

URI — Uniform resource identifier
matlab.net.URI

Uniform resource identifier, specified as a matlab.net.URI object.

 complete

1-6897

Attributes
Access protected

See Also
ContentProvider.complete | matlab.net.URI

Introduced in R2018a

1 Alphabetical List

1-6898

start
Class: matlab.net.http.io.JSONProvider
Package: matlab.net.http.io

Start data transfer from JSONProvider

Syntax
start(provider)

Description
start(provider) prepares this JSONProvider for a new HTTP transfer. MATLAB calls
start. It is an overridden method of ContentProvider.start.

Input Arguments
provider — Content provider
matlab.net.http.io.JSONProvider

Content provider, specified as a matlab.net.http.io.JSONProvider object.

Attributes
Access protected

See Also
StringProvider.start

Introduced in R2018a

 start

1-6899

matlab.net.http.io.MultipartFormProvider
class
Package: matlab.net.http.io
Superclasses:

ContentProvider to send multipart/form-data messages

Description
Use this provider to send a multipart form to the server. A multipart form is a message
containing a series of parts, where each part has a "control name" and its data. The data
can be any of the types allowed for RequestMessage.Body.Data or another
ContentProvider.

Some servers require multiple parts under the same name to be in a nested multipart/
mixed part. To send nested parts, wrap the parts in a MultipartProvider. For example,
to send a message as described at the very end of chapter 17 of the HTML 4.01
specification for form data:

fps = FileProvider(["file1.txt","file2.gif"]); % get array of providers
mp = MultipartProvider(fps);
formProvider = MultipartFormProvider("submit-name","Larry","files",mp);
req = RequestMessage('put',[],formProvider);
req.send(uri);

The matlab.net.http.io.MultipartFormProvider class is a handle class.

Creation

Description
provider = MultipartFormProvider(Name,Part) creates "multipart/form-
data" content specified by one or more name-part pair arguments. Part is form-data
containing a Name and its contents. The Part arguments can be any of the types
supported by MultipartProvider, including other ContentProvider objects.

1 Alphabetical List

1-6900

If a Part is an array, it is equivalent to repeating the Name,Part for each element of the
array. For example, the statement:

MultipartFormProvider("name",FileProvider(["file1" "file2"]))

is equivalent to:

MultipartFormProvider("name",FileProvider("file1"),"name",FileProvider("file2"));

Properties

Public Properties
Names — Part names
string

Part names, specified as a string.

Attributes:

GetAccess
public

SetAccess
public

Parts — Message body parts
cell array

Parts of the message body, specified as a cell array of one or more of these values:

 matlab.net.http.io.MultipartFormProvider class

1-6901

ContentProvider object The MultipartProvider delegates
creation of the part to the specified
provider (called the delegate), invoking its
complete method to obtain header
information about the part and its getData
method to obtain the data. The delegate's
Header property is used for the header of
the part. Any subclass of
ContentProvider can be specified here.
Normally, the delegate does not specify the
content length nor implement the
expectedContentLength method, since
the end of a part is designated by a
boundary string rather than a header field.
If that method is implemented to return a
nonempty value, then the value is used only
to enforce the length of the content, not to
create a Content-Length field.

RequestMessage object The MultipartProvider sends the
Header and Body of the RequestMessage
as the part. If the Body's Payload property
is set, then that is used for the raw payload.
Otherwise the Body's Data property is
converted based on its type or the Content-
Type field in the Header, as described for
MessageBody.Data. This option is useful
if you have data to send and want to take
advantage of the default processing of that
data that MATLAB normally does when
sending a RequestMessage. It allows you
to specify custom header fields in the
request to be used as the part's Header
and control how the data is converted,
without having to write a
ContentProvider subclass. The
RequestMessage.RequestLine property
is ignored.

1 Alphabetical List

1-6902

MessageBody object The MessageBody is processed the same as
if it was in a RequestMessage that had no
Content-Type field. This option is useful if
default processing of the data based on its
type is sufficient, and you do not need to
specify any custom header fields for the
part. MATLAB inserts a Content-Type field
in the part based on the type of the data.
See MessageBody.Data for conversion
rules.

Array of ContentProvider,
RequestMessage, and/or MessageBody
objects

This treats each element of the array as a
part. Not a cell array.

Handle to getData method This method must have the signature of
ContentProvider.getData. In this case,
the part's Content-Type is set to
"application/octet-stream", so this
option is useful for sending binary data.
When using this option, you cannot specify
any custom header fields for the part.

Any other type If the type does not match any of these
types and is not a function handle, then it is
treated as if it was present in the Data
property of a MessageBody. See the
description for MessageBody types.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

 matlab.net.http.io.MultipartFormProvider class

1-6903

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.

1 Alphabetical List

1-6904

Attributes:

GetAccess
public

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.
Attributes:

GetAccess
public

 matlab.net.http.io.MultipartFormProvider class

1-6905

SetAccess
public

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
Subtype — Provider subtype
"mixed" (default) | string

1 Alphabetical List

1-6906

Provider subtype, specified as a string. The default value "mixed" adds a Content-Type
header set to "multipart/mixed" to the message, plus appropriate parameters.
Subclasses can alter this value in the constructor or the complete method. This value
appears in the Content-Type after "multipart/".
Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

The complete methods set this property to empty.
Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.

 matlab.net.http.io.MultipartFormProvider class

1-6907

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

string Provider information as string
show Display provider information

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

1 Alphabetical List

1-6908

Definitions

Class Hierarchy

 matlab.net.http.io.MultipartFormProvider class

1-6909

See Also
Introduced in R2018a

1 Alphabetical List

1-6910

matlab.net.http.io.MultipartProvider class
Package: matlab.net.http.io
Superclasses:

ContentProvider to send multipart/mixed HTTP messages

Description
This provider helps with the creation of multipart HTTP messages.

The default Content-Type is "multipart/mixed", and the payload of the message
contains an arbitrary number of parts, each part containing its own header describing
that part. For more information on multipart messages, see RFC 2046, section 5.1.

Use this provider directly only if you know that your server accepts multipart/mixed
messages. Usually, servers that accept multipart messages instead require "multipart/
form-data", which is implemented by the subclass MultipartFormProvider. You can
implement other multipart types using subclasses.

The matlab.net.http.io.MultipartProvider class is a handle class.

Subclass Authors
Each of the parts of the multipart message can be specified as data in any of the formats
permitted for RequestMessage.Body, or as a ContentProvider that creates the data.
The ContentProvider objects that are used to supply data for the parts are called
delegates, while this MultipartProvider is the top level provider. In general, any
ContentProvider is suitable as a delegate. The MultipartProvider invokes each
delegate in turn as the message is being sent, calling its methods, such as complete or
start, so that the delegate in general need not be aware that it is providing content for a
part, rather than for a whole message.

This provider always transmits the RequestMessage as chunked, so it does not include a
Content-Length header field in the message or in the headers of any of the parts. While
MultipartProvider calls each delegate's expectedContentLength method before
sending the part, it only uses the return value (if nonempty) to enforce the length, not to
create a Content-Length field. If the delegate does want a Content-Length field to appear

 matlab.net.http.io.MultipartProvider class

1-6911

https://tools.ietf.org/html/rfc2046#section-5.1

in the part, it must insert such a field explicitly in its Header property. None of the
ContentProvider subclasses provided by MATLAB do this processing.

Creation

Description
provider = MultipartProvider(part1,...,partN) constructs a
MultipartProvider that sends the specified parts, in the specified order, in an HTTP
request. By default this provider sets the Content-Type of the message to "multipart/
mixed", but subclasses can alter the subtype by setting the Subtype property. The
constructor sets elements of the Parts property cell array to each part1,...,partN
argument.

Properties

Public Properties
Parts — Message body parts
cell array

Parts of the message body, specified as a cell array of one or more of these values:

1 Alphabetical List

1-6912

ContentProvider object The MultipartProvider delegates
creation of the part to the specified
provider (called the delegate), invoking its
complete method to obtain header
information about the part and its getData
method to obtain the data. The delegate's
Header property is used for the header of
the part. Any subclass of
ContentProvider can be specified here.
Normally, the delegate does not specify the
content length nor implement the
expectedContentLength method, since
the end of a part is designated by a
boundary string rather than a header field.
If that method is implemented to return a
nonempty value, then the value is used only
to enforce the length of the content, not to
create a Content-Length field.

RequestMessage object The MultipartProvider sends the
Header and Body of the RequestMessage
as the part. If the Body's Payload property
is set, then that is used for the raw payload.
Otherwise the Body's Data property is
converted based on its type or the Content-
Type field in the Header, as described for
MessageBody.Data. This option is useful
if you have data to send and want to take
advantage of the default processing of that
data that MATLAB normally does when
sending a RequestMessage. It allows you
to specify custom header fields in the
request to be used as the part's Header
and control how the data is converted,
without having to write a
ContentProvider subclass. The
RequestMessage.RequestLine property
is ignored.

 matlab.net.http.io.MultipartProvider class

1-6913

MessageBody object The MessageBody is processed the same as
if it was in a RequestMessage that had no
Content-Type field. This option is useful if
default processing of the data based on its
type is sufficient, and you do not need to
specify any custom header fields for the
part. MATLAB inserts a Content-Type field
in the part based on the type of the data.
See MessageBody.Data for conversion
rules.

Array of ContentProvider,
RequestMessage, and/or MessageBody
objects

This treats each element of the array as a
part. Not a cell array.

Handle to getData method This method must have the signature of
ContentProvider.getData. In this case,
the part's Content-Type is set to
"application/octet-stream", so this
option is useful for sending binary data.
When using this option, you cannot specify
any custom header fields for the part.

Any other type If the type does not match any of these
types and is not a function handle, then it is
treated as if it was present in the Data
property of a MessageBody. See the
description for MessageBody types.

Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

1 Alphabetical List

1-6914

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.

 matlab.net.http.io.MultipartProvider class

1-6915

Attributes:

GetAccess
public

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.
Attributes:

GetAccess
public

1 Alphabetical List

1-6916

SetAccess
public

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
Subtype — Provider subtype
"mixed" (default) | string

 matlab.net.http.io.MultipartProvider class

1-6917

Provider subtype, specified as a string. The default value "mixed" adds a Content-Type
header set to "multipart/mixed" to the message, plus appropriate parameters.
Subclasses can alter this value in the constructor or the complete method. This value
appears in the Content-Type after "multipart/".
Attributes:

GetAccess
protected

SetAccess
protected

CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

The complete methods set this property to empty.
Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.

1 Alphabetical List

1-6918

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

string Provider information as string
show Display provider information

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

 matlab.net.http.io.MultipartProvider class

1-6919

Definitions

Class Hierarchy

1 Alphabetical List

1-6920

See Also
ContentProvider | MessageBody | MultipartConsumer | MultipartFormProvider
| RequestMessage

Introduced in R2018a

 matlab.net.http.io.MultipartProvider class

1-6921

complete
Class: matlab.net.http.io.MultipartProvider
Package: matlab.net.http.io

Complete HTTP header for MultipartProvider

Syntax
complete(provider,URI)

Description
complete(provider,URI) adds a "multipart/subtype" Content-Type field with
appropriate parameters to the RequestMessage. The subtype is taken from the value of
the Subtype property, which is, by default, "mixed". If the message already contains a
Content-Type field, it is preserved. If the field contains a "boundary" parameter, then
the value of the parameter becomes the boundary delimiter. If it does not contain such a
value and the type is "multipart", then complete generates a boundary parameter
and adds it to the field. If changed or added, then the new ContentTypeField is
inserted in this provider's Header property.

This method is an overridden method of ContentProvider.complete. Subclasses that
extend MultipartProvider can specify their own subtype and other parameters by
calling complete first and then modifying the ContentTypeField in Header.

Input Arguments
provider — Content provider
matlab.net.http.io.MultipartProvider

Content provider, specified as a matlab.net.http.io.MultipartProvider object.

URI — Uniform resource identifier
matlab.net.URI

1 Alphabetical List

1-6922

Uniform resource identifier, specified as a matlab.net.URI object.

Attributes
Access protected

See Also
ContentProvider.complete | matlab.net.URI |
matlab.net.http.field.ContentTypeField

Introduced in R2018a

 complete

1-6923

getData
Class: matlab.net.http.io.MultipartProvider
Package: matlab.net.http.io

Next buffer of data to send in multipart HTTP request message

Syntax
[data,stop] = getData(provider,length)

Description
[data,stop] = getData(provider,length) returns the next buffer of data. For
each part of the multipart message, this method returns in successive buffers of data: a
boundary delimiter, headers for the part, and the data for the part. It obtains these by
invoking methods in the current delegate, including the delegate's getData method, and
moves on to the next delegate when the current delegate indicates the end of its data by
returning stop=true.

When the last delegate is done, this method returns the final boundary delimiter and then
sets stop=true to indicate the end of the message.

This method is an overridden method of ContentProvider.getData.

Input Arguments
provider — Content provider
matlab.net.http.io.MultipartProvider

Content provider, specified as a matlab.net.http.io.MultipartProvider object.

length — Length of data
double

1 Alphabetical List

1-6924

Length of data that the provider should return, specified as double. For more information,
see the length argument in ContentProvider.getData.

Output Arguments
data — Next buffer of data
uint8 vector | empty

Next buffer of data, returned as a uint8 vector or empty.

stop — Indicate whether to end transmission
false (default) | true

Indicate whether to end transmission, returned as a logical that the provider must set.

Attributes
Access public

See Also
ContentProvider.getData

Introduced in R2018a

 getData

1-6925

start
Class: matlab.net.http.io.MultipartProvider
Package: matlab.net.http.io

Start data transfer from MultipartProvider

Syntax
start(provider)

Description
start(provider) starts the transfer of the data from this provider. This method is an
abstract method of ContentProvider.start. MATLAB calls this method, which resets
the provider so that the next call to getData starts the first delegate.

Input Arguments
provider — Content provider
matlab.net.http.io.MultipartProvider

Content provider, specified as a matlab.net.http.io.MultipartProvider object.

Attributes
Access protected

See Also
ContentProvider.delegateTo | ContentProvider.start

1 Alphabetical List

1-6926

Introduced in R2018a

 start

1-6927

matlab.net.http.io.StringProvider class
Package: matlab.net.http.io
Superclasses:

ContentProvider to send MATLAB strings

Description
Use a StringProvider object to send a MATLAB string or character vector in a
RequestMessage. By default, if a RequestMessage.Body.Data property contains a
string or character vector, then it is converted to binary according to the encoding
(charset) specified or implied by the Content-Type field in the message, so you would not
normally need to use this object to send plain text in cases where MATLAB can determine
what encoding to use.

Use this object in a Request.Body property to send a string encoded using a charset
that might be different from the one that MATLAB would use for the Content-Type in the
header. You specify that charset in the ContentProvider constructor or by setting the
Charset property. If the message contains no Content-Type, this provider adds one
specifying "text/plain" and the specified charset.

The matlab.net.http.io.StringProvider class is a handle class.

Creation

Description
provider = StringProvider constructs a StringProvider to send the data in the
Data property encoded with the value specified in the Charset property. Set these
properties before sending a message that contains this provider.

provider = StringProvider(data,charset) constructs a StringProvider to
send the specified data encoded with the specified charset. The constructor sets the
Data property to the value of data and the Charset property to the value of charset.
The charset argument is optional.

1 Alphabetical List

1-6928

Properties
Public Properties
Data — Data to send
string | character vector

Data to send, specified as a string or character vector. This is the value of Data that was
provided to the constructor. You also can set this property directly, after calling the
constructor, or in your subclass.

Subclass authors can set this property to new data at any time. The next call to getData
converts this data, up to the value of the getData length argument.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Charset — Character set used for encoding
'' (default) | character vector

Character set used for encoding, specified as a character vector.
Attributes:

GetAccess
public

SetAccess
public

Dependent
true

Header — Header fields of message or part
matlab.net.http.HeaderField.empty (default) | matlab.net.http.HeaderField

 matlab.net.http.io.StringProvider class

1-6929

Header fields of the message or part, specified as a vector of one or more
matlab.net.http.HeaderField objects.

This property is only used by subclass authors. MATLAB sets this property before calling
the provider's complete method. For non-multipart messages, MATLAB initializes this
property to the contents of Request.Header, minus any
matlab.net.http.field.GenericFields or empty-valued fields. The
ContentProvider uses this property to add header fields that describe the data to be
sent, or to add parameters to header fields already in the message. In a delegate for a
MultipartProvider, MATLAB initializes this property to header fields that the
delegating provider intends to insert for the part. Delegates can modify or change these
fields.

Upon return from the provider's complete method, if this not a multipart message, then
MATLAB reads this property and merges its contents into the header of Request. Fields
in this Header with Names that do not already appear in Request.Header are added to
the end of Request.Header. If a field in this Header has a Name that is the same as one
in Request.Header, and both have nonempty Values, then:

• If the one in Request.Header is a GenericField, then ignore the one in Header.
• If the one in Request.Header is not a GenericField, then replace it with the one in

Header.

If one or both of these has an empty Value, then the field is removed from
Request.Header and it is not added as part of normal message completion.

If this is a delegate of a MultipartProvider, then the entire contents of this Header is
used as the header of the part. Multipart delegates must not assume that
Request.Header contains any fields pertaining to their own Header. A provider can
determine whether it is a multipart delegate by checking whether MyDelegator is a
MultipartProvider, though this test is unlikely to be needed.

MATLAB reads this property only on return from calling the provider's complete
method. Changes to this array are ignored once MATLAB calls start.

Class authors should be aware that their subclasses might have added fields to this
Header (in their complete method) before calling complete in their superclass. It is
best to preserve such fields and not to add fields with the same names. However, adding a
parameter to a field is permissible. For example, a superclass can add a charset
parameter to an existing Content-Type field that does not already have one.

1 Alphabetical List

1-6930

Attributes:

GetAccess
public

SetAccess
public

ForceChunked — Indicate whether to force chunked transfer coding
false (default) | true

Indicate whether to force chunked transfer coding, specified as boolean. This property is
of interest only to subclass authors, and is applicable only to providers that are not
multipart delegates. Subclasses set ForceChunked to control whether contents should be
sent using chunked transfer coding. If false (default), MATLAB decides whether to send
the contents chunked, based on whether it knows the content length at the time the
message is ready to be sent:

• If MATLAB knows the content length (which is the case if the message contains a
Content-Length field, or if this provider's expectedContentLength method returned
a number), then MATLAB decides whether to send it chunked or not.

• If MATLAB does not know the content length (no Content-Length field in the header
and expectedContentLength returned empty), then MATLAB always sends the
message chunked.

If ForceChunked is true, then MATLAB sends the message chunked regardless of
whether it knows the content length, unless the known length is smaller than the chunk
size. If this property is true, then the message must not contain a Content-Length field,
because HTTP does not allow a chunked message to have a Content-Length field.
However, you can still return a nonzero value in the expectedContentLength method if
you want MATLAB to verify that you are returning the expected length of data.

When MATLAB chooses to send the message chunked, the size of each chunk is equal to
the length of data returned by getData.

MATLAB reads this value after calling the complete method, before calling start. It
does not set this field.
Attributes:

GetAccess
public

 matlab.net.http.io.StringProvider class

1-6931

SetAccess
public

Request — Request message to send
matlab.net.http.RequestMessage

Request message to send, specified as a matlab.net.http.RequestMessage object.

This property is used only by subclass authors. The RequestMessage.send and
RequestMessage.complete methods set this property to the RequestMessage in
whose Body this provider has been placed, before calling any other methods in this
provider, and before adding any additional header fields or validating the message. The
provider can examine this message to see what was contained in the original request.

Delegates see the same value for this property as the delegator. ContentProviders
should be aware that, if they are delegates, they are not necessarily providing the entire
body of the request message, so they should not assume that header fields in this Request
are pertinent to the data they are providing. Usually, delegates should ignore header
fields in this request relevant to the data, such as Content-Type.

If the provider wishes to add any header fields to this message, or to modify existing ones,
it should do so in its complete method by adding those fields to the Header property.
The caller of complete (RequestMessage or a delegating provider) determines what to
do with those fields. RequestMessage.send and RequestMessage.complete always
copy these fields to the Header of the RequestMessage. A delegating provider can copy
the fields to its own Header property or insert them into the message (as in the case of
MultipartProvider). For more information, see the ContentProvider.Header property.

This property is read-only.

Attributes:

GetAccess public
SetAccess matlab.net.http.RequestMessage

Protected Properties
CurrentDelegate — ContentProvider to which this provider is delegating
matlab.net.http.io.ContentProvider | empty

1 Alphabetical List

1-6932

ContentProvider to which this provider is delegating, specified as a
matlab.net.http.io.ContentProvider object. This property is set in the calling
provider (the delegator) by the delegateTo method to indicate the current delegated
provider. If there is no current delegation, then the value is empty.

The complete methods set this property to empty.

Attributes:

GetAccess
protected

SetAccess
protected

MyDelegator — ContentProvider that delegated to this provider
matlab.net.http.io.ContentProvider.empty (default) |
matlab.net.http.io.ContentProvider

ContentProvider that delegated to this provider, specified as a
matlab.net.http.io.ContentProvider object.

If a ContentProvider delegates responsibility for sending all or a portion of the
message data to another provider, then this property identifies the delegating provider to
the delegate. For example, a MultipartProvider delegates parts of the message to
other providers, so it inserts a handle to itself in each delegate. Otherwise, MyDelegator
is empty. The delegateTo method sets this property in the delegate.

Attributes:

GetAccess
protected

SetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> getData </infotypegroup>

 matlab.net.http.io.StringProvider class

1-6933

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions and inherited
methods for objects in this class.

string Provider information as string
show Display provider information

Protected Methods
<infotypegroup type="method"> complete preferredBufferSize
expectedContentLength start restartable reusable delegateTo </
infotypegroup>

Examples

Using StringProvider

The following code prepares a message that sends the string "myText" using the
Content-Type "text/plain" to the server using Shift_JIS encoding:

ctf = ContentTypeField(MediaType('text/plain','charset','Shift_JIS');
r = RequestMessage('put',ctf,StringProvider('myText'));

In this example, the header has no Content-Type field, so StringProvider inserts one
based on the constructor arguments.

r = RequestMessage('put',[],StringProvider('myText','Shift_JIS'));
show(r.complete('www.someurl.com'))

PUT / HTTP/1.1
 Host: www.someurl.com
 Content-Type: text/plain; charset=Shift_JIS
 User-Agent: MATLAB/9.2.0.512567 (R2017b)
 Connection: close
 Date: Fri, 20 Jun 2017 14:26:42 GMT

In this example, the charset specified to the StringProvider constructor used to
convert the data is different from the charset in the Content-Type field. StringProvider

1 Alphabetical List

1-6934

does not alter an existing Content-Type field that already specifies a character set, so the
server assumes that the data is US-ASCII, not Shift-JIS.
ctf = ContentTypeField(MediaType('text/plain','charset','US-ASCII'));
 r = RequestMessage('put',ctf,StringProvider('myText','Shift_JIS'));

In this example, MATLAB adds a charset parameter to the Content-Type field that did not
specify a charset, because the default for "application/json" is UTF-8, which is
different from Shift_JIS.
ctf = ContentTypeField(MediaType('application/json'));
 r = RequestMessage('put',ctf,StringProvider('myText','Shift_JIS'));
 show(r.complete('www.someurl.com'))

PUT / HTTP/1.1
 Host: www.someurl.com
 Content-Type: application/json; charset=Shift_JIS
 User-Agent: MATLAB/9.2.0.512567 (R2017b)
 Connection: close
 Date: Fri, 20 Jun 2017 14:26:42 GMT

When there is no Content-Type header field and no charset is specified to
StringProvider, MATLAB uses a heuristic to find the "minimal" encoding that can
represent the data, one of which includes the default encoding for the platform. In this
example when run on Windows, the Unicode characters in the string are within the
Windows-1252 range, but outside the US-ASCII range, so Windows-1252 is used:

r = RequestMessage('put',[],StringProvider('€abc'));
 show(r.complete('www.someurl.com'))

PUT / HTTP/1.1
 Host: www.someurl.com
 Content-Type: text/plain; charset=windows-1252
 User-Agent: MATLAB/9.2.0.512567 (R2017b)
 Connection: close
 Date: Fri, 20 Jun 2017 14:26:42 GMT

In this case, the Content-Type field specifies "application/json" with no charset, and
none is specified to StringProvider. Since the default charset for "application/
json" is UTF-8, StringProvider uses that to convert and does not specify the charset
explicitly in the Content-Type field.

 matlab.net.http.io.StringProvider class

1-6935

ctf = ContentTypeField(MediaType('application/json'));
 r = RequestMessage('put',ctf,StringProvider('myText')); % uses UTF-8

Definitions
Class Hierarchy

1 Alphabetical List

1-6936

See Also
StringConsumer | getData

Introduced in R2018a

 matlab.net.http.io.StringProvider class

1-6937

complete
Class: matlab.net.http.io.StringProvider
Package: matlab.net.http.io

Complete HTTP header for StringProvider

Syntax
complete(provider,URI)

Description
complete(provider,URI) completes the HTTP message. This method is an overridden
method of ContentProvider.complete called by MATLAB. This method might
augment or add a Content-Type header field to the message to specify the charset that
this provider is using to convert the data. The conversion to be used depends on the value
of the Content-Type field in the Header or Request.Header property, if present (which
might have an explicit or default charset), and the value of the Charset property in this
object. This provider might add a Content-Type field or charset parameter to the existing
Content-Type field, if it does not contain one. To prevent that, subclasses can override this
method.

In contrast to some other providers that only replace, not alter, a header already in the
RequestMessage, this provider might augment an existing Content-Type field in the
Request property by adding a charset parameter, if necessary.

On return from this method, the Charset property is always set to the charset used to
encode the data, whether or not that charset is explicit in the Content-Type field.
Subclasses can override this method to specify a different Charset.

Input Arguments
provider — Content provider
matlab.net.http.io.StringProvider

1 Alphabetical List

1-6938

Content provider, specified as a matlab.net.http.io.StringProvider object.

URI — Uniform resource identifier
matlab.net.URI

Uniform resource identifier, specified as a matlab.net.URI object.

Attributes
Access protected

See Also
Charset | ContentProvider.Header | ContentProvider.Request |
ContentProvider.complete | matlab.net.URI

Introduced in R2018a

 complete

1-6939

getData
Class: matlab.net.http.io.StringProvider
Package: matlab.net.http.io

Next buffer of data to send in HTTP request message from StringProvider

Syntax
[data,stop] = getData(provider,length)

Description
[data,stop] = getData(provider,length) returns the next buffer of data.

This method is an overridden method of ContentProvider.getData. Subclasses that
generate their own buffers of data in an overridden getData method, but which want to
take advantage of code conversion provide by this method, should set Data to their buffer
of data and call this superclass getData method to convert Data to the desired charset.
In that call, specify a value of length at least as large as the number of characters in the
buffer, or only part of the Data is converted. For example:

 function [data, stop] = getData(obj, length)
 obj.Data = generateNextBufferOfData(obj);
 if isempty(obj.Data)
 stop = true;
 else
 [data, stop] = getData(obj, strlength(obj.Data);
 end
 end

Input Arguments
provider — Content provider
matlab.net.http.io.StringProvider

Content provider, specified as a matlab.net.http.io.StringProvider object.

1 Alphabetical List

1-6940

length — Length of data
double

Length of data that the provider should return, specified as double. For more information,
see the length argument in ContentProvider.getData.

Output Arguments
data — Next buffer of data
uint8 vector | empty

Next buffer of data, returned as a uint8 vector or empty. getData normally returns at
least length bytes (up to the length of the Data property), as a uint8 vector, by reading
up to length characters from Data, but, depending on the characters in Data and
Charset, the result might be much longer than length.

stop — Indicate whether to end transmission
false (default) | true

Indicate whether to end transmission, returned as a logical that the provider must set.

Attributes
Access public

See Also
Charset | ContentProvider.getData | Data

Introduced in R2018a

 getData

1-6941

start
Class: matlab.net.http.io.StringProvider
Package: matlab.net.http.io

Start data transfer from StringProvider

Syntax
start(provider)

Description
start(provider) prepares this StringProvider for a new transfer. This method is an
overridden method of ContentProvider.start called by MATLAB.

Input Arguments
provider — Content provider
matlab.net.http.io.StringProvider

Content provider, specified as a matlab.net.http.io.StringProvider object.

Attributes
Access protected

See Also
ContentProvider.start

Introduced in R2018a

1 Alphabetical List

1-6942

string
Class: matlab.net.http.io.StringProvider
Package: matlab.net.http.io

StringProvider Data property

Syntax
str = string(provider)

Description
str = string(provider) returns the contents of the StringProvider.Data property as
a string. If Data is not set, then the method returns an empty string. The
ContentProvider.show method returns the same information.

Input Arguments
provider — Content provider
matlab.net.http.io.StringProvider

Content provider specified as a matlab.net.http.io.StringProvider object.

Attributes
Access public

See Also
ContentProvider.show | StringProvider.Data

 string

1-6943

Introduced in R2018a

1 Alphabetical List

1-6944

hypot
Square root of sum of squares (hypotenuse)

Syntax
C = hypot(A,B)

Description
C = hypot(A,B) returns the result of the following equation, computed to avoid
underflow and overflow:

C = sqrt(abs(A).^2 + abs(B).^2)

Examples

Compute Hypotenuse

Compute the hypotenuse of a right triangle with side lengths of 3 and 4.

C = hypot(3,4)

C = 5

Overflow and Underflow Behavior

Examine the difference between using hypot and coding the basic hypot equation in M-
code.

Create an anonymous function that performs essentially the same basic function as
hypot.

 hypot

1-6945

myhypot = @(a,b)sqrt(abs(a).^2+abs(b).^2);

myhypot does not have the same consideration for underflow and overflow behavior that
hypot offers.

Find the upper limit at which myhypot returns a useful value. You can see that this test
function reaches its maximum at about 1e154, returning an infinite result at that point.

myhypot(1e153,1e153)

ans = 1.4142e+153

myhypot(1e154,1e154)

ans = Inf

Do the same using the hypot function, and observe that hypot operates on values up to
about 1e308, which is approximately equal to the value for realmax on your computer
(the largest representable double-precision floating-point number).

hypot(1e308,1e308)

ans = 1.4142e+308

hypot(1e309,1e309)

ans = Inf

Input Arguments
A,B — Input arrays
scalars | vectors | matrices | multidimensional arrays

Input arrays, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A
and B must either be the same size or have sizes that are compatible (for example, A is an
M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.

If neither A nor B is Inf, but one or both inputs is NaN, then hypot returns NaN.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-6946

Definitions

IEEE Compliance
For real inputs, hypot has a few behaviors that differ from those recommended in the
IEEE-754 Standard.

 MATLAB IEEE
hypot(NaN,Inf) NaN Inf
hypot(NaN,-Inf) NaN Inf
hypot(Inf,NaN) NaN Inf
hypot(-Inf,NaN) NaN Inf

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 hypot

1-6947

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
abs | norm | sqrt

Introduced before R2006a

1 Alphabetical List

1-6948

i
Imaginary unit

Syntax
1i
z = a + bi
z = x + 1i*y

Description
1i returns the basic imaginary unit. i is equivalent to sqrt(-1).

You can use i to enter complex numbers. You also can use the character j as the
imaginary unit. To create a complex number without using i and j, use the complex
function.

z = a + bi returns a complex numerical constant, z.

z = x + 1i*y returns a complex array, z.

Examples

Complex Scalar

Create a complex scalar and use the character, i, without a multiplication sign as a suffix
in forming a complex numerical constant.

z = 1+2i

z = 1.0000 + 2.0000i

 i

1-6949

Complex Vector

Create a complex vector from two 4-by-1 vectors of real numbers. z is a 4-by-1 complex
vector.

x = [1:4]';
y = [8:-2:2]';

z = x+1i*y

z = 4×1 complex

 1.0000 + 8.0000i
 2.0000 + 6.0000i
 3.0000 + 4.0000i
 4.0000 + 2.0000i

Complex Exponential

Create a complex scalar representing a complex vector with radius, r, and angle from the
origin, theta.

r = 4;
theta = pi/4;

z = r*exp(1i*theta)

z = 2.8284 + 2.8284i

Input Arguments
a — Real component of complex scalar
scalar

Real component of a complex scalar, specified as a scalar.
Data Types: single | double

1 Alphabetical List

1-6950

b — Imaginary component of complex scalar
scalar

Imaginary component of a complex scalar, specified as a scalar.

If b is double, you can use the character, i, without a multiplication sign as a suffix in
forming the complex numerical constant.
Example: 7i

If b is single, you must use a multiplication sign when forming the complex numerical
constant.
Example: single(7)*i
Data Types: single | double

x — Real component of complex array
scalar | vector | matrix | multidimensional array

Real component of a complex array, specified as a scalar, vector, matrix, or
multidimensional array.

The size of x must match the size of y, unless one is a scalar. If either x or y is a scalar,
MATLAB expands the scalar to match the size of the other input.

single can combine with double.
Data Types: single | double

y — Imaginary component of complex array
scalar | vector | matrix | multidimensional array

Imaginary component of a complex array, specified as a scalar, vector, matrix, or
multidimensional array.

The size of x must match the size of y, unless one is a scalar. If either x or y is a scalar,
MATLAB expands the scalar to match the size of the other input.

single can combine with double.
Data Types: single | double

 i

1-6951

Output Arguments
z — Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a scalar, vector, matrix, or multidimensional array.

The size of z is the same as the input arguments.

z is single if at least one input argument is single. Otherwise, z is double.

Tips
• For speed and improved robustness in complex arithmetic, use 1i and 1j instead of i

and j.
• Since i is a function, it can be overridden and used as a variable. However, it is best to

avoid using i and j for variable names if you intend to use them in complex
arithmetic.

• Use the complex function to create a complex output in the following cases:

• When the names i and j might be used for other variables (and do not equal
sqrt(-1))

• When the inputs are not double or single
• When the imaginary component is all zeros

See Also
complex | conj | imag | j | real

Topics
“Complex Numbers”

Introduced before R2006a

1 Alphabetical List

1-6952

ichol
Incomplete Cholesky factorization

Syntax
L = ichol(A)
L = ichol(A,opts)

Description
L = ichol(A) performs the incomplete Cholesky factorization of A with zero-fill.

L = ichol(A,opts) performs the incomplete Cholesky factorization of A with options
specified by opts.

By default, ichol references the lower triangle of A and produces lower triangular
factors.

Input Arguments
A

Sparse matrix

opts

Structure with up to five fields:

 ichol

1-6953

Field Name Summary Description
type Type of factorization Indicates which flavor of incomplete

Cholesky to perform. Valid values of
this field are 'nofill' and 'ict'.
The 'nofill' variant performs
incomplete Cholesky with zero-fill
(IC(0)). The 'ict' variant
performs incomplete Cholesky with
threshold dropping (ICT). The
default value is 'nofill'.

droptol Drop tolerance when type is 'ict' Nonnegative scalar used as a drop
tolerance when performing ICT.
Elements which are smaller in
magnitude than a local drop
tolerance are dropped from the
resulting factor except for the
diagonal element which is never
dropped. The local drop tolerance at
step j of the factorization is
norm(A(j:end,j),1)*droptol.
'droptol' is ignored if 'type' is
'nofill'. The default value is 0.

michol Indicates whether to perform
modified incomplete Cholesky

Indicates whether or not modified
incomplete Cholesky (MIC) is
performed. The field may be 'on' or
'off'. When performing MIC, the
diagonal is compensated for
dropped elements to enforce the
relationship A*e = L*L'*e where
e = ones(size(A,2),1). The
default value is 'off'.

1 Alphabetical List

1-6954

Field Name Summary Description
diagcomp Perform compensated incomplete

Cholesky with the specified
coefficient

Real nonnegative scalar used as a
global diagonal shift alpha in
forming the incomplete Cholesky
factor. That is, instead of performing
incomplete Cholesky on A, the
factorization of A +
alpha*diag(diag(A)) is formed.
The default value is 0.

shape Determines which triangle is
referenced and returned

Valid values are 'upper' and
'lower'. If 'upper' is specified,
only the upper triangle of A is
referenced and R is constructed
such that A is approximated by
R'*R. If 'lower' is specified, only
the lower triangle of A is referenced
and L is constructed such that A is
approximated by L*L'. The default
value is 'lower'.

Examples

Incomplete Cholesky Factorization

This example generates an incomplete Cholesky factorization.

Start with a symmetric positive definite matrix, A:

N = 100;
A = delsq(numgrid('S',N));

A is the two-dimensional, five-point discrete negative Laplacian on a 100-by-100 square
grid with Dirichlet boundary conditions. The size of A is 98*98 = 9604 (not 10000 as the
borders of the grid are used to impose the Dirichlet conditions).

The no-fill incomplete Cholesky factorization is a factorization which contains only
nonzeros in the same position as A contains nonzeros. This factorization is extremely

 ichol

1-6955

cheap to compute. Although the product L*L' is typically very different from A, the
product L*L' will match A on its pattern up to round-off.

L = ichol(A);
norm(A-L*L','fro')./norm(A,'fro')

ans = 0.0916

norm(A-(L*L').*spones(A),'fro')./norm(A,'fro')

ans = 4.9606e-17

ichol may also be used to generate incomplete Cholesky factorizations with threshold
dropping. As the drop tolerance decreases, the factor tends to get more dense and the
product L*L' tends to be a better approximation of A. The following plots show the
relative error of the incomplete factorization plotted against the drop tolerance as well as
the ratio of the density of the incomplete factors to the density of the complete Cholesky
factor.

n = size(A,1);
ntols = 20;
droptol = logspace(-8,0,ntols);
nrm = zeros(1,ntols);
nz = zeros(1,ntols);
nzComplete = nnz(chol(A,'lower'));
for k = 1:ntols
 L = ichol(A,struct('type','ict','droptol',droptol(k)));
 nz(k) = nnz(L);
 nrm(k) = norm(A-L*L','fro')./norm(A,'fro');
end
figure
loglog(droptol,nrm,'LineWidth',2)
title('Drop tolerance vs norm(A-L*L'',''fro'')./norm(A,''fro'')')

1 Alphabetical List

1-6956

figure
semilogx(droptol,nz./nzComplete,'LineWidth',2)
title('Drop tolerance vs fill ratio ichol/chol')

 ichol

1-6957

The relative error is typically on the same order as the drop tolerance, although this is not
guaranteed.

Using ichol as a Preconditioner

This example shows how to use an incomplete Cholesky factorization as a preconditioner
to improve convergence.

Create a symmetric positive definite matrix, A.

N = 100;
A = delsq(numgrid('S',N));

1 Alphabetical List

1-6958

Create an incomplete Cholesky factorization as a preconditioner for pcg. Use a constant
vector as the right hand side. As a baseline, execute pcg without a preconditioner.

b = ones(size(A,1),1);
tol = 1e-6;
maxit = 100;
[x0,fl0,rr0,it0,rv0] = pcg(A,b,tol,maxit);

Note that fl0 = 1 indicating that pcg did not drive the relative residual to the requested
tolerance in the maximum allowed iterations. Try the no-fill incomplete Cholesky
factorization as a preconditioner.

L1 = ichol(A);
[x1,fl1,rr1,it1,rv1] = pcg(A,b,tol,maxit,L1,L1');

fl1 = 0, indicating that pcg converged to the requested tolerance and did so in 59
iterations (the value of it1). Since this matrix is a discretized Laplacian, however, using
modified incomplete Cholesky can create a better preconditioner. A modified incomplete
Cholesky factorization constructs an approximate factorization that preserves the action
of the operator on the constant vector. That is, norm(A*e-L*(L'*e)) will be
approximately zero for e = ones(size(A,2),1) even though norm(A-L*L','fro')/
norm(A,'fro') is not close to zero. It is not necessary to specify type for this syntax
since nofill is the default, but it is good practice.

opts.type = 'nofill';
opts.michol = 'on';
L2 = ichol(A,opts);
e = ones(size(A,2),1);
norm(A*e-L2*(L2'*e))

ans = 3.7983e-14

[x2,fl2,rr2,it2,rv2] = pcg(A,b,tol,maxit,L2,L2');

pcg converges (fl2 = 0) but in only 38 iterations. Plotting all three convergence
histories shows the convergence.

semilogy(0:maxit,rv0./norm(b),'b.');
hold on
semilogy(0:it1,rv1./norm(b),'r.');
semilogy(0:it2,rv2./norm(b),'k.');
legend('No Preconditioner','IC(0)','MIC(0)');

 ichol

1-6959

The plot shows that the modified incomplete Cholesky preconditioner creates a much
faster convergence.

You can also try incomplete Cholesky factorizations with threshold dropping. The
following plot shows convergence of pcg with preconditioners constructed with various
drop tolerances.

L3 = ichol(A, struct('type','ict','droptol',1e-1));
[x3,fl3,rr3,it3,rv3] = pcg(A,b,tol,maxit,L3,L3');
L4 = ichol(A, struct('type','ict','droptol',1e-2));
[x4,fl4,rr4,it4,rv4] = pcg(A,b,tol,maxit,L4,L4');
L5 = ichol(A, struct('type','ict','droptol',1e-3));
[x5,fl5,rr5,it5,rv5] = pcg(A,b,tol,maxit,L5,L5');

1 Alphabetical List

1-6960

figure
semilogy(0:maxit,rv0./norm(b),'b-','linewidth',2);
hold on
semilogy(0:it3,rv3./norm(b),'b-.','linewidth',2);
semilogy(0:it4,rv4./norm(b),'b--','linewidth',2);
semilogy(0:it5,rv5./norm(b),'b:','linewidth',2);
legend('No Preconditioner','ICT(1e-1)','ICT(1e-2)', ...
 'ICT(1e-3)','Location','SouthEast');

Note the incomplete Cholesky preconditioner constructed with drop tolerance 1e-2 is
denoted as ICT(1e-2).

As with the zero-fill incomplete Cholesky, the threshold dropping factorization can benefit
from modification (i.e. opts.michol = 'on') since the matrix arises from an elliptic

 ichol

1-6961

partial differential equation. As with MIC(0), the modified threshold based dropping
incomplete Cholesky will preserve the action of the preconditioner on constant vectors,
that is norm(A*e-L*(L'*e)) will be approximately zero.

Using the diagcomp Option

This example illustrates the use of the diagcomp option of ichol.

Incomplete Cholesky factorizations of positive definite matrices do not always exist. The
following code constructs a random symmetric positive definite matrix and attempts to
solve a linear system using pcg.

S = rng('default');
A = sprandsym(1000,1e-2,1e-4,1);
rng(S);
b = full(sum(A,2));
[x0,fl0,rr0,it0,rv0] = pcg(A,b,1e-6,100);

Since convergence is not attained, try to construct an incomplete Cholesky
preconditioner.

L = ichol(A,struct('type','ict','droptol',1e-3));

Error using ichol
Encountered nonpositive pivot.

If ichol breaks down as above, you can use the diagcomp option to construct a shifted
incomplete Cholesky factorization. That is, instead of constructing L such that L*L'
approximates A, ichol with diagonal compensation constructs L such that L*L'
approximates M = A + alpha*diag(diag(A)) without explicitly forming M. As
incomplete factorizations always exist for diagonally dominant matrices, alpha can be
found to make M diagonally dominant.

alpha = max(sum(abs(A),2)./diag(A))-2

alpha = 62.9341

L1 = ichol(A, struct('type','ict','droptol',1e-3,'diagcomp',alpha));
[x1,fl1,rr1,it1,rv1] = pcg(A,b,1e-6,100,L1,L1');

Here, pcg still fails to converge to the desired tolerance within the desired number of
iterations, but as the plot below shows, convergence is better for pcg with this

1 Alphabetical List

1-6962

preconditioner than with no preconditioner. Choosing a smaller alpha may help. With
some experimentation, we can settle on an appropriate value for alpha.

alpha = .1;
L2 = ichol(A, struct('type','ict','droptol',1e-3,'diagcomp',alpha));
[x2,fl2,rr2,it2,rv2] = pcg(A,b,1e-6,100,L2,L2');

Now, pcg converges and a plot can show the convergence histories with each
preconditioner.

semilogy(0:100,rv0./norm(b),'b.');
hold on;
semilogy(0:100,rv1./norm(b),'r.');
semilogy(0:it2,rv2./norm(b),'k.');
legend('No Preconditioner','\alpha \approx 63','\alpha = .1');
xlabel('Iteration Number');
ylabel('Relative Residual');

 ichol

1-6963

Tips
• The factor given by this routine may be useful as a preconditioner for a system of

linear equations being solved by iterative methods such as pcg or minres.
• ichol works only for sparse square matrices

1 Alphabetical List

1-6964

References
[1] Saad, Yousef. “Preconditioning Techniques.” Iterative Methods for Sparse Linear

Systems. PWS Publishing Company, 1996.

[2] Manteuffel, T.A. “An incomplete factorization technique for positive definite linear
systems.” Math. Comput. 34, 473–497, 1980.

See Also
chol | ilu | minres | pcg

 ichol

1-6965

idivide
Integer division with rounding option

Syntax
C = idivide(A,B)
C = idivide(A,B,opt)

Description
C = idivide(A,B) divides each element of A by the corresponding element of B,
rounded to the nearest integers toward zero. A and B must contain real numbers and at
least one of them must belong to an integer class.

• If A and B are arrays, then they must belong to the same integer class and have sizes
that are compatible.

• If A or B is a scalar double, then the other input must be an integer class, but not
int64 or uint64. The idivide function then returns C as the same integer class.

C = idivide(A,B,opt) specifies an alternative rounding option: 'fix', 'floor',
'ceil', or 'round'. For example, idivide(A,B,'ceil') rounds the quotients to the
nearest integers toward positive infinity. The default rounding option is 'fix'.

Examples

Integer Division

Create an integer array A and an integer scalar B. Divide each element of A by B, rounded
to the nearest integers toward zero.

A = int16([-7 -4 7 11]);
B = int16(10);
C = idivide(A,B)

1 Alphabetical List

1-6966

C = 1x4 int16 row vector

 0 0 0 1

Divide Two Integer Arrays

Create two integer arrays, A and B. Divide each element of A by the corresponding
element of B, rounded to the nearest integers toward zero.

A = int64([-2 3]);
B = int64([3 5]);
C = idivide(A,B)

C = 1x2 int64 row vector

 0 0

Rounding Options for Integer Division

Create a scalar double A and an integer array B. Divide A by each element of B with the
default rounding option 'fix'.

A = 2.0;
B = int32([-3 3 4]);
C = idivide(A,B)

C = 1x3 int32 row vector

 0 0 0

Compare the results with other rounding options.

C = idivide(A,B,'floor')

C = 1x3 int32 row vector

 idivide

1-6967

 -1 0 0

C = idivide(A,B,'ceil')

C = 1x3 int32 row vector

 0 1 1

C = idivide(A,B,'round')

C = 1x3 int32 row vector

 -1 1 1

Input Arguments
A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. Integer inputs
A and B must be either the same size or have sizes that are compatible. For example, A is
an M-by-N matrix, and B is a scalar or 1-by-N row vector. For more information, see
“Compatible Array Sizes for Basic Operations”.

If A is a scalar double, then B must be an integer class, but not int64 or uint64.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

B — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a scalar, vector, matrix, or multidimensional array. Integer
inputs A and B must be either the same size or have sizes that are compatible. For
example, A is an M-by-N matrix, and B is a scalar or 1-by-N row vector. For more
information, see “Compatible Array Sizes for Basic Operations”.

If B is a scalar double, then A must be an integer class, but not int64 or uint64.

1 Alphabetical List

1-6968

Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

opt — Rounding option
'fix' (default) | 'floor' | 'ceil' | 'round'

Rounding option, specified as 'fix', 'floor', 'ceil', or 'round'.

• 'fix' rounds to the nearest integers toward zero, which is equivalent to removing
any digits after the decimal point.

• 'floor' rounds to the nearest integers toward negative infinity.
• 'ceil' rounds to the nearest integer toward positive infinity.
• 'round' rounds to the nearest integers. If an element has a fractional part of exactly

0.5, then it rounds away from zero to the integer with larger magnitude.

Output Arguments
C — Integer solution
scalar | vector | matrix | multidimensional array

Integer solution, returned as a scalar, vector, matrix, or multidimensional array. If either A
or B is an integer data type, then C is the same integer data type.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Tips
• The function idivide(A,B,'round') is the same as A./B and B.\A for integer data

types. The argument opt provides the rounding options for A./B and B.\A when
dividing integers.

• MATLAB does not support complex integer division.

 idivide

1-6969

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For efficient generated code, MATLAB rules for divide by zero are supported only for
the 'round' option.

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ceil | fix | floor | ldivide | rdivide | round

1 Alphabetical List

1-6970

Topics
“Integers”
“Floating-Point Numbers”

Introduced in R2006a

 idivide

1-6971

if, elseif, else
Execute statements if condition is true

Syntax
if expression
 statements
elseif expression
 statements
else
 statements
end

Description
if expression, statements, end evaluates an expression on page 1-6975, and
executes a group of statements when the expression is true. An expression is true when
its result is nonempty and contains only nonzero elements (logical or real numeric).
Otherwise, the expression is false.

The elseif and else blocks are optional. The statements execute only if previous
expressions in the if...end block are false. An if block can include multiple elseif
blocks.

Examples

Use if, elseif, and else for Conditional Assignment

Create a matrix of 1s.

nrows = 4;
ncols = 6;
A = ones(nrows,ncols);

1 Alphabetical List

1-6972

Loop through the matrix and assign each element a new value. Assign 2 on the main
diagonal, -1 on the adjacent diagonals, and 0 everywhere else.

for c = 1:ncols
 for r = 1:nrows

 if r == c
 A(r,c) = 2;
 elseif abs(r-c) == 1
 A(r,c) = -1;
 else
 A(r,c) = 0;
 end

 end
end
A

A = 4×6

 2 -1 0 0 0 0
 -1 2 -1 0 0 0
 0 -1 2 -1 0 0
 0 0 -1 2 -1 0

Compare Arrays

Expressions that include relational operators on arrays, such as A > 0, are true only
when every element in the result is nonzero.

Test if any results are true using the any function.

limit = 0.75;
A = rand(10,1)

A = 10×1

 0.8147
 0.9058
 0.1270
 0.9134

 if, elseif, else

1-6973

 0.6324
 0.0975
 0.2785
 0.5469
 0.9575
 0.9649

if any(A > limit)
 disp('There is at least one value above the limit.')
else
 disp('All values are below the limit.')
end

There is at least one value above the limit.

Test Arrays for Equality

Compare arrays using isequal rather than the == operator to test for equality, because
== results in an error when the arrays are different sizes.

Create two arrays.

A = ones(2,3);
B = rand(3,4,5);

If size(A) and size(B) are the same, concatenate the arrays; otherwise, display a
warning and return an empty array.

if isequal(size(A),size(B))
 C = [A; B];
else
 disp('A and B are not the same size.')
 C = [];
end

A and B are not the same size.

1 Alphabetical List

1-6974

Compare Character Vectors

Use strcmp to compare character vectors. Using == to test for equality results in an
error when the character vectors are different sizes.

reply = input('Would you like to see an echo? (y/n): ','s');
if strcmp(reply,'y')
 disp(reply)
end

Evaluate Multiple Conditions in Expression

Determine if a value falls within a specified range.

x = 10;
minVal = 2;
maxVal = 6;

if (x >= minVal) && (x <= maxVal)
 disp('Value within specified range.')
elseif (x > maxVal)
 disp('Value exceeds maximum value.')
else
 disp('Value is below minimum value.')
end

Value exceeds maximum value.

Definitions

Expression
An expression can include relational operators (such as < or ==) and logical operators
(such as &&, ||, or ~). Use the logical operators and and or to create compound
expressions. MATLAB evaluates compound expressions from left to right, adhering to
operator precedence rules.

Within the conditional expression of an if...end block, logical operators & and | behave
as short-circuit operators. This behavior is the same as && and ||, respectively. Since &&

 if, elseif, else

1-6975

and || consistently short-circuit in conditional expressions and statements, it is good
practice to use && and || instead of & and | within the expression. For example,

x = 42;
if exist('myfunction.m','file') && (myfunction(x) >= pi)
 disp('Expressions are true')
end

The first part of the expression evaluates to false. Therefore, MATLAB does not need to
evaluate the second part of the expression, which would result in an undefined function
error.

Tips
• You can nest any number of if statements. Each if statement requires an end

keyword.
• Avoid adding a space after else within the elseif keyword (else if). The space

creates a nested if statement that requires its own end keyword.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
for | return | switch | while

Topics
“Operators and Elementary Operations”

Introduced before R2006a

1 Alphabetical List

1-6976

ifft
Inverse fast Fourier transform

Syntax
X = ifft(Y)
X = ifft(Y,n)
X = ifft(Y,n,dim)
X = ifft(___ ,symflag)

Description
X = ifft(Y) computes the inverse discrete Fourier transform on page 1-6981 of Y using
a fast Fourier transform algorithm. X is the same size as Y.

• If Y is a vector, then ifft(Y) returns the inverse transform of the vector.
• If Y is a matrix, then ifft(Y) returns the inverse transform of each column of the

matrix.
• If Y is a multidimensional array, then ifft(Y) treats the values along the first

dimension whose size does not equal 1 as vectors and returns the inverse transform of
each vector.

X = ifft(Y,n) returns the n-point inverse Fourier transform of Y by padding Y with
trailing zeros to length n.

X = ifft(Y,n,dim) returns the inverse Fourier transform along the dimension dim.
For example, if Y is a matrix, then ifft(Y,n,2) returns the n-point inverse transform of
each row.

X = ifft(___ ,symflag) specifies the symmetry of Y. For example,
ifft(Y,'symmetric') treats Y as conjugate symmetric.

Examples

 ifft

1-6977

Inverse Transform of Vector

The Fourier transform and its inverse convert between data sampled in time and space
and data sampled in frequency.

Create a vector and compute its Fourier transform.

X = [1 2 3 4 5];
Y = fft(X)

Y = 1×5 complex

 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i

Compute the inverse transform of Y, which is the same as the original vector X.

ifft(Y)

ans = 1×5

 1 2 3 4 5

Padded Inverse Transform of Matrix

The ifft function allows you to control the size of the transform.

Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each
row. Each row of the result has length 8.

Y = rand(3,5);
n = 8;
X = ifft(Y,n,2);
size(X)

ans = 1×2

 3 8

1 Alphabetical List

1-6978

Conjugate Symmetric Vector

For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform
faster by specifying the 'symmetric' option, which also ensures that the output is real.
Nearly conjugate symmetric data can arise when computations introduce round-off error.

Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier
transform. Then, compute the inverse transform specifying the 'symmetric' option,
which eliminates the nearly 0 imaginary parts.

Y = [1 2:4+eps(4) 4:-1:2]

Y = 1×7

 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000

X = ifft(Y)

X = 1×7 complex

 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i

Xsym = ifft(Y,'symmetric')

Xsym = 1×7

 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213

Input Arguments
Y — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, a matrix, or a multidimensional array. If Y is of type
single, then ifft natively computes in single precision, and X is also of type single.
Otherwise, X is returned as type double.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

 ifft

1-6979

Complex Number Support: Yes

n — Inverse transform length
[] (default) | nonnegative integer scalar

Inverse transform length, specified as [] or a nonnegative integer scalar. Padding Y with
zeros by specifying a transform length larger than the length of Y can improve the
performance of ifft. The length is typically specified as a power of 2 or a product of
small prime numbers. If n is less than the length of the signal, then ifft ignores the
remaining signal values past the nth entry and returns the truncated result. If n is 0, then
ifft returns an empty matrix.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. By default, dim is the
first array dimension whose size does not equal 1. For example, consider a matrix Y.

• ifft(Y,[],1) returns the inverse Fourier transform of each column.

• ifft(Y,[],2) returns the inverse Fourier transform of each row.

1 Alphabetical List

1-6980

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

symflag — Symmetry type
'nonsymmetric' (default) | 'symmetric'

Symmetry type, specified as 'nonsymmetric' or 'symmetric'. When Y is not exactly
conjugate symmetric due to round-off error, ifft(Y,'symmetric') treats Y as if it were
conjugate symmetric. For more information on conjugate symmetry, see “Algorithms” on
page 1-6981.

Definitions

Discrete Fourier Transform of Vector
Y = fft(X) and X = ifft(Y) implement the Fourier transform and inverse Fourier
transform, respectively. For X and Y of length n, these transforms are defined as follows:

Y(k) = ∑
j = 1

n
X(j) Wn

(j− 1)(k− 1)

X(j) = 1
n ∑k = 1

n
Y(k) Wn−(j− 1)(k− 1),

where

Wn = e(− 2πi)/n

is one of n roots of unity.

Algorithms
• The ifft function tests whether the vectors in Y are conjugate symmetric. A vector v

is conjugate symmetric when it equals conj(v([1,end:-1:2])). If the vectors in Y
are conjugate symmetric, then the inverse transform computation is faster and the
output is real.

 ifft

1-6981

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Output is complex.
• Symmetry type 'symmetric' is not supported.
• For limitations related to variable-size data, see “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” (MATLAB Coder).
• For MEX output, MATLAB Coder uses the library that MATLAB uses for FFT

algorithms. For standalone C/C++ code, by default, the code generator produces code
for FFT algorithms instead of producing FFT library calls. To generate calls to a
specific installed FFTW library, provide an FFT library callback class. For more
information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

• For simulation of a MATLAB Function block, the simulation software uses the library
that MATLAB uses for FFT algorithms. For C/C++ code generation, by default, the
code generator produces code for FFT algorithms instead of producing FFT library
calls. To generate calls to a specific installed FFTW library, provide an FFT library
callback class. For more information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Unless symflag is 'symmetric', the output is always complex even if all imaginary
parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-6982

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fft | fftw | ifft2 | ifftn | ifftshift

Introduced before R2006a

 ifft

1-6983

ifft2
2-D inverse fast Fourier transform

Syntax
X = ifft2(Y)
X = ifft2(Y,m,n)
X = ifft2(___ ,symflag)

Description
X = ifft2(Y) returns the two-dimensional discrete inverse Fourier transform on page
1-6987 of a matrix using a fast Fourier transform algorithm. If Y is a multidimensional
array, then ifft2 takes the 2-D inverse transform of each dimension higher than 2. The
output X is the same size as Y.

X = ifft2(Y,m,n) truncates Y or pads Y with trailing zeros to form an m-by-n matrix
before computing the inverse transform. X is also m-by-n. If Y is a multidimensional array,
then ifft2 shapes the first two dimensions of Y according to m and n.

X = ifft2(___ ,symflag) specifies the symmetry of Y. For example,
ifft2(Y,'symmetric') treats Y as conjugate symmetric.

Examples

2-D Inverse Transform of Matrix

You can use the ifft2 function to convert 2-D signals sampled in frequency to signals
sampled in time or space. The ifft2 function also allows you to control the size of the
transform.

Create a 3-by-3 matrix and compute its Fourier transform.

X = magic(3)

1 Alphabetical List

1-6984

X = 3×3

 8 1 6
 3 5 7
 4 9 2

Y = fft2(X)

Y = 3×3 complex

 45.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 13.5000 + 7.7942i 0.0000 - 5.1962i
 0.0000 - 0.0000i 0.0000 + 5.1962i 13.5000 - 7.7942i

Take the inverse transform of Y, which is the same as the original matrix X, up to round-
off error.

ifft2(Y)

ans = 3×3

 8.0000 1.0000 6.0000
 3.0000 5.0000 7.0000
 4.0000 9.0000 2.0000

Pad both dimensions of Y with trailing zeros so that the transform has size 8-by-8.

Z = ifft2(Y,8,8);
size(Z)

ans = 1×2

 8 8

Conjugate Symmetric Matrix

For nearly conjugate symmetric matrices, you can compute the inverse Fourier transform
faster by specifying the 'symmetric' option, which also ensures that the output is real.

 ifft2

1-6985

Compute the 2-D inverse Fourier transform of a nearly conjugate symmetric matrix.

Y = [3+1e-15*i 5;
 5 3];
X = ifft2(Y,'symmetric')

X = 2×2

 4 0
 0 -1

Input Arguments
Y — Input array
matrix | multidimensional array

Input array, specified as a matrix or a multidimensional array. If Y is of type single, then
ifft2 natively computes in single precision, and X is also of type single. Otherwise, X is
returned as type double.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical
Complex Number Support: Yes

m — Number of inverse transform rows
positive integer scalar

Number of inverse transform rows, specified as a positive integer scalar.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

n — Number of inverse transform columns
positive integer scalar

Number of inverse transform columns, specified as a positive integer scalar.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

1 Alphabetical List

1-6986

symflag — Symmetry type
'nonsymmetric' (default) | 'symmetric'

Symmetry type, specified as 'nonsymmetric' or 'symmetric'. When Y is not exactly
conjugate symmetric due to round-off error, ifft2(Y,'symmetric') treats Y as if it
were conjugate symmetric. For more information on conjugate symmetry, see
“Algorithms” on page 1-6987.

Definitions

2-D Inverse Fourier Transform
This formula defines the discrete inverse Fourier transform X of an m-by-n matrix Y:

Xp, q = 1
m ∑

j = 1

m 1
n ∑k = 1

n
ωm

(j− 1)(p− 1)ωn
(k− 1)(q− 1)Y j, k

ωm and ωn are complex roots of unity:

ωm = e2πi/m

ωn = e2πi/n

i is the imaginary unit. p runs from 1 to m and q runs from 1 to n.

Algorithms
• The ifft2 function tests whether the vectors in a matrix Y are conjugate symmetric in

both dimensions. A vector v is conjugate symmetric when the ith element satisfies
v(i) = conj(v([1,end:-1:2])). If the vectors in Y are conjugate symmetric in
both dimensions, then the inverse transform computation is faster and the output is
real.

 ifft2

1-6987

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Symmetry type 'symmetric' is not supported.
• For MEX output, MATLAB Coder uses the library that MATLAB uses for FFT

algorithms. For standalone C/C++ code, by default, the code generator produces code
for FFT algorithms instead of producing FFT library calls. To generate calls to a
specific installed FFTW library, provide an FFT library callback class. For more
information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

• For simulation of a MATLAB Function block, the simulation software uses the library
that MATLAB uses for FFT algorithms. For C/C++ code generation, by default, the
code generator produces code for FFT algorithms instead of producing FFT library
calls. To generate calls to a specific installed FFTW library, provide an FFT library
callback class. For more information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Unless symflag is 'symmetric', the output is always complex even if all imaginary
parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

1 Alphabetical List

1-6988

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fft2 | fftw | ifft | ifftn | ifftshift

Introduced before R2006a

 ifft2

1-6989

ifftn
Multidimensional inverse fast Fourier transform

Syntax
X = ifftn(Y)
X = ifftn(Y,sz)
X = ifftn(___ ,symflag)

Description
X = ifftn(Y) returns the multidimensional discrete inverse Fourier transform on page
1-6992 of an N-D array using a fast Fourier transform algorithm. The N-D inverse
transform is equivalent to computing the 1-D inverse transform along each dimension of
Y. The output X is the same size as Y.

X = ifftn(Y,sz) truncates Y or pads Y with trailing zeros before taking the inverse
transform according to the elements of the vector sz. Each element of sz defines the
length of the corresponding transform dimension. For example, if Y is a 5-by-5-by-5 array,
then X = ifftn(Y,[8 8 8]) pads each dimension with zeros, resulting in an 8-by-8-
by-8 inverse transform X.

X = ifftn(___ ,symflag) specifies the symmetry of Y. For example,
ifftn(Y,'symmetric') treats Y as conjugate symmetric.

Examples

3-D Inverse Transform

You can use the ifftn function to convert multidimensional data sampled in frequency to
data sampled in time or space. The ifftn function also allows you to control the size of
the transform.

Create a 3-by-3-by-3 array and compute its inverse Fourier transform.

1 Alphabetical List

1-6990

Y = rand(3,3,3);
ifftn(Y);

Pad the dimensions of Y with trailing zeros so that the transform has size 8-by-8-by-8.

X = ifftn(Y,[8 8 8]);
size(X)

ans = 1×3

 8 8 8

Conjugate Symmetric Array

For nearly conjugate symmetric arrays, you can compute the inverse Fourier transform
faster by specifying the 'symmetric' option, which also ensures that the output is real.

Compute the 3-D inverse Fourier transform of a nearly conjugate symmetric array.

Y(:,:,1) = [1e-15*i 0; 1 0];
Y(:,:,2) = [0 1; 0 1];
X = ifftn(Y,'symmetric')

X =
X(:,:,1) =

 0.3750 -0.1250
 -0.1250 -0.1250

X(:,:,2) =

 -0.1250 0.3750
 -0.1250 -0.1250

 ifftn

1-6991

Input Arguments
Y — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, a matrix, or a multidimensional array. If Y is of type
single, then ifftn natively computes in single precision, and X is also of type single.
Otherwise, X is returned as type double.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical
Complex Number Support: Yes

sz — Lengths of inverse transform dimensions
vector of positive integers

Lengths of inverse transform dimensions, specified as a vector of positive integers.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

symflag — Symmetry type
'nonsymmetric' (default) | 'symmetric'

Symmetry type, specified as 'nonsymmetric' or 'symmetric'. When Y is not exactly
conjugate symmetric due to round-off error, ifftn(Y,'symmetric') treats Y as if it
were conjugate symmetric. For more information on conjugate symmetry, see
“Algorithms” on page 1-6993.

Definitions

N-D Inverse Fourier Transform
The discrete inverse Fourier transform X of an N-D array Y is defined as

Xp1, p2, ..., pN = ∑
j1 = 1

m1 1
m1

ωm1
p1 j1 ∑

j2 = 1

m2 1
m2

ωm2
p2 j2... ∑

jN = 1

mN 1
mN

ωmN
pN jNY j1, j2, ..., jN .

1 Alphabetical List

1-6992

Each dimension has length mk for k = 1,2,...,N, and ωmk = e2πi/mk are complex roots of
unity where i is the imaginary unit.

Algorithms
• The ifftn function tests whether the vectors in an array Y are conjugate symmetric

in all dimensions. A vector v is conjugate symmetric when the ith element satisfies
v(i) = conj(v([1,end:-1:2])). If the vectors in Y are conjugate symmetric in all
dimensions, then the inverse transform computation is faster and the output is real.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Symmetry type 'symmetric' is not supported.
• The sz argument must have a fixed size.
• For MEX output, MATLAB Coder uses the library that MATLAB uses for FFT

algorithms. For standalone C/C++ code, by default, the code generator produces code
for FFT algorithms instead of producing FFT library calls. To generate calls to a
specific installed FFTW library, provide an FFT library callback class. For more
information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

• For simulation of a MATLAB Function block, the simulation software uses the library
that MATLAB uses for FFT algorithms. For C/C++ code generation, by default, the
code generator produces code for FFT algorithms instead of producing FFT library
calls. To generate calls to a specific installed FFTW library, provide an FFT library
callback class. For more information about an FFT library callback class, see
coder.fftw.StandaloneFFTW3Interface.

 ifftn

1-6993

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Unless symflag is 'symmetric', the output is always complex even if all imaginary
parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fftn | fftw | ifft | ifft2 | ifftshift

Introduced before R2006a

1 Alphabetical List

1-6994

ifftshift
Inverse zero-frequency shift

Syntax
X = ifftshift(Y)
X = ifftshift(Y,dim)

Description
X = ifftshift(Y) rearranges a zero-frequency-shifted Fourier transform Y back to the
original transform output. In other words, ifftshift undoes the result of fftshift.

• If Y is a vector, then ifftshift swaps the left and right halves of Y.
• If Y is a matrix, then ifftshift swaps the first quadrant of Y with the third, and the

second quadrant with the fourth.
• If Y is a multidimensional array, then ifftshift swaps half-spaces of Y along each

dimension.

X = ifftshift(Y,dim) operates along the dimension dim of Y. For example, if Y is a
matrix whose rows represent multiple 1-D transforms, then ifftshift(Y,2) swaps the
halves of each row of Y.

Examples

Inverse Shift Vector Elements

You can use the fftshift and ifftshift functions to swap left and right halves of a
vector.

Create a vector containing an odd number of elements, and swap the left and right sides
of the vector using the fftshift function.

 ifftshift

1-6995

V = [1 2 3 4 5 6 7];
X = fftshift(V)

X = 1×7

 5 6 7 1 2 3 4

Use the ifftshift function to swap the left and right sides of X. The result is the same
as the original vector V.

Y = ifftshift(X)

Y = 1×7

 1 2 3 4 5 6 7

Calling the fftshift function twice does not necessarily reconstruct the original input.

fftshift(fftshift(V))

ans = 1×7

 2 3 4 5 6 7 1

Inverse Shift Matrix Rows

Rearrange the rows of a matrix to shift the nonnegative elements to the left.

Y = [-2 -1 0 1 2;
 -10 -5 0 5 10];
X = ifftshift(Y,2)

X = 2×5

 0 1 2 -2 -1
 0 5 10 -10 -5

1 Alphabetical List

1-6996

Input Arguments
Y — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, a matrix, or a multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then ifftshift swaps along all dimensions.

• Consider an input matrix Yc. The operation ifftshift(Yc,1) swaps halves of each
column of Yc.

• Consider an input matrix Yr. The operation ifftshift(Yr,2) swaps halves of each
row of Yr.

 ifftshift

1-6997

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fft | fft2 | fftn | fftshift | fftw

Introduced before R2006a

1 Alphabetical List

1-6998

ilu
Incomplete LU factorization

Syntax
ilu(A,setup)
[L,U] = ilu(A,setup)
[L,U,P] = ilu(A,setup)

Description
ilu produces a unit lower triangular matrix, an upper triangular matrix, and a
permutation matrix.

ilu(A,setup) computes the incomplete LU factorization of A. setup is an input
structure with up to five setup options. The fields must be named exactly as shown in the
table below. You can include any number of these fields in the structure and define them
in any order. Any additional fields are ignored.

Field Name Description
type Type of factorization. Values for type include:

• 'nofill'(default)—Performs ILU factorization with 0 level of fill in,
known as ILU(0). With type set to 'nofill', only the milu setup
option is used; all other fields are ignored.

• 'crout'—Performs the Crout version of ILU factorization, known as
ILUC. With type set to 'crout', only the droptol and milu setup
options are used; all other fields are ignored.

• 'ilutp' —Performs ILU factorization with threshold and pivoting.

If type is not specified, the ILU factorization with 0 level of fill in is
performed. Pivoting is only performed with type set to 'ilutp'.

 ilu

1-6999

Field Name Description
droptol Drop tolerance of the incomplete LU factorization. droptol is a non-

negative scalar. The default value is 0, which produces the complete LU
factorization.

The nonzero entries of U satisfy

 abs(U(i,j)) >= droptol*norm(A(:,j)),

with the exception of the diagonal entries, which are retained regardless
of satisfying the criterion. The entries of L are tested against the local
drop tolerance before being scaled by the pivot, so for nonzeros in L

abs(L(i,j)) >= droptol*norm(A(:,j))/U(j,j).

milu Modified incomplete LU factorization. Values for milu include:

• 'row'—Produces the row-sum modified incomplete LU factorization.
Entries from the newly-formed column of the factors are subtracted
from the diagonal of the upper triangular factor, U, preserving column
sums. That is, A*e = L*U*e, where e is the vector of ones.

• 'col'—Produces the column-sum modified incomplete LU
factorization. Entries from the newly-formed column of the factors are
subtracted from the diagonal of the upper triangular factor, U,
preserving column sums. That is, e'*A = e'*L*U.

• 'off' (default)—No modified incomplete LU factorization is
produced.

udiag If udiag is 1, any zeros on the diagonal of the upper triangular factor are
replaced by the local drop tolerance. The default is 0.

thresh Pivot threshold between 0 (forces diagonal pivoting) and 1, the default,
which always chooses the maximum magnitude entry in the column to be
the pivot.

ilu(A,setup) returns L+U-speye(size(A)), where L is a unit lower triangular matrix
and U is an upper triangular matrix.

[L,U] = ilu(A,setup) returns a unit lower triangular matrix in L and an upper
triangular matrix in U.

1 Alphabetical List

1-7000

[L,U,P] = ilu(A,setup) returns a unit lower triangular matrix in L, an upper
triangular matrix in U, and a permutation matrix in P.

Limitations
ilu works on sparse square matrices only.

Examples
Start with a sparse matrix and compute the LU factorization.

A = gallery('neumann', 1600) + speye(1600);
setup.type = 'crout';
setup.milu = 'row';
setup.droptol = 0.1;
[L,U] = ilu(A,setup);
e = ones(size(A,2),1);
norm(A*e-L*U*e)

ans =

 1.4251e-014

This shows that A and L*U, where L and U are given by the modified Crout ILU, have the
same row-sum.

Start with a sparse matrix and compute the LU factorization.

A = gallery('neumann', 1600) + speye(1600);
setup.type = 'nofill';
nnz(A)
ans =

 7840

nnz(lu(A))
ans =

 126478

nnz(ilu(A,setup))

 ilu

1-7001

ans =

 7840

This shows that A has 7840 nonzeros, the complete LU factorization has 126478
nonzeros, and the incomplete LU factorization, with 0 level of fill-in, has 7840 nonzeros,
the same amount as A.

Tips
These incomplete factorizations may be useful as preconditioners for a system of linear
equations being solved by iterative methods such as BICG (BiConjugate Gradients),
GMRES (Generalized Minimum Residual Method).

References
[1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing Company,

1996, Chapter 10 - Preconditioning Techniques.

See Also
bicg | gmres | ichol

1 Alphabetical List

1-7002

im2double
Convert image to double precision

Syntax
I2 = im2double(I)
I2 = im2double(I,'indexed')

Description
I2 = im2double(I) converts the image I to double precision. I can be a grayscale
intensity image, a truecolor image, or a binary image. im2double rescales the output
from integer data types to the range [0, 1].

I2 = im2double(I,'indexed') converts the indexed image I to double precision.
im2double adds an offset of 1 to the output from integer data types.

Examples

Convert Image to Double Precision

I = imread('peppers.png');
whos I

 Name Size Bytes Class Attributes

 I 384x512x3 589824 uint8

I2 = im2double(I);
whos I2

 Name Size Bytes Class Attributes

 I2 384x512x3 4718592 double

 im2double

1-7003

Convert Image to Double Precision on GPU

Convert an array to class double on the GPU. This example requires the Parallel
Computing Toolbox.

I1 = gpuArray(reshape(uint8(linspace(1,255,25)),[5 5]));
I2 = im2double(I1);

Input Arguments
I — Input image
scalar | vector | matrix | multidimensional array

Input image, specified as a numeric scalar, vector, matrix, or multidimensional array.

• If I is a grayscale or truecolor (RGB) image, it can be uint8, uint16, double,
logical, single, or int16.

• If I is an indexed image, it can be uint8, uint16, double or logical.
• If I is a binary image, it must be logical.

If the Parallel Computing Toolbox is installed, then I can be a gpuArray and im2double
converts I on a GPU.
Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
I2 — Converted image
numeric array

Converted image, returned as a numeric array of the same size as the input image I.
Data Types: double

1 Alphabetical List

1-7004

Tips
• If the data type of the input image I is double, single, or logical, then the output

pixel values are identical to the input pixel values.

Note Many MATLABfunctions expect pixel values to be in the range [0, 1] for
truecolor images of data type single or double. The im2double function does not
rescale the output when the input image has single or double data type. If your
input image is a truecolor image of data type single or double with pixel values
outside this range, then you can use the rescale function to scale pixel values to the
expected range [0, 1].

• If I is a grayscale or truecolor image with data type uint8, uint16 or int16, then
im2double rescales output pixel values to the range [0, 1].

• If I is an indexed image with data type uint8 or uint16, then im2double adds an
offset of 1 to the output pixel values.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 im2double

1-7005

See Also
double | gpuArray | im2int16 | im2single | im2uint16 | im2uint8

Topics
“Image Types”

Introduced before R2006a

1 Alphabetical List

1-7006

im2frame
Convert image to movie frame

Syntax
F = im2frame(RGB)
F = im2frame(X,map)
F = im2frame(X)

Description
F = im2frame(RGB) converts the truecolor image, RGB, into a movie frame F.

F = im2frame(X,map) converts the indexed image, X, and the associated colormap,
map, into a movie frame F.

F = im2frame(X) converts the indexed image, X, into a movie frame F using the current
colormap.

Examples

Convert Images to Movie Frames

Load an indexed image of a mandrill's face.

load mandrill

Display the image X using its associated colormap, map, which has 220 colors.

figure
image(X)
colormap(map)
axis off

 im2frame

1-7007

Make a movie that shows the effect of reducing the number of colors of the image. There
will be eight movie frames in total. Preallocate an array of structures to store the movie
frames.

F(8) = struct('cdata',[],'colormap',[]);

In a loop, reduce the number of colors in the indexed image by using the imapprox
function. Use the im2frame function to convert the images into frames of a movie. The
first frame is the original image with all 220 colors. The second frame has 128 colors.
Each successive frame has half the number of colors. The last frame has the minimum
number of colors, 2.

for j = 1:8
 q = 2^(9-j);

1 Alphabetical List

1-7008

 [Y,newmap] = imapprox(X,map,q,'nodither');
 F(j) = im2frame(Y,newmap);
end

To play the movie twice with a frame rate of three frames per second, use
movie(F,2,3).

Input Arguments
RGB — Truecolor image
m-by-n-by-3 numeric array

Truecolor image, specified as an m-by-n-by-3 numeric array. If you specify an image of
data type double, then values must be in the range [0, 1].
Data Types: double | uint8

X — Indexed image
m-by-n matrix of integers

Indexed image, specified as an m-by-n matrix of integers.
Data Types: double | uint8

map — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, specified as a c-by-3 numeric matrix with
values in the range [0, 1]. Each row of map is a three-element RGB triplet that specifies
the red, green, and blue components of a single color of the colormap.
Data Types: double

Output Arguments
F — Movie frame
structure

Movie frame, returned as a structure with two fields:

 im2frame

1-7009

• cdata — The image data stored as an array of uint8 values.
• colormap — The colormap. For truecolor (RGB) images, this field is empty.

See Also
frame2im | getframe | movie

Topics
“Image Types”

Introduced before R2006a

1 Alphabetical List

1-7010

im2java
Convert image to Java image

To work with a MATLAB image in the Java environment, you must convert the image from
its MATLAB representation into an instance of the Java image class,
sun.awt.image.ToolkitImage.

Syntax
jimage = im2java(RGB)
jimage = im2java(I)
jimage = im2java(X,map)

Description
jimage = im2java(RGB) converts the truecolor (RGB) image RGB to an instance of the
Java image class.

jimage = im2java(I) converts the grayscale (intensity) image I to an instance of the
Java image class.

jimage = im2java(X,map) converts the indexed image X, with colormap map, to an
instance of the Java image class.

Examples

Convert Truecolor Image to Java Image Class

Read a truecolor (RGB) image into the MATLAB™ workspace.

RGB = imread('ngc6543a.jpg');

Use the im2java function to convert the truecolor image into an instance of the Java
image class.

 im2java

1-7011

javaImage = im2java(RGB)

javaImage =

sun.awt.image.ToolkitImage@4833eff3

Display the Java image.

frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);
frame.getContentPane.add(label);
frame.pack
frame.show

1 Alphabetical List

1-7012

 im2java

1-7013

Input Arguments
RGB — RGB image
m-by-n-by-3 numeric array

RGB image, specified as an m-by-n-by-3 numeric array. If you specify an image of data
type double, then values must be in the range [0, 1].
Data Types: double | uint8 | uint16

I — Grayscale image
m-by-n numeric matrix

Grayscale image, specified as an m-by-n numeric matrix. If you specify an image of data
type double, then values must be in the range [0, 1].
Data Types: double | uint8 | uint16

X — Indexed image
m-by-n matrix of nonnegative integers

Indexed image, specified as an m-by-n matrix of nonnegative integers.

• If you specify X as an array of data type uint8 or uint16, then values must be in the
range [0, c-1].

• If you specify X as an array of data type double, then values must be in the range [1,
c].

Data Types: double | uint8 | uint16

map — Colormap
c-by-3 matrix

Colormap associated with indexed image X, specified as a c-by-3 matrix with values in the
range [0, 1]. Each row of map is a three-element RGB triplet that specifies the red, green,
and blue components of a single color of the colormap. The colormap can have a
maximum of 256 colors.
Data Types: double

1 Alphabetical List

1-7014

Output Arguments
jimage — Java image
sun.awt.image.ToolkitImage

Java image, returned as a sun.awt.image.ToolkitImage.

Tips
• Java requires uint8 data to create an instance of the Java image class,

sun.awt.image.ToolkitImage. If the input image is of class double or uint16,
then im2java makes an equivalent image of class uint8, rescaling or offsetting the
data as necessary, and then converts this uint8 representation to an instance of the
Java image class. For more information, see “8-Bit and 16-Bit Images”.

See Also
im2java2d

Introduced before R2006a

 im2java

1-7015

imag
Imaginary part of complex number

Syntax
Y = imag(Z)

Description
Y = imag(Z) returns the imaginary part of each element in array Z.

Examples

Imaginary Part of Complex Number

Find the imaginary part of the complex number Z.

Z = 2+3i;
Y = imag(Z)

Y = 3

Imaginary Part of Vector of Complex Values

Find the imaginary part of each element in vector Z. The imag function acts on Z element-
wise.

Z = [0.5i 1+3i -2.2];
Y = imag(Z)

Y = 1×3

1 Alphabetical List

1-7016

 0.5000 3.0000 0

Input Arguments
Z — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. imag operates
element-wise when Z is nonscalar.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 imag

1-7017

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
abs | complex | conj | i | j | real

Introduced before R2006a

1 Alphabetical List

1-7018

image
Display image from array

Syntax
image(C)
image(x,y,C)
image('CData',C)
image('XData',x,'YData',y,'CData',C)

image(___ ,Name,Value)
image(ax, ___)

im = image(___)

Description
image(C) displays the data in array C as an image. Each element of C specifies the color
for 1 pixel of the image. The resulting image is an m-by-n grid of pixels where m is the
number of rows and n is the number of columns in C. The row and column indices of the
elements determine the centers of the corresponding pixels.

image(x,y,C) specifies the image location. Use x and y to specify the locations of the
corners corresponding to C(1,1) and C(m,n). To specify both corners, set x and y as
two-element vectors. To specify the first corner and let image determine the other, set x
and y as scalar values. The image is stretched and oriented as applicable.

image('CData',C) adds the image to the current axes without replacing existing plots.
This syntax is the low-level version of image(C). For more information, see “High-Level
Versus Low-Level Version of Image” on page 1-7035.

image('XData',x,'YData',y,'CData',C) specifies the image location. This syntax
is the low-level version of image(x,y,C).

 image

1-7019

image(___ ,Name,Value) specifies image properties using one or more name-value
pair arguments. You can specify image properties with any of the input argument
combinations in the previous syntaxes.

image(ax, ___) creates the image in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

im = image(___) returns the Image object created. Use im to set properties of the
image after it is created. You can specify this output with any of the input argument
combinations in the previous syntaxes. For a list of image properties and descriptions, see
Image.

Examples

Display Image of Matrix Data

Create matrix C. Display an image of the data in C. Add a colorbar to the graph to show
the current colormap.

C = [0 2 4 6; 8 10 12 14; 16 18 20 22];
image(C)
colorbar

1 Alphabetical List

1-7020

By default, the CDataMapping property for the image is set to 'direct' so image
interprets values in C as indices into the colormap. For example, the bottom right pixel
corresponding to the last element in C, 22, uses the 22nd color of the colormap.

Scale the values to the full range of the current colormap by setting the CDataMapping
property to 'scaled' when creating the image.

image(C,'CDataMapping','scaled')
colorbar

 image

1-7021

Alternatively, you can use the imagesc function to scale the values instead of using
image(C,'CDataMapping','scaled'). For example, use imagesc(C).

Control Image Placement

Place the image so that it lies between 5 and 8 on the x-axis and between 3 and 6 on the
y-axis.

x = [5 8];
y = [3 6];
C = [0 2 4 6; 8 10 12 14; 16 18 20 22];
image(x,y,C)

1 Alphabetical List

1-7022

Notice that the pixel corresponding to C(1,1) is centered over the point (5,3). The pixel
corresponding to C(3,4) is centered over the point (8,6). image positions and orients the
rest of the image between those two points.

Display Image of 3-D Array of True Colors

Create C as a 3-D array of true colors. Use only red colors by setting the last two pages of
the array to zeros.

C = zeros(3,3,3);
C(:,:,1) = [.1 .2 .3; .4 .5 .6; .7 .8 .9]

 image

1-7023

C =
C(:,:,1) =

 0.1000 0.2000 0.3000
 0.4000 0.5000 0.6000
 0.7000 0.8000 0.9000

C(:,:,2) =

 0 0 0
 0 0 0
 0 0 0

C(:,:,3) =

 0 0 0
 0 0 0
 0 0 0

Display an image of the data in C.

image(C)

1 Alphabetical List

1-7024

Modify Image After Creation

Plot a line, and then create an image on top of the line. Return the image object.

plot(1:3)
hold on
C = [1 2 3; 4 5 6; 7 8 9];
im = image(C);

 image

1-7025

Make the image semitransparent so that the line shows through the image.

im.AlphaData = 0.5;

1 Alphabetical List

1-7026

Read and Display JPEG Image File

Read a JPEG image file.

C = imread('ngc6543a.jpg');

imread returns a 650-by-600-by-3 array, C.

Display the image.

image(C)

 image

1-7027

Add Image to Axes in 3-D View

Create a surface plot. Then, add an image under the surface. image displays the image in
the xy-plane.

Z = 10 + peaks;
surf(Z)
hold on
image(Z,'CDataMapping','scaled')

1 Alphabetical List

1-7028

Input Arguments
C — Image color data
vector or matrix | 3-D array of RGB triplets

Image color data, specified in one of these forms:

• Vector or matrix — This format defines indexed image data. Each element of C defines
a color for 1 pixel of the image. For example, C = [1 2 3; 4 5 6; 7 8 9];. The
elements of C map to colors in the colormap of the associated axes. The
CDataMapping property controls the mapping method.

 image

1-7029

• 3-D array of RGB triplets — This format defines true color image data using RGB
triplet values. Each RGB triplet defines a color for 1 pixel of the image. An RGB triplet
is a three-element vector that specifies the intensities of the red, green, and blue
components of the color. The first page of the 3-D array contains the red components,
the second page contains the green components, and the third page contains the blue
components. Since the image uses true colors instead of colormap colors, the
CDataMapping property has no effect.

• If C is of type double, then an RGB triplet value of [0 0 0] corresponds to black
and [1 1 1] corresponds to white.

• If C is an integer type, then the image uses the full range of data to determine the
color. For example, if C is of type uint8, then [0 0 0] corresponds to black and
[255 255 255] corresponds to white. If CData is of type int8, then [-128 -128
-128] corresponds to black and [127 127 127] corresponds to white.

• If C is of type logical, then [0 0 0] corresponds to black and [1 1 1]
corresponds to white.

This illustration shows the relative dimensions of C for the two color models.

The behavior of NaN elements is not defined.

1 Alphabetical List

1-7030

To use the low-level version of the image function instead, set the CData property as a
name-value pair. For example, image('CData',C).
Converting Between Data Types

To convert indexed image data from an integer type to type double, add 1. For example,
if X8 is indexed image data of type uint8, convert it to type double using:

X64 = double(X8) + 1;

To convert indexed image data from type double to an integer type, subtract 1 and use
round to ensure that all the values are integers. For example, if X64 is indexed image
data of type double, convert it to uint8 using:

X8 = uint8(round(X64 - 1));

To convert true color image data from an integer type to type double, rescale the data.
For example, if RGB8 is true color image data of type uint8, convert it to double using:

RGB64 = double(RGB8)/255;

To convert true color image data from type double to an integer type, rescale the data
and use round to ensure that all the values are integers. For example, if RGB64 is image
data of type double, convert it to uint8 using:

RGB8 = uint8(round(RGB64*255));

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

x — Placement along x-axis
[1 size(C,2)] (default) | two-element vector | scalar

Placement along the x-axis, specified in one of these forms:

• Two-element vector — Use the first element as the location for the center of C(1,1)
and the second element as the location for the center of C(m,n), where [m,n] =
size(C). If C is a 3-D array, then m and n are the first two dimensions. Evenly
distribute the centers of the remaining elements of C between those two points.

The width of each pixel is determined by the expression:

(x(2)-x(1))/(size(C,2)-1)

If x(1) > x(2), then the image is flipped left-right.

 image

1-7031

• Scalar — Center C(1,1) at this location and each following element one unit apart.

To use the low-level version of the image function instead, set the XData property as a
name-value pair. For example, image('XData',x,'YData',y,'CData',C).

You cannot interactively pan or zoom outside the x-axis limits or y-axis limits of an image,
unless the limits are already set outside the bounds of the image. If the limits are already
outside the bounds, there is no such restriction. If other objects (such as a line) occupy
the axes and extend beyond the bounds of the image, you can pan or zoom to the bounds
of the other objects, but no further.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

y — Placement along y-axis
[1 size(C,1)] (default) | two-element vector | scalar

Placement along y-axis, specified in one of these forms:

• Two-element vector — Use the first element as the location for the center of C(1,1)
and the second element as the location for the center of C(m,n), where [m,n] =
size(C). If C is a 3-D array, then m and n are the first two dimensions. Evenly
distribute the centers of the remaining elements of C between those two points.

The height of each pixel is determined by the expression:

(y(2)-y(1))/(size(C,1)-1)

If y(1) > y(2), then the image is flipped up-down.
• Scalar — Center C(1,1) at this location and each following element one unit apart.

To use the low-level version of the image function instead, set the YData property as a
name-value pair. For example, image('XData',x,'YData',y,'CData',C).

You cannot interactively pan or zoom outside the x-axis limits or y-axis limits of an image,
unless the limits are already set outside the bounds of the image. If the limits are already
outside the bounds, there is no such restriction. If other objects (such as a line) occupy
the axes and extend beyond the bounds of the image, you can pan or zoom to the bounds
of the other objects, but no further.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Alphabetical List

1-7032

ax — Axes object
Axes object

Axes object. If you do not specify an Axes object, then image uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: image([1 2 3],'AlphaData',0.5) displays a semitransparent image.

The properties listed here are a subset of image properties. For a complete list, see
Image.

CDataMapping — Color data mapping method
'direct' (default) | 'scaled'

Color data mapping method, specified as 'direct' or 'scaled'. Use this property to
control the mapping of color data values in CData into the colormap. CData must be a
vector or a matrix defining indexed colors. This property has no effect if CData is a 3-D
array defining true colors.

The methods have these effects:

• 'direct' — Interpret the values as indices into the current colormap. Values with a
decimal portion are fixed to the nearest lower integer.

• If the values are of type double or single, then values of 1 or less map to the first
color in the colormap. Values equal to or greater than the length of the colormap
map to the last color in the colormap.

• If the values are of type uint8, uint16, uint32, uint64 , int8, int16, int32,
or int64, then values of 0 or less map to the first color in the colormap. Values
equal to or greater than the length of the colormap map to the last color in the
colormap (or up to the range limits of the type).

• If the values are of type logical, then values of 0 map to the first color in the
colormap and values of 1 map to the second color in the colormap.

• 'scaled' — Scale the values to range between the minimum and maximum color
limits. The CLim property of the axes contains the color limits.

 image

1-7033

AlphaData — Transparency data
1 (default) | scalar | array the same size as CData

Transparency data, specified in one of these forms:

• Scalar — Use a consistent transparency across the entire image.
• Array the same size as CData — Use a different transparency value for each image

element.

The AlphaDataMapping property controls how MATLAB interprets the alpha data
transparency values.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

AlphaDataMapping — Interpretation of AlphaData values
'none' (default) | 'scaled' | 'direct'

Interpretation of AlphaData values, specified as one of these values:

• 'none' — Interpret the values as transparency values. A value of 1 or greater is
completely opaque, a value of 0 or less is completely transparent, and a value between
0 and 1 is semitransparent.

• 'scaled' — Map the values into the figure’s alphamap. The minimum and maximum
alpha limits of the axes determine the alpha data values that map to the first and last
elements in the alphamap, respectively. For example, if the alpha limits are [3 5],
then alpha data values less than or equal to 3 map to the first element in the
alphamap. Alpha data values greater than or equal to 5 map to the last element in the
alphamap. The ALim property of the axes contains the alpha limits. The Alphamap
property of the figure contains the alphamap.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Values with a
decimal portion are fixed to the nearest lower integer:

• If the values are of type double or single, then values of 1 or less map to the first
element in the alphamap. Values equal to or greater than the length of the
alphamap map to the last element in the alphamap.

• If the values are of type integer, then values of 0 or less map to the first element in
the alphamap. Values equal to or greater than the length of the alphamap map to
the last element in the alphamap (or up to the range limits of the type). The integer
types are uint8, uint16, uint32, uint64 , int8, int16, int32, and int64.

1 Alphabetical List

1-7034

• If the values are of type logical, then values of 0 map to the first element in the
alphamap and values of 1 map to the second element in the alphamap.

Output Arguments
im — Image object
Image object

Image object, returned as a scalar. Use im to set properties of the image after it is
created. For a list, see Image.

Definitions

High-Level Versus Low-Level Version of Image
The image function has two versions, the high-level version and the low-level version. If
you use image with 'CData' as an input argument, then you are using the low-level
version. Otherwise, you are using the high-level version.

The high-level version of image calls newplot before plotting and sets these axes
properties:

• Layer to 'top'. The image is shown in front of any tick marks or grid lines.
• YDir to 'reverse'. Values along the y-axis increase from top to bottom. To decrease

the values from top to bottom, set YDir to 'normal'. This setting reverses both the y-
axis and the image.

• View to [0 90].

The low-level version of the image function does not call newplot and does not set these
axes properties.

Tips
• To read image data into MATLAB from graphics files in various standard formats, such

as TIFF, use imread. To write MATLAB image data to graphics files, use imwrite. The

 image

1-7035

imread and imwrite functions support a variety of graphics file formats and
compression schemes.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
colormap | imagesc | imfinfo | imread | imshow | imwrite

Properties
Image

1 Alphabetical List

1-7036

Introduced before R2006a

 image

1-7037

Image Properties
Control image component appearance and behavior

Description
Images are UI components that allow you to display an picture, such as an icon or logo in
your app. Image properties control the appearance and behavior of an image. Use dot
notation to refer to a specific object and property.

uf = uifigure;
im = uiimage(uf);
im.ImageSource = 'peppers.png';

Properties
Image

ImageSource — Image source or file
' ' (default) | file path | m-by-n-by-3 truecolor image array

Image source or file, specified as a file path or an m-by-n-by-3 truecolor image array.
Supported image formats include JPEG, PNG, GIF, SVG, or m-by-n-by-3 truecolor image
array.

For more information on truecolor image arrays, see “Image Types”.
Example: im = uiimage('ImageSource','peppers.png');
Example: im.ImageSource = 'C:\TEMP\ngc6543a.jpg';

ScaleMethod — Image scaling method
'fit' (default) | 'fill' | 'none' | 'scaledown' | 'scaleup' | 'stretch'

Image scaling method, specified as one of the values listed in the table. Use this name-
value pair argument to specify how you want your image to render within the component
area.

The table also demonstrates each scale method with an example image. In the rendered
image examples, the BackgroundColor property of the image component has been set

1 Alphabetical List

1-7038

to 'magenta'. The scaling behavior of SVG image files may vary based on how the file is
defined.

Value Description Example Scal
es
Up

Scales
Down

Maint
ains
Aspec
t
Ratio

Clips
ImageOriginal

Image
Rendered
Image

'fit' Scales in any
direction to
display the
image within the
component area,
and maintains
aspect ratio
without clipping.

Yes Yes Yes No

'fill' Scales in any
direction to fill
the component
area,
maintaining
aspect ratio and
clipping if
necessary.

Yes Yes Yes Yes

'none' Uses the actual
size of the image
and maintains
aspect ratio. If
the component
area is smaller
than the image,
the image is
clipped.

No No Yes Yes

 Image Properties

1-7039

Value Description Example Scal
es
Up

Scales
Down

Maint
ains
Aspec
t
Ratio

Clips
ImageOriginal

Image
Rendered
Image

'scaledo
wn'

Scales down and
maintains aspect
ratio without
clipping.

If the original
image is larger
than the
component area,
the image scales
down and
renders as if the
ScaleMethod
was set to
'fit'. If the
original image is
smaller than the
component area,
the image does
not scale down
and renders as if
the
ScaleMethod
was set to
'none'.

No Yes Yes No

1 Alphabetical List

1-7040

Value Description Example Scal
es
Up

Scales
Down

Maint
ains
Aspec
t
Ratio

Clips
ImageOriginal

Image
Rendered
Image

'scaleup
'

Scales up and
maintains aspect
ratio with
clipping.

If the original
image is smaller
than the
component area,
the image scales
up and renders
as if the
ScaleMethod
was set to
'fit'. If the
original image is
larger than the
component area,
the image does
not scale up and
renders as if the
ScaleMethod
was set to
'none'.

Yes No Yes Yes

'stretch
'

Scales in any
direction to fill
the component
area, without
maintaining the
aspect ratio and
without clipping.

Yes Yes No No

 Image Properties

1-7041

Color

BackgroundColor — Background Color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-7042

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Image visibility
'on' (default) | 'off'

Image visibility, specified as 'on' or 'off'. The Visible property determines whether
the image is displayed on the screen. If the Visible property is set to 'off', the entire
image component is hidden, but you can still set and access its properties.

To make your app start faster, set the Visible property to 'off' for all components that
do not need to appear at startup.

Enable — Operational state of image
'on' (default) | 'off'

Operational state of the image, specified as 'on' or 'off'.

• 'on' — The image appears normal, and the app user can click the image, which
triggers any ImageClickedFcn callback associated with it.

• 'off' — The image appears dimmed, indicating that the app user cannot click the
image, and that associated callbacks do not execute.

 Image Properties

1-7043

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of image component
[100 100 100 100] (default) | [left bottom width height]

Location and size of image component relative to the parent, specified as a four element
vector of the form [left bottom width height]. This table describes each element
in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the image component
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the image
component

width Distance between the right and left outer edges of the
image component

height Distance between the top and bottom outer edges of the
image component

1 Alphabetical List

1-7044

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.

InnerPosition — Location and size of image component
[100 100 100 100] (default) | [left bottom width height]

Location and size of image component, specified as a four element vector of the form
[left bottom width height]. All measurements are in pixel units. This property
value is identical to the Position property.

OuterPosition — Location and size of image component
[100 100 100 100] (default) | [left bottom width height]

This property is read-only.

Location and size of image component, specified as a four element vector of the form
[left bottom width height]. All measurements are in pixel units. This property
value is identical to the Position property.

HorizontalAlignment — Horizontal alignment of rendered image
'center' (default) | 'left' | 'right'

Horizontal alignment of the rendered image within the image component area, specified
as 'center', 'left', or 'right'. The horizontal alignment is relative to the inside
borders of the image component. Setting this property has no effect when the
ScaleMethod property value is set to 'stretch'.

For example, the table shows rendered images for each HorizontalAlignment value,
where the ScaleMethod property value is set to 'none' and the VerticalAlignment
property has the default value, 'center'. You can implement many other combinations
that are not shown here.

 Image Properties

1-7045

Horizontal Alignment
Value

Description Rendered Image

'center' Left and right edges of the
image are equally spaced
from the inside-left and
inside-right borders of the
image component,
respectively.

'left' Left edge of the image
aligns with the inside-left
border of the image
component.

'right' Right edge of the image
aligns with the inside-right
border of the image
component.

VerticalAlignment — Vertical alignment of rendered image
'center' (default) | 'top' | 'bottom'

Vertical alignment of the rendered image within the image component area, specified as
'center', 'left', or 'right'. The vertical alignment is relative to the inside borders
of the image component. Setting this property has no effect when the ScaleMethod
property value is set to 'stretch'.

For example, the table shows rendered images for each VerticalAlignment value,
where the ScaleMethod property value is set to 'none' and the
HorizontalAlignment property has the default value, 'center'. You can implement
many other combinations that are not shown here.

1 Alphabetical List

1-7046

Vertical Alignment Value Description Rendered Image
'center' Top and bottom edges of the

image are equally spaced
from the inside-top and
inside-bottom borders of the
image component,
respectively.

'top' Top edge of the image aligns
with the inside-top border of
the image component.

'bottom' Bottom edge of the image
aligns with the inside-
bottom border of the image
component.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as an empty array GridLayoutOptions object. This property
specifies options for components that are children of grid layout containers. If the image
component is not a child of a grid layout container (for example, if it is a child of a figure
or panel), then this property is empty and has no effect. However, if the image component
is a child of a grid layout container, you can place the component in the desired row and
column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an image component in the third row and second column of
its parent grid.

g = uigridlayout([4 3]);
im = uiimage(g);
im.ImageSource = 'peppers.png';
im.ScaleMethod = 'fill';

 Image Properties

1-7047

im.Layout.Row = 3;
im.Layout.Column = 2;

To make the image span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this image spans columns 2 through 3.

im.Layout.Column = [2 3];

Callbacks

ImageClickedFcn — Image clicked callback
' ' (default) | function handle | cell array | character vector

Image clicked callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user clicks the image in the app.

This callback function can access specific information about the user's interaction with
the image. MATLAB passes this information in an ImageClickedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object's properties using dot notation. For example,
event.Source returns the Image object that the user is interacting with to trigger the
callback. The ImageClickedData object is not available to callback functions specified
as character vectors.

The following table lists the properties of the ImageClickedData object.

Property Value
EventName 'ImageClicked'
Source Component executing the callback

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-7048

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

 Image Properties

1-7049

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

1 Alphabetical List

1-7050

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

 Image Properties

1-7051

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uiimage'

1 Alphabetical List

1-7052

This property is read-only.

Type of graphics object, returned as 'uiimage'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | image | imshow | uifigure | uiimage

Topics
“Share Data Within App Designer Apps”
“Write Callbacks in App Designer”

Introduced in R2019a

 Image Properties

1-7053

Image Properties
Image appearance and behavior

Description
Image properties control the appearance and behavior of Image objects. By changing
property values, you can modify certain aspects of the image.

Starting in R2014b, you can use dot notation to query and set properties.

im = image(rand(20));
C = im.CData;
im.CDataMapping = 'scaled';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Transparency

CData — Image color data
64-by-64 array (default) | vector or matrix | 3-D array of RGB triplets

Image color data, specified in one of these forms:

• Vector or matrix — This format defines indexed image data. Each element defines a
color for one pixel of the image. The elements map to colors in the colormap. The
CDataMapping property controls the mapping method.

• 3-D array of RGB triplets — This format defines true color image data using RGB
triplet values. Each RGB triplet defines a color for one pixel of the image. An RGB
triplet is a three-element vector that specifies the intensities of the red, green, and
blue components of the color. The first page of the 3-D array contains the red
components, the second page contains the green components, and the third page
contains the blue components. Since the image uses true colors instead of colormap
colors, the CDataMapping property has no effect.

1 Alphabetical List

1-7054

• If CData is of type double, then an RGB triplet value of [0 0 0] corresponds to
black and [1 1 1] corresponds to white.

• If CData is an integer type, then the image uses the full range of data to determine
the color. For example, if CData is of type uint8, then [0 0 0] corresponds to
black and [255 255 255] corresponds to white. If CData is of type int8, then
[-128 -128 -128] corresponds to black and [127 127 127] corresponds to
white.

• If CData is of type logical, then [0 0 0] corresponds to black and [1 1 1]
corresponds to white.

This illustration shows the relative dimensions of CData for the two color models.

The behavior of NaN elements is not defined.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

CDataMapping — Color data mapping method
'direct' (default) | 'scaled'

 Image Properties

1-7055

Color data mapping method, specified as 'direct' or 'scaled'. Use this property to
control the mapping of color data values in CData into the colormap. CData must be a
vector or a matrix defining indexed colors. This property has no effect if CData is a 3-D
array defining true colors.

The methods have these effects:

• 'direct' — Interpret the values as indices into the current colormap. Values with a
decimal portion are fixed to the nearest lower integer.

• If the values are of type double or single, then values of 1 or less map to the first
color in the colormap. Values equal to or greater than the length of the colormap
map to the last color in the colormap.

• If the values are of type uint8, uint16, uint32, uint64 , int8, int16, int32,
or int64, then values of 0 or less map to the first color in the colormap. Values
equal to or greater than the length of the colormap map to the last color in the
colormap (or up to the range limits of the type).

• If the values are of type logical, then values of 0 map to the first color in the
colormap and values of 1 map to the second color in the colormap.

• 'scaled' — Scale the values to range between the minimum and maximum color
limits. The CLim property of the axes contains the color limits.

AlphaData — Transparency data
1 (default) | scalar | array the same size as CData

Transparency data, specified in one of these forms:

• Scalar — Use a consistent transparency across the entire image.
• Array the same size as CData — Use a different transparency value for each image

element.

The AlphaDataMapping property controls how MATLAB interprets the alpha data
transparency values.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

AlphaDataMapping — Interpretation of AlphaData values
'none' (default) | 'scaled' | 'direct'

1 Alphabetical List

1-7056

Interpretation of AlphaData values, specified as one of these values:

• 'none' — Interpret the values as transparency values. A value of 1 or greater is
completely opaque, a value of 0 or less is completely transparent, and a value between
0 and 1 is semitransparent.

• 'scaled' — Map the values into the figure’s alphamap. The minimum and maximum
alpha limits of the axes determine the alpha data values that map to the first and last
elements in the alphamap, respectively. For example, if the alpha limits are [3 5],
then alpha data values less than or equal to 3 map to the first element in the
alphamap. Alpha data values greater than or equal to 5 map to the last element in the
alphamap. The ALim property of the axes contains the alpha limits. The Alphamap
property of the figure contains the alphamap.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Values with a
decimal portion are fixed to the nearest lower integer:

• If the values are of type double or single, then values of 1 or less map to the first
element in the alphamap. Values equal to or greater than the length of the
alphamap map to the last element in the alphamap.

• If the values are of type integer, then values of 0 or less map to the first element in
the alphamap. Values equal to or greater than the length of the alphamap map to
the last element in the alphamap (or up to the range limits of the type). The integer
types are uint8, uint16, uint32, uint64 , int8, int16, int32, and int64.

• If the values are of type logical, then values of 0 map to the first element in the
alphamap and values of 1 map to the second element in the alphamap.

Position

XData — Placement along x-axis
[1 size(CData,2)] (default) | two-element vector | scalar

Placement along the x-axis, specified in one of these forms:

• Two-element vector — Use the first element as the location for the center of
CData(1,1) and the second element as the location for the center of CData(m,n),
where [m,n] = size(CData). Evenly distribute the centers of the remaining CData
elements between those two points.

The width of each pixel is determined by the expression:

(XData(2)-XData(1))/(size(CData,2)-1)

 Image Properties

1-7057

If XData(1) > XData(2), then the image is flipped left-right.
• Scalar — Center CData(1,1) at this location and each following element one unit

apart.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

YData — Placement along y-axis
[1 size(CData,1)] (default) | two-element vector | scalar

Placement along y-axis, specified in one of these forms:

• Two-element vector — Use the first element as the location for the center of
CData(1,1) and the second element as the location for the center of CData(m,n),
where [m,n] = size(CData). Evenly distribute the centers of the remaining CData
elements between those two points.

The height of each pixel is determined by the expression:

(YData(2)-YData(1))/(size(CData,1)-1)

If YData(1) > YData(2), then the image is flipped up-down.
• Scalar — Center CData(1,1) at this location and each following element one unit

apart.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

1 Alphabetical List

1-7058

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

 Image Properties

1-7059

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

1 Alphabetical List

1-7060

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

 Image Properties

1-7061

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

1 Alphabetical List

1-7062

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Image object responds to the
click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Image object passes the click to
the object behind it in the current view of the figure window. The HitTest property of
the Image object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Image object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Image object that has
one of these:

 Image Properties

1-7063

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Image object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

1 Alphabetical List

1-7064

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'image'

This property is read-only.

Type of graphics object, returned as 'image'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

 Image Properties

1-7065

See Also
image | imagesc

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-7066

imagesc
Display image with scaled colors

Syntax
imagesc(C)
imagesc(x,y,C)
imagesc('CData',C)
imagesc('XData',x,'YData',y,'CData',C)

imagesc(___ ,Name,Value)
imagesc(___ ,clims)
imagesc(ax, ___)

im = imagesc(___)

Description
imagesc(C) displays the data in array C as an image that uses the full range of colors in
the colormap. Each element of C specifies the color for one pixel of the image. The
resulting image is an m-by-n grid of pixels where m is the number of rows and n is the
number of columns in C. The row and column indices of the elements determine the
centers of the corresponding pixels.

imagesc(x,y,C) specifies the image location. Use x and y to specify the locations of the
corners corresponding to C(1,1) and C(m,n). To specify both corners, set x and y as
two-element vectors. To specify the first corner and let imagesc determine the other, set
x and y as scalar values. The image is stretched and oriented as applicable.

imagesc('CData',C) adds the image to the current axes without replacing existing
plots. This syntax is the low-level version of imagesc(C). For more information, see
“High-Level Versus Low-Level Version” on page 1-7079.

imagesc('XData',x,'YData',y,'CData',C) specifies the image location. This
syntax is the low-level version of imagesc(x,y,C).

 imagesc

1-7067

imagesc(___ ,Name,Value) specifies image properties using one or more name-value
pair arguments. You can specify name-value pair arguments after any of the input
argument combinations in the previous syntaxes. For a list of image properties and
descriptions, see Image.

imagesc(___ ,clims) specifies the data values that map to the first and last elements
of the colormap. Specify clims as a two-element vector of the form [cmin cmax], where
values less than or equal to cmin map to the first color in the colormap and values
greater than or equal to cmax map to the last color in the colormap. Specify clims after
name-value pair arguments.

imagesc(ax, ___) creates the image in the axes specified by ax instead of in the
current axes (gca). Specify the axes as the first input argument.

im = imagesc(___) returns the Image object created. Use im to set properties of the
image after it is created. You can specify this output with any of the input argument
combinations in the previous syntaxes.

Examples

Display Image of Matrix Data

Create matrix C. Display an image of the data in C. Add a colorbar to the graph to show
the current colormap. By default, imagesc scales the color limits so that image uses the
full range of the colormap, where the smallest value in C maps to the first color in the
colormap and the largest value maps to the last color.

C = [0 2 4 6; 8 10 12 14; 16 18 20 22];
imagesc(C)
colorbar

1 Alphabetical List

1-7068

Control Image Placement

Place the image so that it lies between 5 and 8 on the x-axis and between 3 and 6 on the
y-axis.

x = [5 8];
y = [3 6];
C = [0 2 4 6; 8 10 12 14; 16 18 20 22];
imagesc(x,y,C)

 imagesc

1-7069

Notice that the pixel corresponding to C(1,1) is centered over the point (5,3). The pixel
corresponding to C(3,4) is centered over the point (8,6). imagesc positions and orients
the rest of the image between those two points.

Control Scaling of Data Values into Colormap

Create C as an array of data values. Create an image of C and set the color limits so that
values of 4 or less map to the first color in the colormap and values of 18 or more map to
the last color in the colormap. Display a colorbar to show how the data values map into
the colormap.

1 Alphabetical List

1-7070

C = [0 2 4 6; 8 10 12 14; 16 18 20 22];
clims = [4 18];
imagesc(C,clims)
colorbar

Modify Image After Creation

Create an image and return the image object, im. Then, make the image semitransparent
by setting the AlphaData property of the image object.

C = [1 2 3; 4 5 6; 7 8 9];
im = imagesc(C);

 imagesc

1-7071

im.AlphaData = .5;

1 Alphabetical List

1-7072

Add Image to Axes in 3-D View

Create a surface plot. Then, add an image under the surface. imagesc displays the image
in the xy-plane.

Z = 10 + peaks;
surf(Z)
hold on
imagesc(Z)

 imagesc

1-7073

Input Arguments
C — Image color data
vector or matrix

Image color data, specified as a vector or a matrix. Each element of C defines a color for
one pixel of the image. The elements of C map to colors in the colormap of the associated
axes. The smallest value in C maps to the first color in the colormap and the largest value
maps to the last color. The behavior of NaN elements is not defined.

1 Alphabetical List

1-7074

Note If you specify C as an m-by-n-by-3 array, then the imagesc function interprets the
image as a truecolor (RGB) image. imagesc does not rescale pixel values of truecolor
images. Use the rescale function to scale truecolor pixel values before calling imagesc.

To use the low-level version of the imagesc function instead, set the CData property as a
name-value pair. For example, imagesc('CData',C).

Converting Between Data Types

To convert grayscale image data from an integer type to type double, add 1. For
example, if X8 is grayscale image data of type uint8, convert it to type double using:

X64 = double(X8) + 1;

To convert grayscale image data from type double to an integer type, subtract 1 and use
round to ensure that all the values are integers. For example, if X64 is grayscale image
data of type double, convert it to uint8 using:

X8 = uint8(round(X64 - 1));

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

x — Placement along x-axis
[1 size(C,2)] (default) | two-element vector | scalar

Placement along the x-axis, specified in one of these forms:

• Two-element vector — Use the first element as the location for the center of C(1,1)
and the second element as the location for the center of C(m,n), where [m,n] =
size(C). If C is a 3-D array, then m and n are the first two dimensions. Evenly
distribute the centers of the remaining elements of C between those two points.

The width of each pixel is determined by the expression:

(x(2)-x(1))/(size(C,2)-1)

If x(1) > x(2), then the image is flipped left-right.
• Scalar — Center C(1,1) at this location and each following element one unit apart.

To use the low-level version of the imagesc function instead, set the XData property as a
name-value pair. For example, imagesc('XData',x,'YData',y,'CData',C).

 imagesc

1-7075

You cannot interactively pan or zoom outside the x-axis limits or y-axis limits of an image,
unless the limits are already set outside the bounds of the image. If the limits are already
outside the bounds, there is no such restriction. If other objects (such as a line) occupy
the axes and extend beyond the bounds of the image, you can pan or zoom to the bounds
of the other objects, but no further.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

y — Placement along y-axis
[1 size(C,1)] (default) | two-element vector | scalar

Placement along y-axis, specified in one of these forms:

• Two-element vector — Use the first element as the location for the center of C(1,1)
and the second element as the location for the center of C(m,n), where [m,n] =
size(C). If C is a 3-D array, then m and n are the first two dimensions. Evenly
distribute the centers of the remaining elements of C between those two points.

The height of each pixel is determined by the expression:

(y(2)-y(1))/(size(C,1)-1)

If y(1) > y(2), then the image is flipped up-down.
• Scalar — Center C(1,1) at this location and each following element one unit apart.

To use the low-level version of the imagesc function instead, set the YData property as a
name-value pair. For example, imagesc('XData',x,'YData',y,'CData',C).

You cannot interactively pan or zoom outside the x-axis limits or y-axis limits of an image,
unless the limits are already set outside the bounds of the image. If the limits are already
outside the bounds, there is no such restriction. If other objects (such as a line) occupy
the axes and extend beyond the bounds of the image, you can pan or zoom to the bounds
of the other objects, but no further.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

clims — Color limits
two-element vector of form [cmin cmax]

Color limits, specified as a two-element vector of the form [cmin cmax], where cmax is
greater than cmin. Values in C that are less than or equal to cmin map to the first color in

1 Alphabetical List

1-7076

the colormap. Values greater than or equal to cmax map to the last color in the colormap.
Values between cmin and cmax linearly map to the colormap.

If you specify the color limits, then the imagesc function sets the CLim property of the
axes to the values specified. If you do not specify the color limits, then imagesc sets the
CLim property of the axes to the minimum and maximum values in C.

ax — Axes object
Axes object

Axes object. If you do not specify an Axes object, then imagesc uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imagesc([1 2 3],'AlphaData',0.5) displays a semitransparent image.

The properties listed here are a subset of image properties. For a complete list, see
Image.

AlphaData — Transparency data
1 (default) | scalar | array the same size as CData

Transparency data, specified in one of these forms:

• Scalar — Use a consistent transparency across the entire image.
• Array the same size as CData — Use a different transparency value for each image

element.

The AlphaDataMapping property controls how MATLAB interprets the alpha data
transparency values.
Example: 0.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

AlphaDataMapping — Interpretation of AlphaData values
'none' (default) | 'scaled' | 'direct'

 imagesc

1-7077

Interpretation of AlphaData values, specified as one of these values:

• 'none' — Interpret the values as transparency values. A value of 1 or greater is
completely opaque, a value of 0 or less is completely transparent, and a value between
0 and 1 is semitransparent.

• 'scaled' — Map the values into the figure’s alphamap. The minimum and maximum
alpha limits of the axes determine the alpha data values that map to the first and last
elements in the alphamap, respectively. For example, if the alpha limits are [3 5],
then alpha data values less than or equal to 3 map to the first element in the
alphamap. Alpha data values greater than or equal to 5 map to the last element in the
alphamap. The ALim property of the axes contains the alpha limits. The Alphamap
property of the figure contains the alphamap.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Values with a
decimal portion are fixed to the nearest lower integer:

• If the values are of type double or single, then values of 1 or less map to the first
element in the alphamap. Values equal to or greater than the length of the
alphamap map to the last element in the alphamap.

• If the values are of type integer, then values of 0 or less map to the first element in
the alphamap. Values equal to or greater than the length of the alphamap map to
the last element in the alphamap (or up to the range limits of the type). The integer
types are uint8, uint16, uint32, uint64 , int8, int16, int32, and int64.

• If the values are of type logical, then values of 0 map to the first element in the
alphamap and values of 1 map to the second element in the alphamap.

Output Arguments
im — Image object
Image object

Image object. Use im to set properties of the image after it is created. For a list, see
Image.

1 Alphabetical List

1-7078

Definitions

High-Level Versus Low-Level Version
The imagesc function has two versions, the high-level version and the low-level version.
If you use imagesc with 'CData' as an input argument, then you are using the low-level
version. Otherwise, you are using the high-level version.

The high-level version of imagesc calls newplot before plotting and sets these axes
properties:

• Layer to 'top'. The image is shown in front of any tick marks or grid lines.
• YDir to 'reverse'. Values along the y-axis increase from top to bottom. To decrease

the values from top to bottom, set YDir to 'normal'. This setting reverses both the y-
axis and the image.

• View to [0 90].

The low-level version of the imagesc function does not call newplot and does not set
these axes properties.

For both versions, the imagesc function sets:

• The CData property of the Image object to the values in C.
• The CDataMapping property of the Image object to 'scaled'.
• The CLim property of the Axes object to the minimum and maximum values in C,

unless you specify the clims input argument.

Tips
• To read image data into MATLAB from graphics files in various standard formats, such

as TIFF, use imread. To write MATLAB image data to graphics files, use imwrite. The
imread and imwrite functions support various graphics file formats and compression
schemes.

• To view or set the color limits of the axes, you can use the caxis function.

 imagesc

1-7079

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
caxis | colorbar | colormap | image | imfinfo | imread | imshow | imwrite

Properties
Image

Topics
“Image Types”

1 Alphabetical List

1-7080

Introduced before R2006a

 imagesc

1-7081

imapprox
Approximate indexed image by reducing number of colors

Syntax
[Y,newmap] = imapprox(X,map,Q)
[Y,newmap] = imapprox(X,map,tol)
Y = imapprox(X,map,inmap)
___ = imapprox(___ ,dithering)

Description
[Y,newmap] = imapprox(X,map,Q) approximates the colors in indexed image X and
associated colormap map by using minimum variance quantization with Q quantized
colors. imapprox returns the indexed image Y with colormap newmap.

[Y,newmap] = imapprox(X,map,tol) approximates the colors in indexed image X
and associated colormap map by using uniform quantization with tolerance tol.

Y = imapprox(X,map,inmap) approximates the colors in indexed image X and
associated colormap map by using inverse colormap mapping with colormap inmap. The
inverse colormap algorithm finds the colors in inmap that best match the colors in map.

___ = imapprox(___ ,dithering) enables or disables dithering.

Examples

Reduce Number of Colors in Indexed Image

Load an indexed image of a mandrill's face. Display image X using its associated
colormap, map, which has 220 colors.

figure
load mandrill

1 Alphabetical List

1-7082

image(X)
colormap(map)
axis off
axis image

Reduce the number of colors in the indexed image from 220 to only 16 colors by
producing a new image, Y, and its associated colormap, newmap.

figure
[Y,newmap] = imapprox(X,map,16);
image(Y)
colormap(newmap)
axis off
axis image

 imapprox

1-7083

Input Arguments
X — Indexed image with many colors
m-by-n matrix of nonnegative integers

Indexed image with many colors, specified as an m-by-n matrix of nonnegative integers.
Data Types: single | double | uint8 | uint16

map — Colormap with many colors
d-by-3 matrix

1 Alphabetical List

1-7084

Colormap with many colors associated with indexed image X, specified as a d-by-3 matrix
with values in the range [0, 1]. Each row of map is a three-element RGB triplet that
specifies the red, green, and blue components of a single color of the colormap.
Data Types: double

Q — Number of quantized colors
positive integer

Number of quantized colors used for minimum variance quantization, specified as a
positive integer that is less than or equal to 65,536. The returned colormap newmap has Q
or fewer colors.

tol — Tolerance
number in the range [0, 1]

Tolerance used for uniform quantization, specified as a number in the range [0, 1]. The
returned colormap newmap has (floor(1/tol)+1)^3 or fewer colors.

inmap — Colormap with fewer colors
c-by-3 matrix

Colormap with fewer colors used for inverse colormap mapping, specified as a c-by-3
matrix with values in the range [0, 1]. Each row of inmap is a three-element RGB triplet
that specifies the red, green, and blue components of a single color of the colormap. The
colormap has a maximum of 65,536 colors.
Data Types: double

dithering — Perform dithering
'dither' (default) | 'nodither'

Perform dithering, specified as 'dither' or 'nodither'. Dithering increases the color
resolution at the expense of spatial resolution. For more information, see dither.

If you select 'nodither', then imapprox does not perform dithering. Instead, the
function maps each color in the original image to the closest color in the new colormap.

Output Arguments
Y — Indexed image with fewer colors
m-by-n matrix of nonnegative integers

 imapprox

1-7085

Indexed image with fewer colors, returned as an m-by-n matrix of positive integers. If the
length of newmap (or immap, if specified) is less than or equal to 256, then the output
image is of class uint8. Otherwise, the output image is of class double.
Data Types: double | uint8

newmap — Colormap with fewer colors
c-by-3 matrix

Colormap with fewer colors associated with the output indexed image Y, returned as a c-
by-3 matrix with values in the range [0, 1]. Each row of newmap is a three-element RGB
triplet that specifies the red, green, and blue components of a single color of the
colormap. The colormap has a maximum of 65,536 colors.
Data Types: double

Algorithms
imapprox uses rgb2ind to create a new colormap that uses fewer colors. For more
information about quantization and inverse colormap mapping, see the Algorithms on
page 1-12915 of rgb2ind.

See Also
cmunique | dither | rgb2ind

Topics
“Image Types”
“Reduce the Number of Colors in an Image” (Image Processing Toolbox)

Introduced before R2006a

1 Alphabetical List

1-7086

imfinfo
Information about graphics file

Syntax
info = imfinfo(filename)
info = imfinfo(filename,fmt)

Description
info = imfinfo(filename) returns a structure whose fields contain information
about an image in a graphics file, filename.

The format of the file is inferred from its contents.

• If filename is a TIFF, HDF, ICO, GIF, or CUR file containing more than one image,
then info is a structure array with one element for each image in the file. For
example, info(3) would contain information about the third image in the file.

info = imfinfo(filename,fmt) additionally looks for a file named filename.fmt, if
MATLAB cannot find a file named filename.

Examples

Return Information About Graphics File

Find information about the example image, ngc6543a.jpg.

info = imfinfo('ngc6543a.jpg');

The info structure contains the following information fields: Filename, FileModDate,
FileSize, Format, FormatVersion, Width, Height, BitDepth, ColorType,
FormatSignature, NumberOfSamples, CodingMethod, CodingProcess, and
Comment.

 imfinfo

1-7087

To display information from the structure, for example CodingMethod, type
info.CodingMethod in the command window.

info.CodingMethod

ans =
'Huffman'

To display all the properties in the structure, type info in the command window.

Input Arguments
filename — Name of graphics file
character vector | string scalar

Name of graphics file, specified as a character vector or string scalar.

Depending on the location of the file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myImage.jpg'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name.

Example: 'C:\myFolder\myImage.ext'

Example: '\imgDir\myImage.ext'
URL If the file is located by an internet URL, then filename must

contain the protocol type such as, http://.

Example: 'http://hostname/path_to_file/
my_image.jpg'

1 Alphabetical List

1-7088

Location Form
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_image.jpg'

Data Types: char | string

fmt — Image format
character vector | string scalar

Image format, specified as a character vector or string scalar. The possible values for fmt
are contained in the MATLAB file format registry. To view of list of these formats, run the
imformats command.
Example: 'gif'
Data Types: char | string

Output Arguments
info — Information about graphics file
structure array

 imfinfo

1-7089

Information about the graphics file, returned as a structure array. The set of fields in
info depends on the individual file and its format. This table lists the nine fields that
always appear, and describes their values.

Field Name Description Value
Filename Name of the file or the internet URL specified. If

the file is not in the current folder, the character
vector contains the full path name of the file.

character vector

FileModDate Date when the file was last modified. character vector
FileSize Size of the file, in bytes. integer
Format File format, as specified by fmt. For formats with

more than one possible extension (for example,
JPEG and TIFF files), imfinfo returns the first
variant in the file format registry.

character vector

FormatVersion File format version. character vector
or number

Width Image width, in pixels. integer
Height Image height, in pixels. integer
BitDepth Number of bits per pixel. integer
ColorType Image type. ColorType includes, but is not limited

to, 'truecolor' for a truecolor (RGB) image,
'grayscale' for a grayscale intensity image, or
'indexed' for an indexed image.

character vector

Additional fields returned by some file formats:

• JPEG and TIFF only — If filename contains Exchangeable Image File Format
(EXIF) tags, then info might also contain 'DigitalCamera' or 'GPSInfo' (global
positioning system information) fields.

• GIF only — imfinfo returns the value of the 'DelayTime' field in hundredths of
seconds.

• JPEG2000 only — The info structure contains an m-by-3 cell array,
'ChannelDefinition'. The first column of 'ChannelDefinition' reports a
channel position as it exists in the file. The second column reports the type of channel,
and the third column reports the channel mapping.

1 Alphabetical List

1-7090

See Also
imformats | imread | imwrite

Introduced before R2006a

 imfinfo

1-7091

imformats
Manage image file format registry

Syntax
imformats

formatStruct = imformats(fmt)

registry = imformats
registry = imformats(formatStruct)
registry = imformats('add',formatStruct)
registry = imformats('remove',fmt)
registry = imformats('update',fmt,formatStruct)
registry = imformats('factory')

Description
imformats displays a table of information listing all the values in the MATLAB file format
registry. This registry determines which file formats the imfinfo, imread, and imwrite
functions support.

formatStruct = imformats(fmt) searches the known formats in the MATLAB file
format registry for the format associated with the file name extension specified by fmt. If
found, formatStruct is a structure containing the characteristics and function names
associated with the format. Otherwise, formatStruct is an empty structure.

registry = imformats returns a structure array, registry, containing all the values
in the MATLAB file format registry.

registry = imformats(formatStruct) sets the MATLAB file format registry for the
current MATLAB session to the values in formatStruct. The output structure,
registry, contains the new registry settings. Use this syntax to replace image file
format support.

1 Alphabetical List

1-7092

Incorrect use of imformats to specify values in the MATLAB file format registry can
result in the inability to load any image files. To return the file format registry to a
working state, use imformats with the 'factory' input.

registry = imformats('add',formatStruct) adds the values in formatStruct to
the file format registry. Use this syntax to add image file format support.

registry = imformats('remove',fmt) removes the format with the extension
specified by fmt from the file format registry. Use this syntax to remove image file format
support.

registry = imformats('update',fmt,formatStruct) changes the format registry
values for the format with extension fmt to have the values specified by formatStruct.

registry = imformats('factory') resets the MATLAB file format registry to the
default format registry values. This removes any user-specified settings.

Examples

Determine if File Format Exists in Registry

Determine if the file format associated with the .bmp file extension is in the image file
format registry.

formatStruct = imformats('bmp')

formatStruct = struct with fields:
 ext: {'bmp'}
 isa: @isbmp
 info: @imbmpinfo
 read: @readbmp
 write: @writebmp
 alpha: 0
 description: 'Windows Bitmap'

formatStruct is a non-empty structure, so the BMP file format is in the registry.

 imformats

1-7093

Add, Update, or Remove File Format from Registry

Add a hypothetical file format, ABC, to the image file format registry. Update, and then
remove the format.

Create a structure with seven fields, defining values for the new format.

formatStruct = struct('ext','abc','isa',@isabc,...
 'info',@abcinfo,'read',@readabc,'write','',...
 'alpha',0,'description','My ABC Format')

formatStruct = struct with fields:
 ext: 'abc'
 isa: @isabc
 info: @abcinfo
 read: @readabc
 write: ''
 alpha: 0
 description: 'My ABC Format'

formatStruct is a 1-by-1 structure with seven fields. In this example, the write field is
empty.

Add the new format to the file format registry.

registry = imformats('add',formatStruct);

Redefine the format associated with the extension, abc, by adding a value for the write
field. Then, update the registry value for the format.

formatStruct2 = struct('ext','abc','isa',@isabc,...
 'info',@abcinfo,'read',@readabc,'write',@writeabc,...
 'alpha',0,'description','My ABC Format');

registry = imformats('update','abc',formatStruct2);

Remove the format with the extension, abc, from the file format registry.

registry = imformats('remove','abc');

1 Alphabetical List

1-7094

Input Arguments
formatStruct — File format registry values
structure array

File format registry values, specified as a structure array with the following 7 fields.

Field Description Value
ext File name extensions that are

valid for this format.
Cell array of character vectors or
string array

isa Name of the function that
determines if a file is of a certain
format.

Character vector or string scalar,
or function handle

info Name of the function that reads
information about a file.

Character vector or string scalar,
or function handle

read Name of the function that reads
image data in a file.

Character vector or string scalar,
or function handle

write Name of the function that writes
MATLAB data to a file.

Character vector or string scalar,
or function handle

alpha Presence or absence of an alpha
channel.

1 if the format has an alpha
channel; otherwise it is 0.

description Text description of the file format. Character vector or string scalar

The values for the isa, info, read, and write fields must be either functions on the
MATLAB search path or function handles.
Data Types: struct

fmt — File format extension
character vector | string scalar

File format extension, specified as a character vector or string scalar.
Example: 'jpg'
Data Types: char

 imformats

1-7095

Output Arguments
registry — File format registry
structure array

File format registry, returned as a structure array with the following fields.

Field Description Value
ext File name extensions that are

valid for this format.
Cell array of character vectors

isa Name of the function that
determines if a file is of a certain
format.

Character vector or function
handle

info Name of the function that reads
information about a file.

Character vector or function
handle

read Name of the function that reads
image data in a file.

Character vector or function
handle

write Name of the function that writes
MATLAB data to a file.

Character vector or function
handle

alpha Presence or absence of an alpha
channel.

1 if the format has an alpha
channel; otherwise it is 0.

description Text description of the file format. Character vector

Note Use the imread, imwrite, and imfinfo functions to read, write, or get
information about an image file when the file format is in the format registry. Do not
directly invoke the functions returned in the fields of the registry structure array.

Tips
• Changes to the format registry do not persist between MATLAB sessions. To have a

format always available when you start MATLAB, add the appropriate imformats
command to the MATLAB startup file, startup.m, located in $MATLAB/toolbox/
local on UNIX systems, or $MATLAB\toolbox\local on Windows systems.

1 Alphabetical List

1-7096

See Also
imfinfo | imread | imwrite | path

Topics
“What Is the MATLAB Search Path?”

Introduced before R2006a

 imformats

1-7097

ImplicitFunctionLine Properties
Implicit line chart appearance and behavior

Description
ImplicitFunctionLine properties control the appearance and behavior of an
ImplicitFunctionLine object. By changing property values, you can modify certain
aspects of the line chart. You can use dot notation to refer to a particular object and
property:

fp = fimplicit(@(x,y) x.^2 + y.^2 - 3)
lw = fp.LineWidth
fp.LineWidth = 2

Properties
Color and Styling

Color — Line color
[0 0 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-7098

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

 ImplicitFunctionLine Properties

1-7099

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table. By default, the line
does not have markers. Specifying a marker symbol adds markers at selected points along
the line.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle

1 Alphabetical List

1-7100

Value Description
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

 ImplicitFunctionLine Properties

1-7101

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-7102

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 ImplicitFunctionLine Properties

1-7103

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Function

Function — Function to plot
function handle | anonymous function | symbolic expression | symbolic function

Function to plot, specified as a function handle, anonymous function, or a symbolic
expression or function.

XRange — Plotting interval for x values
[–5 5] (default) | two-element vector of form [xmin xmax]

Plotting interval for x values, specified as a two-element vector of the form [xmin xmax].

XRangeMode — Selection mode for XRange
'auto' (default) | 'manual'

Selection mode for XRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the XRange
property.

YRange — Plotting interval for y values
[–5 5] (default) | two-element vector of form [ymin ymax]

Plotting interval for y values, specified as a two-element vector of the form [ymin ymax].

YRangeMode — Selection mode for YRange
'auto' (default) | 'manual'

Selection mode for YRange, specified as one of these values:

1 Alphabetical List

1-7104

• 'auto' — Use the default value [-5 5]. If the axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the YRange
property.

MeshDensity — Number of evaluation points
151 (default) | scalar

Number of evaluation points, specified as a scalar.

Data

XData — x values
vector

This property is read-only.

x values, returned as a vector. XData, YData, and ZData have equal lengths.

YData — y values
vector

This property is read-only.

y values, returned as a vector. XData, YData, and ZData have equal lengths.

ZData — z values
vector of zeros

This property is read-only.

z values, returned as a vector of zeros. XData, YData, and ZData have equal lengths.

Legend

DisplayName — Text for legend label
autogenerated label (default) | character vector | string

Text for legend label, specified as a custom character vector or string. The default label is
autogenerated from the Function property and the texlabel function. The legend does
not appear until you call the legend function.
Data Types: char | string

 ImplicitFunctionLine Properties

1-7105

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

1 Alphabetical List

1-7106

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

 ImplicitFunctionLine Properties

1-7107

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you

1 Alphabetical List

1-7108

do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

 ImplicitFunctionLine Properties

1-7109

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

1 Alphabetical List

1-7110

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the ImplicitFunctionLine object that has a
defined color. You cannot click a part that has an associated color property set to
'none'. If the plot contains markers, then the entire marker is clickable if either the
edge or the fill has a defined color. The HitTest property determines if the
ImplicitFunctionLine object responds to the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the ImplicitFunctionLine object
that has no color. The HitTest property determines if the ImplicitFunctionLine
object responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the ImplicitFunctionLine object
passes the click through it to the object below it in the current view of the figure
window. The HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

 ImplicitFunctionLine Properties

1-7111

• 'on' — Trigger the ButtonDownFcn callback of the ImplicitFunctionLine object.
If you have defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the
ImplicitFunctionLine object that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the ImplicitFunctionLine object
can capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

1 Alphabetical List

1-7112

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'implicitfunctionline'

This property is read-only.

Type of graphics object, returned as 'implicitfunctionline'. Use this property to
find all objects of a given type within a plotting hierarchy, for example, searching for the
type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

 ImplicitFunctionLine Properties

1-7113

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
fimplicit

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2016b

1 Alphabetical List

1-7114

ImplicitFunctionSurface Properties
Implicit surface chart appearance and behavior

Description
ImplicitFunctionSurface properties control the appearance and behavior of
ImplicitFunctionSurface objects. By changing property values, you can modify
certain aspects of the surface chart. You can use dot notation to refer to a particular
object and property:

fs = fimplicit3(@(x,y,z) x.^2 + y.^2 - z.^2)
lw = fs.LineWidth
fs.LineWidth = 2

Properties
Faces

FaceColor — Face color
'interp' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Face color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'interp' interpolates the colors based on
the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 ImplicitFunctionSurface Properties

1-7115

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

FaceAlpha — Face transparency
1 (default) | scalar in range [0 1]

Face transparency, specified as a scalar in the range [0,1]. Use uniform transparency
across all of the faces. A value of 1 is fully opaque and 0 is completely transparent. Values
between 0 and 1 are semitransparent.

1 Alphabetical List

1-7116

Edges

EdgeColor — Line color
[0 0 0] (default) | 'interp' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black.
The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 ImplicitFunctionSurface Properties

1-7117

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at the intersection
points of mesh lines.

1 Alphabetical List

1-7118

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
EdgeColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 ImplicitFunctionSurface Properties

1-7119

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]

1 Alphabetical List

1-7120

Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

 ImplicitFunctionSurface Properties

1-7121

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Function

Function — Function to plot
function handle | anonymous function | symbolic expression | symbolic function

Function to plot, specified as a function handle, anonymous function, or a symbolic
expression or function.

XRange — Plotting interval for x values
[–5 5] (default) | two-element vector of form [xmin xmax]

Plotting interval for x values, specified as a two-element vector of the form [xmin xmax].

XRangeMode — Selection mode for XRange
'auto' (default) | 'manual'

Selection mode for XRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the XRange
property.

1 Alphabetical List

1-7122

YRange — Plotting interval for y values
[–5 5] (default) | two-element vector of form [ymin ymax]

Plotting interval for y values, specified as a two-element vector of the form [ymin ymax].

YRangeMode — Selection mode for YRange
'auto' (default) | 'manual'

Selection mode for YRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If the axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the YRange
property.

ZRange — Plotting interval for z values
[–5 5] (default) | two-element vector of form [zmin zmax]

Plotting interval for z values, specified as a two-element vector of the form [zmin zmax].

ZRangeMode — Selection mode for ZRange
'auto' (default) | 'manual'

Selection mode for ZRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If the axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the ZRange
property.

MeshDensity — Number of evaluation points per direction
35 (default) | scalar

Number of evaluation points per direction, specified as a scalar.

Lighting

AmbientStrength — Strength of ambient light
0.3 (default) | scalar in range [0,1]

Strength of ambient light, specified as a scalar value in the range [0,1]. Ambient light is
a nondirectional light that illuminates the entire scene. There must be at least one visible
light object in the axes for the ambient light to be visible.

 ImplicitFunctionSurface Properties

1-7123

The AmbientLightColor property for the axes sets the color of the ambient light. The
color is the same for all objects in the axes.
Example: 0.5
Data Types: double

DiffuseStrength — Strength of diffuse light
0.6 (default) | scalar in range [0,1]

Strength of diffuse light, specified as a scalar value in the range [0,1]. Diffuse light is
the nonspecular reflectance from light objects in the axes.
Example: 0.3
Data Types: double

SpecularStrength — Strength of specular reflection
0.9 (default) | scalar in range [0,1]

Strength of specular reflection, specified as a scalar value in the range [0,1]. Specular
reflections are the bright spots on the surface from light objects in the axes.
Example: 0.3
Data Types: double

SpecularExponent — Size of specular spot
10 (default) | scalar greater than or equal to 1

Size of specular spot, specified as a scalar value greater than or equal to 1. Most
materials have exponents in the range [5 20].
Example: 7
Data Types: double

SpecularColorReflectance — Color of specular reflections
1 (default) | scalar in range [0,1]

Color of specular reflections, specified as a scalar value in the range [0,1]. A value of 1
sets the color using only the color of the light source. A value of 0 sets the color using
both the color of the object from which it reflects and the color of the light source. The
Color property of the light contains the color of the light source. The proportions vary
linearly for values in between.

1 Alphabetical List

1-7124

Example: 0.5
Data Types: double

Legend

DisplayName — Text for legend label
autogenerated label (default) | character vector | string

Text for legend label, specified as a custom character vector or string. The default label is
autogenerated from the Function property and the texlabel function. The legend does
not appear until you call the legend function.
Data Types: char | string

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

 ImplicitFunctionSurface Properties

1-7125

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

1 Alphabetical List

1-7126

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

 ImplicitFunctionSurface Properties

1-7127

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

1 Alphabetical List

1-7128

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

 ImplicitFunctionSurface Properties

1-7129

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the ImplicitFunctionSurface object that has
a defined color. You cannot click a part that has an associated color property set to
'none'. If the plot contains markers, then the entire marker is clickable if either the
edge or the fill has a defined color. The HitTest property determines if the
ImplicitFunctionSurface object responds to the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the ImplicitFunctionSurface
object that has no color. The HitTest property determines if the
ImplicitFunctionSurface object responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the ImplicitFunctionSurface
object passes the click through it to the object below it in the current view of the
figure window. The HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the ImplicitFunctionSurface
object. If you have defined the UIContextMenu property, then invoke the context
menu.

1 Alphabetical List

1-7130

• 'off' — Trigger the callbacks for the nearest ancestor of the
ImplicitFunctionSurface object that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the ImplicitFunctionSurface
object can capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

 ImplicitFunctionSurface Properties

1-7131

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'implicitfunctionsurface'

This property is read-only.

Type of graphics object, returned as 'implicitfunctionsurface'. Use this property
to find all objects of a given type within a plotting hierarchy, for example, searching for
the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

1 Alphabetical List

1-7132

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
fimplicit3

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2016b

 ImplicitFunctionSurface Properties

1-7133

import
Add package or class to current import list

Syntax
import PackageName.ClassName
import PackageName.FunctionName
import PackageName.*

import
L = import

Description
import PackageName.ClassName adds the class name to the current import list. Use
the import function in your code to refer to a class without specifying the entire package
name.

The import list scope is defined as follows:

• Function or script, including nested and local function — Scope is the function and the
function does not share the import list of the parent function. If the import list is
needed in a MATLAB function or script and in any local functions, you must call the
import function for each function.

The scope of a script is the script body. The imports in a script are available only in the
script body and are not available in the scopes which call the script. For example,
executing a script containing imports at the command prompt does not make the
imports available in the command window.

The import list of a function is persistent across calls to that function and is cleared
only when the function is cleared. For more information, see the clear function. Do
not call clear import within a function or a script.

• Base workspace — Scope is code executed at the command prompt. To clear the base
import list, type clear import at the MATLAB command prompt.

1 Alphabetical List

1-7134

import PackageName.FunctionName adds the specified package-based function. Use
this syntax to shorten the name of a specific function in a package without importing
every function in the package, which might cause unexpected name conflicts.

import PackageName.* adds the specified package name. PackageName must be
followed by .*.

Avoid using this syntax, as importing packages brings an unspecified set of names into the
local scope, which might conflict with names in the MATLAB workspace. One possible use
for this syntax is to import a partial package name. Then when you call a function, you
use a shorter package name which does not conflict with simple function names. For
example, the matlab.io.hdf4.sd package has a close function, which can conflict
with the MATLAB close function.

import displays the current import list in the scope.

L = import returns the current import list.

Examples

Shorten Calls to Java Class Methods

import java.util.Currency java.lang.String

Create a java.lang.String object. There is no need to type the package name,
java.lang.

s = String('hello')

s =

hello

List the Currency class methods, without typing the package name.

methods Currency

Methods for class Currency:

equals getDisplayName notify
getAvailableCurrencies getInstance notifyAll

 import

1-7135

getClass getNumericCode toString
getCurrencyCode getSymbol wait
getDefaultFractionDigits hashCode

Shorten HDF4 Scientific Data Set Package Name

Use partial package names on your import list to simplify calls to matlab.io.hdf4.sd
package functions and avoid conflicts with the MATLAB close function.

import matlab.io.hdf4.*

Display the full path to the example file sd.hdf on your system using the shortened
package name sd.

sdID = sd.start('sd.hdf');
filename = sd.getFilename(sdID)

filename =

C:\Program Files\MATLAB\R2015a\toolbox\matlab\imagesci\sd.hdf

Call the close function with the sd package name.

sd.close(sdID)

There is no name conflict with the MATLAB close function when you import the partial
package name.

which close

C:\Program Files\MATLAB\R2015a\toolbox\matlab\graphics\close.p

If you use the matlab.io.hdf4.sd.* syntax to import the entire package name, when
you call close, MATLAB always chooses the package function. You cannot use close to
remove a figure.

1 Alphabetical List

1-7136

Import Single Package Function

Import the matlab.io.hdf4.sd package function, readChunk in a function, myfunc.
You can call the function using the simple readChunk name, but only within the scope of
myfunc.

function data = myfunc(ID,n,m)
import matlab.io.hdf4.sd.readChunk
data = readChunk(ID,[n m]);
end

Import Package in Both Script and Function

Open the sd.hdf example file and access the temperature data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);

Call the myfunc function from the previous example to read the data. myfunc must have
its own import statement in order to use a shorted package name.

dataChunk = myfunc(sdsID,0,1);

Close the file.

sd.endAccess(sdsID)
sd.close(sdID)

Display Current Import List for Your System

import

ans =

 'java.util.Currency'
 'java.lang.String'

 import

1-7137

 'matlab.io.hdf4.*'
 'matlab.io.hdf4.sd.readChunk'

Input Arguments
PackageName — Name of package
string | character vector

Name of the package, specified as a string or character vector.
Example: matlab.io.hdf4

ClassName — Name of class
string | character vector

Name of the class, specified as a string or character vector.
Example: Currency

FunctionName — Name of package function
string | character vector

Name of the package function, specified as a string or character vector.
Example: readChunk

Output Arguments
L — Import list
cell array of character vectors

Import list, returned as a cell array of character vectors.

Limitations
• import cannot load a Java JAR package created by the MATLAB Compiler SDK™

product.
• Do not use import in conditional statements inside a function. MATLAB preprocesses

the import statement before evaluating the variables in the conditional statements.

1 Alphabetical List

1-7138

See Also
clear | importdata | load

Topics
“Use import in MATLAB Functions”
“Package Function and Class Method Name Conflict”
“Import Classes”

Introduced before R2006a

 import

1-7139

importdata
Load data from file

Syntax
A = importdata(filename)
A = importdata('-pastespecial')
A = importdata(___ ,delimiterIn)
A = importdata(___ ,delimiterIn,headerlinesIn)
[A,delimiterOut,headerlinesOut] = importdata(___)

Description
A = importdata(filename) loads data into array A.

A = importdata('-pastespecial') loads data from the system clipboard rather
than from a file.

A = importdata(___ ,delimiterIn) interprets delimiterIn as the column
separator in ASCII file, filename, or the clipboard data. You can use delimiterIn with
any of the input arguments in the above syntaxes.

A = importdata(___ ,delimiterIn,headerlinesIn) loads data from ASCII file,
filename, or the clipboard, reading numeric data starting from line headerlinesIn+1.

[A,delimiterOut,headerlinesOut] = importdata(___) additionally returns the
detected delimiter character for the input ASCII file in delimiterOut and the detected
number of header lines in headerlinesOut, using any of the input arguments in the
previous syntaxes.

Examples

1 Alphabetical List

1-7140

Import and Display an Image

Import and display the sample image, ngc6543a.jpg.

A = importdata('ngc6543a.jpg');
image(A)

The output, A, is class uint8 because the helper function, imread, returns empty results
for colormap and alpha.

 importdata

1-7141

Import a Text File and Specify Delimiter and Column Header

Using a text editor, create a space-delimited ASCII file with column headers called
myfile01.txt.

Day1 Day2 Day3 Day4 Day5 Day6 Day7
95.01 76.21 61.54 40.57 5.79 20.28 1.53
23.11 45.65 79.19 93.55 35.29 19.87 74.68
60.68 1.85 92.18 91.69 81.32 60.38 44.51
48.60 82.14 73.82 41.03 0.99 27.22 93.18
89.13 44.47 17.63 89.36 13.89 19.88 46.60

Import the file, specifying the space delimiter and the single column header.

filename = 'myfile01.txt';
delimiterIn = ' ';
headerlinesIn = 1;
A = importdata(filename,delimiterIn,headerlinesIn);

View columns 3 and 5.

for k = [3, 5]
 disp(A.colheaders{1, k})
 disp(A.data(:, k))
 disp(' ')
end

Day3
 61.5400
 79.1900
 92.1800
 73.8200
 17.6300

Day5
 5.7900
 35.2900
 81.3200
 0.9900
 13.8900

1 Alphabetical List

1-7142

Import a Text File and Return Detected Delimiter

Using a text editor, create a comma-delimited ASCII file called myfile02.txt.

1,2,3
4,5,6
7,8,9

Import the file, and display the output data and detected delimiter character.

filename = 'myfile02.txt';
[A,delimiterOut]=importdata(filename)

A =

 1 2 3
 4 5 6
 7 8 9

delimiterOut =

,

Import Data from Clipboard

Copy the following lines to the clipboard. Select the text, right-click, and then select
Copy.

1,2,3
4,5,6
7,8,9

Import the clipboard data into MATLAB by typing the following.

A = importdata('-pastespecial')

A =

 1 2 3

 importdata

1-7143

 4 5 6
 7 8 9

Input Arguments
filename — Name and extension of file to import
character vector | string scalar

Name and extension of the file to import, specified as a character vector or a string scalar.
If importdata recognizes the file extension, it calls the MATLAB helper function
designed to import the associated file format (such as load for MAT-files or xlsread for
spreadsheets). Otherwise, importdata interprets the file as a delimited ASCII file.

For ASCII files and spreadsheets, importdata expects to find numeric data in a
rectangular form (that is, like a matrix). Text headers can appear above or to the left of
the numeric data, as follows:

• Column headers or file description text at the top of the file, above the numeric data.
• Row headers to the left of the numeric data.

Example: 'myFile.jpg'
Data Types: char | string

delimiterIn — Column separator character
character vector | string scalar

Column separator character, specified as a character vector or a string scalar. The default
character is interpreted from the file. Use '\t' for tab.
Example: ','
Example: ' '
Data Types: char | string

headerlinesIn — Number of text header lines in ASCII file
nonnegative scalar integer

Number of text header lines in the ASCII file, specified as a nonnegative scalar integer. If
you do not specify headerlinesIn, the importdata function detects this value in the
file.

1 Alphabetical List

1-7144

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
A — Data from the file
matrix | multidimensional array | scalar structure array

Data from the file, returned as a matrix, multidimensional array, or scalar structure array,
depending on the characteristics of the file. Based on the file format of the input file,
importdata calls a helper function to read the data. When the helper function returns
more than one nonempty output, importdata combines the outputs into a struct array.

This table lists the file formats associated with helper functions that can return more than
one output, and the possible fields in the structure array, A.

File Format Possible Fields Class
MAT-files One field for each variable Associated with each

variable.
ASCII files and
Spreadsheets

data
textdata
colheaders
rowheaders

For ASCII files, data
contains a double array.
Other fields contain cell
arrays of character vectors.
textdata includes row and
column headers.
For spreadsheets, each field
contains a struct, with one
field for each worksheet.

Images cdata
colormap
alpha

See imread.

Audio files data
fs

See audioread.

The MATLAB helper functions for most other supported file formats return one output.
For more information about the class of each output, see the functions listed in
“Supported File Formats for Import and Export”.

 importdata

1-7145

If the ASCII file or spreadsheet contains either column or row headers, but not both,
importdata returns a colheaders or rowheaders field in the output structure, where:

• colheaders contains only the last line of column header text. importdata stores all
text in the textdata field.

• rowheaders is created only when the file or worksheet contains a single column of
row headers.

delimiterOut — Detected column separator in the input ASCII file
character vector

Detected column separator in the input ASCII file, returned as a character vector.

headerlinesOut — Detected number of text header lines in the input ASCII file
integer

Detected number of text header lines in the input ASCII file, returned as an integer.

Tips
• To import ASCII files with nonnumeric characters outside of column or row headers,

including columns of character data or formatted dates or times, use textscan
instead of importdata.

See Also
Import Tool | imread | load | readcell | readmatrix | readtable | readvars |
save | textscan

Topics
“Supported File Formats for Import and Export”
“Ways to Import Text Files”
“Ways to Import Spreadsheets”
“Import or Export a Sequence of Files”

Introduced before R2006a

1 Alphabetical List

1-7146

delimitedTextImportOptions
Import options object for delimited text

Description
A DelimitedTextImportOptions object enables you to specify how MATLAB imports
tabular data from delimited text files. The object contains properties that control the data
import process, including the handling of errors and missing data.

Creation
You can create a DelimitedTextImportOptions object using either the
detectImportOptions function or the delimitedTextImportOptions function
(described here):

• Use detectImportOptions to detect and populate the import properties based on
the contents of the delimited text file specified in filename.

opts = detectImportOptions(filename);

• Use delimitedTextImportOptions to define the import properties based on your
import requirements.

Syntax
opts = delimitedTextImportOptions
opts = delimitedTextImportOptions('NumVariables',numVars)
opts = delimitedTextImportOptions(___ ,Name,Value)

Description
opts = delimitedTextImportOptions creates a DelimitedTextImportOptions
object with one variable.

 delimitedTextImportOptions

1-7147

opts = delimitedTextImportOptions('NumVariables',numVars) creates the
object with the number of variables specified in numVars.

opts = delimitedTextImportOptions(___ ,Name,Value) specifies additional
properties for DelimitedTextImportOptions object using one or more name-value
pair arguments.

Input Arguments
numVars — Number of variables
positive scalar integer

Number of variables, specified as a positive scalar integer.

Properties
Variable Properties

VariableNames — Variable names
cell array of character vectors | string array

Variable names, specified as a cell array of character vectors or string array. The
VariableNames property contains the names to use when importing variables.

If the data contains N variables, but no variable names are detected, then the
VariableNames property contains {'Var1','Var2',...,'VarN'}.
Example: opts.VariableNames returns the current (detected) variable names.
Example: opts.VariableNames(3) = {'Height'} changes the name of the third
variable to Height.
Data Types: char | string | cell

VariableTypes — Variable data types
cell array of character vectors | string array

Variable data types, specified as a cell array of character vectors or string array. The
VariableTypes property designates the data types to use when importing variables.
When assigning new values, specify VariableTypes as a cell array of valid data type
names.

1 Alphabetical List

1-7148

To update the VariableTypes property, use the setvartype function.
Example: opts.VariableTypes returns the current (detected) variable data types.
Example: opts = setvartype(opts,'Height',{'double'}) changes the data type
of the variable Height to double.
Data Types: cell | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime

SelectedVariableNames — Subset of variables to import
character vector | string scalar | cell array of character vectors | string array | array of
numeric indices

Subset of variables to import, specified as a character vector, string scalar, cell array of
character vectors, string array or an array of numeric indices.

SelectedVariableNames must be a subset of names contained in the VariableNames
property. By default, SelectedVariableNames contains all the variable names from the
VariableNames property, which means that all variables are imported.

Use the SelectedVariableNames property to import only the variables of interest.
Specify a subset of variables using the SelectedVariableNames property and use
readtable to import only that subset.
Example: opts.SelectedVariableNames = {'Height','LastName'} selects only
two variables, Height and LastName, for the import operation.
Example: opts.SelectedVariableNames = [1 5] selects only two variables, the first
variable and the fifth variable, for the import operation.
Example: T = readtable(filename,opts) returns a table containing only the
variables specified in the SelectedVariableNames property of the opts object.
Data Types: uint16 | uint32 | uint64 | char | string | cell

VariableOptions — Type specific variable import options
array of variable import options objects

Type specific variable import options, returned as an array of variable import options
objects. The array contains an object corresponding to each variable specified in the
VariableNames property. Each object in the array contains properties that support the
importing of data with a specific data type.

 delimitedTextImportOptions

1-7149

Variable options support these data types: numeric, text, logical, datetime, or
categorical.

To query the current (or detected) options for a variable, use the getvaropts function.

To set and customize options for a variable, use the setvaropts function.
Example: opts.VariableOptions returns a collection of VariableImportOptions
objects, one corresponding to each variable in the data.
Example: getvaropts(opts,'Height') returns the VariableImportOptions object
for the Height variable.
Example: opts = setvaropts(opts,'Height','FillValue',0) sets the
FillValue property for the variable Height to 0.

Location Properties

DataLines — Data location
positive scalar integer | array of positive scalar integers

Data location, specified as a positive scalar integer or a N-by-2 array of positive scalar
integers. Specify DataLines using one of these forms.

Specify as Description
n Specify the first line that contains the data. Specifying

the value using n sets the value of DataLines property
to [n inf]. The importing function reads all rows
between n and the end-of-file.

n must be a positive integer greater than zero.
[n1 n2] Specify the line range that contains the data. n1 is the

first line that contains the data and the n2 is the last
line that contains the data.

Values in the array [n1 n2] must be nonzero positive
integers and n2 must be greater than n1.

1 Alphabetical List

1-7150

Specify as Description
[n1 n2; n3 n4;...] Specify multiple line ranges to read with an N-by-2

array containing N different line ranges.

A valid array of multiple line ranges must:

• Specify line ranges in an increasing order, that is the
first line range specified in the array appears in the
file before the other line ranges.

• Contain only nonoverlapping line ranges.

When specifying multiple line ranges, use Inf only
when specifying the end of the last line range in the
array. For example, [1 3; 5 6; 8 Inf].

Example: opts.DataLines = 5 sets the DataLines property to the value [5 inf].
Read all rows of data starting from row 5 to the end-of-file.
Example: opts.DataLines = [2 6] sets the property to read lines 2 through 6.
Example: opts.DataLines = [1 3; 5 6; 8 inf] sets the property to read rows 1,
2, 3, 5, 6, and all rows between 8, and the end-of-file.
Data Types: single | double | uint8 | uint16 | uint32 | uint64

RowNamesColumn — Row names location
0 (default) | positive scalar integer

Row names location, specified as a positive scalar integer. The RowNamesColumn
property specifies the location of the column containing the row names.

If RowNamesColumn is specified as 0, then do not import the row names. Otherwise,
import the row names from the specified column.
Example: opts.RowNamesColumn = 2;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

VariableNamesLine — Variable names location
0 (default) | positive scalar integer

Variable names location, specified as a positive scalar integer. The VariableNamesLine
property specifies the line number where variable names are located.

 delimitedTextImportOptions

1-7151

If VariableNamesLine is specified as 0, then do not import the variable names.
Otherwise, import the variable names from the specified line.
Example: opts.VariableNamesLine = 6;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

VariableDescriptionsLine — Variable description location
0 (default) | positive scalar integer

Variable description location, specified as a positive scalar integer. The
VariableDescriptionsLine property specifies the line number where variable
descriptions are located.

If VariableDescriptionsLine is specified as 0, then do not import the variable
descriptions. Otherwise, import the variable descriptions from the specified line.
Example: opts.VariableDescriptionsLine = 7;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

VariableUnitsLine — Variable units location
0 (default) | positive scalar integer

Variable units location, specified as a positive scalar integer. The VariableUnitsLine
property specifies the line number where variable units are located.

If VariableUnitsLine is specified as 0, then do not import the variable units.
Otherwise, import the variable units from the specified line.
Example: opts.VariableUnitsLine = 8;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

Delimited Text Properties

Delimiter — Field delimiter characters
character vector | string scalar | cell array of character vectors | string array

Field delimiter characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'Delimiter','|'
Example: 'Delimiter',{';','*'}
Data Types: char | string | cell

1 Alphabetical List

1-7152

Whitespace — Characters to treat as white space
character vector | string scalar

Characters to treat as white space, specified as a character vector or string scalar
containing one or more characters.
Example: 'Whitespace',' _'
Example: 'Whitespace','?!.,'

LineEnding — End-of-line characters
{'\n','\r','\r\n'} (default) | character vector | string scalar | cell array of character
vectors | string array

End-of-line characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'LineEnding','\n'
Example: 'LineEnding','\r\n'
Example: 'LineEnding',{'\b',':'}
Data Types: char | string | cell

CommentStyle — Style of comments
character vector | string scalar | cell array of character vectors | string array

Style of comments, specified as a character vector, string scalar, cell array of character
vectors, or string array.

For example, to ignore the text following a percent sign on the same line, specify
CommentStyle as '%'.
Example: 'CommentStyle',{'/*'}
Data Types: char | string | cell

ConsecutiveDelimitersRule — Procedure to handle consecutive delimiters
'split' | 'join' | 'error'

Procedure to handle consecutive delimiters, specified as one of the values in this table.

 delimitedTextImportOptions

1-7153

Consecutive Delimiters
Rule

Behavior

'split' Split the consecutive delimiters into multiple fields.
'join' Join the delimiters into one delimiter.
'error' Return an error and abort the import operation.

Data Types: char | string

LeadingDelimitersRule — Procedure to manage leading delimiters
'keep' | 'ignore' | 'error'

Procedure to manage leading delimiters, specified as one of the values in this table.

Leading Delimiters Rule Behavior
'keep' Keep the delimiter.
'ignore' Ignore the delimiter.
'error' Return an error and abort the import operation.

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name, such as one of the values in this table.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'

1 Alphabetical List

1-7154

'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' uses the system default encoding.
Data Types: char | string

Replacement Rules

MissingRule — Procedure to manage missing data
'fill' | 'error' | 'omitrow' | 'omitvar'

Procedure to manage missing data, specified as one of the values in this table.

Missing Rule Behavior
'fill' Replace missing data with the contents of the FillValue

property.

The FillValue property is specified in the
VariableImportOptions object of the variable being
imported. For more information on accessing the
FillValue property, see getvaropts.

'error' Stop importing and display an error message showing the
missing record and field.

'omitrow' Omit rows that contain missing data.
'omitvar' Omit variables that contain missing data.

Example: opts.MissingRule = 'omitrow';uint32
Data Types: char | string

EmptyLineRule — Procedure to handle empty lines
'skip' | 'read' | 'error'

Procedure to handle empty lines in the data, specified as 'skip', 'read', or 'error'.
The importing function interprets white space as empty.

 delimitedTextImportOptions

1-7155

Empty Line Rule Behavior
'skip' Skip the empty lines.
'read' Import the empty lines. The importing function parses the

empty line using the values specified in VariableWidths,
VariableOptions, MissingRule, and other relevant
properties, such as Whitespace.

'error' Display an error message and abort the import operation.

Example: opts.EmptyLineRule = 'skip';
Data Types: char | string

ImportErrorRule — Procedure to handle import errors
'fill' | 'error' | 'omitrow' | 'omitvar'

Procedure to handle import errors, specified as one of the values in this table.

Import Error Rule Behavior
'fill' Replace the data where the error occurred with the

contents of the FillValue property.

The FillValue property is specified in the
VariableImportOptions object of the variable being
imported. For more information on accessing the
FillValue property, see getvaropts.

'error' Stop importing and display an error message showing the
error-causing record and field.

'omitrow' Omit rows where errors occur.
'omitvar' Omit variables where errors occur.

Example: opts.ImportErrorRule = 'omitvar';
Data Types: char | string

ExtraColumnsRule — Procedure to handle extra columns
'addvars' | 'ignore' | 'wrap' | 'error'

Procedure to handle extra columns in the data, specified as one of the values in this table.

1 Alphabetical List

1-7156

Extra Columns Rule Behavior
'addvars' To import extra columns, create new variables. If there are

N extra columns, then import new variables as
'ExtraVar1', 'ExtraVar2',..., 'ExtraVarN'.

NOTE: The extra columns are imported as text with data
typechar.

'ignore' Ignore the extra columns of data.
'wrap' Wrap the extra columns of data to new records. This action

does not change the number of variables.
'error' Display an error message and abort the import operation.

Data Types: char | string

Object Functions
getvaropts Get variable import options
setvaropts Set variable import options
setvartype Set variable data types
preview Preview eight rows from file using import options

Examples

Define Import Options for Variables in Delimited Text File

Define an import options object to read multiple variables from patients.dat.

Based on the contents of your file, define these variable properties: names, types,
delimiter character, data starting location, and the extra column rule.

varNames = {'LastName','Gender','Age','Location','Height','Weight','Smoker'} ;
varTypes = {'char','categorical','int32','char','double','double','logical'} ;
delimiter = ',';
dataStartLine = 2;
extraColRule = 'ignore';

Use the delimitedTextImportOptions function and your variable information to
initialize the import options object opts.

 delimitedTextImportOptions

1-7157

opts = delimitedTextImportOptions('VariableNames',varNames,...
 'VariableTypes',varTypes,...
 'Delimiter',delimiter,...
 'DataLines', dataStartLine,...
 'ExtraColumnsRule',extraColRule);

Use the preview function with the import options object to preview the data.

preview('patients.dat',opts)

ans=8×7 table
 LastName Gender Age Location Height Weight Smoker
 __________ ______ ___ ___________________________ ______ ______ ______

 'Smith' Male 38 'County General Hospital' 71 176 false
 'Johnson' Male 43 'VA Hospital' 69 163 false
 'Williams' Female 38 'St. Mary's Medical Center' 64 131 false
 'Jones' Female 40 'VA Hospital' 67 133 false
 'Brown' Female 49 'County General Hospital' 64 119 false
 'Davis' Female 46 'St. Mary's Medical Center' 68 142 false
 'Miller' Female 33 'VA Hospital' 64 142 false
 'Wilson' Male 40 'VA Hospital' 68 180 false

Import the data using readtable.

T = readtable('patients.dat',opts);
whos T

 Name Size Bytes Class Attributes

 T 100x7 32332 table

See Also
detectImportOptions | readtable

Introduced in R2016b

1 Alphabetical List

1-7158

fixedWidthImportOptions
Import options object for fixed-width text files

Description
A FixedWidthImportOptions object enables you to specify how MATLAB imports fixed-
width tabular data from text files. The object contains properties that control the data
import process, including the handling of errors and missing data.

Creation
You can create a FixedWidthImportOptions object using either the
fixedWidthImportOptions function (described here) or the detectImportOptions
function:

• Use fixedWidthImportOptions to define the import properties based on your
import requirements.

• Use detectImportOptions to detect and populate the import properties based on
the contents of the fixed-width text file specified in filename.

opts = detectImportOptions(filename)

Syntax
opts = fixedWidthImportOptions
opts = fixedWidthImportOptions('NumVariables',numVars)
opts = fixedWidthImportOptions(___ ,Name,Value)

Description
opts = fixedWidthImportOptions creates a FixedWidthImportOptions object
with one variable.

 fixedWidthImportOptions

1-7159

opts = fixedWidthImportOptions('NumVariables',numVars) creates the object
with the number of variables specified in numVars.

To import data using this custom FixedWidthImportOptions object, you must first set
up these properties: VariableNames, VariableWidths, VariableTypes, and
DataLine.

opts = fixedWidthImportOptions(___ ,Name,Value) specifies additional
properties for FixedWidthImportOptions object using one or more name-value pair
arguments.

Input Arguments
numVars — Number of variables
positive scalar integer

Number of variables, specified as a positive scalar integer.

Properties
Variable Properties

VariableNames — Variable names
cell array of character vectors | string array

Variable names, specified as a cell array of character vectors or string array. The
VariableNames property contains the names to use when importing variables.

If the data contains N variables, but no variable names are detected, then the
VariableNames property contains {'Var1','Var2',...,'VarN'}.
Example: opts.VariableNames returns the current (detected) variable names.
Example: opts.VariableNames(3) = {'Height'} changes the name of the third
variable to Height.
Data Types: char | string | cell

VariableWidths — Field widths of variables
vector of positive integer values

1 Alphabetical List

1-7160

Field widths of variables, specified as a vector of positive integer values. Each positive
integer in the vector corresponds to the number of characters in a field that makes up the
variable. The VariableWidths property contains an entry corresponding to each
variable specified in the VariableNames property.
Example: opts.VariableWidths returns a vector of variable widths where each
element corresponds to the width of a variable in the data.

VariableTypes — Variable data types
cell array of character vectors | string array

Variable data types, specified as a cell array of character vectors or string array. The
VariableTypes property designates the data types to use when importing variables.
When assigning new values, specify VariableTypes as a cell array of valid data type
names.

To update the VariableTypes property, use the setvartype function.
Example: opts.VariableTypes returns the current (detected) variable data types.
Example: opts = setvartype(opts,'Height',{'double'}) changes the data type
of the variable Height to double.
Data Types: cell | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime

SelectedVariableNames — Subset of variables to import
character vector | string scalar | cell array of character vectors | string array | array of
numeric indices

Subset of variables to import, specified as a character vector, string scalar, cell array of
character vectors, string array or an array of numeric indices.

SelectedVariableNames must be a subset of names contained in the VariableNames
property. By default, SelectedVariableNames contains all the variable names from the
VariableNames property, which means that all variables are imported.

Use the SelectedVariableNames property to import only the variables of interest.
Specify a subset of variables using the SelectedVariableNames property and use
readtable to import only that subset.
Example: opts.SelectedVariableNames = {'Height','LastName'} selects only
two variables, Height and LastName, for the import operation.

 fixedWidthImportOptions

1-7161

Example: opts.SelectedVariableNames = [1 5] selects only two variables, the first
variable and the fifth variable, for the import operation.
Example: T = readtable(filename,opts) returns a table containing only the
variables specified in the SelectedVariableNames property of the opts object.
Data Types: uint16 | uint32 | uint64 | char | string | cell

VariableOptions — Type specific variable import options
array of variable import options objects

Type specific variable import options, returned as an array of variable import options
objects. The array contains an object corresponding to each variable specified in the
VariableNames property. Each object in the array contains properties that support the
importing of data with a specific data type.

Variable options support these data types: numeric, text, logical, datetime, or
categorical.

To query the current (or detected) options for a variable, use the getvaropts function.

To set and customize options for a variable, use the setvaropts function.
Example: opts.VariableOptions returns a collection of VariableImportOptions
objects, one corresponding to each variable in the data.
Example: getvaropts(opts,'Height') returns the VariableImportOptions object
for the Height variable.
Example: opts = setvaropts(opts,'Height','FillValue',0) sets the
FillValue property for the variable Height to 0.

Location Properties

DataLines — Data location
positive scalar integer | array of positive scalar integers

Data location, specified as a positive scalar integer or a N-by-2 array of positive scalar
integers. Specify DataLines using one of these forms.

1 Alphabetical List

1-7162

Specify as Description
n Specify the first line that contains the data. Specifying

the value using n sets the value of DataLines property
to [n inf]. The importing function reads all rows
between n and the end-of-file.

n must be a positive integer greater than zero.
[n1 n2] Specify the line range that contains the data. n1 is the

first line that contains the data and the n2 is the last
line that contains the data.

Values in the array [n1 n2] must be nonzero positive
integers and n2 must be greater than n1.

[n1 n2; n3 n4;...] Specify multiple line ranges to read with an N-by-2
array containing N different line ranges.

A valid array of multiple line ranges must:

• Specify line ranges in an increasing order, that is the
first line range specified in the array appears in the
file before the other line ranges.

• Contain only nonoverlapping line ranges.

When specifying multiple line ranges, use Inf only
when specifying the end of the last line range in the
array. For example, [1 3; 5 6; 8 Inf].

Example: opts.DataLines = 5 sets the DataLines property to the value [5 inf].
Read all rows of data starting from row 5 to the end-of-file.
Example: opts.DataLines = [2 6] sets the property to read lines 2 through 6.
Example: opts.DataLines = [1 3; 5 6; 8 inf] sets the property to read rows 1,
2, 3, 5, 6, and all rows between 8, and the end-of-file.
Data Types: single | double | uint8 | uint16 | uint32 | uint64

RowNamesColumn — Row names location
0 (default) | positive scalar integer

 fixedWidthImportOptions

1-7163

Row names location, specified as a positive scalar integer. The RowNamesColumn
property specifies the location of the column containing the row names.

If RowNamesColumn is specified as 0, then do not import the row names. Otherwise,
import the row names from the specified column.
Example: opts.RowNamesColumn = 2;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

VariableNamesLine — Variable names location
0 (default) | positive scalar integer

Variable names location, specified as a positive scalar integer. The VariableNamesLine
property specifies the line number where variable names are located.

If VariableNamesLine is specified as 0, then do not import the variable names.
Otherwise, import the variable names from the specified line.
Example: opts.VariableNamesLine = 6;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

VariableDescriptionsLine — Variable description location
0 (default) | positive scalar integer

Variable description location, specified as a positive scalar integer. The
VariableDescriptionsLine property specifies the line number where variable
descriptions are located.

If VariableDescriptionsLine is specified as 0, then do not import the variable
descriptions. Otherwise, import the variable descriptions from the specified line.
Example: opts.VariableDescriptionsLine = 7;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

VariableUnitsLine — Variable units location
0 (default) | positive scalar integer

Variable units location, specified as a positive scalar integer. The VariableUnitsLine
property specifies the line number where variable units are located.

If VariableUnitsLine is specified as 0, then do not import the variable units.
Otherwise, import the variable units from the specified line.

1 Alphabetical List

1-7164

Example: opts.VariableUnitsLine = 8;
Data Types: single | double | uint8 | uint16 | uint32 | uint64

Delimited Text Properties

Whitespace — Characters to treat as white space
character vector | string scalar

Characters to treat as white space, specified as a character vector or string scalar
containing one or more characters.
Example: 'Whitespace',' _'
Example: 'Whitespace','?!.,'

LineEnding — End-of-line characters
{'\n','\r','\r\n'} (default) | character vector | string scalar | cell array of character
vectors | string array

End-of-line characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'LineEnding','\n'
Example: 'LineEnding','\r\n'
Example: 'LineEnding',{'\b',':'}
Data Types: char | string | cell

CommentStyle — Style of comments
character vector | string scalar | cell array of character vectors | string array

Style of comments, specified as a character vector, string scalar, cell array of character
vectors, or string array.

For example, to ignore the text following a percent sign on the same line, specify
CommentStyle as '%'.
Example: 'CommentStyle',{'/*'}
Data Types: char | string | cell

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

 fixedWidthImportOptions

1-7165

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name, such as one of the values in this table.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' uses the system default encoding.
Data Types: char | string

Replacement Rules

PartialFieldRule — Procedure to handle partial fields
'keep' | 'fill' | 'omitrow' | 'omitvar' | 'wrap' | 'error'

Procedure to handle partial fields in the data, specified as one of the values in this table.

Partial Field Rule Behavior
'keep' Keep the partial field data and convert the text to the

appropriate data type.

In some cases, when the importing function is unable to
interpret the partial data, a conversion error might occur.

1 Alphabetical List

1-7166

Partial Field Rule Behavior
'fill' Replace missing data with the contents of the FillValue

property.

The FillValue property is specified in the
VariableImportOptions object of the variable being
imported. For more information on accessing the
FillValue property, see getvaropts.

'omitrow' Omit rows that contain partial data.
'omitvar' Omit variables that contain partial data.
'wrap' Begin reading the next line of characters.
'error' Display an error message and abort the import operation.

Example: opts.PartialFieldRule = 'keep';
Data Types: char | string

EmptyLineRule — Procedure to handle empty lines
'skip' | 'read' | 'error'

Procedure to handle empty lines in the data, specified as 'skip', 'read', or 'error'.
The importing function interprets white space as empty.

Empty Line Rule Behavior
'skip' Skip the empty lines.
'read' Import the empty lines. The importing function parses the

empty line using the values specified in VariableWidths,
VariableOptions, MissingRule, and other relevant
properties, such as Whitespace.

'error' Display an error message and abort the import operation.

Example: opts.EmptyLineRule = 'skip';
Data Types: char | string

MissingRule — Procedure to manage missing data
'fill' | 'error' | 'omitrow' | 'omitvar'

Procedure to manage missing data, specified as one of the values in this table.

 fixedWidthImportOptions

1-7167

Missing Rule Behavior
'fill' Replace missing data with the contents of the FillValue

property.

The FillValue property is specified in the
VariableImportOptions object of the variable being
imported. For more information on accessing the
FillValue property, see getvaropts.

'error' Stop importing and display an error message showing the
missing record and field.

'omitrow' Omit rows that contain missing data.
'omitvar' Omit variables that contain missing data.

Example: opts.MissingRule = 'omitrow';uint32
Data Types: char | string

ImportErrorRule — Procedure to handle import errors
'fill' | 'error' | 'omitrow' | 'omitvar'

Procedure to handle import errors, specified as one of the values in this table.

Import Error Rule Behavior
'fill' Replace the data where the error occurred with the

contents of the FillValue property.

The FillValue property is specified in the
VariableImportOptions object of the variable being
imported. For more information on accessing the
FillValue property, see getvaropts.

'error' Stop importing and display an error message showing the
error-causing record and field.

'omitrow' Omit rows where errors occur.
'omitvar' Omit variables where errors occur.

Example: opts.ImportErrorRule = 'omitvar';
Data Types: char | string

1 Alphabetical List

1-7168

ExtraColumnsRule — Procedure to handle extra columns
'addvars' | 'ignore' | 'wrap' | 'error'

Procedure to handle extra columns in the data, specified as one of the values in this table.

Extra Columns Rule Behavior
'addvars' To import extra columns, create new variables. If there are

N extra columns, then import new variables as
'ExtraVar1', 'ExtraVar2',..., 'ExtraVarN'.

NOTE: The extra columns are imported as text with data
typechar.

'ignore' Ignore the extra columns of data.
'wrap' Wrap the extra columns of data to new records. This action

does not change the number of variables.
'error' Display an error message and abort the import operation.

Data Types: char | string

Object Functions
getvaropts Get variable import options
setvaropts Set variable import options
setvartype Set variable data types
preview Preview eight rows from file using import options

Examples

Define Import Options Object to Read Fixed-Width Text File

Examine a fixed-width formatted text file, initialize an import options object, and use the
object to import the table from the text file.

Load and Preview Fixed-Width Text File

Load the file fixed_width_patients_subset_perfect.txt and preview its contents
in a text editor. The screen shot shows that the file contains fixed-width formatted data.

 fixedWidthImportOptions

1-7169

filename = fullfile(matlabroot,'examples','matlab','fixed_width_patients_subset_perfect.txt');

Examine and Extract Properties of Fixed-Width File

The fixed-width text file has tabular data organized by starting location, number of
variables, variable names, and variable widths. Capture these properties and the desired
data type for the variables.

DataStartLine = 2;
NumVariables = 7;
VariableNames = {'LastName','Gender','Age','Location','Height',...
 'Weight','Smoker'};
VariableWidths = [10, 7, 4, 26, 7, ...
 7, 7] ;
DataType = {'char','categorical','double','char','double',...
 'double','logical'};

Initialize and Configure FixedWidthImportOptions Object

Initialize a FixedWidthImportOptions object and configure its properties to match the
properties of the data in fixed_width_patients_subset_perfect.txt.

opts = fixedWidthImportOptions('NumVariables',NumVariables,...
 'DataLines',DataStartLine,...
 'VariableNames',VariableNames,...

1 Alphabetical List

1-7170

 'VariableWidths',VariableWidths,...
 'VariableTypes',DataType);

Import Table

Use readtable with the FixedWidthImportOptions object to import the table.

T = readtable(filename,opts)

T=10×7 table
 LastName Gender Age Location Height Weight Smoker
 __________ ______ ___ ___________________________ ______ ______ ______

 'Smith' Male 38 'County General Hospital' 71 176 true
 'Johnson' Male 43 'VA Hospital' 69 163 false
 'Williams' Female 38 'St. Mary's Medical Center' 64 131 false
 'Brown' Female 49 'County General Hospital' 64 119 false
 'Miller' Female 33 'VA Hospital' 64 142 true
 'Wilson' Male 40 'VA Hospital' 68 180 false
 'Taylor' Female 31 'County General Hospital' 66 132 false
 'Thomas' Female 42 'St. Mary's Medical Center' 66 137 false
 'Jackson' Male 25 'VA Hospital' 71 174 false
 'Clark' Female 48 'VA Hospital' 65 133 false

Import Messy Data from Fixed-Width Formatted Text File

Define an import options object to import messy data from a fixed-width formatted text
file. Configure the object to handle the messy data and use it to import the table.

Load and Preview Fixed-Width Text File

Load the file fixed_width_patients_subset_messy.txt and preview its contents in
a text editor. A screen shot is shown below. The screen shot shows that the file contains:

• Empty lines – Lines 7, 12, and 13
• An extra column – Column 8
• Missing data – Lines 1, 4, 9 and 11
• Partial fields – Last 3 rows

filename = fullfile(matlabroot,'examples','matlab','fixed_width_patients_subset_messy.txt');

 fixedWidthImportOptions

1-7171

Examine and Capture Properties of Fixed-Width File

The fixed-width text file has tabular data organized by the staring location, number of
variables, variable names, and variable widths. Capture these properties and the data
type you want to use for the variables.

DataStartLine = 2;
NumVariables = 7;
VariableNames = {'LastName','Gender','Age','Location','Height',...
 'Weight','Smoker'};
VariableWidths = [10, 7, 4, 26, 7, ...
 7, 7] ;
DataType = {'char','categorical','double','char','double',...
 'double','logical'};

Initialize FixedWidthImportOptions Object and Set Up Variable Properties

Initialize a FixedWidthImportOptions object and configure its properties to match the
properties of the data.

1 Alphabetical List

1-7172

opts = fixedWidthImportOptions('NumVariables',NumVariables,...
 'DataLines',DataStartLine,...
 'VariableNames',VariableNames,...
 'VariableWidths',VariableWidths,...
 'VariableTypes',DataType);

Set Up EmptyLinesRule, Missing Rule, and ExtraColumnsRule

Read the empty lines in the data by setting the EmptyLineRule to 'read'. Next, fill the
missing instances with predefined values by setting the MissingRule to 'fill'. Finally,
to ignore the extra column during the import, set the ExtraColumnsRule to 'ignore'.
For more information on the properties and their values, see documentation for
FixedWidthImportOptions.

opts.EmptyLineRule = 'read';
opts.MissingRule = 'fill';
opts.ExtraColumnsRule ='ignore';

Set Up PartialFieldRule

Partial fields occur when the importing function reaches the end-of-line character before
the full variable width is traversed. For example, in this preview, the last three rows from
the file fixed_width_patients_subset_messy.txt. Here, in the last row of the last
column, the end-of-line character appears after two places from the start of the field,
before the full variable-width of three is reached.

This occurrence of a partial field sometimes can indicate an error. Therefore, use the
PartialFieldRule to decide how to handle this data. To keep the partial field data and
convert it to the appropriate data type, set the PartialFieldRule to 'keep'. For more
information on the PartialFieldRule, see documentation for
FixedWidthImportOptions.

opts.PartialFieldRule = 'keep';

Import Table

Import the table by using readtable function and the FixedWidthImportOptions
object and preview the data.

 fixedWidthImportOptions

1-7173

T = readtable(filename,opts)

T=15×7 table
 LastName Gender Age Location Height Weight Smoker
 __________ ___________ ___ ___________________________ ______ ______ ______

 'Smith' Male 38 'County General Hospital' 71 176 true
 'Johnson' Male 43 'VA Hospital' 69 163 false
 'Williams' Female 38 'St. Mary's Medical Center' NaN NaN false
 'Jones' Female 40 'VA Hospital' 67 133 false
 'Brown' Female 49 'County General Hospital' 64 119 false
 '' <undefined> NaN '' NaN NaN false
 'Wilson' Male 40 'VA Hospital' 68 180 false
 'Moore' Male 28 'St. Mary's Medical Center' NaN 183 false
 'Taylor' Female 31 'County General Hospital' 66 132 false
 'Anderson' Female 45 'County General Hospital' 68 NaN false
 '' <undefined> NaN '' NaN NaN false
 '' <undefined> NaN '' NaN NaN false
 'White' Male 39 'VA Hospital' 72 2 false
 'Harris' Female 36 'St. Mary's Medical Center' 65 12 false
 'Martin' Male 48 'VA Hospital' 71 181 true

See Also
detectImportOptions | readtable

Introduced in R2017a

1 Alphabetical List

1-7174

getvaropts
Package: matlab.io.text

Get variable import options

Syntax
varOpts = getvaropts(opts,selection)

Description
varOpts = getvaropts(opts,selection) returns the variable import options for the
variables specified in selection.

Examples

Get Import Options for Variable

Access the variable import options object that controls the importing of a variable using
the getvaropts function.

Create import options from a file. The options object is a collection of individual variable
import options.

opts = detectImportOptions('patients.xls')

opts =
 SpreadsheetImportOptions with properties:

 Sheet Properties:
 Sheet: ''

 Replacement Properties:
 MissingRule: 'fill'
 ImportErrorRule: 'fill'

 getvaropts

1-7175

 Variable Import Properties: Set types by name using setvartype
 VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 VariableTypes: {'char', 'char', 'double' ... and 7 more}
 SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 VariableOptions: Show all 10 VariableOptions
 Access VariableOptions sub-properties using setvaropts/getvaropts

 Range Properties:
 DataRange: 'A2' (Start Cell)
 VariableNamesRange: 'A1'
 RowNamesRange: ''
 VariableUnitsRange: ''
 VariableDescriptionsRange: ''
 To display a preview of the table, use preview

Get the variable import options object for the specified variable.

varOpts = getvaropts(opts, 'Systolic')

varOpts =
 NumericVariableImportOptions with properties:

 Variable Properties:
 Name: 'Systolic'
 Type: 'double'
 FillValue: NaN
 TreatAsMissing: {}
 QuoteRule: 'remove'
 Prefixes: {}
 Suffixes: {}
 EmptyFieldRule: 'missing'

 Numeric Options:
 ExponentCharacter: 'eEdD'
 DecimalSeparator: '.'
 ThousandsSeparator: ''
 TrimNonNumeric: 0

To modify the variable import options, see the setvaropts and setvartype function
reference pages.

1 Alphabetical List

1-7176

Input Arguments
opts — File import options
SpreadsheetImportOptions | DelimitedTextImportOptions |
FixedWidthImportOptions

File import options, specified as a SpreadsheetImportOptions,
DelimitedTextImportOptions, or a FixedWidthImportOptions object created by
the detectImportOptions function. The opts object contains properties that control
the data import process, such as variable properties, data location properties,
replacement rules, and others.

selection — Selected variables
character vector | string scalar | cell array of character vector | string array | array of
indices | logical array

Selected variables, specified as a character vector, string scalar, cell array of character
vectors, string array, array of numeric indices, or a logical array.

Variable names (or indices) must be a subset of the names contained in the
VariableNames property of the opts object.
Example: 'Height'
Example: {'Height','LastName'}
Example: [5 9]
Data Types: char | string | cell | uint64

Output Arguments
varOpts — Type dependent options for selected variables
array of variable import options objects

Type dependent options for selected variables, returned as an array of variable import
options objects. The array contains an object corresponding to each variable specified in
the selection argument. Depending on the data types of the variables, each object in
the array is one of these types: numeric, text, logical, datetime, and categorical.

You can modify properties of the individual objects.

 getvaropts

1-7177

• To modify the Type property, use the setvartype function.
• To modify other properties, use the setvaropts function.

See Also
detectImportOptions | preview | setvaropts | setvartype

Introduced in R2016b

1 Alphabetical List

1-7178

preview
Package: matlab.io.text

Preview eight rows from file using import options

Syntax
T = preview(filename,opts)

Description
T = preview(filename,opts) returns a table containing the first eight rows of data
in filename, using the import options opts.

• The value of the SelectedVariableNames property of the import options object
opts selects the variables that appear in the table T.

• The preview function returns a subset of the data that the readtable function
returns with the import options object opts.

• Usually, the output of the preview function contains eight rows of data. However, in
some instances the number of rows differs depending on property values defined in
the import options object opts. For more details see, Tips.

Examples

Preview Data Before Importing Full Table

First, create an import options object. Next, use the import options to get the first eight
rows of the table, and then generate a preview showing only the variables of interest.

Create an import options object for a file.

filename = 'outages.csv';
opts = detectImportOptions(filename);

 preview

1-7179

Preview the table.

preview(filename,opts)

ans=8×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ____________________ ______ __________ ____________________ _________________

 'SouthWest' 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00 'winter storm'
 'SouthEast' 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00 'winter storm'
 'West' 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00 'equipment fault'
 'MidWest' 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00 'severe storm'
 'West' 18-Jun-2003 02:49:00 0 0 18-Jun-2003 10:54:00 'attack'
 'West' 20-Jun-2004 14:39:00 231.29 NaN 20-Jun-2004 19:16:00 'equipment fault'
 'West' 06-Jun-2002 19:28:00 311.86 NaN 07-Jun-2002 00:51:00 'equipment fault'

Select which variables to include in the preview and read operations.

opts.SelectedVariableNames = {'Region','OutageTime'};

Preview the first eight rows and selected variables.

preview(filename,opts)

ans=8×2 table
 Region OutageTime
 ___________ ____________________

 'SouthWest' 01-Feb-2002 12:18:00
 'SouthEast' 23-Jan-2003 00:49:00
 'SouthEast' 07-Feb-2003 21:15:00
 'West' 06-Apr-2004 05:44:00
 'MidWest' 16-Mar-2002 06:18:00
 'West' 18-Jun-2003 02:49:00
 'West' 20-Jun-2004 14:39:00
 'West' 06-Jun-2002 19:28:00

1 Alphabetical List

1-7180

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or a string scalar.
Example: 'myFile.xlsx'
Data Types: char | string

opts — File import options
SpreadsheetImportOptions | DelimitedtextImportOptions |
FixedWidthImportOptions

File import options, specified as an SpreadsheetImportOptions,
DelimitedTextImportOptions or FixedWidthImportOptions object created by the
detectImportOptions function. The opts object contains properties that control the
data import process. For more information on properties for individual objects, see the
appropriate object page.

Type of Files Output
Spreadsheet files SpreadsheetImportOptions object
Text files DelimitedTextImportOptions object
Fixed-width text files FixedWidthImportOptions object

Algorithms
• The preview function returns fewer than eight rows in these cases:

• When the file contains fewer than eight rows of data.
• When the DataLines or the DataRange properties of the opts object specify less

than eight rows.
• When a combination of the properties of the opts object result in less than eight

rows of data. For example, preview returns less than eight rows when the value of
the EmptyLineRule, ImportErrorRule or the MissingRule of the opts object
causes the importing function to omit data.

 preview

1-7181

• When the DataLines or the DataRange property of the opts object specifies
multiple row ranges and the first row range spans fewer than eight rows, then
preview returns the rows from the first row range followed by rows from successive
row ranges until it reaches a total of eight rows.

See Also
detectImportOptions | getvaropts | readtable | setvaropts | setvartype

Introduced in R2018a

1 Alphabetical List

1-7182

setvaropts
Package: matlab.io.text

Set variable import options

Syntax
opts = setvaropts(opts,Name,Value)
opts = setvaropts(opts,selection,Name,Value)

Description
opts = setvaropts(opts,Name,Value) updates all the variables in the opts object
based on the specifications in the Name,Value arguments and returns the opts object.

opts = setvaropts(opts,selection,Name,Value) updates and returns opts for
the variables specified in the selection argument, based on the specifications in the
Name,Value arguments.

Examples

Set Options for Selected Variables

Create an import options object, set the options for selected variables, and import the
data using the tailored options and the readtable function.

Create an options object for the spreadsheet patients.xls.

opts = detectImportOptions('patients.xls');

Set the FillValue property for the Smoker, Diastolic, and Systolic variables.

opts = setvaropts(opts,'Smoker','FillValue',false);
opts = setvaropts(opts,{'Diastolic','Systolic'},'FillValue',0);

 setvaropts

1-7183

Select the variables you want to import.

opts.SelectedVariableNames = {'Smoker','Diastolic','Systolic'};

Import the variables and display a summary.

T = readtable('patients.xls',opts);
summary(T)

Variables:

 Smoker: 100x1 logical

 Values:

 True 34
 False 66

 Diastolic: 100x1 double

 Values:

 Min 68
 Median 81.5
 Max 99

 Systolic: 100x1 double

 Values:

 Min 109
 Median 122
 Max 138

Set Options for Numeric Data Containing Missing or Incomplete Records

Importing data that has missing or incomplete fields requires recognizing the missing
instances and deciding how the missing instances will be imported. Use importOptions
to capture both these decisions and fetch the data using readtable.

Create an import options object for the file, update properties that control the import of
missing data, and then use readtable to import the data. Note that the dataset

1 Alphabetical List

1-7184

airlinesmall.csv has two numeric variables ArrDelay and DepDelay, that contain
missing data indicated by NA.

Create an import options object from the file.

opts = detectImportOptions('airlinesmall.csv');

Use the TreatAsMissing property to specify the characters in the data that are place
holders for missing instances. In this example, the two numeric variables ArrDelay and
DepDelay contain missing fields that contain the text NA.

opts = setvaropts(opts,{'ArrDelay','DepDelay'},'TreatAsMissing','NA');

Specify the action for the importing function to take when importing missing instances.
See ImportOptions properties page for more options.

opts.MissingRule = 'fill';

Specify the value to use when the importing function finds a missing instance. Here the
missing instances in variables ArrDelay and DepDelay are replaced by 0.

 setvaropts

1-7185

opts = setvaropts(opts,{'ArrDelay','DepDelay'},'FillValue',0);

Select the variables you want to work with and import them using readtable.

opts.SelectedVariableNames = {'ArrDelay','DepDelay'};
T = readtable('airlinesmall.csv',opts);

Examine the values in ArrDelay and DepDelay. Verify that the importing function
replaced the missing values denoted by NA.

T(166:180,:)

ans=15×2 table
 ArrDelay DepDelay
 ________ ________

 -1 0
 102 105
 -11 0
 0 0
 -1 0
 0 0
 1 0
 1 0
 14 0
 -14 0
 5 0
 25 38
 0 -5
 0 0
 6 0

Set Options When Importing Text Data

Use the setvaropts function to update properties that control the import of text data.
First, get the import options object for the file. Next, examine and update the options for
the text variables. Finally, import the variables using the readtable function.

Preview the data in patients.xls. Notice the text data in the column LastName. Only a
preview of the first 10 rows is shown here.

1 Alphabetical List

1-7186

Get the import options object.

opts = detectImportOptions('patients.xls');

Get and examine the VariableImportOptions for variable LastName.

getvaropts(opts,'LastName')

ans =
 TextVariableImportOptions with properties:

 Variable Properties:
 Name: 'LastName'
 Type: 'char'
 FillValue: ''
 TreatAsMissing: {}
 QuoteRule: 'remove'
 Prefixes: {}
 Suffixes: {}
 EmptyFieldRule: 'missing'

 String Options:
 WhitespaceRule: 'trim'

Set the data type of the variable to string.

 setvaropts

1-7187

opts = setvartype(opts,'LastName','string');

Set the FillValue property of the variable to replace missing values with 'NoName'.

opts = setvaropts(opts,'LastName','FillValue','NoName');

Select, read, and display a preview of the first 10 rows of the variable.

opts.SelectedVariableNames = 'LastName';
T = readtable('patients.xls',opts);
T.LastName(1:10)

ans = 10x1 string array
 "Smith"
 "Johnson"
 "Williams"
 "Jones"
 "Brown"
 "Davis"
 "Miller"
 "Wilson"
 "Moore"
 "Taylor"

Set Options When Importing Logical Data

Use the setvaropts function to update properties that control the import of logical
data. First, get the import options object for the file. Next, examine and update the
options for the logical variables. Finally, import the variables using the readtable
function.

Preview the data in airlinesmall_subset.xlsx. Notice the logical data in the column
Cancelled. Only a preview of rows 30 to 40 is shown here.

1 Alphabetical List

1-7188

Get the import options object.

opts = detectImportOptions('airlinesmall_subset.xlsx');

Get and examine the VariableImportOptions for variable Cancelled.

getvaropts(opts,'Cancelled')

ans =
 NumericVariableImportOptions with properties:

 Variable Properties:
 Name: 'Cancelled'
 Type: 'double'
 FillValue: NaN
 TreatAsMissing: {}
 QuoteRule: 'remove'
 Prefixes: {}
 Suffixes: {}
 EmptyFieldRule: 'missing'

 Numeric Options:
 ExponentCharacter: 'eEdD'

 setvaropts

1-7189

 DecimalSeparator: '.'
 ThousandsSeparator: ''
 TrimNonNumeric: 0

Set the data type of the variable to logical.

opts = setvartype(opts,'Cancelled','logical');

Set the FillValue property of the variable to replace missing values with true.

opts = setvaropts(opts,'Cancelled','FillValue',true);

Select, read, and display a summary of the variable.

opts.SelectedVariableNames = 'Cancelled';
T = readtable('airlinesmall_subset.xlsx',opts);
summary(T)

Variables:

 Cancelled: 1338x1 logical

 Values:

 True 29
 False 1309

Importing Date and Time Data

Use DatetimeVariableImportOptions properties to control the import of datetime
data. First, get the ImportOptions object for the file. Next, examine and update the
VariableImportOptions for the datetime variables. Finally, import the variables using
readtable.

Preview of data in outages.csv. Notice the date and time data in the columns
OutageTime and RestorationTime. Only the first 10 rows are shown here.

1 Alphabetical List

1-7190

Get the import options object.

opts = detectImportOptions('outages.csv');

Get and examine the VariableImportOptions for datetime variables OutageTime and
RestorationTime.

varOpts = getvaropts(opts,{'OutageTime','RestorationTime'})

varOpts =
 1x2 DatetimeVariableImportOptions array with properties:

 Name
 Type
 FillValue
 TreatAsMissing
 QuoteRule
 Prefixes
 Suffixes
 EmptyFieldRule
 DatetimeFormat
 DatetimeLocale
 TimeZone
 InputFormat

Set the FillValue property of the variables to replace missing values with current date
and time.

 setvaropts

1-7191

opts = setvaropts(opts,{'OutageTime','RestorationTime'},...
 'FillValue','now');

Select, read, and preview the two variables. Notice the missing value in the second row of
RestorationTime has been filled with current date and time.

opts.SelectedVariableNames = {'OutageTime','RestorationTime'};
T = readtable('outages.csv',opts);
T(1:10,:)

ans=10×2 table
 OutageTime RestorationTime
 ____________________ ____________________

 01-Feb-2002 12:18:00 07-Feb-2002 16:50:00
 23-Jan-2003 00:49:00 02-Mar-2019 21:02:44
 07-Feb-2003 21:15:00 17-Feb-2003 08:14:00
 06-Apr-2004 05:44:00 06-Apr-2004 06:10:00
 16-Mar-2002 06:18:00 18-Mar-2002 23:23:00
 18-Jun-2003 02:49:00 18-Jun-2003 10:54:00
 20-Jun-2004 14:39:00 20-Jun-2004 19:16:00
 06-Jun-2002 19:28:00 07-Jun-2002 00:51:00
 16-Jul-2003 16:23:00 17-Jul-2003 01:12:00
 27-Sep-2004 11:09:00 27-Sep-2004 16:37:00

Set Options When Importing Categorical Data

Use the setvaropts function to update properties that control the import of
categorical data. First, get the import options object for the file. Next, examine and
update the options for the categorical variables. Finally, import the variables using the
readtable function.

Preview the data in outages.csv. Notice the categorical data in the columns Region
and Cause. This table shows only the first 10 rows.

1 Alphabetical List

1-7192

Get the import options object.

opts = detectImportOptions('outages.csv');

Get and examine the options for variables Region and Cause.

getvaropts(opts,{'Region','Cause'})

ans =
 1x2 TextVariableImportOptions array with properties:

 Name
 Type
 FillValue
 TreatAsMissing
 QuoteRule
 Prefixes
 Suffixes
 EmptyFieldRule
 WhitespaceRule

Set the data type of the variables to categorical.

opts = setvartype(opts,{'Region','Cause'},'categorical');

Set the FillValue property of the variables to replace missing values with category
name 'Miscellaneous'. Set TreatAsMissing property to 'unknown'.

 setvaropts

1-7193

opts = setvaropts(opts,{'Region','Cause'},...
 'FillValue','Miscellaneous',...
 'TreatAsMissing','unknown');

Select, read, and display a summary of the two variables.

opts.SelectedVariableNames = {'Region','Cause'};
T = readtable('outages.csv',opts);
summary(T)

Variables:

 Region: 1468x1 categorical

 Values:

 MidWest 142
 NorthEast 557
 SouthEast 389
 SouthWest 26
 West 354

 Cause: 1468x1 categorical

 Values:

 Miscellaneous 24
 attack 294
 earthquake 2
 energy emergency 188
 equipment fault 156
 fire 25
 severe storm 338
 thunder storm 201
 wind 95
 winter storm 145

Remove Prefix or Suffix Characters From Variables

Import tabular data containing variables that have unwanted prefix and suffix characters.
First, create an import options object and preview the data. Then, select the variables of
interest and set their variable types and properties to remove the unwanted characters.
Finally, import the data of interest.

1 Alphabetical List

1-7194

Create import options for the file and preview the table.

filename = 'pref_suff_trim.csv';
opts = detectImportOptions(filename);
preview(filename,opts)

ans=8×5 table
 Time DayOfWeek Power Total_Fees Temperature
 _______________________ _______________ ____________ __________ ___________

 'Timestamp:1/1/06 0:00' '& Sun %20' '54.5448 MW' '$1.23' '-7.2222 C'
 'Timestamp:1/2/06 1:00' '& Thu %20' '.3898 MW' '$300.00' '-7.3056 C'
 'Timestamp:1/3/06 2:00' '& Sun %20' '51.6344 MW' 'Â£2.50' '-7.8528 C'
 'Timestamp:1/4/06 3:00' '& Sun %20' '51.5597 MW' '$0.00' '-8.1778 C'
 'Timestamp:1/5/06 4:00' '& Wed %20' '51.7148 MW' 'Â¥4.00' '-8.9343 C'
 'Timestamp:1/6/06 5:00' '& Sun %20' '52.6898 MW' '$0.00' '-8.7556 C'
 'Timestamp:1/7/06 6:00' '& Mon %20' '55.341 MW' '$50.70' '-8.0417 C'
 'Timestamp:1/8/06 7:00' '& Sat %20' '57.9512 MW' '$0.00' '-8.2028 C'

Select variables of interest, specify their types, and examine their variable import options
values.

opts.SelectedVariableNames = {'Time','Total_Fees','Temperature'};
opts = setvartype(opts,'Time','datetime');
opts = setvaropts(opts,'Time','InputFormat','MM/dd/uu HH:mm'); % Specify datetime format
opts = setvartype(opts,{'Total_Fees','Temperature'},'double');
getvaropts(opts,{'Time','Total_Fees','Temperature'})

ans =
 1x3 VariableImportOptions array with properties:

 Variable Options:
 (1) | (2) | (3)
 Name: 'Time' | 'Total_Fees' | 'Temperature'
 Type: 'datetime' | 'double' | 'double'
 FillValue: [NaT] | [NaN] | [NaN]
 TreatAsMissing: {} | {} | {}
 QuoteRule: 'remove' | 'remove' | 'remove'
 Prefixes: {} | {} | {}
 Suffixes: {} | {} | {}

 To access sub-properties of each variable, use getvaropts

 setvaropts

1-7195

Set the Prefixes, Suffixes, and TrimNonNumeric properties of variable import
options to remove 'Timestamp:' from the variable Time, remove suffix 'C' from
variable Temperature, and remove all nonnumeric characters from variable
Total_Fees. Preview the table with the new import options.

opts = setvaropts(opts,'Time','Prefixes','Timestamp:');
opts = setvaropts(opts,'Temperature','Suffixes','C');
opts = setvaropts(opts,'Total_Fees','TrimNonNumeric',true);
preview(filename,opts)

ans=8×3 table
 Time Total_Fees Temperature
 ______________ __________ ___________

 01/01/06 00:00 1.23 -7.2222
 01/02/06 01:00 300 -7.3056
 01/03/06 02:00 2.5 -7.8528
 01/04/06 03:00 0 -8.1778
 01/05/06 04:00 4 -8.9343
 01/06/06 05:00 0 -8.7556
 01/07/06 06:00 50.7 -8.0417
 01/08/06 07:00 0 -8.2028

Import the data using readtable.

T = readtable(filename,opts);

Manage Import of Empty Fields

Create an import options object for a file containing empty fields. Use the
EmptyFieldRule parameter to manage the import of empty fields in your data. First,
preview the data, and then set the EmptyFieldRule parameter for a specific variable.
Finally, set EmptyFieldRule for all the variables and import the data.

Create an import options object for a file containing empty fields. Get the first eight rows
of the table using the preview function. The default value for EmptyFieldRule is
'missing'. Therefore, the importing function treats empty fields as missing and replaces
them with the FillValue value for that variable. Using VariableOptions for the third
variable, preview the data. Here, the preview function imports the empty fields in the
third variable as NaNs.

1 Alphabetical List

1-7196

filename = 'DataWithEmptyFields.csv';
opts = detectImportOptions(filename);
opts.VariableOptions(3) % Display the Variable Options for the 3rd Variable

ans =
 NumericVariableImportOptions with properties:

 Variable Properties:
 Name: 'Double'
 Type: 'double'
 FillValue: NaN
 TreatAsMissing: {}
 QuoteRule: 'remove'
 Prefixes: {}
 Suffixes: {}
 EmptyFieldRule: 'missing'

 Numeric Options:
 ExponentCharacter: 'eEdD'
 DecimalSeparator: '.'
 ThousandsSeparator: ''
 TrimNonNumeric: 0

preview(filename,opts)

ans=8×7 table
 Text Categorical Double Datetime Logical Duration String
 _____ ___________ ______ ____________________ _______ ________ ______

 'abc' 'a' 1 14-Jan-0018 00:00:00 'TRUE' 00:00:01 'abc'
 '' 'b' 2 21-Jan-0018 00:00:00 'FALSE' 09:00:01 'def'
 'ghi' '' 3 31-Jan-0018 00:00:00 'TRUE' 02:00:01 'ghi'
 'jkl' 'a' NaN 23-Feb-2018 00:00:00 'FALSE' 03:00:01 'jkl'
 'mno' 'a' 4 NaT 'FALSE' 04:00:01 'mno'
 'pqr' 'b' 5 23-Jan-0018 00:00:00 '' 05:00:01 'pqr'
 'stu' 'b' 5 23-Mar-0018 00:00:00 'FALSE' NaN 'stu'
 '' 'a' 6 24-Mar-2018 00:00:00 'TRUE' 07:00:01 ''

Set EmptyFieldRule for the second variable in the table. First, select the variable, and
then set EmptyFieldRule to 'auto'. Here, the readtable function imports empty
fields of the categorical variable as <undefined>.

 setvaropts

1-7197

opts.SelectedVariableNames = 'Categorical';
opts = setvartype(opts,'Categorical','categorical');
opts = setvaropts(opts,'Categorical','EmptyFieldRule','auto');
T = readtable(filename,opts)

T=11×1 table
 Categorical

 a
 b
 <undefined>
 a
 a
 b
 b
 a
 a
 <undefined>
 <undefined>

Next, set the EmptyFieldRule parameter for all the variables in the table. First, update
the data types of the variables appropriately. For this example, set the data type of the
fifth and seventh variables to logical and string, respectively. Then, set
EmptyFieldRule for all the variables to 'auto'. The importing function imports the
empty fields based on data type of the variable. Here, the readtable function imports
empty fields of the logical variable as 0 and empty fields of the categorical variable
as <undefined>.

VariableNames = opts.VariableNames;
opts.SelectedVariableNames = VariableNames; % select all variables
opts = setvartype(opts,{'Logical','String'},{'logical','string'});
opts = setvaropts(opts,VariableNames,'EmptyFieldRule','auto');
T = readtable(filename,opts)

T=11×7 table
 Text Categorical Double Datetime Logical Duration String
 _____ ___________ ______ ____________________ _______ ________ _________

 'abc' a 1 14-Jan-0018 00:00:00 true 00:00:01 "abc"
 '' b 2 21-Jan-0018 00:00:00 false 09:00:01 "def"
 'ghi' <undefined> 3 31-Jan-0018 00:00:00 true 02:00:01 "ghi"
 'jkl' a NaN 23-Feb-2018 00:00:00 false 03:00:01 "jkl"

1 Alphabetical List

1-7198

 'mno' a 4 NaT false 04:00:01 "mno"
 'pqr' b 5 23-Jan-0018 00:00:00 false 05:00:01 "pqr"
 'stu' b 5 23-Mar-0018 00:00:00 false NaN "stu"
 '' a 6 24-Mar-2018 00:00:00 true 07:00:01 ""
 '' a 7 25-Mar-2018 00:00:00 true 08:00:01 ""
 'xyz' <undefined> NaN NaT true 06:00:01 "xyz"
 '' <undefined> NaN NaT false NaN <missing>

In addition to 'missing' and 'auto', you can also set the EmptyFieldRule parameter
to 'error'. When you set it to 'error', the readtable function imports empty fields
by following the procedure specified in the ImportErrorRule parameter.

Input Arguments
opts — File import options
SpreadsheetImportOptions | DelimitedTextImportOptions |
FixedWidthImportOptions

File import options, specified as a SpreadsheetImportOptions,
DelimitedTextImportOptions, or a FixedWidthImportOptions object created by
the detectImportOptions function. The opts object contains properties that control
the data import process, such as variable properties, data location properties,
replacement rules, and others.

selection — Selected variables
character vector | string scalar | cell array of character vector | string array | array of
indices | logical array

Selected variables, specified as a character vector, string scalar, cell array of character
vectors, string array, array of numeric indices, or a logical array.

Variable names (or indices) must be a subset of the names contained in the
VariableNames property of the opts object.
Example: 'Height'
Example: {'Height','LastName'}
Example: [5 9]
Data Types: char | string | cell | uint64 | logical

 setvaropts

1-7199

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: opts = setvaropts(opts,'Weight','FillValue',0) sets the
FillValue for the variable Weight to 0.

Common Options for All Variable Types

FillValue — Replacement value for missing data
character vector | string scalar | scalar numeric value | true | false

Replacement value for missing data, depending on the type of the variable, specified as a
character vector, string scalar, scalar numeric, or a logical value true or false.

Type of Variable Description
Text Replacement text specified as a character

vector or string scalar.

Example: 'not applicable'
Numeric Scalar numeric to replace missing instances

The importing function converts the input
for FillValue to the data type specified by
the Type property of the variable. For
example, if Type property value is uint8,
then the importing function also converts
the value of the FillValue property to
uint8.

Example: 0
Logical true or false.

Example: false

1 Alphabetical List

1-7200

Type of Variable Description
Datetime Character vector or string scalar, or a

scalar value representing date and time
data. For more information on valid
datetime inputs, see the datetime
function page.

Example: 'now' sets the missing datetime
instances to the current date and time.

Example: [1998 12 1] sets the missing
datetime instances to the date December
1st, 1998.

Duration Character vector or string scalar, or a
scalar value representing duration data. For
more information on valid duration
inputs, see the duration function page.

Example: '12:30:16' sets the missing
duration instances to the duration of 12
hours, 30 minutes, and 16 seconds.

Categorical Character vector or string scalar containing
the name to use for the replacement
category.

Example: 'Miscellaneous' assigns the
category name Miscellaneous to missing
instances in the categorical data.

To direct the import of data that is missing, unconvertible, or that causes errors, use
these four properties together: FillValue, TreatAsMissing, MissingRule, and
ErrorRule. The importing function uses the value specified in the FillValue property
when:

• Data is unconvertible or matches a value in TreatAsMissing.
• MissingRule or the ErrorRule is set to fill.

TreatAsMissing — Text to interpret as missing data
character vector | string scalar | cell array of character vectors | string array

 setvaropts

1-7201

Text to interpret as missing data, specified as a character vector, string scalar, cell array
of character vectors, or string array.

When the importing function finds missing instances, it uses the specification in the
MissingRule property to determine the appropriate action.
Example: 'TreatAsMissing',{'NA','TBD'} instructs the importing function to treat
any occurrence of NA or TBD as a missing fields.
Data Types: char | string | cell

QuoteRule — Procedure to manage double quotation marks
'remove' | 'keep' | 'error'

Procedure to manage double quotation marks in the data, specified as one of the values in
this table.

Quote Rule Process
'remove' If double quotes (") surround characters, then the

importing function removes both the opening double quote
and the next occurring double quote, which would be
interpreted as the closing double quote.

Example: "500" is imported as 500.

If two sets of double quotes ("") surround characters, then
the importing function removes the first two occurrences.

Example: ""abc"" is imported as abc"".

If a pair of opening and closing quotes surrounding
characters is followed by a single lone unpaired double
quotes, then the importing function ignores the lone
unpaired double quote.

Example: "abc"" is imported as abc".
'keep' Retain all quotation marks.
'error' Report an error when converting data which begins with a

double quotation mark ("). Use this setting if the field
should never be quoted.

1 Alphabetical List

1-7202

Example: If the 'QuoteRule' is set to 'remove', then the importing function imports
"abc"def" as abcdef".
Data Types: char | string

EmptyFieldRule — Procedure to manage empty fields
'missing' (default) | 'error' | 'auto'

Procedure to manage empty fields in the data, specified as one of these values:

• 'missing' — Use the procedure specified in the MissingRule property
• 'error' — Use the procedure specified in the ImportErrorRule property
• 'auto' — Use the empty value based on the data type of the variable

Data Type Empty Value
text zero length char or string
numeric NaN for floating-point numbers

0 for integers
duration NaN
datetime NaT
logical false
categorical <undefined>

Example: opts =
setvaropts(opts,'RestorationTime','EmptyFieldRule','auto');

Data Types: char | string

Prefixes — Text to remove from prefix position
character vector | cell array of character vectors | string scalar | string array

Text to remove from the prefix position of a variable value, specified as a character vector,
cell array of character vectors, string scalar, or string array.
Example: opts = setvaropts(opts,'Var1','Prefixes','$') sets the Prefixes
option for the variable Var1. If Var1 contains a value of '$500', then readtable reads
it as '500'.
Data Types: char | string | cell

 setvaropts

1-7203

Suffixes — Text to remove from suffix position
character vector | cell array of character vectors | string scalar | string array

Text to remove from the suffix position of a variable value, specified as a character vector,
cell array of character vectors, string scalar, or string array.
Example: opts = setvaropts(opts,'Var1','Suffixes','/-') sets the Suffixes
option for the variable Var1. If Var1 contains a value of '$500/-' , then readtable
reads it as '$500'.
Data Types: char | string | cell

Text Variable Options

WhiteSpaceRule — Procedure to manage leading and trailing white spaces
'trim' (default) | 'trimleading' | 'trimtrailing' | 'preserve'

Procedure to manage leading and trailing white spaces when importing text data,
specified as one of the values in the table.

White Space Rule Process
'trim' Remove any leading or trailing white spaces from the text.

Interior white space is unaffected.

Example: ' World Time ' is imported as 'World
Time'

'trimleading' Remove only the leading white spaces.

Example: ' World Time ' is imported as 'World Time
'

'trimtrailing' Remove only the trailing white spaces.

Example: ' World Time ' is imported as 'World
Time'

'preserve' Preserve white spaces.

Example: ' World Time ' is imported as ' World
Time '

Data Types: char | string

1 Alphabetical List

1-7204

Numeric Variable Options

ExponentCharacter — Characters indicating exponent
character vector | string scalar

Characters indicating the exponent, specified as a character vector or string scalar. The
importing function uses the ExponentCharacter property to recognize the characters
indicating the exponent for a number expressed in the scientific notation.
Example: If varOpts.ExponentCharacter = 'a', then the importing function imports
the text "1.2a3" as the number 1200.
Data Types: char | string

DecimalSeparator — Characters indicating decimal separator
character vector | string scalar

Characters indicating the decimal separator in numeric variables, specified as a character
vector or string scalar. The importing function uses the characters specified in the
DecimalSeparator name-value pair to distinguish the integer part of a number from the
decimal part.

When converting to integer data types, numbers with a decimal part are rounded to the
nearest integer.
Example: If name-value pair is specified as 'DecimalSeparator',',', then the
importing function imports the text "3,14159" as the number 3.14159.
Data Types: char | string

ThousandsSeparator — Characters that indicate thousands grouping
character vector | string scalar

Characters that indicate the thousands grouping in numeric variables, specified as a
character vector or string scalar. The thousands grouping characters act as visual
separators, grouping the number at every three place values. The importing function uses
the characters specified in the ThousandsSeparator name-value pair to interpret the
numbers being imported.
Example: If name-value pair is specified as 'ThousandsSeparator',',', then the
importing function imports the text "1,234,000" as 1234000.
Data Types: char | string

 setvaropts

1-7205

TrimNonNumeric — Remove nonnumeric characters
false (default) | true

Remove nonnumeric characters from a numeric variable, specified as a logical true or
false.
Example: If name-value pair is specified as 'TrimNonNumeric',true, then the
importing function reads '$500/-' as 500.
Data Types: logical

Logical Variable Options

TrueSymbols — Text to treat as logical value true
character vector | string scalar | cell array of character vectors | string array

Text to treat as the logical value true, specified as a character vector, string scalar, cell
array of character vectors, or a string array.
Example: If varOpts.TrueSymbols = {'t','TRUE'}, then the importing function
imports any fields containing t or TRUE as the logical value true.
Data Types: char | string | cell

FalseSymbols — Text to treat as logical value false
character vector | string scalar | cell array of character vectors | string array

Text to treat as the logical value false, specified as a character vector, string scalar, cell
array of character vectors, or a string array.
Example: If varOpts.FalseSymbols = {'f','FALSE'}, then the importing function
imports any fields containing f or FALSE as the logical value false.
Data Types: char | string | cell

CaseSensitive — Indicator to match case
true | false

Indicator to match case, specified as a logical value true or false.

To interpret the input data as missing, true, or false, the importing function matches
the data to values specified in TreatAsMissing, TrueSymbols, and FalseSymbols.

1 Alphabetical List

1-7206

Datetime Variable Options

DatetimeFormat — Display format
'default' | 'defaultdate' | 'preserveinput' | custom format | character vector |
string scalar

Display format, specified as a character vector or string scalar. The DatetimeFormat
property controls the display format of dates and times in the output. Specify
DatetimeFormat as one of these values.

Value of DatetimeFormat Description
'default' Use the default display format.
'defaultdate' Use the default display format for datetime

values created without time components.
'preserveinput' Use the format specified by the input

format, InputFormat.
Custom formats Use the letters A-Z and a-z to construct a

custom value for DatetimeFormat. These
letters correspond to the Unicode Locale
Data Markup Language (LDML) standard
for dates. You can include non-ASCII or
nonletter characters such as a hyphen,
space, or colon to separate the fields. To
include the letters A-Z and a-z as literal
characters in the format, enclose them with
single quotes.

The factory default format depends on your system locale. To change the default display
format, see “Default datetime Format”.
Data Types: char | string

InputFormat — Format of input text
character vector | string scalar

Format of the input text representing dates and times, specified as a character vector or
string scalar that contains letter identifiers.

This table shows several common input formats and examples of the formatted input for
the date, Saturday, April 19, 2014 at 9:41:06 PM in New York City.

 setvaropts

1-7207

Value of InputFormat Example
'yyyy-MM-dd' 2014-04-19
'dd/MM/yyyy' 19/04/2014
'dd.MM.yyyy' 19.04.2014
'yyyy年 MM月 dd日' 2014年 04月 19日

'MMMM d, yyyy' April 19, 2014
'eeee, MMMM d, yyyy h:mm a' Saturday, April 19, 2014 9:41 PM
'MMMM d, yyyy HH:mm:ss Z' April 19, 2014 21:41:06 -0400
'yyyy-MM-dd''T''HH:mmXXX' 2014-04-19T21:41-04:00

For a complete list of valid letter identifiers, see the Format property for datetime arrays.
Example: 'InputFormat','eeee, MMMM d, yyyy HH:mm:ss'
Data Types: char | string

DatetimeLocale — Locale to interpret dates
character vector | string scalar

Locale to interpret dates, specified as a character vector or string scalar. The
DatetimeLocale value determines how the importing function interprets text that
represents dates and times.

Set the DatetimeLocale to one of these values:

• 'system' — Specify your system locale.
• Character vector or string scalar — Use the form xx_YY, where xx is a lowercase ISO

639-1 two-letter code that specifies a language, and YY is an uppercase ISO 3166-1
alpha-2 code that specifies a country.

This table lists some common values for the locale.

Locale Language Country
'de_DE' German Germany
'en_GB' English United Kingdom
'en_US' English United States

1 Alphabetical List

1-7208

Locale Language Country
'es_ES' Spanish Spain
'fr_FR' French France
'it_IT' Italian Italy
'ja_JP' Japanese Japan
'ko_KR' Korean Korea
'nl_NL' Dutch Netherlands
'zh_CN' Chinese (simplified) China

Example: varOpts.DatetimeLocale = 'de_DE' sets the date time locale to German.

Note The Locale value determines how input values are interpreted. The display format
and language is specified by the Locale option in the Datetime format section of the
Preferences panel. To change the default datetime locale, see “Set Command Window
Preferences”.

Data Types: char | string

TimeZone — Time zone
'' (default) | character vector | string scalar

Time zone, specified as a character vector or string scalar. The value of TimeZone
specifies the time zone that the importing function uses to interpret the input data.
TimeZone also specifies the time zone of the output array. If the input data are character
vectors that include a time zone, then the importing function converts all values to the
specified time zone.

TimeZone use any of these values:

• '', to create “unzoned” datetime values that do not belong to a specific time zone.
• A time zone region from the IANA Time Zone Database; for example, 'America/

Los_Angeles'. The name of a time zone region accounts for the current and
historical rules for standard and daylight offsets from UTC that are observed in a
geographic region.

• An ISO 8601 character vector of the form +HH:mm or -HH:mm. For example,
'+01:00', specifies a time zone that is a fixed offset from UTC.

 setvaropts

1-7209

• 'UTC', to create datetime values in Universal Coordinated Time.
• 'UTCLeapSeconds', to create datetime values in Universal Coordinated Time that

account for leap seconds.

This table lists some common names of time zone regions from the IANA Time Zone
Database.

Value of TimeZone UTC Offset UTC DST Offset
'Africa/Johannesburg' +02:00 +02:00
'America/Chicago' −06:00 −05:00
'America/Denver' −07:00 −06:00
'America/Los_Angeles' −08:00 −07:00
'America/New_York' −05:00 −04:00
'America/Sao_Paulo' −03:00 −02:00
'Asia/Hong_Kong' +08:00 +08:00
'Asia/Kolkata' +05:30 +05:30
'Asia/Tokyo' +09:00 +09:00
'Australia/Sydney' +10:00 +11:00
'Europe/London' +00:00 +01:00
'Europe/Zurich' +01:00 +02:00

Datetime arrays with no specified TimeZone cannot be compared or combined with
arrays that have their TimeZone property set to a specific time zone.
Data Types: char | string

Categorical Variable Options

Categories — Expected categories
cell array of character vectors | string array

Expected categories, specified as a cell array of character vectors or string array
containing a list of category names.

Names in the input fields must match one of the names specified in the Categories
property to avoid a conversion error.

1 Alphabetical List

1-7210

Example: varOpts.Categories =
{'BareLand','Forest','Water','Roads','Buildings'};

Protected — Category protection indicator
true | false

Category protection indicator, specified as a logical true or false. The categories of
ordinal categorical arrays are always protected. If the Ordinal property is set to true,
then the default value for Protected is true. Otherwise, the value for Protected is
false. For more information on categorical arrays, see the categorical function
reference page.

Ordinal — Mathematical ordering indicator
false (default) | true | 0 | 1

Mathematical ordering indicator, specified as either false, true, 0, or 1. For more
information on categorical arrays, see the categorical function reference page.

Duration Variable Options

InputFormat — Format of input text
character vector | string scalar

Format of the input text representing duration data, specified as a character vector or
string array.

Specify InputFormat as any of the following formats, where dd, hh, mm, and ss
represent days, hours, minutes, and seconds, respectively:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'
• Any of the first three formats, with up to nine S characters to indicate fractional

second digits, such as 'hh:mm:ss.SSSS'

Example: varOpts.InputFormat = 'dd:hh:mm:ss'
Data Types: char | string

DurationFormat — Display format for duration data
character vector | string scalar

 setvaropts

1-7211

Display format for duration data, specified as a character vector or string scalar.

For numbers with time units, specify one of these values:

• 'y' — Fixed-length years, where 1 year equals 365.2425 days
• 'd' — Fixed-length days, where 1 day equals 24 hours
• 'h' — Hours
• 'm' — Minutes
• 's' — Seconds

For the digital timer, specify one of these formats:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'
• Any of the first three formats, with up to nine S characters to indicate fractional

second digits, such as 'hh:mm:ss.SSSS'

Example: DurationFormat can be either a single number with time units (such as 0.5
yr) or a digital timer (such as 10:30:15 for 10 hours, 30 minutes, and 15 seconds).
Data Types: char | string

DecimalSeparator — Characters separating fractional seconds
. (default) | character vector | string scalar

Characters separating fractional seconds, specified as a character vector or string scalar.
The importing function uses the DecimalSeparator property to distinguish the integer
part of the duration value from the fractional seconds part.
Data Types: char | string

FieldSeparator — Characters indicating field separation
: (default) | character vector | string scalar

Characters indicating field separation in the duration data, specified as a character vector
or string scalar.
Data Types: char | string

1 Alphabetical List

1-7212

See Also
detectImportOptions | getvaropts | preview | setvartype

Introduced in R2016b

 setvaropts

1-7213

setvartype
Package: matlab.io.text

Set variable data types

Syntax
opts = setvartype(opts,type)
opts = setvartype(opts,selection,type)

Description
opts = setvartype(opts,type) updates all the variables in the opts object based
on the specified type. type must be a character vector or a cell array of character vector
of valid data type names.

opts = setvartype(opts,selection,type) updates data type for only the variables
specified in the selection argument.

Examples

Set Data Types for Multiple Variables

Use detectImportOptions to create import options, set multiple variable data types,
and then read the data using readtable.

Create an options object.

opts = detectImportOptions('patients.xls');

Examine the current (detected) data types of the variables.

disp([opts.VariableNames' opts.VariableTypes'])

1 Alphabetical List

1-7214

 'LastName' 'char'
 'Gender' 'char'
 'Age' 'double'
 'Location' 'char'
 'Height' 'double'
 'Weight' 'double'
 'Smoker' 'logical'
 'Systolic' 'double'
 'Diastolic' 'double'
 'SelfAssessedHealthStatus' 'char'

Change the data type of multiple variables depending on your import needs.

opts = setvartype(opts,{'LastName','Gender','Location',...
 'Smoker','SelfAssessedHealthStatus'},'string');
opts = setvartype(opts,{'Age','Height','Weight',...
 'Systolic','Diastolic'},'single');

Examine the updated data types of the variables.

disp([opts.VariableNames' opts.VariableTypes'])

 'LastName' 'string'
 'Gender' 'string'
 'Age' 'single'
 'Location' 'string'
 'Height' 'single'
 'Weight' 'single'
 'Smoker' 'string'
 'Systolic' 'single'
 'Diastolic' 'single'
 'SelfAssessedHealthStatus' 'string'

Import the variables with their updated types using readtable.

T = readtable('patients.xls',opts);

Input Arguments
opts — File import options
SpreadsheetImportOptions | DelimitedTextImportOptions |
FixedWidthImportOptions

 setvartype

1-7215

File import options, specified as a SpreadsheetImportOptions,
DelimitedTextImportOptions, or a FixedWidthImportOptions object created by
the detectImportOptions function. The opts object contains properties that control
the data import process, such as variable properties, data location properties,
replacement rules, and others.

selection — Selected variables
character vector | string scalar | cell array of character vector | string array | array of
indices | logical array

Selected variables, specified as a character vector, string scalar, cell array of character
vectors, string array, array of numeric indices, or a logical array.

Variable names (or indices) must be a subset of the names contained in the
VariableNames property of the opts object.
Example: 'Height'
Example: {'Height','LastName'}
Example: [5 9]
Data Types: char | string | cell | uint64 | logical

type — Variable data type
character vector | string scalar | cell array of character vectors | string array

Variable data type, specified as a character vector, string scalar, cell array of character
vectors, or string array containing valid data type names. The type argument designates
the data types to use when importing the variable. Import the variables using one of the
data types listed here.

Data MATLAB Data Type
Text 'char' or 'string'

1 Alphabetical List

1-7216

Data MATLAB Data Type
Numeric 'single', 'double', 'int8', 'int16',

'int32', 'int64', 'uint8', 'uint16',
'uint32', or 'uint64'

Undefined floating-point numbers NaN, -
Inf, +Inf are only valid for single and
double data types. Therefore, when you
change the type of floating-point data to an
integer, the importing function converts the
undefined floating-point numbers. For
example, when converting to the 'uint8'
data type:

• NaN is converted to 0.
• -Inf is converted to intmin('int8').
• +Inf is converted to intmax('int8').

The same conversion process applies to all
the integer data types: int8, int16,
int16, int32, int64, uint8, uint16,
uint32, or uint64.

Logical 'logical'
Date and time 'datetime'
Duration 'duration'
Categorical 'categorical'

Example: opts = setvartype(opts,'Height','double') changes the data type of
the variable Height to double.
Example: opts = setvartype(opts,{'Weight','LastName'},
{'single','string'}) changes the data type of the variable Weight to single and
variable LastName to string.
Data Types: char | string | cell

See Also
detectImportOptions | getvaropts | preview | setvaropts

 setvartype

1-7217

Introduced in R2016b

1 Alphabetical List

1-7218

spreadsheetImportOptions
Import options object for Spreadsheets

Description
A SpreadsheetImportOptions object enables you to specify how MATLAB imports
tabular data from spreadsheet files. The object contains properties that control the data
import process, including the handling of errors and missing data.

Creation
You can create a SpreadsheetImportOptions object by using either the
detectImportOptions function or the spreadsheetImportOptions function
(described here):

• Use detectImportOptions to detect and populate the import properties based on
the contents of the spreadsheet specified in filename.

opts = detectImportOptions(filename);

• Use spreadsheetImportOptions to define the import properties based on your
import requirements.

Syntax
opts = spreadsheetImportOptions
opts = spreadsheetImportOptions('NumVariables',numVars)
opts = spreadsheetImportOptions(___ ,Name,Value)

Description
opts = spreadsheetImportOptions creates a SpreadsheetImportOptions object
with one variable.

 spreadsheetImportOptions

1-7219

opts = spreadsheetImportOptions('NumVariables',numVars) creates the
object with the number of variables specified in numVars.

opts = spreadsheetImportOptions(___ ,Name,Value) specifies additional
properties for SpreadsheetImportOptions object using one or more name-value pair
arguments.

Input Arguments
numVars — Number of variables
positive scalar integer

Number of variables, specified as a positive scalar integer.

Properties
Variable Properties

VariableNames — Variable names
cell array of character vectors | string array

Variable names, specified as a cell array of character vectors or string array. The
VariableNames property contains the names to use when importing variables.

If the data contains N variables, but no variable names are detected, then the
VariableNames property contains {'Var1','Var2',...,'VarN'}.
Example: opts.VariableNames returns the current (detected) variable names.
Example: opts.VariableNames(3) = {'Height'} changes the name of the third
variable to Height.
Data Types: char | string | cell

VariableTypes — Variable data types
cell array of character vectors | string array

Variable data types, specified as a cell array of character vectors or string array. The
VariableTypes property designates the data types to use when importing variables.
When assigning new values, specify VariableTypes as a cell array of valid data type
names.

1 Alphabetical List

1-7220

To update the VariableTypes property, use the setvartype function.
Example: opts.VariableTypes returns the current (detected) variable data types.
Example: opts = setvartype(opts,'Height',{'double'}) changes the data type
of the variable Height to double.
Data Types: cell | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime

SelectedVariableNames — Subset of variables to import
character vector | string scalar | cell array of character vectors | string array | array of
numeric indices

Subset of variables to import, specified as a character vector, string scalar, cell array of
character vectors, string array or an array of numeric indices.

SelectedVariableNames must be a subset of names contained in the VariableNames
property. By default, SelectedVariableNames contains all the variable names from the
VariableNames property, which means that all variables are imported.

Use the SelectedVariableNames property to import only the variables of interest.
Specify a subset of variables using the SelectedVariableNames property and use
readtable to import only that subset.
Example: opts.SelectedVariableNames = {'Height','LastName'} selects only
two variables, Height and LastName, for the import operation.
Example: opts.SelectedVariableNames = [1 5] selects only two variables, the first
variable and the fifth variable, for the import operation.
Example: T = readtable(filename,opts) returns a table containing only the
variables specified in the SelectedVariableNames property of the opts object.
Data Types: uint16 | uint32 | uint64 | char | string | cell

VariableOptions — Type specific variable import options
array of variable import options objects

Type specific variable import options, returned as an array of variable import options
objects. The array contains an object corresponding to each variable specified in the
VariableNames property. Each object in the array contains properties that support the
importing of data with a specific data type.

 spreadsheetImportOptions

1-7221

Variable options support these data types: numeric, text, logical, datetime, or
categorical.

To query the current (or detected) options for a variable, use the getvaropts function.

To set and customize options for a variable, use the setvaropts function.
Example: opts.VariableOptions returns a collection of VariableImportOptions
objects, one corresponding to each variable in the data.
Example: getvaropts(opts,'Height') returns the VariableImportOptions object
for the Height variable.
Example: opts = setvaropts(opts,'Height','FillValue',0) sets the
FillValue property for the variable Height to 0.

Location Properties

Sheet — Sheet to read from
'' empty character array (default) | character vector | string scalar | positive scalar
integer

Sheet to read from, specified as an empty character array, a character vector or string
scalar containing the sheet name, or a positive scalar integer denoting the sheet index.
Based on the value specified for the Sheet property, the import function behaves as
described in the table.

Specification Behavior
'' (default) Import data from the first sheet.
Name Import data from the matching sheet name, regardless of

order of sheets in the spreadsheet file.
Integer Import data from sheet in the position denoted by the

integer, regardless of the sheet names in the spreadsheet
file.

Data Types: char | string | single | double

DataRange — Location of data
character vector | string scalar | positive scalar integer | array of positive scalar integers |
cell array of character vector | string array

1 Alphabetical List

1-7222

Location of data to be imported, specified as a character vector, string scalar, cell array of
character vectors, string array, positive scalar integer or an N-by-2 array of positive scalar
integers. Specify DataRange using one of these forms.

Specified by Behavior
'Cell' or n

Starting Cell or Starting Row

Specify the starting cell for the data, using Excel A1
notation. For example, A5 is the identifier for the cell at
the intersection of column A and row 5.

Using the starting cell, the importing function
automatically detects the extent of the data, by
beginning the import at the start cell and ending at the
last empty row or footer range.

Alternatively, specify the first row containing the data
using the positive scalar row index.

Using the specified row index, the importing function
automatically detects the extent of the data by reading
from the specified first row to the end of the data or the
footer range.

Example: 'A5' or 5
'Corner1:Corner2'

Rectangular Range

Specify the exact range to read using the rectangular
range form, where Corner1 and Corner2 are two
opposing corners that define the region to read.

The importing function only reads the data contained in
the specified range. Any empty fields within the
specified range are imported as missing cells.

The number of columns must match the number
specified in the NumVariables property.

Example: 'A5:K50'

 spreadsheetImportOptions

1-7223

Specified by Behavior
'Row1:Row2' or
'Column1:Column2'

Row Range or Column Range

Specify the range by identifying the beginning and
ending rows using Excel row numbers.

Using the specified row range, the importing function
automatically detects the column extent by reading
from the first nonempty column to the end of the data,
and creates one variable per column.

Example: '5:500'

Alternatively, specify the range by identifying the
beginning and ending columns using Excel column
letters or numbers.

Using the specified column range, the import function
automatically detects the row extent by reading from
the first nonempty row to the end of the data or the
footer range.

The number of columns in the specified range must
match the number specified in the NumVariables
property.

Example: 'A:K'
[n1 n2; n3 n4;...]

Multiple Row Ranges

Specify multiple row ranges to read with an N-by-2
array containing N different row ranges.

A valid array of multiple row ranges must:

• Specify line ranges in an increasing order, that is
the first row range specified in the array appears in
the file before the other row ranges.

• Contain only non-overlapping row ranges.

Use of Inf is only supported to indicate the last range
in the numeric array specifying multiple row ranges.
For example, [1 3; 5 6; 8 Inf].

Example: [1 3; 5 6; 8 Inf]

1 Alphabetical List

1-7224

Specified by Behavior
''

Unspecified or Empty

Do not fetch any data.

Example: ''

Data Types: char | string | cell | single | double

RowNamesRange — Location of row names
character vector | string scalar | positive scalar integer | '' empty character array

Location of row names, specified as a character vector, string scalar, positive scalar
integer, or an empty character array. Specify RowNamesRange as one of the values in this
table.

Specified by Behavior
'Cell' Specify the starting cell for the data, using Excel A1

notation. For example, A5 is the identifier for the cell at
the intersection of column A and row 5.

The importing function identifies a name for each
variable in the data.

Example: 'A5'
'Corner1:Corner2'

Rectangular Range

Specify the exact range to read using the rectangular
range form, where Corner1 and Corner2 are two
opposing corners that define the region to read.

The number of rows contained in RowNamesRange
must match the number of data rows, and the range
indicated by RowNamesRange must span only one
column.

Example: 'A5:A50'
'Row1:Row2'

Row Range

Specify range by identifying the beginning and ending
rows using Excel row numbers.

Row names must be in a single column.

Example: '5:50'

 spreadsheetImportOptions

1-7225

Specified by Behavior
n

Number Index

Specify the column containing the row names using a
positive scalar column index.

Example: 5
''

Unspecified or Empty

Indicate that there are no row names.

Example: ''

Data Types: char | single | double

VariableNamesRange — Location of variable names
character vector | string scalar | positive scalar integer | '' empty character array

Location of variable names, specified as a character vector, string scalar, positive scalar
integer, or an empty character array. Specify VariableNamesRange as one of the values
in this table.

Specified by Behavior
'Cell' Specify the starting cell for the data, using Excel A1

notation. For example, A5 is the identifier for the cell at
the intersection of column A and row 5.

The importing function reads a name for each variable
in the data.

Example: 'A5'
'Corner1:Corner2'

Rectangular Range

Specify the exact range to read using the rectangular
range form, where Corner1 and Corner2 are two
opposing corners that define the region to read.

The number of columns must match the number
specified in the NumVariables property, and the range
must span only one row.

Example: 'A5:K5'

1 Alphabetical List

1-7226

Specified by Behavior
'Row1:Row2'

Row Range

Specify range by identifying the beginning and ending
rows using Excel row numbers.

Must be a single row.

Example: '5:5'
n

Number Index

Specify the row containing the variable names using a
positive scalar row index.

Example: 5
''

Unspecified or Empty

Indicate that there are no variable names.

Example: ''

Data Types: char | single | double

VariableDescriptionsRange — Location of variable descriptions
character vector | string scalar | '' empty character array

Location of variable descriptions, specified as a character vector, string scalar, positive
scalar integer, or an empty character array. Specify VariableDescriptionRange as
one of the values in this table.

Specified by Behavior
'Cell' Specify the starting cell for the data, using Excel A1

notation. For example, A5 is the identifier for the cell at
the intersection of column A and row 5.

The importing function reads a description for each
variable in the data.

Example: 'A5'

 spreadsheetImportOptions

1-7227

Specified by Behavior
'Corner1:Corner2'

Rectangular Range

Specify the exact range to read using the rectangular
range form, where Corner1 and Corner2 are two
opposing corners that define the region to read.

The number of columns must match the number
specified in the NumVariables property, and the range
must span only one row.

Example: 'A5:K5'
'Row1:Row2'

Row Range

Specify range by identifying the beginning and ending
rows using Excel row numbers.

Must be a single row.

Example: '5:5'
n

Number Index

Specify the row containing the descriptions using a
positive scalar row index.

Example: 5
''

Unspecified or Empty

Indicate that there are no variable descriptions.

Example: ''

Data Types: char | string | single | double

VariableUnitsRange — Location of variable units
character vector | string scalar | positive scalar integer | '' empty character array

Location of variable units, specified as a character vector, string scalar, positive scalar
integer, or an empty character array. Specify VariableUnitsRange as one of the values
in this table.

1 Alphabetical List

1-7228

Specified by Behavior
'Cell' Specify the starting cell for the data, using Excel A1

notation. For example, A5 is the identifier for the cell at
the intersection of column A and row 5.

The importing function reads a unit for each variable in
the data.

Example: 'A5'
'Corner1:Corner2'

Rectangular Range

Specify the exact range to read using the rectangular
range form, where Corner1 and Corner2 are two
opposing corners that define the region to read.

The number of columns must match the number
specified in the NumVariables property, and the range
must span only one row.

Example: 'A5:K5'
'Row1:Row2'

Row Range

Specify range by identifying the beginning and ending
rows using Excel row numbers.

Must be a single row.

Example: '5:5'
n

Number Index

Specify the row containing the data units using a
positive scalar row index.

Example: 5
''

Unspecified or Empty

Indicate that there are no variable units.

Example: ''

Data Types: char | string | single | double

Replacement Rules

MissingRule — Procedure to manage missing data
'fill' | 'error' | 'omitrow' | 'omitvar'

Procedure to manage missing data, specified as one of the values in this table.

 spreadsheetImportOptions

1-7229

Missing Rule Behavior
'fill' Replace missing data with the contents of the FillValue

property.

The FillValue property is specified in the
VariableImportOptions object of the variable being
imported. For more information on accessing the
FillValue property, see getvaropts.

'error' Stop importing and display an error message showing the
missing record and field.

'omitrow' Omit rows that contain missing data.
'omitvar' Omit variables that contain missing data.

Example: opts.MissingRule = 'omitrow';uint32
Data Types: char | string

ImportErrorRule — Procedure to handle import errors
'fill' | 'error' | 'omitrow' | 'omitvar'

Procedure to handle import errors, specified as one of the values in this table.

Import Error Rule Behavior
'fill' Replace the data where the error occurred with the

contents of the FillValue property.

The FillValue property is specified in the
VariableImportOptions object of the variable being
imported. For more information on accessing the
FillValue property, see getvaropts.

'error' Stop importing and display an error message showing the
error-causing record and field.

'omitrow' Omit rows where errors occur.
'omitvar' Omit variables where errors occur.

Example: opts.ImportErrorRule = 'omitvar';
Data Types: char | string

1 Alphabetical List

1-7230

Object Functions
getvaropts Get variable import options
setvaropts Set variable import options
setvartype Set variable data types
preview Preview eight rows from file using import options

Examples

Define Import Options for Variable in Spreadsheet File

Create an import options object to read one variable from the file patients.xls.

Initialize a SpreadsheetImportOptions object, specify the variable name, variable
type, and the data starting cell. Then, use the preview function with the import options
object to preview the data.

opts = spreadsheetImportOptions;
opts.VariableNames = 'LastName';
opts.VariableTypes = 'categorical';
opts.DataRange = 'A2';
preview('patients.xls',opts)

ans=8×1 table
 LastName

 Smith
 Johnson
 Williams
 Jones
 Brown
 Davis
 Miller
 Wilson

Import the variable from the file.

oneVar = readtable('patients.xls',opts);
whos oneVar

 spreadsheetImportOptions

1-7231

 Name Size Bytes Class Attributes

 oneVar 100x1 13566 table

Define Import Options for Multiple Variables in Spreadsheet File

Create an import options object to read multiple variables from patients.xls.

Based on the contents of your file, define the number of variables, variable names,
variable types, and the data starting location.

numVars = 7;
varNames = {'LastName','Gender','Age','Location','Height','Weight','Smoker'} ;
varTypes = {'char','categorical','int32','char','double','double','logical'} ;
dataStartLoc = 'A2';

Initialize the import options object opts using the spreadsheetImportOptions
function and your variable information.

opts = spreadsheetImportOptions('NumVariables',numVars,...
 'VariableNames',varNames,...
 'VariableTypes',varTypes,...
 'DataRange', dataStartLoc);

Preview the data using the preview function with the import options.

preview('patients.xls',opts)

ans=8×7 table
 LastName Gender Age Location Height Weight Smoker
 __________ ______ ___ ___________________________ ______ ______ ______

 'Smith' Male 38 'County General Hospital' 71 176 true
 'Johnson' Male 43 'VA Hospital' 69 163 false
 'Williams' Female 38 'St. Mary's Medical Center' 64 131 false
 'Jones' Female 40 'VA Hospital' 67 133 false
 'Brown' Female 49 'County General Hospital' 64 119 false
 'Davis' Female 46 'St. Mary's Medical Center' 68 142 false
 'Miller' Female 33 'VA Hospital' 64 142 true
 'Wilson' Male 40 'VA Hospital' 68 180 false

Import the data using readtable.

1 Alphabetical List

1-7232

T = readtable('patients.xls',opts);
whos T

 Name Size Bytes Class Attributes

 T 100x7 32332 table

See Also
detectImportOptions | readtable

Introduced in R2016b

 spreadsheetImportOptions

1-7233

Import Tool
Import data from file

Description
The Import Tool lets you preview and import data from spreadsheet files, delimited text
files, and fixed-width text files. You can interactively select the data to import and reuse
the script or function that the tool generates to import other similar files.

Open the Import Tool App
• MATLAB Toolstrip: On the Home tab, in the Variable section, click Import Data.
• MATLAB command prompt: Enter uiimport(filename), where filename is a

character vector specifying the name of a text or spreadsheet file.

Examples

Select Range to Import

Import ranges of data from a tab-delimited text file and replace nonnumeric values in the
file.

Drag the cursor to select the cells to import. Press Ctrl to select noncontiguous ranges.

1 Alphabetical List

1-7234

Modify the Variable Names Row field to indicate the row you want the Import Tool to
use for the variable names.

 Import Tool

1-7235

By default, NaN replaces unimportable values in numeric cells. However, you can change
this value to any other numeric value. Specify how to treat unimportable values on the
Import tab, in the Unimportable Cells section.

1 Alphabetical List

1-7236

Alternatively, exclude any row that contains an unimportable cell from being imported.

Click Import Selection . The new column vectors appear in your workspace.

 Import Tool

1-7237

Specify Decimal Separator and Date Format

Import dates and numbers from a text file into a table. Specify the decimal separator for
numeric values in the file and a custom format for dates.

In the Imported Data section, select Table to import the file data into a table variable.
In this example, the third column of data contains monetary amounts where the decimal
separator is a comma. In the Delimiters section, select Delimiter Options. Then, under
Decimal Separator, select , (comma).

1 Alphabetical List

1-7238

The Import Tool appropriately converts the monetary values.

 Import Tool

1-7239

Specify that a column contains date or time data by changing the data type for the
column to DATE/TIME. Click more date formats.... Scroll down the list to enter a
custom date format.

1 Alphabetical List

1-7240

Click Import Selection to import the table.

• “Import Text File Data Using Import Tool”
• “Read Spreadsheet Data Using Import Tool”
• “Supported File Formats for Import and Export”

 Import Tool

1-7241

Programmatic Use
uiimport opens a dialog to interactively load data from a file or the clipboard. MATLAB
displays a preview of the data in the file.

uiimport(filename) opens the file specified in filename using either Import Tool or
Import Wizard depending on the file type. For spreadsheet and text files, uiimport
opens the file using Import Tool. For all other file types, such as image, audio, or MAT-
files, uiimport opens the file using Import Wizard.

uiimport('-file') presents the file selection dialog first.

uiimport('-pastespecial') presents the clipboard contents first.

S = uiimport(___) opens the file using Import Wizard and stores the resulting
variables as fields in the struct S.

See Also
Functions
clipboard | load | readcell | readmatrix | readtable | readvars | textscan

Topics
“Import Text File Data Using Import Tool”
“Read Spreadsheet Data Using Import Tool”
“Supported File Formats for Import and Export”

1 Alphabetical List

1-7242

imread
Read image from graphics file

Syntax
A = imread(filename)
A = imread(filename,fmt)
A = imread(___ ,idx)
A = imread(___ ,Name,Value)
[A,map] = imread(___)
[A,map,transparency] = imread(___)

Description
A = imread(filename) reads the image from the file specified by filename, inferring
the format of the file from its contents. If filename is a multi-image file, then imread
reads the first image in the file.

A = imread(filename,fmt) additionally specifies the format of the file with the
standard file extension indicated by fmt. If imread cannot find a file with the name
specified by filename, it looks for a file named filename.fmt.

A = imread(___ ,idx) reads the specified image or images from a multi-image file.
This syntax applies only to GIF, CUR, ICO, TIF, and HDF4 files. You must specify a
filename input, and you can optionally specify fmt.

A = imread(___ ,Name,Value) specifies format-specific options using one or more
name-value pair arguments, in addition to any of the input arguments in the previous
syntaxes.

[A,map] = imread(___) reads the indexed image in filename into A and reads its
associated colormap into map. Colormap values in the image file are automatically
rescaled into the range [0,1].

[A,map,transparency] = imread(___) additionally returns the image
transparency. This syntax applies only to PNG, CUR, and ICO files. For PNG files,

 imread

1-7243

transparency is the alpha channel, if one is present. For CUR and ICO files, it is the
AND (opacity) mask.

Examples

Read and Display Image

Read a sample image.

A = imread('ngc6543a.jpg');

imread returns a 650-by-600-by-3 array, A.

Display the image.

image(A)

1 Alphabetical List

1-7244

Convert Indexed Image to RGB

Read the first image in the sample indexed image file, corn.tif.

[X,cmap] = imread('corn.tif');

The indexed image X is a 415-by-312 array of type uint8. The colormap cmap is a 256-
by-3 matrix of type double, therefore there are 256 colors in the indexed image. Display
the image.

imshow(X,cmap)

 imread

1-7245

Convert the indexed image to an RGB image. The result is a 415-by-312-by-3 array of type
double.

RGB = ind2rgb(X,cmap);

Check that values of the RGB image are in the range [0, 1].

disp(['Range of RGB image is [',num2str(min(RGB(:))),', ',num2str(max(RGB(:))),'].'])

1 Alphabetical List

1-7246

Range of RGB image is [0.0078431, 0.97647].

Read Specific Image in Multipage TIFF File

Read the third image in the sample file, corn.tif.

[X,map] = imread('corn.tif',3);

Return Alpha Channel of PNG Image

Return the alpha channel of the sample image, peppers.png.

[X,map,alpha] = imread('peppers.png');
whos alpha

 Name Size Bytes Class Attributes

 alpha 0x0 0 double

No alpha channel is present, so alpha is empty.

Read Specified Region of TIFF Image

Read a specific region of pixels of the sample image, corn.tif.

Specify the 'PixelRegion' parameter with a cell array of vectors indicating the
boundaries of the region to read. The first vector specifies the range of rows to read, and
the second vector specifies the range of columns to read.

A = imread('corn.tif','PixelRegion',{[1,2],[2,5]});

imread reads the image data in rows 1-2 and columns 2-5 from corn.tif and returns
the 2-by-4 array, A.

 imread

1-7247

Input Arguments
filename — Name of graphics file
character vector | string scalar

Name of graphics file, specified as a character vector or string scalar.

Depending on the location of your file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myImage.jpg'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name.

Example: 'C:\myFolder\myImage.ext'

Example: '\imgDir\myImage.ext'
URL If the file is located by an internet URL, then filename must

contain the protocol type such as, http://.

Example: 'http://hostname/path_to_file/
my_image.jpg'

1 Alphabetical List

1-7248

Location Form
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_image.jpg'

For information on the bit depths, compression schemes, and color spaces supported for
each file type, see “Algorithms” on page 1-7254.
Data Types: char | string

fmt — Image format
character vector | string scalar

Image format, specified as a character vector or string scalar indicating the standard file
extension. Call imformats to see a list of supported formats and their file extensions.
Example: 'png'
Data Types: char | string

idx — Image to read
integer scalar | vector of integers

Image to read, specified as an integer scalar or, for GIF files, a vector of integers. For
example, if idx is 3, then imread returns the third image in the file. For a GIF file, if idx
is 1:5, then imread returns only the first five frames. The idx argument is supported
only for multi-image GIF, CUR, ICO, and HDF4 files.

 imread

1-7249

When reading multiple frames from the same GIF file, specify idx as a vector of frames
or use the 'Frames','all' name-value pair argument. Because of the way that GIF files
are structured, these syntaxes provide faster performance compared to calling imread in
a loop.

For HDF4 files, idx corresponds to the reference number of the image to read. Reference
numbers do not necessarily correspond to the order of the images in the file. You can use
imfinfo to match image order with reference number.
Example: 3
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Index',5 reads the fifth image of a TIFF file.

GIF Files

Frames — Frame to read
1 (default) | positive integer | vector of integers | 'all'

Frames to read, specified as the comma-separated pair consisting of 'Frames' and a
positive integer, a vector of integers, or 'all'. For example, if you specify the value 3,
imread reads the third frame in the file. If you specify 'all', then imread reads all
frames and returns them in the order in which they appear in the file.
Example: 'frames',5

JPEG 2000 Files

PixelRegion — Subimage to read
cell array in the form {rows,cols}

Subimage to read, specified as the comma-separated pair consisting of 'PixelRegion'
and a cell array of the form {rows,cols}. The rows input specifies the range of rows to
read. The cols input specifies the range of columns to read. Both rows and cols must
be two-element vectors containing 1-based indices. For example, 'PixelRegion',{[1

1 Alphabetical List

1-7250

2],[3 4]} reads the subimage bounded by rows 1 and 2 and columns 3 and 4 in the
image data. If the 'ReductionLevel' value is greater than 0, then rows and cols are
coordinates of the subimage.
Example: 'PixelRegion',{[1 100],[4 500]}

ReductionLevel — Reduction of image resolution
0 (default) | nonnegative integer

Reduction of the image resolution, specified as the comma-separated pair consisting of
'ReductionLevel' and a nonnegative integer. For reduction level L, the image
resolution is reduced by a factor of 2^L. The reduction level is limited by the total
number of decomposition levels as specified by the'WaveletDecompositionLevels'
field in the output of the imfinfo function.
Example: 'ReductionLevel',5
Data Types: single | double

V79Compatible — Compatibility with MATLAB 7.9 (R2009b) and earlier
false (default) | true

Compatibility with MATLAB 7.9 (R2009b) and earlier, specified as the comma-separated
pair consisting of 'V79Compatible' and either true or false. If you specify true,
then the returned grayscale or RGB image is consistent with previous versions of imread
(MATLAB 7.9 (R2009b) and earlier).
Example: 'V79Compatible',true
Data Types: logical

PNG Files

BackgroundColor — Background color
'none' | integer | 3-element vector of integers

Background color, specified as 'none', an integer, or a three-element vector of integers.
If BackgroundColor is 'none', then imread does not perform any compositing.
Otherwise, imread blends transparent pixels with the background color.

• If the input image is indexed, then the value of BackgroundColor must be an integer
in the range [1,P], where P is the colormap length.

• If the input image is grayscale, then the value of BackgroundColor must be an
integer in the range [0,1].

 imread

1-7251

• If the input image is RGB, then the value of BackgroundColor must be a three-
element vector with values in the range [0,1].

The default value for BackgroundColor depends on the presence of the transparency
output argument and the image type:

• If you request the transparency output argument, then the default value of
BackgroundColor is 'none'.

• If you do not request the transparency output and the PNG file contains a
background color chunk, then that color is the default value for BackgroundColor.

• If you do not request the transparency output and the file does not contain a
background color chunk, then the default value for BackgroundColor is 1 for
indexed images, 0 for grayscale images, and [0 0 0] for truecolor (RGB) images.

TIFF Files

Index — Image to read
1 (default) | positive integer

Image to read, specified as the comma-separated pair consisting of 'Index' and a
positive integer. For example, if the value of Index is 3, then imread reads the third
image in the file.
Data Types: single | double

Info — Information about image
structure array

Information about the image, specified as the comma-separated pair consisting of 'Info'
and a structure array returned by the imfinfo function. Use the Info name-value pair
argument to help imread locate the images in a multi-image TIFF file more quickly.
Data Types: struct

PixelRegion — Region boundary
cell array

Region boundary, specified as the comma-separated pair consisting of 'PixelRegion'
and a cell array of the form {rows,cols}. The rows input specifies the range of rows to
read. The cols input specifies the range of columns to read. rows and cols must be
either two-element or three-element vectors of 1-based indices. A two-element vector
specifies the first and last rows or columns to read. For example, 'PixelRegion',{[1

1 Alphabetical List

1-7252

2],[3 4]} reads the region bounded by rows 1 and 2 and columns 3 and 4 in the image
data.

A three-element vector must be in the form [start increment stop], where start is
the first row or column to read, increment is an incremental value, and stop is the last
row or column to read. This syntax allows image downsampling. For example,
'PixelRegion',{[1 2 10],[4 3 12]} reads the region bounded by rows 1 and 10
and columns 4 and 12, and samples data from every 2 pixels in the vertical direction, and
every 3 pixels in the horizontal direction.
Example: 'PixelRegion',{[1 100],[4 500]}
Data Types: cell

Output Arguments
A — Image data
array

Image data, returned as an array.

• If the file contains a grayscale image, then A is an m-by-n array.
• If the file contains an indexed image, then A is an m-by-n array of index values

corresponding to the color at that index in map.
• If the file contains a truecolor image, then A is an m-by-n-by-3 array.
• If the file is a TIFF file containing color images that use the CMYK color space, then A

is an m-by-n-by-4 array.

The class of A depends on the image format and the bit depth of the image data. For more
information, see “Algorithms” on page 1-7254

map — Colormap
m-by-3 matrix

Colormap associated with the indexed image data in A, returned as an m-by-3 matrix of
class double.

transparency — Transparency information
matrix

 imread

1-7253

Transparency information, returned as a matrix. For PNG files, transparency is the
alpha channel, if present. If no alpha channel is present, or if you specify the
'BackgroundColor' name-value pair argument, then transparency is empty. For CUR
and ICO files, transparency is the AND mask. For cursor files, this mask sometimes
contains the only useful data.

Definitions

Bit Depth
Bit depth is the number of bits used to represent each image pixel.

Bit depth is calculated by multiplying the bits-per-sample with the samples-per-pixel.
Thus, a format that uses 8 bits for each color component (or sample) and three samples
per pixel has a bit depth of 24. Sometimes the sample size associated with a bit depth can
be ambiguous. For example, does a 48-bit bit depth represent six 8-bit samples, four 12-
bit samples, or three 16-bit samples? See “Algorithms” on page 1-7254 for sample size
information to avoid this ambiguity.

Algorithms
For most image file formats, imread uses 8 or fewer bits per color plane to store image
pixels. This table lists the class of the returned image array, A, for the bit depths used by
the file formats.

Bit Depth in File Class of Array Returned by imread
1 bit per pixel logical
2 to 8 bits per color
plane

uint8

9 to 16 bits per pixel uint16 (BMP, JPEG, PNG, and TIFF)

For the 16-bit BMP packed format (5-6-5), MATLAB returns
uint8

The following sections provide information about the support for specific formats, listed in
alphabetical order by format name.

1 Alphabetical List

1-7254

“BMP — Windows Bitmap”
on page 1-7255

“JPEG — Joint Photographic
Experts Group” on page 1-
7257

“PNG — Portable Network
Graphics” on page 1-7258

“CUR — Cursor File” on
page 1-7255

“JPEG 2000 — Joint
Photographic Experts Group
2000” on page 1-7257

“PPM — Portable Pixmap”
on page 1-7259

“GIF — Graphics
Interchange Format” on
page 1-7256

“PBM — Portable Bitmap”
on page 1-7257

“RAS — Sun Raster” on
page 1-7259

“HDF4 — Hierarchical Data
Format” on page 1-7256

“PCX — Windows
Paintbrush” on page 1-7258

“TIFF — Tagged Image File
Format” on page 1-7259

“ICO — Icon File” on page 1-
7256

“PGM — Portable Graymap”
on page 1-7258

“XWD — X Window Dump”
on page 1-7260

BMP — Windows Bitmap
This table lists supported bit depths and the data type of the output image data array.

Supported Bit
Depths

No
Compressio
n

RLE
Compression

Output Class Notes

1 bit ✓ – logical
4 bit ✓ ✓ uint8
8 bit ✓ ✓ uint8
16 bit ✓ – uint8 1 sample/pixel
24 bit ✓ – uint8 3 samples/pixel
32 bit ✓ – uint8 3 samples/pixel

(1 byte padding)

CUR — Cursor File
This table lists supported bit depths and the data type of the output image data array.

 imread

1-7255

Supported Bit
Depths

No Compression Compression Output Class

1 bit ✓ – logical
4 bit ✓ – uint8
8 bit ✓ – uint8

Note By default, Microsoft Windows cursors are 32-by-32 pixels. Since MATLAB pointers
must be 16-by-16, you might need to scale your image. If you have Image Processing
Toolbox™, you can use the imresize function.

GIF — Graphics Interchange Format
This table lists supported bit depths and the data type of the output image data array.

Supported Bit
Depths

No Compression Compression Output Class

1 bit ✓ – logical
2 bit to 8 bit ✓ – uint8

HDF4 — Hierarchical Data Format
This table lists supported bit depths and the data type of the output image data array.

Supported Bit
Depths

Raster
Image with
colormap

Raster image
without
colormap

Output Class Notes

8 bit ✓ ✓ uint8
24 bit – ✓ uint8 3 samples/pixel

ICO — Icon File
See “CUR — Cursor File” on page 1-7255

1 Alphabetical List

1-7256

JPEG — Joint Photographic Experts Group
imread reads any baseline JPEG image, as well as JPEG images with some commonly
used extensions. For information on JPEG 2000 file support, see JPEG 2000 on page 1-
7257.

Supported Bits
per Sample

Lossy
Compression

Lossless
Compression

Output Class Notes

8 bit ✓ ✓ uint8 Grayscale or RGB
12 bit ✓ ✓ uint16 Grayscale or RGB
16 bit – ✓ uint16 Grayscale

JPEG 2000 — Joint Photographic Experts Group 2000
For information about JPEG files, see JPEG on page 1-7257.

Note Indexed JPEG 2000 images are not supported. Only JP2 compatible color spaces are
supported for JP2/JPX files. By default, all image channels are returned in the order they
are stored in the file.

Supported Bits
per Sample

Lossy
Compression

Lossless
Compression

Output Class Notes

1 bit ✓ ✓ logical Grayscale only
2 bit to 8 bit ✓ ✓ uint8 or int8 Grayscale

or RGB
9 bit to 16 bit ✓ ✓ uint16 or int16 Grayscale

or RGB

PBM — Portable Bitmap
This table lists supported bit depths and the data type of the output image data array.

 imread

1-7257

Supported Bit
Depths

Raw Binary ASCII (Plain)
Encoded

Output Class

1 bit ✓ ✓ logical

PCX — Windows Paintbrush
This table lists supported bit depths and the data type of the output image data array.

Supported Bit
Depths

Output Class Notes

1 bit logical Grayscale only
8 bit uint8 Grayscale or indexed
24 bit uint8 RGB

Three 8-bit samples/pixel

PGM — Portable Graymap
This table lists supported bit depths and the data type of the output image data array.

Supported Bit
Depths

Raw Binary ASCII (Plain)
Encoded

Output Class Notes

8 bit ✓ – uint8
16 bit ✓ – uint16
Arbitrary – ✓ 1-bit to 8-bit: uint8

9-bit to 16-bit:
uint16

Values are scaled

PNG — Portable Network Graphics
This table lists supported bit depths and the data type of the output image data array.

Supported Bit Depths Output Class Notes
1 bit logical Grayscale
2 bit uint8 Grayscale

1 Alphabetical List

1-7258

Supported Bit Depths Output Class Notes
4 bit uint8 Grayscale
8 bit uint8 Grayscale or Indexed
16 bit uint16 Grayscale or Indexed
24 bit uint8 RGB

Three 8-bit samples/pixel.
48 bit uint16 RGB

Three 16-bit samples/pixel.

PPM — Portable Pixmap
This table lists supported bit depths and the data type of the output image data array.

Supported Bit
Depths

Raw Binary ASCII (Plain)
Encoded

Output Class

Up to 16 bit ✓ – uint8
Arbitrary – ✓

RAS — Sun Raster
This table lists supported bit depths and the data type of the output image data array.

Supported Bit
Depths

Output Class Notes

1 bit logical Bitmap
8 bit uint8 Indexed
24 bit uint8 RGB

Three 8-bit samples/pixel
32 bit uint8 RGB with Alpha

Four 8-bit samples/pixel

TIFF — Tagged Image File Format
imread reads most images supported by the TIFF specification or LibTIFF. The imread
function supports these TIFF capabilities:

 imread

1-7259

• Any number of samples per pixel
• CCITT group 3 and 4 FAX, Packbits, JPEG, LZW, Deflate, ThunderScan compression,

and uncompressed images
• Logical, grayscale, indexed color, truecolor and hyperspectral images
• RGB, CMYK, CIELAB, ICCLAB color spaces. If the color image uses the CMYK color

space, A is an m-by-n-by-4 array. To determine which color space is used, use imfinfo
to get information about the graphics file and look at the value of the
PhotometricInterpretation field. If a file contains CIELAB color data, imread
converts it to ICCLAB before bringing it into the MATLAB workspace. This conversion
is necessary because 8-bit or 16-bit TIFF CIELAB-encoded values use a mixture of
signed and unsigned data types that cannot be represented as a single MATLAB array.

• Data organized into tiles or scanlines

imread reads and converts TIFF images as follows:

• YCbCr images are converted into the RGB colorspace.
• All grayscale images are read as if black = 0, white = largest value.
• 1-bit images are returned as class logical.
• 16-bit floating-point images are returned as class single.
• CIELab images are converted into ICCLab colorspace.

For copyright information, open the libtiffcopyright.txt file.

XWD — X Window Dump
This table lists the supported bit depths, compression, and output classes for XWD files.

Supported Bit
Depths

ZPixmaps XYBitmaps XYPixmaps Output Class

1 bit ✓ – ✓ logical
8 bit ✓ – – uint8

1 Alphabetical List

1-7260

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports reading of 8-bit JPEG images only. The input argument filename must be a
valid absolute path or relative path.

• This function generates code that uses a precompiled, platform-specific shared library
(Image Processing Toolbox).

• In a MATLAB Function block, the input argument filename must be a compile-time
constant.

See Also
fread | image | imfinfo | imformats | imwrite | ind2rgb

Topics
“Importing Images”

Introduced before R2006a

 imread

1-7261

imresize
Resize image

Syntax
B = imresize(A,scale)
B = imresize(A,[numrows numcols])
[Y,newmap] = imresize(X,map, ___)
___ = imresize(___ ,method)
___ = imresize(___ ,Name,Value)

Description
B = imresize(A,scale) returns image B that is scale times the size of A. The input
image A can be a grayscale, RGB, or binary image. If A has more than two dimensions,
imresize only resizes the first two dimensions. If scale is in the range [0, 1], B is
smaller than A. If scale is greater than 1, B is larger than A. By default, imresize uses
bicubic interpolation.

B = imresize(A,[numrows numcols]) returns image B that has the number of rows
and columns specified by the two-element vector [numrows numcols].

[Y,newmap] = imresize(X,map, ___) resizes the indexed image X where map is the
colormap associated with the image. By default, imresize returns a new, optimized
colormap (newmap) with the resized image. To return a colormap that is the same as the
original colormap, use the 'Colormap' parameter.

___ = imresize(___ ,method) specifies the interpolation method used.

___ = imresize(___ ,Name,Value) returns the resized image where Name,Value
pairs control various aspects of the resizing operation.

Examples

1 Alphabetical List

1-7262

Shrink Image By Factor of Two Using Default Interpolation Method

Load image into the workspace.

I = imread('ngc6543a.jpg');

Shrink the image by a factor of two.

J = imresize(I, 0.5);

Display the original image and the resized image.

figure, imshow(I), figure, imshow(J)

 imresize

1-7263

1 Alphabetical List

1-7264

Shrink By Factor of Two Using Nearest-Neighbor Interpolation

Load an image into the workspace.

I = imread('ngc6543a.jpg');

Shrink by factor of two using nearest-neighbor interpolation. This is the fastest method,
but it has the lowest quality.

J = imresize(I, 0.5, 'nearest');

Display the original image and the resized image.

 imresize

1-7265

figure
imshow(I)

1 Alphabetical List

1-7266

figure
imshow(J)

Resize RGB Image

Read an RGB image into the workspace.

RGB = imread('peppers.png');

Resize the RGB image to have 64 rows. imresize calculates the number of columns
automatically.

 imresize

1-7267

RGB2 = imresize(RGB, [64 NaN]);

Display the original image and the resized image.

figure
imshow(RGB)

figure
imshow(RGB2)

1 Alphabetical List

1-7268

Resize Indexed Image

Read an indexed image into the workspace.

[X, map] = imread('corn.tif');

Shrink the indexed image by a factor of two.

[Y, newmap] = imresize(X, map, 0.5);

Display the original image and the resized image.

figure
imshow(X,map)

 imresize

1-7269

figure
imshow(Y, newmap)

1 Alphabetical List

1-7270

Input Arguments
A — Image to be resized
real, nonsparse numeric or logical array

Image to be resized, specified as a real, nonsparse numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

scale — Resize factor
real, numeric scalar

Resize factor, specified as a real, numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

[numrows numcols] — Row and column dimensions of output image
two-element numeric vector of positive values'

 imresize

1-7271

Row and column dimensions of output image, specified as a two-element numeric vector
of positive values. Either numrows or numcols can be NaN, in which case imresize
computes the number of rows or columns automatically to preserve the image aspect
ratio.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

X — Indexed image to be resized
real, nonsparse numeric array

Indexed image to be resized, specified as a real, nonsparse numeric array.
Example: [X2, newmap] = imresize(X,map,0.75);
Data Types: double | uint8 | uint16

map — Colormap associated with indexed image
m-by-3 numeric array

Colormap associated with indexed image, m-by-3 numeric array.
Data Types: double

method — Interpolation method
'bicubic' (default) | character vector | two-element cell array

Interpolation method, specified as a character vector or two-element cell array.

When method is a character vector, it identifies a particular method or named
interpolation kernel, listed in the following table.

Method Description
'nearest' Nearest-neighbor interpolation; the output pixel is assigned the

value of the pixel that the point falls within. No other pixels are
considered.

'bilinear' Bilinear interpolation; the output pixel value is a weighted average
of pixels in the nearest 2-by-2 neighborhood

1 Alphabetical List

1-7272

Method Description
'bicubic' Bicubic interpolation; the output pixel value is a weighted average

of pixels in the nearest 4-by-4 neighborhood

Note Bicubic interpolation can produce pixel values outside the
original range.

Interpolation
Kernel

Description

'box' Box-shaped kernel
'triangle' Triangular kernel (equivalent to 'bilinear')
'cubic' Cubic kernel (equivalent to 'bicubic')
'lanczos2' Lanczos-2 kernel
'lanczos3' Lanczos-3 kernel

When method is a two-element cell array, it defines a custom interpolation kernel. The
cell array has the form {f,w}, where f is a function handle for a custom interpolation
kernel and w is the width of the custom kernel. f(x) must be zero outside the interval -w/2
<= x < w/2. The function handle f can be called with a scalar or a vector input. For user-
specified interpolation kernels, the output image can have some values slightly outside
the range of pixel values in the input image.
Data Types: char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: I2 = imresize(I,0.5,'Antialiasing',false);

Antialiasing — Perform antialiasing when shrinking an image
true | false

Perform antialiasing when shrinking an image, specified as the comma-separated pair
consisting of 'Antialiasing' and the logical Boolean value true or false. The default
value depends on the interpolation method. If the method is nearest-neighbor

 imresize

1-7273

('nearest'), the default is false. For all other interpolation methods, the default is
true.
Data Types: logical

Colormap — Return optimized colormap
'optimized' (default) | 'original'

Return optimized colormap, specified as the comma-separated pair consisting of
'Colormap' and the character vector 'optimized' or 'original'. (Indexed images
only). If set to 'original', the output colormap (newmap) is the same as the input
colormap (map). If set to 'optimized', imresize returns a new optimized colormap.
Data Types: char

Dither — Perform color dithering
true (default) | false

Perform color dithering, specified as the comma-separated pair consisting of 'Dither'
and the logical Boolean value true or false. (Indexed images only).

In dithering, you apply a form of noise to the image to randomize quantization error and
prevent large-scale patterns.
Data Types: logical

Method — Interpolation method
'bicubic' (default) | character vector | cell array

Interpolation method, specified as the comma-separated pair consisting of 'Method' and
a character vector or two-element cell array. For details, see method.
Data Types: char | cell

OutputSize — Size of output image
two-element numeric vector

Size of the output image, specified as the comma-separated pair consisting of
'OutputSize' and a two-element vector of the form [numrows numcols].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Scale — Resize scale factor
positive numeric scalar | two-element vector of positive values

1 Alphabetical List

1-7274

Resize scale factor, specified as the comma-separated pair consisting of 'Scale' and a
positive numeric scalar or two-element vector of positive values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Resized image
real, nonsparse numeric array

Resized image, returned as a real, nonsparse numeric array, the same class as the input
image.

Y — Resized indexed image
real, nonsparse numeric array

Resized indexed image, returned as a real, nonsparse numeric array, the same class as
the input image.

newmap — Optimized colormap
m-by-3 numeric array

Optimized colormap, returned as an m-by-3 numeric array.

Tips
• If the size of the output image is not an integer, imresize does not use the scale
specified. imresize uses ceil when calculating the output image size.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 imresize

1-7275

• Syntaxes that support indexed images are not supported, including the named
parameters 'Colormap' and 'Dither'.

• Custom interpolation kernels are not supported.
• All parameter-value pairs must be compile-time constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type single or double.
• Only bicubic interpolation is supported on GPU and the function always performs

antialiasing.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
gpuArray | imresize3 | imrotate | imtransform | interp2 | tformarray

Introduced before R2006a

1 Alphabetical List

1-7276

imshow
Display image

Syntax
imshow(I)
imshow(I,[low high])
imshow(I,[])
imshow(RGB)
imshow(BW)
imshow(X,map)
imshow(filename)
imshow(___,Name,Value)

himage = imshow(___)

Description
imshow(I) displays the grayscale image I in a figure. imshow uses the default display
range for the image data type and optimizes figure, axes, and image object properties for
image display.

imshow(I,[low high]) displays the grayscale image I, specifying the display range as
a two-element vector, [low high]. For more information, see the DisplayRange
parameter.

imshow(I,[]) displays the grayscale image I, scaling the display based on the range of
pixel values in I. imshow uses [min(I(:)) max(I(:))] as the display range. imshow
displays the minimum value in I as black and the maximum value as white. For more
information, see the DisplayRange parameter.

imshow(RGB) displays the truecolor image RGB in a figure.

imshow(BW) displays the binary image BW in a figure. For binary images, imshow
displays pixels with the value 0 (zero) as black and 1 as white.

 imshow

1-7277

imshow(X,map) displays the indexed image X with the colormap map. A colormap matrix
can have any number of rows, but it must have exactly 3 columns. Each row is interpreted
as a color, with the first element specifying the intensity of red, the second green, and the
third blue. Color intensity can be specified on the interval [0, 1].

imshow(filename) displays the image stored in the graphics file specified by
filename.

imshow(___,Name,Value) displays an image, using name-value pairs to control aspects
of the operation.

himage = imshow(___) returns the image object created by imshow.

Examples

Display Grayscale, RGB, Indexed, or Binary Image

Display a grayscale, RGB (truecolor), indexed or binary image using imshow. MATLAB®
includes a TIF file, named corn.tif, that contains three images: a grayscale image, an
indexed image, and a truecolor (RGB) image. This example creates a binary image from
the grayscale image.

Display a Grayscale Image

Read the grayscale image from the corn.tif file into the MATLAB workspace. The
grayscale version of the image is the third image in the file.

corn_gray = imread('corn.tif',3);

Display the grayscale image using imshow.

imshow(corn_gray)

1 Alphabetical List

1-7278

Display an Indexed Image

Read the indexed image from the corn.tif file into the MATLAB workspace. The
indexed version of the image is the first image in the file.

[corn_indexed,map] = imread('corn.tif',1);

Display the indexed image using imshow.

 imshow

1-7279

imshow(corn_indexed,map)

Display an RGB Image

Read the RGB image from the corn.tif file into the MATLAB workspace. The RGB
version of the image is the second image in the file.

[corn_rgb] = imread('corn.tif',2);

1 Alphabetical List

1-7280

Display the RGB image using imshow.

imshow(corn_rgb)

 imshow

1-7281

Display a Binary Image

Read the grayscale image from the corn.tif file into the MATLAB workspace and use
thresholding to convert it into a binary image. The grayscale version of the image is the
third image in the file.

[corn_gray] = imread('corn.tif',3);

Determine the mean value of pixels in the grayscale image.

meanIntensity = mean(corn_gray(:));

Create a binary image by thresholding, using the mean intensity value as the threshold.

corn_binary = corn_gray > meanIntensity;

Display the binary image using imshow.

imshow(corn_binary)

1 Alphabetical List

1-7282

Display Image from File

Display an image stored in a file.

imshow('peppers.png');

 imshow

1-7283

Change Colormap of Displayed Image

Read a sample indexed image, corn.tif, into the workspace, and then display it.

[X,map] = imread('corn.tif');
imshow(X,map)

1 Alphabetical List

1-7284

Change the colormap for the image using the colormap function and specifying the
target axes as the first input argument. Use the original colormap without the red
component.

newmap = map;
newmap(:,1) = 0;
colormap(gca,newmap)

 imshow

1-7285

Input Arguments
I — Input grayscale image
matrix

1 Alphabetical List

1-7286

Input grayscale image, specified as a matrix. A grayscale image can be any numeric data
type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

RGB — Input truecolor image
m-by-n-by-3 array

Input truecolor image, specified as an m-by-n-by-3 array.

If you specify a truecolor image of data type single or double, then values should be in
the range [0, 1]. If pixel values are outside this range, then you can use the rescale
function to scale pixel values to the range [0, 1]. The 'DisplayRange' argument has no
effect when the input image is truecolor.
Data Types: single | double | uint8 | uint16

BW — Input binary image
matrix

Input binary image, specified as a matrix.
Data Types: logical

X — Indexed image
2-D array of real numeric values

Indexed image, specified as a 2-D array of real numeric values. The values in X are indices
into the colormap specified by map.
Data Types: single | double | uint8 | logical

map — Colormap
c-by-3 array

Colormap, specified as an c-by-3 array of type single or double in the range [0 1], or
a c-by-3 array of type uint8. Each row specifies an RGB color value.
Data Types: single | double | uint8

filename — File name
character vector

 imshow

1-7287

File name, specified as a character vector. The image must be readable by imread. The
imshow function displays the image, but does not store the image data in the MATLAB
workspace. If the file contains multiple images, imshow displays the first image in the file.
Example: imshow('peppers.png')
Data Types: char

[low high] — Grayscale image display range
two-element vector

Grayscale image display range, specified as a two-element vector. For more information,
see the 'DisplayRange' name-value pair argument.
Example: [50 250]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imshow('board.tif','Border','tight')

Border — Figure window border space
'loose' (default) | 'tight'

Figure window border space, specified as the comma-separated pair consisting of
'Border' and either 'tight' or 'loose'. When set to 'loose', the figure window
includes space around the image in the figure. When set to 'tight', the figure window
does not include any space around the image in the figure.

If the image is very small or if the figure contains other objects besides an image and its
axes, imshow might use a border regardless of how this parameter is set.
Example: imshow('board.tif','Border','tight')
Data Types: char

Colormap — Colormap
c-by-3 matrix

1 Alphabetical List

1-7288

Colormap, specified as the comma-separated pair consisting of 'Colormap' and a c-by-3
matrix. imshow uses this to set the colormap for the axes. Use this parameter to view
grayscale images in false color. If you specify an empty colormap ([]), then imshow
ignores this parameter.

Note Starting in R2016b, imshow changes the colormap for the axes that contains the
image instead of the figure.

Example: newmap = copper; imshow('board.tif','Colormap',newmap)
Data Types: double

DisplayRange — Grayscale image display range
two-element vector | []

Display range of a grayscale image, specified as a two-element vector of the form [low
high]. The imshow function displays the value low (and any value less than low) as
black, and it displays the value high (and any value greater than high) as white. Values
between low and high are displayed as intermediate shades of gray, using the default
number of gray levels.

If you specify an empty matrix ([]), then imshow uses a display range of [min(I(:))
max(I(:))]. In other words, the minimum value in I is black, and the maximum value is
white.

If you do not specify a display range, then imshow selects a default display range based
on the image data type.

• If I is an integer type, then 'DisplayRange' defaults to the minimum and maximum
representable values for that integer class. For example, the default display range for
uint16 arrays is [0, 65535].

• If I is data type single or double, then the default display range is [0, 1].

Note Including the parameter name is optional, except when the image is specified by a
file name. The syntax imshow(I,[low high]) is equivalent to
imshow(I,'DisplayRange',[low high]). If you call imshow with a file name, then
you must specify the 'DisplayRange' parameter.

Example: h = imshow(I,'DisplayRange',[0 80]);

 imshow

1-7289

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

InitialMagnification — Initial magnification of image display
100 (default) | numeric scalar | 'fit'

Initial magnification of image display, specified as the comma-separated pair consisting of
'InitialMagnification' and a numeric scalar or 'fit'. If set to 100, then imshow
displays the image at 100% magnification (one screen pixel for each image pixel). If set to
'fit', then imshow scales the entire image to fit in the window.

Initially, imshow attempts to display the entire image at the specified magnification. If the
magnification value is so large that the image is too big to display on the screen, imshow
displays the image at the largest magnification that fits on the screen.

If the image is displayed in a figure with its 'WindowStyle' property set to 'docked',
then imshow displays the image at the largest magnification that fits in the figure.

Note: If you specify the axes position (using subplot or axes), imshow ignores any
initial magnification you might have specified and defaults to the 'fit' behavior.

When you use imshow with the 'Reduce' parameter, the initial magnification must be
'fit'.

In MATLAB Online, 'InitialMagnification' is set to 'fit' and cannot be changed.
Example: h = imshow(I,'InitialMagnification','fit');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char

Parent — Parent axes of image object
axes object

Parent axes of image object, specified as the comma-separated pair consisting of
'Parent' and an axes object. Use the 'Parent' name-value argument to build a UI that
gives you control of the figure and axes properties.

Reduce — Indicator for subsampling
true | false | 1 | 0

Indicator for subsampling image, specified as the comma-separated pair consisting of
'Reduce' and either true, false, 1, or 0. This argument is valid only when you use it

1 Alphabetical List

1-7290

with the name of a TIFF file. Use the Reduce argument to display overviews of very large
images.
Data Types: logical

XData — X-axis limits of nondefault coordinate system
two-element vector

X-axis limits of nondefault coordinate system, specified as the comma-separated pair
consisting of 'XData' and a two-element vector. This argument establishes a nondefault
spatial coordinate system by specifying the image XData. The value can have more than
two elements, but imshow uses only the first and last elements.
Example: 'XData',[100 200]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

YData — Y-axis limits of nondefault coordinate system
two-element vector

Y-axis limits of nondefault coordinate system, specified as the comma-separated pair
consisting of 'YData' and a two-element vector. The value can have more than two
elements, but imshow uses only the first and last elements.
Example: 'YData',[100 200]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
himage — Image created by imshow
image object

Image created by imshow, specified as an image object.

Tips
• To change the colormap after you create the image, use the colormap command.

Specify the axes that contains the image as the first input argument and the colormap

 imshow

1-7291

you want as the second input argument. For an example, see “Change Colormap of
Displayed Image” on page 1-7284.

• You can display multiple images with different colormaps in the same figure using
imshow with the subplot function.

• If you have Image Processing Toolbox, then you can use the Image Viewer app as an
integrated environment for displaying images and performing common image
processing tasks.

• If you have Image Processing Toolbox, then you can use the iptsetpref function to
set toolbox preferences that modify the behavior of imshow.

• The imshow function is not supported when you start MATLAB with the -nojvm
option.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

1 Alphabetical List

1-7292

See Also
image | imagesc | imfinfo | imread | imwrite | iptsetpref

Topics
“Image Types”

Introduced before R2006a

 imshow

1-7293

imtile
Combine multiple image frames into one rectangular tiled image

Syntax
out = imtile(filenames)
out = imtile(I)
out = imtile(images)
out = imtile(imds)
out = imtile(X,map)
out = imtile(___ ,Name,Value)

Description
out = imtile(filenames) returns a tiled image containing the images specified in
filenames. filenames is an n-by-1 or 1-by-n string array, character vector, or cell array
of character vectors. If the files are not in the current folder or in a folder on the MATLAB
path, specify the full path name. See the imread command for more information.

By default, imtile arranges the images so that they roughly form a square, but you can
change that using optional parameters. The images can have different sizes and types.

• If you specify an indexed image, then imtile converts it to RGB using the colormap
present in the file.

• If there is a data type mismatch between images, then imtile rescales all images to
be double using the im2double function.

out = imtile(I) returns a tiled image containing all the frames of the multiframe
image array I. A multiframe image array can be a sequence of binary, grayscale, or
truecolor images.

out = imtile(images) returns a tiled image containing the images specified in the
cell array images. imtile displays empty cell array elements as a blank tile.

1 Alphabetical List

1-7294

out = imtile(imds) returns a tiled image containing the images specified in the
ImageDatastore object imds. For information about image datastores, see
ImageDatastore.

out = imtile(X,map) treats all grayscale images in X as indexed images and applies
the specified colormap map to all frames. X can be an array of grayscale images (m-by-n-
by-1-by-k), a string array of file names, or a cell array of character vectors. If X represents
file names, map overrides any internal colormap present in the image files.

out = imtile(___ ,Name,Value) returns a customized tiled image, depending on the
values of the optional parameter name-value pairs. You can abbreviate parameter names,
and case does not matter.

Examples

Create Tiled Image from Files

Read multiple images from files into the workspace and create a tiled image containing
the images. Display the tiled image.

out = imtile({'peppers.png', 'ngc6543a.jpg'});
imshow(out);

 imtile

1-7295

Customize Number of Images in Tiled Image

Using a data set containing multiple images, tile the images in a grid.

Load the MRI data set.

load mri
out = imtile(D, map);
imshow(out);

1 Alphabetical List

1-7296

Create a tiled image containing only the first eight images in the data set. Use the
'GridSize' parameter to arrange the images in a 2-by-4 grid.

out = imtile(D, map, 'Frames', 1:8, 'GridSize', [2 4]);
figure;
imshow(out);

 imtile

1-7297

Inspect Color Planes of RGB Image

Read an RGB image into the workspace.

imRGB = imread('peppers.png');

Create a tiled image containing each of the three planes of the RGB image. Display the
tiled image.

out = imtile(imRGB);
imshow(out)

1 Alphabetical List

1-7298

Create Tiled Image from Image Datastore

From an image datastore, create and customize a tiled image.

Create an image datastore containing all the files with the file extension 'tif' or 'png'
in the specified folder.

fileFolder = fullfile(matlabroot,'toolbox','matlab','imagesci');
imds = imageDatastore(fileFolder,'FileExtensions',{'.tif','.png'});

 imtile

1-7299

Create a tiled image containing the images in the datastore.

out1 = imtile(imds);
imshow(out1);

Use the 'BorderSize' and 'BackgroundColor' parameters to add a blue border to the
tiled image.

out2 = imtile(imds, 'BorderSize', 10, 'BackgroundColor', 'b');
figure;
imshow(out2);

1 Alphabetical List

1-7300

Input Arguments
filenames — Names of files containing images
n-by-1 or 1-by-n string array | character vector | cell array of character vectors

Names of files containing images, specified as an n-by-1 or 1-by-n string array, character
vector, or cell array of character vectors.

I — Multiframe image
sequence of binary, grayscale, or truecolor images

Multiframe image, specified as a sequence of binary, grayscale, or truecolor images. I can
be an m-by-n-by-k or an m-by-n-by-1-by-k array, or a sequence of binary, grayscale, or

 imtile

1-7301

truecolor images. A binary or grayscale image sequence must be an m-by-n-by-k or an m-
by-n-by-1-by-k array. A truecolor image sequence must be an m-by-n-by-3-by-k array.

images — List of images
n-by-1 or 1-by-n cell array

List of images, specified as an n-by-1 or 1-by-n cell array of numeric matrices. The cell
array can contain numeric matrices of size m-by-n or m-by-n-by-3.

imds — Image data store
ImageDatastore object

Image data store, specified as an ImageDatastore object.

X,map — Indexed image and associated colormap
2-D numeric array

Indexed image and associated colormap, specified as a 2-D numeric array (image) and an
n-by-3 numeric array of class double (colormap). n is the number of colors in the
colormap.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tiled_image = imtile({'peppers.png',
'ngc6543a.jpg'},'BackgroundColor','g');

BackgroundColor — Color of background
'black' (default) | MATLABColorSpec

Color of the background, specified as the comma-separated pair consisting of
'BackgroundColor' and MATLAB ColorSpec (Color Specification). The
imtile function fills all blank spaces with this color, including the space specified by
BorderSize. If you specify a background color, the imtile function renders the output
as an RGB image.
Example: 'green'
Example: 'g'

1 Alphabetical List

1-7302

Example: [0 1 0]

BorderSize — Padding around each thumbnail image
[0 0] (default) | numeric scalar or 1-by-2 vector

Padding around each thumbnail image, specified as the comma-separated pair consisting
of 'BorderSize' and a numeric scalar or 1-by-2 vector of the form [brows bcols].
imtile pads the borders with the background color.

Frames — Frames to include
total number of images (default) | numeric array | logical mask

Frames to include, specified as the comma-separated pair consisting of 'Frames' and a
numeric array or a logical mask. The imtile function interprets the values as indices
into the image array or cell array. The following examples create a tiled image containing
the first three image frames.
Example: out = imtile(I,'Frames',1:3);
Example: out = imtile(I,'Frames',[true true true]);

GridSize — Number of rows and columns of thumbnails
grid of images form a square (default) | two-element vector

Number of rows and columns of thumbnails in tiled image, specified as the comma-
separated pair consisting of 'GridSize' and a two-element vector of the form [nrows
ncols]. nrows specifies the number of rows in the grid and ncols specifies the number
of columns in the grid. Use NaNs or Infs to have imtile calculate the size in a particular
dimension in a way that includes all the images.

• If 'GridSize' is [2 NaN], then imtile creates a tiled image with two rows and the
number of columns necessary to include all the images.

• If both the elements are NaN or Inf, then imtile calculates the grid size to form a
square. imtile returns the images horizontally across columns.

• If there is a mismatch between GridSize and number of images (frames), imtile
creates the tiled image based on GridSize.

ThumbnailSize — Size of thumbnails
full size of first image (default) | two-element vector

Size of thumbnails, specified as the comma-separated pair consisting of
'ThumbnailSize' and a two-element vector of the form [trows tcols], in pixels. The

 imtile

1-7303

imtile function preserves the aspect ratio of the original image by zero-padding the
boundary.

• If you specify a NaN or Inf, then the imtile function calculates the corresponding
value automatically to preserve the aspect ratio of the first image.

• If you specify an empty array ([]), then the imtile function uses the full size of the
first image as the thumbnail size.

Output Arguments
out — Tiled output image
numeric array

Tiled output image, returned as a numeric array.

See Also
imread | imshow

Introduced in R2018b

1 Alphabetical List

1-7304

imwrite
Write image to graphics file

Syntax
imwrite(A,filename)
imwrite(A,map,filename)

imwrite(___ ,fmt)

imwrite(___ ,Name,Value)

Description
imwrite(A,filename) writes image data A to the file specified by filename, inferring
the file format from the extension. imwrite creates the new file in your current folder.
The bit depth of the output image depends on the data type of A and the file format. For
most formats:

• If A is of data type uint8, then imwrite outputs 8-bit values.
• If A is of data type uint16 and the output file format supports 16-bit data (JPEG, PNG,

and TIFF), then imwrite outputs 16-bit values. If the output file format does not
support 16-bit data, then imwrite returns an error.

• If A is a grayscale or RGB color image of data type double or single, then imwrite
assumes that the dynamic range is [0,1] and automatically scales the data by 255
before writing it to the file as 8-bit values. If the data in A is single, convert A to
double before writing to a GIF or TIFF file.

• If A is of data type logical, then imwrite assumes that the data is a binary image
and writes it to the file with a bit depth of 1, if the format allows it. BMP, PNG, or TIFF
formats accept binary images as input arrays.

If A contains indexed image data, you should additionally specify the map input argument.

imwrite(A,map,filename) writes the indexed image in A and its associated colormap,
map, to the file specified by filename.

 imwrite

1-7305

• If A is an indexed image of data type double or single, then imwrite converts the
indices to zero-based indices by subtracting 1 from each element, and then writes the
data as uint8. If the data in A is single, convert A to double before writing to a GIF
or TIFF file.

imwrite(___ ,fmt) writes the image in the format specified by fmt, regardless of the
file extension in filename. You can specify fmt after the input arguments in any of the
previous syntaxes.

imwrite(___ ,Name,Value) specifies additional parameters for output GIF, HDF, JPEG,
PBM, PGM, PNG, PPM, and TIFF files, using one or more name-value pair arguments. You
can specify Name,Value after the input arguments in any of the previous syntaxes.

Examples

Write Grayscale Image to PNG

Write a 50-by-50 array of grayscale values to a PNG file in the current folder.

A = rand(50);
imwrite(A,'myGray.png')

Write Indexed Image Data to PNG

Write an indexed image array and its associated colormap to a PNG file.

Load sample image data from the file, clown.mat.

load clown.mat

The image array X and its associated colormap, map, are loaded into the MATLAB
workspace.

Write the data to a new PNG file.

imwrite(X,map,'myclown.png')

imwrite creates the file, myclown.png, in your current folder.

1 Alphabetical List

1-7306

View the new file by opening it outside of MATLAB.

Write Indexed Image with MATLAB Colormap

Write image data to a new PNG file with the built-in MATLAB colormap, copper.

Load sample image data from the file clown.mat.

load clown.mat

The image array X and its associated colormap, map, are loaded into the MATLAB
workspace. map is a matrix of 81 RGB vectors.

Define a copper-tone colormap with 81 RGB vectors. Then, write the image data to a PNG
file using the new colormap.

newmap = copper(81);
imwrite(X,newmap,'copperclown.png');

imwrite creates the file, copperclown.png, in your current folder.

View the new file by opening it outside of MATLAB.

 imwrite

1-7307

Write Truecolor Image to JPEG

Create and write truecolor image data to a JPEG file.

Create a 49-by-49-by-3 array of random RGB values.

A = rand(49,49);
A(:,:,2) = rand(49,49);
A(:,:,3) = rand(49,49);

Write the image data to a JPEG file, specifying the output format using 'jpg'. Add a
comment to the file using the 'Comment' name-value pair argument.

imwrite(A,'newImage.jpg','jpg','Comment','My JPEG file')

View information about the new file.

imfinfo('newImage.jpg')

ans =

 Filename: 'S:\newImage.jpg'

1 Alphabetical List

1-7308

 FileModDate: '25-Jan-2013 16:18:41'
 FileSize: 2339
 Format: 'jpg'
 FormatVersion: ''
 Width: 49
 Height: 49
 BitDepth: 24
 ColorType: 'truecolor'
 FormatSignature: ''
 NumberOfSamples: 3
 CodingMethod: 'Huffman'
 CodingProcess: 'Sequential'
 Comment: {'My JPEG file'}

Write Multiple Images to TIFF File

Write multiple images to a single multipage TIFF file.

Create two sets of random image data, im1 and im2.

im1 = rand(50,40,3);
im2 = rand(50,50,3);

Write the first image to a new TIFF file. Then, append the second image to the same file.

imwrite(im1,'myMultipageFile.tif')
imwrite(im2,'myMultipageFile.tif','WriteMode','append')

Write Animated GIF

Draw a series of plots, capture them as images, and write them into one animated GIF
file.

Plot for .

x = 0:0.01:1;
n = 3;
y = x.^n;
plot(x,y,'LineWidth',3)
title(['y = x^n, n = ' num2str(n)])

 imwrite

1-7309

Capture a series of plots for increasing values of .

n = 1:0.5:5;
nImages = length(n);

fig = figure;
for idx = 1:nImages
 y = x.^n(idx);
 plot(x,y,'LineWidth',3)
 title(['y = x^n, n = ' num2str(n(idx))])
 drawnow
 frame = getframe(fig);
 im{idx} = frame2im(frame);

1 Alphabetical List

1-7310

end
close;

Display the series of images in one figure.

figure;
for idx = 1:nImages
 subplot(3,3,idx)
 imshow(im{idx});
end

Save the nine images into a GIF file. Because three-dimensional data is not supported for
GIF files, call rgb2ind to convert the RGB data in the image to an indexed image A with a

 imwrite

1-7311

colormap map. To append multiple images to the first image, call imwrite with the name-
value pair argument 'WriteMode','append'.

filename = 'testAnimated.gif'; % Specify the output file name
for idx = 1:nImages
 [A,map] = rgb2ind(im{idx},256);
 if idx == 1
 imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',1);
 else
 imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',1);
 end
end

imwrite writes the GIF file to your current folder. Name-value pair 'LoopCount',Inf
causes the animation to continuously loop. 'DelayTime',1 specifies a 1-second delay
between the display of each image in the animation.

Input Arguments
A — Image data to write
matrix

Image data to write, specified as a full (nonsparse) matrix.

• For grayscale images, A can be m-by-n.
• For indexed images, A can be m-by-n. Specify the associated colormap in the map input

argument.
• For truecolor images, A must be m-by-n-by-3. imwrite does not support writing RGB

images to GIF files.

For TIFF files, A can be an m-by-n-by-4 array containing color data that uses the CMYK
color space.

For multiframe GIF files, A can be an m-by-n-by-1-by-p array containing grayscale or
indexed images, where p is the number of frames to write. RGB images are not supported
in this case.
Data Types: double | single | uint8 | uint16 | logical

filename — Name of output file
character vector | string scalar

1 Alphabetical List

1-7312

Name of the output file, specified as a character vector or string scalar.

Depending on the location you are writing to, filename can take on one of these forms.

Location Form
Current folder To write to the current folder, specify the name of the file in

filename.

filename must include the file extension. For a list of the
image types that imwrite can write, see the description for
the fmt input argument.

Example: 'myImage.jpg'
Other folders To write to a folder different from the current folder, specify

the full or relative path name in filename.

Example: 'C:\myFolder\myImage.ext'

Example: '\imgDir\myImage.ext'
Remote Location To write to a remote location, filename must contain the full

path of the file specified as an internationalized resource
identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_image.jpg'

Data Types: char | string

 imwrite

1-7313

map — Colormap of indexed image
m-by-3 array

Colormap associated with indexed image data in A, specified as an m-by-3 array. map must
be a valid MATLAB colormap. See colormap for a list of built-in MATLAB colormaps.
Most image file formats do not support colormaps with more than 256 entries.
Example: [0,0,0;0.5,0.5,0.5;1,1,1]
Example: jet(60)
Data Types: double

fmt — Format of output file
'bmp' | 'gif' | 'hdf' | 'jpg' | 'jp2' | ...

Format of the output file, specified as one of the formats in this table.

This table also summarizes the types of images that imwrite can write. The MATLAB file
format registry determines which file formats are supported. See imformats for more
information about this registry.

For certain formats, imwrite can accept additional name-value pair arguments. To view
these arguments, click the linked format names below.

Value of fmt Format of
Output File

Description

'bmp' Windows Bitmap
(BMP)

1-bit, 8-bit, and 24-bit uncompressed images

'gif' “GIF — Graphics
Interchange
Format” on page
1-0

8-bit images

'hdf' “HDF4 —
Hierarchical Data
Format” on page
1-0

8-bit raster image data sets with or without associated
colormap, 24-bit raster image data sets

1 Alphabetical List

1-7314

Value of fmt Format of
Output File

Description

'jpg' or
'jpeg'

“JPEG — Joint
Photographic
Experts Group”
on page 1-0

8-bit, 12-bit, and 16-bit Baseline JPEG images

Note imwrite converts indexed images to RGB
before writing data to JPEG files, because the JPEG
format does not support indexed images.

'jp2' or
'jpx'

“JPEG 2000—
Joint
Photographic
Experts Group
2000” on page 1-
0

1-bit, 8-bit, and 16-bit JPEG 2000 images

'pbm' Portable Bitmap
(PBM) on page 1-
0

Any 1-bit PBM image, ASCII (plain) or raw (binary)
encoding

'pcx' Windows
Paintbrush (PCX)

8-bit images

'pgm' Portable
Graymap (PGM)
on page 1-0

Any standard PGM image; ASCII (plain) encoded with
arbitrary color depth; raw (binary) encoded with up to
16 bits per gray value

'png' “PNG — Portable
Network
Graphics” on
page 1-0

1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images; 8-
bit and 16-bit grayscale images with alpha channels;
1-bit, 2-bit, 4-bit, and 8-bit indexed images; 24-bit and
48-bit truecolor images; 24-bit and 48-bit truecolor
images with alpha channels

'pnm' Portable Anymap
(PNM) on page 1-
0

Any of the PPM/PGM/PBM formats, chosen
automatically

'ppm' Portable Pixmap
(PPM) on page 1-
0

Any standard PPM image: ASCII (plain) encoded with
arbitrary color depth or raw (binary) encoded with up
to 16 bits per color component

'ras' Sun™ Raster
(RAS) on page 1-
0

Any RAS image, including 1-bit bitmap, 8-bit indexed,
24-bit truecolor, and 32-bit truecolor with alpha

 imwrite

1-7315

Value of fmt Format of
Output File

Description

'tif' or
'tiff'

Tagged Image
File Format
(TIFF) on page 1-
0

Baseline TIFF images, including:

• 1-bit, 8-bit, 16-bit, 24-bit, and 48-bit uncompressed
images and images with packbits, LZW, or Deflate
compression

• 1-bit images with CCITT 1D, Group 3, and Group 4
compression

• CIELAB, ICCLAB, and CMYK images
'xwd' X Windows Dump

(XWD)
8-bit ZPixmaps

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imwrite(A,'myFile.png','BitDepth',8) writes the data in A using 8 bits
to represent each pixel.

GIF — Graphics Interchange Format

BackgroundColor — Color to use as background color
scalar integer

Color to use as background color for the indexed image, specified as the comma-
separated pair consisting of 'BackgroundColor' and a scalar integer corresponding to
the colormap index.

The background color is used for some disposal methods in animated GIFs.

• If image data A is uint8 or logical, then the colormap index is zero-based.
• If image data A is double, then the colormap index is one-based.

The default background color corresponds to the first color in the colormap.
Example: 'BackgroundColor',15

1 Alphabetical List

1-7316

Comment — Comment to add to image
character vector | string scalar | cell array of character vectors | string array

Comment to add to the image, specified as the comma-separated pair consisting of
'Comment' and a character vector, string scalar, a 1-by-n cell array of character vectors,
or a string array. For a cell array of character vectors, imwrite adds a carriage return
after each character vector.
Example: 'Comment',{'Sample #314','January 5, 2013'}
Data Types: char | cell | string

DelayTime — Delay before displaying next image
0.5 (default) | scalar value in the range [0,655]

Delay before displaying next image, in seconds, specified as the comma-separated pair
consisting of 'DelayTime' and a scalar value in the range [0,655]. A value of 0 displays
images as fast as your hardware allows.
Example: 'DelayTime',60

DisposalMethod — Disposal method of animated GIF
'doNotSpecify' (default) | 'leaveInPlace' | 'restoreBG' | 'restorePrevious'

Disposal method of an animated GIF, specified as the comma-separated pair consisting of
'DisposalMethod' and one of the methods in this table.

Value of DisposalMethod Result
'doNotSpecify' (default) Replace one full-size, nontransparent frame

with another.
'leaveInPlace' Any pixels not covered up by the next frame

continue to display.
'restoreBG' The background color or background tile

shows through transparent pixels.
'restorePrevious' Restore to the state of a previous,

undisposed frame.

Example: 'DisposalMethod','restoreBG'

Location — Offset of screen relative to image
[0,0] (default) | two-element vector

 imwrite

1-7317

Offset of the screen relative to the image, measured from the top left corner of each,
specified as the comma-separated pair consisting of 'Location' and a two-element
vector. The first vector element specifies the offset from the top, and the second element
specifies the offset from the left, in pixels.
Example: 'Location',[10,15]
Data Types: double

LoopCount — Number of times to repeat animation
Inf (default) | integer in the range [0,65535]

Number of times to repeat the animation, specified as the comma-separated pair
consisting of 'LoopCount' and either an integer in the range [0,65535], or the value
Inf. If you specify 0, the animation plays once. If you specify the value 1, the animation
plays twice, and so on. A LoopCount value of Inf causes the animation to continuously
loop.

To enable animation within Microsoft PowerPoint®, specify a value for 'LoopCount'
within the range [1,65535]. Some Microsoft applications interpret the value 0 to mean do
not loop at all.
Example: 'LoopCount',3

ScreenSize — Height and width of frame
height and width of input image (default) | two-element vector

Height and width of the frame, specified as the comma-separated pair consisting of
'ScreenSize' and a two-element vector. When you use the ScreenSize argument with
'Location', it provides a way to write frames to the image that are smaller than the
whole frame. 'DisposalMethod' determines the fill value for pixels outside the frame.
Example: 'ScreenSize',[1000 1060]
Data Types: double

TransparentColor — Color to use as transparent color
scalar integer

Color to use as transparent color for the image, specified as the comma-separated pair
consisting of 'TransparentColor' and a scalar integer corresponding to the colormap
index.

• If image data A is uint8 or logical, then indexing begins at 0.

1 Alphabetical List

1-7318

• If image data A is double, then indexing begins at 1.

Example: 'TransparentColor',20

WriteMode — Writing mode
'overwrite' (default) | 'append'

Writing mode, specified as the comma-separated pair consisting of 'WriteMode' and
either 'overwrite' or 'append'. In overwrite mode, imwrite overwrites an existing
file,filename. In append mode, imwrite adds a single frame to the existing file.
Example: 'WriteMode','append'

HDF4 — Hierarchical Data Format

Compression — Compression scheme
'none' (default) | 'jpeg' | 'rle'

Compression scheme, specified as the comma-separated pair consisting of
'Compression' and one of the options in this table.

Value of Compression Result
'none' (default) No compression
'jpeg' JPEG compression. Valid only for grayscale

and RGB images.
'rle' Run-length encoding. Valid only for

grayscale and indexed images.

Example: 'Compression','jpeg'

Quality — Quality of JPEG-compressed file
75 (default) | scalar in the range [0,100]

Quality of the JPEG-compressed file, specified as the comma-separated pair consisting of
'Quality' and a scalar in the range [0,100], where 0 is lower quality and higher
compression, and 100 is higher quality and lower compression. This parameter applies
only if 'Compression' is 'jpeg'.
Example: 'Quality',25

WriteMode — Writing mode
'overwrite' (default) | 'append'

 imwrite

1-7319

Writing mode, specified as the comma-separated pair consisting of 'WriteMode' and
either 'overwrite' or 'append'. In overwrite mode, imwrite overwrites an existing
file,filename. In append mode, imwrite adds a single frame to the existing file.
Example: 'WriteMode','append'

JPEG — Joint Photographic Experts Group

BitDepth — Number of bits per pixel
8 (default) | scalar

Number of bits per pixel, specified as the comma-separated pair consisting of
'BitDepth' and a scalar.

• For grayscale images, the BitDepth value can be 8, 12, or 16. The default value is 8.
For 16-bit images, the 'Mode' name-value pair argument must be 'lossless'.

• For color images, the BitDepth value is the number of bits per plane, and can be 8 or
12. The default is 8 bits per plane.

Example: 'BitDepth',12

Comment — Comment to add to image
character vector | character array | n-by-1 cell array of character vectors

Comment to add to the image, specified as the comma-separated pair consisting of
'Comment' and a character vector, a string scalar, a character array, an n-by-1 cell array
of character vectors, or a string array. imwrite writes each row of input as a comment in
the JPEG file.
Example: 'Comment',{'First line';'second line';'third line'}
Data Types: char | string | cell

Mode — Type of compression
'lossy' (default) | 'lossless'

Type of compression, specified as the comma-separated pair consisting of 'Mode' and
one of these options:

• 'lossy'
• 'lossless'

Example: 'Mode','lossless'

1 Alphabetical List

1-7320

Quality — Quality of output file
75 (default) | scalar in the range [0,100]

Quality of the output file, specified as the comma-separated pair consisting of 'Quality'
and a scalar in the range [0,100], where 0 is lower quality and higher compression, and
100 is higher quality and lower compression. A Quality value of 100 does not write a
lossless JPEG image. Instead, use the 'Mode','lossless' name-value pair argument.
Example: 'Quality',100

JPEG 2000— Joint Photographic Experts Group 2000

Comment — Comment to add to image
character vector | string scalar | character array | n-by-1 cell array of character vectors |
string array

Comment to add to the image, specified as the comma-separated pair consisting of
'Comment' and a character vector, a character array, string scalar, a cell array of
character vectors, or string array. imwrite writes each row of input as a comment in the
JPEG 2000 file.
Example: 'Comment',{'First line';'second line';'third line'}
Example: 'Comment',{'First line','second line','third line'}
Data Types: cell | char | string

CompressionRatio — Target compression ratio
1 (default) | scalar

Target compression ratio, specified as the comma-separated pair consisting of
'CompressionRatio' and a real scalar greater than or equal to 1. The compression
ratio is the ratio of the input image size to the output compressed size. For example, a
value of 2.0 implies that the output image size is half of the input image size or less. A
higher value implies a smaller file size and reduced image quality. The compression ratio
does not take into account the header size.

Specifying CompressionRatio is valid only when 'Mode' is 'lossy'.
Example: 'CompressionRatio',3

Mode — Type of compression
'lossy' (default) | 'lossless'

 imwrite

1-7321

Type of compression, specified as the comma-separated pair consisting of 'Mode' and
one of these options:

• 'lossy'
• 'lossless'

Example: 'Mode','lossless'

ProgressionOrder — Order of packets in code stream
'LRCP' (default) | 'RLCP' | 'RPCL' | 'PCRL' | 'CPRL'

Order of packets in the code stream, specified as the comma-separated pair consisting of
'ProgressionOrder' and one of these options:

• 'LRCP'
• 'RLCP'
• 'RPCL'
• 'PCRL'
• 'CPRL'

The characters represent the following: L = layer, R = resolution, C = component and P =
position.
Example: 'ProgressionOrder','RLCP'

QualityLayers — Number of quality layers
1 (default) | integer in the range [1,20]

Number of quality layers, specified as the comma-separated pair consisting of
'QualityLayers' and an integer in the range [1,20].
Example: 'QualityLayers',8

ReductionLevels — Number of reduction levels
4 (default) | integer in the range [1,8]

Number of reduction levels, or wavelet decomposition levels, specified as the comma-
separated pair consisting of 'ReductionLevels' and an integer in the range [1,8].
Example: 'ReductionLevels',6

TileSize — Tile height and width
image size (default) | two-element vector

1 Alphabetical List

1-7322

Tile height and width, specified as the comma-separated pair consisting of 'TileSize'
and a two-element vector. The minimum size you can specify is [128 128].
Example: 'TileSize',[130 130]

PBM-, PGM-, and PPM — Portable Bitmap, Graymap, Pixmap

Encoding — Encoding
'rawbits' (default) | 'ASCII'

Encoding, specified as the comma-separated pair consisting of 'Encoding' and either
'rawbits' for binary encoding, or 'ASCII' for plain encoding.
Example: 'Encoding','ASCII'

MaxValue — Maximum gray or color value
scalar

Maximum gray or color value, specified as the comma-separated pair consisting of
'MaxValue' and a scalar.

Available only for PGM and PPM files. For PBM files, this value is always 1.

If the image array is uint16, then the default value for MaxValue is 65535. Otherwise,
the default value is 255.
Example: 'MaxValue',510

PNG — Portable Network Graphics

Alpha — Transparency of each pixel
matrix of values in the range [0,1]

Transparency of each pixel, specified as the comma-separated pair consisting of 'Alpha'
and a matrix of values in the range [0,1]. The row and column dimensions of the Alpha
matrix must be the same as those of the image data array. You can specify Alpha only for
grayscale (m-by-n) and truecolor (m-by-n-by-3) image data.

Note You cannot specify both 'Alpha' and 'Transparency' at the same time.

Data Types: double | uint8 | uint16

 imwrite

1-7323

Author — Author information
character vector | string scalar

Author information, specified as the comma-separated pair consisting of 'Author' and a
character vector or string scalar.
Example: "Author','Ann Smith'
Data Types: char

Background — Background color when compositing transparent pixels
scalar in the range [0,1] | integer in the range [1,P] | 3-element vector in the range
[0,1]

Background color when compositing transparent pixels, specified as the comma-
separated pair consisting of 'Background' and a value dependent on the image data, as
follows.

Image Type Form of Background Value
Grayscale images Scalar in the range [0,1].
Indexed images Integer in the range [1,P], where P is the

colormap length. For example,
'Background',50 sets the background
color to the color specified by the 50th
index in the colormap.

Truecolor images Three-element vector of RGB intensities in
the range [0,1]. For example,
'Background',[0 1 1] sets the
background color to cyan.

Data Types: double

BitDepth — Number of bits per pixel
scalar

Number of bits per pixel, specified as the comma-separated pair consisting of
'BitDepth' and a scalar. Depending on the output image, the scalar can be one of the
following values.

1 Alphabetical List

1-7324

Image Type Allowed Values for BitDepth
Grayscale images 1, 2, 4, 8, or 16
Grayscale images with an alpha channel 8 or 16
Indexed images 1, 2, 4, or 8
Truecolor images 8 or 16

• If the image is of class double or uint8, then the default bit depth is 8 bits per pixel.
• If the image is uint16, then the default is 16 bits per pixel.
• If the image is logical, then the default is 1 bit per pixel.

Example: 'BitDepth',4

Chromaticities — Reference white point and primary chromaticities
8-element vector

Reference white point and primary chromaticities, specified as the comma-separated pair
consisting of 'Chromaticities' and an 8-element vector, [wx wy rx ry gx gy bx
by]. The elements wx and wy are the chromaticity coordinates of the white point, and the
elements rx, ry, gx, gy, bx, and by are the chromaticity coordinates of the three primary
colors.

If you specify Chromaticities, you should also specify the Gamma name-value pair
argument.
Example: 'Chromaticities',
[0.312,0.329,0.002,0.002,0.001,0.001,0.115,0.312]

Data Types: double

Comment — Comment to add to image
character vector | string scalar

Comment to add to the image, specified as the comma-separated pair consisting of
'Comment' and a character vector or string scalar.

Copyright — Copyright notice
character vector | string scalar

Copyright notice, specified as the comma-separated pair consisting of 'Copyright' and
a character vector or string scalar.

 imwrite

1-7325

CreationTime — Time of original image creation
character vector | string scalar

Time of original image creation, specified as a character vector or string scalar.

Description — Description of image
character vector | string scalar

Description of the image, specified as the comma-separated pair consisting of
'Description' and a character vector or string scalar.

Disclaimer — Legal disclaimer
character vector | string scalar

Legal disclaimer, specified as the comma-separated pair consisting of 'Disclaimer' and
a character vector or string scalar.

Gamma — File gamma
scalar

File gamma, specified as the comma-separated pair consisting of 'Gamma' and a scalar.
Example: 'Gamma',2.2

ImageModTime — Time of last image modification
serial date number | character vector or string scalar containing a date

Time of the last image modification, specified as the comma-separated pair consisting of
'ImageModTime' and a MATLAB serial date number or a character vector or string
scalar of a date that can be converted to a date vector using the datevec function. Values
should be in Coordinated Universal Time (UTC).

The default ImageModTime value is the time when you call imwrite.
Example: 'ImageModTime','17-Jan-2013 11:23:10'
Data Types: double | char | string

InterlaceType — Interlacing scheme
'none' (default) | 'adam7'

Interlacing scheme, specified as the comma-separated pair consisting of
'InterlaceType' and either 'none' for no interlacing, or 'adam7' to use the Adam7
algorithm.

1 Alphabetical List

1-7326

Example: 'InterlaceType','adam7'

ResolutionUnit — Unit for image resolution
'unknown' (default) | 'meter'

Unit for image resolution, specified as the comma-separated pair consisting of
'ResolutionUnit' and either 'unknown' or 'meter'. If you specify
ResolutionUnit, you must include at least one of the XResolution and YResolution
name-value pair arguments. When the value of ResolutionUnit is 'meter', the
XResolution and YResolution values are interpreted in pixels per meter.
Example: 'ResolutionUnit','meter','XResolution',1000

SignificantBits — Number of bits to regard as significant
[] (default) | scalar | vector

Number of bits in the data array to regard as significant, specified as the comma-
separated pair consisting of 'SignificantBits' and a scalar or a vector in the range
[1,BitDepth]. Depending on the output image type, the value must be in the following
form.

Image Type Form of SignificantBits Value
Grayscale image without an alpha channel Scalar
Grayscale image with an alpha channel 2-element vector
Indexed image 3-element vector
Truecolor image without an alpha channel 3-element vector
Truecolor image with an alpha channel 4-element vector

Example: 'SignificantBits',[2,3]

Software — Software used to create the image
character vector | string scalar

Software used to create the image, specified as the comma-separated pair consisting of
'Software' and a character vector or string scalar.

Source — Device used to create the image
character vector | string scalar

Device used to create the image, specified as the comma-separated pair consisting of
'Source' and a character vector or string scalar.

 imwrite

1-7327

Transparency — Pixels to consider transparent
[] (default) | scalar in the range [0,1] | vector

Pixels to consider transparent when no alpha channel is used, specified as the comma-
separated pair consisting of 'Transparency' and a scalar or a vector. Depending on the
output image, the value must be in the following form.

Image Type Form of Transparency Value
Grayscale images Scalar in the range [0,1], indicating the

grayscale color to be considered
transparent.

Indexed images Q-element vector of values in the range
[0,1], where Q is no larger than the
colormap length and each value indicates
the transparency associated with the
corresponding colormap entry. In most
cases, Q = 1.

Truecolor images 3-element vector of RGB intensities in the
range [0,1], indicating the truecolor color to
consider transparent.

Note You cannot specify both 'Transparency' and 'Alpha' at the same time.

Example: 'Transparency',[1 1 1]
Data Types: double

Warning — Warning of nature of content
character vector | string scalar

Warning of nature of content, specified as the comma-separated pair consisting of
'Warning' and a character vector or string scalar.

XResolution — Image resolution in horizontal direction
scalar

Image resolution in the horizontal direction, in pixels/unit, specified as the comma-
separated pair consisting of 'XResolution' and a scalar. Define the unit by specifying
the ResolutionUnit name-value pair argument.

1 Alphabetical List

1-7328

If you do not also specify YResolution, then the XResolution value applies to both the
horizontal and vertical directions.
Example: 'XResolution',900

YResolution — Image resolution in vertical direction
scalar

Image resolution in the vertical direction, in pixels/unit, specified as the comma-separated
pair consisting of 'XResolution' and a scalar. Define the unit by specifying the
ResolutionUnit name-value pair argument.

If you do not also specify XResolution, then the YResolution value applies to both the
horizontal and vertical directions.
Example: 'YResolution',900

In addition to the listed name-value pair arguments for PNG, you can use any parameter
name that satisfies the PNG specification for keywords. That is, the name uses only
printable characters, contains 80 or fewer characters, and does not contain leading or
trailing spaces. The value corresponding to these user-specified names must be a
character vector or string scalar that contains no control characters other than linefeed.

RAS — Sun Raster Graphic

Alpha — Transparency of each pixel
[] (default) | matrix

Transparency of each pixel, specified as the comma-separated pair consisting of 'Alpha'
and a matrix with row and column dimensions the same as those of the image data array.

Valid only for truecolor (m-by-n-by-3) image data.
Data Types: double | single | uint8 | uint16

Type — Image type
'standard' (default) | 'rgb' | 'rle'

Image type, specified as the comma-separated pair consisting of 'Type' and one of the
options in this table.

 imwrite

1-7329

Value of Type Description
'standard' (default) Uncompressed, B-G-R color order for

truecolor images
'rgb' Uncompressed, R-G-B color order for

truecolor images
'rle Run-length encoding of 1-bit and 8-bit

images

Example: 'Type','rgb'

TIFF — Tagged Image File Format

ColorSpace — Color space representing color data
'rgb' (default) | 'cielab' | 'icclab'

Color space representing the color data, specified as the comma-separated pair consisting
of 'ColorSpace' and one of these options:

• 'rgb'
• 'cielab'
• 'icclab'

Valid only when the image data array, A, is truecolor (m-by-n-by-3). To use the CMYK color
space in a TIFF file, do not use the 'ColorSpace' name-value pair argument. Instead,
specify an m-by-n-by-4 image data array.

imwrite can write color image data that uses the L*a*b* color space to TIFF files. The
1976 CIE L*a*b* specification defines numeric values that represent luminance (L*) and
chrominance (a* and b*) information. To store L*a*b* color data in a TIFF file, the values
must be encoded to fit into either 8-bit or 16-bit storage. imwrite can store L*a*b* color
data in a TIFF file using the following encodings:

• CIELAB encodings — 8-bit and 16-bit encodings defined by the TIFF specification
• ICCLAB encodings — 8-bit and 16-bit encodings defined by the International Color

Consortium

The output class and encoding used by imwrite depends on the class of the input image
data array and the ColorSpace value, as shown in the following table. (The 8-bit and 16-
bit CIELAB encodings cannot be input arrays because they use a mixture of signed and
unsigned values and cannot be represented as a single MATLAB array.)

1 Alphabetical List

1-7330

Input Class and
Encoding

Value of ColorSpace Output Class and Encoding

8-bit ICCLAB

Values are integers in
the range [0 255]. L*
values are multiplied by
255/100.
128 is added to both the
a* and b* values.

'icclab' 8-bit ICCLAB
'cielab' 8-bit CIELAB

16-bit ICCLAB

Values are integers in
the range [0, 65280]. L*
values are multiplied by
65280/100.
32768 is added to both
the a* and b* values,
which are represented
as integers in the range
[0,65535].

'icclab' 16-bit ICCLAB
'cielab' 16-bit CIELAB

Double-precision 1976
CIE L*a*b* values

L* is in the dynamic
range [0, 100]. a* and b*
can take any value.
Setting a* and b* to 0
(zero) produces a
neutral color (gray).

'icclab' 8-bit ICCLAB
'cielab' 8-bit CIELAB

Example: 'ColorSpace','cielab'

Compression — Compression scheme
'packbits' | 'none' | 'lzw' | 'deflate' | 'jpeg' | 'ccitt' | 'fax3' | 'fax4'

Compression scheme, specified as the comma-separated pair consisting of
'Compression' and one of these options:

• 'packbits' (default for nonbinary images)

 imwrite

1-7331

• 'none'
• 'lzw'
• 'deflate'
• 'jpeg'
• 'ccitt' (binary images only, and the default for such images)
• 'fax3' (binary images only)
• 'fax4' (binary images only)

'jpeg' is a lossy compression scheme; other compression modes are lossless. Also, if you
specify 'jpeg' compression, you must specify the 'RowsPerStrip' parameter and the
value must be a multiple of 8.
Example: 'Compression','none'

Description — Image description
character vector | string scalar

Image description, specified by the comma-separated pair consisting of 'Description'
and a character vector or string scalar. This is the text that imfinfo returns in the
ImageDescription field for the output image.
Example: 'Description','Sample 2A301'

Resolution — X- and Y-resolution
72 (default) | scalar | two-element vector

X- and Y-resolution, specified as the comma-separated pair consisting of 'Resolution'
and a scalar indicating both resolution, or a two-element vector containing the X-
Resolution and Y-Resolution.
Example: 'Resolution',80
Example: 'Resolution',[320,72]
Data Types: double

RowsPerStrip — Number of rows to include in each strip
scalar

Number of rows to include in each strip, specified as the comma-separated pair consisting
of 'RowsPerStrip' and a scalar. The default value is such that each strip is about 8
kilobytes.

1 Alphabetical List

1-7332

You must specify RowsPerStrip if you specify 'jpeg' compression. The value must be a
multiple of 8.
Example: 'RowsPerStrip',16
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

WriteMode — Writing mode
'overwrite' (default) | 'append'

Writing mode, specified as the comma-separated pair consisting of 'WriteMode' and
either 'overwrite' or 'append'. In overwrite mode, imwrite overwrites an existing
file. In append mode, imwrite adds a page to the existing file.
Example: 'WriteMode','append'

Tips
• For copyright information, see the libtiffcopyright.txt file.

See Also
Tiff | fwrite | getframe | imfinfo | imformats | imread

Introduced before R2006a

 imwrite

1-7333

incenters
Class: TriRep

(Not recommended) Incenters of specified simplices

Note incenters(TriRep) is not recommended. Use incenter(triangulation)
instead.

TriRep is not recommended. Use triangulation instead.

Syntax
IC = incenters(TR,SI)
[IC RIC] = incenters(TR, SI)

Description
IC = incenters(TR,SI) returns the coordinates of the incenter of each specified
simplex SI.

[IC RIC] = incenters(TR, SI) returns the incenters and the corresponding radius
of the inscribed circle/sphere.

Input Arguments
TR Triangulation representation.
SI Column vector of simplex indices that index into the triangulation matrix

TR.Triangulation. If SI is not specified the incenter information for the
entire triangulation is returned, where the incenter associated with
simplex i is the i'th row of IC.

1 Alphabetical List

1-7334

Output Arguments
IC m-by-n matrix, where m = length(SI), the number of specified

simplices, and n is the dimension of the space where the triangulation
resides. Each row IC(i,:) represents the coordinates of the incenter of
simplex SI(i).

RIC Vector of length length(SI), the number of specified simplices.

Examples

Example 1
Load a 3-D triangulation:

 load tetmesh

Use TriRep to compute the incenters of the first five tetrahedra.

 trep = TriRep(tet, X)
 ic = incenters(trep, [1:5]')

Example 2
Query a 2-D triangulation created with DelaunayTri.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
dt = DelaunayTri(x,y);

Compute incenters of the triangles:

ic = incenters(dt);

Plot the triangles and incenters:

triplot(dt);
axis equal;
axis([-0.2 1.2 -0.2 1.2]);
hold on;

 incenters

1-7335

plot(ic(:,1),ic(:,2),'*r');
hold off;

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

See Also
circumcenter | delaunayTriangulation | triangulation

1 Alphabetical List

1-7336

inOutStatus
Class: DelaunayTri

(Not recommended) Status of triangles in 2-D constrained Delaunay triangulation

Note inOutStatus(DelaunayTri) is not recommended. Use
isInterior(delaunayTriangulation) instead.

DelaunayTri is not recommended. Use delaunayTriangulation instead.

Syntax
IN = inOutStatus(DT)

Description
IN = inOutStatus(DT) returns the in/out status of the triangles in a 2-D constrained
Delaunay triangulation of a geometric domain. Given a Delaunay triangulation that has a
set of constrained edges that define a bounded geometric domain. The i'th triangle in the
triangulation is classified as inside the domain if IN(i) = 1 and outside otherwise.

Note inOutStatus is only relevant for 2-D constrained Delaunay triangulations where
the imposed edge constraints bound a closed geometric domain.

Input Arguments
DT Delaunay triangulation.

 inOutStatus

1-7337

Output Arguments
IN Logical array of length equal to the number of triangles in the

triangulation. The constrained edges in the triangulation define the
boundaries of a valid geometric domain.

Examples
Create a geometric domain that consists of a square with a square hole:

outerprofile = [-5 -5; -3 -5; -1 -5; 1 -5; 3 -5; ...
 5 -5; 5 -3; 5 -1; 5 1; 5 3;...
 5 5; 3 5; 1 5; -1 5; -3 5; ...
 -5 5; -5 3; -5 1; -5 -1; -5 -3;];
innerprofile = outerprofile.*0.5;
profile = [outerprofile; innerprofile];
outercons = [(1:19)' (2:20)'; 20 1;];
innercons = [(21:39)' (22:40)'; 40 21];
edgeconstraints = [outercons; innercons];

Create a constrained Delaunay triangulation of the domain:

dt = DelaunayTri(profile, edgeconstraints)
subplot(1,2,1);
triplot(dt);
hold on;
plot(dt.X(outercons',1), dt.X(outercons',2), ...
 '-r', 'LineWidth', 2);
plot(dt.X(innercons',1), dt.X(innercons',2), ...
 '-r', 'LineWidth', 2);
axis equal;
% Plot showing interior and exterior
% triangles with respect to the domain.
hold off;
subplot(1,2,2);
inside = inOutStatus(dt);
triplot(dt(inside, :), dt.X(:,1), dt.X(:,2));
hold on;
plot(dt.X(outercons',1), dt.X(outercons',2), ...
 '-r', 'LineWidth', 2);
plot(dt.X(innercons',1), dt.X(innercons',2), ...
 '-r', 'LineWidth', 2);

1 Alphabetical List

1-7338

axis equal;
% Plot showing interior triangles only
hold off;

See Also
delaunayTriangulation | isInterior | triangulation

 inOutStatus

1-7339

ind2rgb
Convert indexed image to RGB image

Syntax
RGB = ind2rgb(X,map)

Description
RGB = ind2rgb(X,map) converts the indexed image X and corresponding colormap map
to RGB (truecolor) format.

Examples

Convert Indexed Image to RGB

Read the first image in the sample indexed image file, corn.tif.

[X,cmap] = imread('corn.tif');

The indexed image X is a 415-by-312 array of type uint8. The colormap cmap is a 256-
by-3 matrix of type double, therefore there are 256 colors in the indexed image. Display
the image.

imshow(X,cmap)

1 Alphabetical List

1-7340

Convert the indexed image to an RGB image. The result is a 415-by-312-by-3 array of type
double.

RGB = ind2rgb(X,cmap);

Check that values of the RGB image are in the range [0, 1].

disp(['Range of RGB image is [',num2str(min(RGB(:))),', ',num2str(max(RGB(:))),'].'])

 ind2rgb

1-7341

Range of RGB image is [0.0078431, 0.97647].

Input Arguments
X — Indexed image
m-by-n matrix of integers

Indexed image, specified as an m-by-n matrix of integers.

• If you specify X as an array of integer data type, then the value 0 corresponds to the
first color in the colormap map. For a colormap containing c colors, values of image X
are clipped to the range [0, c-1].

• If you specify X as an array of data type single or double, then the value 1
corresponds to the first color in the colormap. For a colormap containing c colors,
values of image X are clipped to the range [1, c].

Data Types: single | double | uint8 | uint16

map — Colormap
c-by-3 matrix

Colormap associated with indexed image X, specified as a c-by-3 matrix with values in the
range [0, 1]. Each row of map is a three-element RGB triplet that specifies the red, green,
and blue components of a single color of the colormap.
Data Types: double

Output Arguments
RGB — RGB image
m-by-n-by-3 numeric array

RGB image, returned as an m-by-n-by-3 numeric array with values in the range [0, 1].
Data Types: double

1 Alphabetical List

1-7342

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
image | imread | rgb2ind

Topics
“Image Types”

Introduced before R2006a

 ind2rgb

1-7343

ind2sub
Subscripts from linear index

Syntax
[I,J] = ind2sub(siz,IND)
[I1,I2,I3,...,In] = ind2sub(siz,IND)

Description
The ind2sub function determines the equivalent subscript values corresponding to a
single index into an array.

[I,J] = ind2sub(siz,IND) returns the matrices I and J containing the equivalent
row and column subscripts corresponding to each linear index in the matrix IND for a
matrix of size siz. siz is a vector with ndim(A) elements (in this case, 2), where
siz(1) is the number of rows and siz(2) is the number of columns.

Note For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns the same values
as [I,J] = find(A>5).

[I1,I2,I3,...,In] = ind2sub(siz,IND) returns n subscript arrays I1,I2,...,In
containing the equivalent multidimensional array subscripts equivalent to IND for an
array of size siz. siz is an n-element vector that specifies the size of each array
dimension.

The IND input can be single, double, or any integer type. The outputs are always of
class double.

1 Alphabetical List

1-7344

Examples

Example 1 — Two-Dimensional Matrices
The mapping from linear indexes to subscript equivalents for a 3-by-3 matrix is

This code determines the row and column subscripts in a 3-by-3 matrix, of elements with
linear indices 3, 4, 5, 6.

IND = [3 4 5 6]
s = [3,3];
[I,J] = ind2sub(s,IND)

I =
 3 1 2 3

J =
 1 2 2 2

Example 2 — Three-Dimensional Matrices
The mapping from linear indexes to subscript equivalents for a 2-by-2-by-2 array is

 ind2sub

1-7345

This code determines the subscript equivalents in a 2-by-2-by-2 array, of elements whose
linear indices 3, 4, 5, 6 are specified in the IND matrix.

IND = [3 4;5 6];
s = [2,2,2];
[I,J,K] = ind2sub(s,IND)

I =
 1 2
 1 2

J =
 2 2
 1 1

K =
 1 1
 2 2

Example 3 — Effects of Returning Fewer Outputs
When calling ind2sub for an N-dimensional matrix, you would typically supply N output
arguments in the call: one for each dimension of the matrix. This example shows what
happens when you return three, two, and one output when calling ind2sub on a 3-
dimensional matrix.

The matrix is 2-by-2-by-2 and the linear indices are 1 through 8:

dims = [2 2 2];
indices = [1 2 3 4 5 6 7 8];

1 Alphabetical List

1-7346

The 3-output call to ind2sub returns the expected subscripts for the 2-by-2-by-2 matrix:

[rowsub colsub pagsub] = ind2sub(dims, indices)
rowsub =
 1 2 1 2 1 2 1 2
colsub =
 1 1 2 2 1 1 2 2
pagsub =
 1 1 1 1 2 2 2 2

If you specify only two outputs (row and column), ind2sub still returns a subscript for
each specified index, but drops the third dimension from the matrix, returning subscripts
for a 2-dimensional, 2-by-4 matrix instead:

[rowsub colsub] = ind2sub(dims, indices)
rowsub =
 1 2 1 2 1 2 1 2
colsub =
 1 1 2 2 3 3 4 4

If you specify one output (row), ind2sub drops both the second and third dimensions
from the matrix, and returns subscripts for a 1-dimensional, 1-by-8 matrix instead:

[rowsub] = ind2sub(dims, indices)
rowsub =
 1 2 3 4 5 6 7 8

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 ind2sub

1-7347

• The first argument must be a valid size vector. Size vectors for arrays with more than
intmax elements are not supported.

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
find | size | sub2ind

Introduced before R2006a

1 Alphabetical List

1-7348

Inf
Create array of all Inf values

Syntax
X = Inf
X = Inf(n)
X = Inf(sz1,...,szN)
X = Inf(sz)

X = Inf(___ ,typename)
X = Inf(___ ,'like',p)

Description
X = Inf returns the scalar representation of positive infinity. Inf results from
operations that return values too large to represent as floating-point numbers, such as
1/0 or log(0).

For double-precision, Inf represents numbers larger than realmax. For single-precision,
Inf represents numbers larger than realmax('single').

X = Inf(n) returns an n-by-n matrix of Inf values.

X = Inf(sz1,...,szN) returns an sz1-by-...-by-szN array of Inf values, where
sz1,...,szN indicate the size of each dimension. For example, Inf(3,4) returns a 3-
by-4 matrix.

X = Inf(sz) returns an array of Inf values, where the size vector sz defines size(X).
For example, Inf([3 4]) returns a 3-by-4 matrix.

X = Inf(___ ,typename) returns an array of Inf values of data type typename, which
can be either 'single' or 'double'.

X = Inf(___ ,'like',p) returns an array of Inf values like p; that is, of the same
data type, sparsity, and complexity (real or complex) as p. You can specify typename or
'like' but not both.

 Inf

1-7349

Examples

Matrix of Inf Values

Create a 3-by-3 matrix of Inf values.

X = Inf(3)

X = 3×3

 Inf Inf Inf
 Inf Inf Inf
 Inf Inf Inf

3-D Array of Inf Values

Create a 2-by-3-by-4 array of Inf values.

X = Inf(2,3,4);
size(X)

ans = 1×3

 2 3 4

Clone Size from Existing Array

Create an array of Inf values that is the same size as an existing array.

A = [1 4; 2 5; 3 6];
sz = size(A);
X = Inf(sz)

X = 3×2

 Inf Inf

1 Alphabetical List

1-7350

 Inf Inf
 Inf Inf

It is a common pattern to combine the previous two lines of code into a single line:

X = Inf(size(A));

Specify Data Type of Inf Values

Create a 1-by-3 vector of Inf values whose elements are of type single.

X = Inf(1,3,'single')

X = 1x3 single row vector

 Inf Inf Inf

You can also specify the output type based on the type of another variable. Create a
variable p of type single. Then, create a vector of Inf values with the same size and
type as p.

p = single([1 2 3]);
X = Inf(size(p),'like',p)

X = 1x3 single row vector

 Inf Inf Inf

Input Arguments
n — Size of square matrix
integer

Size of square matrix, specified as an integer.

• If n is 0, then X is an empty matrix.

 Inf

1-7351

• If n is negative, then it is treated as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension in a list
integers

Size of each dimension in a list, specified as separate integer arguments.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, Inf ignores trailing dimensions of length 1. For

example, Inf(3,1,1) creates a 3-by-1 vector of Inf values.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension in a vector
row vector of integers

Size of each dimension in a vector, specified as a row vector of integers.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, Inf ignores trailing dimensions of length 1. For

example, Inf([3 1]) creates a 3-by-1 vector of Inf values.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

typename — Data type
'double' (default) | single'

Data type to create, specified as 'double' or 'single'.

p — Prototype of array
array

Prototype of array to create, specified as an array.
Data Types: double | single

1 Alphabetical List

1-7352

Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Dimensions must be real, nonnegative, integers.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See Inf in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See Inf in the Parallel Computing Toolbox documentation.

See Also
NaN | isfinite | isinf | realmax

Introduced before R2006a

 Inf

1-7353

info
Information about contacting MathWorks

Note info will be removed in a future release.

Syntax
info

Description
info displays in the Command Window, information about contacting MathWorks.

See Also
help | version

Introduced before R2006a

1 Alphabetical List

1-7354

inline
Construct inline object

Note inline will be removed in a future release. Use “Anonymous Functions” instead.

Syntax
inline(expr)
inline(expr,arg1,arg2,...)
inline(expr,n)

Description
inline(expr) constructs an inline function object from the MATLAB expression
contained in expr. The input argument to the inline function is automatically determined
by searching expr for an isolated lower case alphabetic character, other than i or j, that
is not part of a word formed from several alphabetic characters. If no such character
exists, x is used. If the character is not unique, the one closest to x is used. If two
characters are found, the one later in the alphabet is chosen.

inline(expr,arg1,arg2,...) constructs an inline function whose input arguments
are specified by arg1, arg2,.... Multicharacter symbol names may be used.

inline(expr,n) where n is a scalar, constructs an inline function whose input
arguments are x, P1, P2,

Examples
Example 1
This example creates a simple inline function to square a number.

g = inline('t^2')
g =

 inline

1-7355

 Inline function:
 g(t) = t^2

You can convert the result to a character vector using the char function.

char(g)

ans =

t^2

Example 2
This example creates an inline function to represent the formula f = 3sin(2x2). The
resulting inline function can be evaluated with the argnames and formula functions.

f = inline('3*sin(2*x.^2)')

f =
 Inline function:
 f(x) = 3*sin(2*x.^2)

argnames(f)

ans =
 'x'

formula(f)
ans =

3*sin(2*x.^2)

Example 3
This call to inline defines the function f to be dependent on two variables, alpha and
x:

f = inline('sin(alpha*x)')

f =
 Inline function:
 f(alpha,x) = sin(alpha*x)

1 Alphabetical List

1-7356

If inline does not return the desired function variables or if the function variables are in
the wrong order, you can specify the desired variables explicitly with the inline
argument list.

g = inline('sin(alpha*x)','x','alpha')

g =

 Inline function:
 g(x,alpha) = sin(alpha*x)

Tips
Three commands related to inline allow you to examine an inline function object and
determine how it was created.

char(fun) converts the inline function into a character array. This is identical to
formula(fun).

argnames(fun) returns the names of the input arguments of the inline object fun as a
cell array of character vectors.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ^, * or /' in the formula for
fun. The result is a vectorized version of the inline function.

Introduced before R2006a

 inline

1-7357

inmem
Names of functions, MEX-files, classes in memory

Syntax
M = inmem
[M,X] = inmem
[M,X,C] = inmem
[...] = inmem('-completenames')

Description
M = inmem returns a cell array of character vectors containing the names of the
functions that are currently loaded.

[M,X] = inmem returns an additional cell array X containing the names of the MEX-files
that are currently loaded.

[M,X,C] = inmem also returns a cell array C containing the names of the classes that
are currently loaded.

[...] = inmem('-completenames') returns not only the names of the currently
loaded function and MEX-files, but the path and filename extension for each as well. No
additional information is returned for loaded classes.

Examples

Functions in Memory

List the functions that remain in memory after calling the magic function.

clear all
magic(10);

1 Alphabetical List

1-7358

M = inmem

M =
 'workspacefunc'
 'magic'

The function list includes magic and additional functions that are in memory in your
current session.

MEX-Files in Memory

Call a sample MEX-function named arrayProduct, and then verify that the MEX-
function is in memory. You must have a supported C compiler installed on your system to
run this example.

clear all
sampleFolder = fullfile(matlabroot,'extern','examples','mex');
addpath(sampleFolder)
mex arrayProduct.c

s = 5;
A = [1.5, 2, 9];
B = arrayProduct(s,A);

[M,X] = inmem('-completenames');
X

X =
 'matlabroot\extern\examples\mex\arrayProduct.mexw64'

Tips
If inmem is called with any argument other than '-completenames', it behaves as if it
were called with no argument.

See Also
clear

 inmem

1-7359

Introduced before R2006a

1 Alphabetical List

1-7360

inner2outer
Invert nested table-in-table hierarchy in tables or timetables

Syntax
T2 = inner2outer(T1)

Description
T2 = inner2outer(T1) finds the variables in T1 that are themselves tables or
timetables. It returns T2, a table or timetable that also contains nested tables or
timetables as variables. The names of the variables in T2 are taken from the names of the
variables inside the nested tables or timetables of T1. Then, inner2outer regroups
variables in the nested tables or timetables of T2 appropriately, as shown in the diagram.
If T1 has variables that are not tables or timetables, then those variables are unaltered in
T2.

Examples

 inner2outer

1-7361

Invert Nested Tables

Load and display a timetable, T1, that has nested tables containing stock information. The
nested tables AAPL and MSFT are the variables of T1. Each nested table has the stock
prices at the open and close of trading, and the volume, for a different company.

load nestedTables
T1

T1 =

 3x2 timetable

 Dates AAPL MSFT
 Open Close Volume Open Close Volume
 ___________ __________________________ __________________________

 01-Jan-2017 64.539 71.704 107.17 66.429 91.77 78.7
 01-Feb-2017 101.53 87.619 57.909 72.984 84.629 57.959
 01-Mar-2017 60.381 76.464 72.067 78.127 76.492 82.883

To group the Open, Close, and Volume variables together in nested tables of their own,
use the inner2outer function.

T2 = inner2outer(T1)

T2 =

 3x3 timetable

 Dates Open Close Volume
 AAPL MSFT AAPL MSFT AAPL MSFT
 ___________ ________________ ________________ ________________

 01-Jan-2017 64.539 66.429 71.704 91.77 107.17 78.7
 01-Feb-2017 101.53 72.984 87.619 84.629 57.909 57.959
 01-Mar-2017 60.381 78.127 76.464 76.492 72.067 82.883

Some calculations are more convenient with data from each stock grouped in the nested
tables of T2. For example, you can calculate the normalized volume for all stocks using
T2.Volume.

1 Alphabetical List

1-7362

Use the Variables property of T2 to convert T2.Volume into a matrix. Then subtract
the mean of T2.Volume from T2.Volume and return the result as a matrix.

normVolume = T2.Volume.Variables - mean(T2.Volume.Variables)

normVolume =

 28.1213 5.5193
 -21.1397 -15.2217
 -6.9817 9.7023

You also can use table functions on the nested tables. Calculate the mean closing price of
all stocks using the varfun function, returning the means in a table.

meanClose = varfun(@mean,T2.Close)

meanClose =

 1x2 table

 mean_AAPL mean_MSFT
 _________ _________

 78.596 84.297

Input Arguments
T1 — Input table
table | timetable

Input table, specified as a table or timetable.

 inner2outer

1-7363

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
mergevars | rows2vars | splitvars

Introduced in R2018a

1 Alphabetical List

1-7364

innerjoin
Inner join between two tables or timetables

Syntax
C = innerjoin(A,B)
C = innerjoin(A,B,Name,Value)
[C,ia,ib] = innerjoin(___)

Description
C = innerjoin(A,B) creates the table or timetable, C, as the inner join between A and
B by matching up rows using all the variables with the same names as key variables on
page 1-7374. For example, if A has variables named X, Y, and Z, and B has variables W, X,
and Y, then C=innerjoin(A,B) uses X and Y as the key variables.

You can perform inner joins only on certain combinations of tables and timetables.

• If A is a table, then B must be a table. innerjoin returns C as a table.
• If A is a timetable, then B can be either a table or a timetable. innerjoin returns C as

a timetable for either combination of inputs.

The inner join retains only the rows that match between A and B with respect to the key
variables. C contains all nonkey variables from A and B.

The vectors of row labels of A and B can be key variables. Row labels are the row names
of a table, or the row times of a timetable.

C = innerjoin(A,B,Name,Value) performs the inner-join operation with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify the variables to use as key variables.

[C,ia,ib] = innerjoin(___) also returns index vectors, ia and ib indicating the
correspondence between rows in C and those in A and B respectively. You can use this
syntax with any of the input arguments in the previous syntaxes.

 innerjoin

1-7365

Examples

Inner-Join Operation of Tables with One Variable in Common

Create a table, A.

A = table([5;12;23;2;6],...
 {'cereal';'pizza';'salmon';'cookies';'pizza'},...
 'VariableNames',{'Age','FavoriteFood'})

A=5×2 table
 Age FavoriteFood
 ___ ____________

 5 'cereal'
 12 'pizza'
 23 'salmon'
 2 'cookies'
 6 'pizza'

Create a table, B, with one variable in common with A.

B = table({'cereal';'cookies';'pizza';'salmon';'cake'},...
 [110;160;140;367;243],...
 {'A-';'D';'B';'B';'C-'},...
 'VariableNames',{'FavoriteFood','Calories','NutritionGrade'})

B=5×3 table
 FavoriteFood Calories NutritionGrade
 ____________ ________ ______________

 'cereal' 110 'A-'
 'cookies' 160 'D'
 'pizza' 140 'B'
 'salmon' 367 'B'
 'cake' 243 'C-'

Use the innerjoin function to create a new table, C, with data from tables A and B.

C = innerjoin(A,B)

C=5×4 table
 Age FavoriteFood Calories NutritionGrade

1 Alphabetical List

1-7366

 ___ ____________ ________ ______________

 5 'cereal' 110 'A-'
 2 'cookies' 160 'D'
 12 'pizza' 140 'B'
 6 'pizza' 140 'B'
 23 'salmon' 367 'B'

Table C is sorted by the key variable, FavoriteFood.

Inner-Join Operation of Tables and Indices to Values

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
 'VariableNames',{'Key1' 'Var1'})

A=5×2 table
 Key1 Var1
 ____ ____

 'a' 1
 'b' 2
 'c' 3
 'e' 11
 'h' 17

Create a table, B, with common values in the variable Key1 between tables A and B, but
also containing rows with values of Key1 not present in A.

B = table({'a' 'b' 'd' 'e'}',[4 5 6 7]',...
 'VariableNames',{'Key1' 'Var2'})

B=4×2 table
 Key1 Var2
 ____ ____

 'a' 4
 'b' 5
 'd' 6

 innerjoin

1-7367

 'e' 7

Use the innerjoin function to create a new table, C, with data from tables A and B.
Retain only rows whose values in the variable Key1 match.

Also, return index vectors, ia and ib indicating the correspondence between rows in C
and rows in A and B respectively.

[C,ia,ib] = innerjoin(A,B)

C=3×3 table
 Key1 Var1 Var2
 ____ ____ ____

 'a' 1 4
 'b' 2 5
 'e' 11 7

ia = 3×1

 1
 2
 4

ib = 3×1

 1
 2
 4

Table C is sorted by the values in the key variable, Key1, and contains the horizontal
concatenation of A(ia,:) and B(ib,'Var2') .

Inner-Join Operation of Tables Using Left and Right Keys

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1],[10;3;8;8;4])

1 Alphabetical List

1-7368

A=5×3 table
 Var1 Var2 Var3
 ____ ____ ____

 10 5 10
 4 4 3
 2 9 8
 3 6 8
 7 1 4

Create a table, B, with common values in the second variable as the first variable of table
A.

B = table([6;1;1;6;8],[2;3;4;5;6])

B=5×2 table
 Var1 Var2
 ____ ____

 6 2
 1 3
 1 4
 6 5
 8 6

Use the innerjoin function to create a new table, C, with data from tables A and B. Use
the first variable of A and the second variable of B as key variables.

[C,ia,ib] = innerjoin(A,B,'LeftKeys',1,'RightKeys',2)

C=3×4 table
 Var1_A Var2 Var3 Var1_B
 ______ ____ ____ ______

 2 9 8 6
 3 6 8 1
 4 4 3 1

ia = 3×1

 3
 4

 innerjoin

1-7369

 2

ib = 3×1

 1
 2
 3

Table C retains only the rows that match between A and B with respect to the key
variables.

Table C contains the horizontal concatenation of A(ia,:) and B(ib,'Var1').

Inner-Join Operation of Timetables

Create two timetables, A and B. They have some row times in common, but each also
includes row times that are not in the other timetable.

A = timetable(seconds([1;2;4;6]),[1 2 3 11]')

A=4×2 timetable
 Time Var1
 _____ ____

 1 sec 1
 2 sec 2
 4 sec 3
 6 sec 11

B = timetable(seconds([2;4;6;7]),[4 5 6 7]')

B=4×2 timetable
 Time Var1
 _____ ____

 2 sec 4
 4 sec 5
 6 sec 6
 7 sec 7

1 Alphabetical List

1-7370

Combine A and B with an inner join. C matches up the rows with common row times. C
does not contain any other rows from either timetable.

C = innerjoin(A,B)

C=3×3 timetable
 Time Var1_A Var1_B
 _____ ______ ______

 2 sec 2 4
 4 sec 3 5
 6 sec 11 6

Input Arguments
A,B — Input tables
tables | timetables

Input tables, specified as tables or as timetables.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Keys',2 uses the second variable in A and the second variable in B as key
variables.

Keys — Variables to use as keys
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys, specified as the comma-separated pair consisting of 'Keys' and
a positive integer, vector of positive integers, character vector, cell array of character
vectors, string array, or logical vector.

You cannot use the 'Keys' name-value pair argument with the 'LeftKeys' and
'RightKeys' name-value pair arguments.

 innerjoin

1-7371

A vector of row labels can be a key, alone or in combination with other key variables. For
more information, see the “Tips” on page 1-7374 section.
Example: 'Keys',[1 3] uses the first and third variables in A and B as a key variables.
Example: 'Keys',{'X','Y'} uses the variables named X and Y in A and B as key
variables.
Example: 'Keys','Row' uses the vectors of row names of A and B as key variables, if
both A and B are tables with row names.

LeftKeys — Variables to use as keys in A
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys in A, specified as the comma-separated pair consisting of
'LeftKeys' and a positive integer, vector of positive integers, character vector, cell
array of character vectors, string array, or logical vector.

You must use the 'LeftKeys' name-value pair argument in conjunction with the
'RightKeys' name-value pair argument. 'LeftKeys' and 'RightKeys' both must
specify the same number of key variables. innerjoin pairs key values based on their
order.

A vector of row labels can be a key, alone or in combination with other key variables.. For
more information, see the “Tips” on page 1-7374 section.
Example: 'LeftKeys',1 uses only the first variable in A as a key variable.

RightKeys — Variables to use as keys in B
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys in B, specified as the comma-separated pair consisting of
'RightKeys' and a positive integer, vector of positive integers, character vector, cell
array of character vectors, string array, or logical vector.

You must use the 'RightKeys' name-value pair argument in conjunction with the
'LeftKeys' name-value pair argument. 'LeftKeys' and 'RightKeys' both must
specify the same number of key variables. innerjoin pairs key values based on their
order.

A vector of row labels can be a key, alone or in combination with other key variables.. For
more information, see the “Tips” on page 1-7374 section.

1 Alphabetical List

1-7372

Example: 'RightKeys',3 uses only the third variable in B as a key variable.

LeftVariables — Variables from A to include in C
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables from A to include in C, specified as the comma-separated pair consisting of
'LeftVariables' and a positive integer, vector of positive integers, character vector,
cell array of character vectors, string array, or logical vector.

You can use 'LeftVariables' to include or exclude key variables, as well as nonkey
variables from the output, C.

By default, innerjoin includes all variables from A.

RightVariables — Variables from B to include in C
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables from B to include in C, specified as the comma-separated pair consisting of
'RightVariables' and a positive integer, vector of positive integers, character vector,
cell array of character vectors, string array, or logical vector.

You can use 'RightVariables' to include or exclude key variables, as well as nonkey
variables from the output, C.

By default, innerjoin includes all the variables from B except the key variables.

Output Arguments
C — Inner join from A and B
table | timetable

Inner join from A and B, returned as a table or a timetable. The output table or timetable,
C, contains one row for each pair of rows in A and B that share the same combination of
values in the key variables. If A and B contain variables with the same name, innerjoin
adds a unique suffix to the corresponding variable names in C.

In general, if there are m rows in A and n rows in B that all contain the same combination
of values in the key variables, then C contains m*n rows for that combination.

 innerjoin

1-7373

C is sorted by the values in the key variables and contains the horizontal concatenation of
A(ia,LeftVars) and B(ib,RightVars). By default, LeftVars consists of all the
variables of A, and RightVars consists of all the nonkey variables from B. Otherwise,
LefttVars consists of the variables specified by the 'LeftVariables' name-value pair
argument, and RightVars is the variables specified by the 'RightVariables' name-
value pair argument.

You can store additional metadata such as descriptions, variable units, variable names,
and row names in C. For more information, see the Properties sections of table or
timetable.

ia — Index to A
column vector

Index to A, returned as a column vector. Each element of ia identifies the row in A that
corresponds to that row in the output table or timetable, C.

ib — Index to B
column vector

Index to B, returned as a column vector. Each element of ib identifies the row in B that
corresponds to that row in the output table or timetable, C.

Definitions

Key Variable
Variable used to match and combine data between the input tables, A and B.

Tips
The vector of row labels from an input table or timetable can be a key, alone or in
combination with other key variables. Row labels are the row names of a table or the row
times of a timetable. To use this vector as a key, specify it as 'Row' (for the row names of
a table), as the name of a timetable vector of row times, or as the value of
T.Properties.DimensionNames{1}, where T is the table or timetable.

In general, innerjoin copies row labels from the input table A to the output table C.

1 Alphabetical List

1-7374

• If A has no row labels, then C has no row labels.
• If A has row labels, then innerjoin copies row labels from A to create row labels in

C.

• However, if both A and B are tables, but you do not specify either input table’s row
names as a key, then innerjoin does not create row names in C.

You cannot perform an inner join using the row labels of A as the left key and a variable of
B as the right key. To perform the inner join, convert the row labels of A to a table variable
and use the new table variable as a key.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• You cannot join two tall inputs. innerjoin can join together:

• A tall table with a regular table.
• A tall timetable with a regular table or timetable.

• You must specify one output argument. The three-output syntax [C,ia,ib] =
innerjoin(___) is not supported.

For more information, see “Tall Arrays”.

See Also
join | outerjoin

Introduced in R2013b

 innerjoin

1-7375

inpolygon
Points located inside or on edge of polygonal region

Syntax
in = inpolygon(xq,yq,xv,yv)
[in,on] = inpolygon(xq,yq,xv,yv)

Description
in = inpolygon(xq,yq,xv,yv) returns in indicating if the query points specified by
xq and yq are inside or on the edge of the polygon area defined by xv and yv.

[in,on] = inpolygon(xq,yq,xv,yv) also returns on indicating if the query points
are on the edge of the polygon area.

Examples

Points Inside Convex Polygon

Define a pentagon and a set of points. Then, determine which points lie inside (or on the
edge) of the pentagon.

Define the x and y coordinates of polygon vertices to create a pentagon.

L = linspace(0,2*pi,6);
xv = cos(L)';
yv = sin(L)';

Define x and y coordinates of 250 random query points. Initialize the random-number
generator to make the output of randn repeatable.

rng default
xq = randn(250,1);
yq = randn(250,1);

1 Alphabetical List

1-7376

Determine whether each point lies inside or on the edge of the polygon area. Also
determine whether any of the points lie on the edge of the polygon area.

[in,on] = inpolygon(xq,yq,xv,yv);

Determine the number of points lying inside or on the edge of the polygon area.

numel(xq(in))

ans = 80

Determine the number of points lying on the edge of the polygon area.

numel(xq(on))

ans = 0

Since there are no points lying on the edge of the polygon area, all 80 points identified by
xq(in), yq(in) are strictly inside the polygon area.

Determine the number of points lying outside the polygon area (not inside or on the
edge).

numel(xq(~in))

ans = 170

Plot the polygon and the query points. Display the points inside the polygon with a red
plus. Display the points outside the polygon with a blue circle.

figure

plot(xv,yv) % polygon
axis equal

hold on
plot(xq(in),yq(in),'r+') % points inside
plot(xq(~in),yq(~in),'bo') % points outside
hold off

 inpolygon

1-7377

Points Inside Multiply Connected Polygon

Find the points inside a square with a square hole.

Define a square region with a square hole. Specify the vertices of the outer loop in a
counterclockwise direction, and specify the vertices for the inner loop in a clockwise
direction. Use NaN to separate the coordinates for the outer and inner loops.

xv = [1 4 4 1 1 NaN 2 2 3 3 2];
yv = [1 1 4 4 1 NaN 2 3 3 2 2];

1 Alphabetical List

1-7378

Define x and y coordinates of 500 random points. Initialize the random-number generator
to make the output of randn repeatable.

rng default
xq = rand(500,1)*5;
yq = rand(500,1)*5;

Determine whether each point lies inside or on the edge of the polygon area.

in = inpolygon(xq,yq,xv,yv);

Plot the polygon and the query points. Display the points inside the polygon with a red
plus. Display the points outside the polygon with a blue circle.

figure

plot(xv,yv,'LineWidth',2) % polygon
axis equal

hold on
plot(xq(in),yq(in),'r+') % points inside
plot(xq(~in),yq(~in),'bo') % points outside
hold off

 inpolygon

1-7379

Query points in the square hole are outside the polygon.

Points Inside Self-Intersecting Polygon

Define the x and y coordinates for a pentagram.

xv = [0.5;0.2;1.0;0;0.8;0.5];
yv = [1.0;0.1;0.7;0.7;0.1;1];

Define the x and y coordinates of 12 query points.

1 Alphabetical List

1-7380

xq = [0.1;0.5;0.9;0.2;0.4;0.5;0.5;0.9;0.6;0.8;0.7;0.2];
yq = [0.4;0.6;0.9;0.7;0.3;0.8;0.2;0.4;0.4;0.6;0.2;0.6];

Determine whether each point lies inside or on the edge of the polygon area. Also
determine whether any of the points lie on the edge of the polygon area.

[in,on] = inpolygon(xq,yq,xv,yv);

Determine the number of points lying inside or on the edge of the polygon area.

numel(xq(in))

ans = 8

Determine the number of points lying on the edge of the polygon area.

numel(xq(on))

ans = 2

Determine the number of points lying outside the polygon area (not inside or on the
edge).

numel(xq(~in))

ans = 4

Plot the polygon and the points. Display the points strictly inside the polygon with a red
plus. Display the points on the edge with a black asterisk. Display the points outside the
polygon with a blue circle.

figure

plot(xv,yv) % polygon

hold on
plot(xq(in&~on),yq(in&~on),'r+') % points strictly inside
plot(xq(on),yq(on),'k*') % points on edge
plot(xq(~in),yq(~in),'bo') % points outside
hold off

 inpolygon

1-7381

Six points lie inside the polygon. Two points lie on the edge of the polygon. Four points lie
outside the polygon.

Input Arguments
xq — x-coordinates of query points
scalar | vector | matrix | multidimensional array

x-coordinates of query points, specified as a scalar, vector, matrix, or multidimensional
array.

The size of xq must match the size of yq.

1 Alphabetical List

1-7382

Data Types: double | single

yq — y-coordinates of query points
scalar | vector | matrix | multidimensional array

y-coordinates of query points, specified as a scalar, vector, matrix, or multidimensional
array.

The size of yq must match the size of xq.
Data Types: double | single

xv — x-coordinates of polygon vertices
vector

x-coordinates of polygon vertices, specified as a vector.

The size of xv must match the size of yv.

To specify vertices of multiply connected or disjoint polygons, separate the coordinates
for distinct loops with NaN. Additionally for multiply connected polygons, you must orient
the vertices for external and internal loops in opposite directions.

The polygon cannot be self-intersecting and multiply connected due to the ambiguity
associated with self-intersections and loop orientations.
Data Types: double | single

yv — y-coordinates of polygon vertices
vector

y-coordinates of polygon vertices, specified as a vector.

The size of yv must match the size of xv.

To specify vertices of multiply connected or disjoint polygons, separate the coordinates
for distinct loops with NaN. Additionally for multiply connected polygons, you must orient
the vertices for external and internal loops in opposite directions.

The polygon cannot be self-intersecting and multiply connected due to the ambiguity
associated with self-intersections and loop orientations.
Data Types: double | single

 inpolygon

1-7383

Output Arguments
in — Indicator for points inside or on edge of polygon area
logical array

Indicator for the points inside or on the edge of the polygon area, returned as a logical
array. in is the same size as xq and yq.

• A logical 1 (true) indicates that the corresponding query point is inside the polygonal
region or on the edge of the polygon boundary.

• A logical 0 (false) indicates that the corresponding query point is outside the
polygonal region.

Therefore, you can use in to index into xq and yq to identify query points of interest.

xq(in), yq(in) Query points inside or on the edge of the
polygon area

xq(~in), yq(~in) Query points outside the polygonal region

on — Indicator for points on edge of polygon area
logical array

Indicator for the points on the edge of the polygon area, returned as a logical array. on is
the same size as xq and yq.

• A logical 1 (true) indicates that the corresponding query point is on the polygon
boundary.

• A logical 0 (false) indicates that the corresponding query point is inside or outside
the polygon boundary.

Therefore, you can use on and in to index into xq and yq identify query points of
interest.

xq(on), yq(on) Query points on the polygon boundary
xq(~on), yq(~on) Query points inside or outside the polygon

boundary
xq(in&~on), yq(in&~on) Query points strictly inside the polygonal

region

1 Alphabetical List

1-7384

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports single-precision and double-precision inputs, but uses double-precision
arithmetic even if all inputs are single-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
delaunay

Introduced before R2006a

 inpolygon

1-7385

input
Request user input

Syntax
x = input(prompt)
str = input(prompt,'s')

Description
x = input(prompt) displays the text in prompt and waits for the user to input a value
and press the Return key. The user can enter expressions, like pi/4 or rand(3), and
can use variables in the workspace.

• If the user presses the Return key without entering anything, then input returns an
empty matrix.

• If the user enters an invalid expression at the prompt, then MATLAB displays the
relevant error message, and then redisplays the prompt.

str = input(prompt,'s') returns the entered text, without evaluating the input as an
expression.

Examples

Request Numeric Input or Expression

Request a numeric input, and then multiply the input by 10.

prompt = 'What is the original value? ';
x = input(prompt)
y = x*10

At the prompt, enter a numeric value or array, such as 42.

1 Alphabetical List

1-7386

x =
 42

y =
 420

The input function also accepts expressions. For example, rerun the code.

prompt = 'What is the original value? ';
x = input(prompt)
y = x*10

At the prompt, enter magic(3).

x =
 8 1 6
 3 5 7
 4 9 2

y =
 80 10 60
 30 50 70
 40 90 20

Request Unprocessed Text Input

Request a simple text response that requires no evaluation.

prompt = 'Do you want more? Y/N [Y]: ';
str = input(prompt,'s');
if isempty(str)
 str = 'Y';
end

The input function returns the text exactly as typed. If the input is empty, this code
assigns a default value, 'Y', to str.

Input Arguments
prompt — Text displayed to user
character vector

 input

1-7387

Text displayed to the user, specified as a character vector.

To create a prompt that spans several lines, use '\n' to indicate each new line. To
include a backslash ('\') in the prompt, use '\\'.

Output Arguments
x — Result calculated from input
array

Result calculated from input, returned as an array. The type and dimensions of the array
depend upon the response to the prompt.

str — Exact text of input
character vector

Exact text of the input, returned as a character vector.

Algorithms
The Workspace browser does not refresh while input is waiting for a response from the
user. Therefore, if you run input within a script, the Workspace browser does not display
changes made to variables in the workspace until the script finishes running.

See Also
ginput | inputdlg | keyboard | menu | uicontrol

Introduced before R2006a

1 Alphabetical List

1-7388

inputdlg
Create dialog box to gather user input

Syntax
answer = inputdlg(prompt)
answer = inputdlg(prompt,dlgtitle)
answer = inputdlg(prompt,dlgtitle,dims)
answer = inputdlg(prompt,dlgtitle,dims,definput)
answer = inputdlg(prompt,dlgtitle,dims,definput,opts)

Description
answer = inputdlg(prompt) creates a modal on page 1-7397 dialog box containing
one or more text edit fields and returns the values entered by the user. The return values
are elements of a cell array of character vectors. The first element of the cell array
corresponds to the response in the edit field at the top of the dialog box. The second
element corresponds to the next edit field response, and so on.

answer = inputdlg(prompt,dlgtitle) specifies a title for the dialog box.

answer = inputdlg(prompt,dlgtitle,dims)specifies the height of each edit field
when dims is a scalar value. When dims is an array, the first value in each array element
sets the edit field height. The second value in each array element sets the edit field width.

answer = inputdlg(prompt,dlgtitle,dims,definput) specifies the default value
for each edit field. The definput input argument must contain the same number of
elements as prompt.

answer = inputdlg(prompt,dlgtitle,dims,definput,opts)specifies that the
dialog box is resizeable in the horizontal direction when opts is set to 'on'. When opts
is a structure, it specifies whether the dialog box is resizeable in the horizontal direction,
whether it is modal, and whether the prompt text is interpreted.

 inputdlg

1-7389

Examples

Dialog Box to Get User Input

Create a dialog box that contains two text edit fields to get integer and colormap name
inputs from users.

prompt = {'Enter matrix size:','Enter colormap name:'};
dlgtitle = 'Input';
dims = [1 35];
definput = {'20','hsv'};
answer = inputdlg(prompt,dlgtitle,dims,definput)

Text Edit Fields of Different Widths

x = inputdlg({'Name','Telephone','Account'},...
 'Customer', [1 50; 1 12; 1 7]);

1 Alphabetical List

1-7390

Interpret prompt Value with TeX Interpreter

Create a dialog box, specifying a value in the options structure.

Use the options structure to specify TeX to be the interpreter.

prompt = {'Enter a value of \theta (in degrees)'};
dlgtitle = 'Theta Value';
definput = {'30'};
opts.Interpreter = 'tex';
answer = inputdlg(prompt,dlgtitle,[1 40],definput,opts);

 inputdlg

1-7391

Convert Input to Numeric Values

Users can enter scalar or vector values into inputdlg text edit fields. MATLAB stores the
input as a cell array of character vectors. Convert a member of the input cell array to a
number, using str2num.

Create an input dialog box that asks users to enter numerical data.

answer = inputdlg('Enter space-separated numbers:',...
 'Sample', [1 50])

Suppose that the user enters 1 2 3 4 -5 6+7, and then clicks OK. MATLAB stores the
answer as a cell array of character vectors – {'1 2 3 4 -5 6+7'}

Use str2num to convert the cell array to numerals.

user_val = str2num(answer{1})

user_val =

 1 2 3 4 -5 13

Input Arguments
prompt — Text edit field labels
'Input:' (default) | character vector | cell array of character vectors | string array

Text edit field labels, specified as a character vector, cell array of character vectors, or
string array. For cell arrays and string arrays, each element specifies an edit field label.
Both types of arrays specify a top to bottom sequence of edit fields in the dialog box.
Example: {'First Name','Last Name'}

1 Alphabetical List

1-7392

dlgtitle — Dialog box title
'' (default) | character vector | string scalar

Dialog box title, specified as a character vector or string scalar.
Example: 'Data'

dims — Text edit field height and width
1 (default) | scalar | column vector | row vector | m x 2 array

Text edit field height and width (dimensions), specified as one of these values:

• If dims is a scalar, then it specifies the height for all edit fields. Height is the distance
between the baselines of two lines of text. The width for all edit fields is the maximum
that the dialog box allows.

• If dims is a column vector or row vector, then each element specifies the height of
each corresponding edit field from the top to the bottom of the dialog box. The width
for all edit fields is the maximum that the dialog box allows.

• If dims is an array, then it must be size m-by-2, where m is the number of prompts in
the dialog box. Each row refers to the edit field for the corresponding prompt. The
first column specifies the height of the edit field in lines of text. The second column
specifies the width of that edit field in character units. The width of a character unit
equals the width of the letter x when using the system font.

Note With one exception, the height and width of the edit fields do not limit the amount
of text that users can enter. When the edit field height is 1, users cannot enter multiple
lines of text.

Example: 2
Example: [1;2]
Example: [1 50; 2 10]

definput — Default input value or values
{' '} (default) | cell array of character vectors | string array

Default input value or values, specified as a cell array of character vectors or string array.
Example: {'Color','1'}

 inputdlg

1-7393

opts — Dialog box settings
'on' | structure

Dialog box settings specified as 'on' or a structure. When opts is set to 'on', then
users can resize the dialog box in the horizontal direction. When opts is a structure, the
structure fields specify the options in the following table.

Field Values
Resize 'off' (default) or 'on'. If set to 'off', then users cannot resize the

dialog box. If 'on', then users can resize the window horizontally.
WindowStyle 'modal' (default) or 'normal'. If set to 'modal', then users cannot

interact with other windows before responding.
Interpreter 'none' (default) or 'tex'. If set to 'tex', then the prompt is

rendered using TeX. The dialog box title is not affected.

Use TeX markup to add superscripts and subscripts, modify the font
type and color, and include special characters in the prompt text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

1 Alphabetical List

1-7394

Modifier Description Example
\fontsize{specifier} Font size —Replace

specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑

 inputdlg

1-7395

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\iota ι \Sigma Σ \rightarro
w

→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

Example: 'on'
Example: opts.Resize = 'on'

1 Alphabetical List

1-7396

Example: opts.WindowStyle = 'normal'
Example: opts.Interpreter = 'tex'

Output Arguments
answer — Output
empty cell array | cell array of character vectors

Returns a cell array of character vectors containing one input per edit field, starting from
the top of the dialog box. Use the str2num function to convert space-delimited and
comma-delimited values into row vectors, and semicolon-delimited values into column
vectors. For an example, see Convert Input to Numeric Values on page 1-7391.

If the user clicks the Cancel button to close the dialog box, then answer is an empty cell
array, { }.

If the user presses the keyboard Return key to close the dialog box, then answer is the
value of definput. If definput is undefined, then answer is an empty cell array, { }.

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Tips
• MATLAB program execution continues even when a modal input dialog box is active.

To block program execution until the user responds, use the uiwait function.

Users can enter scalar or vector values into Input dialog boxes. Use str2num to convert
space-delimited and comma-delimited values into row vectors and to convert semicolon-
delimited values into column vectors. For example, if answer{1} contains '1 2 3;4 -5
6+7i', the conversion produces:

 inputdlg

1-7397

input = str2num(answer{1})
input =
 1.0000 2.0000 3.0000
 4.0000 -5.0000 6.0000 + 7.0000i

See Also
listdlg | questdlg

Introduced before R2006a

1 Alphabetical List

1-7398

inputname
Variable name of function input

Syntax
s = inputname(argNumber)

Description
s = inputname(argNumber) returns the workspace variable name, s, corresponding to
the argument number argNumber.

You cannot call inputname from the MATLAB command prompt or in a script you call
from the command prompt.

Examples

Display Variable Name of Function Input

Create the following function in a file, myfun.m, in your current working folder.

function myfun(a,b)
s = inputname(1);
disp(['First calling variable is ''' s '''.'])
end

Call the function at the command prompt using the variables x and y.

x = 5;
y = 3;
myfun(x,y)

First calling variable is 'x'.

 inputname

1-7399

Call the function using values instead of variables. The inputname function returns an
empty char array because its input does not have a name.

myfun(5,3)

First calling variable is ''.

Display All Calling Variable Names

Create the following function in a file, myfun2.m, in your current working folder.

function myfun2(a,b,c)
for m = 1:nargin
 disp(['Calling variable ' num2str(m) ' is ''' inputname(m) '''.'])
end

Call the function at the command prompt.

x = {'hello','goodbye'};
y = struct('a',42,'b',78);
z = rand(4);

myfun2(x,y,z)

Calling variable 1 is 'x'.
Calling variable 2 is 'y'.
Calling variable 3 is 'z'.

Call the function using a field of y. Because the input argument contains dot indexing, the
inputname function returns an empty char array for the second variable name and all
subsequent variable names.

myfun2(x,y.a,z)

Calling variable 1 is 'x'.
Calling variable 2 is ''.
Calling variable 3 is ''.

Call the function using the second cell of x. Because the input argument contains cell
indexing, the inputname function returns an empty char array for the first variable
name and all subsequent variable names.

1 Alphabetical List

1-7400

myfun2(x{2},y,z)

Calling variable 1 is ''.
Calling variable 2 is ''.
Calling variable 3 is ''.

Input Arguments
argNumber — Number of function input argument
scalar, real, positive integer value

Number of function input argument, specified as a scalar, real, positive integer value. If
argNumber exceeds the number of input arguments passed into the function, MATLAB
throws an error.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
s — Workspace variable name
character vector

Workspace variable name, returned as a character vector. If the input argument has no
name, the inputname function returns an empty character array (''). For example, an
input argument has no name if it is a number, an expression, or an indexing expression
instead of a variable.

If an input argument to the function that calls inputname contains cell or dot indexing,
inputname returns an empty character array for that variable and subsequent variables.
Extracting elements from a cell array or a field from a structure yields a comma-
separated list. A comma-separated list causes the location of any input that follows to be
dynamic. Therefore, inputname returns '' for the argument that produced the list and
the arguments that follow.

 inputname

1-7401

Tips
• inputname is a convenient way to communicate the name of an input variable to a

function. For example, a function checks the data types of inputs and, if it finds an
incorrect type, displays the name of the variable from your workspace.

• Avoid using inputname in the critical path of code or to obtain variable names to be
used with commands such as eval, evalin, and assignin. This use of inputname
can lead to code that is difficult to maintain.

• inputname returns an error if it is called inside an overloaded subsref, subsasgn,
subsindex, numel, or property set or get method.

• If the function that calls inputname is not called from a MATLAB code file,
inputname walks up the stack until it finds a call from MATLAB code and returns the
names it finds there. For example, this behavior occurs if inputname is called from a
built-in function or a MEX function.

Consider the following code in which the built-in arrayfun function calls inputname
via a function handle.

fn=@(x) inputname(x);
a=1:4;
arrayfun(fn,a,'uniformoutput',false)

ans =

 'fn' 'a' '' ''

The inputname function walks up the stack until it finds a call from MATLAB code. In
this case, the MATLAB code is the base workspace, and inputname returns variable
names from the base workspace

See Also
nargin | narginchk | nargout

Introduced before R2006a

1 Alphabetical List

1-7402

inputParser
Input parser for functions

Description
The inputParser object enables you to manage inputs to a function by creating an input
parser scheme. To check the input, you can define validation functions for required
arguments, optional arguments, and name-value pair arguments. Optionally, you can set
properties to adjust the parsing behavior, such as handling case sensitivity, structure
array inputs, and inputs that are not in the input parser scheme.

After defining your input parser scheme, call the parse function. The inputParser
stores information about inputs.

Input Names and Values Where Stored
Matching input parser scheme Results property
Not passed to function and, therefore,
assigned default values

UsingDefaults property

No matching input parser scheme Unmatched property

Creation

Syntax
p = inputParser

Description
p = inputParser creates an input parser object with default property values.

 inputParser

1-7403

Properties
CaseSensitive — Indicator to match case
false (default) | true

Indicator to match case when checking argument names, specified as false or true (or
0 or 1). By default, argument name matches are not case sensitive. For example, 'a'
matches 'A'. For case-sensitive matches, set CaseSensitive to true (or 1).

This property value is stored as a logical value.

FunctionName — Name of function for error message
empty character vector, ''. (default) | character vector | string scalar

Name of the function to display in error messages, specified as a character vector or
string scalar. By default, FunctionName is an empty character vector (''). Typically, you
set FunctionName to the name of the function you are validating. Then, if the parse
function encounters invalid input arguments, it reports the error using the function name.

This property value is stored as a character vector.
Data Types: char | string

KeepUnmatched — Matching indicator
false (default) | true

Matching indicator to throw error when an input is not found in the input parser scheme,
specified as false or true (or 0 or 1). By default, the parse function throws an error if
an input argument name does not match one defined in the input parser scheme. To
suppress the error and store the input argument name and value, set KeepUnmatched to
true (or 1). The inputParser stores unmatched input argument names and values in
the Unmatched property.

This property value is stored as a logical value.

PartialMatching — Partial matching indicator
true (default) | false

Partial matching indicator for accepting partially matched input names as valid, specified
as true or false (or 1 or 0). By default, input parameter names that are leading
substrings of parameter names in the input parser scheme are valid and the input value is
matched to that parameter. If there are multiple possible matches to the input parameter,

1 Alphabetical List

1-7404

MATLAB throws an error. To require input parameter names to match a name in the input
parser scheme exactly, respecting the CaseSensitive property, set PartialMatching
to false (or 0).

Partial matching is supported only by arguments that you add to the input parser scheme
using the addParameter function.

• If the value of the StructExpand property is true (or 1), then inputParser does
not support partial matching for structure field names that correspond to input
parameter names.

• If PartialMatching and KeepUnmatched are both true (or 1), then MATLAB does
not throw an error. Instead, it stores the ambiguous parameter name in the
Unmatched property.

This property value is stored as a logical value.

StructExpand — Structure indicator
true (default) | false

Structure indicator that interprets a structure as a single input or as a set of parameter
name-value pairs, specified as true or false (or 1 or 0). By default, the inputParser
expands structures into separate inputs, where each field name corresponds to an input
parameter name. To consider structures as a single input argument, specify
StructExpand as false (or 0).

This property value is stored as a logical value.

Parameters — Argument names
cell array of character vectors

This property is read-only.

Argument names defined in the input parser scheme, stored as a cell array of character
vectors. Each function that adds an input argument to the scheme updates the
Parameters property. These functions include addRequired, addOptional, and
addParameter.
Data Types: cell

Results — Results
structure

This property is read-only.

 inputParser

1-7405

Results specified as the names of valid input arguments and the corresponding values,
stored as a structure. A valid input argument is one with a name that matches an
argument defined in the input parser scheme. Each field of the Results structure
corresponds to the name of an argument in the input parser scheme. The parse function
populates the Results property.
Data Types: struct

Unmatched — Unmatched input
structure

This property is read-only.

Unmatched input names and values of inputs that do not match input parser scheme,
stored as a structure. If the KeepUnmatched property is set to false (or 0), which is the
default, or if all inputs match the input parser scheme, then Unmatched is a 1-by-1
structure with no fields. Otherwise, each field of the Unmatched structure corresponds to
the name of an input argument that does not match the arguments defined in the input
parser scheme.

The parse function populates the Unmatched property.
Data Types: struct

UsingDefaults — Inputs not passed explicitly to function
cell array of character vectors

This property is read-only.

Inputs not passed explicitly to the function, stored as a cell array of character vectors.
These input arguments are assigned default values in the Results property. The parse
function populates the UsingDefaults property.
Data Types: cell

Object Functions
addOptional Add optional, positional argument into input parser scheme
addParameter Add optional name-value pair argument into input parser scheme
addRequired Add required, positional argument into input parser scheme
parse Parse function inputs

1 Alphabetical List

1-7406

addParamValue (Not recommended) Add optional name-value pair argument into input
parser scheme

You can define your input parser scheme by calling the addRequired, addOptional,
and addParameter functions in any order. However, when you call the function that uses
the input parser, arguments are passed in this order:

1 Required arguments
2 Any optional, positional arguments
3 Any name-value pairs

Examples

Input Validation

Check the validity of required and optional arguments.

Create a function in the file findArea.m. The findArea function requires the width
input argument and accepts a variable number of additional inputs. The input parser
scheme specifies these argument conditions:

• width (required argument). Since required arguments are positional, width must be
the first argument to the findArea function. The input parser checks that width is
positive, scalar, and numeric.

• height (optional argument). Since optional arguments are positional, if height is an
argument to the findArea function, then it must be the second argument. The input
parser checks that height is positive, scalar, and numeric.

• 'units' and its associated value (name-value pair). Name-value pairs are optional.
When you call the findArea function, specify name-value pairs in any order after
positional arguments. The input parser checks that the value for 'units' is a string.

• 'shape' and its associated value (another name-value pair). The input parser checks
that the value for 'shape' is contained in the expectedShapes array.

function a = findArea(width,varargin)
 defaultHeight = 1;
 defaultUnits = 'inches';
 defaultShape = 'rectangle';
 expectedShapes = {'square','rectangle','parallelogram'};

 inputParser

1-7407

 p = inputParser;
 validScalarPosNum = @(x) isnumeric(x) && isscalar(x) && (x > 0);
 addRequired(p,'width',validScalarPosNum);
 addOptional(p,'height',defaultHeight,validScalarPosNum);
 addParameter(p,'units',defaultUnits,@isstring);
 addParameter(p,'shape',defaultShape,...
 @(x) any(validatestring(x,expectedShapes)));
 parse(p,width,varargin{:});

 a = p.Results.width*p.Results.height;
end

Call the findArea function several times. The input parser does not throw an error for
any of these function calls.

a = findArea(7);
a = findArea(7,3);
a = findArea(13,'shape','square');
a = findArea(13,'units',"miles",'shape','square');

Call the function with arguments that do not match the input parser scheme. Specify a
nonnumeric value for the width input:

a = findArea('text')

Error using findArea (line 14)
The value of 'width' is invalid. It must satisfy the function: @(x)isnumeric(x)&&isscalar(x)&&(x>0).

Specify an unsupported value for 'shape'.

a = findArea(4,12,'shape','circle')

Error using findArea (line 14)
The value of 'shape' is invalid. Expected input to match one of these values:

'square', 'rectangle', 'parallelogram'

The input, 'circle', did not match any of the valid values.

Extra Parameter Value Inputs

Store parameter name and value inputs that are not in the input scheme instead of
throwing an error.

default = 0;
value = 1;

1 Alphabetical List

1-7408

p = inputParser;
p.KeepUnmatched = true;
addOptional(p,'expectedInputName',default)
parse(p,'extraInput',value);

View the unmatched parameter name and value:

p.Unmatched

ans = struct with fields:
 extraInput: 1

Case Sensitivity

Enforce case sensitivity when checking function inputs.

p = inputParser;
p.CaseSensitive = true;
defaultValue = 0;
addParameter(p,'InputName',defaultValue)

parse(p,'inputname',10)

'inputname' is not a recognized parameter. For a list of valid name-value pair arguments, see the documentation for this function.

Structure Array Inputs

Expand a structure argument into name-value pairs.

s.input1 = 10;
s.input2 = 20;
default = 0;

p = inputParser;
addParameter(p,'input1',default)
addParameter(p,'input2',default)
parse(p,s)

p.Results

ans = struct with fields:
 input1: 10

 inputParser

1-7409

 input2: 20

Accept a structure as a single argument by setting the StructExpand property to
false.

s2.first = 1;
s2.random = rand(3,4,2);
s2.mytext = 'some text';

p = inputParser;
p.StructExpand = false;
addRequired(p,'structInput')
parse(p,s2)

results = p.Results

results = struct with fields:
 structInput: [1x1 struct]

fieldList = fieldnames(p.Results.structInput)

fieldList = 3x1 cell array
 {'first' }
 {'random'}
 {'mytext'}

Parse Inputs Using validateattributes

Create a function that parses information about people and, if parsing passes, adds the
information to a cell array.

Create function addPerson and include an input parser scheme that uses the
validateattributes function. The addPerson function accepts a list of people,
modifies the list if necessary, and then returns the list. Use a persistent inputParser
object to avoid constructing of a new object with every function call.
function mlist = addPerson(mlist,varargin)
 persistent p
 if isempty(p)
 p = inputParser;
 p.FunctionName = 'addPerson';
 addRequired(p,'name',@(x)validateattributes(x,{'char'},...
 {'nonempty'}))

1 Alphabetical List

1-7410

 addRequired(p,'id',@(x)validateattributes(x,{'numeric'},...
 {'nonempty','integer','positive'}))
 addOptional(p,'birthyear',9999,@(x)validateattributes(x,...
 {'numeric'},{'nonempty'}))
 addParameter(p,'nickname','-',@(x)validateattributes(x,...
 {'char'},{'nonempty'}))
 addParameter(p,'favColor','-',@(x)validateattributes(x,...
 {'char'},{'nonempty'}))
 end

 parse(p,varargin{:})

 if isempty(mlist)
 mlist = fieldnames(p.Results)';
 end
 mlist = [mlist; struct2cell(p.Results)'];
end

Create an empty list, and add a person to it.
pList = {};
pList = addPerson(pList,78,'Joe');

Error using addPerson
The value of 'name' is invalid. Expected input to be one of these types:

char

Instead its type was double.

Error in addPerson (line 19)
parse(p,varargin{:})

The parsing fails because the function receives arguments in the incorrect order and tries
to assign name a value of 78. This entry is not added to pList.

Add several more people to the list.
pList = addPerson(pList,'Joe',78);
pList = addPerson(pList,'Mary',3,1942,'favColor','red');
pList = addPerson(pList,'James',182,1970,'nickname','Jimmy')

pList =

 4×5 cell array

 'birthyear' 'favColor' 'id' 'name' 'nickname'
 [9999] '-' [78] 'Joe' '-'
 [1942] 'red' [3] 'Mary' '-'
 [1970] '-' [182] 'James' 'Jimmy'

Tips
• Arguments added to the input parser scheme with the addOptional function are

positional. Therefore, add them to the input parser scheme in the same order they are
passed into the function.

 inputParser

1-7411

• Use addOptional to add an individual argument into the input parser scheme. If you
want to parse an optional name-value pair, then use the addParameter function.

See Also
validateattributes | validatestring | varargin

Topics
“Input Parser Validation Functions”

Introduced in R2007a

1 Alphabetical List

1-7412

addOptional
Add optional, positional argument into input parser scheme

Syntax
addOptional(p,argName,defaultVal)
addOptional(p,argName,defaultVal,validationFcn)

Description
addOptional(p,argName,defaultVal) adds an optional, positional input argument,
argName, into the input parser scheme p. When the inputs to a function do not include a
value for this optional input, the input parser assigns it the value defaultVal.

addOptional(p,argName,defaultVal,validationFcn) specifies a validation
function for the input argument.

Examples

Add Optional Input

Create an inputParser object and add an optional input to the input parser scheme.
Name the argument myinput, and assign it a default value of 13.

p = inputParser;
argName = 'myInput';
defaultVal = 13;
addOptional(p,argName,defaultVal)

Call the parse function with no inputs, and display the results.

parse(p)
p.Results

 addOptional

1-7413

ans = struct with fields:
 myInput: 13

Call the parse function with an input value of 42, and display the results.

parse(p,42)
p.Results

ans = struct with fields:
 myInput: 42

Validate Optional Input

Validate that an optional input named num, with a default value of 1, is a numeric scalar
greater than zero.

Create an input parser scheme. For the validation function, @(x) creates a handle to an
anonymous function that accepts one input.

p = inputParser;
argName = 'num';
defaultVal = 1;
validationFcn = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addOptional(p,argName,defaultVal,validationFcn)

Parse an invalid input argument, such as -1.

parse(p,-1)

The value of 'num' is invalid. It must satisfy the function: @(x)isnumeric(x)&&isscalar(x)&&(x>0).

Validate Optional Input with validateattributes

Define a validation function using validateattributes. Validate that an argument is
numeric, positive, and even.

validationFcn = @(x) validateattributes(x,{'numeric'},...
 {'even','positive'});

Create an input parser scheme that includes an optional evenPosNum argument with a
default value of 1. Validate the input argument with validationFcn.

1 Alphabetical List

1-7414

p = inputParser;
argName = 'evenPosNum';
defaultVal = 1;
addOptional(p,argName,defaultVal,validationFcn)

Parse an input string. Parse fails.

parse(p,"hello")

The value of 'evenPosNum' is invalid. Expected input to be one of these types:

numeric

Instead its type was string.

Parse an odd number. Parse fails.

 parse(p,13)

The value of 'evenPosNum' is invalid. Expected input to be even.

Parse an even, positive number. Parse passes.

parse(p,42)

Input Arguments
p — Input parser scheme
inputParser object

Input parser scheme, specified as an inputParser object.

argName — Name of input argument
character vector | string scalar

Name of the input argument, specified as a character vector or string scalar.
Example: 'firstName'
Example: 'address'
Data Types: char | string

defaultVal — Default value for input
value

 addOptional

1-7415

Default value for the input, specified as any data type. If argName is not an input to the
function, when the parse function parses the inputs, then it assigns argName the value
defaultVal.

validationFcn — Function to validate argument
function handle

Function to validate an argument, specified as a function handle.

The function handle must be associated with a function that returns true or false, or
passes a test, or throws an error. Both types of functions must accept a single input
argument.
Example: @(s)isstring(s)
Example: @(x)isnumeric(x)&&isscalar(x)
Example: @(n)validateattributes(n,{'numeric'},{'nonnegative'})
Data Types: function_handle

Tips
• Arguments added to the input parser scheme with the addOptional function are

positional. Therefore, add them to the input parser scheme in the same order they are
passed into the function.

• For optional string arguments, specify a validation function. Without a validation
function, the input parser interprets a string argument as an invalid parameter name
and throws an error.

• Use addOptional to add an individual argument into the input parser scheme. If you
want to parse an optional name-value pair, then use the addParameter function.

See Also
addParameter | addRequired | inputParser | validateattributes

Topics
“Input Parser Validation Functions”
“Anonymous Functions”

1 Alphabetical List

1-7416

Introduced in R2007a

 addOptional

1-7417

addParameter
Add optional name-value pair argument into input parser scheme

Syntax
addParameter(p,paramName,defaultVal)
addParameter(p,paramName,defaultVal,validationFcn)
addParameter(___ ,'PartialMatchPriority',matchPriorityValue)

Description
addParameter(p,paramName,defaultVal) adds the parameter name of an optional
name-value pair argument into the input parser scheme. When the inputs to a function do
not include this optional name-value pair, the input parser assigns paramName the value
defaultVal.

Unlike positional inputs added with the addRequired and addOptional functions, each
parameter added with addParameter corresponds to two input arguments: one for the
name and one for the value.

addParameter(p,paramName,defaultVal,validationFcn) specifies a validation
function for the input argument.

addParameter(___ ,'PartialMatchPriority',matchPriorityValue) specifies
the priority for the partial matching of conflicting parameter names. The input parser
scheme selects lower priority values over higher ones. Use this option with any of the
input argument combinations in the previous syntaxes.

Examples

Add Parameter Value Input

Create an inputParser object and add a name-value pair into the input scheme.

1 Alphabetical List

1-7418

p = inputParser;
paramName = 'myParam';
defaultVal = 0;
addParameter(p,paramName,defaultVal)

Pass both the parameter name and value to the parse method, and display the results.

parse(p,'myParam',100);
p.Results

ans = struct with fields:
 myParam: 100

Validate Parameter Value

Validate that the value corresponding to myParam, with a default value of 1, is a numeric
scalar greater than zero.

Create an input parser scheme. For the validation function, @(x) creates a handle to an
anonymous function that accepts one input.

p = inputParser;
paramName = 'myParam';
defaultVal = 1;
errorMsg = 'Value must be positive, scalar, and numeric.';
validationFcn = @(x) assert(isnumeric(x) && isscalar(x) ...
 && (x > 0),errorMsg);
addParameter(p,paramName,defaultVal,validationFcn)

Parse an invalid input argument, such as -1.

parse(p,'myparam',-1)

The value of 'myparam' is invalid. Value must be positive, scalar, and numeric.

Validate Parameter Value Input Using validateattributes

Define a validation function using validateattributes. Validate that an argument is a
nonempty character vector.

validationFcn = @(x) validateattributes(x,{'char'},{'nonempty'});

 addParameter

1-7419

Create an input parser scheme that includes an optional name-value pair argument, with
a parameter name myName and a default value of 'John Doe'. Validate the input
argument with validationFcn.

p = inputParser;
paramName = 'myName';
defaultVal = 'John Doe';
addParameter(p,paramName,defaultVal,validationFcn)

Define myName as a number. The parse fails.

parse(p,'myName',1138)

The value of 'myName' is invalid. Expected input to be one of these types:

char

Instead its type was double.

Parse a character vector. The parse passes.

parse(p,'myName','George')

Input Arguments
p — Input parser scheme
inputParser object

Input parser scheme, specified as an inputParser object.

paramName — Name of input parameter
character vector | string scalar

Name of the input parameter, specified as a character vector or string scalar.
Example: "firstName"
Example: 'address'
Data Types: char | string

defaultVal — Default value for input
value

1 Alphabetical List

1-7420

Default value for the input, specified as any data type. If argName is not an input to the
function, when the parse function parses the inputs, then it assigns argName the value
defaultVal.

validationFcn — Function to validate argument
function handle

Function to validate an argument, specified as a function handle.

The function handle must be associated with a function that returns true or false, or
passes a test, or throws an error. Both types of functions must accept a single input
argument.
Example: @(s)isstring(s)
Example: @(x)isnumeric(x)&&isscalar(x)
Example: @(n)validateattributes(n,{'numeric'},{'nonnegative'})
Data Types: function_handle

matchPriorityValue — Priority for partial matching of conflicting parameter
names
1 (default) | positive integer

Priority for partial matching of conflicting parameter names, specified as a positive
integer. The input parser scheme selects lower priority values over higher ones. If partial
parameter names are ambiguous and have the same priority, then parse throws an error.
If the names are ambiguous, but have different priority values, then parse issues a
warning that indicates the matched name.

Tips
• Parameter name-value pairs are optional inputs. When calling the function, name-

value pairs can appear in any order after positional arguments. They take the general
form Name1,Value1,...,NameN,ValueN.

See Also
addOptional | addRequired | inputParser | validateattributes

 addParameter

1-7421

Topics
“Input Parser Validation Functions”
“Anonymous Functions”

Introduced in R2013b

1 Alphabetical List

1-7422

addParamValue
(Not recommended) Add optional name-value pair argument into input parser scheme

Note addParamValue is not recommended. Use addParameter instead.

Syntax
addParamValue(p,paramName,defaultVal)
addParamValue(p,paramName,defaultVal,validationFcn)

Description
addParamValue(p,paramName,defaultVal) adds the parameter name of an optional
name-value pair argument into the input parser scheme. When the inputs to a function do
not include this optional name-value pair, the input parser assigns paramName the value
defaultVal.

Unlike positional inputs added with the addRequired and addOptional functions, each
parameter added with addParamValue corresponds to two input arguments: one for the
name and one for the value.

addParamValue(p,paramName,defaultVal,validationFcn) specifies a validation
function for the input argument.

Examples

Validate Parameter Value

Validate that the value corresponding to myParam, with a default value of 1, is a numeric
scalar greater than zero.

Create an input parser scheme. For the validation function, @(x) creates a handle to an
anonymous function that accepts one input.

 addParamValue

1-7423

p = inputParser;
paramName = 'myParam';
defaultVal = 1;
errorMsg = 'Value must be positive, scalar, and numeric.';
validationFcn = @(x) assert(isnumeric(x) && isscalar(x) ...
 && (x > 0),errorMsg);
addParamValue(p,paramName,defaultVal,validationFcn)

Parse an invalid input argument, such as -1.

parse(p,'myparam',-1)

The value of 'myparam' is invalid. Value must be positive, scalar, and numeric.

Input Arguments
p — Input parser scheme
inputParser object

Input parser scheme, specified as an inputParser object.

paramName — Name of input parameter
character vector | string scalar

Name of the input parameter, specified as a character vector or string scalar.
Example: "firstName"
Example: 'address'
Data Types: char | string

defaultVal — Default value for input
value

Default value for the input, specified as any data type. If argName is not an input to the
function, when the parse function parses the inputs, then it assigns argName the value
defaultVal.

validationFcn — Function to validate argument
function handle

Function to validate an argument, specified as a function handle.

1 Alphabetical List

1-7424

The function handle must be associated with a function that returns true or false, or
passes a test, or throws an error. Both types of functions must accept a single input
argument.
Example: @(s)isstring(s)
Example: @(x)isnumeric(x)&&isscalar(x)
Example: @(n)validateattributes(n,{'numeric'},{'nonnegative'})
Data Types: function_handle

Tips
• Parameter name-value pairs are optional inputs. When calling the function, name-

value pairs can appear in any order after positional arguments. They take the general
form Name1,Value1,...,NameN,ValueN.

See Also
addParameter | inputParser

Topics
“Input Parser Validation Functions”
“Anonymous Functions”

Introduced in R2007a

 addParamValue

1-7425

addRequired
Add required, positional argument into input parser scheme

Syntax
addRequired(p,argName)
addRequired(p,argName,validationFcn)

Description
addRequired(p,argName) adds a required, positional input argument argName into
the input parser scheme p.

addRequired(p,argName,validationFcn) specifies a validation function for the
input argument.

Examples

Add Required Input

Create an inputParser object and add a required input named myinput to the input
scheme.

p = inputParser;
argName = 'myinput';
addRequired(p,argName)

Call the parse function with the input value 7, and display the results.

parse(p,7)
p.Results

ans = struct with fields:
 myinput: 7

1 Alphabetical List

1-7426

Validate Required Input Is Nonnegative

Create an input parser scheme that checks that a required input is a nonnegative,
numeric scalar. The syntax @(x) creates a handle to an anonymous function with one
input.

p = inputParser;
argName = 'num';
validationFcn = @(x) (x > 0) && isnumeric(x) && isscalar(x);
addRequired(p,argName,validationFcn)

Parse an invalid input, such as -1:

parse(p,-1)

The value of 'num' is invalid. It must satisfy the function: @(x)(x>0)&&isnumeric(x)&&isscalar(x).

Validate Required Input Using validateattributes

Create an inputParser object and define a validation function using
validateattributes. The validation function tests that a required input is numeric,
positive, and even.

p = inputParser;
argName = 'evenPosNum';
validationFcn = @(x) validateattributes(x,{'numeric'},...
 {'even','positive'});
addRequired(p,argName,validationFcn)

Parse an input character vector. Parse fails because the input is invalid.

parse(p,'hello')

The value of 'evenPosNum' is invalid. Expected input to be one of these types:

double, single, uint8, uint16, uint32, uint64, int8, int16, int32, int64

Instead its type was char.

Parse an odd number. Parse fails because the input is invalid.

 parse(p,13)

The value of 'evenPosNum' is invalid. Expected input to be even.

 addRequired

1-7427

Parse an even, positive number. Parse passes.

parse(p,42)

Input Arguments
p — Input parser scheme
inputParser object

Input parser scheme, specified as an inputParser object.

argName — Name of input argument
character vector | string scalar

Name of the input argument, specified as a character vector or string scalar.
Example: 'firstName'
Example: 'address'
Data Types: char | string

validationFcn — Function to validate argument
function handle

Function to validate an argument, specified as a function handle.

The function handle must be associated with a function that returns true or false, or
passes a test, or throws an error. Both types of functions must accept a single input
argument.
Example: @(s)isstring(s)
Example: @(x)isnumeric(x)&&isscalar(x)
Example: @(n)validateattributes(n,{'numeric'},{'nonnegative'})
Data Types: function_handle

See Also
addOptional | addParameter | addRequired | inputParser |
validateattributes

1 Alphabetical List

1-7428

Topics
“Input Parser Validation Functions”
“Anonymous Functions”

Introduced in R2007a

 addRequired

1-7429

parse
Parse function inputs

Syntax
parse(p,argList)

Description
parse(p,argList) parses and validates the inputs in arglist.

Examples

Validate Required Input Is Nonnegative

Create an input parser scheme that checks that a required input is a nonnegative,
numeric scalar. The syntax @(x) creates a handle to an anonymous function with one
input.

p = inputParser;
argName = 'num';
validationFcn = @(x) (x > 0) && isnumeric(x) && isscalar(x);
addRequired(p,argName,validationFcn)

Parse an invalid input, such as -1:

parse(p,-1)

The value of 'num' is invalid. It must satisfy the function: @(x)(x>0)&&isnumeric(x)&&isscalar(x).

Input Parsing

Parse and validate required and optional function inputs.

1 Alphabetical List

1-7430

Create a function in the file findArea.m. The findArea function requires the width
input argument and accepts a variable number of additional inputs. The input parser
scheme specifies these argument conditions:

• width (required argument). Since required arguments are positional, width must be
the first argument to the findArea function. The input parser checks that width is
positive, scalar, and numeric.

• height (optional argument). Since optional arguments are positional, if height is an
argument to the findArea function, then it must be the second argument. The input
parser checks that height is positive, scalar, and numeric.

• 'units' and its associated value (name-value pair). Name-value pairs are optional.
When you call the findArea function, specify name-value pairs in any order after
positional arguments. The input parser checks that the value for 'units' is a string.

• 'shape' and its associated value (another name-value pair). The input parser checks
that the value for 'shape' is contained in the expectedShapes array.

function a = findArea(width,varargin)
 defaultHeight = 1;
 defaultUnits = 'inches';
 defaultShape = 'rectangle';
 expectedShapes = {'square','rectangle','parallelogram'};

 p = inputParser;
 validScalarPosNum = @(x) isnumeric(x) && isscalar(x) && (x > 0);
 addRequired(p,'width',validScalarPosNum);
 addOptional(p,'height',defaultHeight,validScalarPosNum);
 addParameter(p,'units',defaultUnits,@isstring);
 addParameter(p,'shape',defaultShape,...
 @(x) any(validatestring(x,expectedShapes)));
 parse(p,width,varargin{:});

 a = p.Results.width*p.Results.height;
end

Call the findArea function several times. The input parser does not throw an error for
any of these function calls.

a = findArea(7);
a = findArea(7,3);
a = findArea(13,'shape','square');
a = findArea(13,'units',"miles",'shape','square');

 parse

1-7431

Call the function with arguments that do not match the input parser scheme. Specify a
nonnumeric value for the width input:

a = findArea('text')

Error using findArea (line 14)
The value of 'width' is invalid. It must satisfy the function: @(x)isnumeric(x)&&isscalar(x)&&(x>0).

Specify an unsupported value for 'shape'.

a = findArea(4,12,'shape','circle')

Error using findArea (line 14)
The value of 'shape' is invalid. Expected input to match one of these values:

'square', 'rectangle', 'parallelogram'

The input, 'circle', did not match any of the valid values.

Input Arguments
p — Input parser scheme
inputParser object

Input parser scheme, specified as an inputParser object.

argList — Inputs to parse and validate
comma-separated list

Inputs to parse and validate, specified as a comma-separated list. The elements of
argList can be any data type. The input parser determines argument validity using the
validation function you specified when you added arguments to the input parser scheme.
Example: 'textA',13,mtxB
Example: varargin{:}

See Also
addOptional | addParameter | addRequired | inputParser

Introduced in R2007a

1 Alphabetical List

1-7432

insertAfter
Insert strings after specified substrings

Syntax
newStr = insertAfter(str,startStr,newText)
newStr = insertAfter(str,startPos,newText)

Description
newStr = insertAfter(str,startStr,newText) inserts newText into str after
the substring specified by startStr and returns the result as newStr. If startStr
occurs multiple times in str, then insertAfter inserts text after every occurrence of
startStr.

If str is a string array or a cell array of character vectors, then insertAfter inserts
newText into each element of str. The output argument newStr has the same data type
as str.

newStr = insertAfter(str,startPos,newText) inserts the text specified by
newText into str after the position specified by startPos.

Examples

Insert Text After Substring

Create string arrays and insert text after substrings.

Starting in R2017a, you can create strings using double quotes.

str = "The quick fox"

str =
"The quick fox"

 insertAfter

1-7433

Insert text after the substring "quick".

newStr = insertAfter(str,"quick"," brown")

newStr =
"The quick brown fox"

Insert substrings into each element of a string array. When you specify different
substrings as positions, they must be contained in a string array or a cell array that is the
same size as str.

str = ["The quick fox jumps";"over the dog"]

str = 2x1 string array
 "The quick fox jumps"
 "over the dog"

newStr = insertAfter(str,["quick";"the"],[" brown";" lazy"])

newStr = 2x1 string array
 "The quick brown fox jumps"
 "over the lazy dog"

Insert Substring After Position

Create string arrays and specify positions to insert substrings.

Starting in R2017a, you can create strings using double quotes.

str = "James Maxwell"

str =
"James Maxwell"

Insert a substring after the fifth character.

newStr = insertAfter(str,5," Clerk")

newStr =
"James Clerk Maxwell"

1 Alphabetical List

1-7434

Insert substrings into each element of a string array. When you specify different positions
with numeric arrays, they must be the same size as the input string array.

str = ["James Maxwell";"Carl Gauss"]

str = 2x1 string array
 "James Maxwell"
 "Carl Gauss"

newStr = insertAfter(str,[5;4],[" Clerk";" Friedrich"])

newStr = 2x1 string array
 "James Clerk Maxwell"
 "Carl Friedrich Gauss"

Insert Text After Position in Character Vector

Create a character vector and insert text after a specified position.

chr = 'mushrooms and onions'

chr =
'mushrooms and onions'

Insert text after the ninth position.

newChr = insertAfter(chr,9,', peppers,')

newChr =
'mushrooms, peppers, and onions'

Insert text after a substring.

newChr = insertAfter(chr,'mushrooms',', peppers,')

newChr =
'mushrooms, peppers, and onions'

 insertAfter

1-7435

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

startStr — Substring to insert text after
string array | character vector | cell array of character vectors

Substring to insert text after, specified as a string array, a character vector, or a cell array
of character vectors.

If str is a string array or a cell array of character vectors, then startStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Data Types: string | char | cell

startPos — Start position to insert text after
numeric array

Start position to insert text after, specified as a numeric array.

If str is a string array or a cell array of character vectors, then startPos can be a
numeric scalar or a numeric array of the same size as str.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

newText — Text to insert
string array | character vector | cell array of character vectors

Text to insert, specified as a string array, a character vector, or a cell array of character
vectors.

If str is a string array or a cell array of character vectors, then newText can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Data Types: string | char | cell

1 Alphabetical List

1-7436

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors. str and newStr have the same data type.
Data Types: string | char | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str, startStr, and newText must be a string scalar, a character vector, or a cell
array containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 insertAfter

1-7437

See Also
erase | eraseBetween | extractAfter | extractBefore | insertBefore | join |
plus | replace | split

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

1 Alphabetical List

1-7438

insertBefore
Insert strings before specified substrings

Syntax
newStr = insertBefore(str,endStr,newText)
newStr = insertBefore(str,endPos,newText)

Description
newStr = insertBefore(str,endStr,newText) inserts newText into str before
the substring specified by endStr and returns the result as newStr. If endStr occurs
multiple times in str, then insertBefore inserts text before every occurrence of
endStr.

If str is a string array or a cell array of character vectors, then insertBefore inserts
newText into each element of str. The output argument newStr has the same data type
as str.

newStr = insertBefore(str,endPos,newText) inserts the text specified by
newText into str before the position specified by endPos.

Examples

Insert Text Before Substring

Create string arrays and insert text before substrings.

Starting in R2017a, you can create strings using double quotes.

str = "bread cheese wine"

str =
"bread cheese wine"

 insertBefore

1-7439

Insert a comma before each space character in the string. The insertBefore function
inserts text before each matching substring.

newStr = insertBefore(str," ",",")

newStr =
"bread, cheese, wine"

Insert substrings into each element of a string array. When you specify different
substrings as positions, they must be contained in a string array or a cell array that is the
same size as str.

str = ["The quick fox jumps";"over the dog"]

str = 2x1 string array
 "The quick fox jumps"
 "over the dog"

newStr = insertBefore(str,[" fox";" dog"],[" brown";" lazy"])

newStr = 2x1 string array
 "The quick brown fox jumps"
 "over the lazy dog"

Insert Substring Before Position

Create string arrays and specify positions to insert substrings.

Starting in R2017a, you can create strings using double quotes.

str = "James Maxwell"

str =
"James Maxwell"

Insert a substring before the seventh character.

newStr = insertBefore(str,7,"Clerk ")

newStr =
"James Clerk Maxwell"

1 Alphabetical List

1-7440

Insert substrings into each element of a string array. When you specify different positions
with numeric arrays, they must be the same size as the input string array.

str = ["James Maxwell";"Carl Gauss"]

str = 2x1 string array
 "James Maxwell"
 "Carl Gauss"

newStr = insertBefore(str,[7;6],["Clerk ";"Friedrich "])

newStr = 2x1 string array
 "James Clerk Maxwell"
 "Carl Friedrich Gauss"

Insert Text Before Position in Character Vector

Create a character vector and insert text before a specified position.

chr = 'mushrooms and onions'

chr =
'mushrooms and onions'

Insert text before the tenth position.

newChr = insertBefore(chr,10,', peppers,')

newChr =
'mushrooms, peppers, and onions'

Insert text before a substring.

newChr = insertBefore(chr,' and',', peppers,')

newChr =
'mushrooms, peppers, and onions'

 insertBefore

1-7441

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

endStr — Substring to insert text before
string array | character vector | cell array of character vectors

Substring to insert text before, specified as a string array, a character vector, or a cell
array of character vectors.

If str is a string array or a cell array of character vectors, then endStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Data Types: string | char | cell

endPos — End position to insert text before
numeric array

End position to insert text before, specified as a numeric array.

If str is a string array or a cell array of character vectors, then endPos can be a numeric
scalar or a numeric array of the same size as str.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

newText — Text to insert
string array | character vector | cell array of character vectors

Text to insert, specified as a string array, a character vector, or a cell array of character
vectors.

If str is a string array or a cell array of character vectors, then newText can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Data Types: string | char | cell

1 Alphabetical List

1-7442

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors. str and newStr have the same data type.
Data Types: string | char | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str, endStr, and newText must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 insertBefore

1-7443

See Also
erase | eraseBetween | extractAfter | extractBefore | insertAfter | join |
split

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

1 Alphabetical List

1-7444

Property Inspector
Open property inspector

Description
The Property Inspector enables you to interactively modify objects, such as graphics
objects. When you select an object, the Property Inspector shows a list of object
properties. You can change property values by editing the fields that appear next to each
property name.

Open the Property Inspector
• Figure toolbar: Click the Property Inspector icon .
• MATLAB command prompt: Enter inspect.

Examples
Graphics Objects

Use the Property Inspector to change the transparency of a surface plot and to change
the font size of the axes text.

Create a surface plot. Open the Property Inspector by entering inspect at the command
prompt. Then click the surface. The Property Inspector shows surface properties.

surf(peaks(25))
inspect

 Property Inspector

1-7445

Change the FaceAlpha value from 1 to 0.5. The surface plot updates so that it is semi-
transparent. Then view axes properties by clicking the axes. Change the FontSize value
to 14 and change the FontWeight value to bold.

1 Alphabetical List

1-7446

Programmatic Use
inspect opens the Property Inspector for the current figure, if one exists. To view
properties for a specific object, select the object. If no figures exist, then this command
opens an empty Property Inspector.

inspect(obj) displays the properties for the specified object. You can specify obj as a
single object or as a vector containing multiple objects, such as [obj1 obj2]. If you
specify multiple objects, then the Property Inspector displays the properties that the
objects have in common.

inspect -close closes the Property Inspector.

See Also
Figure Properties | figure

 Property Inspector

1-7447

Topics
“Add Title and Axis Labels to Chart”
“Access Property Values”

Introduced before R2006a

1 Alphabetical List

1-7448

instrcallback
Event information when event occurs

Syntax
instrcallback(obj,event)

Description
instrcallback(obj,event) displays a message that contains the event type, event,
the time the event occurred, and the name of the serial port object, obj, that caused the
event to occur.

For error events, the error message is also displayed. For pin status events, the pin that
changed value and its value are also displayed.

Examples
The following example creates the serial port object, s, on a Windows platform. It
configures s to execute instrcallback when an output-empty event occurs. The event
occurs after the *IDN? command is written to the instrument.

s = serial('COM1');
set(s,'OutputEmptyFcn',@instrcallback)
fopen(s)
fprintf(s,'*IDN?','async')

OutputEmpty event occurred at 08:37:49 for the object:
Serial-COM1.

Read the identification information from the input buffer and end the serial port session.

idn = fscanf(s);
fclose(s)
delete(s)
clear s

 instrcallback

1-7449

Tips
Use instrcallback as a template to create callback functions that suit your specific
application needs.

Introduced before R2006a

1 Alphabetical List

1-7450

instrfind
Read serial port objects from memory to MATLAB workspace

Syntax
out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Description
out = instrfind returns all valid serial port objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an array of serial
port objects whose property names and property values match those specified.

out = instrfind(S) returns an array of serial port objects whose property names and
property values match those defined in the structure S. The field names of S are the
property names, while the field values are the associated property values.

out = instrfind(obj,'PropertyName',PropertyValue,...) restricts the search
for matching property name/property value pairs to the serial port objects listed in obj.

Examples
Suppose you create the following two serial port objects on a Windows platform.

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'BaudRate',4800)
fopen([s1 s2])

You can use instrfind to return serial port objects based on property values.

 instrfind

1-7451

out1 = instrfind('Port','COM1');
out2 = instrfind({'Port','BaudRate'},{'COM2',4800});

You can also use instrfind to return cleared serial port objects to the MATLAB
workspace.

clear s1 s2
newobjs = instrfind

 Instrument Object Array
 Index: Type: Status: Name:
 1 serial open Serial-COM1
 2 serial open Serial-COM2

To close both s1 and s2

fclose(newobjs)

Tips
Refer to “Displaying Property Names and Property Values” for a list of serial port object
properties that you can use with instrfind.

You must specify property values using the same format as the get function returns. For
example, if get returns the Name property value as MyObject, instrfind will not find
an object with a Name property value of myobject. However, this is not the case for
properties that have a finite set of string values. For example, instrfind will find an
object with a Parity property value of Even or even.

You can use property name/property value string pairs, structures, and cell array pairs in
the same call to instrfind.

See Also
clear | get

Introduced before R2006a

1 Alphabetical List

1-7452

instrfindall
Find visible and hidden serial port objects

Syntax
out = instrfindall
out = instrfindall('P1',V1,...)
out = instrfindall(s)
out = instrfindall(objs,'P1',V1,...)

Description
out = instrfindall finds all serial port objects, regardless of the value of the object’s
ObjectVisibility property. The object or objects are returned to out.

out = instrfindall('P1',V1,...) returns an array, out, of serial port objects
whose property names and corresponding property values match those specified as
arguments.

out = instrfindall(s) returns an array, out, of serial port objects whose property
names and corresponding property values match those specified in the structure s, where
the field names correspond to property names and the field values correspond to the
current value of the respective property.

out = instrfindall(objs,'P1',V1,...) restricts the search for objects with
matching property name/value pairs to the serial port objects listed in objs.

Note that you can use string property name/property value pairs, structures, and cell
array property name/property value pairs in the same call to instrfindall.

Examples
Suppose you create the following serial port objects on a Windows platform:

 instrfindall

1-7453

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'ObjectVisibility','off')

Because object s2 has its ObjectVisibility set to 'off', it is not visible to commands
like instrfind:

instrfind

 Serial Port Object : Serial-COM1

However, instrfindall finds all objects regardless of the value of ObjectVisibility:

instrfindall

 Instrument Object Array
 Index: Type: Status: Name:
 1 serial closed Serial-COM1
 2 serial closed Serial-COM2

The following statements use instrfindall to return objects with specific property
settings, which are passed as cell arrays:

props = {'PrimaryAddress','SecondaryAddress};
vals = {2,0};
obj = instrfindall(props,vals);

You can use instrfindall as an argument when you want to apply the command to all
objects, visible and invisible. For example, the following statement makes all objects
visible:

set(instrfindall,'ObjectVisibility','on')

Tips
instrfindall differs from instrfind in that it finds objects whose
ObjectVisibility property is set to off.

Property values are case sensitive. You must specify property values using the same
format as that returned by the get function. For example, if get returns the Name
property value as 'MyObject', instrfindall will not find an object with a Name
property value of 'myobject'. However, this is not the case for properties that have a

1 Alphabetical List

1-7454

finite set of string values. For example, instrfindall will find an object with a Parity
property value of 'Even' or 'even'.

See Also
ObjectVisibility | get | instrfind

 instrfindall

1-7455

int2str
Convert integers to characters

Syntax
chr = int2str(N)

Description
chr = int2str(N) treats N as a matrix of integers and converts it to a character array
that represents the integers. If N contains floating-point values, int2str rounds them
before conversion.

Examples

Convert Integers

Convert an integer.

chr = int2str(256)

chr =
'256'

Round off a floating-point value and convert it.

chr = int2str(3.14159)

chr =
'3'

Convert a numeric matrix.

chr = int2str([5 10 20;100 200 400])

1 Alphabetical List

1-7456

chr = 2x13 char array
 ' 5 10 20'
 '100 200 400'

Input Arguments
N — Input array
numeric matrix

Input array, specified as a numeric matrix.

Tips
• int2str returns character arrays only. Starting in R2016b, you can convert numeric

arrays to string arrays using the string function.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input array must be scalar at compile time.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

 int2str

1-7457

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
cast | mat2str | num2str | sprintf | str2double | str2num | string

Topics
“Convert from Numeric Values to Character Array”
“Convert from Character Arrays to Numeric Values”

Introduced before R2006a

1 Alphabetical List

1-7458

int8
8-bit signed integer arrays

Description
Variables in MATLAB of data type (class) int8 are stored as 1-byte (8-bit) signed
integers. For example:

y = int8(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 1 int8

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'int8') creates a 100-by-100 matrix of zeros of type int8.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type int8 by using the int8 function.

Syntax
Y = int8(X)

Description
Y = int8(X) converts the values in X to type int8. Values outside the range [-27,27-1]
map to the nearest endpoint.

 int8

1-7459

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char

Examples

Convert to 8-Bit Signed Integer Variable

Convert a double-precision variable to an 8-bit signed integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = int8(x)

y = int8
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-7460

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int16 | int32 | int64 | typecast | uint8

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

 int8

1-7461

int16
16-bit signed integer arrays

Description
Variables in MATLAB of data type (class) int16 are stored as 2-byte (16-bit) signed
integers. For example:

y = int16(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 2 int16

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'int16') creates a 100-by-100 matrix of zeros of type int16.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type int16 by using the int16 function.

Syntax
Y = int16(X)

Description
Y = int16(X) converts the values in X to type int16. Values outside the range
[-215,215-1] map to the nearest endpoint.

1 Alphabetical List

1-7462

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char

Examples

Convert to 16-Bit Signed Integer Variable

Convert a double-precision variable to a 16-bit signed integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = int16(x)

y = int16
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 int16

1-7463

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int32 | int64 | int8 | typecast | uint16

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

1 Alphabetical List

1-7464

int32
32-bit signed integer arrays

Description
Variables in MATLAB of data type (class) int32 are stored as 4-byte (32-bit) signed
integers. For example:

y = int32(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 4 int32

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'int32') creates a 100-by-100 matrix of zeros of type int32.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type int32 by using the int32 function.

Syntax
Y = int32(X)

Description
Y = int32(X) converts the values in X to type int32. Values outside the range
[-231,231-1] map to the nearest endpoint.

 int32

1-7465

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char

Examples

Convert to 32-Bit Signed Integer Variable

Convert a double-precision variable to a 32-bit signed integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = int32(x)

y = int32
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-7466

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int16 | int64 | int8 | typecast | uint32

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

 int32

1-7467

int64
64-bit signed integer arrays

Description
Variables in MATLAB of data type (class) int64 are stored as 8-byte (64-bit) signed
integers. For example:

y = int64(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 8 int64

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'int64') creates a 100-by-100 matrix of zeros of type int64.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type int64 by using the int64 function.

Syntax
Y = int64(X)

Description
Y = int64(X) converts the values in X to type int64. Values outside the range
[-263,263-1] map to the nearest endpoint.

1 Alphabetical List

1-7468

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
uint64 | logical | char

Examples

Convert to 64-Bit Signed Integer Variable

Convert a double-precision variable to a 64-bit signed integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = int64(x)

y = int64
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 int64

1-7469

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int16 | int32 | int8 | typecast | uint64

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

1 Alphabetical List

1-7470

integral
Numerical integration

Syntax
q = integral(fun,xmin,xmax)
q = integral(fun,xmin,xmax,Name,Value)

Description
q = integral(fun,xmin,xmax) numerically integrates function fun from xmin to
xmax using global adaptive quadrature and default error tolerances.

q = integral(fun,xmin,xmax,Name,Value) specifies additional options with one or
more Name,Value pair arguments. For example, specify 'WayPoints' followed by a
vector of real or complex numbers to indicate specific points for the integrator to use.

Examples

Improper Integral

Create the function f (x) = e−x2(lnx)2.

fun = @(x) exp(-x.^2).*log(x).^2;

Evaluate the integral from x=0 to x=Inf.

q = integral(fun,0,Inf)

q = 1.9475

 integral

1-7471

Parameterized Function

Create the function f (x) = 1/(x3− 2x− c) with one parameter, c.

fun = @(x,c) 1./(x.^3-2*x-c);

Evaluate the integral from x=0 to x=2 at c=5.

q = integral(@(x)fun(x,5),0,2)

q = -0.4605

Singularity at Lower Limit

Create the function f (x) = ln(x).

fun = @(x)log(x);

Evaluate the integral from x=0 to x=1 with the default error tolerances.

format long
q1 = integral(fun,0,1)

q1 =
 -1.000000010959678

Evaluate the integral again, this time with 12 decimal places of accuracy. Set RelTol to
zero so that integral only attempts to satisfy the absolute error tolerance.

q2 = integral(fun,0,1,'RelTol',0,'AbsTol',1e-12)

q2 =
 -1.000000000000010

Complex Contour Integration Using Waypoints

Create the function f (z) = 1/(2z − 1).

1 Alphabetical List

1-7472

fun = @(z) 1./(2*z-1);

Integrate in the complex plane over the triangular path from 0 to 1+1i to 1-1i to 0 by
specifying waypoints.

q = integral(fun,0,0,'Waypoints',[1+1i,1-1i])

q = 0.0000 - 3.1416i

Vector-Valued Function

Create the vector-valued function f (x) = [sinx, sin2x, sin3x, sin4x, sin5x] and integrate
from x=0 to x=1. Specify 'ArrayValued',true to evaluate the integral of an array-
valued or vector-valued function.

fun = @(x)sin((1:5)*x);
q = integral(fun,0,1,'ArrayValued',true)

q = 1×5

 0.4597 0.7081 0.6633 0.4134 0.1433

Improper Integral of Oscillatory Function

Create the function f (x) = x5e−xsinx.

fun = @(x)x.^5.*exp(-x).*sin(x);

Evaluate the integral from x=0 to x=Inf , adjusting the absolute and relative tolerances.

format long
q = integral(fun,0,Inf,'RelTol',1e-8,'AbsTol',1e-13)

q =
 -14.999999999998364

 integral

1-7473

Input Arguments
fun — Integrand
function handle

Integrand, specified as a function handle, which defines the function to be integrated
from xmin to xmax.

For scalar-valued problems, the function y = fun(x) must accept a vector argument, x,
and return a vector result, y. This generally means that fun must use array operators
instead of matrix operators. For example, use .* (times) rather than * (mtimes). If you set
the 'ArrayValued' option to true, then fun must accept a scalar and return an array
of fixed size.

xmin — Lower limit of x
real number | complex number

Lower limit of x, specified as a real (finite or infinite) scalar value or a complex (finite)
scalar value. If either xmin or xmax are complex, then integral approximates the path
integral from xmin to xmax over a straight line path.
Data Types: double | single
Complex Number Support: Yes

xmax — Upper limit of x
real number | complex number

Upper limit of x, specified as a real number (finite or infinite) or a complex number
(finite). If either xmin or xmax are complex, integral approximates the path integral
from xmin to xmax over a straight line path.
Data Types: double | single
Complex Number Support: Yes

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-7474

Example: 'AbsTol',1e-12 sets the absolute error tolerance to approximately 12
decimal places of accuracy.

AbsTol — Absolute error tolerance
nonnegative real number

Absolute error tolerance, specified as the comma-separated pair consisting of 'AbsTol'
and a nonnegative real number. integral uses the absolute error tolerance to limit an
estimate of the absolute error, |q – Q|, where q is the computed value of the integral and
Q is the (unknown) exact value. integral might provide more decimal places of
precision if you decrease the absolute error tolerance. The default value is 1e-10.

Note AbsTol and RelTol work together. integral might satisfy the absolute error
tolerance or the relative error tolerance, but not necessarily both. For more information
on using these tolerances, see the “Tips” on page 1-7477 section.

Example: 'AbsTol',1e-12 sets the absolute error tolerance to approximately 12
decimal places of accuracy.
Data Types: single | double

RelTol — Relative error tolerance
nonnegative real number

Relative error tolerance, specified as the comma-separated pair consisting of 'RelTol'
and a nonnegative real number. integral uses the relative error tolerance to limit an
estimate of the relative error, |q – Q|/|Q|, where q is the computed value of the integral
and Q is the (unknown) exact value. integral might provide more significant digits of
precision if you decrease the relative error tolerance. The default value is 1e-6.

Note RelTol and AbsTol work together. integral might satisfy the relative error
tolerance or the absolute error tolerance, but not necessarily both. For more information
on using these tolerances, see the Tips on page 1-7477 section.

Example: 'RelTol',1e-9 sets the relative error tolerance to approximately 9 significant
digits.
Data Types: single | double

 integral

1-7475

ArrayValued — Array-valued function flag
false or 0 (default) | true or 1

Array-valued function flag, specified as the comma-separated pair consisting of
'ArrayValued' and a numeric or logical 1 (true) or 0 (false). Set this flag to true or
1 to indicate that fun is a function that accepts a scalar input and returns a vector,
matrix, or N-D array output.

The default value of false indicates that fun is a function that accepts a vector input
and returns a vector output.
Example: 'ArrayValued',true indicates that the integrand is an array-valued function.

Waypoints — Integration waypoints
vector

Integration waypoints, specified as the comma-separated pair consisting of 'Waypoints'
and a vector of real or complex numbers. Use waypoints to indicate points in the
integration interval that you would like the integrator to use in the initial mesh:

• Add more evaluation points near interesting features of the function, such as a local
extrema.

• Integrate efficiently across discontinuities of the integrand by specifying the locations
of the discontinuities.

• Perform complex contour integrations by specifying complex numbers as waypoints. If
xmin, xmax, or any entry of the waypoints vector is complex, then the integration is
performed over a sequence of straight line paths in the complex plane. In this case, all
of the integration limits and waypoints must be finite.

Do not use waypoints to specify singularities. Instead, split the interval and add the
results of separate integrations with the singularities at the endpoints.
Example: 'Waypoints',[1+1i,1-1i] specifies two complex waypoints along the
interval of integration.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-7476

Tips
• The integral function attempts to satisfy:

abs(q - Q) <= max(AbsTol,RelTol*abs(q))

where q is the computed value of the integral and Q is the (unknown) exact value. The
absolute and relative tolerances provide a way of trading off accuracy and
computation time. Usually, the relative tolerance determines the accuracy of the
integration. However if abs(q) is sufficiently small, the absolute tolerance determines
the accuracy of the integration. You should generally specify both absolute and
relative tolerances together.

• If you are specifying single-precision limits of integration, or if fun returns single-
precision results, you might need to specify larger absolute and relative error
tolerances.

References
[1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,” Journal of

Computational and Applied Mathematics, 211, 2008, pp.131–140.

See Also
integral2 | integral3 | trapz

Topics
“Integration of Numeric Data”
“Integration to Find Arc Length”
“Complex Line Integrals”
“Create Function Handle”
“Parameterizing Functions”

Introduced in R2012a

 integral

1-7477

integral2
Numerically evaluate double integral

Syntax
q = integral2(fun,xmin,xmax,ymin,ymax)
q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value)

Description
q = integral2(fun,xmin,xmax,ymin,ymax) approximates the integral of the
function z = fun(x,y) over the planar region xmin ≤ x ≤ xmax and
ymin(x) ≤ y ≤ ymax(x).

q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value) specifies additional
options with one or more Name,Value pair arguments.

Examples

Integrate Triangular Region with Singularity at the Boundary

Consider the function

f x, y = 1
x + y 1 + x + y 2 .

This function is undefined when x and y are zero. integral2 performs best when
singularities are on the integration boundary.

Create the anonymous function.

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2)

1 Alphabetical List

1-7478

fun = function_handle with value:
 @(x,y)1./(sqrt(x+y).*(1+x+y).^2)

Integrate over the triangular region bounded by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1− x.

ymax = @(x) 1 - x;
q = integral2(fun,0,1,0,ymax)

q = 0.2854

Evaluate Double Integral in Polar Coordinates

Define the function

f θ, r = r
rcosθ + rsinθ 1 + rcosθ + rsinθ 2

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2);
polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;

Define a function for the upper limit of r.

rmax = @(theta) 1./(sin(theta) + cos(theta));

Integrate over the region bounded by 0 ≤ θ ≤ π/2 and 0 ≤ r ≤ rmax.

q = integral2(polarfun,0,pi/2,0,rmax)

q = 0.2854

Evaluate Double Integral of Parameterized Function with Specific Method and
Error Tolerance

Create the anonymous parameterized function f (x, y) = ax2 + by2 with parameters a = 3
and b = 5.

 integral2

1-7479

a = 3;
b = 5;
fun = @(x,y) a*x.^2 + b*y.^2;

Evaluate the integral over the region 0 ≤ x ≤ 5 and −5 ≤ y ≤ 0. Specify the 'iterated'
method and approximately 10 significant digits of accuracy.

format long
q = integral2(fun,0,5,-5,0,'Method','iterated',...
'AbsTol',0,'RelTol',1e-10)

q =
 1.666666666666666e+03

Input Arguments
fun — Integrand
function handle

Integrand, specified as a function handle, defines the function to be integrated over the
planar region xmin ≤ x ≤ xmax and ymin(x) ≤ y ≤ ymax(x). The function fun must
accept two arrays of the same size and return an array of corresponding values. It must
perform element-wise operations.
Data Types: function_handle

xmin — Lower limit of x
real number

Lower limit of x, specified as a real scalar value that is either finite or infinite.
Data Types: double | single

xmax — Upper limit of x
real number

Upper limit of x, specified as a real scalar value that is either finite or infinite.
Data Types: double | single

ymin — Lower limit of y
real number | function handle

1 Alphabetical List

1-7480

Lower limit of y, specified as a real scalar value that is either finite or infinite. You can
specify ymin to be a function handle (a function of x) when integrating over a
nonrectangular region.
Data Types: double | function_handle | single

ymax — Upper limit of y
real number | function handle

Upper limit of y, specified as a real scalar value that is either finite or infinite. You also
can specify ymax to be a function handle (a function of x) when integrating over a
nonrectangular region.
Data Types: double | function_handle | single

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'AbsTol',1e-12 sets the absolute error tolerance to approximately 12
decimal places of accuracy.

AbsTol — Absolute error tolerance
nonnegative real number

Absolute error tolerance, specified as the comma-separated pair consisting of 'AbsTol'
and a nonnegative real number. integral2 uses the absolute error tolerance to limit an
estimate of the absolute error, |q – Q|, where q is the computed value of the integral and
Q is the (unknown) exact value. integral2 might provide more decimal places of
precision if you decrease the absolute error tolerance. The default value is 1e-10.

Note AbsTol and RelTol work together. integral2 might satisfy the absolute error
tolerance or the relative error tolerance, but not necessarily both. For more information
on using these tolerances, see the “Tips” on page 1-7483 section.

Example: 'AbsTol',1e-12 sets the absolute error tolerance to approximately 12
decimal places of accuracy.

 integral2

1-7481

Data Types: double | single

RelTol — Relative error tolerance
nonnegative real number

Relative error tolerance, specified as the comma-separated pair consisting of 'RelTol'
and a nonnegative real number. integral2 uses the relative error tolerance to limit an
estimate of the relative error, |q – Q|/|Q|, where q is the computed value of the integral
and Q is the (unknown) exact value. integral2 might provide more significant digits of
precision if you decrease the relative error tolerance. The default value is 1e-6.

Note RelTol and AbsTol work together. integral2 might satisfy the relative error
tolerance or the absolute error tolerance, but not necessarily both. For more information
on using these tolerances, see the “Tips” on page 1-7483 section.

Example: 'RelTol',1e-9 sets the relative error tolerance to approximately 9 significant
digits.
Data Types: double | single

Method — Integration method
'auto' (default) | 'tiled' | 'iterated'

Integration method, specified as the comma-separated pair consisting of 'Method' and
one of the methods described below.

Integration Method Description
'auto' For most cases, integral2 uses the 'tiled' method. It

uses the 'iterated' method when any of the integration
limits are infinite. This is the default method.

'tiled' integral2 transforms the region of integration to a
rectangular shape and subdivides it into smaller
rectangular regions as needed. The integration limits must
be finite.

'iterated' integral2 calls integral to perform an iterated integral.
The outer integral is evaluated over xmin ≤ x ≤ xmax. The
inner integral is evaluated over ymin(x) ≤ y ≤ ymax(x).
The integration limits can be infinite.

1 Alphabetical List

1-7482

Example: 'Method','tiled' specifies the tiled integration method.
Data Types: char | string

Tips
• The integral2 function attempts to satisfy:

abs(q - Q) <= max(AbsTol,RelTol*abs(q))

where q is the computed value of the integral and Q is the (unknown) exact value. The
absolute and relative tolerances provide a way of trading off accuracy and
computation time. Usually, the relative tolerance determines the accuracy of the
integration. However if abs(q) is sufficiently small, the absolute tolerance determines
the accuracy of the integration. You should generally specify both absolute and
relative tolerances together.

• The 'iterated' method can be more effective when your function has discontinuities
within the integration region. However, the best performance and accuracy occurs
when you split the integral at the points of discontinuity and sum the results of
multiple integrations.

• When integrating over nonrectangular regions, the best performance and accuracy
occurs when ymin, ymax, (or both) are function handles. Avoid setting integrand
function values to zero to integrate over a nonrectangular region. If you must do this,
specify 'iterated' method.

• Use the 'iterated' method when ymin, ymax, (or both) are unbounded functions.
• When paramaterizing anonymous functions, be aware that parameter values persist

for the life of the function handle. For example, the function fun = @(x,y) x + y +
a uses the value of a at the time fun was created. If you later decide to change the
value of a, you must redefine the anonymous function with the new value.

• If you are specifying single-precision limits of integration, or if fun returns single-
precision results, you might need to specify larger absolute and relative error
tolerances.

References
[1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,” Journal of

Computational and Applied Mathematics, 211, 2008, pp.131–140.

 integral2

1-7483

[2] L.F. Shampine, "MATLAB Program for Quadrature in 2D." Applied Mathematics and
Computation. Vol. 202, Issue 1, 2008, pp. 266–274.

See Also
integral | integral3 | trapz

Topics
“Singularity on Interior of Integration Domain”
“Parameterizing Functions”
“Create Function Handle”

Introduced in R2012a

1 Alphabetical List

1-7484

integral3
Numerically evaluate triple integral

Syntax
q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax)
q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax,Name,Value)

Description
q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax) approximates the integral
of the function z = fun(x,y,z) over the region xmin ≤ x ≤ xmax,
ymin(x) ≤ y ≤ ymax(x) and zmin(x,y) ≤ z ≤ zmax(x,y).

q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax,Name,Value) specifies
additional options with one or more Name,Value pair arguments.

Examples

Triple Integral with Finite Limits

Define the anonymous function f (x, y, z) = ysinx + zcosx.

fun = @(x,y,z) y.*sin(x)+z.*cos(x)

fun = function_handle with value:
 @(x,y,z)y.*sin(x)+z.*cos(x)

Integrate over the region 0 ≤ x ≤ π, 0 ≤ y ≤ 1, and −1 ≤ z ≤ 1.

q = integral3(fun,0,pi,0,1,-1,1)

q = 2.0000

 integral3

1-7485

Integral Over the Unit Sphere in Cartesian Coordinates

Define the anonymous function f (x, y, z) = xcosy + x2cosz.

fun = @(x,y,z) x.*cos(y) + x.^2.*cos(z)

fun = function_handle with value:
 @(x,y,z)x.*cos(y)+x.^2.*cos(z)

Define the limits of integration.

xmin = -1;
xmax = 1;
ymin = @(x)-sqrt(1 - x.^2);
ymax = @(x) sqrt(1 - x.^2);
zmin = @(x,y)-sqrt(1 - x.^2 - y.^2);
zmax = @(x,y) sqrt(1 - x.^2 - y.^2);

Evaluate the definite integral with the 'tiled' method.

q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax,'Method','tiled')

q = 0.7796

Evaluate Improper Triple Integral of Parameterized Function

Define the anonymous parameterized function f (x, y, z) = 10/(x2 + y2 + z2 + a).

a = 2;
f = @(x,y,z) 10./(x.^2 + y.^2 + z.^2 + a);

Evaluate the triple integral over the region − ∞ ≤ x ≤ 0, −100 ≤ y ≤ 0, and
−100 ≤ z ≤ 0.

format long
q1 = integral3(f,-Inf,0,-100,0,-100,0)

q1 =
 2.734244598320928e+03

1 Alphabetical List

1-7486

Evaluate the integral again and specify accuracy to approximately 9 significant digits.

q2 = integral3(f,-Inf,0,-100,0,-100,0,'AbsTol', 0,'RelTol',1e-9)

q2 =
 2.734244599944285e+03

4-D Integral of Sphere

Use nested calls to integral3 and integral to calculate the volume of a 4-D sphere.

The volume of a 4-D sphere of radius r is

V4 r =∫0 2π∫0 π∫0 π∫0 r
r3 sin2 θ sin ϕ dr dθ dϕ dξ .

The integral quadrature functions in MATLAB® directly support 1-D, 2-D, and 3-D
integrations. However, to solve 4-D and higher order integrals, you need to nest calls to
the solvers.

Create a function handle f r, θ, ϕ, ξ for the integrand using element-wise operators (.^
and .*).

f = @(r,theta,phi,xi) r.^3 .* sin(theta).^2 .* sin(phi);

Next, create a function handle that calculates three of the integrals using integral3.

Q = @(r) integral3(@(theta,phi,xi) f(r,theta,phi,xi),0,pi,0,pi,0,2*pi);

Finally, use Q as the integrand in a call to integral. Solving this integral requires
choosing a value for the radius r, so use r = 2.

I = integral(Q,0,2,'ArrayValued',true)

I = 78.9568

The exact answer is π2r4
2 Γ 2 .

I_exact = pi^2*2^4/(2*gamma(2))

I_exact = 78.9568

 integral3

1-7487

Input Arguments
fun — Integrand
function handle

Integrand, specified as a function handle, defines the function to be integrated over the
region xmin ≤ x ≤ xmax, ymin(x) ≤ y ≤ ymax(x), and zmin(x,y) ≤ z ≤ zmax(x,y). The
function fun must accept three arrays of the same size and return an array of
corresponding values. It must perform element-wise operations.
Data Types: function_handle

xmin — Lower limit of x
real number

Lower limit of x, specified as a real scalar value that is either finite or infinite.
Data Types: double | single

xmax — Upper limit of x
real number

Upper limit of x, specified as a real scalar value that is either finite or infinite.
Data Types: double | single

ymin — Lower limit of y
real number | function handle

Lower limit of y, specified as a real scalar value that is either finite or infinite. You also
can specify ymin to be a function handle (a function of x) when integrating over a
nonrectangular region.
Data Types: double | function_handle | single

ymax — Upper limit of y
real number | function handle

Upper limit of y, specified as a real scalar value that is either finite or infinite. You also
can specify ymax to be a function handle (a function of x) when integrating over a
nonrectangular region.

1 Alphabetical List

1-7488

Data Types: double | function_handle | single

zmin — Lower limit of z
real number | function handle

Lower limit of z, specified as a real scalar value that is either finite or infinite. You also
can specify zmin to be a function handle (a function of x,y) when integrating over a
nonrectangular region.
Data Types: double | function_handle | single

zmax — Upper limit of z
real number | function handle

Upper limit of z, specified as a real scalar value that is either finite or infinite. You also
can specify zmax to be a function handle (a function of x,y) when integrating over a
nonrectangular region.
Data Types: double | function_handle | single

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'AbsTol',1e-12 sets the absolute error tolerance to approximately 12
decimal places of accuracy.

AbsTol — Absolute error tolerance
nonnegative real number

Absolute error tolerance, specified as the comma-separated pair consisting of 'AbsTol'
and a nonnegative real number. integral3 uses the absolute error tolerance to limit an
estimate of the absolute error, |q – Q|, where q is the computed value of the integral and
Q is the (unknown) exact value. integral3 might provide more decimal places of
precision if you decrease the absolute error tolerance. The default value is 1e-10.

Note AbsTol and RelTol work together. integral3 might satisfy the absolute error
tolerance or the relative error tolerance, but not necessarily both. For more information
on using these tolerances, see the “Tips” on page 1-7491 section.

 integral3

1-7489

Example: 'AbsTol',1e-12 sets the absolute error tolerance to approximately 12
decimal places of accuracy.
Data Types: double | single

RelTol — Relative error tolerance
nonnegative real number

Relative error tolerance, specified as the comma-separated pair consisting of 'RelTol'
and a nonnegative real number. integral3 uses the relative error tolerance to limit an
estimate of the relative error, |q – Q|/|Q|, where q is the computed value of the integral
and Q is the (unknown) exact value. integral3 might provide more significant digits of
precision if you decrease the relative error tolerance. The default value is 1e-6.

Note RelTol and AbsTol work together. integral3 might satisfy the relative error
tolerance or the absolute error tolerance, but not necessarily both. For more information
on using these tolerances, see the “Tips” on page 1-7491 section.

Example: 'RelTol',1e-9 sets the relative error tolerance to approximately 9 significant
digits.
Data Types: double | single

Method — Integration method
'auto' (default) | 'tiled' | 'iterated'

Integration method, specified as the comma-separated pair consisting of 'Method' and
one of the methods described below.

Integration Method Description
'auto' For most cases, integral3 uses the 'tiled' method. It

uses the 'iterated' method when any of the integration
limits are infinite. This is the default method.

'tiled' integral3 calls integral to integrate over
xmin ≤ x ≤ xmax. It calls integral2 with the 'tiled'
method to evaluate the double integral over
ymin(x) ≤ y ≤ ymax(x) and
zmin(x,y) ≤ z ≤ zmax(x,y).

1 Alphabetical List

1-7490

Integration Method Description
'iterated' integral3 calls integral to integrate over

xmin ≤ x ≤ xmax. It calls integral2 with the
'iterated' method to evaluate the double integral over
ymin(x) ≤ y ≤ ymax(x) and
zmin(x,y) ≤ z ≤ zmax(x,y). The integration limits can
be infinite.

Example: 'Method','tiled' specifies the tiled integration method.
Data Types: char | string

Tips
• The integral3 function attempts to satisfy:

abs(q - Q) <= max(AbsTol,RelTol*abs(q))

where q is the computed value of the integral and Q is the (unknown) exact value. The
absolute and relative tolerances provide a way of trading off accuracy and
computation time. Usually, the relative tolerance determines the accuracy of the
integration. However if abs(q) is sufficiently small, the absolute tolerance determines
the accuracy of the integration. You should generally specify both absolute and
relative tolerances together.

• The 'iterated' method can be more effective when your function has discontinuities
within the integration region. However, the best performance and accuracy occurs
when you split the integral at the points of discontinuity and sum the results of
multiple integrations.

• When integrating over nonrectangular regions, the best performance and accuracy
occurs when any or all of the limits: ymin, ymax, zmin, zmax are function handles.
Avoid setting integrand function values to zero to integrate over a nonrectangular
region. If you must do this, specify 'iterated' method.

• Use the 'iterated' method when any or all of the limits: ymin(x), ymax(x),
zmin(x,y), zmax(x,y) are unbounded functions.

• When paramaterizing anonymous functions, be aware that parameter values persist
for the life of the function handle. For example, the function fun = @(x,y,z) x + y
+ z + a uses the value of a at the time fun was created. If you later decide to
change the value of a, you must redefine the anonymous function with the new value.

 integral3

1-7491

• If you are specifying single-precision limits of integration, or if fun returns single-
precision results, you may need to specify larger absolute and relative error
tolerances.

• To solve 4-D and higher order integrals, you can nest calls to integral, integral2,
and integral3. Another option is to use the integralN function on the MATLAB
File Exchange, which solves integrals of orders 4 - 6.

References
[1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,” Journal of

Computational and Applied Mathematics, 211, 2008, pp.131–140.

[2] L.F. Shampine, "MATLAB Program for Quadrature in 2D." Applied Mathematics and
Computation. Vol. 202, Issue 1, 2008, pp. 266–274.

See Also
integral | integral2 | trapz

Topics
“Parameterizing Functions”
“Create Function Handle”

Introduced in R2012a

1 Alphabetical List

1-7492

https://www.mathworks.com/matlabcentral/fileexchange/47919-integraln-m

interp1
1-D data interpolation (table lookup)

Syntax
vq = interp1(x,v,xq)
vq = interp1(x,v,xq,method)
vq = interp1(x,v,xq,method,extrapolation)

vq = interp1(v,xq)
vq = interp1(v,xq,method)
vq = interp1(v,xq,method,extrapolation)

pp = interp1(x,v,method,'pp')

Description
vq = interp1(x,v,xq) returns interpolated values of a 1-D function at specific query
points using linear interpolation. Vector x contains the sample points, and v contains the
corresponding values, v(x). Vector xq contains the coordinates of the query points.

If you have multiple sets of data that are sampled at the same point coordinates, then you
can pass v as an array. Each column of array v contains a different set of 1-D sample
values.

vq = interp1(x,v,xq,method) specifies an alternative interpolation method:
'linear', 'nearest', 'next', 'previous', 'pchip', 'cubic', 'v5cubic',
'makima', or 'spline'. The default method is 'linear'.

vq = interp1(x,v,xq,method,extrapolation) specifies a strategy for evaluating
points that lie outside the domain of x. Set extrapolation to 'extrap' when you want
to use the method algorithm for extrapolation. Alternatively, you can specify a scalar
value, in which case, interp1 returns that value for all points outside the domain of x.

 interp1

1-7493

vq = interp1(v,xq) returns interpolated values and assumes a default set of sample
point coordinates. The default points are the sequence of numbers from 1 to n, where n
depends on the shape of v:

• When v is a vector, the default points are 1:length(v).
• When v is an array, the default points are 1:size(v,1).

Use this syntax when you are not concerned about the absolute distances between points.

vq = interp1(v,xq,method) specifies any of the alternative interpolation methods
and uses the default sample points.

vq = interp1(v,xq,method,extrapolation) specifies an extrapolation strategy
and uses the default sample points.

pp = interp1(x,v,method,'pp') returns the piecewise polynomial form of v(x) using
the method algorithm.

Note This syntax is not recommended. Use griddedInterpolant instead.

Examples

Interpolation of Coarsely Sampled Sine Function

Define the sample points, x, and corresponding sample values, v.

x = 0:pi/4:2*pi;
v = sin(x);

Define the query points to be a finer sampling over the range of x.

xq = 0:pi/16:2*pi;

Interpolate the function at the query points and plot the result.

figure
vq1 = interp1(x,v,xq);
plot(x,v,'o',xq,vq1,':.');
xlim([0 2*pi]);
title('(Default) Linear Interpolation');

1 Alphabetical List

1-7494

Now evaluate v at the same points using the 'spline' method.

figure
vq2 = interp1(x,v,xq,'spline');
plot(x,v,'o',xq,vq2,':.');
xlim([0 2*pi]);
title('Spline Interpolation');

 interp1

1-7495

Interpolation Without Specifying Points

Define a set of function values.

v = [0 1.41 2 1.41 0 -1.41 -2 -1.41 0];

Define a set of query points that fall between the default points, 1:9. In this case, the
default points are 1:9 because v contains 9 values.

xq = 1.5:8.5;

Evaluate v at xq.

1 Alphabetical List

1-7496

vq = interp1(v,xq);

Plot the result.

figure
plot((1:9),v,'o',xq,vq,'*');
legend('v','vq');

Interpolation of Complex Values

Define a set of sample points.

 interp1

1-7497

x = 1:10;

Define the values of the function, v(x) = 5x + x2i, at the sample points.

v = (5*x)+(x.^2*1i);

Define the query points to be a finer sampling over the range of x.

xq = 1:0.25:10;

Interpolate v at the query points.

vq = interp1(x,v,xq);

Plot the real part of the result in red and the imaginary part in blue.

figure
plot(x,real(v),'*r',xq,real(vq),'-r');
hold on
plot(x,imag(v),'*b',xq,imag(vq),'-b');

1 Alphabetical List

1-7498

Interpolation of Dates and Times

Interpolate time-stamped data points.

Consider a data set containing temperature readings that are measured every four hours.
Create a table with one day's worth of data and plot the data.

x = (datetime(2016,1,1):hours(4):datetime(2016,1,2))';
x.Format = 'MMM dd, HH:mm';
T = [31 25 24 41 43 33 31]';
WeatherData = table(x,T,'VariableNames',{'Time','Temperature'})

 interp1

1-7499

WeatherData=7×2 table
 Time Temperature
 _____________ ___________

 Jan 01, 00:00 31
 Jan 01, 04:00 25
 Jan 01, 08:00 24
 Jan 01, 12:00 41
 Jan 01, 16:00 43
 Jan 01, 20:00 33
 Jan 02, 00:00 31

plot(WeatherData.Time, WeatherData.Temperature, 'o')

1 Alphabetical List

1-7500

Interpolate the data set to predict the temperature reading during each minute of the day.
Since the data is periodic, use the 'spline' interpolation method.

xq = (datetime(2016,1,1):minutes(1):datetime(2016,1,2))';
V = interp1(WeatherData.Time, WeatherData.Temperature, xq, 'spline');

Plot the interpolated points.

hold on
plot(xq,V,'r')

 interp1

1-7501

Extrapolation Using Two Different Methods

Define the sample points, x, and corresponding sample values, v.

x = [1 2 3 4 5];
v = [12 16 31 10 6];

Specify the query points, xq, that extend beyond the domain of x.

xq = [0 0.5 1.5 5.5 6];

Evaluate v at xq using the 'pchip' method.

vq1 = interp1(x,v,xq,'pchip')

vq1 = 1×5

 19.3684 13.6316 13.2105 7.4800 12.5600

Next, evaluate v at xq using the 'linear' method.

vq2 = interp1(x,v,xq,'linear')

vq2 = 1×5

 NaN NaN 14 NaN NaN

Now, use the 'linear' method with the 'extrap' option.

vq3 = interp1(x,v,xq,'linear','extrap')

vq3 = 1×5

 8 10 14 4 2

'pchip' extrapolates by default, but 'linear' does not.

Designate Constant Value for All Queries Outside the Domain of x

Define the sample points, x, and corresponding sample values, v.

1 Alphabetical List

1-7502

x = [-3 -2 -1 0 1 2 3];
v = 3*x.^2;

Specify the query points, xq, that extend beyond the domain of x.

xq = [-4 -2.5 -0.5 0.5 2.5 4];

Now evaluate v at xq using the 'pchip' method and assign any values outside the
domain of x to the value, 27.

vq = interp1(x,v,xq,'pchip',27)

vq = 1×6

 27.0000 18.6563 0.9375 0.9375 18.6563 27.0000

Interpolate Multiple Sets of Data in One Pass

Define the sample points.

x = (-5:5)';

Sample three different parabolic functions at the points defined in x.

v1 = x.^2;
v2 = 2*x.^2 + 2;
v3 = 3*x.^2 + 4;

Create matrix v, whose columns are the vectors, v1, v2, and v3.

v = [v1 v2 v3];

Define a set of query points, xq, to be a finer sampling over the range of x.

xq = -5:0.1:5;

Evaluate all three functions at xq and plot the results.

vq = interp1(x,v,xq,'pchip');
figure
plot(x,v,'o',xq,vq);

 interp1

1-7503

h = gca;
h.XTick = -5:5;

The circles in the plot represent v, and the solid lines represent vq.

Input Arguments
x — Sample points
vector

Sample points, specified as a row or column vector of real numbers. The values in x must
be distinct. The length of x must conform to one of the following requirements:

1 Alphabetical List

1-7504

• If v is a vector, then length(x) must equal length(v).
• If v is an array, then length(x) must equal size(v,1).

Example: [1 2 3 4 5 6 7 8 9 10]
Example: 1:10
Example: [3 7 11 15 19 23 27 31]'
Data Types: single | double | duration | datetime

v — Sample values
vector | matrix | array

Sample values, specified as a vector, matrix, or array of real or complex numbers. If v is a
matrix or an array, then each column contains a separate set of 1-D values.

If v contains complex numbers, then interp1 interpolates the real and imaginary parts
separately.
Example: rand(1,10)
Example: rand(10,1)
Example: rand(10,3)
Data Types: single | double | duration | datetime
Complex Number Support: Yes

xq — Query points
scalar | vector | matrix | array

Query points, specified as a scalar, vector, matrix, or array of real numbers.
Example: 5
Example: 1:0.05:10
Example: (1:0.05:10)'
Example: [0 1 2 7.5 10]
Data Types: single | double | duration | datetime

method — Interpolation method
'linear' (default) | 'nearest' | 'next' | 'previous' | 'pchip' | 'cubic' |
'v5cubic' | 'makima' | 'spline'

 interp1

1-7505

Interpolation method, specified as one of the options in this table.

Method Description Continuity Comments
'linear' Linear interpolation. The

interpolated value at a
query point is based on
linear interpolation of the
values at neighboring grid
points in each respective
dimension. This is the
default interpolation
method.

C0 • Requires at least 2 points
• Requires more memory

and computation time
than nearest neighbor

'nearest' Nearest neighbor
interpolation. The
interpolated value at a
query point is the value at
the nearest sample grid
point.

Discontinuous • Requires at least 2 points
• Modest memory

requirements
• Fastest computation time

'next' Next neighbor interpolation.
The interpolated value at a
query point is the value at
the next sample grid point.

Discontinuous • Requires at least 2 points
• Same memory

requirements and
computation time as
'nearest'

'previous' Previous neighbor
interpolation. The
interpolated value at a
query point is the value at
the previous sample grid
point.

Discontinuous • Requires at least 2 points
• Same memory

requirements and
computation time as
'nearest'

'pchip' Shape-preserving piecewise
cubic interpolation. The
interpolated value at a
query point is based on a
shape-preserving piecewise
cubic interpolation of the
values at neighboring grid
points.

C1 • Requires at least 4 points
• Requires more memory

and computation time
than 'linear'

1 Alphabetical List

1-7506

Method Description Continuity Comments
'cubic'

Note The
behavior of
interp1(..
.,'cubic')
will change in
a future
release. In a
future
release, this
method will
perform cubic
convolution.

Same as 'pchip'. C1 This method currently
returns the same result as
'pchip'

'v5cubic' Cubic convolution used in
MATLAB 5.

C1 Points must be uniformly
spaced. 'cubic' will
replace 'v5cubic' in a
future release

'makima' Modified Akima cubic
Hermite interpolation. The
interpolated value at a
query point is based on a
piecewise function of
polynomials with degree at
most three. The Akima
formula is modified to avoid
overshoots.

C1 • Requires at least 2 points
• Produces fewer

undulations than
'spline', but does not
flatten as aggressively as
'pchip'

• Computation is more
expensive than 'pchip',
but typically less than
'spline'

• Memory requirements
are similar to those of
'spline'

 interp1

1-7507

Method Description Continuity Comments
'spline' Spline interpolation using

not-a-knot end conditions.
The interpolated value at a
query point is based on a
cubic interpolation of the
values at neighboring grid
points in each respective
dimension.

C2 • Requires at least 4 points
• Requires more memory

and computation time
than 'pchip'

extrapolation — Extrapolation strategy
'extrap' | scalar value

Extrapolation strategy, specified as 'extrap' or a real scalar value.

• Specify 'extrap' when you want interp1 to evaluate points outside the domain
using the same method it uses for interpolation.

• Specify a scalar value when you want interp1 to return a specific constant value for
points outside the domain.

The default behavior depends on the input arguments:

• If you specify the 'pchip', 'spline', or 'makima' interpolation methods, then the
default behavior is 'extrap'.

• All other interpolation methods return NaN by default for query points outside the
domain.

Example: 'extrap'
Example: 5
Data Types: char | string | single | double

Output Arguments
vq — Interpolated values
scalar | vector | matrix | array

Interpolated values, returned as a scalar, vector, matrix, or array. The size of vq depends
on the shape of v and xq.

1 Alphabetical List

1-7508

Shape of v Shape of xq Size of Vq Example
Vector Vector size(xq) If size(v) = [1 100]

and size(xq) = [1 500],
then size(vq) = [1
500].

Vector Matrix
or N-D Array

size(xq) If size(v) = [1 100]
and size(xq) = [50 30],
then size(vq) = [50
30].

Matrix
or N-D Array

Vector [length(xq)
size(v,2),...,size(v,
n)]

If size(v) = [100 3]
and size(xq) = [1 500],
then size(vq) = [500
3].

Matrix
or N-D Array

Matrix
or N-D Array

[size(xq,1),...,size(
xq,n),...
size(v,2),...,size(v,
m)]

If size(v) = [4 5 6]
and size(xq) = [2 3 7],
then size(vq) = [2 3 7
5 6].

pp — Piecewise polynomial
structure

Piecewise polynomial, returned as a structure that you can pass to the ppval function for
evaluation.

Definitions
Akima and Spline Interpolation
The Akima algorithm for one-dimensional interpolation, described in [1] on page 1-7511
and [2] on page 1-7511, performs cubic interpolation to produce piecewise polynomials
with continuous first-order derivatives (C1). The algorithm preserves the slope and avoids
undulations in flat regions. A flat region occurs whenever there are three or more
consecutive collinear points, which the algorithm connects with a straight line. To ensure
that the region between two data points is flat, insert an additional data point between
those two points.

When two flat regions with different slopes meet, the modification made to the original
Akima algorithm gives more weight to the side where the slope is closer to zero. This

 interp1

1-7509

modification gives priority to the side that is closer to horizontal, which is more intuitive
and avoids the overshoot. (The original Akima algorithm gives equal weights to the points
on both sides, thus evenly dividing the undulation.)

The spline algorithm, on the other hand, performs cubic interpolation to produce
piecewise polynomials with continuous second-order derivatives (C2). The result is
comparable to a regular polynomial interpolation, but is less susceptible to heavy
oscillation between data points for high degrees. Still, this method can be susceptible to
overshoots and oscillations between data points.

Compared to the spline algorithm, the Akima algorithm produces fewer undulations and
is better suited to deal with quick changes between flat regions. This difference is
illustrated below using test data that connects multiple flat regions.

1 Alphabetical List

1-7510

References
[1] Akima, Hiroshi. "A new method of interpolation and smooth curve fitting based on

local procedures." Journal of the ACM (JACM) , 17.4, 1970, pp. 589-602.

[2] Akima, Hiroshi. "A method of bivariate interpolation and smooth surface fitting based
on local procedures." Communications of the ACM , 17.1, 1974, pp. 18-20.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the 'cubic' or 'makima' interpolation methods.
• The input argument x (sample points) must be strictly increasing or strictly

decreasing. Indices are not reordered.
• If the input argument v (sample values) is a variable-length vector (1-by-: or :-by-1),

then the shape of the output vq matches the shape in MATLAB.

If the input argument v is variable-size, is not a variable-length vector, and becomes a
row vector at run time, then an error occurs.

• If the input argument xq (query points) is variable-size, is not a variable-length vector,
and becomes a row or column vector at run time, then an error occurs.

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 interp1

1-7511

• x must be a finite, increasing vector without repeating elements. x must be double or
single.

• v must be an array of type double or single. The size of the first nonsingleton
dimension of v must be the same as the length of x. V can be complex.

• xq must be an array of type double or single.
• method must be 'linear', 'nearest', 'v5cubic', or 'spline'.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
griddedInterpolant | interp2 | interp3 | interpn

Introduced before R2006a

1 Alphabetical List

1-7512

interp1q
Quick 1-D linear interpolation

Note interp1q is not recommended. Use interp1 instead.

Syntax
yi = interp1q(x,Y,xi)

Description
yi = interp1q(x,Y,xi) returns the value of the 1-D function Y at the points of column
vector xi using linear interpolation. The vector x specifies the coordinates of the
underlying interval. The length of output yi is equal to the length of xi.

For interp1q to work properly,

• x must be a monotonically increasing column vector.
• Y must be a column vector or matrix with length(x) rows.
• xi must be a column vector

interp1q returns NaN for any values of xi that lie outside the coordinates in x. If Y is a
matrix, then the interpolation is performed for each column of Y, in which case yi is
length(xi)-by-size(Y,2).

Examples

Linear Interpolation Using interp1q

Generate a coarse sine curve and interpolate over a finer abscissa.

 interp1q

1-7513

x = (0:10)';
y = sin(x);
xi = (0:.25:10)';
yi = interp1q(x,y,xi);
plot(x,y,'o',xi,yi)

1 Alphabetical List

1-7514

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Results might not match MATLAB when some Y values are Inf or NaN.

See Also
interp1 | interp2 | interp3 | interpn

 interp1q

1-7515

interp2
Interpolation for 2-D gridded data in meshgrid format

Syntax
Vq = interp2(X,Y,V,Xq,Yq)
Vq = interp2(V,Xq,Yq)
Vq = interp2(V)
Vq = interp2(V,k)

Vq = interp2(___ ,method)
Vq = interp2(___ ,method,extrapval)

Description
Vq = interp2(X,Y,V,Xq,Yq) returns interpolated values of a function of two variables
at specific query points using linear interpolation. The results always pass through the
original sampling of the function. X and Y contain the coordinates of the sample points. V
contains the corresponding function values at each sample point. Xq and Yq contain the
coordinates of the query points.

Vq = interp2(V,Xq,Yq) assumes a default grid of sample points. The default grid
points cover the rectangular region, X=1:n and Y=1:m, where [m,n] = size(V). Use
this syntax when you want to conserve memory and are not concerned about the absolute
distances between points.

Vq = interp2(V) returns the interpolated values on a refined grid formed by dividing
the interval between sample values once in each dimension.

Vq = interp2(V,k) returns the interpolated values on a refined grid formed by
repeatedly halving the intervals k times in each dimension. This results in 2^k-1
interpolated points between sample values.

Vq = interp2(___ ,method) specifies an alternative interpolation method: 'linear',
'nearest', 'cubic', 'makima', or 'spline'. The default method is 'linear'.

1 Alphabetical List

1-7516

Vq = interp2(___ ,method,extrapval) also specifies extrapval, a scalar value
that is assigned to all queries that lie outside the domain of the sample points.

If you omit the extrapval argument for queries outside the domain of the sample points,
then based on the method argument interp2 returns one of the following:

• Extrapolated values for the 'spline' and 'makima' methods
• NaN values for other interpolation methods

Examples

Interpolate Over a Grid Using Default Method

Coarsely sample the peaks function.

[X,Y] = meshgrid(-3:3);
V = peaks(X,Y);

Plot the coarse sampling.

figure
surf(X,Y,V)
title('Original Sampling');

 interp2

1-7517

Create the query grid with spacing of 0.25.

[Xq,Yq] = meshgrid(-3:0.25:3);

Interpolate at the query points.

Vq = interp2(X,Y,V,Xq,Yq);

Plot the result.

figure
surf(Xq,Yq,Vq);
title('Linear Interpolation Using Finer Grid');

1 Alphabetical List

1-7518

Interpolate Over a Grid Using Cubic Method

Coarsely sample the peaks function.

[X,Y] = meshgrid(-3:3);
V = peaks(7);

Plot the coarse sampling.

figure
surf(X,Y,V)
title('Original Sampling');

 interp2

1-7519

Create the query grid with spacing of 0.25.

[Xq,Yq] = meshgrid(-3:0.25:3);

Interpolate at the query points, and specify cubic interpolation.

Vq = interp2(X,Y,V,Xq,Yq,'cubic');

Plot the result.

figure
surf(Xq,Yq,Vq);
title('Cubic Interpolation Over Finer Grid');

1 Alphabetical List

1-7520

Refine Grayscale Image

Load some image data into the workspace.

load clown

Isolate a small region of the image and cast it to single.

V = single(X(1:124,75:225));

Display the image.

 interp2

1-7521

figure
imagesc(V);
colormap gray
axis image
axis off
title('Original Image');

Insert interpolated values by repeatedly dividing the intervals between points of the
refined grid five times in each dimension.

Vq = interp2(V,5);

Display the result.

1 Alphabetical List

1-7522

figure
imagesc(Vq);
colormap gray
axis image
axis off
title('Linear Interpolation');

Evaluate Outside the Domain of X and Y

Coarsely sample a function over the range, [-2, 2] in both dimensions.

 interp2

1-7523

[X,Y] = meshgrid(-2:0.75:2);
R = sqrt(X.^2 + Y.^2)+ eps;
V = sin(R)./(R);

Plot the coarse sampling.

figure
surf(X,Y,V)
xlim([-4 4])
ylim([-4 4])
title('Original Sampling')

Create the query grid that extends beyond the domain of X and Y.

[Xq,Yq] = meshgrid(-3:0.2:3);

1 Alphabetical List

1-7524

Perform cubic interpolation within the domain of X and Y, and assign all queries that fall
outside to zero.

Vq = interp2(X,Y,V,Xq,Yq,'cubic',0);

Plot the result.

figure
surf(Xq,Yq,Vq)
title('Cubic Interpolation with Vq=0 Outside Domain of X and Y');

 interp2

1-7525

Input Arguments
X,Y — Sample grid points
matrices | vectors

Sample grid points, specified as real matrices or vectors. The sample grid points must be
unique.

• If X and Y are matrices, then they contain the coordinates of a full grid (in meshgrid
format) on page 1-7531. Use the meshgrid function to create the X and Y matrices
together. Both matrices must be the same size.

• If X and Y are vectors, then they are treated as a grid vectors on page 1-7533. The
values in both vectors must be strictly monotonic on page 1-7531 and increasing.

Note In a future release, interp2 will not accept mixed combinations of row and column
vectors for the sample and query grids. Instead, you must construct the full grid using
meshgrid. Alternatively, if you have a large data set, you can use griddedInterpolant
instead of interp2.

Example: [X,Y] = meshgrid(1:30,-10:10)
Data Types: single | double

V — Sample values
matrix

Sample values, specified as a real or complex matrix. The size requirements for V depend
on the size of X and Y:

• If X and Y are matrices representing a full grid (in meshgrid format), then V must be
the same size as X and Y.

• If X and Y are grid vectors, then V must be a matrix containing length(Y) rows and
length(X) columns.

If V contains complex numbers, then interp2 interpolates the real and imaginary parts
separately.
Example: rand(10,10)
Data Types: single | double

1 Alphabetical List

1-7526

Complex Number Support: Yes

Xq,Yq — Query points
scalars | vectors | matrices | arrays

Query points, specified as a real scalars, vectors, matrices, or arrays.

• If Xq and Yq are scalars, then they are the coordinates of a single query point.
• If Xq and Yq are vectors of different orientations, then Xq and Yq are treated as grid

vectors.
• If Xq and Yq are vectors of the same size and orientation, then Xq and Yq are treated

as scattered points on page 1-7534 in 2-D space.
• If Xq and Yq are matrices, then they represent either a full grid of query points (in

meshgrid format) or scattered points.
• If Xq and Yq are N-D arrays, then they represent scattered points in 2-D space.

Note In a future release, interp2 will not accept mixed combinations of row and column
vectors for the sample and query grids. Instead, you must construct the full grid using
meshgrid. Alternatively, if you have a large data set, you can use griddedInterpolant
instead of interp2.

Example: [Xq,Yq] = meshgrid((1:0.1:10),(-5:0.1:0))
Data Types: single | double

k — Refinement factor
1 (default) | real, nonnegative, integer scalar

Refinement factor, specified as a real, nonnegative, integer scalar. This value specifies the
number of times to repeatedly divide the intervals of the refined grid in each dimension.
This results in 2^k-1 interpolated points between sample values.

If k is 0, then Vq is the same as V.

interp2(V,1) is the same as interp2(V).

The following illustration shows the placement of interpolated values (in red) among nine
sample values (in black) for k=2.

 interp2

1-7527

Example: interp2(V,2)
Data Types: single | double

method — Interpolation method
'linear' (default) | 'nearest' | 'cubic' | 'spline' | 'makima'

Interpolation method, specified as one of the options in this table.

Method Description Continuity Comments
'linear' The interpolated value at a

query point is based on linear
interpolation of the values at
neighboring grid points in each
respective dimension. This is
the default interpolation
method.

C0 • Requires at least two grid
points in each dimension

• Requires more memory than
'nearest'

'nearest' The interpolated value at a
query point is the value at the
nearest sample grid point.

Discontinuous • Requires two grid points in
each dimension.

• Fastest computation with
modest memory
requirements

1 Alphabetical List

1-7528

Method Description Continuity Comments
'cubic' The interpolated value at a

query point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic convolution.

C1 • Grid must have uniform
spacing in each dimension,
but the spacing does not
have to be the same for all
dimensions

• Requires at least four points
in each dimension

• Requires more memory and
computation time than
'linear'

'makima' Modified Akima cubic Hermite
interpolation. The interpolated
value at a query point is based
on a piecewise function of
polynomials with degree at
most three evaluated using the
values of neighboring grid
points in each respective
dimension. The Akima formula
is modified to avoid overshoots.

C1 • Requires at least 2 points in
each dimension

• Produces fewer undulations
than 'spline'

• Computation time is
typically less than
'spline', but the memory
requirements are similar

'spline' The interpolated value at a
query point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires four points in each
dimension

• Requires more memory and
computation time than
'cubic'

extrapval — Function value outside domain of X and Y
scalar

Function value outside domain of X and Y, specified as a real or complex scalar. interp2
returns this constant value for all points outside the domain of X and Y.
Example: 5
Example: 5+1i

 interp2

1-7529

Data Types: single | double
Complex Number Support: Yes

Output Arguments
Vq — Interpolated values
scalar | vector | matrix

Interpolated values, returned as a real or complex scalar, vector, or matrix. The size and
shape of Vq depends on the syntax you use and, in some cases, the size and value of the
input arguments.

Syntaxes Special
Conditions

Size of Vq Example

interp2(X,Y,V,Xq,Yq)
interp2(V,Xq,Yq)
and variations of these
syntaxes that include
method or extrapval

Xq, Yq are
scalars

Scalar size(Vq) = [1 1] when
you pass Xq and Yq as
scalars.

Same as above Xq, Yq are
vectors of
the same
size and
orientation

Vector of same size and
orientation as Xq and Yq

If size(Xq) = [100 1]
and size(Yq) = [100
1],
then size(Vq) = [100
1].

Same as above Xq, Yq are
vectors of
mixed
orientation

Matrix in which the number
of rows is length(Yq),
and the number of columns
is length(Xq)

If size(Xq) = [1 100]
and size(Yq) = [50 1],
then size(Vq) = [50
100].

Same as above Xq, Yq are
matrices or
arrays of the
same size

Matrix or array of the same
size as Xq and Yq

If size(Xq) = [50 25]
and size(Yq) = [50
25],
then size(Vq) = [50
25].

1 Alphabetical List

1-7530

Syntaxes Special
Conditions

Size of Vq Example

interp2(V,k)
and variations of this
syntax that include
method or extrapval

None Matrix in which the number
of rows is:
2^k * (size(V,1)-1)+1,
and the number of columns
is:
2^k * (size(V,2)-1)+1

If size(V) = [10 20]
and k = 2,
then size(Vq) = [37
77].

Definitions

Strictly Monotonic
A set of values that are always increasing or decreasing, without reversals. For example,
the sequence, a = [2 4 6 8] is strictly monotonic and increasing. The sequence, b =
[2 4 4 6 8] is not strictly monotonic because there is no change in value between
b(2) and b(3). The sequence, c = [2 4 6 8 6] contains a reversal between c(4) and
c(5), so it is not monotonic at all.

Full Grid (in meshgrid Format)
For interp2, the full grid is a pair of matrices whose elements represent a grid of points
over a rectangular region. One matrix contains the x-coordinates, and the other matrix
contains the y-coordinates. The values in the x-matrix are strictly monotonic on page 1-
7531 and increasing along the rows. The values along its columns are constant. The
values in the y-matrix are strictly monotonic and increasing along the columns. The
values along its rows are constant. Use the meshgrid function to create a full grid that
you can pass to interp2.

For example, the following code creates a full grid for the region, –1 ≤ x ≤ 3 and 1 ≤ y ≤
4:

[X,Y] = meshgrid(-1:3,(1:4))

X =

 -1 0 1 2 3
 -1 0 1 2 3

 interp2

1-7531

 -1 0 1 2 3
 -1 0 1 2 3

Y =

 1 1 1 1 1
 2 2 2 2 2
 3 3 3 3 3
 4 4 4 4 4

Grid vectors are a more compact format to represent a grid than the full grid. The
relation between the two formats and the matrix of sample values V is

1 Alphabetical List

1-7532

Grid Vectors
For interp2, grid vectors consist of a pair of vectors that define the x- and y-coordinates
in a grid. The row vector defines x-coordinates, and the column vector defines y-
coordinates.

 interp2

1-7533

For example, the following code creates the grid vectors that specify the region, –1 ≤ x ≤
3 and 1 ≤ y ≤ 4:

x = -1:3;
y = (1:4)';

Scattered Points
For interp2, scattered points consist of a pair of arrays that define a collection of points
scattered in 2-D space. One array contains the x-coordinates, and the other contains the
y-coordinates.

For example, the following code specifies the points, (2,7), (5,3), (4,1), and (10,9):

x = [2 5; 4 10];
y = [7 3; 1 9];

1 Alphabetical List

1-7534

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Xq and Yq must be the same size. Use meshgrid to evaluate on a grid.
• For best results, provide X and Y as vectors.
• Code generation does not support the 'makima' interpolation method.
• For the 'cubic' interpolation method, if the grid does not have uniform spacing, an

error results. In this case, use the 'spline' interpolation method.
• For best results when you use the 'spline' interpolation method:

• Use meshgrid to create the inputs Xq and Yq.
• Use a small number of interpolation points relative to the dimensions of V.

Interpolating over a large set of scattered points can be inefficient.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• V must be a double or single 2-D array. V can be real or complex. V cannot be a vector.
• X and Y must:

• Have the same type (double or single).
• Be finite vectors or 2-D arrays with increasing and nonrepeating elements in

corresponding dimensions.
• Align with cartesian axes when X and Y are nonvector 2-D arrays (as if they were

produced by meshgrid).
• Have dimensions consistent with V.

 interp2

1-7535

• Xq and Yq must be vectors or arrays of the same type (double or single). If Xq and Yq
are arrays, then they must have the same size. If they are vectors with different
lengths, then they must have different orientations.

• method must be 'linear', 'nearest', or 'cubic'.
• The extrapolation for the out-of-boundary input is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
griddata | griddedInterpolant | interp1 | interp3 | interpn | meshgrid |
scatteredInterpolant

Introduced before R2006a

1 Alphabetical List

1-7536

interp3
Interpolation for 3-D gridded data in meshgrid format

Syntax
Vq = interp3(X,Y,Z,V,Xq,Yq,Zq)
Vq = interp3(V,Xq,Yq,Zq)
Vq = interp3(V)
Vq = interp3(V,k)

Vq = interp3(___ ,method)
Vq = interp3(___ ,method,extrapval)

Description
Vq = interp3(X,Y,Z,V,Xq,Yq,Zq) returns interpolated values of a function of three
variables at specific query points using linear interpolation. The results always pass
through the original sampling of the function. X, Y, and Z contain the coordinates of the
sample points. V contains the corresponding function values at each sample point. Xq, Yq,
and Zq contain the coordinates of the query points.

Vq = interp3(V,Xq,Yq,Zq) assumes a default grid of sample points. The default grid
points cover the region, X=1:n, Y=1:m, Z=1:p, where [m,n,p] = size(V). Use this
syntax when you want to conserve memory and are not concerned about the absolute
distances between points.

Vq = interp3(V) returns the interpolated values on a refined grid formed by dividing
the interval between sample values once in each dimension.

Vq = interp3(V,k) returns the interpolated values on a refined grid formed by
repeatedly halving the intervals k times in each dimension. This results in 2^k-1
interpolated points between sample values.

Vq = interp3(___ ,method) specifies an alternative interpolation method: 'linear',
'nearest', 'cubic', 'makima', or 'spline'. The default method is 'linear'.

 interp3

1-7537

Vq = interp3(___ ,method,extrapval) also specifies extrapval, a scalar value
that is assigned to all queries that lie outside the domain of the sample points.

If you omit the extrapval argument for queries outside the domain of the sample points,
then based on the method argument interp3 returns one of the following:

• The extrapolated values for the 'spline' and 'makima' methods
• NaN values for other interpolation methods

Examples

Interpolate Using Default Method

Load the points and values of the flow function, sampled at 10 points in each dimension.

[X,Y,Z,V] = flow(10);

The flow function returns the grid in the arrays, X, Y, Z. The grid covers the region,
0 . 1 ≤ X ≤ 10, −3 ≤ Y ≤ 3, −3 ≤ Z ≤ 3, and the spacing is ΔX = 0 . 5, ΔY = 0 . 7, and
ΔZ = 0 . 7.

Now, plot slices through the volume of the sample at: X=6, X=9, Y=2, and Z=0.

figure
slice(X,Y,Z,V,[6 9],2,0);
shading flat

1 Alphabetical List

1-7538

Create a query grid with spacing of 0.25.

[Xq,Yq,Zq] = meshgrid(.1:.25:10,-3:.25:3,-3:.25:3);

Interpolate at the points in the query grid and plot the results using the same slice planes.

Vq = interp3(X,Y,Z,V,Xq,Yq,Zq);
figure
slice(Xq,Yq,Zq,Vq,[6 9],2,0);
shading flat

 interp3

1-7539

Interpolate Using Cubic Method

Load the points and values of the flow function, sampled at 10 points in each dimension.

[X,Y,Z,V] = flow(10);

The flow function returns the grid in the arrays, X, Y, Z. The grid covers the region,
0 . 1 ≤ X ≤ 10, −3 ≤ Y ≤ 3, −3 ≤ Z ≤ 3, and the spacing is ΔX = 0 . 5, ΔY = 0 . 7, and
ΔZ = 0 . 7.

Plot slices through the volume of the sample at: X=6, X=9, Y=2, and Z =0.

1 Alphabetical List

1-7540

figure
slice(X,Y,Z,V,[6 9],2,0);
shading flat

Create a query grid with spacing of 0.25.

[Xq,Yq,Zq] = meshgrid(.1:.25:10,-3:.25:3,-3:.25:3);

Interpolate at the points in the query grid using the 'cubic' interpolation method. Then
plot the results.

Vq = interp3(X,Y,Z,V,Xq,Yq,Zq,'cubic');
figure
slice(Xq,Yq,Zq,Vq,[6 9],2,0);
shading flat

 interp3

1-7541

Evaluate Outside the Domain of X, Y, and Z

Create the grid vectors, x, y, and z. These vectors define the points associated with
values in V.

x = 1:100;
y = (1:50)';
z = 1:30;

Define the sample values to be a 50-by-100-by-30 random number array, V. Use the
gallery function to create the array.

1 Alphabetical List

1-7542

V = gallery('uniformdata',50,100,30,0);

Evaluate V at three points outside the domain of x, y, and z. Specify extrapval = -1.

xq = [0 0 0];
yq = [0 0 51];
zq = [0 101 102];
vq = interp3(x,y,z,V,xq,yq,zq,'linear',-1)

vq = 1×3

 -1 -1 -1

All three points evaluate to -1 because they are outside the domain of x, y, and z.

Input Arguments
X,Y,Z — Sample grid points
arrays | vectors

Sample grid points, specified as real arrays or vectors. The sample grid points must be
unique.

• If X, Y, and Z are arrays, then they contain the coordinates of a full grid (in meshgrid
format) on page 1-7549. Use the meshgrid function to create the X, Y, and Z arrays
together. These arrays must be the same size.

• If X, Y, and Z are vectors, then they are treated as a grid vectors on page 1-7549. The
values in these vectors must be strictly monotonic on page 1-7549 and increasing.

Note In a future release, interp3 will not accept mixed combinations of row and column
vectors for the sample and query grids. Instead, you must construct the full grid using
meshgrid. Alternatively, if you have a large data set, you can use griddedInterpolant
instead of interp3.

Example: [X,Y,Z] = meshgrid(1:30,-10:10,1:5)
Data Types: single | double

 interp3

1-7543

V — Sample values
array

Sample values, specified as a real or complex array. The size requirements for V depend
on the size of X, Y, and Z:

• If X, Y, and Z are arrays representing a full grid (in meshgrid format), then the size of
V matches the size of X, Y, or Z .

• If X, Y, and Z are grid vectors, then size(V) = [length(Y) length(X)
length(Z)].

If V contains complex numbers, then interp3 interpolates the real and imaginary parts
separately.
Example: rand(10,10,10)
Data Types: single | double
Complex Number Support: Yes

Xq,Yq,Zq — Query points
scalars | vectors | arrays

Query points, specified as a real scalars, vectors, or arrays.

• If Xq, Yq, and Zq are scalars, then they are the coordinates of a single query point in
R3.

• If Xq, Yq, and Zq are vectors of different orientations, then Xq, Yq, and Zq are treated
as grid vectors in R3.

• If Xq, Yq, and Zq are vectors of the same size and orientation, then Xq, Yq, and Zq are
treated as scattered points on page 1-7550 in R3.

• If Xq, Yq, and Zq are arrays of the same size, then they represent either a full grid of
query points (in meshgrid format) or scattered points in R3.

Note In a future release, interp3 will not accept mixed combinations of row and column
vectors for the sample and query grids. Instead, you must construct the full grid using
meshgrid. Alternatively, if you have a large data set, you can use griddedInterpolant
instead of interp3.

Example: [Xq,Yq,Zq] = meshgrid((1:0.1:10),(-5:0.1:0),3:5)

1 Alphabetical List

1-7544

Data Types: single | double

k — Refinement factor
1 (default) | real, nonnegative, integer scalar

Refinement factor, specified as a real, nonnegative, integer scalar. This value specifies the
number of times to repeatedly divide the intervals of the refined grid in each dimension.
This results in 2^k-1 interpolated points between sample values.

If k is 0, then Vq is the same as V.

interp3(V,1) is the same as interp3(V).

The following illustration depicts k=2 in one plane of R3. There are 72 interpolated values
in red and 9 sample values in black.

Example: interp3(V,2)
Data Types: single | double

method — Interpolation method
'linear' (default) | 'nearest' | 'cubic' | 'spline' | 'makima'

Interpolation method, specified as one of the options in this table.

 interp3

1-7545

Method Description Continuity Comments
'linear' The interpolated value at a

query point is based on linear
interpolation of the values at
neighboring grid points in each
respective dimension. This is
the default interpolation
method.

C0 • Requires at least two grid
points in each dimension

• Requires more memory than
'nearest'

'nearest' The interpolated value at a
query point is the value at the
nearest sample grid point.

Discontinuous • Requires two grid points in
each dimension

• Fastest computation with
modest memory
requirements

'cubic' The interpolated value at a
query point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic convolution.

C1 • Grid must have uniform
spacing in each dimension,
but the spacing does not
have to be the same for all
dimensions

• Requires at least four points
in each dimension

• Requires more memory and
computation time than
'linear'

'makima' Modified Akima cubic Hermite
interpolation. The interpolated
value at a query point is based
on a piecewise function of
polynomials with degree at
most three evaluated using the
values of neighboring grid
points in each respective
dimension. The Akima formula
is modified to avoid overshoots.

C1 • Requires at least 2 points in
each dimension

• Produces fewer undulations
than 'spline'

• Computation time is
typically less than
'spline', but the memory
requirements are similar

1 Alphabetical List

1-7546

Method Description Continuity Comments
'spline' The interpolated value at a

query point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires four points in each
dimension

• Requires more memory and
computation time than
'cubic'

extrapval — Function value outside domain of X, Y, and Z
scalar

Function value outside domain of X, Y, and Z, specified as a real or complex scalar.
interp3 returns this constant value for all points outside the domain of X, Y, and Z.
Example: 5
Example: 5+1i
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Vq — Interpolated values
scalar | vector | array

Interpolated values, returned as a real or complex scalar, vector, or array. The size and
shape of Vq depends on the syntax you use and, in some cases, the size and value of the
input arguments.

 interp3

1-7547

Syntaxes Special
Conditions

Size of Vq Example

interp3(X,Y,Z,V,Xq,Y
q,Zq)
interp3(V,Xq,Yq,Zq)
and variations of these
syntaxes that include
method or extrapval

Xq, Yq, and
Zq are
scalars.

Scalar size(Vq) = [1 1] when
you pass Xq, Yq, and Zq as
scalars.

Same as above Xq, Yq, and
Zq are
vectors of
the same
size and
orientation.

Vector of same size and
orientation as Xq, Yq, and
Zq

If size(Xq) = [100 1],
and size(Yq) = [100
1],
and size(Zq) = [100
1],
then size(Vq) = [100
1].

Same as above Xq, Yq, and
Zq are
vectors of
mixed
orientation.

size(Vq) = [length(Y)
length(X) length(Z)]

If size(Xq) = [1 100],
and size(Yq) = [50 1],
and size(Zq) = [1 5],
then size(Vq) = [50
100 5].

Same as above Xq, Yq, and
Zq are
arrays of the
same size.

Array of the same size as
Xq, Yq, and Zq

If size(Xq) = [50 25],
and size(Yq) = [50
25],
and size(Zq) = [50
25],
then size(Vq) = [50
25].

interp3(V,k)
and variations of this
syntax that include
method or extrapval

None Array in which the length of
the ith dimension is
2^k * (size(V,i)-1)+1

If size(V) = [10 12 5],
and k = 3,
then size(Vq) = [73 89
33].

1 Alphabetical List

1-7548

Definitions

Strictly Monotonic
A set of values that are always increasing or decreasing, without reversals. For example,
the sequence, a = [2 4 6 8] is strictly monotonic and increasing. The sequence, b =
[2 4 4 6 8] is not strictly monotonic because there is no change in value between
b(2) and b(3). The sequence, c = [2 4 6 8 6] contains a reversal between c(4) and
c(5), so it is not monotonic at all.

Full Grid (in meshgrid Format)
For interp3, a full grid consists of three arrays whose elements represent a grid of
points that define a region in R3. The first array contains the x-coordinates, the second
array contains the y-coordinates, and the third array contains the z-coordinates. The
values in each array vary along a single dimension and are constant along the other
dimensions.

The values in the x-array are strictly monotonic on page 1-7549, increasing, and vary
along the second dimension. The values in the y-array are strictly monotonic, increasing,
and vary along the first dimension. The values in the z-array are strictly monotonic,
increasing, and vary along the third dimension. Use the meshgrid function to create a
full grid that you can pass to interp3.

Grid Vectors
For interp3, grid vectors consist of three vectors of mixed-orientation that define the
points on a grid in R3.

For example, the following code creates the grid vectors for the region, 1 ≤ x ≤ 3, 4 ≤ y ≤
5, and 6 ≤ z ≤ 8:

x = 1:3;
y = (4:5)';
z = 6:8;

 interp3

1-7549

Scattered Points
For interp3, scattered points consist of three arrays or vectors, Xq, Yq, and Zq, that
define a collection of points scattered in R3. The ith array contains the coordinates in the
ith dimension.

For example, the following code specifies the points, (1, 19, 10), (6, 40, 1), (15, 33, 22),
and (0, 61, 13).

Xq = [1 6; 15 0];
Yq = [19 40; 33 61];
Zq = [10 1; 22 13];

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Xq, Yq, and Zq must be the same size. Use meshgrid to evaluate on a grid.
• For best results, provide X, Y, and Z as vectors.
• Code generation does not support the 'makima' interpolation method.
• For the 'cubic' interpolation method, if the grid does not have uniform spacing, an

error results. In this case, use the 'spline' interpolation method.
• For best results when you use the 'spline' interpolation method:

• Use meshgrid to create the inputs Xq, Yq, and Zq.
• Use a small number of interpolation points relative to the dimensions of V.

Interpolating over a large set of scattered points can be inefficient.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-7550

Usage notes and limitations:

• V must be a double or single 3-D array. V can be real or complex.
• X, Y, and Z must:

• Have the same type (double or single).
• Be finite vectors or 3-D arrays with increasing and nonrepeating elements in

corresponding dimensions.
• Align with cartesian axes when X,Y, and Z are 3-D arrays (as if they were produced

by meshgrid).
• Have dimensions consistent with V.

• Xq, Yq, and Zq must be vectors or arrays of the same type (double or single). If Xq, Yq,
and Zq are arrays, then they must have the same size. If they are vectors with
different lengths, then one of them must have a different orientation.

• method must be 'linear' or'nearest'.
• The extrapolation for the out-of-boundary input is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
interp1 | interp2 | interpn | meshgrid

Introduced before R2006a

 interp3

1-7551

interpft
1-D interpolation (FFT method)

Syntax
y = interpft(X,n)
y = interpft(X,n,dim)

Description
y = interpft(X,n) interpolates the Fourier transform of the function values in X to
produce n equally spaced points. interpft operates on the first dimension whose size
does not equal 1.

y = interpft(X,n,dim) operates along dimension dim. For example, if X is a matrix,
then interpft(X,n,2) operates on the rows of X.

Examples

Fourier Interpolation

Interpolate 1-D data using the FFT method and visualize the result.

Generate some sample points in the interval [0, 3π] for the function f (x) = sin2(x)cos(x).
Use a spacing interval dx to ensure the data is evenly spaced. Plot the sample points.

dx = 3*pi/30;
x = 0:dx:3*pi;
f = sin(x).^2 .* cos(x);
plot(x,f,'o')

1 Alphabetical List

1-7552

Use FFT interpolation to find the function value at 200 query points.

N = 200;
y = interpft(f,N);

Calculate the spacing of the interpolated data from the spacing of the sample points with
dy = dx*length(x)/N, where N is the number of interpolation points. Truncate the
data in y to match the sampling density of x2.

dy = dx*length(x)/N;
x2 = 0:dy:3*pi;
y = y(1:length(x2));

Plot the results.

 interpft

1-7553

hold on
plot(x2,y,'.')
title('FFT Interpolation of Periodic Function')

Interpolate Rows of Data

Generate three separate data sets of normally distributed random numbers. Assume the
data is sampled at the positive integers, 1:N. Store the data sets as rows in a matrix.

A = randn(3,20);
x = 1:20;

1 Alphabetical List

1-7554

Interpolate the rows of the matrix at 500 query points each. Specify dim = 2 so that
interpft works on the rows of A.

N = 500;
y = interpft(A,N,2);

Calculate the spacing interval of the interpolated data dy. Truncate the data in y to match
the sampling density of x2.

dy = length(x)/N;
x2 = 1:dy:20;
y = y(:,1:length(x2));

Plot the results.

subplot(3,1,1)
plot(x,A(1,:)','o');
hold on
plot(x2,y(1,:)','--')
title('Row 1')

subplot(3,1,2)
plot(x,A(2,:)','o');
hold on
plot(x2,y(2,:)','--')
title('Row 2')

subplot(3,1,3)
plot(x,A(3,:)','o');
hold on
plot(x2,y(3,:)','--')
title('Row 3')

 interpft

1-7555

Input Arguments
X — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. The data in X is
assumed to be sampled at an evenly spaced interval of the independent variable.
interpft works best with periodic data.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-7556

n — Number of points
positive integer scalar

Number of points, specified as a positive integer scalar.
Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

• interpft(X,n,1) interpolates the columns of X.

• interpft(X,n,2) interpolates the rows of X.

Example: interpft(X,n,3)

 interpft

1-7557

Output Arguments
y — Interpolated points
vector | matrix | multidimensional array

Interpolated points, returned as a vector, matrix, or multidimensional array. If
length(X,dim) = m, and X has a sampling interval of dx, then the new sampling
interval for y is dy = dx*m/n, where n > m.

If dim is specified, then interpft pads or truncates X to length n in dimension dim, so
that size(y,dim) = n.

Algorithms
The interpft function uses the FFT method. The original vector x is transformed to the
Fourier domain using fft, and then it is transformed back with more points.

See Also
fft | interp1

Introduced before R2006a

1 Alphabetical List

1-7558

interpn
Interpolation for 1-D, 2-D, 3-D, and N-D gridded data in ndgrid format

Syntax
Vq = interpn(X1,X2,...,Xn,V,Xq1,Xq2,...,Xqn)
Vq = interpn(V,Xq1,Xq2,...,Xqn)
Vq = interpn(V)
Vq = interpn(V,k)

Vq = interpn(___ ,method)
Vq = interpn(___ ,method,extrapval)

Description
Vq = interpn(X1,X2,...,Xn,V,Xq1,Xq2,...,Xqn) returns interpolated values of a
function of n variables at specific query points using linear interpolation. The results
always pass through the original sampling of the function. X1,X2,...,Xn contain the
coordinates of the sample points. V contains the corresponding function values at each
sample point. Xq1,Xq2,...,Xqn contain the coordinates of the query points.

Vq = interpn(V,Xq1,Xq2,...,Xqn) assumes a default grid of sample points. The
default grid consists of the points, 1,2,3,...ni in each dimension. The value of ni is the
length of the ith dimension in V. Use this syntax when you want to conserve memory and
are not concerned about the absolute distances between points.

Vq = interpn(V) returns the interpolated values on a refined grid formed by dividing
the interval between sample values once in each dimension.

Vq = interpn(V,k) returns the interpolated values on a refined grid formed by
repeatedly halving the intervals k times in each dimension. This results in 2^k-1
interpolated points between sample values.

Vq = interpn(___ ,method) specifies an alternative interpolation method: 'linear',
'nearest', 'pchip','cubic', 'makima', or 'spline'. The default method is
'linear'.

 interpn

1-7559

Vq = interpn(___ ,method,extrapval) also specifies extrapval, a scalar value
that is assigned to all queries that lie outside the domain of the sample points.

If you omit the extrapval argument for queries outside the domain of the sample points,
then based on the method argument interpn returns one of the following:

• The extrapolated values for the 'spline' and 'makima' methods
• NaN values for other interpolation methods

Examples

1-D Interpolation

Define the sample points and values.

x = [1 2 3 4 5];
v = [12 16 31 10 6];

Define the query points, xq, and interpolate.

xq = (1:0.1:5);
vq = interpn(x,v,xq,'cubic');

Plot the result.

figure
plot(x,v,'o',xq,vq,'-');
legend('Samples','Cubic Interpolation');

1 Alphabetical List

1-7560

2-D Interpolation

Create a set of grid points and corresponding sample values.

[X1,X2] = ndgrid((-5:1:5));
R = sqrt(X1.^2 + X2.^2)+ eps;
V = sin(R)./(R);

Interpolate over a finer grid using ntimes=1.

Vq = interpn(V,'cubic');
mesh(Vq);

 interpn

1-7561

Evaluate Outside Domain of 3-D Function

Create the grid vectors, x1, x2, and x3. These vectors define the points associated with
the values in V.

x1 = 1:100;
x2 = (1:50)';
x3 = 1:30;

Define the sample values to be a 100-by-50-by-30 random number array, V. Use the
gallery function to create the array.

1 Alphabetical List

1-7562

V = gallery('uniformdata',100,50,30,0);

Evaluate V at three points outside the domain of x1, x2, and x3. Specify extrapval =
-1.

xq1 = [0 0 0];
xq2 = [0 0 51];
xq3 = [0 101 102];
vq = interpn(x1,x2,x3,V,xq1,xq2,xq3,'linear',-1)

vq = 1×3

 -1 -1 -1

All three points evaluate to -1 because they are outside the domain of x1, x2, and x3.

4-D Interpolation

Define an anonymous function that represents .

f = @(x,y,z,t) t.*exp(-x.^2 - y.^2 - z.^2);

Create a grid of points in . Then, pass the points through the function to create the
sample values, V.

[x,y,z,t] = ndgrid(-1:0.2:1,-1:0.2:1,-1:0.2:1,0:2:10);
V = f(x,y,z,t);

Now, create the query grid.

[xq,yq,zq,tq] = ...
ndgrid(-1:0.05:1,-1:0.08:1,-1:0.05:1,0:0.5:10);

Interpolate V at the query points.

Vq = interpn(x,y,z,t,V,xq,yq,zq,tq);

Create a movie to show the results.

figure('renderer','zbuffer');
nframes = size(tq, 4);

 interpn

1-7563

for j = 1:nframes
 slice(yq(:,:,:,j),xq(:,:,:,j),zq(:,:,:,j),...
 Vq(:,:,:,j),0,0,0);
 caxis([0 10]);
 M(j) = getframe;
end
movie(M);

Input Arguments
X1,X2,...,Xn — Sample grid points
arrays | vectors

1 Alphabetical List

1-7564

Sample grid points, specified as real arrays or vectors. The sample grid points must be
unique.

• If X1,X2,...,Xn are arrays, then they contain the coordinates of a full grid (in ndgrid
format) on page 1-7571. Use the ndgrid function to create the X1,X2,...,Xn arrays
together. These arrays must be the same size.

• If X1,X2,...,Xn are vectors, then they are treated as grid vectors on page 1-7571.
The values in these vectors must be strictly monotonic on page 1-7570 and increasing.

Note In a future release, interpn will not accept mixed combinations of row and column
vectors for the sample and query grids. Instead, you must construct the full grid using
ndgrid. Alternatively, if you have a large data set, you can use griddedInterpolant
instead of interpn.

Example: [X1,X2,X3,X4] = ndgrid(1:30,-10:10,1:5,10:13)
Data Types: single | double

V — Sample values
array

Sample values, specified as a real or complex array. The size requirements for V depend
on the size of X1,X2,...,Xn:

• If X1,X2,...,Xn are arrays representing a full grid (in ndgrid format), then the size
of V matches the size of any array, X1,X2,...,Xn.

• If X1,X2,...,Xn are grid vectors, then V is an array whose ith dimension is the same
length as grid vector Xi, where i= 1,2,...n.

If V contains complex numbers, then interpn interpolates the real and imaginary parts
separately.
Example: rand(10,5,3,2)
Data Types: single | double
Complex Number Support: Yes

Xq1,Xq2,...,Xqn — Query points
scalars | vectors | arrays

Query points, specified as a real scalars, vectors, or arrays.

 interpn

1-7565

• If Xq1,Xq2,...,Xqn are scalars, then they are the coordinates of a single query point
in Rn.

• If Xq1,Xq2,...,Xqn are vectors of different orientations, then Xq1,Xq2,...,Xqn
are treated as grid vectors in Rn.

• If Xq1,Xq2,...,Xqn are vectors of the same size and orientation, then
Xq1,Xq2,...,Xqn are treated as scattered points in Rn.

• If Xq1,Xq2,...,Xqn are arrays of the same size, then they represent either a full
grid of query points (in ndgrid format) or scattered points in Rn.

Note In a future release, interpn will not accept mixed combinations of row and column
vectors for the sample and query grids. Instead, you must construct the full grid using
ndgrid. Alternatively, if you have a large data set, you can use griddedInterpolant
instead of interpn.

Example: [X1,X2,X3,X4] = ndgrid(1:10,1:5,7:9,10:11)
Data Types: single | double

k — Refinement factor
1 (default) | real, nonnegative, integer scalar

Refinement factor, specified as a real, nonnegative, integer scalar. This value specifies the
number of times to repeatedly divide the intervals of the refined grid in each dimension.
This results in 2^k-1 interpolated points between sample values.

If k is 0, then Vq is the same as V.

interpn(V,1) is the same as interpn(V).

The following illustration depicts k=2 in R2. There are 72 interpolated values in red and 9
sample values in black.

1 Alphabetical List

1-7566

Example: interpn(V,2)
Data Types: single | double

method — Interpolation method
'linear' (default) | 'nearest' | 'pchip' | 'cubic' | 'spline' | 'makima'

Interpolation method, specified as one of the options in this table.

Method Description Continuity Comments
'linear' The interpolated value at a

query point is based on linear
interpolation of the values at
neighboring grid points in each
respective dimension. This is
the default interpolation
method.

C0 • Requires at least two grid
points in each dimension

• Requires more memory than
'nearest'

'nearest' The interpolated value at a
query point is the value at the
nearest sample grid point.

Discontinuous • Requires two grid points in
each dimension.

• Fastest computation with
modest memory
requirements

 interpn

1-7567

Method Description Continuity Comments
'pchip' Shape-preserving piecewise

cubic interpolation (for 1-D
only). The interpolated value at
a query point is based on a
shape-preserving piecewise
cubic interpolation of the values
at neighboring grid points.

C1 • Requires at least four points
• Requires more memory and

computation time than
'linear'

'cubic' The interpolated value at a
query point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic convolution.

C1 • Grid must have uniform
spacing in each dimension,
but the spacing does not
have to be the same for all
dimensions

• Requires at least four points
in each dimension

• Requires more memory and
computation time than
'linear'

'makima' Modified Akima cubic Hermite
interpolation. The interpolated
value at a query point is based
on a piecewise function of
polynomials with degree at
most three evaluated using the
values of neighboring grid
points in each respective
dimension. The Akima formula
is modified to avoid overshoots.

C1 • Requires at least 2 points in
each dimension

• Produces fewer undulations
than 'spline'

• Computation time is
typically less than
'spline', but the memory
requirements are similar

'spline' The interpolated value at a
query point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires four points in each
dimension

• Requires more memory and
computation time than
'cubic'

1 Alphabetical List

1-7568

extrapval — Function value outside domain of X1,X2,...,Xn
scalar

Function value outside domain of X1,X2,...,Xn, specified as a real or complex scalar.
interpn returns this constant value for all points outside the domain of X1,X2,...,Xn.
Example: 5
Example: 5+1i
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Vq — Interpolated values
scalar | vector | array

Interpolated values, returned as a real or complex scalar, vector, or array. The size and
shape of Vq depends on the syntax you use and, in some cases, the size and value of the
input arguments.

Syntaxes Special
Conditions

Size of Vq Example

interpn(X1,...,Xn,V,
Xq1,...,Xqn)
interpn(V,Xq1,...,Xq
n)
and variations of these
syntaxes that include
method or extrapval

Xq1,...,X
qn are
scalars

Scalar size(Vq) = [1 1] when
you pass Xq1,...,Xqn as
scalars.

Same as above Xq1,...,X
qn are
vectors of
the same
size and
orientation

Vector of same size and
orientation as
Xq1,...,Xqn

In 3-D, if
size(Xq1) = [100 1],
and size(Xq2) = [100
1],
and size(Xq3) = [100
1],
then size(Vq) = [100
1].

 interpn

1-7569

Syntaxes Special
Conditions

Size of Vq Example

Same as above Xq1,...,X
qn are
vectors of
mixed
orientation

size(Vq) =
[length(Xq1),...,leng
th(Xqn)]

In 3-D, if
size(Xq1) = [1 100],
and size(Xq2) = [50
1],
and size(Xq3) = [1 5],
then size(Vq) = [100
50 5].

Same as above Xq1,...,X
qn are
arrays of the
same size

Array of the same size as
Xq1,...,Xqn

In 3-D, if
size(Xq1) = [50 25],
and size(Xq2) = [50
25],
and size(Xq3) = [50
25],
then size(Vq) = [50
25].

interpn(V,k)
and variations of this
syntax that include
method or extrapval

None Array in which the length of
the ith dimension is
2^k * (size(V,i)-1)+1,

In 3-D, if
size(V) = [10 12 5],
and k = 3,
then size(Vq) = [73 89
33].

Definitions

Strictly Monotonic
A set of values that are always increasing or decreasing, without reversals. For example,
the sequence, a = [2 4 6 8] is strictly monotonic and increasing. The sequence, b =
[2 4 4 6 8] is not strictly monotonic because there is no change in value between
b(2) and b(3). The sequence, c = [2 4 6 8 6] contains a reversal between c(4) and
c(5), so it is not monotonic at all.

1 Alphabetical List

1-7570

Full Grid (in ndgrid Format)
For interpn, the full grid consists of n arrays, X1,X2,...,Xn, whose elements
represent a grid of points in Rn. The ith array, Xi, contains strictly monotonic on page 1-
7570, increasing values that vary most rapidly along the ith dimension.

Use the ndgrid function to create a full grid that you can pass to interpn. For example,
the following code creates a full grid in R2 for the region, 1 ≤ X1 ≤ 3, 1≤ X2 ≤ 4.

[X1,X2] = ndgrid(-1:3,(1:4))

X1 =

 -1 -1 -1 -1
 0 0 0 0
 1 1 1 1
 2 2 2 2
 3 3 3 3

X2 =

 1 2 3 4
 1 2 3 4
 1 2 3 4
 1 2 3 4
 1 2 3 4

Grid Vectors
For interpn, grid vectors consist of n vectors of mixed-orientation that define the points
of a grid in Rn.

For example, the following code creates the grid vectors in R3 for the region, 1 ≤ x1 ≤ 3,
4 ≤ x2 ≤ 5, and 6 ≤x3≤ 8:

x1 = 1:3;
x2 = (4:5)';
x3 = 6:8;

 interpn

1-7571

Scattered Points
For interpn, scattered points consist of n arrays or vectors, Xq1,Xq2,...,Xqn, that
define a collection of points scattered in Rn. The ith array, Xi, contains the coordinates in
the ith dimension.

For example, the following code specifies the points, (1, 19, 10), (6, 40, 1), (15, 33, 22),
and (0, 61, 13) in R3.

Xq1 = [1 6; 15 0];
Xq2 = [19 40; 33 61];
Xq3 = [10 1; 22 13];

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For best results, provide X1,X2,...,Xn as vectors.
• Code generation does not support the 'makima' interpolation method.
• Code generation does not support the 'cubic' or 'spline' interpolation methods

for 2-D and higher interpolation.
• The interpolation method must be a constant character vector.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• A maximum of five dimensions is supported.
• V must be a double or single N-D array. V can be real or complex.

1 Alphabetical List

1-7572

• X1,X2,...,Xn, Y must:

• Have the same type (double or single).
• Be finite vectors or N-D arrays with increasing and nonrepeating elements in

corresponding dimensions.
• Align with cartesian axes when X1,X2,...,Xn are N-D arrays (as if they were

produced by ndgrid).
• Have dimensions consistent with V.

• X1,X2,...,Xn must be vectors or arrays of the same type (double or single). If
X1,X2,...,Xn are arrays, then they must have the same size. If they are vectors with
different lengths, then one of them must have a different orientation.

• method must be 'linear' or'nearest'.
• The extrapolation for the out-of-boundary input is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
interp1 | interp2 | interp3 | ndgrid

Introduced before R2006a

 interpn

1-7573

interpstreamspeed
Interpolate stream-line vertices from flow speed

Syntax
interpstreamspeed(X,Y,Z,U,V,W,vertices)
interpstreamspeed(U,V,W,vertices)
interpstreamspeed(X,Y,Z,speed,vertices)
interpstreamspeed(speed,vertices)
interpstreamspeed(X,Y,U,V,vertices)
interpstreamspeed(U,V,vertices)
interpstreamspeed(X,Y,speed,vertices)
interpstreamspeed(speed,vertices)
interpstreamspeed(...,sf)
vertsout = interpstreamspeed(...)

Description
interpstreamspeed(X,Y,Z,U,V,W,vertices) interpolates streamline vertices based
on the magnitude of the vector data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must be monotonic,
but do not need to be uniformly spaced. X, Y, and Z must have the same number of
elements, as if produced by meshgrid.

interpstreamspeed(U,V,W,vertices) assumes X, Y, and Z are determined by the
expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(U).

interpstreamspeed(X,Y,Z,speed,vertices) uses the 3-D array speed for the
speed of the vector field.

interpstreamspeed(speed,vertices) assumes X, Y, and Z are determined by the
expression

1 Alphabetical List

1-7574

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p]=size(speed).

interpstreamspeed(X,Y,U,V,vertices) interpolates streamline vertices based on
the magnitude of the vector data U, V.

The arrays X and Y, which define the coordinates for U and V, must be monotonic, but do
not need to be uniformly spaced. X and Y must have the same number of elements, as if
produced by meshgrid.

interpstreamspeed(U,V,vertices) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [M N]=size(U).

interpstreamspeed(X,Y,speed,vertices) uses the 2-D array speed for the speed
of the vector field.

interpstreamspeed(speed,vertices) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [M,N]= size(speed).

interpstreamspeed(...,sf) uses sf to scale the magnitude of the vector data and
therefore controls the number of interpolated vertices. For example, if sf is 3, then
interpstreamspeed creates only one-third of the vertices.

vertsout = interpstreamspeed(...) returns a cell array of vertex arrays.

Examples

Draw Streamlines Using Vertex Data

Draw streamlines using the vertices returned by interpstreamspeed. Dot markers
indicate the location of each vertex. Streamlines with widely spaced vertices indicate
faster flow. Those with closely spaced vertices indicate slower flow.

 interpstreamspeed

1-7575

load wind
[sx,sy,sz] = meshgrid(80,20:1:55,5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
iverts = interpstreamspeed(x,y,z,u,v,w,verts,0.2);
sl = streamline(iverts);
set(sl,'Marker','.');
axis tight;
view(2);
daspect([1 1 1]);

1 Alphabetical List

1-7576

Vertex Spacing That Follows Streamline Gradient

Plot streamlines to show vertex spacing as it changes with the gradient along the
streamline.

z = membrane(6,30);
[u,v] = gradient(z);
pcolor(z);
hold on
[verts,averts] = streamslice(u,v);
iverts = interpstreamspeed(u,v,verts,15);
sl = streamline(iverts);
set(sl,'Marker','.');
shading interp
axis tight
view(2);
daspect([1,1,1]);
hold off

 interpstreamspeed

1-7577

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-7578

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
stream2 | stream3 | streamline | streamparticles | streamslice

Introduced before R2006a

 interpstreamspeed

1-7579

intersect
Set intersection of two arrays

Syntax
C = intersect(A,B)
C = intersect(A,B,setOrder)
C = intersect(A,B, ___ ,'rows')
C = intersect(A,B,'rows', ___)
[C,ia,ib] = intersect(___)

[C,ia,ib] = intersect(A,B,'legacy')
[C,ia,ib] = intersect(A,B,'rows','legacy')

Description
C = intersect(A,B) returns the data common to both A and B, with no repetitions. C
is in sorted order.

• If A and B are tables or timetables, then intersect returns the set of rows common
to both tables. For timetables, intersect takes row times into account to determine
equality, and sorts the output timetable C by row times.

C = intersect(A,B,setOrder) returns C in a specific order. setOrder can be
'sorted' or 'stable'.

C = intersect(A,B, ___ ,'rows') and C = intersect(A,B,'rows', ___) treat
each row of A and each row of B as single entities and return the rows common to both A
and B, with no repetitions. You must specify A and B and optionally can specify setOrder.

The 'rows' option does not support cell arrays, unless one of the inputs is either a
categorical array or a datetime array.

[C,ia,ib] = intersect(___) also returns index vectors ia and ib using any of the
previous syntaxes.

1 Alphabetical List

1-7580

• Generally, C = A(ia) and C = B(ib).
• If the 'rows' option is specified, then C = A(ia,:) and C = B(ib,:).
• If A and B are tables or timetables, then C = A(ia,:) and C = B(ib,:).

[C,ia,ib] = intersect(A,B,'legacy') and [C,ia,ib] = intersect(
A,B,'rows','legacy') preserve the behavior of the intersect function from R2012b
and prior releases.

The 'legacy' option does not support categorical arrays, datetime arrays, duration
arrays, tables, or timetables.

Examples

Intersection of Two Vectors

Create two vectors that have some values in common.

A = [7 1 7 7 4];
B = [7 0 4 4 0];

Find the values common to both A and B.

C = intersect(A,B)

C = 1×2

 4 7

Intersection of Two Tables

Create two tables with rows in common.

A = table([1:5]',categorical({'A';'B';'C';'D';'E'}),logical([0;1;0;1;0]))

A=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 intersect

1-7581

 1 A false
 2 B true
 3 C false
 4 D true
 5 E false

B = table([1:2:10]',categorical({'A';'C';'E';'G';'I'}),logical(zeros(5,1)))

B=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 3 C false
 5 E false
 7 G false
 9 I false

Find the rows common to both A and B.

C = intersect(A,B)

C=3×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 3 C false
 5 E false

Intersection of Two Vectors and Their Indices

Create two vectors with values in common.

A = [7 1 7 7 4];
B = [7 0 4 4 0];

Find the values common to both A and B, as well as the index vectors ia and ib, such
that C = A(ia) and C = B(ib).

1 Alphabetical List

1-7582

[C,ia,ib] = intersect(A,B)

C = 1×2

 4 7

ia = 2×1

 5
 1

ib = 2×1

 3
 1

Intersection of Two Tables and Their Indices

Create a table, A, of gender, age, and height for five people.

A = table(categorical({'M';'M';'F';'M';'F'}),...
[27;52;31;46;35],[74;68;64;61;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty' 'Bob' 'Judy'})

A=5×3 table
 Gender Age Height
 ______ ___ ______

 Ted M 27 74
 Fred M 52 68
 Betty F 31 64
 Bob M 46 61
 Judy F 35 64

Create a table, B, with rows in common with A.

B = table(categorical({'F';'M';'F';'F'}),...
[31;47;35;23],[64;68;62;58],...

 intersect

1-7583

'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Meg' 'Joe' 'Beth' 'Amy'})

B=4×3 table
 Gender Age Height
 ______ ___ ______

 Meg F 31 64
 Joe M 47 68
 Beth F 35 62
 Amy F 23 58

Find the rows common to both A and B, as well as the index vectors ia and ib, such that
C = A(ia,:) and C = B(ib,:).

[C,ia,ib] = intersect(A,B)

C=1×3 table
 Gender Age Height
 ______ ___ ______

 Betty F 31 64

ia = 3

ib = 1

Two rows that have the same values, but different names, are considered equal.
Therefore, we discover that Betty, A(3,:), and Meg, B(1,:) have the same gender, age,
and height.

Intersection of Rows in Two Matrices

Create two matrices with rows in common.

A = [2 2 2; 0 0 1; 1 2 3; 1 1 1];
B = [1 2 3; 2 2 2; 2 2 0];

Find the rows common to both A and B as well as the index vectors ia and ib, such that C
= A(ia,:) and C = B(ib,:).

1 Alphabetical List

1-7584

[C,ia,ib] = intersect(A,B,'rows')

C = 2×3

 1 2 3
 2 2 2

ia = 2×1

 3
 1

ib = 2×1

 1
 2

A and B do not need to have the same number of rows, but they must have the same
number of columns.

Intersection with Specified Output Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order as in A.

A = [7 1 7 7 4]; B = [7 0 4 4 0];
[C,ia,ib] = intersect(A,B,'stable')

C = 1×2

 7 4

ia = 2×1

 1
 5

 intersect

1-7585

ib = 2×1

 1
 3

Alternatively, you can specify 'sorted' order.

[C,ia,ib] = intersect(A,B,'sorted')

C = 1×2

 4 7

ia = 2×1

 5
 1

ib = 2×1

 3
 1

Intersection of Vectors Containing NaNs

Create two vectors containing NaN.

A = [5 NaN NaN];
B = [5 NaN NaN];

Find the values common to both A and B.

C = intersect(A,B)

C = 5

intersect treats NaN values as distinct.

1 Alphabetical List

1-7586

Cell Array of Character Vectors with Trailing White Space

Create a cell array of character vectors, A.

A = {'dog','cat','fish','horse'};

Create a cell array of character vectors, B, where some of the vectors have trailing white
space.

B = {'dog ','cat','fish ','horse'};

Find the character vectors common to both A and B.

[C,ia,ib] = intersect(A,B)

C = 1x2 cell array
 {'cat'} {'horse'}

ia = 2×1

 2
 4

ib = 2×1

 2
 4

intersect treats trailing white space in cell arrays of character vectors as distinct
characters.

Intersection of Arrays of Different Classes and Shapes

Create a column vector character array.

A = ['A';'B';'C'], class(A)

A = 3x1 char array
 'A'
 'B'

 intersect

1-7587

 'C'

ans =
'char'

Create a 2-by-3 matrix containing elements of numeric type double.

B = [65 66 67;68 69 70], class(B)

B = 2×3

 65 66 67
 68 69 70

ans =
'double'

Find the values common to both A and B.

[C,ia,ib] = intersect(A,B)

C = 3x1 char array
 'A'
 'B'
 'C'

ia = 3×1

 1
 2
 3

ib = 3×1

 1
 3
 5

intersect interprets B as a character array and returns a character array, C.

class(C)

1 Alphabetical List

1-7588

ans =
'char'

Intersection of Char and Cell Array of Character Vectors

Create a character vector containing animal names that have three letters.

A = ['dog';'cat';'fox';'pig'];
class(A)

ans =
'char'

Create a cell array of character vectors containing animal names of varying lengths.

B = {'cat','dog','fish','horse'};
class(B)

ans =
'cell'

Find the character vectors common to both A and B.

C = intersect(A,B)

C = 2x1 cell array
 {'cat'}
 {'dog'}

The result, C, is a cell array of character vectors.

class(C)

ans =
'cell'

Preserve Legacy Behavior of intersect

Use the 'legacy' flag to preserve the behavior of intersect from R2012b and prior
releases in your code.

 intersect

1-7589

Find the intersection of A and B with the current behavior.

A = [7 1 7 7 4];
B = [7 0 4 4 0];
[C1,ia1,ib1] = intersect(A,B)

C1 = 1×2

 4 7

ia1 = 2×1

 5
 1

ib1 = 2×1

 3
 1

Find the unique elements of A and preserve the legacy behavior.

[C2,ia2,ib2] = intersect(A,B,'legacy')

C2 = 1×2

 4 7

ia2 = 1×2

 5 4

ib2 = 1×2

 4 1

1 Alphabetical List

1-7590

Input Arguments
A,B — Input arrays
numeric arrays | logical arrays | character arrays | string arrays | categorical arrays |
datetime arrays | duration arrays | cell arrays of character vectors | tables | timetables

Input arrays, specified as numeric arrays, logical arrays, character arrays, string arrays,
categorical arrays, datetime arrays, duration arrays, cell arrays of character vectors,
tables, or timetables. If you specify the 'rows' option, A and B must have the same
number of columns.

A and B must be of the same class with the following exceptions:

• logical, char, and all numeric classes can combine with double arrays.
• Cell arrays of character vectors can combine with character arrays or string arrays.
• Categorical arrays can combine with character arrays, cell arrays of character vectors,

or string arrays.
• Datetime arrays can combine with cell arrays of date character vectors or single date

character vectors.

There are additional requirements for A and B based on data type:

• If A and B are both ordinal categorical arrays, they must have the same sets of
categories, including their order. If neither A nor B are ordinal, they need not have the
same sets of categories, and the comparison is performed using the category names.
In this case, the categories of C are the sorted union of the categories from A and B.

• If A and B are tables or timetables, they must have the same variable names (except
for order). For tables, row names are ignored, so that two rows that have the same
values, but different names, are considered equal. For timetables, row times are taken
into account, so that two rows that have the same values, but different times, are not
considered equal.

• If A and B are datetime arrays, they must be consistent with each other in whether
they specify a time zone.

A and B also can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)
• ne

 intersect

1-7591

The object class methods must be consistent with each other. These objects include
heterogeneous arrays derived from the same root class. For example, A and B can be
arrays of handles to graphics objects.

setOrder — Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of the values (or
rows) in C.

Order Flag Meaning
'sorted' The values (or rows) in C return in sorted order. For

example: C = intersect([7 0 5],[7 1
5],'sorted') returns C = [5 7].

'stable' The values (or rows) in C return in the same order as
they appear in A and B. For example: C =
intersect([7 0 5],[7 1 5],'stable') returns
C = [7 5].

Data Types: char | string

Output Arguments
C — Data common to A and B
vector | matrix | table | timetable

Data common to A and B, returned as a vector, matrix, or table. If the inputs A and B are
tables or timetables, then the order of the variables in C is the same as the order of the
variables in A.

The following describes the shape of C when the inputs are vectors or matrices and when
the 'legacy' flag is not specified:

• If the 'rows' flag is not specified, then C is a column vector unless both A and B are
row vectors, in which case C is a row vector.

• If the 'rows' flag is specified, then C is a matrix containing the rows in common from
A and B.

The class of the inputs A and B determines the class of C:

1 Alphabetical List

1-7592

• If the class of A and B are the same, then C is the same class.
• If you combine a char or nondouble numeric class with double, then C is the same

class as the nondouble input.
• If you combine a logical class with double, then C is double.
• If you combine a cell array of character vectors with char, then C is a cell array of

character vectors.
• If you combine a categorical array with a character vector, cell array of character

vectors, or string, then C is a categorical array.
• If you combine a datetime array with a cell array of date character vectors or single

date character vector, then C is a datetime array.
• If you combine a string array with a character vector or cell array of character

vectors, then C is a string array.

ia — Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not specified. ia
identifies the values (or rows) in A that are common to B. If there is a repeated value (or
row) in A, then ia contains the index to the first occurrence of the value (or row).

ib — Index to B
column vector

Index to B, returned as a column vector when the 'legacy' flag is not specified. ib
identifies the values (or rows) in B that are common to A. If there is a repeated value (or
row) in B, then ib contains the index to the first occurrence of the value (or row).

Tips
• To find the intersection with respect to a subset of variables from a table or timetable,

you can use column subscripting. For example, you can use
intersect(A(:,vars),B(:,vars)), where vars is a positive integer, a vector of
positive integers, a variable name, a cell array of variable names, or a logical vector.
Alternatively, you can use vartype to create a subscript that selects variables of a
specified type.

 intersect

1-7593

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Only one of A or B can be a tall array, tall table, or tall timetable.
• The 'legacy' flag is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option, inputs A and B
must be row vectors.

• The first dimension of a variable-size row vector must have fixed length 1. The
second dimension of a variable-size column vector must have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, then empty outputs are row vectors, 1-by-0.
They are never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the outputs ia
and ib are column vectors. If these outputs are empty, they are 0-by-1. They are never
0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy' option, the
inputs must already be sorted in ascending order. The first output, C, is sorted in
ascending order.

1 Alphabetical List

1-7594

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute value). Suppose the

real input is x. Use sort(complex(x))or sortrows(complex(x)).
• See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'legacy' flag is not supported.
• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
ismember | issorted | setdiff | setxor | sort | union | unique

Topics
“Combine Categorical Arrays”

Introduced before R2006a

 intersect

1-7595

intmax
Largest value of specified integer type

Syntax
v = intmax
v = intmax('classname')

Description
v = intmax is the largest positive value that can be represented in the MATLAB
software with a 32-bit integer. Any value larger than the value returned by intmax
saturates to the intmax value when cast to a 32-bit integer.

v = intmax('classname') is the largest positive value in the integer class
classname. Valid values for the string classname are

'int8' 'int16' 'int32' 'int64'
'uint8' 'uint16' 'uint32' 'uint64'

intmax('int32') is the same as intmax with no arguments.

Examples
Find the maximum value for a 64-bit signed integer:

v = intmax('int64')
v =
 9223372036854775807

Convert this value to a 32-bit signed integer:

x = int32(v)
x =
 2147483647

1 Alphabetical List

1-7596

Compare the result with the default value returned by intmax:

isequal(x, intmax)
ans =
 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
class | int8 | intmin | isa | realmax | realmin | uint8

Introduced before R2006a

 intmax

1-7597

intmin
Smallest value of specified integer type

Syntax
v = intmin
v = intmin('classname')

Description
v = intmin is the smallest value that can be represented in the MATLAB software with
a 32-bit integer. Any value smaller than the value returned by intmin saturates to the
intmin value when cast to a 32-bit integer.

v = intmin('classname') is the smallest positive value in the integer class
classname. Valid values for the string classname are

'int8' 'int16' 'int32' 'int64'
'uint8' 'uint16' 'uint32' 'uint64'

intmin('int32') is the same as intmin with no arguments.

Examples
Find the minimum value for a 64-bit signed integer:

v = intmin('int64')
v =

 -9223372036854775808

Convert this value to a 32-bit signed integer:

x = int32(v)
x =

1 Alphabetical List

1-7598

 -2147483648

Compare the result with the default value returned by intmin:

isequal(x, intmin)
ans =

 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
class | int8 | intmax | isa | realmax | realmin | uint8

Introduced before R2006a

 intmin

1-7599

inv
Matrix inverse

Syntax
Y = inv(X)

Description
Y = inv(X) computes the inverse on page 1-7603 of square matrix X.

• X^(-1) is equivalent to inv(X).
• x = A\b is computed differently than x = inv(A)*b and is recommended for solving

systems of linear equations.

Examples

Inverse Matrix

Compute the inverse of a 3-by-3 matrix.

X = [1 0 2; -1 5 0; 0 3 -9]

X = 3×3

 1 0 2
 -1 5 0
 0 3 -9

Y = inv(X)

Y = 3×3

 0.8824 -0.1176 0.1961

1 Alphabetical List

1-7600

 0.1765 0.1765 0.0392
 0.0588 0.0588 -0.0980

Check the results. Ideally, Y*X produces the identity matrix. Since inv performs the
matrix inversion using floating-point computations, in practice Y*X is close to, but not
exactly equal to, the identity matrix eye(size(X)).

Y*X

ans = 3×3

 1.0000 0.0000 -0.0000
 0 1.0000 -0.0000
 0 -0.0000 1.0000

Solve Linear System

Examine why solving a linear system by inverting the matrix using inv(A)*b is inferior
to solving it directly using the backslash operator, x = A\b.

Create a random matrix A of order 500 that is constructed so that its condition number,
cond(A), is 1e10, and its norm, norm(A), is 1. The exact solution x is a random vector of
length 500, and the right side is b = A*x. Thus the system of linear equations is badly
conditioned, but consistent.

n = 500;
Q = orth(randn(n,n));
d = logspace(0,-10,n);
A = Q*diag(d)*Q';
x = randn(n,1);
b = A*x;

Solve the linear system A*x = b by inverting the coefficient matrix A. Use tic and toc
to get timing information.

tic
y = inv(A)*b;
t = toc

t = 0.0266

 inv

1-7601

Find the absolute and residual error of the calculation.

err_inv = norm(y-x)

err_inv = 4.8285e-06

res_inv = norm(A*y-b)

res_inv = 4.3456e-07

Now, solve the same linear system using the backslash operator \.

tic
z = A\b;
t1 = toc

t1 = 0.0201

err_bs = norm(z-x)

err_bs = 4.2092e-06

res_bs = norm(A*z-b)

res_bs = 3.4458e-15

The backslash calculation is quicker and has less residual error by several orders of
magnitude. The fact that err_inv and err_bs are both on the order of 1e-6 simply
reflects the condition number of the matrix.

The behavior of this example is typical. Using A\b instead of inv(A)*b is two to three
times faster, and produces residuals on the order of machine accuracy relative to the
magnitude of the data.

Input Arguments
X — Input matrix
square matrix

Input matrix, specified as a square matrix. If X is badly scaled or nearly singular, then the
inv calculation loses numerical accuracy. Use rcond or cond to check the condition
number of the matrix.

1 Alphabetical List

1-7602

Data Types: single | double
Complex Number Support: Yes

Definitions
Matrix Inverse
A matrix X is invertible if there exists a matrix Y of the same size such that XY = YX = In,
where In is the n-by-n identity matrix. The matrix Y is called the inverse of X.

A matrix that has no inverse is singular. A square matrix is singular only when its
determinant is exactly zero.

Tips
• It is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of

inv arises when solving the system of linear equations Ax = b. One way to solve the
equation is with x = inv(A)*b. A better way, from the standpoint of both execution
time and numerical accuracy, is to use the matrix backslash operator x = A\b. This
produces the solution using Gaussian elimination, without explicitly forming the
inverse. See mldivide for further information.

Algorithms
inv performs an LU decomposition of the input matrix (or an LDL decomposition if the
input matrix is Hermitian). It then uses the results to form a linear system whose solution
is the matrix inverse inv(X). For sparse inputs, inv(X) creates a sparse identity matrix
and uses backslash, X\speye(size(X)).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 inv

1-7603

Usage notes and limitations:

• Singular matrix inputs can produce nonfinite values that differ from MATLAB results.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

• X must be nonsparse.
• The MATLAB inv function prints a warning if X is badly scaled or nearly singular. The

gpuArray inv is unable to check for this condition. Take action to avoid this
condition.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• X must be nonsparse.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
det | lu | mldivide | rref

Introduced before R2006a

1 Alphabetical List

1-7604

invhilb
Inverse of Hilbert matrix

Syntax
H = invhilb(n)
H = invhilb(n,classname)

Description
H = invhilb(n) generates the exact inverse of the exact Hilbert matrix for n less than
about 15. For larger n, the invhilb function generates an approximation to the inverse
Hilbert matrix.

H = invhilb(n,classname) returns a matrix of class classname, which can be either
'single' or 'double'.

Examples

Inverse Hilbert Matrix

Compute the fourth-order inverse Hilbert matrix.

invhilb(4)

ans = 4×4

 16 -120 240 -140
 -120 1200 -2700 1680
 240 -2700 6480 -4200
 -140 1680 -4200 2800

 invhilb

1-7605

Input Arguments
n — Matrix order
scalar, nonnegative integer

Matrix order, specified as a scalar, nonnegative integer.
Example: invhilb(10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

classname — Matrix class
'double' (default) | 'single'

Matrix class, specified as either 'double' or 'single'.
Example: invhilb(10,'single')
Data Types: char

Limitations
The exact inverse of the exact Hilbert matrix is a matrix whose elements are large
integers. As long as the order of the matrix n is less than 15, these integers can be
represented as floating-point numbers without roundoff error.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two or three sets of
roundoff errors:

• Errors caused by representing hilb(n)
• Errors in the matrix inversion process
• Errors, if any, in representing invhilb(n)

The first of these roundoff errors involves representing fractions like 1/3 and 1/5 in
floating-point representation and is the most significant.

References
[1] Forsythe, G. E. and C. B. Moler. Computer Solution of Linear Algebraic Systems.

Englewood Cliffs, NJ: Prentice-Hall, 1967.

1 Alphabetical List

1-7606

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hilb

Introduced before R2006a

 invhilb

1-7607

invoke
Invoke method on COM object or interface, or display methods

Syntax
invoke(c)
S = invoke(c,methodName)
S = invoke(c,methodName,arg1,...,argN)

Description
invoke(c) displays methods supported by object or interface c, along with the
prototypes for these methods. If the output is empty, then either there are no properties
or methods in the object, or MATLAB cannot read the object type library. For information
about the object type library, see your COM vendor documentation.

S = invoke(c,methodName) invokes the method specified by methodName and returns
an output value, if any, in a structure array. The method determines the data type of the
return value. For a description of how MATLAB converts COM types, see “Handle COM
Data in MATLAB”.

If the method returns a COM interface, then the invoke function returns a new MATLAB
COM object that represents the interface.

S = invoke(c,methodName,arg1,...,argN) invokes methodName with input
arguments arg1,...,argN.

Examples

Display Methods of MATLAB mwsamp Control

Create the mwsamp control in a figure window.

1 Alphabetical List

1-7608

f = figure('position',[100 200 200 200]);
c = actxcontrol('mwsamp.mwsampctrl.1',[0 0 200 200],f);

Display its methods.

invoke(c)

 Beep = void Beep(handle)
 Redraw = void Redraw(handle)
 GetVariantArray = Variant GetVariantArray(handle)
 GetIDispatch = handle GetIDispatch(handle)
 GetBSTR = ustring GetBSTR(handle)
 GetI4Array = Variant GetI4Array(handle)
 GetBSTRArray = Variant GetBSTRArray(handle)
 GetI4 = int32 GetI4(handle)
 GetR8 = double GetR8(handle)
 GetR8Array = Variant GetR8Array(handle)
 FireClickEvent = void FireClickEvent(handle)
 GetVariantVector = Variant GetVariantVector(handle)
 GetR8Vector = Variant GetR8Vector(handle)
 GetI4Vector = Variant GetI4Vector(handle)
 SetBSTRArray = Variant SetBSTRArray(handle, Variant)
 SetI4 = int32 SetI4(handle, int32)
 SetI4Vector = Variant SetI4Vector(handle, Variant)
 SetI4Array = Variant SetI4Array(handle, Variant)
 SetR8 = double SetR8(handle, double)
 SetR8Vector = Variant SetR8Vector(handle, Variant)
 SetR8Array = Variant SetR8Array(handle, Variant)
 SetBSTR = ustring SetBSTR(handle, ustring)
 AboutBox = void AboutBox(handle)

Call Redraw Method

Change the Radius property and redraw the control.

c.Radius = 100;
invoke(c,'Redraw')

Input Arguments
c — COM object
function handle

 invoke

1-7609

COM object or interface, specified as a function handle.

methodName — Control method name
string | character vector

Control method name, specified as a string or a character vector.
Example: invoke(c,'Redraw')

arg1,...,argN — Method input arguments
any type

Control method input arguments, 1 through N (if any), required by methodName,
specified by any type. The method argument list specifies the argument type.

See Also
ismethod | methods

Topics
“Handle COM Data in MATLAB”

Introduced before R2006a

1 Alphabetical List

1-7610

ipermute
Inverse permute array dimensions

Syntax
A = ipermute(B,dimorder)

Description
A = ipermute(B,dimorder) rearranges the dimensions of an array B in the order
specified by the vector dimorder such that B = permute(A,dimorder).

Examples

3-D Array

Create a 4-by-3-by-2 array B, and compute its inverse permutation according to the
dimension order [3 1 2].

rng default
B = rand(4,3,2)

B =
B(:,:,1) =

 0.8147 0.6324 0.9575
 0.9058 0.0975 0.9649
 0.1270 0.2785 0.1576
 0.9134 0.5469 0.9706

B(:,:,2) =

 0.9572 0.4218 0.6557
 0.4854 0.9157 0.0357

 ipermute

1-7611

 0.8003 0.7922 0.8491
 0.1419 0.9595 0.9340

A = ipermute(B,[3 1 2])

A =
A(:,:,1) =

 0.8147 0.9572
 0.6324 0.4218
 0.9575 0.6557

A(:,:,2) =

 0.9058 0.4854
 0.0975 0.9157
 0.9649 0.0357

A(:,:,3) =

 0.1270 0.8003
 0.2785 0.7922
 0.1576 0.8491

A(:,:,4) =

 0.9134 0.1419
 0.5469 0.9595
 0.9706 0.9340

The inverse permutation A is the array such that, when you permute it using the same
dimension order, the result is equal to the original array B.

C = permute(A,[3 1 2])

C =
C(:,:,1) =

 0.8147 0.6324 0.9575
 0.9058 0.0975 0.9649

1 Alphabetical List

1-7612

 0.1270 0.2785 0.1576
 0.9134 0.5469 0.9706

C(:,:,2) =

 0.9572 0.4218 0.6557
 0.4854 0.9157 0.0357
 0.8003 0.7922 0.8491
 0.1419 0.9595 0.9340

Input Arguments
B — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

dimorder — Dimension order
row vector

Dimension order, specified as a row vector with unique, positive integer elements
representing the dimensions of the input array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

Permuting the tall dimension (dimension one) is not supported.

For more information, see “Tall Arrays”.

 ipermute

1-7613

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays for the first argument.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
permute | reshape | shiftdim | transpose

Introduced before R2006a

1 Alphabetical List

1-7614

is*
Detect state

Description
These functions detect the state of MATLAB entities:

isa Detect object of given MATLAB class or Java class
isappdata Determine if object has specific application-defined data
isbanded Determine if matrix is within specific bandwidth
isbetween Array elements occurring within date and time interval
iscalendarduration Determine if input is duration array
iscategorical Determine whether input is categorical array
iscategory Test for categorical array categories
iscell Determine if input is cell array
iscellstr Determine if input is cell array of character vectors
ischar Determine if input is character array
iscolumn Determine whether input is column vector
iscom Determine if input is Component Object Model (COM) object
isdatetime Determine if input is datetime array
isdiag Determine if matrix is diagonal
isdst Datetime values occurring during daylight saving time
isduration Determine if input is duration array
isempty Determine if input is empty array
isenum Determine if variable is enumeration
isequal Determine if arrays are numerically equal
isequaln Determine if arrays are numerically equal, treating NaNs as

equal

 is*

1-7615

isevent Determine if input is Component Object Model (COM) object
event

isfield Determine if input is MATLAB structure array field
isfile Determine if input is a file
isfinite Detect finite elements of array
isfloat Determine if input is floating-point array
isfolder Determine if input is folder
ishandle Detect valid graphics object handles
ishermitian Determine if matrix is Hermitian or skew-Hermitian
ishold Determine if graphics hold state is on
isinf Detect infinite elements of array
isinteger Determine if input is integer array
isinterface Determine if input is Component Object Model (COM)

interface
isjava Determine if input is Java object
iskeyword Determine if input is MATLAB keyword
isletter Detect elements that are alphabetic letters
islogical Determine if input is logical array
ismac Determine if running MATLAB for Macintosh OS X platform
ismatrix Determine whether input is matrix
ismember Detect members of specific set
ismethod Determine if input is object method
ismissing Find table elements with missing values
isnan Detect elements of array that are not a number (NaN)
isnat Determine NaT (Not-a-Time) elements
isnumeric Determine if input is numeric array
isobject Determine if input is MATLAB object
isordinal Determine whether input is ordinal categorical array
ispc Determine if running MATLAB for PC (Windows) platform

1 Alphabetical List

1-7616

isprime Detect prime elements of array
isprop Determine if input is object property
isprotected Determine whether categories of categorical array are

protected
isreal Determine if all array elements are real numbers
isregular Determine whether times in timetable are regular
isrow Determine whether input is row vector
isscalar Determine if input is scalar
issorted Determine if set elements are in sorted order
issortedrows Determine if matrix or table rows are sorted
isspace Detect space characters in array
issparse Determine if input is sparse array
isstring Determine if input is string array
isStringScalar Determine whether input is string array with one element
isstrprop Determine if string is of specified category
isstruct Determine if input is MATLAB structure array
isstudent Determine if Student Version of MATLAB
issymmetric Determine if matrix is symmetric or skew-symmetric
istable Determine whether input is table
istall Determine if input is tall array
istimetable Determine whether input is timetable
istril Determine if matrix is lower triangular
istriu Determine if matrix is upper triangular
isundefined Find undefined elements in categorical array
isunix Determine if running MATLAB for UNIXa platform.
isvarname Determine if input is valid variable name
isvector Determine if input is vector
isweekend Datetime values occurring during weekend
a. UNIX is a registered trademark of The Open Group in the United States and other countries.

 is*

1-7617

See Also
exist | isa

1 Alphabetical List

1-7618

isa
Determine if input has specified data type

Syntax
tf = isa(A,dataType)
tf = isa(A,typeCategory)

Description
tf = isa(A,dataType) returns 1 (true) if A has the data type specified by dataType.
Otherwise, it returns 0 (false). The input argument A can have any data type.

If A is an object, then isa returns 1 if dataType is either the class of A or a superclass of
A.

tf = isa(A,typeCategory) returns 1 (true) if the data type of A belongs to the
category specified by typeCategory. Otherwise, it returns 0 (false).

If A is an object, then isa returns 1 if the class of A, or any superclass of A, belongs to the
specified category.

Examples

Determine If Variables Have Specified Data Types

Create a numeric variable and determine if its data type is double.

A = 3.1416;
tf = isa(A,'double')

tf = logical
 1

 isa

1-7619

Create an array of 32-bit integers and determine if its data type is int32.

A = int32([0 2 4 6 8])

A = 1x5 int32 row vector

 0 2 4 6 8

tf = isa(A,'int32')

tf = logical
 1

Determine if the data type of A is char.

tf = isa(A,'char')

tf = logical
 0

Determine If Variable Type Belongs To Specified Categories

Create an array whose data type is uint8. Determine if the array has a data type that
belongs to the integer category.

A = uint8([0 2 4 6 8])

A = 1x5 uint8 row vector

 0 2 4 6 8

tf = isa(A,'integer')

tf = logical
 1

Determine if the data type of A belongs to the float category.

tf = isa(A,'float')

1 Alphabetical List

1-7620

tf = logical
 0

Input Arguments
A — Input array
array

Input array.

dataType — Data type
character vector | string scalar

Data type, specified as a character vector or string scalar. dataType can be the name of:

• Any fundamental data type or MATLAB class
• A Java or .NET class

The table shows the names of many commonly used MATLAB data types.

'single' Single-precision number
'double' Double-precision number
'int8' Signed 8-bit integer
'int16' Signed 16-bit integer
'int32' Signed 32-bit integer
'int64' Signed 64-bit integer
'uint8' Unsigned 8-bit integer
'uint16' Unsigned 16-bit integer
'uint32' Unsigned 32-bit integer
'uint64' Unsigned 64-bit integer
'logical' Logical 1 (true) or 0 (false)
'char' Character
'string' String array

 isa

1-7621

'struct' Structure array
'cell' Cell array
'table' Table
'function_handle' Function handle

typeCategory — Data type category
'numeric' | 'float' | 'integer'

Data type category, specified as 'numeric', 'float', or 'integer'. These values
represent categories of numeric types, as shown in the table.

'numeric' Integer or floating-point array, having one of these data types:

• double
• single
• int8
• int16
• int32
• int64
• uint8
• uint16
• uint32
• uint64

'float' Single- or double-precision floating-point array, having either of
these data types:

• double
• single

1 Alphabetical List

1-7622

'integer' Signed or unsigned integer array, having one of these data
types:

• int8
• int16
• int32
• int64
• uint8
• uint16
• uint32
• uint64

Tips
• To test whether the input array is sparse, use the issparse function.
• To test whether the input array has any imaginary or complex elements, use

~isreal(A).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
class | exist | is* | isenum | isfloat | isinteger | isnumeric

Topics
“Fundamental MATLAB Classes”
“Valid Combinations of Unlike Classes”

 isa

1-7623

Introduced before R2006a

1 Alphabetical List

1-7624

isappdata
True if application-defined data exists

Syntax
tf = isappdata(h,name)

Description
tf = isappdata(h,name) returns logical(1) if application-defined data exists and
these conditions are met:

• The application data has the specified name value.
• The application data is associated with the UI component, h.

Otherwise, isappdata returns logical(0)

See Also
getappdata | rmappdata | setappdata

Introduced before R2006a

 isappdata

1-7625

isaUnderlying
Determine if tall array data is of specified class

Syntax
tf = isaUnderlying(X,cl)

Description
tf = isaUnderlying(X,cl) returns a tall array containing logical 1 (true) if the
underlying data in tall array X is of class cl. Otherwise, the tall array contains logical 0
(false).

Examples

Test Underlying Class of Tall Arrays

All tall tables and arrays belong to the tall class. However, the underlying data type of a
tall array can vary.

Create a datastore for the airlinesmall.csv data set. Select a subset of the variables
to work with, and treat 'NA' values as missing data so that datastore replaces them
with NaN values. Convert the datastore into a tall table.

varnames = {'Year', 'UniqueCarrier'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames',varnames);
tt = tall(ds)

tt =

 Mx2 tall table

 Year UniqueCarrier

1 Alphabetical List

1-7626

 ____ _____________

 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 1987 'PS'
 : :
 : :

Test whether the underlying data type of the first table variable Year is single.

tf = isaUnderlying(tt.Year,'single')

tf =

 tall logical

 0

Determine the actual underlying data type of Year.

udt = classUnderlying(tt.Year)

udt =

 1x6 tall char array

 'double'

Input Arguments
X — Input array
tall array

Input array, specified as a tall array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | table | cell | categorical | datetime | duration |
calendarDuration

 isaUnderlying

1-7627

cl — Underlying class
character vector

Underlying class, specified as a character vector specifying any valid MATLAB class
name.
Example: tf = isaUnderlying(X,'double')

Tips
• Use classUnderlying to determine the underlying data type of a tall array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-7628

See Also
classUnderlying | istall | tall

Topics
“Tall Arrays”

Introduced in R2016b

 isaUnderlying

1-7629

isbanded
Determine if matrix is within specific bandwidth

Syntax
tf = isbanded(A,lower,upper)

Description
tf = isbanded(A,lower,upper) returns logical 1 (true) if matrix A is within the
specified lower bandwidth, lower, and upper bandwidth, upper; otherwise, it returns
logical 0 (false).

Examples

Test Square Matrix

Create a 5-by-5 square matrix with nonzero diagonals above and below the main diagonal.

A = [2 3 0 0 0 ; 1 -2 -3 0 0; 0 -1 2 3 0 ; 0 0 1 -2 -3; 0 0 0 -1 2]

A = 5×5

 2 3 0 0 0
 1 -2 -3 0 0
 0 -1 2 3 0
 0 0 1 -2 -3
 0 0 0 -1 2

Specify both bandwidths, lower and upper, as 1 to test if A is tridiagonal.

isbanded(A,1,1)

1 Alphabetical List

1-7630

ans = logical
 1

The result is logical 1 (true).

Test if A has nonzero elements below the main diagonal by specifying lower as 0.

isbanded(A,0,1)

ans = logical
 0

The result is logical 0 (false) because A has nonzero elements below the main diagonal.

Test Nonsquare Matrix

Create a 3-by-5 matrix.

A = [1 0 0 0 0; 2 1 0 0 0; 3 2 1 0 0]

A = 3×5

 1 0 0 0 0
 2 1 0 0 0
 3 2 1 0 0

Test if A has nonzero elements above the main diagonal.

isbanded(A,2,0)

ans = logical
 1

The result is logical 1 (true) because the elements above the main diagonal are all zero.

 isbanded

1-7631

Test Sparse Block Matrix

Create a 100-by-100 sparse block matrix.

B = kron(speye(25),ones(4));

Test if B has a lower and upper bandwidth of 1.

isbanded(B,1,1)

ans = logical
 0

The result is logical 0 (false) because the nonzero blocks centered on the main diagonal
are larger than 2-by-2.

Test if B has a lower and upper bandwidth of 3.

isbanded(B,3,3)

ans = logical
 1

The result is logical 1 (true). The matrix, B, has an upper and lower bandwidth of 3 since
the nonzero diagonal blocks are 4-by-4.

Input Arguments
A — Input array
numeric array

Input array, specified as a numeric array. isbanded returns logical 0 (false) if A has
more than two dimensions.
Data Types: single | double
Complex Number Support: Yes

lower — Lower bandwidth
nonnegative integer scalar

1 Alphabetical List

1-7632

Lower bandwidth, specified as a nonnegative integer scalar. The lower bandwidth is the
number of nonzero diagonals below the main diagonal. isbanded returns logical 0
(false) if there are nonzero elements below the boundary diagonal, diag(A,-lower).

upper — Upper bandwidth
nonnegative integer scalar

Upper bandwidth, specified as a nonnegative integer scalar. The upper bandwidth is the
number of nonzero diagonals above the main diagonal. isbanded returns logical 0
(false) if there are nonzero elements above the boundary diagonal, diag(A,upper).

Tips
• Use the bandwidth function to find the upper and lower bandwidths of a given

matrix.
• Use isbanded to test for several different matrix structures by specifying appropriate

upper and lower bandwidths. The table below lists some common tests.

Lower Bandwidth Upper Bandwidth Function Call Tests for
0 0 isbanded(A,0,0) Diagonal matrix
1 1 isbanded(A,1,1) Tridiagonal matrix
0 size(A,2) isbanded(A,0,si

ze(A,2))
Upper triangular

matrix
size(A,1) 0 isbanded(A,siz

e(A,1),0)
Lower triangular

matrix
1 size(A,2) isbanded(A,1,si

ze(A,2))
Upper Hessenberg

matrix
size(A,1) 1 isbanded(A,siz

e(A,1),1)
Lower Hessenberg

matrix

 isbanded

1-7633

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
bandwidth | diag | isdiag | istril | istriu

Introduced in R2014a

1 Alphabetical List

1-7634

isbetween
Determine elements within date and time interval

Syntax
tf = isbetween(t,tlower,tupper)

Description
tf = isbetween(t,tlower,tupper) returns an array the same size as t containing
logical 1 (true) where the corresponding element of t is a datetime that lies within the
closed interval specified by the corresponding elements of tlower and tupper. The
output tf indicates which elements of t satisfy:

tlower <= t <= tupper

Examples

Determine if Dates Occur Within Interval

Define a lower bound and an upper bound for dates.

tlower = datetime(2014,05,16)

tlower = datetime
 16-May-2014

tupper = '23-May-2014'

tupper =
'23-May-2014'

tlower and tupper can be datetime arrays or character vectors. Here, tlower is a
datetime array and tupper is a single character vector.

 isbetween

1-7635

Create an array of datetime values and determine if each datetime lies within the interval
bounded by tlower and tupper.

t = tlower + caldays(2:2:10)

t = 1x5 datetime array
 18-May-2014 20-May-2014 22-May-2014 24-May-2014 26-May-2014

tf = isbetween(t,tlower,tupper)

tf = 1x5 logical array

 1 1 1 0 0

Input Arguments
t — Input date and time
datetime array | character vector | cell array of character vectors | string array

Input date and time, specified as a datetime array, a character vector, a cell array of
character vectors, or a string array. Character vectors and strings must be formatted to
represent dates and times.

tlower — Lower bound of date and time interval
datetime array | character vector | cell array of character vectors | string array

Lower bound of date and time interval, specified as a datetime array, a character vector,
a cell array of character vectors, or a string array. Character vectors and strings must be
formatted to represent dates and times.

tupper — Upper bound of date and time interval
datetime array | character vector | cell array of character vectors | string array

Upper bound of date and time interval, specified as a datetime array, a character vector,
a cell array of character vectors, or a string array. Character vectors and strings must be
formatted to represent dates and times.

1 Alphabetical List

1-7636

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

Tall character vector inputs are not supported.

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ge | gt | ismember | le | lt

Introduced in R2014b

 isbetween

1-7637

iscalendarduration
Determine if input is calendar duration array

Syntax
tf = iscalendarduration(t)

Description
tf = iscalendarduration(t) returns logical 1 (true) if t is a calendarDuration
array. Otherwise, it returns logical 0 (false).

Examples

Determine if Array Contains Calendar Duration Values

Determine if the output of an arithmetic calculation is a calendarDuration array.

Add two calendarDuration arrays.

d1 = calyears(1:4);
d2 = caldays(1:4);
d = d1 + d2

d = 1x4 calendarDuration array
 1y 1d 2y 2d 3y 3d 4y 4d

Determine if the output is a calendarDuration array.

tf = iscalendarduration(d)

tf = logical
 1

1 Alphabetical List

1-7638

Input Arguments
t — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. t can be any
data type.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
calendarDuration | isdatetime | isduration

Introduced in R2014b

 iscalendarduration

1-7639

iscategorical
Determine whether input is categorical array

Syntax
tf = iscategorical(A)

Description
tf = iscategorical(A) returns logical 1 (true) if A is a categorical array. Otherwise,
iscategorical returns logical 0 (false).

Examples

Determine Whether Workspace Variable Is Categorical Array

Create a workspace variable, A.

A = categorical({'red' 'green' 'violet'; 'orange' 'red' 'yellow'})

A = 2x3 categorical array
 red green violet
 orange red yellow

Verify that the workspace variable, A, is a categorical array.

tf = iscategorical(A)

tf = logical
 1

A is a 2-by-3 categorical array.

1 Alphabetical List

1-7640

Input Arguments
A — Input variable
workspace variable

Input variable, specified as a workspace variable. A can be any data type.

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
categorical | iscell | islogical | isnumeric | isobject | isstruct | istable

Introduced in R2013b

 iscategorical

1-7641

iscategory
Test for categorical array categories

Syntax
tf = iscategory(A,catnames)

Description
tf = iscategory(A,catnames) returns an array containing logical 1 (true) where
the data in catnames is a category of A. Otherwise, iscategory returns logical 0
(false).

tf is the same size as catnames.

Examples

Test for Categories

Create an ordinal categorical array, A.

A = categorical({'shirt' 'pants'; 'pants' 'hat'; 'shirt' 'pants'})

A = 3x2 categorical array
 shirt pants
 pants hat
 shirt pants

A is a 3-by-2 categorical array.

Test if the articles of clothing, shirt, pants, socks, and shoes, are categories of A.

catnames = {'shirt' 'pants' 'socks' 'shoes'};
tf = iscategory(A,catnames)

1 Alphabetical List

1-7642

tf = 1x4 logical array

 1 1 0 0

shirt and pants are categories of A, but socks and shoes are not.

iscategory does not tell us anything about the category, hat, which we did not include
in catnames.

Test for Category with No Corresponding Data

Create a categorical array, A.

A = categorical({'plane' 'car' 'train' 'car' 'plane'},...
 {'boat' 'car' 'plane' 'train'})

A = 1x5 categorical array
 plane car train car plane

A is a 1-by-5 categorical array.

Test to see if boat is a category in A.

tf = iscategory(A,'boat')

tf = logical
 1

iscategory returns true, even though A does not contain any values from the category
boat.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

 iscategory

1-7643

catnames — Category names
character vector | cell array of character vectors | string array | categorical array

Category names, specified as a character vector, cell array of character vectors, string
array, or categorical array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
addcats | categorical | categories | ismember | mergecats | removecats |
renamecats | reordercats | setcats | unique

Introduced in R2013b

1 Alphabetical List

1-7644

iscell
Determine if input is cell array

Syntax
tf = iscell(A)

Description
tf = iscell(A) returns logical 1 (true) if A is a cell array and logical 0 (false)
otherwise.

Examples
A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';
A{2,1} = 3+7i;
A{2,2} = -pi:pi/10:pi;

iscell(A)

ans =

 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 iscell

1-7645

See Also
cell | is* | isa | iscellstr | islogical | isnumeric | isobject | isstruct |
istable

Introduced before R2006a

1 Alphabetical List

1-7646

iscellstr
Determine if input is cell array of character vectors

Syntax
tf = iscellstr(A)

Description
tf = iscellstr(A) returns logical 1 (true) if A is a cell array of character vectors (or
an empty cell array), and logical 0 (false) otherwise. A cell array of character vectors is
a cell array where every cell contains a character vector.

Examples

Determine if Array is Cell Array of Character Vectors

Create different arrays, and then determine if they are cell arrays of character vectors.

Test a cell array of character vectors.

C1 = {'Smith','Chung','Morales'; ...
 'Sanchez','Peterson','Adams'}

C1 = 2x3 cell array
 {'Smith' } {'Chung' } {'Morales'}
 {'Sanchez'} {'Peterson'} {'Adams' }

tf = iscellstr(C1)

tf = logical
 1

Every cell of C1 contains a character vector, so iscellstr returns 1.

 iscellstr

1-7647

Convert C1 to a string array and test it.

str = string(C1)

str = 2x3 string array
 "Smith" "Chung" "Morales"
 "Sanchez" "Peterson" "Adams"

tf = iscellstr(str)

tf = logical
 0

str is a string array, not a cell array, so iscellstr returns 0.

Test a cell array that contains elements of different data types.

X = rand(1,3);
C2 = {'red','blue',X}

C2 = 1x3 cell array
 {'red'} {'blue'} {1x3 double}

tf = iscellstr(C2)

tf = logical
 0

C2 has a cell that does not contain a character vector, so iscellstr returns 0.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. A can be any
data type.

1 Alphabetical List

1-7648

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cellstr | char | is* | isa | iscategorical | iscell | ischar | isstring |
isstrprop | isstruct | istable | string

Topics
“Cell Arrays of Character Vectors”
“Create String Arrays”

Introduced before R2006a

 iscellstr

1-7649

ischar
Determine if input is character array

Syntax
tf = ischar(A)

Description
tf = ischar(A) returns logical 1 (true) if A is a character array and logical 0 (false)
otherwise.

Examples

Determine if Array is Character Array

Create different arrays, and then determine if they are character arrays.

Test a character vector.

chr = 'Mary Jones'

chr =
'Mary Jones'

tf = ischar(chr)

tf = logical
 1

Test a numeric array.

X = rand(1,3)

1 Alphabetical List

1-7650

X = 1×3

 0.8147 0.9058 0.1270

tf = ischar(X)

tf = logical
 0

Test a string array. Starting in R2017a, you can create strings using double quotes.

str = ["Smith","Chung","Morales"; ...
 "Sanchez","Peterson","Adams"]

str = 2x3 string array
 "Smith" "Chung" "Morales"
 "Sanchez" "Peterson" "Adams"

tf = ischar(str)

tf = logical
 0

str is a string array, not a character array, so ischar returns 0.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. A can be any
data type.

 ischar

1-7651

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cellstr | char | is* | isa | iscellstr | isletter | isnumeric | isspace |
isstring | isstrprop | string

Topics
“Create Character Arrays”
“Cell Arrays of Character Vectors”
“Create String Arrays”

Introduced before R2006a

1 Alphabetical List

1-7652

iscolumn
Determine whether input is column vector

Syntax
iscolumn(V)

Description
iscolumn(V) returns logical 1 (true) if size(V) returns [n 1] with a nonnegative
integer value n, and logical 0 (false) otherwise.

Examples

Determine Column Vector

Determine if a vector is a column or not.

V = rand(1,5);
iscolumn(V)

ans = logical
 0

Vt = V';
iscolumn(Vt)

ans = logical
 1

 iscolumn

1-7653

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ismatrix | isrow | isscalar | isvector

Introduced in R2010b

1 Alphabetical List

1-7654

iscom
Determine whether input is COM or ActiveX object

Syntax
tf = iscom(c)

Description
tf = iscom(c) returns logical 1 (true) if c is a COM or Microsoft ActiveX object.
Otherwise, it returns logical 0 (false).

Examples

Test for COM Objects

Test an instance of a Microsoft Excel application. MATLAB displays true, indicating that
the Excel application is a COM object.

app = actxserver('Excel.Application');
iscom(app)

Create a workbooks object and test. MATLAB displays false, indicating that a workbook
is not a COM object.

w = get(app,'workbooks');
iscom(w)

Input Arguments
c — COM object
function handle

 iscom

1-7655

COM object, specified as a function handle.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also

Topics
“MATLAB COM Integration”

Introduced before R2006a

1 Alphabetical List

1-7656

isdatetime
Determine if input is datetime array

Syntax
tf = isdatetime(t)

Description
tf = isdatetime(t) returns logical 1 (true) if t is a datetime array. Otherwise, it
returns logical 0 (false).

Examples

Determine if Array Contains Datetime Values

Define an array.

A = [datetime('now');datetime('tomorrow');datetime(2016,1,15)]

A = 3x1 datetime array
 02-Mar-2019 20:26:10
 03-Mar-2019 00:00:00
 15-Jan-2016 00:00:00

Determine if the array is a datetime array.

tf = isdatetime(A)

tf = logical
 1

 isdatetime

1-7657

Input Arguments
t — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. t can be any
data type.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datetime | iscalendarduration | isduration

Introduced in R2014b

1 Alphabetical List

1-7658

isdiag
Determine if matrix is diagonal

Syntax
tf = isdiag(A)

Description
tf = isdiag(A) returns logical 1 (true) if A is a diagonal matrix on page 1-7661;
otherwise, it returns logical 0 (false).

Examples

Test Diagonal Matrix

Create a 4-by-4 identity matrix.

I = eye(4)

I = 4×4

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

Test to see if the matrix is diagonal.

isdiag(I)

ans = logical
 1

 isdiag

1-7659

The result is logical 1 (true) because all of the nonzero elements in I are on the main
diagonal.

Test Banded Matrix

Create a matrix with nonzero elements on the main and first diagonals.

A = 3*eye(4) + diag([2 2 2],1)

A = 4×4

 3 2 0 0
 0 3 2 0
 0 0 3 2
 0 0 0 3

Test to see if the matrix is diagonal.

isdiag(A)

ans = logical
 0

The matrix is not diagonal since there are nonzero elements above the main diagonal.

Create a new matrix, B, from the main diagonal elements of A.

B = diag(diag(A));

Test to see if B is a diagonal matrix.

isdiag(B)

ans = logical
 1

The result is logical 1 (true) because there are no nonzero elements above or below the
main diagonal of B.

1 Alphabetical List

1-7660

Input Arguments
A — Input array
numeric array

Input array, specified as a numeric array. isdiag returns logical 0 (false) if A has more
than two dimensions.
Data Types: single | double
Complex Number Support: Yes

Definitions

Diagonal Matrix
A matrix is diagonal if all elements above and below the main diagonal are zero. Any
number of the elements on the main diagonal can also be zero.

For example, the 4-by-4 identity matrix,

I4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

is a diagonal matrix. Diagonal matrices are typically, but not always, square.

Tips
• Use the diag function to produce diagonal matrices for which isdiag returns logical

1 (true).
• The functions isdiag, istriu, and istril are special cases of the function

isbanded, which can perform all of the same tests with suitably defined upper and
lower bandwidths. For example, isdiag(A) == isbanded(A,0,0).

 isdiag

1-7661

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
bandwidth | diag | isbanded | istril | istriu | tril | triu

Introduced in R2014a

1 Alphabetical List

1-7662

isdir
(Not recommended) Determine if input is folder on search path

Note isdir is not recommended. Use isfolder instead. isdir searches for folders on
the search path, which can lead to unexpected results. isfolder searches for folders
only on the specified path or in the current folder.

Syntax
result = isdir(folderName)

Description
result = isdir(folderName) returns 1 if folderName is a folder on the search path.
Otherwise, isdir returns 0.

Examples

Is Input a Folder

Check if the input myfile1.txt is a folder. A result of 0 indicates that myfile1.txt is
not a folder.

result = isdir('myfile1.txt')

result = logical
 0

Create the folder myfolder, and then check if myfolder is a folder. A result of 1
indicates that myfolder is a folder.

mkdir myfolder;
result = isdir('myfolder')

 isdir

1-7663

result = logical
 1

List Only Folders in Current Folder

Get the Current Folder listing and filter out only the folders.

Create two folders, myfolder1 and myfolder2.

mkdir myfolder1
mkdir myfolder2

Get the current folder listing.

listing = dir;

Filter out only the folders.

onlyFolders = listing([listing.isdir]);
onlyFolders.name

ans =
'.'

ans =
'..'

ans =
'myfolder1'

ans =
'myfolder2'

Input Arguments
folderName — Folder name
character vector

Folder name, specified as a character vector. You can specify folderName as an absolute
or relative path.

1 Alphabetical List

1-7664

See Also
dir | is* | isfile | isfolder

Introduced before R2006a

 isdir

1-7665

isdst
Determine daylight saving time elements

Syntax
tf = isdst(t)

Description
tf = isdst(t) returns an array the same size as t containing logical 1 (true) where
the corresponding element of t is a datetime that occurs during Daylight Saving Time,
and logical 0 (false) otherwise. isdst returns false for all elements when the
TimeZone property of t is empty ('').

Examples

Determine If Datetime Occurs During Daylight Saving Time

t = datetime(2014,3,7:11,'TimeZone','America/New_York')

t = 1x5 datetime array
 07-Mar-2014 08-Mar-2014 09-Mar-2014 10-Mar-2014 11-Mar-2014

tf = isdst(t)

tf = 1x5 logical array

 0 0 0 1 1

March 10 and March 11, 2014 in the America/New_York time zone occur during
daylight saving time.

1 Alphabetical List

1-7666

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datetime | isweekend | tzoffset

Introduced in R2014b

 isdst

1-7667

isduration
Determine if input is duration array

Syntax
tf = isduration(t)

Description
tf = isduration(t) returns logical 1 (true) if t is a duration array. Otherwise, it
returns logical 0 (false).

Examples

Determine if Array Contains Duration Values

Determine if the output of an arithmetic calculation is a duration array.

Subtract a datetime array from another.

t1 = datetime(2014,03,16:17);
t2 = datetime(2014,03,20);
dt = t2 - t1

dt = 1x2 duration array
 96:00:00 72:00:00

Determine if the output is a duration array.

tf = isduration(dt)

tf = logical
 1

1 Alphabetical List

1-7668

Input Arguments
t — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. t can be any
data type.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
duration | iscalendarduration | isdatetime

Introduced in R2014b

 isduration

1-7669

isEdge
Class: TriRep

(Not recommended) Test if vertices are joined by edge

Note isEdge(TriRep) is not recommended. Use isConnected(triangulation)
instead.

TriRep is not recommended. Use triangulation instead.

Syntax
TF = isEdge(TR, V1, V2)
TF = isEdge(TR, EDGE)

Description
TF = isEdge(TR, V1, V2) returns an array of 1/0 (true/false) flags, where each entry
TF(i) is true if V1(i), V2(i) is an edge in the triangulation. V1, V2 are column vectors
representing the indices of the vertices in the mesh, that is, indices into the vertex
coordinate arrays.

TF = isEdge(TR, EDGE) specifies the edge start and end indices in matrix format.

Input Arguments
TR Triangulation representation.
V1, V2 Column vectors of mesh vertices.
EDGE Matrix of size n-by-2 where n is the number of query edges.

1 Alphabetical List

1-7670

Output Arguments
TF Array of 1/0 (true/false) flags, where each entry TF(i) is true if V1(i),

V2(i) is an edge in the triangulation.

Examples

Example 1
Load a 2-D triangulation and use TriRep to query the presence of an edge between pairs
of points.

load trimesh2d
trep = TriRep(tri, x,y);

Test if vertices 3 and 117 are connected by an edge

isEdge(trep, 3, 117)

Test if vertices 3 and 164 are connected by an edge

isEdge(trep, 3, 164)

Example 2
Direct query of a 3-D Delaunay triangulation created using DelaunayTri.

X = rand(10,3)
dt = DelaunayTri(X)

Test if vertices 2 and 7 are connected by an edge

isEdge(dt, 2, 7);

See Also
delaunayTriangulation | triangulation

 isEdge

1-7671

ischange
Find abrupt changes in data

Syntax
TF = ischange(A)
TF = ischange(A,method)
TF = ischange(___ ,dim)
TF = ischange(___ ,Name,Value)
[TF,S1] = ischange(___)
[TF,S1,S2] = ischange(___)

Description
TF = ischange(A) returns a logical array whose elements are 1 (true) when there is
an abrupt change on page 1-7680 in the mean of the corresponding elements of A.

TF = ischange(A,method) specifies how to define a change point in the data. For
example, ischange(A,'variance') finds abrupt changes in the variance of the
elements of A.

TF = ischange(___ ,dim) specifies the dimension of A to operate along for either of
the previous syntaxes. For example, ischange(A,2) computes change points for each
row of a matrix A.

TF = ischange(___ ,Name,Value) specifies additional parameters for finding change
points using one or more name-value pair arguments. For example,
ischange(A,'MaxNumChanges',m) detects no more than m change points.

[TF,S1] = ischange(___) also returns information about the line segments in
between change points. For example, [TF,S1] = ischange(A) returns a vector S1
containing the mean of data between change points of a vector A.

[TF,S1,S2] = ischange(___) returns additional information about the line
segments in between change points. For example, [TF,S1,S2] = ischange(A) returns

1 Alphabetical List

1-7672

a vector S1 that contains the mean for each segment, as well as a vector S2 that contains
the variance for each segment of a vector A.

Examples

Change in Mean

Create a vector of noisy data, and compute the abrupt changes in the mean of the data.

A = [ones(1,5) 25*ones(1,5) 50*ones(1,5)] + rand(1,15);
TF = ischange(A)

TF = 1x15 logical array

 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

To compute the mean of the data in between change points, specify a second output
argument.

[TF,S1] = ischange(A);
plot(A,'*')
hold on
stairs(S1)
legend('Data','Segment Mean','Location','NW')

 ischange

1-7673

Change in Linear Regime

Create a vector of noisy data, and compute abrupt changes in the slope and intercept of
the data. Setting a large detection threshold reduces the number of change points
detected due to noise.

A = [zeros(1,100) 1:100 99:-1:50 50*ones(1,250)] + 10*rand(1,500);
[TF,S1,S2] = ischange(A,'linear','Threshold',200);
segline = S1.*(1:500) + S2;
plot(1:500,A,1:500,segline)
legend('Data','Linear Regime')

1 Alphabetical List

1-7674

As an alternative to providing a threshold value, you also can specify the maximum
number of change points to detect.

[TF,S1,S2] = ischange(A,'linear','MaxNumChanges',3);

Matrix Data

Compute abrupt changes in the mean for each row of a matrix.

A = diag(25*ones(5,1)) + rand(5,5)

 ischange

1-7675

A = 5×5

 25.8147 0.0975 0.1576 0.1419 0.6557
 0.9058 25.2785 0.9706 0.4218 0.0357
 0.1270 0.5469 25.9572 0.9157 0.8491
 0.9134 0.9575 0.4854 25.7922 0.9340
 0.6324 0.9649 0.8003 0.9595 25.6787

TF = ischange(A,2)

TF = 5x5 logical array

 0 1 0 0 0
 0 1 1 0 0
 0 0 1 1 0
 0 0 0 1 1
 0 0 0 0 1

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable.
Data Types: single | double | table | timetable

method — Change detection method
'mean' (default) | 'variance' | 'linear'

Change detection method, specified as one of the following:

• 'mean' — Find abrupt changes in the mean of the data.
• 'variance' — Find abrupt changes in the variance of the data.
• 'linear' — Find abrupt changes in the slope and intercept of the data.

dim — Operating dimension
positive integer scalar

1 Alphabetical List

1-7676

Operating dimension, specified as a positive integer scalar. By default, ischange
operates along the first dimension whose size does not equal 1.

For example, if A is a matrix, then ischange(A,1) operates along the rows of A,
computing change points for each column.

ischange(A,2) operates along the columns of A, computing change points for each row.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TF = ischange(A,'MaxNumChanges',5)

Threshold — Change point threshold
1 (default) | nonnegative scalar

 ischange

1-7677

Change point threshold, specified as the comma-separated pair consisting of
'Threshold' and a nonnegative scalar. Increasing the threshold greater than 1
produces fewer change points.

The threshold value defines the number of detected change points and cannot be
specified when 'MaxNumChanges' is specified.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MaxNumChanges — Maximum number of change points
positive integer scalar

Maximum number of change points to detect, specified as the comma-separated pair
consisting of 'MaxNumChanges' and a positive integer scalar. ischange uses an
automatic threshold that computes no more than the specified value of change points,
thus 'Threshold' cannot be specified when 'MaxNumChanges' is specified.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. The 'DataVariables' value indicates which columns of an input
table or timetable to operate on, and can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes the table as input and returns a logical scalar

The specified table variables must be of type double or single.
Example: 'Age'
Example: {'Height','Weight'}

1 Alphabetical List

1-7678

Example: @isnumeric
Data Types: char | cell | logical | double | single | function_handle

SamplePoints — Sample points
vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the location of the data in A. Sample points do
not need to be uniformly sampled, but must be sorted with unique elements. By default,
the sample points vector is [1 2 3 ...].

ischange does not support this name-value pair when the input data is a timetable.
Data Types: double | single | datetime | duration

Output Arguments
TF — Change point indicator
vector | matrix | multidimensional array

Change point indicator, returned as a vector, matrix, or multidimensional array. TF is the
same size as A.
Data Types: logical

S1 — Mean or slope
vector | matrix | multidimensional array | table | timetable

Mean or slope of data between change points, returned as a vector, matrix,
multidimensional array, table, or timetable.

• If the change point detection method is 'mean' or 'variance', then S1 contains the
mean for each segment.

• If the method is 'linear', then S1 contains the slope for each segment.

s1 has the same type is the input data.
Data Types: double | single | table | timetable

S2 — Variance or intercept
vector | matrix | multidimensional array | table | timetable

 ischange

1-7679

Variance or intercept of data between change points, returned as a vector, matrix,
multidimensional array, table, or timetable.

• If the change point detection method is 'mean' or 'variance', then S2 contains the
variance for each segment.

• If the method is 'linear', then S2 contains the intercept for each segment.

s2 has the same type is the input data.
Data Types: double | single | table | timetable

Definitions
Change Points
A vector of data A contains a change point if it can be split into two segments A1 and A2
such that

C A C A C A() () ().
1 2

+ + <t

t is the threshold value specified by the 'Threshold' parameter, and C represents a
cost function.

For example, the cost function for detecting abrupt changes in the mean is
C x N x() var()= , where N is the number of elements in a vector x. The cost function
measures how well a segment is approximated by its mean.

ischange iteratively minimizes the sum of the cost functions to determine the number of
change points k and their locations such that

C A C A C A k C A
k

() () ... () ().
1 2

+ + + + <t

References
[1] Killick R., P. Fearnhead, and I.A. Eckley. "Optimal detection of changepoints with a

linear computational cost." Journal of the American Statistical Association. Vol.
107, Number 500, 2012, pp.1590-1598.

1 Alphabetical List

1-7680

See Also
islocalmax | islocalmin | isoutlier

Introduced in R2017b

 ischange

1-7681

isempty
Determine whether array is empty

Syntax
TF = isempty(A)

Description
TF = isempty(A) returns logical 1 (true) if A is empty, and logical 0 (false)
otherwise. An empty array, table, or timetable has at least one dimension with length 0,
such as 0-by-0 or 0-by-5.

Examples

Empty Multidimensional Array

Create a 3-D array with one dimension length equal to zero, and determine if it is empty.

A = zeros(0,2,2);
TF = isempty(A)

TF = logical
 1

Empty Arrays and Missing Values

Compare empty arrays to arrays containing missing values.

In MATLAB®, an empty array has at least one dimension length equal to zero. An array
containing missing values, such as NaN or <undefined>, is not necessarily empty.

1 Alphabetical List

1-7682

Create a categorical vector with missing values.

cat1 = categorical([missing missing])

cat1 = 1x2 categorical array
 <undefined> <undefined>

Since cat1 does not have a dimension of length zero, it is not empty.

TF1 = isempty(cat1)

TF1 = logical
 0

Create a 0-by-0 categorical array and test if it is empty.

cat2 = categorical([]);
TF2 = isempty(cat2)

TF2 = logical
 1

Empty String Arrays

Compare empty string arrays and strings with no characters.

Create a string vector whose elements are strings with no characters. str1 is nonempty
since none of its dimensions have length zero.

str1 = strings(1,3)

str1 = 1x3 string array
 "" "" ""

TF1 = isempty(str1)

TF1 = logical
 0

 isempty

1-7683

Create a 0-by-3 string array and test if it is empty.

str2 = strings(0,3);
TF2 = isempty(str2)

TF2 = logical
 1

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array | table | timetable

Input array or table, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

Tips
• To determine whether a string array has empty strings (string elements with zero

characters), use the == operator. For example, if str is a string containing zero
characters, then str == "" returns logical 1 (true). For more information on testing
empty strings, see “Test for Empty Strings and Missing Values”. For information on
string comparison, see “Compare Text”.

• To test for missing values in an array, use the ismissing function.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-7684

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | ismissing

Introduced before R2006a

 isempty

1-7685

isempty
Determine if tscollection is empty

Syntax
TF = isempty(tsc)

Description
TF = isempty(tsc) returns a logical 1 (true) when tsc does not contain any
timeseries members or a time vector, and 0 (false) otherwise.

Examples

Empty tscollection

Create a tscollection object and determine if it is empty.

ts = timeseries();
tsc = tscollection(ts);
TF = isempty(tsc)

TF = logical
 1

Input Arguments
tsc — Input tscollection
scalar

Input tscollection, specified as a scalar.

1 Alphabetical List

1-7686

See Also
timeseries | tscollection

Introduced before R2006a

 isempty

1-7687

isequal
Determine array equality

Syntax
tf = isequal(A,B)
tf = isequal(A1,A2,...,An)

Description
tf = isequal(A,B) returns logical 1 (true) if A and B are equivalent; otherwise, it
returns logical 0 (false). See the Input Arguments on page 1-7691 section for a
definition of equivalence for each data type. NaN (Not a Number), NaT (Not a Time),
undefined categorical elements, and <missing> values are considered to be unequal to
other elements, as well as themselves.

tf = isequal(A1,A2,...,An) returns logical 1 (true) if all the inputs are equivalent.

Examples

Compare Two Numeric Matrices

Create two numeric matrices and compare them for equality.

A = zeros(3,3)+1e-20;
B = zeros(3,3);
tf = isequal(A,B)

tf = logical
 0

The function returns logical 0 (false) because the matrices differ by a very small amount
and are not exactly equal.

1 Alphabetical List

1-7688

Compare Two Structures

Create two structures and specify the fields in a different order.

A = struct('field1',0.005,'field2',2500);
B = struct('field2',2500,'field1',0.005);

Compare the structures for equality.

tf = isequal(A,B)

tf = logical
 1

Even though the ordering of the fields in each structure is different, isequal treats them
as the same because the values are equal.

Comparing Numeric Values with Special Nonnumeric Values

Compare the logical value true to the double integer 1.

isequal(true,1)

ans = logical
 1

Notice that isequal does not consider data type when it tests for equality.

Similarly, compare 'A' to the ASCII-equivalent integer, 65.

isequal('A',65)

ans = logical
 1

The result is logical 1 (true) since double('A') equals 65.

 isequal

1-7689

Compare Vectors Containing NaN Values

Create three vectors containing NaN values.

A1 = [1 NaN NaN];
A2 = [1 NaN NaN];
A3 = [1 NaN NaN];

Compare the vectors for equality.

tf = isequal(A1,A2,A3)

tf = logical
 0

The result is logical 0 (false) because isequal does not treat NaN values as equal to
each other.

Compare Two Datetime Values

Determine if midnight on January 13, 2013 in Anchorage, Alaska is equal to 11 AM on the
same date in Cairo.

t1 = datetime(2013,1,13,0,0,0,'TimeZone','America/Anchorage');
t2 = datetime(2013,1,13,11,0,0,'TimeZone','Africa/Cairo');
tf = isequal(t1,t2)

tf = logical
 1

Add 8 months to the date, and compare the datetime values for equality.

t1 = datetime(2013,9,13,0,0,0,'TimeZone','America/Anchorage');
t2 = datetime(2013,9,13,11,0,0,'TimeZone','Africa/Cairo');
tf = isequal(t1,t2)

tf = logical
 0

1 Alphabetical List

1-7690

The datetime values are no longer equal since Cairo does not observe daylight saving
time.

Compare Character Vector to String Scalar

Even though the sizes and data types are different, isequal returns logical 1 (true)
when comparing a character vector and string scalar that contain the same sequence of
characters.

isequal("foo",'foo')

ans = logical
 1

Input Arguments
A,B — Inputs to be compared (as separate arguments)
arrays

Inputs to be compared, specified as arrays.

In some cases, the types of the inputs do not have to match:

• Numeric inputs are equivalent if they are the same size and their contents are of equal
value. The test compares both real and imaginary parts of numeric arrays.

• Tables, timetables, structures, and cell arrays are equivalent only when all elements
and properties are equal.

• String scalars and character vectors containing the same sequence of characters are
equivalent.

Some data type comparisons have special considerations involving metadata. If the inputs
are all:

• Structures — Fields need not be in the same order as long as the contents are equal.
• Ordinal categorical arrays — Must have the same sets of categories, including their

order.

 isequal

1-7691

• Categorical arrays that are not ordinal — Can have different sets of categories, and
isequal compares the category names of each pair of elements.

• Datetime arrays — isequal ignores display format when it compares points in time. If
the arrays are all associated with time zones, then isequal compares the instants in
time rather than the clockface times (for example, 01-May-2018 09:00:00 EDT is
the same instant as 01-May-2018 06:00:00 PDT, so isequal returns true even
though the clockface times of 9:00 and 6:00 differ).

• Objects — isequal returns logical 1 (true) for objects of the same class with equal
property values.

A1,A2,...,An — Series of inputs to be compared (as separate arguments)
arrays

Series of inputs to be compared, specified as arrays.

In some cases, the types of the inputs do not have to match:

• Numeric inputs are equivalent if they are the same size and their contents are of equal
value. The test compares both real and imaginary parts of numeric arrays.

• Tables, timetables, structures, and cell arrays are equivalent only when all elements
and properties are equal.

• String scalars and character vectors containing the same sequence of characters are
equivalent.

Some data type comparisons have special considerations involving metadata. If the inputs
are all:

• Structures — Fields need not be in the same order as long as the contents are equal.
• Ordinal categorical arrays — Must have the same sets of categories, including their

order.
• Categorical arrays that are not ordinal — Can have different sets of categories, and

isequal compares the category names of each pair of elements.
• Datetime arrays — isequal ignores display format when it compares points in time. If

the arrays are all associated with time zones, then isequal compares the instants in
time rather than the clockface times (for example, 01-May-2018 09:00:00 EDT is
the same instant as 01-May-2018 06:00:00 PDT, so isequal returns true even
though the clockface times of 9:00 and 6:00 differ).

• Objects — isequal returns logical 1 (true) for objects of the same class with equal
property values.

1 Alphabetical List

1-7692

Tips
• Use isequaln if you want to test for equality and treat NaN, NaT, or <missing>

values as equal.
• The equality of two function handles depends on how they are constructed. For more

information, see “Compare Function Handles”.
• isequal returns logical 0 (false) for two objects with dynamic properties, even if

the properties have the same names and values.
• isequal compares only stored (non-dependent) properties when testing two objects

for equality.
• When comparing two handle objects, use == to test whether objects have the same

handle. Use isequal to determine if two objects with different handles have equal
property values.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 isequal

1-7693

See Also
eq | is* | isa | isequaln | strcmp

Topics
“Determining Equality of Objects”

Introduced before R2006a

1 Alphabetical List

1-7694

isenum
Determine if variable is enumeration

Syntax
tf = isenum(e)

Description
tf = isenum(e) returns logical 1 (true) if e is an enumeration. Otherwise, it returns
logical 0 (false). Empty enumeration objects return true.

If e is a heterogeneous array, isenum always returns false.

Examples

Test for Enumeration
Determine if a variable is an enumeration.

The PPM class defines enumerations for three levels:

classdef PPM < int32
 enumeration
 High (1000)
 Medium (100)
 Low (10)
 end
end

Create a variable representing a level. Use isenum to determine if the variable is an
enumeration:

currentLevel = PPM.High;
isenum(currentLevel)

 isenum

1-7695

ans =

 1

Input Arguments
e — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as any MATLAB variable.

Definitions

Enumerations
Enumerations are a fixed set of names representing a single type of value. For more
information, see “Named Values”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
islogical | isnumeric | isobject | isstruct

Topics
“Enumerations”
“Define Enumeration Classes”

Introduced in R2015a

1 Alphabetical List

1-7696

isequaln
Determine array equality, treating NaN values as equal

Syntax
tf = isequaln(A,B)
tf = isequaln(A1,A2,...,An)

Description
tf = isequaln(A,B) returns logical 1 (true) if A and B are equivalent; otherwise, it
returns logical 0 (false). See the Input Arguments on page 1-7699 section for a
definition of equivalence for each data type. NaN (Not a Number), NaT (Not a Time),
undefined categorical elements, and <missing> values are considered to be equal to
other such values.

tf = isequaln(A1,A2,...,An) returns logical 1 (true) if all the inputs are
equivalent.

Examples

Compare Two Numeric Matrices

Create two numeric matrices and compare them for equality.

A = zeros(3,3)+1e-20;
B = zeros(3,3);
tf = isequaln(A,B)

tf = logical
 0

The function returns logical 0 (false) because the matrices differ by a very small amount
and are not exactly equal.

 isequaln

1-7697

Compare Two Structures

Create two structures and specify the fields in a different order.

A = struct('field1',0.005,'field2',2500);
B = struct('field2',2500,'field1',0.005);

Compare the structures for equality.

tf = isequaln(A,B)

tf = logical
 1

Even though the ordering of the fields in each structure is different, isequaln treats
them as the same because the values are equal.

Comparing Numeric Values with Special Nonnumeric Values

Compare the logical value true to the double integer 1.

isequaln(true,1)

ans = logical
 1

Notice that isequaln does not consider data type when it tests for equality.

Similarly, compare 'A' to the ASCII-equivalent integer, 65.

isequaln('A',65)

ans = logical
 1

The result is logical 1 (true) since double('A') equals 65.

1 Alphabetical List

1-7698

Compare Vectors Containing NaN Values

Create three vectors containing NaN values.

A1 = [1 NaN NaN];
A2 = [1 NaN NaN];
A3 = [1 NaN NaN];

Compare the vectors for equality.

tf = isequaln(A1,A2,A3)

tf = logical
 1

The result is logical 1 (true) because isequaln treats the NaN values as equal to each
other.

Compare Character Vector to String Scalar

Even though the sizes and data types are different, isequaln returns logical 1 (true)
when comparing a character vector and string scalar that contain the same sequence of
characters.

isequaln("foo",'foo')

ans = logical
 1

Input Arguments
A,B — Inputs to be compared (as separate arguments)
arrays

Inputs to be compared, specified as arrays.

 isequaln

1-7699

In some cases, the types of the inputs do not have to match:

• Numeric inputs are equivalent if they are the same size and their contents are of equal
value. The test compares both real and imaginary parts of numeric arrays.

• Tables, timetables, structures, and cell arrays are equivalent only when all elements
and properties are equal.

• String scalars and character vectors containing the same sequence of characters are
equivalent.

Some data type comparisons have special considerations involving metadata. If the inputs
are all:

• Structures — Fields need not be in the same order as long as the contents are equal.
• Ordinal categorical arrays — Must have the same sets of categories, including their

order.
• Categorical arrays that are not ordinal — Can have different sets of categories, and

isequaln compares the category names of each pair of elements.
• Datetime arrays — isequaln ignores display format when it compares points in time.

If the arrays are all associated with time zones, then isequaln compares the instants
in time rather than the clockface times (for example, 01-May-2018 09:00:00 EDT
is the same instant as 01-May-2018 06:00:00 PDT, so isequaln returns true
even though the clockface times of 9:00 and 6:00 differ).

• Objects — isequaln returns logical 1 (true) for objects of the same class with equal
property values.

A1,A2,...,An — Series of inputs to be compared (as separate arguments)
arrays

Series of inputs to be compared, specified as arrays.

In some cases, the types of the inputs do not have to match:

• Numeric inputs are equivalent if they are the same size and their contents are of equal
value. The test compares both real and imaginary parts of numeric arrays.

• Tables, timetables, structures, and cell arrays are equivalent only when all elements
and properties are equal.

• String scalars and character vectors containing the same sequence of characters are
equivalent.

1 Alphabetical List

1-7700

Some data type comparisons have special considerations involving metadata. If the inputs
are all:

• Structures — Fields need not be in the same order as long as the contents are equal.
• Ordinal categorical arrays — Must have the same sets of categories, including their

order.
• Categorical arrays that are not ordinal — Can have different sets of categories, and

isequaln compares the category names of each pair of elements.
• Datetime arrays — isequaln ignores display format when it compares points in time.

If the arrays are all associated with time zones, then isequaln compares the instants
in time rather than the clockface times (for example, 01-May-2018 09:00:00 EDT
is the same instant as 01-May-2018 06:00:00 PDT, so isequaln returns true
even though the clockface times of 9:00 and 6:00 differ).

• Objects — isequaln returns logical 1 (true) for objects of the same class with equal
property values.

Tips
• Use isequal if you want to test for equality and treat NaN, NaT, or <missing> values

as unequal.
• The equality of two function handles depends on how they are constructed. For more

information, see “Compare Function Handles”.
• isequaln returns logical 0 (false) for two objects with dynamic properties, even if

the properties have the same names and values.
• isequaln compares only stored (non-dependent) properties when testing two objects

for equality.
• When comparing two handle objects, use == to test whether objects have the same

handle. Use isequaln to determine if two objects with different handles have equal
property values.

 isequaln

1-7701

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | is* | isa | isequal | strcmp

Topics
“Determining Equality of Objects”

Introduced in R2012a

1 Alphabetical List

1-7702

isequalwithequalnans
Test arrays for equality, treating NaNs as equal

Note isequalwithequalnans is not recommended. Use isequaln instead.

Syntax
tf = isequalwithequalnans(A, B, ...)

Description
tf = isequalwithequalnans(A, B, ...) returns logical 1 (true) if the input
arrays are the same type and size and hold the same contents, and logical 0 (false)
otherwise. NaN (Not a Number) values are considered to be equal to each other. Numeric
data types and structure field order do not have to match.

Examples
Arrays containing NaNs are handled differently by isequal and
isequalwithequalnans. isequal does not consider NaNs to be equal, while
isequalwithequalnans does.

A = [32 8 -29 NaN 0 5.7];
B = A;
isequal(A, B)
ans =
 0

isequalwithequalnans(A, B)
ans =
 1

 isequalwithequalnans

1-7703

The position of NaN elements in the array does matter. If they are not in the same position
in the arrays being compared, then isequalwithequalnans returns zero.

A = [2 4 6 NaN 8]; B = [2 4 NaN 6 8];
isequalwithequalnans(A, B)
ans =
 0

Tips
isequalwithequalnans is the same as isequal, except isequalwithequalnans
considers NaN (Not a Number) values to be equal, and isequal does not.

isequalwithequalnans recursively compares the contents of cell arrays and
structures. If all the elements of a cell array or structure are numerically equal,
isequalwithequalnans returns logical 1.

See Also
is* | isa | isequal | isequaln | strcmp

Introduced before R2006a

1 Alphabetical List

1-7704

isevent
Determine whether input is COM object event

Syntax
tf = isevent(c,eventname)

Description
tf = isevent(c,eventname) returns logical 1 (true) if eventname is an event
recognized by the COM object. Otherwise, it returns logical 0 (false).

Examples

Test for mwsamp Events

Test if DblClick is an event in the MATLAB sample control. MATLAB displays true,
indicating DblClick is an event.

Create an instance of the mwsamp control and test DblClick.

f = figure('position',[100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);
isevent(h,'DblClick')

Test Redraw. MATLAB displays false, indicating Redraw is not an event; it is a method.

isevent(h,'Redraw')

Input Arguments
c — COM object
function handle

 isevent

1-7705

COM object, specified as a function handle.

eventname — Event name
string | character vector

Event name, specified as a string or a character vector. The eventname argument is not
case-sensitive.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
eventlisteners | events (COM) | registerevent

Topics
“Exploring Events”

Introduced before R2006a

1 Alphabetical List

1-7706

isfield
Determine if input is structure array field

Syntax
TF = isfield(S,field)

Description
TF = isfield(S,field) returns 1 if field is the name of a field of the structure
array S. Otherwise, it returns 0.

If field is an array that contains multiple names, then TF is a logical array that has the
same size.

Examples

Determine If Input Names Are Field Names

Create a structure.

S.x = linspace(0,2*pi);
S.y = sin(S.x);
S.title = 'y = sin(x)'

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'

Determine if 'title' is the name of a field of S.

TF = isfield(S,'title')

 isfield

1-7707

TF = logical
 1

You can test multiple names in one call to the isfield function by specifying them in a
cell array or string array.

field = {'x','y','z','title','error'};
TF = isfield(S,field)

TF = 1x5 logical array

 1 1 0 1 0

Input Arguments
S — Structure array
structure array

Structure array.

field — Potential field names
character vector | cell array of character vectors | string array

Potential field names, specified as a character vector, cell array of character vectors, or
string array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Cell arrays are not supported for the second argument.

1 Alphabetical List

1-7708

See Also
fieldnames | getfield | is* | isa | isstruct | orderfields | rmfield | setfield
| struct

Topics
“Access Data in a Structure Array”
“Generate Field Names from Variables”

Introduced before R2006a

 isfield

1-7709

isfile
Determine if input is file

Syntax
result = isfile(fileName)

Description
result = isfile(fileName) returns 1 if fileName is a file located on the specified
path or in the current folder. Otherwise, isfile returns 0.

Examples
Is Input a File

Check if the input myfile1.txt is a file. A result of 1 indicates that myfile1.txt is a
file.

result = isfile('myfile1.txt')

result = logical
 1

Create the folder myfolder, then check if myfolder is a file. A result of 0 indicates that
myfolder is not a file.

mkdir myfolder;
result = isfile('myfolder')

result = logical
 0

Check if the inputs myfile1.txt and myfolder are files. A result of [1 0] indicates
that myfile1.txt is a file and myfolder is not a file.

1 Alphabetical List

1-7710

result = isfile(["myfile1.txt", "myfolder"])

result = 1×2 logical array
 1 0

Input Arguments
fileName — File name
string array | character vector | cell array of character vector

File name, specified as a string array, character vector, or cell array of character vectors.
fileName can include a relative path, but the relative path must be in the current folder.
Otherwise, fileName must include a full path.
Data Types: string | cell | char

See Also
dir | is* | isfolder

Introduced in R2017b

 isfile

1-7711

isfinite
Array elements that are finite

Syntax
TF = isfinite(A)

Description
TF = isfinite(A) returns an array the same size as A containing logical 1 (true)
where the elements of the array A are finite and logical 0 (false) where they are infinite
or NaN. For a complex number z, isfinite(z) returns 1 if both the real and imaginary
parts of z are finite, and 0 if either the real or the imaginary part is infinite or NaN.

For any real A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples

Finite Elements of Vector

Create a row vector, A, and determine the finite elements.

A = 1./[-2 -1 0 1 2]

A = 1×5

 -0.5000 -1.0000 Inf 1.0000 0.5000

TF = isfinite(A)

TF = 1x5 logical array

1 Alphabetical List

1-7712

 1 1 0 1 1

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
is* | isinf | isnan

 isfinite

1-7713

Introduced before R2006a

1 Alphabetical List

1-7714

isfloat
Determine if input is floating-point array

Syntax
tf = isfloat(A)

Description
tf = isfloat(A) returns true if A is a floating-point array and false otherwise. The
floating-point types are single and double, and subclasses of single and double.

Examples
These examples show the values isfloat returns when passed specific types:

% pi returns a floating-point value
isfloat(pi)
ans =
 1
% Complex numbers are floating-point values
isfloat(3+7i)
ans =
 1
% Single-precision numbers are floating-point values
isfloat(realmax('single'))
ans =
 1
% isfloat returns a logical value
isfloat(isfloat(pi))
ans =
 0

 isfloat

1-7715

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
double | isa | isinteger | isnumeric | single

Introduced before R2006a

1 Alphabetical List

1-7716

isfolder
Determine if input is folder

Syntax
result = isfolder(folderName)

Description
result = isfolder(folderName) returns 1 if folderName is a folder located on the
specified path or in the current folder. Otherwise, isfolder returns 0.

Examples

Is Input a Folder

Create the folder myfolder, then check if myfolder is a folder. A result of 1 indicates
that myfolder is a folder.

mkdir myfolder;
result = isfolder('myfolder')

result = logical
 1

Check if the inputs myfile1.txt and myfolder are folders. A result of [0 1] indicates
that myfile1.txt is not a folder and myfolder is a folder.

result = isfolder(["myfile1.txt", "myfolder"])

result = 1×2 logical array
 0 1

 isfolder

1-7717

Input Arguments
folderName — Folder name
string array | character vector | cell array of character vector

Folder name, specified as a string array, character vector, or cell array of character
vectors. folderName can include a relative path, but the relative path must be in the
current folder. Otherwise, folderName must include a full path.
Data Types: string | cell | char

See Also
dir | is* | isfile

Introduced in R2017b

1 Alphabetical List

1-7718

isgraphics
True for valid graphics object handles

Syntax
tf = isgraphics(H)
tf = isgraphics(H,type)

Description
tf = isgraphics(H) returns true for elements of H that are valid graphics objects and
false where elements are not valid graphics objects.

tf = isgraphics(H,type) returns true for elements of H that are valid graphics
objects of the type specified by the type argument. An object type is the value contained
in the object’s Type property.

Examples

Test for Valid Handles

Create a plot and return the handle array. Test array for valid handles.

H = plot(rand(5));

 isgraphics

1-7719

isgraphics(H)

ans = 5x1 logical array

 1
 1
 1
 1
 1

1 Alphabetical List

1-7720

Test for Handle Types

Create a plot and return the handle array. Concatenate with other graphics objects and
test for handles that are of type Line.

H = plot(rand(5));

a = [H;gca;gcf];
isgraphics(a,'line')

ans = 7x1 logical array

 1
 1
 1

 isgraphics

1-7721

 1
 1
 0
 0

Input Arguments
H — Input variable or expression
graphics object array

Input variable or expression that evaluates to graphics object handles.

type — Object type
character vector

Object type, specified as a character vector. An object’s type is contained in its Type
property.

Output Arguments
tf — result
logical array | empty GraphicsPlaceholder array

Result, returned as a logical array or an empty GraphicsPlaceholder array. If the
result is a logical array, 1 indicates elements of the input array that are valid, and 0
indicates elements that are invalid. The result is an empty GraphicsPlaceholder array
when the input array is empty.

See Also
Functions
isa | ishghandle

Topics
“Graphics Object Handles”

1 Alphabetical List

1-7722

Introduced in R2014b

 isgraphics

1-7723

ishandle
Test for valid graphics or Java object handle

Syntax
ishandle(H)

Description
ishandle(H) returns an array whose elements are 1 where the elements of H are
graphics or Java object handles, and 0 where they are not.

Note Use the most specific function for your application instead of ishandle, as
described in the following sections.

MATLAB Handle Objects
Use the isa function to determine the class of MATLAB objects.

Use the handle class isvalid method to determine the validity of handle objects. See
“Test Handle Validity” for information on testing for MATLAB handle objects.

Graphics Object Handles
Use isgraphics for graphics objects.

Java Object Handles
Use isjava for Java objects.

See Also
isa | isgraphics | isjava

1 Alphabetical List

1-7724

Introduced before R2006a

 ishandle

1-7725

ishermitian
Determine if matrix is Hermitian or skew-Hermitian

Syntax
tf = ishermitian(A)
tf = ishermitian(A,skewOption)

Description
tf = ishermitian(A) returns logical 1 (true) if square matrix A is Hermitian on page
1-7728; otherwise, it returns logical 0 (false).

tf = ishermitian(A,skewOption) specifies the type of the test. Specify
skewOption as 'skew' to determine if A is skew-Hermitian on page 1-7729.

Examples

Test if Symmetric Matrix Is Hermitian

Create a 3-by-3 matrix.

A = [1 0 1i; 0 1 0; 1i 0 1]

A = 3×3 complex

 1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 1.0000i
 0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 1.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

The matrix is symmetric with respect to its real-valued diagonal.

Test whether the matrix is Hermitian.

1 Alphabetical List

1-7726

tf = ishermitian(A)

tf = logical
 0

The result is logical 0 (false) because A is not Hermitian. In this case, A is equal to its
transpose, A.', but not its complex conjugate transpose, A'.

Change the element in A(3,1) to be -1i.

A(3,1) = -1i;

Determine if the modified matrix is Hermitian.

tf = ishermitian(A)

tf = logical
 1

The matrix, A, is now Hermitian because it is equal to its complex conjugate transpose,
A'.

Test if Matrix Is Skew-Hermitian

Create a 3-by-3 matrix.

A = [-1i -1 1-i;1 -1i -1;-1-i 1 -1i]

A = 3×3 complex

 0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 - 1.0000i
 1.0000 + 0.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i
 -1.0000 - 1.0000i 1.0000 + 0.0000i 0.0000 - 1.0000i

The matrix has pure imaginary numbers on the main diagonal.

Specify skewOption as 'skew' to determine whether the matrix is skew-Hermitian.

tf = ishermitian(A,'skew')

 ishermitian

1-7727

tf = logical
 1

The matrix, A, is skew-Hermitian since it is equal to the negation of its complex conjugate
transpose, -A'.

Input Arguments
A — Input matrix
numeric matrix

Input matrix, specified as a numeric matrix. If A is not square, then ishermitian returns
logical 0 (false).
Data Types: single | double | logical
Complex Number Support: Yes

skewOption — Test type
'nonskew' (default) | 'skew'

Test type, specified as 'nonskew' or 'skew'. Specify 'skew' to test whether A is skew-
Hermitian on page 1-7729.

Definitions

Hermitian Matrix
• A square matrix, A, is Hermitian if it is equal to its complex conjugate transpose, A =

A'.

In terms of the matrix elements, this means that

ai, j = a j, i .
• The entries on the diagonal of a Hermitian matrix are always real. Since real matrices

are unaffected by complex conjugation, a real matrix that is symmetric is also
Hermitian. For example, the matrix

1 Alphabetical List

1-7728

A =
1
0

0
2

1
0

1 0 1

is both symmetric and Hermitian.
• The eigenvalues of a Hermitian matrix are real.

Skew-Hermitian Matrix
• A square matrix, A, is skew-Hermitian if it is equal to the negation of its complex

conjugate transpose, A = -A'.

In terms of the matrix elements, this means that

ai, j = − a j, i .

• The entries on the diagonal of a skew-Hermitian matrix are always pure imaginary or
zero. Since real matrices are unaffected by complex conjugation, a real matrix that is
skew-symmetric is also skew-Hermitian. For example, the matrix

A =
0 −1
1 0

is both skew-Hermitian and skew-symmetric.
• The eigenvalues of a skew-Hermitian matrix are purely imaginary or zero.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

 ishermitian

1-7729

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ctranspose | eig | isreal | issymmetric | transpose

Introduced in R2014a

1 Alphabetical List

1-7730

ishghandle
True for graphics object handles

Syntax
ishghandle(h)

Description
ishghandle(h) returns an array that contains 1's where the elements of h are handles
to existing graphics objects and 0's where they are not. Differs from ishandle in that
Simulink objects handles return false.

Examples

Test for Valid Graphics Object Handle

Create a plot. Test if the output p is a valid graphics object handle.

x = 1:10;
y = 1:10;
p = plot(x,y);

 ishghandle

1-7731

ishghandle(p)

ans = logical
 1

See Also
gca | isa | isgraphics

1 Alphabetical List

1-7732

Topics
“Graphics Object Handles”

 ishghandle

1-7733

ishold
Current hold state

Syntax
tf = ishold
tf = ishold(ax)

Description
tf = ishold returns the hold state of the current axes. The return state is 1 if hold is
on, and 0 if it is off. When hold is on, the current plot and most axes properties are held
so that subsequent graphing commands add to the existing graph. If there is no figure,
ishold returns 0 and MATLAB creates a new figure.

tf = ishold(ax) returns the hold state of the axes specified by ax instead of the
current axes.

A state of hold on implies that both figure and axes NextPlot properties are set to
'add'.

See Also
hold | newplot

Topics
“Control Graph Display”

Introduced before R2006a

1 Alphabetical List

1-7734

isinf
Array elements that are infinite

Syntax
TF = isinf(A)

Description
TF = isinf(A) returns an array the same size as A containing logical 1 (true) where
the elements of A are +Inf or -Inf and logical 0 (false) where they are not. For a
complex number z, isinf(z) returns 1 if either the real or imaginary part of z is
infinite, and 0 if both the real and imaginary parts are finite or NaN.

For any real A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples

Infinite Elements of Vector

Determine the infinite elements of the row vector, A.

A = 1./[-2 -1 0 1 2]

A = 1×5

 -0.5000 -1.0000 Inf 1.0000 0.5000

TF = isinf(A)

TF = 1x5 logical array

 isinf

1-7735

 0 0 1 0 0

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
is* | isfinite | isnan

1 Alphabetical List

1-7736

Introduced before R2006a

 isinf

1-7737

isinteger
Determine whether input is integer array

Syntax
TF = isinteger(A)

Description
TF = isinteger(A) returns logical 1 (true) if A is an array of integer type. Otherwise,
it returns logical 0 (false).

Integer types in MATLAB include: int8, int16, int32, int64, uint8, uint16, uint32,
and uint64. For more information, see “Integer Classes”.

Examples

Determine Whether Real Number Is Integer Type

Determine if a real number is an integer type.

TF = isinteger(2)

TF = logical
 0

MATLAB® stores a real number as a double type by default.

Convert the number to a signed 8-bit integer type using the int8 function. Check if it is
an integer type.

TF = isinteger(int8(2))

1 Alphabetical List

1-7738

TF = logical
 1

Determine Whether Complex Number Is Integer Type

Determine if a complex number is an integer type.

A = 3.5 - 2.5i

A = 3.5000 - 2.5000i

TF = isinteger(A)

TF = logical
 0

MATLAB stores a complex number as a double type by default.

Convert the complex number into a signed 32-bit integer type using the int32 function.
Check if it is an integer type.

B = int32(A)

B = int32
 4 - 3i

TF = isinteger(B)

TF = logical
 1

When a number with decimal digits is converted to an integer type, MATLAB rounds it to
the nearest integer.

Determine Whether Arrays Are Integer Type

Determine if an array containing integer numbers is an integer type.

 isinteger

1-7739

Create an array using the int8 function. Check if it is an integer type.

A = [int8(1:5)]

A = 1x5 int8 row vector

 1 2 3 4 5

TF = isinteger(A)

TF = logical
 1

Now, create a cell array that contains the array A and other integer numbers. Use class
to identify the type of the cell array. Check if it is an integer type.

B = {A int8(-4); int8(2) int8(1)}

B = 2x2 cell array
 {1x5 int8} {[-4]}
 {[2]} {[1]}

type = class(B)

type =
'cell'

TF = isinteger(B)

TF = logical
 0

The cell array is not an integer type since it is a cell type.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

1 Alphabetical List

1-7740

Input array, specified as a scalar, vector, matrix, or multidimensional array. MATLAB has
the following integer types.

Integer Type Description
int8 8-bit signed integer
int16 16-bit signed integer
int64 64-bit signed integer
int32 32-bit signed integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
uint64 64-bit unsigned integer

Tips
• For a floating-point number of a single or double type, you can check if it is also an

integer by using the round function (within the floating-point relative accuracy eps).
If the rounded value of the number is equal to the original value before rounding, then
the number is an integer. For example, 2 == round(2) returns logical 1 (true) since
2 is an integer.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 isinteger

1-7741

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
class | is* | isa | isfloat | isnumeric

Topics
“Integers”
“Floating-Point Numbers”

Introduced before R2006a

1 Alphabetical List

1-7742

isinterface
Determine whether input is COM interface

Syntax
tf = isinterface(c)

Description
tf = isinterface(c) returns logical 1 (true) if c is a COM interface. Otherwise, it
returns logical 0 (false).

Examples

Test for Interface Objects

Test an instance of a Microsoft Excel application. MATLAB displays false, indicating the
application is not an interface.

app = actxserver('Excel.Application');
isinterface(app)

Test a workbooks object. MATLAB displays true, indicating a workbook is an interface.

wbk = get(app,'workbooks');
isinterface(wbk)

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

 isinterface

1-7743

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
iscom

Topics
“Exploring Interfaces”

Introduced before R2006a

1 Alphabetical List

1-7744

isjava
Determine if input is Java object

Syntax
tf = isjava(A)

Description
tf = isjava(A) returns logical 1 (true) if object A is a Java object. Otherwise, it
returns logical 0 (false).

Examples

Test If java.util.Date Is Java Object

Create an instance of the Java® Date class.

myDate = java.util.Date;
isjava(myDate)

ans = logical
 1

myDate is a Java object.

However, myDate is not a MATLAB® object.

isobject(myDate)

ans = logical
 0

 isjava

1-7745

Input Arguments
A — Input variable
any data type

Input variable, specified as any data type.

See Also
is* | isa | isobject | javaArray | javaMethod | javaObject

Introduced before R2006a

1 Alphabetical List

1-7746

isKey
Package: containers

Determine if Map object contains key

Syntax
TF = isKey(M,keySet)

Description
TF = isKey(M,keySet) returns 1 (true) if M contains the specified key, and returns 0
(false) otherwise.

If keySet is an array that specifies multiple keys, then TF is a logical array of the same
size.

Examples

Find Keys in Map

Create a Map object containing several key-value pairs.

months = {'Jan','Feb','Mar','Apr'};
rainfall = [327.2 368.2 197.6 178.4];
M = containers.Map(months,rainfall)

M =
 Map with properties:

 Count: 4
 KeyType: char
 ValueType: double

 isKey

1-7747

Determine whether m has 'Feb' as a key.

TF = isKey(M,'Feb')

TF = logical
 1

Search for multiple keys.

keySet = {'Mar','Apr','May','Jun'};
TF = isKey(M,keySet)

TF = 1x4 logical array

 1 1 0 0

Input Arguments
M — Input Map object
Map object

Input Map object.

keySet — Keys to search for
numeric scalar | character vector | string scalar | cell array

Keys to search for in the Map object, specified as a numeric scalar, character vector, string
scalar, or cell array. To search for multiple keys, specify keySet as a cell array—even
when you specify keys as numeric scalars or strings.

See Also
containers.Map | keys | remove | values

Topics
“Overview of Map Data Structure”
“Examine Contents of Map”
“Read and Write Using Key Index”

1 Alphabetical List

1-7748

Introduced in R2008b

 isKey

1-7749

iskeyword
Determine whether input is MATLAB keyword

Syntax
tf = iskeyword(txt)
iskeyword

Description
tf = iskeyword(txt) returns logical 1 (true) if the character vector or string scalar
txt is a keyword in the MATLAB language and logical 0 (false) otherwise. MATLAB
keywords cannot be used as variable names.

iskeyword returns a list of all MATLAB keywords.

Examples
To test if the word while is a MATLAB keyword,

iskeyword('while')
ans =
 1

To obtain a list of all MATLAB keywords,

iskeyword
 'break'
 'case'
 'catch'
 'classdef'
 'continue'
 'else'
 'elseif'
 'end'
 'for'

1 Alphabetical List

1-7750

 'function'
 'global'
 'if'
 'otherwise'
 'parfor'
 'persistent'
 'return'
 'spmd'
 'switch'
 'try'
 'while'

See Also
is* | isvarname | matlab.lang.makeUniqueStrings |
matlab.lang.makeValidName

Introduced before R2006a

 iskeyword

1-7751

isletter
Determine which characters are letters

Syntax
TF = isletter(A)

Description
TF = isletter(A) returns a logical array TF. If A is a character array or string scalar,
then the elements of TF are logical 1 (true) where the corresponding characters in A are
letters, and logical 0 (false) elsewhere.

If A is not a character array or string scalar, then isletter returns logical 0 (false).

Examples

Determine Which Character Array Elements Are Letters

Create different arrays, and then determine which array elements are letters.

chr = '123 Main St.'

chr =
'123 Main St.'

TF = isletter(chr)

TF = 1x12 logical array

 0 0 0 0 1 1 1 1 0 1 1 0

1 Alphabetical List

1-7752

Starting in R2016b, you can convert character arrays to strings using the string
function. Convert chr to a string, and test it. The input argument is not a character array,
so isletter returns 0.

str = string(chr)

str =
"123 Main St."

TF = isletter(str)

TF = 1x12 logical array

 0 0 0 0 1 1 1 1 0 1 1 0

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. A can be any
data type.

Tips
To find letters within elements of a nonscalar string array, use the isstrprop function.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 isletter

1-7753

• Input values from the char class must be in the range 0-127.

See Also
char | is* | isa | iscellstr | ischar | isnumeric | isspace | isspace | isstring |
isstrprop | string

Topics
“Create Character Arrays”
“Search and Replace Text”

Introduced before R2006a

1 Alphabetical List

1-7754

islocalmax
Find local maxima

Syntax
TF = islocalmax(A)
TF = islocalmax(A,dim)
TF = islocalmax(___ ,Name,Value)
[TF,P] = islocalmax(___)

Description
TF = islocalmax(A) returns a logical array whose elements are 1 (true) when a local
maximum is detected in the corresponding element of an array, table, or timetable.

TF = islocalmax(A,dim) specifies the dimension of A to operate along. For example,
islocalmax(A,2) finds local maxima of each row of a matrix A.

TF = islocalmax(___ ,Name,Value) specifies additional parameters for finding local
maxima using one or more name-value pair arguments. For example,
islocalmax(A,'SamplePoints',t) finds local maxima of A with respect to the time
stamps contained in the time vector t.

[TF,P] = islocalmax(___) also returns the prominence on page 1-7767
corresponding to each element of A for any of the previous syntaxes.

Examples

Local Maxima in Vector

Compute and plot the local maxima of a vector of data.

x = 1:100;
A = (1-cos(2*pi*0.01*x)).*sin(2*pi*0.15*x);

 islocalmax

1-7755

TF = islocalmax(A);
plot(x,A,x(TF),A(TF),'r*')

Maxima in Matrix Rows

Create a matrix of data, and compute the local maxima for each row.

A = 25*diag(ones(5,1)) + rand(5,5);
TF = islocalmax(A,2)

TF = 5x5 logical array

1 Alphabetical List

1-7756

 0 0 1 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 1 0 1 0
 0 1 0 0 0

Separated Maxima

Compute the local maxima of a vector of data relative to the time stamps in the vector t.
Use the 'MinSeparation' parameter to compute maxima that are at least 45 minutes
apart.

t = hours(linspace(0,3,15));
A = [2 4 6 4 3 7 5 6 5 10 4 -1 -3 -2 0];
TF = islocalmax(A,'MinSeparation',minutes(45),'SamplePoints',t);
plot(t,A,t(TF),A(TF),'r*')

 islocalmax

1-7757

Flat Maxima Regions

Specify a method for indicating consecutive maxima values.

Compute the local maxima of data that contains consecutive maxima values. Indicate the
maximum of each flat region based on the first occurrence of that value.

x = 0:0.1:5;
A = min(0.75, sin(pi*x));
TF1 = islocalmax(A, 'FlatSelection', 'first');
plot(x,A,x(TF1),A(TF1),'r*')

1 Alphabetical List

1-7758

Indicate the maximum of each flat region with all occurrences of that value.

TF2 = islocalmax(A, 'FlatSelection', 'all');
plot(x,A,x(TF2),A(TF2),'r*')

 islocalmax

1-7759

Prominent Maxima

Select maxima based on their prominence.

Compute the local maxima of a vector of data and their prominence, and then plot them
with the data.

x = 1:100;
A = peaks(100);
A = A(50,:);
[TF1,P] = islocalmax(A);
P(TF1)

1 Alphabetical List

1-7760

ans = 1×2

 1.7703 3.5548

plot(x,A,x(TF1),A(TF1),'r*')
axis tight

Compute only the most prominent maximum in the data by specifying a minimum
prominence requirement.

TF2 = islocalmax(A,'MinProminence',2);
plot(x,A,x(TF2),A(TF2),'r*')
axis tight

 islocalmax

1-7761

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | table | timetable

dim — Operating dimension
positive integer scalar

1 Alphabetical List

1-7762

Operating dimension, specified as a positive integer scalar. By default, islocalmax
operates along the first dimension whose size does not equal 1.

For example, if A is a matrix, then islocalmax(A,1) operates along the rows of A,
computing local maxima for each column.

islocalmax(A,2) operates along the columns of A, computing local maxima for each
row.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TF = islocalmax(A,'MinProminence',2)

 islocalmax

1-7763

MinProminence — Minimum prominence
0 (default) | nonnegative scalar

Minimum prominence, specified as the comma-separated pair consisting of
'MinProminence' and a nonnegative scalar. islocalmax returns only local maxima
whose prominence is at least the value specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ProminenceWindow — Prominence window
positive integer scalar | two-element vector of positive integers | positive duration scalar |
two-element vector of positive durations

Prominence window, specified as the comma-separated pair consisting of
'ProminenceWindow' and a positive integer scalar, a two-element vector of positive
integers, a positive duration scalar, or a two-element vector of positive durations. The
value defines a window of neighboring points for which to compute the prominence for
each local maximum.

When the window value is a positive integer scalar k, then the window is centered about
each local maximum and contains k-1 neighboring elements. If k is even, then the window
is centered about the current and previous elements. If a local maximum is within a flat
region, then islocalmax treats the entire flat region as the center point of the window.

When the value is a two-element vector [b f] of positive integers, then the window
contains the local maximum, b elements backward, and f elements forward. If a local
maximum is within a flat region, then the window starts b elements before the first point
of the region and ends f elements after the last point of the region.

When the input data is a timetable or when 'SamplePoints' is specified as a datetime
or duration vector, the window value must be of type duration, and the window is
computed relative to the sample points.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

FlatSelection — Flat region indicator
'center' (default) | 'first' | 'last' | 'all'

Flat region indicator for when a local maximum value is repeated consecutively, specified
as the comma-separated pair consisting of 'FlatSelection' and one of the following:

1 Alphabetical List

1-7764

• 'center' — Indicate only the center element of a flat region as the local maximum.
The element of TF corresponding to the center of the flat is 1, and is 0 for the
remaining flat elements.

• 'first' — Indicate only the first element of a flat region as the local maximum. The
element of TF corresponding to the start of the flat is 1, and is 0 for the remaining flat
elements.

• 'last' — Indicate only the last element of a flat region as the local maximum. The
element of TF corresponding to the end of the flat is 1, and is 0 for the remaining flat
elements.

• 'all' — Indicate all the elements of a flat region as the local maxima. The elements
of TF corresponding to all parts of the flat are 1.

When using the 'MinSeparation' or 'MaxNumExtrema' name-value pairs, flat region
points are jointly considered a single maximum point.

MinSeparation — Minimum separation
0 (default) | nonnegative scalar

Minimum separation between local maxima, specified as the comma-separated pair
consisting of 'MinSeparation' and a nonnegative scalar. The separation value is
defined in the same units as the sample points vector, which is [1 2 3 ...] by default.
When the separation value is greater than 0, islocalmax selects the largest local
maximum and ignores all other local maxima within the specified separation. This process
is repeated until there are no more local maxima detected.

When the sample points vector has type datetime, the separation value must have type
duration.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

MaxNumExtrema — Maximum number of maxima
positive integer scalar

Maximum number of maxima detected, specified as the comma-separated pair consisting
of 'MaxNumExtrema' and a positive integer scalar. islocalmax finds no more than the
specified number of most prominent maxima, which is the length of the operating
dimension by default.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 islocalmax

1-7765

SamplePoints — Sample points
vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the location of the data in A. Sample points do
not need to be uniformly sampled, but must be sorted with unique elements. By default,
the sample points vector is [1 2 3 ...].

islocalmax does not support this name-value pair when the input data is a timetable.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. The 'DataVariables' value indicates which columns of an input
table or timetable to operate on. This value can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes a table variable as input and returns a logical scalar

The specified table variables must have numeric or logical type.
Example: 'Age'
Example: {'Height','Weight'}
Example: @isnumeric
Data Types: char | cell | double | single | logical | function_handle

1 Alphabetical List

1-7766

Output Arguments
TF — Local maxima indicator
vector | matrix | multidimensional array

Local maxima indicator, returned as a vector, matrix, or multidimensional array. TF is the
same size as A.
Data Types: logical

P — Prominence
vector | matrix | multidimensional array

Prominence on page 1-7767, returned as a vector, matrix, or multidimensional array. P is
the same size as A.

If the input data has a signed or unsigned integer type, then P is an unsigned integer.

Definitions

Prominence of Local Maximum
The prominence of a local maximum (or peak) measures how the peak stands out with
respect to its height and location relative to other peaks.

To measure the prominence of a peak, first extend a horizontal line from the peak to the
left and to the right of the peak. Find where the line intersects the data on the left and on
the right, which will either be another peak or the end of the data. Mark these locations
as the outer endpoints of the left and right intervals. Next, find the lowest valley in both
intervals. Take the larger of these two valleys, and measure the vertical distance from
that valley to the peak. This distance is the prominence.

For a vector x, the largest prominence is at most max(x)-min(x).

 islocalmax

1-7767

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Tall timetables are not supported.
• You must specify a value for the 'ProminenceWindow' name-value pair.
• The 'MaxNumExtrema', 'MinSeparation', and 'SamplePoints' name-value pairs

are not supported.
• The value of 'DataVariables' cannot be a function handle.

For more information, see “Tall Arrays”.

See Also
ischange | islocalmin | isoutlier | max

Introduced in R2017b

1 Alphabetical List

1-7768

islocalmin
Find local minima

Syntax
TF = islocalmin(A)
TF = islocalmin(A,dim)
TF = islocalmin(___ ,Name,Value)
[TF,P] = islocalmin(___)

Description
TF = islocalmin(A) returns a logical array whose elements are 1 (true) when a local
minimum is detected in the corresponding element of an array, table, or timetable.

TF = islocalmin(A,dim) specifies the dimension of A to operate along. For example,
islocalmin(A,2) finds local minima of each row of a matrix A.

TF = islocalmin(___ ,Name,Value) specifies additional parameters for finding local
minima using one or more name-value pair arguments. For example,
islocalmin(A,'SamplePoints',t) finds local minima of A with respect to the time
stamps contained in the time vector t.

[TF,P] = islocalmin(___) also returns the prominence on page 1-7781
corresponding to each element of A for any of the previous syntaxes.

Examples

Local Minima in Vector

Compute and plot the local minima of a vector of data.

x = 1:100;
A = (1-cos(2*pi*0.01*x)).*sin(2*pi*0.15*x);

 islocalmin

1-7769

TF = islocalmin(A);
plot(x,A,x(TF),A(TF),'r*')

Minima in Matrix Rows

Create a matrix of data, and compute the local minima for each row.

A = -25*diag(ones(5,1)) + rand(5,5);
TF = islocalmin(A,2)

TF = 5x5 logical array

1 Alphabetical List

1-7770

 0 0 0 1 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 1 0 0

Separated Minima

Compute the local minima of a vector of data relative to the time stamps in the vector t.
Use the 'MinSeparation' parameter to compute minima that are at least 45 minutes
apart.

t = hours(linspace(0,3,15));
A = [2 4 6 4 3 7 5 6 5 10 4 -1 -3 -2 0];
TF = islocalmin(A,'MinSeparation',minutes(45),'SamplePoints',t);
plot(t,A,t(TF),A(TF),'r*')

 islocalmin

1-7771

Flat Minima Regions

Specify a method for indicating consecutive minima values.

Compute the local minima of data that contains consecutive minima values. Indicate the
minimum of each flat region based on the first occurrence of that value.

x = 0:0.1:5;
A = max(-0.75, sin(pi*x));
TF1 = islocalmin(A, 'FlatSelection', 'first');
plot(x,A,x(TF1),A(TF1),'r*')

1 Alphabetical List

1-7772

Indicate the minimum of each flat region with all occurrences of that value.

TF2 = islocalmin(A, 'FlatSelection', 'all');
plot(x,A,x(TF2),A(TF2),'r*')

 islocalmin

1-7773

Prominent Minima

Compute the local minima of a vector of data and their prominence, and then plot them
with the data.

x = 1:100;
A = peaks(100);
A = A(50,:);
[TF1,P] = islocalmin(A);
P(TF1)

1 Alphabetical List

1-7774

ans = 1×2

 2.7585 1.7703

plot(x,A,x(TF1),A(TF1),'r*')
axis tight

Compute the most prominent minimum in the data by specifying a minimum prominence
requirement.

TF2 = islocalmin(A,'MinProminence',2);
plot(x,A,x(TF2),A(TF2),'r*')
axis tight

 islocalmin

1-7775

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | table | timetable

dim — Operating dimension
positive integer scalar

1 Alphabetical List

1-7776

Operating dimension, specified as a positive integer scalar. By default, islocalmin
operates along the first dimension whose size does not equal 1.

For example, if A is a matrix, then islocalmin(A,1) operates along the rows of A,
computing local minima for each column.

islocalmin(A,2) operates along the columns of A, computing local minima for each
row.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TF = islocalmin(A,'MinProminence',2)

 islocalmin

1-7777

MinProminence — Minimum prominence
0 (default) | nonnegative scalar

Minimum prominence, specified as the comma-separated pair consisting of
'MinProminence' and a nonnegative scalar. islocalmin returns only local minima
whose prominence is at least the value specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ProminenceWindow — Prominence window
positive integer scalar | two-element vector of positive integers | positive duration scalar |
two-element vector of positive durations

Prominence window, specified as the comma-separated pair consisting of
'ProminenceWindow' and a positive integer scalar, a two-element vector of positive
integers, a positive duration scalar, or a two-element vector of positive durations. The
value defines a window of neighboring points for which to compute the prominence for
each local minimum.

When the window value is a positive integer scalar k, then the window is centered about
each local minimum and contains k-1 neighboring elements. If k is even, then the window
is centered about the current and previous elements. If a local minimum is within a flat
region, then islocalmin treats the entire flat region as the center point of the window.

When the value is a two-element vector [b f] of positive integers, then the window
contains the local minimum, b elements backward, and f elements forward. If a local
minimum is within a flat region, then the window starts b elements before the first point
of the region and ends f elements after the last point of the region.

When the input data is a timetable or when 'SamplePoints' is specified as a datetime
or duration vector, the window value must be of type duration, and the window is
computed relative to the sample points.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

FlatSelection — Flat region indicator
'center' (default) | 'first' | 'last' | 'all'

Flat region indicator for when a local minimum value is repeated consecutively, specified
as the comma-separated pair consisting of 'FlatSelection' and one of the following:

1 Alphabetical List

1-7778

• 'center' — Indicate only the center element of a flat region as the local minimum.
The element of TF corresponding to the center of the flat is 1, and is 0 for the
remaining flat elements.

• 'first' — Indicate only the first element of a flat region as the local minimum. The
element of TF corresponding to the start of the flat is 1, and is 0 for the remaining flat
elements.

• 'last' — Indicate only the last element of a flat region as the local minimum. The
element of TF corresponding to the end of the flat is 1, and is 0 for the remaining flat
elements.

• 'all' — Indicate all the elements of a flat region as the local minima. The elements of
TF corresponding to all parts of the flat are 1.

When using the 'MinSeparation' or 'MaxNumExtrema' name-value pairs, flat region
points are jointly considered a single minimum point.

MinSeparation — Minimum separation
0 (default) | nonnegative scalar

Minimum separation between local minima, specified as the comma-separated pair
consisting of 'MinSeparation' and a nonnegative scalar. The separation value is
defined in the same units as the sample points vector, which is [1 2 3 ...] by default.
When the separation value is greater than 0, islocalmin selects the smallest local
minimum and ignores all other local minima within the specified separation. This process
is repeated until there are no more local minima detected.

When the sample points vector has type datetime, the separation value must have type
duration.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

MaxNumExtrema — Maximum number of minima
positive integer scalar

Maximum number of minima detected, specified as the comma-separated pair consisting
of 'MaxNumExtrema' and a positive integer scalar. islocalmin finds no more than the
specified number of most prominent minima, which is the length of the operating
dimension by default.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 islocalmin

1-7779

SamplePoints — Sample points
vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the location of the data in A. Sample points do
not need to be uniformly sampled, but must be sorted with unique elements. By default,
the sample points vector is [1 2 3 ...].

islocalmin does not support this name-value pair when the input data is a timetable.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. The 'DataVariables' value indicates which columns of an input
table or timetable to operate on. This value can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes a table variable as input and returns a logical scalar

The specified table variables must have numeric or logical type.
Example: 'Age'
Example: {'Height','Weight'}
Example: @isnumeric
Data Types: char | cell | double | single | logical | function_handle

1 Alphabetical List

1-7780

Output Arguments
TF — Local minima indicator
vector | matrix | multidimensional array

Local minima indicator, returned as a vector, matrix, or multidimensional array. TF is the
same size as A.
Data Types: logical

P — Prominence
vector | matrix | multidimensional array

Prominence on page 1-7781, returned as a vector, matrix, or multidimensional array. P is
the same size as A.

If the input data has a signed or unsigned integer type, then P is an unsigned integer.

Definitions

Prominence of Local Minimum
The prominence of a local minimum (or valley) measures how the valley stands out with
respect to its depth and location relative to other valleys.

To measure the prominence of a valley, first extend a horizontal line from the valley to the
left and to the right of the valley. Find where the line intersects the data on the left and on
the right, which will either be another valley or the end of the data. Mark these locations
as the outer endpoints of the left and right intervals. Next, find the highest peak in both
the left and right intervals. Take the smaller of these two peaks, and measure the vertical
distance from that peak to the valley. This distance is the prominence.

For a vector x, the largest prominence is at most max(x)-min(x).

 islocalmin

1-7781

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Tall timetables are not supported.
• You must specify a value for the 'ProminenceWindow' name-value pair.
• The 'MaxNumExtrema', 'MinSeparation', and 'SamplePoints' name-value pairs

are not supported.
• The value of 'DataVariables' cannot be a function handle.

For more information, see “Tall Arrays”.

See Also
ischange | islocalmax | isoutlier | min

Introduced in R2017b

1 Alphabetical List

1-7782

islogical
Determine if input is logical array

Syntax
tf = islogical(A)

Description
tf = islogical(A) returns true if A is a logical array and false otherwise.
islogical also returns true if A is an instance of a class that is derived from the
logical class.

Examples
These examples show the values islogical returns when passed specific types:

% Relational operators return logical values
islogical(5<7)
ans =
 1

% true and false return logical values
islogical(true) & islogical(false)
ans =
 1

% Constants are double-precision by default
islogical(1)
ans =
 0

% logical creates logical values
islogical(logical(1))
ans =
 1

 islogical

1-7783

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
is* | isa | logical

Topics
“Determine if Arrays Are Logical”

Introduced before R2006a

1 Alphabetical List

1-7784

ismac
Determine if version is for macOS platform

Syntax
tf = ismac

Description
tf = ismac returns logical 1 (true) if the version of MATLAB software is for the Apple
macOS platform. Otherwise, it returns logical 0 (false).

Examples

Execute MATLAB Command Based on Platform

if ismac
 % Code to run on Mac platform
elseif isunix
 % Code to run on Linux platform
elseif ispc
 % Code to run on Windows platform
else
 disp('Platform not supported')
end

Tips
• The isunix function also determines if version is for macOS platforms.

 ismac

1-7785

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Returns true or false based on the MATLAB version used for code generation.
• Use only when the code generation target is S-function (Simulation) or MEX-function.

See Also
computer | is* | ispc | isstudent | isunix

Introduced in R2007a

1 Alphabetical List

1-7786

ismatrix
Determine whether input is matrix

Syntax
TF = ismatrix(A)

Description
TF = ismatrix(A) returns logical 1 (true) if A is a matrix. Otherwise, it returns logical
0 (false). A matrix is a two-dimensional array that has a size of m-by-n, where m and n
are nonnegative integers.

Examples

Arrays of Different Sizes

Determine whether arrays of different sizes are matrices.

Create an array of size 1-by-3. Determine whether it is a matrix.

A1 = zeros(1,3);
TF = ismatrix(A1)

TF = logical
 1

Create an empty array of size 0-by-3. Determine whether it is a matrix. A 2-D empty array
is a matrix.

A2 = zeros(0,3);
TF = ismatrix(A2)

 ismatrix

1-7787

TF = logical
 1

Create an array of size 1-by-3-by-2. Determine whether it is a matrix. A 3-D array is not a
matrix.

A3 = zeros(1,3,2);
TF = ismatrix(A3)

TF = logical
 0

Determine Matrix from Three-Dimensional Array

Create a 3-D array and determine whether the array elements are a matrix.

First define a 2-D array of size 2-by-3. Determine whether it is a matrix.

A = [0.1 0.2 0.5; 0.3 0.6 0.4]

A = 2×3

 0.1000 0.2000 0.5000
 0.3000 0.6000 0.4000

TF = ismatrix(A)

TF = logical
 1

To create a 3-D array, add a third dimension to the array A. Assign another 2-by-3 matrix
to the third dimension of A with index value 2.

A(:,:,2) = ones(2,3)

A =
A(:,:,1) =

 0.1000 0.2000 0.5000

1 Alphabetical List

1-7788

 0.3000 0.6000 0.4000

A(:,:,2) =

 1 1 1
 1 1 1

Check whether the 3-D array of size 2-by-3-by-2 is a matrix.

TF = ismatrix(A)

TF = logical
 0

Now determine whether the array elements of A are a matrix. Check whether the second
page of the 3-D array is a matrix. The syntax A(:,:,2) uses a colon in the first and
second dimensions to access all rows and all columns.

TF = ismatrix(A(:,:,2))

TF = logical
 1

Check whether the second row of the 3-D array is a matrix. The syntax A(2,:,:) uses a
colon in the second and third dimensions to include all columns and all pages.

TF = ismatrix(A(2,:,:))

TF = logical
 0

A(:,:,2) is a matrix since it is a multidimensional array of size 2-by-3. However,
A(2,:,:) is not a matrix since it is a multidimensional array of size 1-by-3-by-2.

Determine Matrix from Character Vector and String

Create an array of characters. Determine whether it is a matrix.

 ismatrix

1-7789

A = 'Hello, World!';
TF = ismatrix(A)

TF = logical
 1

Check the dimension of A using size. A is a matrix of size 1-by-13.

size(A)

ans = 1×2

 1 13

Now create a string scalar by enclosing a piece of text in double quotes.

A = "Hello, World!";

Check whether the scalar A of size 1-by-1 is also a matrix.

TF = ismatrix(A)

TF = logical
 1

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-7790

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
iscolumn | isrow | isscalar | isvector | size

Introduced in R2010b

 ismatrix

1-7791

ismember
Array elements that are members of set array

Syntax
Lia = ismember(A,B)
Lia = ismember(A,B,'rows')
[Lia,Locb] = ismember(___)

[Lia,Locb] = ismember(___ ,'legacy')

Description
Lia = ismember(A,B) returns an array containing logical 1 (true) where the data in A
is found in B. Elsewhere, the array contains logical 0 (false).

• If A and B are tables or timetables, then ismember returns a logical value for each
row. For timetables, ismember takes row times into account to determine equality.
The output, Lia, is a column vector.

Lia = ismember(A,B,'rows') treats each row of A and each row of B as single
entities and returns a column vector containing logical 1 (true) where the rows of A are
also rows of B. Elsewhere, the array contains logical 0 (false).

The 'rows' option does not support cell arrays, unless one of the inputs is either a
categorical array or a datetime array.

[Lia,Locb] = ismember(___) also returns an array, Locb, using any of the previous
syntaxes.

• Generally, Locb contains the lowest index in B for each value in A that is a member of
B. Values of 0 indicate where A is not a member of B.

• If the 'rows' option is specified, then Locb contains the lowest index in B for each
row in A that is also a row in B. Values of 0 indicate where A is not a row of B.

• If A and B are tables or timetables, then Locb contains the lowest index in B for each
row in A that is also a row in B. Values of 0 indicate where A is not a row of B.

1 Alphabetical List

1-7792

[Lia,Locb] = ismember(___ ,'legacy') preserves the behavior of the ismember
function from R2012b and prior releases using any of the input arguments in previous
syntaxes.

The 'legacy' option does not support categorical arrays, datetime arrays, duration
arrays, tables, or timetables.

Examples

Values That Are Members of Set

Create two vectors with values in common.

A = [5 3 4 2];
B = [2 4 4 4 6 8];

Determine which elements of A are also in B.

Lia = ismember(A,B)

Lia = 1x4 logical array

 0 0 1 1

A(3) and A(4) are found in B.

Table Rows Found in Another Table

Create two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))

A=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 2 B true

 ismember

1-7793

 3 C false
 4 D true
 5 E false

B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

B=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 3 C false
 5 E false
 7 G false
 9 I false

Determine which rows of A are also in B.

Lia = ismember(A,B)

Lia = 5x1 logical array

 1
 0
 1
 0
 1

A(1,:), A(3,:), and A(5,:) are found in B.

Members of Set and Indices to Values

Create two vectors with values in common.

A = [5 3 4 2];
B = [2 4 4 4 6 8];

Determine which elements of A are also in B as well as their corresponding locations in B.

[Lia,Locb] = ismember(A,B)

1 Alphabetical List

1-7794

Lia = 1x4 logical array

 0 0 1 1

Locb = 1×4

 0 0 2 1

The lowest index to A(3) is B(2), and A(4) is found in B(1).

Set Members in Presence of Numerical Error

Create a vector x. Obtain a second vector y by transforming and untransforming x. This
transformation introduces round-off differences in y.

x = (1:6)'*pi;
y = 10.^log10(x);

Verify that x and y are not identical by taking the difference.

x-y

ans = 6×1
10-14 ×

 0.0444
 0
 0
 0
 0
 -0.3553

Use ismember to find the elements of x that are in y. The ismember function performs
exact comparisons and determines that some of the matrix elements in x are not
members of y.

lia = ismember(x,y)

lia = 6x1 logical array

 ismember

1-7795

 0
 1
 1
 1
 1
 0

Use ismembertol to perform the comparison using a small tolerance. ismembertol
treats elements that are within tolerance as equal and determines that all of the elements
in x are members of y.

LIA = ismembertol(x,y)

LIA = 6x1 logical array

 1
 1
 1
 1
 1
 1

Rows of Another Table and Their Location

Create a table, A, of gender, age, and height for five people.

A = table(['M';'M';'F';'M';'F'],[27;52;31;46;35],[74;68;64;61;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty' 'Bob' 'Judy'})

A=5×3 table
 Gender Age Height
 ______ ___ ______

 Ted M 27 74
 Fred M 52 68
 Betty F 31 64
 Bob M 46 61
 Judy F 35 64

1 Alphabetical List

1-7796

Create another table, B, with rows in common with A.

B = table(['M';'F';'F';'F'],[47;31;35;23],[68;64;62;58],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Joe' 'Meg' 'Beth' 'Amy'})

B=4×3 table
 Gender Age Height
 ______ ___ ______

 Joe M 47 68
 Meg F 31 64
 Beth F 35 62
 Amy F 23 58

Determine which rows of A are also in B, as well as their corresponding locations in B.

[Lia,Locb] = ismember(A,B)

Lia = 5x1 logical array

 0
 0
 1
 0
 0

Locb = 5×1

 0
 0
 2
 0
 0

Two rows that have the same values, but different names, are considered equal. The same
data for Betty is found in B(2,:), which corresponds to Meg.

 ismember

1-7797

Rows That Belong to a Set

Create two matrices with a row in common.

A = [1 3 5 6; 2 4 6 8];
B = [2 4 6 8; 1 3 5 7; 2 4 6 8];

Determine which rows of A are also in B as well as their corresponding locations in B.

[Lia, Locb] = ismember(A,B, 'rows')

Lia = 2x1 logical array

 0
 1

Locb = 2×1

 0
 1

The lowest index to A(2,:) is B(1,:).

Members of Set Containing NaN Values

Create two vectors containing NaN.

A = [5 NaN NaN];
B = [5 NaN NaN];

Determine which elements of A are also in B, as well as their corresponding locations in B.

[Lia,Locb] = ismember(A,B)

Lia = 1x3 logical array

 1 0 0

Locb = 1×3

1 Alphabetical List

1-7798

 1 0 0

ismember treats NaN values as distinct.

Cell Array of Character Vectors with Trailing White Space

Create a cell array of character vectors, A.

A = {'dog','cat','fish','horse'};

Create a cell array of character vectors, B, where some of the vectors have trailing white
space.

B = {'dog ','cat','fish ','horse'};

Determine which character vectors of A are also in B.

[Lia,Locb] = ismember(A,B)

Lia = 1x4 logical array

 0 1 0 1

Locb = 1×4

 0 2 0 4

ismember treats trailing white space in cell arrays of character vectors as distinct
characters.

Members of Char and Cell Array of Character Vectors

Create a character vector, A, and a cell array of character vectors, B.

A = ['cat';'dog';'fox';'pig'];
B = {'dog','cat','fish','horse'};

 ismember

1-7799

Determine which character vectors of A are also in B.

[Lia,Locb] = ismember(A,B)

Lia = 4x1 logical array

 1
 1
 0
 0

Locb = 4×1

 2
 1
 0
 0

Preserve Legacy Behavior of ismember

Use the 'legacy' flag to preserve the behavior of ismember from R2012b and prior
releases in your code.

Find the members of B with the current behavior.

A = [5 3 4 2];
B = [2 4 4 4 6 8];
[Lia1,Locb1] = ismember(A,B)

Lia1 = 1x4 logical array

 0 0 1 1

Locb1 = 1×4

 0 0 2 1

Find the members of B, and preserve the legacy behavior.

1 Alphabetical List

1-7800

[Lia2,Locb2] = ismember(A,B,'legacy')

Lia2 = 1x4 logical array

 0 0 1 1

Locb2 = 1×4

 0 0 4 1

Input Arguments
A — Query array
numeric arrays | logical arrays | character arrays | string arrays | categorical arrays |
datetime arrays | duration arrays | cell arrays of character vectors | tables | timetables

Query array, specified as a numeric array, logical array, character array, string array,
categorical array, datetime array, duration array, cell array of character vectors, table, or
timetable. If you specify the 'rows' option, A and B must have the same number of
columns.

A must belong to the same class as B with the following exceptions:

• logical, char, and all numeric classes can combine with double arrays.
• Cell arrays of character vectors can combine with character arrays or string arrays.
• Categorical arrays can combine with character arrays, cell arrays of character vectors,

or string arrays.
• Datetime arrays can combine with cell arrays of date character vectors or single date

character vectors.

There are additional requirements for A and B based on data type:

• If A and B are both ordinal categorical arrays, they must have the same sets of
categories, including their order. If neither A nor B are ordinal, they need not have the
same sets of categories, and the comparison is performed using the category names.

• If A is a table or timetable, it must have the same variable names as B (except for
order). For tables, row names are ignored, so that two rows that have the same values,

 ismember

1-7801

but different names, are considered equal. For timetables, row times are taken into
account, so that two rows that have the same values, but different times, are not
considered equal.

• If A and B are datetime arrays, they must be consistent with each other in whether
they specify a time zone.

For textual inputs, ismember generally does not ignore trailing spaces in character
vectors, cell arrays of character vectors, and string arrays. However, there are a few
cases when ismember does ignore trailing spaces:

• If A is a character array and B is a cell array of character vectors, then ismember
ignores trailing spaces in the character array.

• When the 'rows' option is specified, ismember ignores trailing spaces in character
vectors and character arrays.

A also can be an object with the following class methods:

• sort (or sortrows for the 'rows' option)
• eq
• ne

The object class methods must be consistent with each other. These objects include
heterogeneous arrays derived from the same root class. For example, A can be an array of
handles to graphics objects.

B — Set array
numeric arrays | logical arrays | character arrays | string arrays | categorical arrays |
datetime arrays | duration arrays | cell arrays of character vectors | tables | timetables

Set array, specified as a numeric array, logical array, character array, string array,
categorical array, datetime array, duration array, cell array of character vectors, table, or
timetable. If you specify the 'rows' option, A and B must have the same number of
columns.

B must belong to the same class as A with the following exceptions:

• logical, char, and all numeric classes can combine with double arrays.
• Cell arrays of character vectors can combine with character arrays or string arrays.
• Categorical arrays can combine with character arrays, cell arrays of character vectors,

or string arrays.

1 Alphabetical List

1-7802

• Datetime arrays can combine with cell arrays of date character vectors or single date
character vectors.

There are additional requirements for A and B based on data type:

• If A and B are both ordinal categorical arrays, they must have the same sets of
categories, including their order. If neither A nor B are ordinal, they need not have the
same sets of categories, and the comparison is performed using the category names.

• If B is a table or timetable, it must have the same variable names as A (except for
order). For tables, row names are ignored, so that two rows that have the same values,
but different names, are considered equal. For timetables, row times are taken into
account, so that two rows that have the same values, but different times, are not
considered equal.

• If A and B are datetime arrays, they must be consistent with each other in whether
they specify a time zone.

For textual inputs, ismember generally does not ignore trailing spaces in character
vectors, cell arrays of character vectors, and string arrays. However, there are a few
cases when ismember does ignore trailing spaces:

• If A is a character array and B is a cell array of character vectors, then ismember
ignores trailing spaces in the character array.

• When the 'rows' option is specified, ismember ignores trailing spaces in character
vectors and character arrays.

B also can be an object with the following class methods:

• sort (or sortrows for the 'rows' option)
• eq
• ne

The object class methods must be consistent with each other. These objects include
heterogeneous arrays derived from the same root class. For example, B can be an array of
handles to graphics objects.

Output Arguments
Lia — Logical index to A
vector | matrix | N-D array

 ismember

1-7803

Logical index to A, returned as a vector, matrix or N-D array containing logical 1 (true)
wherever the values (or rows) in A are members of B. Elsewhere, it contains logical 0
(false).

Lia is an array of the same size as A, unless you specify the 'rows' flag.

If the 'rows' flag is specified or if A is a table or timetable, Lia is a column vector with
the same number of rows as A.

Locb — Locations in B
vector | matrix | N-D array

Locations in B, returned as a vector, matrix, or N-D array. If the 'legacy' flag is not
specified, Locb contains the lowest indices to the values (or rows) in B that are found in
A. Values of 0 indicate where A is not a member of B.

Locb is an array of the same size as A unless you specify the 'rows' flag.

If the 'rows' flag is specified or if A is a table or timetable, Locb is a column vector with
the same number of rows as A.

Tips
• Use ismembertol to perform comparisons between floating-point numbers using a

tolerance.
• To find the rows from table or timetable A that are found in B with respect to a subset

of variables, you can use column subscripting. For example, you can use
ismember(A(:,vars),B(:,vars)), where vars is a positive integer, a vector of
positive integers, a variable name, a cell array of variable names, or a logical vector.
Alternatively, you can use vartype to create a subscript that selects variables of a
specified type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-7804

This function supports tall arrays with the limitations:

Only one of A or B can be a tall array.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support cell arrays for the first or second arguments.
• Complex inputs must be single or double.
• See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'legacy' flag is not supported.
• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
intersect | ismembertol | issorted | setdiff | setxor | sort | union | unique

Introduced before R2006a

 ismember

1-7805

ismembertol
Members of set within tolerance

Syntax
LIA = ismembertol(A,B,tol)
LIA = ismembertol(A,B)
[LIA,LocB] = ismembertol(___)
[___] = ismembertol(___ ,Name,Value)

Description
LIA = ismembertol(A,B,tol) returns an array containing logical 1 (true) where the
elements of A are within tolerance of the elements in B. Otherwise, the array contains
logical 0 (false). Two values, u and v, are within tolerance if

abs(u-v) <= tol*max(abs([A(:);B(:)]))

That is, ismembertol scales the tol input based on the magnitude of the data.

ismembertol is similar to ismember. Whereas ismember performs exact comparisons,
ismembertol performs comparisons using a tolerance.

LIA = ismembertol(A,B) uses a default tolerance of 1e-6 for single-precision inputs
and 1e-12 for double-precision inputs.

[LIA,LocB] = ismembertol(___) also returns an array, LocB, that contains the
index location in B for each element in A that is a member of B. You can use any of the
input arguments in previous syntaxes.

[___] = ismembertol(___ ,Name,Value) uses additional options specified by one
or more Name-Value pair arguments using any of the input or output argument
combinations in previous syntaxes. For example, ismembertol(A,B,'ByRows',true)
compares the rows of A and B and returns a logical column vector.

1 Alphabetical List

1-7806

Examples

Set Members in Presence of Numerical Error

Create a vector x. Obtain a second vector y by transforming and untransforming x. This
transformation introduces round-off differences in y.

x = (1:6)'*pi;
y = 10.^log10(x);

Verify that x and y are not identical by taking the difference.

x-y

ans = 6×1
10-14 ×

 0.0444
 0
 0
 0
 0
 -0.3553

Use ismember to find the elements of x that are in y. The ismember function performs
exact comparisons and determines that some of the matrix elements in x are not
members of y.

lia = ismember(x,y)

lia = 6x1 logical array

 0
 1
 1
 1
 1
 0

 ismembertol

1-7807

Use ismembertol to perform the comparison using a small tolerance. ismembertol
treats elements that are within tolerance as equal and determines that all of the elements
in x are members of y.

LIA = ismembertol(x,y)

LIA = 6x1 logical array

 1
 1
 1
 1
 1
 1

Determine Set Members by Rows

By default, ismembertol looks for elements that are within tolerance, but it also can find
rows of a matrix that are within tolerance.

Create a numeric matrix, A. Obtain a second matrix, B, by transforming and
untransforming A. This transformation introduces round-off differences to B.

A = [0.05 0.11 0.18; 0.18 0.21 0.29; 0.34 0.36 0.41; ...
 0.46 0.52 0.76; 0.82 0.91 1.00];
B = log10(10.^A);

Use ismember to find the rows of A that are in B. ismember performs exact comparisons
and thus determines that most of the rows in A are not members of B, even though some
of the rows differ by only a small amount.

lia = ismember(A,B,'rows')

lia = 5x1 logical array

 0
 0
 0
 0
 1

1 Alphabetical List

1-7808

Use ismembertol to perform the row comparison using a small tolerance. ismembertol
treats rows that are within tolerance as equal and thus determines that all of the rows in
A are members of B.

LIA = ismembertol(A,B,'ByRows',true)

LIA = 5x1 logical array

 1
 1
 1
 1
 1

Average Similar Values in Vectors

Create two vectors of random numbers and determine which values in A are also
members of B, using a tolerance. Specify OutputAllIndices as true to return all of the
indices for the elements in B that are within tolerance of the corresponding elements in A.

rng(5)
A = rand(1,15);
B = rand(1,5);
[LIA,LocAllB] = ismembertol(A,B,0.2,'OutputAllIndices',true)

LIA = 1x15 logical array

 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0

LocAllB = 1x15 cell array
 Columns 1 through 5

 {2x1 double} {[0]} {2x1 double} {[0]} {3x1 double}

 Columns 6 through 10

 {2x1 double} {[4]} {3x1 double} {3x1 double} {2x1 double}

 Columns 11 through 15

 ismembertol

1-7809

 {[0]} {2x1 double} {4x1 double} {2x1 double} {[0]}

Find the average value of the elements in B that are within tolerance of the value A(13).
The cell LocAllB{13} contains all the indices for elements in B that are within tolerance
of A(13).

A(13)

ans = 0.4413

allB = B(LocAllB{13})

allB = 1×4

 0.2741 0.4142 0.2961 0.5798

aveB = mean(allB)

aveB = 0.3911

Specify Absolute Tolerance

By default, ismembertol uses a tolerance test of the form abs(u-v) <= tol*DS,
where DS automatically scales based on the magnitude of the input data. You can specify
a different DS value to use with the DataScale option. However, absolute tolerances
(where DS is a scalar) do not scale based on the magnitude of the input data.

First, compare two small values that are a distance eps apart. Specify tol and DS to
make the within tolerance equation abs(u-v) <= 10^-6.

x = 0.1;
ismembertol(x, exp(log(x)), 10^-6, 'DataScale', 1)

ans = logical
 1

Next, increase the magnitude of the values. The round-off error in the calculation
exp(log(x)) is proportional to the magnitude of the values, specifically to eps(x).
Even though the two large values are a distance eps from one another, eps(x) is now
much larger. Therefore, 10^-6 is no longer a suitable tolerance.

1 Alphabetical List

1-7810

x = 10^10;
ismembertol(x, exp(log(x)), 10^-6, 'DataScale', 1)

ans = logical
 0

Correct this issue by using the default (scaled) value of DS.

Y = [0.1 10^10];
ismembertol(Y, exp(log(Y)))

ans = 1x2 logical array

 1 1

Specify DataScale by Column

Create a set of random 2-D points, and then use ismembertol to group the points into
vertical bands that have a similar (within-tolerance) x-coordinate to a small set of query
points, B. Use these options with ismembertol:

• Specify ByRows as true, since the point coordinates are in the rows of A and B.
• Specify OutputAllIndices as true to return the indices for all points in A that have

an x-coordinate within tolerance of the query points in B.
• Specify DataScale as [1 Inf] to use an absolute tolerance for the x-coordinate, while

ignoring the y-coordinate.

A = rand(1000,2);
B = [(0:.2:1)',0.5*ones(6,1)];
[LIA,LocAllB] = ismembertol(B, A, 0.1, 'ByRows', true, ...
 'OutputAllIndices', true, 'DataScale', [1,Inf])

LIA = 6x1 logical array

 1
 1
 1
 1
 1

 ismembertol

1-7811

 1

LocAllB = 6x1 cell array
 { 94x1 double}
 {223x1 double}
 {195x1 double}
 {212x1 double}
 {187x1 double}
 { 89x1 double}

Plot the points in A that are within tolerance of each query point in B.

hold on
plot(B(:,1),B(:,2),'x')
for k = 1:length(LocAllB)
 plot(A(LocAllB{k},1), A(LocAllB{k},2),'.')
end

1 Alphabetical List

1-7812

Input Arguments
A — Query array
scalar | vector | matrix | multidimensional array

Query array, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and
B must be full.

If you specify the ByRows option, then A and B must have the same number of columns.
Data Types: single | double

 ismembertol

1-7813

B — Query array
scalar | vector | matrix | multidimensional array

Query array, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and
B must be full.

If you specify the ByRows option, then A and B must have the same number of columns.
Data Types: single | double

tol — Comparison tolerance
positive real scalar

Comparison tolerance, specified as a positive real scalar. ismembertol scales the tol
input using the maximum absolute values in the input arrays A and B. Then ismembertol
uses the resulting scaled comparison tolerance to determine which elements in A are also
a member of B. If two elements are within tolerance of each other, then ismembertol
considers them to be equal.

Two values, u and v, are within tolerance if abs(u-v) <=
tol*max(abs([A(:);B(:)])).

To specify an absolute tolerance, specify both tol and the 'DataScale' Name-Value
pair.
Example: tol = 0.05
Example: tol = 1e-8
Example: tol = eps
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: LIA = ismembertol(A,B,'ByRows',true)

OutputAllIndices — Output index type
false (default) | true | 0 | 1

1 Alphabetical List

1-7814

Output index type, specified as the comma-separated pair consisting of
'OutputAllIndices' and either false (default), true, 0, or 1. ismembertol
interprets numeric 0 as false and numeric 1 as true.

When OutputAllIndices is true, the ismembertol function returns the second
output, LocB, as a cell array. The cell array contains the indices for all elements in B that
are within tolerance of the corresponding value in A. That is, each cell in LocB
corresponds to a value in A, and the values in each cell correspond to locations in B.
Example: [LIA,LocAllB] = ismembertol(A,B,tol,'OutputAllIndices',true)

ByRows — Row comparison toggle
false (default) | true | 0 | 1

Row comparison toggle, specified as the comma-separated pair consisting of 'ByRows'
and either false (default), true, 0, or 1. ismembertol interprets numeric 0 as false
and numeric 1 as true. Use this option to find rows in A and B that are within tolerance.

When ByRows is true:

• ismembertol compares the rows of A and B by considering each column separately.
Thus, A and B must be 2-D arrays with the same number of columns.

• If the corresponding row in A is within tolerance of a row in B, then LIA contains
logical 1 (true). Otherwise, it contains logical 0 (false).

Two rows, u and v, are within tolerance if all(abs(u-v) <= tol*max(abs([A;B]))).
Example: LIA = ismembertol(A,B,tol,'ByRows',true)

DataScale — Scale of data
scalar | vector

Scale of data, specified as the comma-separated pair consisting of 'DataScale' and
either a scalar or vector. Specify DataScale as a numeric scalar, DS, to change the
tolerance test to be, abs(u-v) <= tol*DS.

When used together with the ByRows option, the DataScale value also can be a vector.
In this case, each element of the vector specifies DS for a corresponding column in A. If a
value in the DataScale vector is Inf, then ismembertol ignores the corresponding
column in A.
Example: LIA = ismembertol(A,B,'DataScale',1)

 ismembertol

1-7815

Example: [LIA,LocB] = ismembertol(A,B,'ByRows',true,'DataScale',
[eps(1) eps(10) eps(100)])

Data Types: single | double

Output Arguments
LIA — Logical index to A
vector | matrix

Logical index to A, returned as a vector or matrix containing logical 1 (true) wherever
the elements (or rows) in A are members of B (within tolerance). Elsewhere, LIA contains
logical 0 (false).

LIA is the same size as A, unless you specify the ByRows option. In that case, LIA is a
column vector with the same number of rows as A.

LocB — Locations in B
vector | matrix | cell array

Locations in B, returned as a vector, matrix, or cell array. LocB contains the indices to the
elements (or rows) in B that are found in A (within tolerance). LocB contains 0 wherever
an element in A is not a member of B.

If OutputAllIndices is true, then ismembertol returns LocB as a cell array. The cell
array contains the indices for all elements in B that are within tolerance of the
corresponding value in A. That is, each cell in LocB corresponds to a value in A, and the
values in each cell correspond to locations in B.

LocB is the same size as A, unless you specify the ByRows option. In that case, LocB is a
column vector with the same number of rows as A.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-7816

Usage notes and limitations:

• The 'ByRows' and 'OutputAllIndices' arguments are not supported.
• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
eps | ismember | unique | uniquetol

Topics
“Group Scattered Data Using a Tolerance”

Introduced in R2015a

 ismembertol

1-7817

ismethod
Determine if method of object

Syntax
tf = ismethod(obj,methodName)

Description
tf = ismethod(obj,methodName) returns logical 1 (true) if the specified
methodName is a nonhidden, public method of object obj. Otherwise, ismethod returns
logical 0 (false). The methodName argument is the name of the method specified as a
character vector or a string scalar.

ismethod does not accept class names specified as character vectors or strings as the
first argument.

Use the methods function to list the methods of abstract classes.

Examples
Determine if objects support equality testing:

if ismethod(obj1,'eq') && ismethod(obj2,'eq')
 tf = obj1 == obj2;
end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-7818

See Also
class | isobject | isprop | methods

Topics
“Methods”
“Method Attributes”

Introduced before R2006a

 ismethod

1-7819

cool
Cool colormap array

Syntax
c = cool
c = cool(m)

Description
c = cool returns the cool colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = cool(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the cool colormap.

surf(peaks);
colormap('cool');

1 Alphabetical List

1-7820

Get the cool colormap array and reverse the order. Then apply the modified colormap to
the surface.

c = cool;
c = flipud(c);
colormap(c);

 cool

1-7821

Downsample the Cool Colormap

Get a downsampled version of the cool colormap containing only ten colors. Then display
the contours of the peaks function by applying the colormap and interpolated shading.

c = cool(10);
surf(peaks);
colormap(c);
shading interp;

1 Alphabetical List

1-7822

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 cool

1-7823

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-7824

ismissing
Find missing values

Syntax
TF = ismissing(A)
TF = ismissing(A,indicator)

Description
TF = ismissing(A) returns a logical array that indicates which elements of an array or
table contain missing values. The size of TF is the same as the size of A.

Standard missing values depend on the data type:

• NaN for double, single, duration, and calendarDuration
• NaT for datetime
• <missing> for string
• <undefined> for categorical
• ' ' for char
• {''} for cell of character vectors

TF = ismissing(A,indicator) treats the values in indicator as missing value
indicators, ignoring all default indicators listed in the previous syntax. indicator can be
a single indicator or multiple indicators. For example, if A is an array of type double,
then ismissing(A,[0,-99]) treats 0 and -99 as missing double values instead of NaN.

Examples

NaN Values in Vector

Create a row vector A that contains NaN values, and identify their location in A.

 ismissing

1-7825

A = [3 NaN 5 6 7 NaN NaN 9];
TF = ismissing(A)

TF = 1x8 logical array

 0 1 0 0 0 1 1 0

Missing Values in Table with Various Data Types

Create a table with variables of different data types and find the elements with missing
values.

dblVar = [NaN;3;5;7;9;11;13];
singleVar = single([1;NaN;5;7;9;11;13]);
cellstrVar = {'one';'three';'';'seven';'nine';'eleven';'thirteen'};
charVar = ['A';'C';'E';' ';'I';'J';'L'];
categoryVar = categorical({'red';'yellow';'blue';'violet';'';'ultraviolet';'orange'});
dateVar = [datetime(2015,1:2:10,15) NaT datetime(2015,11,15)]';
stringVar = ["a";"b";"c";"d";"e";"f";missing];

A = table(dblVar,singleVar,cellstrVar,charVar,categoryVar,dateVar,stringVar)

A=7×7 table
 dblVar singleVar cellstrVar charVar categoryVar dateVar stringVar
 ______ _________ __________ _______ ___________ ___________ _________

 NaN 1 'one' A red 15-Jan-2015 "a"
 3 NaN 'three' C yellow 15-Mar-2015 "b"
 5 5 '' E blue 15-May-2015 "c"
 7 7 'seven' violet 15-Jul-2015 "d"
 9 9 'nine' I <undefined> 15-Sep-2015 "e"
 11 11 'eleven' J ultraviolet NaT "f"
 13 13 'thirteen' L orange 15-Nov-2015 <missing>

ismissing returns 1 where the corresponding element in A has a missing value.

TF = ismissing(A)

TF = 7x7 logical array

 1 0 0 0 0 0 0

1 Alphabetical List

1-7826

 0 1 0 0 0 0 0
 0 0 1 0 0 0 0
 0 0 0 1 0 0 0
 0 0 0 0 1 0 0
 0 0 0 0 0 1 0
 0 0 0 0 0 0 1

The size of TF is the same as the size of A.

Specify Indicators for Missing Values in Table

Create a table where 'NA', '', -99, NaN, and Inf represent missing values. Then, find
the elements with missing values.

dblVar = [NaN;3;Inf;7;9];
int8Var = int8([1;3;5;7;-99]);
cellstrVar = {'one';'three';'';'NA';'nine'};
charVar = ['A';'C';'E';' ';'I'];

A = table(dblVar,int8Var,cellstrVar,charVar)

A=5×4 table
 dblVar int8Var cellstrVar charVar
 ______ _______ __________ _______

 NaN 1 'one' A
 3 3 'three' C
 Inf 5 '' E
 7 7 'NA'
 9 -99 'nine' I

ismissing returns 1 where the corresponding element in A has a missing value.

id = {'NA' '' -99 NaN Inf};
TF = ismissing(A,id)

TF = 5x4 logical array

 1 0 0 0
 0 0 0 0

 ismissing

1-7827

 1 0 1 0
 0 0 1 1
 0 1 0 0

ismissing ignores trailing white space in character arrays. Therefore, since the empty
character vector, '', is specified as a missing value indicator, ismissing identifies the
empty character vector in A.cellstrVar and also the blank space in A.charVar as
missing values.

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable.

If A is a timetable, then ismissing operates on the table data only and ignores NaT or
NaN values in the vector of row times.

When the input argument is a cell array, it must be a cell array of character vectors. If the
input is a table or timetable with a variable of type cell, then ismissing only detects
missing elements when the variable is a cell array of character vectors.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | table | timetable |
categorical | datetime | duration | calendarDuration

indicator — Missing value indicator
scalar | vector | cell array

Missing value indicators, specified as a scalar, vector, or cell array. If A is an array, then
indicator must be a vector. If A is a table or timetable, then indicator can also be a
cell array with entries of multiple data types.

The entries of indicator indicate the values that ismissing treats as missing.
Specifying indicator overrides all default standard missing indicators. If you want to
add indicators while maintaining the list of standard indicators, then you must include all
default indicators as elements of indicator. For example, if A is a table with
categorical and numeric values, use ismissing(A,{-99,'<undefined>'}) to

1 Alphabetical List

1-7828

indicate -99 as a missing numeric value, but preserve <undefined> as a missing
categorical value.

You can also use the missing value as an indicator for any missing data represented as
NaN, NaT, missing, or <undefined>. If your input is a table, then missing is also an
indicator for missing character vectors (' ') and missing cell arrays of character vectors
({''}).

Indicator data types match data types in the entries of A. The following are additional
data type matches between the indicator and elements of A:

• double indicators match double, single, integer, and logical entries of A.
• string and char indicators, and indicators that are cell arrays of character vectors,

match string entries of A.
• string and char indicators match categorical entries of A.

Example: TF = ismissing(A,0) recognizes only 0 as a missing value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | datetime | duration

Tips
• Since integer variables cannot store NaN, use a special integer value (otherwise

unused) to indicate missing integer data, such as -99.
• For more information on finding missing strings, see “Test for Empty Strings and

Missing Values”.

Algorithms
ismissing handles leading and trailing white space differently for indicators that are
cell arrays of character vectors, character arrays, or categorical arrays.

• For cell arrays of character vectors, ismissing does not ignore indicator white space.
All character vectors must match exactly.

• For character arrays in table variables, ismissing ignores trailing white space in the
indicator.

 ismissing

1-7829

• For categorical arrays, ismissing ignores leading and trailing white space in the
indicator.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fillmissing | isempty | isnan | isoutlier | isundefined | missing | rmmissing |
standardizeMissing

Topics
“Missing Data in MATLAB”

Introduced in R2013b

1 Alphabetical List

1-7830

isnan
Array elements that are NaN

Syntax
TF = isnan(A)

Description
TF = isnan(A) returns an array the same size as A containing logical 1 (true) where
the elements of A are NaNs and logical 0 (false) where they are not. For a complex
number z, isnan(z) returns 1 if either the real or imaginary part of z is NaN, and 0 if
both the real and imaginary parts are finite or Inf.

For any real A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples

NaN Elements in Vector

Determine the NaN elements of the row vector, A.

A = 0./[-2 -1 0 1 2]

A = 1×5

 0 0 NaN 0 0

TF = isnan(A)

TF = 1x5 logical array

 isnan

1-7831

 0 0 1 0 0

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
is* | isfinite | isinf | ismissing | nan

1 Alphabetical List

1-7832

Topics
“Missing Data in MATLAB”

Introduced before R2006a

 isnan

1-7833

isnat
Determine NaT (Not-a-Time) elements

Syntax
tf = isnat(A)

Description
tf = isnat(A) returns an array the same size as the datetime array, A, containing
logical 1 (true) where the elements of A are Not-a-Time (NaTs) and logical 0 (false)
where they are not. NaT represents a datetime that is undefined.

Examples

Determine If Array Elements are NaT

Create a datetime array from numeric values containing NaN.

d = datetime(2014,[1 2 NaN 4],1)

d = 1x4 datetime array
 01-Jan-2014 01-Feb-2014 NaT 01-Apr-2014

Determine if any elements of d are NaT (Not-a-Time).

isnat(d)

ans = 1x4 logical array

 0 0 1 0

1 Alphabetical List

1-7834

Input Arguments
A — Input array
datetime array

Input array, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
isfinite | isinf

Introduced in R2014b

 isnat

1-7835

isnumeric
Determine whether input is numeric array

Syntax
TF = isnumeric(A)

Description
TF = isnumeric(A) returns logical 1 (true) if A is an array of numeric data type.
Otherwise, it returns logical 0 (false).

Numeric types in MATLAB include: int8, int16, int32, int64, uint8, uint16,
uint32, uint64, single, and double. For more information, see “Integer Classes” and
“Floating-Point Numbers”.

Examples

Determine Whether Number Is Numeric Type

Determine if a real number is a numeric type.

TF = isnumeric(2)

TF = logical
 1

MATLAB® stores numeric data as a double-precision format by default, which is a
numeric type.

Now create a signed 16-bit integer type using int16. Check if it is a numeric type.

TF = isnumeric(int16(-256))

1 Alphabetical List

1-7836

TF = logical
 1

Determine Whether Infinity and NaN Are Numeric Type

Determine if an array containing infinity or not-a-number values is a numeric type.

Create several calculations that return Inf and assign the results to an array. Check if
the array is a numeric type.

A = [1/0 log(0) 1e1000]

A = 1×3

 Inf -Inf Inf

TF = isnumeric(A)

TF = logical
 1

MATLAB represents infinity by the special value Inf as a double type.

Create several calculations that return NaN and assign the results to an array. Check if
the array is a numeric type.

A = [0/0 -Inf/Inf]

A = 1×2

 NaN NaN

TF = isnumeric(A)

TF = logical
 1

MATLAB represents not-a-number by the special value NaN, as a double type.

 isnumeric

1-7837

Determine Whether Arrays Are Numeric Type

Determine if an array containing floating-point numbers is a numeric type.

A = [-3.5e2 2.5; single(3) pi]

A = 2x2 single matrix

 -350.0000 2.5000
 3.0000 3.1416

TF = isnumeric(A)

TF = logical
 1

Now create a cell array that contains the array A and other numbers. Use class to
identify the type of the cell array. Check if it is a numeric type.

B = {A -4; 2 1}

B = 2x2 cell array
 {2x2 single} {[-4]}
 {[2]} {[1]}

type = class(B)

type =
'cell'

TF = isnumeric(B)

TF = logical
 0

The cell array is not a numeric type since it is a cell type.

1 Alphabetical List

1-7838

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. MATLAB has
the following numeric types.

Integer Type Description
single single-precision floating-point
double double-precision floating-point
int8 8-bit signed integer
int16 16-bit signed integer
int64 64-bit signed integer
int32 32-bit signed integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
uint64 64-bit unsigned integer

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 isnumeric

1-7839

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
class | is* | isa | isfloat | isinteger

Topics
“Integers”
“Floating-Point Numbers”

Introduced before R2006a

1 Alphabetical List

1-7840

isobject
Determine if input is MATLAB object

Syntax
tf = isobject(A)

Description
tf = isobject(A) returns true if A is an object of a MATLAB class. Otherwise, it
returns false.

Instances of MATLAB numeric, logical, char, cell, struct, and function handle
classes return false. Use isa to test for any of these types.

Examples
Define the following MATLAB class:

classdef button < handle
 properties
 UiHandle
 end
 methods
 function obj = button(pos)
 obj.UiHandle = uicontrol('Position',pos,...
 'Style','pushbutton');
 end
 end
end

Test for MATLAB objects.

h = button([20 20 60 60]);
isobject(h)

 isobject

1-7841

ans =

 logical

 1

isobject(h.UiHandle)

ans =

 logical

 1

Create an object that is a MATLAB numeric type:

a = pi;
isobject(a)

 logical
 0

isa(a,'double')

ans =

 logical

 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
class | is* | isa

1 Alphabetical List

1-7842

Topics
“Class Components”

Introduced before R2006a

 isobject

1-7843

isocaps
Compute isosurface end-cap geometry

Syntax
fvc = isocaps(X,Y,Z,V,isovalue)
fvc = isocaps(V,isovalue)
fvc = isocaps(...,'enclose')
fvc = isocaps(...,'whichplane')
[f,v,c] = isocaps(...)
isocaps(...)

Description
fvc = isocaps(X,Y,Z,V,isovalue) computes isosurface end-cap geometry for the
volume data V at isosurface value isovalue. The arrays X, Y, and Z define the
coordinates for the volume V.

The struct fvc contains the face, vertex, and color data for the end-caps and can be
passed directly to the patch command.

fvc = isocaps(V,isovalue) assumes the arrays X, Y, and Z are defined as [X,Y,Z]
= meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isocaps(...,'enclose') specifies whether the end-caps enclose data values
above or below the value specified in isovalue. The 'enclose' option can be either
'above' (default) or 'below'.

fvc = isocaps(...,'whichplane') specifies on which planes to draw the end-caps.
Possible values for 'whichplane' are 'all' (default), 'xmin', 'xmax', 'ymin',
'ymax', 'zmin', or 'zmax'.

[f,v,c] = isocaps(...) returns the face, vertex, and color data for the end-caps in
three arrays instead of the struct fvc.

1 Alphabetical List

1-7844

isocaps(...) without output arguments draws a patch with the computed faces,
vertices, and colors.

Examples

Compute Isosurface End-Cap Geometry

This example uses a data set that is a collection of MRI slices of a human skull. It
illustrates the use of isocaps to draw the end-caps on this cutaway volume.

The red isosurface shows the outline of the volume (skull) and the end-caps show what is
inside of the volume.

The patch created from the end-cap data (p2) uses interpolated face coloring, which
means the gray colormap and the light sources determine how it is colored. The
isosurface patch (p1) used a flat red face color, which is affected by the lights, but does
not use the colormap.

load mri
D = squeeze(D);
D(:,1:60,:) = [];
p1 = patch(isosurface(D, 5),'FaceColor','red',...
 'EdgeColor','none');
p2 = patch(isocaps(D, 5),'FaceColor','interp',...
 'EdgeColor','none');
view(3)
axis tight
daspect([1,1,.4])
colormap(gray(100))
camlight left
camlight
lighting gouraud
isonormals(D,p1)

 isocaps

1-7845

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-7846

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isonormals | isosurface | reducepatch | reducevolume | smooth3 | subvolume

Topics
“Isocaps Add Context to Visualizations”

Introduced before R2006a

 isocaps

1-7847

isocolors
Calculate isosurface and patch colors

Syntax
nc = isocolors(X,Y,Z,C,vertices)
nc = isocolors(X,Y,Z,R,G,B,vertices)
nc = isocolors(C,vertices)
nc = isocolors(R,G,B,vertices)
nc = isocolors(...,PatchHandle)
isocolors(...,PatchHandle)

Description
nc = isocolors(X,Y,Z,C,vertices) computes the colors of isosurface (patch
object) vertices (vertices) using color values C. Arrays X, Y, Z define the coordinates for
the color data in C and must be monotonic vectors that represent a Cartesian, axis-
aligned grid (as if produced by meshgrid). The colors are returned in nc. C must be 3-D
(index colors).

nc = isocolors(X,Y,Z,R,G,B,vertices) uses R, G, B as the red, green, and blue
color arrays (true colors).

nc = isocolors(C,vertices), and nc = isocolors(R,G,B,vertices) assume X,
Y, and Z are determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(C).

nc = isocolors(...,PatchHandle) uses the vertices from the patch identified by
PatchHandle.

isocolors(...,PatchHandle) sets the FaceVertexCData property of the patch
specified by PatchHandle to the computed colors.

1 Alphabetical List

1-7848

Examples

Indexed Color Data

This example displays an isosurface and colors it with random data using indexed color.

[x,y,z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
cdata = smooth3(rand(size(data)),'box',7);
p = patch(isosurface(x,y,z,data,10));
isonormals(x,y,z,data,p)
isocolors(x,y,z,cdata,p)
p.FaceColor = 'interp';
p.EdgeColor = 'none';
view(150,30)
daspect([1 1 1])
axis tight
camlight
lighting gouraud

 isocolors

1-7849

True Color Data

This example displays an isosurface and colors it with true color (RGB) data.

[x,y,z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(x,y,z,data,20));
isonormals(x,y,z,data,p)
[r,g,b] = meshgrid(20:-1:1,1:20,1:20);
isocolors(x,y,z,r/20,g/20,b/20,p)
p.FaceColor = 'interp';

1 Alphabetical List

1-7850

p.EdgeColor = 'none';
view(150,30)
daspect([1 1 1])
camlight
lighting gouraud

Modified True Color Data

This example uses isocolors to calculate the true color data using the isosurface's
(patch object's) vertices, but then returns the color data in a variable (c) in order to

 isocolors

1-7851

modify the values. It then explicitly sets the isosurface's FaceVertexCData to the new data
(1-c).

[x,y,z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(data,20));
isonormals(data,p)
[r,g,b] = meshgrid(20:-1:1,1:20,1:20);
c = isocolors(r/20,g/20,b/20,p);
p.FaceVertexCData = 1-c;
p.FaceColor = 'interp';
p.EdgeColor = 'none';
view(150,30)
daspect([1 1 1])
camlight
lighting gouraud

1 Alphabetical List

1-7852

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 isocolors

1-7853

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isocaps | isonormals | isosurface | reducepatch | reducevolume | smooth3 |
subvolume

Introduced before R2006a

1 Alphabetical List

1-7854

isonormals
Compute normals of isosurface vertices

Syntax
n = isonormals(X,Y,Z,V,vertices)
n = isonormals(V,vertices)
n = isonormals(V,p)
n = isonormals(X,Y,Z,V,p)
n = isonormals(...,'negate')
isonormals(V,p)
isonormals(X,Y,Z,V,p)

Description
n = isonormals(X,Y,Z,V,vertices) computes the normals of the isosurface
vertices from the vertex list, vertices, using the gradient of the data V. The arrays X, Y,
and Z define the coordinates for the volume V. The computed normals are returned in n.

n = isonormals(V,vertices) assumes the arrays X, Y, and Z are defined as [X,Y,Z]
= meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p) compute normals from the
vertices of the patch identified by the handle p.

n = isonormals(...,'negate') negates (reverses the direction of) the normals.

isonormals(V,p) and isonormals(X,Y,Z,V,p) set the VertexNormals property of
the patch identified by the handle p to the computed normals rather than returning the
values.

Examples

 isonormals

1-7855

Isosurface Using Different Types of Surface Normals

Compare the effect of different surface normals on the visual appearance of lit
isosurfaces. In one case, the triangles used to draw the isosurface define the normals. In
the other, the isonormals function uses the volume data to calculate the vertex normals
based on the gradient of the data points. The latter approach generally produces a
smoother-appearing isosurface.

Define a 3-D array of volume data.

data = cat(3,[0 .2 0; 0 .3 0; 0 0 0],...
 [.1 .2 0; 0 1 0; .2 .7 0],...
 [0 .4 .2; .2 .4 0;.1 .1 0]);
data = interp3(data,3,'cubic');

Draw an isosurface from the volume data and add lights. This isosurface uses triangle
normals.

figure
subplot(1,2,1)
fv = isosurface(data,.5);
p1 = patch(fv,'FaceColor','red','EdgeColor','none');
view(3)
daspect([1,1,1])
axis tight
camlight
camlight(-80,-10)
lighting gouraud
title('Triangle Normals')

1 Alphabetical List

1-7856

Draw the same lit isosurface using normals calculated from the volume data.

subplot(1,2,2)
fv = isosurface(data,.5);
p2 = patch(fv,'FaceColor','red','EdgeColor','none');
isonormals(data,p2)
view(3)
daspect([1 1 1])
axis tight
camlight
camlight(-80,-10)
lighting gouraud
title('Data Normals')

 isonormals

1-7857

These isosurfaces illustrate the difference between triangle and data normals.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-7858

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
interp3 | isocaps | isosurface | reducepatch | reducevolume | smooth3 |
subvolume

Introduced before R2006a

 isonormals

1-7859

isordinal
Determine whether input is ordinal categorical array

Syntax
tf = isordinal(A)

Description
tf = isordinal(A) returns logical 1 (true) if A is an ordinal categorical array.
Otherwise, isordinal returns logical 0 (false).

If a categorical array is ordinal, you can use relational operations for inequality
comparisons, such as greater and less than, in addition to tests for equality.

Examples

Determine Whether Categorical Array Is Ordinal

Create a categorical array containing the sizes of 10 objects. Use the names small,
medium, and large for the values 'S', 'M', and 'L'.

A = categorical({'M';'L';'S';'S';'M';'L';'M';'L';'M';'S'},...
 {'S','M','L'},{'small','medium','large'})

A = 10x1 categorical array
 medium
 large
 small
 small
 medium
 large
 medium
 large
 medium

1 Alphabetical List

1-7860

 small

Determine if the categories of A have a mathematical ordering.

isordinal(A)

ans = logical
 0

A is not ordinal. You must use the 'Ordinal',true name-value pair argument in the
function categorical to create an ordinal categorical array.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

Tips
• To convert a categorical array, A, from nonordinal to ordinal, use A =

categorical(A,'Ordinal',true).
• To convert a categorical array, A, from ordinal to nonordinal, use A =

categorical(A,'Ordinal',false).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 isordinal

1-7861

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
categorical | categories

Topics
“Ordinal Categorical Arrays”

Introduced in R2013b

1 Alphabetical List

1-7862

isosurface
Extract isosurface data from volume data

Syntax
fv = isosurface(X,Y,Z,V,isovalue)
fv = isosurface(V,isovalue)
fvc = isosurface(...,colors)
fv = isosurface(...,'noshare')
fv = isosurface(...,'verbose')
[f,v] = isosurface(...)
[f,v,c] = isosurface(...)
isosurface(...)

Description
fv = isosurface(X,Y,Z,V,isovalue) computes isosurface data from the volume
data V at the isosurface value specified in isovalue. That is, the isosurface connects
points that have the specified value much the way contour lines connect points of equal
elevation.

The arrays X, Y, and Z represent a Cartesian, axis-aligned grid. V contains the
corresponding values at these grid points. The coordinate arrays (X, Y, and Z) must be
monotonic and conform to the format produced by meshgrid. V must be a 3D volume
array of the same size as X, Y, and Z.

The struct fv contains the faces and vertices of the isosurface, which you can pass
directly to the patch command.

fv = isosurface(V,isovalue) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isosurface(...,colors) interpolates the array colors onto the scalar field
and returns the interpolated values in the facevertexcdata field of the fvc structure.
The size of the colors array must be the same as V. The colors argument enables you
to control the color mapping of the isosurface with data different from that used to

 isosurface

1-7863

calculate the isosurface (e.g., temperature data superimposed on a wind current
isosurface).

fv = isosurface(...,'noshare') does not create shared vertices. This is faster, but
produces a larger set of vertices.

fv = isosurface(...,'verbose') prints progress messages to the command
window as the computation progresses.

[f,v] = isosurface(...) or [f,v,c] = isosurface(...) returns the faces and
vertices (and faceVertexcCData) in separate arrays instead of a struct.

isosurface(...) with no output arguments, creates a patch in the current axes with
the computed faces and vertices. If no current axes exists, a new axes is created with a 3-
D view.

Special Case Behavior — isosurface Called with No Output
Arguments
If there is no current axes and you call isosurface without assigning output arguments,
MATLAB creates a new axes, sets it to a 3-D view, and adds lighting to the isosurface
graph.

Examples

Draw Isosurface with Lighting
Load the flow data set, which represents the speed profile of a submerged jet within an
infinite tank. Draw the isosurface at the data value of -3 and prepare the isosurface for
lighting by:

• Recalculating the isosurface normals based on the volume data.
• Setting the face and edge color.
• Specifying the view.
• Adding lights.

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));

1 Alphabetical List

1-7864

isonormals(x,y,z,v,p)
p.FaceColor = 'red';
p.EdgeColor = 'none';
daspect([1 1 1])
view(3);
axis tight
camlight
lighting gouraud

Set Isosurface Colors
Visualize the flow data, but color-code the surface to indicate magnitude along the x-axis.
Use a sixth argument to isosurface, which provides a means to overlay another data

 isosurface

1-7865

set by coloring the resulting isosurface. The colors variable is a vector containing a
scalar value for each vertex in the isosurface, to be portrayed with the current color map.
In this case, it is one of the variables that define the surface, but it could be entirely
independent. You can apply a different color scheme by changing the current figure color
map.

[x,y,z,v] = flow;
[faces,verts,colors] = isosurface(x,y,z,v,-3,x);
patch('Vertices',verts,'Faces',faces,'FaceVertexCData',colors,...
 'FaceColor','interp','EdgeColor','interp')
view(30,-15)
axis vis3d
colormap copper

1 Alphabetical List

1-7866

Tips
You can pass the fv structure created by isosurface directly to the patch command,
but you cannot pass the individual faces and vertices arrays (f, v) to patch without
specifying property names. For example,

patch(isosurface(X,Y,Z,V,isovalue))

or

[f,v] = isosurface(X,Y,Z,V,isovalue);
patch('Faces',f,'Vertices',v)

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

 isosurface

1-7867

See Also
isonormals | shrinkfaces | smooth3 | subvolume

Topics
“Connecting Equal Values with Isosurfaces”

Introduced before R2006a

1 Alphabetical List

1-7868

isoutlier
Find outliers in data

Syntax
TF = isoutlier(A)
TF = isoutlier(A,method)
TF = isoutlier(A,'percentiles',threshold)
TF = isoutlier(A,movmethod,window)
TF = isoutlier(___ ,dim)
TF = isoutlier(___ ,Name,Value)
[TF,L,U,C] = isoutlier(___)

Description
TF = isoutlier(A) returns a logical array whose elements are true when an outlier is
detected in the corresponding element of A. By default, an outlier is a value that is more
than three scaled median absolute deviations (MAD) on page 1-7881 away from the
median. If A is a matrix or table, then isoutlier operates on each column separately. If
A is a multidimensional array, then isoutlier operates along the first dimension whose
size does not equal 1.

TF = isoutlier(A,method) specifies a method for detecting outliers. For example,
isoutlier(A,'mean') returns true for all elements more than three standard
deviations from the mean.

TF = isoutlier(A,'percentiles',threshold) defines outliers as points outside of
the percentiles specified in threshold. The threshold argument is a two-element row
vector containing the lower and upper percentile thresholds, such as [10 90].

TF = isoutlier(A,movmethod,window) specifies a moving method for detecting
local outliers according to a window length defined by window. For example,
isoutlier(A,'movmedian',5) returns true for all elements more than three local
scaled MAD from the local median within a sliding window containing five elements.

 isoutlier

1-7869

TF = isoutlier(___ ,dim) operates along dimension dim of A for any of the previous
syntaxes. For example, isoutlier(A,2) operates on each row of a matrix A.

TF = isoutlier(___ ,Name,Value) specifies additional parameters for detecting
outliers using one or more name-value pair arguments. For example,
isoutlier(A,'SamplePoints',t) detects outliers in A relative to the corresponding
elements of a time vector t.

[TF,L,U,C] = isoutlier(___) also returns the lower and upper thresholds and the
center value used by the outlier detection method.

Examples

Detect Outliers in Vector

Find the outliers in a vector of data. A logical 1 in the output indicates the location of an
outlier.

A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
TF = isoutlier(A)

TF = 1x15 logical array

 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

Detect Outliers using Mean

Define outliers as points more than three standard deviations from the mean, and find the
locations of outliers in a vector.

A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
TF = isoutlier(A,'mean')

TF = 1x15 logical array

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 Alphabetical List

1-7870

Detect Outliers with Sliding Window

Create a vector of data containing a local outlier.

x = -2*pi:0.1:2*pi;
A = sin(x);
A(47) = 0;

Create a time vector that corresponds to the data in A.

t = datetime(2017,1,1,0,0,0) + hours(0:length(x)-1);

Define outliers as points more than three local scaled MAD away from the local median
within a sliding window. Find the locations of the outliers in A relative to the points in t
with a window size of 5 hours. Plot the data and detected outliers.

TF = isoutlier(A,'movmedian',hours(5),'SamplePoints',t);
plot(t,A,t(TF),A(TF),'x')
legend('Data','Outlier')

 isoutlier

1-7871

Matrix of Data

Find outliers for each row of a matrix.

Create a matrix of data containing outliers along the diagonal.

A = magic(5) + diag(200*ones(1,5))

A = 5×5

 217 24 1 8 15
 23 205 7 14 16

1 Alphabetical List

1-7872

 4 6 213 20 22
 10 12 19 221 3
 11 18 25 2 209

Find the locations of outliers based on the data in each row.

TF = isoutlier(A,2)

TF = 5x5 logical array

 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

Compute Outlier Thresholds

Create a vector of data containing an outlier. Find and plot the location of the outlier, and
the thresholds and center value determined by the outlier method. The center value is the
median of the data, and the upper and lower thresholds are three scaled MAD above and
below the median.

x = 1:10;
A = [60 59 49 49 58 100 61 57 48 58];
[TF,L,U,C] = isoutlier(A);
plot(x,A,x(TF),A(TF),'x',x,L*ones(1,10),x,U*ones(1,10),x,C*ones(1,10))
legend('Original Data','Outlier','Lower Threshold','Upper Threshold','Center Value')

 isoutlier

1-7873

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable.

If A is a table, then its variables must be of type double or single, or you can use the
'DataVariables' name-value pair to list double or single variables explicitly.
Specifying variables is useful when you are working with a table that contains variables
with data types other than double or single.

1 Alphabetical List

1-7874

If A is a timetable, then isoutlier operates only on the table elements. Row times must
be unique and listed in ascending order.

Data Types: double | single | table | timetable

method — Method for detecting outliers
'median' (default) | 'mean' | 'quartiles' | 'grubbs' | 'gesd'

Method for detecting outliers, specified as one of the following:

Method Description
'median' Returns true for elements more than three

scaled MAD from the median. The scaled
MAD is defined as c*median(abs(A-
median(A))), where c=-1/
(sqrt(2)*erfcinv(3/2)).

'mean' Returns true for elements more than three
standard deviations from the mean. This
method is faster but less robust than
'median'.

'quartiles' Returns true for elements more than 1.5
interquartile ranges above the upper
quartile or below the lower quartile. This
method is useful when the data in A is not
normally distributed.

'grubbs' Applies Grubbs’s test for outliers, which
removes one outlier per iteration based on
hypothesis testing. This method assumes
that the data in A is normally distributed.

'gesd' Applies the generalized extreme
Studentized deviate test for outliers. This
iterative method is similar to 'grubbs',
but can perform better when there are
multiple outliers masking each other.

threshold — Percentile thresholds
two-element row vector

 isoutlier

1-7875

Percentile thresholds, specified as a two-element row vector whose elements are in the
interval [0,100]. The first element indicates the lower percentile threshold and the second
element indicates the upper percentile threshold. For example, a threshold of [10 90]
defines outliers as points below the 10th percentile and above the 90th percentile. The
first element of threshold must be less than the second element.

movmethod — Moving method
'movmedian' | 'movmean'

Moving method for detecting outliers, specified as one of the following:

Method Description
'movmedian' Returns true for elements more than three

local scaled MAD from the local median
over a window length specified by window.

'movmean' Returns true for elements more than three
local standard deviations from the local
mean over a window length specified by
window.

window — Window length
positive integer scalar | two-element vector of positive integers | positive duration scalar |
two-element vector of positive durations

Window length, specified as a positive integer scalar, a two-element vector of positive
integers, a positive duration scalar, or a two-element vector of positive durations.

When window is a positive integer scalar, the window is centered about the current
element and contains window-1 neighboring elements. If window is even, then the
window is centered about the current and previous elements.

When window is a two-element vector of positive integers [b f], the window contains
the current element, b elements backward, and f elements forward.

When A is a timetable or 'SamplePoints' is specified as a datetime or duration
vector, then window must be of type duration, and the windows are computed relative
to the sample points.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

1 Alphabetical List

1-7876

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a matrix A.

isoutlier(A,1) detects outliers based on the data in each column of A.

isoutlier(A,2) detects outliers based on the data in each row of A.

When A is a table or timetable, dim is not supported. isoutlier operates along each
table or timetable variable separately.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 isoutlier

1-7877

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: isoutlier(A,'mean','ThresholdFactor',4)

ThresholdFactor — Detection threshold factor
nonnegative scalar

Detection threshold factor, specified as the comma-separated pair consisting of
'ThresholdFactor' and a nonnegative scalar.

For methods 'median' and 'movmedian', the detection threshold factor replaces the
number of scaled MAD, which is 3 by default.

For methods 'mean' and 'movmean', the detection threshold factor replaces the number
of standard deviations from the mean, which is 3 by default.

For methods 'grubbs' and 'gesd', the detection threshold factor is a scalar ranging
from 0 to 1. Values close to 0 result in a smaller number of outliers and values close to 1
result in a larger number of outliers. The default detection threshold factor is 0.5.

For the 'quartiles' method, the detection threshold factor replaces the number of
interquartile ranges, which is 1.5 by default.

This name-value pair is not supported when the specified method is 'percentiles'.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SamplePoints — Sample points
vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the location of the data in A. Sample points do
not need to be uniformly sampled. By default, the sample points vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then isoutlier(rand(1,10),'movmean',3,'SamplePoints',t) has a
window that represents the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

1 Alphabetical List

1-7878

Data Types: double | single | datetime | duration

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. The 'DataVariables' value indicates which columns of the input
table to detect outliers in, and can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes the table as input and returns a logical scalar

The data type associated with the indicated variable must be double or single.
Example: 'Age'
Example: {'Height','Weight'}
Example: @isnumeric
Data Types: char | cell | double | single | logical | function_handle

MaxNumOutliers — Maximum outlier count
positive integer

Maximum outlier count, for the 'gesd' method only, specified as the comma-separated
pair consisting of 'MaxNumOutliers' and a positive integer. The 'MaxNumOutliers'
value specifies the maximum number of outliers returned by the 'gesd' method. For
example, isoutlier(A,'gesd','MaxNumOutliers',5) returns no more than five
outliers.

The default value for 'MaxNumOutliers' is the integer nearest to 10 percent of the
number of elements in A. Setting a larger value for the maximum number of outliers can
ensure that all outliers are detected, but at the cost of reduced computational efficiency.

 isoutlier

1-7879

The 'gesd' method assumes the non-outlier input data is sampled from an approximate
normal distribution. When the data is not sampled in this way, the number of returned
outliers might exceed the 'MaxNumOutliers' value.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
TF — Outlier indicator
vector | matrix | multidimensional array

Outlier indicator, returned as a vector, matrix, or multidimensional array. An element of
TF is true when the corresponding element of A is an outlier and false otherwise. TF is
the same size as A.
Data Types: logical

L — Lower threshold
scalar | vector | matrix | multidimensional array | table | timetable

Lower threshold used by the outlier detection method, returned as a scalar, vector,
matrix, multidimensional array, table, or timetable. For example, the lower value of the
default outlier detection method is three scaled MAD below the median of the input data.
L has the same size as A in all dimensions except for the operating dimension where the
length is 1.
Data Types: double | single | table | timetable

U — Upper threshold
scalar | vector | matrix | multidimensional array | table | timetable

Upper threshold used by the outlier detection method, returned as a scalar, vector,
matrix, multidimensional array, table, or timetable. For example, the upper value of the
default outlier detection method is three scaled MAD above the median of the input data.
U has the same size as A in all dimensions except for the operating dimension where the
length is 1.
Data Types: double | single | table | timetable

C — Center value
scalar | vector | matrix | multidimensional array | table | timetable

1 Alphabetical List

1-7880

Center value used by the outlier detection method, returned as a scalar, vector, matrix,
multidimensional array, table, or timetable. For example, the center value of the default
outlier detection method is the median of the input data. C has the same size as A in all
dimensions except for the operating dimension where the length is 1.
Data Types: double | single | table | timetable

Definitions

Median Absolute Deviation
For a random variable vector A made up of N scalar observations, the median absolute
deviation (MAD) is defined as

MAD = median Ai−median A

for i = 1,2,...,N.

The scaled MAD is defined as c*median(abs(A-median(A))) where c=-1/
(sqrt(2)*erfcinv(3/2)).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The 'percentiles', 'grubbs', and 'gesd' methods are not supported.
• The 'movmedian' and 'movmean' methods do not support tall timetables.
• The 'SamplePoints' and 'MaxNumOutliers' name-value pairs are not supported.
• The value of 'DataVariables' cannot be a function handle.
• Computation of isoutlier(A), isoutlier(A,'median',...), or

isoutlier(A,'quartiles',...) along the first dimension is only supported for
tall column vectors A.

 isoutlier

1-7881

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'movmean' and 'movmedian' methods do not support the 'SamplePoints'
name-value pair argument.

• String and character array inputs must be constant.
• The 'percentiles' option is not supported.

See Also
filloutliers | ischange | islocalmax | islocalmin | ismissing | rmoutliers

Topics
“Data Smoothing and Outlier Detection”

Introduced in R2017a

1 Alphabetical List

1-7882

ispc
Determine if version is for Windows (PC) platform

Syntax
tf = ispc

Description
tf = ispc returns logical 1 (true) if the version of MATLAB software is for the
Microsoft Windows platform. Otherwise, it returns logical 0 (false).

Examples

Execute MATLAB Command Based on Platform
if ismac
 % Code to run on Mac platform
elseif isunix
 % Code to run on Linux platform
elseif ispc
 % Code to run on Windows platform
else
 disp('Platform not supported')
end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 ispc

1-7883

Usage notes and limitations:

• Returns true or false based on the MATLAB version you use for code generation.
• Use only when the code generation target is S-function (Simulation) or MEX-function.

See Also
computer | is* | ismac | isstudent | isunix

Introduced before R2006a

1 Alphabetical List

1-7884

ispref
Determine if custom preference exists

Syntax
ispref(group,pref)
ispref(group)

Description
ispref(group,pref) returns 1 if the specified preference in the specified group exists,
and 0 otherwise. If pref specifies multiple preferences, ispref returns a logical array
containing a 1 or 0 for each specified preference.

ispref(group) returns 1 if the specified group exists, and 0 otherwise.

Examples

Check If Preference Exists

Add a preference called version to the mytoolbox group of preferences and then check
if the preference exists.

addpref('mytoolbox','version','1.0')
ispref('mytoolbox','version')

ans =
 logical
 1

Check If Multiple Preferences Exist

Add two preferences to the mytoolbox group of preferences and then check if the
preferences exist.

 ispref

1-7885

addpref('mytoolbox',{'modifieddate','docpath'},{'1/9/2019','C:\mytoolbox\documentation'})
ispref('mytoolbox',{'modifieddate','docpath','hasdoc'})

ans =
 1×3 logical array
 1 1 0

MATLAB returns a logical array containing a 1 for the modifieddate preference and a 1
for the docpath preference. The hasdoc preference does not exist and therefore the last
value of the logical array is 0.

Input Arguments
group — Custom preference group name
character vector | string scalar

Custom preference group name, specified as a character vector or a string scalar.
Example: 'mytoolbox'
Data Types: char | string

pref — Custom preference name
character vector | cell array of character vectors | string array

Custom preference name, specified as a character vector, a cell array of character
vectors, or a string array.
Example: 'version'
Example: {'version','modifieddate','docpath'}
Data Types: char | string

See Also
addpref | getpref | rmpref | setpref | uigetpref | uisetpref

Topics
“Preferences”

1 Alphabetical List

1-7886

Introduced before R2006a

 ispref

1-7887

isprime
Determine which array elements are prime

Syntax
TF = isprime(X)

Description
TF = isprime(X) returns a logical array the same size as X. The value at TF(i) is
true when X(i) is a prime number. Otherwise, the value is false.

Examples

Determine if Double Integer Values Are Prime

tf = isprime([2 3 0 6 10])

tf = 1x5 logical array

 1 1 0 0 0

2 and 3 are prime, but 0, 6, and 10 are not.

Determine if Unsigned Integer Values Are Prime

x = uint16([333 71 99]);
tf = isprime(x)

tf = 1x3 logical array

1 Alphabetical List

1-7888

 0 1 0

71 is prime, but 333 and 99 are not.

Input Arguments
X — Input values
scalar, vector, or array of real, nonnegative integer values

Input values, specified as a scalar, vector, or array of real, nonnegative integer values.
Example: 17
Example: [1 2 3 4]
Example: int16([127 255 4095])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The maximum double precision input is 2^33.
• The maximum single precision input is 2^25.
• The input X cannot have type int64 or uint64.

See Also
is* | primes

 isprime

1-7889

Introduced before R2006a

1 Alphabetical List

1-7890

isprop
True if property exists

Syntax
tf = isprop(obj,PropertyName)

Description
tf = isprop(obj,PropertyName) returns true if the specified PropertyName is a
property of object obj. Otherwise, isprop returns logical false. Specify
PropertyName as a character vector or a string scalar.

If obj is an array, isprop returns a logical array the same size as obj. Each true element
of tf corresponds to an element of obj that has the property, PropertyName.

Note If obj is an empty object or an array of empty objects, isprop returns an empty
logical array, even if PropertyName is a property of obj.

While isprop returns true if the class of an object defines a property of that name,
classes can control access to property values by defining property attributes. Property
access can be defined as:

• Readable and writable
• Read only
• Write only
• Accessible only to certain class methods

Therefore, isprop might indicate that a property exists, but you might not be able to
access that property. For more information, see “Get Information About Properties”.

 isprop

1-7891

Examples
This example uses isprop to determine if XDataSource is a property of object h before
attempting to set the property value:

h = plot(1:10);
if isprop(h,'XDataSource')
 set(h,'XDataSource','x')
else
 error(['XDataSource not a property of class ',class(h)])
end

Since XDataSource is a property of h, its value is set to 'x'.

See Also
ismethod | properties

Topics
“Properties”

Introduced before R2006a

1 Alphabetical List

1-7892

isprotected
Determine whether categories of categorical array are protected

Syntax
tf = isprotected(A)

Description
tf = isprotected(A) returns logical 1 (true) if the categories of A are protected.
Otherwise, isprotected returns logical 0 (false).

• true — When you assign new values to B, the values must belong to one of the
existing categories. Therefore, you only can combine arrays that have the same
categories. To add new categories to B, you must use the addcats function.

• false — When you assign new values to B, the categories update automatically.
Therefore, you can combine (nonordinal) categorical arrays that have different
categories. The categories can update to include the categories from both arrays.

Examples

Determine Whether Categories Are Protected

Create a categorical array containing the sizes of 10 objects. Use the names small,
medium, and large for the values 'S', 'M', and 'L'.

valueset = {'S','M','L'};
catnames = {'small','medium','large'};

A = categorical({'M';'L';'S';'S';'M';'L';'M';'L';'M';'S'},...
 valueset,catnames,'Ordinal',true)

A = 10x1 categorical array
 medium

 isprotected

1-7893

 large
 small
 small
 medium
 large
 medium
 large
 medium
 small

A is a 10-by-1 categorical array.

Display the categories of A.

categories(A)

ans = 3x1 cell array
 {'small' }
 {'medium'}
 {'large' }

Determine whether the categories of A are protected.

tf = isprotected(A)

tf = logical
 1

Since A is an ordinal categorical array, the categories are protected. If you try to add a
new value that does not belong to one of the existing categories, for example A(11) =
'xlarge', then an error is returned.

First, use addcats to add a new category for xlarge.

A = addcats(A,'xlarge','After','large');

Since A is protected, you can now add a value for xlarge since it has an existing
category.

A(11) = 'xlarge'

A = 11x1 categorical array
 medium

1 Alphabetical List

1-7894

 large
 small
 small
 medium
 large
 medium
 large
 medium
 small
 xlarge

A is now a 11-by-1 categorical array with four categories, such that small < medium <
large < xlarge.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

The categories of ordinal categorical arrays are always protected.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 isprotected

1-7895

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
categorical | categories

Topics
“Work with Protected Categorical Arrays”

Introduced in R2013b

1 Alphabetical List

1-7896

isreal
Determine whether array is real

Syntax
tf = isreal(A)

Description
tf = isreal(A) returns logical 1 (true) when a numeric array A does not have an
imaginary part, and logical 0 (false) otherwise.

Examples

Determine Whether Matrix Contains All Real Values

Define a 3-by-4 matrix, A.

A = [7 3+4i 2 5i;...
 2i 1+3i 12 345;...
 52 108 78 3];

Determine whether the array is real.

tf = isreal(A)

tf = logical
 0

Since A contains complex elements, isreal returns false.

 isreal

1-7897

Define Complex Number with Zero-Valued Imaginary Part

Use the complex function to create a scalar, A, with zero-valued imaginary part.

A = complex(12)

A = 12.0000 + 0.0000i

Determine whether A is real.

tf = isreal(A)

tf = logical
 0

A is not real because it has an imaginary part, even though the value of the imaginary
part is 0.

Determine whether A contains any elements with zero-valued imaginary part.

~any(imag(A))

ans = logical
 1

A contains elements with zero-valued imaginary part.

Computation Resulting in Zero-Valued Imaginary Part

Define two complex scalars, x and y.

x=3+4i;
y=5-4i;

Determine whether the addition of two complex scalars, x and y, is real.

A = x+y

A = 8

MATLAB® drops the zero imaginary part.

1 Alphabetical List

1-7898

isreal(A)

ans = logical
 1

A is real since it does not have an imaginary part.

Find Real Elements in Cell Array

Create a cell array.

C{1,1} = pi; % double
C{2,1} = 'John Doe'; % char array
C{3,1} = 2 + 4i; % complex double
C{4,1} = ispc; % logical
C{5,1} = magic(3); % double array
C{6,1} = complex(5,0) % complex double

C = 6x1 cell array
 {[3.1416]}
 {'John Doe' }
 {[2.0000 + 4.0000i]}
 {[1]}
 {3x3 double }
 {[5.0000 + 0.0000i]}

C is a 1-by-6 cell array.

Loop over the elements of a cell array to distinguish between real and complex elements.

for k = 1:6
x(k,1) = isreal(C{k,1});
end

x

x = 6x1 logical array

 1
 1
 0

 isreal

1-7899

 1
 1
 0

All but C{3,1} and C{6,1} are real arrays.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

• For numeric data types, if A does not have an imaginary part, isreal returns true; if
A does have an imaginary part isreal returns false.

• For logical and char data types, isreal always returns true.
• For string, table, cell, struct, datetime, function_handle, and object data

types, isreal always returns false.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | table | cell | datetime |
function_handle
Complex Number Support: Yes

Tips
• To check whether each element of an array A is real, use A == real(A).
• isreal(complex(A)) always returns false, even when the imaginary part is all

zeros.
• ~isreal(x) detects arrays that have an imaginary part, even if it is all zeros.

1 Alphabetical List

1-7900

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
complex | isa | isfinite | isinf | isnan | isnumeric | isprime

Topics
“Complex Numbers”

Introduced before R2006a

 isreal

1-7901

isregular
Determine whether times in timetable are regular

Syntax
TF = isregular(TT)
TF = isregular(TT,unit)
[TF,dt] = isregular(___)

Description
TF = isregular(TT) returns 1 (true) if the row times in the timetable TT are regular.
Otherwise, it returns 0 (false). The row times are regular if they increase or decrease
monotonically by a fixed time step. For example, if consecutive row times always differ by
one second, then the times are regular.

TF = isregular(TT,unit) returns 1 (true) if the row times are regular with respect
to the calendar duration unit specified by unit. For example, if the row times are
datetime values whose year and month components are regular to the month, and unit is
'month', then isregular returns 1.

[TF,dt] = isregular(___) also returns dt, the fixed time step between row times.
If TT is regular, then dt is either a duration or a calendar duration. If TT is not regular,
then dt is a NaN value.

Examples

Determine if Timetable is Regular

Create a timetable using a monthly time vector. Determine whether it is regular with
respect to time, and then with respect to months.

Create a timetable whose row times are the first five months of the year 2016. Add the
monthly price of a stock as a table variable.

1 Alphabetical List

1-7902

StockPrice = [109.0;107.82;113.17;128.01;116];
M = timetable(datetime(2016,1:5,3)',StockPrice)

M=5×2 timetable
 Time StockPrice
 ___________ __________

 03-Jan-2016 109
 03-Feb-2016 107.82
 03-Mar-2016 113.17
 03-Apr-2016 128.01
 03-May-2016 116

Determine whether M is a regular timetable.

TF = isregular(M)

TF = logical
 0

M is not regular because the first five months have different numbers of days. You can use
the diff function to calculate the differences in the time steps between consecutive
times in M. The differences are durations, formatted to display the time steps as hours,
minutes, and seconds.

D = diff(M.Time)

D = 4x1 duration array
 744:00:00
 696:00:00
 744:00:00
 720:00:00

Determine whether M is regular with respect to months, by specifying 'month' as the
unit of measure.

TF = isregular(M,'months')

TF = logical
 1

 isregular

1-7903

Determine Time Step of Row Times

Create a timetable. Determine if it is regular, and return the size of the time step if it is.

Time = [minutes(0):minutes(15):minutes(60)]';
Pulse = [72 75 80 73 69]';
TT = timetable(Time,Pulse)

TT=5×2 timetable
 Time Pulse
 ______ _____

 0 min 72
 15 min 75
 30 min 80
 45 min 73
 60 min 69

[TF,dt] = isregular(TT)

TF = logical
 1

dt = duration
 15 min

TT is a regular timetable.

Input Arguments
TT — Input timetable
timetable

Input timetable.

unit — Calendar duration unit
character vector | string scalar

1 Alphabetical List

1-7904

Calendar duration unit, specified as a character vector or string scalar. isregular
determines if the row times of TT are regular to the calendar unit specified by unit. The
table lists the calendar duration units you can specify.

Time Unit Description
'years' Regular to the year
'quarters' Regular to the quarter
'months' Regular to the month
'weeks' Regular to the week
'days' Regular to the day
'time' (default) Regular with respect to time

Output Arguments
TF — Regularity of row times
1 | 0

Regularity of row times, returned as a logical 1 if the row times are regular, and a logical
0 if they are not.

dt — Time step between row times
duration | calendar duration

Time step between row times, returned as a duration or a calendar duration. If the
timetable is not regular, then dt is a NaN value.

Tips
• In certain cases, you can create a timetable while specifying a regular time step

between row times, and yet the resulting timetable is irregular. This result occurs
when you specify the time step using a calendar unit of time and there is a row time
that introduces an irregular step. For example, if you create a timetable with a time
step of one calendar month, starting on January 31, 2019, then it is irregular with
respect to months.

stime = datetime(2019,1,31);
tstep = calmonths(1);

 isregular

1-7905

TT = timetable('Size',[3 1],'VariableTypes',{'double'},...
 'TimeStep',tstep,'StartTime',stime);
tf = isregular(TT,'month')

tf =

 logical

 0

In addition, there are other cases where irregularities are due to shifts from Daylight
Saving Time (DST) or to row times that are leap seconds. This table specifies the row
time values and time steps that can produce irregular timetables unexpectedly.

Row Time Value Time Step
Start time specified as the 29th, 30th, or
31st day of the month

Number of calendar months or quarters

Start time specified as February 29 Number of calendar years
Any row time occurring between 1:00
a.m. and 2:00 a.m. on a day shifting
from DST to standard time (when row
times are specified as datetime values
whose time zone observes DST)

Number of calendar days or months

Any row time that is a leap second
(when row times are specified as
datetime values whose time zone is the
UTCLeapSecond time zone)

Time step specified in any calendar unit
(days, weeks, months, quarters, or
years)

See Also
caldiff | calendarDuration | datetime | diff | duration | issorted | retime |
sortrows | split | synchronize

Topics
“Create Timetables”
“Clean Timetable with Missing, Duplicate, or Nonuniform Times”
“Select Timetable Data by Row Time and Variable Type”
“Access Data in a Table”
“Tables”

1 Alphabetical List

1-7906

“Represent Dates and Times in MATLAB”

Introduced in R2016b

 isregular

1-7907

isrow
Determine whether input is row vector

Syntax
isrow(V)

Description
isrow(V) returns logical 1 (true) if size(V) returns [1 n] with a nonnegative integer
value n, and logical 0 (false) otherwise.

Examples

Determine Row Vector

Determine if a vector is a row or not.

V = rand(5,1);
isrow(V)

ans = logical
 0

Vt = V';
isrow(Vt)

ans = logical
 1

1 Alphabetical List

1-7908

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
iscolumn | ismatrix | isscalar | isvector

Introduced in R2010b

 isrow

1-7909

isscalar
Determine whether input is scalar

Syntax
TF = isscalar(A)

Description
TF = isscalar(A) returns logical 1 (true) if A is a scalar. Otherwise, it returns logical
0 (false). A scalar is a two-dimensional array that has a size of 1-by-1.

Examples

Determine Scalar from Matrix

Create a 2-by-2 matrix. Determine whether it is a scalar.

A = [1 2; 3 4];
TF = isscalar(A)

TF = logical
 0

Check whether the element at the first row and second column of the matrix is a scalar.

TF = isscalar(A(1,2))

TF = logical
 1

1 Alphabetical List

1-7910

String Scalar and Character Vector

Create a string scalar by enclosing a piece of text in double quotes. Determine whether it
is a scalar.

A = "Hello, World!";
TF = isscalar(A)

TF = logical
 1

Now create a character vector by enclosing a piece of text in single quotes. Determine
whether it is a scalar.

B = 'Hello, World!';
TF = isscalar(B)

TF = logical
 0

Check the dimension of B using size. B is not a scalar since it has a size of 1-by-13.

sz = size(B)

sz = 1×2

 1 13

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

 isscalar

1-7911

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
isStringScalar | iscolumn | ismatrix | isrow | isvector | size

Introduced before R2006a

1 Alphabetical List

1-7912

issorted
Determine if array is sorted

Syntax
TF = issorted(A)
TF = issorted(A,dim)
TF = issorted(___ ,direction)
TF = issorted(___ ,Name,Value)

TF = issorted(A,'rows')

Description
TF = issorted(A) returns the logical scalar 1 (true) when the elements of A are listed
in ascending order and 0 (false) otherwise.

• If A is a vector, then issorted returns 1 when the vector elements are in ascending
order.

• If A is a matrix, then issorted returns 1 when each column of A is in ascending order.
• If A is a multidimensional array, then issorted returns 1 when A is in ascending

order along the first dimension whose size does not equal 1.
• If A is a timetable, then issorted returns 1 when its row time vector is in ascending

order. To check the ordering of row times or variables of a timetable with additional
options, use the issortedrows function.

TF = issorted(A,dim) returns 1 when A is sorted along dimension dim. For example,
if A is a matrix, then issorted(A,2) returns 1 when each row of A is in ascending order.

TF = issorted(___ ,direction) returns 1 when A is sorted in the order specified by
direction for any of the previous syntaxes. For example, issorted(A,'monotonic')
returns 1 if the elements of A are ascending or descending.

 issorted

1-7913

TF = issorted(___ ,Name,Value) specifies additional parameters for checking sort
order. For example, issorted(A,'ComparisonMethod','abs') checks if A is sorted
by magnitude.

TF = issorted(A,'rows') returns 1 when the elements of the first column of a matrix
are sorted. If the first column contains repeated elements, then issorted looks at the
ordering of the second column to determine TF. In general, issorted looks to the
column immediately to the right to determine TF when the current and previous columns
have repeated elements.

• If A is a timetable, then issortedrows checks if the row time vector is in ascending
order.

• This syntax is not supported for a matrix of character vectors.

Note This syntax is not recommended. Use issortedrows instead.

Examples

Sorted Vector

Create a vector and check if it is sorted in ascending order.

A = [5 12 33 39 78 90 95 107];
issorted(A)

ans = logical
 1

Sorted Matrix Rows

Create a 5-by-5 matrix and check if each row is sorted in descending order.

A = magic(5)

A = 5×5

1 Alphabetical List

1-7914

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

issorted(A,2,'descend')

ans = logical
 0

Sort each row of A in descending order using the sort function, and check that the result
has descending rows.

B = sort(A,2,'descend')

B = 5×5

 24 17 15 8 1
 23 16 14 7 5
 22 20 13 6 4
 21 19 12 10 3
 25 18 11 9 2

issorted(B,2,'descend')

ans = logical
 1

2-D Array of Strings

Create a 2-D array of strings and determine if each column is sorted.

str = string({'Horse','Chicken';'cow','Goat'})

str = 2x2 string array
 "Horse" "Chicken"
 "cow" "Goat"

 issorted

1-7915

issorted(str)

ans = logical
 1

Determine if the rows are sorted from left to right.

issorted(str,2)

ans = logical
 0

Determine if each row is sorted in descending order from left to right.

issorted(str,2,'descend')

ans = logical
 1

Complex Vector with NaN

Create a vector containing complex numbers and NaN values.

A = [NaN NaN 1+i 1+2i 2+2i 3+i];

Check that the NaN elements are placed first within the vector, and that the remaining
elements are sorted by real part.

issorted(A,'MissingPlacement','first','ComparisonMethod','real')

ans = logical
 1

Since the third and fourth elements of A have equal real part, issorted checks if the
imaginary part of these elements are also sorted.

imag(A(3))

ans = 1

1 Alphabetical List

1-7916

imag(A(4))

ans = 2

Input Arguments
A — Input array
vector | matrix | multidimensional array | cell array of character vectors | timetable

Input array, specified as a vector, matrix, multidimensional array, cell array of character
vectors, or timetable.

• If A contains missing values, such as NaN, NaT, <undefined>, and missing, then by
default, issorted requires that they are placed at the end to return 1.

• If A is complex, then by default, issorted determines sort order by the magnitude of
the elements. If there are consecutive elements with equal magnitude, then issorted
also checks the phase angle in the interval (-π, π] to break ties.

• If A is a cell array of character vectors or a string array, then issorted determines
sort order using the code order for the UTF-16 character encoding scheme. The sort is
case-sensitive. For more information on sorted character and string arrays, see “Sort
Order for Character and String Arrays” on page 1-7920.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | categorical | datetime |
duration | timetable
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a matrix A. issorted(A,1) checks if the data in each column of A is sorted.

 issorted

1-7917

issorted(A,2) checks if the data in each row of A is sorted.

dim is not supported for timetable input.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

direction — Sorting direction
'ascend' (default) | 'descend' | 'monotonic' | 'strictascend' |
'strictdescend' | 'strictmonotonic'

Sorting direction, specified as one of the following:

• 'ascend' — Checks if data is in ascending order. Data can contain consecutive
repeated elements.

• 'descend' — Checks if data is in descending order. Data can contain consecutive
repeated elements.

• 'monotonic' — Checks if data is in descending or ascending order. Data can contain
consecutive repeated elements.

• 'strictascend' — Checks if data is in strictly ascending order. Data cannot contain
duplicate or missing elements.

• 'strictdescend' — Checks if data is in strictly descending order. Data cannot
contain duplicate or missing elements.

• 'strictmonotonic' — Checks if data is in strictly descending or strictly ascending
order. Data cannot contain duplicate or missing elements.

1 Alphabetical List

1-7918

direction is not supported for timetable input. Use issortedrows instead.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: issorted(A,'MissingPlacement','last')

MissingPlacement — Placement of missing values
'auto' (default) | 'first' | 'last'

Placement of missing values (NaN, NaT, <undefined>, and missing) specified as the
comma-separated pair consisting of 'MissingPlacement' and one of the following:

• 'auto' — Missing elements are required to be placed last for ascending order and
first for descending order to return 1.

• 'first' — Missing elements are required to be placed first to return 1.
• 'last' — Missing elements are required to be placed last to return 1.

This name-value pair is not supported for timetable input. Use issortedrows instead.

ComparisonMethod — Element comparison method
'auto' (default) | 'real' | 'abs'

Element comparison method, specified as the comma-separated pair consisting of
'ComparisonMethod' and one of the following:

• 'auto' — Check if A is sorted by real(A) when A is real, and check if A is sorted by
abs(A) when A is complex.

• 'real' — Check if A is sorted by real(A) when A is real or complex. If A has
elements with consecutive equal real parts, then check imag(A) to break ties.

• 'abs' — Check if A is sorted by abs(A) when A is real or complex. If A has elements
with consecutive equal magnitude, then check angle(A) in the interval (-π,π] to break
ties.

 issorted

1-7919

Definitions

Sort Order for Character and String Arrays
MATLAB stores characters as Unicode using the UTF-16 character encoding scheme.
Character and string arrays are sorted according to the UTF-16 code point order. For the
characters that are also the ASCII characters, this order means that uppercase letters
come before lowercase letters. Digits and some punctuation also come before letters.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The first input argument must not be a cell array.
• If A is complex with all zero imaginary parts, then MATLAB might convert A to

real(A) before calling issorted(A). In this case, MATLAB checks that A is sorted
by real(A), but the generated code checks that A is sorted by abs(A). To make the
generated code match MATLAB, use issorted(real(A)) or
issorted(A,'ComparisonMethod','real'). See “Code Generation for Complex
Data with Zero-Valued Imaginary Parts” (MATLAB Coder).

• If you supply dim, then it must be constant.
• For limitations related to variable-size inputs, see “Variable-Sizing Restrictions for

Code Generation of Toolbox Functions” (MATLAB Coder).

1 Alphabetical List

1-7920

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
issortedrows | sort | sortrows

Introduced before R2006a

 issorted

1-7921

issortedrows
Determine if matrix or table rows are sorted

Syntax
TF = issortedrows(A)
TF = issortedrows(A,column)
TF = issortedrows(___ ,direction)
TF = issortedrows(___ ,Name,Value)

TF = issortedrows(tblA)

TF = issortedrows(tblA,'RowNames')
TF = issortedrows(tblA,rowDimName)
TF = issortedrows(tblA,vars)
TF = issortedrows(___ ,direction)
TF = issortedrows(___ ,Name,Value)

Description
TF = issortedrows(A) returns the logical scalar 1 (true) when the elements of the
first column of a matrix A are listed in ascending order. Otherwise, issortedrows
returns 0 (false). When the first column has consecutive repeated elements,
issortedrows determines whether the next column is in ascending order, and repeats
this behavior for succeeding equal values.

TF = issortedrows(A,column) returns 1 when A is sorted based on the columns
specified in the vector column. For example, issortedrows(A,[4 6]) first checks if
the fourth column of A is in ascending order, then checks if the sixth column is in
ascending order to break ties.

TF = issortedrows(___ ,direction) returns 1 when the first column of A is in the
order specified by direction for any of the previous syntaxes. For example,
issortedrows(A,'monotonic') checks if the first column of A is in ascending or
descending order. direction can also be a cell array of character vectors representing
multiple directions for each column being checked. For example, issortedrows(A,[2

1 Alphabetical List

1-7922

3],{'ascend' 'descend'}) checks if the second column of A is in ascending order,
then checks if the third column is in descending order to break ties.

TF = issortedrows(___ ,Name,Value) specifies additional parameters for checking
sort order. For example, issortedrows(A,'ComparisonMethod','abs') checks if
the elements in the first column of A are sorted by magnitude.

TF = issortedrows(tblA) checks if the rows of a table are in ascending order based
on the elements in the first variable. If elements in the first variable are repeated, then
issortedrows checks the elements in the second variable, and so on.

If tblA is a timetable, then issortedrows checks if the rows of tblA are in ascending
order based on its row times. Row times of a timetable label the rows along the first
dimension of the timetable.

TF = issortedrows(tblA,'RowNames') checks if the rows of a table are in
ascending order based on its row names. Row names of a table label the rows along the
first dimension of the table.

This syntax is not supported when tblA is a timetable.

TF = issortedrows(tblA,rowDimName) checks if the rows of a table are sorted by
row labels rowDimName along the first dimension.

• If tblA is a table, then the labels are row names.
• If tblA is a timetable, then the labels are row times.

TF = issortedrows(tblA,vars) checks if the rows of a table are in ascending order
based on the elements in variables vars. For example, if Age and Weight are variables of
tblA, then issortedrows(tblA,{'Age','Weight'}) checks if the rows are in
ascending order by age, then by weight to break ties.

• If tblA is a table with row names, then vars can include the row names.
• If tblA is a timetable, then vars can include the row times.

TF = issortedrows(___ ,direction) checks if a table is sorted in the order
specified by direction for any of the previous table syntaxes. direction can be a
single sort order such as 'descend' or 'monotonic', which is applied to each specified
variable, row name, or row time. direction can also be a cell array whose elements
contain different sort orders for each specified variable, row name, or row time that
issortedrows operates on.

 issortedrows

1-7923

TF = issortedrows(___ ,Name,Value) specifies additional parameters for sorting
tables. For example, issortedrows(tblA,'Var1','MissingPlacement','first')
checks that missing elements in Var1, such as NaN or NaT, are placed at the beginning of
the table.

Examples

Matrix Rows

Create a matrix and determine if its rows are in ascending order based on the values in
the first column. Since the first column has a repeated element, sortrows looks to the
second column to determine whether the matrix rows are sorted.

A = [1 2 9; 1 5 8; 4 0 7]

A = 3×3

 1 2 9
 1 5 8
 4 0 7

TF = issortedrows(A)

TF = logical
 1

Determine if the rows of A are in ascending order based on the values in the third column.

TF = issortedrows(A,3)

TF = logical
 0

Determine if the rows of A are in descending order based on the values in the third
column.

TF = issortedrows(A,3,'descend')

1 Alphabetical List

1-7924

TF = logical
 1

Complex Matrix

Create a matrix containing complex numbers, and determine if its rows are in ascending
order based on the real parts of the elements in the first column. Since the elements in
the first column have equal real parts, issortedrows then checks the imaginary parts to
break the tie.

A = [1+i 2i; 1+2i 3+4i]

A = 2×2 complex

 1.0000 + 1.0000i 0.0000 + 2.0000i
 1.0000 + 2.0000i 3.0000 + 4.0000i

TF = issortedrows(A,'ComparisonMethod','real')

TF = logical
 1

Table Rows

For a table that describes patient information for five people, determine how the rows of
the table are sorted.

Create a table with four variables, and determine if the rows of the table are in ascending
order based on age. Since the age variable contains a repeated element, issortedrows
then checks the next column (Height) to break the tie.

LastName = {'Sweet';'Jacobson';'Wang';'Joiner';'Berger'};
Age = [38;38;40;43;49];
Height = [69;71;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

 issortedrows

1-7925

tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Sweet 38 69 176 124 93
 Jacobson 38 71 163 109 77
 Wang 40 64 131 125 83
 Joiner 43 67 133 117 75
 Berger 49 64 119 122 80

TF = issortedrows(tblA)

TF = logical
 1

Check if the table rows are sorted by last name, which are the row names for tblA.

TF = issortedrows(tblA,'RowNames')

TF = logical
 0

Check if the table rows are in ascending order by age, then in descending order by
weight.

TF = issortedrows(tblA,{'Age','Weight'},{'ascend','descend'})

TF = logical
 1

Timetable with Missing Times

Create a timetable, and check that the rows of the timetable are in ascending order based
on the row times. Also check that missing elements are placed last.

1 Alphabetical List

1-7926

Time = [seconds(1:3) NaN NaN]';
TT = timetable(Time,[98;97.5;97.9;98.1;99.9],[120;111;119;117;112],...
 'VariableNames',{'Temperature','Distance'})

TT=5×3 timetable
 Time Temperature Distance
 _______ ___________ ________

 1 sec 98 120
 2 sec 97.5 111
 3 sec 97.9 119
 NaN sec 98.1 117
 NaN sec 99.9 112

TF = issortedrows(TT,'Time','MissingPlacement','last')

TF = logical
 1

Input Arguments
A — Input array
column vector | matrix

Input array, specified as a column vector or matrix.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

column — Column sorting vector
nonzero integer scalar | vector of nonzero integers

Column sorting vector, specified as a nonzero integer scalar or a vector of nonzero
integers. Each specified integer value indicates a column to check for sort order. Negative
integers indicate that the sort order is descending.

direction — Sorting direction
character vector | cell array of character vectors

 issortedrows

1-7927

Sorting direction, specified as one of the following:

• 'ascend' (default) — Checks if data is in ascending order. Data can contain
consecutive repeated elements.

• 'descend' — Checks if data is in descending order. Data can contain consecutive
repeated elements.

• 'monotonic' — Checks if data is in descending or ascending order. Data can contain
consecutive repeated elements.

• 'strictascend' — Checks if data is in strictly ascending order. Data cannot contain
duplicate or missing elements.

• 'strictdescend' — Checks if data is in strictly descending order. Data cannot
contain duplicate or missing elements.

• 'strictmonotonic' — Checks if data is in strictly descending or strictly ascending
order. Data cannot contain duplicate or missing elements.

direction can also be a cell array containing a list of these character vectors, where
each element in the list corresponds to a column of A. For example, issortedrows(A,[2
4],{'ascend' 'descend'}) first checks if the rows of A are in ascending order based
on the second column. Then, to break ties, issortedrows checks if the rows are in
descending order based on the fourth column.

If column is specified, then the number of elements in the cell array must match the
length of column. When column is not specified, the cell array must contain an element
for every column of A, or a single element that is applied to all columns.
Data Types: char | cell

tblA — Input table
table | timetable

Input table, specified as a table or a timetable. Each variable in tblA must be a valid
input to sort or sortrows.

Data Types: table | timetable

rowDimName — Name of first dimension of input table or timetable
character vector

Name of the first dimension of the input table or timetable, specified as a character
vector.

1 Alphabetical List

1-7928

• If tblA is a table with row names, then rowDimName is the name of the first
dimension of the table. By default, the name of the first dimension is 'Row'.
Dimension names are a property of tables. You can access the dimension names of
tblA using tblA.Properties.DimensionNames.

• If tblA is a timetable, then rowDimName is the name of the vector of row times. You
can specify its name when you create a timetable, such as Time or Date. You can also
access the dimension names using tblA.Properties.DimensionNames.

Example: If a table T has row names, and you changed the name of the first dimension
using T.Properties.DimensionName{1} = 'Name', then
issortedrows(T,'Name') checks if the table is sorted by row names.
Example: If a timetable TT has a time vector named Date, then
issortedrows(TT,'Date') checks if the timetable is sorted by the dates and times
that Date contains.
Data Types: char

vars — Sorting variables
scalar integer | vector of integers | variable name | cell array of variable names | logical
vector

Sorting variables, specified as a scalar integer, a vector of integers, a variable name, a
cell array of variable names, or a logical vector. vars indicates the table variables to sort
by.

If an element of vars is a positive integer, then issortedrows checks if the rows in the
corresponding variable in tblA are in ascending order. If an element of vars is a
negative integer, then issortedrows checks if the rows in the corresponding variable in
tblA are in descending order.
Example: issortedrows(tblA,{'Height','Weight'}) checks if the rows of tblA
are in ascending order, first by the variable Height, then by the variable Weight to
break ties.
Example: issortedrows(tblA,[1 4]) first checks if the table rows are in ascending
order based on the first variable, then breaks ties by checking if the rows are in
ascending order based on the fourth variable.
Example: issortedrows(TT,{'Time','X'}) checks if the row times of a timetable are
in ascending order, then breaks ties by checking if the rows are in ascending order based
on the table variable 'X'.
Data Types: double | single | char | cell | logical

 issortedrows

1-7929

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: issortedrows(A,'MissingPlacement','last')

MissingPlacement — Placement of missing values
'auto' (default) | 'first' | 'last'

Placement of missing values (NaN, NaT, <undefined>, and missing) specified as the
comma-separated pair consisting of 'MissingPlacement' and one of the following:

• 'auto' — Missing elements are required to be placed last for ascending order and
first for descending order to return 1.

• 'first' — Missing elements are required to be placed first to return 1.
• 'last' — Missing elements are required to be placed last to return 1.

ComparisonMethod — Element comparison method
'auto' (default) | 'real' | 'abs'

Element comparison method, specified as the comma-separated pair consisting of
'ComparisonMethod' and one of the following:

• 'auto' — Check if the rows of A are sorted by real(A) when A is real, and check if
the rows of A are sorted by abs(A) when A is complex.

• 'real' — Check if the rows of A are sorted by real(A) when A is real or complex. If
a column has elements with consecutive equal real parts, then check imag(A) to
break ties.

• 'abs' — Check if the rows of A are sorted by abs(A) when A is real or complex. If a
column has elements with consecutive equal magnitude, then check angle(A) in the
interval (-π,π] to break ties.

1 Alphabetical List

1-7930

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If A is complex with all zero imaginary parts, then MATLAB might convert A to
real(A) before calling issortedrows(A). In this case, MATLAB checks that the
rows of A are sorted by real(A), but the generated code checks that the rows of A
are sorted by abs(A). To make the generated code match MATLAB, use
issortedrows(real(A)) or issortedrows(A,'ComparisonMethod','real').
See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB
Coder).

See Also
issorted | sort | sortrows

Introduced in R2017a

 issortedrows

1-7931

isspace
Determine which characters are space characters

Syntax
TF = isspace(A)

Description
TF = isspace(A) returns a logical array TF. If A is a character array or string scalar,
then the elements of TF are logical 1 (true) where corresponding characters in A are
space characters, and logical 0 (false) elsewhere. isspace recognizes all Unicode
whitespace characters.

If A is not a character array or string scalar, then isspace returns logical 0 (false).

Examples

Determine Which Character Array Elements Are Spaces

Create different arrays, and then determine which elements are space characters.

chr = '123 Main St.'

chr =
'123 Main St.'

TF = isspace(chr)

TF = 1x12 logical array

 0 0 0 1 0 0 0 0 1 0 0 0

1 Alphabetical List

1-7932

Starting in R2016b, you can convert character arrays to strings using the string
function. Convert chr to a string, and test it. The input argument is not a character array,
so isspace returns 0.

str = string(chr)

str =
"123 Main St."

TF = isspace(str)

TF = 1x12 logical array

 0 0 0 1 0 0 0 0 1 0 0 0

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. A can be any
data type.

Tips
• To find space characters within elements of a nonscalar string array, use the

isstrprop function.
• To find all characters for which isspace returns logical 1, use the code below. Then

look up the returned decimal codes in a Unicode reference, such as the List of Unicode
characters.

find(isspace(char(1):char(intmax('uint16'))))

 isspace

1-7933

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input values from the char class must be in the range 0–127.

See Also
blanks | char | deblank | is* | isa | ischar | isletter | isnumeric | isstring |
isstrprop | newline | regexp | string | strip | strtrim

Topics
“Create Character Arrays”
“Search and Replace Text”

Introduced before R2006a

1 Alphabetical List

1-7934

issparse
Determine whether input is sparse

Syntax
TF = issparse(S)

Description
TF = issparse(S) returns logical 1 (true) if the storage class of S is sparse and
logical 0 (false) otherwise.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 issparse

1-7935

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
full | is* | sparse

Introduced before R2006a

1 Alphabetical List

1-7936

isstr
(Not recommended) Determine whether input is character array

Note isstr is not recommended. Use ischar instead.

See Also
is* | isa | ischar

Introduced before R2006a

 isstr

1-7937

isstring
Determine if input is string array

Syntax
tf = isstring(A)

Description
tf = isstring(A) returns 1 (true) if A is a string array. Otherwise, it returns 0
(false).

Examples

Determine if Array Contains String Values

Create different arrays, and then determine if they are string arrays.

Test a character vector.

chr = 'Mary Jones'

chr =
'Mary Jones'

tf = isstring(chr)

tf = logical
 0

Character vectors are not strings, so isstring returns 0.

Test a string array. Starting in R2017a, you can create strings using double quotes.

1 Alphabetical List

1-7938

str = ["Smith","Chung","Morales"; ...
 "Sanchez","Peterson","Adams"]

str = 2x3 string array
 "Smith" "Chung" "Morales"
 "Sanchez" "Peterson" "Adams"

tf = isstring(str)

tf = logical
 1

str is a string array, so isstring returns 1.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. A can be any
data type.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 isstring

1-7939

See Also
cellstr | char | is* | isStringScalar | isa | iscategorical | iscell |
iscellstr | ischar | isstrprop | isstruct | istable | string

Topics
“Create String Arrays”
“Create Character Arrays”

Introduced in R2016b

1 Alphabetical List

1-7940

isStringScalar
Determine if input is string array with one element

Syntax
tf = isStringScalar(A)

Description
tf = isStringScalar(A) returns 1 (true) if A is a string array and A has only one
element. Otherwise, it returns 0 (false).

Examples

Determine If Array Is String Scalar

Create different arrays, and then determine if they are string scalars.

Test a string scalar.

str = "Mercury"

str =
"Mercury"

tf = isStringScalar(str)

tf = logical
 1

Test a string array with multiple elements. Since str contains more than one element,
isStringScalar returns 0.

str = ["Mercury","Gemini","Apollo"]

 isStringScalar

1-7941

str = 1x3 string array
 "Mercury" "Gemini" "Apollo"

tf = isStringScalar(str)

tf = logical
 0

Test a character vector. Since character vectors are not strings, isStringScalar
returns 0.

chr = 'Pluto'

chr =
'Pluto'

tf = isStringScalar(chr)

tf = logical
 0

Input Arguments
A — Input array
array of any size and data type

Input array, specified as an array of any size and data type.

See Also
cellstr | char | is* | isa | iscellstr | ischar | ismissing | isstring |
isstrprop | string

Topics
“Create String Arrays”
“Create Character Arrays”

1 Alphabetical List

1-7942

Introduced in R2017b

 isStringScalar

1-7943

isstrprop
Determine which characters in input strings are of specified category

Syntax
TF = isstrprop(str,category)
TF = isstrprop(str,category,'ForceCellOutput',tf)

Description
TF = isstrprop(str,category) determines if characters in the input text are of the
specified category, such as letters, numbers, or whitespace. For example,
isstrprop('ABC123','alpha') returns a 1-by-6 logical array, [1 1 1 0 0 0],
indicating that the first three characters are letters.

• If str is a character array, string scalar, or numeric array, then isstrprop returns a
logical array.

• If str is a cell array of character vectors or a string array, then isstrprop returns a
cell array of logical vectors.

TF = isstrprop(str,category,'ForceCellOutput',tf), where tf is 1 (true),
returns TF as a cell array even when str is a character array, string scalar, or numeric
array. The default for tf is 0 (false).

Examples

Determine Which Characters Are Letters

Create a character vector and determine which characters are letters.

chr = '123 Maple Street'

chr =
'123 Maple Street'

1 Alphabetical List

1-7944

TF = isstrprop(chr,'alpha')

TF = 1x16 logical array

 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1

Find indices for the letters in chr using TF.

idx = find(TF)

idx = 1×11

 5 6 7 8 9 11 12 13 14 15 16

chr(idx)

ans =
'MapleStreet'

Determine Types of Characters in String Arrays

Create string arrays. Then determine which characters belong to various categories using
the isstrprop function.

Create a string scalar and determine which of its characters are numeric digits. Starting
in R2017a, you can create strings using double quotes.

str = "123 Maple Street"

str =
"123 Maple Street"

TF = isstrprop(str,'digit')

TF = 1x16 logical array

 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 isstrprop

1-7945

Create a nonscalar string array. Determine which characters in each string are
whitespace characters. isstrprop returns a cell array in which each cell contains
results for a string in str.

str = ["123 Maple St.";"456 Oak St."]

str = 2x1 string array
 "123 Maple St."
 "456 Oak St."

TF = isstrprop(str,'wspace')

TF = 2x1 cell array
 {1x13 logical}
 {1x11 logical}

To display the results for the second string, str(2), index into TF{2}.

TF{2}

ans = 1x11 logical array

 0 0 0 1 0 0 0 1 0 0 0

Determine Types of Characters in Cell Array

Create a cell array of character vectors. Determine which characters are whitespace
characters.

C = {'123 Maple St.';'456 Oak St.'}

C = 2x1 cell array
 {'123 Maple St.'}
 {'456 Oak St.' }

TF = isstrprop(C,'wspace')

TF = 2x1 cell array
 {1x13 logical}

1 Alphabetical List

1-7946

 {1x11 logical}

Return Logical Vector in Cell Array

Find the punctuation characters in a character vector. isstrprop returns a logical
vector indicating which characters belong to that category. Force isstrprop to return
the logical vector in a cell array.

chr = 'A horse! A horse! My kingdom for a horse!'

chr =
'A horse! A horse! My kingdom for a horse!'

TF = isstrprop(chr,'punct','ForceCellOutput',true)

TF = 1x1 cell array
 {1x41 logical}

Find indices for the punctuation marks in chr using TF{1}.

find(TF{1})

ans = 1×3

 8 17 41

Determine Character Types in Numeric Array

Create a numeric array. Determine which numbers correspond to character codes for
letters.

X = [77 65 84 76 65 66]

X = 1×6

 77 65 84 76 65 66

 isstrprop

1-7947

TF = isstrprop(X,'alpha')

TF = 1x6 logical array

 1 1 1 1 1 1

isstrprop identifies all the numbers as character codes for letters. Convert the numbers
to their corresponding characters with the char function.

c = char(X)

c =
'MATLAB'

Input Arguments
str — Input array
string array | character array | cell array of character vectors | numeric array

Input array, specified as a string array, character array, cell array of character vectors, or
numeric array.

If str is a numeric array, then isstrprop treats the numbers as Unicode character
codes. If the numbers are double- or single-precision floating-point numbers, then
isstrprop rounds them to the nearest integer values before interpreting them as
character codes.
Data Types: string | char | cell | double | single | int8 | int16 | int32 | int64 |
uint8 | uint16 | uint32 | uint64

category — Character category
'alpha' | 'alphanum' | 'cntrl' | 'digit' | 'graphic' | ...

Character category, specified as a character vector or string scalar. isstrprop classifies
the characters in str according to categories defined by the Unicode standard.

Category Description
alpha Letters.
alphanum Letters or numeric digits.

1 Alphabetical List

1-7948

Category Description
cntrl Control characters (for example, char(0:20)).
digit Numeric digits.
graphic Graphic characters. isstrprop treats all Unicode characters as

graphic characters, except for the following:

• Unassigned characters
• Whitespace characters
• The line separator
• The paragraph separator
• Control characters
• Private user-defined characters
• Surrogate characters

lower Lowercase letters.
print Graphic characters, plus char(32).
punct Punctuation characters.
wspace Whitespace characters. This range includes the ANSI® C definition of

whitespace, {' ','\t','\n','\r','\v','\f'}, in addition to
some other Unicode characters.

upper Uppercase letters.
xdigit Valid hexadecimal digits.

tf — True or false
0 (default) | 1

True or false, specified as 1 or 0.

Output Arguments
TF — True or false
logical array | cell array of logical vectors

True or false, returned as a logical array or cell array of logical vectors.

 isstrprop

1-7949

• If str is a character vector, string scalar, or numeric array, then TF is a logical array
indicating which characters belong to the specified category.

• If str is a cell array of character vectors or a string array, then TF is a cell array. For
each element of str, the corresponding cell of TF contains a logical vector indicating
which characters in that element belong to the specified category.

Tips
Whitespace characters for which the wspace option returns true include tab, line feed,
vertical tab, form feed, carriage return, and space, in addition to some other Unicode
characters. To see all characters for which the wspace option returns true, enter the
following command, and then look up the returned decimal codes in a Unicode reference:

find(isstrprop(char(1):char(intmax('uint16')),'wspace'))

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input array must be specified as a character array or an array of integers.
• Input values must be in the range 0–127.

See Also
char | find | is* | isa | iscellstr | ischar | isletter | isnumeric | isspace |
isstring | isvarname | regexp | string

Topics
“Search and Replace Text”
“Compare Text”

1 Alphabetical List

1-7950

Introduced before R2006a

 isstrprop

1-7951

isstruct
Determine if input is structure array

Syntax
tf = isstruct(A)

Description
tf = isstruct(A) returns logical 1 (true) if A is a MATLAB structure and logical 0
(false) otherwise.

Examples
patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isstruct(patient)

ans =

 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-7952

See Also
is* | isa | iscell | ischar | isfield | islogical | isnumeric | isobject |
istable | struct

Topics
dynamic field names

Introduced before R2006a

 isstruct

1-7953

isstudent
Determine if version is Student Version

Syntax
tf = isstudent

Description
tf = isstudent returns logical 1 (true) if the version of MATLAB is the Student
Version. Otherwise, it returns logical 0 (false) for commercial versions.

See Also
is* | license | ver | version

Introduced before R2006a

1 Alphabetical List

1-7954

issymmetric
Determine if matrix is symmetric or skew-symmetric

Syntax
tf = issymmetric(A)
tf = issymmetric(A,skewOption)

Description
tf = issymmetric(A) returns logical 1 (true) if square matrix A is symmetric on page
1-7957; otherwise, it returns logical 0 (false).

tf = issymmetric(A,skewOption) specifies the type of the test. Specify
skewOption as 'skew' to determine if A is skew-symmetric on page 1-7958.

Examples

Test if Hermitian Matrix Is Symmetric

Create a 3-by-3 matrix.

A = [1 0 1i; 0 1 0;-1i 0 1]

A = 3×3 complex

 1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 1.0000i
 0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 - 1.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

The matrix is Hermitian and has a real-valued diagonal.

Test whether the matrix is symmetric.

 issymmetric

1-7955

tf = issymmetric(A)

tf = logical
 0

The result is logical 0 (false) because A is not symmetric. In this case, A is equal to its
complex conjugate transpose, A', but not its nonconjugate transpose, A.'.

Change the element in A(3,1) to be 1i.

A(3,1) = 1i;

Determine whether the modified matrix is symmetric.

tf = issymmetric(A)

tf = logical
 1

The matrix, A, is now symmetric because it is equal to its nonconjugate transpose, A.'.

Test if Matrix Is Skew-Symmetric

Create a 4-by-4 matrix.

A = [0 1 -2 5; -1 0 3 -4; 2 -3 0 6; -5 4 -6 0]

A = 4×4

 0 1 -2 5
 -1 0 3 -4
 2 -3 0 6
 -5 4 -6 0

The matrix is real and has a diagonal of zeros.

Specify skewOption as 'skew' to determine whether the matrix is skew-symmetric.

tf = issymmetric(A,'skew')

1 Alphabetical List

1-7956

tf = logical
 1

The matrix, A, is skew-symmetric since it is equal to the negation of its nonconjugate
transpose, -A.'.

Input Arguments
A — Input matrix
numeric matrix

Input matrix, specified as a numeric matrix. If A is not square, then issymmetric returns
logical 0 (false).
Data Types: single | double | logical
Complex Number Support: Yes

skewOption — Test type
'nonskew' (default) | 'skew'

Test type, specified as 'nonskew' or 'skew'. Specify 'skew' to test whether A is skew-
symmetric on page 1-7958.

Definitions
Symmetric Matrix
• A square matrix, A, is symmetric if it is equal to its nonconjugate transpose, A = A.'.

In terms of the matrix elements, this means that

ai, j = a j, i .
• Since real matrices are unaffected by complex conjugation, a real matrix that is

symmetric is also Hermitian. For example, the matrix

A =
1
0

0
2

1
0

1 0 1

 issymmetric

1-7957

is both symmetric and Hermitian.

Skew-Symmetric Matrix
• A square matrix, A, is skew-symmetric if it is equal to the negation of its nonconjugate

transpose, A = -A.'.

In terms of the matrix elements, this means that

ai, j = − a j, i .

• Since real matrices are unaffected by complex conjugation, a real matrix that is skew-
symmetric is also skew-Hermitian. For example, the matrix

A =
0 −1
1 0

is both skew-symmetric and skew-Hermitian.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-7958

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ctranspose | ishermitian | isreal | transpose

Introduced in R2014a

 issymmetric

1-7959

isTiled
Determine if image is tiled

Syntax
tf = isTiled(t)

Description
tf = isTiled(t) returns true if the image has a tiled layout. Otherwise the function
returns false.

Examples

Determine if Image Has Tiled Organization

Create a Tiff object for a TIFF file and check if the image in the file has a tiled
organization.

t = Tiff('example.tif','r');
tf = isTiled(t)

tf = logical
 1

The image has a tiled organization.

Close the Tiff object.

close(t)

1 Alphabetical List

1-7960

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Algorithms

References
This function corresponds to the TIFFIsTiled function in the LibTIFF C API. To use this
function, you must be familiar with the TIFF specification and technical notes. View this
documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 isTiled

1-7961

http://www.simplesystems.org/libtiff/

istable
Determine whether input is table

Syntax
TF = istable(T)

Description
TF = istable(T) returns logical 1 (true) if T is a table, and logical 0 (false)
otherwise.

Examples

Determine if Workspace Variable Is Table

Create a workspace variable, T.

T = table(categorical({'M';'F';'M'}),[45 45;41 32;40 34],...
 {'NY';'CA';'MA'},[true;false;false])

T=3×4 table
 Var1 Var2 Var3 Var4
 ____ ________ ____ _____

 M 45 45 'NY' true
 F 41 32 'CA' false
 M 40 34 'MA' false

Verify that the workspace variable, T, is a table.

istable(T)

1 Alphabetical List

1-7962

ans = logical
 1

T is a table.

Determine if Subset of Table Is Table

Create a table, T.

T = table(categorical({'M';'F';'M'}),[45 45;41 32;40 34],...
 {'NY';'CA';'MA'},[true;false;false])

T=3×4 table
 Var1 Var2 Var3 Var4
 ____ ________ ____ _____

 M 45 45 'NY' true
 F 41 32 'CA' false
 M 40 34 'MA' false

Determine if the subset of table T that contains only the second and fourth variables is a
table.

istable(T{:,[2 4]})

ans = logical
 0

Conversely, accessing data with curly braces, T{:,[2 4]}, returns a matrix and not a
table.

Input Arguments
T — Input variable
workspace variable

Input variable, specified as a workspace variable. T can be any data type.

 istable

1-7963

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
iscell | islogical | isnumeric | isobject | isstruct | table

Introduced in R2013b

1 Alphabetical List

1-7964

istall
Determine if input is tall array

Syntax
tf = istall(X)

Description
tf = istall(X) returns logical 1 (true) if X is a tall array. Otherwise, it returns logical
0 (false). The output, tf, is an in-memory logical scalar.

Examples

Determine if Array is Tall

Create an array and determine if it is a tall array.

X = tall(randn(1000,3))

X =

 1,000x3 tall double matrix

 0.5377 0.6737 0.2962
 1.8339 -0.6691 1.2008
 -2.2588 -0.4003 1.0902
 0.8622 -0.6718 -0.3587
 0.3188 0.5756 -0.1299
 -1.3077 -0.7781 0.7337
 -0.4336 -1.0636 0.1203
 0.3426 0.5530 1.1363
 : : :
 : : :

tf = istall(X)

 istall

1-7965

tf = logical
 1

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. X can be any
data type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

See Also
classUnderlying | isaUnderlying | tall

Topics
“Tall Arrays”

Introduced in R2016b

1 Alphabetical List

1-7966

istimetable
Determine if input is timetable

Syntax
TF = istimetable(A)

Description
TF = istimetable(A) returns logical 1 (true) if A is a timetable, and logical 0
(false) otherwise.

Examples

Determine If Workspace Variable is Timetable

Create a timetable and verify that it is a timetable.

Date = datetime({'2015-12-18';'2015-12-19';'2015-12-20'});
Temp = [37.3;39.1;42.3];
Pressure = [29.4;29.6;30.0];
Precip = [0.1;0.9;0.0];
TT = timetable(Date,Temp,Pressure,Precip)

TT=3×4 timetable
 Date Temp Pressure Precip
 ___________ ____ ________ ______

 18-Dec-2015 37.3 29.4 0.1
 19-Dec-2015 39.1 29.6 0.9
 20-Dec-2015 42.3 30 0

TF = istimetable(TT)

 istimetable

1-7967

TF = logical
 1

Convert TT to a table, T. The istimetable function returns 0 because T is not a
timetable.

T = timetable2table(TT);
TF = istimetable(T)

TF = logical
 0

Input Arguments
A — Input variable
workspace variable

Input variable, specified as a workspace variable. A can be any data type.

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
iscell | islogical | isnumeric | isobject | isstruct | istable | timetable

Topics
“Create Timetables”

1 Alphabetical List

1-7968

“Tables”
“Represent Dates and Times in MATLAB”

Introduced in R2016b

 istimetable

1-7969

istril
Determine if matrix is lower triangular

Syntax
tf = istril(A)

Description
tf = istril(A) returns logical 1 (true) if A is a lower triangular matrix on page 1-
7971; otherwise, it returns logical 0 (false).

Examples

Test Lower Triangular Matrix

Create a 5-by-5 matrix.

D = tril(magic(5))

D = 5×5

 17 0 0 0 0
 23 5 0 0 0
 4 6 13 0 0
 10 12 19 21 0
 11 18 25 2 9

Test D to see if it is lower triangular.

istril(D)

ans = logical
 1

1 Alphabetical List

1-7970

The result is logical 1 (true) because all elements above the main diagonal are zero.

Test Matrix of Zeros

Create a 5-by-5 matrix of zeros.

Z = zeros(5);

Test Z to see if it is lower triangular.

istril(Z)

ans = logical
 1

The result is logical 1 (true) because a lower triangular matrix can have any number of
zeros on its main diagonal.

Input Arguments
A — Input array
numeric array

Input array, specified as a numeric array. istril returns logical 0 (false) if A has more
than two dimensions.
Data Types: single | double
Complex Number Support: Yes

Definitions

Lower Triangular Matrix
A matrix is lower triangular if all elements above the main diagonal are zero. Any number
of the elements on the main diagonal can also be zero.

 istril

1-7971

For example, the matrix

A =

1 0 0 0
−1 1 0 0
−2 −2 1 0
−3 −3 −3 1

is lower triangular. A diagonal matrix is both upper and lower triangular.

Tips
• Use the tril function to produce lower triangular matrices for which istril returns

logical 1 (true).
• The functions isdiag, istriu, and istril are special cases of the function

isbanded, which can perform all of the same tests with suitably defined upper and
lower bandwidths. For example, istril(A) == isbanded(A,size(A,1),0).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-7972

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
bandwidth | diag | isbanded | isdiag | istriu | tril | triu

Introduced in R2014a

 istril

1-7973

istriu
Determine if matrix is upper triangular

Syntax
tf = istriu(A)

Description
tf = istriu(A) returns logical 1 (true) if A is an upper triangular matrix on page 1-
7975; otherwise, it returns logical 0 (false).

Examples

Test Upper Triangular Matrix

Create a 5-by-5 matrix.

A = triu(magic(5))

A = 5×5

 17 24 1 8 15
 0 5 7 14 16
 0 0 13 20 22
 0 0 0 21 3
 0 0 0 0 9

Test A to see if it is upper triangular.

istriu(A)

ans = logical
 1

1 Alphabetical List

1-7974

The result is logical 1 (true) because all elements below the main diagonal are zero.

Test Matrix of Zeros

Create a 5-by-5 matrix of zeros.

Z = zeros(5);

Test Z to see if it is upper triangular.

istriu(Z)

ans = logical
 1

The result is logical 1 (true) because an upper triangular matrix can have any number of
zeros on the main diagonal.

Input Arguments
A — Input array
numeric array

Input array, specified as a numeric array. istriu returns logical 0 (false) if A has more
than two dimensions.
Data Types: single | double
Complex Number Support: Yes

Definitions

Upper Triangular Matrix
A matrix is upper triangular if all elements below the main diagonal are zero. Any number
of the elements on the main diagonal can also be zero.

 istriu

1-7975

For example, the matrix

A =

1 −1 −1 −1
0 1 −2 −2
0 0 1 −3
0 0 0 1

is upper triangular. A diagonal matrix is both upper and lower triangular.

Tips
• Use the triu function to produce upper triangular matrices for which istriu returns

logical 1 (true).
• The functions isdiag, istriu, and istril are special cases of the function

isbanded, which can perform all of the same tests with suitably defined upper and
lower bandwidths. For example, istriu(A) == isbanded(A,0,size(A,2)).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-7976

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
bandwidth | diag | isbanded | isdiag | istril | tril | triu

Introduced in R2014a

 istriu

1-7977

isundefined
Find undefined elements in categorical array

Syntax
TF = isundefined(A)

Description
TF = isundefined(A) returns a logical array, TF, that indicates which elements in the
categorical array, A, contain undefined values. isundefined returns logical 1 (true) for
undefined elements; otherwise it returns logical 0 (false). The size of TF is the same as
the size of A.

Any elements in A without a corresponding category are undefined. Undefined values are
similar to NaN in numeric arrays.

Examples

Categorical Array with Undefined Values

Create a categorical array, A, from numeric values where 1, 2, and 3 represent red,
green, and blue respectively.

A = categorical([4 1; 2 3; 2 1; 3 4; 1 1],1:3,{'red','green','blue'})

A = 5x2 categorical array
 <undefined> red
 green blue
 green red
 blue <undefined>
 red red

1 Alphabetical List

1-7978

A is a 5-by-2 categorical array with three categories: red, green, and blue. Array
elements corresponding to the numeric value 4 in the input array to the categorical
function do not have a corresponding category. Therefore, they are undefined in the
output categorical array, A.

Find undefined elements in A.

TF = isundefined(A)

TF = 5x2 logical array

 1 0
 0 0
 0 0
 0 1
 0 0

A(1,1) and A(4,2) are undefined.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 isundefined

1-7979

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
exist | ismember

Introduced in R2013b

1 Alphabetical List

1-7980

isunix
Determine if version is for Linux or Mac platforms

Syntax
tf = isunix

Description
tf = isunix returns logical 1 (true) if the version of MATLAB is for Linux or Apple
macOS platforms. Otherwise, it returns logical 0 (false).

Examples

Execute MATLAB Command Based on Platform
if ismac
 % Code to run on Mac platform
elseif isunix
 % Code to run on Linux platform
elseif ispc
 % Code to run on Windows platform
else
 disp('Platform not supported')
end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 isunix

1-7981

Usage notes and limitations:

• Returns true or false based on the MATLAB version used for code generation.
• Use only when the code generation target is S-function (Simulation) or MEX-function.

See Also
computer | is* | ismac | ispc | isstudent

Introduced before R2006a

1 Alphabetical List

1-7982

isvalid (serial)
Determine whether serial port objects are valid

Syntax
out = isvalid(obj)

Description
out = isvalid(obj) returns the logical array out, which contains a 0 where the
elements of the serial port object, obj are invalid serial port objects and a 1 where the
elements of obj are valid serial port objects.

Examples
Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM1');

s2 becomes invalid after it is deleted.

delete(s2)

isvalid verifies that s1 is valid and s2 is invalid.

sarray = [s1 s2];
isvalid(sarray)

ans =
 1 0

 isvalid (serial)

1-7983

Tips
obj becomes invalid after it is removed from memory with the delete function. Because
you cannot connect an invalid serial port object to the device, you should remove it from
the workspace with the clear command.

See Also
clear | delete

Introduced before R2006a

1 Alphabetical List

1-7984

isvarname
Determine if input is valid variable name

Syntax
tf = isvarname(s)
isvarname s

Description
tf = isvarname(s) determines if input s is a valid variable name. If s is a valid
MATLAB variable name the isvarname function returns logical 1 (true). Otherwise it
returns logical 0 (false).

A valid variable name begins with a letter and contains not more than namelengthmax
characters. Valid variable names can include letters, digits, and underscores. MATLAB
keywords are not valid variable names. To determine if the input is a MATLAB keyword,
use the iskeyword function.

isvarname s is the command form of the syntax. The command form requires fewer
special characters. You do not need parentheses or single quotes around the input.

Examples

Determine Variable Name Validity

Show that input that starts with a number is not a valid variable name.

s = '8th_column';
isvarname(s)

ans = logical
 0

 isvarname

1-7985

Change the input to a valid variable name.

s = 'column_8';
isvarname(s)

ans = logical
 1

Use the command form to determine if the input is a valid variable name.

isvarname column_8

ans = logical
 1

Input Arguments
s — Potential variable name
character vector | string

Potential variable name, specified as a character vector, or string.
Example: 'myVar'
Example: "myVar2"

See Also
is* | iskeyword | matlab.lang.makeUniqueStrings |
matlab.lang.makeValidName | namelengthmax

Topics
“Variable Names”

Introduced before R2006a

1 Alphabetical List

1-7986

isvector
Determine whether input is vector

Syntax
TF = isvector(A)

Description
TF = isvector(A) returns logical 1 (true) if A is a vector. Otherwise, it returns logical
0 (false). A vector is a two-dimensional array that has a size of 1-by-N or N-by-1, where
N is a nonnegative integer.

Examples

Determine Vector from Matrix

Create a 2-by-2 matrix. Determine whether it is a vector.

A = [1 2; 3 4];
TF = isvector(A)

TF = logical
 0

Check whether the first column of the matrix is a vector.

TF = isvector(A(:,1))

TF = logical
 1

Check whether the first row of the matrix is a vector.

 isvector

1-7987

TF = isvector(A(1,:))

TF = logical
 1

Determine Vector from Scalar

Create a scalar, which is a 1-by-1 array.

A = 5;

Determine whether the scalar A is also a vector.

TF = isvector(A)

TF = logical
 1

Character Vector and String Scalar

Create an array of characters. Determine whether it is a vector.

A = 'Hello, World!';
TF = isvector(A)

TF = logical
 1

Check the dimension of A using size. A is a 1-by-13 character vector.

sz = size(A)

sz = 1×2

 1 13

Now create a string scalar by enclosing a piece of text in double quotes.

1 Alphabetical List

1-7988

A = "Hello, World!";

Check whether the scalar A is also a vector.

TF = isvector(A)

TF = logical
 1

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

Algorithms
• If the input array A has more than two dimensions, then isvector(A) always returns

logical 0 (false). For example, an array of size 1-by-1-by-N is not a vector.
• isvector(A) function does not have any special behavior for dimension lengths

equal to 0. For example, isvector(A) returns logical 1 (true) if the size of A is 0-
by-1. But, isvector(A) returns logical 0 (false) if the size of A is 0-by-3.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 isvector

1-7989

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
iscolumn | ismatrix | isrow | isscalar | size

Introduced before R2006a

1 Alphabetical List

1-7990

isweekend
Determine weekend elements

Syntax
tf = isweekend(t)

Description
tf = isweekend(t) returns an array the same size as t containing logical 1 (true)
where the corresponding element of t is a datetime that occurs on a weekend day, and
logical 0 (false) otherwise. Weekend days are Saturday and Sunday.

Examples

Determine If Date Occurs During Weekend

t = datetime(2014,5,2:5,'Format','eee dd-MMM-yyyy')

t = 1x4 datetime array
 Fri 02-May-2014 Sat 03-May-2014 Sun 04-May-2014 Mon 05-May-2014

tf = isweekend(t)

tf = 1x4 logical array

 0 1 1 0

May 3 and May 4, 2014 are days that fall on a weekend.

 isweekend

1-7991

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
day | isdst

Introduced in R2014b

1 Alphabetical List

1-7992

j
Imaginary unit

Syntax
1j
z = a + bj
z = x + 1j*y

Description
1j returns the basic imaginary unit. j is equivalent to sqrt(-1).

You can use j to enter complex numbers. You also can use the character i as the
imaginary unit. To create a complex number without using i and j, use the complex
function.

z = a + bj returns a complex numerical constant, z.

z = x + 1j*y returns a complex array, z.

Examples

Complex Scalar

Create a complex scalar and use the character, j, without a multiplication sign as a suffix
in forming a complex numerical constant.

z = 1+2j

z = 1.0000 + 2.0000i

 j

1-7993

Complex Vector

Create a complex vector from two 4-by-1 vectors of real numbers. z is a 4-by-1 complex
vector.

x = [1:4]';
y = [8:-2:2]';

z = x+1j*y

z = 4×1 complex

 1.0000 + 8.0000i
 2.0000 + 6.0000i
 3.0000 + 4.0000i
 4.0000 + 2.0000i

Complex Exponential

Create a complex scalar representing a complex vector with radius, r, and angle from the
origin, theta.

r = 4;
theta = pi/4;

z = r*exp(1j*theta)

z = 2.8284 + 2.8284i

Input Arguments
a — Real component of complex scalar
scalar

Real component of a complex scalar, specified as a scalar.
Data Types: single | double

1 Alphabetical List

1-7994

b — Imaginary component of complex scalar
scalar

Imaginary component of a complex scalar, specified as a scalar.

If b is double, you can use the character, j, without a multiplication sign as a suffix in
forming the complex numerical constant.
Example: 7j

If b is single, you must use a multiplication sign when forming the complex numerical
constant.
Example: single(7)*j
Data Types: single | double

x — Real component of complex array
scalar | vector | matrix | multidimensional array

Real component of a complex array, specified as a scalar, vector, matrix, or
multidimensional array.

The size of x must match the size of y, unless one is a scalar. If either x or y is a scalar,
MATLAB expands the scalar to match the size of the other input.

single can combine with double.
Data Types: single | double

y — Imaginary component of complex array
scalar | vector | matrix | multidimensional array

Imaginary component of a complex array, specified as a scalar, vector, matrix, or
multidimensional array.

The size of x must match the size of y, unless one is a scalar. If either x or y is a scalar,
MATLAB expands the scalar to match the size of the other input.

single can combine with double.
Data Types: single | double

 j

1-7995

Output Arguments
z — Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a scalar, vector, matrix, or multidimensional array.

The size of z is the same as the input arguments.

z is single if at least one input argument is single. Otherwise, z is double.

Tips
• For speed and improved robustness in complex arithmetic, use 1i and 1j instead of i

and j.
• Since j is a function, it can be overridden and used as a variable. However, it is best to

avoid using i and j for variable names if you intend to use them in complex
arithmetic.

• Use the complex function to create a complex output in the following cases:

• When the names i and j might be used for other variables (and do not equal
sqrt(-1))

• When the inputs are not double or single
• When the imaginary component is all zeros

See Also
complex | conj | i | imag | real

Topics
“Complex Numbers”

Introduced before R2006a

1 Alphabetical List

1-7996

jet
Jet colormap array

Syntax
c = jet
c = jet(m)

Description
c = jet returns the jet colormap as a three-column array with the same number of rows
as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = jet(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the jet colormap.

surf(peaks);
colormap('jet');

 jet

1-7997

Get the jet colormap array and reverse the order. Then apply the modified colormap to the
surface.

c = jet;
c = flipud(c);
colormap(c);

1 Alphabetical List

1-7998

Downsample the Jet Colormap

Get a downsampled version of the jet colormap containing only ten colors. Then display
the contours of the peaks function by applying the colormap and interpolated shading.

c = jet(10);
surf(peaks);
colormap(c);
shading interp;

 jet

1-7999

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-8000

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 jet

1-8001

jsondecode
Decode JSON-formatted text

Syntax
value = jsondecode(text)

Description
value = jsondecode(text) parses JSON text.

Examples

Decode JSON Text

Display the JSON-formatted string ["one", "two", "three"].

jsondecode('["one", "two", "three"]')

ans = 3x1 cell array
 {'one' }
 {'two' }
 {'three'}

Input Arguments
text — JSON-formatted text
character vector

JSON-formatted text, specified as a character vector. Invalid names in the JSON text are
made valid with matlab.lang.makeValidName.

1 Alphabetical List

1-8002

Example: '{"IDs":[116,943,234,38793]}'
Data Types: char

Output Arguments
value — MATLAB data
any MATLAB data type

MATLAB data returned as decoded JSON-formatted text. value depends on the data
encoded in text.

Limitations
• If you decode, then encode a value, MATLAB does not guarantee that the result is

identical to the original string. In particular, field names in JSON objects that are not
valid MATLAB identifiers might be altered by the makeValidName function.

Algorithms
JSON supports fewer data types than MATLAB. jsondecode converts JSON data types to
the MATLAB data types in this table. jsondecode converts JSON object field names to
MATLAB structure field names.

JSON Data Type MATLAB Data Type
null, in numeric arrays NaN
null, in nonnumeric arrays Empty double []
Boolean Scalar logical
Number Scalar double
String Character vector
Object (In JSON, object means an
unordered set of name-value pairs.)

Scalar structure (Names are made valid
using matlab.lang.makeValidName.)

Array, when elements are of different data
types

Cell array

 jsondecode

1-8003

JSON Data Type MATLAB Data Type
Array of booleans Array of logical
Array of numbers Array of double
Array of strings Cell array of character vectors
Array of objects — Same field names Structure array
Array of objects — Different field names Cell array of scalar structures

See Also
fileread | jsonencode | matlab.lang.makeValidName | webread

Introduced in R2016b

1 Alphabetical List

1-8004

jsonencode
Create JSON-formatted text from structured MATLAB data

Syntax
text = jsonencode(data)
text = jsonencode(data,'ConvertInfAndNaN',TF)

Description
text = jsonencode(data) encodes data and returns a character vector in JSON
format.

text = jsonencode(data,'ConvertInfAndNaN',TF) customizes the encoding of
special floating point values NaN, Inf, -Inf.

Examples

Convert Cell Array of Text to JSON

value = {'one'; 'two'; 'three'};
jsonencode(value)

ans =
'["one","two","three"]'

Input Arguments
data — MATLAB data
any supported MATLAB data type

 jsonencode

1-8005

MATLAB data, specified as any supported MATLAB data type. For more information, see
“Limitations” on page 1-8006.
Example: s.IDs = [116, 943, 234, 38793]

TF — Custom encoding
true (default) | false

Customize the encoding of special floating point values NaN, Inf, and -Inf, specified as
true or false. A true value encodes floating point values as null. A false value
encodes the values as literal NaN, Infinity, or -Infinity.
Example: jsonencode(-Inf,'ConvertInfAndNaN',false)

Output Arguments
text — JSON-formatted text
character vector

JSON-formatted text, returned as a character vector.

Limitations
• jsonencode does not support complex numbers, sparse arrays, or MATLAB

enumerations. Objects must have public properties encoded as name-value pairs with
get methods defined on the object properties.

• jsonencode does not support recursive structures such as graphics objects that
contain references to parent and child objects.

• If you encode, then decode a value, MATLAB does not guarantee that the data type is
preserved. JSON supports fewer data types than MATLAB, which results in loss of type
information. For example, JSON data does not distinguish between double and
int32. If you encode an int32 value and then call jsondecode, the decoded value is
type double.

• MATLAB does not guarantee that the shape of an array is preserved. For example, a 1-
by-N numeric vector is encoded as an array. If you call jsondecode, then MATLAB
decodes the array as an N-by-1 vector.

1 Alphabetical List

1-8006

Tips
• To preserve the newline escape character \n, use the newline function.

jsonencode(['one' newline 'two'])

ans = '"one\ntwo"'

• To preserve other \ escape characters, consider calling sprintf on the input. Test
your input to see if sprintf creates the desired result.

jsonencode(sprintf('AB\tCD'))

ans = '"AB\tCD"'

• If the input contains a double quote character ", then the function inserts the \ escape
character.

jsonencode('one"two')

ans = '"one\"two"'

Algorithms
JSON supports fewer data types than MATLAB. jsonencode converts MATLAB data
types to the JSON data types listed here.

MATLAB
Data
Type

JSON
Data
Type

Example Output

array,
empty

Array,
empty

jsonencode([])

jsonencode(string.empty)

'[]'

logical
scalar

Boolean jsonencode(true) 'true'

logical
vector

Array of
booleans

jsonencode([true,false,false])'[true,false,false]'

logical
array

Nested
array of
booleans

jsonencode(logical([0,1,0,1,1,0]))'[false,true,false,true,true,false]'

 jsonencode

1-8007

MATLAB
Data
Type

JSON
Data
Type

Example Output

character
vector

String jsonencode('This is a char.')'"This is a char."'

character
array

Array of
strings

jsonencode(['AC';'EG']) '["AC","EG"]'

string
scalar

String jsonencode("This is a string.")'"This is a string."'

string
vector

Array of
strings

jsonencode(["AC";"EG"]) '["AC","EG"]'

string
array

Nested
array of
strings

jsonencode(["AC","EG";"BD","FH"])'[["AC","EG"],["BD","FH"]]'

empty
character
vector

String jsonencode('') '""'

<missing
>

null jsonencode(string(nan)) 'null'

numeric
scalar

Number jsonencode(2.5) '2.5'

numeric
vector

Array of
numbers

jsonencode(1:3) '[1,2,3]'

numeric
array

Nested
array of
numbers

jsonencode(eye(2)) '[[1,0],[0,1]]'

complex
numbers

Not
supported

table Array of
objects

Name = {'Jones';'Brown'};
Age = [40;49];
jsonencode(table(Name,Age))

'[{"Name":"Jones","Age":40},{"Name":"Brown","Age":49}]'

cell scalar Array of 1
element

jsonencode({5}) '[5]'

cell vector Array jsonencode({'a',true,[2;3]})'["a",true,[2,3]]'

1 Alphabetical List

1-8008

MATLAB
Data
Type

JSON
Data
Type

Example Output

cell array Array
flattened
to a single
dimension

jsonencode({1 2;3 4}) '[1,3,2,4]'

structure
scalar
object
scalar

Object
Object
(Public
properties
encoded
as name-
value
pairs.)

jsonencode(struct('a','value'))'{"a":"value"}'

structure
vector
object
vector

Array of
objects

jsonencode(struct('a',{true,true,false}))'[{"a":true},{"a":true},{"a":false}]'

structure
array
object
array

Nested
array of
objects

datetime
scalar

String
(string
method
used to
convert
date and
time to
string
format.)

jsonencode(datetime('tomorrow'))'"04-Nov-2016"'

datetime
vector

Array of
strings

datetime
array

Nested
array of
strings

DT = datetime({'8 April 2015','9 May 2015'}, ...
 'InputFormat','d MMMM yyyy');
jsonencode(DT)

'["08-Apr-2015","09-May-2015"]'

 jsonencode

1-8009

MATLAB
Data
Type

JSON
Data
Type

Example Output

categorica
l scalar

String
(string
method
used to
create
string
format.)

jsonencode(categorical({'r';'g';'b'}))'["r","g","b"]'

categorica
l vector

Array of
strings

jsonencode(categorical(...
 {'r' 'b' 'g'; ...
 'g' 'r' 'b'; ...
 'b' 'r' 'g'}))

'[["r","b","g"],["g","r","b"],["b","r","g"]]'

categorica
l array

Nested
array of
strings

containers
.Map

Object jsonencode(containers.Map(...
 {'Jan','Feb','Mar'}, ...
 [327,368,197]))

'{"Feb":368,"Jan":327,"Mar":197}'

NaN
Inf

null jsonencode([1,2,NaN,3,Inf]) '[1,2,null,3,null]'

To pass a scalar MATLAB object as a scalar JSON array (enclosed in [] characters),
convert the object using the cell array construction operator {}. For example, the
following code converts the value of the features field into a scalar JSON array.

S = struct("features", struct("type", "Feature", "geometry",...
 struct("type", "point", "coordinates", [-105, 40])));
S.features = {S.features};
s = jsonencode(S)

s = '{"features":[{"type":"Feature","geometry":{"type":"point","coordinates":[-105,40]}}]}'

See Also
jsondecode | webwrite

Introduced in R2016b

1 Alphabetical List

1-8010

javaaddpath
Add entries to dynamic Java class path

Syntax
javaaddpath(dpath)
javaaddpath(dpath,'-end')

Description
javaaddpath(dpath) adds one or more folders or Java Archive (JAR) files to the
beginning of the current dynamic class path. Use the dynamic path when developing and
debugging your own Java classes.

The javaaddpath command clears the definitions of all Java classes defined by files on
the dynamic class path.

javaaddpath(dpath,'-end') adds files or folders to the end of the path.

Examples

Add Folder to Dynamic Class Path

Display the current dynamic path. The output reflects your configuration.

javaclasspath('-dynamic')

 DYNAMIC JAVA PATH

 <empty>

Add the current folder.

javaaddpath(pwd)

 javaaddpath

1-8011

Display the updated dynamic path. The output reflects your current folder.

p = javaclasspath

p =
 'c:\work\Java'

Append URL to Dynamic Class Path
javaaddpath('http://www.example.com','-end')
p = javaclasspath

p =
 'c:\work\Java'
 'http://www.example.com'

Input Arguments
dpath — Folder or JAR file
string | array of strings | character vector | cell array of character vectors

Folder or JAR file, specified as a string, an array of strings, a character vector, or a cell
array of character vectors to add to the dynamic path. When you add a folder to the path,
MATLAB includes all files in that folder as part of the path.
Data Types: char | cell

Limitations
• MATLAB does not support JAR files generated by the MATLAB Compiler SDK product.

Tips
• Use the dynamic path while you develop your own Java classes. After you develop and

debug a Java class, add the class to the static path. For more information, see
javaclasspath.

• To add folders to the static path, which MATLAB loads at startup, create a
javaclasspath.txt file, as described in “Static Path”.

1 Alphabetical List

1-8012

• If javaaddpath displays the message Not clearing Java, the dynamic path is
updated, but you might need to type clear java so that MATLAB detects the new
Java classes.

See Also
clear | javaclasspath | javarmpath

Topics
“Java Class Path”

Introduced before R2006a

 javaaddpath

1-8013

javaArray
Construct Java array object

Syntax
ObjArr = javaArray(PackageName.ClassName,x1,...,xN)

Description
ObjArr = javaArray(PackageName.ClassName,x1,...,xN) constructs an empty
Java array object on page 1-8016 for objects of the specified PackageName.ClassName
class. The array created by javaArray is equivalent to the array created by the following
Java code.

A = new PackageName.ClassName[x1]...[xN];

Examples

Create 4-by-5 Java Array

Create 4-by-5 array of java.lang.Double type.

x1 = 4;
x2 = 5;
dblArray = javaArray('java.lang.Double',x1,x2);

Fill in values.

for m = 1:x1
 for n = 1:x2
 dblArray(m,n) = java.lang.Double((m*10) + n);
 end
end

Display results.

1 Alphabetical List

1-8014

dblArray

dblArray =

 java.lang.Double[][]:

 [11] [12] [13] [14] [15]
 [21] [22] [23] [24] [25]
 [31] [32] [33] [34] [35]
 [41] [42] [43] [44] [45]

Input Arguments
PackageName.ClassName — Java class name
string | character vector

Name of the Java class, including the package name, specified as a string or character
vector.
Data Types: char

x1,...,xN — Dimensions of array
integer

Dimensions of the array, specified as an integer. If any argument is zero, javaArray
creates a zero-length Java array with the specified number of dimensions. A zero-length
Java array is not the same as an empty MATLAB array, which is converted to a Java null
when passed to a Java method.
Data Types: double

Output Arguments
ObjArr — Java array
Java array

Java array with dimensions x1,...,xN.

 javaArray

1-8015

Definitions

Java Array Object
A Java array object is an object with Java dimensionality. For more information, see “How
MATLAB Represents Java Arrays”.

Tips
• To create an array of primitive Java types, create an array of the equivalent MATLAB

type. For more information, see “MATLAB Type to Java Type Mapping”.

See Also
class | isjava | javaMethod | javaObject | methodsview

Topics
“How MATLAB Represents Java Arrays”

Introduced before R2006a

1 Alphabetical List

1-8016

javachk
Error message based on Java feature support

Syntax
MSG = javachk(feature)
javachk(feature,component)

Description
MSG = javachk(feature) returns a generic error message if the specified Java feature
is not available in the current MATLAB session.

javachk(feature,component) also names the specified component in the error
message.

Examples

Generate Error If Java Not Available

To test if Java is available before calling a Java command, use these statements. The
isempty function is true when there is no error.

if isempty(javachk('jvm'))
 scalar = java.lang.Double(5);
end

Test Java Availability in User-Defined Script

To provide context in the javachk error message, add the optional text parameter to the
javachk function.

 javachk

1-8017

Create a script, myFile.m, with the following statements. The script checks if Java is
available before calling Java to create a frame.

error(javachk('awt','myFile'))
myFrame = java.awt.Frame;
myFrame.setVisible(1)

Start MATLAB from the Linux system prompt.

matlab -nojvm

Run the script.

myFile

If Java is not available, then MATLAB displays this error, identifying the source as the
myFile script.

Error using myFile (line 1)
myFile is not supported because:
Java is not currently available.

Input Arguments
feature — Java feature
'awt' | 'desktop' | 'jvm' | 'swing'

Java feature, specified as one of these values.

'awt' UI components in the Java Abstract Window
Toolkit (AWT) are available.

'desktop' MATLAB interactive desktop is running.
'jvm' Java Virtual Machine software (JVM™) is

running.
'swing' Swing components (Java lightweight UI

components in the Java Foundation Classes)
are available.

component — Identifier
string | character vector

1 Alphabetical List

1-8018

Identifier, specified as a string or a character vector, to display in the error message.
Data Types: string | char

Output Arguments
MSG — Error message
structure

Error message, returned as a structure with the following fields. If the feature is
available, javachk returns an error structure with empty fields.

message — Message
character vector | empty

Message, specified as a character vector.

identifier — Identifier
character vector | empty

Identifier, specified as a character vector.

See Also
error | usejava

Introduced before R2006a

 javachk

1-8019

javaclasspath
Return Java class path or specify dynamic path

Syntax
javaclasspath
javaclasspath('-dynamic')
javaclasspath('-static')

dpath = javaclasspath
spath = javaclasspath('-static')
jpath = javaclasspath('-all')

javaclasspath(dpath)
javaclasspath(dpath1,dpath2)

javaclasspath(statusmsg)

Description
javaclasspath displays the static and dynamic segments of the Java class path.

javaclasspath('-dynamic') displays the dynamic path.

javaclasspath('-static') displays the static path.

dpath = javaclasspath returns the dynamic path, dpath.

spath = javaclasspath('-static') returns the static path, spath.

jpath = javaclasspath('-all') returns the entire path, jpath. The returned cell
array contains first the static segment of the path, and then the dynamic segment.

javaclasspath(dpath) changes the dynamic path to dpath. Use this syntax to reload
Java classes that you are actively developing and debugging.

1 Alphabetical List

1-8020

javaclasspath(dpath1,dpath2) changes the dynamic path to the concatenation of
paths dpath1,dpath2.

javaclasspath(statusmsg) enables or disables the display of status messages.

Examples

Modify Path Using Cell Array

Use a cell array to add folders to an existing Java class path.

Create a cell array with two path values.

dpath = {'http://domain.com','http://some.domain.com/jarfile.jar'};

Set the message flag to display the class-loading messages.

javaclasspath('-v1')

Add the paths in dpath to the class path.

javaclasspath(dpath)

Loading following class path(s) from local file system:
* http://domain.com
* http://some.domain.com/jarfile.jar

Display the updated dynamic path. MATLAB adds folders from dpath to the existing path.
The output depends on your system configuration.

javaclasspath('-dynamic')

 DYNAMIC JAVA PATH

 http://domain.com
 http://some.domain.com/jarfile.jar

 javaclasspath

1-8021

Capture Contents of Dynamic Path

Create a cell array, p, with the entries of the dynamic path. If there are no entries on the
dynamic path, then MATLAB creates an empty cell array.

javaclasspath('-v0') % Suppress display of class-loading messages
p = javaclasspath

p =

 {}

Input Arguments
dpath — Path entries
string | array of strings | character vector | cell array of character vectors

Path entries, specified as a string, an array of strings, a character vector, or a cell array of
character vectors for the dynamic path. MATLAB converts relative paths to absolute
paths.
Example: javaclasspath('http://domain.com')
Data Types: char | cell

dpath1,dpath2 — Path entries
string | array of strings | character vector | cell array of character vectors

Path entries, specified as a string, an array of strings, a character vector, or a cell array of
character vectors concatenated for the dynamic path.
Data Types: char | cell

statusmsg — Message flag
'-v0' (default) | '-v1'

Message flag, specified as one of these values.

'-v0' Do not display status messages when loading the Java path from the file
system.

'-v1' Display status messages.

1 Alphabetical List

1-8022

The statusmsg argument controls status message display from the javaclasspath,
javaaddpath, and javarmpath functions.

Output Arguments
dpath — Dynamic path entries
array of strings | cell array of character vectors

Dynamic path entries for the current path, returned as an array of strings or a cell array
of character vectors. If there are no path entries, then dpath is an empty cell array.

spath — Static path entries
array of strings | cell array of character vectors

Static path entries for the current path, returned as an array of strings or a cell array of
character vectors. If there are no path entries, then spath is an empty cell array.

jpath — All path entries
array of strings | cell array of character vectors

All path entries, returned as an array of strings or a cell array of character vectors. If
there are no path entries, then jpath is an empty cell array.

Definitions

Static Path
The static path is a segment of the Java path that is loaded at the start of each MATLAB
session from the MATLAB built-in Java path and the file javaclasspath.txt.

MATLAB searches the static path before the dynamic path.

The static Java path offers better Java class-loading performance than the dynamic Java
path. To modify the static Java path, edit the file javaclasspath.txt and restart
MATLAB. For more information, see “Static Path”.

 javaclasspath

1-8023

Dynamic Path
The dynamic path is a segment of the Java class path.

MATLAB provides the dynamic path as a convenience for when you develop your own Java
classes. You can load the dynamic path any time during a MATLAB session using the
javaclasspath function. Although the dynamic path offers flexibility in changing the
path, Java classes on the dynamic path might load more slowly than classes on the static
path. Also, classes on the dynamic path might not behave the same way as classes on the
static path. If your class does not behave as expected, then use the static path. After you
develop and debug a Java class, add the class to the static path.

• To define the dynamic path, use javaclasspath.
• To modify the path. use javaaddpath and javarmpath.
• To refresh the Java class definitions for all classes on the dynamic path without

restarting MATLAB, use clear java.

For more information, see “Dynamic Path”.

Tips
• Do not put Java classes on the static path that have dependencies on classes on the

dynamic path. Such dependencies produce run-time errors.
• To clear the definitions of all Java classes defined by files on the dynamic class path,

call the clear command.
• Adding an entry to the dynamic path when it is already specified on the static path

produces a warning.

See Also
clear | javaaddpath | javarmpath

Topics
“Java Class Path”

Introduced before R2006a

1 Alphabetical List

1-8024

matlab.exception.JavaException class
Package: matlab.exception

Capture error information for Java exception

Description
Process information from a matlab.exception.JavaException object to handle Java
errors thrown by Java methods called from MATLAB. This class is derived from
MException.

Creation
You do not construct a matlab.exception.JavaException object explicitly. MATLAB
automatically constructs a JavaException object whenever Java throws an exception.
The JavaException object wraps the original Java exception.

Properties
ExceptionObject — Java exception object
java.lang.Throwable

Java exception object that caused the error, specified as a java.lang.Throwable
object.

Examples

Display Error Information

Add a matlab.exception.JavaException object to a try-catch statement.

try
 java.lang.Class.forName('myfunction');

 matlab.exception.JavaException class

1-8025

catch e
 e.message
 if(isa(e,'matlab.exception.JavaException'))
 ex = e.ExceptionObject;
 assert(isjava(ex));
 ex.printStackTrace;
 end
end

See Also

Topics
“Capture Information About Exceptions”
“Throw an Exception”

Introduced in R2012b

1 Alphabetical List

1-8026

javaMethod
Call Java method

Syntax
javaMethod(MethodName,JavaObj,x1,...,xN)
javaMethod(StaticMethodName,ClassName,x1,...,xN)

Description
javaMethod(MethodName,JavaObj,x1,...,xN) calls the method in the class of the
Java object array with the signature matching the arguments x1,...,xN. Use
javaMethod to call methods having names that exceed the maximum length of a
MATLAB identifier. This approach is the only way you can call such a method in MATLAB.
To obtain the maximum identifier length, call the namelengthmax function.

In general, use MATLAB syntax to call methods on Java objects.

method(object,arg1,...,argn)

Alternatively, use Java syntax.

object.method(arg1,...,argn)

javaMethod(StaticMethodName,ClassName,x1,...,xN) calls the static method in
class ClassName.

In general, use MATLAB syntax to call static methods on Java objects.

class.method(arg1,...,argn)

Examples

 javaMethod

1-8027

Call Method on Java Object

Create a java.util.Date object myDate and change the month to April. From the Java
documentation, "A month is represented by an integer from 0 to 11; 0 is January, 1 is
February, and so forth." Therefore, the numeric value for April is 3.

myDate = java.util.Date;
javaMethod('setMonth',myDate,3)

Call Static Method

Call java.lang.Double static method isNaN to test variable num. Since num contains a
number, no message is displayed.

num = 2.2;
if javaMethod('isNaN','java.lang.Double',num)
 disp('This is not a number')
end

Call Method Specified at Runtime

Search for a text pattern in a string using variables for the pattern and for the search
method. These variables could be set at runtime from user input.

Choose method, startsWith, and identify pattern, str.

fnc = 'startsWith';
str = java.lang.String('Four score');

Identify text to search.

gAddress = java.lang.String('Four score and seven years ago');

Search gAddress for the pattern.

javaMethod(fnc,gAddress,str)

ans = logical
 1

1 Alphabetical List

1-8028

gAddress starts with the words Four score.

Call Java Inner Class

Call the constructor of or a static method in an inner class. In the javaMethod and
javaObject functions, specify the class name, using the $ character, as OuterClass
$InnerClass.

For example, suppose class com.ams.MyClass contains class MyInnerClass with static
method methodname. In Java, the calling syntax is:

out = com.ams.MyClass.MyInnerClass.methodname(arg);

In MATLAB, type:

out = javaMethod('methodname','com.ams.MyClass$MyInnerClass',arg)

Input Arguments
MethodName — Nonstatic Java method
string | character vector

Nonstatic Java method name, specified as a string or character vector.
Example: javaMethod('DataDefinitionAndDataManipulationTransactions',T)
Data Types: char | string

JavaObj — Array
Java object

Array, specified as a Java object of the class containing the method.

x1,...,xN — Java method input arguments
any type

Java method input arguments, 1 through N (if any), required by MethodName or
StaticMethodName, specified by any type. The method argument list specifies the
argument type.

 javaMethod

1-8029

StaticMethodName — Static Java method
string | character vector

Static Java method name, specified as a string or character vector.
Example: java.lang.Double.isNaN(2.2)
Data Types: char | string

ClassName — Java class
string | character vector

Java class name, specified as a string or character vector, containing
StaticMethodName.
Data Types: char | string

Tips
• Use javaMethod to specify the method name as a variable to be invoked at runtime.

When calling a static method, you also can use a variable in place of the class name
argument. For example, see “Call Method Specified at Runtime” on page 1-8028.

See Also
import | isjava | javaArray | javaMethodEDT | javaObject | methods

Introduced before R2006a

1 Alphabetical List

1-8030

javaMethodEDT
Call Java method from Event Dispatch Thread (EDT)

Syntax
javaMethodEDT(MethodName,JavaObj,x1,...,xN)
javaMethodEDT(StaticMethodName,ClassName,x1,...,xN)

Description
javaMethodEDT(MethodName,JavaObj,x1,...,xN) calls the method in the class of
the Java object array with the signature matching the arguments x1,...,xN. MATLAB
calls the method from the Event Dispatch Thread (EDT on page 1-8032).

javaMethodEDT(StaticMethodName,ClassName,x1,...,xN) calls the static method
in class ClassName.

Examples

Call Method from EDT

Create a java.util.Vector object v and add a string element.

v = java.util.Vector;
javaMethodEDT('add',v,'string');

Input Arguments
MethodName — Nonstatic Java method
string | character vector

Nonstatic Java method name, specified as a string or character vector.

 javaMethodEDT

1-8031

Example: javaMethod('DataDefinitionAndDataManipulationTransactions',T)
Data Types: char | string

JavaObj — Array
Java object

Array, specified as a Java object of the class containing the method.

x1,...,xN — Java method input arguments
any type

Java method input arguments, 1 through N (if any), required by MethodName or
StaticMethodName, specified by any type. The method argument list specifies the
argument type.

StaticMethodName — Static Java method
string | character vector

Static Java method name, specified as a string or character vector.
Example: java.lang.Double.isNaN(2.2)
Data Types: char | string

ClassName — Java class
string | character vector

Java class name, specified as a string or character vector, containing
StaticMethodName.
Data Types: char | string

Definitions
EDT
The EDT is the Event Dispatch Thread, used in Java.

See Also
import | isjava | javaMethod | javaObjectEDT | methods

1 Alphabetical List

1-8032

Introduced in R2009a

 javaMethodEDT

1-8033

javaObject
Call Java constructor

Syntax
JavaObj = javaObject(ClassName,x1,...,xN)

Description
JavaObj = javaObject(ClassName,x1,...,xN) returns Java object array, JavaObj,
created by the Java constructor for the class with the argument list matching x1,...,xN.

Examples

Create Java Object

Create a Java® object strObj of class java.lang.String.

strObj = javaObject('java.lang.String','hello');

Input Arguments
ClassName — Java class
string | character vector

Java class name, specified as a string or character vector.
Data Types: char

x1,...,xN — Java constructor input arguments
any type

1 Alphabetical List

1-8034

Java constructor input arguments, 1 through N (if any), required by ClassName, specified
as any type. The class constructor argument list specifies the argument type.

See Also
import | javaArray | javaMethod | javaObjectEDT | methods

Topics
“Call Java Method”

Introduced before R2006a

 javaObject

1-8035

javaObjectEDT
Call Java constructor on Event Dispatch Thread (EDT)

Syntax
JavaObj = javaObjectEDT(ClassName,x1,...,xN)

Description
JavaObj = javaObjectEDT(ClassName,x1,...,xN) returns Java object array,
JavaObj, created from the EDT on page 1-8037 by the Java constructor for the class with
the signature matching the arguments x1,...,xN.

Examples

Construct Java Object Array from EDT

f = javaObjectEDT('javax.swing.JFrame','New Title');

Call Method on Java Object

Create a JOptionPane on the EDT.

optPane = javaObjectEDT('javax.swing.JOptionPane');

Call the createDialog method on the EDT.

dlg = optPane.createDialog([],'Sample Dialog');

1 Alphabetical List

1-8036

Input Arguments
ClassName — Java class
string | character vector

Java class name, specified as a string or character vector.
Data Types: char

x1,...,xN — Java constructor input arguments
any type

Java constructor input arguments, 1 through N (if any), required by ClassName, specified
as any type. The class constructor argument list specifies the argument type.

Definitions

EDT
The EDT is the Event Dispatch Thread, used in Java.

Tips
• MATLAB calls methods on JavaObj from the EDT.
• Static methods on the specified class or Java object run on the MATLAB thread unless

called using the javaMethodEDT function.

See Also
import | javaMethodEDT | javaObject | methods

Introduced in R2009a

 javaObjectEDT

1-8037

javarmpath
Remove entries from dynamic Java class path

Syntax
javarmpath(dpath1,...,dpathN)

Description
javarmpath(dpath1,...,dpathN) removes one or more files or folders from the
current dynamic class path.

Examples

Remove Folder from Dynamic Path

Preserve the state of the dynamic path on your system by first adding folders to the path,
and then removing one of these folders.

Create a variable that points to the MATLAB examples folder. The path reflects the folder
to your MATLAB installation.

expath = fullfile(matlabroot,'extern','examples')

expath =

C:\Program Files\MATLAB\R2012b\extern\examples

Add two folders to the path. The output displays these new folders on your existing path.

javaclasspath({...
 expath,...
 'http://www.example.com'})
javaclasspath('-dynamic')

1 Alphabetical List

1-8038

 DYNAMIC JAVA PATH

 C:\Program Files\MATLAB\R2012b\extern\examples
 http://www.example.com

Remove one folder. The path no longer contains the extern\examples folder.

javarmpath(expath)
javaclasspath('-dynamic')

 DYNAMIC JAVA PATH

 http://www.example.com

Input Arguments
dpath1,...,dpathN — Folders or JAR files
string | character vector

Folders or JAR files, specified as strings or character vectors, to remove from path.
Data Types: char

Tips
• javarmpath clears the definitions of all Java classes defined by files on the dynamic

class path.

See Also
Functions
clear | javaaddpath | javaclasspath

Topics
“Java Class Path”

Introduced before R2006a

 javarmpath

1-8039

join
Combine strings

Syntax
newStr = join(str)
newStr = join(str,delimiter)
newStr = join(str,dim)
newStr = join(str,delimiter,dim)

Description
newStr = join(str) combines the text in str by joining consecutive elements of the
input array, placing a space character between them. str can be a string array or a cell
array of character vectors. newStr has the same data type as str.

• If str is a 1-by-N or an N-by-1 string array or cell array, then newStr is a string scalar
or a cell array that contains one character vector.

• If str is an M-by-N string array or cell array, then newStr is an M-by-1 string array or
cell array.

For a string or cell array of any size, join concatenates elements along the last
dimension of str with a size that does not equal 1.

newStr = join(str,delimiter) combines the text in str and places the elements of
delimiter between the elements of str instead of a space character.

If the delimiter argument is an array of different delimiters, and str has N elements
along the dimension that is joined, then delimiter must have N–1 elements along the
same dimension. The other dimensions of delimiter must have either a size of 1 or the
same size as the corresponding dimension of str.

newStr = join(str,dim) combines the elements in str along the dimension dim.

newStr = join(str,delimiter,dim) combines the elements in str along the
dimension dim and places the elements of delimiter between the elements of str.

1 Alphabetical List

1-8040

Examples

Combine Strings in String Array

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["Carlos","Sada";
 "Ella","Olsen";
 "Diana","Lee"]

str = 3x2 string array
 "Carlos" "Sada"
 "Ella" "Olsen"
 "Diana" "Lee"

Combine the strings using the join function. join concatenates the strings from str
and places a space character between them. join concatenates along the second
dimension, because it is the last dimension with a size that does not equal 1.

newStr = join(str)

newStr = 3x1 string array
 "Carlos Sada"
 "Ella Olsen"
 "Diana Lee"

Combine Elements of String Array with Delimiters

Combine elements in a string array. Instead of spaces, insert different pieces of text
between the strings in str.

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["x","y","z";
 "a","b","c"]

str = 2x3 string array
 "x" "y" "z"

 join

1-8041

 "a" "b" "c"

Concatenate the strings with dashes between them.

newStr = join(str,"-")

newStr = 2x1 string array
 "x-y-z"
 "a-b-c"

Concatenate the strings with symbols that make the output strings represent equations.
The delimiters argument must be a 2-by-2 array because str is a 2-by-3 array.

delimiters = [" + "," = ";
 " - "," = "];
newStr = join(str,delimiters)

newStr = 2x1 string array
 "x + y = z"
 "a - b = c"

Combine String Array Along Specified Dimension

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["Carlos","Sada";
 "Ella","Olsen";
 "Diana","Lee"]

str = 3x2 string array
 "Carlos" "Sada"
 "Ella" "Olsen"
 "Diana" "Lee"

Combine the strings in str along the first dimension. By default, the join function
combines strings along the last dimension with a size that does not equal 1. To combine
the strings along the first dimension, specify it as an additional input argument.

newStr = join(str,1)

1 Alphabetical List

1-8042

newStr = 1x2 string array
 "Carlos Ella Diana" "Sada Olsen Lee"

Input Arguments
str — Input text
string array | cell array of character vectors

Input text, specified as a string array or a cell array of character vectors.

delimiter — Delimiting characters for joining strings
' ' (default) | character vector | cell array of character vectors | string array

Delimiting characters for joining strings, specified as a character vector, a cell array of
character vectors, or a string array. join forms the output string array by combining
string elements with delimiters between them.

join inserts all characters in delimiter as literal text, including escaped character
sequences.

dim — Dimension along which to join strings
positive integer

Dimension along which to join strings, specified as a positive integer. If dim is not
specified, then the default is the last dimension with a size that does not equal 1.

Output Arguments
newStr — Output text
string array | cell array of character vectors

Output text, returned as a string array or a cell array of character vectors. newStr has
the same data type as the input text and has a size of 1 along the dimension being joined.

 join

1-8043

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
compose | newline | plus | regexp | split | splitlines | sprintf | string

Introduced in R2016b

1 Alphabetical List

1-8044

juliandate
Convert MATLAB datetime to Julian date

Syntax
d = juliandate(t)
d = juliandate(t,dateType)

Description
d = juliandate(t) returns the “Julian dates” on page 1-8047 equivalent to the
datetime values in t.

• If the time zone of t is not specified, then juliandate treats the times in t as UTC
times. This interpretation might differ from your treatment of “unzoned” datetime
arrays in other contexts. For example, you might think of datetime('now') as
returning your local time. However, juliandate interprets it as a UTC time.

• If the time zone of t is specified, then juliandate uses the offset for the time zone to
compute Julian dates with respect to UTC.

• juliandate ignores leap seconds unless the time zone of t is UTCLeapSeconds.

The best practice is to specify the time zone of t before calling juliandate.

d = juliandate(t,dateType) returns the type of Julian dates specified by dateType.
For example, you can convert datetime values to modified Julian dates.

Examples

Convert Datetime Array to Julian Dates

Create datetime values and convert them to the equivalent Julian dates. Show the
differences in Julian dates between zoned and unzoned datetime values. The best
practice is to specify a time zone for a datetime array before calling juliandate.

 juliandate

1-8045

Create a datetime array and specify its time zone.

t1 = datetime('2016-07-29 10:05:24') + calmonths(1:3);
t1.TimeZone = 'America/New_York'

t1 = 1x3 datetime array
 29-Aug-2016 10:05:24 29-Sep-2016 10:05:24 29-Oct-2016 10:05:24

Convert t1 to the equivalent Julian dates. juliandate accounts for the time zone offset
when it computes Julian dates.

format longG
jd1 = juliandate(t1)

jd1 = 1×3

 2457630.08708333 2457661.08708333 2457691.08708333

Create a datetime array with the same values as t1, but with no time zone. Convert it to
the equivalent Julian dates. juliandate treats the times in t2 as UTC times, with no
time zone offset.

t2 = datetime('2016-07-29 10:05:24') + calmonths(1:3);
jd2 = juliandate(t2)

jd2 = 1×3

 2457629.92041667 2457660.92041667 2457690.92041667

Show the differences between jd2 and jd1. The differences are equal to the time offset,
in days, between UTC and the time zone of jd1.

jd2 - jd1

ans = 1×3

 -0.166666666511446 -0.166666666511446 -0.166666666511446

1 Alphabetical List

1-8046

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

dateType — Type of Julian date values
'juliandate' (default) | 'modifiedjuliandate'

Type of Julian date values, specified as either 'juliandate' or
'modifiedjuliandate'.

• If dateType is 'juliandate', then juliandate converts the datetime values in t
to the equivalent Julian dates. A Julian date is the number of days and fractional days
since noon on November 24, 4714 BCE in the proleptic Gregorian calendar, or January
1, 4713 BCE in the proleptic Julian calendar.

• If dateType is 'modifiedjuliandate', then juliandate converts the datetime
values in t to the equivalent modified Julian dates. A modified Julian date is the
number of days and fractional days since November 17, 1858 00:00:00.

Definitions

Julian dates
A Julian date is the number of days and fractional days since noon on November 24, 4714
BCE in the proleptic Gregorian calendar, or January 1, 4713 BCE in the proleptic Julian
calendar.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 juliandate

1-8047

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datenum | datetime | exceltime | posixtime | yyyymmdd

Topics
“Convert Date and Time to Julian Date or POSIX Time”

Introduced in R2014b

1 Alphabetical List

1-8048

keyboard
Give control to keyboard

Syntax
keyboard

Description
keyboard pauses execution of a running program and gives control to the keyboard.
Place the keyboard function in a program at the location where you want MATLAB to
pause. When the program pauses, the prompt in the Command Window changes to K>>,
indicating that MATLAB is in debug mode. You then can view or change the values of
variables to see if the new values produce expected results.

The keyboard function is useful for debugging your functions.

Examples

Modify Variables While Debugging

Use the keyboard command to pause execution of a program and modify a variable
before continuing.

Create a file, buggy.m, containing these statements.

function z = buggy(x)
n = length(x);
keyboard
z = (1:n)./x;

Run buggy.m. MATLAB pauses at line 3, where the keyboard command is located.

buggy(5)

 keyboard

1-8049

Multiply the variable x by 2 and continue running the program. MATLAB executes the
rest of the program using the new value of x.

x = x * 2
dbcont

Tips
• To terminate debug mode and continue execution, use the dbcont command.
• To terminate debug mode and exit the file without completing execution, use the

dbquit command.

See Also
dbcont | dbquit | dbstop | input

Introduced before R2006a

1 Alphabetical List

1-8050

matlab.keyboard Settings
Keyboard settings including suggestions and completions settings

You can customize MATLAB using the matlab.keyboard settings. Access
matlab.keyboard settings using the root SettingsGroup object returned by the
settings function. For example, set the temporary value for whether to show
suggestions and completions automatically in the Live Editor to 0 (where the default is 1).
When set to 0, suggestions and completions show only after you press the Tab key.

s = settings;
s.matlab.keyboard.suggestions.ShowAutomatically.TemporaryValue = 0

For more information about settings, see “Access and Modify Settings”.

Settings
matlab.keyboard.suggestions

ShowAutomatically — Show suggestions and completions automatically
1 (default) | 0

Show suggestions and completions automatically in the Live Editor, specified as 1 or 0.

Set to 1 to show suggestions and completions automatically in the Live Editor. Set to 0 to
show suggestions and completions only after you press the Tab key.
Example:
s.matlab.keyboard.suggestions.ShowAutomatically.TemporaryValue = 0

See Also
settings

Topics
“Access and Modify Settings”
“Set Keyboard Preferences”

 matlab.keyboard Settings

1-8051

Introduced in R2018a

1 Alphabetical List

1-8052

keys
Package: containers

Return keys of Map object

Syntax
keySet = keys(M)

Description
keySet = keys(M) returns a cell array containing all the keys in the input Map object.

Examples

Keys of Map

Create a Map object.

months = {'Jan','Feb','Mar','Apr'};
rainfall = [327.2 368.2 197.6 178.4];
M = containers.Map(months,rainfall)

M =
 Map with properties:

 Count: 4
 KeyType: char
 ValueType: double

Return a cell array containing its keys.

keySet = keys(M)

 keys

1-8053

keySet = 1x4 cell array
 {'Apr'} {'Feb'} {'Jan'} {'Mar'}

Input Arguments
M — Input Map object
Map object

Input Map object.

See Also
containers.Map | isKey | remove | values

Topics
“Overview of Map Data Structure”
“Examine Contents of Map”
“Read and Write Using Key Index”
“Modify Keys and Values in Map”

Introduced in R2008b

1 Alphabetical List

1-8054

kron
Kronecker tensor product

Syntax
K = kron(A,B)

Description
K = kron(A,B) returns the Kronecker tensor product on page 1-8058 of matrices A and
B. If A is an m-by-n matrix and B is a p-by-q matrix, then kron(A,B) is an m*p-by-n*q
matrix formed by taking all possible products between the elements of A and the matrix B.

Examples

Block Diagonal Matrix

Create a block diagonal matrix.

Create a 4-by-4 identity matrix and a 2-by-2 matrix that you want to be repeated along the
diagonal.

A = eye(4);
B = [1 -1;-1 1];

Use kron to find the Kronecker tensor product.

K = kron(A,B)

K = 8×8

 1 -1 0 0 0 0 0 0
 -1 1 0 0 0 0 0 0
 0 0 1 -1 0 0 0 0
 0 0 -1 1 0 0 0 0

 kron

1-8055

 0 0 0 0 1 -1 0 0
 0 0 0 0 -1 1 0 0
 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 -1 1

The result is an 8-by-8 block diagonal matrix.

Repeat Matrix Elements

Expand the size of a matrix by repeating elements.

Create a 2-by-2 matrix of ones and a 2-by-3 matrix whose elements you want to repeat.

A = [1 2 3; 4 5 6];
B = ones(2);

Calculate the Kronecker tensor product using kron.

K = kron(A,B)

K = 4×6

 1 1 2 2 3 3
 1 1 2 2 3 3
 4 4 5 5 6 6
 4 4 5 5 6 6

The result is a 4-by-6 block matrix.

Sparse Laplacian Operator Matrix

This example visualizes a sparse Laplacian operator matrix.

The matrix representation of the discrete Laplacian operator on a two-dimensional, n-by-
n grid is a n*n-by- n*n sparse matrix. There are at most five nonzero elements in each
row or column. You can generate the matrix as the Kronecker product of one-dimensional
difference operators. In this example n = 5.

1 Alphabetical List

1-8056

n = 5;
I = speye(n,n);
E = sparse(2:n,1:n-1,1,n,n);
D = E+E'-2*I;
A = kron(D,I)+kron(I,D);

Visualize the sparsity pattern with spy.

spy(A,'k')

 kron

1-8057

Input Arguments
A,B — Input matrices
scalars | vectors | matrices

Input matrices, specified as scalars, vectors, or matrices. If either A or B is sparse, then
kron multiplies only nonzero elements and the result is also sparse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

Definitions

Kronecker Tensor Product
If A is an m-by-n matrix and B is a p-by-q matrix, then the Kronecker tensor product of A
and B is a large matrix formed by multiplying B by each element of A

A⊗ B =

a11B a12B ⋯ a1nB
a21B
⋮

a22B
⋮

⋯
⋱

a2nB
⋮

am1B am2B ⋯ amnB

.

For example, two simple 2-by-2 matrices produce

A =
1 −2
−1 0

, B =
4 −3
2 3

A⊗ B =

1 · 4 1 · − 3 −2 · 4 −2 · − 3
1 · 2 1 · 3 −2 · 2 −2 · 3
−1 · 4 −1 · − 3 0 · 4 0 · − 3
−1 · 2 −1 · 3 0 · 2 0 · 3

=

4 −3 −8 6
2 3 −4 −6
−4 3 0 0
−2 −3 0 0

.

1 Alphabetical List

1-8058

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
cross | dot | hankel | toeplitz

Introduced before R2006a

 kron

1-8059

KeyValueStore
Store key-value pairs for use with mapreduce

Description
The mapreduce function automatically creates a KeyValueStore object during
execution and uses it to store key-value pairs added by the map and reduce functions.
Although you never need to explicitly create a KeyValueStore object to use mapreduce,
you do need to use the add and addmulti object functions to interact with this object in
the map and reduce functions.

Creation
The mapreduce function automatically creates KeyValueStore objects during
execution.

Object Functions
add Add single key-value pair to KeyValueStore
addmulti Add multiple key-value pairs to KeyValueStore

Examples

Add Key-Value Pair to KeyValueStore in Map Function

The following map function uses the add function to add key-value pairs one at a time to
an intermediate KeyValueStore object (named intermKVStore).

function MeanDistMapFun(data, info, intermKVStore)
 distances = data.Distance(~isnan(data.Distance));
 sumLenKey = 'sumAndLength';
 sumLenValue = [sum(distances), length(distances)];

1 Alphabetical List

1-8060

 add(intermKVStore, sumLenKey, sumLenValue);
end

Add Multiple Key-Value Pairs to KeyValueStore in Map Function

The following map function uses addmulti to add several key-value pairs to an
intermediate KeyValueStore object (named intermKVStore). Note that this map
function collects multiple keys in the intermKeys variable, and multiple values in the
intermVals variable. This prepares a single call to addmulti to add all of the key-value
pairs at once. It is a best practice to use a single call to addmulti rather than using add
in a loop.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Mapper function for the MeanByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

% Data is an n-by-2 table: first column is the DayOfWeek and the second
% is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.DayOfWeek;
notNaN =~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);

% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore,intermKeys,intermVals);

function out = countsum(x)
n = length(x); % count
s = sum(x); % mean
out = {[n, s]};

See Also
mapreduce

 KeyValueStore

1-8061

Topics
“Getting Started with MapReduce”

Introduced in R2014b

1 Alphabetical List

1-8062

lag
Time-shift data in timetable

Syntax
TT2 = lag(TT1)
TT2 = lag(TT1,n)
TT2 = lag(TT1,dt)

Description
TT2 = lag(TT1) shifts the data in each variable in TT1 forward in time by one time
step. A shift forward in time is a lag. The row times of TT1 must be regular.

The timetables TT1 and TT2 have the same row times. When you shift the data in each
variable forward, lag fills the first row of TT2 with missing data indicators.

TT2 = lag(TT1,n) shifts data by n time steps. n must be an integer. If n is positive,
then lag shifts the data forward in time (a lag). If n is negative, then lag shifts the data
backward in time (a lead).

TT2 = lag(TT1,dt) shifts data by dt, a time interval. dt is either a duration or a
calendar duration. dt must be a multiple of the regular time step of TT1.

Examples

Shift Timetable Data

Create a timetable with temperature data as the variable. Shift the data forward in time
by one time step and compare it to the original timetable.

Time = datetime('2015-12-18 12:00:00') + days(1:5)';
Temp = [43 42.6 42.3 39.1 37.3]';
TT = timetable(Time,Temp)

 lag

1-8063

TT=5×2 timetable
 Time Temp
 ____________________ ____

 19-Dec-2015 12:00:00 43
 20-Dec-2015 12:00:00 42.6
 21-Dec-2015 12:00:00 42.3
 22-Dec-2015 12:00:00 39.1
 23-Dec-2015 12:00:00 37.3

TT2 = lag(TT)

TT2=5×2 timetable
 Time Temp
 ____________________ ____

 19-Dec-2015 12:00:00 NaN
 20-Dec-2015 12:00:00 43
 21-Dec-2015 12:00:00 42.6
 22-Dec-2015 12:00:00 42.3
 23-Dec-2015 12:00:00 39.1

Synchronize the two timetables for comparison. Since the timetables already have the
same row times, synchronize renames the variables and horizontally concatenates
them.

synchronize(TT,TT2)

ans=5×3 timetable
 Time Temp_TT Temp_TT2
 ____________________ _______ ________

 19-Dec-2015 12:00:00 43 NaN
 20-Dec-2015 12:00:00 42.6 43
 21-Dec-2015 12:00:00 42.3 42.6
 22-Dec-2015 12:00:00 39.1 42.3
 23-Dec-2015 12:00:00 37.3 39.1

1 Alphabetical List

1-8064

Shift Timetable Data by Multiple Time Steps

Create a timetable with temperature data as the variable. Shift the data in time by
multiple time steps.

Time = datetime('2015-12-18 12:00:00') + days(1:5)';
Temp = [43 42.6 42.3 39.1 37.3]';
TT = timetable(Time,Temp)

TT=5×2 timetable
 Time Temp
 ____________________ ____

 19-Dec-2015 12:00:00 43
 20-Dec-2015 12:00:00 42.6
 21-Dec-2015 12:00:00 42.3
 22-Dec-2015 12:00:00 39.1
 23-Dec-2015 12:00:00 37.3

Shift the data forward two time steps.

TT2 = lag(TT,2)

TT2=5×2 timetable
 Time Temp
 ____________________ ____

 19-Dec-2015 12:00:00 NaN
 20-Dec-2015 12:00:00 NaN
 21-Dec-2015 12:00:00 43
 22-Dec-2015 12:00:00 42.6
 23-Dec-2015 12:00:00 42.3

Shift the data backward by three time steps.

TT2 = lag(TT,-3)

TT2=5×2 timetable
 Time Temp
 ____________________ ____

 19-Dec-2015 12:00:00 39.1
 20-Dec-2015 12:00:00 37.3

 lag

1-8065

 21-Dec-2015 12:00:00 NaN
 22-Dec-2015 12:00:00 NaN
 23-Dec-2015 12:00:00 NaN

Shift Timetable Data by Time Interval

Create a timetable with temperature data as the variable. Shift the data in time by two
calendar months.

Time = datetime('2015-12-01 12:00:00') + calmonths(1:5)';
Temp = [43 37 35 39 45]';
TT = timetable(Time,Temp)

TT=5×2 timetable
 Time Temp
 ____________________ ____

 01-Jan-2016 12:00:00 43
 01-Feb-2016 12:00:00 37
 01-Mar-2016 12:00:00 35
 01-Apr-2016 12:00:00 39
 01-May-2016 12:00:00 45

TT2 = lag(TT,calmonths(2))

TT2=5×2 timetable
 Time Temp
 ____________________ ____

 01-Jan-2016 12:00:00 NaN
 01-Feb-2016 12:00:00 NaN
 01-Mar-2016 12:00:00 43
 01-Apr-2016 12:00:00 37
 01-May-2016 12:00:00 35

1 Alphabetical List

1-8066

Input Arguments
TT1 — Input timetable
timetable

Input timetable.

n — Number of time steps to shift data in regular timetable
integer

Number of time steps to shift the data in a regular timetable, specified as an integer.

dt — Time interval to shift data in regular timetable
duration | calendar duration

Time interval to shift the data in a regular timetable, specified as a duration or calendar
duration.

See Also
horzcat | innerjoin | outerjoin | retime | synchronize | vertcat

Topics
“Create Timetables”
“Clean Timetable with Missing, Duplicate, or Nonuniform Times”
“Select Timetable Data by Row Time and Variable Type”

Introduced in R2016b

 lag

1-8067

lastDirectory
Determine if current IFD is last in file

Syntax
tf = lastDirectory(t)

Description
tf = lastDirectory(t) returns true if the current image file directory (IFD) is the
last IFD in the TIFF file. Otherwise, the function returns false. If the file contains only
one image, then the current IFD is the last IFD.

Examples

Determine If Current Directory Is Last Directory

Create a Tiff object for a file and determine if the current directory is the last directory
in the file. If the current directory is the last directory, then the lastDirectory function
returns 1. Otherwise, the function returns 0.

t = Tiff('example.tif','r');
lastDirectory(t)

ans = logical
 0

Set the current directory to directory number 3 and check if it is the last directory in the
file.

setDirectory(t,3);
lastDirectory(t)

1 Alphabetical List

1-8068

ans = logical
 1

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Algorithms

References
This function corresponds to the TIFFLastDirectory function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | setDirectory

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 lastDirectory

1-8069

http://www.simplesystems.org/libtiff/

Line Properties
Chart line appearance and behavior

Description
Line properties control the appearance and behavior of a Line object. By changing
property values, you can modify certain aspects of the line chart.

Starting in R2014b, you can use dot notation to query and set properties.

p = plot(1:10);
c = p.Color;
p.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Line

Color — Line color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-8070

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

 Line Properties

1-8071

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

LineJoin — Style of line corners
'round' (default) | 'miter' | 'chamfer'

Style of line corners, specified as 'round', 'miter', or 'chamfer'. This table
illustrates the appearance of the different values.

'round' 'miter' 'chamfer'

The appearance of the 'round' option might look different if the Renderer property of
the figure is set to 'opengl' instead of 'painters'.

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

1 Alphabetical List

1-8072

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle

 Line Properties

1-8073

Value Description
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerIndices — Indices of data points at which to display markers
1:length(YData) (default) | vector of positive integers | scalar positive integer

Indices of data points at which to display markers, specified as a vector of positive
integers. If you do not specify the indices, then MATLAB displays a marker at every data
point.

Note To see the markers, you must also specify a marker symbol.

Example: plot(x,y,'-o','MarkerIndices',[1 5 10]) displays a circle marker at
the first, fifth, and tenth data points.
Example: plot(x,y,'-x','MarkerIndices',1:3:length(y)) displays a cross
marker every three data points.
Example: plot(x,y,'Marker','square','MarkerIndices',5) displays one square
marker at the fifth data point.

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-8074

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 Line Properties

1-8075

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

1 Alphabetical List

1-8076

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Cartesian Coordinate Data

XData — x values
vector

x values, specified as a vector.

• For 2-D line plots, if you do not specify the x values, then MATLAB uses the indices of
YData as the x values for the plot. XData and YData must have equal lengths.

• For 3-D line plots, if you do not specify the x values, then MATLAB uses the indices of
ZData as the x values for the plot. XData, YData, and ZData must have equal lengths.

Example: [1:10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for XData, specified as one of these values:

• 'auto' — Use the indices of the values in YData (or ZData for 3-D plots).
• 'manual' — Use manually specified values. To specify the values, set the XData

property or specify the input argument X to the plotting function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

 Line Properties

1-8077

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y values
vector

y values, specified as a vector. For 2-D line plots, XData and YData must have equal
lengths. For 3-D line plots, XData, YData, and ZData must have equal lengths.
Example: [1:10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

1 Alphabetical List

1-8078

Example: 'y'

ZData — z values
vector

z values for the 3-D line plot, specified as a vector. XData, YData, and ZData must have
equal lengths.
Example: [1:10]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ZDataSource — Variable linked to ZData
'' (default) | character vector | string

Variable linked to ZData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

Polar Coordinate Data

ThetaData — Angle values
vector

Angle values, specified as a vector. ThetaData and RData must be vectors of equal
length.

This property applies only to lines in a polar axes.

ThetaDataMode — Selection mode for ThetaData
'auto' (default) | 'manual'

 Line Properties

1-8079

Selection mode for the ThetaData property value, specified as one of these values:

• 'auto' — Automatically select the value.
• 'manual' — Use the specified values. To specify the value, set the ThetaData

property or specify the input argument theta to the plotting function.

This property applies only to lines in a polar axes.

ThetaDataSource — Variable linked to ThetaData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to ThetaData, specified as a character vector containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the RData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ThetaData values immediately. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to lines in a polar axes.

RData — Radius values
vector

Radius values, specified as a vector. ThetaData and RData must be vectors of equal
length.

This property applies only to lines in a polar axes.

RDataSource — Variable linked to RData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to RData, specified as a character vector containing a MATLAB workspace
variable name. MATLAB evaluates the variable in the base workspace to generate the
RData.

1 Alphabetical List

1-8080

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the RData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to lines in a polar axes.

Geographic Coordinate Data

LatitudeData — Latitude values
vector

Latitude values, specified as a vector. LatitudeData and LongitudeData must be
vectors of equal length.

This property applies only to lines in a geographic axes.

LatitudeDataSource — Variable linked to LatitudeData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to LatitudeData, specified as a character vector containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate LatitudeData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the LatitudeData values immediately. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to lines in a geographic axes.

LongitudeData — Longitude values
vector

 Line Properties

1-8081

Longitude values, specified as a vector. LongitudeData and LatitudeData must be
vectors of equal length.

This property applies only to lines in a geographic axes.

LongitudeDataSource — Variable linked to LongitudeData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to LongitudeData, specified as a character vector containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate LongitudeData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the LongitudeData values immediately.
To force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to lines in a geographic axes.

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).

1 Alphabetical List

1-8082

• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content
that appears in a data tip by modifying the properties of the underlying
DataTipTemplate object. For a list of properties, see DataTipTemplate.

For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is
not copied by copyobj.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

 Line Properties

1-8083

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

1 Alphabetical List

1-8084

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

 Line Properties

1-8085

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

1 Alphabetical List

1-8086

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

 Line Properties

1-8087

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Line object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Line object responds to the
click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the Line object that has no color. The
HitTest property determines if the Line object responds to the click or if an
ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Line object passes the click
through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

1 Alphabetical List

1-8088

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Line object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Line object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Line object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

 Line Properties

1-8089

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'line'

This property is read-only.

Type of graphics object, returned as 'line'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

1 Alphabetical List

1-8090

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
loglog | plot | plot3 | polarplot | semilogx | semilogy

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Line Properties

1-8091

FunctionLine Properties
Line chart appearance and behavior

Description
FunctionLine properties control the appearance and behavior of a FunctionLine
object. By changing property values, you can modify certain aspects of the line chart. You
can use dot notation to refer to a particular object and property:

fp = fplot(@(x) sin(x))
ls = fp.LineStyle
fp.LineStyle = ':'

Properties
Line

Color — Line color
[0 0 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-8092

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

 FunctionLine Properties

1-8093

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table. By default, the line
does not have markers. Specifying a marker symbol adds markers at selected points along
the line.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle

1 Alphabetical List

1-8094

Value Description
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

 FunctionLine Properties

1-8095

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-8096

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 FunctionLine Properties

1-8097

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Function

Function — Function to plot
function handle | anonymous function | symbolic expression | symbolic function

Function to plot, specified as a function handle, anonymous function, or a symbolic
expression or function.

MeshDensity — Number of evaluation points
23 (default) | number

Number of evaluation points, specified as a number. The default is 23. Because
FunctionLine uses adaptive evaluation, the actual number of evaluation points is
greater.

ShowPoles — Display asymptotes at poles
'on' (default) | 'off'

Display asymptotes at poles, specified as 'on' (default) or 'off'. The asymptotes display
as gray, dashed vertical lines. fplot displays asymptotes only with the fplot(f) syntax
or variants, and not with the fplot(xt,yt) syntax.

XRange — Plotting interval for x values
[–5 5] (default) | two-element vector of form [xmin xmax]

Plotting interval for x values, specified as a two-element vector of the form [xmin xmax].

XRangeMode — Selection mode for XRange
'auto' (default) | 'manual'

Selection mode for XRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If axes limits are specified, follow the
specified limits instead.

1 Alphabetical List

1-8098

• 'manual' — Use manually specified values. To specify the values, set the XRange
property.

Data

XData — x values
vector

This property is read-only.

x values, specified as a vector. XData, YData, and ZData have equal lengths.

YData — y values
vector

This property is read-only.

y values, specified as a vector. XData, YData, and ZData have equal lengths.

ZData — z values
vector of zeros

This property is read-only.

z values, returned as a vector of zeros. XData, YData, and ZData have equal lengths.

Legend

DisplayName — Text for legend label
autogenerated label (default) | character vector | string

Text for legend label, specified as a custom character vector or string. The default label is
autogenerated from the Function property and the texlabel function. The legend does
not appear until you call the legend function.
Data Types: char | string

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

 FunctionLine Properties

1-8099

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

1 Alphabetical List

1-8100

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

 FunctionLine Properties

1-8101

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-8102

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

 FunctionLine Properties

1-8103

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

1 Alphabetical List

1-8104

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the FunctionLine object that has a defined
color. You cannot click a part that has an associated color property set to 'none'. If
the plot contains markers, then the entire marker is clickable if either the edge or the
fill has a defined color. The HitTest property determines if the FunctionLine object
responds to the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the FunctionLine object that has
no color. The HitTest property determines if the FunctionLine object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the FunctionLine object passes
the click through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the FunctionLine object. If you
have defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the FunctionLine object
that has one of these:

• HitTest property set to 'on'

 FunctionLine Properties

1-8105

• PickableParts property set to a value that enables the ancestor to capture
mouse clicks

Note The PickableParts property determines if the FunctionLine object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

1 Alphabetical List

1-8106

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'functionline'

This property is read-only.

Type of graphics object, returned as 'functionline'. Use this property to find all
objects of a given type within a plotting hierarchy, for example, searching for the type
using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

 FunctionLine Properties

1-8107

See Also
fplot

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2016a

1 Alphabetical List

1-8108

FunctionContour Properties
Contour chart appearance and behavior

Description
FunctionContour properties control the appearance and behavior of
FunctionContour objects. By changing property values, you can modify certain aspects
of the contour chart.

Properties
Levels

LevelList — Contour levels
vector of z values

Contour levels, specified as a vector of z values. By default, the fcontour function
chooses values that span the range of values in the ZData property.

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LevelListMode — Selection mode for LevelList
'auto' (default) | 'manual'

Selection mode for the LevelList, specified as one of these values:

• 'auto' — Determine the values based on the ZData values.
• 'manual' — Use manually specified values. To specify the values, set the LevelList

property. When the mode is 'manual', the LevelList values do not change if you
change the Function property or the limits.

LevelStep — Spacing between contour lines
0 (default) | scalar numeric value

 FunctionContour Properties

1-8109

Spacing between contour lines, specified as a scalar numeric value. For example, specify
a value of 2 to draw contour lines at increments of 2. By default, LevelStep is
determined by using the ZData values.

Setting this property sets the associated mode property to 'manual'.
Example: 3.4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LevelStepMode — Selection mode for LevelStep
'auto' (default) | 'manual'

Selection mode for the LevelStep, specified as one of these values:

• 'auto' — Determine the value based on the ZData values.
• 'manual' — Use a manually specified value. To specify the value, set the LevelStep

property. When the mode is 'manual', the value of LevelStepMode does not change
when the Function property or the limits change.

Color and Styling

Fill — Fill between contour lines
'off' (default) | 'on'

Fill between contour lines, specified as one of these values:

• 'off' — Do not fill the spaces between contour lines with a color.
• 'on' — Fill the spaces between contour lines with color.

LineColor — Color of contour lines
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of contour lines, specified as 'flat', an RGB triplet, a hexadecimal color code, a
color name, or a short name. To use a different color for each contour line, specify
'flat'. The color is determined by the contour value of the line, the colormap, and the
scaling of data values into the colormap. For more information on color scaling, see
caxis.

To use the same color for all the contour lines, specify an RGB triplet, a hexadecimal color
code, a color name, or a short name.

1 Alphabetical List

1-8110

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 FunctionContour Properties

1-8111

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Function

Function — Function to plot
function handle | anonymous function | symbolic expression | symbolic function

Function to plot, specified as a function handle, anonymous function, or a symbolic
expression or function.

XRange — Plotting interval for x values
[–5 5] (default) | two-element vector of form [xmin xmax]

Plotting interval for x values, specified as a two-element vector of the form [xmin xmax].

1 Alphabetical List

1-8112

XRangeMode — Selection mode for XRange
'auto' (default) | 'manual'

Selection mode for XRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the XRange
property.

YRange — Plotting interval for y values
[–5 5] (default) | two-element vector of form [ymin ymax]

Plotting interval for y values, specified as a two-element vector of the form [ymin ymax].

YRangeMode — Selection mode for YRange
'auto' (default) | 'manual'

Selection mode for YRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If the axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the YRange
property.

MeshDensity — Number of evaluation points per direction
71 (default) | number

Number of evaluation points per direction, specified as a number. The default is 71.
Because fcontour uses adaptive evaluation, the actual number of evaluation points is
greater.
Example: 30

Data

ContourMatrix — Contour line definitions
[] (default) | two-row matrix

This property is read-only.

 FunctionContour Properties

1-8113

Contour line definitions, returned as a two-row matrix. Each contour line in the plot has
an associated definition. If the plot has a total of N contour lines, then the contour matrix
consists of N definitions:

C = [C(1) C(2)...C(k)...C(N)]

Each contour line definition follows this pattern:

C(k) = [level x(1) x(2)...
 numxy y(1) y(2)...]

The first entry, level, indicates the contour level where the contour line is drawn.
Beneath the contour level is the number of (x,y) vertices that define the contour line. The
remaining columns contain the data for each of the vertices. If the first and last vertices
are the same, then the contour line is a closed loop. If a particular contour level has
multiple contour lines in the graph, then the matrix contains a separate definition for
each line.

Example

Create a contour plot of x^2 + y^2. For demonstration purposes, use the lowest
MeshDensity that results in a plot, which is 3.

h = fcontour(@(x,y) x.^2+y.^2, 'MeshDensity', 3);
grid on

1 Alphabetical List

1-8114

Access the contour matrix using the ContourMatrix property of the contour object
(h.ContourMatrix). The contour matrix contains definitions for each of the seven
contour lines. The circles in this matrix show the beginnings of the contour line
definitions.

 FunctionContour Properties

1-8115

The first definition in the matrix indicates that there is a contour line drawn at the 5
level , consisting of the five vertices (1,0), (0,-1), (-1,0), (0,1), and (1,0). Since
the first and last vertices are the same, the contour line is a closed loop. The last
definition indicates that there is a point at the 50 level because the line starts and ends at
the same point with no intervening points.

XData — x values
matrix

This property is read-only.

x values specified as a matrix. XData is at least a 2-by-2 matrix. size(XData),
size(YData), and size(ZData) are equal.

YData — y values
matrix

This property is read-only.

1 Alphabetical List

1-8116

y values, specified as a matrix. YData is at least a 2-by-2 matrix. size(XData),
size(YData), and size(ZData) are equal.

ZData — Data that defines surface to contour
matrix

This property is read-only.

Data that defines the surface to contour, specified as a matrix. ZData is at least a 2-by-2
matrix. size(XData), size(YData), and size(ZData) are equal.

Legend

DisplayName — Text for legend label
autogenerated label (default) | character vector | string

Text for legend label, specified as a custom character vector or string. The default label is
autogenerated from the Function property and the texlabel function. The legend does
not appear until you call the legend function.
Data Types: char | string

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do

 FunctionContour Properties

1-8117

appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.

1 Alphabetical List

1-8118

• 'off' — Never display selection handles, even when the Selected property is set to
'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 FunctionContour Properties

1-8119

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

1 Alphabetical List

1-8120

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

 FunctionContour Properties

1-8121

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the FunctionContour object
responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the FunctionContour object
passes the click to the object behind it in the current view of the figure window. The
HitTest property of the FunctionContour object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the FunctionContour object. If you
have defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the FunctionContour
object that has one of these:

1 Alphabetical List

1-8122

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the FunctionContour object can
capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

 FunctionContour Properties

1-8123

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'functioncontour'

This property is read-only.

Type of graphics object, returned as 'functioncontour'. Use this property to find all
objects of a given type within a plotting hierarchy, for example, searching for the type
using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-8124

See Also
fcontour

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2016a

 FunctionContour Properties

1-8125

FunctionSurface Properties
Surface chart appearance and behavior

Description
FunctionSurface properties control the appearance and behavior of
FunctionSurface objects. By changing property values, you can modify certain aspects
of the surface chart. You can use dot notation to refer to a particular object and property:

fs = fsurf(@(x,y) sin(x)+cos(y))
alp = fs.FaceAlpha
fs.FaceAlpha = 0.6

Properties
Faces

FaceColor — Face color
'interp' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Face color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'interp' interpolates the colors based on
the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-8126

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

FaceAlpha — Face transparency
1 (default) | scalar in range [0 1]

Face transparency, specified as a scalar in the range [0,1]. Use uniform transparency
across all of the faces. A value of 1 is fully opaque and 0 is completely transparent. Values
between 0 and 1 are semitransparent.

 FunctionSurface Properties

1-8127

Edges

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

EdgeColor — Line color
[0 0 0] (default) | 'interp' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black.
The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-8128

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

 FunctionSurface Properties

1-8129

Marker symbol, specified as one of the markers listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at the intersection
points of mesh lines.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
EdgeColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-8130

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 FunctionSurface Properties

1-8131

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

1 Alphabetical List

1-8132

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Function

Function — Function to plot
function handle | anonymous function | symbolic expression | symbolic function

Function to plot, specified as a function handle, anonymous function, or a symbolic
expression or function.

XRange — Plotting interval for x values
[–5 5] (default) | two-element vector of form [xmin xmax]

Plotting interval for x values, specified as a two-element vector of the form [xmin xmax].

XRangeMode — Selection mode for XRange
'auto' (default) | 'manual'

 FunctionSurface Properties

1-8133

Selection mode for XRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the XRange
property.

YRange — Plotting interval for y values
[–5 5] (default) | two-element vector of form [ymin ymax]

Plotting interval for y values, specified as a two-element vector of the form [ymin ymax].

YRangeMode — Selection mode for YRange
'auto' (default) | 'manual'

Selection mode for YRange, specified as one of these values:

• 'auto' — Use the default value [-5 5]. If the axes limits are specified, follow the
specified limits instead.

• 'manual' — Use manually specified values. To specify the values, set the YRange
property.

MeshDensity — Number of evaluation points per direction
35 (default) | number

Number of evaluation points per direction, specified as a number. The default is 35.
Because FunctionSurface objects use adaptive evaluation, the actual number of
evaluation points is greater.
Example: 100

ShowContours — Display contour plot under plot
'off' (default) | 'on'

Display contour plot under plot, specified as 'off' (default) or 'on'.

Data

XData — x values
matrix

This property is read-only.

1 Alphabetical List

1-8134

x values specified as a matrix. XData is at least a 2-by-2 matrix. size(XData),
size(YData), and size(ZData) are equal.

YData — y values
matrix

This property is read-only.

y values, specified as a matrix. YData is at least a 2-by-2 matrix. size(XData),
size(YData), and size(ZData) are equal.

ZData — Data that defines surface to contour
matrix

This property is read-only.

Data that defines the surface to contour, specified as a matrix. ZData is at least a 2-by-2
matrix. size(XData), size(YData), and size(ZData) are equal.

Ambient Lighting

AmbientStrength — Strength of ambient light
0.3 (default) | scalar in range [0,1]

Strength of ambient light, specified as a scalar value in the range [0,1]. Ambient light is
a nondirectional light that illuminates the entire scene. There must be at least one visible
light object in the axes for the ambient light to be visible.

The AmbientLightColor property for the axes sets the color of the ambient light. The
color is the same for all objects in the axes.
Example: 0.5
Data Types: double

DiffuseStrength — Strength of diffuse light
0.6 (default) | scalar in range [0,1]

Strength of diffuse light, specified as a scalar value in the range [0,1]. Diffuse light is
the nonspecular reflectance from light objects in the axes.
Example: 0.3
Data Types: double

 FunctionSurface Properties

1-8135

SpecularColorReflectance — Color of specular reflections
1 (default) | scalar in range [0,1]

Color of specular reflections, specified as a scalar value in the range [0,1]. A value of 1
sets the color using only the color of the light source. A value of 0 sets the color using
both the color of the object from which it reflects and the color of the light source. The
Color property of the light contains the color of the light source. The proportions vary
linearly for values in between.
Example: 0.5
Data Types: double

SpecularExponent — Size of specular spot
10 (default) | scalar greater than or equal to 1

Size of specular spot, specified as a scalar value greater than or equal to 1. Most
materials have exponents in the range [5 20].
Example: 7
Data Types: double

SpecularStrength — Strength of specular reflection
0.9 (default) | scalar in range [0,1]

Strength of specular reflection, specified as a scalar value in the range [0,1]. Specular
reflections are the bright spots on the surface from light objects in the axes.
Example: 0.3
Data Types: double

Legend

DisplayName — Text for legend label
autogenerated label (default) | character vector | string

Text for legend label, specified as a custom character vector or string. The default label is
autogenerated from the Function property and the texlabel function. The legend does
not appear until you call the legend function.
Data Types: char | string

Annotation — Control for including or excluding object from legend
Annotation object

1 Alphabetical List

1-8136

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Visibility

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

 FunctionSurface Properties

1-8137

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

1 Alphabetical List

1-8138

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 FunctionSurface Properties

1-8139

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

1 Alphabetical List

1-8140

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

 FunctionSurface Properties

1-8141

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the FunctionSurface object that has a defined
color. You cannot click a part that has an associated color property set to 'none'. If
the plot contains markers, then the entire marker is clickable if either the edge or the
fill has a defined color. The HitTest property determines if the FunctionSurface
object responds to the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the FunctionSurface object that
has no color. The HitTest property determines if the FunctionSurface object
responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the FunctionSurface object
passes the click through it to the object below it in the current view of the figure
window. The HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the FunctionSurface object. If you
have defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the FunctionSurface
object that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the FunctionSurface object can
capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

1 Alphabetical List

1-8142

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

 FunctionSurface Properties

1-8143

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'functionsurface'

This property is read-only.

Type of graphics object, returned as 'functionsurface'. Use this property to find all
objects of a given type within a plotting hierarchy, for example, searching for the type
using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
fmesh | fsurf

Topics
“Access Property Values”
“Graphics Object Properties”

1 Alphabetical List

1-8144

Introduced in R2016a

 FunctionSurface Properties

1-8145

lasterr
Last error message

Note lasterr will be removed in a future version. You can obtain information about any
error that has been generated by catching an MException. See “Capture Information
About Exceptions” in the Programming Fundamentals documentation.

Syntax
msgstr = lasterr
[msgstr, msgid] = lasterr
lasterr('new_msgstr')
lasterr('new_msgstr', 'new_msgid')
[msgstr, msgid] = lasterr('new_msgstr', 'new_msgid')

Description
msgstr = lasterr returns the last error message generated by the MATLAB software.

[msgstr, msgid] = lasterr returns the last error in msgstr and its message
identifier in msgid. If the error was not defined with an identifier, lasterr returns an
empty character vector for msgid. See “Message Identifiers” in the MATLAB
Programming Fundamentals documentation for more information on the msgid argument
and how to use it.

lasterr('new_msgstr') sets the last error message to a new character vector,
new_msgstr, so that subsequent invocations of lasterr return the new error message.
You can also set the last error to an empty character vector with lasterr('').

lasterr('new_msgstr', 'new_msgid') sets the last error message and its identifier
to new_msgstr and new_msgid, respectively. Subsequent invocations of lasterr return
the new error message and message identifier.

1 Alphabetical List

1-8146

[msgstr, msgid] = lasterr('new_msgstr', 'new_msgid') returns the last error
message and its identifier, also changing these values so that subsequent invocations of
lasterr return the message and identifier specified by new_msgstr and new_msgid
respectively.

Examples

Example 1
Here is a function that examines the lasterr character vector and displays its own
message based on the error that last occurred. This example deals with two cases, each of
which is an error that can result from a matrix multiply:
function matrix_multiply(A, B)
try
 A * B
catch
 errmsg = lasterr;
 if(strfind(errmsg, 'Inner matrix dimensions'))
 disp('** Wrong dimensions for matrix multiply')
 else
 if(strfind(errmsg, 'not defined for variables of class'))
 disp('** Both arguments must be double matrices')
 end
 end
end

If you call this function with matrices that are incompatible for matrix multiplication (e.g.,
the column dimension of A is not equal to the row dimension of B), MATLAB catches the
error and uses lasterr to determine its source:

A = [1 2 3; 6 7 2; 0 -1 5];
B = [9 5 6; 0 4 9];

matrix_multiply(A, B)
** Wrong dimensions for matrix multiply

Example 2
Specify a message identifier and error message with error:

error('MyToolbox:angleTooLarge', ...
 'The angle specified must be less than 90 degrees.');

 lasterr

1-8147

In your error handling code, use lasterr to determine the message identifier and error
message for the failing operation:

[errmsg, msgid] = lasterr
errmsg =
 The angle specified must be less than 90 degrees.
msgid =
 MyToolbox:angleTooLarge

See Also
error | lasterror | lastwarn | rethrow | warning

Introduced before R2006a

1 Alphabetical List

1-8148

lasterror
Last error message and related information

Note lasterror will be removed in a future version. You can obtain information about
any error that has been generated by catching an MException. See “Capture Information
About Exceptions” in the Programming Fundamentals documentation.

Syntax
s = lasterror
s = lasterror(err)
s = lasterror('reset')

Description
s = lasterror returns a structure s containing information about the most recent
error issued by the MATLAB software. The return structure contains the following fields:

Fieldname Description
message Character array containing the text of the error message.
identifier Character array containing the message identifier of the error

message. If the last error issued by MATLAB had no message
identifier, then the identifier field is an empty character array.

stack Structure providing information on the location of the error. The
structure has fields file, name, and line, and is the same as the
structure returned by the dbstack function. If lasterror returns
no stack information, stack is a 0-by-1 structure having the same
three fields.

Note The lasterror return structure might contain additional fields in future versions
of MATLAB.

 lasterror

1-8149

The fields of the structure returned in stack are

Fieldname Description
file Name of the file in which the function generating the error appears.

This field is the empty character vector if there is no file.
name Name of the function in which the error occurred. If this is the

primary function in the file, and the function name differs from the
file name, name is set to the file name.

line Line number of the file at which the error occurred.

See “Message Identifiers” in the MATLAB Programming Fundamentals documentation for
more information on the syntax and usage of message identifiers.

s = lasterror(err) sets the last error information to the error message and identifier
specified in the structure err. Subsequent invocations of lasterror return this new
error information. The optional return structure s contains information on the previous
error.

s = lasterror('reset') sets the last error information to the default state. In this
state, the message and identifier fields of the return structure are empty character
vectors, and the stack field is a 0-by-1 structure.

Examples
Example 1
Save the following MATLAB code in a file called average.m:
function y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector, is the mean of vector elements.
% Nonvector input results in an error.
check_inputs(x)
y = sum(x)/length(x); % The actual computation

function check_inputs(x)
[m,n] = size(x);
if (~((m == 1) || (n == 1)) || (m == 1 && n == 1))
 error('AVG:NotAVector', 'Input must be a vector.')
end

Now run the function. Because this function requires vector input, passing a scalar value
to it forces an error. The error occurs in subroutine check_inputs:

1 Alphabetical List

1-8150

average(200)
Error using average>check_inputs (line 11)
Input must be a vector.

Error in average (line 5)
check_inputs(x)

Get the three fields from lasterror:

err = lasterror
err =
 message: [1x61 char]
 identifier: 'AVG:NotAVector'
 stack: [2x1 struct]

Display the text of the error message:

msg = err.message
msg =
 Error using average>check_inputs (line 11)
 Input must be a vector.

Display the fields containing the stack information. err.stack is a 2-by-1 structure
because it provides information on the failing subroutine check_inputs and also the
outer, primary function average:

st1 = err.stack(1,1)
st1 =
 file: 'd:\matlab_test\average.m'
 name: 'check_inputs'
 line: 11

st2 = err.stack(2,1)
st2 =
 file: 'd:\matlab_test\average.m'
 name: 'average'
 line: 5

Note As a rule, the name of your primary function should be the same as the name of the
file that contains that function. If these names differ, MATLAB uses the file name in the
name field of the stack structure.

 lasterror

1-8151

Example 2
lasterror is often used in conjunction with the MException.rethrow function in try,
catch statements. For example,

try
 do_something
catch
 do_cleanup
 rethrow(lasterror)
end

Tips
MathWorks is gradually transitioning MATLAB error handling to an object-oriented
scheme that is based on the MException class. Although support for lasterror is
expected to continue, using the static MException.last method of MException is
preferable.

Warning lasterror and MException.last are not guaranteed to always return
identical results. For example, MException.last updates its error status only on
uncaught errors, where lasterror can update its error status on any error, whether it is
caught or not.

See Also
MException | MException.last | MException.rethrow | assert | dbstack | error
| lastwarn | try, catch

Introduced before R2006a

1 Alphabetical List

1-8152

lastwarn
Last warning message

Syntax
msg = lastwarn
[msg,msgID] = lastwarn
[___] = lastwarn(newMsg,newID)

Description
msg = lastwarn returns the last warning message generated by MATLAB, regardless of
the display state of the warning.

[msg,msgID] = lastwarn also returns the message identifier associated with msg.

[___] = lastwarn(newMsg,newID) sets the last warning message and the last
warning identifier. Subsequent calls to the lastwarn function return the new warning
message and, if requested, the new message identifier. You can use this syntax with any of
the output arguments of the previous syntaxes.

Examples

Display Last Warning Message

Display a warning message.

warning('Message 1.')

Warning: Message 1.

Call the lastwarn function to display the last warning message.

msg = lastwarn

 lastwarn

1-8153

msg =

 'Message 1.'

Save the current warning settings, and then disable all warnings.

origState = warning;
warning('off')

Call the warning function with a different message. The warning is not displayed.

warning('Message 2.')

Call the lastwarn function. MATLAB returns the last warning message, even though it
was not displayed.

msg = lastwarn

msg =

 'Message 2.'

Restore the saved warning state.

warning(origState)

Obtain Identifier from Warning

The warning message identifier is often used to suppress warnings. To find the identifier,
use the lastwarn function.

Generate a singular matrix warning.

A = eye(2);
B = [3 6; 4 8];
C = B\A;

Warning: Matrix is singular to working precision.

Find the identifier of the warning.

[msg,msgID] = lastwarn;

msg =

1 Alphabetical List

1-8154

 'Matrix is singular to working precision.'

msgID =

 'MATLAB:singularMatrix'

Save the current warning state, and disable the specific warning. Perform the original
calculation again. This time the warning does not display.

warnStruct = warning('off',msgId);
C = B\A;

Restore the previous warning state.

warning(warnStruct);

Input Arguments
newMsg — New message for last warning
character vector | string scalar

New message for last warning, specified as a character vector or string scalar.
Subsequent calls to the lastwarn function return the new warning message.

You can set the new message to an empty character vector ('') or string scalar ("").
Example: 'Warning message to display.'

newID — New identifier for last warning
character vector | string scalar

Identifier for the last warning, specified as a character vector or string scalar. Use the
message identifier to help identify the source of the error or to control a selected subset
of the errors in your program.

The message identifier includes a component and mnemonic. The identifier must always
contain a colon and follows this simple format: component:mnemonic. The component
and mnemonic fields must each begin with a letter. The remaining characters can be
alphanumerics (A–Z, a–z, 0–9) and underscores. No whitespace characters can appear
anywhere in newID. For more information, see “Message Identifiers”.
Example: 'MATLAB:singularMatrix'

 lastwarn

1-8155

Example: 'MyProject:myFunction:notEnoughInputs'

Output Arguments
msg — Last warning message
character vector

Last warning message generated by MATLAB, regardless of the display state of the
warning, returned as a character vector.

msgID — Last warning identifier
character vector

Last warning identifier, returned as a character vector. If the warning was not defined
with an identifier, lastwarn returns an empty character vector for msgID.

See Also
error | warning

Topics
“Suppress Warnings”
“Restore Warnings”

Introduced before R2006a

1 Alphabetical List

1-8156

lcm
Least common multiple

Syntax
L = lcm(A,B)

Description
L = lcm(A,B) returns the least common multiples of the elements of A and B.

Examples

Least Common Multiples of Double Array and a Scalar
A = [5 17; 10 60];
B = 45;
L = lcm(A,B)

L = 2×2

 45 765
 90 180

Least Common Multiples of Unsigned Integers
A = uint16([255 511 15]);
B = uint16([15 127 1023]);
L = lcm(A,B)

L = 1x3 uint16 row vector

 lcm

1-8157

 255 64897 5115

Input Arguments
A,B — Input values
scalars, vectors, or arrays of real, positive integer values

Input values, specified as scalars, vectors, or arrays of real, positive integer values. A and
B can be any numeric type, and they can be of different types within certain limitations:

• If A or B is of type single, then the other can be of type single or double.
• If A or B belongs to an integer class, then the other must belong to the same class or it

must be a double scalar value.

A and B must be the same size or one must be a scalar.
Example: [20 3 13],[10 6 7]
Example: int16([100 30 200]),int16([20 15 9])
Example: int16([100 30 200]),20
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
L — Least common multiple
real, positive integer values

Least common multiple, returned as an array of real positive integer values. L is the same
size as A and B, and it has the same type as A and B. If A and B are of different types, then
L is returned as the nondouble type.

1 Alphabetical List

1-8158

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gcd

Introduced before R2006a

 lcm

1-8159

ldl
Block LDL' factorization for Hermitian indefinite matrices

Syntax
L = ldl(A)
[L,D] = ldl(A)
[L,D,P] = ldl(A)
[L,D,p] = ldl(A,'vector')
[U,D,P] = ldl(A,'upper')
[U,D,p] = ldl(A,'upper','vector')
[L,D,P,S] = ldl(A)
[L,D,P,S] = LDL(A,THRESH)
[U,D,p,S] = LDL(A,THRESH,'upper','vector')

Description
L = ldl(A) returns only the permuted lower triangular matrix L as in the two-output
form. The permutation information is lost, as is the block diagonal factor D. By default,
ldl references only the diagonal and lower triangle of A, and assumes that the upper
triangle is the complex conjugate transpose of the lower triangle. Therefore [L,D,P] =
ldl(TRIL(A)) and [L,D,P] = ldl(A)both return the exact same factors. Note, this
syntax is not valid for sparse A.

[L,D] = ldl(A) stores a block diagonal matrix D and a permuted lower triangular
matrix in L such that A = L*D*L'. The block diagonal matrix D has 1-by-1 and 2-by-2
blocks on its diagonal. Note, this syntax is not valid for sparse A.

[L,D,P] = ldl(A) returns unit lower triangular matrix L, block diagonal D, and
permutation matrix P such that P'*A*P = L*D*L'. This is equivalent to [L,D,P] =
ldl(A,'matrix').

[L,D,p] = ldl(A,'vector') returns the permutation information as a vector, p,
instead of a matrix. The p output is a row vector such that A(p,p) = L*D*L'.

[U,D,P] = ldl(A,'upper') references only the diagonal and upper triangle of A and
assumes that the lower triangle is the complex conjugate transpose of the upper triangle.

1 Alphabetical List

1-8160

This syntax returns a unit upper triangular matrix U such that P'*A*P = U'*D*U
(assuming that A is Hermitian, and not just upper triangular). Similarly, [L,D,P] =
ldl(A,'lower') gives the default behavior.

[U,D,p] = ldl(A,'upper','vector') returns the permutation information as a
vector, p, as does [L,D,p] = ldl(A,'lower','vector'). A must be a full matrix.

[L,D,P,S] = ldl(A) returns unit lower triangular matrix L, block diagonal D,
permutation matrix P, and scaling matrix S such that P'*S*A*S*P = L*D*L'. This
syntax is only available for real sparse matrices, and only the lower triangle of A is
referenced. ldl uses MA57 for sparse real symmetric A.

[L,D,P,S] = LDL(A,THRESH) uses THRESH as the pivot tolerance in MA57. THRESH
must be a double scalar lying in the interval [0, 0.5]. The default value for THRESH is
0.01. Using smaller values of THRESH may give faster factorization times and fewer
entries, but may also result in a less stable factorization. This syntax is available only for
real sparse matrices.

[U,D,p,S] = LDL(A,THRESH,'upper','vector') sets the pivot tolerance and
returns upper triangular U and permutation vector p as described above.

Examples
These examples illustrate the use of the various forms of the ldl function, including the
one-, two-, and three-output form, and the use of the vector and upper options. The
topics covered are:

• “Example 1 — Two-Output Form of ldl” on page 1-8162
• “Example 2 — Three Output Form of ldl” on page 1-8162
• “Example 3 — The Structure of D” on page 1-8163
• “Example 4 — Using the 'vector' Option” on page 1-8163
• “Example 5 — Using the 'upper' Option” on page 1-8163
• “Example 6 — linsolve and the Hermitian indefinite solver” on page 1-8164

Before running any of these examples, you will need to generate the following positive
definite and indefinite Hermitian matrices:

 ldl

1-8161

A = full(delsq(numgrid('L', 10)));
B = gallery('uniformdata',10,0);
M = [eye(10) B; B' zeros(10)];

The structure of M here is very common in optimization and fluid-flow problems, and M is
in fact indefinite. Note that the positive definite matrix A must be full, as ldl does not
accept sparse arguments.

Example 1 — Two-Output Form of ldl
The two-output form of ldl returns L and D such that A-(L*D*L') is small, L is
permuted unit lower triangular, and D is a block 2-by-2 diagonal. Note also that, because
A is positive definite, the diagonal of D is all positive:

[LA,DA] = ldl(A);
fprintf(1, ...
'The factorization error ||A - LA*DA*LA''|| is %g\n', ...
norm(A - LA*DA*LA'));
neginds = find(diag(DA) < 0)

Given a b, solve Ax=b using LA, DA:

bA = sum(A,2);
x = LA'\(DA\(LA\bA));
fprintf(...
'The absolute error norm ||x - ones(size(bA))|| is %g\n', ...
norm(x - ones(size(bA))));

Example 2 — Three Output Form of ldl
The three output form returns the permutation matrix as well, so that L is in fact unit
lower triangular:

[Lm, Dm, Pm] = ldl(M);
fprintf(1, ...
'The error norm ||Pm''*M*Pm - Lm*Dm*Lm''|| is %g\n', ...
norm(Pm'*M*Pm - Lm*Dm*Lm'));
fprintf(1, ...
'The difference between Lm and tril(Lm) is %g\n', ...
norm(Lm - tril(Lm)));

Given b, solve Mx=b using Lm, Dm, and Pm:

1 Alphabetical List

1-8162

bM = sum(M,2);
x = Pm*(Lm'\(Dm\(Lm\(Pm'*bM))));
fprintf(...
'The absolute error norm ||x - ones(size(b))|| is %g\n', ...
norm(x - ones(size(bM))));

Example 3 — The Structure of D
D is a block diagonal matrix with 1-by-1 blocks and 2-by-2 blocks. That makes it a special
case of a tridiagonal matrix. When the input matrix is positive definite, D is almost always
diagonal (depending on how definite the matrix is). When the matrix is indefinite however,
D may be diagonal or it may express the block structure. For example, with A as above, DA
is diagonal. But if you shift A just a bit, you end up with an indefinite matrix, and then you
can compute a D that has the block structure.

figure; spy(DA); title('Structure of D from ldl(A)');
[Las, Das] = ldl(A - 4*eye(size(A)));
figure; spy(Das);
title('Structure of D from ldl(A - 4*eye(size(A)))');

Example 4 — Using the 'vector' Option
Like the lu function, ldl accepts an argument that determines whether the function
returns a permutation vector or permutation matrix. ldl returns the latter by default.
When you select 'vector', the function executes faster and uses less memory. For this
reason, specifying the 'vector' option is recommended. Another thing to note is that
indexing is typically faster than multiplying for this kind of operation:
[Lm, Dm, pm] = ldl(M, 'vector');
fprintf(1, 'The error norm ||M(pm,pm) - Lm*Dm*Lm''|| is %g\n', ...
 norm(M(pm,pm) - Lm*Dm*Lm'));

% Solve a system with this kind of factorization.
clear x;
x(pm,:) = Lm'\(Dm\(Lm\(bM(pm,:))));
fprintf('The absolute error norm ||x - ones(size(b))|| is %g\n', ...
 norm(x - ones(size(bM))));

Example 5 — Using the 'upper' Option
Like the chol function, ldl accepts an argument that determines which triangle of the
input matrix is referenced, and also whether ldl returns a lower (L) or upper (L')
triangular factor. For dense matrices, there are no real savings with using the upper
triangular version instead of the lower triangular version:

 ldl

1-8163

Ml = tril(M);
[Lml, Dml, Pml] = ldl(Ml, 'lower'); % 'lower' is default behavior.
fprintf(1, ...
'The difference between Lml and Lm is %g\n', norm(Lml - Lm));
[Umu, Dmu, pmu] = ldl(triu(M), 'upper', 'vector');
fprintf(1, ...
'The difference between Umu and Lm'' is %g\n', norm(Umu - Lm'));

% Solve a system using this factorization.
clear x;
x(pm,:) = Umu\(Dmu\(Umu'\(bM(pmu,:))));
fprintf(...
'The absolute error norm ||x - ones(size(b))|| is %g\n', ...
norm(x - ones(size(bM))));

When specifying both the 'upper' and 'vector' options, 'upper' must precede
'vector' in the argument list.

Example 6 — linsolve and the Hermitian indefinite solver
When using the linsolve function, you may experience better performance by exploiting
the knowledge that a system has a symmetric matrix. The matrices used in the examples
above are a bit small to see this so, for this example, generate a larger matrix. The matrix
here is symmetric positive definite, and below we will see that with each bit of knowledge
about the matrix, there is a corresponding speedup. That is, the symmetric solver is faster
than the general solver while the symmetric positive definite solver is faster than the
symmetric solver:

Abig = full(delsq(numgrid('L', 30)));
bbig = sum(Abig, 2);
LSopts.POSDEF = false;
LSopts.SYM = false;
tic; linsolve(Abig, bbig, LSopts); toc;
LSopts.SYM = true;
tic; linsolve(Abig, bbig, LSopts); toc;
LSopts.POSDEF = true;
tic; linsolve(Abig, bbig, LSopts); toc;

Algorithms
ldl uses the MA57 routines in the Harwell Subroutine Library (HSL) for real sparse
matrices.

1 Alphabetical List

1-8164

References
[1] Ashcraft, C., R.G. Grimes, and J.G. Lewis. “Accurate Symmetric Indefinite Linear

Equations Solvers.” SIAM J. Matrix Anal. Appl. Vol. 20. Number 2, 1998, pp. 513–
561.

[2] Duff, I. S. "MA57 — A new code for the solution of sparse symmetric definite and
indefinite systems." Technical Report RAL-TR-2002-024, Rutherford Appleton
Laboratory, 2002.

See Also
chol | lu | qr

 ldl

1-8165

ldivide, .\
Left array division

Syntax
x = B.\A
x = ldivide(B,A)

Description
x = B.\A divides each element of A by the corresponding element of B.

x = ldivide(B,A) is an alternative way to divide A by B, but is rarely used. It enables
operator overloading for classes.

Examples

Divide Two Numeric Arrays

A = ones(2,3);
B = [1 2 3; 4 5 6];
x = B.\A

x = 2×3

 1.0000 0.5000 0.3333
 0.2500 0.2000 0.1667

1 Alphabetical List

1-8166

Divide a Scalar by a Numeric Array

C = 2;
D = [1 2 3; 4 5 6];
x = D.\C

x = 2×3

 2.0000 1.0000 0.6667
 0.5000 0.4000 0.3333

Input Arguments
A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix or multidimensional array. Numeric inputs
A and B must either be the same size or have sizes that are compatible (for example, A is
an M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.

If A and B are duration arrays, then they must be the same size unless one is a scalar.

If B is an integer data type, then A must be the same integer type or be a scalar double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char

B — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a scalar, vector, matrix or multidimensional array. Numeric
inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are duration arrays, then they must be the same size unless one is a scalar.

If A is an integer data type, then B must be the same integer type or be a scalar double.

 ldivide, .\

1-8167

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char

Output Arguments
x — Solution
scalar | vector | matrix | multidimensional array

Solution, returned as a scalar, vector, matrix or multidimensional array. If either A or B
are integer data types, then x is that same integer data type.

Tips
• The element-wise operators ./ and .\ are related to each other by the equation A./B

= B.\A.
• When dividing integers, use idivide for more rounding options.
• MATLAB does not support complex integer division.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-8168

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
idivide | mldivide | mrdivide | rdivide

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 ldivide, .\

1-8169

le, <=
Determine less than or equal to

Syntax
A <= B
le(A,B)

Description
A <= B returns a logical array with elements set to logical 1 (true) where A is less than
or equal to B; otherwise, the element is logical 0 (false). The test compares only the real
part of numeric arrays. le returns logical 0 (false) where A or B have NaN or undefined
categorical elements.

le(A,B) is an alternate way to execute A <= B, but is rarely used. It enables operator
overloading for classes.

Examples

Test Vector Elements

Find which vector elements are less than or equal to a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are less than or equal to 12.

A <= 12

ans = 1x8 logical array

1 Alphabetical List

1-8170

 1 1 0 1 1 1 1 0

The result is a vector with values of logical 1 (true) where the elements of A satisfy the
expression.

Use the vector of logical values as an index to view the values in A that are less than or
equal to 12.

A(A <= 12)

ans = 1×6

 1 12 7 9 11 2

The result is a subset of the elements in A.

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Replace all values less than or equal to 9 with the value 10.

A(A <= 9) = 10

A = 4×4

 16 10 10 13
 10 11 10 10
 10 10 10 12
 10 14 15 10

 le, <=

1-8171

The result is a new matrix whose smallest element is 10.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A = 2x3 categorical array
 large medium small
 medium small large

The array has three categories: 'small', 'medium', and 'large'.

Find all values less than or equal to the category 'medium'.

A <= 'medium'

ans = 2x3 logical array

 0 1 1
 1 1 0

A value of logical 1 (true) indicates a value less than or equal to the category 'medium'.

Compare the rows of A.

A(1,:) <= A(2,:)

ans = 1x3 logical array

 0 0 1

The function returns logical 1 (true) where the first row has a category value less than or
equal to the second row.

1 Alphabetical List

1-8172

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are less than or equal to 3.

A(A <= 3)

ans = 1×4 complex

 1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2.0000i

le compares only the real part of the elements in A.

Use abs to find which elements are within a radius of 3 from the origin.

A(abs(A) <= 3)

ans = 1×3 complex

 1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 - 2.0000i

The result has one less element. The element 1.0000 + 3.0000i is not within a radius
of 3 from the origin.

Test Duration Values

Create a duration array.

d = hours(21:25) + minutes(75)

d = 1x5 duration array
 22.25 hr 23.25 hr 24.25 hr 25.25 hr 26.25 hr

Test the array for elements that are less than or equal to one standard day.

d <= 1

 le, <=

1-8173

ans = 1x5 logical array

 1 1 0 0 0

Input Arguments
A — Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

B — Right array
scalar | vector | matrix | multidimensional array

1 Alphabetical List

1-8174

Right array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

Tips
• Some floating-point numbers cannot be represented exactly in binary form. This leads

to small differences in results that the <= operator reflects. For more information, see
“Avoiding Common Problems with Floating-Point Arithmetic”.

 le, <=

1-8175

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | ge | gt | lt | ne

Topics
“Array Comparison with Relational Operators”
“Ordinal Categorical Arrays”
“MATLAB Operators and Special Characters”

1 Alphabetical List

1-8176

Introduced before R2006a

 le, <=

1-8177

legend
Add legend to axes

Syntax
legend
legend(label1,...,labelN)
legend(labels)
legend(subset, ___)
legend(target, ___)

legend(___ ,'Location',lcn)
legend(___ ,'Orientation',ornt)
legend(___ ,Name,Value)
legend(bkgd)
lgd = legend(___)

legend(vsbl)
legend('off')

Description
legend creates a legend with descriptive labels for each plotted data series. For the
labels, the legend uses the text from the DisplayName properties of the data series. If
the DisplayName property is empty, then the legend uses a label of the form 'dataN'.
The legend automatically updates when you add or delete data series from the axes. This
command creates a legend for the current axes or chart returned by gca. If the current
axes are empty, then the legend is empty. If axes do not exist, then this command creates
them.

legend(label1,...,labelN) sets the legend labels. Specify the labels as a list of
character vectors or strings, such as legend('Jan','Feb','Mar').

legend(labels) sets the labels using a cell array of character vectors, a string array, or
a character matrix, such as legend({'Jan','Feb','Mar'}).

1 Alphabetical List

1-8178

legend(subset, ___) only includes items in the legend for the data series listed in
subset. Specify subset as a vector of graphics objects. You can specify subset before
specifying the labels or with no other input arguments.

legend(target, ___) uses the axes, polar axes, or chart specified by target instead
of the current axes or chart. Specify the target as the first input argument.

legend(___ ,'Location',lcn) sets the legend location. For example,
'Location','northeast' positions the legend in the upper right corner of the axes.
Specify the location after other input arguments.

legend(___ ,'Orientation',ornt), where ornt is 'horizontal', displays the
legend items side-by-side. The default for ornt is 'vertical', which stacks the items
vertically.

legend(___ ,Name,Value) sets legend properties using one or more name-value pair
arguments. When setting properties, you must specify the labels using a cell array, such
as legend({'A','B'},'FontSize',12). If you do not want to specify labels, then
include an empty cell array, such as legend({},'FontSize',12).

legend(bkgd), where bkgd is 'boxoff', removes the legend background and outline.
The default for bkgd is 'boxon', which displays the legend background and outline.

lgd = legend(___) returns the Legend object. Use lgd to query and set properties of
the legend after it is created. For a list of properties, see Legend.

legend(vsbl) controls the visibility of the legend, where vsbl is 'hide', 'show', or
'toggle'.

legend('off') deletes the legend.

Examples

Add Legend to Current Axes

Plot two lines and add a legend to the current axes. Specify the legend labels as input
arguments to the legend function.

x = linspace(0,pi);
y1 = cos(x);

 legend

1-8179

plot(x,y1)

hold on
y2 = cos(2*x);
plot(x,y2)

legend('cos(x)','cos(2x)')

If you add or delete a data series from the axes, the legend updates accordingly. Control
the label for the new data series by setting the DisplayName property as a name-value
pair during creation. If you do not specify a label, then the legend uses a label of the form
'dataN'.

1 Alphabetical List

1-8180

Note: If you do not want the legend to automatically update when data series are added
to or removed from the axes, then set the AutoUpdate property of the legend to 'off'.

y3 = cos(3*x);
plot(x,y3,'DisplayName','cos(3x)')
hold off

Delete the legend.

legend('off')

 legend

1-8181

Add Legend to Specific Axes

Create a figure with two subplots and return the two Axes objects, ax1 and ax2. Plot
random data in each subplot. Add a legend to the upper subplot by specifying ax1 as the
first input argument to legend.

y1 = rand(3);
ax1 = subplot(2,1,1);
plot(y1)

y2 = rand(5);

1 Alphabetical List

1-8182

ax2 = subplot(2,1,2);
plot(y2)

legend(ax1,{'Line 1','Line 2','Line 3'})

Specify Legend Labels During Plotting Commands

Plot two lines. Specify the legend labels during the plotting commands by setting the
DisplayName property to the desired text. Then, add a legend.

x = linspace(0,pi);
y1 = cos(x);

 legend

1-8183

plot(x,y1,'DisplayName','cos(x)')

hold on
y2 = cos(2*x);
plot(x,y2,'DisplayName','cos(2x)')
hold off

legend

1 Alphabetical List

1-8184

Legend Location and Number of Columns

Plot four lines. Create a legend in the northwest area of the axes. Specify the number of
legend columns using the NumColumns property.

x = linspace(0,pi);
y1 = cos(x);
plot(x,y1)

hold on
y2 = cos(2*x);
plot(x,y2)

y3 = cos(3*x);
plot(x,y3)

y4 = cos(4*x);
plot(x,y4)
hold off

legend({'cos(x)','cos(2x)','cos(3x)','cos(4x)'},'Location','northwest','NumColumns',2)

 legend

1-8185

By default, the legend orders the items from top to bottom along each column. To order
the items from left to right along each row instead, set the Orientation property to
'horizontal'.

Included Subset of Graphics Objects in Legend

If you do not want to include all of the plotted graphics objects in the legend, then you
can specify the graphics objects that you want to include.

1 Alphabetical List

1-8186

Plot three lines and return the Line objects created. Create a legend that includes only
two of the lines. Specify the first input argument as a vector of the Line objects to
include.

x = linspace(0,pi);
y1 = cos(x);
p1 = plot(x,y1);

hold on
y2 = cos(2*x);
p2 = plot(x,y2);

y3 = cos(3*x);
p3 = plot(x,y3);
hold off

legend([p1 p3],{'First','Third'})

 legend

1-8187

Add Title to Legend

Plot two lines and create a legend. Then, add a title to the legend.

x = linspace(0,pi);
y1 = cos(x);
plot(x,y1)

hold on
y2 = cos(2*x);
plot(x,y2)

1 Alphabetical List

1-8188

hold off

lgd = legend('cos(x)','cos(2x)');
title(lgd,'My Legend Title')

Remove Legend Background

Plot two lines and create a legend in the lower left corner of the axes. Then, remove the
legend background and outline.

x = linspace(0,pi);
y1 = cos(x);

 legend

1-8189

plot(x,y1)

hold on
y2 = cos(2*x);
plot(x,y2)
hold off

legend({'cos(x)','cos(2x)'},'Location','southwest')
legend('boxoff')

1 Alphabetical List

1-8190

Modify Legend Appearance

Modify the legend appearance by setting Legend properties. You can set properties when
you create the legend using name-value pairs in the legend command. You also can set
properties after you create the legend using the Legend object.

Plot four lines of random data. Create legend and assign the Legend object to the
variable lgd. Set the FontSize and TextColor properties using name-value pairs.
When you specify name-value pair arguments, you must specify the legend labels using a
cell array.

rdm = rand(4);
plot(rdm)

lgd = legend({'Line 1','Line 2','Line 3','Line 4'},'FontSize',12,'TextColor','blue')

 legend

1-8191

lgd =
 Legend (Line 1, Line 2, Line 3, Line 4) with properties:

 String: {'Line 1' 'Line 2' 'Line 3' 'Line 4'}
 Location: 'northeast'
 Orientation: 'vertical'
 FontSize: 12
 Position: [0.7167 0.6877 0.1696 0.2131]
 Units: 'normalized'

 Show all properties

1 Alphabetical List

1-8192

Modify the legend after it is created by referring to lgd. Set the NumColumns property
using the object dot property name notation.

lgd.NumColumns = 2;

Input Arguments
label1,...,labelN — Labels (as separate arguments)
character vectors | strings

 legend

1-8193

Labels, specified as separate arguments of character vectors or strings. To include special
characters or Greek letters in the labels, use TeX markup. For a table of options, see the
Interpreter property.
Example: legend('Sin Function','Cos Function')
Example: legend("Sin Function","Cos Function")
Example: legend('\gamma','\sigma')

To specify labels that are keywords, such as 'Location' or 'off', use a cell array of
character vectors, a string array, or a character array.

labels — Labels (as an array)
cell array of character vectors | string array | character array

Labels, specified as a cell array of character vectors, a string array, or a character array.
To include special characters or Greek letters in the labels, use TeX markup. For a table of
options, see the Interpreter property.
Example: legend({'Sin Function','Cos Function'})
Example: legend(["Sin Function","Cos Function"])
Example: legend(['Sin Function';'Cos Function'])
Example: legend({'\gamma','\sigma'})

subset — Data series to include in legend
vector of graphics objects

Data series to include in the legend, specified as a vector of graphics objects.

target — Target for legend
Axes object | PolarAxes object | graphics object

Target for legend, specified as an Axes object, a PolarAxes object, or a graphics object
with a LegendVisible property, such as a GeographicBubbleChart object. If you do
not specify the target, then the legend function uses the axes or chart returned by the
gca command.

Some charts do not support modifying the legend appearance, such as the location, or
returning the Legend object as an output argument..

lcn — Legend location
'north' | 'south' | 'east' | 'west' | 'northeast' | ...

1 Alphabetical List

1-8194

Legend location with respect to the axes, specified as one of the location values listed in
this table.

Value Description
'north' Inside top of axes
'south' Inside bottom of axes
'east' Inside right of axes
'west' Inside left of axes
'northeast' Inside top-right of axes (default for 2-D

axes)
'northwest' Inside top-left of axes
'southeast' Inside bottom-right of axes
'southwest' Inside bottom-left of axes
'northoutside' Above the axes
'southoutside' Below the axes
'eastoutside' To the right of the axes
'westoutside' To the left of the axes
'northeastoutside' Outside top-right corner of the axes (default

for 3-D axes)
'northwestoutside' Outside top-left corner of the axes
'southeastoutside' Outside bottom-right corner of the axes
'southwestoutside' Outside bottom-left corner of the axes
'best' Inside axes where least conflict occurs with

plot data
'bestoutside' Outside top-right corner of the axes (when

the legend has a vertical orientation) or
below the axes (when the legend has a
horizontal orientation)

'none' Determined by Position property. Use the
Position property to display the legend in
a custom location.

Example: legend('Location','northeastoutside')

 legend

1-8195

ornt — Orientation
'vertical' (default) | 'horizontal'

Orientation, specified as one of these values:

• 'vertical' — Stack the legend items vertically.
• 'horizontal' — List the legend items side-by-side.

Example: legend('Orientation','horizontal')

bkgd — Legend box display
'boxon' (default) | 'boxoff'

Legend box display, specified as one of these values:

• 'boxon' — Display the legend background and outline.
• 'boxoff' — Do not display the legend background and outline.

Example: legend('boxoff')

vsbl — Legend visibility
'hide' | 'show' | 'toggle'

Legend visibility, specified as one of these values:

• 'hide' — Hide the legend.
• 'Show' — Show the legend or create a legend if one does not exist.
• 'toggle' — Toggle the legend visibility.

Example: legend('hide')

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note The properties listed here are only a subset. For a complete list, see Legend.

1 Alphabetical List

1-8196

Example: legend({'A','B'},'TextColor','blue','FontSize',12) creates a
legend with blue, 12-point font.

TextColor — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default color is black with a value of [0 0 0].

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 legend

1-8197

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0 0 1]
Example: 'blue'
Example: '#0000FF'

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale.

If you change the axes font size, then MATLAB automatically sets the font size of the
colorbar to 90% of the axes font size. If you manually set the font size of the colorbar,
then changing the axes font size does not affect the colorbar font.

NumColumns — Number of columns
1 (default) | positive integer

Number of columns, specified as a positive integer. If there are not enough legend items
to fill the specified number of columns, then the number of columns that appear might be
fewer.

Use the Orientation property to control whether the legend items appear in order
along each column or along each row.
Example: lgd.NumColumns = 3

1 Alphabetical List

1-8198

Output Arguments
lgd — Legend object
Legend object

Legend object. Use lgd to view or modify properties of the legend after it is created.

plot(rand(3))
lgd = legend('line1','line2','line3');
lgd.FontSize = 12;
lgd.FontWeight = 'bold';

Tips
• To label more than 20 objects in the legend, specify a label for each object. Otherwise,

legend depicts only the first 20 objects in the graph.

Algorithms
• Recalling the legend function does not reset legend properties, such as the location

or orientation. If a legend exists, then the legend function updates the existing
legend. An Axes object can have only one legend.

• The legend reflects the visibility of graphics objects in the axes. Graphics objects that
have a Visible property set to 'off' appear as grayed out items in the legend.

Compatibility Considerations

legend interprets arguments as property names when
property exists
Behavior changed in R2018b

Starting in R2018b, if you pass an argument to the legend function that matches the
name of a legend property, the function interprets the argument as the name of a name-
value pair. In previous releases, the legend function recognized name-value pairs only
when the first argument was a cell array.

 legend

1-8199

As a result of this change, in most cases, it is unnecessary to specify the first argument as
a cell array when using name-value pairs. However, if you want a label in your legend that
matches the name of a legend property, such as Position or NumColumns, then you
must specify all the labels in a cell array. Otherwise, the legend function interprets the
argument as a name-value pair instead of a label.

Description Recommended Code
If you want a label in your legend that
matches the name of a legend property,
such as 'NumColumns', then specify all the
labels in a cell array. If you specify
'NumColumns' outside of a cell array, the
legend function interprets it as a name-
value pair.

legend({'Label1','NumColumns','Label3','Label4'},'NumColumns',2)

If none of your labels match the name of a
legend property, then you do not need to
use a cell array around the labels.

legend('Label1','Label2','Label2')

legend creates axes if they do not exist
Behavior changed in R2017b

Starting in R2017b, if axes do not exist, then the legend function creates them.

Legends automatically update when you add or remove data
Behavior changed in R2017a

Starting in R2017a, the legend automatically updates when you add or remove data series
from the axes. If you do not want the legend to automatically update, set the AutoUpdate
property of the legend to 'off'.

lgd = legend;
lgd.AutoUpdate = 'off';

Returning multiple outputs is not recommended
Not recommended starting in R2014b

Returning multiple outputs using this syntax is no longer recommended:

[lgd,icons,plots,txt] = legend(__)

1 Alphabetical List

1-8200

This syntax creates a legend that does not support some functionality. For example, you
cannot add a title to the legend or specify the number of legend columns. Also, the legend
does not automatically update when you add or remove data series from the axes.

Instead, return the Legend object and set Legend, such as the String property.

lgd = legend(__)

See Also
Functions
hold | plot | text | title | xlabel | ylabel

Properties
Legend

Topics
“Add Legend to Graph”

Introduced before R2006a

 legend

1-8201

Legend Properties
Legend appearance and behavior

Description
Legend properties control the appearance and behavior of a Legend object. By changing
property values, you can modify certain aspects of the legend. Use dot notation to refer to
a particular object and property:

plot(rand(3))
lgd = legend('a','b','c');
c = lgd.TextColor;
lgd.TextColor = 'red';

Properties
Position and Layout

Location — Location with respect to axes
'north' | 'south' | 'east' | 'west' | 'northeast' | ...

Location with respect to the axes, specified as one of the location values listed in this
table.

Value Description
'north' Inside top of axes
'south' Inside bottom of axes
'east' Inside right of axes
'west' Inside left of axes
'northeast' Inside top-right of axes (default for 2-D

axes)
'northwest' Inside top-left of axes
'southeast' Inside bottom-right of axes

1 Alphabetical List

1-8202

Value Description
'southwest' Inside bottom-left of axes
'northoutside' Above the axes
'southoutside' Below the axes
'eastoutside' To the right of the axes
'westoutside' To the left of the axes
'northeastoutside' Outside top-right corner of the axes (default

for 3-D axes)
'northwestoutside' Outside top-left corner of the axes
'southeastoutside' Outside bottom-right corner of the axes
'southwestoutside' Outside bottom-left corner of the axes
'best' Inside axes where least conflict with data in

plot
'bestoutside' Outside top-right corner of the axes (when

the legend has a vertical orientation) or
below the axes (when the legend has a
horizontal orientation)

'none' Determined by Position property. Use the
Position property to specify a custom
location.

Example: legend('Location','northeastoutside')

Orientation — Orientation
'vertical' (default) | 'horizontal'

Orientation, specified as one of these values:

• 'vertical' — Stack the legend items vertically. If the legend has multiple columns,
layout the items from top to bottom along each column.

• 'horizontal' — List the legend items side-by-side. If the legend has multiple
columns, layout the items from left to right along each row.

Example: legend('Orientation','horizontal')

NumColumns — Number of columns
1 (default) | positive integer

 Legend Properties

1-8203

Number of columns, specified as a positive integer. If there are not enough legend items
to fill the specified number of columns, then the number of columns that appear might be
fewer.

Use the Orientation property to control whether the legend items appear in order
along each column or along each row.
Example: lgd.NumColumns = 3

NumColumnsMode — Selection mode for NumColumns
'auto' (default) | 'manual'

Selection mode for the NumColumns value, specified as one of these values:

• 'auto' — Automatically select the value.
• 'manual' — Use the manually specified value. To specify the value, set the

NumColumns property.

Position — Custom location and size
four-element vector

Custom location and size, specified as a four-element vector of the form [left bottom
width height]. The first two values, left and bottom, specify the distance from the
lower left corner of the figure to the lower left corner of the legend. The last two values,
width and height, specify the legend dimensions. The Units property determines the
position units.

If you specify the Position property, then MATLAB automatically changes the Location
property to 'none'.
Example: legend({'A','B'},'Position',[0.2 0.6 0.1 0.2])

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' |
'pixels'

Position units, specified as one of the values in this table.

1 Alphabetical List

1-8204

Units Description
'normalized' (default) Normalized with respect to the container,

which is usually the figure. The lower-left
corner of the figure maps to (0,0) and the
upper-right corner maps to (1,1). Resizing
the figure updates the values of the
Position vector.

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

All units are measured from the lower-left corner of the container window.

This property affects the Position property. If you change the units, then it is good
practice to return it to its default value after completing your computation to prevent
affecting other functions that assume Units is the default value.

If you specify the Position and Units properties as Name,Value pairs when creating
the object, then the order of specification matters. If you want to define the position with
particular units, then you must set the Units property before the Position property.

 Legend Properties

1-8205

Labels

AutoUpdate — Automatic update of legend items
'on' (default) | 'off'

Automatic update of legend items to reflect the current state of the axes, specified as one
of these values:

• 'on' — Automatically add legend items for new graphics objects added to the axes.
Remove legend items for graphics objects deleted from the axes.

• 'off' — Do not automatically add or delete legend items.

Example: legend({'A','B'},'AutoUpdate','off')

String — Text for legend labels
cell array of character vectors | string array

Text for legend labels, specified as a cell array of character vectors or a string array.

Title — Legend title
legend text object

Legend title, returned as a legend text object. To add a legend title, set the String
property of the legend text object. To change the title appearance, such as the font style
or color, set legend text properties. For a list, see Legend Text.

plot(rand(3));
lgd = legend('line 1','line 2','line 3');
lgd.Title.String = 'My Legend Title';
lgd.Title.FontSize = 12;

Alternatively, use the title function to add a title and control the appearance.

plot(rand(3));
lgd = legend('line 1','line 2','line 3');
title(lgd,'My Legend Title','FontSize',12)

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.

1 Alphabetical List

1-8206

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

 Legend Properties

1-8207

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

1 Alphabetical List

1-8208

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

 Legend Properties

1-8209

https://www.latex-project.org
https://www.latex-project.org

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale.

If you change the axes font size, then MATLAB automatically sets the font size of the
colorbar to 90% of the axes font size. If you manually set the font size of the colorbar,
then changing the axes font size does not affect the colorbar font.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

1 Alphabetical List

1-8210

Color and Styling

TextColor — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default color is black with a value of [0 0 0].

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 Legend Properties

1-8211

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0 0 1]
Example: 'blue'
Example: '#0000FF'

Color — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name. The default value of [1 1 1] corresponds to white.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

1 Alphabetical List

1-8212

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: legend({'A','B'},'Color','y')
Example: legend({'A','B'},'Color',[0.8 0.8 1])
Example: legend({'A','B'},'Color','#D9A2E9')

EdgeColor — Box outline color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Box outline color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name. The default value of [0.15 0.15 0.15] corresponds to dark gray.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 Legend Properties

1-8213

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-8214

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: legend({'A','B'},'EdgeColor',[0 1 0])

Box — Display of box outline
'on' (default) | 'off'

Display of box outline, specified as one of these values:

• 'on' — Display the box around the legend.
• 'off' — Do not display the box around the legend.

Example: legend({'A','B'},'Box','off')

LineWidth — Width of box outline
0.5 (default) | positive value

Width of box outline, specified as a positive value in point units. One point equals 1/72
inch.
Example: 1.5

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
uicontextmenu object (default)

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

 Legend Properties

1-8215

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ItemHitFcn — Callback that executes when you click legend items
@defaultItemHitCallback (default) | function handle | cell array | character vector

Callback that executes when you click legend items, specified as one of these values:

• Function handle. For example, @myCallback.
• Cell array containing a function handle and additional arguments. For example,

{@myCallback,arg3}.
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended).

If you specify this property using a function handle, then MATLAB passes the Legend
object and an event data structure as the first and second input arguments to the
function. This table describes the fields in the event data structure.

1 Alphabetical List

1-8216

Event Data Structure Fields

Field Description
Peer Chart object associated with the clicked

legend item.
Region Region of legend item clicked, returned as

either 'icon' or 'label'.
SelectionType Type of click, returned as one of these

values:

• 'normal' — Single-click left mouse
button

• 'extend' — Shift + single-click left
mouse button

• 'open' — Double-click any mouse
button

• 'alt' — Single-click right mouse
button, both mouse buttons (Windows
and Mac), or middle mouse button (Mac
and Linux). If the UIContextMenu
property contains a valid context menu
(which is the default), then this type of
click opens the context menu instead of
triggering the ItemHitFcn callback.

Source Legend object.
EventName Event name, 'ItemHit'.

Note If you set the ButtonDownFcn property, then the ItemHitFcn property is
disabled.

Example

You can create interactive legends so that when you click an item in the legend, the
associated chart updates in some way. For example, you can toggle the visibility of the
chart or change its line width. Set the ItemHitFcn property of the legend to a callback
function that controls how the charts change. This example shows how to toggle the

 Legend Properties

1-8217

visibility of a chart when you click the chart icon or label in a legend. It creates a callback
function that changes the Visible property of the chart to either 'on' or 'off'.

Copy the following code to a new function file and save it as hitcallback_ex1.m either
in the current folder or in a folder on the MATLAB search path. The two input arguments,
src and evnt, are the legend object and an event data structure. MATLAB automatically
passes these inputs to the callback function when you click an item in the legend. Use the
Peer field of the event data structure to access properties of the chart object associated
with the clicked legend item.

function hitcallback_ex1(src,evnt)

if strcmp(evnt.Peer.Visible,'on')
 evnt.Peer.Visible = 'off';
else
 evnt.Peer.Visible = 'on';
end

end

Then, plot four lines, create a legend, and assign the legend object to a variable. Set the
ItemHitFcn property of the legend object to the callback function. Click items in the
legend to show or hide the associated chart. The legend label changes to gray when you
hide a chart.

plot(rand(4));
l = legend('Line 1','Line 2','Line 3','Line 4');
l.ItemHitFcn = @hitcallback_ex1;

1 Alphabetical List

1-8218

ButtonDownFcn — Mouse-click callback
@bdowncb (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

 Legend Properties

1-8219

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

1 Alphabetical List

1-8220

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'off' (default) | 'on'

Callback interruption, specified as 'off' or 'on'. The Interruptible property
determines if a running callback can be interrupted.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. The Interruptible property has two possible
values:

• 'off' — The running callback cannot be interrupted. MATLAB finishes executing the
running callback without any interruptions. The BusyAction property of the object
owning the interrupting callback determines if it is discarded or put in the queue.

 Legend Properties

1-8221

• 'on' — The running callback can be interrupted. Interruption occurs at the next point
where MATLAB processes the queue. For example, when you have a command such as
drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Legend object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. The HitTest
property determines if the Legend object responds to the click or if an ancestor does.

1 Alphabetical List

1-8222

• 'none' — Cannot capture mouse clicks. Clicking the Legend object passes the click
to the object below it in the current view of the figure window. The HitTest property
of the Legend object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Legend object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Legend object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Legend object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Figure object | Panel object | Tab object

Parent, specified as a Figure object, Panel object, or a Tab object.

 Legend Properties

1-8223

The Legend object must have the same parent as the associated axes. If you change the
parent of the associated axes, then the Legend object automatically updates to use the
same parent.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'legend' (default)

This property is read-only.

Type of graphics object, returned as 'legend'. Use this property to find all objects of a
given type within a plotting hierarchy.

1 Alphabetical List

1-8224

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
legend

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2014b

 Legend Properties

1-8225

Text Properties
Legend text appearance and behavior

Description
Legend text properties control the appearance and behavior of the legend title. By
changing property values, you can modify certain aspects of the title. Use dot notation to
refer to a particular object and property:

l = legend('show');
l.Title.String = 'My Title';
l.Title.Color = 'red';
c = l.Title.Color

Properties
Text

String — Text to display as title
character array | string array | cell array | categorical array | numeric value

Text to display as title, specified as a character array, string array, cell array, categorical
array, or numeric value.
Example: 'my title'
Example: string('my title')
Example: {'first line','second line'}
Example: 123

To include numeric variables with text in a title, use the num2str function. For example:

x = 42;
str = ['The value is ',num2str(x)];

1 Alphabetical List

1-8226

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols, use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline titles:

• Use a string array, where each element contains a line of text, such as
string({'line one','line two'}).

• Use a cell array where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array where each row contains a line of text, such as ['abc'; 'ab
']. If you use this technique, each row must contain the same number of characters.

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line').

Numeric titles are converted to text using sprintf('%g',value). For example,
12345678 displays as 1.23457e+07.

Note

• The words default, factory, and remove are reserved words that will not appear in
a title when quoted as a normal character vector. To display any of these words
individually, precede them with a backslash, such as '\default' or '\remove'.

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

 Text Properties

1-8227

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

1 Alphabetical List

1-8228

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

 Text Properties

1-8229

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

1 Alphabetical List

1-8230

https://www.latex-project.org
https://www.latex-project.org

InterpreterMode — Selection mode for Interpreter
'auto' (default) | 'manual'

Selection mode for the Interpreter property, specified as one of these values:

• 'auto' — Use the same value as the Interpreter property for the associated
Legend object.

• 'manual' — Use a value of Interpreter that you specify. To specify the value, set
the Interpreter property. When you set the Interpreter property, the
InterpreterMode property changes to 'manual'.

Font Style and Appearance

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 Text Properties

1-8231

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

ColorMode — Selection mode for Color
'auto' (default) | 'manual'

Selection mode for the Color property, specified as one of these values:

• 'auto' — Use the same value as the TextColor property for the associated Legend
object.

• 'manual' — Use a value of Color that you specify. To specify the value, set the
Color property. When you set the Color property, the ColorMode property changes
to 'manual'.

1 Alphabetical List

1-8232

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

FontAngleMode — Selection mode for FontAngle
'auto' (default) | 'manual'

Selection mode for the FontAngle property, specified as one of these values:

• 'auto' — Use the same value as the FontAngle property for the associated Legend
object.

• 'manual' — Use a value of FontAngle that you specify. To specify the value, set the
FontAngle property. When you set the FontAngle property, the FontAngleMode
property changes to 'manual'.

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontNameMode — Selection mode for FontName
'auto' (default) | 'manual'

Selection mode for the FontName property, specified as one of these values:

• 'auto' — Use the same value as the FontName property for the associated Legend
object.

• 'manual' — Use a value of FontName that you specify. To specify the value, set the
FontName property. When you set the FontName property, the FontNameMode
property changes to 'manual'.

 Text Properties

1-8233

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale.

If you change the axes font size, then MATLAB automatically sets the font size of the
colorbar to 90% of the axes font size. If you manually set the font size of the colorbar,
then changing the axes font size does not affect the colorbar font.

FontSizeMode — Selection mode for FontSize
'auto' (default) | 'manual'

Selection mode for the FontSize property, specified as one of these values:

• 'auto' — Use the same value as the FontSize property for the associated Legend
object.

• 'manual' — Use a value of FontSize that you specify. To specify the value, set the
FontSize property. When you set the FontSize property, the FontSizeMode
property changes to 'manual'.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontWeightMode — Selection mode for FontWeight
'auto' (default) | 'manual'

Selection mode for the FontWeight property, specified as one of these values:

• 'auto' — Use the same value as the FontWeight property for the associated
Legend object.

• 'manual' — Use a value of FontWeight that you specify. To specify the value, set the
FontWeight property. When you set the FontWeight property, the FontWeightMode
property changes to 'manual'.

1 Alphabetical List

1-8234

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

See Also
legend | title

Introduced in R2016a

 Text Properties

1-8235

legendre
Associated Legendre functions

Syntax
P = legendre(n,X)
P = legendre(n,X,normalization)

Description
P = legendre(n,X) computes the associated Legendre functions on page 1-8242 of
degree n and order m = 0, 1, ..., n evaluated for each element in X.

P = legendre(n,X,normalization) computes normalized versions of the associated
Legendre functions. normalization can be 'unnorm' (default), 'sch', or 'norm'.

Examples

Associated Legendre Function Values of Vector

Use the legendre function to operate on a vector and then examine the format of the
output.

Calculate the second-degree Legendre function values of a vector.

deg = 2;
x = 0:0.1:0.2;
P = legendre(deg,x)

P = 3×3

 -0.5000 -0.4850 -0.4400
 0 -0.2985 -0.5879
 3.0000 2.9700 2.8800

1 Alphabetical List

1-8236

The format of the output is such that:

• Each row contains the function value for different values of m (the order of the
associated Legendre function)

• Each column contains the function value for a different value of x

x = 0 x = 0.1 x = 0.2

m = 0 P2
0(0) P2

0(0 . 1) P2
0(0 . 2)

m = 1 P2
1(0) P2

1(0 . 1) P2
1(0 . 2)

m = 2 P2
2(0) P2

2(0 . 1) P2
2(0 . 2)

The equation for the second-degree associated Legendre function P2
m is

P2
m(x) = − 1 m 1− x2 m/2 dm

dxm
1
2 3x2− 1 .

Therefore, the value of P2
0 0 is

P2
0(0) = 1

2 3x2− 1
x = 0

= − 1
2 .

This result agrees with P(1,1) = -0.5000.

Compare Legendre Normalizations

Calculate the associated Legendre function values with several normalizations.

Calculate the first-degree, unnormalized Legendre function values P1
m. The first row of

values corresponds to m = 0, and the second row to m = 1.

x = 0:0.2:1;
n = 1;
P_unnorm = legendre(n,x)

P_unnorm = 2×6

 legendre

1-8237

 0 0.2000 0.4000 0.6000 0.8000 1.0000
 -1.0000 -0.9798 -0.9165 -0.8000 -0.6000 0

Next, compute the Schmidt seminormalized function values. Compared to the
unnormalized values, the Schmidt form differs when m > 0 by the scaling

− 1 m 2(n−m)!
(n + m)! .

For the first row, the two normalizations are the same, since m = 0. For the second row,
the scaling constant multiplying each value is -1.

P_sch = legendre(n,x,'sch')

P_sch = 2×6

 0 0.2000 0.4000 0.6000 0.8000 1.0000
 1.0000 0.9798 0.9165 0.8000 0.6000 0

C1 = (-1) * sqrt(2*factorial(0)/factorial(2))

C1 = -1

Lastly, compute the fully normalized function values. Compared to the unnormalized
values, the fully normalized form differs by the scaling factor

− 1 m n + 1
2 (n−m)!

(n + m)! .

This scaling factor applies for all values of m, so the first and second rows have different
scaling factors.

P_norm = legendre(n,x,'norm')

P_norm = 2×6

 0 0.2449 0.4899 0.7348 0.9798 1.2247
 0.8660 0.8485 0.7937 0.6928 0.5196 0

Cm0 = sqrt((3/2))

Cm0 = 1.2247

1 Alphabetical List

1-8238

Cm1 = (-1) * sqrt((3/2)/2)

Cm1 = -0.8660

Calculate Spherical Harmonics

Spherical harmonics arise in the solution to Laplace's equation and are used to represent
functions defined on the surface of a sphere. Use legendre to compute and visualize the
spherical harmonic for Y3

2.

The equation for spherical harmonics includes a term for the Legendre function, as well
as a complex exponential:

Yl
m(θ, ϕ) = 2l + 1 l−m !

4π l + m ! Pl
m(cosθ)eimϕ, − l ≤ m ≤ l .

First, create a grid of values to represent all combinations of − π
2 ≤ θ ≤ π

2 (altitude angle)
and 0 ≤ ϕ ≤ 2π (azimuthal angle).

dx = pi/60;
alt = -pi/2:dx:pi/2;
az = 0:dx:2*pi;
[phi,theta] = meshgrid(az,alt);

Calculate Pl
m cos θ on the grid for l = 3.

l = 3;
Plm = legendre(l,cos(theta));

Since legendre computes the answer for all values of m, Plm contains some extra
function values. Extract the values for m = 2 and discard the rest. Use the reshape
function to orient the results as a matrix with the same size as phi and theta.

m = 2;
P32 = reshape(Plm(m+1,:,:), size(phi));

Calculate the spherical harmonic values for Y3
2.

a = (2*l+1)*factorial(l-m);
b = 4*pi*factorial(l+m);

 legendre

1-8239

C = sqrt(a/b);
Y32 = C .* P32 .* exp(1i*m*phi);

Convert to Cartesian coordinates and plot the spherical harmonic for Y3
2 using only the

real values.

[Xm,Ym,Zm] = sph2cart(phi, theta, real(Y32));
surf(Xm,Ym,Zm)
title('Y_3^2 spherical harmonic','interpreter','latex')

1 Alphabetical List

1-8240

Input Arguments
n — Degree of Legendre function
positive integer

Degree of Legendre function, specified as a positive integer. For a specified degree,
legendre computes Pn

m x for all orders m from m = 0 to m = n.

Example: legendre(2,X)

X — Input values
scalar | vector | matrix | multidimensional array

Input values, specified as a scalar, vector, matrix, or multidimensional array of real values
in the range [-1,1]. For example, with spherical harmonics it is common to use X =
cos(theta) as the input values to compute Pn

m cosθ .

Example: legendre(2,cos(theta))
Data Types: single | double

normalization — Normalization type
'unnorm' (default) | 'sch' | 'norm'

Normalization type, specified as one of these values.

Value Result
'unnorm' “Associated Legendre Functions” on page 1-

8242
'sch' “Schmidt Seminormalized Associated

Legendre Functions” on page 1-8243
'norm' “Fully Normalized Associated Legendre

Functions” on page 1-8243

Example: legendre(n,X,'sch')

 legendre

1-8241

Output Arguments
P — Associated Legendre function values
scalar | vector | matrix | multidimensional array

Associated Legendre function values, returned as a scalar, vector, matrix, or
multidimensional array. The normalization of P depends on the value of normalization.

The size of P depends on the size of X:

• If X is a vector, then P is a matrix of size (n+1)-by-length(X). The P(m+1,i) entry is
the associated Legendre function of degree n and order m evaluated at X(i).

• In general, P has one more dimension than X and each element P(m+1,i,j,k,...)
contains the associated Legendre function of degree n and order m evaluated at
X(i,j,k,...).

Limitations
The values of the unnormalized associated Legendre function overflow the range of
double-precision numbers for n > 150 and the range of single-precision numbers for n >
28. This overflow results in Inf and NaN values. For orders larger than these thresholds,
consider using the 'sch' or 'norm' normalizations instead.

Definitions

Associated Legendre Functions

The associated Legendre functions y = Pn
m x are solutions to the general Legendre

differential equation

1− x2 d2y
dx2 − 2xdy

dx + n n + 1 − m2

1− x2 y = 0 .

n is the integer degree and m is the integer order of the associated Legendre function,
such that 0 ≤ m ≤ n.

1 Alphabetical List

1-8242

The associated Legendre functions P x
n

m () are the most general solutions to this equation
given by

Pn
m x = −1 m 1− x2 m/2 dm

dxmPn x .

They are defined in terms of derivatives of the Legendre polynomials P x
n () , which are a

subset of the solutions given by

Pn x = 1
2nn!

dn

dxn x2− 1 n .

The first few Legendre polynomials are

Value of n
P x

n ()

0
P x

0
1() =

1
P x x

1 () =

2
P x x2

21

2
3 1() = -()

Schmidt Seminormalized Associated Legendre Functions
The Schmidt seminormalized associated Legendre functions are related to the

unnormalized associated Legendre functions P x
n

m () by

Pn x for m = 0,

Sn
m x = −1 m 2 n−m !

n + m ! Pn
m x for m > 0.

Fully Normalized Associated Legendre Functions
The fully normalized associated Legendre functions are normalized such that

 legendre

1-8243

∫−1

1
Nn

m(x) 2dx = 1 .

The normalized functions are related to the unnormalized associated Legendre functions

P x
n

m () by

Nn
m x = −1 m n + 1

2 n−m !
n + m ! Pn

m x .

Algorithms
legendre uses a three-term backward recursion relationship in m. This recursion is on a
version of the Schmidt seminormalized associated Legendre functions Qn

m x , which are
complex spherical harmonics. These functions are related to the standard Abramowitz
and Stegun [1] functions Pn

m x by

Pn
m x = n + m !

n−m ! Qn
m x .

They are related to the Schmidt form on page 1-8243 by

m = 0: Sn
m x = Qn

0 x

m > 0: Sn
m x = −1 m 2 Qn

m x .

References
[1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover

Publications, 1965, Ch.8.

[2] Jacobs, J. A., Geomagnetism, Academic Press, 1987, Ch.4.

1 Alphabetical List

1-8244

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
besselj | bessely | beta | factorial | gamma

Introduced before R2006a

 legendre

1-8245

length
Length of largest array dimension

Syntax
L = length(X)

Description
L = length(X) returns the length of the largest array dimension in X. For vectors, the
length is simply the number of elements. For arrays with more dimensions, the length is
max(size(X)). The length of an empty array is zero.

Examples

Number of Vector Elements

Find the length of a uniformly spaced vector in the interval [5,10].

v = 5:10

v = 1×6

 5 6 7 8 9 10

L = length(v)

L = 6

Length of Rectangular Matrix

Find the length of a 3-by-7 matrix of zeros.

1 Alphabetical List

1-8246

X = zeros(3,7);
L = length(X)

L = 7

String Array

Create a string array and compute its length, which is the number of elements in each
row.

X = ["a" "b" "c"; "d" "e" "f"]

X = 2x3 string array
 "a" "b" "c"
 "d" "e" "f"

L = length(X)

L = 3

Length of Structure Fields

Create a structure with fields for Day and Month. Use the structfun function to apply
length to each field.

S = struct('Day',[1 13 14 26],'Month',{{'Jan','Feb', 'Mar'}})

S = struct with fields:
 Day: [1 13 14 26]
 Month: {'Jan' 'Feb' 'Mar'}

L = structfun(@(field) length(field),S)

L = 2×1

 4
 3

 length

1-8247

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Complex Number Support: Yes

Tips
• To find the number of characters in a string or character vector, use the strlength

function.
• length does not operate on tables. To examine the dimensions of a table, use the

height, width, or size functions.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-8248

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ndims | numel | size | strlength

Introduced before R2006a

 length

1-8249

length
Package: containers

Number of key-value pairs in Map object

Syntax
L = length(M)

Description
L = length(M) returns the number of key-value pairs in the input Map object.
length(M) is equivalent to size(M,1) and to the property M.Count.

Examples

Length of Map

Create a Map object.

months = {'Jan','Feb','Mar','Apr'};
rainfall = [327.2 368.2 197.6 178.4];
M = containers.Map(months,rainfall)

M =
 Map with properties:

 Count: 4
 KeyType: char
 ValueType: double

Return the number of key-value pairs that it contains.

L = length(M)

1 Alphabetical List

1-8250

L = 4

Input Arguments
M — Input Map object
Map object

Input Map object.

See Also
containers.Map | isKey | keys | size | values

Topics
“Overview of Map Data Structure”
“Create Map Object”
“Examine Contents of Map”

Introduced in R2008b

 length

1-8251

length (serial)
Length of serial port object array

Syntax
length(obj)

Description
length(obj) returns the length of the serial port object, obj. It is equivalent to the
command max(size(obj)).

See Also
size

Introduced before R2006a

1 Alphabetical List

1-8252

length
Length of tscollection time vector

Syntax
tsclength = length(tsc)

Description
tsclength = length(tsc) returns the number of elements in the time vector of a
tscollection object.

Examples

Length of tscollection

Create a tscollection object and display the length of its time vector.

ts = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5);
tsc = tscollection(ts);
tsclength = length(tsc)

tsclength = 5

Input Arguments
tsc — Input tscollection
scalar

Input tscollection, specified as a scalar.

 length

1-8253

See Also
size | timeseries | tscollection

Introduced before R2006a

1 Alphabetical List

1-8254

libfunctions
Return information on functions in shared C library

Syntax
libfunctions libname

m = libfunctions(libname)
m = libfunctions(libname,'-full')

Description
libfunctions libname displays names of functions defined in C library libname. If
you called loadlibrary using the alias option, then you must use the alias name for
the libname argument.

m = libfunctions(libname) returns names of functions in cell array m.

m = libfunctions(libname,'-full') returns function signatures.

Examples

Display Functions in shrlibsample Library

Add path to examples folder.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

Display functions in library.

if not(libisloaded('shrlibsample'))
 loadlibrary('shrlibsample')
end
libfunctions('shrlibsample')

 libfunctions

1-8255

Functions in library shrlibsample:

addDoubleRef exportedDoubleValue printExportedDoubleValue
addMixedTypes getListOfStrings readEnum
addStructByRef multDoubleArray stringToUpper
addStructFields multDoubleRef
allocateStruct multiplyShort
deallocateStruct print2darray

Clean up.

unloadlibrary shrlibsample

Input Arguments
libname — Name of shared library
character vector

Name of shared library, specified as a character vector. Do not include the path or file
extension in libname.

If you call loadlibrary using the alias option, then you must use the alias name for
the libname argument.
Data Types: char

Output Arguments
m — Function names
cell array

Functions names, returned as a cell array.

Limitations
• Use with libraries that are loaded using the loadlibrary function.

1 Alphabetical List

1-8256

See Also
calllib | libfunctionsview | loadlibrary

Introduced before R2006a

 libfunctions

1-8257

libfunctionsview
Display shared C library function signatures in window

Syntax
libfunctionsview libname

Description
libfunctionsview libname displays information about functions in C library
libname in a new window.

Input Arguments
libname — Name of shared library
character vector

Name of shared library, specified as a character vector. Do not include the path or file
extension in libname.

If you call loadlibrary using the alias option, then you must use the alias name for
the libname argument.
Data Types: char

Limitations
• Use with libraries that are loaded using the loadlibrary function.

Examples

1 Alphabetical List

1-8258

Display Function Signatures for Library shrlibsample

if not(libisloaded('shrlibsample'))
 addpath(fullfile(matlabroot,'extern','examples','shrlib'))
 loadlibrary('shrlibsample')
end
libfunctionsview shrlibsample

MATLAB creates a new window displaying function signatures.

When finished, unload the library.

unloadlibrary shrlibsample

See Also
calllib | libfunctions

Introduced before R2006a

 libfunctionsview

1-8259

libisloaded
Determine if shared C library is loaded

Syntax
tf = libisloaded(libname)

Description
tf = libisloaded(libname) returns logical 1 (true) if the shared C library libname
is loaded. Otherwise, it returns logical 0 (false).

Examples

Load and Unload shrlibsample Library

Add the shrlib examples folder to the path.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

Load the library, if it is not already loaded.

if ~libisloaded('shrlibsample')
 loadlibrary('shrlibsample')
end

When finished, unload the library to free memory.

unloadlibrary shrlibsample

1 Alphabetical List

1-8260

Input Arguments
libname — Name of shared library
character vector

Name of shared library, specified as a character vector. Do not include the path or file
extension in libname.

If you call loadlibrary using the alias option, then you must use the alias name for
the libname argument.
Data Types: char

See Also
loadlibrary | unloadlibrary

Introduced before R2006a

 libisloaded

1-8261

libpointer
Pointer object for use with shared C library

Syntax
p = libpointer
p = libpointer(DataType)
p = libpointer(DataType,Value)

Description
p = libpointer creates NULL pointer p of type voidPtr.

p = libpointer(DataType) creates NULL pointer of specified DataType.

p = libpointer(DataType,Value) creates pointer initialized to a copy of Value.

Examples

Create NULL Pointer for string Argument

p = libpointer('string');

Input Arguments
DataType — Type of pointer
character vector

Type of pointer, specified as a character vector, of any MATLAB numeric type, structure
defined in the library, or enumeration defined in the library. For a list of valid MATLAB
numeric types, refer to these tables in “C and MATLAB Equivalent Types”.

1 Alphabetical List

1-8262

• MATLAB Primitive Types
• MATLAB Extended Types

Example: 'int16Ptr'
Data Types: char

Value — Value for pointer object
any valid value

Value, specified as any valid value for given type.

Limitations
• Use with libraries that are loaded using the loadlibrary function.

Tips
• This is an advanced feature for experienced C programmers. MATLAB automatically

converts data passed to and from external library functions to the data type expected
by the external function. Use a lib.pointer object instead of automatic conversion
in the following situations.

• You want to modify the data in the input arguments.
• You are passing large amounts of data, and you want to control when MATLAB

makes copies of the data.
• The library stores and uses the pointer for a period of time so you want the

MATLAB function to control the lifetime of the lib.pointer object.

See Also
calllib | lib.pointer | libstruct

Topics
“Pass Pointers Examples”
“Pointer Arguments”

 libpointer

1-8263

Introduced before R2006a

1 Alphabetical List

1-8264

lib.pointer class
Package: lib

Pointer object compatible with C pointer

Description
MATLAB automatically converts arguments passed by reference to a function in an
external library. A passed-by-reference argument in the function signature has type
names ending with Ptr or PtrPtr. Use a pointer object instead of automatic conversion
in the following situations.

• The function modifies data in an input argument.
• You are passing large amounts of data, and you want to control when MATLAB makes

copies of the data.
• The library stores and uses the pointer, so you want the MATLAB function to control

the lifetime of the lib.pointer object.

Creation
To create a lib.pointer object, use the MATLAB libpointer function.

A library function can return a lib.pointer object. Use the setdatatype method to
convert the argument manually to use in MATLAB.

Properties
DataType — Type of pointer
character vector

Type of pointer, specified as a character vector, of any MATLAB numeric type, structure
defined in the library, or enumeration defined in the library. For a list of valid MATLAB
numeric types, refer to these tables in “C and MATLAB Equivalent Types”.

 lib.pointer class

1-8265

• MATLAB Primitive Types
• MATLAB Extended Types

Example: 'int16Ptr'
Attributes:

SetAccess
private

GetAccess
protected

Value — Value
any valid value

Value, specified as any valid value for given type.
Attributes:

SetAccess
private

GetAccess
protected

Methods

Public Methods
<infotypegroup type="method"> lib.pointer.disp lib.pointer.isNull
lib.pointer.plus lib.pointer.reshape lib.pointer.setdatatype </
infotypegroup>

Examples

Create Pointer

Create a pointer pv of type int16 initialized to 485.

1 Alphabetical List

1-8266

pv = libpointer('int16Ptr',485);

Display the properties of pv.

get(pv)

 Value: 485
 DataType: 'int16Ptr'

See Also
libpointer

Topics
“Pointer Arguments”

Introduced before R2006a

 lib.pointer class

1-8267

disp
Class: lib.pointer
Package: lib

Display lib.pointer type

Syntax
disp(h)

Description
disp(h) displays type for lib.pointer object, h.

Input Arguments
h — lib.pointer object.
handle

lib.pointer object, specified as a handle.

Examples

Display lib.pointer Type

Create a double pointer set to 15.

xp = libpointer('doublePtr',15);

Display pointer data type.

disp(xp)

1 Alphabetical List

1-8268

libpointer

See Also

 disp

1-8269

isNull
Class: lib.pointer
Package: lib

Points to NULL pointer

Syntax
tf = isNull(h)

Description
tf = isNull(h) returns true if h is a lib.pointer object.

Input Arguments
h — lib.pointer object.
handle

lib.pointer object, specified as a handle.

Examples

Create Null lib.pointer Object

nullp = libpointer('doublePtr',[]);
isNull(nullp)

ans = logical
 1

1 Alphabetical List

1-8270

See Also

 isNull

1-8271

plus
Class: lib.pointer
Package: lib

+ (plus) operator for pointer arithmetic

Syntax
hout = plus(h,offset)
hout = h + offset

Description
hout = plus(h,offset) returns pointer hout. Pointer hout is valid only as long as
the original pointer, h, exists.

hout = h + offset is an alternative syntax.

Input Arguments
h — lib.pointer object.
handle

lib.pointer object, specified as a handle.

offset — Scalar increment
uint64

Scalar increment, specified as uint64, from h.

1 Alphabetical List

1-8272

See Also

Topics
“Iterate Through an Array”

 plus

1-8273

reshape
Class: lib.pointer
Package: lib

Reshape lib.pointer array

Syntax
reshape(h,xdim,ydim)

Description
reshape(h,xdim,ydim) creates an xdim-by-ydim matrix from lib.pointer object h.

Input Arguments
h — lib.pointer object.
handle

lib.pointer object, specified as a handle.

xdim — Size of x dimension
double

Size of x dimension, specified as double.

ydim — Size of y dimension
double

Size of y dimension, specified as double.

See Also

1 Alphabetical List

1-8274

setdatatype
Class: lib.pointer
Package: lib

Initialize type and size of lib.pointer object

Syntax
setdatatype(h,type,sizeD1,...,sizeDn)

Description
setdatatype(h,type,sizeD1,...,sizeDn) sets data type to lib.pointer h.

Input Arguments
h — lib.pointer object.
handle

lib.pointer object, specified as a handle.

type — Data type
character vector

Data type, specified as a character vector.

sizeD1,...,sizeDn — Size of each dimension
double

Size of each dimension, specified as double.

Examples

 setdatatype

1-8275

Set Size and Type of lib.pointer Output Variable

Load the shrlibsample library.

if ~libisloaded('shrlibsample')
 addpath(fullfile(matlabroot,'extern','examples','shrlib'))
 loadlibrary('shrlibsample')
end

The multDoubleRef function takes a scalar value specified as doubleptr. Create
variable xp as a lib.pointer object, and call the function.

xp = libpointer('doublePtr',99);
[xobj,xval] = calllib('shrlibsample','multDoubleRef',xp);

To use the variable xobj, set its size and data type.

setdatatype(xobj,'doublePtr',1,1)
xobj.Value

ans = 495

See Also

Topics
“Pass Arguments to Shared C Library Functions”

1 Alphabetical List

1-8276

libstruct
Convert MATLAB structure to C-style structure for use with shared C library

Syntax
S = libstruct(structtype)
S = libstruct(structtype,mlstruct)

Description
S = libstruct(structtype) creates NULL pointer to MATLAB libstruct object S.

S = libstruct(structtype,mlstruct) creates pointer initialized to mlstruct.

Examples

Call Function with c_struct Input Argument

Call the addStructFields function by creating a variable of type c_struct.

Load the shrlibsample library in the matlabroot\extern\examples\shrlib folder,
which contains the c_struct type.

if ~libisloaded('shrlibsample')
 addpath(fullfile(matlabroot,'extern','examples','shrlib'))
 loadlibrary('shrlibsample')
end

Display function signatures for shrlibsample and search the list for the
addStructFields entry.

libfunctionsview shrlibsample

double addStructFields(c_struct)

 libstruct

1-8277

The input argument is a pointer to a c_struct data type.

Create a MATLAB structure, sm.

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

Construct a libstruct object sc from the c_struct type.

sc = libstruct('c_struct',sm)

The fields of sc contain the values of the MATLAB structure, sm.

Call the addStructFields function.

calllib('shrlibsample','addStructFields',sc)

ans =
 1177

To clean up, first clear the libstruct object, and then unload the library.

clear sc
unloadlibrary shrlibsample

Input Arguments
structtype — C structure
structure

C structure defined in shared library.

mlstruct — MATLAB structure
structure

MATLAB structure used to initialize the fields in S.
Data Types: struct

Output Arguments
S — Pointer
MATLAB libstruct object

1 Alphabetical List

1-8278

Pointer, returned as MATLAB libstruct object.

Limitations
• Use with libraries that are loaded using the loadlibrary function.
• You can only use the libstruct function on scalar structures.
• When converting a MATLAB structure to a libstruct object, the structure must

adhere to the requirements listed in “Structure Argument Requirements”.

Tips
• If a function in the shared library has a structure argument, use libstruct to create

the argument. The libstruct function creates a C-style structure that you pass to
functions in the library. You handle this structure in MATLAB as you would a true
MATLAB structure.

See Also
libfunctionsview | loadlibrary

Topics
“Shared Library shrlibsample”
“Structure Arguments”

Introduced before R2006a

 libstruct

1-8279

license
Get license number or perform licensing task

Syntax
license
license('inuse')

S = license('inuse')
S = license('inuse',feature)

status = license('test',feature)
license('test',feature,toggle)

[status,errmsg] = license('checkout',feature)

Description
license returns the license number for this MATLAB product. The return value also can
be 'demo' for a demonstration version of MATLAB, 'student', for a student version of
MATLAB, or 'unknown', if the license number cannot be determined.

license('inuse') displays a list of licenses checked out in the current MATLAB
session. The product list is alphabetical by license feature name. These names are the
same as the valid values for the feature input.

S = license('inuse') returns an array of structures indicating checked-out licenses
and the user name of each person who has a license checked out.

S = license('inuse',feature) checks if the product specified by feature is
checked out in the current MATLAB session. If the product is checked out, then license
returns the product name and the user name of the person who has it checked out.
Otherwise, the fields of S are empty.

status = license('test',feature) tests if a license exists for the product specified
by feature.

1 Alphabetical List

1-8280

license('test',feature,toggle) enables or disables testing of the product
specified by feature, depending on the value of toggle.

[status,errmsg] = license('checkout',feature) checks out a license for the
specified product. If you specify the optional second output argument, errmsg, then
license returns the text of any error message encountered if the checkout is
unsuccessful.

Examples

Display Licenses in Use

Display a list of licenses currently being used. license displays a list of products in
alphabetical order by the license feature name for your configuration.

license('inuse')

image_toolbox
map_toolbox
matlab

Get Licenses in Use and User Names

Get a list of licenses in use with information about each user. license returns a
structure array.

S = license('inuse');

View the first element of S.

S(1)

ans =

 feature: 'image_toolbox'
 user: 'juser'

 license

1-8281

Determine If License Is in Use

Determine if the license for MATLAB is in use. If the license is in use, then S is a structure
array with nonempty fields.

S = license('inuse','MATLAB')

S =

 feature: 'matlab'
 user: 'jsmith'

Determine If License Exists

Determine if a license exists for Mapping Toolbox. If a license exists, then license
returns 1.

status = license('test','MAP_Toolbox')

status =

 1

Check Out License

Check out a license for Control System Toolbox™. The status output is 1 and the
errmsg output is empty if the checkout is successful.

[status,errmsg] = license('checkout','Control_Toolbox')

status =

 1

errmsg =

1 Alphabetical List

1-8282

 ''

Input Arguments
feature — License feature name
character vector

License feature name, specified as a character vector. Values of feature are not case-
sensitive. The INCREMENT lines in a license file indicate the valid features. To locate your
license file, see Where are the license files for MATLAB located?

toggle — Ability to test product license
'enable' | 'disable'

Ability to test the existence of a product license, specified as either 'enable' or
'disable'.

• If toggle is 'enable', then the syntax, license('test',feature) returns 1
when the product license exists and 0 when the product license does not exist.

• If toggle is 'disable', then the syntax, license('test',feature) always
returns 0 (product license does not exist) for the specified product.

Note Disabling a test for a particular product can affect other tests for the existence of
the license, not just tests performed by the license command.

Output Arguments
S — Checked out products
array of structures

Checked out products, returned as an array of structures, where each structure
represents a checked-out license. The structures contain two fields:

• feature — license feature name
• user — user name of the person who has the license checked out

If the fields are empty, then the product is not currently checked out.

 license

1-8283

https://www.mathworks.com/matlabcentral/answers/99147-where-are-the-license-files-for-matlab-located

status — Test or checkout status
1 | 0

Test or checkout status, returned as 1 or 0.

• When testing for the existence of a license, 1 indicates that the license exists, and 0
indicates that the license does not exist.

The existence of a license does not necessarily mean that the license can be checked
out or that the product is installed. status is 1 even if the license has expired or if a
system administrator has excluded you from using the product.

• When checking out a license, 1 indicates that the checkout is successful, and 0
indicates that the license function could not check out a license.

errmsg — Error message
character vector

Error message for unsuccessful license checkout, returned as a character vector. If the
checkout is successful, then errmsg is empty.

See Also
isstudent

Topics
“Manage Your Licenses”

Introduced before R2006a

1 Alphabetical List

1-8284

light
Create light

Syntax
light('PropertyName',propertyvalue,...)
light(ax,...)
handle = light(...)

Properties
For a list of properties, see Light.

Description
light creates a light in the current axes. Lights affect only patch and surface objects.

light('PropertyName',propertyvalue,...) creates a Light object using the
specified values for the named properties. For a description of the properties, see Light.
The MATLAB software parents the light to the current axes unless you specify another
axes with the Parent property.

light(ax,...) creates the light in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

handle = light(...) returns the Light object created.

Examples
Light the peaks surface plot with a local light source oriented along the direction defined
by the vector [-1 0 0], that is, looking from 0 along the positive x-axis.

 light

1-8285

surf(peaks,'FaceLighting','gouraud','FaceColor','interp',...
 'AmbientStrength',0.5)
light('Position',[-1 0 0],'Style','local')

Tutorials
For more information about lighting, see “Lighting Overview”.

Tips
You cannot see a Light object per se, but you can see the effects of the light source on
patch and surface objects. You can also specify an axes-wide ambient light color that
illuminates these objects. However, ambient light is visible only when at least one Light
object is present and visible in the axes.

You can specify properties as property name/property value pairs, structure arrays, and
cell arrays (see set and get for examples of how to specify these data types).

See also the Patch and Primitive Surface AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, SpecularColorReflectance, and
VertexNormals properties. Also see the lighting and material commands.

See Also
lighting | material | patch | surface

Introduced before R2006a

1 Alphabetical List

1-8286

Light Properties
Light appearance and behavior

Description
Light properties control the appearance and behavior of Light objects. By changing
property values, you can modify certain aspects of the light.

Starting in R2014b, you can use dot notation to query and set properties.

h = light;
c = h.Color;
h.Style = 'local';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Color of light
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of light, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The default RGB triplet of [1 1 1] corresponds to white.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Light Properties

1-8287

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'green'

Style — Type of light source
'infinite' (default) | 'local'

Type of light source, specified as one of these values:

• 'infinite' — Place the light at infinity. Use the Position property to specify the
direction from which the light shines in parallel rays.

1 Alphabetical List

1-8288

• 'local' — Place the light at the location specified by the Position property. The
light is a point source that radiates from the location in all directions.

Position — Location of light source
[1 0 1] (default) | three-element vector of the form [x y z]

Location of light source, specified as a three-element vector of the form [x y z]. Define
the vector elements in data units from the axes origin to the (x, y, z) coordinate. The
actual location of the light depends on the value of the Style property.
Example: [-40 -4 140]

Position

Position — Location of light source
[1 0 1] (default) | three-element vector of the form [x y z]

Location of light source, specified as a three-element vector of the form [x y z]. Define
the vector elements in data units from the axes origin to the (x, y, z) coordinate. The
actual location of the light depends on the value of the Style property.
Example: [-40 -4 140]

Visible — Visibility of light from light source
'on' (default) | 'off'

Visibility of light from light source, specified as 'on' or 'off'.

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

 Light Properties

1-8289

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

1 Alphabetical List

1-8290

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

 Light Properties

1-8291

Identifiers

Type — Type of graphics object
'light'

This property is read-only.

Type of graphics object, returned as 'light'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

Unused Properties

ButtonDownFcn — (unused) Mouse-click callback
'' (default) | function handle | cell array | character vector

Light objects do not use this property.

UIContextMenu — (unused) Context menu
uicontextmenu object

Light objects do not use this property.

Selected — (unused) Selection state
'off' (default) | 'on'

1 Alphabetical List

1-8292

Light objects do not use this property.

SelectionHighlight — (unused) Display of selection handles when selected
'on' (default) | 'off'

Light objects do not use this property.

PickableParts — (unused) Ability to capture mouse clicks
'visible' (default) | 'none'

Light objects do not use this property.

HitTest — (unused) Response to captured mouse clicks
'on' (default) | 'off'

Light objects do not use this property.

Interruptible — (unused) Callback interruption
'on' (default) | 'off'

Light objects do not use this property.

BusyAction — (unused) Callback queuing
'queue' (default) | 'cancel'

Light objects do not use this property.

See Also
light

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Light Properties

1-8293

lightangle
Create or position light object in spherical coordinates

Syntax
lightangle(az,el)
lightangle(ax,az,el)
lgt = lightangle(...)
lightangle(lgt,az,el)
[az,el] = lightangle(lgt)

Description
lightangle(az,el) creates a light at the position specified by azimuth and elevation.
az is the azimuthal (horizontal) rotation and el is the vertical elevation (both in degrees).
The interpretation of azimuth and elevation is the same as that of the view command.

lightangle(ax,az,el) creates a light in the axes specified by ax instead of the
current axes.

lgt = lightangle(...) creates a light and returns the light object as lgt. You can
specify an output argument with any of the previous input argument combinations.

lightangle(lgt,az,el) sets the position of the light specified by lgt.

[az,el] = lightangle(lgt) returns the azimuth and elevation of the light specified
by lgt.

Examples

Move Light Position

Create a surface. Add a light and move the position of the light.

1 Alphabetical List

1-8294

surf(peaks)
axis vis3d
h = light;
for az = -50:10:50
 lightangle(h,az,30)
 pause(.1)
end

 lightangle

1-8295

Tips
By default, when a light is created, its style is infinite. If the light handle passed in to
lightangle refers to a local light, the distance between the light and the camera target
is preserved as the position is changed.

See Also
camlight | light | view

1 Alphabetical List

1-8296

Topics
“Lighting Overview”

Introduced before R2006a

 lightangle

1-8297

lighting
Specify lighting algorithm

Syntax
lighting flat
lighting gouraud
lighting none
lighting(ax,...)

Description
lighting selects the algorithm used to calculate the effects of light objects on all
surface and patch objects in the current axes. In order for the lighting command to
have any effects, however, you must create a lighting object by using the light function.

lighting flat produces uniform lighting across each of the faces of the object. Select
this method to view faceted objects.

lighting gouraud calculates the vertex normals and interpolates linearly across the
faces. Select this method to view curved surfaces.

lighting none turns off lighting.

lighting(ax,...) uses the axes specified by ax instead of the current axes.

Tips
The surf, mesh, pcolor, fill, fill3, surface, and patch functions create graphics
objects that are affected by light sources. The lighting command sets the
FaceLighting and EdgeLighting properties of surfaces and patches appropriately for
the graphics object.

1 Alphabetical List

1-8298

See Also
fill | fill3 | light | material | mesh | patch | pcolor | shading | surface

Topics
“Lighting Overview”

Introduced before R2006a

 lighting

1-8299

lin2mu
Convert linear audio signal to mu-law

Syntax
mu = lin2mu(y)

Description
mu = lin2mu(y) converts linear audio signal amplitudes in the range -1 ≤ Y ≤ 1 to
mu-law encoded “flints” in the range 0 ≤ u ≤ 255.

See Also
mu2lin

Introduced before R2006a

1 Alphabetical List

1-8300

line
Create primitive line

Syntax
line(x,y)
line(x,y,z)
line

line('XData',x,'YData',y)
line('XData',x,'YData',y,'ZData',z)

line(___ ,Name,Value)
line(ax, ___)

pl = line(___)

Description
line(x,y) plots a line in the current axes using the data in vectors x and y. If either x
or y, or both are matrices, then line draws multiple lines. Unlike the plot function,
line adds the line to the current axes without deleting other graphics objects or
resetting axes properties.

line(x,y,z) plots a line in three-dimensional coordinates.

line draws a line from the point (0,0) to (1,1) with the default property settings.

line('XData',x,'YData',y) is the low-level version of line(x,y). The behavior is
the same as line(x,y), except that the line has the default line color. Also, you cannot
set x or y to matrix data.

line('XData',x,'YData',y,'ZData',z) is the low-level version of line(x,y,z).
The behavior is the same as line(x,y,z), except that the line has the default line color.
Also, you cannot set x, y, or z to matrix data.

 line

1-8301

line(___ ,Name,Value) modifies the appearance of the line using one or more name-
value argument pairs. For example, 'LineWidth',3 sets the line width to 3 points.
Specify name-value pairs after all other input arguments.

line(ax, ___) creates the line in the axes specified by ax instead of in the current axes
(gca). Specify ax as the first input argument.

pl = line(___) returns all primitive Line objects created. Use pl to modify
properties of a specific Line object after it is created. For a list, see Primitive Line.

Examples

Plot Line Using Vector Data

Create x and y as vectors. Then plot y versus x.

x = linspace(0,10);
y = sin(x);
line(x,y)

1 Alphabetical List

1-8302

Plot Multiple Lines Using Matrix Data

Plot two lines by specifying x and y as matrices. Use line to plot columns of y versus
columns of x as separate lines.

x = linspace(0,10)';
y = [sin(x) cos(x)];
line(x,y)

 line

1-8303

Plot Line with 3-D Coordinates

Plot a line in 3-D coordinates by specifying x, y, and z values. Change the axes to a 3-D
view using view(3).

t = linspace(0,10*pi,200);
x = sin(t);
y = cos(t);
z = t;
line(x,y,z)
view(3)

1 Alphabetical List

1-8304

Plot Line Using Low-Level Syntax

Create x and y as vectors. Then plot y versus x using the low-level version of the line
function.

x = linspace(0,10);
y = sin(x);
line('XData',x,'YData',y)

 line

1-8305

Specify Line Properties

Draw a red, dashed line between the points (1,2) and (9,12). Set the Color and
LineStyle properties as name-value pairs.

x = [1 9];
y = [2 12];
line(x,y,'Color','red','LineStyle','--')

1 Alphabetical List

1-8306

Change Line Properties After Creation

First, draw a line from the point (3,15) to (2,12) and return the Line object. Then change
the line to a green, dashed line.

Note: Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead.

x = [3 2];
y = [15 12];
pl = line(x,y);

 line

1-8307

pl.Color = 'green';
pl.LineStyle = '--';

1 Alphabetical List

1-8308

Input Arguments
x — x values
vector | matrix

x values, specified as a vector or a matrix.
Example: x = linspace(0,10,25)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

 line

1-8309

y — y values
vector | matrix

y values, specified as a vector or a matrix:

• If x and y are both vectors with the same length, then line plots a single line.
• If x and y are matrices with the same size, then line plots multiple lines. The function

plots columns of y versus x.
• If one of x or y is a vector and the other is a matrix, then line plots multiple lines.

The length of the vector must equal one of the matrix dimensions:

• If the vector length equals the number of matrix rows, then line plots each matrix
column versus the vector.

• If the vector length equals the number of matrix columns, then line plots each
matrix row versus the vector.

• If the matrix is square, then line plots each column versus the vector.

Example: y = sin(x)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

z — z values
vector | matrix

z values, specified as a vector or a matrix:

• If x, y, and z are all vectors with the same length, then line plots a single line.
• If x, y, and z are all matrices with the same size, then line plots multiple lines using

the matrix columns.
• If one or two of x, y, and z is a vector and the others are matrices of the same size,

then line plots multiple lines. The length of the vector must equal one of the matrix
dimensions.

Example: z = sin(x) + cos(y)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ax — Target axes
Axes object | PolarAxes object | GeographicAxes object

1 Alphabetical List

1-8310

Target axes, specified as an Axes object, a PolarAxes object, or a GeographicAxes
object. If you do not specify the axes, then the line function plots in the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are only a subset. For a full list, see Primitive Line.
Example: line(x,y,'Color','red','LineWidth',3) creates a red line that is 3
points wide.

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

 line

1-8311

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: line(x,y,'Color','blue')
Example: line(x,y,'Color',[0.5 0.5 1])
Example: line(x,y,'Color','#D9A2E9')

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

1 Alphabetical List

1-8312

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle

 line

1-8313

Value Description
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
pl — Primitive line object
primitive line object

Primitive line object. Use pl to query or modify properties of the line after it is created.
For a list, see Primitive Line.

Tips
• Unlike the plot function, the line function does not call newplot before plotting

and does not respect the value of the NextPlot property for the figure or axes. It
simply adds the line to the current axes without deleting other graphics objects or
resetting axes properties. However, some axes properties, such as the axis limits, can
update to accommodate the line.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-8314

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
annotation | loglog | plot | plot3

Properties
Primitive Line

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

 line

1-8315

lines
Lines colormap array

Syntax
c = lines
c = lines(m)

Description
c = lines returns the lines colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the array contains 64
rows. Each row in the array contains the red, green, and blue intensities for a specific
color. The intensities are in the range [0,1], and the color scheme matches the default
ColorOrder property of the Axes. Thus, you can use this colormap to make your chart
colors match the output of the plot function.

c = lines(m) returns the colormap with m colors.

Examples

Downsample the Lines Colormap

Create a scatter plot using the default colors.

x = [3.5 3.3 5 6.1 4 2];
y = [14 5.7 12 6 8 9];
sz = 100*[6 100 20 3 15 20];
c = [1 2 3 4 5 6];
scatter(x,y,sz,c,'filled','MarkerEdgeColor','k','MarkerFaceAlpha',.7);
xlim([1 7]);
ylim([1 16]);

1 Alphabetical List

1-8316

Get the lines colormap array with six entries. Then replace the colormap in the scatter
plot.

c = lines(6);
colormap(c);

 lines

1-8317

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-8318

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 lines

1-8319

LineSpec (Line Specification)
Line specification

Description
Plotting functions accept line specifications as arguments and modify the graph
generated accordingly. You can specify these three components:

• Line style
• Marker symbol
• Color

For example:

plot(x,y,'-.or')

plots y versus x using a dash-dot line (-.), places circular markers (o) at the data points,
and colors both line and marker red (r). Specify the components (in any order) as a
character vector after the data arguments. Note that linespecs are not name-value pairs.

Plotting Data Points with No Line
If you specify a marker, but not a line style, only the markers are plotted. For example:

plot(x,y,'d')

Line Style Specifiers
You indicate the line styles, marker types, and colors you want to display, detailed in the
following tables:

Specifier LineStyle
'-' Solid line (default)
'--' Dashed line

1 Alphabetical List

1-8320

Specifier LineStyle
':' Dotted line
'-.' Dash-dot line

Marker Specifiers
Specifier Marker Type
'+' Plus sign
'o' Circle
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)

Color Specifiers
Specifier Color
r Red
g Green
b Blue
c Cyan
m Magenta
y Yellow

 LineSpec (Line Specification)

1-8321

Specifier Color
k Black
w White

Related Properties
This page also describes how to specify the properties of lines used for plotting. MATLAB
graphics give you control over these visual characteristics:

• LineWidth — Specifies the width (in points) of the line.
• MarkerEdgeColor — Specifies the color of the marker or the edge color for filled

markers (circle, square, diamond, pentagram, hexagram, and the four triangles).
• MarkerFaceColor — Specifies the color of the face of filled markers.
• MarkerSize — Specifies the size of the marker in points (must be greater than 0).

In addition, you can specify the LineStyle, Color, and Marker properties instead of
using a line specification character vector. This is useful if you want to specify a color that
is not in the list by using RGB triplet values. See Chart Line for details on these
properties.

Examples

Modify Line Appearance

Plot the sine function over three different ranges using different line styles, colors, and
markers.

figure
t = 0:pi/20:2*pi;
plot(t,sin(t),'-.r*')
hold on
plot(t,sin(t-pi/2),'--mo')
plot(t,sin(t-pi),':bs')
hold off

1 Alphabetical List

1-8322

Set Line Properties

Create a plot illustrating how to set line properties.

t = 0:pi/20:2*pi;
figure
plot(t,sin(2*t),'-mo',...
 'LineWidth',2,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',10)

 LineSpec (Line Specification)

1-8323

See Also
axes | line | patch | plot | set | surface

1 Alphabetical List

1-8324

linkaxes
Synchronize limits of specified 2-D axes

Syntax
linkaxes(ax)
linkaxes(ax,option)

Description
Use linkaxes to synchronize the individual axis limits across several figures or subplots
within a figure. Calling linkaxes makes the linked axes have identical limits. Linking
axes is best when you want to zoom or pan in one subplot and display the same range of
data in another subplot. Use linkaxes for Cartesian axes in 2-D views only.

linkaxes(ax) links the x- and y-axis limits of the Axes objects specified in the vector
ax. The linkaxes function chooses limits that incorporate the current limits for all the
linked axes.

linkaxes(ax,option) links the axes according to the specified option. The option
argument can be one of these values:

'x' Link x-axis only.
'y' Link y-axis only.
'xy' Link x-axis and y-axis.
'off' Remove linking.

See the linkprop function for more advanced capabilities that allow you to link object
properties on any graphics object.

Examples

 linkaxes

1-8325

Create Subplots and Link Their Axes

Create a figure with three subplots and plot data in each subplot. Link the x-axes and y-
axes for the three subplots. Panning or zooming into one of the subplots displays the same
range of data in the other two subplots.

figure
ax1 = subplot(2,2,1);
x1 = linspace(0,6);
y1 = sin(x1);
plot(x1,y1)

ax2 = subplot(2,2,2);
x2 = linspace(0,10);
y2 = sin(2*x2);
plot(x2,y2)

ax3 = subplot(2,2,[3,4]);
x3 = linspace(0,16);
y3 = sin(6*x3);
plot(x3,y3)

linkaxes([ax1,ax2,ax3],'xy')

1 Alphabetical List

1-8326

To remove the linking, use linkaxes([ax1,ax2,ax3],'off').

Link Subplot Limits

Load the count.dat data set which returns a three-column array named count. Create a
figure with three subplots and return the Axes objects. In each subplot, create a bar
graph.

load count.dat
ax1 = subplot(3,1,1);
bar(count(:,1),'g');

 linkaxes

1-8327

ax2 = subplot(3,1,2);
bar(count(:,2),'b');

ax3 = subplot(3,1,3);
bar(count(:,3),'m');

Link the x-axes and y-axes limits using linkaxes with the argument 'xy'. If you zoom in
on one subplot, then the other two subplots behave in the same manner. To enable
interactive zooming, use zoom on. To disable zooming, use zoom off

linkaxes([ax3,ax2,ax1],'xy');

1 Alphabetical List

1-8328

Link x-Axes And Change Axis Limits

Load the count.dat data set which returns a three-column array named count. Create a
figure with two subplots and return the Axes objects. In each subplot, create a bar graph.
Link the x-axes for the two subplots.

load count.dat
figure
ax1 = subplot(2,1,1);
bar(count(:,1),'g');

 linkaxes

1-8329

ax2 = subplot(2,1,2);
bar(count(:,2),'b');

linkaxes([ax1,ax2],'x');

Set the x-axis limits for the second subplot. Changing the x-axis limits effects both
subplots.

ax2.XLim = [4.5,9.5];

1 Alphabetical List

1-8330

If you pan either subplot, then both subplots pan uniformly in the x-direction, but only one
subplot moves in the y-direction. To enable interactive panning, use pan on. To disable
panning, use pan off.

Tips
• If you have three axes, ax1, ax2, and ax3 and want to link them together, call

linkaxes with [ax1, ax2, ax3] as the first argument. Linking ax1 to ax2 and
then ax2 to ax3 with separate calls to linkaxes, "unbinds" the ax1-ax2 linkage.
linkaxes is not designed to be transitive across multiple invocations.

 linkaxes

1-8331

See Also
linkdata | linkprop | pan | zoom

Introduced before R2006a

1 Alphabetical List

1-8332

linkdata
Automatically update graphs when variables change

Syntax
linkdata on
linkdata off
linkdata
linkdata(figure_handle,...)
linkobj = linkdata(figure_handle)

Description
linkdata on turns on data linking for the current figure.

linkdata off turns data linking off.

linkdata by itself toggles the state of data linking.

linkdata(figure_handle,...) applies the function to the specified figure handle.

linkobj = linkdata(figure_handle) returns a linkdata object for the specified
figure. The object has one read-only property, Enable, which is set to either 'on' or
'off', depending on the linked state of the figure.

Data linking connects graphs in figure windows to variables in the base or a function's
workspace via their XDataSource, YDataSource, and ZDataSource properties. When
you turn on data linking for a figure, MATLAB compares variables in the current (base or
function caller) workspace with the XData, YData, and ZData properties of graphs in the
affected figure to try to match them. When a match is found, the appropriate
XDataSource, YDataSource and/or ZDataSource for the graph are set to the matching
variables.

Any subsequent changes to linked variables are reflected in graphs that use them as data
sources and in the Variables editor, if the linked variables are displayed there. Conversely,
any changes to plotted data values made at the command line, in the Variables editor, or

 linkdata

1-8333

with the Brush tool (such as deleting or replacing data points), are immediately reflected
in the workspace variables linked to the data points.

When a figure containing graphs is linked and any variable identified as XDataSource,
YDataSource, and/or ZDataSource changes its values in the workspace, all graphs
displaying it in that and other linked figures automatically update. This operation is
equivalent to automatically calling the refreshdata function on the corresponding
figure when a variable changes.

Linked figure windows identify themselves by the appearance of the Linked Plot
information bar at the top of the window. When linkdata is off for a figure, the Linked
Plot information bar is removed. If linkdata cannot unambiguously identify data sources
for a graph in a linked figure, it reports this via the Linked Plot information bar, which
gives the user an opportunity to identify data sources. The information bar displays a
warning icon and a message, No graphics have data sources and also prompts fix it.
Clicking fix it opens the Specify Data Source Properties dialog box for identifying
variable names and ranges of data sources used in the graph.

Examples

Example 1
Create two variables, plot them as area charts, and link the plot to them:

x = 1:20;
y = rand(20,3);
area(x,y)
linkdata on

1 Alphabetical List

1-8334

Change values for linked variable y in the workspace:

y(10,:) = 0;

The area chart immediately updates.

 linkdata

1-8335

Example 2
Delete a figure if it is not linked, based on a returned linkdata object:

fig = figure;
ld = linkdata(fig)

ld =
 graphics.linkdata

if strcmp(ld.Enable,'off')
 delete(fig)
end

1 Alphabetical List

1-8336

Example 3
If a plotting function can display a complex variable, then you can link such plots. To do
so, you need to describe the data sources as expressions to separate the real and
imaginary parts of the variable. For example,

x = eig(randn(20,20));
whos
 Name Size Bytes Class Attributes
 x 20x1 320 double complex

yields a complex vector. You can use plot to display the real portion as x and the
imaginary portion as y, then link the graph to the variable:

plot(x)
linkdata

However, linkdata cannot unambiguously identify the graph's data sources, and you
must tell it by typing real(x) and imag(x) into the Specify Data Source Properties
dialog box that displays when you click fix it in the Linked Plot information bar.

 linkdata

1-8337

To avoid having to type the data source names in the dialog box, you can specify them
when you plot:

plot(x,'XDataSource','real(x)','YDataSource','imag(x)')

If you subsequently change values of x programmatically or manually, the plot updates
accordingly.

Note Although you can use data brushing on linked plots of complex data, your brush
marks only appear in the plot you are brushing, not in other plots or in the Variables
editor. This is because function calls, such as real(x) and imag(x), that you specify as
data sources are not interpreted when brushing graphed data.

Tips
• “Types of Variables You Can Link” on page 1-8338
• “Restoring Links that Break” on page 1-8338
• “Linking Rapidly Changing Data” on page 1-8339
• “Linking Brushed Graphs” on page 1-8339

Types of Variables You Can Link
You can use linkdata to connect a graph with scalar, vector and matrix numeric
variables of any class (including complex, if the graphing function can plot it) —
essentially any data for which isnumeric equals true. See “Example 3” on page 1-8337
for instructions on linking complex variables. You can also link plots to numeric fields
within structures. You can specify MATLAB expressions as data sources, for example,
sqrt(y)+1.

Restoring Links that Break
Refreshing data on a linked plot fails if the variables in the XDataSource, YDataSource,
or ZDataSource properties, when evaluated, are incompatible with what is in the
current workspace, such that the corresponding XData, YData, or ZData are unable to
respond. The visual appearance of the object in the graph is not affected by such failures,
so graphic objects show no indication of broken links. Instead, a warning icon and the

1 Alphabetical List

1-8338

message Failing links appear on the Linked Plot information bar along with an Edit
button that opens the Specify Data Sources dialog box.

Linking Rapidly Changing Data
linkdata buffers updates to data and dispatches them to plots at roughly half-second
intervals. This makes data linking not suitable for smoothly animating changes in data
values unless they are updated in loops that are forced to execute two times per second
or less.

One consequence of buffering link updates is that linkdata might not detect changes in
data streams it monitors. If you are running a function that uses assignin or evalin to
update workspace variables, linkdata can sometimes fail to process updates that
change values but not the size and class of workspace variables. Such failures only
happen when the function itself updates the plot.

Linking Brushed Graphs
If you link data sources to graphs that have been brushed, their brushing marks can
change or vanish. This is because the workspace variables in those graphs now dictate
which, if any, observations are brushed, superseding any brushing annotations that were
applied to their graphical data (YData, etc.). For more details, see “How Data Linking
Affects Data Brushing” on page 1-987 in the brush reference page.

See Also
brush | linkaxes | linkprop | refreshdata

Topics
“Automatically Refresh Plot After Changing Data”

 linkdata

1-8339

linkprop
Keep same value for corresponding properties of graphics objects

Syntax
hlink = linkprop(obj_handles,'PropertyName')

hlink = linkprop(obj_handles,{'PropertyName1','PropertyName2',...})

Description
Use linkprop to maintain the same values for the corresponding properties of different
graphics objects.

Note Use linkprop only with graphics objects.

hlink = linkprop(obj_handles,'PropertyName') maintains the same value for
the property PropertyName on all objects whose handles appear in obj_handles.
linkprop returns the link object in hlink. See “About Link Objects” on page 1-8341 for
more information.

hlink = linkprop(obj_handles,{'PropertyName1','PropertyName2',...})
maintains the same respective values for all properties passed as a cell array on all
objects whose handles appear in obj_handles.

MATLAB updates the linked properties of all linked objects immediately when linkprop
is called. The first object in the list obj_handles determines the property values for the
other objects.

A set of graphics objects can have only one link object connecting their properties at any
given time. Calling linkprop creates a new link object. This new link object replaces any
existing link object that is associated with the objects specified in obj_handles.
However, you can manage which properties and which objects are linked by calling
methods on that object:

1 Alphabetical List

1-8340

• To add an object to the list of linked objects, use the addtarget method.
• To link new properties of currently-linked objects, use the addprop method.
• To stop linking an object, use the removetarget method.
• To stop properties from linking, use the removeprop method.

About Link Objects
The link object that linkprop returns stores the mechanism that links the properties of
different graphics objects. Therefore, the link object must exist within the context where
you want property linking to occur (such as in the base workspace if users are to interact
with the objects from the command line or figure tools).

The following list describes ways to maintain a reference to the link object.

• Return the link object as an output argument from a function and keep it in the base
workspace while interacting with the linked objects.

• Make the hlink variable global.
• Store the hlink variable in an object's UserData property or in application data.

Updating a Link Object
If you want to change either the graphics objects or the properties that are linked, you
need to use the link object methods designed for that purpose. These methods are
functions that operate only on link objects. To use them, you must first create a link object
using linkprop.

Method Purpose
addtarget Add specified graphics object to the link object's targets.
removetarget Remove specified graphics object from the link object's

targets.
addprop Add specified property to the linked properties.
removeprop Remove specified property from the linked properties.

 linkprop

1-8341

Method Syntax
addtarget(hlink,obj_handles)
removetarget(hlink,obj_handles)
addprop(hlink,'PropertyName')
removeprop(hlink,'PropertyName')

Method Arguments
• hlink — Link object returned by linkprop
• obj_handles — One or more graphic object handles
• PropertyName — Name of a property common to all target objects

Examples

Link Axes So They Rotate Simultaneously

Link properties of two axes so that rotating one axes automatically rotates the other.

Create a figure with two axes and store the axes handles. Add plots to both axes.

figure
ax1 = subplot(2,1,1);
[X1,Y1,Z1] = peaks;
surf(X1,Y1,Z1)

ax2 = subplot(2,1,2);
[X2,Y2,Z2] = peaks(10);
surf(X2,Y2,Z2)

1 Alphabetical List

1-8342

Link the CameraPosition and CameraUpVector properties of the axes and return the
link object handle. Then, enable interactive rotation and use the mouse to rotate either
axes. Rotating one axes automatically rotates the other in the same manner.

hlink = linkprop([ax1,ax2],{'CameraPosition','CameraUpVector'});
rotate3d on

 linkprop

1-8343

To disable interactive rotation, use rotate3d off.

Link an additional property by passing the link object handle and the property name to
addprop.

addprop(hlink,'PlotBoxAspectRatio')

1 Alphabetical List

1-8344

See Also
getappdata | ishghandle | linkaxes | linkdata | setappdata

Introduced before R2006a

 linkprop

1-8345

linsolve
Solve linear system of equations

Syntax
X = linsolve(A,B)
X = linsolve(A,B,opts)
[X,r] = linsolve(___)

Description
X = linsolve(A,B) solves the linear system AX = B using one of these methods:

• When A is square, linsolve uses LU factorization with partial pivoting.
• For all other cases, linsolve uses QR factorization with column pivoting.

linsolve warns if A is ill conditioned (for square matrices) or rank deficient (for
rectangular matrices).

X = linsolve(A,B,opts) uses an appropriate solver as determined by the options
structure opts. The fields in opts are logical values describing properties of the matrix
A. For example, if A is an upper triangular matrix, you can set opts.UT = true to make
linsolve use a solver designed for upper triangular matrices. linsolve does not test
to verify that A has the properties specified in opts.

[X,r] = linsolve(___) also returns r, which is the reciprocal of the condition
number of A (for square matrices) or the rank of A (for rectangular matrices). You can use
any of the input argument combinations in previous syntaxes. With this syntax, linsolve
does not warn if A is ill conditioned or rank deficient.

Examples

1 Alphabetical List

1-8346

Solve Linear System

Solve a linear system with both mldivide and linsolve to compare performance.

mldivide is the recommended way to solve most linear systems of equations in MATLAB
®. However, the function performs several checks on the input matrix to determine
whether it has any special properties. If you know about the properties of the coefficient
matrix ahead of time, then you can use linsolve to avoid time-consuming checks for
large matrices.

Create a 10000-by-10000 magic square matrix and extract the lower triangular portion.
Set the LT field of the opts structure to true to indicate that A is a lower triangular
matrix.

A = tril(magic(1e4));
opts.LT = true;

Create a vector of ones for the right-hand side of the linear equation Ax = b. The number
of rows in A and b must be equal.

b = ones(size(A,2),1);

Solve the linear system Ax = b using mldivide and time the calculation.

tic
x1 = A\b;
t1 = toc

t1 = 0.1261

Now, solve the system again using linsolve. Specify the options structure so that
linsolve can select an appropriate solver for a lower triangular matrix.

tic
x2 = linsolve(A,b,opts);
t2 = toc

t2 = 0.0447

Compare the execution times to see how much faster linsolve is. As with any timing
comparison, the results can vary between different computers and releases of MATLAB.

speedup = t1/t2

speedup = 2.8213

 linsolve

1-8347

Suppress Matrix Condition Warnings

Solve a linear system using linsolve with two outputs to suppress matrix conditioning
warnings.

Create a 20-by-20 Hilbert test matrix. This matrix is nearly singular, with the largest
singular value being about 2e18 larger than the smallest.

A = hilb(20);

Solve a linear system involving A with linsolve. Since A is nearly singular, linsolve
returns a warning.

b = ones(20,1);
x = linsolve(A,b);

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.351364e-19.

Now, solve the same linear system, but specify two outputs to linsolve. MATLAB®
suppresses the warning, and the second output r contains the reciprocal condition
number of A. You can use this syntax to handle ill-conditioned matrices with special cases
in your code, without the code producing a warning.

[x,r] = linsolve(A,b)

x = 20×1
109 ×

 0.0000
 -0.0000
 0.0001
 -0.0014
 0.0126
 -0.0613
 0.1555
 -0.1083
 -0.4672
 1.3358
 ⋮

r = 1.3514e-19

1 Alphabetical List

1-8348

Input Arguments
A — Coefficient matrix
matrix

Coefficient matrix. A appears in the system of linear equations on the left as AX = B. The
number of rows in A must equal the number of rows in B.

A cannot be sparse. To solve a linear system involving a sparse matrix, use mldivide or
decomposition instead.
Data Types: single | double
Complex Number Support: Yes

B — Input array
vector | matrix

Input array, specified as a vector or matrix. B appears in the system of linear equations on
the right as AX = B. If B is a matrix, then each column in the matrix represents a different
vector for the right-hand side.

The number of rows in A must equal the number of rows in B.
Data Types: single | double
Complex Number Support: Yes

opts — Coefficient matrix properties
structure

Coefficient matrix properties, specified as a structure. Use this structure to specify
properties of A that linsolve uses to select an appropriate solver for the linear system.
The fields in the structure contain true/false values to indicate whether A has each
property. By default all fields in the structure are assumed to be false. This table lists
the possible fields in opts and their corresponding matrix properties.

Field Matrix Property
LT Lower triangular (nonzero values appearing

only on or below the main diagonal)

 linsolve

1-8349

Field Matrix Property
UT Upper triangular (nonzero values appearing

only on or above the main diagonal)
UHESS Upper Hessenberg (all zero values below

the first subdiagonal)
SYM Real symmetric or complex Hermitian

(matrix equal to its transpose)
POSDEF Positive definite (all positive eigenvalues)
RECT Rectangular matrix (different number of

rows and columns)
TRANSA Conjugate transpose — Specifies whether

the function solves A*X = B (when
opts.TRANSA = false) or the transposed
problem A'*X = B (when opts.TRANSA =
true)

Example: opts.UT = true specifies that A is upper triangular.
Example: opts.SYM = true, opts.POSDEF = true sets two fields to specify that A is
symmetric and positive definite.

Valid Combinations

The rows of this table list all combinations of field values in opts that are valid for
linsolve. Empty cells are the default value of false, and a true/false entry indicates
that linsolve accepts either value.

 LT UT UHESS SYM POSDEF RECT TRANSA
A is lower
triangular

true true/
false

true/
false

A is upper
triangular

 true true/
false

true/
false

A is upper
Hessenber
g

 true true/
false

A is
symmetric

 true true/
false

 true/
false

1 Alphabetical List

1-8350

 LT UT UHESS SYM POSDEF RECT TRANSA
A is
rectangul
ar

 true/
false

true/
false

Notes on Usage

• If A has the properties in opts, then linsolve is faster compared to mldivide,
because linsolve invokes the appropriate solver immediately and does not perform
any tests to verify that A has the specified properties.

• If A does not have the properties that you specify in opts, then linsolve returns
incorrect results and does not return an error message. Therefore, if you are unsure
whether A has the specified properties, use mldivide or decomposition instead.

Data Types: struct

Output Arguments
X — Linear system solution
vector | matrix

Linear system solution, returned as a vector or matrix that satisfies AX = B (or ATX = B if
opts.TRANSA = true). The size of X depends on whether opts.TRANSA = true:

• If A is m-by-n and B is m-by-k, then X is n-by-k and is the solution to AX = B.
• If opts.TRANSA = true, then A is m-by-n and B is n-by-k. In this case, X is m-by-k and

is the solution to ATX = B.

r — Reciprocal condition number or rank
scalar

Reciprocal condition number or rank, returned as a scalar.

• If A is a square matrix, then r is the reciprocal condition number of A.
• If A is a rectangular matrix, then r is the rank of A.
• If opts is specified, then r is the reciprocal of the condition number of A unless RECT

is true and both LT and UT are false, in which case, r gives the rank of A.

 linsolve

1-8351

Tips
• For small problems, using linsolve has no speed benefit as opposed to using the

mldivide function. The speed benefit with linsolve arises by avoiding costly checks
on the properties of large matrices.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The opts structure must be a constant scalar. Code generation does not support
arrays of options structures.

• Code generation only optimizes these cases:

• UT
• LT
• UHESS = true (the TRANSA can be either true or false)
• SYM = true and POSDEF = true

Other options are equivalent to using mldivide.
• Code generation does not support sparse matrix inputs for this function.

See Also
decomposition | lsqminnorm | mldivide

Topics
“Systems of Linear Equations”

Introduced before R2006a

1 Alphabetical List

1-8352

linspace
Generate linearly spaced vector

Syntax
y = linspace(x1,x2)
y = linspace(x1,x2,n)

Description
y = linspace(x1,x2) returns a row vector of 100 evenly spaced points between x1
and x2.

y = linspace(x1,x2,n) generates n points. The spacing between the points is (x2-
x1)/(n-1).

linspace is similar to the colon operator, “:”, but gives direct control over the number
of points and always includes the endpoints. “lin” in the name “linspace” refers to
generating linearly spaced values as opposed to the sibling function logspace, which
generates logarithmically spaced values.

Examples

Vector of Evenly Spaced Numbers

Create a vector of 100 evenly spaced points in the interval [-5,5].

y = linspace(-5,5);

Vector with Specified Number of Values

Create a vector of 7 evenly spaced points in the interval [-5,5].

 linspace

1-8353

y1 = linspace(-5,5,7)

y1 = 1×7

 -5.0000 -3.3333 -1.6667 0 1.6667 3.3333 5.0000

Vector of Evenly Spaced Complex Numbers

Create a vector of complex numbers with 8 evenly spaced points between 1+2i and
10+10i.

y = linspace(1+2i,10+10i,8)

y = 1×8 complex

 1.0000 + 2.0000i 2.2857 + 3.1429i 3.5714 + 4.2857i 4.8571 + 5.4286i 6.1429 + 6.5714i 7.4286 + 7.7143i 8.7143 + 8.8571i 10.0000 +10.0000i

Input Arguments
x1,x2 — Point interval
pair of numeric scalars

Point interval, specified as a pair of numeric scalars. x1 and x2 define the interval over
which linspace generates points. x1 and x2 can be real or complex, and x2 can be
either larger or smaller than x1. If x2 is smaller than x1, then the vector contains
descending values.
Data Types: single | double | datetime | duration
Complex Number Support: Yes

n — Number of points
100 (default) | real numeric scalar

Number of points, specified as a real numeric scalar.

• If n is 1, linspace returns x2.

1 Alphabetical List

1-8354

• If n is zero or negative, linspace returns an empty 1-by-0 matrix.
• If n is not an integer, linspace rounds down and returns floor(n) points.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
colon | logspace

Introduced before R2006a

 linspace

1-8355

RandStream.list
Random number generator algorithms

Class
RandStream

Syntax
RandStream.list

Description
RandStream.list lists all the generator algorithms that can be used when creating a
random number stream with RandStream or RandStream.create. The available
generator algorithms and their properties are given in the following table.

Keyword Generator Multiple Stream
and Substream
Support

Approximate
Period In Full
Precision

mt19937ar Mersenne twister
(used by default
stream at MATLAB
startup)

No 219937-1

dsfmt19937 SIMD-oriented fast
Mersenne twister

No 219937-1

mcg16807 Multiplicative
congruential
generator

No 231-2

mlfg6331_64 Multiplicative lagged
Fibonacci generator

Yes 2124 (251 streams of
length 272)

1 Alphabetical List

1-8356

Keyword Generator Multiple Stream
and Substream
Support

Approximate
Period In Full
Precision

mrg32k3a Combined multiple
recursive generator

Yes 2191 (263 streams of
length 2127)

philox4x32_10 Philox 4x32
generator with 10
rounds

Yes 2193 (264 streams of
length 2129)

threefry4x64_20 Threefry 4x64
generator with 20
rounds

Yes 2514 (2256 streams of
length 2258)

shr3cong Shift-register
generator summed
with linear
congruential
generator

No 264

swb2712 Modified subtract
with borrow
generator

No 21492

See “Choosing a Random Number Generator” for details about these generator
algorithms. See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for a full
description of the Mersenne twister algorithm.

See Also

Topics
“Creating and Controlling a Random Number Stream”

 RandStream.list

1-8357

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

listdlg
Create list selection dialog box

Syntax
[indx,tf] = listdlg('ListString',list)
[indx,tf] = listdlg('ListString',list,Name,Value)

Description
[indx,tf] = listdlg('ListString',list) creates a modal on page 1-15501 dialog
box that allows the user to select one or more items from the specified list.

The list value is the list of items to present in the dialog box.

The function returns two output arguments, indx and tf containing information about
which items the user selected.

The dialog box includes Select all, Cancel, and OK buttons. You can limit selection to a
single item by using the name-value pair, 'SelectionMode','single'.

Note A modal dialog box prevents the user from interacting with other windows before
responding. For more information, see WindowStyle in the MATLAB Figure.

[indx,tf] = listdlg('ListString',list,Name,Value) specifies additional
options using one or more name-value pair arguments. For example,
'PromptString','Select a Color' presents Select a Color above the list.

Examples

1 Alphabetical List

1-8358

Present List of Colors for Multiple Selection
list = {'Red','Yellow','Blue',...
'Green','Orange','Purple'};
[indx,tf] = listdlg('ListString',list);

Present Current Folder Files for Single Selection
d = dir;
fn = {d.name};
[indx,tf] = listdlg('PromptString','Select a file:',...

 listdlg

1-8359

 'SelectionMode','single',...
 'ListString',fn);

Input Arguments
list — list of items
character vector | cell array of character vectors | string array

List of items to present in the dialog box, specified as a character vector, cell array of
character vectors, or string array. For cell arrays and string arrays, each element typically
corresponds to a separate list item. If you insert newline characters using sprintf, it

1 Alphabetical List

1-8360

results in more list items. For example, the following code results in four list items, even
though there are only three cell array elements.

f = listdlg('ListString', ...
 {'John Smith' ...
 sprintf('Cecelia\nPayne-Gaposchkin') ...
 'Gina Peters'});

Example: {'Ellen','Varun','Haruko','Roger'}

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'SelectionMode,'single','InitialValue',4 specifies that the user can
select one item from the list and that when the dialog box opens, the fourth item in the
list is selected.

PromptString — List box prompt
[] (default) | character vector | cell array of character vectors | string array

List box prompt, specified as a character vector, cell array of character vectors, or string
array. The prompt appears above the list box.

• If you specify the prompt as a character vector, then a long vector wraps to fit the
dialog box.

• If you specify the prompt as a cell array or string array, then line breaks occur
between each array element. Long elements wrap to fit the dialog box

Example: 'PromptString','Select a catalog number:'

SelectionMode — List selection mode
'multiple' (default) | 'single'

List selection mode specified as the comma-separated pair consisting of
'SelectionMode' and either 'multiple' or 'single'.

• If the selection mode is set to 'multiple', then users can select multiple list items
and the Select all button displays in the dialog box.

 listdlg

1-8361

• If the selection mode is set to 'single', then users can select one list item only and
the Select all button does not display in the dialog box.

Example: 'SelectionMode','single'

ListSize — list box size
[160 300] (default) | [width height]

List box size in pixels, specified as the comma-separated pair consisting of 'ListSize'
and a two-element vector, [width height].
Example: 'ListSize',[150,250]

InitialValue — Selected list box items
1 (default) | vector of indices

Selected list box items, specified as a scalar index value when 'SelectionMode' is set
to 'single' and specified as a vector of indices when 'SelectionMode' is set to
'multiple'. The indices indicate which rows in the list box are selected when the dialog
box opens. For example:

• If 'InitialValue' is set to 3, then the third item from the top of the list is selected
when the dialog box opens.

• If 'InitialValue' is set to [3 4], then the third and fourth items from the top of
the list are selected when the dialog box opens.

Example: 'InitialValue',5
Example: 'InitialValue',[2 5]

Name — Dialog box title
[] (default) | character vector | string scalar

Dialog box title, specified as a character vector or string scalar.
Example: 'Name','File Selection'

OKString — OK button label
'OK' (default) | character vector | string scalar

OK button label, specified as a character vector or string scalar.
Example: 'OKString','Apply'

1 Alphabetical List

1-8362

CancelString — Cancel button label
'Cancel' (default) | character vector | string scalar

Cancel button label, specified as a character vector or string scalar.
Example: 'CancelString','No Selection'

Output Arguments
indx — Index to selected rows
array of indices

Index to selected rows, returned as an array of indices. The row indices correspond to
selections the user made from the list. If the user clicks Cancel, presses Esc, or clicks the
close button in the dialog box title bar, then the indx value is returned as an empty array.

tf — Selection logical
1 | 0

Selection logical returned as 1 or 0.

The selection logical value indicates whether the user made a selection. If the user clicks
OK, double-clicks a list item, or presses Return, then the tf return value is 1.

If the user clicks Cancel, presses Esc, or clicks the close button (X) in the dialog box title
bar, then the tf return value is 0.

Definitions

Modal Dialog Box
A modal dialog box prevents the user from interacting with other MATLAB windows
before responding.

See Also
inputdlg | questdlg

 listdlg

1-8363

Introduced before R2006a

1 Alphabetical List

1-8364

listfonts
List available system fonts

Syntax
d = listfonts
d = listfonts(obj)

Description
d = listfonts returns an alphabetically sorted list of available system fonts.

d = listfonts(obj) returns available system fonts and includes the font name of the
specified graphics object, if the object has FontName as a property.

Examples

List Available System Fonts

Call the listfonts function to return the list of available system fonts, with output
similar in format to the one shown below.

d = listfonts

d =
 {'Agency FB' }
 {'Algerian' }
 {'Arial' }
 ...
 {'Yu Gothic UI Semilight' }
 {'ZapfChancery' }
 {'ZapfDingbats' }

 listfonts

1-8365

Include Object Font Name in Returned System Fonts

Create a UIControl object with a font called 'MyFont'. When you call listfonts with
the object as input, the sorted list includes the object font and the system fonts.

c = uicontrol('Style','text','String','My Text','FontName','MyFont');
d = listfonts(c)

 d =
 {'Agency FB' }
 {'Algerian' }
 {'Arial' }
 ...
 {'MyFont' }
 ...
 {'Yu Gothic UI Semilight' }
 {'ZapfChancery' }
 {'ZapfDingbats' }

Input Arguments
obj — Graphics object
graphics object

Graphics object, such as an Axes, Annotation, Illustration, or UI object.

Tips
• Some system fonts can't be rendered in MATLAB. To preview fonts that MATLAB can

render in figure windows, use the uisetfont function. Alternatively, in the
Environment section of the Home tab, select Preferences > Fonts > Custom to
preview the available fonts that MATLAB can render.

• To determine an object's font name only, use dot notation to query the value of its
FontName property.

See Also
uisetfont

1 Alphabetical List

1-8366

Introduced in R2007a

 listfonts

1-8367

load
Load variables from file into workspace

Syntax
load(filename)
load(filename,variables)
load(filename,'-ascii')
load(filename,'-mat')
load(filename,'-mat',variables)

S = load(___)

load filename

Description
load(filename) loads data from filename.

• If filename is a MAT-file, then load(filename) loads variables in the MAT-File into
the MATLAB workspace.

• If filename is an ASCII file, then load(filename) creates a double-precision array
containing data from the file.

load(filename,variables) loads the specified variables from the MAT-file,
filename.

load(filename,'-ascii') treats filename as an ASCII file, regardless of the file
extension.

load(filename,'-mat') treats filename as a MAT-file, regardless of the file
extension.

load(filename,'-mat',variables) loads the specified variables from filename.

S = load(___) loads data into S, using any of the input arguments in the previous
syntax group.

1 Alphabetical List

1-8368

• If filename is a MAT-file, then S is a structure array.
• If filename is an ASCII file, then S is a double-precision array containing data from

the file.

load filename is the command form of the syntax. Command form requires fewer
special characters. You do not need to type parentheses or enclose input in single or
double quotes. Separate inputs with spaces instead of commas.

For example, to load a file named durer.mat, these statements are equivalent:

load durer.mat % command form
load('durer.mat') % function form

You can include any of the inputs described in previous syntaxes. For example, to load the
variable named X:

load durer.mat X % command form
load('durer.mat','X') % function form

Do not use command form when any of the inputs, such as filename, are variables or
strings.

Examples

Load All Variables from MAT-File

Load all variables from the example MAT-file, gong.mat. Check the contents of the
workspace before and after the load operation.

disp('Contents of workspace before loading file:')
whos

disp('Contents of gong.mat:')
whos('-file','gong.mat')

load('gong.mat')
disp('Contents of workspace after loading file:')
whos

You also can use command syntax to load the variables. Clear the previously loaded
variables and repeat the load operation.

 load

1-8369

clear y Fs

load gong.mat

Load Specific Variable From MAT-File

Load only variable y from example file handel.mat. If the workspace already contains
variable y, the load operation overwrites it with data from the file.

load('handel.mat','y')

You also can use command syntax to load the variable, y.

load handel.mat y

Use Regular Expressions to Load Specific Variables

View the contents of the example file, accidents.mat.

whos -file accidents.mat

 Name Size Bytes Class Attributes

 datasources 3x1 2724 cell
 hwycols 1x1 8 double
 hwydata 51x17 6936 double
 hwyheaders 1x17 2758 cell
 hwyidx 51x1 408 double
 hwyrows 1x1 8 double
 statelabel 51x1 6596 cell
 ushwydata 1x17 136 double
 uslabel 1x1 138 cell

Use function syntax to load all variables with names not beginning with 'hwy', from the
file.

load('accidents.mat', '-regexp', '^(?!hwy)...')

Alternatively, use command syntax to load the same variables.

1 Alphabetical List

1-8370

load accidents.mat -regexp '^(?!hwy)...'

Load List of Variables into Structure Array

The file, durer.mat, contains variables X, caption, and map. Create a cell array of
variable names to load.

filename = 'durer.mat';
myVars = {'X','caption'};
S = load(filename,myVars{:})

S = struct with fields:
 X: [648x509 double]
 caption: [2x28 char]

Only the variables X and caption are loaded into the structure array, S.

Load ASCII File

Create an ASCII file from several 4-column matrices, and load the data back into a
double-precision array.

a = magic(4);
b = ones(2, 4) * -5.7;
c = [8 6 4 2];
save -ascii mydata.dat a b c
clear a b c

load mydata.dat -ascii

load creates an array of type double named mydata.

View information about mydata.

whos mydata

 Name Size Bytes Class Attributes

 mydata 7x4 224 double

 load

1-8371

Input Arguments
filename — Name of file
matlab.mat (default) | character vector | string scalar

Name of file, specified as a character vector or string scalar. If you do not specify
filename, the load function searches for a file named matlab.mat.

filename can include a file extension and a full or partial path. If filename has no
extension (that is, no text after a period), load looks for a file named filename.mat. If
filename has an extension other than .mat, the load function treats the file as ASCII
data.

When using the command form of load, it is unnecessary to enclose the input in single
quotes. However, if filename contains a space, you must enclose the argument in single
quotes. For example, load 'filename withspace.mat'.

Note Do not use command form when filename is a string.

ASCII files must contain a rectangular table of numbers, with an equal number of
elements in each row. The file delimiter (the character between elements in each row) can
be a blank, comma, semicolon, or tab character. The file can contain MATLAB comments
(lines that begin with a percent sign, %).
Example: 'myFile.mat'

variables — Names of variables to load
character vector | string scalar

Names of variables to load, specified as one or more character vector or string scalar.
When using the command form of load, you do not need to enclose the input in single
quotes.

Note Do not use command form when variables is a string.

variables can be in one of the following forms.

1 Alphabetical List

1-8372

Form of variables Input Variables to Load
var1,...,varN Load the listed variables, specified as individual

character vectors or strings.
Use the '*' wildcard to match patterns. For
example, load('filename.mat','A*') or
load filename.mat A* loads all variables in
the file whose names start with A.

'-regexp',expr1,...,exprN Load only the variables or fields whose names
match the regular expressions, specified as
character vectors or strings. For example,
load('filename.mat','-
regexp','^Mon','^Tues') or load
filename.mat -regexp ^Mon ^Tues loads
only the variables in the file whose names begin
with Mon or Tues.

Output Arguments
S — Loaded variables or data
structure array | m-by-n array

Loaded variables, returned as a structure array, if filename is a MAT-File.

Loaded data, returned as an m-by-n array of type double, if filename is an ASCII file. m
is equal to the number of lines in the file, and n is equal to the number of values on a line.

Algorithms
If you do not specify an output for the load function, MATLAB creates a variable named
after the loaded file (minus any file extension). For example, the command

load mydata.dat

reads data into a variable called mydata.

To create the variable name, load precedes any leading underscores or digits in
filename with an X and replaces any other nonalphabetic characters with underscores.
For example, the command

 load

1-8373

load 10-May-data.dat

creates a variable called X10_May_data.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use load only when generating MEX functions or code for Simulink simulation. To
load compile-time constants, use coder.load.

• Does not support use of the function without assignment to a structure or array. For
example, use S = load(filename), not load(filename).

• The output S must be the name of a structure or array without any subscripting. For
example, S(i) = load('myFile.mat') is not supported.

• Arguments to load must be compile-time constant character vectors.
• If the MAT-file contains unsupported constructs, use S =

load(filename,variables) to load only the supported constructs.
• In a function intended for code generation, the use of save or the use of

coder.extrinsic with save is not supported. To save the workspace data to a MAT-
file, use the save function prior to generating code.

• When using the load function to load variables whose size can change at run time,
you must explicitly declare the variables as variable-size data by using
coder.varsize.

See Also
clear | importdata | matfile | regexp | save | uiimport | whos

Topics
“Supported File Formats for Import and Export”
“Save and Load Workspace Variables”

1 Alphabetical List

1-8374

“Ways to Import Text Files”
“Unexpected Results When Loading Variables Within a Function”
“Import or Export a Sequence of Files”
“Command vs. Function Syntax”

Introduced before R2006a

 load

1-8375

load (serial)
Load serial port objects and variables into MATLAB workspace

Syntax
load filename
load filename obj1 obj2 ...
out = load('filename','obj1','obj2',...)

Description
load filename returns all variables from the file specified by filename into the
MATLAB workspace.

load filename obj1 obj2 ... returns the serial port objects specified by obj1
obj2 ... from the file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified serial port
objects from the file filename as a structure to out instead of directly loading them into
the workspace. The field names in out match the names of the loaded serial port objects.

Examples

Note This example is based on a Windows platform.

Suppose that you create the serial port objects s1 and s2, configure a few properties for
s1, and connect both objects to their instruments:

s1 = serial('COM1');
s2 = serial('COM2');
set(s1,'Parity','mark','DataBits',7)
fopen(s1)
fopen(s2)

1 Alphabetical List

1-8376

Save s1 and s2 to the file MyObject.mat, and then load the objects back into the
workspace:

save MyObject s1 s2
load MyObject s1
load MyObject s2

get(s1, {'Parity', 'DataBits'})

ans =
 'mark' [7]

get(s2, {'Parity', 'DataBits'})

ans =
 'none' [8]

Tips
Values for read-only properties are restored to their default values upon loading. For
example, the Status property is restored to closed. To determine if a property is read-
only, examine its reference pages.

See Also
Status | save

Introduced before R2006a

 load (serial)

1-8377

loadlibrary
Load C shared library into MATLAB

Syntax
loadlibrary(libname,hfile)
loadlibrary(libname)
loadlibrary(libname,hfile,Name,Value)

loadlibrary(libname,@protofile)

[notfound,warnings] = loadlibrary(___)

Description
loadlibrary(libname,hfile) loads functions from C shared library libname defined
in header file hfile into MATLAB. The loadlibrary function only supports calling
functions that are callable from C and header files that can be parsed by a C compiler.
Functions written in C++ must be declared as extern "C".

loadlibrary(libname) loads the library if the name of the header file is the same as
the name of the library file.

loadlibrary(libname,hfile,Name,Value) loads the library with one or more
Name,Value arguments.

loadlibrary(libname,@protofile) uses a prototype file on page 1-8385,
protofile, in place of a header file.

[notfound,warnings] = loadlibrary(___) returns warning information, and can
include any of the input arguments in previous syntaxes.

Examples

1 Alphabetical List

1-8378

Display Functions in shrlibsample Library

Add path to examples folder.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

Display functions in library.

if not(libisloaded('shrlibsample'))
 loadlibrary('shrlibsample')
end
libfunctions('shrlibsample')

Functions in library shrlibsample:

addDoubleRef exportedDoubleValue printExportedDoubleValue
addMixedTypes getListOfStrings readEnum
addStructByRef multDoubleArray stringToUpper
addStructFields multDoubleRef
allocateStruct multiplyShort
deallocateStruct print2darray

Clean up.

unloadlibrary shrlibsample

Load Library Using Multiple Header Files

Suppose that you have a library, mylib, with the header file, mylib.h. The header file
contains the statement, #include header2.h. To use functions defined in header2.h,
call loadlibrary with the addheader option.

loadlibrary('mylib','mylib.h','addheader','header2')

Call stringToUpper Function Using Alias Name
if libisloaded('shrlibsample')
 unloadlibrary('shrlibsample')
else
 addpath(fullfile(matlabroot,'extern','examples','shrlib'))
end

 loadlibrary

1-8379

Create an alias name lib for library shrlibsample.

loadlibrary('shrlibsample','shrlibsample.h','alias','lib')

Call function stringToUpper using the alias name.

str = 'This was a Mixed Case string';
calllib('lib','stringToUpper',str)

ans =
'THIS WAS A MIXED CASE STRING'

Clean up.

unloadlibrary lib

Search Alternative Paths for Header Files

Add path to folder containing shrlibsample and its header file, shrlibsample.h.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

The shrlibsample.h header file includes the header file, shrhelp.h. If shrhelp.h is
in a different folder, for example, c:\work, use the 'includepath' option to tell
MATLAB where to find the file.

loadlibrary('shrlibsample','shrlibsample.h','includepath','c:\work')

Cleanup.

unloadlibrary shrlibsample

Create Alias Name for shrlibsample Function

This example shows how to replace the addMixedTypes function name in the MATLAB
shrlibsample library with an alias name, addTypes. To define the alias name, create a
prototype file then load the library using the prototype file as the header file.

Use a folder for which you have write-access.

cd('c:\work')

1 Alphabetical List

1-8380

Create a prototype file, mxproto.m.

hfile = fullfile(matlabroot,'extern','examples','shrlib','shrlibsample.h');
[notfound,warnings] = loadlibrary('shrlibsample',hfile,'mfilename','mxproto')

MATLAB creates the prototype file in the current folder. Ignore the warning messages.

Add the alias name to the prototype file. Open the file in MATLAB Editor.

edit mxproto.m

Search for the function addMixedTypes.

The following statement assigns the alias addTypes.

fcns.alias{fcnNum}='addTypes';

Add the statement to the line before the statement to increment fcnNum. The new
function prototype, with the new statement shown in bold, looks like the following:

% double addMixedTypes (short , int , double);
fcns.thunkname{fcnNum}='doubleint16int32doubleThunk';
fcns.name{fcnNum}='addMixedTypes';
fcns.calltype{fcnNum}='Thunk';
fcns.LHS{fcnNum}='double';
fcns.RHS{fcnNum}={'int16', 'int32', 'double'};
fcns.alias{fcnNum}='addTypes'; % Alias defined
fcnNum=fcnNum+1; % Increment fcnNum

Reload shrlibsample using the prototype file.

unloadlibrary shrlibsample
loadlibrary('shrlibsample',@mxproto)

Call the function by its alias name.

calllib('shrlibsample','addTypes',int16(127),int32(33000),pi)

ans = 3.3130e+04

Cleanup.

 loadlibrary

1-8381

unloadlibrary shrlibsample

Input Arguments
libname — Name of shared library
character vector

Name of shared library, specified as a character vector. The name is case-sensitive and
must match the file on your system.

On Microsoft Windows systems, libname refers to the name of a shared library (.dll)
file. On Linux systems, it refers to the name of a shared object (.so) file. On Apple Mac
systems, it refers to a dynamic shared library (.dylib). If you do not include a file
extension with the libname argument, loadlibrary attempts to find the library with
either the appropriate platform MEX-file extension or the appropriate platform library
extension. For a list of MEX-file extensions, use mexext.

MATLAB extracts the name portion of libname to identify the library in other shared
library functions. For example, when you call the calllib function, do not include the
path or file extension in the library argument name.
Data Types: char

hfile — Name of C header file
character vector

Name of C header file, specified as a character vector. The name is case-sensitive and
must match the file on your system. If you do not include a file extension in the file name,
loadlibrary uses .h for the extension.
Data Types: char

protofile — Name of prototype file
character vector

Name of prototype on page 1-8385 file, specified as a character vector. The name is case-
sensitive and must match the file on your system. @protofile specifies a function
handle to the prototype file. When using a prototype file, the only valid Name,Value pair
argument is alias.
Data Types: char

1 Alphabetical List

1-8382

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: loadlibrary('mylib','mylib.h','addheader','header2')

addheader — Header file
character vector

Header file, specified as the comma-separated pair consisting of 'addheader' and a
character vector. Specify the file name without a file extension.

Each file specified by addheader must have a corresponding #include statement in the
base header file. To load only the functions defined in the header file that you want to use
in MATLAB, use addheader.

MATLAB does not verify the existence of header files and ignores any that are not needed.

alias — Alternative name for library
character vector

Alternative name for library, specified as the comma-separated pair consisting of 'alias'
and a character vector. Associates the specified name with the library. All subsequent
calls to MATLAB functions that reference this library must use this alias until the library
is unloaded.

includepath — More search paths for subordinate header files
character vector

More search paths for subordinate header files—header files within header files, specified
as the comma-separated pair consisting of 'includepath' and a character vector.

mfilename — Prototype file
character vector

Prototype file, specified as the comma-separated pair consisting of 'mfilename' and a
character vector. Generates a prototype on page 1-8385 file in the current folder. The
prototype file name must be different from the library name. Use this file in place of a
header file when loading the library.

 loadlibrary

1-8383

thunkfilename — Thunk file
character vector

Thunk file, specified as the comma-separated pair consisting of 'thunkfilename' and a
character vector. Overrides the default thunk file on page 1-8385 name.

Output Arguments
notfound — Names of functions
cell array

Names of functions found in header files but missing from the library, returned as cell
array.
Data Types: cell

warnings — Warnings
character array

Warnings produced while processing the header file, returned as character array.

Limitations
• You must have a supported C compiler and Perl must be available.
• Do not call loadlibrary if the library is already in memory. To test this condition,

call libisloaded.
• loadlibrary does not support libraries generated by the MATLAB Compiler SDK

product.
• The MATLAB Shared Library interface does not support library functions with function

pointer inputs.
• For more information, see “Limitations to Shared Library Support”.

1 Alphabetical List

1-8384

Definitions

Prototype File
A prototype file is a file of MATLAB commands which you can modify and use in place of a
header file.

Thunk File
A thunk file is a compatibility layer to a 64-bit library generated by MATLAB. The name of
the thunk file is BASENAME_thunk_COMPUTER.c where BASENAME is either the name of
the shared library or, if specified, the mfilename prototype name. COMPUTER is the text
returned by the computer function.

MATLAB compiles this file and creates the file BASENAME_thunk_COMPUTER.LIBEXT,
where LIBEXT is the platform-dependent default shared library extension, for example,
dll on Windows.

Tips
• If you have more than one library file of the same name, load the first using the library
file name. Then load the additional libraries using the alias option.

• Use the alias option as an alternate name for a library. To load an alternate header
file, use the @protofile argument.

See Also
calllib | computer | libfunctions | libisloaded | mex | mexext | unloadlibrary

Topics
“When to Use Prototype Files”

External Websites
Supported and Compatible Compilers

 loadlibrary

1-8385

https://www.mathworks.com/support/compilers.html

Introduced before R2006a

1 Alphabetical List

1-8386

loadobj
Customize load process for objects

Syntax
b = loadobj(a)

Description
b = loadobj(a) is called by the load function if the class of a defines a loadobj
method. load returns b as the value loaded from a MAT-file.

Define a loadobj method when objects of the class require special processing when
loaded from MAT-files. If you define a saveobj method, then define a loadobj method to
restore the object to the desired state.

Define loadobj as a static method so it can accept as an argument whatever object or
structure that you saved in the MAT-file.

When loading a subclass object, load calls only the subclass loadobj method. If a
superclass defines a loadobj method, the subclass inherits this method. However, it is
possible that the inherited method does not perform the necessary operations to load the
subclass object. Consider overriding superclass loadobj methods.

If any superclass in a class hierarchy defines a loadobj method, then the subclass
loadobj method must ensure that the subclass and superclass objects load properly.
Ensure proper loading by calling the superclass loadobj (or other methods) from the
subclass loadobj method.

Input Arguments
a

The input argument, a, can be:

 loadobj

1-8387

• The object as loaded from the MAT-file.
• A structure created by load (if load cannot resolve the object).
• A structure returned by the saveobj method that was saved instead of the object.

Implement your loadobj method to work with scalar objects or structures. When you
have saved an object array, load calls loadobj on each element of the saved array.

Output Arguments
b — Object passed to load function
MATLAB object

Object passed to load function by MATLAB.The value returned by a class loadobj
method is typically an object of the class being loaded. However, the loadobj method
can return an object of a different class or an updated object that matches a new class
definition.

See Also
load | save | saveobj

Topics
“Save and Load Process for Objects”
“Object Save and Load”

Introduced before R2006a

1 Alphabetical List

1-8388

matlab.project.loadProject
Package: matlab.project

Load project

Syntax
proj = matlab.project.loadProject(projectPath)

Description
proj = matlab.project.loadProject(projectPath) loads the project specified by
the file or folder projectPath. If any projects are currently open, MATLAB closes them
before loading the specified project.

Examples

Load a Project

Load a project from a folder called "C:/projects/project1/".

proj = matlab.project.loadProject("C:/projects/project1/")

Input Arguments
projectPath — Full path to project file or folder
character vector | string scalar

Full path to project .prj file or project root folder, specified as a character vector or
string scalar.
Example: "C:/projects/project1/myProject.prj"

 matlab.project.loadProject

1-8389

Example: "C:/projects/project1/"

Output Arguments
proj — Project
matlab.project.Project object

Project, returned as a matlab.project.Project object. Use the
matlab.project.Project object to programmatically manipulate the currently open
project.

See Also
currentProject | matlab.project.rootProject | openProject

Topics
“Create and Edit Projects Programmatically”

Introduced in R2019a

1 Alphabetical List

1-8390

localfunctions
Function handles to all local functions in MATLAB file

Syntax
fcns = localfunctions

Description
fcns = localfunctions returns a cell array of function handles, fcns, to all local
functions in the current file.

You cannot define local functions in the context of the command line or anonymous
functions, so when you call localfunctions from these contexts, you get an empty cell
array. Within the cell array, localfunctions returns the function handles in an
undefined order.

Examples

Create Handles to Local Functions in Function File

Create the following function in a file, computeEllipseVals.m, in your working folder.
The function returns a cell array with handles to all the local functions.

function fh = computeEllipseVals
fh = localfunctions;
end

function f = computeFocus(a,b)
f = sqrt(a^2-b^2);
end

function e = computeEccentricity(a,b)

 localfunctions

1-8391

f = computeFocus(a,b);
e = f/a;
end

function ae = computeArea(a,b)
ae = pi*a*b;
end

At the command prompt, invoke the function to get a cell array of handles to the local
functions.

fh = computeEllipseVals

fh =

 3x1 cell array

 { @computeFocus}
 {@computeEccentricity}
 { @computeArea}

Call a local function using its handle to compute the area of an ellipse. The computeArea
function handle is the third element in the cell array.

fh{3}(3,1)

ans =

 9.4248

Create Handles to Local Functions in Script File

As of R2016b, you can include local functions in scripts. Therefore, you can use the
localfunctions function to create function handles that you can invoke in the script or
at the command prompt.

Create the following script in a file, mystats.m, in your working folder. The script
creates a cell array with handles to all the local functions.

1 Alphabetical List

1-8392

x = [1 3 5 7 9 10 8 6 4 2 0 -2];

avg = mymean(x)

fh = localfunctions;
med = fh{2}(x) % equivalent to med = mymedian(x,n)

function a = mymean(v)
n = length(v);
a = sum(v)/n;
end

function m = mymedian(v)
n = length(v);
w = sort(v);
if rem(n,2) == 1
 m = w((n + 1)/2);
else
 m = (w(n/2) + w(n/2 + 1))/2;
end
end

Run the script. MATLAB® computes the average by directly invoking the mymean local
function and the median by invoking mymedian local function through a function handle.

mystats

avg =

 4.4167

med =

 4.5000

At the command prompt, call the mymean local function using its handle. Variables from
the script are accessible at the command prompt. The mymean function handle is the first
element in the cell array.

 localfunctions

1-8393

x2 = [1 1 2 6 24 120 720 5040];
fh
avg2 = fh{2}(x2)

fh =

 2x1 cell array

 { @mymean}
 {@mymedian}

avg2 =

 15

See Also
functiontests

Topics
“Local Functions”

Introduced in R2013b

1 Alphabetical List

1-8394

log
Natural logarithm

Syntax
Y = log(X)

Description
Y = log(X) returns the natural logarithm ln(x) of each element in array X.

The log function’s domain includes negative and complex numbers, which can lead to
unexpected results if used unintentionally. For negative and complex numbers z = u +
i*w, the complex logarithm log(z) returns

log(abs(z)) + 1i*angle(z)

If you want negative and complex numbers to return error messages rather than return
complex results, use reallog instead.

Examples

Natural Logarithm of Negative Number

Show that the natural logarithm of -1 is iπ.

log(-1)

ans = 0.0000 + 3.1416i

 log

1-8395

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Logarithm values
scalar | vector | matrix | multidimensional array

Logarithm values, returned as a scalar, vector, matrix, or multidimensional array.

For positive real values of X in the interval (0, Inf), Y is in the interval (-Inf,Inf). For
complex and negative real values of X, Y is complex. The data type of Y is the same as that
of X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Alphabetical List

1-8396

• When the input value x is real, but the output should be complex, simulation ends with
an error. To produce the complex result, make the input value complex by passing in
complex(x).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
exp | log10 | log1p | log2 | loglog | logm | reallog | semilogx | semilogy

Introduced before R2006a

 log

1-8397

log10
Common logarithm (base 10)

Syntax
Y = log10(X)

Description
Y = log10(X) returns the common logarithm of each element in array X. The function
accepts both real and complex inputs. For real values of X in the interval (0, Inf), log10
returns real values in the interval (-Inf ,Inf). For complex and negative real values of X,
the log10 function returns complex values.

Examples

Calculate Scalar Common Logarithm Values

Examine several values of the base 10 logarithm function.

Calculate the common logarithm of 1.

log10(1)

ans = 0

The result is 0, so this is the x-intercept of the log10 function.

Calculate the common logarithm of 10.

log10(10)

ans = 1

The result is 1 since 101 = 10.

1 Alphabetical List

1-8398

Calculate the common logarithm of 100.

log10(100)

ans = 2

The result is 2 since 102 = 100.

Calculate the common logarithm of 0.

log10(0)

ans = -Inf

The result is -Inf since 10−∞ = 0.

Real-Valued Common Logarithm

Create a vector of numbers in the interval [0.5 5].

X = (0.5:0.5:5)';

Calculate the common logarithm of X.

Y = log10(X)

Y = 10×1

 -0.3010
 0
 0.1761
 0.3010
 0.3979
 0.4771
 0.5441
 0.6021
 0.6532
 0.6990

 log10

1-8399

Complex-Valued Common Logarithm

Create two Cartesian grids for X and Y.

[X,Y] = meshgrid(0:0.5:1.5,-2:0.5:2);

Calculate the complex base 10 logarithm log10(X + iY) on the grid. Use 1i for improved
speed and robustness with complex arithmetic.

Z = log10(X + 1i*Y)

Z = 9×4 complex

 0.3010 - 0.6822i 0.3142 - 0.5758i 0.3495 - 0.4808i 0.3979 - 0.4027i
 0.1761 - 0.6822i 0.1990 - 0.5425i 0.2559 - 0.4268i 0.3266 - 0.3411i
 0.0000 - 0.6822i 0.0485 - 0.4808i 0.1505 - 0.3411i 0.2559 - 0.2554i
 -0.3010 - 0.6822i -0.1505 - 0.3411i 0.0485 - 0.2014i 0.1990 - 0.1397i
 -Inf + 0.0000i -0.3010 + 0.0000i 0.0000 + 0.0000i 0.1761 + 0.0000i
 -0.3010 + 0.6822i -0.1505 + 0.3411i 0.0485 + 0.2014i 0.1990 + 0.1397i
 0.0000 + 0.6822i 0.0485 + 0.4808i 0.1505 + 0.3411i 0.2559 + 0.2554i
 0.1761 + 0.6822i 0.1990 + 0.5425i 0.2559 + 0.4268i 0.3266 + 0.3411i
 0.3010 + 0.6822i 0.3142 + 0.5758i 0.3495 + 0.4808i 0.3979 + 0.4027i

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-8400

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
exp | log | log1p | log2 | loglog | logm | reallog | semilogx | semilogy

Introduced before R2006a

 log10

1-8401

log1p
Compute log(1+x) accurately for small values of x

Syntax
y = log1p(x)

Description
y = log1p(x) computes log(1+x), compensating for the roundoff in 1+x. log1p(x) is
more accurate than log(1+x) for small values of x. For small x, log1p(x) is
approximately x, whereas log(1+x) can be zero.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-8402

• If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
expm1 | log

Introduced before R2006a

 log1p

1-8403

log2
Base 2 logarithm and floating-point number dissection

Syntax
Y = log2(X)
[F,E] = log2(X)

Description
Y = log2(X) computes the base 2 logarithm of the elements of X such that 2Y = X.

[F,E] = log2(X) returns arrays F and E such that X = F ⋅ 2E. The values in F are
typically in the range 0.5 <= abs(F) < 1.

Examples

Base 2 Logarithm Values

X = [0 1 2 10 Inf NaN];
Y = log2(X)

Y = 1×6

 -Inf 0 1.0000 3.3219 Inf NaN

Floating-Point Number Dissection

Dissect several numbers into the exponent and mantissa. These operations all follow
standard IEEE® arithmetic.

1 Alphabetical List

1-8404

Create a vector X that contains several test values. Calculate the exponent and mantissa
for each number.

X = [1 pi -3 eps realmax realmin];
format rat
[F,E] = log2(X)

F = 1×6

 1/2 355/452 -3/4 1/2 1 1/2

E = 1×6

 1 2 2 -51 1024 -1021

Collect the results in a table. Convert the numbers into character vectors for display
purposes.

x = {'1','pi','-3','eps','realmax','realmin'}';
f = strtrim(cellstr(rats(F')));
T = table(x,f,E','VariableNames',{'Value','Mantissa','Exponent'})

T=6×3 table
 Value Mantissa Exponent
 _________ _________ ________

 '1' '1/2' 1
 'pi' '355/452' 2
 '-3' '-3/4' 2
 'eps' '1/2' -51
 'realmax' '1' 1024
 'realmin' '1/2' -1021

The results indicate that, for the first row, 1 = 1
2 21 . Similarly, for the fourth row,

eps = 1
2 2−51 .

 log2

1-8405

Input Arguments
X — Input matrix
scalar | vector | matrix | multidimensional array

Input matrix, specified as a scalar, vector, matrix, or multidimensional array.

For floating-point number dissection [F,E] = log2(X), any zeros in X produce F = 0
and E = 0. Input values of Inf, -Inf, or NaN are returned unchanged in F with a
corresponding exponent of E = 0.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Base 2 logarithm values
scalar | vector | matrix | multidimensional array

Base 2 logarithm values, returned as a scalar, vector, matrix, or multidimensional array of
the same size as X.

F — Mantissa values
scalar | vector | matrix | multidimensional array

Mantissa values, returned as a scalar, vector, matrix, or multidimensional array of the
same size as X. The values in F and E satisfy X = F.*2.^E.

E — Exponent values
scalar | vector | matrix | multidimensional array

Exponent values, returned as a scalar, vector, matrix, or multidimensional array of the
same size as X. The values in F and E satisfy X = F.*2.^E.

Tips
• This function corresponds to the ANSI C function frexp() and the IEEE floating-point

standard function logb(). Any zeros in X produce F = 0 and E = 0.

1 Alphabetical List

1-8406

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The syntax [F,E] = log2(X) is not supported.
• If the output of the function running on the GPU can be complex, then you must

explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
log | log10 | pow2

 log2

1-8407

Introduced before R2006a

1 Alphabetical List

1-8408

logical
Convert numeric values to logicals

Syntax
L = logical(A)

Description
L = logical(A) converts A into an array of logical values. Any nonzero element of A is
converted to logical 1 (true) and zeros are converted to logical 0 (false). Complex
values and NaNs cannot be converted to logical values and result in a conversion error.

Examples

Pick Odd Elements from Numeric Matrix

Pick out the odd-numbered elements of a numeric matrix.

Create a numeric matrix.

A = [1 -3 2;5 4 7;-8 1 3];

Find the modulus, mod(A,2), and convert it to a logical array for indexing.

L = logical(mod(A,2))

L = 3x3 logical array

 1 1 0
 1 0 1
 0 1 1

The array has logical 1 (true) values where A is odd.

 logical

1-8409

Use L as a logical index to pick out the odd elements of A.

A(L)

ans = 6×1

 1
 5
 -3
 1
 7
 3

The result is a vector containing all odd elements of A.

Use the logical NOT operator, ~, on L to find the even elements of A.

A(~L)

ans = 3×1

 -8
 4
 2

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

Tips
• Most arithmetic operations involving logical arrays return double values. For example,

adding zero to a logical array returns a double array.

1 Alphabetical List

1-8410

• Logical arrays also are created by the relational operators (==,<,>,~, etc.) and
functions like any, all, isnan, isinf, and isfinite.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
false | islogical | true

 logical

1-8411

Topics
“Array Indexing”
“Determine if Arrays Are Logical”

Introduced before R2006a

1 Alphabetical List

1-8412

loglog
Log-log scale plot

Syntax
loglog(Y)
loglog(X1,Y1,...)
loglog(X1,Y1,LineSpec,...)
loglog(...,'PropertyName',PropertyValue,...)
loglog(ax,...)
h = loglog(...)

Description
loglog(Y) plots the columns of Y versus their index if Y contains real numbers. If Y
contains complex numbers, loglog(Y) and loglog(real(Y),imag(Y)) are
equivalent. loglog ignores the imaginary component in all other uses of this function.

loglog(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or Yn is a matrix,
loglog plots the vector argument versus the rows or columns of the matrix, along the
dimension of the matrix whose length matches the length of the vector. If the matrix is
square, its columns plot against the vector if their lengths match.

loglog(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec triples,
where LineSpec determines line type, marker symbol, and color of the plotted lines. You
can mix Xn,Yn,LineSpec triples with Xn,Yn pairs, for example,

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)

 loglog

1-8413

loglog(...,'PropertyName',PropertyValue,...) sets line property values for all
the charting lines created. For a list of properties, see Chart Line.

loglog(ax,...) creates the line in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

h = loglog(...) returns a column vector of chart line objects.

If you do not specify a color when plotting more than one line, loglog automatically
cycles through the colors and line styles in the order specified by the current axes.

If you attempt to add a loglog, semilogx, or semilogy plot to a linear axis mode graph
with hold on, the axis mode remains as it is and the new data plots as linear.

Examples

Logarithmic Scale for Both Axes

Create a plot using a logarithmic scale for both the x-axis and the y-axis. Use a line with
square markers. Display the grid.

x = logspace(-1,2);
y = exp(x);
loglog(x,y,'-s')
grid on

1 Alphabetical List

1-8414

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 loglog

1-8415

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | plot | semilogx | semilogy

Properties
Chart Line

Introduced before R2006a

1 Alphabetical List

1-8416

logm
Matrix logarithm

Syntax
L = logm(A)
[L,exitflag] = logm(A)

Description
L = logm(A) is the principal matrix logarithm of A, the inverse of expm(A). The output,
L, is the unique logarithm for which every eigenvalue has imaginary part lying strictly
between –π and π. If A is singular or has any eigenvalues on the negative real axis, then
the principal logarithm is undefined. In this case, logm computes a nonprincipal
logarithm and returns a warning message.

[L,exitflag] = logm(A) returns a scalar exitflag that describes the exit condition
of logm:

• If exitflag = 0, the algorithm was successfully completed.
• If exitflag = 1, too many matrix square roots had to be computed. However, the

computed value of L might still be accurate.

Examples

Compare Matrix Logarithms

Calculate the matrix exponential of a matrix, A.

A = [1 1 0; 0 0 2; 0 0 -1];
Y = expm(A)

Y = 3×3

 logm

1-8417

 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679

Calculate the matrix logarithm of Y to reproduce the original matrix, A.

P = logm(Y)

P = 3×3

 1.0000 1.0000 0.0000
 0 0 2.0000
 0 0 -1.0000

log(A) involves taking the logarithm of zero, so it produces inferior results.

Q = log(A)

Q = 3×3 complex

 0.0000 + 0.0000i 0.0000 + 0.0000i -Inf + 0.0000i
 -Inf + 0.0000i -Inf + 0.0000i 0.6931 + 0.0000i
 -Inf + 0.0000i -Inf + 0.0000i 0.0000 + 3.1416i

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square matrix.
Data Types: single | double
Complex Number Support: Yes

Tips
• If A is real symmetric or complex Hermitian, then so is logm(A).

1 Alphabetical List

1-8418

• Some matrices, like A = [0 1; 0 0], do not have any logarithms, real or complex,
so logm cannot be expected to produce one.

Algorithms
The algorithm logm uses is described in [1] and [2].

References
[1] Al-Mohy, A. H. and Nicholas J. Higham, “Improved inverse scaling and squaring

algorithms for the matrix logarithm,” SIAM J. Sci. Comput., 34(4), pp. C153–C169,
2012

[2] Al-Mohy, A. H., Higham, Nicholas J. and Samuel D. Relton, “Computing the Frechet
derivative of the matrix logarithm and estimating the condition number,” SIAM J.
Sci. Comput.,, 35(4), pp. C394–C410, 2013

See Also
expm | funm | sqrtm

Introduced before R2006a

 logm

1-8419

logspace
Generate logarithmically spaced vector

Syntax
y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description
y = logspace(a,b) generates a row vector y of 50 logarithmically spaced points
between decades 10^a and 10^b. The logspace function is especially useful for creating
frequency vectors. The function is the logarithmic equivalent of linspace and the ‘:’
operator.

y = logspace(a,b,n) generates n points between decades 10^a and 10^b.

y = logspace(a,pi) generates points between 10^a and pi, which is useful in digital
signal processing for creating logarithmically spaced frequencies in the interval
[10^a,pi].

Examples

Vector of Logarithmically Spaced Numbers

Create a vector of 50 logarithmically spaced points in the interval [10^1,10^5].

y = logspace(1,5);

1 Alphabetical List

1-8420

Vector with Specified Number of Values

Create a vector of 7 logarithmically spaced points in the interval [10^1,10^5].

y1 = logspace(1,5,7)

y1 = 1×7
105 ×

 0.0001 0.0005 0.0022 0.0100 0.0464 0.2154 1.0000

Vector of Logarithmically Spaced Complex Numbers

Create a vector of complex numbers with 8 logarithmically spaced points between
10^(1+2i) and 10^(5+5i).

y = logspace(1+2i,5+5i,8)

y = 1×8 complex
104 ×

 -0.0001 - 0.0010i 0.0029 - 0.0024i 0.0133 + 0.0040i 0.0147 + 0.0497i -0.1242 + 0.1479i -0.7150 - 0.0822i -1.2137 - 2.3924i 4.9458 - 8.6913i

Input Arguments
a — First bound
numeric scalar

First bound, specified as a numeric scalar. The a argument defines a bound of the interval
over which logspace generates points. a can be real or complex, and the other bound, b,
can be either larger or smaller than a. If b is smaller than a, then the vector contains
descending values.
Data Types: single | double
Complex Number Support: Yes

b — Second bound
numeric scalar

 logspace

1-8421

Second bound, specified as a numeric scalar. The b argument defines a bound of the
interval over which logspace generates points. b can be real or complex, and b can be
either larger or smaller than the other bound, a. If b is smaller than a, then the vector
contains descending values.
Data Types: single | double
Complex Number Support: Yes

n — Number of points
50 (default) | real numeric scalar

Number of points, specified as a real numeric scalar.

• If n is 1, logspace returns 10^b.
• If n is zero or negative, logspace returns an empty row vector.
• If n is not an integer, logspace rounds n down and returns floor(n) points.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
colon | linspace

Introduced before R2006a

1 Alphabetical List

1-8422

lookfor
Search for keyword in all help entries

Syntax
lookfor keyword
lookfor keyword -all

Description
lookfor keyword searches for the specified keyword in the first comment line (the H1
line) of the help text in all MATLAB program files found on the search path. For all files in
which a match occurs, lookfor displays the H1 line.

lookfor is useful if you are searching for a function and you do not know its name. To
find a function whose name you already know, use the what and which functions, which
run much faster.

lookfor keyword -all searches the entire first comment block of a MATLAB program
file.

Examples

Search for Text in H1 Help

Search for the word literal in the H1 line of the help text for all MATLAB program files.

lookfor inverse

invhilb - Inverse Hilbert matrix.
ipermute - Inverse permute array dimensions.
dramadah - Matrix of zeros and ones with large determinant or inverse.
invhess - Inverse of an upper Hessenberg matrix.
betaincinv - Inverse incomplete beta function.
...

 lookfor

1-8423

Search for Text in All Help

Search for the word literal in all of the help text for all MATLAB program files.

lookfor inverse -all

bsxfun: @atan2 Four-quadrant inverse tangent; result in radians
bsxfun: @atan2d Four-quadrant inverse tangent; result in dgrees

gallery: dramadah Matrix of ones and zeroes whose inverse has large integer entries.
gallery: invhess Inverse of an upper Hessenberg matrix.

hilb: calculates the exact inverse.

invhilb: Inverse Hilbert matrix.
invhilb: IH = INVHILB(N) is the inverse of the N-by-N matrix with elements

ipermute: Inverse permute array dimensions.
ipermute: A = IPERMUTE(B,ORDER) is the inverse of permute. IPERMUTE rearranges
...

Input Arguments
keyword — Keyword to search for
character vector | string scalar

Keyword to search for, specified as a character vector or string scalar.

Alternative Functionality
As an alternative to the lookfor command, use the find features in the Current Folder
browser. For example, you can look for all occurrences of a specified word in all the
MATLAB program files in the current folder and its subfolders. For more information, see
“Find Files and Folders”.

To search the documentation, including third-party and custom documentation, use the
docsearch function.

See Also
doc | docsearch | help | strfind | what | which

1 Alphabetical List

1-8424

Topics
“Search Syntax and Tips”
“Find Files and Folders”

Introduced before R2006a

 lookfor

1-8425

lower
Convert strings to lowercase

Syntax
newStr = lower(str)

Description
newStr = lower(str) converts all uppercase characters in str to the corresponding
lowercase characters and leaves all other characters unchanged.

Examples

Convert Character Vector to Lowercase
lower('Hello, World.')

ans =
'hello, world.'

Convert String Array to Lowercase

Starting in R2017a, you can create string arrays using double quotes.

Convert a string array to contain lowercase characters.

str = ["The SOONER,";"the BETTER."]

str = 2x1 string array
 "The SOONER,"
 "the BETTER."

1 Alphabetical List

1-8426

newStr = lower(str)

newStr = 2x1 string array
 "the sooner,"
 "the better."

Input Arguments
str — Input array
string array | character array | cell array of character vectors

Input array, specified as a string array, character array, or cell array of character vectors.

Tips
For character arrays, the lower function supports only the character sets:

• PC: Windows Latin-1
• Other: ISO® Latin-1 (ISO 8859-1)

For string arrays, the lower function supports Unicode.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 lower

1-8427

Usage notes and limitations:

• Input array must be a string scalar or a character array.
• Input values must be in the range 0–127.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
char | isstrprop | reverse | string | upper

Topics
“Create Character Arrays”
“Create String Arrays”
“Analyze Text Data with String Arrays”
“Search and Replace Text”

Introduced before R2006a

1 Alphabetical List

1-8428

ls
List folder contents

Syntax
ls
ls name
list = ls(___)

Description
ls lists the contents of the current folder.

ls name lists the files and folders in the current folder that match the specified name.

list = ls(___) returns the names of all the files and folders in the current folder that
match the specified name. You can specify list with any of the arguments in the previous
syntaxes.

Examples

List Files and Folders

List all the files and folders with names that contain my.

ls *my*

my_class.m my_function.m my_script.m my_text.txt

List all the files and folders with a .m extension.

ls *.m

 ls

1-8429

my_class.m my_function.m my_script.m test_function.m

Save List of Files and Folders

Save a list of the names of all the files and folders in the current folder to the variable
MyList.

MyList = ls;

Input Arguments
name — Name of file or folder
character vector | string scalar

Name of file or folder, specified as a character vector or string scalar. Use the '*'
wildcard to match patterns. For example, ls *.m lists all files and folders with a .m
extension, and ls m* lists all files and folders with names that begin with the letter m.
Data Types: char | string

Output Arguments
list — List of files and folders
character array

List of files and folders, specified as a character array in one of these formats.

• UNIX platforms – list is a character vector of names separated by tab and space
characters.

• Microsoft Windows platforms – list is an m-by-n character array of names. m is the
number of names and n is the number of characters in the longest name. MATLAB
pads names shorter than n characters with space characters.

Tips
• To further modify the results of the ls command on UNIX platforms, you can add any
flags that the operating system supports. For example, ls -c displays files by

1 Alphabetical List

1-8430

timestamp and ls -d displays only directories. For more information, see the UNIX
ls documentation.

Alternatives
Use the dir command to return file attributes for each file and folder in the output
argument.

You can also view files and folders in the Current Folder browser by issuing the
filebrowser command.

See Also
dir | pwd

Introduced before R2006a

 ls

1-8431

lscov
Least-squares solution in presence of known covariance

Syntax
x = lscov(A,B)
x = lscov(A,B,w)
x = lscov(A,B,V)
x = lscov(A,B,V,alg)
[x,stdx] = lscov(...)
[x,stdx,mse] = lscov(...)
[x,stdx,mse,S] = lscov(...)

Description
x = lscov(A,B) returns the ordinary least squares solution to the linear system of
equations A*x = B, i.e., x is the n-by-1 vector that minimizes the sum of squared errors
(B - A*x)'*(B - A*x), where A is m-by-n, and B is m-by-1. B can also be an m-by-k
matrix, and lscov returns one solution for each column of B. When rank(A) < n,
lscov sets the maximum possible number of elements of x to zero to obtain a "basic
solution".

x = lscov(A,B,w), where w is a vector length m of real positive weights, returns the
weighted least squares solution to the linear system A*x = B, that is, x minimizes (B -
A*x)'*diag(w)*(B - A*x). w typically contains either counts or inverse variances.

x = lscov(A,B,V), where V is an m-by-m real symmetric positive definite matrix,
returns the generalized least squares solution to the linear system A*x = B with
covariance matrix proportional to V, that is, x minimizes (B - A*x)'*inv(V)*(B -
A*x).

More generally, V can be positive semidefinite, and lscov returns x that minimizes e'*e,
subject to A*x + T*e = B, where the minimization is over x and e, and T*T' = V.
When V is semidefinite, this problem has a solution only if B is consistent with A and V
(that is, B is in the column space of [A T]), otherwise lscov returns an error.

1 Alphabetical List

1-8432

By default, lscov computes the Cholesky decomposition of V and, in effect, inverts that
factor to transform the problem into ordinary least squares. However, if lscov
determines that V is semidefinite, it uses an orthogonal decomposition algorithm that
avoids inverting V.

x = lscov(A,B,V,alg) specifies the algorithm used to compute x when V is a matrix.
alg can have the following values:

• 'chol' uses the Cholesky decomposition of V.
• 'orth' uses orthogonal decompositions, and is more appropriate when V is ill-

conditioned or singular, but is computationally more expensive.

[x,stdx] = lscov(...) returns the estimated standard errors of x. When A is rank
deficient, stdx contains zeros in the elements corresponding to the necessarily zero
elements of x.

[x,stdx,mse] = lscov(...) returns the mean squared error. If B is assumed to have
covariance matrix σ2V (or (σ2)×diag(1./W)), then mse is an estimate of σ2.

[x,stdx,mse,S] = lscov(...) returns the estimated covariance matrix of x. When A
is rank deficient, S contains zeros in the rows and columns corresponding to the
necessarily zero elements of x. lscov cannot return S if it is called with multiple right-
hand sides, that is, if size(B,2) > 1.

The standard formulas for these quantities, when A and V are full rank, are

• x = inv(A'*inv(V)*A)*A'*inv(V)*B
• mse = B'*(inv(V) - inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B./(m-n)
• S = inv(A'*inv(V)*A)*mse
• stdx = sqrt(diag(S))

However, lscov uses methods that are faster and more stable, and are applicable to rank
deficient cases.

lscov assumes that the covariance matrix of B is known only up to a scale factor. mse is
an estimate of that unknown scale factor, and lscov scales the outputs S and stdx
appropriately. However, if V is known to be exactly the covariance matrix of B, then that
scaling is unnecessary. To get the appropriate estimates in this case, you should rescale S
and stdx by 1/mse and sqrt(1/mse), respectively.

 lscov

1-8433

Examples
Example 1 — Computing Ordinary Least Squares
The MATLAB backslash operator (\) enables you to perform linear regression by
computing ordinary least-squares (OLS) estimates of the regression coefficients. You can
also use lscov to compute the same OLS estimates. By using lscov, you can also
compute estimates of the standard errors for those coefficients, and an estimate of the
standard deviation of the regression error term:

x1 = [.2 .5 .6 .8 1.0 1.1]';
x2 = [.1 .3 .4 .9 1.1 1.4]';
X = [ones(size(x1)) x1 x2];
y = [.17 .26 .28 .23 .27 .34]';

a = X\y
a =
 0.1203
 0.3284
 -0.1312

[b,se_b,mse] = lscov(X,y)
b =
 0.1203
 0.3284
 -0.1312
se_b =
 0.0643
 0.2267
 0.1488
mse =
 0.0015

Example 2 — Computing Weighted Least Squares
Use lscov to compute a weighted least-squares (WLS) fit by providing a vector of
relative observation weights. For example, you might want to downweight the influence of
an unreliable observation on the fit:

w = [1 1 1 1 1 .1]';

[bw,sew_b,msew] = lscov(X,y,w)

1 Alphabetical List

1-8434

bw =
 0.1046
 0.4614
 -0.2621
sew_b =
 0.0309
 0.1152
 0.0814
msew =
 3.4741e-004

Example 3 — Computing General Least Squares
Use lscov to compute a general least-squares (GLS) fit by providing an observation
covariance matrix. For example, your data may not be independent:

V = .2*ones(length(x1)) + .8*diag(ones(size(x1)));

[bg,sew_b,mseg] = lscov(X,y,V)
bg =
 0.1203
 0.3284
 -0.1312
sew_b =
 0.0672
 0.2267
 0.1488
mseg =
 0.0019

Example 4 — Estimating the Coefficient Covariance Matrix
Compute an estimate of the coefficient covariance matrix for either OLS, WLS, or GLS
fits. The coefficient standard errors are equal to the square roots of the values on the
diagonal of this covariance matrix:

[b,se_b,mse,S] = lscov(X,y);

S
S =
 0.0041 -0.0130 0.0075
 -0.0130 0.0514 -0.0328
 0.0075 -0.0328 0.0221

 lscov

1-8435

[se_b sqrt(diag(S))]
ans =
 0.0643 0.0643
 0.2267 0.2267
 0.1488 0.1488

Algorithms
The vector x minimizes the quantity (A*x-B)'*inv(V)*(A*x-B). The classical linear
algebra solution to this problem is

 x = inv(A'*inv(V)*A)*A'*inv(V)*B

but the lscov function instead computes the QR decomposition of A and then modifies Q
by V.

References
[1] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge, 1986, p. 398.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If A is rank deficient or V is a matrix and V is rank deficient, then you must enable
support for variable-size arrays.

• Code generation does not support sparse matrix inputs for this function.

See Also
lsqnonneg | mldivide | mrdivide | qr

1 Alphabetical List

1-8436

Introduced before R2006a

 lscov

1-8437

lsqminnorm
Minimum norm least-squares solution to linear equation

Syntax
X = lsqminnorm(A,B)
X = lsqminnorm(A,B,tol)
X = lsqminnorm(___ ,rankWarn)

Description
X = lsqminnorm(A,B) returns an array X that solves the linear equation AX = B and
minimizes the value of norm(A*X-B). If several solutions exist to this problem, then
lsqminnorm returns the solution that minimizes norm(X).

X = lsqminnorm(A,B,tol) additionally specifies the tolerance that lsqminnorm uses
to determine the rank of A.

X = lsqminnorm(___ ,rankWarn) specifies an optional flag to display a warning if A
has low rank. You can use any of the input argument combinations in previous syntaxes.
rankWarn can be 'nowarn' (default) or 'warn'.

Examples

Solve Linear System with Infinite Solutions

Solve a linear system that has infinitely many solutions with backslash (\) and
lsqminnorm. Compare the results using the 2-norms of the solutions.

When infinite solutions exist to Ax = b, each of them minimizes Ax− b . The backslash
command (\) computes one such solution, but this solution typically does not minimize
x . The solution computed by lsqminnorm minimizes not only norm(A*x-b), but also
norm(x).

1 Alphabetical List

1-8438

Consider a simple linear system with one equation and two unknowns, 2x1 + 3x2 = 8. This
system is underdetermined since there are fewer equations than unknowns. Solve the
equation using both backslash and lsqminnorm.

A = [2 3];
b = 8;
x_a = A\b

x_a = 2×1

 0
 2.6667

x_b = lsqminnorm(A,b)

x_b = 2×1

 1.2308
 1.8462

The two methods obtain different solutions because backslash only aims to minimize
norm(A*x-b), whereas lsqminnorm also aims to minimize norm(x). Calculate these
norms and put the results in a table for easy comparison.

s1 = {'Backslash'; 'lsqminnorm'};
s2 = {'norm_Ax_minus_b','norm_x'};
T = table([norm(A*x_a-b); norm(A*x_b-b)],[norm(x_a); norm(x_b)],'RowNames',s1,'VariableNames',s2)

T=2×2 table
 norm_Ax_minus_b norm_x
 _______________ ______

 Backslash 0 2.6667
 lsqminnorm 8.8818e-16 2.2188

This figure illustrates the situation and shows which solutions each of the methods return.
The blue line represents the infinite number of solutions to the equation x2 = − 2

3x1 + 8
3 .

The orange circle represents the minimum distance from the origin to the line of
solutions, and the solution returned by lsqminnorm lies exactly at the tangent point
between the line and circle, indicating it is the solution that is closest to the origin.

 lsqminnorm

1-8439

Specify Tolerance to Reduce Impact of Noisy Data

Show how specifying a tolerance for the rank computation in lsqminnorm can help
define the scale of the problem so that random noise does not corrupt the solution.

Create a low-rank matrix of rank 5 and a right-hand side vector b.

rng default % for reproducibility
U = randn(200,5);
V = randn(100,5);
A = U*V';
b = U*randn(5,1) + 1e-4*randn(200,1);

1 Alphabetical List

1-8440

Solve the linear system Ax = b using lsqminnorm. Compute the norms of A*x-b and x to
check the quality of the solution.

x = lsqminnorm(A,b);
norm(A*x-b)

ans = 0.0014

norm(x)

ans = 0.1741

Now add a small amount of noise to the matrix A and solve the linear system again. The
noise affects the solution vector x of the linear system disproportionately.

Anoise = A + 1e-12*randn(200,100);
xnoise = lsqminnorm(Anoise,b);
norm(Anoise*xnoise - b)

ans = 0.0010

norm(xnoise)

ans = 1.1216e+08

The reason for the big difference in the solutions is that the noise affects the low-rank
approximation of A. In other words, lsqminnorm is treating small values on the diagonal
of the R matrix in the QR decomposition of A as being more important than they are.
Ideally, these small values on the diagonal of R should be treated as zeros.

Plot the diagonal elements of the R matrix in the QR decomposition of Anoise. A large
number of the diagonal elements are on the order of 1e-10.

[Q,R,p] = qr(Anoise,0);
semilogy(abs(diag(R)),'o')

 lsqminnorm

1-8441

The solution to this issue is to increase the tolerance used by lsqminnorm so that a low-
rank approximation of Anoise with error less than 1e-8 is used in the calculation. This
makes the result much less susceptible to the noise. The solution using a tolerance is very
close to the original solution x.

xnoise = lsqminnorm(Anoise, b, 1e-8);
norm(Anoise*xnoise - b)

ans = 0.0014

norm(xnoise)

ans = 0.1741

norm(x - xnoise)

1 Alphabetical List

1-8442

ans = 1.0804e-14

Toggle Warnings for Low-Rank Matrices

Solve a linear system involving a low-rank coefficient matrix with warnings turned on.

Create a 3-by-3 matrix that is of rank 2. In this matrix, you can obtain the third column by
adding together the first two columns.

A = [1 2 3; 4 5 9; 6 7 13]

A = 3×3

 1 2 3
 4 5 9
 6 7 13

Find the minimum norm least-squares solution to the problem Ax = b, where b is equal to
the second column in A. Specify the 'warn' flag for lsqminnorm to display a warning if
it detects that A is of low rank.

b = A(:,2);
x = lsqminnorm(A,b,'warn')

Warning: Rank deficient, rank = 2, tol = 1.072041e-14.

x = 3×1

 -0.3333
 0.6667
 0.3333

Input Arguments
A — Coefficient matrix
matrix

 lsqminnorm

1-8443

Coefficient matrix. The coefficient matrix appears in the system of linear equations on the
left as Ax = B. The coefficient matrix can be full or sparse.
Data Types: single | double
Complex Number Support: Yes

B — Input array
vector | matrix

Input array, specified as a vector or matrix. B appears in the system of linear equations on
the right as Ax = B. If B is a matrix, then each column in the matrix represents a different
vector for the right-hand side.
Data Types: single | double
Complex Number Support: Yes

tol — Rank tolerance
nonnegative scalar

Rank tolerance, specified as a nonnegative scalar. Specifying the tolerance can help
prevent the solution from being susceptible to random noise in the coefficient matrix. By
default, lsqminnorm computes tol based on the QR decomposition of A.

lsqminnorm computes the rank of A as the number of diagonal elements in the R matrix
of the QR decomposition [Q,R,p] = qr(A,0) with absolute value larger than tol. If
the rank of A is k, then the function forms a low-rank approximation of A by multiplying
the first k columns of Q by the first k rows of R. Changing the tolerance affects this low-
rank approximation of A.
Example: X = lsqminnorm(A,B,1e-2)
Data Types: double

rankWarn — Warning toggle for low-rank matrices
'nowarn' (default) | 'warn'

Warning toggle for low-rank matrices, specified as either 'nowarn' or 'warn'. Specify
'warn' to indicate that lsqminnorm should produce warnings if the coefficient matrix A
is rank deficient.
Example: X = lsqminnorm(A,B,'warn')

1 Alphabetical List

1-8444

Tips
• The minimum-norm solution computed by lsqminnorm is of particular interest when

several solutions exist. The equation Ax = b has many solutions whenever A is
underdetermined (fewer rows than columns) or of low rank.

• lsqminnorm(A,B,tol) is typically more efficient than pinv(A,tol)*B for
computing minimum norm least-squares solutions to linear systems. lsqminnorm uses
the complete orthogonal decomposition (COD) to find a low-rank approximation of A,
while pinv uses the singular value decomposition (SVD). Therefore, the results of
pinv and lsqminnorm do not match exactly.

• For sparse matrices, lsqminnorm uses a different algorithm than for dense matrices,
and therefore can produce different results.

See Also
decomposition | mldivide | pinv

Topics
“Systems of Linear Equations”

Introduced in R2017b

 lsqminnorm

1-8445

lsqnonneg
Solve nonnegative linear least-squares problem

Solve nonnegative least-squares curve fitting problems of the form

min
x

C ⋅ x− d 2
2, where x ≥ 0.

Syntax
x = lsqnonneg(C,d)
x = lsqnonneg(C,d,options)
x = lsqnonneg(problem)
[x,resnorm,residual] = lsqnonneg(___)
[x,resnorm,residual,exitflag,output] = lsqnonneg(___)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(___)

Description
x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d) subject to
x ≥ 0. Arguments C and d must be real.

x = lsqnonneg(C,d,options) minimizes with the optimization options specified in
the structure options. Use optimset to set these options.

x = lsqnonneg(problem) finds the minimum for problem, where problem is a
structure.

[x,resnorm,residual] = lsqnonneg(___), for any previous syntax, additionally
returns the value of the squared 2-norm of the residual, norm(C*x-d)^2, and returns the
residual d-C*x.

[x,resnorm,residual,exitflag,output] = lsqnonneg(___) additionally
returns a value exitflag that describes the exit condition of lsqnonneg, and a
structure output with information about the optimization process.

1 Alphabetical List

1-8446

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(___)
additionally returns the Lagrange multiplier vector lambda.

Examples

Nonnegative Linear Least Squares

Compute a nonnegative solution to a linear least-squares problem, and compare the result
to the solution of an unconstrained problem.

Prepare a C matrix and d vector for the problem min Cx− d .

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Compute the constrained and unconstrained solutions.

x = lsqnonneg(C,d)

x = 2×1

 0
 0.6929

xunc = C\d

xunc = 2×1

 -2.5627
 3.1108

All entries in x are nonnegative, but some entries in xunc are negative.

Compute the norms of the residuals for the two solutions.

 lsqnonneg

1-8447

constrained_norm = norm(C*x - d)

constrained_norm = 0.9118

unconstrained_norm = norm(C*xunc - d)

unconstrained_norm = 0.6674

The unconstrained solution has a smaller residual norm because constraints can only
increase a residual norm.

Nonnegative Least Squares with Nondefault Options

Set the Display option to 'final' to see output when lsqnonneg finishes.

Create the options.

options = optimset('Display','final');

Prepare a C matrix and d vector for the problem min Cx− d .

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Call lsqnonneg with the options structure.

x = lsqnonneg(C,d,options);

Optimization terminated.

Obtain Residuals from Nonnegative Least Squares

Call lsqnonneg with outputs to obtain the solution, residual norm, and residual vector.

1 Alphabetical List

1-8448

Prepare a C matrix and d vector for the problem min Cx− d .

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Obtain the solution and residual information.

 [x,resnorm,residual] = lsqnonneg(C,d)

x = 2×1

 0
 0.6929

resnorm = 0.8315

residual = 4×1

 0.6599
 -0.3119
 -0.3580
 0.4130

Verify that the returned residual norm is the square of the norm of the returned residual
vector.

 norm(residual)^2

ans = 0.8315

Inspect the Result of Nonnegative Least Squares

Request all output arguments to examine the solution and solution process after
lsqnonneg finishes.

 lsqnonneg

1-8449

Prepare a C matrix and d vector for the problem min Cx− d .

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Solve the problem, requesting all output arguments.

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)

x = 2×1

 0
 0.6929

resnorm = 0.8315

residual = 4×1

 0.6599
 -0.3119
 -0.3580
 0.4130

exitflag = 1

output = struct with fields:
 iterations: 1
 algorithm: 'active-set'
 message: 'Optimization terminated.'

lambda = 2×1

 -0.1506
 -0.0000

1 Alphabetical List

1-8450

exitflag is 1, indicating a correct solution.

x(1) = 0, and the corresponding lambda(1) ≠ 0, showing the correct duality. Similarly,
x(2) > 0, and the corresponding lambda(2) = 0.

Input Arguments
C — Linear multiplier
real matrix

Linear multiplier, specified as a real matrix. Represents the variable C in the problem

min
x

C ⋅ x− d 2
2, where x ≥ 0.

For compatibility, the number of rows of C must equal the length of d.
Example: C = [1,2;3,-1;-4,4]
Data Types: double

d — Additive term
real vector

Additive term, specified as a real vector. Represents the variable d in the problem

min
x

C ⋅ x− d 2
2, where x ≥ 0.

For compatibility, the length of d must equal the number of rows of C.
Example: d = [1;-6;5]
Data Types: double

options — Optimization options
structure such as optimset returns

Optimization options, specified as a structure such as optimset returns. You can use
optimset to set or change the values of these fields in the options structure. See “Set
Options” for detailed information.

 lsqnonneg

1-8451

Display Level of display:

• 'notify' (default) displays output only if the function
does not converge.

• 'off' or 'none' displays no output.
• 'final' displays just the final output.

TolX Termination tolerance on x, a positive scalar. The default is
10*eps*norm(C,1)*length(C). See “Tolerances and
Stopping Criteria”.

Example: options = optimset('Display','final')
Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
C Real matrix
d Real vector
solver 'lsqnonneg'
options Options structure such as returned by optimset

The simplest way to obtain a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments
x — Solution
real vector

Solution, returned as a real vector. The length of x is the same as the length of d.

resnorm — Squared residual norm
nonnegative scalar

1 Alphabetical List

1-8452

Squared residual norm, returned as a nonnegative scalar. Equal to norm(C*x-d)^2.

residual — Residual
real vector

Residual, returned as a real vector. The residual is d - C*x.

exitflag — Reason lsqnonneg stopped
integer

Reason lsqnonneg stopped, returned as an integer.

1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIter.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
algorithm 'active-set'
message Exit message

lambda — Lagrange multipliers
real vector

Lagrange multipliers, returned as a real vector. The entries satisfy the complementarity
condition x'*lambda = 0. This means lambda(i) < 0 when x(i) is approximately 0,
and lambda(i) is approximately 0 when x(i) > 0.

Algorithms
lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set of
possible basis vectors and computes the associated dual vector lambda. It then selects
the basis vector corresponding to the maximum value in lambda to swap it out of the
basis in exchange for another possible candidate. This continues until lambda ≤ 0.

 lsqnonneg

1-8453

References
[1] Lawson, C. L. and R. J. Hanson. Solving Least-Squares Problems. Upper Saddle River,

NJ: Prentice Hall. 1974. Chapter 23, p. 161.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation:

• You must enable support for variable-size arrays.
• The exit message in the output structure is not translated.
• Code generation does not support sparse matrix inputs for this function.

See Also
mldivide | optimset

Introduced before R2006a

1 Alphabetical List

1-8454

lsqr
LSQR method

Syntax
x = lsqr(A,b)
lsqr(A,b,tol)
lsqr(A,b,tol,maxit)
lsqr(A,b,tol,maxit,M)
lsqr(A,b,tol,maxit,M1,M2)
lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,x0)

Description
x = lsqr(A,b) attempts to solve the system of linear equations A*x=b for x if A is
consistent, otherwise it attempts to solve the least squares solution x that minimizes
norm(b-A*x). The m-by-n coefficient matrix A need not be square but it should be large
and sparse. The column vector b must have length m. You can specify A as a function
handle, afun, such that afun(x,'notransp') returns A*x and afun(x,'transp')
returns A'*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If lsqr converges, a message to that effect is displayed. If lsqr fails to converge after
the maximum number of iterations or halts for any reason, a warning message is printed
displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at
which the method stopped or failed.

lsqr(A,b,tol) specifies the tolerance of the method. If tol is [], then lsqr uses the
default, 1e-6.

 lsqr

1-8455

lsqr(A,b,tol,maxit) specifies the maximum number of iterations.

lsqr(A,b,tol,maxit,M) and lsqr(A,b,tol,maxit,M1,M2) use n-by-n
preconditioner M or M = M1*M2 and effectively solve the system A*inv(M)*y = b for y,
where y = M*x. If M is [] then lsqr applies no preconditioner. M can be a function mfun
such that mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

lsqr(A,b,tol,maxit,M1,M2,x0) specifies the n-by-1 initial guess. If x0 is [], then
lsqr uses the default, an all zero vector.

[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns a convergence flag.

Flag Convergence
0 lsqr converged to the desired tolerance tol within maxit iterations.
1 lsqr iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 lsqr stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during lsqr became too small or too

large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if you specify the flag
output.

[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns an estimate of
the relative residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns
a vector of the residual norm estimates at each iteration, including norm(b-A*x0).

[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,x0) also
returns a vector of estimates of the scaled normal equations residual at each iteration:
norm((A*inv(M))'*(B-A*X))/norm(A*inv(M),'fro'). Note that the estimate of
norm(A*inv(M),'fro') changes, and hopefully improves, at each iteration.

1 Alphabetical List

1-8456

Examples

Example 1
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = lsqr(A,b,tol,maxit,M1,M2);

displays the following message:

lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

Example 2
This example replaces the matrix A in Example 1 with a handle to a matrix-vector product
function afun. The example is contained in a function run_lsqr that

• Calls lsqr with the function handle @afun as its first argument.
• Contains afun as a nested function, so that all variables in run_lsqr are available to

afun.

The following shows the code for run_lsqr:

function x1 = run_lsqr
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = lsqr(@afun,b,tol,maxit,M1,M2);

 lsqr

1-8457

 function y = afun(x,transp_flag)
 if strcmp(transp_flag,'transp') % y = A'*x
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
 elseif strcmp(transp_flag,'notransp') % y = A*x
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
 end
 end
end

When you enter

x1=run_lsqr;

MATLAB software displays the message

lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations
And Sparse Least Squares," ACM Trans. Math. Soft., Vol.8, 1982, pp. 43-71.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-8458

• b must be a nonsparse column vector.
• Output of least squares estimates as a sixth return value is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | cgs | gmres | minres | norm | pcg | qmr | symmlq

Topics
“Create Function Handle”

Introduced before R2006a

 lsqr

1-8459

lt, <
Determine less than

Syntax
A < B
lt(A,B)

Description
A < B returns an array with elements set to logical 1 (true) where A is less than B;
otherwise, the element is logical 0 (false). The test compares only the real part of
numeric arrays. lt returns logical 0 (false) where A or B have NaN or undefined
categorical elements.

lt(A,B) is an alternate way to execute A < B, but is rarely used. It enables operator
overloading for classes.

Examples

Test Vector Elements

Determine if vector elements are less than a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are less than 12.

A < 12

ans = 1x8 logical array

1 Alphabetical List

1-8460

 1 0 0 1 1 1 1 0

The result is a vector with values of logical 1 (true) where the elements of A satisfy the
expression.

Use the vector of logical values as an index to view the values in A that are less than 12.

A(A < 12)

ans = 1×5

 1 7 9 11 2

The result is a subset of the elements in A.

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Replace all values less than 9 with the value 10.

A(A < 9) = 10

A = 4×4

 16 10 10 13
 10 11 10 10
 9 10 10 12
 10 14 15 10

 lt, <

1-8461

The result is a new matrix whose smallest element is 9.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A = 2x3 categorical array
 large medium small
 medium small large

The array has three categories: 'small', 'medium', and 'large'.

Find all values less than the category 'medium'.

A < 'medium'

ans = 2x3 logical array

 0 0 1
 0 1 0

A value of logical 1 (true) indicates a value less than the category 'medium'.

Compare the rows of A.

A(1,:) < A(2,:)

ans = 1x3 logical array

 0 0 1

The function returns logical 1 (true) where the first row has a category value less than
the second row.

1 Alphabetical List

1-8462

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are less than 3.

A(A < 3)

ans = 1×4 complex

 1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2.0000i

lt compares only the real part of the elements in A.

Use abs to find which elements are within a radius of 3 from the origin.

A(abs(A) < 3)

ans = 1×3 complex

 1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 - 2.0000i

The result has one less element. The element 1.0000 + 3.0000i is not within a radius
of 3 from the origin.

Compare Dates

Create a vector of dates.

A = datetime([2014,05,01;2014,05,31])

A = 2x1 datetime array
 01-May-2014
 31-May-2014

Find the dates that occur before May 10, 2014.

A(A < '2014-05-10')

 lt, <

1-8463

ans = datetime
 01-May-2014

Input Arguments
A — Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

B — Right array
scalar | vector | matrix | multidimensional array

Right array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for

1 Alphabetical List

1-8464

example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is an ordinal categorical array, the other input can be an ordinal
categorical array, a cell array of character vectors, or a single character vector. A
single character vector expands into a cell array of character vectors of the same size
as the other input. If both inputs are ordinal categorical arrays, they must have the
same sets of categories, including their order. See “Compare Categorical Array
Elements” for more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 lt, <

1-8465

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | ge | gt | le | ne

Topics
“Array Comparison with Relational Operators”
“Ordinal Categorical Arrays”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-8466

lu
LU matrix factorization

Syntax
[L,U] = lu(A)
[L,U,P] = lu(A)
[L,U,P] = lu(A,outputForm)

[L,U,P,Q] = lu(S)
[L,U,P,Q,D] = lu(S)
[___] = lu(S,thresh)
[___] = lu(___ ,outputForm)

Description
[L,U] = lu(A) factorizes the full or sparse matrix A into an upper triangular matrix U
and a permuted lower triangular matrix L such that A = L*U.

[L,U,P] = lu(A) also returns a permutation matrix P such that A = P'*L*U. With this
syntax, L is unit lower triangular and U is upper triangular.

[L,U,P] = lu(A,outputForm) returns P in the form specified by outputForm.
Specify outputForm as 'vector' to return P as a permutation vector such that A(P,:)
= L*U.

[L,U,P,Q] = lu(S) factorizes sparse matrix S into a unit lower triangular matrix L, an
upper triangular matrix U, a row permutation matrix P, and a column permutation matrix
Q, such that P*S*Q = L*U.

[L,U,P,Q,D] = lu(S) also returns a diagonal scaling matrix D such that P*(D\S)*Q =
L*U. Typically, the row-scaling leads to a sparser and more stable factorization.

[___] = lu(S,thresh) specifies thresholds for the pivoting strategy employed by lu
using any of the previous output argument combinations. Depending on the number of

 lu

1-8467

output arguments specified, the default value and requirements for the thresh input are
different. See the thresh argument description for details.

[___] = lu(___ ,outputForm) returns P and Q in the form specified by
outputForm. Specify outputForm as 'vector' to return P and Q as permutation
vectors. You can use any of the input argument combinations in previous syntaxes.

Examples

LU Factorization of Matrix

Compute the LU factorization of a matrix and examine the resulting factors. LU
factorization is a way of decomposing a matrix A into an upper triangular matrix U, a
lower triangular matrix L, and a permutation matrix P such that PA = LU. These matrices
describe the steps needed to perform Gaussian elimination on the matrix until it is in
reduced row echelon form. The L matrix contains all of the multipliers, and the
permutation matrix P accounts for row interchanges.

Create a 3-by-3 matrix and calculate the LU factors.

A = [10 -7 0
 -3 2 6
 5 -1 5];

[L,U] = lu(A)

L = 3×3

 1.0000 0 0
 -0.3000 -0.0400 1.0000
 0.5000 1.0000 0

U = 3×3

 10.0000 -7.0000 0
 0 2.5000 5.0000
 0 0 6.2000

1 Alphabetical List

1-8468

Multiply the factors to recreate A. With the two-input syntax, lu incorporates the
permutation matrix P directly into the L factor, such that the L being returned is really
P'*L and thus A = L*U.

L*U

ans = 3×3

 10.0000 -7.0000 0
 -3.0000 2.0000 6.0000
 5.0000 -1.0000 5.0000

You can specify three outputs to separate the permutation matrix from the multipliers in
L.

[L,U,P] = lu(A)

L = 3×3

 1.0000 0 0
 0.5000 1.0000 0
 -0.3000 -0.0400 1.0000

U = 3×3

 10.0000 -7.0000 0
 0 2.5000 5.0000
 0 0 6.2000

P = 3×3

 1 0 0
 0 0 1
 0 1 0

P'*L*U

ans = 3×3

 10.0000 -7.0000 0
 -3.0000 2.0000 6.0000

 lu

1-8469

 5.0000 -1.0000 5.0000

Solve Linear System with LU Factorization

Solve a linear system by performing an LU factorization and using the factors to simplify
the problem. Compare the results with other approaches using the backslash operator
and decomposition object.

Create a 5-by-5 magic square matrix and solve the linear system Ax = b with all of the
elements of b equal to 65, the magic sum. Since 65 is the magic sum for this matrix (all of
the rows and columns add to 65), the expected solution for x is a vector of 1s.

A = magic(5);
b = 65*ones(5,1);
x = A\b

x = 5×1

 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

For generic square matrices, the backslash operator computes the solution of the linear
system using LU decomposition. LU decomposition expresses A as the product of
triangular matrices, and linear systems involving triangular matrices are easily solved
using substitution formulas.

To recreate the answer computed by backslash, compute the LU decomposition of A.
Then, use the factors to solve two triangular linear systems:

y = L\(P*b);
x = U\y;

This approach of precomputing the matrix factors prior to solving the linear system can
improve performance when many linear systems will be solved, since the factorization
occurs only once and does not need to be repeated.

[L,U,P] = lu(A)

1 Alphabetical List

1-8470

L = 5×5

 1.0000 0 0 0 0
 0.7391 1.0000 0 0 0
 0.4783 0.7687 1.0000 0 0
 0.1739 0.2527 0.5164 1.0000 0
 0.4348 0.4839 0.7231 0.9231 1.0000

U = 5×5

 23.0000 5.0000 7.0000 14.0000 16.0000
 0 20.3043 -4.1739 -2.3478 3.1739
 0 0 24.8608 -2.8908 -1.0921
 0 0 0 19.6512 18.9793
 0 0 0 0 -22.2222

P = 5×5

 0 1 0 0 0
 1 0 0 0 0
 0 0 0 0 1
 0 0 1 0 0
 0 0 0 1 0

y = L\(P*b);
x = U\y

x = 5×1

 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

The decomposition object also is useful to solve linear systems using specialized
factorizations, since you get many of the performance benefits of precomputing the
matrix factors but you do not need to know how to use the factors. Use the decomposition
object with the 'lu' type to recreate the same results.

dA = decomposition(A,'lu');
x = dA\b

 lu

1-8471

x = 5×1

 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

LU Factorization of Sparse Matrix

Compute the LU factorization of a sparse matrix and verify the identity L*U = P*S*Q.

Create a 60-by-60 sparse adjacency matrix of the connectivity graph of the Buckminster-
Fuller geodesic dome.

S = bucky;

Compute the LU factorization of S using the sparse matrix syntax with four outputs to
return the row and column permutation matrices.

[L,U,P,Q] = lu(S);

Permute the rows and columns of S with P*S*Q and compare the result with multiplying
the triangular factors L*U. The 1-norm of their difference is within roundoff error,
indicating that L*U = P*S*Q.

e = P*S*Q - L*U;
norm(e,1)

ans = 2.4425e-15

Save Memory with Permutation Vectors

Compute the LU factorization of a matrix. Save memory by returning the row
permutations as a vector instead of a matrix.

Create a 1000-by-1000 random matrix.

A = rand(1000);

1 Alphabetical List

1-8472

Compute the LU factorization with the permutation information stored as a matrix P.
Compare the result with the permutation information stored as a vector p. The larger the
matrix, the more memory efficient it is to use a permutation vector.

[L1,U1,P] = lu(A);
[L2,U2,p] = lu(A,'vector');
whos P p

 Name Size Bytes Class Attributes

 P 1000x1000 8000000 double
 p 1x1000 8000 double

Using a permutation vector also saves on execution time in subsequent operations. For
instance, you can use the previous LU factorizations to solve a linear system Ax = b.
Although the solutions obtained from the permutation vector and permutation matrix are
equivalent (up to roundoff), the solution using the permutation vector typically requires a
little less time.

Reduce Fill-in of Sparse Matrix Factorization

Compare the results of computing the LU factorization of a sparse matrix with and
without column permutations.

Load the west0479 matrix, which is a real-valued 479-by-479 sparse matrix.

load west0479
A = west0479;

Calculate the LU factorization of A by calling lu with three outputs. Generate spy plots of
the L and U factors.

[L,U,P] = lu(A);
subplot(1,2,1)
spy(L)
title('L factor')
subplot(1,2,2)
spy(U)
title('U factor')

 lu

1-8473

Now, calculate the LU factorization of A using lu with four outputs, which permutes the
columns of A to reduce the number of nonzeros in the factors. The resulting factors are
much sparser than if column permutations are not used.

[L,U,P,Q] = lu(A);
subplot(1,2,1)
spy(L)
title('L factor')
subplot(1,2,2)
spy(U)
title('U factor')

1 Alphabetical List

1-8474

Input Arguments
A — Input matrix
matrix

Input matrix. A can be full or sparse as well as square or rectangular in size.
Data Types: single | double
Complex Number Support: Yes

S — Sparse input matrix
sparse matrix

 lu

1-8475

Sparse input matrix. S can be square or rectangular in size.
Data Types: double
Complex Number Support: Yes

thresh — Pivoting thresholds for sparse matrices
scalar | two-element vector

Pivoting thresholds for sparse matrices, specified as a scalar or two-element vector. Valid
values are in the interval [0 1]. The way you specify thresh depends on how many
outputs are specified in the call to lu:

• For three outputs or less, thresh must be a scalar, and the default value is 1.0.
• For four outputs or more, thresh can be a scalar or a two element vector. The

default value is [0.1 0.001]. If you specify thresh as a scalar, then that only
replaces the first value in the vector.

At a high level, this input enables you to make trade-offs between accuracy and total
execution time. Smaller values of thresh tend to lead to sparser LU factors, but the
solution can become inaccurate. Larger values can lead to a more accurate solution (but
not always), and usually an increase in the total work and memory usage.

lu selects a pivoting strategy based first on the number of output arguments and second
on the properties of the matrix being factorized. In all cases, setting the threshold
value(s) to 1.0 results in partial pivoting, while setting them to 0 causes the pivots to be
chosen only based on the sparsity of the resulting matrix. All values of L have an absolute
value of 1/min(thresh) or less.

• Three or fewer output arguments — The algorithm selects the diagonal pivot if it
satisfies the equation

A(j,j) >= thresh * max(abs(A(j:m,j)))

Otherwise, it selects the row that contains the element of largest absolute value.
• Symmetric Pivoting Strategy — If S is a square sparse matrix with a mostly

symmetric structure and mostly nonzero diagonal, then lu uses a symmetric pivoting
strategy. For this strategy, the algorithm selects the diagonal pivot j if it satisfies the
inequality:

A(i,j) >= thresh(2) * max(abs(A(j:m,j)))

If the diagonal entry fails this test, then lu selects the sparsest row i satisfying the
inequality:

1 Alphabetical List

1-8476

A(i,j) >= thresh(1) * max(abs(A(j:m,j)))
• Nonsymmetric Pivoting Strategy — If S does not satisfy the requirements for the

symmetric pivoting strategy, then lu uses a nonsymmetric strategy. In this case, lu
selects the sparsest row i satisfying the inequality:

A(i,j) >= thresh(1) * max(abs(A(j:m,j)))

A value of 1.0 for thresh(1) results in conventional partial pivoting. Entries in L
have an absolute value of 1/thresh(1) or less. The second element of the thresh
input vector is not used with the nonsymmetric strategy.

Note In some rare cases, an incorrect factorization results in P*S*Q ≠ L*U. If this
occurs, increase thresh to a maximum of 1.0 (regular partial pivoting), and try again.

outputForm — Shape of permutation outputs
'matrix' (default) | 'vector'

Shape of permutation outputs, specified as 'matrix' or 'vector'. This flag controls
whether lu returns the row permutations P and column permutations Q as permutation
matrices or permutation vectors.

As matrices, the outputs P and Q satisfy these identities:

• Three outputs — P satisfies P*A = L*U.
• Four outputs — P and Q satisfy P*S*Q = L*U.
• Five outputs — P, Q, and D satisfy P*(D\S)*Q = L*U.

As vectors, the outputs P and Q satisfy these identities:

• Three outputs — P satisfies A(P,:) = L*U
• Four outputs —P and Q satisfy S(P,Q) = L*U
• Five outputs — P, Q, and D satisfy D(:,P)\S(:,Q) = L*U.

Example: [L,U,P] = lu(A,'vector')

 lu

1-8477

Output Arguments
L — Lower triangular factor
matrix

Lower triangular factor, returned as a matrix. The form of L depends on whether the row
permutations P are returned in a separate output:

• If the third output P is specified, then L is returned as a unit lower triangular matrix
(that is, a lower triangular matrix with 1s on the main diagonal).

• If the third output P is not specified, then L is returned as a row-permutation of a unit
lower triangular matrix. Specifically, it is the product P'*L of the outputs P and L
returned in the three output case.

U — Upper triangular factor
matrix

Upper triangular factor, returned as an upper triangular matrix.

P — Row permutation
vector | matrix

Row permutation, returned as a permutation matrix or, if the 'vector' option is
specified, as a permutation vector. Use this output to improve the numerical stability of
the calculation.

See outputForm for a description of the identities that this output satisfies.

Q — Column permutation
vector | matrix

Column permutation, returned as a permutation matrix or, if the 'vector' option is
specified, as a permutation vector. Use this output to reduce the fill-in (number of
nonzeros) in the factors of a sparse matrix.

See outputForm for a description of the identities that this output satisfies.

D — Row scaling
diagonal matrix

1 Alphabetical List

1-8478

Row scaling, returned as a diagonal matrix. D is used to scale the values in S such that
P*(D\S)*Q = L*U. Typically, but not always, the row scaling leads to a sparser and
more stable factorization.

Algorithms
The LU factorization is computed using a variant of Gaussian elimination. Computing an
accurate solution is dependent upon the value of the condition number of the original
matrix cond(A). If the matrix has a large condition number (it is nearly singular), then
the computed factorization might not be accurate.

The LU factorization is a key step in obtaining the inverse with inv and the determinant
with det. It is also the basis for the linear equation solution or matrix division obtained
with the operators \ and /. This necessarily means that the numerical limitations of lu
are also present in these dependent functions.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• A must be nonsparse.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 lu

1-8479

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• Only the syntax [L,U,P] = lu(A,'vector') is supported.
• A must be nonsparse.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cond | decomposition | det | ilu | inv | mldivide | qr | rref

Topics
“Factorizations”

Introduced before R2006a

1 Alphabetical List

1-8480

Line Properties
Primitive line appearance and behavior

Description
Line properties control the appearance and behavior of a Line object. By changing
property values, you can modify certain aspects of the line chart.

Starting in R2014b, you can use dot notation to query and set properties.

h = line;
s = h.LineStyle;
h.LineStyle = ':';

If you are using an earlier release, use the get and set functions instead.

Properties
Line

Color — Line color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Line Properties

1-8481

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

1 Alphabetical List

1-8482

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

LineJoin — Style of line corners
'round' (default) | 'miter' | 'chamfer'

Style of line corners, specified as 'round', 'miter', or 'chamfer'. This table
illustrates the appearance of the different values.

'round' 'miter' 'chamfer'

The appearance of the 'round' option might look different if the Renderer property of
the figure is set to 'opengl' instead of 'painters'.

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to

 Line Properties

1-8483

plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)

1 Alphabetical List

1-8484

Value Description
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerIndices — Indices of data points at which to display markers
1:length(YData) (default) | vector of positive integers | scalar positive integer

Indices of data points at which to display markers, specified as a vector of positive
integers. If you do not specify the indices, then MATLAB displays a marker at every data
point.

Note To see the markers, you must also specify a marker symbol.

Example: plot(x,y,'-o','MarkerIndices',[1 5 10]) displays a circle marker at
the first, fifth, and tenth data points.
Example: plot(x,y,'-x','MarkerIndices',1:3:length(y)) displays a cross
marker every three data points.
Example: plot(x,y,'Marker','square','MarkerIndices',5) displays one square
marker at the fifth data point.

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 Line Properties

1-8485

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

1 Alphabetical List

1-8486

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'

 Line Properties

1-8487

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data

XData — x values
[0 1] (default) | vector

x values, specified as a vector. XData and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YData — y values
[0 1] (default) | vector

y values, specified as a vector. XData and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ZData — z values
empty matrix (default) | vector

z values, specified as a vector. ZData must have the same length as XData and YData.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

RData — Radius values
vector

1 Alphabetical List

1-8488

Radius values, specified as a vector. ThetaData and RData must be vectors of equal
length.

This property applies only to lines in a polar axes.

ThetaData — Angle values
vector

Angle values, specified as a vector. ThetaData and RData must be vectors of equal
length.

This property applies only to lines in a polar axes.

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do

 Line Properties

1-8489

appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.

1 Alphabetical List

1-8490

• 'off' — Never display selection handles, even when the Selected property is set to
'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

 Line Properties

1-8491

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

1 Alphabetical List

1-8492

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

 Line Properties

1-8493

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

1 Alphabetical List

1-8494

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Line object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Line object responds to the
click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the Line object that has no color. The
HitTest property determines if the Line object responds to the click or if an
ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Line object passes the click
through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Line object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Line object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Line object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

 Line Properties

1-8495

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

1 Alphabetical List

1-8496

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'line'

This property is read-only.

Type of graphics object, returned as 'line'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
line

Topics
“Access Property Values”
“Graphics Object Properties”

 Line Properties

1-8497

Introduced before R2006a

1 Alphabetical List

1-8498

magic
Magic square

Syntax
M = magic(n)

Description
M = magic(n) returns an n-by-n matrix constructed from the integers 1 through n2 with
equal row and column sums. The order n must be a scalar greater than or equal to 3.

Examples

Third-Order Magic Square

Compute the third-order magic square M.

M = magic(3)

M = 3×3

 8 1 6
 3 5 7
 4 9 2

The sum of the elements in each column and the sum of the elements in each row are the
same.

sum(M)

ans = 1×3

 15 15 15

 magic

1-8499

sum(M,2)

ans = 3×1

 15
 15
 15

Magic Square Visualization

Visually examine the patterns in magic square matrices with orders between 9 and 24
using imagesc. The patterns show that magic uses three different algorithms, depending
on whether the value of mod(n,4) is 0, 2, or odd.

for n = 1:16
 subplot(4,4,n)
 ord = n+8;
 m = magic(ord);
 imagesc(m)
 title(num2str(ord))
 axis equal
 axis off
end

1 Alphabetical List

1-8500

Input Arguments
n — Matrix order
scalar integer

Matrix order, specified as a scalar integer greater than or equal to 3. If n is complex, not
an integer, or not scalar, then magic converts it into a usable integer with
floor(real(double(n(1)))).

If you supply n less than 3, then magic returns either a nonmagic square, or the
degenerate magic squares 1 and [].

 magic

1-8501

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

See Also
ones | rand

Introduced before R2006a

1 Alphabetical List

1-8502

makehgtform
Create 4-by-4 transform matrix

Syntax
M = makehgtform
M = makehgtform('translate',[tx ty tz])
M = makehgtform('scale',s)
M = makehgtform('scale',[sx,sy,sz])
M = makehgtform('xrotate',t)
M = makehgtform('yrotate',t)
M = makehgtform('zrotate',t)
M = makehgtform('axisrotate',[ax,ay,az],t)

Description
Use makehgtform to create transform matrices for translation, scaling, and rotation of
graphics objects. Apply the transform to graphics objects by assigning the transform to
the Matrix property of a parent transform object.

M = makehgtform returns an identity transform.

M = makehgtform('translate',[tx ty tz]) or M =
makehgtform('translate',tx,ty,tz) returns a transform that translates along the x-axis by
tx, along the y-axis by ty, and along the z-axis by tz.

M = makehgtform('scale',s) returns a transform that scales uniformly along the x-,
y-, and z-axes.

M = makehgtform('scale',[sx,sy,sz]) returns a transform that scales along the
x-axis by sx, along the y-axis by sy, and along the z-axis by sz.

M = makehgtform('xrotate',t) returns a transform that rotates around the x-axis
by t radians.

 makehgtform

1-8503

M = makehgtform('yrotate',t) returns a transform that rotates around the y-axis
by t radians.

M = makehgtform('zrotate',t) returns a transform that rotates around the z-axis
by t radians.

M = makehgtform('axisrotate',[ax,ay,az],t) Rotate around axis [ax ay az]
by t radians.

Note that you can specify multiple operations in one call to makehgtform and the
MATLAB software returns a transform matrix that is the result of concatenating all
specified operations. For example,

m = makehgtform('xrotate',pi/2,'yrotate',pi/2);

is the same as

mx = makehgtform('xrotate',pi/2);
my = makehgtform('yrotate',pi/2);
m = mx*my;

See Also
hggroup | hgtransform

Topics
“Create Object Groups”

Introduced before R2006a

1 Alphabetical List

1-8504

mapreduce
Programming technique for analyzing data sets that do not fit in memory

Syntax
outds = mapreduce(ds,mapfun,reducefun)
outds = mapreduce(ds,mapfun,reducefun,mr)
outds = mapreduce(___ ,Name,Value)

Description
outds = mapreduce(ds,mapfun,reducefun) applies map function mapfun to input
datastore ds, and then passes the values associated with each unique key to reduce
function reducefun. The output datastore is a KeyValueDatastore object that points
to .mat files in the current folder.

outds = mapreduce(ds,mapfun,reducefun,mr) optionally specifies the run-time
configuration settings for mapreduce. The mr input is the result of a call to the
mapreducer function. Typically, this argument is used with Parallel Computing Toolbox,
MATLAB Parallel Server, or MATLAB Compiler. For more information, see “Speed Up and
Deploy MapReduce Using Other Products”.

outds = mapreduce(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments using any of the previous syntaxes. For example, you can
specify 'OutputFolder' followed by a character vector specifying a path to the output
folder.

Examples

Count Flights by Airline

Use mapreduce to count the number of flights made by each unique airline carrier in a
data set.

 mapreduce

1-8505

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival and
departure times. In this example, select UniqueCarrier (airline name) as the variable of
interest. Specify the 'TreatAsMissing' name-value pair so that the datastore treats
'NA' values as missing and replaces them with NaN values.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'UniqueCarrier';
ds.SelectedFormats = '%C';

Preview the data.

preview(ds)

ans=8×1 table
 UniqueCarrier

 PS
 PS
 PS
 PS
 PS
 PS
 PS
 PS

Run mapreduce on the data. The map and reduce functions count the number of
instances of each airline carrier name in each chunk of data, then combine those
intermediate counts into a final count. This method leverages the intermediate sorting by
unique key performed by mapreduce. The functions countMapper and countReducer
are included at the end of this script.

outds = mapreduce(ds, @countMapper, @countReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%

1 Alphabetical List

1-8506

Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

readall(outds)

ans=29×2 table
 Key Value
 ________ _______

 'AA' [14930]
 'AS' [2910]
 'CO' [8138]
 'DL' [16578]
 'EA' [920]
 'HP' [3660]
 'ML (1)' [69]
 'NW' [10349]
 'PA (1)' [318]
 'PI' [871]
 'PS' [83]
 'TW' [3805]
 'UA' [13286]
 'US' [13997]
 'WN' [15931]
 'AQ' [154]
 ⋮

The map function countMapper leverages the fact that the data is categorical. The
countcats and categories functions are used on each chunk of the input data to
generate key/value pairs of the airline name and associated count.

function countMapper(data, info, intermKV)
% Counts unique airline carrier names in each chunk.

 mapreduce

1-8507

a = data.UniqueCarrier;
c = num2cell(countcats(a));
keys = categories(a);
addmulti(intermKV, keys, c)
end

The reduce function countReducer reads in the intermediate data produced by the map
function and adds together all of the counts to produce a single final count for each
airline carrier.

function countReducer(key, intermValIter, outKV)
% Combines counts from all chunks to produce final counts.
count = 0;
while hasnext(intermValIter)
 data = getnext(intermValIter);
 count = count + data;
end
add(outKV, key, count)
end

Input Arguments
ds — Input datastore
datastore object

Input datastore, specified as a datastore object. Use the datastore function to create a
datastore object from your data set.

mapreduce works only with datastores that are deterministic. That is, if you use read on
the datastore, reset the datastore with reset, and then read the datastore again, then
the data returned must be the same in both cases. mapreduce calculations involving a
datastore that is not deterministic can produce unpredictable results. See “Select
Datastore for File Format or Application” for more information.

mapfun — Function handle to map function
function handle

Function handle to map function. mapfun receives chunks from input datastore ds, and
then uses the add and addmulti functions to add key-value pairs to an intermediate
KeyValueStore object. The number of calls to the map function by mapreduce is equal

1 Alphabetical List

1-8508

to the number of chunks in the datastore (the number of chunks is determined by the
ReadSize property of the datastore).

The inputs to the map function are data, info, and intermKVStore, which mapreduce
automatically creates and passes to the map function:

• The data and info inputs are the result of a call to the read function of datastore,
which mapreduce executes automatically before each call to the map function.

• intermKVStore is the name of the intermediate KeyValueStore object to which the
map function needs to add key-value pairs. If none of the calls to the map function add
key-value pairs to intermKVStore, then mapreduce does not call the reduce function
and the output datastore is empty.

An example of a template for the map function is

function myMapper(data, info, intermKVStore)
%do a calculation with the data chunk
add(intermKVStore, key, value)
end

Example: @myMapper
Data Types: function_handle

reducefun — Function handle to reduce function
function handle

Function handle to reduce function. mapreduce calls reducefun once for each unique
key added to the intermediate KeyValueStore by the map function. In each call,
mapreduce passes the values associated with the active key to reducefun as a
ValueIterator object. The reducefun function loops through the values for each key
using the hasnext and getnext functions. Then, after performing some calculation(s), it
writes key-value pairs to the final output.

The inputs to the reduce function are intermKey, intermValIter, and outKVStore,
which mapreduce automatically creates and passes to the reduce function:

• intermKey is the active key from the intermediate KeyValueStore object. Each call
to the reduce function by mapreduce specifies a new unique key from the keys in the
intermediate KeyValueStore object.

• intermValIter is the ValueIterator associated with the active key, intermKey.
This ValueIterator object contains all of the values associated with the active key.
Scroll through the values using the hasnext and getnext functions.

 mapreduce

1-8509

• outKVStore is the name for the final KeyValueStore object to which the reduce
function needs to add key-value pairs. mapreduce takes the output key-value pairs
from outKVStore and returns them in the output datastore, outds, which is a
KeyValueDatastore object by default. If none of the calls to the reduce function add
final key-value pairs to outKVStore, then the output datastore is empty.

An example of a template for the reduce function is

function myReducer(intermKey, intermValIter, outKVStore)
while hasnext(intermValIter)
 X = getnext(intermValIter);
 %do a calculation with the current value, X
end
add(outKVStore, key, value)
end

Example: @myReducer
Data Types: function_handle

mr — Execution environment
MapReducer object

Execution environment, specified as a MapReducer object. mr is the result of a call to the
mapreducer function. The default mr argument is a call to gcmr, which uses the default
global execution environment for mapreduce (in MATLAB the default is mapreducer(0),
which returns a SerialMapReducer object).

Note This setting specifies the execution environment for mapreduce and is not
necessary to run mapreduce on your local computer. For more information, see “Speed
Up and Deploy MapReduce Using Other Products”.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: outds = mapreduce(ds, @mapfun, @reducefun, 'Display', 'off',
'OutputFolder', 'C:\Users\username\Desktop')

1 Alphabetical List

1-8510

OutputType — Type of datastore output
'Binary' (default) | 'TabularText'

Type of datastore output, specified as 'Binary' or 'TabularText'. The default setting
of 'Binary' returns a KeyValueDatastore output datastore that points to binary
(.mat or .seq) files in the output folder. The 'TabularText' option returns a
tabularTextDatastore output datastore that points to .txt files in the output folder.

The table provides the details for each of the output types.

'OutputTyp
e'

Type of
datastore
output

Datastore
points to
files of type

Values that
the Reduce
function can
add

Keys that
the Reduce
function can
add

Details

'Binary'
(default)

KeyValueDa
tastore

.mat
(or .seq
when running
against
Hadoop).

Any valid
MATLAB
object.

Character
vectors,
strings, or
numeric
scalars that
are not NaN,
complex,
logical, or
sparse.

N/A

'TabularTe
xt'

TabularTex
tDatastore

.txt Character
vectors,
strings, or
numeric
scalars that
are not NaN,
complex,
logical, or
sparse.

Character
vectors,
strings, or
numeric
scalars that
are not NaN,
complex,
logical, or
sparse.

• File is
UTF-8
encoded.

• Keys and
values are
tab (\t)
separated.

• The row
delimiter
is \r\n on
Windows,
and \n on
Linux and
Mac.

Data Types: char | string

 mapreduce

1-8511

OutputFolder — Destination folder of mapreduce output
pwd (default) | file path

Destination folder for mapreduce output, specified as a file path. The default output
folder is the current folder, pwd. You can specify a different path with a fully qualified
path or with a path relative to the current folder.
Example: mapreduce(..., 'OutputFolder', 'MyOutputFolder\Results')
specifies a file path relative to the current folder for the output.
Data Types: char | string

Display — Toggle for command line progress output
'on' (default) | 'off'

Toggle for command line progress output, specified as 'on' or 'off'. The default is
'on', so that mapreduce displays progress information in the command window during
the map and reduce phases of execution.
Data Types: char | string

Output Arguments
outds — Output datastore
KeyValueDatastore (default) | TabularTextDatastore

Output datastore, returned as a KeyValueDatastore or TabularTextDatastore
object. By default, outds is a KeyValueDatastore object that points to .mat files in the
current folder. Use the Name,Value pair arguments for 'OutputType' and
'OutputFolder' to return a tabularTextDatastore object or change the location of
the output files, respectively.

mapreduce does not sort the key-value pairs in outds. Their order may differ when using
other products with mapreduce.

To view the contents of outds, use the preview, read, or readall functions of
datastore.

1 Alphabetical List

1-8512

Tips
• Debugging your mapreduce algorithms to examine how key-value pairs move through

the different phases is always useful. To examine the movement of data, set
breakpoints in your map and reduce functions. The breakpoints stop execution of
mapreduce, allowing you to examine the current status of relevant variables, like the
KeyValueStore or ValueIterator. For more information, see “Debug MapReduce
Algorithms”.

• Some recommendations to optimize mapreduce performance on any platform are:

• Minimize the number of calls to the map function. The easiest approach is to
increase the value of the ReadSize property of the input datastore. The result is
that mapreduce passes larger chunks of data to the map function, and the
datastore depletes with fewer reads.

• Decrease the amount of intermediate data sent between map and reduce functions.
One approach is to use unique inside a map function to combine similar keys. See
“Compute Mean by Group Using MapReduce” for an example of this technique.

See Also
KeyValueStore | ValueIterator | datastore | gcmr | mapreducer | tall

Topics
“Compute Mean Value with MapReduce”
“Compute Summary Statistics by Group Using MapReduce”
“Using MapReduce to Fit a Logistic Regression Model”
“Getting Started with MapReduce”
“Speed Up and Deploy MapReduce Using Other Products”
“Build Effective Algorithms with MapReduce”

Introduced in R2014b

 mapreduce

1-8513

mapreducer
Define execution environment for mapreduce or tall arrays

Syntax
mapreducer
mapreducer(0)
mapreducer(mr)
mr = mapreducer(___)
mr = mapreducer(___ ,'ObjectVisibility','Off')

Description
mapreducer, with no arguments, sets the global execution environment to be the default:
a parallel pool if you have Parallel Computing Toolbox available, or else the local MATLAB
session. mapreducer is a configuration function that changes how MATLAB executes
mapreduce algorithms and tall array calculations. Use this function to set, change, or
store the execution environment to leverage Parallel Computing Toolbox, MATLAB
Parallel Server, or MATLAB Compiler. If you have Parallel Computing Toolbox installed,
then when you use the tall or mapreduce functions MATLAB automatically starts a
parallel pool of workers (unless you have changed the default preferences).

Note If no toolboxes are available, then mapreduce algorithms and tall array
calculations automatically run using the local MATLAB session, and it is unnecessary to
specify configuration settings using mapreducer to use these features. However, if you
have Parallel Computing Toolbox, MATLAB Parallel Server, or MATLAB Compiler, then
additional mapreducer configuration options are available for running in parallel or
deployed environments.

For more information, see mapreducer in the Parallel Computing Toolbox documentation,
or mapreducer in the MATLAB Compiler documentation.

mapreducer(0) sets the global execution environment to be the local MATLAB session.

1 Alphabetical List

1-8514

mapreducer(mr) sets the global execution environment using a previously created
MapReducer object, mr.

mr = mapreducer(___) also returns a MapReducer object using any of the previous
syntaxes. You can use mr as a fourth input argument to mapreduce when you want to
explicitly specify the execution environment.

mr = mapreducer(___ ,'ObjectVisibility','Off') toggles the visibility of
MapReducer object mr. Use this syntax to create new MapReducer objects without
affecting the global execution environment.

Examples

Switch Between Execution Environments

The command

mapreducer

automatically starts a parallel pool if Parallel Computing Toolbox is available. Otherwise,
the execution environment is set to be the local MATLAB session.

You can force MATLAB to use the local session with the command

mapreducer(0)

To query the current global execution environment, use the command

gcmr

Output Arguments
mr — Execution environment
object

Execution environment, returned as a MapReducer object.

If the ObjectVisibility property of mr is set to 'On' (the default), then mr defines the
execution environment for all mapreduce algorithms and tall array calculations. You can

 mapreducer

1-8515

optionally pass mr to the mapreduce function to explicitly specify the execution
environment, even if its ObjectVisibility property is set to 'Off'.

Tips
• When working with tall arrays, use mapreducer to set the execution environment

prior to creating the tall array with tall(ds). Tall arrays are bound to the current
global execution environment when they are constructed. If the global execution
environment is subsequently changed, then the tall array becomes invalid and must be
reconstructed.

See Also
gcmr | mapreduce | tall

Topics
“Speed Up and Deploy MapReduce Using Other Products”
“Extend Tall Arrays with Other Products”

Introduced in R2014b

1 Alphabetical List

1-8516

containers.Map
Object that maps values to unique keys

Description
A Map object is a data structure that allows you to retrieve values using a corresponding
key. Keys can be real numbers or character vectors. As a result, they provide more
flexibility for data access than array indices, which must be positive integers. Values can
be scalar or nonscalar arrays.

Creation

Syntax
M = containers.Map(keySet,valueSet)
M = containers.Map(keySet,valueSet,'UniformValues',isUniform)
M = containers.Map('KeyType',kType,'ValueType',vType)
M = containers.Map

Description
M = containers.Map(keySet,valueSet) creates a Map object that contains keys
from keySet, each mapped to a corresponding value from valueSet. The input
arguments keySet and valueSet must have the same number of elements, with keySet
having elements that are unique.

M = containers.Map(keySet,valueSet,'UniformValues',isUniform), where
isUniform is false, specifies that the values in valueSet do not need to be uniform.
The default value of isUniform is true. The values in valueSet are uniform when they
are all scalars that have the same data type, or when they are all character vectors.

M = containers.Map('KeyType',kType,'ValueType',vType) creates an empty
Map object and specifies the data types of the keys and values you can add to it later. You

 containers.Map

1-8517

can switch the order of the 'KeyType' and 'ValueType' name-value pair arguments,
but both name-value pairs are required.

M = containers.Map creates an empty Map object.

Input Arguments
keySet — Keys
numeric array | cell array of character vectors | string array

Keys, specified as a numeric array, cell array of character vectors, or string array.

If you specify keys using a string array, then the containers.Map function converts the
keys and stores them as character vectors. Because of this conversion, the KeyType
property of the output Map object is set to 'char'.

valueSet — Values
array

Values, specified as an array.

isUniform — Indicator of uniform values
true (default) | false

Indicator of uniform values in valueSet, specified as true (1) or false (0).

kType — Data type of keys
'char' (default) | 'double' | 'single' | 'int32' | 'uint32' | 'int64' | 'uint64'

Data type of the keys to be added to an empty Map object, specified as a character vector.
You can specify kType as any of the data types in the table, so that keys are either
character vectors or numeric scalars.

kType Data Type and Size of Key
'char' (default) Character vector
'double' Double scalar
'single' Single scalar
'int32' 32-bit signed integer scalar
'uint32' 32-bit unsigned integer scalar

1 Alphabetical List

1-8518

kType Data Type and Size of Key
'int64' 64-bit signed integer scalar
'uint64' 64-bit unsigned integer scalar

vType — Data type of values
'any' (default) | 'char' | 'logical' | 'double' | 'single' | 'int8' | 'uint8' | ...

Data type of the values to be added to an empty Map object, specified as a character
vector. You can specify vType as any of the data types in the table.

vType Data Type and Size of Value
'any' (default) Array that has any data type
'char' Character vector
'logical' Logical scalar
'double' Double scalar
'single' Single scalar
'int8' 8-bit signed integer scalar
'uint8' 8-bit unsigned integer scalar
'int16' 16-bit signed integer scalar
'uint16' 16-bit unsigned integer scalar
'int32' 32-bit signed integer scalar
'uint32' 32-bit unsigned integer scalar
'int64' 64-bit signed integer scalar
'uint64' 64-bit unsigned integer scalar

Properties
Count — Number of key-value pairs
numeric scalar

This property is read-only.

Number of key-value pairs in the Map object, specified as a numeric scalar.

 containers.Map

1-8519

KeyType — Data type of keys
'char' (default) | character vector

This property is read-only.

Data type of the keys, specified as a character vector.

ValueType — Data type of values
'any' (default) | character vector

This property is read-only.

Data type of the values, specified as a character vector.

Object Functions
isKey Determine if Map object contains key
keys Return keys of Map object
length Number of key-value pairs in Map object
remove Delete key-value pairs from Map object
size Size of Map object
values Return values of Map object

Examples

Create Map

Create a Map object that contains rainfall data for several months. The map contains the
four values in valueSet, and the keys are the four month names in keySet.

keySet = {'Jan','Feb','Mar','Apr'};
valueSet = [327.2 368.2 197.6 178.4];
M = containers.Map(keySet,valueSet)

M =
 Map with properties:

 Count: 4
 KeyType: char

1 Alphabetical List

1-8520

 ValueType: double

Display the rainfall for March. You can retrieve the value for March by using 'Mar' as the
key.

M('Mar')

ans = 197.6000

Display the number of values in the map. You can access the Count property using dot
notation.

M.Count

ans = uint64
 4

Specify Numbers as Keys

Create a Map object with identification numbers as keys and employee names as values.

ids = [437 1089 2362];
names = {'Lee, N.','Jones, R.','Sanchez, C.'};
M = containers.Map(ids,names)

M =
 Map with properties:

 Count: 3
 KeyType: double
 ValueType: char

Retrieve a name using an identification number as a key.

M(437)

ans =
'Lee, N.'

 containers.Map

1-8521

Store Values That Are Not Uniform

Create a Map object that contains test results for patients. For any patient, the results
might be in either a numeric array or in a file. You can store numeric arrays and file
names as values in the same map. To store values that do not have the same data type in
the same map, specify 'UniformValues',false.

keySet = {'Li','Jones','Sanchez'};
testLi = [5.8 7.35];
testJones = [27 3.92 6.4 8.21];
testSanchez = 'C:\Tests\Sanchez.dat';

valueSet = {testLi,testJones,testSanchez};
M = containers.Map(keySet,valueSet,'UniformValues',false)

M =
 Map with properties:

 Count: 3
 KeyType: char
 ValueType: any

Display the numeric array associated with Li.

M('Li')

ans = 1×2

 5.8000 7.3500

Display the file name associated with Sanchez. If the file contains numeric values, you
could then call a function to read those values into an array.

M('Sanchez')

ans =
'C:\Tests\Sanchez.dat'

Specify Types for Empty Map

Create an empty Map object. Specify the data types for key-value pairs added later.

1 Alphabetical List

1-8522

M = containers.Map('KeyType','char','ValueType','double')

M =

 Map with properties:

 Count: 0
 KeyType: char
 ValueType: double

Add key-value pairs to the map.

M('Jan') = 327.2;
M('Feb') = 368.2;
M

M =
 Map with properties:

 Count: 2
 KeyType: char
 ValueType: double

Display the keys and values that the map now contains.

keys(M)

ans = 1x2 cell array
 {'Feb'} {'Jan'}

values(M)

ans = 1x2 cell array
 {[368.2000]} {[327.2000]}

See Also
cell | isKey | keys | struct | table | values

Topics
“Overview of Map Data Structure”

 containers.Map

1-8523

“Description of Map Class”
“Create Map Object”
“Examine Contents of Map”
“Map to Different Value Types”

Introduced in R2008b

1 Alphabetical List

1-8524

mat2cell
Convert array to cell array whose cells contain subarrays

Syntax
C = mat2cell(A,dim1Dist,...,dimNDist)
C = mat2cell(A,rowDist)

Description
C = mat2cell(A,dim1Dist,...,dimNDist) divides array A into smaller arrays and
returns them in cell array C. The vectors dim1Dist,...dimNDist specify how to divide
the rows, the columns, and (when applicable) the higher dimensions of A. The smaller
arrays in C can have different sizes. A can have any data type.

C = mat2cell(A,rowDist) divides array A into an n-by-1 cell array C, where n equals
the number of elements in rowDist.

Examples

Divide Array and Return Subarrays in Cell Array

Create a 5-by-4 numeric array.

A = reshape(1:20,5,4)'

A = 4×5

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

Divide A into two 2-by-3 and two 2-by-2 subarrays. Return the subarrays in a cell array.

 mat2cell

1-8525

C = mat2cell(A,[2 2],[3 2])

C = 2x2 cell array
 {2x3 double} {2x2 double}
 {2x3 double} {2x2 double}

Display the subarrays in C using the celldisp function.

celldisp(C)

C{1,1} =

 1 2 3
 6 7 8

C{2,1} =

 11 12 13
 16 17 18

C{1,2} =

 4 5
 9 10

C{2,2} =

 14 15
 19 20

Divide Array by Rows

Create an array.

1 Alphabetical List

1-8526

A = reshape(1:20,5,4)'

A = 4×5

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

Divide the rows of A so that the cell array contains two subarrays. Since the first element
of rowDist is 1, the first cell of C contains the first row of A. The second element of
rowDist is 3, so the next cell of C contains the next three rows of A. The sum of the
elements of rowDist equals the number of rows of A.

rowDist = [1 3];
C = mat2cell(A,rowDist)

C = 2x1 cell array
 {1x5 double}
 {3x5 double}

Display the subarrays.

celldisp(C)

C{1} =

 1 2 3 4 5

C{2} =

 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

 mat2cell

1-8527

Input Arguments
A — Input array
array

Input array.

dim1Dist,...,dimNDist — Distributions of input array elements
numeric vectors

Vectors describing the distributions of input array elements along each dimension,
specified as numeric vectors.

For example, if A is a 60-by-50 array, then you can specify this argument as [10 20 30],
[25 25] to divide A as shown in the code and figure. C is a cell array that contains the six
subarrays split out of A.

C = mat2cell(A,[10 20 30],[25 25])

For the Kth dimension of A, specify the elements of the corresponding vector dimKDist
so that sum(dimKDist) equals the size of the Kth dimension.

If the Kth dimension of A has a size of zero, then specify the corresponding vector
dimKDist as the empty array, [], as shown in the code.

A = rand(3,0,4);
C = mat2cell(A,[1 2],[],[2 1 1]);

rowDist — Distribution by rows
numeric vector

1 Alphabetical List

1-8528

Vector describing the distribution by rows of the input array, specified as a numeric
vector. When you do not specify how to divide A along any other dimension, the
mat2cell function returns an n-by-1 cell array C, where n equals the number of elements
in rowDist.

Each element of rowDist specifies the number of rows in the subarray that is in the
corresponding cell of C. The sum of the elements of rowDist must equal the number of
rows of A.

See Also
cell2mat | num2cell

Topics
“What Is a Cell Array?”
“Access Data in Cell Array”

Introduced before R2006a

 mat2cell

1-8529

mat2str
Convert matrix to characters

Syntax
chr = mat2str(X)
chr = mat2str(X,n)
chr = mat2str(___ ,'class')

Description
chr = mat2str(X) converts the numeric matrix X into a character vector that
represents the matrix, with up to 15 digits of precision.

You can use chr as input to the eval function. For example, A = eval(chr) reproduces
the values from the original matrix to the precision specified in chr.

chr = mat2str(X,n) converts X using n digits of precision.

chr = mat2str(___ ,'class') includes the name of the class, or data type, of X in
chr. You can use this syntax with any of the arguments from the previous syntaxes.

If you use this syntax to produce chr, then A = eval(chr) also reproduces the data
type of the original matrix.

Examples

Convert Matrix

Convert a numeric matrix to a character vector.

chr = mat2str([3.85 2.91; 7.74 8.99])

chr =
'[3.85 2.91;7.74 8.99]'

1 Alphabetical List

1-8530

You can convert chr back to a numeric matrix using the eval function.

A = eval(chr)

A = 2×2

 3.8500 2.9100
 7.7400 8.9900

Specify Precision

Convert a numeric matrix to a character vector, to three digits of precision.

chr = mat2str([3.1416 2.7183],3)

chr =
'[3.14 2.72]'

Convert Integers

Create an array of integers and convert it to a character vector. By default, the output of
mat2str represents an array of doubles. To represent a different numeric type in the
output, use the 'class' input argument.

Create a vector of 16-bit unsigned integers.

X = uint16([256 512])

X = 1x2 uint16 row vector

 256 512

Convert X to a character vector, including the data type of X.

chr = mat2str(X,'class')

chr =
'uint16([256 512])'

 mat2str

1-8531

Convert chr back to an array of integers. A has the same values and data type as X.

A = eval(chr)

A = 1x2 uint16 row vector

 256 512

Input Arguments
X — Input array
numeric matrix

Input array, specified as a numeric matrix.

n — Digits of precision
positive integer

Digits of precision, specified as a positive integer.

Tips
• mat2str returns character arrays only. Starting in R2016b, you can convert numeric

arrays to string arrays using the string function.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

This function accepts GPU arrays, but does not run on a GPU.

1 Alphabetical List

1-8532

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
cast | int2str | num2str | sprintf | str2double | str2num | string

Topics
“Convert from Numeric Values to Character Array”
“Convert from Character Arrays to Numeric Values”

Introduced before R2006a

 mat2str

1-8533

matchpairs
Solve linear assignment problem

Syntax
M = matchpairs(Cost,costUnmatched)
[M,uR,uC] = matchpairs(Cost,costUnmatched)
[___] = matchpairs(Cost,costUnmatched,goal)

Description
M = matchpairs(Cost,costUnmatched) solves the linear assignment problem on
page 1-8543 for the rows and columns of the matrix Cost. Each row is assigned to a
column in such a way that the total cost is minimized. costUnmatched specifies the cost
per row of not assigning each row, and also the cost per column of not having a row
assigned to each column.

[M,uR,uC] = matchpairs(Cost,costUnmatched) additionally returns indices for
unmatched rows in uR and indices for unmatched columns in uC.

[___] = matchpairs(Cost,costUnmatched,goal) specifies the goal of the
optimization using any of the output argument combinations in previous syntaxes. goal
can be 'min' or 'max' to produce matches that either minimize or maximize the total
cost.

Examples

Assign Flights with Minimal Cost

Assign salespeople to flights such that the total cost of transportation is minimized.

A company has four salespeople who need to travel to key cities around the country. The
company must book their flights, and wants to spend as little money as possible. These

1 Alphabetical List

1-8534

salespeople are based in different parts of the country, so the cost for them to fly to each
city varies.

This table shows the cost for each salesperson to fly to each key city.

Dallas Chicago New York City St. Louis
Fred $ 600 $ 670 $ 960 $ 560
Beth $ 900 $ 280 $ 970 $ 540
Sue $ 310 $ 350 $ 950 $ 820
Greg $ 325 $ 290 $ 600 $ 540

Each city represents a sales opportunity. If a city is missed, then the company loses out on
an average revenue gain of $2,000.

Create a cost matrix to represent the cost of each salesperson flying to each city.

C = [600 670 960 560
 900 280 970 540
 310 350 950 820
 325 290 600 540];

Use matchpairs to assign the salespeople to the cities with minimal cost. Specify the
cost of unassignment as 1000, since the cost of unassignment is counted twice if a row
and a column remain unmatched.

M = matchpairs(C,1000)

M = 4×2

 3 1
 2 2
 4 3
 1 4

matchpairs calculates the least expensive way to get a salesperson to each city.

 matchpairs

1-8535

Dallas Chicago New York City St. Louis
Fred $ 600 $ 670 $ 960 $560
Beth $ 900 $280 $ 970 $ 540
Sue $310 $ 350 $ 950 $ 820
Greg $ 325 $ 290 $600 $ 540

Unequal Numbers of Rows and Columns

Match rows to columns when you have many more columns than rows in the cost matrix.

Create a 3-by-8 cost matrix. Since you have only three rows, matchpairs can produce at
most three matches with the eight columns.

rng default % for reproducibility
C = randi([10 100], 3, 8)

C = 3×8

 84 93 35 97 97 22 82 13
 92 67 59 24 54 48 97 87
 21 18 97 98 82 93 69 94

Use matchpairs to match the rows and columns of the cost matrix. To get the maximum
number of matches, use a large cost of unassignment (relative to the magnitude of the
entries in the cost matrix). Specify three outputs to return the indices of unmatched rows
and columns.

[M,uR,uC] = matchpairs(C,1e4)

M = 3×2

 3 2
 2 4
 1 8

uR =

 0x1 empty double column vector

1 Alphabetical List

1-8536

uC = 5×1

 1
 3
 5
 6
 7

Five of the columns in C are not matched with any rows.

Assign Taxis to Maximize Profit

Assign taxis to routes such that the profit is maximized.

A taxi company has several ride requests from across the city. The company wants to
dispatch its limited number of taxis in a way that makes the most money.

This table shows the estimated taxi fare for each of five ride requests. Only three of the
five ride requests can be filled.

Ride 1 Ride 2 Ride 3 Ride 4 Ride 5
Cab A $ 5 . 70 $ 6 . 30 $ 3 . 10 $ 4 . 80 $ 3 . 50
Cab B $ 5 . 80 $ 6 . 40 $ 3 . 30 $ 4 . 70 $ 3 . 20
Cab C $ 5 . 70 $ 6 . 30 $ 3 . 20 $ 4 . 90 $ 3 . 40

Create a profits matrix to represent the profits of each taxi ride.

P = [5.7 6.3 3.1 4.8 3.5
 5.8 6.4 3.3 4.7 3.2
 5.7 6.3 3.2 4.9 3.4];

Use matchpairs to match the taxis to the most profitable rides. Specify three outputs to
return any unmatched rows and columns, and the 'max' option to maximize the profits.
Specify the cost of unassignment as zero, since the company makes no money from
unfilled taxis or ride requests.

costUnmatched = 0;
[M,uR,uC] = matchpairs(P,costUnmatched,'max')

 matchpairs

1-8537

M = 3×2

 1 1
 2 2
 3 4

uR =

 0x1 empty double column vector

uC = 2×1

 3
 5

matchpairs calculates the most profitable rides to fill. The solution leaves ride requests
3 and 5 unfilled.

Ride 1 Ride 2 Ride 3 Ride 4 Ride 5
Cab A $ 5 . 70 $ 6 . 30 $ 3 . 10 $ 4 . 80 $ 3 . 50
Cab B $ 5 . 80 $ 6 . 40 $ 3 . 30 $ 4 . 70 $ 3 . 20
Cab C $ 5 . 70 $ 6 . 30 $ 3 . 20 $ 4 . 90 $ 3 . 40

Calculate the total profits for the calculated solution. Since costUnmatched is zero, you
only need to add together the profits from each match.

TotalProfits = sum(P(sub2ind(size(P), M(:,1), M(:,2))))

TotalProfits = 17

Track Point Positions Over Time

Use matchpairs to track the movement of several points by minimizing the total
changes in distance.

Plot a grid of points at time t = 0 in green. At time t = 1, some of the points move a small
amount in a random direction.

1 Alphabetical List

1-8538

[x,y] = meshgrid(4:6:16);
x0 = x(:)';
y0 = y(:)';
plot(x0,y0,'g*')
hold on
rng default % for reproducibility
x1 = x0 + randn(size(x0));
y1 = y0 + randn(size(y0));
plot(x1,y1,'r*')

Use matchpairs to match the points at t = 0 with the points at t = 1. To do this, first
calculate a cost matrix where C(i,j) is the Euclidean distance from point i to point j.

 matchpairs

1-8539

C = zeros(size(x).^2);
for k = 1:length(y1)
 C(k,:) = vecnorm([x1(k)-x0; y1(k)-y0],2,1)';
end
C

C = 9×9

 2.8211 3.2750 9.2462 6.1243 6.3461 10.7257 11.7922 11.9089 14.7169
 4.9987 2.2771 7.5752 6.2434 4.3794 8.4485 11.1792 10.2553 12.5447
 15.2037 9.3130 3.7833 17.1539 12.2408 8.7988 20.7211 16.8803 14.5783
 6.9004 8.6551 13.1987 1.1267 5.3446 11.3075 5.1888 7.3633 12.3901
 8.6703 6.3191 8.7571 5.9455 0.3249 6.0714 8.2173 5.6816 8.3089
 13.5530 8.1918 4.7464 12.7818 6.8409 1.4903 14.6652 9.9242 7.3426
 11.5682 13.1257 16.8150 5.5702 8.3359 13.4144 0.4796 6.2201 12.2127
 13.6699 12.3432 13.7784 8.6461 6.3438 8.8167 5.8858 0.3644 6.1337
 20.6072 17.2853 15.6495 16.5444 12.1590 9.6935 13.9562 8.3006 3.8761

Next, use matchpairs to match the rows and columns in the cost matrix. Specify the
cost of unassignment as 1. With such a low cost of unassignment relative to the entries in
the cost matrix, it is likely matchpairs will leave some points unmatched.

M = matchpairs(C,1)

M = 5×2

 4 4
 5 5
 6 6
 7 7
 8 8

The values M(:,2) correspond to the original points x0, y0 , while the values M(:,1)
correspond to the moved points x1, y1 .

Plot the matched pairs of points. The points that moved farther than 2*costUnmatched
away from the original point remain unmatched.

xc = [x0(M(:,2)); x1(M(:,1))];
yc = [y0(M(:,2)); y1(M(:,1))];
plot(xc,yc,'-o')

1 Alphabetical List

1-8540

Input Arguments
Cost — Cost matrix
matrix

Cost matrix. Each entry Cost(i,j) specifies the cost of assigning row i to column j.
Data Types: single | double

costUnmatched — Cost of not matching
scalar

 matchpairs

1-8541

Cost of not matching, specified as a scalar. matchpairs compares the value of
2*costUnmatched to the entries in Cost to determine whether it is more beneficial for a
row or column to remain unmatched. Use this parameter to make matches more or less
likely in the algorithm. For more information, see linear assignment problem on page 1-
8543.
Example: M = matchpairs(C,10) specifies a cost of 10 for not matching a row or
column of C.
Data Types: single | double

goal — Optimization goal
'min' (default) | 'max'

Optimization goal, specified as either 'min' or 'max'. The optimization goal specifies
whether the total cost should be minimized or maximized.
Example: M = matchpairs(Cost,costUnmatched,'max') specifies that the rows and
columns of Cost should be matched together to maximize the total cost.

Output Arguments
M — Matches
matrix

Matches, returned as a matrix. M is a p-by-2 matrix, where M(i,1) and M(i,2) are the
row and column indices of a matched pair in the cost matrix. The rows of M are sorted
with the second column in ascending order.

• Each row and column can be matched a single time only, so each M(i,1) value and
each M(i,2) value is unique.

• M contains p matches, and p is less than or equal to the maximum number of matches
min(size(Cost)).

• The cost of the matches in M is sum([Cost(M(1,1),M(1,2)),
Cost(M(2,1),M(2,2)), ..., Cost(M(p,1),M(p,2))]).

uR — Unassigned rows
column vector

1 Alphabetical List

1-8542

Unassigned rows, returned as a column vector of indices. The entries in uR indicate which
rows in Cost are unassigned. Each entry in uR and uC contributes to the total cost of the
solution according to costUnassigned.

uC — Unassigned columns
column vector

Unassigned columns, returned as a column vector of indices. The entries in uC indicate
which columns in Cost are unassigned. Each entry in uR and uC contributes to the total
cost of the solution according to costUnassigned.

Definitions

Linear Assignment Problem
The linear assignment problem is a way of assigning rows to columns such that each row
is assigned to a column and the total cost of the assignments is minimized (or maximized).
The cost of assigning each row to each column is captured in a cost matrix. The entry
Cost(i,j) is the cost of assigning row i to column j.

The cost of unassignment assigns a cost to any row or column that is not matched. This
practice allows for minimum-cost solutions that do not assign all rows or columns. If a
row and column are not matched, this increases the total cost by 2*costUnmatched.

The total cost of a solution M is the sum of the cost of all matched pairs added to the cost
of all unmatched pairs:

TC = ∑
i = 1

p
Cost M i, 1 , M i, 2 + costUnmatched ⋅ m + n− 2p

In code the total cost is

CostAssigned = sum(Cost(sub2ind(size(Cost), M(:,1), M(:,2))));
CostUnassigned = costUnmatched*(sum(size(Cost))-2*size(M,1));
TotalCost = CostAssigned + CostUnassigned;

• Cost is an m-by-n matrix.
• M is a p-by-2 matrix, where M(i,1) and M(i,2) are the row and column of a matched

pair.

 matchpairs

1-8543

• (m+n-2*p) is the total number of unmatched rows and columns.

References
[1] Duff, I.S. and J. Koster. "On Algorithms For Permuting Large Entries to the Diagonal of

a Sparse Matrix." SIAM J. Matrix Anal. & Appl. 22(4), 2001. pp 973–996.

See Also
equilibrate

Introduced in R2019a

1 Alphabetical List

1-8544

material
Control reflectance properties of surfaces and patches

Syntax
material shiny
material dull
material metal
material([ka kd ks])
material([ka kd ks n])
material([ka kd ks n sc])
material default
material(obj,...)

Description
material sets the lighting characteristics of surface and patch objects.

material shiny sets the reflectance properties so that the object has a high specular
reflectance relative to the diffuse and ambient light, and the color of the specular light
depends only on the color of the light source.

material dull sets the reflectance properties so that the object reflects more diffuse
light and has no specular highlights, but the color of the reflected light depends only on
the light source.

material metal sets the reflectance properties so that the object has a very high
specular reflectance, very low ambient and diffuse reflectance, and the color of the
reflected light depends on both the color of the light source and the color of the object.

material([ka kd ks]) sets the ambient/diffuse/specular strength of the objects.

material([ka kd ks n]) sets the ambient/diffuse/specular strength and specular
exponent of the objects.

 material

1-8545

material([ka kd ks n sc]) sets the ambient/diffuse/specular strength, specular
exponent, and specular color reflectance of the objects.

material default sets the ambient/diffuse/specular strength, specular exponent, and
specular color reflectance of the objects to their defaults.

material(obj,...) operates on the surface and patch objects specified in vector obj.
If obj includes a graphics object that is not a surface or patch object, then material
operates on any surface or patch objects that are descendants of the specified object.

Tips
The material command sets the AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, and SpecularColorReflectance
properties of all surface and patch objects in the axes. There must be visible light
objects in the axes for lighting to be enabled. Look at the materal.m file to see the
actual values set (enter the command type material).

See Also

Topics
“Lighting Overview”

Introduced before R2006a

1 Alphabetical List

1-8546

matfile
Access and change variables directly in MAT-files, without loading into memory

Syntax
m = matfile(filename)
m = matfile(filename,'Writable',isWritable)

Description
m = matfile(filename) creates a MAT-file object, m, connected to the MAT-file named
filename. The object allows you to access and change variables directly in a MAT-file,
without having to load the variables into memory.

The partial loading and saving that the matfile function provides requires less memory
than the load and save commands, which always operate on entire variables.

m = matfile(filename,'Writable',isWritable) enables or disables write access
to the file.

Examples

Load Entire Variable

Load variable topo from the example file, topography.mat.

Open the example MAT-file, topography.mat.

filename = 'topography.mat';
m = matfile(filename);

Read the variable topo from the MAT-file.

topo = m.topo;

 matfile

1-8547

MATLAB® loads the entire variable, topo, into the workspace.

Save Entire Variable to Existing MAT-file

Generate a 20-by-20 example array, x, and save it to a MAT-file called myFile.mat.

x = magic(20);
save('myFile.mat','x');

Create a MAT-file object connected to the existing MAT-file named myFile.mat. Enable
write access to the MAT-file by setting Writable to true.

m = matfile('myFile.mat','Writable',true);

Generate a 15-by-15 example array, y.

y = magic(15);

Save y to the MAT-file. Specify the variable in the MAT-file using dot notation similar to
accessing fields of structure arrays.

m.y = y;

MATLAB® adds a variable named y to the file.

Display all variables stored in the MAT-file, myFile.mat.

whos('-file','myFile.mat')

 Name Size Bytes Class Attributes

 x 20x20 3200 double
 y 15x15 1800 double

Load and Save Parts of Variables

Access specific elements of a MAT-file variable.

Open a new MAT-file, myFile2.mat.

1 Alphabetical List

1-8548

m = matfile('myFile2.mat');

Save a 20-by-20 example array to part of a variable, y, in myFile2.mat. Specify the
variable in the MAT-file using dot notation similar to accessing fields of structure arrays.

m.y(81:100,81:100) = magic(20);

MATLAB® inserts the 20-by-20 array into the elements of y specified by the indices
(81:100,81:100).

Read a subset of array y into a new workspace variable, z.

z = m.y(85:94,85:94);

MATLAB reads the 10-by-10 subarray specified by the indices (85:94,85:94) from the
MAT-file into workspace variable z.

Determine Size of Variables

Determine the size of a variable, and then calculate the average of each column.

Open the example MAT-file, stocks.mat.

filename = 'stocks.mat';
m = matfile(filename);

Determine the size of the variable, stocks, in stocks.mat.

[nrows,ncols] = size(m,'stocks');

Compute the average of each column of the variable stocks.

avgs = zeros(1,ncols);
for i = 1:ncols
 avgs(i) = mean(m.stocks(:,i));
end

 matfile

1-8549

Enable Write Access to MAT-file

Enable write access to the MAT-file, myFile.mat, by setting Writable to true when
you open the MAT-file.

filename = 'myFile.mat';
m = matfile(filename,'Writable',true);

Alternatively, set Properties.Writable in a separate step after you open the MAT-file.

m.Properties.Writable = true;

Input Arguments
filename — Name of MAT-file
character vector

Name of a MAT-file, specified as a character vector. If the file is not in the current folder,
filename must include a full or a relative path. If filename does not include an
extension, then matfile appends .mat.

If the file does not exist, then matfile creates a Version 7.3 MAT-file on the first
assignment to a variable.

matfile only supports efficient partial loading and saving for MAT-files in Version 7.3
format. If you index into a variable in a Version 7 (the current default) or earlier MAT-file,
MATLAB warns and temporarily loads the entire contents of the variable.
Example: 'myFile.mat'
Data Types: char

isWritable — Write access to MAT-file
true | false

Write access to the MAT-file, specified as either true or false.

• true enables saving to the MAT-file. If the file is read only, MATLAB changes the
system permissions with the fileattrib function.

• false disables saving to the MAT-file. MATLAB does not change the system
permissions.

1 Alphabetical List

1-8550

The default value is true for new files, and false for existing files.
Data Types: logical

Output Arguments
m — MAT-file object
matlab.io.MatFile object

MAT-file object connected to a MAT-file.

Access variables in the MAT-file with dot notation similar to accessing fields of structure
arrays:

• To load part of variable varName from the MAT-file corresponding to m, call:

loadedData = m.varName(indices);

• To save part of variable varName to the MAT-file corresponding to m, call:

m.varName(indices) = dataToSave;

When accessing variables, specify indices for all dimensions. Indices can be a single
value, an equally spaced range of increasing values, or a colon (:); for example:

m.varName(100:500,200:600)
m.varName(:,501:1000)
m.varName(1:2:1000,80)

Limitations
• matfile does not support linear indexing. You must specify indices for all dimensions.
• matfile does not support indexing into:

• Variables of tables
• Cells of cell arrays
• Fields of structure arrays
• User-defined classes
• Sparse arrays

 matfile

1-8551

• You cannot assign complex values to an indexed portion of a real array.
• You cannot evaluate function handles using the m output. For example, if your MAT-file

contains function handle myfunc, the syntax m.myfunc() attempts to index into the
function handle, and does not invoke the function.

• Efficient partial loading and saving requires Version 7.3 MAT-files. To create a Version
7.3 MAT-file, call the save function with the '-v7.3' option. For example, to convert
an existing MAT-file named durer.mat to Version 7.3, call:

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

Tips
• Using the end keyword as part of an index causes MATLAB to load the entire variable

into memory. For very large variables, this load operation results in Out of Memory
errors. Rather than using end, determine the extent of a variable, myVar, with the
size method, such as:

sizeMyVar = size(m,'myVar')

See Also
load | save | size | whos

Topics
“Save and Load Parts of Variables in MAT-Files”
MAT-File Versions

Introduced in R2011b

1 Alphabetical List

1-8552

matlab.addons.disableAddon
Disable installed add-on

Syntax
matlab.addons.disableAddon(identifier)
matlab.addons.disableAddon(identifier,version)

Description
matlab.addons.disableAddon(identifier) disables the installed add-on with the
specified identifier. If multiple versions of an add-on are installed,
matlab.addons.disableAddon disables the currently enabled version.

You can disable and enable most add-ons from the MATLAB user community. Disabling
and enabling MathWorks products and support packages is not supported.

matlab.addons.disableAddon(identifier,version) disables the installed add-on
with the specified identifier and version.

Examples

Disable Add-On from Installed List

Suppose that you have an add-on called Random File Name Creator installed on your
system. Get the list of installed add-ons and disable the Random File Name Creator
add-on.

Get the list of installed add-ons.

addons = matlab.addons.installedAddons

 addons =

 1×4 table

 matlab.addons.disableAddon

1-8553

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "Random File Name Creator" "1.0" true "75442144-f751-4011-bm0e-32b6fb2f1433"

Disable Random File Name Creator and confirm that it is disabled.

matlab.addons.disableAddon('75442144-f751-4011-bm0e-32b6fb2f1433')
matlab.addons.isAddonEnabled('75442144-f751-4011-bm0e-32b6fb2f1433')

ans =

 logical

 0

Input Arguments
identifier — Unique identifier of add-on
character vector | string

Unique identifier of the add-on that you want to disable, specified as a character vector or
string. To determine the unique identifier of an add-on, use the
matlab.addons.installedAddons function.

version — Version of add-on
character vector | string

Version of the add-on that you want to disable, specified as a character vector or string.
To determine the version of an add-on, use the matlab.addons.installedAddons
function.

See Also
matlab.addons.enableAddon | matlab.addons.installedAddons |
matlab.addons.isAddonEnabled

Topics
“Manage Your Add-Ons”

1 Alphabetical List

1-8554

Introduced in R2017b

 matlab.addons.disableAddon

1-8555

matlab.addons.enableAddon
Enable installed add-on

Syntax
matlab.addons.enableAddon(identifier)
matlab.addons.enableAddon(identifier,version)

Description
matlab.addons.enableAddon(identifier) enables the add-on with the specified
identifier. You can disable and enable most add-ons from the MATLAB user community.
Disabling and enabling MathWorks products and support packages is not supported.

If multiple versions of an add-on are installed, you must specify a version.

matlab.addons.enableAddon(identifier,version) enables the installed add-on
with the specified identifier and version.

Examples

Enable Add-On from Installed List

Suppose that you have an add-on called Random File Name Creator installed on your
system. Get the list of installed add-ons and enable the Random File Name Creator
add-on.

Get the list of installed add-ons.

addons = matlab.addons.installedAddons

 addons =

 1×4 table

 Name Version Enabled Identifier

1 Alphabetical List

1-8556

 ___________________________ _________ _______ ______________________________________

 "Random File Name Creator" "1.0" true "75442144-f751-4011-bm0e-32b6fb2f1433"

Check to see whether the Random File Name Creator add-on is disabled. MATLAB
confirms that the add-on is disabled.

matlab.addons.isAddonEnabled('75442144-f751-4011-bm0e-32b6fb2f1433')

ans =

 logical

 0

Enable the Random File Name Creator add-on and confirm that it is enabled.

matlab.addons.enableAddon('75442144-f751-4011-bm0e-32b6fb2f1433')
matlab.addons.isAddonEnabled('75442144-f751-4011-bm0e-32b6fb2f1433')

ans =

 logical

 1

Switch to Previous Version of Add-On

Suppose that you have versions 2.0 and 4.0 of an add-on called My Toolbox installed
on your system. Version 4.0 is enabled. Switch to using version 2.0 of the add-on by
enabling version 2.0.

Get the list of installed add-ons.

addons = matlab.addons.installedAddons

addons =

 2×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox_v4.0" "4.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"
 "My Toolbox" "2.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"

 matlab.addons.enableAddon

1-8557

Enable version 2.0 of My Toolbox by specifying the second item in the returned list of
identifiers. MATLAB enables version 2.0 and disables version 4.0 of My Toolbox.

matlab.addons.enableAddon(addons.Identifier(2),'2.0')
addons = matlab.addons.installedAddons

addons =

 2×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox_v4.0" "4.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"
 "My Toolbox" "2.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"

Input Arguments
identifier — Unique identifier of add-on
character vector | string

Unique identifier of the add-on that you want to enable, specified as a character vector or
string. To determine the unique identifier of an add-on, use the
matlab.addons.installedAddons function.

version — Version of add-on
character vector | string

Version of the add-on that you want to disable, specified as a character vector or string.
To determine the version of an add-on, use the matlab.addons.installedAddons
function.

See Also
matlab.addons.disableAddon | matlab.addons.installedAddons |
matlab.addons.isAddonEnabled

Topics
“Manage Your Add-Ons”

Introduced in R2017b

1 Alphabetical List

1-8558

matlab.addons.install
Install add-on

Syntax
newAddon = matlab.addons.install(fileName)
newAddon = matlab.addons.install(fileName,agreeToLicense)
newAddon = matlab.addons.install(fileName,installOption)
newAddon = matlab.addons.install(fileName,agreeToLicense,
installOption)

Description
newAddon = matlab.addons.install(fileName) installs the add-on specified by
fileName. If a version of the add-on is already installed, MATLAB overwrites the
previous version.

matlab.addons.install only supports installing toolboxes.

newAddon = matlab.addons.install(fileName,agreeToLicense) accepts the
license agreement before installing the add-on if agreeToLicense is true.

newAddon = matlab.addons.install(fileName,installOption) installs the add-
on without overwriting previously installed versions if installOption is 'add'.
Otherwise, if a version of the add-on is already installed, MATLAB overwrites the previous
version.

newAddon = matlab.addons.install(fileName,agreeToLicense,
installOption) installs the add-on using the specified license and install options.

Examples

 matlab.addons.install

1-8559

Accept License Agreement and Install Toolbox

Assume that you have the My toolbox.mltbx toolbox file in your C:\Downloads\
folder, and that the toolbox contains a license agreement. Install the toolbox and prevent
MATLAB from opening the license agreement dialog box by indicating you accept the
license.

toolboxFile = 'C:\Downloads\My toolbox.mltbx';
agreeToLicense = true;
matlab.addons.toolbox.install(toolboxFile,agreeToLicense)

Verify that the toolbox is installed.

addons = matlab.addons.installedAddons

 addons =

 1×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox" "2.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"

Install Toolbox Without Overwriting Previous Versions

Suppose that you have version 2.0 of a toolbox called My Toolbox installed on your
system. Install version 4.0 of the toolbox without overwriting version 2.0.

Assume that you have the 'My toolbox_v4.0.mltbx' toolbox file in your current
working folder. Install the toolbox without overwriting the existing installed version by
specifying that you want to add the toolbox.

toolboxFile = 'My toolbox_v4.0.mltbx';
installOption = 'add';
matlab.addons.toolbox.install(toolboxFile, installOption)

ans =

 1×4 table

 Name Version Enabled Identifier
 _________________ _______ _______ ______________________________________

 "My toolbox_v4.0" "4.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"

If the toolbox contains a license agreement, a dialog box opens to prompt you to agree to
the license before installation.

1 Alphabetical List

1-8560

Verify that the previous version of the toolbox is still installed.

addons = matlab.addons.installedAddons

addons =

 2×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox_v4.0" "4.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"
 "My Toolbox" "2.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"

Input Arguments
fileName — File name
character vector | string

File name to install, specified as a character vector or string. File name must be a valid
toolbox installation file (*.mltbx). You can specify the file name as an absolute or relative
path.

agreeToLicense — Whether to accept license agreement
false (default) | true

Whether to accept license agreement, specified as true or false. By default,
agreeToLicense is false.

If an add-on contains a license agreement:

• If agreeToLicense is false, then MATLAB displays a dialog box where you can
accept the license or cancel installation.

• If agreeToLicense is true, then MATLAB installs the add-on without opening the
license agreement dialog box. By setting agreeToLicense to true, you accept the
terms of the license agreement. Be sure that you have reviewed the license agreement
before installing the add-on.

If an add-on does not have a license agreement, the value of agreeToLicense has no
effect on installation.

installOption — Whether to overwrite or add the add-on
'overwrite' (default) | 'add'

 matlab.addons.install

1-8561

Whether to overwrite or add the add-on, specified as 'overwrite' or 'add'. By default,
installOption is set to 'overwrite'.

If a version of an add-on is already installed:

• If installOption is 'overwrite', then MATLAB overwrites all previously installed
versions of the add-on.

• If installOption is 'add', then MATLAB installs the add-on without overwriting
previously installed versions.

Output Arguments
newAddon — New add-on information
table

New add-on information, specified as a table of strings. The table has these columns.

Field Description
Name Name of the add-on
Version Version of the add-on
Enabled Whether the add-on is enabled
Identifier Unique identifier of the add-on

See Also
matlab.addons.installedAddons | matlab.addons.uninstall

Topics
“Manage Your Add-Ons”

Introduced in R2018b

1 Alphabetical List

1-8562

matlab.addons.installedAddons
Get list of installed add-ons

Syntax
addons = matlab.addons.installedAddons

Description
addons = matlab.addons.installedAddons returns a list of currently installed add-
ons.

Examples

Get List of Installed Add-Ons

Suppose that you have an add-on called Random File Name Creator and versions 2.0
and 4.0 of an add-on called My Toolbox installed on your system. Get the list of
installed add-ons.

addons = matlab.addons.installedAddons

 addons =

 1×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "Random File Name Creator" "1.0" true "75442144-f751-4011-bm0e-32b6fb2f1433"

 matlab.addons.installedAddons

1-8563

 "My Toolbox_v4.0" "4.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"
 "My Toolbox" "2.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"

Output Arguments
addons — Installed add-ons information
table

Installed add-ons information, specified as a table of strings with one row for each add-on.
The table has these columns.

Field Description
Name Name of the add-on
Version Version of the add-on
Enabled Whether the add-on is enabled
Identifier Unique identifier of the add-on

See Also
matlab.addons.disableAddon | matlab.addons.enableAddon |
matlab.addons.isAddonEnabled

Topics
“Manage Your Add-Ons”

Introduced in R2017b

1 Alphabetical List

1-8564

matlab.addons.isAddonEnabled
Determine if add-on is enabled

Syntax
isenabled = matlab.addons.isAddonEnabled(identifier)
isenabled = matlab.addons.isAddonEnabled(identifier,version)

Description
isenabled = matlab.addons.isAddonEnabled(identifier) returns true if the
add-on with the specified identifier is enabled. Otherwise, it returns false.

isenabled = matlab.addons.isAddonEnabled(identifier,version) returns
true if the add-on with the specified identifier and version is enabled. Otherwise, it
returns false.

If multiple versions of an add-on are installed, you must specify version.

Examples

Determine if Add-On is Enabled

Suppose that you have an add-on called Random File Name Creator installed on your
system. Get the list of installed add-ons and determine if Random File Name Creator
is enabled.

Get the list of installed add-ons.

addons = matlab.addons.installedAddons

 addons =

 1×4 table

 Name Version Enabled Identifier

 matlab.addons.isAddonEnabled

1-8565

 ___________________________ _________ _______ ______________________________________

 "Random File Name Creator" "1.0" true "75442144-f751-4011-bm0e-32b6fb2f1433"

Determine if Random File Name Creator is enabled. MATLAB confirms that the add-
on is enabled.

matlab.addons.isAddonEnabled('75442144-f751-4011-bm0e-32b6fb2f1433')

ans =

 logical

 1

Disable Specified Version of Add-On

Suppose that you have versions 2.0 and 4.0 of an add-on called My Toolbox installed
on your system. Disable version 4.0 of the add-on and confirm that it is disabled.

Get the list of installed add-ons.

addons = matlab.addons.installedAddons

addons =

 2×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox_v4.0" "4.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"
 "My Toolbox" "2.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"

Disable My Toolbox version 4.0 by specifying the first item in the returned list of
identifiers. Then, confirm that it is disabled.

matlab.addons.disableAddon(addons.Identifier(1),'4.0')
matlab.addons.isAddonEnabled(addons.Identifier(1),'4.0')

ans =

 logical

1 Alphabetical List

1-8566

 0

Input Arguments
identifier — Unique identifier of add-on
character vector | string

Unique identifier of the add-on, specified as a character vector or string. To determine the
unique identifier of an add-on, use the matlab.addons.installedAddons function.

version — Version of add-on
character vector | string

Version of the add-on, specified as a character vector or string. To determine the version
of an add-on, use the matlab.addons.installedAddons function.

See Also
matlab.addons.disableAddon | matlab.addons.enableAddon |
matlab.addons.installedAddons

Topics
“Manage Your Add-Ons”

Introduced in R2017b

 matlab.addons.isAddonEnabled

1-8567

matlab.addons.toolbox.installedToolboxes
Return information about installed toolboxes

Syntax
toolboxes = matlab.addons.toolbox.installedToolboxes

Description
toolboxes = matlab.addons.toolbox.installedToolboxes returns a structure
array containing information about the installed toolboxes. The structure array does not
include information about MathWorks toolboxes.

Examples

Display Installed Toolbox Information

Assume that you previously installed two toolboxes, myToolbox and myOtherToolbox.
Store information about these toolboxes in a variable.

toolboxes = matlab.addons.toolbox.installedToolboxes

toolboxes =

1x2 struct array with fields:

 Name
 Version
 Guid

Use struct2table to format this stored information as a readable table.

struct2table(toolboxes)

ans =

1 Alphabetical List

1-8568

 Name Version Guid
 ________________ _______ ______________________________________

 'myToolbox' '1.5.2' 'd0169b4a-fe74-463f-981a-26160c94cbe5'
 'myOtherToolbox' '1.0' '1deb72c1-725f-4e1b-a1a7-dcc8e75453bb'

Output Arguments
toolboxes — Information about installed toolboxes
structure array

Information about installed toolboxes, returned as a structure array with one element for
each installed toolbox. Each element of the structure array has the following fields.

Field Description
Name Name of the toolbox
Version Toolbox version
Guid Unique toolbox identifier

Tips
• To view information about MathWorks toolboxes, see ver.

Alternatives
You can query your installed toolboxes from the Add-On Manager UI. For more
information, see “Manage Your Add-Ons”.

See Also
matlab.addons.toolbox.installToolbox |
matlab.addons.toolbox.packageToolbox |
matlab.addons.toolbox.toolboxVersion |
matlab.addons.toolbox.uninstallToolbox

 matlab.addons.toolbox.installedToolboxes

1-8569

Introduced in R2016a

1 Alphabetical List

1-8570

matlab.addons.toolbox.installToolbox
Install toolbox file

Syntax
installedToolbox = matlab.addons.toolbox.installToolbox(toolboxFile)
installedToolbox = matlab.addons.toolbox.installToolbox(toolboxFile,
agreeToLicense)

Description
installedToolbox = matlab.addons.toolbox.installToolbox(toolboxFile)
installs the toolbox file (.mltbx file) specified by toolboxFile and returns information
about the toolbox.

installedToolbox = matlab.addons.toolbox.installToolbox(toolboxFile,
agreeToLicense) accepts the license agreement before installing the toolbox if
agreeToLicense is true.

Examples

Install Toolbox

Assume that you have the myToolbox.mltbx toolbox file in your current working folder.
Install the toolbox.

toolboxFile = 'MyToolbox.mltbx';
installedToolbox = matlab.addons.toolbox.installToolbox(toolboxFile)

installedToolbox =

 Name: 'myToolbox'
 Version: '2.0'
 Guid: 'd0169b4a-fe74-463f-981a-26160c94cbe5'

 matlab.addons.toolbox.installToolbox

1-8571

If the toolbox contains a licenses agreement, a dialog box opens to prompt you to agree to
the license before installation.

Accept License Agreement and Install Toolbox

Assume that you have the myToolbox.mltbx toolbox file in your C:\Downloads\ folder,
and that the toolbox contains a license agreement. Install the toolbox and prevent
MATLAB from opening the license agreement dialog box by indicating you accept the
license.
toolboxFile = 'C:\Downloads\MyToolbox.mltbx';
agreeToLicense = true;
installedToolbox = matlab.addons.toolbox.installToolbox(toolboxFile,agreeToLicense)

installedToolbox =

 Name: 'myToolbox'
 Version: '2.0'
 Guid: 'd0169b4a-fe74-463f-981a-26160c94cbe5'

Input Arguments
toolboxFile — Name of toolbox file
character vector | string scalar

Name of the toolbox file (.mltbx file), specified as a character vector or string scalar. The
name includes the relative or absolute path to the file.
Example: toolboxFile = 'myToolbox.mltbx'
Example: toolboxFile = "C:\Work\myOtherToolbox.mltbx"

agreeToLicense — Indicator to accept license agreement
false (default) | true

Indicator to accept license agreement, specified as false or true. By default,
agreeToLicense is false. If a toolbox contains a license agreement:

• If agreeToLicense is false, then MATLAB displays a dialog box where you can
accept the license or cancel installation.

• If agreeToLicense is true, then MATLAB installs the toolbox without opening the
license agreement dialog box. By setting agreeToLicense to true, you accept the

1 Alphabetical List

1-8572

terms of the license agreement. Be sure that you have reviewed the license agreement
before installing the toolbox.

If a toolbox does not have a license agreement, the value of agreeToLicense has no
effect on installation.
Data Types: logical

Output Arguments
installedToolbox — Information about installed toolbox
structure

Information about the installed toolbox, returned as a structure. The structure has the
following fields.

Field Description
Name Name of the toolbox
Version Toolbox version
Guid Unique toolbox identifier

Alternatives
You can install toolboxes from the Add-On Explorer UI. For more information, see “Get
Add-Ons”.

See Also
matlab.addons.toolbox.installedToolboxes |
matlab.addons.toolbox.packageToolbox |
matlab.addons.toolbox.toolboxVersion |
matlab.addons.toolbox.uninstallToolbox

Introduced in R2016a

 matlab.addons.toolbox.installToolbox

1-8573

matlab.addons.toolbox.packageToolbox
Package toolbox project

Syntax
matlab.addons.toolbox.packageToolbox(projectFile)
matlab.addons.toolbox.packageToolbox(projectFile,outputFile)

Description
matlab.addons.toolbox.packageToolbox(projectFile) packages the toolbox
project file (.prj file) into a MATLAB toolbox file (.mltbx file) of the same name. For you
to package a toolbox, the toolbox root folder and the toolbox files must be in the same
location as when you created the toolbox project file.

matlab.addons.toolbox.packageToolbox(projectFile,outputFile) packages
the toolbox and saves the .mltbx file with the name and location specified by
outputFile.

Examples

Package Toolbox

Assume that you have the myToolbox.prj toolbox project file in your current working
folder. Package the toolbox in the same folder.

projectFile = 'myToolbox.prj';
matlab.addons.toolbox.packageToolbox(projectFile)

Specify Output File Name and Package Toolbox

Assume that you have the myToolbox.prj toolbox project file in your current working
folder. Package the toolbox as myFavoriteToolbox.mltbx.

1 Alphabetical List

1-8574

projectFile = 'myToolbox.prj';
outputFile = 'myFavoriteToolbox';
matlab.addons.toolbox.packageToolbox(projectFile,outputFile)

Input Arguments
projectFile — Name of toolbox project file
character vector | string scalar

Name of the toolbox project file (.prj file), specified as a character vector or string
scalar. The name includes the relative or absolute path to the file.
Example: projectFile = 'myToolbox.prj'
Example: projectFile = "C:\Work\myOtherToolbox.prj"

outputFile — Name of output MATLAB toolbox file
character vector | string scalar

Name of the output MATLAB toolbox file (.mltbx file), specified as a character vector or
string scalar. The name includes the relative or absolute path to the file. If the value of
outputFile does not contain the .mltbx extension, the packageToolbox function
appends the extension.
Example: outputFile = "myToolbox.mltbx"
Example: outputFile = 'C:\Work\myOtherToolbox'

Alternatives
You can package toolboxes from the Package a Toolbox UI. For more information, see
“Create and Share Toolboxes”.

See Also
matlab.addons.toolbox.installToolbox |
matlab.addons.toolbox.installedToolboxes |
matlab.addons.toolbox.toolboxVersion |
matlab.addons.toolbox.uninstallToolbox

 matlab.addons.toolbox.packageToolbox

1-8575

Introduced in R2016a

1 Alphabetical List

1-8576

matlab.addons.toolbox.toolboxVersion
Query or modify version of toolbox

Syntax
currentVersion = matlab.addons.toolbox.toolboxVersion(toolboxFile)
previousVersion = matlab.addons.toolbox.toolboxVersion(toolboxFile,
newVersion)

Description
currentVersion = matlab.addons.toolbox.toolboxVersion(toolboxFile)
queries toolboxFile for the current version number. You do not need to install the
toolbox to query the version number.

previousVersion = matlab.addons.toolbox.toolboxVersion(toolboxFile,
newVersion) sets the toolbox version number to newVersion and returns the previous
version number.

Examples

Query Toolbox Version Number

Assume that you have the myToolbox.mltbx toolbox file on your MATLAB search path.
Query the version number.

toolboxFile = 'myToolbox.mltbx';
currentVersion = matlab.addons.toolbox.toolboxVersion(toolboxFile)

currentVersion =

1.5.2

 matlab.addons.toolbox.toolboxVersion

1-8577

Set Toolbox Version Number

Assume that you have the myToolbox.prj toolbox project file on your MATLAB search
path. Update the myToolbox version number to 2.0.
toolboxFile = 'myToolbox.prj';
newVersion = '2.0';
previousVersion = matlab.addons.toolbox.toolboxVersion(toolboxFile,newVersion)

previousVersion =

1.5.2

Verify that the version number is now 2.0.

currentVersion = matlab.addons.toolbox.toolboxVersion(toolboxFile)

currentVersion =

2.0

The version number is updated for the toolbox project file, but not for the MATLAB
toolbox file (.mltbx).

matlab.addons.toolbox.toolboxVersion('myToolbox.mltbx')

ans =

1.5.2

Repackage the toolbox to update the .mltbx file. For more information, see
matlab.addons.toolbox.packageToolbox.

Input Arguments
toolboxFile — Name of toolbox file
character vector | string scalar

Name of the toolbox file, specified as a character vector or string scalar. The name
includes the relative or absolute path to the toolbox file.

If you are only querying the toolbox version, toolboxFile can be a toolbox project file
(.prj) or a MATLAB toolbox file (.mltbx).

1 Alphabetical List

1-8578

If you are setting the toolbox version, toolboxFile must be a toolbox project file (.prj).
Example: toolboxFile = 'myToolbox.mltbx'
Example: toolboxFile = "C:\Work\myOtherToolbox.prj"

newVersion — New toolbox version number
character vector | string scalar

New toolbox version number, specified as a character vector or string scalar. Enter the
toolbox version number in the Major.Minor.Bug.Build format. The Bug and Build
segments are optional. Each segment of the version number is an integer.
Example: newVersion = "2.0"
Example: newVersion = '3.7.12.2'

Alternatives
You can query the version number of your toolbox from the Add-On Manager UI. For more
information, see “Manage Your Add-Ons”.

You can update the version number of your toolbox from the Package a Toolbox UI. For
more information, see “Create and Share Toolboxes”.

See Also
matlab.addons.toolbox.installToolbox |
matlab.addons.toolbox.installedToolboxes |
matlab.addons.toolbox.packageToolbox |
matlab.addons.toolbox.uninstallToolbox

Introduced in R2016a

 matlab.addons.toolbox.toolboxVersion

1-8579

matlab.addons.toolbox.uninstallToolbox
Uninstall toolbox

Syntax
matlab.addons.toolbox.uninstallToolbox(installedToolbox)

Description
matlab.addons.toolbox.uninstallToolbox(installedToolbox) uninstalls the
specified toolbox. MATLAB removes all the files and folders associated with the toolbox
from the path and then deletes them.

Examples

Uninstall Toolbox

Assume that you previously installed two toolboxes, myToolbox and myOtherToolbox,
and you want to uninstall the myToolbox toolbox.

Obtain the structure array of installed toolboxes, and display it as a table.

toolboxes = matlab.addons.toolbox.installedToolboxes;
struct2table(toolboxes)

ans =

 Name Version Guid
 ________________ _______ ______________________________________

 'myToolbox' '1.5.2' 'd0169b4a-fe74-463f-981a-26160c94cbe5'
 'myOtherToolbox' '1.0' '1deb72c1-725f-4e1b-a1a7-dcc8e75453bb'

1 Alphabetical List

1-8580

Read the table and note the location of the toolbox you want to uninstall. Since
myToolbox is listed first in the table, information about it can be found in
toolboxes(1).

installedToolbox = toolboxes(1)

installedToolbox =

 Name: 'myToolbox'
 Version: '1.5.2'
 Guid: 'd0169b4a-fe74-463f-981a-26160c94cbe5'

Uninstall the toolbox. If the uninstallation process is successful, MATLAB does not display
output.

matlab.addons.toolbox.uninstallToolbox(installedToolbox)

Input Arguments
installedToolbox — Information about toolbox to uninstall
structure

Information about the toolbox to uninstall, specified as a structure. The structure is an
element of the structure array returned by the
matlab.addons.toolbox.installedToolboxes function, and it has the following
fields.

Field Description
Name Name of the toolbox
Version Toolbox version
Guid Unique toolbox identifier

MATLAB uses the Guid field to determine which toolbox to uninstall.
Data Types: struct

 matlab.addons.toolbox.uninstallToolbox

1-8581

Alternatives
You can uninstall toolboxes from the Add-On Manager UI. For more information, see
“Manage Your Add-Ons”.

See Also
matlab.addons.toolbox.installToolbox |
matlab.addons.toolbox.installedToolboxes |
matlab.addons.toolbox.packageToolbox |
matlab.addons.toolbox.toolboxVersion

Introduced in R2016a

1 Alphabetical List

1-8582

matlab.addons.uninstall
Uninstall add-on

Syntax
matlab.addons.uninstall(identifier)
matlab.addons.uninstall(identifier,version)
matlab.addons.uninstall(identifier,'All')

Description
matlab.addons.uninstall(identifier) uninstalls the add-on with the specified
identifier.

matlab.addons.uninstall only supports uninstalling toolboxes.

matlab.addons.uninstall(identifier,version) uninstalls the add-on with the
specified identifier and version.

If multiple versions of an add-on are installed, you must either specify a version or
'All' to uninstall all versions.

matlab.addons.uninstall(identifier,'All') uninstalls all installed versions of
the specified add-on, if multiple versions are installed.

Examples

Uninstall Toolbox

Suppose that you have a toolbox called Random File Name Creator installed on your
system. Get the list of installed add-ons and uninstall the Random File Name Creator
toolbox.

Get the list of installed add-ons.

 matlab.addons.uninstall

1-8583

addons = matlab.addons.installedAddons

 addons =

 1×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "Random File Name Creator" "1.0" true "75442144-f751-4011-bm0e-32b6fb2f1433"

Uninstall the Random File Name Creator toolbox.

matlab.addons.uninstall('75442144-f751-4011-bm0e-32b6fb2f1433')

Uninstall Specific Version of Toolbox

Suppose that you have version 2.0 and version 4.0 of a toolbox called My Toolbox
installed on your system. After working with version 4.0, you decide that you no longer
need version 2.0 and want to uninstall it.

Get the list of installed add-ons.

addons = matlab.addons.installedAddons

addons =

 2×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox_v4.0" "4.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"
 "My Toolbox" "2.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"

Uninstall My Toolbox version 2.0 by specifying the second item in the returned list of
identifiers and confirm that it is uninstalled.

matlab.addons.uninstall(addons.Identifier(2),'2.0')
addons = matlab.addons.installedAddons

addons =

 1×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox_v4.0" "4.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"

1 Alphabetical List

1-8584

Enable My Toolbox version 4.0 by specifying the first item in the returned list of
identifiers. Then, confirm that it is enabled.

matlab.addons.enableAddon(addons.Identifier(1),'4.0')
matlab.addons.isAddonEnabled(addons.Identifier(1),'4.0')

ans =

 logical

 1

Uninstall All Versions of a Toolbox

Suppose that you have version 2.0 and version 4.0 of a toolbox called My Toolbox
installed on your system. You decide that you no longer need My Toolbox and want to
uninstall all versions of the toolbox.

Get the list of installed add-ons.

addons = matlab.addons.installedAddons

addons =

 2×4 table

 Name Version Enabled Identifier
 ___________________________ _________ _______ ______________________________________

 "My Toolbox_v4.0" "4.0" true "6de8682e-9c3c-407e-bad7-aa103d738d08"
 "My Toolbox" "2.0" false "6de8682e-9c3c-407e-bad7-aa103d738d08"

Uninstall all versions of My Toolbox.

matlab.addons.uninstall(addons.Identifier(1),'All')

Input Arguments
identifier — Unique identifier of add-on
character vector | string

Unique identifier of the add-on that you want to uninstall, specified as a character vector
or string. To determine the unique identifier of an add-on, use the
matlab.addons.installedAddons function.

 matlab.addons.uninstall

1-8585

version — Version of add-on
character vector | string

Version of the add-on that you want to uninstall, specified as a character vector or string.
To determine the version of an add-on, use the matlab.addons.installedAddons
function.

See Also
matlab.addons.install | matlab.addons.installedAddons

Topics
“Manage Your Add-Ons”

Introduced in R2018b

1 Alphabetical List

1-8586

matlab.codetools.requiredFilesAndProducts
List dependencies of MATLAB program files

Syntax
fList = matlab.codetools.requiredFilesAndProducts(files)
[fList, pList] = matlab.codetools.requiredFilesAndProducts(files)
[fList, pList] = matlab.codetools.requiredFilesAndProducts(___
,'toponly')

Description
fList = matlab.codetools.requiredFilesAndProducts(files) returns a list of
the MATLAB program files required to run the program files specified by files.

The matlab.codetools.requiredFilesAndProducts function is intended to provide
you with information to pass on to consumers of your MATLAB program files.

[fList, pList] = matlab.codetools.requiredFilesAndProducts(files) also
returns a list of the MathWorks products possibly required to run the program files
specified by files.

If you use the matlab.codetools.requiredFilesAndProducts function on MATLAB
code that you received, plist only includes the required toolboxes that are installed on
your system. In this case, plist can be incomplete.

[fList, pList] = matlab.codetools.requiredFilesAndProducts(___
,'toponly') indicates that for a file or product to be included in the output, it must be
used directly by at least one file specified in files. The 'toponly' input option is case
insensitive.

Examples

 matlab.codetools.requiredFilesAndProducts

1-8587

Identify Required Files and Products for MATLAB Toolbox Function

Determine the required files and products for the edge function in the Image Processing
Toolbox.

[fList,pList] = matlab.codetools.requiredFilesAndProducts('edge.m')

fList =

 {}

pList =

1x2 struct array with fields:

 Name
 Version
 ProductNumber
 Certain

There are no required MATLAB files, but there are two required products.

List the required products.

{pList.Name}'

ans =

 'MATLAB'
 'Image Processing Toolbox'

Identify Required Files and Products for Your MATLAB Program Files

In your current working folder, create a function in the file getRandomNumber.m.

function a = getRandomNumber
 rng shuffle
 a = rand;
end

Now, at the command line, determine the required files and products for
getRandomNumber.m.

1 Alphabetical List

1-8588

[fList,pList] = matlab.codetools.requiredFilesAndProducts('getRandomNumber.m')

fList =

 'C:\work\getRandomNumber.m'

pList =

 Name: 'MATLAB'
 Version: '8.5'
 ProductNumber: 1
 Certain: 1

The only file required to run the getRandomNumber function is the function file itself. The
only required MathWorks product is MATLAB.

In your current working folder, create a function in the file displayNumber.m.

function displayNumber
 a = getRandomNumber;
 disp(['Your number is ' num2str(a)])
end

Now, at the command line, determine the required files and products for
displayNumber.m.

[fList,pList] = matlab.codetools.requiredFilesAndProducts('displayNumber.m')

fList =

 'C:\work\displayNumber.m' 'C:\work\getRandomNumber.m'

pList =

 Name: 'MATLAB'
 Version: '8.5'
 ProductNumber: 1
 Certain: 1

In addition to the function file itself, the displayNumber function requires the
getRandomNumber.m file. The only required MathWorks product is MATLAB.

 matlab.codetools.requiredFilesAndProducts

1-8589

Identify Top-Level Dependencies Only

In your current working folder, create a handle class in the file ExampleHandle.m.

classdef ExampleHandle < handle
 % class content
end

In your current working folder, create a class in the file AnotherExampleHandle.m that
inherits from ExampleHandle.

classdef AnotherExampleHandle < ExampleHandle
 % class content
end

In your current working folder, create a function in the file getHandles.m that
instantiates AnotherExampleHandle objects.

function [h1,h2] = getHandles()
 h1 = AnotherExampleHandle;
 h2 = AnotherExampleHandle;
end

Now, at the command line, determine the required files for getHandles.m.

[fList,~] = matlab.codetools.requiredFilesAndProducts('getHandles.m');
fList'

ans =

 'C:\work\AnotherExampleHandle.m'
 'C:\work\ExampleHandle.m'
 'C:\work\getHandles.m'

Determine the required files that are directly required for getHandles.m.

[fList,~] = matlab.codetools.requiredFilesAndProducts('getHandles.m','toponly')

fList =

 'C:\work\AnotherExampleHandle.m' 'C:\work\getHandles.m'

1 Alphabetical List

1-8590

Although AnotherExampleHandle.m requires ExampleHandle.m, that file is not a
direct requirement for getHandles.m.

Input Arguments
files — List of files for analysis
character vector | cell array of character vectors | string array

List of files for analysis, specified as a character vector, a cell array of character vectors,
or a string array. Each element is the name of a single MATLAB program file. For
example, files is a list of MATLAB program files that you intend to provide to other
users. The matlab.codetools.requiredFilesAndProducts function provides you
with requirements information to pass along with your files.

To ensure an accurate dependency report, files and dependencies must be on the
MATLAB path. matlab.codetools.requiredFilesAndProducts does not return
information about dependent files not on the path.
Example: 'myFile.m' or "C:\Program Files\MATLAB\R2014a\my_work
\myFile.m"

Example: {'myFile.m','myOtherFile.m'}
Example: cellstr(ls('*.m'))

Output Arguments
fList — List of user-authored MATLAB program files
cell array of character vectors

List of user-authored MATLAB program files required by files, returned as a cell array
of character vectors. Each character vector indicates the full path of the required file.
fList does not include built-in MATLAB files, since these files are installed with the
products listed in pList.

fList includes dependent files that are accessed using standard file format and low-level
I/O functions. These dependent files include text files, spreadsheets, images, audio, video,
and XML files. For example, if you are analyzing a file that contains the code
load('mydata.mat'), the matlab.codetools.requiredFilesAndProducts
function includes mydata.mat in fList.

 matlab.codetools.requiredFilesAndProducts

1-8591

Functions that support automatic detection of dependent files include audioinfo,
audioread, csvread, daqread, dlmread, fileread, fopen, imfinfo, importdata,
imread, load, matfile, mmfileinfo, open, readtable, type, VideoReader,
xlsfinfo, xlsread, xmlread, and xslt.

pList — List of MathWorks products
structure or array of structures

List of MathWorks products possibly required by files, returned as a structure or array
of structures. Each product is described by name (Name field), version (Version field),
product number (ProductNumber field), and a certainty indicator (Certain field). The
Certain field has a value of 1 if matlab.codetools.requiredFilesAndProducts
determines the product is required by the specified program files, files, or a value of 0
if the product is possibly required.

The matlab.codetools.requiredFilesAndProducts function is intended to provide
you with information to pass on to consumers of your MATLAB program files. The version
numbers indicate the version of the products you have installed when you execute the
function. Version is not an indicator of backward compatibility.

See Also

Topics
“Identify Program Dependencies”

Introduced in R2014a

1 Alphabetical List

1-8592

matlab.engine.engineName
Return name of shared MATLAB session

Syntax
name = matlab.engine.engineName

Description
name = matlab.engine.engineName returns the name of the MATLAB session if the
session is shared. Otherwise, matlab.engine.engineName returns the empty value ''.

Examples

Name of Shared MATLAB Session

Share the MATLAB session and return its name.

matlab.engine.shareEngine('Engine_1')
name = matlab.engine.engineName

name =

Engine_1

See Also
matlab.engine.isEngineShared | matlab.engine.shareEngine

Topics
“Connect Python to Running MATLAB Session”
“Connect Java to Running MATLAB Session”

 matlab.engine.engineName

1-8593

Introduced in R2015b

1 Alphabetical List

1-8594

matlab.engine.isEngineShared
Determine if MATLAB session is shared

Syntax
tf = matlab.engine.isEngineShared

Description
tf = matlab.engine.isEngineShared returns logical 1 (true) if a MATLAB session is
shared. It returns logical 0 (false) if the session is not shared. By default, MATLAB
sessions are not shared.

Examples

Test If MATLAB Session Is Shared

Determine if the current MATLAB session is shared for connections to other processes.

tf = matlab.engine.isEngineShared

tf =

 0

By default, the session is not shared.

See Also
matlab.engine.engineName | matlab.engine.shareEngine

Topics
“Connect Python to Running MATLAB Session”

 matlab.engine.isEngineShared

1-8595

“Connect Java to Running MATLAB Session”

Introduced in R2015b

1 Alphabetical List

1-8596

matlab.engine.shareEngine
Convert running MATLAB session to shared session

Syntax
matlab.engine.shareEngine
matlab.engine.shareEngine(name)

Description
matlab.engine.shareEngine converts the current MATLAB session to a shared
session with a default name. The default name is 'MATLAB_<process_ID>', where
<process_ID> is a number that indicates the process ID of the current MATLAB session.

matlab.engine.shareEngine(name) converts the current MATLAB session to a
shared session and gives it the specified name.

If there is already a shared MATLAB session on your local machine that has the specified
name, then matlab.engine.shareEngine converts the current session to a shared
session with a default name.

Examples

Share MATLAB Session

Convert the current MATLAB session to a shared session with a default name.

matlab.engine.shareEngine
matlab.engine.engineName

ans =

MATLAB_49593

 matlab.engine.shareEngine

1-8597

matlab.engine.shareEngine gives the shared session the default name
MATLAB_49593, where 49593 is the process ID of the MATLAB session. The process ID is
different each time you start MATLAB.

Name and Share Your MATLAB Session

Give a name to the current MATLAB session and share the session.

matlab.engine.shareEngine('Engine_1')
matlab.engine.engineName

ans =

Engine_1

Input Arguments
name — Name for shared MATLAB session
character array | string

Name for the shared MATLAB session, specified as a character array or string. name must
be a valid MATLAB variable name. For information on valid names, see “Variable Names”.
Data Types: char | string

Tips
You also can use a MATLAB startup option to start a shared session. To start a shared
MATLAB session, type this command at the operating system prompt:

matlab -r "matlab.engine.shareEngine"

See Also
matlab.engine.engineName | matlab.engine.isEngineShared

Topics
“Connect Python to Running MATLAB Session”

1 Alphabetical List

1-8598

“Connect Java to Running MATLAB Session”
“Connect C++ to Running MATLAB Session”

Introduced in R2015b

 matlab.engine.shareEngine

1-8599

matlab.io.MatFile class
Package: matlab.io

Load and save parts of variables in MAT-files

Description
The matfile function constructs a matlab.io.MatFile object that corresponds to a
MAT-File, such as

matObj = matfile('myFile.mat')

Access variables in the MAT-file as properties of matObj, with dot notation similar to
accessing fields of structs. The syntax for loading and saving part of variable varName in
the MAT-file corresponding to matObj is:

loadedData = matObj.varName(indices); % Load into workspace
matObj.varName(indices) = dataToSave; % Save to file

When indexing, specify indices for all dimensions. Indices can be a single value, an
equally spaced range of increasing values, or a colon (:), such as

matObj.varName(100:500, 200:600)
matObj.varName(:, 501:1000)
matObj.varName(1:2:1000, 80)

Limitations
• Using the end keyword as part of an index causes MATLAB to load the entire variable

into memory. For very large variables, this load operation results in Out of Memory
errors. Rather than using end, determine the extent of a variable with the size
method, such as:

sizeMyVar = size(matObj,'myVar')

• matfile does not support linear indexing. You must specify indices for all dimensions.
• matfile does not support indexing into:

1 Alphabetical List

1-8600

• Cells of cell arrays
• Fields of structs
• User-defined classes
• Sparse arrays

• You cannot assign complex values to an indexed portion of a real array.
• You cannot evaluate function handles using a MatFile object. For example, if your
MAT-file contains function handle myfunc, the syntax matObj.myfunc() attempts to
index into the function handle, and does not invoke the function.

Construction
matObj = matfile(filename) constructs a matlab.io.MatFile object that can
load or save parts of variables in MAT-file filename. MATLAB does not load any data
from the file into memory when creating the object.

matObj = matfile(filename,'Writable',isWritable) enables or disables write
access to the file for object matObj. Possible values for isWritable are logical true (1)
or false (0).

Input Arguments
filename

Character vector that specifies the name of a MAT-file.

filename can include a full or partial path, otherwise matfile searches for the file
along the MATLAB search path. If filename does not include an extension, matfile
appends .mat.

If the file does not exist, matfile creates a Version 7.3 MAT-file on the first assignment to
a variable.

matfile only supports partial loading and saving for MAT-files in Version 7.3 format
(described in MAT-File Versions). If you index into a variable in a Version 7 (the current
default) or earlier MAT-file, MATLAB warns and temporarily loads the entire contents of
the variable.

 matlab.io.MatFile class

1-8601

'Writable'

Parameter to use with the isWritable argument.

isWritable

Logical value that specifies whether to allow saving to the file. Possible values:

true (1) Enable saving. If the file is read only, change the system permissions with
fileattrib.

false (0) Disable saving with matfile. MATLAB does not change the system
permissions.

Default: true for new files, false for existing files

Properties
Properties.Source

Character vector that contains the fully qualified path to the file. Read only.

Properties.Writable

Logical value that specifies whether to allow saving to the file. Possible values:

true (1) Enable saving. If the file is read only, change the system permissions with
fileattrib.

false (0) Disable saving with matfile. MATLAB does not change the system
permissions.

Default: true for new files, false for existing files

Methods
size Array dimensions
who Names of variables in MAT-file
whos Names, sizes, and types of variables in MAT-file

1 Alphabetical List

1-8602

You cannot access help for these methods using the help command. Find help on the
methods from the command line using the doc command, such as doc
matlab.io.MatFile/size.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Create myFile.mat in a temporary folder and save data to part of variable savedVar:

filename = fullfile(tempdir,'myFile.mat');
matObj = matfile(filename);
matObj.savedVar(81:100,81:100) = magic(20);

Load part of the data into variable loadVar:

loadVar = matObj.savedVar(85:94,85:94);

Load or save an entire variable by omitting the indices. For example, load variable topo
from topography.mat:

filename = 'topography.mat';
matObj = matfile(filename);
topo = matObj.topo;

Determine the dimensions of a variable, and process one part of the variable at a time. In
this case, calculate and store the average of each column of variable stocks in the
example file stocks.mat:

filename = 'stocks.mat';
matObj = matfile(filename);
[nrows, ncols] = size(matObj,'stocks');

avgs = zeros(1,ncols);
for idx = 1:ncols
 avgs(idx) = mean(matObj.stocks(:,idx));
end

 matlab.io.MatFile class

1-8603

By default, matfile only supports loading data from existing files. To enable saving, set
Writable to true either during construction of the object,

filename = 'myFile.mat';
matObj = matfile(filename,'Writable',true);

or in a separate step, by setting Properties.Writable:

filename = 'myFile.mat';
matObj = matfile(filename);
matObj.Properties.Writable = true;

See Also
load | save | size | whos

1 Alphabetical List

1-8604

matlab.io.fits.closeFile
Close FITS file

Syntax
closeFile(fptr)

Description
closeFile(fptr) closes an open FITS file.

This function corresponds to the fits_close_file (ffclos) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits','READONLY');
fits.closeFile(fptr);

See Also
createFile | openFile

 matlab.io.fits.closeFile

1-8605

matlab.io.fits.createFile
Create FITS file

Syntax
fptr = createFile(filename)

Description
fptr = createFile(filename) creates a FITS file. An error will be returned if the
specified file already exists, unless the filename is prefixed with an exclamation point (!).
In that case CFITSIO will overwrite (delete) any existing file with the same name. Specify
filename as a character vector or string scalar.

This function corresponds to the fits_create_file (ffinit) function in the
CFITSIO library C API.

Examples
Create a new FITS file.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'uint8',[256 512]);
fits.closeFile(fptr);
fitsdisp('myfile.fits');

See Also
closeFile | createImg | createTbl | openFile

1 Alphabetical List

1-8606

matlab.io.fits.deleteFile
Delete FITS file

Syntax
deleteFile(fptr)

Description
deleteFile(fptr) closes and deletes an open FITS file. This can be useful if a FITS file
cannot be properly closed.

This function corresponds to the fits_delete_file (ffdelt) function in the
CFITSIO library C API.

Examples
import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fptr = fits.openFile('myfile.fits','readwrite');
fits.deleteFile(fptr);
fptrs = fits.getOpenFiles()

See Also
closeFile | createFile

 matlab.io.fits.deleteFile

1-8607

matlab.io.fits.fileName
Name of FITS file

Syntax
name = fileName(fptr)

Description
name = fileName(fptr) returns the name of the FITS file associated with the file
handle.

This function corresponds to the fits_file_name (ffflnm) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits','READONLY');
name = fits.fileName(fptr);
fits.closeFile(fptr);

See Also
createFile | openFile

1 Alphabetical List

1-8608

matlab.io.fits.fileMode
I/O mode of FITS file

Syntax
mode = fileMode(fptr)

Description
mode = fileMode(fptr) returns the I/O mode of the opened FITS file. Possible values
returned for mode are 'READONLY' or 'READWRITE'.

This function corresponds to the fits_file_mode (ffflmd) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
mode = fits.fileMode(fptr);
fits.closeFile(fptr);

See Also
createFile | openFile

 matlab.io.fits.fileMode

1-8609

matlab.io.fits.openFile
Open FITS file

Syntax
fptr = openFile(filename)
fptr = openFile(filename,mode)

Description
fptr = openFile(filename) opens an existing FITS file in read-only mode and
returns a file pointer, fptr, which references the primary array (first header data unit, or
"HDU"). The openFile function supports the extended file name syntax. Specify
filename as a character vector or string scalar.

This function corresponds to the fits_open_file (ffopen) function in the CFITSIO
library C API.

The openFile function is similar to the function openDiskFile. In addition to opening
FITS files, the openFile function supports the extended file name syntax in the input file
name. If the filename (or folder path) contains square or curly brace characters that
would confuse the extended filename parser, then use openDiskFile.

fptr = openFile(filename,mode) opens an existing FITS file according to the mode,
which describes the type of access. mode may be either 'readonly' or 'readwrite'.

Examples
Open a file in read-only mode and read image data from the primary array.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
imagedata = fits.readImg(fptr);
fits.closeFile(fptr);

1 Alphabetical List

1-8610

Open a file in read/write mode and add a comment to the primary array.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fptr = fits.openFile('myfile.fits','readwrite');
fits.writeComment(fptr,'This is just a comment.');
fits.closeFile(fptr);

See Also
closeFile | createFile | openDiskFile

 matlab.io.fits.openFile

1-8611

matlab.io.fits.openDiskFile
Open FITS file

Syntax
fptr = openDiskFile(filename)
fptr = openDiskFile(filename,mode)

Description
fptr = openDiskFile(filename) opens an existing FITS file in read-only mode and
returns a file pointer fptr, which is the first header data unit (HDU).. The
openDiskFile function does not support the extended-file-name syntax.

This function corresponds to the fits_open_diskfile (ffdkopen) function in the
CFITSIO library C API.

The openDiskFile function is similar to the openFile function, except that
openDiskFile does not support the extended-file-name syntax in the input file name.
Use openDiskFile in cases where the file name (or folder path) contains square or curly
brace characters that would confuse the extended-file-name parser.

fptr = openDiskFile(filename,mode) opens an existing FITS file according to the
type of access specified by mode.

Examples

Read and Write FITS Files
Open a FITS file to read image data, create a copy of the file, and then write a comment
to the primary array.

Open a file in read-only mode and read image data from the primary array.

1 Alphabetical List

1-8612

import matlab.io.*
fptr = fits.openDiskFile('tst0012.fits');
imagedata = fits.readImg(fptr); % read image from primary array
fits.closeFile(fptr);

Create a new file in read/write mode, copy data into the file, and then add a comment to
the primary array.

srcFile = fullfile(matlabroot,'toolbox',...
 'matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fptr = fits.openDiskFile('myfile.fits','readwrite');
fits.writeComment(fptr,'This is just a comment.');
fits.closeFile(fptr);

Input Arguments
filename — Name of file to read
character vector

Name of the file to read, specified as a character vector. The openDiskFile function
does not support the extended file name syntax.
Example: If the filename is 'temp(1)\tst0012.fits', then openDiskFile writes
the file 'tst0012.fits' to the folder temp(1).
Data Types: char

mode — File access type
'readonly' (default) | 'readwrite'

File access type, specified as a character vector containing 'readonly' or
'readwrite'.

• 'readonly' — Open file for reading.
• 'readwrite' — Open file for reading and writing.

Example: 'readwrite'
Data Types: char

 matlab.io.fits.openDiskFile

1-8613

See Also
closeFile | createFile | openFile

Introduced in R2018a

1 Alphabetical List

1-8614

matlab.io.fits.createImg
Create FITS image

Syntax
createImg(fptr,bitpix,naxes)

Description
createImg(fptr,bitpix,naxes) creates a new primary image or image extension
with a specified datatype bitpix and size naxes. If the FITS file is currently empty then
a primary array is created, otherwise a new image extension is appended to the file.

The first two elements of naxes correspond to the NAXIS2 and NAXIS1 keywords, while
any additional elements correspond to the NAXIS3, NAXIS4 ... NAXISn keywords.

Specify the datatype bitpix as a character vector or string scalar containing either a
CFITSIO name or the corresponding MATLAB datatype.

'byte_img' 'uint8'
'short_img' 'int16'
'long_img' 'int32'
'longlong_img' 'int64'
'float_img' 'single'
'double_img' 'double'

This function corresponds to the fits_create_imgll(ffcrimll) function in the
CFITSIO library C API.

 matlab.io.fits.createImg

1-8615

Examples
Create two images in a new FITS file. There are 100 rows (NAXIS2 keyword) and 200
columns (NAXIS1 keyword) in the first image, and 256 rows (NAXIS2 keyword), 512
columns (NAXIS1 keyword), and 3 planes (NAXIS3 keyword) in the second image.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'int16',[100 200]);
fits.createImg(fptr,'byte_img',[256 512 3]);
fits.closeFile(fptr);
fitsdisp('myfile.fits');

See Also
createTbl | insertImg | readImg | setCompressionType | writeImg

1 Alphabetical List

1-8616

matlab.io.fits.getImgSize
Size of image

Syntax
imagesize = getImgSize(fptr)

Description
imagesize = getImgSize(fptr) returns the number of rows and columns of an
image. This function corresponds to the fits_get_img_size (ffgisz) function in the
CFITSIO library C API.

Examples
import matlab.io.*;
fptr = fits.openFile('tst0012.fits');
hdus = [1 3 4];
for j = hdus;
 htype = fits.movAbsHDU(fptr,j);
 sz = fits.getImgSize(fptr);
 fprintf('HDU %d: "%s", [', j, htype);
 for k = 1:numel(sz)
 fprintf(' %d ', sz(k));
 end
 fprintf(']\n');
end
fits.closeFile(fptr);

See Also
createImg | getImgType

 matlab.io.fits.getImgSize

1-8617

matlab.io.fits.getImgType
Data type of image

Syntax
datatype = getImgType(fptr)

Description
datatype = getImgType(fptr) gets the data type of an image. datatype can be one
of the following:

'BYTE_IMG'
'SHORT_IMG'
'LONG_IMG'
'LONGLONG_IMG'
'FLOAT_IMG'
'DOUBLE_IMG'

This function corresponds to the fits_get_img_type (ffgidt) function in the
CFITSIO library C API.

Examples
fptr = fits.openFile('tst0012.fits');
hdus = [1 3 4];
for j = hdus;
 htype = fits.movAbsHDU(fptr,j);
 dtype = fits.getImgType(fptr);
 fprintf('HDU %d: "%s", "%s"\n', j, htype, dtype);
end
fits.closeFile(fptr);

1 Alphabetical List

1-8618

See Also
getImgSize

 matlab.io.fits.getImgType

1-8619

matlab.io.fits.insertImg
Insert FITS image after current image

Syntax
insertImage(fptr,bitpix,naxes)

Description
insertImage(fptr,bitpix,naxes) inserts a new image extension immediately
following the current HDU. If the file has just been created, a new primary array is
inserted at the beginning of the file. Any following extensions in the file will be shifted
down to make room for the new extension. If the current HDU is the last HDU in the file,
then the new image extension will be appended to the end of the file.

This function corresponds to the fits_insert_imgll (ffiimgll) function in the
CFITSIO library C API.

Examples
Create a 150x300 image between the 1st and 2nd images in a FITS file.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.createImg(fptr,'byte_img',[200 400]);
fits.movAbsHDU(fptr,1);
fits.insertImg(fptr,'byte_img',[150 300]);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','min');

See Also
createImg

1 Alphabetical List

1-8620

matlab.io.fits.readImg
Read image data

Syntax
imgdata = readImg(fptr)
imgdata = readImg(fptr,fpixel,lpixel)
imgdata = readImg(fptr,fpixel,lpixel,inc)

Description
imgdata = readImg(fptr) reads the entire current image. The number of rows in
imgdata will correspond to the value of the NAXIS2 keyword, while the number of
columns will correspond to the value of the NAXIS1 keyword. Any further dimensions of
imgdata will correspond to NAXIS3, NAXIS4, and so on.

imgdata = readImg(fptr,fpixel,lpixel) reads the subimage defined by pixel
coordinates fpixel and lpixel. The fpixel argument is the coordinate of the first
pixel and lpixel is the coordinate of the last pixel. fpixel and lpixel are one-based.

imgdata = readImg(fptr,fpixel,lpixel,inc) reads the subimage defined by
fpixel, lpixel, and inc. The inc argument denotes the inter- element spacing along
each extent.

This function corresponds to the fits_read_subset (ffgsv) function in the CFITSIO
library C API.

Examples
Read an entire image.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
data = fits.readImg(fptr);
fits.closeFile(fptr);

 matlab.io.fits.readImg

1-8621

Read a 70x80 image subset.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
img = fits.readImg(fptr,[11 11],[80 90]);
fits.closeFile(fptr);

See Also
createImg | writeImg

1 Alphabetical List

1-8622

matlab.io.fits.setBscale
Reset image scaling

Syntax
setBscale(fptr,BSCALE,BZERO)

Description
setBscale(fptr,BSCALE,BZERO) resets the scaling factors in the primary array or
image extension according to the equation

output = (FITS array) * BSCALE + BZERO

The inverse formula is used when writing data values to the FITS file.

This only affects the automatic scaling performed when the data elements are read. It
does not change the BSCALE and BZERO keyword values.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.setBscale(fptr,2.0,0.5);
data = fits.readImg(fptr);
fits.closeFile(fptr);

See Also
readImg

 matlab.io.fits.setBscale

1-8623

matlab.io.fits.writeImg
Write to FITS image

Syntax
writeImg(fptr,data)
writeImg(fptr,data,fpixel)

Description
writeImg(fptr,data) writes an entire image to the FITS data array. The number of
rows and columns in data must equal the values of the NAXIS2 and NAXIS1 keywords,
respectively. Any further extents must correspond to the NAXIS3, NAXIS4 ... NAXISn
keywords respectively.

writeImg(fptr,data,fpixel) writes a subset of an image to the FITS data array.
fpixel gives the coordinate of the first pixel in the image region.

This function corresponds to the fits_write_subset (ffpss) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'long_img',[256 512]);
data = reshape(1:256*512,[256 512]);
data = int32(data);
fits.writeImg(fptr,data);
fits.closeFile(fptr);

Create an 80x40 uint8 image and set all but the outermost pixels to 1.

import matlab.io.*
fptr = fits.createFile('myfile.fits');

1 Alphabetical List

1-8624

fits.createImg(fptr,'uint8',[80 40]);
data = ones(78,38);
fits.writeImg(fptr,data,[1 1]);
fits.closeFile(fptr);

See Also
createImg | readImg

 matlab.io.fits.writeImg

1-8625

matlab.io.fits.deleteKey
Delete key by name

Syntax
deleteKey(fptr,keyname)

Description
deleteKey(fptr,keyname) deletes a keyword by name. Specify keyname as a
character vector or string scalar.

This function corresponds to the fits_delete_key(ffdrec) function in the CFITSIO
library C API.

Examples
import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fprintf('Before key deletion...\n');
fitsdisp('myfile.fits','index',1);
fptr = fits.openFile('myfile.fits','readwrite');
fits.deleteKey(fptr,'DATE');
fits.closeFile(fptr);
fprintf('\n\n\nAfter key deletion...\n');
fitsdisp('myfile.fits','index',1);

See Also
deleteRecord | writeKey

1 Alphabetical List

1-8626

matlab.io.fits.deleteRecord
Delete key by record number

Syntax
deleteRecord(fptr,keynum)

Description
deleteRecord(fptr,keynum) deletes a keyword by record number.

This function corresponds to the fits_delete_record (ffdrec) function in the
CFITSIO library C API.

Examples
Delete the 18th keyword ("ORIGIN") in a primary array.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fptr = fits.openFile('myfile.fits','readwrite');
card = fits.readRecord(fptr,18);
fits.deleteRecord(fptr,18);
fits.closeFile(fptr);

See Also
deleteKey | readRecord

 matlab.io.fits.deleteRecord

1-8627

matlab.io.fits.getHdrSpace
Number of keywords in header

Syntax
[nkeys,morekeys] = fits.getHdrSpace(fptr)

Description
[nkeys,morekeys] = fits.getHdrSpace(fptr) returns the number of existing
keywords (not counting the END keyword) and the amount of space currently available
for more keywords. It returns morekeys = -1 if the header has not yet been closed.
Note that the CFITSIO library will dynamically add space if required when writing new
keywords to a header so in practice there is no limit to the number of keywords that can
be added to a header.

This function corresponds to the fits_get_hdrspace (ffghsp) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
[nkeys,morekeys] = fits.getHdrSpace(fptr);
fits.closeFile(fptr);

1 Alphabetical List

1-8628

matlab.io.fits.readCard
Header record of keyword

Syntax
card = readCard(fptr,keyname)

Description
card = readCard(fptr,keyname) returns the entire 80-character header record of
the keyword, with any trailing blank characters stripped off. Specify keyname as a
character vector or string scalar.

This function corresponds to the fits_read_card (ffgcrd) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n
 fits.movAbsHDU(fptr,j);
 card = fits.readCard(fptr,'NAXIS');
 fprintf('HDU %d: ''%s''\n', j, card);
end
fits.closeFile(fptr);

See Also
readKey | readRecord

 matlab.io.fits.readCard

1-8629

matlab.io.fits.readKey
Keyword

Syntax
[value,comment] = readKey(fptr,keyname)

Description
[value,comment] = readKey(fptr,keyname) returns the specified key and
comment. Specify keyname as a character vector or string scalar. value and comment
are returned as character vectors.

This function corresponds to the fits_read_key_str (ffgkys) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n
 fits.movAbsHDU(fptr,j);
 [key,comment] = fits.readKey(fptr,'NAXIS');
 fprintf('HDU %d: NAXIS %s, "%s"\n', j, key, comment);
end
fits.closeFile(fptr);

See Also
readKeyCmplx | readKeyDbl | readKeyLongLong

1 Alphabetical List

1-8630

matlab.io.fits.readKeyCmplx
Keyword as complex scalar value

Syntax
[value,comment] = readKeyCmplx(fptr,keyname)

Description
[value,comment] = readKeyCmplx(fptr,keyname) returns the specified key and
comment. value is returned as a double precision complex scalar value.

This function corresponds to the fits_read_key_dblcmp (ffgkym) function in the
CFITSIO library C API.

See Also
readKey | readKeyDbl | readKeyLongLong

 matlab.io.fits.readKeyCmplx

1-8631

matlab.io.fits.readKeyDbl
Keyword as double precision value

Syntax
[value,comment] = readKeyDbl(fptr,keyname)

Description
[value,comment] = readKeyDbl(fptr,keyname) returns the specified key and
comment.

This function corresponds to the fits_read_key_dbl (ffgkyd) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n
 fits.movAbsHDU(fptr,j);
 [key,comment] = fits.readKeyDbl(fptr,'NAXIS');
 fprintf('HDU %d: NAXIS %s, "%s"\n', j, key, comment);
end
fits.closeFile(fptr);

See Also
readKey | readKeyCmplx | readKeyLongLong

1 Alphabetical List

1-8632

matlab.io.fits.readKeyLongLong
Keyword as int64

Syntax
[value,comment] = readKeyLongLong(fptr,keyname)

Description
[value,comment] = readKeyLongLong(fptr,keyname) returns the specified key
and comment. value is returned an int64 scalar value.

This function corresponds to the fits_read_key_lnglng (ffgkyjj) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n
 fits.movAbsHDU(fptr,j);
 [key,comment] = fits.readKeyLongLong(fptr,'NAXIS');
 fprintf('HDU %d: NAXIS %d, "%s"\n', j, key, comment);
end
fits.closeFile(fptr);

See Also
readKey | readKeyCmplx | readKeyDbl

 matlab.io.fits.readKeyLongLong

1-8633

matlab.io.fits.readKeyLongStr
Long string value

Syntax
[value,comment] = readKeyLongStr(fptr,keyname)

Description
[value,comment] = readKeyLongStr(fptr,keyname) returns the specified long
string value and comment as character vectors.

This function corresponds to the fits_read_key_longstr (ffgkls) function in the
CFITSIO library C API.

Examples
import matlab.io.*
idata = repmat(char(97:106),1,10);
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeKey(fptr,'mykey',idata);
odata1 = fits.readKey(fptr,'mykey');
odata2 = fits.readKeyLongStr(fptr,'mykey');
fits.closeFile(fptr);

See Also
readKey

1 Alphabetical List

1-8634

matlab.io.fits.readKeyUnit
Physical units string from keyword

Syntax
units = readKeyUnit(fptr,keyname)

Description
units = readKeyUnit(fptr,keyname) returns the physical units from an existing
keyword. If no units are defined, units is returned as an empty character vector.

This function corresponds to the fits_read_key_unit (ffgunt) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'long_img',[10 20]);
fits.writeKey(fptr,'VELOCITY',12.3,'orbital speed');
fits.writeKeyUnit(fptr,'VELOCITY','km/s');
units = fits.readKeyUnit(fptr,'VELOCITY');
fits.closeFile(fptr);

See Also
readKey | writeKeyUnit

 matlab.io.fits.readKeyUnit

1-8635

matlab.io.fits.readRecord
Header record specified by number

Syntax
card = readRecord(fptr,keynum)

Description
card = readRecord(fptr,keynum) returns the entire 80-character header record
identified by the numeric keynum. Trailing blanks are truncated.

This function corresponds to the fits_read_record (ffgrec) function in the
CFITSIO library C API.

Examples
Read the second record in each HDU.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getHdrSpace(fptr);
for j = 1:n
 card = fits.readRecord(fptr,j);
 fprintf('record %d: "%s"\n', j, card);
end
fits.closeFile(fptr);

See Also
deleteRecord | readCard | readKey

1 Alphabetical List

1-8636

matlab.io.fits.writeComment
Write or append COMMENT keyword to CHU

Syntax
writeComment(fptr,comment)

Description
writeComment(fptr,comment) writes (appends) a COMMENT keyword to the CHU.
The comment keyword, specified as a character vector or string scalar, will be continued
over multiple keywords if it is longer than 70 characters.

This function corresponds to the fits_write_comment (ffpcom) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeComment(fptr,'this is a comment');
fits.writeComment(fptr,'this is another comment');
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
writeDate | writeHistory

 matlab.io.fits.writeComment

1-8637

matlab.io.fits.writeDate
Write DATE keyword to CHU

Syntax
writeDate(FPTR)

Description
writeDate(FPTR) writes the DATE keyword to the CHU.

This function corresponds to the fits_write_date (ffpdat) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeDate(fptr);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
writeComment | writeHistory

1 Alphabetical List

1-8638

matlab.io.fits.writeKey
Update or add new keyword into current HDU

Syntax
writeKey(fptr,keyname,value,comment)
writeKey(fptr,keyname,value,comment,decimals)

Description
writeKey(fptr,keyname,value,comment) adds a new record in the current HDU, or
updates it if it already exists. comment is optional.

writeKey(fptr,keyname,value,comment,decimals) adds a new floating point
keyword in the current HDU, or updates it if it already exists. You must use this syntax to
write a keyword with imaginary components. decimals is ignored otherwise.

If a character value exceeds 68 characters in length, the LONGWARN convention is
automatically employed.

This function corresponds to the fits_write_key (ffpky) and fits_update_key
(ffuky) family of functions in the CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeKey(fptr,'mykey1','a char value','with a comment');
fits.writeKey(fptr,'mykey2',int32(1));
fits.writeKey(fptr,'mykey3',5+7*j,'with another comment');
fits.writeKey(fptr,'mykey4',4/3,'with yet another comment',2);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

 matlab.io.fits.writeKey

1-8639

See Also
deleteKey | readKey | readRecord

1 Alphabetical List

1-8640

matlab.io.fits.writeKeyUnit
Write physical units string

Syntax
writeKeyUnit(fptr,keyname,unit)

Description
writeKeyUnit(fptr,keyname,unit) writes the physical units into an existing
keyword. fptr is created using the fits.createFile function. Specify keyname and
unit as a character vector or string scalar.

This function corresponds to the fits_write_key_unit (ffpunt) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myFitsFile.fits');
fits.createImg(fptr,'long_img',[10 20]);
fits.writeKey(fptr,'VELOCITY',12.3,'orbital speed');
fits.writeKeyUnit(fptr,'VELOCITY','km/s');
fits.closeFile(fptr);

See Also
readKeyUnit

 matlab.io.fits.writeKeyUnit

1-8641

matlab.io.fits.writeHistory
Write or append HISTORY keyword to CHU

Syntax
writeHistory(fptr,history)

Description
writeHistory(fptr,history) writes (appends) a HISTORY keyword to the CHU. The
history keyword, specified as a character vector or string scalar, is continued over
multiple keywords if it is longer than 70 characters.

This function corresponds to the fits_write_history (ffphis) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeHistory(fptr,'this is a history keyword');
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
writeComment | writeDate

1 Alphabetical List

1-8642

matlab.io.fits.copyHDU
Copy current HDU from one file to another

Syntax
copyHDU(infptr,outfptr)

Description
copyHDU(infptr,outfptr) copies the current HDU from the FITS file associated with
infptr and appends it to the end of the FITS file associated with outfptr.

This function corresponds to the fits_copy_hdu (ffcopy) function in the CFITSIO
library C API.

Examples
Copy the first, third, and fifth HDUs from one file to another.

import matlab.io.*
infptr = fits.openFile('tst0012.fits');
outfptr = fits.createFile('myfile.fits');
fits.copyHDU(infptr,outfptr);
fits.movAbsHDU(infptr,3);
fits.copyHDU(infptr,outfptr);
fits.movAbsHDU(infptr,5);
fits.copyHDU(infptr,outfptr);
fits.closeFile(infptr);
fits.closeFile(outfptr);
fitsdisp('tst0012.fits','mode','min','index',[1 3 5]);
fitsdisp('myfile.fits','mode','min');

 matlab.io.fits.copyHDU

1-8643

See Also
deleteHDU

1 Alphabetical List

1-8644

matlab.io.fits.deleteHDU
Delete current HDU in FITS file

Syntax
HDU_TYPE = deleteHDU(fptr)

Description
HDU_TYPE = deleteHDU(fptr) deletes the current HDU in the FITS file. Any following
HDUs will be shifted forward in the file, filling the gap created by the deleted HDU. In the
case of deleting the primary array (the first HDU in the file) then the current primary
array will be replaced by a null primary array containing the minimum set of required
keywords and no data. If there are more HDUs in the file following the HDU being
deleted, then the current HDU will be redefined to point to the following HDU. If there
are no following HDUs then the current HDU will be redefined to point to the previous
HDU. HDU_TYPE returns the type of the new current HDU.

This function corresponds to the fits_delete_hdu (ffdhdu) function in the CFITSIO
library C API.

Examples
Delete the second HDU in a FITS file.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fitsdisp('myfile.fits','mode','min');
fptr = fits.openFile('myfile.fits','readwrite');
fits.movAbsHDU(fptr,2);
new_current_hdu = fits.deleteHDU(fptr);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','min');

 matlab.io.fits.deleteHDU

1-8645

See Also
copyHDU

1 Alphabetical List

1-8646

matlab.io.fits.getHDUnum
Number of current HDU in FITS file

Syntax
N = getHDUnum(fptr)

Description
N = getHDUnum(fptr) returns the number of the current HDU in the FITS file. The
primary array has HDU number 1.

This function corresponds to the fits_get_hdu_num (ffghdn) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getHDUnum(fptr);
fits.closeFile(fptr);

See Also
getHDUtype | getNumHDUs

 matlab.io.fits.getHDUnum

1-8647

matlab.io.fits.getHDUtype
Type of current HDU

Syntax
htype = getHDUtype(fptr)

Description
htype = getHDUtype(fptr) returns the type of the current HDU in the FITS file. The
possible values for htype are:

'IMAGE_HDU'
'ASCII_TBL'
'BINARY_TBL'

This function corresponds to the fits_get_hdu_type (ffghdt) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n
 fits.getHDUtype(fptr);
end
fits.closeFile(fptr);

See Also
getHDUnum

1 Alphabetical List

1-8648

matlab.io.fits.getNumHDUs
Total number of HDUs in FITS file

Syntax
N = getNumHDUs(fptr)

Description
N = getNumHDUs(fptr) returns the number of completely defined HDUs in a FITS file.
If a new HDU has just been added to the FITS file, then that last HDU will only be
counted if it has been closed, or if data has been written to the HDU. The current HDU
remains unchanged by this routine.

This function corresponds to the fits_get_num_hdus (ffthdu) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
fits.closeFile(fptr);

See Also
getHDUnum

 matlab.io.fits.getNumHDUs

1-8649

matlab.io.fits.movAbsHDU
Move to absolute HDU number

Syntax
htype = fits.movAbsHDU(fptr,HDUNUM)

Description
htype = fits.movAbsHDU(fptr,HDUNUM) moves to a specified absolute HDU number
(starting with 1 for the primary array) in the FITS file. The possible values for htype are:

'IMAGE_HDU'
'ASCII_TBL'
'BINARY_TBL'

This function corresponds to the fits_move_abs_hdu function in the CFITSIO library C
API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n
 htype = fits.movAbsHDU(fptr,j);
 fprintf('HDU %d: "%s"\n',j,htype);
end
fits.closeFile(fptr);

See Also
getNumHDUs | movNamHDU | movRelHDU

1 Alphabetical List

1-8650

matlab.io.fits.movNamHDU
Move to first HDU having specific type and keyword values

Syntax
movNamHDU(fptr,hdutype,EXTNAME,EXTVER)

Description
movNamHDU(fptr,hdutype,EXTNAME,EXTVER) moves to the first HDU which has the
specified extension type and EXTNAME and EXTVER keyword values (or HDUNAME and
HDUVER keywords).

Specify the hdutype parameter as one of these character vectors or string scalars.

'IMAGE_HDU'
'ASCII_TBL'
'BINARY_TBL'
'ANY_HDU'

If hdutype is 'ANY_HDU', only the EXTNAME and EXTVER values are used to locate the
correct extension. If the input value of EXTVER is 0, then the EXTVER keyword is ignored
and the first HDU with a matching EXTNAME (or HDUNAME) keyword will be found.

This function corresponds to the fits_movnam_hdu (ffmnhd) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movNamHDU(fptr,'IMAGE_HDU','quality',1);
fits.closeFile(fptr);

 matlab.io.fits.movNamHDU

1-8651

See Also
movAbsHDU | movRelHDU

1 Alphabetical List

1-8652

matlab.io.fits.movRelHDU
Move relative number of HDUs from current HDU

Syntax
htype = moveRelHDU(fptr,nmove)

Description
htype = moveRelHDU(fptr,nmove) moves a relative number of HDUs forward or
backward from the current HDU and returns the HDU type, htype, of the resulting HDU.
The possible values for htype are:

'IMAGE_HDU'
'ASCII_TBL'
'BINARY_TBL'

This function corresponds to the fits_movrel_hdu (ffmrhd) function in the CFITSIO
library C API.

Examples
Move through each HDU in succession, then move backwards twice by two HDUs.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n
 htype = fits.movAbsHDU(fptr,j);
 fprintf('HDU %d: "%s"\n',j,htype);
end
htype = fits.movRelHDU(fptr,-2);
n = fits.getHDUnum(fptr);
fprintf('HDU %d: "%s"\n',n,htype);

 matlab.io.fits.movRelHDU

1-8653

htype = fits.movRelHDU(fptr,-2);
n = fits.getHDUnum(fptr);
fprintf('HDU %d: "%s"\n',n,htype);
fits.closeFile(fptr);

See Also
movAbsHDU | movNamHDU

1 Alphabetical List

1-8654

matlab.io.fits.writeChecksum
Compute and write checksum for current HDU

Syntax
writeChecksum(fptr)

Description
writeChecksum(fptr) computes and writes the DATASUM and CHECKSUM keyword
values for the current HDU into the current header. If the keywords already exist, their
values are updated only if necessary (for example, if the file has been modified since the
original keyword values were computed).

This function corresponds to the fits_write_chksum (ffpcks) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'long_img',[10 20]);
fits.writeChecksum(fptr)
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
fitsdisp

 matlab.io.fits.writeChecksum

1-8655

matlab.io.fits.imgCompress
Compress HDU from one file into another

Syntax
imgCompress(infptr,outfptr)

Description
imgCompress(infptr,outfptr) initializes the output HDU, copies all the keywords,
and loops through the input image, compressing the data and writing the compressed
data to the output HDU.

This function corresponds to the fits_img_compress function in the CFITSIO library C
API.

Examples
import matlab.io.*
infptr = fits.openFile('tst0012.fits');
outfptr = fits.createFile('myfile.fits');
fits.setCompressionType(outfptr,'rice');
fits.imgCompress(infptr,outfptr);
fits.closeFile(infptr);
fits.closeFile(outfptr);

See Also
setCompressionType

1 Alphabetical List

1-8656

matlab.io.fits.isCompressedImg
Determine if current image is compressed

Syntax
TF = isCompressedImg(fptr)

Description
TF = isCompressedImg(fptr) returns true if the image in the current HDU is
compressed.

This function corresponds to the fits_is_compressed_image function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
bool = fits.isCompressedImg(fptr);
fits.closeFile(fptr);

See Also
setCompressionType

 matlab.io.fits.isCompressedImg

1-8657

matlab.io.fits.setCompressionType
Set image compression type

Syntax
setCompressionType(fptr,comptype)

Description
setCompressionType(fptr,comptype) specifies the image compression algorithm
that should be used when writing a FITS image.

Supported values for comptype include:

'GZIP'
'GZIP2'
'RICE'
'PLIO'
'HCOMPRESS'
'NOCOMPRESS'

This function corresponds to the fits_set_compression_type function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'GZIP2');
fits.createImg(fptr,'long_img',[256 512]);
data = reshape(1:256*512,[256 512]);
data = int32(data);
fits.writeImg(fptr,data);

1 Alphabetical List

1-8658

fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
createImg | setTileDim

 matlab.io.fits.setCompressionType

1-8659

matlab.io.fits.setHCompScale
Set scale parameter for HCOMPRESS algorithm

Syntax
setHCompScale(fptr,scale)

Description
setHCompScale(fptr,scale) sets the scale parameter to be used with the
HCOMPRESS compression algorithm. Setting the scale parameter causes the algorithm
to operate in lossy mode.

This function corresponds to the fits_set_hcomp_scale function in the CFITSIO
library C API.

Examples
import matlab.io.*
data = 50*ones(256,512,'double') + 10 * rand([256 512]);
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'HCOMPRESS_1');
fits.setHCompScale(fptr,2.5);
fits.createImg(fptr,'double_img',[256 512]);
fits.writeImg(fptr,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
setCompressionType | setHCompSmooth

1 Alphabetical List

1-8660

matlab.io.fits.setHCompSmooth
Set smoothing for images compressed with HCOMPRESS

Syntax
setHCompSmooth(fptr,smooth)

Description
setHCompSmooth(fptr,smooth) sets the smoothing to be used when compressing an
image with the HCOMPRESS algorithm. Setting either the scale or smoothing parameter
causes the algorithm to operate in lossy mode.

This function corresponds to the fits_set_hcomp_smooth function in the CFITSIO
library C API.

Examples
import matlab.io.*
data = int32(50*ones(256,512,'double') + 10 * rand([256 512]));
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'HCOMPRESS');
fits.setHCompSmooth(fptr,1);
fits.createImg(fptr,'long_img',[256 512]);
fits.writeImg(fptr,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
setCompressionType | setHCompScale

 matlab.io.fits.setHCompSmooth

1-8661

matlab.io.fits.setTileDim
Set tile dimensions

Syntax
fits.setTileDim(fptr,tiledims)

Description
fits.setTileDim(fptr,tiledims) specifies the size of the image compression tiles
to be used when creating a compressed image.

This function corresponds to the fits_set_tile_dim function in the CFITSIO library C
API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'RICE_1');
fits.setTileDim(fptr,[64 128]);
fits.createImg(fptr,'byte_img',[256 512]);
data = ones(256,512,'uint8');
fits.writeImg(fptr,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also
setCompressionType

1 Alphabetical List

1-8662

matlab.io.fits.createTbl
Create new ASCII or binary table extension

Syntax
fptr = createTbl(fptr,tbltype,nrows,ttype,tform,tunit,extname)

Description
fptr = createTbl(fptr,tbltype,nrows,ttype,tform,tunit,extname) creates
a new ASCII or bintable table extension. ttype must be either 'binary' or 'ascii'.
The nrows argument gives the initial number of rows to be created in the table and
should normally be zero. tunit specifies the units for each column, but can be an empty
cell array if no units are desired. extname specifies the extension name, but can be
omitted.

tform contains the format of the column, specified as a cell array of character vectors or
a string array. For binary tables, the values should be in the form of 'rt', where 'r' is
the repeat count and 't' is one of the following letters.

'A' ASCII character
'B' Byte or uint8
'C' Complex (single precision)
'D' Double precision
'E' Single precision
'I' int16
'J' int32
'K' int64
'L' Logical
'M' Complex (double precision)
'X' Bit (int8 zeros and ones)

 matlab.io.fits.createTbl

1-8663

A column can also be specified as having variable-width if the tform value has the form
'1Pt' or '1Qt', where 't' specifies the data type as above.

For ASCII tables, tform contains values that take the form:

'Iw' int16 column with width 'w'
'Aw' ASCII column with width 'w'
'Fww.dd' Fixed point
'Eww.dd' Single precision with width 'ww' and

precision 'dd'
'Dww.dd' Double precision with width 'ww' and

precision 'dd'

This function corresponds to the fits_create_tbl(ffcrtb) function in the CFITSIO
library C API.

Examples
Create a binary table. The first column contains strings of nine characters each. The
second column contains four-element sequences of bits. The third column contains three-
element sequences of uint8 values. The fourth column contains double-precision scalars.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2','Col3','Col4'};
tform = {'9A','4X','3B','1D'};
tunit = {'m/s','kg','kg/m^3','candela'};
fits.createTbl(fptr,'binary',10,ttype,tform,tunit,'my-table');
fits.closeFile(fptr);
fitsdisp('myfile.fits');

Create a two-column table where the first column has a single double-precision value, but
the second column has a variable-length double-precision value.

import matlab.io.*
fptr = fits.createFile('myfile2.fits');
ttype = {'Col1','Col2'};
tform = {'1D','1PD'};
fits.createTbl(fptr,'binary',0,ttype,tform);

1 Alphabetical List

1-8664

fits.closeFile(fptr);
fitsdisp('myfile2.fits');

See Also
createImg | insertATbl | insertBTbl | readCol | writeCol

 matlab.io.fits.createTbl

1-8665

matlab.io.fits.deleteCol
Delete column from table

Syntax
deleteCol(fptr,colnum)

Description
deleteCol(fptr,colnum) deletes the column from an ASCII or binary table.

This function corresponds to the fits_delete_col (ffdcol) function in the CFITSIO
library C API.

Examples
Delete the second column in a binary table.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fprintf('Before: '); fitsdisp('myfile.fits','index',2,'mode','min');
fptr = fits.openFile('myfile.fits','readwrite');
fits.movAbsHDU(fptr,2);
fits.deleteCol(fptr,2);
fits.closeFile(fptr);
fprintf('After : '); fitsdisp('myfile.fits','index',2,'mode','min');

See Also
deleteRows

1 Alphabetical List

1-8666

matlab.io.fits.deleteRows
Delete rows from table

Syntax
deleteRows(fptr,firstrow,nrows)

Description
deleteRows(fptr,firstrow,nrows) deletes rows from an ASCII or binary table.

This function corresponds to the fits_delete_rows (ffdrow) function in the
CFITSIO library C API.

Examples
Delete the second, third, and fourth rows in a binary table (second HDU).

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fprintf('Before: '); fitsdisp('myfile.fits','index',2,'mode','min');
fptr = fits.openFile('myfile.fits','readwrite');
fits.movAbsHDU(fptr,2);
fits.deleteRows(fptr,2,2);
fits.closeFile(fptr);
fprintf('After : '); fitsdisp('myfile.fits','index',2,'mode','min');

See Also
deleteCol | insertRows

 matlab.io.fits.deleteRows

1-8667

matlab.io.fits.insertRows
Insert rows into table

Syntax
insertRows(fptr,firstrow,nrows)

Description
insertRows(fptr,firstrow,nrows) inserts rows into an ASCII or binary table.
firstrow is a one-based number.

This function corresponds to the fits_insert_rows (ffirow) function in the
CFITSIO library C API.

Examples
Insert five rows into an empty table.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2'};
tform = {'3A','1D'};
tunit = {'m/s','candela'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');
fits.insertRows(fptr,1,5);
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2);

See Also
deleteRows | insertCol

1 Alphabetical List

1-8668

matlab.io.fits.getAColParms
ASCII table information

Syntax
[ttype,tbcol,tunit,tform,scale,zero,nulstr,tdisp] =
getAColParms(fptr,colnum)

Description
[ttype,tbcol,tunit,tform,scale,zero,nulstr,tdisp] =
getAColParms(fptr,colnum) gets information about an existing ASCII table column.

This function corresponds to the fits_get_acolparms (fffacl) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,5);
[ttype,tbcol,tunit,tform,scale,zero,nulstr,tdisp] = fits.getAColParms(fptr,2);
fits.closeFile(fptr);

See Also
getBColParms

 matlab.io.fits.getAColParms

1-8669

matlab.io.fits.getBColParms
Binary table information

Syntax
[ttype,tunit,typechar,repeat,scale,zero,nulval,tdisp] =
getBColParms(fptr,colnum)

Description
[ttype,tunit,typechar,repeat,scale,zero,nulval,tdisp] =
getBColParms(fptr,colnum) gets information about an existing binary table column.

This function corresponds to the fits_get_bcolparms (ffgbcl) function in the
CFITSIO library C API.

Examples
Get information about the second column in a binary table.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[ttype,tunit,typechar,repeat,scale,zero,nulval,tdisp]= fits.getBColParms(fptr,2);
fits.closeFile(fptr);

See Also
getAColParms

1 Alphabetical List

1-8670

matlab.io.fits.getColName
Table column name

Syntax
[colnum,colname] = getColNum(fptr,templt,casesen)

Description
[colnum,colname] = getColNum(fptr,templt,casesen) gets the table column
numbers and names of the columns whose names match an input template name. If
casesen is true, then the column name match is case-sensitive. casesen defaults to
false.

Specify the input column name template templt as a character vector or string scalar.
templt may be either the exact name of the column to be searched for, or it may contain
wildcard characters (*, ?, or #), or it may contain the integer number of the desired
column (with the first column = 1). The '*' wildcard character matches any sequence of
characters (including zero characters) and the '?' character matches any single
character. The # wildcard matches any sequence of consecutive decimal digit characters
(0-9).

Examples
Return all the columns starting with the letter 'C'.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[nums,names] = fits.getColName(fptr,'C*');
fits.closeFile(fptr);

 matlab.io.fits.getColName

1-8671

See Also
getAColParms | getBColParms

1 Alphabetical List

1-8672

matlab.io.fits.getColType
Scaled column data type, repeat value, width

Syntax
[dtype,repeat,width] = getColType(fptr,colnum)

Description
[dtype,repeat,width] = getColType(fptr,colnum) returns the data type, vector
repeat value, and the width in bytes of a column in an ASCII or binary table.

This function corresponds to the fits_get_coltypell (ffgtclll) function in the
CFITSIO library C API.

Examples
Get information about the 'FLUX' column in the second HDU.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[dtype,repeat,width] = fits.getColType(fptr,5);
fits.closeFile(fptr);

See Also
getEqColType

 matlab.io.fits.getColType

1-8673

matlab.io.fits.getEqColType
Column data type, repeat value, width

Syntax
[dtype,repeat,width] = getEqColType(fptr,colnum)

Description
[dtype,repeat,width] = getEqColType(fptr,colnum) returns the equivalent
data type needed to store the scaled column data type, the vector repeat value, and the
width in bytes of a column in an ASCII or binary table.

This function corresponds to the fits_get_eqcoltypell (ffeqtyll) function in the
CFITSIO library C API.

Examples
Get information about the 'FLUX' column in the second HDU.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[dtype,repeat,width] = fits.getEqColType(fptr,5);
fits.closeFile(fptr);

See Also
getColType

1 Alphabetical List

1-8674

matlab.io.fits.getNumCols
Number of columns in table

Syntax
ncols = getNumCols(fptr)

Description
ncols = getNumCols(fptr) gets the number of columns in the current FITS table.
This function corresponds to the fits_get_num_cols (ffgncl) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
ncols = fits.getNumCols(fptr);
nrows = fits.getNumRows(fptr);
fits.closeFile(fptr);

See Also
getNumRows

 matlab.io.fits.getNumCols

1-8675

matlab.io.fits.getNumRows
Number of rows in table

Syntax
nrows = getNumRows(fptr)

Description
nrows = getNumRows(fptr) gets the number of rows in the current FITS table. This
function corresponds to the fits_get_num_rowsll (ffgnrwll) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
ncols = fits.getNumCols(fptr);
nrows = fits.getNumRows(fptr);
fits.closeFile(fptr);

See Also
getNumCols

1 Alphabetical List

1-8676

matlab.io.fits.insertCol
Insert column into table

Syntax
insertCol(fptr,colnum,ttype,tform)

Description
insertCol(fptr,colnum,ttype,tform) inserts a column into an ASCII or binary
table. Specify ttype and tform as character vectors or string scalars.

This function corresponds to the fits_insert_col (fficol) function in the CFITSIO
library C API.

Examples
import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2'};
tform = {'3A','1D'};
tunit = {'m/s','candela'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');
fits.insertCol(fptr,3,'Col3','3D');
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2);

See Also
insertRows

 matlab.io.fits.insertCol

1-8677

matlab.io.fits.insertATbl
Insert ASCII table after current HDU

Syntax
insertATbl(fptr,rowlen,nrows,ttype,tbcol,tform,tunit,extname)

Description
insertATbl(fptr,rowlen,nrows,ttype,tbcol,tform,tunit,extname) inserts a
new ASCII table extension immediately following the current HDU. Any following
extensions are shifted down to make room for the new extension. If there are no other
following extensions, then the new table extension is simply appended to the end of the
file. If the FITS file is currently empty then this routine creates a dummy primary array
before appending the table to it. The new extension becomes the current HDU. If rowlen
is 0, then CFITSIO calculates the default rowlen based on the tbcol and ttype values.

Specify tform as a cell array of character vectors or a string array that can take the
following forms. In each case, 'w' and 'ww' represent the widths of the ASCII columns.

'Iw' int16 column
'Aw' ASCII column
'Fww.dd' Fixed point with 'dd' digits after the

decimal point
'Eww.dd' Single precision with 'dd' digits of

precision
'Dww.dd' Double precision with 'dd' digits of

precision

Binary tables are recommended instead of ASCII tables.

This function corresponds to the fits_insert_atbl(ffitab) function in the CFITSIO
library C API.

1 Alphabetical List

1-8678

Examples
Create an ASCII table between two images.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'uint8',[20 30]);
fits.createImg(fptr,'int16',[30 40]);
fits.movRelHDU(fptr,-1);
ttype = {'Name','Short','Fix','Double'};
tbcol = [1 17 28 43];
tform = {'A15','I10','F14.2','D12.4'};
tunit = {'','m**2','cm','km/s'};
fits.insertATbl(fptr,0,0,ttype,tbcol,tform,tunit,'my-table');
fits.writeCol(fptr,1,1,char('abracadabra','hocus-pocus'));
fits.writeCol(fptr,2,1,int16([0; 1]));
fits.writeCol(fptr,3,1,[12.4; 4/3]);
fits.writeCol(fptr,4,1,[12.4; 4e8/3]);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','min');

See Also
createTbl | insertBTbl

 matlab.io.fits.insertATbl

1-8679

matlab.io.fits.insertBTbl
Insert binary table after current HDU

Syntax
insertBTbl(fptr,nrows,ttype,tform,tunit,extname,pcount)

Description
insertBTbl(fptr,nrows,ttype,tform,tunit,extname,pcount) inserts a new
binary table extension immediately following the current HDU. Any following extensions
are shifted down to make room for the new extension. If there are no other following
extensions then the new table extension is simply appended to the end of the file. If the
FITS file is currently empty then this routine creates a dummy primary array before
appending the table to it. The new extension becomes the CHDU. If there are following
extensions in the file and if the table contains variable-length array columns then pcount
must specify the expected final size of the data heap. Otherwise, pcount must be zero.

Specify ttype, tform, and tunits as cell array of character vectors or a string array.

This function corresponds to the fits_insert_btbl (ffibin) function in the
CFITSIO library C API.

Examples
Create a table following the primary array. Then, insert a new table just before it.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2'};
tform = {'9A','1D'};
tunit = {'m/s','candela'};
fits.createTbl(fptr,'binary',10,ttype,tform,tunit,'my-table');
fits.movRelHDU(fptr,-1);
fits.insertBTbl(fptr,5,ttype,tform,tunit,'my-new-table',0);

1 Alphabetical List

1-8680

fits.closeFile(fptr);
fitsdisp('myfile.fits');

See Also
createTbl | insertATbl

 matlab.io.fits.insertBTbl

1-8681

matlab.io.fits.readATblHdr
Read header information from current ASCII table

Syntax
[rowlen,nrows,ttype,tbcol,tform,tunit,extname] = readATblHdr(fptr)

Description
[rowlen,nrows,ttype,tbcol,tform,tunit,extname] = readATblHdr(fptr)
reads header information for the current ASCII table.

This function corresponds to the fits_read_atblhdrll (ffghtbll) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,5);
[rowlen,nrows,ttype,tbcol,tform,tunit,extname] = fits.readATblHdr(fptr);
fits.closeFile(fptr);

See Also
readBTblHdr

1 Alphabetical List

1-8682

matlab.io.fits.readBTblHdr
Read header information from current binary table

Syntax
[nrows,ttype,tform,tunit,extname,pcount] = readBTblHdr(fptr)

Description
[nrows,ttype,tform,tunit,extname,pcount] = readBTblHdr(fptr) reads
header information for the current binary table.

This function corresponds to the fits_read_btblhdrll (ffghbnll) function in the
CFITSIO library C API.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[nrows,ttype,tform,tunit,extname,pcount] = fits.readBTblHdr(fptr);
fits.closeFile(fptr);

See Also
readATblHdr

 matlab.io.fits.readBTblHdr

1-8683

matlab.io.fits.readCol
Read rows of ASCII or binary table column

Syntax
[coldata,nullval] = readCol(fptr,colnum)
[coldata,nullval] = readCol(fptr,colnum,firstrow,numrows)

Description
[coldata,nullval] = readCol(fptr,colnum) reads an entire column from an
ASCII or binary table column. nullval is a logical array specifying if a particular
element of coldata should be treated as undefined. It is the same size as coldata.

[coldata,nullval] = readCol(fptr,colnum,firstrow,numrows) reads a
subsection of rows from an ASCII or binary table column.

The MATLAB data type returned by readCol corresponds to the data type returned by
getEqColType.

This function corresponds to the fits_read_col (ffgcv) function in the CFITSIO
library C API.

Examples
Read an entire column.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
colnum = fits.getColName(fptr,'flux');
fluxdata = fits.readCol(fptr,colnum);
fits.closeFile(fptr);

Read the first five rows in a column.

1 Alphabetical List

1-8684

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
colnum = fits.getColName(fptr,'flux');
fluxdata = fits.readCol(fptr,colnum,1,5);
fits.closeFile(fptr);

See Also
writeCol

 matlab.io.fits.readCol

1-8685

matlab.io.fits.setTscale
Reset image scaling

Syntax
setTscale(fptr,colnum,tscale,tzero)

Description
setTscale(fptr,colnum,tscale,tzero) resets the scaling factors for a table
column according to the equation:

output = (FITS array) * tscale + tzero

The inverse formula is used when writing data values to the FITS file.

This only affects the automatic scaling performed when the data elements are read. It
does not change the tscale and tzero keyword values.

Examples
Turn off automatic scaling in a table column where the tscale and tzero keywords are
present.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
scaled_data = fits.readCol(fptr,3);
fits.setTscale(fptr,3,1.0,0.0);
unscaled_data = fits.readCol(fptr,3);
fits.closeFile(fptr);

1 Alphabetical List

1-8686

See Also
readImg

 matlab.io.fits.setTscale

1-8687

matlab.io.fits.writeCol
Write elements into ASCII or binary table column

Syntax
writeCol(fptr,colnum,firstrow,coldata)

Description
writeCol(fptr,colnum,firstrow,coldata) writes elements into an ASCII or binary
table extension column.

Note If you use the writeCol function to write complex data to a column defined by a
noncomplex data type, then writeCol ignores the imaginary part and only writes the
real part to the column. To write complex data correctly, define the format of the table
column appropriately using the tform argument of the createTbl function.

When writing rows of data to a variable length field, coldata must be a cell array.

This function corresponds to the fits_write_col (ffpcl) function in the CFITSIO
library C API.

Examples
Write to a table with ASCII, uint8, double-precision, and variable-length double-
precision columns.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2','Col3','Col4'};
tform = {'3A','3B','1D','1PD'};
tunit = {'m/s','kg/m^3','candela','parsec'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');

1 Alphabetical List

1-8688

fits.writeCol(fptr,1,1,['dog'; 'cat']);
fits.writeCol(fptr,2,1,[0 1 2; 3 4 5; 6 7 8; 9 10 11]);
fits.writeCol(fptr,3,1,[1; 2; 3; 4]);
fits.writeCol(fptr,4,1,{1;[1 2];[1 2 3];[1 2 3 4]});
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2,'mode','full');

Write to a table with logical, bit, double precision, and variable-length complex single-
precision columns.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2','Col3','Col4'};
tform = {'2L','3X','1D','1PC'};
tunit = {'','kg/m^3','candela','parsec'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');
fits.writeCol(fptr,1,1,[false false; true false]);
fits.writeCol(fptr,2,1,int8([0 1 1; 1 1 1; 1 1 1; 1 0 1]));
fits.writeCol(fptr,3,1,[1; 2; 3; 4]);
data = cell(4,1);
data{1} = single(1);
data{2} = single(1+2j);
data{3} = single([1j 2 3+j]);
data{4} = single([1 2+3j 3 4]);
fits.writeCol(fptr,4,1,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2,'mode','full');

See Also
createTbl | readCol

 matlab.io.fits.writeCol

1-8689

matlab.io.fits.getConstantValue
Numeric value of named constant

Syntax
N = getConstantValue(name)

Description
N = getConstantValue(name) returns the numeric value corresponding to the named
CFITSIO constant specified as a character vector or string scalar.

Examples
import matlab.io.*
n = fits.getConstantValue('BYTE_IMG');

1 Alphabetical List

1-8690

matlab.io.fits.getVersion
Revision number of the CFITSIO library

Syntax
V = getVersion()

Description
V = getVersion() returns the revision number of the CFITSIO library. This function
corresponds to the fits_get_version (ffvers) function in the CFITSIO library C
API.

Examples
import matlab.io.*
v = fits.getVersion();

 matlab.io.fits.getVersion

1-8691

matlab.io.fits.getOpenFiles
List of open FITS files

Syntax
fptrs = getOpenFiles()

Description
fptrs = getOpenFiles() returns a list of file pointers of all open FITS files.

Examples
import matlab.io.*
fptr = fits.openFile('tst0012.fits');
clear fptr;
fptr = fits.getOpenFiles();
fits.closeFile(fptr);

See Also
closeFile | openDiskFile | openFile

1 Alphabetical List

1-8692

matlab.io.hdf4.sd
Interact directly with HDF4 multifile scientific data set (SD) interface

Description
To use these MATLAB functions, you should be familiar with the HDF SD C API. In most
cases, the syntax of the MATLAB function is similar to the syntax of the corresponding
HDF library function. The functions are implemented as the package
matlab.io.hdf4.sd. To use this package, prefix the function name with a package
path, or use the import function to add the package to the current import list, prior to
calling the function, for example,

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','read');

Access
matlab.io.hdf4.sd.close Terminate access to SD interface
matlab.io.hdf4.sd.endAccess Terminate access to data set
matlab.io.hdf4.sd.getFilename Name of file
matlab.io.hdf4.sd.select Identifier of data set with specified index
matlab.io.hdf4.sd.setExternalFile

Store data in external file
matlab.io.hdf4.sd.start Open HDF file and initialize SD interface

Read/Write
matlab.io.hdf4.sd.create Create new data set
matlab.io.hdf4.sd.readData Read subsample of data
matlab.io.hdf4.sd.setFillMode Set current fill mode of file
matlab.io.hdf4.sd.writeData Write to data set

 matlab.io.hdf4.sd

1-8693

Inquiry

matlab.io.hdf4.sd.fileInfo Number of data sets and global attributes in file
matlab.io.hdf4.sd.getCompInfo Information about data set compression
matlab.io.hdf4.sd.getFillValue Fill value for data set
matlab.io.hdf4.sd.getInfo Information about data set
matlab.io.hdf4.sd.idToRef Reference number corresponding to data set identifier
matlab.io.hdf4.sd.idType Type of object
matlab.io.hdf4.sd.isCoordVar Determine if data set is a coordinate variable
matlab.io.hdf4.sd.isRecord Determine if data set is appendable
matlab.io.hdf4.sd.nameToIndex Index value of named data set
matlab.io.hdf4.sd.nameToIndices

List of data sets with same name
matlab.io.hdf4.sd.refToIndex Index of data set corresponding to reference number

Dimensions

matlab.io.hdf4.sd.dimInfo Information about dimension
matlab.io.hdf4.sd.getDimID Dimension identifier
matlab.io.hdf4.sd.getDimScale Scale data for dimension
matlab.io.hdf4.sd.setDimName Associate name with dimension
matlab.io.hdf4.sd.setDimScale Set scale values for dimension

User-defined Attributes

matlab.io.hdf4.sd.attrInfo Information about attribute
matlab.io.hdf4.sd.findAttr Index of specified attribute
matlab.io.hdf4.sd.readAttr Read attribute value
matlab.io.hdf4.sd.setAttr Write attribute value

1 Alphabetical List

1-8694

Predefined Attributes

matlab.io.hdf4.sd.getCal Data set calibration information
matlab.io.hdf4.sd.getDataStrs Predefined attributes for data set
matlab.io.hdf4.sd.getDimStrs Predefined attributes for dimension
matlab.io.hdf4.sd.getFillValue Fill value for data set
matlab.io.hdf4.sd.getRange Maximum and minimum range values
matlab.io.hdf4.sd.setCal Set data set calibration information
matlab.io.hdf4.sd.setDataStrs Set predefined attributes for data set
matlab.io.hdf4.sd.setDimStrs Set label, unit, and format attributes
matlab.io.hdf4.sd.setFillValue Set fill value for data set
matlab.io.hdf4.sd.setRange Set maximum and minimum range value for data set

Chunking/Tiling Operations

matlab.io.hdf4.sd.getChunkInfo Chunk size for data set
matlab.io.hdf4.sd.readChunk Read chunk from data set
matlab.io.hdf4.sd.setChunk Set chunk size and compression method of data set
matlab.io.hdf4.sd.writeChunk Write chunk to data set

Compression

matlab.io.hdf4.sd.setCompress Set compression method of data set
matlab.io.hdf4.sd.setNBitDataSet

Specify nonstandard bit length for data set values

 matlab.io.hdf4.sd

1-8695

matlab.io.hdf4.sd.attrInfo
Package: matlab.io.hdf4.sd

Information about attribute

Syntax
[name,datatype,nelts] = attrInfo(objID,idx)

Description
[name,datatype,nelts] = attrInfo(objID,idx) returns the name, data type, and
number of elements in the specified attribute. The attribute is specified by its zero-based
index value. objID can be either an SD interface identifier, a data set identifier, or a
dimension identifier.

This function corresponds to the SDattrinfo function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.findAttr(sdID,'creation_date');
[name,datatype,nelts] = sd.attrInfo(sdID,idx);
data = sd.readAttr(sdID,idx);
sd.close(sdID);

See Also
sd.findAttr

1 Alphabetical List

1-8696

matlab.io.hdf4.sd.close
Package: matlab.io.hdf4.sd

Terminate access to SD interface

Syntax
sd.close(sdID)

Description
sd.close(sdID) closes the file identified by sdID.

This function corresponds to the SDend function in the HDF C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.start

 matlab.io.hdf4.sd.close

1-8697

matlab.io.hdf4.sd.create
Package: matlab.io.hdf4.sd

Create new data set

Syntax
sdsID = create(sdID,name,datatype,dims)

Description
sdsID = create(sdID,name,datatype,dims) creates a data set with the given
name name, data type datatype, and dimension sizes dims.

To create a data set with an unlimited dimension, the last value in dims should be set to
0.

This function corresponds to the SDcreate function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the dims parameter is reversed with
respect to the C library API.

Examples
Create a 3D data set with an unlimited dimension.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20 0]);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.endAccess

1 Alphabetical List

1-8698

matlab.io.hdf4.sd.dimInfo
Package: matlab.io.hdf4.sd

Information about dimension

Syntax
[name,dimlen,datatype,nattrs] = dimInfo(dimID)

Description
[name,dimlen,datatype,nattrs] = dimInfo(dimID) returns the name, length,
data type, and number of attributes of the specified dimension.

This function corresponds to the SDdiminfo function in the HDF library C API.

Examples
Read a 2-by-3 portion of a data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'latitude');
sdsID = sd.select(sdID,idx);
dimID = sd.getDimID(sdsID,0);
[name,dimlen,datatype,nattrs] = sd.dimInfo(dimID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getDimID

 matlab.io.hdf4.sd.dimInfo

1-8699

matlab.io.hdf4.sd.endAccess
Package: matlab.io.hdf4.sd

Terminate access to data set

Syntax
sd.endAccess(sdsID)

Description
sd.endAccess(sdsID) terminates access to the data set identified by sdsID. Failing to
call this function after all operations on the specified data set are complete may result in
loss of data.

This function corresponds to the SDendaccess function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.close | sd.select

1 Alphabetical List

1-8700

matlab.io.hdf4.sd.fileInfo
Package: matlab.io.hdf4.sd

Number of data sets and global attributes in file

Syntax
[ndatasets,ngatts] = fileInfo(sdID)

Description
[ndatasets,ngatts] = fileInfo(sdID) returns the number of data sets
ndatasets and the number of global attributes ngatts in the file identified by sdID.

ndatasets includes the number of coordinate variable data sets.

This function corresponds to the SDfileinfo function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
[ndatasets,ngatts] = sd.fileInfo(sdID);
sd.close(sdID);

See Also
sd.getInfo

 matlab.io.hdf4.sd.fileInfo

1-8701

matlab.io.hdf4.sd.findAttr
Package: matlab.io.hdf4.sd

Index of specified attribute

Syntax
idx = findAttr(objID,attrname)

Description
idx = findAttr(objID,attrname) returns the index of the attribute specified by
attrname. The objID input can be either an SD interface identifier, a data set identifier,
or a dimension identifier.

The function corresponds to the SDfindattr function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.findAttr(sdID,'creation_date');
data = sd.readAttr(sdID,idx);
sd.close(sdID);

See Also
sd.getDimID | sd.readAttr | sd.select | sd.start

1 Alphabetical List

1-8702

matlab.io.hdf4.sd.getCal
Package: matlab.io.hdf4.sd

Data set calibration information

Syntax
[cal,calErr,offset,offsetErr,datatype] = getCal(sdsID)

Description
[cal,calErr,offset,offsetErr,datatype] = getCal(sdsID) retrieves the
calibration information associated with a data set.

This function corresponds to the SDgetcal function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[cal,calErr,offset,offsetErr,dtype] = sd.getCal(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.setCal

 matlab.io.hdf4.sd.getCal

1-8703

matlab.io.hdf4.sd.getChunkInfo
Package: matlab.io.hdf4.sd

Chunk size for data set

Syntax
chunkDims = getChunkInfo(sdsID)

Description
chunkDims = getChunkInfo(sdsID) returns the chunk size for the data set specified
by sdsID. If a data set is chunked, the dimensions of the chunks is returned in
chunkDims. Otherwise chunkDims is [].

This function corresponds to the SDgetchunkinfo function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the chunkDims parameter is reversed
with respect to the C library API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
cdims = sd.getChunkInfo(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getCompInfo | sd.setChunk

1 Alphabetical List

1-8704

matlab.io.hdf4.sd.getCompInfo
Package: matlab.io.hdf4.sd

Information about data set compression

Syntax
[comptype,compparms] = getCompType(sdsID)

Description
[comptype,compparms] = getCompType(sdsID) retrieves the compression type and
compression information for a data set. comptype can be one of the following values.

'none' No compression
'rle' Run-length encoding
'nbit' NBIT compression
'skphuff' Skipping Huffman compression
'deflate' GZIP compression
'szip' SZIP compression

If comptype is 'none' or 'rle', then compparms is [].

If comptype is 'nbit', then compparms is a 4-element array.

compparm(1) sign_ext
compparm(2) fill_one
compparm(3) start_bit
compparm(4) bit_len

If comptype is 'deflate', then compparms contains the deflation value, a number
between 0 and 9.

 matlab.io.hdf4.sd.getCompInfo

1-8705

If comptype is 'szip', them compparms is a 5-element array. Consult the HDF
Reference Manual for details on SZIP compression.

This function corresponds to the SDgetcompinfo function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[100 50]);
sd.setCompress(sdsID,'deflate',5);
[comptype,compparm] = sd.getCompInfo(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.setCompress | sd.setNBitDataSet

1 Alphabetical List

1-8706

matlab.io.hdf4.sd.getDataStrs
Package: matlab.io.hdf4.sd

Predefined attributes for data set

Syntax
[label,unit,format,coordsys] = getDataStrs(sdsID)
[label,unit,format,coordsys] = getDataStrs(sdsID,maxlen)

Description
[label,unit,format,coordsys] = getDataStrs(sdsID) returns the label, unit,
format, and coordsys attributes for the data set identified by sdsID.

[label,unit,format,coordsys] = getDataStrs(sdsID,maxlen) returns the
label, unit, format, and coordsys attributes for the data set identified by sdsID. The
maxlen input is the maximum length of the attribute text. It defaults to 1000 if not
specified.

This function corresponds to the SDgetdatastrs function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[label,unit,fmt,coordsys] = sd.getDataStrs(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

 matlab.io.hdf4.sd.getDataStrs

1-8707

See Also
sd.setDataStrs

1 Alphabetical List

1-8708

matlab.io.hdf4.sd.getDimID
Package: matlab.io.hdf4.sd

Dimension identifier

Syntax
dimID = getDimID(sdsID,dimnumber)

Description
dimID = getDimID(sdsID,dimnumber) returns the identifier of the dimension given
its index.

Note MATLAB uses Fortran-style indexing while the HDF library uses C-style indexing.
The order of the dimension identifiers retrieved with sd.getDimID are reversed from
what would be retrieved via the C API.

This function corresponds to the SDgetdimid function in the HDF library C API.

Examples
Read an entire data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dimID0 = sd.getDimID(sdsID,0);
dimID1 = sd.getDimID(sdsID,1);
sd.endAccess(sdsID);
sd.close(sdID);

 matlab.io.hdf4.sd.getDimID

1-8709

See Also
sd.setDimName

1 Alphabetical List

1-8710

matlab.io.hdf4.sd.getDimScale
Package: matlab.io.hdf4.sd

Scale data for dimension

Syntax
scale = getDimScale(dimID)

Description
scale = getDimScale(dimID) returns the scale values of the dimension identified by
dimID.

This function corresponds to the SDgetdimscale function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',20);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'x');
sd.setDimScale(dimID,0:5:95);
sd.endAccess(sdsID);
sd.close(sdID);
sdID = sd.start('myfile.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dimID = sd.getDimID(sdsID,0);
scale = sd.getDimScale(dimID);
sd.endAccess(sdsID);
sd.close(sdID);

 matlab.io.hdf4.sd.getDimScale

1-8711

See Also
sd.dimInfo | sd.setDimScale

1 Alphabetical List

1-8712

matlab.io.hdf4.sd.getDimStrs
Package: matlab.io.hdf4.sd

Predefined attributes for dimension

Syntax
[label,unit,format] = getDimStrs(dimID)

Description
[label,unit,format] = getDimStrs(dimID) returns the label, unit, and format
attributes for the dimension identified by dimID.

This function corresponds to the SDgetdimstrs function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',20);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'x');
sd.setDimStrs(dimID,'xdim','none','%d');
sd.endAccess(sdsID);
sd.close(sdID);
sdID = sd.start('myfile.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dimID = sd.getDimID(sdsID,0);
[label,unit,fmt] = sd.getDimStrs(dimID);
sd.endAccess(sdsID);
sd.close(sdID);

 matlab.io.hdf4.sd.getDimStrs

1-8713

See Also
sd.setDimStrs

1 Alphabetical List

1-8714

matlab.io.hdf4.sd.getFilename
Package: matlab.io.hdf4.sd

Name of file

Syntax
filename = getFilename(sdID)

Description
filename = getFilename(sdID) retrieves the name of a file previously opened with
the sd package with identifier sdID.

This function corresponds to the SDgetfilename function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
filename = sd.getFilename(sdID);
sd.close(sdID);

See Also
sd.getInfo | sd.start

 matlab.io.hdf4.sd.getFilename

1-8715

matlab.io.hdf4.sd.getFillValue
Package: matlab.io.hdf4.sd

Fill value for data set

Syntax
fillvalue = getFillValue(sdsID)

Description
fillvalue = getFillValue(sdsID) returns the fill value for a data set.

This function corresponds to the SDgetfillvalue function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
fillvalue = sd.getFillValue(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.setFillValue

1 Alphabetical List

1-8716

matlab.io.hdf4.sd.getInfo
Package: matlab.io.hdf4.sd

Information about data set

Syntax
[name,dims,datatype,nattrs] = getInfo(sdsID)

Description
[name,dims,datatype,nattrs] = getInfo(sdsID) returns the name, extents, and
number of attributes of the data set identified by sdsID.

This function corresponds to the SDgetinfo function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the dims parameter is reversed with
respect to the C library API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[name,dims,datatype,nattrs] = sd.getInfo(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.attrInfo | sd.dimInfo | sd.fileInfo

 matlab.io.hdf4.sd.getInfo

1-8717

matlab.io.hdf4.sd.getRange
Package: matlab.io.hdf4.sd

Maximum and minimum range values

Syntax
[maxval,minval] = getRange(sdsID)

Description
[maxval,minval] = getRange(sdsID) retrieves the "valid_range" two-element
attribute value.

This function corresponds to the SDgetrange function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[maxval,minval] = sd.getRange(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.setRange

1 Alphabetical List

1-8718

matlab.io.hdf4.sd.idToRef
Package: matlab.io.hdf4.sd

Reference number corresponding to data set identifier

Syntax
ref = idToRef(sdsID)

Description
ref = idToRef(sdsID) returns the reference number corresponding to the data set.

This function corresponds to the SDidtoref function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
ref = sd.idToRef(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.refToIndex

 matlab.io.hdf4.sd.idToRef

1-8719

matlab.io.hdf4.sd.idType
Package: matlab.io.hdf4.sd

Type of object

Syntax
objtype = idType(objID)

Description
objtype = idType(objID) returns the type of object that objID represents. Possible
values for objtype are:

'NOT_SDAPI_ID' The object is not an HDF SD identifier.
'SD_ID' The object is an SD identifier (file handle) .
'SDS_ID' The object is a data set identifier.
'DIM_ID' The object is a dimension identifier.

This function corresponds to the SDidtype function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
objType = sd.idType(sdID);
sd.close(sdID);

1 Alphabetical List

1-8720

matlab.io.hdf4.sd.isCoordVar
Package: matlab.io.hdf4.sd

Determine if data set is a coordinate variable

Syntax
TF = isCoordVar(sdsID)

Description
TF = isCoordVar(sdsID) returns true if a data set is a coordinate variable and
returns false otherwise.

This function corresponds to the SDiscoordvar function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
ndataset = sd.fileInfo(sdID);
for idx = 0:ndataset-1
 sdsID = sd.select(sdID,idx);
 sdsName = sd.getInfo(sdsID);
 fprintf('%s (index %d) ', sdsName, idx);
 if (sd.isCoordVar(sdsID))
 fprintf('is a coordinate variable.\n');
 else
 fprintf('is not a coordinate variable.\n');
 end
 sd.endAccess(sdsID);
end
sd.close(sdID);

 matlab.io.hdf4.sd.isCoordVar

1-8721

See Also
sd.isRecord

1 Alphabetical List

1-8722

matlab.io.hdf4.sd.isRecord
Package: matlab.io.hdf4.sd

Determine if data set is appendable

Syntax
TF = isRecord(sdsID)

Description
TF = isRecord(sdsID) determines if the data set specified by sdsID is appendable,
meaning that the slowest changing dimension is unlimited.

This function corresponds to the SDisrecord function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
ndataset = sd.fileInfo(sdID);
for idx = 0:ndataset-1
 sdsID = sd.select(sdID,idx);
 sdsName = sd.getInfo(sdsID);
 if sd.isRecord(sdsID)
 fprintf('%s is a record variable.\n',sdsName);
 else
 fprintf('%s is not a record variable.\n',sdsName);
 end
 sd.endAccess(sdsID);
end
sd.close(sdID);

 matlab.io.hdf4.sd.isRecord

1-8723

See Also
sd.isCoordVar

1 Alphabetical List

1-8724

matlab.io.hdf4.sd.nameToIndex
Package: matlab.io.hdf4.sd

Index value of named data set

Syntax
idx = nameToIndex(sdID,sdsname)

Description
idx = nameToIndex(sdID,sdsname) returns the index of the data set with the name
specified by sdsname. If there is more than one data set with the same name, the routine
returns the index of the first one.

This function corresponds to the SDnametoindex function in the HDF C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf','read');
idx = sd.nameToIndex(sdID,'temperature');
sd.close(sdID);

See Also
sd.select

 matlab.io.hdf4.sd.nameToIndex

1-8725

matlab.io.hdf4.sd.nameToIndices
Package: matlab.io.hdf4.sd

List of data sets with same name

Syntax
varstruct = nameToIndices(sdID,sdsname)

Description
varstruct = nameToIndices(sdID,sdsname) returns a structure array for all data
sets with the same name. Each element of varstruct has two fields.

'index' Index of data set
'type' Type of data set, either 'SDSVAR',

'COORDVAR', or 'UNKNOWN'

This function corresponds to the SDnametoindices function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
varlist = sd.nameToIndices(sdID,'latitude');
sd.close(sdID);

See Also
sd.isCoordVar | sd.setDimScale

1 Alphabetical List

1-8726

matlab.io.hdf4.sd.readAttr
Package: matlab.io.hdf4.sd

Read attribute value

Syntax
data = readAttr(objID,idx)

Description
data = readAttr(objID,idx) reads the value of the attribute specified by index idx.
The objID input can be an SD interface identifier, a data set identifier, or a dimension
identifier. idx is a zero-based index.

This function corresponds to the SDreadattr function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.findAttr(sdID,'creation_date');
data = sd.readAttr(sdID,idx);
sd.close(sdID);

See Also
sd.findAttr | sd.setAttr

 matlab.io.hdf4.sd.readAttr

1-8727

matlab.io.hdf4.sd.readChunk
Package: matlab.io.hdf4.sd

Read chunk from data set

Syntax
datachunk = readChunk(sdsID,origin)

Description
datachunk = readChunk(sdsID,origin) reads an entire chunk of data from the data
set identified by sdsID. The origin input specifies the location of the chunk in zero-
based chunking coordinates, not in data set coordinates.

This function corresponds to the SDreadchunk function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the origin parameter is reversed with
respect to the C library API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dataChunk = sd.readChunk(sdsID,[0 1]);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.writeChunk | sd.writeData

1 Alphabetical List

1-8728

matlab.io.hdf4.sd.readData
Package: matlab.io.hdf4.sd

Read subsample of data

Syntax
data = readData(sdsID)
data = readData(sdsID,start,count)
data = readData(sdsID,start,count,stride)

Description
data = readData(sdsID) reads all of the data for the data set identified by sdsID.

data = readData(sdsID,start,count) reads a contiguous hyperslab of data from
the data set identified by sdsID. The start input specifies the starting position from
where the hyperslab is read. count specifies the number of values to read along each
data set dimension.

data = readData(sdsID,start,count,stride) reads a strided hyperslab of data
from the data set identified by sdsID.

start, count, and stride use zero-based indexing.

This function corresponds to the SDreaddata function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the start, count, and stride
parameters are reversed with respect to the C library API.

Examples
Read an entire data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');

 matlab.io.hdf4.sd.readData

1-8729

idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
data = sd.readData(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

Read a 2-by-3 portion of a data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
data = sd.readData(sdsID,[0 0],[2 3]);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.writeData

1 Alphabetical List

1-8730

matlab.io.hdf4.sd.refToIndex
Package: matlab.io.hdf4.sd

Index of data set corresponding to reference number

Syntax
idx = refToIndex(sdID,ref)

Description
idx = refToIndex(sdID,ref) returns the index of the data set identified by its
reference number ref. The idx output can then be passed to sd.select, to obtain a
data set identifier.

This function corresponds to the SDreftoindex function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf','read');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
ref = sd.idToRef(sdsID);
idx2 = sd.refToIndex(sdID,ref);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.idToRef | sd.select

 matlab.io.hdf4.sd.refToIndex

1-8731

matlab.io.hdf4.sd.select
Package: matlab.io.hdf4.sd

Identifier of data set with specified index

Syntax
sdsID = select(sdID,IDX)

Description
sdsID = select(sdID,IDX) returns the identifier of the data set specified by its index.

This function corresponds to the SDselect function in the HDF C library.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf','read');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.endAccess | sd.nametoIndex

1 Alphabetical List

1-8732

matlab.io.hdf4.sd.setAttr
Package: matlab.io.hdf4.sd

Write attribute value

Syntax
setAttr(objID,name,value)

Description
setAttr(objID,name,value) attaches an attribute to the object specified by objID. If
objID is the SD interface identifier, then a global attribute is created. If a data identifier
is specified, then the attribute is attached to the data set. If a dimension identifier is
specified, then the attribute is attached to the dimension.

This function corresponds to the SDsetattr function in the HDF library C API.

Examples
Attach attributes to a file, a data set, and to a dimension.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sd.setAttr(sdID,'creation_date',datestr(now));
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setAttr(sdsID,'long_name','Temperature in sunlight.');
dimID0 = sd.getDimID(sdsID,0);
sd.setAttr(dimID0,'long_name','latitude');
sd.endAccess(sdsID);
sd.close(sdID);

 matlab.io.hdf4.sd.setAttr

1-8733

See Also
sd.findAttr | sd.readAttr

1 Alphabetical List

1-8734

matlab.io.hdf4.sd.setCal
Package: matlab.io.hdf4.sd

Set data set calibration information

Syntax
setCal(sdsID,cal,calErr,offset,offsetErr,datatype)

Description
setCal(sdsID,cal,calErr,offset,offsetErr,datatype) sets the calibration
information for a data set.

This function corresponds to the SDsetcal function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setDataStrs(sdsID,'Temperature','degrees_kelvin','%.3f','spherical');
sd.setCal(sdsID,1,0,273,0,'double');
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getCal

 matlab.io.hdf4.sd.setCal

1-8735

matlab.io.hdf4.sd.setChunk
Package: matlab.io.hdf4.sd

Set chunk size and compression method of data set

Syntax
setChunk(sdsID,chunkSize,comptype,compparm)

Description
setChunk(sdsID,chunkSize,comptype,compparm) makes the data set specified by
sdsID a chunked data set with chunk size given by chunkSize and compression
specified by comptype and compparm. The comptype input can be one of the following
values.

'none' No compression
'skphuff' Skipping Huffman compression
'deflate' GZIP compression
'rle' Run-length encoding

• If comptype is 'none' or 'rle', then compparm need not be specified.
• If comptype is 'skphuff', then compparm is the skipping size.
• If comptype is 'deflate', then compparm is the deflate level, which must be

between 0 and 9.

This function corresponds to the SDsetchunk function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the chunkSize parameter is reversed
with respect to the C library API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');

1 Alphabetical List

1-8736

sdsID = sd.create(sdID,'temperature','double',[200 100]);
sd.setChunk(sdsID,[20 10],'skphuff',16);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.readChunk | sd.writeChunk

 matlab.io.hdf4.sd.setChunk

1-8737

matlab.io.hdf4.sd.setCompress
Package: matlab.io.hdf4.sd

Set compression method of data set

Syntax
setCompress(sdsID,comptype,compparm)

Description
setCompress(sdsID,comptype,compparm) sets the compression scheme for the
specified data set. The compression must be done before writing the data set. Specify
comptype as one of these values.

'none' No compression
'skphuff' Skipping Huffman compression
'deflate' GZIP compression
'rle' Run-length encoding

• If comptype is 'none' or 'rle', then compparm need not be specified.
• If comptype is 'skphuff', then compparm is the skipping size.
• If comptype is 'deflate', then compparm is the deflate level, which must be

between 0 and 9.

This function corresponds to the SDsetcompress function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[200 100]);
sd.setCompress(sdsID,'deflate',5);

1 Alphabetical List

1-8738

data = rand(200,100);
sd.writeData(sdsID,[0 0],data);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.setChunk

 matlab.io.hdf4.sd.setCompress

1-8739

matlab.io.hdf4.sd.setDataStrs
Package: matlab.io.hdf4.sd

Set predefined attributes for data set

Syntax
setDataStrs(sdsID,label,unit,format,coordsys)

Description
setDataStrs(sdsID,label,unit,format,coordsys) sets the predefined attributes
'long_name', 'units', 'format', and 'coordsys' for a data set.

This function corresponds to the SDsetdatastrs function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setDataStrs(sdsID,'degrees_celsius','degrees_east','','geo');
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getDataStrs | sd.setDimStrs

1 Alphabetical List

1-8740

matlab.io.hdf4.sd.setDimName
Package: matlab.io.hdf4.sd

Associate name with dimension

Syntax
setDimName(dimID,dimname)

Description
setDimName(dimID,dimname) sets the name of the dimension identified by dimID to
dimname.

This function corresponds to the SDsetdimname function in the HDF library C API.

Examples
Create a 2D data set with dimensions 'lat' and 'lon'.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'lat');
dimID = sd.getDimID(sdsID,1);
sd.setDimName(dimID,'lon');
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.dimInfo

 matlab.io.hdf4.sd.setDimName

1-8741

matlab.io.hdf4.sd.setDimScale
Package: matlab.io.hdf4.sd

Set scale values for dimension

Syntax
setDimScale(dimID,scaledata)

Description
setDimScale(dimID,scaledata) sets the scale values for a dimension.

This function corresponds to the SDsetdimscale function in the HDF library C API.

Examples
Create a 2D data set with dimensions 'lat' and 'lon'.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'lat');
sd.setDimScale(dimID,0:10:90);
dimID = sd.getDimID(sdsID,1);
sd.setDimName(dimID,'lon');
sd.setDimScale(dimID, -180:18:179);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getDimScale

1 Alphabetical List

1-8742

matlab.io.hdf4.sd.setDimStrs
Package: matlab.io.hdf4.sd

Set label, unit, and format attributes

Syntax
setDimStrs(dimID,label,unit,format)

Description
setDimStrs(dimID,label,unit,format) sets the label, unit, and format attributes
for the dimension identified by dimID.

This function corresponds to the SDsetdimstrs function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'lat');
dimID = sd.getDimID(sdsID,1);
sd.setDimName(dimID,'lon');
sd.setDimStrs(dimID,'Degrees of Longitude','degrees_east','%.2f');
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getDimStrs

 matlab.io.hdf4.sd.setDimStrs

1-8743

matlab.io.hdf4.sd.setExternalFile
Package: matlab.io.hdf4.sd

Store data in external file

Syntax
setExternalFile(sdsID,extfile,offset)

Description
setExternalFile(sdsID,extfile,offset) moves data values (not metadata) into
the external data file extfile starting at the byte offset, offset.

Data can only be moved once for any given data set. The external file should be kept with
the main file.

This function corresponds to the SDsetexternalfile function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setExternalFile(sdsID,'myExternalFile.dat',0);
sd.writeData(sdsID,[0 0],rand(10,20));
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.create | sd.writeData

1 Alphabetical List

1-8744

matlab.io.hdf4.sd.setFillMode
Package: matlab.io.hdf4.sd

Set current fill mode of file

Syntax
prevmode = setFillMode(sdID,fillmode)

Description
prevmode = setFillMode(sdID,fillmode) returns the previous fill mode of a file
and resets it to fillmode. This setting applies to all data sets contained in the file
identified by sdID.

Possible values of fillmode are 'fill', and 'nofill'. 'fill' is the default mode
and indicates that fill values will be written when the data set is created. 'nofill'
indicates that the fill values will not be written.

When a fixed-size data set is created, the first call to sd.writeData will fill the entire
data set with the default or user-defined fill value if fillmode is 'fill'. In data sets
with an unlimited dimension, if a new write operation takes place along the unlimited
dimension beyond the last location of the previous write operation, the array locations
between these written areas will be initialized to the user-defined fill value, or the default
fill value if a user-defined fill value has not been specified.

If it is certain that all data set values will be written before any read operation takes
place, there is no need to write the fill values. Calling sd.setFillMode with 'nofill'
can improve performance in this case.

This function corresponds to the SDsetfillmode function in the HDF library C API.

 matlab.io.hdf4.sd.setFillMode

1-8745

Examples
Write two partial records. Write the first in 'nofill' mode, and the second with 'fill'
mode.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sd.setFillMode(sdID,'nofill');
sdsID = sd.create(sdID,'temperature','double',[10 10 0]);
sd.writeData(sdsID,[0 0 0], rand(5,5));
sd.setFillMode(sdID,'fill');
sd.setFillValue(sdsID,-999);
sd.writeData(sdsID,[0 0 1], rand(5,5));
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getFillValue | sd.setFillValue

1 Alphabetical List

1-8746

matlab.io.hdf4.sd.setFillValue
Package: matlab.io.hdf4.sd

Set fill value for data set

Syntax
setFillValue(sdsID,fillValue)

Description
setFillValue(sdsID,fillValue) sets the fill value for a data set. The fill value must
have the same data type as the data set.

This function corresponds to the SDsetfillvalue function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setFillValue(sdsID,-999);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getFillValue

 matlab.io.hdf4.sd.setFillValue

1-8747

matlab.io.hdf4.sd.setNBitDataSet
Package: matlab.io.hdf4.sd

Specify nonstandard bit length for data set values

Syntax
setNBitDataSet(sdsID,startBit,bitlen,ext,fillone)

Description
setNBitDataSet(sdsID,startBit,bitlen,ext,fillone) specifies that the integer
data set identified by sdsID contains data of a non-standard length defined by startBit
and bitlen.

Any length between 1 and 32 bits can be specified. After setNBitDataset has been
called for the data set array, any read or write operation will involve conversion between
the new data length of the data set array and the data length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a
bit field containing the values 01111011, bits 2 and 7 are set to 0 and all the other bits
are set to 1. The least significant bit is bit 0.

The startBit parameter specifies the left-most position of the variable-length bit field to
be written. For example, in the bit field described in the preceding paragraph a
startBit parameter set to 4 would correspond to the fourth bit value of 1 from the right.

The parameter bitlen specifies the number of bits of the variable-length bit field to be
written. This number includes the starting bit and the count proceeds toward the right
end of the bit field - toward the lower-bit numbers. For example, starting at bit 5 and
writing 4 bits of the bit field described in the preceding paragraph would result in the bit
field 1110 being written to the data set. This would correspond to a startBit value of 5
and a bitlen value of 4.

The parameter ext specifies whether to use the left-most bit of the variable-length bit
field to sign-extend to the left-most bit of the data set data. For example, if 9-bit signed

1 Alphabetical List

1-8748

integer data is extracted from bits 17-25 and the bit in position 25 is 1, then when the
data is read back from disk, bits 26-31 will be set to 1. Otherwise bit 25 will be 0 and bits
26-31 will be set to 0. The ext parameter can be set to true (or 1) or false (or 0);
specify true to sign-extend.

The parameter fillone specifies whether to fill the "background" bits with the value 1
or 0. This parameter is also set to either true (or 1) or false (or 0).

The "background" bits of a non-standard length data set are the bits that fall outside of
the non-standard length bit field stored on disk. For example, if five bits of an unsigned
16-bit integer data set located in bits 5 to 9 are written to disk with the parameter
fillone set to true (or 1), then when the data is reread into memory bits 0 to 4 and 10
to 15 would be set to 1. If the same 5-bit data was written with a fillone value of false
(or 0), then bits 0 to 4 and 10 to 15 would be set to 0.

The operation on fillone is performed before the operation on ext. For example, using
the ext example above, bits 0 to 16 and 26 to 31 will first be set to the background bit
value, and then bits 26 to 31 will be set to 1 or 0 based on the value of the 25th bit.

This function corresponds to the SDsetnbitdataset in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','int32',[10 20]);
sd.setNBitDataSet(sdsID,6,4,0,0);
data = int32([1:200]);
data = reshape(data,10,20);
sd.writeData(sdsID,[0 0],data);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.setCompress

 matlab.io.hdf4.sd.setNBitDataSet

1-8749

matlab.io.hdf4.sd.setRange
Package: matlab.io.hdf4.sd

Set maximum and minimum range value for data set

Syntax
setRange(sdsID,maxval,minval)

Description
setRange(sdsID,maxval,minval) sets the maximum and minimum range values of
the data set identified by sdsID. These values form the "valid_range" attribute for sdsID.

The actual maximum and minimum values of the data set are not computed. The
"valid_range" attribute is for informational purposes only.

This function corresponds to the SDsetrange function in the HDF library C interface.

Examples
import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setDataStrs(sdsID,'Temperature','degrees_celsius','%.2f','');
sd.setRange(sdsID,1000,-273.15);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.getRange

1 Alphabetical List

1-8750

matlab.io.hdf4.sd.start
Package: matlab.io.hdf4.sd

Open HDF file and initialize SD interface

Syntax
sdID = start(filename)
sdID = start(filename,access)

Description
sdID = start(filename) opens the file filename in read-only mode. This routine
must be called for each file before any other sd calls can be made on that file.

sdID = start(filename,access) opens the file filename with the access mode
specified by access. This routine must be called before any other SD interface operations
can be made on that file. Specify access as one these values:

• 'read'
• 'write'
• 'create'

access defaults to 'read' if not supplied.

This function corresponds to the SDstart function in the HDF library C API.

Examples
import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
sd.close(sdID);

 matlab.io.hdf4.sd.start

1-8751

See Also
sd.close

1 Alphabetical List

1-8752

matlab.io.hdf4.sd.writeChunk
Package: matlab.io.hdf4.sd

Write chunk to data set

Syntax
writeChunk(sdsID,origin,dataChunk)

Description
writeChunk(sdsID,origin,dataChunk) writes an entire chunk of data to the data
set identified by sdsID. The origin input specifies the location of the chunk in chunking
coordinates, not in data set coordinates.

This function corresponds to the SDwritechunk function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the origin parameter is reversed with
respect to the C library API.

Examples
Write to a 2D chunked and compressed data set. The chunked layout constitutes a 10-by-5
grid.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[100 50]);
sd.setChunk(sdsID,[10 10],'deflate',5);
for j = 0:9
 for k = 0:4
 origin = [j k];
 data = (1:100) + k*1000 + j*10000;
 data = reshape(data,10,10);
 sd.writeChunk(sdsID,origin,data);
 end

 matlab.io.hdf4.sd.writeChunk

1-8753

end
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.readChunk | sd.writeData

1 Alphabetical List

1-8754

matlab.io.hdf4.sd.writeData
Package: matlab.io.hdf4.sd

Write to data set

Syntax
writeData(sdsID,data)
writeData(sdsID,start,data)
writeData(sdsID,start,stride,data)

Description
writeData(sdsID,data) writes all the data to the data set identified by sdsID.

writeData(sdsID,start,data) writes a contiguous hyperslab to the data set. start
specifies the zero-based starting index. The number of values along each dimension is
inferred from the size of data.

writeData(sdsID,start,stride,data) writes a strided hyperslab of data to a grid
datafield. The number of elements to write along each dimension is inferred either from
the size of data or from the data set itself.

start and stride use zero-based indexing.

This function corresponds to the SDreadchunk function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the start and stride parameters are
reversed with respect to the C library API.

Examples
Write to a 2D data set.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');

 matlab.io.hdf4.sd.writeData

1-8755

sdsID = sd.create(sdID,'temperature','double',[10 20]);
data = rand(10,20);
sd.writeData(sdsID,[0 0],data);
sd.endAccess(sdsID);
sd.close(sdID);

Write to a 2D unlimited data set.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 0]);
data = rand(10,20);
sd.writeData(sdsID,[0 0],data);
data = rand(10,30);
sd.writeData(sdsID,[0 20],data);
sd.endAccess(sdsID);
sd.close(sdID);

See Also
sd.readData

1 Alphabetical List

1-8756

matlab.io.hdfeos.gd
Low-level access to HDF-EOS grid data

Description
To use these MATLAB functions, you must be familiar with the HDF-EOS library C
interface. In most cases, the syntax of the MATLAB function is similar to the syntax of the
corresponding HDF-EOS library function. The functions are implemented as the package
matlab.io.hdfeos.gd. To use this package, prefix the function name with a package
path, or use the import function to add the package to the current import list, prior to
calling the function, for example,

import matlab.io.hdfeos.*
gfid = gd.open(filename,'read');

Access
matlab.io.hdfeos.gd.attach Attach to existing grid
matlab.io.hdfeos.gd.close Close HDF-EOS grid file
matlab.io.hdfeos.gd.detach Detach from existing grid
matlab.io.hdfeos.gd.open Open grid file

 matlab.io.hdfeos.gd

1-8757

Definition
matlab.io.hdfeos.gd.create Create new grid structure
matlab.io.hdfeos.gd.defComp Set grid field compression
matlab.io.hdfeos.gd.defDim Define new dimension within grid
matlab.io.hdfeos.gd.defField Define new data field within grid
matlab.io.hdfeos.gd.defOrigin Define origin of pixels in grid
matlab.io.hdfeos.gd.defPixReg Define pixel registration within grid
matlab.io.hdfeos.gd.defProj Define grid projection
matlab.io.hdfeos.gd.writeBlkSomOffset

Write Block SOM offset

Basic I/O
matlab.io.hdfeos.gd.getFillValue

Fill value for specified field
matlab.io.hdfeos.gd.readAttr Read grid attribute
matlab.io.hdfeos.gd.readField Read data from grid field
matlab.io.hdfeos.gd.setFillValue

Set fill value for specified field
matlab.io.hdfeos.gd.writeAttr Write grid attribute
matlab.io.hdfeos.gd.writeField Write data to grid field

1 Alphabetical List

1-8758

Inquiry

matlab.io.hdfeos.gd.compInfo Compression information for field
matlab.io.hdfeos.gd.dimInfo Length of dimension
matlab.io.hdfeos.gd.fieldInfo Information about data field
matlab.io.hdfeos.gd.gridInfo Position and size of grid
matlab.io.hdfeos.gd.inqAttrs Names of grid attributes
matlab.io.hdfeos.gd.inqDims Information about dimensions defined in grid
matlab.io.hdfeos.gd.inqFields Information about data fields defined in grid
matlab.io.hdfeos.gd.inqGrid Names of grids in file
matlab.io.hdfeos.gd.nEntries Number of specified objects
matlab.io.hdfeos.gd.originInfo Origin code
matlab.io.hdfeos.gd.pixRegInfo Pixel registration code
matlab.io.hdfeos.gd.projInfo GCTP projection information about grid
matlab.io.hdfeos.gd.readBlkSomOffset

Read Block SOM offset

Subsetting

matlab.io.hdfeos.gd.defBoxRegion
Define region of interest by latitude and longitude

matlab.io.hdfeos.gd.defVrtRegion
Define vertical subset region

matlab.io.hdfeos.gd.extractRegion
Read region of interest from field

matlab.io.hdfeos.gd.getPixels Pixel rows and columns for latitude/longitude pairs
matlab.io.hdfeos.gd.getPixValues

Read data values for specified pixels
matlab.io.hdfeos.gd.interpolate

Bilinear interpolation on a grid field
matlab.io.hdfeos.gd.regionInfo Information about subsetted region

 matlab.io.hdfeos.gd

1-8759

Tiling
matlab.io.hdfeos.gd.defTile Define tiling parameters
matlab.io.hdfeos.gd.readTile Read single tile of data from field
matlab.io.hdfeos.gd.setTileComp

Set tiling and compression for field with fill value
matlab.io.hdfeos.gd.tileInfo Tile size of grid field
matlab.io.hdfeos.gd.writeTile Write tile to field

Utility
matlab.io.hdfeos.gd.ij2ll Convert row and column space to latitude and

longitude
matlab.io.hdfeos.gd.ll2ij Convert latitude and longitude to row and

column space
matlab.io.hdfeos.gd.sphereCodeToName

Name corresponding to GCTP sphere code
matlab.io.hdfeos.gd.sphereNameToCode

Numeric GCTP code corresponding to sphere
name

1 Alphabetical List

1-8760

matlab.io.hdfeos.gd.attach
Package: matlab.io.hdfeos.gd

Attach to existing grid

Syntax
gridID = attach(gfID,gridName)

Description
gridID = attach(gfID,gridName) attaches to the grid dataset identified by
gridName in the file identified by gfID. The gridID output is the identifier for the grid
dataset.

This function corresponds to the GDattach function in the HDF-EOS library C API.

Examples
Attach to the grid named 'PolarGrid' in the file 'grid.hdf'.

import matlab.io.hdfeos.*
gfID = gd.open('grid.hdf');
gridID = gd.attach(gfID,'PolarGrid');
gd.detach(gridID);
gd.close(gfID);

See Also
gd.detach | gd.inqGrid | gd.readField

 matlab.io.hdfeos.gd.attach

1-8761

matlab.io.hdfeos.gd.close
Package: matlab.io.hdfeos.gd

Close HDF-EOS grid file

Syntax
close(gfID)

Description
close(gfID) closes an HDF-EOS grid file identified by gfID.

This function corresponds to the GDclose function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfID = gd.open('grid.hdf');
gd.close(gfID);

See Also
gd.create | gd.open

1 Alphabetical List

1-8762

matlab.io.hdfeos.gd.compInfo
Package: matlab.io.hdfeos.gd

Compression information for field

Syntax
[compCode,parms] = compInfo(gridID,fieldname)

Description
[compCode,parms] = compInfo(gridID,fieldname) returns the compression code
and compression parameters for a given field. Refer to gd.defComp for a description of
various compression schemes and parameters.

This function corresponds to the GDcompinfo function in the HDF-EOS library C API.

Examples
Get compression information for the ice_temp field.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[compCode,compParms] = gd.compInfo(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defComp

 matlab.io.hdfeos.gd.compInfo

1-8763

matlab.io.hdfeos.gd.create
Package: matlab.io.hdfeos.gd

Create new grid structure

Syntax
gridID = create(gfID,gridName,xdim,ydim,upLeft,lowRight)

Description
gridID = create(gfID,gridName,xdim,ydim,upLeft,lowRight) creates a new
grid structure where gfID is the grid file identifier. gridName is the name of the new
grid. xdim and ydim define the size of the grid. upLeft is a two-element vector
containing the location of the upper left pixel, and lowRight is a two-element vector
containing the location of the lower right pixel.

Note upLeft and lowRight are in units of meters for all GCTP projections other than
the geographic and bcea projections, which should have units of packed degrees.

Note For certain projections, upLeft and lowRight can be given as [].

• Polar Stereographic projection of an entire hemisphere.
• Goode Homolosine projection of the entire globe.
• Lambert Azimuthal entire polar or equatorial projection.

Note MATLAB uses Fortran-style ordering, but the HDF-EOS library uses C-style
ordering.

This function corresponds to the GDcreate function in the HDF-EOS library C API.

1 Alphabetical List

1-8764

Examples
Create a polar stereographic grid of the northern hemisphere.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
gd.detach(gridID);
gd.close(gfid);

Create a UTM grid bounded by 54 E to 60 E longitude and 20 N to 30 N latitude. Divide
the grid into 120 bins along the x-axis and 200 bins along the y-axis.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
uplft = [210584.50041 3322395.95445];
lowrgt = [813931.10959 2214162.53278];
gridID = gd.create(gfid,'UTMGrid',120,200,uplft,lowrgt);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defProj | gd.detach | gd.gridInfo

 matlab.io.hdfeos.gd.create

1-8765

matlab.io.hdfeos.gd.defBoxRegion
Package: matlab.io.hdfeos.gd

Define region of interest by latitude and longitude

Syntax
regionID = defBoxRegion(gridID,cornerLat,cornerLon)

Description
regionID = defBoxRegion(gridID,cornerLat,cornerLon) defines a latitude-
longitude box region as a subset region for a grid. regionID can be used to read all the
entries of a data field within the region.

This function corresponds to the GDdefboxregion function in the HDF-EOS library C
API.

Examples
Define a region of interest between 20 and 50 degrees latitude and between -90 and -60
degrees longitude.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
regionID = gd.defBoxRegion(gridID,cornerlat,cornerlon);
data = gd.extractRegion(gridID,regionID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

1 Alphabetical List

1-8766

See Also
gd.extractRegion

 matlab.io.hdfeos.gd.defBoxRegion

1-8767

matlab.io.hdfeos.gd.defComp
Package: matlab.io.hdfeos.gd

Set grid field compression

Syntax
defComp(gridID,compscheme,compparm)

Description
defComp(gridID,compscheme,compparm) sets the HDF field compression for
subsequent field definitions. The compression scheme does not apply to one-dimensional
fields. compscheme can be one of the following values.

'rle' Run-length encoding
'skphuff' Skipping Huffman
'deflate' Gzip deflate
'none' No compression

When the compression scheme is 'deflate', compparm is the deflate compression level,
an integer between 0 and 9. compparm can be omitted for the other compression
schemes.

If a field is defined with compression, it must be written with a single call to
gd.writeField. If this is not possible, you should consider using tiling.

This function corresponds to the GDdefcomp function in the HDF-EOS library C API.

Examples
Create a grid with a polar stereographic Pressure field using run-length encoding, and
then an Opacity field with deflate compression.

1 Alphabetical List

1-8768

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;
gd.defProj(gridID,'ps',[],'WGS 84',projparm);
dims = { 'XDim', 'YDim' };
gd.defComp(gridID,'rle');
gd.defField(gridID,'Pressure',dims,'float');
gd.defComp(gridID,'deflate',5);
gd.defField(gridID,'Opacity',dims,'float');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defField | gd.defTile

 matlab.io.hdfeos.gd.defComp

1-8769

matlab.io.hdfeos.gd.defDim
Package: matlab.io.hdfeos.gd

Define new dimension within grid

Syntax
defDim(gridID,dimname,dimlen)

Description
defDim(gridID,dimname,dimlen) defines a new dimension named dimname with
length dimlen in the grid structure identified by gridID.

To specify an unlimited dimension, you can use either 0 or 'unlimited' for dimlen.

This function corresponds to the GDdefdim function in the HDF-EOS library C API.

Examples
Define a dimension 'Band' with length of 15 and an unlimited dimension 'Time'.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
gd.defDim(gridID,'Band',15);
gd.defDim(gridID,'Time',0);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defField | gd.dimInfo

1 Alphabetical List

1-8770

matlab.io.hdfeos.gd.defField
Package: matlab.io.hdfeos.gd

Define new data field within grid

Syntax
defField(gridID,fieldname,dimlist,dtype)
defField(gridID,fieldname,dimlist,dtype,mergeCode)

Description
defField(gridID,fieldname,dimlist,dtype) defines data fields for a grid
specified by gridID. The fieldname input is the name of the new field. dimlist is a
cell array of geolocation dimensions and should be listed in FORTRAN-style order, that is,
the fastest varying dimension should be listed first. Specify dimlist as a cell array of
character vectors or a string array containing text which describes the dimensions or just
a character vector or string scalar when there is only one dimension. dtype is the data
type of the field.

defField(gridID,fieldname,dimlist,dtype,mergeCode) defines a data field with
a specific merge code. mergeCode can be either 'nomerge' or 'automerge'. The
mergeCode input defaults to 'nomerge' if not provided.

This function corresponds to the GDdeffield function in the HDF library C API, but
because MATLAB uses FORTRAN-style ordering, the dimlist parameter is reversed with
respect to the C library API.

Examples
Define a single precision grid field 'Temperature' with dimensions 'XDim' and
'YDim'. Then define a single precision field 'Spectra' with dimensions 'XDim',
'YDim', and 'Bands'.

 matlab.io.hdfeos.gd.defField

1-8771

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
xdim = 120; ydim = 200;
gridID = gd.create(gfid,'geo',xdim,ydim,[],[]);
gd.defProj(gridID,'geo',[],[],[]);
dimlist = {'XDim','YDim'};
gd.defField(gridID,'Temperature',dimlist,'single');
gd.defDim(gridID,'Bands',3);
dimlist = {'XDim','YDim','Bands'};
gd.defField(gridID,'Spectra',dimlist,'uint8');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.create | gd.defDim

1 Alphabetical List

1-8772

matlab.io.hdfeos.gd.defOrigin
Package: matlab.io.hdfeos.gd

Define origin of pixels in grid

Syntax
defOrigin(gridID,originCode)

Description
defOrigin(gridID,originCode) defines the origin of pixels in a grid. gridID is the
identifier of the grid, and originCode can be one of the following four values.

'ul' Upper-left
'ur' Upper-right
'll' Lower-left
'lr' Lower-right

You can select any corner of the grid pixel as the origin. If this routine is not invoked, the
grid defaults to using the upper-left corner for the origin.

This function corresponds to the GDdeforigin function in the HDF-EOS library C API.

Examples
Create a polar stereographic grid with the origin of the grid pixel in the lower right
corner.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;

 matlab.io.hdfeos.gd.defOrigin

1-8773

gd.defProj(gridID,'ps',[],'WGS 84',projparm);
gd.defOrigin(gridID,'lr');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defPixReg | gd.originInfo

1 Alphabetical List

1-8774

matlab.io.hdfeos.gd.defPixReg
Package: matlab.io.hdfeos.gd

Define pixel registration within grid

Syntax
defPixReg(gridID,pixRegCode)

Description
defPixReg(gridID,pixRegCode) defines whether the pixel center or pixel corner is
used when requesting the location (longitude and latitude) of a given pixel. pixRegCode
can be one of the following values.

'center' Center of pixel cell
'corner' Corner of pixel cell

If this routine is not invoked, the pixel registration is 'center'.

This function corresponds to the GDdefpixreg function in the HDF-EOS library.

Examples
Define a grid with pixel registration in the center.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;
gd.defProj(gridID,'ps',[],'WGS 84',projparm);
gd.defPixReg(gridID,'corner');
gd.detach(gridID);
gd.close(gfid);

 matlab.io.hdfeos.gd.defPixReg

1-8775

See Also
gd.defOrigin | gd.pixRegInfo

1 Alphabetical List

1-8776

matlab.io.hdfeos.gd.defProj
Package: matlab.io.hdfeos.gd

Define grid projection

Syntax
defProj(gridID,projCode,zoneCode,sphereCode,projParm)

Description
defProj(gridID,projCode,zoneCode,sphereCode,projParm) defines a GCTP
projection on the grid specified by gridID. The projCode argument can be one of these
values.

'geo' Geographic
'utm' Universal Transverse Mercator
'albers' Albers Conical Equal Area
'lamcc' Lambert Conformal Conic
'ps' Polar Stereographic
'polyc' Polyconic
'tm' Transverse Mercator
'lamaz' Lambert Azimuthal Equal Area
'snsoid' Sinusoidal
'hom' Hotine Oblique Mercator
'som' Space Oblique Mercator
'good' Interrupted Goode Homolosine
'cea' Cylindrical Equal Area
'bcea' Behrmann Cylindrical Equal Area
'isinus' Integerized Sinusoidal

 matlab.io.hdfeos.gd.defProj

1-8777

If projCode is 'geo', then zoneCode, sphereCode, and projParm should be specified
as []. Any other values for these parameters are ignored.

zoneCode is the Universal Transverse Mercator zone code. It should be specified as -1
for other projections.

sphereCode is the name of the GCTP spheroid or the corresponding numeric code.

projParm is a vector of up to 13 elements containing projection-specific parameters. For
more details about projCode, zoneCode, sphereCode, and projParm, see Chapter 6 of
HDF-EOS Library Users Guide for the ECS Project, Volume 1: Overview and Examples.

This function corresponds to the GDdefproj function in the HDF library C API.

Examples
Create a UTM grid bounded by 54 E to 60 E longitude and 20 N to 30 N latitude (zone
40). Divide the grid into 120 bins along the x-axis and 200 bins along the y-axis.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
uplft = [210584.50041 3322395.95445];
lowrgt = [813931.10959 2214162.53278];
gridID = gd.create(gfid,'UTMGrid',120,200,uplft,lowrgt);
gd.defProj(gridID,'utm',40,'Clarke 1866',[]);
gd.detach(gridID);
gd.close(gfid);

Add a polar stereographic projection of the northern hemisphere with true scale at 90 N,
0 longitude below the pole using the WGS 84 spheroid.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;
gd.defProj(gridID,'ps',[],'WGS 84',projparm);
gd.detach(gridID);
gd.close(gfid);

1 Alphabetical List

1-8778

See Also
gd.create | gd.projInfo | gd.sphereCodeToName

 matlab.io.hdfeos.gd.defProj

1-8779

matlab.io.hdfeos.gd.defTile
Package: matlab.io.hdfeos.gd

Define tiling parameters

Syntax
defTile(gridID,tileDims)

Description
defTile(gridID,tileDims) defines tiling dimensions for subsequent field definitions.
If tileDims is [], then subsequently defined fields will have no tiling.

This function corresponds to the GDdeftile function in the HDF-EOS library C API, but
because MATLAB uses FORTRAN-style ordering, the tileDims parameter is reversed
with respect to the C library API.

Examples
Define a field with tiling, then a subsequent field with no tiling.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'GeoGrid',120,200,[],[]);
gd.defDim(gridID,'Bands',3);
gd.defProj(gridID,'geo',[],[],[]);
gd.defTile(gridID,[30 50 1]);
dimlist = {'XDim','YDim','Bands'};
gd.defField(gridID,'Spectra',dimlist,'float');
gd.defTile(gridID,[]);
dimlist = {'XDim','YDim'};
gd.defField(gridID,'Temperature',dimlist,'int32');
gd.detach(gridID);
gd.close(gfid);

1 Alphabetical List

1-8780

See Also
gd.defField | gd.tileInfo

 matlab.io.hdfeos.gd.defTile

1-8781

matlab.io.hdfeos.gd.defVrtRegion
Package: matlab.io.hdfeos.gd

Define vertical subset region

Syntax
out_RID = defVrtRegion(gridID,regionID,vobj,vRange)

Description
out_RID = defVrtRegion(gridID,regionID,vobj,vRange) defines a vertical
subset region and can be used on either a monotonic field or contiguous elements of a
dimension.

regionID should be 'noprevsub' if no prior subsetting has occurred. Otherwise it
should be a value as returned from a previous subsetting routine.

vobj is the name of either the dimension or field to subset. If vobj is a dimension, it
should be prefixed with 'DIM:'.

vRange is the minimum and maximum range for the vertical subset.

This function corresponds to the GDdefvrtregion function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
range = [333 667];
regionID = gd.defVrtRegion(gridID,'noprevsub','Height',range);
data = gd.extractRegion(gridID,regionID,'pressure');
gd.detach(gridID);
gd.close(gfid);

1 Alphabetical List

1-8782

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
range = [3 5];
regionID = gd.defVrtRegion(gridID,'noprevsub','DIM:Height',range);
data = gd.extractRegion(gridID,regionID,'pressure');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.extractRegion

 matlab.io.hdfeos.gd.defVrtRegion

1-8783

matlab.io.hdfeos.gd.detach
Package: matlab.io.hdfeos.gd

Detach from existing grid

Syntax
detach(gridID)

Description
detach(gridID) detaches from the grid identified by gridID.

This function corresponds to the GDdetach function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfID = gd.open('grid.hdf');
gridID = gd.attach(gfID,'PolarGrid');
gd.detach(gridID);
gd.close(gfID);

See Also
gd.attach

1 Alphabetical List

1-8784

matlab.io.hdfeos.gd.dimInfo
Package: matlab.io.hdfeos.gd

Length of dimension

Syntax
dimlen = diminfo(gridID,dimname)

Description
dimlen = diminfo(gridID,dimname) retrieves the length of the specified user-
defined dimension.

Please note that the two extents used to create the grid are not considered user-defined
dimensions. To retrieve the length of XDim and YDim, use gd.gridInfo. This function
corresponds to the GDdiminfo function in the HDF-EOS library C API.

Examples
Inquire about a 'Bands' dimension.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
dimlen = gd.dimInfo(gridID,'Height');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defDim | gd.gridInfo

 matlab.io.hdfeos.gd.dimInfo

1-8785

matlab.io.hdfeos.gd.extractRegion
Package: matlab.io.hdfeos.gd

Read region of interest from field

Syntax
data = extractRegion(gridID,regionID,fieldname)

Description
data = extractRegion(gridID,regionID,fieldname) extract data from a
subsetted region.

This routine corresponds to the GDextractregion function in the HDF-EOS library C
API.

Examples
Define and extract a region of interest between 20 and 50 degrees latitude and between
-90 and -60 degrees longitude.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
regionID = gd.defBoxRegion(gridID,cornerlat,cornerlon);
data = gd.extractRegion(gridID,regionID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

1 Alphabetical List

1-8786

See Also
gd.defBoxRegion | gd.defVrtRegion

 matlab.io.hdfeos.gd.extractRegion

1-8787

matlab.io.hdfeos.gd.fieldInfo
Package: matlab.io.hdfeos.gd

Information about data field

Syntax
[dims,ntype,dimlist] = fieldInfo(gridID,fieldname)

Description
[dims,ntype,dimlist] = fieldInfo(gridID,fieldname) returns information
about a specific geolocation or data field in the grid. dims is a vector containing the
dimension sizes of the field. ntype is a character vector or string scalar containing the
HDF number type of the field. dimlist is a cell array of character vectors or a string
array containing the dimension names.

This function corresponds to the GDfieldinfo function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the dimlist parameter is reversed
with respect to the C library API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
[dims,ntype,dimlist] = gd.fieldInfo(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defField

1 Alphabetical List

1-8788

matlab.io.hdfeos.gd.getFillValue
Package: matlab.io.hdfeos.gd

Fill value for specified field

Syntax
fillvalue = getFillValue(gridID,fieldname)

Description
fillvalue = getFillValue(gridID,fieldname) retrieves the fill value for the
specified field.

This function corresponds to the GDgetfillvalue function in the HDF-EOS library C
API.

Examples
Return the fill value for the 'ice_temp' field in the 'PolarGrid' grid.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
fillvalue = gd.getFillValue(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.setFillValue

 matlab.io.hdfeos.gd.getFillValue

1-8789

matlab.io.hdfeos.gd.getPixels
Package: matlab.io.hdfeos.gd

Pixel rows and columns for latitude/longitude pairs

Syntax
[row,col] = getPixels(gridID,lat,lon)

Description
[row,col] = getPixels(gridID,lat,lon) converts latitude/longitude pairs into
zero-based pixel row and column coordinates. The origin is the upper left-hand corner of
the grid pixel. If the latitude/longitude pairs are outside the grid, then row and col are
-1.

This function corresponds to the GDgetpixels function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
[row,col] = gd.getPixels(gridID,cornerlat,cornerlon);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.getPixValues

1 Alphabetical List

1-8790

matlab.io.hdfeos.gd.getPixValues
Package: matlab.io.hdfeos.gd

Read data values for specified pixels

Syntax
data = getPixValues(gridID,rows,cols,fieldname)

Description
data = getPixValues(gridID,rows,cols,fieldname) reads data values for the
pixels specified by the zero-based rows and cols coordinates. All entries along the non-
geographic dimensions, i.e. NOT XDim and YDim, are returned.

This function corresponds to the GDgetpixvalues function in the HDF-EOS library C
API.

Examples
Read the grid field's corner values.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
rows = [0 99 99 0];
cols = [0 0 99 99];
data = gd.getPixValues(gridID,rows,cols,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defBoxRegion | gd.extractRegion | gd.getPixels | gd.readField

 matlab.io.hdfeos.gd.getPixValues

1-8791

matlab.io.hdfeos.gd.gridInfo
Package: matlab.io.hdfeos.gd

Position and size of grid

Syntax
[xDim,yDim,upLeft,lowRight] = gridInfo(gridID)

Description
[xDim,yDim,upLeft,lowRight] = gridInfo(gridID) returns the size of a grid as
well as the upper left and lower right corners of the grid.

Note upLeft and lowRight are in units of meters for all GCTP projections other than
the geographic and bcea projections, which will have units of packed degrees.

This function corresponds to the GDgridinfo function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[xdimsize,ydimsize,upleft,lowright] = gd.gridInfo(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.create

1 Alphabetical List

1-8792

matlab.io.hdfeos.gd.ij2ll
Package: matlab.io.hdfeos.gd

Convert row and column space to latitude and longitude

Syntax
[lat,lon] = ij2ll(gridID,row,col)

Description
[lat,lon] = ij2ll(gridID,row,col) converts a grid's row and column coordinates
to latitude and longitude in decimal degrees.

row and col are zero-based and defined such that col increases monotonically with the
XDim dimension and row increases monotonically with the YDim dimension in the HD-
EOS library.

This routine corresponds to the GDij2ll function in the HDF-EOS C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[xdim,ydim] = gd.gridInfo(gridID);
r = 0:(xdim-1);
c = 0:(ydim-1);
[Col,Row] = meshgrid(c,r);
[lat,lon] = gd.ij2ll(gridID,Row,Col);
gd.detach(gridID);
gd.close(gfid);

 matlab.io.hdfeos.gd.ij2ll

1-8793

See Also
gd.ll2ij | gd.readField

1 Alphabetical List

1-8794

matlab.io.hdfeos.gd.inqAttrs
Package: matlab.io.hdfeos.gd

Names of grid attributes

Syntax
attrList = inqAttrs(gridID)

Description
attrList = inqAttrs(gridID) returns the list of grid attribute names. attrList is
a cell array.

This function corresponds to the GDinqattrs function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
attrList = gd.inqAttrs(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.readAttr | gd.writeAttr

 matlab.io.hdfeos.gd.inqAttrs

1-8795

matlab.io.hdfeos.gd.inqDims
Package: matlab.io.hdfeos.gd

Information about dimensions defined in grid

Syntax
[dimnames,dimlens] = inqDims(gridID)

Description
[dimnames,dimlens] = inqDims(gridID) returns the names of the dimensions
dimnames in a cell array and their respective lengths dimlens. This does not include the
grid extent dimensions XDim and YDim.

This function corresponds to the GDinqdims function in the HDF-EOS library C API, but
because MATLAB uses FORTRAN-style ordering, the dimnames and dimlens parameters
are reversed with respect to the C library API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
[dims,dimlens] = gd.inqDims(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defDim

1 Alphabetical List

1-8796

matlab.io.hdfeos.gd.inqFields
Package: matlab.io.hdfeos.gd

Information about data fields defined in grid

Syntax
[fldList,fldRank,fldType] = inqFields(gridID)

Description
[fldList,fldRank,fldType] = inqFields(gridID) returns the list of fields
fldList as a cell array. fldRank contains the rank of each data field. fldType is a cell
array containing the data type of each data field.

This function corresponds to the GDinqfields function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[fldlist,fldrank,fldtype] = gd.inqFields(gridID);
gd.detach(gridID);
gd.close(gfid);
for j = 1:numel(fldrank)
 fprintf('%s: Rank %d, datatype %s\n', fldlist{j},fldrank(j),fldtype{j});
end

See Also
gd.defField

 matlab.io.hdfeos.gd.inqFields

1-8797

matlab.io.hdfeos.gd.inqGrid
Package: matlab.io.hdfeos.gd

Names of grids in file

Syntax
grids = inqGrid(filename)

Description
grids = inqGrid(filename) returns the names of all grids in the given file. grids is
a cell array.

This function corresponds to the GDinqgrid function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
grids = gd.inqGrid('grid.hdf');

See Also
gd.create | sw.inqSwath

1 Alphabetical List

1-8798

matlab.io.hdfeos.gd.interpolate
Package: matlab.io.hdfeos.gd

Bilinear interpolation on a grid field

Syntax
data = interpolate(gridID,lat,lon,fieldname)

Description
data = interpolate(gridID,lat,lon,fieldname) performs bilinear interpolation
on lat/lon pairs from the data in the grid field.

data contains the interpolated field values.

This function corresponds to the GDinterpolate function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('example.hdf');
gridID = gd.attach(gfid,'MonthlyRain');
[lat,lon] = gd.ij2ll(gridID,[36 36],[14 15]);
data = gd.interpolate(gridID,lat,lon,'TbOceanRain');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.ij2ll

 matlab.io.hdfeos.gd.interpolate

1-8799

matlab.io.hdfeos.gd.ll2ij
Package: matlab.io.hdfeos.gd

Convert latitude and longitude to row and column space

Syntax
[row,col] = ll2ij(gridID,lat,lon)

Description
[row,col] = ll2ij(gridID,lat,lon) converts latitude and longitude coordinates to
a pre-defined grid's row and column coordinates.

row and col are zero-based and defined such that col increases monotonically with the
XDim dimension and row increases monotonically with the YDim dimension in the HD-
EOS library.

This routine corresponds to the GDll2ij function in the HDF-EOS C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
lat = [46 46 42 42];
lon = [-71 -67 -67 -71];
[row,col] = gd.ll2ij(gridID,lat,lon);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.ij2ll

1 Alphabetical List

1-8800

matlab.io.hdfeos.gd.nEntries
Package: matlab.io.hdfeos.gd

Number of specified objects

Syntax
nentries = nEntries(gridID,entType)

Description
nentries = nEntries(gridID,entType) returns the number of specified objects in a
grid. entType can be either 'dims' or 'fields'.

This function corresponds to the GDnentries function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
fid = gd.open('grid.hdf');
gridID = gd.attach(fid,'PolarGrid');
ndims = gd.nEntries(gridID,'dims');
nflds = gd.nEntries(gridID,'fields');
gd.detach(gridID);
gd.close(fid);
fprintf('The number of dimensions is %d.\n', ndims);
fprintf('The number of fields is %d.\n', nflds);

See Also
gd.inqGrid

 matlab.io.hdfeos.gd.nEntries

1-8801

matlab.io.hdfeos.gd.open
Package: matlab.io.hdfeos.gd

Open grid file

Syntax
gfid = open(filename,access)

Description
gfid = open(filename,access) opens or creates an HDF-EOS grid file identified by
filename and returns a file ID. access can be one of the following values:

'read' Read-only
'rdwr' Read-write
'create' Creates a file, deleting it if it already exists

If access is not provided, it defaults to 'read'.

This function corresponds to the GDopen function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gd.close(gfid);

See Also
gd.attach | gd.close

1 Alphabetical List

1-8802

matlab.io.hdfeos.gd.originInfo
Package: matlab.io.hdfeos.gd

Origin code

Syntax
originCode = originInfo(gridID)

Description
originCode = originInfo(gridID) retrieves the origin code for the grid specified
by gridID. The originCode output is one of the following four values.

'ul' Upper-left
'ur' Upper-right
'll' Lower-left
'lr' Lower-right

This function corresponds to the GDorigininfo routine in the HDF-EOS library.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
origin = gd.originInfo(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defOrigin

 matlab.io.hdfeos.gd.originInfo

1-8803

matlab.io.hdfeos.gd.pixRegInfo
Package: matlab.io.hdfeos.gd

Pixel registration code

Syntax
pixRegCode = pixRegInfo(gridID)

Description
pixRegCode = pixRegInfo(gridID) retrieve the pixel registration code for the grid
identified by gridID. The pixRegCode output can be one of the following values.

'center' Center of pixel cell
'corner' Corner of pixel cell

This function corresponds to the GDpixreginfo routine in the HDF-EOS library.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
code = gd.pixRegInfo(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defPixReg

1 Alphabetical List

1-8804

matlab.io.hdfeos.gd.projInfo
Package: matlab.io.hdfeos.gd

GCTP projection information about grid

Syntax
[projCode,zoneCode,sphereName,projParm] = projInfo(gridID)

Description
[projCode,zoneCode,sphereName,projParm] = projInfo(gridID) returns the
GCTP projection code, zone code, spheroid, and projection parameters for the grid
identified by gridID.

zoneCode is -1 if projCode is anything other than 'UTM'.

This function corresponds to the GDprojinfo function in the HDF-EOS library C API.

For details about the GCTP projection code, zone code, spheroid code, and projection
parameters, please consult the HDF-EOS User's Guide.

Examples
import matlab.io.hdfeos.*
fid = gd.open('grid.hdf');
gridID = gd.attach(fid,'PolarGrid');
[projCode,zoneCode,sphereCode,projParm] = gd.projInfo(gridID);
gd.detach(gridID);
gd.close(fid);

See Also
gd.defProj | gd.sphereCodeToName | gd.sphereNameToCode

 matlab.io.hdfeos.gd.projInfo

1-8805

matlab.io.hdfeos.gd.readAttr
Package: matlab.io.hdfeos.gd

Read grid attribute

Syntax
data = readAttr(gridID,attrname)

Description
data = readAttr(gridID,attrname) reads a grid attribute.

This function corresponds to the GDreadattr function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
data = gd.readAttr(gridID,'creation_date');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.writeAttr

1 Alphabetical List

1-8806

matlab.io.hdfeos.gd.readBlkSomOffset
Package: matlab.io.hdfeos.gd

Read Block SOM offset

Syntax
offset = readBlkSomOffset(GID)

Description
offset = readBlkSomOffset(GID) reads the block SOM offset values, in pixels, from
a standard SOM (Space Oblique Mercator) projection. offset is a vector of offset values
for SOM projection data. This routine can only be used with grids that use the SOM
projection.

This function corresponds to the GDblkSOMoffset function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
lowright = [30521379.68485 1152027.64253];
upleft = [-11119487.42844 8673539.24806];
gridID = gd.create(gfid,'SOM',120,60,upleft,lowright);
projparm(1) = 6378137;
projparm(2) = 0.006694348;
projparm(4) = 98096360; % 98.161 in DDDMMMSSS
projparm(5) = 87069061; % 87.112 in DDDMMMSSS
projparm(9) = 0.068585416*1440;
projparm(10) = 0.0;
projparm(12) = 6;
gd.defProj(gridID,'som',[],[],projparm);
gd.writeBlkSomOffset(gridID,[5 10 12 8 2]);
gd.detach(gridID);

 matlab.io.hdfeos.gd.readBlkSomOffset

1-8807

gd.close(gfid);
gfid = gd.open('myfile.hdf');
gridID = gd.attach(gfid,'SOM');
blk = gd.readBlkSomOffset(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.writeBlkSomOffset

1 Alphabetical List

1-8808

matlab.io.hdfeos.gd.readField
Package: matlab.io.hdfeos.gd

Read data from grid field

Syntax
data = readField(gridID,fieldname)
data = readField(gridID,fieldname,start,count)
data = readField(gridID,fieldname,start,count,stride)
[data,lat,lon] = readField(___)

Description
data = readField(gridID,fieldname) reads the entire grid field identified by
fieldname in the grid identified by gridID.

data = readField(gridID,fieldname,start,count) reads a contiguous
hyperslab of data from the field. start specifies the zero-based starting index of the
hyperslab. count specifies the number of values to read along each dimension.

data = readField(gridID,fieldname,start,count,stride) reads a strided
hyperslab of data from the field. stride specifies the inter-element spacing along each
dimension.

[data,lat,lon] = readField(___) reads the data and the associated geo-
coordinates from the grid field. This syntax is only allowed when the leading two
dimensions of the grid are 'XDim' and 'YDim'.

This function corresponds to the GDreadfield function in the HDF-EOS library C API.

Examples
Read the data, latitude, and longitude for the 'ice_temp' field.

 matlab.io.hdfeos.gd.readField

1-8809

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[data,lat,lon] = gd.readField(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

Read only the first 4x4 hyperslab of data, latitude, and longitude for the 'ice_temp'
field.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[data2,lat2,lon2] = gd.readField(gridID,'ice_temp',[0 0], [4 4]);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.writeField

1 Alphabetical List

1-8810

matlab.io.hdfeos.gd.readTile
Package: matlab.io.hdfeos.gd

Read single tile of data from field

Syntax
data = readTile(gridID,fieldname,tileCoords)

Description
data = readTile(gridID,fieldname,tileCoords) reads a single of data from a
field. If the data is to be read tile by tile, this routine is more efficient than
gd.readField. In all other cases, use gd.readField. The tileCoords argument has
the form [rownum colnum] and is defined in terms of the tile coordinates, not the data
elements.

This function corresponds to the GDreadtile function in the HDF-EOS library C API, but
because MATLAB uses FORTRAN-style ordering, the tileCoords parameter is reversed
with respect to the C library API.

Examples
Define a field with a 2-by-3 tiling scheme.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
for h = 0:9
 data = gd.readTile(gridID,'pressure',[0 0 h]);
end
gd.detach(gridID);
gd.close(gfid);

 matlab.io.hdfeos.gd.readTile

1-8811

See Also
gd.tileInfo | gd.writeTile

1 Alphabetical List

1-8812

matlab.io.hdfeos.gd.regionInfo
Package: matlab.io.hdfeos.gd

Information about subsetted region

Syntax
[dims,upLeft,lowRight] = regionInfo(gridID,regionID,fieldname)

Description
[dims,upLeft,lowRight] = regionInfo(gridID,regionID,fieldname) returns
the dimensions and corner points for the specified field of a subsetted region identified by
regionID in the grid identified by gridID.

This function corresponds to the GDregioninfo function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
regionID = gd.defBoxRegion(gridID,cornerlat,cornerlon);
[dims,upleft,lowright] = gd.regionInfo(gridID,regionID,'ice_temp');
data = gd.extractRegion(gridID,regionID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defBoxRegion | gd.defVrtRegion

 matlab.io.hdfeos.gd.regionInfo

1-8813

matlab.io.hdfeos.gd.setFillValue
Package: matlab.io.hdfeos.gd

Set fill value for specified field

Syntax
setFillValue(gridID,fieldname,fillvalue)

Description
setFillValue(gridID,fieldname,fillvalue) sets the fill value for the specified
field. The fill value should have the same data type as the field.

This function corresponds to the GDsetfillvalue function in the HDF-EOS library C
API.

Examples
Create a new double-precision field with a fill value of -1.

import matlab.io.hdfeos.*
srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','grid.hdf');
copyfile(srcFile,'myfile.hdf');
fileattrib('myfile.hdf','+w');
gfid = gd.open('myfile.hdf','rdwr');
gridID = gd.attach(gfid,'PolarGrid');
gd.defComp(gridID,'none');
gd.defField(gridID,'newfield',{'XDim','YDim'},'double');
gd.setFillValue(gridID,'newfield',-1);
gd.detach(gridID);
gd.close(gfid);

1 Alphabetical List

1-8814

See Also
gd.getFillValue

 matlab.io.hdfeos.gd.setFillValue

1-8815

matlab.io.hdfeos.gd.setTileComp
Package: matlab.io.hdfeos.gd

Set tiling and compression for field with fill value

Syntax
setTileComp(gridID,fieldname,tilesize,compCode,compParm)

Description
setTileComp(gridID,fieldname,tilesize,compCode,compParm) sets the tiling
and compression for a field that had a fill value. This function must be applied after
gd.defField and gd.setFillValue. The compCode argument can be one of the
following values.

'rle' Run-length encoding
'skphuff' Skipping Huffman
'deflate' Deflate
'none' No compression

compParm need only be specified when the compression scheme is 'deflate', and then
must be an integer between 0 and 9.

This function corresponds to the GDsettilecomp function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the tilesize parameter is
reversed with respect to the C library API.

Examples
Define a temperature field with a 2-by-2 tiling scheme, a fill value of -999, and deflate
compression.

1 Alphabetical List

1-8816

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
upleft = [210584.50041 3322395.95445];
lowright = [813931.10959 2214162.53278];
gridID = gd.create(gfid,'UTMGrid',120,200,upleft,lowright);
spherecode = 0; zonecode = 40;
projparm = zeros(1,13);
gd.defProj(gridID,'utm',zonecode,spherecode,projparm);
gd.defDim(gridID,'Time',10);
gd.defField(gridID,'Pollution',{'XDim','YDim','Time'},'float');
gd.setFillValue(gridID,'Pollution',single(7));
gd.setTileComp(gridID,'Pollution',[40 20 1],'deflate',5);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defComp | gd.defTile

 matlab.io.hdfeos.gd.setTileComp

1-8817

matlab.io.hdfeos.gd.sphereCodeToName
Package: matlab.io.hdfeos.gd

Name corresponding to GCTP sphere code

Syntax
name = sphereCodeToName(code)

Description
name = sphereCodeToName(code) returns the name for the spheroid corresponding to
the spheroid code. The list of supported GCTP spheroids is as follows:

GCTP Spheroid Code Spheroid Name
0 'Clarke 1866'
1 'Clarke 1880'
2 'Bessel'
3 'International 1967'
4 'International 1909'
5 'WGS 72'
6 'Everest'
7 'WGS 66'
8 'GRS 1980'
9 'Airy'
10 'Modified Airy'
11 'Modified Everest'
12 'WGS 84'
13 'Southeast Asia'

1 Alphabetical List

1-8818

GCTP Spheroid Code Spheroid Name
14 'Australian National'
15 'Krassovsky'
16 'Hough'
17 'Mercury 1960'
18 'Modified Mercury 1968'
19 'Sphere of radius 6370997m'
20 'Sphere of radius 6371228m'
21 'Sphere of radius 6371007.181m'

See Also
gd.defProj | gd.sphereNameToCode

 matlab.io.hdfeos.gd.sphereCodeToName

1-8819

matlab.io.hdfeos.gd.sphereNameToCode
Package: matlab.io.hdfeos.gd

Numeric GCTP code corresponding to sphere name

Syntax
code = sphereNameToCode(name)

Description
code = sphereNameToCode(name) returns the numeric GCTP code corresponding to
the named spheroid. The list of supported GCTP spheroids is as follows:

GCTP Spheroid Code Spheroid Name
0 'Clarke 1866'
1 'Clarke 1880'
2 'Bessel'
3 'International 1967'
4 'International 1909'
5 'WGS 72'
6 'Everest'
7 'WGS 66'
8 'GRS 1980'
9 'Airy'
10 'Modified Airy'
11 'Modified Everest'
12 'WGS 84'
13 'Southeast Asia'

1 Alphabetical List

1-8820

GCTP Spheroid Code Spheroid Name
14 'Australian National'
15 'Krassovsky'
16 'Hough'
17 'Mercury 1960'
18 'Modified Mercury 1968'
19 'Sphere of radius 6370997m'
20 'Sphere of radius 6371228m'
21 'Sphere of radius 6371007.181m'

See Also
gd.defProj | gd.sphereCodeToName

 matlab.io.hdfeos.gd.sphereNameToCode

1-8821

matlab.io.hdfeos.gd.tileInfo
Package: matlab.io.hdfeos.gd

Tile size of grid field

Syntax
tileDims = tileInfo(gridID,fieldname)

Description
tileDims = tileInfo(gridID,fieldname) returns the tile dimensions of the field
specified by fieldname in the grid specified by gridID. If the field is not tiled, then
tileDims is [].

This function corresponds to the GDtileinfo function in the HDF-EOS library C API, but
because MATLAB uses FORTRAN-style ordering, the tileDims parameter is reversed
with respect to the C library API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
tileDims = gd.tileInfo(gridID,'pressure');
gd.detach(gridID);
gd.close(gfid);

See Also
gd.defTile

1 Alphabetical List

1-8822

matlab.io.hdfeos.gd.writeAttr
Package: matlab.io.hdfeos.gd

Write grid attribute

Syntax
writeAttr(gridID,attrname,data)

Description
writeAttr(gridID,attrname,data) writes an attribute to a grid. If the attribute does
not exist, it is created. If the attribute exists, it can be modified in place, but it cannot be
recreated with a different data type or length.

This function corresponds to the GDwriteattr function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','grid.hdf');
copyfile(srcFile,'myfile.hdf');
fileattrib('myfile.hdf','+w');
gfid = gd.open('myfile.hdf','rdwr');
gridID = gd.attach(gfid,'PolarGrid');
gd.writeAttr(gridID,'modification_date',datestr(now));
gd.detach(gridID);
gd.close(gfid);

See Also
gd.readAttr

 matlab.io.hdfeos.gd.writeAttr

1-8823

matlab.io.hdfeos.gd.writeBlkSomOffset
Package: matlab.io.hdfeos.gd

Write Block SOM offset

Syntax
writeBlkSomOffset(gridID,offset)

Description
writeBlkSomOffset(gridID,offset) writes the block SOM offset values n pixels for
a standard Solar Oblique Mercator (SOM) projection. offset is a vector of offset values
for SOM projection data. This routine can only be used with grids that use the SOM
projection. You must take care to use this function properly in conjunction with
gd.defProj. The 12th element of the projection parameters must be set to the total
number of blocks to be defined. offset starts by listing the offset to the second block, so
the 12th element of the projection parameters is always one more than the length of
offset.

All fields defined after writing the block SOM offset values will automatically include
"SOMBlockDim" as the slowest varying dimension.

This function corresponds to the GDblkSOMoffset function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
lowright = [30521379.68485 1152027.64253];
upleft = [-11119487.42844 8673539.24806];
gridID = gd.create(gfid,'SOM',120,60,upleft,lowright);
projparm(1) = 6378137;
projparm(2) = 0.006694348;

1 Alphabetical List

1-8824

projparm(4) = 98096360; % 98.161 in DDDMMMSSS
projparm(5) = 87069061; % 87.112 in DDDMMMSSS
projparm(9) = 0.068585416*1440;
projparm(10) = 0.0;
projparm(12) = 6;
gd.defProj(gridID,'som',[],[],projparm);
gd.writeBlkSomOffset(gridID,[5 10 12 8 2]);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.readBlkSomOffset

 matlab.io.hdfeos.gd.writeBlkSomOffset

1-8825

matlab.io.hdfeos.gd.writeField
Package: matlab.io.hdfeos.gd

Write data to grid field

Syntax
writeField(gridID,fieldname,data)
writeField(gridID,fieldname,start,data)
writeField(gridID,fieldname,start,stride,data)

Description
writeField(gridID,fieldname,data) writes all the data to a grid field. The field is
identified by fieldname and the grid is identified by gridID.

writeField(gridID,fieldname,start,data) writes a contiguous hyperslab to the
grid field. start specifies the zero-based starting index.

writeField(gridID,fieldname,start,stride,data) writes a strided hyperslab of
data to a grid data field. stride specifies the inter-element spacing along each
dimension. The number of elements to write along each dimension is inferred from the
size of data.

This function corresponds to the GDwritefield function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the start and stride parameters
are reversed with respect to the C library API.

Examples
Write all the data to a grid field.

import matlab.io.hdfeos.*
srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','grid.hdf');
copyfile(srcFile,'myfile.hdf');

1 Alphabetical List

1-8826

fileattrib('myfile.hdf','+w');
gfid = gd.open('myfile.hdf','rdwr');
gridID = gd.attach(gfid,'PolarGrid');
data = zeros(100,100,'uint16');
gd.writeField(gridID,'ice_temp',data);
gd.detach(gridID);
gd.close(gfid);

See Also
gd.readField

 matlab.io.hdfeos.gd.writeField

1-8827

matlab.io.hdfeos.gd.writeTile
Package: matlab.io.hdfeos.gd

Write tile to field

Syntax
writeTile(gridID,fieldname,tileCoords,data)

Description
writeTile(gridID,fieldname,tileCoords,data) writes a single tile of data to a
field. If the field data can be arranged tile by tile, this routine is more efficient than
gd.writeField. In all other cases, use gd.writeField. The tileCoords argument
has the form [rownum colnum] and is defined in terms of the tile coordinates, not the
data elements.

This function corresponds to the GDwritetile function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the tileCoords parameter is
reversed with respect to the C library API.

Examples
Define a field with a 2-by-3 tiling scheme.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
xdim = 200; ydim = 180;
gridID = gd.create(gfid,'PolarGrid',xdim,ydim,[],[]);
zonecode = 40;
spherecode = 0;
projParm = zeros(1,13);
projParm(6) = 90000000;
gd.defProj(gridID,'ps',[],spherecode,projParm);
tileSize = [100 60];

1 Alphabetical List

1-8828

gd.defTile(gridID,tileSize);
dimlist = {'XDim','YDim'};
gd.defField(gridID,'Pressure',dimlist,'int32');
for c = 0:2
 for r = 0:1
 data = (r+c)*ones(tileSize,'int32');
 gd.writeTile(gridID,'Pressure',[r c],data);
 end
end
gd.detach(gridID);
gd.close(gfid);

See Also
gd.readTile

 matlab.io.hdfeos.gd.writeTile

1-8829

matlab.io.hdfeos.sw
Low-level access to HDF-EOS swath files

Description
To use these MATLAB functions, you must be familiar with the HDF-EOS library C
interface. In most cases, the syntax of the MATLAB function is similar to the syntax of the
corresponding HDF-EOS library function. The functions are implemented as the package
matlab.io.hdfeos.sw. To use this package, prefix the function name with a package
path, or use the import function to add the package to the current import list, prior to
calling the function, for example,

import matlab.io.hdfeos.*
fileId = sw.open(filename);

Access
matlab.io.hdfeos.sw.attach Attach to swath data set
matlab.io.hdfeos.sw.close Close swath file
matlab.io.hdfeos.sw.create Create new swath structure
matlab.io.hdfeos.sw.detach Detach from swath
matlab.io.hdfeos.sw.open Open swath file

1 Alphabetical List

1-8830

Definition
matlab.io.hdfeos.sw.defComp Set grid field compression
matlab.io.hdfeos.sw.defDataField

Define new data field within swath
matlab.io.hdfeos.sw.defDim Define new dimension within swath
matlab.io.hdfeos.sw.defDimMap Define mapping between geolocation and data

dimensions
matlab.io.hdfeos.sw.defGeoField

Define new data field within swath

Basic I/O
matlab.io.hdfeos.sw.getFillValue

Fill value for specified field
matlab.io.hdfeos.sw.readAttr Read swath attribute
matlab.io.hdfeos.sw.readField Read data from swath field
matlab.io.hdfeos.sw.setFillValue

Set fill value for the specified field
matlab.io.hdfeos.sw.writeAttr Write swath attribute
matlab.io.hdfeos.sw.writeField Write data to swath field

 matlab.io.hdfeos.sw

1-8831

Inquiry
matlab.io.hdfeos.sw.compInfo Compression information for field
matlab.io.hdfeos.sw.dimInfo Size of dimension
matlab.io.hdfeos.sw.fieldInfo Information about swath field
matlab.io.hdfeos.sw.geoMapInfo Type of dimension mapping for named dimension
matlab.io.hdfeos.sw.idxMapInfo Indexed array of geolocation mapping
matlab.io.hdfeos.sw.inqAttrs Names of swath attributes
matlab.io.hdfeos.sw.inqDataFields

Information about geolocation fields
matlab.io.hdfeos.sw.inqDims Information about dimensions defined in swath
matlab.io.hdfeos.sw.inqGeoFields

Information about geolocation fields
matlab.io.hdfeos.sw.inqIdxMaps Information about swath indexed geolocation mapping
matlab.io.hdfeos.sw.inqMaps Information about swath geolocation relations
matlab.io.hdfeos.sw.inqSwath Names of swaths in file
matlab.io.hdfeos.sw.mapInfo Offset and increment of specific geolocation mapping
matlab.io.hdfeos.sw.nEntries Number of entries for specific type

1 Alphabetical List

1-8832

Subsetting
matlab.io.hdfeos.sw.defBoxRegion

Define latitude-longitude region for swath
matlab.io.hdfeos.sw.defTimePeriod

Define time period of interest
matlab.io.hdfeos.sw.defVrtRegion

Subset on monotonic field or dimension
matlab.io.hdfeos.sw.extractPeriod

Read data from subsetted time period
matlab.io.hdfeos.sw.extractRegion

Read subsetted region
matlab.io.hdfeos.sw.periodInfo Information about subsetted period
matlab.io.hdfeos.sw.regionInfo Information about subsetted region

 matlab.io.hdfeos.sw

1-8833

matlab.io.hdfeos.sw.attach
Package: matlab.io.hdfeos.sw

Attach to swath data set

Syntax
swathID = attach(swfID,swathname)

Description
swathID = attach(swfID,swathname) attaches to the swath identified by
swathname in the file identified by swfID. The swathID output is the identifier for the
named swath.

This function corresponds to the SWattach function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.detach

1 Alphabetical List

1-8834

matlab.io.hdfeos.sw.close
Package: matlab.io.hdfeos.sw

Close swath file

Syntax
close(swfID)

Description
close(swfID) closes an HDF-EOS swath file identified by swfID.

This function corresponds to the SWclose function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'ExampleSwath');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.create | sw.open

 matlab.io.hdfeos.sw.close

1-8835

matlab.io.hdfeos.sw.compInfo
Package: matlab.io.hdfeos.sw

Compression information for field

Syntax
[code,parms] = compInfo(swathID,fieldname)

Description
[code,parms] = compInfo(swathID,fieldname) returns the compression code and
compression parameters for a given field. Refer to sw.defComp for a description of
various compression schemes and parameters.

This function corresponds to the SWcompinfo function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[compCode,parms] = sw.compInfo(swathID,'Spectra');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defComp

1 Alphabetical List

1-8836

matlab.io.hdfeos.sw.create
Package: matlab.io.hdfeos.sw

Create new swath structure

Syntax
swathID = create(swfID,swathname)

Description
swathID = create(swfID,swathname) creates a new swath structure where swfID
is the swath file identifier and swathname is the name of the new swath. The swath is
created as a Vgroup with the HDF file with the name swathname and HDF Vgroup class
'SWATH'.

This function corresponds to the SWcreate function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'ExampleSwath');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.detach

 matlab.io.hdfeos.sw.create

1-8837

matlab.io.hdfeos.sw.defBoxRegion
Package: matlab.io.hdfeos.sw

Define latitude-longitude region for swath

Syntax
regionID = defBoxRegion(swathID,lat,lon,mode)

Description
regionID = defBoxRegion(swathID,lat,lon,mode) defines a latitude-longitude
box region for a swath. lat and lon are two-element arrays containing the latitude and
longitude in decimal degrees of the box corners. A cross track is determined to be within
the box if a condition is met according to the value of mode:

'MIDPOINT' The cross track midpoint is within the box.
'ENDPOINT' Either endpoint is within the box.
'ANYPOINT' Any point of the cross track is within the box.

All elements of a cross track are within the region if the condition is met. The swath must
have both Longitude and Latitude (or Colatitude) defined.

regionID is an identifier to be used by sw.extractRegion to read all the entries of a
data field within the region.

This function corresponds to the SWdefboxregion and SWregionindex functions in the
HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');

1 Alphabetical List

1-8838

lat = [34 44];
lon = [16 24];
regionID = sw.defBoxRegion(swathID,lat,lon,'MIDPOINT');
data = sw.extractRegion(swathID,regionID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.extractRegion

 matlab.io.hdfeos.sw.defBoxRegion

1-8839

matlab.io.hdfeos.sw.defComp
Package: matlab.io.hdfeos.sw

Set grid field compression

Syntax
defComp(swathID,compscheme,compparm)

Description
defComp(swathID,compscheme,compparm) sets the field compression for subsequent
definitions. The compression scheme does not apply to one-dimensional fields.
compscheme can be one of these values:

'rle' Run-length encoding
'skphuff' Skipping Huffman
'deflate' Gzip compression
'none' No compression

When the compression scheme is 'deflate', the compparm input is the deflate
compression level, an integer between 0 and 9. compparm can be omitted for the other
compression schemes.

Fields defined with compression must be written with a single call to sw.writeField.

This function corresponds to the SWdefcomp function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'Track',4000);

1 Alphabetical List

1-8840

sw.defDim(swathID,'Xtrack',2000);
sw.defDim(swathID,'Bands',3);
sw.defComp(swathID,'rle');
dims = {'Xtrack','Track'};
sw.defDataField(swathID,'Pressure',dims,'float');
sw.defComp(swathID,'deflate',5);
sw.defDataField(swathID,'Opacity',dims,'float');
sw.defComp(swathID,'skphuff');
dims = {'Xtrack','Track','Bands'};
sw.defDataField(swathID,'Spectra',dims,'float');
sw.defComp(swathID,'none');
dims = {'Xtrack','Track'};
sw.defDataField(swathID,'Temperature',dims,'float');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.compInfo

 matlab.io.hdfeos.sw.defComp

1-8841

matlab.io.hdfeos.sw.defDataField
Package: matlab.io.hdfeos.sw

Define new data field within swath

Syntax
defDataField(swathID,fieldname,dimlist,dtype)
defDataField(swathID,fieldname,dimlist,dtype,mergeCode)

Description
defDataField(swathID,fieldname,dimlist,dtype) defines a data field to be
stored in the swath identified by swathID.

The dimlist input can be a cell array character vectors or a string array containing
dimension names, or a single character vector or string scalar if there is only one
dimension. dimlist should be ordered such that the fastest varying dimension is listed
first. This is opposite from the order in which the dimensions are listed in the C API.

dtype is the data type of the field and can be one of the following values.

• 'double'
• 'single'
• 'int32'
• 'uint32'
• 'int16'
• 'uint16'
• 'int8'
• 'uint8'
• 'char'

defDataField(swathID,fieldname,dimlist,dtype,mergeCode) defines a data
field that can be merged with other data fields according to the value of mergeCode. The

1 Alphabetical List

1-8842

mergeCode input can be 'automerge' or 'nomerge'. If mergeCode is 'automerge',
then the HDF-EOS library will attempt to merge swath fields into a single object. This
should not be done if you wish to access the swath fields individually with the another
interface. By default, mergeCode is 'nomerge'.

Note To assure that the fields defined by sw.defDataField are properly established in
the file, the swath should be detached and then reattached before writing to any fields.

This function corresponds to the SWdefdatafield function in the HDF-EOS library C
API, but because MATLAB uses FORTRAN-style ordering, the dimlist parameter is
reversed with respect to the C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDim(swathID,'Bands',3);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
dims = {'GeoXtrack','GeoTrack'};
sw.defGeoField(swathID,'Longitude',dims,'float');
sw.defGeoField(swathID,'Latitude',dims,'float');
dims = {'DataXtrack','DataTrack','Bands'};
sw.defDataField(swathID,'Spectra',dims,'float');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defGeoField | sw.inqDataFields

 matlab.io.hdfeos.sw.defDataField

1-8843

matlab.io.hdfeos.sw.defDim
Package: matlab.io.hdfeos.sw

Define new dimension within swath

Syntax
defDim(swathID,dimname,dimlen)

Description
defDim(swathID,dimname,dimlen) defines a new dimension named dimname with
length dimlen in the swath structure identified by swathID.

To specify an unlimited dimension, use either 0 or 'unlimited' for dimlen.

This function corresponds to the SWdefdim function in the HDF-EOS library.

Examples
Define a dimension 'Band' with length of 15 and an unlimited dimension 'Time'.

import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.detach(swathID);
sw.close(swfid);

1 Alphabetical List

1-8844

See Also
sw.dimInfo

 matlab.io.hdfeos.sw.defDim

1-8845

matlab.io.hdfeos.sw.defDimMap
Package: matlab.io.hdfeos.sw

Define mapping between geolocation and data dimensions

Syntax
defDimMap(swathID,geoDim,dataDim,offset,increment)

Description
defDimMap(swathID,geoDim,dataDim,offset,increment) defines a monotonic
mapping between the geolocation and data dimensions, which usually have differing
lengths. offset gives the index of the data element corresponding to the first
geolocation element, and increment gives the number of data elements to skip for each
geolocation element. If the geolocation dimension begins before the data dimension, then
offset is negative. Similarly, if the geolocation dimension has higher resolution than the
data dimension, then increment is negative.

This function corresponds to the SWdefdimmap function in the HDF-EOS library.

Examples
Create a dimension mapping such that the first element of the GeoTrack dimension
corresponds to the first element of the DataTrack Dimension and such that the data
dimension has twice the resolution as the geolocation dimension. Also create a dimension
mapping such that the first element of the GeoXtrack dimension corresponds to the
second element of the DataXtrack dimensions and such that the data dimension has twice
the resolution as the geolocation dimension.

import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);

1 Alphabetical List

1-8846

sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defDim | sw.mapInfo

 matlab.io.hdfeos.sw.defDimMap

1-8847

matlab.io.hdfeos.sw.defGeoField
Package: matlab.io.hdfeos.sw

Define new data field within swath

Syntax
defGeoField(swathID,fieldname,dimlist,dtype)
defGeoField(swathID,fieldname,dimlist,dtype,mergeCode)

Description
defGeoField(swathID,fieldname,dimlist,dtype) defines a geolocation field to be
stored in the swath identified by swathID.

The dimlist input can be a cell array character vectors or a string array containing
dimension names, or a single character vector or string scalar if there is only one
dimension. dimlist should be ordered such that the fastest varying dimension is listed
first. This is opposite from the order in which the dimensions are listed in the C API.

dtype is the data type of the field.

defGeoField(swathID,fieldname,dimlist,dtype,mergeCode) defines a
geolocation field that may be merged with other geolocation fields according to the value
of mergeCode. The mergeCode argument can 'automerge' or 'nomerge'. If
mergeCode is 'automerge', then the HDF-EOS library will attempt to merge swath
fields into a single object. This should not be done if you wish to access the swath fields
individually with the another interface. By default, mergeCode is 'nomerge'.

This function corresponds to the SWdefgeofield function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the dimlist parameter is reversed
with respect to the C library API.

1 Alphabetical List

1-8848

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
dims = {'GeoXtrack','GeoTrack'};
sw.defGeoField(swathID,'Longitude',dims,'float');
sw.defGeoField(swathID,'Latitude',dims,'float');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defDataField | sw.inqGeoFields

 matlab.io.hdfeos.sw.defGeoField

1-8849

matlab.io.hdfeos.sw.defTimePeriod
Package: matlab.io.hdfeos.sw

Define time period of interest

Syntax
outpID = defTimePeriod(swathID,start,stop,mode)

Description
outpID = defTimePeriod(swathID,start,stop,mode) defines a time period for a
swath. outpID is a swath period ID that can be used to read all the entries of a data field
within the time period. The swath structure must have the 'Time' field defined. A cross
track is within a time period if a condition is met according to the value of mode:

'MIDPOINT' The midpoint is within the time period.
'ENDPOINT' Either endpoint is within the time period.

This function corresponds to the SWdeftimeperiod function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
starttime = 25;
stoptime = 425;
periodID = sw.defTimePeriod(swathID,starttime,stoptime,'MIDPOINT');
data = sw.extractPeriod(swathID,periodID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

1 Alphabetical List

1-8850

See Also
sw.defBoxRegion | sw.defVrtRegion | sw.extractPeriod

 matlab.io.hdfeos.sw.defTimePeriod

1-8851

matlab.io.hdfeos.sw.defVrtRegion
Package: matlab.io.hdfeos.sw

Subset on monotonic field or dimension

Syntax
regionID_out = defVrtRegion(swathID,regionID,vertObj,range)

Description
regionID_out = defVrtRegion(swathID,regionID,vertObj,range) subsets on
a monotonic field or contiguous elements of a dimension. Whereas defBoxRegion and
defTimePeriod subset along the 'Track' dimension, this routine allows the user to
subset along any dimension. regionID specifies the subsetted region from a previous
call. vertObj specifies the dimension by which to subset. range specifies the minimum
and maximum values for vertObj.

If there is no current subsetted region, regionID should be 'noprevsub'.

vertObj can be either a dimension or a field. If it is a dimension, then range should
consist of dimension indices. If vertObj corresponds to a field, then range should
consist of the minimum and maximum field values. vertObj must be one-dimensional in
this case, and the its values must be monotonic.

This function corresponds to the SWdefvrtregion function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
regionID = sw.defVrtRegion(swathID,'noprevsub','Bands',[450 600]);
data = sw.extractRegion(swathID,regionID,'Spectra');

1 Alphabetical List

1-8852

sw.detach(swathID);
sw.close(swfid);

See Also
sw.defBoxRegion | sw.defTimePeriod

 matlab.io.hdfeos.sw.defVrtRegion

1-8853

matlab.io.hdfeos.sw.detach
Package: matlab.io.hdfeos.sw

Detach from swath

Syntax
detach(swathID)

Description
detach(swathID) detaches from the swath identified by swathID.

This function corresponds to the SWdetach function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.attach | sw.create

1 Alphabetical List

1-8854

matlab.io.hdfeos.sw.dimInfo
Package: matlab.io.hdfeos.sw

Size of dimension

Syntax
dimlen = dimInfo(swathID,dimname)

Description
dimlen = dimInfo(swathID,dimname) returns the length of the specified dimension.

This function corresponds to the SWdiminfo function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
dimlen = sw.dimInfo(swathID,'GeoTrack');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defDim

 matlab.io.hdfeos.sw.dimInfo

1-8855

matlab.io.hdfeos.sw.extractPeriod
Package: matlab.io.hdfeos.sw

Read data from subsetted time period

Syntax
data = extractPeriod(swathID,periodID,fieldname)

Description
data = extractPeriod(swathID,periodID,fieldname) reads data for the given
field for the time period specified by periodID.

This routine corresponds to the SWextractperiod function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
starttime = 25;
stoptime = 425;
periodID = sw.defTimePeriod(swathID,starttime,stoptime,'MIDPOINT');
data = sw.extractPeriod(swathID,periodID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defTimePeriod

1 Alphabetical List

1-8856

matlab.io.hdfeos.sw.extractRegion
Package: matlab.io.hdfeos.sw

Read subsetted region

Syntax
data = extractRegion(swathID,regionID,fieldname)

Description
data = extractRegion(swathID,regionID,fieldname) reads data for a specified
field from a subsetted region identified by regionID.

This function corresponds to the SWextractregion function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
lat = [34 44];
lon = [16 24];
regionID = sw.defBoxRegion(swathID,lat,lon,'MIDPOINT');
data = sw.extractRegion(swathID,regionID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defBoxRegion | sw.defVrtRegion

 matlab.io.hdfeos.sw.extractRegion

1-8857

matlab.io.hdfeos.sw.fieldInfo
Package: matlab.io.hdfeos.sw

Information about swath field

Syntax
[dimsizes,ntype,dimlist] = fieldInfo(swathID,fieldname)

Description
[dimsizes,ntype,dimlist] = fieldInfo(swathID,fieldname) returns the size,
data type, and list of named dimensions for the specified swath geolocation or data field.

This function corresponds to the SWfieldinfo function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the dimlist parameter is reversed
with respect to the C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[fieldSize,ntype,dimlist] = sw.fieldInfo(swathID,'Spectra');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.inqDataFields | sw.inqGeoFields

1 Alphabetical List

1-8858

matlab.io.hdfeos.sw.geoMapInfo
Package: matlab.io.hdfeos.sw

Type of dimension mapping for named dimension

Syntax
mappingType = geoMapInfo(swathID,dimname)

Description
mappingType = geoMapInfo(swathID,dimname) returns the type of dimension
mapping for the named dimension. mappingType is one of these values: 'indexed',
'regular', or 'unmapped'.

This routine corresponds to the SWgeomapinfo function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
maptype = sw.geoMapInfo(swathID,'GeoTrack');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defDimMap

 matlab.io.hdfeos.sw.geoMapInfo

1-8859

matlab.io.hdfeos.sw.getFillValue
Package: matlab.io.hdfeos.sw

Fill value for specified field

Syntax
fillvalue = getFillValue(swathID,fieldname)

Description
fillvalue = getFillValue(swathID,fieldname) returns the fill value for the
specified field.

This function corresponds to the SWgetfillvalue function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
fv = sw.getFillValue(swathID,'Spectra');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.setFillValue

1 Alphabetical List

1-8860

matlab.io.hdfeos.sw.idxMapInfo
Package: matlab.io.hdfeos.sw

Indexed array of geolocation mapping

Syntax
idx = idxMapInfo(swathID,geodim,datadim)

Description
idx = idxMapInfo(swathID,geodim,datadim) retrieves the indexed elements of
the geolocation mapping between geodim and datadim.

This function corresponds to the SWidxmapinfo function in the HDF-EOS C library API.

See Also
sw.geoMapInfo

 matlab.io.hdfeos.sw.idxMapInfo

1-8861

matlab.io.hdfeos.sw.inqAttrs
Package: matlab.io.hdfeos.sw

Names of swath attributes

Syntax
attrlist = inqAttrs(swathID)

Description
attrlist = inqAttrs(swathID) returns the list of swath attribute names. attrlist
is a cell array.

This function corresponds to the SWinqattrs function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
attrList = sw.inqAttrs(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also
sw.readAttr | sw.writeAttr

1 Alphabetical List

1-8862

matlab.io.hdfeos.sw.inqDataFields
Package: matlab.io.hdfeos.sw

Information about geolocation fields

Syntax
[fields,rank,datatype] = inqDataFields(swathID)

Description
[fields,rank,datatype] = inqDataFields(swathID) returns the list of
geolocation field names, the rank of each field, and the data type of each field.

This function corresponds to the SWinqdatafields function in the HDF-EOS library C
API, but because MATLAB uses FORTRAN-style ordering, the fields parameter is
reversed with respect to the C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[fields,rank,datatype] = sw.inqDataFields(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defDataField | sw.inqGeoFields

 matlab.io.hdfeos.sw.inqDataFields

1-8863

matlab.io.hdfeos.sw.inqDims
Package: matlab.io.hdfeos.sw

Information about dimensions defined in swath

Syntax
[dimnames,dimlens] = inqDims(swathID)

Description
[dimnames,dimlens] = inqDims(swathID) returns the names of the dimensions
dimnames as a cell array. The length of each respective dimension is returned in
dimlens.

This function corresponds to the SWinqdims routine in the HDF-EOS library.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[dimnames,dimlens] = sw.inqDims(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defDim

1 Alphabetical List

1-8864

matlab.io.hdfeos.sw.inqGeoFields
Package: matlab.io.hdfeos.sw

Information about geolocation fields

Syntax
[fields,rank,datatype] = inqGeoFields(swathID)

Description
[fields,rank,datatype] = inqGeoFields(swathID) returns the list of
geolocation fields fields, the rank of each field, and the data type of each field.

This function corresponds to the SWinqgeofields function in the HDF-EOS library C
API, but because MATLAB uses FORTRAN-style ordering, the fields parameter is
reversed with respect to the C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[fields,rank,datatypes] = sw.inqGeoFields(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defGeoField | sw.inqDataFields

 matlab.io.hdfeos.sw.inqGeoFields

1-8865

matlab.io.hdfeos.sw.inqIdxMaps
Package: matlab.io.hdfeos.sw

Information about swath indexed geolocation mapping

Syntax
[idxMap,idxSize] = inqIdxMaps(swathID)

Description
[idxMap,idxSize] = inqIdxMaps(swathID) retrieves all indexed geolocation/data
mappings defined in the swath. idxMap is a cell array with each element consisting of the
names of the dimensions of a mapping, separated by a '/'. idxSize contains the size of
the index arrays corresponding to each mapping.

This function corresponds to the SWinqidxmaps routine in the HDF-EOS library.

See Also
sw.inqMaps

1 Alphabetical List

1-8866

matlab.io.hdfeos.sw.inqMaps
Package: matlab.io.hdfeos.sw

Information about swath geolocation relations

Syntax
[map,offset,increment] = inqMaps(swathID)

Description
[map,offset,increment] = inqMaps(swathID) returns the dimension mapping list,
the offset of each geolocation relation, and the increment of each geolocation relation.
These mappings are not indexed. map is a cell array where each element contains the
names of the dimensions for each mapping, separated by a slash. offset and
increment contain the offset and increment of each geolocation relation.

This function corresponds to the SWinqmaps routine in the HDF-EOS library.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[dimmap,offset,increment] = sw.inqMaps(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defDimMap | sw.inqDims | sw.inqIdxMaps

 matlab.io.hdfeos.sw.inqMaps

1-8867

matlab.io.hdfeos.sw.inqSwath
Package: matlab.io.hdfeos.sw

Names of swaths in file

Syntax
swaths = inqSwath(filename)

Description
swaths = inqSwath(filename) returns a cell array containing the names of all the
swaths in a file.

This function corresponds to the SWinqswath function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swaths = sw.inqSwath('swath.hdf');

See Also
gd.inqGrid

1 Alphabetical List

1-8868

matlab.io.hdfeos.sw.mapInfo
Package: matlab.io.hdfeos.sw

Offset and increment of specific geolocation mapping

Syntax
[offset,increment] = mapInfo(swathID,geodim,datadim)

Description
[offset,increment] = mapInfo(swathID,geodim,datadim) retrieves the offset
and increment of the geolocation mapping between the specified geolocation dimension
and the specified data dimension.

This function corresponds to the SWmapinfo function in the HDF-EOS C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
sw.detach(swathID);
sw.close(swfid);
swfid = sw.open('myfile.hdf','read');
swathID = sw.attach(swfid,'MySwath');
[offset,increment] = sw.mapInfo(swathID,'GeoTrack','DataTrack');
sw.detach(swathID);
sw.close(swfid);

 matlab.io.hdfeos.sw.mapInfo

1-8869

See Also
sw.defDimMap

1 Alphabetical List

1-8870

matlab.io.hdfeos.sw.nEntries
Package: matlab.io.hdfeos.sw

Number of entries for specific type

Syntax
nEnts = nEntries(swathID,type)

Description
nEnts = nEntries(swathID,type) returns the number of entries in a swath. Valid
inputs for type include:

'dims' or 'HDFE_NENTDIM'
'maps' or 'HDFE_NENTMAP'
'imaps' or 'HDFE_NENTIMAP'
'geofields' or 'HDFE_NENTGFLD'
'datafields' or 'HDFE_NENTFLD'

This function corresponds to the SWnentries function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
ndims = sw.nEntries(swathID,'dims');

 matlab.io.hdfeos.sw.nEntries

1-8871

sw.detach(swathID);
sw.close(swfid);

1 Alphabetical List

1-8872

matlab.io.hdfeos.sw.open
Package: matlab.io.hdfeos.sw

Open swath file

Syntax
swfID = open(filename)
swfID = open(filename,access)

Description
swfID = open(filename) opens an HDF-EOS swath file for read-only access.

swfID = open(filename,access) opens or creates an HDF-EOS swath file identified
by filename and returns a file ID. access can be one of the following values.

'read' (default) Read-only
'rdwr' Read-write
'create' Creates a file, deleting it if it already exists

This routine corresponds to the SWopen function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
sw.close(swfid);

See Also
sw.close

 matlab.io.hdfeos.sw.open

1-8873

matlab.io.hdfeos.sw.periodInfo
Package: matlab.io.hdfeos.sw

Information about subsetted period

Syntax
[datatype,dims] = periodInfo(swathID,periodID,fieldname)

Description
[datatype,dims] = periodInfo(swathID,periodID,fieldname) retrieves
information about the period defined for the given field. datatype is the data type of the
field. dims is the dimensions of the subsetted region.

This function corresponds to the SWperiodinfo function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the dims parameter is reversed with
respect to the C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
starttime = 25;
stoptime = 425;
periodID = sw.defTimePeriod(swathID,starttime,stoptime,'MIDPOINT');
[ntype,dims] = sw.periodInfo(swathID,periodID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defTimePeriod | sw.extractPeriod

1 Alphabetical List

1-8874

matlab.io.hdfeos.sw.readAttr
Package: matlab.io.hdfeos.sw

Read swath attribute

Syntax
data = readAttr(swathID,attrname)

Description
data = readAttr(swathID,attrname) reads a swath attribute.

This function corresponds to the SWreadAttr function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
value = sw.readAttr(swathID,'creation_date');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.writeAttr

 matlab.io.hdfeos.sw.readAttr

1-8875

matlab.io.hdfeos.sw.readField
Package: matlab.io.hdfeos.sw

Read data from swath field

Syntax
data = readField(swathID,fieldname)
data = readField(swathID,fieldname,start,count)
data = readField(swathID,fieldname,start,count,stride)

Description
data = readField(swathID,fieldname) reads an entire swath field.

data = readField(swathID,fieldname,start,count) reads a contiguous
hyperslab of data from the swath field fieldname. The start input specifies the zero-
based index of the first element to be read. count specifies the number of elements along
each dimension to read.

data = readField(swathID,fieldname,start,count,stride) reads a strided
hyperslab of data from the swath field fieldname. The stride input specifies the inter-
element spacing along each dimension.

This function corresponds to the SWreadfield function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the start, count, and stride
parameters are reversed with respect to the C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
data = sw.readField(swathID,'Longitude');

1 Alphabetical List

1-8876

sw.detach(swathID);
sw.close(swfid);

See Also
sw.writeField

 matlab.io.hdfeos.sw.readField

1-8877

matlab.io.hdfeos.sw.regionInfo
Package: matlab.io.hdfeos.sw

Information about subsetted region

Syntax
[datatype,extent] = regionInfo(swathID,regionID,fieldname)

Description
[datatype,extent] = regionInfo(swathID,regionID,fieldname) returns the
data type and extent of a subsetted region of a field. regionID is the identifier for the
subsetted region.

This function corresponds to the SWregioninfo function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the extent parameter is reversed
with respect to the C library API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
lat = [34 44];
lon = [16 24];
regionID = sw.defBoxRegion(swathID,lat,lon,'MIDPOINT');
[ntype,dims] = sw.regionInfo(swathID,regionID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also
sw.defBoxRegion | sw.defVrtRegion

1 Alphabetical List

1-8878

matlab.io.hdfeos.sw.setFillValue
Package: matlab.io.hdfeos.sw

Set fill value for the specified field

Syntax
setFillValue(swathID,fieldname,fillvalue)

Description
setFillValue(swathID,fieldname,fillvalue) sets the fill value for the specified
field. The field must have more than two dimensions.

This function corresponds to the SWsetfillvalue function in the HDF-EOS library C
API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'Track',400);
sw.defDim(swathID,'Xtrack',200);
dims = {'Track','Xtrack'};
sw.defDataField(swathID,'Temperature',dims,'float');
sw.setFillValue(swathID,'Temperature',single(-999));
sw.detach(swathID);
sw.close(swfid);

See Also
sw.getFillValue

 matlab.io.hdfeos.sw.setFillValue

1-8879

matlab.io.hdfeos.sw.writeAttr
Package: matlab.io.hdfeos.sw

Write swath attribute

Syntax
writeAttr(swathID,attrname,data)

Description
writeAttr(swathID,attrname,data) writes an attribute to a swath. If the attribute
does not exist, it is created. If the attribute exists, it can be modified in place, but it
cannot be recreated with a different data type or length.

This function corresponds to the SWwriteattr function in the HDF-EOS library C API.

Examples
import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.writeAttr(swathID,'creation_date', datestr(now));
sw.detach(swathID);
sw.close(swfid);

See Also
sw.readAttr

1 Alphabetical List

1-8880

matlab.io.hdfeos.sw.writeField
Package: matlab.io.hdfeos.sw

Write data to swath field

Syntax
writeField(swathID,fieldname,data)
writeField(swathID,fieldname,start,data)
writeField(swathID,fieldname,start,stride,data)

Description
writeField(swathID,fieldname,data) writes an entire swath data field.

writeField(swathID,fieldname,start,data) writes a contiguous hyperslab to a
swath field. start specifies the index of the first element to write. The number of
elements along each dimension is inferred from either the size of data or from the swath
field itself.

writeField(swathID,fieldname,start,stride,data) writes a strided hyperslab
to a swath field. stride specifies the inter-element spacing along each dimension.

This function corresponds to the SWwritefield function in the HDF-EOS library C API,
but because MATLAB uses FORTRAN-style ordering, the start and stride parameters
are reversed with respect to the C library API.

Examples
Write data to a geolocation field 'Longitude'.

lon = [-50:49];
data = repmat(lon(:),1,100);
data = single(data);
import matlab.io.hdfeos.*

 matlab.io.hdfeos.sw.writeField

1-8881

srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','swath.hdf');
copyfile(srcFile,'myfile.hdf');
fileattrib('myfile.hdf','+w');
swfid = sw.open('myfile.hdf','rdwr');
swathID = sw.attach(swfid,'Example Swath');
sw.writeField(swathID,'Longitude',data);
sw.detach(swathID);
sw.close(swfid);

See Also
sw.readField

1 Alphabetical List

1-8882

matlab.io.saveVariablesToScript
Save workspace variables to MATLAB script

Syntax
matlab.io.saveVariablesToScript(filename)
matlab.io.saveVariablesToScript(filename,varnames)
matlab.io.saveVariablesToScript(filename,Name,Value)
[r1,r2] = matlab.io.saveVariablesToScript(filename)

Description
matlab.io.saveVariablesToScript(filename) saves variables in the current
workspace to a MATLAB script named filename.m. The filename can include the .m
suffix. If you do not include it, the function adds it when it creates the file.

Variables that MATLAB cannot generate code for are saved to a MAT-file named
filename.mat.

If a file with the same name already exists, it is overwritten.

matlab.io.saveVariablesToScript(filename,varnames) saves only workspace
variables specified by varnames to the MATLAB script.

matlab.io.saveVariablesToScript(filename,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

[r1,r2] = matlab.io.saveVariablesToScript(filename) additionally returns
two cell arrays:

• r1 for variables that were saved to the MATLAB script
• r2 for variables that were saved to a MAT-file

Examples

 matlab.io.saveVariablesToScript

1-8883

Save Workspace Variables to MATLAB Script

Save variables from a workspace to a MATLAB script, test.m.

matlab.io.saveVariablesToScript('test.m')

Save Specific Workspace Variables to MATLAB Script

Create and save variable myVar from a workspace to a MATLAB script, test.m.

myVar = 55.3;
matlab.io.saveVariablesToScript('test.m','myVar')

Append Specific Variables to Existing MATLAB Script

Create two variables, a and b, and save them to an existing MATLAB script abfile.m.

a = 72.3;
b = pi;
matlab.io.saveVariablesToScript('abfile.m',{'a','b'},...
'SaveMode','append')

Update Specific Variables in Existing MATLAB Script

Update and save two variables, y and z, to an existing MATLAB script yzfile.m.

y = 15.7;
z = 3 * pi;
matlab.io.saveVariablesToScript('yzfile.m',{'y','z'},...
'SaveMode','update')

Specify MATLAB Script Configuration for Saving Variable

Update and save variable resistance to an existing MATLAB script designData.m
while specifying the configuration of the script file.

resistance = [10 20.5 11 13.7 15.1 7.7];
matlab.io.saveVariablesToScript('designData.m','resistance',...

1 Alphabetical List

1-8884

'SaveMode','Update','MaximumArraySize',5,...
'MaximumNestingLevel',5,'MaximumTextWidth',30)

Specify 2-D Slice for Saving 3-D Array in MATLAB Script

Specify a 2-D slice for the output of the 3-D array my3Dtable, such that the 2-D slice
expands along the first and third dimensions. Save the 2-D slice in the MATLAB script
sliceData.m.

level1 = [1 2; 3 4];
level2 = [5 6; 7 8];
my3Dtable(:, :, 1) = level1;
my3Dtable(:, :, 2) = level2;
matlab.io.saveVariablesToScript('sliceData.m','MultidimensionalFormat',[1,3])

The resulting MATLAB code is similar to the following:

level1 = ...
 [1 2;
 3 4];

level2 = ...
 [5 6;
 7 8];
my3Dtable = zeros(2, 2, 2);
my3Dtable(:,1,:) = ...
 [1 5;
 3 7];

my3Dtable(:,2,:) = ...
 [2 6;
 4 8];

Save Variables Matching a Regular Expression

Save variables that match the expression autoL* to a MATLAB script
autoVariables.m.

matlab.io.saveVariablesToScript('autoVariables.m','RegExp','autoL*')

 matlab.io.saveVariablesToScript

1-8885

Save Variables to Version 7.3 MATLAB Script

Create two variables, p and q, and save them to a version 7.3 MATLAB script
version73.m.

p = 49;
q = 35.5;
matlab.io.saveVariablesToScript('version73.m','p','q',...
'MATFileVersion','v7.3')

Return Variables Saved to MATLAB Script

Save variables that were saved to a MATLAB script to the variable r1, and those that
were saved to a MAT-file to the variable r2.

[r1,r2] = matlab.io.saveVariablesToScript('mydata.m')

r1 =

 'level1'
 'level2'
 'level3'
 'my3Dtable'

r2 =

 Empty cell array: 0-by-1

Input Arguments
filename — Name of MATLAB script for saving variables
filename | variable

Name of MATLAB script for saving variables, specified as a string giving a file name or a
variable containing the file name.
Example: matlab.io.saveVariablesToScript('myVariables.m')

varnames — Name of variables to save
string | cell array

1 Alphabetical List

1-8886

Name of variables to save, specified as a string or a cell array.
Example: {'X','Y','Z'}
Data Types: char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaximumArraySize',500,'MATFileVersion','v4' specifies that the
maximum number of array elements to save is 500 using MATLAB version 4 syntax.

MATFileVersion — MATLAB version whose syntax to use
'v7.3' (default) | 'v4' | 'v6' | 'v7'

MATLAB version whose syntax to use for saving MAT-files, specified as the comma-
separated pair consisting of 'MATFileVersion' and one of the following version
numbers:

• 'v4'
• 'v6'
• 'v7'
• 'v7.3'

Example: 'MATFileVersion','v6'
Data Types: char

MaximumArraySize — Maximum array elements to save
1000 (default) | integer

Maximum array elements to save, specified as the comma-separated pair consisting of
'MaximumArraySize' and an integer in the range of 1 to 10,000.
Example: 'MaximumArraySize',1050

MaximumNestingLevel — Maximum number of object levels or array hierarchies
to save
20 (default) | integer

 matlab.io.saveVariablesToScript

1-8887

Maximum number of object levels or array hierarchies to save, specified as the comma-
separated pair consisting of 'MaximumNestingLevel' and an integer in the range of 1
to 200.
Example: 'MaximumNestingLevel',67

MaximumTextWidth — Text wrap width during save
76 (default) | integer

Text wrap width during save, specified as the comma-separated pair consisting of
'MaximumTextWidth' and an integer in the range of 32 to 256.
Example: 'MaximumTextWidth',82

MultidimensionalFormat — Dimensions of 2-D slices that represent n-D arrays
of char, logic, or numeric data
'rowvector' (default) | integer cell array

Dimensions of 2-D slices that represent n-D arrays of char, logic, or numeric data,
specified as the comma-separated pair consisting of 'MultidimensionalFormat' and
one of these values:

• 'rowvector' — Save multidimensional variables as a single row vector.
• integer cell array — Save a 2-D slice of multidimensional variables, where the

dimensions satisfy all the following criteria:

• Two positive integers represent dimensions.
• The two integers are less than or equal to the dimensions of the n-D array.
• The second integer is greater than the first.

Example: 'MultidimensionalFormat',[1,3]

RegExp — Regular expression for matching
string

Regular expression for matching, specified as the comma-separated pair consisting of
'RegExp' and one or more expressions given as a string.
Example: 'RegExp','level*'
Data Types: char

SaveMode — Mode to save MATLAB script
'create' (default) | 'update' | 'append'

1 Alphabetical List

1-8888

Mode to save MATLAB script, specified as the comma-separated pair consisting of
SaveMode and one of these values:

• 'create' — Save variables to a new MATLAB script.
• 'update' — Only update variables that are already present in a MATLAB script.
• 'append' — Update variables that are already present in a MATLAB script and

append new variables to the end of the script.

Example: 'SaveMode','Update'

Output Arguments
r1 — Variables that were saved to a MATLAB script
cell array

Variables that were saved to a MATLAB script, returned as a cell array of variable names.

r2 — Variables that were saved to a MAT-file
cell array

Variables that were saved to a MAT-file, returned as a cell array of variable names.

Limitations

• matlab.io.saveVariablesToScript does not save the following variables to a
MATLAB script or a MAT-file.

• Java objects
• .NET objects
• Python objects

• matlab.io.saveVariablesToScript saves the following variables only to a MAT-
file.

• MATLAB objects
• Function handles
• Anonymous functions

 matlab.io.saveVariablesToScript

1-8889

If you have Simulink, you can use matlab.io.saveVariablesToScript to save the
variables that your models use. However, if you save many variables, the generated
MATLAB file can contain many lines of code and take a long time to execute. To avoid the
long execution time, consider these alternatives:

• Permanently store variables in a data dictionary instead of using
Simulink.saveVars. A data dictionary also provides more tools for managing
variables. See “Determine Where to Store Variables and Objects for Simulink Models”
(Simulink).

• Save variables in a MAT-file by using the save function.

See Also

1 Alphabetical List

1-8890

matlab.lang.makeUniqueStrings
Construct unique strings from input strings

Syntax
U = matlab.lang.makeUniqueStrings(S)

U = matlab.lang.makeUniqueStrings(S,excludedStrings)
U = matlab.lang.makeUniqueStrings(S,whichStringsIdx)
U = matlab.lang.makeUniqueStrings(S, ___ , maxStringLength)

[U, modified] = matlab.lang.makeUniqueStrings(___)

Description
U = matlab.lang.makeUniqueStrings(S) constructs unique strings or character
vectors, U, from input strings or character vectors, S, by appending an underscore and a
number to duplicates.

U = matlab.lang.makeUniqueStrings(S,excludedStrings) constructs strings or
character vectors that are unique within U and with respect to excludedStrings. The
makeUniqueStrings function does not check excludedStrings for uniqueness.

U = matlab.lang.makeUniqueStrings(S,whichStringsIdx) specifies the subset
of S to make unique within the entire set. makeUniqueStrings makes the elements in
S(whichStringsIdx) unique among themselves and with respect to the remaining
elements. makeUniqueStrings returns the remaining elements unmodified in U. Use
this syntax when you have an string array or an array of character vectors, and need to
check that only some elements are unique.

U = matlab.lang.makeUniqueStrings(S, ___ , maxStringLength) specifies the
maximum length, maxStringLength, of elements in U. If makeUniqueStrings cannot
make elements in S unique without exceeding maxStringLength, it returns an error. You
can use this syntax with any of the input arguments of the previous syntaxes.

 matlab.lang.makeUniqueStrings

1-8891

[U, modified] = matlab.lang.makeUniqueStrings(___) returns a logical array,
modified, indicating the modified elements.

Examples

Construct Unique Character Vectors

Create a cell array of names and make each element unique.

S = {'John' 'Sue' 'Nick' 'John' 'Campion' 'John' 'Jason'};
U = matlab.lang.makeUniqueStrings(S)

U = 1x7 cell array
 Columns 1 through 6

 {'John'} {'Sue'} {'Nick'} {'John_1'} {'Campion'} {'John_2'}

 Column 7

 {'Jason'}

The makeUniqueStrings function appends the duplicate names in elements 3 and 5
with underscores and incrementing numbers.

Construct Unique Character Vectors and Specify Exclusions

Without specifying excluded values, make the character vectors in U unique.

S = {'John' 'Sue' 'Nick' 'John' 'Campion' 'John' 'Jason'};
U = matlab.lang.makeUniqueStrings(S)

U = 1x7 cell array
 Columns 1 through 6

 {'John'} {'Sue'} {'Nick'} {'John_1'} {'Campion'} {'John_2'}

 Column 7

1 Alphabetical List

1-8892

 {'Jason'}

Specify that the character vector, 'Nick', should be excluded from the output.

U = matlab.lang.makeUniqueStrings(S, 'Nick')

U = 1x7 cell array
 Columns 1 through 5

 {'John'} {'Sue'} {'Nick_1'} {'John_1'} {'Campion'}

 Columns 6 through 7

 {'John_2'} {'Jason'}

makeUniqueStrings excludes 'Nick' from U and instead modifies the first duplicate,
found in element 3, to be 'Nick_1'.

Exclude workspace variables from the unique cell array.

Sue = 42;
U = matlab.lang.makeUniqueStrings(S, who)

U = 1x7 cell array
 Columns 1 through 5

 {'John'} {'Sue_1'} {'Nick'} {'John_1'} {'Campion'}

 Columns 6 through 7

 {'John_2'} {'Jason'}

Since 'Sue' exists in the workspace, makeUniqueStrings makes this character vector
unique by appending an underscore and number.

Construct Unique Elements for Specified Array Indices

Create an array of character vectors and make only the first four elements unique.

 matlab.lang.makeUniqueStrings

1-8893

S = {'quiz' 'quiz' 'quiz' 'exam' 'quiz' 'exam'};
U = matlab.lang.makeUniqueStrings(S, 1:4)

U = 1x6 cell array
 Columns 1 through 5

 {'quiz_1'} {'quiz_2'} {'quiz_3'} {'exam_1'} {'quiz'}

 Column 6

 {'exam'}

The first four elements in U are unique among themselves, and among the remaining
character vectors in elements 5 and 6 ('quiz' and 'exam'). Alternatively, you can use a
logical array instead of a range of linear indices to achieve the same results: U =
matlab.lang.makeUniqueStrings(S, [true true true true false false])
or U = matlab.lang.makeUniqueStrings(S, logical([1 1 1 1 0 0])).

Append a duplicate 'quiz' onto the end of S and make the first four elements unique.

S{end+1} = 'quiz'

S = 1x7 cell array
 Columns 1 through 6

 {'quiz'} {'quiz'} {'quiz'} {'exam'} {'quiz'} {'exam'}

 Column 7

 {'quiz'}

U = matlab.lang.makeUniqueStrings(S, 1:4)

U = 1x7 cell array
 Columns 1 through 5

 {'quiz_1'} {'quiz_2'} {'quiz_3'} {'exam_1'} {'quiz'}

 Columns 6 through 7

 {'exam'} {'quiz'}

1 Alphabetical List

1-8894

The character vectors that makeUniqueStrings checks are still unique among
themselves and among the remaining elements. Since makeUniqueStrings does not
check any elements after element 4, duplicate character vectors remain.

Construct Unique Character Vectors with Maximum Length

Create an array from S where the first three elements are unique and the maximum
length of each string is 5.

S = {'sampleData' 'sampleData' 'sampleData' 'sampleData'};
U = matlab.lang.makeUniqueStrings(S, 1:3, 5)

U = 1x4 cell array
 {'sampl'} {'sam_1'} {'sam_2'} {'sampleData'}

The first element is truncated to 5 characters. The second and third elements are
truncated to 3 characters to allow makeUniqueStrings to append an underscore and
number, and still not exceed 5 characters.

Determine Modified Character Vectors

S = {'a%name', 'name_1', '2_name'};
[N, modified] = matlab.lang.makeValidName(S)

N = 1x3 cell array
 {'a_name'} {'name_1'} {'x2_name'}

modified = 1x3 logical array

 1 0 1

makeValidName did not modify the second element.

 matlab.lang.makeUniqueStrings

1-8895

Input Arguments
S — Input values
character vector | cell array of character vectors | string array

Input strings, specified as a character vector, cell array of character vectors, or string
array.

excludedStrings — Strings to exclude
character vector | cell array of character vectors | string array

Character vectors to exclude from U, specified as a character vector, cell array of
character vectors, or string array.
Example: 'dontDuplicateThis'
Example: {'excludeS1' 'excludeS2'}
Example: ["excludeThis" "andThis"]
Example: who

whichStringsIdx — Subset of strings to make unique
range of linear indices or logical array

Subset of Sto make unique within the entire set, specified as a range of linear indices or
as a logical array with the same size and shape as S. If there are duplicates in S, the
makeUniqueStrings function only modifies those specified by whichStringsIdx.

If whichStringsIdx is a logical array, elements are checked for uniqueness when the
array element in the same position has a value of true.
Example: 1:5, logical([1 0 1]), [true false true]

maxStringLength — Maximum length of strings
integer

Maximum length of strings in U, specified as an integer. If makeUniqueStrings cannot
make elements in S unique without exceeding maxStringLength, it returns an error.

1 Alphabetical List

1-8896

Output Arguments
U — Unique strings
character vector | cell array of character vectors | string array

Unique strings, returned as a character vector, cell array of character vectors, or string
array. The output has the same dimension as the input, S.

modified — Indicator of modified elements
logical scalar | logical array

Indicator of modified elements, returned as a logical scalar or array and having the same
dimension as the input, S. A value of 1 (true) indicates that makeUniqueStrings
modified the element in the corresponding location. A value of 0 (false) indicates that
makeUniqueStrings did not need to modify the element in the corresponding location.

Tips
• To ensure that input values are valid and unique, use matlab.lang.makeValidName

before matlab.lang.makeUniqueStrings.

S = {'my.Name','my_Name','my_Name'};
validValues = matlab.lang.makeValidName(S)
validUniqueValues = matlab.lang.makeUniqueStrings(validValues,...
 {},namelengthmax)

validValues =

 'my_Name' 'my_Name' 'my_Name'

validUniqueValues =

 'my_Name' 'my_Name_1' 'my_Name_2'

See Also
matlab.lang.makeValidName | namelengthmax | who

 matlab.lang.makeUniqueStrings

1-8897

Introduced in R2014a

1 Alphabetical List

1-8898

matlab.lang.makeValidName
Construct valid MATLAB identifiers from input strings

Syntax
N = matlab.lang.makeValidName(S)
N = matlab.lang.makeValidName(S,Name,Value)
[N, modified] = matlab.lang.makeValidName(___)

Description
N = matlab.lang.makeValidName(S) constructs valid MATLAB identifiers, N, from
input strings, S. The makeValidName function does not guarantee the strings in N are
unique.

A valid MATLAB identifier is a character vector of alphanumerics (A–Z, a–z, 0–9) and
underscores, such that the first character is a letter and the length of the character
vector is less than or equal to namelengthmax.

makeValidName deletes any whitespace characters before replacing any characters that
are not alphanumerics or underscores. If a whitespace character is followed by a
lowercase letter, makeValidName converts the letter to the corresponding uppercase
character.

N = matlab.lang.makeValidName(S,Name,Value) includes additional options
specified by one or more Name,Value pair arguments.

[N, modified] = matlab.lang.makeValidName(___) returns a logical array,
modified, indicating modified elements. You can use this syntax with any of the input
arguments of the previous syntaxes.

Examples

 matlab.lang.makeValidName

1-8899

Construct Valid MATLAB Identifiers

S = {'Item_#','Price/Unit','1st order','Contact'};
N = matlab.lang.makeValidName(S)

N = 1x4 cell array
 {'Item__'} {'Price_Unit'} {'x1stOrder'} {'Contact'}

In the first and second elements, makeValidName replaced the invalid characters (#
and /), with underscores. In the third element, makeValidName appended a prefix
because the character vector does not begin with a letter, deleted the empty space, and
capitalized the character following the deleted space.

Construct Valid MATLAB Identifiers Using Specified Replacement Style

Replace invalid characters with the corresponding hexadecimal representation.

S = {'Item_#','Price/Unit','1st order','Contact'};
N = matlab.lang.makeValidName(S,'ReplacementStyle','hex')

N = 1x4 cell array
 {'Item_0x23'} {'Price0x2FUnit'} {'x1stOrder'} {'Contact'}

In the first and second elements, makeValidName replaced the invalid characters (#
and /), with their hexadecimal representation. In the third element, makeValidName
appended a prefix because the character vector does not begin with a letter, deleted the
empty space, and capitalized the character following the deleted space.

Delete invalid characters.

N = matlab.lang.makeValidName(S,'ReplacementStyle','delete')

N = 1x4 cell array
 {'Item_'} {'PriceUnit'} {'x1stOrder'} {'Contact'}

makeValidName deleted the invalid characters (# and /). In the third element,
makeValidName appended a prefix because the character vector does not begin with a
letter, deleted the empty space, and capitalized the character following the deleted space.

1 Alphabetical List

1-8900

Construct Valid MATLAB Identifiers Using Specified Prefix

S = {'1stMeasurement','2ndMeasurement','Control'};
N = matlab.lang.makeValidName(S,'Prefix','m_')

N = 1x3 cell array
 {'m_1stMeasurement'} {'m_2ndMeasurement'} {'Control'}

Only the elements that do not start with a letter are prepended with a prefix.

Determine Modified Character Vectors

S = {'a%name', 'name_1', '2_name'};
[N, modified] = matlab.lang.makeValidName(S)

N = 1x3 cell array
 {'a_name'} {'name_1'} {'x2_name'}

modified = 1x3 logical array

 1 0 1

makeValidName did not modify the second element.

Input Arguments
S — Input strings
character vector | cell array of character vectors | string array

Input strings, specified as a character vector, cell array of character vectors, or string
array.

 matlab.lang.makeValidName

1-8901

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ReplacementStyle','delete' deletes invalid characters.

ReplacementStyle — Replacement style
'underscore' (default) | 'delete' | 'hex'

Replacement style, specified as 'underscore', 'delete', or 'hex'. The value controls
how MATLAB replaces nonalphanumeric characters. For all values of
ReplacementStyle, MATLAB deletes whitespace characters and changes a lowercase
letter following a whitespace to uppercase.

ReplacementStyle
Value

Description

'underscore' (default) Replaces all characters that are not alphanumerics or
underscores with underscores. 'underscore'.

'hex' Replaces each character that is not an alphanumeric or
underscore with its corresponding hexadecimal
representation. 'hex'.

'delete' Deletes all characters that are not alphanumerics or
underscores. 'delete'.

Prefix — Characters to prefix
'x' (default) | character vector | string scalar

Characters to prefix to inputs that do not begin with a letter after makeValidName
replaces nonalphanumeric characters, specified as a character vector or string scalar. For
example, by default, makeValidName prefixes characters to an input '*hello' because,
after it replaces nonalphanumeric characters, the input does not begin with a letter
('_hello'). However, if you specify a replacement style that deletes nonalphanumeric
characters, makeValidName does not prefix characters. After it replaces
nonalphanumeric characters, the input begins with a letter ('hello').

A valid prefix must meet the following conditions.

1 Alphabetical List

1-8902

• Start with a letter.
• Contain only alphanumeric characters and underscores.
• Not be a MATLAB keyword.
• Not be longer than the value of namelengthmax.

Output Arguments
N — Valid MATLAB identifiers
character vector | cell array of character vectors | string array

Valid MATLAB identifiers, returned as a character vector, cell array of character vectors,
or string array. The output has the same number of dimensions as the input, S.

modified — Indicator of modified elements
logical scalar | logical array

Indicator of modified elements, returned as a logical scalar or array and having the same
number of dimensions as the input, S. A value of 1 (true) indicates that makeValidName
modified the input in the corresponding location. A value of 0 (false) indicates that
makeValidName did not need to modify the input in the corresponding location.

Tips
• To ensure that input values are valid and unique, use

matlab.lang.makeUniqueStrings after matlab.lang.makeValidName.

S = {'my.Name','my_Name','my_Name'};
validValues = matlab.lang.makeValidName(S)
validUniqueValues = matlab.lang.makeUniqueStrings(validValues,{},...
 namelengthmax)

validValues =

 'my_Name' 'my_Name' 'my_Name'

validUniqueValues =

 'my_Name' 'my_Name_1' 'my_Name_2'

 matlab.lang.makeValidName

1-8903

• To customize an invalid character replacement, first use functions such as strrep or
regexprep to convert to valid characters. For example, convert '@' characters in S
to 'At' using strrep(S,'@','At'). Then, use matlab.lang.makeValidName to
ensure that all characters in S are valid.

See Also
iskeyword | isletter | isvarname | matlab.lang.makeUniqueStrings |
namelengthmax | regexp | regexprep | strrep | who

Introduced in R2014a

1 Alphabetical List

1-8904

matlab.mock.actions.AssignOutputs class
Package: matlab.mock.actions

Define return values for method called or property accessed

Description
To specify the values that the framework returns when a mock object method is invoked
or a mock object property is accessed, use the AssignOutputs class.

If you call a mocked method with fewer outputs than specified by AssignOutputs, the
remaining outputs are discarded. If you call a mocked method with more outputs than
specified by AssignOutputs, MATLAB throws an error.

Construction
action = AssignOutputs(A1,...,An) defines the values for the mock object to
return for a method call or property access. The AssignOutputs constructor accepts
one or more values, A1,...,An, that correspond to the values for the output arguments
of the mock object method or the value of the mock object property.

Input Arguments
A1,...,An — Return values
scalar | vector | matrix | multidimensional array

Return values, specified as scalars, vectors, matrices, or multidimensional arrays. Return
values can be any data type.
Example: "mySpecifiedValue"
Example: 7,13,42
Example: [1 2 3;4 5 6]

 matlab.mock.actions.AssignOutputs class

1-8905

Properties
Outputs — Predefined return values
cell array

Predefined return values, returned as a cell array of arguments. Return values are
specified during class construction, and can be any data type.
Data Types: cell

Methods

repeat Repeat same action multiple times
then Specify action

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Assign Outputs to Mock

Create a mock for a quadrilateral class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"sideLengths");

Set up behavior.

import matlab.mock.actions.AssignOutputs;
when(withAnyInputs(behavior.sideLengths),AssignOutputs(2,2,4,4));

Use the mock.

1 Alphabetical List

1-8906

[a,b,c,d] = mock.sideLengths

Tips
• The AssignOutputs action defines the value of the output at instance creation time.

To specify that a mock object method invoke a function handle to determine output
values when a mock object method is called, use the Invoke class.

Alternatives
For simple definition of outputs, you can use the assignOutputsWhen method of the
matlab.mock.TestCase class. However, there is more functionality when you use the
AssignOutputs action.

See Also
matlab.mock.MethodCallBehavior.when |
matlab.mock.PropertyGetBehavior.when | matlab.mock.TestCase |
matlab.mock.actions.Invoke | matlab.mock.actions.ThrowException

Introduced in R2017a

 matlab.mock.actions.AssignOutputs class

1-8907

repeat
Class: matlab.mock.actions.AssignOutputs
Package: matlab.mock.actions

Repeat same action multiple times

Syntax
repeat(n,action)

Description
repeat(n,action) repeats the same action multiple times.

Input Arguments
n — Times to repeat
integer

Number of times to repeat action, specified as an integer.
Example: 5

action — Defined action
instance of matlab.mock.actions.AssignOutputs

Defined action, specified as an instance of matlab.mock.actions.AssignOutputs.
Example: AssignOutputs(true)
Example: AssignOutputs(7,13,42)

Examples

1 Alphabetical List

1-8908

Assign Repeating Outputs to Mock

Create a mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"isOpen");

Specify behavior.

import matlab.mock.actions.AssignOutputs
when(withExactInputs(behavior.isOpen),then(repeat(2,AssignOutputs(true)), ...
 then(AssignOutputs(false))));

Use the mock.

for i = 1:3
 isAccountOpen = mock.isOpen
end

isAccountOpen = logical
 1

isAccountOpen = logical
 1

isAccountOpen = logical
 0

Tips
• If you repeat an action, and do not follow it with a call to the then method, the mock

continues to return the repeated value. For example, consider the following mock of a
bank account class.

import matlab.mock.actions.AssignOutputs
testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"IsJointAccount");

 repeat

1-8909

If you repeat an action to return a property value of true twice, the following code,
which goes on to get the property value a third and fourth time, returns true all four
times.

when(get(behavior.IsJointAccount),then(repeat(2,AssignOutputs(true))));
for i = 1:4
 tf = mock.IsJointAccount
end

But the following code returns true twice and false twice.

when(get(behavior.IsJointAccount),then(repeat(2,AssignOutputs(true)), ...
 then(AssignOutputs(false))));
for i = 1:4
 tf = mock.IsJointAccount
end

See Also
Introduced in R2017a

1 Alphabetical List

1-8910

then
Class: matlab.mock.actions.AssignOutputs
Package: matlab.mock.actions

Specify action

Syntax
then(action1)
then(action1,action2)

Description
then(action1) specifies an action for mock object interactions.

then(action1,action2) specifies an action and a subsequent action for mock object
interactions.

Input Arguments
action1 — Defined action
instance of matlab.mock.actions.AssignOutputs

Defined action, specified as an instance of matlab.mock.actions.AssignOutputs.
Example: AssignOutputs(true)
Example: AssignOutputs(7,13,42)

action2 — Second defined action
instance of matlab.mock.actions.AssignOutputs | instance of
matlab.mock.actions.Invoke | instance of
matlab.mock.actions.ThrowException

 then

1-8911

Second defined action, specified as an instance of
matlab.mock.actions.AssignOutputs, matlab.mock.actions.Invoke, or
matlab.mock.actions.ThrowException.
Example: AssignOutputs(7,13,42)
Example: ThrowException

Examples

Assign Series of Outputs to Mock

Create a mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"isOpen");

Set up behavior to return true, true, and then false.

import matlab.mock.actions.AssignOutputs;
when(withExactInputs(behavior.isOpen),then(AssignOutputs(true), ...
 then(AssignOutputs(true),then(AssignOutputs(false)))));

Use the mock.

isAccountOpen = mock.isOpen

isAccountOpen = logical
 1

isAccountOpen = mock.isOpen

isAccountOpen = logical
 1

isAccountOpen = mock.isOpen

isAccountOpen = logical
 0

1 Alphabetical List

1-8912

Tips
• Each call to then accepts up to two actions. To specify more subsequent actions, use

multiple calls to then. For example, to specify three actions use
then(action1,then(action2,action3)).

See Also
Introduced in R2017a

 then

1-8913

matlab.mock.actions.Invoke class
Package: matlab.mock.actions

Invoke function handle when method is called

Description
To specify that the framework invokes a function handle to determine outputs when a
mock object method is called, use the Invoke class. This action differs from the
AssignOutputs action, which returns values that are defined when you create the
AssignOutputs instance.

Construction
action = invoke(fh) invokes the function specified by fh when a method is called.

Input Arguments
fh — Function to invoke
function handle

Function to invoke when a mock object method is called, specified as a function handle.

The framework passes the function handle the same inputs as it passes to the mock
method. Therefore, fh typically contains an argument list. If the function does not
interact with the mock, for example by accessing a property, you can use tilde (~) in the
argument list to ignore the mock object. The framework requests the same number of
outputs as the mock method call.
Example: @(~)randi(6)
Example: @(cmock)myFunction('hello')
Example: @isempty

1 Alphabetical List

1-8914

Properties
Function — Function to invoke
function handle

Function to invoke when a mock object method is called, stored as a function handle.

Methods
repeat Repeat same action multiple times
then Specify action

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Invoke Function Handle at Method Call Time

Create a mock for a class that represents a 6-sided die and includes a mocked roll
method.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock("AddedMethods","roll");

Define behavior to return a random integer 1 through 6 each time the roll method is
called.

import matlab.mock.actions.Invoke
when(withExactInputs(behavior.roll),Invoke(@(~)randi(6)));

Call the mocked roll method.

val = mock.roll

val = 5

 matlab.mock.actions.Invoke class

1-8915

See Also
matlab.mock.MethodCallBehavior.when | matlab.mock.TestCase |
matlab.mock.actions.AssignOutputs

Introduced in R2018b

1 Alphabetical List

1-8916

repeat
Class: matlab.mock.actions.Invoke
Package: matlab.mock.actions

Repeat same action multiple times

Syntax
repeat(n,action)

Description
repeat(n,action) repeats the same action multiple times.

Input Arguments
n — Times to repeat
integer

Number of times to repeat action, specified as an integer.
Example: 5

action — Defined action
instance of matlab.mock.actions.Invoke

Defined action, specified as an instance of matlab.mock.actions.Invoke.
Example: Invoke(@isempty)
Example: Invoke(@(~)randi(10))

Examples

 repeat

1-8917

Assign Repeating Outputs to Mock

Create a mock for a class that represents a 12-sided die, including a mocked roll
method.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock("AddedMethods","roll");

Set up behavior for the roll method to return the value from the randi function twice
and then return 0.

import matlab.mock.actions.AssignOutputs
import matlab.mock.actions.Invoke

when(withExactInputs(behavior.roll),...
 then(repeat(2,Invoke(@(~)randi(12))),...
 then(AssignOutputs(0))));

Call the mocked roll method four times.

val = mock.roll

val = 10

val = mock.roll

val = 11

val = mock.roll

val = 0

val = mock.roll

val = 0

See Also
matlab.mock.actions.Invoke

Introduced in R2018b

1 Alphabetical List

1-8918

then
Class: matlab.mock.actions.Invoke
Package: matlab.mock.actions

Specify action

Syntax
then(action1)
then(action1,action2)

Description
then(action1) specifies an action for mock object interactions.

then(action1,action2) specifies an action and a subsequent action for mock object
interactions.

Input Arguments
action1 — Defined action
instance of matlab.mock.actions.Invoke

Defined action, specified as an instance of matlab.mock.actions.Invoke.

action2 — Second defined action
instance of matlab.mock.actions.Invoke | instance of
matlab.mock.actions.AssignOutputs | instance of
matlab.mock.actions.ThrowException

Second defined action, specified as an instance of matlab.mock.actions.Invoke,
matlab.mock.actions.AssignOutputs, or
matlab.mock.actions.ThrowException.

 then

1-8919

Examples

Assign Series of Outputs to Mock

Create a mock for a class that represents a 6-sided die, including a mocked roll method.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"roll");

Set up behavior for the roll method. Return 0 the first time it runs. On subsequent runs,
invoke the randi function to return a random integer between 1 and 6.

import matlab.mock.actions.AssignOutputs
import matlab.mock.actions.Invoke
when(withExactInputs(behavior.roll),...
 then(AssignOutputs(0),...
 then(Invoke(@(~)randi(6)))))

Call the mocked roll method three times.

val = mock.roll

val = 0

val = mock.roll

val = 5

val = mock.roll

val = 6

Tips
• Each call to then accepts up to two actions. To specify more subsequent actions, use

multiple calls to then. For example, to specify three actions use
then(action1,then(action2,action3)).

See Also
matlab.mock.actions.Invoke

1 Alphabetical List

1-8920

Introduced in R2018b

 then

1-8921

matlab.mock.actions.ReturnStoredValue
class
Package: matlab.mock.actions

Return stored property value

Description
The ReturnStoredValue action specifies that the stored value is returned when
accessing a property.

By default, when you access property values in strict mocks, MATLAB throws an
exception. To specify that the framework returns the stored value of a mock object
property, use the ReturnStoredValue class.

Construction
action = ReturnStoredValue returns the stored property value.

Methods
repeat Repeat same action multiple times
then Specify action

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

1 Alphabetical List

1-8922

Return Mock Property Value

Create a strict mock. By default, property interactions throw exceptions.

testCase = matlab.mock.TestCase.forInteractiveUse;
properties = ["PropA" "PropB" "PropC"];
[mock,behavior] = testCase.createMock('AddedProperties',properties,"Strict",true);

Enable access to PropA.

import matlab.mock.actions.ReturnStoredValue;
when(get(behavior.PropA),ReturnStoredValue);

Use the mock.

val1 = mock.PropA

val1 =

 []

val2 = mock.PropB

Interactive assertion failed.

Test Diagnostic:

Unexpected access of strict mock property 'PropB'.
Assertion failed.

Alternatives
For a simple directive to return property values, you can use the
returnStoredValueWhen method of the matlab.mock.TestCase class. However,
there is more functionality when you use the ReturnStoredValue action.

See Also
matlab.mock.PropertyGetBehavior.when | matlab.mock.TestCase |
matlab.mock.actions.AssignOutputs | matlab.mock.actions.StoreValue |
matlab.mock.actions.ThrowException

 matlab.mock.actions.ReturnStoredValue class

1-8923

Introduced in R2017a

1 Alphabetical List

1-8924

repeat
Class: matlab.mock.actions.ReturnStoredValue
Package: matlab.mock.actions

Repeat same action multiple times

Syntax
repeat(n,action)

Description
repeat(n,action) repeats the same action multiple times.

Input Arguments
n — Times to repeat
integer

Number of times to repeat action, specified as an integer.
Example: 5

action — Defined action
instance of matlab.mock.actions.ReturnStoredValue

Defined action, specified as an instance of
matlab.mock.actions.ReturnStoredValue.

Examples

 repeat

1-8925

Repeat Return of Stored Property Value

Create a strict mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"isOpen",'Strict',true);

Specify behavior. Return the stored property value, which is empty by default, twice and
then assign an output of false.

import matlab.mock.actions.ReturnStoredValue
import matlab.mock.actions.AssignOutputs
when(get(behavior.isOpen),then(repeat(2,ReturnStoredValue), ...
 then(AssignOutputs(false))));

Use the mock.

for i = 1:3
 isOpen = mock.isOpen
end

isOpen =

 []

isOpen =

 []

isOpen = logical
 0

See Also
Introduced in R2017a

1 Alphabetical List

1-8926

then
Class: matlab.mock.actions.ReturnStoredValue
Package: matlab.mock.actions

Specify action

Syntax
then(action1)
then(action1,action2)

Description
then(action1) specifies an action for mock object interactions.

then(action1,action2) specifies an action and a subsequent action for mock object
interactions.

Input Arguments
action1 — Defined action
instance of matlab.mock.actions.ReturnStoredValue

Defined action, specified as an instance of
matlab.mock.actions.ReturnStoredValue.

action2 — Second defined action
instance of matlab.mock.actions.AssignOutputs | instance of
matlab.mock.actions.ThrowException

Second defined action, specified as an instance of
matlab.mock.actions.AssignOutputs, or
matlab.mock.actions.ThrowException.
Example: ReturnStoredValue

 then

1-8927

Example: AssignOutputs(7,13,42)
Example: ThrowException

Examples

Assign Series of Outputs to Mock

Create a strict mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"isOpen",'Strict',true);

Set up behavior to return empty once and then true.

import matlab.mock.actions.ReturnStoredValue
import matlab.mock.actions.AssignOutputs
when(get(behavior.isOpen),then(ReturnStoredValue,AssignOutputs(true)))

Use the mock.

isAccountOpen = mock.isOpen

isAccountOpen =

 []

isAccountOpen = mock.isOpen

isAccountOpen = logical
 1

isAccountOpen = mock.isOpen

isAccountOpen = logical
 1

1 Alphabetical List

1-8928

Tips
• Each call to then accepts up to two actions. To specify more subsequent actions, use

multiple calls to then. For example, to specify three actions use
then(action1,then(action2,action3)).

See Also
Introduced in R2017a

 then

1-8929

matlab.mock.actions.StoreValue class
Package: matlab.mock.actions

Store property value

Description
The StoreValue action specifies that the specified value is stored when setting a
property.

By default, when you set property values in strict mocks, MATLAB throws an exception.
To specify that the framework stores the value of a mock object property, use the
StoreValue class.

Construction
action = StoreValue stores a property value.

Methods
repeat Repeat same action multiple times
then Specify action

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

1 Alphabetical List

1-8930

Store Mock Property Value

Create a strict mock. By default, property interactions throw exceptions.

testCase = matlab.mock.TestCase.forInteractiveUse;
properties = ["PropA" "PropB" "PropC"];
[mock, behavior] = testCase.createMock('AddedProperties',properties,"Strict",true);

Enable set access to PropA.

import matlab.mock.actions.StoreValue;
when(set(behavior.PropA),StoreValue);

Use the mock.

mock.PropA = 1;

Use the mock.

mock.PropB = 2;

Interactive assertion failed.

Test Diagnostic:

Unexpected set of strict mock property 'PropB'.
Assertion failed.

Alternatives
For a simple directive to store property values, you can use the storeValueWhen method
of the matlab.mock.TestCase class. However, there is more functionality when you use
the StoreValue action.

See Also
matlab.mock.PropertySetBehavior.when | matlab.mock.TestCase |
matlab.mock.actions.ReturnStoredValue |
matlab.mock.actions.ThrowException

 matlab.mock.actions.StoreValue class

1-8931

Introduced in R2017a

1 Alphabetical List

1-8932

repeat
Class: matlab.mock.actions.StoreValue
Package: matlab.mock.actions

Repeat same action multiple times

Syntax
repeat(n,action)

Description
repeat(n,action) repeats the same action multiple times.

Input Arguments
n — Times to repeat
integer

Number of times to repeat action, specified as an integer.
Example: 5

action — Defined action
instance of matlab.mock.actions.StoreValue

Defined action, specified as an instance of matlab.mock.actions.StoreValue.

Examples

Repeat Storing of Property Value

Create a mock for a bank account class.

 repeat

1-8933

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"IsOpen");

Specify behavior. Allow the IsOpen property to be set twice, then throw an exception.

import matlab.mock.actions.StoreValue
import matlab.mock.actions.ThrowException
when(set(behavior.IsOpen),then(repeat(2,StoreValue), ...
 then(ThrowException(MException('Account:setValue:tooMany', ...
 'Value set too many times.')))));

Use the mock.

for i = 1:3
 mock.IsOpen = i
end

mock =

 Mock with properties:

 IsOpen: 1

mock =

 Mock with properties:

 IsOpen: 2

Error using matlab.mock.internal.MockContext>mockPropertySetCallback (line 706)
Value set too many times.

Error in matlab.mock.internal.MockContext>@(name,obj,value)mockPropertySetCallback(name,obj,value,catalog)
(line 284)
 propertySetCallback = @(name, obj, value)mockPropertySetCallback(name, obj, value, catalog);

See Also

Introduced in R2017a

1 Alphabetical List

1-8934

then
Class: matlab.mock.actions.StoreValue
Package: matlab.mock.actions

Specify action

Syntax
then(action1)
then(action1,action2)

Description
then(action1) specifies an action for mock object interactions.

then(action1,action2) specifies an action and a subsequent action for mock object
interactions.

Input Arguments
action1 — Defined action
instance of matlab.mock.actions.StoreValue

Defined action, specified as an instance of matlab.mock.actions.StoreValue.

action2 — Second defined action
instance of matlab.mock.actions.ThrowException

Second defined action, specified as an instance of
matlab.mock.actions.ThrowException.
Example: StoreValue
Example: ThrowException(MException('Account:deposit:Negative','Deposit
amount must be positive.'))

 then

1-8935

Examples

Store Series of Values to Mock Property

Create a mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"IsOpen");

Specify behavior. Allow the IsOpen property to be set once, and then throw an exception.

import matlab.mock.actions.StoreValue
import matlab.mock.actions.ThrowException
when(set(behavior.IsOpen),then(StoreValue,ThrowException(...
 MException('Account:setValue:tooMany','Value set too many times.'))));

Use the mock.

mock.IsOpen = false

mock =

 Mock with properties:

 IsOpen: 0

mock.IsOpen = true

Error using matlab.mock.internal.MockContext>mockPropertySetCallback (line 706)
Value set too many times.

Error in matlab.mock.internal.MockContext>@(name,obj,value)mockPropertySetCallback(name,obj,value,catalog)
(line 284)
 propertySetCallback = @(name, obj, value)mockPropertySetCallback(name, obj, value, catalog);

Tips
• Each call to then accepts up to two actions. To specify more subsequent actions, use

multiple calls to then. For example, to specify three actions use
then(action1,then(action2,action3)).

1 Alphabetical List

1-8936

See Also
Introduced in R2017a

 then

1-8937

matlab.mock.actions.ThrowException class
Package: matlab.mock.actions

Throw exception when method is called or when property is set or accessed

Description
To specify that the framework throws an exception when a mock object method is invoked
or when a mock object property is set or accessed, use the ThrowException class. You
can use this action to inject error conditions into the system under test.

Construction
action = ThrowException throws an exception when a method is called or a property
is set or accessed.

action = ThrowException(exception) specifies the exception that the mock
throws.

Input Arguments
exception — Exception to throw
scalar MException object

Exception for the framework to throw at method call or property interaction, specified as
a scalar MException object.
Example: MException('MyProduct:myID','My exception message.')

Methods
repeat Repeat same action multiple times
then Specify action

1 Alphabetical List

1-8938

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Throw Exception for Particular Mock Method Inputs

Create a mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"deposit");

Set up behavior.

import matlab.mock.actions.ThrowException;
import matlab.unittest.constraints.IsLessThan;
when(behavior.deposit(IsLessThan(0)), ...
 ThrowException(MException('Account:deposit:Negative', ...
 'Deposit amount must be positive.')));

Use the mock.

mock.deposit(10)
mock.deposit(-10)

Error using matlab.mock.internal.MockContext>mockMethodCallback (line 663)
Deposit amount must be positive.

Error in matlab.mock.internal.MockContext>@(data)mockMethodCallback(data,catalog) (line 282)
 methodCallback = @(data)mockMethodCallback(data, catalog);

Alternatives
For simple definition of outputs, you can use the throwExceptionWhen method of the
matlab.mock.TestCase class. However, there is more functionality when you use the
ThrowException action.

 matlab.mock.actions.ThrowException class

1-8939

See Also
matlab.mock.MethodCallBehavior.when |
matlab.mock.PropertyGetBehavior.when |
matlab.mock.PropertySetBehavior.when | matlab.mock.TestCase |
matlab.mock.actions.AssignOutputs

Introduced in R2017a

1 Alphabetical List

1-8940

repeat
Class: matlab.mock.actions.ThrowException
Package: matlab.mock.actions

Repeat same action multiple times

Syntax
repeat(n,action)

Description
repeat(n,action) repeats the same action multiple times.

Input Arguments
n — Times to repeat
integer

Number of times to repeat action, specified as an integer.
Example: 5

action — Defined action
instance of matlab.mock.actions.ThrowException

Defined action, specified as an instance of matlab.mock.actions.ThrowException.
Example: ThrowException
Example: ThrowException(MException('Account:deposit:Negative','Deposit
amount must be positive.'))

Examples

 repeat

1-8941

Throwing Repeated Exceptions for Mock Method Calls

Create a mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"isOpen");

Specify behavior.

import matlab.mock.actions.ThrowException
import matlab.mock.actions.AssignOutputs
when(withExactInputs(behavior.isOpen),then(repeat(2,ThrowException), ...
 then(AssignOutputs(false))));

Use the mock.

isAccountOpen = mock.isOpen

Error using matlab.mock.internal.MockContext>mockMethodCallback (line 663)
The following method call was specified to throw an exception:
 isOpen([1×1 matlab.mock.classes.Mock])

Error in matlab.mock.internal.MockContext>@(data)mockMethodCallback(data,catalog) (line 282)
 methodCallback = @(data)mockMethodCallback(data, catalog);

isAccountOpen = mock.isOpen

Error using matlab.mock.internal.MockContext>mockMethodCallback (line 663)
The following method call was specified to throw an exception:
 isOpen([1×1 matlab.mock.classes.Mock])

Error in matlab.mock.internal.MockContext>@(data)mockMethodCallback(data,catalog) (line 282)
 methodCallback = @(data)mockMethodCallback(data, catalog);

isAccountOpen = mock.isOpen

isAccountOpen =

 logical

1 Alphabetical List

1-8942

 0

Tips
• If you repeat an action, and do not follow it with a call to the then method, the mock

continues to return the repeated value. For example, consider the following mock of a
bank account class.

import matlab.mock.actions.ThrowException
testCase = matlab.mock.TestCase.forInteractiveUse;
[mock, behavior] = testCase.createMock('AddedProperties',"IsJointAccount");

If you repeat an action to throw an exception twice, the framework continues to throw
an exception in the following code, which goes on to get the property value a third
time.

when(get(behavior.IsJointAccount),then(repeat(2,ThrowException)));
tf = mock.IsJointAccount
tf = mock.IsJointAccount
tf = mock.IsJointAccount

But the following code throws an exception twice and the returns false.

import matlab.mock.actions.AssignOutputs
when(get(behavior.IsJointAccount),then(repeat(2,ThrowException), ...
 then(AssignOutputs(false))));
tf = mock.IsJointAccount
tf = mock.IsJointAccount
tf = mock.IsJointAccount

See Also
Introduced in R2017a

 repeat

1-8943

then
Class: matlab.mock.actions.ThrowException
Package: matlab.mock.actions

Specify action

Syntax
then(action1)
then(action1,action2)

Description
then(action1) specifies an action for mock object interactions.

then(action1,action2) specifies an action and a subsequent action for mock object
interactions.

Input Arguments
action1 — Defined action
instance of matlab.mock.actions.ThrowException

Defined action, specified as an instance of matlab.mock.actions.ThrowException.
Example: ThrowException
Example: ThrowException(MException('Account:deposit:Negative','Deposit
amount must be positive.'))

action2 — Second defined action
instance of matlab.mock.actions.ThrowException | instance of
matlab.mock.actions.AssignOutputs | instance of
matlab.mock.actions.Invoke | instance of
matlab.mock.actions.ReturnStoredValue | instance of
matlab.mock.actions.StoreValue

1 Alphabetical List

1-8944

Second defined action, specified as an instance of
matlab.mock.actions.ThrowException, matlab.mock.actions.AssignOutputs,
matlab.mock.actions.Invoke, matlab.mock.actions.ReturnStoredValue, or
matlab.mock.actions.StoreValue.
Example: ThrowException
Example: AssignOutputs(7,13,42)

Examples

Throw Exceptions for Mock Method Calls

Create a mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"isOpen");

Specify behavior.

import matlab.mock.actions.ThrowException
import matlab.mock.actions.AssignOutputs
when(withExactInputs(behavior.isOpen),then(ThrowException,AssignOutputs(false)));

Use the mock.

isAccountOpen = mock.isOpen

Error using matlab.mock.internal.MockContext>mockMethodCallback (line 663)
The following method call was specified to throw an exception:
 isOpen([1×1 matlab.mock.classes.Mock])

Error in matlab.mock.internal.MockContext>@(data)mockMethodCallback(data,catalog) (line 282)
 methodCallback = @(data)mockMethodCallback(data, catalog);

Use the mock.

isAccountOpen = mock.isOpen

isAccountOpen =

 logical

 then

1-8945

 0

Tips
• Each call to then accepts up to two actions. To specify more subsequent actions, use

multiple calls to then. For example, to specify three actions use
then(action1,then(action2,action3)).

See Also
Introduced in R2017a

1 Alphabetical List

1-8946

matlab.mock.AnyArguments class
Package: matlab.mock

Match any number of arguments

Description
Use the AnyArguments class to match any number of arguments when specifying mock
behavior or qualifying mock interactions.

Construction
AnyArguments matches an unlimited, unspecified number of arguments, including zero.
When defining mock behavior or qualifying mock interactions, specify AnyArguments as
the last argument in the argument list.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Match Any Number of Arguments

Match any number of arguments.

import matlab.mock.AnyArguments
import matlab.mock.actions.ThrowException

testCase = matlab.mock.TestCase.forInteractiveUse;

% Create a mock for a bank account class
[saboteurAccount,behavior] = testCase.createMock('AddedMethods',"deposit");

 matlab.mock.AnyArguments class

1-8947

% Define behavior to throw exception with any input argument
when(behavior.deposit(AnyArguments),ThrowException)

% All of the following interactions throw an exception:
saboteurAccount.deposit;
saboteurAccount.deposit(-10);
saboteurAccount.deposit(10);
saboteurAccount.deposit('a','b','c');

Alternatives
The AnyArguments class is functionally similar to using the withAnyInputs method of
the matlab.mock.MethodCallBehavior class. For example, the following code blocks
are similar.

% Using the AnyArguments class
import matlab.mock.AnyArguments;
testCase.verifyCalled(behavior.myMethod(AnyArguments));

% Using the withAnyInputs method
testCase.verifyCalled(withAnyInputs(behavior.myMethod))

However, AnyArguments requires that the mock is the first input argument, and
withAnyInputs does not. The MethodCallBehavior class provides additional methods
to specify behavior and record interactions, such as specification of exact inputs or a
number of outputs.

See Also
matlab.mock.TestCase

Introduced in R2017a

1 Alphabetical List

1-8948

matlab.mock.constraints.Occurred class
Package: matlab.mock.constraints

Constraint qualifying mock object interactions

Description
The Occurred constraint qualifies the occurrence of one or more mock object
interactions. It produces a qualification failure for any actual-value array that specifies at
least one interaction that did not occur. The actual value must be an array of
MethodCallBehavior, PropertyGetBehavior, or PropertySetBehavior objects
that all refer to the same mock object.

Use the Occurred constraint to qualify any combination of method calls, property
accesses, or property modifications.

By default, the constraint qualifies that all interactions occurred at least once and in any
order. The RespectingOrder name-value pair enables qualification that the interactions
occurred in the specified order.

Construction
constraint = matlab.mock.constraints.Occurred provides a constraint that
determines if all specified interactions occurred.

constraint = matlab.mock.constraints.Occurred('RespectingOrder',tf)
provides a constraint that respects the order of occurrence of the specified interactions.

Input Arguments
tf — Respect order of interactions
false (default) | true

Whether to respect the order of interactions, specified as false or true. By default, the
constraint does not require that interactions occur in a specified order.

 matlab.mock.constraints.Occurred class

1-8949

Data Types: logical

Properties
RespectOrder — Respects order of interactions
false (default) | true

This property is read-only.

Whether the constraint respects the order of interactions, stored as false or true. The
RespectOrder property is false by default, but can be set to true during construction
of the constraint by using the 'RespectingOrder' name-value pair.
Data Types: logical

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Qualify Mock Interactions

Create a mock for a person class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[fakePerson,behavior] = testCase.createMock("AddedProperties",["Name","Age"], ...
 "AddedMethods","speak");

Use the mock by calling the speak method, accessing the Age property, and setting the
Name property.

fakePerson.speak("hello");
age = fakePerson.Age;
fakePerson.Name = "Zed";

Verify that a call to the speak method with the input "hello" occurred.

1 Alphabetical List

1-8950

import matlab.mock.constraints.Occurred;
testCase.verifyThat(behavior.speak("hello"),Occurred)

Verification passed.

Verify that the Age property was accessed, the speak method was called with "hello",
and the Name property was set to "Zed".

testCase.verifyThat([get(behavior.Age), ...
 behavior.speak("hello"), ...
 behavior.Name.setToValue("Zed")],Occurred)

Verification passed.

Repeat the verification but require the constraint is satisfied only if the interactions
occurred in the specified order. This test fails because the speak method was called
before the Age property was set.

testCase.verifyThat([get(behavior.Age), ...
 behavior.speak("hello"), ...
 behavior.Name.setToValue("Zed")],Occurred('RespectingOrder',true))

Verification failed.

 Framework Diagnostic:

 Occurred failed.
 --> All specified interactions occurred.
 --> The interactions did not occur in the specified order.
 Actual order:
 speak([1×1 matlab.mock.classes.Mock], "hello")
 <Mock>.Age
 <Mock>.Name = "Zed"

 Specified interactions:
 1×3 heterogeneous InteractionBehavior (PropertyGetBehavior, MethodCallBehavior, PropertySetBehavior) array with no properties.

 <Mock>.Age
 [...] = speak(<Mock>, "hello")
 <Mock>.Name = "Zed"

Repeat the verification and specify interactions should occur in a different order.

testCase.verifyThat([behavior.speak("hello"), ...
 get(behavior.Age), ...
 behavior.Name.setToValue("Zed")],Occurred('RespectingOrder',true))

 matlab.mock.constraints.Occurred class

1-8951

Verification passed.

See Also
matlab.mock.MethodCallBehavior | matlab.mock.PropertyGetBehavior |
matlab.mock.PropertySetBehavior | matlab.mock.TestCase

Introduced in R2018b

1 Alphabetical List

1-8952

matlab.mock.constraints.WasAccessed class
Package: matlab.mock.constraints

Constraint determining property get access

Description
The WasAccessed constraint produces a qualification failure if an actual value is not a
PropertyBehavior instance, or if the property that corresponds to the
PropertyBehavior was not accessed the specified number of times.

The number of times a property is accessed includes the number of times that MATLAB
implicitly accesses the property. For example, if you display a mock object, MATLAB
accesses the object properties to display their values.

Construction
constraint = WasAccessed provides a constraint that determines the property get
access. If a property was accessed at least once, the constraint is satisfied. To qualify that
a property was not accessed, negate the WasAccessed constraint with the tilde (~)
operator.

constraint = WasAccessed('WithCount',n) provides a constraint that is satisfied
when a property was accessed exactly n times.

If you negate WasAccessed with this syntax, if the property was not accessed exactly n
times, the constraint passes. For example, if a property was accessed 4 times,
~WasAccessed('WithCount',3) passes and ~WasAccessed('WithCount',4) fails.

Input Arguments
n — Number of times of property get access
integer

Number of times of property get access, specified as an integer.

 matlab.mock.constraints.WasAccessed class

1-8953

Properties
Count — Property access count
integer

Property access count, returned as an integer. This property is read-only once the
constraint is constructed. You can specify it during constraint construction.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Qualify Mock Property Get Access

Create a mock for a person class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[fakePerson,behavior] = testCase.createMock('AddedProperties',["Name" "Age"]);
fakePerson.Name = 'David';
fprintf(1,'The person''s name is %s.\n',fakePerson.Name);

The person's name is David.

Construct passing cases.

import matlab.mock.constraints.WasAccessed
testCase.verifyThat(behavior.Name,WasAccessed)

Interactive verification passed.

testCase.verifyThat(behavior.Age,~WasAccessed)

Interactive verification passed.

testCase.verifyThat(behavior.Name,WasAccessed('WithCount',1))

Interactive verification passed.

1 Alphabetical List

1-8954

Construct failing cases.

testCase.verifyThat(behavior.Name,~WasAccessed)

Interactive verification failed.

Framework Diagnostic:

Negated WasAccessed failed.
--> Property 'Name' was unexpectedly accessed 1 time(s).

Specified property access:
 PropertyGetBehavior
 <Mock>.Name

testCase.verifyThat(behavior.Age,WasAccessed)

Interactive verification failed.

Framework Diagnostic:

WasAccessed failed.
--> Property 'Age' was never accessed.

Specified property access:
 PropertyGetBehavior
 <Mock>.Age

testCase.verifyThat(behavior.Name,WasAccessed('WithCount',5))

Interactive verification failed.

Framework Diagnostic:

WasAccessed failed.
--> Property 'Name' was not accessed the expected number of times.

 Actual property access count:
 1
 Expected property access count:
 5

Specified property access:

 matlab.mock.constraints.WasAccessed class

1-8955

 PropertyGetBehavior
 <Mock>.Name

See Also
matlab.mock.PropertyBehavior | matlab.mock.TestCase

Introduced in R2017a

1 Alphabetical List

1-8956

matlab.mock.constraints.WasCalled class
Package: matlab.mock.constraints

Constraint determining method call

Description
The WasCalled constraint produces a qualification failure if an actual value is not a
MethodCallBehavior instance, or if the method that corresponds to the
MethodCallBehavior was not called the specified number of times.

Construction
constraint = WasCalled provides a constraint that determines a method call. If a
method was called at least once, the constraint is satisfied. To qualify that a method was
not called, negate the WasCalled constraint with the tilde (~) operator.

constraint = WasCalled('WithCount',n) provides a constraint that is satisfied
when a method is called exactly n times.

If you negate WasCalled with this syntax, if the method was not called exactly n times,
the constraint passes. For example, if a method was called four times,
~WasCalled('WithCount',3) passes and ~WasCalled('WithCount',4) fails.

Input Arguments
n — Number of method calls
integer

Number of method calls, specified as an integer.

 matlab.mock.constraints.WasCalled class

1-8957

Properties
Count — Method call count
integer

Method call count, returned as an integer. This property is read-only. You can specify it
during constraint construction.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Qualify Mock Method Calls

Create a mock for a bank account class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[fakeAccount,behavior] = testCase.createMock('AddedMethods',"deposit");

Use the mock account.

fakeAccount.deposit(10);
fakeAccount.deposit(20);
fakeAccount.deposit(10);

Construct passing cases.

import matlab.mock.constraints.WasCalled
testCase.verifyThat(behavior.deposit(10),WasCalled)

Interactive verification passed.

testCase.verifyThat(behavior.deposit(10),WasCalled('WithCount',2))

Interactive verification passed.

import matlab.unittest.constraints.IsGreaterThan
testCase.verifyThat(behavior.deposit(IsGreaterThan(100)),~WasCalled)

1 Alphabetical List

1-8958

Interactive verification passed.

Construct failing cases.

testCase.verifyThat(behavior.deposit(100),WasCalled);

Interactive verification failed.

Framework Diagnostic:

WasCalled failed.
--> Method 'deposit' was not called with the specified signature.
--> Observed method call(s) with any signature:
 deposit([1×1 matlab.mock.classes.Mock], 10)
 deposit([1×1 matlab.mock.classes.Mock], 20)
 deposit([1×1 matlab.mock.classes.Mock], 10)

Specified method call:
 MethodCallBehavior
 [...] = deposit(<Mock>, 100)

testCase.verifyThat(behavior.deposit(20),WasCalled('WithCount',2))

Interactive verification failed.

Framework Diagnostic:

WasCalled failed.
--> Method 'deposit' was not called the expected number of times with the specified signature.

 Actual method call count:
 1
 Expected method call count:
 2
--> Observed method call(s) with any signature:
 deposit([1×1 matlab.mock.classes.Mock], 10)
 deposit([1×1 matlab.mock.classes.Mock], 20)
 deposit([1×1 matlab.mock.classes.Mock], 10)

Specified method call:
 MethodCallBehavior
 [...] = deposit(<Mock, 20)

testCase.verifyThat(behavior.deposit(IsGreaterThan(50)),WasCalled)

 matlab.mock.constraints.WasCalled class

1-8959

Interactive verification failed.

Framework Diagnostic:

WasCalled failed.
--> Method 'deposit' was not called with the specified signature.
--> Observed method call(s) with any signature:
 deposit([1×1 matlab.mock.classes.Mock], 10)
 deposit([1×1 matlab.mock.classes.Mock], 20)
 deposit([1×1 matlab.mock.classes.Mock], 10)

Specified method call:
 MethodCallBehavior
 [...] = deposit(<Mock>, <IsGreaterThan constraint>)

See Also
matlab.mock.MethodCallBehavior | matlab.mock.TestCase

Introduced in R2017a

1 Alphabetical List

1-8960

matlab.mock.constraints.WasSet class
Package: matlab.mock.constraints

Constraint determining property set interaction

Description
The WasSet constraint produces a qualification failure if an actual value is not a
PropertyBehavior instance, or if the property that corresponds to the
PropertyBehavior was not set the specified number of times.

Construction
constraint = WasSet provides a constraint that determines property set interaction. If
a property value was set at least once, the constraint is satisfied. To qualify that a
property was not set, negate the WasSet constraint with the tilde (~) operator.

constraint = WasSet(Name,Value) provides a constraint with additional options
specified by one or more Name,Value pair arguments. For example,
WasSet('ToValue',42) constructs a constraint that is satisfied if a property value is
set to 42, and WasSet('ToValue',42,'WithCount',3) constructs a constraint that is
satisfied if a property value is set to 42 exactly 3 times.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ToValue — Specified property value
scalar | vector | matrix | multidimensional array

 matlab.mock.constraints.WasSet class

1-8961

Specified property values, specified as a scalar, vector, matrix, or multidimensional array.
Values can be any data type, and relate to the property specified by behavior.
Example: 'Joe'
Example: [1 2 3;4 5 6]

WithCount — Number of times of property was set
integer

Number of times the property was set, specified as an integer.

If you negate WasSet with this syntax, if the property value was not set exactly n times,
the constraint passes. For example, if a property was set four times,
~WasSet('WithCount',3) passes and ~WasSet('WithCount',4) fails.
Example: 5

Properties
Value — Property values
scalar | vector | matrix | multidimensional array

Property values, specified as a scalar, vector, matrix, or multidimensional array. Values
can be any data type, and relate to the property specified by behavior.

Count — Property set access count
integer

Property set access count, returned as an integer. This property is read-only once the
constraint is constructed. You can specify it during constraint construction.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

1 Alphabetical List

1-8962

Qualify Mock Property Set Access

Create a mock for a person class.
testCase = matlab.mock.TestCase.forInteractiveUse;
[fakePerson,behavior] = testCase.createMock('AddedProperties',["Name" "Age"]);

Use the mock.

fakePerson.Name = 'David';

Construct passing cases.

import matlab.mock.constraints.WasSet
testCase.verifyThat(behavior.Name,WasSet)

Interactive verification passed.

testCase.verifyThat(behavior.Age,~WasSet)

Interactive verification passed.

testCase.verifyThat(behavior.Name,WasSet('ToValue','David'))

Interactive verification passed.

testCase.verifyThat(behavior.Name,WasSet('WithCount',1))

Interactive verification passed.

Construct failing cases.

testCase.verifyThat(behavior.Name,~WasSet)

Interactive verification failed.

Framework Diagnostic:

Negated WasSet failed.
--> Property 'Name' was unexpectedly set to the specified value 1 time(s).
--> Observed property set(s) to any value:
 <Mock>.Name = 'David'

Specified property set:
 PropertySetBehavior
 <Mock>.Name = <IsAnything constraint>

testCase.verifyThat(behavior.Age,WasSet)

Interactive verification failed.

 matlab.mock.constraints.WasSet class

1-8963

Framework Diagnostic:

WasSet failed.
--> Property 'Age' was never set.

Specified property set:
 PropertySetBehavior
 <Mock>.Age = <IsAnything constraint>

testCase.verifyThat(behavior.Name,WasSet('ToValue','Andy'))

Interactive verification failed.

Framework Diagnostic:

WasSet failed.
--> Property 'Name' was not set to the specified value.
--> Observed property set(s) to any value:
 <Mock>.Name = 'David'

Specified property set:
 PropertySetBehavior
 <Mock>.Name = 'Andy'

testCase.verifyThat(behavior.Name,WasSet('WithCount',5))

Interactive verification failed.

Framework Diagnostic:

WasSet failed.
--> Property 'Name' was not set to the specified value the expected number of times.

 Actual property set count:
 1
 Expected property set count:
 5
--> Observed property set(s) to any value:
 <Mock>.Name = 'David'

Specified property set:
 PropertySetBehavior
 <Mock>.Name = <IsAnything constraint>

See Also
matlab.mock.PropertyBehavior | matlab.mock.TestCase

1 Alphabetical List

1-8964

Introduced in R2017a

 matlab.mock.constraints.WasSet class

1-8965

matlab.mock.history Package
Summary of classes representing mock object interaction history

Description
The matlab.mock.history package consists of the following classes.

Classes
matlab.mock.history.MethodCall Representation of mock object

method call
matlab.mock.history.PropertyAccess Representation of mock object

property access
matlab.mock.history.PropertyModification Representation of mock object

property modification
matlab.mock.history.SuccessfulMethodCall Representation of successful

mock object method call
matlab.mock.history.SuccessfulPropertyAccess Representation of successful

mock object property access
matlab.mock.history.SuccessfulPropertyModification Representation of successful

mock object property
modification

matlab.mock.history.UnsuccessfulMethodCall Representation of unsuccessful
mock object method call

matlab.mock.history.UnsuccessfulPropertyAccess Representation of unsuccessful
mock object property access

matlab.mock.history.UnsuccessfulPropertyModification Representation of unsuccessful
mock object property
modification

See Also
matlab.mock.InteractionHistory

Introduced in R2018a

1 Alphabetical List

1-8966

matlab.mock.history.MethodCall class
Package: matlab.mock.history
Superclasses:

Representation of mock object method call

Description
A MethodCall instance represents a call to a mock object method. The framework
constructs instances of the class, so there is no need to construct this class directly.

Properties
Name — Name of mock object method
string scalar

This property is read-only.

Name of the mock object method called during an interaction, returned as a string scalar.

Inputs — Inputs passed to mock object method
cell vector

This property is read-only.

Inputs passed to mock object method, returned as a cell vector.

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

Introduced in R2018a

 matlab.mock.history.MethodCall class

1-8967

matlab.mock.history.PropertyAccess class
Package: matlab.mock.history
Superclasses:

Representation of mock object property access

Description
A PropertyAccess instance represents the access of a mock object property value. The
framework constructs instances of the class, so there is no need to construct this class
directly.

Properties
Name — Name of mock object property
string scalar

This property is read-only.

Name of the mock object property involved in an interaction, returned as a string scalar.

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

Introduced in R2018a

1 Alphabetical List

1-8968

matlab.mock.history.PropertyModification
class
Package: matlab.mock.history
Superclasses:

Representation of mock object property modification

Description
A PropertyModification instance represents the modification of a mock object
property value. The framework constructs instances of the class, so there is no need to
construct this class directly.

Properties
Name — Name of mock object property
string scalar

This property is read-only.

Name of the mock object property involved in an interaction, returned as a string scalar.

Value — Value assigned to mock object property
scalar | array

This property is read-only.

Value assigned to mock object property, returned as a scalar or an array. Value can have
any data type.

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

 matlab.mock.history.PropertyModification class

1-8969

Introduced in R2018a

1 Alphabetical List

1-8970

matlab.mock.history.SuccessfulMethodCall
class
Package: matlab.mock.history
Superclasses:

Representation of successful mock object method call

Description
A SuccessfulMethodCall instance represents a call to a mock object method that ran
to completion. The framework constructs instances of the class, so there is no need to
construct this class directly.

Properties
Name — Name of mock object method
string scalar

This property is read-only.

Name of the mock object method called during an interaction, returned as a string scalar.

Inputs — Inputs passed to mock object method
cell vector

This property is read-only.

Inputs passed to mock object method, returned as a cell vector.

Outputs — Outputs returned from mock object method
cell vector

This property is read-only.

Outputs returned from a mock object method, returned as a cell vector.

 matlab.mock.history.SuccessfulMethodCall class

1-8971

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

Introduced in R2018a

1 Alphabetical List

1-8972

matlab.mock.history.SuccessfulPropertyAcce
ss class
Package: matlab.mock.history
Superclasses:

Representation of successful mock object property access

Description
A SuccessfulPropertyAccess instance represents the successful access of a mock
object property value. The framework constructs instances of the class, so there is no
need to construct this class directly.

Properties
Name — Name of mock object property
string scalar

This property is read-only.

Name of the mock object property involved in an interaction, returned as a string scalar.

Value — Return value of mock object property
scalar | array

This property is read-only.

Return value of the mock object property, returned as a scalar or an array. Value can
have any data type.

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

 matlab.mock.history.SuccessfulPropertyAccess class

1-8973

Introduced in R2018a

1 Alphabetical List

1-8974

matlab.mock.history.SuccessfulPropertyModif
ication class
Package: matlab.mock.history
Superclasses:

Representation of successful mock object property modification

Description
A SuccessfulPropertyModification instance represents the successful modification
of a mock object property value. The framework constructs instances of the class, so
there is no need to construct this class directly.

Properties
Name — Name of mock object property
string scalar

This property is read-only.

Name of the mock object property involved in an interaction, returned as a string scalar.

Value — Value assigned to mock object property
scalar | array

This property is read-only.

Value assigned to mock object property, returned as a scalar or an array. Value can have
any data type.

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

 matlab.mock.history.SuccessfulPropertyModification class

1-8975

Introduced in R2018a

1 Alphabetical List

1-8976

matlab.mock.history.UnsuccessfulMethodCal
l class
Package: matlab.mock.history
Superclasses:

Representation of unsuccessful mock object method call

Description
An UnsuccessfulMethodCall instance represents a call to a mock object method that
threw an exception. The framework constructs instances of the class, so there is no need
to construct this class directly.

Properties
Name — Name of mock object method
string scalar

This property is read-only.

Name of the mock object method called during an interaction, returned as a string scalar.

Inputs — Inputs passed to mock object method
cell vector

This property is read-only.

Inputs passed to mock object method, returned as a cell vector.

Exception — Exception produced by mock object interaction
scalar MException object

This property is read-only.

Exception produced by mock object interaction, returned as a scalar MException object.

 matlab.mock.history.UnsuccessfulMethodCall class

1-8977

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

Introduced in R2018a

1 Alphabetical List

1-8978

matlab.mock.history.UnsuccessfulPropertyA
ccess class
Package: matlab.mock.history
Superclasses:

Representation of unsuccessful mock object property access

Description
An UnsuccessfulPropertyAccess instance represents the access of a mock object
property that threw an exception. The framework constructs instances of the class, so
there is no need to construct this class directly.

Properties
Name — Name of mock object property
string scalar

This property is read-only.

Name of the mock object property involved in an interaction, returned as a string scalar.

Exception — Exception produced by mock property access
scalar MException object

This property is read-only.

Exception produced by mock property access, returned as a scalar MException object.

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

Introduced in R2018a

 matlab.mock.history.UnsuccessfulPropertyAccess class

1-8979

matlab.mock.history.UnsuccessfulPropertyM
odification class
Package: matlab.mock.history
Superclasses:

Representation of unsuccessful mock object property modification

Description
An UnsuccessfulPropertyModification instance represents the modification of a
mock object property value that threw an exception. The framework constructs instances
of the class, so there is no need to construct this class directly.

Properties
Name — Name of mock object property
string scalar

This property is read-only.

Name of the mock object property involved in an interaction, returned as a string scalar.

Value — Value assigned to mock object property
scalar | array

This property is read-only.

Value assigned to mock object property, returned as a scalar or an array. Value can have
any data type.

Exception — Exception produced by mock property modification
scalar MException object

This property is read-only.

1 Alphabetical List

1-8980

Exception produced by mock property modification, returned as a scalar MException
object.

See Also
matlab.mock.InteractionHistory.forMock | matlab.mock.history

Introduced in R2018a

 matlab.mock.history.UnsuccessfulPropertyModification class

1-8981

matlab.mock.InteractionHistory class
Package: matlab.mock

Interface for mock object interaction history

Description
matlab.mock.InteractionHistory is the interface for representing interactions with
mock objects. Interactions include method calls, property modifications, and property
accesses. The framework constructs instances of the class, so there is no need to
construct it directly.

Properties
Name — Method or property name
string scalar

This property is read-only.

Method or property name, returned as a string scalar. Name indicates the mock object
method or property that was involved in the interaction.

Methods
forMock Return history from mock object

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.mock.history

1 Alphabetical List

1-8982

Introduced in R2018a

 matlab.mock.InteractionHistory class

1-8983

matlab.mock.InteractionHistory.forMock
Class: matlab.mock.InteractionHistory
Package: matlab.mock

Return history from mock object

Syntax
history = matlab.mock.InteractionHistory.forMock(mock)

Description
history = matlab.mock.InteractionHistory.forMock(mock) returns the history
from a mock object. history is an array of matlab.mock.InteractionHistory
objects. Each element in history corresponds to one method call, property access, or
property modification. The array elements are ordered, with the first element indicating
the first recorded interaction. This method returns interactions with publicly visible
methods and properties only. For example, the following interactions are not recorded:

• Calls to Hidden methods
• Calls to Sealed superclass methods
• Accesses or modifications of concrete superclass properties

Input Arguments
mock — Mock to return history
mock object

Mock to return history of interactions, specified as a mock object.

Examples

1 Alphabetical List

1-8984

Obtain History of Mock Interactions

Construct a mock with a computeValue method and two properties. Assign a default
value of false to Prop2.

tc = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = tc.createMock(...
 'AddedMethods',{'computeValue'}, ...
 'AddedProperties',{'Prop1','Prop2'}, ...
 'DefaultPropertyValues',struct('Prop2',false));

Set up the behavior of the computeValue method to return the value 42, regardless of
input values.

import matlab.mock.actions.AssignOutputs;
when(withAnyInputs(behavior.computeValue),AssignOutputs(42));

Interact with the mock. First call the computeValue method. Then display the value of
Prop2. Finally, set the value of Prop1.

n = mock.computeValue('hello');
mock.Prop2
mock.Prop1 = 13;

ans =

 logical

 0

Obtain the interaction history for the mock.

h = matlab.mock.InteractionHistory.forMock(mock)

h =

 1×3 heterogeneous InteractionHistory (SuccessfulMethodCall, SuccessfulPropertyAccess, SuccessfulPropertyModification) array with properties:

 Name

Interaction summary:
 computeValue([1×1 matlab.mock.classes.Mock], 'hello')
 <Mock>.Prop2
 <Mock>.Prop1 = 13

Examine the first InteractionHistory object. The method was called with the mock
object and the character vector 'hello' as inputs. The method output the value 42.

 matlab.mock.InteractionHistory.forMock

1-8985

h(1)

ans =

 SuccessfulMethodCall with properties:

 Name: "computeValue"
 Inputs: {[1×1 matlab.mock.classes.Mock] 'hello'}
 Outputs: {[42]}

Interaction summary:
 computeValue([1×1 matlab.mock.classes.Mock], 'hello')

Alternatives
You can obtain the same history of interactions using the getMockHistory method on a
matlab.mock.TestCase instance. For example, if you have a matlab.mock.TestCase
instance tc, and a mock object mock, the following method calls are equivalent.

h = matlab.mock.InteractionHistory.forMock(mock);
h = tc.getMockHistory(mock);

However, you do not need access to the matlab.mock.TestCase instance to use the
forMock method.

See Also
matlab.mock.history

Introduced in R2018a

1 Alphabetical List

1-8986

matlab.mock.MethodCallBehavior class
Package: matlab.mock

Specify mock object method behavior and qualify method calls

Description
Use the MethodCallBehavior object to specify behavior for a mock object method and
to qualify method calls.

There are several ways to define behavior for a mock object method.

• Pass a mock object action, such as matlab.mock.actions.AssignOutputs, to the
when method of the MethodCallBehavior class.

• Pass a MethodCallBehavior object to a method of the matlab.mock.TestCase
class, such as assignOutputsWhen.

There are several ways to qualify interactions with the mock object method.

• Pass a mock object constraint, such as matlab.mock.constraints.WasCalled, to
the verifyThat, assertThat, fatalAssertThat, or assumeThat method of the
matlab.unittest.TestCase.

• Pass a MethodCallBehavior object to a method of the matlab.mock.TestCase
class, such as verifyCalled or assumeNotCalled.

Construction
The mocking framework constructs a MethodCallBehavior instance when you call a
method of the mock behavior object.

 matlab.mock.MethodCallBehavior class

1-8987

Methods
when Specify mock object method behavior
withAnyInputs Specify mock object method call with any number of inputs with any

value
withExactInputs Specify mock object method call with only object as input
withNargout Specify mock object method call with defined number of output

arguments

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.mock.TestCase | matlab.mock.constraints.Occurred |
matlab.mock.constraints.WasCalled

Introduced in R2017a

1 Alphabetical List

1-8988

when
Class: matlab.mock.MethodCallBehavior
Package: matlab.mock

Specify mock object method behavior

Syntax
when(behavior,action)

Description
when(behavior,action) specifies the action that a mock object method takes when it
is called with the inputs defined by behavior.

Input Arguments
behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

action — Defined action
instance of matlab.mock.actions.AssignOutputs | instance of
matlab.mock.actions.ThrowException | instance of
matlab.mock.actions.Invoke

Defined action, specified as an instance of matlab.mock.actions.AssignOutputs,
matlab.mock.actions.ThrowException, or matlab.mock.actions.Invoke.
Example: AssignOutputs(7,13,42)

 when

1-8989

Example: ThrowException(MException('Account:deposit:Negative','Deposit
amount must be positive.'))

Examples

Specify Mock Method Behavior

Create a mock for a triangle class. The mock has one method, sideLengths.

import matlab.mock.actions.AssignOutputs;
testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"sideLengths");

Set up behavior. Regardless of the inputs to the sideLengths method, the mock returns
the values 2, 3, and 4.

when(withAnyInputs(behavior.sideLengths),AssignOutputs(2,3,4))

Call the sideLengths method of the mock object.

[a,b,c] = mock.sideLengths

a = 2

b = 3

c = 4

Call the sideLengths method again using different inputs and only two outputs.

[a,b] = mock.sideLengths(13,"inputText")

a = 2

b = 3

See Also
matlab.mock.actions.AssignOutputs | matlab.mock.actions.Invoke |
matlab.mock.actions.ThrowException

1 Alphabetical List

1-8990

Introduced in R2017a

 when

1-8991

withAnyInputs
Class: matlab.mock.MethodCallBehavior
Package: matlab.mock

Specify mock object method call with any number of inputs with any value

Syntax
withAnyInputs(behavior)

Description
withAnyInputs(behavior) specifies a mock object method call with any number of
inputs that can have any value.

Input Arguments
behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: myMockBehavior.myMockedMethod

Examples

Specify Method Call with Any Inputs

Create a mock with a myMethod method.

1 Alphabetical List

1-8992

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"myMethod");

Set up the behavior. Regardless of the inputs to the method, it returns "hello".

testCase.assignOutputsWhen(withAnyInputs(behavior.myMethod),"hello")

Call the method with various inputs.

output = mock.myMethod

output =
"hello"

output = mock.myMethod(123)

output =
"hello"

output = myMethod("abc",mock)

output =
"hello"

Verify that the method was called at least once with some set of inputs.

testCase.verifyCalled(withAnyInputs(behavior.myMethod))

Verification passed.

See Also
matlab.mock.MethodCallBehavior.withExactInputs

Introduced in R2017a

 withAnyInputs

1-8993

withExactInputs
Class: matlab.mock.MethodCallBehavior
Package: matlab.mock

Specify mock object method call with only object as input

Syntax
withExactInputs(behavior)

Description
withExactInputs(behavior) specifies a mock object method call with only the object
as an input.

Input Arguments
behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: myMockBehavior.myMockedMethod

Examples

Specify Method Call with Object Only

Create a mock with a myMethod method.

1 Alphabetical List

1-8994

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',{'myMethod'});

Set up behavior. If the method is called with only the object as input, return "hello".

testCase.assignOutputsWhen(withExactInputs(behavior.myMethod),"hello")

Call the method with only the object as an input.

output = myMethod(mock)

output =
"hello"

Call the method with additional inputs. Since this behavior is not defined, the mock
returns the default value.

output = mock.myMethod(123)

output =

 []

Verify that the method was called at least once with only the object as an input.

testCase.verifyCalled(withExactInputs(behavior.myMethod))

Verification passed.

See Also
matlab.mock.MethodCallBehavior.withAnyInputs

Introduced in R2017a

 withExactInputs

1-8995

withNargout
Class: matlab.mock.MethodCallBehavior
Package: matlab.mock

Specify mock object method call with defined number of output arguments

Syntax
withNargout(n,behavior)

Description
withNargout(n,behavior) specifies a mock object method call with a defined number
of output arguments.

Input Arguments
n — Number of outputs
integer

Number of outputs from mock object method, specified as an integer.
Example: 3

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: myMockBehavior.myMockedMethod

1 Alphabetical List

1-8996

Examples

Specify Method Call with Specific Number of Outputs

Create a mock for a triangle class.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mockQuad,behavior] = testCase.createMock('AddedMethods',"sideLengths");

Set up behavior. If the sideLengths method is called with only the object as input and
with one output, then return an array of three values. If it is called with only the object as
input and with three outputs, then return the three values. Otherwise, return the default
value of an empty array.

import matlab.mock.actions.AssignOutputs
when(withNargout(1,withExactInputs(behavior.sideLengths)), ...
 AssignOutputs([1 2 3]))
when(withNargout(3,withExactInputs(behavior.sideLengths)), ...
 AssignOutputs(1,2,3))

Call the sideLengths method with only the object as an input and one output.

len = mockQuad.sideLengths

len = 1×3

 1 2 3

Verify that the sideLengths method was called at least once with one output argument.

import matlab.mock.constraints.WasCalled
testCase.verifyThat(withNargout(1, ...
 withExactInputs(behavior.sideLengths)),WasCalled)

Verification passed.

Verify that the sideLengths method was not called with three output arguments.

testCase.verifyThat(withNargout(3, ...
 withExactInputs(behavior.sideLengths)),~WasCalled)

Verification passed.

 withNargout

1-8997

See Also
Introduced in R2017a

1 Alphabetical List

1-8998

matlab.mock.PropertyBehavior class
Package: matlab.mock

Specify mock object property behavior and qualify interactions

Description
Use the PropertyBehavior class to specify mock object property behavior and qualify
interactions.

There are several ways to qualify interactions with mock object properties.

• Pass the PropertyBehavior instance to a method of the matlab.mock.TestCase,
such as verifyAccessed or assumeNotSet.

• Pass the PropertyBehavior instance and a mock object constraint, such as
matlab.mock.constraints.WasAccessed, to the verifyThat, assertThat,
fatalAssertThat, or assumeThat method of the matlab.unittest.TestCase
class.

To define behavior for a mock object property, you first need a PropertyGetBehavior
or PropertySetBehavior instance. To create one of these instances, call a
PropertyBehavior method. For more information on defining property behavior, see
matlab.mock.PropertyGetBehavior or matlab.mock.PropertySetBehavior.

Construction
The mocking framework constructs a PropertyBehavior instance when you access a
property on the mock behavior object.

 matlab.mock.PropertyBehavior class

1-8999

Methods
get Construct object to define mock property get behavior
setToValue Construct object to define behavior when mocked property is set to specific

value
set Construct object to define mock property set behavior

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.mock.PropertyGetBehavior | matlab.mock.PropertySetBehavior |
matlab.mock.constraints.Occurred | matlab.mock.constraints.WasAccessed
| matlab.mock.constraints.WasSet

Introduced in R2017a

1 Alphabetical List

1-9000

get
Class: matlab.mock.PropertyBehavior
Package: matlab.mock

Construct object to define mock property get behavior

Syntax
getBehavior = get(behavior)

Description
getBehavior = get(behavior) constructs a PropertyGetBehavior object to define
mock property get behavior. Typically you use the get method to construct the
PropertyGetBehavior implicitly when you define mock behavior.

Input Arguments
behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: myMockBehavior.MyProperty

Examples

Define Behavior with PropertyGetBehavior Object

Create a mock for a person class with a Name property.

 get

1-9001

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"Name");

Create a PropertyGetBehavior and set up the behavior. The mock returns "David"
when you get the value of the Name property.

getBehavior = get(behavior.Name);
testCase.assignOutputsWhen(getBehavior,"David")

Alternatively, you can create the PropertyGetBehavior object implicitly with the
behavior definition.

testCase.assignOutputsWhen(get(behavior.Name),"David")

Access the Name property.

name = mock.Name

name =
"David"

See Also
matlab.mock.PropertyGetBehavior

Introduced in R2017a

1 Alphabetical List

1-9002

setToValue
Class: matlab.mock.PropertyBehavior
Package: matlab.mock

Construct object to define behavior when mocked property is set to specific value

Syntax
setBehavior = setToValue(behavior,value)

Description
setBehavior = setToValue(behavior,value) constructs a
PropertySetBehavior object to define behavior when mocked property is set to a
specific value. Typically you use the setToValue method to construct the
PropertySetBehavior implicitly when you define mock behavior.

Input Arguments
behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: myMockBehavior.MyProperty

value — Property values
scalar | vector | matrix | multidimensional array | constraint | behavior object

Property values that the mock property must be set to, specified as a scalar, vector,
matrix, multidimensional array, constraint, or behavior object. Values can be any data
type, and relate to the property specified by behavior.
Example: "hello"

 setToValue

1-9003

Example: 42
Example: [1 2 3]
Example: matlab.unittest.constraints.IsLessThan(10)

Examples

Define Behavior for Specific Property Values

Create a mock for a person class with a Name property.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"Name");

Create a PropertySetBehavior object and set up the behavior. The mock throws an
exception when you set the value of the Name property to "David".

setBehavior = setToValue(behavior.Name,"David");
testCase.throwExceptionWhen(setBehavior)

Alternatively, you can create the PropertySetBehavior object implicitly with the
behavior definition.

testCase.throwExceptionWhen(behavior.Name.setToValue("David"))

Set the value of the Name property.

mock.Name = "Andy";
mock.Name = "David";

Error using matlab.mock.internal.MockContext/createMockObject/mockPropertySetCallback (line 420)
The following property set was specified to throw an exception:
 <Mock>.Name = "David"

See Also
matlab.mock.PropertySetBehavior

Introduced in R2017a

1 Alphabetical List

1-9004

set
Class: matlab.mock.PropertyBehavior
Package: matlab.mock

Construct object to define mock property set behavior

Syntax
setBehavior = set(behavior)

Description
setBehavior = set(behavior) constructs a PropertySetBehavior object to define
mock property set behavior. Typically you use the set method to construct the
PropertySetBehavior implicitly when you define mock behavior.

Input Arguments
behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: myMockBehavior.MyProperty

Examples

Define Behavior with PropertySetBehavior Object

Create a mock for a person class with a Name property.

 set

1-9005

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"Name");

Create a PropertySetBehavior object and set up the behavior. The mock throws an
exception when you set the value of the Name property.

setBehavior = set(behavior.Name);
testCase.throwExceptionWhen(setBehavior)

Alternatively, you can create the PropertySetBehavior object implicitly with the
behavior definition.

testCase.throwExceptionWhen(set(behavior.Name))

Set the value of the Name property.

mock.Name = "Andy";

Error using matlab.mock.internal.MockContext/createMockObject/mockPropertySetCallback (line 420)
The following property set was specified to throw an exception:
 <Mock>.Name = "Andy"

See Also
matlab.mock.PropertySetBehavior

Introduced in R2017a

1 Alphabetical List

1-9006

matlab.mock.PropertyGetBehavior class
Package: matlab.mock

Specify mock property get behavior

Description
Use the PropertyGetBehavior class to specify mock object get behavior. There are
several ways to specify get behavior.

• Pass a mock object action, such as matlab.mock.actions.AssignOutputs, to the
when method.

• Pass a PropertyGetBehavior object to a method of the matlab.mock.TestCase
class, such as assignOutputsWhen.

To qualify mock property interactions, see matlab.mock.PropertyBehavior.

Construction
The mocking framework creates a PropertyGetBehavior instance when you call the
matlab.mock.PropertyBehavior.get method. Typically, you construct the
PropertyGetBehavior implicitly. For example,
testCase.assignOutputsWhen(get(behavior.MyProperty),'abc').

Methods
when Specify mock object property access action

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

 matlab.mock.PropertyGetBehavior class

1-9007

See Also
matlab.mock.PropertyBehavior | matlab.mock.TestCase

Introduced in R2017a

1 Alphabetical List

1-9008

when
Class: matlab.mock.PropertyGetBehavior
Package: matlab.mock

Specify mock object property access action

Syntax
when(behavior,action)

Description
when(behavior,action) specifies the action that a mock object property takes when it
is accessed.

Input Arguments
behavior — Behavior of mock
matlab.mock.PropertyGetBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyGetBehavior instance. To
create an instance of matlab.mock.PropertyGetBehavior, call the
matlab.mock.PropertyBehavior.get method with the behavior object.
Example: get(myMockBehavior.MyProperty)

action — Defined action
instance of matlab.mock.actions.ReturnStoredValue | instance of
matlab.mock.actions.ThrowException

Defined action, specified as an instance of
matlab.mock.actions.ReturnStoredValue or
matlab.mock.actions.ThrowException.
Example: ReturnStoredValue

 when

1-9009

Example: ThrowException(MException('Account:deposit:Negative','Deposit
amount must be positive.'))

Examples

Specify Mock Property Access Behavior

Create a mock for a person class. The mock has one property, Name.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"Name");

Set up the behavior. When the property is accessed, return the value "David".

import matlab.mock.actions.AssignOutputs
when(get(behavior.Name),AssignOutputs("David"))

Access the property.

name = mock.Name

name =
"David"

See Also
matlab.mock.PropertyBehavior.get |
matlab.mock.actions.ReturnStoredValue |
matlab.mock.actions.ThrowException

Introduced in R2017a

1 Alphabetical List

1-9010

matlab.mock.PropertySetBehavior class
Package: matlab.mock

Specify mock object set behavior

Description
Use the PropertySetBehavior class to specify mock object set behavior. There are
several ways to specify property set behavior.

• Pass a mock object action, such as matlab.mock.actions.StoreValue, to the
when method.

• Pass a PropertySetBehavior object to a method of the matlab.mock.TestCase
class, such as storeValueWhen.

To qualify mock property interactions, see matlab.mock.PropertyBehavior.

Construction
The mocking framework creates a PropertySetBehavior instance when you call the
matlab.mock.PropertyBehavior.set or
matlab.mock.PropertyBehavior.setToValue method. Typically, you construct the
PropertySetBehavior implicitly. For example,
testCase.throwExceptionWhen(set(behavior.MyProperty)).

Methods
when Specify mock object property set action

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

 matlab.mock.PropertySetBehavior class

1-9011

See Also
matlab.mock.PropertyBehavior | matlab.mock.TestCase

Introduced in R2017a

1 Alphabetical List

1-9012

when
Class: matlab.mock.PropertySetBehavior
Package: matlab.mock

Specify mock object property set action

Syntax
when(behavior,action)

Description
when(behavior,action) specifies the action that a mock object property takes when it
is set.

Input Arguments
behavior — Behavior of mock
matlab.mock.PropertySetBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertySetBehavior instance. To
create an instance of matlab.mock.PropertySetBehavior, call the
matlab.mock.PropertyBehavior.set or
matlab.mock.PropertyBehavior.setToValue method with the behavior object.
Example: set(myMockBehavior.MyProperty)
Example: setToValue(myMockBehavior.MyProperty,13)

action — Defined action
instance of matlab.mock.actions.StoreValue | instance of
matlab.mock.actions.ThrowException

Defined action, specified as an instance of matlab.mock.actions.StoreValue or
matlab.mock.actions.ThrowException.

 when

1-9013

Example: StoreValue
Example: ThrowException(MException('Account:deposit:Negative','Deposit
amount must be positive.'))

Examples

Specify Mock Property Set Behavior

Create a strict mock for a person class. The mock has one property, Name.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"Name",'Strict',true);

Set up the behavior. When the property is set, store the value, and when the property is
accessed, return the value. Without defining this behavior, strict mocks throw an
exception when setting or accessing the property.

import matlab.mock.actions.StoreValue
import matlab.mock.actions.ReturnStoredValue
when(set(behavior.Name),StoreValue)
when(get(behavior.Name),ReturnStoredValue)

Set the property. The property access is implicit because we are displaying the result.

mock.Name = "David"

mock =
 Mock with properties:

 Name: "David"

See Also
matlab.mock.PropertyBehavior.set |
matlab.mock.PropertyBehavior.setToValue |
matlab.mock.actions.StoreValue | matlab.mock.actions.ThrowException

1 Alphabetical List

1-9014

Introduced in R2017a

 when

1-9015

matlab.mock.TestCase class
Package: matlab.mock
Superclasses:

TestCase to write tests with mocking framework

Description
Use the matlab.mock.TestCase class to write tests that use the mocking framework.
The matlab.mock.TestCase derives from the matlab.unittest.TestCase class.

Construction
The testing framework constructs the matlab.mock.TestCase instances.

1 Alphabetical List

1-9016

Methods
assertAccessed Assert that a property was accessed
assertCalled Assert that a method was called with certain input values
assertSet Assert that a property was set
assertNotAccessed Assert that a property was not accessed
assertNotCalled Assert that a method was not called with certain input values
assertNotSet Assert that a property was not set
assignOutputsWhen Define return values for method call or property access
assumeAccessed Assume that a property was accessed
assumeCalled Assume that a method was called with certain input values
assumeSet Assume that a property was set
assumeNotAccessed Assume that a property was not accessed
assumeNotCalled Assume that a method was not called with certain input values
assumeNotSet Assume that a property was not set
clearMockHistory Clear history of mock object interactions
createMock Create mock object
fatalAssertAccessed Fatally assert that a property was accessed
fatalAssertCalled Fatally assert that a method was called with certain input

values
fatalAssertSet Fatally assert that a property was set
fatalAssertNotAccessed Fatally assert that a property was not accessed
fatalAssertNotCalled Fatally assert that a method was not called with certain input

values
fatalAssertNotSet Fatally assert that a property was not set
getMockHistory Return history from mock object
forInteractiveUse Create TestCase for interactive use
returnStoredValueWhen Return stored property value
storeValueWhen Store property value
throwExceptionWhen Throw exception for method call or property interaction
verifyAccessed Verify that a property was accessed
verifyCalled Verify that a method was called with certain input values
verifySet Verify that a property was set
verifyNotAccessed Verify that a property was not accessed
verifyNotCalled Verify that a method was not called with certain input values
verifyNotSet Verify that a property was not set

 matlab.mock.TestCase class

1-9017

Inherited Methods

addTeardown Dynamically add teardown routine
applyFixture Use fixture with TestCase
forInteractiveUse Create TestCase for interactive use
getSharedTestFixtures Provide access to shared test fixtures
log Record diagnostic information
onFailure Dynamically add diagnostics for test failures
run Run TestCase test

Also, the TestCase class inherits methods from these classes:

matlab.unittest.qualifications.Assertable
Qualification to validate preconditions of a
test

matlab.unittest.qualifications.Assumable
Qualification to filter test content

matlab.unittest.qualifications.FatalAssertable
Qualification to abort test execution

matlab.unittest.qualifications.Verifiable
Qualification to produce soft failure
conditions

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Write Test Using Mock

Write a test using a mock.

1 Alphabetical List

1-9018

import matlab.unittest.constraints.IsLessThan;
testCase = matlab.mock.TestCase.forInteractiveUse;

% Create a mock for a bank account class
[mock, behavior] = testCase.createMock('AddedMethods',["deposit" "isOpen"]);

% Set up behavior
testCase.throwExceptionWhen(behavior.deposit(IsLessThan(0)), ...
 MException('Account:deposit:Negative', ...
 'Deposit amount must be positive.'));

% Use mock object
mock.deposit(100);
testCase.verifyError(@() mock.deposit(-10), 'Account:deposit:Negative');

% Passing verifications
testCase.verifyCalled(behavior.deposit(100),...
 'A $100 deposit should have been made.');
testCase.assertNotCalled(behavior.deposit(0));
testCase.assertCalled(behavior.deposit(IsLessThan(0)));

% Failing assertion
testCase.assertCalled(withExactInputs(behavior.isOpen));

See Also
matlab.unittest.TestCase

Topics
“Create Mock Object”
“Specify Mock Object Behavior”
“Qualify Mock Object Interaction”
“Write Test That Uses App Testing and Mocking Frameworks”

Introduced in R2017a

 matlab.mock.TestCase class

1-9019

assertAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Assert that a property was accessed

Syntax
assertAccessed(testcase,behavior,diagnostic)

Description
assertAccessed(testcase,behavior,diagnostic) asserts that a property was
accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9020

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assert Property Access

Assert a property was accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.assertAccessed(behavior.PropertyFoo);
testCase.assertAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should have been accessed.');

Test failing cases.

testCase.assertAccessed(behavior.PropertyBar);

Tips
Use assertion qualifications when the failure condition invalidates the remainder of the
current test content, but does not prevent proper execution of subsequent test methods.
A failure at the assertion point marks the current test method as failed and incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

 assertAccessed

1-9021

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assertAccessed method is functionally equivalent to using the
matlab.mock.constraints.WasAccessed constraint with the assertThat method of
the Assertable class. For example, the following code blocks are functionally
equivalent.

% Using the assertAccessed method
testCase.assertAccessed(behavior.PropertyFoo);

% Using the WasAccessed constraint with assertThat method
import matlab.mock.constraints.WasAccessed;
testCase.assertThat(behavior.PropertyFoo,WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

1 Alphabetical List

1-9022

assertCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Assert that a method was called with certain input values

Syntax
assertCalled(testcase,behavior,diagnostic)

Description
assertCalled(testcase,behavior,diagnostic) asserts that a method was called
with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 assertCalled

1-9023

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assert Method Call

Assert a method was called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',["foo","bar"]);
mock.foo(123);

Test passing cases.

testCase.assertCalled(behavior.foo(123));
testCase.assertCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.');

Test failing cases.

testCase.assertCalled(behavior.foo(456));
testCase.assertCalled(withExactInputs(behavior.bar));

Tips
Use assertion qualifications when the failure condition invalidates the remainder of the
current test content, but does not prevent proper execution of subsequent test methods.
A failure at the assertion point marks the current test method as failed and incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

1 Alphabetical List

1-9024

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assertCalled method is functionally equivalent to using the
matlab.mock.constraints.WasCalled constraint with the assertThat method of
the Assertable class. For example, the following code blocks are functionally
equivalent.

% Using the assertCalled method
testCase.assertCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.')

% Using the WasCalled constraint with assertThat method
import matlab.mock.constraints.WasCalled;
testCase.assertThat(behavior.foo(123),WasCalled, ...
 'Method foo should have been called with input 123.');

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

 assertCalled

1-9025

assertSet
Class: matlab.mock.TestCase
Package: matlab.mock

Assert that a property was set

Syntax
assertSet(testcase,behavior,diagnostic)

Description
assertSet(testcase,behavior,diagnostic) asserts that a property was set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can

1 Alphabetical List

1-9026

be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assert Property Set

Assert a property was set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.assertSet(behavior.PropertyFoo);
testCase.assertSet(behavior.PropertyFoo, 'PropertyFoo should have been set.');

Test failing cases.

testCase.assertSet(behavior.PropertyBar);

Tips
Use assertion qualifications when the failure condition invalidates the remainder of the
current test content, but does not prevent proper execution of subsequent test methods.
A failure at the assertion point marks the current test method as failed and incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

 assertSet

1-9027

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assertSet method is functionally equivalent to using the
matlab.mock.constraints.WasSet constraint with the assertThat method of the
Assertable class. For example, the following code blocks are functionally equivalent.

% Using the assertSet method
testCase.assertSet(behavior.PropertyFoo);

% Using the WasSet constraint with assertThat method
import matlab.mock.constraints.WasSet;
testCase.assertThat(behavior.PropertyFoo, WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

1 Alphabetical List

1-9028

assertNotAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Assert that a property was not accessed

Syntax
assertNotAccessed(testcase,behavior,diagnostic)

Description
assertNotAccessed(testcase,behavior,diagnostic) asserts that a property was
not accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 assertNotAccessed

1-9029

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assert Property Access

Assert a property was not accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.assertNotAccessed(behavior.PropertyBar);

Test failing cases.

testCase.assertNotAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should not have been accessed.');

Tips
Use assertion qualifications when the failure condition invalidates the remainder of the
current test content, but does not prevent proper execution of subsequent test methods.
A failure at the assertion point marks the current test method as failed and incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

1 Alphabetical List

1-9030

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assertNotAccessed method is functionally equivalent to using the negated
matlab.mock.constraints.WasAccessed constraint with the assertThat method of
the Assertable class. For example, the following code blocks are functionally
equivalent.

% Using the assertNotAccessed method
testCase.assertNotAccessed(behavior.PropertyBar);

% Using the WasAccessed constraint with assertThat method
import matlab.mock.constraints.WasAccessed;
testCase.assertThat(behavior.PropertyBar,~WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was not accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

 assertNotAccessed

1-9031

assertNotCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Assert that a method was not called with certain input values

Syntax
assertNotCalled(testcase,behavior,diagnostic)

Description
assertNotCalled(testcase,behavior,diagnostic) asserts that a method was not
called with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9032

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assert Method Call

Assert a method was not called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"foo");
mock.foo(123);

Test passing cases.

testCase.assertNotCalled(behavior.foo(456));
testCase.assertNotCalled(withExactInputs(behavior.foo));

Test failing cases.

testCase.assertNotCalled(behavior.foo(123));
testCase.assertNotCalled(behavior.foo(123), ...
 'Method foo should not have been called with input 123.');

Tips
Use assertion qualifications when the failure condition invalidates the remainder of the
current test content, but does not prevent proper execution of subsequent test methods.
A failure at the assertion point marks the current test method as failed and incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

 assertNotCalled

1-9033

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assertNotCalled method is functionally equivalent to using the negated
matlab.mock.constraints.WasCalled constraint with the assertThat method of
the Assertable class. For example, the following code blocks are functionally
equivalent.

% Using the assertNotCalled method
testCase.assertNotCalled(behavior.foo(456), ...
 'Method foo should not have been called with input 456.')

% Using the WasCalled constraint with assertThat method
import matlab.mock.constraints.WasCalled;
testCase.assertThat(behavior.foo(456),~WasCalled, ...
 'Method foo should not have been called with input 456.')

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was not called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

1 Alphabetical List

1-9034

assertNotSet
Class: matlab.mock.TestCase
Package: matlab.mock

Assert that a property was not set

Syntax
assertNotSet(testcase,behavior,diagnostic)

Description
assertNotSet(testcase,behavior,diagnostic) asserts that a property was not
set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 assertNotSet

1-9035

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assert Property Set

Assert a property was not set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.assertNotSet(behavior.PropertyBar);

Test failing cases.

testCase.assertNotSet(behavior.PropertyFoo);
testCase.assertNotSet(behavior.PropertyFoo, ...
 'PropertyFoo should have been set.');

Tips
Use assertion qualifications when the failure condition invalidates the remainder of the
current test content, but does not prevent proper execution of subsequent test methods.
A failure at the assertion point marks the current test method as failed and incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

1 Alphabetical List

1-9036

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assertNotSet method is functionally equivalent to using the negated
matlab.mock.constraints.WasSet constraint with the assertThat method of the
Assertable class. For example, the following code blocks are functionally equivalent.

% Using the assertNotSet method
testCase.assertNotSet(behavior.PropertyBar);

% Using the WasSet constraint with assertThat method
import matlab.mock.constraints.WasSet;
testCase.assertThat(behavior.PropertyBar,~WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was not set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

 assertNotSet

1-9037

assignOutputsWhen
Class: matlab.mock.TestCase
Package: matlab.mock

Define return values for method call or property access

Syntax
assignOutputsWhen(testcase,behavior,A1,...,An)

Description
assignOutputsWhen(testcase,behavior,A1,...,An) defines values to return for a
method called or property accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance |
matlab.mock.PropertyGetBehavior instance

Behavior of mock, specified as a matlab.mock.MethodCallBehavior or a
matlab.mock.PropertyGetBehavior instance. To create an instance of
matlab.mock.MethodCallBehavior, call a method of the behavior object. To create an
instance of matlab.mock.PropertyGetBehavior, call the get method on a property of
the behavior object.
Example: get(behavior.MyMockedProperty)
Example: withExactInputs(behavior.myMockedMethod)

1 Alphabetical List

1-9038

A1,...,An — Defined return values
scalar | vector | matrix | multidimensional array

Defined return values, specified as scalars, vectors, matrices, or multidimensional arrays.
Return values can be any data type, and relate to the property or method specified by
behavior.
Example: "mySpecifiedValue"
Example: 7,13,42
Example: [1 2 3;4 5 6]

Examples

Assign Outputs

Assign outputs.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock, behavior] = testCase.createMock('AddedProperties',"PropertyFoo", ...
 'AddedMethods',"methodBar");
testCase.assignOutputsWhen(get(behavior.PropertyFoo), 'abc');
testCase.assignOutputsWhen(withExactInputs(behavior.methodBar), 1, 2, 3);

% Carry out actions
mock.PropertyFoo
[out1,out2,out3] = mock.methodBar

Alternatives
Using the assignOutputsWhen method is functionally equivalent to using the
matlab.mock.actions.AssignOutputs action with the when method of the
MethodCallBehavior or PropertyGetBehavior class. For example, the following
code blocks are functionally equivalent.

% Using the assignOutputsWhen method
testCase.assignOutputsWhen(get(behavior.PropertyFoo),'abc');
testCase.assignOutputsWhen(withExactInputs(behavior.methodBar),1,2,3);

 assignOutputsWhen

1-9039

% Using the AssignOutputs action with the when function
import matlab.mock.actions.AssignOutputs;
when(get(behavior.PropertyFoo),AssignOutputs('abc'));
when(withExactInputs(behavior.methodBar),AssignOutputs(1,2,3));

However, there is more functionality when you use the AssignOutputs action. For
instance, you can specify different subsequent behavior for the same mocked object
interaction.

See Also
matlab.mock.actions.AssignOutputs

Introduced in R2017a

1 Alphabetical List

1-9040

assumeAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Assume that a property was accessed

Syntax
assumeAccessed(testcase,behavior,diagnostic)

Description
assumeAccessed(testcase,behavior,diagnostic) assumes that a property was
accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 assumeAccessed

1-9041

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assume Property Access

Assume a property was accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.assumeAccessed(behavior.PropertyFoo);
testCase.assumeAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should have been accessed.');

Test failing cases.

testCase.assumeAccessed(behavior.PropertyBar);

Tips
Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered tests,
and the testing framework marks the tests as Incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

1 Alphabetical List

1-9042

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assumeAccessed method is functionally equivalent to using the
matlab.mock.constraints.WasAccessed constraint with the assumeThat method of
the Assumable class. For example, the following code blocks are functionally equivalent.

% Using the assumeAccessed method
testCase.assumeAccessed(behavior.PropertyFoo);

% Using the WasAccessed constraint with assumeThat method
import matlab.mock.constraints.WasAccessed;
testCase.assumeThat(behavior.PropertyFoo,WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

 assumeAccessed

1-9043

assumeCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Assume that a method was called with certain input values

Syntax
assumeCalled(testcase,behavior,diagnostic)

Description
assumeCalled(testcase,behavior,diagnostic) assumes that a method was called
with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9044

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assume Method Call

Assume a method was called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',["foo","bar"]);
mock.foo(123);

Test passing cases.

testCase.assumeCalled(behavior.foo(123));
testCase.assumeCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.');

Test failing cases.

testCase.assumeCalled(behavior.foo(456));
testCase.assumeCalled(withExactInputs(behavior.bar));

Tips
Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered tests,
and the testing framework marks the tests as Incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

 assumeCalled

1-9045

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assumeCalled method is functionally equivalent to using the
matlab.mock.constraints.WasCalled constraint with the assumeThat method of
the Assumable class. For example, the following code blocks are functionally equivalent.

% Using the assumeCalled method
testCase.assumeCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.')

% Using the WasCalled constraint with assumeThat method
import matlab.mock.constraints.WasCalled;
testCase.assumeThat(behavior.foo(123),WasCalled, ...
 'Method foo should have been called with input 123.');

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

1 Alphabetical List

1-9046

assumeSet
Class: matlab.mock.TestCase
Package: matlab.mock

Assume that a property was set

Syntax
assumeSet(testcase,behavior,diagnostic)

Description
assumeSet(testcase,behavior,diagnostic) assumes that a property was set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can

 assumeSet

1-9047

be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assume Property Set

Assume a property was set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.assumeSet(behavior.PropertyFoo);
testCase.assumeSet(behavior.PropertyFoo, 'PropertyFoo should have been set.');

Test failing cases.

testCase.assumeSet(behavior.PropertyBar);

Tips
Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered tests,
and the testing framework marks the tests as Incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

1 Alphabetical List

1-9048

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assumeSet method is functionally equivalent to using the
matlab.mock.constraints.WasSet constraint with the assertThat method of the
Assumable class. For example, the following code blocks are functionally equivalent.

% Using the assertSet method
testCase.assertSet(behavior.PropertyFoo);

% Using the WasSet constraint with assertThat method
import matlab.mock.constraints.WasSet;
testCase.assertThat(behavior.PropertyFoo, WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

 assumeSet

1-9049

assumeNotAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Assume that a property was not accessed

Syntax
assumeNotAccessed(testcase,behavior,diagnostic)

Description
assumeNotAccessed(testcase,behavior,diagnostic) assumes that a property
was not accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9050

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assume Property Access

Assume a property was not accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.assumeNotAccessed(behavior.PropertyBar);

Test failing cases.

testCase.assumeNotAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should not have been accessed.');

Tips
Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered tests,
and the testing framework marks the tests as Incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

 assumeNotAccessed

1-9051

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assumeNotAccessed method is functionally equivalent to using the negated
matlab.mock.constraints.WasAccessed constraint with the assumeThat method of
the Assumable class. For example, the following code blocks are functionally equivalent.

% Using the assumeNotAccessed method
testCase.assumeNotAccessed(behavior.PropertyBar);

% Using the WasAccessed constraint with assumeThat method
import matlab.mock.constraints.WasAccessed;
testCase.assumeThat(behavior.PropertyBar,~WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was not accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

1 Alphabetical List

1-9052

assumeNotCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Assume that a method was not called with certain input values

Syntax
assumeNotCalled(testcase,behavior,diagnostic)

Description
assumeNotCalled(testcase,behavior,diagnostic) assumes that a method was
not called with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 assumeNotCalled

1-9053

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assume Method Call

Assume a method was not called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"foo");
mock.foo(123);

Test passing cases.

testCase.assumeNotCalled(behavior.foo(456));
testCase.assumeNotCalled(withExactInputs(behavior.foo));

Test failing cases.

testCase.assumeNotCalled(behavior.foo(123));
testCase.assumeNotCalled(behavior.foo(123), ...
 'Method foo should not have been called with input 123.');

Tips
Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered tests,
and the testing framework marks the tests as Incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

1 Alphabetical List

1-9054

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assumeNotCalled method is functionally equivalent to using the negated
matlab.mock.constraints.WasCalled constraint with the assumeThat method of
the Assumable class. For example, the following code blocks are functionally equivalent.

% Using the assumeNotCalled method
testCase.assumeNotCalled(behavior.foo(456), ...
 'Method foo should not have been called with input 456.')

% Using the WasCalled constraint with assumeThat method
import matlab.mock.constraints.WasCalled;
testCase.assumeThat(behavior.foo(456),~WasCalled, ...
 'Method foo should not have been called with input 456.')

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was not called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

 assumeNotCalled

1-9055

assumeNotSet
Class: matlab.mock.TestCase
Package: matlab.mock

Assume that a property was not set

Syntax
assumeNotSet(testcase,behavior,diagnostic)

Description
assumeNotSet(testcase,behavior,diagnostic) assumes that a property was not
set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9056

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Assume Property Set

Assume a property was not set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.assumeNotSet(behavior.PropertyBar);

Test failing cases.

testCase.assumeNotSet(behavior.PropertyFoo);
testCase.assumeNotSet(behavior.PropertyFoo,'PropertyFoo should have been set.');

Tips
Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered tests,
and the testing framework marks the tests as Incomplete.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit

 assumeNotSet

1-9057

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the assumeNotSet method is functionally equivalent to using the negated
matlab.mock.constraints.WasSet constraint with the assumeThat method of the
Assumable class. For example, the following code blocks are functionally equivalent.

% Using the assumeNotSet method
testCase.assumeNotSet(behavior.PropertyBar);

% Using the WasSet constraint with assumeThat method
import matlab.mock.constraints.WasSet;
testCase.assumeThat(behavior.PropertyBar,~WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was not set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

1 Alphabetical List

1-9058

clearMockHistory
Class: matlab.mock.TestCase
Package: matlab.mock

Clear history of mock object interactions

Syntax
clearMockHistory(testCase,mock)

Description
clearMockHistory(testCase,mock) clears the history of recorded mock object
interactions. The clearMockHistory method does not clear mock object behaviors. To
clear both interactions and behaviors, create a new mock.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

mock — Mock to clear history
mock object

Mock to clear history of interactions from, specified as a mock object.

Examples

Clear Mock History

Construct a mock with a myMethod method.

 clearMockHistory

1-9059

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock, behavior] = testCase.createMock("AddedMethods","myMethod");

Interact with the mock by calling the method. Then verify that the method was called.

mock.myMethod('abc');
testCase.verifyCalled(behavior.myMethod('abc'))

Verification passed.

View the interaction history.

h = testCase.getMockHistory(mock)

h =

 SuccessfulMethodCall with properties:

 Name: "myMethod"
 Inputs: {[1×1 matlab.mock.classes.Mock] 'abc'}
 Outputs: {[]}

Interaction summary:
 myMethod([1×1 matlab.mock.classes.Mock], 'abc')

Clear the history of the recorded interaction and retest whether the method was called.
The verification now fails.

testCase.clearMockHistory(mock)
testCase.verifyCalled(behavior.myMethod('abc'))

Verification failed.

 Framework Diagnostic:

 verifyCalled failed.
 --> Method 'myMethod' was never called.

 Specified method call:
 MethodCallBehavior
 [...] = myMethod(<Mock>, 'abc')

View the interaction history again. It is empty.

h = testCase.getMockHistory(mock)

1 Alphabetical List

1-9060

h =

 1×0 InteractionHistory array with properties:

 Name

See Also
matlab.mock.history

Introduced in R2018b

 clearMockHistory

1-9061

createMock
Class: matlab.mock.TestCase
Package: matlab.mock

Create mock object

Syntax
[mock,behavior] = createMock(testcase)
[mock,behavior] = createMock(testcase,superclass)
[mock,behavior] = createMock(___ ,Name,Value)

Description
[mock,behavior] = createMock(testcase) creates a mock object and an
associated behavior object.

[mock,behavior] = createMock(testcase,superclass) creates a mock that
derives from the superclass class.

[mock,behavior] = createMock(___ ,Name,Value) creates a mock with additional
options specified by one or more Name,Value pair arguments. You can use this syntax
with any of the arguments from the previous syntaxes.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

superclass — Superclass for mock
scalar meta.class object

1 Alphabetical List

1-9062

Superclass for mock, specified as a scalar meta.class object. The mock object
implements all the abstract properties and methods of this class.
Example: ?MyIterfaceClass
Example: ?MException

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For example, [mock,behavior] = testCase.createMock('AddedProperties',
{'Prop1','Prop2'}) creates a mock and adds the Prop1 and Prop2 properties to it.

AddedMethods — Names of methods to add to mock
string array | cell array of character vectors

Names of methods to add to the mock, specified as a string array or a cell array of
character vectors. Unless the mock is strict or the mock behavior has been defined,
calling these methods on the mock returns an empty array.
Example: ["methodA","methodB","methodC"]
Example: {'method1','method2'}

AddedProperties — Properties to add to mock
string array | cell array of character vectors

Names of properties to add to the mock, specified as a string array or a cell array of
character vectors. If a mock is not strict, you can set and get their values. However, if a
mock is strict, by default MATLAB produces an assertion failure if you set or get a
property value.
Example: "MyProperty"
Example: {'Prop1','Prop2'}

DefaultPropertyValues — Default property values
scalar struct

Default property values, specified as a scalar struct. Use this name-value pair argument
to specify default values for properties implemented by the mock object class. These

 createMock

1-9063

properties include Abstract superclass properties and properties added with the
'AddedProperties' name-value pair argument. Each field refers to the name of a
property implemented on the mock class, and the corresponding value represents the
default value for that property.
Example: struct('PropA',123,'PropB',true)

MockedMethods — Methods to mock
mock all possible methods (default) | string.empty | {} | string array | cellstr

Methods to mock, specified using the method names in a string array or cell array of
character vectors. To specify that no methods are mocked, use an empty value specified
as string.empty, or {}. By default, all methods are mocked.

MockedMethods can include any subset of added methods, abstract superclass methods,
and concrete superclass methods that can be overridden (Sealed attribute value of
false). In general, you include only those methods that you want to stub or spy on.

Specifying MockedMethods enables tests to mock only those methods that are important
to the test case. Limiting the methods that are mocked can improve test performance
when superclasses define many methods.
Example: ["foo", "bar"]
Data Types: char | string | cell

Strict — Indicator if mock is strict
false (default) | true

Indicator if mock is strict, specified as false or true. By default, a mock method returns
an empty array if the behavior is undefined. If you set Strict to true, the framework
produces an assertion failure for undefined behavior for

• All abstract methods and properties of the specified interface.
• Methods added to the mock with the AddedMethods argument.
• Properties added to the mock with the AddedProperties argument.

Data Types: logical

ConstructorInputs — Inputs to pass to superclass constructor
cell array of values

Inputs to pass to the superclass constructor, specified as a cell array of values.

1 Alphabetical List

1-9064

Example: If you construct a mock where you define superclass to be ?MException,
'ConstructorInputs' could be {'My:ID','My message'}.

Output Arguments
mock — Implementation of abstract methods and properties
mock object

Implementation of the abstract methods and properties of the interface specified by the
superclass input, returned as a mock object. If a mock is constructed without defining a
superclass, it does not have an explicit interface.

Note: You cannot save and load mock objects.

behavior — Definition of mock behavior
behavior object

Definition of the mock behavior, returned as a behavior object. Use behavior to define
mock actions and verify interactions.

Note: You cannot save and load behavior objects.

Examples

Construct Mocks

Construct a strict mock.
testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"foo",'Strict',true);

Construct a mock with specific methods.

[mock,behavior] = testCase.createMock('AddedMethods', ...
 {'one', 'two', 'three'});

Construct a mock with constructor inputs.
[mock,behavior] = testCase.createMock(?MException,'ConstructorInputs', ...
 {'My:ID','My message'});

 createMock

1-9065

Construct a mock with two properties. Prop2 has a default value of false.
mock = testCase.createMock('AddedProperties',{'Prop1','Prop2'},...
 'DefaultPropertyValues',struct('Prop2',false))

mock =

 Mock with properties:

 Prop1: []
 Prop2: 0

Construct a mock that overrides the isnan and isinf methods of the class double.
[mock,behavior] = testCase.createMock(?double,"MockedMethods",["isnan","isinf"],...
 "ConstructorInputs",{123});

See Also

Topics
“Create Mock Object”
“Specify Mock Object Behavior”
“Qualify Mock Object Interaction”
“Write Test That Uses App Testing and Mocking Frameworks”

Introduced in R2017a

1 Alphabetical List

1-9066

fatalAssertAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Fatally assert that a property was accessed

Syntax
fatalAssertAccessed(testcase,behavior,diagnostic)

Description
fatalAssertAccessed(testcase,behavior,diagnostic) fatally asserts that a
property was accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 fatalAssertAccessed

1-9067

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Fatally Assert Property Access

Fatally assert a property was accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.fatalAssertAccessed(behavior.PropertyFoo);
testCase.fatalAssertAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should have been accessed.');

Test failing cases.

testCase.fatalAssertAccessed(behavior.PropertyBar);

Tips
Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point in
continuing testing. These qualifications are also useful when fixture teardown does not
restore the MATLAB state correctly and it is preferable to abort testing and start a fresh
session.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

1 Alphabetical List

1-9068

completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

Alternatives
Using the fatalAssertAccessed method is functionally equivalent to using the
matlab.mock.constraints.WasAccessed constraint with the fatalAssertThat
method of the FatalAssertable class. For example, the following code blocks are
functionally equivalent.

% Using the fatalAssertAccessed method
testCase.fatalAssertAccessed(behavior.PropertyFoo);

% Using the WasAccessed constraint with fatalAssertThat method
import matlab.mock.constraints.WasAccessed;
testCase.fatalAssertThat(behavior.PropertyFoo,WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

 fatalAssertAccessed

1-9069

fatalAssertCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Fatally assert that a method was called with certain input values

Syntax
fatalAssertCalled(testcase,behavior,diagnostic)

Description
fatalAssertCalled(testcase,behavior,diagnostic) fatally asserts that a
method was called with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9070

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Fatally Assert Method Call

Fatally assert a method was called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',["foo","bar"]);
mock.foo(123);

Test passing cases.

testCase.fatalAssertCalled(behavior.foo(123));
testCase.fatalAssertCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.');

Test failing cases.

testCase.fatalAssertCalled(behavior.foo(456));
testCase.fatalAssertCalled(withExactInputs(behavior.bar));

Tips
Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point in
continuing testing. These qualifications are also useful when fixture teardown does not
restore the MATLAB state correctly and it is preferable to abort testing and start a fresh
session.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

 fatalAssertCalled

1-9071

completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

Alternatives
Using the fatalAssertCalled method is functionally equivalent to using the
matlab.mock.constraints.WasCalled constraint with the fatalAssertThat
method of the FatalAssertable class. For example, the following code blocks are
functionally equivalent.

% Using the fatalAssertCalled method
testCase.fatalAssertCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.')

% Using the WasCalled constraint with fatalAssertThat method
import matlab.mock.constraints.WasCalled;
testCase.fatalAssertThat(behavior.foo(123),WasCalled, ...
 'Method foo should have been called with input 123.');

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

1 Alphabetical List

1-9072

fatalAssertSet
Class: matlab.mock.TestCase
Package: matlab.mock

Fatally assert that a property was set

Syntax
fatalAssertSet(testcase,behavior,diagnostic)

Description
fatalAssertSet(testcase,behavior,diagnostic) fatally asserts that a property
was set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 fatalAssertSet

1-9073

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Fatally Assert Property Set

Fatally assert a property was set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.fatalAssertSet(behavior.PropertyFoo);
testCase.fatalAssertSet(behavior.PropertyFoo, ...
 'PropertyFoo should have been set.');

Test failing cases.

testCase.fatalAssertSet(behavior.PropertyBar);

Tips
Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point in
continuing testing. These qualifications are also useful when fixture teardown does not
restore the MATLAB state correctly and it is preferable to abort testing and start a fresh
session.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

1 Alphabetical List

1-9074

completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

Alternatives
Using the fatalAssertSet method is functionally equivalent to using the
matlab.mock.constraints.WasSet constraint with the fatalAssertThat method of
the FatalAssertable class. For example, the following code blocks are functionally
equivalent.

% Using the fatalAssertSet method
testCase.fatalAssertSet(behavior.PropertyFoo);

% Using the WasSet constraint with fatalAssertThat method
import matlab.mock.constraints.WasSet;
testCase.fatalAssertThat(behavior.PropertyFoo, WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

 fatalAssertSet

1-9075

fatalAssertNotAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Fatally assert that a property was not accessed

Syntax
fatalAssertNotAccessed(testcase,behavior,diagnostic)

Description
fatalAssertNotAccessed(testcase,behavior,diagnostic) fatally asserts that a
property was not accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9076

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Fatally Assert Property Access

Fatally assert a property was not accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.fatalAssertNotAccessed(behavior.PropertyBar);

Test failing cases.

testCase.fatalAssertNotAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should not have been accessed.');

Tips
Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point in
continuing testing. These qualifications are also useful when fixture teardown does not
restore the MATLAB state correctly and it is preferable to abort testing and start a fresh
session.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the

 fatalAssertNotAccessed

1-9077

primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

Alternatives
Using the fatalAssertNotAccessed method is functionally equivalent to using the
negated matlab.mock.constraints.WasAccessed constraint with the
fatalAssertThat method of the FatalAssertable class. For example, the following
code blocks are functionally equivalent.

% Using the fatalAssertNotAccessed method
testCase.fatalAssertNotAccessed(behavior.PropertyBar);

% Using the WasAccessed constraint with fatalAssertThat method
import matlab.mock.constraints.WasAccessed;
testCase.fatalAssertThat(behavior.PropertyBar,~WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was not accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

1 Alphabetical List

1-9078

fatalAssertNotCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Fatally assert that a method was not called with certain input values

Syntax
fatalAssertNotCalled(testcase,behavior,diagnostic)

Description
fatalAssertNotCalled(testcase,behavior,diagnostic) fatally asserts that a
method was not called with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 fatalAssertNotCalled

1-9079

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Fatally Assert Method Call

Fatally assert a method was not called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"foo");
mock.foo(123);

Test passing cases.

testCase.fatalAssertNotCalled(behavior.foo(456));
testCase.fatalAssertNotCalled(withExactInputs(behavior.foo));

Test failing cases.

testCase.fatalAssertNotCalled(behavior.foo(123));
testCase.fatalAssertNotCalled(behavior.foo(123), ...
 'Method foo should not have been called with input 123.');

Tips
Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point in
continuing testing. These qualifications are also useful when fixture teardown does not
restore the MATLAB state correctly and it is preferable to abort testing and start a fresh
session.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

1 Alphabetical List

1-9080

completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

Alternatives
Using the fatalAssertNotCalled method is functionally equivalent to using the
negated matlab.mock.constraints.WasCalled constraint with the
fatalAssertThat method of the FatalAssertable class. For example, the following
code blocks are functionally equivalent.

% Using the fatalAssertNotCalled method
testCase.fatalAssertNotCalled(behavior.foo(456), ...
 'Method foo should not have been called with input 456.')

% Using the WasCalled constraint with fatalAssertThat method
import matlab.mock.constraints.WasCalled;
testCase.fatalAssertThat(behavior.foo(456),~WasCalled, ...
 'Method foo should not have been called with input 456.')

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was not called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

 fatalAssertNotCalled

1-9081

fatalAssertNotSet
Class: matlab.mock.TestCase
Package: matlab.mock

Fatally assert that a property was not set

Syntax
fatalAssertNotSet(testcase,behavior,diagnostic)

Description
fatalAssertNotSet(testcase,behavior,diagnostic) fatally asserts that a
property was not set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9082

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Fatally Assert Property Set

Fatally assert a property was not set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.fatalAssertNotSet(behavior.PropertyBar);

Test failing cases.

testCase.fatalAssertNotSet(behavior.PropertyFoo);
testCase.fatalAssertNotSet(behavior.PropertyFoo, ...
 'PropertyFoo should have been set.');

Tips
Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point in
continuing testing. These qualifications are also useful when fixture teardown does not
restore the MATLAB state correctly and it is preferable to abort testing and start a fresh
session.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

 fatalAssertNotSet

1-9083

completion even when verification failures occur. Typically verifications are the
primary qualifications for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

Alternatives
Using the fatalAssertNotSet method is functionally equivalent to using the negated
matlab.mock.constraints.WasSet constraint with the fatalAssertThat method of
the FatalAssertable class. For example, the following code blocks are functionally
equivalent.

% Using the fatalAssertNotSet method
testCase.fatalAssertNotSet(behavior.PropertyBar);

% Using the WasSet constraint with fatalAssertThat method
import matlab.mock.constraints.WasSet;
testCase.fatalAssertThat(behavior.PropertyBar,~WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was not set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

1 Alphabetical List

1-9084

getMockHistory
Class: matlab.mock.TestCase
Package: matlab.mock

Return history from mock object

Syntax
history = getMockHistory(testcase,mock)

Description
history = getMockHistory(testcase,mock) returns the history from a mock
object. history is an array of matlab.mock.InteractionHistory objects. Each
element in history corresponds to one method call, property access, or property
modification. The array elements are ordered, with the first element indicating the first
recorded interaction. This method returns interactions with publicly visible methods and
properties only. For example, the following interactions are not recorded:

• Calls to Hidden methods
• Calls to Sealed superclass methods
• Accesses or modifications of concrete superclass properties

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

mock — Mock to return history
mock object

Mock to return history of interactions, specified as a mock object.

 getMockHistory

1-9085

Examples

Obtain History of Mock Interactions

Construct a mock with a computeValue method and two properties. Assign a default
value of false to Prop2.

tc = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = tc.createMock(...
 'AddedMethods',{'computeValue'}, ...
 'AddedProperties',{'Prop1','Prop2'}, ...
 'DefaultPropertyValues',struct('Prop2',false));

Set up the behavior of the computeValue method to return the value 42, regardless of
input values.

import matlab.mock.actions.AssignOutputs;
when(withAnyInputs(behavior.computeValue),AssignOutputs(42));

Interact with the mock. First call the computeValue method. Then display the value of
Prop2. Finally, set the value of Prop1.

n = mock.computeValue('hello');
mock.Prop2
mock.Prop1 = 13;

ans =

 logical

 0

Obtain the interaction history for the mock.

h = tc.getMockHistory(mock)

h =

 1×3 heterogeneous InteractionHistory (SuccessfulMethodCall, SuccessfulPropertyAccess, SuccessfulPropertyModification) array with properties:

 Name

Interaction summary:
 computeValue([1×1 matlab.mock.classes.Mock], 'hello')
 <Mock>.Prop2
 <Mock>.Prop1 = 13

1 Alphabetical List

1-9086

Examine the first InteractionHistory object. The method was called with the mock
object and the character vector 'hello' as inputs. The method output the value 42.

h(1)

ans =

 SuccessfulMethodCall with properties:

 Name: "computeValue"
 Inputs: {[1×1 matlab.mock.classes.Mock] 'hello'}
 Outputs: {[42]}

Interaction summary:
 computeValue([1×1 matlab.mock.classes.Mock], 'hello')

Alternatives
You can obtain the same history of interactions using the
matlab.mock.InteractionHistory.forMock method. For example, if you have a
matlab.mock.TestCase instance tc, and a mock object mock, the following method
calls are equivalent.

h = matlab.mock.InteractionHistory.forMock(mock);
h = tc.getMockHistory(mock);

However, you do not need access to the matlab.mock.TestCase instance to use the
matlab.mock.InteractionHistory.forMock method.

See Also
matlab.mock.history

Introduced in R2018a

 getMockHistory

1-9087

matlab.mock.TestCase.forInteractiveUse
Class: matlab.mock.TestCase
Package: matlab.mock

Create TestCase for interactive use

Syntax
tc = matlab.mock.TestCase.forInteractiveUse

Description
tc = matlab.mock.TestCase.forInteractiveUse creates a
matlab.mock.TestCase instance for interactive use. The TestCase is configured so
you can experiment with it at the MATLAB command prompt. The TestCase reacts to
qualification failures and successes by displaying messages to the screen for both passing
and failing conditions.

Examples

Construct Interactive TestCase

Create a TestCase configured for interactive use at the MATLAB command prompt.

import matlab.mock.TestCase;
testCase = TestCase.forInteractiveUse;

Create a mock.

[mock,behavior] = testCase.createMock('AddedMethods',"myMethod");

Produce a failing verification.

1 Alphabetical List

1-9088

testCase.verifyCalled(behavior.myMethod(123));

See Also
Introduced in R2017a

 matlab.mock.TestCase.forInteractiveUse

1-9089

returnStoredValueWhen
Class: matlab.mock.TestCase
Package: matlab.mock

Return stored property value

Syntax
returnStoredValueWhen(testcase,behavior)

Description
returnStoredValueWhen(testcase,behavior) specifies that the mock returns the
stored property value when a property is accessed. If the mock is strict and the property
is an abstract property of the mock interface, the framework produces an assertion
failure when it accesses a property. To enable access to the property in a strict mock, use
the returnStoredValueWhen method.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyGetBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyGetBehavior instance. To
create an instance of matlab.mock.PropertyGetBehavior, call the get method on a
property of the behavior object.
Example: get(behavior.MyMockedProperty)

1 Alphabetical List

1-9090

Examples

Return Property Value

Create a strict mock. All property interactions throw exceptions by default.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"PropertyFoo",...
 'Strict',true);

Enable PropertyFoo to be accessed instead of throwing an exception.

testCase.returnStoredValueWhen(get(behavior.PropertyFoo));

Alternatives
Using the returnStoredValueWhen method is functionally equivalent to using the
matlab.mock.actions.ReturnStoredValue action with the when method of the
PropertyGetBehavior class. For example, the following code blocks are functionally
equivalent.

% Using the returnStoredValueWhen method
testCase.returnStoredValueWhen(get(behavior.PropertyFoo));

% Using the ReturnStoredValue action with the when function
import matlab.mock.actions.ReturnStoredValue;
when(get(behavior.PropertyFoo),ReturnStoredValue);

However, there is more functionality when you use the ReturnStoredValue action. For
instance, you can specify different subsequent behavior for the same mocked object
interaction.

See Also
matlab.mock.actions.ReturnStoredValue

Introduced in R2017a

 returnStoredValueWhen

1-9091

storeValueWhen
Class: matlab.mock.TestCase
Package: matlab.mock

Store property value

Syntax
storeValueWhen(testcase,behavior)

Description
storeValueWhen(testcase,behavior) specifies that the mock should store the
property value when a property is set. If the mock is strict and the property is an abstract
property of the mock interface, the framework produces an assertion failure at property
set access. To enable the property to be set in a strict mock, use the storeValueWhen
method.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertySetBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertySetBehavior instance. To
create an instance of matlab.mock.PropertySetBehavior, call the set method on a
property of the behavior object.
Example: set(behavior.MyMockedProperty)

1 Alphabetical List

1-9092

Examples

Store Property Value

Create a strict mock. All property interactions throw exceptions by default.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"PropertyFoo", ...
 'Strict',true);

Enable PropertyFoo to be set instead of throwing an exception.

testCase.storeValueWhen(set(behavior.PropertyFoo));

Alternatives
Using the storeValueWhen method is functionally equivalent to using the
matlab.mock.actions.StoreValue action with the when method of the
PropertySetBehavior class. For example, the following code blocks are functionally
equivalent.

% Using the storeValueWhen method
testCase.storeValueWhen(set(behavior.PropertyFoo));

% Using the StoreValue action with the when function
import matlab.mock.actions.StoreValue;
when(set(behavior.PropertyFoo),StoreValue);

However, there is more functionality when you use the StoreValue action. For instance,
you can specify different subsequent behavior for the same mocked object interaction.

See Also
matlab.mock.actions.StoreValue

Introduced in R2017a

 storeValueWhen

1-9093

throwExceptionWhen
Class: matlab.mock.TestCase
Package: matlab.mock

Throw exception for method call or property interaction

Syntax
throwExceptionWhen(testcase,behavior)
throwExceptionWhen(testcase,behavior,exception)

Description
throwExceptionWhen(testcase,behavior) specifies that the mock should throw an
exception when a method is called or a property is accessed or set.

throwExceptionWhen(testcase,behavior,exception) specifies the exception that
the mock throws.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance |
matlab.mock.PropertyGetBehavior instance |
matlab.mock.PropertySetBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior,
matlab.mock.PropertyGetBehavior, or matlab.mock.PropertySetBehavior
instance. To create an instance of matlab.mock.MethodCallBehavior, call a method
of the behavior object. To create an instance of matlab.mock.PropertyGetBehavior,

1 Alphabetical List

1-9094

call the get method on a property of the behavior object. To create an instance of
matlab.mock.PropertySetBehavior, call the set method on a property of the
behavior object.
Example: withExactInputs(behavior.myMockedMethod)
Example: get(behavior.MyMockedProperty)
Example: set(behavior.MyMockedProperty)

exception — Exception to throw at method call or property interaction
scalar MException object

Exception for the framework to throw at the method call or property interaction, specified
as a scalar MException object.
Example: MException('MyProduct:myID','My exception message.')

Examples

Throw Exception

Throw an exception when a method is called or when a property is accessed or set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',"PropertyFoo", ...
 'AddedMethods',"methodBar");
testCase.throwExceptionWhen(get(behavior.PropertyFoo));
testCase.throwExceptionWhen(set(behavior.PropertyFoo), ...
 MException('PropertyFoo:set', 'Do not change PropertyFoo'));
testCase.throwExceptionWhen(withAnyInputs(behavior.methodBar));

% Carry out actions
mock.PropertyFoo
mock.PropertyFoo = 123;
mock.methodBar;

Alternatives
Using the throwExceptionWhen method is functionally equivalent to using the
matlab.mock.actions.ThrowException action with the when method of the

 throwExceptionWhen

1-9095

MethodCallBehavior, PropertyGetBehavior, or PropertySetBehavior class. For
example, the following code blocks are functionally equivalent.

% Using the throwExceptionWhen method
testCase.throwExceptionWhen(behavior.deposit(IsLessThan(0)), ...
 MException('Account:deposit:Negative', ...
 'Deposit amount must be positive.'));

% Using the ThrowException action with the when function
import matlab.mock.actions.ThrowException
when(behavior.deposit(IsLessThan(0)),ThrowException(...
 MException('Account:deposit:Negative', ...
 'Deposit amount must be positive.')))

However, there is more functionality when you use the ThrowException action. For
instance, you can specify different subsequent behavior for the same mocked object
interaction.

See Also
matlab.mock.actions.ThrowException

Introduced in R2017a

1 Alphabetical List

1-9096

verifyAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Verify that a property was accessed

Syntax
verifyAccessed(testcase,behavior,diagnostic)

Description
verifyAccessed(testcase,behavior,diagnostic) verifies that a property was
accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 verifyAccessed

1-9097

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Verify Property Access

Verify a property was accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.verifyAccessed(behavior.PropertyFoo);
testCase.verifyAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should have been accessed.');

Test failing cases.

testCase.verifyAccessed(behavior.PropertyBar);

Tips
Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to completion
even when verification failures occur. Typically verifications are the primary qualifications
for a unit test since they typically do not require an early exit from the test. Use other
qualification types to test for violation of preconditions or incorrect test setup.

1 Alphabetical List

1-9098

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the verifyAccessed method is functionally equivalent to using the
matlab.mock.constraints.WasAccessed constraint with the verifyThat method of
the Verifiable class. For example, the following code blocks are functionally
equivalent.

% Using the verifyAccessed method
testCase.verifyAccessed(behavior.PropertyFoo);

% Using the WasAccessed constraint with verifyThat method
import matlab.mock.constraints.WasAccessed;
testCase.verifyThat(behavior.PropertyFoo,WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

 verifyAccessed

1-9099

verifyCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Verify that a method was called with certain input values

Syntax
verifyCalled(testcase,behavior,diagnostic)

Description
verifyCalled(testcase,behavior,diagnostic) verifies that a method was called
with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9100

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Verify Method Call

Verify a method was called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',["foo","bar"]);
mock.foo(123);

Test passing cases.

testCase.verifyCalled(behavior.foo(123));
testCase.verifyCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.');

Test failing cases.

testCase.verifyCalled(behavior.foo(456));
testCase.verifyCalled(withExactInputs(behavior.bar));

Tips
Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to completion
even when verification failures occur. Typically verifications are the primary qualifications
for a unit test since they typically do not require an early exit from the test. Use other
qualification types to test for violation of preconditions or incorrect test setup.

 verifyCalled

1-9101

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the verifyCalled method is functionally equivalent to using the
matlab.mock.constraints.WasCalled constraint with the verifyThat method of
the Verifiable class. For example, the following code blocks are functionally
equivalent.

% Using the verifyCalled method
testCase.verifyCalled(behavior.foo(123), ...
 'Method foo should have been called with input 123.')

% Using the WasCalled constraint with verifyThat method
import matlab.mock.constraints.WasCalled;
testCase.verifyThat(behavior.foo(123),WasCalled, ...
 'Method foo should have been called with input 123.');

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

1 Alphabetical List

1-9102

verifySet
Class: matlab.mock.TestCase
Package: matlab.mock

Verify that a property was set

Syntax
verifySet(testcase,behavior,diagnostic)

Description
verifySet(testcase,behavior,diagnostic) verifies that a property was set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can

 verifySet

1-9103

be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Verify Property Set

Verify a property was set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.verifySet(behavior.PropertyFoo);
testCase.verifySet(behavior.PropertyFoo, ...
 'PropertyFoo should have been set.');

Test failing cases.

testCase.verifySet(behavior.PropertyBar);

Tips
Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to completion
even when verification failures occur. Typically verifications are the primary qualifications
for a unit test since they typically do not require an early exit from the test. Use other
qualification types to test for violation of preconditions or incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

1 Alphabetical List

1-9104

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the verifySet method is functionally equivalent to using the
matlab.mock.constraints.WasSet constraint with the verifyThat method of the
Verifiable class. For example, the following code blocks are functionally equivalent.

% Using the verifySet method
testCase.verifySet(behavior.PropertyFoo);

% Using the WasSet constraint with verifyThat method
import matlab.mock.constraints.WasSet;
testCase.verifyThat(behavior.PropertyFoo, WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

 verifySet

1-9105

verifyNotAccessed
Class: matlab.mock.TestCase
Package: matlab.mock

Verify that a property was not accessed

Syntax
verifyNotAccessed(testcase,behavior,diagnostic)

Description
verifyNotAccessed(testcase,behavior,diagnostic) verifies that a property was
not accessed.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9106

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Verify Property Access

Verify a property was not accessed.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties',...
 ["PropertyFoo","PropertyBar"]);
value = mock.PropertyFoo;

Test passing cases.

testCase.verifyNotAccessed(behavior.PropertyBar);

Test failing cases.

testCase.verifyNotAccessed(behavior.PropertyFoo, ...
 'PropertyFoo should not have been accessed.');

Tips
Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to completion
even when verification failures occur. Typically verifications are the primary qualifications
for a unit test since they typically do not require an early exit from the test. Use other
qualification types to test for violation of preconditions or incorrect test setup.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

 verifyNotAccessed

1-9107

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the verifyNotAccessed method is functionally equivalent to using the negated
matlab.mock.constraints.WasAccessed constraint with the verifyThat method of
the Verifiable class. For example, the following code blocks are functionally
equivalent.

% Using the verifyNotAccessed method
testCase.verifyNotAccessed(behavior.PropertyBar);

% Using the WasAccessed constraint with verifyThat method
import matlab.mock.constraints.WasAccessed;
testCase.verifyThat(behavior.PropertyBar,~WasAccessed);

However, there is more functionality when you use the WasAccessed constraint. For
instance, you can specify a property was not accessed a certain number of times.

See Also
matlab.mock.constraints.WasAccessed

Introduced in R2017a

1 Alphabetical List

1-9108

verifyNotCalled
Class: matlab.mock.TestCase
Package: matlab.mock

Verify that a method was not called with certain input values

Syntax
verifyNotCalled(testcase,behavior,diagnostic)

Description
verifyNotCalled(testcase,behavior,diagnostic) verifies that a method was not
called with certain input values.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.MethodCallBehavior instance

Behavior of the mock, specified as a matlab.mock.MethodCallBehavior instance. To
create an instance of matlab.mock.MethodCallBehavior, call a method of the
behavior object.
Example: withExactInputs(myMockBehavior.myMockedMethod)

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

 verifyNotCalled

1-9109

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Verify Method Call

Verify a method was not called.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedMethods',"foo");
mock.foo(123);

Test passing cases.

testCase.verifyNotCalled(behavior.foo(456));
testCase.verifyNotCalled(withExactInputs(behavior.foo));

Test failing cases.

testCase.verifyNotCalled(behavior.foo(123));
testCase.verifyNotCalled(behavior.foo(123), ...
 'Method foo should not have been called with input 123.');

Tips
Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to completion
even when verification failures occur. Typically verifications are the primary qualifications
for a unit test since they typically do not require an early exit from the test. Use other
qualification types to test for violation of preconditions or incorrect test setup.

1 Alphabetical List

1-9110

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the verifyNotCalled method is functionally equivalent to using the negated
matlab.mock.constraints.WasCalled constraint with the verifyThat method of
the Verifiable class. For example, the following code blocks are functionally
equivalent.

% Using the verifyNotCalled method
testCase.verifyNotCalled(behavior.foo(456), ...
 'Method foo should not have been called with input 456.')

% Using the WasCalled constraint with verifyThat method
import matlab.mock.constraints.WasCalled;
testCase.verifyThat(behavior.foo(456),~WasCalled, ...
 'Method foo should not have been called with input 456.')

However, there is more functionality when you use the WasCalled constraint. For
instance, you can specify a method was not called a certain number of times.

See Also
matlab.mock.constraints.WasCalled

Introduced in R2017a

 verifyNotCalled

1-9111

verifyNotSet
Class: matlab.mock.TestCase
Package: matlab.mock

Verify that a property was not set

Syntax
verifyNotSet(testcase,behavior,diagnostic)

Description
verifyNotSet(testcase,behavior,diagnostic) verifies that a property was not
set.

Input Arguments
testcase — Instance of test case
matlab.mock.TestCase object

Instance of the test case, specified as a matlab.mock.TestCase object.

behavior — Behavior of mock
matlab.mock.PropertyBehavior instance

Behavior of the mock, specified as a matlab.mock.PropertyBehavior instance. To
create an instance of matlab.mock.PropertyBehavior, access a property of the
behavior object.
Example: behavior.PropertyFoo

diagnostic — Diagnostic information to display
string array | character array | function handle |
matlab.unittest.diagnostics.Diagnostic object

1 Alphabetical List

1-9112

Diagnostic information to display, specified as a string array, character array, function
handle, or matlab.unittest.diagnostics.Diagnostic object. Diagnostic values can
be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.
Example: "My diagnostic message."
Example: @() datetime('now')

Examples

Verify Property Set

Verify a property was not set.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behavior] = testCase.createMock('AddedProperties', ...
 ["PropertyFoo","PropertyBar"]);
mock.PropertyFoo = 123;

Test passing cases.

testCase.verifyNotSet(behavior.PropertyBar);

Test failing cases.

testCase.verifyNotSet(behavior.PropertyFoo);
testCase.verifyNotSet(behavior.PropertyFoo, ...
 'PropertyFoo should have been set.');

Tips
Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to completion
even when verification failures occur. Typically verifications are the primary qualifications
for a unit test since they typically do not require an early exit from the test. Use other
qualification types to test for violation of preconditions or incorrect test setup.

 verifyNotSet

1-9113

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point marks the current test method as failed and
incomplete.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session.

Alternatives
Using the verifyNotSet method is functionally equivalent to using the negated
matlab.mock.constraints.WasSet constraint with the verifyThat method of the
Verifiable class. For example, the following code blocks are functionally equivalent.

% Using the verifyNotSet method
testCase.verifyNotSet(behavior.PropertyBar);

% Using the WasSet constraint with verifyThat method
import matlab.mock.constraints.WasSet;
testCase.verifyThat(behavior.PropertyBar,~WasSet);

However, there is more functionality when you use the WasSet constraint. For instance,
you can specify a property was not set a certain number of times.

See Also
matlab.mock.constraints.WasSet

Introduced in R2017a

1 Alphabetical List

1-9114

matlabrc
System administrator-defined start up script for MATLAB

Syntax
matlabrc

Description
matlabrc initializes the MATLAB program. At startup, MATLAB automatically executes
matlabrc and then the startup script, if it exists.

For system administrators managing multi-user or networked systems, modify matlabrc
to add messages, definitions, or other code that applies to all users. The matlabrc script
is in the matlabroot/toolbox/local folder.

For individual systems, use the startup script to customize MATLAB startup. Put this
script in the userpath folder.

Tips
You also can start MATLAB using options that you define at the command prompt. For
more information, see “Specify Startup Options”.

See Also
matlabroot | quit | restoredefaultpath | startup | userpath

Topics
“Specify Startup Options”
“MATLAB Startup Folder”

 matlabrc

1-9115

Introduced before R2006a

1 Alphabetical List

1-9116

matlabroot
MATLAB root folder

Syntax
mr = matlabroot

Description
mr = matlabroot returns a character vector giving the full path to the folder where
MATLAB is installed. Use matlabroot to create a path to MATLAB and toolbox folders
that is independent of platform, MATLAB version, or installation location.

Examples

Get MATLAB Install Location

Get the location where MATLAB is installed.

matlabroot

ans =

 'C:\Program Files\MATLAB\R2017b'

Get Full Path to Folder

Get the full path to the toolbox/matlab/general folder for the current system.

fullfile(matlabroot,'toolbox','matlab','general')

 matlabroot

1-9117

ans =

 'C:\Program Files\MATLAB\R2017b\toolbox\matlab\general'

Set Current Folder to MATLAB Root

cd(matlabroot)

Add Folder to Path

Add the folder myfiles to the MATLAB search path.

addpath([matlabroot '/toolbox/local/myfiles'])

Definitions

matlabroot
The term matlabroot can also refer to the folder where MATLAB files are installed.

For example, in the documentation, the phrase "save to matlabroot/toolbox/local"
means save to the toolbox/local folder in the MATLAB root folder. If your MATLAB
root folder is C:\Program Files\MATLAB\R2017b, then you would save to the folder
C:\Program Files\MATLAB\R2017b\toolbox\local.

$matlabroot
The macro $matlabroot can be used literally in some types of files to represent the full
path to the MATLAB root folder.

For example, including the line $matlabroot/toolbox/local/myfile.jar in
javaclasspath.txt, adds the full path of myfile.jar to the static Java class path. For
more information, see “Static Path”.

Sometimes, particularly in older code examples, the term $matlabroot or $MATLABROOT
is also used to represent the value returned by the matlabroot function.

1 Alphabetical List

1-9118

Algorithms

matlabroot on Macintosh
On Macintosh systems running R2008b (V7.7) or newer versions, running matlabroot
returns, for example

/Applications/MATLAB_R2008b.app

On Mac systems running R2008a (V7.6) or earlier versions, matlabroot returns, for
example

/Applications/MATLAB_R2008a

On Mac systems, you cannot directly view the contents of the MATLAB root folder. For
more information, including how to view the contents, see “Navigating Within the
MATLAB Root Folder on Macintosh Platforms”.

See Also
fullfile | path | toolboxdir

Introduced before R2006a

 matlabroot

1-9119

matlabshared.supportpkg.checkForUpdate
List of support packages that can be updated (Not recommended)

Note checkForUpdate will be removed in a future release. To check for updates to
support packages, on the MATLAB® Home tab, in the Environment section, click Help
> Check for Updates.

Syntax
matlabshared.supportpkg.checkForUpdate
info = matlabshared.supportpkg.checkForUpdate

Description
matlabshared.supportpkg.checkForUpdate displays information about support
package updates in the MATLAB Command Window. If an update is available, use
supportPackageInstaller to install the updates.

info = matlabshared.supportpkg.checkForUpdate returns a structured array of
information about installed support packages.

Examples

Check for support package updates

matlabshared.supportpkg.checkForUpdate

No support packages need updates.

If one or more updates are available, the command line displays that information in the
response.

1 Alphabetical List

1-9120

Get a structured array of support package updates

info = matlabshared.supportpkg.checkForUpdate

info =

 Name: 'Arduino'
 InstalledVersion: '3.0'
 BaseProduct: 'Simulink'

Output Arguments
info — Return argument from function
structure created using matlabshared.supportpkg.checkForUpdate

Information about support package updates, returned as a structured array.

See Also
matlabshared.supportpkg.getInstalled | supportPackageInstaller

Introduced in R2014b

 matlabshared.supportpkg.checkForUpdate

1-9121

matlabshared.supportpkg.getInstalled
List of installed support packages

Syntax
matlabshared.supportpkg.getInstalled
info = matlabshared.supportpkg.getInstalled

Description
matlabshared.supportpkg.getInstalled displays information about installed
support packages in the MATLAB Command Window.

info = matlabshared.supportpkg.getInstalled returns a structured array of
information about installed support packages.

Examples

Get a list of installed support packages

matlabshared.supportpkg.getInstalled

Name Version Base Product
------- ------- ------------
Arduino 3.0 Simulink

Get a structured array of installed support packages

info = matlabshared.supportpkg.getInstalled

info =

 Name: 'Arduino'

1 Alphabetical List

1-9122

 InstalledVersion: '3.0'
 BaseProduct: 'Simulink'

Output Arguments
info — Return argument from function
structure created using matlabshared.supportpkg.getInstalled

Information about installed support packages, returned as a structured array.

See Also
matlabshared.supportpkg.checkForUpdate | supportPackageInstaller

Introduced in R2014b

 matlabshared.supportpkg.getInstalled

1-9123

matlabshared.supportpkg.getSupportPackag
eRoot
Get root folder of support packages

Syntax
installDir = matlabshared.supportpkg.getSupportPackageRoot

Description
installDir = matlabshared.supportpkg.getSupportPackageRoot gets root
folder of the current support packages. Support Package Installer installs all support
packages to this location.

Examples

Set and Get Custom Support Package Root

Use the setSupportPackageRoot function to change the installation folder for support
packages. You need administrative privileges to use this function.

matlabshared.supportpkg.setSupportPackageRoot('C:\MATLAB\CustomSupportPackageRoot')

Use getSupportPackageRoot to check that the change was successful.

matlabshared.supportpkg.getSupportPackageRoot

1 Alphabetical List

1-9124

ans =

C:\MATLAB\CustomSupportPackageRoot

Output Arguments
installDir — Root folder of support packages
string

Root folder of support packages, returned as a string. By default, the directory is set to:

• Windows – 'C:\MATLAB\SupportPackage\release'
• For Unix – '/home/user/Documents/MATLAB/SupportPackages/release'

Here, release is your specific MATLAB release and user is your Unix user name. If the
default location exists and is not empty, the location becomes release_num.
Example: 'C:\MATLAB\SupportPackage\R2016a'
Data Types: char

See Also
matlabshared.supportpkg.setSupportPackageRoot

Topics
“Support Package Installation”

Introduced in R2016a

 matlabshared.supportpkg.getSupportPackageRoot

1-9125

matlabshared.supportpkg.setSupportPackag
eRoot
Set root folder of support packages

Syntax
matlabshared.supportpkg.setSupportPackageRoot(installDir)

Description
matlabshared.supportpkg.setSupportPackageRoot(installDir) sets the root
folder of the current support packages. Support Package Installer installs all support
packages to this location.

You must have administrative privileges on the folder that you set the root to. You must
also have administrative privileges to modify matlabroot, because the root folder of the
support package is recorded under matlabroot.

When you change the root folder, support packages installed in the new location become
available on the MATLAB path. Any previously installed support packages are removed
from the MATLAB path, but the files are still available.

Examples

Set and Get Custom Support Package Root

Use the setSupportPackageRoot function to change the installation folder for support
packages. You need administrative privileges to use this function.

matlabshared.supportpkg.setSupportPackageRoot('C:\MATLAB\CustomSupportPackageRoot')

Use getSupportPackageRoot to check that the change was successful.

matlabshared.supportpkg.getSupportPackageRoot

1 Alphabetical List

1-9126

ans =

C:\MATLAB\CustomSupportPackageRoot

Input Arguments
installDir — Root folder of support packages
string

Root folder of support packages, specified as a string. By default, the directory is set to:

• Windows – 'C:\MATLAB\SupportPackage\release'
• For Unix – '/home/user/Documents/MATLAB/SupportPackages/release'

Here, release is your specific MATLAB release and user is your Unix user name. If the
default location exists and is not empty, the location becomes release_num.

Note The folder path cannot contain any space characters.

Example: 'C:\MATLAB\SupportPackage\R2016a'
Data Types: char

See Also
matlabshared.supportpkg.getSupportPackageRoot

Topics
“Support Package Installation”

Introduced in R2016a

 matlabshared.supportpkg.setSupportPackageRoot

1-9127

matlab (Linux)
Start MATLAB program from Linux system prompt

Syntax
matlab
matlab option1 ... optionN

Description
matlab is a Bourne shell script that launches the MATLAB program from a Linux system
prompt. Here the term matlab refers to this script and MATLAB refers to the program.

The matlab script:

• Determines the MATLAB root folder, the value returned by the matlabroot function
• Processes command-line options, if any
• Reads the MATLAB start-up file, .matlab7rc.sh
• Sets MATLAB environment variables

matlab option1 ... optionN launches MATLAB with the specified start-up options.

Alternatively, assign start-up options in the MATLAB “.matlab7rc.sh Start-up File” on
page 1-9134. Modifying the .matlab7rc.sh file defines start-up options every time you
start MATLAB.

MATLAB uses the Java Virtual Machine (JVM) software to run the desktop and to display
graphics. The -nojvm option enables you to start MATLAB without the JVM. Using this
option minimizes memory usage and improves initial start-up speed, but restricts
functionality.

1 Alphabetical List

1-9128

Input Arguments
option1 ... optionN — One or more start-up options
strings

One or more start-up options, specified as strings corresponding to valid start-up options
from the following tables.

Mode Options

Option Result
-desktop Start MATLAB without a controlling terminal. Use this option

when you start MATLAB from a window manager menu or
desktop icon.

-nodesktop Run the JVM software without opening the MATLAB desktop.
You can use development environment tools by calling them as
functions.

To run in batch processing mode, use the -batch option.

If you use the > constructor to pipe to MATLAB, then the
nodesktop option is used automatically.

MATLAB provides a command window-only interface in the
desktop environment. On the Home tab, click Layout. Then,
under Select Layout, select Command Window Only.

-nojvm Start MATLAB without the JVM software. Features that
require Java software (such as the desktop tools and graphics)
are not supported.

Display Options

Option Result
-noFigureWindows Disable the display of figure windows in MATLAB.
-nosplash Do not display the splash screen during startup.
-nodisplay Start the JVM software without starting the MATLAB desktop.

This option does not display X commands. It overrides the
DISPLAY environment variable.

 matlab (Linux)

1-9129

Option Result
-display xDisp Send X commands to X Window Server display xDisp. This

option overrides the DISPLAY environment variable.

Set Initial Working Folder

The initial working folder is the current folder when MATLAB starts. For more
information, see “MATLAB Startup Folder”.

Option Result
-sd folder Set the MATLAB folder to folder, specified as a string.

Example: matlab -sd "C:\work"
-
useStartupFolderPre
f

Set the MATLAB folder to the value specified by the Initial
working folder option in the General Preferences panel.

Specify MATLAB Version

Option Result
v=variant Start the version of MATLAB in the bin/arch/variant

folder instead of the bin/arch folder, where:

• arch is the system architecture, the value returned by the
computer('arch') function

• variant is a string representing a MATLAB version

Debugging Options

Option Result
-logfile filename Copy Command Window output, including error reports, into

filename, specified as a string.

Example: -logfile output.log

1 Alphabetical List

1-9130

Option Result
-n Display, without starting MATLAB, the final values of the

environment variables and arguments passed to the MATLAB
executable. This option also displays other diagnostic
information for use when working with a Technical Support
Representative.

-e Display, without starting MATLAB, all environment variables
and their values to standard output. If the exit status is not 0
on return, then the variables and values might not be correct.

-Ddebugger
debugopts

Start MATLAB in debug mode. This option uses the debugger
program name, debugger, specified as a string, for example,
gdb, lldb, or dbx. You can specify the full path to the
debugger. This option must be the first option in the matlab
script.

Debugger program command-line options, debugopts,
specified as a string of valid options for debugger. See your
debugger documentation for details. Do not use any other
matlab script options when using debugopts.

Do not add a space between D and debugger.

Example: -Dgdb
-jdb portnumber Enable use of the Java debugger. The Java debugger uses the

default portnumber value 4444 to communicate with
MATLAB.

The port number is optional. However, to use the Java
debugger while running multiple MATLAB sessions, you must
specify a port number. The portnumber value must be an
integer in the range 0–65535. The integer cannot be reserved
or currently in use by another application on your system.

-debug Display information for debugging X-based problems. Use this
option only when working with a Technical Support
Representative from MathWorks, Inc.

 matlab (Linux)

1-9131

Execute MATLAB Script or Function

Option Result
-batch statement Execute MATLAB script, statement, or function non-

interactively. MATLAB:

• Starts without the desktop
• Does not display the splash screen
• Executes statement
• Disables changes to preferences
• Disables toolbox caching
• Logs text to stdout and stderr
• Does not display dialog boxes
• Exits automatically with exit code 0 if script executes

successfully. Otherwise, MATLAB terminates with a non-
zero exit code.

statement is MATLAB code enclosed in double quotation
marks. If statement is the name of a MATLAB function or
script, do not specify the file extension. Any required file must
be on the MATLAB search path or in the startup folder.

Use the -batch option in non-interactive scripting or
command line work flows. Do not use this option with the -r
option.

To test if a session of MATLAB is running in batch mode, call
the batchStartupOptionUsed function.

Example: -batch "myscript"

Example: -batch "-logfile output.log"

1 Alphabetical List

1-9132

Option Result
-r statement Execute the MATLAB statement. Use this option for

interactive work flows. Do not use this option with the -
batch option.

Note To set the initial working folder, use the -sd option. For
example:

-sd folder

Example: -r "disp(['Current folder: ' pwd])"

Example: -r "myscript"

Use Single Computational Thread

By default, MATLAB uses the multithreading capabilities of the computer on which it is
running.

Option Result
-singleCompThread Limit MATLAB to a single computational thread.

Disable Searching Custom Java Class Path

Option Result
-nouserjavapath Disable use of javaclasspath.txt and

javalibrarypath.txt files. For more information, see
“Specifying Java Startup Options”.

OpenGL Library Options

These options control the use of software OpenGL libraries when MATLAB detects a
graphics driver with known issues. For more information, see “Graphics Features That
Have Specific Requirements”.

Option Result
-softwareopengl Force MATLAB to start with software OpenGL libraries.

 matlab (Linux)

1-9133

Option Result
-nosoftwareopengl Disable auto-selection of OpenGL software.

Specify License File

Option Result
-c license Use the specified license file, license, specified as a

string, a colon-separated list of license file names, or a
port@host entry. For more information, see
“Understanding Network License Files” (Installation,
Licensing, and Activation).

Help Options

Option Result
-h Display startup options without starting MATLAB.
-help Same as -h option.

Examples

Start MATLAB Without Desktop

matlab -nojvm -nodisplay -nosplash

Display Current Folder at Start-up

matlab -r "disp(['Current folder: ' pwd])"

Definitions

.matlab7rc.sh Start-up File
The .matlab7rc.sh shell script contains variable definitions used by the matlab script.

1 Alphabetical List

1-9134

Use the .matlab7rc.sh file to redefine variables defined in the matlab script. matlab
looks in these folders for the first occurrence of .matlab7rc.sh in the following order:

1 Current folder
2 Home folder ($HOME)
3 matlabroot/bin folder

To edit the .matlab7rc.sh file, use the template located in the matlabroot/bin folder.

This table lists the variables. For more information, see the comments in
the .matlab7rc.sh file.

Variable Definition and Standard Assignment Behavior
ARCH Machine architecture

MATLAB checks these values in this order:

1 ARCH, passed with the -arch or -arch/ext argument to
the script

2 Value of the environment variable MATLAB_ARCH
DISPLAY Host name of the X Window display MATLAB uses for output

The value of Xdisplay passed with the -display argument
to the script is used; otherwise, the value in the environment
is used. MATLAB ignores DISPLAY if the -nodisplay
argument is passed.

LD_LIBRARY_PATH Final Load library path

The final value is normally a colon-separated list of four
sublists, each of which could be empty. The sublists are:

• Defined in .matlab7rc.sh as LDPATH_PREFIX
• Computed in the script and includes folders inside the

MATLAB root folder and relevant Java folders
• Contains any nonempty value of LD_LIBRARY_PATH from

the environment possibly augmented in .matlab7rc.sh
• Defined in .matlab7rc.sh as LDPATH_SUFFIX

 matlab (Linux)

1-9135

Variable Definition and Standard Assignment Behavior
MATLAB MATLAB root folder

MATLAB uses the default computed by the script unless
MATLABdefault is reset in .matlab7rc.sh.

Currently MATLABdefault is not reset in the
shipping .matlab7rc.sh.

MATLABPATH MATLAB search path

The final value is a colon-separated list with the MATLABPATH
from the environment prepended to a list of computed
defaults. At start-up, you can add subfolders of userpath to
the MATLAB search path. See userpath for details.

SHELL Shell to use with MATLAB “!” or unix commands

This value is taken from the environment, unless SHELL is
reset in .matlab7rc.sh.

The default .matlab7rc.sh file does not reset SHELL.
MATLAB_SHELL Shell to use instead of SHELL

MATLAB checks for MATLAB_SHELL first. If it is empty or not
defined, then checks SHELL. If SHELL is also empty or not
defined, then MATLAB uses the Bourne shell, /bin/sh.

Use an absolute path for the value of MATLAB_SHELL, that
is, /bin/sh, not simply sh.

The default .matlab7rc.sh file does not reference or set
MATLAB_SHELL.

TOOLBOX Path of the toolbox folder

1 Value in the environment, if not empty
2 Value of TOOLBOX in .matlab7rc.sh, if reset
3 Value of matlabroot/toolbox computed by the script

The MATLAB version of .matlab7rc.sh does not reset
TOOLBOX.

1 Alphabetical List

1-9136

The matlab script determines the path of the MATLAB root folder by looking up the
folder tree from the matlabroot/bin folder (where the matlab script is located).
MATLAB use the MATLAB variable to locate all files within the MATLAB folder tree.

You can change the definition of MATLAB. For example, you might change the definition:

• To run a different version of MATLAB
• When your system uses certain types of automounting schemes and the path

determined by the matlab script is not correct

Compatibility Considerations

-r option for non-interactive use is not recommended
Not recommended starting in R2019a

To start MATLAB non-interactively, use the -batch option. To start MATLAB interactively,
use the -r option.

See Also
batchStartupOptionUsed | computer | matlab (Windows) | matlab (macOS) |
quit | unix

Topics
“Start MATLAB on Linux Platforms”
“Specify Startup Options”
General Preferences

 matlab (Linux)

1-9137

matlab (macOS)
Start MATLAB program from macOS Terminal

Syntax
matlab
matlab option1 ... optionN

Description
matlab is a Bourne shell script that starts the MATLAB program from a macOS system
prompt. Here the term matlab refers to this script and MATLAB refers to the program.

The matlab script is located in the MATLAB application package, /Applications/
matlabroot/MATLAB_release.app/bin, where matlabroot is the name of the folder
in which you installed MATLAB and release is the MATLAB release number.

The matlab script:

• Determines the MATLAB root folder, the value returned by the matlabroot function
• Processes command-line options, if any
• Reads the MATLAB startup file, .matlab7rc.sh
• Sets MATLAB environment variables

matlab option1 ... optionN starts MATLAB with the specified startup options.

Alternatively, assign startup options in the MATLAB “.matlab7rc.sh Startup File” on page
1-9145. Modifying the .matlab7rc.sh file defines startup options every time you start
MATLAB. On macOS platforms, the .matlab7rc.sh file applies only when starting
MATLAB from Terminal. The file does not apply when starting MATLAB by double-clicking
the MATLAB icon in the Applications folder.

MATLAB uses the Java Virtual Machine (JVM) software to run the desktop and to display
graphics. The -nojvm option enables you to start MATLAB without the JVM. Using this
option minimizes memory usage and improves initial startup speed, but restricts
functionality.

1 Alphabetical List

1-9138

Input Arguments
option1 ... optionN — One or more startup options
strings

One or more startup options, specified as strings corresponding to valid startup options
from the following tables.

Mode Options

Option Result
-desktop Start MATLAB without a controlling terminal. Use this option

when you start MATLAB from a window manager menu or
desktop icon.

-nodesktop Run the JVM software without opening the MATLAB desktop.
You can use development environment tools by calling them as
functions.

Use this option to run in batch processing mode.

If you use the > constructor to pipe to MATLAB, then the
nodesktop option is used automatically.

MATLAB provides a command window-only interface in the
desktop environment. On the Home tab, click Layout. Then,
under Select Layout, select Command Window Only.

-nojvm Start MATLAB without the JVM software. Features that
require Java software (such as the desktop tools and graphics)
are not supported.

Display Options

Option Result
-noFigureWindows Disable the display of figure windows in MATLAB.
-nosplash Do not display the splash screen during startup.
-nodisplay Start the JVM software without starting the MATLAB desktop.

 matlab (macOS)

1-9139

Set Initial Working Folder

The initial working folder is the current folder when MATLAB starts. For more
information, see “MATLAB Startup Folder”.

Option Result
-sd folder Set the MATLAB folder to folder, specified as a string.

Example: matlab -sd "C:\work"
-
useStartupFolderPre
f

Set the MATLAB folder to the value specified by the Initial
working folder option in the General Preferences panel.

Specify MATLAB Version

Option Result
v=variant Start the version of MATLAB in the bin/arch/variant

folder instead of the bin/arch folder, where:

• arch is the system architecture, the value returned by the
computer('arch') function

• variant is a string representing a MATLAB version

Debugging Options

Option Result
-logfile filename Copy Command Window output, including error reports, into

filename, specified as a string.

Example: -logfile output.log
-n Display, without starting MATLAB, the final values of the

environment variables and arguments passed to the MATLAB
executable. This option also displays other diagnostic
information for use when working with a Technical Support
Representative.

-e Display, without starting MATLAB, all environment variables
and their values to standard output. If the exit status is not 0
on return, then the variables and values might not be correct.

1 Alphabetical List

1-9140

Option Result
-Ddebugger
debugopts

Start MATLAB in debug mode. This option uses the debugger
program name, debugger, specified as a string, for example,
gdb, lldb, or dbx. You can specify the full path to the
debugger. This option must be the first option in the matlab
script.

Debugger program command-line options, debugopts,
specified as a string of valid options for debugger. See your
debugger documentation for details. Do not use any other
matlab script options when using debugopts.

Do not add a space between D and debugger.

Example: -Dlldb
-jdb portnumber Enable use of the Java debugger. The Java debugger uses the

default portnumber value 4444 to communicate with
MATLAB.

The port number is optional. However, to use the Java
debugger while running multiple MATLAB sessions, you must
specify a port number. The portnumber value must be an
integer in the range 0–65535. The integer cannot be reserved
or currently in use by another application on your system.

 matlab (macOS)

1-9141

Execute MATLAB Script or Function

Option Result
-batch statement Execute MATLAB script, statement, or function non-

interactively. MATLAB:

• Starts without the desktop
• Does not display the splash screen
• Executes statement
• Disables changes to preferences
• Disables toolbox caching
• Logs text to stdout and stderr
• Does not display dialog boxes
• Exits automatically with exit code 0 if script executes

successfully. Otherwise, MATLAB terminates with a non-
zero exit code.

statement is MATLAB code enclosed in double quotation
marks. If statement is the name of a MATLAB function or
script, do not specify the file extension. Any required file must
be on the MATLAB search path or in the startup folder.

Use the -batch option in non-interactive scripting or
command line work flows. Do not use this option with the -r
option.

To test if a session of MATLAB is running in batch mode, call
the batchStartupOptionUsed function.

Example: -batch "myscript"

Example: -batch "-logfile output.log"

1 Alphabetical List

1-9142

Option Result
-r statement Execute the MATLAB statement. Use this option for

interactive work flows. Do not use this option with the -
batch option.

Note To set the initial working folder, use the -sd option. For
example:

-sd folder

Example: -r "disp(['Current folder: ' pwd])"

Example: -r "myscript"

Use Single Computational Thread

By default, MATLAB uses the multithreading capabilities of the computer on which it is
running.

Option Result
-singleCompThread Limit MATLAB to a single computational thread.

Disable Searching Custom Java Class Path

Option Result
-nouserjavapath Disable use of javaclasspath.txt and

javalibrarypath.txt files. For more information, see
“Specifying Java Startup Options”.

Specify License File

Option Result
-c license Use the specified license file, license, specified as a

string, a colon-separated list of license file names, or a
port@host entry. For more information, see
“Understanding Network License Files” (Installation,
Licensing, and Activation).

 matlab (macOS)

1-9143

Help Options

Option Result
-h Display startup options without starting MATLAB.
-help Same as -h option.

Examples

Start MATLAB R2015a from Applications Folder

Move to the bin folder within the application package for MATLAB installed in a folder
named MyMATLAB.

cd /Applications/MyMATLAB/MATLAB_R2015a.app/bin

Preface the matlab script with ./ characters.

./matlab -nosplash

Start MATLAB from Any Folder

Start MATLAB R2015a from any Terminal folder by specifying the full path name. Assume
MATLAB is installed in a folder named MyMATLAB.

/Applications/MyMATLAB/MATLAB_R2015a.app/bin/matlab

Start MATLAB Without Desktop

matlab -nojvm -nodisplay -nosplash

1 Alphabetical List

1-9144

Display Current Folder at Startup

matlab -r "disp(['Current folder: ' pwd])"

Definitions

.matlab7rc.sh Startup File
The .matlab7rc.sh shell script contains variable definitions used by the matlab script.
To redefine variables defined in the matlab script, modify the .matlab7rc.sh file.
The .matlab7rc.sh file applies only when starting MATLAB from Terminal; it does not
apply when starting MATLAB by double-clicking the MATLAB icon in the Applications
folder.

matlab looks in these folders for the first occurrence of .matlab7rc.sh in the following
order:

1 Current folder
2 Home folder ($HOME)
3 matlabroot/bin folder

To edit the .matlab7rc.sh file, use the template located in the matlabroot/bin folder.

The following table lists the variables. For more information, see the comments in
the .matlab7rc.sh file.

.matlab7rc.sh
Variable

Definition and Standard Assignment Behavior

ARCH Machine architecture

MATLAB checks these values in this order:

• The value ARCH passed with the -arch or -arch/ext
argument to the script.

• The value of the environment variable MATLAB_ARCH.

 matlab (macOS)

1-9145

.matlab7rc.sh
Variable

Definition and Standard Assignment Behavior

DYLD_LIBRARY_PATH Final Load library path

The final value is normally a colon-separated list of four
sublists, each of which could be empty. The sublists are:

• Defined in .matlab7rc.sh as LDPATH_PREFIX
• Computed in the script and includes folders inside the

MATLAB root folder and relevant Java folders
• Contains any nonempty value of DYLD_LIBRARY_PATH

from the environment possibly augmented
in .matlab7rc.sh

• Defined in .matlab7rc.sh as LDPATH_SUFFIX
MATLAB MATLAB root folder

MATLAB uses the default computed by the script unless
MATLABdefault is reset in .matlab7rc.sh.

Currently MATLABdefault is not reset in the
shipping .matlab7rc.sh.

MATLABPATH MATLAB search path

The final value is a colon-separated list with the MATLABPATH
from the environment prepended to a list of computed
defaults. At startup, you can add subfolders of userpath to
the MATLAB search path. See userpath for details.

SHELL Shell to use with MATLAB “!” or unix commands

This value is taken from the environment, unless SHELL is
reset in .matlab7rc.sh.

The default .matlab7rc.sh file does not reset SHELL.

1 Alphabetical List

1-9146

.matlab7rc.sh
Variable

Definition and Standard Assignment Behavior

MATLAB_SHELL Shell to use instead of SHELL

MATLAB checks for MATLAB_SHELL first and, if empty or not
defined, checks SHELL. If SHELL is also empty or not defined,
MATLAB uses the Bourne shell, /bin/sh.

Use an absolute path for the value of MATLAB_SHELL, that
is, /bin/sh, not simply sh.

The default .matlab7rc.sh file does not reference or set
MATLAB_SHELL.

TOOLBOX Path of the toolbox folder

1 Value in the environment, if not empty
2 Value of TOOLBOX in .matlab7rc.sh, if reset
3 Value of matlabroot/toolbox computed by the script

The MATLAB version of .matlab7rc.sh does not reset
TOOLBOX.

The matlab script determines the path of the MATLAB root folder by looking up the
folder tree from the matlabroot/bin folder (where the matlab script is located).
MATLAB use the MATLAB variable to locate all files within the MATLAB folder tree.

You can change the definition of MATLAB. For example, you might change the definition:

• To run a different version of MATLAB
• When your system uses certain types of automounting schemes and the path

determined by the matlab script is not correct

Compatibility Considerations

-r option for non-interactive use is not recommended
Not recommended starting in R2019a

 matlab (macOS)

1-9147

To start MATLAB non-interactively, use the -batch option. To start MATLAB interactively,
use the -r option.

See Also
batchStartupOptionUsed | matlab (Linux) | matlab (Windows) | matlabroot |
quit | unix

Topics
“Start MATLAB on macOS Platforms”
“Specify Startup Options”
General Preferences

1 Alphabetical List

1-9148

matlab (Windows)
Start MATLAB program from Windows system prompt

Syntax
matlab
matlab option1 ... optionN

Description
matlab starts the MATLAB program from the Microsoft Windows system prompt. In this
topic the term matlab refers to the command you type, and MATLAB refers to the
program.

The matlab command:

• Determines the MATLAB root folder, the value returned by the matlabroot function.
• Processes command-line options and passes other options to MATLAB.

To capture the exit code, start MATLAB with the -wait option.

matlab option1 ... optionN starts MATLAB with the specified startup options.

Input Arguments
option1 ... optionN — One or more startup options
strings

One or more startup options, specified as strings corresponding to valid startup options
from the following tables.

 matlab (Windows)

1-9149

Display Options

Option Result
-noFigureWindows Disable the display of figure windows in MATLAB.
-nosplash Do not display the splash screen during startup.

Set Initial Working Folder

The initial working folder is the current folder when MATLAB starts. For more
information, see “MATLAB Startup Folder”.

Option Result
-sd folder Set the MATLAB folder to folder, specified as a string.

Example: matlab -sd "C:\work"
-
useStartupFolderPre
f

Set the MATLAB folder to the value specified by the Initial
working folder option in the General Preferences panel.

Debugging Options

Option Result
-logfile filename Copy Command Window output, including error log reports,

in to filename, specified as a string.

Example: -logfile output.log
-jdb portnumber Enable use of the Java debugger. The Java debugger uses the

default portnumber value 4444 to communicate with
MATLAB.

The port number is optional. However, to use the Java
debugger while running multiple MATLAB sessions, you must
provide a port number. The portnumber value must be an
integer in the range 0–65535. The integer cannot be reserved
or currently in use by another application on your system.

1 Alphabetical List

1-9150

Execute MATLAB Script or Function

Option Result
-batch statement Execute MATLAB script, statement, or function non-

interactively. MATLAB:

• Starts without the desktop
• Does not display the splash screen
• Executes statement
• Disables changes to preferences
• Disables toolbox caching
• Logs text to stdout and stderr
• Does not display dialog boxes
• Exits automatically with exit code 0 if script executes

successfully. Otherwise, MATLAB terminates with a non-
zero exit code.

statement is MATLAB code enclosed in double quotation
marks. If statement is the name of a MATLAB function or
script, do not specify the file extension. Any required file must
be on the MATLAB search path or in the startup folder.

Use the -batch option in non-interactive scripting or
command line work flows. Do not use this option with the -r
option.

To test if a session of MATLAB is running in batch mode, call
the batchStartupOptionUsed function.

Example: -batch "myscript"

Example: -batch "-logfile output.log"

 matlab (Windows)

1-9151

Option Result
-r statement Execute the MATLAB statement. Use this option for

interactive work flows. Do not use this option with the -
batch option.

Note To set the initial working folder, use the -sd option. For
example:

-sd folder

Example: -r "disp(['Current folder: ' pwd])"

Example: -r "myscript"

Use Single Computational Thread

By default, MATLAB uses the multithreading capabilities of the computer on which it is
running.

Option Result
-singleCompThread Limit MATLAB to a single computational thread.

Disable Searching Custom Java Class Path

Option Result
-nouserjavapath Disable use of javaclasspath.txt and

javalibrarypath.txt files. For more information, see
“Specifying Java Startup Options”.

OpenGL Library Options

These options control the use of software OpenGL libraries when MATLAB detects a
graphics driver with known issues. For more information, see “Graphics Features That
Have Specific Requirements”.

Option Result
-softwareopengl Force MATLAB to start with software OpenGL libraries.

1 Alphabetical List

1-9152

Option Result
-nosoftwareopengl Disable auto-selection of OpenGL software.

COM Automation Server Options

Option Result
-automation Start MATLAB as a Component Object Model (COM)

Automation server. MATLAB does not display the splash
screen and minimizes the window. Use for a single call to
MATLAB.

-regserver Register MATLAB as a COM Automation server in the
Windows registry. MATLAB displays a minimized command
window; close this window.

You must have administrator privileges to change the
Windows registry. Based on your User Account Control
(UAC) settings, you might need to right-click a Windows
Command Processor and select Run as administrator. If
that option is not available, contact your system
administrator.

MATLAB remains registered until you use the -
unregserver option.

Alternatively, you can register MATLAB from the MATLAB
command prompt. Type:

!matlab -regserver

MATLAB displays a minimized command window. To
continue working with MATLAB, open this window and exit
MATLAB.

-unregserver Remove MATLAB COM server entries from the registry.

Wait for MATLAB to Terminate

By default, when you call the matlab command from a script, the command starts
MATLAB and then immediately executes the next statements in the script. The -wait
option pauses the script until MATLAB terminates.

 matlab (Windows)

1-9153

Option Result
-wait Use in a script to process the results from MATLAB. Calling

MATLAB with this option blocks the script from continuing
until the results are generated.

Specify License File

For more information, see “Understanding Network License Files” (Installation,
Licensing, and Activation).

Option Result
-c license Use the License File, license, specified as a string, a

semicolon-separated list of license file names, or a
port@host entry. If specifying multiple files, separate the
names by semicolons and enclose the entire list in quotation
marks. If the path to your license file contains a space,
enclose the path name in quotation marks.

Example: -c "c:\TMW license
\license_agreement.txt"

Help Options

Option Result
-h Display options without starting MATLAB.
-help Same as -h option.
-? Same as -h option.

Examples

Startup Without Splash Screen

matlab -nosplash

1 Alphabetical List

1-9154

Copy Command Window Output into output.log File

matlab -logfile output.log

Return Exit Code on Windows

To return an exit status on the command line, start MATLAB with the -wait option.

From the operating system prompt, type:

matlab -wait

Tips
• To add folders to the MATLAB search path at , set the MATLABPATH environment

variable before running the matlab command. For more information, see “Add Folders
to the MATLAB Search Path at Startup”.

Compatibility Considerations

-r option for non-interactive use is not recommended
Not recommended starting in R2019a

To start MATLAB non-interactively, use the -batch option. To start MATLAB interactively,
use the -r option.

See Also
batchStartupOptionUsed | matlab (Linux) | matlab (macOS) | matlabroot |
memory | quit | userpath

Topics
“Start MATLAB on Windows Platforms”
“MATLAB Startup Folder”
“Specify Startup Options”

 matlab (Windows)

1-9155

max
Maximum elements of an array

Syntax
M = max(A)
M = max(A,[],dim)
M = max(A,[],nanflag)
M = max(A,[],dim,nanflag)
[M,I] = max(___)

M = max(A,[],'all')
M = max(A,[],vecdim)
M = max(A,[],'all',nanflag)
M = max(A,[],vecdim,nanflag)

[M,I] = max(A,[], ___ ,'linear')

C = max(A,B)
C = max(A,B,nanflag)

Description
M = max(A) returns the maximum elements of an array.

• If A is a vector, then max(A) returns the maximum of A.
• If A is a matrix, then max(A) is a row vector containing the maximum value of each

column.
• If A is a multidimensional array, then max(A) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. The size of this
dimension becomes 1 while the sizes of all other dimensions remain the same. If A is
an empty array whose first dimension has zero length, then max(A) returns an empty
array with the same size as A.

1 Alphabetical List

1-9156

M = max(A,[],dim) returns the maximum element along dimension dim. For example,
if A is a matrix, then max(A,[],2) is a column vector containing the maximum value of
each row.

M = max(A,[],nanflag) specifies whether to include or omit NaN values in the
calculation. For example, max(A,[],'includenan') includes all NaN values in A while
max(A,[],'omitnan') ignores them.

M = max(A,[],dim,nanflag) also specifies the dimension to operate along when
using the nanflag option.

[M,I] = max(___) also returns the index into the operating dimension that
corresponds to the maximum value of A for any of the previous syntaxes.

M = max(A,[],'all') finds the maximum over all elements of A. This syntax is valid
for MATLAB versions R2018b and later.

M = max(A,[],vecdim) computes the maximum over the dimensions specified in the
vector vecdim. For example, if A is a matrix, then max(A,[],[1 2]) computes the
maximum over all elements in A, since every element of a matrix is contained in the array
slice defined by dimensions 1 and 2.

M = max(A,[],'all',nanflag) computes the maximum over all elements of A when
using the nanflag option.

M = max(A,[],vecdim,nanflag) specifies multiple dimensions to operate along when
using the nanflag option.

[M,I] = max(A,[], ___ ,'linear') returns the linear index into A that corresponds
to the maximum value in A. This syntax is not supported when A has type categorical,
datetime, or duration.

C = max(A,B) returns an array with the largest elements taken from A or B.

C = max(A,B,nanflag) also specifies how to treat NaN values.

Examples

 max

1-9157

Largest Vector Element

Create a vector and compute its largest element.

A = [23 42 37 18 52];
M = max(A)

M = 52

Largest Complex Element

Create a complex vector and compute its largest element, that is, the element with the
largest magnitude.

A = [-2+2i 4+i -1-3i];
max(A)

ans = 4.0000 + 1.0000i

Largest Element in Each Matrix Column

Create a matrix and compute the largest element in each column.

A = [2 8 4; 7 3 9]

A = 2×3

 2 8 4
 7 3 9

M = max(A)

M = 1×3

 7 8 9

1 Alphabetical List

1-9158

Largest Element in Each Matrix Row

Create a matrix and compute the largest element in each row.

A = [1.7 1.2 1.5; 1.3 1.6 1.99]

A = 2×3

 1.7000 1.2000 1.5000
 1.3000 1.6000 1.9900

M = max(A,[],2)

M = 2×1

 1.7000
 1.9900

Largest Element Involving NaN

Create a vector and compute its maximum, excluding NaN values.

A = [1.77 -0.005 3.98 -2.95 NaN 0.34 NaN 0.19];
M = max(A,[],'omitnan')

M = 3.9800

max(A) will also produce this result since 'omitnan' is the default option.

Use the 'includenan' flag to return NaN.

M = max(A,[],'includenan')

M = NaN

Largest Element Indices

Create a matrix A and compute the largest elements in each column, as well as the row
indices of A in which they appear.

 max

1-9159

A = [1 9 -2; 8 4 -5]

A = 2×3

 1 9 -2
 8 4 -5

[M,I] = max(A)

M = 1×3

 8 9 -2

I = 1×3

 2 1 1

Maximum of Array Page

Create a 3-D array and compute the maximum over each page of data (rows and
columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
M1 = max(A,[],[1 2])

M1 =
M1(:,:,1) =

 4

M1(:,:,2) =

 13

M1(:,:,3) =

1 Alphabetical List

1-9160

 8

Starting in R2018b, to compute the maximum over all dimensions of an array, you can
either specify each dimension in the vector dimension argument, or use the 'all' option.

M2 = max(A,[],[1 2 3])

M2 = 13

Mall = max(A,[],'all')

Mall = 13

Return Linear Indices

Create a matrix A and return the maximum value of each row in the matrix M. Use the
'linear' option to also return the linear indices I such that M = A(I).

A = [1 2 3; 4 5 6]

A = 2×3

 1 2 3
 4 5 6

[M,I] = max(A,[],2,'linear')

M = 2×1

 3
 6

I = 2×1

 5
 6

maxvals = A(I)

 max

1-9161

maxvals = 2×1

 3
 6

Largest Element Comparison

Create a matrix and return the largest value between each of its elements compared to a
scalar.

A = [1 7 3; 6 2 9]

A = 2×3

 1 7 3
 6 2 9

B = 5;
C = max(A,B)

C = 2×3

 5 7 5
 6 5 9

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

• If A is complex, then max(A) returns the complex number with the largest magnitude.
If magnitudes are equal, then max(A) returns the value with the largest magnitude
and the largest phase angle.

1 Alphabetical List

1-9162

• If A is a scalar, then max(A) returns A.
• If A is a 0-by-0 empty array, then max(A) is as well.

If A has type categorical, then it must be ordinal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | categorical | datetime | duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(M,dim) is
1, while the sizes of all other dimensions remain the same, unless size(A,dim) is 0. If
size(A,dim) is 0, then max(A,dim) returns an empty array with the same size as A.

Consider a two-dimensional input array, A:

• If dim = 1, then max(A,[],1) returns a row vector containing the largest element in
each column.

• If dim = 2, then max(A,[],2) returns a column vector containing the largest
element in each row.

 max

1-9163

max returns A if dim is greater than ndims(A).

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then max(A,[],[1 2]) returns a 1-by-1-by-3
array whose elements are the maximums computed over each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

B — Additional input array
scalar | vector | matrix | multidimensional array

1 Alphabetical List

1-9164

Additional input array, specified as a scalar, vector, matrix, or multidimensional array.
Numeric inputs A and B must either be the same size or have sizes that are compatible
(for example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are datetime, duration, or categorical arrays, then they must be the same size
unless one is a scalar.

• A and B must be the same data type unless one is a double. In that case, the data type
of the other array can be single, duration, or any integer type.

• If A and B are ordinal categorical arrays, they must have the same sets of categories
with the same order.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | categorical | datetime | duration
Complex Number Support: Yes

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of these values:

• 'omitnan' — Ignore all NaN values in the input. If all elements are NaN, then max
returns the first one.

• 'includenan' — Include the NaN values in the input for the calculation.

For datetime arrays, you can also use 'omitnat' or 'includenat' to omit and
include NaT values, respectively.

The max function does not support the nanflag option for categorical arrays.
Data Types: char

Output Arguments
M — Maximum values
scalar | vector | matrix | multidimensional array

Maximum values, returned as a scalar, vector, matrix, or multidimensional array.
size(M,dim) is 1, while the sizes of all other dimensions match the size of the

 max

1-9165

corresponding dimension in A, unless size(A,dim) is 0. If size(A,dim) is 0, then M is
an empty array with the same size as A.

I — Index
scalar | vector | matrix | multidimensional array

Index, returned as a scalar, vector, matrix, or multidimensional array. I is the same size as
the first output.

When 'linear' is not specified, I is the index into the operating dimension. When
'linear' is specified, I contains the linear indices of A corresponding to the maximum
values.

If the largest element occurs more than once, then I contains the index to the first
occurrence of the value.

C — Maximum elements from A or B
scalar | vector | matrix | multidimensional array

Maximum elements from A or B, returned as a scalar, vector, matrix, or multidimensional
array. The size of C is determined by implicit expansion of the dimensions of A and B. For
more information, see “Compatible Array Sizes for Basic Operations”.

The data type of C depends on the data types of A and B:

• If A and B are the same data type, then C matches the data type of A and B.
• If either A or B is single, then C is single.
• If either A or B is an integer data type with the other a scalar double, then C assumes

the integer data type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

1 Alphabetical List

1-9166

• The two-output syntax [Y,I] = max(...) is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you specify dim, then it must be a constant.
• The 'linear' option is not supported.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).
• See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'linear' option is not supported.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The 'linear' option is not supported.

See Also
bounds | maxk | mean | median | min | sort

 max

1-9167

Topics
“Array Indexing”

Introduced before R2006a

1 Alphabetical List

1-9168

MaximizeCommandWindow
Open Automation server window

Syntax

IDL Method Signature
HRESULT MaximizeCommandWindow(void)

Microsoft Visual Basic Client
MaximizeCommandWindow

MATLAB Client
MaximizeCommandWindow(h)

Description
MaximizeCommandWindow(h) displays the window for the server attached to handle h,
and makes it the currently active window on the desktop.

MaximizeCommandWindow restores the window to the size it had at the time it was
minimized, not to the maximum size on the desktop. If the server window was not
previously in a minimized state, MaximizeCommandWindow does nothing.

Examples

Adjust MATLAB Command Window in Visual Basic .NET

This example shows how to minimize and maximize the command window in a MATLAB
Automation server. Create an application from the following code.

 MaximizeCommandWindow

1-9169

type adjustcommandwindow.vb

Dim Matlab As Object

Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

Adjust MATLAB Command Window in VBA

This example shows how to minimize and maximize the command window in a MATLAB
Automation server. Create an application from the following code.

type adjustcommandwindow.vba

Dim Matlab As Object

Set Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

See Also
MinimizeCommandWindow

Introduced before R2006a

1 Alphabetical List

1-9170

maxk
Find k largest elements of array

Syntax
B = maxk(A,k)
B = maxk(A,k,dim)
B = maxk(___ ,'ComparisonMethod',c)
[B,I] = maxk(___)

Description
B = maxk(A,k) returns the k largest elements of A.

• If A is a vector, then maxk returns a vector containing the k largest elements of A.
• If A is a matrix, then maxk returns a matrix whose columns contain the k largest

elements of each column of A.
• If A is a multidimensional array, then maxk returns the k largest elements along the
first dimension whose size does not equal 1.

B = maxk(A,k,dim) determines the k largest elements of A along dimension dim.

B = maxk(___ ,'ComparisonMethod',c) optionally specifies how to compare
elements of A for any of the previous syntaxes. For example,
maxk(A,k,'ComparisonMethod','abs') returns the k largest elements of A
according to their absolute values.

[B,I] = maxk(___) finds the indices of the largest k values of A and returns them in
I.

Examples

 maxk

1-9171

Largest Vector Elements

Compute the largest 3 elements of a vector.

A = 1:10;
B = maxk(A,3)

B = 1×3

 10 9 8

Largest Elements of Matrix Rows

Compute the largest 3 elements of each row of a matrix.

A = magic(5)

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

B = maxk(A,3,2)

B = 5×3

 24 17 15
 23 16 14
 22 20 13
 21 19 12
 25 18 11

1 Alphabetical List

1-9172

Complex Vector

Compute the 2 largest elements of a complex vector according to their magnitude, and
return the indices where they are located in the input vector.

A = [2-2i 5+i -7-3i -1+i]

A = 1×4 complex

 2.0000 - 2.0000i 5.0000 + 1.0000i -7.0000 - 3.0000i -1.0000 + 1.0000i

[B,I] = maxk(A,2,'ComparisonMethod','abs')

B = 1×2 complex

 -7.0000 - 3.0000i 5.0000 + 1.0000i

I = 1×2

 3 2

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

• If A is a vector, then maxk returns a vector containing the k largest elements of A.
• If A is a matrix, then maxk returns a matrix whose columns contain the k largest

elements of each column of A.
• If A is a multidimensional array, then maxk returns the k largest elements along the
first dimension whose size does not equal 1.

If A has type categorical, then it must be ordinal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | categorical | datetime | duration

 maxk

1-9173

Complex Number Support: Yes

k — Number of maxima
nonnegative integer scalar

Number of maxima to return, specified as a positive integer scalar. If k is greater than or
equal to the number of elements in the operating dimension, then maxk sorts the input
array along that dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

dim — Operating dimension
positive integer scalar

Operating dimension, specified as a positive integer scalar. By default, maxk operates
along the first dimension whose size does not equal 1.

For example, if A is a matrix, then maxk(A,k,1) operates along the rows of A, computing
maximums for each column.

maxk(A,k,2) operates along the columns of A, computing maximums for each row.

1 Alphabetical List

1-9174

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

c — Comparison method
'auto' (default) | 'real' | 'abs'

Comparison method, specified as one of the following:

• 'auto' — Compare elements of input A by real(A) when A is real, and by abs(A)
when A is complex.

• 'real' — Compare elements of input A by real(A) when A is real or complex. If A
has elements with equal real parts, then use imag(A) to break ties.

• 'abs' — Compare elements of input A by abs(A) when A is real or complex. If A has
elements with equal magnitude, then use angle(A) in the interval (-π,π] to break ties.

Output Arguments
B — Output array
scalar | vector | matrix | multidimensional array

Output array, returned as a scalar, vector, matrix, or multidimensional array. maxk returns
the k elements in order from largest to smallest. The order of the elements in B preserves
the order of any equal elements in A.

I — Index array
scalar | vector | matrix | multidimensional array

Index array, returned as a vector, matrix, or multidimensional array. I is the same size as
B. If the output array B contains repeated elements, then the order of their indices in I
matches the order in which they appear in the input array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

 maxk

1-9175

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If A is complex with all zero imaginary parts, then MATLAB might convert A to
real(A) before calling maxk(A). In this case, MATLAB compares elements of A by
real(A), but the generated code compares elements of A by abs(A). To make the
generated code match MATLAB, use maxk(real(A),k) or
maxk(A,k,'ComparisonMethod','real'). See “Code Generation for Complex
Data with Zero-Valued Imaginary Parts” (MATLAB Coder).

• If you supply dim, then it must be constant.
• For limitations related to variable-size inputs, see “Variable-Sizing Restrictions for

Code Generation of Toolbox Functions” (MATLAB Coder).

See Also
max | mink | topkrows

Introduced in R2017b

1 Alphabetical List

1-9176

maxNumCompThreads
Control maximum number of computational threads

Syntax
N = maxNumCompThreads
LASTN = maxNumCompThreads(N)
LASTN = maxNumCompThreads('automatic')

Description
N = maxNumCompThreads returns the current maximum number of computational
threads N.

LASTN = maxNumCompThreads(N) sets the maximum number of computational threads
to N, and returns the previous maximum number of computational threads, LASTN.

LASTN = maxNumCompThreads('automatic') sets the maximum number of
computational threads using what the MATLAB software determines to be the most
desirable. It additionally returns the previous maximum number of computational
threads, LASTN.

Currently, the maximum number of computational threads is equal to the number of
physical cores on your machine.

Note Setting the maximum number of computational threads using
maxNumCompThreads does not propagate to your next MATLAB session.

You can set the -singleCompThread option when starting MATLAB to limit MATLAB to
a single computational thread. By default, MATLAB makes use of the multithreading
capabilities of the computer on which it is running.

On Windows platforms with multiple processor groups, the default maximum number of
computational threads is equal to the number of physical cores within the processor
group that is running MATLAB.

 maxNumCompThreads

1-9177

Introduced in R2007b

1 Alphabetical List

1-9178

mean
Average or mean value of array

Syntax
M = mean(A)
M = mean(A,'all')
M = mean(A,dim)
M = mean(A,vecdim)
M = mean(___ ,outtype)
M = mean(___ ,nanflag)

Description
M = mean(A) returns the mean on page 1-9186 of the elements of A along the first array
dimension whose size does not equal 1.

• If A is a vector, then mean(A) returns the mean of the elements.
• If A is a matrix, then mean(A) returns a row vector containing the mean of each

column.
• If A is a multidimensional array, then mean(A) operates along the first array

dimension whose size does not equal 1, treating the elements as vectors. This
dimension becomes 1 while the sizes of all other dimensions remain the same.

M = mean(A,'all') computes the mean over all elements of A. This syntax is valid for
MATLAB versions R2018b and later.

M = mean(A,dim) returns the mean along dimension dim. For example, if A is a matrix,
then mean(A,2) is a column vector containing the mean of each row.

M = mean(A,vecdim) computes the mean based on the dimensions specified in the
vector vecdim. For example, if A is a matrix, then mean(A,[1 2]) is the mean of all
elements in A, since every element of a matrix is contained in the array slice defined by
dimensions 1 and 2.

 mean

1-9179

M = mean(___ ,outtype) returns the mean with a specified data type, using any of the
input arguments in the previous syntaxes. outtype can be 'default', 'double', or
'native'.

M = mean(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. mean(A,'includenan') includes all NaN
values in the calculation while mean(A,'omitnan') ignores them.

Examples

Mean of Matrix Columns

Create a matrix and compute the mean of each column.

A = [0 1 1; 2 3 2; 1 3 2; 4 2 2]

A = 4×3

 0 1 1
 2 3 2
 1 3 2
 4 2 2

M = mean(A)

M = 1×3

 1.7500 2.2500 1.7500

Mean of Matrix Rows

Create a matrix and compute the mean of each row.

A = [0 1 1; 2 3 2]

A = 2×3

1 Alphabetical List

1-9180

 0 1 1
 2 3 2

M = mean(A,2)

M = 2×1

 0.6667
 2.3333

Mean of 3-D Array

Create a 4-by-2-by-3 array of integers between 1 and 10 and compute the mean values
along the second dimension.

A = gallery('integerdata',10,[4,2,3],1);
M = mean(A,2)

M =
M(:,:,1) =

 9.5000
 6.5000
 9.5000
 6.0000

M(:,:,2) =

 1.5000
 4.0000
 7.5000
 7.5000

M(:,:,3) =

 7.0000
 2.5000
 4.0000

 mean

1-9181

 5.5000

Mean of Array Page

Create a 3-D array and compute the mean over each page of data (rows and columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
M1 = mean(A,[1 2])

M1 =
M1(:,:,1) =

 1.2500

M1(:,:,2) =

 6

M1(:,:,3) =

 3.2500

Starting in R2018b, to compute the mean over all dimensions of an array, you can either
specify each dimension in the vector dimension argument, or use the 'all' option.

M2 = mean(A,[1 2 3])

M2 = 3.5000

Mall = mean(A,'all')

Mall = 3.5000

1 Alphabetical List

1-9182

Mean of Single-Precision Array

Create a single-precision vector of ones and compute its single-precision mean.

A = single(ones(10,1));
M = mean(A,'native')

M = single
 1

The result is also in single precision.

class(M)

ans =
'single'

Mean Excluding NaN

Create a vector and compute its mean, excluding NaN values.

A = [1 0 0 1 NaN 1 NaN 0];
M = mean(A,'omitnan')

M = 0.5000

If you do not specify 'omitnan', then mean(A) returns NaN.

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

• If A is a scalar, then mean(A) returns A.
• If A is an empty 0-by-0 matrix, then mean(A) returns NaN.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | datetime | duration

 mean

1-9183

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(M,dim) is
1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A.

• If dim = 1, then mean(A,1) returns a row vector containing the mean of the
elements in each column.

• If dim = 2, then mean(A,2) returns a column vector containing the mean of the
elements in each row.

mean returns A when dim is greater than ndims(A) or when size(A,dim) is 1.

1 Alphabetical List

1-9184

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then mean(A,[1 2]) returns a 1-by-1-by-3 array
whose elements are the means over each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

outtype — Output data type
'default' (default) | 'double' | 'native'

Output data type, specified as 'default', 'double', or 'native'. These options also
specify the data type in which the operation is performed.

outtype Output data type
'default' double, unless the input data type is single, duration, or

datetime, in which case, the output is 'native'

 mean

1-9185

outtype Output data type
'double' double, unless the data type is duration or datetime, in

which case, 'double' is not supported
'native' same data type as the input, unless

• Input data type is logical, in which case, the output is
double

• Input data type is char, in which case, 'native'is not
supported

Data Types: char

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values when computing the mean, resulting in NaN.
• 'omitnan' — Ignore all NaN values in the input.

For datetime arrays, you can also use 'omitnat' or 'includenat' to omit and
include NaT values, respectively.
Data Types: char

Definitions

Mean
For a random variable vector A made up of N scalar observations, the mean is defined as

μ = 1
N ∑i = 1

N
Ai .

1 Alphabetical List

1-9186

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you specify dim, then it must be a constant.
• The outtype and nanflag options must be constant character vectors.
• Integer types do not support the 'native' output data type option.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'native' option is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

 mean

1-9187

• The 'native' option is not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
median | mode | std | sum | var

Introduced before R2006a

1 Alphabetical List

1-9188

matlab.unittest.measurement.Measurement
Result class
Package: matlab.unittest.measurement

Base class for classes holding measurement results

Description
The MeasurementResult class is the base class for classes that hold the results from
running a measurement experiment on test suites. These classes contains the
measurement values, categories, and timestamps, and information about the functional
test results.

When you run an experiment, the testing framework returns an object of a concrete class
that is derived from the MeasurementResult class. One object for each Test object in
the suite.

Properties
Name — Name of the test suite element
character vector

Name of the test suite element that corresponds to the measurement result, returned as a
character vector.

Valid — Indicator if measurement is valid
logical 0 or 1

Indicator if the measurement is valid, returned as logical 0 or 1. A measurement is
valid (logical 1) if it is collected from a passing test. Otherwise it is invalid (logical
0).

Samples — Information about sample measurements
table

Information about sample measurements, returned as a table containing these columns:

 matlab.unittest.measurement.MeasurementResult class

1-9189

Column
Name

Description

Name Name of the test suite element.
MeasuredValu
e

Value of the measurement. Experiments can give this column a more
specific name, such as MeasuredTime.

Timestamp Time of measurement.
Host Machine name.
Platform Platform architecture.
Version MATLAB Version.
RunIdentifier Unique identifier of measurement run.

The Samples table does not include information from warm-up runs.

TestActivity — Information about all test activity
table

Information about all test activity, including the warm-up measurements, returned as a
table. This table is useful when you want all the data, such as during debugging or when
performing a more involved data analysis. The TestActivity table contains these
columns in addition to the columns described for Samples:

Column
Name

Description

Passed Logical value indicating if the test passed
Failed Logical value indicating if the test failed
Incomplete Logical value indicating if test run is incomplete
Objective Categorical value indicating the type of measurement: sample or warmup
TestResult TestResult object from the functional test

Methods
samplefun Apply function across samples of MeasurementResult array
sampleSummary Create table of summary statistics from MeasurementResult array

1 Alphabetical List

1-9190

See Also
matlab.perftest.TimeResult | matlab.unittest.TestResult |
matlab.unittest.TestSuite |
matlab.unittest.measurement.DefaultMeasurementResult

Introduced in R2016a

 matlab.unittest.measurement.MeasurementResult class

1-9191

matlab.unittest.measurement.DefaultMeasu
rementResult class
Package: matlab.unittest.measurement
Superclasses:

Default implementation of MeasurementResultclass

Description
MeasurementResult objects saved in releases before R2019a are loaded as
DefaultMeasurementResult objects. These objects contain the data save in the
original MeasurementResult object.

For information on DefaultMeasurementResult objects, see
matlab.unittest.measurement.MeasurementResult.

Creation
The test framework creates objects of this class when loading previously save
MeasurementResult objects.

See Also
matlab.perftest.TimeResult |
matlab.unittest.measurement.MeasurementResult

Topics
“Test Performance Using Scripts or Functions”
“Test Performance Using Classes”

Introduced in R2019a

1 Alphabetical List

1-9192

samplefun
Class: matlab.unittest.measurement.MeasurementResult
Package: matlab.unittest.measurement

Apply function across samples of MeasurementResult array

Syntax
[B1,...,Bm] = samplefun(fh,R)
[B1,...,Bm] = samplefun(fh,R,'UniformOutput',tf)

Description
[B1,...,Bm] = samplefun(fh,R) applies a function fh across the samples on each
element of a MeasurementResult array. Each output argument from samplefun
corresponds to an output argument from fh and has the same size and shape as R.

[B1,...,Bm] = samplefun(fh,R,'UniformOutput',tf) indicates if the output of
fh can be returned without encapsulation in a cell array. By default, fh must return
scalar values that can be concatenated into an array.

Input Arguments
fh — Function to apply
function handle

Function to apply across the samples on each element of a MeasurementResult array,
specified as a function handle.

R — Results from running a measurement experiment on a test suite
MeasurementResult array

Results from running a measurement experiment on a test suite, specified as a
MeasurementResult array.

 samplefun

1-9193

tf — Indicator whether to combine results into cell array
true (default) | false

Indicator whether to combine results into cell array, specified as true or false. This
value is true by default, which indicates that the output of fh can be returned without
encapsulation in a cell array. Therefore, fh must return scalar values that can be
concatenated into an array. To obtain results in a cell array, set tf to false.

Examples

Apply Function to Measurement Results

In your current working folder, create a class-based test, preallocationTest.m, that
compares different methods of preallocation.

classdef preallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end

 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end

 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end

 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

 end
end

Create a test suite.

1 Alphabetical List

1-9194

suite = testsuite('preallocationTest');

Construct a variable time experiment, and run the tests.

import matlab.perftest.TimeExperiment
experiment = TimeExperiment.limitingSamplingError;
R = run(experiment,suite);

Running preallocationTest
..........
..........
..........
......Warning: Target Relative Margin of Error not met after running the MaxSamples
for preallocationTest/testOnes.
....
..........
..........
..........
..........
.....
Done preallocationTest

For each test element, find the mean time of the samples.

M = samplefun(@mean,R)

M =

 0.0350 0.1351 0.0789 0.7337

For each test element, find the minimum time and index to the minimum time.

[M,I] = samplefun(@min,R)

M =

 0.0258 0.1169 0.0691 0.6531

I =

 samplefun

1-9195

 27 3 1 1

Apply Custom Function to Measurement Results

In your current working folder, create a class-based test, preallocationTest.m, that
compares different methods of preallocation.

classdef preallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end

 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end

 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end

 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

 end
end

Create a test suite.

suite = testsuite('preallocationTest');

Construct a fixed time experiment with 26 sample measurements, and run the tests.

import matlab.perftest.TimeExperiment
experiment = TimeExperiment.withFixedSampleSize(26);
R = run(experiment,suite);

1 Alphabetical List

1-9196

Running preallocationTest
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....
Done preallocationTest

In your current working folder, create a function, customSampleFun, that computes the
mean of each of the 26 samples, converts the mean to milliseconds, and returns a
character vector indicating if the mean time was fast or slow.

function [mean_ms,speed] = customSampleFun(S)
threshold_ms = 100;
mean_ms = mean(S)*1e3;
if mean_ms < threshold_ms
 speed = 'fast';
else
 speed = 'slow';
end
end

Apply customSampleFun to each element in the MeasurementResult array. Since the
character vectors aren't scalar, specify UniformOutput as false.

[mean_ms,speed] = samplefun(@customSampleFun,R,'UniformOutput',false)

mean_ms =

 1×4 cell array

 [30.9500] [142.7037] [83.9830] [806.3446]

 samplefun

1-9197

speed =

 1×4 cell array

 'fast' 'slow' 'fast' 'slow'

See Also
matlab.unittest.measurement.MeasurementResult.sampleSummary

Introduced in R2017a

1 Alphabetical List

1-9198

sampleSummary
Class: matlab.unittest.measurement.MeasurementResult
Package: matlab.unittest.measurement

Create table of summary statistics from MeasurementResult array

Syntax
T = sampleSummary(R)

Description
T = sampleSummary(R) creates a table of summary statistics from a
MeasurementResult array.

Input Arguments
R — Results array
MeasurementResult array

Results array from running a measurement experiment on a test suite, specified as a
MeasurementResult array.

Output Arguments
T — Measurement sample summary
table

Measurement sample summary, returned as a table. The table contains the following
columns: Name, SampleSize, Mean, StandardDeviation, Min, Median, and Max.

 sampleSummary

1-9199

Examples

Generate Table of Summary Statistics

In your current working folder, create a class-based test, preallocationTest.m, that
compares different methods of preallocation.

classdef preallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end

 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end

 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end

 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

 end
end

Create a test suite.

suite = testsuite('preallocationTest');

Construct a time experiment with a variable number of sample measurements, and run
the tests.

import matlab.perftest.TimeExperiment
experiment = TimeExperiment.limitingSamplingError;
R = run(experiment,suite);

1 Alphabetical List

1-9200

Running preallocationTest
..........
..........
..........
..........
..........
.....
Done preallocationTest

Create a table of summary statistics from the result array R.

T = sampleSummary(R)

T =

 4×7 table array

 Name SampleSize Mean StandardDeviation Min Median Max
 __ __________ ________ _________________ ________ ________ ________

 preallocationTest/testOnes 4 0.02649 0.00086703 0.025583 0.026426 0.027526
 preallocationTest/testIndexingWithVariable 16 0.13356 0.014525 0.11803 0.12716 0.15946
 preallocationTest/testIndexingOnLHS 13 0.073571 0.0073962 0.065024 0.073216 0.086889
 preallocationTest/testForLoop 6 0.74768 0.03897 0.69934 0.75511 0.79957

See Also
matlab.unittest.measurement.MeasurementResult.samplefun

Introduced in R2017a

 sampleSummary

1-9201

median
Median value of array

Syntax
M = median(A)
M = median(A,'all')
M = median(A,dim)
M = median(A,vecdim)
M = median(___ ,nanflag)

Description
M = median(A) returns the median value of A.

• If A is a vector, then median(A) returns the median value of A.
• If A is a nonempty matrix, then median(A) treats the columns of A as vectors and

returns a row vector of median values.
• If A is an empty 0-by-0 matrix, median(A) returns NaN.
• If A is a multidimensional array, then median(A) treats the values along the first array

dimension whose size does not equal 1 as vectors. The size of this dimension becomes
1 while the sizes of all other dimensions remain the same.

median computes natively in the numeric class of A, such that class(M) = class(A).

M = median(A,'all') computes the median over all elements of A. This syntax is valid
for MATLAB versions R2018b and later.

M = median(A,dim) returns the median of elements along dimension dim. For example,
if A is a matrix, then median(A,2) is a column vector containing the median value of
each row.

M = median(A,vecdim) computes the median based on the dimensions specified in the
vector vecdim. For example, if A is a matrix, then median(A,[1 2]) is the median over

1 Alphabetical List

1-9202

all elements in A, since every element of a matrix is contained in the array slice defined by
dimensions 1 and 2.

M = median(___ ,nanflag) optionally specifies whether to include or omit NaN values
in the median calculation for any of the previous syntaxes. For example,
median(A,'omitnan') ignores all NaN values in A.

Examples

Median of Matrix Columns

Define a 4-by-3 matrix.

A = [0 1 1; 2 3 2; 1 3 2; 4 2 2]

A = 4×3

 0 1 1
 2 3 2
 1 3 2
 4 2 2

Find the median value of each column.

M = median(A)

M = 1×3

 1.5000 2.5000 2.0000

For each column, the median value is the mean of the middle two numbers in sorted
order.

Median of Matrix Rows

Define a 2-by-3 matrix.

 median

1-9203

A = [0 1 1; 2 3 2]

A = 2×3

 0 1 1
 2 3 2

Find the median value of each row.

M = median(A,2)

M = 2×1

 1
 2

For each row, the median value is the middle number in sorted order.

Median of 3-D Array

Create a 1-by-3-by-4 array of integers between 1 and 10.

A = gallery('integerdata',10,[1,3,4],1)

A =
A(:,:,1) =

 10 8 10

A(:,:,2) =

 6 9 5

A(:,:,3) =

 9 6 1

A(:,:,4) =

1 Alphabetical List

1-9204

 4 9 5

Find the median values of this 3-D array along the second dimension.

M = median(A)

M =
M(:,:,1) =

 10

M(:,:,2) =

 6

M(:,:,3) =

 6

M(:,:,4) =

 5

This operation produces a 1-by-1-by-4 array by computing the median of the three values
along the second dimension. The size of the second dimension is reduced to 1.

Compute the median along the first dimension of A.

M = median(A,1);
isequal(A,M)

ans = logical
 1

This command returns the same array as A because the size of the first dimension is 1.

 median

1-9205

Median of Array Page

Create a 3-D array and compute the median over each page of data (rows and columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [6 2; -5 3];
A(:,:,3) = [4 4; 7 -3];
M1 = median(A,[1 2])

M1 =
M1(:,:,1) =

 1.5000

M1(:,:,2) =

 2.5000

M1(:,:,3) =

 4

Starting in R2018b, to compute the median over all dimensions of an array, you can either
specify each dimension in the vector dimension argument, or use the 'all' option.

M2 = median(A,[1 2 3])

M2 = 2.5000

Mall = median(A,'all')

Mall = 2.5000

Median of 8-Bit Integer Array

Define a 1-by-4 vector of 8-bit integers.

A = int8(1:4)

A = 1x4 int8 row vector

1 Alphabetical List

1-9206

 1 2 3 4

Compute the median value.

M = median(A),

M = int8
 3

class(M)

ans =
'int8'

M is the mean of the middle two numbers in sorted order returned as an 8-bit integer.

Median Excluding NaN

Create a vector and compute its median, excluding NaN values.

A = [1.77 -0.005 3.98 -2.95 NaN 0.34 NaN 0.19];
M = median(A,'omitnan')

M = 0.2650

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. A can be a numeric
array, ordinal categorical array, datetime array, or duration array.

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

 median

1-9207

Dimension dim indicates the dimension whose length reduces to 1. The size(M,dim) is
1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A.

• If dim = 1, then median(A,1) returns a row vector containing the median of the
elements in each column.

• If dim = 2, then median(A,2) returns a column vector containing the median of the
elements in each row.

median returns A when dim is greater than ndims(A).

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

1 Alphabetical List

1-9208

Consider a 2-by-3-by-3 input array, A. Then median(A,[1 2]) returns a 1-by-1-by-3
array whose elements are the medians of each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — the median of input containing NaN values is also NaN.
• 'omitnan' — all NaN values appearing in the input are ignored. Note: the NaN flags

are not set to 0.

You also can specify additional values for some data types.

• 'includeundefined' and 'omitundefined' — categorical input
• 'includenat' and 'omitnat' — datetime input

Algorithms
For ordinal categorical arrays, MATLAB interprets the median of an even number of
elements as follows:

 median

1-9209

If the number of categories
between the middle two
values is ...

Then the median is ...

zero (values are from
consecutive categories)

larger of the two middle values

an odd number value from category occurring midway between the two
middle values

an even number value from larger of the two categories occurring
midway between the two middle values

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

Input A must be a column vector to compute median in the first dimension.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If specified, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder)
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

1 Alphabetical List

1-9210

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
corrcoef | cov | max | mean | min | mode | std | var

Introduced before R2006a

 median

1-9211

memmapfile
Create memory map to a file

Syntax
m = memmapfile(filename)
m = memmapfile(filename,Name,Value)

Description
m = memmapfile(filename) maps an existing file, filename, to memory and returns
the memory map, m.

Memory-mapping is a mechanism that maps a portion of a file, or an entire file, on disk to
a range of memory addresses within the MATLAB address space. Then, MATLAB can
access files on disk in the same way it accesses dynamic memory, accelerating file reading
and writing. Memory-mapping allows you to work with data in a file as if it were a
MATLAB array.

m = memmapfile(filename,Name,Value) specifies the properties of m using one or
more name-value pair arguments. For example, you can specify the format of the data in
the file.

Examples

Map Entire File of uint8 Data

At the command prompt, create a sample file in your current folder called records.dat,
containing 10 uint8 values.

myData = uint8(1:10)';

fileID = fopen('records.dat','w');

1 Alphabetical List

1-9212

fwrite(fileID, myData,'uint8');
fclose(fileID);

Create a map for records.dat. When using memmapfile, the default data format is
uint8 so the file name is the only required input argument in this case.

m = memmapfile('records.dat')

m =

 Filename: 'd:\matlab\records.dat'
 Writable: false
 Offset: 0
 Format: 'uint8'
 Repeat: Inf
 Data: 10x1 uint8 array

MATLAB maps the entire records.dat file to memory, setting all properties of the
memory map to their default values. The memory map is assigned to the variable, m. In
this example, the command maps the entire file as a sequence of unsigned 8-bit integers
and gives the caller read-only access to its contents.

View the mapped data by accessing the Data property of m.

m.Data

ans =

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Map Entire File of Double-Precision Data

Create a memory map for double-precision data. The syntax is similar when specifying
other data types.

 memmapfile

1-9213

At the command prompt, create a sample file in your current folder called records.dat,
containing 10 double values.

myData = (1:10)';

fileID = fopen('records.dat','w');
fwrite(fileID,myData,'double');
fclose(fileID);

Create a memory map for records.dat, and set the Format property for the output to
'double'.

m = memmapfile('records.dat','Format','double') ;

The memmapfile, m, contains the following properties: Filename, Writable, Offset,
Format, Repeat, and Data. To display any one property, for example Format, type
m.Format in the command window.

m.Format

ans =
'double'

The Data property contains the 10 double-precision values in records.dat.

Map and Change Part of a File

Create a memory map for a large array of int32 data. Specify write access, and
nondefault Format and Offset values.

At the command prompt, create a sample file in your current folder called records.dat,
containing 10,000 int32 values.

myData = int32([1:10000]);

fileID = fopen('records.dat','w');
fwrite(fileID,myData,'int32');
fclose(fileID);

Create a memory map for records.dat, and set the Format property for the output to
int32. Also, set the Offset property to disregard the first 9000 bytes in the file, and the
Writable property to permit write access.

1 Alphabetical List

1-9214

m = memmapfile('records.dat',...
 'Offset',9000,...
 'Format','int32',...
 'Writable',true);

An Offset value of 9000 indicates that the first 9000 bytes of records.dat are not
mapped.

Type the name of the memory map to see the current settings for all properties.

m

m =
 Filename: 'd:\matlab\records.dat'
 Writable: true
 Offset: 9000
 Format: 'int32'
 Repeat: Inf
 Data: 7750x1 int32 array

The Format property indicates that any read or write operation made via the memory
map reads and writes the file contents as a sequence of signed 32-bit integers. The Data
property contains only 7750 elements because the first 9000 bytes of records.dat,
representing the first 2250 values in the file, are not mapped.

View the first five elements of the mapped data by accessing the Data property of m.

m.Data(1:5)

ans =

 2251
 2252
 2253
 2254
 2255

Map Region of File to Specific Array Shape

Create a memory map for a region of a file containing 100 double-precision values.

At the command prompt, create a sample file in your current folder called
mybinary.bin, containing 100 double-precision values.

 memmapfile

1-9215

randData = gallery('uniformdata',[100,1],0,'double');

fileID = fopen('mybinary.bin','w');
fwrite(fileID,randData,'double');
fclose(fileID);

Map the first 75 values in mybinary.bin to a 5-by-5-by-3 array of double-precision
values that can be referenced in the structure of the memory map using the field name x.
Specify these parameters with the Format name-value pair argument.

m = memmapfile('mybinary.bin',...
 'Format',{'double',[5 5 3],'x'})

m =

 Filename: 'd:\matlab\mybinary.bin'
 Writable: false
 Offset: 0
 Format: {'double' [5 5 3] 'x'}
 Repeat: Inf
 Data: 1x1 struct array with fields:
 x

The Data property is a structure array that contains the mapped values in the field, x.

Assign the mapped data to a variable, A. Because the Data property is a structure array,
you must index into the field, x, to access the data.

A = m.Data.x;

View information about A.

whos A

 Name Size Bytes Class Attributes

 A 5x5x3 600 double

Map Segments of File to Multiple Arrays

Map segments of a file with different array shapes and data types to memory.

At the command prompt, create a sample file in your current folder called
mybinary.bin. Write uint16 data and double-precision data representing sample

1 Alphabetical List

1-9216

pressure, temperature, and volume values into the file. In this case, each of the uint16
arrays are 50-by-1 and the double-precision arrays are 5-by-10. k is a sample scaling
factor.

k = 8.21;
[pres1,temp1] = gallery('integerdata',[1,300],[50,1],0,'uint16');
vol1 = double(reshape(k*temp1./pres1,5,10));
[pres2,temp2] = gallery('integerdata',[5,500],[50,1],5,'uint16');
vol2 = double(reshape(k*temp2./pres2,5,10));

fileID = fopen('mybinary.bin','w');
fwrite(fileID,pres1,'uint16');
fwrite(fileID,temp1,'uint16');
fwrite(fileID,vol1,'double');
fwrite(fileID,pres2,'uint16');
fwrite(fileID,temp2,'uint16');
fwrite(fileID,vol2,'double');
fclose(fileID);

Map the file to arrays accessible by unique names. Define a field, pressure, containing a
50-by-1 array of uint16 values, followed by a field, temperature, containing 50-by-1
uint16 values. Define a field, volume, containing a 5-by-10 array of double-precision
values. Use a cell array to define the format of the mapped region and repeat the pattern
twice.

m = memmapfile('mybinary.bin',...
'Format',{'uint16',[50 1],'pressure';...
'uint16',[50,1],'temperature';...
'double',[5,10],'volume'},'Repeat',2)

m =

 Filename: 'd:\matlab\mybinary.bin'
 Writable: false
 Offset: 0
 Format: {'uint16' [50 1] 'pressure'
 'uint16' [50 1] 'temperature'
 'double' [5 10] 'volume'}
 Repeat: 2
 Data: 2x1 struct array with fields:
 pressure
 temperature
 volume

 memmapfile

1-9217

The Data property of the memory map, m, is a 2-by-1 structure array because the Format
is applied twice.

Copy the Data property to a variable, A. Then, view the last block of double data, which
you can access using the field name, volume.

A = m.Data;
myVolume = A(2).volume

myVolume =

 2 13 32 5 5 16 4 22 3 8
 2 9 53 38 13 19 23 85 2 120
 29 10 6 1 2 5 6 58 20 11
 7 15 4 1 5 18 1 4 14 8
 9 8 4 2 0 9 8 6 3 3

Input Arguments
filename — Name of file to map
character vector | string scalar

Name of the file to map including the file extension, specified as a character vector or
string scalar. The filename argument cannot include any wildcard characters (for
example, * or ?).
Example: 'myFile.dat'
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: m = memmapfile('myFile.dat','Format','int32','Offset',255)
maps int32 data in the file, myFile.dat, to memory starting from the 256th byte.

Writable — Type of access allowed to mapped region
false (default) | true

1 Alphabetical List

1-9218

Type of access allowed to the mapped region, specified as the comma-separated pair
consisting of 'Writable' and either true or false. If the Writable property is set to
false, the mapped region is read-only. If true, then write access is allowed.
Example: 'Writable',true
Data Types: logical

Offset — Number of bytes from start of file to start of mapped region
0 (default) | nonnegative integer

Number of bytes from the start of the file to the start of the mapped region, specified as
the comma-separated pair consisting of 'Offset' and a nonnegative integer. This value
is zero-based. That is, an Offset value of 0 represents the start of the file.
Example: 'Offset',1024
Data Types: double

Format — Format of mapped region
'uint8' (default) | character vector | string scalar | n-by-3 cell array

Format of the mapped region contents, specified as the comma-separated pair consisting
of 'Format' and a single character vector or string scalar, or an n-by-3 cell array.

• If the file region you are mapping contains data of only one type, specify the Format
value as a character vector or string scalar identifying that type.
Example:'int16'

• To specify an array shape to apply to the data read or written to the mapped file, and a
field name to reference this array, specify the Format value as a 1-by-3 cell array. The
first cell contains a character vector or string scalar identifying the data type to apply
to the mapped region. The second cell contains the array dimensions to apply to the
region. The third cell specifies the field name to use in the Data structure array of the
memory map. Specify the field name as a string scalar or a character vector.
Example: {'uint64',[30 4 10],'x'}

• If the region you are mapping is composed of segments of varying data types or array
shapes, you can specify an individual format for each segment using an n-by-3 cell
array, where n is the number of segments.
Example: {'uint64',[30 4 10],'x'; 'uint32',[30 4 6],'y'}

You can use any of the following data types when you specify a Format value:

 memmapfile

1-9219

• 'int8'
• 'int16'
• 'int32'
• 'int64'
• 'uint8'
• 'uint16'
• 'uint32'
• 'uint64'
• 'single'
• 'double'

Data Types: char | string | cell

Repeat — Number of times to apply Format parameter
Inf (default) | positive integer

Number of times to apply the Format parameter to the mapped region of the file,
specified as the comma-separated pair consisting of 'Repeat' and a positive integer. If
the value of Repeat is Inf, then memmapfile applies the Format parameter until the
end of the file.
Example: 'Repeat',2000
Data Types: double

Output Arguments
m — Memory map
memmapfile object

Memory map, returned as a memmapfile object with the following properties.

Property Description
Filename Path and name of the mapped file
Writable Type of access allowed to the mapped region

1 Alphabetical List

1-9220

Property Description
Offset Number of bytes from the start of the file to the start of the

mapped region
Format Format of the contents of the mapped region, including

data type, array size, and field name by which to access the
data

Repeat Number of times to apply the pattern specified by the
Format property to the mapped region of the file

Data Memory-mapped data from the file. Data can be a numeric
array or a structure array with field names specified in the
Format property

The values for any property (except for Data) are set at the time you call memmapfile,
using name-value pair arguments.

Access any property of m with dot notation similar to accessing fields of a structure array.
For example, to access the memory-mapped data in the Data property, do one of the
following:

• If Data is a numeric array, call m.Data.
• If Data is a scalar (1-by-1) structure array, call m.Data.fieldname, where

fieldname is the name of a field.
• If Data is a nonscalar structure array, call m.Data(index).fieldname where index

is the index for the element in the structure array, and fieldname is the name of a
field. For example, to access the file data in the temperature field of the first element
of Data, call m.Data(1).temperature.

After you create a memory map, m, you can change the value of any of its properties,
except for Data. To assign a new value, use dot notation. For example, to set a new
Offset value for m, type:

m.Offset = 2048;

Tips
• You can map only an existing file. You cannot create a new file and map that file to

memory in one operation. Use the MATLAB file I/O functions to create the file before
attempting to map it to memory.

 memmapfile

1-9221

• After memmapfile locates the file, MATLAB stores the file’s absolute pathname
internally, and then uses this stored path to locate the file from that point on. As a
result, you can work in other directories outside your current work directory and
retain access to the mapped file.

• memmapfile does not expand or append to a mapped file. Use instead standard file
I/O functions like fopen and fwrite.

Algorithms
The actual mapping of a file to the MATLAB address space does not take place when you
construct a memmapfile object. A memory map, based on the information currently
stored in the mapped object, is generated the first time you reference or modify the Data
property for that object.

See Also

Topics
“Map File to Memory”
“Overview of Memory-Mapping”

Introduced before R2006a

1 Alphabetical List

1-9222

memoize
Add memoization semantics to function handle

Memoization is an optimization technique used to speed up programs by caching the
results of expensive function calls and returning the cached result when the program is
called with the same inputs.

Consider memoizing a function call if all of the following are true:

• Performance is important.
• The function is time consuming.
• The function has return values that are determined entirely by the input values, and

has no side effects.
• System memory is adequate to store unique input and output combinations.

Syntax
memoizedFcn = memoize(fh)

Description
memoizedFcn = memoize(fh) adds memoization semantics to the input function
handle, and returns a MemoizedFunction object. Invoke memoizedFcn as you would
invoke fh. However, memoizedFcn is not a function handle.

The MemoizedFunction object maintains the cache of inputs and the corresponding
outputs. When it is invoked, MATLAB returns the associated cached output values if the
following conditions are true.

1 The input arguments are numerically equal to cached inputs. When comparing input
values, MATLAB treats NaNs as equal.

2 The number of requested output arguments matches the number of cached outputs
associated with the inputs.

 memoize

1-9223

The memoization of a function is associated with the input function and not with the
MemoizedFunction object. Therefore, keep the following in mind.

• Constructing a new MemoizedFunction object to the same function creates another
reference to the same data. Two variables that memoize the same function share a
cache and object property values, such as cache size. In the following example, the
variables a and b share a cache and have the same value for cache size.

a = memoize(@svd);
b = memoize(@svd);

Similarly, clearing the cache for b (b.clearCache) also clears the cache for a, and
any other variables that memoize the svd function. clearCache is a
MemoizedFunction object function.

• Assigning a MemoizedFunction object to a new variable creates another reference to
the same data. In the following example, the variables c and d share data.

c = memoize(@svd);
d = c;

• Clearing a variable does not clear the cache associated with the input function. To
clear the cache for a MemoizedFunction object that no longer exists in the
workspace, create a new MemoizedFunction object to the same function, and use the
clearCache function on the new object. Alternatively, you can clear caches for all
MemoizedFunction objects using the clearAllMemoizedCaches function.

Caution A MemoizedFunction object is not aware of updates to the underlying
function. If you modify the function associated with the memoized function, clear the
cache with the clearCache object function.

Examples

Cache Results from MATLAB Built-in Function

To speed up performing a singular value decomposition when you could be operating on
the same inputs multiple times, memoize the svd function.

fh = @svd;
memoizedFcn = memoize(fh);

1 Alphabetical List

1-9224

Create a matrix and cache the results of the singular value decomposition. Time the
function call.

X = magic(1234);
tic
[U,S,V]= memoizedFcn(X);
preCachedTime = toc

preCachedTime = 0.7253

Call the memoized function again using the same inputs. To observe the speed
improvement using cached results, time the function call again.

tic
[U,S,V]= memoizedFcn(X);
postCachedTime = toc

postCachedTime = 0.0100

Cache Results from User-Defined Function

In your current working folder, create a file computeNumberCombinations.m that
contains the following function to compute the number of combinations of n items taken k
at a time.

type computeNumberCombinations.m

function c = computeNumberCombinations(n,k)
% Calculate number of combinations of n items taken k at a time
c = fact(n)/(fact(n-k)*fact(k));
end

function f = fact(n)
f = 1;
for m = 2:n
 f = f*m;
end
end

Clear the cache for any MemoizedFunction objects in your workspace.

clearAllMemoizedCaches

 memoize

1-9225

Memoize the computeNumberCombinations function to speed up computation for
repeated input values.

fh = @computeNumberCombinations;
memoizedFcn = memoize(fh);

Call the memoized function and time the function call. This function call caches the
results for the specified inputs.

tic
c = memoizedFcn(42e5,137);
preCachedTime = toc

preCachedTime = 0.0402

Call the memoized function and time the function call again. This function call uses the
cached results and does not execute the function.

tic
c = memoizedFcn(42e5,137);
postCachedTime = toc

postCachedTime = 0.0108

Input Arguments
fh — Function to memoize
function handle

Function to memoize, specified as a function handle.
Example: memoizedEigs = memoize(@eigs)
Data Types: function_handle

Tips
• Multiple calls to memoize with the same function handle return the same

MemoizedFunction object. For example:

1 Alphabetical List

1-9226

x = memoize(@plus);
y = memoize(@plus);
x == y

ans =

 logical

 1

• You should not memoize a function with side effects such as setting some global state
or performing I/O operations. Side effects are not repeated on subsequent calls to the
memoized function with the same inputs. For example, if you memoize the randi
function, the memoized function always returns the same value when called with the
same input argument.

fh = @randi;
memoized_fh = memoize(fh);

fh_result = [fh(100) fh(100) fh(100)]
memoized_result = [memoized_fh(100) memoized_fh(100) memoized_fh(100)]

fh_result =

 18 71 4

memoized_result =

 28 28 28

See Also
Functions
clearAllMemoizedCaches

Objects
MemoizedFunction

Introduced in R2017a

 memoize

1-9227

MemoizedFunction
Call memoized function and cache results

Description
A MemoizedFunction object maintains the memoization semantics of a function handle
and a cache of the function call results. It has the same calling syntax as the function
handle specified in the Function property. However, the MemoizedFunction object is
not a function handle.

The first time you call the memoized function with a certain set of input values, MATLAB
executes the function specified by the Function property and caches the results. In later
calls to the memoized function with the same set of inputs, MATLAB returns the cached
results instead of executing the function again.

The MemoizedFunction object maintains the cache of inputs and the corresponding
outputs. When it is invoked, MATLAB returns the associated cached output values if the
following conditions are true.

1 The input arguments are numerically equal to cached inputs. When comparing input
values, MATLAB treats NaNs as equal.

2 The number of requested output arguments matches the number of cached outputs
associated with the inputs.

Caution A MemoizedFunction object is not aware of updates to the underlying
function. If you modify the function associated with the memoized function, clear the
cache with the clearCache object function.

Creation
To create a MemoizedFunction object, call the memoize function.

The memoization of a function is associated with the input function and not with the
MemoizedFunction object. Therefore, keep the following in mind.

1 Alphabetical List

1-9228

• Constructing a new MemoizedFunction object to the same function creates another
reference to the same data. Two variables that memoize the same function share a
cache and object property values, such as cache size. In the following example, the
variables a and b share a cache and have the same value for cache size.

a = memoize(@svd);
b = memoize(@svd);

Similarly, clearing the cache for b (b.clearCache) also clears the cache for a, and
any other variables that memoize the svd function. clearCache is a
MemoizedFunction object function.

• Assigning a MemoizedFunction object to a new variable creates another reference to
the same data. In the following example, the variables c and d share data.

c = memoize(@svd);
d = c;

• Clearing a variable does not clear the cache associated with the input function. To
clear the cache for a MemoizedFunction object that no longer exists in the
workspace, create a new MemoizedFunction object to the same function, and use the
clearCache function on the new object. Alternatively, you can clear caches for all
MemoizedFunction objects using the clearAllMemoizedCaches function.

Properties
MemoizedFunction properties control the behavior of the memoized function. You can
access or modify properties of the memoized function. Use dot notation to refer to a
particular object and property:

m = memoize(@ones);
m.CacheSize = 25;

Function — Function with memoization semantics applied
function handle

Function with memoization semantics applied, returned as a function handle. This
property is read only.
Data Types: function_handle

CacheSize — Maximum number of cached input and output combinations
10 (default) | positive integer

 MemoizedFunction

1-9229

Maximum number of cached input and output combinations, specified as a positive
integer.
Data Types: double

Enabled — Caching state
true (default) | false

Caching state, specified as true or false. To instruct MATLAB to call the function
specified by the Function property regardless of whether the results are cached, and not
to cache results, set this property to false.
Data Types: logical

Object Functions
clearCache Clear cache for MemoizedFunction object
stats Return cached values and statistics for MemoizedFunction object

Examples

Change Cache Size of Memoized Function

Create a MemoizedFunction object by memozing the datetime function.

mf = memoize(@datetime)

mf =
 MemoizedFunction with properties:

 Function: @datetime
 Enabled: 1
 CacheSize: 10

Change the maximum number of cached input and output combinations.

mf.CacheSize = 2

mf =
 MemoizedFunction with properties:

1 Alphabetical List

1-9230

 Function: @datetime
 Enabled: 1
 CacheSize: 2

Call the memoized function with three different input values.

a = mf('today');
b = mf('yesterday');
c = mf('tomorrow');

Call the stats function to investigate the cached results.

s = stats(mf);
s.Cache.Inputs{:}

ans = 1x1 cell array
 {'yesterday'}

ans = 1x1 cell array
 {'tomorrow'}

The results of calling the memoized function with 'today' are not cached because the
CacheSize is 2.

Disable Memoization

In your current working folder, create the following file memoizeSquareExample.m that
contains a function to compute the square of a number. When the function is called, if
MATLAB returns cached results, msg is not displayed.

type memoizeSquareExample.m

function m = memoizeSquareExample(n)

m = n^2;
msg = "The square of " + string(n) + " is " + string(m) +".";
disp(msg)

end

 MemoizedFunction

1-9231

Memoize the function. By default, memoization is enabled.

mf = memoize(@memoizeSquareExample);

Call the memoized function twice with the same input value. msg is displayed only once
because the second function call returns cached results.

a = mf(42);

The square of 42 is 1764.

b = mf(42);

Disable memoization and call the memoized function with a repeat input value. Although
the results for an input of 42 are cached, msg is displayed because memoization is
disabled.

mf.Enabled = false;
c = mf(42);

The square of 42 is 1764.

Call the memoized function with a different set of inputs.

d = mf(13);

The square of 13 is 169.

Call the stats function to investigate the cached results. MATLAB does not return
cached results while memoization is disabled or collect statistics, it continues to store
input and output values.

s = mf.stats();
s.Cache.Inputs{:}

ans = 1x1 cell array
 {[42]}

See Also
clearAllMemoizedCaches | memoize

1 Alphabetical List

1-9232

Introduced in R2017a

 MemoizedFunction

1-9233

memory
Display memory information

Syntax
memory
userview = memory
[userview,systemview] = memory

Limitations
• The memory function is available only on Microsoft Windows systems. Results are

dependent on your computer hardware and the load on your computer.

Description
memory displays information showing how much memory is available and how much the
MATLAB software is currently using. The information displayed at your computer screen
includes the following items, each of which is described in a section below:

• “Maximum Possible Array” on page 1-9235
• “Memory Available for All Arrays” on page 1-9236
• “Memory Used By MATLAB” on page 1-9236
• “Physical Memory (RAM)” on page 1-9237

userview = memory returns user-focused information on memory use in structure
userview. The information returned in userview includes the following items, each of
which is described in a section below:

• “Maximum Possible Array” on page 1-9235
• “Memory Available for All Arrays” on page 1-9236
• “Memory Used By MATLAB” on page 1-9236

1 Alphabetical List

1-9234

[userview,systemview] = memory returns both user- and system-focused
information on memory use in structures userview and systemview, respectively. The
userview structure is described in the command syntax above. The information returned
in systemview includes the following items, each of which is described in a section
below:

• “Virtual Address Space” on page 1-9237
• “System Memory” on page 1-9238
• “Physical Memory (RAM)” on page 1-9237

Output Arguments
Each of the sections below describes a value that is displayed or returned by the memory
function.

Maximum Possible Array
Maximum Possible Array is the size of the largest contiguous free memory block. As such,
it is an upper bound on the largest single array MATLAB can create at this time.

MATLAB derives this number from the smaller of the following two values:

• The largest contiguous memory block found in the MATLAB virtual address space
• The total available system memory

To see how many array elements this number represents, divide by the number of bytes in
the array class. For example, for a double array, divide by 8. The actual number of
elements MATLAB can create is always fewer than this number.

When you enter the memory command without assigning its output, MATLAB displays this
information in the Command Window. When you do assign the output, MATLAB returns
the information in a structure field. See the table below.

Command Returned in
memory Character vector labeled Maximum possible array:
user = memory Structure field user.MaxPossibleArrayBytes

All values are double-precision and in units of bytes.

 memory

1-9235

Footnotes

When you enter the memory command without specifying any outputs, MATLAB may also
display one of the following footnote on 64-bit systems:

Limited by System Memory (physical + swap file) available.
There is insufficient system memory to allow mapping of all virtual addresses in the
largest available block of the MATLAB process.

Memory Available for All Arrays
Memory Available for All Arrays is the total amount of memory available to hold data. The
amount of memory available is guaranteed to be at least as large as this field.

MATLAB derives this number from the smaller of the following two values:

• The total available MATLAB virtual address space
• The total available system memory

When you enter the memory command without assigning its output, MATLAB displays this
information in the Command Window. When you do assign the output, MATLAB returns
the information in a structure field. See the table below.

Command Returned in
memory Character vector labeled Memory available for all arrays:
user = memory Structure field user.MemAvailableAllArrays

Footnotes

When you enter the memory command without specifying any outputs, MATLAB may also
display the following footnote on 64-bit systems:

Limited by System Memory (physical + swap file) available.
There is insufficient system memory to allow mapping of all available virtual
addresses in the MATLAB process.

Memory Used By MATLAB
Memory Used By MATLAB is the total amount of system memory reserved for the
MATLAB process. It is the sum of the physical memory and potential swap file usage.

1 Alphabetical List

1-9236

When you enter the memory command without assigning its output, MATLAB displays this
information in the Command Window. When you do assign the output, MATLAB returns
the information in a structure field. See the table below.

Command Returned in
memory Character vector labeled Memory used by MATLAB:
user = memory Structure field user.MemUsedMATLAB

Physical Memory (RAM)
Physical Memory is the available and total amounts of physical memory (RAM) on the
computer running MATLAB.

When you enter the memory command without assigning its output, MATLAB displays the
total memory in the Command Window. When you do assign the output, MATLAB returns
both the available and total memory in a structure field. See the table below.

Command Value Returned in
memory Total memory Character vector labeled Physical Memory

(RAM):
[user,sys] = memory Available memory Structure field

sys.PhysicalMemory.Available
Total memory Structure field sys.PhysicalMemory.Total

Available physical memory is the same as Available found in the Windows Task Manager:
Performance/Physical Memory, and the total physical memory is the same as Total.

You can use the amount of available physical memory as a measure of how much data you
can access quickly.

Virtual Address Space
Virtual Address Space is the amount of available and total virtual memory for the
MATLAB process. MATLAB returns the information in two fields of the return structure:
Available and Total.

 memory

1-9237

Command Return Value Returned in Structure Field
[user,sys] = memory Available memory sys.VirtualAddressSpace.Available

Total memory sys.VirtualAddressSpace.Total

You can monitor the difference:

VirtualAddressSpace.Total - VirtualAddressSpace.Available

as the Virtual Bytes counter in the Windows Performance Monitor (e.g., Windows 7
Control Panel/Administrative Tools/Performance Monitor). If you add a counter, the
Virtual Bytes counter is found under the Process menu. Select the counter, and then
select MATLAB from the Instances of selected object pane.

System Memory
System Memory is the amount of available system memory on your computer system. This
number includes the amount of available physical memory and the amount of available
swap file space on the computer running MATLAB. MATLAB returns the information in
the SystemMemory field of the return structure.

Command Return Value Returned in Structure Field
[user,sys] = memory Available memory sys.SystemMemory

This is the same as the difference:

limit - total (in bytes)

found in the Windows Task Manager: Performance/Commit Charge.

Examples
Display memory statistics on a 64-bit Windows system:
memory

Maximum possible array: 14253 MB (1.495e+10 bytes) *
Memory available for all arrays: 14253 MB (1.495e+10 bytes) *
Memory used by MATLAB: 747 MB (7.833e+08 bytes)
Physical Memory (RAM): 12279 MB (1.288e+10 bytes)

* Limited by System Memory (physical + swap file) available.

1 Alphabetical List

1-9238

Return in the structure userview, information on the largest array MATLAB can create
at this time, how much memory is available to hold data, and the amount of memory
currently being used by your MATLAB process:

userview = memory

userview =

 MaxPossibleArrayBytes: 1.4957e+10
 MemAvailableAllArrays: 1.4957e+10
 MemUsedMATLAB: 784044032

Assign the output to two structures, user and sys, to obtain the information shown here:

[user,sys] = memory;

% --- Largest array MATLAB can create ---
user.MaxPossibleArrayBytes

ans =
 1.4956e+10

% --- Memory available for data ---
user.MemAvailableAllArrays

ans =
 1.4956e+10

% --- Memory used by MATLAB process ---
user.MemUsedMATLAB

ans =
 784039936

% --- Virtual memory for MATLAB process ---
sys.VirtualAddressSpace

ans =
 Available: 8.7910e+12
 Total: 8.7961e+12

% --- Physical memory and paging file ---
sys.SystemMemory

ans =
 Available: 1.4956e+10

 memory

1-9239

% --- Computer's physical memory ---
sys.PhysicalMemory

ans =
 Available: 2.7093e+09
 Total: 1.2876e+10

Tips

Details on Memory Used By MATLAB
MATLAB computes the value for Memory Used By MATLAB by walking the MATLAB
process memory structures and summing all the sections that have physical storage
allocated in memory or in the paging file on disk.

Using the Windows Task Manager, you have for the MATLAB.exe image:

Mem Usage < MemUsedMATLAB < Mem Usage + VM Size (in bytes)

where both of the following are true:

• Mem Usage is the working set size in kilobytes.
• VM Size is the page file usage, or private bytes, in kilobytes.

The working set size is the portion of the MATLAB virtual address space that is currently
resident in RAM and can be referenced without a memory page fault. The page file usage
gives the portion of the MATLAB virtual address space that requires a backup that doesn't
already exist. Another name for page file usage is private bytes. It includes all MATLAB
variables and workspaces. Since some of the pages in the page file may also be part of the
working set, this sum is an overestimate of MemUseMATLAB. Note that there are virtual
pages in the MATLAB process space that already have a backup. For example, code
loaded from EXEs and DLLs and memory-mapped files. If any part of those files is in
memory when the memory builtin is called, that memory will be counted as part of
MemUsedMATLAB.

Reserved Addresses
Reserved addresses are addresses sets aside in the process virtual address space for
some specific future use. These reserved addresses reduce the size of

1 Alphabetical List

1-9240

MemAvailableAllArrays and can reduce the size of the current or future value of
MaxPossibleArrayBytes.

Example 1 — Java Virtual Machine (JVM)

At MATLAB startup, part of the MATLAB virtual address space is reserved by the Java
Virtual Machine (JVM) and cannot be used for storing MATLAB arrays.

Example 2 — Standard Windows Heap Manager

MATLAB, by default, uses the standard Windows heap manager except for a set of small
preselected allocation sizes. One characteristic of this heap manager is that its behavior
depends upon whether the requested allocation is less than or greater than the fixed
number of 524,280 bytes. For, example, if you create a sequence of MATLAB arrays, each
less than 524,280 bytes, and then clear them all, the MemUsedMATLAB value before and
after shows little change, and the MemAvailableAllArrays value is now smaller by the
total space allocated.

The result is that, instead of globally freeing the extra memory, the memory becomes
reserved. It can only be reused for arrays less than 524,280 bytes. You cannot reclaim this
memory for a larger array except by restarting MATLAB.

See Also
clear | inmem | load | mlock | munlock | pack | save | whos

Topics
“How MATLAB Allocates Memory”
“Strategies for Efficient Use of Memory”
“Resolve “Out of Memory” Errors”

Introduced in R2008a

 memory

1-9241

menu
(Not recommended) Create multiple-choice dialog box

Note The menu function is not recommended. Use the listdlg function instead.

Syntax
choice = menu(message,opt1,opt2,...,optn)
choice = menu(message,options)

Description
choice = menu(message,opt1,opt2,...,optn) displays a modal menu dialog box
containing the text in message and the choices specified by opt1, opt2,... optn. The
menu function returns the number of the selected menu item, or 0 if the user clicks the
close button on the window. Specify message as a character vector or string scalar.
Specify opt1, opt2,... optn as character vectors or string scalars.

choice = menu(message,options) specifies the choices as a cell array of character
vectors or string array.

If the user's terminal provides a graphics capability, menu displays the menu items as
push buttons in a figure window (Example 1). Otherwise. they will be given as a
numbered list in the Command Window (Example 2).

Examples

Example 1
On a system with a display, menu displays choices as buttons in a dialog box:

1 Alphabetical List

1-9242

choice = menu('Choose a color','Red','Blue','Green')

displays the following dialog box.

The number entered by the user in response to the prompt is returned as choice
(i.e., choice = 2 implies that the user selected Blue).

After input is accepted, the dialog box closes, returning the output in choice. You can
use choice to control the color of a graph:

t = 0:.1:60;
s = sin(t);
color = ['r','b','g']
plot(t,s,color(choice))

Example 2
On a system without a display, menu displays choices in the Command Window:

choice = menu('Choose a color','Red','Blue','Green')

displays the following text.

----- Choose a color -----
1) Red
2) Blue
3) Green
Select a menu number:

 menu

1-9243

Tips
To call menu from within a callback of a UIControl or other UI component, set that
object's Interruptible property to 'on'. For more information, see Uicontrol.

See Also
dialog | guide | input | uicontrol | uimenu

Introduced before R2006a

1 Alphabetical List

1-9244

Menu Properties
Control appearance and behavior of menu

Description
Menus display drop-down lists of options at the top of an app window. Call the uimenu
function to create a menu or add a submenu to an existing menu. Properties control the
appearance and behavior of a menu. Use dot notation to refer to a specific object and
property.

uf = uifigure;
m = uimenu(uf);
m.Text = 'Open Selection';

The properties listed here are valid for menus in App Designer, or in apps created with
the uifigure function. For menus used in GUIDE, or in apps created with the figure
function, see Uimenu.

Properties
Menu

Text — Menu label
character vector | string scalar

Menu label, specified as a character vector or string scalar. This property specifies the
label that appears on the menu or menu item.

Avoid using these case-sensitive reserved words: "default", "remove", and "factory". If you
must use a reserved word, then specify a backslash character before the word. For
instance, specify "default" as '\default'.

You can specify a mnemonic keyboard shortcut (Alt+mnemonic) by using the ampersand
(&) character in the text for the label. The character that follows the ampersand appears
underlined in the menu when Alt is pressed. You can select the menu item by holding
down the Alt key and typing the character shown.

 Menu Properties

1-9245

To use mnemonics, you must specify a mnemonic for all menus and menu items that you
define in the app. If you define mnemonics only for some menus or menu items, pressing
the Alt key does not have any effect.

The table shows some examples:

Text Value Menu Label with Mnemonic Hints
'&Open Selection'

'O&pen Selection'

'&Save && Go'

Accelerator — Keyboard shortcut
character

Keyboard shortcut, specified as a character. Use this property to define a keyboard
shortcut for selecting a menu item.
Example: mitem.Accelerator = 'H'

Specifying an accelerator value enables users to select the menu item by pressing a
character and another key, instead of using the mouse. The key sequence is platform
specific.

• Windows systems: Ctrl+accelerator
• Macintosh systems: Command+accelerator
• Linux systems: Ctrl+accelerator

Things to keep in mind when using accelerators:

• The app window must be in focus when entering the accelerator key sequence.
• Accelerators cannot be used on top-level menus.
• Accelerators only work when the menu item meets all these criteria.

• It does not contain any submenu items.
• It executes a callback function.
• It has the Visible property set to 'on'.

1 Alphabetical List

1-9246

Separator — Separator line mode
'off' (default) | 'on'

Separator line mode, specified as 'off' or 'on'. Setting this property to 'on' draws a
dividing line above the menu item.

Note The Separator property is ignored when the menu item is a top-level menu item.

Checked — Menu check indicator
'off' (default) | 'on'

Menu check indicator, specified as 'off' or 'on'. Setting this property to 'on' places a
check mark next to the corresponding menu item. Setting it to 'off' removes the check
mark. You can use this feature to show the state of menu items that enable or disable
functionality in your application.

Note The Checked property is ignored when the menu item is:

• A top-level menu item
• A menu item that contains one or more child menu items

ForegroundColor — Menu label color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Menu label color, specified as an RGB triplet, a hexadecimal color code or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Menu Properties

1-9247

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Menu visibility
'on' (default) | 'off'

Menu visibility, specified as 'on' or 'off'. When the Visible property is set to 'off',
the menu is not visible, but you can query and set its properties.

Enable — Operational state of menu
'on' (default) | 'off'

1 Alphabetical List

1-9248

Operational state of menu, specified as 'on' or 'off'. This property controls whether
the user can select a menu item. When the value is 'off', the menu label appears
dimmed, indicating that the user cannot select it.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Callbacks

MenuSelectedFcn — Menu selected callback
'' (default) | function handle | cell array | character vector

Menu selected callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

The callback responds depending on the location of the menu item and the type of
interaction:

• Left-clicking a menu expands that menu and triggers its callback.
• While any menu is expanded, hovering any other parent menu (or top-level menu)

expands that menu and triggers its callback.

Note Do not use a callback to dynamically change menu items. Deleting, adding, and
replacing menu items in a callback can result in a blank menu. Instead, use the Visible
property to hide or show menu items. You can also enable and disable menu items by
setting the Enable property. To fully repopulate menu items, delete and create them
outside the callback.

 Menu Properties

1-9249

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

1 Alphabetical List

1-9250

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

 Menu Properties

1-9251

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

1 Alphabetical List

1-9252

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent object
Figure | Menu

Parent object, specified as a Figure created using the uifigure function, or a Menu
object. You can move a menu item to a different window, or move it under a different
menu by setting this property.

Children — Menu children
empty GraphicsPlaceholder array (default) | 1-D array of Menu objects

Menu children, returned as an empty GraphicsPlaceholder or a 1-D array of Menu
objects.

You cannot add or remove child components using the Children property. Use this
property to view the list of children or to reorder the child menu items.

To add a child menu to this list, set the Parent property of another Menu object to this
Menu object.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

 Menu Properties

1-9253

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uimenu'

This property is read-only.

Type of graphics object, returned as 'uimenu'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-9254

See Also
appdesigner | uimenu

Introduced in R2017b

 Menu Properties

1-9255

mergecats
Merge categories in categorical array

Syntax
B = mergecats(A,oldcats)
B = mergecats(A,oldcats,newcat)

Description
B = mergecats(A,oldcats) merges two or more categories in A into the first
category, oldcats(1). Any values in A from oldcats become oldcats(1) in B.

B = mergecats(A,oldcats,newcat) merges oldcats into a single new category,
newcat. Any values in A from oldcats become newcat in B.

Examples

Merge Two Categories into One

Create a categorical array containing various colors.

A = categorical({'red';'blue';'pink';'red';'blue';'red'})

A = 6x1 categorical array
 red
 blue
 pink
 red
 blue
 red

A is a 6-by-1 categorical array.

1 Alphabetical List

1-9256

Display the categories of A.

categories(A)

ans = 3x1 cell array
 {'blue'}
 {'pink'}
 {'red' }

The three categories are in alphabetical order.

Merge the categories red and pink into the category red. Specify red first in oldcats
to use it as the merged category.

oldcats = {'red','pink'};
B = mergecats(A,oldcats)

B = 6x1 categorical array
 red
 blue
 red
 red
 blue
 red

mergecats replaces the value pink from A(3) with red.

Display the categories of B.

categories(B)

ans = 2x1 cell array
 {'blue'}
 {'red' }

B has two categories instead of three.

Merge Alphabetically Listed Categories

Create a categorical array containing various items.

 mergecats

1-9257

A = categorical({'shirt' 'pants'; 'shoes' 'shirt'; 'dress' 'belt'})

A = 3x2 categorical array
 shirt pants
 shoes shirt
 dress belt

Display the categories of A.

categories(A)

ans = 5x1 cell array
 {'belt' }
 {'dress'}
 {'pants'}
 {'shirt'}
 {'shoes'}

The five categories are in alphabetical order.

Merge the categories belt and shoes into a new category called other.

B = mergecats(A,{'belt' 'shoes'},'other')

B = 3x2 categorical array
 shirt pants
 other shirt
 dress other

The value other replaces all instances of belt and shoes.

Display the categories of B.

categories(B)

ans = 4x1 cell array
 {'other'}
 {'dress'}
 {'pants'}
 {'shirt'}

1 Alphabetical List

1-9258

B has four categories and the order is no longer alphabetical. other appears in place of
belt.

Merge Categories of Ordinal Categorical Array

Create an ordinal categorical array.

A = categorical([1 2 3 2 1],1:3,{'poor','fair','good'},'Ordinal',true)

A = 1x5 categorical array
 poor fair good fair poor

Display the categories of A.

categories(A)

ans = 3x1 cell array
 {'poor'}
 {'fair'}
 {'good'}

Since A is ordinal, the categories have the mathematical ordering poor < fair <
good.

Consider all fair or poor values to be bad. Since A is ordinal, the categories to merge
must be consecutive.

B = mergecats(A,{'fair' 'poor'},'bad')

B = 1x5 categorical array
 bad bad good bad bad

The value bad replaces all instances of fair and poor.

Display the categories of B.

categories(B)

ans = 2x1 cell array
 {'bad' }

 mergecats

1-9259

 {'good'}

B has two categories with the mathematical ordering: bad < good.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

oldcats — Categories to merge
cell array of character vectors | string array

Categories to merge, specified as a cell array of character vectors or a string array. If A is
ordinal, then the categories to merge must be consecutive.

newcat — New category
oldcats(1) (default) | character vector | string scalar

New category, specified as a character vector or a string scalar.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
addcats | categories | iscategory | removecats | renamecats | reordercats |
setcats

1 Alphabetical List

1-9260

Introduced in R2013b

 mergecats

1-9261

mergevars
Combine table or timetable variables into multicolumn variable

Syntax
T2 = mergevars(T1,vars)
T2 = mergevars(T1,vars,'NewVariableName',newName)
T2 = mergevars(___ ,'MergeAsTable',true)

Description
T2 = mergevars(T1,vars) combines the table variables specified by vars to create
one multicolumn variable in T2 (see diagram). All other variables from T1 are unaltered.
You can specify variables by name, by position, or using logical indices.

By default, the name of the merged variable in T2 takes the form VarN, where N is the
position of the merged variable. For example, if the merged variable is the third variable
in T2, then its name is Var3.

To split multicolumn variables, use the splitvars function.

1 Alphabetical List

1-9262

T2 = mergevars(T1,vars,'NewVariableName',newName) specifies a name for the
multicolumn variable.

T2 = mergevars(___ ,'MergeAsTable',true) merges the specified variables into a
table, instead of an array. The new table is itself a variable of the output table T2. Use this
syntax to combine variables that cannot be concatenated into an array. You can use this
syntax with any of the input arguments from the previous syntaxes.

Examples

Merge Variables

Create a table from workspace variables.

A = [1:3]';
B = [5 11 12]';
C = [3.14 2.72 1.37]';
D = {'a';'b';'c'};
T1 = table(A,B,C,D)

T1=3×4 table
 A B C D
 _ __ ____ ___

 1 5 3.14 'a'
 2 11 2.72 'b'
 3 12 1.37 'c'

Merge the second and third variables. The new variable has two columns.

T2 = mergevars(T1,[2 3])

T2=3×3 table
 A Var2 D
 _ __________ ___

 1 5 3.14 'a'
 2 11 2.72 'b'
 3 12 1.37 'c'

 mergevars

1-9263

New Name for Merged Variable

Create a table using arrays of data from the patients.mat file. Display the first three
rows of the table.

load patients
T1 = table(LastName,Gender,Age,Height,Weight,Systolic,Diastolic);
head(T1,3)

ans=3×7 table
 LastName Gender Age Height Weight Systolic Diastolic
 __________ ________ ___ ______ ______ ________ _________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

Merge the variables Systolic and Diastolic into one variable with two columns.
Name it BloodPressure.

T2 = mergevars(T1,{'Systolic','Diastolic'},'NewVariableName','BloodPressure');
head(T2,3)

ans=3×6 table
 LastName Gender Age Height Weight BloodPressure
 __________ ________ ___ ______ ______ _____________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

Merged Variable as Table

Read in a table from a spreadsheet. Display the first three rows.

T1 = readtable('outages.csv');
head(T1,3)

1 Alphabetical List

1-9264

ans =

 3x6 table

 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ ______________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

Merge Cause, Loss, and RestorationTime. Because these variables have different
types, merge them into a table within a table.

T2 = mergevars(T1,{'Cause','Loss','RestorationTime'},...
 'NewVariableName','LossData','MergeAsTable',true);
head(T2,3)

ans =

 3x4 table

 Region OutageTime Customers LossData
 Cause Loss RestorationTime
 ___________ ________________ __________ __

 'SouthWest' 2002-02-01 12:18 1.8202e+06 'winter storm' 458.98 2002-02-07 16:50
 'SouthEast' 2003-01-23 00:49 2.1204e+05 'winter storm' 530.14 NaT
 'SouthEast' 2003-02-07 21:15 1.4294e+05 'winter storm' 289.4 2003-02-17 08:14

Input Arguments
T1 — Input table
table | timetable

Input table, specified as a table or timetable.

 mergevars

1-9265

vars — Variables in input table
character vector | cell array of character vectors | string array | numeric array | logical
array

Variables in the input table, specified as a character vector, cell array of character
vectors, string array, numeric array, or logical array.

newName — Name of merged variable
character vector | string scalar

Name of the merged variable, specified as a character vector or string scalar.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
addvars | movevars | removevars | splitvars

Topics
“Add, Delete, and Rearrange Table Variables”
“Add and Delete Table Rows”
“Access Data in a Table”
“Modify Units, Descriptions, and Table Variable Names”
“Clean Messy and Missing Data in Tables”

Introduced in R2018a

1 Alphabetical List

1-9266

mesh
Mesh plot

Syntax
mesh(X,Y,Z)
mesh(Z)
mesh(...,C)
mesh(...,'PropertyName',PropertyValue,...)
mesh(axes_handles,...)
s = mesh(...)

Description
mesh(X,Y,Z) draws a wireframe mesh with color determined by Z, so color is
proportional to surface height. If X and Y are vectors, length(X) = n and length(Y)
= m, where [m,n] = size(Z). In this case, (X(j), Y(i), Z(i,j)) are the intersections of the
wireframe grid lines; X and Y correspond to the columns and rows of Z, respectively. If X
and Y are matrices, (X(i,j), Y(i,j), Z(i,j)) are the intersections of the wireframe grid lines.
The values in X, Y, or Z can be numeric, datetime, duration, or categorical values.

mesh(Z) draws a wireframe mesh using X = 1:n and Y = 1:m, where [m,n] =
size(Z). The height, Z, is a single-valued function defined over a rectangular grid. Color
is proportional to surface height. The values in Z can be numeric, datetime, duration, or
categorical values.

mesh(...,C) draws a wireframe mesh with color determined by matrix C. MATLAB
performs a linear transformation on the data in C to obtain colors from the current
colormap. If X, Y, and Z are matrices, they must be the same size as C.

 mesh

1-9267

mesh(...,'PropertyName',PropertyValue,...) sets the value of the specified
surface property. Multiple property values can be set with a single statement.

mesh(axes_handles,...) plots into the axes with handle axes_handle instead of the
current axes (gca).

s = mesh(...) returns a Surface object.

Examples

Create Mesh Plot of Sinc Function

Create a mesh plot of the sinc function, z = sin(r)/r.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z)

1 Alphabetical List

1-9268

Specify Color for Mesh Plot

Specify a color matrix for a mesh plot.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
C = gradient(Z);

figure
mesh(X,Y,Z,C)

 mesh

1-9269

Change Lighting and Line Width for Mesh Plot

Change the lighting and the line width for a mesh plot using Name,Value pair
arguments.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
C = del2(Z);

figure
mesh(X,Y,Z,C,'FaceLighting','gouraud','LineWidth',0.3)

1 Alphabetical List

1-9270

Tips
mesh does not accept complex inputs.

A mesh is drawn as a Surface object with the viewpoint specified by view(3). The face
color is the same as the background color (to simulate a wireframe with hidden-surface
elimination), or none when drawing a standard see-through wireframe. The current
colormap determines the edge color. The hidden command controls the simulation of
hidden-surface elimination in the mesh, and the shading command controls the shading
model.

 mesh

1-9271

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
axis | colormap | griddata | hidden | hold | meshc | meshgrid | meshz |
scatteredInterpolant | shading | surf | surface | view | waterfall

Properties
Surface

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

1 Alphabetical List

1-9272

“Representing Data as a Surface”

Introduced before R2006a

 mesh

1-9273

meshc
Plot a contour graph under mesh graph

Syntax
meshc(X,Y,Z)
meshc(Z)
meshc(...,C)
meshc(axes_handles,...)
h = meshc(...)

Description
meshc(X,Y,Z) draws a wireframe mesh and a contour plot under it with color
determined by Z, so color is proportional to surface height. If X and Y are vectors,
length(X) = n and length(Y) = m, where [m,n] = size(Z). In this case, (X(j),
Y(i), Z(i,j)) are the intersections of the wireframe grid lines; X and Y correspond to the
columns and rows of Z, respectively. If X and Y are matrices, (X(i,j), Y(i,j), Z(i,j)) are the
intersections of the wireframe grid lines.

meshc(Z) draws a contour plot under wireframe mesh using X = 1:n and Y = 1:m,
where [m,n] = size(Z). The height, Z, is a single-valued function defined over a
rectangular grid. Color is proportional to surface height.

meshc(...,C) draws a meshc graph with color determined by matrix C. MATLAB
performs a linear transformation on the data in C to obtain colors from the current
colormap. If X, Y, and Z are matrices, they must be the same size as C.

meshc(axes_handles,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

1 Alphabetical List

1-9274

h = meshc(...) returns handles to the Chart Surface and Contour graphics object.

Examples

Display Contour Plot Under Mesh Plot

Use meshc to display a combination of a mesh plot and a contour plot of the peaks
function.

figure
[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
meshc(Z)

 meshc

1-9275

Tips
meshc does not accept complex inputs.

A mesh is drawn as a Surfaceplot graphics object with the viewpoint specified by
view(3). The face color is the same as the background color (to simulate a wireframe
with hidden-surface elimination), or none when drawing a standard see-through
wireframe. The current colormap determines the edge color. The hidden command
controls the simulation of hidden-surface elimination in the mesh, and the shading
command controls the shading model.

1 Alphabetical List

1-9276

Algorithms
The range of X, Y, and Z, or the current settings of the axes XLimMode, YLimMode, and
ZLimMode properties, determine the axis limits. axis sets these properties.

The range of C, or the current settings of the axes CLim and CLimMode properties (also
set by the caxis function), determine the color scaling. Use the scaled color values are
used as indices into the current colormap.

The mesh rendering functions produce color values by mapping the z data values (or an
explicit color array) onto the current colormap. The MATLAB default behavior is to
compute the color limits automatically using the minimum and maximum data values (also
set using caxis auto). The minimum data value maps to the first color value in the
colormap and the maximum data value maps to the last color value in the colormap.
MATLAB performs a linear transformation on the intermediate values to map them to the
current colormap.

meshc calls mesh, turns hold on, and then calls contour and positions the contour on
the x-y plane. For additional control over the appearance of the contours, issue these
commands directly. You can combine other types of graphs in this manner, for example
surf and pcolor plots.

meshc assumes that X and Y are monotonically increasing. If X or Y is irregularly spaced,
contour3 calculates contours using a regularly spaced contour grid, and then it
transforms the data to X or Y.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 meshc

1-9277

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
axis | caxis | colormap | contour | hidden | hold | mesh | meshgrid | meshz |
shading | surf | surface | surfc | surfl | view | waterfall

Properties
Chart Surface | Contour

Introduced before R2006a

1 Alphabetical List

1-9278

meshz
Plot a curtain around mesh plot

Syntax
meshz(X,Y,Z)
meshz(Z)
meshz(...,C)
meshz(axes_handles,...)
h = meshz(...)

Description
meshz(X,Y,Z) draws a curtain around the wireframe mesh with color determined by Z,
so color is proportional to surface height. If X and Y are vectors, length(X) = n and
length(Y) = m, where [m,n] = size(Z). In this case, (X(j), Y(i), Z(i,j)) are the
intersections of the wireframe grid lines; X and Y correspond to the columns and rows of
Z, respectively. If X and Y are matrices, (X(i,j), Y(i,j), Z(i,j)) are the intersections of the
wireframe grid lines.

meshz(Z) draws a curtain around the wireframe mesh using X = 1:n and Y = 1:m,
where [m,n] = size(Z). The height, Z, is a single-valued function defined over a
rectangular grid. Color is proportional to surface height.

meshz(...,C) draws a meshz graph with color determined by matrix C. MATLAB
performs a linear transformation on the data in C to obtain colors from the current
colormap. If X, Y, and Z are matrices, they must be the same size as C.

meshz(axes_handles,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

 meshz

1-9279

h = meshz(...) returns a handle to a Chart Surface graphics object.

Examples

Curtain Plot of Peaks Function

Generate a curtain plot of the peaks function using meshz.

figure
[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
meshz(Z)

1 Alphabetical List

1-9280

Specify Color for Curtain Plot

Specify a color matrix for a curtain plot.

[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
C = gradient(Z);

figure
meshz(X,Y,Z,C)

 meshz

1-9281

Tips
meshz does not accept complex inputs.

A mesh is drawn as a chart surface graphics object with the viewpoint specified by
view(3). The face color is the same as the background color (to simulate a wireframe
with hidden-surface elimination), or none when drawing a standard see-through
wireframe. The current colormap determines the edge color. The hidden command
controls the simulation of hidden-surface elimination in the mesh, and the shading
command controls the shading model.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

1 Alphabetical List

1-9282

See Also
Functions
axis | caxis | colormap | contour | hidden | hold | mesh | meshc | meshgrid |
shading | surf | surface | surfc | surfl | view | waterfall

Properties
Chart Surface

Introduced before R2006a

 meshz

1-9283

meshgrid
2-D and 3-D grids

Syntax
[X,Y] = meshgrid(x,y)
[X,Y] = meshgrid(x)

[X,Y,Z] = meshgrid(x,y,z)
[X,Y,Z] = meshgrid(x)

Description
[X,Y] = meshgrid(x,y) returns 2-D grid coordinates based on the coordinates
contained in vectors x and y. X is a matrix where each row is a copy of x, and Y is a
matrix where each column is a copy of y. The grid represented by the coordinates X and Y
has length(y) rows and length(x) columns.

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x), returning square
grid coordinates with grid size length(x)-by-length(x).

[X,Y,Z] = meshgrid(x,y,z) returns 3-D grid coordinates defined by the vectors x, y,
and z. The grid represented by X, Y, and Z has size length(y)-by-length(x)-by-
length(z).

[X,Y,Z] = meshgrid(x) is the same as [X,Y,Z] = meshgrid(x,x,x), returning 3-
D grid coordinates with grid size length(x)-by-length(x)-by-length(x).

Examples

2-D Grid

Create 2-D grid coordinates with x-coordinates defined by the vector x and y-coordinates
defined by the vector y.

1 Alphabetical List

1-9284

x = 1:3;
y = 1:5;
[X,Y] = meshgrid(x,y)

X = 5×3

 1 2 3
 1 2 3
 1 2 3
 1 2 3
 1 2 3

Y = 5×3

 1 1 1
 2 2 2
 3 3 3
 4 4 4
 5 5 5

Evaluate the expression x2 + y2 over the 2-D grid.

X.^2 + Y.^2

ans = 5×3

 2 5 10
 5 8 13
 10 13 18
 17 20 25
 26 29 34

Plot Surface

Create a 2-D grid with uniformly spaced x-coordinates and y-coordinates in the interval
[-2,2].

x = -2:0.25:2;
y = x;
[X,Y] = meshgrid(x);

 meshgrid

1-9285

Evaluate and plot the function f (x, y) = xe−x2− y2 over the 2-D grid.

F = X.*exp(-X.^2-Y.^2);
surf(X,Y,F)

Starting in R2016b, it is not always necessary to create the grid before operating over it.
For example, computing the expression xe−x2− y2 implicitly expands the vectors x and y.
For more information on implicit expansion, see “Array vs. Matrix Operations”.

surf(x,y,x.*exp(-x.^2-(y').^2))

1 Alphabetical List

1-9286

3-D Grid

Create 3-D grid coordinates from x-, y-, and z-coordinates defined in the interval [0,6],
and evaluate the expression x2 + y2 + z2.

x = 0:2:6;
y = 0:1:6;
z = 0:3:6;
[X,Y,Z] = meshgrid(x,y,z);
F = X.^2 + Y.^2 + Z.^2;

 meshgrid

1-9287

Determine the size of the grid. The three coordinate vectors have different lengths,
forming a rectangular box of grid points.

gridsize = size(F)

gridsize = 1×3

 7 4 3

Use the single-input syntax to generate a uniformly spaced 3-D grid based on the
coordinates defined in x. The new grid forms a cube of grid points.

[X,Y,Z] = meshgrid(x);
G = X.^2 + Y.^2 + Z.^2;
gridsize = size(G)

gridsize = 1×3

 4 4 4

Input Arguments
x — x-coordinates of points
vector

x-coordinates of points, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

y — y-coordinates of points
vector

y-coordinates of points, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

z — z-coordinates of points
vector

1 Alphabetical List

1-9288

z-coordinates of points, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
X — x-coordinates over grid
2-D or 3-D array

x-coordinates over a grid, returned as a 2-D (two inputs) or 3-D array (three inputs).

Y — y-coordinates over grid
2-D or 3-D array

y-coordinates over a grid, returned as a 2-D (two inputs) or 3-D array (three inputs).

Z — z-coordinates over grid
3-D array

z-coordinates over a grid, returned as a 3-D array.

Tips
• For additional information on creating multidimensional grids, see “Grid

Representation”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 meshgrid

1-9289

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The inputs must be floating-point double or single.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The inputs must be floating-point double or single.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
griddedInterpolant | mesh | ndgrid | surf

Topics
“Interpolating Gridded Data”

Introduced before R2006a

1 Alphabetical List

1-9290

meta.class
Describe MATLAB class

Description
Instances of the meta.class class contain information about MATLAB classes. The read/
write properties of the meta.class class correspond to class attributes and are set only
from within class definitions on the classdef line. You can query the read–only
properties of the meta.class object to obtain information that is specified syntactically
by the class (for example, to obtain the name of the class).

You cannot instantiate a meta.class object directly. You can construct a meta.class
object from an instance of a class or using the class name:

• metaclass — returns a meta.class object representing the object passed as an
argument.

• ?ClassName — returns a meta.class object representing the named class.
• fromName — static method returns a meta.class object representing the named

class.

For example, the metaclass function returns the meta.class object representing
MyClass.

ob = MyClass;
obmeta = metaclass(ob);
obmeta.Name

ans =
MyClass

You can use the class name to obtain the meta.class object:

obmeta = ?MyClass;

You can also use the fromName static method:

obmeta = meta.class.fromName('MyClass');

 meta.class

1-9291

Properties
Property Purpose
Abstract attribute, default
= false

If true, this class is an abstract class (cannot be
instantiated).

For more information, see “Abstract Classes”.
ConstructOnLoad
attribute, default = false

If true, MATLAB calls the class constructor automatically
when loading an object from a MAT-file. Therefore, the
construction must be implemented so that calling it with
no arguments does not produce an error.

See “Save and Load Process for Objects”
ContainingPackage read
only

A meta.package object describing the package within
which this class is contained, or an empty object if this
class is not in a package.

See “Packages Create Namespaces”.
Description read only Currently not used.
DetailedDescription
read only

Currently not used.

Enumeration attribute,
default = false

If true, this class is an enumeration class. See “Define
Enumeration Classes”.

EventList read only An array of meta.event objects describing each event
defined by this class, including all inherited events.

See “Events”.
EnumerationMemberList An array of meta.EnumeratedValue objects describing

the member names defined by an enumeration class.

See “Enumerations” for more information on enumeration
classes.

Hidden attribute, default =
false

If set to true, the class does not appear in the output of
MATLAB commands or tools that display class names.

1 Alphabetical List

1-9292

Property Purpose
InferiorClasses
attribute, default = {}

A cell array of meta.class objects defining the
precedence of classes represented by the list as inferior to
this class.

See “Class Precedence”
MethodList read only An array of meta.method objects describing each method

defined by this class, including all inherited public and
protected methods.

See “Methods in Class Design”.
Name read only Name of the class associated with this meta.class object

(char array)
PropertyList read only An array of meta.property objects describing each

property defined by this class, including all inherited
public and protected properties.

See “Properties”.
RestrictsSubclassing
read only

If the class is not Sealed and has an empty list of
AllowedSubclasses in the class definition, this property
is set to false. If the class is Sealed or specifies any
AllowedSubclasses, this property is set to true.

See “Specify Allowed Subclasses”.
Sealed attribute, default =
false

If true, the class cannot be subclassed.

SuperclassList read only An array of meta.class objects describing each direct
superclass from which this class is derived.

See “Design Subclass Constructors”.

 meta.class

1-9293

Methods
Method Purpose
fromName Returns the meta.class object associated with the

specified class name.
tf = eq(Cls) Equality function (a == b). Use to test if two variables

refer to equal classes (classes that contain exactly the
same list of elements).

tf = ne(Cls) Not equal function (a ~= b). Use to test if two variables
refer to different meta–classes.

tf = lt(ClsA,ClsB) Less than function (ClsA < ClsB). Use to determine if
ClsA is a strict subclass of ClsB (i.e., a strict subclass
means ClsX < ClsX is false).

tf = le(ClsA,ClsB) Less than or equal to function (ClsA <= ClsB). Use to
determine if ClsA is a subclass of ClsB.

tf = gt(ClsA,ClsB) Greater than function (ClsA > ClsB). Use to determine if
ClsA is a strict superclass of ClsB (i.e., a strict superclass
means ClsX > ClsX is false).

tf = ge(ClsA,ClsB) Greater than or equal to function (ClsA >= ClsB). Use to
determine if ClsA is a superclass of ClsB.

Events
Event Purpose
InstanceCreated If the class is a handle class, this event occurs every time a

new instance of this handle class is created, including new
instances of any subclasses. The event occurs immediately
after all constructor functions finish executing.

InstanceDestroyed If the class is a handle class, this event occurs every time
an instance of this handle class is destroyed, including all
subclasses. The event occurs immediately before any
destructor functions execute.

1 Alphabetical List

1-9294

Examples
Find property attributes using the handle class findobj method and the audioplayer
meta.class object. Determine if a class defines the property named SampleRate and
does it have public set access.

mc = ?audioplayer;
mp = findobj(mc.PropertyList,'Name','SampleRate');
strcmp(mp.SetAccess,'public')
 ...

See Also
fromName | meta.event | meta.method | meta.package | meta.property

Topics
“Class Introspection and Metadata”

 meta.class

1-9295

meta.class.fromName
Return meta.class object associated with named class

Syntax
mcls = meta.class.fromName(ClassName)

Description
mcls = meta.class.fromName(ClassName) is a static method that returns the
meta.class object for the specified class. ClassName can be a character vector or a
string scalar.

You can also use the ? operator to obtain the meta.class object for a class name:

mcls = ?ClassName;

The equivalent call to meta.class.fromName is:

mcls = meta.class.fromName('ClassName');

Use meta.class.fromName when using a character vector or string variable for the
class name:

function mcls = getMetaClass(clname)
 % Do error checking
 mcls = meta.class.fromName(clname);
 ...
end

See Also
meta.class | string

1 Alphabetical List

1-9296

meta.DynamicProperty
Describe dynamic property of MATLAB object

Description
The meta.DynamicProperty class contains descriptive information about dynamic
properties that you have added to an instance of a MATLAB classes. The MATLAB class
must be a subclass of dynamicprops. The properties of the meta.DynamicProperty
class correspond to property attributes that you specify from within class definitions.
Dynamic properties are not defined in classdef blocks, but you can set their attributes
by setting the meta.DynamicProperty object properties.

You add a dynamic property to an object using the addprop method of the
dynamicprops class. The addprop method returns a meta.DynamicProperty instance
representing the new dynamic property. You can modify the properties of the
meta.DynamicProperty object to set the attributes of the dynamic property or to add
set and get access methods, which would be defined in the classdef for regular
properties.

You cannot instantiate the meta.DynamicProperty class. You must use addprop to
obtain a meta.DynamicProperty object. Use findprop to get the
meta.DynamicProperty object for an object with a dynamic property.

To remove the dynamic property, call the delete handle class method on the
meta.DynamicProperty object.

The dynamicprops addprop method returns an array of meta.DynamicProperty
objects, one for each dynamic property added.

See “Dynamic Properties — Adding Properties to an Instance” for more information.

Properties
Property Purpose
Name Name of the property.

 meta.DynamicProperty

1-9297

Property Purpose
Description Currently not used
DetailedDescription Currently not used
AbortSet If true, then MATLAB does not set the property value if

the new value is the same as the current value. This
approach prevents the triggering of property PreSet and
PostSet events.

Abstract attribute, default
= false

If true, the property has no implementation, but a
concrete subclass must redefine this property without
Abstract being set to true.

• Abstract properties cannot define set or get access
methods. See “Property Access Methods”

• Abstract properties cannot define initial values.
“Assigning a Default Value”

• All subclasses must specify the same values as the
superclass for the property SetAccess and
GetAccess attributes.

• Abstract=true should be used with the class
attribute Sealed=false (the default).

1 Alphabetical List

1-9298

Property Purpose
Access The Access attribute a of dynamic property applies to the

class of the instance that contains the dynamic property.
For more information, see “Access Attribute for Dynamic
Properties”.

public – unrestricted access

protected – access from class or subclasses

private – access by class members only (not subclasses)

List of classes that have get and set access to this property.
Specify classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

Use Access to set both SetAccess and GetAccess to the
same value. Query the values of SetAccess and
GetAccess directly (not Access).

Constant attribute, default
= false

Setting the Constant attribute of a dynamic property is
not allowed. Dynamic properties cannot be constant.

DefaultValue Querying this property returns an error because dynamic
properties cannot define default values.

DefiningClass The meta.class object representing the class that defines
this property.

GetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only
SetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only

 meta.DynamicProperty

1-9299

Property Purpose
Dependent attribute,
default = false

If false, property value is stored in object. If true,
property value is not stored in object and the set and get
functions cannot access the property by indexing into the
object using the property name.

See “Property Get Methods”
Transient attribute,
default = false

If true, property value is not saved when object is saved
to a file. See “Save and Load Process for Objects” for more
about saving objects.

Hidden attribute, default =
false

Determines whether the property should be shown in a
property list (e.g., Property Inspector, call to properties,
etc.).

NonCopyable

default = false

Determines if dynamic property should be copied when
object is copied. By default, dynamic properties are not
copied.

For more information, see “Exclude Properties from Copy”
GetObservable attribute,
default = false

If true, then listeners can be created for access to this
property. The listeners are called whenever property
values are queried. See “Property-Set and Query Events”

SetObservable attribute,
default = false

If true, then listeners can be created for access to this
property. The listeners are called whenever property
values are modified. See “Property-Set and Query Events”

GetMethod Function handle of the get method associated with this
property. Empty if there is no get method specified. See
“Get Method Syntax”

SetMethod Function handle of the set method associated with this
property. Empty if there is no set method specified. See
“Property Set Methods”

HasDefault Always false. Dynamic properties cannot define default
values.

1 Alphabetical List

1-9300

Events
See “Listen for Changes to Property Values” for information on using property events.

Event Name Purpose
PreGet Event occurs just before property is queried.
PostGet Event occurs just after property has been queried
PreSet Event occurs just before this property is modified
PostSet Event occurs just after this property has been modified
ObjectBeingDestroyed Inherited from handle

See Also
addprop | findprop | handle

Topics
“Dynamic Properties — Adding Properties to an Instance”
“Set and Get Methods for Dynamic Properties”
“Dynamic Property Events”
“Dynamic Properties and ConstructOnLoad”

 meta.DynamicProperty

1-9301

meta.EnumeratedValue
Describe enumeration member of MATLAB class

Description
The meta.EnumeratedValue class contains information about enumeration members
defined by MATLAB classes. The properties of a meta.EnumeratedValue object
correspond to the attributes of the enumeration member being described.

All meta.EnumeratedValue properties are read-only. Query the
meta.EnumeratedValue object to obtain information about the enumeration member it
describes.

Obtain a meta.EnumeratedValue object from the EnumerationMemberList property
of the meta.class object. EnumerationMemberList is an array of
Meta.EnumeratedValue instances, one per enumeration member.

The meta.EnumeratedValue class is a subclass of the handle class.

Example
To access the meta.EnumeratedValue objects for a class, first create a meta.class
object for that class. For example, give the following OnOff class definition:

classdef OnOff < logical
 enumeration
 On (true)
 Off (false)
 end
end

Obtain a meta.EnumeratedValue object from the EnumerationMemberList property
of the meta.class object:

% Obtain the meta.class instance for the OnOff class
mc = ?OnOff;
% Get the array of EnumerateValue objects
enumList = mc.EnumerationMemberList;

1 Alphabetical List

1-9302

% Access the Name property of the first object in the array
enumList(1).Name =
ans =
On

Properties
Property Purpose
Name read-only Name of the enumeration member associated with this

meta.EnumeratedValue object
Description read-only Currently not used.
DetailedDescription
read-only

Currently not used.

Methods
See the handle superclass for inherited methods.

Events
See the handle superclass for inherited events.

See Also
meta.class | meta.event | meta.method | meta.property

Topics
“Define Enumeration Classes”
“Class Introspection and Metadata”

 meta.EnumeratedValue

1-9303

meta.event
Describe event of MATLAB class

Description
The meta.event class provides information about MATLAB class events. The read/write
properties of the meta.event class correspond to event attributes and are specified only
from within class definitions.

You can query the read-only properties of the meta.event object to obtain information
that is specified syntactically by the class (for example, to obtain the name of the class
defining the event).

You cannot instantiate a meta.event object directly. Obtain a meta.event object from
the meta.class EventList property, which contains an array of meta.event objects,
one for each event defined by the class. For example, replace ClassName with the name
of the class whose events you want to query:

mco = ?ClassName;
elist = mco.EventList;
elist(1).Name; % name of first event in list

Use the metaclass function to obtain a meta.class object from a class instance:

mco = metaclass(obj);

Properties
Property Purpose
Name read-only Name of the event.
Description read-only This property holds the first comment line following an

event name inside an events block.

1 Alphabetical List

1-9304

Property Purpose
DetailedDescription
read-only

This property holds the comment lines immediately
following an event definition up to the first line that does
not begin with a comment. The lines are in a 1-by-n
MATLAB char array with newline characters separating
lines.

Hidden If true, the event does not appear in the list of events
returned by the events function (or other event listing
functions or viewers)

ListenAccess Determines where you can create listeners for the event.

• public — unrestricted access
• protected — access from methods in class or

subclasses
• private — access by class methods only (not from

subclasses)
• List classes that have listen access to this event. Specify

classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

See “Class Members Access”

 meta.event

1-9305

Property Purpose
NotifyAccess Determines where code can trigger the event.

• public — any code can trigger event
• protected — can trigger event from methods in class

or subclasses
• private — can trigger event by class methods only

(not from subclasses)
• List classes that have notify access to this event.

Specify classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

See “Class Members Access”
DefiningClass The meta.class object representing the class that defines

this event.

See Also
meta.class | meta.method | meta.property | metaclass

Topics
“Events”
“Class Introspection and Metadata”

1 Alphabetical List

1-9306

meta.MetaData class
Package: meta
Superclasses:

Superclass for MATLAB object metadata

Description
The meta.MetaData class of objects represent MATLAB class definitions and the
constituent parts of those definitions, such as properties and methods. Metadata enable a
program to get information about a class definition.

The meta.MetaData class forms the root of the metadata class hierarchy, which enables
the formation of arrays of metadata objects belonging to different specific classes.

MATLAB uses instances of the meta.MetaData class as the default object to fill in
missing array elements.

findobj and findprop, can search the metadata hierarchy and return an array of
different metadata objects. These function require the ability to form heterogeneous
arrays containing various metaclass objects.

See the matlab.mixin.Heterogeneous class for more information on heterogeneous
hierarchies.

Construction
You cannot create an instance of the meta.MetaData class directly. MATLAB constructs
instances of this class as required.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 meta.MetaData class

1-9307

Examples

This example shows how the meta.MetaData class facilitates working with metaclasses.

Create a meta.class instance representing the MATLAB timeseries class:

>> mc = ?timeseries;

MATLAB uses meta.MetaData objects to fill empty array elements:

>> m(2) = mc
>> class(m(1))

ans =

meta.MetaData
>> class(m(2))

ans =

meta.class

Use findobj to find all properties and methods that have protected access:

>> protectedMembers = findobj(mc,{'Access','protected'},...
'-or',{'SetAccess','protected'},...
'-or',{'GetAccess','protected'});

The timeseries class defines both properties and methods that have protected access.
Therefore, findobj returns a heterogeneous array of class meta.MetaData. This array
contains both meta.property and meta.method objects.
>> protectedMembers

protectedMembers =

 11x1 heterogeneous meta.MetaData (meta.property, meta.method)
 handle with no properties.
 Package: meta
>> class(protectedMembers(1))

ans =

meta.property

>> protectedMembers(1).Name

1 Alphabetical List

1-9308

ans =

Length
>> protectedMembers(1).SetAccess

ans =

protected
>> protectedMembers(1).GetAccess

ans =

public

See Also
handle | matlab.mixin.Heterogeneous

Topics
Class Attributes
Property Attributes
“Class Introspection and Metadata”

 meta.MetaData class

1-9309

meta.method
Describe method of MATLAB class

Description
The meta.method class provides information about the methods of MATLAB classes. The
read/write properties of the meta.method class correspond to method attributes and are
specified only from within class definitions.

You can query the read-only properties of the meta.method object to obtain information
that is specified syntactically by the class (for example, to obtain the name of the class
defining a method).

You cannot instantiate a meta.method object directly. Obtain a meta.method object
from the meta.class MethodList property, which contains an array of meta.method
objects, one for each class method. For example, replace ClassName with the name of
the class whose methods you want to query:

mco = ?ClassName;
mlist = mco.MethodList;
mlist(1).Name; % name of first method in the list

Use the metaclass function to obtain a meta.class object from a class instance:

mco = metaclass(obj);

1 Alphabetical List

1-9310

Properties
Property Purpose
Abstract If true, the method has no implementation. The method

has a syntax line that can include arguments, which
subclasses use when implementing the method.

• Subclasses are not required to define the same number
of input and output arguments.

• The method can have comments after the function
line

• Does not contain function or end keywords, only the
function syntax (e.g., [a,b] = myMethod(x,y))

Access attribute, default =
public

Determines what code can call this method.

• public — unrestricted access
• protected — access from methods in class or

subclasses
• private — access by class methods only (not from

subclasses)
• List classes that have access to this method. Specify

classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.
DefiningClass The meta.class object representing the class that defines

this method.
Description read-only Currently not used.
DetailedDescription
read-only

Currently not used.

Hidden attribute, default =
false

When false, the method name shows in the list of
methods displayed using the methods or methodsview
commands. If set to true, the method name is not included
in these listings.

 meta.method

1-9311

Property Purpose
InputNames Character vector or cell array containing the names of the

input arguments used in the function signature.
Name read-only Name of the method.
OutputNames Character vector or cell array containing the names of the

output arguments used in the function signature.
Sealed attribute, default =
false

If true, the method cannot be redefined in a subclass.
Attempting to define a method with the same name in a
subclass causes an error.

Static attribute, default =
false

Set to true to define a method that does not depend on an
object of the class and does not require an object
argument. Call static methods using the class name in
place of the object:

classname.methodname()

Or with an instance of the class, like any method:

o.methodname()

See “Static Methods”

See Also
meta.class | meta.event | meta.property | metaclass

Topics
“Methods”
“Class Introspection and Metadata”

1 Alphabetical List

1-9312

meta.package
Describe MATLAB package

Description
The meta.package class contains information about MATLAB packages.

You cannot instantiate a meta.package object directly. Obtain a meta.package object
from the meta.class ContainingPackage property, which contains a meta.package
object, or an empty object, if the class is not in a package.

Properties
Property Purpose
Name Name of the package associated with this meta.package

object. Read only
Description Currently not used. Read only
DetailedDescripti
on

Currently not used. Read only

ClassList List of classes that are scoped to this package. An object array
of meta.class objects. Read only

Classes

Use ClassList
instead

List of classes that are scoped to this package. A cell array of
meta.class objects. Read only

FunctionList List of functions that are scoped to this package. An object array
of function handles. Read only

Functions

Use FunctionList
instead

List of functions that are scoped to this package. A cell array of
function handles. Read only

 meta.package

1-9313

Property Purpose
PackageList List of packages that are scoped to this package. An object array

of meta.package objects. Read only
Packages

Use PackageList
instead

List of packages that are scoped to this package. A cell array of
meta.package objects. Read only

ContainingPackage A meta.package object describing the package within which
this package is contained, or an empty object if this package is
not nested. Read only

Methods

Method Purpose
fromName Static method returns a meta.package object for a specified

package name.
getAllPackages Static method returns a cell array of meta.package objects

representing all top-level packages.

See Also
meta.class | meta.event | meta.method | meta.property

Topics
“Class Introspection and Metadata”

1 Alphabetical List

1-9314

meta.abstractDetails
Package: meta

Find abstract methods and properties

Syntax
meta.abstractDetails(ClassName)
meta.abstractDetails(mc)
absMembers = meta.abstractDetails(___)

Description
meta.abstractDetails(ClassName) displays a list of abstract methods and
properties for the class with name ClassName. Use the fully specified name for classes in
packages. MATLAB displays all public and protected abstract methods and properties,
including those declared Hidden.

meta.abstractDetails(mc) displays a list of abstract methods and properties for the
class represented by the meta.class object mc.

absMembers = meta.abstractDetails(___) returns an array of the metaclass
objects corresponding to the abstract members of the class, and can include any of the
input arguments in previous syntaxes. If the class has both abstract methods and abstract
properties, absMembers is a heterogeneous array of class meta.MetaData containing
meta.method and meta.property objects.

A class can be abstract without defining any abstract methods or properties if it declares
the Abstract class attribute. In this case, meta.abstractDetails returns no abstract
members for that class, but the class is abstract. See “Determine If a Class Is Abstract”
for more information.

 meta.abstractDetails

1-9315

Input Arguments
ClassName

Name of the class specified as a character vector or a string scalar.

mc

meta.class object representing the class (for example, ?MyClass).

Output Arguments
absMembers

Array of meta.class objects representing abstract class members

Examples

Display Abstract Member Names

Define the class, AbsBase, with an abstract property:

classdef AbsBase
 properties (Abstract)
 Prop1
 end
 methods(Abstract)
 result = methodOne(obj)
 output = methodTwo(obj)
 end
end

Pass the class name (AbsBase) as a char vector:

meta.abstractDetails('AbsBase')

meta.abstractDetails displays the names of the abstract properties and methods
defined in the class AbsBase.

1 Alphabetical List

1-9316

Abstract methods for class AbsBase:
 methodTwo % defined in AbsBase
 methodOne % defined in AbsBase

Abstract properties for class AbsBase:
 Prop1 % defined in AbsBase

Return Abstract Member Metaclass Objects

Pass a meta.class object representing the AbsBase class and return the metaclass
objects for the abstract members. Use the definition of the AbsBase class from the
previous example.

mc = ?AbsBase;
absMembers = meta.abstractDetails(mc);

absMembers is a heterogeneous array containing a meta.property object for the
Prop1 abstract property and meta.method objects for the methodOne and methodTwo
abstract methods.

List the names of the metaclass objects.

for k = 1:length(absMembers)
 disp(absMembers(k).Name)
end

methodTwo
methodOne
Prop1

Find Inherited Abstract Members

Derive the SubAbsBase class from AbsBase, which is defined in a previous example.

classdef SubAbsBase < AbsBase
 properties
 SubProp = 1;
 end
 methods
 function result = methodOne(obj)
 result = obj.SubProp + 1;

 meta.abstractDetails

1-9317

 end
 end
end

Display the names of the abstract members inherited by SubAbsBase.

meta.abstractDetails('SubAbsBase')

Abstract methods for class SubAbsBase:
 methodTwo % defined in AbsBase

Abstract properties for class SubAbsBase:
 Prop1 % defined in AbsBase

To make SubAbsBase a concrete class, you need to implement concrete versions of
methodTwo and Prop1 in the subclass.

See Also
meta.class | meta.class.fromName | string

Topics
“Abstract Classes”
“Class Introspection and Metadata”

1 Alphabetical List

1-9318

meta.package.fromName
Return meta.package object for specified package

Syntax
mp = meta.package.fromName(packageName)

Description
mp = meta.package.fromName(packageName) returns the meta.package object
associated with the named package. If packageName is a nested package, then you must
provide the fully qualified name (for example, packageName1.packageName2).

Input Arguments
packageName — Package name
character vector | string scalar

Package name, specified as a character vector or a string scalar.
Data Types: char | string

Output Arguments
mp — meta.package object
object

meta.package object for the specified package.

Examples

 meta.package.fromName

1-9319

Get Package Contents

Return the names of the classes contained in the event package

mev = meta.package.fromName('event');
for k=1:length(mev.Classes)
 disp(mev.Classes{k}.Name)
end

event.EventData
event.ClassInstanceEvent
event.PropertyEvent
event.ParentEvent
event.ChildEvent
event.DynamicPropertyEvent
event.listener
event.proplistener

See Also
meta.package | meta.package.getAllPackages

Introduced in R2008a

1 Alphabetical List

1-9320

meta.package.getAllPackages
Get all top-level packages

Syntax
P = meta.package.getAllPackages

Description
P = meta.package.getAllPackages is a static method that returns a cell array of
meta.package objects representing all the top-level packages that are visible on the
MATLAB path or defined as top-level built-in packages. You can access subpackages using
the Packages property of each meta.package object.

Note that the time required to find all the packages on the path might be excessively long
in some cases. You should therefore avoid using this method in any code where execution
time is a consideration. getAllPackages is generally intended for interactive use only.

See Also
meta.package | meta.package.fromName

 meta.package.getAllPackages

1-9321

meta.property
Describe property of MATLAB class

Description
The meta.property class provides information about the properties of MATLAB classes.
The read/write properties of the meta.property class correspond to property attributes
and are specified only from within your class definitions.

You can query the read-only properties of the meta.property object to obtain
information that is specified syntactically by the class (for example, to obtain the function
handle of a property set access method).

You cannot instantiate a meta.property object directly. Obtain a meta.property
object from the meta.class PropertyList property, which contains an array of
meta.property objects, one for each class property. For example, replace ClassName
with the name of the class whose properties you want to query:

mco = ?ClassName;
plist = mco.PropertyList;
plist(1).Name; % name of first property

Use the metaclass function to obtain a meta.class object from a class instance:

mco = metaclass(obj);

Properties
Property Purpose
Name read-only Name of the property.
Description read-only Currently not used.
DetailedDescription
read-only

Currently not used.

1 Alphabetical List

1-9322

Property Purpose
AbortSet attribute, default
= false

If true, and this property belongs to a handle class, then
MATLAB does not set the property value if the new value is
the same as the current value. This setting prevents the
triggering of property PreSet and PostSet events.

See “Listen for Changes to Property Values”
Abstract attribute, default
= false

If true, the property has no implementation, but a
concrete subclass must redefine this property without
Abstract being set to true.

• Abstract properties cannot define set or get access
methods. See “Property Access Methods”

• Abstract properties cannot define initial values.
“Assigning a Default Value”

• All subclasses must specify the same values as the
superclass for the property SetAccess and
GetAccess attributes.

• Abstract=true should be used with the class
attribute Sealed=false (the default).

GetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only

List classes that allow access for this property. Specify
classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

See “Class Members Access”

 meta.property

1-9323

Property Purpose
SetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only

immutable — property can be set only in the constructor.

See “Mutable and Immutable Properties”

List classes that have set access to this property. Specify
classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

See “Class Members Access”
Access public – unrestricted access

protected – access from class or subclasses

private – access by class members only (not subclasses)

List of classes that have get and set access to this property.
Specify classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

Use Access to set both SetAccess and GetAccess to the
same value. Query the values of SetAccess and
GetAccess directly (not Access).

1 Alphabetical List

1-9324

Property Purpose
Constant attribute, default
= false

Set to true if you want only one value for this property in
all instances of the class.

• Subclasses inherit constant properties, but cannot
change them.

• Constant properties cannot be Dependent
• SetAccess is ignored.

See “Define Class Properties with Constant Values”
DefaultValue Property default value (if specified in class definition). See

also HasDefault property. Abstract, dependent, and
dynamic properties cannot specify default values.

DefiningClass The meta.class object representing the class that defines
this property.

Dependent attribute,
default = false

If false, property value is stored in object. If true, the
property value is not stored in the object and the set and
get functions cannot access the property by indexing into
the object using the property name.

See “Property Get Methods”
Transientattribute,
default = false

If true, property value is not saved when object is saved
to a file. See “Save and Load Process for Objects” for more
about saving objects.

GetMethod read-only Function handle of the get method associated with this
property. Empty if there is no get method specified. See
“Property Get Methods”

GetObservable attribute,
default = false

If true, and it is a handle class property, then listeners can
be created for access to this property. The listeners are
called whenever property values are queried. See
“Property-Set and Query Events”

HasDefault Property contains a boolean value indicating whether the
property defines a default value. Test HasDefault before
querying the DefaultValue property to avoid a
MATLAB:class:NoDefaultDefined error.

 meta.property

1-9325

Property Purpose
Hidden attribute, default =
false

Determines whether the property should be shown in a
property list (e.g., Property Inspector, call to properties,
etc.).

NonCopyable attribute,
default = false

Indicate if property value should be copied when object is
copied.

For more information, see “Exclude Properties from Copy”
SetMethod read-only Function handle of the set method associated with this

property. Empty if there is no set method specified. See
“Property Set Methods”

SetObservable attribute,
default = false

If true, and it is a handle class property, then listeners can
be created for access to this property. The listeners are
called whenever property values are modified. See
“Property-Set and Query Events”

Validation meta.Validation object describing the validation
defined by this property.

Events
See “Listen for Changes to Property Values” for information on using property events.

Event Name Purpose
PreGet Event occurs just before property is queried.
PostGet Event occurs just after property has been queried
PreSet Event occurs just before this property is modified
PostSet Event occurs just after this property has been modified

See Also
meta.Validation | meta.class | meta.event | meta.method | metaclass

Topics
“Properties”

1 Alphabetical List

1-9326

“Class Introspection and Metadata”

Introduced in R2008a

 meta.property

1-9327

metaclass
Obtain meta.class object

Syntax
mc = metaclass(object)
mc = ?ClassName

Description
mc = metaclass(object) returns the meta.class object for the class of object. The
object input argument can be a scalar or an array of objects. However, metaclass
always returns a scalar meta.class object.

mc = ?ClassName returns the meta.class object for the class with name, ClassName.
The ? operator works only with a class name, not an object.

If you pass a class name as a char vector to the metaclass function, it returns the
meta.class object for the char class. Use the ? operator or the
meta.class.fromName method to obtain the meta.class object from a class name.
Use this method if you want to pass the class name in a char variable.

Examples
Return the meta.class object for an instance of the MException class:

obj = MException('Msg:ID','MsgTxt');
mc = metaclass(obj);

Use the ? operator to get the meta.class object for the matlab.mixin.SetGet class:

mc = ?matlab.mixin.SetGet;

1 Alphabetical List

1-9328

See Also
meta.class | meta.class.fromName

Topics
“Class Metadata”

 metaclass

1-9329

meta.ArrayDimemsion class
Package: meta
Superclasses:

Size information for property validation

Description
meta.ArrayDimension is an abstract class used to define subclasses that represent the
size information defined by property validation. These subclasses enable a complete
description of property size information:

• meta.FixedDimension - Dimension specified as a fixed numeric value
• meta.UnrestrictedDimension - Dimension specified as a colon, which indicates

any value is allowed

Attributes
Abstract true

For information on class attributes, see “Class Attributes”.

See Also
meta.FixedDimension | meta.UnrestrictedDimension | meta.Validation

Topics
“Metadata Interface to Property Validation”

Introduced in R2018a

1 Alphabetical List

1-9330

meta.FixedDimension class
Package: meta
Superclasses:

Fixed dimension in property size specification

Description
The meta.Validation class Size property uses meta.FixedDimension objects to
represent the fixed values in a property size specification. The object Length property
contains the numeric value of the dimension.

Properties
Length — Scalar fixed dimension
1 (default)

Fixed dimension, specified as scalar uint64.

Attributes:

GetAccess public
SetAccess private

Data Types: uint64

Attributes
Sealed true

For information on class attributes, see “Class Attributes”.

 meta.FixedDimension class

1-9331

Examples
Find the fixed dimensions in a property validation.

The ValidationExample class specifies the size of the property value as (1,:).

classdef ValidationExample
 properties
 Prop (1,:) double {mustBeReal, mustBeGreaterThan(Prop, 10)} = 200;
 end
end

Read the dimensions into a cell array.

mc = ?ValidationExample;
mp = findobj(mc.PropertyList,'Name','Prop');
sz = mp.Validation.Size;
len = length(sz);
dim = cell(1:len);
for k = 1:len
 switch class(sz(k))
 case 'meta.FixedDimension'
 dim{k} = sz(k).Length;
 case 'meta.UnrestrictedDimension'
 dim{k} = ':';
 end
end

See Also
meta.ArrayDimension | meta.UnrestrictedDimension | meta.Validation

Topics
“Metadata Interface to Property Validation”

Introduced in R2018a

1 Alphabetical List

1-9332

meta.UnrestrictedDimension class
Package: meta
Superclasses:

Unrestricted dimension in property size specification

Description
The meta.Validation class Size property uses meta.UnrestrictedDimension
objects to represent the use of a colon in a property size specification. An instance of this
class in the Size array indicates that the respective dimension in the property definition
is a colon. A colon in a size specification indicates that any values is allowed.

Attributes
Sealed true

For information on class attributes, see “Class Attributes”.

Examples
Find the fixed dimensions in a property validation.

The ValidationExample class specifies the size of the property value as (1,:).

classdef ValidationExample
 properties
 Prop (1,:) double {mustBeReal, mustBeGreaterThan(Prop, 10)} = 200;
 end
end

Read the dimensions into a cell array.

mc = ?ValidationExample;
mp = findobj(mc.PropertyList,'Name','Prop');

 meta.UnrestrictedDimension class

1-9333

sz = mp.Validation.Size;
len = length(sz);
dim = cell(1:len);
for k = 1:len
 switch class(sz(k))
 case 'meta.FixedDimension'
 dim{k} = sz(k).Length;
 case 'meta.UnrestrictedDimension'
 dim{k} = ':';
 end
end

See Also
meta.ArrayDimension | meta.FixedDimension | meta.Validation

Topics
“Metadata Interface to Property Validation”

Introduced in R2018a

1 Alphabetical List

1-9334

meta.Validation class
Package: meta
Superclasses:

Describes property validation

Description
Instances of this class contain information about property validation that is specified in a
class definition. The meta.Validation class enables you to obtain the following
information programmatically for each property in a class definition:

• Class restriction applied to the property
• Size requirements of the property value
• Function handles referencing validation functions applied to property values

For information on property validation, see “Validate Property Values”.

Properties
Class — Class restriction applied to property
meta.class object

Class restriction applied to property, specified as a meta.class object. If the property
definition does not contain class restriction, MATLAB sets this property to a 0-by-0
meta.class object.

Attributes:

GetAccess public
SetAccess private

Size — Dimensions of the property value
empty meta.ArrayDimension (default) | heterogeneous array of type
meta.ArrayDimension | meta.FixedDimemsion | meta.UnrestrictedDimension

 meta.Validation class

1-9335

Dimensions of the property value, specified as a heterogeneous array of type
meta.ArrayDimension or arrays of type meta.FixedDimension or
meta.UnrestrictedDimension. If the property definition does not specify dimensions
for the property, MATLAB sets this property to a 1-by-0 meta.ArrayDimension array.

Attributes:

GetAccess public
SetAccess private

ValidationFunctions — Validation functions
cell array of function handles

Validation functions, specified as a cell array of function handles referencing each
validation function. If the property does not use validation functions, MATLAB sets this
property to a 1-by-0 cell array.

Attributes:

GetAccess public
SetAccess private

Attributes
Sealed true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Methods
isValidValue
tf = isValidValue(metaValidationObj,value)

Determine if value is valid. This method returns true if value is a valid value for the
property whose validation is describe by metaValidationObj.

1 Alphabetical List

1-9336

Input Arguments

• metaValidationObj - The meta.Validation object for the property
• value - The potential property value to test for validity

Return Value

• true - Value is valid for this property
• false - Value is not a valid value for this property

validateValue
validateValue(metaValidationObj,value)

Test if value is valid and throw error if it is not. This method throws an error if value is
not a valid value for the property whose validation is describe by metaValidationObj.
The error message is the same as that thrown if the value is assigned to the property of
an actual object.

Input Arguments

• metaValidationObj - The meta.Validation object for the property
• value - The potential property value to test for validity

Return Value

none

Examples
The ValidationExample class defines a property that used validation.

classdef ValidationExample
 properties
 Prop (1,:) double {mustBeReal, mustBeGreaterThan(Prop, 10)} = 200;
 end
end

The getErrorMessage function determines if a potential value is valid and displays the
error message indicating the cause of invalid values.

 meta.Validation class

1-9337

function getErrorMessage(possibleValue)
 mc = ?ValidationExample;
 mp = findobj(mc.PropertyList,'Name','Prop');
 mv = mp.Validation;
 if ~mv.isValidValue(possibleValue)
 try
 mv.validateValue(possibleValue)
 catch errorMessage
 fprintf('This value is not valid because: %s\n',...
 errorMessage.message);
 end
 else
 fprintf('%d is OK\n',possibleValue)
 end
end

See Also
meta.FixedDimension | meta.UnrestrictedDimension | meta.property

Topics
“Metadata Interface to Property Validation”

Introduced in R2018a

1 Alphabetical List

1-9338

methods
Class method names

Syntax
methods ClassName
methods(obj)
methods(___ ,'-full')
m = methods(___)

Description
methods ClassName displays the names of the methods for the class ClassName. If
ClassName is a MATLAB or Java class, then methods displays only public methods,
including those methods inherited from superclasses.

methods(obj) displays the names of the methods for the class of obj.

methods(___ ,'-full') displays a full description of the methods, including
inheritance information and, for MATLAB and Java methods, method attributes and
signatures. This function does not remove duplicate method names with different
signatures. This option does not work with classes defined before MATLAB 7.6.

m = methods(___) returns the method names in a cell array of character vectors.

Examples

List Class Methods

Display the public methods of the MException class

methods MException

Methods for class MException:

 methods

1-9339

addCause eq isequal rethrow throwAsCaller
addCorrection getReport ne throw

Static methods:

last

Get Method Names from Object

Construct a java.lang.String object and display the names of the public methods of that
object.

s = java.lang.String;
methods(s);

Methods for class java.lang.String:

String format replace
charAt getBytes replaceAll
chars getChars replaceFirst
codePointAt getClass split
codePointBefore hashCode startsWith
codePointCount indexOf subSequence
codePoints intern substring
compareTo isEmpty toCharArray
compareToIgnoreCase join toLowerCase
concat lastIndexOf toString
contains length toUpperCase
contentEquals matches trim
copyValueOf notify valueOf
endsWith notifyAll wait
equals offsetByCodePoints
equalsIgnoreCase regionMatches

Show method signatures

List the public methods of the MException class and show method signatures.

methods('MException','-full')

1 Alphabetical List

1-9340

Methods for class MException:

MException scalar lhs1 addCause(MException scalar rhs1, MException scalar rhs2)
varargout addCorrection(MException rhs1, Correction)
logical scalar lhs1 eq(MException scalar rhs1, MException scalar rhs2)
logical lhs1 eq(MException rhs1, MException rhs2)
logical lhs1 eq(rhs1, rhs2)
unicodeString lhs1 getReport(MException scalar rhs1, asciiString rhs2, rhs3)
logical scalar lhs1 isequal(MException scalar rhs1, MException scalar rhs2)
logical scalar lhs1 isequal(MException rhs1, MException rhs2)
logical scalar lhs1 isequal(rhs1, rhs2)
Static MException scalar lhs1 last(asciiString rhs1)
logical scalar lhs1 ne(MException scalar rhs1, MException scalar rhs2)
logical lhs1 ne(MException rhs1, MException rhs2)
logical lhs1 ne(rhs1, rhs2)
rethrow(MException scalar rhs1)
throw(MException scalar rhs1)
throwAsCaller(MException scalar rhs1)

Store Method Names in Cell Array

Store the names of the public methods of the MException class in a cell array. Include the
method signatures using the -full option.

m = methods('MException','-full');

Input Arguments
ClassName — Class name
character vector | string scalar

Class name, specified as a character vector or string scalar.
Data Types: char | string

'-full' — Display full description
'-full'

Display full description of methods, including input and output arguments

 methods

1-9341

Data Types: char

Output Arguments
m — Method names
cell array

Method names returned as a cell array of character vectors.

Definitions

Language Dependency
This function does not show generic methods from classes based on the Microsoft .NET
Framework. Use your product documentation to get information on generic methods.

Methods Keyword
The word methods is also a MATLAB class-definition keyword. See classdef for more
information on class-definition keywords.

Listed Methods
This function reports the methods from all method directories together and removes all
duplicate method names from the list.

See Also
methodsview | properties

Topics
“Methods”

Introduced before R2006a

1 Alphabetical List

1-9342

methodsview
View class methods

Syntax
methodsview(packagename.classname)
methodsview(object)

Description
methodsview(packagename.classname) displays information about the methods in
the class classname. If the class is in a package, include packagename. If classname is
a MATLAB or Java class, methodsview lists only public methods, including those
methods inherited from superclasses.

methodsview creates a window that displays the methods and information such as
arguments, returned values, and superclasses. It also includes method qualifiers (for
example, abstract or synchronized) and possible exceptions thrown.

methodsview(object) displays information for the class of object.

Examples

Display Methods of Java Class

List information on all methods in the java.awt.MenuItem class. MATLAB displays this
information in a new window.

 methodsview

1-9343

methodsview('java.awt.MenuItem')

Input Arguments
packagename.classname — Fully qualified class name
string | character vector

Fully qualified class name, specified as a string or a character vector.

object — Object name
string | character vector

Object name, specified as a string or a character vector.

See Also
class | import | javaArray | methods

Introduced before R2006a

1 Alphabetical List

1-9344

mex
Build MEX function or engine application

Syntax
mex filenames
mex filenames api option1 ... optionN

mex -client engine filenames
mex -client engine filenames api option1 ... optionN

mex -setup [lang]
mex -setup -client engine [lang]

Description
mex filenames compiles and links one or more C++ source files written with the
“MATLAB Data API” into a binary MEX file in the current folder. For information about
writing these applications, see “C++ MEX Applications”.

If writing MEX files based on the “Calling MATLAB from C” or the “Calling MATLAB from
Fortran”, then mex filenames builds one or more C, C++, or Fortran source files with
the -R2017b api. In a future version of MATLAB, the default api option will change to
use the interleaved complex API (-R2018a). MathWorks recommends that you create
MEX files and update existing MEX files to use the interleaved complex API. Alternatively,
use the MX_HAS_INTERLEAVED_COMPLEX macro to ensure the desired behavior across
versions of MATLAB. For more information, see “MATLAB Support for Interleaved
Complex API in MEX Functions”.

For information about working with C, C++, and Fortran applications, see “Integrate
MATLAB with External Programming Languages and Systems”.

mex filenames api option1 ... optionN builds with the specified api and
optional option1 ... optionN arguments. The option1 ... optionN arguments
supplement or override the default mex build configuration.

 mex

1-9345

mex -client engine filenames builds C++ source files written with the “MATLAB
Data API” into standalone MATLAB engine applications. For more information, see
“Introduction to Engine API for C++”

If writing applications based on the “MATLAB Engine API for C”, the “MATLAB C API to
Read MAT-File Data”, the “MATLAB Engine API for Fortran”, or the “MATLAB Fortran API
to Read MAT-File Data”, then mex -client engine filenames builds a standalone
application with the -R2017b api. In a future version of MATLAB, the default api option
will change to use the interleaved complex API (-R2018a). MathWorks recommends that
you create engine applications and update existing applications to use the interleaved
complex API.

mex -client engine filenames api option1 ... optionN builds engine
applications with the specified api and optional option1 ... optionN arguments.

mex -setup [lang] selects a compiler for the given lang for building MEX files.
MATLAB defines a default compiler for each supported language. If you have multiple
compilers for a given language, use the lang option to change the default compiler for
that language. For more information, see “Change Default Compiler” and “Choose a C++
Compiler”.

mex -setup -client engine [lang] selects a compiler for building engine
applications.

Examples

Build MEX File Using Interleaved Complex API

Copy the source code example from the matlabroot/extern/examples folder.
copyfile(fullfile(matlabroot,'extern','examples','mex','explore.c'),'.','f')

Build the MEX file. The output displays information specific to your compiler.

mex -R2018a explore.c

Test.

a = [1 3 5];
b = [5 3 1];

1 Alphabetical List

1-9346

A = complex(a,b);
explore(A)

--
Name: prhs[0]
Dimensions: 1x3
Class Name: double
--
 (1,1) = 1 + 5i
 (1,2) = 3 + 3i
 (1,3) = 5 + 1i

Build C MEX File

Build a single C program yprime.c into a MEX file.

Create a writable folder on your path c:\work and set it as the current folder.

[s,msg,msgid] = mkdir('c:\work');
if (isempty(msgid))
 mkdir('c:\work')
end
cd c:\work

Copy the source code example from the matlabroot/extern/examples folder.

copyfile(fullfile(matlabroot,'extern','examples','mex','yprime.c'),'.','f')

Build the MEX file. The output displays information specific to your compiler.

mex yprime.c

Building with 'MinGW64 Compiler C '.
MEX completed successfully.

Test.

T=1;
Y=1:4;
yprime(T,Y)

ans =

 mex

1-9347

 2.0000 8.9685 4.0000 -1.0947

Display Detailed Build and Troubleshooting Information

To display the compile and link commands and other information useful for
troubleshooting, use verbose mode.

mex -v -compatibleArrayDims yprime.c

The output displays information specific to your platform and compiler.

Override Default Compiler Switch Option

Build the yprime.c MEX file by appending the value -Wall to the existing compiler flag.
Because the value includes a space character, you must delineate the string; the
character you use depends on the platform.

At the MATLAB prompt, use MATLAB single quotes (').

mex -v COMPFLAGS='$COMPFLAGS -Wall' yprime.c

For the MinGW-w64 compiler, which is based on gcc/g++, use the Linux compiler flags.

mex -v CXXFLAGS='$CXXFLAGS -Wall' yprime.c

At the Windows command prompt, use double quotes (").

mex -v COMPFLAGS="$COMPFLAGS -Wall" yprime.c

At the shell command line on macOS and Linux, use single quotes (').

mex -v CFLAGS='$CFLAGS -Wall' yprime.c

Build MEX File from Multiple Source Files

The MEX file example fulltosparse consists of two Fortran source files,
loadsparse.F and fulltosparse.F. To run this example, you need a supported
Fortran compiler installed on your system.

1 Alphabetical List

1-9348

Copy the source files to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook','loadsparse.F'),'.','f')
copyfile(fullfile(matlabroot,'extern','examples','refbook','fulltosparse.F'),'.','f')

Build the fulltosparse MEX file. The MEX file name is fulltosparse because
fulltosparse.F is the first file on the command line. The output contains information
specific to your compiler.

mex -largeArrayDims fulltosparse.F loadsparse.F

Building with 'Intel Visual Fortran Composer XE 2013 with Microsoft Visual Studio 2012'.
MEX completed successfully.

Test.

full = eye(5);
spar = fulltosparse(full)

spar =

 1,1 1
 2,2 1
 3,3 1
 4,4 1
 5,5 1

Combine Source Files Using Wild Card

Combine all C source files in the current folder into MEX file mymex. Use the -output
option to control the name of the MEX file.

mex -output mymex *.c

Preview Build Commands

To preview the build command details without executing the commands, use the -n
option. The output contains information specific to your platform and compiler.

 mex

1-9349

mex -n yprime.c

Create and Link to Separate Object Files

You can link to object files that you compile separately from your source MEX files.

The MEX file example fulltosparse consists of two Fortran source files. The
fulltosparse file is the gateway routine (contains the mexFunction subroutine) and
loadsparse contains the computational routine.

To run this example, you need a supported Fortran compiler installed on your system.
Copy the computational subroutine to your current folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook','loadsparse.F'),'.','f')

Compile the subroutine and place the object file in a separate folder, c:\objfiles.

mkdir c:\objfiles
mex -largeArrayDims -c -outdir c:\objfiles loadsparse.F

Building with 'Intel Visual Fortran Composer XE 2013 with Microsoft Visual Studio 2012'.
MEX completed successfully.

Copy the gateway subroutine to your current folder. Compile and link with the
loadsparse object file.

copyfile(fullfile(matlabroot,'extern','examples','refbook','fulltosparse.F'),'.','f')
mex -largeArrayDims fulltosparse.F c:\objfiles\loadsparse.obj

Building with 'Intel Visual Fortran Composer XE 2013 with Microsoft Visual Studio 2012'.
MEX completed successfully.

Specify Path to Include File

To specify the path to include the MATLAB LAPACK library subroutines for handling
complex number routines, use the -I option. To use these subroutines, your MEX file
must access the header file fort.h.

Copy the matrixDivideComplex.c example to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook','matrixDivideComplex.c'),'.','f')

1 Alphabetical List

1-9350

Create the -I argument by concatenating '-I' with the path to fort.h file.

ipath = ['-I' fullfile(matlabroot,'extern','examples','refbook')];

Create variables for the names and paths to the LAPACK library file and the file, fort.c,
containing the complex number handling routines.

lapacklib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft','libmwlapack.lib');
fortfile = fullfile(matlabroot,'extern','examples','refbook','fort.c');

Build the MEX file.

mex('-v','-R2017b',ipath,'matrixDivideComplex.c',fortfile,lapacklib)

Specify Path to Library File

Build the matrixDivide.c example on a Windows platform using the -L and -l options
to specify the libmwlapack.lib library. The library file is located in the folder,
matlabroot\extern\lib\arch\microsoft.

Copy the matrixDivide.c example to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook','matrixDivide.c'),'.','f')

Capture the value of matlabroot.

matlabroot

ans =

C:\Program Files\MATLAB\R2014a

Capture the value of arch.

computer('arch')

ans =

win64

To build the MEX file, copy the values of matlabroot and arch into the mex command,
as shown in the following statement.

 mex

1-9351

mex '-LC:\Program Files\MATLAB\R2014a\extern\lib\win64\microsoft'...
 -llibmwlapack matrixDivide.c

You must use the ' characters because \Program Files in the path includes a space.

Define Compiler Directive

The mxcreatecharmatrixfromstr.c example uses a #define symbol
SPACE_PADDING to determine what character to use between character vectors in a
matrix. To set the value, build the MEX file with the -D option.

Copy the example to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','mx','mxcreatecharmatrixfromstr.c'),'.','f')

Set the SPACE_PADDING directive to add a space between values.

mex mxcreatecharmatrixfromstr.c -DSPACE_PADDING

Building with 'MinGW64 Compiler C '.
MEX completed successfully.

Build Engine Application

Copy the engwindemo.c engine example to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','eng_mat','engwindemo.c'),'.','f')

mex -client engine engwindemo.c

If you are running on a Windows platform, you must first register MATLAB as a COM
server. For more information, see “Register MATLAB as a COM Server”.

Run the example.

!engwindemo

Select C Compiler

mex -setup

1 Alphabetical List

1-9352

MATLAB displays the options for your version and system based on the list of Supported
and Compatible Compilers.

Input Arguments
filenames — One or more file names
string | character vector

One or more file names, including name and file extension, specified as a string or a
character vector. If the file is not in the current folder, specify the full path to the file.

File names can be any combination of:

• C, C++, or Fortran language source files
• Simulink S-function files
• Object files
• Static library files. For linking dynamic libraries, use the -llibname option.

The first source code file listed in filenames is the name of the binary MEX file or
engine application. To override this naming convention, use the '-output' option.

Use the MATLAB Editor to write your source code. If you use an integrated development
environment (IDE) such as Microsoft Visual Studio® or Xcode, then you can use the mex
command or follow the guidelines in “Custom Build with MEX Script Options”.

MATLAB automatically selects a compiler, if installed, based on the language of the
filenames arguments.
Data Types: char

api — Release-specific API
-R2017b (default) | -R2018a | -largeArrayDims | -compatibleArrayDims

Links with the release-specific “Calling MATLAB from C” or “Calling MATLAB from
Fortran”, specified as one of these values. Do not combine these options.

Do not use this option for MEX files or engine applications using the “MATLAB Data API”.

 mex

1-9353

https://www.mathworks.com/support/compilers/current_release/
https://www.mathworks.com/support/compilers/current_release/

API Description
-R2017b (default) Builds with:

• Separate complex API, which contains the C and Fortran
Matrix API functionality in MATLAB R2017b and earlier.

• Large-array-handling API, which handles arrays with
more than 231-1 elements.

• Treats a handle to a graphics object as object, not
double.

In a future version of MATLAB, the default api option will
change to use the interleaved complex API (-R2018a).
MathWorks recommends that you create applications and
update existing applications to use the interleaved complex
API. Alternatively, use the
MX_HAS_INTERLEAVED_COMPLEX macro to ensure the
desired behavior across versions of MATLAB. For more
information, see “MATLAB Support for Interleaved Complex
API in MEX Functions”.

-R2018a Builds with:

• Interleaved complex API, which includes the typed data
access functions. For more information, see “Upgrade
MEX Files to Use Interleaved Complex API”.

• Large-array-handling API
• Treats a handle to a graphics object as object, not

double.

To run a Fortran MEX file built with the interleaved complex
API in MATLAB R2018a, you must use MATLAB R2018a
Update 3.

1 Alphabetical List

1-9354

API Description
-largeArrayDims Builds with:

• Separate complex API
• Large-array-handling API
• Treats a handle to a graphics object as object, not

double. To treat the handle as double, combine this
option with -DMEX_DOUBLE_HANDLE.

-compatibleArrayDims Builds with:

• Separate complex API
• Version 7.2 array-handling API, which limits arrays to

231-1 elements
• Treats a handle to a graphics object as object, not

double. To treat the handle as double, combine this
option with -DMEX_DOUBLE_HANDLE.

Do not use the -compatibleArrayDims option when
calling LAPACK or BLAS functions.

Default option for C MEX S-functions only.

Example: mex -R2018a explore.c

option1 ... optionN — Optional build options
strings or character vectors corresponding to valid option flags

Optional build options, specified as one of these values. Options can appear in any order
on any platform, except where indicated.

Option Description
@rspfile Uses Windows RSP file. An RSP file is a text file containing

command-line options. Non-ASCII characters are not
supported.

-c Compiles an object file only. Does not build a binary MEX
file.

-client engine Build engine application.

 mex

1-9355

Option Description
-Dsymbolname
-
Dsymbolname=symbolval
ue
-Usymbolname

The -D options define C preprocessor macros. Equivalent to
the following in the source file:

• #define symbolname
• #define symbolname symbolvalue

The -U option removes any initial definition of the C
preprocessor macro, symbolname. Inverse of the -D option.

Do not add a space between D or U and symbolname. Do
not add spaces around the = sign.

Example: “Define Compiler Directive” on page 1-9352
-f filepath Overrides the default compiler selection. filepath is the

name and full path of the configuration file, specified as a
string or a character vector. For information about using a
non-default compiler, see “Change Default Compiler”.

Do not use the -f option to build engine applications. Use
the -client engine option instead.

-g Adds symbolic information and disables optimizing built
object code. Use for debugging. To debug with optimization,
add the -O option.

-h[elp] Displays help for mex. Use from an operating system
prompt.

-Ipathname Adds pathname to the list of folders to search for
#include files.

Do not add a space between I and pathname.

Example: “Specify Path to Include File” on page 1-9350

1 Alphabetical List

1-9356

Option Description
-llibname
-Llibfolder -llibname

Links with dynamic object library libname in (optional)
libfolder.

MATLAB expands libname to:

• libname.lib or liblibname.lib — Windows systems
• liblibname.dylib — macOS systems
• liblibname.so — Linux systems

If used, the -L option must precede the -l option. When
using the -L option on Linux or macOS systems, you also
must set the runtime library path, as explained in “Set Run-
Time Library Path”.

Do not add a space between l and libname or between L
and libfolder.

Specify the -l option with the lowercase letter L.

To link a static library, use the filenames input argument
on page 1-9353.

Example: “Specify Path to Library File” on page 1-9351
-n Displays, but does not execute, commands that mex would

execute.

Example: “Preview Build Commands” on page 1-9349
-O Optimizes the object code. Use this option to compile with

optimization.

Optimization is enabled by default. Optimization is disabled
when the -g option appears without the -O option.

Specify this option with the capital letter O.
-outdir dirname Places all output files in folder dirname.

Example: “Create and Link to Separate Object Files” on
page 1-9350

 mex

1-9357

Option Description
-output mexname Overrides the default MEX file naming mechanism. Creates

binary MEX file named mexname with the appropriate MEX
file extension.

Example: “Combine Source Files Using Wild Card” on page
1-9349

-setup lang Change the default compiler to build lang language MEX
files or engine applications. When you use this option, mex
ignores all other command-line options.

-silent Suppresses informational messages. The mex command still
reports errors and warnings, even when you specify -
silent.

-Usymbolname Removes any initial definition of the C preprocessor macro
symbolname. (Inverse of the -D option.)

Do not add a space between U and symbolname.
-v Builds in verbose mode. Displays values for internal

variables after all command-line arguments are considered.
Displays each compile and link step fully evaluated. Use for
troubleshooting compiler setup problems.

Example: “Display Detailed Build and Troubleshooting
Information” on page 1-9348

varname=varvalue Overrides default setting for variable varname. This option
is processed after all command-line arguments are
considered.

Example: “Override Default Compiler Switch Option” on
page 1-9348.

lang — Language
C (default) | C++ | CPP | Fortran

Language, specified as one of these values.

C C compilers, including C++
C++ or CPP C++ compilers

1 Alphabetical List

1-9358

Fortran Fortran compilers

Tips
• You can run mex from:

• MATLAB Command Window
• Windows system prompt
• macOS Terminal
• Linux shell

For command-line usage outside of MATLAB, the mex program is located in the folder
specified by [matlabroot '/bin'] on UNIX and [matlabroot '\bin\win64']
on Windows.

• The MEX file has a platform-dependent extension. You can place binary MEX files for
different platforms in the same folder. To identify the MEX file extension, use the
mexext function.

MEX File Platform-Dependent Extension
Platform Binary MEX File Extension
Linux (64-bit) mexa64
Apple Mac (64-bit) mexmaci64
Windows (64-bit) mexw64

• To use mex to build executable files for standalone MATLAB engine applications, use
the -client engine option.

• The mex command does not support folder names containing double quote (")
characters.

See Also
clear | computer | dbmex | inmem | loadlibrary |
mex.getCompilerConfigurations | mexext | pcode | prefdir | system

Topics
“MATLAB Data API”

 mex

1-9359

“C Matrix API”
“Fortran Matrix API”
“Tables of MEX Function Source Code Examples”
“Introducing MEX Files”
“Build MEX File”
“Build C++ MEX Programs”
“Change Default Compiler”
“Troubleshoot MEX Files”
“Upgrade MEX Files to Use Interleaved Complex API”
“Upgrade MEX Files to Use 64-Bit API”
“Upgrade MEX Files to Use Graphics Objects”

External Websites
Supported and Compatible Compilers

Introduced before R2006a

1 Alphabetical List

1-9360

https://www.mathworks.com/support/compilers/current_release/

mexhost
Create host process for C++ MEX function

Syntax
mh = mexhost

Description
mh = mexhost creates a MEX host process that is used to run C++ MEX functions. The
default process name is MATLABMexHost.

Use the feval method of the matlab.mex.MexHost object returned to execute C++
MEX functions in the MEX host process.

Examples

Run C++ MEX Function Out of Process

Create a host process and run a C++ MEX function in that process.

The arrayProduct.cpp C++ MEX file contains the source code for a function that
multiplies an array by a scalar input and returns the resulting array. Open this file and
save it on your MATLAB path. Build the C++ MEX source file using the mex command.
Follow the instructions in “Build C++ MEX Programs” to set up the MEX build.

mex arrayProduct.cpp

Create a host process. The mexhost function returns a matlab.mex.MexHost object.

mh = mexhost;

Use the feval method of the matlab.mex.MexHost object to evaluate the C++ MEX
function in the host process.

 mexhost

1-9361

result = feval(mh,"arrayProduct",10,[2,4,6,8])

result =

 20 40 60 80

Find Process ID

You can use the MexHost object to find the identifier of the process created by the
mexhost function.

mh = mexhost;
mh.ProcessIdentifier

ans =
 "13336"

Each call to mexhost creates a new process.

Output Arguments
mh — Host process
matlab.mex.MexHost object

Host process, returned as a matlab.mex.MexHost object. Use this process to run a C++
MEX function outside of the MATLAB process.

Definitions

Process Lifecycle
MATLAB terminates the process when the object returned by mexhost is destroyed.
MATLAB destroys the object when any of the following occur.

• The MEX host variable returned by mexhost goes out of scope, causing MATLAB to
destroy the object.

• The delete method is called on the MEX host variable explicitly.

1 Alphabetical List

1-9362

• The clear function is called on the MEX host variable and there are no other
references to the object.

• The clear function is called with any of these options: clear java, clear
classes, or clear all.

Unload C++ MEX Functions
To unload all C++ MEX functions from their host processes, call clear mex or clear
functions. To unload a specific C++ MEX function all host processes running it, call
clear on the function name. For more information, see the clear function and “Out-of-
Process Execution of C++ MEX Functions”.

See Also
clear | feval | matlab.mex.MexHost

Topics
“Out-of-Process Execution of C++ MEX Functions”

Introduced in R2019a

 mexhost

1-9363

matlab.mex.MexHost class
Package: matlab.mex
Superclasses:

Out-of-process host for C++ MEX function execution

Description
Instances of the matlab.mex.MexHost class represent processes created to execute C+
+ MEX functions. You can execute a C++ MEX function from MATLAB in the host process
using the feval method of this class. For information on running C++ MEX functions out
of process, see “Out-of-Process Execution of C++ MEX Functions”.

The matlab.mex.MexHost class is a handle class.

Creation
Use the mexhost function to create a matlab.mex.MexHost object.

Properties
Functions — Names of C++ MEX functions loaded in the host process
cell array of character vectors

Names of the of C++ MEX functions loaded in the host process, returned as a string
array.
Attributes:

SetAccess
private

Data Types: string

ProcessName — Name of the C++ MEX host process
MATLABMexHost (default)

1 Alphabetical List

1-9364

Name of the C++ MEX host process, returned as a string scalar.
Example: MATLABMexHost

Attributes:

SetAccess
private

Data Types: string

ProcessIdentifier — Process identifier of the C++ MEX host process
process ID

Process identifier of the C++ MEX host process, returned as a string scalar.

Attributes:

SetAccess
private

Data Types: string

Methods

Public Methods
<infotypegroup type="method"> feval </infotypegroup>

Examples

Create Host Process

Create an object of the matlab.mex.MexHost class using the mexhost function. Use the
object to call the feval, which executes your C++ MEX function in the MEX host
process.

 matlab.mex.MexHost class

1-9365

mexHost = mexhost;
result = feval(mexHost,'MyMexFunction',inputs);

See Also
mexhost

Topics
“Out-of-Process Execution of C++ MEX Functions”

Introduced in R2019a

1 Alphabetical List

1-9366

feval
Class: matlab.mex.MexHost
Package: matlab.mex

Evaluate C++ MEX function in MEX host process

Syntax
[result1,...,resultN] = feval(mexHost,mexFunctionName,
input1,...,inputM)

Description
[result1,...,resultN] = feval(mexHost,mexFunctionName,
input1,...,inputM) evaluates the named C++ MEX function in the MEX host process
and returns the results. You can run multiple C++ MEX functions in a single host process.

Input Arguments
mexHost — MEX host process
matlab.mex.MexHost object

MEX host process, specified as a matlab.mex.MexHost object. Create the MEX host
process using the mexhost function.

mexFunctionName — Name of the C++ MEX function to execute
character vector | string scalar

Name of the C++ MEX function to execute, specified as a character vector or a string
scalar.
Example: "myMexFunction"
Data Types: char | string

 feval

1-9367

input1,...,inputM — Inputs to C++ MEX function
depends on function

Inputs to C++ MEX function. The number and type of values that can be specified as
inputs depend on the C++ MEX function.

Output Arguments
result1,...,resultN — Results of evaluated C++ MEX function
depends on function

Results of evaluated C++ MEX function. The number and type of values returned depend
on the C++ MEX function.

Examples

Run MEX Function Out of Process

Create a MEX host process and run a C++ MEX function in that process.

The arrayProduct.cpp C++ MEX file contains the source code for a function that
multiplies an array by a scalar input and returns the resulting array. Open this file and
save it on your MATLAB path. Build the C++ MEX source file using the mex command.
Follow the instructions in “Build C++ MEX Programs” to set up the MEX build.

mex arrayProduct.cpp

Create a host process. The mexhost function returns a matlab.mex.MexHost object.

mh = mexhost;

Use the feval method of the matlab.mex.MexHost object to evaluate the C++ MEX
function in the host process.

result = feval(mh,"arrayProduct",10,[2,4,6,8])

1 Alphabetical List

1-9368

result =

 20 40 60 80

See Also
mexhost

Topics
“Out-of-Process Execution of C++ MEX Functions”

Introduced in R2019a

 feval

1-9369

mex.getCompilerConfigurations
Get compiler configuration information for building MEX files

Syntax
cc = mex.getCompilerConfigurations
cc = mex.getCompilerConfigurations(lang)
cc = mex.getCompilerConfigurations(lang,list)

Description
cc = mex.getCompilerConfigurations returns an object cc containing information
about the default compiler configurations used by the mex command. There is one
configuration for each supported language.

cc = mex.getCompilerConfigurations(lang) returns an array of objects for the
given language, lang.

cc = mex.getCompilerConfigurations(lang,list) returns information about the
set of configurations, list.

Examples

Display Information for C Compiler

myCCompiler = mex.getCompilerConfigurations('C','Selected')

myCCompiler =

 CompilerConfiguration with properties:

 Name: 'Microsoft Visual C++ 2010 (C)'
 Manufacturer: 'Microsoft'
 Language: 'C'

1 Alphabetical List

1-9370

 Version: '10.0'
 Location: 'c:\Program Files (x86)\Microsoft Visual Studio 10.0'
 ShortName: 'MSVC100'
 Priority: 'A'
 Details: [1x1 mex.CompilerConfigurationDetails]
 LinkerName: 'link'
 LinkerVersion: ''
 MexOpt: 'C:\Users\auser\AppData\Roaming\MathWorks\MATLAB\R2014a\mex_C_win64.xml'

MATLAB displays information depending on your architecture and your version of
MATLAB.

Display Number of Supported C Compilers

cLanguageCC = mex.getCompilerConfigurations('C','Supported');
length(cLanguageCC)

ans =
 10

The number of compilers for your version of MATLAB might be different.

Input Arguments
lang — Language
'Any' (default) | 'C' | 'C++' | 'CPP' | 'Fortran'

Language, specified as one of these values.

'Any' Default value. All supported languages.
'C' All C compiler configurations, including C+

+ configurations.
'C++' or 'CPP' All C++ compiler configurations.
'Fortran' All Fortran compiler configurations.

list — Set of configurations
'Selected' (default) | 'Installed' | 'Supported'

Set of configurations, specified as one of these values.

 mex.getCompilerConfigurations

1-9371

'Selected' The default compiler for each language.
'Installed' All supported compilers mex finds installed

on your system.
'Supported' All compilers supported in the current

release.

Output Arguments
cc — Compiler information
mex.CompilerConfiguration object or array of objects

Compiler information, specified as a mex.CompilerConfiguration object or array of
mex.CompilerConfiguration objects. The mex.CompilerConfiguration class
contains the following read-only properties.

Property Purpose
Name Compiler name.
ShortName Text used to identify options file for the compiler.
Manufacturer Name of the manufacturer of the compiler.
Language Compiler language.
Version (Windows platforms only) Version of the compiler.
Location (Windows platforms only) Folder where compiler is installed.
Details More read-only properties about the compiler configuration.

These properties depend on the compiler, platform, and release of
MATLAB.

LinkerName Linker name.
LinkerVersion (Windows platforms only) Version of the linker.
MexOpt Name and full path to options file.
Priority The priority of this compiler.

See Also
mex

1 Alphabetical List

1-9372

External Websites
Supported and Compatible Compilers

Introduced in R2008b

 mex.getCompilerConfigurations

1-9373

https://www.mathworks.com/support/compilers.html

MException
Capture error information

Description
Any MATLAB code that detects an error and throws an exception must construct an
MException object. This class contains retrievable information about errors. MATLAB
can throw either predefined exceptions or exceptions that you construct.

Creation

Syntax
ME = MException(msgID,msgtext)
ME = MException(msgID,msgtext,A1,...,An)

Description
ME = MException(msgID,msgtext) captures information about a specific error and
stores it in the MException object, ME. The MException object is constructed with a
message identifier, msgID, and an error message, msgtext.

ME = MException(msgID,msgtext,A1,...,An) allows formatting of the error
message using text or numeric values, A1,...,An, to replace conversion specifiers in
msgtext at run time.

Input Arguments
msgID — Identifier for error
character vector | string scalar

1 Alphabetical List

1-9374

Identifier for the error, specified as a character vector or string scalar. Use the message
identifier with exception handling to better identify the source of the error or to control a
selected subset of the exceptions in your program.

The message identifier includes a component and mnemonic. The identifier must always
contain a colon and follows a simple format: component:mnemonic. The component and
mnemonic fields must each begin with a letter. The remaining characters can be
alphanumerics (A–Z, a–z, 0–9) and underscores. No white-space characters can appear
anywhere in msgID. For more information, see “Message Identifiers”.
Example: 'MyComponent:noSuchVariable'

msgtext — Information about cause of error
character vector | string scalar

Information about the cause of the error and how you might correct it, specified as a
character vector or string scalar. To format the text, use escape sequences, such as \t or
\n. You also can use any format specifiers supported by the sprintf function, such as %s
or %d. Specify values for the conversion specifiers via the A1,...,An input arguments.
For more information, see “Formatting Text”.
Example: 'Error opening file.'
Example: 'Error on line %d.'

A1,...,An — Values
character vector | string scalar | numeric scalar

Values that replace the conversion specifiers in msgtext, specified as a character vector,
string scalar, or numeric scalar.

Properties
identifier — Unique identifier of error
character vector

Character vector that uniquely identifies the error, specified as a character vector by the
msgID input argument. This property is read-only. For more information, see “Message
Identifiers”.
Example: 'MATLAB:test'
Data Types: char

 MException

1-9375

message — Error message
character vector

Character vector that contains the error message that is displayed when MATLAB throws
the exception, specified by the msgtext and A1,...,An input arguments. This property
is read only. For more information, see “Text of the Error Message”.
Example: 'Variable x not found'
Data Types: char

stack — Stack trace information
array of structures

Structure array that contains stack trace information including the file name (file),
function name (name), and line number (line) where MATLAB throws the exception. If
the error occurs in a called function, the stack property also contains the file name,
function name, and line number for each of the called functions. MATLAB generates the
stack only when it throws the exception.

stack is an N-by-1 struct array, where N represents the depth of the call stack. This
property is read-only. For more information, see “The Call Stack”.
Data Types: struct

cause — Cause of the exception
cell array of MException objects

Cell array of MException objects that caused MATLAB to create this exception. Use the
addCause method to add an exception to the cause field of another exception. For more
information, see “The Cause Array”.

Correction — Suggested fix for the exception
matlab.lang.correction.AppendArgumentsCorrection

Suggested fix for this exception, specified as a
matlab.lang.correction.AppendArgumentsCorrection object. When an exception
is thrown and not caught, MATLAB uses the Correction property to suggest a fix for the
exception.
Example:

1 Alphabetical List

1-9376

Object Functions
throw Throw exception
MException.last Return last uncaught exception
rethrow Rethrow previously caught exception
throwAsCaller Throw exception as if occurs within calling function
addCause Record additional causes of exception
addCorrection Provide suggested fix for exception
getReport Get error message for exception

Examples

Create MException Object

msgID = 'myComponent:inputError';
msgtext = 'Input does not have the expected format.';

ME = MException(msgID,msgtext)

ME =
 MException with properties:

 identifier: 'myComponent:inputError'
 message: 'Input does not have the expected format.'
 cause: {}
 stack: [0x1 struct]
 Correction: []

Create MException with Formatted Error Message

msgID = 'MATLAB:test';
msgtext = 'There are %d errors on this page';
A1 = 10;

ME = MException(msgID,msgtext,A1)

ME =
 MException with properties:

 MException

1-9377

 identifier: 'MATLAB:test'
 message: 'There are 10 errors on this page'
 cause: {}
 stack: [0x1 struct]
 Correction: []

Create and Throw MException Object

Throw an exception if an input variable name does not exist in the workspace.

str = input('Type a variable name: ','s');
if ~exist(str,'var')
 ME = MException('MyComponent:noSuchVariable', ...
 'Variable %s not found',str);
 throw(ME)
end

At the input prompt, enter any variable that does not exist in your workspace. For
example, enter notaVariable.

Variable notaVariable not found

Since notVariable doesn’t exist in your workspace, MATLAB creates an MException
object, and then throws it.

Use try/catch to Capture Exception

Catch the exception generated by calling a nonexistent function, notaFunction. If the
function is not defined, issue a warning and assign the output a value of 0.

try
 a = notaFunction(5,6);
catch ME
 if strcmp(ME.identifier,'MATLAB:UndefinedFunction')
 warning('Function is undefined. Assigning a value of 0.');
 else
 rethrow(ME)

1 Alphabetical List

1-9378

 end
end

Warning: Function is undefined. Assigning a value of 0.

By itself, the call to notaFunction results in an error. Using try and catch, this code
catches the undefined function exception and repackages it as a warning, allowing
MATLAB to continue executing subsequent commands. If the caught exception has a
different error identifier, MATLAB rethrows the exception.

See Also
assert | dbstack | error | try, catch

Topics
“Capture Information About Exceptions”

Introduced in R2007b

 MException

1-9379

addCause
Record additional causes of exception

Syntax
baseException = addCause(baseException,causeException)

Description
baseException = addCause(baseException,causeException) modifies the
existing MException object baseException by appending causeException to its
cause property. Catching the resulting exception in a try/catch statement makes the
base exception, along with all of the appended cause records, available to help diagnose
the error.

Examples

Add Causes to Exception

Create an array, and an index into it with a logical array.

A = [13 42; 7 20];
idx = [1 0 1; 0 1 0];

Create an exception that provides general information about an error. Test the index
array and add exceptions with more detailed information about the source of the failure.

try
 A(idx);
catch
 msgID = 'MYFUN:BadIndex';
 msg = 'Unable to index into array.';
 baseException = MException(msgID,msg);

1 Alphabetical List

1-9380

 try
 assert(islogical(idx),'MYFUN:notLogical',...
 'Indexing array is not logical.')
 catch causeException
 baseException = addCause(baseException,causeException);
 end

 if any(size(idx) > size(A))
 msgID = 'MYFUN:incorrectSize';
 msg = 'Indexing array is too large.';
 causeException2 = MException(msgID,msg);
 baseException = addCause(baseException,causeException2);
 end
 throw(baseException)
end

Unable to index into array.

Caused by:
 Indexing array is not logical.
 Indexing array is too large.

Examine the baseException object.

baseException

baseException =

 MException with properties:

 identifier: 'MYFUN:BadIndex'
 message: 'Unable to index into array.'
 cause: {2x1 cell}
 stack: [0x1 struct]

The value of the cause property is a 2x1 cell array.

Examine the first cause of the exception.

baseException.cause{1}

ans =

 MException with properties:

 addCause

1-9381

 identifier: 'MYFUN:notLogical'
 message: 'Indexing array is not logical.'
 cause: {0x1 cell}
 stack: [0x1 struct]

Examine the second cause of the exception.

baseException.cause{2}

ans =

 MException with properties:

 identifier: 'MYFUN:incorrectSize'
 message: 'Indexing array is too large.'
 cause: {}
 stack: [0x1 struct]

Input Arguments
baseException — Primary exception
MException object

Primary exception containing the primary cause and location of an error, specified as an
MException object.

causeException — Related exception
MException object

Related exception containing the cause and location of an error related to
baseException, specified as an MException object.

See Also
MException.last | assert | error | rethrow | throw | throwAsCaller | try,
catch

Introduced in R2007b

1 Alphabetical List

1-9382

addCorrection
Provide suggested fix for exception

Syntax
meNew = addCorrection(meBase,meCorrection)
meBase = addCorrection(meBase,meCorrection)

Description
meNew = addCorrection(meBase,meCorrection) creates an MException object
from the meBase MException and meCorrection. addCorrection constructs meNew
by making a copy of meBase and appending meCorrection to the meNew.Correction
property.

meBase = addCorrection(meBase,meCorrection) modifies the existing meBase
MException object by appending meCorrection to its Correction property.

Examples

Suggest Fix When Function Called Without Arguments

The function hello requires one input argument. Add a suggested input argument
"world" to the error message.

function hello(audience)
if nargin < 1
 me = MException('MATLAB:notEnoughInputs', 'Not enough input arguments.');
 aac = matlab.lang.correction.AppendArgumentsCorrection('"world"');
 me = me.addCorrection(aac);
 throw(me);
end
fprintf("Hello, %s!\n", audience);
end

Call the function without an argument.

 addCorrection

1-9383

hello

Error using hello (line 6)
Not enough input arguments.

Did you mean:
>> hello("world")

Input Arguments
meBase — Error information
MException

Error information, specified as an MException object.

meCorrection — Suggested fix for this exception
matlab.lang.correction.AppendArgumentsCorrection

Suggested fix for this exception, specified as a
matlab.lang.correction.AppendArgumentsCorrection object.

See Also
matlab.lang.correction.AppendArgumentsCorrection

Introduced in R2019a

1 Alphabetical List

1-9384

getReport
Get error message for exception

Syntax
msgText = getReport(exception)
msgText = getReport(exception,type)
msgText = getReport(exception,type,'hyperlinks',hlink)

Description
msgText = getReport(exception) gets the error message for an exception and
returns it as formatted text, msgText. The message is the value of the message property
of the MException object, exception. It is the same text that MATLAB displays when it
throws the exception.

msgText = getReport(exception,type) returns the error message using the
indicated level of detail, specified by type.

msgText = getReport(exception,type,'hyperlinks',hlink) uses the value of
hlink to determine whether to include active hyperlinks to the failing lines of code
within the error message.

Examples

Get Error Message from Exception

Cause MATLAB to throw an exception.

plus

Error using +
Not enough input arguments.

Get the error message from the exception.

 getReport

1-9385

exception = MException.last;
msgText = getReport(exception)

msgText =

Error using +
Not enough input arguments.

Specify Detail Level in Error Message

In a file in your current working folder, create the following function in testFunc.m.

function a = testFunc
try
 a = notaFunction(5,6);
catch a

end

Since the function, notaFunction, does not exist, testFunc returns an MException
object.

At the command prompt, call testFunc and get the error message.

m = testFunc;
msgText = getReport(m)

msgText =

Undefined function 'notaFunction' for input arguments of type 'double'.

Error in testFunc (line 3)
 a = notaFunction(5,6);

Specify that the error message only contains the error message and not the stack
information.

msgText = getReport(m,'basic')

msgText =

Undefined function 'notaFunction' for input arguments of type 'double'.

1 Alphabetical List

1-9386

Turn Off Hyperlinks in Error Message

Cause MATLAB to throw an exception.

try
 surf
catch exception
end

Get the error message from the exception.

msgText = getReport(exception)

msgText =

Error using surf (line 49)
Not enough input arguments.

Get the error message without active hyperlinks to surf.m.

msgText = getReport(exception,'extended','hyperlinks','off')

msgText =

Error using surf (line 49)
Not enough input arguments.

Input Arguments
exception — Exception object that provides error message
MException object

Exception object that provides the error message, specified as a scalar MException
object.

type — Detail indicator of message
'extended' (default) | 'basic'

Detail indicator of the message returned, specified as 'extended' or 'basic'.

 getReport

1-9387

type Value msgText Detail Level
'extended' (default) msgText includes the line number, error message, cause,

and stack summary. To display the proper stack, MATLAB
first must throw an exception.

'basic' msgText includes the error message.

hlink — Hyperlink indicator of message
'on' (default) | 'off' | 'default'

Hyperlink indicator of the message that includes active hyperlinks to the failing lines of
code, specified as 'on', 'off', or 'default'.

hlink Value Action
'on' Display hyperlinks to failing lines of code.
'off' Do not display hyperlinks to failing lines of code.
'default' Use the default for the Command Window to determine if

to use hyperlinks in the error message.

See Also
error | throw | try, catch

Introduced in R2007b

1 Alphabetical List

1-9388

MException.last
Return last uncaught exception

Syntax
exception = MException.last
MException.last('reset')

Description
exception = MException.last returns the contents of the most recently thrown,
uncaught MException object. MException.last is not set if a try/catch statement
catches the last exception. MException.last is a static function.

MException.last('reset') clears the properties of the exception returned from
MException.last. It sets the MException identifier and message properties to an
empty character vector, the stack property to a 0-by-1 structure, and the cause property
to an empty cell array.

Examples

Get Last Uncaught Exception

Cause MATLAB to throw, but not catch, an exception.

A = 25;
A(2)

Index exceeds matrix dimensions.

Get the uncaught exception.

exception = MException.last

exception =

 MException.last

1-9389

 MException with properties:

 identifier: 'MATLAB:badsubscript'
 message: 'Index exceeds matrix dimensions.'
 cause: {}
 stack: [0x1 struct]

Reset Last Uncaught Exception

Call the surf function with no input arguments.

surf

Error using surf (line 49)
Not enough input arguments.

Get the uncaught exception.

exception = MException.last

exception =

 MException with properties:

 identifier: 'MATLAB:narginchk:notEnoughInputs'
 message: 'Not enough input arguments.'
 cause: {}
 stack: [1x1 struct]

Get the last, uncaught exception.

MException.last('reset')
exception = MException.last

exception =

 MException with properties:

 identifier: ''
 message: ''

1 Alphabetical List

1-9390

 cause: {0x1 cell}
 stack: [0x1 struct]

Tips
• Use MException.last only from the Command Window, not within a function.

See Also
error | throw | try, catch

Introduced in R2007b

 MException.last

1-9391

rethrow
Rethrow previously caught exception

Syntax
rethrow(exception)

Description
rethrow(exception) rethrows a previously caught exception, exception. MATLAB
typically responds to errors by terminating the currently running program. However, you
can use a try/catch block to catch the exception. This interrupts the program
termination so you can execute your own error handling procedures. To terminate the
program and redisplay the exception, end the catch block with a rethrow statement.

rethrow handles the stack trace differently from error, assert, and throw. Instead of
creating the stack from where MATLAB executes the function, rethrow preserves the
original exception information and enables you to retrace the source of the original error.

Examples

Catch and Rethrow Exception

Cause MATLAB to throw an error by calling surf with no inputs. Catch the exception,
display the error identifier, and rethrow the exception.

try
 surf
catch ME
 disp(['ID: ' ME.identifier])
 rethrow(ME)
end

1 Alphabetical List

1-9392

ID: MATLAB:narginchk:notEnoughInputs
Error using surf (line 49)
Not enough input arguments.

Compare Behavior of throw and rethrow

Create a function, combineArrays, in your working folder.

function C = combineArrays(A,B)
try
 C = catAlongDim1(A,B); % Line 3
catch exception
 throw(exception) % Line 5
end
end

function V = catAlongDim1(V1,V2)
V = cat(1,V1,V2); % Line 10
end

Call the combineArrays function with arrays of different sizes.

A = 1:5;
B = 1:4;

combineArrays(A,B)

Error using combineArrays (line 5)
Dimensions of matrices being concatenated are not consistent.

The stack refers to line 5 where MATLAB throws the exception.

Replace throw(exception) with rethrow(exception) on line 5 of the
combineArrays function, and call the function again.

combineArrays(A,B)

Error using cat
Dimensions of matrices being concatenated are not consistent.

Error in combineArrays>catAlongDim1 (line 10)
V = cat(1,V1,V2); % Line 10

 rethrow

1-9393

Error in combineArrays (line 3)
 C = catAlongDim1(A,B); % Line 3

The rethrow function maintains the original stack and indicates the error is on line 3.

Input Arguments
exception — Exception containing cause and location of error
MException object

Exception containing the cause and location of an error, specified as a scalar
MException object.

See Also
MException.last | assert | error | throw | throwAsCaller | try, catch

Introduced in R2007b

1 Alphabetical List

1-9394

throw
Throw exception

Syntax
throw(exception)

Description
throw(exception) throws an exception based on the information contained in the
MException object, exception. The exception terminates the currently running
function and returns control either to the keyboard or to an enclosing catch block. When
you throw an exception from outside a try/catch statement, MATLAB displays the error
message in the Command Window.

The throw function, unlike the throwAsCaller and rethrow functions, creates the
stack trace from the location where MATLAB calls the function.

You can access the MException object via a try/catch statement or the
MException.last function.

Examples

Create and Throw MException Object

Throw an exception if an input variable name does not exist in the workspace.

str = input('Type a variable name: ','s');
if ~exist(str,'var')
 ME = MException('MyComponent:noSuchVariable', ...
 'Variable %s not found',str);
 throw(ME)
end

 throw

1-9395

At the input prompt, enter any variable that does not exist in your workspace. For
example, enter notaVariable.

Variable notaVariable not found

Since notVariable doesn’t exist in your workspace, MATLAB creates an MException
object, and then throws it.

Compare Behavior of throw and rethrow

Create a function, combineArrays, in your working folder.

function C = combineArrays(A,B)
try
 C = catAlongDim1(A,B); % Line 3
catch exception
 throw(exception) % Line 5
end
end

function V = catAlongDim1(V1,V2)
V = cat(1,V1,V2); % Line 10
end

Call the combineArrays function with arrays of different sizes.

A = 1:5;
B = 1:4;

combineArrays(A,B)

Error using combineArrays (line 5)
Dimensions of matrices being concatenated are not consistent.

The stack refers to line 5 where MATLAB throws the exception.

Replace throw(exception) with rethrow(exception) on line 5 of the
combineArrays function, and call the function again.

combineArrays(A,B)

Error using cat
Dimensions of matrices being concatenated are not consistent.

1 Alphabetical List

1-9396

Error in combineArrays>catAlongDim1 (line 10)
V = cat(1,V1,V2); % Line 10

Error in combineArrays (line 3)
 C = catAlongDim1(A,B); % Line 3

The rethrow function maintains the original stack and indicates the error is on line 3.

Input Arguments
exception — Exception containing cause and location of error
MException object

Exception containing the cause and location of an error, specified as a scalar
MException object.

See Also
MException.last | error | rethrow | throwAsCaller | try, catch

Introduced in R2007b

 throw

1-9397

throwAsCaller
Throw exception as if occurs within calling function

Syntax
throwAsCaller(exception)

Description
throwAsCaller(exception) throws an exception as if it occurs within the calling
function. The exception terminates the currently running function and returns control to
the keyboard or an enclosing catch block. When you throw an exception from outside a
try/catch statement, MATLAB displays the error message in the Command Window.

You can access the MException object via a try/catch statement or the
MException.last function.

Sometimes, it is more informative for the error to point to the location in the calling
function that results in the exception rather than pointing to the function that actually
throws the exception. You can use throwAsCaller to simplify the error display.

Examples

Compare Behavior of throw and throwAsCaller

Create a function, sayHello, in your working folder.

function sayHello(N)
checkInput(N)
str = ['Hello, ' N '!'];
disp(str)

function checkInput(N)
if ~ischar(N)

1 Alphabetical List

1-9398

 ME = MException('sayHello:inputError','Input must be char.');
 throw(ME)
end

At the command prompt, call the function with a numeric input.

sayHello(42)

Error using sayHello>checkInput (line 9)
Input must be char.

Error in sayHello (line 2)
checkInput(N)

The top of the stack refers to line 9 because this is where MATLAB throws the exception.
After the initial stack frame, MATLAB displays information from the calling function.

Replace throw(ME) with throwAsCaller(ME) in line 9 of sayHello.m and call the
function again.

sayHello(42)

Error using sayHello (line 2)
Input must be char.

The top of the stack refers to line 2 because that is the location of the error in the calling
function.

Input Arguments
exception — Exception containing cause and location of error
MException object

Exception containing the cause and location of an error, specified as a scalar
MException object.

See Also
MException.last | error | rethrow | throw | try, catch

Introduced in R2007b

 throwAsCaller

1-9399

mexext
Binary MEX file-name extension

Syntax
ext = mexext
extlist = mexext('all')

Description
ext = mexext returns the file-name extension for the current platform.

extlist = mexext('all') returns the extensions for all platforms.

Examples

Display File Extension for Your Computer

Find the MEX file extension for the system you are currently working on.

ext = mexext

ext =
'mexw64'

Your results reflect your system.

Find MEX File Extension for Mac Platform

Get the list of file extensions for supported platforms.

extlist = mexext('all');

1 Alphabetical List

1-9400

The mex command identifies a platform by its arch value, which is the output of the
computer('arch') command. For Mac platforms, the value is maci64.

Search the arch field in extlist for 'maci64', and display the corresponding ext field.

for k=1:length(extlist)
 if strcmp(extlist(k).arch, 'maci64')
 disp(sprintf('Arch: %s File Extension: %s', extlist(k).arch, extlist(k).ext))
 end
end

Arch: maci64 File Extension: mexmaci64

Output Arguments
ext — File-name extension
mexa64 | mexmaci64 | mexw64

File-name extension for MEX file, returned as one of these values.

MEX File Platform-Dependent Extension

Platform Binary MEX File Extension
Linux (64-bit) mexa64
Apple Mac (64-bit) mexmaci64
Windows (64-bit) mexw64

extlist — All file-name extensions
structure

All file-name extensions, returned as a structure with these fields:

arch — Platform
character vector

Platform, returned as a character vector. The name of the platform is the output of the
computer('arch') command.

ext — File extension
character vector

 mexext

1-9401

File extension, returned as a character vector.

Tips
• To use the MEX file-name extension in makefiles or scripts outside MATLAB, type one

of the following from the system command prompt. The script is located in the
matlabroot\bin folder.

• mexext.bat—Windows platform.
• mexext.sh—UNIX platform.

For example, the following commands are in a GNU makefile.

ext = $(shell mexext)
yprime.$(ext) : yprime.c
 mex yprime.c

See Also
computer | mex

Introduced before R2006a

1 Alphabetical List

1-9402

mfilename
File name of currently running code

Syntax
mfilename
p = mfilename('fullpath')
c = mfilename('class')

Description
mfilename returns a character vector containing the file name of the file in which the
function call occurs. When called from within the file, it returns the name of that file. This
allows a script or function to determine its name.

p = mfilename('fullpath') returns the full path and name of the file in which the
call occurs, not including the filename extension.

c = mfilename('class') in a method, returns the class of the method, not including
the leading @ sign. If called from a nonmethod, it yields the empty character vector.

Tips
If mfilename is called with any argument other than the above two, it behaves as if it
were called with no argument.

When called from the command line, mfilename returns an empty character vector.

To get the names of the callers of a MATLAB function file, use dbstack with an output
argument.

 mfilename

1-9403

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dbstack | function | inputname | nargin | nargout

Introduced before R2006a

1 Alphabetical List

1-9404

mget
Download files from FTP server

Syntax
mget(ftpobj,contents)
mget(ftpobj,contents,target)
downloadPaths = mget(___)

Description
mget(ftpobj,contents) retrieves the files or folders specified by contents from the
FTP server associated with ftpobj into the MATLAB current folder.

mget(ftpobj,contents,target) retrieves the files or folders into the local folder
specified by the absolute or relative path in target. If the local folder does not exist,
mget creates it.

downloadPaths = mget(___) also returns the paths to the downloaded files and
folders as a cell array of character vectors. You can use the input arguments from either
of the previous syntaxes.

Examples

Download File

Download a text file from an FTP server and display its contents.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 mget

1-9405

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

Download a text file. The mget function downloads the file to the current folder on your
machine.

mget(ftpobj,'README.txt');

Display the beginning of README.txt. To read the copy of README.txt downloaded to
your computer, use the fileread function.

readme = fileread('README.txt');
readme(1:95)

ans =
 ' Welcome to the
 NOAA/National Centers for Environmental Information (NCEI)'

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Download File to Specified Folder

Download a text file from an FTP server to a specified folder on your local machine.

First, connect to the National Centers for Environmental Information (NCEI) FTP server.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

Download a text file to a folder named myLocalFolder. If this folder does not exist, then
the mget function creates it on your local machine.

1 Alphabetical List

1-9406

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

mget(ftpobj,'README.txt','myLocalFolder');

Read the beginning of README.txt using the fileread function.

readme = fileread('myLocalFolder/README.txt');
readme(1:95)

ans =
 ' Welcome to the
 NOAA/National Centers for Environmental Information (NCEI)'

FTP service courtesy of the National Centers for Environmental Information (NCEI). See
the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

contents — Remote files or folders
character vector | string scalar

Remote files or folders, specified as a character vector or string scalar.

To match multiple files or folders on the FTP server, you can include a wildcard character
(*) in contents. For example, if you specify contents as *.docx, then mget downloads
all files whose names end with .docx.

target — Local folder
character vector | string scalar

Local folder, specified as a character vector or string scalar. target can specify a relative
or absolute path.

See Also
cd | ftp | mput

 mget

1-9407

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Introduced before R2006a

1 Alphabetical List

1-9408

milliseconds
Duration in milliseconds

Syntax
MS = milliseconds(X)

Description
MS = milliseconds(X) returns an array of milliseconds equivalent to the values in X.

• If X is a numeric array, then MS is a duration array in units of milliseconds.
• If X is a duration array, then MS is a double array with each element equal to the

number of milliseconds in the corresponding element of X.

Examples

Create Duration Array of Milliseconds

X = magic(3);
MS = milliseconds(X)

MS = 3x3 duration array
 0.008 sec 0.001 sec 0.006 sec
 0.003 sec 0.005 sec 0.007 sec
 0.004 sec 0.009 sec 0.002 sec

Convert Durations to Numeric Array of Milliseconds

Create a duration array.

 milliseconds

1-9409

X = minutes(2) + seconds(1:3)

X = 1x3 duration array
 2.0167 min 2.0333 min 2.05 min

Convert each duration in X to a number of milliseconds.

MS = milliseconds(X)

MS = 1×3

 121000 122000 123000

MS is a double array.

Input Arguments
X — Input array
numeric array | duration array | logical array

Input array, specified as a numeric array, duration array, or logical array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

1 Alphabetical List

1-9410

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
duration

Introduced in R2015a

 milliseconds

1-9411

min
Minimum elements of an array

Syntax
M = min(A)
M = min(A,[],dim)
M = min(A,[],nanflag)
M = min(A,[],dim,nanflag)
[M,I] = min(___)

M = min(A,[],'all')
M = min(A,[],vecdim)
M = min(A,[],'all',nanflag)
M = min(A,[],vecdim,nanflag)

[M,I] = min(A,[], ___ ,'linear')

C = min(A,B)
C = min(A,B,nanflag)

Description
M = min(A) returns the minimum elements of an array.

• If A is a vector, then min(A) returns the minimum of A.
• If A is a matrix, then min(A) is a row vector containing the minimum value of each

column.
• If A is a multidimensional array, then min(A) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. The size of this
dimension becomes 1 while the sizes of all other dimensions remain the same. If A is
an empty array with first dimension 0, then min(A) returns an empty array with the
same size as A.

1 Alphabetical List

1-9412

M = min(A,[],dim) returns the minimum element along dimension dim. For example,
if A is a matrix, then min(A,[],2) is a column vector containing the minimum value of
each row.

M = min(A,[],nanflag) specifies whether to include or omit NaN values in the
calculation. For example, min(A,[],'includenan') includes all NaN values in A while
min(A,[],'omitnan') ignores them.

M = min(A,[],dim,nanflag) also specifies the dimension to operate along when
using the nanflag option.

[M,I] = min(___) also returns the index into the operating dimension that
corresponds to the minimum value of A for any of the previous syntaxes.

M = min(A,[],'all') finds the minimum over all elements of A. This syntax is valid for
MATLAB versions R2018b and later.

M = min(A,[],vecdim) computes the minimum over the dimensions specified in the
vector vecdim. For example, if A is a matrix, then min(A,[],[1 2]) computes the
minimum over all elements in A, since every element of a matrix is contained in the array
slice defined by dimensions 1 and 2.

M = min(A,[],'all',nanflag) computes the minimum over all elements of A when
using the nanflag option.

M = min(A,[],vecdim,nanflag) specifies multiple dimensions to operate along when
using the nanflag option.

[M,I] = min(A,[], ___ ,'linear') returns the linear index into A that corresponds
to the minimum value in A. This syntax is not supported when A has type categorical,
datetime, or duration.

C = min(A,B) returns an array with the smallest elements taken from A or B.

C = min(A,B,nanflag) also specifies how to treat NaN values.

Examples

 min

1-9413

Smallest Vector Element

Create a vector and compute its smallest element.

A = [23 42 37 15 52];
M = min(A)

M = 15

Smallest Complex Element

Create a complex vector and compute its smallest element, that is, the element with the
smallest magnitude.

A = [-2+2i 4+i -1-3i];
min(A)

ans = -2.0000 + 2.0000i

Smallest Element in Each Matrix Column

Create a matrix and compute the smallest element in each column.

A = [2 8 4; 7 3 9]

A = 2×3

 2 8 4
 7 3 9

M = min(A)

M = 1×3

 2 3 4

1 Alphabetical List

1-9414

Smallest Element in Each Matrix Row

Create a matrix and compute the smallest element in each row.

A = [1.7 1.2 1.5; 1.3 1.6 1.99]

A = 2×3

 1.7000 1.2000 1.5000
 1.3000 1.6000 1.9900

M = min(A,[],2)

M = 2×1

 1.2000
 1.3000

Smallest Element Involving NaN

Create a vector and compute its minimum, excluding NaN values.

A = [1.77 -0.005 3.98 -2.95 NaN 0.34 NaN 0.19];
M = min(A,[],'omitnan')

M = -2.9500

min(A) will also produce this result since 'omitnan' is the default option.

Use the 'includenan' flag to return NaN.

M = min(A,[],'includenan')

M = NaN

Smallest Element Indices

Create a matrix A and compute the smallest elements in each column as well as the row
indices of A in which they appear.

 min

1-9415

A = [1 9 -2; 8 4 -5]

A = 2×3

 1 9 -2
 8 4 -5

[M,I] = min(A)

M = 1×3

 1 4 -5

I = 1×3

 1 2 2

Minimum of Array Page

Create a 3-D array and compute the minimum over each page of data (rows and columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
M1 = min(A,[],[1 2])

M1 =
M1(:,:,1) =

 -2

M1(:,:,2) =

 -5

M1(:,:,3) =

1 Alphabetical List

1-9416

 -3

Starting in R2018b, to compute the minimum over all dimensions of an array, you can
either specify each dimension in the vector dimension argument, or use the 'all' option.

M2 = min(A,[],[1 2 3])

M2 = -5

Mall = min(A,[],'all')

Mall = -5

Return Linear Indices

Create a matrix A and return the minimum value of each row in the matrix M. Use the
'linear' option to also return the linear indices I such that M = A(I).

A = [1 2 3; 4 5 6]

A = 2×3

 1 2 3
 4 5 6

[M,I] = min(A,[],2,'linear')

M = 2×1

 1
 4

I = 2×1

 1
 2

minvals = A(I)

 min

1-9417

minvals = 2×1

 1
 4

Smallest Element Comparison

Create a matrix and return the smallest value between each of its elements compared to a
scalar.

A = [1 7 3; 6 2 9]

A = 2×3

 1 7 3
 6 2 9

B = 5;
C = min(A,B)

C = 2×3

 1 5 3
 5 2 5

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

• If A is complex, then min(A) returns the complex number with the smallest
magnitude. If magnitudes are equal, then min(A) returns the value with the smallest
magnitude and the smallest phase angle.

1 Alphabetical List

1-9418

• If A is a scalar, then min(A) returns A.
• If A is a 0-by-0 empty array, then min(A) is as well.

If A has type categorical, then it must be ordinal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | categorical | datetime | duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(M,dim) is
1, while the sizes of all other dimensions remain the same, unless size(A,dim) is 0. If
size(A,dim) is 0, then min(A,dim) returns an empty array with the same size as A.

Consider a two-dimensional input array, A:

• If dim = 1, then min(A,[],1) returns a row vector containing the smallest element
in each column.

• If dim = 2, then min(A,[],2) returns a column vector containing the smallest
element in each row.

 min

1-9419

min returns A if dim is greater than ndims(A).

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then min(A,[],[1 2]) returns a 1-by-1-by-3
array whose elements are the minimums computed over each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

B — Additional input array
scalar | vector | matrix | multidimensional array

1 Alphabetical List

1-9420

Additional input array, specified as a scalar, vector, matrix, or multidimensional array.
Numeric inputs A and B must either be the same size or have sizes that are compatible
(for example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are datetime, duration, or categorical arrays, then they must be the same size
unless one is a scalar.

• A and B must be the same data type unless one is a double. In that case, the data type
of the other array can be single, duration, or any integer type.

• If A and B are ordinal categorical arrays, they must have the same sets of categories
with the same order.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | categorical | datetime | duration
Complex Number Support: Yes

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of these values:

• 'omitnan' — Ignore all NaN values in the input. If all elements are NaN, then min
returns the first one.

• 'includenan' — Include the NaN values in the input for the calculation.

For datetime arrays, you can also use 'omitnat' or 'includenat' to omit and
include NaT values, respectively.

The min function does not support the nanflag option for categorical arrays.
Data Types: char

Output Arguments
M — Minimum values
scalar | vector | matrix | multidimensional array

Minimum values, returned as a scalar, vector, matrix, or multidimensional array.
size(M,dim) is 1, while the sizes of all other dimensions match the size of the

 min

1-9421

corresponding dimension in A, unless size(A,dim) is 0. If size(A,dim) is 0, then M is
an empty array with the same size as A.

I — Index
scalar | vector | matrix | multidimensional array

Index, returned as a scalar, vector, matrix, or multidimensional array. I is the same size as
the first output.

When 'linear' is not specified, I is the index into the operating dimension. When
'linear' is specified, I contains the linear indices of A corresponding to the minimum
values.

If the smallest element occurs more than once, then I contains the index to the first
occurrence of the value.

C — Minimum elements from A or B
scalar | vector | matrix | multidimensional array

Minimum elements from A or B, returned as a scalar, vector, matrix, or multidimensional
array. The size of C is determined by implicit expansion of the dimensions of A and B. For
more information, see “Compatible Array Sizes for Basic Operations”.

The data type of C depends on the data types of A and B:

• If A and B are the same data type, then C matches the data type of A and B.
• If either A or B is single, then C is single.
• If either A or B is an integer data type with the other a scalar double, then C assumes

the integer data type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

1 Alphabetical List

1-9422

• The two-output syntax [Y,I] = min(...) is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you specify dim, then it must be a constant.
• The 'linear' option is not supported.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).
• See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'linear' option is not supported.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The 'linear' option is not supported.

See Also
bounds | max | mean | median | mink | sort

 min

1-9423

Topics
“Array Indexing”

Introduced before R2006a

1 Alphabetical List

1-9424

MinimizeCommandWindow
Minimize size of Automation server window

Syntax
IDL Method Signature
HRESULT MinimizeCommandWindow(void)

Microsoft Visual Basic Client
MinimizeCommandWindow

MATLAB Client
MinimizeCommandWindow(h)

Description
MinimizeCommandWindow(h) minimizes the window for the server attached to handle
h, and makes it inactive.

If the server window was already in a minimized state, MinimizeCommandWindow does
nothing.

Examples

Adjust MATLAB Command Window in Visual Basic .NET

This example shows how to minimize and maximize the command window in a MATLAB
Automation server. Create an application from the following code.

type adjustcommandwindow.vb

 MinimizeCommandWindow

1-9425

Dim Matlab As Object

Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

Adjust MATLAB Command Window in VBA

This example shows how to minimize and maximize the command window in a MATLAB
Automation server. Create an application from the following code.

type adjustcommandwindow.vba

Dim Matlab As Object

Set Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

See Also
MaximizeCommandWindow

Introduced before R2006a

1 Alphabetical List

1-9426

mink
Find k smallest elements of array

Syntax
B = mink(A,k)
B = mink(A,k,dim)
B = mink(___ ,'ComparisonMethod',c)
[B,I] = mink(___)

Description
B = mink(A,k) returns the k smallest elements of A.

• If A is a vector, then mink returns a vector containing the k smallest elements of A.
• If A is a matrix, then mink returns a matrix whose columns contain the k smallest

elements of each column of A.
• If A is a multidimensional array, then mink returns the k smallest elements along the
first dimension whose size does not equal 1.

B = mink(A,k,dim) determines the k smallest elements of A along dimension dim.

B = mink(___ ,'ComparisonMethod',c) optionally specifies how to compare
elements of A for any of the previous syntaxes. For example,
mink(A,k,'ComparisonMethod','abs') returns the k smallest elements of A
according to their absolute values.

[B,I] = mink(___) finds the indices of the smallest k values of A and returns them in
I.

Examples

 mink

1-9427

Smallest Vector Elements

Compute the smallest 3 elements of a vector.

A = 1:10;
B = mink(A,3)

B = 1×3

 1 2 3

Smallest Elements of Matrix Rows

Compute the smallest 3 elements of each row of a matrix.

A = magic(5)

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

B = mink(A,3,2)

B = 5×3

 1 8 15
 5 7 14
 4 6 13
 3 10 12
 2 9 11

1 Alphabetical List

1-9428

Complex Vector

Compute the 2 smallest elements of a complex vector according to their magnitude, and
return the indices where they are located in the input vector.

A = [2-2i 5+i -7-3i -1+i]

A = 1×4 complex

 2.0000 - 2.0000i 5.0000 + 1.0000i -7.0000 - 3.0000i -1.0000 + 1.0000i

[B,I] = mink(A,2,'ComparisonMethod','abs')

B = 1×2 complex

 -1.0000 + 1.0000i 2.0000 - 2.0000i

I = 1×2

 4 1

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

• If A is a vector, then mink returns a vector containing the k smallest elements of A.
• If A is a matrix, then mink returns a matrix whose columns contain the k smallest

elements of each column of A.
• If A is a multidimensional array, then mink returns the k smallest elements along the
first dimension whose size does not equal 1.

If A has type categorical, then it must be ordinal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | categorical | datetime | duration

 mink

1-9429

Complex Number Support: Yes

k — Number of minima
nonnegative integer scalar

Number of minima to return, specified as a positive integer scalar. If k is greater than or
equal to the number of elements in the operating dimension, then mink sorts the input
array along that dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

dim — Operating dimension
positive integer scalar

Operating dimension, specified as a positive integer scalar. By default, mink operates
along the first dimension whose size does not equal 1.

For example, if A is a matrix, then mink(A,k,1) operates along the rows of A, computing
minimums for each column.

mink(A,k,2) operates along the columns of A, computing minimums for each row.

1 Alphabetical List

1-9430

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

c — Comparison method
'auto' (default) | 'real' | 'abs'

Comparison method, specified as one of the following:

• 'auto' — Compare elements of input A by real(A) when A is real, and by abs(A)
when A is complex.

• 'real' — Compare elements of input A by real(A) when A is real or complex. If A
has elements with equal real parts, then use imag(A) to break ties.

• 'abs' — Compare elements of input A by abs(A) when A is real or complex. If A has
elements with equal magnitude, then use angle(A) in the interval (-π,π] to break ties.

Output Arguments
B — Output array
scalar | vector | matrix | multidimensional array

Output array, returned as a scalar, vector, matrix, or multidimensional array. mink returns
the k elements in order from smallest to largest.

I — Index array
scalar | vector | matrix | multidimensional array

Index array, returned as a vector, matrix, or multidimensional array. I is the same size as
B. If the output array B contains repeated elements, then the order of their indices in I
matches the order in which they appear in the input array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 mink

1-9431

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If A is complex with all zero imaginary parts, then MATLAB might convert A to
real(A) before calling mink(A). In this case, MATLAB compares elements of A by
real(A), but the generated code compares elements of A by abs(A). To make the
generated code match MATLAB, use mink(real(A),k) or
mink(A,k,'ComparisonMethod','real'). See “Code Generation for Complex
Data with Zero-Valued Imaginary Parts” (MATLAB Coder).

• If you supply dim, then it must be constant.
• For limitations related to variable-size inputs, see “Variable-Sizing Restrictions for

Code Generation of Toolbox Functions” (MATLAB Coder).

See Also
maxk | min | topkrows

Introduced in R2017b

1 Alphabetical List

1-9432

minres
Minimum residual method

Syntax
x = minres(A,b)
minres(A,b,tol)
minres(A,b,tol,maxit)
minres(A,b,tol,maxit,M)
minres(A,b,tol,maxit,M1,M2)
minres(A,b,tol,maxit,M1,M2,x0)
[x,flag] = minres(A,b,...)
[x,flag,relres] = minres(A,b,...)
[x,flag,relres,iter] = minres(A,b,...)
[x,flag,relres,iter,resvec] = minres(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)

Description
x = minres(A,b) attempts to find a minimum norm residual solution x to the system of
linear equations A*x=b. The n-by-n coefficient matrix A must be symmetric but need not
be positive definite. It should be large and sparse. The column vector b must have length
n. You can specify A as a function handle, afun, such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If minres converges, a message to that effect is displayed. If minres fails to converge
after the maximum number of iterations or halts for any reason, a warning message is
printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number
at which the method stopped or failed.

minres(A,b,tol) specifies the tolerance of the method. If tol is [], then minres uses
the default, 1e-6.

 minres

1-9433

minres(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is [],
then minres uses the default, min(n,20).

minres(A,b,tol,maxit,M) and minres(A,b,tol,maxit,M1,M2) use symmetric
positive definite preconditioner M or M = M1*M2 and effectively solve the system
inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b for y and then return x =
inv(sqrt(M))*y. If M is [] then minres applies no preconditioner. M can be a function
handle mfun, such that mfun(x) returns M\x.

minres(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
minres uses the default, an all-zero vector.

[x,flag] = minres(A,b,...) also returns a convergence flag.

Flag Convergence
0 minres converged to the desired tolerance tol within maxit

iterations.
1 minres iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 minres stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during minres became too

small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = minres(A,b,...) also returns the relative residual norm(b-
A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = minres(A,b,...) also returns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = minres(A,b,...) also returns a vector of
estimates of the minres residual norms at each iteration, including norm(b-A*x0).

[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...) also returns a
vector of estimates of the Conjugate Gradients residual norms at each iteration.

1 Alphabetical List

1-9434

Examples
Using minres with a Matrix Input
n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M1 = spdiags(4*on,0,n,n);

x = minres(A,b,tol,maxit,M1);
minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Using minres with a Function Handle
This example replaces the matrix A in the previous example with a handle to a matrix-
vector product function afun. The example is contained in a file run_minres that

• Calls minres with the function handle @afun as its first argument.
• Contains afun as a nested function, so that all variables in run_minres are available

to afun.

The following shows the code for run_minres:

function x1 = run_minres
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M = spdiags(4*on,0,n,n);
x1 = minres(@afun,b,tol,maxit,M);

 function y = afun(x)
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 end
end

 minres

1-9435

When you enter

x1=run_minres;

MATLAB software displays the message

minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Using minres instead of pcg
Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1, -1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.

displays the following message:

pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, minres can handle the indefinite matrix A.

x = minres(A,b,1e-6,40);
minres converged at iteration 39 to a solution with relative
residual 1.3e-007

References

[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “Solution of Sparse Indefinite Systems of Linear
Equations.” SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.

1 Alphabetical List

1-9436

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | cgs | gmres | ichol | lsqr | mldivide | pcg | qmr | symmlq

Topics
“Create Function Handle”

Introduced before R2006a

 minres

1-9437

minus, -
Subtraction

Syntax
C = A - B
C = minus(A,B)

Description
C = A - B subtracts array B from array A and returns the result in C.

C = minus(A,B) is an alternate way to execute A - B, but is rarely used. It enables
operator overloading for classes.

Examples

Subtract Scalar from Array

Create an array, A, and subtract a scalar value from it.

A = [2 1; 3 5];
C = A - 2

C = 2×2

 0 -1
 1 3

The scalar is subtracted from each entry of A.

1 Alphabetical List

1-9438

Subtract Two Arrays

Create two arrays, A and B, and subtract the second, B, from the first, A.

A = [1 0; 2 4];
B = [5 9; 2 1];
C = A - B

C = 2×2

 -4 -9
 0 3

The elements of B are subtracted from the corresponding elements of A.

Use the syntax -C to negate the elements of C.

-C

ans = 2×2

 4 9
 0 -3

Subtract Mean from Matrix

Create a matrix, A. Scale the elements in each column by subtracting the mean.

A = [1 9 3; 2 7 8]

A = 2×3

 1 9 3
 2 7 8

A - mean(A)

ans = 2×3

 -0.5000 1.0000 -2.5000

 minus, -

1-9439

 0.5000 -1.0000 2.5000

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. Numeric
inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

Datetime, duration, and calendar duration arrays must be the same size unless one is a
scalar. If one input is a datetime array, duration array, or calendar duration array, then
numeric values in the other input are treated as a number of 24-hour days. If one input is
a datetime array, then the other input also can be a date string or a cell array containing
date strings.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | datetime | duration | calendarDuration
Complex Number Support: Yes

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. Numeric
inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

Datetime, duration, and calendar duration arrays must be the same size unless one is a
scalar. If one input is a datetime array, duration array, or calendar duration array, then
numeric values in the other input are treated as a number of 24-hour days. If one input is
a datetime array, then the other input also can be a date string or a cell array containing
date strings.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | datetime | duration | calendarDuration
Complex Number Support: Yes

1 Alphabetical List

1-9440

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
diff | plus | uminus

Topics
“Array vs. Matrix Operations”

 minus, -

1-9441

“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-9442

minute
Minute number

Syntax
m = minute(t)

Description
m = minute(t) returns the minute numbers of the datetime values in t. The m output is
a double array the same size as t and contains integer values from 0 to 59.

The minute function returns the minute numbers of datetime values. To assign minute
values to a datetime array, t, use t.Minute and modify the Minute property.

Examples

Find Minute Number of Datetime Values

t1 = datetime('now');
t = t1 + minutes(2:4)

t = 1x3 datetime array
 02-Mar-2019 16:21:47 02-Mar-2019 16:22:47 02-Mar-2019 16:23:47

m = minute(t)

m = 1×3

 21 22 23

 minute

1-9443

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datetime | hms | hour | second | timeofday

Introduced in R2014b

1 Alphabetical List

1-9444

minutes
Duration in minutes

Syntax
M = minutes(X)

Description
M = minutes(X) returns an array of minutes equivalent to the values in X.

• If X is a numeric array, then M is a duration array in units of minutes.
• If X is a duration array, then M is a double array with each element equal to the

number of minutes in the corresponding element of X.

The minutes function converts between duration and double values. To display a
duration in units of minutes, set its Format property to 'm'.

Examples

Create Duration Array of Minutes

X = magic(4);
M = minutes(X)

M = 4x4 duration array
 16 min 2 min 3 min 13 min
 5 min 11 min 10 min 8 min
 9 min 7 min 6 min 12 min
 4 min 14 min 15 min 1 min

 minutes

1-9445

Convert Durations to Numeric Array of Minutes

Create a duration array.

X = hours(2:10:38) + minutes(30)

X = 1x4 duration array
 2.5 hr 12.5 hr 22.5 hr 32.5 hr

Convert each duration in X to a number of minutes.

M = minutes(X)

M = 1×4

 150 750 1350 1950

View the data type of M.

whos M

 Name Size Bytes Class Attributes

 M 1x4 32 double

Input Arguments
X — Input array
numeric array | duration array | logical array

Input array, specified as a numeric array, duration array, or logical array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-9446

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
duration

Introduced in R2014b

 minutes

1-9447

mislocked
Determine if function or script is locked in memory

Syntax
tf = mislocked(fun)
tf = mislocked

Description
tf = mislocked(fun) returns true (logical 1) if the function or script fun is locked in
memory. Otherwise, it returns false (logical 0).

tf = mislocked returns true (logical 1) if the currently running function is locked in
memory. Otherwise, it returns false (logical 0).

Use this syntax only within a MATLAB code file.

Examples

Determine If Function Is Locked

Check if the function plot is locked in memory.

tf = mislocked('plot')

tf =

 logical

 0

1 Alphabetical List

1-9448

Determine If Currently Running Function Is Locked

Create the function myFun in your current working folder. The function calls mislocked
on itself to find out if it is locked in memory before and after a call to mlock.

function myFun()
 isLockedBefore = mislocked
 mlock
 isLockedAfter = mislocked
end

At the command prompt, call the function.

myFun

isLockedBefore =

 logical

 0

isLockedAfter =

 logical

 1

Unlock the function so it can be cleared from memory. Verify that the function is not
locked.

munlock('myFun')
tf = mislocked('myFun')

tf =

 logical

 0

Input Arguments
fun — Name of function or script
character vector | string scalar

 mislocked

1-9449

Name of function or script, specified as a character vector or a string scalar.

Tips
• To remove a locked function from memory, first unlock it using the munlock function,

and then clear it from memory using the clear function.
• To determine if a MEX file is locked in memory, use the mexIsLocked function.

See Also
inmem | mlock | munlock

Introduced before R2006a

1 Alphabetical List

1-9450

missing
Create missing values

Syntax
m = missing

Description
m = missing returns a missing value displayed as <missing>. You can set an element
of an array or table to missing to represent missing data. The value of missing is then
automatically converted to the standard missing value native to the data type of the array
or table variable. For example, core data types that support missing and their
corresponding standard missing values after assignment are as follows:

• double, single, duration, and calendarDuration convert missing to NaN
• datetime converts missing to NaT
• categorical converts missing to <undefined>
• string converts missing to <missing>

Examples

Missing Data in Timetable

Create a timetable containing weather data, and replace the last row with missing values.
Each missing value is automatically replaced with the standard missing value for the
relevant data type.

Time = datetime({'2015-12-18 08:03:05';'2015-12-18 10:03:17';'2015-12-18 12:03:13'});
Temp = [37.3;39.1;42.3];
WindDirection = categorical({'NW';'N';'NW'});
TT = timetable(Time,Temp,WindDirection)

 missing

1-9451

TT=3×3 timetable
 Time Temp WindDirection
 ____________________ ____ _____________

 18-Dec-2015 08:03:05 37.3 NW
 18-Dec-2015 10:03:17 39.1 N
 18-Dec-2015 12:03:13 42.3 NW

TT.Time(3) = missing;
TT.Temp(3) = missing;
TT.WindDirection(3) = missing;

TT

TT=3×3 timetable
 Time Temp WindDirection
 ____________________ ____ _____________

 18-Dec-2015 08:03:05 37.3 NW
 18-Dec-2015 10:03:17 39.1 N
 NaT NaN <undefined>

See Also
fillmissing | ismissing | standardizeMissing

Topics
“Missing Data in MATLAB”

Introduced in R2017a

1 Alphabetical List

1-9452

mkdir
Make new folder

Syntax
mkdir folderName
mkdir parentFolder folderName

status = mkdir(___)
[status,msg] = mkdir(___)
[status,msg,msgID] = mkdir(___)

Description
mkdir folderName creates the folder folderName. If folderName exists, MATLAB
issues a warning. If the operation is not successful, mkdir throws an error to the
Command Window.

mkdir parentFolder folderName creates folderName in parentFolder. If
parentFolder does not exist, MATLAB attempts to create it.

status = mkdir(___) creates the specified folder and returns a status of 1 if the
operation is successful or if the folder exists. Otherwise, mkdir returns 0 and does not
throw a warning or error to the Command Window. You can use this syntax with any of
the input argument combinations in the previous syntaxes.

[status,msg] = mkdir(___) also returns the message text for any warning or error
that occurs.

[status,msg,msgID] = mkdir(___) additionally returns the message ID for any
warning or error that occurs.

Examples

 mkdir

1-9453

Create Subfolder in Current Folder

Create a folder called newdir in the current folder.

 mkdir newdir

Create Subfolder in Specified Parent Folder

Create a folder called newfolder in the folder testdata. Use a relative path, where
newFolder is at the same level as the current folder.

mkdir ../testdata newFolder

Create Folder That Already Exists

Create the same folder twice, verifying the status of the operation after each try.

Create the folder newFolder. The operation succeeds, returning a status of 1 with no
error or warning message.

[status, msg, msgID] = mkdir('newFolder')

status = logical
 1

msg =

 0x0 empty char array

msgID =

 0x0 empty char array

Create the folder newFolder again. The operation succeeds again, returning a status of
1. A warning message and message ID inform you that the folder already exists.

[status, msg, msgID] = mkdir('newFolder')

1 Alphabetical List

1-9454

status = logical
 1

msg =
'Directory already exists.'

msgID =
'MATLAB:MKDIR:DirectoryExists'

Input Arguments
folderName — Folder name
character vector | string scalar

Folder name, specified as a character vector or string scalar. You can specify folderName
as an absolute or relative path, unless a parent folder is specified. If you specify a parent
folder, then folderName must be a path relative to the parent folder.

If folderName contains a path that includes one or more nonexistent folders, MATLAB
attempts to create the nonexistent folder. For example, for the path myFolder
\folder1\folder2\targetFolder, if folder1 does not exist, MATLAB creates
folder1, creates folder2 within folder1, and creates targetFolder within
folder2.
Data Types: char | string

parentFolder — Parent folder
character vector | string scalar

Parent folder for the new folder, specified as a character vector or string scalar. Specify
parentFolder as an absolute or relative path. If parentFolder does not exist, MATLAB
attempts to create it.
Data Types: char | string

Output Arguments
status — Folder creation status
0 | 1

 mkdir

1-9455

Folder creation status indicating whether the attempt to create the folder is successful,
returned as 0 or 1. If the attempt to create the folder is successful or the folder already
exists, then the value of status is 1. Otherwise, the value is 0.
Data Types: logical

msg — Error message
character vector

Error message, returned as a character vector. If an error or warning occurs, msg
contains the message text of the error or warning. Otherwise, msg is empty, ''.

msgID — Error message identifier
character vector

Error message identifier, returned as a character vector. If an error or warning occurs,
msgID contains the message identifier of the error or warning. Otherwise, msgID is
empty, ''.

See Also
cd | copyfile | dir | movefile | rmdir

Topics
“Manage Files and Folders”

Introduced before R2006a

1 Alphabetical List

1-9456

mkdir
Make new folder on FTP server

Syntax
mkdir(ftpobj,folder)

Description
mkdir(ftpobj,folder) makes the specified folder on the FTP server associated with
ftpobj.

Examples

Make Folder

Connect to an FTP server and make a folder. Navigate to that folder and upload a file.
This example shows a hypothetical FTP session on ftp.example.com, a machine that
does not exist. If you access an FTP server that grants you permission to upload files and
make folders on that server, then you can use the mkdir function as shown in this
example.

First, connect to the server.

ftpobj = ftp('ftp.example.com')

ftpobj =

 FTP Object
 host: ftp.example.com
 user: anonymous
 dir: /
 mode: binary

Display the contents of the current folder on the FTP server.

 mkdir

1-9457

dir(ftpobj)

myscript.m README.txt pub

Make a folder named scripts.

mkdir(ftpobj,'scripts')

Display the updated contents of the current folder, including the new scripts folder.

dir(ftpobj)

myscript.m README.txt pub
scripts

Navigate to the scripts folder and upload a file.

cd(ftpobj,'scripts');
mput(ftpobj,'myNewScript.m')

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

folder — New folder
character vector | string scalar

New folder on the FTP server, specified as a character vector or string scalar.

See Also
dir | ftp | rmdir

Introduced before R2006a

1 Alphabetical List

1-9458

mkpp
Make piecewise polynomial

Syntax
pp = mkpp(breaks,coefs)
pp = mkpp(breaks,coefs,d)

Description
pp = mkpp(breaks,coefs) builds a piecewise polynomial pp from its breaks and
coefficients. Use ppval to evaluate the piecewise polynomial at specific points, or
unmkpp to extract details about the piecewise polynomial.

pp = mkpp(breaks,coefs,d) specifies that the piecewise polynomial is vector-valued,
such that the value of each of its coefficients is a vector of length d.

Examples

Create Piecewise Polynomial with Polynomials of Several Degrees

Create a piecewise polynomial that has a cubic polynomial in the interval [0,4], a
quadratic polynomial in the interval [4,10], and a quartic polynomial in the interval
[10,15].

breaks = [0 4 10 15];
coefs = [0 1 -1 1 1; 0 0 1 -2 53; -1 6 1 4 77];
pp = mkpp(breaks,coefs)

pp = struct with fields:
 form: 'pp'
 breaks: [0 4 10 15]
 coefs: [3x5 double]
 pieces: 3

 mkpp

1-9459

 order: 5
 dim: 1

Evaluate the piecewise polynomial at many points in the interval [0,15] and plot the
results. Plot vertical dashed lines at the break points where the polynomials meet.

xq = 0:0.01:15;
plot(xq,ppval(pp,xq))
line([4 4],ylim,'LineStyle','--','Color','k')
line([10 10],ylim,'LineStyle','--','Color','k')

1 Alphabetical List

1-9460

Create Piecewise Polynomial with Repeated Pieces

Create and plot a piecewise polynomial with four intervals that alternate between two
quadratic polynomials.

The first two subplots show a quadratic polynomial and its negation shifted to the
intervals [-8,-4] and [-4,0]. The polynomial is

1− x
2 − 1

2
= −x2

4 + x .

The third subplot shows a piecewise polynomial constructed by alternating these two
quadratic pieces over four intervals. Vertical lines are added to show the points where the
polynomials meet.

subplot(2,2,1)
cc = [-1/4 1 0];
pp1 = mkpp([-8 -4],cc);
xx1 = -8:0.1:-4;
plot(xx1,ppval(pp1,xx1),'k-')

subplot(2,2,2)
pp2 = mkpp([-4 0],-cc);
xx2 = -4:0.1:0;
plot(xx2,ppval(pp2,xx2),'k-')

subplot(2,1,2)
pp = mkpp([-8 -4 0 4 8],[cc;-cc;cc;-cc]);
xx = -8:0.1:8;
plot(xx,ppval(pp,xx),'k-')
hold on
line([-4 -4],ylim,'LineStyle','--')
line([0 0],ylim,'LineStyle','--')
line([4 4],ylim,'LineStyle','--')
hold off

 mkpp

1-9461

Input Arguments
breaks — Break points
vector

Break points, specified as a vector of length L+1 with strictly increasing elements that
represent the start and end of each of L intervals.
Data Types: single | double

coefs — Polynomial coefficients
matrix

1 Alphabetical List

1-9462

Polynomial coefficients, specified as an L-by-k matrix with the ith row coefs(i,:)
containing the local coefficients of an order k polynomial on the ith interval,
[breaks(i), breaks(i+1)]. In other words, the polynomial is coefs(i,1)*(X-
breaks(i))^(k-1) + coefs(i,2)*(X-breaks(i))^(k-2) + ... +
coefs(i,k-1)*(X-breaks(i)) + coefs(i,k).
Data Types: single | double

d — Dimension
scalar | vector

Dimension, specified as a scalar or vector of integers. Specify d to signify that the
piecewise polynomial has coefficient values of size d.
Data Types: single | double

Output Arguments
pp — Piecewise polynomial
structure

Piecewise polynomial, returned as a structure. Use this structure with the ppval function
to evaluate the piecewise polynomial at one or more query points. The structure has these
fields.

Field Description
form 'pp' for piecewise polynomial
breaks Vector of length L+1 with strictly increasing

elements that represent the start and end
of each of L intervals

coefs L-by-k matrix with each
row coefs(i,:) containing the local
coefficients of an order k polynomial on
the ith interval, [breaks(i),breaks(i
+1)]

pieces Number of pieces, L
order Order of the polynomials
dim Dimensionality of target

 mkpp

1-9463

Since the polynomial coefficients in coefs are local coefficients for each interval, you
must subtract the lower endpoint of the corresponding knot interval to use the
coefficients in a conventional polynomial equation. In other words, for the coefficients
[a,b,c,d] on the interval [x1,x2], the corresponding polynomial is

f x = a x− x1
3 + b x− x1

2 + c x− x1 + d .

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The output structure pp differs from the pp structure in MATLAB. In MATLAB, ppval
cannot use the pp structure from the code generator. For code generation, ppval
cannot use a pp structure created by MATLAB. unmkpp can use a MATLAB pp
structure for code generation.

To create a MATLAB pp structure from a pp structure created by the code generator:

• In code generation, use unmkpp to return the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp structure.
• If you do not provide d, then coefs must be two-dimensional and have a fixed number

of columns. In this case, the number of columns is the order.
• To define a piecewise constant polynomial, coefs must be a column vector or d must

have at least two elements.
• If you provide d and d is 1, then d must be a constant. Otherwise, if the input to ppval

is nonscalar, then the shape of the output of ppval can differ from ppval in MATLAB.
• If you provide d, then it must have a fixed length. One of the following sets of

statements must be true:

1 Suppose that m = length(d) and npieces = length(breaks) - 1.

1 Alphabetical List

1-9464

size(coefs,j) = d(j)
size(coefs,m+1) = npieces
size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be fixed length.
2 Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces
size(coefs,2) = order

The second dimension must be fixed length.
• If you do not provide d, then the following statements must be true:

Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces
size(coefs,2) = order

The second dimension must be fixed length.

See Also
pchip | ppval | spline | unmkpp

Introduced before R2006a

 mkpp

1-9465

mldivide, \
Solve systems of linear equations Ax = B for x

Syntax
x = A\B
x = mldivide(A,B)

Description
x = A\B solves the system of linear equations A*x = B. The matrices A and B must have
the same number of rows. MATLAB displays a warning message if A is badly scaled or
nearly singular, but performs the calculation regardless.

• If A is a scalar, then A\B is equivalent to A.\B.
• If A is a square n-by-n matrix and B is a matrix with n rows, then x = A\B is a solution

to the equation A*x = B, if it exists.
• If A is a rectangular m-by-n matrix with m ~= n, and B is a matrix with m rows, then A

\B returns a least-squares solution to the system of equations A*x= B.

x = mldivide(A,B) is an alternative way to execute x = A\B, but is rarely used. It
enables operator overloading for classes.

Examples

System of Equations

Solve a simple system of linear equations, A*x = B.

A = magic(3);
B = [15; 15; 15];
x = A\B

1 Alphabetical List

1-9466

x = 3×1

 1.0000
 1.0000
 1.0000

Linear System with Singular Matrix

Solve a linear system of equations A*x = b involving a singular matrix, A.

A = magic(4);
b = [34; 34; 34; 34];
x = A\b

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.306145e-17.

x = 4×1

 1.5000
 2.5000
 -0.5000
 0.5000

When rcond is between 0 and eps, MATLAB® issues a nearly singular warning, but
proceeds with the calculation. When working with ill-conditioned matrices, an unreliable
solution can result even though the residual (b-A*x) is relatively small. In this particular
example, the norm of the residual is zero, and an exact solution is obtained, although
rcond is small.

When rcond is equal to 0, the singular warning appears.

A = [1 0; 0 0];
b = [1; 1];
x = A\b

Warning: Matrix is singular to working precision.

x = 2×1

 1

 mldivide, \

1-9467

 Inf

In this case, division by zero leads to computations with Inf and/or NaN, making the
computed result unreliable.

Least-Squares Solution of Underdetermined System

Solve a system of linear equations, A*x = b.

A = [1 2 0; 0 4 3];
b = [8; 18];
x = A\b

x = 3×1

 0
 4.0000
 0.6667

Linear System with Sparse Matrix

Solve a simple system of linear equations using sparse matrices.

Consider the matrix equation A*x = B.

A = sparse([0 2 0 1 0; 4 -1 -1 0 0; 0 0 0 3 -6; -2 0 0 0 2; 0 0 4 2 0]);
B = sparse([8; -1; -18; 8; 20]);
x = A\B

x =
 (1,1) 1.0000
 (2,1) 2.0000
 (3,1) 3.0000
 (4,1) 4.0000
 (5,1) 5.0000

1 Alphabetical List

1-9468

Input Arguments
A — Coefficient matrix
vector | full matrix | sparse matrix

Coefficient matrix, specified as a vector, full matrix, or sparse matrix. If A has m rows,
then B must have m rows.
Data Types: single | double | logical
Complex Number Support: Yes

B — Right-hand side
vector | full matrix | sparse matrix

Right-hand side, specified as a vector, full matrix, or sparse matrix. If B has m rows, then A
must have m rows.
Data Types: single | double | logical
Complex Number Support: Yes

Output Arguments
x — Solution
vector | full matrix | sparse matrix

Solution, returned as a vector, full matrix, or sparse matrix. If A is an m-by-n matrix and B
is an m-by-p matrix, then x is an n-by-p matrix, including the case when p==1.

If A has full storage, x is also full. If A is sparse, then x has the same storage as B.

Tips
• The operators / and \ are related to each other by the equation B/A = (A'\B')'.
• If A is a square matrix, then A\B is roughly equal to inv(A)*B, but MATLAB

processes A\B differently and more robustly.
• If the rank of A is less than the number of columns in A, then x = A\B is not

necessarily the minimum norm solution. You can compute the minimum norm least-
squares solution using x = lsqminnorm(A,B) or x = pinv(A)*B.

 mldivide, \

1-9469

Algorithms
The versatility of mldivide in solving linear systems stems from its ability to take
advantage of symmetries in the problem by dispatching to an appropriate solver. This
approach aims to minimize computation time. The first distinction the function makes is
between full (also called “dense”) and sparse input arrays.

Algorithm for Full Inputs
The flow chart below shows the algorithm path when inputs A and B are full.

1 Alphabetical List

1-9470

 mldivide, \

1-9471

Algorithm for Sparse Inputs
If A is full and B is sparse then mldivide converts B to a full matrix and uses the full
algorithm path (above) to compute a solution with full storage. If A is sparse, the storage
of the solution x is the same as that of B and mldivide follows the algorithm path for
sparse inputs, shown below.

1 Alphabetical List

1-9472

 mldivide, \

1-9473

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

For the syntax Z = X\Y, the array X must be a scalar or a tall matrix with the same
number of rows as Y.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For sparse matrix inputs, the standard math library must be C99 or later.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If A is rectangular, then it must also be nonsparse.
• The MATLAB mldivide function prints a warning if A is badly scaled, nearly singular,

or rank deficient. The gpuArray mldivide is unable to check for this condition. Take
action to avoid this condition.

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-9474

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If A is rectangular, then it must also be nonsparse.
• The MATLAB mldivide function prints a warning if A is badly scaled, nearly singular,

or rank deficient. The distributed array mldivide is unable to check for this
condition. Take action to avoid this condition.

• If A is an M-by-N matrix with N > M, for distributed arrays, mldivide computes a
solution that minimizes norm(X). The result is the same as the result of PINV(A)*B.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
chol | inv | ldivide | ldl | linsolve | lsqminnorm | lu | mrdivide | pinv | qr |
rdivide

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“Systems of Linear Equations”
“Operator Overloading”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 mldivide, \

1-9475

mrdivide, /
Solve systems of linear equations xA = B for x

Syntax
x = B/A
x = mrdivide(B,A)

Description
x = B/A solves the system of linear equations x*A = B for x. The matrices A and B must
contain the same number of columns. MATLAB displays a warning message if A is badly
scaled or nearly singular, but performs the calculation regardless.

• If A is a scalar, then B/A is equivalent to B./A.
• If A is a square n-by-n matrix and B is a matrix with n columns, then x = B/A is a

solution to the equation x*A = B, if it exists.
• If A is a rectangular m-by-n matrix with m ~= n, and B is a matrix with n columns, then

x = B/A returns a least-squares solution of the system of equations x*A = B.

x = mrdivide(B,A) is an alternative way to execute x = B/A, but is rarely used. It
enables operator overloading for classes.

Examples

System of Equations

Solve a system of equations that has a unique solution, x*A = B.

A = [1 1 3; 2 0 4; -1 6 -1];
B = [2 19 8];
x = B/A

1 Alphabetical List

1-9476

x = 1×3

 1.0000 2.0000 3.0000

Least-Squares on an Underdetermined System

Solve an underdetermined system, x*C = D.

C = [1 0; 2 0; 1 0];
D = [1 2];
x = D/C

Warning: Rank deficient, rank = 1, tol = 1.332268e-15.

x = 1×3

 0 0.5000 0

MATLAB® issues a warning but proceeds with calculation.

Verify that x is not an exact solution.

x*C-D

ans = 1×2

 0 -2

Input Arguments
A — Coefficient matrix
vector | full matrix | sparse matrix

Coefficient matrix, specified as a vector, full matrix, or sparse matrix. If A has n columns,
then B must have n columns.
Data Types: single | double | logical

 mrdivide, /

1-9477

Complex Number Support: Yes

B — Right-hand side
vector | full matrix | sparse matrix

Right-hand side, specified as a vector, full matrix, or sparse matrix. If B has n columns,
then A must have n columns.
Data Types: single | double | logical
Complex Number Support: Yes

Output Arguments
x — Solution
vector | full matrix | sparse matrix

Solution, returned as a vector, full matrix, or sparse matrix. If A is an m-by-n matrix and B
is a p-by-n matrix, then x is a p-by-m matrix.

x is sparse only if both A and B are sparse matrices.

Tips
• The operators / and \ are related to each other by the equation B/A = (A'\B')'.
• If A is a square matrix, then B/A is roughly equal to B*inv(A), but MATLAB

processes B/A differently and more robustly.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

For the syntax Z = X/Y, the Y operand must be a scalar.

1 Alphabetical List

1-9478

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If B is rectangular, then it must also be nonsparse.
• The MATLAB mrdivide function prints a warning if B is badly scaled, nearly singular,

or rank deficient. The gpuArray mrdivide is unable to check for this condition. Take
action to avoid this condition.

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If B is rectangular, then it must also be nonsparse.
• The MATLAB mrdivide function prints a warning if B is badly scaled, nearly singular,

or rank deficient. The distributed array mrdivide is unable to check for this
condition. Take action to avoid this condition.

• If B is an M-by-N matrix with N > M, for distributed arrays, mrdivide computes a
solution that minimizes norm(X). The result is the same as the result of PINV(B)*A.

 mrdivide, /

1-9479

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
inv | ldivide | mldivide | rdivide | transpose

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“Systems of Linear Equations”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-9480

mlint
Check MATLAB code files for possible problems

Note mlint is not recommended. Use checkcode instead.

Alternatives
For information on using the graphical user interface to the Code Analyzer, see “Check
Code for Errors and Warnings”.

Syntax
mlint('filename')
mlint('filename','-config=settings.txt')
mlint('filename','-config=factory')
inform=mlint('filename','-struct')
msg=mlint('filename','-string')
[inform,filepaths]=mlint('filename')
inform=mlint('filename','-id')
inform=mlint('filename','-fullpath')
inform=mlint('filename','-notok')
mlint('filename','-cyc')
mlint('filename','-codegen')
mlint('filename','-eml')

Description
mlint('filename') displays messages about filename that report potential problems
and opportunities for code improvement. These messages are sometimes referred to as
Code Analyzer messages. The line number in the message is a hyperlink that you can click
to go directly to that line in the Editor. The exact text of the mlint messages is subject to
some change between versions.

 mlint

1-9481

Specify filename as one or more character vectors or string arrays, or as a cell array of
character vectors. If filename specifies multiple character vectors or string arrays, or if
filename is a nonscalar string array or a cell array of character vectors, MATLAB
displays information for each file. You cannot combine cell arrays of character vectors and
character vectors of file names. For example, you cannot have {'lengthofline',
'buggy'}, 'collatz' as an input.

mlint('filename','-config=settings.txt') overrides the default active settings
file with the settings that enable or suppress messages as indicated in the specified
settings.txt file.

Note If used, you must specify the full path to the settings.txt file specified with the
-config option.

For information about creating a settings.txt file, see “Save and Reuse Code Analyzer
Message Settings”. If you specify an invalid file, mlint returns a message indicating that
it cannot open or read the file you specified. In that case, mlint uses the factory default
settings.

mlint('filename','-config=factory') ignores all settings files and uses the
factory default preference settings.

inform=mlint('filename','-struct') returns the information in a structure array
whose length is the number of messages found. The structure has the fields that follow.

Field Description
message Message describing the suspicious construct that code

analysis caught.
line Vector of file line numbers to which the message refers.
column Two-column array of file columns (column extents) to which

the message applies. The first column of the array specifies
the column in the Editor where the message begins. The
second column of the array specifies the column in the
Editor where the message ends. There is one row in the
two-column array for each occurrence of a message.

If you specify multiple file names as input, inform contains a cell array of structures.

1 Alphabetical List

1-9482

msg=mlint('filename','-string') returns the information as the character vector
msg. If you specify multiple file names as input, msg contains information for each file,
separated by 10 equal sign characters (=), a space, the file name, a space, and 10 equal
sign characters.

If you omit the -struct or -string argument and you specify an output argument, the
default behavior is -struct. If you omit the argument and there are no output
arguments, the default behavior is to display the information to the command line.

[inform,filepaths]=mlint('filename') additionally returns filepaths, the
absolute paths to the file names, in the same order as you specified them.

inform=mlint('filename','-id') requests the message ID, where ID is a character
vector of the form ABC.... When returned to a structure, the output also has the id field,
which is the ID associated with the message.

inform=mlint('filename','-fullpath') assumes that the input file names are
absolute paths, so that mlint does not try to locate them.

inform=mlint('filename','-notok') runs mlint for all lines in filename, even
those lines that end with the mlint suppression directive, %#ok.

mlint('filename','-cyc') displays the McCabe complexity (also referred to as
cyclomatic complexity) of each function in the file. Higher McCabe complexity values
indicate higher complexity, and there is some evidence to suggest that programs with
higher complexity values are more likely to contain errors. Frequently, you can lower the
complexity of a function by dividing it into smaller, simpler functions. In general, smaller
complexity values indicate programs that are easier to understand and modify. Some
people advocate splitting up programs that have a complexity rating over 10.

mlint('filename','-codegen') enables code generation messages for display in the
Command Window.

mlint('filename','-eml') '-eml' is not recommended. Use '-codegen' instead.

Examples
The following examples use lengthofline.m, which is a sample file with MATLAB code
that can be improved. You can find it in matlabroot/help/techdoc/matlab_env/
examples. If you want to run the examples, save a copy of lengthofline.m to a
location on your MATLAB path.

 mlint

1-9483

Running mlint on a File with No Options
To run mlint on the example file, lengthofline.m, run
mlint('lengthofline')

MATLAB displays the M-Lint messages for lengthofline.m in the Command Window:
L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.
L 23 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 24 (C 5-11): 'notline' might be growing inside a loop. Consider preallocating for speed.
L 24 (C 44-49): Use STRCMPI(str1,str2) instead of using LOWER in a call to STRCMP.
L 28 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 34 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.
L 34 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD.
 Type 'doc struct' for more information.
L 38 (C 29): Use || instead of | as the OR operator in (scalar) conditional statements.
L 39 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.
L 40 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.
L 42 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.
L 43 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.
L 45 (C 13-15): 'dim' might be growing inside a loop.Consider preallocating for speed.
L 48 (C 52): There may be a parenthesis imbalance around here.
L 48 (C 53): There may be a parenthesis imbalance around here.
L 48 (C 54): There may be a parenthesis imbalance around here.
L 48 (C 55): There may be a parenthesis imbalance around here.
L 49 (C 17): Terminate statement with semicolon to suppress output (in functions).
L 49 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

For details about these messages and how to improve the code, see “Changing Code
Based on Code Analyzer Messages” in the MATLAB Desktop Tools and Development
Environment documentation.

Running mlint with Options to Show IDs and Return Results to
a Structure
To store the results to a structure and include message IDs, run

inform=mlint('lengthofline', '-id')

MATLAB returns

inform =

19x1 struct array with fields:
 message
 line
 column
 id

1 Alphabetical List

1-9484

To see values for the first message, run

inform(1)

MATLAB displays
ans =

 message: 'The value assigned here to variable 'nothandle' might never be used.'
 line: 22
 column: [1 9]
 id: 'NASGU'

Here, the message is for the value that appears on line 22 that extends from column 1–9
in the file.NASGU is the ID for the message 'The value assigned here to variable
'nothandle' might never be used.'.

Displaying McCabe Complexity with mlint
To display the McCabe complexity of a MATLAB code file, run mlint with the -cyc
option, as shown in the following example (assuming you have saved lengthofline.m to
a local folder).

mlint lengthofline.m -cyc

Results displayed in the Command Window show the McCabe complexity of the file,
followed by the M-Lint messages, as shown here:
L 1 (C 23-34): The McCabe complexity of 'lengthofline' is 12.
L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.
L 23 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 24 (C 5-11): 'notline' might be growing inside a loop. Consider preallocating for speed.
L 24 (C 44-49): Use STRCMPI(str1,str2) instead of using UPPER/LOWER in a call to STRCMP.
L 28 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).
L 34 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.
L 34 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD. Type 'doc struct'
 for more information.
L 38 (C 29): Use || instead of | as the OR operator in (scalar) conditional statements.
L 39 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.
L 40 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.
L 42 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.
L 43 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.
L 45 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.
L 48 (C 52): There may be a parenthesis imbalance around here.
L 48 (C 53): There may be a parenthesis imbalance around here.
L 48 (C 54): There may be a parenthesis imbalance around here.
L 48 (C 55): There may be a parenthesis imbalance around here.
L 49 (C 17): Terminate statement with semicolon to suppress output (in functions).
L 49 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

 mlint

1-9485

See Also
mlintrpt, profile

How To
• For information on the suppression directive, %#ok, and suppressing messages from

within your program, see “Adjust Code Analyzer Message Indicators and Messages”.

Introduced before R2006a

1 Alphabetical List

1-9486

mlintrpt
Run checkcode for file or folder

Syntax
mlintrpt
mlintrpt(f)
mlintrpt(f, inputType)
mlintrpt(___ ,settingsfile)

Description
mlintrpt scans all MATLAB code files in the current folder for Code Analyzer messages
and reports the results in a MATLAB web browser.

mlintrpt(f) scans the specified file f.

mlintrpt(f, inputType) scans the specified file or folder f, as specified by
inputType. Use 'file' to specify a file and 'dir' to specify a folder.

mlintrpt(___ ,settingsfile) overrides the default active settings file with the
specified settings file. You can specify settingsfile with any of the input arguments in
the previous syntaxes.

Examples

Create Report for File

Run mlintrpt on the example file lengthofline.m. MATLAB® displays a report of
potential problems and improvements for lengthofline.

mlintrpt('lengthofline')

 mlintrpt

1-9487

Create Report for All Files in Folder

Run mlintrpt on all examples in the MATLAB® example folder matlabroot/matlab/
help/techdoc/matlab_env/examples. MATLAB displays a report of potential
problems and improvements for all MATLAB code files in this folder.

mlintrpt(fullfile(matlabroot,'help','techdoc','matlab_env','examples'),'dir')

1 Alphabetical List

1-9488

 mlintrpt

1-9489

Suppress Code Analyzer Messages in Report

Suppress specific messages in a report by creating and specifying a settings file. For
example, the file lengthofline.m includes several lines that use | instead of || as the OR
operator. By default, mlintrpt flags these lines.

mlintrpt('lengthofline')

Create a settings file that suppresses the message flagging the use of | as the OR operator.

1 On the Home tab, in the Environment section, click the Preferences button.
2 Select Code Analyzer in the left pane.

1 Alphabetical List

1-9490

3 Under Default Settings, in the Aesthetics and Readability section, clear the
message Use || instead of | as the OR operator in (scalar) conditional
statements.

4 Enter mysettings.txt as the file name and save it to your current folder.
5 Press the Cancel button to exit out of the preference panel without changing the

active settings.

Run mlintrpt on the example file using the custom settings file mysettings.txt. The
message Use || instead of | as the OR operator in (scalar) conditional statements is
suppressed and is no longer visible in the report.

mlintrpt('lengthofline','mysettings.txt')

 mlintrpt

1-9491

Input Arguments
f — File or folder name
character vector

File or folder name, specified as a character vector. The file name can include a partial
path, but must be in a folder on the search path, or in the current folder.

inputType — Input type
'file' | 'dir'

Input type, specified as 'file' if the input is a file or 'dir' if the input is a folder.

settingsfile — Settings file name
character vector

Settings file name, specified as a character vector. If the file is not in the current folder,
provide the full path to the file.

For information about creating a settings file, see “Save and Reuse Code Analyzer
Message Settings”. If you specify an invalid file, the first message in the report is 0:
Unable to open or read the configuration file 'mymlint.txt'--using
default settings.

See Also
checkcode

Topics
“Check Code for Errors and Warnings”

Introduced before R2006a

1 Alphabetical List

1-9492

mlock
Prevent clearing function or script from memory

Syntax
mlock

Description
mlock locks the currently running function in memory. Locking a function prevents
clear from removing it from memory, and prevents reinitialization of any persistent
variables defined in the file.

Use mlock only within a MATLAB code file.

To remove a locked function or script from memory, first unlock it using the munlock
command, and then use the clear command.

Examples

Lock Function with Persistent Variable

Create the function myFun in your current working folder.

function myFun()
 persistent n
 if isempty(n)
 n = 0;
 end
 n = n+1
end

At the command prompt, call myFun twice. Each time you call the function, the value of n
increases because it is persistent.

 mlock

1-9493

myFun
myFun
myFun

n =

 1

n =

 2

n =

 3

Clear the function and call it another two times. Clearing the function also clears the
persistent variable.

clear myFun
myFun
myFun

n =

 1

n =

 2

Edit the myFun function to include a call to mlock.

function myFun()
 mlock
 persistent n
 if isempty(n)
 n = 0;
 end
 n = n+1
end

At the command prompt, call myFun 3 times.

1 Alphabetical List

1-9494

myFun
myFun
myFun

n =

 1

n =

 2

n =

 3

Try to clear the function and call it another two times. Since myFun is locked, clearing the
function does not remove it from memory and does not clear the persistent variable.

clear myFun
myFun
myFun

n =

 4

n =

 5

Unlock myFun so it can be cleared from memory.

munlock('myFun')

Tips
• To lock a MEX file, use the mexLock function.

 mlock

1-9495

See Also
inmem | mislocked | munlock | persistent

Introduced before R2006a

1 Alphabetical List

1-9496

mmfileinfo
Information about multimedia file

Syntax
info = mmfileinfo(filename)

Description
info = mmfileinfo(filename) returns a structure, info, with fields containing
information about the contents of the multimedia file identified by filename. The
filename is specified as a character vector or string scalar.

If filename is a URL, mmfileinfo might take a long time to return because it must first
download the file. For large files, downloading can take several minutes. To avoid
blocking the MATLAB command line while this processing takes place, download the file
before calling mmfileinfo.

The info structure contains the following fields, listed in the order they appear in the
structure.

Field Description
Filename Text indicating the name of the file.
Path Text indicating the absolute path to the file.
Duration Length of the file in seconds.
Audio Structure containing information about the audio data

in the file. See “Audio Data” on page 1-9498 for more
information about this data structure.

Video Structure containing information about the video data
in the file. See “Video Data” on page 1-9498 for more
information about this data structure.

 mmfileinfo

1-9497

Audio Data
The Audio structure contains the following fields, listed in the order they appear in the
structure. If the file does not contain audio data, the fields in the structure are empty.

Field Description
Format Text indicating the audio format.
NumChannels Number of audio channels.

Video Data
The Video structure contains the following fields, listed in the order they appear in the
structure. If the file does not contain video data, the fields in the structure are empty.

Field Description
Format Text indicating the video format.
Height Height of the video frame.
Width Width of the video frame.

Examples
Display information about the example file xylophone.mpg:

info = mmfileinfo('xylophone.mpg')
audio = info.Audio
video = info.Video

MATLAB returns:

info =
 Filename: 'xylophone.mpg'
 Path: 'matlabroot\toolbox\matlab\audiovideo'
 Duration: 4.7020
 Audio: [1x1 struct]
 Video: [1x1 struct]

audio =
 Format: 'MPEG'

1 Alphabetical List

1-9498

 NumChannels: 2

video =
 Format: 'MPEG1'
 Height: 240
 Width: 320

where Path is system-dependent.

See Also
VideoReader

Introduced before R2006a

 mmfileinfo

1-9499

mod
Remainder after division (modulo operation)

Syntax
b = mod(a,m)

Description
b = mod(a,m) returns the remainder after division of a by m, where a is the dividend
and m is the divisor. This function is often called the modulo operation, which can be
expressed as b = a - m.*floor(a./m). The mod function follows the convention that
mod(a,0) returns a.

Examples

Remainder After Division of Scalar

Compute 23 modulo 5.

b = mod(23,5)

b = 3

Remainder After Division of Vector

Find the remainder after division for a vector of integers and the divisor 3.

a = 1:5;
m = 3;
b = mod(a,m)

1 Alphabetical List

1-9500

b = 1×5

 1 2 0 1 2

Remainder After Division for Positive and Negative Values

Find the remainder after division for a set of integers including both positive and negative
values. Note that nonzero results are always positive if the divisor is positive.

a = [-4 -1 7 9];
m = 3;
b = mod(a,m)

b = 1×4

 2 2 1 0

Remainder After Division for Negative Divisor

Find the remainder after division by a negative divisor for a set of integers including both
positive and negative values. Note that nonzero results are always negative if the divisor
is negative.

a = [-4 -1 7 9];
m = -3;
b = mod(a,m)

b = 1×4

 -1 -1 -2 0

 mod

1-9501

Remainder After Division for Floating-Point Values

Find the remainder after division for several angles using a modulus of 2*pi. Note that
mod attempts to compensate for floating-point round-off effects to produce exact integer
results when possible.

theta = [0.0 3.5 5.9 6.2 9.0 4*pi];
m = 2*pi;
b = mod(theta,m)

b = 1×6

 0 3.5000 5.9000 6.2000 2.7168 0

Input Arguments
a — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional array. a must be a real-
valued array of any numerical type. Numeric inputs a and m must either be the same size
or have sizes that are compatible (for example, a is an M-by-N matrix and m is a scalar or
1-by-N row vector). For more information, see “Compatible Array Sizes for Basic
Operations”.

If a and m are duration arrays, then they must be the same size unless one is a scalar. If
one input is a duration array, the other input can be a duration array or a numeric array.
In this context, mod treats numeric values as a number of standard 24-hour days.

If one input has an integer data type, then the other input must be of the same integer
data type or be a scalar double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char

m — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a scalar, vector, matrix, or multidimensional array. m must be a real-
valued array of any numerical type. Numeric inputs a and m must either be the same size

1 Alphabetical List

1-9502

or have sizes that are compatible (for example, a is an M-by-N matrix and m is a scalar or
1-by-N row vector). For more information, see “Compatible Array Sizes for Basic
Operations”.

If a and m are duration arrays, then they must be the same size unless one is a scalar. If
one input is a duration array, the other input can be a duration array or a numeric array.
In this context, mod treats numeric values as a number of standard 24-hour days.

If one input has an integer data type, then the other input must be of the same integer
data type or be a scalar double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char

Definitions

Differences Between mod and rem
The concept of remainder after division is not uniquely defined, and the two functions mod
and rem each compute a different variation. The mod function produces a result that is
either zero or has the same sign as the divisor. The rem function produces a result that is
either zero or has the same sign as the dividend.

Another difference is the convention when the divisor is zero. The mod function follows
the convention that mod(a,0) returns a, whereas the rem function follows the
convention that rem(a,0) returns NaN.

Both variants have their uses. For example, in signal processing, the mod function is
useful in the context of periodic signals because its output is periodic (with period equal
to the divisor).

Congruence Relationships
The mod function is useful for congruence relationships: a and b are congruent (mod m) if
and only if mod(a,m) == mod(b,m). For example, 23 and 13 are congruent (mod 5).

 mod

1-9503

References
[1] Knuth, Donald E. The Art of Computer Programming. Vol. 1. Addison Wesley, 1997

pp.39–40.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arithmetic is performed using the output class. Results might not match MATLAB due
to differences in rounding errors.

• If one of the inputs has type int64 or uint64, both inputs must have the same type.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-9504

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
rem

Introduced before R2006a

 mod

1-9505

mode
Most frequent values in array

Syntax
M = mode(A)
M = mode(A,'all')
M = mode(A,dim)
M = mode(A,vecdim)

[M,F] = mode(___)
[M,F,C] = mode(___)

Description
M = mode(A) returns the sample mode of A, which is the most frequently occurring
value in A. When there are multiple values occurring equally frequently, mode returns the
smallest of those values. For complex inputs, the smallest value is the first value in a
sorted list.

• If A is a vector, then mode(A) returns the most frequent value of A.
• If A is a nonempty matrix, then mode(A) returns a row vector containing the mode of

each column of A.
• If A is an empty 0-by-0 matrix, mode(A) returns NaN.
• If A is a multidimensional array, then mode(A) treats the values along the first array

dimension whose size does not equal 1 as vectors and returns an array of most
frequent values. The size of this dimension becomes 1 while the sizes of all other
dimensions remain the same.

M = mode(A,'all') computes the mode over all elements of A. This syntax is valid for
MATLAB versions R2018b and later.

M = mode(A,dim) returns the mode of elements along dimension dim. For example, if A
is a matrix, then mode(A,2) is a column vector containing the most frequent value of
each row

1 Alphabetical List

1-9506

M = mode(A,vecdim) computes the mode based on the dimensions specified in the
vector vecdim. For example, if A is a matrix, then mode(A,[1 2]) is the mode over all
elements in A, since every element of a matrix is contained in the array slice defined by
dimensions 1 and 2.

[M,F] = mode(___) also returns a frequency array F, using any of the input
arguments in the previous syntaxes. F is the same size as M, and each element of F
represents the number of occurrences of the corresponding element of M.

[M,F,C] = mode(___) also returns a cell array C of the same size as M and F. Each
element of C is a sorted vector of all values that have the same frequency as the
corresponding element of M.

Examples

Mode of Matrix Columns

Define a 3-by-4 matrix.

A = [3 3 1 4; 0 0 1 1; 0 1 2 4]

A = 3×4

 3 3 1 4
 0 0 1 1
 0 1 2 4

Find the most frequent value of each column.

M = mode(A)

M = 1×4

 0 0 1 4

 mode

1-9507

Mode of Matrix Rows

Define a 3-by-4 matrix.

A = [3 3 1 4; 0 0 1 1; 0 1 2 4]

A = 3×4

 3 3 1 4
 0 0 1 1
 0 1 2 4

Find the most frequent value of each row.

M = mode(A,2)

M = 3×1

 3
 0
 0

Mode of 3-D Array

Create a 1-by-3-by-4 array of integers between 1 and 10.

A = gallery('integerdata',10,[1,3,4],1)

A =
A(:,:,1) =

 10 8 10

A(:,:,2) =

 6 9 5

A(:,:,3) =

1 Alphabetical List

1-9508

 9 6 1

A(:,:,4) =

 4 9 5

Find the most frequent values of this 3-D array along the second dimension.

M = mode(A)

M =
M(:,:,1) =

 10

M(:,:,2) =

 5

M(:,:,3) =

 1

M(:,:,4) =

 4

This operation produces a 1-by-1-by-4 array by finding the most frequent value along the
second dimension. The size of the second dimension reduces to 1.

Compute the mode along the first dimension of A.

M = mode(A,1);
isequal(A,M)

ans = logical
 1

This returns the same array as A because the size of the first dimension is 1.

 mode

1-9509

Mode of Array Page

Create a 3-D array and compute the mode over each page of data (rows and columns).

A(:,:,1) = [2 4; 2 1];
A(:,:,2) = [6 2; 3 3];
A(:,:,3) = [4 4; 7 4];
M1 = mode(A,[1 2])

M1 =
M1(:,:,1) =

 2

M1(:,:,2) =

 3

M1(:,:,3) =

 4

Starting in R2018b, to compute the mode over all dimensions of an array, you can either
specify each dimension in the vector dimension argument, or use the 'all' option.

M2 = mode(A,[1 2 3])

M2 = 4

Mall = mode(A,'all')

Mall = 4

Mode of Matrix Columns with Frequency Information

Define a 3-by-4 matrix.

1 Alphabetical List

1-9510

A = [3 3 1 4; 0 0 1 1; 0 1 2 4]

A = 3×4

 3 3 1 4
 0 0 1 1
 0 1 2 4

Find the most frequent value of each column, as well as how often it occurs.

[M,F] = mode(A)

M = 1×4

 0 0 1 4

F = 1×4

 2 1 2 2

F(1) is 2 since M(1) occurs twice in the first column.

Mode of Matrix Rows with Frequency and Multiplicity Information

Define a 3-by-4 matrix.

A = [3 3 1 4; 0 0 1 1; 0 1 2 4]

A = 3×4

 3 3 1 4
 0 0 1 1
 0 1 2 4

Find the most frequent value of each row, how often it occurs, and which values in that
row occur with the same frequency.

[M,F,C] = mode(A,2)

 mode

1-9511

M = 3×1

 3
 0
 0

F = 3×1

 2
 2
 1

C = 3x1 cell array
 {[3]}
 {2x1 double}
 {4x1 double}

C{2} is the 2-by-1 vector [0;1] since values 0 and 1 in the second row occur with
frequency F(2).

C{3} is the 4-by-1 vector [0;1;2;4] since all values in the third row occur with
frequency F(3).

Mode of 16-bit Unsigned Integer Array

Define a 1-by-4 vector of 16-bit unsigned integers.

A = gallery('integerdata',10,[1,4],3,'uint16')

A = 1x4 uint16 row vector

 6 3 2 3

Find the most frequent value, as well as the number of times it occurs.

[M,F] = mode(A),

M = uint16
 3

1 Alphabetical List

1-9512

F = 2

class(M)

ans =
'uint16'

M is the same class as the input, A.

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. A can be a numeric
array, categorical array, datetime array, or duration array.

NaN or NaT (Not a Time) values in the input array, A, are ignored. Undefined values in
categorical arrays are similar to NaNs in numeric arrays.

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(M,dim) is
1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A.

• If dim = 1, then mode(A,1) returns a row vector containing the most frequent value
in each column.

 mode

1-9513

• If dim = 2, then mode(A,2) returns a column vector containing the most frequent
value in each row.

mode returns A if dim is greater than ndims(A).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then mode(A,[1 2]) returns a 1-by-1-by-3 array
whose elements are the modes of each page of A.

1 Alphabetical List

1-9514

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
M — Most frequent values
scalar | vector | matrix | multidimensional array

Most frequent values returned as a scalar, vector, matrix, or multidimensional array.
When there are multiple values occurring equally frequently, mode returns the smallest of
those values. For complex inputs, this is taken to be the first value in a sorted list of
values.

The class of M is the same as the class of the input array, A.

F — Frequency array
scalar | vector | matrix | multidimensional array

Frequency array returned as a scalar, vector, matrix, or multidimensional array. The size
of F is the same as the size of M, and each element of F represents the number of
occurrences of the corresponding element of M.

The class of F is always double.

C — Most frequent values with multiplicity
cell array

 mode

1-9515

Most frequent values with multiplicity returned as a cell array. The size of C is the same
as the size of M and F, and each element of C is a sorted column vector of all values that
have the same frequency as the corresponding element of M.

Tips
• The mode function is most useful with discrete or coarsely rounded data. The mode for

a continuous probability distribution is defined as the peak of its density function.
Applying the mode function to a sample from that distribution is unlikely to provide a
good estimate of the peak; it would be better to compute a histogram or density
estimate and calculate the peak of that estimate. Also, the mode function is not
suitable for finding peaks in distributions having multiple modes.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support the third output argument C.
• If supplied, dim must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-9516

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
histcounts | histogram | mean | median | sort

Introduced before R2006a

 mode

1-9517

month
Month number and name

Syntax
m = month(t)
m = month(t,monthType)

Description
m = month(t) returns the month numbers of the datetime values in t. The m output
contains integer values from 1 to 12.

m = month(t,monthType) returns the type of month number or name specified by
monthType.

The month function returns the month numbers or names of datetime values. To assign
month numbers to datetime array t, use t.Month and modify the Month property.

Examples

Extract Month Number from Dates

Extract the month numbers from an array of dates.

t = datetime(2014,05,31):caldays(35):datetime(2014,10,15)

t = 1x4 datetime array
 31-May-2014 05-Jul-2014 09-Aug-2014 13-Sep-2014

m = month(t)

m = 1×4

1 Alphabetical List

1-9518

 5 7 8 9

Find Month Names of Dates

Get the month names from an array of dates.

t = datetime(2013,01,01):calweeks(12):datetime(2013,12,31)

t = 1x5 datetime array
 01-Jan-2013 26-Mar-2013 18-Jun-2013 10-Sep-2013 03-Dec-2013

m = month(t,'name')

m = 1x5 cell array
 {'January'} {'March'} {'June'} {'September'} {'December'}

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

monthType — Type of month values
'monthofyear' (default) | 'name' | 'shortname'

Type of month values, specified as a value in the table.

Value of monthType Description
'monthofyear' Month-of-year number
'name' Full month names, for example, August or

September. For NaT datetime values, the
month name is the empty character vector,
''.

 month

1-9519

Value of monthType Description
'shortname' Abbreviated month names, for example,

Aug or Sep. For NaT datetime values, the
month name is the empty character vector,
''.

Note month returns month names in the language specified by the Locale option in the
Datetime format section of the Preferences panel. To change the default datetime
locale, see “Set Command Window Preferences”.

Output Arguments
m — Month number or name
double array | cell array of character vectors

Month number or name, returned as a numeric array of type double, or a cell array of
character vectors. m is the same size as t.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-9520

See Also
datetime | day | quarter | week | year | ymd

Introduced in R2014b

 month

1-9521

more
Control paged output in Command Window

Syntax
more on
more off
more(n)
A = more(___)

Description
more on enables paging of the output in the MATLAB Command Window. When paging is
enabled, MATLAB displays output one page at a time.

• To advance to the next page of output, press the Space key.
• To advance to the next line of output, press the Return key.
• To stop displaying the current output, press the Q key. Do not use Ctrl+C to exit

more, otherwise MATLAB can return an error.

more off disables paging of the output in the Command Window. By default, paging is
disabled.

more(n) enables paging and sets the page length to n lines.

By default, the length of a page is equal to the number of lines available for display in the
MATLAB Command Window. If you set the page length to a specific value, MATLAB uses
that value for the page size, regardless of the size of the command window.

To restore the default page length, run the command more off followed by the command
more on.

A = more(___) returns the current page size in number of lines. You can use this
syntax with any of the input argument combinations in the previous syntaxes.

1 Alphabetical List

1-9522

Examples

View Help One Page at a Time

Use the more function to control the number of help lines displayed in the command
window.

Enable paging in the Command Window and then get help on the plot function.

more on
help plot

 plot Linear plot.
 plot(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
 then the vector is plotted versus the rows or columns of the matrix,
 whichever line up. If X is a scalar and Y is a vector, disconnected
 line objects are created and plotted as discrete points vertically at
 X.

 plot(Y) plots the columns of Y versus their index.
 If Y is complex, plot(Y) is equivalent to plot(real(Y),imag(Y)).
--more--

Press the Space key to view the help page by page until the last page is displayed. Call
more off to disable paging.

Change Command Window Page Size

Set the page size in the Command Window and then restore the original page size.

Enable paging and set the page size to 5, storing the previous size in the variable
previousSize.

previousSize = more(5)

previousSize =

 9

Display the help text for the plot function.

more on
help plot

 more

1-9523

plot Linear plot.
 plot(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
 then the vector is plotted versus the rows or columns of the matrix,
 whichever line up. If X is a scalar and Y is a vector, disconnected
 line objects are created and plotted as discrete points vertically at
--more--

Use the Space key to view the help page by page until the last page is displayed.

Restore the page size and display the help for the plot function again.

more(previousSize)
help plot

 plot Linear plot.
 plot(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
 then the vector is plotted versus the rows or columns of the matrix,
 whichever line up. If X is a scalar and Y is a vector, disconnected
 line objects are created and plotted as discrete points vertically at
 X.

 plot(Y) plots the columns of Y versus their index.
 If Y is complex, plot(Y) is equivalent to plot(real(Y),imag(Y)).
--more--

Use the Space key to view the help page by page until the last page is displayed. Call
more off to disable paging.

Input Arguments
n — Page size
positive integer

Page size, specified as a positive integer.

Tips
• To see the status of more, type get(0,'More'). MATLAB returns either on or off,

indicating whether paging of the output is enabled or disabled.

See Also
diary

1 Alphabetical List

1-9524

Topics
“Format Output”

Introduced before R2006a

 more

1-9525

morebins
Package: matlab.graphics.chart.primitive

Increase number of histogram bins

Syntax
N = morebins(h)
N = morebins(h,direction)

Description
N = morebins(h) increases the number of bins in histogram h by 10% (rounded up to
the nearest integer) and returns the new number of bins.

For bivariate histograms, this increases the bin count in both the x and y directions.

N = morebins(h,direction), where h must be a histogram2 object, only increases
the number of bins in the dimension specified by direction. The direction option can
be 'x', 'y', or 'both'. The default value is 'both'.

Examples

Increase Number of Histogram Bins

Plot a histogram of 1,000 random numbers and return a handle to the histogram object.

x = randn(1000,1);
h = histogram(x)

1 Alphabetical List

1-9526

h =
 Histogram with properties:

 Data: [1000x1 double]
 Values: [1x23 double]
 NumBins: 23
 BinEdges: [1x24 double]
 BinWidth: 0.3000
 BinLimits: [-3.3000 3.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

 morebins

1-9527

 Show all properties

Use morebins to increase the number of bins in the histogram.

morebins(h);
morebins(h)

ans = 29

1 Alphabetical List

1-9528

Input Arguments
h — Input histogram
histogram object | histogram2 object

Input histogram, specified as a histogram or histogram2 object.

h cannot be a categorical histogram.

direction — Direction to increase number of bins
'both' (default) | 'x' | 'y'

Direction to increase the number of bins, specified as 'x', 'y', or 'both'. Specify 'x'
or 'y' to only increase the number of bins in that direction while leaving the number of
bins in the other direction constant.

Output Arguments
N — Number of bins
scalar | vector

Number of bins, returned as a scalar or vector. N is the new number of bins for the
histogram after increase. For bivariate histogram plots, N is a two-element vector, [nx
ny].

See Also
fewerbins | histcounts | histcounts2 | histogram | histogram2

Introduced in R2014b

 morebins

1-9529

move
Move or resize control in parent window

Syntax
V = move(c)
V = move(c,position)

Description
V = move(c) returns a four-element vector indicating the current position of the control.

V = move(c,position) moves the control to the position specified by position.

Examples

Move mwsamp Control

Create an mwsamp control and change its values.

f = figure('Position',[100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1',[0 0 200 200],f);
pos = move(h,[50 50 200 200])

pos =
 50 50 200 200

Resize mwsamp Control

Resize the mwsamp control to always be centered in the figure as you resize the figure
window.

Create a script resizectrl.m with the following statements.

1 Alphabetical List

1-9530

% Get the new position and size of the figure window
 fpos = get(gcbo,'position');

% Resize the control accordingly
 move(h,[0 0 fpos(3) fpos(4)]);

Create the control and run the script. Notice that the circle moves so that it is always
positioned in the center of the window.

f = figure('Position',[100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1',[0 0 200 200]);
set(f,'ResizeFcn','resizectrl');

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

position — Position
integer

New position in x,y pixel coordinates, specified as integers.
Example: [0 0 200 200]

Output Arguments
V — Position vector
integer

Position vector, specified as four-element integer vector containing the position and size
of the control in the parent figure window. The elements of the vector are [x, y,
width, height]. The values x and y are offsets in pixels from the bottom left corner of
the figure window to the same corner of the control. The values width and height are
the size of the control itself.

 move

1-9531

See Also
get | set

Topics
“MATLAB Sample ActiveX Control mwsamp”

Introduced before R2006a

1 Alphabetical List

1-9532

movefile
Move or rename file or folder

Syntax
movefile source
movefile source destination
movefile source destination f

status = movefile(___)
[status,msg] = movefile(___)
[status,msg,msgID] = movefile(___)

Description
movefile source moves the file or folder source to the current folder. movefile does
not preserve the archive attribute of source.

movefile source destination moves source to the file or folder destination. If
source and destination are in the same location, then movefile renames source to
destination. To rename a file or folder when moving it, make destination a different
name from source and specify only one file or folder for source.

If source is a folder, then destination must be a folder. If source is a folder or
specifies multiple files and destination does not exist, then movefile creates
destination.

movefile source destination f performs the move, even when destination is
not writable. The state of the read/write attribute for destination does not change.

status = movefile(___) moves the specified file or folder and returns a status of 1 if
the operation is successful. Otherwise, movefile returns 0. You can use this syntax with
any of the input argument combinations in the previous syntaxes.

[status,msg] = movefile(___) also returns the message text for any warning or
error that occurs.

 movefile

1-9533

[status,msg,msgID] = movefile(___) additionally returns the message ID for any
warning or error that occurs.

Examples

Move Files to Current Folder

Move files and folders to the current folder by omitting the destination input.

Create two folders: the first, myfiles, containing the file myfile1.m, and the second,
myotherfiles, containing the file myfile2.m.

mkdir myfiles
movefile myfile1.m myfiles
mkdir myotherfiles
movefile myfile2.m myotherfiles

Move myfile1.m to the current folder. Since a destination is not specified, MATLAB®
assumes the destination is the current folder.

movefile myfiles/myfile1.m

Set the current folder to myfiles. Move myotherfiles and its contents to the current
folder.

cd myfiles
movefile ../myotherfiles

Move Files and Folders to New Folder

Move files and subfolders whose names begin with my from the current folder to the
folder newFolder, where newFolder previously does not exist.

movefile my* newFolder

1 Alphabetical List

1-9534

Rename Folder

Create the folder myoldfolder, and then rename it to mynewfolder.

mkdir myoldfolder
movefile myoldfolder mynewfolder

Move File to Read-Only Folder

Move the file myfile1.m from the current folder to the read-only folder restricted.

Create the read-only folder restricted.

mkdir restricted
fileattrib restricted -w

Move the file myfile1.m. A status of 0 shows the copy was unsuccessful.

status = movefile('myfile1.m','restricted');
status

status = logical
 0

Move the file myfile1.m using the 'f' option to override the read-only status of the
destination folder. A status of 1 and an empty message and messageID confirm the copy
was successful.

[status,message,messageId] = movefile('myfile1.m','restricted','f');
status

status = logical
 1

message

message =

 0x0 empty char array

messageId

 movefile

1-9535

messageId =

 0x0 empty char array

Input Arguments
source — File or folder to copy
character vector | string scalar

File or folder to copy, specified as a character vector or string scalar. source can be an
absolute or relative path. To copy multiple files or folders, use wildcards (*).

Note If source is a string, enclose all the inputs in parentheses. For example,
movefile("myfile.m","newfolder").

destination — File or folder destination
character vector | string scalar

File or folder destination for the copy made, specified as a character vector or string
scalar. destination can be an absolute or relative path, but cannot include wildcards
(*).

Note If destination is a string, enclose all the inputs in parentheses. For example,
movefile("myfile.m","newfolder").

Output Arguments
status — Move status
0 | 1

Move status, indicating if the attempt to move the file or folder is successful, returned as
0 or 1. If the attempt is successful, the value of status is 1. Otherwise, the value is 0.
Data Types: logical

msg — Error message
character vector

1 Alphabetical List

1-9536

Error message, returned as a character vector. If an error or warning occurs, msg
contains the message text of the error or warning. Otherwise, msg is empty, ''.

msgID — Error message identifier
character vector

Error message identifier, returned as a character vector. If an error or warning occurs,
msgID contains the message identifier of the error or warning. Otherwise, msgID is
empty, ''.

See Also
cd | copyfile | delete | dir | mkdir | rmdir

Topics
“Manage Files and Folders”
“Specify File Names”

Introduced before R2006a

 movefile

1-9537

movegui
Move figure to specified location on screen

Syntax
movegui(f,position)
movegui(position)
movegui(f)
movegui

Description
movegui(f,position) moves the figure f to the specified screen location. The figure
can be one created with either the figure or uifigure function. The position can be
specified as a two-element vector or as a predefined position name.

movegui(position) moves the current figure or the callback figure to the specified
position. To determine the current figure or the callback figure use gcf or gcbf,
respectively. Note that gcf and gcbf return figures created with the figure function
only. If one does not exist, MATLAB creates one using figure and moves it to the
specified position.

movegui(f) moves the figure to the closest position that puts it entirely on screen.

movegui moves the current figure (gcf) or the callback figure (gcbf) to the closest
position that puts it entirely on screen.

Examples

Move Figure with Position Vector

Create a figure and move it so that the bottom left corner is 300 pixels from the left side
of the screen and 600 pixels from the bottom.

1 Alphabetical List

1-9538

fig = uifigure;
movegui(fig,[300 600]);

Move Figure with Position Name

Create a figure and move it to the bottom center of the screen.

f = figure;
movegui(f,'south');

Move Current Figure

f1 = figure;
f2 = figure;
movegui('east');

f2 moves because it is the current figure.

Move Off-Screen Figure on Screen

Create a figure that is positioned far outside the upper rightmost corner of the screen.
Then, move it onscreen.

f = figure('Position',[10000 10000 400 300]);
movegui(f);

The figure moves to the top right corner of the screen because that is the position that is
closest to its last location.

Input Arguments
f — Figure
Figure object

Figure, specified as a Figure object created with either the figure or uifigure
function. Use this argument to specify a figure you want to move.

 movegui

1-9539

position — Position
two-element numeric vector | character vector | string scalar

Position of the figure on the screen, specified as a two-element numeric vector, a
character vector, or a string scalar. A numeric vector specifies x- and y-values in pixels on
page 1-9541, and a text argument specifies one of the predefined position names.
Example: movegui(f,[150 -50])
Example: movegui('west')

To indicate the offset of the figure from the edges of the screen in units of pixels, specify a
two-element numeric vector, [x y]. The edge of the screen that the offset is measured
from depends on the sign of the vector element.

Position Vector
Element

Value Range Description

x x >= 0 Offset of left side from left edge of
screen

x < 0 Offset of right side from right edge of
screen

y y >= 0 Offset of bottom from bottom edge of
screen

y < 0 Offset of top from top edge of screen

You can also specify position as one of these position names.

Position Name Screen Location
'north' Top center
'south' Bottom center
'east' Right center
'west' Left center
'northeast' Top right corner
'northwest' Top left corner
'southeast' Bottom right corner
'southwest' Bottom left corner

1 Alphabetical List

1-9540

Position Name Screen Location
'center' Center
'onscreen' Location nearest to the current location

that is entirely on screen

Definitions

Pixels
Distances in pixels are independent of your system resolution on Windows and Macintosh
systems:

• On Windows systems, MATLAB defines a pixel as 1/96th of an inch.
• On Macintosh systems, MATLAB defines a pixel as 1/72nd of an inch.

On Linux systems, your system resolution determines the size of a MATLAB pixel. For
more information, see “DPI-Aware Behavior in MATLAB”.

Algorithms

Use with Maximized Figures
Applying movegui to a maximized figure window moves the window towards the taskbar
and creates a gap on the opposite side of the screen about as wide as the task bar. The
window might shrink in size by a few pixels. If you use the onscreen option with a
maximized figure window, then movegui creates a gap on both the left and upper sides of
the screen so that the top left corner of the figure is visible.

See Also
guide | openfig

Introduced before R2006a

 movegui

1-9541

movevars
Move variables in table or timetable

Syntax
T2 = movevars(T1,vars,'Before',location)
T2 = movevars(T1,vars,'After',location)

Description
T2 = movevars(T1,vars,'Before',location) moves the table variables specified
by vars to the left of the variable specified by location. You can specify variables and
location by name, by position, or using logical indices.

T2 = movevars(T1,vars,'After',location) moves the variables to the right of the
table variable indicated by location (see diagram).

Examples

1 Alphabetical List

1-9542

Move Variable

Create a table and move variables one at a time. You can specify variables by name or by
position in the table.

Read data from a spreadsheet into a table. Display the first three rows.

T1 = readtable('outages.csv');
head(T1,3)

ans=3×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ ______________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

Move the variable that is named Region so that it is before the variable named Cause.

T2 = movevars(T1,'Region','Before','Cause');
head(T2,3)

ans=3×6 table
 OutageTime Loss Customers RestorationTime Region Cause
 ________________ ______ __________ ________________ ___________ ______________

 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'SouthWest' 'winter storm'
 2003-01-23 00:49 530.14 2.1204e+05 NaT 'SouthEast' 'winter storm'
 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'SouthEast' 'winter storm'

Move the fourth variable so that it is after the first variable.

T3 = movevars(T2,4,'After',1);
head(T3,3)

ans=3×6 table
 OutageTime RestorationTime Loss Customers Region Cause
 ________________ ________________ ______ __________ ___________ ______________

 2002-02-01 12:18 2002-02-07 16:50 458.98 1.8202e+06 'SouthWest' 'winter storm'
 2003-01-23 00:49 NaT 530.14 2.1204e+05 'SouthEast' 'winter storm'
 2003-02-07 21:15 2003-02-17 08:14 289.4 1.4294e+05 'SouthEast' 'winter storm'

 movevars

1-9543

Specify Multiple Variables

Move multiple table variables using the movevars function. You can specify variables by
name or by position.

Read data from a spreadsheet into a table.

T1 = readtable('outages.csv');
head(T1,3)

ans=3×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ ______________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

Move the variables named Loss, Customer, and Cause so that they are before the first
variable. Specify names using a cell array of character vectors.

T2 = movevars(T1,{'Loss','Customers','Cause'},'Before',1);
head(T2,3)

ans=3×6 table
 Loss Customers Cause Region OutageTime RestorationTime
 ______ __________ ______________ ___________ ________________ ________________

 458.98 1.8202e+06 'winter storm' 'SouthWest' 2002-02-01 12:18 2002-02-07 16:50
 530.14 2.1204e+05 'winter storm' 'SouthEast' 2003-01-23 00:49 NaT
 289.4 1.4294e+05 'winter storm' 'SouthEast' 2003-02-07 21:15 2003-02-17 08:14

Move the first four variables of T2 so that they are after RestorationTime.

T3 = movevars(T2,[1:4],'After','RestorationTime');
head(T3,3)

ans=3×6 table
 OutageTime RestorationTime Loss Customers Cause Region
 ________________ ________________ ______ __________ ______________ ___________

1 Alphabetical List

1-9544

 2002-02-01 12:18 2002-02-07 16:50 458.98 1.8202e+06 'winter storm' 'SouthWest'
 2003-01-23 00:49 NaT 530.14 2.1204e+05 'winter storm' 'SouthEast'
 2003-02-07 21:15 2003-02-17 08:14 289.4 1.4294e+05 'winter storm' 'SouthEast'

Input Arguments
T1 — Input table
table | timetable

Input table, specified as a table or timetable.

vars — Variables in input table
character vector | cell array of character vectors | string array | numeric array | logical
array

Variables in the input table, specified as a character vector, cell array of character
vectors, string array, numeric array, or logical array.

location — Location to insert moved variables
character vector | string scalar | integer | logical array

Location to insert moved variables, specified as a character vector, string scalar, integer,
or logical array.

• If location is a character vector or string scalar, then it is the name of a variable in
the input table T1.

• If location is the integer n, then it specifies the nth variable in T1.
• If location is a logical array, whose nth element is 1 (true), then it specifies the nth

variable in T1. All other elements of location must be 0 (false).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

 movevars

1-9545

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
addvars | mergevars | removevars | splitvars

Topics
“Add, Delete, and Rearrange Table Variables”
“Add and Delete Table Rows”
“Access Data in a Table”
“Modify Units, Descriptions, and Table Variable Names”
“Clean Messy and Missing Data in Tables”

Introduced in R2018a

1 Alphabetical List

1-9546

movie
Play recorded movie frames

Syntax
movie(M)
movie(M,n)
movie(M,n,fps)
movie(h,...)
movie(h,M,n,fps,loc)

Description
The movie function plays the movie defined by a matrix whose columns are movie frames
(usually produced by getframe).

movie(M) plays the movie in matrix M once, using the current axes as the default target.
If you want to play the movie in the figure instead of the axes, specify the figure handle
(or gcf) as the first argument: movie(figure_handle,...). M must be an array of
movie frames (usually from getframe).

movie(M,n) plays the movie n times. If n is negative, each cycle is shown forward then
backward. If n is a vector, the first element is the number of times to play the movie, and
the remaining elements make up a list of frames to play in the movie.

For example, if M has four frames then n = [10 4 4 2 1] plays the movie ten times,
and the movie consists of frame 4 followed by frame 4 again, followed by frame 2 and
finally frame 1.

movie(M,n,fps) plays the movie at fps frames per second. The default is 12 frames per
second. Computers that cannot achieve the specified speed play as fast as possible.

movie(h,...) plays the movie centered in the figure or axes identified by the handle h.
Specifying the figure or axes enables MATLAB to fit the movie to the available size.

movie(h,M,n,fps,loc) specifies loc, a four-element location vector, [x y 0 0],
where the lower left corner of the movie frame is anchored (only the first two elements in

 movie

1-9547

the vector are used). The location is relative to the lower left corner of the figure or axes
specified by handle h and in units of pixels, regardless of the object's Units property.

Examples

Record Frames and Play Movie

Use the getframe function in a loop to record frames of the peaks function vibrating.
Preallocate an array to store the movie frames.

figure
Z = peaks;
surf(Z)
axis tight manual
ax = gca;
ax.NextPlot = 'replaceChildren';

loops = 40;
F(loops) = struct('cdata',[],'colormap',[]);
for j = 1:loops
 X = sin(j*pi/10)*Z;
 surf(X,Z)
 drawnow
 F(j) = getframe;
end

1 Alphabetical List

1-9548

To play the movie two times, use movie(F,2).

Tips
The movie function uses a default figure size of 560-by-420 and does not resize figures to
fit movies with larger or smaller frames. To accommodate other frame sizes, you can
resize the figure to fit the movie.

movie only accepts 8-bit image frames; it does not accept 16-bit grayscale or 24–bit
truecolor image frames.

 movie

1-9549

Buffering the movie places all frames in memory. As a result, on Microsoft Windows and
perhaps other platforms, a long movie (on the order of several hundred frames) can
exhaust memory, depending on system resources. In such cases an error message is
issued:

??? Error using ==> movie
Could not create movie frame

You can abort a movie by typing Ctrl-C.

movie is not a built-in function. Therefore, you cannot call movie using the builtin
function.

Limitations with Renderer on Windows Systems
Setting the figure Renderer property to painters works around limitations of using
getframe with the OpenGL renderer on some Windows systems.

See Also
VideoReader | VideoWriter | frame2im | getframe | im2frame

Topics
“Record Animation for Playback”

Introduced before R2006a

1 Alphabetical List

1-9550

movmad
Moving median absolute deviation

Syntax
M = movmad(A,k)
M = movmad(A,[kb kf])
M = movmad(___ ,dim)
M = movmad(___ ,nanflag)
M = movmad(___ ,Name,Value)

Description
M = movmad(A,k) returns an array of local k-point median absolute deviations (MADs)
on page 1-9559, where each MAD is calculated over a sliding window of length k across
neighboring elements of A. M is the same size as A.

When k is odd, the window is centered about the element in the current position. When k
is even, the window is centered about the current and previous elements. The window
size is automatically truncated at the endpoints when there are not enough elements to
fill the window. When the window is truncated, the MAD is taken over only the elements
that fill the window.

• If A is a vector, then movmad operates along the length of the vector.
• If A is a multidimensional array, then movmad operates along the first array dimension

whose size does not equal 1.

M = movmad(A,[kb kf]) computes the MAD with a window of length kb+kf+1 that
includes the element in the current position, kb elements backward, and kf elements
forward.

M = movmad(___ ,dim) computes the MAD along dimension dim for any of the previous
syntaxes. For example, movmad(A,k,2) for a matrix A operates across the columns of A,
computing the k-element sliding MAD for each row.

M = movmad(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movmad(A,k,'includenan') includes all

 movmad

1-9551

NaN values in the calculation, which is the default. movmad(A,k,'omitnan') ignores
them and computes the MAD over fewer points.

M = movmad(___ ,Name,Value) specifies additional parameters for the moving MAD
using one or more name-value pair arguments. For example, if x is a vector of time
values, then movmad(A,k,'SamplePoints',x) computes the moving MAD of A relative
to the times in x.

Examples

Centered Moving MAD of Vector

Compute the three-point centered moving MAD of a row vector. When there are fewer
than three elements in the window at the endpoints, compute over the elements that are
available.

A = [1 2 4 -1 -2 -3 -1 3 2 1];
M = movmad(A,3)

M = 1×10

 0.5000 1.0000 2.0000 1.0000 1.0000 1.0000 2.0000 1.0000 1.0000 0.5000

Trailing Moving MAD of Vector

Compute the three-point trailing moving MAD of a row vector. When there are fewer than
three elements in the window at the endpoints, compute over the elements that are
available.

A = [1 2 1 -1 -2 -3 -1 3 4 1];
M = movmad(A,[2 0])

M = 1×10

 0 0.5000 0 1.0000 1.0000 1.0000 1.0000 2.0000 1.0000 1.0000

1 Alphabetical List

1-9552

Moving MAD of Matrix

Compute the 3-point centered moving MAD for each row of a matrix. The dimension
argument is 2, which slides the window across the columns of A. The window starts on the
first row, slides horizontally to the end of the row, then moves to the second row, and so
on.

A = [1 2 1; -1 -2 -3; -1 3 4]

A = 3×3

 1 2 1
 -1 -2 -3
 -1 3 4

M = movmad(A,3,2)

M = 3×3

 0.5000 0 0.5000
 0.5000 1.0000 0.5000
 2.0000 1.0000 0.5000

Moving MAD of Vector with NaN Elements

Compute the three-point centered moving MAD of a row vector containing two NaN
elements.

A = [2 1 NaN -1 -2 -3 NaN 3 4 1];
M = movmad(A,3)

M = 1×10

 0.5000 NaN NaN NaN 1.0000 NaN NaN NaN 1.0000 1.5000

Recalculate the moving MAD omitting the NaN values. When movmad discards NaN
elements, it computes over the remaining elements in the window.

 movmad

1-9553

M = movmad(A,3,'omitnan')

M = 1×10

 0.5000 0.5000 1.0000 0.5000 1.0000 0.5000 3.0000 0.5000 1.0000 1.5000

Sample Points for Moving MAD

Compute a 3-hour centered moving MAD of the data in A according to the time vector t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

M = movmad(A,k,'SamplePoints',t)

M = 1×6

 2.0000 2.0000 2.0000 1.0000 1.0000 0.5000

Return Only Full-Window MADs

Compute the three-point centered moving MAD of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the MADs computed from a full three-element window, discarding endpoint calculations.

A = [1 2 1 -1 -2 -3 -1 3 4 1];
M = movmad(A,3,'Endpoints','discard')

1 Alphabetical List

1-9554

M = 1×8

 0 1 1 1 1 2 1 1

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered MAD includes the element in the current position plus surrounding
neighbors. For example, a three-point MAD defined by a window of length three results in
the following calculation for a vector A:

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1

 movmad

1-9555

elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point MAD defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a matrix A.

• If dim = 1, then movmad(A,k,1) starts with the first column and slides vertically
over each row. The MAD is computed over k elements at a time. Then it moves to the
second column and repeats the computation. This process continues until all columns
are exhausted.

1 Alphabetical List

1-9556

• If dim = 2, then movmad(A,k,2) starts with the first row and slides horizontally
across each column, computing over k elements at a time. Then it moves to the second
row and repeats the computation. This process continues until all rows are exhausted.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing the MAD,
resulting in NaN output.

• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN
values, then movmad returns NaN.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 movmad

1-9557

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movmad(A,k,'Endpoints','fill')

Endpoints — Method to treat windows near endpoints
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat windows near endpoints, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.
'discard' Do not output any MAD values when the window does not

completely overlap with existing elements.
'fill' Replace nonexisting elements with NaN.
numeric or logical
scalar

Replace nonexisting elements with the specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing MADs
vector

Sample points for computing MADs, specified as the comma-separated pair consisting of
'SamplePoints' and a vector. The sample points represent the locations of the data in
A. Sample points do not need to be uniformly sampled. By default, the sample points
vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movmad(rand(1,10),3,'SamplePoints',t) has a window that represents
the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.

1 Alphabetical List

1-9558

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Definitions

Median Absolute Deviation
For a random variable vector A made up of N scalar observations, the median absolute
deviation (MAD) is defined as

MAD = median Ai−median A

for i = 1,2,...,N.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

 movmad

1-9559

See Also
median | movmean | movmedian | movstd | movvar

Introduced in R2017a

1 Alphabetical List

1-9560

movmax
Moving maximum

Syntax
M = movmax(A,k)
M = movmax(A,[kb kf])
M = movmax(___ ,dim)
M = movmax(___ ,nanflag)
M = movmax(___ ,Name,Value)

Description
M = movmax(A,k) returns an array of local k-point maximum values, where each
maximum is calculated over a sliding window of length k across neighboring elements of
A. When k is odd, the window is centered about the element in the current position. When
k is even, the window is centered about the current and previous elements. The window
size is automatically truncated at the endpoints when there are not enough elements to
fill the window. When the window is truncated, the maximum is taken over only the
elements that fill the window. M is the same size as A.

• If A is a vector, then movmax operates along the length of the vector.
• If A is a multidimensional array, then movmax operates along the first array dimension

whose size does not equal 1.

M = movmax(A,[kb kf]) computes the maximum with a window of length kb+kf+1
that includes the element in the current position, kb elements backward, and kf elements
forward.

M = movmax(___ ,dim) returns the array of moving maximums along dimension dim
for any of the previous syntaxes. For example, if A is a matrix, then movmax(A,k,2)
operates along the columns of A, computing the k-element sliding maximum for each row.

M = movmax(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movmax(A,k,'includenan') includes all

 movmax

1-9561

NaN values in the calculation while movmax(A,k,'omitnan') ignores them and
computes the maximum over fewer points.

M = movmax(___ ,Name,Value) specifies additional parameters for the moving
maximum using one or more name-value pair arguments. For example, if x is a vector of
time values, then movmax(A,k,'SamplePoints',x) computes the moving maximum
relative to the times in x.

Examples

Centered Moving Maximum of Vector

Compute the three-point centered moving maximum of a row vector. When there are
fewer than three elements in the window at the endpoints, take the maximum over the
elements that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmax(A,3)

M = 1×10

 8 8 8 6 -1 -1 3 4 5 5

Trailing Moving Maximum of Vector

Compute the three-point trailing moving maximum of a row vector. When there are fewer
than three elements in the window at the endpoints, movmax takes the maximum over the
number of elements that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmax(A,[2 0])

M = 1×10

 4 8 8 8 6 -1 -1 3 4 5

1 Alphabetical List

1-9562

Moving Maximum of Matrix

Compute the three-point centered moving maximum for each row of a matrix. The window
starts on the first row, slides horizontally to the end of the row, then moves to the second
row, and so on. The dimension argument is two, which slides the window across the
columns of A.

A = [4 8 6; -1 -2 -3; -1 3 4]

A = 3×3

 4 8 6
 -1 -2 -3
 -1 3 4

M = movmax(A,3,2)

M = 3×3

 8 8 8
 -1 -1 -2
 3 4 4

Moving Maximum of Vector with NaN Elements

Compute the three-point centered moving maximum of a row vector containing two NaN
elements.

A = [4 8 NaN -1 -2 -3 NaN 3 4 5];
M = movmax(A,3)

M = 1×10

 8 8 8 -1 -1 -2 3 4 5 5

Recalculate the maximum, but include the NaN values. When taking the maximum over a
group of elements containing at least one NaN value, movmax returns NaN.

 movmax

1-9563

M = movmax(A,3,'includenan')

M = 1×10

 8 NaN NaN NaN -1 NaN NaN NaN 5 5

Sample Points for Moving Maximum

Compute a 3-hour centered moving maximum of the data in A according to the time
vector t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

M = movmax(A,k,'SamplePoints',t)

M = 1×6

 8 8 8 6 -1 -2

Return Only Full-Window Maximums

Compute the three-point centered moving maximum of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the maximums computed from a full three-element window, discarding endpoint
calculations.

1 Alphabetical List

1-9564

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmax(A,3,'Endpoints','discard')

M = 1×8

 8 8 6 -1 -1 3 4 5

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered maximum includes the element in the current position plus
surrounding neighbors. For example, a three-point maximum defined by a window of
length three results in the following calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

 movmax

1-9565

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1
elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point maximum defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension that movmax operates along, that is, the direction
in which the specified window slides.

Consider a two-dimensional input array, A.

• If dim = 1, then movmax(A,k,1) starts with the first column and slides vertically
over each row to compute. The maximum is computed over k elements at a time. Then
it moves to the second column and repeats the computation. This process continues
until all columns are exhausted.

1 Alphabetical List

1-9566

• If dim = 2, then movmax(A,k,2) starts with the first row and slides horizontally
across each column. The maximum is computed over k elements at a time. Then it
moves to the second row and repeats the computation. This process continues until all
rows are exhausted.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of these values:

• 'omitnan' — Ignore all NaN values in the input. If a window includes only NaN
values, then movmax returns NaN.

• 'includenan' — Include NaN values from the input when computing the maximum,
resulting in the output NaN.

 movmax

1-9567

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movmax(A,k,'Endpoints','fill')

Endpoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.
'discard' Do not output any maximum values when the window does not

completely overlap with existing elements.
'fill' Substitute nonexisting elements with -Inf.
numeric or logical
scalar

Substitute nonexisting elements with a specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing maximums
vector

Sample points for computing maximums, specified as the comma-separated pair
consisting of 'SamplePoints' and a vector. The sample points represent the location of
the data in A. Sample points do not need to be uniformly sampled. By default, the sample
points vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movmax(rand(1,10),3,'SamplePoints',t) has a window that represents
the time interval between t(i)-1.5 and t(i)+1.5.

1 Alphabetical List

1-9568

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

See Also
cummax | max | movmin | movsum

Introduced in R2016a

 movmax

1-9569

movmean
Moving mean

Syntax
M = movmean(A,k)
M = movmean(A,[kb kf])
M = movmean(___ ,dim)
M = movmean(___ ,nanflag)
M = movmean(___ ,Name,Value)

Description
M = movmean(A,k) returns an array of local k-point mean on page 1-9578 values,
where each mean is calculated over a sliding window of length k across neighboring
elements of A. When k is odd, the window is centered about the element in the current
position. When k is even, the window is centered about the current and previous
elements. The window size is automatically truncated at the endpoints when there are not
enough elements to fill the window. When the window is truncated, the average is taken
over only the elements that fill the window. M is the same size as A.

• If A is a vector, then movmean operates along the length of the vector.
• If A is a multidimensional array, then movmean operates along the first array

dimension whose size does not equal 1.

M = movmean(A,[kb kf]) computes the mean with a window of length kb+kf+1 that
includes the element in the current position, kb elements backward, and kf elements
forward.

M = movmean(___ ,dim) returns the array of moving averages along dimension dim for
any of the previous syntaxes. For example, if A is a matrix, then movmean(A,k,2)
operates along the columns of A, computing the k-element sliding mean for each row.

M = movmean(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movmean(A,k,'includenan') includes all

1 Alphabetical List

1-9570

NaN values in the calculation while movmean(A,k,'omitnan') ignores them and
computes the mean over fewer points.

M = movmean(___ ,Name,Value) specifies additional parameters for the moving
average using one or more name-value pair arguments. For example, if x is a vector of
time values, then movmean(A,k,'SamplePoints',x) computes the moving average
relative to the times in x.

Examples

Centered Moving Average of Vector

Compute the three-point centered moving average of a row vector. When there are fewer
than three elements in the window at the endpoints, take the average over the elements
that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmean(A,3)

M = 1×10

 6.0000 6.0000 4.3333 1.0000 -2.0000 -2.0000 -0.3333 2.0000 4.0000 4.5000

Trailing Moving Average of Vector

Compute the three-point trailing moving average of a row vector. When there are fewer
than three elements in the window at the endpoints, take the average over the elements
that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmean(A,[2 0])

M = 1×10

 4.0000 6.0000 6.0000 4.3333 1.0000 -2.0000 -2.0000 -0.3333 2.0000 4.0000

 movmean

1-9571

Moving Average of Matrix

Compute the three-point centered moving average for each row of a matrix. The window
starts on the first row, slides horizontally to the end of the row, then moves to the second
row, and so on. The dimension argument is two, which slides the window across the
columns of A.

A = [4 8 6; -1 -2 -3; -1 3 4]

A = 3×3

 4 8 6
 -1 -2 -3
 -1 3 4

M = movmean(A,3,2)

M = 3×3

 6.0000 6.0000 7.0000
 -1.5000 -2.0000 -2.5000
 1.0000 2.0000 3.5000

Moving Average of Vector with NaN Elements

Compute the three-point centered moving average of a row vector containing two NaN
elements.

A = [4 8 NaN -1 -2 -3 NaN 3 4 5];
M = movmean(A,3)

M = 1×10

 6.0000 NaN NaN NaN -2.0000 NaN NaN NaN 4.0000 4.5000

Recalculate the average, but omit the NaN values. When movmean discards NaN elements,
it takes the average over the remaining elements in the window.

1 Alphabetical List

1-9572

M = movmean(A,3,'omitnan')

M = 1×10

 6.0000 6.0000 3.5000 -1.5000 -2.0000 -2.5000 0 3.5000 4.0000 4.5000

Sample Points for Moving Average

Compute a 3-hour centered moving average of the data in A according to the time vector
t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

M = movmean(A,k,'SamplePoints',t)

M = 1×6

 6.0000 6.0000 4.3333 1.0000 -2.0000 -2.5000

Return Only Full-Window Averages

Compute the three-point centered moving average of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the averages computed from a full three-element window, discarding endpoint
calculations.

 movmean

1-9573

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmean(A,3,'Endpoints','discard')

M = 1×8

 6.0000 4.3333 1.0000 -2.0000 -2.0000 -0.3333 2.0000 4.0000

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered average includes the element in the current position plus
surrounding neighbors. For example, a three-point average defined by a window of length
three results in the following calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

1 Alphabetical List

1-9574

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1
elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point average defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension that movmean operates along, that is, the
direction in which the specified window slides.

Consider a two-dimensional input array, A.

• If dim = 1, then movmean(A,k,1) starts with the first column and slides vertically
over each row. The mean is computed over k elements at a time. Then it moves to the
second column and repeats the computation. This process continues until all columns
are exhausted.

 movmean

1-9575

• If dim = 2, then movmean(A,k,2) starts with the first row and slides horizontally
across each column. The mean is computed over k elements at a time. Then it moves
to the second row and repeats the computation. This process continues until all rows
are exhausted.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing the mean,
resulting in NaN output.

• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN
values, then movmean returns NaN.

1 Alphabetical List

1-9576

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movmean(A,k,'Endpoints','fill')

Endpoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.
'discard' Do not output any averages when the window does not

completely overlap with existing elements.
'fill' Substitute nonexisting elements with NaN.
numeric or logical
scalar

Substitute nonexisting elements with a specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing averages
vector

Sample points for computing averages, specified as the comma-separated pair consisting
of 'SamplePoints' and a vector. The sample points represent the location of the data in
A. Sample points do not need to be uniformly sampled. By default, the sample points
vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector times corresponding to the input
data, then movmean(rand(1,10),3,'SamplePoints',t) has a window that
represents the time interval between t(i)-1.5 and t(i)+1.5.

 movmean

1-9577

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Definitions
Mean
For a random variable vector A made up of N scalar observations, the mean is defined as

μ = 1
N ∑i = 1

N
Ai .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

1 Alphabetical List

1-9578

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'SamplePoints' name-value pair is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
mean | movmad | movmedian | movstd | movsum | movvar | smoothdata

Topics
“Data Smoothing and Outlier Detection”

Introduced in R2016a

 movmean

1-9579

movmedian
Moving median

Syntax
M = movmedian(A,k)
M = movmedian(A,[kb kf])
M = movmedian(___ ,dim)
M = movmedian(___ ,nanflag)
M = movmedian(___ ,Name,Value)

Description
M = movmedian(A,k) returns an array of local k-point median values, where each
median is calculated over a sliding window of length k across neighboring elements of A.
When k is odd, the window is centered about the element in the current position. When k
is even, the window is centered about the current and previous elements. The window
size is automatically truncated at the endpoints when there are not enough elements to
fill the window. When the window is truncated, the median is taken over only the
elements that fill the window. M is the same size as A.

• If A is a vector, then movmedian operates along the length of the vector.
• If A is a multidimensional array, then movmedian operates along the first array

dimension whose size does not equal 1.

M = movmedian(A,[kb kf]) computes the median with a window of length kb+kf+1
that includes the element in the current position, kb elements backward, and kf elements
forward.

M = movmedian(___ ,dim) returns the array of moving medians along dimension dim
for any of the previous syntaxes. For example, if A is a matrix, then movmedian(A,k,2)
operates along the columns of A, computing the k-element sliding median for each row.

M = movmedian(___ ,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. movmedian(A,k,'includenan')

1 Alphabetical List

1-9580

includes all NaN values in the calculation while movmedian(A,k,'omitnan') ignores
them and computes the median over fewer points.

M = movmedian(___ ,Name,Value) specifies additional parameters for the moving
median using one or more name-value pair arguments. For example, if x is a vector of
time values, then movmedian(A,k,'SamplePoints',x) computes the moving median
relative to the times in x.

Examples

Centered Moving Median of Vector

Compute the three-point centered moving median of a row vector. When there are fewer
than three elements in the window at the endpoints, take the average over the elements
that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmedian(A,3)

M = 1×10

 6.0000 6.0000 6.0000 -1.0000 -2.0000 -2.0000 -1.0000 3.0000 4.0000 4.5000

Trailing Moving Median of Vector

Compute the three-point trailing moving median of a row vector. When there are fewer
than three elements in the window at the endpoints, take the average over the elements
that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmedian(A,[2 0])

M = 1×10

 4 6 6 6 -1 -2 -2 -1 3 4

 movmedian

1-9581

Moving Median of Matrix

Compute the three-point centered moving median for each row of a matrix. The window
starts on the first row, slides horizontally to the end of the row, then moves to the second
row, and so on. The dimension argument is two, which slides the window across the
columns of A.

A = [4 8 6; -1 -2 -3; -1 3 4]

A = 3×3

 4 8 6
 -1 -2 -3
 -1 3 4

M = movmedian(A,3,2)

M = 3×3

 6.0000 6.0000 7.0000
 -1.5000 -2.0000 -2.5000
 1.0000 3.0000 3.5000

Moving Median of Vector with NaN Elements

Compute the three-point centered moving median of a row vector containing NaN
elements.

A = [4 8 NaN -1 -2 -3 NaN 3 4 5];
M = movmedian(A,3)

M = 1×10

 6.0000 NaN NaN NaN -2.0000 NaN NaN NaN 4.0000 4.5000

Recalculate the median, but omit the NaN values. When movmedian discards NaN
elements, it takes the median over the remaining elements in the window.

1 Alphabetical List

1-9582

M = movmedian(A,3,'omitnan')

M = 1×10

 6.0000 6.0000 3.5000 -1.5000 -2.0000 -2.5000 0 3.5000 4.0000 4.5000

Sample Points for Moving Median

Compute a 3-hour centered moving median of the data in A according to the time vector
t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

M = movmedian(A,k,'SamplePoints',t)

M = 1×6

 6.0000 6.0000 6.0000 -1.0000 -2.0000 -2.5000

Return Only Full-Window Medians

Compute the three-point centered moving median of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the medians computed from a full three-element window, discarding endpoint
calculations.

 movmedian

1-9583

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmedian(A,3,'Endpoints','discard')

M = 1×8

 6 6 -1 -2 -2 -1 3 4

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered median includes the element in the current position plus surrounding
neighbors. For example, a three-point median defined by a window of length three results
in the following calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

1 Alphabetical List

1-9584

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1
elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point median defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension that movmedian operates along, that is, the
direction in which the specified window slides.

Consider a two-dimensional input array, A.

• If dim = 1, then movmedian(A,k,1) starts with the first column and slides vertically
over each row. The median is computed over k elements at a time. Then it moves to
the second column and repeats the computation. This process continues until all
columns are exhausted.

 movmedian

1-9585

• If dim = 2, then movmedian(A,k,2) starts with the first row and slides horizontally
across each column. The median is computed over k elements at a time. Then it moves
to the second row and repeats the computation. This process continues until all rows
are exhausted.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing the median,
resulting in the output NaN.

• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN
values, then movmedian returns NaN.

1 Alphabetical List

1-9586

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movmedian(A,k,'Endpoints','fill')

Endpoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.
'discard' Do not output any medians when the window does not

completely overlap with existing elements.
'fill' Substitute nonexisting elements with NaN.
numeric or logical
scalar

Substitute nonexisting elements with a specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing medians
vector

Sample points for computing medians, specified as the comma-separated pair consisting
of 'SamplePoints' and a vector. The sample points represent the location of the data in
A. Sample points do not need to be uniformly sampled. By default, the sample points
vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movmedian(rand(1,10),3,'SamplePoints',t) has a window that
represents the time interval between t(i)-1.5 and t(i)+1.5.

 movmedian

1-9587

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

See Also
median | movmad | movmean | movstd | movvar

Topics
“Data Smoothing and Outlier Detection”

Introduced in R2016a

1 Alphabetical List

1-9588

movmin
Moving minimum

Syntax
M = movmin(A,k)
M = movmin(A,[kb kf])
M = movmin(___ ,dim)
M = movmin(___ ,nanflag)
M = movmin(___ ,Name,Value)

Description
M = movmin(A,k) returns an array of local k-point centered minimum values, where
each minimum is calculated over a sliding window of length k across neighboring
elements of A. When k is odd, the window is centered about the element in the current
position. When k is even, the window is centered about the current and previous
elements. The window size is automatically truncated at the endpoints when there are not
enough elements to fill the window. When the window is truncated, the minimum is taken
over only the elements that fill the window. M is the same size as A.

• If A is a vector, then movmin operates along the length of the vector.
• If A is a multidimensional array, then movmin operates along the first array dimension

whose size does not equal 1.

M = movmin(A,[kb kf]) computes the minimum with a window of length kb+kf+1
that includes the element in the current position, kb elements backward, and kf elements
forward.

M = movmin(___ ,dim) returns the array of sliding minimums along dimension dim for
any of the previous syntaxes. For example, if A is a matrix, then movmin(A,k,2) operates
along the columns of A, computing the k-element sliding minimum for each row.

M = movmin(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movmin(A,k,'includenan') includes all

 movmin

1-9589

NaN values in the calculation while movmin(A,k,'omitnan') ignores them and
computes the minimum over fewer points.

M = movmin(___ ,Name,Value) specifies additional parameters for the minimum using
one or more name-value pair arguments. For example, if x is a vector of time values, then
movmin(A,k,'SamplePoints',x) computes the moving minimum relative to the times
in x.

Examples

Centered Moving Minimum of Vector

Compute the three-point centered moving minimum of a row vector. When there are
fewer than three elements in the window at the endpoints, take the minimum over the
elements that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmin(A,3)

M = 1×10

 4 4 -1 -2 -3 -3 -3 -1 3 4

Trailing Moving Minimum of Vector

Compute the three-point trailing moving minimum of a row vector. When there are fewer
than three elements in the window at the endpoints, take the minimum over the elements
that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmin(A,[2 0])

M = 1×10

 4 4 4 -1 -2 -3 -3 -3 -1 3

1 Alphabetical List

1-9590

Moving Minimum of Matrix

Compute the three-point centered moving minimum for each row of a matrix. The window
starts on the first row, slides horizontally to the end of the row, then moves to the second
row, and so on. The dimension argument is two, which slides the window across the
columns of A.

A = [4 8 6; -1 -2 -3; -1 3 4]

A = 3×3

 4 8 6
 -1 -2 -3
 -1 3 4

M = movmin(A,3,2)

M = 3×3

 4 4 6
 -2 -3 -3
 -1 -1 3

Moving Minimum of Vector with NaN Elements

Compute the three-point centered moving minimum of a row vector containing two NaN
elements.

A = [4 8 NaN -1 -2 -3 NaN 3 4 5];
M = movmin(A,3)

M = 1×10

 4 4 -1 -2 -3 -3 -3 3 3 4

Recalculate the minimum, but include the NaN values. When taking the minimum over a
group of elements containing at least one NaN value, movmin returns NaN.

 movmin

1-9591

M = movmin(A,3,'includenan')

M = 1×10

 4 NaN NaN NaN -3 NaN NaN NaN 3 4

Sample Points for Moving Minimum

Compute a 3-hour centered moving minimum of the data in A according to the time vector
t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

M = movmin(A,k,'SamplePoints',t)

M = 1×6

 4 4 -1 -2 -3 -3

Return Only Full-Window Minimums

Compute the three-point centered moving minimum of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the minimums computed from a full three-element window, discarding endpoint
calculations.

1 Alphabetical List

1-9592

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movmin(A,3,'Endpoints','discard')

M = 1×8

 4 -1 -2 -3 -3 -3 -1 3

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered minimum includes the element in the current position plus
surrounding neighbors. For example, a three-point minimum defined by a window of
length three results in the following calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

 movmin

1-9593

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1
elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point minimum defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension that movmin operates along, that is, the direction
in which the specified window slides.

Consider a two-dimensional input array, A.

• If dim = 1, then movmin(A,k,1) starts with the first column and slides vertically
over each row. The minimum is computed over k elements at a time. Then it moves to
the second column and repeats the computation. This process continues until all
columns are exhausted.

1 Alphabetical List

1-9594

• If dim = 2, then movmin(A,k,2) starts with the first row and slides horizontally
across each column. The minimum is computed over k elements at a time. Then it
moves to the second row and repeats the computation. This process continues until all
rows are exhausted.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of these values:

• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN
values, then movmin returns NaN.

• 'includenan' — Include NaN values from the input when computing the minimum,
resulting in the output NaN.

 movmin

1-9595

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movmin(A,k,'Endpoints','fill')

Endpoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.
'discard' Do not output any minimums when the window does not

completely overlap with existing elements.
'fill' Substitute nonexisting elements with -Inf.
numeric or logical
scalar

Substitute nonexisting elements with a specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing minimums
vector

Sample points for computing minimums, specified as the comma-separated pair
consisting of 'SamplePoints' and a vector. The sample points represent the location of
the data in A. Sample points do not need to be uniformly sampled. By default, the sample
points vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movmin(rand(1,10),3,'SamplePoints',t) has a window that represents
the time interval between t(i)-1.5 and t(i)+1.5.

1 Alphabetical List

1-9596

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

See Also
cummin | min | movmax | movsum

Introduced in R2016a

 movmin

1-9597

movprod
Moving product

Syntax
M = movprod(A,k)
M = movprod(A,[kb kf])
M = movprod(___ ,dim)
M = movprod(___ ,nanflag)
M = movprod(___ ,Name,Value)

Description
M = movprod(A,k) returns an array of local k-point products, where each product is
calculated over a sliding window of length k across neighboring elements of A. M is the
same size as A.

When k is odd, the window is centered about the element in the current position. When k
is even, the window is centered about the current and previous elements. The window
size is automatically truncated at the endpoints when there are not enough elements to
fill the window. When the window is truncated, the product is taken over only the
elements that fill the window.

• If A is a vector, then movprod operates along the length of the vector.
• If A is a multidimensional array, then movprod operates along the first array

dimension whose size does not equal 1.

M = movprod(A,[kb kf]) computes the product with a window of length kb+kf+1
that includes the element in the current position, kb elements backward, and kf elements
forward.

M = movprod(___ ,dim) computes the product along dimension dim for any of the
previous syntaxes. For example, if A is a matrix, then movprod(A,k,2) operates across
the columns of A, computing the k-element sliding product for each row.

M = movprod(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movprod(A,k,'includenan') includes all

1 Alphabetical List

1-9598

NaN values in the calculation, which is the default. movprod(A,k,'omitnan') ignores
them and computes the product over fewer points.

M = movprod(___ ,Name,Value) specifies additional parameters for the moving
product using one or more name-value pair arguments. For example, if x is a vector of
time values, then movprod(A,k,'SamplePoints',x) computes the moving product
relative to the times in x.

Examples

Centered Moving Product of Vector

Compute the three-point centered moving product of a row vector. When there are fewer
than three elements in the window at the endpoints, take the product over the elements
that are available.

A = [1 2 4 -1 -2 -3 -1 3 2 1];
M = movprod(A,3)

M = 1×10

 2 8 -8 8 -6 -6 9 -6 6 2

Trailing Moving Product of Vector

Compute the three-point trailing moving product of a row vector. When there are fewer
than three elements in the window at the endpoints, take the product over the elements
that are available.

A = [1 2 1 -1 -2 -3 -1 3 4 1];
M = movprod(A,[2 0])

M = 1×10

 1 2 2 -2 2 -6 -6 9 -12 12

 movprod

1-9599

Moving Product of Matrix

Compute the 3-point centered moving product for each row of a matrix. The dimension
argument is 2, which slides the window across the columns of A. The window starts on the
first row, slides horizontally to the end of the row, then moves to the second row, and so
on.

A = [1 2 1; -1 -2 -3; -1 3 4]

A = 3×3

 1 2 1
 -1 -2 -3
 -1 3 4

M = movprod(A,3,2)

M = 3×3

 2 2 2
 2 -6 6
 -3 -12 12

Moving Product of Vector with NaN Elements

Compute the three-point centered moving product of a row vector containing two NaN
elements.

A = [2 1 NaN -1 -2 -3 NaN 3 4 1];
M = movprod(A,3)

M = 1×10

 2 NaN NaN NaN -6 NaN NaN NaN 12 4

Recalculate the product, but omit the NaN values. When movprod discards NaN elements,
it takes the product over the remaining elements in the window.

1 Alphabetical List

1-9600

M = movprod(A,3,'omitnan')

M = 1×10

 2 2 -1 2 -6 6 -9 12 12 4

Sample Points for Moving Product

Compute a 3-hour centered moving product of the data in A according to the time vector
t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

M = movprod(A,k,'SamplePoints',t)

M = 1×6

 32 192 -48 12 -6 6

Return Only Full-Window Products

Compute the three-point centered moving product of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the products computed from a full three-element window, discarding endpoint
calculations.

 movprod

1-9601

A = [1 2 1 -1 -2 -3 -1 3 4 1];
M = movprod(A,3,'Endpoints','discard')

M = 1×8

 2 -2 2 -6 -6 9 -12 12

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered product includes the element in the current position plus surrounding
neighbors. For example, a three-point product defined by a window of length three results
in the following calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

1 Alphabetical List

1-9602

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1
elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point MAD defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a matrix A.

• If dim = 1, then movprod(A,k,1) starts with the first column and slides vertically
over each row. The product is computed over k elements at a time. Then it moves to
the second column and repeats the computation. This process continues until all
columns are exhausted.

 movprod

1-9603

• If dim = 2, then movprod(A,k,2) starts with the first row and slides horizontally
across each column. The product is computed over k elements at a time. Then it moves
to the second row and repeats the computation. This process continues until all rows
are exhausted.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing the product,
resulting in NaN output.

• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN
values, then movprod returns 1.

1 Alphabetical List

1-9604

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movprod(A,k,'Endpoints','fill')

Endpoints — Method to treat windows near endpoints
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat windows near endpoints, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.
'discard' Do not output any products when the window does not

completely overlap with existing elements.
'fill' Replace nonexisting elements with NaN.
numeric or logical
scalar

Replace nonexisting elements with the specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing products
vector

Sample points for computing products, specified as the comma-separated pair consisting
of 'SamplePoints' and a vector. The sample points represent the locations of the data
in A. Sample points do not need to be uniformly sampled. By default, the sample points
vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movprod(rand(1,10),3,'SamplePoints',t) has a window that
represents the time interval between t(i)-1.5 and t(i)+1.5.

 movprod

1-9605

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

See Also
cumprod | movsum | prod

Introduced in R2017a

1 Alphabetical List

1-9606

movstd
Moving standard deviation

Syntax
M = movstd(A,k)
M = movstd(A,[kb kf])
M = movstd(___ ,w)
M = movstd(___ ,w,dim)
M = movstd(___ ,nanflag)
M = movstd(___ ,Name,Value)

Description
M = movstd(A,k) returns an array of local k-point standard deviation on page 1-9615
values. Each standard deviation is calculated over a sliding window of length k across
neighboring elements of A. When k is odd, the window is centered about the element in
the current position. When k is even, the window is centered about the current and
previous elements. The window size is automatically truncated at the endpoints when
there are not enough elements to fill the window. When the window is truncated, the
standard deviation is taken over only the elements that fill the window. M is the same size
as A.

• If A is a vector, then movstd operates along the length of the vector.
• If A is a multidimensional array, then movstd operates along the first array dimension

whose size does not equal 1.

M = movstd(A,[kb kf]) computes the standard deviation with a window of length kb
+kf+1. The calculation includes the element in the current position, kb elements
backward, and kf elements forward.

M = movstd(___ ,w) specifies a normalization factor for any of the previous syntaxes.
When w = 0 (default), M is normalized by k-1 for window length k. When w = 1, M is
normalized by k.

 movstd

1-9607

M = movstd(___ ,w,dim) returns the array of sliding standard deviations along
dimension dim for any of the previous syntaxes. Always specify the weight w from the
previous syntax when specifying dim. For example, movstd(A,k,0,2) operates along
the columns of a matrix A, computing the k-element sliding standard deviation for each
row. The normalization factor is the default, k-1.

M = movstd(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movstd(A,k,'includenan') includes all
NaN values in the calculation while movstd(A,k,'omitnan') ignores them and
computes the standard deviation over fewer points.

M = movstd(___ ,Name,Value) specifies additional parameters for the standard
deviation using one or more name-value pair arguments. For example, if x is a time
vector, then movstd(A,k,'SamplePoints',x) computes the moving standard
deviation relative to the times in x.

Examples

Centered Moving Standard Deviation of Vector

Compute the three-point centered moving standard deviation of a row vector. When there
are fewer than three elements in the window at the endpoints, take the standard
deviation over the elements that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movstd(A,3)

M = 1×10

 2.8284 2.0000 4.7258 4.3589 1.0000 1.0000 3.0551 2.6458 1.0000 0.7071

Trailing Moving Standard Deviation of Vector

Compute the three-point trailing moving standard deviation of a row vector. When there
are fewer than three elements in the window at the endpoints, take the standard
deviation over the elements that are available.

1 Alphabetical List

1-9608

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movstd(A,[2 0])

M = 1×10

 0 2.8284 2.0000 4.7258 4.3589 1.0000 1.0000 3.0551 2.6458 1.0000

Specify Normalization for Moving Standard Deviation

Compute the three-point centered moving standard deviation of a row vector and
normalize each standard deviation by the number of elements in the window.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movstd(A,3,1)

M = 1×10

 2.0000 1.6330 3.8586 3.5590 0.8165 0.8165 2.4944 2.1602 0.8165 0.5000

Moving Standard Deviation of Matrix

Compute the three-point centered moving standard deviation for each row of a matrix.
The window starts on the first row, slides horizontally to the end of the row, then moves to
the second row, and so on. The dimension argument is two, which slides the window
across the columns of A. Always specify the normalization factor when specifying the
dimension.

A = [4 8 6; -1 -2 -3; -1 3 4];
M = movstd(A,3,0,2)

M = 3×3

 2.8284 2.0000 1.4142
 0.7071 1.0000 0.7071
 2.8284 2.6458 0.7071

 movstd

1-9609

Moving Standard Deviation of Vector with NaN Elements

Compute the three-point centered moving standard deviation of a row vector containing
two NaN elements.

A = [4 8 NaN -1 -2 -3 NaN 3 4 5];
M = movstd(A,3)

M = 1×10

 2.8284 NaN NaN NaN 1.0000 NaN NaN NaN 1.0000 0.7071

Recalculate the standard deviation, but omit the NaN values. When movstd discards NaN
elements, it takes the standard deviation over the remaining elements in the window.

M = movstd(A,3,'omitnan')

M = 1×10

 2.8284 2.8284 6.3640 0.7071 1.0000 0.7071 4.2426 0.7071 1.0000 0.7071

Sample Points for Moving Standard Deviation

Compute a 3-hour centered moving standard deviation of the data in A according to the
time vector t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

1 Alphabetical List

1-9610

M = movstd(A,k,'SamplePoints',t)

M = 1×6

 2.8284 2.0000 4.7258 4.3589 1.0000 0.7071

Return Only Full-Window Standard Deviations

Compute the three-point centered moving standard deviation of a row vector, but discard
any calculation that uses fewer than three points from the output. In other words, return
only the standard deviations computed from a full three-element window, discarding
endpoint calculations.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movstd(A,3,'Endpoints','discard')

M = 1×8

 2.0000 4.7258 4.3589 1.0000 1.0000 3.0551 2.6458 1.0000

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered standard deviation includes the element in the current position plus
surrounding neighbors. For example, a three-point standard deviation defined by a
window of length three results in the following calculation for a vector A:

 movstd

1-9611

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1
elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point standard deviation defined by the directional window [2 1] results in the
following calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

w — Weight
0 (default) | 1

Weight, specified as one of these values:

1 Alphabetical List

1-9612

• 0 — Normalize by k-1, where k is the window length. If k=1, the weight is k.
• 1 — Normalize by k.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension that movstd operates along, that is, the direction
in which the specified window slides.

Consider a two-dimensional input array, A.

• If dim = 1, then movstd(A,k,0,1) starts with the first column and slides vertically
over each row. The standard deviation is taken over k elements at a time. Then it
moves to the second column and repeats the computation. This process continues until
all columns are exhausted. The argument 0 specifies the default weight, which is
required when specifying dim.

• If dim = 2, then movstd(A,k,0,2) starts with the first row and slides horizontally
across each column. The standard deviation is taken over k elements at a time. Then it
moves to the second row and repeats the computation. This process continues until all
rows are exhausted. The argument 0 specifies the default weight, which is required
when specifying dim.

 movstd

1-9613

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing the standard
deviation, resulting in the output NaN.

• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN
values, then movstd returns NaN.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movstd(A,k,'Endpoints','fill')

Endpoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.

1 Alphabetical List

1-9614

'Endpoints' Value Description
'discard' Do not output any standard deviations when the window does

not completely overlap with existing elements.
'fill' Substitute nonexisting elements with NaN.
numeric or logical
scalar

Substitute nonexisting elements with a specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing standard deviations
vector

Sample points for computing standard deviations, specified as the comma-separated pair
consisting of 'SamplePoints' and a vector. The sample points represent the location of
the data in A. Sample points do not need to be uniformly sampled. By default, the sample
points vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movstd(rand(1,10),3,'SamplePoints',t) has a window that represents
the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Definitions

Standard Deviation
For a random variable vector A made up of N scalar observations, the standard deviation
is defined as

 movstd

1-9615

S = 1
N − 1 ∑i = 1

N
Ai− μ 2,

where μ is the mean of A:

μ = 1
N ∑i = 1

N
Ai .

The standard deviation is the square root of the variance. Some definitions of standard
deviation use a normalization factor of N instead of N-1, which you can specify by setting
w to 1.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-9616

Usage notes and limitations:

• The 'SamplePoints' name-value pair is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
movmad | movmean | movmedian | movvar | std

Introduced in R2016a

 movstd

1-9617

movsum
Moving sum

Syntax
M = movsum(A,k)
M = movsum(A,[kb kf])
M = movsum(___ ,dim)
M = movsum(___ ,nanflag)
M = movsum(___ ,Name,Value)

Description
M = movsum(A,k) returns an array of local k-point sums, where each sum is calculated
over a sliding window of length k across neighboring elements of A. When k is odd, the
window is centered about the element in the current position. When k is even, the
window is centered about the current and previous elements. The window size is
automatically truncated at the endpoints when there are not enough elements to fill the
window. When the window is truncated, the sum is taken over only the elements that fill
the window. M is the same size as A.

• If A is a vector, then movsum operates along the length of the vector.
• If A is a multidimensional array, then movsum operates along the first array dimension

whose size does not equal 1.

M = movsum(A,[kb kf]) computes the sum with a window of length kb+kf+1 that
includes the element in the current position, kb elements backward, and kf elements
forward.

M = movsum(___ ,dim) returns the array of sliding sums along dimension dim for any
of the previous syntaxes. For example, if A is a matrix, then movsum(A,k,2) operates
along the columns of A, computing the k-element sliding sum for each row.

M = movsum(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movsum(A,k,'includenan') includes all

1 Alphabetical List

1-9618

NaN values in the calculation while movsum(A,k,'omitnan') ignores them and
computes the sum over fewer points.

M = movsum(___ ,Name,Value) specifies additional parameters for the sum using one
or more name-value pair arguments. For example, if x is a time vector, then
movsum(A,k,'SamplePoints',x) computes the moving sum of A relative to the times
in x.

Examples

Centered Moving Sum of Vector

Compute the three-point centered moving sum of a row vector. When there are fewer than
three elements in the window at the endpoints, take the sum over the elements that are
available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movsum(A,3)

M = 1×10

 12 18 13 3 -6 -6 -1 6 12 9

Trailing Moving Sum of Vector

Compute the three-point trailing moving sum of a row vector. When there are fewer than
three elements in the window at the endpoints, movsum takes the sum over the number of
elements that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movsum(A,[2 0])

M = 1×10

 4 12 18 13 3 -6 -6 -1 6 12

 movsum

1-9619

Moving Sum of Matrix

Compute the three-point centered moving sum for each row of a matrix. The window
starts on the first row, slides horizontally to the end of the row, then moves to the second
row, and so on. The dimension argument is two, which slides the window across the
columns of A.

A = [4 8 6; -1 -2 -3; -1 3 4]

A = 3×3

 4 8 6
 -1 -2 -3
 -1 3 4

M = movsum(A,3,2)

M = 3×3

 12 18 14
 -3 -6 -5
 2 6 7

Moving Sum of Vector with NaN Elements

Compute the three-point centered moving sum of a row vector containing two NaN
elements.

A = [4 8 NaN -1 -2 -3 NaN 3 4 5];
M = movsum(A,3)

M = 1×10

 12 NaN NaN NaN -6 NaN NaN NaN 12 9

Recalculate the sum, but omit the NaN values. When movsum discards NaN elements, it
takes the sum over the remaining elements in the window.

1 Alphabetical List

1-9620

M = movsum(A,3,'omitnan')

M = 1×10

 12 12 7 -3 -6 -5 0 7 12 9

Sample Points for Moving Sum

Compute a 3-hour centered moving sum of the data in A according to the time vector t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(16,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-0016 00:00:00 01-Jan-0016 01:00:00 01-Jan-0016 02:00:00

Columns 4 through 6

 01-Jan-0016 03:00:00 01-Jan-0016 04:00:00 01-Jan-0016 05:00:00

M = movsum(A,k,'SamplePoints',t)

M = 1×6

 12 18 13 3 -6 -5

Return Only Full-Window Sums

Compute the three-point centered moving sum of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the sums computed from a full three-element window, discarding endpoint calculations.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movsum(A,3,'Endpoints','discard')

 movsum

1-9621

M = 1×8

 18 13 3 -6 -6 -1 6 12

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered sum includes the element in the current position plus surrounding
neighbors. For example, a three-point sum defined by a window of length three results in
the following calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1

1 Alphabetical List

1-9622

elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point sum defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension that movsum operates along, that is, the direction
in which the specified window slides.

Consider a two-dimensional input array, A.

• If dim = 1, then movsum(A,k,1) starts with the first column and slides vertically
over each row. The sum is computed over k elements at a time. Then it moves to the
second column and repeats the computation. This process continues until all columns
are exhausted.

 movsum

1-9623

• If dim = 2, then movsum(A,k,2) starts with the first row and slides horizontally
across each column. The sum is computed over k elements at a time. Then it moves to
the second row and repeats the computation. This process continues until all rows are
exhausted.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values when computing the sum, resulting in NaN.
• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN

values, then movsum returns 0.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-9624

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movsum(A,k,'Endpoints','fill')

Endpoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.
'discard' Do not output any sums when the window does not completely

overlap with existing elements.
'fill' Substitute nonexisting elements with NaN.
numeric or logical
scalar

Substitute nonexisting elements with a specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing sums
vector

Sample points for computing sums, specified as the comma-separated pair consisting of
'SamplePoints' and a vector. The sample points represent the location of the data in A.
Sample points do not need to be uniformly sampled. By default, the sample points vector
is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movsum(rand(1,10),3,'SamplePoints',t) has a window that represents
the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.

 movsum

1-9625

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'SamplePoints' name-value pair is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-9626

See Also
cumsum | movmax | movmean | movmin | movprod | sum

Introduced in R2016a

 movsum

1-9627

movvar
Moving variance

Syntax
M = movvar(A,k)
M = movvar(A,[kb kf])
M = movvar(___ ,w)
M = movvar(___ ,w,dim)
M = movvar(___ ,nanflag)
M = movvar(___ ,Name,Value)

Description
M = movvar(A,k) returns an array of local k-point variance on page 1-9636 values,
where each variance is calculated over a sliding window of length k across neighboring
elements of A. When k is odd, the window is centered about the element in the current
position. When k is even, the window is centered about the current and previous
elements. The window size is automatically truncated at the endpoints when there are not
enough elements to fill the window. When the window is truncated, the variance is taken
over only the elements that fill the window. M is the same size as A.

• If A is a vector, then movvar operates along the length of the vector.
• If A is a multidimensional array, then movvar operates along the first array dimension

whose size does not equal 1.

M = movvar(A,[kb kf]) computes the variance with a window of length kb+kf+1 that
includes the element in the current position, kb elements backward, and kf elements
forward.

M = movvar(___ ,w) specifies a normalization factor for any of the previous syntaxes.
When w = 0 (default), M is normalized by k-1 for window length k. When w = 1, M is
normalized by k.

M = movvar(___ ,w,dim) returns the array of sliding variances along dimension dim
for any of the previous syntaxes. Always specify the weight w from the previous syntax

1 Alphabetical List

1-9628

when specifying dim. For example, if A is a matrix, then movvar(A,k,0,2) operates
along the columns of A, computing the k-element sliding variance for each row. The
normalization factor is the default, k-1.

M = movvar(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. movvar(A,k,'includenan') includes all
NaN values in the calculation while movvar(A,k,'omitnan') ignores them and
computes the variance over fewer points.

M = movvar(___ ,Name,Value) specifies additional parameters for the variance using
one or more name-value pair arguments. For example, if x is a vector of time values, then
movvar(A,k,'SamplePoints',x) computes the moving variance relative to the times
in x.

Examples

Centered Moving Variance of Vector

Compute the three-point centered moving variance of a row vector. When there are fewer
than three elements in the window at the endpoints, take the variance over the elements
that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movvar(A,3)

M = 1×10

 8.0000 4.0000 22.3333 19.0000 1.0000 1.0000 9.3333 7.0000 1.0000 0.5000

Trailing Moving Variance of Vector

Compute the three-point trailing moving variance of a row vector. When there are fewer
than three elements in the window at the endpoints, take the variance over the elements
that are available.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movvar(A,[2 0])

 movvar

1-9629

M = 1×10

 0 8.0000 4.0000 22.3333 19.0000 1.0000 1.0000 9.3333 7.0000 1.0000

Specify Normalization for Moving Variance

Compute the three-point centered moving variance of a row vector and normalize each
variance by the number of elements in the window.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movvar(A,3,1)

M = 1×10

 4.0000 2.6667 14.8889 12.6667 0.6667 0.6667 6.2222 4.6667 0.6667 0.2500

Moving Variance of Matrix

Compute the three-point centered moving variance for each row of a matrix. The window
starts on the first row, slides horizontally to the end of the row, then moves to the second
row, and so on. The dimension argument is two, which slides the window across the
columns of A. Always specify the normalization factor when specifying the dimension.

A = [4 8 6; -1 -2 -3; -1 3 4];
M = movvar(A,3,0,2)

M = 3×3

 8.0000 4.0000 2.0000
 0.5000 1.0000 0.5000
 8.0000 7.0000 0.5000

1 Alphabetical List

1-9630

Moving Variance of Vector with NaN Elements

Compute the three-point centered moving variance of a row vector containing two NaN
elements.

A = [4 8 NaN -1 -2 -3 NaN 3 4 5];
M = movvar(A,3)

M = 1×10

 8.0000 NaN NaN NaN 1.0000 NaN NaN NaN 1.0000 0.5000

Recalculate the variance, but omit the NaN values. When movvar discards NaN elements,
it takes the variance over the remaining elements in the window.

M = movvar(A,3,'omitnan')

M = 1×10

 8.0000 8.0000 40.5000 0.5000 1.0000 0.5000 18.0000 0.5000 1.0000 0.5000

Sample Points for Moving Variance

Compute a 3-hour centered moving variance of the data in A according to the time vector
t.

A = [4 8 6 -1 -2 -3];
k = hours(3);
t = datetime(2016,1,1,0,0,0) + hours(0:5)

t = 1x6 datetime array
Columns 1 through 3

 01-Jan-2016 00:00:00 01-Jan-2016 01:00:00 01-Jan-2016 02:00:00

Columns 4 through 6

 01-Jan-2016 03:00:00 01-Jan-2016 04:00:00 01-Jan-2016 05:00:00

M = movvar(A,k,'SamplePoints',t)

 movvar

1-9631

M = 1×6

 8.0000 4.0000 22.3333 19.0000 1.0000 0.5000

Return Only Full-Window Variances

Compute the three-point centered moving variance of a row vector, but discard any
calculation that uses fewer than three points from the output. In other words, return only
the variances computed from a full three-element window, discarding endpoint
calculations.

A = [4 8 6 -1 -2 -3 -1 3 4 5];
M = movvar(A,3,'Endpoints','discard')

M = 1×8

 4.0000 22.3333 19.0000 1.0000 1.0000 9.3333 7.0000 1.0000

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | logical

k — Window length
numeric or duration scalar

Window length, specified as a numeric or duration scalar. When k is a positive integer
scalar, the centered variance includes the element in the current position plus
surrounding neighbors. For example, a three-point variance defined by a window of
length three results in the following calculation for a vector A:

1 Alphabetical List

1-9632

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

[kb kf] — Directional window length
numeric or duration row vector containing two elements

Directional window length, specified as a numeric or duration row vector containing two
elements. When kb and kf are positive integer scalars, the calculation is over kb+kf+1
elements. The calculation includes the element in the current position, kb elements
before the current position, and kf elements after the current position. For example, a
four-point variance defined by the directional window [2 1] results in the following
calculation for a vector A:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

w — Weight
0 (default) | 1

Weight, specified as one of these values:

 movvar

1-9633

• 0 — Normalize by k-1, where k is the window length. If k=1, the weight is k.
• 1 — Normalize by k.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension that movvar operates along, that is, the direction
in which the specified window slides.

Consider a two-dimensional input array, A.

• If dim = 1, then movvar(A,k,0,1) starts with the first column and slides vertically
over each row. The variance is computed over k elements at a time. Then it moves to
the second column and repeats the computation. This process continues until all
columns are exhausted. The argument 0 specifies the default weight, which is required
when specifying dim.

• If dim = 2, then movvar(A,k,0,2) starts with the first row and slides horizontally
across each column. The variance is computed over k elements at a time. Then it
moves to the second row and repeats the computation. This process continues until all
rows are exhausted. The argument 0 specifies the default weight, which is required
when specifying dim.

1 Alphabetical List

1-9634

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing the variance,
resulting in the output NaN.

• 'omitnan' — Ignore all NaN values in the input. If a window contains only NaN
values, then movvar returns NaN.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: M = movvar(A,k,'Endpoints','fill')

Endpoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | 'fill' | numeric or logical scalar

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'Endpoints' and one of the following:

'Endpoints' Value Description
'shrink' Shrink the window size near the endpoints of the input to

include only existing elements.

 movvar

1-9635

'Endpoints' Value Description
'discard' Do not output any variances when the window does not

completely overlap with existing elements.
'fill' Substitute nonexisting elements with NaN.
numeric or logical
scalar

Substitute nonexisting elements with a specified numeric or
logical value.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

SamplePoints — Sample points for computing variances
vector

Sample points for computing variances, specified as the comma-separated pair consisting
of 'SamplePoints' and a vector. The sample points represent the location of the data in
A. Sample points do not need to be uniformly sampled. By default, the sample points
vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then movvar(rand(1,10),3,'SamplePoints',t) has a window that represents
the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

If the sample points are nonuniformly spaced and the 'Endpoints' name-value pair is
specified, then its value must be 'shrink'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

Definitions

Variance
For a random variable vector A made up of N scalar observations, the variance is defined
as

1 Alphabetical List

1-9636

V = 1
N − 1 ∑i = 1

N
Ai− μ 2

where μ is the mean of A,

μ = 1
N ∑i = 1

N
Ai .

Some definitions of variance use a normalization factor of N instead of N-1. You can
specify a factor of N by setting w to 1. In either case, the mean is assumed to have the
usual normalization factor N.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

The 'SamplePoints' name-value pair is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

The 'SamplePoints' name-value pair is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 movvar

1-9637

• The 'SamplePoints' name-value pair is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
movmad | movmean | movmedian | movstd | var

Introduced in R2016a

1 Alphabetical List

1-9638

mpower, ^
Matrix power

Syntax
C = A^B
C = mpower(A,B)

Description
C = A^B computes A to the B power and returns the result in C.

C = mpower(A,B) is an alternate way to execute A^B, but is rarely used. It enables
operator overloading for classes.

Examples

Square a Matrix

Create a 2-by-2 matrix and square it.

A = [1 2; 3 4];
C = A^2

C = 2×2

 7 10
 15 22

The syntax A^2 is equivalent to A*A.

 mpower, ^

1-9639

Matrix Exponents

Create a 2-by-2 matrix and use it as the exponent for a scalar.

B = [0 1; 1 0];
C = 2^B

C = 2×2

 1.2500 0.7500
 0.7500 1.2500

Compute C by first finding the eigenvalues D and eigenvectors V of the matrix B.

[V,D] = eig(B)

V = 2×2

 -0.7071 0.7071
 0.7071 0.7071

D = 2×2

 -1 0
 0 1

Next, use the formula 2^B = V*2^D/V to compute the power.

C = V*2^D/V

C = 2×2

 1.2500 0.7500
 0.7500 1.2500

Input Arguments
A — Base
scalar | matrix

1 Alphabetical List

1-9640

Base, specified as a scalar or matrix. Inputs A and B must be one of the following:

• Base A is a square matrix and exponent B is a scalar. If B is a positive integer, the
power is computed by repeated squaring. For other values of B the calculation involves
eigenvalues and eigenvectors.

• Base A is a scalar and exponent B is a square matrix. The calculation uses eigenvalues
and eigenvectors.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

B — Exponent
scalar | matrix

Exponent, specified as a scalar or matrix. Inputs A and B must be one of the following:

• Base A is a square matrix and exponent B is a scalar. If B is a positive integer, the
power is computed by repeated squaring. For other values of B the calculation involves
eigenvalues and eigenvectors.

• Base A is a scalar and exponent B is a square matrix. The calculation uses eigenvalues
and eigenvectors.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

Tips
• MATLAB computes X^(-1) and inv(X) in the same manner, and both are subject to

the same limitations. For more information, see inv.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 mpower, ^

1-9641

Usage notes and limitations:

• If A is a 2-by-2 or larger matrix and B is Inf or -Inf, then A^B returns a matrix of NaN
values.

• For A^b, if b is a noninteger scalar, then at least one of A or b must be complex.
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• A and B must be scalar.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
mtimes | power | times

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-9642

mput
Upload file or folder to FTP server

Syntax
mput(ftpobj,contents)
uploadPaths = mput(ftpobj,contents)

Description
mput(ftpobj,contents) uploads the files or folders specified by contents to the
current folder on the FTP server associated with ftpobj.

uploadPaths = mput(ftpobj,contents) returns a cell array that lists the paths to
the uploaded files on the server.

Examples

Upload Files

Connect to an FTP server and upload files from your local machine to the server. This
example shows a hypothetical FTP session on ftp.example.com, a machine that does
not exist. If you have an account on an FTP server that grants you permission to upload
files to that server, then you can use the mput function as shown in this example.

First, connect to the server.

ftpobj = ftp('ftp.example.com')

ftpobj =

 FTP Object
 host: ftp.example.com
 user: anonymous

 mput

1-9643

 dir: /
 mode: binary

Display the contents of the current folder on the FTP server.

dir(ftpobj)

myscript.m README.txt pub

Upload a file from your local machine to the FTP server.

mput(ftpobj,'myNewScript.m');

Display the updated contents on the FTP server, including the new myNewScript.m file.

dir(ftpobj)

myscript.m myNewScript.m README.txt
pub

Upload multiple files. If the file names have some text in common, then you can use a
wildcard character (*) to match the rest of the names. In this example, use a wildcard to
match the file names image001.png, image002.png, and image003.png on your local
machine.

mput(ftpobj,'image*png');

Display the updated contents on the FTP server.

dir(ftpobj)

image001.png image002.png image003.png
myscript.m myNewScript.m README.txt
pub

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

1 Alphabetical List

1-9644

contents — Local file or folder
character vector | string scalar

Local files or folders, specified as a character vector or string scalar.

To match multiple files or folders on your local machine, you can include a wildcard
character (*) in contents. For example, if you specify contents as *.docx, then mput
uploads all files whose names end with .docx.

See Also
ftp | mget | mkdir | rename

Introduced before R2006a

 mput

1-9645

msgbox
Create message dialog box

Note If you are using App Designer or creating apps with the uifigure function,
then use uialert instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Syntax
f = msgbox(message)
f = msgbox(message,title)
f = msgbox(message,title,icon)
f = msgbox(message,title,'custom',icondata,iconcmap)
f = msgbox(___ ,createmode)

Description
f = msgbox(message) creates a message dialog box that automatically wraps message
to fit an appropriately sized figure.

f = msgbox(message,title) specifies the title of the message box.

f = msgbox(message,title,icon) specifies a predefined icon to display in the
message dialog box.

f = msgbox(message,title,'custom',icondata,iconcmap) specifies a custom
icon to include in the message dialog box. icondata is the image data that defines the
icon. iconcmap is the colormap used for the image. If icondata is a truecolor image
array, you do not need to specify iconcmap.

f = msgbox(___ ,createmode) specifies the window mode for the dialog box.
Alternatively, you can specify a structure array that specifies the window mode and the
interpreter for the message.

1 Alphabetical List

1-9646

Examples

Simple Message Dialog Box

Specify the text you want displayed in the message dialog box.

f = msgbox('Operation Completed');

Message Dialog Box Text with Line Breaks

Specify the message dialog box text using a cell array of character vectors.

f = msgbox({'Operation';'Completed'});

Message Dialog Box with a Title

Specify the message dialog box text and give the dialog box a title, Success.

f = msgbox('Operation Completed','Success');

 msgbox

1-9647

Message Dialog Box That Uses a Built-in Icon

Include a built-in error icon with an error message in a message dialog box entitled Error.

f = msgbox('Invalid Value', 'Error','error');

Message Dialog Box That Uses a Truecolor Custom Icon

Read an RGB image into the workspace. Then, specify it as a custom icon in the dialog
box.

myicon = imread('landOcean.jpg');
h=msgbox('Operation Completed','Success','custom',myicon);

1 Alphabetical List

1-9648

Message Dialog Box That Uses an Indexed Color Icon

Read the image data and colormap into the workspace.

[icondata,iconcmap] = imread('trees.tif');

Create the message dialog box, including the custom icon.

h=msgbox('Operation Completed',...
 'Success','custom',icondata,iconcmap);

Adjust the image colors by specifying a different colormap. For instance, specify the
MATLAB built-in colormap, summer

h=msgbox('Operation Completed','Success','custom',...
 icondata,summer);

 msgbox

1-9649

Modal Message Dialog Box

Create a modal message dialog box, wrapping the call to msgbox with uiwait to make
the message dialog box block MATLAB execution until the user responds to the message
dialog box.

uiwait(msgbox('Operation Completed','Success','modal'));

Modal Message Dialog Box That Uses a TeX Formatted Message

Create a structure to specify that the user must click OK before interacting with another
window and that MATLAB interpret the message text as TeX format.

CreateStruct.Interpreter = 'tex';
CreateStruct.WindowStyle = 'modal';

Create the message dialog box.

h=msgbox('Z = X^2 + Y^2','Value',CreateStruct);

1 Alphabetical List

1-9650

Input Arguments
message — Dialog box text
character vector | cell array of character vectors | string array

Dialog box text, specified as a character vector, cell array of character vectors, or string
array.
Example: 'Operation Completed'
Example: {'Operation'; 'Completed'}

title — Title
character vector | string scalar

Title, specified as a character vector or string scalar.
Example: 'Success'

icon — Icon
'none' (default) | 'help' | 'warn' | 'error' | 'custom'

Icon, specified as 'help', 'warn', or 'error' or 'none'.

This table lists the values and the corresponding icons.

Value Icon
'help'

'warn'

 msgbox

1-9651

Value Icon
'error'

'none' No icon displays.

icondata — Image array
m-by-n array | m-by-n-by-3 truecolor image array

Image array, specified as an m-by-n array or an m-by-n-by-3 truecolor image array. You
can also use imread to get the image array from a file.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

iconcmap — Colormap
three-column matrix of RGB triplets

Colormap, specified as a three-column matrix of RGB triplets. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue
components of a color. The intensities must be in the range [0, 1].
Data Types: single | double

createmode — Window mode
'non-modal' (default) | 'modal' | 'replace' | structure array

Window mode, specified as 'non-modal', 'modal', 'replace', or a structure array.

• If createmode is 'non-modal', MATLAB creates a new nonmodal message box with
the specified parameters. Existing message boxes with the same title remain.

• If createmode is 'modal', MATLAB replaces the existing message box with the
specified title that was last created or clicked on with the specified modal dialog
box. MATLAB deletes all other message boxes with the same title. The replaced
message box can be either modal or nonmodal.

• If createmode is 'replace', MATLAB replaces the message box having the specified
title that was last created or clicked on with a nonmodal message box as specified.
MATLAB deletes all other message boxes with the same title. The replaced message
box can be either modal or nonmodal.

• If createmode is a structure array, it must have the fields WindowStyle and
Interpreter. The value of the WindowStyle field must be 'non-modal', 'modal',

1 Alphabetical List

1-9652

or 'replace'. The value of the Interpreter field must be 'tex' or 'none'. If the
Interpreter value is 'tex', MATLAB interprets the message value as TeX. The
default value for Interpreter is 'none'.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

 msgbox

1-9653

Modifier Description Example
\color{specifier} Font color — Replace

specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

1 Alphabetical List

1-9654

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

Output Arguments
f — Figure object
Figure object

 msgbox

1-9655

Figure object for the dialog box. Use f to query and modify the properties of the dialog
box.

Definitions

modal dialog box
A modal dialog box prevents a user from interacting with other windows before
responding to the modal dialog box.

Tips
• Program execution continues even when a modal dialog box is active. To block

MATLAB program execution until the user responds to the modal dialog box, use the
uiwait function.

• Modal dialogs (created using errordlg, msgbox, or warndlg) replace any existing
dialogs created with these functions that also have the same name.

See Also
errordlg | helpdlg | warndlg

Introduced before R2006a

1 Alphabetical List

1-9656

mtimes, *
Matrix multiplication

Syntax
C = A*B
C = mtimes(A,B)

Description
C = A*B is the matrix product of A and B. If A is an m-by-p and B is a p-by-n matrix, then
C is an m-by-n matrix defined by

C(i, j) = ∑
k = 1

p
A(i, k)B(k, j) .

This definition says that C(i,j) is the inner product of the ith row of A with the jth
column of B. You can write this definition using the MATLAB colon operator as

C(i,j) = A(i,:)*B(:,j)

For nonscalar A and B, the number of columns of A must equal the number of rows of B.
Matrix multiplication is not universally commutative for nonscalar inputs. That is, A*B is
typically not equal to B*A. If at least one input is scalar, then A*B is equivalent to A.*B
and is commutative.

C = mtimes(A,B) is an alternative way to execute A*B, but is rarely used. It enables
operator overloading for classes.

Examples

Multiply Two Vectors

Create a 1-by-4 row vector, A, and a 4-by-1 column vector, B.

 mtimes, *

1-9657

A = [1 1 0 0];
B = [1; 2; 3; 4];

Multiply A times B.

C = A*B

C = 3

The result is a 1-by-1 scalar, also called the dot product or inner product of the vectors A
and B. Alternatively, you can calculate the dot product A ⋅ B with the syntax dot(A,B).

Multiply B times A.

C = B*A

C = 4×4

 1 1 0 0
 2 2 0 0
 3 3 0 0
 4 4 0 0

The result is a 4-by-4 matrix, also called the outer product of the vectors A and B. The
outer product of two vectors, A⊗ B, returns a matrix.

Multiply Two Arrays

Create two arrays, A and B.

A = [1 3 5; 2 4 7];
B = [-5 8 11; 3 9 21; 4 0 8];

Calculate the product of A and B.

C = A*B

C = 2×3

 24 35 114
 30 52 162

1 Alphabetical List

1-9658

Calculate the inner product of the second row of A and the third column of B.

A(2,:)*B(:,3)

ans = 162

This answer is the same as C(2,3).

Input Arguments
A — Left array
scalar | vector | matrix

Left array, specified as a scalar, vector, or matrix.

• A and B must be 2-D arrays, or one of them can be scalar.
• For nonscalar inputs, the number of columns in A must be equal to the number of rows

in B.
• If one of A or B is an integer class (int16, uint8, …), then the other input must be a

scalar.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | duration | calendarDuration

B — Right array
scalar | vector | matrix

Right array, specified as a scalar, vector, or matrix.

• A and B must be 2-D arrays, or one of them can be scalar.
• For nonscalar inputs, the number of columns in A must be equal to the number of rows

in B.
• If one of A or B is an integer class (int16, uint8, …), then the other input must be a

scalar.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | duration | calendarDuration
Complex Number Support: Yes

 mtimes, *

1-9659

Output Arguments
C — Product
scalar | vector | matrix

Product, returned as a scalar, vector, or matrix. Array C has the same number of rows as
input A and the same number of columns as input B. For example, if A is an m-by-0 empty
matrix and B is a 0-by-n empty matrix, then A*B is an m-by-n matrix of zeros.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• For A*B where A and B are both tall arrays, one of them must be a scalar.
• For A'*B, both A and B must be tall vectors or matrices with a common size in the first

dimension.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Multiplication of pure imaginary numbers by non-finite numbers might not match
MATLAB. The code generator does not specialize multiplication by pure imaginary
numbers—it does not eliminate calculations with the zero real part. For example, (Inf
+ 1i)*1i = (Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

1 Alphabetical List

1-9660

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
colon | cross | dot | times

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 mtimes, *

1-9661

mu2lin
Convert mu-law audio signal to linear

Syntax
y = mu2lin(mu)

Description
y = mu2lin(mu) converts mu-law encoded 8-bit audio signals, stored as “flints” in the
range 0 ≤ mu ≤ 255, to linear signal amplitude in the range -s < Y < s where
s = 32124/32768 ~= .9803. The input mu is often obtained using
fread(...,'uchar') to read byte-encoded audio files. "Flints" are MATLAB integers —
floating-point numbers whose values are integers.

See Also
audioread | lin2mu

Introduced before R2006a

1 Alphabetical List

1-9662

multibandread
Read band-interleaved data from binary file

Syntax
X =
multibandread(filename,size,precision,offset,interleave,byteorder)
X = multibandread(...,subset1,subset2,subset3)

Description
X =
multibandread(filename,size,precision,offset,interleave,byteorder)
reads band-sequential (BSQ), band-interleaved-by-line (BIL), or band-interleaved-by-pixel
(BIP) data from the binary file filename. The filename input is specified as a character
vector or string scalar. This function defines band as the third dimension in a 3-D array, as
shown in this figure.

You can use the parameters of multibandread to specify many aspects of the read
operation, such as which bands to read. See “Parameters” on page 1-9664 for more
information.

X is a 2-D array if only one band is read; otherwise it is 3-D. X is returned as an array of
data type double by default. Use the precision parameter to map the data to a
different data type.

 multibandread

1-9663

X = multibandread(...,subset1,subset2,subset3) reads a subset of the data in
the file. You can use up to three subsetting parameters to specify the data subset along
row, column, and band dimensions. See “Subsetting Parameters” on page 1-9665 for
more information.

Note In addition to BSQ, BIL, and BIP files, multiband imagery may be stored using the
TIFF file format. In that case, use the imread function to import the data.

Parameters
This table describes the arguments accepted by multibandread.

Argument Description
filename Character vector or string scalar containing the name of the file to

be read.
size Three-element vector of integers consisting of

[height, width, N], where

• height is the total number of rows
• width is the total number of elements in each row
• N is the total number of bands.

This will be the dimensions of the data if it is read in its entirety.
precision Character vector or string scalar specifying the format of the data

to be read, such as 'uint8', 'double', 'integer*4', or any of
the other precisions supported by the fread function.

Note: You can also use the precision parameter to specify the
format of the output data. For example, to read uint8 data and
output a uint8 array, specify a precision of 'uint8=>uint8' (or
'*uint8'). To read uint8 data and output it in the MATLAB
software in single precision, specify 'uint8=>single'. See
fread for more information.

offset Scalar specifying the zero-based location of the first data element
in the file. This value represents the number of bytes from the
beginning of the file to where the data begins.

1 Alphabetical List

1-9664

Argument Description
interleave Format in which the data is stored, specified as one of these

values:

• 'bsq' — Band-Sequential
• 'bil'— Band-Interleaved-by-Line
• 'bip'— Band-Interleaved-by-Pixel

For more information about these interleave methods, see the
multibandwrite reference page.

byteorder Character vector or string scalar specifying the byte ordering
(machine format) in which the data is stored, such as

• 'ieee-le' — Little-endian
• 'ieee-be' — Big-endian

See fopen for a complete list of supported formats.

Subsetting Parameters
You can specify up to three subsetting parameters. Each subsetting parameter is a three-
element cell array, {dim,method,index}, where

Parameter Description
dim The dimension to subset along. Specified as any of these values:

• 'Column'
• 'Row'
• 'Band'

method The subsetting method. Specified as either of these values:

• 'Direct'
• 'Range'

If you leave out this element of the subset cell array,
multibandread uses 'Direct' as the default.

 multibandread

1-9665

Parameter Description
index If method is 'Direct', index is a vector specifying the indices

to read along the Band dimension.

If method is 'Range', index is a three-element vector of
[start, increment, stop] specifying the range and step
size to read along the dimension specified in dim. If index is a
two-element vector, multibandread assumes that the value of
increment is 1.

Examples

Example 1
Setup initial parameters for a data set.

rows=3; cols=3; bands=5;
filename = tempname;

Define the data set.

fid = fopen(filename, 'w', 'ieee-le');
fwrite(fid, 1:rows*cols*bands, 'double');
fclose(fid);

Read every other band of the data using the Band-Sequential format.

im1 = multibandread(filename, [rows cols bands], ...
 'double', 0, 'bsq', 'ieee-le', ...
 {'Band', 'Range', [1 2 bands]})

Read the first two rows and columns of data using Band-Interleaved-by-Pixel format.

im2 = multibandread(filename, [rows cols bands], ...
 'double', 0, 'bip', 'ieee-le', ...
 {'Row', 'Range', [1 2]}, ...
 {'Column', 'Range', [1 2]})

Read the data using Band-Interleaved-by-Line format.

1 Alphabetical List

1-9666

im3 = multibandread(filename, [rows cols bands], ...
 'double', 0, 'bil', 'ieee-le')

Delete the file created in this example.

delete(filename);

Example 2
Read int16 BIL data from the FITS file tst0012.fits, starting at byte 74880.

im4 = multibandread('tst0012.fits', [31 73 5], ...
 'int16', 74880, 'bil', 'ieee-be', ...
 {'Band', 'Range', [1 3]});
im5 = double(im4)/max(max(max(im4)));
imagesc(im5);

See Also
fread | fwrite | imread | memmapfile | multibandwrite

Introduced before R2006a

 multibandread

1-9667

multibandwrite
Write band-interleaved data to file

Syntax
multibandwrite(data,filename,interleave)
multibandwrite(data,filename,interleave,start,totalsize)
multibandwrite(...,param,value...)

Description
multibandwrite(data,filename,interleave) writes data, a two- or three-
dimensional numeric or logical array, to the binary file specified by filename. The
filename is specified as a character vector or string scalar. The length of the third
dimension of data determines the number of bands written to the file. The bands are
written to the file in the form specified by interleave. See “Interleave Methods” on
page 1-9670 for more information about this argument.

If filename already exists, multibandwrite overwrites it unless you specify the optional
offset parameter. For information about other optional parameters, see the last syntax
and its description.

multibandwrite(data,filename,interleave,start,totalsize) writes data to
the binary file filename in chunks. In this syntax, data is a subset of the complete data
set.

start is a 1-by-3 array [firstrow firstcolumn firstband] that specifies the
location to start writing data. firstrow and firstcolumn specify the location of the
upper left image pixel. firstband gives the index of the first band to write. For example,
data(I,J,K) contains the data for the pixel at [firstrow+I-1, firstcolumn+J-1]
in the (firstband+K-1)-th band.

totalsize is a 1-by-3 array, [totalrows,totalcolumns,totalbands], which
specifies the full, three-dimensional size of the data to be written to the file.

1 Alphabetical List

1-9668

Note In this syntax, you must call multibandwrite multiple times to write all the data
to the file. The first time it is called, multibandwrite writes the complete file, using the
fill value for all values outside the data subset. In each subsequent call, multibandwrite
overwrites these fill values with the data subset in data. The parameters filename,
interleave, offset, and totalsize must remain constant throughout the writing of
the file.

multibandwrite(...,param,value...) writes the multiband data to a file,
specifying any of these optional parameter/value pairs.

Parameter Description
'precision' Character vector or string scalar specifying the form and size of

each element written to the file. See the help for fwrite for a
list of valid values. The default precision is the class of the data.

'offset' The number of bytes to skip before the first data element. If the
file does not already exist, multibandwrite writes ASCII null
values to fill the space. To specify a different fill value, use the
parameter 'fillvalue'.

This option is useful when you are writing a header to the file
before or after writing the data. When writing the header to the
file after the data is written, open the file with fopen using 'r
+' permission.

'machfmt' Character vector or string scalar to control the format in which
the data is written to the file. Typical values are 'ieee-le' for
little endian and 'ieee-be' for big endian. See the help for
fopen for a complete list of available formats. The default
machine format is the local machine format.

'fillvalue' A number specifying the value to use in place of missing data.
'fillvalue' can be a single number, specifying the fill value
for all missing data, or a 1-by-Number-of-bands vector of
numbers specifying the fill value for each band. This value is
used to fill space when data is written in chunks.

 multibandwrite

1-9669

Interleave Methods
interleave is a character vector or string scalar that specifies how multibandwrite
interleaves the bands as it writes data to the file. If data is two-dimensional,
multibandwrite ignores the interleave argument. The following table lists the
supported methods and uses this example multiband file to illustrate each method.

Supported methods of interleaving bands include those listed below.

Method Specified as Description Example
Band-Interleaved-by-Line 'bil' Write an entire row from

each band
AAAAABBBBBCCCCC
AAAAABBBBBCCCCC
AAAAABBBBBCCCCC

Band-Interleaved-by-Pixel 'bip' Write a pixel from each
band

ABCABCABCABCABC...

Band-Sequential 'bsq' Write each band in its
entirety

AAAAA
AAAAA
AAAAA
BBBBB
BBBBB
BBBBB
CCCCC
CCCCC
CCCCC

Examples

Note To run these examples successfully, you must be in a writable folder.

1 Alphabetical List

1-9670

Example 1
Write all data (interleaved by line) to the file in one call.

data = reshape(uint16(1:600), [10 20 3]);
multibandwrite(data,'data.bil','bil');

Example 2
Write a single-band tiled image with one call for each tile. This is only useful if a subset of
each band is available at each call to multibandwrite.
numBands = 1;
dataDims = [1024 1024 numBands];
data = reshape(uint32(1:(1024 * 1024 * numBands)), dataDims);

for band = 1:numBands
 for row = 1:2
 for col = 1:2

 subsetRows = ((row - 1) * 512 + 1):(row * 512);
 subsetCols = ((col - 1) * 512 + 1):(col * 512);

 upperLeft = [subsetRows(1), subsetCols(1), band];
 multibandwrite(data(subsetRows, subsetCols, band), ...
 'banddata.bsq', 'bsq', upperLeft, dataDims);

 end
 end
end

See Also
fread | fwrite | multibandread

Introduced before R2006a

 multibandwrite

1-9671

munlock
Allow clearing function or script from memory

Syntax
munlock(fun)
munlock

Description
munlock(fun) unlocks the MATLAB code file named fun. A function that is locked using
mlock cannot be removed from memory with the clear command unless you first unlock
it using munlock.

munlock unlocks the currently running file. Use this syntax only within a MATLAB code
file.

Examples

Unlock Function in Memory

Create the function lockFun in your current working folder.

function lockFun()
 mlock
end

At the command prompt, call the lockFun function. Check that the function is locked.

lockFun
tf = mislocked('lockFun')

tf =

 logical

1 Alphabetical List

1-9672

 1

Unlock the function so it can be cleared from memory. Check that the function is not
locked.

munlock('lockFun')
tf = mislocked('lockFun')

tf =

 logical

 0

Input Arguments
fun — Name of function or script
character vector | string scalar

Name of function or script, specified as a character vector or a string scalar.

Tips
• To determine if a file is locked, use the mislocked function.
• To unlock a MEX file, use the mexUnlock function.

See Also
inmem | mislocked | mlock | persistent

Introduced before R2006a

 munlock

1-9673

mustBePositive
Validate that value is positive or issue error

Syntax
mustBePositive(A)

Description
mustBePositive(A) issues an error if A is not positive. Values are positive when they
are real, numeric, and greater than zero. This function does not return a value.

mustBePositive accepts user-defined objects if the class of the object implements these
methods:

• gt
• isreal
• isnumeric or islogical

This function ignores input arguments that are empty values. No error is thrown if the
property value is empty.

Examples

Validate That Values Are Positive

Use mustBePositive to validate that the input contains only positive values.

The rand function creates a uniformly distributed random number.

A = rand(1,5) -0.5;

Validate that array elements are positive.

1 Alphabetical List

1-9674

mustBePositive(A)

Error using mustBePositive (line 14)
Value must be positive.

The result of subtracting 0.5 from the array return by rand can contain negative
numbers. When a value is negative, mustBePositive issues an error.

Constrain Property to Positive Values

This class constrains the value of Prop1 to positive values.

classdef MyClass
 properties
 Prop1 {mustBePositive}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = 0;

Error setting property 'Prop1' of class 'MyClass':
Value must be positive.

When you assign a value to the property, MATLAB calls mustBePositive with the value
being assigned to the property. mustBePositive issues an error because the value 0 is
not positive.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical or numeric class
• MATLAB classes that implement gt, isreal, and either isnumeric or islogical

 mustBePositive

1-9675

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNonnegative | mustBeNonzero

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9676

mustBeNonpositive
Validate that value is nonpositive or issue error

Syntax
mustBeNonpositive(A)

Description
mustBeNonpositive(A) issues an error if A is positive. Values are positive when they
are greater than zero. This function does not return a value.

mustBeNonpositive accepts user-defined objects if the class of the object implements
these methods:

• le
• isreal
• isnumeric or islogical

Examples

Validate That Values Are Not Positive

Use mustBeNonpositive to validate that the input contains only nonpositive values.

A = 1 < 10;
mustBeNonpositive(A)

Error using mustBeNonpositive (line 14)
Value must not be positive.

 mustBeNonpositive

1-9677

Because the expression 1 < 10 returns logical 1, the value of A is positive and causes
mustBeNonpositive to issue an error.

Constrain Property to Nonpositive Values

This class constrains the value of Prop1 to a nonpositive values.

classdef MyClass
 properties
 Prop1 {mustBeNonpositive}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = 10;

Error setting property 'Prop1' of class 'MyClass':
Value must not be positive.

When you assign a value to the property, MATLAB calls mustBeNonpositive with the
value being assigned to the property. mustBeNonpositive issues an error because the
value 10 is positive.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical or numeric class
• MATLAB classes that implement le, isreal, and either isnumeric or islogical

Example: A = -1 does not generate an error.

1 Alphabetical List

1-9678

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNegative | mustBeNonzero

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeNonpositive

1-9679

mustBeFinite
Validate that value is finite or issue error

Syntax
mustBeFinite(A)

Description
mustBeFinite(A) issues an error if A is not finite. A value is finite if it is not NaN or Inf.
This function does not return a value.

This function accepts user-defined objects if the class of the object implements the
following method:

• isfinite

This function ignores input arguments that are empty values. No error is thrown if the
property value is empty.

Examples

Validate That Values Are Not NaN or Inf

Use mustBeFinite to validate that no array elements are NaN or Inf.

d = 0:9;
A = 1./d;
mustBeFinite(A)

Error using mustBeFinite (line 13)
Value must be finite.

1 Alphabetical List

1-9680

The division by d resulted in one element becoming Inf, which causes an error.

Constrain Property to Finite Values

This class constrains the value of Prop1 to finite values.

classdef MyClass
 properties
 Prop1 {mustBeFinite}
 end
end

Create an object and assign a value to its property.

d = 0:9;
obj = MyClass;
obj.Prop1 = 1./d;

Error setting property 'Prop1' of class 'MyClass':
Value must be finite.

When you assign a value to the property, MATLAB calls mustBeFinite with the value
being assigned to the property. mustBeFinite issues an error because the result of
division by 0 is Inf.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical or numeric class
• MATLAB classes that implement isfinite

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

 mustBeFinite

1-9681

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNonNan | mustBeReal

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9682

mustBeNonNan
Validate that value is nonNaN

Syntax
mustBeNonNan(A)

Description
mustBeNonNan(A) issues an error if A is NaN. This function does not return a value.

mustBeNonNan accepts user-defined objects if the class of the object implements this
method:

• isnan

Examples

Validate That Values Are Not NaN

Use mustBeNonNan to validate that no array elements are NaN.

A = 0./[-2 -1 0 1 2];
mustBeNonNan(A)

Error using mustBeNonNan (line 13)
Value must not be NaN.

Division of 0 by 0 is equal to NaN so the array value contains one element that is NaN,
which causes an error.

 mustBeNonNan

1-9683

Constrain Property to NonNan Values

This class constrains the value of Prop1 to nonNaN values.

classdef MyClass
 properties
 Prop1 {mustBeNonNan}
 end
end

Create an object and assign a value to Prop1.

obj = MyClass;
obj.Prop1 = 0./[-2 -1 0 1 2];

Error setting property 'Prop1' of class 'MyClass':
Value must not be NaN.

When you assign a value to the property, MATLAB calls mustBeNonNan with the value
being assigned to the property. mustBeNonNan issues an error because division of 0 by 0
is NaN.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• All MATLAB numeric classes and logical.
• MATLAB user-defined classes that implement isnan

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

1 Alphabetical List

1-9684

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeFinite | mustBeNonempty

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeNonNan

1-9685

mustBeNonnegative
Validate that value is nonnegative or issue error

Syntax
mustBeNonnegative(A)

Description
mustBeNonnegative(A) issues an error if A is negative. This function does not return a
value.

mustBeNonnegative accepts user-defined objects if the class of the object implements
these methods:

• ge
• isreal
• isnumeric or islogical

Examples

Validate That Values Are Not Negative

Use mustBeNonnegative to validate that the input contains only nonnegative values.

The randn function creates normally distributed random numbers.

A = randn(1,5);

Validate that the random numbers are nonnegative.

mustBeNonnegative(A)

1 Alphabetical List

1-9686

Error using mustBeNonnegative (line 14)
Value must be nonnegative.

Constrain Property to Nonnegative Values

This class constrains the value of Prop1 to nonnegative values.

classdef MyClass
 properties
 Prop1 {mustBeNonnegative}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = -10;

Error using mustBeNonnegative (line 14)
Value must be nonnegative.

When you assign a value to the property, MATLAB calls mustBeNonnegative with the
value being assigned to the property. mustBeNonnegative issues an error because the
value -10 is negative.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical or numeric class
• MATLAB classes that implement ge, isreal, and either isnumeric or islogical

Example: A = 1 does not generate an error.

 mustBeNonnegative

1-9687

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNonzero | mustBePositive

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9688

mustBeGreaterThan
Validate that value is greater than another value or issue error

Syntax
mustBeGreaterThan(A,B)

Description
mustBeGreaterThan(A,B) issues an error if any elements in A are not greater than the
scalar B. This function does not return a value.

mustBeGreaterThan accepts user-defined objects if the class of the object implements
these methods:

• gt
• isreal
• isnumeric or islogical

This function ignores empty values in the property input argument. Empty property
values do not cause an error.

Examples

Validate First Input Greater Than Second

Use mustBeGreaterThan to validate that the values in the first input are greater than
the value of the second input.

mustBeGreaterThan([2 3 4],2)

 mustBeGreaterThan

1-9689

Error using mustBeGreaterThan (line 19)
Value must be greater than 2.

Constrain Property Values to Be Greater Than Specified Value.

This class constrains the value of Prop1 to be greater than 2.

classdef MyClass
 properties
 Prop1 {mustBeGreaterThan(Prop1,2)}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
Obj.Prop1 = 2;

Error setting property 'Prop1' of class 'MyClass':
Value must be greater than 2.

When you assign a value to the property, MATLAB calls mustBeGreaterThan with the
value being assigned to the property. mustBeGreaterThan issues an error because the
value 2 is not greater than 2.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical, char, string, or numeric class
• MATLAB classes that implement gt, isreal, and either isnumeric, or islogical

B — Value that A must be greater than
scalar

Value that A must be greater than, specified as a scalar of one of the following:

1 Alphabetical List

1-9690

• logical, char, string, and numeric class
• MATLAB classes that implement gt, isreal, and either isnumeric, or islogical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeGreaterThanOrEqual | mustBeLessThan

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeGreaterThan

1-9691

mustBeGreaterThanOrEqual
Validate that value is greater than or equal to another value or issue error

Syntax
mustBeGreaterThanOrEqual(A,B)

Description
mustBeGreaterThanOrEqual(A,B) issues an error if any elements in A are not greater
than or equal to the scalar B. This function does not return a value.

mustBeGreaterThanOrEqual accepts user-defined objects if the class of the object
implements these methods:

• ge
• isreal
• isnumeric or islogical

This function ignores empty values in the property input argument. Empty property
values do not cause an error.

Examples

Validate That Input Is Greater Than Or Equal To Specified Value

Use mustBeGreaterThanOrEqual to validate that the values in the array are greater
than or equal to 3.

mustBeGreaterThanOrEqual([2,3,4],3)

1 Alphabetical List

1-9692

Error using mustBeGreaterThanOrEqual (line 19)
Value must be greater than or equal to 3.

Constrain Property Values

Constrain property values to be greater than or equal to a specified value.

This class constrains the value of Prop1 to be greater than or equal to 3.

classdef MyClass
 properties
 Prop1 {mustBeGreaterThanOrEqual(Prop1,3)}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = 2;

Error setting property 'Prop1' of class 'MyClass':
Value must be greater than or equal to 3.

When you assign a value to the property, MATLAB calls mustBeGreaterThanOrEqual
with the value being assigned to the property. mustBeGreaterThanOrEqual issues an
error because the value 2 is not greater than or equal to 3.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical, char, string, and numeric class
• MATLAB classes that implement ge, isreal, and either isnumeric or islogical

B — Value that A must be greater than or equal to
scalar

Value that A must be greater than or equal to, specified as a scalar of one of the following:

 mustBeGreaterThanOrEqual

1-9693

• Any numeric class
• Logical class
• MATLAB classes that implement ge, isreal, and either isnumeric or islogical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeGreaterThan | mustBeLessThanOrEqual

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9694

mustBeLessThan
Validate that value is less than another value or issue error

Syntax
mustBeLessThan(A,B)

Description
mustBeLessThan(A,B) issues an error if any elements in A are not less than the scalar
B. This function does not return a value.

mustBeLessThan accepts user-defined objects if the class of the object implements these
methods:

• lt
• isscalar
• isreal
• isnumeric or islogical

This function ignores empty values in the property input argument. Empty property
values do not cause an error.

Examples

Validate First Input Less Than Second

Use mustBeLessThan to validate that the values in the first input are less than the value
of the second input.

mustBeLessThan([2 3 4],2)

 mustBeLessThan

1-9695

Error using mustBeLessThan (line 19)
Value must be less than 2.

Property Value Less Than Specified Value

Constrain property values to be less than a specified value.

This class constrains the value of Prop1 to be less than 2.

classdef MyClass
 properties
 Prop1 {mustBeLessThan(Prop1,2)}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = 2;

Error setting property 'Prop1' of class 'MyClass':
Value must be less than 2.

When you assign a value to the property, MATLAB calls mustBeLessThan with the value
being assigned to the property. mustBeLessThan issues an error because the value 2 is
not less than 2.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical, char, string, or numeric class
• MATLAB classes that implement lt, isscalar, isreal, and either isnumeric or

islogical

When using mustBeLessThan as a property validator, this argument must be the
property name, specified without quotation marks.

1 Alphabetical List

1-9696

B — Value that A must be less than
scalar

Value that A must be less than, specified as a scalar of one of the following:

• Any numeric class
• Logical class
• MATLAB classes that implement lt, isscalar, isreal, and either isnumeric or

islogical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeGreaterThan | mustBeLessThanOrEqual

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeLessThan

1-9697

mustBeLessThanOrEqual
Validate that value is less than or equal to another value or issue error

Syntax
mustBeLessThanOrEqual(A,B)

Description
mustBeLessThanOrEqual(A,B) issues an error if any elements in A are not less than or
equal to the scalar B. This function does not return a value.

mustBeLessThanOrEqual accepts user-defined objects if the class of the object
implements these methods:

• le
• isscalar
• isreal
• isnumeric or islogical

This function ignores empty values in the property input argument. Empty property
values do not cause an error.

Examples

Validate First Input Less Than or Equal to Second

Use mustBeLessThanOrEqual to validate that the values in the first input are less than
or equal to the value of the second input.

mustBeLessThanOrEqual([3 4 5],2)

1 Alphabetical List

1-9698

Error using mustBeLessThanOrEqual (line 18)
Values must be less than or equal to 2.

Property Value Less Than or Equal to Specified Value

Constrain property values to be less than or equal to a specified value.

This class constrains the value of Prop1 to be less than or equal to 2.

classdef MyClass
 properties
 Prop1 {mustBeLessThanOrEqual(Prop1,2)}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = 3;

Error setting 'Prop1' property of 'MyClass' class:
Values must be less than or equal to 2.

When you assign a value to the property, MATLAB calls mustBeLessThanOrEqual with
the value being assigned to the property. mustBeLessThanOrEqual issues an error
because the value 3 is not less than or equal to 2.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical, char, or numeric classes
• MATLAB classes that implement le, isscalar, isreal, and either isnumeric or

islogical

B — Value that A must be less than or equal to
scalar

 mustBeLessThanOrEqual

1-9699

Value that A must be less than or equal to, specified as a scalar of one of the following:

• logical, char, string, and numeric class
• MATLAB classes that implement le, isscalar, isreal, and either isnumeric or

islogical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeGreaterThanOrEqual | mustBeLessThan

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9700

mustBeNegative
Validate that value is negative or issue error

Syntax
mustBeNegative(A)

Description
mustBeNegative(A) issues an error if A is not negative. A value is negative if it is less
than zero. This function does not return a value.

mustBeNegative accepts user-defined objects if the class of the object implements these
methods:

• lt
• isreal
• isnumeric or islogical

This function ignores input arguments that are empty values. No error is thrown if the
property value is empty.

Examples

Validate That Values Are Negative

Use mustBeNegative to validate that the input contains only negative values.

The rand function creates uniformly distributed random numbers in the interval (0,1).
Test the array after the subtraction to validate that all values are negative. If not,
mustBeNegative issues an error.

A = rand(1,5) - 0.75;
mustBeNegative(A)

 mustBeNegative

1-9701

Error using mustBeNegative (line 14)
Value must be negative.

Constrain Property to Negative Values

This class constrains the value of Prop1 to negative values.

classdef MyClass
 properties
 Prop1 {mustBeNegative}
 end
end

Create an object and assign a value to Prop1.

obj = MyClass;
obj.Prop1 = rand(1,5) - 0.75;

Error setting property 'Prop1' of class 'MyClass':
Value must be negative.

When you assign a value to the property, MATLAB calls mustBeNegative with the value
being assigned to the property. mustBeNegative issues an error if the any of the
elements in the array are not negative.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical or numeric class
• MATLAB classes that implement lt, isreal, and either isnumeric or islogical

1 Alphabetical List

1-9702

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNonnegative

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeNegative

1-9703

mustBeNonempty
Validate that value is nonempty or issue error

Syntax
mustBeNonempty(A)

Description
mustBeNonempty(A) issues an error if A is empty. This function does not return a value.

mustBeNonempty accepts user-defined objects if the class of the object implements this
method:

• isempty

Examples

Validate Input Not Empty

Use mustBeNonempty to validate that the input is not empty.

Create a containers.Map.

A = containers.Map;

Validate that A is not an empty value.

mustBeNonempty(A)

Error using mustBeNonempty (line 13)
Values must not be empty.

Creating a containers.Map with no input arguments results in an empty object.

1 Alphabetical List

1-9704

Constrain Property to Nonempty Values

This class constrains the value of Prop1 to nonempty values. The default value must also
be nonempty.

classdef MyClass
 properties
 Prop1 {mustBeNonempty} = containers.Map(1,'First')
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = containers.Map;

Error setting 'Prop1' property of 'MyClass' class:
Values must not be empty.

When you assign a value to the property, MATLAB calls mustBeNonempty with the value
being assigned to the property. mustBeNonempty issues an error because the value
assigned to Prop1 is empty.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or array of any one of the following:

• Any MATLAB data type
• MATLAB classes that implement isempty.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct | table | cell | function_handle |
categorical | datetime | duration | calendarDuration
Complex Number Support: Yes

 mustBeNonempty

1-9705

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeMember | mustBeNonzero

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9706

mustBeNonsparse
Validate that value is nonsparse or issue error

Syntax
mustBeNonsparse(A)

Description
mustBeNonsparse(A) issues an error if A is sparse. This function does not return a
value.

mustBeNonsparse accepts user-defined objects if the class of the object implements this
method:

• issparse

Examples

Validate Input Is Not Sparse

Use mustBeNonsparse to validate that the input is nonsparse.

Use the sparse function to create a sparse matrix.

A = [0 0 0 5
 0 2 0 0
 1 3 0 0
 0 0 4 0];
S = sparse(A);

Validate that S is nonsparse.

mustBeNonsparse(S)

 mustBeNonsparse

1-9707

Error using mustBeNonsparse (line 13)
Values must not be sparse.

Constrain Property to Nonsparse Values

This class constrains the value of Prop1 to nonsparse values.

classdef MyClass
 properties
 Prop1 {mustBeNonsparse}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
A = [0 0 0 5
 0 2 0 0
 1 3 0 0
 0 0 4 0];
obj.Prop1 = sparse(A);

Error setting 'Prop1' property of 'MyClass' class:
Values must not be sparse.

When you assign a value to the property, MATLAB calls mustBeNonsparse with the value
being assigned to the property. mustBeNonsparse issues an error because the value
assigned to Prop1 is sparse.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or array of any one of the following:

• logical or numeric class
• MATLAB classes that implement issparse

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

1 Alphabetical List

1-9708

Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNonempty | mustBeNumeric

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeNonsparse

1-9709

mustBeNonzero
Validate that value is nonzero or issue error

Syntax
mustBeNonzero(A)

Description
mustBeNonzero(A) issues an error if A is zero. This function does not return a value.

mustBeNonzero accepts user-defined objects if the class of the object implements these
methods:

• eq
• isnumeric or islogical

Examples

Validate That Values Are Not Zero

Use mustBeNonzero to validate that the input does not contain values that are zero.

A is an array of numbers that is the result of a calculation:

A = sin([-1,0,1]);
msutBeNonzero(A)

Error using mustBeNonzero (line 14)
Value must not be zero.

1 Alphabetical List

1-9710

Constrain Property to Nonzero Values

This class constrains the value of Prop1 to be nonzero.

classdef MyClass
 properties
 Prop1 {mustBeNonzero}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = sin([-1,0,1]);

Error setting property 'Prop1' of class 'MyClass':
Value must not be zero.

When you assign a value to the property, MATLAB calls mustBeNonzero with the value
being assigned to the property. mustBeNonzero issues an error because the one of the
values in A is zero.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical or numeric class
• MATLAB classes that implement eq, and either isnumeric or islogical

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

 mustBeNonzero

1-9711

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNonnegative | mustBePositive

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9712

mustBeNumeric
Validate that value is numeric or issue error

Syntax
mustBeNumeric(A)

Description
mustBeNumeric(A) issues an error if A is not numeric. This function does not return a
value.

mustBeNumeric accepts user-defined objects if the class of the object implements this
method:

• isnumeric

This function ignores input arguments that are empty values. No error is thrown if the
property value is empty.

Examples

Validate That Input Is Numeric

Validate that the result of an operation is numeric.

mustBeNumeric(5 < 10)

Error using mustBeNumeric (line 10)
Values must be numeric.

The relational operator for less than returns a logical value.

 mustBeNumeric

1-9713

Constrain Property to Numeric Values

This class constrains the value of Prop1 to numeric values.

classdef MyClass
 properties
 Prop1 {mustBeNumeric}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = isprime(29);

Error setting 'Prop1' property of 'MyClass' class:
Values must be numeric.

When you assign a value to the property, MATLAB calls mustBeNumeric with the value
being assigned to the property. mustBeNumeric issues an error because the value
assigned to Prop1 is a logical.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or array of any of the following:

• Any MATLAB numeric class
• MATLAB classes that implement isnumeric

Other data types cause an error.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

1 Alphabetical List

1-9714

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNumericOrLogical

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeNumeric

1-9715

mustBeNumericOrLogical
Validate that value is numeric or logical or issue error

Syntax
mustBeNumericOrLogical(A)

Description
mustBeNumericOrLogical(A) issues an error if A is not numeric or logical. This
function does not return a value.

mustBeNumericOrLogical accepts user-defined objects if the class of the object
implements these methods:

• isnumeric or islogical

This function ignores input arguments that are empty values. No error is thrown if the
property value is empty.

Examples

Validate That Input Is Numeric or Logical

Validate that the value of an object property is a numeric or logical value.

a = axes;
mustBeNumericOrLogical(a.Visible)

Error using mustBeNumericOrLogical (line 11)
Values must be numeric or logical.

In this case, the value of the Visible property is a char vector, which results in an error.

1 Alphabetical List

1-9716

Constrain Property to Numeric or Logical Values

This class constrains the value of Prop1 to numeric values.

classdef MyClass
 properties
 Prop1 {mustBeNumericOrLogical}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = get(gca,'Visible');

Error setting 'Prop1' property of 'MyClass' class:
Values must be numeric or logical.

When you assign a value to the property, MATLAB calls mustBeNumericOrLogical with
the value being assigned to the property. mustBeNumericOrLogical issues an error
because the value assigned to Prop1 is a char vector.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or array of any one of the following:

• logical or numeric class
• MATLAB classes that implement isnumeric or islogical

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

 mustBeNumericOrLogical

1-9717

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNumeric

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9718

mustBeReal
Validate that value is real or issue error

Syntax
mustBeReal(A)

Description
mustBeReal(A) issues an error if A is not a real number. This function does not return a
value.

mustBeReal accepts user-defined objects if the class of the object implements this
method:

• isreal

This function ignores input arguments that are empty values. No error is thrown if the
property value is empty.

Examples

Validate Input Is Real

Use mustBeReal to validate that the input is a real number.

Validate that a calculation results in real numbers.

x = -2:2;
z = x.^exp(-x.^2);
mustBeReal(z)

Error using mustBeReal (line 13)
values must be real.

 mustBeReal

1-9719

The value z is complex.

Constrain Property to Real Values

This class constrains the value of Prop1 to real values.

classdef MyClass
 properties
 Prop1 {mustBeReal}
 end
end

Create an object and assign a value to its property.

x = -2:0.1:2;
obj = MyClass;
obj.Prop1 = x.^exp(-x.^2);

Error setting 'Prop1' property of 'MyClass' class:
values must be real.

When you assign a value to the property, MATLAB calls mustBeReal with the value being
assigned to the property. mustBeReal issues an error because the value assigned to
Prop1 is complex.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or array of any one of the following:

• logical, char, or numeric class
• MATLAB classes that implement isreal

Other data types cause an error.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

1 Alphabetical List

1-9720

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeFinite | mustBeNonNan

Topics
“Property Validation Functions”

Introduced in R2017a

 mustBeReal

1-9721

mustBeInteger
Validate that value is integer or issue error

Syntax
mustBeInteger(A)

Description
mustBeInteger(A) issues an error if A does not contain integer values.
mustBeInteger does not return a value.

This function accepts user-defined objects if the class of the object implements these
methods:

• isreal
• isfinite
• floor
• eq
• isnumeric or islogical

This function ignores input arguments that are empty values. No error is thrown if the
property value is empty.

Examples

Validate That Input Contains Only Integers

Validate that a calculation results in integer values.

A = randi(9)/randi(9);
mustBeInteger(A)

1 Alphabetical List

1-9722

Error using mustBeInteger (line 14)
Values must be integer.

If the result using random numbers is not an integer value, mustBeInteger issues an
error.

Constrain Property to Integer Values

Constrain the property values to be only integers.

classdef MyClass
 properties
 Prop1 {mustBeInteger}
 end
end

Create an object and assign a value to its property.

obj = MyClass;
obj.Prop1 = randi(9)/randi(9);

Error setting 'Prop1' property of 'MyClass' class:
Value must be integer.

When you assign a value to the property, MATLAB calls mustBeInteger with the value
being assigned to the property. mustBeInteger issues an error because the value
resulting from the division of these particular random integers did not result in an
integer.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or array of any of the following:

• logical, char, or numeric class
• MATLAB classes that implement eq, isreal, isfinite, floor, and either

isnumeric or islogical

Other data types cause an error.

 mustBeInteger

1-9723

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNumeric | mustBePositive

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9724

mustBeMember
Validate that value is member of specified set

Syntax
mustBeMember(A,B)

Description
mustBeMember(A,B) issues an error if A is not a member of the set of values specified
by B. The set of values specified by A must be a case-sensitive, exact match.
mustBeMember does not return a value.

When using mustBeMember as a property validation function, ensure that the property
default value is a member of the set.

This function accepts user-defined objects if the class of the object implements the
following method:

• ismember

Examples

Validate That First Input Is Member of Set

Use mustBeMember to validate that the first input is a member of the set of values
specified by the second input.

Validate that the character vector 'red' is a member of set of character vectors,
'yellow', 'green', and 'blue'.

A = 'red';
B = {'yellow','green','blue'};
mustBeMember(A,B)

 mustBeMember

1-9725

Error using mustBeMember (line 14)
Value must be a member of this set
 'yellow'
 'green'
 'blue'

The validation failed because 'red' is not a member of the set. MATLAB returns an error
message listing the allowed values.

Constrain Property Value to Specified Set

Constrain property values to a specific set of values.

This class constrains the value of Prop1 to be either 'yellow', 'green', or 'blue'.

classdef MyClass
 properties
 Prop1 {mustBeMember(Prop1,{'yellow','green','blue'})} = 'yellow'
 end
end

The default property value must comply with the restrictions imposed by the validator.
Therefore, you must explicitly assign a default value that is a member of the set.

Create an object and assign a value to its property.

obj = MyClass
obj.Prop1 = 'red';

Error setting 'Prop1' property of 'MyClass' class:
Value must be a member of this set
 'yellow'
 'green'
 'blue'

1 Alphabetical List

1-9726

The validation failed because 'red' is not a member of the set. MATLAB returns an error
message listing the allowed values.

Input Arguments
A — Value to validate
scalar | array

Value to validate, specified as a scalar or an array of one of the following:

• logical, string, char, or any numeric class
• Logical array, string array, cellstr, or numeric array
• MATLAB classes that implement ismember

When using mustBeMember as a property validator, this argument must be the property
name, specified without quotation marks.
Example: PropName {mustBeMember(PropName,{'High','Medium','Low'})} =
'Low'

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string
Complex Number Support: Yes

B — Set of values to which A must belong
scalar | array

Set of values to which A must belong, specified as any of the following:

• logical, string, char, or any numeric class
• Logical array, string array, cellstr, or numeric array
• MATLAB classes that implement ismember

Example: Property with cell array of char vectors: PropName
{mustBeMember(PropName,{'yellow','green','blue'})} = 'blue'

Example: Property with string array: PropName {mustBeMember(PropName,
["yellow","green","blue"])} = "blue"

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

 mustBeMember

1-9727

Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mustBeNonempty

Topics
“Property Validation Functions”

Introduced in R2017a

1 Alphabetical List

1-9728

namelengthmax
Maximum identifier length

Syntax
l = namelengthmax

Description
l = namelengthmax returns the maximum length allowed for MATLAB identifiers.
MATLAB identifiers include:

• Variable names
• Structure field names
• Script, function, and class names
• Model names

Use the namelengthmax function instead of hard-coding a specific maximum name
length into your programs. Then, if the identifier length changes in a future MATLAB
release, it is not necessary to update this limit in your code.

Examples

Determine Maximum MATLAB Identifier Length
l = namelengthmax

l = 63

See Also
isvarname | matlab.lang.makeUniqueStrings | matlab.lang.makeValidName

 namelengthmax

1-9729

Introduced before R2006a

1 Alphabetical List

1-9730

NaN
Create array of all NaN values

Syntax
X = NaN
X = NaN(n)
X = NaN(sz1,...,szN)
X = NaN(sz)

X = NaN(___ ,typename)
X = NaN(___ ,'like',p)

Description
X = NaN returns the scalar representation of Not-a-Number. NaN results from operations
that return undefined numeric output, such as 0/0 or 0*Inf.

X = NaN(n) returns an n-by-n matrix of NaN values.

X = NaN(sz1,...,szN) returns an sz1-by-...-by-szN array of NaN values, where
sz1,...,szN indicate the size of each dimension. For example, NaN(3,4) returns a 3-
by-4 matrix.

X = NaN(sz) returns an array of NaN values, where the size vector sz defines size(X).
For example, NaN([3 4]) returns a 3-by-4 matrix.

X = NaN(___ ,typename) returns an array of NaN values of data type typename, which
can be either 'single' or 'double'.

X = NaN(___ ,'like',p) returns an array of NaN values like p; that is, of the same
data type, sparsity, and complexity (real or complex) as p. You can specify typename or
'like' but not both.

 NaN

1-9731

Examples

Matrix of NaN Values

Create a 3-by-3 matrix of NaN values.

X = NaN(3)

X = 3×3

 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN

3-D Array of NaN Values

Create a 2-by-3-by-4 array of NaN values.

X = NaN(2,3,4);
size(X)

ans = 1×3

 2 3 4

Clone Size from Existing Array

Create an array of NaN values that is the same size as an existing array.

A = [1 4; 2 5; 3 6];
sz = size(A);
X = NaN(sz)

X = 3×2

 NaN NaN

1 Alphabetical List

1-9732

 NaN NaN
 NaN NaN

It is a common pattern to combine the previous two lines of code into a single line:

X = NaN(size(A));

Specify Data Type of NaN Values

Create a 1-by-3 vector of NaN values whose elements are of type single.

X = NaN(1,3,'single')

X = 1x3 single row vector

 NaN NaN NaN

You can also specify the output type based on the type of another variable. Create a
variable p of type single. Then, create a vector of NaN values with the same size and
type as p.

p = single([1 2 3]);
X = NaN(size(p),'like',p)

X = 1x3 single row vector

 NaN NaN NaN

Input Arguments
n — Size of square matrix
integer

Size of square matrix, specified as an integer.

• If n is 0, then X is an empty matrix.

 NaN

1-9733

• If n is negative, then it is treated as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension in a list
integers

Size of each dimension in a list, specified as separate integer arguments.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, NaN ignores trailing dimensions of length 1. For

example, NaN(3,1,1) creates a 3-by-1 vector of NaN values.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension in a vector
row vector of integers

Size of each dimension in a vector, specified as a row vector of integers.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, NaN ignores trailing dimensions of length 1. For

example, NaN([3 1 1]) creates a 3-by-1 vector of NaN values.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

typename — Data type
'double' (default) | single'

Data type to create, specified as 'double' or 'single'.

p — Prototype of array
array

Prototype of array to create, specified as an array.
Data Types: double | single

1 Alphabetical List

1-9734

Complex Number Support: Yes

Tips
• X = NaN returns the scalar, type double, IEEE representation of Not-A-Number. The

exact bit-wise hexadecimal representation of this value is fff8000000000000.
MATLAB preserves the Not-A-Number status of alternate NaN representations and
treats all representations equivalently. In some special cases, due to hardware
limitations for example, MATLAB does not preserve the exact bit pattern of the
alternate representations during computation, and instead uses the canonical NaN bit
pattern previously described.

• NaN values are not equal to each other, thus logical operations involving NaN return
false except for the not equal operator ~=. For example, NaN == NaN returns logical 0
(false) but NaN ~= NaN returns logical 1 (true).

• NaN values in a vector are treated as different unique elements. For example,
unique([1 1 NaN NaN]) returns the row vector [1 NaN NaN].

• Use the isnan or ismissing functions to detect NaN values in an array. The
rmmissing function detects and removes NaN values, and the fillmissing function
detects NaN values and replaces them with non-NaN values.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Dimensions must be real, nonnegative, integers.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 NaN

1-9735

• See NaN in the Parallel Computing Toolbox documentation.

See Also
Inf | fillmissing | ismissing | isnan | missing | rmmissing

Topics
“Missing Data in MATLAB”

Introduced before R2006a

1 Alphabetical List

1-9736

nargchk
Validate number of input arguments

Note nargchk is not recommended. Use narginchk instead.

Syntax
msgText = nargchk(minArgs,maxArgs,numArgs)
msgStruct = nargchk(minArgs,maxArgs,numArgs,'struct')

Description
msgText = nargchk(minArgs,maxArgs,numArgs) validates the number of input
arguments and returns a message if the number of inputs, numArgs, is fewer than
minArgs or greater than maxArgs.

This syntax is the same as msgText =
nargchk(minArgs,maxArgs,numArgs,'string').

msgStruct = nargchk(minArgs,maxArgs,numArgs,'struct') returns a message
structure instead of a character vector.

Examples

Check Number of Function Inputs

In a file named checkInputs, create a function that uses nargchk to verify that the
function has been called with a valid number of inputs.

function checkInputs(varargin)
 msgTxt = nargchk(2,3,nargin)
end

 nargchk

1-9737

Call the checkInputs function with a valid number of inputs. nargchk returns an empty
character vector.

checkInputs(13,7)

msgTxt =

 []

Call the checkInputs function with too few inputs.

checkInputs(42)

msgTxt =

 'Not enough input arguments.'

Call the checkInputs function with too many inputs.

checkInputs(0,1,1,2,3)

msgTxt =

 'Too many input arguments.'

Pass nargchk Output Structure to error Function

In a file named checkInputs, create a function that uses nargchk with the 'struct'
parameter to verify that the function has been called with a valid number of inputs.

function checkInputs(varargin)
 msgStruct = nargchk(2,3,nargin,'struct');
 error(msgStruct)
end

At the command prompt, call the checkInputs function with an accepted number of
inputs. nargchk does not throw an error.

checkInputs(13,7)

Call the checkInputs function with too few inputs.

checkInputs(42)

1 Alphabetical List

1-9738

Error using checkInputs (line 3)
Not enough input arguments.

Call the checkInputs function with too many inputs.

checkInputs(0,1,1,2,3)

Error using checkInputs (line 3)
Too many input arguments.

Input Arguments
minArgs — Minimum number of accepted inputs
scalar

Minimum number of accepted inputs, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

maxArgs — Maximum number of accepted inputs
scalar

Maximum number of accepted inputs, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

numArgs — Number of function inputs
scalar

Number of function inputs, specified as a scalar. Typically, you use the nargin function to
determine the number of input arguments specified in the function call.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
msgText — Message text
'Not enough input arguments.' | 'Too many input arguments.' | empty
matrix

 nargchk

1-9739

Message text, returned as 'Not enough input arguments.', 'Too many input
arguments.', or an empty matrix.

If numArgs is less than minArgs, then nargchk returns the character vector 'Not
enough input arguments.' If numArgs is greater than maxArgs, then nargchk
returns the character vector 'Too many input arguments.' Otherwise, nargchk
returns an empty matrix.

msgStruct — Message and identifier
structure

Message and identifier, returned as a structure with message and identifier fields. If
numArgs is less than minArgs, then nargchk returns this structure:

 message: 'Not enough input arguments.'
 identifier: 'MATLAB:nargchk:notEnoughInputs'

If numArgs is greater than maxArgs, then nargchk returns this structure:

 message: 'Too many input arguments.'
 identifier: 'MATLAB:nargchk:tooManyInputs'

Otherwise, nargchk returns an empty structure.

Tips
• nargchk is often used with the error function. The error function accepts either

type of return value from nargchk: a message character vector or message structure.
For example, this command uses the output message structure from nargchk as the
input to the error function.

error(nargchk(2,4,nargin,'struct'))

If the number of input arguments is within the expected range, then nargchk returns
an empty character vector or structure. When the error function receives an empty
character vector or structure, it does not throw an error.

See Also
error | nargin | narginchk | nargout | nargoutchk | varargin | varargout

1 Alphabetical List

1-9740

Topics
“Validate Number of Function Arguments”

Introduced before R2006a

 nargchk

1-9741

nargin
Number of function input arguments

Syntax
nargin
nargin(fun)

Description
nargin returns the number of function input arguments given in the call to the currently
executing function. Use this syntax in the body of a function only.

nargin(fun) returns the number of input arguments that appear in the fun function
definition. If the function includes varargin in its definition, then nargin returns the
negative of the number of inputs. For example, if function myFun declares inputs a, b, and
varargin, then nargin('myFun') returns -3.

Examples

Inputs to Current Function

In a file named addme.m, create a function that accepts up to two inputs. Use nargin in
the body of the function to determine the number of inputs.

type addme.m

function c = addme(a,b)
 switch nargin
 case 2
 c = a + b;
 case 1
 c = a + a;
 otherwise

1 Alphabetical List

1-9742

 c = 0;
 end
end

At the command prompt, call the addme function with two inputs.

c = addme(13,42)

c = 55

Call the function with one input.

c = addme(13)

c = 26

Inputs Defined for a Function

Determine how many inputs a function accepts.

The function addme created in the previous example, has two inputs in its declaration
statement (a and b). Define the name of the function as a character vector and use it as
input for nargin.

fun = 'addme';
nargin(fun)

ans = 2

Inputs to Function That Uses varargin

Determine how many inputs a function that uses varargin can accept.

In a file named mynewplot.m, create a function that accepts numeric inputs x and y and
any number of additional plot inputs using varargin.

type mynewplot.m

function mynewplot(x,y,varargin)
 figure

 nargin

1-9743

 plot(x,y,varargin{:})
 title('My New Plot')
end

Query how many inputs newplot can accept.

fx = 'mynewplot';
nargin(fx)

ans = -3

The minus sign indicates that the third input is varargin. The mynewplot function can
accept an indeterminate number of additional input arguments.

Input Arguments
fun — Function
function handle | character vector | string scalar

Function for which nargin returns the number of input arguments from its definition,
specified as a function handle, a character vector, or a string scalar.
Example: @cos
Example: 'plot'
Data Types: char | function_handle

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For the syntax nargin(fun), if fun is a function handle or a function name that C/C+
+ code generation does not support, then the generated code for nargin returns 0.

1 Alphabetical List

1-9744

See Also
narginchk | nargout | varargin

Topics
“Find Number of Function Arguments”
“Argument Checking in Nested Functions”

Introduced before R2006a

 nargin

1-9745

narginchk
Validate number of input arguments

Syntax
narginchk(minArgs,maxArgs)

Description
narginchk(minArgs,maxArgs) validates the number of input arguments in the call to
the currently executing function. narginchk throws an error if the number of inputs
specified in the call is fewer than minArgs or greater than maxArgs. If the number of
inputs is between minArgs and maxArgs (inclusive), then narginchk does nothing.

Examples

Verify Number of Inputs Is Within Expected Range

Verify that a function is called with a minimum of two and maximum of five input
arguments.

In a file named checkInputs.m, create a function that uses narginchk to verify that the
function has been called with a valid number of inputs. The function signature indicates
that checkInputs requires two input arguments and accepts up to three additional,
optional arguments.
function checkInputs(A,B,varargin)
 minArgs=2;
 maxArgs=5;
 narginchk(minArgs,maxArgs)

 fprintf('Received 2 required and %d optional inputs\n', length(varargin))
end

Call the function with one input argument.

checkInputs(13)

1 Alphabetical List

1-9746

Error using checkInputs (line 4)
Not enough input arguments.

Call the function again with five input arguments.

checkInputs(13,7,42,1701,5)

Received 2 required and 3 optional inputs

Call the function again with six input arguments.

checkInputs(13,7,42,1701,5,88)

Error using checkInputs (line 4)
Too many input arguments.

Input Arguments
minArgs — Minimum number of accepted inputs
scalar

Minimum number of accepted inputs, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

maxArgs — Maximum number of accepted inputs
scalar

Maximum number of accepted inputs, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
• To verify that you have a minimum number of arguments, but no maximum number,

set maxArgs to inf. For example: narginchk(5,inf) throws an error when there
are fewer than five inputs.

 narginchk

1-9747

• To verify that you have an exact number of arguments, specify the same value for
minArgs and maxArgs. For example: narginchk(3,3) throws an error if you do not
have exactly three inputs.

If you call a function with too few inputs, the message identifier and message are:

 identifier: 'MATLAB:narginchk:notEnoughInputs'
 message: 'Not enough input arguments.'

When too many inputs are supplied, the message identifier and message are:

 identifier: 'MATLAB:narginchk:tooManyInputs'
 message: 'Too many input arguments.'

• If minArgs is 0 and maxArgs is nargin(fun), then you do not need to use
narginchk.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nargin | varargin

Topics
“Validate Number of Function Arguments”

Introduced in R2011b

1 Alphabetical List

1-9748

nargout
Number of function output arguments

Syntax
nargout
nargout(fun)

Description
nargout returns the number of function output arguments specified in the call to the
currently executing function. Use this syntax in the body of a function only.

nargout(fun) returns the number of outputs that appear in the fun function definition.
If the function includes varargout in its definition, then nargout returns the negative of
the number of outputs. For example, if function myFun declares outputs y, z, and
varargout, then nargout('myFun') returns -3.

Examples

Outputs for Current Function

In a file named subtract.m, create a function that calculates a second return value,
absdif, only if requested.

type subtract.m

function [dif,absdif] = subtract(y,x)
 dif = y-x;
 if nargout > 1
 disp('Calculating absolute value')
 absdif = abs(dif);
 end
end

 nargout

1-9749

At the command prompt, call the subtract function with one return value.

diff = subtract(42,13)

diff = 29

Call the subtract function again with two return values.

[dif,absdif] = subtract(2,5)

Calculating absolute value

dif = -3

absdif = 3

Outputs Defined for a Function

Determine how many outputs a function can return.

The function subtract created in the previous example has two outputs in its
declaration statement (dif and absdif).

fun = @subtract;
nargout(fun)

ans = 2

Outputs from Function That Uses varargout

Determine how many outputs a function that uses varargout can return.

In a file named mySize.m, create a function that returns a vector of dimensions from the
size function and the individual dimensions using varargout.

type mySize.m

function [sizeVector,varargout] = mySize(x)
 sizeVector = size(x);
 varargout = cell(1,nargout-1);

1 Alphabetical List

1-9750

 for k = 1:length(varargout)
 varargout{k} = sizeVector(k);
 end
end

Query how many outputs mySize can return.

fun = 'mySize';
nargout(fun)

ans = -2

The minus sign indicates that the second output is varargout. The mySize function can
return an indeterminate number of additional outputs.

Input Arguments
fun — Function
function handle | character vector | string scalar

Function for which nargout returns the number of output arguments from its definition,
specified as a function handle, a character vector, or a string scalar.
Example: @rand
Example: 'sortrows'
Data Types: char | function_handle

Tips
• When you use a function as part of an expression, such as an if statement, then

MATLAB calls the function with one output argument. Therefore, the nargout
function returns 1 within expressions.

• If you check for a nargout value of 0 within a function and you specify the value of
the output, MATLAB populates ans. However, if you check nargout and do not
specify a value for the output, then MATLAB does not modify ans.

 nargout

1-9751

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For the syntax nargout, if the function that contains the nargout call has at least
one output argument and you call the function without a terminating semicolon, then
the generated code for nargout returns 1.

This behavior does not occur for extrinsic functions.
• For the syntax nargout(fun), if fun is a function handle or function name that C/C+

+ code generation does not support, then the generated code for nargout returns 0.

See Also
nargoutchk | varargout

Topics
“Find Number of Function Arguments”
“Argument Checking in Nested Functions”

Introduced before R2006a

1 Alphabetical List

1-9752

nargoutchk
Validate number of output arguments

Syntax
nargoutchk(minArgs,maxArgs)
msgText = nargoutchk(minArgs,maxArgs,numArgs)
msgStruct = nargoutchk(minArgs,maxArgs,numArgs,'struct')

Description
nargoutchk(minArgs,maxArgs) validates the number of output arguments specified in
the current function call. nargoutchk throws an error if the number of outputs is less
than minArgs or greater than maxArgs. If the number of outputs is between minArgs
and maxArgs (inclusive), then nargoutchk does nothing.

msgText = nargoutchk(minArgs,maxArgs,numArgs) validates the value of
numArgs, and returns a message if numArgs is less than minArgs or greater than
maxArgs. The use of this syntax is not recommended.

msgStruct = nargoutchk(minArgs,maxArgs,numArgs,'struct') returns a
message structure. The use of this syntax is not recommended.

Examples

Number of Outputs Within Expected Range

Verify that a function is called with a minimum of two and maximum of five output
arguments.

In a file named checkOutputs.m, create a function that uses nargoutchk to verify that
the function has been called with a valid number of outputs. The function signature
indicates that checkOutputs accepts a variable number of output arguments.

 nargoutchk

1-9753

function varargout = checkOutputs(varargin)
minArgs=2;
maxArgs=5;
nargoutchk(minArgs,maxArgs)

disp("You requested " + nargout + " outputs.")

varargout = cell(nargout,1);
for k=1:nargout
 varargout{k} = randi(100);
end
end

Call the function with one output argument.

a = checkOutputs(13)

Error using checkOutputs (line 4)
Not enough output arguments.

Call the function again with five output arguments.

[a,b,c,d,e] = checkOutputs(7,42);

You requested 5 outputs.

Call the function again with six output arguments.

[a,b,c,d,e,f] = checkOutputs(7,42);

Error using checkOutputs (line 4)
Too many output arguments.

Input Arguments
minArgs — Minimum number of accepted outputs
scalar

Minimum number of accepted outputs, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-9754

maxArgs — Maximum number of accepted outputs
scalar

Maximum number of accepted outputs, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

numArgs — Number of function outputs
scalar

Note Use of numArgs is not recommended.

Number of function outputs, specified as a scalar. Typically, you use the nargout function
to determine the number of output arguments specified in the function call.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
msgText — Message text
'Not enough output arguments.' | 'Too many output arguments.' | empty
matrix

Note Use of msgText is not recommended.

Message text, returned as 'Not enough output arguments.', 'Too many output
arguments.', or an empty matrix.

If numArgs is less than minArgs, then nargoutchk returns the character vector 'Not
enough output arguments.' If numArgs is greater than maxArgs, then nargoutchk
returns the character vector 'Too many output arguments.' Otherwise,
nargoutchk returns an empty matrix.

msgStruct — Message and identifier
structure

 nargoutchk

1-9755

Note Use of msgStruct is not recommended.

Message and identifier, returned as a structure with message and identifier fields. If
numArgs is less than minArgs, nargoutchk returns this structure:

 message: 'Not enough output arguments.'
 identifier: 'MATLAB:nargoutchk:notEnoughOutputs'

If numArgs is greater than maxArgs, nargoutchk returns this structure:

 message: 'Too many output arguments.'
 identifier: 'MATLAB:nargoutchk:tooManyOutputs'

Otherwise, nargoutchk returns an empty structure.

Tips
• To verify that you have a minimum number of arguments, but no maximum number,

set maxArgs to inf. For example: nargoutchk(5,inf) throws an error when there
are fewer than five outputs.

• To verify that you have an exact number of arguments, specify the same value for
minArgs and maxArgs. For example: nargoutchk(3,3) throws an error when you
do not have exactly three outputs.

• If minArgs is 0 and maxArgs is nargout, then you do not need to use nargoutchk.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nargout | varargout

1 Alphabetical List

1-9756

Topics
“Validate Number of Function Arguments”

Introduced before R2006a

 nargoutchk

1-9757

NaT
Not-a-Time

NaT is the representation for Not-a-Time, a value that can be stored in a datetime array
to indicate an unknown or missing datetime value.

The datetime function creates a NaT value automatically when it cannot convert text to
a datetime value, or for elements in a datetime array where the Year, Month, Day,
Hour, Minute, or Second properties are set to NaN. You also can assign the character
vector, 'NaT', to elements of an existing datetime array. Use the NaT function to create
a new datetime array containing only NaT values.

Syntax
NaT
t = NaT(n)
t = NaT(sz1,...,szN)
t = NaT(sz)

t = NaT(___ ,'Format',fmt)
t = NaT(___ ,'TimeZone',tz)

Description
NaT returns a scalar Not-a-Time (NaT) datetime value.

t = NaT(n) returns an n-by-n matrix of NaT values.

t = NaT(sz1,...,szN) returns a sz1-by-...-by-szN array of NaT values where
sz1,...,szN indicates the size of each dimension. For example, NaT(3,4) returns a 3-
by-4 array of NaT values.

t = NaT(sz) returns an array of NaT values where the size vector, sz, defines size(t).
For example, NaT([3,4]) returns a 3-by-4 array of NaT values.

1 Alphabetical List

1-9758

t = NaT(___ ,'Format',fmt) returns a datetime array with the specified display
format. Use this syntax to initialize a datetime array. Not-a-Time values always display
as NaT, but non-NaT values assigned to the array will display using the specified format.

t = NaT(___ ,'TimeZone',tz) returns an array of NaT values in the time zone
specified by tz.

Examples

Square NaT Matrix

Create a 3-by-3 matrix of NaT values.

t = NaT(3)

t = 3x3 datetime array
 NaT NaT NaT
 NaT NaT NaT
 NaT NaT NaT

Initialize Rectangular datetime Array and Specify Format

Create a 2-by-3 array of NaT values and specify a date format.

t = NaT(2,3,'Format','dd/MM/yyyy')

t = 2x3 datetime array
 NaT NaT NaT
 NaT NaT NaT

Assign a datetime value to an element of t.

t(1,2) = datetime('today')

t = 2x3 datetime array
 NaT 02/03/2019 NaT
 NaT NaT NaT

 NaT

1-9759

Input Arguments
n — Size of square matrix
integer

Size of square matrix, specified as an integer.

• If n is 0, then t is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension (as separate arguments)
integer values

Size of each dimension, specified as separate arguments of integer values.

• If the size of any dimension is 0, then t is an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension (as a row vector)
integer values

Size of each dimension, specified as a row vector of integer values. Each element of this
vector indicates the size of the corresponding dimension:

• If the size of any dimension is 0, then t is an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Example: sz = [2,3,4] creates a 2-by-3-by-4 array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

fmt — Date format
'default' (default) | 'defaultdate' | character vector | string scalar

1 Alphabetical List

1-9760

Date format, specified as a character vector or string scalar. Use the letters A-Z and a-z
to define the format. For a complete list of valid letter identifiers, see the Format
property for datetime arrays.

Alternatively, use one of the following character vectors to specify a default format.

Value of fmt Description
'default' Use the default display format.
'defaultdate' Use the default display format for datetime

values created without time components.

Example: 'yyyy MMM dd'
Data Types: char | string

tz — Time zone region
'' (default) | character vector | string scalar

Time zone region, specified as a character vector or string scalar.

The value of tz can be:

• '', to create an “unzoned” datetime array that does not belong to a specific time
zone.

• The name of a time zone region from the IANA Time Zone Database, for example,
'America/Los_Angeles'. The name of a time zone region accounts for the current
and historical rules for standard and daylight offsets from UTC that are observed in a
geographic region.

• An ISO 8601 character vector of the form +HH:mm or -HH:mm, for example, '+01:00',
to specify a time zone that is a fixed offset from UTC.

• 'UTC', to create a datetime array in Universal Coordinated Time.
• 'UTCLeapSeconds', to create a datetime array in Universal Coordinated Time that

accounts for leap seconds.
• 'local', to create a datetime array in the system time zone.

This table lists some common names of time zone regions from the IANA Time Zone
Database.

 NaT

1-9761

Value of TimeZone UTC Offset UTC DST Offset
'Africa/Johannesburg' +02:00 +02:00
'America/Chicago' −06:00 −05:00
'America/Denver' −07:00 −06:00
'America/Los_Angeles' −08:00 −07:00
'America/New_York' −05:00 −04:00
'America/Sao_Paulo' −03:00 −02:00
'Asia/Hong_Kong' +08:00 +08:00
'Asia/Kolkata' +05:30 +05:30
'Asia/Tokyo' +09:00 +09:00
'Australia/Sydney' +10:00 +11:00
'Europe/London' +00:00 +01:00
'Europe/Zurich' +01:00 +02:00

Data Types: char | string

See Also
datetime | isnat | nan

Introduced in R2015b

1 Alphabetical List

1-9762

native2unicode
Convert numeric bytes to Unicode character representation

Syntax
unicodestr = native2unicode(bytes)
unicodestr = native2unicode(bytes, encoding)

Description
unicodestr = native2unicode(bytes) converts a numeric vector, bytes, from the
user default encoding to a Unicode character representation. native2unicode treats
bytes as a vector of 8-bit bytes, and each value must be in the range [0,255]. The output
argument unicodestr is a character vector having the same general array shape as
bytes.

unicodestr = native2unicode(bytes, encoding) converts bytes to a Unicode
representation with the assumption that bytes is in the character encoding scheme
specified by encoding. The input argument encoding must have no characters ('') or it
must be a name or alias for an encoding scheme. Some examples are 'UTF-8',
'latin1', 'US-ASCII', and 'Shift_JIS'. If encoding is unspecified or has no
characters (''), the default encoding scheme is used. encoding can be a character
vector or a string scalar.

Note If bytes is a character vector or a string scalar, it is returned unchanged.

Examples
This example begins with a vector of bytes in an unknown character encoding scheme.
The user-written function detect_encoding determines the encoding scheme. If
successful, it returns the encoding scheme name or alias as a character vector. If
unsuccessful, it throws an error represented by an MException object, ME. The example
calls native2unicode to convert the bytes to Unicode representation:

 native2unicode

1-9763

try
 enc = detect_encoding(bytes);
 str = native2unicode(bytes, enc);
 disp(str);
catch ME
 rethrow(ME);
end

Note that the computer must be configured to display text in a language represented by
the detected encoding scheme for the output of disp(str) to be correct.

See Also
unicode2native

Introduced before R2006a

1 Alphabetical List

1-9764

nchoosek
Binomial coefficient or all combinations

Syntax
b = nchoosek(n,k)
C = nchoosek(v,k)

Description
b = nchoosek(n,k) returns the binomial coefficient, defined as

Cn k =
n
k

= n!
n− k ! k! .

This is the number of combinations of n items taken k at a time. n and k must be
nonnegative integers.

C = nchoosek(v,k) returns a matrix containing all possible combinations of the
elements of vector v taken k at a time. Matrix C has k columns and m!/((m–k)! k!) rows,
where m is length(v).

Examples

Binomial Coefficient, "5 Choose 4"

b = nchoosek(5,4)

b = 5

 nchoosek

1-9765

All Combinations of Five Numbers Taken Four at a Time

v = 2:2:10;
C = nchoosek(v,4)

C = 5×4

 2 4 6 8
 2 4 6 10
 2 4 8 10
 2 6 8 10
 4 6 8 10

All Combinations of Three Unsigned Integers Taken Two at a Time

v = uint16([10 20 30]);
C = nchoosek(v,uint16(2))

C = 3x2 uint16 matrix

 10 20
 10 30
 20 30

Input Arguments
n — Number of possible choices
nonnegative integer scalar

Number of possible choices, specified as a nonnegative integer scalar. n can be any
numeric type, but must be real.
Example: 10
Example: int16(10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-9766

k — Number of selected choices
nonnegative integer scalar

Number of selected choices, specified as a nonnegative integer scalar. k can be any
numeric type, but must be real. nchoosek(n,k) requires that n and k be the same type
or that at least one of them be of type double.

There are no restrictions on combining inputs of different types for nchoosek(v,k).
Example: 3
Example: int16(3)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

v — Set of all choices
vector

Set of all choices, specified as a vector.
Example: [1 2 3 4 5]
Example: [1+1i 2+1i 3+1i 4+1i]
Example: int16([1 2 3 4 5])
Example: [true false true false]
Example: ['abcd']
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

Output Arguments
b — Binomial coefficient
nonnegative scalar value

Binomial coefficient, returned as a nonnegative scalar value. b is the same type as n and
k. If n and k are of different types, then b is returned as the nondouble type.

C — All combinations of v
matrix

 nchoosek

1-9767

All combinations of v, returned as a matrix of the same type as v. Matrix C has k columns
and n!/((n–k)! k!) rows, where n is length(v).

Each row of C contains a combination of k items chosen from v. The elements in each row
of C are listed in the same order as they appear in v.

If k > numel(v), then C is an empty matrix.

Limitations
• When b = nchoosek(n,k) is sufficiently large, nchoosek displays a warning that

the result might not be exact. In this case, the result is only accurate to 15 digits for
double-precision inputs, or 8 digits for single-precision inputs.

• C = nchoosek(v,k) is only practical for situations where length(v) is less than
about 15.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When the first input, x, is a scalar, nchoosek returns a binomial coefficient. In this
case, x must be a nonnegative integer. It cannot have type int64 or uint64.

• When the first input, x, is a vector, nchoosek treats it as a set. In this case, x can
have type int64 or uint64.

• The second input, k, cannot have type int64 or uint64.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

See Also
perms

1 Alphabetical List

1-9768

Introduced before R2006a

 nchoosek

1-9769

ndgrid
Rectangular grid in N-D space

Syntax
[X1,X2,...,Xn] = ndgrid(x1,x2,...,xn)
[X1,X2,...,Xn] = ndgrid(xg)

Description
[X1,X2,...,Xn] = ndgrid(x1,x2,...,xn) replicates the grid vectors
x1,x2,...,xn to produce an n-dimensional full grid.

[X1,X2,...,Xn] = ndgrid(xg) specifies a single grid vector xg to use for all
dimensions. The number of output arguments you specify determines the dimensionality n
of the output.

Examples

Create 2-D Grid

Create a 2-D grid from the vectors [1 3 5 7 9 11 13 15 17 19] and [2 4 6 8 10
12].

[X,Y] = ndgrid(1:2:19,2:2:12)

X = 10×6

 1 1 1 1 1 1
 3 3 3 3 3 3
 5 5 5 5 5 5
 7 7 7 7 7 7
 9 9 9 9 9 9
 11 11 11 11 11 11

1 Alphabetical List

1-9770

 13 13 13 13 13 13
 15 15 15 15 15 15
 17 17 17 17 17 17
 19 19 19 19 19 19

Y = 10×6

 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12
 2 4 6 8 10 12

Evaluate Function Over Gridded Domain

Evaluate and plot the function

x1e−x1
2− x2

2

over the gridded domain

−2 < x1 < 2 and −2 < x2 < 2.

Create a grid of values for the domain.

[X1,X2] = ndgrid(-2:.2:2);

Evaluate the function over the domain.

Z = X1 .* exp(-X1.^2 - X2.^2);

Generate a mesh plot of the function.

mesh(X1,X2,Z)

 ndgrid

1-9771

In R2016b and later releases, this task does not require the use of ndgrid. Instead, you
can construct the grid using implicit expansion with these commands:

x = -2:.2:2;

Z1 = x.' .* exp(-(x.').^2 - x.^2);

Interpolate Data

Create a 2-D grid and calculate some function values on the grid. Interpolate between the
assigned values to refine the grid.

1 Alphabetical List

1-9772

Create a coarse grid for (x, y) in the range [− 5, 5].

[X,Y] = ndgrid(-5:0.5:5);

Calculate some function values on the grid and plot the function.

f = sin(X.^2) * cos(Y.^2);
surf(X,Y,f)

Interpolate between the points using a more refined grid and plot the result.

[X1,Y1] = ndgrid(-5:0.125:5);
F = interpn(X,Y,f,X1,Y1,'spline');

surf(X1,Y1,F)

 ndgrid

1-9773

Input Arguments
x1,x2,...,xn — Grid vectors (as separate arguments)
vectors

Grid vectors, specified as vectors containing grid coordinates for each dimension. The
grid vectors implicitly define the grid. For example, in 2-D:

1 Alphabetical List

1-9774

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

xg — Grid vector for all dimensions
vectors

Grid vector for all dimensions, specified as a vector containing grid coordinates. ndgrid
uses xg as the grid vector for each dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

Output Arguments
X1,X2,...,Xn — Full grid representation
array

Full grid representation, returned as separate arrays. For each output array Xi, the ith
dimension contains copies of the grid vector xi.

 ndgrid

1-9775

Tips
• The ndgrid function is similar to meshgrid. However, ndgrid supports 1-D to N-D

while meshgrid is restricted to 2-D and 3-D.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 1-D syntax, X = ndgrid(x), returns a gpuArray column vector X that contains
the elements of the input gpuArray x for use as a one-dimensional grid.

• The inputs must be floating-point double or single.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The 1-D syntax, X = ndgrid(x), returns a distributed array column vector X that
contains the elements of the input distributed array x for use as a one-dimensional
grid.

• The inputs must be floating-point double or single.

1 Alphabetical List

1-9776

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
griddedInterpolant | mesh | meshgrid | surf

Topics
“Interpolating Gridded Data”

Introduced before R2006a

 ndgrid

1-9777

ndims
Number of array dimensions

Syntax
N = ndims(A)

Description
N = ndims(A) returns the number of dimensions in the array A. The number of
dimensions is always greater than or equal to 2. The function ignores trailing singleton
dimensions, for which size(A,dim) = 1.

Examples

Find Dimensions of Vector

Create a row vector.

A = 1:5;

Find the number of dimensions in the vector.

ndims(A)

ans = 2

The result is 2 because the vector has a size of 1-by-5.

Find Dimensions of Cell Array

Create a cell array of character vectors.

1 Alphabetical List

1-9778

A{1,1,1} = 'cell_1';
A{1,1,2} = 'cell_2';
A{1,1,3} = 'cell_3'

A = 1x1x3 cell array
A(:,:,1) =

 {'cell_1'}

A(:,:,2) =

 {'cell_2'}

A(:,:,3) =

 {'cell_3'}

Find the number of dimensions of the cell array.

ndims(A)

ans = 3

The result is 3 because the cell array has a size of 1-by-1-by-3.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array | table | timetable

Input array, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | table | timetable |
categorical | datetime | duration | calendarDuration

 ndims

1-9779

Algorithms
The number of dimensions in an array is the same as the length of the size vector of the
array. In other words, ndims(A) = length(size(A)).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
length | size

1 Alphabetical List

1-9780

Introduced before R2006a

 ndims

1-9781

ne, ~=
Determine inequality

Syntax
A ~= B
ne(A,B)

Description
A ~= B returns a logical array with elements set to logical 1 (true) where arrays A and B
are not equal; otherwise, the element is logical 0 (false). The test compares both real
and imaginary parts of numeric arrays. ne returns logical 1 (true) where A or B have
NaN or undefined categorical elements.

ne(A,B) is an alternative way to execute A ~= B, but is rarely used. It enables operator
overloading for classes.

Examples

Inequality of Two Vectors

Create two vectors containing both real and imaginary numbers, then compare the
vectors for inequality.

A = [1+i 3 2 4+i];
B = [1 3+i 2 4+i];
A ~= B

ans = 1x4 logical array

 1 1 0 0

1 Alphabetical List

1-9782

The ne function tests both real and imaginary parts for inequality, and returns logical 1
(true) where one or both parts are not equal.

Find Characters

Create a character vector.

M = 'masterpiece';

Test for the presence of a specific character using ~=.

M ~= 'n'

ans = 1x11 logical array

 1 1 1 1 1 1 1 1 1 1 1

The value of logical 1 (true) indicates the absence of the character 'n'. The character is
not present in the vector.

Find Values in Categorical Array

Create a categorical array with two values: 'heads' and 'tails'.

A = categorical({'heads' 'heads' 'tails'; 'tails' 'heads' 'tails'})

A = 2x3 categorical array
 heads heads tails
 tails heads tails

Find all values not in the 'heads' category.

A ~= 'heads'

ans = 2x3 logical array

 0 0 1

 ne, ~=

1-9783

 1 0 1

A value of logical 1 (true) indicates a value not in the category. Since A only has two
categories, A ~= 'heads' returns the same answer as A == 'tails'.

Compare the rows of A for inequality.

A(1,:) ~= A(2,:)

ans = 1x3 logical array

 1 0 0

A value of logical 1 (true) indicates where the rows have unequal category values.

Compare Floating-Point Numbers

Many numbers expressed in decimal text cannot be represented exactly as binary floating
numbers. This leads to small differences in results that the ~= operator reflects.

Perform a few subtraction operations on numbers expressed in decimal and store the
result in C.

C = 0.5-0.4-0.1

C = -2.7756e-17

With exact decimal arithmetic, C should be equal to exactly 0. Its small value is due to the
nature of binary floating-point arithmetic.

Compare C to 0 for inequality.

C ~= 0

ans = logical
 1

Compare floating-point numbers using a tolerance, tol, instead of using ~=.

1 Alphabetical List

1-9784

tol = eps(0.5);
abs(C-0) > tol

ans = logical
 0

The two numbers, C and 0, are closer to one another than two consecutive floating-point
numbers near 0.5. In many situations, C may act like 0.

Inequality of Two Datetime Arrays

Compare the elements of two datetime arrays for inequality.

Create two datetime arrays in different time zones.

t1 = [2014,04,14,9,0,0;2014,04,14,10,0,0];
A = datetime(t1,'TimeZone','America/Los_Angeles');
A.Format = 'd-MMM-y HH:mm:ss Z'

A = 2x1 datetime array
 14-Apr-2014 09:00:00 -0700
 14-Apr-2014 10:00:00 -0700

t2 = [2014,04,14,12,0,0;2014,04,14,12,30,0];
B = datetime(t2,'TimeZone','America/New_York');
B.Format = 'd-MMM-y HH:mm:ss Z'

B = 2x1 datetime array
 14-Apr-2014 12:00:00 -0400
 14-Apr-2014 12:30:00 -0400

Check where elements in A and B are not equal.

A~=B

ans = 2x1 logical array

 0
 1

 ne, ~=

1-9785

Input Arguments
A — Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is a categorical array, the other input can be a categorical array, a cell
array of character vectors, or a single character vector. A single character vector
expands into a cell array of character vectors of the same size as the other input. If
both inputs are ordinal categorical arrays, they must have the same sets of categories,
including their order. If both inputs are categorical arrays that are not ordinal, they
can have different sets of categories. See “Compare Categorical Array Elements” for
more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, a character vector,
or a cell array of character vectors. The corresponding elements of A and B are
compared lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

B — Right array
scalar | vector | matrix | multidimensional array

Right array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

1 Alphabetical List

1-9786

If A and B are categorical, datetime, or duration arrays, then they must be the same size
unless one is a scalar.

• If one input is a categorical array, the other input can be a categorical array, a cell
array of character vectors, or a single character vector. A single character vector
expands into a cell array of character vectors of the same size as the other input. If
both inputs are ordinal categorical arrays, they must have the same sets of categories,
including their order. If both inputs are categorical arrays that are not ordinal, they
can have different sets of categories. See “Compare Categorical Array Elements” for
more details.

• If one input is a datetime array, the other input can be a datetime array, a character
vector, or a cell array of character vectors.

• If one input is a duration array, the other input can be a duration array or a numeric
array. The operator treats each numeric value as a number of standard 24-hour days.

• If one input is a string array, the other input can be a string array, character vector, or
a cell array of character vectors. The corresponding elements of A and B are compared
lexicographically.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support using ne to test inequality between an enumeration
member and a string array, a character array, or a cell array of character arrays.

 ne, ~=

1-9787

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | ge | gt | le | lt

Topics
“Array Comparison with Relational Operators”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-9788

nearestNeighbor
Class: DelaunayTri

(Not recommended) Point closest to specified location

Note nearestNeighbor(DelaunayTri) is not recommended. Use
nearestNeighbor(triangulation) instead.

DelaunayTri is not recommended. Use delaunayTriangulation instead.

Syntax
PI = nearestNeighbor(DT,QX)
PI = nearestNeighbor(DT,QX,QY)
PI = nearestNeighbor(DT,QX,QY,QZ)
[PI,D] = nearestNeighbor(DT,QX,...)

Description
PI = nearestNeighbor(DT,QX) returns the index of the nearest point in DT.X for
each query point location in QX.

PI = nearestNeighbor(DT,QX,QY) and PI = nearestNeighbor(DT,QX,QY,QZ)
allow the query points to be specified in column vector format when working in 2-D and 3-
D.

[PI,D] = nearestNeighbor(DT,QX,...) returns the index of the nearest point in
DT.X for each query point location in QX. The corresponding Euclidean distances between
the query points and their nearest neighbors are returned in D.

Note nearestNeighbor is not supported for 2-D triangulations that have constrained
edges.

 nearestNeighbor

1-9789

Input Arguments
DT Delaunay triangulation.
QX The matrix QX is of size mpts-by-ndim, mpts being the number of query

points and ndim the dimension of the space where the points reside.

Output Arguments
PI PI is a column vector of point indices that index into the points DT.X. The

length of PI is equal to the number of query points mpts
D D is a column vector of length mpts.

Examples
Create a Delaunay triangulation:

x = rand(10,1);
y = rand(10,1);
dt = DelaunayTri(x,y);

Create query points:

qrypts = [0.25 0.25; 0.5 0.5];

Find the nearest neighbors to the query points:

pid = nearestNeighbor(dt, qrypts)

See Also
delaunayTriangulation | pointLocation | triangulation

1 Alphabetical List

1-9790

neighbors
Class: TriRep

(Not recommended) Simplex neighbor information

Note neighbors(TriRep) is not recommended. Use neighbors(triangulation)
instead.

TriRep is not recommended. Use triangulation instead.

Syntax
SN = neighbors(TR, SI)

Description
SN = neighbors(TR, SI) returns the simplex neighbor information for the specified
simplices SI.

Input Arguments
TR Triangulation representation.
SI SI is a column vector of simplex indices that index into the triangulation

matrix TR.Triangulation. If SI is not specified the neighbor
information for the entire triangulation is returned, where the neighbors
associated with simplex i are defined by the i'th row of SN.

 neighbors

1-9791

Output Arguments
SN SN is an m-by-n matrix, where m = length(SI) , the number of

specified simplices, and n is the number of neighbors per simplex. Each
row SN(i,:) represents the neighbors of the simplex SI(i).

By convention, the simplex opposite vertex(j) of simplex SI(i) is
SN(i,j). If a simplex has one or more boundary facets, the nonexistent
neighbors are represented by NaN.

Examples

Example 1
Load a 3-D triangulation and use TriRep to compute the neighbors of all tetrahedra.

load tetmesh
trep = TriRep(tet, X)
nbrs = neighbors(trep)

Example 2
Query a 2-D triangulation created using DelaunayTri.

x = rand(10,1)
y = rand(10,1)
dt = DelaunayTri(x,y)

Find the neighbors of the first triangle:

n1 = neighbors(dt, 1)

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

1 Alphabetical List

1-9792

Facet
A facet is an edge of a triangle or a face of a tetrahedron.

See Also
delaunayTriangulation | triangulation

 neighbors

1-9793

NET
Summary of functions in MATLAB .NET interface

Description
Use the following functions to bring assemblies from the Microsoft .NET Framework into
the MATLAB environment. The functions are implemented as a package called NET. To
use these functions, prefix the function name with package name NET.

1 Alphabetical List

1-9794

BeginInvoke Initiate asynchronous .NET delegate call
Combine Convenience function for static .NET System.Delegate

Combine method
enableNETfromNetworkDrive Enable access to .NET commands from network drive
EndInvoke Retrieve result of asynchronous call initiated by .NET

System.Delegate BeginInvoke method
NET.addAssembly Make .NET assembly visible to MATLAB
NET.Assembly Members of .NET assembly
NET.convertArray Convert numeric MATLAB array to .NET array
NET.createArray Array for nonprimitive .NET types
NET.createGeneric Create instance of specialized .NET generic type
NET.disableAutoRelease Lock .NET object representing a RunTime Callable

Wrapper (COM Wrapper) so that MATLAB does not
release COM object

NET.enableAutoRelease Unlock .NET object representing a RunTime Callable
Wrapper (COM Wrapper) so that MATLAB releases COM
object

NET.GenericClass Represent parameterized generic type definitions
NET.invokeGenericMethod Invoke generic method of object
NET.isNETSupported Check for supported Microsoft .NET Framework
NET.NetException Capture error information for .NET exception
NET.setStaticProperty Static property or field name
Remove Convenience function for static .NET System.Delegate

Remove method
RemoveAll Convenience function for static .NET System.Delegate

RemoveAll method

See Also

Topics
“.NET Libraries”

 NET

1-9795

NET.addAssembly
Package: NET

Make .NET assembly visible to MATLAB

Syntax
asmInfo = NET.addAssembly(globalName)
asmInfo = NET.addAssembly(privateName)

Description
asmInfo = NET.addAssembly(globalName) loads a global .NET assembly into
MATLAB.

asmInfo = NET.addAssembly(privateName) loads a private .NET assembly.

Limitations
• NET.addAssembly does not support assemblies generated by the MATLAB Compiler

SDK product.

Input Arguments
globalName

One of the following:

• String or character vector representing the name of a global assembly.
• Instance of System.Reflection.AssemblyName class.

Default:

1 Alphabetical List

1-9796

privateName

String or character vector representing the full path of a private assembly.

Default:

Output Arguments
asmInfo

NET.Assembly object containing names of the members of the assembly.

Examples
Display today’s date using System.DateTime in the mscorlib assembly.

System.DateTime.Now.ToLongDateString

Call the System.Windows.Forms.MessageBox.Show method in the global assembly
System.Windows.Forms.

asm = NET.addAssembly('System.Windows.Forms');
import System.Windows.Forms.*
MessageBox.Show('Simple Message Box')

Display classes in the private assembly NetSample.dll.

asm = NET.addAssembly('c:\work\NetSample.dll');
asm.Classes

Tips
• You do not need to call NET.addAssembly to access classes in the mscorlib.dll

and system.dll assemblies. MATLAB dynamically loads these assemblies from
the .NET Framework class library the first time you type "NET." or "System.".

• Refer to your .NET product documentation for the name of the assembly and its
deployment type (global or private).

 NET.addAssembly

1-9797

See Also
NET.Assembly

Topics
“Assembly is Library of .NET Classes”

External Websites
MSDN AssemblyName Class

Introduced in R2009a

1 Alphabetical List

1-9798

NET.Assembly class
Package: NET

Members of .NET assembly

Description
NET.Assembly object returns names of the members of an assembly.

Construction
The NET.addAssembly function creates an instance of this class.

Properties
AssemblyHandle

Instance of System.Reflection.Assembly class of the added assembly.

Classes

nClassx1 cell array of class names of the assembly, where nClass is the number of
classes.

Enums

nEnumx1 cell array of enumerations of the assembly, where nEnum is the number of
enumerations.

Structures

nStructx1 cell array of structures of the assembly, where nStruct is the number of
structures.

 NET.Assembly class

1-9799

GenericTypes

nGenTypex1 cell array of generic types of the assembly, where nGenType is the number
of generic types.

Interfaces

nInterfacex1 cell array of interface names of the assembly, where nInterface is the
number of interfaces.

Delegates

nDelegatex1 cell array of delegates of the assembly, where nDelegate is the number of
delegates.

See Also
NET.addAssembly

Topics
“What Classes Are in a .NET Assembly?”

1 Alphabetical List

1-9800

NET.convertArray
Package: NET

Convert numeric MATLAB array to .NET array

Note MATLAB automatically converts arrays to .NET types. For information, see “Use
Arrays with .NET Applications”.

Syntax
arrObj = NET.convertArray(V,'arrType',[m,n])

Description
arrObj = NET.convertArray(V,'arrType',[m,n]) converts a MATLAB array V to
a .NET array. Optional value arrType is a string or character vector representing a
namespace-qualified .NET array type. To convert a MATLAB vector to a two-
dimensional .NET array (either 1-by-n or m-by-1), use optional values m,n. If V is a
MATLAB vector and you do not specify the number of dimensions and their sizes, the
output arrObj is a one-dimensional .NET array.

If you do not specify arrType, MATLAB converts the type according to the MATLAB
Primitive Type Conversion Table. See “Pass Primitive .NET Types”.

Examples
Create a list L of random System.Int32 integers using the
System.Collections.Generic.List class, and then sort the results.

% Create array R of random integers
nInt = 5;
R = randi(100,1,nInt);

 NET.convertArray

1-9801

% Create .NET array A
A = NET.convertArray(R,'System.Int32');
% Put A into L, a generic collections list
L = NET.createGeneric('System.Collections.Generic.List',{'System.Int32'},A.Length);
L.AddRange(A)
% Sort the values in L
L.Sort

See Also
NET.createArray

Introduced in R2009a

1 Alphabetical List

1-9802

NET.createArray
Package: NET

Array for nonprimitive .NET types

Syntax
array = NET.createArray(typeName,[m,n,p,...])
array = NET.createArray(typeName,m,n,p,...)

Description
array = NET.createArray(typeName,[m,n,p,...]) creates an m-by-n-by-p-by-...
array of type typeName, which is either a fully qualified .NET array type name
(namespace and array type name) or an instance of the NET.GenericClass class, in
case of arrays of generic type. m,n,p,... are the number of elements in each dimension
of the array.

array = NET.createArray(typeName,m,n,p,...) alternative syntax for creating
an array.

You cannot specify the lower bound of an array.

Examples

Create .NET Array of Generic Type
This example creates a .NET array of List<Int32> generic type.

genType = NET.GenericClass('System.Collections.Generic.List',...
 'System.Int32');
arr = NET.createArray(genType, 5)

arr =

 NET.createArray

1-9803

 List<System*Int32>[] with properties:

 Length: 5
 LongLength: 5
 Rank: 1
 SyncRoot: [1x1 System.Collections.Generic.List<System*Int32>[]]
 IsReadOnly: 0
 IsFixedSize: 1
 IsSynchronized: 0

Create and Initialize Jagged Array
This example creates a jagged .NET array of three elements.

jaggedArray = NET.createArray('System.Double[]', 3)

jaggedArray =

 Double[][] with properties

 Length: 3
 LongLength: 3
 Rank: 1
 SyncRoot: [1x1 System.Double[][]]
 IsReadOnly: 0
 IsFixedSize: 1
 IsSynchronized: 0

Assign values:

jaggedArray(1) = [1, 3, 5, 7, 9];
jaggedArray(2) = [0, 2, 4, 6];
jaggedArray(3) = [11, 22];

Access first value of third array:

jaggedArray(3,1)

ans =
 11

Create Jagged Array of Generic Type
This example creates a jagged array of List<Double> generic type.

genCls = NET.GenericClass('System.Collections.Generic.List[]',...
 'System.Double');

1 Alphabetical List

1-9804

Create the array, genArr.

genArr = NET.createArray(genCls,3)

genArr =

 List<System*Double>[][] with properties:

 Length: 3
 LongLength: 3
 Rank: 1
 SyncRoot: [1x1 System.Collections.Generic.List`1[][]]
 IsReadOnly: 0
 IsFixedSize: 1
 IsSynchronized: 0

Create Nested Jagged Array
This command creates a jagged array of type System.Double[][][].

netArr = NET.createArray('System.Double[][]', 3)

netArr =

 Double[][][] with properties:

 Length: 3
 LongLength: 3
 Rank: 1
 SyncRoot: [1x1 System.Double[][][]]
 IsReadOnly: 0
 IsFixedSize: 1
 IsSynchronized: 0

See Also
NET.convertArray | NET.createGeneric

Introduced in R2009a

 NET.createArray

1-9805

NET.createGeneric
Package: NET

Create instance of specialized .NET generic type

Syntax
genObj = createGeneric(className,paramTypes,varargin ctorArgs)

Description
genObj = createGeneric(className,paramTypes,varargin ctorArgs) creates
an instance genObj of generic type className.

Input Arguments
className String or character vector containing the fully qualified generic type

name.
paramTypes Allowed cell types are: strings or character vectors with fully

qualified parameter type names and instances of the
NET.GenericClass class when parameterization with another
parameterized type is needed.

ctorArgs Optional, variable length (0 to N) list of constructor arguments
matching the arguments of the .NET generic class constructor
intended to be invoked.

Output Arguments
genObj Handle to the specialized generic class instance.

1 Alphabetical List

1-9806

Examples

Create List of System.Double Objects

Create a strongly typed list dblLst of objects of type System.Double.

t = NET.createGeneric('System.Collections.Generic.List',{'System.Double'},10);

Create List with Key/Value Pairs

Create the kvpType generic association where Key is of System.Int32 type and Value
is a System.String.

kvpType = NET.GenericClass(...
 'System.Collections.Generic.KeyValuePair',...
 'System.Int32','System.String');

Create the list kvpList with initial storage capacity for 10 key-value pairs.

kvpList = NET.createGeneric('System.Collections.Generic.List',{kvpType},10);

Add Item to List

Create a KeyValuePair item.

kvpItem = NET.createGeneric(...
 'System.Collections.Generic.KeyValuePair',...
 {'System.Int32','System.String'},...
 42,'myString');

Add this item to the list kvpList.

Add(kvpList,kvpItem)

See Also
NET.GenericClass

 NET.createGeneric

1-9807

Introduced in R2009a

1 Alphabetical List

1-9808

NET.disableAutoRelease
Package: NET

Lock .NET object representing a RunTime Callable Wrapper (COM Wrapper) so that
MATLAB does not release COM object

Syntax
A = NET.disableAutoRelease(obj)

Description
A = NET.disableAutoRelease(obj) locks a .NET object representing a RunTime
Callable Wrapper (COM Wrapper) so that MATLAB does not release the COM object. obj
is a .NET object representing a COM Wrapper.

Before passing a .NET object representing a COM Wrapper to another process, lock the
object using this function so that MATLAB does not release it. After using the object, call
NET.enableAutoRelease to release the COM object.

Examples
The following user-defined function, GetComApp.m, has access to a COM object defined
in the pseudo-classComNamespace.ComClass. One of its methods is readData, with
the signature:
System.String RetVal readData(ComNamespace.ComClass this, System.String strIn)

The input argument is defined in the pseudo-class NetDocTest.MyClass, which has a
property named MyApp.

function GetComApp(obj)
comObj = ComNamespace.ComClass;
obj.MyApp = comObj;
% To pass a COM object to another process, lock the object

 NET.disableAutoRelease

1-9809

NET.disableAutoRelease(comObj);
end

The example in NET.enableAutoRelease shows how to call the GetComApp function.

See Also
NET.enableAutoRelease

Topics
“How MATLAB Handles System.__ComObject”

Introduced in R2010b

1 Alphabetical List

1-9810

NET.enableAutoRelease
Package: NET

Unlock .NET object representing a RunTime Callable Wrapper (COM Wrapper) so that
MATLAB releases COM object

Syntax
A = NET.enableAutoRelease(obj)

Description
A = NET.enableAutoRelease(obj) releases the COM wrapper when the object goes
out of scope, where obj is a .NET object representing a COM Wrapper.

Call this function only if the object was locked using NET.disableAutoRelease.

Examples
The following pseudo-code shows how to call a function (GetComApp.m, described in
NET.disableAutoRelease) which returns a COM object. The object, mainObj of type
NetDocTest.MyClass, has a property, MyApp. Call GetComApp to get a COM object, and
use its readData method.

mainObj = NetDocTest.MyClass;
GetComApp(mainObj);
app = mainObj.MyApp;
app.readData('hello');
% Unlock the COM object
NET.enableAutoRelease(mainObj.MyApp);

See Also
NET.disableAutoRelease

 NET.enableAutoRelease

1-9811

Topics
“How MATLAB Handles System.__ComObject”

Introduced in R2010b

1 Alphabetical List

1-9812

NET.GenericClass class
Package: NET

Represent parameterized generic type definitions

Description
The NET.createGeneric function uses instances of this class to create a generic
specialization that requires parameterization with another parameterized type.

Construction
genType = NET.GenericClass(className,paramTypes)

Input Arguments
className

String or character vector containing the fully qualified generic type name.

Default:

paramTypes

Optional, variable length (1 to N) list of types for the generic class parameterization.
Allowed argument types are:

• String or character vector containing the fully qualified generic type name.
• Instance of the NET.GenericClass class when deeper nested parameterization with

another parameterized type is needed.

Default:

 NET.GenericClass class

1-9813

Examples
Create an instance of System.Collections.Generic.List of
System.Collections.Generic.KeyValuePair generic associations where Key is of
System.Int32 type and Value is a System.String class with initial storage capacity
for 10 key-value pairs.

kvpType = NET.GenericClass(...
 'System.Collections.Generic.KeyValuePair',...
 'System.Int32', 'System.String');
kvpList = NET.createGeneric('System.Collections.Generic.List',...
 {kvpType}, 10);

See Also
NET.createArray | NET.createGeneric | NET.invokeGenericMethod

Topics
“.NET Generic Classes”

Introduced in R2009a

1 Alphabetical List

1-9814

NET.invokeGenericMethod
Package: NET

Invoke generic method of object

Syntax
[varargout] =
NET.invokeGenericMethod(obj,'genericMethodName',paramTypes,args,...)

Description
[varargout] =
NET.invokeGenericMethod(obj,'genericMethodName',paramTypes,args,...)
calls instance or static generic method genericMethodName.

Input Arguments
obj Allowed argument types are:

• Instances of class containing the generic method
• Strings or character vectors with fully qualified class name, if

calling static generic methods
• Instances of NET.GenericClass definitions, if calling static

generic methods of a generic class
genericMethodNa
me

Generic method name to invoke

 NET.invokeGenericMethod

1-9815

paramTypes Cell vector (1 to N) with the types for generic method
parameterization, where allowed cell types are:

• Strings or character vectors with fully qualified parameter type
name.

• Instances of NET.GenericClass definitions, if using nested
parameterization with another parameterized type

args Optional, variable length (0 to N) list of method arguments

Output Arguments
varargout Variable-length output argument list, varargout, from method

genericMethodName

Examples
The following syntax calls a generic method that takes two parameterized types and
returns a parameterized type:

a = NET.invokeGenericMethod(obj, ...
 'myGenericSwapMethod', ...
 {'System.Double', 'System.Double'}, ...
 5, 6);

To display generic methods in MATLAB, see the example “Display .NET Generic Methods
Using Reflection”.

See Also
NET.GenericClass | NET.createGeneric | varargout

Topics
“Call .NET Generic Methods”

Introduced in R2009b

1 Alphabetical List

1-9816

NET.isNETSupported
Check for supported Microsoft .NET Framework

Syntax
tf = NET.isNETSupported

Description
tf = NET.isNETSupported returns logical 1 (true) if a supported version of the
Microsoft .NET Framework is found. Otherwise, it returns logical 0 (false) and you
cannot use the .NET Framework in MATLAB.

Examples

Display Message If Supported Microsoft .NET Framework Not Found

if ~NET.isNETSupported
 disp('Supported .NET Framework not found')
end

See Also
Introduced in R2013a

 NET.isNETSupported

1-9817

NET.NetException class
Package: NET

Capture error information for .NET exception

Description
Process information from a NET.NetException object to handle .NET errors. This class
is derived from MException.

Construction
e = NET.NetException(msgID,errMsg,netObj) constructs instance e of
NET.NetException class.

Input Arguments
msgID

message identifier

errMsg

error message text

netObj

System.Exception object that caused the exception

Properties
ExceptionObject

System.Exception class causing the error.

1 Alphabetical List

1-9818

Methods

Inherited Methods
See the methods of the base class MException.

Examples
Display error information after trying to load an unknown assembly:

try
 NET.addAssembly('C:\Work\invalidfile.dll')
catch e
 e.message;
 if(isa(e, 'NET.NetException'))
 eObj = e.ExceptionObject
 end
end

ans =
Message: Could not load file or assembly
 'file:///C:\Work\invalidfile.dll' or
 one of its dependencies. The system cannot
 find the file specified.
Source: mscorlib
HelpLink:

eObj =
 FileNotFoundException with properties:

 Message: [1x1 System.String]
 FileName: [1x1 System.String]
 FusionLog: [1x1 System.String]
 Data: [1x1 System.Collections.ListDictionaryInternal]
 InnerException: []
 TargetSite: [1x1 System.Reflection.RuntimeMethodInfo]
 StackTrace: [1x1 System.String]
 HelpLink: []
 Source: [1x1 System.String]

 NET.NetException class

1-9819

See Also
MException

Topics
Class Attributes
Property Attributes

Introduced in R2009b

1 Alphabetical List

1-9820

NET.setStaticProperty
Package: NET

Static property or field name

Syntax
NET.setStaticProperty('propName', value)

Description
NET.setStaticProperty('propName', value) sets the static property or field name
specified in the string or character vector propName to the given value.

Examples
To set the myStaticProperty in the given class and namespace, use the syntax:

NET.setStaticProperty('MyTestObject.MyClass.myStaticProperty', 5);

Introduced in R2009b

 NET.setStaticProperty

1-9821

nccreate
Create variable in NetCDF file

Syntax
nccreate(filename,varname)
nccreate(filename,varname,Name,Value)

Description
nccreate(filename,varname) creates a scalar double variable named varname in
the NetCDF file specified by filename. If filename does not exist, then nccreate
creates the file using the netcdf4_classic format.

nccreate(filename,varname,Name,Value) creates a variable with additional
options specified by one or more name-value pair arguments. For example, to create a
nonscalar variable, use the Dimensions name-value pair argument.

Examples

Create New Variables in NetCDF File

Create a NetCDF file named myexample.nc that contains a variable named Var1.

nccreate('myexample.nc','Var1')

Create a second variable in the same file.

nccreate('myexample.nc','Var2')

Display the contents of the NetCDF file.

ncdisp('myexample.nc')

Source:
 pwd\myexample.nc

1 Alphabetical List

1-9822

Format:
 netcdf4_classic
Variables:
 Var1
 Size: 1x1
 Dimensions:
 Datatype: double
 Var2
 Size: 1x1
 Dimensions:
 Datatype: double

Create Variable and Specify Dimensions and File Format

Create a new two-dimensional variable named peaks in a classic (NetCDF 3) format file
named myncclassic.nc. Use the 'Dimensions' name-value pair argument to specify
the names and lengths of the two dimensions. Use the 'Format' name-value pair
argument to specify the file format.

nccreate('myncclassic.nc','peaks',...
 'Dimensions',{'r',200,'c',200},...
 'Format','classic')

Write data to the variable.

ncwrite('myncclassic.nc','peaks',peaks(200))

Display the contents of the NetCDF file.

ncdisp('myncclassic.nc')

Source:
 pwd\myncclassic.nc
Format:
 classic
Dimensions:
 r = 200
 c = 200
Variables:
 peaks
 Size: 200x200

 nccreate

1-9823

 Dimensions: r,c
 Datatype: double

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The file is an existing NetCDF
file, or the name you want to assign to a new NetCDF file.
Example: 'myFile.nc'

varname — Name of new variable
character vector | string scalar

Name of the new variable, specified as a character vectorr or string scalar.
Example: 'myVar'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
nccreate('myFile.nc','Var1','Datatype','double','Format','classic')
creates a variable named Var1 of type NC_DOUBLE in a NetCDF 3 file named myFile.nc.

Dimensions — Dimensions of variable
cell array

Dimensions of the new variable, specified as the comma-separated pair consisting of
'Dimensions' and a cell array. The cell array lists the dimension name as a character
vector or string scalar followed by its numerical length, in this form:
{dname1,dlength1,dname2,dlength2, ...}. The dname1 input is the name of the
first dimension specified as a character vector or string scalar, dlength1 is the length of
the first dimension, dname2 is the name of the second dimension, and so on. If a
dimension exists, specifying its length is optional. A variable with a single dimension is
always treated as a column vector.

1 Alphabetical List

1-9824

Use Inf to specify an unlimited dimension. A netcdf4 format file can have any number
of unlimited dimensions in any order. All other formats can have only one unlimited
dimension per file and it must be specified last in the cell array.

nccreate creates the dimension at the same location as the variable. For netcdf4
format files, you can specify a different location for the dimension using a fully qualified
dimension name.
Example: 'Dimensions',{'dim1',100,'dim2',150,'dim3',Inf}

Datatype — MATLAB data type
'double' (default) | character vector | string scalar

MATLAB data type, specified as the comma-separated pair consisting of 'Datatype' and
a character vector or string scalar containing the name of the data type. When nccreate
creates the variable in the NetCDF file, it uses a corresponding NetCDF datatype. This
table lists valid values for 'Datatype' and the corresponding NetCDF variable type that
nccreate creates.

Value of Datatype NetCDF Variable Type
'double' NC_DOUBLE
'single' NC_FLOAT
'int64' NC_INT64*
'uint64' NC_UINT64*
'int32' NC_INT
'uint32' NC_UINT*
'int16' NC_SHORT
'uint16' NC_USHORT*
'int8' NC_BYTE
'uint8' NC_UBYTE*
'char' NC_CHAR

* These data types are only available when the file is a netcdf4 format file.
Example: 'Datatype','uint16'

Format — NetCDF file format
'netcdf4_classic' (default) | character vector | string scalar

 nccreate

1-9825

NetCDF file format, specified as the comma-separated pair consisting of 'Format' and
one of these values.

Value of Format Description
'classic' NetCDF 3
'64bit' NetCDF 3, with 64-bit offsets
'netcdf4_classic' NetCDF 4 classic model
'netcdf4' NetCDF 4 model (Use this format to enable group

hierarchy)

If varname specifies a group (for example,'/grid3/temperature'), then nccreate
sets the value of Format to 'netcdf4'.
Example: 'Format','classic'

FillValue — Replacement value for missing values
scalar | 'disable'

Replacement value for missing values, specified as the comma-separated pair consisting
of 'FillValue' and a scalar or 'disable'. The default value is specified by the
NetCDF library. To disable replacement values, specify 'FillValue','disable'.

This argument is available for netcdf4 or netcdf4_classic formats only.
Example: 'FillValue',NaN
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char

ChunkSize — Chunk size along each dimension
vector

Chunk size along each dimension, specified as the comma-separated pair consisting of
'ChunkSize' and a vector. The first element specifies the number of rows, the second
element specifies the number of columns, the third element specifies the length of the
third dimension, and so on. The default value is specified by the NetCDF library.

This argument is available for netcdf4 or netcdf4_classic formats only.
Example: 'ChunkSize',[5 6 9]
Data Types: double

1 Alphabetical List

1-9826

DeflateLevel — Amount of compression
0 (default) | scalar value between 0 and 9

Amount of compression, specified as the comma-separated pair consisting of
'DeflateLevel' and a scalar value between 0 and 9. 0 indicates no compression and 9
indicates the most compression.

This argument is available for netcdf4 or netcdf4_classic formats only.
Example: 'DeflateLevel',5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Shuffle — Status of shuffle filter
false (default) | true

Status of the shuffle filter, specified as the comma-separated pair consisting of
'Shuffle' and false or true. false disables the shuffle filter and true enables it.
The shuffle filter can assist with the compression of integer data by changing the byte
order in the data stream.

This argument is available for netcdf4 or netcdf4_classic formats only.
Example: 'Shuffle',true
Data Types: logical

See Also
ncdisp | ncinfo | ncwrite | ncwriteschema | netcdf

Topics
“Export to NetCDF Files”

Introduced in R2011a

 nccreate

1-9827

ncdisp
Display contents of NetCDF data source in Command Window

Syntax
ncdisp(source)
ncdisp(source,location)
ncdisp(source,location,dispFormat)

Description
ncdisp(source) displays all the groups, dimensions, variable definitions, and all
attributes in the NetCDF data source, source, as text in the Command Window.

ncdisp(source,location) displays information about the variable or group specified
by location.

ncdisp(source,location,dispFormat) displays the contents of the NetCDF data
source, in the display format specified by dispFormat.

Examples

Display Contents of NetCDF File

Display the contents of the example NetCDF file, example.nc.

ncdisp('example.nc')

Source:
 matlabroot\toolbox\matlab\demos\example.nc
Format:
 netcdf4
Global Attributes:
 creation_date = '29-Mar-2010'

1 Alphabetical List

1-9828

Dimensions:
 x = 50
 y = 50
 z = 5
Variables:
 avagadros_number
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 description = 'this variable has no dimensions'
 temperature
 Size: 50x1
 Dimensions: x
 Datatype: int16
 Attributes:
 scale_factor = 1.8
 add_offset = 32
 units = 'degrees_fahrenheight'
 peaks
 Size: 50x50
 Dimensions: x,y
 Datatype: int16
 Attributes:
 description = 'z = peaks(50);'
Groups:
 /grid1/
 Attributes:
 description = 'This is a group attribute.'
 Dimensions:
 x = 360
 y = 180
 time = 0 (UNLIMITED)
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

 /grid2/
 Attributes:
 description = 'This is another group attribute.'
 Dimensions:
 x = 360

 ncdisp

1-9829

 y = 180
 time = 0 (UNLIMITED)
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

MATLAB displays all the groups, dimensions, and variable definitions in example.nc.

Display Contents of NetCDF Variable

Display the contents of the variable peaks in the file, example.nc.

ncdisp('example.nc','peaks')

Source:
 matlabroot\toolbox\matlab\demos\example.nc
Format:
 netcdf4
Dimensions:
 x = 50
 y = 50
Variables:
 peaks
 Size: 50x50
 Dimensions: x,y
 Datatype: int16
 Attributes:
 description = 'z = peaks(50);'

Display Contents of NetCDF File and Hide Attributes

Display only the group hierarchy and variable definitions of the example file,
example.nc.

ncdisp('example.nc','/','min')

Source:
 matlabroot\toolbox\matlab\demos\example.nc
Format:

1 Alphabetical List

1-9830

 netcdf4
Variables:
 avagadros_number
 Size: 1x1
 Dimensions:
 Datatype: double
 temperature
 Size: 50x1
 Dimensions: x
 Datatype: int16
 peaks
 Size: 50x50
 Dimensions: x,y
 Datatype: int16
Groups:
 /grid1/
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

 /grid2/
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

Input Arguments
source — Name of NetCDF file
character vector | string scalar

Name of a NetCDF file, specified as a character vector or string scalar. source also can
be the URL of an OPeNDAP NetCDF data source that resolves to a NetCDF file or a
variable in a NetCDF file.
Example: 'myNetCDFfile.nc'
Data Types: char | string

 ncdisp

1-9831

location — Location of variable or group
'/' (default) | character vector | string scalar

Location of a variable or group in the NetCDF file, specified as a character vector or
string scalar. Set location to '/'(forward slash) to display the entire contents of the
file.
Data Types: char | string

dispFormat — Display format
'full' (default) | 'min'

Display format, specified as one of these values.

'full' Display group hierarchy with dimensions, attributes, and variable
definitions.

'min' Display group hierarchy and variable definitions.

Data Types: char | string

Tips
• If source is an OPeNDAP URL with a constraint expression, use the syntax,

ncdisp(source) with no other input arguments.

See Also
ncinfo | ncread | ncreadatt | ncwrite | netcdf

Topics
“Import NetCDF Files and OPeNDAP Data”

Introduced in R2011a

1 Alphabetical List

1-9832

ncinfo
Return information about NetCDF data source

Syntax
finfo = ncinfo(source)
vinfo = ncinfo(source,varname)
ginfo = ncinfo(source,groupname)

Description
finfo = ncinfo(source) returns information in the structure finfo about the entire
NetCDF data source specified by source, where source can be the name of a NetCDF file
or the URL of an OPeNDAP NetCDF data source.

vinfo = ncinfo(source,varname) returns information in the structure vinfo about
the variable varname in source.

ginfo = ncinfo(source,groupname) returns information in the structure ginfo
about the group groupname in source (only NetCDF4 data sources).

Note Use ncdisp for visual inspection of a NetCDF source.

Input Arguments
source

Character vector or string scalar specifying the name of a NetCDF file or the URL of an
OPeNDAP NetCDF data source.

Default:

 ncinfo

1-9833

varname

Character vector or string scalar specifying the name of a variable in a NetCDF file or
OPeNDAP data source.

Default:

groupname

Character vector or string scalar specifying the name of a group in a NetCDF file or
OPeNDAP data source.

Default:

Output Arguments
finfo

A structure with the following fields.

Field Description
Filename NetCDF file name or

OPeNDAP URL

Name '/', indicating the full file
Dimensions An array of structures with these fields:
 Name Dimension name
 Length Current length of dimension
 Unlimited Boolean flag, true for unlimited

dimensions
Variables An array of structures with these fields:
 Name Variable name
 Dimensions Associated dimensions
 Size Current variable size
 Datatype MATLAB datatype
 Attributes Associated variable attributes

1 Alphabetical List

1-9834

Field Description
 ChunkSize Chunk size, if defined. [] otherwise
 FillValue Fill value of the variable.
 DeflateLevel Deflate filter level, if enabled.
 Shuffle Shuffle filter enabled flag
Attributes An array of global attributes with these fields:
 Name Attribute name
 Value Attribute value
Groups An array of groups present in the file, for netcdf4 files; An empty array

([]) for all other NetCDF file formats.
Format The format of the NetCDF file

vinfo

A structure containing only the variable fields from finfo.

Field Description
Filename NetCDF file name
Name Name of the variable
Dimensions Dimensions of the variable
Size Size of the current variable
Datatype MATLAB datatype
Attributes Attributes associated with the variable
ChunkSize Chunk size, if defined. [] otherwise.
FillValue Fill value used in the variable.
DeflateLevel Deflate filter level, if enabled.
Shuffle Shuffle filter enabled flag
Format The format of the NetCDF file

ginfo

A structure containing only the group fields from finfo.

 ncinfo

1-9835

Field Description
Filename NetCDF file name
Name Name of the group
Dimensions Only dimensions defined in the specified group
Variables Only variables defined in the specified group
Attributes Attributes associated with the variable
Groups Names of groups, if defined. [] otherwise.
Format The format of the NetCDF file

Examples
Search for dimensions with names that start with the character x in the file.

finfo = ncinfo('example.nc');
disp(finfo);
dimNames = {finfo.Dimensions.Name};
dimMatch = strncmpi(dimNames,'x',1);
disp(finfo.Dimensions(dimMatch));

Obtain the size of a variable and check if it has any unlimited dimensions.

vinfo = ncinfo('example.nc','peaks');
varSize = vinfo.Size;
disp(vinfo);
hasUnLimDim = any([vinfo.Dimensions.Unlimited]);

Find all unlimited dimensions defined in a group.

ginfo = ncinfo('example.nc','/grid2/');
unlimDims = [ginfo.Dimensions.Unlimited];
disp(ginfo.Dimensions(unlimDims));

See Also
ncdisp | ncread | ncwrite | ncwriteschema | netcdf

Topics
“Import NetCDF Files and OPeNDAP Data”

1 Alphabetical List

1-9836

Introduced in R2011a

 ncinfo

1-9837

ncread
Read data from variable in NetCDF data source

Syntax
vardata = ncread(source,varname)
vardata = ncread(source,varname,start,count)
vardata = ncread(source,varname,start,count,stride)

Description
vardata = ncread(source,varname) reads all the data from the variable varname
contained in the NetCDF file or an OPeNDAP NetCDF data source specified by source.

vardata = ncread(source,varname,start,count) reads data beginning at the
location specified in start. The count argument specifies the number of elements to
read along each dimension.

vardata = ncread(source,varname,start,count,stride) returns data with the
interval between the indices of each dimension of the variable specified by stride.

Examples

Read NetCDF Data

Read and plot variable named peaks from the file example.nc.

peaksData = ncread('example.nc','peaks');
whos peaksData

 Name Size Bytes Class Attributes

 peaksData 50x50 5000 int16

Plot peaksData and add a title.

1 Alphabetical List

1-9838

surf(double(peaksData));
title('Peaks Data');

Read Portion of Data from Variable

Read and plot only a subset of the variable data starting from the location [25 17] until
the end of each dimension.

startLoc = [25 17]; % Start location along each coordinate
count = [Inf Inf]; % Read until the end of each dimension
peaksData = ncread('example.nc','peaks',startLoc,count);
whos peaksData

 ncread

1-9839

 Name Size Bytes Class Attributes

 peaksData 26x34 1768 int16

Plot the data.

surf(double(peaksData));
title('Peaks Data Starting at [25 17]');

1 Alphabetical List

1-9840

Read Data with Specified Spacing Between Variable Indices

Read and plot data, where the data is sampled at a specified spacing between variable
indices along each dimension. Start reading from the location in startLoc and read
variable data at intervals specified in stride. A value of 1 in stride, accesses adjacent
values in the corresponding dimension. Whereas, a value of 2 accesses every other value
in the corresponding dimension, and so on.

startLoc = [1 1];
count = [10 15];
stride = [2 3];
sampledPeaksData = ncread('example.nc','peaks',startLoc,count,stride);
whos sampledPeaksData

 Name Size Bytes Class Attributes

 sampledPeaksData 10x15 300 int16

Plot the data.

surf(double(sampledPeaksData));
title('Peaks Data Subsampled by [2 3]');

 ncread

1-9841

Input Arguments
source — Source name
character vector | string scalar

Source name, specified as a character vector or string scalar containing the name of a
NetCDF file or the URL of an OPeNDAP NetCDF data source.
Data Types: char | string

varname — Variable name
character vector | string scalar

1 Alphabetical List

1-9842

Variable name, specified as a character vector or string scalar containing the name of a
variable in the NetCDF file or OPeNDAP NetCDF data source.
Data Types: char | string

start — Starting location
vector of ones (default) | numeric vector

Starting location, specified as a numeric vector of positive integers. For an N-dimensional
variable, start is a vector of length N containing 1-based indices.

If you do not specify start, then the ncread function starts reading the variable from
the first index along each dimension.
Data Types: double

count — Number of elements
vector of Inf's (default) | numeric vector

Number of elements to read, specified as a numeric vector of positive integers. For an N-
dimensional variable, count is a vector of length N, specifying the number of elements to
read along each dimension. If any element of count is Inf, then ncread reads until the
end of the corresponding dimension.

If you do not specify count, then the ncread function reads the variable data until end of
each dimension.
Data Types: double

stride — Space between variable indices
vector of ones (default) | numeric vector

Space between the variable indices along each dimension, specified as a numeric vector
of integers. For an N-dimensional variable, stride is vector of length N. The elements of
the stride vector correspond, in order, to the variable's dimensions. A value of 1
accesses adjacent values of the NetCDF variable in the corresponding dimension.
Whereas, a value of 2 accesses every other value of the NetCDF variable in the
corresponding dimension, and so on.

If you do not specify stride, then the ncread function reads the data with a default
spacing of 1 along each dimension.
Data Types: double

 ncread

1-9843

Output Arguments
vardata — Variable data
numeric | text

Variable data, returned as text or numeric arrays.

In most cases, the ncread function uses the MATLAB datatype that is the closest type to
the corresponding NetCDF datatype.

When at least one of the variable attributes _FillValue, scale_factor, or
add_offset is present, then ncread returns vardata of type double. In addition,
ncread applies these conventions:

• If the _FillValue attribute exists, then ncread replaces vardata values equal to
_FillValue values with NaNs. If the_FillValue attribute does not exist, then
ncread queries the NetCDF library for the variable's fill value.

• If the scale_factor attribute exists, then ncread multiplies variable data by the
value of the scale_factor attribute.

• If the add_offset attribute exists, then ncread adds the value of the add_offset
attribute to the variable data.

Note For variable data containing text, the ncread function supports reading only of
vardata that is ASCII encoded.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

See Also
ncdisp | ncinfo | ncreadatt | ncwrite | netcdf

Topics
“Import NetCDF Files and OPeNDAP Data”

Introduced in R2011a

1 Alphabetical List

1-9844

ncreadatt
Read attribute value from NetCDF data source

Syntax
attvalue = ncreadatt(source,location,attname)

Description
attvalue = ncreadatt(source,location,attname) reads the attribute attname
from the group or variable specified by location in source, where source is the name
of a NetCDF file or the URL of a NetCDF data source.

Input Arguments
source

Character vector or string scalar specifying the name of a NetCDF file or the URL of an
OPeNDAP NetCDF data source.

location

Character vector or string scalar specifying a group or variable in the NetCDF data
source. To read global attributes, set location to '/' (forward slash).

attname

Character vector or string scalar specifying the name of an attribute that you want to
read in the NetCDF data source.

 ncreadatt

1-9845

Output Arguments
attvalue

Data associated with the attribute.

Examples

Read Global Attribute

creation_date = ncreadatt('example.nc','/','creation_date')

creation_date =
'29-Mar-2010'

Read Attribute Associated with Variable

Read an attribute associated with a variable.

scale_factor = ncreadatt('example.nc','temperature','scale_factor')

scale_factor = 1.8000

Read Attribute Associated with Group

Read an attribute associated with a group. This example applies to netcdf4 format files
only.

desc_value = ncreadatt('example.nc','/grid2','description')

desc_value =
'This is another group attribute.'

1 Alphabetical List

1-9846

See Also
ncdisp | ncinfo | ncread | ncwriteatt | netcdf

Topics
“Import NetCDF Files and OPeNDAP Data”

Introduced in R2011a

 ncreadatt

1-9847

ncwrite
Write data to NetCDF file

Syntax
ncwrite(filename,varname,vardata)
ncwrite(filename,varname,vardata,start)
ncwrite(filename,varname,vardata,start,stride)

Description
ncwrite(filename,varname,vardata) writes the text or numeric data in vardata to
an existing variable varname in the NetCDF file filename.

The ncwrite function writes the data in vardata starting at the beginning of the
variable and, if needed, automatically extends the unlimited dimensions. For more
information on unlimited dimensions, see the Dimensions argument of the nccreate
function.

ncwrite(filename,varname,vardata,start) writes data to an existing variable,
beginning at the location specified by start. Use this syntax to append data to an
existing variable or to write partial data.

ncwrite(filename,varname,vardata,start,stride) writes data with the interval
between the indices of each dimension specified by stride.

Examples

Write Variable to NetCDF File

Create a NetCDF file that contains a variable, and then write data to that variable.

Create a new file myfile.nc containing a variable named pi.

1 Alphabetical List

1-9848

nccreate('myfile.nc','pi');

Write a scalar data with no dimensions to the variable pi.

ncwrite('myfile.nc','pi',3.1416);

Read and display the variable from the file.

valPi = ncread('myfile.nc','pi')

valPi = 3.1416

Write Data to Portion of Variable

Write data to a portion of a variable in a NetCDF file starting at a specified location.

Create a file myncfile.nc with an empty 3-by-6 numeric variable vmark. To disable the
default fill value for missing or empty variables, set the value of the FillValue name-
value pair argument to disable.

nccreate('myncfile.nc','vmark',...
 'Dimensions', {'x',3,'y',6},...
 'FillValue','disable');

Write a 3-by-3 array to the variable, and then read and display vmark from the file. The
ncwrite function writes data starting at the beginning of the variable.

ncwrite('myncfile.nc','vmark',3*eye(3));
varData = ncread('myncfile.nc','vmark');
display(varData)

varData = 3×6

 3 0 0 0 0 0
 0 3 0 0 0 0
 0 0 3 0 0 0

Add another 3-by-3 array to the variable vmark starting at the fourth column of the first
row. Next, read and display vmark from the file. The ncrwrite function writes the array
starting at the location [1 4].

 ncwrite

1-9849

ncwrite('myncfile.nc','vmark',5*eye(3),[1 4]);
varData = ncread('myncfile.nc','vmark');
display(varData)

varData = 3×6

 3 0 0 5 0 0
 0 3 0 0 5 0
 0 0 3 0 0 5

Write Data with Specified Spacing

Write data with specified spacing between the variable indices along each dimension.

First, create a file myncfile.nc with an empty 6-by-6 numeric variable vmark. To
disable the default fill value for missing or empty variables, set the value of the
FillValue name-value pair argument to disable.

nccreate('myncfile.nc','vmark',...
 'Dimensions', {'x',6,'y',6},...
 'FillValue','disable');

Next, write a 3-by-3 numeric array to the variable vmark starting at the location [1 1]
with a spacing of 2 between the variable indices along each dimension. Read and display
vmark from the file.

ncwrite('myncfile.nc','vmark',3*eye(3),[1 1],[2 2]);
varData = ncread('myncfile.nc','vmark');
display(varData)

varData = 6×6

 3 0 0 0 0 0
 0 0 0 0 0 0
 0 0 3 0 0 0
 0 0 0 0 0 0
 0 0 0 0 3 0
 0 0 0 0 0 0

1 Alphabetical List

1-9850

Input Arguments
filename — File name
character vector | string scalar

File name of an existing NetCDF file, specified as a character vector or string scalar.

If the NetCDF file or variable do not exist, then use the nccreate function to create them
first.
Data Types: char | string

varname — Variable name
character vector | string scalar

Variable name, specified as a character vector or string containing the name of a variable
in the NetCDF file.
Data Types: char | string

vardata — Variable data
numeric | text

Variable data, specified as numeric data or text.

Note For variable values containing text data, the vardata input must have only ASCII
encoded characters.

If the variable varname exists, then ncwrite expects the data type of vardata to match
the NetCDF variable data type.

If the variable varname has attributes _FillValue, scale_factor, or add_offset,
then the ncwrite function expects the data to be of the data type double. To cast
vardata into the NetCDF data type, the ncwrite function applies these attribute
conventions in a sequence:

1 Subtract the value of the add_offset attribute from vardata.
2 Divide vardata by the value of the scale_factor attribute.
3 Replace any NaN in vardata with the value contained in the _FillValue attribute.

If this attribute does not exist, then ncwrite uses the fill value for this variable as
specified by the NetCDF library.

 ncwrite

1-9851

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

start — Starting location
vector of ones (default) | numeric vector

Starting location of the data in the variable, specified as a vector of indices. For an N-
dimensional variable, start is a vector of length N containing 1-based indices.

If you do not specify start, then the ncwrite function starts writing the variable from
the first index along each dimension.
Data Types: double

stride — Space between variable indices
vector of ones (default) | numeric vector

Space between the variable indices along each dimension, specified as a numeric vector
of integers. For an N-dimensional variable, stride is a vector of length N. The elements
of the stride vector correspond, in order, to the variable's dimensions. A value of 1
writes adjacent values of the NetCDF variable in the corresponding dimension. Where as,
a value of 2 writes every other value of the NetCDF variable in the corresponding
dimension, and so on.

If you do not specify stride, then the ncwrite function writes the data with a default
spacing of 1 along each dimension.
Data Types: double

See Also
nccreate | ncdisp | ncinfo | ncread | ncwriteatt | netcdf

Topics
“Export to NetCDF Files”

Introduced in R2011a

1 Alphabetical List

1-9852

ncwriteatt
Write attribute to NetCDF file

Syntax
ncwriteatt(filename,location,attname,attvalue)

Description
ncwriteatt(filename,location,attname,attvalue) creates or modifies the
attribute specified by attname in the group or variable specified by location, in the
NetCDF file specified by filename. attvalue can be a a character vector or string
scalar, or a numeric vector.

Input Arguments
filename

Character vector or string scalar specifying the name of a NetCDF file

location

Character vector or string scalar specifying a group or variable in the NetCDF file. To
write global attributes, set location to '/' (forward slash).

attname

Character vector or string scalar specifying the name of an existing attribute in a NetCDF
file or the name of the attribute that you want to create.

attvalue

Character vector or string scalar, or a numeric vector.

 ncwriteatt

1-9853

Examples
Create a global attribute.

copyfile(which('example.nc'),'myfile.nc');
fileattrib('myfile.nc','+w');
ncdisp('myfile.nc');
ncwriteatt('myfile.nc','/','creation_date',datestr(now));
ncdisp('myfile.nc');

Modify an existing attribute.

copyfile(which('example.nc'),'myfile.nc');
fileattrib('myfile.nc','+w');
ncdisp('myfile.nc','peaks');
ncwriteatt('myfile.nc','peaks','description','Output of PEAKS');
ncdisp('myfile.nc','peaks');

See Also
nccreate | ncdisp | ncread | ncreadatt | ncwrite | netcdf

Topics
“Export to NetCDF Files”

Introduced in R2011a

1 Alphabetical List

1-9854

ncwriteschema
Add NetCDF schema definitions to NetCDF file

Syntax
ncwriteschema(filename,schema)

Description
ncwriteschema(filename,schema) creates or adds attributes, dimensions, variable
definitions and group structure defined in schema to the file filename.

Use ncwriteschema in combination with ncinfo to create a new NetCDF file based on
the schema of an existing file. You can also use ncwriteschema to add variable
definitions, attributes, dimensions, or group structure to an existing file.

Note ncwriteschema does not write variable data. Use ncwrite to write data to the
created variables. Created unlimited dimensions will have an initial size of 0 until you
write data.

Note ncwriteschema cannot change the format of an existing file. It cannot redefine
existing variables and dimensions in filename. If your schema contains attributes,
dimensions, variable definitions, or a group structure that already exist in the file,
writeschema issues a warning but continues processing.

Input Arguments
filename

Character vector or string scalar containing the name of a NetCDF file. If filename does
not exist, ncwriteschema creates a new file using the netcdf4_classic format, unless
the Format field in schema specifies another format.

 ncwriteschema

1-9855

Default:

schema

A structure, or array of structures, representing either a dimension, variable, an entire
NetCDF file, or a netcdf4 group. A group or file schema can contain a dimension or
variable schema, or both. You can use the output returned by ncinfo as a schema
structure. The following table lists the fields in the various types of schema structures.
Optional fields are marked with asterisk (*).

Schema Type Structure Field Description
Group/File Schema Name Character vector or string scalar

identifying the group name. Use '/' to
indicate the entire file.

 Dimensions* Dimension schema
 Variables* Variable schema
 Attributes* Structure array of group/global

attributes with Name and Value fields
 Format* Character vector or string scalar

identifying a NetCDF file format
Dimension schema Name Character vector or string scalar

identifying the dimension
 Length Length of the dimension. Can be Inf.
 Unlimited* Boolean flag indicating if the dimension

is unlimited
 Format* Character vector or string scalar

identifying a NetCDF file format
Variable schema Name Character vector or string scalar

identifying a variable name
 Dimensions Variable's dimension schema
 Datatype Character vector or string scalar

identifying a MATLAB datatype
 Attributes* Structure array of variable attributes

with Name and Value fields

1 Alphabetical List

1-9856

Schema Type Structure Field Description
 ChunkSize* Numeric value specifying chunk size of

the variable
 FillValue* Text or numeric fill value
 DeflateValue* Deflate compression level
 Shuffle* Boolean flag to turn on the Shuffle filter
 Format* Character vector or string scalar

identifying a NetCDF file format

Default:

Examples
Create a classic format file with two dimension definitions.

mySchema.Name = '/';
mySchema.Format = 'classic';
mySchema.Dimensions(1).Name = 'time';
mySchema.Dimensions(1).Length = Inf;
mySchema.Dimensions(2).Name = 'rows';
mySchema.Dimensions(2).Length = 10;
ncwriteschema('emptyFile.nc', mySchema);
ncdisp('emptyFile.nc');

Create a netcdf4_classic format file to store a single variable from an existing file.
First use ncinfo to get the schema of the peaks variable from the file. Then use
ncwriteschema to create a NetCDF file, defining the peaks variable. Use ncread to get
the data associated with the peaks variable and then use ncwrite to write the data to the
variable in the new NetCDF file.

myVarSchema = ncinfo('example.nc','peaks');
ncwriteschema('peaksFile.nc',myVarSchema);
peaksData = ncread('example.nc','peaks');
ncwrite('peaksFile.nc','peaks',peaksData);
ncdisp('peaksFile.nc');

See Also
ncdisp | ncinfo | ncread | ncwrite | netcdf

 ncwriteschema

1-9857

Topics
“Export to NetCDF Files”

Introduced in R2011a

1 Alphabetical List

1-9858

netcdf
Interact directly with NetCDF Library

Description
Functions in the MATLAB netcdf package provide interfaces to dozens of functions in
the NetCDF library. The MATLAB functions enable reading data from and writing data to
NetCDF files (known as data sets in NetCDF terminology). To use these functions, you
should be familiar with the NetCDF C Interface.

MATLAB supports NetCDF version 4.6.1.

In most cases, the syntax of the MATLAB function matches the syntax of the NetCDF
library function. The functions are implemented as a package called netcdf. To use these
functions, prefix the function name with the package name, netcdf. For example, to call
the NetCDF library routine used to open existing NetCDF files, use the following MATLAB
syntax:

ncid = netcdf.open(ncfile,mode);

For copyright information, see the netcdfcopyright.txt and mexnccopyright.txt
files.

Note For information about MATLAB support for the Common Data Format (CDF), which
is a completely separate and incompatible format, see cdflib.

Library Functions

netcdf.getChunkCache Retrieve chunk cache settings for NetCDF library
netcdf.inqLibVers Return NetCDF library version information
netcdf.setChunkCache Set default chunk cache settings for NetCDF library
netcdf.setDefaultFormat Change default netCDF file format

 netcdf

1-9859

https://www.unidata.ucar.edu/software/netcdf/docs/

File Operations

netcdf.abort Revert recent netCDF file definitions
netcdf.close Close netCDF file
netcdf.create Create new NetCDF dataset
netcdf.endDef End netCDF file define mode
netcdf.inq Return information about netCDF file
netcdf.inqFormat Determine format of NetCDF file
netcdf.inqGrps Retrieve array of child group IDs
netcdf.inqUnlimDims Return list of unlimited dimensions in group
netcdf.open Open NetCDF data source
netcdf.reDef Put open netCDF file into define mode
netcdf.setFill Set netCDF fill mode
netcdf.sync Synchronize netCDF file to disk

Dimensions

netcdf.defDim Create netCDF dimension
netcdf.inqDim Return netCDF dimension name and length
netcdf.inqDimID Return dimension ID
netcdf.renameDim Change name of netCDF dimension

Groups

netcdf.defGrp Create group in NetCDF file
netcdf.inqDimIDs Retrieve list of dimension identifiers in group
netcdf.inqGrpName Retrieve name of group
netcdf.inqGrpNameFull Complete pathname of group
netcdf.inqGrpParent Retrieve ID of parent group.
netcdf.inqNcid Return ID of named group
netcdf.inqVarIDs IDs of all variables in group

1 Alphabetical List

1-9860

Variables
netcdf.defVar Create NetCDF variable
netcdf.defVarChunking Define chunking behavior for NetCDF variable
netcdf.defVarDeflate Define compression parameters for NetCDF variable
netcdf.defVarFill Define fill parameters for NetCDF variable
netcdf.defVarFletcher32 Define checksum parameters for NetCDF variable
netcdf.getVar Read data from NetCDF variable
netcdf.inqVarChunking Determine chunking settings for NetCDF variable
netcdf.inqVarDeflate Determine compression settings for NetCDF variable
netcdf.inqVarFill Determine values of fill parameters for NetCDF variable
netcdf.inqVarFletcher32 Fletcher32 checksum setting for NetCDF variable
netcdf.inqVar Information about variable
netcdf.inqVarID Return ID associated with variable name
netcdf.putVar Write data to netCDF variable
netcdf.renameVar Change name of netCDF variable

Attributes
netcdf.copyAtt Copy attribute to new location
netcdf.delAtt Delete netCDF attribute
netcdf.getAtt Return netCDF attribute
netcdf.inqAtt Return information about netCDF attribute
netcdf.inqAttID Return ID of netCDF attribute
netcdf.inqAttName Return name of netCDF attribute
netcdf.putAtt Write netCDF attribute
netcdf.renameAtt Change name of attribute

 netcdf

1-9861

Utilities
netcdf.getConstant Return numeric value of named constant
netcdf.getConstantNames Return list of constants known to netCDF library

1 Alphabetical List

1-9862

netcdf.abort
Revert recent netCDF file definitions

Syntax
netcdf.abort(ncid)

Description
netcdf.abort(ncid) reverts a netCDF file to its previous state, backing out any
definitions made since the file last entered define mode. A file enters define mode when
you create it (using netcdf.create) or when you explicitly enter define mode (using
netcdf.redef). Once you leave define mode (using netcdf.endDef), you cannot revert
the definitions you made while in define mode. ncid is a netCDF file identifier returned
by netcdf.create or netcdf.open. A call to netcdf.abort closes the file.

This function corresponds to the nc_abort function in the netCDF library C API. To use
this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example creates a new file, performs an operation on the file, and then reverts the
file back to its original state. To run this example, you must have write permission in your
current directory.

% Create a netCDF file
ncid = netcdf.create('foo.nc','NC_NOCLOBBER');

% Perform an operation, such as defining a dimension.
dimid = netcdf.defDim(ncid, 'lat', 50);

% Revert the file back to its previous state.
netcdf.abort(ncid)

 netcdf.abort

1-9863

% Verify that the file is now closed.
dimid = netcdf.defDim(ncid, 'lat', 50); % should fail
??? Error using ==> netcdflib
NetCDF: Not a valid ID

Error in ==> defDim at 22
dimid = netcdflib('def_dim', ncid,dimname,dimlen);

See Also
netcdf.create | netcdf.endDef | netcdf.reDef

1 Alphabetical List

1-9864

netcdf.close
Close netCDF file

Syntax
netcdf.close(ncid)

Description
netcdf.close(ncid) terminates access to the netCDF file identified by ncid.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

This function corresponds to the nc_close function in the netCDF library C API. To use
this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example creates a new netCDF file, and then closes the file. You must have write
permission in your current directory to run this example.

ncid = netcdf.open('foo.nc','NC_WRITE')

netcdf.close(ncid)

See Also
netCDF.open | netcdf.create

 netcdf.close

1-9865

netcdf.copyAtt
Copy attribute to new location

Syntax
netcdf.copyAtt(ncid_in,varid_in,attname,ncid_out,varid_out)

Description
netcdf.copyAtt(ncid_in,varid_in,attname,ncid_out,varid_out) copies an
attribute from one variable to another, possibly across files. ncid_in and ncid_out are
netCDF file identifiers returned by netcdf.create or netcdf.open. varid_in
identifies the variable with an attribute that you want to copy. varid_out identifies the
variable to which you want to associate a copy of the attribute.

This function corresponds to the nc_copy_att function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example makes a copy of the attribute associated with the first variable in the
netCDF example file, example.nc, in a new file. To run this example, you must have
write permission in your current directory.

% Open example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get identifier for a variable in the file.
varid = netcdf.inqVarID(ncid,'avagadros_number');

% Create new netCDF file.
ncid2 = netcdf.create('foo.nc','NC_NOCLOBBER');

% Define a dimension in the new file.

1 Alphabetical List

1-9866

dimid2 = netcdf.defDim(ncid2,'x',50);

% Define a variable in the new file.
varid2 = netcdf.defVar(ncid2,'myvar','double',dimid2);

% Copy the attribute named 'description' into the new file,
% associating the attribute with the new variable.
netcdf.copyAtt(ncid,varid,'description',ncid2,varid2);
%
% Check the name of the attribute in new file.
attname = netcdf.inqAttName(ncid2,varid2,0)

attname =

description

See Also
netcdf.inqAtt | netcdf.inqAttID | netcdf.inqAttName | netcdf.putAtt |
netcdf.renameAtt

 netcdf.copyAtt

1-9867

netcdf.create
Create new NetCDF dataset

Syntax
ncid = netcdf.create(filename,cmode)
[chunksize_out,ncid] =
netcdf.create(filename,cmode,initsz,chunksize)

Description
ncid = netcdf.create(filename,cmode) creates a new NetCDF file according to
the file creation mode. The return value ncid is a file ID. The cmode parameter
determines the type of file access. Specify cmode as one of these values.

Value of cmode Description
'NOCLOBBER' Prevent overwriting of existing file with the same name.
'CLOBBER' Overwrite any existing file with the same name.
'SHARE' Allow synchronous file updates.
'64BIT_OFFSET' Allow easier creation of files and variables which are larger

than two gigabytes.
'NETCDF4' Create a NetCDF-4/HDF5 file
'CLASSIC_MODEL' Enforce the classic model; has no effect unless used in a

bitwise-or with NETCDF4

Note You can specify the mode as a numeric value, retrieved using the
netcdf.getConstant function. To specify more than one mode, use a bitwise-OR of the
numeric values of the modes.

[chunksize_out,ncid] =
netcdf.create(filename,cmode,initsz,chunksize) creates a new NetCDF file,

1 Alphabetical List

1-9868

but with additional performance tuning parameters. initsz sets the initial size of the
file. chunksize can affect I/O performance. The actual value chosen by the NetCDF
library might not correspond to the input value.

This function corresponds to the nc_create and nc__create functions in the NetCDF
library C API. To use this function, you should be familiar with the NetCDF programming
paradigm. See netcdf for more information.

Examples

Create NetCDF File Without Overwriting Existing File

Create a NetCDF dataset named foo.nc, only if no other file with the same name exists
in the current directory. To run this example, you must have write permission in your
current directory.

ncid = netcdf.create('foo.nc','NOCLOBBER')

ncid = 65536

netcdf.create returns a file identifier.

Close the file

netcdf.close(ncid)

Create NetCDF-4 File Using Classic Model

Get the numeric values corresponding to the NETCDF4 and CLASSIC_MODEL constants
defined by the NetCDF library. Use a bitwise-OR of the numeric values to specify more
than one creation mode.

cmode = netcdf.getConstant('NETCDF4');
cmode = bitor(cmode,netcdf.getConstant('CLASSIC_MODEL'));

Create a NetCDF-4 file that uses the classic model by specifying the creation mode value,
cmode.

ncid = netcdf.create('myfile.nc',cmode);

 netcdf.create

1-9869

Close the file.

netcdf.close(ncid);

See Also
netcdf.getConstant | netcdf.open

1 Alphabetical List

1-9870

netcdf.defDim
Create netCDF dimension

Syntax
dimid = netcdf.defDim(ncid,dimname,dimlen)

Description
dimid = netcdf.defDim(ncid,dimname,dimlen) creates a new dimension in the
netCDF file specified by ncid, where dimname is a character vector or string scalar that
specifies the name of the dimension and dimlen is a numeric value that specifies its
length. To define an unlimited dimension, specify the predefined constant
'NC_UNLIMITED' for dimlen, using netcdf.getConstant to retrieve the value.

netcdf.defDim returns dimid, a numeric ID corresponding to the new dimension.

This function corresponds to the nc_def_dim function in the netCDF library C API.To use
this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

Examples
Create a new file and define two dimensions in the file. One dimension is an unlimited
dimension. To run this example, you must have write permission in your current folder.

% Create a netCDF file.
ncid = netcdf.create('foo.nc','NC_NOCLOBBER')

% Define a dimension.
lat_dimID = netcdf.defDim(ncid,'latitude',360);

 netcdf.defDim

1-9871

% Define an unlimited dimension.
long_dimID = netcdf.defDim(ncid,'longitude',...
 netcdf.getConstant('NC_UNLIMITED'));

See Also
netcdf.getConstant

1 Alphabetical List

1-9872

netcdf.defGrp
Create group in NetCDF file

Syntax
childGrpID = netcdf.defGrp(parentGroupId,childGroupName)

Description
childGrpID = netcdf.defGrp(parentGroupId,childGroupName) creates a child
group with the name specified by childGroupName, that is the child of the parent group
specified by parentGroupId

Input Arguments
parentGroupId

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

childGroupName

Character vector or string scalar specifying the name that you want to assign to the
group.

Default:

Output Arguments
childGrpID

Identifier of a NetCDF group.

 netcdf.defGrp

1-9873

Examples
This example creates a NetCDF dataset and then defines a group.

ncid = netcdf.create('myfile.nc','netcdf4');
childGroupId = netcdf.defGrp(ncid,'mygroup');
netcdf.close(ncid);

References
This function corresponds to the nc_def_grp function in the NetCDF library C API.

For copyright information, read the files netcdfcopyright.txt and
mexnccopyright.txt.

See Also
netcdf | netcdf.inqGrps

1 Alphabetical List

1-9874

netcdf.defVar
Create NetCDF variable

Syntax
varid = netcdf.defVar(ncid,varname,xtype,dimids)

Description
varid = netcdf.defVar(ncid,varname,xtype,dimids) creates a new variable in
the dataset identified by ncid.

varname is a character vector or string scalar that specifies the name of the variable.

xtype specifies the NetCDF data type of the variable, using one of these values.

Value of xtype MATLAB Class
'NC_BYTE' int8 or uint8a

'NC_CHAR' char
'NC_SHORT' int16
'NC_INT' int32
'NC_FLOAT' single
'NC_DOUBLE' double
a. NetCDF interprets byte data as either signed or unsigned.

Alternatively, xtype can be the numeric equivalent returned by the
netcdf.getConstant function.

dimids specifies a list of dimension IDs.

netcdf.defVar returns varid, a numeric identifier for the new variable.

This function corresponds to the nc_def_var function in the NetCDF library C API.
Because MATLAB uses FORTRAN-style ordering, the fastest-varying dimension comes

 netcdf.defVar

1-9875

first and the slowest comes last. Any unlimited dimension is therefore last in the list of
dimension IDs. This ordering is the reverse of that found in the C API.To use this function,
you should be familiar with the NetCDF programming paradigm. See netcdf for more
information.

Examples

Define Dimension and Variable in NetCDF File

Create a new NetCDF file, define a dimension in the file, and then define a variable on
that dimension. In NetCDF files, you must create a dimension before you can create a
variable. To run this example, you must have write permission in your current folder.

Create a new NetCDF file named foo.nc.

ncid = netcdf.create('foo.nc','NC_NOCLOBBER');

Define a dimension in the new file.

dimid = netcdf.defDim(ncid,'x',50);

Define a variable in the new file using netcdf.defVar.

varid = netcdf.defVar(ncid,'myvar','NC_DOUBLE',dimid)

varid = 0

netcdf.defVar returns a numeric identifier for the new variable.

Close the file.

netcdf.close(ncid)

See Also
netCDF.getConstant | netCDF.inqVar | netCDF.putVar

1 Alphabetical List

1-9876

netcdf.defVarChunking
Define chunking behavior for NetCDF variable

Syntax
netcdf.defVarChunking(ncid,varid,storage,chunkDims)

Description
netcdf.defVarChunking(ncid,varid,storage,chunkDims) sets the chunk
settings for the variable specified by varid. Chunking is a technique to improve
performance. storage specifies the type of chunking to use and chunkDims specifies the
extents of the chunk size. You must specify the chunk size used with a variable after
creating the variable but before you write data to the variable.

You cannot specify the chunk size for variables in a NetCDF file created with the
netCDF-3 mode (CLASSIC_MODEL).

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

Default:

 netcdf.defVarChunking

1-9877

storage

Character vector or string scalar specifying whether NetCDF should break the variable
into chunks when writing to a file. If set to 'CHUNKED', NetCDF breaks the variable into
chunks; if set to 'CONTIGUOUS', NetCDF does not break the data into chunks.

Default:

chunkDims

Array specifying the dimensions of the chunk.

Because MATLAB uses FORTRAN-style ordering, the order of dimensions in chunkdims
is reversed relative to what would be in the C API.

If storage is 'CONTIGUOUS', you can omit chunkDims.

Default: Chunk size determined by the NetCDF library.

Examples
This example creates a NetCDF file and specifies the chunking behavior of a variable.

ncid = netcdf.create('myfile.nc','NETCDF4');
latdimid = netcdf.defDim(ncid,'lat',1800);
londimid = netcdf.defDim(ncid,'col',3600);
varid = netcdf.defVar(ncid,'earthgrid','double',[latdimid londimid]);
netcdf.defVarChunking(ncid,varid,'CHUNKED',[180 360]);
netcdf.close(ncid);

References
This function corresponds to the nc_def_var_chunking function in the NetCDF library
C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

1 Alphabetical List

1-9878

See Also
netcdf | netcdf.inqVarChunking

 netcdf.defVarChunking

1-9879

netcdf.defVarDeflate
Define compression parameters for NetCDF variable

Syntax
netcdf.defVarDeflate(ncid,varid,shuffle,deflate,deflateLevel)

Description
netcdf.defVarDeflate(ncid,varid,shuffle,deflate,deflateLevel) sets the
compression parameters for the NetCDF variable specified by varid in the location
specified by ncid.

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

Default:

shuffle

Boolean value. To turn on the shuffle filter, set this argument to true. The shuffle filter
can assist with the compression of integer data by changing the byte order in the data
stream.

Default:

1 Alphabetical List

1-9880

deflate

Boolean value. To turn on compression, set this argument to true and set the
deflateLevel argument to the desired compression level.

Default:

deflateLevel

Numeric value between 0 and 9 specifying the amount of compression, where 0 is no
compression and 9 is the most compression.

Default:

Examples
This example create a variable with dimensions [1800 3600] and a compression level of 5.
This results in a chunked layout that is a 10-by-10 grid. Use netcdf.defVarChunking
to define your own chunking, otherwise netcdf.defVarDeflate uses the library default
values.

ncid = netcdf.create('myfile.nc','NETCDF4');
latdimid = netcdf.defDim(ncid,'lat',1800);
londimid = netcdf.defDim(ncid,'col',3600);
varid = netcdf.defVar(ncid,'earthgrid','double',[latdimid londimid]);
netcdf.defVarChunking(ncid,varid,'CHUNKED',[180 360]);
netcdf.defVarDeflate(ncid,varid,true,true,5);
netcdf.close(ncid);

References
This function corresponds to the nc_def_var_deflate function in the netCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

 netcdf.defVarDeflate

1-9881

See Also
netcdf | netcdf.inqVarDeflate

1 Alphabetical List

1-9882

netcdf.defVarFill
Define fill parameters for NetCDF variable

Syntax
netcdf.defVarFill(ncid,varid,noFillMode,fillValue)

Description
netcdf.defVarFill(ncid,varid,noFillMode,fillValue) sets the fill parameters
for a variable in a NetCDF-4 file. varid identifies the variable and the ncid identifies the
NetCDF-4 file.

For netCDF files, you can only specify fill values when the NetCDF is in definition mode
(before calling netcdf.endDef). For NetCDF files in classic and 64-bit offset modes, you
can turn no-fill mode on and off at any time.

Input Arguments
ncid

Identifier of a NetCDF-4 file, returned by netcdf.create or netcdf.open, or of a
NetCDF group, returned by netcdf.defGrp.

Default:

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

Default:

 netcdf.defVarFill

1-9883

noFillMode

Boolean value. When set to true, turns off use of fill values for the variable, which can be
helpful in high performance applications. When true, netcdf.defVarFill ignores the
value of the fillValue argument. To use the fill value, set this to false.

Default:

fillValue

Specifies the value to use in the variable when no other value is specified. The data type
must be the same data type as the variable.

Default:

Examples
This example creates a NetCDF-4 file and defines a fill value for a variable.

ncid = netcdf.create('myfile.nc','NETCDF4');
dimid = netcdf.defDim(ncid,'latitude',180);
varid = netcdf.defVar(ncid,'latitude','double',dimid);
netcdf.defVarFill(ncid,varid,false,-999);
netcdf.close(ncid);

References
This function corresponds to the nc_def_var_fill function in the NetCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.inqVarFill | netcdf.setFill

1 Alphabetical List

1-9884

netcdf.defVarFletcher32
Define checksum parameters for NetCDF variable

Syntax
netcdf.defVarFletcher32(ncid,varid,setting)

Description
netcdf.defVarFletcher32(ncid,varid,setting) defines the checksum settings
for the NetCDF variable specified by varid in the file specified by ncid.

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

Default:

setting

Character vector or string scalar specifying whether Fletcher32 checksum error detection
is used with the variable. To turn on Fletcher32 checksum, specify the value
'FLETCHER32'. To turn off the use of checksum error detection, specify the value
'NOCHECKSUM'.

Default:

 netcdf.defVarFletcher32

1-9885

Examples
This example creates a NetCDF dataset and turns on the Fletcher32 checksum for a
variable.

ncid = netcdf.create('myfile.nc','NETCDF4');
latdimid = netcdf.defDim(ncid,'lat',1800);
londimid = netcdf.defDim(ncid,'col',3600);
varid = netcdf.defVar(ncid,'earthgrid','double',[latdimid londimid]);
netcdf.defVarFletcher32(ncid,varid,'FLETCHER32');
netcdf.close(ncid);

References
This function corresponds to the nc_def_var_fletcher32 function in the NetCDF
library C API.

For copyright information, read the files netcdfcopyright.txt and
mexnccopyright.txt.

See Also
netcdf | netcdf.inqVarFletcher32

1 Alphabetical List

1-9886

netcdf.delAtt
Delete netCDF attribute

Syntax
netcdf.delAtt(ncid,varid,attName)

Description
netcdf.delAtt(ncid,varid,attName) deletes the attribute identified by attName.
Specify attName as a character vector or string scalar.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

varid is a numeric value that identifies the variable. To delete a global attribute, use
netcdf.getConstant('GLOBAL') for the varid. You must be in define mode to delete
an attribute.

This function corresponds to the nc_del_att function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens a local copy of the example netCDF file included with MATLAB,
example.nc.

% Open a netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Determine number of global attributes in file.
[numdims numvars numatts unlimdimID] = netcdf.inq(ncid);

numatts =

 netcdf.delAtt

1-9887

 1

% Get name of attribute; it is needed for deletion.
attname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0)

% Put file in define mode to delete an attribute.
netcdf.reDef(ncid);

% Delete the global attribute in the netCDF file.
netcdf.delAtt(ncid,netcdf.getConstant('GLOBAL'),attname);

% Verify that the global attribute was deleted.
[numdims numvars numatts unlimdimID] = netcdf.inq(ncid);

numatts =

 0

See Also
netcdf.getConstant | netcdf.inqAttName

1 Alphabetical List

1-9888

netcdf.endDef
End netCDF file define mode

Syntax
netcdf.endDef(ncid)
netcdf.endDef(ncid,h_minfree,v_align,v_minfree,r_align)

Description
netcdf.endDef(ncid) takes a netCDF file out of define mode and into data mode. ncid
is a netCDF file identifier returned by netcdf.create or netcdf.open.

netcdf.endDef(ncid,h_minfree,v_align,v_minfree,r_align) takes a netCDF
file out of define mode, specifying four additional performance tuning parameters. For
example, one reason for using the performance parameters is to reserve extra space in
the netCDF file header using the h_minfree parameter:

ncid = netcdf.endDef(ncid,20000,4,0,4);

This reserves 20,000 bytes in the header, which can be used later when adding attributes.
This can be extremely efficient when working with very large netCDF 3 files. To
understand how to use these performance tuning parameters, see the netCDF library
documentation.

This function corresponds to the nc_enddef and nc__enddef functions in the netCDF
library C API. To use this function, you should be familiar with the netCDF programming
paradigm. See netcdf for more information.

Examples

 netcdf.endDef

1-9889

Take File out of Define Mode

When you create a file using netcdf.create, the functions opens the file in define
mode. This example uses netcdf.endDef to take the file out of define mode.

Create a netCDF file.

ncid = netcdf.create('foo.c','NC_NOCLOBBER');

Define a dimension.

dimid = netcdf.defDim(ncid,'lat',50);

Leave define mode.

netcdf.endDef(ncid)

Making a change, when not in define mode, will return an error. For this example the
define mode was ended, using the netcdf.endDef function, therefore typing dimid =
netcdf.defDim(ncid,'lon',50) in the command window should return an error.

See Also
netcdf.create | netcdf.reDef

1 Alphabetical List

1-9890

netcdf.getAtt
Return netCDF attribute

Syntax
attrvalue = netcdf.getAtt(ncid,varid,attname)
attrvalue = netcdf.getAtt(ncid,varid,attname,output_datatype)

Description
attrvalue = netcdf.getAtt(ncid,varid,attname) returns attrvalue, the value
of the attribute name contained in attname. Specify attname as a character vector or
string scalar. When it chooses the data type of attrvalue, MATLAB attempts to match
the netCDF class of the attribute. For example, if the attribute has the netCDF data type
NC_INT, MATLAB uses the int32 class for the output data. If an attribute has the
netCDF data type NC_BYTE, the class of the output data is int8 value.

attrvalue = netcdf.getAtt(ncid,varid,attname,output_datatype) returns
attrvalue, the value of the attribute name specified by attname, using the output class
specified by output_datatype. Specify the output data type using one of these values.

'int' 'double' 'int16'
'short' 'single' 'int8'
'float' 'int32' 'uint8'

This function corresponds to several attribute I/O functions in the netCDF library C API.
To use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens the example netCDF file included with MATLAB, example.nc, and
gets the value of the attribute associated with the first variable. The example also gets the
value of the global variable in the file.

 netcdf.getAtt

1-9891

% Open a netCDF file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get name of first variable.
[varname vartype vardimIDs varatts] = netcdf.inqVar(ncid,0);

% Get ID of variable, given its name.
varid = netcdf.inqVarID(ncid,varname);

% Get attribute name, given variable id.
attname = netcdf.inqAttName(ncid,varid,0);

% Get value of attribute.
attval = netcdf.getAtt(ncid,varid,attname);

% Get name of global attribute
gattname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0);

% Get value of global attribute.
gattval = netcdf.getAtt(ncid,netcdf.getConstant('NC_GLOBAL'),gattname)

gattval =

09-Jun-2008

See Also
netcdf.inqAtt | netcdf.putAtt

1 Alphabetical List

1-9892

netcdf.getChunkCache
Retrieve chunk cache settings for NetCDF library

Syntax
[csize, nelems, premp] = netcdf.getChunkCache()

Description
[csize, nelems, premp] = netcdf.getChunkCache() returns the default chunk
cache settings.

Output Arguments
csize

Scalar double specifying the total size of the raw data chunk cache in bytes.

nelems

Scalar double specifying the number of chunk slots in the raw data chunk cache hash
table.

premp

Double, between 0 and 1, inclusive, that specifies how the library handles preempting
fully read chunks in the chunk cache. A value of zero means fully read chunks are treated
no differently than other chunks, that is, preemption occurs solely based on the Least
Recently Used (LRU) algorithm. A value of 1 means fully read chunks are always
preempted before other chunks.

Examples
Determine information about the chunk cache size used by the NetCDF library.

 netcdf.getChunkCache

1-9893

[csize, nelems, premp] = netcdf.getChunkCache();

References
This function corresponds to the nc_get_chunk_cache function in the NetCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.setChunkCache

1 Alphabetical List

1-9894

netcdf.getConstant
Return numeric value of named constant

Syntax
val = netcdf.getConstant(param_name)

Description
val = netcdf.getConstant(param_name) returns the numeric value corresponding
to the name of a constant defined by the netCDF library. For example,
netcdf.getConstant('NC_NOCLOBBER') returns the numeric value corresponding to
the netCDF constant NC_NOCLOBBER.

The value for param_name can be either upper- or lowercase, and does not need to
include the leading three characters 'NC_'. To retrieve a list of all the names defined by
the netCDF library, use the netcdf.getConstantNames function.

This function has no direct equivalent in the netCDF C interface. To find out more about
NetCDF, see netcdf.

Examples
This example opens the example netCDF file included with MATLAB, example.nc.

% Open example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Determine contents of the file.
[ndims nvars natts dimm] = netcdf.inq(ncid);

% Get name of global attribute.
% Note: You must use netcdf.getConstant to specify NC_GLOBAL.
attname = netcdf.inqattname(ncid,netcdf.getConstant('NC_GLOBAL'),0)

 netcdf.getConstant

1-9895

attname =

creation_date

See Also
netcdf.getConstantNames

1 Alphabetical List

1-9896

netcdf.getConstantNames
Return list of constants known to netCDF library

Syntax
val = netcdf.getConstantNames(param_name)

Description
val = netcdf.getConstantNames(param_name) returns a list of names of netCDF
library constants, definitions, and enumerations. When these names, returned as
character vectors, are supplied as actual parameters to MATLAB netCDF package
functions, the functions automatically convert the constant to the appropriate numeric
value.

This MATLAB function has no direct equivalent in the netCDF C interface. To find out
more about netCDF, see netcdf.

Examples
nc_constants = netcdf.getConstantNames

nc_constants =

 'NC2_ERR'
 'NC_64BIT_OFFSET'
 'NC_BYTE'
 'NC_CHAR'
 'NC_CLOBBER'
 'NC_DOUBLE'
 'NC_EBADDIM'
 'NC_EBADID'
 'NC_EBADNAME'
 'NC_EBADTYPE'
 ...

 netcdf.getConstantNames

1-9897

See Also
netCDF.getConstantNames

1 Alphabetical List

1-9898

netcdf.getVar
Read data from NetCDF variable

Syntax
data = netcdf.getVar(ncid,varid)
data = netcdf.getVar(ncid,varid,start)
data = netcdf.getVar(ncid,varid,start,count)
data = netcdf.getVar(ncid,varid,start,count,stride)
data = netcdf.getVar(___ ,output_type)

Description
data = netcdf.getVar(ncid,varid) returns data, the value of the variable
specified by varid. MATLAB attempts to match the class of the output data to NetCDF
class of the variable.

Note For variable values containing text, the netcdf.getVar function supports reading
only of data that is ASCII encoded.

ncid is a NetCDF file identifier returned by netcdf.create or netcdf.open.

data = netcdf.getVar(ncid,varid,start) returns a single value starting at the
specified index, start.

data = netcdf.getVar(ncid,varid,start,count) returns a contiguous section of
a variable. start specifies the starting point and count specifies the amount of data to
return.

data = netcdf.getVar(ncid,varid,start,count,stride) returns a subset of a
section of a variable. start specifies the starting point, count specifies the extent of the
section, and stride specifies which values to return.

data = netcdf.getVar(___ ,output_type) specifies the data type of the return
value data. Specify output_type as one of these values.

 netcdf.getVar

1-9899

'int8'
'uint8'
'int16'
'int32'
'single'
'double'

This function corresponds to several functions in the NetCDF library C API. To use this
function, you should be familiar with the NetCDF programming paradigm. See netcdf
for more information.

Examples

Read Value of Variable in NetCDF File

Open the example file, example.nc.

ncid = netcdf.open('example.nc','NC_NOWRITE');

Get the name of the first variable in the file.

varname = netcdf.inqVar(ncid,0)

varname =
'avagadros_number'

Get variable ID of the first variable, given its name.

varid = netcdf.inqVarID(ncid,varname)

varid = 0

Get the value of the variable. Use the variable ID as the second input to the
netcdf.getVar function.

data = netcdf.getVar(ncid,varid)

data = 6.0221e+23

Display the data type of the output value.

1 Alphabetical List

1-9900

whos data

 Name Size Bytes Class Attributes

 data 1x1 8 double

Get the value of the avogadros_number variable again, specifying that the output data
type should be single.

data = netcdf.getVar(ncid,varid,'single');

Display the data type of the output value.

whos data

 Name Size Bytes Class Attributes

 data 1x1 4 single

Close the NetCDF file.

netcdf.close(ncid)

See Also
netcdf.create | netcdf.inqVarID | netcdf.open

 netcdf.getVar

1-9901

netcdf.inq
Return information about netCDF file

Syntax
[ndims,nvars,ngatts,unlimdimid] = netcdf.inq(ncid)

Description
[ndims,nvars,ngatts,unlimdimid] = netcdf.inq(ncid) returns the number of
dimensions, variables, and global attributes in a netCDF file. The function also returns the
ID of the dimension defined with unlimited length, if one exists.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open. You can
call netcdf.inq in either define mode or data mode.

This function corresponds to the nc_inq function in the netCDF library C API. To use this
function, you should be familiar with the netCDF programming paradigm. See netcdf for
more information.

Examples
This example opens the example netCDF file included with MATLAB, example.nc, and
uses the netcdf.inq function to get information about the contents of the file.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE')

% Get information about the contents of the file.
[numdims, numvars, numglobalatts, unlimdimID] = netcdf.inq(ncid)

numdims =

 4

1 Alphabetical List

1-9902

numvars =

 4

numglobalatts =

 1

unlimdimID =

 3

See Also
netcdf.create | netcdf.open

 netcdf.inq

1-9903

netcdf.inqDimIDs
Retrieve list of dimension identifiers in group

Syntax
dimIDs = netcdf.inqDimIDs(ncid)
dimIDs = netcdf.inqDimIDs(ncid,includeParents)

Description
dimIDs = netcdf.inqDimIDs(ncid) returns a list of dimension identifiers in the
group specified by ncid.

dimIDs = netcdf.inqDimIDs(ncid,includeParents) includes all dimensions in all
parent groups if includeParents is true.

Input Arguments
ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open, or of a
NetCDF group, returned by netcdf.defGrp.

Default:

includeParents

Boolean value. If set to true, netcdf.inqDimIDs includes the dimensions of all parent
groups.

Default: false

1 Alphabetical List

1-9904

Output Arguments
dimIDs

Array of dimension IDs

Examples
This example opens the NetCDF sample file and gets the IDs of all the dimensions.

 ncid = netcdf.open('example.nc','NOWRITE');
 gid = netcdf.inqNcid(ncid,'grid1');
 dimids = netcdf.inqDimIDs(gid);
 dimids_all = netcdf.inqDimIDS(gid, true);
 netcdf.close(ncid);

References
This function corresponds to the nc_inq_dimids function in the NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.inqVarIDs

 netcdf.inqDimIDs

1-9905

netcdf.inqFormat
Determine format of NetCDF file

Syntax
format = netcdf.inqFormat(ncid)

Description
format = netcdf.inqFormat(ncid) returns the format for the file specified by
NetCDF file identifier, ncid.

Input Arguments
ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open, or of a
NetCDF group, returned by netcdf.defGrp.

Default:

Output Arguments
format

Character vector that specifies the format of the NetCDF file. Returned values include:

Format Description
'FORMAT_CLASSIC' Classic format — Original NetCDF format, used by all

NetCDF files created between 1989 and 2004

1 Alphabetical List

1-9906

Format Description
'FORMAT_64BIT' Classic format, 64–bit — Original format with 64–bit

addressing capability to allow creation and access of
much larger files.

'FORMAT_NETCDF4' Enhanced model, HDF5-based — Introduced in 2008,
NetCDF, version 4, extends the classic model and is
based on HDF5.

'FORMAT_NETCDF4_CLASSIC' Classic model, HDF5-based — Introduced in 2008,
NetCDF, version 4, implements classic model but is
based on HDF5.

Examples
This example opens the sample NetCDF file and determines the format.

ncid = netcdf.open('example.nc','NOWRITE');
fmt = netcdf.inqFormat(ncid)

format =

FORMAT_NETCDF4

netcdf.close(ncid);

References
This function corresponds to the nc_inq_format function in the NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.getConstant

 netcdf.inqFormat

1-9907

netcdf.inqGrpName
Retrieve name of group

Syntax
groupName = netcdf.inqGrpName(ncid)

Description
groupName = netcdf.inqGrpName(ncid) returns the name of a group specified by
ncid.

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

Output Arguments
groupName

Character vector containing the name of the group specified by ncid. The root group has
the name '/'.

Examples
This example opens the NetCDF sample file and gets the names of groups in the dataset.

1 Alphabetical List

1-9908

 ncid = netcdf.open('example.nc','nowrite');
 name = netcdf.inqGrpName(ncid);
 netcdf.close(ncid);

References
This function corresponds to the nc_inq_grpname function in the NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.inqGrpNameFull

 netcdf.inqGrpName

1-9909

netcdf.inqGrpNameFull
Complete pathname of group

Syntax
groupName = netcdf.inqGrpNameFull(ncid)

Description
groupName = netcdf.inqGrpNameFull(ncid) returns the complete pathname of the
group specified by ncid.

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

Output Arguments
groupName

Character vector specifying complete path of group.

The root group has the name '/'. The names of parent groups and child groups use the
forward slash '/' separator, as in UNIX folder names, for example, /group1/subgrp2/
subsubgrp3.

1 Alphabetical List

1-9910

Examples
Open the NetCDF sample dataset and retrieve the names of all groups.

ncid = netcdf.open('example.nc','NOWRITE');
gid = netcdf.inqNcid(ncid,'grid2');
fullName = netcdf.inqGrpNameFull(gid);
netcdf.close(ncid);

References
This function corresponds to the nc_inq_grpname_full function in the netCDF library
C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.inqGrpName

 netcdf.inqGrpNameFull

1-9911

netcdf.inqGrpParent
Retrieve ID of parent group.

Syntax
parentGroupID = netcdf.inqGrpParent(ncid)

Description
parentGroupID = netcdf.inqGrpParent(ncid) returns the ID of the parent group
given the location of the child group, specified by ncid.

Input Arguments
ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open, or of a
NetCDF group, returned by netcdf.defGrp.

Default:

Output Arguments
parentGroupID

Identifier of the NetCDF group or file that is the parent of the specified file or group.

Examples
This example opens the NetCDF sample file and gets the full path of the parent of the
specified group.

1 Alphabetical List

1-9912

ncid = netcdf.open('example.nc','NOWRITE');
gid = netcdf.inqNcid(ncid,'grid2');
parentId = netcdf.inqGrpParent(gid);
fullName = netcdf.inqGrpNameFull(parentId);
netcdf.close(ncid);

References
This function corresponds to the nc_inq_grp_parent function in the NetCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.inqGrps

 netcdf.inqGrpParent

1-9913

netcdf.inqGrps
Retrieve array of child group IDs

Syntax
childGrps = netcdf.inqGrps(ncid)

Description
childGrps = netcdf.inqGrps(ncid) returns all the child group IDs in the parent
group, specified by ncid.

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

Output Arguments
childGrps

Array containing identifiers of child groups in the specified NetCDF file or group.

Examples
This example opens the sample NetCDF file and then gets information about the groups it
contains.

1 Alphabetical List

1-9914

 ncid = netcdf.open('example.nc','nowrite');
 childGroups = netcdf.inqGrps(ncid);
 netcdf.close(ncid);

References
This function corresponds to the nc_inq_grps function in the netCDF library C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.inqNcid

 netcdf.inqGrps

1-9915

netcdf.inqNcid
Return ID of named group

Syntax
childGroupId = netcdf.inqNcid(ncid,childGroupName)

Description
childGroupId = netcdf.inqNcid(ncid,childGroupName) returns the ID of the
child group, specified by the name childGroupName, in the file or group specified by
ncid.

Input Arguments
ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open, or of a
NetCDF group, returned by netcdf.defGrp.

Default:

childGroupName

Character vector or string scalar specifying the name of a NetCDF group.

Default:

Output Arguments
childGroupID

Identifier of a NetCDF group.

1 Alphabetical List

1-9916

Examples
This example opens the sample NetCDF dataset and then gets the ID of a group in the
dataset.

ncid = netcdf.open('example.nc','nowrite');
gid = netcdf.inqNcid(ncid,'grid1');
netcdf.close(ncid);

References
This function corresponds to the nc_inq_ncid function in the netCDF library C API. Read
the files netcdfcopyright.txt and mexnccopyright.txt for more information.

See Also
netcdf | netcdf.inqGrpName | netcdf.inqGrpNameFull

 netcdf.inqNcid

1-9917

netcdf.inqUnlimDims
Return list of unlimited dimensions in group

Syntax
unlimdimIDs = netcdf.inqUnlimDims(ncid)

Description
unlimdimIDs = netcdf.inqUnlimDims(ncid) returns the IDs of all unlimited
dimensions in the group specified by ncid.

Input Arguments
ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open, or group,
returned by netcdf.defGrp.

Default:

Output Arguments
unlimDimIDs

An array containing the identifiers of each unlimited dimension. unlimDimIDs is empty if
there are no unlimited dimensions.

Examples
This example opens the NetCDF sample dataset and gets the IDs of all the unlimited
dimensions.

1 Alphabetical List

1-9918

ncid = netcdf.open('example.nc','NOWRITE');
dimids = netcdf.inqUnlimDims(ncid)

dimids =

 []

netcdf.close(ncid);

References
This function corresponds to the nc_inq_unlim_dims function in the NetCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.defDim | netcdf.inqDim | netcdf.inqDimID |
netcdf.inqDimIDs | netcdf.renameDim

 netcdf.inqUnlimDims

1-9919

netcdf.inqVarIDs
IDs of all variables in group

Syntax
varids = netcdf.inqVarIDs(ncid)

Description
varids = netcdf.inqVarIDs(ncid) returns IDs of the all the variables in the group
specified by ncid.

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

Output Arguments
varids

Array containing identifiers of variables in a NetCDF file or group.

Examples
This example opens the NetCDF sample file and gets the IDs of all the variables in a
group.

1 Alphabetical List

1-9920

 ncid = netcdf.open('example.nc','NOWRITE');
 gid = netcdf.inqNcid(ncid,'grid1');
 varids = netcdf.inqVarIDs(gid);
 netcdf.close(ncid);

References
This function corresponds to the nc_inq_varids function in the NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.inqDimIDs | netcdf.inqVarID

 netcdf.inqVarIDs

1-9921

netcdf.inqVarChunking
Determine chunking settings for NetCDF variable

Syntax
[storage,chunkSizes] = netcdf.inqVarChunking(ncid,varid)

Description
[storage,chunkSizes] = netcdf.inqVarChunking(ncid,varid) returns the type
of chunking and the dimensions of a chunk for the NetCDF variable specified by varid,
in the file or group specified by ncid.

Input Arguments
ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open, or of a NetCDF
group, returned by netcdf.defGrp.

Default:

varid

Identifier of NetCDF variable, returned by netcdf.defVar.

Default:

1 Alphabetical List

1-9922

Output Arguments
storage

Character vector specifying if NetCDF breaks the data into chunks when writing to a file.
The value 'CHUNKED' indicates the data is chunked; 'CONTIGUOUS' indicates that the
data is not chunked.

chunkSizes

Array specifying the dimensions of the chunk.

Because MATLAB uses FORTRAN-style ordering, the order of dimensions in chunkdims
is reversed relative to what would be in the NetCDF C API.

If the storage type specified is CONTIGUOUS, netcdf.inqVarChunking returns an
empty array, [].

Examples
This example opens the NetCDF sample dataset and gets the values of chunking
parameters associated with a variable.

ncid = netcdf.open('example.nc','NOWRITE');
groupid = netcdf.inqNcid(ncid,'grid1');
varid = netcdf.inqVarID(groupid,'temp');
[storage,chunkSize] = netcdf.inqVarChunking(groupid,varid);
netcdf.close(ncid);

References
This function corresponds to the nc_inq_var_chunking function in the netCDF library
C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

 netcdf.inqVarChunking

1-9923

See Also
netcdf | netcdf.defVar | netcdf.defVarChunking

1 Alphabetical List

1-9924

netcdf.inqVarDeflate
Determine compression settings for NetCDF variable

Syntax
[shuffle,deflate,deflateLevel] = netcdf.inqVarDeflate(ncid,varid)

Description
[shuffle,deflate,deflateLevel] = netcdf.inqVarDeflate(ncid,varid)
returns the compression parameters for the NetCDF variable specified by varid in the
location specified by ncid.

Input Arguments
ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open, or of a
NetCDF group, returned by netcdf.defGrp.

Default:

varid

Identifier of NetCDF variable, returned by netcdf.defVar.

Default:

 netcdf.inqVarDeflate

1-9925

Output Arguments
shuffle

Boolean value. true indicates that the shuffle filter is enabled for the specified variable.
The shuffle filter can assist with the compression of integer data by changing the byte
order in the data stream.

deflate

Boolean value. true indicates that compression is enabled for this variable. The
deflateLevel argument specifies the level of compression.

deflateLevel

Scalar value between 0 and 9 specifying the amount of compression, where 0 is no
compression and 9 is the most compression

Examples
This example opens the NetCDF sample file and gets information about variable
compression.

ncid = netcdf.open('example.nc','NOWRITE');
groupid = netcdf.inqNcid(ncid,'grid1');
varid = netcdf.inqVarID(groupid,'temp');
[shuffle,deflate,deflateLevel] = netcdf.inqVarDeflate(groupid,varid);
netcdf.close(ncid);

References
This function corresponds to the nc_inq_var_deflate function in the netCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

1 Alphabetical List

1-9926

See Also
netcdf | netcdf.defVarDeflate

 netcdf.inqVarDeflate

1-9927

netcdf.inqVarFill
Determine values of fill parameters for NetCDF variable

Syntax
[noFillMode,fillValue] = netcdf.inqVarFill(ncid,varid)

Description
[noFillMode,fillValue] = netcdf.inqVarFill(ncid,varid) returns the fill
mode and the fill value for the variable varid in the NetCDF-4 file or group specified by
ncid.

Input Arguments
ncid

Identifier of a NetCDF-4 file, returned by netcdf.create or netcdf.open, or a NetCDF
group, returned by netcdf.defGrp.

Default:

varid

Identifier of NetCDF variable.

Default:

Output Arguments
noFillMode

Boolean value. true indicates that use of the fill values for the variable has been
disabled.

1 Alphabetical List

1-9928

fillValue

Specifies the value to use in the variable when no other value is specified and use of fill
values has been enabled.

Examples
This example opens the NetCDF sample dataset and gets the fill mode and fill value used
with a variable.

ncid = netcdf.open('example.nc','NOWRITE');
varid = netcdf.inqVarID(ncid,'temperature');
[noFillMode,fillValue] = netcdf.inqVarFill(ncid,varid);
netcdf.close(ncid);

References
This function corresponds to the nc_inq_var_fill function in the netCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.defVarFill | netcdf.setFill

 netcdf.inqVarFill

1-9929

netcdf.inqVarFletcher32
Fletcher32 checksum setting for NetCDF variable

Syntax
setting = netcdf.inqVarFletcher32(ncid,varid)

Description
setting = netcdf.inqVarFletcher32(ncid,varid) returns the Fletcher32
checksum setting for the NetCDF variable specified by varid in the file or group
specified by ncid.

Input Arguments
ncid

Identifier for NetCDF file, returned by netcdf.create or netcdf.open, or group,
returned by netcdf.defGrp.

Default:

varid

Identifier of NetCDF variable.

Default:

1 Alphabetical List

1-9930

Output Arguments
setting

Character vector specifying whether the Fletcher32 checksum is turned on for the
specified variable. netcdf.inqVarFletcher32 returns 'FLETCHER32' or
'NOCHECKSUM'.

• 'FLETCHER32' — If the checksum is turned on for the variable.
• 'NOCHECKSUM' — Otherwise.

Examples
This example opens the sample NetCDF file and gets information about the checksum
setting for a variable.

ncid = netcdf.open('example.nc','NOWRITE');
varid = netcdf.inqVarID(ncid,'temperature');
setting = netcdf.inqVarFletcher32(ncid,varid);
netcdf.close(ncid);

References
This function corresponds to the nc_inq_var_fletcher32 function in the netCDF
library C API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
for more information.

See Also
netcdf | netcdf.defVarFletcher32

 netcdf.inqVarFletcher32

1-9931

netcdf.inqAtt
Return information about netCDF attribute

Syntax
[xtype,attlen] = netcdf.inqAtt(ncid,varid,attname)

Description
[xtype,attlen] = netcdf.inqAtt(ncid,varid,attname) returns the data type,
xtype, and length, attlen, of the attribute identified in attname. Specify attname as a
character vector or string scalar.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

varid identifies the variable that the attribute is associated with. To get information
about a global attribute, specify netcdf.getConstant('NC_GLOBAL') in place of
varid.

This function corresponds to the nc_inq_att function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens the example netCDF file included with MATLAB, example.nc, and
gets information about an attribute in the file.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NOWRITE');

% Get identifier of a variable in the file, given its name.
varid = netcdf.inqVarID(ncid,'avagadros_number');

% Get attribute name, given variable id and attribute number.

1 Alphabetical List

1-9932

attname = netcdf.inqAttName(ncid,varid,0);

% Get information about the attribute.
[xtype,attlen] = netcdf.inqAtt(ncid,varid,'description')

xtype =

 2

attlen =

 31

% Get name of global attribute
gattname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0);

% Get information about global attribute.
[gxtype gattlen] = netcdf.inqAtt(ncid,netcdf.getConstant('NC_GLOBAL'),gattname)

gxtype =

 2

gattlen =

 11

See Also
netcdf.inqAttID | netcdf.inqAttName

 netcdf.inqAtt

1-9933

netcdf.inqAttID
Return ID of netCDF attribute

Syntax
attnum = netcdf.inqAttID(ncid,varid,attname)

Description
attnum = netcdf.inqAttID(ncid,varid,attname) retrieves attnum, the identifier
of the attribute indicated by attname. Specify attname as a character vector or string
scalar.

varid specifies the variable the attribute is associated with.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

This function corresponds to the nc_inq_attid function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens the netCDF example file included with MATLAB, example.nc.

% Open the netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get the identifier of a variable in the file.
varid = netcdf.inqVarID(ncid,'avagadros_number');

% Retrieve the identifier of the attribute associated with the variable.
attid = netcdf.inqAttID(ncid,varid,'description');

1 Alphabetical List

1-9934

See Also
netcdf.inqAtt | netcdf.inqAttName

 netcdf.inqAttID

1-9935

netcdf.inqAttName
Return name of netCDF attribute

Syntax
attname = netcdf.inqAttName(ncid,varid,attnum)

Description
attname = netcdf.inqAttName(ncid,varid,attnum) returns attname, a
character vector containing the name of an attribute.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

varid is a numeric identifier of a variable in the file. If you want to get the name of a
global attribute in the file, use netcdf.getConstant('NC_GLOBAL') in place of
attnum is a zero-based numeric value specifying the attribute, with 0 indicating the first
attribute, 1 the second attribute, and so on.

This function corresponds to the nc_inq_attname function in the netCDF library C API.
To use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens the example netCDF file included with MATLAB, example.nc.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get identifier of a variable in the file.
varid = netcdf.inqVarID(ncid,'avagadros_number')

% Get the name of the attribute associated with the variable.
attname = netcdf.inqAttName(ncid,varid,0)

1 Alphabetical List

1-9936

attname =

description

% Get the name of the global attribute associated with the variable.
gattname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0)

gattname =

creation_date

See Also
netcdf.inqAtt | netcdf.inqAttID

 netcdf.inqAttName

1-9937

netcdf.inqDim
Return netCDF dimension name and length

Syntax
[dimname, dimlen] = netcdf.inqDim(ncid,dimid)

Description
[dimname, dimlen] = netcdf.inqDim(ncid,dimid) returns the name, dimname,
and length, dimlen, of the dimension specified by dimid. If ndims is the number of
dimensions defined for a netCDF file, each dimension has an ID between 0 and ndims-1.
For example, the dimension identifier of the first dimension is 0, the second dimension is
1, and so on.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

This function corresponds to the nc_inq_dim function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
The example opens the example netCDF file include with MATLAB, example.nc.

ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get name and length of first dimension
[dimname, dimlen] = netcdf.inqDim(ncid,0)

dimname =

x

1 Alphabetical List

1-9938

dimlen =

 50

See Also
netcdf.inqDimID

 netcdf.inqDim

1-9939

netcdf.inqDimID
Return dimension ID

Syntax
dimid = netcdf.inqDimID(ncid,dimname)

Description
dimid = netcdf.inqDimID(ncid,dimname) returns dimid corresponding to
dimname. Specify dimname as a character vector or string scalar. You can use the
netcdf.inqDim function to retrieve the dimension name. ncid is a netCDF file identifier
returned by netcdf.create or netcdf.open.

This function corresponds to the nc_inq_dimid function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens the example netCDF file included with MATLAB, example.nc.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get name and length of first dimension
[dimname, dimlen] = netcdf.inqDim(ncid,0);

% Retrieve identifier of dimension.
dimid = netcdf.inqDimID(ncid,dimname)

dimid =

 0

1 Alphabetical List

1-9940

See Also
netcdf.inqDim

 netcdf.inqDimID

1-9941

netcdf.inqLibVers
Return NetCDF library version information

Syntax
libvers = netcdf.inqLibVers

Description
libvers = netcdf.inqLibVers returns a character vector identifying the version of
the NetCDF library.

This function corresponds to the nc_inq_libvers function in the NetCDF library C API.
To use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
libvers = netcdf.inqLibVers

libvers =

4.6.1

1 Alphabetical List

1-9942

netcdf.inqVar
Information about variable

Syntax
[varname,xtype,dimids,natts] = netcdf.inqVar(ncid,varid)

Description
[varname,xtype,dimids,natts] = netcdf.inqVar(ncid,varid) returns
information about the variable identified by varid. The argument, ncid, is a netCDF file
identifier returned by netcdf.create or netcdf.open.

The output argument, varname, is the name of the variable. xtype is the data type,
dimids is the dimension IDs, and natts is the number of attributes associated with the
variable. Dimension IDs are zero-based.

This function corresponds to the nc_inq_var function in the netCDF library C API.
Because MATLAB uses FORTRAN-style ordering, however, the order of the dimension IDs
is reversed relative to what would be obtained from the C API. To use this function, you
should be familiar with the netCDF programming paradigm. See netcdf for more
information.

Examples
Open the example netCDF file included with MATLAB, example.nc, and get information
about a variable in the file.

% Open the example netCDF file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get information about third variable in the file.
[varname, xtype, dimids, numatts] = netcdf.inqVar(ncid,2)

varname =

 netcdf.inqVar

1-9943

peaks

xtype =

 5

dimids =

 0 1

numatts =

 1 1

See Also
netcdf.create | netcdf.inqVarID | netcdf.open

1 Alphabetical List

1-9944

netcdf.inqVarID
Return ID associated with variable name

Syntax
varid = netcdf.inqVarID(ncid,varname)

Description
varid = netcdf.inqVarID(ncid,varname) returns varid corresponding to
varname. Specify varname as character vector or string scalar.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

This function corresponds to the nc_inq_varid function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens the example netCDF file included with MATLAB, example.nc, and
uses several inquiry functions to get the ID of the first variable.

ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get information about first variable in the file.
[varname, xtype, dimids, atts] = netcdf.inqVar(ncid,0);

% Get variable ID of the first variable, given its name
varid = netcdf.inqVarID(ncid,varname)

varid =

 0

 netcdf.inqVarID

1-9945

See Also
netcdf.create | netcdf.inqVar | netcdf.open

1 Alphabetical List

1-9946

netcdf.open
Open NetCDF data source

Syntax
ncid = netcdf.open(source)
ncid = netcdf.open(source,mode)
[actualChunksize,ncid] = netcdf.open(source,mode,chunksize)

Description
ncid = netcdf.open(source) opens the source for read-only access and returns a
NetCDF identifier in ncid. Thesource specified can be the name of a NetCDF file or the
URL of an OPeNDAP NetCDF data source.

ncid = netcdf.open(source,mode) opens source with the type of access specified
by mode. Mode values are 'WRITE', 'SHARE', or 'NOWRITE'.

[actualChunksize,ncid] = netcdf.open(source,mode,chunksize) opens an
existing NetCDF data source, with a specified chunksize. The chunksize parameter
enables I/O performance tuning.

Examples

Read from NetCDF File

Open the sample NetCDF file, example.nc with read-only access, read a variable, and
then close the file. The netcdf.open function returns a file identifier.

ncid = netcdf.open('example.nc')

ncid = 65536

Read the data associated with the variable, avagadros_number, in the example file,
using the netcdf.getVar function. The second input to netcdf.getVar is the variable

 netcdf.open

1-9947

ID, which is a zero-based index that identifies the variable. The avagadros_number
variable has the index value 0.

A_number = netcdf.getVar(ncid,0)

A_number = 6.0221e+23

Close the NetCDF file.

netcdf.close(ncid)

Open NetCDF File for Writing

Open an NetCDF and assign a value to a variable, and then display it.

Create NetCDF File myexample.nc containing a variable pi.

nccreate('myexample.nc','pi')

Open the file for writing and write the value 3.1416 to the variable pi.

ncid = netcdf.open('myexample.nc','WRITE')

ncid = 65536

varInd = 0; % index of the first variable in the file
varValue = 3.1416 ;
netcdf.putVar(ncid,varInd,varValue);

Read and display the value of the variable pi from the file.

netcdf.getVar(ncid,varInd)

ans = 3.1416

Close the file.

netcdf.close(ncid);

1 Alphabetical List

1-9948

Input Arguments
source — Source name
character vector | string scalar

Source name, specified as a character vector or string scalar containing the name of a
NetCDF file or the URL of an OPeNDAP NetCDF data source.
Data Types: char | string

mode — Access type
'NOWRITE' (default) | 'WRITE' | 'SHARE' | numeric value

Access type, specified as a character vector or string scalar, or a numeric value. The mode
input can one of these values.

Value Description
'WRITE' Read-write access
'SHARE' Synchronous file updates
'NOWRITE' Read-only access (Default)

You also can specify mode with a numeric value. Retrieve the numerical value for mode by
using netcdf.getConstant. For example, netcdf.getConstant('WRITE') returns
the numeric value for mode. Use these numeric values when you want to specify a
bitwise-OR of several modes.
Data Types: char | string | double

chunksize — Chunk size
integer

Chunk size parameter for performance tuning, specified as an integer.

The chunksize parameter controls the space-versus-time tradeoff, memory that the
netcdf.open function allocates in the NetCDF library versus the number of system calls.
Because of internal requirements, the actual value of the chunk size used by the
netcdf.open function can be different than the input value you specify. For the actual
value used by the function, see the actualChunksize argument.
Example: 1024
Example: 8192

 netcdf.open

1-9949

Data Types: double

Output Arguments
ncid — File identifier
integer

File identifier of an open NetCDF file or OPeNDAP NetCDF data source, returned as an
integer.
Data Types: double

actualChunksize — Actual chunk size
integer

Actual chunk size used by the netcdf.open function, returned as an integer.
Data Types: double

Algorithms
This function corresponds to the nc_open and nc__open functions in the netCDF library
C API. To use this function, you should be familiar with the netCDF programming
paradigm. See netcdf for more information.

See Also
netcdf | netcdf.close | netcdf.getConstant

Introduced in R2011a

1 Alphabetical List

1-9950

netcdf.putAtt
Write netCDF attribute

Syntax
netcdf.putAtt(ncid,varid,attrname,attrvalue)

Description
netcdf.putAtt(ncid,varid,attrname,attrvalue) writes the attribute named
attrname with value attrvalue to the netCDF variable specified by varid. To specify a
global attribute, use netcdf.getConstant('NC_GLOBAL') for varid.

ncid is a netCDF file identifier returned by netCDF.create or netCDF.open.

Note You cannot use netcdf.putAtt to set the '_FillValue' attribute of NetCDF4
files. Use the netcdf.defVarFill function to set the fill value for a variable.

This function corresponds to several attribute I/O functions in the netCDF library C API.
To use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example creates a new netCDF file, defines a dimension and a variable, adds data to
the variable, and then creates an attribute associated with the variable. To run this
example, you must have writer permission in your current directory.

% Create a variable in the workspace.
my_vardata = linspace(0,50,50);

% Create a netCDF file.
ncid = netcdf.create('foo.nc','NC_WRITE');

 netcdf.putAtt

1-9951

% Define a dimension in the file.
dimid = netcdf.defDim(ncid,'my_dim',50);

% Define a new variable in the file.
varid = netcdf.defVar(ncid,'my_var','double',dimid);

% Leave define mode and enter data mode to write data.
netcdf.endDef(ncid);

% Write data to variable.
netcdf.putVar(ncid,varid,my_vardata);

% Re-enter define mode.
netcdf.reDef(ncid);

% Create an attribute associated with the variable.
netcdf.putAtt(ncid,0,'my_att',10);

% Verify that the attribute was created.
[xtype xlen] = netcdf.inqAtt(ncid,0,'my_att')

xtype =

 6

xlen =

 1

This example creates a new netCDF file, specifies a global attribute, and assigns a value
to the attribute.

ncid = netcdf.create('myfile.nc','CLOBBER');
varid = netcdf.getConstant('GLOBAL');
netcdf.putAtt(ncid,varid,'creation_date',datestr(now));
netcdf.close(ncid);

See Also
netcdf.defVarFill | netcdf.getAtt | netcdf.getConstant

1 Alphabetical List

1-9952

netcdf.putVar
Write data to netCDF variable

Syntax
netcdf.putVar(ncid,varid,data)
netcdf.putVar(ncid,varid,start,data)
netcdf.putVar(ncid,varid,start,count,data)
netcdf.putVar(ncid,varid,start,count,stride,data)

Description
netcdf.putVar(ncid,varid,data) writes data to a netCDF variable identified by
varid.

Note For variable values containing text data, the data input must have only ASCII
encoded characters.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

netcdf.putVar(ncid,varid,start,data) writes a single data value into the
variable at the index specified by start.

netcdf.putVar(ncid,varid,start,count,data) writes a section of values into the
netCDF variable at the index specified by the vector start to the extent specified by the
vector count, along each dimension of the specified variable.

netcdf.putVar(ncid,varid,start,count,stride,data) writes the subsection
specified by sampling interval, stride, of the values in the section of the variable
beginning at the index start and to the extent specified by count.

This function corresponds to several variable I/O functions in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

 netcdf.putVar

1-9953

Examples

Write Variable to New netCDF File

Create a new netCDF file and write a variable to the file.

Create a 50 element vector for a variable.

my_vardata = linspace(0,50,50);

Open the netCDF file.

ncid = netcdf.create('foo.nc','NOCLOBBER');

Define the dimensions of the variable.

dimid = netcdf.defDim(ncid,'my_dim',50);

Define a new variable in the file.

my_varID = netcdf.defVar(ncid,'my_var','double',dimid);

Leave define mode and enter data mode to write data.

netcdf.endDef(ncid);

Write data to variable.

netcdf.putVar(ncid,my_varID,my_vardata);

Verify that the variable was created.

[varname xtype dimid natts] = netcdf.inqVar(ncid,0)

varname =
'my_var'

xtype = 6

dimid = 0

natts = 0

Close the file.

1 Alphabetical List

1-9954

netcdf.close(ncid)

Write Elements of Variable

Write to the first ten elements of the example temperature variable.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.nc');
copyfile(srcFile,'myfile.nc');
fileattrib('myfile.nc','+w');
ncid = netcdf.open('myfile.nc','WRITE');
varid = netcdf.inqVarID(ncid,'temperature');
data = [100:109];
netcdf.putVar(ncid,varid,0,10,data);
netcdf.close(ncid);

See Also
netcdf.getVar

 netcdf.putVar

1-9955

netcdf.reDef
Put open netCDF file into define mode

Syntax
netcdf.reDef(ncid)

Description
netcdf.reDef(ncid) puts an open netCDF file into define mode so that dimensions,
variables, and attributes can be added or renamed. Attributes can also be deleted in
define mode. ncid is a valid NetCDF file ID, returned from a previous call to
netcdf.open or netcdf.create.

This function corresponds to the nc_redef function in the netCDF library C API. To use
this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example opens a local copy of the example netCDF file included with MATLAB,
example.nc.

% Open a netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Try to define a dimension.
dimid = netcdf.defdim(ncid, 'lat', 50); % should fail.
??? Error using ==> netcdflib
NetCDF: Operation not allowed in data mode

Error in ==> defDim at 22
dimid = netcdflib('def_dim', ncid,dimname,dimlen);

% Put file in define mode.

1 Alphabetical List

1-9956

netcdf.reDef(ncid);

% Try to define a dimension again. Should succeed.
dimid = netcdf.defDim(ncid, 'lat', 50);

See Also
netcdf.create | netcdf.endDef | netcdf.open

 netcdf.reDef

1-9957

netcdf.renameAtt
Change name of attribute

Syntax
netcdf.renameAtt(ncid,varid,oldName,newName)

Description
netcdf.renameAtt(ncid,varid,oldName,newName) changes the name of the
attribute specified in oldName to the name specified in newName.

Specify oldName and newName as character vectors or string scalars.

ncid is a netCDF file identifier returned by netcdf.create or netcdf.open.

varid identifies the variable to which the attribute is associated. To specify a global
attribute, use netcdf.getConstant('NC_GLOBAL') for varid.

This function corresponds to the nc_rename_att function in the netCDF library C API.
To use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example modifies a local copy of the example netCDF file included with MATLAB,
example.nc.

% Open netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Get the ID of a variable the attribute is associated with.
varID = netcdf.inqVarID(ncid,'avagadros_number')

% Rename the attribute.

1 Alphabetical List

1-9958

netcdf.renameAtt(ncid,varID,'description','Description');

% Verify that the name changed.
attname = netcdf.inqAttName(ncid,varID,0)

attname =

Description

See Also
netcdf.inqAttName

 netcdf.renameAtt

1-9959

netcdf.renameDim
Change name of netCDF dimension

Syntax
netcdf.renameDim(ncid,dimid,newName)

Description
netcdf.renameDim(ncid,dimid,newName) renames the dimension identified by the
dimension identifier, dimid.

newName is a character vector or string scalar specifying the new name. ncid is a
netCDF file identifier returned by netcdf.create or netcdf.open

This function corresponds to the nc_rename_dim function in the netCDF library C API.
To use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example modifies a local copy of the example netCDF file included with MATLAB,
example.nc.

% Open netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Put file is define mode.
netcdf.reDef(ncid)

% Get the identifier of a dimension to rename.
dimid = netcdf.inqDimID(ncid,'x');

% Rename the dimension.
netcdf.renameDim(ncid,dimid,'Xdim')

1 Alphabetical List

1-9960

% Verify that the name changed.
data = netcdf.inqDim(ncid,dimid)

data =

Xdim

See Also
netcdf.defDim

 netcdf.renameDim

1-9961

netcdf.renameVar
Change name of netCDF variable

Syntax
netcdf.renameVar(ncid,varid,newName)

Description
netcdf.renameVar(ncid,varid,newName) renames the variable identified by varid
in the netCDF file identified by ncid.newName is a character vector or string scalar
specifying the new name.

This function corresponds to the nc_rename_var function in the netCDF library C API.
To use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example modifies a local copy of the example netCDF file included with MATLAB,
example.nc.

% Open netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Put file in define mode.
netcdf.redef(ncid)

% Get name of first variable
[varname, xtype, varDimIDs, varAtts] = netcdf.inqVar(ncid,0);

varname

varname =

1 Alphabetical List

1-9962

avagadros_number

% Rename the variable, using a capital letter to start the name.
netcdf.renameVar(ncid,0,'Avagadros_number')

% Verify that the name of the variable changed.
[varname, xtype, varDimIDs, varAtts] = netcdf.inqVar(ncid,0);

varname

varname =

Avagadros_number

See Also
netCDF.defVar | netCDF.inqVar | netCDF.putVar

 netcdf.renameVar

1-9963

netcdf.setChunkCache
Set default chunk cache settings for NetCDF library

Syntax
netcdf.setChunkCache(csize,nelems,premp)

Description
netcdf.setChunkCache(csize,nelems,premp) sets the default chunk cache settings
used by the NetCDF library.

Settings apply for subsequent file open or create operations, for the remainder of the
MATLAB session or until you issue a clear mex call. This function does not change the
chunk cache settings of files already open.

Input Arguments
csize

Scalar double specifying the total size of the raw data chunk cache in bytes.

Default:

nelems

Scalar double specifying the number of chunk slots in the raw data chunk cache hash
table.

Default:

premp

Scalar double, between 0 and 1, inclusive, that specifies how the library handles
preempting fully read chunks in the chunk cache. A value of 0 means fully read chunks

1 Alphabetical List

1-9964

are treated no differently than other chunks, that is, preemption occurs solely based on
the Least Recently Used (LRU) algorithm. A value of 1 means fully read chunks are
always preempted before other chunks.

Default:

Examples
This example sets the cache chunk size used by the NetCDF library.

 netcdf.setChunkCache(32000000, 2003, .75)

References
This function corresponds to the nc_set_chunk_cache function in the NetCDF library C
API.

For copyright information, read the netcdfcopyright.txt and mexnccopyright.txt
files.

See Also
netcdf | netcdf.getChunkCache

 netcdf.setChunkCache

1-9965

netcdf.setDefaultFormat
Change default netCDF file format

Syntax
oldFormat = netcdf.setDefaultFormat(newFormat)

Description
oldFormat = netcdf.setDefaultFormat(newFormat) changes the default format
used by netCDF.create when creating new netCDF files, and returns the value of the
old format. You can use this function to change the format used by a netCDF file without
having to change the creation mode flag used in each call to netCDF.create. This
setting persists for the remainder of the MATLAB session or until you issue the command
clear mex.

newFormat can be one of these values.

Value Description
'NC_FORMAT_CLASSIC' Classic format — Original NetCDF format, used by all

NetCDF files created between 1989 and 2004.
'NC_FORMAT_64BIT' Classic format, 64–bit — Original format with 64–bit

addressing capability to allow creation and access of
much larger files.

'NC_FORMAT_NETCDF4' Enhanced model, HDF5-based — Introduced in 2008,
NetCDF, version 4, extends the classic model and is
based on HDF5.

'NC_FORMAT_NETCDF4_CLASSIC
'

Classic model, HDF5-based — Introduced in 2008,
NetCDF, version 4, implements classic model but is
based on HDF5.

You can also specify the numeric equivalent of these values, as retrieved by
netcdf.getConstant.

1 Alphabetical List

1-9966

This function corresponds to the nc_set_default_format function in the netCDF
library C API. To use this function, you should be familiar with the netCDF programming
paradigm. See netcdf for more information.

Examples
oldFormat = netcdf.setDefaultFormat('NC_FORMAT_64BIT');

See Also
netcdf.create

 netcdf.setDefaultFormat

1-9967

netcdf.setFill
Set netCDF fill mode

Syntax
old_mode = netcdf.setFill(ncid,new_mode)

Description
old_mode = netcdf.setFill(ncid,new_mode) sets the fill mode for a netCDF file
identified by ncid.

new_mode can be either 'FILL' or 'NOFILL' or their numeric equivalents, as retrieved
by netcdf.getConstant. The default mode is 'FILL'. netCDF pre-fills data with fill
values. Specifying 'NOFILL' can be used to enhance performance, because it avoids the
duplicate writes that occur when the netCDF writes fill values that are later overwritten
with data.

This function corresponds to the nc_set_fill function in the netCDF library C API. To
use this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example creates a new file and specifies the fill mode used by netCDF with the file.

ncid = netcdf.open('foo.nc','NC_WRITE');

% Set filling behavior
old_mode = netcdf.setFill(ncid,'NC_NOFILL');

See Also
netcdf.getConstant

1 Alphabetical List

1-9968

netcdf.sync
Synchronize netCDF file to disk

Syntax
netcdf.sync(ncid)

Description
netcdf.sync(ncid) synchronizes the state of a netCDF file to disk. The netCDF library
normally buffers accesses to the underlying netCDF file, unless you specify the NC_SHARE
mode when you opened the file with netcdf.open or netcdf.create. To call
netcdf.sync, the netCDF file must be in data mode.

This function corresponds to the nc_sync function in the netCDF library C API. To use
this function, you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples
This example creates a new netCDF file for write access, performs an operation on the
file, takes the file out of define mode, and then synchronizes the file to disk.

% Create a netCDF file.
ncid = netcdf.create('foo.nc','NC_WRITE');

% Perform an operation.
dimid = netcdf.defDim(ncid,'Xdim',50);

% Take file out of define mode.
netcdf.endDef(ncid);

% Synchronize the file to disk.
netcdf.sync(ncid)

 netcdf.sync

1-9969

See Also
netcdf.close | netcdf.create | netcdf.endDef | netcdf.open

1 Alphabetical List

1-9970

newline
Create newline character

Syntax
c = newline

Description
c = newline creates a newline character. newline is equivalent to char(10) or
sprintf('\n'). Use newline to concatenate a newline character onto a character
vector or a string, or to split text on newline characters.

Examples

Add Newline to Character Vector and String

Create a newline character with newline and concatenate it onto a character vector.

chr = 'Whose woods these are I think I know.';
chr = [chr newline 'His house is in the village though']

chr =
 'Whose woods these are I think I know.
 His house is in the village though'

Although chr displays on two lines, chr is a 1-by-73 character vector that contains the
two sentences, separated by a newline.

Starting in R2017a, you can create strings using double quotes. Create a newline
character. Then use + to concatenate the newline character and more text onto the end of
a string.

 newline

1-9971

str = "In Xanadu did Kubla Khan";
str = str + newline + "A stately pleasure-dome decree"

str =
 "In Xanadu did Kubla Khan
 A stately pleasure-dome decree"

Although str displays on two lines, str is a 1-by-1 string.

Tips
• The newline function does not return a carriage return character. A carriage return

is equivalent to char(13) or sprintf('\r').

See Also
char | compose | join | split | splitlines | sprintf | string

Introduced in R2016b

1 Alphabetical List

1-9972

newplot
Determine where to draw graphics objects

Syntax
newplot
h = newplot
h = newplot(sv)

Description
newplot prepares a figure and axes for subsequent graphics commands.

h = newplot prepares a figure and axes for subsequent graphics commands and returns
the current axes.

h = newplot(sv) does not delete any objects specified by the sv argument, which can
be a vector of graphics objects. The figure and axes containing the objects in sv are
prepared for plotting instead of the current axes of the current figure. If sv is empty,
newplot behaves as if it were called without any inputs.

Tips
To create a simple 2-D plot, use the plot function instead.

Use newplot at the beginning of high-level graphics code to determine which figure and
axes to target for graphics output. Calling newplot can change the current figure and
current axes. Basically, there are three options when you are drawing graphics in existing
figures and axes:

• Add the new graphics without changing any properties or deleting any objects.
• Delete all existing objects whose handles are not hidden before drawing the new

objects.

 newplot

1-9973

• Delete all existing objects regardless of whether or not their handles are hidden, and
reset most properties to their defaults before drawing the new objects (refer to the
following table for specific information).

The figure and axes NextPlot properties determine how newplot behaves. The
following two tables describe this behavior with various property values.

First, newplot reads the current figure's NextPlot property and acts accordingly.

NextPlot What Happens
new Create a new figure and use it as the current figure.
add Draw to the current figure without clearing any graphics

objects already present.
replacechildren Remove all child objects whose HandleVisibility

property is set to on and reset figure NextPlot property to
add.

This clears the current figure and is equivalent to issuing the
clf command.

replace Remove all child objects (regardless of the setting of the
HandleVisibility property) and reset figure properties to
their defaults, except

NextPlot is reset to add regardless of user-defined
defaults.

• Position, Units, PaperPosition, and PaperUnits
are not reset.

This clears and resets the current figure and is equivalent to
issuing the clf reset command.

After newplot establishes which figure to draw in, it reads the current axes' NextPlot
property and acts accordingly.

NextPlot Description
add Add new plots to the existing axes. Do not delete existing

plots or reset axes properties before displaying the new plot.

1 Alphabetical List

1-9974

NextPlot Description
replacechildren Delete existing plots before displaying the new plot. Reset

the ColorOrderIndex and LineStyleOrderIndex axes
properties to 1, but do not reset other axes properties. The
next plot added to the axes uses the first color and line style
based on the ColorOrder and LineStyleOrder properties
of the axes. This value is similar to using cla before every
new plot.

replace Delete existing plots and reset all axes properties, except
Position and Units, to their default values before
displaying the new plot.

replaceall Delete existing plots and reset all axes properties, except
Position and Units, to their default values before
displaying the new plot. This value is similar to using cla
reset before every new plot.

For axes with only one y-axes, the replace and
replaceall values are equivalent. For axes with two y-axes,
the replace value affects only the active side while the
replaceall value affects both sides.

See Also
axes | cla | clf | figure | hold | ishold | plot | reset

Topics
“Control Graph Display”

Introduced before R2006a

 newplot

1-9975

nextDirectory
Make next IFD the current IFD

Syntax
nextDirectory(t)

Description
nextDirectory(t) makes the next image file directory (IFD) of the TIFF file the current
IFD.

The Tiff object functions operate on the current IFD. Use this function to navigate
among IFDs in a TIFF file containing multiple images.

Examples

Navigate to Next Image in TIFF File

Get information on the Photometric tag of the image in the current IFD, navigate to the
next image in the file, and examine the same tag for the next image.

Create a Tiff object for the file example.tif.

t = Tiff('example.tif','r');

Display the current directory number and get the value of the Photometric tag from the
current IFD. A value of 2 for the Photometric tag corresponds to the colorspace RGB in
the TIFF specifications.

dirNum = currentDirectory(t)

dirNum = 1

value = getTag(t,'Photometric')

1 Alphabetical List

1-9976

value = 2

Navigate to the next IFD

nextDirectory(t);

Display the current directory number and get the value of the Photometric tag from this
IFD. A value of 1 for the Photometric tag corresponds to the colorspace MinIsBlack in
the TIFF specifications.

dirNum = currentDirectory(t)

dirNum = 2

value = getTag(t,'Photometric')

value = 1

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Algorithms

References
This function corresponds to the TIFFReadDirectory function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

 nextDirectory

1-9977

http://www.simplesystems.org/libtiff/

See Also
Tiff | setDirectory

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-9978

nextpow2
Exponent of next higher power of 2

Syntax
P = nextpow2(A)

Description
P = nextpow2(A) returns the exponents for the smallest powers of two that satisfy

2p ≥ A

for each element in A. By convention, nextpow2(0) returns zero.

You can use nextpow2 to pad the signal you pass to fft. Doing so can speed up the
computation of the FFT when the signal length is not an exact power of 2.

Examples

Next Power of 2 of Double Integer Values

Define a vector of double integer values and calculate the exponents for the next power
of 2 higher than those values.

a = [1 -2 3 -4 5 9 519];
p = nextpow2(a)

p = 1×7

 0 1 2 2 3 4 10

Calculate the positive next powers of 2.

 nextpow2

1-9979

np2 = 2.^p

np2 = 1×7

 1 2 4 4 8 16 1024

Preserve the sign of the original input values.

np2.*sign(a)

ans = 1×7

 1 -2 4 -4 8 16 1024

Next Power of 2 of Unsigned Integer Values

Define a vector of unsigned integers and calculate the exponents for the next power of 2
higher than those values.

a = uint32([1020 4000 32700]);
p = nextpow2(a)

p = 1x3 uint32 row vector

 10 12 15

Calculate the next powers of 2 higher than the values in a.

2.^p

ans = 1x3 uint32 row vector

 1024 4096 32768

1 Alphabetical List

1-9980

Optimize FFT with Padding

Use the nextpow2 function to increase the performance of fft when the length of a
signal is not a power of 2.

Create a 1-D vector containing 8191 sample values.

x = gallery('uniformdata',[1,8191],0);

Calculate the next power of 2 higher than 8191.

p = nextpow2(8191);
n = 2^p

n = 8192

Pass the signal and the next power of 2 to the fft function.

y = fft(x,n);

Input Arguments
A — Input values
scalar, vector, or array of real numbers

Input values, specified as a scalar, vector, or array of real numbers of any numeric type.
Example: 15
Example: [-15.123 32.456 63.111]
Example: int16([-15 32 63])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 nextpow2

1-9981

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fft | log2 | pow2

Introduced before R2006a

1 Alphabetical List

1-9982

nnz
Number of nonzero matrix elements

Syntax
N = nnz(X)

Description
N = nnz(X) returns the number of nonzero elements in matrix X.

Examples

Number of Nonzeros

Create an identity matrix and determine the number of nonzeros it contains.

X = eye(4)

X = 4×4

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

N = nnz(X)

N = 4

 nnz

1-9983

Number of Elements Meeting a Condition

Use nnz in conjunction with a relational operator to determine how many matrix
elements meet a condition. Since relational operators produce logical matrices of 1s and
0s, the nnz function counts the 1s where the condition is true.

Create a matrix and determine how many elements are greater than 10.

X = magic(5)

X = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

nnz(X>10)

ans = 15

Density of Sparse Matrix

The density of a matrix is the ratio of nonzeros to the total number of elements, nnz(X)/
numel(X).

Create a sparse matrix representing the finite difference Laplacian on an L-shaped
domain and calculate its density.

X = delsq(numgrid('L',20));
spy(X)

1 Alphabetical List

1-9984

d = nnz(X)/numel(X)

d = 0.0194

The result indicates that only about 2% of the elements in the matrix are nonzero.

Input Arguments
X — Input matrix
matrix

Input matrix.

 nnz

1-9985

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
find | nonzeros | numel | nzmax | size

1 Alphabetical List

1-9986

Introduced before R2006a

 nnz

1-9987

nonzeros
Nonzero matrix elements

Syntax
v = nonzeros(A)

Description
v = nonzeros(A) returns a full column vector of the nonzero elements in A. The
elements in v are ordered by columns.

Examples

Nonzero Matrix Elements

Use nonzeros to return the nonzero elements in a sparse matrix.

Create a 10-by-10 sparse matrix that contains a few nonzero elements. The typical display
of sparse matrices shows a list of the nonzero values and their locations.

A = sparse([1 3 2 1],[1 1 2 3],1:4,10,10)

A =
 (1,1) 1
 (3,1) 2
 (2,2) 3
 (1,3) 4

Find the values of the nonzero elements.

v = nonzeros(A)

v = 4×1

1 Alphabetical List

1-9988

 1
 2
 3
 4

Location and Count of Nonzeros

Use nonzeros, nnz, and find to locate and count nonzero matrix elements.

Create a 10-by-10 random sparse matrix with 7% density of nonzeros.

A = sprand(10,10,0.07);

Use nonzeros to find the values of the nonzero elements.

v = nonzeros(A)

v = 7×1

 0.9595
 0.4218
 0.7922
 0.8003
 0.1419
 0.9157
 0.6557

Use nnz to count the number of nonzeros.

n = nnz(A)

n = 7

Use find to get the indices and values of the nonzeros.

[i,j,v] = find(A)

i = 7×1

 10
 3

 nonzeros

1-9989

 9
 1
 2
 7
 10

j = 7×1

 2
 5
 6
 10
 10
 10
 10

v = 7×1

 0.9595
 0.4218
 0.7922
 0.8003
 0.1419
 0.9157
 0.6557

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. A can be full or
sparse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

1 Alphabetical List

1-9990

Output Arguments
v — Nonzero elements
column vector

Nonzero elements, returned as a column vector. v is returned in full-storage regardless of
whether A is full or sparse. The elements in v are ordered first by column subscript and
then by row subscript.

nonzeros gives the v, but not the indices i and j, from [i,j,v] = find(A). Generally,

length(v) = nnz(A) <= nzmax(A) <= prod(size(A))

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 nonzeros

1-9991

See Also
find | isa | nnz | nzmax | size | whos

Introduced before R2006a

1 Alphabetical List

1-9992

norm
Vector and matrix norms

Syntax
n = norm(v)
n = norm(v,p)

n = norm(X)
n = norm(X,p)
n = norm(X,'fro')

Description
n = norm(v) returns the Euclidean norm on page 1-9997 of vector v. This norm is also
called the 2-norm, vector magnitude, or Euclidean length.

n = norm(v,p) returns the generalized vector p-norm on page 1-9997.

n = norm(X) returns the 2-norm or maximum singular value of matrix X, which is
approximately max(svd(X)).

n = norm(X,p) returns the p-norm of matrix X, where p is 1, 2, or Inf:

• If p = 1, then n is the maximum absolute column sum on page 1-9997 of the matrix.
• If p = 2, then n is approximately max(svd(X)). This is equivalent to norm(X).
• If p = Inf, then n is the maximum absolute row sum on page 1-9997 of the matrix.

n = norm(X,'fro') returns the Frobenius norm on page 1-9998 of matrix X.

Examples

 norm

1-9993

Vector Magnitude

Create a vector and calculate the magnitude.

v = [1 -2 3];
n = norm(v)

n = 3.7417

1-Norm of Vector

Calculate the 1-norm of a vector, which is the sum of the element magnitudes.

X = [-2 3 -1];
n = norm(X,1)

n = 6

Euclidean Distance Between Two Points

Calculate the distance between two points as the norm of the difference between the
vector elements.

Create two vectors representing the (x,y) coordinates for two points on the Euclidean
plane.

a = [0 3];
b = [-2 1];

Use norm to calculate the distance between the points.

d = norm(b-a)

d = 2.8284

Geometrically, the distance between the points is equal to the magnitude of the vector
that extends from one point to the other.

1 Alphabetical List

1-9994

a = 0i + 3 j
b = − 2i + 1 j

d(a, b) = b− a

= (− 2− 0)2 + (1− 3)2

= 8

2-Norm of Matrix

Calculate the 2-norm of a matrix, which is the largest singular value.

X = [2 0 1;-1 1 0;-3 3 0];
n = norm(X)

n = 4.7234

Frobenius Norm of Sparse Matrix

Use 'fro' to calculate the Frobenius norm of a sparse matrix, which calculates the 2-
norm of the column vector, S(:).

S = sparse(1:25,1:25,1);
n = norm(S,'fro')

n = 5

Input Arguments
v — Input vector
vector

Input vector.
Data Types: single | double

 norm

1-9995

Complex Number Support: Yes

X — Input matrix
matrix

Input matrix.
Data Types: single | double
Complex Number Support: Yes

p — Norm type
2 (default) | positive integer scalar | Inf | -Inf

Norm type, specified as 2 (default), a different positive integer scalar, Inf, or -Inf. The
valid values of p and what they return depend on whether the first input to norm is a
matrix or vector, as shown in the table.

Note This table does not reflect the actual algorithms used in calculations.

p Matrix Vector
1 max(sum(abs(X))) sum(abs(X))
2 max(svd(X)) sum(abs(X).^2)^(1/2)
Positive, real-valued
numeric p

— sum(abs(X).^p)^(1/p)

Inf max(sum(abs(X'))) max(abs(X))
-Inf — min(abs(X))

Output Arguments
n — Matrix or vector norm
scalar

Matrix or vector norm, returned as a scalar. The norm gives a measure of the magnitude
of the elements. By convention, norm returns NaN if the input contains NaN values.

1 Alphabetical List

1-9996

Definitions

Euclidean Norm
The Euclidean norm (also called the vector magnitude, Euclidean length, or 2-norm) of a
vector v with N elements is defined by

v = ∑
k = 1

N
vk

2 .

General Vector Norm
The general definition for the p-norm of a vector v that has N elements is

v p = ∑
k = 1

N
vk

p
1/p

,

where p is any positive real value, Inf, or -Inf. Some interesting values of p are:

• If p = 1, then the resulting 1-norm is the sum of the absolute values of the vector
elements.

• If p = 2, then the resulting 2-norm gives the vector magnitude or Euclidean length of
the vector.

• If p = Inf, then v ∞ = maxi v i .

• If p = -Inf, then v −∞ = mini v i .

Maximum Absolute Column Sum
The maximum absolute column sum of an m-by-n matrix X (with m,n >= 2) is defined by

X 1 = max
1 ≤ j ≤ n

∑
i = 1

m
ai j .

Maximum Absolute Row Sum
The maximum absolute row sum of an m-by-n matrix X (with m,n >= 2) is defined by

 norm

1-9997

X ∞ = max
1 ≤ i ≤ m

∑
j = 1

n
ai j .

Frobenius Norm
The Frobenius norm of an m-by-n matrix X (with m,n >= 2) is defined by

X F = ∑
i = 1

m
∑

j = 1

n
ai j

2 = trace X†X .

Tips
• Use vecnorm to treat a matrix or array as a collection of vectors and calculate the

norm along a specified dimension. For example, vecnorm can calculate the norm of
each column in a matrix.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

1 Alphabetical List

1-9998

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cond | condest | hypot | normest | rcond | vecnorm

Introduced before R2006a

 norm

1-9999

normalize
Normalize data

Syntax
N = normalize(A)
N = normalize(A,dim)
N = normalize(___ ,method)
N = normalize(___ ,method,methodtype)
N = normalize(___ ,'DataVariables',datavars)

Description
N = normalize(A) returns the vectorwise z-score on page 1-10006 of the data in A with
center 0 and standard deviation 1.

• If A is a vector, then normalize operates on the entire vector.
• If A is a matrix, table, or timetable, then normalize operates on each column of data

separately.
• If A is a multidimensional array, then normalize operates along the first array

dimension whose size does not equal 1.

N = normalize(A,dim) returns the z-score along dimension dim. For example,
normalize(A,2) normalizes each row.

N = normalize(___ ,method) specifies a normalization method for either of the
previous syntaxes. For example, normalize(A,'norm') normalizes the data in A by the
Euclidean norm (2-norm).

N = normalize(___ ,method,methodtype) specifies the type of normalization for
the given method. For example, normalize(A,'norm',Inf) normalizes the data in A
using the infinity norm.

N = normalize(___ ,'DataVariables',datavars) specifies variables to operate on
when the input data is in a table or timetable.

1 Alphabetical List

1-10000

Examples

Vector and Matrix Data

Normalize data in a vector and matrix by computing the z-score.

Create a vector v and compute the z-score, normalizing the data to have mean 0 and
standard deviation 1.

v = 1:5;
N = normalize(v)

N = 1×5

 -1.2649 -0.6325 0 0.6325 1.2649

Create a matrix B and compute the z-score for each column. Then, normalize each row.

B = magic(3)

B = 3×3

 8 1 6
 3 5 7
 4 9 2

N1 = normalize(B)

N1 = 3×3

 1.1339 -1.0000 0.3780
 -0.7559 0 0.7559
 -0.3780 1.0000 -1.1339

N2 = normalize(B,2)

N2 = 3×3

 0.8321 -1.1094 0.2774
 -1.0000 0 1.0000

 normalize

1-10001

 -0.2774 1.1094 -0.8321

Scale Data

Scale a vector A by its standard deviation.

A = 1:5;
Ns = normalize(A,'scale')

Ns = 1×5

 0.6325 1.2649 1.8974 2.5298 3.1623

Scale A so that its range is in the interval [0,1].

Nr = normalize(A,'range')

Nr = 1×5

 0 0.2500 0.5000 0.7500 1.0000

Specify Method Type

Create a vector A and normalize it by its 1-norm.

A = 1:5;
Np = normalize(A,'norm',1)

Np = 1×5

 0.0667 0.1333 0.2000 0.2667 0.3333

Center the data in A so that it has mean 0.

Nc = normalize(A,'center','mean')

1 Alphabetical List

1-10002

Nc = 1×5

 -2 -1 0 1 2

Table Variables

Create a table containing height information for five people.

LastName = {'Sanchez';'Johnson';'Lee';'Diaz';'Brown'};
Height = [71;69;64;67;64];
T = table(LastName,Height)

T=5×2 table
 LastName Height
 _________ ______

 'Sanchez' 71
 'Johnson' 69
 'Lee' 64
 'Diaz' 67
 'Brown' 64

Normalize the height data by the maximum height.

N = normalize(T,'norm',Inf,'DataVariables','Height')

N=5×2 table
 LastName Height
 _________ _______

 'Sanchez' 1
 'Johnson' 0.97183
 'Lee' 0.90141
 'Diaz' 0.94366
 'Brown' 0.90141

 normalize

1-10003

Input Arguments
A — Input data
scalar | vector | matrix | multidimensional array | table | timetable

Input data, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

If A is a numeric array and has type single, then the output also has type single.
Otherwise, the output has type double.

normalize ignores NaN values in A.
Data Types: double | single | table | timetable
Complex Number Support: Yes

dim — Dimension
positive integer scalar

Dimension to operate along, specified as a positive integer scalar.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

method — Normalization method
'zscore' (default) | 'norm' | 'scale' | 'range' | 'center'

Normalization method, specified as one of the following options:

Method Description
'zscore' z-score with mean 0 and standard deviation

1
'norm' 2-norm
'scale' Scale by standard deviation
'range' Scale range of data to [0,1]
'center' Center data to have mean 0

methodtype — Method type
scalar | 2-element row vector | character vector

1 Alphabetical List

1-10004

Method type, specified as a scalar, a 2-element row vector, or a character vector,
depending on the specified method:

Method Method Type Options Description
'zscore' 'std' (default) Center and scale to have

mean 0 and standard
deviation 1

'robust' Center and scale to have
mean 0 and median absolute
deviation 1

'norm' Positive numeric scalar
(default is 2)

p-norm on page 1-10006

Inf Infinity norm
'scale' 'std' (default) Scale by standard deviation

'mad' Scale by median absolute
deviation

'first' Scale by first element of
data

Numeric scalar Scale data by numeric value
'range' 2-element row vector

(default is [0 1])
Interval of the form [a b]
where a < b

'center' 'mean' Center to have mean 0
'median' Center to have median 0
Numeric scalar Shift center by numeric

value

datavars — Table variables
scalar | vector | cell array | function handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a scalar, vector, cell array, or function handle. The 'DataVariables' value indicates
which columns of the input table to operate on, and can be one of the following:

• A character vector or scalar string specifying a single table variable name
• A cell array of character vectors or string array where each element is a table variable

name

 normalize

1-10005

• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes the table as input and returns a logical scalar

Example: 'Age'
Example: {'Height','Weight'}
Example: @isnumeric
Data Types: char | string | cell | double | single | logical | function_handle

Definitions

Z-Score
For a random variable X with mean μ and standard deviation σ, the z-score of a value x is

z

x

=
-()m

s
.

For sample data with mean X and standard deviation S, the z-score of a data point x is

z
x X

S
=

-()
.

z-scores measure the distance of a data point from the mean in terms of the standard
deviation. The standardized data set has mean 0 and standard deviation 1, and retains the
shape properties of the original data set (same skewness and kurtosis).

P-Norm
The general definition for the p-norm of a vector v that has N elements is

v p = ∑
k = 1

N
vk

p
1/p

,

1 Alphabetical List

1-10006

where p is any positive real value, Inf, or -Inf. Some common values of p are:

• If p is 1, then the resulting 1-norm is the sum of the absolute values of the vector
elements.

• If p is 2, then the resulting 2-norm gives the vector magnitude or Euclidean length of
the vector.

• If p is Inf, then v ∞ = maxi v i .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Normalization methods that require calculation of the median only support vector
data. This includes the methods normalize(___,'zscore','robust'),
normalize(___,'scale','mad'), and normalize(___,'center','median').

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 normalize

1-10007

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
norm | rescale | vecnorm

Introduced in R2018a

1 Alphabetical List

1-10008

normest
2-norm estimate

Syntax
nrm = normest(S)
nrm = normest(S,tol)
[nrm,count] = normest(...)

Description
This function is intended primarily for sparse matrices, although it works correctly and
may be useful for large, full matrices as well.

nrm = normest(S) returns an estimate of the 2-norm of the matrix S.

nrm = normest(S,tol) uses relative error tol instead of the default tolerance 1.e-6.
The value of tol determines when the estimate is considered acceptable.

[nrm,count] = normest(...) returns an estimate of the 2-norm and also gives the
number of power iterations used.

Algorithms
The power iteration involves repeated multiplication by the matrix S and its transpose,
S'. The iteration is carried out until two successive estimates agree to within the
specified relative tolerance.

 normest

1-10009

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cond | condest | norm | rcond | svd

Introduced before R2006a

1 Alphabetical List

1-10010

not, ~
Find logical NOT

Syntax
~A
not(A)

Description
~A returns a logical array of the same size as A. The array contains logical 1 (true)
values where A is zero and logical 0 (false) values where A is nonzero.

not(A) is an alternate way to execute ~A, but is rarely used. It enables operator
overloading for classes.

Examples

Logical Negation of Matrix

Create a 3-by-3 identity matrix.

A = eye(3)

A = 3×3

 1 0 0
 0 1 0
 0 0 1

Find the logical negation of A. The new matrix has type logical.

B = ~A

 not, ~

1-10011

B = 3x3 logical array

 0 1 1
 1 0 1
 1 1 0

Conditional Code Execution

Execute code based on a condition using the logical not operator in the context of an if
loop.

Create a logical variable A.

A = false;

Use A to write an if/else code block. Wrap the if/else block in a for loop so that it
executes four times.

for k = 1:4
 if ~A
 disp('IF block')
 A = true;
 else
 disp('ELSE block')
 end
end

IF block
ELSE block
ELSE block
ELSE block

On the first iteration, A is false, so the if block executes since ~A is true. However, the
if block also changes the value of A to true. In the remaining iterations, ~A is false
and the else block executes.

1 Alphabetical List

1-10012

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a numeric scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

Tips
• You also can use the ~ symbol as a placeholder output argument in a function call. For

example, [~,i] = max(A) suppresses the first output of the max function, returning
only the indices of the maximum values. For more information, see “Ignore Function
Inputs”.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 not, ~

1-10013

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
all | and | any | bitcmp | or | xor

Topics
“Truth Table for Logical Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-10014

notebook
(Removed) Open MATLAB Notebook in Microsoft Word software (on Microsoft Windows
platforms)

Note notebook has been removed. To create a document that combines code, formatted
text, and output, use the Live Editor instead.

Syntax
notebook
notebook('filename')
notebook('-setup')

Description
notebook starts Microsoft Word software and creates a new MATLAB Notebook titled
Document 1.

Note The notebook command is available only on Windows systems that have a 32–bit
version of Microsoft Word installed. The notebook command is not available for 64–bit
versions of Microsoft Word.

notebook('filename') starts Microsoft Word and opens the notebook filename,
where filename is either in the MATLAB current folder or is a full path. If filename
does not exist, MATLAB creates a new notebook titled filename. If the file name
extension is not specified, MATLAB assumes .doc.

notebook('-setup') runs an interactive setup function for MATLAB Notebook. It
copies the notebook template, m-book.dot, to the Microsoft Word template folder, whose
location MATLAB automatically determines from the Windows system registry. Upon
completion, MATLAB displays a message indicating whether or not the setup was
successful.

 notebook

1-10015

See Also

Topics
“What Is a Live Script or Function?”

Introduced before R2006a

1 Alphabetical List

1-10016

now
Current date and time as serial date number

Syntax
t = now

Description
t = now returns the current date and time as a serial date number. A serial date number
represents the whole and fractional number of days starting from a fixed, preset date
(January 0, 0000 on page 1-10018).

Examples

Return and Convert Serial Date Numbers

Change the output display for numbers to long, fixed-decimal format. Then return the
current date and time as a serial date number.

format longG
t = now

t =
 737486.908870313

The whole part of t corresponds to the date, and the fractional part corresponds to the
time of day. One way to show the date and time is to convert t using the datetime
function.

d = datetime(t,'ConvertFrom','datenum')

 now

1-10017

d = datetime
 02-Mar-2019 21:48:46

To represent the date alone, without the time of day, use the floor function. Convert the
result to a datetime value for display.

t2 = floor(t)

t2 =
 737486

d2 = datetime(t2,'ConvertFrom','datenum')

d2 = datetime
 02-Mar-2019 00:00:00

Limitations
• MATLAB Online returns the current date and time in Coordinated Universal Time

(UTC) rather than local time.

Definitions

January 0, 0000
Date specified to include a year 0 in the proleptic Gregorian calendar. For more
information, see January 0 and Year zero.

Tips
• To represent the current date and time as a serial date number, as text, or as a

datetime value, use the function calls shown in the table.

1 Alphabetical List

1-10018

https://www.mathworks.com/products/matlab-online.html
https://en.wikipedia.org/wiki/January_0
https://en.wikipedia.org/wiki/Year_zero

Function Call Output
floor(now) Current date as a serial date number
rem(now,1) Current time as a serial date number
datestr(now) Current date and time as text
char(datetime('now'))
string(datetime('now'))
datetime('now') Current date and time as a datetime

valuedatetime(now,'ConvertFrom','dat
enum')

See Also
char | date | datenum | datestr | datetime | string

Topics
“Represent Dates and Times in MATLAB”
“Convert Between Datetime Arrays, Numbers, and Text”

Introduced before R2006a

 now

1-10019

nsidedpoly
Regular polygon

Syntax
pgon = nsidedpoly(n)
pgon = nsidedpoly(n,Name,Value)

Description
pgon = nsidedpoly(n) returns a regular polygon with n equal-length sides. The center
of pgon is at the point (0,0), and the circumscribed circle of the polygon has radius 1.

pgon = nsidedpoly(n,Name,Value) specifies additional properties of the polygon
using one or more name-value pair arguments. For example, pgon =
nsidedpoly(4,'SideLength',5) creates a square centered at (0,0) with sides of
length 5.

Examples

Hexagon

Create a hexagon with sides of length 1 centered at the point (0,0). Then, create a
hexagon with sides of length 3 centered at (5,0).

pgon1 = nsidedpoly(6);
pgon2 = nsidedpoly(6,'Center',[5 0],'SideLength',3);
plot([pgon1 pgon2])
axis equal

1 Alphabetical List

1-10020

Input Arguments
n — Number of sides
positive scalar integer

Number of sides of the polygon, specified as a positive scalar integer greater than 2.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 nsidedpoly

1-10021

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: pgon = nsidedpoly(3,'Radius',10)

Center — Center point
1-by-2 row vector

Center point of the polygon, specified as the comma-separated pair consisting of
'Center' and a 1-by-2 row vector whose first element is the x-coordinate of the point
and whose second element is the y-coordinate.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Radius — Radius
positive scalar

Radius of the circumscribed circle of the polygon, specified as the comma-separated pair
consisting of 'Radius' and a positive scalar. This name-value pair cannot be combined
with the 'SideLength' name-value pair.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SideLength — Side length
positive scalar

Side length of polygon, specified as the comma-separated pair consisting of
'SideLength' and a positive scalar. This name-value pair cannot be combined with the
'Radius' name-value pair.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
alphaShape | polyshape

1 Alphabetical List

1-10022

Introduced in R2017b

 nsidedpoly

1-10023

nthroot
Real nth root of real numbers

Syntax
Y = nthroot(X,N)

Description
Y = nthroot(X,N) returns the real nth root of the elements of X. Both X and N must be
real scalars or arrays of the same size. If an element in X is negative, then the
corresponding element in N must be an odd integer.

Examples

Calculate Real Root of Negative Number

Find the real cube root of -27.

nthroot(-27, 3)

ans = -3

For comparison, also calculate (-27)^(1/3).

(-27)^(1/3)

ans = 1.5000 + 2.5981i

The result is the complex cube root of -27.

1 Alphabetical List

1-10024

Calculate Several Real Roots of Scalar

Create a vector of roots to calculate, N.

N = [5 3 -1];

Use nthroot to calculate several real roots of -8.

Y = nthroot(-8,N)

Y = 1×3

 -1.5157 -2.0000 -0.1250

The result is a vector of the same size as N.

Element-wise Roots of Matrix

Create a matrix of bases, X, and a matrix of nth roots, N.

X = [-2 -2 -2; 4 -3 -5]

X = 2×3

 -2 -2 -2
 4 -3 -5

N = [1 -1 3; 1/2 5 3]

N = 2×3

 1.0000 -1.0000 3.0000
 0.5000 5.0000 3.0000

Each element in X corresponds to an element in N.

Calculate the real nth roots of the elements in X.

Y = nthroot(X,N)

 nthroot

1-10025

Y = 2×3

 -2.0000 -0.5000 -1.2599
 16.0000 -1.2457 -1.7100

Except for the signs (which are treated separately), the result is comparable to
abs(X).^(1./N). By contrast, you can calculate the complex roots using X.^(1./N).

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. X can be
either a scalar or an array of the same size as N. The elements of X must be real.
Data Types: single | double

N — Roots to calculate
scalar | array of same size as X

Roots to calculate, specified as a scalar or array of the same size as X. The elements of N
must be real. If an element in X is negative, the corresponding element in N must be an
odd integer.
Data Types: single | double

Tips
• While power is a more efficient function for computing the roots of numbers, in cases

where both real and complex roots exist, power returns only the complex roots. In
these cases, use nthroot to obtain the real roots.

1 Alphabetical List

1-10026

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
power | sqrt

Introduced before R2006a

 nthroot

1-10027

null
Null space of matrix

Syntax
Z = null(A)
Z = null(A,'r')

Description
Z = null(A) returns an orthonormal basis for the null space of A.

Z = null(A,'r') returns a "rational" basis for the null space of A that is typically not
orthonormal. If A is a small matrix with small integer elements, then the elements of Z are
ratios of small integers. This method is numerically less accurate than null(A).

Examples

Null Space of Matrix

Use the null function to calculate orthonormal and rational basis vectors for the null
space of a matrix. The null space of a matrix contains vectors x that satisfy Ax = 0.

Create a 4-by-4 magic square matrix. This matrix is rank deficient, with one of the
singular values being equal to zero.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

1 Alphabetical List

1-10028

Calculate an orthonormal basis for the null space of A. Confirm that Ax1 = 0, within
roundoff error.

x1 = null(A)

x1 = 4×1

 0.2236
 0.6708
 -0.6708
 -0.2236

norm(A*x1)

ans = 4.4019e-15

Now calculate a rational basis for the null space. Confirm that Ax2 = 0.

x2 = null(A,'r')

x2 = 4×1

 -1
 -3
 3
 1

norm(A*x2)

ans = 0

x1 and x2 are similar, but are normalized differently.

General Solution of Underdetermined System of Equations

Find one particular solution to an underdetermined system, and then obtain the general
form for all solutions.

Underdetermined linear systems Ax = b involve more unknowns than equations. An
underdetermined system can have infinitely many solutions or no solution. When the

 null

1-10029

system has infinitely many solutions, they all lie on a line. The points on the line are all
obtained with linear combinations of the null space vectors.

Create a 2-by-4 coefficient matrix and use backslash to solve the equation Ax0 = b, where
b is a vector of ones. Backslash calculates a least-squares solution to the problem.

A = [1 8 15 67; 7 14 16 3]

A = 2×4

 1 8 15 67
 7 14 16 3

b = ones(2,1);
x0 = A\b

x0 = 4×1

 0
 0
 0.0623
 0.0010

The complete general solution to the underdetermined system has the form x = x0 + Ny,
where:

• N is the null space of A.
• y is any vector of proper length.
• x0 is the solution computed by backslash.

Calculate the null space of A, and then use the result to construct another solution to the
system of equations. Check that the new solution satisfies Ax = b, up to roundoff error.

N = null(A)

N = 4×2

 -0.2977 -0.8970
 -0.6397 0.4397
 0.7044 0.0157
 -0.0769 -0.0426

1 Alphabetical List

1-10030

x = x0 + N*[1; -2]

x = 4×1

 1.4963
 -1.5192
 0.7354
 0.0093

norm(A*x-b)

ans = 1.8291e-14

Input Arguments
A — Input matrix
matrix

Input matrix.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Z — Null space basis vectors
matrix

Null space basis vectors, returned in the columns of a matrix. Z satisfies the properties:

• A*Z has negligible elements.
• size(Z,2) is an estimate of the nullity of A.

Algorithms
null(A) calculates the singular value decomposition of the matrix, [U,S,V] =
svd(A,0). The columns of V that do not correspond to nonzero singular values form a set
of orthonormal basis vectors for the null space.

 null

1-10031

The "rational" basis for the null space null(A,'r') is obtained from the reduced row
echelon form of A, as calculated by rref.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code might return a different basis than MATLAB
• Code generation does not support the rational basis option (second input).
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The syntax Z = null(A, 'r') is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
orth | rank | rref | svd

Introduced before R2006a

1 Alphabetical List

1-10032

numArgumentsFromSubscript
Number of arguments for customized indexing methods

Syntax
n = numArgumentsFromSubscript(obj,s,indexingContext)

Description
n = numArgumentsFromSubscript(obj,s,indexingContext) returns the number
of expected inputs to subsasgn or the number of expected outputs from subsref.

Overload numArgumentsFromSubscript to describe the number of values to return
from indexing expressions that return or assign to a comma-separated list. That is,
indexing expressions that end in '{}' or '.' indexing. The
numArgumentsFromSubscript function can:

• Access the indexing operations and indices used in the indexing expression.
• Determine if an indexing operation is made in the context of a reference statement, an

expression passed to a function, or an assignment.

If a class overloads numArgumentsFromSubscript, MATLAB calls it to determine the
number of array elements involved in an indexing operation when the number of elements
is greater than one. For example, these '.' indexing operations generate a call to
numArgumentsFromSubscript:

• objArray.a — Number of elements referenced in a statement (Statement)
• func(objArray.a) — Number of elements returned in an expression (Expression)
• [objArray.a] = rhs — Number of values assigned with a comma-separated list

(Assignment)

MATLAB uses the calling context to determine when to apply the value returned by
numArgumentsFromSubscript. Your implementation of
numArgumentsFromSubscript can provide different outputs for the three types of
indexing statements. For example, this overload of numArgumentsFromSubscript:

 numArgumentsFromSubscript

1-10033

• Changes the expected number of output arguments from subsref for indexing
expressions that are passed to functions.

• Uses the indexing substructure s to determine the number of arguments required by
the indexing operation

function n = numArgumentsFromSubscript(obj,s,indexingContext)
 if indexingContext == matlab.mixin.util.IndexingContext.Expression
 n = 1;
 else
 n = length(s(1).subs{:});
 end
end

Implement the subsref method with a varargout output to enable MATLAB to call this
method with the specified number of output arguments.

function varargout = subsref(obj,s)
 ...
end

Examples

Indexing with Character Array Keywords

Use words as indices for object properties.

By default, MATLAB treats each character in a character array as a separate element.
Therefore, MATLAB interprets a character array index as multiple index values.

Without overloading numArgumentsFromSubscript, keyword indexing statements
request too many arguments for subsref and subsasgn methods. To implement
indexing that uses character arrays as a single keyword, define a
numArgumentsFromSubscript method to return 1 as the number of elements
referenced or assigned.

Overload numArgumentsFromSubscript to support the following kinds of indexed
reference and assignment.

Index reference with character array:

obj{'keyword'}

1 Alphabetical List

1-10034

Index reference in function argument:

func(obj{'keyword'})

Assign comma-separated list to object array:

[obj{'keyword'}] = right-side values;

In these cases, subsref and subsasgn cannot determine the number of required output
and input arguments, respectively, from the calling context. Provide this information
using the numArgumentsFromSubscript function.

Define the KeyIndex class with two properties. KeyCell stores key names. DataArray
stores corresponding data. To customize indexing:

• Implement a subsref method that returns the data values that correspond to the
specified keyword.

• Implement a subsasgn method that assigns the specified values to the corresponding
element in DataArray properties.

• Overload numArgumentsFromSubscript to return a value of 1 or scalar objects and
a value of numel(objArray) for object arrays.

Specify a cell array containing the names of months for the KeyCell property. Specify a
numeric array of the snow fall for the corresponding months in the DataArray property.

snow15 = KeyIndex({'Jan','Feb','March'},[36 42 2])

snow15 =

 KeyIndex with properties:

 KeyCell: {'Jan' 'Feb' 'March'}
 DataArray: [36 42 2]

Reference the snow amount for a particular month using the keyword:

snow15{'Feb'}

ans =

 42

Assign to the corresponding element using '{}' indexing with the keyword:

 numArgumentsFromSubscript

1-10035

snow15{'Feb'} = 52;

The value corresponding to the key 'Feb' changes:

snow15{'Feb'}

ans =

 52

Create an array with the snow fall for 2 years:

snow14 = KeyIndex({'Jan','Feb','March'},[12 8 2]);
sTotal = [snow14,snow15];

Show the snow fall for both years for February:

sTotal{'Feb'}

ans =

 8

ans =

 52

Update the values of snow fall for both years for the month of February. Indexing into a
cell array returns a comma-separated list:

c{1} = 34;
c{2} = 56;
[sTotal{'Feb'}] = c{:};

Here is the KeyIndex class. This class shows a particular programming technique. It
does not include error checking and other features that your class can require.

classdef KeyIndex
 properties
 KeyCell
 DataArray
 end
 methods
 function obj = KeyIndex(key,data)

1 Alphabetical List

1-10036

 if nargin > 0
 obj.KeyCell = key;
 obj.DataArray = data;
 end
 end
 function n = numArgumentsFromSubscript(obj,~,~)
 n = numel(obj);
 end
 function varargout = subsref(obj,s)
 a = numel(obj);
 switch s(1).type
 case '{}'
 varargout = cell(1,a);
 for j = 1:a
 for k = 1:numel(obj(j).KeyCell)
 if strcmp(s.subs(:),obj(j).KeyCell{k})
 varargout{j} = obj(j).DataArray(k);
 end
 end
 end
 case '.'
 varargout = {builtin('subsref',obj,s)};
 case '()'
 varargout = {builtin('subsref',obj,s)};
 end
 end
 function obj = subsasgn(obj,s,varargin)
 a = numel(varargin);
 switch s(1).type
 case '{}'
 for j = 1:a
 for k = 1:numel(obj(j).KeyCell)
 if strcmp(s.subs(:),obj(j).KeyCell{k})
 obj(j).DataArray(k) = varargin{j};
 end
 end
 end
 case '.'
 obj = builtin('subsasgn',obj,s,varargin{:});
 case '()'
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 end

 numArgumentsFromSubscript

1-10037

 end
end

Reference Property Value Once Per Array

Define a class that supports per-element and per-array indexing for properties.

The numArgumentsFromSubscript function enables classes to customize references to
specific properties. The indexing substructure argument (s) to
numArgumentsFromSubscript contains the name of the property referenced in a dot
indexing expression (that is, a reference of the form obj.PropertyName). Using the
indexing substructure, numArgumentsFromSubscript can return a unique value for any
given property.

The PerArray class uses the information in the indexing substructure to specify the
number of outputs for each property reference.

Overload numArgumentsFromSubscript to return:

• A comma-separated list of values for the ByElement property, one value per array
element

• A single value for the ByArray property for the entire array

Create an array of PerArray objects:

for k = 1:4
 pa(k) = PerArray(rand(k));
end

Query the ByElement property to return a comma-separated list of property values:

pa.ByElement

ans =

 0.7513

ans =

 0.2551 0.6991
 0.5060 0.8909

1 Alphabetical List

1-10038

ans =

 0.9593 0.1493 0.2543
 0.5472 0.2575 0.8143
 0.1386 0.8407 0.2435

ans =

 0.9293 0.6160 0.5853 0.7572
 0.3500 0.4733 0.5497 0.7537
 0.1966 0.3517 0.9172 0.3804
 0.2511 0.8308 0.2858 0.5678

Query the ByArray property to return a single value for the array:

pa.ByArray

ans =

 3.1416

Here is the PerArray class. This class shows a particular programming technique. It
does not include error checking and other features that your class can require.

classdef PerArray
 properties
 ByElement
 end
 properties (Constant)
 ByArray = pi;
 end
 methods
 function obj = PerArray(be)
 if nargin > 0
 obj.ByElement = be;
 end
 end
 function n = numArgumentsFromSubscript(obj,s,indexingContext)
 import matlab.mixin.util.IndexingContext
 if (indexingContext ~= IndexingContext.Assignment)
 if length(s) < 2
 switch (s.subs(:)')

 numArgumentsFromSubscript

1-10039

 case 'ByElement'
 n = numel(obj);
 case 'ByArray'
 if strcmp(s(1).type,'.')
 n = 1;
 end
 end
 elseif length(s) > 1
 n = length([s(1).subs{:}]);
 end
 end
 end
 function varargout = subsref(obj,s)

 switch s(1).type
 case '.'
 varargout = cell(1,numel(obj));
 for k = 1:numel(obj)
 varargout{k} = obj(k).(s.subs(:));
 end
 case '()'
 if length([s(1).subs{:}]) > 1
 ind = [s(1).subs{:}];
 numInd = length(ind);
 varargout = cell(1,numInd);
 for k = 1:numInd
 varargout{k} = obj(ind(k)).(s(2).subs(:));
 end
 else
 varargout = {builtin('subsref',obj,s)};
 end
 end
 end
 end
end

Input Arguments
obj — Object of overloading class
object

1 Alphabetical List

1-10040

Object of overloading class used in the indexing operation. The class of this object
determines which subsref or subsasgn method MATLAB calls as a result of an indexing
operation.

s — Indexing structure
struct

Indexing structure or array of indexing structures containing information about the
specific indexing expression. Each structure has two fields:

• type — Indexing expression can be '()', '{}', '.'
• subs — Subscript values (property name or cell array of index numbers)

Data Types: struct

indexingContext — Context in which result applies
matlab.mixin.util.IndexingContext

Context in which result applies, specified as one of these enumerations:

• matlab.mixin.util.IndexingContext.Statement — Indexed reference used as
a statement (obj.a)

• matlab.mixin.util.IndexingContext.Expression — Indexed reference used
as an argument to a function (func(obj.a))

• matlab.mixin.util.IndexingContext.Assignment — Indexed assignment
([obj.a] = x).

Output Arguments
n — Number of arguments
scalar integer

Number of arguments returned by overloaded subsref or passed to overloaded
subsasgn. Overload numArgumentsFromSubscript to return the values required by
your class for various indexing scenarios.

 numArgumentsFromSubscript

1-10041

Tips
• Overload numArgumentsFromSubscript instead of numel to control the results from

overloaded subsref and subsasgn. Overloading numArgumentsFromSubscript
can avoid errors caused by overloading numel.

See Also
subsasgn | subsref

Topics
“Number of Arguments for subsref and subsasgn”
“Modify nargout and nargin for Indexing Methods”
“Comma-Separated Lists”

Introduced in R2015b

1 Alphabetical List

1-10042

num2cell
Convert array to cell array with consistently sized cells

Syntax
C = num2cell(A)
C = num2cell(A,dim)

Description
C = num2cell(A) converts array A into cell array C by placing each element of A into a
separate cell in C.

The num2cell function converts an array that has any data type—even a nonnumeric
type.

C = num2cell(A,dim) splits the contents of A into separate cells of C, where dim
specifies which dimensions of A to include in each cell. dim can be a scalar or a vector of
dimensions. For example, if A has 2 rows and 3 columns, then:

• num2cell(A,1) creates a 1-by-3 cell array C, where each cell contains a 2-by-1
column of A.

• num2cell(A,2) creates a 2-by-1 cell array C, where each cell contains a 1-by-3 row
of A.

• num2cell(A,[1 2]) creates a 1-by-1 cell array C, where the cell contains the entire
array A.

Examples

Convert Arrays to Cell Array

Place all elements of a numeric array into separate cells.

 num2cell

1-10043

a = magic(3)

a = 3×3

 8 1 6
 3 5 7
 4 9 2

c = num2cell(a)

c = 3x3 cell array
 {[8]} {[1]} {[6]}
 {[3]} {[5]} {[7]}
 {[4]} {[9]} {[2]}

Place individual letters of a word into separate cells of an array.

a = ['four';'five';'nine']

a = 3x4 char array
 'four'
 'five'
 'nine'

c = num2cell(a)

c = 3x4 cell array
 {'f'} {'o'} {'u'} {'r'}
 {'f'} {'i'} {'v'} {'e'}
 {'n'} {'i'} {'n'} {'e'}

Create Cell Array of Numeric Arrays

Generate a 4-by-3-by-2 numeric array, and then create a 1-by-3-by-2 cell array of 4-by-1
column vectors.

A = reshape(1:12,4,3);
A(:,:,2) = A*10

1 Alphabetical List

1-10044

A =
A(:,:,1) =

 1 5 9
 2 6 10
 3 7 11
 4 8 12

A(:,:,2) =

 10 50 90
 20 60 100
 30 70 110
 40 80 120

C = num2cell(A,1)

C = 1x3x2 cell array
C(:,:,1) =

 {4x1 double} {4x1 double} {4x1 double}

C(:,:,2) =

 {4x1 double} {4x1 double} {4x1 double}

Each 4-by-1 vector contains elements from along the first dimension of A:

C{1}

ans = 4×1

 1
 2
 3
 4

Create a 4-by-1-by-2 cell array of 1-by-3 numeric arrays.

C = num2cell(A,2)

 num2cell

1-10045

C = 4x1x2 cell array
C(:,:,1) =

 {1x3 double}
 {1x3 double}
 {1x3 double}
 {1x3 double}

C(:,:,2) =

 {1x3 double}
 {1x3 double}
 {1x3 double}
 {1x3 double}

Each 1-by-3 row vector contains elements from along the second dimension of A:

C{1}

ans = 1×3

 1 5 9

Finally, create a 4-by-3 cell array of 1-by-1-by-2 numeric arrays.

C = num2cell(A,3)

C = 4x3 cell array
 {1x1x2 double} {1x1x2 double} {1x1x2 double}
 {1x1x2 double} {1x1x2 double} {1x1x2 double}
 {1x1x2 double} {1x1x2 double} {1x1x2 double}
 {1x1x2 double} {1x1x2 double} {1x1x2 double}

Each 1-by-1-by-2 vector contains elements from along the third dimension of A:

C{1}

ans =
ans(:,:,1) =

 1

1 Alphabetical List

1-10046

ans(:,:,2) =

 10

Combine Across Multiple Dimensions

Create a cell array by combining elements into numeric arrays along several dimensions.

A = reshape(1:12,4,3);
A(:,:,2) = A*10

A =
A(:,:,1) =

 1 5 9
 2 6 10
 3 7 11
 4 8 12

A(:,:,2) =

 10 50 90
 20 60 100
 30 70 110
 40 80 120

c = num2cell(A,[1 3])

c = 1x3 cell array
 {4x1x2 double} {4x1x2 double} {4x1x2 double}

Each 4-by-1-by-2 array contains elements from along the first and third dimension of A:

c{1}

ans =
ans(:,:,1) =

 num2cell

1-10047

 1
 2
 3
 4

ans(:,:,2) =

 10
 20
 30
 40

c = num2cell(A,[2 3])

c = 4x1 cell array
 {1x3x2 double}
 {1x3x2 double}
 {1x3x2 double}
 {1x3x2 double}

Input Arguments
A — Input
any type of multidimensional array

Input, specified as any type of multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | categorical |
datetime | duration | calendarDuration | function_handle

dim — Dimension of A
positive integer | positive vector of integers

Dimension of A, specified as a positive integer or a vector of positive integers. dim must
be between 1 and ndims(A).

Elements do not need to be in numeric order. However, num2cell permutes the
dimensions of the arrays in each cell of C to match the order of the specified dimensions.

1 Alphabetical List

1-10048

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
C — Resulting array
cell array

Resulting array, returned as a cell array. The size of C depends on the size of A and the
values of dim.

• If dim is not specified, then C is the same size as A.
• If dim is a scalar, then C contains numel(A)/size(A,dim) cells. If dim is 1 or 2, then

each cell contains a column or row vector, respectively. If dim > 2, then each cell
contains an array whose dimth dimensional length is size(A,dim), and whose other
dimensions are all singletons.

For example, given a 4-by-7-by-3 array, A, this figure shows how num2cell creates
cells corresponding to dim values of 1, 2, and 3.

4

7

3

d
im

 1

dim2

4

7

3

4

7

3

dim
 3

C = num2cell(A, 1) yields
21 arrays of 4 cells each

C = num2cell(A, 2) yields C = num2cell(A, 3) yields
12 arrays of 7 cells each 28 arrays of 3 cells each

• If dim is a vector containing N values, then C has numel(A)/
prod([size(A,dim(1)),...,size(A,vdim(N))]) cells. Each cell contains an
array whose dim(i)th dimension has a length of size(A,dim(i)) and whose other
dimensions are singletons.

For example, given a 4-by-7-by-3 array, you can specify dim as a positive integer vector
to create cell arrays of different dimensions.

 num2cell

1-10049

d
im

 1

3

7

4

dim2

d
im

 1

dim2

4 4

7 7

3 3

dim
 3

dim
 3

C = num2cell(A, [1 3]) yields
7 arrays of 12 cells each

C = num2cell(A, [1 2]) yields C = num2cell(A, [2 3]) yields
3 arrays of 28 cells each 4 arrays of 21 cells each

Data Types: cell

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cat | cell2mat | mat2cell

Introduced before R2006a

1 Alphabetical List

1-10050

num2hex
Convert singles and doubles to IEEE hexadecimal strings

Syntax
num2hex(X)

Description
If X is a single or double precision array with n elements, then num2hex(X) is an n-by-8
or n-by-16 character array in which each row contains the hexadecimal floating-point
representation of a number. The same representation is printed with format hex.

Examples
num2hex([1 0 0.1 -pi Inf NaN])

returns

ans =

3ff0000000000000
0000000000000000
3fb999999999999a
c00921fb54442d18
7ff0000000000000
fff8000000000000
num2hex(single([1 0 0.1 -pi Inf NaN]))

returns

ans =

3f800000
00000000
3dcccccd

 num2hex

1-10051

c0490fdb
7f800000
ffc00000

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dec2hex | format | hex2num

Introduced before R2006a

1 Alphabetical List

1-10052

num2ruler
Convert numeric data for use with specific ruler

Syntax
data = num2ruler(num,ruler)

Description
data = num2ruler(num,ruler) converts the numeric values in num to the appropriate
values for the specified ruler. The resulting values depend on both the type and limits of
the ruler input. The output data is an array the same size as num.

Examples

Convert Numeric Value to Equivalent Date Value

Convert the output of ginput from a numeric value to the equivalent date value.

Create a plot with dates along the x-axis. Then, click a point in the axes and use the
ginput function to return the location of the selected point.

t = datetime(2015,1,1:10);
y = rand(10,1);
plot(t,y)
ax = gca;
[x,y] = ginput(1)

 num2ruler

1-10053

x =

 5.8168

y =

 0.6458

The ginput function returns the location as numeric values. Use num2ruler to
determine the date value that is equivalent to the numeric value returned for x.

xdate = num2ruler(x,ax.XAxis)

1 Alphabetical List

1-10054

xdate =

 06-Jan-2015 19:36:13

Input Arguments
num — Numeric data
array

Numeric data, specified as an array.
Example: num = [1 2 3]

ruler — Ruler that determines data mapping
DurationRuler object | DatetimeRuler object | NumericRuler object

Ruler that determines data mapping, specified as one of these types of ruler objects:

• DurationRuler object — Convert the input num to duration values.
• DatetimeRuler object — Convert the input num to datetime values.
• NumericRuler object — No conversion. For this case, the output data is equal to the

input num.

Specify the ruler object by referring to either the XAxis, YAxis, or ZAxis property of the
Axes object.

ax = gca;
data = num2ruler(num,ax.XAxis)

See Also
axes | datetime | duration | ruler2num

Introduced in R2016b

 num2ruler

1-10055

num2str
Convert numbers to character array

Syntax
s = num2str(A)
s = num2str(A,precision)
s = num2str(A,formatSpec)

Description
s = num2str(A) converts a numeric array into a character array that represents the
numbers. The output format depends on the magnitudes of the original values. num2str
is useful for labeling and titling plots with numeric values.

s = num2str(A,precision) returns a character array that represents the numbers
with the maximum number of significant digits specified by precision.

s = num2str(A,formatSpec) applies a format specified by formatSpec to all
elements of A.

Examples

Default Conversions of Floating-Point Values

Convert the floating-point values returned by pi and eps to character vectors.

s = num2str(pi)

s =
'3.1416'

s = num2str(eps)

1 Alphabetical List

1-10056

s =
'2.2204e-16'

Specify Precision

Specify the maximum number of significant digits for floating-point values.

A = gallery('normaldata',[2,2],0);
s = num2str(A,3)

s = 2x16 char array
 '-0.433 0.125'
 ' -1.67 0.288'

Specify Formatting

Specify the width, precision, and other formatting for an array of floating-point values.

A = gallery('uniformdata',[2,3],0) * 9999;
s = num2str(A,'%10.5e\n')

s = 2x35 char array
 '9.50034e+03...'
 '2.31115e+03...'

The format '%10.5e' prints each value in exponential format with five decimal places,
and '\n' prints a new line character.

Input Arguments
A — Input array
numeric array

Input array, specified as a numeric array.

 num2str

1-10057

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

precision — Maximum number of significant digits
positive integer

Maximum number of significant digits in the output string, specified as a positive integer.

Note If you specify precision to exceed the precision of the input floating-point data
type, the results might not match the input values to the precision you specified. The
result depends on your computer hardware and operating system.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

formatSpec — Format of output fields
formatting operators

Format of the output fields, specified using formatting operators. formatSpec also can
include ordinary text and special characters.

formatSpec can be a character vector in single quotes, or, starting in R2016b, a string
scalar.

Formatting Operator

A formatting operator starts with a percent sign, %, and ends with a conversion character.
The conversion character is required. Optionally, you can specify identifier, flags, field
width, precision, and subtype operators between % and the conversion character. (Spaces
are invalid between operators and are shown here only for readability).

% 3$ 0� 12 .5 b u

Conversion characterIdentifier

Flags

PrecisionField width

Subtype

Conversion Character

1 Alphabetical List

1-10058

This table shows conversion characters to format numeric and character data as text.

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters

a–f
%X Same as %x, uppercase letters A–F

Floating-point number %f Fixed-point notation (Use a precision
operator to specify the number of digits
after the decimal point.)

%e Exponential notation, such as
3.141593e+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%E Same as %e, but uppercase, such as
3.141593E+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%g The more compact of %e or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

%G The more compact of %E or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

Characters or strings %c Single character
%s Character vector or string array. The

type of the output text is the same as the
type of formatSpec.

Optional Operators

 num2str

1-10059

The optional identifier, flags, field width, precision, and subtype operators further define
the format of the output text.

• Identifier

Order for processing the function input arguments. Use the syntax n$, where n
represents the positions of the other input arguments in the function call.

Example: ('%3$s %2$s %1$s %2$s','A','B','C') prints input arguments 'A',
'B', 'C' as follows: C B A B.

Note: If an input argument is an array, you cannot use identifiers to specify particular
array elements from that input argument.

• Flags

'–' Left-justify.
Example: %-5.2f
Example: %-10s

'+' Always print a sign character (+ or –) for any numeric value.
Example: %+5.2f
Right-justify text.
Example: %+10s

' ' Insert a space before the value.
Example: % 5.2f

'0' Pad to field width with zeros before the value.
Example: %05.2f

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.
• For %f, %e, or %E, print decimal point even when precision is 0.
• For %g or %G, do not remove trailing zeros or decimal point.

Example: %#5.0f

• Field Width

Minimum number of characters to print. The field width operator can be a number, or
an asterisk (*) to refer to an input argument.

1 Alphabetical List

1-10060

When you specify * as the field width operator, the other input arguments must
provide both a width and a value to be printed. Widths and values can be pairs of
arguments or pairs within a numeric array. With * as the field width operator, you can
print different values with different widths.

Example: The input arguments ('%12d',intmax) are equivalent to
('%*d',12,intmax).

Example: The input arguments ('%*d',[2 10 5 100]) return '10 100', with two
spaces allocated for 10 and five spaces for 100. As an alternative, you also can specify
the field widths and values as multiple arguments, as in ('%*d',2,10,5,100).

The function pads to field width with spaces before the value unless otherwise
specified by flags.

• Precision

For %f, %e, or %E Number of digits to the right of the decimal point
Example: '%.4f' prints pi as '3.1416'

For %g or %G Number of significant digits
Example: '%.4g' prints pi as '3.142'

The precision operator can be a number, or an asterisk (*) to refer to an argument.

When you specify * as the field precision operator, the other input arguments must
provide both a precision and a value to be printed. Precisions and values can be pairs
of arguments, or pairs within a numeric array. With * as the precision operator, you
can print different values to different precisions.

When you specify *.* as field width and precision operators, you must specify field
widths, precisions, and values as triplets.

Example: The input arguments ('%.4f',pi) are equivalent to ('%.*f',4,pi).

Example: The input arguments ('%6.4f',pi) are equivalent to ('%.*f',6,4,pi).

Example: The input arguments ('%*.*f',6,4,pi,9,6,exp(1)) return '3.1416
2.718282', with 9 and 6 as the field width and precision for the output of exp(1).

Note If you specify a precision operator for floating-point values that exceeds the
precision of the input numeric data type, the results might not match the input values

 num2str

1-10061

to the precision you specified. The result depends on your computer hardware and
operating system.

• Subtypes

You can use a subtype operator to print a floating-point value as its octal, decimal, or
hexadecimal value. The subtype operator immediately precedes the conversion
character. This table shows the conversions that can use subtypes.

Input Value Type Subtype and
Conversion Character

Output Value Type

Floating-point number %bx or %bX
%bo
%bu

Double-precision
hexadecimal, octal, or
decimal value
Example: %bx prints pi
as 400921fb54442d18

%tx or %tX
%to
%tu

Single-precision
hexadecimal, octal, or
decimal value
Example: %tx prints pi
as 40490fdb

Text Before or After Formatting Operators

formatSpec can also include additional text before a percent sign, %, or after a
conversion character. The text can be:

• Ordinary text to print.
• Special characters that you cannot enter as ordinary text. This table shows how to

represent special characters in formatSpec.

Special Character Representation
Single quotation mark ''
Percent character %%
Backslash \\
Alarm \a
Backspace \b

1 Alphabetical List

1-10062

Special Character Representation
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v
Character whose Unicode numeric value can be
represented by the hexadecimal number, N

\xN

Example:
sprintf('\x5A') returns
'Z'

Character whose Unicode numeric value can be
represented by the octal number, N

\N

Example:
sprintf('\132') returns
'Z'

Notable Behavior of Conversions with Formatting Operators

• Numeric conversions print only the real component of complex numbers.
• If you specify a conversion that does not fit the data, such as a text conversion for a

numeric value, MATLAB overrides the specified conversion, and uses %e.

Example: '%s' converts pi to 3.141593e+00.
• If you apply a text conversion (either %c or %s) to integer values, MATLAB converts

values that correspond to valid character codes to characters.

Example: '%s' converts [65 66 67] to ABC.

Data Types: char | string

Output Arguments
s — Text representation of input array
character array

Text representation of the input array, returned as a character array.

 num2str

1-10063

Tips
num2str does not accept positional identifiers in the formatSpec input argument. For
example, num2str([14 15],'%2$X %1$o) returns an error.

Positional identifiers specify the order in which the formatting operator processes input
arguments of the function, not the elements of an input array. When you call num2str,
there is only one input argument that has numbers to convert.

Algorithms
num2str trims any leading spaces from a character array, even when formatSpec
includes a space character flag. For example, num2str(42.67,'% 10.2f') returns a 1-
by-5 character array '42.67'.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input arguments must be constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
cast | int2str | mat2str | sprintf | str2num

1 Alphabetical List

1-10064

Introduced before R2006a

 num2str

1-10065

numberOfStrips
Total number of strips in image

Syntax
numStrips = numberOfStrips(t)

Description
numStrips = numberOfStrips(t) returns the total number of strips in the image
specified in the Tiff object t.

Examples

Determine Number of Strips in Image

Determine the number of strips in the second image of a TIFF file.

Create a Tiff object for the file example.tif.

t = Tiff('example.tif','r');

When you create a Tiff object, the current image file directory points to the first image
in the TIFF file. To get data on the second image, change the image file directory to point
to the second image.

nextDirectory(t)

Get the number of strips in the image.

if ~isTiled(t) % if the image does not have a tiled layout
 numStrips = numberOfStrips(t)
end

numStrips = 7

1 Alphabetical List

1-10066

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Algorithms

References
This function corresponds to the TIFFNumberOfStrips function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
isTiled | numberOfTiles

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 numberOfStrips

1-10067

http://www.simplesystems.org/libtiff/

numberOfTiles
Total number of tiles in image

Syntax
numTiles = numberOfTiles(t)

Description
numTiles = numberOfTiles(t) returns the total number of tiles in the image
specified in the Tiff object t.

Examples

Determine Number of Tiles in Image

Create a Tiff object for the file example.tif.

t = Tiff('example.tif','r');

Check if the image has a tiled organization, and then get the number of tiles in the image.

if isTiled(t) % If the image has tiled layout
 nTiles = numberOfTiles(t)
end

nTiles = 110

Close the Tiff object.

close(t);

1 Alphabetical List

1-10068

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Algorithms

References
This function corresponds to the TIFFNumberOfTiles function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
isTiled | numberOfStrips

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 numberOfTiles

1-10069

http://www.simplesystems.org/libtiff/

numel
Number of array elements

Syntax
n = numel(A)

Description
n = numel(A) returns the number of elements, n, in array A, equivalent to
prod(size(A)).

Examples

Number of Elements in 3-D Matrix

Create a 4-by-4-by-2 matrix.

A = magic(4);
A(:,:,2) = A'

A =
A(:,:,1) =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

A(:,:,2) =

 16 5 9 4
 2 11 7 14
 3 10 6 15

1 Alphabetical List

1-10070

 13 8 12 1

numel counts 32 elements in the matrix.

n = numel(A)

n = 32

String Array

Create a string array and compute the number of elements in the array.

A = ["a" "b" "c"; "d" "e" "f"]

A = 2x3 string array
 "a" "b" "c"
 "d" "e" "f"

n = numel(A)

n = 6

Number of Elements in Cell Array

Create a cell array of character vectors.

A = {'dog','cat','fish','horse'};

numel counts 4 elements in the array.

n = numel(A)

n = 4

 numel

1-10071

Number of Elements in Table

Create a table with four variables listing patient information for five people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

A = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

A=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Smith 38 71 176 124 93
 Johnson 43 69 163 109 77
 Williams 38 64 131 125 83
 Jones 40 67 133 117 75
 Brown 49 64 119 122 80

Find the number of elements in the table.

n = numel(A)

n = 20

numel returns a value equivalent to prod(size(A)) corresponding to the 5 rows and 4
variables.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array | table | timetable

Input array, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

1 Alphabetical List

1-10072

Tips
• If A is a table, numel returns the number of elements in the table, A, equivalent to

prod(size(A)). Variables in a table can have multiple columns, but numel(A) only
accounts for the number of rows and number of variables.

• If A is a character vector of type char, then numel returns the number of characters.
However, if A is a string scalar, numel returns 1 because it is a single element of a
string array. For example, compare the output of numel for a character vector and
string:

nchar = numel('mytext')

nchar =

 6

nstr = numel("mytext")

nstr =

 1

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 numel

1-10073

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
prod | size | subsref

Topics
“Modify nargout and nargin for Indexing Methods”

Introduced before R2006a

1 Alphabetical List

1-10074

NumericRuler Properties
Control axis with numeric values

Description
NumericRuler properties control the appearance and behavior of an x-axis, y-axis, or z-
axis that shows numeric values. Each individual axis has its own ruler object. By changing
property values of the ruler, you can modify certain aspects of a specific axis.

Use dot notation to refer to a particular ruler and property. Access the ruler objects
through the XAxis, YAxis, and ZAxis properties of the Axes object.

ax = gca;
co = ax.XAxis.Color;
ax.XAxis.Color = 'blue';

Properties
Appearance

Color — Color of axis line and labels
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the axis line and labels, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 NumericRuler Properties

1-10075

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note The Color property for the ruler and the associated XColor, YColor, or ZColor
property for the parent axes always have the same value. Setting one also sets the other.

LineWidth — Width of axis line and tick marks
0.5 (default) | positive value

1 Alphabetical List

1-10076

Width of axis line and tick marks, specified as a positive value in point units. One point
equals 1/72 inch.
Example: ax.XAxis.LineWidth = 2;

Note Setting the LineWidth property for the parent axes sets the LineWidth property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Label — Axis label
text object (default)

Axis label, which is a text object. To display text or change existing text, set the String
property for the text object. Use other properties to change the text appearance, such as
the font style or color.

ax = gca;
ax.XAxis.Label.String = 'X Axis';
ax.XAxis.Label.FontSize = 12;

For a full list of options, see Text.

Alternatively, add or modify the axis labels using the xlabel, ylabel, and zlabel
functions.

Note The text object is not a child of the ruler object, so it cannot be returned by
findobj and it does not use the default text property values.

Visible — Axis visibility
'on' (default) | 'off'

Axis visibility, specified as one of these values:

• 'on' — Display the axis.
• 'off' — Hide the axis without deleting it. You still can access properties of an

invisible axis using the ruler object.

Example: ax.XAxis.Visible = 'off';

 NumericRuler Properties

1-10077

Scale and Direction

Limits — Minimum and maximum axis limits
[0 1] (default) | two-element vector of the form [min max]

Minimum and maximum axis limits, specified as a two-element vector of the form [min
max].

If you assign a value to this property, then MATLAB sets the associated mode to
'manual'.

Alternatively, set the limits using the xlim, ylim, and zlim functions.

Note The Limits property for the ruler and the associated XLim, YLim, or ZLim
property for the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.Limits = [-10 10];

LimitsMode — Selection mode for Limits property
'auto' (default) | 'manual'

Selection mode for the Limits property, specified as one of these values:

• 'auto' — Automatically select the axis limits based on the data plotted.
• 'manual' — Use axis limit values that you specify. To specify the axis limits, set the

Limits property.

Note The LimitsMode property for the ruler and the associated XLimMode, YLimMode,
or ZLimMode property for the parent axes always have the same value. Setting one also
sets the other.

Scale — Scale of values along axis
'linear' (default) | 'log'

Scale of values along axis, specified as 'linear' or 'log'.

Note The Scale property for the ruler and the associated XScale, YScale, or ZScale
property for the parent axes always have the same value. Setting one also sets the other.

1 Alphabetical List

1-10078

Example: ax.XAxis.Scale = 'log';

Direction — Direction of increasing values
'normal' (default) | 'reverse'

Direction of increasing values, specified as one of these values:

• 'normal' — Values increase from left to right or bottom to top.
• 'reverse' — Values increase from right to left or top to bottom.

Note The Direction property for the ruler and the associated XDir, YDir, or ZDir
property for the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.Direction = 'reverse';

Tick Values and Labels

TickValues — Tick mark locations along the axis
[] (default) | vector of increasing values

Tick mark locations along the axis, specified as a vector of increasing values.
Example: ax.XAxis.TickValues = [2 4 6 8 10];
Example: ax.XAxis.TickValues = 0:10:100;

If you assign a value to this property, then MATLAB sets the TickValuesMode property
to 'manual'.

Alternatively, use the xticks, yticks, and zticks functions.

Note The TickValues property for the ruler and the associated XTick, YTick, or
ZTick property for the parent axes always have the same value. Setting one also sets the
other.

TickValuesMode — Selection mode for TickValues property
'auto' (default) | 'manual'

Selection mode for the TickValues property, specified as one of these values:

 NumericRuler Properties

1-10079

• 'auto' — Automatically select the tick values based on the data plotted.
• 'manual' — Use tick values that you specify. To specify the values, set the

TickValues property.

Note The TickValuesMode property for the ruler and the associated XTickMode,
YTickMode, or ZTickMode property for the parent axes always have the same value.
Setting one also sets the other.

Exponent — Exponential notation common to all tick values
integer value

Exponential notation common to all tick values, specified as an integer value. The axis
displays an exponent label showing the base and exponent value, for example:

The base value is always 10. However, you can change the exponent value by setting the
Exponent property. For example, change the exponent to 2.

ax = gca;
ax.YAxis.Exponent = 2;

If the exponent value is 0, then the exponent label does not display.

If you assign a value to this property, then MATLAB sets the ExponentMode property to
'manual'. If the axis has a log scale, then the Exponent property has no effect.

ExponentMode — Selection mode for Exponent property
'auto' (default) | 'manual'

Selection mode for the Exponent property, specified as one of these values:

1 Alphabetical List

1-10080

• 'auto' — Automatically select the exponent value based on the axis limits.
• 'manual' — Use an exponent value that you specify. To specify the value, set the

Exponent property.

TickLabels — Tick mark labels
'' (default) | cell array of character vectors | string array | categorical array

Tick mark labels, specified as a cell array of character vectors, string array, or categorical
array. If you do not specify enough labels for all of the tick values, then the labels repeat.
The labels support TeX and LaTeX markup. See the TickLabelInterpreter property
for more information.
Example: ax.XAxis.TickLabels =
{'January','February','March','April','May'}';

Example: ax.YAxis.TickLabels = {'\pi','2\pi','3\pi'}'

If you set this property, then MATLAB sets the TickLabelsMode property to 'manual'.

Alternatively, specify the tick labels using the xticklabels, yticklabels, and
zticklabels functions.

Note

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

• The TickLabels property for the ruler and the associated XTickLabel,
YTickLabel, or ZTickLabel property for the parent axes always have the same
value. Setting one also sets the other.

Data Types: char | string | categorical

TickLabelsMode — Selection mode for TickLabels property
'auto' (default) | 'manual'

Selection mode for the TickLabels property, specified as one of these values:

• 'auto' — Automatically select the tick labels.
• 'manual' — Use tick labels that you specify. To specify the labels, set the

TickLabels property.

 NumericRuler Properties

1-10081

Note The TickLabelsMode property for the ruler and the associated XTickLabelMode,
YTickLabelMode, or ZTickLabelMode property for the parent axes always have the
same value. Setting one also sets the other.

TickLabelInterpreter — Interpretation of tick label characters
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

Note Setting the TickLabelInterpreter property for the parent axes sets the
TickLabelInterpreter property for the ruler to the same value. However, setting the
ruler property does not set the axes property. To prevent the axes property value from
overriding the ruler property value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.TickLabelInterpreter = 'latex';

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the text.

This table lists the supported modifiers with the TickLabelInterpreter property set to
'tex'. Modifiers remain in effect until the end of the text. Superscripts and subscripts
are an exception because they only modify the next character or the text within the curly
braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'

1 Alphabetical List

1-10082

Modifier Description Example
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥

 NumericRuler Properties

1-10083

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´

1 Alphabetical List

1-10084

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. Use dollar
symbols around the labels, for example, use '$\int_1^{20} x^2 dx$' for inline mode
or '$$\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup
within the text. The maximum size of the text that you can use with the LaTeX interpreter
is 1200 characters. For multiline text, the maximum size of the text reduces by about 10
characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

TickLabelFormat — Tick label format and decimal precision
character vector | string

Tick label format and decimal precision, specified as a character vector or string. For
example, you can display the tick labels in a currency format, control the number of
decimals that appear in each label, or add text after all the labels.
Example: ax.XAxis.TickLabelFormat = '%g%%'; displays a percent sign after all
the tick labels.

This table lists some common formats.

Common Format Character Vector to Use Examples of Resulting
Format

Currency — Display dollar
sign before values, use two
decimal places, and use
commas.

'$%,.2f' $0.01
$1.00
$1,000.00

 NumericRuler Properties

1-10085

https://www.latex-project.org
https://www.latex-project.org

Common Format Character Vector to Use Examples of Resulting
Format

Temperatures — Display
degree symbol after values.

'%g\\circ' 0.01o
1o
1000o

Percentages — Display
percent sign after values.

'%g%%' 0.01%
1%
1000%

Commas — Display commas
in the thousandth place.

'%,g' 0.01
1
1,000

Alternatively, specify the tick label format using the xtickformat, ytickformat, and
ztickformat functions.

Custom Format

If none of the formats mentioned in the table gives your desired format, then create a
custom character vector or string with identifiers.

Identifiers are optional, except the percent sign and conversion character. Construct the
format in this order:

• One or more flags — Options such as adding a plus sign before positive values. For a
full list of options, see the table of Optional Flags.

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

1 Alphabetical List

1-10086

• Conversion character — Value type. For a full list of options, see the table of
Conversion Characters. If you specify a conversion that does not fit the data, MATLAB
overrides the specified conversion and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

• '$%.2f' — Display a dollar sign before each value and use fixed-point notation with
two decimal values.

• '%.3f Million' — Display Million after each value and use fixed-point notation
with three decimal values.

Optional Flags

Identifier Description Example of Numeric
Format

, Display commas every three
digits, such as '1,000'.

'%,4.4g'

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left-justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

 NumericRuler Properties

1-10087

Conversion Characters

Identifier Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

TickLabelRotation — Rotation of tick labels
scalar value in degrees

Rotation of tick labels, specified as a scalar value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation.

Alternatively, you can rotate the tick labels using the xtickangle, ytickangle, and
ztickangle functions.

Note The TickLabelRotation property for the ruler and the associated
XTickLabelRotation, YTickLabelRotation, or ZTickLabelRotation property for
the parent axes always have the same value. Setting one also sets the other.

Example: ax.XAxis.TickLabelRotation = 45;
Example: ax.YAxis.TickLabelRotation = -45;

TickLabelRotationMode — Selection mode for TickLabelRotation property
'auto' (default) | 'manual'

1 Alphabetical List

1-10088

Selection mode for the TickLabelRotation property, specified as one of these values:

• 'auto' — Automatically select the tick label rotation.
• 'manual' — Use a tick label rotation that you specify. To specify the rotation, set the

TickLabelRotation property.

TickDirection — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values:

• 'in' — Direct the tick marks inward from the axis lines. This is the default for 2-D
views.

• 'out' — Direct the tick marks outward from the axis lines. This is the default for 3-D
views.

• 'both' — Center the tick marks over the axis lines.

If you assign a value to this property, then MATLAB sets the TickDirectionMode
property to 'manual'.

Note Setting the TickDir property for the parent axes sets the TickDirection
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickDirection = 'out';

TickDirectionMode — Selection mode for TickDirection property
'auto' (default) | 'manual'

Selection mode for the TickDirection property, specified as one of these values:

• 'auto' — Automatically select the tick direction.
• 'manual' — Use a tick direction that you specify. To specify the tick direction, set the

TickDirection property.

TickLength — Tick mark length
two-element vector

 NumericRuler Properties

1-10089

Tick mark length, specified as a two-element vector of the form [2Dlength 3Dlength].
The first element is the tick mark length in 2-D views. The second element is the tick
mark length in 3-D views. Specify the values in units normalized relative to the longest
axes dimension.

Note Setting the TickLength property for the parent axes sets the TickLength
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.YAxis.TickLength = [0.02 0.035];

MinorTick — Minor tick mark display
'off' (default) | 'on'

Minor tick mark display, specified as one of these values:

• 'off' — Do not display minor tick marks. This is the default value for an axis with a
linear scale.

• 'on' — Display minor tick marks between the major tick marks on the axis. This is the
default value for an axis with a log scale. The space between the major tick marks
determines the number of minor tick marks. If the MinorTickValues property is set
to empty [], then no minor tick marks appear. Specify the tick mark locations by
setting the MinorTickValues property.

Note The MinorTick property for the ruler and the associated XMinorTick,
YMinorTick, or ZMinorTick property for the parent axes always have the same value.
Setting one also sets the other.

Example: ax.XAxis.MinorTick = 'on';

MinorTickValues — Minor tick mark locations
[] (default) | vector of increasing values

Minor tick mark locations, specified as a vector of increasing values.
Example: ax.XAxis.MinorTickValues = [0 0.5 1 1.5 2 2.5];
Example: ax.YAxis.MinorTickValues = 0:5:100;

1 Alphabetical List

1-10090

If you assign values to this property, then MATLAB sets the MinorTickValuesMode
property to 'manual'.

MinorTickValuesMode — Selection mode for MinorTickValues property
'auto' (default) | 'manual'

Selection mode for the MinorTickValues property, specified as one of these values:

• 'auto' — Use automatically calculated minor tick values.
• 'manual' — Use minor tick values that you specify. To specify the values, set the

MinorTickValues property.

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific system and locale. To use a fixed-width font that renders
well, specify 'FixedWidth'. The actual fixed-width font used depends on the
FixedWidthFontName property of the root object.

Note Setting the FontName property for the parent axes sets the FontName property for
the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontName = 'Cambria';

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The default font size depends on the
specific operating system and locale.

Note Setting the FontSize property for the parent axes sets the FontSize property for
the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

 NumericRuler Properties

1-10091

Example: ax.XAxis.FontSize = 12;

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font.
• 'bold' — Thicker character outlines than normal.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note Setting the FontWeight property for the parent axes sets the FontWeight
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontWeight = 'bold';

FontAngle — Text character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font can look the same as the normal font.

Note Setting the FontAngle property for the parent axes sets the FontAngle property
for the ruler to the same value. However, setting the ruler property does not set the axes
property. To prevent the axes property value from overriding the ruler property value, set
the axes value first, and then set the ruler value.

Example: ax.XAxis.FontAngle = 'italic';

FontSmoothing — Text antialiasing
'on' (default) | 'off'

Text smoothing, specified as one of these values:

1 Alphabetical List

1-10092

• 'on' — Enable text antialiasing to reduce the jagged appearance of text characters
and make the text easier to read. In certain cases, smoothed text blends against the
background color and can make the text appear blurry.

• 'off' — Disable text antialiasing. Use this setting if the text seems blurry.

Note Setting the FontSmoothing property for the parent axes sets the FontSmoothing
property for the ruler to the same value. However, setting the ruler property does not set
the axes property. To prevent the axes property value from overriding the ruler property
value, set the axes value first, and then set the ruler value.

Example: ax.XAxis.FontSmoothing = 'off';

Parent/Child

Parent — Ruler parent
Axes object

Ruler parent, specified as an Axes object.

Note Ruler objects are not listed in the Children property of the parent Axes object.

Children — Ruler children
empty GraphicsPlaceholder array

The ruler has no children. You cannot set this property.

See Also
Axes

Introduced in R2015b

 NumericRuler Properties

1-10093

nzmax
Amount of storage allocated for nonzero matrix elements

Syntax
n = nzmax(S)

Description
n = nzmax(S) returns the amount of storage allocated for nonzero elements in sparse
matrix S. For sparse matrices, nzmax(S) >= 1.

• If S is a full matrix, then nzmax(S) is equal to prod(size(S)).

Often, nnz(S) and nzmax(S) are the same. But if S is created by an operation which
produces fill-in matrix elements, such as sparse matrix multiplication or sparse LU
factorization, then more storage might be allocated than is actually required, and
nzmax(S) reflects this. Alternatively, sparse(i,j,s,m,n,nzmax) or its simpler form,
spalloc(m,n,nzmax), can set nzmax in anticipation of later fill-in.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-10094

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
find | isa | nnz | nonzeros | size | whos

Introduced before R2006a

 nzmax

1-10095

ode15i
Solve fully implicit differential equations — variable order method

Syntax
[t,y] = ode15i(odefun,tspan,y0,yp0)
[t,y] = ode15i(odefun,tspan,y0,yp0,options)
[t,y,te,ye,ie] = ode15i(odefun,tspan,y0,yp0,options)
sol = ode15i(___)

Description
[t,y] = ode15i(odefun,tspan,y0,yp0), where tspan = [t0 tf], integrates the
system of differential equations f t, y, y′ = 0 from t0 to tf with initial conditions y0 and
yp0. Each row in the solution array y corresponds to a value returned in column vector t.

[t,y] = ode15i(odefun,tspan,y0,yp0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Jacobian option to provide the Jacobian matrix.

[t,y,te,ye,ie] = ode15i(odefun,tspan,y0,yp0,options) additionally finds
where functions of (t,y,y'), called event functions, are zero. In the output, te is the
time of the event, ye is the solution at the time of the event, and ie is the index of the
triggered event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a
corresponding function: [value,isterminal,direction] = myEventFcn(t,y,yp). For
more information, see “ODE Event Location”.

sol = ode15i(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

1 Alphabetical List

1-10096

Examples

Solve Weissinger Implicit ODE

Calculate consistent initial conditions and solve an implicit ODE with ode15i.

Weissinger's equation is

ty2 y′ 3− y3 y′ 2 + t t2 + 1 y′− t2y = 0.

Since the equation is in the generic form f t, y, y′ = 0, you can use the ode15i function
to solve the implicit differential equation.

Code Equation

To code the equation in a form suitable for ode15i, you need to write a function with
inputs for t, y, and y′ that returns the residual value of the equation. The function
@weissinger encodes this equation. View the function file.

type weissinger

function res = weissinger(t,y,yp)
%WEISSINGER Evaluate the residual of the Weissinger implicit ODE
%
% See also ODE15I.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

res = t*y^2 * yp^3 - y^3 * yp^2 + t*(t^2 + 1)*yp - t^2 * y;

Calculate Consistent Initial Conditions

The ode15i solver requires consistent initial conditions, that is, the initial conditions
supplied to the solver must satisfy

f t0, y, y′ = 0.

Since it is possible to supply inconsistent initial conditions, and ode15i does not check
for consistency, it is recommended that you use the helper function decic to compute
such conditions. decic holds some specified variables fixed and computes consistent
initial values for the unfixed variables.

 ode15i

1-10097

In this case, fix the initial value y t0 = 3
2 and let decic compute a consistent initial

value for the derivative y′ t0 , starting from an initial guess of y′ t0 = 0.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0)

y0 = 1.2247

yp0 = 0.8165

Solve Equation

Use the consistent initial conditions returned by decic with ode15i to solve the ODE
over the time interval 1 10 .

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);

Plot Results

The exact solution of this ODE is

y t = t2 + 1
2 .

Plot the numerical solution y computed by ode15i against the analytical solution ytrue.

ytrue = sqrt(t.^2 + 0.5);
plot(t,y,'*',t,ytrue,'-o')
legend('ode15i', 'exact')

1 Alphabetical List

1-10098

Solve Robertson Problem as Implicit Differential Algebraic Equations (DAEs)

This example reformulates a system of ODEs as a fully implicit system of differential
algebraic equations (DAEs). The Robertson problem coded by hb1ode.m is a classic test
problem for programs that solve stiff ODEs. The system of equations is

 ode15i

1-10099

hb1ode solves this system of ODEs to steady state with the initial conditions ,
, and . But the equations also satisfy a linear conservation law,

In terms of the solution and initial conditions, the conservation law is

The problem can be rewritten as a system of DAEs by using the conservation law to
determine the state of . This reformulates the problem as the implicit DAE system

The function robertsidae encodes this DAE system.

function res = robertsidae(t,y,yp)
res = [yp(1) + 0.04*y(1) - 1e4*y(2)*y(3);
 yp(2) - 0.04*y(1) + 1e4*y(2)*y(3) + 3e7*y(2)^2;
 y(1) + y(2) + y(3) - 1];

The full example code for this formulation of the Robertson problem is available in
ihb1dae.m.

Set the error tolerances and the value of .

options = odeset('RelTol',1e-4,'AbsTol',[1e-6 1e-10 1e-6], ...
 'Jacobian',{[],[1 0 0; 0 1 0; 0 0 0]});

Use decic to compute consistent initial conditions from guesses. Fix the first two
components of y0 to get the same consistent initial conditions as found by ode15s in
hb1dae.m, which formulates this problem as a semi-explicit DAE system.

y0 = [1; 0; 1e-3];
yp0 = [0; 0; 0];
[y0,yp0] = decic(@robertsidae,0,y0,[1 1 0],yp0,[],options);

Solve the system of DAEs using ode15i.

1 Alphabetical List

1-10100

tspan = [0 4*logspace(-6,6)];
[t,y] = ode15i(@robertsidae,tspan,y0,yp0,options);

Plot the solution components. Since the second solution component is small relative to the
others, multiply it by 1e4 before plotting.

y(:,2) = 1e4*y(:,2);
semilogx(t,y)
ylabel('1e4 * y(:,2)')
title('Robertson DAE problem with a Conservation Law, solved by ODE15I')

 ode15i

1-10101

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle that defines the functions to be
integrated.

The function f = odefun(t,y,yp), for a scalar t and column vectors y and yp, must
return a column vector f of data type single or double that corresponds to f t, y, y′ .
odefun must accept the three inputs for t, y, and yp even if one of the inputs is not used
in the function.

1 Alphabetical List

1-10102

For example, to solve y′− y = 0, use this function.

function f = odefun(t,y,yp)
f = yp - y;

For a system of equations, the output of odefun is a vector. Each equation becomes an
element in the solution vector. For example, to solve

y′1− y2 = 0
y′2 + 1 = 0 ,

use this function.

function dy = odefun(t,y,yp)
dy = zeros(2,1);
dy(1) = yp(1)-y(2);
dy(2) = yp(2)+1;

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times
between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely
to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.

 ode15i

1-10103

The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions for y
vector

Initial conditions for y, specified as a vector. y0 must be the same length as the vector
output of odefun, so that y0 contains an initial condition for each equation defined in
odefun.

The initial conditions for y0 and yp0 must be consistent, meaning that f t0, y0, y′0 = 0.
Use the decic function to compute consistent initial conditions close to guessed values.
Data Types: single | double

yp0 — Initial conditions for y’
vector

Initial conditions for y’, specified as a vector. yp0 must be the same length as the vector
output of odefun, so that yp0 contains an initial condition for each variable defined in
odefun.

1 Alphabetical List

1-10104

The initial conditions for y0 and yp0 must be consistent, meaning that f t0, y0, y′0 = 0.
Use the decic function to compute consistent initial conditions close to guessed values.
Data Types: single | double

options — Option structure
structure array

Option structure, specified as a structure array. Use the odeset function to create or
modify the option structure.

See “Summary of ODE Options” for a list of which options are compatible with each ODE
solver.
Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a
relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.
Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

 ode15i

1-10105

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ie — Index of vanishing event function
column vector

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

sol — Structure for evaluation
structure array

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

1 Alphabetical List

1-10106

Structure Field Description
sol.ie Indices into the vector returned by the

function specified in the Events option.
The values indicate which event the solver
detected.

Tips
• Providing the Jacobian matrix to ode15i is critical for reliability and efficiency.

Alternatively, if the system is large and sparse, then providing the Jacobian sparsity
pattern also assists the solver. In either case, use odeset to pass in the matrices using
the Jacobian or JPattern options.

Algorithms
ode15i is a variable-step, variable-order (VSVO) solver based on the backward
differentiation formulas (BDFs) of orders 1 to 5. ode15i is designed to be used with fully
implicit differential equations and index-1 differential algebraic equations (DAEs). The
helper function decic computes consistent initial conditions that are suitable to be used
with ode15i [1].

References
[1] Lawrence F. Shampine, “Solving 0 = F(t, y(t), y′(t)) in MATLAB,” Journal of Numerical

Mathematics, Vol.10, No.4, 2002, pp. 291-310.

See Also
decic | deval | ode15s | ode23t | odeget | odeset

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Differential Algebraic Equations (DAEs)”
“Troubleshoot Common ODE Problems”

 ode15i

1-10107

Introduced before R2006a

1 Alphabetical List

1-10108

ode15s
Solve stiff differential equations and DAEs — variable order method

Syntax
[t,y] = ode15s(odefun,tspan,y0)
[t,y] = ode15s(odefun,tspan,y0,options)
[t,y,te,ye,ie] = ode15s(odefun,tspan,y0,options)
sol = ode15s(___)

Description
[t,y] = ode15s(odefun,tspan,y0), where tspan = [t0 tf], integrates the
system of differential equations y′ = f t, y from t0 to tf with initial conditions y0. Each
row in the solution array y corresponds to a value returned in column vector t.

All MATLAB ODE solvers can solve systems of equations of the form y′ = f t, y , or
problems that involve a mass matrix, M t, y y′ = f t, y . The solvers all use similar
syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass
matrix is constant. ode15s and ode23t can solve problems with a mass matrix that is
singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using
the Mass option of odeset.

[t,y] = ode15s(odefun,tspan,y0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode15s(odefun,tspan,y0,options) additionally finds where
functions of (t,y), called event functions, are zero. In the output, te is the time of the
event, ye is the solution at the time of the event, and ie is the index of the triggered
event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a

 ode15s

1-10109

corresponding function: [value,isterminal,direction] = myEventFcn(t,y). For more
information, see “ODE Event Location”.

sol = ode15s(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

Examples

ODE With Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous
function in the call to the solver. The anonymous function must accept two inputs (t,y)
even if one of the inputs is not used.

Solve the ODE

y′ = − 10t .

Use a time interval of [0,2] and the initial condition y0 = 1.

tspan = [0 2];
y0 = 1;
[t,y] = ode15s(@(t,y) -10*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

1 Alphabetical List

1-10110

Solve Stiff ODE

An example of a stiff system of equations is the van der Pol equations in relaxation
oscillation. The limit cycle has regions where the solution components change slowly and
the problem is quite stiff, alternating with regions of very sharp change where it is not
stiff.

The system of equations is:

 ode15s

1-10111

The initial conditions are and . The function vdp1000 ships with
MATLAB® and encodes the equations.

function dydt = vdp1000(t,y)
%VDP1000 Evaluate the van der Pol ODEs for mu = 1000.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Solving this system using ode45 with the default relative and absolute error tolerances
(1e-3 and 1e-6, respectively) is extremely slow, requiring several minutes to solve and
plot the solution. ode45 requires millions of time steps to complete the integration, due
to the areas of stiffness where it struggles to meet the tolerances.

This is a plot of the solution obtained by ode45, which takes a long time to compute.
Notice the enormous number of time steps required to pass through areas of stiffness.

1 Alphabetical List

1-10112

Solve the stiff system using the ode15s solver, and then plot the first column of the
solution y against the time points t. The ode15s solver passes through stiff areas with far
fewer steps than ode45.

[t,y] = ode15s(@vdp1000,[0 3000],[2 0]);
plot(t,y(:,1),'-o')

 ode15s

1-10113

Pass Extra Parameters to ODE Function

ode15s only works with functions that use two input arguments, t and y. However, you
can pass in extra parameters by defining them outside the function and passing them in
when you specify the function handle.

Solve the ODE

Rewriting the equation as a first-order system yields

1 Alphabetical List

1-10114

odefcn.m represents this system of equations as a function that accepts four input
arguments: t, y, A, and B.

function dydt = odefcn(t,y,A,B)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (A/B)*t.*y(1);

Solve the ODE using ode15s. Specify the function handle such that it passes in the
predefined values for A and B to odefcn.

A = 1;
B = 2;
tspan = [0 5];
y0 = [0 0.01];
[t,y] = ode15s(@(t,y) odefcn(t,y,A,B), tspan, y0);

Plot the results.

plot(t,y(:,1),'-o',t,y(:,2),'-.')

 ode15s

1-10115

Compare Stiff ODE Solvers

The ode15s solver is a good first choice for most stiff problems. However, the other stiff
solvers might be more efficient for certain types of problems. This example solves a stiff
test equation using all four stiff ODE solvers.

Consider the test equation

y′ = − λy .

The equation becomes increasingly stiff as the magnitude of λ increases. Use λ = 1 × 109

and the initial condition y(0) = 1 over the time interval [0 0.5]. With these values, the

1 Alphabetical List

1-10116

problem is stiff enough that ode45 and ode23 struggle to integrate the equation. Also,
use odeset to pass in the constant Jacobian J = ∂ f

∂y = − λ and turn on the display of
solver statistics.

lambda = 1e9;
y0 = 1;
tspan = [0 0.5];
opts = odeset('Jacobian',-lambda,'Stats','on');

Solve the equation with ode15s, ode23s, ode23t, and ode23tb. Make subplots for
comparison.

subplot(2,2,1)
tic, ode15s(@(t,y) -lambda*y, tspan, y0, opts), toc

104 successful steps
1 failed attempts
212 function evaluations
0 partial derivatives
21 LU decompositions
210 solutions of linear systems
Elapsed time is 1.424329 seconds.

title('ode15s')
subplot(2,2,2)
tic, ode23s(@(t,y) -lambda*y, tspan, y0, opts), toc

63 successful steps
0 failed attempts
191 function evaluations
0 partial derivatives
63 LU decompositions
189 solutions of linear systems
Elapsed time is 0.332527 seconds.

title('ode23s')
subplot(2,2,3)
tic, ode23t(@(t,y) -lambda*y, tspan, y0, opts), toc

95 successful steps
0 failed attempts
125 function evaluations
0 partial derivatives
28 LU decompositions

 ode15s

1-10117

123 solutions of linear systems
Elapsed time is 0.712517 seconds.

title('ode23t')
subplot(2,2,4)
tic, ode23tb(@(t,y) -lambda*y, tspan, y0, opts), toc

71 successful steps
0 failed attempts
167 function evaluations
0 partial derivatives
23 LU decompositions
236 solutions of linear systems
Elapsed time is 0.506542 seconds.

title('ode23tb')

1 Alphabetical List

1-10118

The stiff solvers all perform well, but ode23s completes the integration with the fewest
steps and runs the fastest for this particular problem. Since the constant Jacobian is
specified, none of the solvers need to calculate partial derivatives to compute the
solution. Specifying the Jacobian benefits ode23s the most since it normally evaluates the
Jacobian in every step.

For general stiff problems, the performance of the stiff solvers varies depending on the
format of the problem and specified options. Providing the Jacobian matrix or sparsity
pattern always improves solver efficiency for stiff problems. But since the stiff solvers use
the Jacobian differently, the improvement can vary significantly. Practically speaking, if a
system of equations is very large or needs to be solved many times, then it is worthwhile
to investigate the performance of the different solvers to minimize execution time.

 ode15s

1-10119

Evaluate and Extend Solution Structure

The van der Pol equation is a second order ODE

y1′′ − μ 1− y1
2 y1′ + y1 = 0 .

Solve the van der Pol equation with μ = 1000 using ode15s. The function vdp1000.m
ships with MATLAB® and encodes the equations. Specify a single output to return a
structure containing information about the solution, such as the solver and evaluation
points.

tspan = [0 3000];
y0 = [2 0];
sol = ode15s(@vdp1000,tspan,y0)

sol = struct with fields:
 solver: 'ode15s'
 extdata: [1x1 struct]
 x: [1x592 double]
 y: [2x592 double]
 stats: [1x1 struct]
 idata: [1x1 struct]

Use linspace to generate 2500 points in the interval [0 3000]. Evaluate the first
component of the solution at these points using deval.

x = linspace(0,3000,2500);
y = deval(sol,x,1);

Plot the solution.

plot(x,y)

1 Alphabetical List

1-10120

Extend the solution to tf = 4000 using odextend and add the result to the original plot.

tf = 4000;
sol_new = odextend(sol,@vdp1000,tf);
x = linspace(3000,tf,350);
y = deval(sol_new,x,1);
hold on
plot(x,y,'r')

 ode15s

1-10121

Solve Robertson Problem as Semi-Explicit Differential Algebraic Equations
(DAEs)

This example reformulates a system of ODEs as a system of differential algebraic
equations (DAEs). The Robertson problem found in hb1ode.m is a classic test problem for
programs that solve stiff ODEs. The system of equations is

1 Alphabetical List

1-10122

hb1ode solves this system of ODEs to steady state with the initial conditions ,
, and . But the equations also satisfy a linear conservation law,

In terms of the solution and initial conditions, the conservation law is

The system of equations can be rewritten as a system of DAEs by using the conservation
law to determine the state of . This reformulates the problem as the DAE system

The differential index of this system is 1, since only a single derivative of is required to
make this a system of ODEs. Therefore, no further transformations are required before
solving the system.

The function robertsdae encodes this DAE system. Save robertsdae.m in your current
folder to run the example.

function out = robertsdae(t,y)
out = [-0.04*y(1) + 1e4*y(2).*y(3)
 0.04*y(1) - 1e4*y(2).*y(3) - 3e7*y(2).^2
 y(1) + y(2) + y(3) - 1];

The full example code for this formulation of the Robertson problem is available in
hb1dae.m.

Solve the DAE system using ode15s. Consistent initial conditions for y0 are obvious
based on the conservation law. Use odeset to set the options:

• Use a constant mass matrix to represent the left hand side of the system of equations.

 ode15s

1-10123

• Set the relative error tolerance to 1e-4.
• Use an absolute tolerance of 1e-10 for the second solution component, since the scale

varies dramatically from the other components.
• Leave the 'MassSingular' option at its default value 'maybe' to test the automatic

detection of a DAE.

y0 = [1; 0; 0];
tspan = [0 4*logspace(-6,6)];
M = [1 0 0; 0 1 0; 0 0 0];
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',[1e-6 1e-10 1e-6]);
[t,y] = ode15s(@robertsdae,tspan,y0,options);

Plot the solution.

y(:,2) = 1e4*y(:,2);
semilogx(t,y);
ylabel('1e4 * y(:,2)');
title('Robertson DAE problem with a Conservation Law, solved by ODE15S');

1 Alphabetical List

1-10124

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle which defines the functions to be
integrated.

The function dydt = odefun(t,y), for a scalar t and a column vector y, must return a
column vector dydt of data type single or double that corresponds to f t, y . odefun
must accept both input arguments, t and y, even if one of the arguments is not used in
the function.

 ode15s

1-10125

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times
between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely
to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.

1 Alphabetical List

1-10126

The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions
vector

Initial conditions, specified as a vector. y0 must be the same length as the vector output
of odefun, so that y0 contains an initial condition for each equation defined in odefun.
Data Types: single | double

options — Option structure
structure array

Option structure, specified as a structure array. Use the odeset function to create or
modify the options structure. See “Summary of ODE Options” for a list of the options
compatible with each solver.
Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a
relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.

 ode15s

1-10127

Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ie — Index of vanishing event function
column vector

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

sol — Structure for evaluation
structure array

1 Alphabetical List

1-10128

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

Algorithms
ode15s is a variable-step, variable-order (VSVO) solver based on the numerical
differentiation formulas (NDFs) of orders 1 to 5. Optionally, it can use the backward
differentiation formulas (BDFs, also known as Gear's method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Use ode15s if ode45 fails or is very
inefficient and you suspect that the problem is stiff, or when solving a differential-
algebraic equation (DAE) [1], [2].

 ode15s

1-10129

References
[1] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM Journal on

Scientific Computing, Vol. 18, 1997, pp. 1–22.

[2] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving Index-1 DAEs in MATLAB
and Simulink,” SIAM Review, Vol. 41, 1999, pp. 538–552.

See Also
deval | ode23s | ode23t | ode23tb | ode45 | odeget | odeset

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Stiff ODEs”
“Solve Differential Algebraic Equations (DAEs)”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10130

https://www.mathworks.com/help/pdf_doc/otherdocs/ode_suite.pdf
https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of--solving-index-1-daes-in-matlab-and-simulink-
https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of--solving-index-1-daes-in-matlab-and-simulink-

ode23
Solve nonstiff differential equations — low order method

Syntax
[t,y] = ode23(odefun,tspan,y0)
[t,y] = ode23(odefun,tspan,y0,options)
[t,y,te,ye,ie] = ode23(odefun,tspan,y0,options)
sol = ode23(___)

Description
[t,y] = ode23(odefun,tspan,y0), where tspan = [t0 tf], integrates the system
of differential equations y′ = f t, y from t0 to tf with initial conditions y0. Each row in
the solution array y corresponds to a value returned in column vector t.

All MATLAB ODE solvers can solve systems of equations of the form y′ = f t, y , or
problems that involve a mass matrix, M t, y y′ = f t, y . The solvers all use similar
syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass
matrix is constant. ode15s and ode23t can solve problems with a mass matrix that is
singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using
the Mass option of odeset.

[t,y] = ode23(odefun,tspan,y0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode23(odefun,tspan,y0,options) additionally finds where
functions of (t,y), called event functions, are zero. In the output, te is the time of the
event, ye is the solution at the time of the event, and ie is the index of the triggered
event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a

 ode23

1-10131

corresponding function: [value,isterminal,direction] = myEventFcn(t,y). For more
information, see “ODE Event Location”.

sol = ode23(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

Examples

ODE with Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous
function in the call to the solver. The anonymous function must accept two inputs (t,y)
even if one of the inputs is not used.

Solve the ODE

y′ = 2t .

Use a time interval of [0,5] and the initial condition y0 = 0.

tspan = [0 5];
y0 = 0;
[t,y] = ode23(@(t,y) 2*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

1 Alphabetical List

1-10132

Solve Nonstiff Equation

The van der Pol equation is a second order ODE

where is a scalar parameter. Rewrite this equation as a system of first-order ODEs
by making the substitution . The resulting system of first-order ODEs is

 ode23

1-10133

The function file vdp1.m represents the van der Pol equation using . The variables
 and are the entries y(1) and y(2) of a two-element vector, dydt.

function dydt = vdp1(t,y)
%VDP1 Evaluate the van der Pol ODEs for mu = 1
%
% See also ODE113, ODE23, ODE45.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Solve the ODE using the ode23 function on the time interval [0 20] with initial values
[2 0]. The resulting output is a column vector of time points t and a solution array y.
Each row in y corresponds to a time returned in the corresponding row of t. The first
column of y corresponds to , and the second column to .

[t,y] = ode23(@vdp1,[0 20],[2; 0]);

Plot the solutions for and against t.

plot(t,y(:,1),'-o',t,y(:,2),'-o')
title('Solution of van der Pol Equation (\mu = 1) with ODE23');
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2')

1 Alphabetical List

1-10134

Pass Extra Parameters to ODE Function

ode23 only works with functions that use two input arguments, t and y. However, you
can pass in extra parameters by defining them outside the function and passing them in
when you specify the function handle.

Solve the ODE

Rewriting the equation as a first-order system yields

 ode23

1-10135

odefcn.m represents this system of equations as a function that accepts four input
arguments: t, y, A, and B.

function dydt = odefcn(t,y,A,B)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (A/B)*t.*y(1);

Solve the ODE using ode23. Specify the function handle such that it passes in the
predefined values for A and B to odefcn.

A = 1;
B = 2;
tspan = [0 5];
y0 = [0 0.01];
[t,y] = ode23(@(t,y) odefcn(t,y,A,B), tspan, y0);

Plot the results.

plot(t,y(:,1),'-o',t,y(:,2),'-.')

1 Alphabetical List

1-10136

ODE With Crude Error Threshold

Compared to ode45, the ode23 solver is better at solving problems with crude error
tolerances.

Compare the performance of ode45 and ode23 by solving the moderately-stiff ODE

y′ = − λy

for λ = 1000. This ODE is a test equation that becomes increasingly stiff as λ increases.
Use odeset to turn on the display of solver statistics.

 ode23

1-10137

opts = odeset('Stats','on');
tspan = [0 2];
y0 = 1;
lambda = 1e3;
subplot(1,2,1)
tic, ode45(@(t,y) -lambda*y, tspan, y0, opts), toc

615 successful steps
35 failed attempts
3901 function evaluations
Elapsed time is 2.999044 seconds.

title('ode45')
subplot(1,2,2)
tic, ode23(@(t,y) -lambda*y, tspan, y0, opts), toc

822 successful steps
2 failed attempts
2473 function evaluations
Elapsed time is 1.384543 seconds.

title('ode23')

1 Alphabetical List

1-10138

For this moderately stiff problem, ode23 executes slightly faster than ode45 and also has
fewer failed steps. The step sizes taken by ode45 and ode23 for this problem are limited
by the stability requirements of the equation rather than by accuracy. Since steps taken
by ode23 are cheaper than with ode45, the ode23 solver executes quicker even though it
takes more steps.

Input Arguments
odefun — Functions to solve
function handle

 ode23

1-10139

Functions to solve, specified as a function handle which defines the functions to be
integrated.

The function dydt = odefun(t,y), for a scalar t and a column vector y, must return a
column vector dydt of data type single or double that corresponds to f t, y . odefun
must accept both input arguments, t and y, even if one of the arguments is not used in
the function.

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times
between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

1 Alphabetical List

1-10140

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely
to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.
The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions
vector

Initial conditions, specified as a vector. y0 must be the same length as the vector output
of odefun, so that y0 contains an initial condition for each equation defined in odefun.
Data Types: single | double

options — Option structure
structure array

 ode23

1-10141

Option structure, specified as a structure array. Use the odeset function to create or
modify the options structure. See “Summary of ODE Options” for a list of the options
compatible with each solver.
Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a
relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.
Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ie — Index of vanishing event function
column vector

1 Alphabetical List

1-10142

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

sol — Structure for evaluation
structure array

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

Algorithms
ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It may be more efficient than ode45 at crude tolerances and in the presence of
moderate stiffness. ode23 is a single-step solver [1], [2].

 ode23

1-10143

References
[1] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,” Appl. Math.

Letters, Vol. 2, 1989, pp. 321–325.

[2] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM Journal on
Scientific Computing, Vol. 18, 1997, pp. 1–22.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All odeset option arguments must be constant.
• Code generation does not support a constant mass matrix in the options structure.

Provide a mass matrix as a function.
• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Code generation requires dynamic memory

allocation when tspan has two elements or you use event functions.

See Also
deval | ode45 | odeget | odeset | odextend

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Nonstiff ODEs”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10144

https://www.mathworks.com/help/pdf_doc/otherdocs/ode_suite.pdf

ode23s
Solve stiff differential equations — low order method

Syntax
[t,y] = ode23s(odefun,tspan,y0)
[t,y] = ode23s(odefun,tspan,y0,options)
[t,y,te,ye,ie] = ode23s(odefun,tspan,y0,options)
sol = ode23s(___)

Description
[t,y] = ode23s(odefun,tspan,y0), where tspan = [t0 tf], integrates the
system of differential equations y′ = f t, y from t0 to tf with initial conditions y0. Each
row in the solution array y corresponds to a value returned in column vector t.

All MATLAB ODE solvers can solve systems of equations of the form y′ = f t, y , or
problems that involve a mass matrix, M t, y y′ = f t, y . The solvers all use similar
syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass
matrix is constant. ode15s and ode23t can solve problems with a mass matrix that is
singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using
the Mass option of odeset.

[t,y] = ode23s(odefun,tspan,y0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode23s(odefun,tspan,y0,options) additionally finds where
functions of (t,y), called event functions, are zero. In the output, te is the time of the
event, ye is the solution at the time of the event, and ie is the index of the triggered
event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a

 ode23s

1-10145

corresponding function: [value,isterminal,direction] = myEventFcn(t,y). For more
information, see “ODE Event Location”.

sol = ode23s(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

Examples

ODE With Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous
function in the call to the solver. The anonymous function must accept two inputs (t,y)
even if one of the inputs is not used.

Solve the ODE

y′ = − 10t .

Use a time interval of [0,2] and the initial condition y0 = 1.

tspan = [0 2];
y0 = 1;
[t,y] = ode23s(@(t,y) -10*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

1 Alphabetical List

1-10146

Solve Stiff ODE

An example of a stiff system of equations is the van der Pol equations in relaxation
oscillation. The limit cycle has regions where the solution components change slowly and
the problem is quite stiff, alternating with regions of very sharp change where it is not
stiff.

The system of equations is:

 ode23s

1-10147

The initial conditions are and . The function vdp1000 ships with
MATLAB® and encodes the equations.

function dydt = vdp1000(t,y)
%VDP1000 Evaluate the van der Pol ODEs for mu = 1000.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Solving this system using ode45 with the default relative and absolute error tolerances
(1e-3 and 1e-6, respectively) is extremely slow, requiring several minutes to solve and
plot the solution. ode45 requires millions of time steps to complete the integration, due
to the areas of stiffness where it struggles to meet the tolerances.

This is a plot of the solution obtained by ode45, which takes a long time to compute.
Notice the enormous number of time steps required to pass through areas of stiffness.

1 Alphabetical List

1-10148

Solve the stiff system using the ode23s solver, and then plot the first column of the
solution y against the time points t. The ode23s solver passes through stiff areas with far
fewer steps than ode45.

[t,y] = ode23s(@vdp1000,[0 3000],[2 0]);
plot(t,y(:,1),'-o')

 ode23s

1-10149

Pass Extra Parameters to ODE Function

ode23s only works with functions that use two input arguments, t and y. However, you
can pass in extra parameters by defining them outside the function and passing them in
when you specify the function handle.

Solve the ODE

Rewriting the equation as a first-order system yields

1 Alphabetical List

1-10150

odefcn.m represents this system of equations as a function that accepts four input
arguments: t, y, A, and B.

function dydt = odefcn(t,y,A,B)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (A/B)*t.*y(1);

Solve the ODE using ode23s. Specify the function handle such that it passes in the
predefined values for A and B to odefcn.

A = 1;
B = 2;
tspan = [0 5];
y0 = [0 0.01];
[t,y] = ode23s(@(t,y) odefcn(t,y,A,B), tspan, y0);

Plot the results.

plot(t,y(:,1),'-o',t,y(:,2),'-.')

 ode23s

1-10151

Compare Stiff ODE Solvers

The ode15s solver is a good first choice for most stiff problems. However, the other stiff
solvers might be more efficient for certain types of problems. This example solves a stiff
test equation using all four stiff ODE solvers.

Consider the test equation

y′ = − λy .

The equation becomes increasingly stiff as the magnitude of λ increases. Use λ = 1 × 109

and the initial condition y(0) = 1 over the time interval [0 0.5]. With these values, the

1 Alphabetical List

1-10152

problem is stiff enough that ode45 and ode23 struggle to integrate the equation. Also,
use odeset to pass in the constant Jacobian J = ∂ f

∂y = − λ and turn on the display of
solver statistics.

lambda = 1e9;
y0 = 1;
tspan = [0 0.5];
opts = odeset('Jacobian',-lambda,'Stats','on');

Solve the equation with ode15s, ode23s, ode23t, and ode23tb. Make subplots for
comparison.

subplot(2,2,1)
tic, ode15s(@(t,y) -lambda*y, tspan, y0, opts), toc

104 successful steps
1 failed attempts
212 function evaluations
0 partial derivatives
21 LU decompositions
210 solutions of linear systems
Elapsed time is 1.424329 seconds.

title('ode15s')
subplot(2,2,2)
tic, ode23s(@(t,y) -lambda*y, tspan, y0, opts), toc

63 successful steps
0 failed attempts
191 function evaluations
0 partial derivatives
63 LU decompositions
189 solutions of linear systems
Elapsed time is 0.332527 seconds.

title('ode23s')
subplot(2,2,3)
tic, ode23t(@(t,y) -lambda*y, tspan, y0, opts), toc

95 successful steps
0 failed attempts
125 function evaluations
0 partial derivatives
28 LU decompositions

 ode23s

1-10153

123 solutions of linear systems
Elapsed time is 0.712517 seconds.

title('ode23t')
subplot(2,2,4)
tic, ode23tb(@(t,y) -lambda*y, tspan, y0, opts), toc

71 successful steps
0 failed attempts
167 function evaluations
0 partial derivatives
23 LU decompositions
236 solutions of linear systems
Elapsed time is 0.506542 seconds.

title('ode23tb')

1 Alphabetical List

1-10154

The stiff solvers all perform well, but ode23s completes the integration with the fewest
steps and runs the fastest for this particular problem. Since the constant Jacobian is
specified, none of the solvers need to calculate partial derivatives to compute the
solution. Specifying the Jacobian benefits ode23s the most since it normally evaluates the
Jacobian in every step.

For general stiff problems, the performance of the stiff solvers varies depending on the
format of the problem and specified options. Providing the Jacobian matrix or sparsity
pattern always improves solver efficiency for stiff problems. But since the stiff solvers use
the Jacobian differently, the improvement can vary significantly. Practically speaking, if a
system of equations is very large or needs to be solved many times, then it is worthwhile
to investigate the performance of the different solvers to minimize execution time.

 ode23s

1-10155

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle which defines the functions to be
integrated.

The function dydt = odefun(t,y), for a scalar t and a column vector y, must return a
column vector dydt of data type single or double that corresponds to f t, y . odefun
must accept both input arguments, t and y, even if one of the arguments is not used in
the function.

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times

1 Alphabetical List

1-10156

between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely
to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.
The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions
vector

Initial conditions, specified as a vector. y0 must be the same length as the vector output
of odefun, so that y0 contains an initial condition for each equation defined in odefun.
Data Types: single | double

 ode23s

1-10157

options — Option structure
structure array

Option structure, specified as a structure array. Use the odeset function to create or
modify the options structure. See “Summary of ODE Options” for a list of the options
compatible with each solver.
Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a
relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.
Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

1 Alphabetical List

1-10158

ie — Index of vanishing event function
column vector

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

sol — Structure for evaluation
structure array

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

Algorithms
ode23s is based on a modified Rosenbrock formula of order 2. Because it is a single-step
solver, it may be more efficient than ode15s at solving problems that permit crude

 ode23s

1-10159

tolerances or problems with solutions that change rapidly. It can solve some kinds of stiff
problems for which ode15s is not effective. The ode23s solver evaluates the Jacobian
during each step of the integration, so supplying it with the Jacobian matrix is critical to
its reliability and efficiency [1].

References
[1] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM Journal on

Scientific Computing, Vol. 18, 1997, pp. 1–22.

See Also
deval | ode15s | odeget | odeset

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Stiff ODEs”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10160

https://www.mathworks.com/help/pdf_doc/otherdocs/ode_suite.pdf

ode23t
Solve moderately stiff ODEs and DAEs — trapezoidal rule

Syntax
[t,y] = ode23t(odefun,tspan,y0)
[t,y] = ode23t(odefun,tspan,y0,options)
[t,y,te,ye,ie] = ode23t(odefun,tspan,y0,options)
sol = ode23t(___)

Description
[t,y] = ode23t(odefun,tspan,y0), where tspan = [t0 tf], integrates the
system of differential equations y′ = f t, y from t0 to tf with initial conditions y0. Each
row in the solution array y corresponds to a value returned in column vector t.

All MATLAB ODE solvers can solve systems of equations of the form y′ = f t, y , or
problems that involve a mass matrix, M t, y y′ = f t, y . The solvers all use similar
syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass
matrix is constant. ode15s and ode23t can solve problems with a mass matrix that is
singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using
the Mass option of odeset.

[t,y] = ode23t(odefun,tspan,y0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode23t(odefun,tspan,y0,options) additionally finds where
functions of (t,y), called event functions, are zero. In the output, te is the time of the
event, ye is the solution at the time of the event, and ie is the index of the triggered
event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a

 ode23t

1-10161

corresponding function: [value,isterminal,direction] = myEventFcn(t,y). For more
information, see “ODE Event Location”.

sol = ode23t(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

Examples

ODE With Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous
function in the call to the solver. The anonymous function must accept two inputs (t,y)
even if one of the inputs is not used.

Solve the ODE

y′ = − 10t .

Use a time interval of [0,2] and the initial condition y0 = 1.

tspan = [0 2];
y0 = 1;
[t,y] = ode23t(@(t,y) -10*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

1 Alphabetical List

1-10162

Solve Stiff ODE

An example of a stiff system of equations is the van der Pol equations in relaxation
oscillation. The limit cycle has regions where the solution components change slowly and
the problem is quite stiff, alternating with regions of very sharp change where it is not
stiff.

The system of equations is:

 ode23t

1-10163

The initial conditions are and . The function vdp1000 ships with
MATLAB® and encodes the equations.

function dydt = vdp1000(t,y)
%VDP1000 Evaluate the van der Pol ODEs for mu = 1000.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Solving this system using ode45 with the default relative and absolute error tolerances
(1e-3 and 1e-6, respectively) is extremely slow, requiring several minutes to solve and
plot the solution. ode45 requires millions of time steps to complete the integration, due
to the areas of stiffness where it struggles to meet the tolerances.

This is a plot of the solution obtained by ode45, which takes a long time to compute.
Notice the enormous number of time steps required to pass through areas of stiffness.

1 Alphabetical List

1-10164

Solve the stiff system using the ode23t solver, and then plot the first column of the
solution y against the time points t. The ode23t solver passes through stiff areas with far
fewer steps than ode45.

[t,y] = ode23t(@vdp1000,[0 3000],[2 0]);
plot(t,y(:,1),'-o')

 ode23t

1-10165

Pass Extra Parameters to ODE Function

ode23t only works with functions that use two input arguments, t and y. However, you
can pass in extra parameters by defining them outside the function and passing them in
when you specify the function handle.

Solve the ODE

Rewriting the equation as a first-order system yields

1 Alphabetical List

1-10166

odefcn.m represents this system of equations as a function that accepts four input
arguments: t, y, A, and B.

function dydt = odefcn(t,y,A,B)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (A/B)*t.*y(1);

Solve the ODE using ode23t. Specify the function handle such that it passes in the
predefined values for A and B to odefcn.

A = 1;
B = 2;
tspan = [0 5];
y0 = [0 0.01];
[t,y] = ode23t(@(t,y) odefcn(t,y,A,B), tspan, y0);

Plot the results.

plot(t,y(:,1),'-o',t,y(:,2),'-.')

 ode23t

1-10167

Compare Stiff ODE Solvers

The ode15s solver is a good first choice for most stiff problems. However, the other stiff
solvers might be more efficient for certain types of problems. This example solves a stiff
test equation using all four stiff ODE solvers.

Consider the test equation

y′ = − λy .

The equation becomes increasingly stiff as the magnitude of λ increases. Use λ = 1 × 109

and the initial condition y(0) = 1 over the time interval [0 0.5]. With these values, the

1 Alphabetical List

1-10168

problem is stiff enough that ode45 and ode23 struggle to integrate the equation. Also,
use odeset to pass in the constant Jacobian J = ∂ f

∂y = − λ and turn on the display of
solver statistics.

lambda = 1e9;
y0 = 1;
tspan = [0 0.5];
opts = odeset('Jacobian',-lambda,'Stats','on');

Solve the equation with ode15s, ode23s, ode23t, and ode23tb. Make subplots for
comparison.

subplot(2,2,1)
tic, ode15s(@(t,y) -lambda*y, tspan, y0, opts), toc

104 successful steps
1 failed attempts
212 function evaluations
0 partial derivatives
21 LU decompositions
210 solutions of linear systems
Elapsed time is 1.424329 seconds.

title('ode15s')
subplot(2,2,2)
tic, ode23s(@(t,y) -lambda*y, tspan, y0, opts), toc

63 successful steps
0 failed attempts
191 function evaluations
0 partial derivatives
63 LU decompositions
189 solutions of linear systems
Elapsed time is 0.332527 seconds.

title('ode23s')
subplot(2,2,3)
tic, ode23t(@(t,y) -lambda*y, tspan, y0, opts), toc

95 successful steps
0 failed attempts
125 function evaluations
0 partial derivatives
28 LU decompositions

 ode23t

1-10169

123 solutions of linear systems
Elapsed time is 0.712517 seconds.

title('ode23t')
subplot(2,2,4)
tic, ode23tb(@(t,y) -lambda*y, tspan, y0, opts), toc

71 successful steps
0 failed attempts
167 function evaluations
0 partial derivatives
23 LU decompositions
236 solutions of linear systems
Elapsed time is 0.506542 seconds.

title('ode23tb')

1 Alphabetical List

1-10170

The stiff solvers all perform well, but ode23s completes the integration with the fewest
steps and runs the fastest for this particular problem. Since the constant Jacobian is
specified, none of the solvers need to calculate partial derivatives to compute the
solution. Specifying the Jacobian benefits ode23s the most since it normally evaluates the
Jacobian in every step.

For general stiff problems, the performance of the stiff solvers varies depending on the
format of the problem and specified options. Providing the Jacobian matrix or sparsity
pattern always improves solver efficiency for stiff problems. But since the stiff solvers use
the Jacobian differently, the improvement can vary significantly. Practically speaking, if a
system of equations is very large or needs to be solved many times, then it is worthwhile
to investigate the performance of the different solvers to minimize execution time.

 ode23t

1-10171

Solve Stiff Differential Algebraic Equation

This example shows how to use ode23t to solve a stiff differential algebraic equation
(DAE) problem that arises from an electrical circuit. This problem is originally from p.377
of E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, 2nd ed. (Berlin: Springer, 1996).

The one-transistor amplifier problem coded by amp1dae.m can be rewritten in semi-
explicit form, but this example solves it in its original form . The problem
includes a constant, singular mass matrix that is not diagonal. The transistor amplifier
circuit contains six resistors, three capacitors, and a transistor.

The initial voltage signal is , and the other parameters are
constant. The goal is to solve for the output voltage through node 5.

Set the values of the initial and operating voltages.

1 Alphabetical List

1-10172

Ue = @(t) 0.4*sin(200*pi*t);
Ub = 6;

Using Kirchoff's law to equalize the current through each node (1 through 5), you obtain a
system of five equations. The mass matrix of this system has the form

where for .

Use the odeset function to pass in the mass matrix. Leave the 'MassSingular' option
at its default value of 'maybe' to test the automatic detection of a DAE problem by the
solver.

c = 1e-6 * (1:3);
M = zeros(5,5);
M(1,1) = -c(1);
M(1,2) = c(1);
M(2,1) = c(1);
M(2,2) = -c(1);
M(3,3) = -c(2);
M(4,4) = -c(3);
M(4,5) = c(3);
M(5,4) = c(3);
M(5,5) = -c(3);
opts = odeset('Mass',M);

The function transampdae.m contains the system of equations for this example. Save
this function in your current folder to run the example.

function dudt = transampdae(t,u)
% Define voltages and constant parameters
Ue = @(t) 0.4*sin(200*pi*t);
Ub = 6;
R0 = 1000;
R15 = 9000;
alpha = 0.99;
beta = 1e-6;

 ode23t

1-10173

Uf = 0.026;

f23 = beta*(exp((u(2) - u(3))/Uf) - 1);
dudt = [-(Ue(t) - u(1))/R0
 -(Ub/R15 - u(2)*2/R15 - (1-alpha)*f23)
 -(f23 - u(3)/R15)
 -((Ub - u(4))/R15 - alpha*f23)
 (u(5)/R15)];
end

Set the initial conditions. This example uses the consistent initial conditions computed by
Hairer and Wanner.

u0(1) = 0;
u0(2) = Ub/2;
u0(3) = Ub/2;
u0(4) = Ub;
u0(5) = 0;

Solve the DAE system over the time interval [0 0.05] using ode23t.

tspan = [0 0.05];
[t,u] = ode23t(@transampdae,tspan,u0,opts);

Plot the initial voltage and output voltage .

plot(t,Ue(t),'o',t,u(:,5),'.')
axis([0 0.05 -3 2]);
legend('Input Voltage U_e(t)','Output Voltage U_5(t)', 'Location', 'NorthWest');
title('One transistor amplifier DAE problem solved by ODE23T');
xlabel('t');

1 Alphabetical List

1-10174

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle which defines the functions to be
integrated.

The function dydt = odefun(t,y), for a scalar t and a column vector y, must return a
column vector dydt of data type single or double that corresponds to f t, y . odefun
must accept both input arguments, t and y, even if one of the arguments is not used in
the function.

 ode23t

1-10175

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times
between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely
to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.

1 Alphabetical List

1-10176

The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions
vector

Initial conditions, specified as a vector. y0 must be the same length as the vector output
of odefun, so that y0 contains an initial condition for each equation defined in odefun.
Data Types: single | double

options — Option structure
structure array

Option structure, specified as a structure array. Use the odeset function to create or
modify the options structure. See “Summary of ODE Options” for a list of the options
compatible with each solver.
Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a
relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.

 ode23t

1-10177

Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ie — Index of vanishing event function
column vector

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

sol — Structure for evaluation
structure array

1 Alphabetical List

1-10178

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

Algorithms
ode23t is an implementation of the trapezoidal rule using a “free” interpolant. This
solver is preferred over ode15s if the problem is only moderately stiff and you need a
solution without numerical damping. ode23t also can solve differential algebraic
equations (DAEs) [1], [2].

References
[1] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving Index-1 DAEs in MATLAB

and Simulink”, SIAM Review, Vol. 41, 1999, pp. 538–552.

 ode23t

1-10179

https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of--solving-index-1-daes-in-matlab-and-simulink-
https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of--solving-index-1-daes-in-matlab-and-simulink-

[2] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of TR-BDF2,” Applied
Numerical Mathematics 20, 1996.

See Also
deval | ode15s | odeget | odeset

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Stiff ODEs”
“Solve Differential Algebraic Equations (DAEs)”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10180

ode23tb
Solve stiff differential equations — trapezoidal rule + backward differentiation formula

Syntax
[t,y] = ode23tb(odefun,tspan,y0)
[t,y] = ode23tb(odefun,tspan,y0,options)
[t,y,te,ye,ie] = ode23tb(odefun,tspan,y0,options)
sol = ode23tb(___)

Description
[t,y] = ode23tb(odefun,tspan,y0), where tspan = [t0 tf], integrates the
system of differential equations y′ = f t, y from t0 to tf with initial conditions y0. Each
row in the solution array y corresponds to a value returned in column vector t.

All MATLAB ODE solvers can solve systems of equations of the form y′ = f t, y , or
problems that involve a mass matrix, M t, y y′ = f t, y . The solvers all use similar
syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass
matrix is constant. ode15s and ode23t can solve problems with a mass matrix that is
singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using
the Mass option of odeset.

[t,y] = ode23tb(odefun,tspan,y0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode23tb(odefun,tspan,y0,options) additionally finds where
functions of (t,y), called event functions, are zero. In the output, te is the time of the
event, ye is the solution at the time of the event, and ie is the index of the triggered
event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a

 ode23tb

1-10181

corresponding function: [value,isterminal,direction] = myEventFcn(t,y). For more
information, see “ODE Event Location”.

sol = ode23tb(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

Examples

ODE With Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous
function in the call to the solver. The anonymous function must accept two inputs (t,y)
even if one of the inputs is not used.

Solve the ODE

y′ = − 10t .

Use a time interval of [0,2] and the initial condition y0 = 1.

tspan = [0 2];
y0 = 1;
[t,y] = ode23tb(@(t,y) -10*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

1 Alphabetical List

1-10182

Solve Stiff ODE

An example of a stiff system of equations is the van der Pol equations in relaxation
oscillation. The limit cycle has regions where the solution components change slowly and
the problem is quite stiff, alternating with regions of very sharp change where it is not
stiff.

The system of equations is:

 ode23tb

1-10183

The initial conditions are and . The function vdp1000 ships with
MATLAB® and encodes the equations.

function dydt = vdp1000(t,y)
%VDP1000 Evaluate the van der Pol ODEs for mu = 1000.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Solving this system using ode45 with the default relative and absolute error tolerances
(1e-3 and 1e-6, respectively) is extremely slow, requiring several minutes to solve and
plot the solution. ode45 requires millions of time steps to complete the integration, due
to the areas of stiffness where it struggles to meet the tolerances.

This is a plot of the solution obtained by ode45, which takes a long time to compute.
Notice the enormous number of time steps required to pass through areas of stiffness.

1 Alphabetical List

1-10184

Solve the stiff system using the ode23tb solver, and then plot the first column of the
solution y against the time points t. The ode23tb solver passes through stiff areas with
far fewer steps than ode45.

[t,y] = ode23tb(@vdp1000,[0 3000],[2 0]);
plot(t,y(:,1),'-o')

 ode23tb

1-10185

Pass Extra Parameters to ODE Function

ode23s only works with functions that use two input arguments, t and y. However, you
can pass in extra parameters by defining them outside the function and passing them in
when you specify the function handle.

Solve the ODE

Rewriting the equation as a first-order system yields

1 Alphabetical List

1-10186

odefcn.m represents this system of equations as a function that accepts four input
arguments: t, y, A, and B.

function dydt = odefcn(t,y,A,B)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (A/B)*t.*y(1);

Solve the ODE using ode23tb. Specify the function handle such that it passes in the
predefined values for A and B to odefcn.

A = 1;
B = 2;
tspan = [0 5];
y0 = [0 0.01];
[t,y] = ode23tb(@(t,y) odefcn(t,y,A,B), tspan, y0);

Plot the results.

plot(t,y(:,1),'-o',t,y(:,2),'-.')

 ode23tb

1-10187

Compare Stiff ODE Solvers

The ode15s solver is a good first choice for most stiff problems. However, the other stiff
solvers might be more efficient for certain types of problems. This example solves a stiff
test equation using all four stiff ODE solvers.

Consider the test equation

y′ = − λy .

The equation becomes increasingly stiff as the magnitude of λ increases. Use λ = 1 × 109

and the initial condition y(0) = 1 over the time interval [0 0.5]. With these values, the

1 Alphabetical List

1-10188

problem is stiff enough that ode45 and ode23 struggle to integrate the equation. Also,
use odeset to pass in the constant Jacobian J = ∂ f

∂y = − λ and turn on the display of
solver statistics.

lambda = 1e9;
y0 = 1;
tspan = [0 0.5];
opts = odeset('Jacobian',-lambda,'Stats','on');

Solve the equation with ode15s, ode23s, ode23t, and ode23tb. Make subplots for
comparison.

subplot(2,2,1)
tic, ode15s(@(t,y) -lambda*y, tspan, y0, opts), toc

104 successful steps
1 failed attempts
212 function evaluations
0 partial derivatives
21 LU decompositions
210 solutions of linear systems
Elapsed time is 1.424329 seconds.

title('ode15s')
subplot(2,2,2)
tic, ode23s(@(t,y) -lambda*y, tspan, y0, opts), toc

63 successful steps
0 failed attempts
191 function evaluations
0 partial derivatives
63 LU decompositions
189 solutions of linear systems
Elapsed time is 0.332527 seconds.

title('ode23s')
subplot(2,2,3)
tic, ode23t(@(t,y) -lambda*y, tspan, y0, opts), toc

95 successful steps
0 failed attempts
125 function evaluations
0 partial derivatives
28 LU decompositions

 ode23tb

1-10189

123 solutions of linear systems
Elapsed time is 0.712517 seconds.

title('ode23t')
subplot(2,2,4)
tic, ode23tb(@(t,y) -lambda*y, tspan, y0, opts), toc

71 successful steps
0 failed attempts
167 function evaluations
0 partial derivatives
23 LU decompositions
236 solutions of linear systems
Elapsed time is 0.506542 seconds.

title('ode23tb')

1 Alphabetical List

1-10190

The stiff solvers all perform well, but ode23s completes the integration with the fewest
steps and runs the fastest for this particular problem. Since the constant Jacobian is
specified, none of the solvers need to calculate partial derivatives to compute the
solution. Specifying the Jacobian benefits ode23s the most since it normally evaluates the
Jacobian in every step.

For general stiff problems, the performance of the stiff solvers varies depending on the
format of the problem and specified options. Providing the Jacobian matrix or sparsity
pattern always improves solver efficiency for stiff problems. But since the stiff solvers use
the Jacobian differently, the improvement can vary significantly. Practically speaking, if a
system of equations is very large or needs to be solved many times, then it is worthwhile
to investigate the performance of the different solvers to minimize execution time.

 ode23tb

1-10191

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle which defines the functions to be
integrated.

The function dydt = odefun(t,y), for a scalar t and a column vector y, must return a
column vector dydt of data type single or double that corresponds to f t, y . odefun
must accept both input arguments, t and y, even if one of the arguments is not used in
the function.

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times

1 Alphabetical List

1-10192

between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely
to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.
The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions
vector

Initial conditions, specified as a vector. y0 must be the same length as the vector output
of odefun, so that y0 contains an initial condition for each equation defined in odefun.
Data Types: single | double

 ode23tb

1-10193

options — Option structure
structure array

Option structure, specified as a structure array. Use the odeset function to create or
modify the options structure. See “Summary of ODE Options” for a list of the options
compatible with each solver.
Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a
relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.
Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

1 Alphabetical List

1-10194

ie — Index of vanishing event function
column vector

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

sol — Structure for evaluation
structure array

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

Algorithms
ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a
trapezoidal rule step as its first stage and a backward differentiation formula of order two

 ode23tb

1-10195

as its second stage. By construction, the same iteration matrix is used in evaluating both
stages. Like ode23s and ode23t, this solver may be more efficient than ode15s for
problems with crude tolerances [1], [2].

References
[1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R. Smith,

“Transient Simulation of Silicon Devices and Circuits,” IEEE Trans. CAD, 4
(1985), pp. 436–451.

[2] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of TR-BDF2,” Applied
Numerical Mathematics 20, 1996.

See Also
deval | ode15s | odeget | odeset

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Stiff ODEs”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10196

ode45
Solve nonstiff differential equations — medium order method

Syntax
[t,y] = ode45(odefun,tspan,y0)
[t,y] = ode45(odefun,tspan,y0,options)
[t,y,te,ye,ie] = ode45(odefun,tspan,y0,options)
sol = ode45(___)

Description
[t,y] = ode45(odefun,tspan,y0), where tspan = [t0 tf], integrates the system
of differential equations y′ = f t, y from t0 to tf with initial conditions y0. Each row in
the solution array y corresponds to a value returned in column vector t.

All MATLAB ODE solvers can solve systems of equations of the form y′ = f t, y , or
problems that involve a mass matrix, M t, y y′ = f t, y . The solvers all use similar
syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass
matrix is constant. ode15s and ode23t can solve problems with a mass matrix that is
singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using
the Mass option of odeset.

ode45 is a versatile ODE solver and is the first solver you should try for most problems.
However, if the problem is stiff or requires high accuracy, then there are other ODE
solvers that might be better suited to the problem. See “Choose an ODE Solver” for more
information.

[t,y] = ode45(odefun,tspan,y0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode45(odefun,tspan,y0,options) additionally finds where
functions of (t,y), called event functions, are zero. In the output, te is the time of the

 ode45

1-10197

event, ye is the solution at the time of the event, and ie is the index of the triggered
event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a
corresponding function: [value,isterminal,direction] = myEventFcn(t,y). For more
information, see “ODE Event Location”.

sol = ode45(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

Examples

ODE with Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous
function in the call to the solver. The anonymous function must accept two inputs (t,y)
even if one of the inputs is not used.

Solve the ODE

y′ = 2t .

Use a time interval of [0,5] and the initial condition y0 = 0.

tspan = [0 5];
y0 = 0;
[t,y] = ode45(@(t,y) 2*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

1 Alphabetical List

1-10198

Solve Nonstiff Equation

The van der Pol equation is a second order ODE

where is a scalar parameter. Rewrite this equation as a system of first-order ODEs
by making the substitution . The resulting system of first-order ODEs is

 ode45

1-10199

The function file vdp1.m represents the van der Pol equation using . The variables
 and are the entries y(1) and y(2) of a two-element vector, dydt.

function dydt = vdp1(t,y)
%VDP1 Evaluate the van der Pol ODEs for mu = 1
%
% See also ODE113, ODE23, ODE45.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Solve the ODE using the ode45 function on the time interval [0 20] with initial values
[2 0]. The resulting output is a column vector of time points t and a solution array y.
Each row in y corresponds to a time returned in the corresponding row of t. The first
column of y corresponds to , and the second column to .

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

Plot the solutions for and against t.

plot(t,y(:,1),'-o',t,y(:,2),'-o')
title('Solution of van der Pol Equation (\mu = 1) with ODE45');
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2')

1 Alphabetical List

1-10200

Pass Extra Parameters to ODE Function

ode45 only works with functions that use two input arguments, t and y. However, you
can pass in extra parameters by defining them outside the function and passing them in
when you specify the function handle.

Solve the ODE

Rewriting the equation as a first-order system yields

 ode45

1-10201

odefcn.m represents this system of equations as a function that accepts four input
arguments: t, y, A, and B.

function dydt = odefcn(t,y,A,B)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (A/B)*t.*y(1);

Solve the ODE using ode45. Specify the function handle such that it passes in the
predefined values for A and B to odefcn.

A = 1;
B = 2;
tspan = [0 5];
y0 = [0 0.01];
[t,y] = ode45(@(t,y) odefcn(t,y,A,B), tspan, y0);

Plot the results.

plot(t,y(:,1),'-o',t,y(:,2),'-.')

1 Alphabetical List

1-10202

ODE with Time-Dependent Terms

Consider the following ODE with time-dependent parameters

The initial condition is . The function f(t) is defined by the n-by-1 vector f
evaluated at times ft. The function g(t) is defined by the m-by-1 vector g evaluated at
times gt.

Create the vectors f and g.

 ode45

1-10203

ft = linspace(0,5,25);
f = ft.^2 - ft - 3;

gt = linspace(1,6,25);
g = 3*sin(gt-0.25);

Write a function named myode that interpolates f and g to obtain the value of the time-
dependent terms at the specified time. Save the function in your current folder to run the
rest of the example.

The myode function accepts extra input arguments to evaluate the ODE at each time step,
but ode45 only uses the first two input arguments t and y.

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Solve the equation over the time interval [1 5] using ode45. Specify the function using
a function handle so that ode45 uses only the first two input arguments of myode. Also,
loosen the error thresholds using odeset.

tspan = [1 5];
ic = 1;
opts = odeset('RelTol',1e-2,'AbsTol',1e-4);
[t,y] = ode45(@(t,y) myode(t,y,ft,f,gt,g), tspan, ic, opts);

Plot the solution, y, as a function of the time points, t.

plot(t,y)

1 Alphabetical List

1-10204

Evaluate and Extend Solution Structure

The van der Pol equation is a second order ODE

y1′′ − μ 1− y1
2 y1′ + y1 = 0 .

Solve the van der Pol equation with μ = 1 using ode45. The function vdp1.m ships with
MATLAB® and encodes the equations. Specify a single output to return a structure
containing information about the solution, such as the solver and evaluation points.

 ode45

1-10205

tspan = [0 20];
y0 = [2 0];
sol = ode45(@vdp1,tspan,y0)

sol = struct with fields:
 solver: 'ode45'
 extdata: [1x1 struct]
 x: [1x60 double]
 y: [2x60 double]
 stats: [1x1 struct]
 idata: [1x1 struct]

Use linspace to generate 250 points in the interval [0 20]. Evaluate the solution at
these points using deval.

x = linspace(0,20,250);
y = deval(sol,x);

Plot the first component of the solution.

plot(x,y(1,:))

1 Alphabetical List

1-10206

Extend the solution to tf = 35 using odextend and add the result to the original plot.

sol_new = odextend(sol,@vdp1,35);
x = linspace(20,35,350);
y = deval(sol_new,x);
hold on
plot(x,y(1,:),'r')

 ode45

1-10207

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle which defines the functions to be
integrated.

The function dydt = odefun(t,y), for a scalar t and a column vector y, must return a
column vector dydt of data type single or double that corresponds to f t, y . odefun

1 Alphabetical List

1-10208

must accept both input arguments, t and y, even if one of the arguments is not used in
the function.

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times
between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely

 ode45

1-10209

to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.
The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions
vector

Initial conditions, specified as a vector. y0 must be the same length as the vector output
of odefun, so that y0 contains an initial condition for each equation defined in odefun.
Data Types: single | double

options — Option structure
structure array

Option structure, specified as a structure array. Use the odeset function to create or
modify the options structure. See “Summary of ODE Options” for a list of the options
compatible with each solver.
Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a

1 Alphabetical List

1-10210

relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.
Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ie — Index of vanishing event function
column vector

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

 ode45

1-10211

sol — Structure for evaluation
structure array

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

Algorithms
ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a
single-step solver – in computing y(tn), it needs only the solution at the immediately
preceding time point, y(tn-1) [1], [2].

1 Alphabetical List

1-10212

References
[1] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta formulae,” J. Comp.

Appl. Math., Vol. 6, 1980, pp. 19–26.

[2] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM Journal on
Scientific Computing, Vol. 18, 1997, pp. 1–22.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All odeset option arguments must be constant.
• Code generation does not support a constant mass matrix in the options structure.

Provide a mass matrix as a function.
• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Code generation requires dynamic memory

allocation when tspan has two elements or you use event functions.

See Also
deval | ode113 | ode15s | ode23 | odeget | odeset | odextend

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Nonstiff ODEs”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

 ode45

1-10213

https://www.mathworks.com/help/pdf_doc/otherdocs/ode_suite.pdf

ode113
Solve nonstiff differential equations — variable order method

Syntax
[t,y] = ode113(odefun,tspan,y0)
[t,y] = ode113(odefun,tspan,y0,options)
[t,y,te,ye,ie] = ode113(odefun,tspan,y0,options)
sol = ode113(___)

Description
[t,y] = ode113(odefun,tspan,y0), where tspan = [t0 tf], integrates the
system of differential equations y′ = f t, y from t0 to tf with initial conditions y0. Each
row in the solution array y corresponds to a value returned in column vector t.

All MATLAB ODE solvers can solve systems of equations of the form y′ = f t, y , or
problems that involve a mass matrix, M t, y y′ = f t, y . The solvers all use similar
syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass
matrix is constant. ode15s and ode23t can solve problems with a mass matrix that is
singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using
the Mass option of odeset.

[t,y] = ode113(odefun,tspan,y0,options) also uses the integration settings
defined by options, which is an argument created using the odeset function. For
example, use the AbsTol and RelTol options to specify absolute and relative error
tolerances, or the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode113(odefun,tspan,y0,options) additionally finds where
functions of (t,y), called event functions, are zero. In the output, te is the time of the
event, ye is the solution at the time of the event, and ie is the index of the triggered
event.

For each event function, specify whether the integration is to terminate at a zero and
whether the direction of the zero crossing matters. Do this by setting the 'Events'
property to a function, such as myEventFcn or @myEventFcn, and creating a

1 Alphabetical List

1-10214

corresponding function: [value,isterminal,direction] = myEventFcn(t,y). For more
information, see “ODE Event Location”.

sol = ode113(___) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0 tf]. You can use any of the input argument
combinations in previous syntaxes.

Examples

ODE with Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous
function in the call to the solver. The anonymous function must accept two inputs (t,y)
even if one of the inputs is not used.

Solve the ODE

y′ = 2t .

Use a time interval of [0,5] and the initial condition y0 = 0.

tspan = [0 5];
y0 = 0;
[t,y] = ode113(@(t,y) 2*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

 ode113

1-10215

Solve Nonstiff Equation

The van der Pol equation is a second order ODE

where is a scalar parameter. Rewrite this equation as a system of first-order ODEs
by making the substitution . The resulting system of first-order ODEs is

1 Alphabetical List

1-10216

The function file vdp1.m represents the van der Pol equation using . The variables
 and are the entries y(1) and y(2) of a two-element vector, dydt.

function dydt = vdp1(t,y)
%VDP1 Evaluate the van der Pol ODEs for mu = 1
%
% See also ODE113, ODE23, ODE45.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Solve the ODE using the ode113 function on the time interval [0 20] with initial values
[2 0]. The resulting output is a column vector of time points t and a solution array y.
Each row in y corresponds to a time returned in the corresponding row of t. The first
column of y corresponds to , and the second column to .

[t,y] = ode113(@vdp1,[0 20],[2; 0]);

Plot the solutions for and against t.

plot(t,y(:,1),'-o',t,y(:,2),'-o')
title('Solution of van der Pol Equation (\mu = 1) with ODE113');
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2')

 ode113

1-10217

Pass Extra Parameters to ODE Function

ode113 only works with functions that use two input arguments, t and y. However, you
can pass in extra parameters by defining them outside the function and passing them in
when you specify the function handle.

Solve the ODE

Rewriting the equation as a first-order system yields

1 Alphabetical List

1-10218

odefcn.m represents this system of equations as a function that accepts four input
arguments: t, y, A, and B.

function dydt = odefcn(t,y,A,B)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (A/B)*t.*y(1);

Solve the ODE using ode113. Specify the function handle such that it passes in the
predefined values for A and B to odefcn.

A = 1;
B = 2;
tspan = [0 5];
y0 = [0 0.01];
[t,y] = ode113(@(t,y) odefcn(t,y,A,B), tspan, y0);

Plot the results.

plot(t,y(:,1),'-o',t,y(:,2),'-.')

 ode113

1-10219

ODE with Stringent Error Threshold

Compared to ode45, the ode113 solver is better at solving problems with stringent error
tolerances. A common situation where ode113 excels is in orbital dynamics problems,
where the solution curve is smooth and requires high accuracy.

The two-body problem considers two interacting masses m1 and m2 orbiting in a common
plane. In this example, one of the masses is significantly larger than the other. With the
heavy body at the origin, the equations of motion are

1 Alphabetical List

1-10220

where

To solve the system, first convert to a system of four first-order ODEs using the
substitutions

The substitutions produce the first-order system

The function twobodyode codes the system of equations for the two-body problem.

function dy = twobodyode(t,y)
% Two body problem with one mass much larger than the other.
r = sqrt(y(1)^2 + y(3)^2);
dy = [y(2);
 -y(1)/r^3;
 y(4);
 -y(3)/r^3];

Save twobodyode.m in your working directory, then solve the ODE using ode113. Use
stringent error tolerances of 1e-13 for RelTol and 1e-14 for AbsTol.

opts = odeset('Reltol',1e-13,'AbsTol',1e-14,'Stats','on');
tspan = [0 10*pi];
y0 = [2 0 0 0.5];

[t,y] = ode113(@twobodyode, tspan, y0, opts);

 ode113

1-10221

plot(t,y)
legend('x','x''','y','y''','Location','SouthEast')
title('Position and Velocity Components')

924 successful steps
4 failed attempts
1853 function evaluations

figure
plot(y(:,1),y(:,3),'-o',0,0,'ro')
axis equal
title('Orbit of Smaller Mass')

1 Alphabetical List

1-10222

Compared to ode45, the ode113 solver is able to obtain the solution faster and with
fewer function evaluations.

Input Arguments
odefun — Functions to solve
function handle

Functions to solve, specified as a function handle which defines the functions to be
integrated.

 ode113

1-10223

The function dydt = odefun(t,y), for a scalar t and a column vector y, must return a
column vector dydt of data type single or double that corresponds to f t, y . odefun
must accept both input arguments, t and y, even if one of the arguments is not used in
the function.

For example, to solve y′ = 5y − 3, use the function:

function dydt = odefun(t,y)
dydt = 5*y-3;

For a system of equations, the output of odefun is a vector. Each element in the vector is
the solution to one equation. For example, to solve

y′1 = y1 + 2y2
y′2 = 3y1 + 2y2

use the function:

function dydt = odefun(t,y)
dydt = zeros(2,1);
dydt(1) = y(1)+2*y(2);
dydt(2) = 3*y(1)+2*y(2);

For information on how to provide additional parameters to the function odefun, see
“Parameterizing Functions”.
Example: @myFcn
Data Types: function_handle

tspan — Interval of integration
vector

Interval of integration, specified as a vector. At minimum, tspan must be a two element
vector [t0 tf] specifying the initial and final times. To obtain solutions at specific times
between t0 and tf, use a longer vector of the form [t0,t1,t2,...,tf]. The elements
in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by y0 at the initial time tspan(1), then
integrates from tspan(1) to tspan(end):

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at
each internal integration step within the interval.

1 Alphabetical List

1-10224

• If tspan has more than two elements [t0,t1,t2,...,tf], then the solver returns
the solution evaluated at the given points. However, the solver does not step precisely
to each point specified in tspan. Instead, the solver uses its own internal steps to
compute the solution, then evaluates the solution at the requested points in tspan.
The solutions produced at the specified points are of the same order of accuracy as the
solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of
computation, but for large systems it can affect memory management.

The values of tspan are used by the solver to calculate suitable values for InitialStep
and MaxStep:

• If tspan contains several intermediate points [t0,t1,t2,...,tf], then the
specified points give an indication of the scale for the problem, which can affect the
value of InitialStep used by the solver. Therefore, the solution obtained by the
solver might be different depending on whether you specify tspan as a two-element
vector or as a vector with intermediate points.

• The initial and final values in tspan are used to calculate the maximum step size
MaxStep. Therefore, changing the initial or final values in tspan could lead to the
solver using a different step sequence, which might change the solution.

Example: [1 10]
Example: [1 3 5 7 9 10]
Data Types: single | double

y0 — Initial conditions
vector

Initial conditions, specified as a vector. y0 must be the same length as the vector output
of odefun, so that y0 contains an initial condition for each equation defined in odefun.
Data Types: single | double

options — Option structure
structure array

Option structure, specified as a structure array. Use the odeset function to create or
modify the options structure. See “Summary of ODE Options” for a list of the options
compatible with each solver.

 ode113

1-10225

Example: options =
odeset('RelTol',1e-5,'Stats','on','OutputFcn',@odeplot) specifies a
relative error tolerance of 1e-5, turns on the display of solver statistics, and specifies the
output function @odeplot to plot the solution as it is computed.
Data Types: struct

Output Arguments
t — Evaluation points
column vector

Evaluation points, returned as a column vector.

• If tspan contains two elements, [t0 tf], then t contains the internal evaluation
points used to perform the integration.

• If tspan contains more than two elements, then t is the same as tspan.

y — Solutions
array

Solutions, returned as an array. Each row in y corresponds to the solution at the value
returned in the corresponding row of t.

te — Time of events
column vector

Time of events, returned as a column vector. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ye — Solution at time of events
array

Solution at time of events, returned as an array. The event times in te correspond to the
solutions returned in ye, and ie specifies which event occurred.

ie — Index of vanishing event function
column vector

Index of vanishing event function, returned as a column vector. The event times in te
correspond to the solutions returned in ye, and ie specifies which event occurred.

1 Alphabetical List

1-10226

sol — Structure for evaluation
structure array

Structure for evaluation, returned as a structure array. Use this structure with the deval
function to evaluate the solution at any point in the interval [t0 tf]. The sol structure
array always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Solutions. Each column sol.y(:,i)

contains the solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then sol also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

Algorithms
ode113 is a variable-step, variable-order (VSVO) Adams-Bashforth-Moulton PECE solver
of orders 1 to 13. The highest order used appears to be 12, however, a formula of order
13 is used to form the error estimate and the function does local extrapolation to advance
the integration at order 13.

 ode113

1-10227

ode113 may be more efficient than ode45 at stringent tolerances or if the ODE function
is particularly expensive to evaluate. ode113 is a multistep solver — it normally needs the
solutions at several preceding time points to compute the current solution [1], [2].

References
[1] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary Differential

Equations: the Initial Value Problem, W. H. Freeman, San Francisco, 1975.

[2] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM Journal on
Scientific Computing, Vol. 18, 1997, pp. 1–22.

See Also
deval | ode45 | odeget | odeset | odextend

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Solve Nonstiff ODEs”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10228

https://www.mathworks.com/help/pdf_doc/otherdocs/ode_suite.pdf

odeget
Extract ODE option values

Syntax
v = odeget(options,'Name')
v = odeget(options,'Name',default)

Description
v = odeget(options,'Name') extracts the value of the named option from options,
which is a structure containing option values. Use odeset to create or update the options
structure.

v = odeget(options,'Name',default) returns the value v = default if the
named option does not have a value specified in options.

Examples

Extract ODE Option Values

Create an options structure using odeset that contains several values for different
options.

M = @(t) [t 0; 0 -t];
options = odeset('RelTol',1e-4,'AbsTol',1e-5,'OutputFcn',@odephas2,...
 'Mass',M,'MassSingular','no','MStateDependence','none')

options = struct with fields:
 AbsTol: 1.0000e-05
 BDF: []
 Events: []
 InitialStep: []
 Jacobian: []

 odeget

1-10229

 JConstant: []
 JPattern: []
 Mass: @(t)[t,0;0,-t]
 MassSingular: 'no'
 MaxOrder: []
 MaxStep: []
 NonNegative: []
 NormControl: []
 OutputFcn: @odephas2
 OutputSel: []
 Refine: []
 RelTol: 1.0000e-04
 Stats: []
 Vectorized: []
 MStateDependence: 'none'
 MvPattern: []
 InitialSlope: []

Use odeget to extract the value of the OutputFcn field from the options structure.

v = odeget(options,'OutputFcn')

v = function_handle with value:
 @odephas2

Now extract the value of the Refine field. Since this field is not set, odeget returns an
empty matrix [].

v = odeget(options,'Refine')

v =

 []

You can specify a third input to odeget to change the default return value. This ensures
that v is never empty.

v = odeget(options,'Refine',1)

v = 1

1 Alphabetical List

1-10230

Input Arguments
options — Options structure
structure

Options structure. Use odeset to create or modify the options structure.
Example: options = odeset('RelTol',1e-4,'AbsTol',1e-5) returns an options
structure with values specified for the relative and absolute error tolerances.
Data Types: struct

Name — Option name
any valid option from odeset

Option name, specified as any valid option accepted by odeset:

• Error control — 'AbsTol', 'RelTol', 'NormControl'
• Output control — 'NonNegative', 'OutputFcn', 'OutputSel', 'Refine',

'Stats'
• Solver steps — 'InitialStep', 'MaxStep'
• Event functions — 'Events'
• Jacobian matrix — 'Jacobian', 'JPattern', 'Vectorized'
• Mass matrix — 'Mass', 'MStateDependence', 'MvPattern', 'MassSingular',

'InitialSlope'
• Algorithm options for ode15s and ode15i — 'MaxOrder', 'BDF'

Example: v = odeget(options,'AbsTol')
Data Types: char | string

default — Default return value
any MATLAB object

Default return value, specified as any valid MATLAB object.
Example: v = odeget(options,'AbsTol',1e-6) returns 1e-6 if options does not
have a value set for AbsTol.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct | table | cell | function_handle |
categorical

 odeget

1-10231

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The name argument must be constant.

See Also
deval | odeset | odextend

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10232

odeset
Create or modify options structure for ODE solvers

Syntax
options = odeset(Name,Value,...)
options = odeset(oldopts,Name,Value,...)
options = odeset(oldopts,newopts)
odeset

Description
options = odeset(Name,Value,...) creates an options structure that you can pass
as an argument to any of the ODE solvers. In the structure, options, the named options
have the specified values. Any unspecified options have default values. For example,
options = odeset('RelTol',1e-3) returns an options structure with RelTol set to
1e-3.

options = odeset(oldopts,Name,Value,...) modifies an existing options
structure, oldopts, using the newly specified name-value pairs. This overwrites any old
values of the specified options, and adds values for new options to the structure.

options = odeset(oldopts,newopts) modifies an existing options structure,
oldopts, by combining it with a new options structure, newopts. Any new options not
equal to [] overwrite the corresponding options in oldopts.

odeset with no input arguments displays all possible option names and their possible
values. Default values are indicated with {}, where applicable.

Examples

Set and Update ODE Options

Create an options structure that contains values for RelTol and AbsTol.

 odeset

1-10233

options = odeset('RelTol',1e-8,'AbsTol',1e-10);

Update the value of AbsTol in the existing options structure.

options = odeset(options,'AbsTol',1e-9)

options = struct with fields:
 AbsTol: 1.0000e-09
 BDF: []
 Events: []
 InitialStep: []
 Jacobian: []
 JConstant: []
 JPattern: []
 Mass: []
 MassSingular: []
 MaxOrder: []
 MaxStep: []
 NonNegative: []
 NormControl: []
 OutputFcn: []
 OutputSel: []
 Refine: []
 RelTol: 1.0000e-08
 Stats: []
 Vectorized: []
 MStateDependence: []
 MvPattern: []
 InitialSlope: []

Combine Options Structures

Create two options structures.

opts_1 = odeset('RelTol',1e-8,'AbsTol',1e-9,'OutputFcn',@odeplot,'Stats','on');

opts_2 = odeset('Mass',@(t) [t 0; 0 -t],'MStateDependence','none',...
 'MassSingular','no','OutputFcn',@odephas2);

Combine the options structures, giving preference to opts_2. Since both structures
contain different values for OutputFcn, the value in opts_2 overrides the one in
opts_1.

1 Alphabetical List

1-10234

opts = odeset(opts_1,opts_2)

opts = struct with fields:
 AbsTol: 1.0000e-09
 BDF: []
 Events: []
 InitialStep: []
 Jacobian: []
 JConstant: []
 JPattern: []
 Mass: @(t)[t,0;0,-t]
 MassSingular: 'no'
 MaxOrder: []
 MaxStep: []
 NonNegative: []
 NormControl: []
 OutputFcn: @odephas2
 OutputSel: []
 Refine: []
 RelTol: 1.0000e-08
 Stats: 'on'
 Vectorized: []
 MStateDependence: 'none'
 MvPattern: []
 InitialSlope: []

Input Arguments
oldopts — Old options structure
structure

Old options structure, specified as a structure previously created using odeset.
Data Types: struct

newopts — New options structure
structure

New options structure, specified as a structure previously created using odeset.
Data Types: struct

 odeset

1-10235

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: options =
odeset('AbsTol',1e-3,'Reltol',1e-2,'Jacobian',@J,'Mass',M) specifies
thresholds for the absolute and relative error tolerances, a function that returns the
Jacobian, and a mass matrix.

Error Control

RelTol — Relative error tolerance
1e-3 (default) | positive scalar

Relative error tolerance, specified as the comma-separated pair consisting of 'RelTol'
and a positive scalar. This tolerance measures the error relative to the magnitude of each
solution component. Roughly speaking, it controls the number of correct digits in all
solution components, except those smaller than the absolute tolerance AbsTol.

At each step, the ODE solver estimates the local error e in the ith component of the
solution. To be successful, the step must have acceptable error, as determined by both the
relative and absolute error tolerances:

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

Example: opts = odeset('RelTol',1e-5,'AbsTol',1e-7)
Data Types: single | double

AbsTol — Absolute error tolerance
1e-6 (default) | positive scalar | vector

Absolute error tolerance, specified as the comma-separated pair consisting of 'AbsTol'
and a positive scalar or vector. This tolerance is a threshold below which the value of the
solution becomes unimportant. If the solution |y| is smaller than AbsTol, then the solver
does not need to obtain any correct digits in |y|. For this reason, the value of AbsTol
should take into account the scale of the solution components.

If AbsTol is a vector, then it must be the same length as the solution. If AbsTol is a
scalar, then the value applies to all solution components.

1 Alphabetical List

1-10236

At each step, the ODE solver estimates the local error e in the ith component of the
solution. To be successful, the step must have acceptable error, as determined by both the
relative and absolute error tolerances:

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

Example: opts = odeset('RelTol',1e-5,'AbsTol',1e-7)
Data Types: single | double

NormControl — Control error relative to norm
'off' (default) | 'on'

Control error relative to the norm of the solution, specified as the comma-separated pair
consisting of 'NormControl' and 'on' or 'off'. When NormControl is 'on', the
solvers control the error e at each step using the norm of the solution rather than its
absolute value:

norm(e(i)) <= max(RelTol*norm(y(i)),AbsTol(i))

Example: opts = odeset('NormControl','on')
Data Types: char | string

Solver Output

NonNegative — Nonnegative solution components
[] (default) | scalar | vector

Nonnegative solution components, specified as the comma-separated pair consisting of
'NonNegative' and a scalar or vector. The scalar or vector selects which solution
components must be nonnegative.

Note NonNegative is not available for ode23s or ode15i. Additionally, for ode15s,
ode23t, and ode23tb it is not available for problems where there is a mass matrix.

Example: opts = odeset('NonNegative',1) specifies that the first solution
component must be nonnegative.
Data Types: single | double

OutputFcn — Output function
[] or @odeplot (default) | function handle

 odeset

1-10237

Output function, specified as the comma-separated pair consisting of 'OutputFcn' and a
function handle. The ODE solver calls the output function after each successful time step.
If you call an ODE solver with no outputs, then the output function defaults to @odeplot,
which plots all of the solution components as they are computed. Otherwise, the default is
[].

These are the built-in output functions that you can use with OutputFcn:

Function Name Description
odeplot Plot all components of the solution vs. time
odephas2 2-D phase plane plot of the first two

solution components
odephas3 3-D phase plane plot of the first three

solution components
odeprint Print solution and time step

If you write a custom output function, then it must be of the form

status = myOutputFcn(t,y,flag)

The output function must also respond appropriately to these flags:

Flag Description
'init' The solver calls myOutputFcn([tspan(1)

tspan(end)],y0,'init') before
beginning the integration to allow the
output function to initialize. tspan and y0
are the input arguments to the ODE solver.

1 Alphabetical List

1-10238

Flag Description
[] The solver calls status =

myOutputFcn(t,y,[]) after each
integration step for which output is
requested. t contains points where output
was generated during the step, and y is the
numerical solution at the points in t. If t is
a vector, then the ith column of y
corresponds to the ith element of t.

• If length(tspan) > 2, then the
output is produced at every point
in tspan.

• If length(tspan) = 2, then the
output is produced according to
the Refine option.

myOutputFcn must return
a status of 0 or 1. If status = 1, then the
solver halts integration. You can use this
mechanism, for instance, to implement
a Stop button.

'done' The solver calls myOutputFcn([],
[],'done') once integration is complete
to allow the output function to perform
cleanup tasks.

Data Types: function_handle

OutputSel — Component selection for output function
vector of indices

Component selection for output function, specified as the comma-separated pair
consisting of 'OutputSel' and a vector of indices. The vector specifies which
components of the solution to pass to the output function.
Example: opts = odeset('OutputFcn',@myFcn,'OutputSel',[1 3]) passes the
first and third components of the solution to the output function.

 odeset

1-10239

Refine — Solution refinement factor
1 (most solvers) or 4 (ode45 only) (default) | scalar

Solution refinement factor, specified as the comma-separated pair consisting of 'Refine'
and a scalar. The scalar specifies a factor by which the number of output points should
increase in each step.

• If the refinement factor is 1, then the solver returns solutions only at the end of each
step.

• If the refinement factor is n>1, then the solver subdivides each step into n smaller
intervals and returns solutions at each point.

The default value for most solvers is 1, but ode45 uses a default of 4 to compensate for
large step sizes.

The extra values produced by the refinement factor are computed by means of continuous
extension formulas. These are specialized formulas used by the ODE solvers to obtain
accurate solutions between computed time steps without significant increase in
computation time.

Note Refine does not apply when length(tspan) > 2, or when the ODE solver
returns the solution as a structure.

Example: opts = odeset('Refine',5) increases the number of output points by a
factor of five.

Stats — Solver statistics
'off' (default) | 'on'

Solver statistics, specified as the comma-separated pair consisting of 'Stats' and 'on'
or 'off'. When 'on', the solver displays information after completing the solution:

• The number of successful steps
• The number of failed attempts
• The number of times the ODE function was called to evaluate f t, y

Implicit solvers display additional information about the solution:

• The number of times that the partial derivatives matrix ∂ f / ∂y was formed

1 Alphabetical List

1-10240

• The number of LU decompositions
• The number of solutions of linear systems

Example: opts = odeset('Stats','on')
Data Types: char | string

Step-Size

InitialStep — Suggested initial step size
scalar

Suggested initial step size, specified as the comma-separated pair consisting of
'InitialStep' and a positive scalar. InitialStep sets an upper bound on the
magnitude of the first step size that the ODE solver tries.

If you do not specify an initial step size, then the solver bases the initial step size on the
slope of the solution at the initial time point, tspan(1). If the slope of all solution
components is zero, then the solver might try a step size that is too large. If you are
aware that this is occurring, or if you want to be sure that the solver resolves important
behavior at the beginning of the integration, then use InitialStep to provide a suitable
initial step size.
Example: opts = odeset('InitialStep',1e-3) sets an upper bound of 1e-3 on the
size of the initial step.

MaxStep — Maximum step size
0.1*abs(t0-tf) (default) | scalar

Maximum step size, specified as the comma-separated pair consisting of 'MaxStep' and
a positive scalar. MaxStep sets an upper bound on the size of any step taken by the solver.
If the ODE has periodic behavior, for example, then setting MaxStep to a fraction of the
period ensures that the solver does not enlarge the step so much that it steps over an
area of interest.

• Do not use MaxStep just to obtain more output points, as it can significantly slow
down the integration. Instead, use the Refine option to compute additional points at
low computational cost.

• Do not use MaxStep to increase the accuracy of the solution. If the solution is not
accurate enough, then reduce the value of RelTol and use the solution to determine a
suitable value for AbsTol.

 odeset

1-10241

• Avoid using MaxStep to make sure the solver does not step over some behavior that
occurs only once in the integration interval. If you know the time at which the
behavior occurs, then break the interval into two pieces and call the solver twice. If
you do not know the time at which the change occurs, try reducing RelTol and
AbsTol. Use MaxStep only as a last resort in this case.

Example: opts = odeset('MaxStep',1e-2)

Event Location

Events — Event function
function handle

Event function, specified as the comma-separated pair consisting of 'Events' and a
function handle such as @myEventsFcn. The event function specified by the function
handle must have the general form

[value,isterminal,direction] = myEventsFcn(t,y)

value, isterminal, and direction are vectors whose ith element corresponds to the
ith event function:

• value(i) is the value of the ith event function.
• isterminal(i) = 1 if the integration is to terminate at a zero of this event function.

Otherwise, it is 0.
• direction(i) = 0 if all zeros are to be located (the default). A value of +1 locates

only zeros where the event function is increasing, and -1 locates only zeros where the
event function is decreasing.

See “Parameterizing Functions” to see how to pass in additional inputs to the events
function.

If you specify an events function, you can call the ODE solver with three extra output
arguments as

[t,y,te,ye,ie] = odeXY(odefun,tspan,y0,options)

The three additional outputs returned by the solver correspond to the detected events:

• te is a column vector of the times at which events occurred.
• ye is the solution value corresponding to the event times in te.

1 Alphabetical List

1-10242

• ie are indices into the vector returned by the events function. The values indicate
which event the solver detected.

Alternatively, you can call the solver with a single output as

sol = odeXY(odefun,tspan,y0,options)

In this case, the event information is stored in the structure as sol.te, sol.ye, and
sol.ie.

The root finding mechanism employed by the ODE solver in conjunction with the event
function has these limitations:

• If a terminal event occurs during the first step of the integration, then the solver
registers the event as nonterminal and continues integrating.

• If more than one terminal event occurs during the first step, then only the first event
registers and the solver continues integrating.

• Zeros are determined by sign crossings between steps. Therefore, zeros with an even
number of crossings between steps can be missed.

If the solver steps past events, try reducing RelTol and AbsTol to improve accuracy.
Alternatively, set MaxStep to place an upper bound on the step size. Adjusting tspan
does not change the steps taken by the solver.
Example: The ballode example file contains an event function that detects the bounces
of a ball.
Example: The orbitode example file contains an event function that detects points of
interest in the orbit of a spaceship.
Data Types: function_handle

Jacobian Matrix

Jacobian — Jacobian matrix
matrix | function handle | cell array

Jacobian matrix, specified as the comma-separated pair consisting of 'Jacobian' and a
matrix or function that evaluates the Jacobian. The Jacobian is a matrix of partial
derivatives of the function that defines the differential equations.

 odeset

1-10243

J = ∂ f
∂y =

∂ f1
∂y1

∂ f1
∂y2

⋯

∂ f2
∂y1

∂ f2
∂y2

⋯

⋮ ⋮

For the stiff ODE solvers (ode15s, ode23s, ode23t, ode23tb, and ode15i), providing
information about the Jacobian matrix is critical for reliability and efficiency. If you do not
provide the Jacobian, then the ODE solver approximates it numerically using finite
differences.

For ode15i only: The Jacobian option must specify matrices for both ∂ f
∂y and ∂ f

∂y′ . You

can provide these matrices as a cell array of two constant matrices ∂ f
∂y , ∂ f

∂y′ , or as a
function that computes the matrices and has the general form

[dfdy, dfdp] = Fjac(t,y,yp)

For very large systems where it is not feasible to provide the entire analytic Jacobian, use
the JPattern property to pass in the sparsity pattern of the Jacobian matrix. The solver
uses the sparsity pattern to calculate a sparse Jacobian.
Example: opts = odeset('Jacobian',@J) specifies the function J that calculates the
Jacobian matrix.
Example: opts = odeset('Jacobian',[0 1; -2 1]) specifies a constant Jacobian
matrix.
Example: opts = odeset('Jacobian',{A,Ap}) specifies two constant Jacobian
matrices for use with ode15i.
Data Types: single | double | cell | function_handle

JPattern — Jacobian sparsity pattern
sparse matrix | cell array

Jacobian sparsity pattern, specified as the comma-separated pair consisting of
'JPattern' and a sparse matrix. The sparse matrix contains 1s where there might be
nonzero entries in the Jacobian. The ODE solver uses the sparsity pattern to generate a
sparse Jacobian matrix numerically. Use this option to improve execution time when the
ODE system is large and you cannot provide an analytic Jacobian.

1 Alphabetical List

1-10244

For ode15i only: Set the JPattern option using a cell array containing two sparse
matrices {dfdyPattern, dfdypPattern}, which are the sparsity patterns for ∂ f

∂y and
∂ f
∂y′ .

Note If you specify a Jacobian matrix using Jacobian, then the solver ignores any
setting for JPattern.

Example: opts = odeset('JPattern',S) specifies the Jacobian sparsity pattern using
sparse matrix S.
Example: opts = odeset('JPattern',{dFdy, dFdyp}) specifies two constant
Jacobian sparsity patterns for use with ode15i.
Data Types: double | cell

Vectorized — Vectorized function toggle
'off' (default) | 'on' | cell array

Vectorized function toggle, specified as the comma-separated pair consisting of
'Vectorized' and either 'off' or 'on'. Use this option to inform the ODE solver that
the function is coded so that it accepts and returns vectors for the second argument. That
is, f(t,[y1 y2 y3...]) returns [f(t,y1) f(t,y2) f(t,y3) ...]. Compared to
evaluating values one at a time, this vectorization allows the solver to reduce the number
of function evaluations required to compute all the columns of the Jacobian matrix, and
might significantly reduce solution time. See “Array vs. Matrix Operations” for a
description of the element-wise operators that support vectorization.

For ode15i only: Set the Vectorized option using a two-element cell array. Set the first
element to 'on' if f(t,[y1,y2,...],yp) returns [f(t,y1,yp),
f(t,y2,yp), ...]. Set the second element to 'on' if f(t,y,[yp1,yp2,...])
returns [f(t,y,yp1), f(t,y,yp2), ...]. The default value of Vectorized in this
case is {'off','off'}.

Note If you specify a Jacobian matrix using Jacobian, then the solver ignores a setting
of 'on' for Vectorized.

 odeset

1-10245

Example: opts = odeset('JPattern',S,'Vectorized','on') specifies that the
function is vectorized and sets the Jacobian sparsity pattern.
Example: opts = odeset('JPattern',{dy,dyp},'Vectorized',{'on','on'})
specifies that the function is vectorized with respect to y and yp, and also sets the
Jacobian sparsity pattern for use with ode15i.
Data Types: char | cell | string

Mass Matrix and DAEs (do not apply to ode15i)

Mass — Mass matrix
matrix | function handle

Mass matrix, specified as the comma-separated pair consisting of 'Mass' and a matrix or
function handle. The ODE solvers can solve problems containing a mass matrix of the
form M t, y y′ = f t, y , where M t, y is a mass matrix that can be full or sparse (the
ode23s solver can solve only equations with constant mass matrices).

• When the mass matrix is nonsingular, the equation simplifies to y′ = M−1 f t, y and
the ODE has a solution for any initial value. However, it is often more convenient and
natural to express the model in terms of the mass matrix directly using
M t, y y′ = f t, y , and avoiding the computation of the matrix inverse reduces the
storage and execution time needed to solve the problem.

• When M t, y is a singular matrix, then the problem is a system of differential algebraic
equations (DAEs). A DAE has a solution only when y0 is consistent; that is, there exists
an initial slope yp0 such that M(t0,y0)yp0 = f(t0,y0), where yp0 is specified
using the InitialSlope option. DAEs are characterized by their differential index, or
the number of derivatives required to simplify the system to an equivalent system of
ODEs. For DAEs of index 1, solving an initial value problem with consistent initial
conditions is much like solving an ODE. The ode15s and ode23t solvers can solve
DAEs of index 1. When solving DAEs, it is advantageous to formulate the problem so
that the mass matrix is a diagonal matrix (a semiexplicit DAE).

In all cases, mass matrices that are time- or state-dependent (instead of constant) require
the use of additional options:

• For problems of the form M t y′ = f t, y , set the MStateDependence option to
'none'. This ensures that the solver calls the mass matrix function with a single input
argument for t.

• If the mass matrix depends on y, then set MStateDependence to either 'weak'
(default) or 'strong'. In both cases the solver calls the mass matrix function with

1 Alphabetical List

1-10246

two inputs (t,y), but the 'weak' option results in implicit solvers using
approximations when solving algebraic equations.

• If the system contains many equations with a strongly state-dependent mass matrix
M t, y , then set MvPattern to a sparse matrix S to specify the sparsity pattern.

Example: The example files fem2ode and batonode illustrate different uses of the mass
matrix.
Data Types: single | double | function_handle

MStateDependence — State dependence of mass matrix
'weak' (default) | 'none' | 'strong'

State dependence of mass matrix, specified as the comma-separated pair consisting of
'MStateDependence and 'weak', 'strong', or 'none'.

• For problems of the form M t y′ = f t, y , set the MStateDependence option to
'none'. This ensures that the solver calls the mass matrix function with a single input
argument for t.

• If the mass matrix depends on y, then set MStateDependence to either 'weak'
(default) or 'strong'. In both cases the solver calls the mass matrix function with
two inputs (t,y), but the 'weak' option results in implicit solvers using
approximations when solving algebraic equations.

Example: opts = odeset('Mass',@M,'MStateDependence','none') specifies that
the mass matrix M depends only on t.
Data Types: char | string

MvPattern — Mass matrix sparsity pattern
sparse matrix

Mass matrix sparsity pattern, specified as the comma-separated pair consisting of
'MvPattern' and a sparse matrix. Use this option to specify the sparsity pattern of the
matrix ∂∂y M t, y v . The sparse matrix S has S(i,j) = 1 if for any k, the (i,k)
component of M t, y depends on component j of y.

Note MvPattern is for use by ode15s, ode23t, and ode23tb when
MStateDependence is 'strong'.

 odeset

1-10247

Example: opts = odeset('MStateDependence','strong','MvPattern',S)

MassSingular — Singular mass matrix toggle
'maybe' (default) | 'yes' | 'no'

Singular mass matrix toggle, specified as the comma-separated pair consisting of
'MassSingular' and 'maybe', 'yes', or 'no'. The default value of 'maybe' causes
the solver to test whether the problem is a DAE, by testing whether the mass matrix is
singular. Avoid this check by specifying 'yes' if you know the system is a DAE, or 'no' if
it is not.
Data Types: char | string

InitialSlope — Consistent initial slope
vector of zeros (default) | vector

Consistent initial slope, specified as the comma-separated pair consisting of
'InitialSlope' and a vector. Use this option with the ode15s and ode23t solvers
when solving DAEs. The specified vector is the initial slope y′0 such that
M t0, y0 y′0 = f t0, y0 . If the specified initial conditions are not consistent, then the solver
treats them as guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem.
Data Types: single | double

Only for ode15s and ode15i

MaxOrder — Maximum order of formula
5 (default) | 4 | 3 | 2 | 1

Maximum order of formula, specified as the comma-separated pair consisting of
'MaxOrder' and an integer between 1 and 5. Use this option to specify the maximum
order used in the numerical differentiation formulas (NDFs) or backward differentiation
formulas (BDFs) that are used by the variable-order solvers ode15s and ode15i.

BDF — Toggle to use BDFs with ode15s
'off' (default) | 'on'

Toggle to use backward differentiation formulas (BDFs) with ode15s, specified as the
comma-separated pair consisting of 'BDF' and either 'off' or 'on'. The default
numerical differentiation formulas (NDFs) are generally more efficient than BDFs, but the
two are closely related.

1 Alphabetical List

1-10248

Example: opts = odeset('BDF','on','MaxOrder',4) enables the use of BDFs by
ode15s with a maximum order of 4.
Data Types: char | string

Output Arguments
options — Options structure
structure

Options structure. options can be used as a fourth input argument to ode45, ode23,
ode113, ode15s, ode23s, ode23t, ode23tb, or ode15i.

Tips
• See “Summary of ODE Examples and Files” for a list of ODE examples that illustrate

the use of various options.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs must be constant.

See Also
deval | odeget | odextend

Topics
“Choose an ODE Solver”
“Summary of ODE Options”

 odeset

1-10249

“ODE Event Location”
“Nonnegative ODE Solution”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10250

odextend
Extend solution to ODE

Syntax
solext = odextend(sol,odefun,tfinal)
solext = odextend(sol,[],tfinal)
solext = odextend(sol,odefun,tfinal,y0)
solext = odextend(sol,odefun,tfinal,y0,options)

Description
solext = odextend(sol,odefun,tfinal) extends the solution sol by integrating
odefun from sol.x(end) to tfinal, using the same ODE solver that created sol. The
function odefun can be different than the original function used to compute sol. The
lower bound for the independent variable in solext is the same as in sol, that is,
sol.x(1). By default, odextend uses:

• The initial conditions y = sol.y(:,end) for the subsequent integration.
• The same integration properties and additional input arguments that the ODE solver

originally used to compute sol. This information is stored in the solution structure
sol and is later returned in solext. Unless you want to change these values, you do
not need to pass them to odextend.

solext = odextend(sol,[],tfinal) extends the solution to the same ODE function
that was solved to obtain sol.

solext = odextend(sol,odefun,tfinal,y0) specifies new initial conditions y0 for
the extended integration instead of using sol.y(:,end).

For the ode15i solver: y0 must be an m-by-2 matrix containing column vectors of initial
conditions for the solution components and their derivatives, y0 = [yinit ypinit].

solext = odextend(sol,odefun,tfinal,y0,options) uses the integration options
defined by options, which is an argument created using the odeset function. The

 odextend

1-10251

specified options override the options that the ODE solver originally used to compute sol.
You can optionally specify y0 = [] to use default initial conditions.

Examples

Evaluate and Extend Solution Structure

The van der Pol equation is a second order ODE

y1′′ − μ 1− y1
2 y1′ + y1 = 0 .

Solve the van der Pol equation with μ = 1 using ode45. The function vdp1.m ships with
MATLAB® and encodes the equations. Specify a single output to return a structure
containing information about the solution, such as the solver and evaluation points.

tspan = [0 20];
y0 = [2 0];
sol = ode45(@vdp1,tspan,y0)

sol = struct with fields:
 solver: 'ode45'
 extdata: [1x1 struct]
 x: [1x60 double]
 y: [2x60 double]
 stats: [1x1 struct]
 idata: [1x1 struct]

Use linspace to generate 250 points in the interval [0 20]. Evaluate the solution at
these points using deval.

x = linspace(0,20,250);
y = deval(sol,x);

Plot the first component of the solution.

plot(x,y(1,:))

1 Alphabetical List

1-10252

Extend the solution to tf = 35 using odextend and add the result to the original plot.

sol_new = odextend(sol,@vdp1,35);
x = linspace(20,35,350);
y = deval(sol_new,x);
hold on
plot(x,y(1,:),'r')

 odextend

1-10253

Input Arguments
sol — Solution structure
structure

Solution structure, specified as a structure returned by an ODE solver. When you call an
ODE solver with a single output argument, it returns a solution structure.
Example: sol = ode45(myode,tspan,y0)
Data Types: struct

1 Alphabetical List

1-10254

odefun — Function to solve
[] | function handle

Function to solve, specified as a function handle. Use this input to extend the solution
using a new or modified ODE function. To continue using the original ODE function used
to create the solution structure sol, specify odefun as an empty input [].
Data Types: function_handle

tfinal — Final integration time
scalar

Final integration time, specified as a scalar.
Data Types: single | double

y0 — Initial conditions
[] | scalar | vector | matrix

Initial conditions, specified as a scalar, vector, or matrix. By default odextend uses the
initial conditions y = sol.y(:,end) to extend the integration. Use this input to specify
new initial conditions for the extended integration.

For the ode15i solver: y0 must be an m-by-2 matrix containing column vectors of initial
conditions for the solution components and their derivatives, y0 = [yinit ypinit].
Data Types: single | double

options — Options structure
structure

Options structure. By default, odextend uses the same options and additional inputs as
the ODE solver originally used to compute sol. Use this input to specify a new options
structure that overrides the options used to create sol.

Use the odeset function to create or modify an ODE options structure.
Data Types: struct

Output Arguments
solext — Extended solution
structure

 odextend

1-10255

Extended solution, returned as a structure. Use this structure with the deval function to
evaluate the solution at any point in the interval [t0 tf]. The solext structure array
always includes these fields:

Structure Field Description
sol.x Row vector of the steps chosen by the

solver.
sol.y Each column sol.y(:,i) contains the

solution at time sol.x(i).
sol.solver Solver name.

Additionally, if you specify the Events option and events are detected, then solext also
includes these fields:

Structure Field Description
sol.xe Points when events occurred.

sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in
sol.xe.

sol.ie Indices into the vector returned by the
function specified in the Events option.
The values indicate which event the solver
detected.

See Also
deval | odeget | odeset

Topics
“Choose an ODE Solver”
“Summary of ODE Options”
“Troubleshoot Common ODE Problems”

Introduced before R2006a

1 Alphabetical List

1-10256

onCleanup
Cleanup tasks upon function completion

Syntax
cleanupObj = onCleanup(cleanupFun)

Description
cleanupObj = onCleanup(cleanupFun) creates an object that, when destroyed,
executes the function cleanupFun. MATLAB implicitly clears all local variables at the
termination of a function, whether by normal completion, or a forced exit, such as an
error, or Ctrl+C.

If you reference or pass cleanupObj outside your function, then cleanupFun does not
run when that function terminates. Instead, it runs whenever MATLAB destroys the
object.

Examples

Close a Figure After Executing Function

Save the following code in action.m and type action in the Command Window.

function [] = action()
f = figure;
finishup = onCleanup(@() myCleanupFun(f));
disp('Display Figure')
end

function myCleanupFun(f)
close(f)
disp('Close Figure')
end

 onCleanup

1-10257

Display Figure
Close Figure

Switch Directories After Executing Function

Pass your own script to the onCleanup object so that it executes when MATLAB destroys
the cleanup object.

Save the following code in cleanup.m.

cd(tempdir)
disp('You are now in the temporary folder')

Save the following code in youraction.m and type youraction in the Command
Window.

function [] = youraction
 changeup = onCleanup(@cleanup);
 disp('Execute Code')
end

Execute Code
You are now in the temporary folder

Input Arguments
cleanupFun — Clean-up task
function handle

Clean-up task, specified as a handle to a function.

You can declare any number of onCleanup objects in a program file. However, if the
clean-up tasks depend on the order of execution, then you should define only one object
that calls a script or function, containing the relevant clean-up commands.

You should use an anonymous function handle to call your clean-up task. This allows you
to pass arguments to your clean-up function.
Example: @() fclose('file.m')
Example: @() user_script

1 Alphabetical List

1-10258

Example: @() function(input)
Data Types: function_handle

Tips
• Avoid using nested functions during cleanup. MATLAB can clear variables used in

nested functions before the clean-up function tries to read from them.
• If your program contains multiple cleanup objects, MATLAB does not guarantee the

order that it destroys these objects. If the order of your cleanup functions matters,
define one onCleanup object for all the tasks.

• If you save an onCleanup object, MATLAB displays a warning and does not save the
cleanupFun clean-up task.

See Also
clear | clearvars

Topics
“Clean Up When Functions Complete”
“Object Lifecycle”
“Function Handles”
“What Are Anonymous Functions?”

Introduced in R2008a

 onCleanup

1-10259

ones
Create array of all ones

Syntax
X = ones
X = ones(n)
X = ones(sz1,...,szN)
X = ones(sz)

X = ones(classname)
X = ones(n,classname)
X = ones(sz1,...,szN,classname)
X = ones(sz,classname)

X = ones('like',p)
X = ones(n,'like',p)
X = ones(sz1,...,szN,'like',p)
X = ones(sz,'like',p)

Description
X = ones returns the scalar 1.

X = ones(n) returns an n-by-n matrix of ones.

X = ones(sz1,...,szN) returns an sz1-by-...-by-szN array of ones where
sz1,...,szN indicates the size of each dimension. For example, ones(2,3) returns a 2-
by-3 array of ones.

X = ones(sz) returns an array of ones where the size vector, sz, defines size(X). For
example, ones([2,3]) returns a 2-by-3 array of ones.

X = ones(classname) returns a scalar 1 where classname specifies the data type. For
example, ones('int8') returns a scalar, 8-bit integer 1.

X = ones(n,classname) returns an n-by-n array of ones of data type classname.

1 Alphabetical List

1-10260

X = ones(sz1,...,szN,classname) returns an sz1-by-...-by-szN array of ones of
data type classname.

X = ones(sz,classname) returns an array of ones where the size vector, sz, defines
size(X) and classname defines class(X).

X = ones('like',p)returns a scalar 1 with the same data type, sparsity, and
complexity (real or complex) as the numeric variable, p.

X = ones(n,'like',p) returns an n-by-n array of ones like p.

X = ones(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array of ones like p.

X = ones(sz,'like',p) returns an array of ones like p where the size vector, sz,
defines size(X).

Examples

Square Array of Ones

Create a 4-by-4 array of ones.

X = ones(4)

X = 4×4

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

3-D Array of Ones

Create a 2-by-3-by-4 array of ones.

X = ones(2,3,4);

size(X)

 ones

1-10261

ans = 1×3

 2 3 4

Size Defined by Existing Array

Define a 3-by-2 array A.

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

sz = 1×2

 3 2

Create an array of ones that is the same size as A

X = ones(sz)

X = 3×2

 1 1
 1 1
 1 1

Nondefault Numeric Data Type

Create a 1-by-3 vector of ones whose elements are 16-bit unsigned integers.

X = ones(1,3,'uint16'),

X = 1x3 uint16 row vector

 1 1 1

class(X)

1 Alphabetical List

1-10262

ans =
'uint16'

Complex One

Create a scalar 1 that is not real valued, but instead is complex like an existing array.

Define a complex vector.

p = [1+2i 3i];

Create a scalar 1 that is complex like p.

X = ones('like',p)

X = 1.0000 + 0.0000i

Size and Numeric Data Type Defined by Existing Array

Define a 2-by-3 array of 8-bit unsigned integers.

p = uint8([1 3 5 ; 2 4 6]);

Create an array of ones that is the same size and data type as p.

X = ones(size(p),'like',p),

X = 2x3 uint8 matrix

 1 1 1
 1 1 1

class(X)

ans =
'uint8'

 ones

1-10263

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output as a square, n-by-n
matrix of ones.

• If n is 0, then X is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-
by-szN array.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• If any trailing dimensions greater than 2 have a size of 1, then the output, X, does not

include those dimensions.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of this vector
indicates the size of the corresponding dimension.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• If any trailing dimensions greater than 2 have a size of 1, then the output, X, does not

include those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.

1 Alphabetical List

1-10264

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

classname — Output class
'double' (default) | 'single' | 'logical' | 'int8' | 'uint8' | ...

Output class, specified as 'double', 'single', 'logical', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'.
Data Types: char

p — Prototype
variable

Prototype, specified as a variable.
Data Types: double | single | logical | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Dimensions must be real, nonnegative integers.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See ones in the Parallel Computing Toolbox documentation.

 ones

1-10265

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See ones in the Parallel Computing Toolbox documentation.

See Also
complex | eye | false | rand | randn | size | zeros

Topics
“Class Support for Array-Creation Functions”
“Preallocation”

Introduced before R2006a

1 Alphabetical List

1-10266

matlab.lang.OnOffSwitchState class
Package: matlab.lang

Represent on and off states with logical values

Description
matlab.lang.OnOffSwitchState is an enumeration class that derives from the
logical class. Use this class to specify the data type of properties that accept values of
'on' and 'off' and logical true, false, 1, or 0.

Use this class to constrain property values to any of these values:

Class Logical True Logical False
Character vector 'on' 'off'
String scalar "on" "off"
Logical true false
Logical and numeric 1 0
Enumeration member matlab.lang.OnOffSwit

chState.on
matlab.lang.OnOffSwit
chState.off

Because OnOffSwitchState derives from the logical class, you can use these
enumeration members in logical expressions.

Enumeration Members
off Logical false
on Logical true

Examples

 matlab.lang.OnOffSwitchState class

1-10267

Enable Property Values to Be Logical or on/off

Create a class to represent the state of a computer whose power and monitor can be
turned on and off separately. Use OnOffSwitchState to define the class of these
properties.

classdef SystemState
 properties
 Power matlab.lang.OnOffSwitchState = 'off'
 Monitor matlab.lang.OnOffSwitchState = 'off'
 end
 methods
 function val = isOn(obj)
 if ~(obj.Power && obj.Monitor)
 val = matlab.lang.OnOffSwitchState.off;
 else
 val = matlab.lang.OnOffSwitchState.on;
 end
 end
 end
end

Create a SystemState object and set the property values to 'on'.

a = SystemState;
a.Power = 'on';
a.Monitor = 'on';

Call the isOn method to determine the state of the system. The method returns a logical
value provided by the OnOffSwitchState enumeration.

if isOn(a)
 ...% System is ready to use
end

Definitions

Specialized Concatenation Behavior
The OnOffSwitchState class enables you to form text expressions by concatenating
enumeration members with character vectors or strings. For example, if an object

1 Alphabetical List

1-10268

property named Power contains an enumeration member of the OnOffSwitchState
class, you can form a character array with a character vector and the property value:

a = SystemState;
a.Power = true;
['The power switch is currently ' a.Power]

ans =

 'The power switch is currently on'

Normally, when forming an array by concatenating character vectors or strings with
enumeration members, MATLAB attempts to convert the text to the class of the
enumeration member. However, the OnOffSwitchState class defines specialized
behavior that enables concatenation of enumeration members and text in cases where the
text does not correspond to enumeration members defined by the class. In these cases,
MATLAB creates an array of the same type as the text.

Here are the rules that MATLAB applies when concatenating character vectors or strings
with enumeration members of the OnOffSwitchState class.

• If all array elements are either OnOffSwitchState enumeration members or
character vectors, all enumeration members are converted to their char equivalent
representation. The resulting array is of type char.

• If all array elements are either OnOffSwitchState enumeration members or strings,
all enumeration members are converted to their string equivalent representation.
The resulting array is of type string.

• If all array elements are either OnOffSwitchState enumeration members, strings, or
character vectors, all enumeration members and character vectors are converted to
their string equivalent representation. The resulting array is of type string.

• In all other cases, normal concatenation rules apply. For more information, see
“Concatenating Objects of Different Classes”.

Testing for Equality
The OnOffSwitchState class supports the eq (==) and isequal functions for testing
equality between enumeration members and char, string, logical, or numeric types having
values of 1 or 0.

 matlab.lang.OnOffSwitchState class

1-10269

See Also
char | logical | string

Topics
“Validate Property Values”

Introduced in R2017a

1 Alphabetical List

1-10270

open
Open file in appropriate application

Syntax
open name
A = open(name)

Description
open name opens the specified file or variable in the appropriate application.

You can extend the functionality of open by defining your own file-handling function of
the form openxxx, where xxx is a file extension. For example, if you create a function
openlog, then the open function calls openlog to process any files with the .log
extension. The open function returns any single output defined by your function.

A = open(name) returns a structure if name is a MAT-file, or it returns a figure handle if
name is a figure. Otherwise, open returns an empty array. For increased flexibility and
options, use the load function to open MAT-files, and the openfig function to open
figures.

Examples

Open File

Open the file num2str.m in the Editor. MATLAB opens the file matlabroot\toolbox
\matlab\strfun\num2str.m. If a file called num2str.m exists in a folder that is above
toolbox\matlab\strfun on the MATLAB path, then MATLAB opens that file instead.

open num2str.m

 open

1-10271

Open File Not on Path

Open a file not on the MATLAB path by including the complete file specification. If the file
does not exist, MATLAB displays an error message.

open C:\temp\data.mat

Create Function to Handle an Extension

Create a function called opentxt to handle files with a .txt extension.

Create the function opentxt.

function opentxt(filename)
 [~, name, ext] = fileparts(filename);
 fprintf('You have requested file: %s\n', [name ext]);

 if exist(filename, 'file') == 2
 fprintf('Opening in MATLAB Editor: %s\n', [name ext]);
 edit(filename);
 else
 wh = which(filename);
 if ~isempty(wh)
 fprintf('Opening in MATLAB Editor: %s\n', wh);
 edit(wh);
 else
 warning('MATLAB:fileNotFound', ...
 'File was not found: %s', [name ext]);
 end
 end

end

Create the text file myTestFile.txt.

dlmwrite('myTestFile.txt',[1,2,3,4]);

Read the data from the file. The open function calls the function opentxt to open the
file.

open('myTestFile.txt');

1 Alphabetical List

1-10272

You have requested file: myTestFile.txt
Opening in MATLAB Editor: myTestFile.txt

Input Arguments
name — File or variable name
character array | string scalar

File or variable name, specified as a character array or string scalar. If name does not
include an extension, then MATLAB searches for variables and files according to the
“Function Precedence Order”. If name is a variable, the open function opens it in the
Variables editor. Otherwise, the open function performs one of these actions based on the
file extension.

.m or .mlx Open code file in MATLAB Editor.

.mat Return variables in structure A when called with the syntax A =
open(name).

.fig Open figure in Figure window.

.mdl or .slx Open model in Simulink.

.prj Open project in the MATLAB Compiler Deployment Tool.

.doc* Open document in Microsoft Word.

.exe Run executable file (only on Windows systems).

.pdf Open document in Adobe® Acrobat®.

.ppt* Open document in Microsoft PowerPoint.

.xls* Start MATLAB Import Wizard.

.htm or .html Open document in MATLAB browser.

.slxc Open report file for the Simulink cache file.

In MATLAB Online, open only supports opening MAT-files, figures, code files (.m
or .mlx), and HTML documents.
Data Types: char | string

See Also
edit | load | openfig | openvar | which | winopen

 open

1-10273

https://www.mathworks.com/products/matlab-online.html

Introduced before R2006a

1 Alphabetical List

1-10274

openfig
Open figure saved in FIG-file

Syntax
openfig(filename)
openfig(filename,copies)
openfig(___ ,visibility)

fig = openfig(___)

Description
openfig(filename) opens the figure saved in the MATLAB figure file (FIG-file) called
filename.

openfig(filename,copies) specifies whether to open a new copy of the figure in the
case that a copy is already open. If you do not want to create a new copy, set copies to
'reuse'. The 'reuse' option brings the existing figure to the front of the screen. To
open a new copy of the figure regardless of whether a copy is already open, set copies to
'new' . The 'new' option is the default behavior.

openfig(___ ,visibility) specifies whether to open the figure in a visible or
invisible state. To display the figure, set visibility to 'visible'. If you do not want
to display the figure, use the 'invisible' setting. You can use this option with any of
the input argument combinations in the previous syntaxes.

fig = openfig(___) returns the figure object. Set properties of the figure object to
modify its appearance or behavior. For a list of properties, see Figure.

Examples

 openfig

1-10275

Open Figure Saved in MATLAB Figure File

Create a surface plot and save the figure as a MATLAB figure file. Then, close the figure.

surf(peaks)
savefig('MySavedPlot.fig')
close(gcf)

Open the saved figure.

openfig('MySavedPlot.fig')

Open Invisible Figure in Visible State

Create a surface plot and make the figure invisible. Then, save the figure as a MATLAB
figure file. Close the invisible figure.

surf(peaks)
set(gcf,'Visible','off')
savefig('MySavedPlot.fig')
close(gcf)

Open the saved figure and make it visible on the screen.

openfig('MySavedPlot.fig','visible')

Input Arguments
filename — File name of saved figure
character vector | string

File name of saved figure, specified as a character vector or string. You do not have to
specify the full file path, as long as it is on your MATLAB path. Including .fig in the file
name is optional.
Example: openfig('MySavedFigure.fig')

copies — Control for opening multiple copies of figure
'new' (default) | 'reuse'

Control for opening multiple copies of the figure, specified as one of these values:

1 Alphabetical List

1-10276

• 'new' — Open a new copy of the figure, even if a copy already exists on the screen.
• 'reuse' — Open a new copy of the figure only if one does not exist. If a copy exists,

then bring the existing copy to the front of the screen. If the figure is off the screen,
then 'reuse' repositions the figure so that it is completely on the screen. This option
helps provide compatibility with different screen sizes and resolutions by ensuring that
the figure displays on screen.

Example: openfig('MySavedFigure.fig','reuse')

visibility — Figure visibility
'visible' | 'invisible'

Figure visibility, specified as one of these values:

• 'visible' — Open the saved figure in a visible state. If the MATLAB figure file
contains an invisible figure, then you can use this option to make the figure visible
when it opens.

• 'invisible' — Open the saved figure in an invisible state.

Example: openfig('MySavedFigure.fig','invisible')

Output Arguments
fig — Figure object
figure object

Figure object. Set properties of the figure to change the appearance or behavior of the
opened figure. For a list of properties, see Figure.

Limitations
• Do not use openfig to open FIG-files created with GUIDE. Use the guide function

instead.

See Also
open | saveas | savefig

 openfig

1-10277

Topics
“Save Figure to Reopen in MATLAB Later”

Introduced before R2006a

1 Alphabetical List

1-10278

opengl
Control OpenGL rendering

Syntax
opengl info
d = opengl('data')

opengl software
opengl hardware
opengl hardwarebasic

opengl('save',pref)

Description
opengl info prints information about the OpenGL implementation currently in use by
MATLAB, such as the version, vendor, and graphics features that it supports. Using this
command loads OpenGL. Starting in R2019a, this syntax is no longer recommended. For
more information, see “Compatibility Considerations” on page 1-10289.

d = opengl('data') returns the same data provided with opengl info, but stores it
in a structure. Starting in R2019a, this syntax is no longer recommended.

opengl software uses a software version of OpenGL to render subsequent graphics for
the current MATLAB session. This command works only on Windows systems.

opengl hardware uses a hardware-accelerated version of OpenGL to render subsequent
graphics. If your graphics hardware does not support hardware-accelerated OpenGL,
then MATLAB uses a software version instead.

opengl hardwarebasic uses a hardware-accelerated version of OpenGL, but disables
some advanced graphics features that are unstable with certain graphics drivers. If your
graphics hardware does not support hardware-accelerated OpenGL, then MATLAB uses a
software version instead.

 opengl

1-10279

opengl('save',pref) sets your preferences so that future sessions of MATLAB on this
computer use the preferred version of OpenGL. Specify pref as 'software',
'hardware', 'hardwarebasic', or 'none'. This command does not affect the current
session.

Note The autoselect, neverselect, advise, quiet, verbose, and
DriverBugWorkaround inputs have been removed in R2014b. For more information
about the behavior of these syntaxes in previous releases, see opengl for R2014a.

Examples

Display Information About OpenGL

Using the opengl info command, display information about the OpenGL
implementation currently in use by MATLAB. For example, display the vendor, the
version, and the supported graphics features. Also display whether MATLAB is using a
hardware-accelerated implementation or a software implementation of OpenGL.

opengl info

 Version: '3.3.0'
 Vendor: 'NVIDIA Corporation'
 Renderer: 'Quadro 400/PCIe/SSE2'
 RendererDriverVersion: '9.18.13.4192'
 RendererDriverReleaseDate: '13-Oct-2015'
 MaxTextureSize: 8192
 Visual: 'Visual 0x07, (RGBA 32 bits (8 8 8 8), Z depth 16 bits, Hardware acceleration, Double buffer, Antialias 8 samples)'
 Software: 'false'
 HardwareSupportLevel: 'full'
 SupportsGraphicsSmoothing: 1
 SupportsDepthPeelTransparency: 1
 SupportsAlignVertexCenters: 1
 Extensions: {249x1 cell}
 MaxFrameBufferSize: 8192

1 Alphabetical List

1-10280

https://www.mathworks.com/help/releases/R2014a/matlab/ref/opengl.html

Determine Graphics Hardware

Using the opengl info command, determine your graphics hardware by checking the
Vendor and Renderer fields.

opengl info

 Version: '3.3.0'
 Vendor: 'NVIDIA Corporation'
 Renderer: 'Quadro 400/PCIe/SSE2'
 RendererDriverVersion: '9.18.13.3182'
 RendererDriverReleaseDate: '11-Nov-2013'
 MaxTextureSize: 8192
 Visual: 'Visual 0x07, (RGBA 32 bits...'
 Software: 'false'
 HardwareSupportLevel: 'full'
 SupportsGraphicsSmoothing: 1
 SupportsDepthPeelTransparency: 1
 SupportsAlignVertexCenters: 1
 Extensions: {248x1 cell}
 MaxFrameBufferSize: 8192

Note If the returned fields contain the line Software: 'true', then you are using
software OpenGL and the name listed in the Vendor field is not your graphics hardware
vendor. Instead, the Vendor field indicates the manufacturer of the software OpenGL
implementation.

Determine Graphics Hardware When Using Software OpenGL (Windows)

Close all figures, switch to hardware OpenGL, and issue the opengl info command.
Then, switch back to software OpenGL.

close all
opengl hardware
opengl info
opengl software

 opengl

1-10281

Determine Graphics Hardware When Using Software OpenGL (Linux)

Start MATLAB with the -nosoftwareopengl flag. Then, issue the opengl info
command.

Use Software OpenGL for Current Session

Switch to using software OpenGL to render graphics in the current session.

opengl software

This command works only on Windows systems.

Use Software OpenGL for Future Sessions

Set your preferences so that MATLAB uses software OpenGL to render graphics in all
future sessions. This command does not affect the current session.

opengl('save','software')

Input Arguments
info — Information about OpenGL implementation
info

Information about the OpenGL implementation currently in use by MATLAB, specified as
info. The opengl info command returns the fields listed in this table.

Field Description
Version Version of the OpenGL implementation.
Vendor Manufacturer of the OpenGL

implementation.
RendererDriverVersion Version of the OpenGL driver (Windows

systems with hardware-accelerated
OpenGL only). This field does not display on
virtual machines.

1 Alphabetical List

1-10282

Field Description
RendererDriverReleaseDate Release date of the OpenGL driver

(Windows systems with hardware-
accelerated OpenGL only). This field does
not display on virtual machines.

Renderer Description of the OpenGL renderer. If you
are using hardware-accelerated OpenGL,
this field is the graphics card model name.

MaxTextureSize Maximum texture size supported by the
OpenGL implementation.

Visual Display properties of the OpenGL
implementation.

Software Software OpenGL enabled, returned as
'true' or 'false'.

HardwareSupportLevel Hardware support level, returned as one of
these values:

• 'full' — Hardware-accelerated
OpenGL (all graphics features enabled)

• 'basic' — Basic hardware-accelerated
OpenGL (some graphics features
disabled)

• 'none' — Software OpenGL

If MATLAB detects an unsupported driver,
this field also contains 'known graphics
driver issues'.

SupportsGraphicsSmoothing Graphics smoothing feature support,
returned as 1 if supported or 0 otherwise.

SupportsDepthPeelTransparency Depth peel transparency feature support,
returned as 1 if supported or 0 otherwise.

SupportsAlignVertexCenters Align vertex centers feature support,
returned as 1 if supported or 0 otherwise.

Extensions Extended capabilities supported by the
OpenGL implementation.

 opengl

1-10283

Field Description
MaxFrameBufferSize Maximum frame buffer size supported by

the OpenGL implementation.

For more information about the graphics smoothing, depth peel transparency, and align
vertex centers features, see “Advanced Graphics Features” on page 1-10285.

software — Software OpenGL
software

Software OpenGL, specified as software.

To switch to software OpenGL:

• On Windows systems, execute opengl software.
• On Linux systems, start MATLAB with the -softwareopengl flag.
• Macintosh systems do not support software OpenGL.

Software OpenGL can be slower than hardware-accelerated OpenGL and does not support
all graphics features. For a table of supported features, see “Advanced Graphics Features”
on page 1-10285.

hardware — Hardware-accelerated OpenGL
hardware

Hardware-accelerated OpenGL, specified as hardware. All systems support using the
opengl hardware command to switch from basic hardware to hardware OpenGL.
However, only Windows systems support using the opengl hardware command to
switch from software to hardware OpenGL. To switch from software to hardware on Linux
systems, start MATLAB with the -nosoftwareopengl flag.

If your system automatically switched to using software OpenGL, then forcing your
system to use hardware OpenGL can cause instabilities.

hardwarebasic — Basic version of hardware-accelerated OpenGL
hardwarebasic

Basic version of hardware-accelerated OpenGL, specified as hardwarebasic. This
version of hardware-accelerated OpenGL uses your graphics hardware, but disables
graphics features that are unstable with some graphics drivers. The disabled features
might change in future releases as graphics features change and graphics hardware

1 Alphabetical List

1-10284

evolves. For a table of disabled features, see “Advanced Graphics Features” on page 1-
10285.

pref — OpenGL version preference for future sessions
'software' | 'hardware' | 'hardwarebasic' | 'none'

OpenGL version preference for future sessions, specified as one of these options:

• 'software' — Software OpenGL. This option is not available on Macintosh systems.
• 'hardware' — Hardware-accelerated OpenGL.
• 'hardwarebasic' — Hardware-accelerated OpenGL with some advanced graphics

features disabled. For more information, see “Advanced Graphics Features” on page 1-
10285.

• 'none' — Default value for your system.

Definitions

Advanced Graphics Features
Advanced graphics features are features that require certain implementations of OpenGL.
These features are graphics smoothing on page 1-10286, depth peel transparency on
page 1-10287, align vertex centers on page 1-10288, and hardware-accelerated markers
on page 1-10288. Support for these features depends on:

• Whether you are using hardware, basic hardware, or software OpenGL. To determine
which implementation you are using, check the HardwareSupportLevel field
returned by opengl info.

• The version of the OpenGL implementation. To determine the version in use, check the
Version field returned by opengl info. To get the latest version available for your
graphics hardware, upgrade your graphics drivers from your computer manufacturer
website. For more information on upgrading graphics drivers, see “System
Requirements for Graphics”.

This table lists the advanced graphics features and the circumstances under which they
are supported.

 opengl

1-10285

Graphics
Feature

Hardware
OpenGL

Basic
Hardware
OpenGL

Software
OpenGL on
Windows

Software
OpenGL on
Linux

Graphics
Smoothing

Supported for
OpenGL 2.1 or
higher

Supported for
OpenGL 2.1 or
higher

Not supported Not supported

Depth Peel
Transparency

Supported for
OpenGL 2.1 or
higher

Disabled Not supported Supported

Align Vertex
Centers

Supported for
OpenGL 2.1 or
higher

Disabled Not supported Not supported

Hardware-
accelerated
markers

Supported for
OpenGL 4.0 or
higher

Disabled Not supported Not supported

Graphics Smoothing
Graphics smoothing is a technique to improve the appearance of plots by reducing the
appearance of jagged lines. By default, this feature is enabled if your system supports it.

This table shows the difference when the feature is enabled or disabled. To turn off this
feature for a particular figure, set the GraphicsSmoothing property of the figure to
'off'.

When Supported and Enabled When Not Supported or Disabled

1 Alphabetical List

1-10286

When Supported and Enabled When Not Supported or Disabled
(Zoomed-in view) (Zoomed-in view)

Depth Peel Transparency
Depth peel transparency is a feature for correctly drawing transparent 3-D objects or
complex plots that contain intersecting transparent objects. In the table, the left image
shows the result of using transparency on a sphere when the depth peel transparency
feature is supported. The right image shows the same sphere with unexpected shaded
areas that occur when the feature is not supported.

When Supported When Not Supported

 opengl

1-10287

Align Vertex Centers
Align vertex centers is a feature for sharp vertical and horizontal lines. If graphics
smoothing is enabled, it can cause horizontal and vertical lines to appear uneven in
thickness or color. The align vertex centers feature eliminates the uneven appearance. By
default, the align vertex centers feature is not enabled. However, if your system supports
this feature, then you can turn it on for objects that have an AlignVertexCenters
property by setting the property to 'on'.

This table shows the difference when the feature is enabled or disabled.

When Supported and Enabled When Not Supported or Disabled

Hardware-Accelerated Markers
Hardware-accelerated markers take advantage of your graphics hardware for improved
performance and quality. This table shows the difference when the feature is supported or
not supported.

1 Alphabetical List

1-10288

When Supported When Not Supported

Tips
• Painters is an alternate rendering method for screen display and printing. For more

information, see the figure’s Renderer property.
• By default, MATLAB uses hardware-accelerated OpenGL if your graphics hardware

supports it. However, in some cases, MATLAB automatically switches to software
OpenGL, for example, if it detects:

• You are using a graphics driver with known issues or graphics virtualization.
• A previous MATLAB session crashed due to a graphics issue. If the previous session

was using software OpenGL and crashed, then subsequent sessions use a more
stable version of software OpenGL that has fewer capabilities.

• You do not have graphics hardware or your graphics hardware does not support
hardware OpenGL.

Compatibility Considerations

Using the opengl function to get information about the
graphics renderer is not recommended
Not recommended starting in R2019a

Using the opengl function to get information about the graphics renderer is not
recommended. Specifically, these syntaxes are not recommended:

 opengl

1-10289

• opengl info
• d = openg('data')

There are no plans to remove support for these syntaxes at this time. Instead of calling
opengl to get the renderer information, call the rendererinfo function instead:

info = rendererinfo(ax)

Specify ax as any type of axes or a chart that can be a child of a figure (such as a
heatmap). The output is a structure containing most of the same information as the
opengl function provides.

Fields in opengl Structure Corresponding Fields in rendererinfo
Structure

d.Version info.Version
d.Vendor info.Vendor
d.Renderer info.RendererDevice
d.RendererDriverVersion info.Details.RendererDriverVersio

n
d.RendererDriverReleaseDate info.Details.RendererDriverReleas

eDate
d.MaxTextureSize info.Details.MaxTextureSize
d.Visual No longer needed
d.Software This information is stored in

info.GraphicsRenderer, but to get the
equivalent logical value, use
strcmp(info.GraphicsRenderer,'Ope
nGL Software')

d.HardwareSupportLevel info.Details.HardwareSupportLevel
d.SupportsGraphicsSmoothing info.Details.SupportsGraphicsSmoo

thing
d.SupportsDepthPeelTransparency info.Details.SupportsDepthPeelTra

nsparency
d.SupportsAlignVertexCenters info.Details.SupportsAlignVertexC

enters

1 Alphabetical List

1-10290

Fields in opengl Structure Corresponding Fields in rendererinfo
Structure

d.Extensions No longer needed
d.MaxFrameBufferSize info.Details.MaxFrameBufferSize

See Also
matlablinux | matlabmac | matlabwindows | rendererinfo

Topics
“System Requirements for Graphics”
“Resolving Low-Level Graphics Issues”

Introduced before R2006a

 opengl

1-10291

openProject
Package: matlab.project

Load an existing project

Syntax
proj = openProject(projectPath)

Description
proj = openProject(projectPath) loads the project in the specified file or folder. If
any projects are currently open, MATLAB closes them before loading the specified
project.

Examples

Open a Project

Open an existing project from a folder called "C:/projects/project1/".

proj = openProject("C:/projects/project1/")

Input Arguments
projectPath — Full path to project file or folder
character vector | string scalar

Full path to the project .prj file or project root folder, specified as a character vector or
string scalar.
Example: "C:/projects/project1/myProject.prj"

1 Alphabetical List

1-10292

Example: "C:/projects/project1/"

Output Arguments
proj — Project
matlab.project.Project object

Project, returned as a matlab.project.Project object. Use the
matlab.project.Project object to programmatically manipulate the currently open
project.

See Also
currentProject

Topics
“Create and Edit Projects Programmatically”

Introduced in R2019a

 openProject

1-10293

openvar
Open workspace variable in Variables editor or other graphical editing tool

Syntax
openvar(varname)

Description
openvar(varname) opens the workspace variable varname, in the Variables editor for
graphical editing. Changes that you make to variables in the Variables editor occur in the
workspace as soon as you enter them.

In some toolboxes, openvar opens a tool appropriate for viewing or editing objects
indicated by varname instead of opening the Variables editor.

MATLAB does not impose any limitation on the size of a variable that you can open in the
Variables editor. However, your operating system or the amount of physical memory
installed on your computer can impose such limits.

Examples

Identify Outliers in a Linked Graph

Use data brushing to identify observations in a vector or matrix that might warrant
further analysis.

Make a scatter plot of data in the sample MAT-file count.dat, and open the variable
count in the Variables editor.

load count.dat
scatter(count(:,1),count(:,2))
openvar('count')

1 Alphabetical List

1-10294

Right-click a cell in the Variables editor and select Brushing > Brushing On. This turns
on data brushing in the Variables editor.

Select the rows 7, 8, and 20. (Select noncontiguous rows by holding down the Ctrl key
and clicking in each row.)

In the Figure window with the scatter plot, click Brush/Select Data to enable data
brushing, and Link Plot to enable data linking.

The data observations you brushed in the Variables editor appear highlighted in the
scatter plot.

 openvar

1-10295

As long as data linking is enabled in the figure, observations that you brush in the scatter
plot are highlighted in the Variables editor. When a figure is not linked to its data sources,
you can still brush its graphs and you can brush the same data in the Variables editor, but
only the display that you brush responds by highlighting.

Input Arguments
varname — Variable name
character vector

Variable name, specified as a character vector. The named variable can be an array,
character vector, cell array, structure, or an object and its properties. If the named
variable is a multidimensional array, then you can only view the array in the Variables
editor, and not edit it.
Example: 'myVariable'
Example: 'A'

1 Alphabetical List

1-10296

Tips
• As an alternative to the openvar function, double-click a variable in the Workspace

browser.

See Also
Workspace Browser | brush | linkdata | load | save

Topics
“Create and Edit Variables”
“Automatically Refresh Plot After Changing Data”

Introduced before R2006a

 openvar

1-10297

optimget
Optimization options values

Syntax
val = optimget(options,'param')
val = optimget(options,'param',default)

Description
val = optimget(options,'param') returns the value of the specified parameter in
the optimization options structure options. You need to type only enough leading
characters to define the parameter name uniquely. Case is ignored for parameter names.

val = optimget(options,'param',default) returns default if the specified
parameter is not defined in the optimization options structure options. Note that this
form of the function is used primarily by other optimization functions.

Examples
This statement returns the value of the Display optimization options parameter in the
structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options parameter in the
structure called my_options (as in the previous example) except that if the Display
parameter is not defined, it returns the value 'final'.

optnew = optimget(my_options,'Display','final');

1 Alphabetical List

1-10298

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Input parameter names must be constant.

See Also
fminbnd | fminsearch | fzero | lsqnonneg | optimset

Introduced before R2006a

 optimget

1-10299

optimset
Create or modify optimization options structure

Syntax
options = optimset(Name,Value)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,Name,Value)
options = optimset(oldopts,newopts)

Description
options = optimset(Name,Value) returns options with specified parameters set
using one or more name-value pair arguments.

optimset (with no input or output arguments) displays a complete list of parameters
with their valid values.

options = optimset (with no input arguments) creates an options structure options
where all parameters are set to [].

options = optimset(optimfun) creates options with all parameter names and
default values relevant to the optimization function optimfun.

options = optimset(oldopts,Name,Value) creates a copy of oldopts and
modifies the specified parameters using one or more name-value pair arguments.

options = optimset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any parameters in newopts with
nonempty values overwrite the corresponding parameters in oldopts.

Examples

1 Alphabetical List

1-10300

Create Nondefault Options

Set options for fminsearch to use a plot function and a stricter stopping condition than
the default.

options = optimset('PlotFcns','optimplotfval','TolX',1e-7);

Minimize Rosenbrock's function starting from the point (–1,2), and monitor the
minimization process by using the options. Rosenbrock's function has a minimum value of
0 at the point (1,1).

fun = @(x)100*((x(2) - x(1)^2)^2) + (1 - x(1))^2; % Rosenbrock's function
x0 = [-1,2];
[x,fval] = fminsearch(fun,x0,options)

 optimset

1-10301

x = 1×2

 1.0000 1.0000

fval = 4.7305e-16

Create Default Options for Solver

Create a structure containing the default options for the fzero solver.

options = optimset('fzero');

View the default value of the TolX option for fzero.

tol = options.TolX

tol = 2.2204e-16

Modify Options

Set options to use a function tolerance of 1e-6.

oldopts = optimset('TolFun',1e-6);

Modify options in oldopts to use the 'optimplotfval' plot function and a TolX value
of 1e-6.

options = optimset(oldopts,'PlotFcns','optimplotfval','TolX',1e-6);

View the three options that you set.

disp(options.TolFun);

 1.0000e-06

disp(options.PlotFcns);

optimplotfval

disp(options.TolX);

1 Alphabetical List

1-10302

 1.0000e-06

Update Options Structure Using New Options Structure

Overwrite the corresponding parts of one options structure with a different options
structure by using optimset.

oldopts = optimset('Display','iter','TolX',1e-6);
newopts = optimset('PlotFcns','optimplotfval','Display','off');
options = optimset(oldopts,newopts);

Both oldopts and newopts set the value of the Display option. Check that newopts
overwrites oldopts for this option.

options.Display

ans =
'off'

Check the values of the other two options.

options.TolX

ans = 1.0000e-06

options.PlotFcns

ans =
'optimplotfval'

Input Arguments
optimfun — Optimization solver
name | function handle

Optimization solver, specified as a name or function handle. The returned options
structure has nonempty entries for the specified solver only.
Example: options = optimset('fzero')
Example: options = optimset(@fminsearch)

 optimset

1-10303

Data Types: char | string | function_handle

oldopts — Previous optimization options
structure

Previous optimization options, specified as a structure. The output options is the same
as oldopts, except for the specified parameters.
Example: options = optimset(oldopts,'TolX',1e-6)
Data Types: struct

newopts — New optimization options
structure

New optimization options, specified as a structure. The output options is the same as
newopts, and also includes nonempty parameters of oldopts that are empty in
newopts.
Example: options = optimset(oldopts,newopts)
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: options = optimset('TolX',1e-6,'PlotFcns',@optimplotfval)

Display — Level of display
'notify' (default) | 'final' | 'off' | 'none' | 'iter'

Level of display, specified as the comma-separated pair consisting of 'Display' and one of
these values:

• 'notify' — Display output only if the function does not converge.
• 'final' — Display just the final output.
• 'off' or 'none' — Display no output.
• 'iter' — Display output at each iteration (not available for lsqnonneg).

1 Alphabetical List

1-10304

Display is available for all optimization solvers.
Example: options = optimset('Display','iter')
Data Types: char | string

FunValCheck — Check whether function values are valid
'off' (default) | 'on'

Flag to check whether function values are valid, specified as the comma-separated pair
consisting of 'FunValCheck' and the value 'off' or 'on'. When the value is 'on',
solvers display an error when the objective function returns a value that is complex or
NaN.

FunValCheck is available for fminbnd, fminsearch, and fzero.
Example: options = optimset('FunValCheck','on')
Data Types: char | string

MaxFunEvals — Maximum number of function evaluations
500 for fminbnd, 200*(number of variables) for fminsearch (default) | positive
integer

Maximum number of function evaluations, specified as the comma-separated pair
consisting of 'MaxFunEvals' and a positive integer.

MaxFunEvals is available for fminbnd and fminsearch.
Example: options = optimset('MaxFunEvals',2e3)
Data Types: single | double

MaxIter — Maximum number of iterations
500 for fminbnd, 200*(number of variables) for fminsearch (default) | positive
integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIter' and a positive integer.

MaxIter is available for fminbnd and fminsearch.
Example: options = optimset('MaxIter',2e3)
Data Types: single | double

 optimset

1-10305

OutputFcn — Output function
[] (default) | function name | function handle | cell array of function handles

Output function, specified as the comma-separated pair consisting of 'OutputFcn' and a
function name or function handle. Specify multiple output functions as a cell array of
function handles. An output function runs after each iteration, enabling you to monitor
the solution process or stop the iterations. For more information, see “Output Functions”.

OutputFcn is available for fminbnd, fminsearch, and fzero.
Example: options = optimset('OutputFcn',{@outfun1,@outfun2})
Data Types: char | string | cell | function_handle

PlotFcns — Plot functions
[] (default) | function name | function handle | cell array of function handles

Plot functions, specified as the comma-separated pair consisting of 'PlotFcns' and a
function name or function handle. Specify multiple plot functions as a cell array of
function handles. A plot function runs after each iteration, enabling you to monitor the
solution process or stop the iterations. For more information, see “Plot Functions”.

The built-in plot functions are as follows:

• @optimplotx plots the current point.
• @optimplotfval plots the function value.
• @optimplotfunccount plots the function count (not available for fzero).

The PlotFcns option is available for fminbnd, fminsearch, and fzero.
Example: options = optimset('PlotFcns','optimplotfval')
Data Types: char | string | cell | function_handle

TolFun — Termination tolerance on function value
1e-4 (default) | nonnegative scalar

Termination tolerance on the function value, specified as the comma-separated pair
consisting of 'TolFun' and a nonnegative scalar. Iterations end when the current
function value differs from the previous value by less than TolFun, relative to the initial
function value. See “Tolerances and Stopping Criteria”.

TolFun is available for fminsearch only.

1 Alphabetical List

1-10306

Example: options = optimset('TolFun',2e-6)
Data Types: single | double

TolX — Termination tolerance on x, the current point
1e-4 for fminbnd and fminsearch, eps for fzero, 10*eps*norm(c,1)*length(c)
for lsqnonneg (default) | nonnegative scalar

Termination tolerance on x, the current point, specified as the comma-separated pair
consisting of 'TolX' and a nonnegative scalar. Iterations end when the current point
differs from the previous point by less than TolX, relative to the size of x. See
“Tolerances and Stopping Criteria”.

TolX is available for all solvers.
Example: options = optimset('TolFun',2e-6)
Data Types: single | double

Output Arguments
options — Optimization options
structure

Optimization options, returned as a structure. Values for parameters you do not set are
[], which causes solvers to use the default values of these parameters.

Limitations
• optimset sets options for the four MATLAB optimization solvers: fminbnd,

fminsearch, fzero, and lsqnonneg. To set options for Optimization Toolbox™ or
Global Optimization Toolbox solvers, the recommended function is optimoptions.

• optimset cannot set options for some Optimization Toolbox solvers, such as
intlinprog. Use optimoptions instead.

• optimset cannot set most options for Global Optimization Toolbox solvers. Use
optimoptions instead.

 optimset

1-10307

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the syntax that has no input or output arguments:

optimset
• Functions specified in the options must be supported for code generation.
• The input argument optimfun must be a function that is supported for code

generation.
• The fields of the options structure oldopts must be fixed-size fields.
• Code generation ignores the Display option.
• Code generation does not support the additional options in an options structure

created by the Optimization Toolbox optimset function. If an input options structure
includes the additional Optimization Toolbox options, then the output structure does
not include them.

See Also
fminbnd | fminsearch | fzero | lsqnonneg | optimget | optimoptions

Topics
“Set Options”
“Plot Functions”
“Optimization”

Introduced before R2006a

1 Alphabetical List

1-10308

or, |
Find logical OR

Syntax
A | B
or(A,B)

Description
A | B performs a logical OR of arrays A and B and returns an array containing elements
set to either logical 1 (true) or logical 0 (false). An element of the output array is set to
logical 1 (true) if either A or B contain a nonzero element at that same array location.
Otherwise, the array element is set to 0.

or(A,B) is an alternate way to execute A | B, but is rarely used. It enables operator
overloading for classes.

Examples

Locate Zeros in Matrices

Find the logical OR of two matrices. The result contains logical 1 (true) where either
matrix contains a nonzero value. The zeros in the result indicate spots where both arrays
have a value of zero.

A = [5 7 0; 0 2 9; 5 0 0]

A = 3×3

 5 7 0
 0 2 9
 5 0 0

 or, |

1-10309

B = [6 6 0; 1 3 5; -1 0 0]

B = 3×3

 6 6 0
 1 3 5
 -1 0 0

A | B

ans = 3x3 logical array

 1 1 0
 1 1 1
 1 0 0

Truth Table for Logical OR

Create a truth table for or.

A = [true false]

A = 1x2 logical array

 1 0

B = [true; false]

B = 2x1 logical array

 1
 0

C = A|B

C = 2x2 logical array

 1 1
 1 0

1 Alphabetical List

1-10310

Input Arguments
A — Left operand
scalar | vector | matrix | multidimensional array

Left operand, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and
B must either be the same size or have sizes that are compatible (for example, A is an M-
by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

B — Right operand
scalar | vector | matrix | multidimensional array

Right operand, specified as a scalar, vector, matrix, or multidimensional array. Inputs A
and B must either be the same size or have sizes that are compatible (for example, A is an
M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Tips
• You can chain together several logical operations, for example, A & B | C.
• The symbols | and || perform different operations in MATLAB. The element-wise OR

operator described here is |. The short-circuit OR operator is ||.
• When you use the element-wise & and | operators in the context of an if or while

loop expression (and only in that context), they use short-circuiting to evaluate
expressions. Otherwise, you must specify && or || to opt-in to short-circuiting
behavior. See Logical Operators: Short Circuit for more information.

 or, |

1-10311

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
all | and | any | bitor | not | xor

Topics
“Truth Table for Logical Operations”
“MATLAB Operators and Special Characters”

1 Alphabetical List

1-10312

Introduced before R2006a

 or, |

1-10313

ordeig
Eigenvalues of quasitriangular matrices

Syntax
E = ordeig(T)
E = ordeig(AA,BB)

Description
E = ordeig(T) takes a quasitriangular Schur matrix T, typically produced by schur,
and returns the vector E of eigenvalues in their order of appearance down the diagonal of
T.

E = ordeig(AA,BB) takes a quasitriangular matrix pair AA and BB, typically produced
by qz, and returns the generalized eigenvalues in their order of appearance down the
diagonal of AA-λ*BB.

ordeig is an order-preserving version of eig for use with ordschur and ordqz. It is
also faster than eig for quasitriangular matrices.

Examples
Example 1
T=diag([1 -1 3 -5 2]);

ordeig(T) returns the eigenvalues of T in the same order they appear on the diagonal.

ordeig(T)

ans =

 1
 -1

1 Alphabetical List

1-10314

 3
 -5
 2

eig(T), on the other hand, returns the eigenvalues in order of increasing magnitude.

eig(T)

ans =

 -5
 -1
 1
 2
 3

Example 2
A = rand(10);
[U, T] = schur(A);
abs(ordeig(T))

ans =

 5.3786
 0.7564
 0.7564
 0.7802
 0.7080
 0.7080
 0.5855
 0.5855
 0.1445
 0.0812
% Move eigenvalues with magnitude < 0.5 to the
% upper-left corner of T.
[U,T] = ordschur(U,T,abs(E)<0.5);
abs(ordeig(T))

ans =

 0.1445
 0.0812
 5.3786

 ordeig

1-10315

 0.7564
 0.7564
 0.7802
 0.7080
 0.7080
 0.5855
 0.5855

See Also
eig | ordqz | ordschur | qz | schur

Introduced before R2006a

1 Alphabetical List

1-10316

orderfields
Order fields of structure array

Syntax
S = orderfields(S1)
S = orderfields(S1,S2)
S = orderfields(S1,C)
S = orderfields(S1,P)
[S,Pout] = orderfields(___)

Description
S = orderfields(S1) orders the fields in S1 by name.

Since field names can contain only letters, digits, and underscores, this syntax sorts field
names in ASCII order. All uppercase letters come before all lowercase letters.

S = orderfields(S1,S2) returns a copy of S1 with its fields reordered to match the
order of the fields of S2. The input structure arrays S1 and S2 must have the same field
names.

S = orderfields(S1,C) matches the order of the names specified in the input array C.
The name of every field in S1 must appear once in C.

S = orderfields(S1,P) matches the order specified by the permutation vector P.

If S1 has n fields, then the elements of P are the integers from 1 through n, arranged in
any order. For example, if S1 has three fields and P is [3 1 2], then the third field of S1
is the first field of the output S. This syntax is useful for ordering multiple structure
arrays in the same way.

[S,Pout] = orderfields(___) also returns a permutation vector. The elements of
Pout are the integers from 1 through n, arranged in an order that represents the change
in order of the fields. You can use this syntax with any of the input arguments of the
previous syntaxes.

 orderfields

1-10317

Examples

Order Fields by Name

Create a structure with several fields.

S1 = struct('b',1,'B',2,'a',3,'A',4)

S1 = struct with fields:
 b: 1
 B: 2
 a: 3
 A: 4

Order the fields. This syntax orders the fields by their names, in ASCII order.

S = orderfields(S1)

S = struct with fields:
 A: 4
 B: 2
 a: 3
 b: 1

Order Fields Using Another Structure

Create two structures that have the same fields, in different orders. The field names are
the same, but the field values are different.

S1 = struct('b',1,'B',2,'a',3,'A',4)

S1 = struct with fields:
 b: 1
 B: 2
 a: 3
 A: 4

S2 = struct('a',0,'b',20,'B',10,'A',0)

1 Alphabetical List

1-10318

S2 = struct with fields:
 a: 0
 b: 20
 B: 10
 A: 0

Order the fields in S1 to match the order of fields in S2.

S = orderfields(S1,S2)

S = struct with fields:
 a: 3
 b: 1
 B: 2
 A: 4

List Field Names in Cell Array

Create a structure.

data.x = linspace(0,2*pi);
data.y = sin(data.x);
data.title = 'y = sin(x)'

data = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'

Order the fields by listing their names in a cell array.

C = {'title','x','y'};
data = orderfields(data,C)

data = struct with fields:
 title: 'y = sin(x)'
 x: [1x100 double]
 y: [1x100 double]

 orderfields

1-10319

List Fields by Position Using Permutation Vector

Create a structure.

data.x = linspace(0,2*pi);
data.y = sin(data.x);
data.title = 'y = sin(x)'

data = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'

Order the fields by listing their original positions in a different order. For example, move
the third field so that it is the first field of the output structure.

P = [3 1 2];
data = orderfields(data,P)

data = struct with fields:
 title: 'y = sin(x)'
 x: [1x100 double]
 y: [1x100 double]

Reorder Using Permutation Vector from Another Structure

Create a structure.

data1.x = linspace(0,2*pi);
data1.y = sin(data1.x);
data1.title = 'y = sin(x)';

Reorder the structure using the orderfields function. Store the new field order in a
permutation vector Pout.

[S,Pout] = orderfields(data1,{'title','x','y'})

S = struct with fields:
 title: 'y = sin(x)'

1 Alphabetical List

1-10320

 x: [1x100 double]
 y: [1x100 double]

Pout = 3×1

 3
 1
 2

Create a second structure with the same fields.

data2.x = data1.x;
data2.y = cos(data2.x);
data2.title = 'y = cos(x)';

Reorder the fields of data2 using Pout. If you have many structures with the same field
names, then you can use Pout to reorder them all in the same way.

S2 = orderfields(data2,Pout)

S2 = struct with fields:
 title: 'y = cos(x)'
 x: [1x100 double]
 y: [1x100 double]

Input Arguments
S1 — Input structure
structure array

Input structure, specified as a structure array.

S2 — Field order by structure
structure array

Field order by structure, specified as a structure array. S2 has the same fields as S1 but
specifies them in a different order.

 orderfields

1-10321

C — Field order by name
cell array of character vectors | string array

Field order by name, specified as a cell array of character vectors or a string array. The
names in C must match the field names of S1.

P — Field order by number
numeric vector

Field order by number, specified as a numeric vector. The numbers must be the integers
from 1 through n, where n is the number of fields of S1.

Output Arguments
S — Reordered structure
structure array

Reordered structure, returned as a structure array. S has the same fields as S1 but they
might be in a different order.

Pout — Output field order
numeric vector

Output field order, returned as a numeric vector. The elements of Pout are the integers
from 1 through n, where n is the number of fields of S1. The permutation of the integers
represents the change in the order of the fields.

Tips
• The orderfields function only orders top-level fields. It is not recursive.

See Also
cell2struct | fieldnames | getfield | isfield | rmfield | setfield | struct |
struct2cell

Topics
“Access Data in a Structure Array”

1 Alphabetical List

1-10322

“Generate Field Names from Variables”

Introduced before R2006a

 orderfields

1-10323

ordqz
Reorder eigenvalues in QZ factorization

Syntax
[AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select)
[AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,keyword)
[AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,clusters)

Description
[AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select) reorders the QZ factorization
Q*A*Z = AA and Q*B*Z = BB produced by [AA,BB,Q,Z] = qz(A,B) and returns the
reordered matrix pair (AAS,BBS) along with orthogonal matrices (QS,ZS), such that
QS*A*ZS = AAS and QS*B*ZS = BBS.

In this reordering, the selected cluster of eigenvalues appears in the leading (upper left)
diagonal blocks of the quasitriangular on page 1-10329 pair (AAS,BBS). The leading
columns of ZS span the corresponding invariant subspace. The logical vector select
specifies the selected cluster as e(select), where e = ordeig(AA,BB).

[AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,keyword) sets the selected cluster to
include all eigenvalues in the region specified by keyword.

[AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,clusters) reorders multiple clusters
simultaneously. ordqz sorts the specified clusters in descending order along the diagonal
of (AAS,BBS), with the cluster of highest index appearing in the upper left corner.

Examples

Reorder QZ Factorization

Compute the QZ factorization of a pair of matrices, and then reorder the factors
according to a specified ordering of the eigenvalues.

1 Alphabetical List

1-10324

Find the QZ factorization, or generalized Schur decomposition, of a pair of matrices A and
B. This decomposition results in the factors AA = QAZ and BB = QBZ.

A = magic(5);
B = hilb(5);
[AA,BB,Q,Z] = qz(A,B)

AA = 5×5

 14.5272 -2.3517 8.5757 -0.2350 -1.4432
 0 -19.7471 2.1824 4.5417 7.2059
 0 0 -17.9538 8.9292 -9.6961
 0 0 0 30.3449 -47.9191
 0 0 0 0 32.4399

BB = 5×5

 0.0000 0.0005 0.0018 0.0465 0.2304
 0 0.0008 0.0199 0.1662 0.7320
 0 0 0.0210 0.1006 -0.1341
 0 0 0 0.0623 -1.1380
 0 0 0 0 0.7434

Q = 5×5

 -0.1743 -0.1099 -0.0789 -0.4690 0.8552
 -0.7567 -0.1151 -0.0846 0.6172 0.1617
 -0.4010 0.6782 0.5478 -0.2664 -0.0901
 0.4178 -0.0297 0.6473 0.4883 0.4089
 -0.2484 -0.7168 0.5173 -0.2995 -0.2593

Z = 5×5

 0.0057 -0.0424 -0.2914 -0.5860 -0.7549
 -0.1125 0.4109 0.7635 0.1734 -0.4533
 0.4995 -0.6746 0.1486 0.4053 -0.3303
 -0.7694 -0.2140 -0.2614 0.4749 -0.2616
 0.3818 0.5731 -0.4917 0.4866 -0.2173

Since AA and BB are triangular, use ordeig to extract the eigenvalues from the diagonal
blocks of AA and BB.

 ordqz

1-10325

e = ordeig(AA,BB)

e = 5×1
106 ×

 2.8871
 -0.0257
 -0.0009
 0.0005
 0.0000

Separate the eigenvalues into clusters, with the real positive eigenvalues (e > 0) forming
the leading cluster. Reorder the matrices AA, BB, Q, and Z according to this ordering of
the eigenvalues.

[AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,'rhp')

AAS = 5×5

 14.5272 1.2849 1.0391 7.6821 4.4119
 0 21.7128 19.1784 -1.8380 -9.1187
 0 0 60.3083 -8.4452 -6.4304
 0 0 0 -18.2081 -3.3783
 0 0 0 0 -14.6375

BBS = 5×5

 0.0000 -0.0114 0.1908 -0.1119 0.0788
 0 0.0446 -0.0377 0.1107 -0.1978
 0 0 1.3820 -0.6325 0.2807
 0 0 0 0.0007 0.0137
 0 0 0 0 0.0171

QS = 5×5

 -0.1743 -0.1099 -0.0789 -0.4690 0.8552
 0.6353 -0.1853 -0.4099 -0.5765 -0.2483
 -0.7034 -0.4518 -0.3456 -0.2295 -0.3591
 -0.1415 0.2036 0.7054 -0.6065 -0.2703
 -0.2263 0.8414 -0.4568 -0.1647 -0.0705

1 Alphabetical List

1-10326

ZS = 5×5

 0.0057 0.0088 -0.5288 0.3591 -0.7690
 -0.1125 0.6095 -0.3858 0.4737 0.4926
 0.4995 -0.6478 -0.2711 0.3644 0.3529
 -0.7694 -0.4176 -0.4090 -0.1750 0.1890
 0.3818 0.1855 -0.5752 -0.6952 0.0758

Examine the new eigenvalue order.

E2 = ordeig(AAS,BBS)

E2 = 5×1
106 ×

 2.8871
 0.0005
 0.0000
 -0.0257
 -0.0009

Input Arguments
AA, BB — Matrix factors
matrices

Matrix factors, specified as the matrices returned by [AA,BB,Q,Z] = qz(A,B). These
matrices satisfy Q*A*Z = AA and Q*B*Z = BB. For complex matrices, AA and BB are
triangular.

If AA and BB do not form a valid QZ decomposition, then ordqz does not produce an error
and returns incorrect results.
Data Types: single | double
Complex Number Support: Yes

Q, Z — Unitary matrices
matrices

 ordqz

1-10327

Unitary matrices, specified as the matrices returned by [AA,BB,Q,Z] = qz(A,B).
These matrices satisfy Q*A*Z = AA and Q*B*Z = BB.
Data Types: single | double
Complex Number Support: Yes

select — Cluster selector
logical vector

Cluster selector, specified as a logical vector with length equal to the number of
generalized eigenvalues. The generalized eigenvalues appear along the diagonal of AA-
λ*BB.
Data Types: logical

keyword — Eigenvalue region keyword
'lhp' | 'rhp' | 'udi' | 'udo'

Eigenvalue region keyword, specified as one of the options in this table.

Option Selected Region

(e = ordeig(AA,BB))
'lhp' Left-half plane (real(e) < 0)
'rhp' Right-half plane (real(e) >= 0)
'udi' Interior of unit disk (abs(e) < 1)
'udo' Exterior of unit disk (abs(e) >= 1)

clusters — Cluster indices
vector of positive integers

Cluster indices, specified as a vector of positive integers with length equal to the number
of eigenvalues. clusters assigns each eigenvalue returned by e = ordeig(AA,BB) to
a different cluster. All eigenvalues with the same index value in clusters form one
cluster.
Example: ordqz(AA,BB,Q,Z,[1 1 2 3 3]) groups five eigenvalues into three
clusters.
Data Types: single | double

1 Alphabetical List

1-10328

Output Arguments
AAS, BBS, QS, ZS — Reordered matrices
matrices

Reordered matrices, returned as matrices that satisfy QS*A*ZS = AAS and QS*B*ZS =
BBS.

QS and ZS are unitary, while AAS is quasitriangular on page 1-10329 and BBS is
triangular.

Definitions

Quasitriangular
An upper quasitriangular matrix can result from the Schur decomposition or generalized
Schur (QZ) decomposition of real matrices. These matrices are block upper triangular,
with 1-by-1 and 2-by-2 blocks along the diagonal.

The eigenvalues of these diagonal blocks are also the eigenvalues of the matrix. The 1-
by-1 blocks correspond to real eigenvalues, and the 2-by-2 blocks correspond to complex
conjugate eigenvalue pairs.

 ordqz

1-10329

Tips
• If AA has complex conjugate pairs (nonzero elements on the subdiagonal), then you

should move the pair to the same cluster. Otherwise, ordqz acts to keep the pair
together:

• If select is not the same for two eigenvalues in a conjugate pair, then ordqz
treats both as selected.

• If clusters is not the same for two eigenvalues in a conjugate pair, then ordqz
treats both as part of the cluster with larger index.

See Also
ordeig | ordschur | qz

Introduced before R2006a

1 Alphabetical List

1-10330

ordschur
Reorder eigenvalues in Schur factorization

Syntax
[US,TS] = ordschur(U,T,select)
[US,TS] = ordschur(U,T,keyword)
[US,TS] = ordschur(U,T,clusters)

Description
[US,TS] = ordschur(U,T,select) reorders the Schur factorization X = U*T*U'
produced by [U,T] = schur(X) and returns the reordered Schur matrix TS and the
orthogonal matrix US, such that X = US*TS*US'.

In this reordering, the selected cluster of eigenvalues appears in the leading (upper left)
diagonal blocks of the quasitriangular on page 1-10335 Schur matrix TS. The leading
columns of US span the corresponding invariant subspace. The logical vector select
specifies the selected cluster as e(select), where e = ordeig(T).

[US,TS] = ordschur(U,T,keyword) sets the selected cluster to include all
eigenvalues in the region specified by keyword.

[US,TS] = ordschur(U,T,clusters) reorders multiple clusters simultaneously.
ordschur sorts the specified clusters in descending order along the diagonal of TS, with
the cluster of highest index appearing in the upper left corner.

Examples

Reorder Schur Factorization

Compute the Schur factors of a matrix, then reorder the factors according to a specified
ordering of the eigenvalues.

 ordschur

1-10331

Find the Schur factorization of a matrix X. The Schur factorization produces an upper
quasitriangular matrix T and a unitary matrix U such that X = UTU*.

X = magic(6);
[U,T] = schur(X)

U = 6×6

 0.4082 -0.2887 0.4082 0.5749 0.5000 -0.0530
 0.4082 0.5774 0.4082 -0.3333 -0.0000 -0.4714
 0.4082 -0.2887 0.4082 -0.2416 -0.5000 0.5244
 0.4082 0.2887 -0.4082 0.5749 -0.5000 -0.0530
 0.4082 -0.5774 -0.4082 -0.3333 -0.0000 -0.4714
 0.4082 0.2887 -0.4082 -0.2416 0.5000 0.5244

T = 6×6

 111.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
 0 27.0000 -0.0000 -28.3164 -15.5885 -13.0454
 0 0 -27.0000 18.0000 22.0454 -12.7279
 0 0 0 9.7980 0.0000 6.9282
 0 0 0 0 -0.0000 0.0000
 0 0 0 0 0 -9.7980

Since T is triangular, the diagonal of T contains the eigenvalues of the original matrix X.

Reorder the Schur factorization so that the eigenvalues are in two clusters, with the
cluster of negative eigenvalues appearing first along the diagonal of TS.

[US,TS] = ordschur(U,T,'lhp')

US = 6×6

 0.4082 -0.2887 0.2746 0.4082 -0.4826 0.5244
 0.4082 -0.2887 0.2990 0.4082 0.5213 -0.4714
 0.4082 0.5774 -0.5736 0.4082 -0.0386 -0.0530
 -0.4082 0.2887 0.2075 0.4082 0.5151 0.5244
 -0.4082 0.2887 0.3662 0.4082 -0.4765 -0.4714
 -0.4082 -0.5774 -0.5736 0.4082 -0.0386 -0.0530

TS = 6×6

1 Alphabetical List

1-10332

 -27.0000 -19.0919 18.6997 0.0000 -9.7888 12.7279
 0 -0.0000 -0.3800 0.0000 -15.6493 15.5227
 0 0 -9.7980 -0.0000 -2.4773 8.7185
 0 0 0 111.0000 0.0000 0.0000
 0 0 0 0 27.0000 -26.3600
 0 0 0 0 0 9.7980

Input Arguments
U — Unitary matrix
matrix

Unitary matrix, specified as the matrix U returned by [U,T] = schur(X). The matrix U
satisfies the properties X = U*T*U' and U'*U = eye(size(X)).

If U and T do not form a valid Schur decomposition, then ordschur does not produce an
error and returns incorrect results.
Data Types: single | double
Complex Number Support: Yes

T — Schur matrix
matrix

Schur matrix, specified as the upper quasitriangular on page 1-10335 matrix T returned
by [U,T] = schur(X). The matrix T satisfies X = U*T*U'.

If U and T do not form a valid Schur decomposition, then ordschur does not produce an
error and returns incorrect results.
Data Types: single | double
Complex Number Support: Yes

select — Cluster selector
logical vector

Cluster selector, specified as a logical vector with length equal to the number of
eigenvalues. The eigenvalues appear along the diagonal of the matrix T produced by
[U,T] = schur(X).
Data Types: logical

 ordschur

1-10333

keyword — Eigenvalue region keyword
'lhp' | 'rhp' | 'udi' | 'udo'

Eigenvalue region keyword, specified as one of the options in this table.

Option Selected Region

(e = ordeig(T))
'lhp' Left-half plane (real(e) < 0)
'rhp' Right-half plane (real(e) >= 0)
'udi' Interior of unit disk (abs(e) < 1)
'udo' Exterior of unit disk (abs(e) >= 1)

clusters — Cluster indices
vector of positive integers

Cluster indices, specified as a vector of positive integers with length equal to the number
of eigenvalues. clusters assigns each eigenvalue returned by e = ordeig(T) to a
different cluster. All eigenvalues with the same index value in clusters form one cluster.
Example: ordschur(U,T,[1 1 2 3 3]) groups five eigenvalues into three clusters.
Data Types: single | double

Output Arguments
US, TS — Reordered matrices
matrix

Reordered matrices, returned as matrices that satisfy X = US*TS*US'.

US is a unitary matrix, and TS is quasitriangular on page 1-10335.

1 Alphabetical List

1-10334

Definitions

Quasitriangular
An upper quasitriangular matrix can result from the Schur decomposition or generalized
Schur (QZ) decomposition of real matrices. These matrices are block upper triangular,
with 1-by-1 and 2-by-2 blocks along the diagonal.

The eigenvalues of these diagonal blocks are also the eigenvalues of the matrix. The 1-
by-1 blocks correspond to real eigenvalues, and the 2-by-2 blocks correspond to complex
conjugate eigenvalue pairs.

Tips
• If T has complex conjugate pairs (nonzero elements on the subdiagonal), then you

should move the pair to the same cluster. Otherwise, ordschur acts to keep the pair
together:

• If select is not the same for two eigenvalues in a conjugate pair, then ordschur
treats both as selected.

• If clusters is not the same for two eigenvalues in a conjugate pair, then
ordschur treats both as part of the cluster with larger index.

See Also
ordeig | ordqz | schur

 ordschur

1-10335

Introduced before R2006a

1 Alphabetical List

1-10336

orient
Paper orientation for printing or saving

Syntax
orient ornt
orient(fig,ornt)

or = orient
or = orient(fig)

Description
orient ornt specifies the paper orientation to use when printing or saving the current
figure to a paged format, such as PDF. Specify the orientation as either portrait,
landscape, or tall. Figure property values related to printing, such as the
PaperPositionMode value, affect the behavior.

orient(fig,ornt) sets the paper orientation for the figure or Simulink model specified
by fig. Use single quotes around the orientation option, such as 'portrait'.

or = orient returns the paper orientation value for the current figure as either
'portrait', 'landscape', or 'tall'.

or = orient(fig) returns the paper orientation value for the figure or Simulink model
specified by fig.

Examples

Set Landscape Orientation with Current Figure Size

Create a figure with a surface plot and save the figure to a PDF format. Save the figure
with the same size that it appears on screen and use a landscape orientation for the page.

 orient

1-10337

fig = figure;
surf(peaks)
orient(fig,'landscape')
print(fig,'LandscapePage.pdf','-dpdf')

Set Landscape Orientation with Expanded Figure Size

Create a figure with a surface plot and save the figure to a PDF format. Use landscape
orientation for the page and expand the figure size to fill page.

fig = figure;
surf(peaks)
fig.PaperPositionMode = 'manual';
orient(fig,'landscape')
print(fig,'LandscapePage_ExpandedFigure.pdf','-dpdf')

Return Current Paper Orientation Value

Create a surface plot. Return the current paper orientation value for the figure.

figure
surf(peaks)
or = orient

or =

 'portrait'

Input Arguments
ornt — Paper orientation
portrait (default) | landscape | tall

Paper orientation, specified as one of the values in this table.

1 Alphabetical List

1-10338

Value Description
landscape Landscape orientation. Set the

PaperOrientation property to
'landscape'.

• If the PaperPositionMode property of
the figure is set to 'auto' (the default),
then print or save the figure using the
size of the figure on the screen.

• If the PaperPositionMode property of
the figure is set to 'manual', then
resize the figure to fit across the entire
page with a 0.25-inch margin. Set the
PaperPosition property accordingly.

tall Tall portrait orientation. Set the
PaperOrientation property to
'portrait' and resize the figure to fit
across the entire page with a 0.25-inch
margin. Set the PaperPosition property
accordingly.

portrait Portrait orientation. Set the
PaperOrientation property to
'portrait'.

• If the PaperPositionMode property of
the figure is set to 'auto', then print or
save the figure using the size of the
figure on the screen.

• If the PaperPositionMode property is
'manual', then set the
PaperPosition property based on the
default PaperType and
PaperOrientation values. For details,
see Effect of Default Values on
portrait option.

 orient

1-10339

Effect of Default Values on portrait Option

The default PaperType and PaperOrientation properties affect the result of the
portrait option in these ways.

Default Versus
Current Figure
PaperType Value

Default
PaperOrientation
Value

Current Figure
PaperOrientation
Value

Result

Same value 'portrait' Not applicable Position the figure on
the page using the
default
PaperPosition
value for figures. In
inches, it typically is
[0.25 2.5 8 6].

Same value 'landscape' Not applicable Position the figure on
the page using the
reverse of the default
PaperPosition
value for figures. In
inches, it typically is
[2.5 0.25 6 8].

Different values Not applicable 'portrait' Position the figure on
the page using the
current
PaperPosition
value for the figure.

Different values Not applicable 'landscape' Position the figure on
the page using the
reverse of the
current
PaperPosition
value for the figure,
such as[y x
height width].

fig — Target figure or Simulink model
figure object | Simulink model

1 Alphabetical List

1-10340

Target figure or Simulink model, specified as a figure object or Simulink model. If you do
not specify the figure or model, then orient uses the current figure.

See Also
print | printpreview

Introduced before R2006a

 orient

1-10341

orth
Orthonormal basis for range of matrix

Syntax
Q = orth(A)

Description
Q = orth(A) returns an orthonormal basis for the range on page 1-10344 of A. The
columns of Q are vectors, which span the range of A. The number of columns in Q is equal
to the rank on page 1-10344 of A.

Examples

Basis for Full Rank Matrix

Calculate and verify the orthonormal basis vectors for the range of a full rank matrix.

Define a matrix and find the rank.

A = [1 0 1;-1 -2 0; 0 1 -1];
r = rank(A)

r = 3

Since A is a square matrix of full rank, the orthonormal basis calculated by orth(A)
matches the matrix U calculated in the singular value decomposition, [U,S] =
svd(A,'econ'). This is because the singular values of A are all nonzero.

Calculate the orthonormal basis for the range of A using orth.

Q = orth(A)

Q = 3×3

1 Alphabetical List

1-10342

 -0.1200 -0.8097 0.5744
 0.9018 0.1531 0.4042
 -0.4153 0.5665 0.7118

The number of columns in Q is equal to rank(A). Since A is of full rank, Q and A are the
same size.

Verify that the basis, Q, is orthogonal and normalized within a reasonable error range.

E = norm(eye(r)-Q'*Q,'fro')

E = 1.0857e-15

The error is on the order of eps.

Basis for Rank Deficient Matrix

Calculate and verify the orthonormal basis vectors for the range of a rank deficient
matrix.

Define a singular matrix and find the rank.

A = [1 0 1; 0 1 0; 1 0 1];
r = rank(A)

r = 2

Since A is rank deficient, the orthonormal basis calculated by orth(A) matches only the
first r = 2 columns of matrix U calculated in the singular value decomposition, [U,S] =
svd(A,'econ'). This is because the singular values of A are not all nonzero.

Calculate the orthonormal basis for the range of A using orth.

Q = orth(A)

Q = 3×2

 -0.7071 0
 0 1.0000
 -0.7071 0

 orth

1-10343

Since A is rank deficient, Q contains one fewer column than A.

Input Arguments
A — Input matrix
matrix

Input matrix.
Data Types: single | double
Complex Number Support: Yes

Definitions

Range
The column space, or range, of a matrix A is the collection of all linear combinations of
the columns of A. Any vector, b, that is a solution to the linear equation, A*x = b, is
included in the range of A since you can also write it as a linear combination of the
columns of A.

Rank
The rank of a matrix is equal to the dimension of the range.

Algorithms
orth is obtained from U in the singular value decomposition, [U,S] = svd(A,'econ').
If r = rank(A), the first r columns of U form an orthonormal basis for the range of A.

1 Alphabetical List

1-10344

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code can return a different basis than MATLAB returns.
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
null | rank | svd

Introduced before R2006a

 orth

1-10345

outerjoin
Outer join between two tables or timetables

Syntax
C = outerjoin(A,B)
C = outerjoin(A,B,Name,Value)
[C,ia,ib] = outerjoin(___)

Description
C = outerjoin(A,B) creates the table or timetable, C, as the outer join between A and
B by matching up rows using all the variables with the same names as key variables on
page 1-10358. For example, if A has variables named X, Y, and Z, and B has variables W, X,
and Y, then C=outerjoin(A,B) uses X and Y as the key variables.

You can perform outer joins only on certain combinations of tables and timetables.

• If A is a table, then B must be a table. outerjoin returns C as a table.
• If A is a timetable, then B can be either a table or a timetable. outerjoin returns C as

a timetable for either combination of inputs.

The outer join includes the rows that match between A and B, and also unmatched rows
from either A or B, all with respect to the key variables. C contains all variables from both
A and B, including the key variables.

The vectors of row labels of A and B can be key variables. Row labels are the row names
of a table, or the row times of a timetable.

C = outerjoin(A,B,Name,Value) performs the outer-join operation with additional
options specified by one or more Name,Value pair arguments.

[C,ia,ib] = outerjoin(___) also returns index vectors, ia and ib, indicating the
correspondence between rows in C and those in A and B respectively. You can use this
syntax with any of the input arguments in the previous syntaxes.

1 Alphabetical List

1-10346

Examples

Outer-Join Operation of Tables with One Variable in Common

Create a table, A.

A = table([5;12;23;2;15;6],...
 {'cheerios';'pizza';'salmon';'oreos';'lobster';'pizza'},...
 'VariableNames',{'Age','FavoriteFood'},...
 'RowNames',{'Amy','Bobby','Holly','Harry','Marty','Sally'})

A=6×2 table
 Age FavoriteFood
 ___ ____________

 Amy 5 'cheerios'
 Bobby 12 'pizza'
 Holly 23 'salmon'
 Harry 2 'oreos'
 Marty 15 'lobster'
 Sally 6 'pizza'

Create a table, B, with one variable in common with A, called FavoriteFood.

B = table({'cheerios';'oreos';'pizza';'salmon';'cake'},...
 [110;160;140;367;243],...
 {'A-';'D';'B';'B';'C-'},...
 'VariableNames',{'FavoriteFood','Calories','NutritionGrade'})

B=5×3 table
 FavoriteFood Calories NutritionGrade
 ____________ ________ ______________

 'cheerios' 110 'A-'
 'oreos' 160 'D'
 'pizza' 140 'B'
 'salmon' 367 'B'
 'cake' 243 'C-'

Use the outerjoin function to create a new table, C, with data from tables A and B.

C = outerjoin(A,B)

 outerjoin

1-10347

C=7×5 table
 Age FavoriteFood_A FavoriteFood_B Calories NutritionGrade
 ___ ______________ ______________ ________ ______________

 NaN '' 'cake' 243 'C-'
 5 'cheerios' 'cheerios' 110 'A-'
 15 'lobster' '' NaN ''
 2 'oreos' 'oreos' 160 'D'
 12 'pizza' 'pizza' 140 'B'
 6 'pizza' 'pizza' 140 'B'
 23 'salmon' 'salmon' 367 'B'

Table C contains a separate variable for the key variable from A, called FavoriteFood_A,
and the key variable from B, called FavoriteFood_B.

Merge Key Variable Pair to Single Variable

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
 'VariableNames',{'Key1' 'Var1'})

A=5×2 table
 Key1 Var1
 ____ ____

 'a' 1
 'b' 2
 'c' 3
 'e' 11
 'h' 17

Create a table, B, with common values in the variable Key1 between tables A and B, but
also containing rows with values of Key1 not present in A.

B = table({'a','b','d','e'}',[4;5;6;7],...
 'VariableNames',{'Key1' 'Var2'})

B=4×2 table
 Key1 Var2

1 Alphabetical List

1-10348

 ____ ____

 'a' 4
 'b' 5
 'd' 6
 'e' 7

Use the outerjoin function to create a new table, C, with data from tables A and B.
Merge the key values into a single variable in the output table, C.

C = outerjoin(A,B,'MergeKeys',true)

C=6×3 table
 Key1 Var1 Var2
 ____ ____ ____

 'a' 1 4
 'b' 2 5
 'c' 3 NaN
 'd' NaN 6
 'e' 11 7
 'h' 17 NaN

Variables in table C that came from A contain null values in the rows that have no match
from B. Similarly, variables in C that came from B contain null values in those rows that
had no match from A.

Outer-Join Operation of Tables and Indices to Values

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
 'VariableNames',{'Key1' 'Var1'})

A=5×2 table
 Key1 Var1
 ____ ____

 'a' 1
 'b' 2

 outerjoin

1-10349

 'c' 3
 'e' 11
 'h' 17

Create a table, B, with common values in the variable Key1 between tables A and B, but
also containing rows with values of Key1 not present in A.

B = table({'a','b','d','e'}',[4;5;6;7],...
 'VariableNames',{'Key1' 'Var2'})

B=4×2 table
 Key1 Var2
 ____ ____

 'a' 4
 'b' 5
 'd' 6
 'e' 7

Use the outerjoin function to create a new table, C, with data from tables A and B.
Match up rows with common values in the key variable, Key1, but also retain rows whose
key values don’t have a match.

Also, return index vectors, ia and ib indicating the correspondence between rows in C
and rows in A and B respectively.

[C,ia,ib] = outerjoin(A,B)

C=6×4 table
 Key1_A Var1 Key1_B Var2
 ______ ____ ______ ____

 'a' 1 'a' 4
 'b' 2 'b' 5
 'c' 3 '' NaN
 '' NaN 'd' 6
 'e' 11 'e' 7
 'h' 17 '' NaN

ia = 6×1

 1

1 Alphabetical List

1-10350

 2
 3
 0
 4
 5

ib = 6×1

 1
 2
 0
 3
 4
 0

The index vectors ia and ib contain zeros to indicate the rows in table C that do not
correspond to rows in tables A or B, respectively.

Left Outer-Join Operation of Tables and Indices to Values

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
 'VariableNames',{'Key1' 'Var1'})

A=5×2 table
 Key1 Var1
 ____ ____

 'a' 1
 'b' 2
 'c' 3
 'e' 11
 'h' 17

Create a table, B, with common values in the variable Key1 between tables A and B, but
also containing rows with values of Key1 not present in A.

B = table({'a','b','d','e'}',[4;5;6;7],...
 'VariableNames',{'Key1' 'Var2'})

 outerjoin

1-10351

B=4×2 table
 Key1 Var2
 ____ ____

 'a' 4
 'b' 5
 'd' 6
 'e' 7

Use the outerjoin function to create a new table, C, with data from tables A and B.
Ignore rows in B whose key values do not match any rows in A.

Also, return index vectors, ia and ib indicating the correspondence between rows in C
and rows in A and B respectively.

[C,ia,ib] = outerjoin(A,B,'Type','left')

C=5×4 table
 Key1_A Var1 Key1_B Var2
 ______ ____ ______ ____

 'a' 1 'a' 4
 'b' 2 'b' 5
 'c' 3 '' NaN
 'e' 11 'e' 7
 'h' 17 '' NaN

ia = 5×1

 1
 2
 3
 4
 5

ib = 5×1

 1
 2
 0
 4
 0

1 Alphabetical List

1-10352

All values of ia are nonzero indicating that all rows in C have corresponding rows in A.

Outer-Join Operation of Timetables

Create two timetables, A and B. They have some row times in common, but each also
includes row times that are not in the other timetable.

A = timetable(seconds([1;2;4;6]),[1 2 3 11]')

A=4×2 timetable
 Time Var1
 _____ ____

 1 sec 1
 2 sec 2
 4 sec 3
 6 sec 11

B = timetable(seconds([2;4;6;7]),[4 5 6 7]')

B=4×2 timetable
 Time Var1
 _____ ____

 2 sec 4
 4 sec 5
 6 sec 6
 7 sec 7

Combine A and B with an outer join. C matches up the rows with common row times, but
also includes the rows that do not have matches.

C = outerjoin(A,B)

C=5×3 timetable
 Time Var1_A Var1_B
 _____ ______ ______

 1 sec 1 NaN
 2 sec 2 4

 outerjoin

1-10353

 4 sec 3 5
 6 sec 11 6
 7 sec NaN 7

Combine A and B, but ignore rows in B whose row times do not match any row times in A.

D = outerjoin(A,B,'Type','left')

D=4×3 timetable
 Time Var1_A Var1_B
 _____ ______ ______

 1 sec 1 NaN
 2 sec 2 4
 4 sec 3 5
 6 sec 11 6

Input Arguments
A,B — Input tables
tables | timetables

Input tables, specified as tables or as timetables.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Keys',2 uses the second variable in A and the second variable in B as key
variables.

Keys — Variables to use as keys
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

1 Alphabetical List

1-10354

Variables to use as keys, specified as the comma-separated pair consisting of 'Keys' and
a positive integer, vector of positive integers, character vector, cell array of character
vectors, string array, or logical vector.

You cannot use the 'Keys' name-value pair argument with the 'LeftKeys' and
'RightKeys' name-value pair arguments.

A vector of row labels can be a key, alone or in combination with other key variables. For
more information, see the “Tips” on page 1-10359 section.
Example: 'Keys',[1 3] uses the first and third variables in A and B as key variables.
Example: 'Keys',{'X','Y'} uses the variables named X and Y in A and B as key
variables.
Example: 'Keys','Row' uses the vectors of row names of A and B as key variables, if
both A and B are tables with row names.

LeftKeys — Variables to use as keys in A
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys in A, specified as the comma-separated pair consisting of
'LeftKeys' and a positive integer, vector of positive integers, character vector, cell
array of character vectors, string array, or logical vector.

You must use the 'LeftKeys' name-value pair argument in conjunction with the
'RightKeys' name-value pair argument. 'LeftKeys' and 'RightKeys' both must
specify the same number of key variables. outerjoin pairs key values based on their
order.

A vector of row labels can be a key, alone or in combination with other key variables. For
more information, see the “Tips” on page 1-10359 section.
Example: 'LeftKeys',1 uses only the first variable in A as a key variable.

RightKeys — Variables to use as keys in B
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys in B, specified as the comma-separated pair consisting of
'RightKeys' and a positive integer, vector of positive integers, character vector, cell
array of character vectors, string array, or logical vector.

 outerjoin

1-10355

You must use the 'RightKeys' name-value pair argument in conjunction with the
'LeftKeys' name-value pair argument. 'LeftKeys' and 'RightKeys' both must
specify the same number of key variables. outerjoin pairs key values based on their
order.

A vector of row labels can be a key, alone or in combination with other key variables. For
more information, see the “Tips” on page 1-10359 section.
Example: 'RightKeys',3 uses only the third variable in B as a key variable.

MergeKeys — Merge keys flag
false (default) | true | 0 | 1

Merge keys flag, specified as the comma-separated pair consisting of 'MergeKeys' and
either false, true, 0 or 1.

false outerjoin includes two separate variables in the output table, C,
for each key variable pair from tables A and B.

This is the default behavior.
true outerjoin includes a single variable in the output table, C, for

each key variable pair from tables A and B.

outerjoin creates the single variable by merging the key values
from A and B, taking values from A where a corresponding row
exists in A, and taking values from B otherwise.

• If you specify 'LeftVariables' or 'RightVariables' to
include only one key from a key variable pair, then outerjoin
includes the merged key—containing values from both key
variables—in the output table.

• If you specify 'LeftVariables' and 'RightVariables' to
exclude both keys from a key variable pair, then outerjoin
does not include the merged key variable in the output table.

LeftVariables — Variables from A to include in C
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables from A to include in C, specified as the comma-separated pair consisting of
'LeftVariables' and a positive integer, vector of positive integers, character vector,
cell array of character vectors, string array, or logical vector.

1 Alphabetical List

1-10356

You can use 'LeftVariables' to include or exclude key variables as well as nonkey
variables from the output, C.

By default, outerjoin includes all variables from A.

RightVariables — Variables from B to include in C
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables from B to include in C, specified as the comma-separated pair consisting of
'RightVariables' and a positive integer, vector of positive integers, character vector,
cell array of character vectors, string array, or logical vector.

You can use 'RightVariables' to include or exclude key variables as well as nonkey
variables from the output, C.

By default, outerjoin includes all the variables from B.

Type — Type of outer join operation
'full' (default) | 'left' | 'right'

Type of outer-join operation, specified as the comma-separated pair consisting of 'Type'
and either 'full', 'left', or 'right'.

• For a left outer join, C contains rows corresponding to key values in A that do not
match any values in B, but not vice-versa.

• For a right outer join, C contains rows corresponding to key values in B that do not
match any values in A, but not vice-versa.

By default, outerjoin does a full outer join and includes unmatched rows from both A
and B.

Output Arguments
C — Outer join from A and B
table

Outer join from A and B, returned as a table. The output table, C, contains one row for
each pair of rows in tables A and B that share the same combination of key values. If A
and B contain variables with the same name, outerjoin adds a unique suffix to the

 outerjoin

1-10357

corresponding variable names in C. Variables in C that came from A contain null values in
those rows that had no match from B. Similarly, variables in C that came from B contain
null values in those rows that had no match from A.

In general, if there are m rows in table A and n rows in table B that all contain the same
combination of values in the key variables, table C contains m*n rows for that
combination. C also contains rows corresponding to key value combinations in one input
table that do not match any row the other input table.

C contains the horizontal concatenation of A(ia,LeftVars) and B(ib,RightVars)
sorted by the values in the key variables. By default, LeftVars consists of all the
variables of A, and RightVars consists of all the from B. Otherwise, LeftVars consists
of the variables specified by the 'LeftVariables' name-value pair argument, and
RightVars consists of the variables specified by the 'RightVariables' name-value
pair argument.

You can store additional metadata such as descriptions, variable units, variable names,
and row names in the table. For more information, see the Properties section of table.

ia — Index to A
column vector

Index to A, returned as a column vector. Each element of ia identifies the row in table A
that corresponds to that row in the output table, C. The vector ia contains zeros to
indicate the rows in C that do not correspond to rows in A.

ib — Index to B
column vector

Index to B, returned as a column vector. Each element of ib identifies the row in table B
that corresponds to that row in the output table, C. The vector ib contains zeros to
indicate the rows in C that do not correspond to rows in B.

Definitions

Key Variable
Variable used to match and combine data between the input tables, A and B.

1 Alphabetical List

1-10358

Tips
The vector of row labels from an input table or timetable can be a key, alone or in
combination with other key variables. Row labels are the row names of a table or the row
times of a timetable. To use this vector as a key, specify it as 'Row' (for the row names of
a table), as the name of a timetable vector of row times, or as the value of
T.Properties.DimensionNames{1}, where T is the table or timetable.

In general, outerjoin copies row labels from the input table A to the output table C.

• If A has no row labels, then C has no row labels.
• If A has row labels, then outerjoin copies row labels from A to create row labels in

C.

• If you specify row labels from both A and B as a key pair, then outerjoin merges
row labels from B into row labels of C where needed.

• If you specify row labels of A as a key, but do not specify row labels of B as the
matching key, then outerjoin creates default row labels in C where needed.

• If both A and B are tables, but you do not specify either input table’s row names as
a key, then outerjoin does not create row names in C.

You cannot perform an outer join using the row labels of A as the left key and a variable of
B as the right key. To perform the outer join, convert the row labels of A to a table variable
and use the new table variable as a key.

See Also
innerjoin | join

Introduced in R2013b

 outerjoin

1-10359

pack
Consolidate workspace memory

Syntax
pack
pack filename
pack('filename')

Description
pack frees up needed space by reorganizing information so that it only uses the minimum
memory required. All variables from your base and global workspaces that are less than
2GB are preserved. Any persistent variables that are defined at the time are set to their
default value (the empty matrix, []).

Caution The pack function is unable to preserve variables larger than 2GB. It clears
them from your workspace.

Do not use the pack function with objects that define events and listeners. The pack
function causes the destructor of any listeners defined for the objects in the workspace.
For information on restoring listeners when saving objects, see “Restore Listeners”.

The MATLAB software temporarily stores your workspace data in a file called
tp######.mat (where ###### is a numeric value) that is located in your temporary
folder. (You can use the command dir(tempdir) to see the files in this folder).

pack filename frees space in memory, temporarily storing workspace data in a file
specified by filename. This file resides in your current working folder and, unless
specified otherwise, has a .mat file extension.

pack('filename') is the function form of pack.

1 Alphabetical List

1-10360

Examples
Change the current folder to one that is writable, run pack, and return to the previous
folder.

cwd = pwd;
cd(tempdir);
pack
cd(cwd)

Tips
You can only run pack from the MATLAB command line.

If you specify a filename argument, that file must reside in a folder for which you have
write permission.

The pack function does not affect the amount of memory allocated to the MATLAB
process. You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended MATLAB sessions
may cause memory to become fragmented. When memory is fragmented, there may be
plenty of free space, but not enough contiguous memory to store a new large variable.

If you get the Out of memory message from MATLAB, the pack function may find you
some free memory without forcing you to delete variables.

The pack function frees space by

• Saving all variables in the base and global workspaces to a temporary file.
• Clearing all variables and functions from memory.
• Reloading the base and global workspace variables back from the temporary file and

then deleting the file.

If you use pack and there is still not enough free memory to proceed, you must clear
some variables. If you run out of memory often, you can allocate larger matrices earlier in
the MATLAB session and use these system-specific tips.

• When running MATLAB on The Open Group UNIX platforms, ask your system manager
to increase your swap space.

 pack

1-10361

• On Microsoft Windows platforms, increase virtual memory using the Windows Control
Panel.

To maintain persistent variables when you run pack, use mlock in the function.

See Also
clear | memory

Introduced before R2006a

1 Alphabetical List

1-10362

pad
Add leading or trailing characters to strings

Syntax
newStr = pad(str)
newStr = pad(str,numberOfCharacters)
newStr = pad(str,side)
newStr = pad(str,numberOfCharacters,side)
newStr = pad(___ ,padCharacter)

Description
newStr = pad(str) adds space characters to the ends of the strings in str, except for
the longest one.

• If str is a string array or cell array of character vectors with multiple elements, then
pad adds space characters. All of the strings in newStr are as long as the longest
element in str.

• If str is a character vector, or a string array or cell array of character vectors with
one element, then pad returns str unaltered.

newStr = pad(str,numberOfCharacters) adds space characters so the strings in
newStr have the length specified by numberOfCharacters. If any strings in str have
more characters than numberOfCharacters, then pad does not modify them.

newStr = pad(str,side) adds space characters to the side specified by side. The
side argument can be 'left', 'right', or 'both'.

newStr = pad(str,numberOfCharacters,side) adds space characters to the side
specified by side, up to the length specified by numberOfCharacters.

newStr = pad(___ ,padCharacter) pads strings with the character specified by
padCharacter instead of the space character. You can use any of the input arguments in
the previous syntaxes.

 pad

1-10363

If str contains only one piece of text, then pad(str,padCharacter) returns str
unaltered.

Examples

Pad String Array with Spaces

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["Mercury","Gemini","Apollo";
 "Skylab","Skylab B","ISS"]

str = 2x3 string array
 "Mercury" "Gemini" "Apollo"
 "Skylab" "Skylab B" "ISS"

Pad the elements of str with space characters.

newStr = pad(str)

newStr = 2x3 string array
 "Mercury " "Gemini " "Apollo "
 "Skylab " "Skylab B" "ISS "

Pad String Array to Specified Length

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["Mercury","Gemini","Apollo";
 "Skylab","Skylab B","ISS"]

str = 2x3 string array
 "Mercury" "Gemini" "Apollo"
 "Skylab" "Skylab B" "ISS"

Specify the length so that even the longest string is padded with spaces.

1 Alphabetical List

1-10364

newStr = pad(str,12)

newStr = 2x3 string array
 "Mercury " "Gemini " "Apollo "
 "Skylab " "Skylab B " "ISS "

Pad Strings to Different Sides

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["Mary";"Elizabeth";"James"]

str = 3x1 string array
 "Mary"
 "Elizabeth"
 "James"

Pad the strings to the left.

newStr = pad(str,'left')

newStr = 3x1 string array
 " Mary"
 "Elizabeth"
 " James"

Pad both sides.

newStr = pad(str,'both')

newStr = 3x1 string array
 " Mary "
 "Elizabeth"
 " James "

 pad

1-10365

Pad String Array with Different Character

Create a string array representing numbers and pad the strings with leading zeroes
instead of space characters.

A = [69.45 31.71 95.36 3.44 7.82];
A = A';
str = string(A)

str = 5x1 string array
 "69.45"
 "31.71"
 "95.36"
 "3.44"
 "7.82"

newStr = pad(str,7,'left','0')

newStr = 5x1 string array
 "0069.45"
 "0031.71"
 "0095.36"
 "0003.44"
 "0007.82"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

numberOfCharacters — Total number of characters in output strings
positive integer

Total number of characters in output strings, specified as a positive integer.

1 Alphabetical List

1-10366

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

side — Side of string to pad
'right' (default) | 'left' | 'both'

Side of string to pad, specified as 'left', 'right', or 'both'. The default behavior is
to pad the right side of the string.
Data Types: char | string

padCharacter — Character to pad with
' ' (default) | character | string

Character to pad with, specified as a character or as a string that contains one character.
Data Types: char | string

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors. str and newStr are the same data type.
Data Types: string | char | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

If you do not specify numberOfCharacters, then a full pass through the data is required
to determine it.

For more information, see “Tall Arrays”.

 pad

1-10367

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
erase | join | replace | split | strip | strsplit

Topics
“Create String Arrays”
“Search and Replace Text”

Introduced in R2016b

1 Alphabetical List

1-10368

padecoef
Padé approximation of time delays

Syntax
[num,den] = padecoef(T,N)

Description
[num,den] = padecoef(T,N) returns the Nth-order Padé Approximation on page 1-
10370 of the continuous-time delay exp(-T*s) in transfer function form. The row vectors
num and den contain the numerator and denominator coefficients in descending powers
of s. Both are Nth-order polynomials.

Examples

Second Order Pade Approximation

Use padecoef to estimate the value of e−2s to second order.

[a,b] = padecoef(2,2)

a = 1×3

 1 -3 3

b = 1×3

 1 3 3

The result indicates that the second order approximation is

 padecoef

1-10369

f (s) ≈ a
b = s2− 3s + 3

s2 + 3s + 3
.

Compare the approximation to the actual value at s = 0 . 25.

f_approx = @(s) (s^2 - 3*s+3)/(s^2 + 3*s + 3);
f_actual = @(s) exp(-2*s);
abs(f_approx(0.25) - f_actual(0.25))

ans = 2.6717e-05

Input Arguments
T — Time delay
scalar

Time delay, specified as a real numeric scalar.
Data Types: single | double

N — Order of approximation
scalar

Order of approximation, specified as a real numeric scalar.
Data Types: single | double

Definitions
Padé Approximation
The Laplace transform of a time delay of T seconds is exp(-Ts). The padecoef function
approximates this exponential transfer function by a rational transfer function using Padé
approximation formulas. [1]

References
[1] Golub, G. H. and C. F. Van Loan. Matrix Computations. 4th ed. Johns Hopkins

University Press, Baltimore: 2013, pp. 530–532.

1 Alphabetical List

1-10370

See Also
pade

Introduced in R2008a

 padecoef

1-10371

pagesetupdlg
Page setup dialog box

Syntax
dlg = pagesetupdlg(fig)

Note pagesetupdlg is no longer supported. Use printpreview instead.

Description
dlg = pagesetupdlg(fig) creates a dialog box from which a set of page layout
properties for the figure window, fig, can be set.

pagesetupdlg implements the "Page Setup..." option in the Figure File Menu.

pagesetupdlg supports setting the layout for a single figure. fig must be a single figure
handle, not a vector of figures or a Simulink diagram.

See Also
printdlg | printopt | printpreview

Introduced before R2006a

1 Alphabetical List

1-10372

pan
Pan view of graph interactively

Syntax
pan on
pan xon
pan yon
pan off
pan
pan(fig,...)
h = pan(fig)

Description
pan on turns on pan mode for axes in the current figure.

pan xon turns on pan mode and enables panning only in the x direction for axes in a 2-D
view in the current figure.

pan yon turns on pan mode and enables panning only in the y direction for axes in a 2-D
view in the current figure.

pan off turns off pan mode for axes in the current figure. Starting in R2018b, some pan
interactions are enabled by default, regardless of the pan mode. If you want to disable
these default interactions, then use the disableDefaultInteractivity function.

pan toggles the pan mode for axes in the current figure to on or off.

pan(fig,...) sets the pan mode for axes in the specified figure.

h = pan(fig) returns the figure's pan mode object for the figure fig for you to
customize the mode's behavior.

 pan

1-10373

Using Pan Mode Objects
Access the following properties of pan mode objects.

• Enable 'on'|'off' — Specifies whether this figure mode is currently enabled on
the figure.

• Motion 'horizontal'|'vertical'|'both' — The type of panning enabled for
the figure. This property only affects axes in a 2-D view ([0 90]).

• FigureHandle <handle> — The associated figure handle, a read-only property that
cannot be set.

Pan Mode Callbacks
You can program the following callbacks for pan mode operations.

• ButtonDownFilter <function_handle> — Function to intercept ButtonDown
events

The application can inhibit the panning operation under circumstances the
programmer defines, depending on what the callback returns. The input function
handle should reference a function with two implicit arguments (similar to graphics
object callbacks):

function [res] = myfunction(obj,event_obj)
% obj handle to the object clicked on
% event_obj event data (empty in this release)
% res [output] a logical flag to determine whether the pan
% operation should take place(for 'res' set to 'false')
% or the 'ButtonDownFcn' property of the object should
% take precedence (when 'res' is 'true')

• ActionPreCallback <function_handle> — Function to execute before panning

Set this callback to if you need to execute code when a pan operation begins. The
function handle should reference a function with two implicit arguments (similar to
graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data struct has the following field:

1 Alphabetical List

1-10374

Axes The handle of the axes that is being panned
• ActionPostCallback <function_handle> — Function to execute after panning

Set this callback if you need to execute code when a pan operation ends. The function
handle should reference a function with two implicit arguments (similar to graphics
object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data
% (same as the event data of the
% 'ActionPreCallback' callback)

Pan Mode Utility Functions
The following functions in pan mode query and set certain of its properties.

• flags = isAllowAxesPan(h,ax) — Function querying permission to pan axes.

Calling the function isAllowAxesPan on the pan object, h, with a vector of axes
handles, ax, as input returns a logical array of the same dimension as the axes handle
vector, which indicates whether a pan operation is permitted on the axes objects.

• setAllowAxesPan(h,ax,flag) — Function to set permission to pan axes.

Calling the function setAllowAxesPan on the pan object, h, with a vector of axes
handles, ax, and a logical scalar, flag, either allows or disallows a pan operation on
the axes objects.

• cn = getAxesPanConstraint(h,ax) — Function to get constraints of pan
operations.

Calling the function getAxesPanConstraint on the pan object, h, with an axes
object, ax, as input returns the constraint for the axes. The returned constraint is one
of these values: 'x', 'y', 'z', 'xy', 'xz', 'yz', or 'unconstrained'.

• setAxesPanConstraint(h,ax,cnstr) — Function to set constraints of pan
operations.

Calling the function setAxesPanConstraint on the pan object, h, with an axes
object, ax, and a constraint option, cnstr, sets the constraint for the axes. Specify the
constraint as one of these values: 'x', 'y', 'z', 'xy', 'xz', 'yz', or
'unconstrained'.

 pan

1-10375

• sty = getAxes3DPanAndZoomStyle(h,ax) — Function to get style of pan
operations.

Calling the function getAxes3DPanAndZoomStyle on the pan object, h, with a vector
of axes handles, ax, as input returns the style of panning for each axes. The returned
value for each axes is either 'limits' or 'camera'.

• setAxes3DPanAndZoomStyle(h,ax,style) — Function to set style of pan
operations.

Calling the function setAxes3DPanAndZoomStyle on the pan object, h, with a vector
of axes handles, ax, and a character array, style, sets the style of panning on each
axes. Specify the style as either 'limits' or 'camera'.

• cns = getAxesPanMotion(h,ax) — Function to get constraints of pan operations
(not recommended, use getAxesPanConstraint).

Calling the function getAxesPanMotion on the pan object, h, with a vector of axes
objects, ax, as input returns a character cell array of the same dimension as ax, which
indicates the constraint for each axes. The returned value for each axes is
'horizontal', 'vertical' or 'both'.

• setAxesPanMotion(h,ax,constraints) — Function to set constraints of pan
operations (not recommended, use setAxesPanConstraint).

Calling the function setAxesPanMotion on the pan object, h, with a vector of axes
objects, ax, and a character array, constraints, sets the constraint for each axes.
Specify the constraints as 'horizontal', 'vertical' or 'both'.

Examples
Example 1 — Entering Pan Mode
Plot a graph and turn on Pan mode:

plot(magic(10));
pan on
% pan on the plot

Example 2 — Constrained Pan
Constrain pan to x-axis using set:

1 Alphabetical List

1-10376

plot(magic(10));
h = pan;
h.Motion = 'horizontal';
h.Enable = 'on';
% pan on the plot in the horizontal direction.

Example 3 — Constrained Pan in Subplots
Create four axes as subplots and give each one a different panning behavior:

ax1 = subplot(2,2,1);
plot(1:10);
h = pan;
ax2 = subplot(2,2,2);
plot(rand(3));
setAllowAxesPan(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesPanMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);
contour(peaks);
setAxesPanMotion(h,ax4,'vertical');
% pan on the plots.

Example 4 — Coding a ButtonDown Callback
Create a buttonDown callback for pan mode objects to trigger. Copy the following code to
a new file, execute it, and observe panning behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
hLine.ButtonDownFcn = 'disp(''This executes'')';
hLine.Tag = 'DoNotIgnore';
h = pan;
h.ButtonDownFilter = @mycallback;
h.Enable = 'on';
% mouse click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then
% return true.

 pan

1-10377

% Indicate what the target is.
disp(['Clicked ' obj.Type ' object'])
objTag = obj.Tag;
if strcmpi(objTag,'DoNotIgnore')
 flag = true;
else
 flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior
Create callbacks for pre- and post-ButtonDown events for pan mode objects to trigger.
Copy the following code to a new file, execute it, and observe panning behavior:

function demo
% Listen to pan events
plot(1:10);
h = pan;
h.ActionPreCallback = @myprecallback;
h.ActionPostCallback = @mypostcallback;
h.Enable = 'on';
%
function myprecallback(obj,evd)
disp('A pan is about to occur.');
%
function mypostcallback(obj,evd)
newLim = evd.Axes.XLim;
msgbox(sprintf('The new X-Limits are [%.2f,%.2f].',newLim));

Example 6 — Creating a Context Menu for Pan Mode
Coding a context menu that lets the user to switch to zoom mode by right-clicking:

figure
plot(magic(10));
hCM = uicontextmenu;
hMenu = uimenu('Parent',hCM,'Label','Switch to zoom',...
 'Callback','zoom(gcbf,''on'')');
hPan = pan(gcf);
hPan.UIContextMenu = hCM;
pan('on')

You cannot add items to the built-in pan context menu, but you can replace it with your
own.

1 Alphabetical List

1-10378

Tips
You can create a pan mode object once and use it to customize the behavior of different
axes, as Example 3 illustrates. You can also change its callback functions on the fly.

Note Do not change figure callbacks within an interactive mode. While a mode is
active (when panning, zooming, etc.), you will receive a warning if you attempt to change
any of the figure's callbacks and the operation will not succeed. The one exception to this
rule is the figure WindowButtonMotionFcn callback, which can be changed from within
a mode. Therefore, if you are creating a UI that updates a figure's callbacks, the UI
should some keep track of which interactive mode is active, if any, before attempting to
do this.

When you assign different pan behaviors to different subplot axes via a mode object and
then link them using the linkaxes function, the behavior of the axes you manipulate
with the mouse carries over to the linked axes, regardless of the behavior you previously
set for the other axes.

Alternatives
Use the Pan tool on the toolbar to enable and disable pan mode on a plot, or select Pan
from the figure's Tools menu.

See Also
linkaxes | rotate3d | zoom

Topics
“Interactively Explore Plotted Data”

Introduced before R2006a

 pan

1-10379

panInteraction
Pan interaction

Description
A pan interaction allows you to pan within a chart without having to select any buttons in
the axes toolbar. To enable panning, set the Interactions property of the axes to a
panInteraction object. When this interaction is enabled, you can pan by dragging
within the chart.

To enable multiple interactions, set the Interactions property to an array of objects.

Creation

Syntax
p = panInteraction
p = panInteraction('Dimensions',d)

Description
p = panInteraction creates a pan interaction object.

p = panInteraction('Dimensions',d) sets the Dimensions property. Use this
property to constrain panning to specific dimensions. For example, p =
panInteraction('Dimensions','x') constrains panning to the x-dimension.

Properties
Dimensions — Dimensions
'xyz' (default) | 'xy' | 'yz' | 'xz' | 'x' | 'y' | 'z'

Dimensions to allow panning, specified as one of these values:

1 Alphabetical List

1-10380

• 'xyz' — Allows panning in all dimensions.
• 'xy' — Allows panning in the x and y dimensions only.
• 'yz' — Allows panning in the y and z dimensions only.
• 'xz' — Allows panning in the x and z dimensions only.
• 'x' — Allows panning in the x dimension only.
• 'y' — Allows panning in the y dimension only.
• 'z' — Allows panning in the z dimension only.

Examples

Axes with Pan and Data Tip Interactions

Create a surface plot. Get the current axes and replace the default interactions with the
pan and data tip interactions. Then hover over the surface to display data tips. Click and
drag or tap and drag to pan.

surf(peaks)
ax = gca;
ax.Interactions = [panInteraction dataTipInteraction];

 panInteraction

1-10381

Restrict Panning to X-Dimension

Plot a set of x and y values, and adjust the x-axis limits to narrow the view of the plot.
Then replace the default set of interactions with a pan interaction that is restricted to the
x-dimension. Drag within the plot to pan. Notice that you cannot pan vertically.

x = linspace(-500,500,5000);
y = sin(x)./x;
plot(x,y)
xlim([-50 50])
ax = gca;
ax.Interactions = panInteraction('Dimensions','x');

1 Alphabetical List

1-10382

Limitations
The panInteraction function is not supported in the Live Editor.

Tips
In most cases, the axes have a default set of interactions which depend on the type of
chart you are displaying. You can replace the default set with a new set of interactions,
but you cannot access or modify any of the interactions in the default set.

 panInteraction

1-10383

See Also
dataTipInteraction | disableDefaultInteractivity |
enableDefaultInteractivity | regionZoomInteraction | rotateInteraction |
rulerPanInteraction | zoomInteraction

Topics
“Control Chart Interactivity”

Introduced in R2019a

1 Alphabetical List

1-10384

ParallelCoordinatesPlot Properties
Control parallel coordinates plot appearance and behavior

Description
ParallelCoordinatesPlot properties control the appearance and behavior of a
ParallelCoordinatesPlot object. By changing property values, you can modify
certain aspects of the plot display. For example, you can add a title:

p = parallelplot(rand(10,4));
p.Title = 'My Title';

Properties
Labels

Title — Plot title
'' (default) | character vector | string scalar

Plot title, specified as a character vector or string scalar. By default, the plot has no title.
Example: p = parallelplot(__,'Title','My Title Text')
Example: p.Title = 'My Title Text'

CoordinateLabel — Horizontal axis label
'' (default) | character vector | string scalar

Horizontal axis label for describing the set of coordinate variables, specified as a
character vector or string scalar. The CoordinateLabel value appears below the
CoordinateTickLabels value in the plot.
Example: p = parallelplot(__,'CoordinateLabel','Measurements')
Example: p.CoordinateLabel = 'Measurements'

CoordinateTickLabels — Coordinate variable labels
string array | cell array of character vectors

 ParallelCoordinatesPlot Properties

1-10385

Coordinate variable labels, specified as a string array or cell array of character vectors.
Each coordinate tick label appears directly below the ruler displaying the values for that
coordinate variable.
Example: p = parallelplot(__,'CoordinateTickLabels',
{'Height','Age','Smoker'})

Example: p.CoordinateTickLabels = {'Height','Age','Smoker'}

DataLabel — Vertical axis label
'' (default) | character vector | string scalar

Vertical axis label for describing the rows of the data in SourceTable or Data, specified
as a character vector or string scalar.
Example: p = parallelplot(__,'DataLabel','Patients')
Example: p.DataLabel = 'Patients'

LegendTitle — Legend title
character vector | string scalar

Legend title, specified as a character vector of string scalar. Use '' for no title.
Example: p = parallelplot(__,'LegendTitle','My Title Text')
Example: p.LegendTitle = 'My Title Text'

LegendVisible — Visibility of legend
'on' | 'off'

Visibility of legend, specified as 'on' or 'off'. Set LegendVisible to 'on' to display
the legend or 'off' to hide the legend.

If GroupData is empty ([]), then parallelplot does not display a legend. Otherwise,
parallelplot displays a legend by default.

In the legend, parallelplot displays the group names in order of their first appearance
in GroupData.
Example: p = parallelplot(__,'LegendVisible','off')
Example: p.LegendVisible = 'off'

1 Alphabetical List

1-10386

Data Display

DataNormalization — Normalization method for coordinates
'range' (default) | 'none' | 'zscore' | 'scale' | 'center' | 'norm'

Normalization method for coordinates with numeric values, specified as one of the
following options.

Method Description
'range' Display raw data along coordinate rulers

that have independent minimum and
maximum limits

'none' Display raw data along coordinate rulers
that have the same minimum and maximum
limits

'zscore' Display z-scores (with a mean of 0 and a
standard deviation of 1) along each
coordinate ruler

'scale' Display values scaled by standard deviation
along each coordinate ruler

'center' Display data centered to have a mean of 0
along each coordinate ruler

'norm' Display 2-norm values along each
coordinate ruler

For more information about these methods, see normalize.

For a coordinate variable that is a logical vector, datetime array, duration array,
categorical array, string array, or cell array of character vectors, parallelplot evenly
distributes the unique possible values along the coordinate ruler, regardless of the
normalization method.
Example: p = parallelplot(__,'DataNormalization','none')
Example: p.DataNormalization = 'zscore'

Jitter — Data displacement distance
0.1 (default) | numeric scalar in the interval [0,1]

Data displacement distance along the coordinate rulers, specified as a numeric scalar in
the interval [0,1]. The Jitter value determines the maximum distance to displace plot

 ParallelCoordinatesPlot Properties

1-10387

lines from their true value along the coordinate rulers, where the displacement is a
uniform random amount. If you set the Jitter property to 1, then adjacent jitter regions
just touch. Set the Jitter property to 0 to display the true data values.

Some amount of jitter is particularly helpful for visualizing categorical data because the
jittering enables you to distinguish between plot lines more easily. However, the Jitter
value affects all coordinate variables, including numeric variables.
Example: p = parallelplot(__,'Jitter',0.5)
Example: p.Jitter = 0.2

Color and Styling

Color — Group color
character vector | string array | cell array of character vectors | matrix of RGB values

Group color, specified in one of these forms:

• Character vector designating a color name, short name, or hexadecimal color code. A
hexadecimal color code starts with a hash symbol (#) and is followed by three or six
hexadecimal digits, which can range from 0 to F. The values are not case sensitive.
Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

• String array or cell array of character vectors designating one or more color names,
short names, or hexadecimal color codes.

• Three-column matrix of RGB values in the range [0,1]. The three columns represent
the R value, G value, and B value.

Choose among these predefined colors, their equivalent RGB triplets, and their
hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

1 Alphabetical List

1-10388

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

By default, parallelplot assigns a maximum of seven unique group colors. When the
total number of groups exceeds the number of specified colors, parallelplot cycles
through the specified colors.
Example: p = parallelplot(__,'Color',{'blue','black','green'})
Example: p.Color = [0 0 1; 0 0.5 0.5; 0.5 0.5 0.5]
Example: p.Color = {'#EDB120','#77AC30','#7E2F8E'}

LineStyle — Group line style
character vector | string array | cell array of character vectors

Group line style, specified in one of these forms:

• Character vector designating one line style
• String array or cell array of character vectors designating one or more line styles

Choose among these line style options.

 ParallelCoordinatesPlot Properties

1-10389

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

By default, parallelplot assigns a line style of '-' to each group of plot lines. When
the total number of groups exceeds the number of specified line styles, parallelplot
cycles through the specified line styles.
Example: p = parallelplot(__,'LineStyle',':')
Example: p.LineStyle = {'-.','-','--'}

LineWidth — Group line width
positive scalar | positive vector

Group line width, specified as a positive scalar or positive vector in points. By default,
parallelplot assigns a line width of 1 to each group of plot lines.

When the total number of groups exceeds the number of specified line widths,
parallelplot cycles through the specified line widths.
Example: p = parallelplot(__,'LineWidth',1.5)
Example: p.LineWidth = [0.5 1.5 0.5]

LineAlpha — Group line transparency
numeric scalar | numeric vector

Group line transparency, specified as a numeric scalar or numeric vector with values
between 0 and 1. Values closer to 0 specify more transparent lines, and values closer to 1
specify more opaque lines. By default, parallelplot assigns a LineAlpha value of 0.7
to each group of plot lines.
Example: p = parallelplot(__,'LineAlpha',0.75)
Example: p.LineAlpha = [0.2 0.7 0.4]

1 Alphabetical List

1-10390

MarkerStyle — Group marker symbol
character vector | string array | cell array of character vectors

Group marker symbol for data values along the coordinate rulers, specified in one of
these forms:

• Character vector designating a marker style
• String array or cell array of character vectors designating one or more marker styles

Choose among these marker options.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

By default, parallelplot assigns 'none' as the marker style for each group. When the
total number of groups exceeds the number of specified symbols, parallelplot cycles
through the specified symbols.
Example: p = parallelplot(__,'MarkerStyle','x')
Example: p.MarkerStyle = {'x','o'}

MarkerSize — Group marker size
nonnegative scalar | nonnegative vector

 ParallelCoordinatesPlot Properties

1-10391

Group marker size for data values along the coordinate rulers, specified as a nonnegative
scalar or nonnegative vector, with values measured in points. By default, parallelplot
assigns 6 as the marker size for each group. When the total number of groups exceeds
the number of specified values, parallelplot cycles through the specified values.
Example: p = parallelplot(__,'MarkerSize',10)
Example: p.MarkerSize = [4 6 8]

Font

FontName — Font name
system-supported font name

Font name, specified as a system-supported font name. The same font is used for the title,
labels, legend title, and group names. The default font depends on the specific operating
system and locale.
Example: p = parallelplot(__,'FontName','Cambria')
Example: p.FontName = 'Helvetica'

FontSize — Font size
positive scalar

Font size, specified as a positive scalar. FontSize is the same for the title, labels, legend
title, and group names. The default font size depends on the specific operating system
and locale.

As you adjust the size of plot elements, the software automatically updates the font size.
However, changing the FontSize property disables this automatic resizing.
Example: p = parallelplot(__,'FontSize',12)
Example: p.FontSize = 10

Position

ActivePositionProperty — Position property to hold constant
'outerposition' (default) | 'innerposition'

Position property to hold constant during resizing operations, specified as
'outerposition' or 'innerposition'. The default value of 'outerposition'
means that the OuterPosition property remains constant. The InnerPosition
property value can change when the parent container changes size, the data changes, or
the labels change.

1 Alphabetical List

1-10392

Example: p.ActivePositionProperty = 'outerposition'

InnerPosition — Inner size and position
four-element numeric vector

Inner size and position of the plot within the parent container (typically a figure, panel, or
tab), specified as a four-element numeric vector of the form [left bottom width
height]. The inner position does not include the plot title, labels, or legend.

• The left and bottom elements define the distance from the lower left corner of the
container to the lower left corner of the plot.

• The width and height elements are the dimensions of the plot.

OuterPosition — Outer size and position
[0 0 1 1] (default) | four-element numeric vector

Outer size and position of the full parallel coordinates plot within the parent container
(typically a figure, panel, or tab), specified as a four-element numeric vector of the form
[left bottom width height]. The default value of [0 0 1 1] includes the whole
interior of the container.

Position — Inner size and position
four-element numeric vector

Inner size and position of the plot within the parent container (typically a figure, panel, or
tab), specified as a four-element numeric vector of the form [left bottom width
height]. This property is equivalent to the InnerPosition property.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

Value Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0), and the upper right corner maps to
(1,1).

 ParallelCoordinatesPlot Properties

1-10393

Value Description
'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width is equal to the width of
the letter x

• Character height is equal to the distance
between the baselines of two lines of
text

'points' Typography points. One point equals 1/72
inch.

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96
inch

• On Macintosh systems, a pixel is 1/72
inch

On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units for, such
as OuterPosition.

Visible — Visibility of object
'on' (default) | 'off'

Visibility of object, specified as one of these values:

• 'on' — Display the ParallelCoordinatesPlot object.
• 'off' — Hide the ParallelCoordinatesPlot object without deleting it. You can

still access the properties of an invisible ParallelCoordinatesPlot object.

1 Alphabetical List

1-10394

Table Data

SourceTable — Source table
table

Source table, specified as a table.

You can create a table from workspace variables using the table function, or you can
import data as a table using the readtable function.

Note The property is ignored and read-only when you use matrix data instead of tabular
data.

CoordinateVariables — Table variables to display as coordinates
numeric vector | string array | cell array of character vectors | logical vector

Table variables to display as coordinates, specified in one of these forms:

• Numeric vector — Indicating the indices of the table variables
• String array or cell array of character vectors — Indicating the names of the table

variables
• Logical vector — Containing true elements for the selected table variables

If you set the CoordinateVariables property value, then the CoordinateData and
CoordinateTickLabels properties update to appropriate values.

Note The property is ignored and read-only when you use matrix data instead of tabular
data.

Example: p.CoordinateVariables = {'Age','Height','Weight'} specifies the
variables named 'Age', 'Height', and 'Weight'.

GroupVariable — Table variable for grouping data
character vector | string scalar | numeric scalar | logical vector

Table variable for grouping data, specified in one of these forms:

• Character vector or string scalar — Indicating one of the table variable names

 ParallelCoordinatesPlot Properties

1-10395

• Numeric scalar — Indicating the table variable index
• Logical vector — Containing one true element for the table variable

The values associated with your table variable must form a numeric vector, logical vector,
categorical array, string array, or cell array of character vectors.

GroupVariable splits the rows in SourceTable into unique groups. parallelplot
assigns each group a default color. In the legend, parallelplot displays the group
names in order of their first appearance in GroupData.

When you specify GroupVariable, MATLAB updates the GroupData property values.

Note This property is ignored and read-only when you use matrix data instead of tabular
data.

Example: p.GroupVariable = 'Smoker'

Matrix Data

Data — Input data
numeric matrix

Input data, specified as a numeric matrix.

Note If you are using tabular data, you cannot set this property.

CoordinateData — Variables displayed as coordinates
numeric vector | logical vector

Variables displayed as coordinates, specified in one of these forms:

• Numeric vector — Indicating the columns of the source table or input data matrix
• Logical vector — Containing true elements for the selected columns of the source

table or input data matrix

Note If you are using tabular data, you cannot set this property. The value of
CoordinateData automatically updates based on the table variables you select with the
CoordinateVariables property.

1 Alphabetical List

1-10396

Example: p.CoordinateData = [1 5:7]

GroupData — Values for grouping data
numeric vector | logical vector | categorical array | string array | cell array of character
vectors

Values for grouping data, specified as a numeric vector, logical vector, categorical array,
string array, or cell array of character vectors.

GroupData splits the rows in SourceTable or Data into unique groups. parallelplot
assigns each group a default color. In the legend, parallelplot displays the group
names in order of their first appearance in GroupData.

Note If you are using tabular data, you cannot set this property. The GroupData values
automatically populate based on the table variable you select with the GroupVariable
property.

Example: p.GroupData = [1 2 1 3 2 1 3 3 2 3]
Example: p.GroupData =
categorical({'blue','red','yellow','blue','yellow','red','red','yell
ow','blue','red'})

Parent/Child

Parent — Parent container
Figure object | Panel object | Tab object

Parent container in which to plot, specified as a Figure, Panel, or Tab object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle for ScatterHistogramChart in the Children property of
the parent, specified as one of these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is always invisible. This option is useful for preventing

unintended changes to the UI by another function. To temporarily hide the handle
during the execution of that function, set the HandleVisibility to 'off'.

 ParallelCoordinatesPlot Properties

1-10397

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but allows callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return the object. These functions include get, findobj, gca, gcf, gco,
newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles, regardless of their HandleVisibility property setting.

See Also
parallelplot

Topics
“Access Property Values”

Introduced in R2019a

1 Alphabetical List

1-10398

parallelplot
Create parallel coordinates plot

Syntax
p = parallelplot(tbl)
p = parallelplot(tbl,'CoordinateVariables',coordvars)
p = parallelplot(___ ,'GroupVariable',grpvar)

p = parallelplot(data)
p = parallelplot(data,'CoordinateData',coorddata)
p = parallelplot(___ ,'GroupData',grpdata)

p = parallelplot(___ ,Name,Value)
p = parallelplot(parent, ___)

Description
p = parallelplot(tbl) creates a parallel coordinates plot from the table tbl and
returns a ParallelCoordinatesPlot object. Each line in the plot represents a row in
the table, and each coordinate variable in the plot corresponds to a column in the table.
The software plots all table columns by default.

Use p to modify the object after you create it. For a list of properties, see
ParallelCoordinatesPlot.

p = parallelplot(tbl,'CoordinateVariables',coordvars) creates a parallel
coordinates plot from the coordvars variables in the table tbl.

p = parallelplot(___ ,'GroupVariable',grpvar) uses the table variable
specified by grpvar to group the lines in the plot. Specify this option after any of the
input argument combinations in the previous syntaxes.

p = parallelplot(data) creates a parallel coordinates plot from the numeric matrix
data.

 parallelplot

1-10399

p = parallelplot(data,'CoordinateData',coorddata) creates a parallel
coordinates plot from the coorddata columns in the matrix data.

p = parallelplot(___ ,'GroupData',grpdata) uses the data in grpdata to group
the lines in the plot. Specify this option after any of the previous input argument
combinations for numeric matrix data.

p = parallelplot(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can specify the data normalization method
for coordinates with numeric values. For a list of properties, see ParallelCoordinatesPlot.

p = parallelplot(parent, ___) creates the parallel coordinates plot in the figure,
panel, or tab specified by parent.

Examples

Parallel Coordinates Plot with Tabular Data

Create a parallel coordinates plot from a table of medical patient data.

Load the patients data set, and create a table from a subset of the variables loaded into
the workspace. Create a parallel coordinates plot using the table. The lines in the plot
correspond to individual patients. Use the plot to observe trends in the data. For example,
the plot indicates that smokers tend to have higher blood pressure values (both diastolic
and systolic).

load patients
tbl = table(Diastolic,Smoker,Systolic);
p = parallelplot(tbl)

1 Alphabetical List

1-10400

p =
 ParallelCoordinatesPlot with properties:

 SourceTable: [100×3 table]
 CoordinateVariables: {'Diastolic' 'Smoker' 'Systolic'}
 GroupVariable: ''

 Show all properties

By default, the software randomly jitters plot lines so that they are unlikely to overlap
perfectly along coordinate rulers. This jittering is particularly helpful for visualizing
categorical data because it enables you to distinguish between plot lines more easily. For

 parallelplot

1-10401

example, observe the plot lines along the Smoker coordinate ruler; the plot lines are not
flush with either the true or false tick marks.

To disable the default jittering, set the Jitter property to 0.

p.Jitter = 0;

Specify Coordinate and Group Variables

Create a parallel coordinates plot from a table of tsunami data. Specify the table variables
to display and their order, and group the lines in the plot according to one of the
variables.

1 Alphabetical List

1-10402

Read the tsunami data into the workspace as a table.

tsunamis = readtable('tsunamis.xlsx');

Create a parallel coordinates plot using a subset of the variables in the table. First,
increase the figure window size to prevent overcrowding in the plot. Then, to specify the
variables and their order, use the 'CoordinateVariables' name-value pair argument.
To group occurrences according to their validity, set the 'GroupVariable' name-value
pair argument to 'Validity'. The lines in the plot correspond to individual tsunami
occurrences. The plot indicates that most of the occurrences in the data set that have a
Validity value are considered definite tsunamis.

figure('Units','normalized','Position',[0.3 0.3 0.45 0.4])
coordvars = {'Year','Validity','Cause','Country'};
p = parallelplot(tsunamis,'CoordinateVariables',coordvars,'GroupVariable','Validity');

 parallelplot

1-10403

Parallel Coordinates Plot with Binned Data

Create a parallel coordinates plot from a matrix containing medical patient data. Bin the
values in one of the columns in the matrix, and group the lines in the plot using the
binned values.

Load the patients data set, and create a matrix from the Age, Height, and Weight
values. Create a parallel coordinates plot using the matrix data. Label the coordinate
variables in the plot. The lines in the plot correspond to individual patients.

load patients
X = [Age Height Weight];
p = parallelplot(X)

p =
 ParallelCoordinatesPlot with properties:

 Data: [100×3 double]
 CoordinateData: [1 2 3]
 GroupData: []

 Show all properties

p.CoordinateTickLabels = {'Age (years)','Height (inches)','Weight (pounds)'};

1 Alphabetical List

1-10404

Create a new categorical variable that groups each patient into one of three categories:
short, average, or tall. Set the bin edges such that they include the minimum and
maximum Height values.

min(Height)

ans = 60

max(Height)

ans = 72

binEdges = [60 64 68 72];
bins = {'short','average','tall'};
groupHeight = discretize(Height,binEdges,'categorical',bins);

 parallelplot

1-10405

Now use the groupHeight values to group the lines in the parallel coordinates plot. The
plot indicates that short patients tend to weigh less than tall patients.

p.GroupData = groupHeight;

Specify Coordinate and Group Data

Create parallel coordinates plots from a matrix containing medical patient data. For each
plot, specify the columns of the matrix to display, and group the lines in the plot according
to a separate variable.

1 Alphabetical List

1-10406

Load the patients data set, and create a matrix from some of the variables loaded into
the workspace.

load patients
X = [Age Height Weight];

Create a parallel coordinates plot using a subset of the columns in the matrix X. To specify
the columns and their order, use the 'CoordinateData' name-value pair argument.
Group patients according to their smoker status by passing the Smoker values to the
'GroupData' name-value pair argument. The lines in the plot correspond to individual
patients. The plot indicates that no clear relationship exists between smoker status and
either age or weight.

coorddata = [1 3];
p = parallelplot(X,'CoordinateData',coorddata,'GroupData',Smoker)

p =
 ParallelCoordinatesPlot with properties:

 Data: [100×3 double]
 CoordinateData: [1 3]
 GroupData: [100×1 logical]

 Show all properties

p.CoordinateTickLabels = {'Age','Weight'};

 parallelplot

1-10407

Create another parallel coordinates plot using a different subset of the columns in X.
Group the patients according to their gender. The plot indicates that the men are taller
and weigh more than the women.

coorddata2 = [2 3];
p2 = parallelplot(X,'CoordinateData',coorddata2,'GroupData',Gender)

p2 =
 ParallelCoordinatesPlot with properties:

 Data: [100×3 double]
 CoordinateData: [2 3]
 GroupData: {100×1 cell}

1 Alphabetical List

1-10408

 Show all properties

p2.CoordinateTickLabels = {'Height','Weight'};

Change Data Normalization in Plot

Create a parallel coordinates plot from a table of power outage data. Change the
normalization method for the numeric coordinate variables.

Read the power outage data into the workspace as a table. Display the first few rows of
the table.

 parallelplot

1-10409

outages = readtable('outages.csv');
head(outages)

ans=8×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 'West' 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 'MidWest' 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'
 'West' 2003-06-18 02:49 0 0 2003-06-18 10:54 'attack'
 'West' 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 'equipment fault'
 'West' 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 'equipment fault'

Create a new variable called OutageDuration that indicates how long each power
outage lasted. Convert OutageDuration to the number of days each power outage
lasted. Add the new variable to the outages table, and call it OutageDays.

OutageDuration = outages.RestorationTime - outages.OutageTime;
outages.OutageDays = days(OutageDuration);

Create a parallel coordinates plot using the Loss, Customers, and OutageDays
variables. Because the coordinate variables are numeric, display the values in the plot as
z-scores, without any jittering, using the 'DataNormalization' and 'Jitter' name-
value pair arguments.

coordvars = {'Loss','Customers','OutageDays'};
p = parallelplot(outages,'CoordinateVariables',coordvars,'DataNormalization','zscore','Jitter',0);

1 Alphabetical List

1-10410

The OutageDays variable contains one value that is more than 30 standard deviations
away from the mean OutageDays value and another value that is more than 10 standard
deviations away from the mean. Hover over the values in the plot to display data tips.
Each data tip indicates the row in the table corresponding to the line in the plot.

 parallelplot

1-10411

Find the rows in the outages table that have the identified extreme OutageDays values.
Notice that the RestorationTime values for these two power outages are suspicious.

outliers = outages([1011 269],:)

outliers=2×7 table
 Region OutageTime Loss Customers RestorationTime Cause OutageDays
 ___________ ________________ ______ __________ ________________ __________________ __________

 'NorthEast' 2009-08-20 02:46 NaN 1.7355e+05 2042-09-18 23:31 'severe storm' 12083
 'MidWest' 2008-02-07 06:18 2378.7 0 2019-08-14 16:16 'energy emergency' 4206.4

Reorder Categories of Coordinate Variable in Plot

Create a parallel coordinates plot. Reorder the categories of one of the coordinate
variables.

Read data on power outages into the workspace as a table.

outages = readtable('outages.csv');

Create a parallel coordinates plot using a subset of the columns in the table. Group the
lines in the plot according to the event that caused the power outage.

coordvars = [1 3 4 6];
p = parallelplot(outages,'CoordinateVariables',coordvars,'GroupVariable','Cause');

1 Alphabetical List

1-10412

Change the order of the events in Cause by updating the source table. First, convert
Cause to a categorical variable, specify the new order of the events, and use the
reordercats function to create a new variable called orderCause. Then, replace the
original Cause variable with the new orderCause variable in the source table of the plot.

categoricalCause = categorical(p.SourceTable.Cause);
newOrder = {'attack','earthquake','energy emergency','equipment fault', ...
 'fire','severe storm','thunder storm','wind','winter storm','unknown'};
orderCause = reordercats(categoricalCause,newOrder);
p.SourceTable.Cause = orderCause;

 parallelplot

1-10413

Because the Cause variable contains more than seven categories, some of the groups
have the same color in the plot. Assign distinct colors to every group by changing the
Color property of p.

p.Color = parula(10);

1 Alphabetical List

1-10414

Input Arguments
tbl — Source table
table

Source table, specified as a table.

You can create a table from workspace variables using the table function, or you can
import data as a table using the readtable function.

The SourceTable property of the ParallelCoordinatesPlot object stores the source
table.

 parallelplot

1-10415

coordvars — Table variables to display as coordinates
numeric vector | string array | cell array of character vectors | logical vector

Table variables to display as coordinates, specified in one of these forms:

• Numeric vector — Indicating the indices of the table variables. For example,
parallelplot(tbl,'CoordinateVariables',[1 5:7]) selects the first, fifth,
sixth, and seventh variables in the table to display as coordinates.

• String array or cell array of character vectors — Indicating the names of the table
variables. For example, parallelplot(tbl,'CoordinateVariables',
{'Age','Weight','Height'}) selects the variables named 'Age', 'Weight', and
'Height' to display as coordinates.

• Logical vector — Containing true elements for the selected table variables.

The CoordinateVariables property of the ParallelCoordinatesPlot object stores
the coordvars value. The CoordinateTickLabels property stores the selected
variable names.

grpvar — Table variable for grouping data
character vector | string scalar | numeric scalar | logical vector

Table variable for grouping data, specified in one of these forms:

• Character vector or string scalar — Indicating one of the table variable names
• Numeric scalar — Indicating the table variable index
• Logical vector — Containing one true element for the table variable

The values associated with your table variable must form a numeric vector, logical vector,
categorical array, string array, or cell array of character vectors.

grpvar splits the rows in tbl into unique groups. By default, the software colors the
associated plot lines according to their group value. Plot lines corresponding to the same
group have the same color. However, parallelplot assigns a maximum of seven unique
group colors. When the total number of groups exceeds the number of specified colors,
parallelplot cycles through the specified colors.

In the legend, parallelplot displays the group names in order of their first appearance
in the GroupData property of ParallelCoordinatesPlot.
Example: 'Smoker'
Example: 3

1 Alphabetical List

1-10416

data — Input data
numeric matrix

Input data, specified as a numeric matrix.

The Data property of the ParallelCoordinatesPlot object stores the data values.

coorddata — Matrix columns to display as coordinates
numeric vector | logical vector

Matrix columns to display as coordinates, specified in one of these forms:

• Numeric vector — Indicating the columns of the input data matrix. For example,
parallelplot(data,'CoordinateData',[1 5:7]) selects the first, fifth, sixth,
and seventh columns in data to display as coordinates.

• Logical vector — Containing true elements for the selected columns of the input data
matrix.

The CoordinateData property of the ParallelCoordinatesPlot object stores the
coorddata value.

grpdata — Values for grouping matrix data
numeric vector | logical vector | categorical array | string array | cell array of character
vectors

Values for grouping matrix data, specified as a numeric vector, logical vector, categorical
array, string array, or cell array of character vectors.

grpdata splits the rows in data into unique groups. By default, the software colors the
associated plot lines according to their group value. Plot lines corresponding to the same
group have the same color. However, parallelplot assigns a maximum of seven unique
group colors. When the total number of groups exceeds the number of specified colors,
parallelplot cycles through the specified colors.

In the legend, parallelplot displays the group names in order of their first appearance
in the GroupData property of ParallelCoordinatesPlot.
Example: [1 2 1 3 2 1 3 3 2 3]
Example:
categorical({'blue','red','yellow','blue','yellow','red','red','yell
ow','blue','red'})

 parallelplot

1-10417

parent — Parent container
Figure object | Panel object | Tab object

Parent container in which to plot, specified as a Figure, Panel, or Tab object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
parallelplot(data,'GroupData',grpdata,'DataNormalization','zscore','
Jitter',0) specifies to group the numeric data in data by using grpdata and to
display the data as z-scores, without any jittering.

Title — Plot title
'' (default) | character vector | string scalar

Plot title, specified as a character vector or string scalar. By default, the plot has no title.
Example: p = parallelplot(__,'Title','My Title Text')
Example: p.Title = 'My Title Text'

DataNormalization — Normalization method for coordinates
'range' (default) | 'none' | 'zscore' | 'scale' | 'center' | 'norm'

Normalization method for coordinates with numeric values, specified as one of the
following options.

Method Description
'range' Display raw data along coordinate rulers

that have independent minimum and
maximum limits

'none' Display raw data along coordinate rulers
that have the same minimum and maximum
limits

1 Alphabetical List

1-10418

Method Description
'zscore' Display z-scores (with a mean of 0 and a

standard deviation of 1) along each
coordinate ruler

'scale' Display values scaled by standard deviation
along each coordinate ruler

'center' Display data centered to have a mean of 0
along each coordinate ruler

'norm' Display 2-norm values along each
coordinate ruler

For more information about these methods, see normalize.

For a coordinate variable that is a logical vector, datetime array, duration array,
categorical array, string array, or cell array of character vectors, parallelplot evenly
distributes the unique possible values along the coordinate ruler, regardless of the
normalization method.
Example: p = parallelplot(__,'DataNormalization','none')
Example: p.DataNormalization = 'zscore'

Jitter — Data displacement distance
0.1 (default) | numeric scalar in the interval [0,1]

Data displacement distance along the coordinate rulers, specified as a numeric scalar in
the interval [0,1]. The Jitter value determines the maximum distance to displace plot
lines from their true value along the coordinate rulers, where the displacement is a
uniform random amount. If you set the Jitter property to 1, then adjacent jitter regions
just touch. Set the Jitter property to 0 to display the true data values.

Some amount of jitter is particularly helpful for visualizing categorical data because the
jittering enables you to distinguish between plot lines more easily. However, the Jitter
value affects all coordinate variables, including numeric variables.
Example: p = parallelplot(__,'Jitter',0.5)
Example: p.Jitter = 0.2

Color — Group color
character vector | string array | cell array of character vectors | matrix of RGB values

 parallelplot

1-10419

Group color, specified in one of these forms:

• Character vector designating a color name, short name, or hexadecimal color code. A
hexadecimal color code starts with a hash symbol (#) and is followed by three or six
hexadecimal digits, which can range from 0 to F. The values are not case sensitive.
Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

• String array or cell array of character vectors designating one or more color names,
short names, or hexadecimal color codes.

• Three-column matrix of RGB values in the range [0,1]. The three columns represent
the R value, G value, and B value.

Choose among these predefined colors, their equivalent RGB triplets, and their
hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'

1 Alphabetical List

1-10420

RGB Triplet Hexadecimal Color Code Appearance
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

By default, parallelplot assigns a maximum of seven unique group colors. When the
total number of groups exceeds the number of specified colors, parallelplot cycles
through the specified colors.
Example: p = parallelplot(__,'Color',{'blue','black','green'})
Example: p.Color = [0 0 1; 0 0.5 0.5; 0.5 0.5 0.5]
Example: p.Color = {'#EDB120','#77AC30','#7E2F8E'}

Tips
• Use data tips to explore the data in your ParallelCoordinatesPlot object. Hover

over the parallel coordinates plot to display a data tip. The software highlights the
corresponding line in the plot. For an example, see “Change Data Normalization in
Plot” on page 1-10409.

See Also
Functions
categorical | discretize | reordercats | table

Properties
ParallelCoordinatesPlot

Topics
“Explore Table Data Using Parallel Coordinates Plot”
“Access Data in a Table”

Introduced in R2019a

 parallelplot

1-10421

matlab.unittest.parameters Package
Summary of classes associated with MATLAB Unit Test parameters

Description
The matlab.unittest.parameters package consists of the following classes used in
parameterized testing.

Classes
matlab.unittest.parameters.ClassSetupParameter Specification of Class Setup

Parameter
matlab.unittest.parameters.EmptyParameter Empty parameter implementation
matlab.unittest.parameters.MethodSetupParameter Specification of Method Setup

Parameter
matlab.unittest.parameters.Parameter Base class for parameters
matlab.unittest.parameters.TestParameter Specification of Test Parameter

See Also
matlab.unittest.TestSuite.selectIf

Topics
“Create Basic Parameterized Test”
“Create Advanced Parameterized Test”

Introduced in R2014a

1 Alphabetical List

1-10422

matlab.unittest.parameters.EmptyParameter
class
Package: matlab.unittest.parameters
Superclasses:

Empty parameter implementation

Description
The matlab.unittest.parameters.EmptyParameter class is a Parameter
implementation that provides no parameter information. There is no need for test authors
to interact with this Parameter directly. This class provides an empty parameter instance
to the Parameterization property of a nonparameterized test element.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.TestCase

Topics
“Create Basic Parameterized Test”
“Create Advanced Parameterized Test”

Introduced in R2014a

 matlab.unittest.parameters.EmptyParameter class

1-10423

matlab.unittest.parameters.ClassSetupPara
meter class
Package: matlab.unittest.parameters
Superclasses:

Specification of Class Setup Parameter

Description
The matlab.unittest.parameters.ClassSetupParameter class holds information
about a single value of a Class Setup Parameter.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.TestCase

Topics
“Create Basic Parameterized Test”
“Create Advanced Parameterized Test”

Introduced in R2014a

1 Alphabetical List

1-10424

matlab.unittest.parameters.MethodSetupPar
ameter class
Package: matlab.unittest.parameters
Superclasses:

Specification of Method Setup Parameter

Description
The matlab.unittest.parameters.MethodSetupParameter class holds information
about a single value of a Method Setup Parameter.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.TestCase

Topics
“Create Basic Parameterized Test”
“Create Advanced Parameterized Test”

Introduced in R2014a

 matlab.unittest.parameters.MethodSetupParameter class

1-10425

matlab.unittest.parameters.Parameter class
Package: matlab.unittest.parameters

Base class for parameters

Description
In parameterized testing, use parameters to pass data to test methods.

Construction
Instantiate a Parameter using the static fromData method.

Properties
Property — Name of property that defines Parameter
character vector

This property is read-only.

Name of the property that defines the Parameter, stored as a character vector.

Name — Parameter value name
character vector

This property is read-only.

Parameter value name, stored as a character vector. Name uniquely identifies a particular
value for a parameter.

Value — Parameter value
any type of array

This property is read-only.

1 Alphabetical List

1-10426

Parameter value, stored as any type of array. Value holds the data that the TestRunner
passes into a parameterized method.

Methods
fromData Create parameters from data

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Test Using Parameters External to Test Class

In your working folder, create testZeros.m. This class contains five test methods,
resulting in eleven parameterized tests.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end

 matlab.unittest.parameters.Parameter class

1-10427

 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

Redefine the type parameter so that the test uses uint64 and int64 data types in the
parameterization instead of single, double, and uint16. Create parameters.

import matlab.unittest.parameters.Parameter
newType = {'int64','uint64'};
param = Parameter.fromData('type',newType);

Create a test suite that injects the param parameters. View the names of the tests in the
suite. The injected parameters are indicated by #ext.

import matlab.unittest.TestSuite
suite = TestSuite.fromClass(?testZeros,'ExternalParameters',param);
{suite.Name}'

ans =

 9×1 cell array

 {'testZeros/testClass(type=int64#ext,outSize=s2d)' }
 {'testZeros/testClass(type=int64#ext,outSize=s3d)' }
 {'testZeros/testClass(type=uint64#ext,outSize=s2d)'}
 {'testZeros/testClass(type=uint64#ext,outSize=s3d)'}
 {'testZeros/testSize(outSize=s2d)' }
 {'testZeros/testSize(outSize=s3d)' }
 {'testZeros/testDefaultClass' }
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue' }

Run the suite.

results = suite.run;

1 Alphabetical List

1-10428

Running testZeros
.........
Done testZeros

Redefine the outSize parameter so that the test parameterizes for 1-d and 4-d arrays.
Create parameters from newType and newSize.

newSize = struct('s2d',[5 3],'s4d',[2 3 2 4]);
param = Parameter.fromData('type',newType,'outSize',newSize);

Create a test suite that injects the param parameters. View the names of the tests in the
suite. The injected parameters are indicated by #ext.

import matlab.unittest.TestSuite
suite = TestSuite.fromClass(?testZeros,'ExternalParameters',param);
{suite.Name}'

ans =

 9×1 cell array

 {'testZeros/testClass(type=int64#ext,outSize=s2d#ext)' }
 {'testZeros/testClass(type=int64#ext,outSize=s4d#ext)' }
 {'testZeros/testClass(type=uint64#ext,outSize=s2d#ext)'}
 {'testZeros/testClass(type=uint64#ext,outSize=s4d#ext)'}
 {'testZeros/testSize(outSize=s2d#ext)' }
 {'testZeros/testSize(outSize=s4d#ext)' }
 {'testZeros/testDefaultClass' }
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue' }

Run the suite.

results = suite.run;

Running testZeros
.........
Done testZeros

 matlab.unittest.parameters.Parameter class

1-10429

See Also

Topics
“Use External Parameters in Parameterized Test”

Introduced in R2018b

1 Alphabetical List

1-10430

matlab.unittest.parameters.Parameter.from
Data
Class: matlab.unittest.parameters.Parameter
Package: matlab.unittest.parameters

Create parameters from data

Syntax
param = matlab.unittest.parameters.Parameter.fromData(prop,nameVal)
param =
matlab.unittest.parameters.Parameter.fromData(prop1,nameVal1,...,pro
pN,nameValN)

Description
param = matlab.unittest.parameters.Parameter.fromData(prop,nameVal)
creates an array of Parameter instances where prop defines the parameterizing
property name for all Parameter elements and nameVal defines the name and value for
each Parameter element.

Using fromData is analogous to defining parameters within a class-based test using a
properties block. For example:

properties (TestParameter)
 prop = nameVal
end

However, with fromData you can redefine existing test parameters from outside the test
class.

Use the fromData method to redefine parameters defined in the TestParameter,
MethodSetupParameter, or ClassSetupParameter properties block of a
parameterized test.

param =
matlab.unittest.parameters.Parameter.fromData(prop1,nameVal1,...,pro

 matlab.unittest.parameters.Parameter.fromData

1-10431

pN,nameValN) defines Parameter instances with multiple parameterizing property
names.

Input Arguments
prop — Parameterizing property name
character vector | string

Parameterizing property name, specified as a character vector or string.
Example: 'myParam'

nameVal — Parameter name and value
cell array | struct

Parameter name and value, specified as a nonempty cell array or struct.

If nameVal is a struct, the struct field represents the parameter name and the struct
value represents the parameter value. If nameVal is a cell array, each element represents
a parameter value.

If nameVal is a cell array of character vectors, the parameter names are generated from
the values. Otherwise, MATLAB generates parameter names.
Example: struct('small', 1, 'medium', 10, 'large', 100)
Example: {42,7,13}
Example: {'double','single','uint16'}

Examples

Test Using Parameters External to Test Class

In your working folder, create testZeros.m. This class contains five test methods,
resulting in eleven parameterized tests.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)

1 Alphabetical List

1-10432

 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

Redefine the type parameter so that the test uses uint64 and int64 data types in the
parameterization instead of single, double, and uint16. Create parameters.

import matlab.unittest.parameters.Parameter
newType = {'int64','uint64'};
param = Parameter.fromData('type',newType);

Create a test suite that injects the param parameters. View the names of the tests in the
suite. The injected parameters are indicated by #ext.

import matlab.unittest.TestSuite
suite = TestSuite.fromClass(?testZeros,'ExternalParameters',param);
{suite.Name}'

ans =

 9×1 cell array

 matlab.unittest.parameters.Parameter.fromData

1-10433

 {'testZeros/testClass(type=int64#ext,outSize=s2d)' }
 {'testZeros/testClass(type=int64#ext,outSize=s3d)' }
 {'testZeros/testClass(type=uint64#ext,outSize=s2d)'}
 {'testZeros/testClass(type=uint64#ext,outSize=s3d)'}
 {'testZeros/testSize(outSize=s2d)' }
 {'testZeros/testSize(outSize=s3d)' }
 {'testZeros/testDefaultClass' }
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue' }

Run the suite.

results = suite.run;

Running testZeros
.........
Done testZeros

Redefine the outSize parameter so that the test parameterizes for 1-d and 4-d arrays.
Create parameters from newType and newSize.

newSize = struct('s2d',[5 3],'s4d',[2 3 2 4]);
param = Parameter.fromData('type',newType,'outSize',newSize);

Create a test suite that injects the param parameters. View the names of the tests in the
suite. The injected parameters are indicated by #ext.

import matlab.unittest.TestSuite
suite = TestSuite.fromClass(?testZeros,'ExternalParameters',param);
{suite.Name}'

ans =

 9×1 cell array

 {'testZeros/testClass(type=int64#ext,outSize=s2d#ext)' }
 {'testZeros/testClass(type=int64#ext,outSize=s4d#ext)' }
 {'testZeros/testClass(type=uint64#ext,outSize=s2d#ext)'}
 {'testZeros/testClass(type=uint64#ext,outSize=s4d#ext)'}
 {'testZeros/testSize(outSize=s2d#ext)' }

1 Alphabetical List

1-10434

 {'testZeros/testSize(outSize=s4d#ext)' }
 {'testZeros/testDefaultClass' }
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue' }

Run the suite.

results = suite.run;

Running testZeros
.........
Done testZeros

See Also

Topics
“Use External Parameters in Parameterized Test”

Introduced in R2018b

 matlab.unittest.parameters.Parameter.fromData

1-10435

matlab.unittest.parameters.TestParameter
class
Package: matlab.unittest.parameters
Superclasses:

Specification of Test Parameter

Description
The matlab.unittest.parameters.TestParameter class holds information about a
single value of a Test Parameter.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.TestCase

Topics
“Create Basic Parameterized Test”
“Create Advanced Parameterized Test”

Introduced in R2014a

1 Alphabetical List

1-10436

ParameterizedFunctionLine Properties
Parameterized line chart appearance and behavior

Description
ParameterizedFunctionLine properties control the appearance and behavior of a
ParameterizedFunctionLine object. By changing property values, you can modify
certain aspects of the line chart.

Properties
Color and Styling

Color — Line color
[0 0 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

 ParameterizedFunctionLine Properties

1-10437

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

1 Alphabetical List

1-10438

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle

 ParameterizedFunctionLine Properties

1-10439

Value Description
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

1 Alphabetical List

1-10440

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

 ParameterizedFunctionLine Properties

1-10441

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

1 Alphabetical List

1-10442

Function

XFunction — Parametric input for x-coordinates
function handle | anonymous function | symbolic expression | symbolic function

Parametric input for x-coordinates, specified as a function handle, anonymous function, or
a symbolic expression or function.

YFunction — Parametric input for y-coordinates
function handle | anonymous function | symbolic expression | symbolic function

Parametric input for y-coordinates, specified as a function handle, anonymous function, or
a symbolic expression or function.

ZFunction — Parametric input for z-coordinates
function handle | anonymous function | symbolic expression | symbolic function

Parametric input for z-coordinates, specified as a function handle, anonymous function, or
a symbolic expression or function. For a 2-D plot, ZFunction is empty.

MeshDensity — Number of evaluation points
23 (default) | number

Number of evaluation points, specified as a number. The default is 23. Because
ParameterizedFunctionLine uses adaptive evaluation, the actual number of
evaluation points is greater.

TRange — Range of values of parameter
[–5 5] (default) | vector of two numbers

Range of values of parameter, specified as a vector of two numbers. The default range is
[-5 5].

TRangeMode — Selection mode for TRange
'auto' (default) | 'manual'

Selection mode for TRange, specified as one of these values:

• 'auto' — Use the default value [-5 5].
• 'manual' — Use manually specified values. To specify the values, set the TRange

property or specify the input argument [tmin tmax] to the plotting function.

 ParameterizedFunctionLine Properties

1-10443

Coordinate Data

XData — x values
vector

This property is read-only.

x values, specified as a vector. XData, YData, and ZData have equal lengths.

YData — y values
vector

y values, specified as a vector. XData, YData, and ZData have equal lengths.

ZData — z values
vector

z values, specified as a vector. XData, YData, and ZData have equal lengths.

Legend

DisplayName — Text for legend label
autogenerated label (default) | character vector | string

Text for legend label, specified as a custom character vector or string. The default label is
autogenerated from the Function property and the texlabel function. The legend does
not appear until you call the legend function.
Data Types: char | string

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

1 Alphabetical List

1-10444

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

 ParameterizedFunctionLine Properties

1-10445

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

1 Alphabetical List

1-10446

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.

 ParameterizedFunctionLine Properties

1-10447

• Cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.

1 Alphabetical List

1-10448

MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

 ParameterizedFunctionLine Properties

1-10449

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the ParameterizedFunctionLine object that
has a defined color. You cannot click a part that has an associated color property set to
'none'. If the plot contains markers, then the entire marker is clickable if either the
edge or the fill has a defined color. The HitTest property determines if the
ParameterizedFunctionLine object responds to the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the ParameterizedFunctionLine
object that has no color. The HitTest property determines if the
ParameterizedFunctionLine object responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the ParameterizedFunctionLine
object passes the click through it to the object below it in the current view of the
figure window. The HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the ParameterizedFunctionLine
object. If you have defined the UIContextMenu property, then invoke the context
menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the
ParameterizedFunctionLine object that has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the ParameterizedFunctionLine
object can capture mouse clicks. If it cannot, then the HitTest property has no effect.

1 Alphabetical List

1-10450

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties

 ParameterizedFunctionLine Properties

1-10451

cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'parameterizedfunctionline'

This property is read-only.

Type of graphics object, returned as 'parameterizedfunctionline'. Use this
property to find all objects of a given type within a plotting hierarchy, for example,
searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
fplot | fplot3

1 Alphabetical List

1-10452

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2016a

 ParameterizedFunctionLine Properties

1-10453

ParameterizedFunctionSurface Properties
Parameterized surface chart appearance and behavior

Description
ParameterizedFunctionSurface properties control the appearance and behavior of
ParameterizedFunctionSurface objects. By changing property values, you can
modify certain aspects of the surface chart.

Properties
Faces

FaceColor — Face color
'interp' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Face color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'interp' interpolates the colors based on
the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-10454

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

FaceAlpha — Face transparency
1 (default) | scalar in range [0 1]

Face transparency, specified as a scalar in the range [0,1]. Use uniform transparency
across all of the faces. A value of 1 is fully opaque and 0 is completely transparent. Values
between 0 and 1 are semitransparent.

 ParameterizedFunctionSurface Properties

1-10455

Edges

EdgeColor — Line color
[0 0 0] (default) | 'interp' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black.
The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-10456

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at the intersection
points of mesh lines.

 ParameterizedFunctionSurface Properties

1-10457

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
EdgeColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-10458

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]

 ParameterizedFunctionSurface Properties

1-10459

Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

1 Alphabetical List

1-10460

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Function

XFunction — Parametric input for x-coordinates
function handle | anonymous function | symbolic expression | symbolic function

Parametric input for x-coordinates, specified as a function handle, anonymous function, or
a symbolic expression or function.

YFunction — Parametric input for y-coordinates
function handle | anonymous function | symbolic expression | symbolic function

Parametric input for y-coordinates, specified as a function handle, anonymous function, or
a symbolic expression or function.

ZFunction — Parametric input for z-coordinates
function handle | anonymous function | symbolic expression | symbolic function

Parametric input for z-coordinates, specified as a function handle, anonymous function, or
a symbolic expression or function. For a 2-D plot, ZFunction is empty.

URange — Range of first parameter
[–5 5] (default) | vector of two numbers

 ParameterizedFunctionSurface Properties

1-10461

Range of the first parameter, specified as a vector of two numbers. The default range is
[-5 5].

URangeMode — Selection mode for URange
'auto' (default) | 'manual'

Selection mode for URange, specified as one of these values:

• 'auto' — Use the default value [-5 5].
• 'manual' — Use manually specified values. To specify the values, set the URange

property or specify the input argument [umin umax vmin vmax] to the plotting
function.

VRange — Range of second parameter
[–5 5] (default) | vector of two numbers

Range of the second parameter, specified as a vector of two numbers. The default range is
[-5 5].

VRangeMode — Selection mode for VRange
'auto' (default) | 'manual'

Selection mode for VRange, specified as one of these values:

• 'auto' — Use the default value [-5 5].
• 'manual' — Use manually specified values. To specify the values, set the VRange

property or specify the input argument [umin umax vmin vmax] to the plotting
function.

MeshDensity — Number of evaluation points per direction
35 (default) | number

Number of evaluation points per direction, specified as a number. The default is 35.
Because ParameterizedFunctionSurface objects use adaptive evaluation, the actual
number of evaluation points is greater.
Example: 100

ShowContours — Display contour plot under plot
'off' (default) | 'on'

Display contour plot under plot, specified as 'off' (default) or 'on'.

1 Alphabetical List

1-10462

Data

XData — x values
matrix

This property is read-only.

x values specified as a matrix. XData is at least a 2-by-2 matrix. size(XData),
size(YData), and size(ZData) are equal.

YData — y values
matrix

This property is read-only.

y values, specified as a matrix. YData is at least a 2-by-2 matrix. size(XData),
size(YData), and size(ZData) are equal.

ZData — Data that defines surface to contour
matrix

This property is read-only.

Data that defines the surface to contour, specified as a matrix. ZData is at least a 2-by-2
matrix. size(XData), size(YData), and size(ZData) are equal.

Lighting

AmbientStrength — Strength of ambient light
0.3 (default) | scalar in range [0,1]

Strength of ambient light, specified as a scalar value in the range [0,1]. Ambient light is
a nondirectional light that illuminates the entire scene. There must be at least one visible
light object in the axes for the ambient light to be visible.

The AmbientLightColor property for the axes sets the color of the ambient light. The
color is the same for all objects in the axes.
Example: 0.5
Data Types: double

DiffuseStrength — Strength of diffuse light
0.6 (default) | scalar in range [0,1]

 ParameterizedFunctionSurface Properties

1-10463

Strength of diffuse light, specified as a scalar value in the range [0,1]. Diffuse light is
the nonspecular reflectance from light objects in the axes.
Example: 0.3
Data Types: double

SpecularStrength — Strength of specular reflection
0.9 (default) | scalar in range [0,1]

Strength of specular reflection, specified as a scalar value in the range [0,1]. Specular
reflections are the bright spots on the surface from light objects in the axes.
Example: 0.3
Data Types: double

SpecularExponent — Size of specular spot
10 (default) | scalar greater than or equal to 1

Size of specular spot, specified as a scalar value greater than or equal to 1. Most
materials have exponents in the range [5 20].
Example: 7
Data Types: double

SpecularColorReflectance — Color of specular reflections
1 (default) | scalar in range [0,1]

Color of specular reflections, specified as a scalar value in the range [0,1]. A value of 1
sets the color using only the color of the light source. A value of 0 sets the color using
both the color of the object from which it reflects and the color of the light source. The
Color property of the light contains the color of the light source. The proportions vary
linearly for values in between.
Example: 0.5
Data Types: double

Legend

DisplayName — Text for legend label
autogenerated label (default) | character vector | string

1 Alphabetical List

1-10464

Text for legend label, specified as a custom character vector or string. The default label is
autogenerated from the Function property and the texlabel function. The legend does
not appear until you call the legend function.
Data Types: char | string

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

 ParameterizedFunctionSurface Properties

1-10465

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

1 Alphabetical List

1-10466

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

 ParameterizedFunctionSurface Properties

1-10467

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

1 Alphabetical List

1-10468

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 ParameterizedFunctionSurface Properties

1-10469

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the ParameterizedFunctionSurface object
that has a defined color. You cannot click a part that has an associated color property
set to 'none'. If the plot contains markers, then the entire marker is clickable if
either the edge or the fill has a defined color. The HitTest property determines if the
ParameterizedFunctionSurface object responds to the click or if an ancestor
does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the
ParameterizedFunctionSurface object that has no color. The HitTest property
determines if the ParameterizedFunctionSurface object responds to the click or
if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the
ParameterizedFunctionSurface object passes the click through it to the object
below it in the current view of the figure window. The HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the
ParameterizedFunctionSurface object. If you have defined the UIContextMenu
property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the
ParameterizedFunctionSurface object that has one of these:

1 Alphabetical List

1-10470

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the
ParameterizedFunctionSurface object can capture mouse clicks. If it cannot, then
the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.

 ParameterizedFunctionSurface Properties

1-10471

• 'off' — Object handle is invisible at all times. This option is useful for preventing
unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'parameterizedfunctionsurface'

This property is read-only.

Type of graphics object, returned as 'parameterizedfunctionsurface'. Use this
property to find all objects of a given type within a plotting hierarchy, for example,
searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

1 Alphabetical List

1-10472

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
fmesh | fsurf

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2016a

 ParameterizedFunctionSurface Properties

1-10473

pareto
Pareto chart

Syntax
pareto(Y)
pareto(Y,names)
pareto(Y,X)
H = pareto(...)
[H,ax] = pareto(...)

Description
Pareto charts display the values in the vector Y as bars drawn in descending order. Values
in Y must be nonnegative and not include NaNs. Only the first 95% of the cumulative
distribution is displayed.

pareto(Y) labels each bar with its element index in Y and also plots a line displaying the
cumulative sum of Y.

pareto(Y,names) labels each bar with the associated text in the matrix or cell array
names.

pareto(Y,X) labels each bar with the associated value from X.

pareto(ax,..) plots into the axes ax rather than the current axes, gca.

H = pareto(...) returns the primitive Line and Bar objects created.

[H,ax] = pareto(...) additionally returns the two axes objects created.

1 Alphabetical List

1-10474

Examples

Create Pareto Chart

Create a Pareto chart of vector y.

y = [90,75,30,60,5,40,40,5];
figure
pareto(y)

pareto displays the elements in y as bars in descending order and labels each bar with
its index in y. Since pareto displays only the first 95% of the cumulative distribution,
some elements in y are not displayed.

 pareto

1-10475

Label Bars in Pareto Chart

Examine the cumulative productivity of a group of programmers to see how normal its
distribution is. Label each bar with the name of the programmer.

codelines = [200 120 555 608 1024 101 57 687];
coders = {'Fred','Ginger','Norman','Max','Julia','Wally','Heidi','Pat'};

figure
pareto(codelines, coders)
title('Lines of Code by Programmer')

1 Alphabetical List

1-10476

Tips
You cannot place datatips (use the Datacursor tool) on graphs created with pareto.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
bar | histogram | line

 pareto

1-10477

Properties
Bar | Primitive Line

Introduced before R2006a

1 Alphabetical List

1-10478

parfor
Parallel for loop

Syntax
parfor loopvar = initval:endval; statements; end
parfor (loopvar = initval:endval, M); statements; end

Description
parfor loopvar = initval:endval; statements; end executes a series of
MATLAB statements for values of loopvar between initval and endval, inclusive,
which specify a vector of increasing integer values. The loop runs in parallel when you
have the Parallel Computing Toolbox or when you create a MEX function or standalone
code with MATLAB Coder. Unlike a traditional for-loop, iterations are not executed in a
guaranteed order. You cannot call scripts directly in a parfor-loop. However, you can call
functions that call scripts.

parfor (loopvar = initval:endval, M); statements; end executes
statements in a loop using a maximum of M workers or threads, where M is a nonnegative
integer.

Examples
Perform three large eigenvalue computations using three workers or cores with Parallel
Computing Toolbox software:

parpool(3)
parfor i=1:3, c(:,i) = eig(rand(1000)); end

Tips
• If you have Parallel Computing Toolbox software, see the function reference pages for

parfor and parpool for additional information.

 parfor

1-10479

• If you have MATLAB Coder software, see the parfor function reference page for
additional information.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Treated as a for-loop in a MATLAB Function block or when used with fiaccel.
• See parfor in MATLAB Coder.
• See “Generate Code with Parallel for-Loops (parfor)” (MATLAB Coder).

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

If you have Parallel Computing Toolbox installed, then when you use parfor, MATLAB
automatically opens a parallel pool of workers on your local machine. MATLAB runs the
loop across the available workers. Control parallel behavior with the parallel preferences,
including scaling up to a cluster.

For details, see “Parallel for-Loops (parfor)” (Parallel Computing Toolbox).

See Also
for

Introduced in R2008a

1 Alphabetical List

1-10480

parseSoapResponse
Convert response string from SOAP (Simple Object Access Protocol) server into MATLAB
types

Note parseSoapResponse will be removed in a future release. Use
matlab.wsdl.createWSDLClient instead.

Syntax
data = parseSoapResponse(response)

Description
data = parseSoapResponse(response) extracts data from SOAP server response
and converts to MATLAB types.

Examples

Retrieve Book Information from Library Database

This example assumes the library is on a local intranet and does not use an actual
endpoint; therefore, you cannot run it.

Retrieve the name of the author of a book titled “In the Fall.” The relative path of the
library service is urn:LibraryCatalog. To get the author's name, use the getAuthor
function, which takes the book name as the input value. The getAuthor parameter is
nameToLookUp. The XML data type for title is {http://www.w3.org/2001/
XMLSchema}string. The SOAP message style is rpc by default.

Create the SOAP message.

message = createSoapMessage(...
 'urn:LibraryCatalog',...

 parseSoapResponse

1-10481

 'getAuthor',...
 {'In the Fall'},...
 {'nameToLookUp'},...
 {'{http://www.w3.org/2001/XMLSchema}string'})

message =

[#document: null]

This response does not necessarily indicate that the message is valid, although certain
input problems produce error messages.

Send the message to the server for processing, and get the author's name back. The
server endpoint is http://test/soap/services/LibraryCatalog. The server
method is urn:LibraryCatalog#getAuthor.

response = callSoapService(...
 'http://test/soap/services/LibraryCatalog',...
 'urn:LibraryCatalog#getAuthor',...
 message)

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<getAuthorResponse xmlns="urn:LibraryCatalog">
<ns1:getAuthorReturn xmlns:ns1="http://latestversion.soap.test">
Kate Alvin
</ns1:getAuthorReturn>
</getAuthorResponse>
</soapenv:Body>
</soapenv:Envelope>

MATLAB returns the message in a single line, displayed here on separate lines for
legibility.

Extract the author's name.

author = parseSoapResponse(response)

author = Kate Alvin

1 Alphabetical List

1-10482

MATLAB automatically converted the XML string data type to char.

Input Arguments
response — Data from SOAP server
string

Data from SOAP server, specified as a string. response is the output from the
callSoapService function.

Output Arguments
data — Output of SOAP service call
cell array of any valid MATLAB type

Output of SOAP service call, returned as a cell array of any valid MATLAB type. For
information about data, see the documentation for the SOAP service used in the
callSoapService function.

See Also
callSoapService | createSoapMessage | matlab.wsdl.createWSDLClient |
urlread | xmlread

Introduced before R2006a

 parseSoapResponse

1-10483

pascal
Pascal matrix

Syntax
P = pascal(n)
P = pascal(n,1)
P = pascal(n,2)
P = pascal(___ ,classname)

Description
P = pascal(n) returns a “Pascal’s Matrix” on page 1-10486 of order n. P is a symmetric
positive definite matrix with integer entries taken from Pascal's triangle. The inverse of P
has integer entries.

P = pascal(n,1) returns the lower triangular Cholesky factor (up to the signs of the
columns) of the Pascal matrix. P is involutary, that is, it is its own inverse.

P = pascal(n,2) returns a transposed and permuted version of pascal(n,1). In this
case, P is a cube root of the identity matrix.

P = pascal(___ ,classname) returns a matrix of class classname using any of the
input argument combinations in previous syntaxes. classname can be 'single' or
'double'.

Examples

Matrix from Pascal's Triangle

Compute the fourth-order Pascal matrix.

A = pascal(4)

1 Alphabetical List

1-10484

A = 4×4

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20

Compute the lower triangular Cholesky factor of the third-order Pascal matrix, and verify
it is involutory.

A = pascal(3,1)

A = 3×3

 1 0 0
 1 -1 0
 1 -2 1

inv(A)

ans = 3×3

 1 0 0
 1 -1 0
 1 -2 1

Input Arguments
n — Matrix order
scalar, nonnegative integer

Matrix order, specified as a scalar, nonnegative integer.
Example: pascal(10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

classname — Matrix class
'double' (default) | 'single'

 pascal

1-10485

Matrix class, specified as either 'double' or 'single'.
Example: pascal(10,'single')
Data Types: char

Definitions

Pascal’s Matrix
Pascal’s triangle is a triangle formed by rows of numbers. The first row has entry 1. Each
succeeding row is formed by adding adjacent entries of the previous row, substituting a 0
where no adjacent entry exists. The pascal function forms Pascal’s matrix by selecting
the portion of Pascal’s triangle that corresponds to the specified matrix dimensions, as
outlined in the graphic. The matrix outlined corresponds to the MATLAB command
pascal(4).

1 Alphabetical List

1-10486

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
chol | gallery | vander

Introduced before R2006a

 pascal

1-10487

patch
Create one or more filled polygons

Syntax
patch(X,Y,C)
patch(X,Y,Z,C)
patch('XData',X,'YData',Y)
patch('XData',X,'YData',Y,'ZData',Z)

patch('Faces',F,'Vertices',V)

patch(S)

patch(___ ,Name,Value)
patch(ax, ___)

p = patch(___)

Description
patch(X,Y,C) creates one or more filled polygons using the elements of X and Y as the
coordinates for each vertex. patch connects the vertices in the order that you specify
them. To create one polygon, specify X and Y as vectors. To create multiple polygons,
specify X and Y as matrices where each column corresponds to a polygon. C determines
the polygon colors.

patch(X,Y,Z,C) creates the polygons in 3-D coordinates using X, Y, and Z. To view the
polygons in a 3-D view, use the view(3) command. C determines the polygon colors.

patch('XData',X,'YData',Y) is similar to patch(X,Y,C), except that you do not
have to specify color data for the 2-D coordinates.

patch('XData',X,'YData',Y,'ZData',Z) is similar to patch(X,Y,Z,C), except
that you do not have to specify color data for the 3-D coordinates.

1 Alphabetical List

1-10488

patch('Faces',F,'Vertices',V) creates one or more polygons where V specifies
vertex values and F defines which vertices to connect. Specifying only unique vertices and
their connection matrix can reduce the size of the data when there are many polygons.
Specify one vertex per row in V. To create one polygon, specify F as a vector. To create
multiple polygons, specify F as a matrix with one row per polygon. Each face does not
have to have the same number of vertices. To specify different numbers of vertices, pad F
with NaN values.

patch(S) creates one or more polygons using structure S. The structure fields
correspond to patch property names and the field values corresponding to property
values. For example, S can contain the fields Faces and Vertices.

patch(___ ,Name,Value) creates polygons and specifies one or more patch properties
using name-value pair arguments. A patch is the object that contains the data for all of
the polygons created. You can specify patch properties with any of the input argument
combinations in the previous syntaxes. For example, 'LineWidth',2 sets the outline
width for all of the polygons to 2 points.

patch(ax, ___) creates the patch in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

p = patch(___) returns the patch object that contains the data for all the polygons.
Use p to query and modify properties of the patch object after it is created. For a list of
properties and descriptions, see Patch.

Examples

Specifying Coordinates

Create a single polygon by specifying the (x,y) coordinates of each vertex. Then, add two
more polygons to the figure.

Create a red square with vertices at (0,0), (1,0), (1,1), and (0,1). Specify x as the
x-coordinates of the vertices and y as the y-coordinates. patch automatically connects
the last (x,y) coordinate with the first (x,y) coordinate.

x = [0 1 1 0];
y = [0 0 1 1];
patch(x,y,'red')

 patch

1-10489

Create two polygons by specifying x and y as two-column matrices. Each column defines
the coordinates for one of the polygons. patch adds the polygons to the current axes
without clearing the axes.

x2 = [2 5; 2 5; 8 8];
y2 = [4 0; 8 2; 4 0];
patch(x2,y2,'green')

1 Alphabetical List

1-10490

Specifying Faces and Vertices

Create a single polygon by specifying the coordinates of each unique vertex and a matrix
that defines how to connect them. Then, add two more polygons to the figure.

Create a red square with corners at (0,0), (1,0), (1,1), and (0,1). Specify v so that
each row defines the (x,y) coordinates for one vertex. Then, specify f as the vertices to
connect. Set the color by specifying the FaceColor property.

 patch

1-10491

v = [0 0; 1 0; 1 1; 0 1];
f = [1 2 3 4];
patch('Faces',f,'Vertices',v,'FaceColor','red')

Create two polygons by specifying f as a two-row matrix. Each row defines the face for
one patch.

v2 = [2 4; 2 8; 8 4; 5 0; 5 2; 8 0];
f2 = [1 2 3;
 4 5 6];
patch('Faces',f2,'Vertices',v2,'FaceColor','green')

1 Alphabetical List

1-10492

Different Polygon Face Colors

Create two polygons and use a different color for each polygon face. Use a colorbar to
show how the colors map into the colormap.

Create the polygons using matrices x and y. Specify c as an column vector with two
elements since there are two polygon faces, and add a colorbar.

x = [2 5; 2 5; 8 8];
y = [4 0; 8 2; 4 0];
c = [0; 1];

 patch

1-10493

figure
patch(x,y,c)
colorbar

Alternatively, you can get the same result when using f and v instead. When you create
the polygons, set FaceVertexCData to a column vector with two elements since there
are two polygon faces. Set FaceColor to 'flat'.

v = [2 4; 2 8; 8 4; 5 0; 5 2; 8 0];
f = [1 2 3; 4 5 6];
col = [0; 1];
figure
patch('Faces',f,'Vertices',v,'FaceVertexCData',col,'FaceColor','flat');
colorbar

1 Alphabetical List

1-10494

Interpolated Polygon Face Colors

Interpolate colors across polygon faces by specifying a color at each polygon vertex, and
use a colorbar to show how the colors map into the colormap.

Create the polygons using matrices x and y. Specify c as a matrix the same size as x and
y defining one color per vertex, and add a colorbar.

x = [2 5; 2 5; 8 8];
y = [4 0; 8 2; 4 0];
c = [0 3; 6 4; 4 6];

 patch

1-10495

figure
patch(x,y,c)
colorbar

Alternatively, you can get the same result using f and v instead. When you create the
polygons, set FaceVertexCData to a column vector with one value per vertex and set
FaceColor to 'interp'.

v = [2 4; 2 8; 8 4; 5 0; 5 2; 8 0];
f = [1 2 3; 4 5 6];
col = [0; 6; 4; 3; 4; 6];
figure
patch('Faces',f,'Vertices',v,'FaceVertexCData',col,'FaceColor','interp');
colorbar

1 Alphabetical List

1-10496

Polygon Edges Without Faces

Create a polygon with green edges and do not display the face. Then, create a second
polygon with a different color for each edge.

v = [0 0; 1 0; 1 1];
f = [1 2 3];
figure
patch('Faces',f,'Vertices',v,...
 'EdgeColor','green','FaceColor','none','LineWidth',2);

 patch

1-10497

Use a different color for each edge by specifying a color for each vertex and setting
EdgeColor to 'flat'.

v = [2 0; 3 0; 3 1];
f = [1 2 3];
c = [1 0 0; % red
 0 1 0; % green
 0 0 1]; % blue
patch('Faces',f,'Vertices',v,'FaceVertexCData',c,...
 'EdgeColor','flat','FaceColor','none','LineWidth',2);

1 Alphabetical List

1-10498

Polygons Using Structure

Use a structure to create two polygons. First, create a structure with fields names that
match patch property names. Then, use the structure to create the polygons.

clear S
S.Vertices = [2 4; 2 8; 8 4; 5 0; 5 2; 8 0];
S.Faces = [1 2 3; 4 5 6];
S.FaceVertexCData = [0; 1];
S.FaceColor = 'flat';
S.EdgeColor = 'red';

 patch

1-10499

S.LineWidth = 2;
figure
patch(S)

Semitransparent Polygons

Create two semitransparent polygons by setting the FaceAlpha property to a value
between 0 and 1.

v1 = [2 4; 2 8; 8 4];
f1 = [1 2 3];

1 Alphabetical List

1-10500

figure
patch('Faces',f1,'Vertices',v1,'FaceColor','red','FaceAlpha',.3);

v2 = [2 4; 2 8; 8 8];
f2 = [1 2 3];
patch('Faces',f2,'Vertices',v2,'FaceColor','blue','FaceAlpha',.5);

Create Multicolored Line

Create a multicolored line with markers at each vertex. Interpolate the colors and use a
colorbar to show how the values map to the colormap.

 patch

1-10501

Create the data. Set the last entry of y to NaN so that patch creates a line instead of a
closed polygon. Define a color for each vertex using the y values. The values in c map to
colors in the colormap.

x = linspace(1,10,15);
y = sin(x);
y(end) = NaN;
c = y;

Create the line. Show markers at each vertex and set the EdgeColor to 'interp' to
interpolate the colors between vertices. Add a colorbar.

figure
patch(x,y,c,'EdgeColor','interp','Marker','o','MarkerFaceColor','flat');
colorbar;

1 Alphabetical List

1-10502

Input Arguments
X — x-coordinates for vertices
vector | matrix

x-coordinates for the vertices, specified in one of these forms:

• Vector — Create one polygon.
• Matrix — Create n polygons with m vertices each, where [m,n] = size(X). Each

column in the matrix corresponds to one polygon.

 patch

1-10503

If the data does not define closed polygons, then patch closes the polygons. If the edges
of an individual polygon intersect themselves, the resulting polygons might be partly
filled. In that case, it is better to divide the patch object into smaller polygons.

When you specify X, the patch function sets the XData property for the patch object to
the same value. The patch object automatically calculates the face and vertex data and
sets the Faces and Vertices properties to the appropriate values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — y-coordinates for vertices
vector | matrix

y-coordinates for the vertices, specified in one of these forms:

• Vector — Create one polygon.
• Matrix — Create n polygons with m vertices each, where [m,n] = size(Y). Each

column in the matrix corresponds to one polygon.

If the data does not define closed polygons, then patch closes the polygons. If the edges
of an individual polygon intersect themselves, the resulting polygons might be partly
filled. In that case, it is better to divide the patch object into smaller polygons.

When you specify Y, the patch function sets the YData property for the patch object to
the same value. The patch object automatically calculates the face and vertex data and
sets the Faces and Vertices properties to the appropriate values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Z — z-coordinates for vertices
vector | matrix

z-coordinates for the vertices, specified in one of these forms:

• Vector — Create one polygon.
• Matrix — Create m polygons with n vertices each, where [m,n] = size(Z). Each

column in the matrix corresponds to one polygon.

When you specify Z, the patch function sets the ZData property for the patch object to
the same value. The patch object automatically calculates the face and vertex data and
sets the Faces and Vertices properties to the appropriate values.

1 Alphabetical List

1-10504

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C — Polygon colors
scalar | vector | matrix | RGB triplet | 'r' | 'g' | 'b' | ...

Polygon colors, specified as a scalar, vector, matrix, or a color name. The format of the
input determines whether all polygons have the same color, one color per face, or
interpolated face colors.

Desired Effect Use One of These
Formats

Results

Single color for all faces • Color name, for example,
'r' for red.

• RGB triplet, for example,
[0 .5 .5].

• Scalar value, for
example, 2. The
CDataMapping property
determines how the
value maps into the
colormap.

For an example, see
“Specifying Coordinates” on
page 1-10489.

• Sets the FaceColor
property to the specified
color.

 patch

1-10505

Desired Effect Use One of These
Formats

Results

One color per face • n-by-1 vector of
colormap colors, where n
is the number of faces.
The CDataMapping
property determines how
the values map into the
colormap.

• n-by-1-by-3 array of RGB
values. The first page of
the array defines the red
components of the
colors, the second page
defines the blue, and the
third page defines the
green.

For an example, see
“Different Polygon Face
Colors” on page 1-10493.

• Sets the FaceColor
property to 'flat'.

• Sets the CData and
FaceVertexCData
properties using the
specified color values.

Interpolated face colors • m-by-n matrix of
colormap values, where
[m,n] = size(X).
Specify one color per
vertex.

• m-by-n-by-3 array of RGB
values.

For an example, see
“Interpolated Polygon Face
Colors” on page 1-10495.

• Sets the FaceColor
property to 'interp'.

• Sets the CData and
FaceVertexCData
properties using the
specified color values.

1 Alphabetical List

1-10506

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

V — Polygon vertices
two-column or three-column matrix

Polygon vertices, specified in one of these forms:

• Two-column matrix — Each row contains the (x,y) coordinates for a vertex.
• Three-column matrix — Each row contains the (x,y,Z) coordinates for a vertex.

Specify only unique vertices. You can refer to a vertex more than once when defining the
face definitions in F.

When you specify V, the patch function sets the Vertices property for the patch object
to the same value. The patch object automatically calculates the coordinate data and sets
the XData, YData, and ZData to the appropriate values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

F — Face definitions
row vector | matrix

Face definitions, specified in one of these forms:

 patch

1-10507

• Row vector — Create a single polygon.
• Matrix — Create multiple polygons where each row corresponds to a polygon.

For example, this code defines three vertices in V and creates one polygon by connecting
vertex 1 to 2, 2 to 3, and 3 to 1.

V = [1 1; 2 1; 2 2];
F = [1 2 3 1];
patch('Faces',F,'Vertices',V)

When you specify F, the patch function sets the Faces property for the patch object to
the same value. The patch object automatically calculates the coordinate data and sets
the XData, YData, and ZData to the appropriate values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

S — Patch definition
structure

Patch definition, specified as a structure with fields that correspond patch property names
and field values that correspond to patch property values.

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then patch uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: patch(x,y,c,'FaceAlpha',.5,'LineStyle',':') creates
semitransparent polygons with dotted edges.

The properties listed here are only a subset of patch properties. For a complete list, see
Patch.

1 Alphabetical List

1-10508

FaceColor — Face color
[0 0 0] (default) | 'interp' | 'flat' | RGB triplet | hexadecimal color code | 'r' |
'g' | 'b' | ...

Face color, specified as 'interp', 'flat' an RGB triplet, a hexadecimal color code, a
color name, or a short name.

To create a different color for each face, specify the CData or FaceVertexCData
property as an array containing one color per face or one color per vertex. The colors can
be interpolated from the colors of the surrounding vertices of each face, or they can be
uniform. For interpolated colors, specify this property as 'interp'. For uniform colors,
specify this property as 'flat'. If you specify 'flat' and a different color for each
vertex, the color of the first vertex you specify determines the face color.

To designate a single color for all of the faces, specify this property as an RGB triplet, a
hexadecimal color code, a color name, or a short name.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

 patch

1-10509

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1] | 'flat' | 'interp'

Face transparency, specified as one of these values:

• Scalar in range [0,1] — Use uniform transparency across all of the faces. A value of
1 is fully opaque and 0 is completely transparent. This option does not use the
transparency values in the FaceVertexAlphaData property.

• 'flat' — Use a different transparency for each face based on the values in the
FaceVertexAlphaData property. First you must specify the FaceVertexAlphaData
property as a vector containing one transparency value per face or vertex. The
transparency value at the first vertex determines the transparency for the entire face.

• 'interp' — Use interpolated transparency for each face based on the values in
FaceVertexAlphaData property. First you must specify the FaceVertexAlphaData
property as a vector containing one transparency value per vertex. The transparency
varies across each face by interpolating the values at the vertices.

EdgeColor — Edge colors
[0 0 0] (default) | 'none' | 'flat' | 'interp' | RGB triplet | hexadecimal color code |
'r' | 'g' | 'b' | ...

Edge colors, specified as one of the values in this table. The default edge color is black
with a value of [0 0 0]. If multiple polygons share an edge, then the first polygon drawn
controls the displayed edge color.

1 Alphabetical List

1-10510

Value Description Result
RGB triplet, hexadecimal
color code, or color name

Single color for all of the
edges. See the following
table for more details.

'flat' Different color for each
edge. Use the vertex colors
to set the color of the edge
that follows it. You must first
specify CData or
FaceVertexCData as an
array containing one color
per vertex. The edge color
depends on the order in
which you specify the
vertices.

 patch

1-10511

Value Description Result
'interp' Interpolated edge color. You

must first specify CData or
FaceVertexCData as an
array containing one color
per vertex. Determine the
edge color by linearly
interpolating the values at
the two bounding vertices.

'none' No edges displayed. No edges displayed.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

1 Alphabetical List

1-10512

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

 patch

1-10513

Output Arguments
p — patch object
scalar

Patch object, returned as a scalar. Each patch object can consist of one or more polygons.
Use p to query or change properties of the patch object after it is created.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

1 Alphabetical List

1-10514

See Also
Functions
area | fill | fill3

Properties
Patch

Topics
“Multifaceted Patches”
“How Patch Data Relates to a Colormap”
“Differences Between Colormaps and Truecolor”

Introduced before R2006a

 patch

1-10515

Patch Properties
Patch appearance and behavior

Description
Patch properties control the appearance and behavior of Patch objects. By changing
property values, you can modify certain aspects of the patch.

Starting in R2014b, you can use dot notation to query and set properties.

p = patch;
c = p.CData;
p.CDataMapping = 'scaled';

If you are using an earlier release, use the get and set functions instead.

Properties
Color

FaceColor — Face color
[0 0 0] (default) | 'interp' | 'flat' | RGB triplet | hexadecimal color code | 'r' |
'g' | 'b' | ...

Face color, specified as 'interp', 'flat' an RGB triplet, a hexadecimal color code, a
color name, or a short name.

To create a different color for each face, specify the CData or FaceVertexCData
property as an array containing one color per face or one color per vertex. The colors can
be interpolated from the colors of the surrounding vertices of each face, or they can be
uniform. For interpolated colors, specify this property as 'interp'. For uniform colors,
specify this property as 'flat'. If you specify 'flat' and a different color for each
vertex, the color of the first vertex you specify determines the face color.

To designate a single color for all of the faces, specify this property as an RGB triplet, a
hexadecimal color code, a color name, or a short name.

1 Alphabetical List

1-10516

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

 Patch Properties

1-10517

EdgeColor — Edge colors
[0 0 0] (default) | 'none' | 'flat' | 'interp' | RGB triplet | hexadecimal color code |
'r' | 'g' | 'b' | ...

Edge colors, specified as one of the values in this table. The default edge color is black
with a value of [0 0 0]. If multiple polygons share an edge, then the first polygon drawn
controls the displayed edge color.

Value Description Result
RGB triplet, hexadecimal
color code, or color name

Single color for all of the
edges. See the following
table for more details.

1 Alphabetical List

1-10518

Value Description Result
'flat' Different color for each

edge. Use the vertex colors
to set the color of the edge
that follows it. You must first
specify CData or
FaceVertexCData as an
array containing one color
per vertex. The edge color
depends on the order in
which you specify the
vertices.

'interp' Interpolated edge color. You
must first specify CData or
FaceVertexCData as an
array containing one color
per vertex. Determine the
edge color by linearly
interpolating the values at
the two bounding vertices.

'none' No edges displayed. No edges displayed.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

 Patch Properties

1-10519

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-10520

CData — Patch color data
single color for entire patch | one color per face | one color per vertex

Patch color data, specified as a single color for the entire patch, one color per face, or one
color per vertex.

The way the patch function interprets CData depends on the type of data supplied.
Specify CData in one of these forms:

• Numeric values that are scaled to map linearly into the current colormap.
• Integer values that are used directly as indices into the current colormap.
• Arrays of RGB triplets. RGB triplets are not mapped into the current colormap, but

interpreted as the colors defined.

The following diagrams illustrate the dimensions of CData with respect to the arrays in
the XData, YData, and ZData properties.

These diagrams illustrates the use of indexed color.

These diagrams illustrates the use of true color. True color requires either a single RGB
triplet or an array of RGB triplets.

 Patch Properties

1-10521

If CData contains NaNs, then patch does not color the faces.

An alternative method for defining patches uses the Faces, Vertices, and
FaceVertexCData properties.
Example: [1,0,0]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FaceVertexCData — Face and vertex colors
[] (default) | single color for entire patch | one color per face | one color per vertex

Face and vertex colors, specified as a single color for the entire patch, one color per face,
or one color per vertex for interpolated face color.

If you want to use indexed colors, then specify FaceVertexCData in one of these forms:

• For one color for the entire patch, use a single value.
• For one color per face, use an m-by-1 column vector, where m is the number of rows in

the Faces property.
• For interpolated face color, use an m-by–1 column vector where m is the number of

rows in the Vertices property.

If you want to use true colors, then specify FaceVertexCData in one of these forms:

1 Alphabetical List

1-10522

• For one color for all the faces, specify a three-element row vector that defines an RGB
triplet. When you do this, you must also set the FaceColor to 'flat' and the
EdgeColor to a value other than 'flat' or 'interp'.

• For one color per face, use an m-by-3 array of RGB triplets, where m is the number of
rows in the Faces property.

• For interpolated face color, use an m-by-3 array, where m is the number of rows in the
Vertices property.

The following diagram illustrates the various forms of the FaceVertexCData property
for a patch having eight faces and nine vertices. The CDataMapping property determines
how MATLAB interprets the FaceVertexCData property when you specify indexed
colors.

CDataMapping — Direct or scaled color data mapping
'scaled' (default) | 'direct'

Direct or scaled color data mapping, specified as 'scaled' (the default) or 'direct'.
The CData and FaceVertexCData properties contains color data. If you use true color
specification for CData or FaceVertexCData, then this property has no effect.

• 'direct' — Interpret the values as indices into the current colormap. Values with a
decimal portion are fixed to the nearest lower integer.

 Patch Properties

1-10523

• If the values are of type double or single, then values of 1 or less map to the first
color in the colormap. Values equal to or greater than the length of the colormap
map to the last color in the colormap.

• If the values are of type uint8, uint16, uint32, uint64 , int8, int16, int32,
or int64, then values of 0 or less map to the first color in the colormap. Values
equal to or greater than the length of the colormap map to the last color in the
colormap (or up to the range limits of the type).

• If the values are of type logical, then values of 0 map to the first color in the
colormap and values of 1 map to the second color in the colormap.

• 'scaled' — Scale the values to range between the minimum and maximum color
limits. The CLim property of the axes contains the color limits.

Transparency

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1] | 'flat' | 'interp'

Face transparency, specified as one of these values:

• Scalar in range [0,1] — Use uniform transparency across all of the faces. A value of
1 is fully opaque and 0 is completely transparent. This option does not use the
transparency values in the FaceVertexAlphaData property.

• 'flat' — Use a different transparency for each face based on the values in the
FaceVertexAlphaData property. First you must specify the FaceVertexAlphaData
property as a vector containing one transparency value per face or vertex. The
transparency value at the first vertex determines the transparency for the entire face.

• 'interp' — Use interpolated transparency for each face based on the values in
FaceVertexAlphaData property. First you must specify the FaceVertexAlphaData
property as a vector containing one transparency value per vertex. The transparency
varies across each face by interpolating the values at the vertices.

EdgeAlpha — Edge line transparency
1 (default) | scalar value in range [0,1] | 'flat' | 'interp'

Edge line transparency, specified as one of these values:

• Scalar value in range [0,1] — Use uniform transparency across all of the edges. A
value of 1 is fully opaque and 0 is completely transparent. This option does not use the
transparency values in the FaceVertexAlphaData property.

1 Alphabetical List

1-10524

• 'flat' — Use a different transparency for each edge based on the values in the
FaceVertexAlphaData property. First you must specify the FaceVertexAlphaData
property as a vector containing one transparency value per face or vertex. The
transparency value at the first vertex determines the transparency for the edge.

• 'interp' — Use interpolated transparency for each edge based on the values in
FaceVertexAlphaData property. First you must specify the FaceVertexAlphaData
property as a vector containing one transparency value per vertex. Vary the
transparency across each edge by interpolating the values at the vertices.

FaceVertexAlphaData — Face and vertex transparency values
[] (default) | scalar | vector with one value per face | vector with one value per vertex

Face and vertex transparency values, specified as a scalar, a vector with one value per
face, or a vector with one value per vertex.

• For uniform transparency across all of the faces or edges, specify a scalar value. Then,
set the FaceAlpha or EdgeAlpha property to 'flat'.

• For a different transparency for each face or edge, specify an m-by-1 vector, where m is
the number of faces. Then, set the FaceAlpha or EdgeAlpha property to 'flat'. To
determine the number of faces, query the number of rows in the Faces property.

• For interpolated transparency across each face or edge, specify an n-by-1 vector,
where n is the number of vertices. Then, set the FaceAlpha or EdgeAlpha property
to 'interp'. To determine the number of faces, query the number of rows in the
Vertices property.

The AlphaDataMapping property determines how the patch interprets the
FaceVertexAlphaData property values.

Note If the FaceAlpha and EdgeAlpha properties are both set to scalar values, then the
patch does not use the FaceVertexAlphaData values.

AlphaDataMapping — Interpretation of FaceVertexAlphaData values
'scaled' (default) | 'direct' | 'none'

Interpretation of FaceVertexAlphaData values, specified as one of these values:

• 'none' — Interpret the values as transparency values. A value of 1 or greater is
completely opaque, a value of 0 or less is completely transparent, and a value between
0 and 1 is semitransparent.

 Patch Properties

1-10525

• 'scaled' — Map the values into the figure’s alphamap. The minimum and maximum
alpha limits of the axes determine the alpha data values that map to the first and last
elements in the alphamap, respectively. For example, if the alpha limits are [3 5],
then alpha data values less than or equal to 3 map to the first element in the
alphamap. Alpha data values greater than or equal to 5 map to the last element in the
alphamap. The ALim property of the axes contains the alpha limits. The Alphamap
property of the figure contains the alphamap.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Values with a
decimal portion are fixed to the nearest lower integer.

• If the values are of type double or single, then values of 1 or less map to the first
element in the alphamap. Values equal to or greater than the length of the
alphamap map to the last element in the alphamap.

• If the values are of integer type, then values of 0 or less map to the first element in
the alphamap. Values equal to or greater than the length of the alphamap map to
the last element in the alphamap (or up to the range limits of the type). The integer
types are uint8, uint16, uint32, uint64 , int8, int16, int32, and int64.

• If the values are of type logical, then values of 0 map to the first element in the
alphamap and values of 1 map to the second element in the alphamap.

Line Styling

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

1 Alphabetical List

1-10526

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross

 Patch Properties

1-10527

Value Description
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | 'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Marker outline color, specified as 'auto', 'flat', an RGB triplet, a hexadecimal color
code, a color name, or a short name. The 'auto' option uses the same color as the
EdgeColor property. The 'flat' option uses the CData value at the vertex to set the
color.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-10528

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | 'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

Marker fill color, specified as 'auto', 'flat', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The 'auto' option uses the same color as the Color
property for the axes. The 'flat' option uses the CData value of the vertex to set the
color.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 Patch Properties

1-10529

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-10530

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

This property affects only the circle, square, diamond, pentagram, hexagram, and the four
triangle marker types.
Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Data

Faces — Vertex connection defining each face
vector | matrix

Vertex connection defining each face, specified as a vector or a matrix defining the
vertices in the Vertices property that are to be connected to form each face. The Faces
and Vertices properties provide an alternative way to specify a patch that can be more
efficient than using XData, YData, and ZData coordinates in most cases.

Each row in the faces array designates the connections for a single face, and the number
of elements in that row that are not NaN defines the number of vertices for that face.
Therefore, an m-by-n Faces array defines m faces with up to n vertices each.

For example, consider the following patch. It is composed of eight triangular faces
defined by nine vertices. The corresponding Faces and Vertices properties are shown
to the right of the patch. Note how some faces share vertices with other faces. For
example, the fifth vertex (V5) is used six times, once each by faces one, two, three, six,
seven, and eight. Without sharing vertices, this same patch requires 24 vertex definitions.

 Patch Properties

1-10531

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Vertices — Vertex coordinates
vector | matrix

Vertex coordinates, specified as a vector or a matrix defining the (x,y,z) coordinates of
each vertex. The Faces and Vertices properties provide an alternative way to specify a
patch that can be more efficient than using XData, YData, and ZData coordinates in
most cases. See the Faces property for a description of how the vertex data is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

XData — x-coordinates of the patch vertices
vector | matrix

The x-coordinates of the patch vertices, specified as a vector or a matrix. If XData is a
matrix, then each column represents the x-coordinates of a single face of the patch. In
this case, XData, YData, and ZData must have the same dimensions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

YData — y-coordinates of the patch vertices
vector | matrix

1 Alphabetical List

1-10532

The y-coordinates defining the patch, specified as a vector or a matrix. If YData is a
matrix, then each column represents the y-coordinates of a single face of the patch. In
this case, XData, YData, and ZData must have the same dimensions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ZData — z-coordinates of the patch vertices
vector | matrix

The z-coordinates of the patch vertices, specified as a vector or a matrix. If ZData is a
matrix, then each column represents the z-coordinates of a single face of the patch. In
this case, XData, YData, and ZData must have the same dimensions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Normals

VertexNormals — Vertex normal vectors
m-by-n-by-3 array (default) | array of normal vectors

Vertex normal vectors, specified as an array of normal vectors with one normal vector one
per patch vertex. Define one normal per patch vertex, as determined by the size of the
Vertices property value. Vertex normals determine the shape and orientation of the
patch. This data is used for lighting calculations.

Specifying values for this property sets the associated mode to manual. If you do not
specify normal vectors, then the patch generates this data when the axes contains light
objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

VertexNormalsMode — Selection mode for VertexNormals
'auto' (default) | 'manual'

Selection mode for VertexNormals, specified as one of these values:

• 'auto' — The patch function calculates vertex normals when you add a light to the
scene.

• 'manual' — Use the vertex normal data specified by the VertexNormals property.
Assigning values to the VertexNormals property sets VertexNormalsMode to
'manual'.

 Patch Properties

1-10533

FaceNormals — Face normal vectors
m-by-n-by-3 array (default) | array of normal vectors

Face normal vectors, specified as an array of normal vectors with one normal vector one
per patch face. Define one normal per patch face, as determined by the size of the Faces
property value. Face normals determine the orientation of each patch face. This data is
used for lighting calculations.

Specifying values for this property sets the associated mode to manual. If you do not
specify normal vectors, then the patch generates this data when the axes contains light
objects. The patch computes face normals using Newell’s method.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FaceNormalsMode — Selection mode for FaceNormals
'auto' (default) | 'manual'

Selection mode for FaceNormals, specified as one of these values:

• 'auto' — The patch function calculates face normals when you add a light to the
scene.

• 'manual' — Use the face normal data specified by the FaceNormals property.
Assigning values to the FaceNormals property sets FaceNormalsMode to 'manual'.

Lighting

FaceLighting — Effect of light objects on faces
'flat' (default) | 'gouraud' | 'none'

Effect of light objects on faces, specified as one of these values:

• 'flat' — Apply light uniformly across each face. Use this value to view faceted
objects.

• 'gouraud' — Vary the light across the faces. Calculate the light at the vertices and
then linearly interpolate the light across the faces. Use this value to view curved
surfaces.

• 'none' — Do not apply light from light objects to the faces.

To add a light object to the axes, use the light function.

Note The 'phong' value has been removed. Use 'gouraud' instead.

1 Alphabetical List

1-10534

BackFaceLighting — Face lighting when normals point away from camera
'reverselit' (default) | 'unlit' | 'lit'

Face lighting when the vertex normals point away from camera, specified as one of these
values:

• 'reverselit' — Light the face as if the vertex normal pointed towards the camera.
• 'unlit' — Do not light the face.
• 'lit' — Light the face according to the vertex normal.

Use this property to discriminate between the internal and external surfaces of an object.
For an example, see “Back Face Lighting”.

EdgeLighting — Effect of light objects on edges
'none' (default) | 'flat' | 'gouraud'

Effect of light objects on edges, specified as one of these values:

• 'flat' — Apply light uniformly across the each edges.
• 'none' — Do not apply lights from light objects to the edges.
• 'gouraud' — Calculate the light at the vertices, and then linearly interpolate across

the edges.

Note The 'phong' value has been removed. Use 'gouraud' instead.

AmbientStrength — Strength of ambient light
0.3 (default) | scalar in range [0,1]

Strength of ambient light, specified as a scalar value in the range [0,1]. Ambient light is
a nondirectional light that illuminates the entire scene. There must be at least one visible
light object in the axes for the ambient light to be visible.

The AmbientLightColor property for the axes sets the color of the ambient light. The
color is the same for all objects in the axes.
Example: 0.5
Data Types: double

DiffuseStrength — Strength of diffuse light
0.6 (default) | scalar in range [0,1]

 Patch Properties

1-10535

Strength of diffuse light, specified as a scalar value in the range [0,1]. Diffuse light is
the nonspecular reflectance from light objects in the axes.
Example: 0.3
Data Types: double

SpecularStrength — Strength of specular reflection
0.9 (default) | scalar in range [0,1]

Strength of specular reflection, specified as a scalar value in the range [0,1]. Specular
reflections are the bright spots on the surface from light objects in the axes.
Example: 0.3
Data Types: double

SpecularExponent — Expansiveness of specular reflection
10 (default) | scalar value greater than 0

Expansiveness of specular reflection, specified as a scalar value greater than 0.
SpecularExponent controls the size of the specular reflection spot. Greater values
produce less specular reflection.

Most materials have exponents in the range of 5 to 20.
Example: 17
Data Types: double

SpecularColorReflectance — Color of specular reflections
1 (default) | scalar between 0 and 1 inclusive

Color of specular reflections, specified as a scalar between 0 and 1 inclusive.

• 0 — The color of the specular reflection depends on both the color of the object from
which it reflects and the color of the light source.

• 1 — The color of the specular reflection depends only on the color or the light source
(that is, the light object Color property).

The contributions from the light source color and the patch color to the specular
reflection color vary linearly for values between 0 and 1.
Example: 0.5
Data Types: single | double

1 Alphabetical List

1-10536

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

 Patch Properties

1-10537

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

1 Alphabetical List

1-10538

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 Patch Properties

1-10539

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-10540

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

 Patch Properties

1-10541

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Patch object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Patch object responds to the
click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the Patch object that has no color.

1 Alphabetical List

1-10542

The HitTest property determines if the Patch object responds to the click or if an
ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Patch object passes the click
through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Patch object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Patch object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Patch object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

 Patch Properties

1-10543

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'patch'

This property is read-only.

Type of graphics object, returned as 'patch'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

1 Alphabetical List

1-10544

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
patch

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Patch Properties

1-10545

path
View or change search path

Syntax
path
path(newpath)
path(oldpath,newfolder)
path(newfolder,oldpath)
p = path(___)

Description
path displays the MATLAB search path, which is stored in pathdef.m.

path(newpath) changes the search path to newpath.

path(oldpath,newfolder) adds the folder newfolder to the end of the search path.
If newfolder is already on the search path, then path(oldpath,newfolder) moves
newfolder to the end of the search path. To add multiple folders, use the addpath
function.

path(newfolder,oldpath) adds the folder newfolder to the beginning of the search
path. If newfolder is already on the search path, then path(oldpath,newfolder)
moves newfolder to the beginning of the search path.

p = path(___) returns the MATLAB search path as a character vector. You can use
this syntax with any of the input argument combinations in the previous syntaxes.

Examples

Display Search Path

Suppose you have MATLAB R2017a installed. Display the search path.

1 Alphabetical List

1-10546

path

 MATLABPATH

 C:\Program Files\MATLAB\R2017a\toolbox\matlab\datafun
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\datatypes
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\elfun
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\elmat
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\funfun
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\general
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\iofun
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\lang
 C:\Program Files\MATLAB\R2017a\toolbox\matlab\matfun
...

Add New Folder to Search Path on Windows

Add the folder c:\tools\goodstuff to the bottom of the search path on a Microsoft
Windows system.

oldpath = path;
path(oldpath,'c:\tools\goodstuff')

Add New Folder to Search Path on UNIX

Add the folder /home/tools/goodstuff to the beginning of the search path on a UNIX
system.

oldpath = path;
path('/home/tools/goodstuff',oldpath)

Temporarily Add Folder to Search Path

Temporarily add the folder my_files to the search path and then run my_function in
my_files.

oldpath = path;
path(oldpath,'my_files')
my_function

 path

1-10547

Restore the previous search path.

path(oldpath)

Input Arguments
newpath — New MATLAB search path
character array | string array

New MATLAB search path, specified as a character array or string array.

MATLAB resolves all path names containing '.', '..', and symbolic links to their target
location before adding them to the path. This ensures that each entry in the MATLAB path
represents a unique folder location. For example, if newpath contains c:\matlab
\..\work, the new MATLAB search path contains c:\work.
Data Types: char | string

oldpath — Existing MATLAB search path
character array | string array

Existing MATLAB search path, specified as a character array or string array returned by
the path command.
Data Types: char | string

newfolder — New folder
character vector | string scalar

New folder to add to the MATLAB search path, specified as a character vector or string
scalar.
Data Types: char | string

Alternative Functionality
As an alternative to the path function, use the Set Path dialog box. To open the Set Path
dialog box, on the Home tab, in the Environment section, click Set Path.

You can also use the addpath function to add multiple folders to the search path.

1 Alphabetical List

1-10548

See Also
addpath | matlabroot | pathtool | rehash | restoredefaultpath | rmpath

Topics
“What Is the MATLAB Search Path?”
“Files and Folders that MATLAB Accesses”

Introduced before R2006a

 path

1-10549

path2rc
Save current search path to pathdef.m file

Syntax
path2rc

Description
path2rc runs savepath. The savepath function is replacing path2rc. Use savepath
instead of path2rc and replace instances of path2rc with savepath.

Introduced before R2006a

1 Alphabetical List

1-10550

pathsep
Search path separator for current platform

Syntax
c = pathsep

Description
c = pathsep returns the search path separator character for the current platform. The
search path separator is the character that separates path names in the pathdef.m file,
as returned by the path function. On Windows, the character is a semicolon (;). On UNIX
the character is a colon (:). Use pathsep to work programmatically with the content of
the search path file.

Examples

Get List of Subfolders Within Path Name

Use genpath in conjunction with regexp and pathsep to get a list of individual folders
within a path name.

Create a folder myfolder containing a subfolder mysubfolder.

mkdir myfolder;
cd myfolder;
mkdir mysubfolder;
cd ..

Generate a path name that includes myfolder and all folders below it.

p = genpath('myfolder')

p =
'myfolder;myfolder\mysubfolder;'

 pathsep

1-10551

Use the regexp function to split the path into individual folders.

s = regexp(p, pathsep, 'split')

s = 1x3 cell array
 {'myfolder'} {'myfolder\mysubf...'} {0x0 char}

See Also
fileparts | filesep | fullfile | path

Topics
“What Is the MATLAB Search Path?”

Introduced before R2006a

1 Alphabetical List

1-10552

pathtool
Open Set Path dialog box to view and change search path

Syntax
pathtool

Description
pathtool opens the Set Path dialog box. You can use the Set Path dialog box to view,
modify, and save the MATLAB search path.

 pathtool

1-10553

Alternative Functionality
Alternatively, to open the Set Path dialog box, go the Home tab and, in the Environment
section, click Set Path.

See Also
addpath | path | rehash | restoredefaultpath | rmpath | savepath

1 Alphabetical List

1-10554

Topics
“What Is the MATLAB Search Path?”

Introduced before R2006a

 pathtool

1-10555

pause
Stop MATLAB execution temporarily

Syntax
pause

pause(n)

pause(state)
oldState = pause(state)

Description
pause temporarily stops MATLAB execution and waits for the user to press any key. The
pause function also temporarily stops the execution of Simulink models, but does not
pause their repainting.

Note If you previously disabled the pause setting, reenable it using pause('on') for
this call to take effect.

pause(n) pauses execution for n seconds before continuing. Pausing must be enabled for
this call to take effect.

pause(state) enables, disables, or displays the current pause setting.

oldState = pause(state) returns the current pause setting and sets the pause state
as indicated by state. For example, if pausing is enabled, oldState = pause('off')
returns 'on' in oldState and disables pausing.

Examples

1 Alphabetical List

1-10556

Pause Execution

Pause execution for 5 seconds. MATLAB blocks, or hides, the command prompt (>>) while
it pauses execution.

n = 5;
pause(n)

Disable Pause Setting

Disable the pause setting and query the current state.

pause('off')
pause('query')

ans =
'off'

Pause execution for 100 seconds. Since the pause setting is off, MATLAB ignores the
request to pause execution, and immediately returns the command prompt.

pause(100)

Enable the pause setting.

pause('on')

Save and Restore Pause State

Store the current pause setting and then disable the ability to pause execution.

oldState = pause('off')

oldState =
'on'

Query the current pause setting.

pause('query')

 pause

1-10557

ans =
'off'

Restore the initial pause state.

pause(oldState)
pause('query')

ans =
'on'

Alternatively, you can store the queried value of the pause state and then disable the
ability to pause execution.

oldState = pause('query');
pause('off')

Restore the initial pause state.

pause(oldState)

Input Arguments
n — Number of seconds
nonnegative, real number

Number of seconds to pause execution specified as a nonnegative, real number.

Typing pause(inf) puts you into an infinite loop. To return to the MATLAB prompt, type
Ctrl+C.
Example: pause(3) pauses for 3 seconds.
Example: pause(5/1000) pauses for 5 milliseconds.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

state — Pause setting
'on' | 'off' | 'query'

1 Alphabetical List

1-10558

Pause control indicator specified as 'on', 'off', or 'query'. Use 'on' or 'off' to
control whether the pause function is able to pause MATLAB execution. Use 'query' to
query the current state of the pause setting.

To run interactive code unattended, disable the pause setting.

Tips
• The accuracy of the pause function is subject to the scheduling resolution of your

operating system, and to other concurrent system activity. The accuracy is not
guaranteed, and finer resolution results in higher relative error.

• While MATLAB is paused, the following continue to execute:

• Repainting of figure windows, Simulink block diagrams, and Java windows
• Callbacks from figure windows
• Event handling from Java windows

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The use of pause in parfor loops is not supported for MEX code generation.
• The generated code truncates pause delay values to uint32 range during run-time

execution.
• To avoid printing the output of pause state data from generated MEX code, use a

semicolon after the pause call in your MATLAB code.
• In generated standalone (lib, dll, or exe) code, the pause syntax with no input

arguments has different behavior than in MATLAB.

• In MATLAB, after pause execution you can press any key to continue. When
running generated code from the terminal, you must press enter.

 pause

1-10559

• If you call the generated code from MATLAB with the system command or
exclamation point character, with SIL, or with PIL, input characters may not be
correctly redirected from the MATLAB environment to the generated code.
Therefore the generated code might not resume.

• The C/C++ implementation for pause in the generated code differs depending on the
hardware settings stored in the code generation configuration object. By default, the
hardware settings are configured for the host platform, with Hardware Board in the
MATLAB Coder app set to MATLAB Host Computer.

• When generating code on Windows with Windows-compatible hardware settings,
the generated C/C++ implementation uses the Windows API function Sleep.

• In all other cases, the implementation uses the POSIX API nanosleep. When
compiling code that uses the POSIX API, the preprocessor macro
_POSIX_C_SOURCE must be set to an integer greater than or equal to 199309L.
The code generator sets the macro to 199309L for compilation.

See Also
drawnow | input | keyboard

Introduced before R2006a

1 Alphabetical List

1-10560

pbaspect
Control relative lengths of each axis

Syntax
pbaspect(ratio)
pb = pbaspect

pbaspect auto
pbaspect manual
m = pbaspect('mode')

___ = pbaspect(ax, ___)

Description
pbaspect(ratio) sets the plot box aspect ratio for the current axes. The plot box
aspect ratio is the relative length of the x-axis, y-axis, and z-axis. Specify ratio as a
three-element vector of positive values that represent the ratio of the x-axis, y-axis, and z-
axis lengths. For example, [3 1 1] specifies that the length of the x-axis is equal to three
times the length of the y-axis and z-axis. For equal axis lengths in all directions, use [1 1
1].

pb = pbaspect returns the plot box aspect ratio for the current axes.

pbaspect auto sets an automatic mode, enabling the axes to choose the appropriate
plot box aspect ratio. The mode must be automatic to enable the “stretch-to-fill on page 1-
10570” feature of the axes.

pbaspect manual sets a manual mode and uses the ratio stored in the
PlotBoxAspectRatio property of the Axes object. When the mode is manual, it
disables the stretch-to-fill feature of the axes. Specifying a value for the plot box aspect
ratio sets the mode to manual.

 pbaspect

1-10561

m = pbaspect('mode') returns the current mode, which is either 'auto' or
'manual'. By default, the mode is automatic unless you specify the plot box aspect ratio
or set the mode to manual.

___ = pbaspect(ax, ___) uses the axes specified by ax instead of the current axes.
Specify the axes as the first input argument for any of the previous syntaxes. Use single
quotes around the 'auto' and 'manual' inputs.

Examples

Use Equal Axis Lengths

Create a simple line plot. Make the x-axis, y-axis, and z-axis (not shown) equal lengths.

x = linspace(0,10);
y = sin(x);
plot(x,y)
pbaspect([1 1 1])

1 Alphabetical List

1-10562

Use Different Axis Lengths

Plot a surface and make the x-axis twice as long as the y-axis and z-axis.

[x,y] = meshgrid(-2:.2:2);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)
pbaspect([2 1 1])

 pbaspect

1-10563

When you specify the plot box aspect ratio, the associated mode changes to manual.
Query the current plot box aspect ratio mode.

m = pbaspect('mode')

m =
'manual'

Revert Back to Default Plot Box Aspect Ratio

Create a 3-D scatter chart of random data and set the plot box aspect ratio. Then revert
back to the default plot box aspect ratio.

1 Alphabetical List

1-10564

X = rand(100,1);
Y = rand(100,1);
Z = rand(100,1);
scatter3(X,Y,Z)
pbaspect([3 2 1])

pbaspect auto

 pbaspect

1-10565

Query Plot Box Aspect Ratio

Create a surface plot.

[x,y] = meshgrid(-2:.2:2);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

1 Alphabetical List

1-10566

Query the plot box aspect ratio. The values indicate the ratio of the x-axis length to y-axis
length to z-axis length.

pb = pbaspect

pb = 1×3

 1.0000 0.9419 0.8518

 pbaspect

1-10567

Set Plot Box Aspect Ratio for Specific Axes

Create a figure with two subplots and assign the Axes objects to the variables ax1 and
ax2. Set the plot box aspect ratio for lower subplot by specifying ax2 as the first input
argument to the pbaspect function.

ax1 = subplot(2,1,1);
mesh(peaks(20))

ax2 = subplot(2,1,2);
mesh(peaks(20))
pbaspect(ax2,[2 2 1])

1 Alphabetical List

1-10568

Input Arguments
ratio — Plot box aspect ratio
three-element vector

Plot box aspect ratio, specified as a three-element vector of positive values. For example,
pbaspect([3 2 1]) specifies that the ratio of the x-axis length to y-axis length to z-axis
length is 3 to 2 to 1. Thus, the x-axis is the longest and the z-axis is the shortest.

Specifying the ratio sets the PlotBoxAspectRatio property for the Axes object to the
specified value. The PlotBoxAspectRatio property interacts with the
DataAspectAspectRatio, XLim, YLim, and ZLim properties to control the length and
scale of the x-axis, y-axis, and z-axis.

Specifying the ratio sets the PlotBoxAspectRatioMode property to 'manual' and
disables the stretch-to-fill on page 1-10570 behavior of the axes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then pbaspect
uses the current axes (gca).

Output Arguments
pb — Current plot box aspect ratio values
three-element vector

Current plot box aspect ratio, returned as a three-element vector of values representing
the ratio of the x-axis, y-axis, and z-axis lengths.

Querying the plot box aspect ratio returns the PlotBoxAspectRatio property value for
the Axes object.

m — Current plot box aspect ratio mode
'auto' | 'manual'

 pbaspect

1-10569

Current plot box aspect ratio mode, returned as either 'auto' or 'manual'. When the
mode is automatic, MATLAB determines the appropriate plot box aspect ratio value. If
you specify a value, then the mode changes to manual.

Querying the plot box aspect ratio mode returns the PlotBoxAspectRatioMode
property value for the Axes object.

Definitions

Stretch-to-Fill
When the “stretch-to-fill” behavior is enabled, MATLAB stretches the axes to fill the
available space. The axes might not exactly match the data aspect ratio, plot box aspect
ratio, and camera-view angle values stored in its DataAspectRatio,
PlotBoxAspectRatio, and CameraViewAngle properties.

If you specify the data aspect ratio, plot box aspect ratio, or camera-view angle, then the
“stretch-to-fill” behavior is disabled. When stretch-to-fill is disabled, MATLAB makes the
axes as large as possible within the available space and strictly adheres to the property
values so that there is no distortion. For more information, see “Control Axes Layout”.

Algorithms
The pbaspect function sets and queries several axes properties related to the data
aspect ratio.

• PlotBoxAspectRatio — Property that stores the plot box aspect ratio value.
• PlotBoxAspectRatioMode — Property that stores the plot box aspect ratio mode.

When you set the ratio, this property changes to 'manual'.

See Also
axis | daspect | xlim | ylim | zlim

Topics
“Control Ratio of Axis Lengths and Data Unit Lengths”

1 Alphabetical List

1-10570

Introduced before R2006a

 pbaspect

1-10571

pcg
Preconditioned conjugate gradients method

Syntax
x = pcg(A,b)
pcg(A,b,tol)
pcg(A,b,tol,maxit)
pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = pcg(A,b,...)
[x,flag,relres] = pcg(A,b,...)
[x,flag,relres,iter] = pcg(A,b,...)
[x,flag,relres,iter,resvec] = pcg(A,b,...)

Description
x = pcg(A,b) attempts to solve the system of linear equations A*x=b for x. The n-by-n
coefficient matrix A must be symmetric and positive definite, and should also be large and
sparse. The column vector b must have length n. You also can specify A to be a function
handle, afun, such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If pcg converges, a message to that effect is displayed. If pcg fails to converge after the
maximum number of iterations or halts for any reason, a warning message is printed
displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at
which the method stopped or failed.

pcg(A,b,tol) specifies the tolerance of the method. If tol is [], then pcg uses the
default, 1e-6.

pcg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is [], then
pcg uses the default, min(n,20).

1 Alphabetical List

1-10572

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use symmetric positive
definite preconditioner M or M = M1*M2 and effectively solve the system inv(M)*A*x =
inv(M)*b for x. If M is [] then pcg applies no preconditioner. M can be a function handle
mfun such that mfun(x) returns M\x.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then pcg uses
the default, an all-zero vector.

[x,flag] = pcg(A,b,...) also returns a convergence flag.

Flag Convergence
0 pcg converged to the desired tolerance tol within maxit iterations.
1 pcg iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 pcg stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during pcg became too small or

too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = pcg(A,b,...) also returns the relative residual norm(b-A*x)/
norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = pcg(A,b,...) also returns the iteration number at which
x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,...) also returns a vector of the
residual norms at each iteration including norm(b-A*x0).

Examples
Using pcg with Large Matrices
This example shows how to use pcg with a matrix input and with a function handle.

n1 = 21;
A = gallery('moler',n1);

 pcg

1-10573

b1 = sum(A,2);
tol = 1e-6;
maxit = 15;
M1 = spdiags((1:n1)',0,n1,n1);
[x1,flag1,rr1,iter1,rv1] = pcg(A,b1,tol,maxit,M1);

Alternatively, you can use the following function in place of the matrix A:

function y = applyMoler(x)
y = x;
y(end-1:-1:1) = y(end-1:-1:1) - cumsum(y(end:-1:2));
y(2:end) = y(2:end) - cumsum(y(1:end-1));

By using this function, you can solve larger systems more efficiently as there is no need to
store the entire matrix A:

n2 = 21;
b2 = applyMoler(ones(n2,1));
tol = 1e-6;
maxit = 15;
M2 = spdiags((1:n2)',0,n2,n2);
[x2,flag2,rr2,iter2,rv2] = pcg(@applyMoler,b2,tol,maxit,M2);

Using pcg with a Preconditioner
This example demonstrates how to use a preconditioner matrix with pcg.

Create an input matrix and try to solve the system with pcg.

A = delsq(numgrid('S',100));
b = ones(size(A,1),1);
[x0,fl0,rr0,it0,rv0] = pcg(A,b,1e-8,100);

fl0 is 1 because pcg does not converge to the requested tolerance of 1e-8 within the
requested maximum 100 iterations. A preconditioner can make the system converge more
quickly.

Use ichol with only one input argument to construct an incomplete Cholesky
factorization with zero fill.

L = ichol(A);
[x1,fl1,rr1,it1,rv1] = pcg(A,b,1e-8,100,L,L');

fl1 is 0 because pcg drives the relative residual to 9.8e-09 (the value of rr1) which is
less than the requested tolerance of 1e-8 at the seventy-seventh iteration (the value of

1 Alphabetical List

1-10574

it1) when preconditioned by the zero-fill incomplete Cholesky factorization. rv1(1) =
norm(b) and rv1(78) = norm(b-A*x1).

The previous matrix represents the discretization of the Laplacian on a 100x100 grid with
Dirichlet boundary conditions. This means that a modified incomplete Cholesky
preconditioner might perform even better.

Use the michol option to create a modified incomplete Cholesky preconditioner.

L = ichol(A,struct('michol','on'));
[x2,fl2,rr2,it2,rv2] = pcg(A,b,1e-8,100,L,L');

In this case you attain convergence in only forty-seven iterations.

You can see how the preconditioners affect the rate of convergence of pcg by plotting
each of the residual histories starting from the initial estimate (iterate number 0).

figure;
semilogy(0:it0,rv0/norm(b),'b.');
hold on;
semilogy(0:it1,rv1/norm(b),'r.');
semilogy(0:it2,rv2/norm(b),'k.');
legend('No Preconditioner','IC(0)','MIC(0)');
xlabel('iteration number');
ylabel('relative residual');
hold off;

 pcg

1-10575

References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

1 Alphabetical List

1-10576

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When input A is a sparse matrix:

• Only one sparse matrix preconditioner M is supported.
• If you use two preconditioners, M1 and M2, then both of them must be functions.
• For GPU arrays, pcg does not detect stagnation (Flag 3). Instead, it reports failure

to converge (Flag 1).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | cgs | gmres | ichol | lsqr | minres | mldivide | qmr | symmlq

Topics
“Create Function Handle”

 pcg

1-10577

Introduced before R2006a

1 Alphabetical List

1-10578

pchip
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Syntax
p = pchip(x,y,xq)
pp = pchip(x,y)

Description
p = pchip(x,y,xq) returns a vector of interpolated values p corresponding to the
query points in xq. The values of p are determined by shape-preserving piecewise cubic
interpolation on page 1-10584 of x and y.

pp = pchip(x,y) returns a piecewise polynomial structure for use with ppval and the
spline utility unmkpp.

Examples

Data Interpolation Using spline and pchip

Compare the interpolation results produced by spline and pchip for two different
functions.

Create vectors of x values, function values at those points y, and query points xq.
Compute interpolations at the query points using both spline and pchip. Plot the
interpolated function values at the query points for comparison.

x = -3:3;
y = [-1 -1 -1 0 1 1 1];
xq1 = -3:.01:3;
p = pchip(x,y,xq1);
s = spline(x,y,xq1);
plot(x,y,'o',xq1,p,'-',xq1,s,'-.')
legend('Sample Points','pchip','spline','Location','SouthEast')

 pchip

1-10579

In this case, pchip is favorable since it does not oscillate as freely between the sample
points.

Perform a second comparison using an oscillatory sample function.

x = 0:25;
y = besselj(1,x);
xq2 = 0:0.01:25;
p = pchip(x,y,xq2);
s = spline(x,y,xq2);
plot(x,y,'o',xq2,p,'-',xq2,s,'-.')
legend('Sample Points','pchip','spline')

1 Alphabetical List

1-10580

When the underlying function is oscillatory, spline captures the movement between
points better than pchip.

Interpolation with Piecewise Polynomial Structure

Create vectors for the x values and function values y, and then use pchip to construct a
piecewise polynomial structure.

x = -5:5;
y = [1 1 1 1 0 0 1 2 2 2 2];
p = pchip(x,y);

 pchip

1-10581

Use the structure with ppval to evaluate the interpolation at several query points. Plot
the results.

xq = -5:0.2:5;
pp = ppval(p,xq);
plot(x,y,'o',xq,pp,'-.')
ylim([-0.2 2.2])

Input Arguments
x — Sample points
vector

1 Alphabetical List

1-10582

Sample points, specified as a vector. The vector x specifies the points at which the data y
is given. The elements of x must be unique.
Data Types: single | double

y — Function values at sample points
vector | matrix | array

Function values at sample points, specified as a numeric vector, matrix, or array. x and y
must have the same length.

If y is a matrix or array, then the values in the last dimension, y(:,...,:,j), are taken
as the values to match with x. In that case, the last dimension of y must be the same
length as x.
Data Types: single | double

xq — Query points
vector

Query points, specified as a vector. The points specified in xq are the x-coordinates for the
interpolated function values p computed by pchip.
Data Types: single | double

Output Arguments
p — Interpolated values at query points
vector | matrix | array

Interpolated values at query points, returned as a vector, matrix, or array. The size of p
depends on the sizes of the inputs:

• If y is a vector, then p is a vector that has the same length as xq.
• If y has two or more dimensions denoted by n, then p has size [size(y,1)

size(y,2) ... size(y,n-1) length(xq)]. For example, if y is a matrix, then p
is of size [size(y,1) length(xq)].

pp — Piecewise polynomial
structure

 pchip

1-10583

Piecewise polynomial, returned as a structure. Use this structure with the ppval function
to evaluate the interpolating polynomials at one or more query points. The structure has
these fields.

Field Description
form 'pp' for piecewise polynomial
breaks Vector of length L+1 with strictly increasing

elements that represent the start and end
of each of L intervals

coefs L-by-k matrix with each
row coefs(i,:) containing the local
coefficients of an order k polynomial on
the ith interval, [breaks(i),breaks(i
+1)]

pieces Number of pieces, L
order Order of the polynomials
dim Dimensionality of target

Since the polynomial coefficients in coefs are local coefficients for each interval, you
must subtract the lower endpoint of the corresponding knot interval to use the
coefficients in a conventional polynomial equation. In other words, for the coefficients
[a,b,c,d] on the interval [x1,x2], the corresponding polynomial is

f x = a x− x1
3 + b x− x1

2 + c x− x1 + d .

Definitions

Shape-Preserving Piecewise Cubic Interpolation
pchip interpolates using a piecewise cubic polynomial P(x) with these properties:

• On each subinterval xk ≤ x ≤ xk + 1, the polynomial P(x) is a cubic Hermite
interpolating polynomial for the given data points with specified derivatives (slopes) at
the interpolation points.

1 Alphabetical List

1-10584

• P(x) interpolates y, that is, P(x j) = y j, and the first derivative dP
dx is continuous. The

second derivative d
2P

dx2 is probably not continuous so jumps at the x j are possible.

• The cubic interpolant P(x) is shape preserving. The slopes at the x j are chosen in such
a way that P(x) preserves the shape of the data and respects monotonicity. Therefore,
on intervals where the data is monotonic, so is P(x), and at points where the data has a
local extremum, so does P(x).

Note If y is a matrix, P(x) satisfies these properties for each row of y.

Tips
• spline constructs S(x) in almost the same way pchip constructs P(x). However,

spline chooses the slopes at the x j differently, namely to make even S″(x) continuous.
This difference has several effects:

• spline produces a smoother result, such that S″(x) is continuous.
• spline produces a more accurate result if the data consists of values of a smooth

function.
• pchip has no overshoots and less oscillation if the data is not smooth.
• pchip is less expensive to set up.
• The two are equally expensive to evaluate.

References
[1] Fritsch, F. N. and R. E. Carlson. "Monotone Piecewise Cubic Interpolation." SIAM

Journal on Numerical Analysis. Vol. 17, 1980, pp.238–246.

[2] Kahaner, David, Cleve Moler, Stephen Nash. Numerical Methods and Software. Upper
Saddle River, NJ: Prentice Hall, 1988.

 pchip

1-10585

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input x must be strictly increasing.
• Code generation does not remove y entries with NaN values.
• If you generate code for the pp = pchip(x,y) syntax, then you cannot input pp to

the ppval function in MATLAB. To create a MATLAB pp structure from a pp structure
created by the code generator:

• In code generation, use unmkpp to return the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp structure.

See Also
interp1 | ppval | spline

Introduced before R2006a

1 Alphabetical List

1-10586

pcode
Create protected function file

Syntax
pcode(fun)
pcode(fun1,...,funN)
pcode(fun,'-inplace')

Description
pcode(fun) obfuscates the code in fun.m and produces a file called fun.p, known as a
P-file. If fun is a folder, then all the script or function files in that folder are obfuscated in
P-files. MATLAB creates the P-files in the current folder. The original .m file or folder can
be anywhere on the search path.

pcode(fun1,...,funN) creates N P-files from the listed files. If any inputs are folders,
then MATLAB creates a P-file for every .m file the folders contain.

pcode(fun,'-inplace') creates P-files in the same folder as the script or function
files.

Note

• The pcode function obfuscates your code files, it does not encrypt them. While the
content in a .p file is difficult to understand, it should not be considered secure. It is
not recommended that you P-code files to protect your intellectual property.

• The pcode function does not support live scripts or live functions (.mlx).

 pcode

1-10587

Input Arguments
fun

MATLAB file or directory containing MATLAB files. If fun resides within a package and/or
class folder, then pcode creates the same package and/or class structure to house the
resulting P-files.

An input argument with no file extension and that is not a folder must be a function in the
MATLAB path or in the current folder.

When using wild cards *, pcode ignores all files with extensions other than .m.

Default:

Examples

P-Coding Multiple Files

Convert selected files from the sparfun folder into P-files.

Create a temporary folder and define an existing path to .m files.

tmp = tempname;
mkdir(tmp)
cd(tmp)
fun = fullfile(matlabroot,'toolbox','matlab','sparfun','spr*.m');

Create the P-files.

pcode(fun)
dir(tmp)

. .. sprand.p sprandn.p sprandsym.p sprank.p

The temporary folder now contains encoded P-files.

1 Alphabetical List

1-10588

P-Coding Files That Belong to a Package and/or Class

Generate P-files from input files that are part of a package and/or class. This example
uses an existing MATLAB example class.

Define funclass as an existing a class folder that contains .m files.

funclass = fullfile(docroot, 'techdoc', 'matlab_oop', ...
 'examples', '@BankAccount')
dir(funclass)

funclass =

C:\Program Files\MATLAB\R2013a\help\techdoc\matlab_oop\examples\@BankAccount

. .. BankAccount.m

Create a temporary folder. This folder has no package or class structure at this time.

tmp = tempname;
mkdir(tmp);
cd(tmp);
dir(tmp)

. ..

Create a P-file for every .m file in the path funclass. Because the input files are part of a
package and/or class, MATLAB creates a folder structure so that the output file belongs to
the same package and/or class.

pcode(funclass)
dir(tmp)

. .. @BankAccount

You see that the P-file resides in the same folder structure.

dir('@BankAccount')

. .. BankAccount.p

P-Coding In Place

Generate P-files in the same folder as the input files using the option inplace

 pcode

1-10589

Copy several MATLAB files to a temporary folder.

fun = fullfile(matlabroot,'toolbox','matlab','sparfun','spr*.m');
tmp = tempname;
mkdir(tmp);
copyfile(fun,tmp)
dir(tmp)

. .. sprand.m sprandn.m sprandsym.m sprank.m

Create P-files in the same folder as the original.m files.

pcode(tmp,'-inplace')
dir(tmp)

. sprand.m sprandn.m sprandsym.m sprank.m

.. sprand.p sprandn.p sprandsym.p sprank.p

Tips
• The pcode algorithm was redesigned in MATLAB 7.5 (Release R2007b). If your P-file

was generated prior to MATLAB 7.5, it will not run in MATLAB 8.6 (Release R2015b)
or later. Files generated in 7.5, or later versions, cannot run in MATLAB 7.4 or earlier.

• When obfuscating all files in a folder, pcode does not obfuscate any files within
subfolders.

• A P-file takes precedence over the corresponding MATLAB code file (.m) for execution,
even after modifications to the code file.

• MATLAB does not display any of the help comments that might be in the original
MATLAB code file (.m).

See Also
matlab.codetools.requiredFilesAndProducts

Topics
“Protect Your Source Code”

Introduced before R2006a

1 Alphabetical List

1-10590

pcolor
Pseudocolor plot

Syntax
pcolor(C)
pcolor(X,Y,C)
pcolor(ax, ___)
s = pcolor(___)

Description
pcolor(C) creates a pseudocolor plot using the values in matrix C. A pseudocolor plot
displays matrix data as an array of colored cells (known as faces). MATLAB creates this
plot as a flat surface in the x-y plane. The surface is defined by a grid of x- and y-
coordinates that correspond to the corners (or vertices) of the faces. The grid covers the
region X=1:n and Y=1:m, where [m,n] = size(C). Matrix C specifies the colors at the
vertices. The color of each face depends on the color at one of its four surrounding
vertices. Of the four vertices, the one that comes first in the x-y grid determines the color
of the face.

pcolor(X,Y,C) specifies the x- and y-coordinates for the vertices. The size of C must
match the size of the x-y coordinate grid. For example, if X and Y define an m-by-n grid,
then C must be an m-by-n matrix.

pcolor(ax, ___) specifies the target axes for the plot. Specify ax as the first argument
in any of the previous syntaxes.

s = pcolor(___) returns a Surface object. Use s to set properties on the plot after
creating it. For a list of properties, see Surface Properties.

Examples

 pcolor

1-10591

Plot Four Faces with Four Colors

Create coordinate vectors X and Y and a colormap called mymap containing five colors:
red, green, blue, yellow, and black.

X = [1 2 3; 1 2 3; 1 2 3];
Y = X';
mymap = [1 0 0; 0 1 0; 0 0 1; 1 1 0; 0 0 0];

Create matrix C that maps the colormap colors to the nine vertices. Four of the nine
vertices determine the colors of the faces. Specify the colors at those vertices to make the
faces red (1), green (2), blue (3), and yellow (4), respectively. Set the colors at the other
vertices to black (5).

C = [3 4 5; 1 2 5; 5 5 5];

Plot the faces, and call the colormap function to replace the default colormap with
mymap.

pcolor(X,Y,C)
colormap(mymap)

1 Alphabetical List

1-10592

Plot Hadamard Matrix

A Hadamard matrix has elements that are either 1 or -1. A good way to visualize this
matrix is with a two-color colormap.

Create a 20-by-20 Hadamard matrix. Then plot the matrix using a black and white
colormap. Use the axis function to reverse the direction of the y-axis and set the axis
lines to equal lengths.

C = hadamard(20);
pcolor(C)

 pcolor

1-10593

colormap(gray(2))
axis ij
axis square

Modify Borders

Create color matrix C. Then create a pseudocolor plot of C, and store the Surface object
in the return argument s.

C = [1 2 3; 4 5 6; 7 8 9];
s = pcolor(C);

1 Alphabetical List

1-10594

Change the border color by setting the EdgeColor property of s. Make the border
thicker by setting the LineWidth property.

s.EdgeColor = [1 0.7 0.3];
s.LineWidth = 6;

 pcolor

1-10595

Interpolate Colors Across Faces

Create color matrix C. Then create a pseudocolor plot of C, and store the Surface object
in the return argument s.

C = [5 13 9 7 12; 11 2 14 8 10; 6 1 3 4 15];
s = pcolor(C);

1 Alphabetical List

1-10596

To interpolate the colors across the faces, set the FaceColor propery of s to 'interp'.

s.FaceColor = 'interp';

 pcolor

1-10597

Specify Semilogarithmic Grid

Create matrices X and Y, which define a regularly spaced grid of vertices. Calculate
matrix LY as the log of Y. Then create matrix C containing alternating pairs of rows of
color indices.

[X,Y] = meshgrid(1:20);
LY = log(Y);
colorscale = [1:20; 20:-1:1];
C = repmat(colorscale,10,1);

Plot X and LY, using the colors specified in C. Then adjust the tick labels on the y-axis.

1 Alphabetical List

1-10598

s = pcolor(X,LY,C);
tickvals = LY(2:2:20,1)';
set(gca,'YTick',tickvals);

Specify Parametric Grid

Create matrices X and Y, which define a regularly spaced grid of vertices. Calculate
matrices XX and YY as functions of X and Y. Then create matrix C containing alternating
pairs of rows of color indices.

[X,Y] = meshgrid(-3:6/17:3);
XX = 2*X.*Y;

 pcolor

1-10599

YY = X.^2 - Y.^2;
colorscale = [1:18; 18:-1:1];
C = repmat(colorscale,9,1);

Plot XX and YY using the colors in C.

pcolor(XX,YY,C);

Specify Target Axes

Use the subplot function to create two axes, ax1 and ax2. Create two pseudocolor plots
by specifying the axes as the first argument to pcolor.

1 Alphabetical List

1-10600

% Left plot
ax1 = subplot(1,2,1);
C1 = rand(20,10);
pcolor(ax1,C1)

% Right plot
ax2 = subplot(1,2,2);
C2 = rand(50,10);
pcolor(ax2,C2)

 pcolor

1-10601

Input Arguments
C — Color matrix
matrix

Color matrix containing indices into the colormap. The values in C map colors in the
colormap array to the vertices surrounding each face. The color of a face depends on the
color at one of its four vertices. Of the four vertices, the one that come first in X and Y
determines the color of the face. If you do not specify X and Y, MATLAB uses X=1:n and
Y=1:m, where [m,n] = size(C). Because of this relationship between the vertex colors
and face colors, none of the values in the last row and column of C are represented in the
plot.

Note The first vertex of a face is the one that is closest to the upper-left corner of the
corresponding matrix. However, because the y-axis increases from bottom to top, the first
vertex shown in the plot is typically the one in the lower-left corner of the face. To get the
effect you want, you might have to change the orientation of the y-axis or the orientation
of matrix C.

The values in C scale to the full range of the colormap. The smallest value in C maps to
the first row in the colormap array. The largest value in C maps to the last row in the
colormap array. The intermediate values in C map linearly to the intermediate rows of the
colormap array. You can adjust this mapping using the caxis function.

The CData property of the Surface object stores the values of C.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-10602

X — x-coordinates
matrix | vector

x-coordinates, specified as a matrix the same size as C, or as a vector of length n, where
[m,n] = size(C). The default value of X is the vector (1:n).

To create a rectangular grid of vertices, specify X as either of the following:

• A vector containing values that are increasing or decreasing.
• A matrix that is increasing or decreasing along one dimension and is constant along

the other dimension. Set the dimension that varies to the opposite of the dimension
that varies in matrix Y. You can use the meshgrid function to create the X and Y
matrices.

To create a parametric grid, create a rectangular grid and pass it through a mathematical
function.
Example: X = 1:10
Example: X = [1 2 3; 1 2 3; 1 2 3]
Example: [X,Y] = meshgrid(1:10)

The XData property of the Surface object stores the x-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — y-coordinates
matrix | vector

y-coordinates, specified as a matrix the same size as C, or as a vector of length m, where
[m,n] = size(C). The default value of Y is the vector (1:m).

To create a rectangular grid of vertices, specify Y as either of the following:

• A vector containing values that are increasing or decreasing.
• A matrix that is increasing or decreasing along one dimension and is constant along

the other dimension. Set the dimension that varies to the opposite of the dimension
that varies in matrix X. You can use the meshgrid function to create the X and Y
matrices.

To create a parametric grid, create a rectangular grid and pass it through a mathematical
function.

 pcolor

1-10603

Example: Y = 1:10
Example: Y = [1 1 1; 2 2 2; 3 3 3]
Example: [X,Y] = meshgrid(1:10)

The YData property of the Surface object stores the y-coordinates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then pcolor plots
into the current axes.

Algorithms
Use the pcolor, image, and imagesc functions to display rectangular arrays of colored
cells. The relationship between the color matrix C and the colored cells is different in
each case.

• pcolor(C) uses the values in C to define the vertex colors by scaling the values to the
full range of the colormap. The size of C determines the number of vertices. The values
in C map colors from the current colormap to the vertices surrounding each cell.

• image(C) uses C to define the cell colors by mapping the values directly into the
colormap. The size of C determines the number of cells.

• imagesc(C) uses C to define the cell colors by scaling the values to the full range of
the colormap. The size of C determines the number of cells.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-10604

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
colormap | image | imagesc | surface

Properties
Surface Properties

Topics
“Change Color Scheme Using a Colormap”
“How Surface Plot Data Relates to a Colormap”
“Control Colormap Limits”

Introduced before R2006a

 pcolor

1-10605

pdepe
Solve initial-boundary value problems for parabolic-elliptic PDEs in 1-D

Syntax
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)
[sol,tsol,sole,te,ie] =
pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

Arguments
m A parameter corresponding to the symmetry of the problem. m can

be slab = 0, cylindrical = 1, or spherical = 2.
pdefun A handle to a function that defines the components of the PDE.
icfun A handle to a function that defines the initial conditions.
bcfun A handle to a function that defines the boundary conditions.
xmesh A vector [x0, x1, ..., xn] specifying the points at which a numerical

solution is requested for every value in tspan. The elements of
xmesh must satisfy x0 < x1 < ... < xn. The length of xmesh
must be >= 3.

tspan A vector [t0, t1, ..., tf] specifying the points at which a solution is
requested for every value in xmesh. The elements of tspan must
satisfy t0 < t1 < ... < tf. The length of tspan must be >= 3.

options Some options of the underlying ODE solver are available in pdepe:
RelTol, AbsTol, NormControl, InitialStep, MaxStep, and
Events. In most cases, default values for these options provide
satisfactory solutions. See odeset for details.

1 Alphabetical List

1-10606

Description
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves initial-boundary value
problems for systems of parabolic and elliptic PDEs in the one space variable x and time t.
pdefun, icfun, and bcfun are function handles. See “Create Function Handle” for more
information. The ordinary differential equations (ODEs) resulting from discretization in
space are integrated to obtain approximate solutions at times specified in tspan. The
pdepe function returns values of the solution on a mesh provided in xmesh.

“Parameterizing Functions” explains how to provide additional parameters to the
functions pdefun, icfun, or bcfun, if necessary.

pdepe solves PDEs of the form:

c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x (1-3)

The PDEs hold for t0 ≤ t ≤ tf and a ≤ x ≤ b. The interval [a,b] must be finite. m can be 0,
1, or 2, corresponding to slab, cylindrical, or spherical symmetry, respectively. If m > 0,
then a must be ≥ 0.

In “Equation 1-3”, f (x,t,u,∂u/∂x) is a flux term and s (x,t,u,∂u/∂x) is a source term. The
coupling of the partial derivatives with respect to time is restricted to multiplication by a
diagonal matrix c (x,t,u,∂u/∂x). The diagonal elements of this matrix are either identically
zero or positive. An element that is identically zero corresponds to an elliptic equation
and otherwise to a parabolic equation. There must be at least one parabolic equation. An
element of c that corresponds to a parabolic equation can vanish at isolated values of x if
those values of x are mesh points. Discontinuities in c and/or s due to material interfaces
are permitted provided that a mesh point is placed at each interface.

For t = t0 and all x, the solution components satisfy initial conditions of the form

u(x, t0) = u0(x) (1-4)

For all t and either x = a or x = b, the solution components satisfy a boundary condition of
the form

p(x, t, u) + q(x, t)f x, t, u, ∂u∂x = 0 (1-5)

 pdepe

1-10607

Elements of q are either identically zero or never zero. Note that the boundary conditions
are expressed in terms of the flux f rather than ∂u/∂x. Also, of the two coefficients, only p
can depend on u.

In the call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan):

• m corresponds to m.
• xmesh(1) and xmesh(end) correspond to a and b.
• tspan(1) and tspan(end) correspond to t0 and tf.
• pdefun computes the terms c, f, and s (“Equation 1-3”). It has the form

[c,f,s] = pdefun(x,t,u,dudx)

The input arguments are scalars x and t and vectors u and dudx that approximate the
solution u and its partial derivative with respect to x, respectively. c, f, and s are
column vectors. c stores the diagonal elements of the matrix c (“Equation 1-3”).

• icfun evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns the initial values of the
solution components at x in the column vector u.

• bcfun evaluates the terms p and q of the boundary conditions (“Equation 1-5”). It has
the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

ul is the approximate solution at the left boundary xl = a and ur is the approximate
solution at the right boundary xr = b. pl and ql are column vectors corresponding to
p and q evaluated at xl, similarly pr and qr correspond to xr. When m > 0 and a = 0,
boundedness of the solution near x = 0 requires that the flux f vanish at a = 0. pdepe
imposes this boundary condition automatically and it ignores values returned in pl
and ql.

pdepe returns the solution as a multidimensional array sol. ui = ui = sol(:,:,i) is an
approximation to the ith component of the solution vector u. The element ui(j,k) =
sol(j,k,i) approximates ui at (t,x) = (tspan(j),xmesh(k)).

ui = sol(j,:,i) approximates component i of the solution at time tspan(j) and mesh
points xmesh(:). Use pdeval to compute the approximation and its partial derivative
∂ui/∂x at points not included in xmesh. See pdeval for details.

1 Alphabetical List

1-10608

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) solves as above
with default integration parameters replaced by values in options, an argument created
with the odeset function. Only some of the options of the underlying ODE solver are
available in pdepe: RelTol, AbsTol, NormControl, InitialStep, and MaxStep. The
defaults obtained by leaving off the input argument options will generally be
satisfactory. See odeset for details.

[sol,tsol,sole,te,ie] =
pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) with the 'Events'
property in options set to a function handle Events, solves as above while also finding
where event functions g(t,u(x,t))are zero. For each function you specify whether the
integration is to terminate at a zero and whether the direction of the zero crossing
matters. Three column vectors are returned by events:
[value,isterminal,direction] = events(m,t,xmesh,umesh). xmesh contains
the spatial mesh and umesh is the solution at the mesh points. Use pdeval to evaluate
the solution between mesh points. For the I-th event function, value(i) is the value of
the function, ISTERMINAL(I) = 1 if the integration is to terminate at a zero of this
event function and 0 otherwise. direction(i) = 0 if all zeros are to be computed (the
default), +1 if only zeros where the event function is increasing, and -1 if only zeros
where the event function is decreasing. Output tsol is a column vector of times specified
in tspan, prior to first terminal event. SOL(j,:,:) is the solution at T(j). TE is a vector
of times at which events occur. SOLE(j,:,:) is the solution at TE(j) and indices in
vector IE specify which event occurred.

If UI = SOL(j,:,i) approximates component i of the solution at time TSPAN(j) and
mesh points XMESH, pdeval evaluates the approximation and its partial derivative ∂ui/∂x
at the array of points XOUT and returns them in UOUT and DUOUTDX: [UOUT,DUOUTDX]
= PDEVAL(M,XMESH,UI,XOUT)

Note The partial derivative ∂ui/∂x is evaluated here rather than the flux. The flux is
continuous, but at a material interface the partial derivative may have a jump.

Examples
Example 1. This example illustrates the straightforward formulation, computation, and
plotting of the solution of a single PDE.

π2∂u
∂t = ∂

∂x
∂u
∂x

 pdepe

1-10609

This equation holds on an interval 0 ≤ x ≤ 1 for times t ≥ 0.

The PDE satisfies the initial condition

u(x, 0) = sinπx

and boundary conditions

u(0, t) ≡ 0

πe−t + ∂u
∂x (1, t) = 0

It is convenient to use local functions to place all the functions required by pdepe in a
single function.

function pdex11

m = 0;
x = linspace(0,1,20);
t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
% Extract the first solution component as u.
u = sol(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)
title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')
ylabel('Time t')

% A solution profile can also be illuminating.
figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')
% --
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;
% --
function u0 = pdex1ic(x)

1 Alphabetical List

1-10610

u0 = sin(pi*x);
% --
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

In this example, the PDE, initial condition, and boundary conditions are coded in local
functions pdex1pde, pdex1ic, and pdex1bc.

The surface plot shows the behavior of the solution.

The following plot shows the solution profile at the final value of t (i.e., t = 2).

 pdepe

1-10611

Example 2. This example illustrates the solution of a system of PDEs. The problem has
boundary layers at both ends of the interval. The solution changes rapidly for small t.

The PDEs are

∂u1
∂t = 0.024

∂2u1
∂x2 − F(u1− u2)

∂u2
∂t = 0.170

∂2u2
∂x2 + F(u1− u2)

where F(y) = exp(5.73y) – exp(–11.46y).

1 Alphabetical List

1-10612

This equation holds on an interval 0 ≤ x ≤ 1 for times t ≥ 0.

The PDE satisfies the initial conditions

u1(x, 0) ≡ 1
u2(x, 0) ≡ 0

and boundary conditions

∂u1
∂x (0, t) ≡ 0

u2(0, t) ≡ 0
u1(1, t) ≡ 1
∂u2
∂x (1, t) ≡ 0

In the form expected by pdepe, the equations are

1
1
⋅ * ∂

∂t
u1
u2

= ∂
∂x

0.024(∂u1/∂x)
0.170(∂u2/∂x)

+
−F(u1− u2)

F(u1− u2)

The boundary conditions on the partial derivatives of u have to be written in terms of the
flux. In the form expected by pdepe, the left boundary condition is

0
u2

+
1
0
⋅ *

0.024(∂u1/∂x)
0.170(∂u2/∂x)

=
0
0

and the right boundary condition is

u1− 1
0

+
0
1
⋅ *

0.024(∂u1/∂x)
0.170(∂u2/∂x)

=
0
0

The solution changes rapidly for small t. The program selects the step size in time to
resolve this sharp change, but to see this behavior in the plots, the example must select
the output times accordingly. There are boundary layers in the solution at both ends of
[0,1], so the example places mesh points near 0 and 1 to resolve these sharp changes.
Often some experimentation is needed to select a mesh that reveals the behavior of the
solution.

 pdepe

1-10613

function pdex4
m = 0;
x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
% --
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [0.024; 0.17] .* DuDx;
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];
% --
function u0 = pdex4ic(x);
u0 = [1; 0];
% --
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];

In this example, the PDEs, initial conditions, and boundary conditions are coded in local
functions pdex4pde, pdex4ic, and pdex4bc.

The surface plots show the behavior of the solution components.

1 Alphabetical List

1-10614

 pdepe

1-10615

Tips
• The arrays xmesh and tspan play different roles in pdepe.

tspan – The pdepe function performs the time integration with an ODE solver that
selects both the time step and formula dynamically. The elements of tspan merely
specify where you want answers and the cost depends weakly on the length of tspan.

xmesh – Second order approximations to the solution are made on the mesh specified
in xmesh. Generally, it is best to use closely spaced mesh points where the solution
changes rapidly. pdepe does not select the mesh in x automatically. You must provide
an appropriate fixed mesh in xmesh. The cost depends strongly on the length of

1 Alphabetical List

1-10616

xmesh. When m > 0, it is not necessary to use a fine mesh near x = 0 to account for
the coordinate singularity.

• The time integration is done with ode15s. pdepe exploits the capabilities of ode15s
for solving the differential-algebraic equations that arise when “Equation 1-3” contains
elliptic equations, and for handling Jacobians with a specified sparsity pattern.

• After discretization, elliptic equations give rise to algebraic equations. If the elements
of the initial conditions vector that correspond to elliptic equations are not
"consistent" with the discretization, pdepe tries to adjust them before beginning the
time integration. For this reason, the solution returned for the initial time may have a
discretization error comparable to that at any other time. If the mesh is sufficiently
fine, pdepe can find consistent initial conditions close to the given ones. If pdepe
displays a message that it has difficulty finding consistent initial conditions, try
refining the mesh.

No adjustment is necessary for elements of the initial conditions vector that
correspond to parabolic equations.

References
[1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization of Parabolic

Equations in One Space Variable," SIAM Journal on Scientific and Statistical
Computing, Vol. 11, 1990, pp.1–32.

See Also
ode15s | odeget | odeset | pdeval

Topics
“Create Function Handle”

Introduced before R2006a

 pdepe

1-10617

pdeval
Evaluate numerical solution of PDE using output of pdepe

Syntax
[uout,duoutdx] = pdeval(m,x,ui,xout)

Arguments
m Symmetry of the problem: slab = 0, cylindrical = 1, spherical = 2.

This is the first input argument used in the call to pdepe.
x A vector [x0, x1, ..., xn] specifying the points at which the elements

of ui were computed. This is the same vector with which pdepe
was called.

ui A vector sol(j,:,i) that approximates component i of the solution
at time tf and mesh points xmesh, where sol is the solution
returned by pdepe.

xout A vector of points from the interval [x0,xn] at which the
interpolated solution is requested.

Description
[uout,duoutdx] = pdeval(m,x,ui,xout) approximates the solution ui and its
partial derivative ∂ui/∂x at points from the interval [x0,xn]. The pdeval function returns
the computed values in uout and duoutdx, respectively.

Note pdeval evaluates the partial derivative ∂ui/∂x rather than the flux f. Although the
flux is continuous, the partial derivative may have a jump at a material interface.

See Also
pdepe

1 Alphabetical List

1-10618

Introduced before R2006a

 pdeval

1-10619

peaks
Example function of two variables

Syntax
Z = peaks;
Z = peaks(n);
Z = peaks(V);
Z = peaks(X,Y);
peaks(...)
[X,Y,Z] = peaks(...);

Description
peaks is a function of two variables, obtained by translating and scaling Gaussian
distributions, which is useful for demonstrating mesh, surf, pcolor, contour, and so
on.

Z = peaks; returns a 49-by-49 matrix.

Z = peaks(n); returns an n-by-n matrix.

Z = peaks(V); returns an n-by-n matrix, where n = length(V).

Z = peaks(X,Y); evaluates peaks at the given X and Y (which must be the same size)
and returns a matrix the same size.

peaks(...) (with no output argument) plots the peaks function with surf. Use any of
the input argument combinations in the previous syntaxes.

[X,Y,Z] = peaks(...); returns two additional matrices, X and Y, for parametric
plots, for example, surf(X,Y,Z,del2(Z)). If not given as input, the underlying
matrices X and Y are

[X,Y] = meshgrid(V,V)

1 Alphabetical List

1-10620

where V is a given vector, or V is a vector of length n with elements equally spaced from
-3 to 3. If no input argument is given, the default n is 49.

Examples

Peaks Surface

Create a 5-by-5 matrix of peaks and display the surface.

figure
peaks(5);

z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
 - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
 - 1/3*exp(-(x+1).^2 - y.^2)

 peaks

1-10621

See Also
meshgrid | surf

Introduced before R2006a

1 Alphabetical List

1-10622

matlab.perftest.FixedTimeExperiment class
Package: matlab.perftest
Superclasses:

TimeExperiment that collects fixed number of measurements

Description
A FixedTimeExperiment is an instance of the TimeExperiment class that collects a
fixed number of measurements.

To create a FixedTimeExperiment instance, use the
matlab.perftest.TimeExperiment.withFixedSampleSize static method.

Properties
NumWarmups — Number of warm-up measurements
0 (default) | nonnegative integer

Number of warm-up measurements, specified as a nonnegative integer. NumWarmups
defines the number of times that the test framework runs the test code to warm it up.

SampleSize — Number of sample measurements to collect after warm-up
positive integer

Number of sample measurements to collect after warm-up, specified as a positive integer.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
matlab.perftest.TimeExperiment |
matlab.unittest.measurement.MeasurementResult

 matlab.perftest.FixedTimeExperiment class

1-10623

Introduced in R2016a

1 Alphabetical List

1-10624

matlab.perftest.FrequentistTimeExperiment
class
Package: matlab.perftest
Superclasses:

TimeExperiment that collects variable number of measurements

Description
A FrequentistTimeExperiment is an instance of the TimeExperiment class that
collects a variable number of measurements. The test framework collects a variable
number of measurements to reach a specified relative margin of error at a specified
confidence level.

To create a FrequentistTimeExperiment instance, use the
matlab.perftest.TimeExperiment.limitingSamplingError static method.

Properties
NumWarmups — Number of warm-up measurements
4 (default) | nonnegative integer

Number of warm-up measurements, specified as a nonnegative integer. NumWarmups
defines the number of times that the test framework runs the test code to warm it up.

MinSamples — Minimum number of samples
4 (default) | integer greater than 1

Minimum number of sample measurements, specified as an integer greater than 1.
MinSamples defines the minimum number of times that the test framework runs the test
code after NumWarmups. The test framework exercises the test code at least MinSamples
times, regardless of whether the experiment meets the statistical objectives.

MaxSamples — Maximum number of samples
256 (default) | integer greater than or equal to MinSamples

 matlab.perftest.FrequentistTimeExperiment class

1-10625

Maximum number of sample measurements, specified as an integer greater than or equal
to MinSamples. MaxSamples defines the maximum number of times that the test
framework runs the test code after NumWarmups. The test framework will stop after it
takes MaxSamples samples, even if the experiment does not meet the statistical
objectives.

RelativeMarginOfError — Goal relative margin of error for samples
0.05 (default) | positive number

Goal relative margin of error for samples, specified as a positive number.

The framework calculates the Relative Margin of Error for a sample X using the equation

relMoE = T∗std(X)
mean(X) ∗ length(X)

where T is the T-score from Student's T distribution using the specified
ConfidenceLevel and length(X)-1 degrees of freedom.

ConfidenceLevel — Confidence level for samples to be within relative margin of
error
0.95 (default) | number between 0 and 1

Confidence level for the samples to be within the relative margin of error, specified as a
number between 0 and 1.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
matlab.perftest.TimeExperiment |
matlab.unittest.measurement.MeasurementResult

Introduced in R2016a

1 Alphabetical List

1-10626

matlab.perftest.TestCase class
Package: matlab.perftest
Superclasses:

Superclass of matlab.perftest performance test classes

Description
Use the matlab.perftest.TestCase class to write class-based performance tests that
can define measurement boundaries. By default, the framework measures performance
around the test method boundary. However, test classes that inherit from
matlab.perftest.TestCase can use the startMeasuring and stopMeasuring
methods to define boundaries to measure specific code segments.

The matlab.perftest.TestCase derives from the matlab.unittest.TestCase
class.

Construction
The testing framework constructs the matlab.perftest.TestCase instances.

Methods
keepMeasuring Measure code with automatic looping
startMeasuring Designate start of measurement boundary
stopMeasuring Designate end of measurement boundary

 matlab.perftest.TestCase class

1-10627

Inherited Methods

addTeardown Dynamically add teardown routine
applyFixture Use fixture with TestCase
forInteractiveUse Create TestCase for interactive use
getSharedTestFixtures Provide access to shared test fixtures
log Record diagnostic information
onFailure Dynamically add diagnostics for test failures
run Run TestCase test

Also, the TestCase class inherits methods from these classes:

matlab.unittest.qualifications.Assertable
Qualification to validate preconditions of a
test

matlab.unittest.qualifications.Assumable
Qualification to filter test content

matlab.unittest.qualifications.FatalAssertable
Qualification to abort test execution

matlab.unittest.qualifications.Verifiable
Qualification to produce soft failure
conditions

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Performance Test Class

Create a performance test class, preallocationTest. The performance testing
framework measures the time for each of the four test methods.

1 Alphabetical List

1-10628

classdef preallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end

 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end

 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end

 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

 end
end

Specify Boundaries for Performance Test Class

Create a performance test class, fprintfTest. The performance testing framework
measures the code between the calls to the startMeasuring and stopMeasuring
methods. This boundary restricts the performance testing framework to measuring only
the call to the fprintf function. It excludes setup and teardown actions, and
qualifications testing.

classdef fprintfTest < matlab.perftest.TestCase
 methods(Test)
 function testPrintingToFile(testCase)
 file = tempname;
 fid = fopen(file, 'w');
 testCase.assertNotEqual(fid, -1, 'IO Problem');

 stringToWrite = repmat('abcdef', 1, 1000000);

 testCase.startMeasuring();

 matlab.perftest.TestCase class

1-10629

 fprintf(fid, '%s', stringToWrite);
 testCase.stopMeasuring();

 testCase.verifyEqual(fileread(file), stringToWrite);
 fclose(fid);
 end
 end
end

See Also
matlab.perftest.TimeExperiment

Introduced in R2016a

1 Alphabetical List

1-10630

keepMeasuring
Class: matlab.perftest.TestCase
Package: matlab.perftest

Measure code with automatic looping

Syntax
keepMeasuring(testcase)
keepMeasuring(testcase,label)

Description
keepMeasuring(testcase) instructs the testing framework to iterate through a while
loop as many times as it needs to get an accurate measurement of performance.

Performance tests that execute too quickly for MATLAB to time accurately are filtered
with an assumption failure. With the keepMeasuring method, the testing framework can
measure significantly faster code by automatically determining the number of times to
iterate through code and measuring the average performance.

You cannot put a keepMeasuring-while loop between calls to startMeasuring and
stopMeasuring. Similarly, you cannot call the startMeasuring and stopMeasuring
methods inside a keepMeasuring-while loop.

keepMeasuring(testcase,label) labels the measurement with label.
Measurements generated in the same test method and with the same label are
accumulated and summed. The label is appended in angle brackets to the test element
name in the Samples and TestActivity properties of the MeasurementResult object.

Input Arguments
testcase — Instance of test case
matlab.perftest.TestCase object

 keepMeasuring

1-10631

Instance of the test case, specified as a matlab.perftest.TestCase object.

label — Measurement boundary label
valid MATLAB identifier

Measurement boundary label, specified as a valid MATLAB identifier. A valid MATLAB
identifier is a character vector or string scalar of alphanumerics (A–Z, a–z, 0–9) and
underscores, such that the first character is a letter and the length of the character
vector is less than or equal to namelengthmax.

Examples

Measure Fast Code

Create a performance test class, ZerosTest. This parameterized performance test
measures the creation of three different sizes of arrays of zeros.

classdef ZerosTest < matlab.perftest.TestCase
 properties (TestParameter)
 Size = {1e2,1e3,1e4};
 end

 methods(Test)
 function testOne(testCase,Size)
 A = zeros(Size);
 end
 end
end

Run the performance test. The time to create the first two arrays is too close to the
precision of the framework and the tests are filtered.

results = runperf('ZerosTest');

Running ZerosTest
........
==
ZerosTest/testOne(Size=value1) was filtered.
 Test Diagnostic: The MeasuredTime should not be too close to the precision of the framework.
Details
==
..
==
ZerosTest/testOne(Size=value2) was filtered.

1 Alphabetical List

1-10632

 Test Diagnostic: The MeasuredTime should not be too close to the precision of the framework.
Details
==
....
Done ZerosTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 ZerosTest/testOne(Size=value1) X Filtered by assumption.

 ZerosTest/testOne(Size=value2) X Filtered by assumption.

To get an accurate measurement, modify the ZerosTest class to use a keepMeasuring-
while loop. The performance testing framework measures the code within the
keepMeasuring-while loop.

classdef ZerosTest < matlab.perftest.TestCase
 properties (TestParameter)
 Size = {1e2,1e3,1e4};
 end

 methods(Test)
 function testOne(testCase,Size)
 while(testCase.keepMeasuring)
 A = zeros(Size);
 end
 end
 end
end

Rerun the performance test.

results = runperf('ZerosTest');

Running ZerosTest
..........
Done ZerosTest

See Also
matlab.perftest.TimeExperiment | runperf

Topics
“Measure Fast Executing Test Code”

 keepMeasuring

1-10633

Introduced in R2018b

1 Alphabetical List

1-10634

startMeasuring
Class: matlab.perftest.TestCase
Package: matlab.perftest

Designate start of measurement boundary

Syntax
startMeasuring(testcase)
startMeasuring(testcase,label)

Description
startMeasuring(testcase) designates the start of a measurement boundary. Invoke
this method and the stopMeasuring method to restrict measurements to the code
between the startMeasuring and stopMeasuring method calls. Defining this
boundary allows you to exclude setup, verification, and teardown code from the
measurement.

The performance framework permits multiple, nonnested calls to the startMeasuring
and stopMeasuring methods within each method that is tagged with the Test attribute.
When creating bounded performance tests, keep the following in mind:

• A test method that calls the startMeasuring method must call the stopMeasuring
method in the scope of the same test method.

• A call to the startMeasuring method must have a subsequent call to
stopMeasuring method in the scope of the same test method. Similarly, a call to the
stopMeasuring method must have a preceding call to startMeasuring.

• You cannot call the startMeasuring and stopMeasuring methods inside a while
loop that has the keepMeasuring method in the condition. Similarly, you cannot have
a while loop that has the keepMeasuring condition between calls to
startMeasuring and stopMeasuring.

• If a test method has multiple calls to startMeasuring and stopMeasuring, then the
performance framework accumulates and sums the measurements.

 startMeasuring

1-10635

If the framework encounters unsupported use of startMeasuring and stopMeasuring
within a test method, it marks the corresponding MeasurementResult instance invalid.

startMeasuring(testcase,label) designates the start of a measurement boundary
and labels the measurement with label. Specifying a measurement boundary with a
label is similar to specifying one without a label. A call to startMeasuring with a label
must have a subsequent call to stopMeasuring with the same label in the scope of the
same test method. If a test method has multiple boundaries with the same label, then the
performance framework accumulates the measurements by label and computes the sum.
The performance framework does not support nested measurement boundaries.

The label is appended in angle brackets to the test element name in the Samples and
TestActivity properties of the MeasurementResult.

Input Arguments
testcase — Instance of test case
matlab.perftest.TestCase object

Instance of the test case, specified as a matlab.perftest.TestCase object.

label — Measurement boundary label
valid MATLAB identifier

Measurement boundary label, specified as a valid MATLAB identifier. A valid MATLAB
identifier is a character vector or string scalar of alphanumerics (A–Z, a–z, 0–9) and
underscores, such that the first character is a letter and the length of the character
vector is less than or equal to namelengthmax.

Examples

Specify Boundaries for Performance Test Class

Create a performance test class, fprintfTest. The performance testing framework
measures the code between the calls to the startMeasuring and stopMeasuring
methods. This boundary restricts the performance testing framework to measuring only
the call to the fprintf function. It excludes setup and teardown actions, and
qualifications testing.

1 Alphabetical List

1-10636

classdef fprintfTest < matlab.perftest.TestCase
 methods(Test)
 function testPrintingToFile(testCase)
 file = tempname;
 fid = fopen(file, 'w');
 testCase.assertNotEqual(fid, -1, 'IO Problem');

 stringToWrite = repmat('abcdef', 1, 1000000);

 testCase.startMeasuring();
 fprintf(fid, '%s', stringToWrite);
 testCase.stopMeasuring();

 testCase.verifyEqual(fileread(file), stringToWrite);
 fclose(fid);
 end
 end
end

Refine Measured Code Using Multiple Boundaries

Create a performance test class, fprintfTest2. Multiple boundaries (calls to
startMeasuring and stopMeasuring) enable the performance framework to measure
the code that opens the file, writes to the file, and closes the file.

classdef fprintfTest2 < matlab.perftest.TestCase
 methods(Test)
 function testPrintingToFile(testCase)
 file = tempname;

 testCase.startMeasuring();
 fid = fopen(file,'w');
 testCase.stopMeasuring();

 testCase.assertNotEqual(fid,-1,'IO Problem');
 stringToWrite = repmat('abcdef',1,1000000);

 testCase.startMeasuring();
 fprintf(fid,'%s',stringToWrite);
 testCase.stopMeasuring();

 testCase.verifyEqual(fileread(file),stringToWrite);

 startMeasuring

1-10637

 testCase.startMeasuring();
 fclose(fid);
 testCase.stopMeasuring();
 end
 end
end

Run the performance test and view the sample summary. The performance framework
measured that the mean time to open, write to, and close the file for the
testPrintingToFile test was approximately 0.02 seconds. Your results might vary.

results = runperf('fprintfTest2');
T = sampleSummary(results)

Running fprintfTest2
........
Done fprintfTest2

T =

 1×7 table

 Name SampleSize Mean StandardDeviation Min Median Max
 _______________________________ __________ ________ _________________ ________ ________ ________

 fprintfTest2/testPrintingToFile 4 0.021089 0.00075099 0.020583 0.020784 0.022207

Specify Labeled Measurement Boundaries

Create a performance test class, examplePerfTest. The first test has labeled test
boundaries for generating an array of random numbers, measuring a call to svd with a
single output, and measuring a call to svd with multiple outputs. The second test has an
unlabeled boundary around the call to svd.

classdef examplePerfTest < matlab.perftest.TestCase
 methods(Test)
 function testSVD1(testCase)
 testCase.startMeasuring('arrayGen')
 X = rand(1000);

1 Alphabetical List

1-10638

 testCase.stopMeasuring('arrayGen')

 testCase.startMeasuring('SVD_1out')
 S = svd(X);
 testCase.stopMeasuring('SVD_1out')

 testCase.startMeasuring("SVD_3out")
 [U2,S2,V2] = svd(X);
 testCase.stopMeasuring("SVD_3out")

 testCase.verifyEqual(S,diag(S2),'RelTol',1e-14)
 end

 function testSVD2(testCase)
 sz = 732;
 X = rand(sz);

 testCase.startMeasuring()
 [U,S,V] = svd(X);
 testCase.stopMeasuring()

 testCase.verifyTrue(isdiag(S))
 testCase.verifyTrue(issorted(diag(S),'descend'))
 testCase.verifySize(S,[sz sz 1])
 end
 end
end

Run the performance test and view the sample summary. Your results might vary. The
labels from testSVD1 are appended in angle brackets to the test element name in the
results.

results = runperf('examplePerfTest');
T = sampleSummary(results)

Running examplePerfTest
..........
..........
..........
..........
Done examplePerfTest

T =

 4×7 table

 startMeasuring

1-10639

 Name SampleSize Mean StandardDeviation Min Median Max
 ___________________________________ __________ _________ _________________ _________ _________ ________

 examplePerfTest/testSVD1 <arrayGen> 21 0.0096508 0.0012428 0.0087596 0.0092564 0.013911
 examplePerfTest/testSVD1 <SVD_1out> 21 0.11978 0.0098172 0.10585 0.12274 0.13575
 examplePerfTest/testSVD1 <SVD_3out> 21 0.30664 0.020991 0.26882 0.3051 0.35018
 examplePerfTest/testSVD2 11 0.13294 0.011135 0.11127 0.13557 0.15162

See Also
matlab.perftest.TimeExperiment | stopMeasuring

Introduced in R2016a

1 Alphabetical List

1-10640

stopMeasuring
Class: matlab.perftest.TestCase
Package: matlab.perftest

Designate end of measurement boundary

Syntax
stopMeasuring(testcase)
stopMeasuring(testcase,label)

Description
stopMeasuring(testcase) designates the end of a measurement boundary. Invoke this
method and the startMeasuring method to restrict measurements to the code between
the startMeasuring and stopMeasuring method calls. Defining this boundary allows
you to exclude setup, verification, and teardown code from the measurement.

The performance framework permits multiple, nonnested calls to the startMeasuring
and stopMeasuring methods within each method that is tagged with the Test attribute.
When creating bounded performance tests, keep the following in mind:

• A test method that calls the startMeasuring method must call the stopMeasuring
method in the scope of the same test method.

• A call to the startMeasuring method must have a subsequent call to
stopMeasuring method in the scope of the same test method. Similarly, a call to the
stopMeasuring method must have a preceding call to startMeasuring.

• You cannot call the startMeasuring and stopMeasuring methods inside a while
loop that has the keepMeasuring method in the condition. Similarly, you cannot have
a while loop that has the keepMeasuring condition between calls to
startMeasuring and stopMeasuring.

• If a test method has multiple calls to startMeasuring and stopMeasuring, then the
performance framework accumulates and sums the measurements.

 stopMeasuring

1-10641

If the framework encounters unsupported use of startMeasuring and stopMeasuring
within a test method, it marks the corresponding MeasurementResult instance invalid.

stopMeasuring(testcase,label) designates the end of a measurement boundary
and labels the measurement with label. Specifying a measurement boundary with a
label is similar to specifying one without a label. A call to stopMeasuring with a label
must have a preceding call to startMeasuring with the same label in the scope of the
same test method. If a test method has multiple boundaries with the same label, then the
performance framework accumulates the measurements by label and computes the sum.
The performance framework does not support nested measurement boundaries.

The label is appended in angle brackets to the test element name in the Samples and
TestActivity properties of the MeasurementResult.

Input Arguments
testcase — Instance of test case
matlab.perftest.TestCase object

Instance of the test case, specified as a matlab.perftest.TestCase object.

label — Measurement boundary label
valid MATLAB identifier

Measurement boundary label, specified as a valid MATLAB identifier. A valid MATLAB
identifier is a character vector or string scalar of alphanumerics (A–Z, a–z, 0–9) and
underscores, such that the first character is a letter and the length of the character
vector is less than or equal to namelengthmax.

Examples

Specify Boundaries for Performance Test Class

Create a performance test class, fprintfTest. The performance testing framework
measures the code between the calls to the startMeasuring and stopMeasuring
methods. This boundary restricts the performance testing framework to measuring only
the call to the fprintf function. It excludes setup and teardown actions, and
qualifications testing.

1 Alphabetical List

1-10642

classdef fprintfTest < matlab.perftest.TestCase
 methods(Test)
 function testPrintingToFile(testCase)
 file = tempname;
 fid = fopen(file, 'w');
 testCase.assertNotEqual(fid, -1, 'IO Problem');

 stringToWrite = repmat('abcdef', 1, 1000000);

 testCase.startMeasuring();
 fprintf(fid, '%s', stringToWrite);
 testCase.stopMeasuring();

 testCase.verifyEqual(fileread(file), stringToWrite);
 fclose(fid);
 end
 end
end

Refine Measured Code Using Multiple Boundaries

Create a performance test class, fprintfTest2. Multiple boundaries (calls to
startMeasuring and stopMeasuring) enable the performance framework to measure
the code that opens the file, writes to the file, and closes the file.

classdef fprintfTest2 < matlab.perftest.TestCase
 methods(Test)
 function testPrintingToFile(testCase)
 file = tempname;

 testCase.startMeasuring();
 fid = fopen(file,'w');
 testCase.stopMeasuring();

 testCase.assertNotEqual(fid,-1,'IO Problem');
 stringToWrite = repmat('abcdef',1,1000000);

 testCase.startMeasuring();
 fprintf(fid,'%s',stringToWrite);
 testCase.stopMeasuring();

 testCase.verifyEqual(fileread(file),stringToWrite);

 stopMeasuring

1-10643

 testCase.startMeasuring();
 fclose(fid);
 testCase.stopMeasuring();
 end
 end
end

Run the performance test and view the sample summary. The performance framework
measured that the mean time to open, write to, and close the file for the
testPrintingToFile test was approximately 0.02 seconds. Your results might vary.

results = runperf('fprintfTest2');
T = sampleSummary(results)

Running fprintfTest2
........
Done fprintfTest2

T =

 1×7 table

 Name SampleSize Mean StandardDeviation Min Median Max
 _______________________________ __________ ________ _________________ ________ ________ ________

 fprintfTest2/testPrintingToFile 4 0.021089 0.00075099 0.020583 0.020784 0.022207

Specify Labeled Measurement Boundaries

Create a performance test class, examplePerfTest. The first test has labeled test
boundaries for generating an array of random numbers, measuring a call to svd with a
single output, and measuring a call to svd with multiple outputs. The second test has an
unlabeled boundary around the call to svd.

classdef examplePerfTest < matlab.perftest.TestCase
 methods(Test)
 function testSVD1(testCase)
 testCase.startMeasuring('arrayGen')
 X = rand(1000);

1 Alphabetical List

1-10644

 testCase.stopMeasuring('arrayGen')

 testCase.startMeasuring('SVD_1out')
 S = svd(X);
 testCase.stopMeasuring('SVD_1out')

 testCase.startMeasuring("SVD_3out")
 [U2,S2,V2] = svd(X);
 testCase.stopMeasuring("SVD_3out")

 testCase.verifyEqual(S,diag(S2),'RelTol',1e-14)
 end

 function testSVD2(testCase)
 sz = 732;
 X = rand(sz);

 testCase.startMeasuring()
 [U,S,V] = svd(X);
 testCase.stopMeasuring()

 testCase.verifyTrue(isdiag(S))
 testCase.verifyTrue(issorted(diag(S),'descend'))
 testCase.verifySize(S,[sz sz 1])
 end
 end
end

Run the performance test and view the sample summary. Your results might vary. The
labels from testSVD1 are appended in angle brackets to the test element name in the
results.

results = runperf('examplePerfTest');
T = sampleSummary(results)

Running examplePerfTest
..........
..........
..........
..........
Done examplePerfTest

T =

 4×7 table

 stopMeasuring

1-10645

 Name SampleSize Mean StandardDeviation Min Median Max
 ___________________________________ __________ _________ _________________ _________ _________ ________

 examplePerfTest/testSVD1 <arrayGen> 21 0.0096508 0.0012428 0.0087596 0.0092564 0.013911
 examplePerfTest/testSVD1 <SVD_1out> 21 0.11978 0.0098172 0.10585 0.12274 0.13575
 examplePerfTest/testSVD1 <SVD_3out> 21 0.30664 0.020991 0.26882 0.3051 0.35018
 examplePerfTest/testSVD2 11 0.13294 0.011135 0.11127 0.13557 0.15162

See Also
matlab.perftest.TimeExperiment | startMeasuring

Introduced in R2016a

1 Alphabetical List

1-10646

matlab.perftest.TimeExperiment class
Package: matlab.perftest

Interface for measuring execution time of code under test

Description
The matlab.perftest.TimeExperiment class is the principal interface for measuring
the execution time of code under test. The performance testing framework runs a test
suite and returns a matlab.unittest.measurement.MeasurementResult object for
each element of the suite. For each test suite element, the testing framework collects
multiple measurements and reports them in the corresponding MeasurementResult.

Construction
Instantiate a TimeExperiment object using one of its static methods.

Methods

limitingSamplingError Construct time experiment for specified margin of error and
confidence level

run Run time experiment on test suite
withFixedSampleSize Construct time experiment with fixed number of measurements

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 matlab.perftest.TimeExperiment class

1-10647

See Also
matlab.perftest.FixedTimeExperiment |
matlab.perftest.FrequentistTimeExperiment | matlab.unittest.TestRunner
| matlab.unittest.measurement.MeasurementResult

Introduced in R2016a

1 Alphabetical List

1-10648

matlab.perftest.TimeResult class
Package: matlab.perftest
Superclasses:

Result from running time experiment

Description
Objects of the TimeResult class hold information describing the result from running a
time experiment on a test suite using the matlab.perftest.TimeExperiment class.
Objects contain information about the time measurements and the corresponding
functional test results.

The test results are available as a table.

Creation
The MATLAB testing framework creates an instance of the TimeResult class when you
run a time experiment.

Properties
Name — Name of the test suite element that corresponds to the time results
empty character array (default) |

Name of the test suite element that corresponds to the time results, returned as a
character vector.
Example: 'MyTestSuite'

Attributes:

GetAccess
public

 matlab.perftest.TimeResult class

1-10649

SetAccess
protected

Data Types: char

Valid — Indicator if measurement is valid
logical 0 or 1

Indicator if the measurement is valid, returned as logical 0 or 1. A measurement is
valid (logical 1) if it is collected from a passing test. Otherwise it is invalid (logical
0).

Attributes:

GetAccess
public

SetAccess
private

Dependent
true

NonCopyable
true

Data Types: logical

Samples — Information about sample measurements
table (default)

Information about sample measurements, returned as a table with the following
information.

Column
Name

Description

Name Name of the test suite element. If a measurement label is specified, Name
is appended with the measurement label delimited by angle brackets.

MeasuredValu
e

Value of the measurement. Experiments can give this column a more
specific name, such as MeasuredTime.

Timestamp Time when measurement is collected.

1 Alphabetical List

1-10650

Column
Name

Description

Host Machine name where measurement is collected.
Platform Platform architecture on which measurement is collected.
Version MATLAB Version used in test.
RunIdentifier Unique identifier of measurement run.

Attributes:

GetAccess
public

SetAccess
private

Dependent
true

NonCopyable
true

Data Types: table

TestActivity — Information about all test activity
table (default) |

Information about all test activity, including the warm-up measurements, returned as a
table. This table is useful when you want all the data, such as during debugging or when
performing a more involved data analysis. The TestActivity table contains these
columns in addition to the columns described for Samples:

Column
Name

Description

Passed Logical value indicating if the test passed
Failed Logical value indicating if the test failed
Incomplete Logical value indicating if test run is incomplete
Objective Categorical value indicating the type of measurement: sample or warmup
TestResult TestResult object from the functional test

 matlab.perftest.TimeResult class

1-10651

Attributes:

GetAccess
public

SetAccess
private

Dependent
true

NonCopyable
true

Data Types: table

Methods

Public Methods
sampleSummary The TestResult class inherits this

MeasurementResult method. Use the
sampleSummary method as described with
the TestResult object returned by the
matlab.perftest.TimeExperiment run
method.

samplefun The TestResult class inherits this
MeasurementResult method. Use the
samplefun method as described with the
TestResult object returned by the
matlab.perftest.TimeExperiment run
method.

See Also
matlab.unittest.TestResult | matlab.unittest.TestSuite |
matlab.unittest.measurement.DefaultMeasurementResult

1 Alphabetical List

1-10652

Topics
“Test Performance Using Scripts or Functions”
“Test Performance Using Classes”

Introduced in R2019a

 matlab.perftest.TimeResult class

1-10653

matlab.perftest.TimeExperiment.limitingSa
mplingError
Class: matlab.perftest.TimeExperiment
Package: matlab.perftest

Construct time experiment for specified margin of error and confidence level

Syntax
experiment = matlab.perftest.TimeExperiment.limitingSamplingError
experiment = matlab.perftest.TimeExperiment.limitingSamplingError(
Name,Value)

Description
experiment = matlab.perftest.TimeExperiment.limitingSamplingError
constructs a time experiment for each test suite element, with the specified statistical
objectives (such as margin of error and confidence level). This method returns an instance
of FrequentistTimeExperiment. This syntax uses the following defaults to determine
the number of sample measurements.

• Number of warm-up measurements: 4
• Minimum number of samples: 4
• Maximum number of samples collected in the event other statistical objectives are not

met: 256
• Objective relative margin of error for samples: 0.05 (5%)
• Confidence level for samples to be within relative margin of error: 0.95 (95%)

experiment = matlab.perftest.TimeExperiment.limitingSamplingError(
Name,Value) constructs a time experiment with additional options specified by one or
more Name,Value pair arguments. Use this syntax to override the defaults listed above.

1 Alphabetical List

1-10654

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: experiment =
matlab.perftest.TimeExperiment.limitingSamplingError('RelativeMargin
OfError',0.12,'MaxSamples',100) creates a time experiment that collects sample
measurements until samples have a relative margin of error of 12%, or until it collects
100 measurements.

NumWarmups — Number of warm-up measurements
4 (default) | nonnegative integer

Number of warm-up measurements, specified as a nonnegative integer. The value defines
the number of times that the test framework exercises the test code to warm it up.

MinSamples — Minimum number of samples
4 (default) | positive integer

Minimum number of sample measurements, specified as a positive integer. The value
defines the minimum number of times that the test framework exercises the test code
after any warm-up runs. The test framework exercises the test code at least MinSamples
times, regardless of whether the experiment meets the statistical objectives.

MaxSamples — Maximum number of samples
256 (default) | positive integer

Maximum number of sample measurements, specified as a positive integer. The value
defines the maximum number of times that the test framework exercises the test code
after NumWarmups. If the experiment does not meet the statistical objectives, the testing
framework collects up to MaxSamples.

RelativeMarginOfError — Objective relative margin of error for samples
0.05 (default) | positive number

Objective relative margin of error for samples, specified as a positive number.

 matlab.perftest.TimeExperiment.limitingSamplingError

1-10655

The testing framework calculates the relative margin of error for a sample X using the
equation

relMoE = T∗std(X)
mean(X) ∗ length(X)

where T is the T-score from Student's T distribution using the specified
ConfidenceLevel and length(X)-1 degrees of freedom.

ConfidenceLevel — Confidence level for samples to be within relative margin of
error
0.95 (default) | number between 0 and 1

Confidence level for the samples to be within the relative margin of error, specified as a
number from 0 through 1.

Examples

Performance Test with Variable Number of Measurements

In your current working folder, create a class-based test, preallocationTest.m, that
compares different methods of preallocation.

classdef preallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end
 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end
 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end
 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

1 Alphabetical List

1-10656

 end
end

Create a test suite.

suite = testsuite('preallocationTest');

Construct a time experiment with a variable number of sample measurements, and run
the tests.

import matlab.perftest.TimeExperiment
experiment = TimeExperiment.limitingSamplingError;
result = run(experiment,suite);

Running preallocationTest
..........
Done preallocationTest

View the test activity for the first test. Your results might vary.

result(1).TestActivity

ans =

 8×12 table

 Name Passed Failed Incomplete MeasuredTime Objective Timestamp Host Platform Version TestResult RunIdentifier
 __________________________ ______ ______ __________ ____________ _________ ____________________ ___________ ________ _____________________ ________________________________ ____________________________________

 preallocationTest/testOnes true false false 0.056052 warmup 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12
 preallocationTest/testOnes true false false 0.056227 warmup 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12
 preallocationTest/testOnes true false false 0.055969 warmup 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12
 preallocationTest/testOnes true false false 0.054961 warmup 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12
 preallocationTest/testOnes true false false 0.052572 sample 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12
 preallocationTest/testOnes true false false 0.051743 sample 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12
 preallocationTest/testOnes true false false 0.051709 sample 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12
 preallocationTest/testOnes true false false 0.051256 sample 05-Oct-2018 10:14:15 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 34fa8e1d-e21f-42b5-83bd-fd104ffcec12

For this test, the performance testing framework collected 4 warm-up measurements (the
default), and 11 sample measurements. After 11 sample measurements, the performance
testing framework satisfied the default statistical objectives.

 matlab.perftest.TimeExperiment.limitingSamplingError

1-10657

Construct a time experiment that collects two warm-up measurements and runs the tests
a variable number of times to reach a sample mean with a 10% relative margin of error
within a 90% confidence level.

experiment = TimeExperiment.limitingSamplingError('NumWarmups',2,...
 'RelativeMarginOfError',0.10, 'ConfidenceLevel', 0.90);
result = run(experiment, suite);

Running preallocationTest
..........
Done preallocationTest

View the test activity for the first test. Your results might vary.

result(1).TestActivity

ans =
 6×12 table

 Name Passed Failed Incomplete MeasuredTime Objective Timestamp Host Platform Version TestResult RunIdentifier
 __________________________ ______ ______ __________ ____________ _________ ____________________ ___________ ________ _____________________ ________________________________ ____________________________________

 preallocationTest/testOnes true false false 0.053963 warmup 05-Oct-2018 10:21:31 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 22e4507c-e12c-4cac-8730-aff65e75a2e1
 preallocationTest/testOnes true false false 0.053086 warmup 05-Oct-2018 10:21:31 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 22e4507c-e12c-4cac-8730-aff65e75a2e1
 preallocationTest/testOnes true false false 0.052502 sample 05-Oct-2018 10:21:31 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 22e4507c-e12c-4cac-8730-aff65e75a2e1
 preallocationTest/testOnes true false false 0.05252 sample 05-Oct-2018 10:21:31 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 22e4507c-e12c-4cac-8730-aff65e75a2e1
 preallocationTest/testOnes true false false 0.052048 sample 05-Oct-2018 10:21:32 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 22e4507c-e12c-4cac-8730-aff65e75a2e1
 preallocationTest/testOnes true false false 0.052434 sample 05-Oct-2018 10:21:32 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] 22e4507c-e12c-4cac-8730-aff65e75a2e1

For this test, the performance testing framework collected two warm-up measurements
and nine sample measurements. After nine sample measurements, the performance
testing framework satisfied the specified statistical objectives.

See Also
matlab.perftest.FrequentistTimeExperiment |
matlab.perftest.TimeExperiment.withFixedSampleSize

Topics
“Overview of Performance Testing Framework”

1 Alphabetical List

1-10658

Introduced in R2016a

 matlab.perftest.TimeExperiment.limitingSamplingError

1-10659

run
Class: matlab.perftest.TimeExperiment
Package: matlab.perftest

Run time experiment on test suite

Syntax
results = run(experiment,suite)

Description
results = run(experiment,suite) runs a time experiment on a test suite, and
returns an array of TimeResult objects. Each element in results corresponds to an
element in suite.

Input Arguments
experiment — Experiment to collect measurements on
matlab.perftest.TimeExperiment instance

Experiment to collect measurements on, specified as a
matlab.perftest.TimeExperiment instance.

suite — Suite of tests
matlab.unittest.Test array

Suite of tests, specified as a matlab.unittest.Test array.

Examples

1 Alphabetical List

1-10660

Run Time Experiment

In your current working folder, create a class-based test, preallocationTest.m, that
compares different methods of preallocation.

classdef preallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end

 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end

 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end

 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

 end
end

Create a test suite.

suite = testsuite('preallocationTest');

Construct a time experiment with a fixed number of sample measurements, and run the
tests.

import matlab.perftest.TimeExperiment
numSamples = 10;
experiment = TimeExperiment.withFixedSampleSize(numSamples);
result = run(experiment,suite)

Running preallocationTest
..........

 run

1-10661

Done preallocationTest

result =

 1x4 TimeResult array with properties:

 Name
 Valid
 Samples
 TestActivity

Totals:
 4 Valid, 0 Invalid.

Alternatives
If you do not need to create an experiment and test suite explicitly, you can use runperf.

See Also
runperf

Topics
“Overview of Performance Testing Framework”

Introduced in R2016a

1 Alphabetical List

1-10662

matlab.perftest.TimeExperiment.withFixedS
ampleSize
Class: matlab.perftest.TimeExperiment
Package: matlab.perftest

Construct time experiment with fixed number of measurements

Syntax
experiment = matlab.perftest.TimeExperiment.withFixedSampleSize(
numSamples)

Description
experiment = matlab.perftest.TimeExperiment.withFixedSampleSize(
numSamples) constructs a time experiment with a fixed number of measurements. This
method returns an instance of FixedTimeExperiment.

experiment = matlab.perftest.TimeExperiment.withFixedSampleSize(
numSamples,'NumWarmups',numWarmups) configures the time experiment to first
warm up the code by exercising it numWarmups times.

Input Arguments
numSamples — Number of sample measurements to collect
positive integer

Number of sample measurements to collect, specified as a positive integer. If you
specified a number of warm-ups, the testing framework first exercises the code
numWarmups times before collecting numSamples measurements.

numWarmups — Number of warm-up measurements
0 (default) | nonnegative integer

 matlab.perftest.TimeExperiment.withFixedSampleSize

1-10663

Number of warm-up measurements, specified as a nonnegative integer. numWarmups
defines the number of times that the test framework exercises the test code to warm it
up. Warming up the code gives a more realistic analysis of typical execution time, since it
minimizes the effects of first-time run costs.
Example: experiment =
matlab.perftest.TimeExperiment.withFixedSampleSize(24,'NumWarmups',8
) constructs a FixedTimeExperiment that exercises the code 8 times to warm it up and
then exercises the code 24 times to collect sample measurements.

Examples

Performance Test with Fixed Number of Measurements

In your current working folder, create a class-based test, preallocationTest.m, that
compares different methods of preallocation.

classdef preallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end
 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end
 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end
 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

 end
end

Create a test suite.

suite = testsuite('preallocationTest');

1 Alphabetical List

1-10664

Construct a time experiment with a fixed number of sample measurements, and run the
tests.

import matlab.perftest.TimeExperiment
numSamples = 6;
experiment = TimeExperiment.withFixedSampleSize(numSamples);
result = run(experiment,suite);

Running preallocationTest
..........
..........
....
Done preallocationTest

View the test activity for the fourth test.

result(4).TestActivity

ans =

 Name Passed Failed Incomplete MeasuredTime Objective Timestamp Host Platform Version TestResult RunIdentifier
 _____________________________ ______ ______ __________ ____________ _________ ____________________ ___________ ________ _____________________ ________________________________ ____________________________________

 preallocationTest/testForLoop true false false 0.90553 sample 29-Dec-2015 12:14:55 MY-HOSTNAME win64 9.0.0.320924 (R2016a) [1x1 matlab.unittest.TestResult] a07f34c0-5653-4e01-b814-118fe30d3adf
 preallocationTest/testForLoop true false false 0.86564 sample 29-Dec-2015 12:14:56 MY-HOSTNAME win64 9.0.0.320924 (R2016a) [1x1 matlab.unittest.TestResult] a07f34c0-5653-4e01-b814-118fe30d3adf
 preallocationTest/testForLoop true false false 0.75888 sample 29-Dec-2015 12:14:57 MY-HOSTNAME win64 9.0.0.320924 (R2016a) [1x1 matlab.unittest.TestResult] a07f34c0-5653-4e01-b814-118fe30d3adf
 preallocationTest/testForLoop true false false 0.74051 sample 29-Dec-2015 12:14:58 MY-HOSTNAME win64 9.0.0.320924 (R2016a) [1x1 matlab.unittest.TestResult] a07f34c0-5653-4e01-b814-118fe30d3adf
 preallocationTest/testForLoop true false false 0.8735 sample 29-Dec-2015 12:14:58 MY-HOSTNAME win64 9.0.0.320924 (R2016a) [1x1 matlab.unittest.TestResult] a07f34c0-5653-4e01-b814-118fe30d3adf
 preallocationTest/testForLoop true false false 0.83188 sample 29-Dec-2015 12:14:59 MY-HOSTNAME win64 9.0.0.320924 (R2016a) [1x1 matlab.unittest.TestResult] a07f34c0-5653-4e01-b814-118fe30d3adf

The performance testing framework collected six sample measurements for each test.

Construct a time experiment that also runs the code 3 times to warm it up. Run the tests.

numWarmups = 3;
experiment = TimeExperiment.withFixedSampleSize(numSamples,'NumWarmups',numWarmups);
result = run(experiment,suite);

Running preallocationTest
..........
..........
....
Done preallocationTest

 matlab.perftest.TimeExperiment.withFixedSampleSize

1-10665

View the test activity for the fourth test.

result(4).TestActivity

ans =

 Name Passed Failed Incomplete MeasuredTime Objective Timestamp Host Platform Version TestResult RunIdentifier
 _____________________________ ______ ______ __________ ____________ _________ ____________________ ___________ ________ _____________________ ________________________________ ____________________________________

 preallocationTest/testForLoop true false false 0.82972 warmup 29-Dec-2015 12:21:59 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 0.85917 warmup 29-Dec-2015 12:22:00 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 0.85857 warmup 29-Dec-2015 12:22:01 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 0.85307 sample 29-Dec-2015 12:22:02 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 0.86655 sample 29-Dec-2015 12:22:03 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 0.81533 sample 29-Dec-2015 12:22:04 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 0.88266 sample 29-Dec-2015 12:22:04 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 0.94436 sample 29-Dec-2015 12:22:05 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a
 preallocationTest/testForLoop true false false 1.0375 sample 29-Dec-2015 12:22:07 MY-HOSTNAME win64 9.0.0.316358 (R2016a) [1x1 matlab.unittest.TestResult] 37da664a-feba-4277-975f-3d71bcbac71a

For each test, the performance testing framework collected three warm-up measurements
in addition to the six sample measurements.

See Also
matlab.perftest.FixedTimeExperiment |
matlab.perftest.TimeExperiment.limitingSamplingError

Topics
“Overview of Performance Testing Framework”

Introduced in R2016a

1 Alphabetical List

1-10666

perl
Call Perl script using operating system executable

Syntax
perl(perlfile)
perl(perlfile,arg1,...,argN)
result = perl(___)
[result, status] = perl(___)

Description
perl(perlfile) calls the Perl script perlfile.

On Microsoft Windows systems, MATLAB ships with Perl, which is available from the
Perl.org website. For information about using the Perl programming language, Perl
source code, and a standard distribution of Perl, see www.perl.org.

On Linux and Mac systems, MATLAB calls the Perl interpreter available with the
operating system.

perl(perlfile,arg1,...,argN) calls the script with the arguments
arg1,...,argN.

result = perl(___) returns the results. Use this option with any of the input
arguments from the previous syntaxes.

[result, status] = perl(___) returns the exit status in status.

Examples

Run hello.pl Perl Script

Create a file hello.pl containing these statements:

 perl

1-10667

https://www.perl.org

$input = $ARGV[0];
print "Hello $input.";

Save the file on your MATLAB path.

At the MATLAB command line, type:

perl('hello.pl','World')

ans =
Hello World.

Input Arguments
perlfile — Perl script
string | character vector

Perl script file name, specified as a string or character vector.
Example: 'myscript.pl'

arg1,...,argN — Perl script input arguments
string | character vector

Perl script input arguments 1 through N (if any) required by perlfile, specified as
strings or character vectors. The script specifies the arguments.

Output Arguments
result — Script output
string

Script output, returned as a string.

status — Script exit status
integer

Script exit status, returned as an integer.

1 Alphabetical List

1-10668

Tips
• Consider using Perl scripts instead of MATLAB code when:

• You want to use an existing Perl script.
• You want to preprocess data quickly. MATLAB reads Perl script formatting more

easily than other formatting.
• Perl has features not supported by MATLAB.

Compatibility Considerations

MATLAB ships with Perl version 5.26.1
Behavior changed in R2018a

To use the perl command on Windows platforms, go to https://perldoc.perl.org/perl.html
and select Perl version 5.26.1 for information about using this version.

MATLAB ships with Perl version 5.24.1
Behavior changed in R2017b

To use the perl command on Windows platforms, go to https://perldoc.perl.org/perl.html
and select Perl version 5.24 for information about using this version.

See Also
! (exclamation point) | dos | regexp | system | unix

Introduced before R2006a

 perl

1-10669

https://perldoc.perl.org/perl.html
https://perldoc.perl.org/perl.html

perms
All possible permutations

Syntax
P = perms(v)

Description
P = perms(v) returns a matrix containing all permutations of the elements of vector v
in reverse lexicographic order. Each row of P contains a different permutation of the n
elements in v. Matrix P has the same data type as v, and it has n! rows and n columns.

Examples

All Permutations of Double Integers

v = [2 4 6];
P = perms(v)

P = 6×3

 6 4 2
 6 2 4
 4 6 2
 4 2 6
 2 6 4
 2 4 6

1 Alphabetical List

1-10670

All Permutations of Unsigned Integers

v = uint16([1023 4095 65535]);
P = perms(v)

P = 6x3 uint16 matrix

 65535 4095 1023
 65535 1023 4095
 4095 65535 1023
 4095 1023 65535
 1023 65535 4095
 1023 4095 65535

All Permutations of Complex Numbers

v = [1+1i 2+1i 3+1i];
P = perms(v)

P = 6×3 complex

 3.0000 + 1.0000i 2.0000 + 1.0000i 1.0000 + 1.0000i
 3.0000 + 1.0000i 1.0000 + 1.0000i 2.0000 + 1.0000i
 2.0000 + 1.0000i 3.0000 + 1.0000i 1.0000 + 1.0000i
 2.0000 + 1.0000i 1.0000 + 1.0000i 3.0000 + 1.0000i
 1.0000 + 1.0000i 3.0000 + 1.0000i 2.0000 + 1.0000i
 1.0000 + 1.0000i 2.0000 + 1.0000i 3.0000 + 1.0000i

Input Arguments
v — Set of items
vector of numeric, logical, or char values

Set of items, specified as a vector of numeric, logical, or char values.
Example: [1 2 3 4]
Example: [1+1i 2+1i 3+1i 4+1i]

 perms

1-10671

Example: int16([1 2 3 4])
Example: ['abcd']
Example: [true false true false]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

Limitations
perms(v) is practical when length(v) is less than about 10.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
nchoosek | permute | randperm

Introduced before R2006a

1 Alphabetical List

1-10672

permute
Permute array dimensions

Syntax
B = permute(A,dimorder)

Description
B = permute(A,dimorder) rearranges the dimensions of an array in the order
specified by the vector dimorder. For example, permute(A,[2 1]) switches the row
and column dimensions of a matrix A.

Examples

3-D Array

Create a 3-by-4-by-2 array and permute it so that the first and third dimensions are
switched, resulting in a 2-by-4-by-3 array.

rng default
A = rand(3,4,2)

A =
A(:,:,1) =

 0.8147 0.9134 0.2785 0.9649
 0.9058 0.6324 0.5469 0.1576
 0.1270 0.0975 0.9575 0.9706

A(:,:,2) =

 0.9572 0.1419 0.7922 0.0357
 0.4854 0.4218 0.9595 0.8491

 permute

1-10673

 0.8003 0.9157 0.6557 0.9340

B = permute(A,[3 2 1])

B =
B(:,:,1) =

 0.8147 0.9134 0.2785 0.9649
 0.9572 0.1419 0.7922 0.0357

B(:,:,2) =

 0.9058 0.6324 0.5469 0.1576
 0.4854 0.4218 0.9595 0.8491

B(:,:,3) =

 0.1270 0.0975 0.9575 0.9706
 0.8003 0.9157 0.6557 0.9340

szB = size(B)

szB = 1×3

 2 4 3

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

dimorder — Dimension order
row vector

Dimension order, specified as a row vector with unique, positive integer elements that
represent the dimensions of the input array.

1 Alphabetical List

1-10674

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

Permuting the tall dimension (dimension one) is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays for the first argument.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 permute

1-10675

See Also
ipermute | reshape | shiftdim | transpose

Introduced before R2006a

1 Alphabetical List

1-10676

persistent
Define persistent variable

Syntax
persistent var1 ... varN

Description
persistent var1 ... varN declares variables var1 ... varN as persistent.
Persistent variables are local to the function in which they are declared, yet their values
are retained in memory between calls to the function. Code at the MATLAB command line
and in other functions cannot change persistent variables.

When MATLAB first encounters a particular persistent statement, it initializes the
persistent variable to an empty matrix ([]).

MATLAB clears persistent variables when you clear or modify a function that is in
memory. To keep a function in memory, use mlock.

Examples

Count Calls to Function

Create the function myFun in your current working folder. Each time you call the function,
the value of n increases.

function myFun()
 persistent n
 if isempty(n)
 n = 0;
 end
 n = n+1
end

 persistent

1-10677

At the command prompt, call myFun three times.

myFun
myFun
myFun

n =

 1

n =

 2

n =

 3

Clear myFun and call it another two times. Clearing the function also clears the persistent
variable.

clear myFun
myFun
myFun

n =

 1

n =

 2

Log Data at Specified Time Interval

Write a function that logs data if at least three seconds have passed since the last log
entry. Define logTime as a persistent variable that stores the last time logData wrote to
the file.

In a file in your current working folder, define the logData function.
function logData(fname,n)
 persistent logTime

1 Alphabetical List

1-10678

 currTime = datetime;

 if isempty(logTime)
 logTime = currTime;
 disp('Logging initial value.')
 dlmwrite(fname,n)
 return
 end

 dt = currTime - logTime;
 if dt > seconds(3)
 disp('Logging.')
 dlmwrite(fname,n,'-append')
 logTime = currTime;
 else
 disp(['Not logging. ' num2str(seconds(dt)) ' sec since last log.'])
 end
end

At the command prompt, call logData in a loop. The loop has 10 iterations, and each
iteration takes approximately 1 second. Therefore, MATLAB writes 4 values to
myLog.txt (at approximately 0, 3, 6, and 9 seconds).

for n = 1:10
 pause(1)
 logData('myLog.txt',rand)
end

Logging initial value.
Not logging. 1.005 sec since last log.
Not logging. 2.009 sec since last log.
Logging.
Not logging. 1.007 sec since last log.
Not logging. 2.013 sec since last log.
Logging.
Not logging. 1.005 sec since last log.
Not logging. 2.007 sec since last log.
Logging.

Call the logData function again to append another value.

logData('myLog.txt',rand)

Logging.

Clear the logData function to reinitialize the persistent variable. Call the logData
function again. This time, the function overwrites myLog.txt instead of appending a
value.

clear logData
logData('myLog.txt',rand)

 persistent

1-10679

Logging initial value.

Tips
• Persistent variables are similar to global variables because MATLAB creates

permanent storage for both. They differ from global variables because persistent
variables are known only to the function that declares them. Therefore, code at the
MATLAB command line or other functions cannot change persistent variables.

• Since MATLAB initializes a persistent variable to an empty matrix ([]), typically
functions check to see if a persistent variable is empty, and, if so, initialize it.

function myFun()
 persistent n
 if isempty(n)
 n = 0;
 end
 n = n+1;
end

• The declaration of a variable as persistent must precede any other references to the
variable, including input or output arguments. For example, the persistent
declarations in the following functions are invalid.

function myfunA(x)
 persistent x
end

function myfunB
 x = 0;
 persistent x
end

• To clear a persistent variable, use clear with the name of the function that declares
the variable. For example, clear myFun.

See Also
clear | global | isempty | mislocked | mlock | munlock

Introduced before R2006a

1 Alphabetical List

1-10680

pi
Ratio of circle's circumference to its diameter

Syntax
p = pi

Description
p = pi returns the floating-point number nearest to the value of π in IEEE double-
precision. For more information on floating-point numbers, see “Floating-Point Numbers”.

Examples

Value of Pi

Return the value of π in double precision, which has 15 digits after the decimal point.

format long
p = pi

p =
 3.141592653589793

Area of Circle

Calculate the area of a circle with radius 7.

r = 7;
A = pi*r^2

A = 153.9380

 pi

1-10681

Surface Area and Volume of Sphere

Calculate the surface area and volume of a sphere with radius 5.

r = 5;
SA = 4*pi*r^2

SA = 314.1593

V = 4/3*pi*r^3

V = 523.5988

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cos | cospi | rad2deg | sin | sinpi

Topics
“Floating-Point Numbers”

Introduced before R2006a

1 Alphabetical List

1-10682

pie
Pie chart

Syntax
pie(X)
pie(X,explode)
pie(X,labels)
pie(X,explode,labels)

pie(ax, ___)

p = pie(___)

Description
pie(X) draws a pie chart using the data in X. Each slice of the pie chart represents an
element in X.

• If sum(X) ≤ 1, then the values in X directly specify the areas of the pie slices. pie
draws only a partial pie if sum(X) < 1.

• If sum(X) > 1, then pie normalizes the values by X/sum(X) to determine the area of
each slice of the pie.

• If X is of data type categorical, the slices correspond to categories. The area of
each slice is the number of elements in the category divided by the number of
elements in X.

pie(X,explode) offsets slices from the pie. explode is a vector or matrix of zeros and
nonzeros that correspond to X. The pie function offsets slices for the nonzero elements
only in explode.

If X is of data type categorical, then explode can be a vector of zeros and nonzeros
corresponding to categories, or a cell array of the names of categories to offset.

pie(X,labels) specifies text labels for the slices. X must be numeric. The number of
labels must equal the number of elements in X.

 pie

1-10683

pie(X,explode,labels) offsets slices and specifies the text labels. X can be numeric
or categorical. For numeric X, the number of labels must equal the number of elements in
X. For categorical X, the number of labels must equal the number of categories.

pie(ax, ___) plots into the axes specified by ax instead of into the current axes (gca).
The option ax can precede any of the input argument combinations in the previous
syntaxes.

p = pie(___) returns a vector of patch and text graphics objects. The input can be any
of the input argument combinations in the previous syntaxes.

Examples

Create Pie Chart with Offset Slices

Create a pie chart of vector X.

X = [1 3 0.5 2.5 2];
pie(X)

1 Alphabetical List

1-10684

Offset the second and fourth pie slices by setting the corresponding explode elements to
1.

explode = [0 1 0 1 0];
pie(X,explode)

 pie

1-10685

Specify Text Labels for Pie Chart

Create a pie chart of vector X and label the slices.

X = 1:3;
labels = {'Taxes','Expenses','Profit'};
pie(X,labels)

1 Alphabetical List

1-10686

Modify Text Label for Pie Chart

Create a labeled pie chart, and then modify the color and font size of the text labels.

X = 1:3;
labels = {'Taxes','Expenses','Profit'};
p = pie(X,labels)

 pie

1-10687

p =
 1x6 graphics array:

 Patch Text Patch Text Patch Text

Get the text object for the label 'Profit'. Change its color and font size. Starting in
R2014b, you can use dot notation to set properties. If you are using an earlier release, use
the set function instead.

t = p(6);
t.BackgroundColor = 'cyan';
t.EdgeColor = 'red';
t.FontSize = 14;

1 Alphabetical List

1-10688

Plot Partial Pie Chart

Create a pie chart of vector X where the sum of the elements is less than 1.

X = [0.19 0.22 0.41];
pie(X)

 pie

1-10689

pie draws a partial pie because the sum of the elements is less than 1.

Plot Multiple Pie Charts

Create two vectors of data and plot and label each one in its own pie chart.

X = [0.2 0.4 0.4];
labels = {'Taxes','Expenses','Profit'};
ax1 = subplot(1,2,1);
pie(ax1,X,labels)
title(ax1,'2012');

1 Alphabetical List

1-10690

Y = [0.24 0.46 0.3];
ax2 = subplot(1,2,2);
pie(ax2,Y,labels)
title(ax2,'2013');

Plot Categorical Pie Chart with Offsets

Plot a categorical pie chart with offset slices corresponding to categories.

 pie

1-10691

X = categorical({'North','South','North','East','South','West'});
explode = {'North','South'};
pie(X,explode)

Now, use a logical vector to offset the same slices.

explode = [0 1 1 0];
pie(X,explode)

1 Alphabetical List

1-10692

Plot Categorical Pie Chart with Labels

Plot a categorical pie chart without any offset slices and label the slices. When X is of data
type categorical you must specify the input argument explode. To specify labels
without any offset slices, specify explode as an empty cell array, and labels as the
labels.

X = categorical({'North','South','North','East','South','West'});
explode = {};
labels = {'E','N','S','W'};
pie(X,explode,labels)

 pie

1-10693

Now, offset a slice and label all slices.

X = categorical({'North','South','North','East','South','West'});
explode = {'West'};
labels = {'E','N','S','W'};
pie(X,explode,labels)

1 Alphabetical List

1-10694

Input Arguments
X — Input array
vector or matrix

Input vector or matrix.

• If X is numeric, then all values in X must be finite. pie ignores nonpositive values.
• If X is categorical, then pie ignores undefined elements.

Data Types: double|categorical

 pie

1-10695

explode — Offset slices
numeric vector or matrix | cell array of character vectors | string array

Offset slices, specified as a numeric vector or matrix, a cell array of character vectors, or
a string array.

• If X is numeric, then explode must be a logical or numeric vector or matrix of zeros
and nonzeros that correspond to X. A true (nonzero) value offsets the corresponding
slice from the center of the pie chart, so that X(i,j) is offset from the center if
explode(i,j) is nonzero. explode must be the same size as X.

• If X is categorical, then explode can be a cell array of character vectors that are
category names or a string array of category names. pie offsets slices corresponding
to categories in explode.

• If X is categorical, then explode also can be a logical or numeric vector with elements
that correspond to each category in X. The pie function offsets slices corresponding to
true (nonzero) in category order.

labels — Text labels
cell array of character vectors | string array

Text labels for slices, specified as a cell array of character vectors or a string array.

ax — Axes
axes object

Axes object. Use ax to plot the pie chart in a specific axes instead of the current axes
(gca).

Output Arguments
p — Patch and text objects
vector

Patch and text objects, returned as a vector.

1 Alphabetical List

1-10696

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the following limitations:

X must be a tall categorical array.

For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
pie3

 pie

1-10697

Topics
“Offset Pie Slice with Greatest Contribution”
“Label Pie Chart With Text and Percentages”

Introduced before R2006a

1 Alphabetical List

1-10698

pie3
3-D pie chart

Syntax
pie3(X)
pie3(X,explode)
pie3(...,labels)
pie3(axes_handle,...)
h = pie3(...)

Description
pie3(X) draws a three-dimensional pie chart using the data in X. Each element in X is
represented as a slice in the pie chart.

• If sum(X) ≤ 1, then the values in X directly specify the area of the pie slices. pie3
draws only a partial pie if sum(X) < 1.

• If the sum of the elements in X is greater than one, then pie3 normalizes the values
by X/sum(X) to determine the area of each slice of the pie.

pie3(X,explode) specifies whether to offset a slice from the center of the pie chart.
X(i,j) is offset from the center of the pie chart if explode(i,j) is nonzero. explode
must be the same size as X.

pie3(...,labels) specifies text labels for the slices. The number of labels must equal
the number of elements in X.

pie3(axes_handle,...) plots into the axes with the handle axes_handle instead of
into the current axes (gca).

 pie3

1-10699

h = pie3(...) returns a vector of handles to patch, surface, and text graphics objects.

Examples

Create 3-D Pie Chart

Create a 3-D pie chart of vector x.

x = [1,3,0.5,2.5,2];
figure
pie3(x)

1 Alphabetical List

1-10700

To offset the second pie slice, set the corresponding explode element to 1.

explode = [0,1,0,0,0];
figure
pie3(x,explode)

Specify Text Labels for 3-D Pie Chart

Create a 3-D pie chart and specify the text labels.

x = 1:3;
labels = {'Taxes','Expenses','Profit'};

 pie3

1-10701

figure
pie3(x,labels)

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-10702

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
pie

Introduced before R2006a

 pie3

1-10703

pink
Pink colormap array

Syntax
c = pink
c = pink(m)

Description
c = pink returns the pink colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
looks like this image.

c = pink(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the pink colormap.

surf(peaks);
colormap('pink');

1 Alphabetical List

1-10704

Get the pink colormap array and reverse the order. Then apply the modified colormap to
the surface.

c = pink;
c = flipud(c);
colormap(c);

 pink

1-10705

Downsample the Pink Colormap

Get a downsampled version of the pink colormap containing only twenty colors. Then
display the contours of a paraboloid by applying the colormap and interpolated shading.

c = pink(20);
[X,Y] = meshgrid(-10:1:10);
Z = X.^2 + Y.^2;
surf(X,Y,Z);
colormap(c);
shading interp;

1 Alphabetical List

1-10706

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 pink

1-10707

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-10708

pinv
Moore-Penrose pseudoinverse

Syntax
B = pinv(A)
B = pinv(A,tol)

Description
B = pinv(A) returns the “Moore-Penrose Pseudoinverse” on page 1-10712 of matrix A.

B = pinv(A,tol) specifies a value for the tolerance. pinv treats singular values of A
that are smaller than the tolerance as zero.

Examples

Solve System of Linear Equations Using Pseudoinverse

Compare solutions to a system of linear equations obtained by backslash (\) and pinv.

If a rectangular coefficient matrix A is of low rank, then the least-squares problem of
minimizing norm(A*x-b) has infinitely many solutions. Two solutions are returned by x1
= A\b and x2 = pinv(A)*b. The distinguishing properties of these solutions are that
x1 has only rank(A) nonzero components, and norm(x2) is smaller than for any other
solution.

Create an 8-by-6 matrix that has rank(A) = 3.

A = magic(8);
A = A(:,1:6)

A = 8×6

 pinv

1-10709

 64 2 3 61 60 6
 9 55 54 12 13 51
 17 47 46 20 21 43
 40 26 27 37 36 30
 32 34 35 29 28 38
 41 23 22 44 45 19
 49 15 14 52 53 11
 8 58 59 5 4 62

Create a vector for the right-hand side of the system of equations.

b = 260*ones(8,1)

b = 8×1

 260
 260
 260
 260
 260
 260
 260
 260

The number chosen for the right-hand side, 260, is the value of the 8-by-8 magic sum for
A. If A were still an 8-by-8 matrix, then one solution for x would be a vector of 1s. With
only six columns, a solution exists since the equations are still consistent, but the solution
is not all 1s. Since the matrix is of low rank, there are infinitely many solutions.

Solve for two of the solutions using backslash and pinv.

x1 = A\b

Warning: Rank deficient, rank = 3, tol = 1.882938e-13.

x1 = 6×1

 3.0000
 4.0000
 0
 0
 1.0000
 0

1 Alphabetical List

1-10710

x2 = pinv(A)*b

x2 = 6×1

 1.1538
 1.4615
 1.3846
 1.3846
 1.4615
 1.1538

Both of these solutions are exact, in the sense that norm(A*x1-b) and norm(A*x2-b)
are on the order of roundoff error. The solution x1 is special because it has only three
nonzero elements. The solution x2 is special because norm(x2) is smaller than it is for
any other solution, including norm(x1).

norm(x1)

ans = 5.0990

norm(x2)

ans = 3.2817

Input Arguments
A — Input matrix
matrix

Input matrix.
Data Types: single | double
Complex Number Support: Yes

tol — Singular value tolerance
scalar

Singular value tolerance, specified as a scalar. pinv treats singular values that are
smaller than tol as zeros during the computation of the pseudoinverse.

The default tolerance is max(size(A))*eps(norm(A)).

 pinv

1-10711

Example: pinv(A,1e-4)

Definitions
Moore-Penrose Pseudoinverse
The Moore-Penrose pseudoinverse is a matrix that can act as a partial replacement for the
matrix inverse in cases where it does not exist. This matrix is frequently used to solve a
system of linear equations when the system does not have a unique solution or has many
solutions.

For any matrix A, the pseudoinverse B exists, is unique, and has the same dimensions as
A'. If A is square and not singular, then pinv(A) is simply an expensive way to compute
inv(A). However, if A is not square, or is square and singular, then inv(A) does not
exist. In these cases, pinv(A) has some (but not all) of the properties of inv(A):

1. ABA = A
2. BAB = B
3. AB * = AB AB Hermitian
4. BA * = BA BA Hermitian

The pseudoinverse computation is based on svd(A). The calculation treats singular
values less than tol as zero.

Tips
• You can replace most uses of pinv applied to a vector b, as in pinv(A)*b, with

lsqminnorm(A,b) to get the minimum-norm least-squares solution of a system of
linear equations. lsqminnorm is generally more efficient than pinv, and it also
supports sparse matrices.

Algorithms
pinv uses the singular value decomposition to form the pseudoinverse of A. Singular
values along the diagonal of S that are smaller than tol are treated as zeros, and the
representation of A becomes:

1 Alphabetical List

1-10712

A = USV* = U1 U2
S1 0
0 0

V1 V2 *

A = U1S1V1* .

The pseudoinverse of A is then equal to:

B = V1S1
−1U1* .

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
decomposition | inv | lsqminnorm | qr | rank | svd

Introduced before R2006a

 pinv

1-10713

planerot
Givens plane rotation

Syntax
[G,y] = planerot(x)

Description
[G,y] = planerot(x) where x is a 2-component column vector, returns a 2-by-2
orthogonal matrix G so that y = G*x has y(2) = 0.

Examples
x = [3 4];
[G,y] = planerot(x')

G =
 0.6000 0.8000
 -0.8000 0.6000

y =
 5
 0

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Alphabetical List

1-10714

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
qrdelete | qrinsert

Introduced before R2006a

 planerot

1-10715

play
Play audio from audioplayer object

Syntax
play(playerObj)
play(playerObj,start)
play(playerObj,[start,stop])

Description
play(playerObj) plays the audio associated with audioplayer object playerObj
from beginning to end.

play(playerObj,start) plays audio from the sample indicated by start to the end.

play(playerObj,[start,stop]) plays audio from the sample indicated by start to
the sample indicated by stop.

Examples

Play with and without Blocking

Play two audio samples with and without blocking using the play and playblocking
methods.

Load data from example files chirp.mat and gong.mat.

chirpData = load('chirp.mat');
chirpObj = audioplayer(chirpData.y,chirpData.Fs);

gongData = load('gong.mat');
gongObj = audioplayer(gongData.y,gongData.Fs);

Play the samples with blocking, one after the other.

1 Alphabetical List

1-10716

playblocking(chirpObj);
playblocking(gongObj);

Play without blocking. The audio can overlap.

play(chirpObj);
play(gongObj);

Starting Sample

Play audio from the example file handel.mat starting 4 seconds from the beginning.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = playerObj.SampleRate * 4;

play(playerObj,start);

Sample Range

Play the first 3 seconds of audio from the example file handel.mat.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = 1;
stop = playerObj.SampleRate * 3;

play(playerObj,[start,stop]);

See Also
audioplayer | playblocking

Topics
“Play Audio”

 play

1-10717

playblocking
Play audio from audioplayer object, hold control until playback completes

Syntax
playblocking(playerObj)
playblocking(playerObj,start)
playblocking(playerObj,[start,stop])

Description
playblocking(playerObj) plays the audio associated with audioplayer object
playerObj from beginning to end. playblocking does not return control until playback
completes.

playblocking(playerObj,start) plays audio from the sample indicated by start to
the end.

playblocking(playerObj,[start,stop]) plays audio from the sample indicated by
start to the sample indicated by stop.

Examples

Play with and without Blocking

Play two audio samples with and without blocking using the play and playblocking
methods.

Load data from example files chirp.mat and gong.mat.

chirpData = load('chirp.mat');
chirpObj = audioplayer(chirpData.y,chirpData.Fs);

1 Alphabetical List

1-10718

gongData = load('gong.mat');
gongObj = audioplayer(gongData.y,gongData.Fs);

Play the samples with blocking, one after the other.

playblocking(chirpObj);
playblocking(gongObj);

Play without blocking. The audio can overlap.

play(chirpObj);
play(gongObj);

Starting Sample

Play audio from the example file handel.mat starting 4 seconds from the beginning.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = playerObj.SampleRate * 4;

play(playerObj,start);

Sample Range

Play the first 3 seconds of audio from the example file handel.mat.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = 1;
stop = playerObj.SampleRate * 3;

play(playerObj,[start,stop]);

See Also
audioplayer | play

 playblocking

1-10719

Topics
“Play Audio”

1 Alphabetical List

1-10720

pause
Pause playback or recording

Syntax
pause(audioObj)

Description
pause(audioObj) pauses the playback or recording.

Examples

Control Audio Recording and Playback

Initiate a recording session, pause the recorder, and then continue the session to finish
recording a full audio clip.

Create an audio recording object and start recording using a microphone on your system.

recObj = audiorecorder;
record(recObj);
disp('Recording in progress now ...')

Recording in progress now ...

Pause the recording and check the status of the audiorecorder object. The
isrecording function returns 1 when recording is progress and 0 when the recording is
not in progress.

pause(recObj);
isrecording(recObj)

ans =

 pause

1-10721

 logical

 0

Listen to the audio that has been recorded so far.

playerObj= getplayer(recObj);
play(playerObj);

Before proceeding with the recording session, check the status of the audioplayer
object. The isplaying function returns 1 when playback is progress and 0 when the
playback is not in progress.

isplaying(playerObj)

ans =

 logical

 0

Next, resume the recording and capture more audio in the audiorecorder object.

resume(recObj)

To finalize the audio clip, after you have recorded more material, stop the recording.

stop(recObj)

Get the full audio clip from the audiorecorder object and play it.

playerObj= getplayer(recObj)
play(playerObj)

Input Arguments
audioObj — Audio object
audioplayer object | audiorecorder object

Audio object, specified as an audioplayer or audiorecorder object.

• If audioObj is an audioplayer object, then the pause function pauses the audio
playback that is in progress.

1 Alphabetical List

1-10722

• If audioObj is an audiorecorder object, then the pause function pauses the audio
recording that is in progress.

To create an audioplayer object, use the audioplayer function.

To create an audiorecorder object, use the audiorecorder function.

See Also
audioplayer | audiorecorder | resume | stop

Introduced in R2006a

 pause

1-10723

resume
Resume playback or recording from paused state

Syntax
resume(audioObj)

Description
resume(audioObj) resumes the playback or recording from the paused state.

Examples

Control Audio Recording and Playback

Initiate a recording session, pause the recorder, and then continue the session to finish
recording a full audio clip.

Create an audio recording object and start recording using a microphone on your system.

recObj = audiorecorder;
record(recObj);
disp('Recording in progress now ...')

Recording in progress now ...

Pause the recording and check the status of the audiorecorder object. The
isrecording function returns 1 when recording is progress and 0 when the recording is
not in progress.

pause(recObj);
isrecording(recObj)

ans =

1 Alphabetical List

1-10724

 logical

 0

Listen to the audio that has been recorded so far.

playerObj= getplayer(recObj);
play(playerObj);

Before proceeding with the recording session, check the status of the audioplayer
object. The isplaying function returns 1 when playback is progress and 0 when the
playback is not in progress.

isplaying(playerObj)

ans =

 logical

 0

Next, resume the recording and capture more audio in the audiorecorder object.

resume(recObj)

To finalize the audio clip, after you have recorded more material, stop the recording.

stop(recObj)

Get the full audio clip from the audiorecorder object and play it.

playerObj= getplayer(recObj)
play(playerObj)

Input Arguments
audioObj — Audio object
audioplayer object | audiorecorder object

Audio object, specified as an audioplayer or audiorecorder object.

• If audioObj is an audioplayer object, then the resume function resumes the audio
playback that was paused using the pause function.

 resume

1-10725

• If audioObj is an audiorecorder object, then the resume function resumes the
audio recording that was paused using the pause function.

To create an audioplayer object, use the audioplayer function.

To create an audiorecorder object, use the audiorecorder function.

See Also
audioplayer | audiorecorder | pause | stop

Introduced in R2006a

1 Alphabetical List

1-10726

stop
Stop playback or recording

Syntax
stop(audioObj)

Description
stop(audioObj) stops audio playback or recording in progress.

Examples

Control Audio Recording and Playback

Initiate a recording session, pause the recorder, and then continue the session to finish
recording a full audio clip.

Create an audio recording object and start recording using a microphone on your system.

recObj = audiorecorder;
record(recObj);
disp('Recording in progress now ...')

Recording in progress now ...

Pause the recording and check the status of the audiorecorder object. The
isrecording function returns 1 when recording is progress and 0 when the recording is
not in progress.

pause(recObj);
isrecording(recObj)

ans =

 stop

1-10727

 logical

 0

Listen to the audio that has been recorded so far.

playerObj= getplayer(recObj);
play(playerObj);

Before proceeding with the recording session, check the status of the audioplayer
object. The isplaying function returns 1 when playback is progress and 0 when the
playback is not in progress.

isplaying(playerObj)

ans =

 logical

 0

Next, resume the recording and capture more audio in the audiorecorder object.

resume(recObj)

To finalize the audio clip, after you have recorded more material, stop the recording.

stop(recObj)

Get the full audio clip from the audiorecorder object and play it.

playerObj= getplayer(recObj)
play(playerObj)

Input Arguments
audioObj — Audio object
audioplayer object | audiorecorder object

Audio object, specified as an audioplayer or audiorecorder object.

• If audioObj is an audioplayer object, then the stop function stops the audio
playback in progress.

1 Alphabetical List

1-10728

• If audioObj is an audiorecorder object, then the stop function stops the audio
recording in progress.

To create an audioplayer object, use the audioplayer function.

To create an audiorecorder object, use the audiorecorder function.

See Also
audioplayer | audiorecorder | pause | resume

Introduced in R2006a

 stop

1-10729

isplaying
Determine if playback is in progress

Syntax
isplaying(playerObj)

Description
isplaying(playerObj) determines if playback is in progress for the audioplayer
object specified in playerObj.

Examples

Control Audio Recording and Playback

Initiate a recording session, pause the recorder, and then continue the session to finish
recording a full audio clip.

Create an audio recording object and start recording using a microphone on your system.

recObj = audiorecorder;
record(recObj);
disp('Recording in progress now ...')

Recording in progress now ...

Pause the recording and check the status of the audiorecorder object. The
isrecording function returns 1 when recording is progress and 0 when the recording is
not in progress.

pause(recObj);
isrecording(recObj)

ans =

1 Alphabetical List

1-10730

 logical

 0

Listen to the audio that has been recorded so far.

playerObj= getplayer(recObj);
play(playerObj);

Before proceeding with the recording session, check the status of the audioplayer
object. The isplaying function returns 1 when playback is progress and 0 when the
playback is not in progress.

isplaying(playerObj)

ans =

 logical

 0

Next, resume the recording and capture more audio in the audiorecorder object.

resume(recObj)

To finalize the audio clip, after you have recorded more material, stop the recording.

stop(recObj)

Get the full audio clip from the audiorecorder object and play it.

playerObj= getplayer(recObj)
play(playerObj)

Input Arguments
playerObj — Audio player object
audioplayer object

Audio player object, specified as an audioplayer object.

To create an audioplayer object, use the audioplayer function.

 isplaying

1-10731

See Also
audioplayer

Introduced in R2006a

1 Alphabetical List

1-10732

play
Play audio from audiorecorder object

Syntax
player = play(recObj)
player = play(recObj, start)
player = play(recObj, [start stop])

Description
player = play(recObj) plays the audio associated with audiorecorder object
recObj from beginning to end, and returns an audioplayer object.

player = play(recObj, start) plays audio from the sample indicated by start to
the end.

player = play(recObj, [start stop]) plays audio from the sample indicated by
start to the sample indicated by stop.

Examples
Record 5 seconds of your speech with a microphone, and play it back. Display the
properties of the audioplayer object.

myVoice = audiorecorder;

disp('Start speaking.');
recordblocking(myVoice, 5);
disp('End of recording. Playing back ...');

playerObj = play(myVoice);

disp('Properties of playerObj:');
get(playerObj)

 play

1-10733

Play back only the first 3 seconds of the speech recorded in the previous example:

play(myVoice, [1 myVoice.SampleRate*3]);

See Also
audioplayer | audiorecorder

1 Alphabetical List

1-10734

isrecording
Determine if recording is in progress

Syntax
isrecording(recorder)

Description
isrecording(recorder) determines if recording is in progress for the
audiorecorder object specified in recorder.

Examples

Control Audio Recording and Playback

Initiate a recording session, pause the recorder, and then continue the session to finish
recording a full audio clip.

Create an audio recording object and start recording using a microphone on your system.

recObj = audiorecorder;
record(recObj);
disp('Recording in progress now ...')

Recording in progress now ...

Pause the recording and check the status of the audiorecorder object. The
isrecording function returns 1 when recording is progress and 0 when the recording is
not in progress.

pause(recObj);
isrecording(recObj)

ans =

 isrecording

1-10735

 logical

 0

Listen to the audio that has been recorded so far.

playerObj= getplayer(recObj);
play(playerObj);

Before proceeding with the recording session, check the status of the audioplayer
object. The isplaying function returns 1 when playback is progress and 0 when the
playback is not in progress.

isplaying(playerObj)

ans =

 logical

 0

Next, resume the recording and capture more audio in the audiorecorder object.

resume(recObj)

To finalize the audio clip, after you have recorded more material, stop the recording.

stop(recObj)

Get the full audio clip from the audiorecorder object and play it.

playerObj= getplayer(recObj)
play(playerObj)

Input Arguments
recorder — Audio recorder object
audiorecorder object

Audio recorder object, specified as an audiorecorder object. Use the audiorecorder
function to create the object.

1 Alphabetical List

1-10736

See Also
audiorecorder

Introduced in R2006a

 isrecording

1-10737

getplayer
Creates associated audioplayer object

Syntax
playerObject = getplayer(recorder)

Description
playerObject = getplayer(recorder) creates the audioplayer object associated
with the specified audiorecorder object.

Examples

Control Audio Recording and Playback

Initiate a recording session, pause the recorder, and then continue the session to finish
recording a full audio clip.

Create an audio recording object and start recording using a microphone on your system.

recObj = audiorecorder;
record(recObj);
disp('Recording in progress now ...')

Recording in progress now ...

Pause the recording and check the status of the audiorecorder object. The
isrecording function returns 1 when recording is progress and 0 when the recording is
not in progress.

pause(recObj);
isrecording(recObj)

ans =

1 Alphabetical List

1-10738

 logical

 0

Listen to the audio that has been recorded so far.

playerObj= getplayer(recObj);
play(playerObj);

Before proceeding with the recording session, check the status of the audioplayer
object. The isplaying function returns 1 when playback is progress and 0 when the
playback is not in progress.

isplaying(playerObj)

ans =

 logical

 0

Next, resume the recording and capture more audio in the audiorecorder object.

resume(recObj)

To finalize the audio clip, after you have recorded more material, stop the recording.

stop(recObj)

Get the full audio clip from the audiorecorder object and play it.

playerObj= getplayer(recObj)
play(playerObj)

Input Arguments
recorder — Audio recorder object
audiorecorder object

Audio recorder object, specified as an audiorecorder object. Use the audiorecorder
function to create the object.

 getplayer

1-10739

See Also
audioplayer | audiorecorder

Introduced in R2006a

1 Alphabetical List

1-10740

plot
2-D line plot

Syntax
plot(X,Y)
plot(X,Y,LineSpec)
plot(X1,Y1,...,Xn,Yn)
plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)

plot(Y)
plot(Y,LineSpec)

plot(___ ,Name,Value)
plot(ax, ___)

h = plot(___)

Description
plot(X,Y) creates a 2-D line plot of the data in Y versus the corresponding values in X.

• If X and Y are both vectors, then they must have equal length. The plot function plots
Y versus X.

• If X and Y are both matrices, then they must have equal size. The plot function plots
columns of Y versus columns of X.

• If one of X or Y is a vector and the other is a matrix, then the matrix must have
dimensions such that one of its dimensions equals the vector length. If the number of
matrix rows equals the vector length, then the plot function plots each matrix column
versus the vector. If the number of matrix columns equals the vector length, then the
function plots each matrix row versus the vector. If the matrix is square, then the
function plots each column versus the vector.

• If one of X or Y is a scalar and the other is either a scalar or a vector, then the plot
function plots discrete points. However, to see the points you must specify a marker
symbol, for example, plot(X,Y,'o').

 plot

1-10741

plot(X,Y,LineSpec) sets the line style, marker symbol, and color.

plot(X1,Y1,...,Xn,Yn) plots multiple X, Y pairs using the same axes for all lines.

plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn) sets the line style, marker type, and
color for each line. You can mix X, Y, LineSpec triplets with X, Y pairs. For example,
plot(X1,Y1,X2,Y2,LineSpec2,X3,Y3).

plot(Y) creates a 2-D line plot of the data in Y versus the index of each value.

• If Y is a vector, then the x-axis scale ranges from 1 to length(Y).
• If Y is a matrix, then the plot function plots the columns of Y versus their row

number. The x-axis scale ranges from 1 to the number of rows in Y.
• If Y is complex, then the plot function plots the imaginary part of Y versus the real

part of Y, such that plot(Y) is equivalent to plot(real(Y),imag(Y)).

plot(Y,LineSpec) sets the line style, marker symbol, and color.

plot(___ ,Name,Value) specifies line properties using one or more Name,Value pair
arguments. For a list of properties, see Line. Use this option with any of the input
argument combinations in the previous syntaxes. Name-value pair settings apply to all the
lines plotted.

plot(ax, ___) creates the line in the axes specified by ax instead of in the current axes
(gca). The option ax can precede any of the input argument combinations in the previous
syntaxes.

h = plot(___) returns a column vector of chart line objects. Use h to modify
properties of a specific chart line after it is created. For a list of properties, see Line.

Examples

Create Line Plot

Create x as a vector of linearly spaced values between 0 and 2π. Use an increment of
π/100 between the values. Create y as sine values of x. Create a line plot of the data.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

1 Alphabetical List

1-10742

Plot Multiple Lines

Define x as 100 linearly spaced values between −2π and 2π. Define y1 and y2 as sine and
cosine values of x. Create a line plot of both sets of data.

x = linspace(-2*pi,2*pi);
y1 = sin(x);
y2 = cos(x);

figure
plot(x,y1,x,y2)

 plot

1-10743

Create Line Plot From Matrix

Define Y as the 4-by-4 matrix returned by the magic function.

Y = magic(4)

Y = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12

1 Alphabetical List

1-10744

 4 14 15 1

Create a 2-D line plot of Y. MATLAB® plots each matrix column as a separate line.

figure
plot(Y)

 plot

1-10745

Specify Line Style

Plot three sine curves with a small phase shift between each line. Use the default line
style for the first line. Specify a dashed line style for the second line and a dotted line
style for the third line.

x = 0:pi/100:2*pi;
y1 = sin(x);
y2 = sin(x-0.25);
y3 = sin(x-0.5);

figure
plot(x,y1,x,y2,'--',x,y3,':')

1 Alphabetical List

1-10746

MATLAB® cycles the line color through the default color order.

Specify Line Style, Color, and Marker

Plot three sine curves with a small phase shift between each line. Use a green line with no
markers for the first sine curve. Use a blue dashed line with circle markers for the second
sine curve. Use only cyan star markers for the third sine curve.

x = 0:pi/10:2*pi;
y1 = sin(x);
y2 = sin(x-0.25);
y3 = sin(x-0.5);

figure
plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')

 plot

1-10747

Display Markers at Specific Data Points

Create a line plot and display markers at every fifth data point by specifying a marker
symbol and setting the MarkerIndices property as a name-value pair.

x = linspace(0,10);
y = sin(x);
plot(x,y,'-o','MarkerIndices',1:5:length(y))

1 Alphabetical List

1-10748

Specify Line Width, Marker Size, and Marker Color

Create a line plot and use the LineSpec option to specify a dashed green line with
square markers. Use Name,Value pairs to specify the line width, marker size, and
marker colors. Set the marker edge color to blue and set the marker face color using an
RGB color value.

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));

figure

 plot

1-10749

plot(x,y,'--gs',...
 'LineWidth',2,...
 'MarkerSize',10,...
 'MarkerEdgeColor','b',...
 'MarkerFaceColor',[0.5,0.5,0.5])

Add Title and Axis Labels

Use the linspace function to define x as a vector of 150 values between 0 and 10.
Define y as cosine values of x.

1 Alphabetical List

1-10750

x = linspace(0,10,150);
y = cos(5*x);

Create a 2-D line plot of the cosine curve. Change the line color to a shade of blue-green
using an RGB color value. Add a title and axis labels to the graph using the title,
xlabel, and ylabel functions.

figure
plot(x,y,'Color',[0,0.7,0.9])

title('2-D Line Plot')
xlabel('x')
ylabel('cos(5x)')

 plot

1-10751

Plot Durations and Specify Tick Format

Define t as seven linearly spaced duration values between 0 and 3 minutes. Plot
random data and specify the format of the duration tick marks using the
'DurationTickFormat' name-value pair argument.

t = 0:seconds(30):minutes(3);
y = rand(1,7);

plot(t,y,'DurationTickFormat','mm:ss')

1 Alphabetical List

1-10752

Specify Axes for Line Plot

Create a figure with two subplots and return the Axes objects as ax1 and ax2. Create a
2-D line plot in each axes by referring to the Axes objects. Add a title and y-axis label to
each axes by passing the Axes objects to the title and ylabel functions.

ax1 = subplot(2,1,1); % top subplot
x = linspace(0,3);
y1 = sin(5*x);
plot(ax1,x,y1)
title(ax1,'Top Subplot')
ylabel(ax1,'sin(5x)')

ax2 = subplot(2,1,2); % bottom subplot
y2 = sin(15*x);
plot(ax2,x,y2)
title(ax2,'Bottom Subplot')
ylabel(ax2,'sin(15x)')

 plot

1-10753

Modify Lines After Creation

Define x as 100 linearly spaced values between −2π and 2π. Define y1 and y2 as sine and
cosine values of x. Create a line plot of both sets of data and return the two chart lines in
p.

x = linspace(-2*pi,2*pi);
y1 = sin(x);
y2 = cos(x);
p = plot(x,y1,x,y2);

1 Alphabetical List

1-10754

Change the line width of the first line to 2. Add star markers to the second line. Starting
in R2014b, you can use dot notation to set properties. If you are using an earlier release,
use the set function instead.

p(1).LineWidth = 2;
p(2).Marker = '*';

 plot

1-10755

Plot Circle

Plot a circle centered at the point (4,3) with a radius equal to 2. Use axis equal to use
equal data units along each coordinate direction.

r = 2;
xc = 4;
yc = 3;

theta = linspace(0,2*pi);
x = r*cos(theta) + xc;

1 Alphabetical List

1-10756

y = r*sin(theta) + yc;
plot(x,y)
axis equal

Input Arguments
Y — y values
scalar | vector | matrix

y values, specified as a scalar, a vector, or a matrix. To plot against specific x values you
must also specify X.

 plot

1-10757

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

X — x values
scalar | vector | matrix

x values, specified as a scalar, a vector, or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols.
The symbols can appear in any order. You do not need to specify all three characteristics
(line style, marker, and color). For example, if you omit the line style and specify the
marker, then the plot shows only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle

1 Alphabetical List

1-10758

Marker Description
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Target axes
Axes object | PolarAxes object | GeographicAxes object

Target axes, specified as an Axes object, a PolarAxes object, or a GeographicAxes
object. If you do not specify the axes and if the current axes are Cartesian axes, then the
plot function uses the current axes. To plot into polar axes, specify the PolarAxes
object as the first input argument or use the polarplot function. To plot into a
geographic axes, specify the GeographicAxes object as the first input argument or use
the geoplot function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The chart line properties listed here are only a subset. For a complete list, see Chart Line.

 plot

1-10759

Example: 'Marker','o','MarkerFaceColor','red'

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-10760

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

 plot

1-10761

Marker symbol, specified as one of the markers in this table. By default, a chart line does
not have markers. Add markers at each data point along the line by specifying a marker
symbol.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: 'Marker','+'
Example: 'Marker','diamond'

MarkerIndices — Indices of data points at which to display markers
1:length(YData) (default) | vector of positive integers | scalar positive integer

Indices of data points at which to display markers, specified as a vector of positive
integers. If you do not specify the indices, then MATLAB displays a marker at every data
point.

Note To see the markers, you must also specify a marker symbol.

1 Alphabetical List

1-10762

Example: plot(x,y,'-o','MarkerIndices',[1 5 10]) displays a circle marker at
the first, fifth, and tenth data points.
Example: plot(x,y,'-x','MarkerIndices',1:3:length(y)) displays a cross
marker every three data points.
Example: plot(x,y,'Marker','square','MarkerIndices',5) displays one square
marker at the fifth data point.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

 plot

1-10763

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-10764

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

DatetimeTickFormat — Format for datetime tick labels
character vector | string

Format for datetime tick labels, specified as the comma-separated pair consisting of
'DatetimeTickFormat' and a character vector or string containing a date format. Use

 plot

1-10765

the letters A-Z and a-z to construct a custom format. These letters correspond to the
Unicode Locale Data Markup Language (LDML) standard for dates. You can include non-
ASCII letter characters such as a hyphen, space, or colon to separate the fields.

If you do not specify a value for 'DatetimeTickFormat', then plot automatically
optimizes and updates the tick labels based on the axis limits.
Example: 'DatetimeTickFormat','eeee, MMMM d, yyyy HH:mm:ss' displays a
date and time such as Saturday, April 19, 2014 21:41:06.

The following table shows several common display formats and examples of the formatted
output for the date, Saturday, April 19, 2014 at 9:41:06 PM in New York City.

Value of DatetimeTickFormat Example
'yyyy-MM-dd' 2014-04-19
'dd/MM/yyyy' 19/04/2014
'dd.MM.yyyy' 19.04.2014
'yyyy年 MM月 dd日' 2014年 04月 19日

'MMMM d, yyyy' April 19, 2014
'eeee, MMMM d, yyyy HH:mm:ss' Saturday, April 19, 2014 21:41:06
'MMMM d, yyyy HH:mm:ss Z' April 19, 2014 21:41:06 -0400

For a complete list of valid letter identifiers, see the Format property for datetime arrays.

DatetimeTickFormat is not a chart line property. You must set the tick format using the
name-value pair argument when creating a plot. Alternatively, set the format using the
xtickformat and ytickformat functions.

The TickLabelFormat property of the datetime ruler stores the format.

DurationTickFormat — Format for duration tick labels
character vector | string

Format for duration tick labels, specified as the comma-separated pair consisting of
'DurationTickFormat' and a character vector or string containing a duration format.

If you do not specify a value for 'DurationTickFormat', then plot automatically
optimizes and updates the tick labels based on the axis limits.

1 Alphabetical List

1-10766

To display a duration as a single number that includes a fractional part, for example,
1.234 hours, specify one of the values in this table.

Value of DurationTickFormat Description
'y' Number of exact fixed-length years. A fixed-length

year is equal to 365.2425 days.
'd' Number of exact fixed-length days. A fixed-length day

is equal to 24 hours.
'h' Number of hours
'm' Number of minutes
's' Number of seconds

Example: 'DurationTickFormat','h' displays duration values in terms of fixed-length
days.

To display a duration in the form of a digital timer, specify one of these values.

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'

In addition, you can display up to nine fractional second digits by appending up to nine S
characters.
Example: 'DurationTickFormat','hh:mm:ss.SSS' displays the milliseconds of a
duration value to three digits.

DurationTickFormat is not a chart line property. You must set the tick format using the
name-value pair argument when creating a plot. Alternatively, set the format using the
xtickformat and ytickformat functions.

The TickLabelFormat property of the duration ruler stores the format.

Output Arguments
h — One or more chart line objects
scalar | vector

 plot

1-10767

One or more chart line objects, returned as a scalar or a vector. These are unique
identifiers, which you can use to query and modify properties of a specific chart line. For
a list of properties, see Chart Line.

Tips
• Use NaN and Inf values to create breaks in the lines. For example, this code plots the
first two elements, skips the third element, and draws another line using the last two
elements:

plot([1,2,NaN,4,5])
• plot uses colors and line styles based on the ColorOrder and LineStyleOrder

properties of the axes. plot cycles through the colors with the first line style. Then, it
cycles through the colors again with each additional line style.

You can change the default colors and line styles by setting default values for the
ColorOrder and LineStyleOrder properties. For example, to set the default line
styles to a solid line with asterisk markers, a dotted line, and circle markers with no
line, use this command:

set(groot,'defaultAxesLineStyleOrder',{'-*',':','o'})

For more information about setting defaults, see “Default Property Values”.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Supported syntaxes for tall arrays X and Y are:

• plot(X,Y)
• plot(Y)
• plot(___,LineSpec)

1 Alphabetical List

1-10768

• plot(___,Name,Value)
• plot(ax,___)

• X must be in monotonically increasing order.
• Categorical inputs are not supported.
• With tall arrays, the plot function plots in iterations, progressively adding to the plot

as more data is read. During the updates, a progress indicator shows the proportion of
data that has been plotted. Zooming and panning is supported during the updating
process, before the plot is complete. To stop the update process, press the pause
button in the progress indicator.

For more information, see “Visualization of Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

 plot

1-10769

See Also
Functions
gca | hold | legend | loglog | plot3 | title | xlabel | xlim | ylabel | ylim |
yyaxis

Properties
Chart Line

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

External Websites
MATLAB Plot Gallery

Introduced before R2006a

1 Alphabetical List

1-10770

https://www.mathworks.com/products/matlab/plot-gallery.html

plot3
3-D point or line plot

Syntax
plot3(X,Y,Z)
plot3(X,Y,Z,LineSpec)
plot3(X1,Y1,Z1,...,Xn,Yn,Zn)
plot3(X1,Y1,Z1,LineSpec1,...,Xn,Yn,Zn,LineSpecn)
plot3(___ ,Name,Value)
plot3(ax, ___)
p = plot3(___)

Description
plot3(X,Y,Z) plots coordinates in 3-D space.

• To plot a set of coordinates connected by line segments, specify X, Y, and Z as vectors
of the same length.

• To plot multiple sets of coordinates on the same set of axes, specify at least one of X, Y,
or Z as a matrix and the others as vectors.

plot3(X,Y,Z,LineSpec) creates the plot using the specified line style, marker, and
color.

plot3(X1,Y1,Z1,...,Xn,Yn,Zn) plots multiple sets of coordinates on the same set of
axes. Use this syntax as an alternative to specifying multiple sets as matrices.

plot3(X1,Y1,Z1,LineSpec1,...,Xn,Yn,Zn,LineSpecn) assigns specific line
styles, markers, and colors to each XYZ triplet. You can specify LineSpec for some
triplets and omit it for others. For example, plot3(X1,Y1,Z1,'o',X2,Y2,Z2) specifies
markers for the first triplet but not the for the second triplet.

plot3(___ ,Name,Value) specifies Line properties using one or more name-value pair
arguments. Specify the properties after all other input arguments. For a list of properties,
see Line.

 plot3

1-10771

plot3(ax, ___) displays the plot in the target axes. Specify the axes as the first
argument in any of the previous syntaxes.

p = plot3(___) returns a Line object or an array of Line objects. Use p to modify
properties of the plot after creating it. For a list of properties, see Line.

Examples

Plot 3-D Helix

Define t as a vector of values between 0 and 10π. Define st and ct as vectors of sine and
cosine values. Then plot st, ct, and t.

t = 0:pi/50:10*pi;
st = sin(t);
ct = cos(t);
plot3(st,ct,t)

1 Alphabetical List

1-10772

Plot Multiple Lines

Create two sets of x-, y-, and z-coordinates.

t = 0:pi/500:pi;
xt1 = sin(t).*cos(10*t);
yt1 = sin(t).*sin(10*t);
zt1 = cos(t);

xt2 = sin(t).*cos(12*t);
yt2 = sin(t).*sin(12*t);
zt2 = cos(t);

 plot3

1-10773

Call the plot3 function, and specify consecutive XYZ triplets.

plot3(xt1,yt1,zt1,xt2,yt2,zt2)

Plot Multiple Lines Using Matrices

Create matrix X containing three rows of x-coordinates. Create matrix Y containing three
rows of y-coordinates.

t = 0:pi/500:pi;
X(1,:) = sin(t).*cos(10*t);
X(2,:) = sin(t).*cos(12*t);

1 Alphabetical List

1-10774

X(3,:) = sin(t).*cos(20*t);

Y(1,:) = sin(t).*sin(10*t);
Y(2,:) = sin(t).*sin(12*t);
Y(3,:) = sin(t).*sin(20*t);

Create matrix Z containing the z-coordinates for all three sets.

Z = cos(t);

Plot all three sets of coordinates on the same set of axes.

plot3(X,Y,Z)

 plot3

1-10775

Specify Equally-Spaced Tick Units and Axis Labels

Create vectors xt, yt, and zt.

t = 0:pi/500:40*pi;
xt = (3 + cos(sqrt(32)*t)).*cos(t);
yt = sin(sqrt(32) * t);
zt = (3 + cos(sqrt(32)*t)).*sin(t);

Plot the data, and use the axis equal command to space the tick units equally along
each axis. Then specify the labels for each axis.

plot3(xt,yt,zt)
axis equal
xlabel('x(t)')
ylabel('y(t)')
zlabel('z(t)')

1 Alphabetical List

1-10776

Plot Points as Markers Without Lines

Create vectors t, xt, and yt, and plot the points in those vectors using circular markers.

t = 0:pi/20:10*pi;
xt = sin(t);
yt = cos(t);
plot3(xt,yt,t,'o')

 plot3

1-10777

Customize Color and Marker

Create vectors t, xt, and yt, and plot the points in those vectors as a blue line with 10-
point circular markers. Use a hexadecimal color code to specify a light blue fill color for
the markers.

t = 0:pi/20:10*pi;
xt = sin(t);
yt = cos(t);
plot3(xt,yt,t,'-o','Color','b','MarkerSize',10,'MarkerFaceColor','#D9FFFF')

1 Alphabetical List

1-10778

Specify Line Style

Create vector t. Then use t to calculate two sets of x and y values.

t = 0:pi/20:10*pi;
xt1 = sin(t);
yt1 = cos(t);

xt2 = sin(2*t);
yt2 = cos(2*t);

 plot3

1-10779

Plot the two sets of values. Use the default line for the first set, and specify a dashed line
for the second set.

plot3(xt1,yt1,t,xt2,yt2,t,'--')

Modify Line After Plotting

Create vectors t, xt, and yt, and plot the data in those vectors. Return the chart line in
the output variable p.

t = linspace(-10,10,1000);
xt = exp(-t./10).*sin(5*t);

1 Alphabetical List

1-10780

yt = exp(-t./10).*cos(5*t);
p = plot3(xt,yt,t);

Change the line width to 3.

p.LineWidth = 3;

 plot3

1-10781

Specify Target Axes

Use the subplot function to create two axes, ax1 and ax2. Create separate line plots in
the axes by specifying the axes object as the first argument to plot3.

% Left plot
ax1 = subplot(1,2,1);
t = 0:pi/20:10*pi;
xt1 = sin(t);
yt1 = cos(t);
plot3(ax1,xt1,yt1,t)

1 Alphabetical List

1-10782

title(ax1,'Helix With 5 Turns')

% Right plot
ax2 = subplot(1,2,2);
t = 0:pi/20:10*pi;
xt2 = sin(2*t);
yt2 = cos(2*t);
plot3(ax2,xt2,yt2,t)
title(ax2,'Helix With 10 Turns')

 plot3

1-10783

Plot Duration Data with Custom Tick Format

Create x and y as vectors of random values between 0 and 1. Create z as a vector of
random duration values.

x = rand(1,10);
y = rand(1,10);
z = duration(rand(10,1),randi(60,10,1),randi(60,10,1));

Plot x, y, and z, and specify the format for the z-axis as minutes and seconds. Then add
axis labels, and turn on the grid to make it easier to visualize the points within the plot
box.

plot3(x,y,z,'o','DurationTickFormat','mm:ss')
xlabel('X')
ylabel('Y')
zlabel('Duration')
grid on

1 Alphabetical List

1-10784

Plot Line With Marker at One Data Point

Create vectors xt, yt, and zt. Plot the values, specifying a solid line with circular
markers using the LineSpec argument. Specify the MarkerIndices property to place
one marker at the 200th data point.

t = 0:pi/500:pi;
xt(1,:) = sin(t).*cos(10*t);
yt(1,:) = sin(t).*sin(10*t);
zt = cos(t);
plot3(xt,yt,zt,'-o','MarkerIndices',200)

 plot3

1-10785

Input Arguments
X — x-coordinates
scalar | vector | matrix

x-coordinates, specified as a scalar, vector, or matrix. The size and shape of X depends on
the shape of your data and the type of plot you want to create. This table describes the
most common situations.

1 Alphabetical List

1-10786

Type of Plot How to Specify Coordinates
Single point Specify X, Y, and Z as scalars and include a marker. For

example:

plot3(1,2,3,'o')

One set of points Specify X, Y, and Z as any combination of row or column
vectors of the same length. For example:

plot3([1 2 3],[4; 5; 6],[7 8 9])

Multiple sets of points
(using vectors)

Specify consecutive sets of X, Y, and Z vectors. For example:

plot3([1 2 3],[4 5 6],[7 8 9],[1 2 3],[4 5 6],[10 11 12])

Multiple sets of points
(using matrices)

Specify at least one of X, Y, or Z as a matrix, and the others as
vectors. Each of X, Y, and Z must have at least one dimension
that is same size. For best results, specify all vectors of the
same shape and all matrices of the same shape. For example:

plot3([1 2 3],[4 5 6],[7 8 9; 10 11 12])

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Y — y-coordinates
scalar | vector | matrix

y-coordinates, specified as a scalar, vector, or matrix. The size and shape of Y depends on
the shape of your data and the type of plot you want to create. This table describes the
most common situations.

Type of Plot How to Specify Coordinates
Single point Specify X, Y, and Z as scalars and include a marker. For

example:

plot3(1,2,3,'o')

One set of points Specify X, Y, and Z as any combination of row or column
vectors of the same length. For example:

plot3([1 2 3],[4; 5; 6],[7 8 9])

 plot3

1-10787

Type of Plot How to Specify Coordinates
Multiple sets of points
(using vectors)

Specify consecutive sets of X, Y, and Z vectors. For example:

plot3([1 2 3],[4 5 6],[7 8 9],[1 2 3],[4 5 6],[10 11 12])

Multiple sets of points
(using matrices)

Specify at least one of X, Y, or Z as a matrix, and the others as
vectors. Each of X, Y, and Z must have at least one dimension
that is same size. For best results, specify all vectors of the
same shape and all matrices of the same shape. For example:

plot3([1 2 3],[4 5 6],[7 8 9; 10 11 12])

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Z — z-coordinates
scalar | vector | matrix

z-coordinates, specified as a scalar, vector, or matrix. The size and shape of Z depends on
the shape of your data and the type of plot you want to create. This table describes the
most common situations.

Type of Plot How to Specify Coordinates
Single point Specify X, Y, and Z as scalars and include a marker. For

example:

plot3(1,2,3,'o')

One set of points Specify X, Y, and Z as any combination of row or column
vectors of the same length. For example:

plot3([1 2 3],[4; 5; 6],[7 8 9])

Multiple sets of points
(using vectors)

Specify consecutive sets of X, Y, and Z vectors. For example:

plot3([1 2 3],[4 5 6],[7 8 9],[1 2 3],[4 5 6],[10 11 12])

Multiple sets of points
(using matrices)

Specify at least one of X, Y, or Z as a matrix, and the others as
vectors. Each of X, Y, and Z must have at least one dimension
that is same size. For best results, specify all vectors of the
same shape and all matrices of the same shape. For example:

plot3([1 2 3],[4 5 6],[7 8 9; 10 11 12])

1 Alphabetical List

1-10788

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols.
The symbols can appear in any order. You do not need to specify all three characteristics
(line style, marker, and color). For example, if you omit the line style and specify the
marker, then the plot shows only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

 plot3

1-10789

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes and if the current
axes are Cartesian axes, then the plot function uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: plot3([1 2],[3 4],[5 6],'Color','red') specifies a red line for the
plot.

Note The properties listed here are only a subset. For a complete list, see Chart Line.

Color — Color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The color you specify sets the line color. It also sets the marker edge color when
the MarkerEdgeColor property is set to 'auto'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-10790

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 plot3

1-10791

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

1 Alphabetical List

1-10792

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 plot3

1-10793

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-10794

Tips
• Use NaN or Inf to create breaks in the lines. For example, this code plots a line with a

break between z=2 and z=4.

 plot3([1 2 3 4 5],[1 2 3 4 5],[1 2 NaN 4 5])

• plot3 uses colors and line styles based on the ColorOrder and LineStyleOrder
properties of the axes. It cycles through the colors with the first line style. Then it
cycles through the colors again with each additional line style.

You can change the default colors and line styles by setting default values for the
ColorOrder and LineStyleOrder properties. For example, to set the default line
styles to a solid line with asterisk markers, a dotted line, and circular markers with no
line, use this command:

set(groot,'defaultAxesLineStyleOrder',{'-*',':','o'})

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

 plot3

1-10795

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
axis | bar3 | grid | scatter3 | subplot

Properties
Chart Line

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

1 Alphabetical List

1-10796

plotbrowser
Show or hide figure Plot Browser

Syntax
plotbrowser('on')
plotbrowser('off')
plotbrowser
plotbrowser(figure_handle,...)

Description
plotbrowser('on') displays the Plot Browser on the current figure.

plotbrowser('off') hides the Plot Browser on the current figure.

plotbrowser toggles the visibility of the Plot Browser on the current figure. You can use
plotbrowser('toggle') instead for the same functionality.

plotbrowser(figure_handle,...) shows or hides the Plot Browser on the figure
specified by figure_handle.

Examples

Open Plot Browser
Plot a 5-by-5 matrix of random numbers. Then, open the plot browser.

plot(rand(5))
plotbrowser('on')

 plotbrowser

1-10797

Tips
If you call plotbrowser in a MATLAB program and subsequent lines depend on the Plot
Browser being fully initialized, follow it by drawnow to ensure complete initialization.

Alternatives
Open or close the Plot Browser tool from the figure's View menu.

1 Alphabetical List

1-10798

See Also
figurepalette | plottools | propertyeditor

Introduced before R2006a

 plotbrowser

1-10799

plotedit
Interactively edit and annotate plots

Syntax
plotedit on
plotedit off
plotedit
plotedit(h)
plotedit(state)
plotedit(h,state)

Description
plotedit on starts plot edit mode for the current figure, allowing you to use a
graphical interface to annotate and edit plots easily. In plot edit mode, you can label axes,
change line styles, and add text, line, and arrow annotations.

plotedit off ends plot mode for the current figure.

plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure handle h.

plotedit(state) specifies the plotedit state for the current figure. Values for state
can be as shown.

Value for state Description
'on' Starts plot edit mode
'off' Ends plot edit mode
'showtoolsmenu' Displays the Tools menu in the menu bar
'hidetoolsmenu' Removes the Tools menu from the menu

bar

1 Alphabetical List

1-10800

Note 'hidetoolsmenu' is intended for UI developers who do not want the Tools menu
to appear in applications that use the figure window.

plotedit(h,state) specifies the plotedit state for figure handle h.

Examples
Start plot edit mode for figure 2.

plotedit(2)

End plot edit mode for figure 2.

plotedit(2, 'off')

Hide the Tools menu for the current figure:

plotedit('hidetoolsmenu')

See Also
axes | line | open | plot | print | propedit | saveas | text

Introduced before R2006a

 plotedit

1-10801

plotmatrix
Scatter plot matrix

Syntax
plotmatrix(X,Y)
plotmatrix(X)
plotmatrix(___ ,LineSpec)

[S,AX,BigAx,H,HAx] = plotmatrix(___)

Description
plotmatrix(X,Y) creates a matrix of subaxes containing scatter plots of the columns of
X against the columns of Y. If X is p-by-n and Y is p-by-m, then plotmatrix produces an
n-by-m matrix of subaxes.

plotmatrix(X) is the same as plotmatrix(X,X) except that the subaxes along the
diagonal are replaced with histogram plots of the data in the corresponding column of X.
For example, the subaxes along the diagonal in the ith column is replaced by
histogram(X(:,i)).

plotmatrix(___ ,LineSpec) specifies the line style, marker symbol, and color for the
scatter plots. The option LineSpec can be preceded by any of the input argument
combinations in the previous syntaxes.

[S,AX,BigAx,H,HAx] = plotmatrix(___) returns the graphic objects created as
follows:

• S – Chart line objects for the scatter plots
• AX – Axes objects for each subaxes
• BigAx – Axes object for big axes that frames the subaxes
• H – Histogram objects for the histogram plots
• HAx – Axes objects for the invisible histogram axes

1 Alphabetical List

1-10802

BigAx is left as the current axes (gca) so that a subsequent title, xlabel, or ylabel
command centers text with respect to the big axes.

Examples

Create Scatter Plot Matrix with Two Matrix Inputs

Create X as a matrix of random data and Y as a matrix of integer values. Then, create a
scatter plot matrix of the columns of X against the columns of Y.

X = randn(50,3);
Y = reshape(1:150,50,3);
plotmatrix(X,Y)

 plotmatrix

1-10803

The subplot in the ith row, jth column of the figure is a scatter plot of the ith column of Y
against the jth column of X.

Create Scatter Plot Matrix with One Matrix Input

Create a scatter plot matrix of random data. The subplot in the ith row, jth column of the
matrix is a scatter plot of the ith column of X against the jth column of X. Along the
diagonal are histogram plots of each column of X.

X = randn(50,3);
plotmatrix(X)

1 Alphabetical List

1-10804

Specify Marker Type and Color

Create a scatter plot matrix of random data. Specify the marker type and the color for the
scatter plots.

X = randn(50,3);
plotmatrix(X,'*r')

 plotmatrix

1-10805

The LineSpec option sets properties for the scatter plots. To set properties for the
histogram plots, return the histogram objects.

Modify Scatter Plot Matrix After Creation

Create a scatter plot matrix of random data.

rng default
X = randn(50,3);
[S,AX,BigAx,H,HAx] = plotmatrix(X);

1 Alphabetical List

1-10806

To set properties for the scatter plots, use S. To set properties for the histograms, use H.
To set axes properties, use AX, BigAx, and HAx. Starting in R2014b, you can use dot
notation to set properties. If you are using an earlier release, use the set function
instead.

Set the color and marker type for the scatter plot in the lower left corner of the figure.
Set the color for the histogram plot in the lower right corner. Use the title command to
title the figure.

S(3).Color = 'g';
S(3).Marker = '*';

H(3).EdgeColor = 'k';
H(3).FaceColor = 'g';

 plotmatrix

1-10807

title(BigAx,'A Comparison of Data Sets')

Input Arguments
X — Data to display
matrix

Data to display, specified as a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Alphabetical List

1-10808

Y — Data to plot against X
matrix

Data to plot against X, specified as a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

LineSpec — Line style, marker symbol, and color for scatter plots
character vector | string

Line style, marker symbol, and color for the scatter plots, specified as a character vector
or string. For more information on line style, marker symbol, and color options see
LineSpec.
Example: ':*r'

Output Arguments
S — Chart line objects for scatter plots
matrix

Chart line objects for the scatter plots, returned as a matrix. These are unique identifiers,
which you can use to query and modify the properties of a specific scatter plot.

AX — Axes objects for subaxes
matrix

Axes objects for the subaxes, returned as a matrix. These are unique identifiers, which
you can use to query and modify the properties of a specific subaxes.

BigAx — Axes object for big axes
scalar

Axes object for big axes, returned as a scalar. This is a unique identifier, which you can
use to query and modify properties of the big axes.

H — Histogram objects
vector | []

 plotmatrix

1-10809

Histogram objects, returned as a vector or []. These are unique identifiers, which you
can use to query and modify the properties of a specific histogram object. If no histogram
plots are created, then H is returned as empty brackets.

Note Starting in R2015b, H is a vector of histogram objects, In previous releases, it was a
vector of patch objects.

HAx — Axes objects for invisible histogram axes
vector | []

Axes objects for invisible histogram axes, returned as a vector or []. These are unique
identifiers, which you can use to query and modify the properties of a specific axes. If no
histogram plots are created, then HAx is returned as empty brackets.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

1 Alphabetical List

1-10810

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
scatter | scatter3

Introduced before R2006a

 plotmatrix

1-10811

plottools
Show or hide plot tools

Syntax
plottools('on')
plottools('off')
plottools
plottools(figure_handle,...)
plottools(...,'tool')

Description
plottools('on') displays the Figure Palette, Plot Browser, and Property Editor on the
current figure, configured as you last used them.

plottools('off') hides the Figure Palette, Plot Browser, and Property Editor on the
current figure.

plottools with no arguments, is the same as plottools('on')

plottools(figure_handle,...) displays or hides the plot tools on the specified
figure instead of on the current figure.

plottools(...,'tool') operates on the specified tool only. 'tool' can be one of
these values:

• 'figurepalette'
• 'plotbrowser'
• 'propertyeditor'

Note The first time you open the plotting tools, all three of them appear, grouped around
the current figure as shown above. If you close, move, or undock any of the tools,
MATLAB remembers the configuration you left them in and restores it when you invoke
the tools for subsequent figures, both within and across MATLAB sessions.

1 Alphabetical List

1-10812

Examples

Open Plot Tools
Create a line plot and open the plot tools.

plot(1:10);
plottools('on')

 plottools

1-10813

Alternatives
Select the Figure Palette, Plot Browser, and Property Editor tools from the figure's
View menu.

1 Alphabetical List

1-10814

See Also
figurepalette | plotbrowser | propertyeditor

Topics
“Interactively Explore Plotted Data”

Introduced before R2006a

 plottools

1-10815

plotyy
(Not recommended) Create graph with two y-axes

Note plotyy is not recommended. Use yyaxis instead. For more information, see
“Compatibility Considerations”.

Syntax
plotyy(X1,Y1,X2,Y2)
plotyy(X1,Y1,X2,Y2,function)
plotyy(X1,Y1,X2,Y2,'function1','function2')
plotyy(AX1, ___)
[AX,H1,H2] = plotyy(___)

Description
plotyy(X1,Y1,X2,Y2) plots Y1 versus X1 with y-axis labeling on the left and plots Y2
versus X2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,function) uses the specified plotting function to produce the
graph.

function can be either a function handle or a character vector specifying plot,
semilogx, semilogy, loglog, stem, or any MATLAB function that accepts the syntax

h = function(x,y)

For example,

plotyy(x1,y1,x2,y2,@loglog) % function handle
plotyy(x1,y1,x2,y2,'loglog') % character vector

Function handles enable you to access user-defined local functions and can provide other
advantages. For more information on using function handles, see “Create Function
Handle”.

1 Alphabetical List

1-10816

plotyy(X1,Y1,X2,Y2,'function1','function2') uses function1(X1,Y1) to plot
the data for the left axis and function2(X2,Y2) to plot the data for the right axis.

plotyy(AX1, ___) plots the data using the axes specified by AX1 for the first set of
data, instead of using the current axes. Specify AX1 as a single axes object or a vector of
the two axes objects returned by a previous call to plotyy. If you specify a vector, then
plotyy uses the first axes object in the vector. Use this option with any of the input
argument combinations in the previous syntaxes.

[AX,H1,H2] = plotyy(___) returns the handles of the two axes created in AX and
the handles of the graphics objects from each plot in H1 and H2. AX(1) is the left axes
and AX(2) is the right axes.

Examples

Plot Two Data Sets with Different y-Axes

Plot two data sets on one graph using two y-axes.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

figure % new figure
plotyy(x,y1,x,y2)

 plotyy

1-10817

Add Title and Axis Labels

Plot two data sets using a graph with two y-axes. Add a title and axis labels.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

figure % new figure
[hAx,hLine1,hLine2] = plotyy(x,y1,x,y2);

1 Alphabetical List

1-10818

title('Multiple Decay Rates')
xlabel('Time (\musec)')

ylabel(hAx(1),'Slow Decay') % left y-axis
ylabel(hAx(2),'Fast Decay') % right y-axis

Change Line Styles

Plot two data sets using a graph with two y-axes. Change the line styles. Starting in
R2014b, you can use dot notation to set properties. If you are using an earlier release, use
the set function instead.

 plotyy

1-10819

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

[hAx,hLine1,hLine2] = plotyy(x,y1,x,y2);
hLine1.LineStyle = '--';
hLine2.LineStyle = ':';

1 Alphabetical List

1-10820

Combine Different Types of Plots

Plot two data sets using a graph with two y-axes. Use a line plot for the data associated
with the left y-axes. Use a stem plot for the data associated with the right y-axes.

x = 0:0.1:10;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

figure
plotyy(x,y1,x,y2,'plot','stem')

 plotyy

1-10821

Use Right y-Axis for Two Data Sets

Plot three data sets using a graph with two y-axes. Plot one set of data associated with the
left y-axis. Plot two sets of data associated with the right y-axis by using two-column
matrices.

x = linspace(0,10);
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
y3 = 0.2*exp(-0.5*x).*sin(10*x);

figure
[hAx,hLine1,hLine2] = plotyy(x,y1,[x',x'],[y2',y3']);

1 Alphabetical List

1-10822

Compatibility Considerations

plotyy is not recommended
Not recommended starting in R2016a

plotyy is not recommended. Use yyaxis instead. There are no plans to remove plotyy.

Starting in R2016a, use the yyaxis function to create charts with two y-axes. The
yyaxis function has several advantages over the plotyy function.

• Unlike plotyy, the yyaxis function creates one Axes object with two y-axes. plotyy
creates two overlaid Axes objects that can get out of sync.

• You can use yyaxis with any 2-D plotting function. plotyy is limited to working with
plotting functions of the form function(x,y). It does not work with other plotting
functions, such as errorbar.

This table shows some typical usages of plotyy and how to update your code to use
yyaxis instead.

Not Recommended Recommended
plotyy(x1,y1,x2,y2) yyaxis left

plot(x1,y1)
yyaxis right
plot(x2,y2)

plotyy(x1,y1,x2,y2,...
'function1','function2')

yyaxis left
function1(x1,y1)
yyaxis right
function2(x2,y2)

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 plotyy

1-10823

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
linkaxes | linkprop | loglog | plot | semilogx | semilogy | yyaxis

Topics
“Create Chart with Two y-Axes”
“Create Chart with Multiple x-Axes and y-Axes”

Introduced before R2006a

1 Alphabetical List

1-10824

matlab.unittest.plugins Package
Summary of classes in MATLAB Plugins Interface

Description
Plugins customize a TestRunner object. The matlab.unittest.plugins package
consists of the following customized MATLAB plugins.

Classes

Fundamental Plugin Related Interfaces
matlab.unittest.plugins.OutputStream Interface that determines where to send text

output
matlab.unittest.plugins.QualifyingPlugin Interface for plugins that perform system-

wide qualifications
matlab.unittest.plugins.TestRunnerPlugin Plugin interface for extending TestRunner

Plugin Implementations
Diagnostic & Progress Information
matlab.unittest.plugins.DiagnosticsOutputPlugin Plugin to direct diagnostics to

output stream
matlab.unittest.plugins.DiagnosticsRecordingPlugin Plugin to record diagnostics on test

results
matlab.unittest.plugins.LoggingPlugin Plugin to report diagnostic

messages
matlab.unittest.plugins.TestRunProgressPlugin Plugin that reports test run

progress

Debugging & Qualification
matlab.unittest.plugins.DiagnosticsValidationPlugin Plugin to help validate diagnostic

code

 matlab.unittest.plugins Package

1-10825

matlab.unittest.plugins.FailOnWarningsPlugin Plugin to fail tests that issue
warnings

matlab.unittest.plugins.StopOnFailuresPlugin Plugin to debug test failures

Output Formats & Continuous Integration
matlab.unittest.plugins.TAPPlugin Plugin that produces Test Anything Protocol stream
matlab.unittest.plugins.XMLPlugin Plugin that writes test results in XML format

Reporting
matlab.unittest.plugins.CodeCoveragePlugin Plugin that produces a code coverage

report
matlab.unittest.plugins.TestReportPlugin Plugin that produces a test result report

Output Streams
matlab.unittest.plugins.ToFile Output stream to write text output to file
matlab.unittest.plugins.ToStandardOutput Output stream to display text information to

screen
matlab.unittest.plugins.ToUniqueFile Output stream to write text output to unique

file

Packages
matlab.unittest.plugins.codecoverage Summary of classes associated with code

coverage report generation
matlab.unittest.plugins.diagnosticrecord Summary of classes associated with MATLAB

Plugin Diagnostic Records
matlab.unittest.plugins.plugindata Summary of classes in MATLAB Plugin Data

Interface
matlab.unittest.plugins.testreport Summary of classes in MATLAB Plugin Test

Report Generation

See Also

Topics
“Add Plugin to Test Runner”
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

1 Alphabetical List

1-10826

“Write Plugin to Save Diagnostic Details”

Introduced in R2013a

 matlab.unittest.plugins Package

1-10827

matlab.unittest.plugins.codecoverage
Package
Summary of classes associated with code coverage report generation

Description
The codecoverage classes create formats used by the CodeCoveragePlugin to
generate code coverage reports. The matlab.unittest.plugins.codecoverage
package consists of the following MATLAB® classes.

Classes
matlab.unittest.plugins.codecoverage.CoverageReport Format for code coverage

report
matlab.unittest.plugins.codecoverage.CoberturaFormat Format to create code coverage

report using Cobertura XML
format

matlab.unittest.plugins.codecoverage.ProfileReport Format to create MATLAB
Profiler Coverage Report

See Also
matlab.unittest.plugins | matlab.unittest.plugins.CodeCoveragePlugin

Introduced in R2017b

1 Alphabetical List

1-10828

matlab.unittest.plugins.codecoverage.Cober
turaFormat class
Package: matlab.unittest.plugins.codecoverage

Format to create code coverage report using Cobertura XML format

Construction
reportFormat = CoberturaFormat(filename) constructs a CoberturaFormat
format and returns it as reportFormat. When used with the CodeCoveragePlugin, the
code coverage results are saved to the file filename.

Typically, you construct this class implicitly by instantiating it when you create a
CodeCoveragePlugin instance. For example, p =
CodeCoveragePlugin.forFile('ProductTest.m','Producing',CoberturaForm
at('reportFile.xml')) creates a plugin that produces a code coverage report for
ProductTest.m in the Cobertura XML format named reportFile.xml.

Input Arguments
filename — Name of file
string | character vector

Name of file, specified as a string or character vector.
Example: 'product1_coverageReults.xml'

See Also
matlab.unittest.plugins.CodeCoveragePlugin |
matlab.unittest.plugins.codecoverage.CoverageReport

Introduced in R2017b

 matlab.unittest.plugins.codecoverage.CoberturaFormat class

1-10829

matlab.unittest.plugins.codecoverage.Cover
ageReport class
Package: matlab.unittest.plugins.codecoverage

Format for code coverage report

Description
To display code coverage metrics in the MATLAB browser, use an instance of the
CoverageReport class with the plugin CodeCoveragePlugin.

Creation

Description
reportFormat = CoverageReport constructs a CoverageReport format. Use this
report format with matlab.unittest.plugins.CodeCoveragePlugin to produce an
HTML file in a temporary folder that contains the code coverage report.

reportFormat = CoverageReport(reportFolder) constructs a CoverageReport
format. Use this report format with
matlab.unittest.plugins.CodeCoveragePlugin to produce an HTML file in the
specified folder that contains the code coverage report. Generating the report overwrites
the contents of the folder specified by reportFolder.

reportFormat = CoverageReport(___ ,'MainFile',mainFileName) constructs a
CoverageReport format with mainFileName as the name of the main HTML file
containing the code coverage report.

Input Arguments
reportFolder — Folder containing code coverage report files
character vector | string scalar

1 Alphabetical List

1-10830

Folder containing code coverage report files, specified as the path to a folder relative to
the current folder or as an absolute path. If the folder does not exist, CoverageReport
creates it.

mainFileName — Name of the main HTML file containing code coverage report
character vector | string scalar

Name of the main HTML file containing code coverage report, specified as a file name
with a .html extension.

Properties
MainFile — Name of the main HTML file that contains the code coverage report
index.html (default)

Name of the main HTML file that contains the code coverage report, specified as a file
name with a .html extension. To set the property, pass the file name to the constructor as
a 'MainFile','fileName' pair.
Example: myReport.html

Attributes:

GetAccess
public

SetAccess
immutable

Data Types: char | string

Examples

Create Test Report

Create a test report using the CoverageReport format. Specify the folder and HTML file
name for the report.

Create a test for this function.

 matlab.unittest.plugins.codecoverage.CoverageReport class

1-10831

function res = add5(x)
 % Increment input by 5.
 if ~isa(x,'numeric')
 error('add5:InputMustBeNumeric','Input must be numeric.')
 end
 res = x + 5;
end

Derive a class from matlab.unittest.TestCase to implement test methods.

classdef Add5Test < matlab.unittest.TestCase
 methods (Test)
 function testDoubleOut(testCase)
 actOutput = add5(1);
 testCase.verifyClass(actOutput,'double')
 end
 function testNonNumericInput(testCase)
 testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric')
 end
 end
end

This test script creates a test suite for a single file, adds the CodeCoveragePlugin with
the CoverageReport format to the test runner, and runs the tests. The format on the
plugin specifies the name of the main test results HTML file and the folder containing the
results.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner
import matlab.unittest.plugins.CodeCoveragePlugin
import matlab.unittest.plugins.codecoverage.CoverageReport

suite = TestSuite.fromFile('Add5Test.m');
runner = TestRunner.withNoPlugins;
runner.addPlugin(CodeCoveragePlugin.forFile('Add5Test.m', ...
 'Producing',CoverageReport('Add5Results', ...
 'MainFile','Add5TestResults.html')))
runner.run(suite)

1 Alphabetical List

1-10832

Code coverage report has been saved to:
 C:\myWorkingFolder\Add5Results\Add5TestResults.html

See Also
matlab.unittest.plugins.CodeCoveragePlugin |
matlab.unittest.plugins.codecoverage.CoberturaFormat | runtests

Introduced in R2019a

 matlab.unittest.plugins.codecoverage.CoverageReport class

1-10833

matlab.unittest.plugins.codecoverage.Profil
eReport class
Package: matlab.unittest.plugins.codecoverage

Format to create MATLAB Profiler Coverage Report

Construction
reportFormat = ProfileReport constructs a ProfileReport format and returns it
as reportFormat. When used with the CodeCoveragePlugin, the code coverage
results open in a MATLAB Profiler Coverage Report.

Typically, you construct this class implicitly by instantiating it when you create a
CodeCoveragePlugin instance. For example, p =
CodeCoveragePlugin.forFolder('myTests','Producing',ProfileReport)
creates a plugin that produces a MATLAB Profiler Coverage Report for code in the
myTests folder.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.plugins.CodeCoveragePlugin

Introduced in R2017b

1 Alphabetical List

1-10834

matlab.unittest.plugins.CodeCoveragePlugin
class
Package: matlab.unittest.plugins

Plugin that produces a code coverage report

Description
To produce a line coverage report for MATLAB source code, add the
CodeCoveragePlugin to the TestRunner. The testing framework runs the tests, and
the resulting coverage report indicates the executed lines of code. The coverage report is
based on source code located in one or more folders or packages. The source code must
be on the MATLAB path and remain on the path during the test run.

The CodeCoveragePlugin uses the MATLAB profiler to determine which lines of code
the tests execute. The tests and source code should not interact with the profiler. Before
running a suite of tests, the plugin clears any data collected by the profiler.

Construction
Instantiate a CodeCoveragePlugin using one of its static methods.

To report on source code within one or more files, use the forFile static method. To
report on source code within one or more folders, use the forFolder static method. To
report on source code within one or more packages, use the forPackage static method.

Methods
forFile Construct CodeCoveragePlugin for files
forFolder Construct CodeCoveragePlugin for folders
forPackage Construct CodeCoveragePlugin for packages

 matlab.unittest.plugins.CodeCoveragePlugin class

1-10835

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Generate Code Coverage Report

In a new file, quadraticSolver.m, in your working folder, create the following function.

function roots = quadraticSolver(a,b,c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

checkInputs

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

 function checkInputs
 if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.')
 end
 end
end

Create a test for the quadratic solver. In a tests package (a +tests subfolder), create
SolverTest.m containing the following test class.

classdef SolverTest < matlab.unittest.TestCase
 % SolverTest tests solutions to the quadratic equation
 % a*x^2 + b*x + c = 0

 methods (Test)
 function testRealSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2,1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function testImaginarySolution(testCase)

1 Alphabetical List

1-10836

 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i, -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 end

end

At the command prompt from within your original working folder, create a test suite from
the tests package.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner
import matlab.unittest.plugins.CodeCoveragePlugin

suite = TestSuite.fromPackage('tests');

Create a test runner.

runner = TestRunner.withTextOutput;

Add CodeCoveragePlugin to the runner and run the tests. Specify that the source code
folder is your current working folder. If you have other source code files in your current
working folder, they show up in the coverage report. The folder that contains the source
code (quadraticSolver.m) must be on your MATLAB path.

runner.addPlugin(CodeCoveragePlugin.forFolder(pwd))
result = runner.run(suite);

Running tests.SolverTest
..
Done tests.SolverTest

MATLAB creates a Code Coverage Report for the quadratic solver function in a temporary
folder.

 matlab.unittest.plugins.CodeCoveragePlugin class

1-10837

The checkinputs nested function does not have complete code coverage. Since the tests
in SolverTest.m do not pass nonnumeric input to quadraticSolver, MATLAB does
not exercise the code that throws an error if the inputs are not numeric. To address the
missing coverage, add a test method to test the error condition.

Generate Report in Cobertura Format

In your working folder, create a file quadraticSolver.m with the following function.

function roots = quadraticSolver(a,b,c)
 % quadraticSolver returns solutions to the
 % quadratic equation a*x^2 + b*x + c = 0.

1 Alphabetical List

1-10838

 checkInputs
 roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
 roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

 function checkInputs
 if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.')
 end
 end
end

Create a test class for the quadratic solver in ForFileSolverTest.m.

classdef ForFileSolverTest < matlab.unittest.TestCase
 % SolverTest tests solutions to the quadratic equation
 % a*x^2 + b*x + c = 0

 methods (Test)
 function testRealSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2,1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function testImaginarySolution(testCase)
 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i, -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 end
end

At the command prompt, create a test suite for ForFileSolverTest.m, and create a
test runner.

import matlab.unittest.TestRunner

testFile = 'ForFileSolverTest.m';
suite = testsuite(testFile);
runner = TestRunner.withTextOutput;

Create a plugin that outputs a code coverage report for the source code in Cobertura
format.

 matlab.unittest.plugins.CodeCoveragePlugin class

1-10839

import matlab.unittest.plugins.CodeCoveragePlugin
import matlab.unittest.plugins.codecoverage.CoberturaFormat

sourceCodeFile = 'quadraticSolver.m';
reportFile = 'CoverageResults.xml';
reportFormat = CoberturaFormat(reportFile);
plugin = CodeCoveragePlugin.forFile(sourceCodeFile,'Producing',reportFormat);

Add the plugin to the test runner and run the tests.

runner.addPlugin(plugin);
result = runner.run(suite);

Running ForFileSolverTest
..
Done ForFileSolverTest

Display the contents of the file with the code coverage results.

disp(fileread(reportFile))

<?xml version="1.0" encoding="utf-8"?>
<coverage branch-rate="NaN" branches-covered="NaN" branches-valid="NaN" complexity="NaN" line-rate="0.8" lines-covered="4" lines-valid="5" timestamp="737000.4343" version="NaN">
 <sources>
 <source>C:\work\</source>
 </sources>
 <packages>
 <package branch-rate="NaN" complexity="NaN" line-rate="0.8" name="">
 <classes>
 <class branch-rate="NaN" complexity="NaN" filename="quadraticSolver.m" line-rate="0.8" name="quadraticSolver">
 <methods/>
 <lines>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="4"/>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="5"/>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="6"/>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="9"/>
 <line branch="NaN" condition-coverage="NaN" hits="0" number="10"/>
 </lines>
 </class>
 </classes>
 </package>
 </packages>
</coverage>

See Also
matlab.unittest.plugins.TestRunnerPlugin | profile

1 Alphabetical List

1-10840

Introduced in R2014b

 matlab.unittest.plugins.CodeCoveragePlugin class

1-10841

matlab.unittest.plugins.CodeCoveragePlugin
.forFile
Class: matlab.unittest.plugins.CodeCoveragePlugin
Package: matlab.unittest.plugins

Construct CodeCoveragePlugin for files

Syntax
matlab.unittest.plugins.CodeCoveragePlugin.forFile(file,'Producing',
reportFormat)

Description
matlab.unittest.plugins.CodeCoveragePlugin.forFile(file,'Producing',
reportFormat) creates a plugin that produces a code coverage report for one or
more .m or .mlx files.

Input Arguments
file — Name of files to analyze
character vector | cell array of character vectors | string scalar | string array

Name of files to analyze, specified as a character vector, cell array of character vectors,
string scalar, or string array. file is the absolute or relative path to one or more .m
or .mlx files.
Example: '../thisTest.m'
Example: {'Test_featureB.m','Test_featureA.m'}
Data Types: char | string

reportFormat — Report format
instance of a code coverage report format class

1 Alphabetical List

1-10842

Report format, specified as an instance of the
matlab.unittest.plugins.codecoverage.CoverageReport or the
matlab.unittest.plugins.codecoverage.CoberturaFormat class.
Example:
matlab.unittest.plugins.codecoverage.CoberturaFormat('CoverageResult
s.xml')

Examples

Generate Report in Cobertura Format

In your working folder, create a file quadraticSolver.m with the following function.

function roots = quadraticSolver(a,b,c)
 % quadraticSolver returns solutions to the
 % quadratic equation a*x^2 + b*x + c = 0.
 checkInputs
 roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
 roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

 function checkInputs
 if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.')
 end
 end
end

Create a test class for the quadratic solver in ForFileSolverTest.m.

classdef ForFileSolverTest < matlab.unittest.TestCase
 % SolverTest tests solutions to the quadratic equation
 % a*x^2 + b*x + c = 0

 methods (Test)
 function testRealSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2,1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function testImaginarySolution(testCase)

 matlab.unittest.plugins.CodeCoveragePlugin.forFile

1-10843

 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i, -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 end
end

At the command prompt, create a test suite for ForFileSolverTest.m, and create a
test runner.

import matlab.unittest.TestRunner

testFile = 'ForFileSolverTest.m';
suite = testsuite(testFile);
runner = TestRunner.withTextOutput;

Create a plugin that outputs a code coverage report for the source code in Cobertura
format.

import matlab.unittest.plugins.CodeCoveragePlugin
import matlab.unittest.plugins.codecoverage.CoberturaFormat

sourceCodeFile = 'quadraticSolver.m';
reportFile = 'CoverageResults.xml';
reportFormat = CoberturaFormat(reportFile);
plugin = CodeCoveragePlugin.forFile(sourceCodeFile,'Producing',reportFormat);

Add the plugin to the test runner and run the tests.

runner.addPlugin(plugin);
result = runner.run(suite);

Running ForFileSolverTest
..
Done ForFileSolverTest

Display the contents of the file with the code coverage results.

disp(fileread(reportFile))

<?xml version="1.0" encoding="utf-8"?>
<coverage branch-rate="NaN" branches-covered="NaN" branches-valid="NaN" complexity="NaN" line-rate="0.8" lines-covered="4" lines-valid="5" timestamp="737000.4343" version="NaN">
 <sources>
 <source>C:\work\</source>
 </sources>

1 Alphabetical List

1-10844

 <packages>
 <package branch-rate="NaN" complexity="NaN" line-rate="0.8" name="">
 <classes>
 <class branch-rate="NaN" complexity="NaN" filename="quadraticSolver.m" line-rate="0.8" name="quadraticSolver">
 <methods/>
 <lines>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="4"/>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="5"/>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="6"/>
 <line branch="NaN" condition-coverage="NaN" hits="2" number="9"/>
 <line branch="NaN" condition-coverage="NaN" hits="0" number="10"/>
 </lines>
 </class>
 </classes>
 </package>
 </packages>
</coverage>

See Also
matlab.unittest.plugins.CodeCoveragePlugin.forFolder |
matlab.unittest.plugins.CodeCoveragePlugin.forPackage |
matlab.unittest.plugins.codecoverage.CoberturaFormat |
matlab.unittest.plugins.codecoverage.CoverageReport

Introduced in R2017b

 matlab.unittest.plugins.CodeCoveragePlugin.forFile

1-10845

matlab.unittest.plugins.CodeCoveragePlugin
.forFolder
Class: matlab.unittest.plugins.CodeCoveragePlugin
Package: matlab.unittest.plugins

Construct CodeCoveragePlugin for folders

Syntax
matlab.unittest.plugins.CodeCoveragePlugin.forFolder(folder)
matlab.unittest.plugins.CodeCoveragePlugin.forFolder(folder,
Name,Value)

Description
matlab.unittest.plugins.CodeCoveragePlugin.forFolder(folder) creates a
plugin that produces a code coverage report for one or more folders. The plugin reports
on the source code inside folder.

matlab.unittest.plugins.CodeCoveragePlugin.forFolder(folder,
Name,Value) produces a code coverage report with additional options specified by one
or more Name,Value pair arguments. For example,
matlab.unittest.plugins.CodeCoveragePlugin.forFolder(pwd,'IncludingS
ubfolders',true) produces a code coverage report for source code in the current
folder and its subfolders.

Input Arguments
folder — Locations of folder containing source code
character vector | cell array of character vectors | string array

Locations of folder containing source code, specified as a character vector, a cell array of
character vectors, or a string array. folder is the absolute or relative path to one or

1 Alphabetical List

1-10846

more folders. If you specify multiple folders, MATLAB opens a profile coverage report for
each folder.

The source code folders must be on the MATLAB path and remain on the path during the
test run.
Example: 'C:\projects\myproj'
Example: pwd
Example: {'C:\projects\myprojA','myprojB'}

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
matlab.unittest.plugins.CodeCoveragePlugin.forFolder(pwd,'IncludingS
ubfolders',true) produces a code coverage report for source code in the current
folder and its subfolders.

IncludingSubfolders — Include source code in subfolders
false (default) | true

Setting to include source code in subfolders of folder, specified by false or true. By
default, CodeCoveragePlugin does not report on source code in subfolders.
Data Types: logical

Producing — Report format
matlab.unittest.plugins.codecoverage.CoverageReport instance (default) |
instance of class in matlab.unittest.plugins.codecoverage package

Report format, specified as either a
matlab.unittest.plugins.codecoverage.CoverageReport instance or an
instance of a different class in the matlab.unittest.plugins.codecoverage
package. By default, the report format is
matlab.unittest.plugins.codecoverage.CoverageReport, which displays a
MATLAB Code Coverage Report.

 matlab.unittest.plugins.CodeCoveragePlugin.forFolder

1-10847

Example:
matlab.unittest.plugins.codecoverage.CoberturaFormat('CoverageResult
s.xml')

Examples

Generate Code Coverage Report

In a new file, quadraticSolver.m, in your working folder, create the following function.

function roots = quadraticSolver(a,b,c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

checkInputs

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

 function checkInputs
 if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.')
 end
 end
end

Create a test for the quadratic solver. In a tests package (a +tests subfolder), create
SolverTest.m containing the following test class.

classdef SolverTest < matlab.unittest.TestCase
 % SolverTest tests solutions to the quadratic equation
 % a*x^2 + b*x + c = 0

 methods (Test)
 function testRealSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2,1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function testImaginarySolution(testCase)

1 Alphabetical List

1-10848

 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i, -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 end

end

At the command prompt from within your original working folder, create a test suite from
the tests package.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner
import matlab.unittest.plugins.CodeCoveragePlugin

suite = TestSuite.fromPackage('tests');

Create a test runner.

runner = TestRunner.withTextOutput;

Add CodeCoveragePlugin to the runner and run the tests. Specify that the source code
folder is your current working folder. If you have other source code files in your current
working folder, they show up in the coverage report. The folder that contains the source
code (quadraticSolver.m) must be on your MATLAB path.

runner.addPlugin(CodeCoveragePlugin.forFolder(pwd))
result = runner.run(suite);

Running tests.SolverTest
..
Done tests.SolverTest

MATLAB creates a Code Coverage Report for the quadratic solver function in a temporary
folder.

 matlab.unittest.plugins.CodeCoveragePlugin.forFolder

1-10849

The checkinputs nested function does not have complete code coverage. Since the tests
in SolverTest.m do not pass nonnumeric input to quadraticSolver, MATLAB does
not exercise the code that throws an error if the inputs are not numeric. To address the
missing coverage, add a test method to test the error condition.

See Also
matlab.unittest.plugins.CodeCoveragePlugin.forFile |
matlab.unittest.plugins.CodeCoveragePlugin.forPackage

1 Alphabetical List

1-10850

Introduced in R2014b

 matlab.unittest.plugins.CodeCoveragePlugin.forFolder

1-10851

matlab.unittest.plugins.CodeCoveragePlugin
.forPackage
Class: matlab.unittest.plugins.CodeCoveragePlugin
Package: matlab.unittest.plugins

Construct CodeCoveragePlugin for packages

Syntax
matlab.unittest.plugins.CodeCoveragePlugin.forPackage(package)
matlab.unittest.plugins.CodeCoveragePlugin.forPackage(package,
Name,Value)

Description
matlab.unittest.plugins.CodeCoveragePlugin.forPackage(package) creates
a plugin that produces a code coverage report for one or more packages. The plugin
reports on the source code inside package.

matlab.unittest.plugins.CodeCoveragePlugin.forPackage(package,
Name,Value) produces a code coverage report with additional options specified by one
or more Name,Value pair arguments. For example,
matlab.unittest.plugins.CodeCoveragePlugin.forPackage('myprojA','Inc
ludingSubpackages',true) produces a code coverage report for source code in the
myprojA package and its subpackages.

Input Arguments
package — Names of package containing source code
character vector | cell array of character vectors | string array

Names of package containing source code, specified as a character vector, a cell array of
character vectors, or a string array. If you specify multiple packages, MATLAB opens a
profile coverage report for each package.

1 Alphabetical List

1-10852

The parent folder of the top-level source code package must be on the MATLAB path and
remain on the path during the test run.
Example: 'myproject.controller'
Example: {'myprojA','myprojB'}

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
matlab.unittest.plugins.CodeCoveragePlugin.forPackage('myprojA','Inc
ludingSubpackages',true) produces a code coverage report for source code in the
myprojA package and its subpackages.

IncludingSubpackages — Include source code in subpackages
false (default) | true

Setting to include source code in subpackages of package, specified by false or true.
By default, CodeCoveragePlugin does not report on source code in subpackages.
Data Types: logical

Producing — Report format
matlab.unittest.plugins.codecoverage.CoverageReport instance (default) |
instance of class in matlab.unittest.plugins.codecoverage package

Report format, specified as either a
matlab.unittest.plugins.codecoverage.CoverageReport instance or an
instance of a different class in the matlab.unittest.plugins.codecoverage
package. By default, the report format is
matlab.unittest.plugins.codecoverage.CoverageReport, which displays a
MATLAB Code Coverage Report.
Example:
matlab.unittest.plugins.codecoverage.CoberturaFormat('CoverageResult
s.xml')

 matlab.unittest.plugins.CodeCoveragePlugin.forPackage

1-10853

See Also
matlab.unittest.plugins.CodeCoveragePlugin.forFile |
matlab.unittest.plugins.CodeCoveragePlugin.forFolder

Introduced in R2014b

1 Alphabetical List

1-10854

matlab.unittest.plugins.DiagnosticsOutputPl
ugin class
Package: matlab.unittest.plugins

Plugin to direct diagnostics to output stream

Description
The DiagnosticsOutputPlugin class creates a plugin to direct diagnostics to an
output stream. To configure the type of diagnostics and detail level that the testing
framework outputs, add this plugin to a TestRunner instance.

Construction
matlab.unittest.plugins.DiagnosticsOutputPlugin creates a plugin that
directs diagnostics for failed events and for events logged at the Verbosity.Terse level
to the ToStandardOutput stream.

matlab.unittest.plugins.DiagnosticsOutputPlugin(stream) redirects
diagnostics to the specified output stream. For example, you can redirect output to a
stream creating using ToFile.

matlab.unittest.plugins.DiagnosticsOutputPlugin(___ ,Name,Value)
creates a plugin with additional options specified by one or more Name,Value pair
arguments. For example,
DiagnosticsOutputPlugin('LoggingLevel',4,'IncludingPassingDiagnostic
s',true) creates a plugin that displays diagnostics logged at any level and also displays
passing diagnostics.

Input Arguments
stream — Output location
ToStandardOutput (default) | instance of
matlab.unittest.plugins.OutputStream

 matlab.unittest.plugins.DiagnosticsOutputPlugin class

1-10855

Output location, specified as an instance of the OutputStream class. The plugin directs
diagnostic information to the specified location. By default, the plugin uses the
matlab.unittest.plugins.ToStandardOutput stream.
Example: matlab.unittest.plugins.ToFile('myFile.txt')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
DiagnosticsOutputPlugin('IncludingPassingDiagnostics',true,'OutputDe
tail',4) creates a plugin that includes passing diagnostics and displays diagnostics at a
verbose detail level.

ExcludingFailureDiagnostics — Exclude diagnostics from failing events
false (default) | true

Whether to exclude diagnostics from failing events, specified as false or true. By
default the plugin includes diagnostics from failing events.
Data Types: logical

IncludingPassingDiagnostics — Include passing event diagnostics
false (default) | true

Whether to include passing event diagnostics, specified as false or true. By default the
plugin does not include diagnostics from passing events.
Data Types: logical

LoggingLevel — Maximum level of logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Maximum level at which logged diagnostics are included by the plugin instance, specified
as an integer value from 0 through 4, a matlab.unittest.Verbosity enumeration
object, or a string scalar or character vector corresponding to one of the predefined
enumeration member names. The plugin includes diagnostics that are logged at this level
and below. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

1 Alphabetical List

1-10856

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

By default the plugin includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

OutputDetail — Detail level for reported events
3 (default) | 0 | 1 | 2 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Detail level for reported events, specified as an integer value from 0 through 4, a
matlab.unittest.Verbosity enumeration object, or a string scalar or character
vector corresponding to one of the predefined enumeration member names. Integer
values correspond to the members of the matlab.unittest.Verbosity enumeration.

The plugin reports passing, failing, and logged events with the amount of detail specified
by OutputDetail. By default the plugin records events at the
matlab.unittest.Verbosity.Detailed level (level 3).

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information

 matlab.unittest.plugins.DiagnosticsOutputPlugin class

1-10857

Numeric Representation Enumeration Member
Name

Verbosity Description

4 Verbose Lots of supplemental
information

Properties
ExcludeFailureDiagnostics — Indicator if diagnostics for failing events are
excluded
false (default) | true

This property is read-only.

Indicator if diagnostics for failing events are excluded, specified as false or true
(logical 0 or 1). By default, ExcludeFailureDiagnostics is false and the
diagnostics from failing events are included in the output. To exclude diagnostics from
failing events from the output, specify ExcludeFailureDiagnostics as true during
plugin construction.

IncludePassingDiagnostics — Indicator if diagnostics for passing events are
included
false (default) | true

This property is read-only.

Indicator if diagnostics for passing events are included, specified as false or true
(logical 0 or 1). By default, IncludePassingDiagnostics is false and the
diagnostics from passing events are excluded from the output. To include diagnostics
from passing events in the output, specify IncludePassingDiagnostics as true
during plugin construction.

LoggingLevel — Maximum verbosity level for logged diagnostics included by the
plugin
matlab.unittest.Verbosity.Terse (default) | matlab.unittest.Verbosity
enumeration object

This property is read-only.

Maximum verbosity level for logged diagnostics included by the plugin, returned as a
matlab.unittest.Verbosity enumeration object. The plugin includes diagnostics that

1 Alphabetical List

1-10858

are logged at this level and below. By default this property value is
matlab.unittest.Verbosity.Terse. You can specify a different logging level during
plugin construction.

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

OutputDetail — Detail level for reported events
Detailed (default) | matlab.unittest.Verbosity instance

This property is read-only.

Detail level for reported events, returned as a matlab.unittest.Verbosity
enumeration object. By default this property value is
matlab.unittest.Verbosity.Detailed. You can specify a different output detail
level during plugin construction.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Plugin to Customize Diagnostics Display

Create a file ExampleDiagOutputTest.m containing the following test class.
classdef ExampleDiagOutputTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase)
 import matlab.unittest.Verbosity
 testCase.log(Verbosity.Detailed,'Testing failing event')
 testCase.verifyEqual(42,13,'42 == 13')
 end
 function testTwo(testCase)
 testCase.log(3,'Testing passing event')
 testCase.verifyTrue(true,'true is true')
 end
 end
end

Create a test suite from the ExampleDiagOutputTest class. Create a test runner with
no plugins.

 matlab.unittest.plugins.DiagnosticsOutputPlugin class

1-10859

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.Verbosity
import matlab.unittest.plugins.DiagnosticsOutputPlugin

suite = TestSuite.fromClass(?ExampleDiagOutputTest);
runner = TestRunner.withNoPlugins();

Create a default DiagnosticsOutputPlugin, add it to the runner, and run the tests.
plugin = DiagnosticsOutputPlugin;
runner.addPlugin(plugin);
result = runner.run(suite);

==
Verification failed in ExampleDiagOutputTest/testOne.

 Test Diagnostic:

 42 == 13

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ ________________

 42 13 29 2.23076923076923

 Actual Value:
 42
 Expected Value:
 13

 Stack Information:

 In C:\work\ExampleDiagOutputTest.m (ExampleDiagOutputTest.testOne) at 5
==
Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleDiagOutputTest/testOne X Failed by verification.

Create another test runner and a DiagnosticsOutputPlugin that displays diagnostics,
including passing diagnostics, at a Terse level, and displays diagnostics that are logged
at a Detailed level or lower. Add it to the runner and rerun the tests.
runner = TestRunner.withNoPlugins();
plugin = DiagnosticsOutputPlugin('OutputDetail',Verbosity.Terse, ...
 'LoggingLevel',3,'IncludingPassingDiagnostics',true);
runner.addPlugin(plugin);
result = runner.run(suite);

1 Alphabetical List

1-10860

[Detailed] Diagnostic logged (2018-04-13 13:47:34): Testing failing event

FAIL: ExampleDiagOutputTest/testOne in ExampleDiagOutputTest.testOne at 6 :: verifyEqual failed.

[Detailed] Diagnostic logged (2018-04-13 13:47:34): Testing passing event

PASS: ExampleDiagOutputTest/testTwo in ExampleDiagOutputTest.testTwo at 10 :: verifyTrue passed.

See Also
matlab.unittest.TestRunner | matlab.unittest.Verbosity |
matlab.unittest.plugins.OutputStream

Introduced in R2018b

 matlab.unittest.plugins.DiagnosticsOutputPlugin class

1-10861

matlab.unittest.plugins.DiagnosticsRecordin
gPlugin class
Package: matlab.unittest.plugins

Plugin to record diagnostics on test results

Description
The DiagnosticsRecordingPlugin enables programmatic access to the diagnostic
information from unit tests.

This class creates a plugin to record diagnostics on test results. The TestRunner records
these diagnostics as DiagnosticRecord arrays in the Details property of the
TestResult object. Each element of the DiagnosticRecord array corresponds to an
event in an individual test.

If you run tests with the runtests function or the run method of TestSuite or
TestCase, the test framework uses this plugin by default. Also, if you run performance
tests with the runperf function or the run method of TimeExperiment, the test
framework uses this plugin by default.

Construction
matlab.unittest.plugins.DiagnosticsRecordingPlugin creates a plugin to
record diagnostics on test results. By default, the DiagnosticsRecordingPlugin
records qualification failures and logged events.

matlab.unittest.plugins.DiagnosticsRecordingPlugin(Name,Value) creates
a plugin with additional options specified by one or more Name,Value pair arguments.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-10862

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
matlab.unittest.plugins.DiagnosticsRecordingPlugin('IncludingPassing
Diagnostics',true) creates a plugin that records passing diagnostics in addition to
diagnostics for failing qualifications and logged events.

IncludingPassingDiagnostics — Indicator to record diagnostics from passing
tests
false (default) | true

Whether to record diagnostics from passing tests, specified as false or true. By default
the plugin does not record diagnostics from passing tests.
Data Types: logical

LoggingLevel — Maximum level at which logged diagnostics are recorded
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration

Maximum level at which logged diagnostics are recorded by the plugin instance, specified
as an integer value from 0 through 4, or as a matlab.unittest.Verbosity
enumeration object. The plugin records diagnostics that are logged at this level and
below. Integer values correspond to the members of the matlab.unittest.Verbosity
enumeration.

By default the plugin records diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

 matlab.unittest.plugins.DiagnosticsRecordingPlugin class

1-10863

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

OutputDetail — Detail level for recorded events
3 (default) | 0 | 1 | 2 | 4 | matlab.unittest.Verbosity enumeration

Detail level for recorded events, specified as an integer value from 0 through 4, or as a
matlab.unittest.Verbosity enumeration object. Integer values correspond to the
members of the matlab.unittest.Verbosity enumeration.

The plugin records passing, failing, and logged events with the amount of detail specified
by OutputDetail. By default the plugin records events at the
matlab.unittest.Verbosity.Detailed level (level 3).

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

Properties
IncludePassingDiagnostics — Indicator if diagnostics for passing events are
recorded
false (default) | true

1 Alphabetical List

1-10864

This property is read-only.

Indicator if diagnostics for passing events are recorded, returned as false or true. This
property is false by default. You can specify it as true during construction.
Data Types: logical

LoggingLevel — Maximum verbosity level for logged diagnostics
matlab.unittest.Verbosity enumeration object

This property is read-only.

Maximum verbosity level for logged diagnostics recorded by the plugin, returned as a
matlab.unittest.Verbosity enumeration object. The plugin records diagnostics that
are logged at this level and below. By default this property value is
matlab.unittest.Verbosity.Terse. You can specify a different logging level during
plugin construction.

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

OutputDetail — Display level for event details
matlab.unittest.Verbosity enumeration object

This property is read-only.

Display level for event details, returned as a matlab.unittest.Verbosity
enumeration object. The plugin displays passing, failing, and logged events with the
amount of detail specified by OutputDetail. By default this property value is
matlab.unittest.Verbosity.Detailed. You can specify a different output detail
during plugin construction.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

 matlab.unittest.plugins.DiagnosticsRecordingPlugin class

1-10865

Record Diagnostics on Test Result

In your working folder, create a file, ExampleTest.m, containing the following test class.
The intent of this test is to illustrate how to use the DiagnosticsRecordingPlugin
plugin, and it is not intended to be a representative unit test.
classdef ExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testA(testCase)
 testCase.log(1,'Terse log message') % logs
 testCase.log(3,'Detailed log message') % logs
 testCase.verifyEqual(3+2,5) % passes
 testCase.assumeTrue(true) % passes
 testCase.verifyGreaterThan(5, 9) % fails
 testCase.assertEqual(3.14,pi) % fails/incomplete
 end
 function testB(testCase)
 % This test contains an intentional error - passing a character
 % instead of a variable to the ones function.
 a = [1 2];
 testCase.verifyEqual(ones('a'),[1 1]); % errors
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

suite = testsuite('ExampleTest');

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins. Add a DiagnosticsRecordingPlugin
to the test runner.

import matlab.unittest.TestRunner;
import matlab.unittest.plugins.DiagnosticsRecordingPlugin;

runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin);

Run the tests.

results = runner.run(suite);

Display the result from the second test. The test fails and is incomplete.

results(2)

ans =

 TestResult with properties:

1 Alphabetical List

1-10866

 Name: 'ExampleTest/testB'
 Passed: 0
 Failed: 1
 Incomplete: 1
 Duration: 7.8912e-04
 Details: [1×1 struct]

Totals:
 0 Passed, 1 Failed, 1 Incomplete.
 0.00078912 seconds testing time.

Index into the diagnostic record to display more information.

results(2).Details.DiagnosticRecord

ans =

 ExceptionDiagnosticRecord with properties:

 Event: 'ExceptionThrown'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testB'
 Exception: [1×1 MException]
 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Error occurred in ExampleTest/testB and it did not run to completion…'

The test throws an uncaught exception.

Collect the diagnostic records for the first test, testA.

testA_records = results(1).Details.DiagnosticRecord

testA_records =

 1×3 heterogeneous DiagnosticRecord (LoggedDiagnosticRecord, QualificationDiagnosticRecord) array with properties:

 Event
 EventScope
 EventLocation
 Stack
 Report

View the events that the plugin recorded for testA.

{testA_records.Event}'

 matlab.unittest.plugins.DiagnosticsRecordingPlugin class

1-10867

ans =

 3×1 cell array

 {'DiagnosticLogged' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records the message logged at a Terse level of verbosity, and the verification
and assertion failures.

Create a plugin that records messages at all verbosity levels and includes passing
diagnostics. Rerun the tests and collect the diagnostic records for testA.
runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin(...
 'IncludingPassingDiagnostics',true,'OutputDetail',4,'LoggingLevel',4));
results = runner.run(suite);
testA_records = results(1).Details.DiagnosticRecord;

View the events that the plugin recorded for testA.

{testA_records.Event}'

ans =

 6×1 cell array

 {'DiagnosticLogged' }
 {'DiagnosticLogged' }
 {'VerificationPassed'}
 {'AssumptionPassed' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records diagnostic information for all the qualifications and calls to the log
method.

Select all the records with failing event diagnostics.

failedRecords = selectFailed(testA_records)

failedRecords =

 1×2 QualificationDiagnosticRecord array with properties:

 Event

1 Alphabetical List

1-10868

 EventScope
 EventLocation
 TestDiagnosticResults
 FrameworkDiagnosticResults
 AdditionalDiagnosticResults
 Stack
 Report

Select all the records with passing event diagnostics and display the report for the first
record.

passedRecords = selectPassed(testA_records);
passedRecords(1).Report

ans =

 'Verification passed in ExampleTest/testA.

 Framework Diagnostic:

 verifyEqual passed.
 --> The values are equal using "isequaln".

 Actual Value:
 5
 Expected Value:
 5

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testA) at 6'

Select all the records for incomplete events.

incompleteRecords = selectIncomplete(testA_records)

incompleteRecords =

 QualificationDiagnosticRecord with properties:

 Event: 'AssertionFailed'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testA'
 TestDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 FrameworkDiagnosticResults: [1×1 matlab.unittest.diagnostics.DiagnosticResult]

 matlab.unittest.plugins.DiagnosticsRecordingPlugin class

1-10869

 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Assertion failed in ExampleTest/testA and it did not run to completion…'

Since this event is an assertion failure, the framework also returns this record with the
failing diagnostics as failedRecords(2).

Select all the records with logged events and display the logged messages.

loggedRecords = selectLogged(testA_records);
{loggedRecords.Report}'

ans =

 2×1 cell array

 {'[Terse] Diagnostic logged (2018-04-12 13:15:23): Terse log message' }
 {'[Detailed] Diagnostic logged (2018-04-12 13:15:23): Detailed log message'}

See Also
matlab.unittest.plugins |
matlab.unittest.plugins.DiagnosticsOutputPlugin |
matlab.unittest.plugins.LoggingPlugin |
matlab.unittest.plugins.diagnosticrecord |
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord

Topics
“Programmatically Access Test Diagnostics”

Introduced in R2016a

1 Alphabetical List

1-10870

selectFailed
Class: matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
Package: matlab.unittest.plugins.diagnosticrecord

Return diagnostic records for failed events

Syntax
selectedRecords = selectFailed(records)

Description
selectedRecords = selectFailed(records) returns the diagnostic records for
failed events as an array of
matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticReco
rd and
matlab.unittest.plugins.diagnosticrecord.ExceptionDiagnosticRecord
instances.

Failed events are events that result in a failure on the TestResult. These events include
verification failures, assertion failures, and uncaught MException objects.

Input Arguments
records — Recorded diagnostics on test result
array of matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
instances

Recorded diagnostics on a test result, specified as an array of
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord instances.
Access recorded diagnostics via the DiagnosticRecord field in the Details property
on TestResult. For example, if your test results are stored in the variable results, find
the recorded diagnostics for the second test by invoking records =
result(2).Details.DiagnosticRecord.

 selectFailed

1-10871

Examples

Select Diagnostics on Test Result

In your working folder, create a file, ExampleTest.m, containing the following test class.
The intent of this test is to illustrate how to use the DiagnosticsRecordingPlugin
plugin, and it is not intended to be a representative unit test.
classdef ExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testA(testCase)
 testCase.log(1,'Terse log message') % logs
 testCase.log(3,'Detailed log message') % logs
 testCase.verifyEqual(3+2,5) % passes
 testCase.assumeTrue(true) % passes
 testCase.verifyGreaterThan(5, 9) % fails
 testCase.assertEqual(3.14,pi) % fails/incomplete
 end
 function testB(testCase)
 % This test contains an intentional error - passing a character
 % instead of a variable to the ones function.
 a = [1 2];
 testCase.verifyEqual(ones('a'),[1 1]); % errors
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

suite = testsuite('ExampleTest');

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins. Add a DiagnosticsRecordingPlugin
to the test runner.

import matlab.unittest.TestRunner;
import matlab.unittest.plugins.DiagnosticsRecordingPlugin;

runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin);

Run the tests.

results = runner.run(suite);

Display the result from the second test. The test fails and is incomplete.

results(2)

1 Alphabetical List

1-10872

ans =

 TestResult with properties:

 Name: 'ExampleTest/testB'
 Passed: 0
 Failed: 1
 Incomplete: 1
 Duration: 7.8912e-04
 Details: [1×1 struct]

Totals:
 0 Passed, 1 Failed, 1 Incomplete.
 0.00078912 seconds testing time.

Index into the diagnostic record to display more information.

results(2).Details.DiagnosticRecord

ans =

 ExceptionDiagnosticRecord with properties:

 Event: 'ExceptionThrown'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testB'
 Exception: [1×1 MException]
 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Error occurred in ExampleTest/testB and it did not run to completion…'

The test throws an uncaught exception.

Collect the diagnostic records for the first test, testA.

testA_records = results(1).Details.DiagnosticRecord

testA_records =

 1×3 heterogeneous DiagnosticRecord (LoggedDiagnosticRecord, QualificationDiagnosticRecord) array with properties:

 Event
 EventScope
 EventLocation
 Stack
 Report

View the events that the plugin recorded for testA.

 selectFailed

1-10873

{testA_records.Event}'

ans =

 3×1 cell array

 {'DiagnosticLogged' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records the message logged at a Terse level of verbosity, and the verification
and assertion failures.

Create a plugin that records messages at all verbosity levels and includes passing
diagnostics. Rerun the tests and collect the diagnostic records for testA.
runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin(...
 'IncludingPassingDiagnostics',true,'OutputDetail',4,'LoggingLevel',4));
results = runner.run(suite);
testA_records = results(1).Details.DiagnosticRecord;

View the events that the plugin recorded for testA.

{testA_records.Event}'

ans =

 6×1 cell array

 {'DiagnosticLogged' }
 {'DiagnosticLogged' }
 {'VerificationPassed'}
 {'AssumptionPassed' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records diagnostic information for all the qualifications and calls to the log
method.

Select all the records with failing event diagnostics.

failedRecords = selectFailed(testA_records)

failedRecords =

 1×2 QualificationDiagnosticRecord array with properties:

1 Alphabetical List

1-10874

 Event
 EventScope
 EventLocation
 TestDiagnosticResults
 FrameworkDiagnosticResults
 AdditionalDiagnosticResults
 Stack
 Report

Select all the records with passing event diagnostics and display the report for the first
record.

passedRecords = selectPassed(testA_records);
passedRecords(1).Report

ans =

 'Verification passed in ExampleTest/testA.

 Framework Diagnostic:

 verifyEqual passed.
 --> The values are equal using "isequaln".

 Actual Value:
 5
 Expected Value:
 5

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testA) at 6'

Select all the records for incomplete events.

incompleteRecords = selectIncomplete(testA_records)

incompleteRecords =

 QualificationDiagnosticRecord with properties:

 Event: 'AssertionFailed'
 EventScope: TestMethod

 selectFailed

1-10875

 EventLocation: 'ExampleTest/testA'
 TestDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 FrameworkDiagnosticResults: [1×1 matlab.unittest.diagnostics.DiagnosticResult]
 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Assertion failed in ExampleTest/testA and it did not run to completion…'

Since this event is an assertion failure, the framework also returns this record with the
failing diagnostics as failedRecords(2).

Select all the records with logged events and display the logged messages.

loggedRecords = selectLogged(testA_records);
{loggedRecords.Report}'

ans =

 2×1 cell array

 {'[Terse] Diagnostic logged (2018-04-12 13:15:23): Terse log message' }
 {'[Detailed] Diagnostic logged (2018-04-12 13:15:23): Detailed log message'}

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord |
matlab.unittest.plugins.diagnosticrecord.ExceptionDiagnosticRecord |
matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticReco
rd | selectIncomplete | selectLogged | selectPassed

Topics
“Programmatically Access Test Diagnostics”

Introduced in R2016a

1 Alphabetical List

1-10876

selectIncomplete
Class: matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
Package: matlab.unittest.plugins.diagnosticrecord

Return diagnostic records for incomplete events

Syntax
selectedRecords = selectIncomplete(records)

Description
selectedRecords = selectIncomplete(records) returns the diagnostic records
for incomplete events as an array of
matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticReco
rd and
matlab.unittest.plugins.diagnosticrecord.ExceptionDiagnosticRecord
instances.

Incomplete events are events that result in a incomplete test on the TestResult. These
events include assumption failures, assertion failures, and uncaught MException objects.

Input Arguments
records — Recorded diagnostics on test result
array of matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
instances

Recorded diagnostics on a test result, specified as an array of
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord instances.
Access recorded diagnostics via the DiagnosticRecord field in the Details property
on TestResult. For example, if your test results are stored in the variable results, find
the recorded diagnostics for the second test by invoking records =
result(2).Details.DiagnosticRecord.

 selectIncomplete

1-10877

Examples

Select Diagnostics on Test Result

In your working folder, create a file, ExampleTest.m, containing the following test class.
The intent of this test is to illustrate how to use the DiagnosticsRecordingPlugin
plugin, and it is not intended to be a representative unit test.
classdef ExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testA(testCase)
 testCase.log(1,'Terse log message') % logs
 testCase.log(3,'Detailed log message') % logs
 testCase.verifyEqual(3+2,5) % passes
 testCase.assumeTrue(true) % passes
 testCase.verifyGreaterThan(5, 9) % fails
 testCase.assertEqual(3.14,pi) % fails/incomplete
 end
 function testB(testCase)
 % This test contains an intentional error - passing a character
 % instead of a variable to the ones function.
 a = [1 2];
 testCase.verifyEqual(ones('a'),[1 1]); % errors
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

suite = testsuite('ExampleTest');

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins. Add a DiagnosticsRecordingPlugin
to the test runner.

import matlab.unittest.TestRunner;
import matlab.unittest.plugins.DiagnosticsRecordingPlugin;

runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin);

Run the tests.

results = runner.run(suite);

Display the result from the second test. The test fails and is incomplete.

results(2)

1 Alphabetical List

1-10878

ans =

 TestResult with properties:

 Name: 'ExampleTest/testB'
 Passed: 0
 Failed: 1
 Incomplete: 1
 Duration: 7.8912e-04
 Details: [1×1 struct]

Totals:
 0 Passed, 1 Failed, 1 Incomplete.
 0.00078912 seconds testing time.

Index into the diagnostic record to display more information.

results(2).Details.DiagnosticRecord

ans =

 ExceptionDiagnosticRecord with properties:

 Event: 'ExceptionThrown'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testB'
 Exception: [1×1 MException]
 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Error occurred in ExampleTest/testB and it did not run to completion…'

The test throws an uncaught exception.

Collect the diagnostic records for the first test, testA.

testA_records = results(1).Details.DiagnosticRecord

testA_records =

 1×3 heterogeneous DiagnosticRecord (LoggedDiagnosticRecord, QualificationDiagnosticRecord) array with properties:

 Event
 EventScope
 EventLocation
 Stack
 Report

View the events that the plugin recorded for testA.

 selectIncomplete

1-10879

{testA_records.Event}'

ans =

 3×1 cell array

 {'DiagnosticLogged' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records the message logged at a Terse level of verbosity, and the verification
and assertion failures.

Create a plugin that records messages at all verbosity levels and includes passing
diagnostics. Rerun the tests and collect the diagnostic records for testA.
runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin(...
 'IncludingPassingDiagnostics',true,'OutputDetail',4,'LoggingLevel',4));
results = runner.run(suite);
testA_records = results(1).Details.DiagnosticRecord;

View the events that the plugin recorded for testA.

{testA_records.Event}'

ans =

 6×1 cell array

 {'DiagnosticLogged' }
 {'DiagnosticLogged' }
 {'VerificationPassed'}
 {'AssumptionPassed' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records diagnostic information for all the qualifications and calls to the log
method.

Select all the records with failing event diagnostics.

failedRecords = selectFailed(testA_records)

failedRecords =

 1×2 QualificationDiagnosticRecord array with properties:

1 Alphabetical List

1-10880

 Event
 EventScope
 EventLocation
 TestDiagnosticResults
 FrameworkDiagnosticResults
 AdditionalDiagnosticResults
 Stack
 Report

Select all the records with passing event diagnostics and display the report for the first
record.

passedRecords = selectPassed(testA_records);
passedRecords(1).Report

ans =

 'Verification passed in ExampleTest/testA.

 Framework Diagnostic:

 verifyEqual passed.
 --> The values are equal using "isequaln".

 Actual Value:
 5
 Expected Value:
 5

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testA) at 6'

Select all the records for incomplete events.

incompleteRecords = selectIncomplete(testA_records)

incompleteRecords =

 QualificationDiagnosticRecord with properties:

 Event: 'AssertionFailed'
 EventScope: TestMethod

 selectIncomplete

1-10881

 EventLocation: 'ExampleTest/testA'
 TestDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 FrameworkDiagnosticResults: [1×1 matlab.unittest.diagnostics.DiagnosticResult]
 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Assertion failed in ExampleTest/testA and it did not run to completion…'

Since this event is an assertion failure, the framework also returns this record with the
failing diagnostics as failedRecords(2).

Select all the records with logged events and display the logged messages.

loggedRecords = selectLogged(testA_records);
{loggedRecords.Report}'

ans =

 2×1 cell array

 {'[Terse] Diagnostic logged (2018-04-12 13:15:23): Terse log message' }
 {'[Detailed] Diagnostic logged (2018-04-12 13:15:23): Detailed log message'}

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord |
matlab.unittest.plugins.diagnosticrecord.ExceptionDiagnosticRecord |
matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticReco
rd | selectFailed | selectLogged | selectPassed

Topics
“Programmatically Access Test Diagnostics”

Introduced in R2016a

1 Alphabetical List

1-10882

selectLogged
Class: matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
Package: matlab.unittest.plugins.diagnosticrecord

Return diagnostic records for logged events

Syntax
selectedRecords = selectLogged(records)

Description
selectedRecords = selectLogged(records) returns the diagnostic records for
logged events as an array of
matlab.unittest.plugins.diagnosticrecord.LoggedDiagnosticRecord
instances. Logged events are calls to the log method within the test.

Input Arguments
records — Recorded diagnostics on test result
array of matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
instances

Recorded diagnostics on a test result, specified as an array of
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord instances.
Access recorded diagnostics via the DiagnosticRecord field in the Details property
on TestResult. For example, if your test results are stored in the variable results, find
the recorded diagnostics for the second test by invoking records =
result(2).Details.DiagnosticRecord.

Examples

 selectLogged

1-10883

Select Diagnostics on Test Result

In your working folder, create a file, ExampleTest.m, containing the following test class.
The intent of this test is to illustrate how to use the DiagnosticsRecordingPlugin
plugin, and it is not intended to be a representative unit test.
classdef ExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testA(testCase)
 testCase.log(1,'Terse log message') % logs
 testCase.log(3,'Detailed log message') % logs
 testCase.verifyEqual(3+2,5) % passes
 testCase.assumeTrue(true) % passes
 testCase.verifyGreaterThan(5, 9) % fails
 testCase.assertEqual(3.14,pi) % fails/incomplete
 end
 function testB(testCase)
 % This test contains an intentional error - passing a character
 % instead of a variable to the ones function.
 a = [1 2];
 testCase.verifyEqual(ones('a'),[1 1]); % errors
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

suite = testsuite('ExampleTest');

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins. Add a DiagnosticsRecordingPlugin
to the test runner.

import matlab.unittest.TestRunner;
import matlab.unittest.plugins.DiagnosticsRecordingPlugin;

runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin);

Run the tests.

results = runner.run(suite);

Display the result from the second test. The test fails and is incomplete.

results(2)

ans =

 TestResult with properties:

1 Alphabetical List

1-10884

 Name: 'ExampleTest/testB'
 Passed: 0
 Failed: 1
 Incomplete: 1
 Duration: 7.8912e-04
 Details: [1×1 struct]

Totals:
 0 Passed, 1 Failed, 1 Incomplete.
 0.00078912 seconds testing time.

Index into the diagnostic record to display more information.

results(2).Details.DiagnosticRecord

ans =

 ExceptionDiagnosticRecord with properties:

 Event: 'ExceptionThrown'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testB'
 Exception: [1×1 MException]
 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Error occurred in ExampleTest/testB and it did not run to completion…'

The test throws an uncaught exception.

Collect the diagnostic records for the first test, testA.

testA_records = results(1).Details.DiagnosticRecord

testA_records =

 1×3 heterogeneous DiagnosticRecord (LoggedDiagnosticRecord, QualificationDiagnosticRecord) array with properties:

 Event
 EventScope
 EventLocation
 Stack
 Report

View the events that the plugin recorded for testA.

{testA_records.Event}'

 selectLogged

1-10885

ans =

 3×1 cell array

 {'DiagnosticLogged' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records the message logged at a Terse level of verbosity, and the verification
and assertion failures.

Create a plugin that records messages at all verbosity levels and includes passing
diagnostics. Rerun the tests and collect the diagnostic records for testA.
runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin(...
 'IncludingPassingDiagnostics',true,'OutputDetail',4,'LoggingLevel',4));
results = runner.run(suite);
testA_records = results(1).Details.DiagnosticRecord;

View the events that the plugin recorded for testA.

{testA_records.Event}'

ans =

 6×1 cell array

 {'DiagnosticLogged' }
 {'DiagnosticLogged' }
 {'VerificationPassed'}
 {'AssumptionPassed' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records diagnostic information for all the qualifications and calls to the log
method.

Select all the records with failing event diagnostics.

failedRecords = selectFailed(testA_records)

failedRecords =

 1×2 QualificationDiagnosticRecord array with properties:

 Event

1 Alphabetical List

1-10886

 EventScope
 EventLocation
 TestDiagnosticResults
 FrameworkDiagnosticResults
 AdditionalDiagnosticResults
 Stack
 Report

Select all the records with passing event diagnostics and display the report for the first
record.

passedRecords = selectPassed(testA_records);
passedRecords(1).Report

ans =

 'Verification passed in ExampleTest/testA.

 Framework Diagnostic:

 verifyEqual passed.
 --> The values are equal using "isequaln".

 Actual Value:
 5
 Expected Value:
 5

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testA) at 6'

Select all the records for incomplete events.

incompleteRecords = selectIncomplete(testA_records)

incompleteRecords =

 QualificationDiagnosticRecord with properties:

 Event: 'AssertionFailed'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testA'
 TestDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 FrameworkDiagnosticResults: [1×1 matlab.unittest.diagnostics.DiagnosticResult]

 selectLogged

1-10887

 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Assertion failed in ExampleTest/testA and it did not run to completion…'

Since this event is an assertion failure, the framework also returns this record with the
failing diagnostics as failedRecords(2).

Select all the records with logged events and display the logged messages.

loggedRecords = selectLogged(testA_records);
{loggedRecords.Report}'

ans =

 2×1 cell array

 {'[Terse] Diagnostic logged (2018-04-12 13:15:23): Terse log message' }
 {'[Detailed] Diagnostic logged (2018-04-12 13:15:23): Detailed log message'}

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord |
matlab.unittest.plugins.diagnosticrecord.LoggedDiagnosticRecord |
selectFailed | selectIncomplete | selectPassed

Topics
“Programmatically Access Test Diagnostics”

Introduced in R2016a

1 Alphabetical List

1-10888

selectPassed
Class: matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
Package: matlab.unittest.plugins.diagnosticrecord

Return diagnostic records for passed events

Syntax
selectedRecords = selectPassed(records)

Description
selectedRecords = selectPassed(records) returns the diagnostic records for
passed events as an array of
matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticReco
rd instances.

Input Arguments
records — Recorded diagnostics on test result
array of matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord
instances

Recorded diagnostics on a test result, specified as an array of
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord instances.
Access recorded diagnostics via the DiagnosticRecord field in the Details property
on TestResult. For example, if your test results are stored in the variable results, find
the recorded diagnostics for the second test by invoking records =
result(2).Details.DiagnosticRecord.

Examples

 selectPassed

1-10889

Select Diagnostics on Test Result

In your working folder, create a file, ExampleTest.m, containing the following test class.
The intent of this test is to illustrate how to use the DiagnosticsRecordingPlugin
plugin, and it is not intended to be a representative unit test.
classdef ExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testA(testCase)
 testCase.log(1,'Terse log message') % logs
 testCase.log(3,'Detailed log message') % logs
 testCase.verifyEqual(3+2,5) % passes
 testCase.assumeTrue(true) % passes
 testCase.verifyGreaterThan(5, 9) % fails
 testCase.assertEqual(3.14,pi) % fails/incomplete
 end
 function testB(testCase)
 % This test contains an intentional error - passing a character
 % instead of a variable to the ones function.
 a = [1 2];
 testCase.verifyEqual(ones('a'),[1 1]); % errors
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

suite = testsuite('ExampleTest');

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins. Add a DiagnosticsRecordingPlugin
to the test runner.

import matlab.unittest.TestRunner;
import matlab.unittest.plugins.DiagnosticsRecordingPlugin;

runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin);

Run the tests.

results = runner.run(suite);

Display the result from the second test. The test fails and is incomplete.

results(2)

ans =

 TestResult with properties:

1 Alphabetical List

1-10890

 Name: 'ExampleTest/testB'
 Passed: 0
 Failed: 1
 Incomplete: 1
 Duration: 7.8912e-04
 Details: [1×1 struct]

Totals:
 0 Passed, 1 Failed, 1 Incomplete.
 0.00078912 seconds testing time.

Index into the diagnostic record to display more information.

results(2).Details.DiagnosticRecord

ans =

 ExceptionDiagnosticRecord with properties:

 Event: 'ExceptionThrown'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testB'
 Exception: [1×1 MException]
 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Error occurred in ExampleTest/testB and it did not run to completion…'

The test throws an uncaught exception.

Collect the diagnostic records for the first test, testA.

testA_records = results(1).Details.DiagnosticRecord

testA_records =

 1×3 heterogeneous DiagnosticRecord (LoggedDiagnosticRecord, QualificationDiagnosticRecord) array with properties:

 Event
 EventScope
 EventLocation
 Stack
 Report

View the events that the plugin recorded for testA.

{testA_records.Event}'

 selectPassed

1-10891

ans =

 3×1 cell array

 {'DiagnosticLogged' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records the message logged at a Terse level of verbosity, and the verification
and assertion failures.

Create a plugin that records messages at all verbosity levels and includes passing
diagnostics. Rerun the tests and collect the diagnostic records for testA.
runner = TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin(...
 'IncludingPassingDiagnostics',true,'OutputDetail',4,'LoggingLevel',4));
results = runner.run(suite);
testA_records = results(1).Details.DiagnosticRecord;

View the events that the plugin recorded for testA.

{testA_records.Event}'

ans =

 6×1 cell array

 {'DiagnosticLogged' }
 {'DiagnosticLogged' }
 {'VerificationPassed'}
 {'AssumptionPassed' }
 {'VerificationFailed'}
 {'AssertionFailed' }

The plugin records diagnostic information for all the qualifications and calls to the log
method.

Select all the records with failing event diagnostics.

failedRecords = selectFailed(testA_records)

failedRecords =

 1×2 QualificationDiagnosticRecord array with properties:

 Event

1 Alphabetical List

1-10892

 EventScope
 EventLocation
 TestDiagnosticResults
 FrameworkDiagnosticResults
 AdditionalDiagnosticResults
 Stack
 Report

Select all the records with passing event diagnostics and display the report for the first
record.

passedRecords = selectPassed(testA_records);
passedRecords(1).Report

ans =

 'Verification passed in ExampleTest/testA.

 Framework Diagnostic:

 verifyEqual passed.
 --> The values are equal using "isequaln".

 Actual Value:
 5
 Expected Value:
 5

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testA) at 6'

Select all the records for incomplete events.

incompleteRecords = selectIncomplete(testA_records)

incompleteRecords =

 QualificationDiagnosticRecord with properties:

 Event: 'AssertionFailed'
 EventScope: TestMethod
 EventLocation: 'ExampleTest/testA'
 TestDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 FrameworkDiagnosticResults: [1×1 matlab.unittest.diagnostics.DiagnosticResult]

 selectPassed

1-10893

 AdditionalDiagnosticResults: [1×0 matlab.unittest.diagnostics.DiagnosticResult]
 Stack: [1×1 struct]
 Report: 'Assertion failed in ExampleTest/testA and it did not run to completion…'

Since this event is an assertion failure, the framework also returns this record with the
failing diagnostics as failedRecords(2).

Select all the records with logged events and display the logged messages.

loggedRecords = selectLogged(testA_records);
{loggedRecords.Report}'

ans =

 2×1 cell array

 {'[Terse] Diagnostic logged (2018-04-12 13:15:23): Terse log message' }
 {'[Detailed] Diagnostic logged (2018-04-12 13:15:23): Detailed log message'}

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord |
matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticReco
rd | selectFailed | selectIncomplete | selectLogged

Topics
“Programmatically Access Test Diagnostics”

Introduced in R2016a

1 Alphabetical List

1-10894

matlab.unittest.plugins.DiagnosticsValidatio
nPlugin class
Package: matlab.unittest.plugins

Plugin to help validate diagnostic code

Description
The DiagnosticsValidationPlugin creates a plugin to help validate diagnostic code.

Add the DiagnosticsValidationPlugin to the TestRunner to confirm that user-
supplied diagnostics execute correctly. This plugin is useful because typically tests do not
encounter failure conditions. A failure can result in unexercised diagnostic code. If a
programming error exists in this diagnostic code, the error is not evident unless the test
fails. However, at this point in the testing process, the diagnostics for the failure condition
are lost due to the error in the diagnostic code.

Use this plugin to unconditionally evaluate the diagnostics supplied by the test writer,
regardless of whether the test results in a passing or failing condition. This approach
helps you to confirm that all of the diagnostic code is free from programming errors.

The diagnostic analysis can reduce the test performance and can result in very verbose
text output. Be aware of these impacts before using this plugin for routine testing.

Construction
matlab.unittest.plugins.DiagnosticsValidationPlugin creates a plugin to
help validate diagnostic code.

matlab.unittest.plugins.DiagnosticsValidationPlugin(stream) redirects all
the text output to the output stream, stream. If you do not specify the output stream, the
plugin uses the default ToStandardOutput stream.

 matlab.unittest.plugins.DiagnosticsValidationPlugin class

1-10895

Input Arguments
stream

Location where the plugin directs text output, specified as an OutputStream.

Default: ToStandardOutput

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Add Plugin to TestRunner

In your working folder, create a file, ExampleTest.m, containing the following test class.
In this example, the testThree method has an intentional error. The method should use
a function handle to the dir function as a FunctionHandleDiagnostic, but dir is
misspelled.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase)
 % test code
 end
 function testTwo(testCase)
 % test code
 end
 function testThree(testCase)
 % The following should use @dir as a function handle,
 % but there is a typo
 testCase.verifyEqual('myfile','myfile', @dri)
 end
 end
end

All of the tests in ExampleTest.m result in a passing condition, but there is an error in
the diagnostic.

1 Alphabetical List

1-10896

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.DiagnosticsValidationPlugin

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner configured with text output.

runner = TestRunner.withTextOutput;

Run the tests.

result1 = runner.run(suite);

Running ExampleTest
...
Done ExampleTest

No diagnostic output is displayed because all the tests passed. The testing framework
does not encounter the bug in the FunctionHandleDiagnostic of testThree.

Add DiagnosticValidationPlugin to the runner and run the tests.

runner.addPlugin(DiagnosticsValidationPlugin)
result2 = runner.run(suite);

Running ExampleTest
..

Validation of Test Diagnostic:

Error occurred while capturing diagnostics:
Error using evalc
Undefined function or variable 'dri'.

Error in ExampleTest/testThree (line 12)
 testCase.verifyEqual('myfile','myfile', @dri);

.
Done ExampleTest

 matlab.unittest.plugins.DiagnosticsValidationPlugin class

1-10897

The framework executes the diagnostic provided by the FunctionHandleDiagnostic,
even though none of the tests fails. Without this plugin, the test framework only
encounters the bug if the test fails.

See Also
OutputStream | ToStandardOutput | matlab.unittest.diagnostics |
matlab.unittest.plugins

1 Alphabetical List

1-10898

matlab.unittest.plugins.FailureDiagnosticsPl
ugin class
Package: matlab.unittest.plugins

(Not recommended) Plugin to show diagnostics on failure

Note matlab.unittest.plugins.FailureDiagnosticsPlugin class is not
recommended. Use matlab.unittest.plugins.DiagnosticsOutputPlugin class
instead.

Description
The FailureDiagnosticsPlugin creates a plugin to show diagnostics upon
encountering a test failure. Add it to the TestRunner to output test failure diagnostics to
the Command Window. This plugin is used by default when you construct a test runner
using TestRunner.withTextOutput.

Construction
matlab.unittest.plugins.FailureDiagnosticsPlugin creates a plugin to show
diagnostics upon encountering a test failure.

matlab.unittest.plugins.FailureDiagnosticsPlugin(stream) redirects all the
text output to the output stream, stream. If you do not specify the output stream, the
plugin uses the ToStandardOutput stream.

Input Arguments
stream

Location where the plugin directs text output, specified as an OutputStream.

Default: ToStandardOutput

 matlab.unittest.plugins.FailureDiagnosticsPlugin class

1-10899

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Add Plugin to TestRunner

In your working folder, create a file, ExampleTest.m, containing the following test class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testPathAdd(testCase)
 % test code
 end
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5, 4, 'Testing 5==4')
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5, 5, 'Testing 5==5')
 end
 end
end

The verifyEqual qualification in testOne causes a test failure. The qualifications in
testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.FailureDiagnosticsPlugin

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins.

runner = TestRunner.withNoPlugins;

1 Alphabetical List

1-10900

Run the tests.

result1 = runner.run(suite);

No output is displayed, but result1 contains information about the failed test.

Add FailureDiagnosticsPlugin to the runner and run the tests.

runner.addPlugin(FailureDiagnosticsPlugin)
result2 = runner.run(suite);

==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual double:
 5
 Expected double:
 4

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 7
==
Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.

The framework displays the DiagnosticResult of the StringDiagnostic for failed
tests only. It also displays additional framework diagnostics. The TestResult object,
result2, is the same as result1.

See Also
matlab.unittest.plugins.DiagnosticsOutputPlugin

 matlab.unittest.plugins.FailureDiagnosticsPlugin class

1-10901

Introduced in R2013a

1 Alphabetical List

1-10902

matlab.unittest.plugins.FailOnWarningsPlugi
n class
Package: matlab.unittest.plugins

Plugin to fail tests that issue warnings

Description
The FailOnWarningsPlugin creates a plugin that, when added to the TestRunner,
fails any test that issues a warning. The plugin produces a qualification failure in the test
scope that issues the warning. For example, if a shared test fixture issues a warning, the
plugin produces a qualification failure on the fixture and fails all tests that share the
fixture.

The FailOnWarningsPlugin plugin does not produce a failure if:

• A test accounts for the warning through a constraint such as IssuesWarnings or
IssuesNoWarnings, regardless of whether the constraint is satisfied or not.

• A warning is disabled. For example, if you disable a warning using the
SupressedWarningsFixture.

Construction
matlab.unittest.plugins.FailOnWarningsPlugin creates a plugin that fails any
test that issues a warning.

matlab.unittest.plugins.FailOnWarningsPlugin('Ignoring',warnIDs)
creates a plugin that does not fail for the specified warning identifiers, warnIDs.

Input Arguments
warnIDs — Identifiers for warnings to ignore
cell array of character vectors

 matlab.unittest.plugins.FailOnWarningsPlugin class

1-10903

Identifiers for warnings to ignore, specified as a cell array of character vectors. The
plugin does not fail a test for the warnings with identifiers included in warnIDs.
Example: FailOnWarningsPlugin('Ignoring',{'MATLAB:singularMatrix'})

Properties
Ignore — Values to ignore
empty cell array (default) | cell array of character vectors

The Ignore property is empty by default. To specify the property as a cell array of
character vectors, use the 'Ignoring' syntax when you construct the plugin instance.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Fail Tests If They Issue Warnings

Create the solve function to solve a set of linear equations. There is an intentional error
in the solve function — the assert call that checks whether the matrix is singular
should use rcond instead of det.

function x = solve(A,b)

assert(abs(det(A)) > 1e-12,... % intentional bug for illustrative purposes
 'The matrix is singular or nearly singular');

x = A\b;

Create the following test class. In testTwo, the A matrix is singular, but since there is a
bug in the solve function, the assert call does not catch it.

classdef TestSolve < matlab.unittest.TestCase

 methods(Test)

1 Alphabetical List

1-10904

 function testOne(testCase)
 A = eye(3);
 b = [3; 4; 1];
 testCase.verifyEqual(solve(A b),b);
 end

 function testTwo(testCase)
 A = [1e-100 0; 0 1e100];
 b = [5; 5];
 expX = [5e100 5e-100];
 testCase.verifyEqual(solve(A,b),expX);
 end
 end
end

At the command prompt, create a test suite, and test runner.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.FailOnWarningsPlugin;

suite = TestSuite.fromClass(?TestSolve);
runner = TestRunner.withTextOutput;

Add the FailOnWarningsPlugin plugin, and run the tests. testTwo fails because the
solve function issues a warning. Without FailOnWarningsPlugin, the solve function
issues the warning, but both tests pass.

runner.addPlugin(FailOnWarningsPlugin);
result = runner.run(suite);

Running TestSolve
.Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.000000e-200.
.
==
Verification failed in TestSolve/testTwo.

 Framework Diagnostic:

 TestSolve/testTwo issued warnings:

 MATLAB:nearlySingularMatrix

 matlab.unittest.plugins.FailOnWarningsPlugin class

1-10905

 Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.000000e-200.
 In C:\work\solve.m (solve) at 6
 In C:\work\TestSolve.m (TestSolve.testTwo) at 14

 Stack Information:

 In C:\Program Files\MATLAB\R2015b\toolbox\matlab\testframework\+matlab\+unittest\+plugins\FailOnWarningsPlugin.m (FailOnWarningsPlugin.teardownTestMethod) at 164
==

Done TestSolve

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 TestSolve/testTwo X Failed by verification.

Tips
• Set the warning stack trace display using the warning function. For example,

warning('off','backtrace').
• Disable warnings using the SuppressedWarningsFixture class.

See Also
matlab.unittest.TestRunner |
matlab.unittest.constraints.IssuesNoWarnings |
matlab.unittest.constraints.IssuesWarnings |
matlab.unittest.fixtures.SuppressedWarningsFixture |
matlab.unittest.plugins.TestRunnerPlugin | warning

Introduced in R2015b

1 Alphabetical List

1-10906

matlab.unittest.plugins.LoggingPlugin class
Package: matlab.unittest.plugins

Plugin to report diagnostic messages

Description
The LoggingPlugin creates a plugin to report diagnostic messages that are created by
the log method of a TestCase or Fixture.

Construction
Instantiate a LoggingPlugin using one of its static methods.

Use the withVerbosity static method to configure a plugin to respond to messages of a
particular verbosity. Also, the withVerbosity method accepts a number of name/value
pairs to configure the format for reporting logged messages.

Properties
Description — Logged diagnostic message description
'Diagnostic logged' (default) | character vector | string scalar

Logged diagnostic message description, specified as a character vector or string scalar.
The value of this property is printed alongside each logged diagnostic message.
Description is read only, and its value is set during construction.

HideLevel — Indicator to display verbosity level
false (default) | true

Indicator to display the verbosity level alongside each logged diagnostic, specified as
false (logical(0)) or true (logical(1)). By default, this property is false and the
test framework displays the verbosity level. HideLevel is read only, and its value is set
during construction.

 matlab.unittest.plugins.LoggingPlugin class

1-10907

HideTimestamp — Indicator to display timestamp
false (default) | true

Indicator to display the timestamp from when the test framework generates the logged
message alongside each logged diagnostic, specified as false (logical(0)) or true
(logical(1)). By default, this property is false and the test framework displays the
timestamp. HideTimestamp is read only, and its value is set during construction.

NumStackFrames — Number of stack frames to display
0 (default) | integer value | Inf

Number of stack frames to display after each logged diagnostic message, specified as an
integer value. By default, this property is 0, and the test framework does not display stack
information. If NumStackFrames is Inf, the test framework displays all available stack
frames. NumStackFrames is read only, and its value is set during construction.

Verbosity — Verbosity levels supported by plugin instance
array of matlab.unittest.Verbosity instances

Verbosity levels supported by plugin instance, specified as an array of
matlab.unittest.Verbosity instances. The plugin reacts to diagnostics that are
logged at a verbosity level listed in this array. Verbosity is read only, and its value is set
during construction.

Methods

withVerbosity Construct LoggingPlugin for messages of specified verbosity

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.TestCase.log | matlab.unittest.Verbosity |
matlab.unittest.fixtures.Fixture.log

1 Alphabetical List

1-10908

Introduced in R2014b

 matlab.unittest.plugins.LoggingPlugin class

1-10909

matlab.unittest.plugins.LoggingPlugin.withV
erbosity
Class: matlab.unittest.plugins.LoggingPlugin
Package: matlab.unittest.plugins

Construct LoggingPlugin for messages of specified verbosity

Syntax
matlab.unittest.plugins.LoggingPlugin.withVerbosity(v)
matlab.unittest.plugins.LoggingPlugin.withVerbosity(v,stream)
matlab.unittest.plugins.LoggingPlugin.withVerbosity(v,Name,Value)

Description
matlab.unittest.plugins.LoggingPlugin.withVerbosity(v) constructs a
LoggingPlugin for messages of the specified verbosity.

matlab.unittest.plugins.LoggingPlugin.withVerbosity(v,stream) redirects
the text output to the output stream.

matlab.unittest.plugins.LoggingPlugin.withVerbosity(v,Name,Value)
includes additional options specified by one or more Name,Value pair arguments.

Input Arguments
v — Verbosity levels supported by plugin instance
0 | 1 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration name as
string or char vector

Verbosity levels supported by the plugin instance, specified as an integer value between 0
and 4, a matlab.unittest.Verbosity enumeration object, or a string scalar or
character vector corresponding to one of the predefined enumeration member names.

1 Alphabetical List

1-10910

The plugin reacts to diagnostics that are logged at this level and lower. Integer values
correspond to the members of the matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

stream — Location where plugin directs text output
ToStandardOutput instance (default) | OutputStream instance

Location where the plugin directs text output, specified as an OutputStream instance.
By default, the plugin uses the OutputStream subclass ToStandardOutput as the
stream.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Description — Logged diagnostic message description
'Diagnostic logged' (default) | character vector | string scalar

Logged diagnostic message description, specified as a character vector or string scalar.
This value is printed alongside each logged diagnostic message. If the value empty, the
test framework does not display a description.

ExcludingLowerLevels — Indicator to display messages logged at levels lower
than the verbosity level
false (default) | true

Indicator to display messages logged at levels lower than the verbosity level, v, specified
as false or true (logical(0) or logical(1)). By default, the value is false and the

 matlab.unittest.plugins.LoggingPlugin.withVerbosity

1-10911

plugin reacts to all messages logged at level v or lower. If the value is true, the plugin
reacts only to messages logged at level v.

HideLevel — Indicator to display verbosity level
false (default) | true

Indicator to display the verbosity level alongside each logged diagnostic, specified as
false or true (logical(0) or logical(1)). By default, the value is false and the
test framework displays the verbosity level.

HideTimestamp — Indicator to display timestamp
false (default) | true

Indicator to display the timestamp from when the test framework generates the logged
message alongside each logged diagnostic, specified as false or true (logical(0) or
logical(1)). By default, the value is false and the test framework displays the
timestamp.

NumStackFrames — Number of stack frames to display
0 (default) | integer value | Inf

Number of stack frames to display after each logged diagnostic message, specified as an
integer value. By default, the value is 0, and the test framework does not display stack
information. If NumStackFrames is Inf, the test framework displays all available stack
frames.

Examples

Create Logging Plugin

Create a function-based test in a file, sampleLogTest.m, in your working folder.

function tests = sampleLogTest
tests = functiontests(localfunctions);

function svdTest(testCase)
import matlab.unittest.Verbosity

log(testCase,'Generating matrix.');
m = rand(1000);

1 Alphabetical List

1-10912

log(testCase,1,'About to call SVD.');
[U,S,V] = svd(m);

log(testCase,Verbosity.Terse,'SVD finished.');

verifyEqual(testCase,U*S*V',m,'AbsTol',1e-6)

At the command prompt, run the test.

results = run(sampleLogTest);

Running sampleLogTest
 [Terse] Diagnostic logged (2014-04-14T14:20:59): About to call SVD.
 [Terse] Diagnostic logged (2014-04-14T14:20:59): SVD finished.
.
Done sampleLogTest

The default runner reports the diagnostics at level 1 (Terse).

Create a test runner to report the diagnostics at levels 1 and 2, and rerun the test.

import matlab.unittest.TestRunner
import matlab.unittest.plugins.LoggingPlugin

runner = TestRunner.withNoPlugins;
p = LoggingPlugin.withVerbosity(2);
runner.addPlugin(p);

results = runner.run(sampleLogTest);

 [Concise] Diagnostic logged (2014-04-14T14:28:14): Generating matrix.
 [Terse] Diagnostic logged (2014-04-14T14:28:14): About to call SVD.
 [Terse] Diagnostic logged (2014-04-14T14:28:15): SVD finished.

Configure Logged Message Output

Create the following class In a file in your current working folder, ExampleLogTest.m.
classdef ExampleLogTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 log(testCase,3,'Starting Test')
 log(testCase,'Testing 5==4')

 matlab.unittest.plugins.LoggingPlugin.withVerbosity

1-10913

 testCase.verifyEqual(5,4)
 log(testCase,4,'Test Complete')
 end
 function testTwo(testCase) % Test passes
 log(testCase,matlab.unittest.Verbosity.Detailed,'Starting Test')
 log(testCase,'Testing 5==5')
 testCase.verifyEqual(5,5)
 log(testCase,matlab.unittest.Verbosity.Verbose,'Test Complete')
 end
 end
end

The log messages in testTwo uses Verbosity enumerations instead of the
corresponding integers.

At the command prompt, create the test suite and a runner at verbosity level 4, and then
run the test.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner
import matlab.unittest.plugins.LoggingPlugin
suite = TestSuite.fromClass(?ExampleLogTest);

runner = TestRunner.withNoPlugins;
p = LoggingPlugin.withVerbosity(4);
runner.addPlugin(p);

results = runner.run(suite);

[Detailed] Diagnostic logged (2014-04-14T15:24:03): Starting Test
 [Concise] Diagnostic logged (2014-04-14T15:24:03): Testing 5==4
 [Verbose] Diagnostic logged (2014-04-14T15:24:03): Test Complete
[Detailed] Diagnostic logged (2014-04-14T15:24:03): Starting Test
 [Concise] Diagnostic logged (2014-04-14T15:24:03): Testing 5==5
 [Verbose] Diagnostic logged (2014-04-14T15:24:03): Test Complete

Create a new plugin to direct the output to a file, myOutput.log, and rerun the tests.

import matlab.unittest.plugins.ToFile
outFile = 'myOutput.log';

runner = TestRunner.withNoPlugins;
p = LoggingPlugin.withVerbosity(4,ToFile(outFile));
runner.addPlugin(p);

results = runner.run(suite);

Observe the contents in the file created by the plugin.

1 Alphabetical List

1-10914

disp(fileread(outFile))

[Detailed] Diagnostic logged (2014-04-14T15:27:44): Starting Test
 [Concise] Diagnostic logged (2014-04-14T15:27:44): Testing 5==4
 [Verbose] Diagnostic logged (2014-04-14T15:27:44): Test Complete
[Detailed] Diagnostic logged (2014-04-14T15:27:44): Starting Test
 [Concise] Diagnostic logged (2014-04-14T15:27:44): Testing 5==5
 [Verbose] Diagnostic logged (2014-04-14T15:27:44): Test Complete

Create a new plugin that does not display level 4 messages. Do not display the verbosity
level or timestamp. Rerun the tests.

runner = TestRunner.withNoPlugins;
p = LoggingPlugin.withVerbosity(matlab.unittest.Verbosity.Detailed,...
 'HideLevel',true,'HideTimestamp',true);
runner.addPlugin(p);

results = runner.run(suite);

Diagnostic logged: Starting Test
Diagnostic logged: Testing 5==4
Diagnostic logged: Starting Test
Diagnostic logged: Testing 5==5

See Also
matlab.unittest.TestCase.log | matlab.unittest.Verbosity |
matlab.unittest.fixtures.Fixture.log |
matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins.ToStandardOutput

Introduced in R2014b

 matlab.unittest.plugins.LoggingPlugin.withVerbosity

1-10915

matlab.unittest.plugins.OutputStream class
Package: matlab.unittest.plugins

Interface that determines where to send text output

Description
The OutputStream interface is an abstract interface class that you can use as a base
class to specify where plugins direct their text output. To create a custom output stream,
implement a print method that correctly handles the formatted text information the
testing framework passes to it. Many text-oriented plugins accept an OutputStream to
redirect the text they produce in a configurable manner.

Methods
print Print text to output stream

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Custom Output Stream

In a file in your working directory, create a new output stream class in the file
ToFigure.m. This class allows plugin output to be redirected to a figure.

classdef ToFigure < matlab.unittest.plugins.OutputStream

 properties(SetAccess=private)
 Figure

1 Alphabetical List

1-10916

 end
 properties(Access=private)
 ListBox
 end

This class uses two properties. Figure is the figure that receives and displays the output.
ListBox is a handle to the list box that displays the text.

In the same file, add the following methods block.

 methods
 function print(stream,formatSpec,varargin)
 % Create the figure
 if isempty(stream.Figure) || ~ishghandle(stream.Figure)
 stream.createFigure
 end
 newStr = sprintf(formatSpec,varargin{:});
 oldStr = strjoin(stream.ListBox.String', '\n');

 % Create the full message
 fullStr = [oldStr,newStr];
 fullStrCell = strsplit(fullStr,'\n','CollapseDelimiters',false);

 % Set the string and selection
 stream.ListBox.String = fullStrCell';
 stream.ListBox.Value = numel(fullStrCell);
 drawnow
 end
 end

You must implement the print method for any subclass of OutputStream. In this
example, the method creates a new figure (if necessary), formats the incoming text, and
then adds it to the output stream.

In the same file, add the following methods block containing a helper function to create
the figure.

 methods(Access=private)
 function createFigure(stream)
 stream.Figure = figure(...
 'Name', 'Unit Test Output', ...
 'WindowStyle', 'docked');

 stream.ListBox = uicontrol(...

 matlab.unittest.plugins.OutputStream class

1-10917

 'Parent', stream.Figure, ...
 'Style', 'listbox', ...
 'String', {}, ...
 'Units', 'normalized', ...
 'Position', [.05 .05 .9 .9], ...
 'Max', 2, ...
 'FontName', 'Monospaced', ...
 'FontSize', 13);
 end
 end
end

In an new file in your working folder, create ExampleTest.m containing the following
test class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5, 4, 'Testing 5==4');
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5, 5, 'Testing 5==5');
 end
 function testThree(testCase)
 % test code
 end
 end
end

The verifyEqual qualification in testOne causes a test failure. The qualifications in
testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner
import matlab.unittest.plugins.DiagnosticsValidationPlugin

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window.

runner = TestRunner.withTextOutput;

1 Alphabetical List

1-10918

Create a DiagnosticsValidationPlugin that explicitly specifies that its output should
go to a figure via the ToFigure output stream.

plugin = DiagnosticsValidationPlugin(ToFigure);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin)
result = runner.run(suite);

Running ExampleTest

==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual double:
 5
 Expected double:
 4

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==
...
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.

Only the test failures produce output to the screen. By default,
TestRunner.withTextOutput uses a DiagnosticsOutputPlugin to display output
on the screen.

 matlab.unittest.plugins.OutputStream class

1-10919

In addition to the default text output being displayed on the screen, the
DiagnosticsValidationPlugin output is directed to a docked figure. The figure
shows the following text.

Validation of Test Diagnostic:

Testing 5==4

Validation of Test Diagnostic:

Testing 5==5

The DiagnosticsValidationPlugin displays the diagnostic information regardless of
whether the tests encounter failure conditions.

See Also
fprintf | matlab.unittest.plugins |
matlab.unittest.plugins.OutputStream

Introduced in R2014a

1 Alphabetical List

1-10920

print
Class: matlab.unittest.plugins.OutputStream
Package: matlab.unittest.plugins

Print text to output stream

Syntax
print(stream,formatSpec,A1,...,An)

Description
print(stream,formatSpec,A1,...,An) formats the data in arrays A1,...,An
according to formatSpec, and sends the result to the output stream, stream. Assign
formatSpec and A1,...,An using the same interface that you use for sprintf and
fprintf.

Input Arguments
stream

Output stream, specified as an instance of the OutputStream class

formatSpec

Format of text in output stream, specified as a character vector. For information on the
construction of formatSpec, see the input argument entry on the fprintf or sprint
reference pages.

A

Numeric or character arrays, specified as a scalar, vector, matrix, or multidimensional
array.

 print

1-10921

Examples

Create Custom Output Stream

In a file in your working directory, create a new output stream class in the file
ToFigure.m. This class allows plugin output to be redirected to a figure.

classdef ToFigure < matlab.unittest.plugins.OutputStream

 properties(SetAccess=private)
 Figure
 end
 properties(Access=private)
 ListBox
 end

This class uses two properties. Figure is the figure that receives and displays the output.
ListBox is a handle to the list box that displays the text.

In the same file, add the following methods block.

 methods
 function print(stream,formatSpec,varargin)
 % Create the figure
 if isempty(stream.Figure) || ~ishghandle(stream.Figure)
 stream.createFigure
 end
 newStr = sprintf(formatSpec,varargin{:});
 oldStr = strjoin(stream.ListBox.String', '\n');

 % Create the full message
 fullStr = [oldStr,newStr];
 fullStrCell = strsplit(fullStr,'\n','CollapseDelimiters',false);

 % Set the string and selection
 stream.ListBox.String = fullStrCell';
 stream.ListBox.Value = numel(fullStrCell);
 drawnow
 end
 end

1 Alphabetical List

1-10922

You must implement the print method for any subclass of OutputStream. In this
example, the method creates a new figure (if necessary), formats the incoming text, and
then adds it to the output stream.

In the same file, add the following methods block containing a helper function to create
the figure.

 methods(Access=private)
 function createFigure(stream)
 stream.Figure = figure(...
 'Name', 'Unit Test Output', ...
 'WindowStyle', 'docked');

 stream.ListBox = uicontrol(...
 'Parent', stream.Figure, ...
 'Style', 'listbox', ...
 'String', {}, ...
 'Units', 'normalized', ...
 'Position', [.05 .05 .9 .9], ...
 'Max', 2, ...
 'FontName', 'Monospaced', ...
 'FontSize', 13);
 end
 end
end

In an new file in your working folder, create ExampleTest.m containing the following
test class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5, 4, 'Testing 5==4');
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5, 5, 'Testing 5==5');
 end
 function testThree(testCase)
 % test code
 end
 end
end

 print

1-10923

The verifyEqual qualification in testOne causes a test failure. The qualifications in
testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner
import matlab.unittest.plugins.DiagnosticsValidationPlugin

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window.

runner = TestRunner.withTextOutput;

Create a DiagnosticsValidationPlugin that explicitly specifies that its output should
go to a figure via the ToFigure output stream.

plugin = DiagnosticsValidationPlugin(ToFigure);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin)
result = runner.run(suite);

Running ExampleTest

==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual double:
 5
 Expected double:
 4

1 Alphabetical List

1-10924

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==
...
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.

Only the test failures produce output to the screen. By default,
TestRunner.withTextOutput uses a DiagnosticsOutputPlugin to display output
on the screen.

In addition to the default text output being displayed on the screen, the
DiagnosticsValidationPlugin output is directed to a docked figure. The figure
shows the following text.

Validation of Test Diagnostic:

Testing 5==4

Validation of Test Diagnostic:

Testing 5==5

The DiagnosticsValidationPlugin displays the diagnostic information regardless of
whether the tests encounter failure conditions.

See Also
fprintf | sprintf

Introduced in R2014a

 print

1-10925

matlab.unittest.plugins.QualifyingPlugin
class
Package: matlab.unittest.plugins
Superclasses:

Interface for plugins that perform system-wide qualifications

Description
Use qualifying plugins to produce test failures apart from your test content. Qualifications
at the plugin level are useful because you can avoid repeating the same qualification in
every test. You can decide to apply system-wide qualifications to the test suite periodically
by simply adding the plugin to the test runner for a particular test session.

The QualifyingPlugin interface enables test runner plugin authors to implement
plugins that perform system-wide qualifications on a test suite. You can perform
verifications, assumptions, assertions, and fatal assertions in these inherited methods:

• setupTestClass
• teardownTestClass
• setupTestMethod
• teardownTestMethod

You can perform only assumptions, assertions, and fatal assertions in these inherited
methods:

• setupSharedTestFixture
• teardownSharedTestFixture

1 Alphabetical List

1-10926

Methods
assertUsing Assert that value satisfies given constraint
assumeUsing Assume that value satisfies given constraint
fatalAssertUsing Fatally assert that value satisfies given constraint
verifyUsing Verify that value satisfies given constraint

Inherited Methods
createSharedTestFixture Extend creation of shared test fixture instances
createTestClassInstance Extend creation of class-level TestCase instances
createTestMethodInstance Extend creation of method-level TestCase instances
reportFinalizedResult Enable reporting of finalized TestResults
runTest Extend running of single TestSuite element
runTestClass Extend running of TestSuite array from same class or

function
runTestSuite Extend running of TestSuite array
runTestMethod Extend running of single Test method
setupSharedTestFixture Extend setting up shared test fixture
setupTestClass Extend setting up test class
setupTestMethod Extend setting up of test method
teardownSharedTestFixture Extend tearing down shared test fixture
teardownTestClass Extend tearing down of test class
teardownTestMethod Extend tearing down of test method

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

 matlab.unittest.plugins.QualifyingPlugin class

1-10927

Test Using Qualification in Plugin

Create a plugin to ensure that test files leaves the MATLAB path unchanged. If the path
after running the test file is different from the starting path, the test fails.

Create a class, VerifyNoPathChangePlugin, that inherits from the
matlab.unittest.plugins.QualifyingPlugin class.

classdef VerifyNoPathChangePlugin < matlab.unittest.plugins.QualifyingPlugin
 properties (Access=private)
 OriginalPath
 end

 methods (Access=protected)
 function setupTestClass(plugin, pluginData)
 plugin.OriginalPath = path;
 setupTestClass@matlab.unittest.plugins.QualifyingPlugin(plugin,pluginData);
 end
 function teardownTestClass(plugin, pluginData)
 import matlab.unittest.constraints.IsEqualTo;
 teardownTestClass@matlab.unittest.plugins.QualifyingPlugin(plugin,pluginData);
 plugin.verifyUsing(pluginData.QualificationContext, ...
 path, IsEqualTo(plugin.OriginalPath), ...
 sprintf('%s modified the path.', pluginData.Name));
 end
 end
end

Create the following test class. The test modifies the path, but does not restore the
original path.

classdef LeavesModifiedPath < matlab.unittest.TestCase
 methods (Test)
 function test1(~)
 addpath(pwd);
 end
 end
end

For purposes of this example, at the command prompt, remove the present working folder
from the path.

rmpath(pwd)

1 Alphabetical List

1-10928

Create a test suite, add the plugin to the test runner, and run the suite. The test fails
because the path after the test is different from the starting path.

suite = matlab.unittest.TestSuite.fromClass(?LeavesModifiedPath);
runner = matlab.unittest.TestRunner.withTextOutput;
runner.addPlugin(VerifyNoPathChangePlugin);
runner.run(suite);

Running LeavesModifiedPath
.
==
Verification failed while setting up or tearing down LeavesModifiedPath.
As a result, all LeavesModifiedPath tests failed.

 Test Diagnostic:

 LeavesModifiedPath modified the path.

 Framework Diagnostic:

 IsEqualTo failed.
 --> StringComparator failed.
 --> The character arrays are not equal.

 Actual char:
 C:\work;C:\Program Files\MATLAB\R2015b\toolbox\matlab\...
 Expected char:
 C:\Program Files\MATLAB\R2015b\toolbox\matlab\...

 Stack Information:

 In C:\work\VerifyNoPathChangePlugin.m (VerifyNoPathChangePlugin.teardownTestClass) at 14
==

Done LeavesModifiedPath

Failure Summary:

 Name Failed Incomplete Reason(s)

 matlab.unittest.plugins.QualifyingPlugin class

1-10929

 ===
 LeavesModifiedPath/test1 X Failed by verification.

See Also
matlab.unittest.plugins.FailOnWarningsPlugin |
matlab.unittest.plugins.TestRunnerPlugin |
matlab.unittest.plugins.plugindata.QualificationContext

Topics
“Add Plugin to Test Runner”
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2015b

1 Alphabetical List

1-10930

assertUsing
Class: matlab.unittest.plugins.QualifyingPlugin
Package: matlab.unittest.plugins

Assert that value satisfies given constraint

Syntax
assertUsing(plugin,context,actual,constraint)
assertUsing(plugin,context,actual,constraint,diagnostic)

Description
assertUsing(plugin,context,actual,constraint) asserts that actual is a value
that satisfies the given constraint, constraint, using the qualification context. If the
actual value does not satisfy the constraint, the testing framework reports an assertion
failure.

You can perform assertions in these QualifyingPlugin methods:

• setupSharedTestFixture
• teardownSharedTestFixture
• setupTestClass
• teardownTestClass
• setupTestMethod
• teardownTestMethod

assertUsing(plugin,context,actual,constraint,diagnostic) displays the
diagnostic information, diagnostic, upon failure.

 assertUsing

1-10931

Input Arguments
plugin — Qualifying plugin instance
matlab.unittest.plugins.QualifyingPlugin

Plugin instance, specified as an instance of the
matlab.unittest.plugins.QualifyingPlugin class.

context — Context for plugins
matlab.unittest.plugins.plugindata.QualificationContext

Context for plugins, specified as an instance of
matlab.unittest.plugins.plugindata.QualificationContext class. This
instance provides the context for the plugin to perform qualifications on test suites. The
plugin obtains this context from the plugin data.

actual — Value to test
workspace variable

Value to test, specified as a workspace variable. actual can be any data type. The
qualification passes when actual satisfies the specified constraint, constraint.

constraint — Condition test must satisfy
instance of class in matlab.unittest.constraints package

Condition the test must satisfy, specified as an instance of a class in the
matlab.unittest.constraints package.

diagnostic — Diagnostic information to display
string | character vector | function handle | instance of class in
matlab.unittest.diagnostics package

Diagnostic information to display upon failure, specified as a string, a character vector, a
function handle, or an instance of a class in the matlab.unittest.diagnostics
package.

1 Alphabetical List

1-10932

Examples

Use Qualifications in Plugin
See examples for the QualifyingPlugin class and replace calls to verifyUsing with
assertUsing.

Tips
Use the QualifyingPlugin.assertUsing method when the failure condition
invalidates the remainder of the current test content, but does not prevent proper
execution of subsequent test methods. A failure at the assertion point renders the
associated test content as failed and incomplete. Alternatively,

• Use the QualifyingPlugin.verifyUsing method to produce and record failures
without throwing an exception. Because a QualifyingPlugin performs additional
qualifications beyond the ones defined in the unit tests, it typically uses verifications.
Verifications do not cause an early exit from the test, ensuring that the test framework
executes all test content. Use other qualification types to test for violation of
preconditions or incorrect test setup.

• Use the QualifyingPlugin.assumeUsing method to ensure that the test
environment meets preconditions that otherwise do not result in a test failure.
Assumption failures result in filtered tests, and the testing framework marks the
associated test content as Incomplete.

• Use the QualifyingPlugin.fatalAssertUsing method to abort the test session
upon failure. These qualifications are useful when the failure mode is so fundamental
that there is no point in continuing testing. These qualifications are also useful when
fixture teardown does not restore the MATLAB state correctly and it is preferable to
abort testing and start a fresh session.

See Also
matlab.unittest.plugins.QualifyingPlugin

Introduced in R2015b

 assertUsing

1-10933

assumeUsing
Class: matlab.unittest.plugins.QualifyingPlugin
Package: matlab.unittest.plugins

Assume that value satisfies given constraint

Syntax
assumeUsing(plugin,context,actual,constraint)
assumeUsing(plugin,context,actual,constraint,diagnostic)

Description
assumeUsing(plugin,context,actual,constraint) assumes that actual is a
value that satisfies the given constraint, constraint, using the qualification context. If
the actual value does not satisfy the constraint, the testing framework reports an
assumption failure.

You can perform assumptions in these QualifyingPlugin methods:

• setupSharedTestFixture
• teardownSharedTestFixture
• setupTestClass
• teardownTestClass
• setupTestMethod
• teardownTestMethod

assumeUsing(plugin,context,actual,constraint,diagnostic) displays the
diagnostic information, diagnostic, upon failure.

1 Alphabetical List

1-10934

Input Arguments
plugin — Qualifying plugin instance
matlab.unittest.plugins.QualifyingPlugin

Plugin instance, specified as an instance of the
matlab.unittest.plugins.QualifyingPlugin class.

context — Context for plugins
matlab.unittest.plugins.plugindata.QualificationContext

Context for plugins, specified as an instance of
matlab.unittest.plugins.plugindata.QualificationContext class. This
instance provides the context for the plugin to perform qualifications on test suites. The
plugin obtains this context from the plugin data.

actual — Value to test
workspace variable

Value to test, specified as a workspace variable. actual can be any data type. The
qualification passes when actual satisfies the specified constraint, constraint.

constraint — Condition test must satisfy
instance of class in matlab.unittest.constraints package

Condition the test must satisfy, specified as an instance of a class in the
matlab.unittest.constraints package.

diagnostic — Diagnostic information to display
string | character vector | function handle | instance of class in
matlab.unittest.diagnostics package

Diagnostic information to display upon failure, specified as a string, a character vector, a
function handle, or an instance of a class in the matlab.unittest.diagnostics
package.

 assumeUsing

1-10935

Examples

Use Qualifications in Plugin
See examples for the QualifyingPlugin class and replace calls to verifyUsing with
assumeUsing.

Tips
Use the QualifyingPlugin.assumeUsing method to ensure that the test environment
meets preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the associated test content as
Incomplete. Alternatively,

• Use the QualifyingPlugin.verifyUsing method to produce and record failures
without throwing an exception. Because a QualifyingPlugin performs additional
qualifications beyond the ones defined in the unit tests, it typically uses verifications.
Verifications do not cause an early exit from the test, ensuring that the test framework
executes all test content. Use other qualification types to test for violation of
preconditions or incorrect test setup.

• Use the QualifyingPlugin.assertUsing method when the failure condition
invalidates the remainder of the current test content, but does not prevent proper
execution of subsequent test methods. A failure at the assertion point renders the
associated test content as failed and incomplete.

• Use the QualifyingPlugin.fatalAssertUsing method to abort the test session
upon failure. These qualifications are useful when the failure mode is so fundamental
that there is no point in continuing testing. These qualifications are also useful when
fixture teardown does not restore the MATLAB state correctly and it is preferable to
abort testing and start a fresh session.

See Also
matlab.unittest.plugins.QualifyingPlugin

Introduced in R2015b

1 Alphabetical List

1-10936

fatalAssertUsing
Class: matlab.unittest.plugins.QualifyingPlugin
Package: matlab.unittest.plugins

Fatally assert that value satisfies given constraint

Syntax
fatalAssertUsing(plugin,context,actual,constraint)
fatalAssertUsing(plugin,context,actual,constraint,diagnostic)

Description
fatalAssertUsing(plugin,context,actual,constraint) fatally asserts that
actual is a value that satisfies the given constraint, constraint, using the qualification
context. If the actual value does not satisfy the constraint, the testing framework
reports a fatal assertion failure.

You can perform fatal assertions in these QualifyingPlugin methods:

• setupSharedTestFixture
• teardownSharedTestFixture
• setupTestClass
• teardownTestClass
• setupTestMethod
• teardownTestMethod

fatalAssertUsing(plugin,context,actual,constraint,diagnostic) displays
the diagnostic information, diagnostic, upon failure.

 fatalAssertUsing

1-10937

Input Arguments
plugin — Qualifying plugin instance
matlab.unittest.plugins.QualifyingPlugin

Plugin instance, specified as an instance of the
matlab.unittest.plugins.QualifyingPlugin class.

context — Context for plugins
matlab.unittest.plugins.plugindata.QualificationContext

Context for plugins, specified as an instance of
matlab.unittest.plugins.plugindata.QualificationContext class. This
instance provides the context for the plugin to perform qualifications on test suites. The
plugin obtains this context from the plugin data.

actual — Value to test
workspace variable

Value to test, specified as a workspace variable. actual can be any data type. The
qualification passes when actual satisfies the specified constraint, constraint.

constraint — Condition test must satisfy
instance of class in matlab.unittest.constraints package

Condition the test must satisfy, specified as an instance of a class in the
matlab.unittest.constraints package.

diagnostic — Diagnostic information to display
string | character vector | function handle | instance of class in
matlab.unittest.diagnostics package

Diagnostic information to display upon failure, specified as a string, a character vector, a
function handle, or an instance of a class in the matlab.unittest.diagnostics
package.

1 Alphabetical List

1-10938

Examples

Use Qualifications in Plugin
See examples for the QualifyingPlugin class and replace calls to verifyUsing with
fatalAssertUsing.

Tips
Use the QualifyingPlugin.fatalAssertUsing method to abort the test session upon
failure. These qualifications are useful when the failure mode is so fundamental that there
is no point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. Alternatively,

• Use the QualifyingPlugin.verifyUsing method to produce and record failures
without throwing an exception. Because a QualifyingPlugin performs additional
qualifications beyond the ones defined in the unit tests, it typically uses verifications.
Verifications do not cause an early exit from the test, ensuring that the test framework
executes all test content. Use other qualification types to test for violation of
preconditions or incorrect test setup.

• Use the QualifyingPlugin.assumeUsing method to ensure that the test
environment meets preconditions that otherwise do not result in a test failure.
Assumption failures result in filtered tests, and the testing framework marks the
associated test content as Incomplete.

• Use the QualifyingPlugin.assertUsing method when the failure condition
invalidates the remainder of the current test content, but does not prevent proper
execution of subsequent test methods. A failure at the assertion point renders the
associated test content as failed and incomplete.

See Also
matlab.unittest.plugins.QualifyingPlugin

Introduced in R2015b

 fatalAssertUsing

1-10939

verifyUsing
Class: matlab.unittest.plugins.QualifyingPlugin
Package: matlab.unittest.plugins

Verify that value satisfies given constraint

Syntax
verifyUsing(plugin,context,actual,constraint)
verifyUsing(plugin,context,actual,constraint,diagnostic)

Description
verifyUsing(plugin,context,actual,constraint) verifies that actual is a value
that satisfies the given constraint, constraint, using the qualification context. If the
actual value does not satisfy the constraint, the testing framework reports a verification
failure.

You can perform verifications in these QualifyingPlugin methods:

• setupTestClass
• teardownTestClass
• setupTestMethod
• teardownTestMethod

verifyUsing(plugin,context,actual,constraint,diagnostic) displays the
diagnostic information, diagnostic, upon failure.

Input Arguments
plugin — Qualifying plugin instance
matlab.unittest.plugins.QualifyingPlugin

1 Alphabetical List

1-10940

Plugin instance, specified as an instance of the
matlab.unittest.plugins.QualifyingPlugin class.

context — Context for plugins
matlab.unittest.plugins.plugindata.QualificationContext

Context for plugins, specified as an instance of
matlab.unittest.plugins.plugindata.QualificationContext class. This
instance provides the context for the plugin to perform qualifications on test suites. The
plugin obtains this context from the plugin data.

actual — Value to test
workspace variable

Value to test, specified as a workspace variable. actual can be any data type. The
qualification passes when actual satisfies the specified constraint, constraint.

constraint — Condition test must satisfy
instance of class in matlab.unittest.constraints package

Condition the test must satisfy, specified as an instance of a class in the
matlab.unittest.constraints package.

diagnostic — Diagnostic information to display
string | character vector | function handle | instance of class in
matlab.unittest.diagnostics package

Diagnostic information to display upon failure, specified as a string, a character vector, a
function handle, or an instance of a class in the matlab.unittest.diagnostics
package.

Examples

Use Qualifications in Plugin
See examples for the QualifyingPlugin class.

 verifyUsing

1-10941

Tips
Use the QualifyingPlugin.verifyUsing method to produce and record failures
without throwing an exception. Because a QualifyingPlugin performs additional
qualifications beyond the ones defined in the unit tests, it typically uses verifications.
Verifications do not cause an early exit from the test, ensuring that the test framework
executes all test content. Use other qualification types to test for violation of
preconditions or incorrect test setup. Alternatively,

• Use the QualifyingPlugin.assumeUsing method to ensure that the test
environment meets preconditions that otherwise do not result in a test failure.
Assumption failures result in filtered tests, and the testing framework marks the tests
as Incomplete.

• Use the QualifyingPlugin.assertUsing method when the failure condition
invalidates the remainder of the current test content, but does not prevent proper
execution of subsequent test methods. A failure at the assertion point renders the
current test method as failed and incomplete.

• Use the QualifyingPlugin.fatalAssertUsing method to abort the test session
upon failure. These qualifications are useful when the failure mode is so fundamental
that there is no point in continuing testing. These qualifications are also useful when
fixture teardown does not restore the MATLAB state correctly and it is preferable to
abort testing and start a fresh session.

See Also
matlab.unittest.plugins.QualifyingPlugin

Introduced in R2015b

1 Alphabetical List

1-10942

matlab.unittest.plugins.StopOnFailuresPlugi
n class
Package: matlab.unittest.plugins

Plugin to debug test failures

Description
The StopOnFailuresPlugin class provides a plugin to help debug test failures. Adding
StopOnFailuresPlugin to the test runner pauses execution of a test if it encounters a
qualification failure or uncaught error and puts MATLAB into debug mode.

If StopOnFailuresPlugin encounters a qualification failure or uncaught error in a test,
you can use MATLAB debugging commands, such as dpbup, dbstep, dbcont, and
dbquit, to investigate the cause of the test failure.

If StopOnFailuresPlugin encounters an uncaught error in a test, you cannot use dbup
to shift context to the source of the error because the error disrupts the stack.

Construction
matlab.unittest.plugins.StopOnFailuresPlugin creates a plugin to debug test
failures.

matlab.unittest.plugins.StopOnFailuresPlugin('IncludingAssumptionFai
lures',tf) indicates whether to react to assumption failures. By default,
StopOnFailuresPlugin reacts to only uncaught errors and verification, assertion, and
fatal assertion qualification errors. However, when 'IncludingAssumptionFailures'
is set to true, the plugin also reacts to assumption failures.

Input Arguments
tf — Indicator to react to assumption failures
FALSE (default) | TRUE

 matlab.unittest.plugins.StopOnFailuresPlugin class

1-10943

Indicator to react to assumption failures, specified as logical false or true. When this
value is true, the test runner reacts to assumption failures. When the value is false, the
plugin ignores assumption failures.

Properties
IncludeAssumptionFailures

When this property value is true, the instance reacts to assumption failures. When the
value is false, the instance ignores assumption failures. The
IncludeAssumptionFailures property is false by default. To specify the property as
true, use the IncludingAssumptionFailures input when you construct the instance.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Add Plugin to TestRunner

In your working folder, create the file ExampleTest.m containing the following test
class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 act = 3.1416;
 exp = pi;
 testCase.verifyEqual(act, exp)
 end
 function testTwo(testCase) % Test does not complete
 testCase.assumeEqual(5, 4)
 end
 end
end

1 Alphabetical List

1-10944

At the command prompt, create a test suite from the ExampleTest class and a test
runner.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.StopOnFailuresPlugin

suite = TestSuite.fromClass(?ExampleTest);
runner = TestRunner.withTextOutput;

Run the tests.

result = runner.run(suite);

Running ExampleTest

==
Verification failed in ExampleTest/testOne.

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________________ ____________________ ____________________

 3.1416 3.14159265358979 7.34641020683213e-06 2.33843499679617e-06

 Actual double:
 3.141600000000000
 Expected double:
 3.141592653589793

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 6
==
.
==
ExampleTest/testTwo was filtered.
 Details
==

 matlab.unittest.plugins.StopOnFailuresPlugin class

1-10945

.
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.
 --
 ExampleTest/testTwo X Filtered by assumption.

As a result of the qualifications in the test class, the first test fails, and the second test
does not complete.

Add the StopOnFailuresPlugin to the runner and run the tests.

runner.addPlugin(StopOnFailuresPlugin)
result = runner.run(suite);

Running ExampleTest
Test execution paused due to failure. Either click here or execute DBUP to shift context to its source: line 6 of "C:\work\ExampleTest.m".

During the test execution, when the failure occurs, MATLAB enters debug mode.

Click on the hyperlinked word 'here' to shift debug context to your work source. If
necessary, make the command window your current window.

In workspace belonging to ExampleTest>ExampleTest.testOne at 6

Examine the variables in the workspace.

whos

 Name Size Bytes Class Attributes

 act 1x1 8 double
 exp 1x1 8 double
 testCase 1x1 112 ExampleTest

Now, you can investigate the cause of the test failure.

For example, see if the test passes when you specify a relative tolerance of 100*eps.

testCase.verifyEqual(act,exp,'RelTol',100*eps)

1 Alphabetical List

1-10946

Verification failed in ExampleTest/testOne.

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> The error was not within relative tolerance.
 --> Failure table:
 Actual Expected Error RelativeError RelativeTolerance
 ______ ________________ ____________________ ____________________ ____________________

 3.1416 3.14159265358979 7.34641020683213e-06 2.33843499679617e-06 2.22044604925031e-14

 Actual double:
 3.141600000000000
 Expected double:
 3.141592653589793

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 6
==

The test fails even with the specified tolerance.

Exit out of debug mode.

dbquit

==
Verification failed in ExampleTest/testOne.

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________________ ____________________ ____________________

 3.1416 3.14159265358979 7.34641020683213e-06 2.33843499679617e-06

 matlab.unittest.plugins.StopOnFailuresPlugin class

1-10947

 Actual double:
 3.141600000000000
 Expected double:
 3.141592653589793

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 6
==
.
==
ExampleTest/testTwo was filtered.
 Details
==
.
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.
 --
 ExampleTest/testTwo X Filtered by assumption.

To enter debug mode for tests that fail by assumption, such as testTwo in the
ExampleTest class, include 'IncludingAssumptionFailures' option for the plugin.

runner = TestRunner.withTextOutput;
runner.addPlugin(StopOnFailuresPlugin(...
 'IncludingAssumptionFailures', true))

If you run the test runner, you enter debug mode for both testOne and testTwo.

See Also
dbcont | dbquit | dbstep | dbup | matlab.unittest.plugins

Introduced in R2013b

1 Alphabetical List

1-10948

matlab.unittest.plugins.TAPPlugin class
Package: matlab.unittest.plugins

Plugin that produces Test Anything Protocol stream

Description
The TAPPlugin creates a plugin that produces a Test Anything Protocol (TAP) stream.
Using this plugin, you can integrate MATLAB Unit Test results into third-party systems
that recognize the TAP protocol. For example, you can integrate test results with
continuous integration systems like Jenkins™ or TeamCity®.

Construction
Instantiate a TAPPlugin using one of its static methods.

To produce output in the original TAP format (version 12), use the
producingOriginalFormat static method. To produce output with TAP version 13
format, use the producingVersion13 static method. TAP version 13 output includes
test diagnostics in YAML blocks.

Methods

producingOriginalFormat Construct TAPPlugin for original TAP format
producingVersion13 Construct TAPPlugin for version 13 TAP format

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 matlab.unittest.plugins.TAPPlugin class

1-10949

See Also
matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins.TestRunnerPlugin |
matlab.unittest.plugins.ToFile

External Websites
Jenkins
TeamCity
testanything.org

Introduced in R2014a

1 Alphabetical List

1-10950

https://jenkins.io
https://www.jetbrains.com/teamcity/plugins/index.html
https://testanything.org

matlab.unittest.plugins.TAPPlugin.producing
OriginalFormat
Class: matlab.unittest.plugins.TAPPlugin
Package: matlab.unittest.plugins

Construct TAPPlugin for original TAP format

Syntax
matlab.unittest.plugins.TAPPlugin.producingOriginalFormat
matlab.unittest.plugins.TAPPlugin.producingOriginalFormat(stream)
matlab.unittest.plugins.TAPPlugin.producingOriginalFormat(___ ,
Name,Value)

Description
matlab.unittest.plugins.TAPPlugin.producingOriginalFormat creates a
plugin that produces output in the form of the original Test Anything Protocol (TAP)
format (version 12). By default, the plugin uses the ToStandardOutput stream, and the
output appears on the screen. In this case, other output sent to the screen can invalidate
the TAP stream.

matlab.unittest.plugins.TAPPlugin.producingOriginalFormat(stream)
redirects all the text output to a specified output stream. For example, you can redirect
the output to the ToFile stream.

matlab.unittest.plugins.TAPPlugin.producingOriginalFormat(___ ,
Name,Value) creates a plugin with additional options specified by one or more
Name,Value pair arguments.

 matlab.unittest.plugins.TAPPlugin.producingOriginalFormat

1-10951

Input Arguments
stream — Location where the plugin directs text output
matlab.unittest.plugins.ToStandardOutput (default) | instance of
matlab.unittest.plugins.OutputStream class

Location where the plugin directs text output, specified as an instance of the
OutputStream class. By default, the plugin uses the ToStandardOutput stream.
Example: stream = matlab.unittest.plugins.ToStandardOutput
Example: stream = matlab.unittest.plugins.ToFile('myFile.tap')

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TAPPlugin.producingOriginalFormat('LoggingLevel',
Verbosity.Detailed) creates a plugin that includes diagnostics logged at and below
the Detailed level.

IncludingPassingDiagnostics — Include passing event diagnostics
false (default) | true

Whether to include passing event diagnostics, specified as false or true. By default the
plugin does not include diagnostics from passing events.
Data Types: logical

LoggingLevel — Maximum level of logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Maximum level at which logged diagnostics are included by the plugin instance, specified
as an integer value from 0 through 4, a matlab.unittest.Verbosity enumeration
object, or a string scalar or character vector corresponding to one of the predefined
enumeration member names. The plugin includes diagnostics that are logged at this level
and below. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

1 Alphabetical List

1-10952

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

By default the plugin includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

OutputDetail — Detail level for reported events
3 (default) | 0 | 1 | 2 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Detail level for reported events, specified as an integer value from 0 through 4, a
matlab.unittest.Verbosity enumeration object, or a string scalar or character
vector corresponding to one of the predefined enumeration member names. Integer
values correspond to the members of the matlab.unittest.Verbosity enumeration.

The plugin reports passing, failing, and logged events with the amount of detail specified
by OutputDetail. By default the plugin records events at the
matlab.unittest.Verbosity.Detailed level (level 3).

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information

 matlab.unittest.plugins.TAPPlugin.producingOriginalFormat

1-10953

Numeric Representation Enumeration Member
Name

Verbosity Description

4 Verbose Lots of supplemental
information

Examples

Create TAP Plugin

In a new file in your working folder, create ExampleTest.m containing the following test
class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5,4,'Testing 5==4')
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5,5,'Testing 5==5')
 end
 function testThree(testCase)
 % test code
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.TAPPlugin
import matlab.unittest.plugins.ToFile

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window using the default
plugin.

runner = TestRunner.withTextOutput;

Create a TAPPlugin that sends output to the file MyTapOutput.tap.

1 Alphabetical List

1-10954

tapFile = 'MyTAPOutput.tap';
plugin = TAPPlugin.producingOriginalFormat(ToFile(tapFile));

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin)
result = runner.run(suite);

Running ExampleTest

==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual double:
 5
 Expected double:
 4

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==
...
Done ExampleTest

Failure Summary:

 matlab.unittest.plugins.TAPPlugin.producingOriginalFormat

1-10955

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.

Display the file created by the plugin.

disp(fileread(tapFile))

1..3
not ok 1 - ExampleTest/testOne
==
Verification failed in ExampleTest/testOne.

Test Diagnostic:

Testing 5==4

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".
--> Failure table:
Actual Expected Error RelativeError
______ ________ _____ _____________

5 4 1 0.25

Actual double:
5
Expected double:
4

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==

ok 2 - ExampleTest/testTwo
ok 3 - ExampleTest/testThree

1 Alphabetical List

1-10956

You can use the TAPPlugin directed to standard output. However, any other text
displayed to standard output (such as failed test information) interrupts the stream and
has the potential to invalidate it.

See Also
matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins.TAPPlugin.producingVersion13 |
matlab.unittest.plugins.ToFile

External Websites
testanything.org

Introduced in R2014a

 matlab.unittest.plugins.TAPPlugin.producingOriginalFormat

1-10957

https://testanything.org

matlab.unittest.plugins.TAPPlugin.producing
Version13
Class: matlab.unittest.plugins.TAPPlugin
Package: matlab.unittest.plugins

Construct TAPPlugin for version 13 TAP format

Syntax
matlab.unittest.plugins.TAPPlugin.producingVersion13
matlab.unittest.plugins.TAPPlugin.producingVersion13(stream)
matlab.unittest.plugins.TAPPlugin.producingVersion13(___ ,Name,Value)

Description
matlab.unittest.plugins.TAPPlugin.producingVersion13 creates a plugin that
produces output in version 13 of the Test Anything Protocol (TAP) format. The TAP
version 13 output includes test diagnostics in YAML blocks. By default, the plugin uses
the ToStandardOutput stream, and the output appears on the screen. In this case, other
output sent to the screen can invalidate the TAP stream.

matlab.unittest.plugins.TAPPlugin.producingVersion13(stream) redirects
all the text output to a specified output stream. For example, you can redirect the output
to the ToFile stream.

matlab.unittest.plugins.TAPPlugin.producingVersion13(___ ,Name,Value)
creates a plugin with additional options specified by one or more Name,Value pair
arguments.

Input Arguments
stream — Location where the plugin directs text output
matlab.unittest.plugins.ToStandardOutput (default) | instance of
matlab.unittest.plugins.OutputStream class

1 Alphabetical List

1-10958

Location where the plugin directs text output, specified as an instance of the
OutputStream class. By default, the plugin uses the ToStandardOutput stream.
Example: stream = matlab.unittest.plugins.ToStandardOutput
Example: stream = matlab.unittest.plugins.ToFile('myFile.tap')

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TAPPlugin.producingVersion13('LoggingLevel',
Verbosity.Detailed) creates a plugin that includes diagnostics logged at and below
the Detailed level.

IncludingPassingDiagnostics — Include passing event diagnostics
false (default) | true

Whether to include passing event diagnostics, specified as false or true. By default the
plugin does not include diagnostics from passing events.
Data Types: logical

LoggingLevel — Maximum level of logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Maximum level at which logged diagnostics are included by the plugin instance, specified
as an integer value from 0 through 4, a matlab.unittest.Verbosity enumeration
object, or a string scalar or character vector corresponding to one of the predefined
enumeration member names. The plugin includes diagnostics that are logged at this level
and below. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information

 matlab.unittest.plugins.TAPPlugin.producingVersion13

1-10959

Numeric Representation Enumeration Member
Name

Verbosity Description

2 Concise Moderate amount of
information

3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

By default the plugin includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

OutputDetail — Detail level for reported events
3 (default) | 0 | 1 | 2 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Detail level for reported events, specified as an integer value from 0 through 4, a
matlab.unittest.Verbosity enumeration object, or a string scalar or character
vector corresponding to one of the predefined enumeration member names. Integer
values correspond to the members of the matlab.unittest.Verbosity enumeration.

The plugin reports passing, failing, and logged events with the amount of detail specified
by OutputDetail. By default the plugin records events at the
matlab.unittest.Verbosity.Detailed level (level 3).

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

1 Alphabetical List

1-10960

Examples

Create TAP Plugin

In a new file in your working folder, create ExampleTest.m containing the following test
class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5,4,'Testing 5==4')
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5,5,'Testing 5==5')
 end
 function testThree(testCase)
 % test code
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.TAPPlugin
import matlab.unittest.plugins.ToFile

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window using the default
plugin.

runner = TestRunner.withTextOutput;

Create a TAPPlugin that sends output to the file MyTapOutput.tap.

tapFile = 'MyTAPOutput.tap';
plugin = TAPPlugin.producingVersion13(ToFile(tapFile));

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin)
result = runner.run(suite);

 matlab.unittest.plugins.TAPPlugin.producingVersion13

1-10961

Running ExampleTest

==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual double:
 5
 Expected double:
 4

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==
...
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.

Display the file created by the plugin.

disp(fileread(tapFile))

1 Alphabetical List

1-10962

TAP version 13
1..3
not ok 1 - ExampleTest/testOne

 Event:
 Event Name: 'VerificationFailed'
 Event Location: 'ExampleTest/testOne'
 Test Diagnostic: |
 Testing 5==4
 Framework Diagnostic: |
 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual Value:
 5
 Expected Value:
 4
 Stack: |
 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
 ...
ok 2 - ExampleTest/testTwo
ok 3 - ExampleTest/testThree

You can use the TAPPlugin directed to standard output. However, any other text
displayed to standard output (such as failed test information) interrupts the stream and
has the potential to invalidate it.

See Also
matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins.TAPPlugin.producingVersion13 |
matlab.unittest.plugins.ToFile

External Websites
testanything.org
yaml.org

 matlab.unittest.plugins.TAPPlugin.producingVersion13

1-10963

https://testanything.org
http://yaml.org/

Introduced in R2016b

1 Alphabetical List

1-10964

matlab.unittest.plugins.ToFile class
Package: matlab.unittest.plugins
Superclasses:

Output stream to write text output to file

Description
The ToFile class creates an output stream that writes text output to a UTF-8 encoded
file. Whenever text prints to this stream, the output stream opens the file, appends the
text, and closes the file.

Construction
matlab.unittest.plugins.ToFile(fname) creates an OutputStream that writes
text output to the file, fname.

Input Arguments
fname

Name of file to write the output text, specified as a character vector or string scalar. If
fname exists, the text from the stream is appended to the file.

Properties
Filename

Name of file to redirect text output from the plugin, specified in the input argument,
fname.

 matlab.unittest.plugins.ToFile class

1-10965

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Direct TAPPlugin Output Text to Separate File

In your working folder, create the file ExampleTest.m containing the following test
class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5, 4, 'Testing 5==4')
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5, 5, 'Testing 5==5')
 end
 function testThree(testCase)
 % test code
 end
 end
end

The verifyEqual qualification in testOne causes a test failure. The qualifications in
testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.TAPPlugin
import matlab.unittest.plugins.ToFile

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window.

runner = TestRunner.withTextOutput;

1 Alphabetical List

1-10966

Create a TAPPlugin that explicitly specifies that its output should go to the file,
MyTapOutput.tap.

filename = 'MyTapOutput.tap';
plugin = TAPPlugin.producingOriginalFormat(ToFile(filename));

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin)
result = runner.run(suite);

Running ExampleTest

==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual double:
 5
 Expected double:
 4

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==
...
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.

Only the test failures produce output to the screen. By default,
TestRunner.withTextOutput uses a DiagnosticsOutputPlugin to display output
on the screen.

Observe contents in the file created by the plugin.

 matlab.unittest.plugins.ToFile class

1-10967

disp(fileread(filename))

1..3
not ok 1 - ExampleTest/testOne
==
Verification failed in ExampleTest/testOne.

Test Diagnostic:

Testing 5==4

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".
--> Failure table:
Actual Expected Error RelativeError
______ ________ _____ _____________

5 4 1 0.25

Actual double:
5
Expected double:
4

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==

ok 2 - ExampleTest/testTwo
ok 3 - ExampleTest/testThree

See Also
fopen | fprintf | matlab.unittest.plugins |
matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins.ToUniqueFile

Introduced in R2014a

1 Alphabetical List

1-10968

matlab.unittest.plugins.ToStandardOutput
class
Package: matlab.unittest.plugins
Superclasses:

Output stream to display text information to screen

Description
The ToStandardOutput class creates an output stream to display text output to the
screen. Many plugins that accept an output stream use ToStandardOutput as their
default stream.

Construction
matlab.unittest.plugins.ToStandardOutput creates an OutputStream that
prints text output to the screen.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Direct Plugin Output Text to Standard Output

In your working folder, create the file ExampleTest.m containing the following test
class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)

 matlab.unittest.plugins.ToStandardOutput class

1-10969

 function testOne(testCase) % Test fails
 testCase.verifyEqual(5, 4, 'Testing 5==4')
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5, 5, 'Testing 5==5')
 end
 function testThree(testCase)
 % test code
 end
 end
end

The verifyEqual qualification in testOne causes a test failure. The qualifications in
testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.DiagnosticsOutputPlugin
import matlab.unittest.plugins.ToStandardOutput

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins.

runner = TestRunner.withNoPlugins;

Create a DiagnosticsOutputPlugin that explicitly specifies that its output should go
to the screen.

plugin = DiagnosticsOutputPlugin(ToStandardOutput);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin)
result = runner.run(suite);

==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

1 Alphabetical List

1-10970

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual Value:
 5
 Expected Value:
 4

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==
Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testOne X Failed by verification.

Only the test failures produce output to the screen.

See Also
fprintf | matlab.unittest.plugins |
matlab.unittest.plugins.OutputStream

Introduced in R2014a

 matlab.unittest.plugins.ToStandardOutput class

1-10971

matlab.unittest.plugins.ToUniqueFile class
Package: matlab.unittest.plugins
Superclasses:

Output stream to write text output to unique file

Description
The ToUniqueFile creates an output stream that writes text output to a unique, UTF-8
encoded file. Whenever text prints to this stream, the output stream opens the file,
appends the text, and closes the file. Each instance of ToUniqueFile creates a file with a
unique file name. This output stream is useful for running tests in parallel while
redirecting output to a file.

MATLAB creates the unique file name for the output stream, but you can specify a file
prefix and extension.

Construction
matlab.unittest.plugins.ToUniqueFile(folder) creates an OutputStream that
writes text output to a unique file in the specified folder.

matlab.unittest.plugins.ToUniqueFile(folder,Name,Value) creates a unique
file with additional options specified by one or more Name,Value pair arguments. You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
folder — Name of folder
character vector | string scalar

Name of existing folder, specified as a character vector or string scalar. The output
stream writes to a file in folder.
Example: 'myOutput'

1 Alphabetical List

1-10972

Example: pwd

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: matlab.unittest.plugins.ToFile(pwd,'WithPrefix','myOutput_')
creates an output stream that writes to a file in the present working folder that starts
with 'myOutput_'.

WithPrefix — Prefix for file name
character vector | string scalar

Prefix for the file name, specified as a character vector or string scalar.
Example: 'outputA_'

WithExtension — Extension for file name
'.txt' (default) | character vector | string scalar

Extension for the file name, specified as a character vector or string scalar. By default,
the file name has the extension '.txt'. Extensions must begin with a period.
Example: '.xml'

Properties
Filename — Full name of file
string scalar

Full name of the file to redirect text output from the plugin, returned as a string scalar.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 matlab.unittest.plugins.ToUniqueFile class

1-10973

Examples
Direct Output from Tests Run in Parallel

Produce TAP output for a suite of tests that you run in parallel. To avoid having the
framework overwrite the TAP file, direct the output from each group of tests to a unique
file. To run tests in parallel, this example requires Parallel Computing Toolbox.

Create the following parameterized test in a file in your current working folder.

classdef TestRand < matlab.unittest.TestCase
 properties (TestParameter)
 dim1 = createDimensionSizes;
 dim2 = createDimensionSizes;
 dim3 = createDimensionSizes;
 type = {'single','double'};
 end

 methods (Test)
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun);
 end
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

function sizes = createDimensionSizes
 % Create logarithmicly spaced sizes up to 100
 sizes = num2cell(round(logspace(0,2,10)));
end

At the command prompt, create a folder for output files.

mkdir myOutput

Create a suite from TestRand.m and a test runner with terse output. The suite contains
1200 test elements.

1 Alphabetical List

1-10974

suite = matlab.unittest.TestSuite.fromClass(?TestRand);
runner = matlab.unittest.TestRunner.withTextOutput('OutputDetail',1);

Create an instance of a stream that writes to a unique file in the myOutput folder. Then
create a TAPPlugin and direct the output to the stream. Each created file begins with
'myTapFile_' and ends with the '.tap' extension.
import matlab.unittest.plugins.ToUniqueFile;
import matlab.unittest.plugins.TAPPlugin;

stream = ToUniqueFile('myOutput','WithPrefix','myTapFile_','WithExtension','.tap');
plugin = TAPPlugin.producingOriginalFormat(stream);

Add the plugin to the test runner, and run the test suite in parallel. Your test groups and
the output file names might vary.

runner.addPlugin(plugin);
result = runner.runInParallel(suite);

Split tests into 18 groups and running them on 6 workers.

Finished Group 5

..
.......................

Finished Group 6

..
.....................

Finished Group 4

..
........................

Finished Group 1

..
............................

Finished Group 3

 matlab.unittest.plugins.ToUniqueFile class

1-10975

..
..........................

Finished Group 2

..
...........................

Finished Group 7

..
....................

Finished Group 8

..
...................

Finished Group 11

..
...............

Finished Group 9

..
.................

Finished Group 12

..
.............

Finished Group 10

..

1 Alphabetical List

1-10976

................

Finished Group 16

..
........

Finished Group 18

..
....

Finished Group 17

..
.......

Finished Group 13

..
............

Finished Group 14

..
...........

Finished Group 15

..
.........

View the output files in the myOutput folder. Since MATLAB ran the tests in 18 groups,
the framework created 18 instances of the ToUniqueFile output stream. There are 18
associated output files.

dir myOutput

 matlab.unittest.plugins.ToUniqueFile class

1-10977

.

..
myTapFile_22dc996d-e1e9-44e2-af3a-e8e9c68c6941.tap
myTapFile_2de69eb4-591f-4456-9890-31626e57792f.tap
myTapFile_3e88b1fb-5679-4489-b9c9-a2b22ac76cb1.tap
myTapFile_4b660dae-9e33-4e89-bd1b-27c874749476.tap
myTapFile_56d584a8-2bf2-4677-ad25-5f268628c179.tap
myTapFile_632c3723-c300-40a6-8ffa-a7dbd0d07d65.tap
myTapFile_66276292-5062-489a-9219-cc2664f48fb8.tap
myTapFile_78d69693-720a-4a14-86b3-de687b1ddf91.tap
myTapFile_7df3915c-60de-4c7f-8968-b5260d4c2933.tap
myTapFile_827a6d46-54c6-4ee3-bfbb-0d46d4024fcf.tap
myTapFile_97af3692-7b4a-4f80-a81a-96fc0f86beed.tap
myTapFile_9cb0cdb1-4f30-40a0-8f5f-51da8af7bb86.tap
myTapFile_b8820e56-7c92-41eb-b040-94f55399766b.tap
myTapFile_c1bfd286-7fa4-4365-b456-4babf2a995da.tap
myTapFile_c53c2906-14a7-41eb-a87c-d1fd727e6d9e.tap
myTapFile_decbc713-84c0-4139-b3e4-d2b8c2e273bf.tap
myTapFile_e1687147-f8a7-4f6d-aea0-a3e885246dd6.tap
myTapFile_f78c98a7-6c14-4981-ae03-fc8ffbeddaf8.tap

See Also
matlab.unittest.TestRunner.runInParallel | matlab.unittest.plugins |
matlab.unittest.plugins.OutputStream

Introduced in R2018a

1 Alphabetical List

1-10978

matlab.unittest.plugins.testreport Package
Summary of classes in MATLAB Plugin Test Report Generation

Description
The testreport classes create plugins to generate test result reports. The
matlab.unittest.plugins.testreport package consists of the following MATLAB
classes.

Classes
matlab.unittest.plugins.testreport.DOCXTestReportPlugin TestReportPlugin that creates

a test report in .docx format
matlab.unittest.plugins.testreport.HTMLTestReportPlugin TestReportPlugin that creates

a test report in .html format
matlab.unittest.plugins.testreport.PDFTestReportPlugin TestReportPlugin that creates

a test report in .pdf format

See Also
TestReportPlugin | matlab.unittest.plugins

Introduced in R2016b

 matlab.unittest.plugins.testreport Package

1-10979

matlab.unittest.plugins.testreport.DOCXTest
ReportPlugin class
Package: matlab.unittest.plugins.testreport
Superclasses:

TestReportPlugin that creates a test report in .docx format

Description
A DOCXTestReportPlugin is an instance of the TestReportPlugin class that creates
a test result report in .docx format. To create a DOCXTestReportPlugin instance, use
the matlab.unittest.plugins.TestReportPlugin.producingDOCX static method.

Properties
PageOrientation — Report orientation
'portrait' (default) | 'landscape'

Report orientation, specified as 'portrait' or 'landscape'. This property is read only.
You can specify it during plugin construction.

These properties are inherited from matlab.unittest.plugins.TestReportPlugin:

IncludeCommandWindowText — Indicator if text output from Command Window is
included
false (default) | true

This property is read-only.

Indicator if text output from Command Window is included, specified as false or true
(logical 0 or 1). By default, IncludeCommandWindowText is false and the text
output from the Command Window is excluded from the report. To include Command
Window text in the report, specify IncludeCommandWindowText as true during plugin
construction.

1 Alphabetical List

1-10980

IncludePassingDiagnostics — Indicator if diagnostics for passing events are
included
false (default) | true

This property is read-only.

Indicator if diagnostics for passing events are included, specified as false or true
(logical 0 or 1). By default, IncludePassingDiagnostics is false and the
diagnostics from passing events are excluded from the output. To include diagnostics
from passing events in the output, specify IncludePassingDiagnostics as true
during plugin construction.

LoggingLevel — Maximum verbosity level for logged diagnostics included by the
plugin
matlab.unittest.Verbosity.Terse (default) | matlab.unittest.Verbosity
enumeration object

This property is read-only.

Maximum verbosity level for logged diagnostics included by the plugin, returned as a
matlab.unittest.Verbosity enumeration object. The plugin includes diagnostics that
are logged at this level and below. By default this property value is
matlab.unittest.Verbosity.Terse. You can specify a different logging level during
plugin construction.

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.plugins.TestReportPlugin |
matlab.unittest.plugins.TestReportPlugin.producingDOCX

Introduced in R2016b

 matlab.unittest.plugins.testreport.DOCXTestReportPlugin class

1-10981

matlab.unittest.plugins.testreport.HTMLTest
ReportPlugin class
Package: matlab.unittest.plugins.testreport
Superclasses:

TestReportPlugin that creates a test report in .html format

Description
An HTMLTestReportPlugin is an instance of the TestReportPlugin class that creates
a test result report in .html format. To create a HTMLTestReportPlugin instance, use
the matlab.unittest.plugins.TestReportPlugin.producingHTML static method.

Properties
MainFile — Name of main file
character vector

This property is read-only.

Name of the main file of the HTML report, specified as a character vector. Specify
MainFile during plugin construction.
Example: 'index.html'
Example: 'main.html'

These properties are inherited from matlab.unittest.plugins.TestReportPlugin:

IncludeCommandWindowText — Indicator if text output from Command Window is
included
false (default) | true

This property is read-only.

Indicator if text output from Command Window is included, specified as false or true
(logical 0 or 1). By default, IncludeCommandWindowText is false and the text

1 Alphabetical List

1-10982

output from the Command Window is excluded from the report. To include Command
Window text in the report, specify IncludeCommandWindowText as true during plugin
construction.

IncludePassingDiagnostics — Indicator if diagnostics for passing events are
included
false (default) | true

This property is read-only.

Indicator if diagnostics for passing events are included, specified as false or true
(logical 0 or 1). By default, IncludePassingDiagnostics is false and the
diagnostics from passing events are excluded from the output. To include diagnostics
from passing events in the output, specify IncludePassingDiagnostics as true
during plugin construction.

LoggingLevel — Maximum verbosity level for logged diagnostics included by the
plugin
matlab.unittest.Verbosity.Terse (default) | matlab.unittest.Verbosity
enumeration object

This property is read-only.

Maximum verbosity level for logged diagnostics included by the plugin, returned as a
matlab.unittest.Verbosity enumeration object. The plugin includes diagnostics that
are logged at this level and below. By default this property value is
matlab.unittest.Verbosity.Terse. You can specify a different logging level during
plugin construction.

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.plugins.TestReportPlugin |
matlab.unittest.plugins.TestReportPlugin.producingHTML

 matlab.unittest.plugins.testreport.HTMLTestReportPlugin class

1-10983

Introduced in R2017b

1 Alphabetical List

1-10984

matlab.unittest.plugins.testreport.PDFTestR
eportPlugin class
Package: matlab.unittest.plugins.testreport
Superclasses:

TestReportPlugin that creates a test report in .pdf format

Description
A PDFTestReportPlugin is an instance of the TestReportPlugin class that creates a
test result report in PDF format. To create a PDFTestReportPlugin instance, use the
matlab.unittest.plugins.TestReportPlugin.producingPDF static method.

Properties
PageOrientation — Report orientation
'portrait' (default) | 'landscape'

Report orientation, specified as 'portrait' or 'landscape'. This property is read only.
You can specify it during plugin construction.

These properties are inherited from matlab.unittest.plugins.TestReportPlugin:

IncludeCommandWindowText — Indicator if text output from Command Window is
included
false (default) | true

This property is read-only.

Indicator if text output from Command Window is included, specified as false or true
(logical 0 or 1). By default, IncludeCommandWindowText is false and the text
output from the Command Window is excluded from the report. To include Command
Window text in the report, specify IncludeCommandWindowText as true during plugin
construction.

 matlab.unittest.plugins.testreport.PDFTestReportPlugin class

1-10985

IncludePassingDiagnostics — Indicator if diagnostics for passing events are
included
false (default) | true

This property is read-only.

Indicator if diagnostics for passing events are included, specified as false or true
(logical 0 or 1). By default, IncludePassingDiagnostics is false and the
diagnostics from passing events are excluded from the output. To include diagnostics
from passing events in the output, specify IncludePassingDiagnostics as true
during plugin construction.

LoggingLevel — Maximum verbosity level for logged diagnostics included by the
plugin
matlab.unittest.Verbosity.Terse (default) | matlab.unittest.Verbosity
enumeration object

This property is read-only.

Maximum verbosity level for logged diagnostics included by the plugin, returned as a
matlab.unittest.Verbosity enumeration object. The plugin includes diagnostics that
are logged at this level and below. By default this property value is
matlab.unittest.Verbosity.Terse. You can specify a different logging level during
plugin construction.

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Tips
• PDF test reports are generated based on your system locale and the font families

installed on your machine. When generating a report with a non-English locale, unless
your machine has the Noto Sans CJK font families installed, the report may have
pound sign characters (#) in place of Chinese, Japanese, and Korean characters.

1 Alphabetical List

1-10986

https://www.google.com/get/noto/

See Also
matlab.unittest.plugins.TestReportPlugin |
matlab.unittest.plugins.TestReportPlugin.producingPDF

Introduced in R2016b

 matlab.unittest.plugins.testreport.PDFTestReportPlugin class

1-10987

matlab.unittest.plugins.TestReportPlugin
class
Package: matlab.unittest.plugins

Plugin that produces a test result report

Description
TestReportPlugin creates a plugin that directs the TestRunner to produce a test
result report. Using this plugin, you can produce readable and archivable test reports.

Construction
Instantiate a TestReportPlugin using one of its static methods:

• To produce a .docx report, use the producingDOCX static method.
• To produce a PDF report, use the producingPDF static method.

Properties
IncludeCommandWindowText — Indicator if text output from Command Window is
included
false (default) | true

This property is read-only.

Indicator if text output from Command Window is included, specified as false or true
(logical 0 or 1). By default, IncludeCommandWindowText is false and the text
output from the Command Window is excluded from the report. To include Command
Window text in the report, specify IncludeCommandWindowText as true during plugin
construction.

1 Alphabetical List

1-10988

IncludePassingDiagnostics — Indicator if diagnostics for passing events are
included
false (default) | true

This property is read-only.

Indicator if diagnostics for passing events are included, specified as false or true
(logical 0 or 1). By default, IncludePassingDiagnostics is false and the
diagnostics from passing events are excluded from the output. To include diagnostics
from passing events in the output, specify IncludePassingDiagnostics as true
during plugin construction.

LoggingLevel — Maximum verbosity level for logged diagnostics included by the
plugin
matlab.unittest.Verbosity.Terse (default) | matlab.unittest.Verbosity
enumeration object

This property is read-only.

Maximum verbosity level for logged diagnostics included by the plugin, returned as a
matlab.unittest.Verbosity enumeration object. The plugin includes diagnostics that
are logged at this level and below. By default this property value is
matlab.unittest.Verbosity.Terse. You can specify a different logging level during
plugin construction.

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

Methods
producingDOCX Constructs plugin that produces .docx report
producingHTML Constructs plugin that produces .html report
producingPDF Constructs plugin that produces .pdf report

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 matlab.unittest.plugins.TestReportPlugin class

1-10989

Examples

Generate Test Result Report in .docx Format

Create a test suite from two test files, run the suite, and generate a .docx report of the
results.

Create a new file in your working folder named ScriptBasedTest.m containing the
following test script. The script includes two failing and incomplete tests.

%% Test double class
expSolution = 'double';
actSolution = ones;
assert(isa(actSolution,expSolution))

%% Test single class
expSolution = 'single';
actSolution = ones('single');
assert(isa(actSolution,expSolution))

%% Test uint16 class
expSolution = 'uint16';
actSolution = ones('uint16');
assert(isa(actSolution,expSolution))

%% Test that fails
assert(false==true);

%% Another test that fails
assert(strcmp('correlation','causation'))

Create a file named ClassBasedTest.m containing the following test class. The class
includes a failing test that, with parameterization, results in nine failed test results.

classdef ClassBasedTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end
 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end
 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);

1 Alphabetical List

1-10990

 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end
 methods (TestClassSetup)
 function ClassSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0, generator)
 end
 end
 methods (TestMethodSetup)
 function MethodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end
 methods (Test, ParameterCombination='sequential')
 function testSize(testCase,dim1,dim2,dim3)
 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])
 end
 end
 methods (Test, ParameterCombination='pairwise')
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun);
 end
 end
 methods (Test)
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

At the command prompt, create a test suite from both test files.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestReportPlugin;

 matlab.unittest.plugins.TestReportPlugin class

1-10991

suite = testsuite({'ScriptBasedTest','ClassBasedTest'})

suite =

 1×284 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 17 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Create a silent test runner, so that there is no information output to the command
window. Create a TestReportPlugin that sends output to the file
MyTestReport.docx.

runner = TestRunner.withNoPlugins;
docxFile = 'MyTestReport.docx';
plugin = TestReportPlugin.producingDOCX(docxFile);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite)

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\work\MyTestReport.docx

result =

 1×284 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete

1 Alphabetical List

1-10992

 Duration
 Details

Totals:
 282 Passed, 2 Failed, 2 Incomplete.
 0.73477 seconds testing time.

Open the test report.

open(docxFile)

Generate .pdf Report That Includes Passing Diagnostics

Create a test suite from a function-based test, run the suite, and generate a report of the
results. Include passing diagnostics and the text output to the Command Window.

Create a new file in your working folder named FunctionBasedTest.m containing the
following function-based test. The test file includes two failing tests.

%% Main function to generate tests
function tests = FunctionBasedTest
tests = functiontests(localfunctions);
end

%% Test Functions
function passingTest(testCase)
actSolution = 13*3+7*5;
expSolution = 74;
verifyEqual(testCase,actSolution,expSolution)
end

function failingTest(testCase)
actSolution = single(1);
verifyTrue(testCase,actSolution)
end

function anotherPassingTest(testCase)
verifyClass(testCase,string('some text'),'string')
end

function anotherFailingTest(testCase)
verifyTrue(testCase,strcmp('42','everything'))
end

 matlab.unittest.plugins.TestReportPlugin class

1-10993

At the command prompt, create a test suite from FunctionBasedTest.m. Create a test
runner that displays output to the command window using the default plugin.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestReportPlugin;

suite = testsuite('FunctionBasedTest');
runner = TestRunner.withTextOutput;

Create a TestReportPlugin that sends output to the file MyTestReport2.pdf. Include
passing diagnostics and text output from the Command Window in the report.

pdfFile = 'MyTestReport2.pdf';
plugin = TestReportPlugin.producingPDF(pdfFile,...
 'IncludingPassingDiagnostics',true,'IncludingCommandWindowText',true);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite);

Running FunctionBasedTest
.
==
Verification failed in FunctionBasedTest/failingTest.

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must be logical. It is of type "single".

 Actual single:
 1

 Stack Information:

 In C:\Work\FunctionBasedTest.m (failingTest) at 15
==
..
==
Verification failed in FunctionBasedTest/anotherFailingTest.

1 Alphabetical List

1-10994

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must evaluate to "true".

 Actual logical:
 0

 Stack Information:

 In C:\Work\FunctionBasedTest.m (anotherFailingTest) at 23
==
.
Done FunctionBasedTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 FunctionBasedTest/failingTest X Failed by verification.

 FunctionBasedTest/anotherFailingTest X Failed by verification.

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\Work\MyTestReport2.pdf

Open the test report.

open(pdfFile)

Create Test Report That Includes Artifacts

In a file in your current working folder, create the FigurePropTest test class. If the
failingTest test method fails (it always does in this example), it uses a
FigureDiagnostic to save the figure so you can examine it later.

 matlab.unittest.plugins.TestReportPlugin class

1-10995

classdef FigurePropTest < matlab.unittest.TestCase
 properties
 TestFigure
 end
 methods(TestMethodSetup)
 function createFigure(testCase)
 testCase.TestFigure = figure;
 end
 end
 methods(TestMethodTeardown)
 function closeFigure(testCase)
 close(testCase.TestFigure)
 end
 end
 methods(Test)
 function defaultCurrentPoint(testCase)
 cp = testCase.TestFigure.CurrentPoint;
 testCase.verifyEqual(cp,[0 0], ...
 'Default current point is incorrect')
 end
 function defaultCurrentObject(testCase)
 import matlab.unittest.constraints.IsEmpty
 co = testCase.TestFigure.CurrentObject;
 testCase.verifyThat(co,IsEmpty, ...
 'Default current object should be empty')
 end
 function failingTest(testCase)
 import matlab.unittest.diagnostics.FigureDiagnostic
 fig = testCase.TestFigure;
 ax = axes(fig);
 surf(ax,peaks)
 testCase.verifyEmpty(testCase.TestFigure.Children, ...
 FigureDiagnostic(testCase.TestFigure))
 end
 end
end

At the command prompt, create a test suite.

suite = testsuite('FigurePropTest');

Create a silent test runner that records diagnostics and generates a PDF report.

import matlab.unittest.plugins.DiagnosticsRecordingPlugin
import matlab.unittest.plugins.TestReportPlugin

1 Alphabetical List

1-10996

runner = matlab.unittest.TestRunner.withNoPlugins;
runner.addPlugin(DiagnosticsRecordingPlugin);
runner.addPlugin(TestReportPlugin.producingPDF('MyTestReport.pdf'));

Change the default artifact root to your current working folder.

runner.ArtifactsRootFolder = pwd;

Run the tests. The third test fails.

results = runner.run(suite)

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\work\MyTestReport.pdf

results =

 1×3 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 1 Failed, 0 Incomplete.
 1.2295 seconds testing time.

Display the test diagnostic results for the third test. The test framework saved two
artifacts related to the third test. By default, a FigureDiagnostic object saves a figure
as both a PNG file and a FIG file.

results(3).Details.DiagnosticRecord.TestDiagnosticResults

ans =

 DiagnosticResult with properties:

 Artifacts: [1×2 matlab.unittest.diagnostics.FileArtifact]
 DiagnosticText: 'Figure saved to:↵--> C:\work\715b5416-5c52-4a53-bbec-837a5db57392\Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.fig↵--> C:\work\715b5416-5c52-4a53-bbec-837a5db57392\Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.png'

 matlab.unittest.plugins.TestReportPlugin class

1-10997

Display the stored location of the first artifact.

results(3).Details.DiagnosticRecord.TestDiagnosticResults.Artifacts(1)

ans =

 FileArtifact with properties:

 Name: "Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.fig"
 Location: "C:\work\715b5416-5c52-4a53-bbec-837a5db57392"
 FullPath: "C:\work\715b5416-5c52-4a53-bbec-837a5db57392\Figure_284d9501-2121-45a1-bf5c-18904ce11e8f.fig"

To inspect the image related to the failed test, open the file at the location shown in the
FullPath field. Additionally, since you generated a PDF test report, the image is
captured in MyTestReport.pdf. The test report also contains the path to the artifacts.

See Also
matlab.unittest.plugins.testreport.DOCXTestReportPlugin |
matlab.unittest.plugins.testreport.HTMLTestReportPlugin |
matlab.unittest.plugins.testreport.PDFTestReportPlugin

Introduced in R2016b

1 Alphabetical List

1-10998

matlab.unittest.plugins.TestReportPlugin.pr
oducingDOCX
Class: matlab.unittest.plugins.TestReportPlugin
Package: matlab.unittest.plugins

Constructs plugin that produces .docx report

Syntax
matlab.unittest.plugins.TestReportPlugin.producingDOCX
matlab.unittest.plugins.TestReportPlugin.producingDOCX(docxFile)
matlab.unittest.plugins.TestReportPlugin.producingDOCX(docxFile,
Name,Value)

Description
matlab.unittest.plugins.TestReportPlugin.producingDOCX constructs a
plugin that produces a .docx report of test results in a temporary folder. This syntax is
equivalent to
matlab.unittest.plugins.TestReportPlugin.producingDOCX([tempname
'.docx']).

matlab.unittest.plugins.TestReportPlugin.producingDOCX(docxFile) saves
the report to the file docxFile.

matlab.unittest.plugins.TestReportPlugin.producingDOCX(docxFile,
Name,Value) constructs a plugin with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
docxFile — Name of test report
character vector ending in .docx

 matlab.unittest.plugins.TestReportPlugin.producingDOCX

1-10999

Name of the test report that the plugin creates, specified as a character vector ending
in .docx.
Example: 'myReportFile.docx'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
TestReportPlugin.producingDOCX(docxFile,'LoggingLevel',Verbosity.Det
ailed) creates a plugin that includes diagnostics logged at and below the Detailed
level.

PageOrientation — Report orientation
'portrait' (default) | 'landscape'

Report orientation, specified as 'portrait' or 'landscape'. By default the plugin
produces a report with portrait orientation.

IncludingCommandWindowText — Include Command Window text in report
false (default) | true

Include Command Window text in report, specified as false or true. By default,
IncludingCommandWindowText is false and the text output from the Command
Window is excluded from the report. To include Command Window text in the report,
specify IncludingCommandWindowText as true.
Data Types: logical

IncludingPassingDiagnostics — Include passing event diagnostics
false (default) | true

Include passing event diagnostics, specified as false or true. By default,
IncludingPassingDiagnostics is false and the diagnostics from passing events are
excluded from the report. To include diagnostics from passing events in the report,
specify IncludingPassingDiagnostics as true.
Data Types: logical

1 Alphabetical List

1-11000

LoggingLevel — Maximum level of logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Maximum level at which logged diagnostics are included by the plugin instance, specified
as an integer value from 0 through 4, a matlab.unittest.Verbosity enumeration
object, or a string scalar or character vector corresponding to one of the predefined
enumeration member names. The plugin includes diagnostics that are logged at this level
and below. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

By default the plugin includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

Examples

Generate Test Result Report in .docx Format

Create a test suite from two test files, run the suite, and generate a .docx report of the
results.

Create a new file in your working folder named ScriptBasedTest.m containing the
following test script. The script includes two failing and incomplete tests.

 matlab.unittest.plugins.TestReportPlugin.producingDOCX

1-11001

%% Test double class
expSolution = 'double';
actSolution = ones;
assert(isa(actSolution,expSolution))

%% Test single class
expSolution = 'single';
actSolution = ones('single');
assert(isa(actSolution,expSolution))

%% Test uint16 class
expSolution = 'uint16';
actSolution = ones('uint16');
assert(isa(actSolution,expSolution))

%% Test that fails
assert(false==true);

%% Another test that fails
assert(strcmp('correlation','causation'))

Create a file named ClassBasedTest.m containing the following test class. The class
includes a failing test that, with parameterization, results in nine failed test results.

classdef ClassBasedTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end
 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end
 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);
 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end
 methods (TestClassSetup)
 function ClassSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0, generator)
 end
 end
 methods (TestMethodSetup)

1 Alphabetical List

1-11002

 function MethodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end
 methods (Test, ParameterCombination='sequential')
 function testSize(testCase,dim1,dim2,dim3)
 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])
 end
 end
 methods (Test, ParameterCombination='pairwise')
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun);
 end
 end
 methods (Test)
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

At the command prompt, create a test suite from both test files.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestReportPlugin;

suite = testsuite({'ScriptBasedTest','ClassBasedTest'})

suite =

 1×284 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures

 matlab.unittest.plugins.TestReportPlugin.producingDOCX

1-11003

 Tags

Tests Include:
 17 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Create a silent test runner, so that there is no information output to the command
window. Create a TestReportPlugin that sends output to the file
MyTestReport.docx.

runner = TestRunner.withNoPlugins;
docxFile = 'MyTestReport.docx';
plugin = TestReportPlugin.producingDOCX(docxFile);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite)

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\work\MyTestReport.docx

result =

 1×284 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 282 Passed, 2 Failed, 2 Incomplete.
 0.73477 seconds testing time.

Open the test report.

open(docxFile)

1 Alphabetical List

1-11004

Generate .docx Report That Includes Passing Diagnostics

Create a test suite from a function-based test, run the suite, and generate a report of the
results. Include passing diagnostics and the text output to the Command Window.

Create a new file in your working folder named FunctionBasedTest.m containing the
following function-based test. The test file includes two failing tests.

%% Main function to generate tests
function tests = FunctionBasedTest
tests = functiontests(localfunctions);
end

%% Test Functions
function passingTest(testCase)
actSolution = 13*3+7*5;
expSolution = 74;
verifyEqual(testCase,actSolution,expSolution)
end

function failingTest(testCase)
actSolution = single(1);
verifyTrue(testCase,actSolution)
end

function anotherPassingTest(testCase)
verifyClass(testCase,string('some text'),'string')
end

function anotherFailingTest(testCase)
verifyTrue(testCase,strcmp('42','everything'))
end

At the command prompt, create a test suite from FunctionBasedTest.m. Create a test
runner that displays output to the command window using the default plugin.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestReportPlugin;

suite = testsuite('FunctionBasedTest');
runner = TestRunner.withTextOutput;

Create a TestReportPlugin that sends output to the file MyTestReport2.docx.
Include passing diagnostics and text output from the Command Window in the report.

 matlab.unittest.plugins.TestReportPlugin.producingDOCX

1-11005

docxFile = 'MyTestReport2.docx';
plugin = TestReportPlugin.producingDOCX(docxFile,...
 'IncludingPassingDiagnostics',true,'IncludingCommandWindowText',true);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite);

Running FunctionBasedTest
.
==
Verification failed in FunctionBasedTest/failingTest.

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must be logical. It is of type "single".

 Actual single:
 1

 Stack Information:

 In C:\Work\FunctionBasedTest.m (failingTest) at 15
==
..
==
Verification failed in FunctionBasedTest/anotherFailingTest.

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must evaluate to "true".

 Actual logical:
 0

 Stack Information:

 In C:\Work\FunctionBasedTest.m (anotherFailingTest) at 23

1 Alphabetical List

1-11006

==
.
Done FunctionBasedTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 FunctionBasedTest/failingTest X Failed by verification.

 FunctionBasedTest/anotherFailingTest X Failed by verification.

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\Work\MyTestReport2.docx

Open the test report.

open(docxFile)

See Also
matlab.unittest.plugins.testreport.DOCXTestReportPlugin

Introduced in R2016b

 matlab.unittest.plugins.TestReportPlugin.producingDOCX

1-11007

matlab.unittest.plugins.TestReportPlugin.pr
oducingHTML
Class: matlab.unittest.plugins.TestReportPlugin
Package: matlab.unittest.plugins

Constructs plugin that produces .html report

Syntax
matlab.unittest.plugins.TestReportPlugin.producingHTML
matlab.unittest.plugins.TestReportPlugin.producingHTML(htmlFolder)
matlab.unittest.plugins.TestReportPlugin.producingHTML(___ ,
Name,Value)

Description
matlab.unittest.plugins.TestReportPlugin.producingHTML constructs a
plugin that produces an .html report of test results in a temporary folder. Within that
folder, the main file of the report is index.html. If you rerun the test suite with this
plugin, then MATLAB overwrites the contents in the folder.

This syntax is equivalent to
matlab.unittest.plugins.TestReportPlugin.producingHTML(tempname).

matlab.unittest.plugins.TestReportPlugin.producingHTML(htmlFolder)
saves the report to the htmlFolder folder.

matlab.unittest.plugins.TestReportPlugin.producingHTML(___ ,
Name,Value) constructs a plugin with additional options specified by one or more
Name,Value pair arguments. You can use this syntax with any of the arguments from the
previous syntaxes.

1 Alphabetical List

1-11008

Input Arguments
htmlFolder — Output folder
character vector | string scalar

Output folder, specified as a character vector or string scalar. htmlFolder can be a
relative or absolute path. By default, within the folder, the main file of the report is
index.html. To change the name of the main file, use the 'MainFile' name-value pair
argument.
Example: 'TestRunOutput'
Example: 'C:\myWork\testResults'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
TestReportPlugin.producingHTML('myTestOutput','MainFile','main.html'
) creates a plugin that outputs results to the myTestOutput folder, with a main file
named main.html instead of index.html.

MainFile — Main file name
character vector | string scalar

Main HTML file name, specified as a character vector or string scalar.
Example: 'main.html'

IncludingCommandWindowText — Include Command Window text in report
false (default) | true

Include Command Window text in report, specified as false or true. By default,
IncludingCommandWindowText is false and the text output from the Command
Window is excluded from the report. To include Command Window text in the report,
specify IncludingCommandWindowText as true.
Data Types: logical

 matlab.unittest.plugins.TestReportPlugin.producingHTML

1-11009

IncludingPassingDiagnostics — Include passing event diagnostics
false (default) | true

Include passing event diagnostics, specified as false or true. By default,
IncludingPassingDiagnostics is false and the diagnostics from passing events are
excluded from the report. To include diagnostics from passing events in the report,
specify IncludingPassingDiagnostics as true.
Data Types: logical

LoggingLevel — Maximum level of logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Maximum level at which logged diagnostics are included by the plugin instance, specified
as an integer value from 0 through 4, a matlab.unittest.Verbosity enumeration
object, or a string scalar or character vector corresponding to one of the predefined
enumeration member names. The plugin includes diagnostics that are logged at this level
and below. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

By default the plugin includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

1 Alphabetical List

1-11010

Examples

Generate Test Result Report in .html Format

Create a test suite from two test files, run the suite, and generate a .html report of the
results.

Create a new file in your working folder named ScriptBasedTest.m containing the
following test script. The script includes two failing and incomplete tests.

%% Test double class
expSolution = 'double';
actSolution = ones;
assert(isa(actSolution,expSolution))

%% Test single class
expSolution = 'single';
actSolution = ones('single');
assert(isa(actSolution,expSolution))

%% Test uint16 class
expSolution = 'uint16';
actSolution = ones('uint16');
assert(isa(actSolution,expSolution))

%% Test that fails
assert(false==true);

%% Another test that fails
assert(strcmp('correlation','causation'))

Create a file named ClassBasedTest.m containing the following test class. The class
includes a failing test that, with parameterization, results in nine failed tests.

classdef ClassBasedTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end
 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end
 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);

 matlab.unittest.plugins.TestReportPlugin.producingHTML

1-11011

 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end
 methods (TestClassSetup)
 function ClassSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0, generator)
 end
 end
 methods (TestMethodSetup)
 function MethodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end
 methods (Test, ParameterCombination='sequential')
 function testSize(testCase,dim1,dim2,dim3)
 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])
 end
 end
 methods (Test, ParameterCombination='pairwise')
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun);
 end
 end
 methods (Test)
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

At the command prompt, create a test suite from both test files.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestReportPlugin;

1 Alphabetical List

1-11012

suite = testsuite({'ScriptBasedTest','ClassBasedTest'})

suite =

 1×284 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 17 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Create a silent test runner, so that there is no information output to the Command
Window. Create a TestReportPlugin that generates a .html test report in a folder
named myResults.

runner = TestRunner.withNoPlugins;
htmlFolder = 'myResults';
plugin = TestReportPlugin.producingHTML(htmlFolder);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite)

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\work\myResults\index.html

result =

 1×284 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete

 matlab.unittest.plugins.TestReportPlugin.producingHTML

1-11013

 Duration
 Details

Totals:
 282 Passed, 2 Failed, 2 Incomplete.
 1.6712 seconds testing time.

Open the test report by clicking the name of the saved file. In this example the file name
is C:\work\myResults\index.html.

See Also
matlab.unittest.plugins.testreport.HTMLTestReportPlugin

Introduced in R2017b

1 Alphabetical List

1-11014

matlab.unittest.plugins.TestReportPlugin.pr
oducingPDF
Class: matlab.unittest.plugins.TestReportPlugin
Package: matlab.unittest.plugins

Constructs plugin that produces .pdf report

Syntax
matlab.unittest.plugins.TestReportPlugin.producingPDF
matlab.unittest.plugins.TestReportPlugin.producingPDF(pdfFile)
matlab.unittest.plugins.TestReportPlugin.producingPDF(pdfFile,
Name,Value)

Description
matlab.unittest.plugins.TestReportPlugin.producingPDF constructs a plugin
that produces a PDF report of test results in a temporary folder. This syntax is equivalent
to matlab.unittest.plugins.TestReportPlugin.producingPDF([tempname
'.pdf']).

matlab.unittest.plugins.TestReportPlugin.producingPDF(pdfFile) saves
the report to the file pdfFile.

matlab.unittest.plugins.TestReportPlugin.producingPDF(pdfFile,
Name,Value) constructs a plugin with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
pdfFile — Name of test report
character vector ending in .pdf

 matlab.unittest.plugins.TestReportPlugin.producingPDF

1-11015

Name of the test report that the plugin creates, specified as a character vector ending
in .pdf.
Example: pdfFile = 'myReportFile.pdf'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
TestReportPlugin.producingPDF(pdfFile,'PageOrientation','landscape')
creates a plugin that generates a report in landscape orientation.

PageOrientation — Report orientation
'portrait' (default) | 'landscape'

Report orientation, specified as 'portrait' or 'landscape'. By default the plugin
produces a report with portrait orientation.

IncludingCommandWindowText — Include Command Window text in report
false (default) | true

Include Command Window text in report, specified as false or true. By default,
IncludingCommandWindowText is false and the text output from the Command
Window is excluded from the report. To include Command Window text in the report,
specify IncludingCommandWindowText as true.
Data Types: logical

IncludingPassingDiagnostics — Include passing event diagnostics
false (default) | true

Include passing event diagnostics, specified as false or true. By default,
IncludingPassingDiagnostics is false and the diagnostics from passing events are
excluded from the report. To include diagnostics from passing events in the report,
specify IncludingPassingDiagnostics as true.
Data Types: logical

1 Alphabetical List

1-11016

LoggingLevel — Maximum level of logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Maximum level at which logged diagnostics are included by the plugin instance, specified
as an integer value from 0 through 4, a matlab.unittest.Verbosity enumeration
object, or a string scalar or character vector corresponding to one of the predefined
enumeration member names. The plugin includes diagnostics that are logged at this level
and below. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

By default the plugin includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

Examples

Generate Test Result Report in .pdf Format

Create a test suite from two test files, run the suite, and generate a .pdf report of the
results.

Create a new file in your working folder named ScriptBasedTest.m containing the
following test script. The script includes two failing and incomplete tests.

 matlab.unittest.plugins.TestReportPlugin.producingPDF

1-11017

%% Test double class
expSolution = 'double';
actSolution = ones;
assert(isa(actSolution,expSolution))

%% Test single class
expSolution = 'single';
actSolution = ones('single');
assert(isa(actSolution,expSolution))

%% Test uint16 class
expSolution = 'uint16';
actSolution = ones('uint16');
assert(isa(actSolution,expSolution))

%% Test that fails
assert(false==true);

%% Another test that fails
assert(strcmp('correlation','causation'))

Create a file named ClassBasedTest.m containing the following test class. The class
includes a failing test that, with parameterization, results in nine failed test results.

classdef ClassBasedTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end
 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end
 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);
 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end
 methods (TestClassSetup)
 function ClassSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0, generator)
 end
 end
 methods (TestMethodSetup)

1 Alphabetical List

1-11018

 function MethodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end
 methods (Test, ParameterCombination='sequential')
 function testSize(testCase,dim1,dim2,dim3)
 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])
 end
 end
 methods (Test, ParameterCombination='pairwise')
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun);
 end
 end
 methods (Test)
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

At the command prompt, create a test suite from both test files.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestReportPlugin;

suite = testsuite({'ScriptBasedTest','ClassBasedTest'})

suite =

 1×284 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures

 matlab.unittest.plugins.TestReportPlugin.producingPDF

1-11019

 Tags

Tests Include:
 17 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags..

Create a silent test runner, so that there is no information output to the command
window. Create a TestReportPlugin that sends output to the file MyTestReport.pdf.

runner = TestRunner.withNoPlugins;
pdfFile = 'MyTestReport.pdf';
plugin = TestReportPlugin.producingPDF(pdfFile);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite)

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\work\MyTestReport.pdf

result =

 1×284 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 282 Passed, 2 Failed, 2 Incomplete.
 2.2054 seconds testing time.

Open the test report.

open(pdfFile)

1 Alphabetical List

1-11020

Generate .pdf Report That Includes Passing Diagnostics

Create a test suite from a function-based test, run the suite, and generate a report of the
results. Include passing diagnostics and the text output to the Command Window.

Create a new file in your working folder named FunctionBasedTest.m containing the
following function-based test. The test file includes two failing tests.

%% Main function to generate tests
function tests = FunctionBasedTest
tests = functiontests(localfunctions);
end

%% Test Functions
function passingTest(testCase)
actSolution = 13*3+7*5;
expSolution = 74;
verifyEqual(testCase,actSolution,expSolution)
end

function failingTest(testCase)
actSolution = single(1);
verifyTrue(testCase,actSolution)
end

function anotherPassingTest(testCase)
verifyClass(testCase,string('some text'),'string')
end

function anotherFailingTest(testCase)
verifyTrue(testCase,strcmp('42','everything'))
end

At the command prompt, create a test suite from FunctionBasedTest.m. Create a test
runner that displays output to the command window using the default plugin.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestReportPlugin;

suite = testsuite('FunctionBasedTest');
runner = TestRunner.withTextOutput;

Create a TestReportPlugin that sends output to the file MyTestReport2.pdf. Include
passing diagnostics and text output from the Command Window in the report.

 matlab.unittest.plugins.TestReportPlugin.producingPDF

1-11021

pdfFile = 'MyTestReport2.pdf';
plugin = TestReportPlugin.producingPDF(pdfFile,...
 'IncludingPassingDiagnostics',true,'IncludingCommandWindowText',true);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite);

Running FunctionBasedTest
.
==
Verification failed in FunctionBasedTest/failingTest.

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must be logical. It is of type "single".

 Actual single:
 1

 Stack Information:

 In C:\Work\FunctionBasedTest.m (failingTest) at 15
==
..
==
Verification failed in FunctionBasedTest/anotherFailingTest.

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must evaluate to "true".

 Actual logical:
 0

 Stack Information:

 In C:\Work\FunctionBasedTest.m (anotherFailingTest) at 23

1 Alphabetical List

1-11022

==
.
Done FunctionBasedTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 FunctionBasedTest/failingTest X Failed by verification.

 FunctionBasedTest/anotherFailingTest X Failed by verification.

Generating report. Please wait.
 Preparing content for the report.
 Adding content to the report.
 Writing report to file.
Report has been saved to: C:\Work\MyTestReport2.pdf

Open the test report.

open(pdfFile)

Tips
• PDF test reports are generated based on your system locale and the font families

installed on your machine. When generating a report with a non-English locale, unless
your machine has the Noto Sans CJK font families installed, the report may have
pound sign characters (#) in place of Chinese, Japanese, and Korean characters.

See Also
matlab.unittest.plugins.testreport.PDFTestReportPlugin

Introduced in R2016b

 matlab.unittest.plugins.TestReportPlugin.producingPDF

1-11023

https://www.google.com/get/noto/

matlab.unittest.plugins.TestRunnerPlugin
class
Package: matlab.unittest.plugins

Plugin interface for extending TestRunner

Description
The TestRunnerPlugin interface enables extension of the
matlab.unittest.TestRunner. To customize a test run, create a subclass of
TestRunnerPlugin and override select methods. TestRunnerPlugin provides you
with a default implementation, so override only methods necessary to achieve your
required customization. Every method you implement must invoke its corresponding
superclass method, passing along the same instance of pluginData that it receives.

To run tests with this extension, add the custom TestRunnerPlugin to the TestRunner
using the addPlugin method of TestRunner.

1 Alphabetical List

1-11024

Methods

createSharedTestFixture Extend creation of shared test fixture instances
createTestClassInstance Extend creation of class-level TestCase instances
createTestMethodInstance Extend creation of method-level TestCase instances
reportFinalizedResult Enable reporting of finalized TestResults
runTest Extend running of single TestSuite element
runTestClass Extend running of TestSuite array from same class or

function
runTestSuite Extend running of TestSuite array
runTestMethod Extend running of single Test method
setupSharedTestFixture Extend setting up shared test fixture
setupTestClass Extend setting up test class
setupTestMethod Extend setting up of test method
teardownSharedTestFixture Extend tearing down shared test fixture
teardownTestClass Extend tearing down of test class
teardownTestMethod Extend tearing down of test method

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
matlab.unittest.TestRunner | matlab.unittest.plugins.plugindata

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

 matlab.unittest.plugins.TestRunnerPlugin class

1-11025

createSharedTestFixture
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend creation of shared test fixture instances

Syntax
f = createSharedTestFixture(plugin,pluginData)

Description
f = createSharedTestFixture(plugin,pluginData) extends the creation of
shared test fixtures and returns the modified Fixture instance, f. The testing framework
uses the fixture instance to customize running tests that use shared fixtures. The testing
framework evaluates this method within the scope of the runTestSuite method of the
TestRunnerPlugin for each shared test fixture it needs to set up. A typical
implementation of this method is to add listeners to various events originating from the
shared test fixture instance. Since the Fixture inherits from the handle class, add
listeners by calling the addlistener method from within the
createSharedTestFixture method.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Shared test fixture creation information, specified as an instance of
matlab.unittest.plugins.plugindata.TestContentCreationPluginData. The
test framework uses this information to introspect into the test content.

1 Alphabetical List

1-11026

Examples

Extend Creation of Shared Test Fixture Instances

Extend the running of tests to count the number of shared test fixture assertion failures.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 properties (SetAccess = private)
 FixtureAssertionFailureData = {};
 end

 methods (Access = protected)
 function fixture = createSharedTestFixture(plugin, pluginData)
 % Invoke the super class method
 fixture = createSharedTestFixture@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 % Get the fixture name
 fixtureName = pluginData.Name;

 % Add a listener to fixture assertion failures
 % and capture the qualification failure information
 fixture.addlistener('AssertionFailed', @(~,evd) ...
 plugin.captureFixtureAssertionFailureData(evd, fixtureName))
 end
 end

 methods (Access = private)
 function captureFixtureAssertionFailureData(plugin, eventData, fixtureName)
 plugin.FixtureAssertionFailureData{end+1} = struct(...
 'FixtureName', fixtureName, ...
 'ActualValue', eventData.ActualValue, ...
 'Constraint' , eventData.Constraint, ...
 'Stack' , eventData.Stack);
 end

 createSharedTestFixture

1-11027

 end
end

See Also
matlab.unittest.TestRunner | matlab.unittest.fixtures.Fixture |
matlab.unittest.plugins.plugindata.TestContentCreationPluginData |
matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11028

createTestClassInstance
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend creation of class-level TestCase instances

Syntax
tc = createTestClassInstance(plugin,pluginData)

Description
tc = createTestClassInstance(plugin,pluginData) extends the creation of
class-level TestCase instances, and returns the modified TestCase instance, tc. The
test framework uses the TestCase instance to customize running tests that belong to the
same test class. The test framework evaluates this method within the scope of the
runTestClass method of the TestRunnerPlugin. A typical implementation of this
method is to add listeners to various events originating from the class level instance.
Since the TestCase inherits from the handle class, add listeners by calling the
addlistener method from within the createTestClassInstance method. For each
class, the test framework passes the instance to any method with the TestClassSetup
or TestClassTeardown attribute.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Class-level TestCase creation information, specified as an instance of
matlab.unittest.plugins.plugindata.TestContentCreationPluginData. The
test framework uses this information to introspect into the test content.

 createTestClassInstance

1-11029

Examples

Extend Creation of Class-Level TestCase Instances

Extend the running of tests to count the number of class-level assumption failures.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 properties (SetAccess = private)
 TestClassAssumptionFailureData = {};
 end

 methods (Access = protected)
 function testCase = createTestClassInstance(plugin,pluginData)
 % Invoke super class method
 testCase = createTestClassInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);

 % Get the test class name
 instanceName = pluginData.Name;

 % Add a listener to capture assumption failures
 testCase.addlistener('AssumptionFailed', @(~,evd) ...
 plugin.captureClassLevelAssumptionFailureData(evd,instanceName))
 end
 end

 methods (Access = private)
 function captureClassLevelAssumptionFailureData(plugin,eventData,instanceName)
 plugin.TestClassAssumptionFailureData{end+1} = struct(...
 'InstanceName', instanceName, ...
 'ActualValue' , eventData.ActualValue, ...
 'Constraint' , eventData.Constraint, ...
 'Stack' , eventData.Stack);
 end
 end
end

See Also
matlab.unittest.TestCase | matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.TestContentCreationPluginData |

1 Alphabetical List

1-11030

matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

 createTestClassInstance

1-11031

createTestMethodInstance
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend creation of method-level TestCase instances

Syntax
tc = createTestMethodInstance(plugin,pluginData)

Description
tc = createTestMethodInstance(plugin,pluginData) extends the creation of
method-level TestCase instances, and returns the modified TestCase instance, tc. The
test framework evaluates this method within the scope of the runTest method of the
TestRunnerPlugin. A typical implementation of this method is to add listeners to
various events originating from the method level instance. Since the TestCase inherits
from the handle class, add listeners by calling the addlistener method from within the
createTestMethodInstance method. The test framework creates instances for every
element of the matlab.unittest.Test array and passes each instance to its
corresponding Test methods and to any method with the TestMethodSetup or
TestMethodTeardown attribute.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Method-level TestCase creation information, specified as an instance of
matlab.unittest.plugins.plugindata.TestContentCreationPluginData. The
test framework uses this information to introspect into the test content.

1 Alphabetical List

1-11032

Examples

Implement createMethodInstance Method

Add a listener to listen for assumption failures. Use the helper function,
captureMethodLevelAssumptionFailureData, to populate the
TestMethodAssumptionFailureData property.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 properties (SetAccess = private)
 TestMethodAssumptionFailureData = {};
 end

 methods (Access = protected)
 function testCase = createTestMethodInstance(plugin, pluginData)
 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 instanceName = pluginData.Name;
 testCase.addlistener('AssumptionFailed', @(~,evd) ...
 plugin.captureMethodLevelAssumptionFailureData(evd,instanceName))
 end
 end

 methods (Access = private)
 function captureMethodLevelAssumptionFailureData(...
 plugin, eventData, instanceName)
 plugin.TestMethodAssumptionFailureData{end+1} = struct(...
 'InstanceName', instanceName, ...
 'ActualValue' , eventData.ActualValue, ...
 'Constraint' , eventData.Constraint, ...
 'Stack' , eventData.Stack);
 end
 end

end

See Also
matlab.unittest.TestCase | matlab.unittest.TestRunner |
matlab.unittest.plugins.TestRunnerPlugin.createTestClassInstance |

 createTestMethodInstance

1-11033

matlab.unittest.plugins.plugindata.TestContentCreationPluginData |
matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11034

reportFinalizedResult
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Enable reporting of finalized TestResults

A plugin that overrides the reportFinalizedResult method is recommended for
streaming or inline reporting of test results. If you implement this method, the test runner
reports the results as soon as they are finalized. The plugin can then report test results
while the test runner is still running the test suite, rather than waiting until the entire
test suite is complete.

Syntax
reportFinalizedResult(plugin,pluginData)

Description
reportFinalizedResult(plugin,pluginData) enables the reporting of finalized
TestResults. The test runner uses this method to report finalized test results on page 1-
11037 to the plugin. By overriding the method in your TestRunnerPlugin class, you can
report information about each test result as soon as the test runner determines the test is
finalized.

The test framework evaluates this method as soon as it can guarantee that the test result
is finalized for a test suite element. It can evaluate this method within the scope of the
runTestSuite, runTestClass, or runTest methods of the TestRunnerPlugin.

Input Arguments
plugin — plugin instance
matlab.unittest.plugins.TestRunnerPlugin

Plugin instance, specified as an instance of the
matlab.unittest.plugins.TestRunnerPlugin class.

 reportFinalizedResult

1-11035

pluginData — Finalized test information
matlab.unittest.plugins.plugindata.FinalizedResultPluginData

Finalized test information, specified as an instance of the
matlab.unittest.plugins.plugindata.FinalizedResultPluginData class. The
test framework uses this information to describe the test content to the plugin.

Examples

Display Status of Each Finalized Test Element

Use the reportFinalizedResult method to display the status of each test element.

Create the following plugin in a file,ExamplePlugin.m, in your current working folder.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
 methods (Access = protected)
 function reportFinalizedResult(plugin, pluginData)
 thisResult = pluginData.TestResult;
 if thisResult.Passed
 status = 'PASSED';
 elseif thisResult.Failed
 status = 'FAILED';
 elseif thisResult.Incomplete
 status = 'SKIPPED';
 end
 fprintf('%s: %s in %f seconds.\n',thisResult.Name,...
 status,thisResult.Duration)
 reportFinalizedResult@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 end
 end
end

Create the following test class in a file, ExampleTest.m, in your current working folder.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase)
 testCase.assertGreaterThan(5,1)
 end

1 Alphabetical List

1-11036

 function testTwo(testCase)
 wrongAnswer = 'wrong';
 testCase.verifyEmpty(wrongAnswer,'Not Empty')
 testCase.verifyClass(wrongAnswer,'double','Not double')
 end
 function testThree(testCase)
 testCase.assumeEqual(7*2,13,'Values not equal')
 end
 function testFour(testCase)
 testCase.verifyEqual(3+2,5);
 end
 end
end

At the command prompt, create a test suite, add the plugin to the test runner, and run the
tests.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);
runner = TestRunner.withNoPlugins;
runner.addPlugin(ExamplePlugin)
result = runner.run(suite);

ExampleTest/testOne: PASSED in 0.002216 seconds.
ExampleTest/testTwo: FAILED in 0.006105 seconds.
ExampleTest/testThree: SKIPPED in 0.007458 seconds.
ExampleTest/testFour: PASSED in 0.004865 seconds.

Definitions

Finalized Test Results
A test result is finalized when no remaining test content can modify the results. Examples
of when the test runner might modify previously run test results include when it executes
code inside of TestClassTeardown methods, or when it tears down shared test fixtures.

 reportFinalizedResult

1-11037

See Also
matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.FinalizedResultPluginData

Topics
“Write Plugins to Extend TestRunner”
“Plugin to Generate Custom Test Output Format”

Introduced in R2015b

1 Alphabetical List

1-11038

runTest
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend running of single TestSuite element

Syntax
runTest(plugin,pluginData)

Description
runTest(plugin,pluginData) extends the running of a single TestSuite element.
This method allows the test author to override the method that runs a scalar test element
in the TestSuite array, including the creation of the TestCase, and the
TestMethodSetup and TestMethodTeardown routines. Provided the test framework
completes all fixture setup, it invokes this method one time per test element.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test element information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData. The test
framework uses this information to introspect into the test content.

Examples

 runTest

1-11039

Extend runTest method

Print the label of the test content element at run time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
 methods (Access = protected)
 function runTest(plugin, pluginData)
 fprintf('### Running test: %s\n', pluginData.Name)
 runTest@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);
 end
 end
end

See Also
matlab.unittest.TestResult | matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11040

runTestClass
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend running of TestSuite array from same class or function

Syntax
runTestClass(plugin,pluginData)

Description
runTestClass(plugin,pluginData) extends the running of tests that belong to the
same test class, function, or script. This method applies to a subset of the full TestSuite
being run by the TestRunner. The test framework evaluates this method within the
scope of the runTestSuite method of the TestRunnerPlugin. It evaluates this method
between setting up and tearing down the shared test fixture
(setupSharedTestFixture and teardownSharedTestFixture). Provided the test
framework completes shared test fixture setup, it invokes this method one time per test
class.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test suite information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData. The test
framework uses this information to introspect into the test content.

 runTestClass

1-11041

Examples

Extend runTestClass method

Print the label of the test content element at run time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
 methods (Access = protected)
 function runTestClass(plugin, pluginData)
 fprintf('### Running test class: %s\n', pluginData.Name)

 runTestClass@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);
 end
 end
end

See Also
matlab.unittest.TestResult | matlab.unittest.TestRunner |
matlab.unittest.TestSuite |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11042

runTestSuite
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend running of TestSuite array

Syntax
runTestSuite(plugin,pluginData)

Description
runTestSuite(plugin,pluginData) extends the running of the original TestSuite
array that the test framework hands to the TestRunner.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test suite information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData. The test
framework uses this information to introspect into the test content.

Examples

Implement runTestSuite Method

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
 methods (Access = protected)

 runTestSuite

1-11043

 function runTestSuite(plugin, pluginData)

 % Introspect into pluginData to get TestSuite size
 suiteSize = numel(pluginData.TestSuite);
 fprintf('### Running a total of %d tests\n', suiteSize)

 % Invoke the super class method
 runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData)
 end
 end
end

See Also
matlab.unittest.TestResult | matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11044

runTestMethod
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend running of single Test method

Syntax
runTestMethod(plugin,pluginData)

Description
runTestMethod(plugin,pluginData) extends the running of a single Test method.
The test framework evaluates this method within the scope of the runTest method of the
TestRunnerPlugin. It evaluates this method between setting up and tearing down the
scalar TestSuite element (setupTestMethod and teardownTestMethod).

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test method information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData. The test
framework uses this information to introspect into the test content.

Examples

 runTestMethod

1-11045

Extend runTestMethod method

Print the time taken to evaluate the test method.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
 methods (Access = protected)
 function runTestMethod(plugin, pluginData)
 tic

 runTestMethod@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);

 fprintf('### %s ran in %f seconds excluding fixture time.',...
 pluginData.Name, toc)
 end
 end
end

See Also
matlab.unittest.TestResult | matlab.unittest.TestRunner |
matlab.unittest.plugins.TestRunnerPlugin.runTest |
matlab.unittest.plugins.TestRunnerPlugin.runTestClass |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11046

setupSharedTestFixture
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend setting up shared test fixture

Syntax
setupSharedTestFixture(plugin,pluginData)

Description
setupSharedTestFixture(plugin,pluginData) extends the setting up of a shared
test fixture. This method defines how the TestRunner performs shared fixture setup. The
test framework evaluates this method one time for each shared test fixture, within the
scope of the runTestSuite method of the TestRunnerPlugin.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Shared test fixture setup information, specified as an instance of
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData. The
test framework uses this information to introspect into the test content.

Examples

 setupSharedTestFixture

1-11047

Implement setupSharedTestFixture Method

Display the shared test fixture name at setup time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 methods (Access = protected)
 function setupSharedTestFixture(plugin, pluginData)
 fprintf('### Setting up: %s\n', pluginData.Name)
 setupSharedTestFixture@matlab.unittest.plugins.TestRunnerPlugin...
 (plugin, pluginData);
 end
 end
end

See Also
createSharedTestFixture | matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11048

setupTestClass
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend setting up test class

Syntax
setupTestClass(plugin,pluginData)

Description
setupTestClass(plugin,pluginData) extends the setting up of a test class. This
method defines how the TestRunner performs test class setup. The test framework
evaluates this method within the scope of the runTestClass method of the
TestRunnerPlugin. If the test class contains properties with the
ClassSetupParameter attribute, the test framework evaluates the setupTestClass
method as many times as the class setup parameterization dictates.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test class setup information, specified as an instance of
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData. The test
framework uses this information to introspect into the test content.

Examples

 setupTestClass

1-11049

Implement setupTestClass Method

Display the test class name at setup time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 methods (Access = protected)
 function setupTestClass(plugin, pluginData)
 fprintf('### Setting up: %s\n', pluginData.Name)
 setupTestClass@matlab.unittest.plugins.TestRunnerPlugin...
 (plugin, pluginData);
 end
 end
end

See Also
createTestClassInstance | matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11050

setupTestMethod
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend setting up of test method

Syntax
setupTestMethod(plugin,pluginData)

Description
setupTestMethod(plugin,pluginData) extends the setting up of a test method. This
method defines how the TestRunner performs test method setup for the single test suite
element. The test framework evaluates this method within the scope of the runTest
method of the TestRunnerPlugin.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test method setup information, specified as an instance of
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData. The test
framework uses this information to introspect into the test content.

Examples

 setupTestMethod

1-11051

Implement setupTestMethod

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 methods (Access = protected)
 function setupTestMethod(plugin, pluginData)
 fprintf('### Setting up: %s\n', pluginData.Name)
 setupTestMethod@matlab.unittest.plugins.TestRunnerPlugin...
 (plugin, pluginData);
 end
 end
end

See Also
matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11052

teardownSharedTestFixture
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend tearing down shared test fixture

Syntax
teardownSharedTestFixture(plugin,pluginData)

Description
teardownSharedTestFixture(plugin,pluginData) extends the tearing down of a
shared test fixture. This method defines how the TestRunner performs shared fixture
teardown. The test framework evaluates this method one time for each shared test
fixture, within the scope of the runTestSuite method of the TestRunnerPlugin.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Shared test fixture teardown information, specified as an instance of
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData. The
test framework uses this information to introspect into the test content.

Examples

 teardownSharedTestFixture

1-11053

Implement teardownSharedTestFixture Method

Display the shared test fixture name at teardown time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 methods (Access = protected)
 function teardownSharedTestFixture(plugin, pluginData)
 fprintf('### Setting up: %s\n', pluginData.Name)
 teardownSharedTestFixture@matlab.unittest.plugins.TestRunnerPlugin...
 (plugin, pluginData);
 end
 end
end

See Also
createSharedTestFixture | matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11054

teardownTestClass
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend tearing down of test class

Syntax
teardownTestClass(plugin,pluginData)

Description
teardownTestClass(plugin,pluginData) extends the tearing down of a test class.
This method defines how the TestRunner performs test class teardown. The test
framework evaluates this method within the scope of the runTestClass method of the
TestRunnerPlugin. If the test class contains properties with the
ClassSetupParameter attribute, the test framework evaluates the
teardownTestClass method as many times as the class setup parameterization
dictates.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test class teardown information, specified as an instance of
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData. The test
framework uses this information to introspect into the test content.

 teardownTestClass

1-11055

Examples

Implement teardownTestClass Method

Display the test class name at teardown time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

 methods (Access = protected)
 function teardownTestClass(plugin, pluginData)
 fprintf('### Tearing down: %s\n', pluginData.Name)
 teardownTestClass@matlab.unittest.plugins.TestRunnerPlugin...
 (plugin, pluginData);
 end
 end
end

See Also
createTestClassInstance | matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11056

teardownTestMethod
Class: matlab.unittest.plugins.TestRunnerPlugin
Package: matlab.unittest.plugins

Extend tearing down of test method

Syntax
teardownTestMethod(plugin,pluginData)

Description
teardownTestMethod(plugin,pluginData) extends the tearing down of a test
method. This method defines how the TestRunner performs test method teardown for
the single test suite element. The test framework evaluates this method within the scope
of the runTest method of the TestRunnerPlugin.

Input Arguments
plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test method teardown information, specified as an instance of
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData. The test
framework uses this information to introspect into the test content.

Examples

 teardownTestMethod

1-11057

Implement teardownTestMethod Method

Display the test method name at teardown time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
 methods (Access = protected)
 function teardownTestMethod(plugin, pluginData)
 fprintf('### Tearing down: %s\n', pluginData.Name)
 teardownTestMethod@matlab.unittest.plugins.TestRunnerPlugin...
 (plugin, pluginData);
 end
 end
end

See Also
matlab.unittest.TestRunner |
matlab.unittest.plugins.TestRunnerPlugin.setupTestMethod |
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData

Topics
“Write Plugins to Extend TestRunner”
“Create Custom Plugin”

Introduced in R2014a

1 Alphabetical List

1-11058

matlab.unittest.plugins.TestRunProgressPlu
gin class
Package: matlab.unittest.plugins

Plugin that reports test run progress

Description
The TestRunProgressPlugin class creates a plugin that reports on test run progress.

Construction
matlab.unittest.plugins.TestRunProgressPlugin.withVerbosity(v)
constructs a TestRunProgressPlugin for the specified verbosity.

matlab.unittest.plugins.TestRunProgressPlugin.withVerbosity(v,
stream) redirects the text output to the output stream.

Input Arguments
v — Verbosity level
0 | 1 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration name as
string or char vector

Verbosity level, specified as an integer value between 0 and 4, a
matlab.unittest.Verbosity enumeration object, or a string scalar or character
vector corresponding to one of the predefined enumeration member names. Integer
values correspond to the members of the matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information

 matlab.unittest.plugins.TestRunProgressPlugin class

1-11059

Numeric Representation Enumeration Member
Name

Verbosity Description

1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

stream — Location where plugin directs text output
ToStandardOutput instance (default) | OutputStream instance

Location where the plugin directs text output, specified as an OutputStream instance.
By default, the plugin uses the OutputStream subclass ToStandardOutput as the
stream.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Test Run Progress Plugin

Create a function-based test called cylinderPlotTest in a file in your working folder.
function tests = cylinderPlotTest
tests = functiontests(localfunctions);
end

function setupOnce(testCase)
testCase.TestData.Figure = figure;
addTeardown(testCase,@close,testCase.TestData.Figure)
end

function setup(testCase)
testCase.TestData.Axes = axes('Parent',testCase.TestData.Figure);
addTeardown(testCase,@clf,testCase.TestData.Figure)
cylinder(testCase.TestData.Axes,10)
end

1 Alphabetical List

1-11060

function testXLim(testCase)
xlim = testCase.TestData.Axes.XLim;
verifyLessThanOrEqual(testCase,xlim(1),-10,'Minimum x-limit too large')
verifyGreaterThanOrEqual(testCase,xlim(2),10,'Maximum x-limit too small')
end

function zdataTest(testCase)
s = findobj(testCase.TestData.Axes,'Type','surface');
verifyEqual(testCase,min(s.ZData(:)),0,'Min cylinder value is incorrect')
verifyEqual(testCase,max(s.ZData(:)),1,'Max cylinder value is incorrect')
end

At the command prompt, run the test.

results = run(cylinderPlotTest);

Running cylinderPlotTest
..
Done cylinderPlotTest

By default, the test runner uses verbosity level 2.

Create a test runner to report the diagnostics at level 1, and rerun the test.

import matlab.unittest.TestRunner
import matlab.unittest.plugins.TestRunProgressPlugin

runner = TestRunner.withNoPlugins;
p = TestRunProgressPlugin.withVerbosity(1);
runner.addPlugin(p);

results = runner.run(cylinderPlotTest);

..

Create a test runner to report the diagnostics at level 4, and rerun the test.

runner = TestRunner.withNoPlugins;
p = TestRunProgressPlugin.withVerbosity(4);
runner.addPlugin(p);

results = runner.run(cylinderPlotTest);

 Running cylinderPlotTest
 Setting up cylinderPlotTest
 Evaluating TestClassSetup: setupOnce
 Done setting up cylinderPlotTest in 0.067649 seconds
 Running cylinderPlotTest/testXLim

 matlab.unittest.plugins.TestRunProgressPlugin class

1-11061

 Evaluating TestMethodSetup: setup
 Evaluating Test: testXLim
 Evaluating TestMethodTeardown: teardown
 Evaluating addTeardown function: clf
 Done cylinderPlotTest/testXLim in 0.053834 seconds
 Running cylinderPlotTest/zdataTest
 Evaluating TestMethodSetup: setup
 Evaluating Test: zdataTest
 Evaluating TestMethodTeardown: teardown
 Evaluating addTeardown function: clf
 Done cylinderPlotTest/zdataTest in 0.037715 seconds
 Tearing down cylinderPlotTest
 Evaluating TestClassTeardown: teardownOnce
 Evaluating addTeardown function: close
 Done tearing down cylinderPlotTest in 0.022783 seconds
 Done cylinderPlotTest in 0.18198 seconds

Configure Progress Message Output

Create a class named ExampleProgressTest in a file in your current working folder.

classdef ExampleProgressTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5,4)
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5,5)
 end
 end
end

At the command prompt, create the test suite and a runner at verbosity level 3, and then
run the test.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner
import matlab.unittest.plugins.TestRunProgressPlugin

suite = TestSuite.fromClass(?ExampleProgressTest);

runner = TestRunner.withNoPlugins;

1 Alphabetical List

1-11062

p = TestRunProgressPlugin.withVerbosity(3);
runner.addPlugin(p);
results = runner.run(suite);

 Running ExampleProgressTest
 Setting up ExampleProgressTest
 Done setting up ExampleProgressTest in 0 seconds
 Running ExampleProgressTest/testOne
 Done ExampleProgressTest/testOne in 0.0049988 seconds
 Running ExampleProgressTest/testTwo
 Done ExampleProgressTest/testTwo in 0.0044541 seconds
 Tearing down ExampleProgressTest
 Done tearing down ExampleProgressTest in 0 seconds
 Done ExampleProgressTest in 0.0094529 seconds

Create a new plugin to direct the output to a file named myOutput.log, and rerun the
tests.

import matlab.unittest.plugins.ToFile
outFile = 'myOutput.log';

runner = TestRunner.withNoPlugins;
p = TestRunProgressPlugin.withVerbosity(3,ToFile(outFile));
runner.addPlugin(p);

results = runner.run(suite);

Observe the contents of the file created by the plugin.

disp(fileread(outFile))

 Running ExampleProgressTest
 Setting up ExampleProgressTest
 Done setting up ExampleProgressTest in 0 seconds
 Running ExampleProgressTest/testOne
 Done ExampleProgressTest/testOne in 0.0050172 seconds
 Running ExampleProgressTest/testTwo
 Done ExampleProgressTest/testTwo in 0.0049449 seconds
 Tearing down ExampleProgressTest
 Done tearing down ExampleProgressTest in 0 seconds

 matlab.unittest.plugins.TestRunProgressPlugin class

1-11063

 Done ExampleProgressTest in 0.009962 seconds

See Also
matlab.unittest.TestRunner | matlab.unittest.Verbosity |
matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins.TestRunnerPlugin |
matlab.unittest.plugins.ToStandardOutput

Introduced in R2014b

1 Alphabetical List

1-11064

matlab.unittest.plugins.XMLPlugin class
Package: matlab.unittest.plugins

Plugin that writes test results in XML format

Description
The XMLPlugin class creates a plugin that writes test results to a file in XML format.

Construction
Instantiate an XMLPlugin using the
matlab.unittest.plugins.XMLPlugin.producingJUnitFormat method.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Output Results to JUnit-style XML File

Create ExampleTest.m containing the following test class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.verifyEqual(5,4,'Testing 5==4')
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5,5,'Testing 5==5')
 end
 function testThree(testCase) % Test fails

 matlab.unittest.plugins.XMLPlugin class

1-11065

 testCase.assumeTrue(false)
 end
 end
end

Create a test suite from the ExampleTest class. Create a silent test runner.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.XMLPlugin

suite = TestSuite.fromClass(?ExampleTest);
runner = TestRunner.withNoPlugins;

Create an XMLPlugin that writes test results to the file myTestResults.xml.

xmlFile = 'myTestResults.xml';
p = XMLPlugin.producingJUnitFormat(xmlFile);

Add the plugin to the test runner and run the suite.

runner.addPlugin(p)
results = runner.run(suite);
table(results)

ans =

 Name Passed Failed Incomplete Duration Details
 _______________________ ______ ______ __________ _________ ____________

 'ExampleTest/testOne' false true false 0.078297 [1x1 struct]
 'ExampleTest/testTwo' true false false 0.0038761 [1x1 struct]
 'ExampleTest/testThree' false false true 0.049763 [1x1 struct]

View the contents in the file created by the plugin.

disp(fileread(xmlFile))

<?xml version="1.0" encoding="utf-8"?>
<testsuites>
 <testsuite errors="0" failures="1" name="" skipped="1" tests="3" time="0.0493">
 <testcase classname="ExampleTest" name="testOne" time="0.030643">
 <failure type="VerificationFailure">==
Verification failed in ExampleTest/testOne.

 Test Diagnostic:

 Testing 5==4

1 Alphabetical List

1-11066

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 5 4 1 0.25

 Actual double:
 5
 Expected double:
 4

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testOne) at 4
==
</failure>
 </testcase>
 <testcase classname="ExampleTest" name="testTwo" time="0.004332"/>
 <testcase classname="ExampleTest" name="testThree" time="0.014325">
 <skipped>==
ExampleTest/testThree was filtered.
==
</skipped>
 </testcase>
 </testsuite>
</testsuites>

Tips
• If your test file is a script-based or function-based test, the value of the classname

attribute of the <testcase> element is the test file name.

See Also

External Websites
JUnit

Introduced in R2015b

 matlab.unittest.plugins.XMLPlugin class

1-11067

https://junit.org/

matlab.unittest.plugins.XMLPlugin.producin
gJUnitFormat
Class: matlab.unittest.plugins.XMLPlugin
Package: matlab.unittest.plugins

Construct plugin to write test results in XML format

Syntax
xmlPlugin = matlab.unittest.plugins.XMLPlugin.producingJUnitFormat(
xmlFile)
xmlPlugin = matlab.unittest.plugins.XMLPlugin.producingJUnitFormat(
xmlFile,'OutputDetail',OutputDetail)

Description
xmlPlugin = matlab.unittest.plugins.XMLPlugin.producingJUnitFormat(
xmlFile) returns a plugin that produces JUnit-style XML output to the specified XML
file. Using this plugin, you can integrate MATLAB Unit Test results into third-party
systems that recognize JUnit-style XML. For example, you can integrate test results with
continuous integration systems like Jenkins, TeamCity, or Microsoft Team Foundation
Server.

The XML file is overwritten every time you run the test suite with this plugin.

xmlPlugin = matlab.unittest.plugins.XMLPlugin.producingJUnitFormat(
xmlFile,'OutputDetail',OutputDetail) returns a plugin that displays failing
events with the amount of detail specified by OutputDetail.

Input Arguments
xmlFile — Name of test-result file
character vector | string scalar

1 Alphabetical List

1-11068

Name of the test-result file, specified as a character vector or string scalar. If xmlFile
exists, the test framework overwrites the file.
Example: XMLPlugin.producingJUnitFormat('myTestResults.xml')
Data Types: char | string

OutputDetail — Detail level for recorded events
3 (default) | 0 | 1 | 2 | 4 | matlab.unittest.Verbosity enumeration member | string
or character vector corresponding to the name of a matlab.unittest.Verbosity
enumeration member.

Detail level for recorded events, specified as an integer value from 0 through 4, as a
matlab.unittest.Verbosity enumeration member, or as a string or character vector
corresponding to the name of a matlab.unittest.Verbosity enumeration member.
Integer values correspond to the members of the matlab.unittest.Verbosity
enumeration.

The plugin records failing events with the amount of detail specified by OutputDetail.
By default, the plugin records events at the matlab.unittest.Verbosity.Detailed
level (level 3).

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

Output Arguments
xmlPlugin — Plugin
matlab.unittest.plugins.XMLPlugin

Plugin that writes test results to a file in JUnit-style XML format, returned as a
matlab.unittest.plugins.XMLPlugin object.

 matlab.unittest.plugins.XMLPlugin.producingJUnitFormat

1-11069

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Create Plugin to Create XML Output File
import matlab.unittest.plugins.XMLPlugin;
import matlab.unittest.Verbosity;

% Create a XML plugin that sends XML Output to a file
plugin = XMLPlugin.producingJUnitFormat('MyXMLFile.xml');

% Create a XML plugin that produces a concise amount of output detail
plugin = XMLPlugin.producingJUnitFormat('MyXMLFile.xml','OutputDetail',Verbosity.Concise);

For more examples, see matlab.unittest.plugins.XMLPlugin.

See Also
matlab.unittest.Verbosity | matlab.unittest.plugins.XMLPlugin

Introduced in R2015b

1 Alphabetical List

1-11070

matlab.unittest.plugins.diagnosticrecord
Package
Summary of classes associated with MATLAB Plugin Diagnostic Records

Description
The matlab.unittest.plugins.diagnosticrecord package consists of the
following MATLAB® classes.

Classes
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord Diagnostic

information
matlab.unittest.plugins.diagnosticrecord.ExceptionDiagnosticRecord Diagnostic

information
about errors

matlab.unittest.plugins.diagnosticrecord.LoggedDiagnosticRecord Diagnostic
information
about logged
events

matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticRecord Diagnostic
information
about
qualification
events

See Also
DiagnosticsRecordingPlugin | matlab.unittest.plugins

Introduced in R2016a

 matlab.unittest.plugins.diagnosticrecord Package

1-11071

matlab.unittest.plugins.diagnosticrecord.Dia
gnosticRecord class
Package: matlab.unittest.plugins.diagnosticrecord

Diagnostic information

Description
The DiagnosticRecord class defines the diagnostic information that the
DiagnosticsRecordingPlugin includes on the TestResult. The
DiagnosticsRecordingPlugin creates this class, so there is no need for test authors
to construct the class directly.

Properties
Event — Name of recorded event
character vector

Name of recorded event, returned as a character vector. This property corresponds to the
event on the TestCase instance.
Example: 'VerificationPassed'
Example: 'ExceptionThrown'
Example: 'DiagnosticLogged'
Data Types: char

EventLocation — Location of event
character vector

Location of event, returned as a character vector. This property corresponds to the label
of the test content.
Example: 'myTestClass'
Example: 'myTestClass/testMethod1'

1 Alphabetical List

1-11072

Example: 'myTestClass[classSetupParam=value1]/testMethod1'
Example: 'mySharedTestFixture'
Data Types: char

EventScope — Scope where event originated
instance of matlab.unittest.Scope

Scope where event originated, returned as an instance of matlab.unittest.Scope.
This property corresponds to the label of the test content.
Example: matlab.unittest.Scope.TestMethod
Example: matlab.unittest.Scope.TestClass
Example: matlab.unittest.Scope.SharedTestFixture

Stack — Stack trace to diagnostic
structure

Stack trace to the location of the diagnostic event, returned as a structure containing the
fields file, name, and line.
Data Types: struct

Report — Diagnostic information
character vector

All diagnostic information, returned as a character vector. The report provides an overall
summary of the event.
Data Types: char

Methods

selectFailed Return diagnostic records for failed events
selectIncomplete Return diagnostic records for incomplete events
selectLogged Return diagnostic records for logged events
selectPassed Return diagnostic records for passed events

 matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord class

1-11073

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord

Introduced in R2016a

1 Alphabetical List

1-11074

matlab.unittest.plugins.diagnosticrecord.Exc
eptionDiagnosticRecord class
Package: matlab.unittest.plugins.diagnosticrecord
Superclasses:

Diagnostic information about errors

Description
The ExceptionDiagnosticRecord class defines the diagnostic information about
errors that the DiagnosticsRecordingPlugin includes on the TestResult. The
DiagnosticsRecordingPlugin creates this class, so there is no need for test authors
to construct the class directly.

Properties
Exception — Error information
MException object

Error information, returned as an MException object.

AdditionalDiagnosticResults — Results of additional diagnostics specified in
the test content
array of DiagnosticResult instances

Results of additional diagnostics specified in the test content, represented as an array of
DiagnosticResult instances. For example, AdditionalDiagnosticResults includes
results from diagnostics added using the matlab.unittest.TestCase.onFailure
method.

These properties are inherited from
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord:

Event — Name of recorded event
character vector

 matlab.unittest.plugins.diagnosticrecord.ExceptionDiagnosticRecord class

1-11075

Name of recorded event, returned as a character vector. This property corresponds to the
event on the TestCase instance.
Example: 'VerificationPassed'
Example: 'ExceptionThrown'
Example: 'DiagnosticLogged'
Data Types: char

EventLocation — Location of event
character vector

Location of event, returned as a character vector. This property corresponds to the label
of the test content.
Example: 'myTestClass'
Example: 'myTestClass/testMethod1'
Example: 'myTestClass[classSetupParam=value1]/testMethod1'
Example: 'mySharedTestFixture'
Data Types: char

EventScope — Scope where event originated
instance of matlab.unittest.Scope

Scope where event originated, returned as an instance of matlab.unittest.Scope.
This property corresponds to the label of the test content.
Example: matlab.unittest.Scope.TestMethod
Example: matlab.unittest.Scope.TestClass
Example: matlab.unittest.Scope.SharedTestFixture

Stack — Stack trace to diagnostic
structure

Stack trace to the location of the diagnostic event, returned as a structure containing the
fields file, name, and line.
Data Types: struct

1 Alphabetical List

1-11076

Report — Diagnostic information
character vector

All diagnostic information, returned as a character vector. The report provides an overall
summary of the event.
Data Types: char

Methods

Inherited Methods
selectFailed Return diagnostic records for failed events
selectIncomplete Return diagnostic records for incomplete events
selectLogged Return diagnostic records for logged events
selectPassed Return diagnostic records for passed events

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord

Introduced in R2016a

 matlab.unittest.plugins.diagnosticrecord.ExceptionDiagnosticRecord class

1-11077

matlab.unittest.plugins.diagnosticrecord.Lo
ggedDiagnosticRecord class
Package: matlab.unittest.plugins.diagnosticrecord
Superclasses:

Diagnostic information about logged events

Description
The LoggedDiagnosticRecord class defines the diagnostic information about logged
events that the DiagnosticsRecordingPlugin includes on the TestResult. The
DiagnosticsRecordingPlugin creates this class, so there is no need for test authors
to construct the class directly.

Properties
LoggedDiagnosticResult — Logged diagnostic result
cell array of character vectors

Logged diagnostic result, returned as a cell array of character vectors. A single log call
can result in multiple logged diagnostics.
Data Types: char

Timestamp — Time the log method was called
date and time

The time the log method was called, returned as a date and time.
Data Types: datetime

Verbosity — Verbosity level of the logged message
matlab.unittest.Verbosity enumeration

Verbosity level of the logged message, returned as a
matlab.unittest.Verbosity enumeration object.

1 Alphabetical List

1-11078

Example: Terse

These properties are inherited from
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord:

Event — Name of recorded event
character vector

Name of recorded event, returned as a character vector. This property corresponds to the
event on the TestCase instance.
Example: 'VerificationPassed'
Example: 'ExceptionThrown'
Example: 'DiagnosticLogged'
Data Types: char

EventLocation — Location of event
character vector

Location of event, returned as a character vector. This property corresponds to the label
of the test content.
Example: 'myTestClass'
Example: 'myTestClass/testMethod1'
Example: 'myTestClass[classSetupParam=value1]/testMethod1'
Example: 'mySharedTestFixture'
Data Types: char

EventScope — Scope where event originated
instance of matlab.unittest.Scope

Scope where event originated, returned as an instance of matlab.unittest.Scope.
This property corresponds to the label of the test content.
Example: matlab.unittest.Scope.TestMethod
Example: matlab.unittest.Scope.TestClass
Example: matlab.unittest.Scope.SharedTestFixture

 matlab.unittest.plugins.diagnosticrecord.LoggedDiagnosticRecord class

1-11079

Stack — Stack trace to diagnostic
structure

Stack trace to the location of the diagnostic event, returned as a structure containing the
fields file, name, and line.
Data Types: struct

Report — Diagnostic information
character vector

All diagnostic information, returned as a character vector. The report provides an overall
summary of the event.
Data Types: char

Methods

Inherited Methods
selectFailed Return diagnostic records for failed events
selectIncomplete Return diagnostic records for incomplete events
selectLogged Return diagnostic records for logged events
selectPassed Return diagnostic records for passed events

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord

Introduced in R2016a

1 Alphabetical List

1-11080

matlab.unittest.plugins.diagnosticrecord.Qu
alificationDiagnosticRecord class
Package: matlab.unittest.plugins.diagnosticrecord
Superclasses:

Diagnostic information about qualification events

Description
The QualificationDiagnosticRecord class defines the diagnostic information about
qualification events that the DiagnosticsRecordingPlugin includes on the
TestResult. The DiagnosticsRecordingPlugin creates this class, so there is no
need for test authors to construct the class directly.

Properties
TestDiagnosticResults — Test diagnostic results
cell array of character vectors

Test diagnostic results, returned as a cell array of character vectors. A single qualification
can result in multiple test diagnostics.
Data Types: char

FrameworkDiagnosticResults — Framework diagnostic results
cell array of character vectors

Framework diagnostic results, returned as a cell array of character vectors. A single
qualification can result in multiple framework diagnostics.
Example: {'verifyClass failed.…'}
Data Types: char

AdditionalDiagnosticResults — Results of additional diagnostics specified in
the test content
array of DiagnosticResult instances

 matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticRecord class

1-11081

Results of additional diagnostics specified in the test content, represented as an array of
DiagnosticResult instances. For example, AdditionalDiagnosticResults includes
results from diagnostics added using the matlab.unittest.TestCase.onFailure
method.

These properties are inherited from
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord:

Event — Name of recorded event
character vector

Name of recorded event, returned as a character vector. This property corresponds to the
event on the TestCase instance.
Example: 'VerificationPassed'
Example: 'ExceptionThrown'
Example: 'DiagnosticLogged'
Data Types: char

EventLocation — Location of event
character vector

Location of event, returned as a character vector. This property corresponds to the label
of the test content.
Example: 'myTestClass'
Example: 'myTestClass/testMethod1'
Example: 'myTestClass[classSetupParam=value1]/testMethod1'
Example: 'mySharedTestFixture'
Data Types: char

EventScope — Scope where event originated
instance of matlab.unittest.Scope

Scope where event originated, returned as an instance of matlab.unittest.Scope.
This property corresponds to the label of the test content.
Example: matlab.unittest.Scope.TestMethod
Example: matlab.unittest.Scope.TestClass

1 Alphabetical List

1-11082

Example: matlab.unittest.Scope.SharedTestFixture

Stack — Stack trace to diagnostic
structure

Stack trace to the location of the diagnostic event, returned as a structure containing the
fields file, name, and line.
Data Types: struct

Report — Diagnostic information
character vector

All diagnostic information, returned as a character vector. The report provides an overall
summary of the event.
Data Types: char

Methods

Inherited Methods

selectFailed Return diagnostic records for failed events
selectIncomplete Return diagnostic records for incomplete events
selectLogged Return diagnostic records for logged events
selectPassed Return diagnostic records for passed events

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord

Introduced in R2016a

 matlab.unittest.plugins.diagnosticrecord.QualificationDiagnosticRecord class

1-11083

matlab.unittest.plugins.plugindata Package
Summary of classes in MATLAB Plugin Data Interface

Description
The plugindata classes store information about test content for use by the plugins and
plugin methods. The TestRunner passes instances of these classes to various plugin
methods. The matlab.unittest.plugins.plugindata package consists of the
following MATLAB plugin data classes.

Classes
matlab.unittest.plugins.plugindata.FinalizedResultPluginData Plugin data

containing finalized
test result
information

matlab.unittest.plugins.plugindata.ImplicitFixturePluginData Plugin data
containing test
setup and teardown
information

matlab.unittest.plugins.plugindata.PluginData Data object passed
to TestRunnerPlugin
methods

matlab.unittest.plugins.plugindata.QualificationContext Context for
QualifyingPlugins

matlab.unittest.plugins.plugindata.SharedTestFixturePluginData Plugin data
containing shared
test fixture
information

matlab.unittest.plugins.plugindata.TestContentCreationPluginData Plugin data
containing test
content creation
information

1 Alphabetical List

1-11084

matlab.unittest.plugins.plugindata.TestSuiteRunPluginData Plugin data
containing selected
test information

See Also
TestRunnerPlugin | matlab.unittest.plugins

Introduced in R2014a

 matlab.unittest.plugins.plugindata Package

1-11085

matlab.unittest.plugins.plugindata.Finalized
ResultPluginData class
Package: matlab.unittest.plugins.plugindata

Plugin data containing finalized test result information

Description
The FinalizedResultPluginData class defines the data the TestRunner passes to
plugin methods related to finalized test results. The TestRunner creates this class, so
there is no need for test plugin authors to construct the class directly.

Properties
Index — Location of result relative to entire suite
scalar numeric

Location of the finalized result relative to the entire suite, represented as a scalar
numeric.

TestSuite — Specification of the Test element
matlab.unittest.TestSuite scalar

Specifies the test that produced the TestResult, represented as a
matlab.unittest.TestSuite scalar.

TestResult — Result from finalized test suite element
matlab.unittest.TestResult scalar

Result from the finalized test suite element, represented as a
matlab.unittest.TestResult scalar.

See Also
TestRunnerPlugin | TestRunnerPlugin.reportFinalizedResult

1 Alphabetical List

1-11086

Introduced in R2015b

 matlab.unittest.plugins.plugindata.FinalizedResultPluginData class

1-11087

matlab.unittest.plugins.plugindata.ImplicitFi
xturePluginData class
Package: matlab.unittest.plugins.plugindata

Plugin data containing test setup and teardown information

Description
The ImplicitFixturePluginData class defines the data the TestRunner passes to
plugin methods related to setting up and tearing down tests. The TestRunner creates
this class, so there is no need for test plugin authors to construct this class directly.

Properties
Name — Label of test content test runner sets up or tears down
character vector

Label of test content test runner sets up or tears down, represented as a character vector.
Use the Name property for informational, labeling, and display purposes. Do not use Name
programmatically to introspect into the content.
Data Types: char

QualificationContext — Context for plugins to perform qualifications on test
content
matlab.unittest.plugins.plugindata.QualificationContext

Context for plugins to perform qualifications on test content, represented as an instance
of matlab.unittest.plugins.plugindata.QualificationContext. For your
plugin to use qualifications it must be a subclass of
matlab.unittest.plugins.QualifyingPlugin and provide this context in the call
to one of its qualifications methods.

1 Alphabetical List

1-11088

See Also
TestRunnerPlugin | TestRunnerPlugin.setupTestClass |
TestRunnerPlugin.setupTestMethod | TestRunnerPlugin.teardownTestClass |
TestRunnerPlugin.teardownTestMethod

Introduced in R2015a

 matlab.unittest.plugins.plugindata.ImplicitFixturePluginData class

1-11089

matlab.unittest.plugins.plugindata.PluginDa
ta class
Package: matlab.unittest.plugins.plugindata

Data object passed to TestRunnerPlugin methods

Description
The PluginData class defines the data the TestRunner passes to various plugin
methods. It is created by the TestRunner, so there is no need for test plugin authors to
construct this class directly.

Properties
Name

Label of test content executed by the test runner within the scope of a plugin method,
represented as a character vector. Use the Name property for informational, labeling, and
display purposes. Do not use Name programmatically to introspect into the content.

See Also
Introduced in R2014a

1 Alphabetical List

1-11090

matlab.unittest.plugins.plugindata.Qualificat
ionContext class
Package: matlab.unittest.plugins.plugindata

Context for QualifyingPlugins

Description
The QualificationContext class provides the context required for
QualifyingPlugins to perform qualifications. The test framework creates this class
and stores it as part of the relevant plugin data. There is no need for test plugin authors
to construct this class directly.

See Also
matlab.unittest.plugins.QualifyingPlugin |
matlab.unittest.plugins.plugindata.ImplicitFixturePluginData |
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData

Introduced in R2015b

 matlab.unittest.plugins.plugindata.QualificationContext class

1-11091

matlab.unittest.plugins.plugindata.SharedTe
stFixturePluginData class
Package: matlab.unittest.plugins.plugindata

Plugin data containing shared test fixture information

Description
The SharedTestFixturePluginData defines the data the TestRunner passes to
plugin methods related to shared test fixtures. The TestRunner creates this, so there is
no need for test plugin authors to construct this class directly.

Properties
Name

Label of shared test fixture, represented as a character vector. Use the Name property for
informational, labeling, and display purposes. Do not use Nameprogrammatically to
introspect into the content.

Description

Description of action performed during setup and teardown of a shared test fixture,
represented as a character vector

QualificationContext

Context for plugins to perform qualifications on fixtures, represented as an instance of
matlab.unittest.plugins.plugindata.QualificationContext. For your plugin
to use qualifications it must be a subclass of
matlab.unittest.plugins.QualifyingPlugin and provide this context in the call
to one of its qualifications methods.

1 Alphabetical List

1-11092

See Also
TestRunnerPlugin | matlab.unittest.fixtures.Fixture

Introduced in R2014a

 matlab.unittest.plugins.plugindata.SharedTestFixturePluginData class

1-11093

matlab.unittest.plugins.plugindata.TestCont
entCreationPluginData class
Package: matlab.unittest.plugins.plugindata

Plugin data containing test content creation information

Description
The TestContentCreationPluginData class defines the data the TestRunner passes
to plugin methods related to test content creation. The TestRunner creates this class, so
there is no need for test plugin authors to construct the class directly.

Properties
Name — Name of content test runner executes
string scalar

Name of content the test runner executes within the scope of a plugin method,
represented as a string scalar. The Name property is for informational, labeling, and
display purposes, not to introspect into the content the test runner is executing.

See Also
TestRunnerPlugin

Introduced in R2017a

1 Alphabetical List

1-11094

matlab.unittest.plugins.plugindata.TestSuite
RunPluginData class
Package: matlab.unittest.plugins.plugindata

Plugin data containing selected test information

Description
The TestSuiteRunPluginData defines the data the TestRunner passes to plugin
methods related to running tests from the suite. The TestRunner creates this, so there is
no need for test plugin authors to construct this class directly.

Properties
Name

Name corresponding to the portion of the test suite the runner executes within a plugin
method, represented as a character vector. Use the Name property for informational,
labeling, and display purposes. Do not use Name programmatically to introspect into the
content.

TestSuite

Select test methods, represented as a matlab.unittest.TestSuite instance

TestResult

Results from running select test methods listed in TestSuite, represented as a
matlab.unittest.TestResult array

See Also
TestRunnerPlugin | matlab.unittest.TestResult |
matlab.unittest.TestSuite

 matlab.unittest.plugins.plugindata.TestSuiteRunPluginData class

1-11095

Introduced in R2014a

1 Alphabetical List

1-11096

plus, +
Addition

Syntax
C = A + B
C = plus(A,B)

Description
C = A + B adds arrays A and B and returns the result in C.

C = plus(A,B) is an alternate way to execute A + B, but is rarely used. It enables
operator overloading for classes.

Examples

Add Scalar to Array

Create an array, A, and add a scalar value to it.

A = [0 1; 1 0];
C = A + 2

C = 2×2

 2 3
 3 2

The scalar value is added to each entry of A.

 plus, +

1-11097

Add Two Arrays

Create two arrays, A and B, and add them together.

A = [1 0; 2 4];
B = [5 9; 2 1];
C = A + B

C = 2×2

 6 9
 4 5

The elements of A are added to the corresponding elements of B.

Add Vector to Matrix

Create an array, A, and add a column vector to it. The vector is treated as though it is a
matrix of the same size as A, so that each element in the vector is added to a row in A.

A = [1 2 3; 4 5 6]

A = 2×3

 1 2 3
 4 5 6

b = [10; 100]

b = 2×1

 10
 100

A + b

ans = 2×3

 11 12 13

1 Alphabetical List

1-11098

 104 105 106

Concatenate Strings

Create two 1-by-3 string arrays, then concatenate similarly located strings in the arrays.

s1 = string({'Red' 'Blue' 'Green'})

s1 = 1x3 string array
 "Red" "Blue" "Green"

s2 = string({'Truck' 'Sky' 'Tree'})

s2 = 1x3 string array
 "Truck" "Sky" "Tree"

s = s1 + s2

s = 1x3 string array
 "RedTruck" "BlueSky" "GreenTree"

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

Datetime, duration, and calendar duration arrays must be the same size unless one is a
scalar.

• If one input is a datetime array, duration array, or calendar duration array, then
numeric values in the other input are treated as a number of 24-hour days.

 plus, +

1-11099

• If one input is a string array, then the other input can be a numeric, logical, character,
string, or cell array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | datetime | duration |
calendarDuration
Complex Number Support: Yes

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. Numeric or
string inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

Datetime, duration, and calendar duration arrays must be the same size unless one is a
scalar.

• If one input is a datetime array, duration array, or calendar duration array, then
numeric values in the other input are treated as a number of 24-hour days.

• If one input is a string array, then the other input can be a numeric, logical, character,
string, or cell array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | datetime | duration |
calendarDuration
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-11100

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cumsum | minus | sum | uplus

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 plus, +

1-11101

pointLocation
Class: DelaunayTri

(Not recommended) Simplex containing specified location

Note pointLocation(DelaunayTri) is not recommended. Use
pointLocation(triangulation) instead.

DelaunayTri is not recommended. Use delaunayTriangulation instead.

Syntax
SI = pointLocation(DT,QX)
SI = pointLocation(DT,QX,QY)
SI = pointLocation(DT,QX,QY,QZ)
[SI, BC] = pointLocation(DT,...)

Description
SI = pointLocation(DT,QX) returns the indices SI of the enclosing simplex (triangle/
tetrahedron) for each query point location in QX. The enclosing simplex for point QX(k,:)
is SI(k). pointLocation returns NaN for all points outside the convex hull.

SI = pointLocation(DT,QX,QY) and SI = pointLocation(DT,QX,QY,QZ) allow
the query point locations to be specified in alternative column vector format when
working in 2-D and 3-D.

[SI, BC] = pointLocation(DT,...) returns the barycentric coordinates BC.

1 Alphabetical List

1-11102

Input Arguments
DT Delaunay triangulation.
QX Matrix of size mpts-by-ndim, mpts being the number of query

points.

Output Arguments
SI Column vector of length mpts containing the indices of the

enclosing simplex for each query point. mpts is the number of query
points.

BC BC is a mpts-by-ndim matrix, each row BC(i,:) represents the
barycentric coordinates of QX(i,:) with respect to the enclosing
simplex SI(i).

Examples

Example 1
Create a 2-D Delaunay triangulation:

X = rand(10,2);
dt = DelaunayTri(X);

Find the triangles that contain specified query points:

qrypts = [0.25 0.25; 0.5 0.5];
triids = pointLocation(dt, qrypts)

Example 2
Create a 3-D Delaunay triangulation:

x = rand(10,1);
y = rand(10,1);
z = rand(10,1);
dt = DelaunayTri(x,y,z);

 pointLocation

1-11103

Find the triangles that contain specified query points and evaluate the barycentric
coordinates:

qrypts = [0.25 0.25 0.25; 0.5 0.5 0.5];
[tetids, bcs] = pointLocation(dt, qrypts)

See Also
delaunayTriangulation | nearestNeighbor | triangulation

1 Alphabetical List

1-11104

pol2cart
Transform polar or cylindrical coordinates to Cartesian

Syntax
[x,y] = pol2cart(theta,rho)
[x,y,z] = pol2cart(theta,rho,z)

Description
[x,y] = pol2cart(theta,rho) transforms corresponding elements of the polar
coordinate arrays theta and rho to two-dimensional Cartesian, or xy, coordinates.

[x,y,z] = pol2cart(theta,rho,z) transforms corresponding elements of the
cylindrical coordinate arrays theta, rho, and z to three-dimensional Cartesian, or xyz,
coordinates.

Examples

Polar to Cartesian Coordinates

Convert the polar coordinates defined by corresponding entries in the matrices theta
and rho to two-dimensional Cartesian coordinates x and y.

theta = [0 pi/4 pi/2 pi]

theta = 1×4

 0 0.7854 1.5708 3.1416

rho = [5 5 10 10]

rho = 1×4

 pol2cart

1-11105

 5 5 10 10

[x,y] = pol2cart(theta,rho)

x = 1×4

 5.0000 3.5355 0.0000 -10.0000

y = 1×4

 0 3.5355 10.0000 0.0000

Cylindrical to Cartesian Coordinates

Convert the cylindrical coordinates defined by corresponding entries in the matrices
theta, rho, and z to three-dimensional Cartesian coordinates x, y, and z.

theta = [0 pi/4 pi/2 pi]'

theta = 4×1

 0
 0.7854
 1.5708
 3.1416

rho = [1 3 4 5]'

rho = 4×1

 1
 3
 4
 5

z = [7 8 9 10]'

z = 4×1

1 Alphabetical List

1-11106

 7
 8
 9
 10

[x,y,z] = pol2cart(theta,rho,z)

x = 4×1

 1.0000
 2.1213
 0.0000
 -5.0000

y = 4×1

 0
 2.1213
 4.0000
 0.0000

z = 4×1

 7
 8
 9
 10

Input Arguments
theta — Angular coordinate
scalar | vector | matrix | multidimensional array

Angular coordinate, specified as a scalar, vector, matrix, or multidimensional array.
theta, rho, and z must be the same size, or any of them can be scalar.

theta is the counterclockwise angle in the x-y plane measured in radians from the
positive x-axis.

 pol2cart

1-11107

Data Types: single | double
Complex Number Support: Yes

rho — Radial coordinate
scalar | vector | matrix | multidimensional array

Radial coordinate, specified as a scalar, vector, matrix, or multidimensional array. theta,
rho, and z must be the same size, or any of them can be scalar.

rho is the distance from the origin to a point in the x-y plane.
Data Types: single | double
Complex Number Support: Yes

z — Elevation coordinate
scalar | vector | matrix | multidimensional array

Elevation coordinate, specified as a scalar, vector, matrix, or multidimensional array.
theta, rho, and z must be the same size, or any of them can be scalar.

z is the height above the x-y plane.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
x, y, z — Cartesian coordinates
arrays

Cartesian coordinates, returned as arrays.

Algorithms
The mapping from polar and cylindrical coordinates to Cartesian coordinates is:

1 Alphabetical List

1-11108

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 pol2cart

1-11109

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cart2pol | cart2sph | sph2cart

Introduced before R2006a

1 Alphabetical List

1-11110

polar
(Not recommended) Polar coordinate plot

Note polar is not recommended. Use polarplot instead.

Syntax
polar(theta,rho)
polar(theta,rho,LineSpec)
polar(axes_handle,...)
h = polar(...)

Description
The polar function accepts polar coordinates, plots them in a Cartesian plane, and draws
the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta versus the radius
rho. theta is the angle from the x-axis to the radius vector specified in radians; rho is
the length of the radius vector specified in dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot symbol, and color
for the lines drawn in the polar plot.

polar(axes_handle,...) plots into the axes with the handle axes_handle instead of
into the current axes (gca).

h = polar(...) returns the line object in h.

Examples

 polar

1-11111

Simple Polar Plot

Create a simple polar plot using a dashed red line.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);

figure
polar(theta,rho,'--r')

1 Alphabetical List

1-11112

Tips
Negative r values reflect through the origin, rotating by pi (since (theta,r) transforms
to (r*cos(theta), r*sin(theta))). If you want different behavior, you can
manipulate r prior to plotting. For example, you can make r equal to max(0,r) or
abs(r).

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cart2pol | compass | pol2cart | polarplot | rose

 polar

1-11113

Introduced before R2006a

1 Alphabetical List

1-11114

polaraxes
Create polar axes

Syntax
polaraxes
polaraxes(Name,Value)
polaraxes(parent, ___)
pax = polaraxes(___)

polaraxes(pax_in)

Description
polaraxes creates the default polar axes in the current figure.

polaraxes(Name,Value) specifies properties for the PolarAxes object using one or
more name-value pair arguments, for example, 'ThetaDir','clockwise'. For a list of
properties, see PolarAxes.

polaraxes(parent, ___) creates the polar axes in the figure, panel, or tab specified
by parent, instead of in the current figure. Use this option alone or with name-value pair
arguments.

pax = polaraxes(___)returns the PolarAxes object created. Use pax to query and
set properties of the PolarAxes object after it is created. For a list of properties, see
PolarAxes.

polaraxes(pax_in) makes the PolarAxes object pax_in the current axes.

Examples

 polaraxes

1-11115

Modify Polar Axes Properties

Create a new figure with polar axes and assign the polar axes object to pax. Add a plot to
the axes. Then, use pax to modify axes properties.

figure
pax = polaraxes;
theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
polarplot(theta,rho)

pax.ThetaDir = 'clockwise';
pax.FontSize = 12;

1 Alphabetical List

1-11116

Make Polar Axes Current Axes

Create a figure with polar axes and assign the polar axes object to pax. Then, ensure pax
is the current axes before calling the polarplot function.

figure
pax = polaraxes;

polaraxes(pax)
polarplot(1:10)

 polaraxes

1-11117

Input Arguments
parent — Parent container
figure | panel | tab

Parent container, specified as a Figure, Panel, or Tab object.

pax_in — Polar axes to make current
PolarAxes object

Polar axes to make current, specified as a PolarAxes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are only a subset. For a complete list, see PolarAxes. Some
graphics functions reset axes properties when plotting. To avoid graphics functions from
overriding the property values, set axes properties after plotting.
Example: 'ThetaZeroLocation','top','ThetaDir','clockwise'

ThetaAxisUnits — Units for angle values
'degrees' (default) | 'radians'

Units for angle values, specified as one of these values:

• 'degrees' — Label the angles in degrees, and interpret the ThetaLim, ThetaTick,
and RAxisLocation property values in degrees. When you switch the units from
radians to degrees, MATLAB converts the radian values in those three properties to
the equivalent degree values.

• 'radians' — Label the angles in radians, and interpret the ThetaLim, ThetaTick,
and RAxisLocation property values in radians. When you switch the units from
degrees to radians, MATLAB converts the degree values in those three properties to
the equivalent radian values.

Example: ax.ThetaAxisUnits = 'radians';

1 Alphabetical List

1-11118

ThetaZeroLocation — Location of the zero reference axis
'right' (default) | 'top' | 'left' | 'bottom'

Location of the zero reference axis, specified as one of the values in this table.

Value Result
'right'

 polaraxes

1-11119

Value Result
'top'

'left'

1 Alphabetical List

1-11120

Value Result
'bottom'

Example: ax.ThetaZeroLocation = 'left';

ThetaDir — Direction of increasing angles
'counterclockwise' (default) | 'clockwise'

Direction of increasing angles, specified as one of the values in this table.

 polaraxes

1-11121

Value Result
'counterclockwise' Angles increase in a counterclockwise

direction.

1 Alphabetical List

1-11122

Value Result
'clockwise' Angles increase in a clockwise direction.

Example: ax.ThetaDir = 'clockwise';

ThetaLim — Minimum and maximum angle values
[0 360] (default) | two-element vector of the form [thmin thmax]

Minimum and maximum angle values, specified as a two-element vector of the form
[thmin thmax]. If the difference between the values is less than 360 degrees, then the
theta-axis is a partial circle.

MATLAB interprets the values in units determined by the ThetaAxisUnits property.
Example: ax.ThetaLim = [0 180];

ThetaTick — Angles at which to display lines
[0 30 60 ... 300 330 360] (default) | vector of increasing values

Angles at which to display lines extending from the origin, specified as a vector of
increasing values. MATLAB labels the lines with the appropriate angle values, unless you
specify different labels using the ThetaTickLabel property.

 polaraxes

1-11123

MATLAB interprets the values in units determined by the ThetaAxisUnits property.
Example: ax.ThetaTick = [0 90 180 270];

Alternatively, specify the values using the thetaticks function.

ThetaColor — Color of theta-axis
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the theta-axis, including the theta-axis grid lines, tick marks, tick labels. Specify
this value as an RGB triplet, a hexadecimal color code, a color name, or a short name.

Note If you specify the GridColor property, then the grid lines use the color in the
GridColor property instead. See GridColorMode for more information.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

1 Alphabetical List

1-11124

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

For example, ax.ThetaColor = 'r' changes the color to red.

 polaraxes

1-11125

RAxisLocation — Location of r-axis
80 (default) | scalar angle value

Location of the r-axis, specified a scalar angle value. MATLAB interprets the values in
units determined by the ThetaAxisUnits property.
Example: ax.RAxisLocation = 90;

RDir — Direction of increasing values along r-axis
'normal' (default) | 'reverse'

Direction of increasing values along the r-axis, specified as one of these values:

• 'normal' — Values increase outward from the center of the chart. The radius at the
origin corresponds to the minimum value stored in the RLim property (typically 0).

• 'reverse' — Values decrease outward from the center of the chart. The radius at the
origin corresponds to the maximum value stored in the RLim property.

Example: ax.RDir = 'reverse';

1 Alphabetical List

1-11126

RLim — Minimum and maximum radius limits
[0 1] (default) | two-element vector of the form [rmin rmax]

Minimum and maximum radius limits, specified as a two-element vector of the form
[rmin rmax], where rmax is a numeric value greater than rmin. You can specify both
limits, or specify one limit and let the axes automatically calculate the other.

• To automatically set the minimum limit to the minimum data value, specify the first
element as -inf, for example, [-inf 0].

• To automatically set the maximum limit to the maximum data value, specify the second
element as inf, for example, [0 inf].

Alternatively, use the rlim function to set the limits.
Example: ax.RLim = [0 6];

RTick — Radius tick values
[0 0.2 0.4 0.6 0.8 1] (default) | vector of increasing values

Radius tick values, specified as a vector of increasing values. The radius tick values are
the locations along the r-axis where the circular lines appear. The radius tick labels are
the labels that you see next to each line. Use the RTickLabels property to specify the
associated labels.
Example: ax.RTick = [0 2 4 6];

Alternatively, use the rticks function to specify the tick values.

RColor — Color of r-axis
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the r-axis, including the r-axis grid lines, tick marks, and tick labels. Specify this
value as an RGB triplet, a hexadecimal color code, a color name, or a short name.

Note If you specify the GridColor property, then the grid lines use the color in the
GridColor property instead. See GridColorMode for more information.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 polaraxes

1-11127

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

For example, ax.RColor = 'r' changes the color to red.

1 Alphabetical List

1-11128

See Also
PolarAxes | polarplot | rlim

Introduced in R2016a

 polaraxes

1-11129

PolarAxes Properties
Polar axes appearance and behavior

Description
PolarAxes properties control the appearance and behavior of a PolarAxes object. By
changing property values, you can modify certain aspects of the polar axes. Set axes
properties after plotting since some graphics functions reset axes properties.

Some graphics functions create polar axes when plotting. Use gca to access the newly
created axes. To create empty polar axes, use the polaraxes function.

polarplot([0 pi/2 pi],[1 2 3])
ax = gca;
d = ax.ThetaDir;
ax.ThetaDir = 'clockwise';

Properties
Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The font size affects the title and tick
labels. It also affects any legends or colorbars associated with the axes. The default font

1 Alphabetical List

1-11130

size depends on the specific operating system and locale. By default, the font size is
measured in points. To change the units, set the FontUnits property.

MATLAB automatically scales some of the text to a percentage of the axes font size.

• Titles — 110% of the axes font size by default. To control the scaling, use the
TitleFontSizeMultiplier and LabelFontSizeMultiplier properties.

• Legends and colorbars — 90% of the axes font size by default. To specify a different
font size, set the FontSize property for the Legend or Colorbar object instead.

Example: ax.FontSize = 12

FontSizeMode — Selection mode for font size
'auto' (default) | 'manual'

Selection mode for the font size, specified as one of these values:

• 'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the
default size, the font size might scale down to improve readability and layout.

• 'manual' — Font size specified manually. Do not scale the font size as the axes size
changes. To specify the font size, set the FontSize property.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

TitleFontSizeMultiplier — Scale factor for title font size
1.1 (default) | numeric value greater than 0

 PolarAxes Properties

1-11131

Scale factor for the title font size, specified as a numeric value greater than 0. The scale
factor is applied to the value of the FontSize property to determine the font size for the
title.
Example: ax.TitleFontSizeMultiplier = 1.75

TitleFontWeight — Title character thickness
'bold' (default) | 'normal'

Title character thickness, specified as one of these values:

• 'bold' — Thicker characters outlines than normal
• 'normal' — Default weight as defined by the particular font

Example: ax.TitleFontWeight = 'normal'

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'normalized' | 'pixels'

Font size units, specified as one of these values.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the axes

height. If you resize the axes, the font size
modifies accordingly. For example, if the
FontSize is 0.1 in normalized units, then
the text is 1/10 of the height value stored in
the axes Position property.

1 Alphabetical List

1-11132

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

To set both the font size and the font units in a single function call, you first must set the
FontUnits property so that the Axes object correctly interprets the specified font size.

FontSmoothing — Character smoothing
'on' (default) | 'off'

Character smoothing, specified as 'on' or 'off'.

Value Description Result
'on' Use antialiasing to make

text appear smoother on the
screen.

Example:
ax.FontSmoothing =
'on'

'off' Do not use antialiasing. Use
this setting if the text seems
blurry.

Example:
ax.FontSmoothing =
'off'

 PolarAxes Properties

1-11133

Ticks

RTick — Radius tick values
[0 0.2 0.4 0.6 0.8 1] (default) | vector of increasing values

Radius tick values, specified as a vector of increasing values. The radius tick values are
the locations along the r-axis where the circular lines appear. The radius tick labels are
the labels that you see next to each line. Use the RTickLabels property to specify the
associated labels.
Example: ax.RTick = [0 2 4 6];

Alternatively, use the rticks function to specify the tick values.

RTickMode — Selection mode for radius tick values
'auto' (default) | 'manual'

Selection mode for the radius tick values, specified as one of these values:

• 'auto' — Automatically select the tick values based on the range of data for the axis.
• 'manual' — Manually specify the tick values. To specify the values, set the RTick

property.

Example: ax.RTickMode = 'auto'

RTickLabel — Radius tick labels
{'0'; '0.2'; '0.4'; '0.6'; '0.8'; '1'} (default) | cell array of character
vectors | string array | categorical array

Radius tick labels, specified as a cell array of character vectors, string array, or
categorical array. If you do not want tick labels to show, then specify an empty cell array
{}. If you do not specify enough labels for all the ticks values, then the labels repeat.

Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter property
for more information.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.
Example: ax.RTickLabel = {'one','two','three','four'};

Alternatively, use the rticklabels function.

1 Alphabetical List

1-11134

RTickLabelMode — Selection mode for RTickLabel
'auto' (default) | 'manual'

Selection mode for the RTickLabel property value, specified as one of these values:

• 'auto' — Automatically select the tick labels.
• 'manual' — Manually specify the tick labels. To specify the labels, set the

RTickLabel property.

ThetaTick — Angles at which to display lines
[0 30 60 ... 300 330 360] (default) | vector of increasing values

Angles at which to display lines extending from the origin, specified as a vector of
increasing values. MATLAB labels the lines with the appropriate angle values, unless you
specify different labels using the ThetaTickLabel property.

MATLAB interprets the values in units determined by the ThetaAxisUnits property.
Example: ax.ThetaTick = [0 90 180 270];

Alternatively, specify the values using the thetaticks function.

ThetaTickMode — Selection mode for ThetaTick
'auto' (default) | 'manual'

Selection mode for the ThetaTick property value, specified as one of these values:

• 'auto' — Automatically select the property value.
• 'manual' — Use the specified property value. To specify the value, set the

ThetaTick property.

ThetaTickLabel — Labels for angle lines
{'0'; '30'; '60'; ... '300'; '330'; '360'} (default) | cell array of character
vectors | string array | categorical array

Labels for angle lines, specified as a cell array of character vectors, string array, or
categorical array.

If you do not specify enough labels for all the lines, then the labels repeat. Labels support
TeX and LaTeX markup. See the TickLabelInterpreter property for more information.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.

 PolarAxes Properties

1-11135

Example: ax.ThetaTickLabel = {'right','top','left','bottom'};

Alternatively, specify the values using the thetaticklabels function.

ThetaTickLabelMode — Selection mode for ThetaTickLabel
'auto' (default) | 'manual'

Selection mode for the ThetaTickLabel property value, specified as one of these values:

• 'auto' — Automatically select the property value.
• 'manual' — Use the specified property value. To specify the value, set the

ThetaTickLabel property.

RTickLabelRotation — Rotation of r-axis tick labels
0 (default) | scalar value in degrees

Rotation of r-axis tick labels, specified as a scalar value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation.
Example: ax.RTickLabelRotation = 45;

Alternatively, use the rtickangle function.

RMinorTick — Minor tick marks along r-axis
'off' | 'on'

Minor tick marks along r-axis, specified as one of these values:

• 'off' — Do not display minor tick marks.
• 'on' — Display minor tick marks. The space between the major tick marks and grid

lines determines the number of minor tick marks. This property value has a visual
effect only if the tick length is positive (controlled by the TickLength property) and if
the polar axes is a full circle (controlled by the ThetaLim property).

Example: ax.RMinorTick = 'on';

ThetaMinorTick — Minor tick marks between angle lines
'off' (default) | 'on'

Minor tick marks between angle lines, specified as one of these values:

• 'off' — Do not display minor tick marks.

1 Alphabetical List

1-11136

• 'on' — Display minor tick marks. The space between the lines determines the number
of minor tick marks. This property value has a visual effect only if the tick length is
positive. To set the tick length, use the TickLength property, for example,
ax.TickLength = [0.02 0].

ThetaZeroLocation — Location of the zero reference axis
'right' (default) | 'top' | 'left' | 'bottom'

Location of the zero reference axis, specified as one of the values in this table.

Value Result
'right'

 PolarAxes Properties

1-11137

Value Result
'top'

'left'

1 Alphabetical List

1-11138

Value Result
'bottom'

Example: ax.ThetaZeroLocation = 'left';

TickDir — Tick mark direction
'in' (default) | 'out' | 'both'

Tick mark direction, specified as one of these values:

• 'in' — Direct the tick marks inward from the axes outline.
• 'out' — Direct the tick marks outward from the axes outline.
• 'both' — Center the tick marks over the axes outline.

Example: ax.TickDir = 'out';

TickDirMode — Selection mode for TickDir
'auto' (default) | 'manual'

Selection mode for the TickDir property, specified as one of these values:

• 'auto' — Automatically select the tick direction based on the current view.
• 'manual' — Manually specify the tick direction. To specify the tick direction, set the

TickDir property.

 PolarAxes Properties

1-11139

Example: ax.TickDirMode = 'auto'

TickLabelInterpreter — Interpretation of characters in tick labels
'tex' (default) | 'latex' | 'none'

Interpretation of tick label characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using a subset of LaTeX markup. When you specify

the tick labels, use dollar signs around each element in the cell array.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the style and color, and include special characters in
the label.

This table lists the supported modifiers when the TickLabelInterpreter property is
set to 'tex', which is the default value. Modifiers remain in effect until the end of the
text, except for superscripts and subscripts which only modify the next character or the
text within the curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

1 Alphabetical List

1-11140

Modifier Description Example
\fontsize{specifier} Set specifier as a scalar

numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑

 PolarAxes Properties

1-11141

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\iota ι \Sigma Σ \rightarro
w

→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

1 Alphabetical List

1-11142

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. When you
specify the tick labels, use dollar signs around each element in the cell array, for example:

ax = polaraxes;
ax.ThetaTickLabels = {'\sum_1^n','\int_1^n','$\frac{1}{2}$'};
ax.TickLabelInterpreter = 'latex';

The displayed labels uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.
The maximum size of the labels that you can use with the LaTeX interpreter is 1200
characters. For multiline labels, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

TickLength — Tick mark length
[0 0] (default) | two-element vector

Tick mark length, specified as a two-element vector. The first element determines the tick
length. The second element is ignored.
Example: ax.TickLength = [0.02 0];

Rulers

RLim — Minimum and maximum radius limits
[0 1] (default) | two-element vector of the form [rmin rmax]

Minimum and maximum radius limits, specified as a two-element vector of the form
[rmin rmax], where rmax is a numeric value greater than rmin. You can specify both
limits, or specify one limit and let the axes automatically calculate the other.

• To automatically set the minimum limit to the minimum data value, specify the first
element as -inf, for example, [-inf 0].

• To automatically set the maximum limit to the maximum data value, specify the second
element as inf, for example, [0 inf].

Alternatively, use the rlim function to set the limits.
Example: ax.RLim = [0 6];

 PolarAxes Properties

1-11143

https://www.latex-project.org
https://www.latex-project.org

RLimMode — Selection mode for RLim
'auto' (default) | 'manual

Selection mode for the RLim property value, specified as one of these values:

• 'auto'— Automatically set the property value.
• 'manual'— Use the specified property value. To specify the value, set the RLim

property.

ThetaLim — Minimum and maximum angle values
[0 360] (default) | two-element vector of the form [thmin thmax]

Minimum and maximum angle values, specified as a two-element vector of the form
[thmin thmax]. If the difference between the values is less than 360 degrees, then the
theta-axis is a partial circle.

MATLAB interprets the values in units determined by the ThetaAxisUnits property.
Example: ax.ThetaLim = [0 180];

ThetaLimMode — Selection mode for ThetaLim
'auto' (default) | 'manual

Selection mode for the ThetaLim property value, specified as one of these values:

• 'auto' — Automatically select the property value.
• 'manual' — Use the specified property value. To specify the value, set the ThetaLim

property.

RAxis — Component that controls appearance and behavior of r-axis
ruler object (default)

Component that controls the appearance and behavior of the r-axis, returned as a ruler
object. When MATLAB creates polar axes, it automatically creates a ruler for the r-axis.
Modify the appearance and behavior of this axis by accessing the associated ruler and
setting ruler properties. For a list of options, see NumericRuler.

For example, change the color of the r-axis to red.

ax = polaraxes;
ax.RAxis.Color = 'r';

1 Alphabetical List

1-11144

Use the RAxis properties to access the ruler objects and set ruler properties. If you want
to set polar axes properties, set them directly on the PolarAxes object.

ThetaAxis — Component that controls appearance and behavior of theta-axis
ruler object (default)

Component that controls the appearance and behavior of the theta-axis, returned as a
ruler object. When MATLAB creates polar axes, it automatically creates a numeric ruler
for the theta-axis. Modify the appearance and behavior of this axis by accessing the
associated ruler and setting ruler properties. For a list of options, see NumericRuler.

For example, change the color of the theta-axis to red.

ax = polaraxes;
ax.ThetaAxis.Color = 'r';

Use the ThetaAxis property to access the ruler object and set ruler properties. If you
want to set polar axes properties, set them directly on the PolarAxes object.

RAxisLocation — Location of r-axis
80 (default) | scalar angle value

Location of the r-axis, specified a scalar angle value. MATLAB interprets the values in
units determined by the ThetaAxisUnits property.
Example: ax.RAxisLocation = 90;

RAxisLocationMode — Selection mode for RAxisLocation
'auto' (default) | 'manual'

Selection mode for the RAxisLocation property value, specified as one of these values:

• 'auto' — Automatically select the property value.
• 'manual' — Use the specified property value. To specify the value, set the

RAxisLocation property.

RColor — Color of r-axis
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the r-axis, including the r-axis grid lines, tick marks, and tick labels. Specify this
value as an RGB triplet, a hexadecimal color code, a color name, or a short name.

 PolarAxes Properties

1-11145

Note If you specify the GridColor property, then the grid lines use the color in the
GridColor property instead. See GridColorMode for more information.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

1 Alphabetical List

1-11146

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

For example, ax.RColor = 'r' changes the color to red.

RColorMode — Property for setting r-axis grid color
'auto' (default) | 'manual'

Property for setting r-axis grid color, specified 'auto' or 'manual'. The mode value only
affects the r-axis grid color. The r-axis tick labels always use the RColor value, regardless
of the mode.

The r-axis grid color depends on both the RColorMode property and the GridColorMode
property, as shown here.

 PolarAxes Properties

1-11147

RColorMode GridColorMode r-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' RColor property

'manual' GridColor property

The r-axis minor grid color depends on both the RColorMode property and the
MinorGridColorMode property, as shown here.

RColorMode MinorGridColorMode r-Axis Minor Grid Color
'auto' 'auto' MinorGridColor property

'manual' MinorGridColor property
'manual' 'auto' RColor property

'manual' MinorGridColor property

ThetaColor — Color of theta-axis
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the theta-axis, including the theta-axis grid lines, tick marks, tick labels. Specify
this value as an RGB triplet, a hexadecimal color code, a color name, or a short name.

Note If you specify the GridColor property, then the grid lines use the color in the
GridColor property instead. See GridColorMode for more information.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-11148

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

For example, ax.ThetaColor = 'r' changes the color to red.

 PolarAxes Properties

1-11149

ThetaColorMode — Property for setting theta-axis grid color
'auto' (default) | 'manual'

Property for setting theta-axis grid color, specified 'auto' or 'manual'. The mode value
only affects the theta-axis grid color. The theta-axis line, tick marks, and labels always use
the ThetaColor value, regardless of the mode.

The theta-axis grid color depends on both the ThetaColorMode property and the
GridColorMode property, as shown here.

ThetaColorMode GridColorMode theta-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' ThetaColor property

'manual' GridColor property

The theta-axis minor grid color depends on both the ThetaColorMode property and the
MinorGridColorMode property, as shown here.

1 Alphabetical List

1-11150

ThetaColorMode MinorGridColorMode theta-Axis Minor Grid
Color

'auto' 'auto' MinorGridColor property
'manual' MinorGridColor property

'manual' 'auto' ThetaColor property
'manual' MinorGridColor property

RDir — Direction of increasing values along r-axis
'normal' (default) | 'reverse'

Direction of increasing values along the r-axis, specified as one of these values:

• 'normal' — Values increase outward from the center of the chart. The radius at the
origin corresponds to the minimum value stored in the RLim property (typically 0).

• 'reverse' — Values decrease outward from the center of the chart. The radius at the
origin corresponds to the maximum value stored in the RLim property.

Example: ax.RDir = 'reverse';

ThetaDir — Direction of increasing angles
'counterclockwise' (default) | 'clockwise'

Direction of increasing angles, specified as one of the values in this table.

 PolarAxes Properties

1-11151

Value Result
'counterclockwise' Angles increase in a counterclockwise

direction.

1 Alphabetical List

1-11152

Value Result
'clockwise' Angles increase in a clockwise direction.

Example: ax.ThetaDir = 'clockwise';

ThetaAxisUnits — Units for angle values
'degrees' (default) | 'radians'

Units for angle values, specified as one of these values:

• 'degrees' — Label the angles in degrees, and interpret the ThetaLim, ThetaTick,
and RAxisLocation property values in degrees. When you switch the units from
radians to degrees, MATLAB converts the radian values in those three properties to
the equivalent degree values.

• 'radians' — Label the angles in radians, and interpret the ThetaLim, ThetaTick,
and RAxisLocation property values in radians. When you switch the units from
degrees to radians, MATLAB converts the degree values in those three properties to
the equivalent radian values.

Example: ax.ThetaAxisUnits = 'radians';

 PolarAxes Properties

1-11153

Grid Lines

RGrid — Display of r-axis grid lines
'on' (default) | 'off'

Display of r-axis grid lines, specified as one of the values in this table.

Value Result
'on' Display the lines.

1 Alphabetical List

1-11154

Value Result
'off' Do not display the lines.

Example: ax.RGrid = 'off';

ThetaGrid — Display of theta-axis grid lines
'on' (default) | 'off'

Display of theta-axis grid lines, specified as one of the values in this table.

 PolarAxes Properties

1-11155

Value Result
'on' Display the lines.

1 Alphabetical List

1-11156

Value Result
'off' Do not display the lines.

Example: ax.ThetaGrid = 'off';

Layer — Placement of grid lines and tick marks
'bottom' (default) | 'top'

Placement of grid lines and tick marks in relation to graphic objects, specified as one of
these values:

• 'bottom' — Display tick marks and grid lines under graphics objects.
• 'top' — Display tick marks and grid lines over graphics objects.

This property affects only 2-D views.
Example: ax.Layer = 'top'

GridLineStyle — Line style for grid lines
'-' (default) | '--' | ':' | '-.' | 'none'

Line style used for grid lines, specified as one of the line styles in this table.

 PolarAxes Properties

1-11157

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

To display grid lines, use the grid on command or set the ThetaGrid or RGrid
property to 'on'.
Example: ax.GridLineStyle = '--';

GridColor — Color of grid lines
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the grid lines, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short name. The actual grid color depends on the values of the
GridColorMode, ThetaColorMode, and RColorMode properties. See GridColorMode
for more information.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

1 Alphabetical List

1-11158

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.GridColor = [0 0 1]
Example: ax.GridColor = 'blue'
Example: ax.GridColor = '#0000FF'

GridColorMode — Property for setting grid color
'auto' (default) | 'manual'

Property for setting the grid color, specified as one of these values:

 PolarAxes Properties

1-11159

• 'auto' — Check the values of the RColorMode and ThetaColorMode properties to
determine the grid line colors for the r and theta directions.

• 'manual' — Use GridColor to set the grid line color for all directions.

GridAlpha — Grid-line transparency
0.15 (default) | value in the range [0,1]

Grid-line transparency, specified as a value in the range [0,1]. A value of 1 means
opaque and a value of 0 means completely transparent.
Example: ax.GridAlpha = 0.5

GridAlphaMode — Selection mode for GridAlpha
'auto' (default) | 'manual'

Selection mode for the GridAlpha property, specified as one of these values:

• 'auto' — Default transparency value of 0.15.
• 'manual' — Manually specify the transparency value. To specify the value, set the

GridAlpha property.

Example: ax.GridAlphaMode = 'auto'

RMinorGrid — Display of r-axis minor grid lines
'off' (default) | 'on'

Display of r-axis minor grid lines, specified as one of the values in this table.

1 Alphabetical List

1-11160

Value Result
'on' Display the lines.

 PolarAxes Properties

1-11161

Value Result
'off' Do not display the lines.

Example: ax.RMinorGrid = 'on';

ThetaMinorGrid — Display of theta-axis minor grid lines
'off' (default) | 'on'

Display of theta-axis minor grid lines, specified as one of the values in this table.

1 Alphabetical List

1-11162

Value Result
'on' Display the lines.

 PolarAxes Properties

1-11163

Value Result
'off' Do not display the lines.

Example: ax.ThetaMinorGrid = 'on';

MinorGridLineStyle — Line style for minor grid lines
':' (default) | '-' | '--' | '-.' | 'none'

Line style used for minor grid lines, specified as one of the line styles in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

1 Alphabetical List

1-11164

To display the grid lines, use the grid minor command or set the ThetaMinorGrid or
RMinorGrid property to 'on'.
Example: ax.MinorGridLineStyle = '-.';

MinorGridColor — Color of minor grid lines
[0.1 0.1 0.1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of minor grid lines, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short name. The actual grid color depends on the values of the
MinorGridColorMode, ThetaColorMode, and RColorMode properties. See
MinorGridColorMode for more information.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

 PolarAxes Properties

1-11165

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'none' Not
applicable

Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.MinorGridColor = [0 0 1]
Example: ax.MinorGridColor = 'blue'
Example: ax.MinorGridColor = '#0000FF'

MinorGridColorMode — Property for setting minor grid color
'auto' (default) | 'manual'

Property for setting the minor grid color, specified as one of these values:

• 'auto' — Check the values of the RColorMode and ThetaColorMode properties to
determine the grid line colors for the r and theta directions.

• 'manual' — Use MinorGridColor to set the grid line color for all directions.

MinorGridAlpha — Minor grid line transparency
0.25 (default) | value in the range [0,1]

Minor grid line transparency, specified as a value in the range [0,1]. A value of 1 means
opaque and a value of 0 means completely transparent.
Example: ax.MinorGridAlpha = 0.5

1 Alphabetical List

1-11166

MinorGridAlphaMode — Selection mode for MinorGridAlpha
'auto' (default) | 'manual'

Selection mode for the MinorGridAlpha property, specified as one of these values:

• 'auto' — Default transparency value of 0.25.
• 'manual' — Manually specify the transparency value. To specify the value, set the

MinorGridAlpha property.

Example: ax.MinorGridAlphaMode = 'auto'

Labels

Title — Text object for axes title
text object (default)

Text object for axes title. To add a title, set the String property of the text object. To
change the title appearance, such as the font style or color, set other properties. For a list,
see Text.

ax = polaraxes;
ax.Title.String = 'My Title';
ax.Title.Color = 'red';

Alternatively, use the title to add a title and control the appearance.

title('My Title','Color','red')

Legend — Legend associated with the axes
empty GraphicsPlaceholder (default) | legend object

This property is read-only.

Legend associated with the axes, specified as a legend object. You can use this property
to determine if the axes has a legend.

ax = gca;
lgd = ax.Legend
if ~isempty(lgd)
 disp('Legend Exists')
end

You also can use this property to access properties of an existing legend. For a list of
properties, see Legend.

 PolarAxes Properties

1-11167

polarplot(1:10)
legend({'Line 1'},'FontSize',12)
ax = gca;
ax.Legend.TextColor = 'red';

Multiple Plots

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. Each row of the matrix
defines one color in the color order. The default color order has seven colors.

Default Color Order Associated RGB Triplets
 [0 0.4470 0.7410
 0.8500 0.3250 0.0980
 0.9290 0.6940 0.1250
 0.4940 0.1840 0.5560
 0.4660 0.6740 0.1880
 0.3010 0.7450 0.9330
 0.6350 0.0780 0.1840]

Change Color Order Before Plotting

You must change the color order before plotting. Changing the order has no effect on
existing plots. However, many graphics functions reset the color order back to the default
value before plotting. To ensure that the axes uses your specified color order, use one of
these approaches:

• Change the default color order for the axes before plotting.
• Set the NextPlot property of the axes to 'replacechildren'or 'add' before

plotting.

For example, this code changes the default color order for all future axes.

co = [1 0 0.4
 0.8 0.2 0.5
 0.6 0.4 0.6
 0.4 0.6 0.7
 0.2 0.8 0.8
 0 1 0.9];
set(groot,'defaultAxesColorOrder',co)
plot(rand(5))

1 Alphabetical List

1-11168

To revert to the original color order, use this command.

set(groot,'defaultAxesColorOrder','remove')

Alternatively, set the NextPlot property of the Axes object to 'replacechildren'
before plotting. New plots replace existing plots and use the first color in the color order,
but they do not reset other axes properties.

co = [1 0 0.4
 0.8 0.2 0.5
 0.6 0.4 0.6
 0.4 0.6 0.7
 0.2 0.8 0.8
 0 1 0.9];
ax = axes('ColorOrder',co,'NextPlot','replacechildren');
plot(ax,rand(5))

ColorOrderIndex — Next color
1 (default) | positive integer

Next color to use in the color order, specified as a positive integer. For example, if this
property is set to 1, then the next plot added to the axes uses the first color in the color
order. If the index value exceeds the number of colors in the color order, then the index
value modulo of the number of colors determines the next color used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
then the color order index value increases every time a new plot is added. Reset the color
order by setting the ColorOrderIndex property to 1.
Example: ax.ColorOrderIndex = 5

LineStyleOrder — Line-style order
'-' solid line (default) | character vector | cell array of character vectors | string array

Line-style order, specified as a character vector, a cell array of character vectors, or a
string array. Create each element using one or more of the line-style specifiers listed in
the table. You can combine a line and a marker specifier in a single element, such as '-
*'.
Example: {'-*',':','o'}

MATLAB cycles through the line styles only after using all the colors contained in the
ColorOrder property. The default LineStyleOrder has only one line style, '-'.

 PolarAxes Properties

1-11169

Specifier Line Style
'-' (default) Solid line
'--' Dashed line
':' Dotted line
'-.' Dash-dotted line
'+' Plus sign markers
'o' Circle markers
'*' Star markers
'.' Point markers
'x' Cross markers
's' Square markers
'd' Diamond markers
'^' Upward-pointing triangle markers
'v' Downward-pointing triangle markers
'>' Right-pointing triangle markers
'<' Left-pointing triangle markers
'p' Five-pointed star (pentagram) markers
'h' Six-pointed star (hexagram) markers

Change Line-Style Order Before Plotting

You must change the line-style order before plotting. Changing the order has no effect on
existing plots. However, many graphics functions reset the line-style order back to the
default value before plotting. To ensure that the axes uses your specified line-style order,
use one of these approaches:

• Change the default line-style order for the axes before plotting.
• Set the NextPlot property of the axes to 'replacechildren'or 'add' before

plotting.

For example, this code changes the default line-style order for all future axes.

set(groot,'defaultAxesLineStyleOrder',{'-*',':','o'})
plot(rand(15))

1 Alphabetical List

1-11170

To revert to the original line-style order, use this command.

set(groot,'defaultAxesLineStyleOrder','remove')

Alternatively, set the NextPlot property of the Axes object to 'replacechildren'
before plotting. New plots replace existing plots and use the first color and line style, but
they do not reset other axes properties.

ax = axes('LineStyleOrder',{'-*',':','o'},'NextPlot','replacechildren');
plot(ax,rand(15))

LineStyleOrderIndex — Next line style
1 (default) | positive integer

Next line style to use in the line-style order, specified as a positive integer. For example, if
this property is set to 1, then the next plot added to the axes uses the first line style in the
line-style order. If the index value exceeds the number of line styles in the line-style order,
then the index value modulo of the number of line styles determines the next line style
used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
then the index value increases every time you add a new plot. Subsequent plots cycle
through the line-style order. Reset the line-style order by setting the
LineStyleOrderIndex property to 1.
Example: ax.LineStyleOrderIndex = 1

NextPlot — Properties to reset
'replace' (default) | 'add' | 'replacechildren' | 'replaceall'

Properties to reset when adding a new plot to the axes, specified as one of these values:

• 'add' — Add new plots to the existing axes. Do not delete existing plots or reset axes
properties before displaying the new plot.

• 'replacechildren' — Delete existing plots before displaying the new plot. Reset
the ColorOrderIndex and LineStyleOrderIndex properties to 1, but do not reset
other axes properties. The next plot added to the axes uses the first color and line
style based on the ColorOrder and LineStyle order properties. This value is similar
to using cla before every new plot.

• 'replace' — Delete existing plots and reset axes properties, except Position and
Units, to their default values before displaying the new plot.

 PolarAxes Properties

1-11171

• 'replaceall' — Delete existing plots and reset axes properties, except Position
and Units, to their default values before displaying the new plot. This value is similar
to using cla reset before every new plot.

Note For Axes objects with only one y-axis, the 'replace' and 'replaceall'
property values are equivalent. For Axes objects with two y-axes, the 'replace' value
affects only the active side while the 'replaceall' value affects both sides.

Figures also have a NextPlot property. Alternatively, you can use the newplot function
to prepare figures and axes for subsequent graphics commands.

SortMethod — Order for rendering objects
'depth' (default) | 'childorder'

Order for rendering objects, specified as one of these values:

• 'depth' — Draw objects in back-to-front order based on the current view. Use this
value to ensure that objects in front of other objects are drawn correctly.

• 'childorder' — Draw objects in the order in which they are created by graphics
functions, without considering the relationship of the objects in three dimensions. This
value can result in faster rendering, particularly if the figure is very large, but also can
result in improper depth sorting of the objects displayed.

Color and Transparency Maps

Colormap — Color map
parula (default) | m-by-3 array of RGB triplets

Color map, specified as an m-by-3 array of RGB (red, green, blue) triplets that define m
individual colors.
Example: ax.Colormap = [1 0 1; 0 0 1; 1 1 0] sets the color map to three
colors: magenta, blue, and yellow.

MATLAB accesses these colors by their row number.

Alternatively, use the colormap function to change the color map.

ColorScale — Scale for color mapping
'linear' (default) | 'log'

1 Alphabetical List

1-11172

Scale for color mapping, specified as one of these values:

• 'linear' — Linear scale. The tick values along the colorbar also use a linear scale.
• 'log' — Log scale. The tick values along the colorbar also use a log scale.

Example: ax.ColorScale = 'log'

CLim — Color limits for colormap
[0 1] (default) | two-element vector of the form [cmin cmax]

Color limits for the colormap, specified as a two-element vector of the form [cmin
cmax].

If the associated mode property is set to 'auto', then MATLAB chooses the color limits.
If you assign a value to this property, then MATLAB sets the mode to 'manual' and does
not automatically choose the color limits.

CLimMode — Selection mode for CLim
'auto' (default) | 'manual'

Selection mode for the CLim property, specified as one of these values:

• 'auto' — Automatically select the limits based on the color data of the graphics
objects contained in the axes.

• 'manual' — Manually specify the values. To specify the values, set the CLim property.
The values do not change when the limits of the axes children change.

Alphamap — Transparency map
array of 64 values from 0 to 1 (default) | array of finite alpha values from 0 to 1

Transparency map, specified as an array of finite alpha values that progress linearly from
0 to 1. The size of the array can be m-by-1 or 1-by-m. MATLAB accesses alpha values by
their index in the array. Alphamaps can be any length.

AlphaScale — Scale for transparency mapping
'linear' (default) | 'log'

Scale for transparency mapping, specified as one of these values:

• 'linear' — Linear scale
• 'log' — Log scale

 PolarAxes Properties

1-11173

Example: ax.AlphaScale = 'log'

ALim — Alpha limits for alphamap
[0 1] (default) | two-element vector of the form [amin amax]

Alpha limits for alphamap, specified as a two-element vector of the form [amin amax].

If the associated mode property is set to 'auto', then MATLAB chooses the alpha limits.
If you set this property, then MATLAB sets the mode to 'manual' and does not
automatically choose the alpha limits.

ALimMode — Selection mode for ALim
'auto' (default) | 'manual'

Selection mode for the ALim property, specified as one of these values:

• 'auto' — Automatically select the limits based on the AlphaData values of the
graphics objects contained in the axes.

• 'manual' — Manually specify the alpha limits. To specify the alpha limits, set the
ALim property.

Box Styling

Color — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-11174

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.Color = 'none'

LineWidth — Width of circular and angle lines
0.5 (default) | scalar value

Width of circular and angle lines, specified as a scalar value in point units. One point
equals 1/72 inch.
Example: ax.LineWidth = 1.5

 PolarAxes Properties

1-11175

Box — Outline around polar axes
'off' (default) | 'on'

Outline around the polar axes, specified as either 'on' or 'off'. The difference between
the values is most noticeable when the theta-axis limits do not span 360 degrees.

Value Result
'on' Display the full outline around the polar

axes.

'off' Do not display the full outline around the
polar axes.

1 Alphabetical List

1-11176

Example: ax.Box = 'on'

Clipping — Clipping of objects to polar axes boundary
'on' (default) | 'off'

Clipping of objects to the polar axes boundary, specified as either 'on' or 'off'. The
clipping behavior of an object in the polar axes depends on both the Clipping property
of the polar axes and the Clipping property of the individual object. The property value
of the polar axes has these effects:

• 'on' — Allow each individual object in the polar axes to control its own clipping
behavior based on the Clipping property value for the object.

• 'off' — Disable clipping for all objects in the polar axes, regardless of the Clipping
property value for the individual objects. Parts of objects can appear outside of the
polar axes limits. For example, parts can appear outside the limits if you create a plot,
set hold on, freeze the axis scaling, and then add a plot that is larger than the
original plot.

This table lists the results for different combinations of Clipping property values.

Clipping Property for
Axes Object

Clipping Property for
Individual Object

Result

'on' 'on' Individual object is clipped.
Others might or might not
be.

'on' 'off' Individual object is not
clipped. Others might or
might not be.

'off' 'on' Individual object and other
objects are not clipped.

'off' 'off' Individual object and other
objects are not clipped.

Thick lines and markers might display outside the polar axes limits, even if clipping is
enabled. If a plot contains markers, then as long as the data point lies within the polar
axes, MATLAB draws the entire marker.

 PolarAxes Properties

1-11177

Position

OuterPosition — Size and position of polar axes, including labels and margins
[0 0 1 1] (default) | four-element vector

Size and position of polar axes, including the labels and margins, specified as a four-
element vector of the form [left bottom width height]. This vector defines the
extents of the rectangle that encloses the outer bounds of the polar axes. The left and
bottom elements define the distance from the lower-left corner of the figure or uipanel
that contains the polar axes to the lower-left corner of the rectangle. The width and
height elements are the rectangle dimensions.

By default, the values are measured in units normalized to the container. To change the
units, set the Units property. The default value of [0 0 1 1] includes the whole interior
of the container.

Position — Size and position of polar axes, not including labels or margins
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector

Size and position of the polar axes, not including labels or margins, specified as a four-
element vector of the form [left bottom width height]. This vector defines the
extents of the tightest bounding rectangle that encloses the polar axes. The left and
bottom elements define the distance from the lower-left corner of the container to the
lower-left corner of the rectangle. The width and height elements are the rectangle
dimensions.

By default, the values are measured in units normalized to the container. To change the
units, set the Units property.
Example: ax.Position = [0 0 1 1]

TightInset — Margins for text labels
four-element vector of the form [left bottom right top]

This property is read-only.

Margins for the text labels, returned as a four-element vector of the form [left bottom
right top]. The elements define the distances between the bounds of the Position
property and the extent of the polar axes text labels and title. By default, the values are
measured in units normalized to the figure or uipanel that contains the polar axes. To
change the units, set the Units property.

1 Alphabetical List

1-11178

The Position property and the TightInset property define the tightest bounding box
that encloses the polar axes and its labels and title.

ActivePositionProperty — Active position property
'outerposition' (default) | 'position'

Active position property during resize operation, specified as one of these values:

• 'outerposition' — Hold the OuterPosition property constant.
• 'position' — Hold the Position property constant.

A figure can change size if you interactively resize it or during a printing or exporting
operation.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0) and the upper right corner maps to
(1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.

 PolarAxes Properties

1-11179

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a Name,Value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
Position.

Interactivity

Toolbar — Data exploration toolbar
AxesToolbar object (default)

Data exploration toolbar, which is an AxesToolbar object. The toolbar appears at the
top-right corner of the axes when you hover over it and includes options for exporting and
data tips.

You can customize the toolbar buttons using the axtoolbar and axtoolbarbtn
functions.

If you do not want the toolbar to appear when you hover over the axes, set the Visible
property of the AxesToolbar object to 'off'.

ax = gca;
ax.Toolbar.Visible = 'off';

For more information, see AxesToolbar.

Interactions — Interactions
DataTipInteraction object (default) | []

1 Alphabetical List

1-11180

Interactions, specified as a DataTipInteraction object or an empty array. When the
value of this property is a DataTipInteraction object, you can display data tips within
your chart without selecting any of the axes toolbar buttons.

To remove all interactions from the axes, set this property to an empty array. To
temporarily disable the current set of interactions, call the
disableDefaultInteractivity function. You can reenable them by calling the
enableDefaultInteractivity function.

Note

• Setting this property is not supported in the Live Editor.
• The DataTipInteraction object is not returned by findobj or findall, and it is

not copied by copyobj.

For more information about chart interactions, see “Control Chart Interactivity”.

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

 PolarAxes Properties

1-11181

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

1 Alphabetical List

1-11182

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 PolarAxes Properties

1-11183

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

1 Alphabetical List

1-11184

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

 PolarAxes Properties

1-11185

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the PolarAxes object responds to
the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off'. The HitTest property determines if the PolarAxes object
responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the PolarAxes object passes the
click to the object below it in the current view of the figure window, which is typically
the axes or the figure. The HitTest property has no effect.

If you want an object to be clickable when it is underneath other objects that you do not
want to be clickable, then set the PickableParts property of the other objects to
'none' so that the click passes through them.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the PolarAxes object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the PolarAxes object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the PolarAxes object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

1 Alphabetical List

1-11186

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent of polaraxes
figure object | uipanel object | uitab object

Parent of polaraxes, specified as figure object, uipanel object, or uitab object.

Children — Children
empty GraphicsPlaceholder array | array of graphics objects

Children, returned as an array of graphics objects. Use this property to view a list of the
children or to reorder the children by setting the property to a permutation of itself.

You cannot add or remove children using the Children property. To add a child to this
list, set the Parent property of the child graphics object to the PolarAxes object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

 PolarAxes Properties

1-11187

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'polaraxes' (default)

This property is read-only.

Type of graphics object, returned as 'polaraxes'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
cla | gca | polaraxes

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-11188

polarhistogram
Histogram chart in polar coordinates

Syntax
polarhistogram(theta)
polarhistogram(theta,nbins)
polarhistogram(theta,edges)
polarhistogram('BinEdges',edges,'BinCounts',counts)

polarhistogram(___ ,Name,Value)
polarhistogram(pax, ___)
h = polarhistogram(___)

Description
polarhistogram(theta) creates a histogram plot in polar coordinates by sorting the
values in theta into equally spaced bins. Specify the values in radians.

polarhistogram(theta,nbins) uses the number of bins specified by the positive
integer, nbins.

polarhistogram(theta,edges) sorts theta into bins with bin edges specified by the
vector, edges. All bins include the left edge, but only the last bin includes the right edge.
In other words, the last bin includes both edges.

polarhistogram('BinEdges',edges,'BinCounts',counts) uses the manually
specified bin edges and associated bin counts. The polarhistogram function does not
do any data binning.

polarhistogram(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can use semitransparent bars by specifying
'FaceAlpha' and a scalar value between 0 and 1.

polarhistogram(pax, ___) plots into the polar axes specified by pax instead of into
the current axes.

 polarhistogram

1-11189

h = polarhistogram(___) returns the Histogram object. Use h to modify the
histogram after it is created. For a list of properties, see Histogram.

Examples

Create Histogram Chart in Polar Coordinates

Create a vector of values between 0 and 2π. Create a histogram chart that shows the data
sorted into six bins.

theta = [0.1 1.1 5.4 3.4 2.3 4.5 3.2 3.4 5.6 2.3 2.1 3.5 0.6 6.1];
polarhistogram(theta,6)

1 Alphabetical List

1-11190

Specify Number of Bins for Polar Histogram Chart

Create a histogram plot from 100,000 values between −π and π, and sort the data into 25
bins.

theta = atan2(rand(100000,1)-0.5,2*(rand(100000,1)-0.5));
polarhistogram(theta,25);

 polarhistogram

1-11191

Modify Appearance of Histogram Chart

Create a histogram chart in polar coordinates, and then change its appearance. Specify
the bar colors by setting the FaceColor property to a character vector of a color name,
such as 'red', or an RGB triplet. Specify the transparency by setting the FaceAlpha
property to a value between 0 and 1.

theta = atan2(rand(100000,1)-0.5,2*(rand(100000,1)-0.5));
polarhistogram(theta,25,'FaceColor','red','FaceAlpha',.3);

1 Alphabetical List

1-11192

Modify Appearance of Histogram Chart After Creation

Create a histogram chart in polar coordinates. Assign the histogram object to the variable
h.

theta = atan2(rand(100000,1)-0.5,2*(rand(100000,1)-0.5));
h = polarhistogram(theta,25)

 polarhistogram

1-11193

h =
 Histogram with properties:

 Data: [100000x1 double]
 Values: [1x25 double]
 NumBins: 25
 BinEdges: [1x26 double]
 BinWidth: 0.2513
 BinLimits: [-3.1416 3.1416]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

1 Alphabetical List

1-11194

 Show all properties

Use h to access and modify properties of the histogram object after it is created. For
example, show just the histogram outline by setting the DisplayStyle property of the
histogram object.

h.DisplayStyle = 'stairs';

 polarhistogram

1-11195

Input Arguments
theta — Data to distribute among bins
vector | matrix

Data to distribute among bins, specified as a vector or a matrix. polarhistogram
creates one histogram, regardless of whether you specify a vector or a matrix. Specify the
values in radians. To convert degrees to radians, use deg2rad.

Values that correspond to the same angle direction differ by exactly 2π, and are sorted
into the same bin. polarhistogram does not include NaN, Inf, and -Inf values in any
bin.
Example: theta = [0 0.4 0.5 0.7 2.3 3.0 1.7 0.3];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nbins — Number of bins
positive integer

Number of bins, specified as a positive integer. If you do not specify nbins, then
polarhistogram automatically calculates how many bins to use based on the values in
theta.
Example: nbins = 15;

edges — Bin edges
vector

Bin edges, specified as a vector. The difference between the minimum and maximum edge
values must be less than or equal to 2π.
Example: polarhistogram('BinEdges',[0 pi/3 pi 3*pi/2
2*pi],'BinCounts',[5 3 4 6])

counts — Bin counts
vector

Bin counts, specified as a vector. Use this option if you perform the bin counts calculation
separately and you do not want polarhistogram to do any data binning.
Example: polarhistogram('BinEdges',[0 pi/3 pi 3*pi/2
2*pi],'BinCounts',[5 3 4 6])

1 Alphabetical List

1-11196

pax — PolarAxes object
PolarAxes object

PolarAxes object. If you do not specify the polar axes, then polarhistogram uses the
current axes. polarhistogram does not support plotting into Cartesian axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The histogram properties listed here are only a subset. For a complete list, see
Histogram.
Example: polarhistogram(theta,'FaceAlpha',0.3) creates a histogram chart with
semitransparent bars.

BinLimits — Bin limits
two-element vector

Bin limits, specified as a two-element vector of the form [bmin,bmax], where bmin is
less than bmax.

This option plots a histogram using the input array values that fall between bmin and
bmax inclusive. That is, theta(theta>=bmin & theta<=bmax).
Example: polarhistogram(theta,'BinLimits',[-pi/2 pi/2]) plots a histogram
using only the values in theta that are between -pi/2 and pi/2 inclusive.

BinWidth — Width across top of bins
scalar less than 2π

Width across the top of the bins, specified as a scalar less than 2π.

polarhistogram uses a maximum of 65,536 bins (or 216). If the specified bin width
requires more bins, then polarhistogram uses the maximum number of bins and adjust
the bin width accordingly.
Example: polarhistogram(theta,'BinWidth',pi) uses bins with a width of π.

 polarhistogram

1-11197

Normalization — Type of normalization
'count' (default) | 'probability' | 'countdensity' | 'pdf' | 'cumcount' | 'cdf'

Type of normalization, specified as one of the values in this table.

Value Description
'count' Default normalization scheme. The height of each bar is

the number of observations in each bin. The sum of the bar
heights is numel(theta).

'probability' The height of each bar is the relative number of
observations, (number of observations in bin/total number
of observations). The sum of the bar heights is 1.

'countdensity' The height of each bar is the number of observations in
bin/width of bin.

'pdf' Probability density function estimate. The height of each
bar is, (number of observations in the bin)/(total number of
observations * width of bin). The area of each bar is the
relative number of observations. The sum of the bar areas
is 1.

'cumcount' The height of each bar is the cumulative number of
observations in each bin and all previous bins. The height
of the last bar is numel(theta).

'cdf' Cumulative density function estimate. The height of each
bar is equal to the cumulative relative number of
observations in the bin and all previous bins. The height of
the last bar is 1.

Example: polarhistogram(theta,'Normalization','pdf') plots an estimate of
the probability density function for theta.

DisplayStyle — Histogram display style
'bar' (default) | 'stairs'

Histogram display style, specified as one of these values:

• 'stairs' — Display the histogram outline only.
• 'bar' — Show each individual bar with a filled interior.

1 Alphabetical List

1-11198

Example: polarhistogram(theta,'DisplayStyle','stairs') plots the outline of
the histogram.

FaceAlpha — Transparency of histogram bars
0.6 (default) | scalar value between 0 and 1 inclusive

Transparency of histogram bars, specified as a scalar value between 0 and 1 inclusive.
polarhistogram uses the same transparency for all the bars of the histogram. A value
of 1 means fully opaque and 0 means completely transparent (invisible).
Example: polarhistogram(theta,'FaceAlpha',.5) creates a histogram plot with
semi-transparent bars.

FaceColor — Histogram bar color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Histogram bar color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' lets the histogram choose the
color.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

 polarhistogram

1-11199

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

If you specify DisplayStyle as 'stairs', then polarhistogram does not use the
FaceColor property.
Example: polarhistogram(theta,'FaceColor','g') creates a histogram plot with
green bars.

Limitations
• polarhistogram does not support creating histograms of categorical data in polar

axes.

1 Alphabetical List

1-11200

See Also
Functions
histogram | polarplot | polarscatter

Properties
Histogram | PolarAxes

Introduced in R2016b

 polarhistogram

1-11201

polarplot
Plot line in polar coordinates

Syntax
polarplot(theta,rho)
polarplot(theta,rho,LineSpec)
polarplot(theta1,rho1,...,thetaN,rhoN)
polarplot(theta1,rho1,LineSpec1,...,thetaN,rhoN,LineSpecN)

polarplot(rho)
polarplot(rho,LineSpec)

polarplot(Z)
polarplot(Z,LineSpec)

polarplot(___ ,Name,Value)
polarplot(pax, ___)
p = polarplot(___)

Description
polarplot(theta,rho) plots a line in polar coordinates, with theta indicating the
angle in radians and rho indicating the radius value for each point. The inputs must be
vectors with equal length or matrices with equal size. If the inputs are matrices, then
polarplot plots columns of rho versus columns of theta. Alternatively, one of the
inputs can be a vector and the other a matrix as long as the vector is the same length as
one dimension of the matrix.

polarplot(theta,rho,LineSpec) sets the line style, marker symbol, and color for the
line.

polarplot(theta1,rho1,...,thetaN,rhoN) plots multiple rho,theta pairs.

polarplot(theta1,rho1,LineSpec1,...,thetaN,rhoN,LineSpecN) specifies the
line style, marker symbol, and color for each line.

1 Alphabetical List

1-11202

polarplot(rho) plots the radius values in rho at evenly spaced angles between 0 and
2π.

polarplot(rho,LineSpec) sets the line style, marker symbol, and color for the line.

polarplot(Z) plots the complex values in Z.

polarplot(Z,LineSpec) sets the line style, marker symbol, and color for the line.

polarplot(___ ,Name,Value) specifies properties of the chart line using one or more
Name,Value pair arguments. The property settings apply to all the lines. You cannot
specify different property values for different lines using Name,Value pairs.

polarplot(pax, ___) uses the PolarAxes object specified by pax, instead of the
current axes.

p = polarplot(___) returns one or more chart line objects. Use p to set properties of
a specific chart line object after it is created. For a list of properties, see Chart Line.

Examples

Create Polar Plot

Plot a line in polar coordinates.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
polarplot(theta,rho)

 polarplot

1-11203

Convert from Degrees to Radians Before Plotting

Create the data to plot.

theta = linspace(0,360,50);
rho = 0.005*theta/10;

Convert the values in theta from degrees to radians. Then, plot the data in polar
coordinates.

theta_radians = deg2rad(theta);
polarplot(theta_radians,rho)

1 Alphabetical List

1-11204

Plot Multiple Lines in Polar Coordinates

Plot two lines in polar coordinates. Use a dashed line for the second line.

theta = linspace(0,6*pi);
rho1 = theta/10;
polarplot(theta,rho1)

rho2 = theta/12;
hold on
polarplot(theta,rho2,'--')
hold off

 polarplot

1-11205

Plot Radius Values at Equally Spaced Angles

Specify only the radius values, without specifying the angle values. polarplot plots the
radius values at equally spaced angles that span from 0 to 2π. Display a circle marker at
each data point.

rho = 10:5:70;
polarplot(rho,'-o')

1 Alphabetical List

1-11206

Plot Negative Radius Values

Create a polar plot using negative radius values. By default, polarplot reflects negative
values through the origin.

theta = linspace(0,2*pi);
rho = sin(theta);
polarplot(theta,rho)

 polarplot

1-11207

Change the limits of the r-axis so it ranges from -1 to 1.

rlim([-1 1])

1 Alphabetical List

1-11208

Specify Line Color for Polar Plot

Create a polar plot using a red line with circle markers.

theta = linspace(0,2*pi,25);
rho = 2*theta;
polarplot(theta,rho,'r-o')

 polarplot

1-11209

Specify Line Color After Creation

Create a polar plot and return the chart line object.

theta = linspace(0,2*pi,25);
rho = 2*theta;
p = polarplot(theta,rho);

1 Alphabetical List

1-11210

Change the line color and width and add markers.

p.Color = 'magenta';
p.Marker = 'square';
p.MarkerSize = 8;

 polarplot

1-11211

Create Polar Plot with Complex Values

Plot complex values in polar coordinates. Display markers at each point without a line
connecting them.

Z = [2+3i 2 -1+4i 3-4i 5+2i -4-2i -2+3i -2 -3i 3i-2i];
polarplot(Z,'*')

1 Alphabetical List

1-11212

Input Arguments
theta — Angle values
vector | matrix

Angle values, specified as a vector or matrix. Specify the values in radians. To convert
data from degrees to radians, use deg2rad.

To change the limits of the theta-axis, use thetalim.
Example: [0 pi/2 pi 3*pi/2 2*pi]

 polarplot

1-11213

rho — Radius values
vector | matrix

Radius values, specified as a vector or matrix. By default, negative values are reflected
through 0. A point is reflected by taking the absolute value of its radius, and adding 180
degrees to its angle.

To change the limits of the r-axis, use rlim.
Example: [1 2 3 4 5]

Z — Complex values
vector | matrix

Complex values, specified as a vector or matrix where each element is of the form
rho*ei*theta, or x+iy, where:

• rho = sqrt(x^2+y^2)
• theta = atan(y/x)

Example: [1+2i 3+4i 3i]

LineSpec — Line specification
character vector | string

Line specification, specified as a character vector or string containing a line style, marker,
and color specifier. The elements can appear in any order, and you can omit one or more
options. If you omit the line style and specify the marker, then the plot shows only
markers with no line connecting them.
Example: '--or' is a red dashed line with circle markers

Specifier Line Style
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Specifier Marker
o Circle

1 Alphabetical List

1-11214

Specifier Marker
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Specifier Color
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

pax — PolarAxes object
PolarAxes object

PolarAxes object. You can modify the appearance and behavior of a PolarAxes object
by setting its properties. For a list of properties, see PolarAxes.

 polarplot

1-11215

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Name,Value pair settings apply to all the lines plotted. You cannot specify different
Name,Value pairs for each line using this syntax. Instead, return the chart line objects
and use dot notation to set the properties for each line.

The properties listed here are only a subset. For a full list, see Chart Line.
Example: 'LineWidth',3

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

1 Alphabetical List

1-11216

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

 polarplot

1-11217

Line Style Description Resulting Line
'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers in this table. By default, a chart line does
not have markers. Add markers at each data point along the line by specifying a marker
symbol.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

1 Alphabetical List

1-11218

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

 polarplot

1-11219

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'none' Not
applicable

Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Tips
• To convert data from degrees to radians, use deg2rad. To convert data from radians

to degrees, use rad2deg.
• You can modify polar axes properties to customize the chart. For a list of properties,

see Polar Axes.
• To plot additional data in the polar axes, use the hold on command. However, you

cannot plot data that requires Cartesian axes in a polar chart.

See Also
Functions
deg2rad | rad2deg | rlim

Properties
Chart Line | PolarAxes

1 Alphabetical List

1-11220

Introduced in R2016a

 polarplot

1-11221

polarscatter
Scatter chart in polar coordinates

Syntax
polarscatter(th,r)
polarscatter(th,r,sz)
polarscatter(th,r,sz,c)

polarscatter(___ ,mkr)
polarscatter(___ ,'filled')
polarscatter(___ ,Name,Value)
polarscatter(pax, ___)
ps = polarscatter(___)

Description
polarscatter(th,r) plots th versus r and displays a circle at each data point. th and
r must be vectors of the same length. You must specify th in radians.

polarscatter(th,r,sz) sets the marker sizes, where sz specifies the area of each
marker in points squared. To draw all the markers with the same size, specify sz as a
scalar. To draw the markers with different sizes, specify sz as a vector the same length as
th.

polarscatter(th,r,sz,c) sets the marker colors, where c is either a vector, a three-
column matrix, an RGB triplet, or a color name, such as 'red'.

polarscatter(___ ,mkr) sets the marker symbol. For example, '+' displays cross
markers. Specify the marker symbol after any of the input argument combinations in the
previous syntaxes.

polarscatter(___ ,'filled') fills the marker interiors.

1 Alphabetical List

1-11222

polarscatter(___ ,Name,Value) modifies the appearance of the scatter plot using
one or more name-value pair arguments. For example, you can use semi-transparent
markers by specifying 'FaceAlpha' and a scalar value between 0 and 1.

polarscatter(pax, ___) plots into the polar axes specified by pax instead of into the
current axes.

ps = polarscatter(___) returns the Scatter object. Use ps to modify the
appearance of the Scatter object after it is created. For a list of properties, see Scatter.

Examples

Create Scatter Chart

Create a scatter chart in polar coordinates.

th = pi/4:pi/4:2*pi;
r = [19 6 12 18 16 11 15 15];
polarscatter(th,r)

 polarscatter

1-11223

Use Filled Markers and Set Marker Size

Create a scatter chart that uses filled markers by specifying the optional input argument,
'filled'. Set the marker size to 75 points squared.

th = linspace(0,2*pi,20);
r = rand(1,20);
sz = 75;
polarscatter(th,r,sz,'filled')

1 Alphabetical List

1-11224

Use Markers with Varying Sizes and Colors

Create a scatter chart with markers of varying sizes and colors. Specify the optional size
and color input arguments as vectors. Use unique values in the color vector to specify the
different colors you want. The values map to colors in the colormap.

th = pi/4:pi/4:2*pi;
r = [19 6 12 18 16 11 15 15];
sz = 100*[6 15 20 3 15 3 6 40];
c = [1 2 2 2 1 1 2 1];
polarscatter(th,r,sz,c,'filled','MarkerFaceAlpha',.5)

 polarscatter

1-11225

Convert from Degrees to Radians Before Plotting

Create data where the angle values are in degrees. Since polarscatter requires angle
values in radians, convert the values to radians before plotting using deg2rad.

th = linspace(0,360,50);
r = 0.005*th/10;
th_radians = deg2rad(th);
polarscatter(th_radians,r)

1 Alphabetical List

1-11226

Combine Two Scatter Charts

Combine two scatter charts in the same polar axes using the hold command. Add a
legend with a description of each chart.

th = pi/6:pi/6:2*pi;
r1 = rand(12,1);
polarscatter(th,r1,'filled')

hold on
r2 = rand(12,1);

 polarscatter

1-11227

polarscatter(th,r2,'filled')
hold off

legend('Series A','Series B')

Modify Scatter Chart After Creation

Create a scatter chart and assign the scatter object to the variable ps.

th = pi/6:pi/6:2*pi;
r = rand(12,1);
ps = polarscatter(th,r,'filled')

1 Alphabetical List

1-11228

ps =
 Scatter with properties:

 Marker: 'o'
 MarkerEdgeColor: 'none'
 MarkerFaceColor: 'flat'
 SizeData: 36
 LineWidth: 0.5000
 ThetaData: [1x12 double]
 RData: [1x12 double]
 ZData: [1x0 double]
 CData: [0 0.4470 0.7410]

 polarscatter

1-11229

 Show all properties

Use ps to modify properties of the scatter object after it is created.

ps.Marker = 'square';
ps.SizeData = 200;
ps.MarkerFaceColor = 'red';
ps.MarkerFaceAlpha = .5;

1 Alphabetical List

1-11230

Input Arguments
th — theta values
vector | scalar

theta values, specified as a vector or a scalar in radians. th and r must be the same size.
To convert degrees to radians, use deg2rad.

The ThetaData property of the scatter object stores the theta values.
Example: th = [3 2 4 5 7 2 3];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

r — rho values
vector | scalar

rho values, specified as a vector or a scalar. th and r must be the same size.

The RData property of the scatter object stores the rho values.
Example: r = 0:pi/2:2*pi;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Marker sizes in points squared
36 (default) | scalar | vector | []

Marker sizes in points squared, specified in one of these forms:

• Scalar — Uniform marker size. For example, sz = 100 creates all markers with an
area of 100 points squared.

• Vector — Different marker size for each data point. The vector must be the same
length as th and r.

• Empty brackets [] — Default marker size with an area of 36 points squared. Use this
option if you want to specify the color input argument, but use the default marker
area; for example, polarscatter(th,r,[],c).

The SizeData property of the scatter object stores the marker sizes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 polarscatter

1-11231

c — Marker colors
three-column matrix of RGB triplets | vector | RGB triplet | 'r''g''b' | ...

Marker colors, specified in one of these forms.

• RGB triplet or color name — Uniform marker color, such as 'red'.
• Vector — Different marker colors for each data point. The values in c are linearly

mapped to colors in the colormap. The vector must be the same length as th and r.
• Three-column matrix of RGB triplets — Different marker colors for each data point

using RGB triplet colors. The length of the matrix must be the same length as th and
r.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

When you specify the marker colors, polarscatter sets the MarkerFaceColor
property of the scatter object to 'flat' and stores the marker colors in the CData
property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

mkr — Marker symbol
'o' (default) | '+' | '*' | '.' | 'x' | 's' | ...

1 Alphabetical List

1-11232

Marker symbol, specified as one of the marker symbols listed in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

The Marker property of the scatter object stores the marker symbol.

pax — PolarAxes object
PolarAxes object

PolarAxes object. If you do not specify the polar axes, then polarscatter uses the
current axes. polarscatter does not support plotting into Cartesian axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The scatter object properties listed here are only a subset. For a complete list, see
Scatter.

 polarscatter

1-11233

Example: polarscatter(th,r,'filled','MarkerFaceAlpha',.5) creates filled,
semi-transparent markers.

MarkerFaceAlpha — Marker face transparency
1 (default) | scalar in range [0,1]

Marker face transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque
and 0 is transparent. Values between 0 and 1 are semi-transparent.

MarkerEdgeColor — Marker outline color
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified 'flat', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'flat' uses colors from the CData property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

1 Alphabetical List

1-11234

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'flat' | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The 'flat' option uses the CData values. The 'auto'
option uses the same color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

 polarscatter

1-11235

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

1 Alphabetical List

1-11236

LineWidth — Width of marker edge
0.5 (default) | positive value

Width of marker edge, specified as a positive value in point units.
Example: 0.75

See Also
Functions
hold | legend | polarhistogram | polarplot | scatter

Properties
PolarAxes | Scatter

Introduced in R2016b

 polarscatter

1-11237

poly
Polynomial with specified roots or characteristic polynomial

Syntax
p = poly(r)
p = poly(A)

Description
p = poly(r), where r is a vector, returns the coefficients of the polynomial whose roots
are the elements of r.

p = poly(A), where A is an n-by-n matrix, returns the n+1 coefficients of the
characteristic polynomial of the matrix, det(λI – A).

Examples

Characteristic Polynomial from Eigenvalues

Calculate the eigenvalues of a matrix, A.

A = [1 8 -10; -4 2 4; -5 2 8]

A = 3×3

 1 8 -10
 -4 2 4
 -5 2 8

e = eig(A)

e = 3×1 complex

1 Alphabetical List

1-11238

 11.6219 + 0.0000i
 -0.3110 + 2.6704i
 -0.3110 - 2.6704i

Since the eigenvalues in e are the roots of the characteristic polynomial of A, use poly to
determine the characteristic polynomial from the values in e.

p = poly(e)

p = 1×4

 1.0000 -11.0000 -0.0000 -84.0000

Characteristic Polynomial of Matrix

Use poly to calculate the characteristic polynomial of a matrix, A.

A = [1 2 3; 4 5 6; 7 8 0]

A = 3×3

 1 2 3
 4 5 6
 7 8 0

p = poly(A)

p = 1×4

 1.0000 -6.0000 -72.0000 -27.0000

Calculate the roots of p using roots. The roots of the characteristic polynomial are the
eigenvalues of matrix A.

r = roots(p)

r = 3×1

 12.1229

 poly

1-11239

 -5.7345
 -0.3884

Input Arguments
r — Polynomial roots
vector

Polynomial roots, specified as a vector.
Example: poly([2 -3])
Example: poly([2 -2 3 -3])
Example: poly(roots(k))
Example: poly(eig(A))
Data Types: single | double
Complex Number Support: Yes

A — Input matrix
matrix

Input matrix.
Example: poly([0 -1; 1 0])
Data Types: single | double
Complex Number Support: Yes

Output Arguments
p — Polynomial coefficients
row vector

Polynomial coefficients, returned as a row vector.

• If the input is a square n-by-n matrix, A, then p contains the coefficients for the
characteristic polynomial of A.

1 Alphabetical List

1-11240

• If the input is a vector of roots, r, then p contains the coefficients for the polynomial
whose roots are in r.

In each case, the n+1 coefficients in p describe the polynomial

p1xn + p2xn− 1 + ... + pnx + pn + 1 .

Tips
• For vectors, r = roots(p) and p = poly(r) are inverse functions of each other, up

to roundoff error, ordering, and scaling.

Algorithms
The algorithms employed for poly and roots illustrate an interesting aspect of the
modern approach to eigenvalue computation. poly(A) generates the characteristic
polynomial of A, and roots(poly(A)) finds the roots of that polynomial, which are the
eigenvalues of A. But both poly and roots use eig, which is based on similarity
transformations. The classical approach, which characterizes eigenvalues as roots of the
characteristic polynomial, is actually reversed.

If A is an n-by-n matrix, poly(A) produces the coefficients p(1) through p(n+1), with
p(1) = 1, in

det λI − A = p1λn + … + pnλ + pn + 1 .

The algorithm is

z = eig(A);
p = zeros(n+1,1);
p(1) = 1;
for j = 1:n
 p(2:j+1) = p(2:j+1)-z(j)*p(1:j);
end

This recursion is derived by expanding the product,

(λ− λ1)(λ− λ2)…(λ− λn) .

 poly

1-11241

It is possible to prove that poly(A) produces the coefficients in the characteristic
polynomial of a matrix within roundoff error of A. This is true even if the eigenvalues of A
are badly conditioned. The traditional algorithms for obtaining the characteristic
polynomial do not use the eigenvalues, and do not have such satisfactory numerical
properties.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not discard nonfinite input values.
• Complex input produces complex output.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
conv | polyval | polyvalm | residue | roots

Topics
“Create and Evaluate Polynomials”

Introduced before R2006a

1 Alphabetical List

1-11242

polyarea
Area of polygon

Syntax
A = polyarea(X,Y)
A = polyarea(X,Y,dim)

Description
A = polyarea(X,Y) returns the area of the polygon specified by the vertices in the
vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area of polygons
defined by the columns X and Y.

If X and Y are multidimensional arrays, polyarea returns the area of the polygons in the
first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by scalar dim.

Examples

Find Area of Polygon

L = linspace(0,2.*pi,9);
xv = 1.2*cos(L)';
yv = 1.2*sin(L)';

A = polyarea(xv,yv)

A = 4.0729

 polyarea

1-11243

plot(xv,yv);
title(['Area = ' num2str(A)])
axis image

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-11244

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
convhull | inpolygon | rectint

Introduced before R2006a

 polyarea

1-11245

polybuffer
Create buffer around points, lines, or polyshape objects

Syntax
polyout = polybuffer(P,'points',d)
polyout = polybuffer(P,'lines',d)
polyout = polybuffer(P,'lines',d,'JointType',jt)
polyout = polybuffer(P,'lines',d,'JointType','miter','MiterLimit',
lim)

polyout = polybuffer(polyin,d)
polyout = polybuffer(polyin,d,'JointType',jt)
polyout = polybuffer(polyin,d,'JointType','miter','MiterLimit',lim)

Description
polyout = polybuffer(P,'points',d) returns a polyshape object with
boundaries that buffer the 2-D points in P by a distance d. The polybuffer function
computes the buffer by taking the union of circles of radius d centered at each point in P.
The first column of the matrix P contains the x-coordinates of the points to buffer and the
second column contains the corresponding y-coordinates.

Once you create the polyshape object polyout, you can analyze its properties or
perform additional computations using polyshape functions. For example, you can
access the vertices that define the buffered shape with the property polyout.Vertices,
and you can plot the shape using the command plot(polyout).

polyout = polybuffer(P,'lines',d) returns a polyshape object with boundaries
that buffer the line segments defined by the 2-D points in P. The polybuffer function
computes the buffer by moving a circle of radius d along the line segments created by the
input points, centered on the line segments.

polyout = polybuffer(P,'lines',d,'JointType',jt) specifies how the meeting
points of line segment endpoints (joints) are treated. For example,
polybuffer(P,'lines',d,'JointType','square') squares off the joints.

1 Alphabetical List

1-11246

polyout = polybuffer(P,'lines',d,'JointType','miter','MiterLimit',
lim) specifies a miter limit when the joint type is specified as 'miter'. The miter limit is
the maximum allowable ratio between the distance a joint vertex is moved and the buffer
distance d. The limit lim must be greater than or equal to 2.

polyout = polybuffer(polyin,d) returns a polyshape object with boundaries that
buffer the input polyshape object polyin by a distance d. For positive values of d, solid
region boundaries of polyin expand by d units, and hole boundaries shrink by d units.
Negative values of d shrink solid boundaries and expand hole boundaries.

polyout = polybuffer(polyin,d,'JointType',jt) specifies how the joints of the
polyshape are treated when the first input argument is a polyshape.

polyout = polybuffer(polyin,d,'JointType','miter','MiterLimit',lim)
specifies a miter limit when the joint type is specified as 'miter' and the first input
argument is a polyshape.

Examples

Buffer 2-D Points

Create a matrix that contains the 2-D coordinates of three points. Then, create a
polyshape object that buffers each point by a distance of 0.25 units.

P = [0 0; 1 1; 2 1];
polyout = polybuffer(P,'points',0.25)

polyout =
 polyshape with properties:

 Vertices: [542x2 double]
 NumRegions: 3
 NumHoles: 0

Plot the original points and their buffer regions.

plot(P(:,1),P(:,2),'r.','MarkerSize',10)
hold on
plot(polyout)
axis equal

 polybuffer

1-11247

Buffer Line Segments

Create buffer regions surrounding line segments.

Create a matrix of 2-D points, and compute a polyshape object that buffers the line
segments connecting the points.

P = [0 0; 1 1; 2 1];
polyout1 = polybuffer(P,'lines',0.25);
plot(P(:,1),P(:,2),'r.','MarkerSize',10)
hold on

1 Alphabetical List

1-11248

plot(polyout1)
axis equal
hold off

By default, polybuffer rounds out the joints that connect line segments. You can control
the shape of joints by using the 'JointType' name-value pair. For example, use the
value 'miter' to preserve the angle connecting the two line segments.

figure
polyout2 = polybuffer(P,'lines',0.25,'JointType','miter');
plot(P(:,1),P(:,2),'r.','MarkerSize',10)
hold on
plot(polyout2)
axis equal

 polybuffer

1-11249

Buffer Polygon

Create a polygon with a solid boundary and a hole boundary. Then, create a buffer at a
distance of 0.1 from the boundaries. By default the buffer has rounded joints.

polyin = polyshape({[0 0 1 3],[0.5 1.5 1.5 0.5]},{[0 3 3 0],[0.5 0.5 1.5 1.5]});
plot(polyin)
polyout1 = polybuffer(polyin,0.1);
hold on
plot(polyout1)
hold off

1 Alphabetical List

1-11250

Create a buffer using a miter limit of 2. The miter limit controls the pointiness of the
joints.

polyout2 = polybuffer(polyin,0.1,'JointType','miter','MiterLimit',2);
plot(polyin)
hold on
plot(polyout2)

 polybuffer

1-11251

Input Arguments
P — Input vertices
2-column numeric matrix

Input vertices of 2-D points, specified as a 2-column numeric matrix. The first column of P
contains the x-coordinates and the second column contains the corresponding y-
coordinates.

polyin — Input polyshape
scalar | vector | matrix | multidimensional array

1 Alphabetical List

1-11252

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array. When
polyin is an array of polyshape objects, polybuffer applies the specified buffer
parameters to each element.

d — Buffer distance
numeric scalar

Buffer distance, specified as a numeric scalar.

When the first input argument is a set of vertices, d must be a positive numeric scalar.

When the first input argument is a polyshape, d can be positive, negative, or zero:

• If d>0, then solid boundaries grow by a distance d and hole boundaries shrink.
• If d<0, then solid boundaries shrink by a distance d and hole boundaries grow.
• If d=0, then there is no change to the input boundaries.

jt — Joint type
'round' (default) | 'square' | 'miter'

Joint type for buffer boundaries, specified as one of the following:

• 'round' — Round out boundary corners.
• 'square' — Square off boundary corners.
• 'miter' — Limit the ratio between the distance a joint vertex is moved and the buffer

distance to 3. This limit prevents excessive pointiness.

When the first input argument is a set of vertices, polybuffer applies the joint type only
where endpoints of two line segments meet, and not at an open endpoint of a line
segment.

When the first input argument is a polyshape, polybuffer only applies the joint type to
solid boundaries when the buffer distance is positive, or for hole boundaries when the
buffer distance is negative.

lim — Miter limit
positive numeric scalar

Miter limit, specified as a positive numeric scalar greater than or equal to 2. The miter
limit is the ratio between the distance a joint vertex is moved and the buffer distance.
Setting a miter limit controls the pointiness of boundary joints.

 polybuffer

1-11253

See Also
convhull | polyshape

Introduced in R2017b

1 Alphabetical List

1-11254

polyder
Polynomial differentiation

Syntax
k = polyder(p)
k = polyder(a,b)
[q,d] = polyder(a,b)

Description
k = polyder(p) returns the derivative of the polynomial represented by the coefficients
in p,

k x = d
dxp x .

k = polyder(a,b) returns the derivative of the product of the polynomials a and b,

k x = d
dx a x b x .

[q,d] = polyder(a,b) returns the derivative of the quotient of the polynomials a and
b,

q x
d x = d

dx
a x
b x .

Examples

Differentiate Polynomial

Create a vector to represent the polynomial p(x) = 3x5− 2x3 + x + 5.

p = [3 0 -2 0 1 5];

 polyder

1-11255

Use polyder to differentiate the polynomial. The result is q(x) = 15x4− 6x2 + 1.

q = polyder(p)

q = 1×5

 15 0 -6 0 1

Differentiate Product of Polynomials

Create two vectors to represent the polynomials a(x) = x4− 2x3 + 11 and
b(x) = x2− 10x + 15.

a = [1 -2 0 0 11];
b = [1 -10 15];

Use polyder to calculate

q(x) = d
dx a(x)b(x) .

q = polyder(a,b)

q = 1×6

 6 -60 140 -90 22 -110

The result is

q(x) = 6x5− 60x4 + 140x3− 90x2 + 22x− 110 .

Differentiate Quotient of Polynomials

Create two vectors to represent the polynomials in the quotient,

x4− 3x2− 1
x + 4 .

1 Alphabetical List

1-11256

p = [1 0 -3 0 -1];
v = [1 4];

Use polyder with two output arguments to calculate

q(x)
d(x) = d

dx
p(x)
v(x) .

[q,d] = polyder(p,v)

q = 1×5

 3 16 -3 -24 1

d = 1×3

 1 8 16

The result is

q(x)
d(x) = 3x4 + 16x3− 3x2− 24x + 1

x2 + 8x + 16
.

Input Arguments
p — Polynomial coefficients
vector

Polynomial coefficients, specified as a vector. For example, the vector [1 0 1]
represents the polynomial x2 + 1, and the vector [3.13 -2.21 5.99] represents the
polynomial 3.13x2− 2.21x + 5.99.

For more information, see “Create and Evaluate Polynomials”.
Data Types: single | double
Complex Number Support: Yes

a,b — Polynomial coefficients (as separate arguments)
row vectors

 polyder

1-11257

Polynomial coefficients, specified as two separate arguments of row vectors.

For more information, see “Create and Evaluate Polynomials”.
Example: polyder([1 0 -1],[10 2])
Data Types: single | double
Complex Number Support: Yes

Output Arguments
k — Differentiated polynomial coefficients
row vector

Differentiated polynomial coefficients, returned as a row vector.

q — Numerator polynomial
row vector

Numerator polynomial, returned as a row vector.

d — Denominator polynomial
row vector

Denominator polynomial, returned as a row vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The output can contain fewer NaNs than the MATLAB output. However, if the input
contains a NaN, the output contains at least one NaN.

1 Alphabetical List

1-11258

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
conv | deconv | polyint | polyval

Topics
“Create and Evaluate Polynomials”
“Integrate and Differentiate Polynomials”

Introduced before R2006a

 polyder

1-11259

polyeig
Polynomial eigenvalue problem

Syntax
e = polyeig(A0,A1,...,Ap)
[X,e] = polyeig(A0,A1,...,Ap)
[X,e,s] = polyeig(A0,A1,...,Ap)

Description
e = polyeig(A0,A1,...,Ap) returns the eigenvalues for the polynomial eigenvalue
problem on page 1-11264 of degree p.

[X,e] = polyeig(A0,A1,...,Ap) also returns matrix X, of size n-by-n*p, whose
columns are the eigenvectors.

[X,e,s] = polyeig(A0,A1,...,Ap) additionally returns vector s, of length p*n,
containing condition numbers for the eigenvalues. At least one of A0 and Ap must be
nonsingular. Large condition numbers imply that the problem is close to a problem with
repeated eigenvalues.

Examples

Quadratic Eigenvalue Problem with Mass, Damping, and Stiffness Matrices

Solve a quadratic eigenvalue problem involving a mass matrix M, damping matrix C, and
stiffness matrix K. This quadratic eigenvalue problem arises from the equation of motion:

Md2y
dt2 + Cdy

dt + Ky = f (t)

1 Alphabetical List

1-11260

This equation applies to a broad range of oscillating systems, including a dynamic mass-
spring system or RLC electronic network. The fundamental solution is y(t) = xeλt, so both
λ and x must solve the quadratic eigenvalue problem (QEP),

Mλ2 + Cλ + K x = 0

Create coefficient matrices M, C, and K to represent a mass-spring system with four-
degrees-of-freedom. The coefficient matrices are all symmetric and positive semidefinite,
and M is a diagonal matrix.

M = diag([3 1 3 1])

M = 4×4

 3 0 0 0
 0 1 0 0
 0 0 3 0
 0 0 0 1

C = [0.4 0 -0.3 0; 0 0 0 0; -0.3 0 0.5 -0.2; 0 0 -0.2 0.2]

C = 4×4

 0.4000 0 -0.3000 0
 0 0 0 0
 -0.3000 0 0.5000 -0.2000
 0 0 -0.2000 0.2000

K = [-7 2 4 0; 2 -4 2 0; 4 2 -9 3; 0 0 3 -3]

K = 4×4

 -7 2 4 0
 2 -4 2 0
 4 2 -9 3
 0 0 3 -3

Solve the QEP for the eigenvalues, eigenvectors, and condition numbers using polyeig.

[X,e,s] = polyeig(K,C,M)

 polyeig

1-11261

X = 4×8

 0.1828 0.3421 0.3989 0.0621 0.3890 -0.4143 -0.4575 0.4563
 0.3530 -0.9296 0.3330 -0.8571 -0.6366 -0.2717 -0.4981 0.4985
 -0.5360 -0.0456 -0.1724 0.3509 -0.3423 0.1666 -0.5106 0.5107
 0.7448 0.1295 -0.8368 -0.3720 0.5712 0.8525 -0.5309 0.5315

e = 8×1

 -2.4498
 -2.1536
 -1.6248
 2.2279
 2.0364
 1.4752
 0.3353
 -0.3466

s = 8×1

 0.5813
 0.8609
 1.2232
 0.7855
 0.7012
 1.2922
 10.1097
 10.0519

Check that the first eigenvalue, e(1), and first eigenvector, X(:,1), satisfy the QEP
equation. The result is close to, but not exactly, zero.

lambda = e(1);
x = X(:,1);
(M*lambda^2 + C*lambda + K)*x

ans = 4×1
10-13 ×

 -0.0133
 -0.0466
 0.1465

1 Alphabetical List

1-11262

 -0.0622

Input Arguments
A0,A1,...,Ap — Square coefficient matrices (as separate arguments)
matrices

Square coefficient matrices, specified as separate arguments. The matrices must all have
the same order, n.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
e — Eigenvalues
vector

Eigenvalues, returned as a vector.

X — Eigenvectors
matrix

Eigenvectors, returned in the columns of a matrix. The first eigenvector is X(:,1), the
second is X(:,2), and so on.

s — Condition numbers
vector

Condition numbers, returned as a vector. The condition numbers in s correspond to
similarly located eigenvalues in e. Large condition numbers indicate that the problem is
close to having repeated eigenvalues.

 polyeig

1-11263

Definitions
Polynomial Eigenvalue Problem
The polynomial eigenvalue problem is a variant of the standard eigenvalue problem, Ax =
λx, but instead involves polynomials rather than linear terms.

As with the standard eigenvalue problem, the solution involves finding the eigenvalues
and eigenvectors that satisfy the equation,

A0 + λA1 + … + λPAp x = 0 ,

where the polynomial degree, p, is a nonnegative integer, and A0,A1,...Ap are square
coefficient matrices of order n.

The most common form is the quadratic polynomial eigenvalue problem, which is

A2λ2 + A1λ + A0 x = 0 .

One major difference between the quadratic eigenvalue problem and the standard (or
generalized) eigenvalue problem is that there can be up to 2n eigenvalues with up to 2n
right and left eigenvectors. In cases where there are more than n eigenvectors, the
eigenvectors do not form a linearly independent set. See [1] and [2] for more detailed
information about the quadratic eigenvalue problem.

Tips
• polyeig handles the following simplified cases:

• p = 0, or polyeig(A), is the standard eigenvalue problem, eig(A).
• p = 1, or polyeig(A,B), is the generalized eigenvalue problem, eig(A,-B).
• n = 0, or polyeig(a0,a1,...,ap), is the standard polynomial problem,

roots([ap ... a1 a0]), where a0,a1,...,ap are scalars.

Algorithms
The polyeig function uses the QZ factorization to find intermediate results in the
computation of generalized eigenvalues. polyeig uses the intermediate results to

1 Alphabetical List

1-11264

determine if the eigenvalues are well-determined. See the descriptions of eig and qz for
more information.

The computed solutions might not exist or be unique, and can also be computationally
inaccurate. If both A0 and Ap are singular matrices, then the problem might be ill-posed.
If only one of A0 and Ap is singular, then some of the eigenvalues might be 0 or Inf.

Scaling A0,A1,...,Ap to have norm(Ai) roughly equal to 1 might increase the
accuracy of polyeig. In general, however, this improved accuracy is not achievable. (See
Tisseur [3] for details).

References
[1] Dedieu, Jean-Pierre, and Francoise Tisseur. “Perturbation theory for homogeneous

polynomial eigenvalue problems.” Linear Algebra Appl. Vol. 358, 2003, pp. 71–94.

[2] Tisseur, Francoise, and Karl Meerbergen. “The quadratic eigenvalue problem.” SIAM
Rev. Vol. 43, Number 2, 2001, pp. 235–286.

[3] Francoise Tisseur. “Backward error and condition of polynomial eigenvalue problems.”
Linear Algebra Appl. Vol. 309, 2000, pp. 339–361.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The basis of the eigenvectors can be different in the generated code than in MATLAB.
In general, in the eigenvalues output, the eigenvalues for real inputs are not sorted so
that complex conjugate pairs are adjacent.

• Differences in eigenvectors and ordering of eigenvalues can lead to differences in the
condition numbers output.

• Code generation does not support sparse matrix inputs for this function.

 polyeig

1-11265

https://www.maths.manchester.ac.uk/~ftisseur/reports/deti03.pdf
https://www.maths.manchester.ac.uk/~ftisseur/reports/deti03.pdf
http://eprints.ma.man.ac.uk/466/01/covered/MIMS_ep2006_256.pdf
http://www.ma.man.ac.uk/~ftisseur/reports/pep.pdf

See Also
cond | condeig | eig | qz

Topics
“Create and Evaluate Polynomials”

Introduced before R2006a

1 Alphabetical List

1-11266

polyfit
Polynomial curve fitting

Syntax
p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description
p = polyfit(x,y,n) returns the coefficients for a polynomial p(x) of degree n that is
a best fit (in a least-squares sense) for the data in y. The coefficients in p are in
descending powers, and the length of p is n+1

p(x) = p1xn + p2xn− 1 + ... + pnx + pn + 1 .

[p,S] = polyfit(x,y,n) also returns a structure S that can be used as an input to
polyval to obtain error estimates.

[p,S,mu] = polyfit(x,y,n) also returns mu, which is a two-element vector with
centering and scaling values. mu(1) is mean(x), and mu(2) is std(x). Using these
values, polyfit centers x at zero and scales it to have unit standard deviation,

x = x− x
σx

.

This centering and scaling transformation improves the numerical properties of both the
polynomial and the fitting algorithm.

Examples

 polyfit

1-11267

Fit Polynomial to Trigonometric Function

Generate 10 points equally spaced along a sine curve in the interval [0,4*pi].

x = linspace(0,4*pi,10);
y = sin(x);

Use polyfit to fit a 7th-degree polynomial to the points.

p = polyfit(x,y,7);

Evaluate the polynomial on a finer grid and plot the results.

x1 = linspace(0,4*pi);
y1 = polyval(p,x1);
figure
plot(x,y,'o')
hold on
plot(x1,y1)
hold off

1 Alphabetical List

1-11268

Fit Polynomial to Set of Points

Create a vector of 5 equally spaced points in the interval [0,1], and evaluate
y(x) = (1 + x)−1 at those points.

x = linspace(0,1,5);
y = 1./(1+x);

Fit a polynomial of degree 4 to the 5 points. In general, for n points, you can fit a
polynomial of degree n-1 to exactly pass through the points.

 polyfit

1-11269

p = polyfit(x,y,4);

Evaluate the original function and the polynomial fit on a finer grid of points between 0
and 2.

x1 = linspace(0,2);
y1 = 1./(1+x1);
f1 = polyval(p,x1);

Plot the function values and the polynomial fit in the wider interval [0,2], with the points
used to obtain the polynomial fit highlighted as circles. The polynomial fit is good in the
original [0,1] interval, but quickly diverges from the fitted function outside of that
interval.

figure
plot(x,y,'o')
hold on
plot(x1,y1)
plot(x1,f1,'r--')
legend('y','y1','f1')

1 Alphabetical List

1-11270

Fit Polynomial to Error Function

First generate a vector of x points, equally spaced in the interval [0,2.5], and then
evaluate erf(x) at those points.

x = (0:0.1:2.5)';
y = erf(x);

Determine the coefficients of the approximating polynomial of degree 6.

p = polyfit(x,y,6)

 polyfit

1-11271

p = 1×7

 0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

To see how good the fit is, evaluate the polynomial at the data points and generate a table
showing the data, fit, and error.

f = polyval(p,x);
T = table(x,y,f,y-f,'VariableNames',{'X','Y','Fit','FitError'})

T=26×4 table
 X Y Fit FitError
 ___ _______ __________ ___________

 0 0 0.00044117 -0.00044117
 0.1 0.11246 0.11185 0.00060836
 0.2 0.2227 0.22231 0.00039189
 0.3 0.32863 0.32872 -9.7429e-05
 0.4 0.42839 0.4288 -0.00040661
 0.5 0.5205 0.52093 -0.00042568
 0.6 0.60386 0.60408 -0.00022824
 0.7 0.6778 0.67775 4.6383e-05
 0.8 0.7421 0.74183 0.00026992
 0.9 0.79691 0.79654 0.00036515
 1 0.8427 0.84238 0.0003164
 1.1 0.88021 0.88005 0.00015948
 1.2 0.91031 0.91035 -3.9919e-05
 1.3 0.93401 0.93422 -0.000211
 1.4 0.95229 0.95258 -0.00029933
 1.5 0.96611 0.96639 -0.00028097
 ⋮

In this interval, the interpolated values and the actual values agree fairly closely. Create a
plot to show how outside this interval, the extrapolated values quickly diverge from the
actual data.

x1 = (0:0.1:5)';
y1 = erf(x1);
f1 = polyval(p,x1);
figure
plot(x,y,'o')
hold on
plot(x1,y1,'-')

1 Alphabetical List

1-11272

plot(x1,f1,'r--')
axis([0 5 0 2])
hold off

Use Centering and Scaling to Improve Numerical Properties

Create a table of population data for the years 1750 - 2000 and plot the data points.

year = (1750:25:2000)';
pop = 1e6*[791 856 978 1050 1262 1544 1650 2532 6122 8170 11560]';
T = table(year, pop)

 polyfit

1-11273

T=11×2 table
 year pop
 ____ _________

 1750 7.91e+08
 1775 8.56e+08
 1800 9.78e+08
 1825 1.05e+09
 1850 1.262e+09
 1875 1.544e+09
 1900 1.65e+09
 1925 2.532e+09
 1950 6.122e+09
 1975 8.17e+09
 2000 1.156e+10

plot(year,pop,'o')

1 Alphabetical List

1-11274

Use polyfit with three outputs to fit a 5th-degree polynomial using centering and
scaling, which improves the numerical properties of the problem. polyfit centers the
data in year at 0 and scales it to have a standard deviation of 1, which avoids an ill-
conditioned Vandermonde matrix in the fit calculation.

[p,~,mu] = polyfit(T.year, T.pop, 5);

Use polyval with four inputs to evaluate p with the scaled years, (year-mu(1))/
mu(2). Plot the results against the original years.

f = polyval(p,year,[],mu);
hold on
plot(year,f)
hold off

 polyfit

1-11275

Simple Linear Regression

Fit a simple linear regression model to a set of discrete 2-D data points.

Create a few vectors of sample data points (x,y). Fit a first degree polynomial to the data.

x = 1:50;
y = -0.3*x + 2*randn(1,50);
p = polyfit(x,y,1);

Evaluate the fitted polynomial p at the points in x. Plot the resulting linear regression
model with the data.

1 Alphabetical List

1-11276

f = polyval(p,x);
plot(x,y,'o',x,f,'-')
legend('data','linear fit')

Linear Regression With Error Estimate

Fit a linear model to a set of data points and plot the results, including an estimate of a
95% prediction interval.

 polyfit

1-11277

Create a few vectors of sample data points (x,y). Use polyfit to fit a first degree
polynomial to the data. Specify two outputs to return the coefficients for the linear fit as
well as the error estimation structure.

x = 1:100;
y = -0.3*x + 2*randn(1,100);
[p,S] = polyfit(x,y,1);

Evaluate the first-degree polynomial fit in p at the points in x. Specify the error
estimation structure as the third input so that polyval calculates an estimate of the
standard error. The standard error estimate is returned in delta.

[y_fit,delta] = polyval(p,x,S);

Plot the original data, linear fit, and 95% prediction interval y ± 2Δ.

plot(x,y,'bo')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')

1 Alphabetical List

1-11278

Input Arguments
x — Query points
vector

Query points, specified as a vector. The points in x correspond to the fitted function
values contained in y. If x is not a vector, then polyfit converts it into a column vector
x(:).

Warning messages result when x has repeated (or nearly repeated) points or if x might
need centering and scaling.

 polyfit

1-11279

Data Types: single | double
Complex Number Support: Yes

y — Fitted values at query points
vector

Fitted values at query points, specified as a vector. The values in y correspond to the
query points contained in x. If y is not a vector, then polyfit converts it into a column
vector y(:).
Data Types: single | double
Complex Number Support: Yes

n — Degree of polynomial fit
positive integer scalar

Degree of polynomial fit, specified as a positive integer scalar. n specifies the polynomial
power of the left-most coefficient in p.

Output Arguments
p — Least-squares fit polynomial coefficients
vector

Least-squares fit polynomial coefficients, returned as a vector. p has length n+1 and
contains the polynomial coefficients in descending powers, with the highest power being
n. If either x or y contain NaN values and n < length(x), then all elements in p are
NaN.

Use polyval to evaluate p at query points.

S — Error estimation structure
structure

Error estimation structure. This optional output structure is primarily used as an input to
the polyval function to obtain error estimates. S contains the following fields:

Field Description
R Triangular factor from a QR decomposition

of the Vandermonde matrix of x

1 Alphabetical List

1-11280

Field Description
df Degrees of freedom
normr Norm of the residuals

If the data in y is random, then an estimate of the covariance matrix of p is
(Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R.

If the errors in the data in y are independent and normal with constant variance, then
[y,delta] = polyval(...) produces error bounds that contain at least 50% of the
predictions. That is, y ± delta contains at least 50% of the predictions of future
observations at x.

mu — Centering and scaling values
two-element vector

Centering and scaling values, returned as a two-element vector. mu(1) is mean(x), and
mu(2) is std(x). These values center the query points in x at zero with unit standard
deviation.

Use mu as the fourth input to polyval to evaluate p at the scaled points, (x - mu(1))/
mu(2).

Limitations
• In problems with many points, increasing the degree of the polynomial fit using

polyfit does not always result in a better fit. High-order polynomials can be
oscillatory between the data points, leading to a poorer fit to the data. In those cases,
you might use a low-order polynomial fit (which tends to be smoother between points)
or a different technique, depending on the problem.

• Polynomials are unbounded, oscillatory functions by nature. Therefore, they are not
well-suited to extrapolating bounded data or monotonic (increasing or decreasing)
data.

Algorithms
polyfit uses x to form Vandermonde matrix V with n+1 columns and m = length(x)
rows, resulting in the linear system

 polyfit

1-11281

x1
n x1

n− 1 ⋯ 1

x2
n x2

n− 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
xm

n xm
n− 1 ⋯ 1

p1
p2

⋮
pn + 1

=

y1
y2

⋮
ym

,

which polyfit solves with p = V\y. Since the columns in the Vandermonde matrix are
powers of the vector x, the condition number of V is often large for high-order fits,
resulting in a singular coefficient matrix. In those cases centering and scaling can
improve the numerical properties of the system to produce a more reliable fit.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

X and Y must be column vectors.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-11282

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
cov | lscov | poly | polyder | polyint | polyval | roots

Topics
“Programmatic Fitting”

Introduced before R2006a

 polyfit

1-11283

Polygon Properties
Polygon appearance and behavior

Description
Polygon properties control the appearance and behavior of a Polygon object. By
changing property values, you can modify certain aspects of the polygon.

ps = polyshape([0 0 1 1],[1 0 0 1]);
pg = plot(ps);
pg.FaceAlpha = 0.5;
lw = pg.LineWidth;

Properties
Color and Styling

FaceColor — Filled region color
[0.85 0.85 0.85] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Filled region color, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-11284

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: pg.FaceColor = [0.1 0.5 0.2];
Example: pg.FaceColor = 'white';
Example: pg.FaceColor = 'none';

EdgeColor — Color of outer boundaries
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 Polygon Properties

1-11285

Color of the outer boundaries of the filled regions, specified as an RGB triplet, a
hexadecimal color code, a color name, or a short name. The default color of [0 0 0]
corresponds to black boundaries.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

1 Alphabetical List

1-11286

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: pg.EdgeColor = [0.1 0.5 0.2];
Example: pg.EdgeColor = 'white';
Example: pg.EdgeColor = 'none';

HoleEdgeColor — Color of interior boundaries
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the interior boundaries of the filled regions, specified as an RGB triplet, a
hexadecimal color code, a color name, or a short name. If you do not specify the interior
boundary color, then it uses the same color as the EdgeColor property. The default color
of [0 0 0] corresponds to black boundaries.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

 Polygon Properties

1-11287

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: pg.HoleEdgeColor = [0.1 0.5 0.2];
Example: pg.HoleEdgeColor = 'white';
Example: pg.HoleEdgeColor = '#D9A2E9';
Example: pg.HoleEdgeColor = 'none';

FaceAlpha — Filled region transparency
1 (default) | scalar in range [0,1]

Filled region transparency, specified as a scalar in the range [0,1]. A value of 1 is
opaque, whereas 0 is completely transparent. Values between 0 and 1 are
semitransparent.

1 Alphabetical List

1-11288

Example: pg.FaceAlpha = 0.5;

EdgeAlpha — Transparency of outer boundaries
1 (default) | scalar in range [0,1]

Transparency of the outer boundaries of the filled regions, specified as a scalar in the
range [0,1]. A value of 1 is opaque, whereas 0 is completely transparent. Values
between 0 and 1 are semitransparent.
Example: pg.EdgeAlpha = 0.5;

HoleEdgeAlpha — Transparency of interior boundaries
1 (default) | scalar in range [0,1]

Transparency of the interior boundaries of the filled regions, specified as a scalar in the
range [0,1]. A value of 1 is opaque, whereas 0 is completely transparent. Values
between 0 and 1 are semitransparent.
Example: pg.HoleEdgeAlpha = 0.5;

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points.
Example: pg.LineWidth = 0.75;

 Polygon Properties

1-11289

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Shape

Shape — Polygon geometry
polyshape object

Polygon geometry, specified as a polyshape object. To create a polyshape object, use
the polyshape function.

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

1 Alphabetical List

1-11290

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

 Polygon Properties

1-11291

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

1 Alphabetical List

1-11292

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

 Polygon Properties

1-11293

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

1 Alphabetical List

1-11294

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 Polygon Properties

1-11295

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'all' (default) | 'visible' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'all' — Can capture mouse clicks regardless of visibility. The Visible property can
be set to 'on' or 'off' and you can click a part of the Polygon object that has no
color. The HitTest property determines if the Polygon object responds to the click
or if an ancestor does.

• 'visible' — Can capture mouse clicks when visible. The Visible property must be
set to 'on' and you must click a part of the Polygon object that has a defined color.
You cannot click a part that has an associated color property set to 'none'. The
HitTest property determines if the Polygon object responds to the click or if an
ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Polygon object passes the click
through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Polygon object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Polygon object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

1 Alphabetical List

1-11296

Note The PickableParts property determines if the Polygon object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

 Polygon Properties

1-11297

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'polygon'

This property is read-only.

Type of graphics object, returned as 'polygon'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
polyshape

1 Alphabetical List

1-11298

Introduced in R2017b

 Polygon Properties

1-11299

polyint
Polynomial integration

Syntax
q = polyint(p,k)
q = polyint(p)

Description
q = polyint(p,k) returns the integral of the polynomial represented by the
coefficients in p using a constant of integration k.

q = polyint(p) assumes a constant of integration k = 0.

Examples

Integrate Quartic Polynomial

Evaluate the definite integral

I =∫−1

3
3x4− 4x2 + 10x− 25 dx .

Create a vector to represent the polynomial integrand 3x4− 4x2 + 10x− 25. The x3 term
is absent and thus has a coefficient of 0.

p = [3 0 -4 10 -25];

Use polyint to integrate the polynomial using a constant of integration equal to 0.

q = polyint(p)

q = 1×6

1 Alphabetical List

1-11300

 0.6000 0 -1.3333 5.0000 -25.0000 0

Find the value of the integral by evaluating q at the limits of integration.

a = -1;
b = 3;
I = diff(polyval(q,[a b]))

I = 49.0667

Integrate Product of Two Polynomials

Evaluate

I =∫0 2
x5− x3 + 1 x2 + 1 dx

Create vectors to represent the polynomials p(x) = x5− x3 + 1 and v(x) = x2 + 1.

p = [1 0 -1 0 0 1];
v = [1 0 1];

Multiply the polynomials and integrate the resulting expression using a constant of
integration k = 3.

k = 3;
q = polyint(conv(p,v),k)

q = 1×9

 0.1250 0 0 0 -0.2500 0.3333 0 1.0000 3.0000

Find the value of I by evaluating q at the limits of integration.

a = 0;
b = 2;
I = diff(polyval(q,[a b]))

I = 32.6667

 polyint

1-11301

Input Arguments
p — Polynomial coefficients
vector

Polynomial coefficients, specified as a vector. For example, the vector [1 0 1]
represents the polynomial x2 + 1, and the vector [3.13 -2.21 5.99] represents the
polynomial 3.13x2− 2.21x + 5.99.

For more information, see “Create and Evaluate Polynomials”.
Data Types: single | double
Complex Number Support: Yes

k — Constant of integration
numeric scalar

Constant of integration, specified as a numeric scalar.
Example: polyint([1 0 0],3)
Data Types: single | double
Complex Number Support: Yes

Output Arguments
q — Integrated polynomial coefficients
row vector

Integrated polynomial coefficients, returned as a row vector. For more information, see
“Create and Evaluate Polynomials”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-11302

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
polyder | polyfit | polyval | polyvalm

Topics
“Analytic Solution to Integral of Polynomial”
“Create and Evaluate Polynomials”
“Integrate and Differentiate Polynomials”

Introduced before R2006a

 polyint

1-11303

polyshape
2-D polygons

Description
The polyshape function creates a polygon defined by 2-D vertices, and returns a
polyshape object with properties describing its vertices, solid regions, and holes. For
example, pgon = polyshape([0 0 1 1],[1 0 0 1]) creates the solid square
defined by the four points (0,1), (0,0), (1,0), and (1,1).

>> pgon = polyshape([0 0 1 1],[1 0 0 1])

pgon =

 polyshape with properties:

 Vertices: [4×2 double]
 NumRegions: 1
 NumHoles: 0

>> plot(pgon)

1 Alphabetical List

1-11304

Creation
When creating a polyshape object, the input vertices should define one or more
boundaries of a polygon that have no intersections and are properly nested. Otherwise,
the polyshape function automatically alters the input vertices as needed to create a
well-defined polygon.

If you want to create a regular polygon, you can also use the nsidedpoly function.
nsidedpoly enables you to optionally specify parameters such as the center point and
side length of the polygon.

 polyshape

1-11305

Syntax
pgon = polyshape()
pgon = polyshape(x,y)
pgon = polyshape(P)
pgon = polyshape(X,Y)
pgon = polyshape(___ ,Name,Value)

Description
pgon = polyshape() creates an empty polyshape object.

pgon = polyshape(x,y) creates a polyshape from 2-D vertices defined by a vector of
x-coordinates and a vector of corresponding y-coordinates. x and y must be the same
length with at least three elements.

pgon = polyshape(P) creates a polyshape from the 2-D vertices defined in the N-
by-2 matrix P, where N is the number of vertices. The first column of P defines the x-
coordinates, and the second column defines the y-coordinates.

pgon = polyshape(X,Y), where X and Y are 1-by-M cell arrays of vectors for the x- and
y-coordinates, creates a polygon consisting of M boundaries. Each vector in X must have
the same length as the corresponding vector in Y, but the number of vertices can vary
between boundaries.

pgon = polyshape(___ ,Name,Value) specifies additional parameters for creating a
polyshape object for any of the previous syntaxes.

Input Arguments
x — x-coordinates
vector

x-coordinates of polygon vertices, specified as a vector. You can represent the coordinates
of multiple boundaries at a time by placing a NaN between each boundary. For example,
pgon = polyshape([0 0 1 NaN 1 5 5],[1 0 0 NaN 5 5 1]) creates a
polyshape made up of two solid triangles.

Numeric input coordinates that are not of type double are automatically converted to
type double.

1 Alphabetical List

1-11306

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

y — y-coordinates
vector

y-coordinates of polygon vertices, specified as a vector. You can represent the coordinates
of multiple boundaries at a time by placing a NaN between each boundary. For example,
pgon = polyshape([0 0 1 NaN 1 5 5],[1 0 0 NaN 5 5 1]) creates a
polyshape made up of two solid triangles.

Numeric input coordinates that are not of type double are automatically converted to
type double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

P — 2-D vertices
2-column matrix

2-D vertices of the polygon, specified as a 2-column matrix. The first column of P contains
the x-coordinates of the vertices, and the second column contains the y-coordinates. P
must have at least 3 rows.

You can represent the coordinates of multiple boundaries at a time by placing a NaN
between each boundary. For example, pgon = polyshape([1 0; 0 0; 0 1; NaN
NaN; 1 5; 5 5; 5 1]) creates a polyshape made up of two solid triangles.

Numeric input coordinates that are not of type double are automatically converted to
type double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

X — x-coordinates
cell array of vectors

x-coordinates of M boundaries, specified as a cell array of vectors. The length of each
vector can vary, but must match the length of the corresponding y vector.

Numeric input coordinates that are not of type double are automatically converted to
type double.
Data Types: cell

 polyshape

1-11307

Y — y-coordinates
cell array of vectors

y-coordinates of M boundaries, specified as a cell array of vectors. The length of each
vector can vary, but must match the length of the corresponding y vector.

Numeric input coordinates that are not of type double are automatically converted to
type double.
Data Types: cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify name and value pair arguments in either order as
Name1,Value1,Name2,Value2.
Example: pgon = polyshape(P,'SolidBoundaryOrientation','ccw')

SolidBoundaryOrientation — Boundary orientation
'auto' (default) | 'cw' | 'ccw'

Boundary orientation, specified as the comma-separated pair consisting of
'SolidBoundaryOrientation' and one of these values:

• 'auto' — Automatically determine the boundary type based on boundary nesting.
• 'cw' — Treat clockwise vertex orientation as a solid boundary.
• 'ccw' — Treat counterclockwise vertex orientation as a solid boundary.

This parameter is typically specified for consistency purposes when polygon data is
produced by other software using a particular convention.

Simplify — Vertex alteration
true (default) | false

Vertex alteration, specified as the comma-separated pair consisting of 'Simplify' and
one of the following:

• true — Alter polygon vertices to produce a well-defined polygon when the input
vertices produce intersections or improper nesting.

• false — Do not alter input vertices regardless of intersections or improper nesting.
Computing with ill-defined polygons can lead to inaccurate or unexpected results.

1 Alphabetical List

1-11308

Data Types: logical

KeepCollinearPoints — Collinear vertices
false (default) | true

Collinear vertices, specified as the comma-separated pair consisting of
'KeepCollinearPoints' and one of the following:

• false — Remove collinear points when creating the polyshape so that it contains
the fewest vertices necessary to define the boundaries.

• true — Keep all collinear points as vertices when creating the polyshape.

After creating a polyshape, the value of 'KeepCollinearPoints' is automatically
carried over when you use the addboundary or simplify object functions.
Data Types: logical

Properties
Vertices — 2-D vertices
2-column matrix

2-D vertices of the polygon, specified as a 2-column matrix. The vertex matrix contains
the vertices for each boundary of the polygon. NaN values separate each boundary's set of
vertices.
Data Types: double

NumRegions — Number of regions
scalar integer

This property is read-only.

Number of regions making up the polygon, specified as a scalar integer.
Data Types: double

NumHoles — Number of holes
scalar integer

This property is read-only.

 polyshape

1-11309

Number of holes in the polygon, specified as a scalar integer.
Data Types: double

Object Functions

Modify Polyshape
addboundary Add polyshape boundary
polybuffer Create buffer around points, lines, or polyshape objects
rmboundary Remove polyshape boundary
rmholes Remove holes in polyshape
rmslivers Remove polyshape boundary outliers
rotate Rotate polyshape
scale Scale polyshape
simplify Simplify polyshape boundaries
sortboundaries Sort polyshape boundaries
sortregions Sort polyshape regions
translate Translate polyshape

Query and Visualize
boundary Vertex coordinates of polyshape boundary
holes Convert polyshape hole boundaries to array of polyshape objects
ishole Determine if polyshape boundary is a hole
isinterior Query points inside polyshape
issimplified Determine if polyshape is well-defined
nearestvertex Query nearest polyshape vertex
numboundaries Number of polyshape boundaries
numsides Number of polyshape sides
overlaps Determine whether polyshape objects overlap
plot Plot polyshape
regions Access polyshape regions

Geometric Quantities
area Area of polyshape
boundingbox Bounding box of polyshape
centroid Centroid of polyshape
convhull Convex hull of polyshape

1 Alphabetical List

1-11310

perimeter Perimeter of polyshape
triangulation Triangulate polyshape
turningdist Compute turning distance between polyshape objects

Boolean Operations
intersect Intersection of polyshape objects
subtract Difference of two polyshape objects
union Union of polyshape objects
xor Exclusive OR of two polyshape objects

Examples

Simple Quadrilateral

Create and plot a polygon made up of four points, and compute its area, perimeter, and
centroid coordinates.

pgon = polyshape([0 0 1 3], [0 3 3 0]);
plot(pgon)

 polyshape

1-11311

A = area(pgon)

A = 6

P = perimeter(pgon)

P = 10.6056

[Cx Cy] = centroid(pgon)

Cx = 1.0833

Cy = 1.2500

1 Alphabetical List

1-11312

Area of Bow Tie

Analyze a polygon with intersecting boundaries.

Create a polygon whose boundary contains a self-intersection. By default, the polyshape
function splits the boundary into two distinct boundaries in order to create a well-defined
polygon.

P = [0 0; 1 1; 1 0; 0 1; 0 0];
pgon = polyshape(P)

Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.

pgon =
 polyshape with properties:

 Vertices: [7x2 double]
 NumRegions: 2
 NumHoles: 0

Plot the polygon and compute its area.

plot(pgon)

 polyshape

1-11313

A = area(pgon)

A = 0.5000

If you do not simplify the original input vertices, the areas of the two triangular regions of
the polygon cancel each other out.

pgon2 = polyshape(P,'Simplify',false)

pgon2 =
 polyshape with properties:

 Vertices: [4x2 double]
 NumRegions: 1

1 Alphabetical List

1-11314

 NumHoles: 0

A2 = area(pgon2)

A2 = 0

Polygon with Hole

Analyze polygons with nested boundaries.

Create a polygon with two properly nested boundaries. polyshape defines the outermost
boundary as the exterior bound of a solid region. Working inward, the next boundary
defines the start of a hole.

t = 0.05:0.5:2*pi;
x1 = cos(t);
y1 = sin(t);
x2 = 0.5*cos(t);
y2 = 0.5*sin(t);
pgon = polyshape({x1,x2},{y1,y2})

pgon =
 polyshape with properties:

 Vertices: [27x2 double]
 NumRegions: 1
 NumHoles: 1

plot(pgon)

 polyshape

1-11315

Use the addboundary function to create a second polygon that adds a third, outer
boundary to pgon.

x3 = 2*cos(t);
y3 = 2*sin(t);
pgon2 = addboundary(pgon,x3,y3)

pgon2 =
 polyshape with properties:

 Vertices: [41x2 double]
 NumRegions: 2
 NumHoles: 1

1 Alphabetical List

1-11316

plot(pgon2)

Adding a third, outer boundary requires polyshape to reorganize the solid and hole
boundaries based on the new nesting pattern. Again, polyshape starts with the
outermost boundary that indicates the start of a solid region, then alternates between
hole and solid with each nested boundary, working inward. The new polygon now has two
solid regions and one hole.

See Also
alphaShape | nsidedpoly

 polyshape

1-11317

Introduced in R2017b

1 Alphabetical List

1-11318

addboundary
Add polyshape boundary

Syntax
polyout = addboundary(polyin,x,y)
polyout = addboundary(polyin,P)
polyout = addboundary(polyin,{x1,x2,...,xM},{y1,y2,...,yM})
polyout = addboundary(___ ,Name,Value)

Description
polyout = addboundary(polyin,x,y) returns a polyshape object that is made up
of an existing polyshape plus an additional boundary defined by the x-coordinates and
the y-coordinates contained in the vectors x and y.

polyout = addboundary(polyin,P) adds the boundary defined by the coordinates
contained in the N-by-2 matrix P, where N is the number of vertices.

polyout = addboundary(polyin,{x1,x2,...,xM},{y1,y2,...,yM}) adds M
boundaries, where the vectors of x-coordinates for each boundary are listed together in a
cell array. The corresponding vectors of y-coordinates also are listed together in a cell
array. Each xi must have the same length as the corresponding yi, but the number of
vertices can vary among the boundaries.

polyout = addboundary(___ ,Name,Value) specifies additional parameters for
adding boundaries to a polyshape for any of the previous syntaxes.

Examples

Add Polygon Boundary

Create a rectangle, and then create a second polygon made up of the rectangle plus a
triangle.

 addboundary

1-11319

polyin = polyshape([0 0 1 1],[0 0.5 0.5 0])

polyin =
 polyshape with properties:

 Vertices: [4x2 double]
 NumRegions: 1
 NumHoles: 0

plot(polyin)

polyout = addboundary(polyin,[2 3 2.5],[2 2 3])

1 Alphabetical List

1-11320

polyout =
 polyshape with properties:

 Vertices: [8x2 double]
 NumRegions: 2
 NumHoles: 0

plot(polyout)

 addboundary

1-11321

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.
Data Types: polyshape

x — x-coordinates
vector

x-coordinates of boundary vertices, specified as a vector. You can represent the
coordinates of multiple boundaries simultaneously by placing a NaN between each
boundary. For example, polyout = addboundary(polyin,[0 0 1 NaN 1 5 5],[1
0 0 NaN 5 5 1]) returns a polyshape object made up of polyin plus two additional
triangles.

Numeric input vertices that are not of type double are automatically converted to type
double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

y — y-coordinates
vector

y-coordinates of boundary vertices, specified as a vector. You can represent the
coordinates of multiple boundaries simultaneously by placing a NaN between each
boundary. For example, polyout = addboundary(polyin,[0 0 1 NaN 1 5 5],[1
0 0 NaN 5 5 1]) returns a polyshape object made up of polyin plus two additional
triangles.

Numeric input vertices that are not of type double are automatically converted to type
double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

P — Boundary vertices
2-column matrix

1 Alphabetical List

1-11322

Boundary vertices, specified as a 2-column matrix. The first column of P contains the x-
coordinates of the vertices, and the second column contains the y-coordinates. P must
have at least 3 rows.

You can represent the coordinates of multiple boundaries simultaneously by placing a NaN
between each boundary. For example, polyout = addboundary(polyin,[1 0; 0 0;
0 1; NaN NaN; 1 5; 5 5; 5 1]) returns a polyshape object made up of polyin,
plus two additional triangles.

Numeric input vertices that are not of type double are automatically converted to type
double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

{x1,x2,...,xM} — x-coordinates
cell array of vectors

x-coordinates for M boundaries, specified as a cell array of vectors. The length of each xi
can vary, but must match the length of the corresponding yi vector.

Numeric input vertices that are not of type double are automatically converted to type
double.
Data Types: cell

{y1,y2,...,yM} — y-coordinates
cell array of vectors

y-coordinates of M boundaries, specified as a cell array of vectors. The length of each yi
can vary, but must match the length of the corresponding xi vector.

Numeric input vertices that are not of type double are automatically converted to type
double.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Example: polyout =
addboundary(polyin,x,y,'SolidBoundaryOrientation','ccw')

 addboundary

1-11323

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

SolidBoundaryOrientation — Boundary orientation
'auto' (default) | 'cw' | 'ccw'

Boundary orientation, specified as the comma-separated pair consisting of
'SolidBoundaryOrientation' and one of these values:

• 'auto' — Automatically choose vertex orientation as clockwise or counterclockwise
for solid boundaries.

• 'cw' — Treat clockwise vertex orientation as a solid boundary.
• 'ccw' — Treat counterclockwise vertex orientation as a solid boundary.

The vertex orientation is not important for most applications and is primarily an
algorithmic tool for determining boundary nesting. This parameter is typically specified
for consistency and efficiency purposes when polygon data is produced by other software
using a particular convention.

Simplify — Vertex alteration
true (default) | false

Vertex alteration, specified as the comma-separated pair consisting of 'Simplify' and
one of these values:

• true — Alter polygon vertices to produce a well-defined polygon when the input
vertices produce intersections or improper nesting.

• false — Do not alter input vertices regardless of intersections or improper nesting.
Computing with ill-defined polygons can lead to inaccurate or unexpected results.

Data Types: logical

KeepCollinearPoints — Collinear vertices
false | true

Collinear vertices, specified as the comma-separated pair consisting of
'KeepCollinearPoints' and one of the following:

• false — Remove collinear points so that the output polyshape contains the fewest
vertices necessary to define the boundaries.

1 Alphabetical List

1-11324

• true — Keep all collinear points as vertices.

When 'KeepCollinearPoints' is not specified, its value is automatically set to the
value used when creating the input polyshape.
Data Types: logical

See Also
boundary | polyshape | rmboundary

Introduced in R2017b

 addboundary

1-11325

area
Area of polyshape

Syntax
A = area(polyin)
A = area(polyin,I)

Description
A = area(polyin) returns the total area of a polyshape object, which is the sum of
the areas of the solid regions that make up the polyshape.

A = area(polyin,I) returns the area of the Ith boundary of polyin. The area of a
hole boundary is negative.

This syntax is only supported when polyin is a scalar polyshape object.

Examples

Area of Polygon

Create a polygon containing multiple solid regions and one hole, and compute its area.

P = [0 0; 0 2; 2 2; 2 0; NaN NaN; 0.5 0.5; 0.5 1.5; 1.5 1.5; 1.5 0.5; NaN NaN; 3 0.5; 3.5 1.5; 4 0.5];
polyin = polyshape(P);
plot(polyin)
axis equal

1 Alphabetical List

1-11326

A = area(polyin)

A = 3.5000

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

 area

1-11327

I — Boundary index
scalar integer | vector of integers

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
centroid | perimeter | polyshape

Introduced in R2017b

1 Alphabetical List

1-11328

boundary
Vertex coordinates of polyshape boundary

Syntax
[x,y] = boundary(polyin)
[x,y] = boundary(polyin,I)

Description
[x,y] = boundary(polyin) returns the x-coordinates and the y-coordinates of each
boundary of a polyshape. The vectors x and y contain the list of coordinates for each
boundary, delimited by NaN. The boundary function automatically appends the first
vertex coordinates of polyin to the end of x and y to close the polygon.

[x,y] = boundary(polyin,I) returns the coordinates of the Ith boundary of a
polyshape.

Examples

Polygon Boundary Vertices

Create a polygon containing two boundaries, and display the vertex coordinates of both
boundaries. The list of vertices for the boundaries are delimited by NaN.

x1 = [0 1 2];
y1 = [0 1 0];
x2 = [2 3 4];
y2 = [1 2 1];
polyin = polyshape({x1,x2},{y1,y2});
plot(polyin)

 boundary

1-11329

[x,y] = boundary(polyin)

x = 9×1

 0
 1
 2
 0
 NaN
 2
 3
 4
 2

1 Alphabetical List

1-11330

y = 9×1

 0
 1
 0
 0
 NaN
 1
 2
 1
 1

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.
Data Types: polyshape

I — Boundary index
scalar integer | vector of integers

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
x — x-coordinates
column vector

x-coordinates of polyshape boundaries, returned as a column vector. When returning
multiple boundaries, boundary places NaN values between each boundary's set of
coordinates.

 boundary

1-11331

Data Types: double

y — y-coordinates
column vector

y-coordinates of polyshape boundary, returned as a column vector. When returning
multiple boundaries, boundary places NaN values between each boundary's set of
coordinates.
Data Types: double

See Also
addboundary | numboundaries | polyshape | rmboundary | sortboundaries

Introduced in R2017b

1 Alphabetical List

1-11332

boundingbox
Bounding box of polyshape

Syntax
[xlim,ylim] = boundingbox(polyin)
[xlim,ylim] = boundingbox(polyin,I)

Description
[xlim,ylim] = boundingbox(polyin) returns the x and y bounds of the smallest
rectangle enclosing a polyshape. xlim and ylim are two-element row vectors whose
first elements correspond to the lower x and y bounds, and whose second elements
correspond to the upper x and y bounds.

When polyin is an array of polyshape objects, xlim and ylim describe the bounding
box enclosing all polyshape elements of polyin.

[xlim,ylim] = boundingbox(polyin,I) returns the bounding box limits of the Ith
boundary of polyin.

This syntax is only supported when polyin is a scalar polyshape object.

Examples

Bounding Box of Polygon

Create a polygon containing two solid regions, and compute the lower and upper x and y
bounds that enclose it.

x1 = [0 1 2];
y1 = [0 1 0];
x2 = [2 3 4];
y2 = [1 2 1];

 boundingbox

1-11333

polyin = polyshape({x1,x2},{y1,y2});
[xlim,ylim] = boundingbox(polyin);
plot(polyin)
hold on
plot(xlim,ylim,'r*',xlim,fliplr(ylim),'r*')

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

1 Alphabetical List

1-11334

Data Types: polyshape

I — Boundary index
scalar integer | vector of integers

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.

When I is a vector of indices, boundingbox returns the limits enclosing all boundaries
indexed by the elements of I.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
xlim — x limits
two-element row vector

x limits bounding a polyshape, returned as a two-element row vector. The first element
of xlim is the lower x bound, and the second element is the upper x bound.
Data Types: double

ylim — y limits
two-element row vector

y limits bounding a polyshape, returned as a two-element row vector. The first element
of ylim is the lower y bound, and the second element is the upper y bound.
Data Types: double

See Also
convhull | polyshape

Introduced in R2017b

 boundingbox

1-11335

centroid
Centroid of polyshape

Syntax
[x,y] = centroid(polyin)
[x,y] = centroid(polyin,I)

Description
[x,y] = centroid(polyin) returns the x-coordinates and the y-coordinates of the
centroid of a polyshape.

[x,y] = centroid(polyin,I) returns the coordinates of the centroid of the Ith
boundary of polyin.

This syntax is only supported when polyin is a scalar polyshape object.

Examples

Centroid of Polygon

Compute the centroids associated with a multiregion polygon.

Create a polygon containing two solid regions, and then compute its centroid.

x1 = [0 1 2];
y1 = [0 1 0];
x2 = [2 3 4];
y2 = [1 2 1];
polyin = polyshape({x1,x2},{y1,y2});
[x,y] = centroid(polyin);
plot(polyin)
hold on

1 Alphabetical List

1-11336

plot(x,y,'r*')
hold off

To compute the centroid of each region separately, specify the boundary indices of each
region in the second argument.

[x,y] = centroid(polyin,[1 2]);
plot(polyin)
hold on
plot(x(1),y(1),'r*',x(2),y(2),'r*')
hold off

 centroid

1-11337

Alternatively, you can compute the centroid of each region by first separating the regions
into separate polyshape objects. Use the regions function to create an array of
polyshape objects, where each element of the array is a polyshape defining one of the
triangular regions.

polyarray = regions(polyin)

polyarray =
 2x1 polyshape array with properties:

 Vertices
 NumRegions
 NumHoles

1 Alphabetical List

1-11338

[x,y] = centroid(polyarray)

x = 2×1

 1
 3

y = 2×1

 0.3333
 1.3333

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

I — Boundary index
scalar integer | vector of integers

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
x — x-coordinate
scalar | vector | matrix | multidimensional array

x-coordinate of the centroid of a polyshape, returned as a scalar, vector, matrix, or
multidimensional array. If the input is an array of polyshape objects, then x contains the
x-coordinates of the centroid of each polyshape.

 centroid

1-11339

y — y-coordinate
scalar | vector | matrix | multidimensional array

y-coordinate of the centroid of a polyshape, returned as a scalar, vector, matrix, or
multidimensional array. If the input is an array of polyshape objects, then y contains the
y-coordinates of the centroid of each polyshape.

See Also
area | perimeter | polyshape

Introduced in R2017b

1 Alphabetical List

1-11340

convhull
Convex hull of polyshape

Syntax
polyout = convhull(polyin)

Description
polyout = convhull(polyin) returns the convex hull of a polyshape object.
polyout is a polyshape object or an array of polyshape objects the same size as
polyin.

Examples

Convex Hull of Polygon

Compute the convex hull of a polygon containing three solid regions.

x1 = [0 1 2];
y1 = [0 1 0];
x2 = [2 3 4];
y2 = [1 2 1];
x3 = [0 0.5 0.5 0];
y3 = [2 2 2.5 2.5];
polyin = polyshape({x1,x2,x3},{y1,y2,y3});
plot(polyin)
hold on
polyout = convhull(polyin);
plot(polyout)

 convhull

1-11341

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

1 Alphabetical List

1-11342

See Also
boundingbox | polyshape

Introduced in R2017b

 convhull

1-11343

holes
Convert polyshape hole boundaries to array of polyshape objects

Syntax
polyout = holes(polyin)

Description
polyout = holes(polyin) returns the hole boundaries of a polyshape object as an
array of polyshape objects. The number of elements in polyout is equal to the number
of hole boundaries in polyin.

Examples

Array of Hole Boundaries

Create a polygon containing two solid regions and two holes. Convert the hole boundaries
to an array of polyshape objects.

P = [0 0; 0 2; 2 2; 2 0; NaN NaN; 0.5 0.5; 0.5 1.5; 1.5 1.5; 1.5 0.5; ...
 NaN NaN; 3 0.5; 3.5 1.5; 4 0.5; NaN NaN; 3.25 0.6; 3.75 0.6; 3.5 1];
polyin = polyshape(P);
plot(polyin)
xlim([-0.5 4.5])
ylim([-0.5 2.5])

1 Alphabetical List

1-11344

polyout = holes(polyin)

polyout =
 2x1 polyshape array with properties:

 Vertices
 NumRegions
 NumHoles

plot(polyout)
xlim([-0.5 4.5])
ylim([-0.5 2.5])

 holes

1-11345

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.
Data Types: polyshape

1 Alphabetical List

1-11346

See Also
boundary | ishole | polyshape | rmholes

Introduced in R2017b

 holes

1-11347

intersect
Intersection of polyshape objects

Syntax
polyout = intersect(poly1,poly2)
polyout = intersect(polyvec)
[polyout,shapeID,vertexID] = intersect(poly1,poly2)
[polyout,shapeID,vertexID] = intersect(polyvec)
___ = intersect(___ ,'KeepCollinearPoints',TF)
[in,out] = intersect(poly1,lineseg)

Description
polyout = intersect(poly1,poly2) returns a polyshape object whose regions are
the geometric intersection of two polyshape objects. The intersection contains the
regions of poly1 and poly2 that overlap. poly1 and poly2 must have compatible array
sizes.

polyout = intersect(polyvec) returns a polyshape object whose regions are the
intersection of all the polyshape objects in the vector polyvec. The intersection
contains the regions where all the polyshape objects in polyvec overlap.

[polyout,shapeID,vertexID] = intersect(poly1,poly2) also returns vertex
mapping information from the vertices in polyout to the vertices in poly1 and poly2.
The intersect function only supports this syntax when poly1 and poly2 are scalar
polyshape objects.

The shapeID elements identify whether the corresponding vertex in polyout originated
in poly1, poly2, or was created from the intersection. vertexID maps the vertices of
polyout to the vertices of poly1, poly2, or the intersection.

[polyout,shapeID,vertexID] = intersect(polyvec) returns vertex mapping
information from polyout to each element of the vector of polyshape objects polyvec.

1 Alphabetical List

1-11348

___ = intersect(___ ,'KeepCollinearPoints',TF) specifies whether to keep or
remove collinear points in polyout for any of the previous syntaxes.

[in,out] = intersect(poly1,lineseg) returns the line segments of lineseg that
are inside and outside of poly1. The matrix lineseg has two columns. The first column
defines the x-coordinates of the line segments and the second column defines the
corresponding y-coordinates.

intersect supports this syntax only when poly1 is a scalar polyshape and lineseg
contains no self-intersections.

Examples

Intersection of Two Polygons

Create and plot two polygons.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);
plot(poly1)
hold on
plot(poly2)

 intersect

1-11349

figure

Compute and plot the intersection of poly1 and poly2.

polyout = intersect(poly1,poly2)

polyout =
 polyshape with properties:

 Vertices: [4x2 double]
 NumRegions: 1
 NumHoles: 0

1 Alphabetical List

1-11350

plot(polyout)
xlim([-0.2 1.4]);
ylim([-0.2 1.2]);

Vector of Polygons

Create a vector containing two polygons.

polyarray1 = polyshape([0 0 1 1],[1 0 0 1]);
polyarray2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);
poly1 = [polyarray1 polyarray2]

 intersect

1-11351

poly1 =
 1x2 polyshape array with properties:

 Vertices
 NumRegions
 NumHoles

plot(poly1(1))
hold on
plot(poly1(2))

figure

Compute the intersection of the elements of poly1.

1 Alphabetical List

1-11352

polyout = intersect(poly1)

polyout =
 polyshape with properties:

 Vertices: [4x2 double]
 NumRegions: 1
 NumHoles: 0

plot(polyout)
xlim([-0.2 1.4]);
ylim([-0.2 1.2]);

 intersect

1-11353

Vertex Mapping

Create two polygons and compute their intersection. Display the vertex coordinates of the
intersection and the corresponding vertex mapping information.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);
[polyout,shapeID,vertexID] = intersect(poly1,poly2);

[polyout.Vertices shapeID vertexID]

ans = 4×4

 0.7500 0.2500 2.0000 1.0000
 0.7500 0.7500 2.0000 2.0000
 1.0000 0.7500 0 0
 1.0000 0.2500 0 0

The first two vertices of the intersection originated in poly2, since the corresponding
values in shapeID are 2.These vertices are the first and second vertices in the property
poly2.Vertices, respectively, since their corresponding values in vertexID are 1 and
2. The last two vertices of polyout were created from the intersection because the
corresponding values in shapeID and vertexID are 0.

Intersection of Polygon and Line

Create a rectangular polygon and a line segment.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
lineseg = [0.5 0.5; 1.5 1.5];

Compute the intersection of the polygon with the line segment, and determine which
sections of the line segment are inside or outside of the polygon.

[in,out] = intersect(poly1,lineseg);
plot(poly1)
hold on
plot(in(:,1),in(:,2),'b',out(:,1),out(:,2),'r')
legend('Polygon','Inside','Outside','Location','NorthWest')

1 Alphabetical List

1-11354

Input Arguments
poly1 — First input polyshape
scalar | vector | matrix | multidimensional array

First input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

poly2 — Second input polyshape
scalar | vector | matrix | multidimensional array

 intersect

1-11355

Second input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

polyvec — polyshape vector
vector

polyshape vector.
Data Types: polyshape

lineseg — Line segment coordinates
two-column matrix

Line segment coordinates, specified as a two-column matrix. The first column defines the
x-coordinates of the line segments and the second column defines the y-coordinates.
lineseg must have at least two rows and contain no self-intersections.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TF — Collinear vertices indicator
false | true

Collinear vertices indicator, specified as false or true:

• false — Remove collinear points so that the output polyshape contains the fewest
vertices necessary to define the boundaries.

• true — Keep all collinear points as vertices.

When the 'KeepCollinearPoints' parameter is not specified, its value is assigned
according to the values used when creating the input polyshape objects:

• If the value was true for each input polyshape when they were created, then the
value for the output polyshape is set to true.

• If the value was false for each input polyshape when they were created, then the
value for the output polyshape is set to false.

• If the values for the input polyshape objects do not match, then the value for the
output polyshape is set to false.

Data Types: logical

1 Alphabetical List

1-11356

Output Arguments
polyout — Output polyshape
scalar | vector | matrix | multidimensional array

Output polyshape, returned as a scalar, vector, matrix, or multidimensional array.

• If you input two polyshape arguments, then they must have compatible sizes. For
example, if two input polyshape vectors have different lengths M and N, then they
must have different orientations (one must be a row vector and one must be a column
vector). polyout is then M-by-N or N-by-M depending on the orientation of each input
vector. For more information on compatible array sizes, see “Compatible Array Sizes
for Basic Operations”.

• If you provide a single input argument polyvec, then polyout is a scalar polyshape
object.

shapeID — Shape ID
column vector

Shape ID, returned as a column vector whose elements each represent the origin of a
vertex in the intersection.

• The length of shapeID is equal to the number of rows in the Vertices property of
the output polyshape.

• The elements of shapeID depend on the number of input arguments:

• If you provide two input arguments poly1 and poly2, then they must be scalar
polyshape objects. The value of an element in shapeID is 0 when the
corresponding vertex of the output polyshape was created by the intersection. An
element is 1 when the corresponding vertex originated from poly1, and 2 when it
originated from poly2.

• If you provide one input argument polyvec that is a vector of polyshape objects,
then shapeID contains the element index of polyvec from which the
corresponding output vertex originated. The value of an element is 0 when the
corresponding vertex was created by the intersection.

Data Types: double

vertexID — Vertex ID
column vector

 intersect

1-11357

Vertex ID, returned as a column vector whose elements map the vertices in the output
polyshape to the vertices in the polyshape of origin. The elements of vertexID
contain the row numbers of the corresponding vertices in the Vertices property of the
input polyshape. An element is 0 when the corresponding vertex of the output
polyshape was created by the intersection.

The length of vertexID is equal to the number of rows in the Vertices property of the
output polyshape. If you provide two input polyshape objects, then intersect only
supports this output argument if they are scalar.
Data Types: double

in — Inside coordinates
two-column matrix

Inside line segment coordinates, returned as a two-column matrix. The first column of in
contains the x-coordinates of the line segments inside the input polyshape, and the
second column contains the corresponding y-coordinates.
Data Types: double

out — Outside coordinates
two-column matrix

Outside line segment coordinates, returned as a two-column matrix. The first column of
out contains the x-coordinates of the line segments outside of the input polyshape, and
the second column contains the corresponding y-coordinates.
Data Types: double

See Also
polyshape | xor

Introduced in R2017b

1 Alphabetical List

1-11358

ishole
Determine if polyshape boundary is a hole

Syntax
TF = ishole(polyin)
TF = ishole(polyin,I)

Description
TF = ishole(polyin) returns a logical vector whose elements are 1 (true) if the
corresponding boundary of polyin is a hole.

TF = ishole(polyin,I) returns a logical vector corresponding to the boundaries of
polyin indexed by I. TF is the same length as I.

Examples

Determine Polygon Holes

Create a polygon containing one solid region and one hole, and determine which region is
a hole.

t = 0.05:0.5:2*pi;
x1 = cos(t);
y1 = sin(t);
x2 = 0.5*cos(t);
y2 = 0.5*sin(t);
polyin = polyshape({x1,x2},{y1,y2})

polyin =
 polyshape with properties:

 Vertices: [27x2 double]
 NumRegions: 1

 ishole

1-11359

 NumHoles: 1

plot(polyin)

TF = ishole(polyin)

TF = 2x1 logical array

 0
 1

To query one boundary at a time, use the boundary index as a second argument.

1 Alphabetical List

1-11360

TF = ishole(polyin,2)

TF = logical
 1

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.
Data Types: polyshape

I — Boundary index
scalar integer | vector of integers

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
holes | polyshape

Introduced in R2017b

 ishole

1-11361

isinterior
Query points inside polyshape

Syntax
TFin = isinterior(polyin,x,y)
TFin = isinterior(polyin,P)
[TFin,TFon] = isinterior(___)

Description
TFin = isinterior(polyin,x,y) returns a logical vector whose elements are 1
(true) when the corresponding x-coordinates and y-coordinates in the vectors x and y
are in a polyshape. A point is in a polyshape if it is either in a solid region or on one of
the boundaries.

TFin = isinterior(polyin,P) represents the query points in a 2-column matrix P.
The first column of P contains the x-coordinates of the query points, and the second
column contains the corresponding y-coordinates.

[TFin,TFon] = isinterior(___) returns an additional logical vector for either of
the previous syntaxes. The elements of TFon are 1 when the corresponding query points
are on a boundary of polyin.

Examples

Query Points Inside Polygon

Create a polygon containing two solid regions.

x1 = [0 1 2];
y1 = [0 1 0];
x2 = [2 3 4];
y2 = [1 2 1];

1 Alphabetical List

1-11362

polyin = polyshape({x1,x2},{y1,y2});
plot(polyin)
hold on

Define three points, and determine if they are in the polygon.

x = [1 2.5 3];
y = [0.25 0 1.5];
TFin = isinterior(polyin,x,y)

TFin = 3x1 logical array

 1
 0

 isinterior

1-11363

 1

plot(x,y,'r*')

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.

1 Alphabetical List

1-11364

Data Types: polyshape

x — x-coordinates
scalar | vector

x-coordinates of query points, specified as a scalar or vector.
Data Types: double | single

y — y-coordinates
scalar | vector

y-coordinates of query points, specified as a scalar or vector.
Data Types: double | single

P — 2-D vertices
2-column matrix

2-D vertices, specified as a 2-column matrix. The first column of P contains the x-
coordinates of the query points, and the second column contains the y-coordinates.
Data Types: double | single

Output Arguments
TFin — Interior point indicator
scalar | vector

Interior point indicator, returned as a scalar or vector. An element of TFin is 1 when the
corresponding query point is either in a solid region of the input polyshape or on a
boundary.
Data Types: logical

TFon — Boundary point indicator
scalar | vector

Boundary point indicator, returned as a scalar or vector. An element of TFon is 1 when the
corresponding query point is strictly on a boundary of the polyshape.
Data Types: logical

 isinterior

1-11365

See Also
boundary | polyshape

Introduced in R2017b

1 Alphabetical List

1-11366

issimplified
Determine if polyshape is well-defined

Syntax
TF = issimplified(polyin)

Description
TF = issimplified(polyin) returns a logical array whose elements are 1 (true) if
the corresponding elements of polyin are well-defined polygons. Well-defined polygons
have boundaries that contain no intersections and are properly nested.

Examples

Simplified Polygons

Create a row vector of two polygons: one that is ill-defined, and one that is well-defined.
Use the issimplified function to verify their status.

poly1 = polyshape(rand(20,2),'Simplify',false);
poly2 = polyshape(rand(20,2));

Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.

polyin = [poly1 poly2];
TF = issimplified(polyin)

TF = 1x2 logical array

 0 1

 issimplified

1-11367

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

See Also
polyshape | simplify

Introduced in R2017b

1 Alphabetical List

1-11368

nearestvertex
Query nearest polyshape vertex

Syntax
[vertexid,boundaryid,ind] = nearestvertex(polyin,x,y)
[vertexid,boundaryid,ind] = nearestvertex(polyin,P)

Description
[vertexid,boundaryid,ind] = nearestvertex(polyin,x,y) finds the vertex of a
scalar polyshape object that is nearest to each 2-D query point. The coordinates of the
query points are specified in x and y. The output contains three vectors:

• vertexid contains the row number in polyin.Vertices corresponding to the
nearest vertex for each query point.

• boundaryid contains the boundary index of polyin corresponding to the nearest
vertex for each query point.

• ind contains the nearest vertex index in the boundary boundaryid for each query
point.

[vertexid,boundaryid,ind] = nearestvertex(polyin,P) specifies the query
points as a 2-column matrix P whose first column contains the x-coordinates and whose
second column contains the corresponding y-coordinates.

Examples

Nearest Vertex

Create a polyshape object and compute the nearest vertex of the polyshape to the
query point (2,1.8).

 nearestvertex

1-11369

P = [1 1; 3 1; 2 2];
polyin = polyshape(P);
[vertexid,boundaryid,ind] = nearestvertex(polyin,2,1.8);

Plot the polyshape and the query point in black.

plot(polyin)
hold on
plot(2,2.5,'k*')

Now plot the nearest vertex in red. The vertexid value enables you to index into the row
of polyin.Vertices corresponding to the nearest vertex, accessing its coordinates.

plot(polyin.Vertices(vertexid,1),polyin.Vertices(vertexid,2),'r*')
hold off

1 Alphabetical List

1-11370

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar polyshape object.

x,y — Input coordinates
scalars | vectors

Input coordinates of 2-D query points, specified as scalars or vectors. x and y must have
the same length.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

P — Input vertices
2-column matrix

Input vertices of 2-D query points, specified as a 2-column matrix. The first column of P
contains the x-coordinates and the second column contains the corresponding y-
coordinates.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
vertexid — Vertex ID
scalar | vector

Vertex ID, returned as a scalar or vector. vertexid contains the row number in the input
polyshape corresponding to the nearest vertex for each query point. vertexid is the
same length as the query point vectors or array.
Data Types: double

boundaryid — Boundary ID
scalar | vector

 nearestvertex

1-11371

Boundary ID, returned as a scalar or vector. boundaryid contains the boundary index of
the input polyshape corresponding to the nearest vertex for each query point.
boundaryid is the same length as the query point vectors or array.
Data Types: double

ind — Index
scalar | vector

Index, returned as a scalar or vector. ind contains the nearest vertex index in the
boundary boundaryid for each query point.
Data Types: double

See Also
convhull | overlaps | perimeter | polyshape

Introduced in R2018a

1 Alphabetical List

1-11372

numboundaries
Number of polyshape boundaries

Syntax
N = numboundaries(polyin)

Description
N = numboundaries(polyin) returns the number of boundaries of a polyshape
object.

Examples

Number of Polygon Boundaries

Create a polygon and determine its number of boundaries.

x1 = [0 1 2];
y1 = [0 1 0];
x2 = [2 3 4];
y2 = [1 2 1];
polyin = polyshape({x1,x2},{y1,y2});
plot(polyin)

 numboundaries

1-11373

N = numboundaries(polyin)

N = 2

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

1 Alphabetical List

1-11374

See Also
boundary | numsides | polyshape

Introduced in R2017b

 numboundaries

1-11375

numsides
Number of polyshape sides

Syntax
N = numsides(polyin)
N = numsides(polyin,I)

Description
N = numsides(polyin) returns the number of sides of a polyshape object.

N = numsides(polyin,I) returns the number of sides of the Ith boundary of polyin.

This syntax is only supported when polyin is a scalar polyshape object.

Examples

Number of Polygon Sides

Create a polygon and determine its number of sides.

t = 0:0.5:2*pi;
P = [cos(t)' sin(t)'];
polyin = polyshape(P);
plot(polyin)

1 Alphabetical List

1-11376

N = numsides(polyin)

N = 13

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

 numsides

1-11377

I — Boundary index
scalar integer | vector of integers

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
numboundaries | polyshape

Introduced in R2017b

1 Alphabetical List

1-11378

overlaps
Determine whether polyshape objects overlap

Syntax
TF = overlaps(poly1,poly2)
TF = overlaps(polyvec)

Description
TF = overlaps(poly1,poly2) returns a logical array whose elements are 1 when the
corresponding element pairs of two polyshape arrays with compatible sizes overlap.
TF(i,j) is 1 when the ith polyshape in poly1 overlaps the jth polyshape in poly2.

TF = overlaps(polyvec) returns a logical array whose elements are 1 (true) when
the corresponding element pairs of a vector of polyshape objects overlap. TF(i,j) is 1
when the ith polyshape in polyvec overlaps the jth polyshape.

Examples

Overlapping Polygons

Create and plot a 1-by-3 vector of polygons, then determine which pairs of polygons
overlap.

p1 = polyshape([0 0 1 1],[1 0 0 1]);
p2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);
p3 = polyshape([1.25 1.25 1.75 1.75],[0.75 1.25 1.25 0.75]);
polyvec = [p1 p2 p3];
plot(polyvec)

 overlaps

1-11379

TF = overlaps(polyvec)

TF = 3x3 logical array

 1 1 0
 1 1 0
 0 0 1

Since the third polygon does not overlap either the first or second polygon, TF(1,3),
TF(2,3), TF(3,1), and TF(3,2) are 0. The single point shared by the second and third
polygon is not considered an overlapping region.

1 Alphabetical List

1-11380

Input Arguments
poly1 — First input polyshape
scalar | vector | matrix | multidimensional array

First input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

poly2 — Second input polyshape
scalar | vector | matrix | multidimensional array

Second input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

polyvec — polyshape vector
vector

polyshape vector.

Output Arguments
TF — Overlap indicator
scalar | vector | matrix | multidimensional array

Overlap indicator, returned as a scalar, vector, matrix, or multidimensional array.

• If you input two polyshape arguments, then they must have compatible sizes. For
example, if two polyshape vectors have different lengths M and N, then they must
have different orientations (one must be a row vector and one must be a column
vector). TF is then M-by-N or N-by-M depending on the orientation of each input
vector. For more information on compatible array sizes, see “Compatible Array Sizes
for Basic Operations”.

• If you input a single polyshape vector with length N, then TF is N-by-N.

Data Types: logical

See Also
intersect | polyshape | subtract | union

 overlaps

1-11381

Introduced in R2018a

1 Alphabetical List

1-11382

perimeter
Perimeter of polyshape

Syntax
P = perimeter(polyin)
P = perimeter(polyin,I)

Description
P = perimeter(polyin) returns the perimeter of a polyshape object, which is the
sum of the lengths of its boundaries.

P = perimeter(polyin,I) returns the perimeter of the Ith boundary of polyin.

This syntax is only supported when polyin is a scalar polyshape object.

Examples

Perimeter of Polygon

Create a polygon with one hole, and compute its perimeter.

V = [0 0; 0 2; 2 2; 2 0; NaN NaN; 0.5 0.5; 0.5 1.5; 1.5 1.5; 1.5 0.5];
polyin = polyshape(V);
plot(polyin)
axis equal

 perimeter

1-11383

P = perimeter(polyin)

P = 12

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

1 Alphabetical List

1-11384

I — Boundary index
scalar integer | vector of integers

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
area | centroid | polyshape

Introduced in R2017b

 perimeter

1-11385

plot
Plot polyshape

Syntax
plot(pgon)
plot(pgon,Name,Value)
h = plot(___)

Description
plot(pgon) plots a polyshape object.

plot(pgon,Name,Value) specifies additional properties of the polyshape plot using
one or more name-value pairs. For example, plot(pgon,'FaceColor','green')
shades the solid regions of a polyshape green.

When pgon is an ill-defined polygon, the shading of the plot can be inaccurate.

h = plot(___) returns a Polygon graphics object for either of the previous syntaxes.
You can change the appearance and behavior of the plot by directly changing the
properties of h. For more information, see Polygon Properties.

Examples

Simple Rectangle

Plot a rectangular polygon.

pgon = polyshape([0 0 2 2],[2 0 0 2]);
plot(pgon)

1 Alphabetical List

1-11386

Modify Plot

Create a rectangular polygon. Plot the rectangle, specifying the color and transparency
factor.

pgon = polyshape([0 0 2 2],[2 0 0 2]);
plot(pgon,'FaceColor','red','FaceAlpha',0.1)

 plot

1-11387

You can also change the appearance of the plot by assigning property values to the
graphics object.

h = plot(pgon)

h =
 Polygon with properties:

 FaceColor: [0 0.4470 0.7410]
 FaceAlpha: 0.3500
 EdgeColor: [0 0 0]
 LineWidth: 0.5000
 LineStyle: '-'
 Shape: [1x1 polyshape]

1 Alphabetical List

1-11388

 Show all properties

h.LineStyle = '--';
h.EdgeColor = 'red';

Input Arguments
pgon — Input polyshape
scalar | vector | matrix | multidimensional array

 plot

1-11389

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: plot(pgon,'LineStyle','--')

The plot properties listed here are only a subset. For a complete list, see Polygon
Properties.

FaceColor — Color for solid regions
[0.85 0.85 0.85] (default) | color name | RGB triplet | 'none'

Color for solid regions of the polygon, specified as the comma-separated pair consisting of
'FaceColor' and a color name, an RGB triplet, or 'none'.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. This table lists the long and short color name options and
the equivalent RGB triplet values.

Long Name Short Name RGB Triplet
'yellow' 'y' [1 1 0]
'magenta' 'm' [1 0 1]
'cyan' 'c' [0 1 1]
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'white' 'w' [1 1 1]
'black' 'k' [0 0 0]

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1]

1 Alphabetical List

1-11390

Face transparency, specified as the comma-separated pair consisting of 'FaceAlpha'
and a scalar in the range [0,1]. A value of 1 is opaque and 0 is completely transparent.
Values between 0 and 1 are semitransparent.

EdgeColor — Color for boundaries
[0 0 0] (default) | color name | RGB triplet | 'none'

Color for boundaries of the polygon, specified as the comma-separated pair consisting of
'EdgeColor' and a color name, an RGB triplet, or 'none'. The default color of [0 0
0] corresponds to black boundaries.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. This table lists the long and short color name options and
the equivalent RGB triplet values.

Long Name Short Name RGB Triplet
'yellow' 'y' [1 1 0]
'magenta' 'm' [1 0 1]
'cyan' 'c' [0 1 1]
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'white' 'w' [1 1 1]
'black' 'k' [0 0 0]

EdgeAlpha — Edge transparency
1 (default) | scalar in range [0,1]

Edge transparency, specified as the comma-separated pair consisting of 'EdgeAlpha'
and a scalar in the range [0,1]. A value of 1 is opaque and 0 is completely transparent.
Values between 0 and 1 are semitransparent.

LineWidth — Line width
0.5 (default) | positive numeric value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a
positive numeric value in points.

 plot

1-11391

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

Output Arguments
h — Polygon graphics object
scalar | vector | matrix | multidimensional array

Polygon graphics object, specified as a scalar, vector, matrix, or multidimensional array.
For more information on the properties of h, see Polygon Properties.
Data Types: Polygon

See Also
Polygon Properties | polyshape

Introduced in R2017b

1 Alphabetical List

1-11392

regions
Access polyshape regions

Syntax
polyout = regions(polyin)

Description
polyout = regions(polyin) returns a vector of polyshape objects whose elements
are the solid regions of the input polyshape.

Examples

Array of Polygon Regions

Compute a polygon with two solid regions. Then, create a vector whose elements are a
single region of the polygon.

P = [0 0; 0 2; 2 2; 2 0; NaN NaN; 0.5 0.5; 0.5 1.5; 1.5 1.5; 1.5 0.5; NaN NaN; 3 0.5; 3.5 1.5; 4 0.5; NaN NaN; 3.25 0.6; 3.75 0.6; 3.5 1];
polyin = polyshape(P);
plot(polyin)
xlim([-0.5 4.5])
ylim([-0.5 2.5])

 regions

1-11393

polyout = regions(polyin)

polyout =
 2x1 polyshape array with properties:

 Vertices
 NumRegions
 NumHoles

plot(polyout(1))
xlim([-0.5 4.5])
ylim([-0.5 2.5])

1 Alphabetical List

1-11394

plot(polyout(2))
xlim([-0.5 4.5])
ylim([-0.5 2.5])

 regions

1-11395

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.
Data Types: polyshape

1 Alphabetical List

1-11396

See Also
boundary | holes | polyshape | sortregions

Introduced in R2017b

 regions

1-11397

rmboundary
Remove polyshape boundary

Syntax
polyout = rmboundary(polyin,I)
polyout = rmboundary(polyin,I,'Simplify',TF)

Description
polyout = rmboundary(polyin,I) returns a polyshape object made up of the
polygon polyin with the Ith boundary removed.

polyout = rmboundary(polyin,I,'Simplify',TF) specifies how to treat ill-
defined polygons.

Examples

Remove Polygon Boundary

Create a polygon made up of two triangles, and then remove the triangle whose centroid
is nearer to the point (4,2). You can use the sortboundaries function to access the
boundary index corresponding to the triangle closer to the reference point, which is 1
after sorting.

x1 = [0 1 2];
y1 = [0 1 0];
x2 = [2 3 4];
y2 = [1 2 1];
polyin = polyshape({x1,x2},{y1,y2});
plot(polyin)

1 Alphabetical List

1-11398

polysort = sortboundaries(polyin,'centroid','ascend','ReferencePoint',[4 2]);
polyout = rmboundary(polysort,1);
plot(polyout)

 rmboundary

1-11399

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.
Data Types: polyshape

I — Boundary index
scalar integer | vector of integers

1 Alphabetical List

1-11400

Boundary index, specified as a scalar integer or vector of integers. Each element of I
corresponds to a single boundary of the input polyshape.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TF — Simplify indicator
true | false

Simplify indicator, specified as one of these values:

• true — Alter polygon vertices to produce a well-defined polygon when the input
vertices produce intersections or improper nesting.

• false — Do not alter input vertices regardless of intersections or improper nesting.
Computing with ill-defined polygons can lead to inaccurate or unexpected results.

Data Types: logical

See Also
addboundary | boundary | polyshape | sortboundaries

Introduced in R2017b

 rmboundary

1-11401

rmholes
Remove holes in polyshape

Syntax
polyout = rmholes(polyin)

Description
polyout = rmholes(polyin) returns a polyshape object made up of the solid
boundaries of the polygon polyin, with all the hole boundaries removed.

Examples

Fill Polygon Hole

Create a polygon with a hole.

t = 0.05:0.5:2*pi;
x1 = cos(t);
y1 = sin(t);
x2 = 0.5*cos(t);
y2 = 0.5*sin(t);
polyin = polyshape({x1,x2},{y1,y2})

polyin =
 polyshape with properties:

 Vertices: [27x2 double]
 NumRegions: 1
 NumHoles: 1

plot(polyin)

1 Alphabetical List

1-11402

Create a new polygon with the hole removed.

polyout = rmholes(polyin)

polyout =
 polyshape with properties:

 Vertices: [13x2 double]
 NumRegions: 1
 NumHoles: 0

plot(polyout)

 rmholes

1-11403

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

1 Alphabetical List

1-11404

See Also
holes | ishole | polyshape | rmboundary

Introduced in R2017b

 rmholes

1-11405

rmslivers
Remove polyshape boundary outliers

Syntax
polyout = rmslivers(polyin,tol)

Description
polyout = rmslivers(polyin,tol) returns a polyshape object made up of the
boundaries of polyin with any outlier vertices removed. tol defines boundary outliers
on page 1-11409 based on the ratio of relative distances between vertices.

Examples

Boundary Outlier

Remove an outlier boundary point from a polygon, eliminating the extraneous sliver or
antenna effect.

polyin = polyshape([0 0 2 2 1.0001 1 0.9999],[2 0 0 2 2 10 2]);
plot(polyin)
xlim([-0.5 2.5])
ylim([-2 12])

1 Alphabetical List

1-11406

polyout = rmslivers(polyin,0.001);
plot(polyout)
xlim([-0.5 2.5])
ylim([-2 12])

 rmslivers

1-11407

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

tol — Outlier tolerance
scalar

1 Alphabetical List

1-11408

Outlier tolerance, specified as a scalar. When the input polyshape is an array,
rmslivers removes outliers from each element of the array according to tol.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Definitions

Outlier Tolerance
The outlier tolerance specifies the allowable ratio between the relative distances of

vertices in a polygon region. For example, in the following figure, if

a

b
tol£

 for a

specified tolerance tol, then rmslivers does not remove the vertex v. If

a

b
tol>

, then
rmslivers removes v, eliminating the sliver.

See Also
polyshape

 rmslivers

1-11409

Introduced in R2017b

1 Alphabetical List

1-11410

rotate
Rotate polyshape

Syntax
polyout = rotate(polyin,theta)
polyout = rotate(polyin,theta,refpoint)

Description
polyout = rotate(polyin,theta) returns a polyshape object created by rotating
polyin by theta degrees with respect to the reference point (0,0).

polyout = rotate(polyin,theta,refpoint) specifies a reference point to rotate
with respect to.

Examples

Rotate Square

Create a square, polyin, and rotate it 45 degrees counterclockwise with respect to the
point (0,0).

polyin = polyshape([0 0 1 1],[1 0 0 1]);
poly1 = rotate(polyin,45);

Rotate polyin 45 degrees with respect to the point (1,0).

poly2 = rotate(polyin,45,[1 0]);

Plot all three polygons.

plot([polyin poly1 poly2])
axis equal

 rotate

1-11411

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

theta — Rotation angle
scalar

1 Alphabetical List

1-11412

Rotation angle, specified as a scalar number of degrees. When the input polyshape is an
array, each element of the array is rotated by theta degrees. The rotation is
counterclockwise when theta is positive, and clockwise when theta is negative.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

refpoint — Reference point
[0 0] | two-element row vector

Reference point, specified as a two-element row vector containing the x-coordinate and y-
coordinate. The rotate function rotates with respect to the reference point. When the
input polyshape is an array, each element of the array is rotated with respect to
refpoint.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
polyshape | scale | translate

Introduced in R2017b

 rotate

1-11413

scale
Scale polyshape

Syntax
polyout = scale(polyin,s)
polyout = scale(polyin,s,refpoint)

Description
polyout = scale(polyin,s) returns a polyshape object defined by scaling polyin
by a factor s with respect to the reference point (0,0). If s is a scalar, then scale applies
it to both the x and y directions. If s is a two-element row vector, then the first element is
the scale factor in the x direction and the second element is the scale factor in the y
direction.

polyout = scale(polyin,s,refpoint) specifies a reference point to scale with
respect to.

Examples

Scale Polygon

Create a polygon and scale it by a factor of 2.

polyin = polyshape([0 0 1 1],[1 0 0 1]);
poly1 = scale(polyin,2);

Scale polyin by a factor of 0.5 with respect to the point (1,1). Plot all three polygons.

poly2 = scale(polyin,0.5,[1 1]);
plot(polyin)
hold on
plot(poly1)
plot(poly2)

1 Alphabetical List

1-11414

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

s — Scale factor
scalar | two-element row vector

 scale

1-11415

Scale factor, specified as a scalar or a two-element row vector. The elements of s must be
positive.

• If s is a scalar, then scale applies it to both the x and y directions.
• If s is a two-element row vector, then the first element is the scale factor in the x

direction and the second element is the scale factor in the y direction.

When the input polyshape is an array, scale applies s to each element of the array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

refpoint — Reference point
[0 0] | two-element row vector

Reference point, specified as a two-element row vector containing the x-coordinate and y-
coordinate of the point to scale with respect to. When the input polyshape is an array,
each element of the array is scaled with respect to refpoint.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
polyshape | rotate | translate

Introduced in R2017b

1 Alphabetical List

1-11416

simplify
Simplify polyshape boundaries

Syntax
polyout = simplify(polyin)
polyout = simplify(polyin,'KeepCollinearPoints',TF)

Description
polyout = simplify(polyin) returns a polyshape object made up of the
boundaries of the polygon polyin with all vertex duplicates removed, and all boundary
intersections and improper nesting resolved.

polyout = simplify(polyin,'KeepCollinearPoints',TF) specifies whether to
keep or remove collinear points in polyout.

Examples

Intersecting Boundary

Create and plot a polygon that contains a boundary intersection.

P = [0 0; 1 1; 1 0; 0.5 0.5; 0 1; 0 0];
polyin = polyshape(P,'Simplify',false)

polyin =
 polyshape with properties:

 Vertices: [5x2 double]
 NumRegions: 1
 NumHoles: 0

plot(polyin)

 simplify

1-11417

Use the simplify function to remove the intersection, which produces a well-defined
polygon. Simplifying the polygon maintains the boundary shape, but splits the polygon
into two distinct regions.

polyout = simplify(polyin)

polyout =
 polyshape with properties:

 Vertices: [7x2 double]
 NumRegions: 2
 NumHoles: 0

1 Alphabetical List

1-11418

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

TF — Collinear vertices indicator
false | true

Collinear vertices indicator, specified as false or true:

• false — Remove collinear points so that the output polyshape contains the fewest
vertices necessary to define the boundaries.

• true — Keep all collinear points as vertices.

When the 'KeepCollinearPoints' parameter is not specified, its value is
automatically set to the value used when creating the input polyshape.
Data Types: logical

See Also
issimplified | polyshape

Introduced in R2017b

 simplify

1-11419

sortboundaries
Sort polyshape boundaries

Syntax
polyout = sortboundaries(polyin,criterion,direction)
polyout = sortboundaries(polyin,'centroid',
direction,'ReferencePoint',point)

Description
polyout = sortboundaries(polyin,criterion,direction) returns a
polyshape object whose boundaries are sorted according to the specified criterion
and direction. For example, polyout =
sortboundaries(polyin,'area','ascend') returns a polyshape whose
boundaries are the same as polyin. polyout lists the boundaries in ascending order by
their area.

polyout = sortboundaries(polyin,'centroid',
direction,'ReferencePoint',point) returns a polyshape whose boundaries are
sorted based on the distance of the centroid of each boundary to a reference point.

Examples

Sort by Number of Sides

Sort the boundaries of a polygon according to their number of sides in order to access a
single boundary at a time.

Create a polygon containing two boundaries, one with three sides and one with four sides.

x1 = [0 1 1 0];
y1 = [0 0 1 1];
x2 = [2 3 2.5];

1 Alphabetical List

1-11420

y2 = [2 2 3];
polyin = polyshape({x1,x2},{y1,y2});
plot(polyin)

Sort the boundaries in descending order according to their number of sides, so that the
four-sided boundary is indexed first in the output polyshape object.

polyout = sortboundaries(polyin,'numsides','descend');

You now can reference the four-sided boundary based on its index, for example when you
want to access the boundary's vertices or compute its area.

[x,y] = boundary(polyout,1)

 sortboundaries

1-11421

x = 5×1

 0
 0
 1
 1
 0

y = 5×1

 0
 1
 1
 0
 0

area(polyout,1)

ans = 1

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

criterion — Sort criterion
'area' | 'perimeter' | 'numsides' | 'centroid'

Sort criterion, specified as one of these values:

• 'area' — Sort by boundary area.
• 'perimeter' — Sort by boundary perimeter.
• 'numsides' — Sort by the number of sides of each boundary.
• 'centroid' — Sort by the distance from the centroid of each boundary to the

reference point (0,0).

1 Alphabetical List

1-11422

direction — Sort direction
'ascend' | 'descend'

Sort direction, specified as 'ascend' or 'descend'.

point — Reference point
[0 0] | two-element row vector

Reference point, specified as a two-element row vector. The first element is the x-
coordinate of the reference point, and the second element is the y-coordinate.

See Also
boundary | polyshape | rmboundary | sortregions

Introduced in R2017b

 sortboundaries

1-11423

sortregions
Sort polyshape regions

Syntax
polyout = sortregions(polyin,criterion,direction)
polyout = sortregions(polyin,'centroid',direction,'ReferencePoint',
point)

Description
polyout = sortregions(polyin,criterion,direction) returns a polyshape
object whose regions are sorted according to the specified criterion and direction.
For example, polyout = sortregions(polyin,'area','ascend') returns a
polyshape whose solid regions are the same as polyin, and listed in ascending order
by their area.

polyout = sortregions(polyin,'centroid',direction,'ReferencePoint',
point) returns a polyshape whose regions are sorted based on the distance of the
centroid of each region to a reference point.

Examples

Sort by Perimeter

Identify and access individual regions of a polygon by sorting them first.

Create a polygon with two solid regions and one hole.

t = 0.05:0.5:2*pi;
x1 = cos(t);
y1 = sin(t);
x2 = 0.5*cos(t);
y2 = 0.5*sin(t);

1 Alphabetical List

1-11424

x3 = 2*cos(t);
y3 = 2*sin(t);
polyin = polyshape({x1,x2,x3},{y1,y2,y3})

polyin =
 polyshape with properties:

 Vertices: [41x2 double]
 NumRegions: 2
 NumHoles: 1

plot(polyin)

 sortregions

1-11425

Sort the regions of the polygon in ascending order based on their perimeter. You then can
use the regions function to create an array of polyshape objects R, where each
element of R corresponds to a single region of polyout. The elements of R are indexed in
the same order as the regions of polyout, so that you can access and compute with each
region based on their index.

polyout = sortregions(polyin,'perimeter','ascend');
R = regions(polyout);
plot(R)

smallregion = area(R(1))

smallregion = 0.7541

bigregion = area(R(2))

1 Alphabetical List

1-11426

bigregion = 9.0488

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

criterion — Sort criterion
'area' | 'perimeter' | 'numsides' | 'centroid'

Sort criterion, specified as one of these values:

• 'area' — Sort by region area.
• 'perimeter' — Sort by region perimeter.
• 'numsides' — Sort by the number of sides of each region.
• 'centroid' — Sort by the distance from the centroid of each region to the reference

point (0,0).

direction — Sort direction
'ascend' | 'descend'

Sort direction, specified as 'ascend' or 'descend'.

point — Reference point
[0 0] | two-element row vector

Reference point, specified as a two-element row vector. The first element is the x-
coordinate of the reference point, and the second element is the y-coordinate.

See Also
polyshape | regions | sortboundaries

 sortregions

1-11427

Introduced in R2017b

1 Alphabetical List

1-11428

subtract
Difference of two polyshape objects

Syntax
polyout = subtract(poly1,poly2)
[polyout,shapeID,vertexID] = subtract(poly1,poly2)
___ = subtract(poly1,poly2,'KeepCollinearPoints',TF)

Description
polyout = subtract(poly1,poly2) returns a polyshape object whose regions are
the geometric difference of two polyshape objects. The output polyout contains the
regions of poly1 minus any part of poly2 that overlaps with poly1. The input
arguments poly1 and poly2 must have compatible array sizes.

[polyout,shapeID,vertexID] = subtract(poly1,poly2) also returns vertex
mapping information from the vertices in polyout to the vertices in poly1 and poly2.
The subtract function only supports this syntax when poly1 and poly2 are scalar
polyshape objects.

The shapeID elements identify whether the corresponding vertex in polyout originated
in poly1, poly2, or was created from the difference. vertexID maps the vertices of
polyout to the vertices of poly1, poly2, or the difference.

___ = subtract(poly1,poly2,'KeepCollinearPoints',TF) specifies whether to
keep or remove collinear points in polyout for any of the previous syntaxes.

Examples

Difference of Two Polygons

Create and plot two polygons poly1 and poly2 that partially overlap.

 subtract

1-11429

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);
plot(poly1)
hold on
plot(poly2)

figure

Subtract poly2 from poly1. The resulting polygon is poly1 minus any part of poly2
that overlaps with poly1.

polyout1 = subtract(poly1,poly2)

polyout1 =
 polyshape with properties:

1 Alphabetical List

1-11430

 Vertices: [8x2 double]
 NumRegions: 1
 NumHoles: 0

plot(polyout1)

Now subtract the two polygons in the opposite order, that is, subtract poly1 from poly2.
The resulting polygon is poly2 minus any part of poly1 that overlaps poly2.

polyout2 = subtract(poly2,poly1)

polyout2 =
 polyshape with properties:

 subtract

1-11431

 Vertices: [4x2 double]
 NumRegions: 1
 NumHoles: 0

plot(polyout2)
xlim([-0.2 1.4]);
ylim([-0.2 1.2]);

1 Alphabetical List

1-11432

Vertex Mapping

Create two polygons, and compute and plot their difference. Display the vertex
coordinates of the difference and the corresponding vertex mapping information.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = translate(poly1,[0.5 0.5]);
[polyout,shapeID,vertexID] = subtract(poly1,poly2);
plot(polyout)
axis equal

[polyout.Vertices shapeID vertexID]

ans = 6×4

 subtract

1-11433

 0 1.0000 1.0000 1.0000
 0.5000 1.0000 0 0
 0.5000 0.5000 2.0000 4.0000
 1.0000 0.5000 0 0
 1.0000 0 1.0000 3.0000
 0 0 1.0000 4.0000

The first, fifth, and sixth vertices of the difference originated in poly1, since the
corresponding values in shapeID are 1. These vertices are the first, third, and fourth
vertices in the property poly1.Vertices, respectively, since the corresponding values in
vertexID are 1, 3, and 4. Similarly, the third vertex of the difference originated in
poly2, and is the fourth vertex in the property poly2.Vertices. The second and fourth
vertices of the difference were created from the subtraction computation because the
corresponding values of shapeID and vertexID are 0.

Input Arguments
poly1 — First input polyshape
scalar | vector | matrix | multidimensional array

First input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

poly2 — Second input polyshape
scalar | vector | matrix | multidimensional array

Second input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

TF — Collinear vertices indicator
false | true

Collinear vertices indicator, specified as false or true:

• false — Remove collinear points so that the output polyshape contains the fewest
vertices necessary to define the boundaries.

• true — Keep all collinear points as vertices.

When the 'KeepCollinearPoints' parameter is not specified, its value is assigned
according to the values used when creating the input polyshape objects:

1 Alphabetical List

1-11434

• If the value was true for each input polyshape when they were created, then the
value for the output polyshape is set to true.

• If the value was false for each input polyshape when they were created, then the
value for the output polyshape is set to false.

• If the values for the input polyshape objects do not match, then the value for the
output polyshape is set to false.

Data Types: logical

Output Arguments
polyout — Output polyshape
scalar | vector | matrix | multidimensional array

Output polyshape, returned as a scalar, vector, matrix, or multidimensional array.

The two input polyshape arguments must have compatible sizes. For example, if two
input polyshape vectors have different lengths M and N, then they must have different
orientations (one must be a row vector and one must be a column vector). polyout is
then M-by-N or N-by-M depending on the orientation of each input vector. For more
information on compatible array sizes, see “Compatible Array Sizes for Basic Operations”.

shapeID — Shape ID
column vector

Shape ID, returned as a column vector whose elements each represent the origin of the
vertex in the difference. The value of an element in shapeID is 0 when the corresponding
vertex of the output polyshape was created by the subtraction. An element is 1 when the
corresponding vertex originated from poly1, and 2 when it originated from poly2.

The length of shapeID is equal to the number of rows in the Vertices property of the
output polyshape. The xor function only supports this output argument if the input
polyshape objects are scalar.
Data Types: double

vertexID — Vertex ID
column vector

Vertex ID, returned as a column vector whose elements map the vertices in the output
polyshape to the vertices in the polyshape of origin. The elements of vertexID

 subtract

1-11435

contain the row numbers of the corresponding vertices in the Vertices property of the
input polyshape. An element is 0 when the corresponding vertex of the output
polyshape was created by the difference.

The length of vertexID is equal to the number of rows in the Vertices property of the
output polyshape. The subtract function only supports this output argument when the
input polyshape objects are scalar.
Data Types: double

See Also
intersect | polyshape | union | xor

Introduced in R2017b

1 Alphabetical List

1-11436

translate
Translate polyshape

Syntax
polyout = translate(polyin,v)
polyout = translate(polyin,x,y)

Description
polyout = translate(polyin,v) returns a polyshape object defined by translating
polyin by v. The first element of v specifies the distance to translate in the x direction,
and the second element specifies the distance to translate in the y direction.

polyout = translate(polyin,x,y) specifies the x and y translation amounts as
separate arguments.

Examples

Translate Square

Create a square, then translate the square to the right by two units, and up by one unit.
Plot both squares.

polyin = polyshape([0 0 1 1],[1 0 0 1]);
polyout = translate(polyin,[2 1]);
plot([polyin polyout])
axis equal

 translate

1-11437

Input Arguments
polyin — Input polyshape
scalar | vector | matrix | multidimensional array

Input polyshape, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: polyshape

v — Translation distance
two-element row vector

1 Alphabetical List

1-11438

Translation distance, specified as a two-element row vector. The first element of v
specifies the distance to translate in the x direction, and the second element specifies the
distance to translate in the y direction. Positive distances translate right and up, and
negative distances translate left and down. When the input polyshape is an array, each
element of the array is translated according to v.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

x — x translation distance
scalar

x translation distance, specified as a scalar. Positive distances translate right, and
negative distances translate left. When the input polyshape is an array, each element of
the array is translated in the x direction according to x.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

y — y translation distance
scalar

y translation distance, specified as a scalar. Positive distances translate up, and negative
distances translate down. When the input polyshape is an array, each element of the
array is translated in the y direction according to y.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
polyshape | rotate | scale

Introduced in R2017b

 translate

1-11439

triangulation
Triangulate polyshape

Syntax
T = triangulation(polyin)

Description
T = triangulation(polyin) returns a 2-D triangulation object of a polyshape
object. T has properties that describe the vertices and connectivity of triangles that make
up polyin. For more information, see triangulation.

Examples

Polygon Triangulation

Create and triangulate a polygon.

t = 0.05:0.5:2*pi;
x1 = cos(t);
y1 = sin(t);
x2 = 0.5*cos(t);
y2 = 0.5*sin(t);
polyin = polyshape({x1,x2},{y1,y2})

polyin =
 polyshape with properties:

 Vertices: [27x2 double]
 NumRegions: 1
 NumHoles: 1

plot(polyin)

1 Alphabetical List

1-11440

T = triangulation(polyin)

T =
 triangulation with properties:

 Points: [26x2 double]
 ConnectivityList: [26x3 double]

triplot(T)

 triangulation

1-11441

Input Arguments
polyin — Input polyshape
scalar

Input polyshape, specified as a scalar.
Data Types: polyshape

1 Alphabetical List

1-11442

See Also
polyshape | triangulation

Introduced in R2017b

 triangulation

1-11443

turningdist
Compute turning distance between polyshape objects

Syntax
td = turningdist(poly1,poly2)
td = turningdist(polyvec)

Description
td = turningdist(poly1,poly2) returns an array of turning distances between the
corresponding element pairs of two polyshape arrays with compatible sizes. The turning
distance between two polyshape objects is a measure of how closely their shapes match,
regardless of rotation or scaling. A turning distance close to 0 indicates a near match. The
larger the value, the more the two shapes differ.

TD(i,j) is the turning distance between the ith polyshape in poly1 and the jth
polyshape in poly2.

td = turningdist(polyvec) returns a matrix of turning distances between element
pairs of a vector of polyshape objects.

Examples

Turning Distance Between Two Squares

Create and plot two squares of different sizes and locations, represented as polyshape
objects poly1 and poly2.

poly1 = nsidedpoly(4,'SideLength',1);
poly2 = nsidedpoly(4,'SideLength',3,'Center',[3 3]);
plot(poly1)
hold on
plot(poly2)

1 Alphabetical List

1-11444

axis equal
hold off

Because the two squares have the same shape despite their scaling, their turning distance
is 0.

td = turningdist(poly1,poly2)

td = 0

Create and plot a third polyshape, and compare its turning distance to poly1. Since
their shapes have more differences than poly1 and poly2, the turning distance is larger.

poly3 = nsidedpoly(20,'Center',[3 3]);
plot(poly1)

 turningdist

1-11445

hold on
plot(poly3)
axis equal
hold off

td = turningdist(poly1,poly3)

td = 0.4443

1 Alphabetical List

1-11446

Input Arguments
poly1 — First input polyshape
scalar | vector | matrix | multidimensional array

First input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

poly2 — Second input polyshape
scalar | vector | matrix | multidimensional array

Second input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

polyvec — polyshape vector
vector

polyshape vector.

Output Arguments
td — Turning distance
scalar | vector | matrix | multidimensional array

Turning distance, returned as a scalar, vector, matrix, or multidimensional array whose
elements are greater than or equal to 0.

• If you input two polyshape arguments, then they must have compatible sizes. For
example, if two input polyshape vectors have different lengths M and N, then they
must have different orientations (one must be a row vector and one must be a column
vector). td is then M-by-N or N-by-M depending on the orientation of each input
vector. For more information on compatible array sizes, see “Compatible Array Sizes
for Basic Operations”.

• If you input a single polyshape vector with length N, then td is N-by-N.

Data Types: double

References
[1] Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., and Mitchell, J.S.B. "An

efficiently computable metric for comparing polygonal shapes." IEEE Transactions

 turningdist

1-11447

on Pattern Analysis and Machine Intelligence. Vol. 13, Number 3, 1991, pp.
209-16. doi:10.1109/34.75509.

See Also
polyshape

Introduced in R2018a

1 Alphabetical List

1-11448

union
Union of polyshape objects

Syntax
polyout = union(poly1,poly2)
polyout = union(polyvec)
[polyout,shapeID,vertexID] = union(poly1,poly2)
[polyout,shapeID,vertexID] = union(polyvec)
___ = union(___ ,'KeepCollinearPoints',TF)

Description
polyout = union(poly1,poly2) returns a polyshape object whose regions are the
union of two polyshape objects. The union contains the combined regions of poly1 and
poly2, which must have compatible array sizes.

polyout = union(polyvec) returns a polyshape object whose regions are the
geometric union of all polyshape objects in the vector polyvec. The union contains the
combined regions of the polyshape objects in polyvec.

[polyout,shapeID,vertexID] = union(poly1,poly2) also returns vertex
mapping information from the vertices in polyout to the vertices in poly1 and poly2.
The union function only supports this syntax when poly1 and poly2 are scalar
polyshape objects.

The shapeID elements identify whether the corresponding vertex in polyout originated
in poly1, poly2, or was created from the union. vertexID maps the vertices of
polyout to the vertices of poly1, poly2, or the union.

[polyout,shapeID,vertexID] = union(polyvec) returns vertex mapping
information from polyvec to each element of the vector of polyshape objects polyvec.

___ = union(___ ,'KeepCollinearPoints',TF) specifies whether to keep or
remove collinear points in polyout for any of the previous syntaxes.

 union

1-11449

Examples

Union of Two Polygons

Create and plot two polygons.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);
plot(poly1)
hold on
plot(poly2)

figure

1 Alphabetical List

1-11450

Compute and plot the union of poly1 and poly2.

polyout = union(poly1,poly2)

polyout =
 polyshape with properties:

 Vertices: [8x2 double]
 NumRegions: 1
 NumHoles: 0

plot(polyout)
xlim([-0.2 1.4]);
ylim([-0.2 1.2]);

 union

1-11451

Vector of Polygons

Create a vector of polygons and plot each polygon.

polyarray1 = polyshape([0 0 1 1],[1 0 0 1]);
polyarray2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);
poly1 = [polyarray1 polyarray2]

poly1 =
 1x2 polyshape array with properties:

 Vertices
 NumRegions
 NumHoles

plot(poly1(1))
hold on
plot(poly1(2))

1 Alphabetical List

1-11452

figure

Compute and plot the union of the two polygons.

polyout = union(poly1)

polyout =
 polyshape with properties:

 Vertices: [8x2 double]
 NumRegions: 1
 NumHoles: 0

 union

1-11453

plot(polyout)
xlim([-0.2 1.4]);
ylim([-0.2 1.2]);

Vertex Mapping

Create two polygons, and compute and plot their union. Display the vertex coordinates of
the union and the corresponding vertex mapping information.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = translate(poly1,[0.5 0]);

1 Alphabetical List

1-11454

[polyout,shapeID,vertexID] = union(poly1,poly2);
plot(polyout)
axis equal

[polyout.Vertices shapeID vertexID]

ans = 4×4

 0 1.0000 1.0000 1.0000
 1.5000 1.0000 2.0000 2.0000
 1.5000 0 2.0000 3.0000
 0 0 1.0000 4.0000

 union

1-11455

The first and last vertices of the union originated in poly1, since the corresponding
values in shapeID are 1. These vertices are the first and fourth vertices in the property
poly1.Vertices, respectively, since the corresponding values in vertexID are 1 and 4.
Similarly, the second and third vertices of the union originated in poly2, and they are the
second and third vertices in the property poly2.Vertices, respectively.

Input Arguments
poly1 — First input polyshape
scalar | vector | matrix | multidimensional array

First input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

poly2 — Second input polyshape
scalar | vector | matrix | multidimensional array

Second input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

polyvec — polyshape vector
vector

polyshape vector.

TF — Collinear vertices indicator
false | true

Collinear vertices indicator, specified as false or true:

• false — Remove collinear points so that the output polyshape contains the fewest
vertices necessary to define the boundaries.

• true — Keep all collinear points as vertices.

When the 'KeepCollinearPoints' parameter is not specified, its value is assigned
according to the values used when creating the input polyshape objects:

• If the value was true for each input polyshape when they were created, then the
value for the output polyshape is set to true.

• If the value was false for each input polyshape when they were created, then the
value for the output polyshape is set to false.

1 Alphabetical List

1-11456

• If the values for the input polyshape objects do not match, then the value for the
output polyshape is set to false.

Data Types: logical

Output Arguments
polyout — Output polyshape
scalar | vector | matrix | multidimensional array

Output polyshape, returned as a scalar, vector, matrix, or multidimensional array.

• If you input two polyshape arguments, then they must have compatible sizes. For
example, if two input polyshape vectors have different lengths M and N, then they
must have different orientations (one must be a row vector and one must be a column
vector). polyout is then M-by-N or N-by-M depending on the orientation of each input
vector. For more information on compatible array sizes, see “Compatible Array Sizes
for Basic Operations”.

• If you provide a single input argument polyvec, then polyout is a scalar polyshape
object.

shapeID — Shape ID
column vector

Shape ID, returned as a column vector whose elements each represent the origin of the
vertex in the union.

• The length of shapeID is equal to the number of rows in the Vertices property of
the output polyshape.

• The elements of shapeID depend on the number of input arguments:

• If you provide two input arguments poly1 and poly2, then they must be scalar
polyshape objects. The value of an element in shapeID is 0 when the
corresponding vertex of the output polyshape was created by the union. An
element is 1 when the corresponding vertex originated from poly1, and 2 when it
originated from poly2.

• If you provide one input argument polyvec that is a vector of polyshape objects,
then shapeID contains the element index of polyvec from which the
corresponding output vertex originated. The value of an element is 0 when the
corresponding vertex was created by the union.

 union

1-11457

Data Types: double

vertexID — Vertex ID
column vector

Vertex ID, returned as a column vector whose elements map the vertices in the output
polyshape to the vertices in the polyshape of origin. The elements of vertexID
contain the row numbers of the corresponding vertices in the Vertices property of the
input polyshape. An element is 0 when the corresponding vertex of the output
polyshape was created by the union.

The length of vertexID is equal to the number of rows in the Vertices property of the
output polyshape. If you provide two input polyshape objects, then union only
supports this output argument if they are scalar.
Data Types: double

See Also
intersect | polyshape | xor

Introduced in R2017b

1 Alphabetical List

1-11458

xor
Exclusive OR of two polyshape objects

Syntax
polyout = xor(poly1,poly2)
[polyout,shapeID,vertexID] = xor(poly1,poly2)
___ = xor(poly1,poly2,'KeepCollinearPoints',TF)

Description
polyout = xor(poly1,poly2) returns a polyshape object whose regions are the
geometric exclusive OR of two polyshape objects. The geometric exclusive OR contains
the regions of poly1 and poly2 that do not overlap. poly1 and poly2 must have
compatible array sizes.

[polyout,shapeID,vertexID] = xor(poly1,poly2) also returns vertex mapping
information from the vertices in polyout to the vertices in poly1 and poly2. The xor
function only supports this syntax when poly1 and poly2 are scalar polyshape objects.

The shapeID elements identify whether the corresponding vertex in polyout originated
in poly1, poly2, or was created from the exclusive OR. vertexID maps the vertices of
polyout to the vertices of poly1, poly2, or the exclusive OR.

___ = xor(poly1,poly2,'KeepCollinearPoints',TF) specifies whether to keep
or remove collinear points in polyout for any of the previous syntaxes.

Examples

Exclusive OR

Create and plot two polygons.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = polyshape([0.75 1.25 1.25 0.75],[0.25 0.25 0.75 0.75]);

 xor

1-11459

plot(poly1)
hold on
plot(poly2)

figure

Compute and plot the exclusive OR of poly1 and poly2.

polyout = xor(poly1,poly2)

polyout =
 polyshape with properties:

 Vertices: [13x2 double]
 NumRegions: 2

1 Alphabetical List

1-11460

 NumHoles: 0

plot(polyout)

Vertex Mapping

Create two polygons, and compute and plot their exclusive OR. Display the vertex
coordinates of the exclusive OR and the corresponding vertex mapping information.

poly1 = polyshape([0 0 1 1],[1 0 0 1]);
poly2 = translate(poly1,[0.5 0]);

 xor

1-11461

[polyout,shapeID,vertexID] = xor(poly1,poly2);
plot(polyout)

[polyout.Vertices shapeID vertexID]

ans = 9×4

 0 1.0000 1.0000 1.0000
 0.5000 1.0000 2.0000 1.0000
 0.5000 0 2.0000 4.0000
 0 0 1.0000 4.0000
 NaN NaN NaN NaN
 1.0000 1.0000 1.0000 2.0000
 1.5000 1.0000 2.0000 2.0000

1 Alphabetical List

1-11462

 1.5000 0 2.0000 3.0000
 1.0000 0 1.0000 3.0000

There are two boundaries in the exclusive OR, separated by a row of NaN values in the
Vertices property. For example, consider the first boundary in the array. The first and
last vertices of the exclusive OR originated in poly1, since the corresponding values in
shapeID are 1. These vertices are the first and fourth vertices in the property
poly1.Vertices, respectively, since the corresponding values in vertexID are 1 and 4.
Similarly, the second and third vertices of the exclusive OR originated in poly2, and they
are also the first and fourth vertices in the property poly2.Vertices, respectively.

Input Arguments
poly1 — First input polyshape
scalar | vector | matrix | multidimensional array

First input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

poly2 — Second input polyshape
scalar | vector | matrix | multidimensional array

Second input polyshape, specified as a scalar, vector, matrix, or multidimensional array.

TF — Collinear vertices indicator
false | true

Collinear vertices indicator, specified as false or true:

• false — Remove collinear points so that the output polyshape contains the fewest
vertices necessary to define the boundaries.

• true — Keep all collinear points as vertices.

When the 'KeepCollinearPoints' parameter is not specified, its value is assigned
according to the values used when creating the input polyshape objects:

• If the value was true for each input polyshape when they were created, then the
value for the output polyshape is set to true.

• If the value was false for each input polyshape when they were created, then the
value for the output polyshape is set to false.

 xor

1-11463

• If the values for the input polyshape objects do not match, then the value for the
output polyshape is set to false.

Data Types: logical

Output Arguments
polyout — Output polyshape
scalar | vector | matrix | multidimensional array

Output polyshape, returned as a scalar, vector, matrix, or multidimensional array.

The two input polyshape arguments must have compatible sizes. For example, if two
input polyshape vectors have different lengths M and N, then they must have different
orientations (one must be a row vector and one must be a column vector). polyout is
then M-by-N or N-by-M depending on the orientation of each input vector. For more
information on compatible array sizes, see “Compatible Array Sizes for Basic Operations”.

shapeID — Shape ID
column vector

Shape ID, returned as a column vector whose elements each represent the origin of the
vertex in the exclusive OR. The value of an element in shapeID is 0 when the
corresponding vertex of the output polyshape was created by the exclusive OR. An
element is 1 when the corresponding vertex originated from poly1, and 2 when it
originated from poly2.

The length of shapeID is equal to the number of rows in the Vertices property of the
output polyshape. The xor function only supports this output argument if the input
polyshape objects are scalar.
Data Types: double

vertexID — Vertex ID
column vector

Vertex ID, returned as a column vector whose elements map the vertices in the output
polyshape to the vertices in the polyshape of origin. The elements of vertexID
contain the row numbers of the corresponding vertices in the Vertices property of the
input polyshape. An element is 0 when the corresponding vertex of the output
polyshape was created by the exclusive OR.

1 Alphabetical List

1-11464

The length of vertexID is equal to the number of rows in the Vertices property of the
output polyshape. The xor function only supports this output argument when the input
polyshape objects are scalar.
Data Types: double

See Also
polyshape | subtract

Introduced in R2017b

 xor

1-11465

polyval
Polynomial evaluation

Syntax
y = polyval(p,x)
[y,delta] = polyval(p,x,S)
y = polyval(p,x,[],mu)
[y,delta] = polyval(p,x,S,mu)

Description
y = polyval(p,x) evaluates the polynomial p at each point in x. The argument p is a
vector of length n+1 whose elements are the coefficients (in descending powers) of an
nth-degree polynomial:

p(x) = p1xn + p2xn− 1 + ... + pnx + pn + 1 .

The polynomial coefficients in p can be calculated for different purposes by functions like
polyint, polyder, and polyfit, but you can specify any vector for the coefficients.

To evaluate a polynomial in a matrix sense, use polyvalm instead.

[y,delta] = polyval(p,x,S) uses the optional output structure S produced by
polyfit to generate error estimates. delta is an estimate of the standard error in
predicting a future observation at x by p(x).

y = polyval(p,x,[],mu) or [y,delta] = polyval(p,x,S,mu) use the optional
output mu produced by polyfit to center and scale the data. mu(1) is mean(x), and
mu(2) is std(x). Using these values, polyval centers x at zero and scales it to have
unit standard deviation,

x = x− x
σx

.

1 Alphabetical List

1-11466

This centering and scaling transformation improves the numerical properties of the
polynomial.

Examples

Evaluate Polynomial at Several Points

Evaluate the polynomial p x = 3x2 + 2x + 1 at the points x = 5, 7, 9. The polynomial
coefficients can be represented by the vector [3 2 1].

p = [3 2 1];
x = [5 7 9];
y = polyval(p,x)

y = 1×3

 86 162 262

Integrate Quartic Polynomial

Evaluate the definite integral

I =∫−1

3
3x4− 4x2 + 10x− 25 dx .

Create a vector to represent the polynomial integrand 3x4− 4x2 + 10x− 25. The x3 term
is absent and thus has a coefficient of 0.

p = [3 0 -4 10 -25];

Use polyint to integrate the polynomial using a constant of integration equal to 0.

q = polyint(p)

q = 1×6

 0.6000 0 -1.3333 5.0000 -25.0000 0

 polyval

1-11467

Find the value of the integral by evaluating q at the limits of integration.

a = -1;
b = 3;
I = diff(polyval(q,[a b]))

I = 49.0667

Linear Regression With Error Estimate

Fit a linear model to a set of data points and plot the results, including an estimate of a
95% prediction interval.

Create a few vectors of sample data points (x,y). Use polyfit to fit a first degree
polynomial to the data. Specify two outputs to return the coefficients for the linear fit as
well as the error estimation structure.

x = 1:100;
y = -0.3*x + 2*randn(1,100);
[p,S] = polyfit(x,y,1);

Evaluate the first-degree polynomial fit in p at the points in x. Specify the error
estimation structure as the third input so that polyval calculates an estimate of the
standard error. The standard error estimate is returned in delta.

[y_fit,delta] = polyval(p,x,S);

Plot the original data, linear fit, and 95% prediction interval y ± 2Δ.

plot(x,y,'bo')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')

1 Alphabetical List

1-11468

Use Centering and Scaling to Improve Numerical Properties

Create a table of population data for the years 1750 - 2000 and plot the data points.

year = (1750:25:2000)';
pop = 1e6*[791 856 978 1050 1262 1544 1650 2532 6122 8170 11560]';
T = table(year, pop)

T=11×2 table
 year pop
 ____ _________

 polyval

1-11469

 1750 7.91e+08
 1775 8.56e+08
 1800 9.78e+08
 1825 1.05e+09
 1850 1.262e+09
 1875 1.544e+09
 1900 1.65e+09
 1925 2.532e+09
 1950 6.122e+09
 1975 8.17e+09
 2000 1.156e+10

plot(year,pop,'o')

1 Alphabetical List

1-11470

Use polyfit with three outputs to fit a 5th-degree polynomial using centering and
scaling, which improves the numerical properties of the problem. polyfit centers the
data in year at 0 and scales it to have a standard deviation of 1, which avoids an ill-
conditioned Vandermonde matrix in the fit calculation.

[p,~,mu] = polyfit(T.year, T.pop, 5);

Use polyval with four inputs to evaluate p with the scaled years, (year-mu(1))/
mu(2). Plot the results against the original years.

f = polyval(p,year,[],mu);
hold on
plot(year,f)
hold off

 polyval

1-11471

Input Arguments
p — Polynomial coefficients
vector

Polynomial coefficients, specified as a vector. For example, the vector [1 0 1]
represents the polynomial x2 + 1, and the vector [3.13 -2.21 5.99] represents the
polynomial 3.13x2− 2.21x + 5.99.

For more information, see “Create and Evaluate Polynomials”.
Data Types: single | double
Complex Number Support: Yes

x — Query points
vector

Query points, specified as a vector. polyval evaluates the polynomial p at the points in x
and returns the corresponding function values in y.
Data Types: single | double
Complex Number Support: Yes

S — Error estimation structure
structure

Error estimation structure. This structure is an optional output from [p,S] =
polyfit(x,y,n) that can be used to obtain error estimates. S contains the following
fields:

Field Description
R Triangular factor from a QR decomposition

of the Vandermonde matrix of x
df Degrees of freedom
normr Norm of the residuals

If the data in y is random, then an estimate of the covariance matrix of p is
(Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R.

1 Alphabetical List

1-11472

mu — Centering and scaling values
two-element vector

Centering and scaling values, specified as a two-element vector. This vector is an optional
output from [p,S,mu] = polyfit(x,y,n) that is used to improve the numerical
properties of fitting and evaluating the polynomial p. The value mu(1) is mean(x), and
mu(2) is std(x). These values are used to center the query points in x at zero with unit
standard deviation.

Specify mu to evaluate p at the scaled points, (x - mu(1))/mu(2).

Output Arguments
y — Function values
vector

Function values, returned as a vector of the same size as the query points x. The vector
contains the result of evaluating the polynomial p at each point in x.

delta — Standard error for prediction
scalar

Standard error for prediction, returned as a scalar. Generally, an interval of y ± Δ
corresponds to a roughly 68% prediction interval for future observations of large samples,
and y ± 2Δ a roughly 95% prediction interval.

If the coefficients in p are least-squares estimates computed by polyfit, and the errors
in the data input to polyfit are independent, normal, and have constant variance, then y
± Δ is at least a 50% prediction interval.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

 polyval

1-11473

If x is a tall array, then it must be a column vector.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
polyder | polyfit | polyint | polyvalm

Topics
“Create and Evaluate Polynomials”
“Programmatic Fitting”

Introduced before R2006a

1 Alphabetical List

1-11474

polyvalm
Matrix polynomial evaluation

Syntax
Y = polyvalm(p,X)

Description
Y = polyvalm(p,X) returns the evaluation of polynomial p in a matrix sense. This
evaluation is the same as substituting matrix X in the polynomial, p.

Examples

Matrix Evaluation of Characteristic Polynomial

Find the characteristic polynomial of a Pascal Matrix of order 4.

X = pascal(4)

X = 4×4

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20

p = poly(X)

p = 1×5

 1.0000 -29.0000 72.0000 -29.0000 1.0000

The characteristic polynomial is

 polyvalm

1-11475

p(x) = x4− 29x3 + 72x2− 29x + 1

Pascal matrices have the property that the vector of coefficients of the characteristic
polynomial is the same forward and backward (palindromic).

Substitute the matrix, X, into the characteristic equation, p. The result is very close to
being a zero matrix. This example is an instance of the Cayley-Hamilton theorem, where a
matrix satisfies its own characteristic equation.

Y = polyvalm(p,X)

Y = 4×4
10-10 ×

 -0.0013 -0.0063 -0.0104 -0.0241
 -0.0048 -0.0217 -0.0358 -0.0795
 -0.0114 -0.0510 -0.0818 -0.1805
 -0.0228 -0.0970 -0.1553 -0.3396

Input Arguments
p — Polynomial coefficients
vector

Polynomial coefficients, specified as a vector. For example, the vector [1 0 1]
represents the polynomial x2 + 1, and the vector [3.13 -2.21 5.99] represents the
polynomial 3.13x2− 2.21x + 5.99.

For more information, see “Create and Evaluate Polynomials”.
Data Types: single | double
Complex Number Support: Yes

X — Input matrix
square matrix

Input matrix, specified as a square matrix.
Data Types: single | double
Complex Number Support: Yes

1 Alphabetical List

1-11476

Output Arguments
Y — Output polynomial coefficients
row vector

Output polynomial coefficients, returned as a row vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
polyfit | polyval

Topics
“Create and Evaluate Polynomials”

 polyvalm

1-11477

Introduced before R2006a

1 Alphabetical List

1-11478

posixtime
Convert MATLAB datetime to POSIX time

Syntax
p = posixtime(t)

Description
p = posixtime(t) returns POSIX times equivalent to the datetime values in t. The
POSIX time is the number of seconds (including fractional seconds) elapsed since
00:00:00 1-Jan-1970 UTC (Universal Coordinated Time), ignoring leap seconds. p is a
double array.

• If the time zone of t is not specified, then posixtime treats the times in t as UTC
times. This interpretation might differ from your treatment of “unzoned” datetime
arrays in other contexts. For example, you might think of datetime('now') as
returning your local time. However, posixtime interprets it as a UTC time.

• If the time zone of t is specified, then posixtime uses the offset for the time zone to
compute POSIX times with respect to UTC.

The best practice is to specify the time zone of t before calling posixtime.

Examples

Convert Datetime Array to POSIX Times

Create datetime values and convert them to the equivalent POSIX® times. Show the
differences in POSIX times between zoned and unzoned datetime values. The best
practice is to specify a time zone for a datetime array before calling posixtime.

Create a datetime array and specify its time zone.

 posixtime

1-11479

t1 = datetime('2016-07-29 10:05:24') + calmonths(1:3);
t1.TimeZone = 'America/New_York'

t1 = 1x3 datetime array
 29-Aug-2016 10:05:24 29-Sep-2016 10:05:24 29-Oct-2016 10:05:24

Convert t1 to the equivalent POSIX times. posixtime accounts for the time zone offset
when it computes POSIX times.

format longG
p1 = posixtime(t1)

p1 = 1×3

 1472479524 1475157924 1477749924

Create a datetime array with the same values as t1, but with no time zone. Convert it to
the equivalent POSIX times. posixtime treats the times in t2 as UTC times, with no time
zone offset.

t2 = datetime('2016-07-29 10:05:24') + calmonths(1:3);
p2 = posixtime(t2)

p2 = 1×3

 1472465124 1475143524 1477735524

Show the differences between p2 and p1. The differences are equal to the time offset, in
seconds, between UTC and the time zone of t1.

p2 - p1

ans = 1×3

 -14400 -14400 -14400

1 Alphabetical List

1-11480

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datenum | datetime | exceltime | juliandate | yyyymmdd

Topics
“Convert Date and Time to Julian Date or POSIX Time”

Introduced in R2014b

 posixtime

1-11481

pow2
Base 2 power and scale floating-point numbers

Syntax
X = pow2(Y)
X = pow2(F,E)

Description
X = pow2(Y) returns an array X whose elements are 2 raised to the power Y.

X = pow2(F,E) computes x = f * 2e for corresponding elements of F and E. The result is
computed quickly by simply adding E to the floating-point exponent of F. Arguments F and
E are real and integer arrays, respectively.

Examples
For IEEE arithmetic, the statement X = pow2(F,E) yields the values:

 F E X
 1/2 1 1
 pi/4 2 pi
 -3/4 2 -3
 1/2 -51 eps
 1-eps/2 1024 realmax
 1/2 -1021 realmin

Tips
This function corresponds to the ANSI C function ldexp() and the IEEE floating-point
standard function scalbn().

1 Alphabetical List

1-11482

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
exp | hex2num | log2 | mpower | power | realmax | realmin

Introduced before R2006a

 pow2

1-11483

power, .^
Element-wise power

Syntax
C = A.^B
C = power(A,B)

Description
C = A.^B raises each element of A to the corresponding power in B.

C = power(A,B) is an alternate way to execute A.^B, but is rarely used. It enables
operator overloading for classes.

Examples

Square Each Element of Vector

Create a vector, A, and square each element.

A = 1:5;
C = A.^2

C = 1×5

 1 4 9 16 25

Find Inverse of Each Matrix Element

Create a matrix, A, and take the inverse of each element.

1 Alphabetical List

1-11484

A = [1 2 3; 4 5 6; 7 8 9];
C = A.^-1

C = 3×3

 1.0000 0.5000 0.3333
 0.2500 0.2000 0.1667
 0.1429 0.1250 0.1111

An inversion of the elements is not equal to the inverse of the matrix, which is instead
written A^-1 or inv(A).

Find Roots of Number

Calculate the roots of -1 to the 1/3 power.

A = -1;
B = 1/3;
C = A.^B

C = 0.5000 + 0.8660i

For negative base A and noninteger B, if abs(B) is less than 1, the power function
returns the complex roots of A.

Use the nthroot function to obtain the real roots.

C = nthroot(A,3)

C = -1

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must
either be the same size or have sizes that are compatible (for example, A is an M-by-N

 power, .^

1-11485

matrix and B is a scalar or 1-by-N row vector). For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

B — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B
must either be the same size or have sizes that are compatible (for example, A is an M-by-
N matrix and B is a scalar or 1-by-N row vector). For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

Definitions
IEEE Compliance
For real inputs, power has a few behaviors that differ from those recommended in the
IEEE-754 Standard.

 MATLAB IEEE
power(1,NaN) NaN 1
power(NaN,0) NaN 1

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-11486

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When both X and Y are real, but power(X,Y) is complex, simulation produces an
error and generated code returns NaN. To get the complex result, make the input value
X complex by passing in complex(X). For example, power(complex(X),Y).

• When both X and Y are real, but X .^ Y is complex, simulation produces an error and
generated code returns NaN. To get the complex result, make the input value X
complex by using complex(X). For example, complex(X).^Y.

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
mpower | nthroot | realpow

Topics
“Array vs. Matrix Operations”

 power, .^

1-11487

“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-11488

ppval
Evaluate piecewise polynomial

Syntax
v = ppval(pp,xq)

Description
v = ppval(pp,xq) evaluates the piecewise polynomial pp at the query points xq.

Examples

Create Piecewise Polynomial with Polynomials of Several Degrees

Create a piecewise polynomial that has a cubic polynomial in the interval [0,4], a
quadratic polynomial in the interval [4,10], and a quartic polynomial in the interval
[10,15].

breaks = [0 4 10 15];
coefs = [0 1 -1 1 1; 0 0 1 -2 53; -1 6 1 4 77];
pp = mkpp(breaks,coefs)

pp = struct with fields:
 form: 'pp'
 breaks: [0 4 10 15]
 coefs: [3x5 double]
 pieces: 3
 order: 5
 dim: 1

Evaluate the piecewise polynomial at many points in the interval [0,15] and plot the
results. Plot vertical dashed lines at the break points where the polynomials meet.

 ppval

1-11489

xq = 0:0.01:15;
plot(xq,ppval(pp,xq))
line([4 4],ylim,'LineStyle','--','Color','k')
line([10 10],ylim,'LineStyle','--','Color','k')

Create Piecewise Polynomial with Repeated Pieces

Create and plot a piecewise polynomial with four intervals that alternate between two
quadratic polynomials.

1 Alphabetical List

1-11490

The first two subplots show a quadratic polynomial and its negation shifted to the
intervals [-8,-4] and [-4,0]. The polynomial is

1− x
2 − 1

2
= −x2

4 + x .

The third subplot shows a piecewise polynomial constructed by alternating these two
quadratic pieces over four intervals. Vertical lines are added to show the points where the
polynomials meet.

subplot(2,2,1)
cc = [-1/4 1 0];
pp1 = mkpp([-8 -4],cc);
xx1 = -8:0.1:-4;
plot(xx1,ppval(pp1,xx1),'k-')

subplot(2,2,2)
pp2 = mkpp([-4 0],-cc);
xx2 = -4:0.1:0;
plot(xx2,ppval(pp2,xx2),'k-')

subplot(2,1,2)
pp = mkpp([-8 -4 0 4 8],[cc;-cc;cc;-cc]);
xx = -8:0.1:8;
plot(xx,ppval(pp,xx),'k-')
hold on
line([-4 -4],ylim,'LineStyle','--')
line([0 0],ylim,'LineStyle','--')
line([4 4],ylim,'LineStyle','--')
hold off

 ppval

1-11491

Input Arguments
pp — Piecewise polynomial
structure

Piecewise polynomial, specified as a structure. You can create pp using spline, pchip,
interp1, or the spline utility function mkpp.

xq — Query points
vector | array

1 Alphabetical List

1-11492

Query points, specified as a vector or array. xq specifies the points where ppval
evaluates the piecewise polynomial.
Data Types: single | double

Output Arguments
v — Piecewise polynomial values at query points
vector | matrix | array

Piecewise polynomial values at query points, returned as a vector, matrix, or array.

If pp has [d1,..,dr]-valued coefficients (nonscalar coefficient values), then:

• When xq is a vector of length N, v has size [d1,...,dr,N], and v(:,...,:,j) is
the value at xq(j).

• When xq has size [N1,...,Ns], v has size [d1,...,dr,N1,...,Ns], and
v(:,...,:, j1,...,js) is the value at xq(j1,...,js).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The size of output v does not match MATLAB when both of the following statements
are true:

• The input xx is a variable-size array that is not a variable-length vector.
• xx becomes a row vector at run time.

In this case, the code generator does not remove the singleton dimensions. However,
MATLAB might remove singleton dimensions.

For example, suppose that xx is a :4-by-:5 array (the first dimension is variable size
with an upper bound of 4 and the second dimension is variable size with an upper

 ppval

1-11493

bound of 5). Suppose that ppval(pp,0) returns a 2-by-3 fixed-size array. v has size 2-
by-3-by-:4-by-:5. At run time, suppose that, size(x,1) =1 and size (x,2) = 5. In the
generated code, the size(v) is [2,3,1,5]. In MATLAB, the size is [2,3,5].

See Also
mkpp | pchip | spline | unmkpp

Introduced before R2006a

1 Alphabetical List

1-11494

prefdir
Folder containing preferences, settings, history, and layout files

Syntax
folder = prefdir
folder = prefdir(1)

Description
folder = prefdir returns the name of the preferences folder. The preferences folder
contains preferences and settings for MATLAB and related products, the command
history file, MATLAB favorites files, and MATLAB desktop layout files.

folder = prefdir(1) creates a folder for preferences and related files if one does not
exist. If the folder does exist, the name is assigned to folder.

Examples

View Location of Preferences Folder

prefdir

ans =
 'C:\Users\username\AppData\Roaming\MathWorks\MATLAB\R2018b'

View Contents of Preferences Folder

Set the current folder to the preferences folder and then view the contents of the folder.

 prefdir

1-11495

cd(prefdir)
dir

Open Preferences Folder in Windows Explorer Tool

winopen(prefdir)

See Also
preferences

Topics
“Preferences”

Introduced before R2006a

1 Alphabetical List

1-11496

preferences
Open Preferences dialog box

Syntax
preferences

Description
preferences displays the Preferences dialog box. Use the Preferences dialog box to
interactively access and set options for MATLAB and related products.

Examples

Change MATLAB Command Window Color Preferences

Open the Preferences dialog box.

preferences

Select the colors you want to use from the Error text, Warning text, and Hyperlinks
color palettes. The new colors display in the Command Window sample area.

 preferences

1-11497

See Also
prefdir

Topics
“Preferences”

Introduced before R2006a

1 Alphabetical List

1-11498

primes
Prime numbers less than or equal to input value

Syntax
p = primes(n)

Description
p = primes(n) returns a row vector containing all the prime numbers less than or
equal to n. The data type of p is the same as that of n.

Examples

Primes Less Than or Equal to 25

p = primes(25)

p = 1×9

 2 3 5 7 11 13 17 19 23

Primes Less Than or Equal to an Unsigned Integer

n = uint16(12);
p = primes(n)

p = 1x5 uint16 row vector

 2 3 5 7 11

 primes

1-11499

Input Arguments
n — Input value
scalar, real integer value

Input value, specified as a scalar that is a real integer value.
Example: 10
Example: int16(32)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The maximum double precision input is 2^32.
• The maximum single precision input is 2^24.
• The input n cannot have type int64 or uint64.

See Also
factor | isprime

Introduced before R2006a

1 Alphabetical List

1-11500

print
Print figure or save to specific file format

Syntax
print(filename,formattype)
print(filename,formattype,formatoptions)

print
print(printer)
print(driver)
print(printer,driver)

print('-clipboard',clipboardformat)

print(resize, ___)
print(resolution, ___)
print(renderer, ___)
print('-noui', ___)
print(fig, ___)

cdata = print('-RGBImage');

Description
print(filename,formattype) saves the current figure on page 1-11513 to a file using
the specified file format, such as print('BarPlot','-dpng'). If the file name does not
include an extension, then print appends the appropriate one.

print(filename,formattype,formatoptions) specifies additional options that are
available for some formats.

print prints the current figure to the default printer.

print(printer) specifies the printer. Specify the printer as a character vector or string
containing the printer name preceded by -P, for example, '-Pmy printer'. The printer
must be set up on your system.

 print

1-11501

print(driver) specifies the driver. Use this option if you want to ensure that the
printed output is either black and white or color.

print(printer,driver) specifies the printer and the driver.

print('-clipboard',clipboardformat) copies the current figure to the clipboard
using the format specified by clipboardformat. You can paste the copied figure into
other applications.

print(resize, ___) maximizes the figure size to fill the page. Specify resize as '-
bestfit' to preserve the figure's aspect ratio or '-fillpage' to ignore the aspect
ratio. These options are valid only when saving to a page format (PDF, and PS) or printing
to a printer. Use this option with any of the input arguments from the previous syntaxes.

print(resolution, ___) uses the specified resolution. Specify the resolution as a
character vector or string containing an integer value preceded by -r, for example, '-
r200'. Use this option with any of the input arguments from the previous syntaxes.

print(renderer, ___) uses the specified renderer. Specify the renderer as either '-
painters' or '-opengl'.

print('-noui', ___) excludes user interface controls, such as push buttons and
sliders, from the saved or printed output. It does not exclude user interface objects that
can contain an axes, such as a uitab or uipanel.

print(fig, ___) saves or prints the figure or Simulink block diagram specified by fig.

cdata = print('-RGBImage'); returns the RGB image data for the current figure.
This option differs from screen captures in that all printing features apply to the output.
You can also specify the resolution, renderer, '-noui', and fig options with this
syntax. However, you cannot specify a Simulink block diagram.

Examples

Print Paper Copy of Figure

Create a bar chart and print it to your system default printer. If you do not specify the
figure to print, then print uses the current figure.

1 Alphabetical List

1-11502

bar(1:10)
print

Copy Figure to Clipboard

Create a plot and copy it to the system clipboard.

plot(1:10)
print('-clipboard','-dmeta')

You can paste the copied plot into other applications.

Save Figure as Image File

Create a plot and save it as a PNG image file.

bar(1:10)
print('BarPlot','-dpng')

print saves the plot as BarPlot.png.

Save Figure as Vector Graphics File

Create a plot and save it as an Encapsulated PostScript file.

bar(1:10)
print('BarPlot','-depsc')

print saves the plot as BarPlot.eps.

Add TIFF Preview to EPS File

Save the current figure as an Encapsulated PostScript File and add a TIFF preview.

surf(peaks)
print('SurfacePlot','-depsc','-tiff')

 print

1-11503

Specify Figure to Save

Save a specific figure by passing its object variable to print.

fig = figure;
plot(1:10)
print(fig,'MySavedPlot','-dpng')

Alternatively, refer to a figure using the value of its Number property, which is the integer
value that displays in the figure window title bar. For example, save the figure with
Figure 2 displayed in the title bar. Precede the integer value by -f.

figure(2);
plot(1:10)
print('-f2','MySavedPlot','-dpng')

Save Figure at Screen Size and Resolution

Save a surface plot to a PNG file. Set the PaperPositionMode property for the figure to
'auto' so that it saves at the size displayed on the screen. Use '-r0' to save it with
screen resolution.

surf(peaks)
set(gcf,'PaperPositionMode','auto')
print('PeaksSurface','-dpng','-r0')

Save Figure that Fills Page

Save a figure that fills the page using the '-fillpage' option.

bar([1 10 7 8 2 2 9 3 6])
print('FillPageFigure','-dpdf','-fillpage')

Save Figure Without Saving UIControls

Create a figure with a push button that clears the axes. Save the figure to a JPEG file
without saving the push button.

surf(peaks)
uicontrol('Style','pushbutton','String','Clear',...

1 Alphabetical List

1-11504

 'Position',[20 20 50 20],'Callback','cla');
print('SurfacePlot','-djpeg','-noui')

Return RGB Image Data for Figure

Return the RGB image data for a figure.

surf(peaks)
cdata = print('-RGBImage');

Display the image data at full resolution using imshow.

figure
imshow(cdata)

Input Arguments
filename — File name
character vector | string

File name, specified as a character vector or string containing the desired file name and
path.
Example: 'My Saved Chart'
Example: 'Folder\My Saved Chart'
Example: "My Saved Chart"

The maximum file name length, including the path, is operating system and file format
specific. Typically, the file name should be no more than 126 characters, or if you include
the path, then no more than 128 characters.
Data Types: char | string

formattype — File format
'-djpeg' | '-dpng' | '-dtiff' | '-dpdf' | '-deps' | ...

File format, specified as one of the options in these tables.
Bitmap Image File

Bitmap images contain a pixel-based representation of the figure. The size of the
generated file depends on the figure, the format, and your system resolution. Bitmap

 print

1-11505

images are widely used by Web browsers and other applications that display graphics.
However, they do not support transparency or scale well and you cannot modify individual
graphics objects, such as lines and text, in other graphics applications.

This table lists the supported bitmap image formats.

Option Bitmap Image Format Corresponding File
Extension

'-djpeg' JPEG 24-bit .jpg
'-dpng' PNG 24-bit .png
'-dtiff' TIFF 24-bit (compressed) .tif
'-dtiffn' TIFF 24-bit (not

compressed)
.tif

'-dmeta' Enhanced metafile
(Windows only)

.emf

'-dbmpmono' BMP Monochrome .bmp
'-dbmp' BMP 24-bit .bmp
'-dbmp16m' BMP 24-bit .bmp
'-dbmp256' BMP 8-bit (256 color, uses a

fixed colormap)
.bmp

'-dhdf' HDF 24-bit .hdf
'-dpbm' PBM (plain format) 1-bit .pbm
'-dpbmraw' PBM (raw format) 1-bit .pbm
'-dpcxmono' PCX 1-bit .pcx
'-dpcx24b' PCX 24-bit color (three 8-bit

planes)
.pcx

'-dpcx256' PCX 8-bit newer color (256
color)

.pcx

'-dpcx16' PCX older color (EGA/VGA
16-color)

.pcx

'-dpgm' PGM (plain format) .pgm
'-dpgmraw' PGM (raw format) .pgm
'-dppm' PPM (plain format) .ppm

1 Alphabetical List

1-11506

Option Bitmap Image Format Corresponding File
Extension

'-dppmraw' PPM (raw format) .ppm

Vector Graphics File

Vector graphics files store commands that redraw the figure. This type of format scales
well, but can result in a large file. Also, it might not produce the correct 3-D arrangement
of objects in certain cases. Some applications support extensive editing of vector graphics
formats. However, some applications do not support editing beyond resizing the graphic.
In general, try to make all the necessary changes while your figure is still in MATLAB.

If you set the Renderer property for the figure, then print uses that renderer when
generating output. Otherwise, print chooses the appropriate renderer. Typically, print
uses the Painters renderer when generating vector graphics files. For some complex
figures, print uses the OpenGL renderer instead. If it uses the OpenGL renderer, then
the vector graphics file contains an embedded image, which might limit the extent to
which you can edit the image in other applications. Also, if print uses the OpenGL
renderer to generate the file, then transparency is not supported. To ensure that print
uses the Painters renderer, set the Renderer property for the figure to 'painters' or
specify '-painters' as an input argument to print.

Note The default figure renderer is OpenGL. If the figure renderer differs from the
renderer used when generating output, some details of the saved figure can differ from
the figure on the display. If necessary, you can make the displayed figure and the saved
figure use the same renderer. Set the Renderer property for the figure or specify the
renderer input argument to the print function.

This table lists the supported vector graphics formats.

Option Vector Graphics Format Corresponding File
Extension

'-dpdf' Full page Portable
Document Format (PDF)
color

.pdf

 print

1-11507

Option Vector Graphics Format Corresponding File
Extension

'-deps' Encapsulated PostScript
(EPS) Level 3 black and
white

.eps

'-depsc' Encapsulated PostScript
(EPS) Level 3 color

.eps

'-deps2' Encapsulated PostScript
(EPS) Level 2 black and
white

.eps

'-depsc2' Encapsulated PostScript
(EPS) Level 2 color

.eps

'-dmeta' Enhanced Metafile
(Windows only)

.emf

'-dsvg' SVG (Scalable Vector
Graphics)

.svg

'-dps' Full-page PostScript (PS)
Level 3 black and white

.ps

'-dpsc' Full-page PostScript (PS)
Level 3 color

.ps

'-dps2' Full-page PostScript (PS)
Level 2 black and white

.ps

'-dpsc2' Full-page PostScript (PS)
Level 2 color

.ps

You cannot save Simulink block diagrams in PostScript or EPS formats.

Note Only PDF and full-page PS formats use the first two elements of the
PaperPosition property. Other formats ignore these values.

formatoptions — Additional formatting options
'-tiff' | '-loose' | '-cmyk' | '-append'

Additional formatting options supported by some file formats, specified as one or more of
these values:

1 Alphabetical List

1-11508

• '-tiff' — Include a TIFF preview. EPS files only.
• '-loose' — Use a loose bounding box. EPS and PS files only.
• '-cmyk' — Use CMYK colors instead of RGB colors. EPS and PS files only.
• '-append' — Append the figure to an existing PS file. PS files only.

Example: print('my file','-deps','-tiff','-loose') saves the current figure
to the file my file.eps using a loose bounding box and includes a TIFF preview.

printer — Printer name
character vector | string

Printer name, specified as a character vector or string containing -P and the printer
name.
Example: '-Pmy local printer'
Example: "-Pmy local printer"

To view a list of available printers, use this command:

[~,printers] = findprinters

If you do not specify a printer, then print uses the system default printer. If you want to
set up a new printer or select a different default printer, use the operating system printer
management utilities. Restart MATLAB if you do not see a printer that is set up already.
Data Types: char | string

driver — Printer driver
'-dwin' | '-dwinc' | '-dprn' | '-dprnc'

Printer driver, specified as '-dwin', '-dwinc', '-dprn', or '-dprnc'. If you do not
specify a driver, then print uses the driver returned from the printopt function.

The option you use depends on your system, for example:

System Driver Output
Windows '-dwin' Black and white

'-dwinc' Color
Linux or Mac '-dprn' Black and white

 print

1-11509

System Driver Output
'-dprnc' Color

clipboardformat — Format copied to clipboard
-dmeta | -dbitmap | -dpdf

Format copied to clipboard, specified as one of these options:

• '-dmeta' — Enhanced metafile (Windows only)
• '-dbitmap' — Bitmap image (Windows and Mac OS)
• '-dpdf' — PDF file (Windows and Mac OS)

resize — Option to expand figure to fill page
'-fillpage' | '-bestfit'

Option to expand figure to fill page, specified as one of these values:

• '-fillpage' — Maximize the size of the figure to fill the page. Leave a .25 inch
margin on all sides of the page. The tick marks, layout, and aspect ratio of the figure
might change.

• '-bestfit' — Maximize the size of the figure to fill the page, but preserve the
aspect ratio of the figure. The figure might not fill the entire page. This option leaves a
minimum page margin of .25 inches.

Both options are valid only when printing a figure to a printer or saving to a page format
such as PDF and PS. They are not valid for Simulink block diagrams.

resolution — Resolution
character vector | string

Resolution, specified as a character vector or a string containing -r and an integer value
indicating the resolution in dots per inch. For example, '-r300' sets the output
resolution to 300 dots per inch. To specify screen resolution, use '-r0'.

In general, using a higher resolution value yields higher-quality output, but at the cost of
higher memory use and larger output files. The higher the resolution setting, the longer it
takes to render your figure.

Specifying the resolution is useful when creating a bitmap image or when using the
OpenGL renderer with a vector graphics file format (since OpenGL produces a bitmap

1 Alphabetical List

1-11510

image even with vector formats). Specifying the resolution has no effect when using the
Painters renderer with a vector graphics file format, since Painters produces a true vector
graphics file that contains the commands that redraw the figure.

Note Simulink printing does not support the resolution option. For higher quality output
of Simulink models, use a vector format such as SVG or PDF.

Data Types: char | string

renderer — Graphics renderer
'-opengl' | '-painters'

Graphics renderer, specified as '-opengl' or '-painters'.

• '-opengl' — OpenGL renderer. Use this renderer when saving bitmap images.
OpenGL produces a bitmap image even with vector formats, which might limit the
extent to which you can edit the image in other applications.

• '-painters' — Painters renderer. Use this renderer when saving vector graphics
files. If you save to a vector graphics file and if the figure RendererMode property is
set to 'auto', then print automatically attempts to use the Painters renderer. If you
want to ensure that your output format is a true vector graphics file, then specify the
Painters renderer. For example:

print('-painters','-deps','myVectorFile')

Note Sometimes, saving a file with the '-painters' option can cause longer rendering
times and, in rare cases, might not accurately arrange graphics objects in 3-D views. Also,
the Painters renderer cannot print or save lines thinner than one pixel.

If you do not specify the renderer, then print automatically uses the appropriate
renderer to produce the output format requested. However, if you set the Renderer
property for the figure, then print uses that renderer when generating output.

fig — Figure, Simulink block diagram
figure object | Simulink block diagram

Figure object or Simulink block diagram. You can refer to a figure using either its object
variable name or using the figure number preceded by -f. For example, -f2 refers to the

 print

1-11511

figure with a Number property value of 2. When specifying a Simulink block diagram,
precede the model name with -s. Specify the current model using '-s'.

You cannot save Simulink block diagrams in PostScript or EPS formats.

Output Arguments
cdata — Image data
n-by-m-by-3 array

Image data, returned as an n-by-m-by-3 array. The size of the image data array depends
on the PaperPosition property of the figure and the output resolution.

Note Starting in R2015b, if you use print with the '-r0' option on a high-resolution
system, then the size of the cdata output array is larger than in previous releases or on
other systems. Also, the number of elements in cdata might not match the size of the
figure in pixels based on the figure’s PaperPosition property and the root’s
ScreenPixelsPerInch property. For more information, see “DPI-Aware Behavior in
MATLAB”.

Limitations
• print does not support capturing ActiveX controls.
• Starting MATLAB in no display mode on Linux or using the -noFigureWindows

startup option on any platform has these limitations for print:

• Printing or saving figures with visible uicontrols errors. To print or save the figure,
hide the uicontrols by setting their Visible properties to 'off', or use the '-
noui' option with the print function.

• Always uses the painters renderer, even if you specify the '-opengl' option.
• In MATLAB Online, print only prints to PDF. For additional file format options, save

the figure to a file by specifying a filename.

1 Alphabetical List

1-11512

Definitions

Current Figure
The current figure is typically the last figure that you create or click with the mouse. User
interaction can change the current figure.

To print a specific figure, specify the figure as the first input argument. If you do not
specify a figure, then the print function acts on the figure returned by gcbf. If gcbf
returns empty, then print acts on the figure returned by gcf.

Compatibility Considerations
Starting in R2016a, printed and saved figures match the size of the figure on the screen
by default. Previously, printed and saved figures were 8-by-6 inches by default.

Tips
• You can set properties of the figure to control some printing and saving parameters.

This table lists properties of the figure related to printing and saving.

Figure Property Description
PaperPosition Size of the printed or saved figure. If

printing to a printer or a full-page
output format, then this property also
determines the figure location on the
page.

PaperPositionMode Specifies whether to use the
PaperPosition property or the size of
the figure on the screen to set the size
of the printed or saved figure.

InvertHardcopy Specifies whether to use the current
background color of the figure or to
change the background color to white
when printing or saving the figure.

PaperOrientation Figure orientation on printed page.

 print

1-11513

Figure Property Description
PaperType Standard printer paper size.
PaperSize Custom width and height of printer

paper.
PaperUnits Units for the PaperSize and

PaperPosition properties.

• If you are using a Linux or Mac system and get an error about an invalid or
unrecognized printer, then try specifying a PostScript driver for the driver option. If
the printer supports PostScript level 3, try '-dps' for black and white or '-dpsc' for
color. If the printer supports PostScript level 2, then try '-dps2' for black and white
or '-dps2c' for color. For example:

print('-dpsc','-Pmy printer')

To use this driver as the default driver, edit the printopt file. Alternatively, print the
figure to a PDF file. Then, print the PDF from an external PDF viewer.

• If you print a figure that has a callback defined for the SizeChangedFcn property and
if the output size differs from the size of the figure on the screen, then the print
function displays a warning message. To avoid the warning message, set the
PaperPositionMode property for the figure to 'auto'.

See Also
getframe | saveas | savefig

Introduced before R2006a

1 Alphabetical List

1-11514

printopt
Configure printer defaults

Syntax
[pcmd,dev] = printopt

Description
[pcmd,dev] = printopt returns the current system-dependent printing command and
output device. printopt is a file used by print to produce the printed output. You can
edit the file printopt.m to set your default printer type and destination.

• pcmd contains the command that print uses to send a file to the printer when not
using the printer drivers directly.

• dev contains the printer driver or graphics format option for the print command.

The defaults for pcmd and dev are platform-dependent. This table lists the default values
for each platform.

Platform Print Command Driver or Format
Mac and Linux lpr -r -dprn

In R2014a and earlier, the
driver was -dps2.

Windows COPY /B %s LPT1: -dwin

See Also
print | printdlg

Introduced before R2006a

 printopt

1-11515

printdlg
Open figure Print dialog box

Note

Use this function only with GUIDE, or with apps created using the figure
function.

Note The -crossplatform and -setup input arguments have been removed in
R2014b. They no longer have any effect.

Syntax
printdlg
printdlg(fig)

Description
printdlg prints the current figure.

printdlg(fig) creates a modal dialog box from which you can print the figure window
identified by the handle fig. Uimenus do not print.

Tips
If you want to set up a new printer, use the operating system printer management
utilities. Restart MATLAB if you do not see the printer which is already setup.

See Also
print | printopt | printpreview

1 Alphabetical List

1-11516

Introduced before R2006a

 printdlg

1-11517

printpreview
Open figure Print Preview dialog box

Note

Use this function only with GUIDE, or with apps created using the figure
function.

Syntax
printpreview
printpreview(f)

Description
printpreview displays a dialog box showing the figure in the currently active figure
window as it will print. A scaled version of the figure displays in the right-hand pane of
the dialog box.

printpreview(f) displays a dialog box showing the figure having the handle f as it will
print.

Use the Print Preview dialog box, shown below, to control the layout and appearance of
figures before sending them to a printer or print file. Controls are grouped into four
tabbed panes: Layout, Lines/Text, Color, and Advanced.

1 Alphabetical List

1-11518

Right Pane Controls
You can position and scale plots on the printed page using the rulers in the right-hand
pane of the Print Preview dialog. Use the outer ruler handlebars to change margins.
Moving them changes plot proportions. Use the center ruler handlebars to change the
position of the plot on the page. Plot proportions do not change, but you can move
portions of the plot off the paper. The buttons on that pane let you refresh the plot, close
the dialog (preserving all current settings), print the page immediately, or obtain context-

 printpreview

1-11519

sensitive help. Use the Zoom box and scroll bars to view and position page elements
more precisely.

The Layout Tab
Use the Layout tab, shown above, to control the paper format and placement of the plot
on printed pages. The following table summarizes the Layout options:

Group Option Description
Placement Auto Let MATLAB decide placement of plot on

page*

 Use manual... Specify position parameters for plot on page*

 Top, Left, Width,
Height

Standard position parameters in current
units

 Use defaults Revert to default position
 Fill page Expand figure to fill printable area
 Best fit Expand figure to fill printable area, center

the figure, and preserve the figure’s aspect
ratio

 Center Center plot on printed page
Paper Format U.S. and ISO sheet size selector
 Width, Height Sheet size in current units
Units Inches Use inches as units for dimensions and

positions
 Centimeters Use centimeters as units for dimensions and

positions
 Points Use points as units for dimensions and

positions
Orientation Portrait Upright paper orientation
 Landscape Sideways paper orientation
 Rotated Currently the same as Landscape

* Selecting Auto in the Placement group sets the figure PaperPositionMode to 'auto'
and disables the controls in that panel. Selecting Use manual size and position sets the
figure PaperPositionMode to 'manual' and enables the controls. If you set

1 Alphabetical List

1-11520

PaperPositionMode programmatically, the print preview Placement controls respond
accordingly.

The Lines/Text Tab
Use the Lines/Text tab, shown below, to control the line weights, font characteristics, and
headers for printed pages. The following table summarizes the Lines/Text options:

 printpreview

1-11521

Group Option Description
Lines Line Width Scale all lines by a percentage from 0 upward (100

being no change), print lines at a specified point size,
or default line widths used on the plot

 Min Width Smallest line width (in points) to use when printing;
defaults to 0.5 point

Text Font Name Select a system font for all text on plot, or default to
fonts currently used on the plot

 Font Size Scale all text by a percentage from 0 upward (100
being no change), print text at a specified point size, or
default to this used on the plot

 Font Weight Select Normal ... Bold font styling for all text from
drop-down menu or default to the font weights used on
the plot

 Font Angle Select Normal, Italic or Oblique font styling for all
text from drop-down menu or default to the font angles
used on the plot

Header Header Text Type the text to appear on the header at the upper left
of printed pages, or leave blank for no header

 Date Style Select a date format to have today's date appear on
each printed page, or none for no date

The Color Tab
Use the Color tab, shown below, to control how colors are printed for lines and
backgrounds. The following table summarizes the Color options:

1 Alphabetical List

1-11522

Group Option Description
Color Scale Black and White Select to print lines and text in black and white,

but use color for patches and other objects
 Gray Scale Convert colors to shades of gray on printed

pages
 Color Print everything in color, matching colors on

plot; select RGB (default) or CMYK color model
for printing

 printpreview

1-11523

Group Option Description
Background
Color

Same as figure Print the figure's background color as it is

 Custom Select a color name, or type a colorspec for the
background; white (default) implies no
background color, even on colored paper.

The Advanced Tab
Use the Advanced tab, shown below, to control finer details of printing, such as limits
and ticks, renderer, resolution, and the printing of UIControls. The following table
summarizes the Advanced options:

Group Option Description
Axes limits and
ticks

Recompute limits and
ticks

Redraw x- and y-axes ticks and limits
based on printed plot size (default)

 Keep screen limits and
ticks

Use the x- and y-axes ticks and limits
shown on the plot when printing the
previewed figure

Miscellaneous Renderer Select a rendering algorithm for printing:
painters, opengl, or auto (default)

1 Alphabetical List

1-11524

Group Option Description
 Resolution Select resolution to print at in dots per

inch: 150, 300, 600, or auto (default), or
type in any other positive value

 Print UIControls Print all visible UIControls in the figure
(default), or uncheck to exclude them
from being printed

Alternatives
Use File > Print Preview on the figure window menu to access the Print Preview dialog
box, described below. For details, see “Print Figure from File Menu”.

See Also
print

Topics
“Print Figure from File Menu”

Introduced before R2006a

 printpreview

1-11525

prism
Prism colormap array

Syntax
c = prism
c = prism(m)

Description
c = prism returns the prism colormap as a three-column array with the same number of
rows as the colormap for the current figure. If no figure exists, then the number of rows is
equal to the default length of 64. Each row in the array contains the red, green, and blue
intensities for a specific color. The intensities are in the range [0,1], and the color scheme
is a repeated sequence of the rainbow colors.

c = prism(m) returns the colormap with m colors.

Examples

Downsample the Prism Colormap

Create a scatter plot with the default colors.

x = [3.5 3.3 5 6.1 4 2];
y = [14 5.7 12 6 8 9];
sz = 100*[6 100 20 3 15 20];
c = [1 2 3 4 5 6];
scatter(x,y,sz,c,'filled','MarkerEdgeColor','k','MarkerFaceAlpha',.5);
xlim([1 7]);
ylim([1 16]);

1 Alphabetical List

1-11526

Get the prism colormap array with six entries. Then replace the colormap in the scatter
plot.

c = prism(6);
colormap(c);

 prism

1-11527

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-11528

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 prism

1-11529

prod
Product of array elements

Syntax
B = prod(A)
B = prod(A,'all')
B = prod(A,dim)
B = prod(A,vecdim)
B = prod(___ ,type)
B = prod(___ ,nanflag)

Description
B = prod(A) returns the product of the array elements of A.

• If A is a vector, then prod(A) returns the product of the elements.
• If A is a nonempty matrix, then prod(A) treats the columns of A as vectors and

returns a row vector of the products of each column.
• If A is an empty 0-by-0 matrix, prod(A) returns 1.
• If A is a multidimensional array, then prod(A) acts along the first nonsingleton

dimension on page 1-11538 and returns an array of products. The size of this
dimension reduces to 1 while the sizes of all other dimensions remain the same.

prod computes and returns B as single when the input, A, is single. For all other
numeric and logical data types, prod computes and returns B as double.

B = prod(A,'all') computes the product of all elements of A. This syntax is valid for
MATLAB versions R2018b and later.

B = prod(A,dim) returns the products along dimension dim. For example, if A is a
matrix, prod(A,2) is a column vector containing the products of each row.

B = prod(A,vecdim) computes the product based on the dimensions specified in the
vector vecdim. For example, if A is a matrix, then prod(A,[1 2]) is the product of all

1 Alphabetical List

1-11530

elements in A, since every element of a matrix is contained in the array slice defined by
dimensions 1 and 2.

B = prod(___ ,type) returns an array in the class specified by type, using any of the
input arguments in the previous syntaxes. type can be 'double', 'native', or
'default'.

B = prod(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. prod(A,'includenan') includes NaN
values in the calculation while prod(A,'omitnan') ignores them.

Examples

Product of Elements in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A=[1:3:7;2:3:8;3:3:9]

A = 3×3

 1 4 7
 2 5 8
 3 6 9

Find the product of the elements in each column. The length of the first dimension is 1,
and the length of the second dimension matches size(A,2).

B = prod(A)

B = 1×3

 6 120 504

Product of Logical Input

Create an array of logical values.

 prod

1-11531

A = [true false; true true]

A = 2x2 logical array

 1 0
 1 1

Find the product of the elements in each column.

B = prod(A)

B = 1×2

 1 0

The output has type double.

class(B)

ans =
'double'

Product of Elements in Each Row

Create a 3-by-3 array whose elements correspond to their linear indices.

A=[1:3:7;2:3:8;3:3:9]

A = 3×3

 1 4 7
 2 5 8
 3 6 9

Find the product of the elements in each row and reduce the length of the second
dimension to 1. The length of the first dimension matches size(A,1), and the length of
the second dimension is 1.

dim = 2;
B = prod(A,dim)

1 Alphabetical List

1-11532

B = 3×1

 28
 80
 162

Product of Array Page

Create a 3-D array and compute the product over each page of data (rows and columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [1 2; -5 3];
A(:,:,3) = [4 4; 1 -3];
B1 = prod(A,[1 2])

B1 =
B1(:,:,1) =

 -16

B1(:,:,2) =

 -30

B1(:,:,3) =

 -48

To compute the product over all dimensions of an array, you can either specify each
dimension in the vector dimension argument, or use the 'all' option.

B2 = prod(A,[1 2 3])

B2 = -23040

Ball = prod(A,'all')

Ball = -23040

 prod

1-11533

Single-Precision Input Treated as Double

Create a 3-by-3 array of single-precision values.

A = single([1200 1500 1800; 1300 1600 1900; 1400 1700 2000])

A = 3x3 single matrix

 1200 1500 1800
 1300 1600 1900
 1400 1700 2000

Find the product of the elements in each row by multiplying in double precision.

B = prod(A,2,'double')

B = 3×1
109 ×

 3.2400
 3.9520
 4.7600

The output is double precision.

class(B)

ans =
'double'

Integer Data Type for Input and Output

Create a 3-by-3 array of 8-bit unsigned integers.

A = uint8([1:3:7;2:3:8;3:3:9])

A = 3x3 uint8 matrix

 1 4 7

1 Alphabetical List

1-11534

 2 5 8
 3 6 9

Find the product of the elements in each column natively in uint8.

B = prod(A,'native')

B = 1x3 uint8 row vector

 6 120 255

The result is an array of 8-bit unsigned integers.

class(B)

ans =
'uint8'

Product Excluding NaN

Create a vector and compute its product, excluding NaN values. If you do not specify
'omitnan', then prod(A) returns NaN.

A = [1 3 2 4 NaN 3 NaN 2];
P = prod(A,'omitnan')

P = 144

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical
Complex Number Support: Yes

 prod

1-11535

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(B,dim) is
1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A.

• If dim = 1, then prod(A,1) returns a row vector containing the product of the
elements in each column.

• If dim = 2, then prod(A,2) returns a column vector containing the product of the
elements in each row.

prod returns A when dim is greater than ndims(A).

1 Alphabetical List

1-11536

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then prod(A,[1 2]) returns a 1-by-1-by-3 array
whose elements are the products of each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

type — Output class
'default' (default) | 'double' | 'native'

Output class, specified as 'default', 'double', or 'native', and which defines the
data type of the output, B.

type Output data type
'default' double, unless the input data type is single. In which case,

the output data type is single.
'double' double

 prod

1-11537

type Output data type
'native' same data type as the input array, A

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values from the input when computing the product,
resulting in NaN output.

• 'omitnan' — Ignore NaN values in the input. If all elements are NaN, then prod
returns 1.

Output Arguments
B — Product array
scalar | vector | matrix | multidimensional array

Product array, returned as a scalar, vector, matrix, or multidimensional array.

The class of B is as follows:

• If the type argument specifies 'default' or is not used

• and the input is not single, then the output is double.
• and the input is single, then the output is single.

• If the type argument specifies 'double', then the output is double regardless of the
input data type.

• If the type argument specifies 'native', then the output is the same data type as
the input.

Definitions
First Nonsingleton Dimension
The first nonsingleton dimension is the first dimension of an array whose size is not equal
to 1.

1 Alphabetical List

1-11538

For example:

• If X is a 1-by-n row vector, then the second dimension is the first nonsingleton
dimension of X.

• If X is a 1-by-0-by-n empty array, then the second dimension is the first nonsingleton
dimension of X.

• If X is a 1-by-1-by-3 array, then the third dimension is the first nonsingleton dimension
of X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you supply dim, it must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported with the 'native' option.
• The order of the products in prod operation is not defined. Therefore, the prod

operation on a GPU array might not return exactly the same answer as the prod

 prod

1-11539

operation on the corresponding MATLAB numeric array. The difference might be
significant when A is a signed integer type and its product is accumulated natively.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The order of the products in prod operation is not defined. Therefore, the prod
operation on a distributed array might not return exactly the same answer as the prod
operation on the corresponding MATLAB numeric array. The difference might be
significant when A is a signed integer type and its product is accumulated natively.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cumprod | diff | ndims | sum

Introduced before R2006a

1 Alphabetical List

1-11540

profile
Profile execution time for functions

Use the Profiler to track execution time. Knowing the execution time of your MATLAB
code helps you to debug and optimize it. For information on the user interface to the
Profiler, see “Profile to Improve Performance”.

Syntax
profile action
profile action option1 ... optionN
profile option1 ... optionN

p = profile('info')

s = profile('status')

Description
profile action profiles the execution time for functions. Use action to start, stop,
and restart the Profiler, and view or clear profile statistics. For example, profile on
starts the Profiler.

profile action option1 ... optionN starts or restarts the Profiler with the
specified options. For example, profile resume -history restarts the Profiler and
records the sequence of function calls.

profile option1 ... optionN sets the specified Profiler options. If the Profiler is on
and you specify one of the options, MATLAB throws an error. To change options, first
specify profile off, and then specify the new options.

p = profile('info') stops the Profiler and displays a structure containing the
results. To access the data generated by profile, use this syntax.

s = profile('status') returns a structure with the Profiler status information.

 profile

1-11541

Examples

Profile Function and Save Results as HTML

This example is not supported in MATLAB Online.

Turn on the Profiler, and call the magic function.

profile on
n = 100;
M = magic(n);

View the results in the Profiler window.

profile viewer

Save the results as HTML. By default, profsave saves the files to the
profile_results subfolder in your current working folder.

profsave

Profile Function and Display Function Call History

Create the file myFunction.m using this main function and local function.

function c = myFunction(a,b)
c = sqrt(square(a)+square(b));
end

function y = square(x)
y = x.^2;
end

Turn on the Profiler, and enable the function call history option. Profile a call to the
myFunction function.

profile on -history
a = rand(5);
b = rand(5);
c = myFunction(a,b);

Save the profile results.

1 Alphabetical List

1-11542

p = profile('info')

p =

 FunctionTable: [2x1 struct]
 FunctionHistory: [2x6 double]
 ClockPrecision: 3.3475e-07
 ClockSpeed: 3.0600e+09
 Name: 'MATLAB'
 Overhead: 0

Display the function call history.

p.FunctionHistory

ans =

 0 0 1 0 1 1
 1 2 2 2 2 1

Display function entry and exit information by iterating over the function call history.

numEvents = size(p.FunctionHistory,2);
for n = 1:numEvents
 name = p.FunctionTable(p.FunctionHistory(2,n)).FunctionName;

 if p.FunctionHistory(1,n) == 0
 disp(['Entered ' name]);
 else
 disp(['Exited ' name]);
 end
end

Entered myFunction
Entered myFunction>square
Exited myFunction>square
Entered myFunction>square
Exited myFunction>square
Exited myFunction

Set the function call history to the default value.

profile -nohistory

 profile

1-11543

Profile and Save Results as MAT-File

Turn on the Profiler, and call the magic function.

profile on
n = 100;
M = magic(n);

Save the results to a MAT-file

p = profile('info')
save myprofiledata p

p =

 FunctionTable: [1x1 struct]
 FunctionHistory: [2x2 double]
 ClockPrecision: 3.3475e-07
 ClockSpeed: 3.0600e+09
 Name: 'MATLAB'
 Overhead: 0

View Current Profiler Settings

s = profile('status')

s =

 ProfilerStatus: 'off'
 DetailLevel: 'mmex'
 Timer: 'performance'
 HistoryTracking: 'off'
 HistorySize: 1000000

Input Arguments
action — Control options for Profiler
on | off | resume | clear | viewer | info | status

Control options for the Profiler specified as one of these options.

1 Alphabetical List

1-11544

Option Result
on Start the Profiler, clearing any previously recorded profile statistics.
off Stop the Profiler.
resume Restart the Profiler without clearing previously recorded statistics.
clear Clear the recorded statistics.
viewer Stop the Profiler and display the results in the Profiler window. For more

information, see “Profile to Improve Performance”. The profiler user
interface is not available in MATLAB Online.

info Stop the Profiler and return a structure containing the results.
status Return a structure with the Profiler status information.

option1 ... optionN — One or more profiling options
character vectors

One or more profiling options, specified as character vectors corresponding to valid
settings from the history and clock option tables. You can specify one or more of these
options with one of the following syntaxes:

• profile on option1 ... optionN
• profile resume option1 ... optionN
• profile option1 ... optionN

If you change the Profiler settings, the settings persist when you stop the Profiler or clear
the statistics. To revert to default Profiler behavior, manually set the options to the default
settings or start a new MATLAB session.

History Options

Option Result
-history Record the exact sequence of function calls, including function

entry and exit events. By default, the -history option is not
enabled.

 profile

1-11545

Option Result
-historysize
integer

Specify the number of function entry and exit events to record.
By default, historysize is 1,000,000. If the number of
function calls exceeds the specified historysize, the
profile function continues to record profiling statistics other
than the sequence of calls.

-nohistory Default setting. Disable recording of the exact sequence of
function calls. The profile function collects all other
profiling statistics.

Clock Options

Option Result
-timer
'performance'

Default setting. Use wall-clock time from the clock that the
operating system supplies to measure performance.

-timer 'processor' Use the wall-clock time directly from the processor. Sometimes
your power savings settings or use of multiple processors
influence this measurement.

-timer 'real' Use system time reported by the operating system. This option
is the most computationally expensive measurement and has
the most impact on the performance of profiled code.
Changing the time on the operating system clock influences
this measurement.

-timer 'cpu' Use computer time and sums time across all threads. This
measurement is different from wall-clock time. For example,
the computer time for the pause function is typically small,
but wall-clock time accounts for the actual time paused, which
is larger.

Output Arguments
p — Profiler statistics
structure

Profiler statistics, returned as a structure containing these fields.

1 Alphabetical List

1-11546

Field Description
FunctionTab
le

Function statistics, returned as a structure array. Each structure in the
array contains information about one of the functions or local functions
called during profiling. Each structure contains the following fields:

• CompleteName – Full path to FunctionName.
• FunctionName – Name of function. If the function is a local function,

FunctionName includes the main function.
• FileName – Full path to FunctionName, with the file extension. If the

function is a local function, FileName is the full path to the main
function.

• Type – Type of function. For example, MATLAB function, MEX-
function, local function, or nested function.

• NumCalls – Number of times the profiled code called the function.
• TotalTime – Total time spent in the function and its child functions.
• TotalRecursiveTime – MATLAB no longer uses this field.
• Children – Information about functions that the function called. Each

entry in the array contains information about one child function. The
structure contains these fields:

• Index – Index to child function information structure within
FunctionTable.

• NumCalls – Number of times the profiled code called the child
function.

• TotalTime – Total time spent in the child function.
• Parents – Information about the parent functions of FunctionName.

Each structure in the array contains information about one of the
parents. The structure contains these fields:

• Index – Index to parent function information structure within
FunctionTable.

• NumCalls – Number of times the parent function called this
function.

• ExecutedLines – Array containing line-by-line details for the profiled
function.

 profile

1-11547

Field Description
• Column 1 – Line number for the executed line of code in

FileName.
• Column 2 – Number of times the profiled code executed the line of

code.
• Column 3 – Total time spent on the line of code. The sum of Column

3 entries does not necessarily add up to the TotalTime.
• IsRecursive – Indicator of whether the function is recursive. If the

value is 1 (true), the function is recursive. If the value is 0 (false),
the function is nonrecursive.

• PartialData – Indicator of whether the profile statistics are
incomplete. If the value is logical 1 (true), the function was modified
during profiling. For example, if you edited the function or cleared it
from memory. In that event, the Profiler collects data only up until you
modified the function.

FunctionHis
tory

Function call history, returned as an array.

• Row 1 – Indicator of function entry or exit. The Profiler records
function entry with a 0, and function exit with a 1.

• Row 2 – Index to function information structure within
FunctionTable.

ClockPrecis
ion

Precision of the time measurement of the profile function, returned as
a double.

ClockSpeed Estimated CPU clock speed, returned as a double.
Name Name of the profiler, returned as a character array.
Overhead Reserved for future use.

s — Profiler status
structure

Profiler status, returned as a structure containing these fields.

Field Values Default Value
ProfilerStatus 'on' or 'off' 'off'
DetailLevel 'mmex' 'mmex'

1 Alphabetical List

1-11548

Field Values Default Value
Timer 'performance', 'processor', 'cpu', or

'real'
'performance'

HistoryTracking 'on' or 'off' 'off'
HistorySize integer 1000000

Limitations
• If the profiled code uses indirect (or mutual) recursion, the MATLAB Profiler might

return inaccurate results. If the recursion is direct (a single function calling itself),
then the Profiler returns the total time for the non-recursive calls to the function. To
determine if a function in the profiled code is recursive (directly or indirectly),
examine the value of the IsRecursive field in the FunctionTable entry.

Tips
• To open the Profiler user interface, use the profile viewer syntax or see “Profile to

Improve Performance”. The profiler user interface is not available in MATLAB Online.
• As of MATLAB R2015b, the default timer is 'performance'. In previous versions of

MATLAB, the default profiler timer was 'cpu', which measures compute time instead
of wall-clock time.

See Also
checkcode | matlab.codetools.requiredFilesAndProducts | profsave

Topics
“Profile to Improve Performance”
“Profiling Parallel Code” (Parallel Computing Toolbox)

Introduced before R2006a

 profile

1-11549

profsave
Save profile report in HTML format

Syntax
profsave
profsave(profinfo)
profsave(profinfo,dirname)

Description
profsave executes the profile('info') function and saves the results in HTML
format. profsave creates a separate HTML file for each function listed in the
FunctionTable field of the structure returned by profile. By default, profsave
stores the HTML files in a subfolder of the current folder named profile_results.

profsave(profinfo) saves the profiling results, profinfo, in HTML format.
profinfo is a structure of profiling information returned by the profile('info')
function.

profsave(profinfo,dirname) saves the profiling results, profinfo, in HTML
format. profsave creates a separate HTML file for each function listed in the
FunctionTable field of profinfo and stores them in the folder specified by dirname.

Examples
Run profile and save the results.

profile on
plot(magic(5))
profile off
profsave(profile('info'),'myprofile_results')

1 Alphabetical List

1-11550

See Also
profile

Topics
“Profile to Improve Performance”

Introduced before R2006a

 profsave

1-11551

ProgressDialog Properties
Control appearance and behavior of progress dialog box

Description
Progress dialog boxes indicate that an operation is in progress by displaying an animated
progress bar. The uiprogressdlg function creates a progress dialog box and sets any
required properties before displaying it. By changing property values of a progress dialog
box, you can modify certain aspects of its appearance and behavior. Use dot notation to
refer to a specific object and property:

uf = uifigure;
d = uiprogressdlg(uf);
d.Value = .25;

Properties
Text and Styling

Message — message
'' (default) | character vector | cell array of character vectors | string array

Message, specified as a character vector, cell array of character vectors, or string array.
The message displays within the dialog box, above the progress bar.

To display multiple lines of text, specify a cell array of character vectors or a string array.
Each element in the array corresponds to a line of text. Hard breaks within each element,
such as '\n', create additional lines of text.
Example: d = uiprogressdlg(uifigure,'Message','Calculating result.');

Title — Title
'' (default) | character vector | string scalar

Title, specified as a character vector or a string scalar. The title displays in the title bar of
the dialog box.
Example: d = uiprogressdlg(uifigure,'Title','Calculating');

1 Alphabetical List

1-11552

Icon — Icon
'' (default) | predefined icon | custom icon

Icon, specified as a predefined icon or a custom icon.

Predefined Icon

This table lists the values for the predefined icons.

Value Icon
'' (default) No icon displays.
'question'

'info'

'success'

'warning'

'error'

Custom Icon

Specify a custom icon as one of these values:

• A character vector or string scalar that specifies the file name of an SVG, JPEG, GIF, or
PNG image that is on the MATLAB path. Alternatively, you can specify a full path to
the image file.

• A truecolor image array. See “Image Types” for more information.

Progress

Value — Fraction complete
0 (default) | number between 0 and 1

 ProgressDialog Properties

1-11553

Fraction complete, specified as a number between 0 and 1. The progress bar reaches its
full length when the value is 1. Change Value at different points in your code to provide a
visual indication of progress in the running app.
Data Types: double

ShowPercentage — Show percentage
'off' (default) | 'on'

Show percentage, specified as 'off' or 'on'. Set this property to 'on' to display the
fraction complete as a percentage in the dialog box.

Indeterminate — Indeterminate progress
'off' (default) | 'on'

Indeterminate progress, specified as 'off' or 'on'. Set this property to 'on' to provide
an animated bar without any specific progress information. This animation is useful when
you do not know how long a calculation will take.

To prevent indeterminate progress bars from displaying indefinitely, call the close
function after completing your calculations.

Interactivity

Cancelable — Allow cancellation
'off' (default) | 'on'

Allow cancellation, specified as 'off' or 'on'. A value of 'on' displays a cancel button
in the dialog box. You can customize the button label by specifying the CancelText
property.

When you allow cancellation, you must check the value of the CancelRequested
property, and call the close function when the value is true. Otherwise, the dialog box
displays indefinitely.

CancelText — Cancel button text
'Cancel' (default) | character vector | string scalar

Cancel button text, specified as a character vector or string scalar. This property has an
effect only when the Cancelable property is set to 'on'.
Example: d =
uiprogressdlg(uifigure,'Cancelable','on','CancelText','Stop')

1 Alphabetical List

1-11554

CancelRequested — Cancel requested
true | false

Cancel requested, specified as true or false. Use this property when Cancelable is
'on', and you want to know whether the user clicked the cancel button. This property is
false until the user clicks the cancel button, then the value changes to true.

See Also
appdesigner | uiprogressdlg

Introduced in R2018a

 ProgressDialog Properties

1-11555

matlab.project.Project
Project object

Description
The matlab.project.Project object represents the currently loaded project. Use the
project object to query the currently loaded project and to perform various operation on
it.

Creation
To create a matlab.project.Project object, use the currentProject function to get
the currently open project. For example:

proj = currentproject;

If no project is currently open, use the openProject function to load an existing project.
For example:

proj = openProject("C:/projects/project1/");

Properties
Name — Project name
string

Project name, specified as a string.

Categories — Label categories
array of Category objects

Label categories for the project, specified as an array of Category objects.

Shortcuts — Shortcut files
array of Shortcut objects

1 Alphabetical List

1-11556

Shortcut files for the project, specified as an array of Shortcut objects.

ProjectPath — Project path folders
array of PathFolder objects

Project path folders that are added to the MATLAB path, specified as an array of
PathFolder objects.

ProjectReferences — Paths of referenced projects
array of ProjectReference objects

Paths of referenced projects, specified as an array of ProjectReference objects.

Files — Paths of project files
array of ProjectFile objects

Paths of project files, specified as an array of ProjectFile objects.

RootFolder — Project root folder
string

Project root folder, specified as a string. RootFolder includes the full path of the project
root.

Object Functions

Create and Export Projects
close Close project
export Export project to archive
isLoaded Determine if project is loaded
reload Reload project

Setup Projects
addFile Add file or folder to project
addFolderIncludingChildFiles Add folder and child files to project
removeFile Remove file from project
addPath Add folder to project path
removePath Remove folder from project path

 matlab.project.Project

1-11557

addReference Add referenced project to project
removeReference Remove project reference
addStartupFile Add startup file to project
addShutdownFile Add shutdown file to project
removeStartupFile Remove startup file from project startup list
removeShutdownFile Remove shutdown file from project shutdown list
addShortcut Add shortcut to project
removeShortcut Remove shortcut from project

Manage Project Files
addLabel Attach label to project file
createLabel Create project label
removeLabel Remove label from project
findLabel Get project file label
createCategory Create category of project labels
findCategory Find project category of labels
removeCategory Remove project category of labels
findFile Find project file by name
listModifiedFiles List modified files in project
listRequiredFiles Get project file dependencies
refreshSourceControl Update source control status of project files
updateDependencies Update project dependencies

Examples

Get Times Table App Example Project

Open the Times Table App project and use currentProject to get a project object you
can manipulate at the command line.

matlab.project.example.timesTable
proj = currentProject

proj =

 Project with properties:

 Name: "Times Table App"
 SourceControlIntegration: "Git"
 RepositoryLocation: "C:\myProjects\examples\repositories\TimesTableApp"
 SourceControlMessages: ["No remote tracking branch" "Branch status: Normal" ...

1 Alphabetical List

1-11558

 ReadOnly: 0
 TopLevel: 1
 Dependencies: [1×1 digraph]
 Categories: [1×1 matlab.project.Category]
 Files: [1×14 matlab.project.ProjectFile]
 Shortcuts: [1×4 matlab.project.Shortcut]
 ProjectPath: [1×3 matlab.project.PathFolder]
 ProjectReferences: [1×0 matlab.project.ProjectReference]
 StartupFiles: [1×0 string]
 ShutdownFiles: [1×0 string]
 Description: "This example project contains the source code and tests ...
 RootFolder: "C:\myProjects\examples\TimesTableApp"
 ProjectStartupFolder: "C:\myProjects\examples\TimesTableApp"

Find Project Commands

Open the Times Table App project and create a project object.

matlab.project.example.timesTable
proj = currentProject;

Find the functions you can execute on the project object.

methods(proj)

Methods for class matlab.project.Project:

addFile listModifiedFiles
addFolderIncludingChildFiles listRequiredFiles
addPath refreshSourceControl
addReference reload
addShortcut removeCategory
addShutdownFile removeFile
addStartupFile removePath
addprop removeReference
close removeShortcut
createCategory removeShutdownFile
export removeStartupFile
findCategory updateDependencies
findFile
isLoaded

Examine Project Properties

Get a project object, and examine its properties.

 matlab.project.Project

1-11559

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Examine the project files.

files = proj.Files

files =

 1×14 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Examine the labels of the 13th file.

proj.Files(13).Labels

ans =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\utilities\runTheseTests.m"
 DataType: 'none'
 Data: []
 Name: "Design"
 CategoryName: "Classification"

Get a particular file by name.

myfile = findFile(proj,"source/timesTableGame.m")

myfile =

 ProjectFile with properties:

 Path: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 Labels: [1×1 matlab.project.Label]
 Revision: ""
 SourceControlStatus: Unmodified

Find out what you can do with the file.

methods(myfile)

1 Alphabetical List

1-11560

Methods for class matlab.project.ProjectFile:

addLabel findLabel removeLabel

See Also
currentProject | openProject

Topics
“Create and Edit Projects Programmatically”

Introduced in R2019a

 matlab.project.Project

1-11561

addFile
Package: matlab.project

Add file or folder to project

Syntax
addFile(proj,fileOrFolder)
newfile = addFile(proj,fileOrFolder)

Description
addFile(proj,fileOrFolder) adds a file or folder to the project proj. When adding
a folder to the project, MATLAB only adds the specified folder. To add the folder including
any all subfolders and files, use addFolderIncludingChildFiles instead.

newfile = addFile(proj,fileOrFolder) returns a ProjectFile object for the
added file.

Examples

Remove and Add Project Files

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Remove a file.

removeFile(proj,"source/timestable.mlapp")

Add the file back to the project.

1 Alphabetical List

1-11562

addFile(proj,"source/timestable.mlapp");

Manipulate Project Files After Adding

Add a file to the project and then manipulate the file using the returned project file object.

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Save the current workspace variables to a file.

save("myvariables.mat");

Add the new file to the project and return a project file object.

file = addFile(proj,"myvariables.mat");

Use the project file object to manipulate the file, for example, by adding a label.

addLabel(file, "Classification", "Other")

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

fileOrFolder — Path of file or folder
character vector | string scalar

Path of the file or folder to add to the project, specified as a character vector or string
scalar. Specify a path relative to the project root folder. The specified file or folder must
be within the project root folder. File paths must include the file extension.

 addFile

1-11563

See Also
addFolderIncludingChildFiles | currentProject | openProject | removeFile

Topics
“Add Files to Project”

Introduced in R2019a

1 Alphabetical List

1-11564

addFolderIncludingChildFiles
Package: matlab.project

Add folder and child files to project

Syntax
addFolderIncludingChildFiles(proj,folder)
newfile = addFolderIncludingChildFiles(proj,folder)

Description
addFolderIncludingChildFiles(proj,folder) adds to the specified project a
folder and all of its subfolders and files. To add only the specified folder without any of its
subfolders and files, use addFile instead.

newfile = addFolderIncludingChildFiles(proj,folder) returns a
ProjectFile object for the added file.

Examples

Add Folders to a Project

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new parent folder in the project folder.

newFolderPath = fullfile(proj.RootFolder, "newFolder");
mkdir(newFolderPath);

Create a new subfolder in the parent folder.

 addFolderIncludingChildFiles

1-11565

newSubFolderPath = fullfile(newFolderPath, "newSubFolder");
mkdir(newSubFolderPath);

Create a new file in the subfolder.

filepath = fullfile(newSubFolderPath, "newVariables.mat");
save(filepath)

Add the parent folder and its subfolders and files to the project. Check to make sure the
file in the subfolder was correctly added.

projectFile = addFolderIncludingChildFiles(proj, newFolderPath);
findFile(proj,"newFolder/newSubFolder/newVariables.mat")

ans =

 ProjectFile with properties:

 Path: "C:\myProjects\examples\TimesTableApp\newFolder\newSubFolder\newVariables.mat"
 Labels: [1×1 matlab.project.Label]
 Revision: ""
 SourceControlStatus: Added

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

folder — Path of folder
character vector | string scalar

Path of the folder to add to the project, specified as a character vector or string scalar.
Specify a path relative to the project root folder. The specified folder must be within the
project root folder.

See Also
addFile | currentProject | openProject | removeFile

1 Alphabetical List

1-11566

Topics
“Add Files to Project”

Introduced in R2019a

 addFolderIncludingChildFiles

1-11567

addLabel
Package: matlab.project

Attach label to project file

Syntax
addLabel(file,categoryName,labelName)
addLabel(file,categoryName,labelName,labelData)

Description
addLabel(file,categoryName,labelName) attaches the specified label in the
specified category to the specified file.

addLabel(file,categoryName,labelName,labelData) attaches the label with the
specified text or numeric data. You cannot add label data to built-in labels as they are
read-only.

Examples

Attach a Label to a Project File

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Get a file by name.

myfile = findFile(proj,"source/timesTableGame.m")

mmyfile =

1 Alphabetical List

1-11568

 ProjectFile with properties:

 Path: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 Labels: [1×1 matlab.project.Label]
 Revision: ""
 SourceControlStatus: Unmodified

View the existing label by getting the Labels property of the file.

myfile.Labels

ans =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'none'
 Data: []
 Name: "Design"
 CategoryName: "Classification"

Attach the label "Artifact" to the file in the category "Classification".

addLabel(myfile,"Classification","Artifact")

ans =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'none'
 Data: []
 Name: "Artifact"
 CategoryName: "Classification"

There are now two labels, the original one and the added one. To view just the added one,
index into the Labels property.

reviewlabel = myfile.Labels(1)

reviewlabel =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'none'
 Data: []
 Name: "Artifact"
 CategoryName: "Classification"

Detach the new label from the file. The file now only has one label.

removeLabel(myfile,reviewlabel)
myfile

myfile =

 addLabel

1-11569

 ProjectFile with properties:

 Path: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 Labels: [1×0 matlab.project.Label]
 Revision: ""
 SourceControlStatus: Unmodified

Attach a Label to a Subset of Files

Attach the label "Utility" in the "Classification" category to all files in the project
that have the .m file extension.

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Get the list of files.

files = proj.Files;

Loop through each file. To get just the file extension, use the fileparts function and
take the last part. If a file has the extension .m, attach the label "Utility".

for fileIndex = 1:numel(files)
 file = files(fileIndex);
 [~, ~, fileExtension] = fileparts(file.Path);
 if strcmp(fileExtension,".m")
 addLabel(file,"Classification","Utility");
 end
end

In the project Files view, the Classification column displays the label Utility for
each .m file in the utilities folder.

Attach a Label and Label Data to a File

Create the label category "Review" and the label "To Review", and then attach the label
and label data to a file. You cannot add label data to built-in labels as they are read-only.

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

1 Alphabetical List

1-11570

matlab.project.example.timesTable
proj = currentProject;

Create a new category "Review".

createCategory(proj,"Review","char");

For the new category, create a label "To Review".

reviewCategory = findCategory(proj,"Review");
createLabel(reviewCategory,"To Review");

Get a file by name.

myfile = findFile(proj,"source/timesTableGame.m")

myfile =

 ProjectFile with properties:

 Path: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 Labels: [1×1 matlab.project.Label]
 Revision: ""
 SourceControlStatus: Unmodified

Attach the label "To Review" and a character vector of label data to the file.

addLabel(myfile,"Review","To Review","Whole team design review")

ans =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'char'
 Data: 'Whole team design review'
 Name: "To Review"
 CategoryName: "Review"

In the project Files view, for the timesTableGame.m file, the Review column displays
the To Review label with label data.

 addLabel

1-11571

Alternatively, you can set or change label data using the Data property.

mylabel = myfile.Labels(1);
mylabel.Data = "Final review";

Input Arguments
file — File to label
ProjectFile object

File to label, specified as a ProjectFile object. You can get the ProjectFile object by
examining the project’s Files property (proj.Files), or by using findFile to find a file
by name. The file must be in the project.

categoryName — Name of category for label
character vector | string scalar

Name of the category for the label, specified as a character vector or string scalar.

labelName — Name of label
character vector | string scalar | LabelDefinition object

Name of the label to attach, specified as a character vector, string scalar, or as a
LabelDefinition object returned by the file.Label property or the findLabel
function. You can specify a new label name that does not already exist in the project.

1 Alphabetical List

1-11572

labelData — Data to attach to label
character vector | string scalar | numeric

Data to attach to the label, specified as a character vector, string scalar, or a numeric
value. Data type depends on the label definition. Get a label to examine its DataType
property using file.Label or findLabel.

See Also
createLabel | currentProject | findFile | findLabel | openProject |
removeLabel

Topics
“Add Labels to Project Files”

Introduced in R2019a

 addLabel

1-11573

addPath
Package: matlab.project

Add folder to project path

Syntax
folderonpath = addPath(proj,folder)

Description
folderonpath = addPath(proj,folder) adds a folder to the specified project path.
The folder must be in the project. The project puts the folder on the MATLAB search path
when it loads, and removes it from the path when it closes. To learn more, see “Specify
Project Path”.

Examples

Add Folder to Project Path

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new folder.

 newfolder = fullfile(proj.RootFolder,"newfolder");
 mkdir(newfolder);

Add the new folder to the project.

 addFile(proj,newfolder);

1 Alphabetical List

1-11574

Then, add the new folder to the project path.

newfolderonpath = addPath(proj,newfolder);

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

folder — Path of folder
character vector | string

Path of the folder to add to the project path, specified as a character vector or string.
Specify the path relative to the project root folder. The folder must be within the root
folder.

Output Arguments
folderonpath — Folder on project path
PathFolder object

Folder on project path, returned as a PathFolder object containing the added folder
path. The project puts the folders on the MATLAB search path when it loads and removes
them from the path when it closes.

See Also
addFile | addFolderIncludingChildFiles | currentProject | openProject |
removePath

Topics
“Specify Project Path”

Introduced in R2019a

 addPath

1-11575

addReference
Package: matlab.project

Add referenced project to project

Syntax
projreference = addReference(proj,referenceFolder)
projreference = addReference(proj,referenceFolder,type)

Description
projreference = addReference(proj,referenceFolder) adds a reference to the
project specified by referencefolder. The reference is added to the specified project,
proj.

projreference = addReference(proj,referenceFolder,type) specifies the type
of reference to create. Specify the type as either "relative" or "absolute".

Examples

Add a Referenced Project

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a blank project.

projectToReference = matlab.project.createProject();

1 Alphabetical List

1-11576

Reload the first project and add a reference to the new blank project. Reloading the first
project is necessary because since only one project can be open at one time, MATLAB
unloads the first project before creating and opening the new blank project.

reload(proj);
addReference(proj,projectToReference,"absolute");

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

referenceFolder — Path of referenced project folder
character vector | string scalar

Path of the referenced project folder, specified as a character vector or string scalar.
Specify the path relative to the project root folder. The folder must be within the project
root folder.

type — Type of reference
"relative" | "absolute"

Type of reference, specified as "relative" or "absolute". Specify "relative" if your
project hierarchy has a well-defined root relative to your project root, for example, a
folder under source control. Specify "absolute" if the project you want to reference is
in a location accessible to your computer, for example, a network drive.

Output Arguments
projreference — Referenced project
ProjectReference object

Referenced project, returned as a ProjectReference object containing information
about the referenced project.

 addReference

1-11577

See Also
currentProject | openProject | removeReference

Topics
“Componentize Large Projects”

Introduced in R2019a

1 Alphabetical List

1-11578

addShortcut
Package: matlab.project

Add shortcut to project

Syntax
shortcut = addShortcut(proj,file)

Description
shortcut = addShortcut(proj,file) adds a shortcut to the specified file in the
project. In projects, a shortcut can be used to perform common project tasks such as
opening important files and loading data.

To set the shortcut to run at startup or shutdown, see “Specify Startup and Shutdown
Files”.

Examples

Add a Shortcut

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new file.

filepath = fullfile(proj.RootFolder,"newvariables.mat");
save(filepath)

Add this new file to the project.

 addShortcut

1-11579

projectFile = addFile(proj,filepath)

Add a new shortcut to the new file.

shortcut = addShortcut(proj,filepath);

shortcut =

 Shortcut with properties:

 Name: "newvariables"
 Group: "General"
 File: "C:\myProjects\examples\TimesTableApp\newvariables.mat"

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

file — Path of file
character vector | string scalar

Path of the shortcut file, including the file extension, specified as a character vector or
string scalar. Specify the path relative to the project root folder. The file must be within
the project root folder.

Output Arguments
shortcut — Shortcut
Shortcut object

Shortcut object containing information about the shortcut.

See Also
currentProject | openProject | removeShortcut

1 Alphabetical List

1-11580

Topics
“Create Shortcuts to Frequent Tasks”

Introduced in R2019a

 addShortcut

1-11581

addShutdownFile
Package: matlab.project

Add shutdown file to project

Syntax
addShutdownFile(proj,file)

Description
addShutdownFile(proj,file) adds a shutdown file to the specified project. When you
close the project, the project runs the shutdown file automatically.

Examples

Add a Shutdown File

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Specify executable MATLAB code to run as the project shuts down. Automatically run the
file when the project closes, by making it a shutdown file.

1 Alphabetical List

1-11582

filepath = fullfile("utilities","runTheseTests.m");
addShutdownFile(proj,filepath);

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

file — Path of file
character vector | string scalar

Path of the MATLAB file to add, including the file extension, specified as a character
vector or string scalar. Specify the path relative to the project root folder. The file must be
within the project root folder.

See Also
addShutdownFile | currentProject | openProject | removeStartupFile

Topics
“Automate Startup and Shutdown Tasks”

Introduced in R2019a

 addShutdownFile

1-11583

addStartupFile
Package: matlab.project

Add startup file to project

Syntax
addStartupFile(proj,file)

Description
addStartupFile(proj,file) adds a startup file to the specified project. Startup files
automatically run (if they are .m and .p files), load (if they are .mat files), or open (if
they are Simulink models) when you open the project.

Examples

Add a Startup File

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Automatically run the Times Table app when the project opens by making the
runTheseTests.m file a startup file.

1 Alphabetical List

1-11584

filepath = fullfile("utilities","runTheseTests.m");
addStartupFile(proj,filepath);

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

file — Path of file
character vector | string scalar

Path of the MATLAB file to add, including the file extension, specified as a character
vector or string scalar. Specify the path relative to the project root folder. The file must be
within the project root folder.

See Also
addShutdownFile | currentProject | openProject | removeStartupFile

Topics
“Automate Startup and Shutdown Tasks”

Introduced in R2019a

 addStartupFile

1-11585

close
Package: matlab.project

Close project

Syntax
close(proj)

Description
close(proj) closes the specified project.

Examples

Open and Close a Project

Open a project. To be able to manipulate it at the command line, return a project object.

proj = openProject("C:/projects/project1/myproject.prj")

Close the project using the project object.

close(proj)

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

1 Alphabetical List

1-11586

See Also
currentProject | openProject

Introduced in R2019a

 close

1-11587

createCategory
Package: matlab.project

Create category of project labels

Syntax
createCategory(proj,categoryName)
createCategory(proj,categoryName,dataType)
createCategory(proj,categoryName,dataType,"single-valued")
newcategory = createCategory(___)

Description
createCategory(proj,categoryName) creates a new category of labels in the
specified project.

createCategory(proj,categoryName,dataType) also specifies the type of data to
store in labels of the new category. For more information on data types, see “Fundamental
MATLAB Classes”.

createCategory(proj,categoryName,dataType,"single-valued") specifies a
single-valued category, where you can attach only one label from the category to a file. If
you do not specify a single-valued category, then you can attach multiple labels from the
category to a file.

newcategory = createCategory(___) returns the new category as a Category
object. Use this syntax with any of the previous input argument combinations.

Examples

1 Alphabetical List

1-11588

Create New Category of Labels

Create a new category of labels to indicate the owner of a file, and attach a new label
from it to a file, along with label data.

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new category of labels, called Engineers, to indicate which engineer owns a
file. These labels have the char data type for attaching character vector data.

createCategory(proj,"Engineers","char");

Use the findCategory function to get the new category.

engineersCategory = findCategory(proj,"Engineers");

Create labels in the new category.

createLabel(engineersCategory,"Tom");
createLabel(engineersCategory,"Harry");

Attach one of the new labels to a file in the project.

myfile = findFile(proj,"source/timesTableGame.m");
addLabel(myfile,"Engineers","Tom");

Get the label and add data.

label = findLabel(myfile,"Engineers","Tom");
label.Data = "Maintenance responsibility";
disp(label)

Label with properties:

 File: [1x80 char]
 Data: "Maintenance responsibility"
 DataType: 'char'
 Name: "Tom"
 CategoryName: "Engineers"

 createCategory

1-11589

Create Category for Numeric Labels

Create a category of labels with the double data type, used for numeric data.

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new category of labels. Specify "double" as the data type. This is the data type
MATLAB uses for numbers by default.

coverageCategory = createCategory(proj,"Coverage","double")

category =

 Category with properties:

 Name: "Coverage"
 DataType: 'double'
 LabelDefinitions: []

Create a label in the new category and add it to a file in the project.

createLabel(coverageCategory,"Test");
myfile = findFile(proj,"source/timesTableGame.m");
label = addLabel(myfile,"Coverage","Test");

Add numeric data to the label.

label.Data = 80

newLabel =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'double'
 Data: 80
 Name: "Test"
 CategoryName: "Coverage"

1 Alphabetical List

1-11590

Create Single-Valued Category

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a category of labels for file ownership, and specify single-valued to restrict only
one label in the category per file.
engineersCategory = createCategory(proj,"Engineers","char", "single-valued");

Create a label in the new category and add it to a file in the project.

createLabel(engineersCategory,"Tom");
myfile = findFile(proj,"source/timesTableGame.m");
addLabel(myfile,"Engineers","Tom")

ans =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'char'
 Data: []
 Name: "Tom"
 CategoryName: "Engineers"

Create a second label in the new category and add it to the same file in the project.
MATLAB replaces the first label with the new one.

createLabel(engineersCategory,"Harry");
addLabel(myfile,"Engineers","Harry")

ans =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'char'
 Data: []
 Name: "Harry"
 CategoryName: "Engineers"

Check to see if the first label is still attached to the file.

findLabel(myfile,"Engineers","Tom")

ans =

 0×0 Label array with properties:

 createCategory

1-11591

 File
 DataType
 Data
 Name
 CategoryName

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

categoryName — Name of category
character vector | string scalar

Name of the category of labels to create, specified as a character vector or string scalar.

dataType — Type of data to store in labels
character vector | string scalar

The type of data to store in labels in the new category, specified as a character vector or
string scalar.

Tips
After you create a new category, you can create labels in the new category using the
createLabel function.

See Also
createLabel | currentProject | openProject

Topics
“Add Labels to Project Files”
“Fundamental MATLAB Classes”

1 Alphabetical List

1-11592

Introduced in R2019a

 createCategory

1-11593

createLabel
Package: matlab.project

Create project label

Syntax
createLabel(category,newLabelName)

Description
createLabel(category,newLabelName) creates a new label, in the specified
category. Use this syntax if you previously got a Category object by accessing a
Categories property, for instance by using syntax like proj.Categories(1).

Examples

Create a New Label

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Get the first existing category.

cat = proj.Categories(1)

cat =

 Category with properties:

 Name: "Classification"
 SingleValued: 1

1 Alphabetical List

1-11594

 DataType: "none"
 LabelDefinitions: [1×7 matlab.project.LabelDefinition]

Define a new label in the category.

createLabel(cat,"Future");

Create a New Category of Labels for File Ownership

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new category of labels called "Engineers" which can be used to denote file
ownership in a project. These labels have the char datatype for attaching character
vector data.

createCategory(proj,"Engineers","char");

Get the new category by name using the findCategory function

engineersCategory = findCategory(proj,"Engineers");

Create labels in the new category.

createLabel(engineersCategory,"Tom");
createLabel(engineersCategory,"Harry");

Attach one of the new labels to a file in the project.

myfile = findFile(proj,"source/timesTableGame.m");
addLabel(myfile,"Engineers","Tom");

Get the label and add data.

label = findLabel(myfile,"Engineers","Tom");
label.Data = "Maintenance responsibility";
disp(label)

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"

 createLabel

1-11595

 DataType: 'char'
 Data: "Maintenance responsibility"
 Name: "Tom"
 CategoryName: "Engineers"

Input Arguments
category — Category
Category object

Category for the new label, specified as a Category object. Get the Category object by
accessing a Categories property, using a syntax like proj.Categories(1), or use the
findCategory function. To create a new category, use the createCategory function.

newLabelName — The name of the new label
character vector

The name of the new label, specified as a character vector.

Tips
• To create and attach a new label in an existing category using a single step, use

addLabel instead.
• To create a new category of labels, use createCategory first.

See Also
addLabel | createCategory | currentProject | openProject

Topics
“Add Labels to Project Files”

Introduced in R2019a

1 Alphabetical List

1-11596

export
Package: matlab.project

Export project to archive

Syntax
export(proj,archiveName)

Description
export(proj,archiveName) exports the specified project to a new project archive file
named archiveName. archiveName must include the .mlproj extension. If no
extension is specified, MATLAB appends the .mlproj extension to the file.

The project archive preserves the project files, structure, labels, and shortcuts, and does
not include any source control information. You can use the project archive to send the
project to customers, suppliers, or colleagues who do not have access to your source
control repository. Recipients can create a new project from the archive by double-
clicking the project archive file.

Examples

Export Project to a Archived Project File

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Export the project to an archived project file.

export(proj,"timestableproj.mlproj")

 export

1-11597

You can now send someone the project by sharing the file timestableproj.mlproj
with them.

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

archiveName — Archive file name or path
character vector | string scalar

Archive file name or path, specified as a character vector or string scalar ending in the
file extension .mlproj. If no extension is specified, MATLAB appends the .mlproj
extension to the file name.

If archiveName is a file name, MATLAB exports the file to the current folder. You also
can specify a fully qualified path name.
Example: "project.mlproj"

See Also
currentProject | openProject

Topics
“Share Projects”

Introduced in R2019a

1 Alphabetical List

1-11598

findCategory
Package: matlab.project

Find project category of labels

Syntax
category = findCategory(proj,categoryName)

Description
category = findCategory(proj,categoryName) gets the category from the
specified project with the specified name. You need to get a category before you can use
the addLabel or removeLabel function.

Examples

Get a Category of Project Labels

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Use findCategory to get a category of labels by name.

category = findCategory(proj,"Classification")

category =

 Category with properties:

 Name: "Classification"
 SingleValued: 1

 findCategory

1-11599

 DataType: "none"
 LabelDefinitions: [1×7 matlab.project.LabelDefinition]

Alternatively, you can get categories by index. Get the first category.

proj.Categories(1)

ans =

 Category with properties:

 Name: "Classification"
 SingleValued: 1
 DataType: "none"
 LabelDefinitions: [1×7 matlab.project.LabelDefinition]

Find out what you can do with the category.

methods(category)

Methods for class matlab.project.Category:

createLabel findLabel removeLabel

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

categoryName — Name of category
character vector | string scalar

Name of the category to get, specified as a character vector or string scalar.

Output Arguments
category — Category of labels
Category object

1 Alphabetical List

1-11600

Category of labels, returned as a Category object that you can query or modify. If the
specified category is not found, the function returns an empty array.

See Also
addLabel | currentProject | openProject | removeLabel

Topics
“Add Labels to Project Files”

Introduced in R2019a

 findCategory

1-11601

findFile
Package: matlab.project

Find project file by name

Syntax
file = findFile(proj,fileOrFolder)

Description
file = findFile(proj,fileOrFolder) gets the file in the specified project with the
specified name. You need to get a file before you can query labels, or use the addLabel
or removeLabel function.

Examples

Find File by Name

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Use findFile to get a file by name. If the file is in a subfolder of the project root, you
need to specify the full path.

myfile = findFile(proj,"source/timesTableGame.m")

myfile =

 ProjectFile with properties:

 Path: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 Labels: [1×1 matlab.project.Label]

1 Alphabetical List

1-11602

 Revision: ""
 SourceControlStatus: Unmodified

Alternatively, you can get files by index. Get the first file.

file = proj.Files(1);

Find out what you can do with the file.

methods(file)

Methods for class matlab.project.ProjectFile:

addLabel findLabel removeLabel

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

fileOrFolder — Path of file or folder
character vector | string scalar

Path of the file or folder to find, relative to the project root folder, specified as a character
vector or string scalar. The specified value must include the full path from the project root
to the file, including the names of any subfolders along the way. It must also include the
file extension. The file or folder must be within the root folder.

Output Arguments
file — Project file
ProjectFile object

Project file, returned as a ProjectFile object that you can query or modify.

 findFile

1-11603

See Also
addLabel | currentProject | findCategory | findLabel | openProject |
removeLabel

Topics
“Add Labels to Project Files”

Introduced in R2019a

1 Alphabetical List

1-11604

findLabel
Package: matlab.project

Get project file label

Syntax
label = findLabel(file,categoryName,labelName)
label = findLabel(file,labelDefinition)
label = findLabel(category,labelName)

Description
label = findLabel(file,categoryName,labelName) gets the specified label, in
the specified category, from the specified file. It returns the label definition and its
attached data. Use this syntax when you know the label name and category. If the label is
not found, findLabel returns an empty array.

label = findLabel(file,labelDefinition)gets the label defined by the specified
label definition object. Use this syntax if you previously got a labelDefinition by
accessing a Labels property, for instance by using an expression like
myfile.Labels(1).

label = findLabel(category,labelName) gets a label using a category object
rather than a file name and category name. Use this syntax if you have a category object
gotten from the proj.Categories property or by using the findCategory function.

Examples

Find Files with the Label

Find all project files with the label "Utility"

 findLabel

1-11605

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Get the list of project files.

files = proj.Files;

Loop through the files. Get each file's extension by taking the last element returned by
the fileparts function. If the file has the extension .m, attach the label "Utility".

for fileIndex = 1:numel(files)
 file = files(fileIndex);
 [~,~,fileExtension] = fileparts(file.Path);
 if strcmp(fileExtension,".m")
 addLabel(file,"Classification","Utility");
 end
end

Use the findLabel function to find all the files with the label "Utility" and add them
to the array utilityFilesToReview.

utilityFilesToReview = {};
for jj=1:numel(files)
 thisFile = files(jj);
 label = findLabel(thisFile,"Classification","Utility");
 if (~isempty(label))
 % This is a file labeled "Utility". Add to the
 % list of utility files.
 utilityFilesToReview = [utilityFilesToReview; thisFile];
 end
end

Find Label by Name or Definition

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

1 Alphabetical List

1-11606

Get a file by name.

myfile = findFile(proj,"source/timesTableGame.m");

Get a label from that file by name.

label = findLabel(myfile,"Classification","Design");

label =

 Label with properties:

 File: "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"
 DataType: 'none'
 Data: []
 Name: "Design"
 CategoryName: "Classification"

Examine the Labels property of the file to get an array of Label objects, one for each
label attached to the file. Index into the Labels property to get the label definition
attached to the particular file.

labels = myfile.Labels
labeldefinition = myfile.Labels(1)

Get a label from the label definition.

label = findLabel(myfile,labeldefinition);

Find Label by Category

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Get a category.

category = proj.Categories(1)

category =

 Category with properties:

 Name: "Classification"

 findLabel

1-11607

 SingleValued: 1
 DataType: "none"
 LabelDefinitions: [1×7 matlab.project.LabelDefinition]

Get a label definition from that category.

ld = findLabel(category,"Design")

ld =

 LabelDefinition with properties:

 Name: "Design"
 CategoryName: "Classification"

Input Arguments
file — File to search in
ProjectFile object

File to search in, specified as a ProjectFile object or an array of file objects. You can
get the file object by examining the project’s Files property (using the syntax
proj.Files), or use findFile to get a file by name. The file must be in the specified
project.

categoryName — Name of category
character vector | string scalar

Name of category for the label, specified as a character vector or string scalar.

labelName — Name of label
character vector | string scalar

Name of label, specified as a character vector or string scalar.

labelDefinition — Label definition
LabelDefinition object

Label definition, specified as a LabelDefinition object gotten from the file.Label
property.

1 Alphabetical List

1-11608

category — Category object
Category object

Category object. Get a category object from the proj.Categories property or by using
the findCategory function.

Output Arguments
label — Label
Label object

Label, returned as a Label object.

See Also
addLabel | createLabel | currentProject | findFile | openProject

Topics
“Add Labels to Project Files”

Introduced in R2019a

 findLabel

1-11609

isLoaded
Package: matlab.project

Determine if project is loaded

Syntax
TF = isLoaded(proj)

Description
TF = isLoaded(proj) determines if the specified project is loaded.

Examples

Find Out if Project Is Loaded

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Find out if the project is still loaded.

loaded = isLoaded(proj)

loaded =

 1

Close the project and check again.

close(proj)
loaded = isLoaded(proj)

1 Alphabetical List

1-11610

loaded =

 0

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

Output Arguments
TF — Load status
1 | 0

Load status, returned as 1 (true) if the project is loaded.
Data Types: logical

See Also
currentProject | openProject | reload

Introduced in R2019a

 isLoaded

1-11611

listModifiedFiles
Package: matlab.project

List modified files in project

Syntax
modifiedfiles = listModifiedFiles(proj)

Description
modifiedfiles = listModifiedFiles(proj) returns the modified project files in
the specified project. The function refreshes the source control status in the project, and
then returns an array of project files which are listed in the Modified Files view of the
project.

Examples

List Modified Files in Project

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Modify the project name.

proj.Name = "Better Times Table App";

Get all the modified files in the project.

modifiedfiles = listModifiedFiles(proj)

modifiedfiles =

1 Alphabetical List

1-11612

 1x2 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Observe that two files are modified. Compare this with the Modified Files view in the
project, where you can see two modified project metadata files in the resources folder

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

Output Arguments
modifiedfiles — Modified files
array of ProjectFile objects

Modified files, returned as an array of ProjectFile objects.

See Also
currentProject | openProject | refreshSourceControl

Topics
“Use Source Control with Projects”

Introduced in R2019a

 listModifiedFiles

1-11613

listRequiredFiles
Package: matlab.project

Get project file dependencies

Syntax
files = listRequiredFiles(proj,file)

Description
files = listRequiredFiles(proj,file) returns the names of the files that the
specified file requires to run.

Examples

Get Required Files

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Get the files required by the Times Table app file.

file = "source/timestable.mlapp"
files = listRequiredFiles(proj, file);

files =

 2×1 string array

1 Alphabetical List

1-11614

 "C:\myProjects\examples\TimesTableApp\source\timestable.mlapp"
 "C:\myProjects\examples\TimesTableApp\source\timesTableGame.m"

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

file — Path of file
character vector | string scalar | ProjectFile object

Path of the file, including the file extension, specified as a character vector, string scalar,
or a ProjectFile object. Specify file as an absolute file path or a path relative to the
project root folder. The file must be within the root folder.

Output Arguments
file — Project file
string array

Required files, returned as a string array.

See Also
currentProject | openProject

Topics
“Analyze Project Dependencies”

Introduced in R2019a

 listRequiredFiles

1-11615

refreshSourceControl
Package: matlab.project

Update source control status of project files

Syntax
refreshSourceControl(proj)

Description
refreshSourceControl(proj) updates the source control status for all files in the
specified project. Use refreshSourceControl to get the latest source control
information before querying the SourceControlStatus property on individual files.

If you use listModifiedFiles to find all modified files in the project, you do not need
to call refreshSourceControl first.

Examples

Refresh Source Control Information on Files in the Project

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Refresh source control status before querying individual files.

refreshSourceControl(proj)

Get all the project files that are Unmodified. Use the ismember function to get an array
of logicals stating which files in the Times Table App project are unmodified. Use the
array to get the list of unmodified files.

1 Alphabetical List

1-11616

unmodifiedStatus = ismember([mainProject.Files.SourceControlStatus],matlab.sourcecontrol.Status.Unmodified);
mainProject.Files(unmodifiedStatus)

ans =
 1×9 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

See Also
currentProject | listModifiedFiles | openProject

Topics
“Use Source Control with Projects”

Introduced in R2019a

 refreshSourceControl

1-11617

reload
Package: matlab.project

Reload project

Syntax
reload(proj)

Description
reload(proj) reloads the project. Use reload when you want to re-run the project
startup shortcuts.

Examples

Reload Project

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

When you want to run the startup shortcuts again, reload the project.

reload(proj)

Input Arguments
proj — Project
matlab.project.Project object

1 Alphabetical List

1-11618

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

See Also
currentProject | isLoaded | openProject

Introduced in R2019a

 reload

1-11619

removeCategory
Package: matlab.project

Remove project category of labels

Syntax
removeCategory(proj,categoryName)

Description
removeCategory(proj,categoryName) removes a category of labels from the
specified project.

Examples

Remove Category

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new category of labels.

createCategory(proj,"Engineers","char");

Remove the new category of labels.

removeCategory(proj,"Engineers");

1 Alphabetical List

1-11620

A message appears warning you that you cannot undo the operation. Click Continue. You
can configure warnings in the MATLAB Project Preferences.

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

categoryName — Name of category
character vector | string scalar

Name of the category to remove, specified as a character vector or string scalar. The
category must exist in the project.

See Also
createCategory | currentProject | findCategory | openProject

Topics
“Add Labels to Project Files”

Introduced in R2019a

 removeCategory

1-11621

removeFile
Package: matlab.project

Remove file from project

Syntax
removeFile(proj,file)

Description
removeFile(proj,file) removes a file from the specified project.

Examples

Remove File from Project

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Remove a file.

removeFile(proj,"source/timesTableGame.m")

Add the file back to the project.

1 Alphabetical List

1-11622

addFile(proj,"source/timesTableGame.m")

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

file — File to remove
character vector | string scalar | ProjectFile object

File to remove, specified as a character vector, string scalar, or a ProjectFile object. If
you specify file as a character vector or string scalar, it must contain the path of the file
to remove relative to the project root folder, including the file extension. The file must be
in the project.

See Also
addFile | currentProject | findFile | openProject

Topics
“Add Files to Project”

Introduced in R2019a

 removeFile

1-11623

removeLabel
Package: matlab.project

Remove label from project

Syntax
removeLabel(category,labelName)
removeLabel(file,categoryName,labelName)
removeLabel(file,labelDefinition)

Description
removeLabel(category,labelName) removes the specified label from the specified
category of labels in the currently loaded project. Use this syntax to remove a label from a
category by name.

removeLabel(file,categoryName,labelName) removes the specified label in the
specified category from the specified file. Use this syntax to remove a label from a file by
name.

removeLabel(file,labelDefinition) removes the label specified by the label
definition object labelDefinition. Before you can remove the label, you need to get
the label definition object from the file.Label property or by using findLabel.

Examples

Remove a Label

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

1 Alphabetical List

1-11624

Examine the first existing category.

cat = proj.Categories(1)

cat =

 Category with properties:

 Name: "Classification"
 SingleValued: 1
 DataType: "none"
 LabelDefinitions: [1×7 matlab.project.LabelDefinition]

Define a new label in the category.

createLabel(cat,"Future");

Remove the new label.

removeLabel(cat,"Future");

Input Arguments
category — Category of labels
Category object

Category of labels, specified as a Category object. Get a Category object from the
proj.Categories property or by using findCategory.

labelName — Name of label
character vector | string scalar

Name of the label to remove, specified as a character vector or string scalar.

file — File to remove label from
ProjectFile object

File to remove the label from, specified as a ProjectFile object. You can get the
ProjectFile object by examining the project’s Files property (proj.Files), or use
findFile to find a file by name. The file must be within the project root folder.

categoryName — Name of category that contains label
character vector | string scalar

 removeLabel

1-11625

Name of the category that contains the label to remove, specified as a character vector or
string scalar.

labelDefinition — Label to remove
LabelDefinition object

Name of the label to remove, specified as a LabelDefinition object returned by the
file.Label property or findLabel.

See Also
addLabel | createLabel | currentProject | findCategory | findFile |
findLabel | openProject

Topics
“Add Labels to Project Files”

Introduced in R2019a

1 Alphabetical List

1-11626

removePath
Package: matlab.project

Remove folder from project path

Syntax
removePath(proj,folderpath)

Description
removePath(proj,folderpath) removes a folder from the current project path. The
folder must be in the project.

Examples

Remove a Folder from the Project Path

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new folder.

 folderpath = fullfile(proj.RootFolder,"folder");
 mkdir(filepath);

Add this new folder to the project.

 projectFile = addFile(proj,folderpath);

Add this new folder to the project path.

 removePath

1-11627

folderpath = addPath(proj,folderpath);

Remove the new folder from the project path.

removePath(proj,folderpath)

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

folderpath — Path of folder
character vector | string scalar

Path of the folder to remove from the project path, specified as a character vector or
string scalar. Specify the path relative to the project root folder. The folder must be within
the root folder.

See Also
addPath | currentProject | openProject

Topics
“Specify Project Path”

Introduced in R2019a

1 Alphabetical List

1-11628

removeReference
Package: matlab.project

Remove project reference

Syntax
removeReference(proj,folder)

Description
removeReference(proj,folder) removes the reference to the project specified by
folder. The reference is removed from the specified project, proj.

Examples

Remove a Referenced Project

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new blank project.

projectToReference = matlab.project.createProject();

Reload the first project and add a reference to the new blank project.

reload(proj);
addReference(proj,projectToReference,"absolute");

Remove the reference to the blank project.

 removeReference

1-11629

removeReference(proj,projectToReference);

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

folder — Path of folder
character vector | string scalar

Path of the folder containing the referenced project to remove, specified as a character
vector or string scalar. Specify the path relative to the project root folder. The folder must
be within the root folder.

See Also
addReference | currentProject | openProject

Topics
“Componentize Large Projects”

Introduced in R2019a

1 Alphabetical List

1-11630

removeShortcut
Package: matlab.project

Remove shortcut from project

Syntax
removeShortcut(proj,shortcut)

Description
removeShortcut(proj,shortcut) removes the specified shortcut from the specified
project.

Examples

Remove a Shortcut

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Create a new file.

filepath = fullfile(proj.RootFolder,"newVariables.mat");
save(filepath)

Add this new file to the project.

projectFile = addFile(proj,filepath)

Add a new shortcut to the new file.

 removeShortcut

1-11631

shortcut = addShortcut(proj,filepath);

Remove the shortcut.

removeShortcut(proj,shortcut);

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

shortcut — Shortcut to remove
character vector | string scalar | Shortcut object

Shortcut to remove, specified as a character vector, string scalar, or Shortcut object. If
you specify shortcut as a character vector or string scalar, it must contain the path of
the shortcut to remove relative to the project root folder, including the file extension. The
shortcut must be in the project.

See Also
addShortcut | currentProject | openProject

Topics
“Create Shortcuts to Frequent Tasks”

Introduced in R2019a

1 Alphabetical List

1-11632

removeShutdownFile
Package: matlab.project

Remove shutdown file from project shutdown list

Syntax
removeShutdownFile(proj,file)

Description
removeShutdownFile(proj,file) removes the shutdown file from the shutdown list
in the specified project.

Examples

Remove a Shutdown File

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Specify a file of executable MATLAB code to run as the project shuts down. Automatically
run the file when the project closes, by making it a shutdown file.

filepath = fullfile("utilities","runTheseTests.m");
addShutdownFile(proj,filepath);

Remove the shutdown file. The code no longer runs when the project shuts down.

 removeShutdownFile

1-11633

removeShutdownFile(proj,filepath);

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

file — Path of file
character vector | string scalar

Path of the MATLAB file to remove, including the file extension, specified as a character
vector or string scalar. Specify the path relative to the project root folder. The file must be
within the root folder.

See Also
addShutdownFile | currentProject | openProject | removeStartupFile

Topics
“Automate Startup and Shutdown Tasks”

Introduced in R2019a

1 Alphabetical List

1-11634

removeStartupFile
Package: matlab.project

Remove startup file from project startup list

Syntax
removeStartupFile(proj,file)

Description
removeStartupFile(proj,file) removes the specified startup file from the startup
list in the specified project.

Examples

Remove a Startup File

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Automatically run the TimesTable app when the project opens by making the
runTimesTable.m file a startup file.

filepath = fullfile("utilities","runTheseTests.m");
addStartupFile(proj,filepath);

Remove the startup file. The app no longer runs automatically when the project opens.

 removeStartupFile

1-11635

removeStartupFile(proj, filepath);

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

file — Path of file
character vector | string scalar

Path of the file to remove, including the file extension, specified as a character vector or
string scalar. Specify the path relative to the project root folder. The folder must be within
the root folder.

See Also
addStartupFile | currentProject | openProject | removeShutdownFile

Topics
“Automate Startup and Shutdown Tasks”

Introduced in R2019a

1 Alphabetical List

1-11636

updateDependencies
Package: matlab.project

Update project dependencies

Syntax
updateDependencies(proj)

Description
updateDependencies(proj) runs a dependency analysis on the specified project to
update the known dependencies between project files.

Examples

Update the Project Dependencies

Open the Times Table App project. Use currentProject to create a project object from
the currently loaded project.

matlab.project.example.timesTable
proj = currentProject;

Update the project dependencies

updateDependencies(proj);

Get the files required by the timestable.mlapp project file.

g = proj.Dependencies;
requiredFiles = bfsearch(g, which("source/timestable.mlapp"))

requiredFiles =

 2×1 cell array

 updateDependencies

1-11637

 {'C:\myProjects\examples\TimesTableApp\source\timestable.mlapp'}
 {'C:\myProjects\examples\TimesTableApp\source\timesTableGame.m'}

Input Arguments
proj — Project
matlab.project.Project object

Project, specified as a matlab.project.Project object. Use currentProject to
create a project object from the currently loaded project.

See Also
currentProject | openProject

Topics
“Analyze Project Dependencies”
“Create and Edit Projects Programmatically”

Introduced in R2019a

1 Alphabetical List

1-11638

propedit
Open Property Editor

Syntax
propedit
propedit(handle_list)

Description
propedit starts the Property Editor, a graphical user interface to the properties of
graphics objects. If no current figure exists, propedit will create one.

propedit(handle_list) edits the properties for the object (or objects) in
handle_list.

Starting the Property Editor enables plot editing mode for the figure.

See Also
Property Inspector | plotedit | propertyeditor

Introduced before R2006a

 propedit

1-11639

properties
Class property names

Syntax
properties(ClassName)
properties(obj)
p = properties(___)

Description
properties(ClassName) displays the names of the visible public properties for the
MATLAB class, including inherited properties.

properties(obj) displays the names of the public properties for the object or object
array. When obj is scalar, properties also returns dynamic properties. When obj is an
array, properties returns the properties of the class of the array.

p = properties(___) returns the property names in a cell array of character vectors.

Examples

List Properties Using Class Name

List the properties of a class using the class name.

properties memmapfile

Properties for class memmapfile:

 Filename
 Writable
 Offset
 Format

1 Alphabetical List

1-11640

 Repeat
 Data

List Properties of Object

List the public properties of an MException object.

me = MException('Msg:ID','MsgText');
p = properties(me)

p = 5x1 cell array
 {'identifier'}
 {'message' }
 {'cause' }
 {'stack' }
 {'Correction'}

Input Arguments
ClassName — Name of the class
character vector | string scalar

Name of the class whose properties you want to query, specified as a character vector or
string scalar.
Data Types: char | string

obj — MATLAB object
object

Object of the class whose properties you want to query, specified as an object or array of
objects.

Output Arguments
p — Property names
cell array

 properties

1-11641

Property names returned as a cell array of character vector.

Definitions

Public Properties
A property is public when its GetAccess attribute value is public and its Hidden
attribute value is false (default values for these attributes). For a complete list of
attributes, see “Property Attributes”.

Properties Keyword
The word properties is also a MATLAB class-definition keyword. See classdef for
more information on class definition keywords.

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
events | fieldnames | methods

Topics
“Properties”
“Dynamic Properties — Adding Properties to an Instance”

1 Alphabetical List

1-11642

Introduced in R2008a

 properties

1-11643

propertyeditor
Show or hide Property Editor

Syntax
propertyeditor('on')
propertyeditor('off')
propertyeditor
propertyeditor(figure_handle,...)

Description
propertyeditor('on') displays the Property Editor tool on the current figure.

propertyeditor('off') hides the Property Editor on the current figure.

propertyeditor toggles the visibility of the Property Editor on the current figure. You
can also use propertyeditor('toggle')instead for the same functionality.

propertyeditor(figure_handle,...) displays or hides the Property Editor on the
figure specified by figure_handle.

Examples

Open Property Editor
Create a simple plot and open the property editor.

plot(1:10)
propertyeditor

1 Alphabetical List

1-11644

Tips
If you call propertyeditor in a MATLAB program and subsequent lines depend on the
Property Editor being fully initialized, follow it by drawnow to ensure complete
initialization.

 propertyeditor

1-11645

Alternatives
Open or close the Property Editor tool from the figure's View menu.

See Also
Property Inspector | figurepalette | plotbrowser | plottools

Introduced before R2006a

1 Alphabetical List

1-11646

matlab.mixin.util.PropertyGroup class
Package: matlab.mixin.util

Custom property list for object display

Description
Use the PropertyGroup class to create custom property display lists for class derived
from matlab.mixin.CustomDisplay. You can change the order of properties displayed
and specify which properties to display.

Construction
P = matlab.mixin.util.PropertyGroup(propertyList) constructs a property
group object with the supplied propertyList.

P = matlab.mixin.util.PropertyGroup(propertyList,title) displays title
above the list of properties.

Input Arguments
propertyList

The propertyList is either a cell array of character vector property names, a string
array of property names, or a scalar struct with property name-value pairs. Empty
character vectors and empty strings are valid values. Missing strings are not valid.

title

Text to display above properties, specified as a character vector or a string scalar. Empty
character vectors and empty strings are valid values. Missing strings are not valid.

 matlab.mixin.util.PropertyGroup class

1-11647

Properties
NumProperties

The number of properties in the PropertyList.

Attributes:

Dependent true
GetAccess public
GetObservable true
SetAccess private
Transient true

PropertyList

The list of properties to display, stored as a scalar struct or a cell array of char vectors.

Attributes:

GetAccess public
GetObservable true
SetAccess public
SetObservable true

Title

An optional title for the PropertyGroup.

Attributes:

GetAccess public
GetObservable true
SetAccess public
SetObservable true

1 Alphabetical List

1-11648

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
matlab.mixin.CustomDisplay

Topics
“Customize Property Display”
“Custom Display Interface”
Property Attributes

Introduced in R2013b

 matlab.mixin.util.PropertyGroup class

1-11649

psi
Psi (polygamma) function

Syntax
Y = psi(X)
Y = psi(k,X)

Description
Y = psi(X) evaluates the ψ function for each element of array X. X must be real and
nonnegative. The ψ function, also known as the digamma function, is the logarithmic
derivative of the gamma function

ψ(x) = digamma(x)

= d(log(Γ(x)))
dx

= d(Γ(x))/dx
Γ(x)

Y = psi(k,X) evaluates the kth derivative of ψ at the elements of X. psi(0,X) is the
digamma function, psi(1,X) is the trigamma function, psi(2,X) is the tetragamma
function, etc.

Examples

Example 1
Use the psi function to calculate Euler's constant, γ.

format long
-psi(1)
ans =
 0.57721566490153

1 Alphabetical List

1-11650

-psi(0,1)
ans =
 0.57721566490153

Example 2
The trigamma function of 2, psi(1,2), is the same as (π2/6) – 1.

format long
psi(1,2)
ans =
 0.64493406684823

pi^2/6 - 1
ans =
 0.64493406684823

References

[1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover
Publications, 1965, Sections 6.3 and 6.4.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

For the syntax Y = psi(k,X), k must be a non-tall scalar.

For more information, see “Tall Arrays”.

 psi

1-11651

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Strict single-precision calculations are not supported. In the generated code, single-
precision inputs produce single-precision outputs. However, variables inside the
function might be double-precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
gamma | gammainc | gammaln

Introduced before R2006a

1 Alphabetical List

1-11652

publish
Generate view of MATLAB file in specified format

Syntax
publish(file)
publish(file,format)

publish(file,Name,Value)
publish(file,options)

my_doc = publish(file, ___)

Description
publish(file) generates a view of the specified MATLAB code file and output in an
HTML format that can be used for sharing. publish saves the HTML file and a file for
each graphic that the code creates in a subfolder named html. The location of the html
subfolder is relative to the location of file.

For example, publish('C:\myMATLABfiles\myfile.m') runs the code in myfile.m
using the base workspace, and then saves the formatted code and results in
C:\myMATLABfiles\html\myfile.html.

publish(file,format) generates a view of the specified MATLAB file in the specified
file format. All file formats save to the html subfolder.

publish(file,Name,Value) generates a view of the specified MATLAB file with
options specified by one or more name,value pair arguments.

publish(file,options) uses the options structure to generate the view of the
specified MATLAB file. Using a structure to specify options is useful when you want to
preconfigure and save your options for repeated use. The fields and values of the
options structure correspond to names and values of name-value pair arguments.

 publish

1-11653

my_doc = publish(file, ___) generates a view of the specified MATLAB file and
returns the path of the resulting output file. You can use this syntax with any of the input
argument combinations in the previous syntaxes.

Examples

Generate HTML View of MATLAB Script

Generate an HTML view of a MATLAB script including the code, results, and comments.

Copy the example file fourier_demo2.m to your current folder.
filename = fullfile(matlabroot,'help','techdoc','matlab_env','examples','fourier_demo2.m');
copyfile(filename,'.','f')

Use the publish function to run the example and generate an HTML view of the
example. Then, use the web function to view the resulting file.

publish('fourier_demo2.m');
web('html/fourier_demo2.html')

Generate View of MATLAB Script in Microsoft Word Format

Generate a Microsoft Word view of a MATLAB script including the code, results, and
comments.

Copy the example file fourier_demo2.m to your current folder.
filename = fullfile(matlabroot,'help','techdoc','matlab_env','examples','fourier_demo2.m');
copyfile(filename,'.','f')

Use the publish function to generate a Microsoft Word view of the example. Then, use
the winopen function to view the resulting file.

publish('fourier_demo2.m','doc');
winopen('html/fourier_demo2.doc')

1 Alphabetical List

1-11654

Customize View Using Name-Value Pairs

Use name-value pair arguments to change the appearance of published figure windows in
the HTML view of a MATLAB script.

Copy the example file fourier_demo2.m to your current folder.
filename = fullfile(matlabroot,'help','techdoc','matlab_env','examples','fourier_demo2.m');
copyfile(filename,'.','f')

Use the publish function to generate an HTML view of the example.
SpecifyfigureSnapMethod as entireFigureWindow to include window decorations
and to match the figure background color to the screen color for figures. Then, use the
web function to view the resulting file.

publish('fourier_demo2.m','figureSnapMethod','entireFigureWindow')
web('html/fourier_demo2.html')

Customize View Using Structure

Use a structure to create a Microsoft Word view of a MATLAB script that does not show
the code from the script. Specifying options as a structure is useful when you want to
preconfigure and save your options for repeated use.

Copy the example file fourier_demo2.m to your current folder.
filename = fullfile(matlabroot,'help','techdoc','matlab_env','examples','fourier_demo2.m');
copyfile(filename,'.','f')

Create a structure options_doc_nocode that specifies the format and showcode
options.

options_doc_nocode.format = 'doc';
options_doc_nocode.showCode = false;

Use the publish function to generate a Microsoft Word view of the example using the
options specified in options_doc_nocode. Then, use the winopen function to view the
resulting file.

publish('fourier_demo2.m',options_doc_nocode);
winopen('html/fourier_demo2.doc')

 publish

1-11655

Save File Path of Published Script to Variable

Generate an HTML view of a MATLAB script, and save the path of the published HTML
file to a variable.

Copy the example file fourier_demo2.m to your current folder.
filename = fullfile(matlabroot,'help','techdoc','matlab_env','examples','fourier_demo2.m');
copyfile(filename,'.','f')

Use the publish function to generate an HTML view of the example, and save the path
of the published HTML file to the variable mydoc.

mydoc = publish('fourier_demo2.m')

mydoc =

C:\myMATLABfiles\html\fourier_demo2.html

Input Arguments
file — MATLAB file name
character vector | string

MATLAB file name, specified as a character vector or string. file can include a full or
partial path.

Note When MATLAB publishes a file, it can overwrite existing files from the output folder
that start with the same name as file.

Example: 'myfile.m'
Example: 'C:\myMATLABfiles\myfile.m'

format — Output format
'html' (default) | 'doc' | 'latex' | 'ppt' | 'xml' | 'pdf'

Output format of published file, specified as one of the values listed in the table.

1 Alphabetical List

1-11656

Value Output Format
'html' (default) Hypertext Markup Language
'doc' Microsoft Word
'latex' LaTeX
'ppt' Microsoft PowerPoint
'xml' Extensible Markup Language
'pdf' Portable Document Format

The Microsoft Word and Microsoft PowerPoint formats are only available on Windows
platforms.

MATLAB does not preserve syntax highlighting when you specify the output format as
Microsoft PowerPoint or LaTeX.
Example: publish('myfile.m','ppt');

options — Options for published output
structure

Options for published output, specified as a structure. Use the options structure instead
of name-value pair arguments when you want to reuse the same configuration for
publishing multiple MATLAB files.

The fields and values of the options structure correspond to names and values of the
name-value pair arguments.

For example, this command creates the structure options, and specifies the PDF output
format and the output folder C:\myPublishedOutput.

options = struct('format','pdf','outputDir','C:\myPublishedOutput')

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'format','pdf','showCode',false specifies the PDF output file format
and excludes the code from the output.

 publish

1-11657

Output Options

format — Output format
'html' (default) | 'doc' | 'latex' | 'ppt' | 'xml' | 'pdf'

Output format of published file, specified as one of the values listed in the table.

Value Output Format
'html' (default) Hypertext Markup Language (HTML)
'doc' Microsoft Word
'latex' LaTeX
'ppt' Microsoft PowerPoint
'xml' Extensible Markup Language
'pdf' Portable Document Format (PDF

The Microsoft Word and Microsoft PowerPoint formats are only available on Windows
platforms.

MATLAB does not preserve syntax highlighting when you specify the output format as
Microsoft PowerPoint or LaTeX.

outputDir — Output folder
character vector

Output folder to which the published document is saved, specified as a character vector.
Specify the full path of the folder.
Example: 'C:\myPublishedOutput'

stylesheet — Extensible Stylesheet Language (XSL) file
character vector

Extensible Stylesheet Language (XSL) file to use when publishing a MATLAB file to
HTML, XML, or LaTeX format, specified as a character vector. Specify the full path of the
XSL file.
Example: 'C:\myStylesheet\stylesheet.xsl'

1 Alphabetical List

1-11658

Figure Options

createThumbnail — Whether to create thumbnail image
true (default) | false

Whether to create a thumbnail image for the published document, specified as true or
false. You can use the generated thumbnail to display a small representation of your file
on HTML pages.

figureSnapMethod — Figure window appearance
'entireGUIWindow' (default) | 'print' | 'getframe' | 'entireFigureWindow'

Figure window appearance for the published document, specified as one of the values
listed in the table. Figure window appearance includes the background color of the plot
and whether it includes window decorations (title bar, toolbar, menu bar, and window
border).

This option is not available in MATLAB Online.

Value Window Decorations Background Color
 GUIs Figures GUIs Figures
'entireGUIWindow' (default) Included Excluded Matches

screen
White

'print' Excluded Excluded White White
'getframe' Excluded Excluded Matches

screen
Matches
screen

'entireFigureWindow' Included Included Matches
screen

Matches
screen

imageFormat — Image file format
'png' | 'epsc2' | 'jpg' | ...

Image file format for the images in the published document, specified as one of the values
listed in the table. The list of valid image formats depends on the specified output format.

 publish

1-11659

Output Format Valid Image Formats Default Image Format
Microsoft Word Any image format that your installed

version of Microsoft Office can import,
including 'png' , 'jpg', 'bmp', and
'tiff'. If the 'figureSnapMethod'
option is set to 'print', then you
also can specify 'eps', 'epsc',
'eps2', 'ill', 'meta', and 'pdf'.

'png'

Hypertext Markup
Language (HTML)

All image formats.

Ensure that the tools you use to view
and process the output files can
display the output format you specify.

'png'

LaTeX All image formats.

Ensure that the tools you use to view
and process the output files can
display the output format you specify.

'epsc2'

The default changes to
'png' in these cases:

• figureSnapMethod
is 'getframe'.

• figureSnapMethod
is
'entireFigureWin
dow'.

• figureSnapMethod
is
'entireGUIWindow
' and the snapped
window is a GUI
window.

Portable Document
Format (PDF)

'bmp' and 'jpg'. 'bmp'

Microsoft PowerPoint Any format that your installed version
of Microsoft Office can import,
including 'png', 'jpg', 'bmp', and
'tiff'.

'png'

1 Alphabetical List

1-11660

Output Format Valid Image Formats Default Image Format
Extensible Markup
Language (XML)

All image formats.

Ensure that the tools you use to view
and process the output files can
display the image format you specify.

'png'

maxHeight — Maximum image height
[] (default) | positive integer

Maximum image height of the published images, specified as one of these values:

• [] (default) — Unrestricted height. This value is always used when the output format
is PDF.

• Positive integer — Height in pixels.

maxWidth — Maximum image width
[] (default) | positive integer

Maximum image width of the published images, specified as one of these values:

• [] (default) — Unrestricted width. This value is always used when the output format is
PDF.

• Positive integer — Width in pixels.

useNewFigure — Whether to create new figure
true (default) | false

Whether to create new figure, specified as true or false. If true and the code
generates a figure, then MATLAB creates a new figure window in the default size with a
white background before publishing. If false, MATLAB does not create a figure window.

Specifying a value of false is useful if you want to use a figure with different properties
for publishing. For example, you can open a figure window, change the size and
background color, and then publish your code. Figures in your published document use
the characteristics of the figure you opened before publishing.

Code Options

evalCode — Whether to run code
true (default) | false

 publish

1-11661

Whether to run the code and include the MATLAB output in the published view, specified
as true or false.

catchError — Whether to catch errors
true (default) | false

Whether to catch errors during publishing, specified as true or false. If true and an
error occurs, MATLAB continues publishing and includes the error in the published file. If
false and an error occurs, MATLAB displays the error at the command line and does not
produce a published file.

codeToEvaluate — Additional code to run
character vector

Additional code to run during publishing, specified as a character vector. Use this option
to run code that is not included in the MATLAB file. For example, you can set the value of
an input argument for a function being published.

If this option is unspecified, MATLAB only runs the code in the MATLAB file you are
publishing.

maxOutputLines — Maximum number of lines
Inf (default) | nonnegative integer value

Maximum number of lines of output to be included in the published document, specified
as one of these values:

• Inf (default) — MATLAB includes all output in the published document.
• Nonnegative integer — MATLAB only includes the specified number of lines in the

published document. Setting this option is useful if a smaller, representative sample of
the output suffices.

showCode — Whether to include code
true (default) | false

Whether to include code in published file, specified as true or false.

If the output format is HTML, MATLAB includes the code at the end of the published
HTML file as comments, even when you set the 'showCode' option to false. Including
the code as comments enables the grabcode function to extract the MATLAB code from
an HTML file, even when the file does not display the code. The code does not display in a
Web browser because MATLAB includes the code as comments.

1 Alphabetical List

1-11662

Limitations
• In MATLAB Online, you cannot use the publish function on a file in your Shared

folder. To publish a shared file, open the file in the Editor, and then click Publish on
the toolbar. When you use the Publish button in MATLAB Online instead of the
publish function, MATLAB stores the results in the Published subfolder of your
root folder instead of the html subfolder.

Tips
• To enhance the readability of the published document and include additional image

snapshots, external file content, and external images, see “Publishing Markup”.

See Also
grabcode | snapnow | web | winopen

Topics
“Publish and Share MATLAB Code”
“Publishing Markup”

Introduced before R2006a

 publish

1-11663

PutCharArray
Character array in Automation server

Syntax

IDL Method Signature
PutCharArray([in] BSTR varname, [in] BSTR workspace,
 [in] BSTR string)

Microsoft Visual Basic Client
PutCharArray(varname As String, workspace As String,
 string As String)

MATLAB Client
PutCharArray(h,'varname','workspace','string')

Description
PutCharArray(h,'varname','workspace','string') stores the character array in
string in the specified workspace of the server attached to handle h, assigning to it the
variable varname. The values for workspace are base or global. The function name is
case-sensitive.

Examples

Pass Character Data from Visual Basic® .NET Client to MATLAB®

This example shows how to pass character data from a Visual Basic® .NET client to
MATLAB®. Create an application with the following code.

1 Alphabetical List

1-11664

type putchararray.vb

Dim Matlab As Object
Try
 Matlab = GetObject(, "matlab.application")
Catch e As Exception
 Matlab = CreateObject("matlab.application")
End Try
MsgBox("MATLAB window created; now open it...")
Matlab.PutCharArray("str", "base", _
 "He jests at scars that never felt a wound.")
MsgBox("In MATLAB, type" & vbCrLf & "str")
MsgBox("closing MATLAB window...")
Matlab.Quit()

Open the MATLAB window, then click Ok.

In the MATLAB window type str; MATLAB displays:

str =

He jests at scars that never felt a wound.

Click Ok to close and terminate MATLAB.

Pass Character Data from VBA Client to MATLAB®

This example shows how to pass character data from a Visual Basic® .NET client to
MATLAB®. Create an application with the following code.

type putchararray.vba

Dim Matlab As Object
Set Matlab = CreateObject("matlab.application")
MsgBox ("MATLAB window created; now open it...")
x = Matlab.PutCharArray("str", "base", "He jests at scars that never felt a wound.")
MsgBox ("In MATLAB, type" & vbCrLf & "str")
MsgBox ("closing MATLAB window...")
y = Matlab.Quit()

Open the MATLAB window, then click Ok.

In the MATLAB window type str; MATLAB displays:

 PutCharArray

1-11665

str =

He jests at scars that never felt a wound.

Click Ok to close and terminate MATLAB.

Tips
• The character array specified in the string argument can have any dimensions.

However, PutCharArray changes the dimensions to a 1-by-n column-wise
representation, where n is the number of characters in the array. Executing the
following commands in MATLAB illustrates this behavior:

h = actxserver('matlab.application');
chArr = ['abc'; 'def'; 'ghk']
chArr =
abc
def
ghk

PutCharArray(h,'Foo','base',chArr)
tstArr = GetCharArray(h,'Foo','base')
tstArr =
adgbehcfk

See Also
Execute | GetCharArray | GetWorkspaceData | PutWorkspaceData

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

1 Alphabetical List

1-11666

PutFullMatrix
Matrix in Automation server workspace

Syntax

IDL Method Signature
PutFullMatrix([in] BSTR varname, [in] BSTR workspace,
[in] SAFEARRAY(double) xreal, [in] SAFEARRAY(double) ximag)

Microsoft Visual Basic Client
PutFullMatrix([in] varname As String, [in] workspace As String,
[in] xreal As Double, [in] ximag As Double)

MATLAB Client
PutFullMatrix(h,'varname','workspace',xreal,ximag)

Description
PutFullMatrix(h,'varname','workspace',xreal,ximag) stores a matrix in the
specified workspace of the server attached to handle h and assigns it to variable
varname. Use xreal and ximag for the real and imaginary parts of the matrix. The
values for workspace are base or global.

The matrix cannot be a scalar, an empty array, or have more than two dimensions. To use
higher dimensional matrices, reshape the matrix to a 2-D matrix before sending it to the
MATLAB server. Then change the dimensions back after receiving it from MATLAB.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData functions to
pass numeric data to and from the MATLAB workspace. These functions use the variant
data type instead of safearray, which VBScript does not support.

 PutFullMatrix

1-11667

Examples

Put Matrix into MATLAB® Base Workspace from Visual Basic® .NET Client

This example uses a Visual Basic® .NET client to write a matrix to the base workspace of
the MATLAB server.

type putfullmatrixbase.vb

Dim MatLab As Object
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim ZReal(4, 4) As Double
Dim ZImag(4, 4) As Double
Dim i, j As Integer

For i = 0 To 4
 For j = 0 To 4
 XReal(i, j) = Rnd() * 6
 XImag(i, j) = 0
 Next j
Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("M","base",XReal,XImag)
MatLab.GetFullMatrix("M","base",ZReal,ZImag)

Put Matrix into MATLAB® Global Workspace from Visual Basic® .NET Client

This example uses a Visual Basic® .NET client to write a matrix to the global workspace
of the MATLAB server.

type putfullmatrixglobal.vb

Dim MatLab As Object
Dim XReal(1,2) As Double
Dim XImag(1,2) As Double
Dim result As String
Dim i,j As Integer

1 Alphabetical List

1-11668

For i = 0 To 1
 For j = 0 To 2
 XReal(i,j) = (j * 2 + 1) + i
 XImag(i,j) = 1
 Next j
Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("X","global",XReal,XImag)
result = Matlab.Execute("whos global")
MsgBox(result)

Put Matrix into MATLAB® Base Workspace from VBA Client

This example uses a VBA client to write a matrix to the base workspace of the MATLAB
server.

type putfullmatrixbase.vba

Dim MatLab As Object
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim ZReal(4, 4) As Double
Dim ZImag(4, 4) As Double
Dim i, j As Integer

For i = 0 To 4
 For j = 0 To 4
 XReal(i, j) = Rnd() * 6
 XImag(i, j) = 0
 Next j
Next i

Set MatLab = CreateObject("matlab.application")
x = MatLab.PutFullMatrix("M", "base", XReal, XImag)
y = MatLab.GetFullMatrix("M", "base", ZReal, ZImag)

 PutFullMatrix

1-11669

Put Matrix into MATLAB® Global Workspace from VBA Client

This example uses a VBA client to write a matrix to the global workspace of the MATLAB
server.

type putfullmatrixglobal.vba

Dim MatLab As Object
Dim XReal(1, 2) As Double
Dim XImag(1, 2) As Double
Dim result As String
Dim i, j As Integer

For i = 0 To 1
 For j = 0 To 2
 XReal(i, j) = (j * 2 + 1) + i
 XImag(i, j) = 1
 Next j
Next i

Set MatLab = CreateObject("matlab.application")
x = MatLab.PutFullMatrix("X", "global", XReal, XImag)
result = MatLab.Execute("whos global")
MsgBox (result)

See Also
Execute | GetFullMatrix | PutWorkspaceData

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

1 Alphabetical List

1-11670

PutWorkspaceData
Data in Automation server workspace

Syntax

IDL Method Signature
PutWorkspaceData([in] BSTR varname, [in] BSTR workspace,
[in] VARIANT data)

Microsoft Visual Basic Client
PutWorkspaceData(varname As String, workspace As String,
data As Object)

MATLAB Client
PutWorkspaceData(h,'varname','workspace',data)

Description
PutWorkspaceData(h,'varname','workspace',data) stores data in the
workspace of the server attached to handle h and assigns it to varname. The values for
workspace are base or global.

Use PutWorkspaceData to pass numeric and character array data respectively to the
server. Do not use PutWorkspaceData on sparse arrays, structures, or function handles.
Use the Execute method for these data types.

The GetWorkspaceData and PutWorkspaceData functions pass numeric data as a
variant data type. These functions are especially useful for VBScript clients as VBScript
does not support the safearray data type used by GetFullMatrix and
PutFullMatrix.

 PutWorkspaceData

1-11671

Examples

Put Visual Basic® .NET Array Into MATLAB® Workspace

This example creates an array in a Visual Basic .NET application and displays it in
MATLAB.

Create a Visual Basic .NET client with the following code.

type putworkspacedata.vb

Dim Matlab As Object
Dim data(6) As Double
Dim i As Integer
Matlab = CreateObject("matlab.application")
For i = 0 To 6
 data(i) = i * 15
Next i
Matlab.PutWorkspaceData("A", "base", data)
MsgBox("In MATLAB, type" & vbCrLf & "A")

Put VBA Array Into MATLAB® Workspace

This example creates an array in a VBA application and displays it in MATLAB.

Create a VBA client with the following code.

type putworkspacedata.vba

Dim Matlab As Object
Dim data(6) As Double
Dim i As Integer
Set Matlab = CreateObject("matlab.application")
For i = 0 To 6
 data(i) = i * 15
Next i
Matlab.PutWorkspaceData("A", "base", data)
MsgBox("In MATLAB, type" & vbCrLf & "A")

1 Alphabetical List

1-11672

See Also
Execute | GetWorkspaceData | PutCharArray | PutFullMatrix

Topics
“Conversion of COM Types to MATLAB Types”
“Conversion of MATLAB Types to COM Types”

Introduced before R2006a

 PutWorkspaceData

1-11673

pwd
Identify current folder

Syntax
pwd
currentFolder = pwd

Description
pwd displays the MATLAB current folder.

currentFolder = pwd returns the path to the current folder.

Examples
Store Path to MATLAB® Current Folder
Change the current folder to a local folder and store the path.

cd c:\myMATLABFiles
currentFolder = pwd

currentFolder =

 'c:\myMATLABFiles'

Alternative Functionality
View the current folder in the Current Folder toolbar.

1 Alphabetical List

1-11674

Output Arguments
currentFolder — MATLAB current folder path
character vector

MATLAB current folder path, returned as a character vector.

See Also
cd | dir

Introduced before R2006a

 pwd

1-11675

pyargs
Create keyword argument for Python function

Syntax
kwa = pyargs(argKey,argValue)

Description
kwa = pyargs(argKey,argValue) creates one or more pyargs keyword arguments
to pass to a Python function.

Examples

Use Keyword Argument to Modify Calendar Month Display

Create a calendar.

cal = py.calendar.TextCalendar;

Display the calendar for December 2014.

formatmonth(cal,int32(2014),int32(12))

ans =

 Python str with no properties.

 December 2014
Mo Tu We Th Fr Sa Su
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

1 Alphabetical List

1-11676

Display the function signature from the Python documentation for the
calendar.TextCalendar.formatmonth function.

py.help('calendar.TextCalendar.formatmonth')

Help on method formatmonth in calendar.TextCalendar:

calendar.TextCalendar.formatmonth = formatmonth(self, theyear, themonth, w=0, l=0) unbound calendar.TextCalendar method
 Return a month's calendar string (multi-line).

Notice that arguments w and l are optional, with default values of 0.

Now display the function signatures in MATLAB.

methods(cal,'-full')

Search the output for the formatmonth function signature.

lhs formatmonth(self, theyear, themonth, w, l, pyargs)

Change the value of the line spacing argument l to 2 using a pyargs argument.

formatmonth(cal,int32(2014),int32(12),pyargs('l',int32(2)))

ans =

 Python str with no properties.

 December 2014

Mo Tu We Th Fr Sa Su

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

 pyargs

1-11677

29 30 31

Input Arguments
argKey,argValue — Python function arguments
keyword and value arguments

Python function keyword arguments specified as one or more comma-separated pairs of
argKey,argValue arguments. argKey is the Python function key name and is a string
or character vector. argValue is the argument value, represented by any type. Use the
function argument list to identify argKey and argValue. You can specify several key and
value pair arguments in any order as argKey1,argValue1,...,argKeyN,argValueN.
Example: 'length',int32(2)

See Also

External Websites
python.org calendar.TextCalendar method

Introduced in R2014b

1 Alphabetical List

1-11678

https://docs.python.org/2/library/calendar.html#calendar.TextCalendar

matlab.exception.PyException class
Package: matlab.exception

Capture error information for Python exception

Description
Process information from a matlab.exception.PyException object to handle Python
errors thrown from Python methods called from MATLAB. This class is derived from
MException.

Creation
You do not construct a matlab.exception.PyException object explicitly. MATLAB
automatically constructs a PyException object whenever Python throws an exception.
The PyException object wraps the original Python exception.

Properties
ExceptionObject — Object
exception object

Result from Python sys.exc_info function. For information about what the function
returns, type:

help('py.sys.exc_info')

exc_info() -> (type, value, traceback)

Return information about the most recent exception caught by an except
clause in the current stack frame or in an older stack frame.

Examples

 matlab.exception.PyException class

1-11679

Catch Python Exception

Generate a Python exception and display information. When MATLAB displays a message
containing the text Python Error, refer to your Python documentation for more
information.

try
 py.list('x','y',1)
catch e
 e.message
 if(isa(e,'matlab.exception.PyException'))
 e.ExceptionObject
 end
end

ans =

Python Error: TypeError: list() takes at most 1 argument (3 given)

ans =

 Python tuple with no properties.

 (<type 'exceptions.TypeError'>, TypeError('list() takes at most 1 argument (3 given)',), None)

See Also

Topics
“Capture Information About Exceptions”
“Throw an Exception”

Introduced in R2014b

1 Alphabetical List

1-11680

pyversion
Change default version of Python interpreter

Syntax
pyversion
[version, executable, isloaded] = pyversion

___ = pyversion version
___ = pyversion executable

Description
pyversion displays details about the current Python version.

[version, executable, isloaded] = pyversion returns Python version
information.

___ = pyversion version changes the default Python version on Microsoft Windows
platforms. You can request any of the outputs from previous syntaxes. The setting is
persistent across MATLAB sessions.

Note You cannot change the version after MATLAB loads Python. To change the version if
Python is loaded already, restart MATLAB, and then call pyversion.

___ = pyversion executable specifies the full path to the Python executable. You
can use this syntax on any platform or for repackaged CPython implementation
downloads.

Examples

 pyversion

1-11681

Display Python Version for Your System
pyversion

 version: '2.7'
 executable: 'C:\Python27\python.exe'
 library: 'C:\windows\system32\python27.dll'
 home: 'C:\Python27'
 isloaded: 0

Use Python Version 2.7
[v, e, isloaded] = pyversion;
if isloaded
 disp('To change the Python version, restart MATLAB, then call pyversion.')
else
 pyversion 2.7
end

Input Arguments
version — Python version
string | character vector

Python version number, specified as a string or character vector. The version must contain
the major and minor version numbers separated by a period. (Windows platform only)

pyversion looks for the version in the Windows registry. If you download the Python
application from www.python.org/downloads, the installation automatically adds the
version to the registry. If you download the application from a different source, you must
either add it to the registry or use the pyversion(executable) syntax to change the
version.
Example: 3.5

executable — Name of existing Python executable file
string | character vector

Name of an existing Python executable file, specified as a string or character vector. This
argument must contain the name of the Python executable file, and it can contain the full
path.

1 Alphabetical List

1-11682

Example: C:\Python33\python.exe
Example: /usr/bin/python

Output Arguments
version — Python version
character vector

Python version number, returned as a character vector.

executable — Name of Python executable file
character vector

Name of Python executable file, returned as a character vector.

isloaded — Version loaded indicator
logical

Version loaded indicator specifying if this version is loaded, returned as logical. MATLAB
loads Python when you type a py. command.

If MATLAB cannot load Python, isloaded is 0 and MATLAB displays “Undefined variable
"py" or function "py.command"” when you type a py. command.

Limitations
• Do not use pyversion to set the version in a MATLAB function containing Python

commands. Before MATLAB executes the pyversion function, it loads the Python
interpreter when it processes a Python command in the function.

See Also

External Websites
https://www.python.org/downloads

 pyversion

1-11683

https://www.python.org/downloads/

Introduced in R2014b

1 Alphabetical List

1-11684

qmr
Quasi-minimal residual method

Syntax
x = qmr(A,b)
qmr(A,b,tol)
qmr(A,b,tol,maxit)
qmr(A,b,tol,maxit,M)
qmr(A,b,tol,maxit,M1,M2)
qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = qmr(A,b,...)
[x,flag,relres] = qmr(A,b,...)
[x,flag,relres,iter] = qmr(A,b,...)
[x,flag,relres,iter,resvec] = qmr(A,b,...)

Description
x = qmr(A,b) attempts to solve the system of linear equations A*x=b for x. The n-by-n
coefficient matrix A must be square and should be large and sparse. The column vector b
must have length n. You can specify A as a function handle, afun, such that
afun(x,'notransp') returns A*x and afun(x,'transp') returns A'*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If qmr converges, a message to that effect is displayed. If qmr fails to converge after the
maximum number of iterations or halts for any reason, a warning message is printed
displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at
which the method stopped or failed.

qmr(A,b,tol) specifies the tolerance of the method. If tol is [], then qmr uses the
default, 1e-6.

qmr(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is [], then
qmr uses the default, min(n,20).

 qmr

1-11685

qmr(A,b,tol,maxit,M) and qmr(A,b,tol,maxit,M1,M2) use preconditioners M or M
= M1*M2 and effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is []
then qmr applies no preconditioner. M can be a function handle mfun such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

qmr(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then qmr uses
the default, an all zero vector.

[x,flag] = qmr(A,b,...) also returns a convergence flag.

Flag Convergence
0 qmr converged to the desired tolerance tol within maxit iterations.
1 qmr iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 The method stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during qmr became too small or

too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = qmr(A,b,...) also returns the relative residual norm(b-A*x)/
norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = qmr(A,b,...) also returns the iteration number at which
x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = qmr(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples
Using qmr with a Matrix Input
This example shows how to use qmr with a matrix input. The code:

n = 100;
on = ones(n,1);

1 Alphabetical List

1-11686

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8; maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = qmr(A,b,tol,maxit,M1,M2);

displays the message:

qmr converged at iteration 9 to a solution...
with relative residual
5.6e-009

Using qmr with a Function Handle
This example replaces the matrix A in the previous example with a handle to a matrix-
vector product function afun. The example is contained in a file run_qmr that

• Calls qmr with the function handle @afun as its first argument.
• Contains afun as a nested function, so that all variables in run_qmr are available to

afun.

The following shows the code for run_qmr:

function x1 = run_qmr
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = qmr(@afun,b,tol,maxit,M1,M2);

 function y = afun(x,transp_flag)
 if strcmp(transp_flag,'transp') % y = A'*x
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
 elseif strcmp(transp_flag,'notransp') % y = A*x
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);

 qmr

1-11687

 y(1:n-1) = y(1:n-1) - x(2:n);
 end
 end
end

When you enter

x1=run_qmr;

MATLAB software displays the message

qmr converged at iteration 9 to a solution with relative residual
5.6e-009

Using qmr with a Preconditioner
This example demonstrates the use of a preconditioner.

Load A = west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12;
maxit = 20;

Use qmr to find a solution at the requested tolerance and number of iterations.

[x0,fl0,rr0,it0,rv0] = qmr(A,b,tol,maxit);

fl0 is 1 because qmr does not converge to the requested tolerance 1e-12 within the
requested 20 iterations. The seventeenth iterate is the best approximate solution and is
the one returned as indicated by it0 = 17. MATLAB stores the residual history in rv0.

Plot the behavior of qmr.

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1 Alphabetical List

1-11688

The plot shows that the solution does not converge. You can use a preconditioner to
improve the outcome.

Create the preconditioner with ilu, since the matrix A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

MATLAB cannot construct the incomplete LU as it would result in a singular factor, which
is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the error message.

 qmr

1-11689

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = qmr(A,b,tol,maxit,L,U);

fl1 is 0 because qmr drives the relative residual to 4.1410e-014 (the value of rr1). The
relative residual is less than the prescribed tolerance of 1e-12 at the sixth iteration (the
value of it1) when preconditioned by the incomplete LU factorization with a drop
tolerance of 1e-6. The output rv1(1) is norm(b), and the output rv1(7) is norm(b-
A*x2).

You can follow the progress of qmr by plotting the relative residuals at each iteration
starting from the initial estimate (iterate number 0).

semilogy(0:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1 Alphabetical List

1-11690

References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Freund, Roland W. and Nöel M. Nachtigal, “QMR: A quasi-minimal residual method for
non-Hermitian linear systems,” SIAM Journal: Numer. Math. 60, 1991, pp. 315–
339.

 qmr

1-11691

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• b must be a full (nonsparse) column vector.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | cgs | gmres | ilu | lsqr | minres | mldivide | pcg | symmlq

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-11692

qr
Orthogonal-triangular decomposition

Syntax
[Q,R] = qr(A)
[Q,R] = qr(A,0)
[Q,R,E] = qr(A)
[Q,R,E] = qr(A,'matrix')
[Q,R,e] = qr(A,'vector')
[Q,R,e] = qr(A,0)
X = qr(A)
X = qr(A,0)
R = qr(A)
R = qr(A,0)
[C,R] = qr(A,B)
[C,R,E] = qr(A,B)
[C,R,E] = qr(A,B,'matrix')
[C,R,e] = qr(A,B,'vector')
[C,R] = qr(A,B,0)
[C,R,e] = qr(A,B,0)

Description
[Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular matrix R and an
m-by-m unitary matrix Q so that A = Q*R.

[Q,R] = qr(A,0) produces the economy-size decomposition. If m > n, only the first n
columns of Q and the first n rows of R are computed. If m<=n, this is the same as [Q,R] =
qr(A).

If A is full:

[Q,R,E] = qr(A) or [Q,R,E] = qr(A,'matrix') produces unitary Q, upper
triangular R and a permutation matrix E so that A*E = Q*R. The column permutation E is
chosen so that abs(diag(R)) is decreasing.

 qr

1-11693

[Q,R,e] = qr(A,'vector') returns the permutation information as a vector instead
of a matrix. That is, e is a row vector such that A(:,e) = Q*R.

[Q,R,e] = qr(A,0) produces an economy-size decomposition in which e is a
permutation vector, so that A(:,e) = Q*R.

X = qr(A) and X = qr(A,0) return a matrix X such that triu(X) is the upper
triangular factor R.

If A is sparse:

R = qr(A) computes a Q-less QR decomposition and returns the upper triangular factor
R. Note that R = chol(A'*A). Since Q is often nearly full, this is preferred to [Q,R] =
QR(A).

R = qr(A,0) produces economy-size R. If m>n, R has only n rows. If m<=n, this is the
same as R = qr(A).

[Q,R,E] = qr(A) or [Q,R,E] = qr(A,'matrix') produces unitary Q, upper
triangular R and a permutation matrix E so that A*E = Q*R. The column permutation E is
chosen to reduce fill-in in R.

[Q,R,e] = qr(A,'vector') returns the permutation information as a vector instead
of a matrix. That is, e is a row vector such that A(:,e) = Q*R.

[Q,R,e] = qr(A,0) produces an economy-size decomposition in which e is a
permutation vector, so that A(:,e) = Q*R.

[C,R] = qr(A,B), where B has as many rows as A, returns C = Q'*B. The least-
squares solution to A*X = B is X = R\C.

[C,R,E] = qr(A,B) or [C,R,E] = qr(A,B,'matrix'), also returns a fill-reducing
ordering. The least-squares solution to A*X = B is X = E*(R\C).

[C,R,e] = qr(A,B,'vector') returns the permutation information as a vector
instead of a matrix. That is, the least-squares solution to A*X = B is X(e,:) = R\C.

[C,R] = qr(A,B,0) produces economy-size results. If m>n, C and R have only n rows. If
m<=n, this is the same as [C,R] = qr(A,B).

[C,R,e] = qr(A,B,0) additionally produces a fill-reducing permutation vector e. In
this case, the least-squares solution to A*X = B is X(e,:) = R\C.

1 Alphabetical List

1-11694

Examples
Find the least squares approximate solution to A*x = b with the Q-less QR decomposition
and one step of iterative refinement:

if issparse(A), R = qr(A);
else R = triu(qr(A)); end
x = R\(R'\(A'*b));
r = b - A*x;
err = R\(R'\(A'*r));
x = x + err;

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The input A must be nonsparse.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 qr

1-11695

Usage notes and limitations:

• The input A must be nonsparse.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
chol | lu | null | orth | qrdelete | qrinsert | qrupdate

Introduced before R2006a

1 Alphabetical List

1-11696

qrdelete
Remove column or row from QR factorization

Syntax
[Q1,R1] = qrdelete(Q,R,j)
[Q1,R1] = qrdelete(Q,R,j,'col')
[Q1,R1] = qrdelete(Q,R,j,'row')

Description
[Q1,R1] = qrdelete(Q,R,j) returns the QR factorization of the matrix A1, where A1
is A with the column A(:,j) removed and [Q,R] = qr(A) is the QR factorization of A.

[Q1,R1] = qrdelete(Q,R,j,'col') is the same as qrdelete(Q,R,j).

[Q1,R1] = qrdelete(Q,R,j,'row') returns the QR factorization of the matrix A1,
where A1 is A with the row A(j,:) removed and [Q,R] = qr(A) is the QR factorization
of A.

Examples
A = magic(5);
[Q,R] = qr(A);
j = 3;
[Q1,R1] = qrdelete(Q,R,j,'row');

Q1 =
 0.5274 -0.5197 -0.6697 -0.0578
 0.7135 0.6911 0.0158 0.1142
 0.3102 -0.1982 0.4675 -0.8037
 0.3413 -0.4616 0.5768 0.5811

R1 =
 32.2335 26.0908 19.9482 21.4063 23.3297

 qrdelete

1-11697

 0 -19.7045 -10.9891 0.4318 -1.4873
 0 0 22.7444 5.8357 -3.1977
 0 0 0 -14.5784 3.7796

returns a valid QR factorization, although possibly different from

A2 = A;
A2(j,:) = [];
[Q2,R2] = qr(A2)

Q2 =
 -0.5274 0.5197 0.6697 -0.0578
 -0.7135 -0.6911 -0.0158 0.1142
 -0.3102 0.1982 -0.4675 -0.8037
 -0.3413 0.4616 -0.5768 0.5811

R2 =
 -32.2335 -26.0908 -19.9482 -21.4063 -23.3297
 0 19.7045 10.9891 -0.4318 1.4873
 0 0 -22.7444 -5.8357 3.1977
 0 0 0 -14.5784 3.7796

Algorithms
The qrdelete function uses a series of Givens rotations to zero out the appropriate
elements of the factorization. [1]

References
[1] Golub, Gene H., and Charles F. Van Loan. Matrix Computations. 4th ed. Baltimore,

MD: Johns Hopkins University Press, 2013, Sections 6.5.2–6.5.3, pp. 335–338.

See Also
planerot | qr | qrinsert

Introduced before R2006a

1 Alphabetical List

1-11698

qrinsert
Insert column or row into QR factorization

Syntax
[Q1,R1] = qrinsert(Q,R,j,x)
[Q1,R1] = qrinsert(Q,R,j,x,'col')
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Description
[Q1,R1] = qrinsert(Q,R,j,x) returns the QR factorization of the matrix A1, where
A1 is A = Q*R with the column x inserted before A(:,j). If A has n columns and j = n
+1, then x is inserted after the last column of A.

[Q1,R1] = qrinsert(Q,R,j,x,'col') is the same as qrinsert(Q,R,j,x).

[Q1,R1] = qrinsert(Q,R,j,x,'row') returns the QR factorization of the matrix A1,
where A1 is A = Q*R with an extra row, x, inserted before A(j,:).

Examples
A = magic(5);
[Q,R] = qr(A);
j = 3;
x = 1:5;
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Q1 =
 0.5231 0.5039 -0.6750 0.1205 0.0411 0.0225
 0.7078 -0.6966 0.0190 -0.0788 0.0833 -0.0150
 0.0308 0.0592 0.0656 0.1169 0.1527 -0.9769
 0.1231 0.1363 0.3542 0.6222 0.6398 0.2104
 0.3077 0.1902 0.4100 0.4161 -0.7264 -0.0150
 0.3385 0.4500 0.4961 -0.6366 0.1761 0.0225

 qrinsert

1-11699

R1 =
 32.4962 26.6801 21.4795 23.8182 26.0031
 0 19.9292 12.4403 2.1340 4.3271
 0 0 24.4514 11.8132 3.9931
 0 0 0 20.2382 10.3392
 0 0 0 0 16.1948
 0 0 0 0 0

returns a valid QR factorization, although possibly different from

A2 = [A(1:j-1,:); x; A(j:end,:)];
[Q2,R2] = qr(A2)

Q2 =
 -0.5231 0.5039 0.6750 -0.1205 0.0411 0.0225
 -0.7078 -0.6966 -0.0190 0.0788 0.0833 -0.0150
 -0.0308 0.0592 -0.0656 -0.1169 0.1527 -0.9769
 -0.1231 0.1363 -0.3542 -0.6222 0.6398 0.2104
 -0.3077 0.1902 -0.4100 -0.4161 -0.7264 -0.0150
 -0.3385 0.4500 -0.4961 0.6366 0.1761 0.0225

R2 =
 -32.4962 -26.6801 -21.4795 -23.8182 -26.0031
 0 19.9292 12.4403 2.1340 4.3271
 0 0 -24.4514 -11.8132 -3.9931
 0 0 0 -20.2382 -10.3392
 0 0 0 0 16.1948
 0 0 0 0 0

Algorithms
The qrinsert function inserts the values of x into the jth column (row) of R. It then uses
a series of Givens rotations to zero out the nonzero elements of R on and below the
diagonal in the jth column (row). [1]

References
[1] Golub, Gene H., and Charles F. Van Loan. Matrix Computations. 4th ed. Baltimore,

MD: Johns Hopkins University Press, 2013, Sections 6.5.2–6.5.3, pp. 335–338.

1 Alphabetical List

1-11700

See Also
planerot | qr | qrdelete

Introduced before R2006a

 qrinsert

1-11701

qrupdate
Rank 1 update to QR factorization

Syntax
[Q1,R1] = qrupdate(Q,R,u,v)

Description
[Q1,R1] = qrupdate(Q,R,u,v) when [Q,R] = qr(A) is the original QR
factorization of A, returns the QR factorization of A + u*v', where u and v are column
vectors of appropriate lengths.

Examples
The matrix

mu = sqrt(eps)

mu =

 1.4901e-08

A = [ones(1,4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of forming A'*A.
Instead, we work with the QR factorization – orthonormal Q and upper triangular R.

 [Q,R] = qr(A);

As we expect, R is upper triangular.

R =

 -1.0000 -1.0000 -1.0000 -1.0000
 0 0.0000 0.0000 0.0000

1 Alphabetical List

1-11702

 0 0 0.0000 0.0000
 0 0 0 0.0000
 0 0 0 0

In this case, the upper triangular entries of R, excluding the first row, are on the order of
sqrt(eps).

Consider the update vectors

 u = [-1 0 0 0 0]'; v = ones(4,1);

Instead of computing the rather trivial QR factorization of this rank one update to A from
scratch with

[QT,RT] = qr(A + u*v')

QT =

 0 0 0 0 1
 -1 0 0 0 0
 0 -1 0 0 0
 0 0 -1 0 0
 0 0 0 -1 0

RT =

 1.0e-007 *

 -0.1490 0 0 0
 0 -0.1490 0 0
 0 0 -0.1490 0
 0 0 0 -0.1490
 0 0 0 0

we may use qrupdate.

[Q1,R1] = qrupdate(Q,R,u,v)

Q1 =

 -0.0000 -0.0000 -0.0000 -0.0000 1.0000
 1.0000 -0.0000 -0.0000 -0.0000 0.0000
 0.0000 1.0000 -0.0000 -0.0000 0.0000
 0.0000 0.0000 1.0000 -0.0000 0.0000
 -0.0000 -0.0000 -0.0000 1.0000 0.0000

 qrupdate

1-11703

R1 =

 1.0e-007 *
 0.1490 0.0000 0.0000 0.0000
 0 0.1490 0.0000 0.0000
 0 0 0.1490 0.0000
 0 0 0 0.1490
 0 0 0 0

Note that both factorizations are correct, even though they are different.

Tips
qrupdate works only for full matrices.

Algorithms
qrupdate uses the algorithm in section 12.5.1 of the third edition of Matrix
Computations by Golub and van Loan. qrupdate is useful since, if we take
N = max(m,n), then computing the new QR factorization from scratch is roughly an
O(N3) algorithm, while simply updating the existing factors in this way is an O(N2)
algorithm.

References
[1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third Edition, Johns

Hopkins University Press, Baltimore, 1996

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-11704

Usage notes and limitations:

Because qrupdate operates in-place on Q and R, the outputs Q1 and R1 must be the same
type as the inputs Q and R.

• Q and R must belong to the same class as each other, either both single or both double.
• If either u or v is single, both Q and R must be single.
• If any of the inputs are complex, both Q and R must be complex.

See Also
cholupdate | qr

Introduced before R2006a

 qrupdate

1-11705

quad
(Not recommended) Numerically evaluate integral, adaptive Simpson quadrature

Note quad is not recommended. Use integral instead.

Syntax
q = quad(fun,a,b)
q = quad(fun,a,b,tol)
q = quad(fun,a,b,tol,trace)
[q,fcnt] = quad(...)

Description
Quadrature is a numerical method used to find the area under the graph of a function,
that is, to compute a definite integral.

q = ∫
a

b
f (x)dx

q = quad(fun,a,b) tries to approximate the integral of function fun from a to b to
within an error of 1e-6 using recursive adaptive Simpson quadrature. fun is a function
handle. Limits a and b must be finite. The function y = fun(x) should accept a vector
argument x and return a vector result y, the integrand evaluated at each element of x.

“Parameterizing Functions” explains how to provide additional parameters to the function
fun, if necessary.

q = quad(fun,a,b,tol) uses an absolute error tolerance tol instead of the default
which is 1.0e-6. Larger values of tol result in fewer function evaluations and faster
computation, but less accurate results. In MATLAB version 5.3 and earlier, the quad
function used a less reliable algorithm and a default relative tolerance of 1.0e-3.

q = quad(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a Q] during the recursion.

1 Alphabetical List

1-11706

[q,fcnt] = quad(...) returns the number of function evaluations.

The function quadl may be more efficient with high accuracies and smooth integrands.

The list below contains information to help you determine which quadrature function in
MATLAB to use:

• The quad function may be most efficient for low accuracies with nonsmooth
integrands.

• The quadl function may be more efficient than quad at higher accuracies with smooth
integrands.

• The quadgk function may be most efficient for high accuracies and oscillatory
integrands. It supports infinite intervals and can handle moderate singularities at the
endpoints. It also supports contour integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.
• If the interval is infinite, a,∞ , then for the integral of fun(x) to exist, fun(x) must

decay as x approaches infinity, and quadgk requires it to decay rapidly. Special
methods should be used for oscillatory functions on infinite intervals, but quadgk can
be used if fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at finite endpoints if the
singularities are not too strong. For example, it will integrate functions that behave at
an endpoint c like log|x-c| or |x-c|p for p >= -1/2. If the function is singular at
points inside (a,b), write the integral as a sum of integrals over subintervals with the
singular points as endpoints, compute them with quadgk, and add the results.

Examples
To compute the integral

∫
0

2
1

x3− 2x− 5
dx,

write a function myfun that computes the integrand:

function y = myfun(x)
y = 1./(x.^3-2*x-5);

 quad

1-11707

Then pass @myfun, a function handle to myfun, to quad, along with the limits of
integration, 0 to 2:

Q = quad(@myfun,0,2)

Q =

 -0.4605

Alternatively, you can pass the integrand to quad as an anonymous function handle F:

F = @(x)1./(x.^3-2*x-5);
Q = quad(F,0,2);

Diagnostics
quad may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval subdivision has
produced a subinterval whose length is on the order of roundoff error in the length of the
original interval. A nonintegrable singularity is possible.

'Maximum function count exceeded' indicates that the integrand has been
evaluated more than 10,000 times. A nonintegrable singularity is likely.

'Infinite or Not-a-Number function value encountered' indicates a floating
point overflow or division by zero during the evaluation of the integrand in the interior of
the interval.

Algorithms
quad implements a low order method using an adaptive recursive Simpson's rule.

References
[1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,” BIT, Vol. 40, 2000, pp.

84-101. This document is also available at https://www.inf.ethz.ch/
personal/gander.

1 Alphabetical List

1-11708

https://www.inf.ethz.ch/personal/gander
https://www.inf.ethz.ch/personal/gander

See Also
dblquad | integral | integral2 | integral3 | quad2d | quadgk | quadl | quadv |
trapz | triplequad

Topics
“Anonymous Functions”
“Create Function Handle”

Introduced before R2006a

 quad

1-11709

quad2d
Numerically evaluate double integral — tiled method

Syntax
q = quad2d(fun,a,b,c,d)
q = quad2d(fun,a,b,c,d,Name,Value)
[q,E] = quad2d(___)

Description
q = quad2d(fun,a,b,c,d) approximates the integral of fun(x,y) over the planar
region a ≤ x ≤ b and c(x) ≤ y ≤ d(x). The bounds c and d can each be scalars or function
handles.

q = quad2d(fun,a,b,c,d,Name,Value) specifies additional options with one or more
Name,Value pair arguments. For example, you can specify 'AbsTol' and 'RelTol' to
adjust the error thresholds that the algorithm must satisfy.

[q,E] = quad2d(___) also returns an approximate upper bound on the absolute error,
E = | q - I |, where I is the exact value of the integral.

Examples

Evaluate Double Integral

Integrate

ysin(x) + xcos(y)

over −π ≤ x ≤ 2π and 0 ≤ y ≤ π.

fun = @(x,y) y.*sin(x)+x.*cos(y);
Q = quad2d(fun,pi,2*pi,0,pi)

1 Alphabetical List

1-11710

Q = -9.8696

Compare the result to the true value of the integral, −π2.

-pi^2

ans = -9.8696

Integrand with Singularity on Integration Boundary

Integrate the function

x + y 1/2 1 + x + y 2 −1

over the region 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1− x. This integrand is infinite at the origin (0,0),
which lies on the boundary of the integration region.

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2);
ymax = @(x) 1 - x;
Q = quad2d(fun,0,1,0,ymax)

Q = 0.2854

The true value of the integral is π/4− 1/2.

pi/4 - 0.5

ans = 0.2854

Limitations of quad2d

quad2d begins by mapping the region of integration to a rectangle. Consequently, it may
have trouble integrating over a region that does not have four sides or has a side that
cannot be mapped smoothly to a straight line. If the integration is unsuccessful, some
helpful tactics are leaving Singular set to its default value of true, changing between
Cartesian and polar coordinates, or breaking the region of integration into pieces and
adding the results of integration over the pieces.

For instance:

 quad2d

1-11711

fun = @(x,y)abs(x.^2 + y.^2 - 0.25);
c = @(x)-sqrt(1 - x.^2);
d = @(x)sqrt(1 - x.^2);
quad2d(fun,-1,1,c,d,'AbsTol',1e-8,...
 'FailurePlot',true,'Singular',false);

Warning: Reached the maximum number of function evaluations (2000). The result fails the global error test.

The failure plot shows two areas of difficulty, near the points (-1,0) and (1,0) and near
the circle x2 + y2 = 0 . 25.

Changing the value of Singular to true will cope with the geometric singularities at
(-1,0) and (1,0). The larger shaded areas may need refinement but are probably not
areas of difficulty.

1 Alphabetical List

1-11712

Q = quad2d(fun,-1,1,c,d,'AbsTol',1e-8, ...
 'FailurePlot',true,'Singular',true);

Warning: Reached the maximum number of function evaluations (2000). The result passes the global error test.

From here you can take advantage of symmetry:

Q = 4*quad2d(fun,0,1,0,d,'Abstol',1e-8,...
 'Singular',true,'FailurePlot',true)

Q = 0.9817

However, the code is still working very hard near the singularity. It may not be able to
provide higher accuracy:

 quad2d

1-11713

Q = 4*quad2d(fun,0,1,0,d,'Abstol',1e-10,...
 'Singular',true,'FailurePlot',true);

Warning: Reached the maximum number of function evaluations (2000). The result passes the global error test.

At higher accuracy, a change in coordinates may work better.

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;
Q = 4*quad2d(polarfun,0,pi/2,0,1,'AbsTol',1e-10);

It is best to put the singularity on the boundary by splitting the region of integration into
two parts:

1 Alphabetical List

1-11714

Q1 = 4*quad2d(polarfun,0,pi/2,0,0.5,'AbsTol',5e-11);
Q2 = 4*quad2d(polarfun,0,pi/2,0.5,1,'AbsTol',5e-11);
Q = Q1 + Q2;

Input Arguments
fun — Function to integrate
function handle

Function to integrate, specified as a function handle. The function Z = fun(X,Y) must
accept 2-D matrices X and Y of the same size and return a matrix Z of corresponding
values. Therefore, the function must be vectorized (that is, you must use elementwise
operators such as .^ instead of matrix operators such as ^). The inputs and outputs of the
function must be either single or double precision.
Example: @(x,y) x.^2 - y.^2
Data Types: function_handle

a,b — x limits of integration
scalars

x limits of integration, specified as scalars.
Data Types: single | double
Complex Number Support: Yes

c,d — y limits of integration
scalars | function handles

y limits of integration, specified as scalars or function handles. Each limit can be specified
as a scalar or a function handle. If the limits are specified as function handles, then they
are functions of the x limit of integration ymin = @x c(x) and ymax = @(x) d(x).
The function handles ymin and ymax must accept matrices and return matrices of the
same size with the corresponding values. The inputs and outputs of the functions must be
either single or double precision.
Data Types: single | double | function_handle
Complex Number Support: Yes

 quad2d

1-11715

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: quad2d(@(x,y) x.*y.^2, 0, 1, 0, 2, 'AbsTol',1e-3) specifies the
absolute tolerance for the integration as 1e-3.

AbsTol — Absolute error tolerance
1e-5 (default) | scalar

Absolute error tolerance, specified as the comma-separated pair consisting of 'AbsTol'
and a scalar.

quad2d attempts to satisfy ERRBND <= max(AbsTol,RelTol*|Q|). This is absolute
error control when |Q| is sufficiently small and relative error control when |Q| is larger.
A default tolerance value is used when a tolerance is not specified. The default value of
AbsTol is 1e-5. The default value of RelTol is 100*eps(class(Q)). This is also the
minimum value of RelTol. Smaller RelTol values are automatically increased to the
default value.

RelTol — Relative error tolerance
100*eps(class(q)) (default) | scalar

Relative error tolerance, specified as the comma-separated pair consisting of 'RelTol'
and a scalar.

quad2d attempts to satisfy ERRBND <= max(AbsTol,RelTol*|Q|). This is absolute
error control when |Q| is sufficiently small and relative error control when |Q| is larger.
A default tolerance value is used when a tolerance is not specified. The default value of
AbsTol is 1e-5. The default value of RelTol is 100*eps(class(Q)). This is also the
minimum value of RelTol. Smaller RelTol values are automatically increased to the
default value.

MaxFunEvals — Maximum number of evaluations of fun
2000 (default) | scalar

Maximum number of evaluations of fun, specified as the comma-separated pair
consisting of 'MaxFunEvals' and a scalar. Use this option to limit the number of times
quad2d evaluates the function fun.

1 Alphabetical List

1-11716

FailurePlot — Toggle to generate failure plot
false or 0 (default) | true or 1

Toggle to generate failure plot, specified as the comma-separated pair consisting of
'FailurePlot' and a numeric or logical 1 (true) or 0 (false). Set FailurePlot to
true or 1 to generate a graphical representation of the regions needing further
refinement when MaxFunEvals is reached. No plot is generated if the integration
succeeds before reaching MaxFunEvals. The failure plot contains (generally) 4-sided
regions that are mapped to rectangles internally. Clusters of small regions indicate the
areas of difficulty in the integration.

Singular — Toggle to transform boundary singularities
true or 1 (default) | false or 0

Toggle to transform boundary singularities, specified as the comma-separated pair
consisting of 'Singular' and a numeric or logical 1 (true) or 0 (false). By default,
quad2d employs transformations to weaken boundary singularities for better
performance. Set 'Singular' to false or 0 to turn these transformations off, which can
provide a performance benefit on some smooth problems.

Output Arguments
q — Calculated integral
scalar

Calculated integral, returned as a scalar.

E — Error bound
scalar

Error bound, returned as a scalar. The error bound provides an upper bound on the error
between the calculated integral q and the exact value of the integral I such that E = | q - I
|.

References
[1] L.F. Shampine, "Matlab Program for Quadrature in 2D." Applied Mathematics and

Computation. Vol. 202, Issue 1, 2008, pp. 266–274.

 quad2d

1-11717

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code issues a warning if the size of the internal storage arrays is not large
enough. If a warning occurs, as a workaround, you can try to divide the region of
integration into pieces and sum the integrals over each piece.

See Also
integral | integral2 | integral3 | quadgk

Topics
“Anonymous Functions”
“Create Function Handle”

Introduced in R2009a

1 Alphabetical List

1-11718

quadgk
Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

Syntax
q = quadgk(fun,a,b)
[q,errbnd] = quadgk(fun,a,b)
[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...)

Description
q = quadgk(fun,a,b) attempts to approximate the integral of a scalar-valued function
fun from a to b using high-order global adaptive quadrature and default error tolerances.
The function y = fun(x) should accept a vector argument x and return a vector result
y, where y is the integrand evaluated at each element of x. fun must be a function
handle. Limits a and b can be -Inf or Inf. If both are finite, they can be complex. If at
least one is complex, the integral is approximated over a straight line path from a to b in
the complex plane.

“Parameterizing Functions” explains how to provide additional parameters to the function
fun, if necessary.

[q,errbnd] = quadgk(fun,a,b) returns an approximate upper bound on the absolute
error, |Q - I|, where I denotes the exact value of the integral.

[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...) performs the
integration with specified values of optional parameters. The available parameters are

Parameter Description
'AbsTol' Absolute error tolerance.

The default value of
'AbsTol' is 1.e-10
(double), 1.e-5 (single).

quadgk attempts to satisfy
errbnd <=
max(AbsTol,RelTol*|Q|).
This is absolute error control
when |Q| is sufficiently small
and relative error control when |

 quadgk

1-11719

Parameter Description
'RelTol' Q| is larger. For pure absolute

error control use 'AbsTol' > 0
and'RelTol'= 0. For pure
relative error control use
'AbsTol' = 0. Except when
using pure absolute error
control, the minimum relative
tolerance is 'RelTol' >=
100*eps(class(Q)).

Relative error tolerance.

The default value of
'RelTol' is 1.e-6 (double),
1.e-4 (single).

'Waypoints' Vector of integration
waypoints.

If fun(x) has discontinuities in
the interval of integration, the
locations should be supplied as a
Waypoints vector. When a, b,
and the waypoints are all real,
only the waypoints between a
and b are used, and they are
used in sorted order. Note that
waypoints are not intended for
singularities in fun(x). Singular
points should be handled by
making them endpoints of
separate integrations and adding
the results.

If a, b, or any entry of the
waypoints vector is complex, the
integration is performed over a
sequence of straight line paths in
the complex plane, from a to the
first waypoint, from the first
waypoint to the second, and so
forth, and finally from the last
waypoint to b.

1 Alphabetical List

1-11720

Parameter Description
'MaxIntervalCount
'

Maximum number of
intervals allowed.

The default value is 650.

The 'MaxIntervalCount'
parameter limits the number of
intervals that quadgk uses at
any one time after the first
iteration. A warning is issued if
quadgk returns early because of
this limit. Routinely increasing
this value is not recommended,
but it may be appropriate when
errbnd is small enough that the
desired accuracy has nearly
been achieved.

Examples
Example 1.1. Integrand with a singularity at an integration end point

Write a function myfun that computes the integrand:

function y = myfun(x)
y = exp(x).*log(x);

Then pass @myfun, a function handle to myfun, to quadgk, along with the limits of
integration, 0 to 1:

q = quadgk(@myfun,0,1)

q =

 -1.3179

Alternatively, you can pass the integrand to quadgk as an anonymous function handle F:

f = (@(x)exp(x).*log(x));
q = quadgk(f,0,1);

Example 1.2. Oscillatory integrand on a semi-infinite interval

Integrate over a semi-infinite interval with specified tolerances, and return the
approximate error bound:

 quadgk

1-11721

f = @(x)x.^5.*exp(-x).*sin(x);
[q,errbnd] = quadgk(f,0,inf,'RelTol',1e-8,'AbsTol',1e-12)

q =

 -15.0000

errbnd =

 9.4386e-009

Example 1.3. Contour integration around a pole

Use Waypoints to integrate around a pole using a piecewise linear contour:

f = @(z)1./(2*z - 1);
q = quadgk(f,-1-i,-1-i,'Waypoints',[1-i,1+i,-1+i])

q =

 0.0000 + 3.1416i

Diagnostics
quadgk may issue one of the following warnings:

'Minimum step size reached' indicates that interval subdivision has produced a
subinterval whose length is on the order of roundoff error in the length of the original
interval. A nonintegrable singularity is possible.

'Reached the limit on the maximum number of intervals in use' indicates
that the integration was terminated before meeting the tolerance requirements and that
continuing the integration would require more than MaxIntervalCount subintervals.
The integral may not exist, or it may be difficult to approximate numerically. Increasing
MaxIntervalCount usually does not help unless the tolerance requirements were nearly
met when the integration was previously terminated.

'Infinite or Not-a-Number function value encountered' indicates a floating
point overflow or division by zero during the evaluation of the integrand in the interior of
the interval.

1 Alphabetical List

1-11722

Tips
• If the interval is infinite, a,∞ , then for the integral of fun(x) to exist, fun(x) must

decay as x approaches infinity, and quadgk requires it to decay rapidly. Special
methods should be used for oscillatory functions on infinite intervals, but quadgk can
be used if fun(x) decays fast enough.

• The quadgk function can integrate functions that are singular at finite endpoints if the
singularities are not too strong. For example, it can integrate functions that behave at
an endpoint c like log|x-c| or |x-c|p for p >= -1/2. If the function is singular at
points inside (a,b), write the integral as a sum of integrals over subintervals with the
singular points as endpoints, compute them with quadgk, and add the results.

Algorithms
quadgk implements adaptive quadrature based on a Gauss-Kronrod pair (15th and 7th

order formulas).

References

[1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,” Journal of
Computational and Applied Mathematics, 211, 2008, pp.131–140.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
integral | integral2 | integral3 | quad2d

 quadgk

1-11723

Topics
“Anonymous Functions”
“Create Function Handle”

1 Alphabetical List

1-11724

quadl
(Not recommended) Numerically evaluate integral, adaptive Lobatto quadrature

Note quadl is not recommended. Use integral instead.

Syntax
q = quadl(fun,a,b)
q = quadl(fun,a,b,tol)
quadl(fun,a,b,tol,trace)
[q,fcnt] = quadl(...)

Description
q = quadl(fun,a,b) approximates the integral of function fun from a to b, to within
an error of 10-6 using recursive adaptive Lobatto quadrature. fun is a function handle. It
accepts a vector x and returns a vector y, the function fun evaluated at each element of
x. Limits a and b must be finite.

“Parameterizing Functions” explains how to provide additional parameters to the function
fun, if necessary.

q = quadl(fun,a,b,tol) uses an absolute error tolerance of tol instead of the
default, which is 1.0e-6. Larger values of tol result in fewer function evaluations and
faster computation, but less accurate results.

quadl(fun,a,b,tol,trace) with non-zero trace shows the values of [fcnt a b-
a q] during the recursion.

[q,fcnt] = quadl(...) returns the number of function evaluations.

Use array operators .*, ./ and .^ in the definition of fun so that it can be evaluated with
a vector argument.

The function quad might be more efficient with low accuracies or nonsmooth integrands.

 quadl

1-11725

The list below contains information to help you determine which quadrature function in
MATLAB to use:

• The quad function might be most efficient for low accuracies with nonsmooth
integrands.

• The quadl function might be more efficient than quad at higher accuracies with
smooth integrands.

• The quadgk function might be most efficient for high accuracies and oscillatory
integrands. It supports infinite intervals and can handle moderate singularities at the
endpoints. It also supports contour integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.
• If the interval is infinite, a,∞ , then for the integral of fun(x) to exist, fun(x) must

decay as x approaches infinity, and quadgk requires it to decay rapidly. Special
methods should be used for oscillatory functions on infinite intervals, but quadgk can
be used if fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at finite endpoints if the
singularities are not too strong. For example, it will integrate functions that behave at
an endpoint c like log|x-c| or |x-c|p for p >= -1/2. If the function is singular at
points inside (a,b), write the integral as a sum of integrals over subintervals with the
singular points as endpoints, compute them with quadgk, and add the results.

Examples
Pass the function handle, @myfun, to quadl:

Q = quadl(@myfun,0,2);

where the function myfun.m is:

function y = myfun(x)
y = 1./(x.^3-2*x-5);

Pass anonymous function handle F to quadl:

F = @(x) 1./(x.^3-2*x-5);
Q = quadl(F,0,2);

1 Alphabetical List

1-11726

Diagnostics
quadl might issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval subdivision has
produced a subinterval whose length is on the order of roundoff error in the length of the
original interval. A nonintegrable singularity is possible.

'Maximum function count exceeded' indicates that the integrand has been
evaluated more than 10,000 times. A nonintegrable singularity is likely.

'Infinite or Not-a-Number function value encountered' indicates a floating
point overflow or division by zero during the evaluation of the integrand in the interior of
the interval.

Algorithms
quadl implements a high order method using an adaptive Gauss/Lobatto quadrature rule.

References
[1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,” BIT, Vol. 40, 2000, pp.

84-101. This document is also available at https://www.inf.ethz.ch/
personal/gander.

See Also
dblquad | integral | integral2 | integral3 | quad | quad2d | quadgk |
triplequad

Topics
“Anonymous Functions”
“Create Function Handle”

Introduced before R2006a

 quadl

1-11727

https://www.inf.ethz.ch/personal/gander
https://www.inf.ethz.ch/personal/gander

quadv
(Not recommended) Vectorized quadrature

Note quadv is not recommended. Use integral with the 'ArrayValued' option
instead.

Syntax
Q = quadv(fun,a,b)
Q = quadv(fun,a,b,tol)
Q = quadv(fun,a,b,tol,trace)
[Q,fcnt] = quadv(...)

Description
Q = quadv(fun,a,b) approximates the integral of the complex array-valued function
fun from a to b to within an error of 1.e-6 using recursive adaptive Simpson
quadrature. fun is a function handle. The function Y = fun(x) should accept a scalar
argument x and return an array result Y, whose components are the integrands evaluated
at x. Limits a and b must be finite.

“Parameterizing Functions” explains how to provide addition parameters to the function
fun, if necessary.

Q = quadv(fun,a,b,tol) uses the absolute error tolerance tol for all the integrals
instead of the default, which is 1.e-6.

Note The same tolerance is used for all components, so the results obtained with quadv
are usually not the same as those obtained with quad on the individual components.

Q = quadv(fun,a,b,tol,trace) with non-zero trace shows the values of [fcnt a
b-a Q(1)] during the recursion.

[Q,fcnt] = quadv(...) returns the number of function evaluations.

1 Alphabetical List

1-11728

The list below contains information to help you determine which quadrature function in
MATLAB to use:

• The quad function might be most efficient for low accuracies with nonsmooth
integrands.

• The quadl function might be more efficient than quad at higher accuracies with
smooth integrands.

• The quadgk function might be most efficient for high accuracies and oscillatory
integrands. It supports infinite intervals and can handle moderate singularities at the
endpoints. It also supports contour integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.
• If the interval is infinite, a,∞ , then for the integral of fun(x) to exist, fun(x) must

decay as x approaches infinity, and quadgk requires it to decay rapidly. Special
methods should be used for oscillatory functions on infinite intervals, but quadgk can
be used if fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at finite endpoints if the
singularities are not too strong. For example, it will integrate functions that behave at
an endpoint c like log|x-c| or |x-c|p for p >= -1/2. If the function is singular at
points inside (a,b), write the integral as a sum of integrals over subintervals with the
singular points as endpoints, compute them with quadgk, and add the results.

Examples
For the parameterized array-valued function myarrayfun, defined by

function Y = myarrayfun(x,n)
Y = 1./((1:n)+x);

the following command integrates myarrayfun, for the parameter value n = 10 between
a = 0 and b = 1:

Qv = quadv(@(x)myarrayfun(x,10),0,1);

The resulting array Qv has 10 elements estimating Q(k) = log((k+1)./(k)), for k =
1:10.

The entries in Qv are slightly different than if you compute the integrals using quad in a
loop:

 quadv

1-11729

for k = 1:10
 Qs(k) = quadv(@(x)myscalarfun(x,k),0,1);
end

where myscalarfun is:

function y = myscalarfun(x,k)
y = 1./(k+x);

See Also
dblquad | integral | integral2 | integral3 | quad | quad2d | quadgk | quadl |
triplequad

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-11730

matlab.unittest.qualifications Package
Summary of classes in MATLAB Qualifications Interface

Description
Qualifications are methods for testing values and responding to failures. Qualification
failures might or might not correspond to a test failure, and they might or might not
continue execution in the test when one is encountered. To determine which qualification
to use, see “Types of Qualifications”.

Classes

Qualification Classes
matlab.unittest.qualifications.Assertable Qualification to validate preconditions of

a test
matlab.unittest.qualifications.Assumable Qualification to filter test content
matlab.unittest.qualifications.FatalAssertable Qualification to abort test execution
matlab.unittest.qualifications.Verifiable Qualification to produce soft failure

conditions

Event Data Classes
matlab.unittest.qualifications.ExceptionEventData Event data for ExceptionThrown

event listeners
matlab.unittest.qualifications.QualificationEventData Event data for qualification event

listeners

Exception Handling Classes
matlab.unittest.qualifications.AssertionFailedException Exception used for

assertion failures
matlab.unittest.qualifications.AssumptionFailedException Exception used for

assumption failures
matlab.unittest.qualifications.FatalAssertionFailedException Exception used for fatal

assertion failures

 matlab.unittest.qualifications Package

1-11731

See Also

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11732

matlab.unittest.qualifications.Assertable
class
Package: matlab.unittest.qualifications

Qualification to validate preconditions of a test

Description
The Assertable class provides a qualification to validate preconditions of a test. Apart
from actions performed for failures, the Assertable class works the same as other
matlab.unittest qualifications.

Upon an assertion failure, the Assertable class throws an
AssertionFailedException to inform the testing framework of the failure. This is
most useful when a failure at the assertion point renders the rest of the current test
method invalid, yet does not prevent proper execution of other test methods. Often, you
use assertions to ensure that preconditions of the current test are not violated or that
fixtures are set up correctly. Make sure the test content is “Exception Safe” on page 1-
11739. If you cannot make the fixture teardown exception safe or if you cannot recover it
after failure, use fatal assertions instead.

Use assertions to allow remaining test methods to receive coverage when preconditions
are violated in a test and all fixture states are restorable. Assertions also reduce the noise
level of failures by not performing later verifications that fail due the precondition
failures. In the event of a failure, however, the test framework marks the full content of
the test method that failed as incomplete. Therefore, if the failure does not affect the
preconditions of the test or cause problems with fixture setup or teardown, use
verifications, which give the added information that the full test content was run.

 matlab.unittest.qualifications.Assertable class

1-11733

Methods
assertClass Assert exact class of specified value
assertEmpty Assert value is empty
assertEqual Assert value is equal to specified value
assertError Assert function throws specified exception
assertFail Produce unconditional assertion failure
assertFalse Assert value is false
assertGreaterThan Assert value is greater than specified value
assertGreaterThanOrEqual Assert value is greater than or equal to specified value
assertInstanceOf Assert value is object of specified type
assertLength Assert value has specified length
assertLessThan Assert value is less than specified value
assertLessThanOrEqual Assert value is less than or equal to specified value
assertMatches Assert string matches specified regular expression
assertNotEmpty Assert value is not empty
assertNotEqual Assert value is not equal to specified value
assertNotSameHandle Assert value is not handle to specified instance
assertNumElements Assert value has specified element count
assertReturnsTrue Assert function returns true when evaluated
assertSameHandle Assert two values are handles to same instance
assertSize Assert value has specified size
assertSubstring Assert string contains specified string
assertThat Assert that value meets specified constraint
assertTrue Assert value is true
assertWarning Assert function issues specified warning
assertWarningFree Assert function issues no warnings

1 Alphabetical List

1-11734

Events
AssertionFailed Triggered upon failing assertion. A

QualificationEventData object is
passed to listener callback functions.

AssertionPassed Triggered upon passing assertion. A
QualificationEventData object is
passed to listener callback functions.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Test for Preconditions Using Assertions

Use assertable qualifications to test for preconditions. This example will create a test case
to write a polynomial to a MAT-file.

Create DocPolynomSaveLoadTest Test Case. Refer to the following
DocPolynomSaveLoadTest test case in the subsequent steps in this example. The steps
highlight specific code in the testSaveLoad function; the code statements are not
intended to be executed outside the context of the class definition file.

DocPolynomSaveLoadTest Class Definition File

classdef DocPolynomSaveLoadTest < matlab.unittest.TestCase

 methods (TestClassSetup)
 function addDocPolynomClassToPath(testCase)
 origPath = path;
 testCase.addTeardown(@path, origPath);
 addpath(fullfile(matlabroot, ...
 'help', 'techdoc', 'matlab_oop', 'examples'));
 end
 end

 matlab.unittest.qualifications.Assertable class

1-11735

 methods (Test)
 function testSaveLoad(testCase)

 import matlab.unittest.diagnostics.Diagnostic;

 %% Phase 1: Setup
 % Create a temporary working folder
 tempFolder = tempname;
 [success, message] = mkdir(tempFolder);
 testCase.assertTrue(success, ...
 Diagnostic.join('Could not create temporary folder.',...
 message));
 testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(...
 tempFolder));

 % Change to the temporay folder and register the
 % teardown, which restores the original folder
 origFolder = pwd;
 testCase.addTeardown(@cd, origFolder);
 cd(tempFolder);

 %% Phase 2: Exercise
 % Save the instance to a mat file.
 p = DocPolynom([1, 0, 1]);
 save('DocPolynomFile', 'p');

 % Validate Precondition. Save resulted in valid .mat file
 testCase.assertEqual(exist('DocPolynomFile.mat','file'),...
 2, Diagnostic.join(...
 'mat file was not saved correctly.',@() dir(pwd)));

 loaded = load('DocPolynomFile');

 %% Phase 3: Verify
 testCase.verifyEqual(loaded.p, p,...
 'Loaded polynom did not equal original polynom.');

 %% Phase 4: Teardown
 % Done inline via calls to addTeardown at the points
 % at which the state was changed.

1 Alphabetical List

1-11736

 end
 end

 methods(Access=private)
 function cleanUpTemporaryFolder(testCase,tempFolder)
 % Clean up the temporary folder and fatally assert
 % that it was correctly cleaned up.

 import matlab.unittest.diagnostics.Diagnostic;

 [success, message] = rmdir(tempFolder, 's');
 testCase.fatalAssertTrue(success, ...
 Diagnostic.join('Could not remove temporary folder.',...
 message));
 end
 end

end

To execute the MATLAB commands in “Run DocPolynomSaveLoadTest Test Case”, add the
DocPolynomSaveLoadTest.m file to a folder on your MATLAB path.

The testSaveLoad function consists of the following phases:

• Phase 1: Setup — Create and verify precondition code.
• Phase 2: Exercise — Create a DocPolynom object and save it to a MAT-file.
• Phase 3: Verify — Test that object was successfully saved.
• Phase 4: Teardown — Execute teardown code.

Define phase 1 precondition. For this test, use a temporary folder for creating a
DocPolynom object. The precondition for continuing with this test is that the following
commands execute successfully.

tempFolder = tempname;
[success, message] = mkdir(tempFolder);

Test the results of the mkdir function. Use the assertTrue method to test the mkdir
success argument for errors. If an assertion occurs, the remainder of the
testSaveLoad test method is invalid, and the test is marked Incomplete.

 matlab.unittest.qualifications.Assertable class

1-11737

testCase.assertTrue(success, ...
 Diagnostic.join('Could not create the temporary folder.', ...
 message))

If the mkdir function fails, MATLAB displays the diagnostic message, Could not
create the temporary folder, as well as the contents of the mkdir message
argument.

Add teardown fixture code. Creating a temporary folder is setup code, which requires a
corresponding call to the rmdir function to restore MATLAB to the original state. Use the
addTeardown method to ensure the teardown code executes even when an exception is
thrown in the middle of the test method. This makes the test Exception Safe.

testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(tempFolder))

Place teardown code in the helper function. Although the addTeardown statement occurs
in the same code block as the mkdir setup statement, the cleanUpTemporaryFolder
code is executed in phase 4 of the test method.

In the DocPolynomSaveLoadTest test case, the helper function,
cleanUpTemporaryFolder, executes the rmdir function.

Define the precondition for creating valid MAT-File. A precondition for verifying that the
DocPolynom object was correctly saved and loaded is that the MAT-file,
DocPolynomFile.mat, was successfully created. The following code in the Phase 2:
Exercise block tests this condition. If an assertion occurs, the remainder of the
testSaveLoad test method is invalid, and the test is marked Failed and Incomplete.

 testCase.assertEqual(exist('DocPolynomFile.mat','file'), 2, ...
 Diagnostic.join('The mat file was not saved correctly.', ...
 @() dir(pwd)))

If the file was not created, MATLAB displays the diagnostic message, The mat file
was not saved correctly, as well as the contents of the temporary folder.

Run DocPolynomSaveLoadTest Test Case.

tc = DocPolynomSaveLoadTest;
run(tc);

Running DocPolynomSaveLoadTest
.

1 Alphabetical List

1-11738

Done DocPolynomSaveLoadTest

Definitions

Exception Safe
Test content is exception safe when all fixture teardown is performed with addTeardown
or through the appropriate object destructors when a failure occurs. This ensures that the
failure does not affect later testing due to stale fixtures.

This code is not exception safe. After an assertion failure, the test framework does not
close the figure.

% Not exception safe
f = figure;
testCase.assertEqual(actual, expected);
close(f);

This code is exception safe because the test framework closes the figure in all cases.

% Exception safe
f = figure;
testCase.addTeardown(@close, f);
testCase.assertEqual(actual, expected);

However, tearing down a fixture using addTeardown does not guarantee code is
exception safe. This code shows a failure in assertEqual.

% Not exception safe
f = figure;
testCase.assertEqual(actual, expected);
testCase.addTeardown(@close, f);

See Also
Assumable | FatalAssertable | QualificationEventData | TestCase |
Verifiable | matlab.unittest.qualifications

 matlab.unittest.qualifications.Assertable class

1-11739

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11740

assertClass
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert exact class of specified value

Syntax
assertClass(assertable,actual,className)
assertClass(assertable,actual,metaClass)
assertClass(___ ,diagnostic)

Description
assertClass(assertable,actual,className) asserts that actual is a MATLAB
value whose class is the class specified by className.

assertClass(assertable,actual,metaClass) asserts that actual is a MATLAB
value whose class is the class specified by the meta.class instance metaClass. The
instance must be an exact class match. See assertInstanceOf to assert inclusion in a
class hierarchy.

assertClass(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

 assertClass

1-11741

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyClass, and replace calls to verifyClass with assertClass.

Tips
• The method is functionally equivalent to:

import matlab.unittest.constraints.IsOfClass;
assertable.assertThat(actual, IsOfClass(className));
assertable.assertThat(actual, IsOfClass(metaClass));

There exists more functionality when using the IsOfClass constraint directly via
assertThat.

1 Alphabetical List

1-11742

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertInstanceOf | assertThat

Topics
“Types of Qualifications”

Introduced in R2013a

 assertClass

1-11743

assertEmpty
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is empty

Syntax
assertEmpty(assertable,actual)
assertEmpty(assertable,actual,diagnostic)

Description
assertEmpty(assertable,actual) asserts that actual is an empty MATLAB value.

assertEmpty(assertable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

1 Alphabetical List

1-11744

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyEmpty, and replace calls to verifyEmpty with assertEmpty.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assertable.assertThat(actual, IsEmpty());

This method is a convenience method. There exists more functionality when using the
IsEmpty constraint directly via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort

 assertEmpty

1-11745

testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertNotEmpty | assertThat | isempty

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11746

assertEqual
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is equal to specified value

Syntax
assertEqual(assertable,actual,expected)
assertEqual(___ ,Name,Value)
assertEqual(___ ,diagnostic)

Description
assertEqual(assertable,actual,expected) asserts that actual is strictly equal
to expected.

assertEqual(___ ,Name,Value) asserts equality with additional options specified by
one or more Name,Value pair arguments.

assertEqual(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

 assertEqual

1-11747

expected

Expected value.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AbsTol

Absolute tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

For an absolute tolerance to be satisfied, abs(expected-actual) <= absTol must be
true.

Default:

RelTol

Relative tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

1 Alphabetical List

1-11748

For a relative tolerance to be satisfied, abs(expected-actual) <=
relTol.*abs(expected) must be true.

Default:

Examples
See examples for verifyEqual, and replace calls to verifyEqual with assertEqual.

Tips
• This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
assertable.assertThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
assertable.assertThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
assertable.assertThat(actual, IsEqualTo(expected, ...
 'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
assertable.assertThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)));

There exists more functionality when using the IsEqualTo, RelativeTolerance,
and IsEqualTo constraints directly via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

 assertEqual

1-11749

completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertNotEqual | assertThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11750

assertError
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert function throws specified exception

Syntax
assertError(assertable,actual,identifier)
assertError(assertable,actual,metaClass)
assertError(___ ,diagnostic)
[output1,...,outputN] = assertError(___)

Description
assertError(assertable,actual,identifier) asserts that actual is a function
handle that throws an exception with an error identifier that is equal to identifier.

assertError(assertable,actual,metaClass) asserts that actual is a function
handle that throws an exception whose type is defined by the meta.class instance
specified in metaClass. This method does not require the instance to be an exact class
match, but rather it must be in the specified class hierarchy, and that hierarchy must
include the MException class.

assertError(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

[output1,...,outputN] = assertError(___) returns multiple output arguments
from the invocation of the function handle actual. Use this syntax to control the number
of output arguments requested from the function handle. If the function handle errors, all
outputs are of type missing. Otherwise, output1,...,outputN are output values from
actual. You can use this syntax with any of the input arguments of the previous
syntaxes.

 assertError

1-11751

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

identifier

Error identifier, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyError, and replace calls to verifyError with assertError.

1 Alphabetical List

1-11752

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
assertable.assertThat(actual, Throws(identifier));
assertable.assertThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
MException | assertThat | assertWarning | error

Topics
“Types of Qualifications”

 assertError

1-11753

Introduced in R2013a

1 Alphabetical List

1-11754

assertFail
Produce unconditional assertion failure

Syntax
assertFail(assertable)
assertFail(assertable,diagnostic)

Description
assertFail(assertable) produces an unconditional assertion failure when
encountered.

assertFail(assertable,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

 assertFail

1-11755

Examples
See examples for verifyFail, and replace calls to verifyFail with assertFail.

Tips
• Use assertion qualifications when the failure condition invalidates the remainder of

the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11756

assertFalse
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is false

Syntax
assertFalse(assertable,actual)
assertFalse(assertable,actual,diagnostic)

Description
assertFalse(assertable,actual) asserts that actual is a scalar logical with the
value of false.

assertFalse(assertable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 assertFalse

1-11757

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
For examples, see verifyFalse, and replace calls to verifyFalse with assertFalse.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

false. Therefore, entities such as empty arrays, false valued arrays, and zero doubles
produce failures when used in this method, despite these entities exhibiting "false-
like" behavior such as bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
assertable.assertThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint directly via
assertThat.

• Unlike assertTrue, this method may create a new constraint for each call. For
performance critical uses, consider using assertTrue.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11758

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertThat | assertTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 assertFalse

1-11759

assertGreaterThan
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is greater than specified value

Syntax
assertGreaterThan(assertable,actual,floor)
assertGreaterThan(assertable,actual,floor,diagnostic)

Description
assertGreaterThan(assertable,actual,floor) asserts that all elements of
actual are greater than all the elements of floor.

assertGreaterThan(assertable,actual,floor,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

floor

Minimum value, exclusive.

1 Alphabetical List

1-11760

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyGreaterThan, and replace calls to verifyGreaterThan with
assertGreaterThan.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThan;
assertable.assertThat(actual, IsGreaterThan(floor));

There exists more functionality when using the IsGreaterThan constraint directly
via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assertGreaterThan

1-11761

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertGreaterThanOrEqual | assertLessThan | assertLessThanOrEqual |
assertThat | gt | matlab.unittest.constraints.IsGreaterThan |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11762

assertGreaterThanOrEqual
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is greater than or equal to specified value

Syntax
assertGreaterThanOrEqual(assertable,actual,floor)
assertGreaterThanOrEqual(assertable,actual,floor,diagnostic)

Description
assertGreaterThanOrEqual(assertable,actual,floor) asserts that all elements
of actual are greater than or equal to all the elements of floor.

assertGreaterThanOrEqual(assertable,actual,floor,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

floor

Minimum value.

 assertGreaterThanOrEqual

1-11763

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyGreaterThanOrEqual, and replace calls to
verifyGreaterThanOrEqual with assertGreaterThanOrEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
assertable.assertThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the IsGreaterThanOrEqualTo
constraint directly via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11764

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertGreaterThan | assertLessThan | assertLessThanOrEqual | assertThat |
ge | matlab.unittest.constraints.IsGreaterThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

 assertGreaterThanOrEqual

1-11765

assertInstanceOf
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is object of specified type

Syntax
assertInstanceOf(assertable,actual,className)
assertInstanceOf(assertable,actual,metaClass)
assertInstanceOf(___ ,diagnostic)

Description
assertInstanceOf(assertable,actual,className) asserts that actual is a
MATLAB value whose class is the class specified by className.

assertInstanceOf(assertable,actual,metaClass) asserts that actual is a
MATLAB value whose class is the class specified by the meta.class instance
metaClass.

assertInstanceOf(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

1 Alphabetical List

1-11766

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyInstanceOf, and replace calls to verifyInstanceOf with
assertInstanceOf.

Tips
• This method is functionally equivalent to:

assertable.assertThat(actual, IsInstanceOf(className));
assertable.assertThat(actual, IsInstanceOf(metaClass));

There exists more functionality when using the IsInstanceOf constraint directly via
assertThat.

 assertInstanceOf

1-11767

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertClass | assertThat | isa

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11768

assertLength
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value has specified length

Syntax
assertLength(assertable,actual,expectedLength)
assertLength(assertable,actual,expectedLength,diagnostic)

Description
assertLength(assertable,actual,expectedLength) that actual is a MATLAB
array whose length is expectedLength.

assertLength(assertable,actual,expectedLength,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

expectedLength

The length of an array is defined as the largest dimension of that array.

 assertLength

1-11769

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLength, and replace calls to verifyLength with
assertLength.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
assertable.assertThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11770

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertNumElements | assertSize | assertThat | length

Topics
“Types of Qualifications”

Introduced in R2013a

 assertLength

1-11771

assertLessThan
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is less than specified value

Syntax
assertLessThan(assertable,actual,ceiling)
assertLessThan(assertable,actual,ceiling,diagnostic)

Description
assertLessThan(assertable,actual,ceiling) asserts that all elements of actual
are less than all the elements of ceiling.

assertLessThan(assertable,actual,ceiling,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling unless either one is scalar,
at which point scalar expansion occurs.

Default:

ceiling

Maximum value, exclusive.

1 Alphabetical List

1-11772

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLessThan, and replace calls to LessThan with
assertLessThan.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
assertable.assertThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assertLessThan

1-11773

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertGreaterThan | assertGreaterThanOrEqual | assertLessThanOrEqual |
assertThat | lt | matlab.unittest.constraints.IsLessThan |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11774

assertLessThanOrEqual
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is less than or equal to specified value

Syntax
assertLessThanOrEqual(assertable,actual,ceiling)
assertLessThanOrEqual(assertable,actual,ceiling,diagnostic)

Description
assertLessThanOrEqual(assertable,actual,ceiling) asserts that all elements
of actual are less than or equal to all the elements of ceiling.

assertLessThanOrEqual(assertable,actual,ceiling,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling unless either one is scalar,
at which point scalar expansion occurs.

Default:

ceiling

Maximum value.

 assertLessThanOrEqual

1-11775

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLessThanOrEqual, and replace calls to
verifyLessThanOrEqual with assertLessThanOrEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
assertable.assertThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the IsLessThanOrEqualTo constraint
directly via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11776

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertGreaterThan | assertGreaterThanOrEqual | assertLessThan |
assertThat | le | matlab.unittest.constraints.IsLessThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

 assertLessThanOrEqual

1-11777

assertMatches
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert string matches specified regular expression

Syntax
assertMatches(assertable,actual,expression)
assertMatches(assertable,actual,expression,diagnostic)

Description
assertMatches(assertable,actual,expression) asserts that actual is a string
scalar or character vector that matches the regular expression defined by expression.

assertMatches(assertable,actual,expression,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

expression

The value to match, specified as a regular expression.

1 Alphabetical List

1-11778

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyMatches, and replace calls to verifyMatches with
assertMatches.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
assertable.assertThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assertMatches

1-11779

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertSubstring | assertThat | regexp

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11780

assertNotEmpty
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is not empty

Syntax
assertNotEmpty(assertable,actual)
assertNotEmpty(assertable,actual,diagnostic)

Description
assertNotEmpty(assertable,actual) asserts that actual is a non-empty MATLAB
value.

assertNotEmpty(assertable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 assertNotEmpty

1-11781

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotEmpty, and replace calls to verifyNotEmpty with
assertNotEmpty.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assertable.assertThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture

1 Alphabetical List

1-11782

teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertEmpty | assertThat | isempty

Topics
“Types of Qualifications”

Introduced in R2013a

 assertNotEmpty

1-11783

assertNotEqual
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is not equal to specified value

Syntax
assertNotEqual(assertable,actual,notExpected)
assertNotEqual(assertable,actual,notExpected,diagnostic)

Description
assertNotEqual(assertable,actual,notExpected) asserts that actual is not
equal to notExpected.

assertNotEqual(assertable,actual,notExpected,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

notExpected

Value to compare.

1 Alphabetical List

1-11784

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotEqual, and replace calls to verifyNotEqual with
assertNotEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
assertable.assertThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assertNotEqual

1-11785

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertEqual | assertThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11786

assertNotSameHandle
Class: matlab.unittest.TestCase
Package: matlab.unittest

Assert value is not handle to specified instance

Syntax
assertNotSameHandle(assertable,actual,notExpectedHandle)
assertNotSameHandle(assertable,actual,notExpectedHandle,diagnostic)

Description
assertNotSameHandle(assertable,actual,notExpectedHandle) asserts that
actual is a different size and/or does not contain the same instances as the
notExpectedHandle handle array.

assertNotSameHandle(assertable,actual,notExpectedHandle,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

notExpectedHandle

The handle array to compare.

 assertNotSameHandle

1-11787

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotSameHandle, and replace calls to verifyNotSameHandle
with assertNotSameHandle.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assertable.assertThat(actual, ~IsSameHandleAs(notExpectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11788

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertSameHandle | assertThat

Topics
“Types of Qualifications”

Introduced in R2013a

 assertNotSameHandle

1-11789

assertNumElements
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value has specified element count

Syntax
assertNumElements(assertable,actual,expectedElementCount)
assertNumElements(assertable,actual,expectedElementCount,diagnostic)

Description
assertNumElements(assertable,actual,expectedElementCount) asserts that
actual is a MATLAB array with expectedElementCount number of elements.

assertNumElements(assertable,actual,expectedElementCount,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

expectedElementCount

The expected number of elements in the array.

1 Alphabetical List

1-11790

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNumElements, and replace calls to verifyNumElements with
assertNumElements.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
assertable.assertThat(actual, HasElementCount(expectedElementCount));

There exists more functionality when using the HasElementCount constraint directly
via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assertNumElements

1-11791

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertLength | assertSize | assertThat | numel

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11792

assertReturnsTrue
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert function returns true when evaluated

Syntax
assertReturnsTrue(assertable,actual)
assertReturnsTrue(assertable,actual,diagnostic)

Description
assertReturnsTrue(assertable,actual) asserts that actual is a function handle
that returns a scalar logical whose value is true.

assertReturnsTrue(assertable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The function handle to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 assertReturnsTrue

1-11793

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyReturnsTrue, and replace calls to verifyReturnsTrue with
assertReturnsTrue.

Tips
• It is a shortcut for quick custom comparison functionality that can be defined quickly,

and possibly inline. It can be preferable over simply evaluating the function directly
and using assertTrue because the function handle will be shown in the diagnostics,
thus providing more insight into the failure condition which is lost when using
assertTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
assertable.assertThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11794

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertThat | assertTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 assertReturnsTrue

1-11795

assertSameHandle
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert two values are handles to same instance

Syntax
assertSameHandle(assertable,actual,expectedHandle)
assertSameHandle(assertable,actual,expectedHandle,diagnostic)

Description
assertSameHandle(assertable,actual,expectedHandle) asserts that actual is
the same size and contains the same instances as the expectedHandle handle array.

assertSameHandle(assertable,actual,expectedHandle,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

expectedHandle

The expected handle array.

1 Alphabetical List

1-11796

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySameHandle, and replace calls to verifySameHandle with
assertSameHandle.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assertable.assertThat(actual, IsSameHandleAs(expectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

 assertSameHandle

1-11797

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertNotSameHandle | assertThat | handle

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11798

assertSize
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value has specified size

Syntax
assertSize(assertable,actual,expectedSize)
assertSize(assertable,actual,expectedSize,diagnostic)

Description
assertSize(assertable,actual,expectedSize) asserts that actual is a MATLAB
array whose size is expectedSize.

assertSize(assertable,actual,expectedSize,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

expectedSize

The expected sizes of each dimension the array.

 assertSize

1-11799

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySize, and replace calls to verifySize with assertSize.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
assertable.assertThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint directly via
assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11800

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertLength | assertNumElements | assertThat | size

Topics
“Types of Qualifications”

Introduced in R2013a

 assertSize

1-11801

assertSubstring
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert string contains specified string

Syntax
assertSubstring(assertable,actual,substring)
assertSubstring(assertable,actual,substring,diagnostic)

Description
assertSubstring(assertable,actual,substring) asserts that actual is a string
scalar or character vector that contains substring.

assertSubstring(assertable,actual,substring,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

substring

The value to match, specified as a string scalar or character vector.

1 Alphabetical List

1-11802

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySubstring, and replace calls to verifySubstring with
assertSubstring.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
assertable.assertThat(actual, ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring constraint
directly via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assertSubstring

1-11803

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertMatches | assertThat | strfind

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11804

assertThat
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert that value meets specified constraint

Syntax
assertThat(assertable,actual,constraint)
assertThat(assertable,actual,constraint,diagnostic)

Description
assertThat(assertable,actual,constraint) asserts that actual is a value that
satisfies the constraint provided.

If the constraint is not satisfied, an assertion failure is produced utilizing only the
framework diagnostic generated by the constraint.

assertThat(assertable,actual,constraint,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

When using this signature, both the diagnostic information contained within diagnostic
is used in addition to the diagnostic information provided by the constraint.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

 assertThat

1-11805

Default:

constraint

Constraint that the actual value must satisfy to pass the verification, specified as a
matlab.unittest.constraints instance.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyThat, and replace calls to verifyThat with assertThat.

Tips
• Use assertion qualifications when the failure condition invalidates the remainder of

the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

1 Alphabetical List

1-11806

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also

Topics
“Types of Qualifications”

Introduced in R2013a

 assertThat

1-11807

assertTrue
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert value is true

Syntax
assertTrue(assertable,actual)
assertTrue(assertable,actual,diagnostic)

Description
assertTrue(assertable,actual) asserts that actual is a scalar logical with the
value of true.

assertTrue(assertable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

1 Alphabetical List

1-11808

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyTrue, and replace calls to verifyTrue with assertTrue.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

true. Therefore, entities such as true valued arrays and non-zero doubles produce
qualification failures when used in this method, despite these entities exhibiting "true-
like" behavior such as triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
assertable.assertThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint directly via
assertThat.

Use of this method for performance benefits can come at the expense of less
diagnostic information, and may not provide the same level of strictness adhered to by
other constraints such as IsEqualTo. A similar approach that is generally less
performant but can provide slightly better diagnostic information is the use of
assertReturnsTrue, which at least shows the display of the function evaluated to
generate the failing result.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

 assertTrue

1-11809

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertFalse | assertReturnsTrue | assertThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11810

assertWarning
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert function issues specified warning

Syntax
assertWarning(assertable,actual,warningID)
assertWarning(assertable,actual,warningID,diagnostic)
[output1,...,outputN] = assertWarning(___)

Description
assertWarning(assertable,actual,warningID) asserts that actual issues a
warning with the identifier warningID.

assertWarning(assertable,actual,warningID,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = assertWarning(___) also returns the output
arguments output1,...,outputN that are produced when invoking actual.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The function handle to test.

Default:

 assertWarning

1-11811

warningID

Warning ID, specified as a character vector.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples
See examples for verifyWarning, and replace calls to verifyWarning with
assertWarning.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
assertable.assertThat(actual, IssuesWarnings({warningID}));

There exists more functionality when using the IssuesWarnings constraint directly
via assertThat.

1 Alphabetical List

1-11812

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertError | assertThat | assertWarningFree | warning

Topics
“Types of Qualifications”

Introduced in R2013a

 assertWarning

1-11813

assertWarningFree
Class: matlab.unittest.qualifications.Assertable
Package: matlab.unittest.qualifications

Assert function issues no warnings

Syntax
assertWarningFree(assertable,actual)
assertWarningFree(assertable,actual,diagnostic)
[output1,...,outputN] = assertWarningFree(___)

Description
assertWarningFree(assertable,actual) asserts that actual is a function handle
that issues no warnings.

assertWarningFree(assertable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

[output1,...,outputN] = assertWarningFree(___) also returns the output
arguments output1,...,outputN that are produced when invoking actual.

Input Arguments
assertable

The matlab.unittest.TestCase instance which is used to pass or fail the assertion in
conjunction with the test running framework.

actual

The function handle to test.

Default:

1 Alphabetical List

1-11814

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples
See examples for verifyWarningFree, and replace calls to verifyWarningFree with
assertWarningFree.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
assertable.assertThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings constraint
directly via assertThat.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed and
incomplete. Alternatively,

 assertWarningFree

1-11815

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
assertThat | assertWarning | warning

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11816

matlab.unittest.qualifications.AssertionFaile
dException class
Package: matlab.unittest.qualifications

Exception used for assertion failures

Description
The AssertionFailedException class provides an exception used for assertion
failures. This class is used exclusively by the Assertable qualification type.

See Also
Assertable | MException

 matlab.unittest.qualifications.AssertionFailedException class

1-11817

matlab.unittest.qualifications.Assumable
class
Package: matlab.unittest.qualifications

Qualification to filter test content

Description
The Assumable class provides a qualification to filter test content. Apart from actions
performed in the event of failures, the Assumable class works the same as other
matlab.unittest qualifications.

Upon an assumption failure, the Assumable class informs the testing framework of the
failure by throwing an AssumptionFailedException. The test framework then marks
the test content as filtered and continues testing. Often, assumptions are used to ensure
that the test is run only when certain preconditions are met. However, running the test
without satisfying the preconditions does not produce a test failure. Ensure that the test
content is “Exception Safe” on page 1-11822. If the failure condition is meant to produce
a test failure, use assertions or verifications instead of assumptions.

The attributes specified in the TestCase method definition determine which tests are
filtered. The following behavior occurs when the test framework encounters an
assumption failure inside of a TestCase method:

• If you define the TestCase method using the Test attribute, the framework marks
the entire method as filtered and runs subsequent test methods.

• If you define the TestCase method using the TestMethodSetup or
TestMethodTeardown attributes, the test framework marks the method to run for
that instance as filtered.

• If you define the TestCase method using the TestClassSetup or
TestClassTeardown attributes, the test framework filters the entire TestCase
class.

Filtering test content using assumptions does not produce test failures. Therefore, dead
test code can result. Avoid this by monitoring filtered tests.

1 Alphabetical List

1-11818

Methods
assumeClass Assume exact class of specified value
assumeEmpty Assume value is empty
assumeEqual Assume value is equal to specified value
assumeError Assume function throws specified exception
assumeFail Produce unconditional assumption failure
assumeFalse Assume value is false
assumeGreaterThan Assume value is greater than specified value
assumeGreaterThanOrEqual Assume value is greater than or equal to specified value
assumeInstanceOf Assume value is object of specified type
assumeLength Assume value has specified length
assumeLessThan Assume value is less than specified value
assumeLessThanOrEqual Assume value is less than or equal to specified value
assumeMatches Assume string matches specified regular expression
assumeNotEmpty Assume value is not empty
assumeNotEqual Assume value is not equal to specified value
assumeNotSameHandle Assume value is not handle to specified instance
assumeNumElements Assume value has specified element count
assumeReturnsTrue Assume function returns true when evaluated
assumeSameHandle Assume two values are handles to same instance
assumeSize Assume value has specified size
assumeSubstring Assume string contains specified string
assumeThat Assume value meets specified constraint
assumeTrue Assume value is true
assumeWarning Assume function issues specified warning
assumeWarningFree Assume function issues no warnings

 matlab.unittest.qualifications.Assumable class

1-11819

Events
AssumptionFailed Triggered upon failing assumption. A

QualificationEventData object is
passed to listener callback functions.

AssumptionPassed Triggered upon passing assumption. A
QualificationEventData object is
passed to listener callback functions.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Write TestClassSetup Method Using Assumptions

Assumptions assure that a test runs only when certain preconditions are satisfied and
when such an event should not produce a test failure. When an assumption failure occurs,
the test is marked as filtered.

Create IsSupportedTest test case. Refer to the following IsSupportedTest test case
in the subsequent steps in this example, which highlight specific functions in the file.

IsSupportedTest Class Definition File

classdef IsSupportedTest < matlab.unittest.TestCase
 methods(TestClassSetup)
 function TestPlatform(testcase)
 testcase.assumeFalse(ispc,...
 'Do not run any of these tests on Windows.')
 end
 end
 methods(Test)
 function test1(testcase)
 % write test code here
 end

1 Alphabetical List

1-11820

 end
end

To execute the MATLAB commands in this example, add the IsSupportedTest.m file to
a folder on your MATLAB path.

Write Test to Verify Platform. All tests in this test case must run on UNIX platforms only.
The TestPlatform function uses the assumeFalse method to test if MATLAB is running
on a Windows platform. If it is, the test fails.

function TestPlatform(testcase)
 testcase.assumeFalse(ispc,...
 'Do not run any of these tests on Windows.')
end

Make TestPlatform a TestClassSetup Test. To make the TestPlatform test a
precondition, add it inside the methods (TestClassSetup) block.

Run the test case. Create a test case object and run the tests on a Windows platform.

tc = IsSupportedTest;
res = tc.run;

Running IsSupportedTest

==
All tests in IsSupportedTest were filtered.
 Test Diagnostic: Do not run any of these tests on Windows.
 Details
==

Done IsSupportedTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 IsSupportedTest/test1 X Filtered by assumption.

The test(s) were filtered, and did not run (marked Incomplete).

For more information, click the Details link.

==
An assumption was not met while setting up or tearing down IsSupportedTest.

 matlab.unittest.qualifications.Assumable class

1-11821

As a result, all IsSupportedTest tests were filtered.

 Test Diagnostic:

 Do not run any of these tests on Windows.

 Framework Diagnostic:

 assumeFalse failed.
 --> The value must evaluate to "false".

 Actual Value:
 1

 Stack Information:

 In C:\work\IsSupportedTest.m (IsSupportedTest.TestPlatform) at 4
==

The link to IsSupportedTest.TestPlatform under Stack Information takes you to
the failed assumeFalse method.

Definitions
Exception Safe
Test content is exception safe when all fixture teardown is performed with addTeardown
or through the appropriate object destructors when a failure occurs. This ensures that the
failure does not affect later testing due to stale fixtures.

This code is not exception safe. After an assertion failure, the test framework does not
close the figure.

% Not exception safe
f = figure;
testCase.assumeEqual(actual, expected)
close(f)

This code is exception safe because the test framework closes the figure in all cases.

1 Alphabetical List

1-11822

% Exception safe
f = figure;
testCase.addTeardown(@close, f)
testCase.assumeEqual(actual, expected)

However, tearing down a fixture using addTeardown does not guarantee code is
exception safe. This code shows a failure in assumeEqual.

% Not exception safe
f = figure;
testCase.assumeEqual(actual, expected)
testCase.addTeardown(@close, f)

See Also
Assertable | FatalAssertable | QualificationEventData | TestCase |
Verifiable | matlab.unittest.qualifications

Topics
“Types of Qualifications”
“Dynamically Filtered Tests”

Introduced in R2013a

 matlab.unittest.qualifications.Assumable class

1-11823

assumeClass
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume exact class of specified value

Syntax
assumeClass(assumable,actual,className)
assumeClass(assumable,actual,metaClass)
assumeClass(___ ,diagnostic)

Description
assumeClass(assumable,actual,className) assumes that actual is a MATLAB
value whose class is the class specified by className.

assumeClass(assumable,actual,metaClass) assumes that actual is a MATLAB
value whose class is the class specified by the meta.class instance metaClass. The
instance must be an exact class match. See assumeInstanceOf to assume inclusion in a
class hierarchy.

assumeClass(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

1 Alphabetical List

1-11824

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyClass, and replace calls to verifyClass with assumeClass.

Tips
• The method is functionally equivalent to:

import matlab.unittest.constraints.IsOfClass;
assumable.assumeThat(actual, IsOfClass(className));
assumable.assumeThat(actual, IsOfClass(metaClass));

There exists more functionality when using the IsOfClass constraint directly via
assumeThat.

 assumeClass

1-11825

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeInstanceOf | assumeThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11826

assumeEmpty
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is empty

Syntax
assumeEmpty(assumable,actual)
assumeEmpty(assumable,actual,diagnostic)

Description
assumeEmpty(assumable,actual) assumes that actual is an empty MATLAB value.

assumeEmpty(assumable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 assumeEmpty

1-11827

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyEmpty, and replace calls to verifyEmpty with assumeEmpty.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assumable.assumeThat(actual, IsEmpty());

There exists more functionality when using the IsEmpty constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-11828

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeNotEmpty | assumeThat | isempty

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeEmpty

1-11829

assumeEqual
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is equal to specified value

Syntax
assumeEqual(assumable,actual,expected)
assumeEqual(___ ,Name,Value)
assumeEqual(___ ,diagnostic)

Description
assumeEqual(assumable,actual,expected) assumes that actual is strictly equal
to expected.

assumeEqual(___ ,Name,Value) assumes equality with additional options specified by
one or more Name,Value pair arguments.

assumeEqual(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

1 Alphabetical List

1-11830

expected

Expected value.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AbsTol

Absolute tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

For an absolute tolerance to be satisfied, abs(expected-actual) <= absTol must be
true.

Default:

RelTol

Relative tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

 assumeEqual

1-11831

For a relative tolerance to be satisfied, abs(expected-actual) <=
relTol.*abs(expected) must be true.

Default:

Examples
See examples for verifyEqual, and replace calls to verifyEqual with assumeEqual.

Tips
• This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
assumable.assumeThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
assumable.assumeThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
assumable.assumeThat(actual, IsEqualTo(expected, ...
 'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
assumable.assumeThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)));

There exists more functionality when using the IsEqualTo, RelativeTolerance,
and IsEqualTo constraints directly via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

1 Alphabetical List

1-11832

completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeNotEqual | assumeThat

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeEqual

1-11833

assumeError
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume function throws specified exception

Syntax
assumeError(assumable,actual,identifier)
assumeError(assumable,actual,metaClass)
assumeError(___ ,diagnostic)
[output1,...,outputN] = assumeError(___)

Description
assumeError(assumable,actual,identifier) assumes that actual is a function
handle that throws an exception with an error identifier that is equal to identifier.

assumeError(assumable,actual,metaClass) assumes that actual is a function
handle that throws an exception whose type is defined by the meta.class instance
specified in metaClass. This method does not require the instance to be an exact class
match, but rather it must be in the specified class hierarchy, and that hierarchy must
include the MException class.

assumeError(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

[output1,...,outputN] = assumeError(___) returns multiple output arguments
from the invocation of the function handle actual. Use this syntax to control the number
of output arguments requested from the function handle. If the function handle errors, all
outputs are of type missing. Otherwise, output1,...,outputN are output values from
actual. You can use this syntax with any of the input arguments of the previous
syntaxes.

1 Alphabetical List

1-11834

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

identifier

Error identifier, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyError, and replace calls to verifyError with assumeError.

 assumeError

1-11835

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
assumable.assumeThat(actual, Throws(identifier));
assumable.assumeThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
MException | assumeThat | assumeWarning | error

Topics
“Types of Qualifications”

1 Alphabetical List

1-11836

Introduced in R2013a

 assumeError

1-11837

assumeFail
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Produce unconditional assumption failure

Syntax
assumeFail(assumable)
assumeFail(assumable,diagnostic)

Description
assumeFail(assumable) produces an unconditional assumption failure when
encountered.

assumeFail(assumable,diagnostic)also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle

1 Alphabetical List

1-11838

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyFail, and replace calls to verifyFail with assumeFail.

Tips
• Use assumption qualifications to ensure that the test environment meets preconditions

that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

 assumeFail

1-11839

See Also

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11840

assumeFalse
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is false

Syntax
assumeFalse(assumable,actual)
assumeFalse(assumable,actual,diagnostic)

Description
assumeFalse(assumable,actual) assumes that actual is a scalar logical with the
value of false.

assumeFalse(assumable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 assumeFalse

1-11841

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
For examples, see verifyFalse, and replace calls to verifyFalse with assumeFalse.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

false. Therefore, entities such as empty arrays, false valued arrays, and zero doubles
produce failures when used in this method, despite these entities exhibiting "false-
like" behavior such as bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
assumable.assumeThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint directly via
assumeThat.

• Unlike assumeTrue, this method may create a new constraint for each call. For
performance critical uses, consider using assumeTrue.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11842

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeThat | assumeTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeFalse

1-11843

assumeGreaterThan
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is greater than specified value

Syntax
assumeGreaterThan(assumable,actual,floor)
assumeGreaterThan(assumable,actual,floor,diagnostic)

Description
assumeGreaterThan(assumable,actual,floor) assumes that all elements of
actual are greater than all the elements of floor.

assumeGreaterThan(assumable,actual,floor,diagnostic) also displays the
diagnostic information in diagnostic upon a failure

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

floor

Minimum value, exclusive.

1 Alphabetical List

1-11844

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyGreaterThan, and replace calls to verifyGreaterThan with
assumeGreaterThan.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThan;
assumable.assumeThat(actual, IsGreaterThan(floor));

There exists more functionality when using the IsGreaterThan constraint directly
via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assumeGreaterThan

1-11845

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeGreaterThanOrEqual | assumeLessThan | assumeLessThanOrEqual |
assumeThat | gt | matlab.unittest.constraints.IsGreaterThan |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11846

assumeGreaterThanOrEqual
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is greater than or equal to specified value

Syntax
assumeGreaterThanOrEqual(assumable,actual,floor)
assumeGreaterThanOrEqual(assumable,actual,floor,diagnostic)

Description
assumeGreaterThanOrEqual(assumable,actual,floor) assumes that all elements
of actual are greater than or equal to all the elements of floor.

assumeGreaterThanOrEqual(assumable,actual,floor,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

floor

Minimum value.

 assumeGreaterThanOrEqual

1-11847

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyGreaterThanOrEqual, and replace calls to
verifyGreaterThanOrEqual with assumeGreaterThanOrEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
assumable.assumeThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the IsGreaterThanOrEqualTo
constraint directly via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11848

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeGreaterThan | assumeLessThan | assumeLessThanOrEqual | assumeThat |
ge | matlab.unittest.constraints.IsGreaterThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeGreaterThanOrEqual

1-11849

assumeInstanceOf
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is object of specified type

Syntax
assumeInstanceOf(assumable,actual,className)
assumeInstanceOf(assumable,actual,metaClass)
assumeInstanceOf(___ ,diagnostic)

Description
assumeInstanceOf(assumable,actual,className) assumes that actual is a
MATLAB value whose class is the class specified by className.

assumeInstanceOf(assumable,actual,metaClass) assumes that actual is a
MATLAB value whose class is the class specified by the meta.class instance
metaClass.

assumeInstanceOf(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

1 Alphabetical List

1-11850

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyInstanceOf, and replace calls to verifyInstanceOf with
assumeInstanceOf.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsInstanceOf;
assumable.assumeThat(actual, IsInstanceOf(className));
assumable.assumeThat(actual, IsInstanceOf(metaClass));

 assumeInstanceOf

1-11851

There exists more functionality when using the IsInstanceOf constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeClass | assumeThat | isa

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11852

assumeLength
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value has specified length

Syntax
assumeLength(assumable,actual,expectedLength)
assumeLength(assumable,actual,expectedLength,diagnostic)

Description
assumeLength(assumable,actual,expectedLength) assumes that actual is a
MATLAB array whose length is expectedLength.

assumeLength(assumable,actual,expectedLength,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedLength

The length of an array is defined as the largest dimension of that array.

 assumeLength

1-11853

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLength, and replace calls to verifyLength with
assumeLength.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
assumable.assumeThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11854

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeNumElements | assumeSize | assumeThat | length

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeLength

1-11855

assumeLessThan
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is less than specified value

Syntax
assumeLessThan(assumable,actual,ceiling)
assumeLessThan(assumable,actual,ceiling,diagnostic)

Description
assumeLessThan(assumable,actual,ceiling) assumes that all elements of actual
are less than all the elements of ceiling.

assumeLessThan(assumable,actual,ceiling,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling unless either one is scalar,
at which point scalar expansion occurs.

Default:

ceiling

Maximum value, exclusive.

1 Alphabetical List

1-11856

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLessThan, and replace calls to LessThan with
assumeLessThan.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
assumable.assumeThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assumeLessThan

1-11857

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeGreaterThan | assumeGreaterThanOrEqual | assumeLessThanOrEqual |
assumeThat | lt | matlab.unittest.constraints.IsLessThan |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11858

assumeLessThanOrEqual
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is less than or equal to specified value

Syntax
assumeLessThanOrEqual(assumable,actual,ceiling)
assumeLessThanOrEqual(assumable,actual,ceiling,diagnostic)

Description
assumeLessThanOrEqual(assumable,actual,ceiling) assumes that all elements
of actual are less than or equal to all the elements of ceiling.

assumeLessThanOrEqual(assumable,actual,ceiling,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling unless either one is scalar,
at which point scalar expansion occurs.

Default:

ceiling

Maximum value.

 assumeLessThanOrEqual

1-11859

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLessThanOrEqual, and replace calls to
verifyLessThanOrEqual with assumeLessThanOrEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
assumable.assumeThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the IsLessThanOrEqualTo constraint
directly via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11860

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeGreaterThan | assumeGreaterThanOrEqual | assumeLessThan |
assumeThat | le | matlab.unittest.constraints.IsLessThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeLessThanOrEqual

1-11861

assumeMatches
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume string matches specified regular expression

Syntax
assumeMatches(assumable,actual,expression)
assumeMatches(assumable,actual,expression,diagnostic)

Description
assumeMatches(assumable,actual,expression) assumes that actual is a string
scalar or character vector that matches the regular expression defined by expression.

assumeMatches(assumable,actual,expression,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The string to test.

Default:

expression

The value to match, specified as a regular expression.

1 Alphabetical List

1-11862

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyMatches, and replace calls to verifyMatches with
assumeMatches.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
assumable.assumeThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assumeMatches

1-11863

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeSubstring | assumeThat | regexp

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11864

assumeNotEmpty
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is not empty

Syntax
assumeNotEmpty(assumable,actual)
assumeNotEmpty(assumable,actual,diagnostic)

Description
assumeNotEmpty(assumable,actual) assumes that actual is a non-empty MATLAB
value.

assumeNotEmpty(assumable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 assumeNotEmpty

1-11865

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotEmpty, and replace calls to verifyNotEmpty with
assumeNotEmpty.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assumable.assumeThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-11866

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeEmpty | assumeThat | isempty

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeNotEmpty

1-11867

assumeNotEqual
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is not equal to specified value

Syntax
assumeNotEqual(assumable,actual,notExpected)
assumeNotEqual(assumable,actual,notExpected,diagnostic)

Description
assumeNotEqual(assumable,actual,notExpected) assumes that actual is not
equal to notExpected.

assumeNotEqual(assumable,actual,notExpected,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

notExpected

Value to compare.

1 Alphabetical List

1-11868

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotEqual, and replace calls to verifyNotEqual with
assumeNotEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
assumable.assumeThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assumeNotEqual

1-11869

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeEqual | assumeThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11870

assumeNotSameHandle
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is not handle to specified instance

Syntax
assumeNotSameHandle(assumable,actual,notExpectedHandle)
assumeNotSameHandle(assumable,actual,notExpectedHandle,diagnostic)

Description
assumeNotSameHandle(assumable,actual,notExpectedHandle) assumes that
actual is a different size and/or does not contain the same instances as the
notExpectedHandle handle array.

assumeNotSameHandle(assumable,actual,notExpectedHandle,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

notExpectedHandle

The handle array to compare.

 assumeNotSameHandle

1-11871

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotSameHandle, and replace calls to verifyNotSameHandle
with assumeNotSameHandle.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assumable.assumeThat(actual, ~IsSameHandleAs(notExpectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

1 Alphabetical List

1-11872

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeSameHandle | assumeThat

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeNotSameHandle

1-11873

assumeNumElements
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value has specified element count

Syntax
assumeNumElements(assumable,actual,expectedElementCount)
assumeNumElements(assumable,actual,expectedElementCount,diagnostic)

Description
assumeNumElements(assumable,actual,expectedElementCount) assumes that
actual is a MATLAB array with expectedElementCount number of elements.

assumeNumElements(assumable,actual,expectedElementCount,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedElementCount

The expected number of elements in the array.

1 Alphabetical List

1-11874

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNumElements, and replace calls to verifyNumElements with
assumeNumElements.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
assumable.assumeThat(actual, HasElementCount(expectedElementCount));

There exists more functionality when using the HasElementCount constraint directly
via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assumeNumElements

1-11875

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeLength | assumeSize | assumeThat | numel

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11876

assumeReturnsTrue
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume function returns true when evaluated

Syntax
assumeReturnsTrue(assumable,actual)
assumeReturnsTrue(assumable,actual,diagnostic)

Description
assumeReturnsTrue(assumable,actual) assumes that actual is a function handle
that returns a scalar logical whose value is true.

assumeReturnsTrue(assumable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The function handle to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 assumeReturnsTrue

1-11877

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyReturnsTrue, and replace calls to verifyReturnsTrue with
assumeReturnsTrue.

Tips
• It is a shortcut for quick custom comparison functionality that can be defined quickly,

and possibly inline. It can be preferable over simply evaluating the function directly
and using assumeTrue because the function handle will be shown in the diagnostics,
thus providing more insight into the failure condition which is lost when using
assumeTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
assumable.assumeThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

1 Alphabetical List

1-11878

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeThat | assumeTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeReturnsTrue

1-11879

assumeSameHandle
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume two values are handles to same instance

Syntax
assumeSameHandle(assumable,actual,expectedHandle)
assumeSameHandle(assumable,actual,expectedHandle,diagnostic)

Description
assumeSameHandle(assumable,actual,expectedHandle) assumes that actual is
the same size and contains the same instances as the expectedHandle handle array.

assumeSameHandle(assumable,actual,expectedHandle,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedHandle

The expected handle array.

1 Alphabetical List

1-11880

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySameHandle, and replace calls to verifySameHandle with
assumeSameHandle.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assumable.assumeThat(actual, IsSameHandleAs(expectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

 assumeSameHandle

1-11881

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeNotSameHandle | assumeThat | handle

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11882

assumeSize
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value has specified size

Syntax
assumeSize(assumable,actual,expectedSize)
assumeSize(assumable,actual,expectedSize,diagnostic)

Description
assumeSize(assumable,actual,expectedSize) assumes that actual is a MATLAB
array whose size is expectedSize.

assumeSize(assumable,actual,expectedSize,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedSize

The expected sizes of each dimension the array.

 assumeSize

1-11883

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySize, and replace calls to verifySize with assumeSize.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
assumable.assumeThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint directly via
assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

1 Alphabetical List

1-11884

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeLength | assumeNumElements | assumeThat | size

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeSize

1-11885

assumeSubstring
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume string contains specified string

Syntax
assumeSubstring(assumable,actual,substring)
assumeSubstring(assumable,actual,substring,diagnostic)

Description
assumeSubstring(assumable,actual,substring) assumes that actual is a string
scalar or character vector that contains substring.

assumeSubstring(assumable,actual,substring,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

substring

The value to match, specified as a string scalar or character vector.

1 Alphabetical List

1-11886

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySubstring, and replace calls to verifySubstring with
assumeSubstring.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
assumable.assumeThat(actual, ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring constraint
directly via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or

 assumeSubstring

1-11887

incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeMatches | assumeThat | strfind

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11888

assumeThat
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value meets specified constraint

Syntax
assumeThat(assumable,actual,constraint)
assumeThat(assumable,actual,constraint,diagnostic)

Description
assumeThat(assumable,actual,constraint) assumes that actual is a value that
satisfies the constraint provided.

If the constraint is not satisfied, an assumption failure is produced utilizing only the
framework diagnostic generated by the constraint.

assumeThat(assumable,actual,constraint,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

When using this signature, both the diagnostic information contained within diagnostic
is used in addition to the diagnostic information provided by the constraint.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

 assumeThat

1-11889

Default:

constraint

Constraint that the actual value must satisfy to pass the verification, specified as a
matlab.unittest.constraints instance.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyThat, and replace calls to verifyThat with assumeThat.

Tips
• Use assumption qualifications to ensure that the test environment meets preconditions

that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

1 Alphabetical List

1-11890

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeThat

1-11891

assumeTrue
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume value is true

Syntax
assumeTrue(assumable,actual)
assumeTrue(assumable,actual,diagnostic)

Description
assumeTrue(assumable,actual) assumes that actual is a scalar logical with the
value of true.

assumeTrue(assumable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

1 Alphabetical List

1-11892

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyTrue, and replace calls to verifyTrue with assumeTrue.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

true. Therefore, entities such as true valued arrays and nonzero doubles produce
qualification failures when used in this method, despite these entities exhibiting "true-
like" behavior such as triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
assumable.assumeThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint directly via
assumeThat.

Use of this method for performance benefits can come at the expense of less
diagnostic information, and may not provide the same level of strictness adhered to by
other constraints such as IsEqualTo. A similar approach that is generally less
performant but can provide slightly better diagnostic information is the use of
assumeReturnsTrue, which at least shows the display of the function evaluated to
generate the failing result.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to

 assumeTrue

1-11893

completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeFalse | assumeReturnsTrue | assumeThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11894

assumeWarning
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume function issues specified warning

Syntax
assumeWarning(assumable,actual,warningID)
assumeWarning(assumable,actual,warningID,diagnostic)
[output1,...,outputN] = assumeWarning(___)

Description
assumeWarning(assumable,actual,warningID) assumes that actual issues a
warning with the identifier warningID.

assumeWarning(assumable,actual,warningID,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = assumeWarning(___) also return the output arguments
output1,...,outputN that are produced when invoking actual.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The function handle to test.

Default:

 assumeWarning

1-11895

warningID

Warning ID, specified as a character vector.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples
See examples for verifyWarning, and replace calls to verifyWarning with
assumeWarning.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
assumable.assumeThat(actual, IssuesWarnings({warningID}));

There exists more functionality when using the IssuesWarnings constraint directly
via assumeThat.

1 Alphabetical List

1-11896

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeError | assumeThat | assumeWarningFree | warning

Topics
“Types of Qualifications”

Introduced in R2013a

 assumeWarning

1-11897

assumeWarningFree
Class: matlab.unittest.qualifications.Assumable
Package: matlab.unittest.qualifications

Assume function issues no warnings

Syntax
assumeWarningFree(assumable,actual)
assumeWarningFree(assumable,actual,diagnostic)
[output1,...,outputN] = assumeWarningFree(___)

Description
assumeWarningFree(assumable,actual) assumes that actual is a function handle
that issues no warnings.

assumeWarningFree(assumable,actual,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

[output1,...,outputN] = assumeWarningFree(___) also returns the output
arguments output1,...,outputN that are produced when invoking actual.

Input Arguments
assumable

The matlab.unittest.TestCase instance which is used to pass or fail the assumption
in conjunction with the test running framework.

actual

The function handle to test.

Default:

1 Alphabetical List

1-11898

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples
See examples for verifyWarningFree, and replace calls to verifyWarningFree with
assumeWarningFree.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
assumable.assumeThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings constraint
directly via assumeThat.

• Use assumption qualifications to ensure that the test environment meets preconditions
that otherwise do not result in a test failure. Assumption failures result in filtered
tests, and the testing framework marks the tests as Incomplete. Alternatively,

 assumeWarningFree

1-11899

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
assumeThat | assumeWarning | warning

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11900

matlab.unittest.qualifications.AssumptionFai
ledException class
Package: matlab.unittest.qualifications

Exception used for assumption failures

Description
The AssumptionFailedException class provides an exception used for assumption
failures. This class is used exclusively by the Assumable qualification type.

See Also
Assumable | MException

 matlab.unittest.qualifications.AssumptionFailedException class

1-11901

matlab.unittest.qualifications.ExceptionEven
tData class
Package: matlab.unittest.qualifications

Event data for ExceptionThrown event listeners

Description
The ExceptionEventData class holds event data for ExceptionThrown event
listeners. ExceptionThrown event listeners are callback functions that you register with
the testing framework to listen for the TestRunner to encounter an error during
execution of test content. Typically, authors of custom plugins use this class. Only the test
framework constructs this class directly.

Properties
Exception

Unexpected exception caught by TestRunner during its execution of test content

See Also
MException | matlab.unittest.TestRunner |
matlab.unittest.plugins.TestRunnerPlugin

Introduced in R2014a

1 Alphabetical List

1-11902

matlab.unittest.qualifications.FatalAssertabl
e class
Package: matlab.unittest.qualifications

Qualification to abort test execution

Description
The FatalAssertable class provides a qualification to abort test execution. Apart from
actions performed for failures, the FatalAssertable class works the same as
matlab.unittest qualifications.

Upon a fatal assertion failure, the FatalAssertable class informs the testing
framework of the failure by throwing a FatalAssertionFailedException. The test
running framework then displays diagnostic information for the failure and aborts the
entire test session. This is useful when the software under test contains so many errors
that it does not make sense to continue the test session. Also, you can use fatal assertions
in fixture teardown to guarantee the fixture state is restored correctly. If it is not restored,
the full testing session will abort and indicate to restart MATLAB before you resume
testing. This allows later tests to run in a consistent MATLAB state. If you can recover the
fixture teardown and make it “Exception Safe” on page 1-11908 for failures, use
assertions instead.

Fatal assertions prevent false test failures due to the failure of a fundamental test. They
also prevent false test failures when a prior test failed to restore test fixtures. If the test
framework cannot properly tear down fixtures, restart MATLAB to ensure testing can
resume in a clean state.

 matlab.unittest.qualifications.FatalAssertable class

1-11903

Methods
fatalAssertClass Fatally assert exact class of specified value
fatalAssertEmpty Fatally assert value is empty
fatalAssertEqual Fatally assert value is equal to specified value
fatalAssertError Fatally assert function throws specified exception
fatalAssertFail Produce unconditional fatal assertion failure
fatalAssertFalse Fatally assert value is false
fatalAssertGreaterThanOrEqual Fatally assert value is greater than or equal to specified

value
fatalAssertInstanceOf Fatally assert value is object of specified type
fatalAssertLength Fatally assert value has specified length
fatalAssertLessThan Fatally assert value is less than specified value
fatalAssertLessThanOrEqual Fatally assert value is less than or equal to specified

value
fatalAssertMatches Fatally assert string matches specified regular

expression
fatalAssertNotEmpty Fatally assert value is not empty
fatalAssertNotEqual Fatally assert value is not equal to specified value
fatalAssertNotSameHandle Fatally assert value is not handle to specified instance
fatalAssertNumElements Fatally assert value has specified element count
fatalAssertReturnsTrue Fatally assert function returns true when evaluated
fatalAssertSameHandle Fatally assert two values are handles to same instance
fatalAssertSize Fatally assert value has specified size
fatalAssertSubstring Fatally assert string contains specified string
fatalAssertThat Fatally assert value meets specified constraint
fatalAssertTrue Fatally assert value is true
fatalAssertWarning Fatally assert function issues specified warning
fatalAssertWarningFree Fatally assert function issues no warnings

1 Alphabetical List

1-11904

Events
FatalAssertionFailed Triggered upon failing fatal assertion. A

QualificationEventData object is
passed to listener callback functions.

FatalAssertionPassed Triggered upon passing fatal assertion. A
QualificationEventData object is
passed to listener callback functions.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Write Helper Function Using Fatal Assertions

A fatal assertion renders the remainder of the current test method invalid because the
state is unrecoverable. A helper function is a function in the TestCase class but not
located within any of the methods block statement. Execution of these functions is not
controlled by the matlab.unittest framework.

Add the DocPolynomSaveLoadTest.m file to a folder on your MATLAB path. Refer to
the helper function, cleanUpTemporaryFolder, in the DocPolynomSaveLoadTest test
case.

DocPolynomSaveLoadTest Class Definition File

classdef DocPolynomSaveLoadTest < matlab.unittest.TestCase

 methods (TestClassSetup)
 function addDocPolynomClassToPath(testCase)
 origPath = path;
 testCase.addTeardown(@path, origPath);
 addpath(fullfile(matlabroot, ...
 'help', 'techdoc', 'matlab_oop', 'examples'));
 end

 matlab.unittest.qualifications.FatalAssertable class

1-11905

 end

 methods (Test)
 function testSaveLoad(testCase)

 import matlab.unittest.diagnostics.Diagnostic;

 %% Phase 1: Setup
 % Create a temporary working folder
 tempFolder = tempname;
 [success, message] = mkdir(tempFolder);
 testCase.assertTrue(success, ...
 Diagnostic.join('Could not create temporary folder.',...
 message));
 testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(...
 tempFolder));

 % Change to the temporay folder and register the
 % teardown, which restores the original folder
 origFolder = pwd;
 testCase.addTeardown(@cd, origFolder);
 cd(tempFolder);

 %% Phase 2: Exercise
 % Save the instance to a mat file.
 p = DocPolynom([1, 0, 1]);
 save('DocPolynomFile', 'p');

 % Validate Precondition. Save resulted in valid .mat file
 testCase.assertEqual(exist('DocPolynomFile.mat','file'),...
 2, Diagnostic.join(...
 'mat file was not saved correctly.',@() dir(pwd)));

 loaded = load('DocPolynomFile');

 %% Phase 3: Verify
 testCase.verifyEqual(loaded.p, p,...
 'Loaded polynom did not equal original polynom.');

 %% Phase 4: Teardown
 % Done inline via calls to addTeardown at the points
 % at which the state was changed.

1 Alphabetical List

1-11906

 end
 end

 methods(Access=private)
 function cleanUpTemporaryFolder(testCase,tempFolder)
 % Clean up the temporary folder and fatally assert
 % that it was correctly cleaned up.

 import matlab.unittest.diagnostics.Diagnostic;

 [success, message] = rmdir(tempFolder, 's');
 testCase.fatalAssertTrue(success, ...
 Diagnostic.join('Could not remove temporary folder.',...
 message));
 end
 end

end

Make the cleanUpTemporaryFolder function a helper function by placing it inside a
separate methods block.

methods(Access=private)
 function cleanUpTemporaryFolder(testCase, tempFolder)
 % code
 end
end

Use the fatalAssertTrue method to test the rmdir success argument for errors. If a
fatal assertion occurs, the test run is aborted.

function cleanUpTemporaryFolder(testCase, tempFolder)

 import matlab.unittest.diagnostics.Diagnostic

 [success, message] = rmdir(tempFolder, 's');
 testCase.fatalAssertTrue(success, ...
 Diagnostic.join('Could not remove the temporary folder.',...
 message))
end

 matlab.unittest.qualifications.FatalAssertable class

1-11907

If the rmdir function fails, then this test has failed to restore the state of MATLAB and
the machine at initial startup. Aborting prevents subsequent tests to fail because MATLAB
is left in an unexpected state by this test.

Definitions

Exception Safe
Test content is exception safe when all fixture teardown is performed with addTeardown
or through the appropriate object destructors when a failure occurs. This ensures that the
failure does not affect later testing due to stale fixtures.

This code is not exception safe. After an assertion failure, the test framework does not
close the figure.

% Not exception safe
f = figure;
testCase.fatalAssertEqual(actual, expected)
close(f)

This code is exception safe because the test framework closes the figure in all cases.

% Exception safe
f = figure;
testCase.addTeardown(@close, f)
testCase.fatalAssertEqual(actual, expected)

However, tearing down a fixture using addTeardown does not guarantee code is
exception safe. This code shows a failure in fatalAssertEqual.

% Not exception safe
f = figure;
testCase.fatalAssertEqual(actual, expected);
testCase.addTeardown(@close, f)

See Also
Assertable | Assumable | QualificationEventData | TestCase | Verifiable |
matlab.unittest.qualifications

1 Alphabetical List

1-11908

Topics
“Types of Qualifications”

Introduced in R2013a

 matlab.unittest.qualifications.FatalAssertable class

1-11909

fatalAssertClass
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert exact class of specified value

Syntax
fatalAssertClass(fatalAssertable,actual,className)
fatalAssertClass(fatalAssertable,actual,metaClass)
fatalAssertClass(___ ,diagnostic)

Description
fatalAssertClass(fatalAssertable,actual,className) fatally asserts that
actual is a MATLAB value whose class is the class specified by className.

fatalAssertClass(fatalAssertable,actual,metaClass) fatally asserts that
actual is a MATLAB value whose class is the class specified by the meta.class
instance metaClass.

fatalAssertClass(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

1 Alphabetical List

1-11910

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyClass, and replace calls to verifyClass with
fatalAssertClass.

Tips
• The method is functionally equivalent to:

import matlab.unittest.constraints.IsOfClass;
fatalAssertable.fatalAssertThat(actual, IsOfClass(className));
fatalAssertable.fatalAssertThat(actual, IsOfClass(metaClass));

 fatalAssertClass

1-11911

There exists more functionality when using the IsOfClass constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertInstanceOf | fatalAssertThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11912

fatalAssertEmpty
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is empty

Syntax
fatalAssertEmpty(fatalAssertable,actual)
fatalAssertEmpty(fatalAssertable,actual,diagnostic)

Description
fatalAssertEmpty(fatalAssertable,actual) fatally asserts that actual is an
empty MATLAB value.

fatalAssertEmpty(fatalAssertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 fatalAssertEmpty

1-11913

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyEmpty, and replace calls to verifyEmpty with
fatalAssertEmpty.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
fatalAssertable.fatalAssertThat(actual, IsEmpty());

There exists more functionality when using the IsEmpty constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit

1 Alphabetical List

1-11914

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertNotEmpty | fatalAssertThat | isempty

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertEmpty

1-11915

fatalAssertEqual
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is equal to specified value

Syntax
fatalAssertEqual(fatalAssertable,actual,expected)
fatalAssertEqual(___ ,Name,Value)
fatalAssertEqual(___ ,diagnostic)

Description
fatalAssertEqual(fatalAssertable,actual,expected) fatally asserts that
actual is strictly equal to expected .

fatalAssertEqual(___ ,Name,Value) fatally asserts equality with additional options
specified by one or more Name,Value pair arguments.

fatalAssertEqual(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

1 Alphabetical List

1-11916

expected

Expected value.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AbsTol

Absolute tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

For an absolute tolerance to be satisfied, abs(expected-actual) <= absTol must be
true.

Default:

RelTol

Relative tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

 fatalAssertEqual

1-11917

For a relative tolerance to be satisfied, abs(expected-actual) <=
relTol.*abs(expected) must be true.

Default:

Examples
See examples for verifyEqual, and replace calls to verifyEqual with
fatalAssertEqual.

Tips
• This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
fatalAssertable.fatalAssertThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
fatalAssertable.fatalAssertThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
fatalAassertable.fatalAssertThat(actual, IsEqualTo(expected, ...
 'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
fatalAssertable.fatalAssertThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)));

There exists more functionality when using the IsEqualTo, RelativeTolerance,
and IsEqualTo constraints directly via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

1 Alphabetical List

1-11918

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertNotEqual | fatalAssertThat

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertEqual

1-11919

fatalAssertError
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert function throws specified exception

Syntax
fatalAssertError(fatalAssertable,actual,identifier)
fatalAssertError(fatalAssertable,actual,metaClass)
fatalAssertError(___ ,diagnostic)
[output1,...,outputN] = fatalAssertError(___)

Description
fatalAssertError(fatalAssertable,actual,identifier) fatally asserts that
actual is a function handle that throws an exception with an error identifier that is equal
to identifier.

fatalAssertError(fatalAssertable,actual,metaClass) fatally asserts that
actual is a function handle that throws an exception whose type is defined by the
meta.class instance specified in metaClass. This method does not require the instance
to be an exact class match, but rather it must be in the specified class hierarchy, and that
hierarchy must include the MException class..

fatalAssertError(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

[output1,...,outputN] = fatalAssertError(___) returns multiple output
arguments from the invocation of the function handle actual. Use this syntax to control
the number of output arguments requested from the function handle. If the function
handle errors, all outputs are of type missing. Otherwise, output1,...,outputN are
output values from actual. You can use this syntax with any of the input arguments of
the previous syntaxes.

1 Alphabetical List

1-11920

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

identifier

Error identifier, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

 fatalAssertError

1-11921

Examples
See examples for verifyError, and replace calls to verifyError with
fatalAssertError.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
fatalAssertable.fatalAssertThat(actual, Throws(identifier));
fatalAssertable.fatalAssertThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

1 Alphabetical List

1-11922

See Also
MException | error | fatalAssertThat | fatalAssertWarning

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertError

1-11923

fatalAssertFail
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Produce unconditional fatal assertion failure

Syntax
fatalAssertFail(fatalAssertable)
fatalAssertFail(fatalAssertable,diagnostic)

Description
fatalAssertFail(fatalAssertable) produces an unconditional fatal assertion
failure when encountered.

fatalAssertFail(fatalAssertable,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

1 Alphabetical List

1-11924

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyFail, and replace calls to verifyFail with
fatalAssertFail.

Tips
• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

 fatalAssertFail

1-11925

See Also

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11926

fatalAssertFalse
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is false

Syntax
fatalAssertFalse(fatalAssertable,actual)
fatalAssertFalse(fatalAssertable,actual,diagnostic)

Description
fatalAssertFalse(fatalAssertable,actual) fatally asserts that actual is a
scalar logical with the value of false.

fatalAssertFalse(fatalAssertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 fatalAssertFalse

1-11927

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyFalse, and replace calls to verifyFalse with
fatalAssertFalse.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

false. Therefore, entities such as empty arrays, false valued arrays, and zero doubles
produce failures when used in this method, despite these entities exhibiting "false-
like" behavior such as bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
fatalAssertable.fatalAssertThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint directly via
fatalAssertThat.

• Unlike fatalAssertTrue, this method may create a new constraint for each call. For
performance critical uses, consider using fatalAssertTrue.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

1 Alphabetical List

1-11928

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertThat | fatalAssertTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertFalse

1-11929

fatalAssertGreaterThan
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is greater than specified value

Syntax
fatalAssertGreaterThan(fatalAssertable,actual,floor)
fatalAssertGreaterThan(fatalAssertable,actual,floor,diagnostic)

Description
fatalAssertGreaterThan(fatalAssertable,actual,floor) fatally asserts that
all elements of actual are greater than all the elements of floor.

fatalAssertGreaterThan(fatalAssertable,actual,floor,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

floor

Minimum value, exclusive.

1 Alphabetical List

1-11930

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyGreaterThan, and replace calls to verifyGreaterThan with
fatalAssertGreaterThan.

Tips
• This method is functionally equivalent to:

matlab.unittest.constraints.IsGreaterThan;
fatalAssertable.fatalAssertThat(actual, IsGreaterThan(floor));

There exists more functionality when using the IsGreaterThan constraint directly
via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

 fatalAssertGreaterThan

1-11931

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertGreaterThanOrEqual | fatalAssertLessThan |
fatalAssertLessThanOrEqual | fatalAssertThat | gt |
matlab.unittest.constraints.IsGreaterThan |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11932

fatalAssertGreaterThanOrEqual
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is greater than or equal to specified value

Syntax
fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor)
fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor,
diagnostic)

Description
fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor) fatally
asserts that all elements of actual are greater than or equal to all the elements of
floor.

fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor,
diagnostic) also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

 fatalAssertGreaterThanOrEqual

1-11933

floor

Minimum value.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyGreaterThanOrEqual, and replace calls to
verifyGreaterThanOrEqual with fatalAssertGreaterThanOrEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
fatalAssertable.fatalAssertThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the IsGreaterThanOrEqualTo
constraint directly via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

1 Alphabetical List

1-11934

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertGreaterThan | fatalAssertLessThan |
fatalAssertLessThanOrEqual | fatalAssertThat | ge |
matlab.unittest.constraints.IsGreaterThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertGreaterThanOrEqual

1-11935

fatalAssertInstanceOf
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is object of specified type

Syntax
fatalAssertInstanceOf(fatalAssertable,actual,className)
fatalAssertInstanceOf(fatalAssertable,actual,metaClass)
fatalAssertInstanceOf(___ ,diagnostic)

Description
fatalAssertInstanceOf(fatalAssertable,actual,className) fatally asserts
that actual is a MATLAB value whose class is the class specified by className.

fatalAssertInstanceOf(fatalAssertable,actual,metaClass) fatally asserts
that actual is a MATLAB value whose class is the class specified by the meta.class
instance metaClass.

fatalAssertInstanceOf(___ ,diagnostic) also displays the diagnostic information
in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

1 Alphabetical List

1-11936

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyInstanceOf, and replace calls to verifyInstanceOf with
fatalAssertInstanceOf.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsInstanceOf;
fatalAssertable.fatalAssertThat(actual, IsInstanceOf(className));
fatalAssertable.fatalAssertThat(actual, IsInstanceOf(metaClass));

 fatalAssertInstanceOf

1-11937

There exists more functionality when using the IsInstanceOf constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertClass | fatalAssertThat | isa

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11938

fatalAssertLength
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value has specified length

Syntax
fatalAssertLength(fatalAssertable,actual,expectedLength)
fatalAssertLength(fatalAssertable,actual,expectedLength,diagnostic)

Description
fatalAssertLength(fatalAssertable,actual,expectedLength) fatally asserts
that actual is a MATLAB array whose length is expectedLength.

fatalAssertLength(fatalAssertable,actual,expectedLength,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

expectedLength

The length of an array is defined as the largest dimension of that array.

 fatalAssertLength

1-11939

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLength, and replace calls to verifyLength with
fatalAssertLength.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
fatalAssertable.fatalAssertThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

1 Alphabetical List

1-11940

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertNumElements | fatalAssertSize | fatalAssertThat | length

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertLength

1-11941

fatalAssertLessThan
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is less than specified value

Syntax
fatalAssertLessThan(fatalAssertable,actual,ceiling)
fatalAssertLessThan(fatalAssertable,actual,ceiling,diagnostic)

Description
fatalAssertLessThan(fatalAssertable,actual,ceiling) fatally asserts that all
elements of actual are less than all the elements of ceiling.

fatalAssertLessThan(fatalAssertable,actual,ceiling,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling unless either one is scalar,
at which point scalar expansion occurs.

Default:

ceiling

Maximum value, exclusive.

1 Alphabetical List

1-11942

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLessThan, and replace calls to verifyLessThan with
fatalAssertLessThan.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
assertable.assertThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan constraint directly via
assertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

 fatalAssertLessThan

1-11943

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertGreaterThan | fatalAssertGreaterThanOrEqual |
fatalAssertLessThanOrEqual | fatalAssertThat | lt |
matlab.unittest.constraints.IsLessThan |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11944

fatalAssertLessThanOrEqual
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is less than or equal to specified value

Syntax
fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling)
fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling,
diagnostic)

Description
fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling) fatally
asserts that all elements of actual are less than or equal to all the elements of ceiling.

fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling,
diagnostic) also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling unless either one is scalar,
at which point scalar expansion occurs.

Default:

 fatalAssertLessThanOrEqual

1-11945

actual

The value to test.

Default:

ceiling

Maximum value.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyLessThanOrEqual, and replace calls to
verifyLessThanOrEqual with fatalAssertLessThanOrEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
fatalAssertable.fatalAssertThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the IsLessThanOrEqualTo constraint
directly via fatalAssertThat.

1 Alphabetical List

1-11946

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertGreaterThan | fatalAssertGreaterThanOrEqual |
fatalAssertLessThan | fatalAssertThat | le |
matlab.unittest.constraints.IsLessThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertLessThanOrEqual

1-11947

fatalAssertMatches
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert string matches specified regular expression

Syntax
fatalAssertMatches(fatalAssertable,actual,expression)
fatalAssertMatches(fatalAssertable,actual,expression,diagnostic)

Description
fatalAssertMatches(fatalAssertable,actual,expression) fatally asserts that
actual is a string scalar or character vector that matches the regular expression defined
by expression.

fatalAssertMatches(fatalAssertable,actual,expression,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

expression

The value to match, specified as a regular expression.

1 Alphabetical List

1-11948

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyMatches, and replace calls to verifyMatches with
fatalAssertMatches.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
fatalAssertable.fatalAssertThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

 fatalAssertMatches

1-11949

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertSubstring | fatalAssertThat | regexp

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11950

fatalAssertNotEmpty
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is not empty

Syntax
fatalAssertNotEmpty(fatalAssertable,actual)
fatalAssertNotEmpty(fatalAssertable,actual,diagnostic)

Description
fatalAssertNotEmpty(fatalAssertable,actual) fatally asserts that actual is a
non-empty MATLAB value.

fatalAssertNotEmpty(fatalAssertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 fatalAssertNotEmpty

1-11951

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotEmpty, and replace calls to verifyNotEmpty with
fatalAssertNotEmpty.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
fatalAssertable.fatalAssertThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit

1 Alphabetical List

1-11952

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertEmpty | fatalAssertThat | isempty

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertNotEmpty

1-11953

fatalAssertNotEqual
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is not equal to specified value

Syntax
fatalAssertNotEqual(fatalAssertable,actual,notExpected)
fatalAssertNotEqual(fatalAssertable,actual,notExpected,diagnostic)

Description
fatalAssertNotEqual(fatalAssertable,actual,notExpected) fatally asserts
that actual is not equal to notExpected.

fatalAssertNotEqual(fatalAssertable,actual,notExpected,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

notExpected

Value to compare.

1 Alphabetical List

1-11954

Default:

Examples
See examples for verifyNotEqual, and replace calls to verifyNotEqual with
fatalAssertNotEqual.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
fatalAssertable.fatalAssertThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

 fatalAssertNotEqual

1-11955

See Also
fatalAssertEqual | fatalAssertThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11956

fatalAssertNotSameHandle
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is not handle to specified instance

Syntax
fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle)
fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle,
diagnostic)

Description
fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle)
fatally asserts that actual is a different size and/or does not contain the same instances
as the notExpectedHandle handle array.

fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle,
diagnostic) also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

 fatalAssertNotSameHandle

1-11957

notExpectedHandle

The handle array to compare.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNotSameHandle, and replace calls to verifyNotSameHandle
with fatalAssertNotSameHandle.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
fatalAssertable.fatalAssertThat(actual, ~IsSameHandleAs(notExpectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

1 Alphabetical List

1-11958

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertSameHandle | fatalAssertThat

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertNotSameHandle

1-11959

fatalAssertNumElements
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value has specified element count

Syntax
fatalAssertNumElements(fatalAssertable,actual,expectedElementCount)
fatalAssertNumElements(fatalAssertable,actual,expectedElementCount,
diagnostic)

Description
fatalAssertNumElements(fatalAssertable,actual,expectedElementCount)
fatally asserts that actual is a MATLAB array with expectedElementCount number of
elements.

fatalAssertNumElements(fatalAssertable,actual,expectedElementCount,
diagnostic) also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

1 Alphabetical List

1-11960

expectedElementCount

The expected number of elements in the array.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyNumElements, and replace calls to verifyNumElements with
fatalAssertNumElements.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
fatalAssertable.fatalAssertThat(actual, HasElementCount(expectedElementCount));

There exists more functionality when using the HasElementCount constraint directly
via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

 fatalAssertNumElements

1-11961

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertLength | fatalAssertSize | fatalAssertThat | numel

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11962

fatalAssertReturnsTrue
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert function returns true when evaluated

Syntax
fatalAssertReturnsTrue(fatalAssertable,actual)
fatalAssertReturnsTrue(fatalAssertable,actual,diagnostic)

Description
fatalAssertReturnsTrue(fatalAssertable,actual) fatally asserts that actual
is a function handle that returns a scalar logical whose value is true.

fatalAssertReturnsTrue(fatalAssertable,actual,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The function handle to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 fatalAssertReturnsTrue

1-11963

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyReturnsTrue, and replace calls to verifyReturnsTrue with
fatalAssertReturnsTrue.

Tips
• It is a shortcut for quick custom comparison functionality that can be defined quickly,

and possibly inline. It can be preferable over simply evaluating the function directly
and using fatalAssertTrue because the function handle will be shown in the
diagnostics, thus providing more insight into the failure condition which is lost when
using fatalAssertTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
fatalAssertable.fatalAssertThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-11964

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertThat | fatalAssertTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertReturnsTrue

1-11965

fatalAssertSameHandle
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert two values are handles to same instance

Syntax
fatalAssertSameHandle(fatalAssertable,actual,expectedHandle)
fatalAssertSameHandle(fatalAssertable,actual,expectedHandle,
diagnostic)

Description
fatalAssertSameHandle(fatalAssertable,actual,expectedHandle) fatally
asserts that actual is the same size and contains the same instances as the
expectedHandle handle array.

fatalAssertSameHandle(fatalAssertable,actual,expectedHandle,
diagnostic) also displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

1 Alphabetical List

1-11966

expectedHandle

The expected handle array.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySameHandle, and replace calls to verifySameHandle with
fatalAssertSameHandle.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
fatalAssertable.fatalAssertThat(actual, IsSameHandleAs(expectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test

 fatalAssertSameHandle

1-11967

methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertNotSameHandle | fatalAssertThat | handle

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11968

fatalAssertSize
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value has specified size

Syntax
fatalAssertSize(fatalAssertable,actual,expectedSize)
fatalAssertSize(fatalAssertable,actual,expectedSize,diagnostic)

Description
fatalAssertSize(fatalAssertable,actual,expectedSize) fatally asserts that
actual is a MATLAB array whose size is expectedSize.

fatalAssertSize(fatalAssertable,actual,expectedSize,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

expectedSize

The expected sizes of each dimension the array.

 fatalAssertSize

1-11969

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySize, and replace calls to verifySize with
fatalAssertSize.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
fatalAssertable.fatalAssertThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint directly via
fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

1 Alphabetical List

1-11970

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertLength | fatalAssertNumElements | fatalAssertThat | size

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertSize

1-11971

fatalAssertSubstring
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert string contains specified string

Syntax
fatalAssertSubstring(fatalAssertable,actual,substring)
fatalAssertSubstring(fatalAssertable,actual,substring,diagnostic)

Description
fatalAssertSubstring(fatalAssertable,actual,substring) fatally asserts that
actual is a string scalar or character vector that contains substring.

fatalAssertSubstring(fatalAssertable,actual,substring,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

substring

The value to match, specified as a string scalar or character vector.

1 Alphabetical List

1-11972

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifySubstring, and replace calls to verifySubstring with
fatalAssertSubstring.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
fatalAssertable.fatalAssertThat(actual,...
ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring constraint
directly via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

 fatalAssertSubstring

1-11973

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertMatches | fatalAssertThat | strfind

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11974

fatalAssertThat
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value meets specified constraint

Syntax
fatalAssertThat(fatalAssertable,actual,constraint)
fatalAssertThat(fatalAssertable,actual,constraint,diagnostic)

Description
fatalAssertThat(fatalAssertable,actual,constraint) fatally asserts that
actual is a value that satisfies the constraint provided.

If the constraint is not satisfied, a fatal assertion failure is produced utilizing only the
framework diagnostic generated by the constraint.

fatalAssertThat(fatalAssertable,actual,constraint,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

When using this signature, both the diagnostic information contained within diagnostic
is used in addition to the diagnostic information provided by the constraint.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

 fatalAssertThat

1-11975

Default:

constraint

Constraint that the actual value must satisfy to pass the verification, specified as a
matlab.unittest.constraints instance.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyThat, and replace calls to verifyThat with
fatalAssertThat.

Tips
• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-11976

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertThat

1-11977

fatalAssertTrue
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert value is true

Syntax
fatalAssertTrue(fatalAssertable,actual)
fatalAssertTrue(fatalAssertable,actual,diagnostic)

Description
fatalAssertTrue(fatalAssertable,actual) fatally asserts that actual is a scalar
logical with the value of true.

fatalAssertTrue(fatalAssertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

1 Alphabetical List

1-11978

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples
See examples for verifyTrue, and replace calls to verifyTrue with
fatalAssertTrue.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

true. Therefore, entities such as true valued arrays and nonzero doubles produce
qualification failures when used in this method, despite these entities exhibiting "true-
like" behavior such as triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
fatalAssertable.fatalAssertThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint directly via
fatalAssertThat.

However, this method is optimized for performance and does not construct a new
IsTrue constraint for each call. Sometimes such use can come at the expense of less
diagnostic information. Use the fatalAssertReturnsTrue method for a similar
approach which may provide better diagnostic information.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

 fatalAssertTrue

1-11979

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertFalse | fatalAssertReturnsTrue | fatalAssertThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11980

fatalAssertWarning
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert function issues specified warning

Syntax
fatalAssertWarning(fatalAssertable,actual,warningID)
fatalAssertWarning(fatalAssertable,actual,warningID,diagnostic)
[output1,...,outputN] = fatalAssertWarning(___)

Description
fatalAssertWarning(fatalAssertable,actual,warningID) fatally asserts that
actual issues a warning with the identifier warningID.

fatalAssertWarning(fatalAssertable,actual,warningID,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = fatalAssertWarning(___) also returns the output
arguments output1,...,outputN that are produced when invoking actual.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The function handle to test.

Default:

 fatalAssertWarning

1-11981

warningID

Warning ID, specified as a character vector.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples
See examples for verifyWarning, and replace calls to verifyWarning with
fatalAssertWarning.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
fatalAssertable.fatalAssertThat(actual, IssuesWarnings({warningID}));

There exists more functionality when using the IssuesWarnings constraint directly
via fatalAssertThat.

1 Alphabetical List

1-11982

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does
not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertError | fatalAssertThat | fatalAssertWarningFree | warning

Topics
“Types of Qualifications”

Introduced in R2013a

 fatalAssertWarning

1-11983

fatalAssertWarningFree
Class: matlab.unittest.qualifications.FatalAssertable
Package: matlab.unittest.qualifications

Fatally assert function issues no warnings

Syntax
fatalAssertWarningFree(fatalAssertable,actual)
fatalAssertWarningFree(fatalAssertable,actual,diagnostic)
[output1,...,outputN] = fatalAssertWarningFree(___)

Description
fatalAssertWarningFree(fatalAssertable,actual) fatally asserts that actual
is a function handle that issues no warnings.

fatalAssertWarningFree(fatalAssertable,actual,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = fatalAssertWarningFree(___) also returns the
output arguments output1,...,outputN that are produced when invoking actual.

Input Arguments
fatalAssertable

The matlab.unittest.TestCase instance which is used to pass or fail the fatal
assertion in conjunction with the test running framework.

actual

The function handle to test.

Default:

1 Alphabetical List

1-11984

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples
See examples for verifyWarningFree, and replace calls to verifyWarningFree with
fatalAssertWarningFree.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
fatalAssertable.fatalAssertThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings constraint
directly via fatalAssertThat.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no point
in continuing testing. These qualifications are also useful when fixture teardown does

 fatalAssertWarningFree

1-11985

not restore the MATLAB state correctly and it is preferable to abort testing and start a
fresh session. Alternatively,

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. For more information, see
matlab.unittest.qualifications.Verifiable.

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

See Also
fatalAssertThat | fatalAssertWarning | warning

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-11986

matlab.unittest.qualifications.FatalAssertion
FailedException class
Package: matlab.unittest.qualifications

Exception used for fatal assertion failures

Description
The FatalAssertionFailedException class provides an exception used for fatal
assertion failures. This class is used exclusively by the FatalAssertable qualification
type.

See Also
FatalAssertable | MException

 matlab.unittest.qualifications.FatalAssertionFailedException class

1-11987

matlab.unittest.qualifications.QualificationE
ventData class
Package: matlab.unittest.qualifications

Event data for qualification event listeners

Description
The QualificationEventData class holds event data for qualification event listeners.
Qualification event listeners are callback functions that you register with the testing
framework to listen for passing and/or failing qualifications. Qualifications can be
assertions, fatal assertions, assumptions, or verifications performed on test content. The
corresponding qualification classes define these events. Typically, authors of custom
plugins use this class. Only the test framework constructs this class directly.

Properties
ActualValue

Value tested to satisfy the qualification logic of the Constraint.

Constraint

Instance of matlab.unittest.constraints.Constraint used for the qualification

When you use a qualification method on a TestCase or Fixture object, the
Constraint property contains the underlying constraint used for the qualification. For
example, if you use the verifyEqual method, the underlying constraint is the
IsEqualTo constraint. Therefore, if you invoke the constraint's getDiagnosticFor
method, the diagnostic result can appear different than what the test framework displays.

TestDiagnostic

Diagnostic specified in the qualification, represented as a character vector, string,
function handle, or instance of the Diagnostic class.

1 Alphabetical List

1-11988

TestDiagnosticResults

Result of diagnostic specified in the qualification, represented as an array of
DiagnosticResult instances.

FrameworkDiagnosticResults

Result of diagnostic from constraint used for the qualification, represented as an array of
DiagnosticResult instances.

Stack

Function call stack leading up to the qualification event, represented as a structure array.

See Also
matlab.unittest.diagnostics.DiagnosticResult |
matlab.unittest.fixtures.Fixture |
matlab.unittest.qualifications.Assertable |
matlab.unittest.qualifications.Assumable |
matlab.unittest.qualifications.FatalAssertable |
matlab.unittest.qualifications.Verifiable

Introduced in R2014a

 matlab.unittest.qualifications.QualificationEventData class

1-11989

matlab.unittest.qualifications.Verifiable
class
Package: matlab.unittest.qualifications

Qualification to produce soft failure conditions

Description
The Verifiable class provides a qualification to produce soft-failure conditions. Apart
from actions performed for failures, the Verifiable class works the same as other
matlab.unittest qualifications.

Upon a verification failure, the Verifiable class informs the testing framework of the
failure, including all diagnostic information associated with the failure, but continues to
execute the currently running test without throwing an MException. This is most useful
when a failure at the verification point is not fatal to the remaining test content. Often,
you use verifications as the primary verification of a Four-Phase Test. Use other
qualification types, such as assertions, fatal assertions, and assumptions, to test for
violation of preconditions or incorrect test setup.

Since verifications do not throw MExceptions, all test content runs to completion even
when verification failures occur. This helps you understand how close a piece of software
is to meeting the test suite requirements. Qualification types that throw exceptions do not
provide this insight, since once an exception is thrown an arbitrary amount of code
remains that is not reached or exercised. Verifications also provide more testing coverage
in failure conditions. However, when you overuse verifications, they can produce excess
noise for a single failure condition. If a failure condition will cause later qualification
points to also fail, use assertions or fatal assertions instead.

1 Alphabetical List

1-11990

Methods
verifyClass Verify exact class of specified value
verifyEmpty Verify value is empty
verifyEqual Verify value is equal to specified value
verifyError Verify function throws specified exception
verifyFail Produce unconditional verification failure
verifyFalse Verify value is false
verifyGreaterThan Verify value is greater than specified value
verifyGreaterThanOrEqual Verify value is greater than or equal to specified value
verifyInstanceOf Verify value is object of specified type
verifyLength Verify value has specified length
verifyLessThan Verify value is less than specified value
verifyLessThanOrEqual Verify value is less than or equal to specified value
verifyMatches Verify string matches specified regular expression
verifyNotEmpty Verify value is not empty
verifyNotEqual Verify value is not equal to specified value
verifyNotSameHandle Verify value is not handle to specified instance
verifyNumElements Verify value has specified element count
verifyReturnsTrue Verify function returns true when evaluated
verifySameHandle Verify two values are handles to same instance
verifySize Verify value has specified size
verifySubstring Verify string contains specified string
verifyThat Verify value meets given constraint
verifyTrue Verify value is true
verifyWarning Verify function issues specified warning
verifyWarningFree Verify function issues no warnings

 matlab.unittest.qualifications.Verifiable class

1-11991

Events
VerificationFailed Triggered upon failing verification. A

QualificationEventData object is
passed to listener callback functions.

VerificationPassed Triggered upon passing verification. A
QualificationEventData object is
passed to listener callback functions.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Write Test Methods Using Verifications

Verifications produce and record failures without throwing an exception, meaning the
currently running test runs to completion. This example creates a test case to verify
arithmetic operations on objects of the DocPolynom example class.

Create the DocPolynomTest Test Case. Refer to the following DocPolynomTest test
case in the subsequent steps in this example, which highlight specific functions in the file.

DocPolynomTest Class Definition File

classdef DocPolynomTest < matlab.unittest.TestCase
 % Tests the DocPolynom class.

 properties
 msgEqn = 'Equation under test: ';
 end

 methods (TestClassSetup)
 function addDocPolynomClassToPath(testCase)
 testCase.addTeardown(@path,addpath(fullfile(matlabroot,...
 'help', 'techdoc', 'matlab_oop', 'examples')))

1 Alphabetical List

1-11992

 end
 end

 methods (Test)
 function testConstructor(testCase)
 p = DocPolynom([1, 0, 1]);
 testCase.verifyClass(p, ?DocPolynom)
 end

 function testAddition(testCase)
 p1 = DocPolynom([1, 0, 1]);
 p2 = DocPolynom([5, 2]);

 actual = p1 + p2;
 expected = DocPolynom([1, 5, 3]);

 msg = [testCase.msgEqn,...
 '(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];
 testCase.verifyEqual(actual, expected, msg)
 end

 function testMultiplication(testCase)
 p1 = DocPolynom([1, 0, 3]);
 p2 = DocPolynom([5, 2]);

 actual = p1 * p2;
 expected = DocPolynom([5, 2, 15, 6]);

 msg = [testCase.msgEqn,...
 '(x^2 + 3) * (5*x + 2) = 5*x^3 + 2*x^2 + 15*x + 6'];
 testCase.verifyEqual(actual, expected, msg)
 end

 end
end

To execute the MATLAB commands in this example, add the DocPolynomTest.m file to a
folder on your MATLAB path.

Write Test to Verify Constructor. Create a function, testConstructor, using the
verifyClass method to test the DocPolynom class constructor.

function testConstructor(testCase)
 p = DocPolynom([1, 0, 1]);

 matlab.unittest.qualifications.Verifiable class

1-11993

 testCase.verifyClass(p, ?DocPolynom)
end

Write Tests to Verify Operations. In the testAddition function, use the verifyEqual
method to test the equation (x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3. The
verifyEqual method includes this equation in the diagnostic argument.

function testAddition(testCase)
 p1 = DocPolynom([1, 0, 1]);
 p2 = DocPolynom([5, 2]);

 actual = p1 + p2;
 expected = DocPolynom([1, 5, 3]);

 msg = [testCase.msgEqn,...
 '(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];
 testCase.verifyEqual(actual, expected, msg)
end

The function, testMultiplication, tests multiplication operations.

Run the tests in the DocPolynomTest test case.

tc = DocPolynomTest;
ts = matlab.unittest.TestSuite.fromClass(?DocPolynomTest);
res = run(ts);

Running DocPolynomTest
...
Done DocPolynomTest

All tests passed.

See Also
Assertable | Assumable | FatalAssertable | QualificationEventData |
TestCase | matlab.unittest.qualifications

Topics
“Types of Qualifications”

1 Alphabetical List

1-11994

External Websites
Four-Phase Test

Introduced in R2013a

 matlab.unittest.qualifications.Verifiable class

1-11995

http://xunitpatterns.com/Four%20Phase%20Test.html

verifyClass
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify exact class of specified value

Syntax
verifyClass(verifiable,actual,className)
verifyClass(verifiable,actual,metaClass)
verifyClass(___ ,diagnostic)

Description
verifyClass(verifiable,actual,className) verifies that actual is a MATLAB
value whose class is the class specified by className.

verifyClass(verifiable,actual,metaClass) verifies that actual is a MATLAB
value whose class is the class specified by the meta.class instance metaClass. The
instance must be an exact class match. Use verifyInstanceOf to verify inclusion in a
class hierarchy.

verifyClass(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

1 Alphabetical List

1-11996

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test a Class

These interactive tests verify the class of the number, 5.

Create a TestCase object and the value to test.

testCase = matlab.unittest.TestCase.forInteractiveUse;
actvalue = 5;

Verify class of actvalue is double.

verifyClass(testCase, actvalue, 'double');

 verifyClass

1-11997

Interactive verification passed.

Verify class of actvalue is char.

verifyClass(testCase, actvalue, 'char');

Interactive verification failed.

Framework Diagnostic:

verifyClass failed.
--> The value's class is incorrect.

 Actual Class:
 double
 Expected Class:
 char

Actual double:
 5

Test fails.

Test a Function Handle

These interactive tests verify function handles, specified as a meta.class instance, ?
function_handle.

Create a TestCase object.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Create a function handle.

fh = @sin;
verifyClass(testCase, fh, ?function_handle);

Interactive verification passed.

Test the function name.

fh = 'sin';
verifyClass(testCase, fh, ?function_handle);

1 Alphabetical List

1-11998

Interactive verification failed.

Framework Diagnostic:

verifyClass failed.
--> The value's class is incorrect.

 Actual Class:
 char
 Expected Class:
 function_handle

Actual char:
 sin

Test fails.

Test a Derived Class

Verify that a derived class is not the same class as its base class.

Create a class, BaseExample.

classdef BaseExample
end

Create a derived class, DerivedExample.

classdef DerivedExample < BaseExample
end

Verify the classes are not equal.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyClass(testCase, DerivedExample(), ?BaseExample);

Interactive verification failed.

 verifyClass

1-11999

Framework Diagnostic:

verifyClass failed.
--> The value's class is incorrect.

 Actual Class:
 DerivedExample
 Expected Class:
 BaseExample

Actual DerivedExample:
 DerivedExample with no properties.

Test fails.

Test Class of Output Value

Use verifyClass to test the add5 function returns a double value.

Function for unit testing:

type add5.m

function res = add5(x)
% ADD5 Increment input by 5.
if ~isa(x,'numeric')
 error('add5:InputMustBeNumeric','Input must be numeric.')
end
res = x + 5;
end

TestCase class containing test methods:

type Add5Test.m

classdef Add5Test < matlab.unittest.TestCase
 methods (Test)
 function testDoubleOut(testCase)
 actOutput = add5(1);
 testCase.verifyClass(actOutput,'double')
 end
 function testNonNumericInput(testCase)

1 Alphabetical List

1-12000

 testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric')
 end
 end
end

Create a test suite from the Add5Test class file.

suite = matlab.unittest.TestSuite.fromFile('Add5Test.m')

suite =
 1x2 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Run the tests.

result = run(suite);

Running Add5Test
..
Done Add5Test

Tips
• The method is functionally equivalent to the following methods:

import matlab.unittest.constraints.IsOfClass;
verifiable.verifyThat(actual, IsOfClass(className));
verifiable.verifyThat(actual, IsOfClass(metaClass));

There exists more functionality when using the IsOfClass constraint directly via
verifyThat.

 verifyClass

1-12001

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.IsOfClass |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyInstanceOf | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12002

verifyEmpty
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is empty

Syntax
verifyEmpty(verifiable,actual)
verifyEmpty(___ ,diagnostic)

Description
verifyEmpty(verifiable,actual) verifies that actual is an empty MATLAB value.

verifyEmpty(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 verifyEmpty

1-12003

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test for Empty Character Vectors

Create a TestCase object.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify the empty character.

verifyEmpty(testCase, '');

Verification passed.

Test for Empty Arrays

An array with any zero dimension is empty.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEmpty(testCase, ones(2, 5, 0, 3));

Interactive verification passed.

verifyEmpty(testCase, [2 3], 'Array is not empty.');

Interactive verification failed.

Test Diagnostic:

1 Alphabetical List

1-12004

Array is not empty.

Framework Diagnostic:

verifyEmpty failed.
--> The value must be empty.
--> The value has a size of [1 2].

Actual double:
 2 3

Test failed.

Test for Empty Cell Arrays

Test empty cell array.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEmpty(testCase,{},'Cell array is not empty.');

Interactive verification passed.

A cell array of empty arrays is not empty.

verifyEmpty(testCase,{[],[],[]},'Cell array is not empty.');

Interactive verification failed.

Test Diagnostic:

Cell array is not empty.

Framework Diagnostic:

verifyEmpty failed.
--> The value must be empty.
--> The value has a size of [1 3].

 verifyEmpty

1-12005

Actual cell:
 [] [] []

Test for Empty Test Suite

Test for empty object, emptyTestSuite.

testCase = matlab.unittest.TestCase.forInteractiveUse;
emptyTestSuite = matlab.unittest.TestSuite.empty;
verifyEmpty(testCase, emptyTestSuite)

Verification passed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
verifiable.verifyThat(actual, IsEmpty());

There exists more functionality when using the IsEmpty constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-12006

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
isempty | matlab.unittest.constraints |
matlab.unittest.constraints.IsEmpty |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyNotEmpty | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyEmpty

1-12007

verifyEqual
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is equal to specified value

Syntax
verifyEqual(verifiable,actual,expected)
verifyEqual(___ ,Name,Value)
verifyEqual(___ ,diagnostic)

Description
verifyEqual(verifiable,actual,expected) verifies that actual is strictly equal
to expected.

verifyEqual(___ ,Name,Value) verifies equality with additional options specified by
one or more Name,Value pair arguments.

verifyEqual(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

1 Alphabetical List

1-12008

expected

Expected value.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AbsTol

Absolute tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

For an absolute tolerance to be satisfied, abs(expected-actual) <= absTol must be
true.

Default:

RelTol

Relative tolerance, specified as a numeric array. The tolerance is applied only to values of
the same data type. The value can be a scalar or array the same size as the actual and
expected values.

 verifyEqual

1-12009

For a relative tolerance to be satisfied, abs(expected-actual) <=
relTol.*abs(expected) must be true.

Default:

Examples

Comparing Numeric Values

Numeric values are equivalent if they are of the same class with equivalent size,
complexity, and sparsity.

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

A value is equal to itself.

verifyEqual(testCase,5,5);

Interactive verification passed.

Values must have equal sizes.

verifyEqual(testCase,[5 5],5);

Interactive verification failed.

Framework Diagnostic:

verifyEqual failed.
--> Sizes do not match.

 Actual size:
 1 2
 Expected size:
 1 1

Actual double:
 5 5

1 Alphabetical List

1-12010

Expected double:
 5

Test failed.

Test Classes

Verify if an int8 is equal to an int16.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEqual(testCase,int8(5),int16(5));

Interactive verification failed.

Framework Diagnostic:

verifyEqual failed.
--> Classes do not match.

 Actual Class:
 int8
 Expected Class:
 int16

Actual int8:
 5
Expected int16:
 5

Test failed.

Test Cell Arrays

Each element of a cell array must be equal in value, class, and size.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEqual(testCase,{'cell', struct, 5},{'cell', struct, 5});

Verification passed.

 verifyEqual

1-12011

Test Numeric Tolerances

Test if 4.95 is equal to 5.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEqual(testCase,4.95,5);

Interactive verification failed.

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".
--> Failure table:
 Actual Expected Error RelativeError
 ______ ________ ___________________ ____________________

 4.95 5 -0.0499999999999998 -0.00999999999999996

Actual double:
 4.950000000000000
Expected double:
 5

Test failed.

verifyEqual(testCase,1.5,2,'AbsTol',1)

Interactive verification passed.

verifyEqual(testCase,1.5,2,'RelTol',0.1, ...
 'Difference between actual and expected exceeds relative tolerance')

Interactive verification failed.

Test Diagnostic:

Difference between actual and expected exceeds relative tolerance

Framework Diagnostic:

1 Alphabetical List

1-12012

verifyEqual failed.
--> The values are not equal using "isequaln".
--> The error was not within relative tolerance.
--> Failure table:
 Actual Expected Error RelativeError RelativeTolerance
 ______ ________ _____ _____________ _________________

 1.5 2 -0.5 -0.25 0.1

Actual double:
 1.500000000000000
Expected double:
 2

Test failed.

Tips
• This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
verifiable.verifyThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
verifiable.verifyThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
verifiable.verifyThat(actual, IsEqualTo(expected, ...
 'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
verifiable.verifyThat(actual, IsEqualTo(expected, ...
 'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)));

There exists more functionality when using the IsEqualTo, RelativeTolerance,
and IsEqualTo constraints directly via verifyThat.

 verifyEqual

1-12013

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.AbsoluteTolerance |
matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.RelativeTolerance |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyNotEqual | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12014

verifyError
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify function throws specified exception

Syntax
verifyError(verifiable,actual,identifier)
verifyError(verifiable,actual,metaClass)
verifyError(___ ,diagnostic)
[output1,...,outputN] = verifyError(___)

Description
verifyError(verifiable,actual,identifier) verifies that actual is a function
handle that throws an exception with an error identifier that is equal to identifier.

verifyError(verifiable,actual,metaClass) verifies that actual is a function
handle that throws an exception whose type is defined by the meta.class instance
specified in metaClass. This method does not require the instance to be an exact class
match, but rather it must be in the specified class hierarchy, and that hierarchy must
include the MException class.

verifyError(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

[output1,...,outputN] = verifyError(___) returns multiple output arguments
from the invocation of the function handle actual. Use this syntax to control the number
of output arguments requested from the function handle. If the function handle errors, all
outputs are of type missing. Otherwise, output1,...,outputN are output values from
actual. You can use this syntax with any of the input arguments of the previous
syntaxes.

 verifyError

1-12015

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

identifier

Error identifier, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

1 Alphabetical List

1-12016

Test for Error IDs

testCase = matlab.unittest.TestCase.forInteractiveUse;

% Passing scenarios
%%%%%%%%%%%%%%%%%%%%
verifyError(testCase, @() error('SOME:error:id','Error!'), 'SOME:error:id');
verifyError(testCase, @testCase.assertFail, ...
 ?matlab.unittest.qualifications.AssertionFailedException);

% Failing scenarios
%%%%%%%%%%%%%%%%%%%%
verifyError(testCase, 5, 'some:id', '5 is not a function handle');
verifyError(testCase, @testCase.verifyFail, ...
 ?matlab.unittest.qualifications.AssertionFailedException, ...
 'Verifications dont throw exceptions.');
verifyError(testCase, @() error('SOME:id'), 'OTHER:id', 'Wrong id');
verifyError(testCase, @() error('whoops'), ...
 ?matlab.unittest.qualifications.AssertionFailedException, ...
 'Wrong type of exception thrown');

Test Error Condition

Create testNonNumericInput to test if function throws expected error message,
add5:InputMustBeNumeric, for unexpected condition, input is char.

Function for unit testing:

function res = add5(x)
% ADD5 Increment input by 5.
if ~isa(x,'numeric')
 error('add5:InputMustBeNumeric','Input must be numeric.')
end
res = x + 5;
end

TestCase class containing test methods:

classdef Add5Test < matlab.unittest.TestCase
 methods (Test)
 function testDoubleOut(testCase)
 actOutput = add5(1);
 testCase.verifyClass(actOutput,'double')

 verifyError

1-12017

 end
 function testNonNumericInput(testCase)
 testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric')
 end
 end
end

Create a test suite from the Add5Test class file.

suite = matlab.unittest.TestSuite.fromFile('Add5Test.m')

result = run(suite);

Running Add5Test
..
Done Add5Test

Verify Function Errors with Too Many Requested Outputs

In your current working folder, create the following function to test. The function returns
a single output.

function y = plusOne(x)
 y = x+1;
end

At the command prompt, call plusOne with too many output arguments.

[~,~] = plusOne(41);

Error using plusOne
Too many output arguments.

View the error message and identifier.

MException.last

ans =

 MException with properties:

 identifier: 'MATLAB:TooManyOutputs'
 message: 'Too many output arguments.'
 cause: {0×1 cell}
 stack: [0×1 struct]

1 Alphabetical List

1-12018

Verify that if the plusOne function is called with too many requested output arguments, it
errors and the error has the identifier MATLAB:TooManyOutputs.

testCase = matlab.unittest.TestCase.forInteractiveUse;
[~,~] = verifyError(testCase,@() plusOne(41),'MATLAB:TooManyOutputs');

Interactive verification passed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
verifiable.verifyThat(actual, Throws(identifier));
verifiable.verifyThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

 verifyError

1-12019

See Also
MException | error | matlab.unittest.constraints |
matlab.unittest.constraints.Throws |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyThat | verifyWarning

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12020

verifyFail
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Produce unconditional verification failure

Syntax
verifyFail(verifiable)
verifyFail(verifiable,diagnostic)

Description
verifyFail(verifiable) produces an unconditional verification failure when
encountered.

verifyFail(verifiable,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle

 verifyFail

1-12021

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test for Failure Condition

An example of where this method may be used is in a callback function that should not be
executed in a given scenario. A test can confirm this does not occur by unconditionally
performing a failure if the code path is reached.

Create a handle class, MyHandle, with a SomethingHappened event.

classdef MyHandle < handle
 events
 SomethingHappened
 end
end

Create a file, ListenerTest, on your MATLAB path that contains the following
TestCase class.

classdef ListenerTest < matlab.unittest.TestCase
 methods(Test)
 function testDisabledListeners(testCase)
 h = MyHandle;

 % Add a listener to a test helper method
 listener = h.addlistener('SomethingHappened', ...
 @testCase.shouldNotGetCalled);

 % Passing scenario (code path is not reached)
 %%%%%%%%%%%%%%%%%%%%
 % Disabled listener should not invoke callbacks
 listener.Enabled = false;
 h.notify('SomethingHappened');

 % Failing scenario (code path is reached)
 %%%%%%%%%%%%%%%%%%%%

1 Alphabetical List

1-12022

 % Enabled listener invoke callback and fail
 listener.Enabled = true;
 h.notify('SomethingHappened');
 end
 end

 methods
 function shouldNotGetCalled(testCase, ~, ~)
 % A test helper callback method that should not execute
 testCase.verifyFail('This listener callback should not have executed');
 end
 end

end

From the command prompt, run the test.

run(ListenerTest);

Running ListenerTest

==
Verification failed in ListenerTest/testDisabledListeners.

 Test Diagnostic:

 This listener callback should not have executed

 Stack Information:

 In C:\Desktop\ListenerTest.m (ListenerTest.shouldNotGetCalled) at 27
 In C:\\Desktop\ListenerTest.m (@(varargin)testCase.shouldNotGetCalled(varargin{:})) at 8
 In C:\Desktop\ListenerTest.m (ListenerTest.testDisabledListeners) at 20
==
.
Done ListenerTest

Failure Summary:

 Name Failed Incomplete Reason(s)

 verifyFail

1-12023

 ===
 ListenerTest/testDisabledListeners X Failed by verification.

Tips
• Use verification qualifications to produce and record failures without throwing an

exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12024

verifyFalse
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is false

Syntax
verifyFalse(verifiable,actual)
verifyFalse(___ ,diagnostic)

Description
verifyFalse(verifiable,actual) verifies that actual is a scalar logical with the
value of false.

verifyFalse(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 verifyFalse

1-12025

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test MATLAB Logical Functions

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test true.

verifyFalse(testCase, true);

Interactive verification failed.

Framework Diagnostic:

verifyFalse failed.
--> The value must evaluate to "false".

Actual Value:
 1

Test failed.

Test false.

verifyFalse(testCase, false);

Interactive verification passed.

1 Alphabetical List

1-12026

Test the Value 0

The number 0 is a double value, not a logical value.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyFalse(testCase, 0);

Interactive verification failed.

Framework Diagnostic:

verifyFalse failed.
--> The value must be logical. It is of type "double".

Actual Value:
 0

Test failed.

Test Array of Logical Values

To be false, the value must be scalar.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyFalse(testCase, [false false false]);

Interactive verification failed.

Framework Diagnostic:

verifyFalse failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
 0 0 0

Test failed.

Test an array of mixed logical values.

verifyFalse(testCase, [false true false], ...
 'A mixed array of logicals is not the one false value');

 verifyFalse

1-12027

Interactive verification failed.

Test Diagnostic:

A mixed array of logicals is not the one false value

Framework Diagnostic:

verifyFalse failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
 0 1 0

Test failed.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

false. Therefore, entities such as empty arrays, false valued arrays, and zero doubles
produce failures when used in this method, despite these entities exhibiting "false-
like" behavior such as bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
verifiable.verifyThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint directly via
verifyThat.

• Unlike verifyTrue, this method may create a new constraint for each call. For
performance critical uses, consider using verifyTrue.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

1 Alphabetical List

1-12028

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.IsFalse |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyThat | verifyTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyFalse

1-12029

verifyGreaterThan
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is greater than specified value

Syntax
verifyGreaterThan(verifiable,actual,floor)
verifyGreaterThan(___ ,diagnostic)

Description
verifyGreaterThan(verifiable,actual,floor) verifies that all elements of
actual are greater than all the elements of floor.

verifyGreaterThan(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

floor

Minimum value, exclusive.

1 Alphabetical List

1-12030

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 3 is greater than 2.

verifyGreaterThan(testCase, 3, 2);

Interactive verification passed.

Test if 5 is greater than 9.

verifyGreaterThan(testCase, 5, 9);

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThan failed.
--> The value must be greater than the minimum value.

Actual Value:

 verifyGreaterThan

1-12031

 5
Minimum Value (Exclusive):
 9

Test failed.

Compare an Array to a Scalar

Test if each element is greater than the FLOOR value, 2.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThan(testCase, [5 6 7], 2);

Interactive verification passed.

Test if value 5 is greater than each element in the FLOOR array, [1 2 3].

verifyGreaterThan(testCase, 5, [1 2 3]);

Interactive verification passed.

Test if each element in the matrix is greater than the FLOOR value, 4.

verifyGreaterThan(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThan failed.
--> Each element must be greater than the minimum value.

 Failing Indices:
 1 2 3 5

Actual Value:
 1 2 3
 4 5 6
Minimum Value (Exclusive):
 4

1 Alphabetical List

1-12032

Test failed.

Compare Arrays

Test if each element is greater than each corresponding element of the FLOOR array, [4
-9 0].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThan(testCase, [5 -3 2], [4 -9 0]);

Interactive verification passed.

Compare an array to itself.

verifyGreaterThan(testCase, eye(2), eye(2));

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThan failed.
--> Each element must be greater than each corresponding element of the minimum value array.

 Failing Indices:
 1 2 3 4

Actual Value:
 1 0
 0 1
Minimum Value (Exclusive):
 1 0
 0 1

Test failed.

Tips
• This method is functionally equivalent to:

matlab.unittest.constraints.IsGreaterThan;
verifiable.verifyThat(actual, IsGreaterThan(floor));

 verifyGreaterThan

1-12033

There exists more functionality when using the IsGreaterThan constraint directly
via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
gt | matlab.unittest.constraints |
matlab.unittest.constraints.IsGreaterThan |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyGreaterThanOrEqual |
verifyLessThan | verifyLessThanOrEqual | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12034

verifyGreaterThanOrEqual
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is greater than or equal to specified value

Syntax
verifyGreaterThanOrEqual(verifiable,actual,floor)
verifyGreaterThanOrEqual(___ ,diagnostic)

Description
verifyGreaterThanOrEqual(verifiable,actual,floor) verifies that all elements
of actual are greater than or equal to all the elements of floor.

verifyGreaterThanOrEqual(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless either one is scalar, at
which point scalar expansion occurs.

floor

Minimum value.

 verifyGreaterThanOrEqual

1-12035

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 3 is greater than 2.

verifyGreaterThanOrEqual(testCase, 3, 2);

Interactive verification passed.

Verify 3 is greater than or equal to 3.

verifyGreaterThanOrEqual(testCase, 3, 3);

Interactive verification passed.

Test if 5 is greater than 9.

verifyGreaterThanOrEqual(testCase, 5, 9);

Interactive verification failed.

1 Alphabetical List

1-12036

Framework Diagnostic:

verifyGreaterThanOrEqual failed.
--> The value must be greater than or equal to the minimum value.

Actual Value:
 5
Minimum Value (Inclusive):
 9

Test failed.

Compare an Array to a Scalar

Test if each element is greater than or equal to the FLOOR value, 2.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThanOrEqual(testCase, [5 2 7], 2);

Interactive verification passed.

Test if each element in the matrix is greater than or equal to the FLOOR value, 4.

verifyGreaterThanOrEqual(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThanOrEqual failed.
--> Each element must be greater than or equal to the minimum value.

 Failing Indices:
 1 3 5

Actual Value:
 1 2 3
 4 5 6
Minimum Value (Inclusive):
 4

 verifyGreaterThanOrEqual

1-12037

Compare Arrays

Test if each element is greater than or equal to each corresponding element of the FLOOR
array, [4 -3 0].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThanOrEqual(testCase, [5 -3 2], [4 -3 0]);

Interactive verification passed.

Compare an array to itself.

verifyGreaterThanOrEqual(testCase, eye(2), eye(2));

Interactive verification passed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
verifiable.verifyThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the IsGreaterThanOrEqualTo
constraint directly via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-12038

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
ge | matlab.unittest.constraints |
matlab.unittest.constraints.IsGreaterThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyGreaterThan | verifyLessThan |
verifyLessThanOrEqual | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyGreaterThanOrEqual

1-12039

verifyInstanceOf
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is object of specified type

Syntax
verifyInstanceOf(verifiable,actual,className)
verifyInstanceOf(verifiable,actual,metaClass)
verifyInstanceOf(___ ,diagnostic)

Description
verifyInstanceOf(verifiable,actual,className) verifies that actual is a
MATLAB value whose class is the class specified by className.

verifyInstanceOf(verifiable,actual,metaClass) verifies that actual is a
MATLAB value whose class is the class specified by the meta.class instance
metaClass.

verifyInstanceOf(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

1 Alphabetical List

1-12040

Default:

className

Name of class, specified as a character vector.

Default:

metaClass

An instance of meta.class.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test a Class

These interactive tests verify the class of the number, 5.

Create a TestCase object and the value to test.

testCase = matlab.unittest.TestCase.forInteractiveUse;
actvalue = 5;

Verify actvalue is an instance of class double.

verifyInstanceOf(testCase, actvalue, 'double');

 verifyInstanceOf

1-12041

Interactive verification passed.

Verify if actvalue is an instance of char.

verifyInstanceOf(testCase, 5, 'char');

Interactive verification failed.

Framework Diagnostic:

verifyInstanceOf failed.
--> The value must be an instance of the expected type.

 Actual Class:
 double
 Expected Type:
 char

Actual Value:
 5

Test failed.

Test a Function Handle

These tests verify function handles, specified as a meta.class instance, ?
function_handle.

Create a function handle.

fh = @sin;
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyInstanceOf(testCase, fh, ?function_handle);

Interactive verification passed.

Test the function name.

fh = 'sin';
verifyInstanceOf(testCase, fh, ?function_handle);

Interactive verification failed.

1 Alphabetical List

1-12042

Framework Diagnostic:

verifyInstanceOf failed.
--> The value must be an instance of the expected type.

 Actual Class:
 char
 Expected Type:
 function_handle

Actual Value:
 sin

Test failed.

Test a Derived Class

Verify that a derived class is not the same class as its base class.

Create a class, BaseExample.

classdef BaseExample
end

Create a derived class, DerivedExample.

classdef DerivedExample < BaseExample
end

Verify DerivedExample is an instance of BaseExample.

testCase = matlab.unittest.TestCase.forInteractiveUse;
testCase.verifyInstanceOf(DerivedExample(), ?BaseExample);

Interactive verification passed.

Verify BaseExample is not an instance of DerivedExample.

testCase.verifyInstanceOf(BaseExample(), ?DerivedExample);

Interactive verification failed.

 verifyInstanceOf

1-12043

Framework Diagnostic:

verifyInstanceOf failed.
--> The value must be an instance of the expected type.

 Actual Class:
 BaseExample
 Expected Type:
 DerivedExample

Actual Value:
 BaseExample with no properties.

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsInstanceOf;
verifiable.verifyThat(actual, IsInstanceOf(className));
verifiable.verifyThat(actual, IsInstanceOf(metaClass));

There exists more functionality when using the IsInstanceOf constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

1 Alphabetical List

1-12044

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
isa | matlab.unittest.constraints |
matlab.unittest.constraints.IsInstanceOf |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyClass | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyInstanceOf

1-12045

verifyLength
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value has specified length

Syntax
verifyLength(verifiable,actual,expectedLength)
verifyLength(___ ,diagnostic)

Description
verifyLength(verifiable,actual,expectedLength) verifies that actual is a
MATLAB array whose length is expectedLength.

verifyLength(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedLength

The length of an array is defined as the largest dimension of that array.

1 Alphabetical List

1-12046

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test Array Lengths

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify length of array is the expected value, 5.

verifyLength(testCase, ones(2, 5, 3), 5, 'User diagnostic');

Interactive verification passed.

Length of array is not the expected value, 3.

verifyLength(testCase, [2 3], 3);

Interactive verification failed.

Framework Diagnostic:

verifyLength failed.
--> The array has an incorrect length.

 Actual Length:

 verifyLength

1-12047

 2
 Expected Length:
 3

Actual Array:
 2 3

Test failed.

The length of a 2x3 array is 3.

verifyLength(testCase, [1 2 3; 4 5 6], 3);

Interactive verification passed.

Verify the length of a 2x3 array is not the number of elements, 6.

verifyLength(testCase, [1 2 3; 4 5 6], 6);

Interactive verification failed.

Framework Diagnostic:

verifyLength failed.
--> The array has an incorrect length.

 Actual Length:
 3
 Expected Length:
 6

Actual Array:
 1 2 3
 4 5 6

Test failed.

verifyLength(testCase, eye(2), 4);

Interactive verification failed.

Framework Diagnostic:

verifyLength failed.

1 Alphabetical List

1-12048

--> The array has an incorrect length.

 Actual Length:
 2
 Expected Length:
 4

Actual Array:
 1 0
 0 1

Test Cell Array Lengths
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLength(testCase, {'someText', 'someotherText'}, 2);

Interactive verification passed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
verifiable.verifyThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test

 verifyLength

1-12049

methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
length | matlab.unittest.constraints |
matlab.unittest.constraints.HasLength |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyNumElements | verifySize |
verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12050

verifyLessThan
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is less than specified value

Syntax
verifyLessThan(verifiable,actual,ceiling)
verifyLessThan(___ ,diagnostic)

Description
verifyLessThan(verifiable,actual,ceiling) verifies that all elements of actual
are less than all the elements of ceiling.

verifyLessThan(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling unless either one is scalar,
at which point scalar expansion occurs.

Default:

ceiling

Maximum value, exclusive.

 verifyLessThan

1-12051

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 2 is less than 3.

verifyLessThan(testCase, 2, 3);

Interactive verification passed.

Test if 9 is less than 5.

verifyLessThan(testCase, 9, 5);

Interactive verification failed.

Framework Diagnostic:

verifyLessThan failed.
--> The value must be less than the maximum value.

Actual Value:

1 Alphabetical List

1-12052

 9
Maximum Value (Exclusive):
 5

Test failed.

Compare an Array to a Scalar

Test if each element is less than the CEILING value, 9.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThan(testCase, [5 6 7], 9);

Interactive verification passed.

Test if each element in the matrix is less than the CEILING value, 4.

verifyLessThan(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyLessThan failed.
--> Each element must be less than the maximum value.

 Failing Indices:
 2 4 6

Actual Value:
 1 2 3
 4 5 6
Maximum Value (Exclusive):
 4

Test failed.

Compare Arrays

Test if each element is less than each corresponding element of the CEILING array, [7
-1 8].

 verifyLessThan

1-12053

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThan(testCase, [5 -3 2], [7 -1 8]);

Interactive verification passed.

Compare an array to itself.

verifyLessThan(testCase, eye(2), eye(2));

Interactive verification failed.

Framework Diagnostic:

verifyLessThan failed.
--> Each element must be less than each corresponding element of the maximum value array.

 Failing Indices:
 1 2 3 4

Actual Value:
 1 0
 0 1
Maximum Value (Exclusive):
 1 0
 0 1

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
verifiable.verifyThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit

1 Alphabetical List

1-12054

from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
lt | matlab.unittest.constraints |
matlab.unittest.constraints.IsLessThan |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyGreaterThan |
verifyGreaterThanOrEqual | verifyLessThanOrEqual | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyLessThan

1-12055

verifyLessThanOrEqual
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is less than or equal to specified value

Syntax
verifyLessThanOrEqual(verifiable,actual,ceiling)
verifyLessThanOrEqual(___ ,diagnostic)

Description
verifyLessThanOrEqual(verifiable,actual,ceiling) verifies that all elements
of actual are less than or equal to all the elements of ceiling.

verifyLessThanOrEqual(___ ,diagnostic) also displays the diagnostic information
in diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

ceiling

Maximum value.

1 Alphabetical List

1-12056

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 2 is less than 3.

verifyLessThanOrEqual(testCase, 2, 3);

Interactive verification passed.

Verify 3 is less than or equal to 3.

verifyLessThanOrEqual(testCase, 3, 3);

Interactive verification passed.

Test if 9 is less than 5.

verifyLessThanOrEqual(testCase, 9, 5);

Interactive verification failed.

 verifyLessThanOrEqual

1-12057

Framework Diagnostic:

verifyLessThanOrEqual failed.
--> The value must be less than or equal to the maximum value.

Actual Value:
 9
Maximum Value (Inclusive):
 5

Test failed.

Compare an Array to a Scalar

Test if each element is less than or equal to the ceiling value, 7.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThanOrEqual(testCase, [5 2 7], 7);

Interactive verification passed.

Test if each element in the matrix is less than or equal to the ceiling value, 4.

verifyLessThanOrEqual(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyLessThanOrEqual failed.
--> Each element must be less than or equal to the maximum value.

 Failing Indices:
 4 6

Actual Value:
 1 2 3
 4 5 6
Maximum Value (Inclusive):
 4

1 Alphabetical List

1-12058

Test failed.

Compare Arrays

Test if each element is less than or equal to each corresponding element of the ceiling
array, [5 -3 8].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThanOrEqual(testCase, [5 -3 2], [5 -3 8]);

Interactive verification passed.

Compare an array to itself.

verifyLessThanOrEqual(testCase, eye(2), eye(2));

Interactive verification passed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
verifiable.verifyThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the IsLessThanOrEqualTo constraint
directly via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test

 verifyLessThanOrEqual

1-12059

methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
le | matlab.unittest.constraints |
matlab.unittest.constraints.IsLessThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyGreaterThan |
verifyGreaterThanOrEqual | verifyLessThan | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12060

verifyMatches
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify string matches specified regular expression

Syntax
verifyMatches(verifiable,actual,expression)
verifyMatches(___ ,diagnostic)

Description
verifyMatches(verifiable,actual,expression) that actual is a string scalar or
character vector that matches the regular expression defined by expression.

verifyMatches(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The string to test.

Default:

expression

The value to match, specified as a regular expression.

 verifyMatches

1-12061

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test for String Matches

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify that text matches a regular expression.

verifyMatches(testCase, 'Some Text', 'Some [Tt]ext', ...
 'My result should have matched the expression');

Interactive verification passed.

verifyMatches(testCase, 'Another message', '(Some |An)other');

Interactive verification passed.

verifyMatches(testCase, 'Another 3 messages', '^Another \d+ messages?$');

Interactive verification passed.

verifyMatches(testCase, '3 more messages', '\d+ messages?');

Interactive verification failed.

1 Alphabetical List

1-12062

Framework Diagnostic:

verifyMatches failed.
--> The value does not match the regular expression.

Actual char:
 3 more messages
Regular Expression:
 \d+ messages?

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
verifiable.verifyThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no

 verifyMatches

1-12063

point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.Matches |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | regexp | verifySubstring | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12064

verifyNotEmpty
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is not empty

Syntax
verifyNotEmpty(verifiable,actual)
verifyNotEmpty(___ ,diagnostic)

Description
verifyNotEmpty(verifiable,actual) verifies that actual is a non-empty MATLAB
value.

verifyNotEmpty(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 verifyNotEmpty

1-12065

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test for Non-Empty Character Vectors

Create a TestCase object.

testCase = matlab.unittest.TestCase.forInteractiveUse;

verifyNotEmpty(testCase, '');

Interactive verification failed.

Framework Diagnostic:

verifyNotEmpty failed.
--> The value must not be empty.
--> The value has a size of [0 0].

Actual char:
 0×0 empty char array

Test failed.

Test for Non-Empty Arrays

An array with any zero dimension is empty.

Test array [2 3].

1 Alphabetical List

1-12066

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEmpty(testCase, [2 3]);

Interactive verification passed.

Test array with a zero dimension.

verifyNotEmpty(testCase, ones(2, 5, 0, 3));

Interactive verification failed.

Framework Diagnostic:

verifyNotEmpty failed.
--> The value must not be empty.
--> The value has a size of [2 5 0 3].

Actual Value:
 Empty array: 2-by-5-by-0-by-3

Test failed.

Test for Non-Empty Cell Arrays

A cell array of empty arrays is not empty.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEmpty(testCase, {[], [], []}, '');

Interactive verification passed.

Test for Non-Empty Test Suite

Test an empty object, emptyTestSuite.

emptyTestSuite = matlab.unittest.TestSuite.empty;
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEmpty(testCase, emptyTestSuite);

Interactive verification failed.

 verifyNotEmpty

1-12067

Framework Diagnostic:

verifyNotEmpty failed.
--> The value must not be empty.
--> The value has a size of [0 0].

Actual Value:
 0x0 TestCase array with no properties.

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
verifiable.verifyThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture

1 Alphabetical List

1-12068

teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
isempty | matlab.unittest.constraints |
matlab.unittest.constraints.IsEmpty |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyEmpty | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyNotEmpty

1-12069

verifyNotEqual
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is not equal to specified value

Syntax
verifyNotEqual(verifiable,actual,notExpected)
verifyNotEqual(___ ,diagnostic)

Description
verifyNotEqual(verifiable,actual,notExpected) verifies that actual is not
equal to notExpected.

verifyNotEqual(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

notExpected

Value to compare.

1 Alphabetical List

1-12070

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Compare Numeric Values

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Compare a value to itself.

verifyNotEqual(testCase, 5, 5);

Verification failed.

 Framework Diagnostic:

 verifyNotEqual failed.
 --> The numeric values are equal using "isequaln".

 Actual Value:
 5
 Prohibited Value:
 5

Test failed.

Compare different number values.

 verifyNotEqual

1-12071

verifyNotEqual(testCase, 4.95, 5, '4.95 should be different from 5');

Verification passed.

Values 4.95 and 5 are not equal.

Compare values of different sizes.

verifyNotEqual(testCase, [5 5], 5, '[5 5] is not equal to 5');

Verification passed.

Values are not equal.

Compare Classes

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEqual(testCase, int8(5), int16(5), 'Classes dont match');

Verification passed.

Compare Cell Arrays

Test a cell array by comparing each element.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEqual(testCase, {'cell', struct, 5}, {'cell', struct, 5});

Verification failed.

 Framework Diagnostic:

 verifyNotEqual failed.

 Actual Value:
 1×3 cell array
 {'cell'} {1×1 struct} {[5]}
 Prohibited Value:
 1×3 cell array
 {'cell'} {1×1 struct} {[5]}

1 Alphabetical List

1-12072

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
verifiable.verifyThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.IsEqualTo |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyEqual | verifyThat

 verifyNotEqual

1-12073

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12074

verifyNotSameHandle
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is not handle to specified instance

Syntax
verifyNotSameHandle(verifiable,actual,notExpectedHandle)
verifyNotSameHandle(___ ,diagnostic)

Description
verifyNotSameHandle(verifiable,actual,notExpectedHandle) verifies that
actual is a different size and/or does not contain the same instances as the
notExpectedHandle handle array.

verifyNotSameHandle(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

notExpectedHandle

The handle array to compare.

 verifyNotSameHandle

1-12075

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test Handles from Same Class

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Create a handle class, ExampleHandle.

classdef ExampleHandle < handle
end

Create two handle variables.

h1 = ExampleHandle;
h2 = ExampleHandle;

Handles point to different objects.

verifyNotSameHandle(testCase, h1, h2);

Interactive verification passed.

Show matching handle combinations.

verifyNotSameHandle(testCase, [h1 h2 h1], [h1 h2 h1]);

1 Alphabetical List

1-12076

Interactive verification failed.

Framework Diagnostic:

verifyNotSameHandle failed.
--> The two handles must not refer to the same handle, or should have
different sizes.

Actual Value:
 1x3 ExampleHandle array with no properties.
Handle Object:
 1x3 ExampleHandle array with no properties.

Test failed.

The order of the handle arguments matters.

verifyNotSameHandle(testCase, [h1 h2], [h2 h1]);

Interactive verification passed.

Test a handle with itself.

verifyNotSameHandle(testCase, h1, h1);

Interactive verification failed.

Framework Diagnostic:

verifyNotSameHandle failed.
--> The two handles must not refer to the same handle, or should have
different sizes.

Actual Value:
 ExampleHandle with no properties.
Handle Object:
 ExampleHandle with no properties.

Test failed.

Variables are not same size.

verifyNotSameHandle(testCase, h2, [h2 h2]);

 verifyNotSameHandle

1-12077

Interactive verification passed.

Variables are the same size.

verifyNotSameHandle(testCase, [h1 h1], [h1 h1]);

Interactive verification failed.

Framework Diagnostic:

verifyNotSameHandle failed.
--> The two handles must not refer to the same handle, or should have
different sizes.

Actual Value:
 1x2 ExampleHandle array with no properties.
Handle Object:
 1x2 ExampleHandle array with no properties.

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
verifiable.verifyThat(actual, ~IsSameHandleAs(notExpectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

1 Alphabetical List

1-12078

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.IsSameHandleAs |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifySameHandle | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyNotSameHandle

1-12079

verifyNumElements
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value has specified element count

Syntax
verifyNumElements(verifiable,actual,expectedElementCount)
verifyNumElements(___ ,diagnostic)

Description
verifyNumElements(verifiable,actual,expectedElementCount) verifies that
actual is a MATLAB array with expectedElementCount number of elements.

verifyNumElements(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedElementCount

The expected number of elements in the array.

1 Alphabetical List

1-12080

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test Matrices

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

n = 7;
verifyNumElements(testCase, eye(n), n^2);

Interactive verification passed.

verifyNumElements(testCase, 3, 1);

Interactive verification passed.

verifyNumElements(testCase, [1 2 3; 4 5 6], 5);

Interactive verification failed.

Framework Diagnostic:

verifyNumElements failed.
--> The value did not have the correct number of elements.

 verifyNumElements

1-12081

 Actual Number of Elements:
 6
 Expected Number of Elements:
 5

Actual Value:
 1 2 3
 4 5 6

Test failed.

Test Cell Array

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNumElements(testCase, {'SomeString', 'SomeOtherString'}, 2);

Interactive verification passed.

Test Structure

s.Field1 = 1;
s.Field2 = 2;
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNumElements(testCase, s, 2);

Interactive verification failed.

Framework Diagnostic:

verifyNumElements failed.
--> The value did not have the correct number of elements.

 Actual Number of Elements:
 1
 Expected Number of Elements:
 2

Actual Value:
 Field1: 1
 Field2: 2

1 Alphabetical List

1-12082

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
verifiable.verifyThat(actual, HasElementCount(expectedElementCount));

There exists more functionality when using the HasElementCount constraint directly
via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.HasElementCount |

 verifyNumElements

1-12083

matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | numel | verifyLength | verifySize |
verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12084

verifyReturnsTrue
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify function returns true when evaluated

Syntax
verifyReturnsTrue(verifiable,actual)
verifyReturnsTrue(___ ,diagnostic)

Description
verifyReturnsTrue(verifiable,actual) verifies that actual is a function handle
that returns a scalar logical whose value is true.

verifyReturnsTrue(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The function handle to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 verifyReturnsTrue

1-12085

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test if Condition is True

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyReturnsTrue(testCase, @true);

Interactive verification passed.

Verify that it is true that two numbers are equal.

verifyReturnsTrue(testCase, @() isequal(1,1));

Interactive verification passed.

Verify that it is true that two letters are not the same.

verifyReturnsTrue(testCase, @() ~strcmp('a','b'));

Interactive verification passed.

Cause verification to fail by trying to verify that “false” evaluates to “true”.

verifyReturnsTrue(testCase, @false);

Interactive verification failed.

Framework Diagnostic:

verifyReturnsTrue failed.

1 Alphabetical List

1-12086

--> The function handle should have evaluated to "true".
--> Returned value:
 0

Actual Function Handle:
 @false

Test failed.

Cause verification to fail by having the test specified in the function handle return a
vector of logical values not a scalar logical value.

verifyReturnsTrue(testCase, @() strcmp('a',{'a','a'}));

Interactive verification failed.

Framework Diagnostic:

verifyReturnsTrue failed.
--> The function handle should have returned a scalar. The return value had a size of [1 2].
--> Returned value:
 1 1

Actual Function Handle:
 @()strcmp('a',{'a','a'})

Test failed.

Cause verification to fail by having the test specified in the function handle return a
double not a logical.

verifyReturnsTrue(testCase, @() exist('exist'));

Interactive verification failed.

Framework Diagnostic:

verifyReturnsTrue failed.
--> The function handle should have returned a logical value. It was of type "double".
--> Returned value:
 5

 verifyReturnsTrue

1-12087

Actual Function Handle:
 @()exist('exist')

Test failed.

Tips
• It is a shortcut for quick custom comparison functionality that can be defined quickly,

and possibly inline. It can be preferable over simply evaluating the function directly
and using verifyTrue because the function handle will be shown in the diagnostics,
thus providing more insight into the failure condition which is lost when using
verifyTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
verifiable.verifyThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort

1 Alphabetical List

1-12088

testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.ReturnsTrue |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyThat | verifyTrue

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyReturnsTrue

1-12089

verifySameHandle
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify two values are handles to same instance

Syntax
verifySameHandle(verifiable,actual,expectedHandle)
verifySameHandle(___ ,diagnostic)

Description
verifySameHandle(verifiable,actual,expectedHandle) verifies that actual is
the same size and contains the same instances as the expectedHandle handle array.

verifySameHandle(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedHandle

The expected handle array.

1 Alphabetical List

1-12090

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test Handles from Same Class

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Create a handle class, ExampleHandle.

classdef ExampleHandle < handle
end

Create two handle variables.

h1 = ExampleHandle;
h2 = ExampleHandle;

Show matching handle combinations.

verifySameHandle(testCase, h1, h1);

Interactive verification passed.

verifySameHandle(testCase, [h1 h1], [h1 h1]);

Interactive verification passed.

verifySameHandle(testCase, [h1 h2 h1], [h1 h2 h1]);

 verifySameHandle

1-12091

Interactive verification passed.

Handles must point to same object.

verifySameHandle(testCase, h1, h2);

Interactive verification failed.

Framework Diagnostic:

verifySameHandle failed.
--> Values do not refer to the same handle.

Actual Value:
 ExampleHandle with no properties.
Expected Handle Object:
 ExampleHandle with no properties.

Test failed.

Size of handle objects must match.

verifySameHandle(testCase, [h1 h1], h1);

Interactive verification failed.

Framework Diagnostic:

verifySameHandle failed.
--> Sizes do not match.
 Actual Value Size : [1 2]
 Expected Handle Object Size : [1 1]

Actual Value:
 1x2 ExampleHandle array with no properties.
Expected Handle Object:
 ExampleHandle with no properties.

Test failed.

Order of arguments is important.

verifySameHandle(testCase, [h1 h2], [h2 h1]);

1 Alphabetical List

1-12092

Interactive verification failed.

Framework Diagnostic:

verifySameHandle failed.
--> Some elements in the handle array refer to the wrong handle.

Actual Value:
 1x2 ExampleHandle array with no properties.
Expected Handle Object:
 1x2 ExampleHandle array with no properties.

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
verifiable.verifyThat(actual, IsSameHandleAs(expectedHandle));

There exists more functionality when using the IsSameHandleAs constraint directly
via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

 verifySameHandle

1-12093

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
handle | matlab.unittest.constraints |
matlab.unittest.constraints.IsSameHandleAs |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyNotSameHandle | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12094

verifySize
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value has specified size

Syntax
verifySize(verifiable,actual,expectedSize)
verifySize(___ ,diagnostic)

Description
verifySize(verifiable,actual,expectedSize) verifies that actual is a MATLAB
array whose size is expectedSize.

verifySize(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

expectedSize

The expected sizes of each dimension the array.

 verifySize

1-12095

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test Arrays

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

verifySize(testCase, ones(2, 5, 3), [2 5 3]);

Interactive verification passed.

verifySize(testCase, [1 2 3; 4 5 6], [2 3]);

Interactive verification passed.

verifySize(testCase, [2 3], [3 2]);

Interactive verification failed.

Framework Diagnostic:

verifySize failed.
--> The value had an incorrect size.

 Actual Size:

1 Alphabetical List

1-12096

 1 2
 Expected Size:
 3 2

Actual Value:
 2 3

Test failed.

Number of elements is not the same as size.

verifySize(testCase, [1 2 3; 4 5 6], [6 1]);

Interactive verification failed.

Framework Diagnostic:

verifySize failed.
--> The value had an incorrect size.

 Actual Size:
 2 3
 Expected Size:
 6 1

Actual Value:
 1 2 3
 4 5 6

Test failed.

verifySize(testCase, eye(2), [4 1]);

Interactive verification failed.

Framework Diagnostic:

verifySize failed.
--> The value had an incorrect size.

 Actual Size:
 2 2
 Expected Size:

 verifySize

1-12097

 4 1

Actual Value:
 1 0
 0 1

Test failed.

Test Cell Array
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifySize(testCase, {'SomeText', 'SomeOtherText'}, [1 2]);

Interactive verification passed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
verifiable.verifyThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint directly via
verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-12098

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.HasSize |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | size | verifyLength | verifyNumElements |
verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifySize

1-12099

verifySubstring
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify string contains specified string

Syntax
verifySubstring(verifiable,actual,substring)
verifySubstring(___ ,diagnostic)

Description
verifySubstring(verifiable,actual,substring) verifies that actual is a string
scalar or character vector that contains substring.

verifySubstring(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The string to test.

Default:

substring

The value to match, specified as a string scalar or character vector.

1 Alphabetical List

1-12100

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test for Substrings

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test that a substring is contained in a string.

verifySubstring(testCase, 'SomeLongMessage', 'Long');

Interactive verification passed.

Show that case matters.

verifySubstring(testCase, 'SomeLongMessage', 'lonG');

Interactive verification failed.

Framework Diagnostic:

verifySubstring failed.
--> The value does not contain the substring.

Actual char:

 verifySubstring

1-12101

 SomeLongMessage
Expected Substring:
 lonG

Test failed.

Cause the verification to fail by testing a substring that isn’t contained in the actual
string.

verifySubstring(testCase, 'SomeLongMessage', 'OtherMessage');

Interactive verification failed.

Framework Diagnostic:

verifySubstring failed.
--> The value does not contain the substring.

Actual char:
 SomeLongMessage
Expected Substring:
 OtherMessage

Test failed.

Show that the verification will fail if the substring is longer than the actual string.

verifySubstring(testCase, 'SomeLongMessage', 'SomeLongMessageThatIsLonger');

Interactive verification failed.

Framework Diagnostic:

verifySubstring failed.
--> The value does not contain the substring.

Actual char:
 SomeLongMessage
Expected Substring:
 SomeLongMessageThatIsLonger

1 Alphabetical List

1-12102

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
verifiable.verifyThat(actual, ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring constraint
directly via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.ContainsSubstring |

 verifySubstring

1-12103

matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | strfind | verifyMatches | verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12104

verifyThat
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value meets given constraint

Syntax
verifyThat(verifiable,actual,constraint)
verifyThat(___ ,diagnostic)

Description
verifyThat(verifiable,actual,constraint) verifies that actual is a value that
satisfies the constraint provided.

If the constraint is not satisfied, a verification failure is produced utilizing only the
framework diagnostic generated by the constraint.

verifyThat(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

When using this signature, both the diagnostic information contained within diagnostic
is used in addition to the diagnostic information provided by the constraint.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

 verifyThat

1-12105

Default:

constraint

Constraint that the actual value must satisfy to pass the verification, specified as a
matlab.unittest.constraints instance.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test Conditions Using Constraints

testCase = matlab.unittest.TestCase.forInteractiveUse;

% Passing scenarios
%%%%%%%%%%%%%%%%%%%%
import matlab.unittest.constraints.IsTrue
verifyThat(testCase, true, IsTrue)

import matlab.unittest.constraints.IsEqualTo
verifyThat(testCase, 5, IsEqualTo(5), '5 should be equal to 5')

import matlab.unittest.constraints.IsGreaterThan
import matlab.unittest.constraints.HasNaN
verifyThat(testCase, [5 NaN], IsGreaterThan(10) | HasNaN, ...
 'The value was not greater than 10 or NaN')

1 Alphabetical List

1-12106

% Failing scenarios
%%%%%%%%%%%%%%%%%%%%
import matlab.unittest.constraints.AnyCellOf
import matlab.unittest.constraints.ContainsSubstring
verifyThat(testCase, AnyCellOf({'cell','of','strings'}), ...
 ContainsSubstring('char'),'Test description')

import matlab.unittest.constraints.HasSize
verifyThat(testCase, zeros(10,4,2), HasSize([10,5,2]), ...
 @() disp('A function handle diagnostic.'))

import matlab.unittest.constraints.IsEmpty
verifyThat(testCase, 5, IsEmpty)

Tips
• Use verification qualifications to produce and record failures without throwing an

exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

 verifyThat

1-12107

See Also
matlab.unittest.constraints | matlab.unittest.constraints.Constraint |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12108

verifyTrue
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify value is true

Syntax
verifyTrue(verifiable,actual)
verifyTrue(___ ,diagnostic)

Description
verifyTrue(verifiable,actual) verifies that actual is a scalar logical with the
value of true.

verifyTrue(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The value to test.

Default:

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

 verifyTrue

1-12109

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples

Test MATLAB Logical Functions

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test true.

verifyTrue(testCase, true);

Interactive verification passed.

Test false.

verifyTrue(testCase, false);

Interactive verification failed.

Framework Diagnostic:

verifyTrue failed.
--> The value must evaluate to "true".

Actual Value:
 0

Test failed.

1 Alphabetical List

1-12110

Test the Value 1

The number 1 is a double value, not a logical value.

A double value of 1 is not true.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyTrue(testCase, 1);

Interactive verification failed.

Framework Diagnostic:

verifyTrue failed.
--> The value must be logical. It is of type "double".

Actual Value:
 1

Test failed.

Test Array of Logical Values

To be true, the value must be scalar.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyTrue(testCase, [true true true]);

Interactive verification failed.

Framework Diagnostic:

verifyTrue failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
 1 1 1

 verifyTrue

1-12111

Test failed.

Tips
• This method passes if and only if the actual value is a scalar logical with a value of

true. Therefore, entities such as true valued arrays and nonzero doubles produce
qualification failures when used in this method, despite these entities exhibiting "true-
like" behavior such as triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
verifiable.verifyThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint directly via
verifyThat.

Use of this method for performance benefits can come at the expense of less
diagnostic information, and may not provide the same level of strictness adhered to by
other constraints such as IsEqualTo. A similar approach that is generally less
performant but can provide slightly better diagnostic information is the use of
verifyReturnsTrue, which at least shows the display of the function evaluated to
generate the failing result.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

1 Alphabetical List

1-12112

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints | matlab.unittest.constraints.IsTrue |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyFalse | verifyReturnsTrue |
verifyThat

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyTrue

1-12113

verifyWarning
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify function issues specified warning

Syntax
verifyWarning(verifiable,actual,warningID)
verifyWarning(___ ,diagnostic)
[output1,...,outputN] = verifyWarning(___)

Description
verifyWarning(verifiable,actual,warningID) verifies that actual issues a
warning with the identifier warningID.

verifyWarning(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

[output1,...,outputN] = verifyWarning(___) also returns the output
arguments output1,...,outputN that are produced when invoking actual.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The function handle to test.

Default:

1 Alphabetical List

1-12114

warningID

Warning ID, specified as a character vector.

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples

Test warning Function

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify actual warning ID is the same as input warning ID.

verifyWarning(testCase, @() warning('SOME:warning:id','Warning!'), ...
 'SOME:warning:id');

Interactive verification passed.

 verifyWarning

1-12115

verifyWarning(testCase, @() warning('SOME:other:id', 'Warning message'),...
 'SOME:warning:id', 'Did not issue specified warning');

Warning: Warning message
> In @()warning('SOME:other:id','Warning message')
 In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 43
 In WarningQualificationConstraint>WarningQualificationConstraint.invoke at 58
 In IssuesWarnings>IssuesWarnings.invoke at 364
 In IssuesWarnings>IssuesWarnings.issuesExpectedWarnings at 411
 In IssuesWarnings>IssuesWarnings.satisfiedBy at 240
 In QualificationDelegate>QualificationDelegate.qualifyThat at 90
 In QualificationDelegate>QualificationDelegate.qualifyWarning at 196
 In Verifiable>Verifiable.verifyWarning at 701
Interactive verification failed.

Test Diagnostic:

Did not issue specified warning

Framework Diagnostic:

verifyWarning failed.
--> The function handle did not issue the expected warning.

 Actual Warnings:
 --> 'SOME:other:id'
 Expected Warning:
 --> 'SOME:warning:id'

Evaluated Function:
 @()warning('SOME:other:id','Warning message')

Test a Function Without Warnings

Test the true function, which does not issue warnings.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyWarning(testCase, @true, 'SOME:warning:id', ...
'@true did not issue any warning');

Interactive verification failed.

1 Alphabetical List

1-12116

Test Diagnostic:

@true did not issue any warning

Framework Diagnostic:

verifyWarning failed.
--> The function handle did not issue any warnings.

 Expected Warning:
 --> 'SOME:warning:id'

Evaluated Function:
 @true

Test failed.

Test Function With Output Arguments

Create a helper function that generates a warning and returns output.

function varargout = helper()
 warning('SOME:warning:id','Warning!');
 varargout = {123, 'abc'};
end

Call helper.

testCase = matlab.unittest.TestCase.forInteractiveUse;
[actualOut1, actualOut2] = verifyWarning(testCase, @helper, ...
 'SOME:warning:id');

Interactive verification passed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
verifiable.verifyThat(actual, IssuesWarnings({warningID}));

 verifyWarning

1-12117

There exists more functionality when using the IssuesWarnings constraint directly
via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed
and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.IssuesWarnings |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyError | verifyThat |
verifyWarningFree | warning

Topics
“Types of Qualifications”

Introduced in R2013a

1 Alphabetical List

1-12118

verifyWarningFree
Class: matlab.unittest.qualifications.Verifiable
Package: matlab.unittest.qualifications

Verify function issues no warnings

Syntax
verifyWarningFree(verifiable,actual)
verifyWarningFree(___ ,diagnostic)
output1,...,outputN = verifyWarningFree(___)

Description
verifyWarningFree(verifiable,actual) verifies that actual is a function handle
that issues no warnings.

verifyWarningFree(___ ,diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

output1,...,outputN = verifyWarningFree(___) also returns the output
arguments output1,...,outputN that are produced when invoking actual.

Input Arguments
verifiable

The matlab.unittest.TestCase instance which is used to pass or fail the verification
in conjunction with the test running framework.

actual

The function handle to test.

Default:

 verifyWarningFree

1-12119

diagnostic

Diagnostic information related to the qualification, specified as one of the following:

• string array
• character array
• function handle
• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output Arguments
output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned as any type. The
argument type is specified by the actual argument list.

Examples

Test for Warnings from MATLAB Functions

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test the why function.

verifyWarningFree(testCase, @why);

The bald and not excessively bald and not excessively smart hamster obeyed a terrified and not excessively terrified hamster.
Interactive verification passed.

This is a randomly-generated message.

Test the true function.

verifyWarningFree(testCase, @true);

1 Alphabetical List

1-12120

Interactive verification passed.

Test the false function.

actualOutputFromFalse = verifyWarningFree(testCase, @false);

Interactive verification passed.

Test a value that is not a function handle.

verifyWarningFree(testCase, 5,'diagnostic');

Interactive verification failed.

Test Diagnostic:

diagnostic

Framework Diagnostic:

verifyWarningFree failed.
--> The value must be an instance of the expected type.

 Actual Class:
 double
 Expected Type:
 function_handle

Actual Value:
 5

Test failed.

Test a function that generates warning.

verifyWarningFree(testCase, @() warning('some:id', 'Message'));

Warning: Message
> In @()warning('some:id','Message')
 In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 43
 In WarningQualificationConstraint>WarningQualificationConstraint.invoke at 58
 In IssuesNoWarnings>IssuesNoWarnings.issuesNoWarnings at 131
 In IssuesNoWarnings>IssuesNoWarnings.satisfiedBy at 82
 In QualificationDelegate>QualificationDelegate.qualifyThat at 90

 verifyWarningFree

1-12121

 In QualificationDelegate>QualificationDelegate.qualifyWarningFree at 204
 In Verifiable>Verifiable.verifyWarningFree at 757
Interactive verification failed.

Framework Diagnostic:

verifyWarningFree failed.
--> The function issued warnings.

 Warnings Issued:
 some:id

Evaluated Function:
 @()warning('some:id','Message')

Test failed.

Tips
• This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
verifiable.verifyThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings constraint
directly via verifyThat.

• Use verification qualifications to produce and record failures without throwing an
exception. Since verifications do not throw exceptions, all test content runs to
completion even when verification failures occur. Typically verifications are the
primary qualification for a unit test since they typically do not require an early exit
from the test. Use other qualification types to test for violation of preconditions or
incorrect test setup. Alternatively,

• Use assumption qualifications to ensure that the test environment meets
preconditions that otherwise do not result in a test failure. Assumption failures
result in filtered tests, and the testing framework marks the tests as Incomplete.
For more information, see matlab.unittest.qualifications.Assumable.

• Use assertion qualifications when the failure condition invalidates the remainder of
the current test content, but does not prevent proper execution of subsequent test
methods. A failure at the assertion point renders the current test method as failed

1 Alphabetical List

1-12122

and incomplete. For more information, see
matlab.unittest.qualifications.Assertable.

• Use fatal assertion qualifications to abort the test session upon failure. These
qualifications are useful when the failure mode is so fundamental that there is no
point in continuing testing. These qualifications are also useful when fixture
teardown does not restore the MATLAB state correctly and it is preferable to abort
testing and start a fresh session. For more information, see
matlab.unittest.qualifications.FatalAssertable.

See Also
matlab.unittest.constraints |
matlab.unittest.constraints.IssuesNoWarnings |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.qualifications | verifyThat | verifyWarning | warning

Topics
“Types of Qualifications”

Introduced in R2013a

 verifyWarningFree

1-12123

quarter
Quarter number

Syntax
q = quarter(t)

Description
q = quarter(t) returns the quarter numbers for the datetime values in t. The q output
is a double array containing integer values from 1 to 4, and is the same size as t.

Examples

Find Quarter Number of Dates
t = datetime(2013,05,31):calmonths(3):datetime(2014,05,31)

t = 1x5 datetime array
 31-May-2013 31-Aug-2013 30-Nov-2013 28-Feb-2014 31-May-2014

q = quarter(t)

q = 1×5

 2 3 4 1 2

Input Arguments
t — Input date and time
datetime array

1 Alphabetical List

1-12124

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
day | month | week | year

Introduced in R2014b

 quarter

1-12125

questdlg
Create question dialog box

Note If you are using App Designer or creating apps with the uifigure function,
then use uiconfirm instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Syntax
answer = questdlg(quest)
answer = questdlg(quest,dlgtitle)
answer = questdlg(quest,dlgtitle,defbtn)
answer = questdlg(quest,dlgtitle,btn1,btn2,defbtn)
answer = questdlg(quest,dlgtitle,btn1,btn2,btn3,defbtn)

answer = questdlg(quest,dlgtitle,opts)
answer = questdlg(quest,dlgtitle,btn1,btn2,opts)
answer = questdlg(quest,dlgtitle,btn1,btn2,btn3,opts)

Description
answer = questdlg(quest) creates a modal on page 1-15501 dialog box that presents
a question and returns the user's response -- 'Yes', 'No', 'Cancel', or ''.

By default, the dialog box has three standard buttons, labeled Yes, No, and Cancel.

• If the user clicks one of these buttons, then the answer value is the same as the label
of the pressed button.

• If the user clicks the close button (X) on the dialog box title bar or presses the Esc key,
then the answer value is an empty character vector (' ').

• If the user presses the Return key, then the answer value is the same as the label of
the default button selection. In this case, 'Yes'.

answer = questdlg(quest,dlgtitle) specifies a dialog box title.

1 Alphabetical List

1-12126

answer = questdlg(quest,dlgtitle,defbtn) specifies which button is the default
if the user presses the keyboard Return key. The defbtn value must match one of the
button labels.

answer = questdlg(quest,dlgtitle,btn1,btn2,defbtn) customizes two of the
standard buttons by labeling them with the values of btn1 and btn2. The third standard
button is removed. The defbtn value must match the value of btn1 or btn2.

If the user presses the keyboard Return key, and the defbtn value does not match one of
the button labels, then the dialog box remains open.

answer = questdlg(quest,dlgtitle,btn1,btn2,btn3,defbtn) customizes the
third standard button with a label that matches the value of btn3.

answer = questdlg(quest,dlgtitle,opts) specifies an options structure to specify
the default button selection and whether to use TeX to interpret the question text.

answer = questdlg(quest,dlgtitle,btn1,btn2,opts) customizes two standard
buttons with labels that match the values of btn1 and btn2. The third standard button is
removed.

answer = questdlg(quest,dlgtitle,btn1,btn2,btn3,opts) customizes the
third standard button with a label that matches the value of btn3.

Examples
Encode User's Choice as an Integer in Question Dialog Box
answer = questdlg('Would you like a dessert?', ...
 'Dessert Menu', ...
 'Ice cream','Cake','No thank you','No thank you');
% Handle response
switch answer
 case 'Ice cream'
 disp([answer ' coming right up.'])
 dessert = 1;
 case 'Cake'
 disp([answer ' coming right up.'])
 dessert = 2;
 case 'No thank you'
 disp('I''ll bring you your check.')

 questdlg

1-12127

 dessert = 0;
end

To access the return value assigned to dessert, save the example as a function. For
example, create function choosedessert by making this the first line of code.

function dessert = choosedessert

Format Question in Dialog Box Using TeX
opts.Interpreter = 'tex';
% Include the desired Default answer
opts.Default = 'Don''t know';
% Use the TeX interpreter to format the question
quest = 'Is \Sigma(\alpha - \beta) < 0?';
answer = questdlg(quest,'Boundary Condition',...
 'Yes','No','Don''t know',opts)

Input Arguments
quest — Dialog box question
character vector | cell array of character vectors | string array

1 Alphabetical List

1-12128

Dialog box question, specified as a character vector, cell array of character vectors, or
string array. The question automatically wraps to fit within the dialog box.
Example: 'What is the velocity?'

dlgtitle — Dialog box title
' ' (default) | character vector | string scalar

Dialog box title, specified as a character vector or string scalar.
Example: 'Configuration'

defbtn — Default button selection
character vector | string scalar

The default button selection, specified as a character vector or string scalar. The default
button selection is the value that MATLAB returns if the user presses the keyboard
Return key instead of clicking a button in the dialog box. The default selection must be
the same as one of the dialog box button labels. If the defbtn argument value does not
match a button label, then the dialog box remains open if the user presses the keyboard
Enter key.
Example: 'Cancel'

btn1 — First customized button label
character vector | string scalar

First customized button label, specified as a character vector or string scalar.
Example: 'Start'

btn2 — Second customized button label
character vector | string scalar

Second customized button label, specified as a character vector or string scalar.
Example: 'Reset'

btn3 — Third customized button label
character vector | string scalar

Third customized button label, specified as a character vector or string scalar.
Example: 'Test'

 questdlg

1-12129

opts — Dialog box settings
structure

Dialog box settings specified as a structure. The structure specifies which button is the
default button selection, and whether to use TeX to interpret the question text.

The opts structure, must include both of the fields presented in this table. The structure
can include additional fields, but questdlg does not use them.

Field Values
Default The default button selection, specified as a character vector or string

scalar. The default selection must be the same as one of the dialog
box button labels.

The default button is the button value that MATLAB returns if the
user presses the keyboard Return key instead of clicking a dialog box
button.

If the Default field value does not match one of the button labels,
then the dialog box does not respond to the user pressing the
keyboard Enter key.

Interpreter 'none' (default) or 'tex'. If set to 'tex', then the prompt is
rendered using TeX. Button labels and the dialog box title are not
affected.

Use TeX markup to add superscripts and subscripts, modify the font
type and color, and include special characters in the question text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'

1 Alphabetical List

1-12130

Modifier Description Example
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥

 questdlg

1-12131

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´

1 Alphabetical List

1-12132

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

Example: opts.Default = 'Cancel'
Example: opts.Interpreter = 'tex'

Definitions

Modal Dialog Box
A modal dialog box prevents the user from interacting with other MATLAB windows
before responding.

See Also
inputdlg | listdlg

Introduced before R2006a

 questdlg

1-12133

quit
Terminate MATLAB program

Syntax
quit
quit cancel
quit force
quit(code)
quit(code,"force")

Description
quit terminates the MATLAB program. The quit function does not automatically save
the workspace.

To interrupt a MATLAB command, see “Stop Execution”.

quit cancel is for use in a finish.m script and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this syntax to override
the finish script if the script does not let you quit.

quit(code) returns the specified value as the MATLAB exit code.

quit(code,"force") bypasses finish.m and terminates MATLAB with the exit code.
Example: quit(0,"force")

Input Arguments
code — Exit code
0 (default) | signed integer

1 Alphabetical List

1-12134

Exit code, specified as a signed integer. On Windowsplatforms, MATLAB returns values in
the range of INT_MIN to INT_MAX (-2147483647 to 2147483647). On Linux and macOS
platforms, MATLAB returns values between 0 and 255.

The exit code is returned by default on macOS and Linux. On Windows, start MATLAB
with the -wait option.
Example: quit(1)

Limitations
• MATLAB Online does not support displaying a confirmation dialog box or using a

finish.m script. Before logging out, MATLAB Online saves open files and session
data.

Alternatives
Click the close button on the MATLAB desktop.

See Also
exit | finish | save

Topics
“Exit MATLAB”

Introduced before R2006a

 quit

1-12135

https://www.mathworks.com/products/matlab-online.html

Quit (COM)
Terminate MATLAB Automation server

Syntax

IDL Method Signature
void Quit(void)

Microsoft Visual Basic Client
Quit

MATLAB Client
Quit(h)

Description
Quit(h) terminates the MATLAB server session attached to handle h. The MATLAB
object is active until all references have been released, such as when the variable in a
function call goes out of scope, or by calling the MATLAB clear h command.

The function name is case-sensitive.

To release the MATLAB object, type:

clear h

Introduced before R2006a

1 Alphabetical List

1-12136

quiver
Quiver or velocity plot

Syntax
quiver(x,y,u,v)
quiver(u,v)
quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec,'filled')
quiver(...,'PropertyName',PropertyValue,...)
quiver(ax,...)
h = quiver(...)

Description
A quiver plot displays velocity vectors as arrows with components (u,v) at the points
(x,y).

For example, the first vector is defined by components u(1),v(1) and is displayed at the
point x(1),y(1).

quiver(x,y,u,v) plots vectors as arrows at the coordinates specified in each
corresponding pair of elements in x and y. The matrices x, y, u, and v must all be the
same size and contain corresponding position and velocity components. However, x and y
can also be vectors, as explained in the next section. By default, the arrows are scaled to
just not overlap, but you can scale them to be longer or shorter if you want.

quiver(u,v) draws vectors specified by u and v at equally spaced points in the x-y
plane.

 quiver

1-12137

quiver(...,scale) automatically scales the arrows to fit within the grid and then
stretches them by the factor scale. scale = 2 doubles their relative length, and scale =
0.5 halves the length. Use scale = 0 to plot the velocity vectors without automatic
scaling. You can also tune the length of arrows after they have been drawn by choosing

the Plot Edit tool, selecting the quiver object, opening the Property Editor, and
adjusting the Length slider.

quiver(...,LineSpec) specifies line style, marker symbol, and color using any valid
LineSpec. quiver draws the markers at the origin of the vectors.

quiver(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver(...,'PropertyName',PropertyValue,...) specifies property name and
property value pairs for the quiver objects the function creates.

quiver(ax,...) plots into the axes ax instead of into the current axes (gca).

h = quiver(...) returns the Quiver object.

Expanding x- and y-Coordinates
MATLAB expands x and y if they are not matrices. This expansion is equivalent to calling
meshgrid to generate matrices from vectors:

[x,y] = meshgrid(x,y);
quiver(x,y,u,v)

In this case, the following must be true:

length(x) = n and length(y) = m, where [m,n] = size(u) = size(v).

The vector x corresponds to the columns of u and v, and vector y corresponds to the rows
of u and v.

Examples

1 Alphabetical List

1-12138

Plot Vector Velocities

Use quiver to display an arrow at each data point in x and y such that the arrow
direction and length represent the corresponding values in u and v.

[x,y] = meshgrid(0:0.2:2,0:0.2:2);
u = cos(x).*y;
v = sin(x).*y;

figure
quiver(x,y,u,v)

 quiver

1-12139

Show Gradient with Quiver Plot

Plot the gradient of the function z = xe−x2− y2.

[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X.^2 - Y.^2);
[DX,DY] = gradient(Z,.2,.2);

figure
contour(X,Y,Z)
hold on
quiver(X,Y,DX,DY)
hold off

1 Alphabetical List

1-12140

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | contour | plot | quiver3

Properties
Quiver

Topics
“Combine Contour Plot and Quiver Plot”

 quiver

1-12141

Introduced before R2006a

1 Alphabetical List

1-12142

quiver3
3-D quiver or velocity plot

Syntax
quiver3(x,y,z,u,v,w)
quiver3(z,u,v,w)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec,'filled')
quiver3(...,'PropertyName',PropertyValue,...)
quiver3(ax,...)
h = quiver3(...)

Description
A three-dimensional quiver plot displays vectors with components (u,v,w) at the points
(x,y,z), where u, v, w, x, y, and z all have real (non-complex) values.

quiver3(x,y,z,u,v,w) plots vectors with directions determined by components
(u,v,w) at points determined by (x,y,z). The matrices x,y,z,u,v, and w must all be the
same size and contain the corresponding position and vector components.

quiver3(z,u,v,w) plots vectors with directions determined by components (u,v,w) at
equally spaced points along the surface z. For each vector (u(i,j),v(i,j),w(i,j)),
the column index j determines the x-value of the point on the surface, the row index i
determines the y-value, and z(i,j) determines the z-value. That is, quiver3 locates the
vector at the point on the surface (j,i,z(i,j)). The quiver3 function automatically
scales the vectors to prevent overlapping based on the distance between them.

 quiver3

1-12143

quiver3(...,scale) automatically scales the vectors to prevent them from
overlapping, and then multiplies them by scale. scale = 2 doubles their relative length,
and scale = 0.5 halves them. Use scale = 0 to plot the vectors without the automatic
scaling.

quiver3(...,LineSpec) specifies line style, marker symbol, and color using any valid
LineSpec. quiver3 draws the markers at the origin of the vectors.

quiver3(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver3(...,'PropertyName',PropertyValue,...) specifies property name and
property value pairs for the quiver chart that the function creates.

quiver3(ax,...) plots into the axes ax instead of into the current axes (gca).

h = quiver3(...) returns the Quiver object.

Examples

Create 3-D Quiver Plot

Define the data.

x = -3:0.5:3;
y = -3:0.5:3;
[X,Y] = meshgrid(x, y);
Z = Y.^2 - X.^2;
[U,V,W] = surfnorm(Z);

Plot vectors with components (U,V,W) at points that are equally spaced in the x-direction
and y-direction with heights determined by Z.

figure
quiver3(Z,U,V,W)
view(-35,45)

1 Alphabetical List

1-12144

Plot Surface Normals

Plot the surface normals of the function z = xe−x2− y2.

[X,Y] = meshgrid(-2:0.25:2,-1:0.2:1);
Z = X.* exp(-X.^2 - Y.^2);
[U,V,W] = surfnorm(X,Y,Z);

figure
quiver3(X,Y,Z,U,V,W,0.5)

 quiver3

1-12145

hold on
surf(X,Y,Z)
view(-35,45)
axis([-2 2 -1 1 -.6 .6])
hold off

1 Alphabetical List

1-12146

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | axis | contour | plot | plot3 | quiver | surfnorm | view

Properties
Quiver

Topics
“Projectile Path Over Time”

 quiver3

1-12147

Introduced before R2006a

1 Alphabetical List

1-12148

Quiver Properties
Quiver chart appearance and behavior

Description
Quiver properties control the appearance and behavior of a Quiver object. By changing
property values, you can modify certain aspects of the quiver chart.

Starting in R2014b, you can use dot notation to query and set properties.

q = quiver(1:10,1:10);
c = q.Color;
q.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Arrows

Color — Arrow color
[0 0 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Arrow color, specified as a three-element RGB triplet, a hexadecimal color code, a color
name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Quiver Properties

1-12149

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

LineStyle — Style of arrow stem
'-' (default) | '--' | ':' | '-.' | 'none'

1 Alphabetical List

1-12150

Style of arrow stem, specified as one of the line styles listed in this table.

Line Style Description Result
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No stem No stem

LineWidth — Width of arrow stem
0.5 (default) | scalar numeric value

Width of arrow stem, specified as a scalar numeric value greater than zero in point units.
One point equals 1/72 inch. The default value is 0.5 point.
Example: 0.75

ShowArrowHead — Arrowhead display
'on' (default) | 'off'

Arrowhead display, specified as one of these values:

• 'on' — Display the vectors with arrowheads.
• 'off' — Display the vectors without arrowheads.

MaxHeadSize — Maximum size of arrowhead
0.2 (default) | scalar

Maximum size of arrowhead, specified as a scalar value in units relative to the length of
the arrow.
Example: 0.1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

AutoScale — Automatic scaling of arrow length
'on' (default) | 'off'

 Quiver Properties

1-12151

Automatic scaling of arrow length, specified as one of these values:

• 'on' — Scale the arrow length to fit within the grid-defined coordinate data and scale
arrows so that they do not overlap. The quiver function then applies the
AutoScaleFactor to the arrow length.

• 'off' — Do not scale the arrow lengths.

AutoScaleFactor — Scale factor
0.9 (default) | scalar

Scale factor, specified as a scalar. A value of 2 doubles the length of the arrows. A value of
0.5 halves the arrow lengths.

This property has an effect only if the AutoScale property is set to 'on'.
Example: 2

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

1 Alphabetical List

1-12152

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 Quiver Properties

1-12153

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-12154

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

 Quiver Properties

1-12155

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data

UData — Vector lengths in x-direction
vector | matrix

Vector lengths in x-direction, specified as a vector or a matrix. The UData, VData, and
WData properties together specify the components of the vectors displayed as arrows in
the quiver chart.
Example: 1:10

UDataSource — Variable linked to UData
'' (default) | character vector | string

Variable linked to UData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the UData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, MATLAB does not update the UData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

1 Alphabetical List

1-12156

VData — Vector lengths in y-direction
vector | matrix

Vector lengths in y-direction, specified as a vector or a matrix. The UData, VData, and
WData properties together specify the components of the vectors displayed as arrows in
the quiver chart.
Example: 1:10

VDataSource — Variable linked to VData
'' (default) | character vector | string

Variable linked to VData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the VData.

By default, there is no linked variable so the value is an character vector, ''. If you link a
variable, MATLAB does not update the VData values immediately. To force an update of
the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

WData — Vector lengths in z-direction
vector | matrix

Vector lengths in z-direction, specified as a vector or a matrix. The UData, VData, and
WData properties together specify the components of the vectors displayed as arrows in
the quiver chart. For 2-D quiver charts, WData is an empty array.
Example: 1:10

WDataSource — Variable linked to WData
'' (default) | character vector | string

Variable linked to WData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the WData.

 Quiver Properties

1-12157

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, MATLAB does not update the WData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

XData — x-coordinates
vector | matrix

x-coordinates, specified as a vector or matrix. The input argument X to the quiver
function determines the x-coordinates. If you do not specify X, then quiver uses the
indices of UData as the x-coordinates. XData must be equal in size to YData.

Setting this property sets the associated mode property to manual mode.
Example: 1:10

XDataMode — Selection mode for XData
'auto' | 'manual'

Selection mode for XData, specified as one of these values:

• 'auto' — Automatically select the values.
• 'manual' — Use manually specified values. To specify the values, set the XData

property or use the input argument X to the function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

1 Alphabetical List

1-12158

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y-coordinates
vector | matrix

y-coordinates, specified as a vector or matrix. The input argument Y to the quiver
function determines the y-coordinates. If you do not specify Y, then quiver uses the
indices of VData as the y-coordinates. YData must be equal in size to XData.

Setting this property sets the associated mode property to manual mode.
Example: 1:10

YDataMode — Selection mode for YData
'auto' | 'manual'

Selection mode for YData, specified as one of these values:

• 'auto' — Automatically select the values.
• 'manual' — Use manually specified values. To specify the values, set the YData

property or use the input argument Y to the function.

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

 Quiver Properties

1-12159

Example: 'y'

ZData — z-coordinates
vector | matrix

z-coordinates, specified as a vector or matrix. The input argument Z to the quiver3
function determines the z-coordinates. For 2-D quiver charts, ZData is an empty array.
For 3-D quiver charts, ZData must be equal in size to XData and YData.
Example: 1:10

ZDataSource — Variable linked to ZData
'' (default) | character vector | string

Variable linked to ZData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

1 Alphabetical List

1-12160

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

 Quiver Properties

1-12161

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

1 Alphabetical List

1-12162

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

 Quiver Properties

1-12163

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

1 Alphabetical List

1-12164

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 Quiver Properties

1-12165

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Quiver object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Quiver object responds to the
click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Quiver object passes the click
to the object below it in the current view of the figure window. The HitTest property
of the Quiver object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Quiver object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Quiver object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

1 Alphabetical List

1-12166

Note The PickableParts property determines if the Quiver object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

 Quiver Properties

1-12167

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'quiver'

This property is read-only.

Type of graphics object, returned as 'quiver'. Use this property to find all objects of a
given type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
quiver | quiver3

1 Alphabetical List

1-12168

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Quiver Properties

1-12169

qz
QZ factorization for generalized eigenvalues

Syntax
[AA,BB,Q,Z] = qz(A,B)
[AA,BB,Q,Z,V,W] = qz(A,B)
qz(A,B,flag)

Description
The qz function gives access to intermediate results in the computation of generalized
eigenvalues.

[AA,BB,Q,Z] = qz(A,B) for square matrices A and B, produces upper quasitriangular
matrices AA and BB, and unitary matrices Q and Z such that Q*A*Z = AA, and
Q*B*Z = BB. For complex matrices, AA and BB are triangular.

[AA,BB,Q,Z,V,W] = qz(A,B) also produces matrices V and W whose columns are
generalized eigenvectors.

qz(A,B,flag) for real matrices A and B, produces one of two decompositions depending
on the value of flag:

'complex' Produces a possibly complex decomposition with a
triangular AA. For compatibility with earlier versions,
'complex' is the default.

'real' Produces a real decomposition with a quasitriangular AA,
containing 1-by-1 and 2-by-2 blocks on its diagonal.

If AA is triangular, then the diagonal elements a = diag(AA) and b = diag(BB) are
the generalized eigenvalues that satisfy

A*V*b = B*V*a
b'*W'*A = a'*W'*B

1 Alphabetical List

1-12170

The eigenvalues produced by lambda = eig(A,B) are the ratios of the diagonal
elements a and b, such that lambda = a./b.

If AA is not triangular, it is necessary to further reduce the 2-by-2 blocks to obtain the
eigenvalues of the full system.

See Also
eig

Introduced before R2006a

 qz

1-12171

rad2deg
Convert angle from radians to degrees

Syntax
D = rad2deg(R)

Description
D = rad2deg(R) converts angle units from radians to degrees for each element of R.

Examples

pi in Degrees

Convert pi into degrees.

D = rad2deg(pi)

D = 180

Spherical Distance

Specify the mean radius of Earth and the distance from Munich to Bangalore measured
along the Earth's surface (in kilometers). Compute the spherical distance between
Munich and Bangalore in degrees.

dist = 7194;
radEarth = 6371;
R = dist/radEarth;
D = rad2deg(R)

D = 64.6972

1 Alphabetical List

1-12172

Input Arguments
R — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. If R
contains complex elements, rad2deg converts the real and imaginary parts separately.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
D — Angle in degrees
scalar | vector | matrix | multidimensional array

Angles in degrees, returned as a scalar, vector, matrix, or multidimensional array. D is the
same size as R.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 rad2deg

1-12173

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
deg2rad

Introduced in R2015b

1 Alphabetical List

1-12174

rand
Uniformly distributed random numbers

Syntax
X = rand
X = rand(n)
X = rand(sz1,...,szN)
X = rand(sz)

X = rand(___ ,typename)
X = rand(___ ,'like',p)

Description
X = rand returns a single uniformly distributed random number in the interval (0,1).

X = rand(n) returns an n-by-n matrix of random numbers.

X = rand(sz1,...,szN) returns an sz1-by-...-by-szN array of random numbers where
sz1,...,szN indicate the size of each dimension. For example, rand(3,4) returns a 3-
by-4 matrix.

X = rand(sz) returns an array of random numbers where size vector sz specifies
size(X). For example, rand([3 4]) returns a 3-by-4 matrix.

X = rand(___ ,typename) returns an array of random numbers of data type
typename. The typename input can be either 'single' or 'double'. You can use any
of the input arguments in the previous syntaxes.

X = rand(___ ,'like',p) returns an array of random numbers like p; that is, of the
same object type as p. You can specify either typename or 'like', but not both.

Note The 'seed', 'state', and 'twister' inputs to the rand function are not
recommended. Use the rng function instead. For more information, see “Replace
Discouraged Syntaxes of rand and randn”.

 rand

1-12175

Examples

Matrix of Random Numbers

Generate a 5-by-5 matrix of uniformly distributed random numbers between 0 and 1.

r = rand(5)

r = 5×5

 0.8147 0.0975 0.1576 0.1419 0.6557
 0.9058 0.2785 0.9706 0.4218 0.0357
 0.1270 0.5469 0.9572 0.9157 0.8491
 0.9134 0.9575 0.4854 0.7922 0.9340
 0.6324 0.9649 0.8003 0.9595 0.6787

Random Numbers Within Specified Interval

Generate a 10-by-1 column vector of uniformly distributed numbers in the interval (-5,5).

r = -5 + (5+5)*rand(10,1)

r = 10×1

 3.1472
 4.0579
 -3.7301
 4.1338
 1.3236
 -4.0246
 -2.2150
 0.4688
 4.5751
 4.6489

In general, you can generate N random numbers in the interval (a,b) with the formula r =
a + (b-a).*rand(N,1).

1 Alphabetical List

1-12176

Random Integers

Use the randi function (instead of rand) to generate 5 random integers from the uniform
distribution between 10 and 50.

r = randi([10 50],1,5)

r = 1×5

 43 47 15 47 35

Random Complex Numbers

Generate a single random complex number with real and imaginary parts in the interval
(0,1).

a = rand + 1i*rand

a = 0.8147 + 0.9058i

Reset Random Number Generator

Save the current state of the random number generator and create a 1-by-5 vector of
random numbers.

s = rng;
r = rand(1,5)

r = 1×5

 0.8147 0.9058 0.1270 0.9134 0.6324

Restore the state of the random number generator to s, and then create a new 1-by-5
vector of random numbers. The values are the same as before.

 rand

1-12177

rng(s);
r1 = rand(1,5)

r1 = 1×5

 0.8147 0.9058 0.1270 0.9134 0.6324

Always use the rng function (rather than the rand or randn functions) to specify the
settings of the random number generator. For more information, see “Replace
Discouraged Syntaxes of rand and randn”.

3-D Array of Random Numbers

Create a 3-by-2-by-3 array of random numbers.

X = rand([3,2,3])

X =
X(:,:,1) =

 0.8147 0.9134
 0.9058 0.6324
 0.1270 0.0975

X(:,:,2) =

 0.2785 0.9649
 0.5469 0.1576
 0.9575 0.9706

X(:,:,3) =

 0.9572 0.1419
 0.4854 0.4218
 0.8003 0.9157

1 Alphabetical List

1-12178

Specify Data Type of Random Numbers

Create a 1-by-4 vector of random numbers whose elements are single precision.

r = rand(1,4,'single')

r = 1x4 single row vector

 0.8147 0.9058 0.1270 0.9134

class(r)

ans =
'single'

Clone Size from Existing Array

Create a matrix of random numbers with the same size as an existing array.

A = [3 2; -2 1];
sz = size(A);
X = rand(sz)

X = 2×2

 0.8147 0.1270
 0.9058 0.9134

It is a common pattern to combine the previous two lines of code into a single line:

X = rand(size(A));

Clone Size and Data Type from Existing Array

Create a 2-by-2 matrix of single precision random numbers.

p = single([3 2; -2 1]);

Create an array of random numbers that is the same size and data type as p.

 rand

1-12179

X = rand(size(p),'like',p)

X = 2x2 single matrix

 0.8147 0.1270
 0.9058 0.9134

class(X)

ans =
'single'

Clone Distributed Array

If you have Parallel Computing Toolbox, create a 1000-by-1000 distributed array of
random numbers with underlying data type single. For the distributed data type, the
'like' syntax clones the underlying data type in addition to the primary data type.

p = rand(1000,'single','distributed');

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

Create an array of random numbers that is the same size, primary data type, and
underlying data type as p.

X = rand(size(p),'like',p);

class(X)

ans =

distributed

classUnderlying(X)

1 Alphabetical List

1-12180

ans =
single

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value.

• If n is 0, then X is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension (as separate arguments)
integer values

Size of each dimension, specified as separate arguments of integer values.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, rand ignores trailing dimensions with a size of 1. For

example, rand(3,1,1,1) produces a 3-by-1 vector of random numbers.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension (as a row vector)
integer values

Size of each dimension, specified as a row vector of integer values. Each element of this
vector indicates the size of the corresponding dimension:

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, rand ignores trailing dimensions with a size of 1. For

example, rand([3,1,1,1]) produces a 3-by-1 vector of random numbers.

 rand

1-12181

Example: sz = [2,3,4] creates a 2-by-3-by-4 array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

typename — Data type (class) to create
'double' (default) | 'single'

Data type (class) to create, specified as 'double', 'single', or the name of another
class that provides rand support.
Example: rand(5,'single')

p — Prototype of array to create
numeric array

Prototype of array to create, specified as a numeric array.
Example: rand(5,'like',p)
Data Types: single | double
Complex Number Support: Yes

Tips
• The sequence of numbers produced by rand is determined by the internal settings of

the uniform pseudorandom number generator that underlies rand, randi, and randn.
You can control that shared random number generator using rng.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The data type (class) must be a built-in MATLAB numeric type. For other classes, the
static rand method is not invoked. For example, rand(sz,'myclass') does not
invoke myclass.rand(sz).

1 Alphabetical List

1-12182

• Size arguments must have a fixed size.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See rand in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See rand in the Parallel Computing Toolbox documentation.

See Also
RandStream | randi | randn | randperm | rng | sprand | sprandn

Topics
“Create Arrays of Random Numbers”
“Random Numbers Within a Specific Range”
“Random Numbers Within a Sphere”
“Creating and Controlling a Random Number Stream”
“Class Support for Array-Creation Functions”
“Replace Discouraged Syntaxes of rand and randn”
“Why Do Random Numbers Repeat After Startup?”

Introduced before R2006a

 rand

1-12183

rand (RandStream)
Uniformly distributed random numbers

Class
RandStream

parallel.gpu.RandStream

Syntax
r = rand(s,n)
r = rand(s,m,n)
r = rand(s,[m,n])
r = rand(s,m,n,p,...)
r = rand(s,[m,n,p,...])
r = rand(s)
r = rand(s,size(A))
r = rand(..., 'double')
r = rand(..., 'single')

Description
r = rand(s,n) returns an n-by-n matrix containing pseudorandom values drawn from
the standard uniform distribution on the open interval (0,1). The values are drawn from
the random stream s.

r = rand(s,m,n) or r = rand(s,[m,n]) returns an m-by-n matrix.

r = rand(s,m,n,p,...) or r = rand(s,[m,n,p,...]) returns an m-by-n-by-p-by-...
array.

r = rand(s) returns a scalar.

r = rand(s,size(A)) returns an array the same size as A.

1 Alphabetical List

1-12184

r = rand(..., 'double') or r = rand(..., 'single') returns an array of
uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers. Negative integers are
treated as 0.

The sequence of numbers produced by rand is determined by the internal state of the
random number stream s. Resetting that stream to the same fixed state allows
computations to be repeated. Setting the stream to different states leads to unique
computations, however, it does not improve any statistical properties.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When you provide s as a parallel.gpu.RandStream object, the computation is
performed on the GPU. The result is returned as a gpuArray.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
@RandStream | parallel.gpu.RandStream | rand | randi (RandStream) | randn
(RandStream) | randperm (RandStream)

 rand (RandStream)

1-12185

randi
Uniformly distributed pseudorandom integers

Syntax
X = randi(imax)
X = randi(imax,n)
X = randi(imax,sz1,...,szN)
X = randi(imax,sz)

X = randi(imax,classname)
X = randi(imax,n,classname)
X = randi(imax,sz1,...,szN,classname)
X = randi(imax,sz,classname)

X = randi(imax,'like',p)
X = randi(imax,n,'like',p)
X = randi(imax,sz1,...,szN,'like',p)
X = randi(imax,sz,'like',p)

X = randi([imin,imax], ___)

Description
X = randi(imax) returns a pseudorandom scalar integer between 1 and imax.

X = randi(imax,n) returns an n-by-n matrix of pseudorandom integers drawn from the
discrete uniform distribution on the interval [1,imax].

X = randi(imax,sz1,...,szN) returns an sz1-by-...-by-szN array where
sz1,...,szN indicates the size of each dimension. For example, randi(10,3,4)
returns a 3-by-4 array of pseudorandom integers between 1 and 10.

X = randi(imax,sz) returns an array where size vector sz defines size(X). For
example, randi(10,[3,4]) returns a 3-by-4 array of pseudorandom integers between 1
and 10.

1 Alphabetical List

1-12186

X = randi(imax,classname) returns a pseudorandom integer where classname
specifies the data type. classname can be 'single', 'double', 'int8', 'uint8',
'int16', 'uint16', 'int32', or 'uint32'.

X = randi(imax,n,classname) returns an n-by-n array of data type classname.

X = randi(imax,sz1,...,szN,classname) returns an sz1-by-...-by-szN array of
data type classname.

X = randi(imax,sz,classname) returns an array where size vector sz defines
size(X) and classname defines class(X).

X = randi(imax,'like',p) returns a pseudorandom integer like p; that is, with the
same data type (class).

X = randi(imax,n,'like',p) returns an n-by-n array like p.

X = randi(imax,sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array like p.

X = randi(imax,sz,'like',p) returns an array like p where size vector sz defines
size(X).

X = randi([imin,imax], ___) returns an array containing integers drawn from the
discrete uniform distribution on the interval [imin,imax], using any of the above
syntaxes.

Examples

Square Matrix of Random Integers

Generate a 5-by-5 matrix of random integers between 1 and 10. The first input to randi
indicates the largest integer in the sampling interval (the smallest integer in the interval
is 1).

r = randi(10,5)

r = 5×5

 9 1 2 2 7
 10 3 10 5 1

 randi

1-12187

 2 6 10 10 9
 10 10 5 8 10
 7 10 9 10 7

Random Integers Within Specified Interval

Generate a 10-by-1 column vector of uniformly distributed random integers from the
sample interval [-5,5].

r = randi([-5,5],10,1)

r = 10×1

 3
 4
 -4
 5
 1
 -4
 -2
 1
 5
 5

Control Random Number Generation

Save the current state of the random number generator and create a 1-by-5 vector of
random integers.

s = rng;
r = randi(10,1,5)

r = 1×5

 9 10 2 10 7

1 Alphabetical List

1-12188

Restore the state of the random number generator to s, and then create a new 1-by-5
vector of random integers. The values are the same as before.

rng(s);
r1 = randi(10,1,5)

r1 = 1×5

 9 10 2 10 7

Always use the rng function (rather than the rand or randn functions) to specify the
settings of the random number generator. For more information, see “Replace
Discouraged Syntaxes of rand and randn”.

3-D Array of Random Integers

Create a 3-by-2-by-3 array of uniformly distributed random integers between 1 and 500.

X = randi(500,[3,2,3])

X =
X(:,:,1) =

 408 457
 453 317
 64 49

X(:,:,2) =

 140 483
 274 79
 479 486

X(:,:,3) =

 479 71
 243 211
 401 458

 randi

1-12189

Random Integers of Other Data Types

Create a 1-by-4 vector of random numbers whose elements are of type int16.

r = randi(100,1,4,'int16')

r = 1x4 int16 row vector

 82 91 13 92

class(r)

ans =
'int16'

Size Defined by Existing Array

Create a matrix of uniformly distributed random integers between 1 and 10 with the same
size as an existing array.

A = [3 2; -2 1];
sz = size(A);
X = randi(10,sz)

X = 2×2

 9 2
 10 10

It is a common pattern to combine the previous two lines of code into a single line:

X = randi(10,size(A));

Size and Numeric Data Type Defined by Existing Array

Create a 2-by-2 matrix of 8-bit signed integers.

1 Alphabetical List

1-12190

p = int8([3 2; -2 1]);

Create an array of random integers that is the same size and data type as p.

X = randi(10,size(p),'like',p)

X = 2x2 int8 matrix

 9 2
 10 10

class(X)

ans =
'int8'

Input Arguments
imax — Largest integer in sample interval
positive integer

Largest integer in sample interval, specified as a positive integer. randi draws values
from the uniform distribution in the sample interval [1,imax].
Example: randi(10,5)

imin — Smallest integer in sample interval
1 (default) | scalar integer

Smallest integer in sample interval, specified as a scalar integer.

Both imin and imax must be integers that satisfy imin ≤ imax.

For example, randi([50,100],5) returns a 5-by-5 matrix of random integers between
(and including) 50 and 100.

n — Size of square matrix
integer value

Size of square matrix, specified as an integer value.

 randi

1-12191

• If n is 0, then X is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension (as separate arguments)
two or more integer values

Size of each dimension, specified as separate arguments of integer values.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, randi ignores trailing dimensions with a size of 1. For

example, randi([5,10],3,1,1,1) produces a 3-by-1 vector of random integers
between 5 and 10.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension (as a row vector)
integer values

Size of each dimension, specified as a row vector of integer values. Each element of this
vector indicates the size of the corresponding dimension:

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, randi ignores trailing dimensions with a size of 1. For

example, randi([5,10],[3,1,1,1]) produces a 3-by-1 vector of random integers
between 5 and 10.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

classname — Data type (class) to create
'double' (default) | 'single' | 'int8' | 'uint8' | ...

Output class, specified as 'double', 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', or the name of another class that provides randi
support.

1 Alphabetical List

1-12192

Example: randi(5,5,'int8')
Data Types: char

p — Prototype of array to create
numeric array

Prototype of array to create, specified as a numeric array.
Example: randi(5,5,'like',p)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

Tips
• The sequence of numbers produced by randi is determined by the internal settings of

the uniform pseudorandom number generator that underlies rand, randi, and randn.
You can control that shared random number generator using rng.

• The arrays returned by randi might contain repeated integer values. This behavior is
sometimes referred to as sampling with replacement. Use randperm if you require all
unique values.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The data type (class) must be a built-in MATLAB numeric type. Does not invoke the
static randi method for other classes. For example, randi(imax,sz,'myclass')
does not invoke myclass.randi(imax,sz).

• Size arguments must have a fixed size.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

 randi

1-12193

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See randi in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See randi in the Parallel Computing Toolbox documentation.

See Also
RandStream | rand | randn | randperm | rng

Topics
“Random Integers”
“Create Arrays of Random Numbers”
“Generate Random Numbers That Are Repeatable”
“Generate Random Numbers That Are Different”
“Creating and Controlling a Random Number Stream”
“Class Support for Array-Creation Functions”
“Why Do Random Numbers Repeat After Startup?”

Introduced in R2008b

1 Alphabetical List

1-12194

randi (RandStream)
Uniformly distributed pseudorandom integers

Class
RandStream

parallel.gpu.RandStream

Syntax
r = randi(s,imax,n)
r = randi(s,imax,m,n)
r = randi(s,imax,[m,n])
r = randi(s,imax,m,n,p,...)
r = randi(s,imax,[m,n,p,...])
r = randi(s,imax)
r = randi(s,imax,size(A))
r = randi(s,[imin,imax],...)
r = randi(...,classname)

Description
r = randi(s,imax,n) returns an n-by-n matrix containing pseudorandom integer
values drawn from the discrete uniform distribution on 1:imax. randi draws those
values from the random stream s.

r = randi(s,imax,m,n) or r = randi(s,imax,[m,n]) returns an m-by-n matrix.

r = randi(s,imax,m,n,p,...) or r = randi(s,imax,[m,n,p,...]) returns an
m-by-n-by-p-by-... array.

r = randi(s,imax) returns a scalar.

r = randi(s,imax,size(A)) returns an array the same size as A.

 randi (RandStream)

1-12195

r = randi(s,[imin,imax],...) returns an array containing integer values drawn
from the discrete uniform distribution on imin:imax.

r = randi(...,classname) returns an array of integer values of class classname.
classname does not support 64-bit integers.

Note The size inputs m, n, p, ... should be nonnegative integers. Negative integers are
treated as 0.

The arrays returned by randi might contain repeated integer values. This is sometimes
referred to as sampling with replacement. To get unique integer values, sometimes
referred to as sampling without replacement, use randperm (RandStream).

The sequence of numbers produced by randi is determined by the internal state of the
random stream s. randi uses one uniform value from s to generate each integer value.
Resetting s to the same fixed state allows computations to be repeated. Setting the
stream to different states leads to unique computations, however, it does not improve any
statistical properties.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When you provide s as a parallel.gpu.RandStream object, the computation is
performed on the GPU. The result is returned as a gpuArray.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-12196

See Also
RandStream | parallel.gpu.RandStream | rand (RandStream) | randi | randn
(RandStream) | randperm (RandStream)

 randi (RandStream)

1-12197

randn
Normally distributed random numbers

Syntax
X = randn
X = randn(n)
X = randn(sz1,...,szN)
X = randn(sz)

X = randn(___ ,typename)
X = randn(___ ,'like',p)

Description
X = randn returns a random scalar drawn from the standard normal distribution.

X = randn(n) returns an n-by-n matrix of normally distributed random numbers.

X = randn(sz1,...,szN) returns an sz1-by-...-by-szN array of random numbers
where sz1,...,szN indicate the size of each dimension. For example, randn(3,4)
returns a 3-by-4 matrix.

X = randn(sz) returns an array of random numbers where size vector sz defines
size(X). For example, randn([3 4]) returns a 3-by-4 matrix.

X = randn(___ ,typename) returns an array of random numbers of data type
typename. The typename input can be either 'single' or 'double'. You can use any
of the input arguments in the previous syntaxes.

X = randn(___ ,'like',p) returns an array of random numbers like p; that is, of the
same object type as p. You can specify either typename or 'like', but not both.

Note The 'seed', 'state', and 'twister' inputs to the randn function are not
recommended. Use the rng function instead. For more information, see “Replace
Discouraged Syntaxes of rand and randn”.

1 Alphabetical List

1-12198

Examples

Matrix of Random Numbers

Generate a 5-by-5 matrix of normally distributed random numbers.

r = randn(5)

r = 5×5

 0.5377 -1.3077 -1.3499 -0.2050 0.6715
 1.8339 -0.4336 3.0349 -0.1241 -1.2075
 -2.2588 0.3426 0.7254 1.4897 0.7172
 0.8622 3.5784 -0.0631 1.4090 1.6302
 0.3188 2.7694 0.7147 1.4172 0.4889

Bivariate Normal Random Numbers

Generate values from a bivariate normal distribution with specified mean vector and
covariance matrix.

mu = [1 2];
sigma = [1 0.5; 0.5 2];
R = chol(sigma);
z = repmat(mu,10,1) + randn(10,2)*R

z = 10×2

 1.5377 0.4831
 2.8339 6.9318
 -1.2588 1.8302
 1.8622 2.3477
 1.3188 3.1049
 -0.3077 1.0750
 0.5664 1.6190
 1.3426 4.1420
 4.5784 5.6532
 3.7694 5.2595

 randn

1-12199

Random Complex Numbers

Generate a single random complex number with normally distributed real and imaginary
parts.

a = randn + 1i*randn

a = 0.5377 + 1.8339i

Reset Random Number Generator

Save the current state of the random number generator and create a 1-by-5 vector of
random numbers.

s = rng;
r = randn(1,5)

r = 1×5

 0.5377 1.8339 -2.2588 0.8622 0.3188

Restore the state of the random number generator to s, and then create a new 1-by-5
vector of random numbers. The values are the same as before.

rng(s);
r1 = randn(1,5)

r1 = 1×5

 0.5377 1.8339 -2.2588 0.8622 0.3188

Always use the rng function (rather than the rand or randn functions) to specify the
settings of the random number generator. For more information, see “Replace
Discouraged Syntaxes of rand and randn”.

1 Alphabetical List

1-12200

3-D Array of Random Numbers

Create a 3-by-2-by-3 array of random numbers.

X = randn([3,2,3])

X =
X(:,:,1) =

 0.5377 0.8622
 1.8339 0.3188
 -2.2588 -1.3077

X(:,:,2) =

 -0.4336 2.7694
 0.3426 -1.3499
 3.5784 3.0349

X(:,:,3) =

 0.7254 -0.2050
 -0.0631 -0.1241
 0.7147 1.4897

Specify Data Type of Random Numbers

Create a 1-by-4 vector of random numbers whose elements are single precision.

r = randn(1,4,'single')

r = 1x4 single row vector

 0.5377 1.8339 -2.2588 0.8622

class(r)

ans =
'single'

 randn

1-12201

Clone Size from Existing Array

Create a matrix of normally distributed random numbers with the same size as an existing
array.

A = [3 2; -2 1];
sz = size(A);
X = randn(sz)

X = 2×2

 0.5377 -2.2588
 1.8339 0.8622

It is a common pattern to combine the previous two lines of code into a single line:

X = randn(size(A));

Clone Size and Data Type from Existing Array

Create a 2-by-2 matrix of single precision random numbers.

p = single([3 2; -2 1]);

Create an array of random numbers that is the same size and data type as p.

X = randn(size(p),'like',p)

X = 2x2 single matrix

 0.5377 -2.2588
 1.8339 0.8622

class(X)

ans =
'single'

1 Alphabetical List

1-12202

Clone Distributed Array

If you have Parallel Computing Toolbox, create a 1000-by-1000 distributed array of
random numbers with underlying data type single. For the distributed data type, the
'like' syntax clones the underlying data type in addition to the primary data type.

p = randn(1000,'single','distributed');

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

Create an array of random numbers that is the same size, primary data type, and
underlying data type as p.

X = randn(size(p),'like',p);

class(X)

ans =

distributed

classUnderlying(X)

ans =
single

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value.

• If n is 0, then X is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 randn

1-12203

sz1,...,szN — Size of each dimension (as separate arguments)
integer values

Size of each dimension, specified as separate arguments of integer values.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, randn ignores trailing dimensions with a size of 1. For

example, randn(3,1,1,1) produces a 3-by-1 vector of random numbers.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension (as a row vector)
integer values

Size of each dimension, specified as a row vector of integer values. Each element of this
vector indicates the size of the corresponding dimension:

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, randn ignores trailing dimensions with a size of 1. For

example, randn([3,1,1,1]) produces a 3-by-1 vector of random numbers.

Example: sz = [2,3,4] creates a 2-by-3-by-4 array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

typename — Data type (class) to create
'double' (default) | 'single'

Data type (class) to create, specified as 'double', 'single', or the name of another
class that provides randn support.
Example: randn(5,'single')

p — Prototype of array to create
numeric array

Prototype of array to create, specified as a numeric array.
Example: randn(5,'like',p)

1 Alphabetical List

1-12204

Data Types: single | double
Complex Number Support: Yes

Tips
• The sequence of numbers produced by randn is determined by the internal settings of

the uniform pseudorandom number generator that underlies rand, randi, and randn.
You can control that shared random number generator using rng.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The data type (class) must be a built-in MATLAB numeric type. For other classes, the
static randn method is not invoked. For example, randn(sz,'myclass') does not
invoke myclass.randn(sz).

• Size arguments must have a fixed size.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See randn in the Parallel Computing Toolbox documentation.

 randn

1-12205

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See randn in the Parallel Computing Toolbox documentation.

See Also
RandStream | rand | randi | randperm | rng | sprand | sprandn

Topics
“Create Arrays of Random Numbers”
“Random Numbers Within a Specific Range”
“Random Numbers Within a Sphere”
“Random Numbers from Normal Distribution with Specific Mean and Variance”
“Creating and Controlling a Random Number Stream”
“Class Support for Array-Creation Functions”
“Replace Discouraged Syntaxes of rand and randn”
“Why Do Random Numbers Repeat After Startup?”

Introduced before R2006a

1 Alphabetical List

1-12206

randn (RandStream)
Normally distributed pseudorandom numbers

Class
RandStream

parallel.gpu.RandStream

Syntax
r = randn(s,m,n)
r = randn(s,[m,n])
r = randn(s,m,n,p,...)
r = randn(s,[m,n,p,...])
r = randn(s)
r = randn(s,size(A))
r = randn(...,'double')
r = randn(...,'single')

Description
r = randn(s,n) returns an n-by-n matrix containing pseudorandom values drawn from
the standard normal distribution. randn draws those values from the random stream s.

r = randn(s,m,n) or r = randn(s,[m,n]) returns an m-by-n matrix.

r = randn(s,m,n,p,...) or r = randn(s,[m,n,p,...]) returns an m-by-n-by-p-
by-... array.

r = randn(s) returns a scalar.

r = randn(s,size(A)) returns an array the same size as A.

 randn (RandStream)

1-12207

r = randn(...,'double') or r = randn(...,'single') returns an array of
uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers. Negative integers are
treated as 0.

The sequence of numbers produced by randn is determined by the internal state of the
random stream s. randn uses one or more uniform values from s to generate each
normal value. Resetting that stream to the same fixed state allows computations to be
repeated. Setting the stream to different states leads to unique computations, however, it
does not improve any statistical properties.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When you provide s as a parallel.gpu.RandStream object, the computation is
performed on the GPU. The result is returned as a gpuArray.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
RandStream | parallel.gpu.RandStream | rand (RandStream) | randi
(RandStream) | randn

1 Alphabetical List

1-12208

randperm
Random permutation

Syntax
p = randperm(n)
p = randperm(n,k)

Description
p = randperm(n) returns a row vector containing a random permutation of the integers
from 1 to n inclusive.

p = randperm(n,k) returns a row vector containing k unique integers selected
randomly from 1 to n inclusive.

Examples
randperm(6)

might be the vector

[3 2 6 4 1 5]

or it might be some other permutation of the integers from 1 to 6, depending on the state
of the random number generator. Two successive calls to randperm would in most cases
return two different vectors:

randperm(6)
ans =
 5 2 6 4 1 3

randperm(6)
ans =
 4 1 6 2 3 5

 randperm

1-12209

 randperm(6,3)

might be the vector

[4 2 5]

or it might be some other permutation of any three integers from 1 to 6 inclusive,
depending on the state of the random number generator.

Tips
For p = randperm(n,k), p contains k unique values. randperm performs k-
permutations (sampling without replacement). To allow repeated values in the output
(sampling with replacement), use randi(n,1,k).

randperm uses the same random number generator as rand, randi, and randn. You
control this generator with rng.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The syntax p = randperm(n,k) is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-12210

See Also
nchoosek | perms | permute | randi | randperm(RandStream) | rng

Introduced before R2006a

 randperm

1-12211

randperm (RandStream)
Random permutation

Class
RandStream

parallel.gpu.RandStream

Syntax
p = randperm(s,n)
p = randperm(s,n,k)

Description
p = randperm(s,n) returns a row vector containing a random permutation of integers
from 1 to n inclusive. randperm(s,n) uses random values drawn from the random
stream s.

p = randperm(s,n,k) returns a row vector containing k unique integers selected
randomly from 1 to n inclusive.

Examples
Create a random stream s and generate a random permutation of the integers from 1 to 6
based on s:

s = RandStream('mt19937ar','Seed',0);
randperm(s,6)

MATLAB returns the vector

[6 3 5 1 2 4]

1 Alphabetical List

1-12212

Use the random stream s to generate three integers between 1 and 10:

randperm(s,10,3)
ans =
 1 8 9

Tips
For p = randperm(s,n,k), p contains k unique values. randperm performs k-
permutations (sampling without replacement). To allow repeated values in the output
(sampling with replacement), use randi(s,n,1,k).

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• When you provide s as a parallel.gpu.RandStream object, the computation is
performed on the GPU. The result is returned as a gpuArray.

• The syntax randperm(s,n,k) is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
nchoosek | parallel.gpu.RandStream | perms | permute | rand | randi
(RandStream) | randperm

 randperm (RandStream)

1-12213

RandStream
Random number stream

Constructor
RandStream

Description
Pseudorandom numbers in MATLAB come from one or more random number streams. The
simplest way to generate arrays of random numbers is to use rand, randn, or randi.
These functions all rely on the same stream of uniform random numbers, known as the
global stream. You can create other streams that act separately from the global stream,
and you can use their rand, randi, or randn methods to generate arrays of random
numbers. You can also create a random number stream and make it the global stream.

To create a single random number stream, use the RandStream constructor. To create
multiple independent random number streams, use RandStream.create. The rng
function provides a simple interface to create a new global stream.

stream = RandStream.getGlobalStream returns the global random number stream,
that is, the one currently used by the rand, randi, and randn functions.

prevstream = RandStream.setGlobalStream(stream) designates the random
number stream stream as the new global stream to be used by the rand, randi, and
randn functions, and returns the previous global stream.

A random number stream s has properties that control its behavior. Access or assign to a
property using p = s.Property or s.Property = p. The following table lists defined
properties:

1 Alphabetical List

1-12214

Properties
Property Description
Type (Read-only) Generator algorithm used by the

stream. The list of possible generators is given by
RandStream.list.

Seed (Read-only) Seed value used to create the stream.
NumStreams (Read-only) Number of streams in the group in

which the current stream was created.
StreamIndex (Read-only) Index of the current stream from

among the group of streams with which it was
created.

State Internal state of the generator. You should not
depend on the format of this property. The value
you assign to S.State must be a value read from
S.State previously. Use reset to return a stream
to a predictable state without having previously
read from the State property.

The sequence of random numbers produced by a
random number stream s is determined by the
internal state of its random number generator.
Saving and restoring the generator's internal state
with the State property allows you to reproduce a
sequence of random numbers.

Substream Index of the substream to which the stream is
currently set. The default is 1. Multiple substreams
are not supported by all generator types; the
multiplicative lagged Fibonacci generator
(mlfg6331_64) and combined multiple recursive
generator (mrg32k3a) support substreams.

NormalTransform Transformation algorithm used by
randn(s, ...) to generate normal
pseudorandom values. Possible values are
'Ziggurat', 'Polar', or 'Inversion'.

 RandStream

1-12215

Property Description
Antithetic Logical value indicating whether S generates

antithetic pseudorandom values, that is, the usual
values subtracted from 1. The default is false.

FullPrecision Logical value indicating whether S generates
values using its full precision. Some generators
can create pseudorandom values faster, but with
fewer random bits, if FullPrecision is false. The
default is true.

Methods
Method Description
RandStream Create a random number stream.
RandStream.create Create multiple independent random number

streams.
get Get the properties of a random stream object.
list List available random number generator

algorithms.
set Set random stream property.
RandStream.getGlobalStream Get the global random number stream.
RandStream.setGlobalStream Set global random number stream.
reset Reset a stream to its initial internal state
rand Pseudorandom numbers from a uniform

distribution
randn Pseudorandom numbers from a standard normal

distribution
randi Pseudorandom integers from a uniform discrete

distribution
randperm Random permutation of a set of values

1 Alphabetical List

1-12216

Examples

Example 1
Create a single stream and designate it as the current global stream:

s = RandStream('mt19937ar','Seed',1);
RandStream.setGlobalStream(s);

Example 2
Create three independent streams:

[s1,s2,s3] = RandStream.create('mrg32k3a','NumStreams',3);
r1 = rand(s1,100000,1);
r2 = rand(s2,100000,1);
r3 = rand(s3,100000,1);
corrcoef([r1,r2,r3])

Example 3
Create only one stream from a set of three independent streams, and designate it as the
current global stream:

s2 = RandStream.create('mrg32k3a','NumStreams',3,...
 'StreamIndices',2);
RandStream.setGlobalStream(s2);

Example 4
Reset the global random number stream that underlies rand, randi, and randn back to
its beginning, to reproduce previous results:

stream = RandStream.getGlobalStream;
reset(stream);

Example 5
Save and restore the current global stream's state to reproduce the output of rand:

 RandStream

1-12217

stream = RandStream.getGlobalStream;
savedState = stream.State;
u1 = rand(1,5)
u1 =
 0.8147 0.9058 0.1270 0.9134 0.6324

stream.State = savedState;
u2 = rand(1,5)
u2 =
 0.8147 0.9058 0.1270 0.9134 0.6324

u2 contains exactly the same values as u1.

Example 6
Reset the global random number stream to its initial settings. This causes rand, randi,
and randn to start over, as if in a new MATLAB session:

s = RandStream('mt19937ar','Seed',0);
RandStream.setGlobalStream(s);

Example 7
Reinitialize the global random number stream using a seed based on the current time.
This causes rand, randi, and randn to return different values in different MATLAB
sessions. It is usually not desirable to do this more than once per MATLAB session as it
may affect the statistical properties of the random numbers MATLAB produces:

s = RandStream('mt19937ar','Seed','shuffle');
RandStream.setGlobalStream(s);

Example 8
Change the transformation algorithm that randn uses to create normal pseudorandom
values from uniform values. This does not replace or reset the global stream.

stream = RandStream.getGlobalStream;
stream.NormalTransform = 'inversion'

1 Alphabetical List

1-12218

See Also
rand | randi | randn | rng

 RandStream

1-12219

RandStream constructor
Random number stream

Class
RandStream

Syntax
s = RandStream('gentype')
s = RandStream('gentype',Name,Value)

Description
s = RandStream('gentype') creates a random number stream that uses the uniform
pseudorandom number generator algorithm specified by gentype. RandStream.list
returns all possible values for gentype, or see “Choosing a Random Number Generator”
for details on generator algorithms.

s = RandStream('gentype',Name,Value) allows you to specify one or more optional
Name,Value pairs to control creation of the stream.

Once you have created a random, you can use RandStream.setGlobalStream to make
it the global stream, so that the functions rand, randi, and randn draw values from it.

Parameters for RandStream are:

Parameter Description
Seed Nonnegative scalar integer with which to

initialize all streams. Seeds must be an
integer between 0 and 232 − 1 or
'shuffle' to create a seed based on the
current time. Default is 0.

1 Alphabetical List

1-12220

Parameter Description
NormalTransform Transformation algorithm used by

randn(s, ...) to generate normal
pseudorandom values. Possible values are
'Ziggurat', 'Polar', or 'Inversion'.

Examples

Example 1
Create a random number stream, make it the global stream, and save and restore its state
to reproduce the output of randn:

s = RandStream('mrg32k3a');
RandStream.setGlobalStream(s);
savedState = s.State;
z1 = randn(1,5)
z1 =
 -0.1894 -1.4426 -0.3592 0.8883 -0.4337
s.State = savedState;
z2 = randn(1,5)
z2 =
 -0.1894 -1.4426 -0.3592 0.8883 -0.4337

z2 contains exactly the same values as z1.

Example 2
Return rand, randi, and randn to their default startup settings:

s = RandStream('mt19937ar','Seed',0)
RandStream.setGlobalStream(s);

Example 3
Replace the current global random number stream with a stream whose seed is based on
the current time, so rand, randi, and randn will return different values in different
MATLAB sessions. It is usually not desirable to do this more than once per MATLAB

 RandStream constructor

1-12221

session as it may affect the statistical properties of the random numbers MATLAB
produces:

s = RandStream('mt19937ar','Seed','shuffle');
RandStream.setGlobalStream(s);

Tips
• Streams created using RandStream might not be independent from each other. Use

RandStream.create to create multiple streams that are independent.

See Also
RandStream | RandStream.create | RandStream.getGlobalStream |
RandStream.list | RandStream.rand | RandStream.randi | RandStream.randn |
RandStream.setGlobalStream | rng

1 Alphabetical List

1-12222

RandStream.getGlobalStream
Current global random number stream

Class
@RandStream

Syntax
stream = RandStream.getGlobalStream

Description
stream = RandStream.getGlobalStream returns the current global random number
stream.

rand, randi, and randn all rely on the same stream of uniform pseudorandom numbers,
known as the global stream. rand draws one value from that stream to generate each
uniform value it returns. randi draws one uniform value from that stream to generate
each integer value it returns. And randn draws one or more uniform values to generate
each normal value it returns. Note that there are also rand, randi, and randn methods
for which you specify a specific random stream from which to draw values.

Note The rng function is a shorter alternative for many common uses of
RandStream.getGlobalStream.

See Also
RandStream | RandStream.setGlobalStream | rand | randi | randn | rng

Topics
“Creating and Controlling a Random Number Stream”

 RandStream.getGlobalStream

1-12223

“Managing the Global Stream”

1 Alphabetical List

1-12224

RandStream.setGlobalStream
Set global random number stream

Syntax
prevstream = RandStream.setGlobalStream(stream)

Description
prevstream = RandStream.setGlobalStream(stream) designates the random
number stream, specified as stream, to be the global stream that the rand, randi, and
randn functions draw values from. It returns the previous global random number stream
as prevstream.

rand, randi, and randn all rely on the same stream of uniform pseudorandom numbers,
known as the global stream. rand draws one value from that stream to generate each
uniform value it returns. randi draws one uniform value from that stream to generate
each integer value it returns. And randn draws one or more uniform values to generate
each normal value it returns. Note that there are also rand, randi, and randn methods
for which you specify a specific random stream from which to draw values.

Note The rng function is a shorter alternative for many common uses of
RandStream.setGlobalStream.

See Also
RandStream | RandStream.getGlobalStream | rand | randi | randn | rng

Topics
“Creating and Controlling a Random Number Stream”
“Managing the Global Stream”

 RandStream.setGlobalStream

1-12225

rank
Rank of matrix

Syntax
k = rank(A)
k = rank(A,tol)

Description
k = rank(A) returns the rank on page 1-12228 of matrix A.

Use sprank to determine the structural rank of a sparse matrix.

k = rank(A,tol) specifies a different tolerance to use in the rank computation. The
rank is computed as the number of singular values of A that are larger than tol.

Examples

Rank of Matrix

Determine whether a matrix is full rank.

Create a 3-by-3 matrix. The values in the third column are twice as large as those in the
second column.

A = [3 2 4; -1 1 2; 9 5 10]

A = 3×3

 3 2 4
 -1 1 2
 9 5 10

1 Alphabetical List

1-12226

Calculate the rank of the matrix. If the matrix is full rank, then the rank is equal to the
number of columns, size(A,2).

rank(A)

ans = 2

size(A,2)

ans = 3

Since the columns are linearly dependent, the matrix is rank deficient.

Specify Rank Tolerance

Calculate the rank of a matrix using a tolerance.

Create a 4-by-4 diagonal matrix. The diagonal has one small value equal to 1e-15.

A = [10 0 0 0; 0 25 0 0; 0 0 34 0; 0 0 0 1e-15]

A = 4×4

 10.0000 0 0 0
 0 25.0000 0 0
 0 0 34.0000 0
 0 0 0 0.0000

Calculate the rank of the matrix.

rank(A)

ans = 3

The matrix is not considered to be full rank, since the default algorithm calculates the
number of singular values larger than max(size(A))*eps(norm(A)). For this matrix,
the small value on the diagonal is excluded since it is smaller than the tolerance.

Calculate the rank of the matrix again, but specify a tolerance of 1e-16.

rank(A,1e-16)

 rank

1-12227

ans = 4

Input Arguments
A — Input matrix
matrix

Input matrix.
Data Types: single | double
Complex Number Support: Yes

tol — Tolerance
max(size(A))*eps(norm(A)) | scalar

Tolerance, specified as a scalar. See the “Algorithms” on page 1-12228 section for more
information.
Example: rank(A,1e-5)

Definitions

Rank
The number of linearly independent columns in a matrix is the rank of the matrix. The
row and column rank of a matrix are always equal.

A matrix is full rank if its rank is the highest possible for a matrix of the same size, and
rank deficient if it does not have full rank. The rank gives a measure of the dimension of
the range or column space of the matrix, which is the collection of all linear combinations
of the columns.

Algorithms
rank uses a method based on the singular value decomposition, or SVD. The SVD
algorithm is more time consuming than some alternatives, but it is also the most reliable.

1 Alphabetical List

1-12228

The rank of a matrix A is computed as the number of singular values that are larger than
a tolerance. By default, the tolerance is max(size(A))*eps(norm(A)). However, you
can specify a different tolerance with the command rank(A,tol).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
null | orth | sprank | svd

Introduced before R2006a

 rank

1-12229

rat
Rational fraction approximation

Syntax
R = rat(X)
R = rat(X,tol)

[N,D] = rat(___)

Description
R = rat(X) returns the rational fraction approximation on page 1-12233 of X to within
the default tolerance, 1e-6*norm(X(:),1). The approximation is a character array
containing the truncated continued fractional expansion.

R = rat(X,tol) approximates X to within the tolerance, tol.

[N,D] = rat(___) returns two arrays, N and D, such that N./D approximates X, using
any of the above syntaxes.

Examples

Approximate Value of π

Approximate the value of π using a rational representation of the quantity pi.

The mathematical quantity π is not a rational number, but the quantity pi that
approximates it is a rational number since all floating-point numbers are rational.

Find the rational representation of pi.

format rat
pi

1 Alphabetical List

1-12230

ans =
 355/113

The resulting expression is a character vector. You also can use rats(pi) to get the
same answer.

Use rat to see the continued fractional expansion of pi.

R = rat(pi)

R =
'3 + 1/(7 + 1/(16))'

The result is an approximation by continued fractional expansion. If you consider the first
two terms of the expansion, you get the approximation 3 + 1

7 = 22
7 , which only agrees

with pi to 2 decimals.

However, if you consider all three terms printed by rat, you can recover the value
355/113, which agrees with pi to 6 decimals.

3 + 1
7 + 1

16
= 355

113

Specify a tolerance for additional accuracy in the approximation.

R = rat(pi,1e-7)

R =
'3 + 1/(7 + 1/(16 + 1/(-294)))'

The resulting approximation, 104348/33215, agrees with pi to 9 decimals.

Express Array Elements as Ratios

Create a 4-by-4 matrix.

format short;
X = hilb(4)

 rat

1-12231

X = 4×4

 1.0000 0.5000 0.3333 0.2500
 0.5000 0.3333 0.2500 0.2000
 0.3333 0.2500 0.2000 0.1667
 0.2500 0.2000 0.1667 0.1429

Express the elements of X as ratios of small integers using rat.

[N,D] = rat(X)

N = 4×4

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

D = 4×4

 1 2 3 4
 2 3 4 5
 3 4 5 6
 4 5 6 7

The two matrices, N and D, approximate X with N./D.

View the elements of X as ratios using format rat.

format rat
X

X = 4×4

 1 1/2 1/3 1/4
 1/2 1/3 1/4 1/5
 1/3 1/4 1/5 1/6
 1/4 1/5 1/6 1/7

In this form, it is clear that N contains the numerators of each fraction and D contains the
denominators.

1 Alphabetical List

1-12232

Input Arguments
X — Input array
numeric array

Input array, specified as a numeric array of class single or double.
Data Types: single | double
Complex Number Support: Yes

tol — Tolerance
scalar

Tolerance, specified as a scalar. N and D approximate X, such that N./D - X < tol. The
default tolerance is 1e-6*norm(X(:),1).

Output Arguments
R — Continued fraction
character array

Continued fraction, returned as a character array with m rows, where m is the number of
elements in X. The accuracy of the rational approximation via continued fractions
increases with the number of terms.

N — Numerator
numeric array

Numerator, returned as a numeric array. N./D approximates X.

D — Denominator
numeric array

Denominator, returned as a numeric array. N./D approximates X.

Algorithms
Even though all floating-point numbers are rational numbers, it is sometimes desirable to
approximate them by simple rational numbers, which are fractions whose numerator and

 rat

1-12233

denominator are small integers. Rational approximations are generated by truncating
continued fraction expansions.

The rat function approximates each element of X by a continued fraction of the form

N
D = D1 + 1

D2 + 1
D3 + ... + 1

Dk

.

The Ds are obtained by repeatedly picking off the integer part and then taking the
reciprocal of the fractional part. The accuracy of the approximation increases
exponentially with the number of terms and is worst when X = sqrt(2). For X =
sqrt(2) , the error with k terms is about 2.68*(.173)^k, so each additional term
increases the accuracy by less than one decimal digit. It takes 21 terms to get full
floating-point accuracy.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation, only the two output syntax is supported.

See Also
format | rats

Introduced before R2006a

1 Alphabetical List

1-12234

rats
Rational output

Syntax
S = rats(X)
S = rats(X,strlen)

Description
S = rats(X) returns a character vector containing the rational approximations to the
elements of X using the default length of 13.

rats returns asterisks for elements that cannot be printed in the allotted space, but
which are not negligible compared to the other elements in X.

S = rats(X,strlen) returns a character vector of length strlen. The rational
approximation uses a tolerance that is inversely proportional to the length.

Examples

Rational Representation of Matrix

Create a 4-by-4 matrix.

format short
X = hilb(4)

X = 4×4

 1.0000 0.5000 0.3333 0.2500
 0.5000 0.3333 0.2500 0.2000
 0.3333 0.2500 0.2000 0.1667
 0.2500 0.2000 0.1667 0.1429

 rats

1-12235

View the rational representation of the matrix using rats. The result is the same as using
format rat.

R = rats(X)

R = 4x56 char array
 ' 1 1/2 1/3 1/4 '
 ' 1/2 1/3 1/4 1/5 '
 ' 1/3 1/4 1/5 1/6 '
 ' 1/4 1/5 1/6 1/7 '

Adjust Output Vector Length

Find the rational representation of pi with the default character vector length and
approximation tolerance. The result is the same as using format rat.

rats(pi)

ans =
' 355/113 '

Adjust the length of the output, which also adjusts the approximation tolerance.

rats(pi,20)

ans =
' 104348/33215 '

The resulting rational approximation has greater accuracy. As the output length
increases, the tolerance decreases.

Adjust the output length again to achieve greater accuracy.

rats(pi,25)

ans =
' 1146408/364913 '

The resulting approximation agrees with pi to 10 decimal places.

1 Alphabetical List

1-12236

Input Arguments
X — Input array
numeric array

Input array, specified as a numeric array of class single or double.
Data Types: single | double
Complex Number Support: Yes

strlen — Length of character vector
positive integer

Length of character vector, specified as a positive integer. The default length is 13, which
allows for 6 elements in 78 spaces.

Output Arguments
S — Rational output
character vector

Rational output, returned as a character vector.

Algorithms
rats obtains rational approximations with [N,D] = rat(X,tol), where tol is
min(10^(-(strlen-1)/2)*norm(X(isfinite(X)),1),.1). Thus, the tolerance is
inversely proportional to the output length, strlen.

See Also
format | rat

Introduced before R2006a

 rats

1-12237

rbbox
Create rubberband box for area selection

Syntax
rbbox
rbbox(initialRect)
rbbox(initialRect,fixedPoint)
rbbox(initialRect,fixedPoint,stepSize)
finalRect = rbbox(...)

Description
rbbox initializes and tracks a rubberband box in the current figure. It sets the initial
rectangular size of the box to 0, anchors the box at the figure's CurrentPoint, and
begins tracking from this point.

rbbox(initialRect) specifies the initial location and size of the rubberband box as [x
y width height], where x and y define the lower left corner, and width and height
define the size. initialRect is in the units specified by the current figure's Units
property, and measured from the lower left corner of the figure window. The corner of the
box closest to the pointer position follows the pointer until rbbox receives a button-up
event.

rbbox(initialRect,fixedPoint) specifies the corner of the box that remains fixed.
All arguments are in the units specified by the current figure's Units property, and
measured from the lower left corner of the figure window. fixedPoint is a two-element
vector, [x y]. The tracking point is the corner diametrically opposite the anchored
corner defined by fixedPoint.

rbbox(initialRect,fixedPoint,stepSize) specifies how frequently the
rubberband box is updated. When the tracking point exceeds stepSize figure units,
rbbox redraws the rubberband box. The default stepsize is 1.

1 Alphabetical List

1-12238

finalRect = rbbox(...) returns a four-element vector, [x y width height],
where x and y are the x and y components of the lower left corner of the box, and width
and height are the dimensions of the box.

Examples
Create an annotation rectangle by rubber banding the rectangle size in the figure.

set(gcf,'Units','normalized')
k = waitforbuttonpress;
rect_pos = rbbox;
annotation('rectangle',rect_pos,'Color','red')

Execute the code, click down and drag a rectangle within the figure. Releasing the mouse
button draws a rectangle in the figure.

Tips
rbbox is useful for defining and resizing a rectangular region:

• For box definition, initialRect is [x y 0 0], where (x,y) is the figure's
CurrentPoint.

• For box resizing, initialRect defines the rectangular region that you resize (e.g., a
legend). fixedPoint is the corner diametrically opposite the tracking point.

rbbox returns immediately if a button is not currently pressed. Therefore, you use rbbox
with waitforbuttonpress so that the mouse button is down when rbbox is called.
rbbox returns when you release the mouse button.

See Also
axis | dragrect | waitforbuttonpress

Introduced before R2006a

 rbbox

1-12239

rcond
Reciprocal condition number

Syntax
C = rcond(A)

Description
C = rcond(A) returns an estimate for the reciprocal condition of A in 1-norm. If A is
well conditioned, rcond(A) is near 1.0. If A is badly conditioned, rcond(A) is near 0.

Examples

Sensitivity of Badly Conditioned Matrix

Examine the sensitivity of a badly conditioned matrix.

A notable matrix that is symmetric and positive definite, but badly conditioned, is the
Hilbert matrix. The elements of the Hilbert matrix are H(i, j) = 1/(i + j− 1).

Create a 10-by-10 Hilbert matrix.

A = hilb(10);

Find the reciprocal condition number of the matrix.

C = rcond(A)

C = 2.8286e-14

The reciprocal condition number is small, so A is badly conditioned.

The condition of A has an effect on the solutions of similar linear systems of equations. To
see this, compare the solution of Ax = b to that of the perturbed system, Ax = b + 0 . 01.

1 Alphabetical List

1-12240

Create a column vector of ones and solve Ax = b.

b = ones(10,1);
x = A\b;

Now change b by 0.01 and solve the perturbed system.

b1 = b + 0.01;
x1 = A\b1;

Compare the solutions, x and x1.

norm(x-x1)

ans = 1.1250e+05

Since A is badly conditioned, a small change in b produces a very large change (on the
order of 1e5) in the solution to x = A\b. The system is sensitive to perturbations.

Find Condition of Identity Matrix

Examine why the reciprocal condition number is a more accurate measure of singularity
than the determinant.

Create a 5-by-5 multiple of the identity matrix.

A = eye(5)*0.01;

This matrix is full rank and has five equal singular values, which you can confirm by
calculating svd(A).

Calculate the determinant of A.

det(A)

ans = 1.0000e-10

Although the determinant of the matrix is close to zero, A is actually very well conditioned
and not close to being singular.

Calculate the reciprocal condition number of A.

rcond(A)

 rcond

1-12241

ans = 1

The matrix has a reciprocal condition number of 1 and is, therefore, very well
conditioned. Use rcond(A) or cond(A) rather than det(A) to confirm singularity of a
matrix.

Input Arguments
A — Input matrix
square numeric matrix

Input matrix, specified as a square numeric matrix.
Data Types: single | double

Output Arguments
C — Reciprocal condition number
scalar

Reciprocal condition number, returned as a scalar. The data type of C is the same as A.

The reciprocal condition number is a scale-invariant measure of how close a given matrix
is to the set of singular matrices.

• If C is near 0, the matrix is nearly singular and badly conditioned.
• If C is near 1.0, the matrix is well conditioned.

Tips
• rcond is a more efficient but less reliable method of estimating the condition of a

matrix compared to the condition number, cond.

1 Alphabetical List

1-12242

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

See Also
cond | condest | norm | normest | rank | svd

Introduced before R2006a

 rcond

1-12243

rdivide, ./
Right array division

Syntax
x = A./B
x = rdivide(A,B)

Description
x = A./B divides each element of A by the corresponding element of B.

x = rdivide(A,B) is an alternative way to divide A by B, but is rarely used. It enables
operator overloading for classes.

Examples

Divide Two Numeric Arrays

Create two numeric arrays, A and B, and divide the second array, B, into the first, A.

A = [2 4 6 8; 3 5 7 9];
B = 10*ones(2,4);
x = A./B

x = 2×4

 0.2000 0.4000 0.6000 0.8000
 0.3000 0.5000 0.7000 0.9000

1 Alphabetical List

1-12244

Integer Division

Divide an int16 scalar value by each element of an int16 vector.

a = int16(10);
b = int16([3 4 6]);
x = a./b

x = 1x3 int16 row vector

 3 3 2

MATLAB® rounds the results when dividing integer data types.

Divide Scalar by Array

Create an array and divide it into a scalar.

C = 5;
D = magic(3);
x = C./D

x = 3×3

 0.6250 5.0000 0.8333
 1.6667 1.0000 0.7143
 1.2500 0.5556 2.5000

When you specify a scalar value to be divided by an array, the scalar value expands into
an array of the same size, then element-by-element division is performed.

Input Arguments
A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. Numeric
inputs A and B must either be the same size or have sizes that are compatible (for

 rdivide, ./

1-12245

example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

Duration arrays must be the same size unless one is a scalar.

If B is an integer data type, then A must be the same integer type or be a scalar double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char
Complex Number Support: Yes

B — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a scalar, vector, matrix, or multidimensional array. Numeric
inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

Duration arrays must be the same size unless one is a scalar.

If A is an integer data type, then B must be the same integer type or be a scalar double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char
Complex Number Support: Yes

Output Arguments
x — Solution
scalar | vector | matrix | multidimensional array

Solution, returned as a scalar, vector, matrix or multidimensional array. If either A or B is
an integer data type, then x is that same integer data type.

Tips
• The element-wise operators ./ and .\ are related to each other by the equation A./B

= B.\A.

1 Alphabetical List

1-12246

• When dividing integers, use idivide for more rounding options.
• MATLAB does not support complex integer division.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 rdivide, ./

1-12247

See Also
idivide | ldivide | mldivide | mrdivide

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-12248

rendererinfo
Graphics renderer information

Syntax
info = rendererinfo(target)

Description
info = rendererinfo(target) returns a structure containing the renderer
information for the target graphics object. Specify target as any type of axes or a chart
that can be a child of a figure. You can also specify an array of n axes or charts, in which
case info is returned as a 1-by-n structure array.

Examples

Information About Axes

Create a surface plot of the peaks function.

surf(peaks)

 rendererinfo

1-12249

Get the current axes, and then get renderer information for the axes. Your system might
return different information.

ax = gca;
info = rendererinfo(ax)

info =

 struct with fields:

 GraphicsRenderer: 'OpenGL Hardware'
 Vendor: 'NVIDIA Corporation'
 Version: '4.6.0 NVIDIA 391.58'
 RendererDevice: 'Quadro P600/PCIe/SSE2'
 Details: [1×1 struct]

Get the driver details.

info.Details

ans =

1 Alphabetical List

1-12250

 struct with fields:

 RendererDriverVersion: '23.21.13.9174'
 RendererDriverReleaseDate: '2018-6-4'
 HardwareSupportLevel: 'Full'
 SupportsDepthPeelTransparency: 1
 SupportsAlignVertexCenters: 1
 SupportsGraphicsSmoothing: 1
 MaxTextureSize: 32768
 MaxFrameBufferSize: 32768

Information About Multiple Target Objects

Create a subplot containing a heatmap chart and a scatter plot.

subplot(1,2,1)
h = heatmap(rand(5));
ax1 = subplot(1,2,2);
scatter(1:10,rand(1,10))

 rendererinfo

1-12251

Get the renderer information for the heatmap chart and the parent axes of the scatter
plot. In this case, info is an array that contains two structures.

info = rendererinfo([h ax1])

info =

 1×2 struct array with fields:

 GraphicsRenderer
 Vendor
 Version
 RendererDevice
 Details

1 Alphabetical List

1-12252

Index into the array to get the renderer version for the heatmap chart. Your system might
return different version information.

info(1).Version

ans =

 '4.6.0 NVIDIA 391.74'

Input Arguments
target — Target object
axes | chart | array of axes or charts

Target object, specified as one of the following:

• Any type of axes, such as an Axes, PolarAxes, or GeographicAxes object.
• A chart that can be a child of a figure. For example, a HeatmapChart object can be

the target object because it can be a child of a figure. By contrast, a Stem object
cannot be the target object because it is a child of an Axes object.

• An array of axes, charts, or a combination of them.

Output Arguments
info — Renderer information
structure

Renderer information, returned as a structure that contains information such as the name
of the graphics renderer, vendor, and version. The Details field is a nested structure
that contains additional details. Both the info structure and the info.Details
structure are described in the tables below.

If you specify target as an array of n axes or charts, info is returned as a 1-by-n
structure array. Each structure in the array corresponds to an element of target.

Info Structure

All systems return these fields.

 rendererinfo

1-12253

Field Description
GraphicsRenderer Graphics renderer, returned as one of these

values:

• 'OpenGL Hardware'
• 'OpenGL Software'
• 'MathWorks Painters'
• 'WebGL'

Vendor Manufacturer of the graphics renderer
implementation.

Version Version of the graphics renderer
implementation.

RendererDevice Device that supports the graphics renderer.
If you are using hardware-accelerated
graphics, this field is the graphics card
model name.

Details Nested structure that contains additional
details, such as the renderer's driver
version. For the Painters renderer, this
structure is empty.

Details Structure

Some systems return a subset of these fields, depending on the graphics renderer. For the
Painters renderer, the info.Details structure is empty.

Field Description
RendererDriverVersion Version of the OpenGL driver. This field

displays only on Windows systems running
hardware-accelerated OpenGL. This field
does not display on virtual machines.

RendererDriverReleaseDate Release date of the OpenGL driver. This
field displays only on Windows systems
running hardware-accelerated OpenGL.
This field does not display on virtual
machines.

1 Alphabetical List

1-12254

Field Description
HardwareSupportLevel Hardware support level, returned as one of

these values:

• 'Full' — MATLAB uses graphics
hardware as much as possible to provide
advanced graphics features on page 1-
12256. Most systems running hardware-
accelerated OpenGL and WebGL™
return this value.

• 'Basic' — MATLAB uses graphics
hardware, but some features are
disabled. Disabling graphics features is
sometimes necessary to avoid graphics
display issues.

• 'None' — MATLAB does not use any
graphics hardware. All systems running
software OpenGL return this value. On
some systems, software
implementations of certain features
might be supported.

If MATLAB detects an unsupported driver,
this field also contains 'known graphics
driver issues'.

SupportsDepthPeelTransparency Depth peel transparency feature support,
returned as logical(1) if supported and
logical(0) otherwise.

SupportsAlignVertexCenters Align vertex centers feature support,
returned as logical(1) if supported and
logical(0) otherwise.

SupportsGraphicsSmoothing Graphics smoothing feature support,
returned as logical(1) if supported and
logical(0) otherwise.

MaxTextureSize Maximum texture size that the renderer
supports (in pixels).

 rendererinfo

1-12255

Field Description
MaxFrameBufferSize Maximum frame buffer size that the

renderer supports (in pixels).

Limitations
The rendererinfo function is not supported in the Live Editor.

Definitions

Advanced Graphics Features
Advanced graphics features are features that require certain renderer implementations.
These features are graphics smoothing on page 1-12257, depth peel transparency on
page 1-12258, align vertex centers on page 1-12258, and hardware-accelerated markers
on page 1-12259. You can tell whether your system supports some or all of these features
by getting the value of the HardwareSupportLevel field of the info.Details
structure.

This table lists the advanced graphics features and the circumstances under which they
are supported. In some cases, certain features are supported, but they are disabled to
avoid graphics display issues.

Graphics
Feature

Hardware
OpenGL

Basic
Hardware
OpenGL

Software
OpenGL on
Windows

Software
OpenGL on
Linux

WebGL

Graphics
Smoothing

Supported for
OpenGL 2.1
or higher

Supported for
OpenGL 2.1
or higher

Not
supported

Not
supported

Supported

Depth Peel
Transparency

Supported for
OpenGL 2.1
or higher

Disabled Not
supported

Supported Supported

Align Vertex
Centers

Supported for
OpenGL 2.1
or higher

Disabled Not
supported

Not
supported

Supported

1 Alphabetical List

1-12256

Graphics
Feature

Hardware
OpenGL

Basic
Hardware
OpenGL

Software
OpenGL on
Windows

Software
OpenGL on
Linux

WebGL

Hardware-
accelerated
markers

Supported for
OpenGL 4.0
or higher

Disabled Not
supported

Not
supported

Supported

Graphics Smoothing
Graphics smoothing improves the appearance of plots by reducing jagged lines. By
default, this feature is enabled if your system supports it. To turn off this feature for a
particular figure, set the GraphicsSmoothing property of the figure to 'off'.

This table shows the difference when the feature is enabled or disabled.

When Supported and Enabled When Not Supported or Disabled

(Zoomed-in view) (Zoomed-in view)

 rendererinfo

1-12257

Depth Peel Transparency
Depth peel transparency is a feature for correctly drawing semitransparent 3-D objects or
plots that contain intersecting semitransparent objects. In the table, the left image shows
the result of using transparency on a sphere when the depth peel transparency feature is
supported. The right image shows the same sphere with unexpected shaded areas that
occur when the feature is not supported.

When Supported When Not Supported

Align Vertex Centers
Align vertex centers is a feature for sharp vertical and horizontal lines. If graphics
smoothing is enabled, horizontal and vertical lines might be uneven in thickness or color.
The align vertex centers feature eliminates the uneven appearance. By default, the align
vertex centers feature is not enabled. However, if your system supports this feature, then
you can turn it on for objects that have an AlignVertexCenters property by setting the
property to 'on'.

This table shows the difference when the feature is enabled or disabled.

1 Alphabetical List

1-12258

When Supported and Enabled When Not Supported or Disabled

Hardware-Accelerated Markers
Hardware-accelerated markers take advantage of your graphics hardware for improved
performance and quality. This table shows the difference when the feature is supported or
not supported.

When Supported When Not Supported

Tips
• Painters is an alternate rendering method for screen display and printing. For more

information, see the Renderer property of the figure.
• By default, MATLAB tries to use hardware-accelerated graphics if your graphics

hardware supports it. However, in some cases, MATLAB automatically switches to a
software implementation if it detects one of these situations:

 rendererinfo

1-12259

• You are using a graphics driver with known issues or graphics virtualization.
• A previous MATLAB session crashed due to a graphics issue. If the previous session

was using software OpenGL and crashed, then subsequent sessions use a more
stable version of software OpenGL that has fewer capabilities.

• Your system does not have the necessary graphics hardware.

See Also
matlablinux | matlabmac | matlabwindows | opengl

Topics
“System Requirements for Graphics”
“Resolving Low-Level Graphics Issues”

Introduced in R2019a

1 Alphabetical List

1-12260

read
Read entire TIFF image

Syntax
imageData = read(t)
[Y,Cb,Cr] = read(t)

Description
imageData = read(t) reads the image data from the current image file directory (IFD)
in the TIFF file associated with the Tiff object t.

[Y,Cb,Cr] = read(t) reads the YCbCr component data from the current image file
directory in the TIFF file. Use this syntax only with images that have a YCbCr photometric
interpretation.

Depending upon the values of the YCbCrSubSampling tag, the size of the Cb and Cr
components can differ from the Y component.

Examples

Read TIFF Image Data

Create a Tiff object and read data from the TIFF file.

t = Tiff('peppers_RGB_tiled.tif','r');
imageData = read(t);

Display the image.

imshow(imageData);
title('Peppers Image (RGB)')

 read

1-12261

Close the Tiff object.

close(t);

Read YCbCr TIFF Image Data

Create a Tiff object for a file, get image data, and display the image.

t = Tiff('peppers_YCbCr_tiled.tif','r');
[Y,Cb,Cr] = read(t);

Display the Y component of the image.

imshow(Y);
title('Peppers Image (Y Component)');

1 Alphabetical List

1-12262

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Output Arguments
imageData — Image data
numeric array

Image data, returned as a numeric array. For example, for an RGB image imageData is
an M-by-N-by-3 array. Where M and N are the height and width of the image, respectively.

 read

1-12263

Y — Luma component
numeric array

Luma component of the image data, returned as a two-dimensional numeric array.

Cb — Blue-difference chroma component
numeric array

Blue-difference chroma component of the image data, returned as a two-dimensional
numeric array.

Cr — Red-difference chroma component
numeric array

Red-difference chroma component of the image data, returned as a two-dimensional
numeric array.

See Also
imread | write

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-12264

read
Read data from remote host over TCP/IP

Syntax
read(t)
read(t,size)
read(t,size,datatype)

Description
read(t) reads all available bytes of data from tcpclient object t connected to the
remote host and returns the data. The number of values read is determined by the
BytesAvailable property.

For any read or write operation, the data type is converted to uint8 for the data transfer.
It is then converted back to whatever data type you set if you specified another data type.

read(t,size) reads the specified number of values, size, from tcpclient object t
connected to the remote host and returns the data. If size is greater than the object's
BytesAvailable property, then the function waits until the specified amount of data is
read or the timeout is reached.

read(t,size,datatype) reads the specified number of values, size, with the
specified precision, datatype, from tcpclient object t connected to the remote host
and returns the data. The datatype argument is a character vector of a standard
MATLAB data type.

For any read or write operation, the data type is converted to uint8 for the data transfer.
It is then converted back to whatever data type you set if you specified another data type.

Examples

 read

1-12265

Read All Available Data from Host

Create a TCP/IP object called t, using the IP address shown, and Port of 4012.

t = tcpclient('172.28.154.231', 4012)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0

Read all the bytes of data available.

read(t)

The read function used with no arguments reads all available bytes of data from
tcpclient object t connected to the remote host and returns the data. The number of
values read is determined by the BytesAvailable property, which is equal to the
numbers of bytes available in the input buffer.

Close the connection between the TCP/IP client object and the remote host by clearing
the object.

clear t

Specify the Size and Data Type to Read

Create a TCP/IP object called t, connecting to a TCP/IP echo server, with Port of 7.

t = tcpclient('localhost', 7)

t =

 tcpclient with properties:

 Address: 'local host'
 Port: 7
 Timeout: 10
 BytesAvailable: 0

1 Alphabetical List

1-12266

Assign 10 bytes of data to the variable data.

data = (1:10)

Check the data.

whos data

Name Size Bytes Class Attributes

data 1x10 10 double

Write data to the echo server.

write(t, data)

Check that the data was written using the BytesAvailable property.

t.BytesAvailable

ans =

 80

For any read or write operation, the data type is converted to uint8 for the data transfer.
It is then converted back to whatever data type you set if you specified another data type.
Since 1 double equals 8 uint8 bytes, there are 80 bytes available.

Read 10 doubles from the server. The object name is always the first argument. The size
argument must be the second argument, and datatype must be the third argument.

read(t, 10, 'double')

ans =

 1 2 3 4 5 6 7 8 9 10

Close the connection between the TCP/IP client object and the remote host by clearing
the object.

 read

1-12267

clear t

Input Arguments
size — Number of bytes to read
numeric scalar

Number of bytes to read, specified as a numeric scalar. Size cannot be set to inf. If size
is greater than the object's BytesAvailable property, the function waits until the
specified amount of data is read. The first argument must be the object name, and the
second argument is the size. The size argument is optional.
Example: read(t, 5)
Data Types: double

datatype — MATLAB data type
'uint8' (default) | 'int8' | 'uint16' | 'int16' | 'uint32' | 'int32' | 'uint64' |
'int64' | 'single' | 'double'

MATLAB data type, specified as a character vector. Size cannot be set to inf. The
datatype must be set to one of the 10 values shown above. The first argument must be
the object name, the second argument is the size, and the third argument is the data type.
The size and datatype arguments are optional.

For any read or write operation, the data type is converted to uint8 for the data transfer.
It is then converted back to whatever data type you set if you specified another data type.
Example: read(t, 10, 'double')
Data Types: char

See Also

Topics
“Create a TCP/IP Connection”
“Configure Properties for TCP/IP Communication”
“Write and Read Data over TCP/IP Interface”

1 Alphabetical List

1-12268

Introduced in R2014b

 read

1-12269

readasync
Read data asynchronously from device

Syntax
readasync(obj)
readasync(obj,size)

Description
readasync(obj) initiates an asynchronous read operation on the serial port object, obj.

readasync(obj,size) asynchronously reads, at most, the number of bytes given by
size. If size is greater than the difference between the InputBufferSize property
value and the BytesAvailable property value, an error is returned.

Examples
This example creates the serial port object s on a Windows platform. It connects s to a
Tektronix TDS 210 oscilloscope, configures s to read data asynchronously only if
readasync is issued, and configures the instrument to return the peak-to-peak value of
the signal on channel 1.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')
fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

Begin reading data asynchronously from the instrument using readasync. When the
read operation is complete, return the data to the MATLAB workspace using fscanf.

readasync(s)
s.BytesAvailable

1 Alphabetical List

1-12270

ans =
 15

out = fscanf(s)

out =
2.0399999619E0

fclose(s)

Tips
Before you can read data, you must connect obj to the device with the fopen function. A
connected serial port object has a Status property value of open. An error is returned if
you attempt to perform a read operation while obj is not connected to the device.

Only use readasync to configure the ReadAsyncMode property to manual. readasync
is ignored if used when ReadAsyncMode is continuous.

The TransferStatus property indicates if an asynchronous read or write operation is in
progress. You can write data while an asynchronous read is in progress because serial
ports have separate read and write pins. You can stop asynchronous read and write
operations with the stopasync function.

You can monitor the amount of data stored in the input buffer with the BytesAvailable
property. Additionally, you can use the BytesAvailableFcn property to execute a
callback function when the terminator or the specified amount of data is read.

Rules for Completing an Asynchronous Read Operation
An asynchronous read operation with readasync completes when one of these conditions
is met:

• The terminator specified by the Terminator property is read.
• The time specified by the Timeout property passes.
• The specified number of bytes is read.
• The input buffer is filled (if size is not specified).

 readasync

1-12271

Because readasync checks for the terminator, this function can be slow. To increase
speed, you might want to configure ReadAsyncMode to continuous and continuously
return data to the input buffer as soon as it is available from the device.

See Also
BytesAvailable | BytesAvailableFcn | ReadAsyncMode | Status | TransferStatus | fopen |
stopasync

Introduced before R2006a

1 Alphabetical List

1-12272

Tree Properties
Control appearance and behavior of tree

Description
Trees are UI components for presenting lists of items in a hierarchy within an app. The
uitree function creates a tree and sets any required properties before displaying it. By
changing tree property values, you can modify certain aspects of its appearance and
behavior. Use dot notation to refer to a specific object and property:

uf = uifigure;
t = uitree(uf);
t.Multiselect = 'on';

Properties
Nodes

SelectedNodes — Selected nodes
[] (default) | TreeNode object | array of TreeNode objects

Selected nodes, specified as a TreeNode object or an array of TreeNode objects. Use this
property to get or set the selected nodes in a tree.

To allow users to select multiple nodes, set the Multiselect property to 'on'. MATLAB
always returns SelectedNodes as a column vector when the tree has multiple selected
nodes.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.

 Tree Properties

1-12273

Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-12274

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

 Tree Properties

1-12275

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-12276

Interactivity

Visible — Tree visibility
'on' (default) | 'off'

Tree visibility, specified as 'on' or 'off'. When the Visible property is set to 'off',
the tree is not visible, but you can query and set its properties.

Multiselect — Multiple node selection
'off' (default) | 'on'

Multiple node selection, specified as 'off' or 'on'. Set this property to 'on' to allow
users to select multiple nodes simultaneously.

Editable — Node text editability
'off' (default) | 'on'

Node text editability, specified as 'off' or 'on'. Set this property to 'on' to allow the
user to edit the node text at run time. The Enable property must also be set to 'on' to
make the text editable.

Enable — Operational state of tree
'on' (default) | 'off'

Operational state of tree, specified as 'on' or 'off'. Set this property to 'off' to make
the tree and its nodes appear dim, indicating that the user cannot interact with the tree
or its nodes.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

 Tree Properties

1-12277

Position

Position — Location and size
[20 20 100 300] (default) | [left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. This table describes each element in the vector. All measurements are in pixel
units.

Element Description
left Distance from the inner left edge of the parent container to

the left edge of the bounding box that encloses the tree
bottom Distance from the inner bottom edge of the parent

container to the bottom edge of the bounding box that
encloses the tree

width Distance between the right and left edges of the bounding
box

height Distance between the top and bottom edges of the
bounding box

InnerPosition — Location and size
[20 20 100 300] (default) | [left bottom width height]

Location and size, specified as a four-element vector of the form, [left bottom width
height]. The values in the vector are relative to the parent container. All measurements
are in pixel units. This property value is identical to the Position property.

OuterPosition — Location and size
[20 20 100 300] (default) | [left bottom width height]

This property is read-only.

Location and size, returned as a four-element vector of the form, [left bottom width
height]. The values in the vector are relative to the parent container. All measurements
are in pixel units. This property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is

1 Alphabetical List

1-12278

not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a tree in the third row and second column of its parent grid.

g = uigridlayout([4 3]);
t = uitree(g);
t.Layout.Row = 3;
t.Layout.Column = 2;

To make the tree span multiple rows or columns, specify the Row or Column property as a
two-element vector. For example, this tree spans columns 2 through 3:

t.Layout.Column = [2 3];

Callbacks

SelectionChangedFcn — Selection changed callback
'' (default) | function handle | cell array | character vector

Selection changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Use this callback function to execute commands when the user selects a different node in
the tree.

This callback function can access specific information about the user’s interaction with
the tree, such as the selected nodes. MATLAB passes this information in a
SelectedNodesChangedData object as the second argument to your callback function.
In App Designer, the argument is called event. You can query the object properties using
dot notation. For example, event.SelectedNodes returns the selected TreeNode
object or objects. The SelectedNodesChangedData object is not available to callback
functions specified as character vectors.

The following table describes properties of the SelectedNodesChangedData object.

 Tree Properties

1-12279

Property Description
SelectedNodes Most recently selected TreeNode object or objects
PreviousSelect
edNodes

Previously selected TreeNode object or objects

Source Component that executes the callback
EventName 'SelectionChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

NodeExpandedFcn — Node expanded callback
'' (default) | function handle | cell array | character vector

Node expanded callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Use this callback function to execute commands when the user expands a node in the
tree.

This callback function can access specific information about the user’s interaction with
the node. MATLAB passes this information in a NodeExpandedData object as the second
argument to your callback function. In App Designer, the argument is called event. You
can query the object properties using dot notation. For example, event.Node returns the
TreeNode object that the user collapsed. The NodeExpandedData object is not available
to callback functions specified as character vectors.

The following table describes properties of the NodeExpandedData object.

Property Description
Node TreeNode object that the user expanded
Source Component that executes the callback.
EventName 'NodeExpanded'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

1 Alphabetical List

1-12280

NodeCollapsedFcn — Node collapsed callback
'' (default) | function handle | cell array | character vector

Node collapsed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Use this callback function to execute commands when the user collapses a node in the
tree.

This callback function can access specific information about the user’s interaction with
the node. MATLAB passes this information in a NodeCollapsedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example, event.Node
returns the TreeNode object that the user collapsed. The NodeCollapsedData object is
not available to callback functions specified as character vectors.

The following table describes properties of the NodeCollapsedData object.

Property Description
Node TreeNode object that the user collapsed
Source Component that executes the callback.
EventName 'NodeCollapsed'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

NodeTextChangedFcn — Node text changed callback
'' (default) | function handle | cell array | character vector

Node text changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

 Tree Properties

1-12281

Use this callback function to execute commands when the user changes the text for a
node in the tree.

This callback function can access specific information about the user’s interaction with
the tree node. MATLAB passes this information in a NodeTextChangedData object as
the second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousText returns the previous node text. The NodeTextChangedData
object is not available to callback functions specified as character vectors.

The following table describes the properties of the NodeTextChangedData object.

Property Description
Node TreeNode object that has changed text
Text New node text
PreviousText Previous node text
Source Component that executes the callback
EventName 'NodeTextChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

1 Alphabetical List

1-12282

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 Tree Properties

1-12283

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

1 Alphabetical List

1-12284

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Children — Children
empty GraphicsPlaceholder array (default) | array of TreeNode objects

Children, returned as an array of TreeNode objects.

You cannot add or remove children using the Children property, but you can use the
property to view the list of children. The order of the children reflects the order of the

 Tree Properties

1-12285

child nodes displayed on the screen. To add a child to this list, set the Parent property of
the child component to be the Tree object.

To reorder the children, use the move function.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitree'

This property is read-only.

Type of graphics object, returned as 'uitree'.

1 Alphabetical List

1-12286

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
appdesigner | scroll | uitree | uitreenode

Introduced in R2017b

 Tree Properties

1-12287

TreeNode Properties
Control appearance and behavior of tree node

Description
Tree nodes are the items listed in a tree hierarchy. The uitreenode function creates a
tree node and sets any required properties before displaying it. By changing tree node
property values, you can modify certain aspects of its appearance and behavior. Use dot
notation to refer to a specific object and property.

uf = uifigure;
tree = uitree(uf);
node = uitreenode(tree);
node.Text = 'Item 1';

Properties
Node

Text — Node text
'Tree Node' (default) | character vector | string scalar

Node text, specified as a character vector or string scalar.

NodeData — Node data
[] (default) | array

Node data, specified as an array of any type. Specify NodeData to share node-relevant
data within your app code.

Icon — Icon image file
' ' (default) | character vector | string scalar

Icon image file, specified as a character vector or string scalar. Specify a file name that is
on the MATLAB path when the user runs the app. Alternatively, specify a full path to the
image file.

1 Alphabetical List

1-12288

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

 TreeNode Properties

1-12289

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

1 Alphabetical List

1-12290

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

 TreeNode Properties

1-12291

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent object
Tree object | TreeNode object

Parent object, specified as a Tree or TreeNode object.

Children — Children
empty GraphicsPlaceholder array (default) | array of TreeNode objects

Children, returned as an array of TreeNode objects.

You cannot add or remove children using the Children property, but you can use the
property to view the list of children. The order of the children reflects the order of the
child nodes displayed on the screen. To add a child to this list, set the Parent property of
the child component to be the TreeNode object.

To reorder the children, use the move function.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

1 Alphabetical List

1-12292

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitreenode'

This property is read-only.

Type of graphics object, returned as 'uitreenode'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

 TreeNode Properties

1-12293

See Also
appdesigner | uitree | uitreenode

Introduced in R2017b

1 Alphabetical List

1-12294

collapse
Package: matlab.ui.container

Collapse tree node

Syntax
collapse(parent)
collapse(parent,'all')

Description
collapse(parent) collapses the nodes of the parent tree or tree node. If parent is a
Tree object, then the top-level nodes in the tree display in a collapsed state. Any children
beyond the top level do not collapse. If parent is a TreeNode object, then the specified
node displays in a collapsed state, but the children inside that node do not collapse.

collapse(parent,'all') collapses all child nodes of the parent tree or tree node.

Examples

Collapse Top-Level Nodes

Create a tree that has three levels of nodes, and expand all of the nodes.

f = uifigure;
tree = uitree(f,'Position',[20 20 175 100]);

% First level nodes
category1 = uitreenode(tree,'Text','Runners');
category2 = uitreenode(tree,'Text','Cyclists');

% Second level nodes
equip1 = uitreenode(category1,'Text','Equipment');

 collapse

1-12295

equip2 = uitreenode(category2,'Text','Equipment');

% Third level nodes
shoes = uitreenode(equip1,'Text','Running Shoes');
bike = uitreenode(equip2,'Text','Bicycle');
helmet = uitreenode(equip2,'Text','Helmet');

% Expand all nodes
expand(tree','all');

Collapse the top-level nodes.

collapse(tree)

1 Alphabetical List

1-12296

Expand the Cyclists node.

expand(category2)

 collapse

1-12297

The Equipment child node is already expanded because the previous collapse
command collapsed only the Cyclists node. If you want to collapse all the child nodes,
specify the 'all' option when you call the collapse function.

Input Arguments
parent — Parent tree or node
Tree object | TreeNode object

Parent tree or node, specified as a Tree object or TreeNode object.

See Also
appdesigner | expand | move | scroll | uitree | uitreenode

Introduced in R2017b

1 Alphabetical List

1-12298

expand
Package: matlab.ui.container

Expand tree node

Syntax
expand(parent)
expand(parent,'all')

Description
expand(parent) expands the nodes of a tree or tree node. If parent is a Tree object,
then the top-level nodes display in an expanded state. If parent is a TreeNode object,
then that node displays in an expanded state.

expand(parent,'all') expands all nodes of a tree or tree node.

Examples

Expand Nodes in a Tree

Create a tree that has three levels of nodes. By default, the nodes display in a collapsed
state.

f = uifigure;
tree = uitree(f,'Position',[20 20 175 100]);

% First level nodes
category1 = uitreenode(tree,'Text','Runners');
category2 = uitreenode(tree,'Text','Cyclists');

% Second level nodes
equip1 = uitreenode(category1,'Text','Equipment');

 expand

1-12299

equip2 = uitreenode(category2,'Text','Equipment');

% Third level nodes
shoes = uitreenode(equip1,'Text','Running Shoes');
bike = uitreenode(equip2,'Text','Bicycle');
helmet = uitreenode(equip2,'Text','Helmet');

Expand the top-level nodes.

expand(tree)

1 Alphabetical List

1-12300

Expand all the nodes in the tree.

expand(tree,'all')

Input Arguments
parent — Parent tree or node
Tree object | TreeNode object

Parent tree or node, specified as a Tree object or TreeNode object.

See Also
appdesigner | collapse | move | scroll | uitree | uitreenode

Introduced in R2017b

 expand

1-12301

move
Package: matlab.ui.container

Move tree node

Syntax
move(targetnode,siblingnode)
move(targetnode,siblingnode,location)

Description
move(targetnode,siblingnode) moves the target node after the specified sibling
node.

move(targetnode,siblingnode,location) moves the target node after or before
the specified sibling node. Specify location as 'after' or 'before'.

Examples

Change the Order of Two Nodes

Create a tree containing two top-level nodes that each contain a child node.

f = uifigure;
tree = uitree(f,'Position',[20 20 200 150]);
node1 = uitreenode(tree,'Text','Runners');
node2 = uitreenode(tree,'Text','Cyclists');
runner = uitreenode(node1,'Text','Joe');
cyclist = uitreenode(node2,'Text','Rajeev');

1 Alphabetical List

1-12302

Move Cyclists before Runners.

move(node2,node1,'before');

 move

1-12303

Move Cyclists after Runners. Since the default value of location is 'after', you
can omit that argument.

move(node2,node1);

Input Arguments
targetnode — Target node
TreeNode object

Target node, specified as a TreeNode object.

siblingnode — Sibling node
TreeNode object

Sibling node, specified as a TreeNode object.

location — Target location
'after' (default) | 'before'

Target location, specified as 'after' or 'before'.

1 Alphabetical List

1-12304

See Also
appdesigner | collapse | expand | scroll | uitree | uitreenode

Introduced in R2017b

 move

1-12305

uiconfirm
Create confirmation dialog box

Syntax
uiconfirm(f,message,title)
uiconfirm(f,message,title,Name,Value)
selection = uiconfirm(___)

Description
uiconfirm(f,message,title) displays a modal in-app confirmation dialog box in
target figure f. The target figure must be created with the uifigure function. This
syntax displays two options for the user to select, OK and Cancel. The figure behind the
dialog box is not accessible while the dialog box is displaying, but the MATLAB command
prompt is accessible.

uiconfirm(f,message,title,Name,Value) displays the confirmation dialog box with
one or more Name,Value pair arguments that customize the appearance and behavior of
the dialog box. For example, you can specify a custom set of options in the dialog box
instead of the default, OK and Cancel.

selection = uiconfirm(___) returns the user's selection as a character vector.
Specify the selection output argument with any of the previous syntaxes. When you use
this syntax, the MATLAB command prompt is not accessible while the dialog box is
displaying.

Examples

Specify Different Icon

Create a dialog box that displays the warning icon instead of the default question icon.

1 Alphabetical List

1-12306

f = uifigure;
selection = uiconfirm(f,'Close document?','Confirm Close',...
 'Icon','warning');

When the user selects an option, uiconfirm returns that choice as a character vector.

Specify Custom Options

Create a confirmation dialog containing three options: Overwrite, Save as new, and
Cancel. Specify Save as new as the default option, and specify Cancel as the option that
maps to the cancel behavior.

f = uifigure;
msg = 'Saving these changes will overwrite previous changes.';
title = 'Confirm Save';
selection = uiconfirm(f,msg,title,...
 'Options',{'Overwrite','Save as new','Cancel'},...
 'DefaultOption',2,'CancelOption',3);

 uiconfirm

1-12307

When the user selects an option, uiconfirm returns their selection as a character vector.

Define CloseFcn Callback

The CloseFcn name-value pair argument is useful for executing specific tasks when the
dialog box closes.

In the MATLAB Editor, create a new function called mycallback.m that contains the
following code. This callback function displays the SelectedOption field in a struct
called event. MATLAB automatically passes this struct as the second argument to the
callback function.

function mycallback(src,event)
 display(event.SelectedOption);
end

In the MATLAB Command Window, execute the following code to create a confirmation
dialog box that specifies mycallback as the value for CloseFcn.

1 Alphabetical List

1-12308

f = uifigure;
uiconfirm(f,'Close document?','Confirm Close',...
 'CloseFcn',@mycallback);

When the user selects an option, the value of SelectedOption displays in the Command
Window.

Define CloseFcn Callback in App Designer

To create a confirmation dialog box in App Designer that has a CloseFcn callback, write
the callback as a private function in App Designer.

Start by selecting Code View. Then create a private function by selecting Function >
Private Function.

Next, write the private function so that it matches this code:

function mycallback(app,src,event)
 display(event.SelectedOption);
end

 uiconfirm

1-12309

Add this command to the callback function that you want to display the dialog box. In this
case, the target figure is app.UIFigure, which is the default name for the figure in App
Designer.

uiconfirm(app.UIFigure,'Close document?','Confirm Close',...
 'CloseFcn',@(src,event)mycallback(app,src,event));

Save and run your app. When the user triggers the callback that creates the dialog box,
the dialog box displays in the app.

Input Arguments
f — Target figure
Figure object

Target figure, specified as a Figure object. The figure must be created with the
uifigure function.

1 Alphabetical List

1-12310

message — Message to display
character vector | cell array of character vectors | string array

Message to display, specified as a character vector, cell array of character vectors, or
string array. Specify a cell array or string array when your message has multiple lines of
text. Each element in the array corresponds to a different line of text.

title — Dialog box title
character vector | string scalar

Dialog box title, specified as a character vector or string scalar.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: selection = uiconfirm(f,message,title,'Options',
{'Save','Delete','Quit'}) specifies three custom options for the dialog box.

Options — Custom options
{'OK','Cancel'} (default) | cell array of character vectors | string array

Custom options, specified as a cell array of character vectors or a string array.

Icon — Icon
'question' (default) | predefined icon | custom icon

Icon, specified as a predefined icon or a custom icon.

Predefined Icon

This table lists the values for the predefined icons. For example, to show the check mark
icon, specify the name-value pair 'Icon','success'.

Value Icon
'question' (default)

 uiconfirm

1-12311

Value Icon
'info'

'success'

'warning'

'error'

'' No icon displays.

Custom Icon

Specify a custom icon as one of these values:

• A character vector that specifies the file name of an SVG, JPEG, GIF, or PNG image
that is on the MATLAB path. Alternatively, you can specify a full path to the image file.

• A truecolor image array. See “Image Types” for more information.

DefaultOption — Default option
1 (default) | character vector | string scalar | whole number

Default option, specified as a character vector, string scalar, or a whole number. The
default option corresponds to the button in the dialog box that has focus by default.

When you specify a character vector or string scalar, it must match an element in the
Options array. However, if you are calling uiconfirm without the Options argument,
then DefaultOption must be 'OK' or 'Cancel'.

When you specify a whole number, it must be in the range [1, n], where n is the length of
the Options array. If you are calling uiconfirm without the Options argument, then
DefaultOption must be 1 or 2.

CancelOption — Cancel option
2 (default) | character vector | string scalar | whole number

Cancel option, specified as a character vector, string scalar, or a whole number. The
cancel option specifies which option maps to cancel actions in the dialog box.

1 Alphabetical List

1-12312

When you specify a character vector or string scalar, it must match an element in the
Options array. However, if you are calling uiconfirm without the Options argument,
then CancelOption must be 'OK' or 'Cancel'.

When you specify a whole number, it must be in the range [1, n], where n is the length of
the Options array. If you are calling uiconfirm without the Options argument, then
CancelOption must be 1 or 2.

CloseFcn — Close callback function
'' (default) | function handle | cell array | character vector

Close callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback is useful for executing specific tasks when the dialog box closes.

When you specify CloseFcn as a function handle (or cell array containing a function
handle), MATLAB passes a struct containing event data as an input argument to the
callback function. This struct contains the fields described in the following table.

Structure Field Value
Source Figure object associated with the dialog

box.
EventName 'ConfirmDialogClosed'
DialogTitle Title of the dialog box.
SelectedOptionIndex Index of the selected option. For n options,

the index can be any whole number from 1
to n.

SelectedOption Button label for the selected option,
returned as a character vector.

See Also
questdlg | uialert | uifigure | uiprogressdlg

 uiconfirm

1-12313

Introduced in R2017b

1 Alphabetical List

1-12314

uitree
Create tree component

Syntax
t = uitree
t = uitree(Name,Value)
t = uitree(parent)
t = uitree(parent,Name,Value)

Description
t = uitree creates a tree in a new figure window and returns the Tree object. MATLAB
calls the uifigure function to create the figure.

t = uitree(Name,Value) specifies Tree property values using one or more
Name,Value pair arguments.

t = uitree(parent) creates a tree in the specified parent container. The parent can
be a Figure created using the uifigure function, or one of its child containers.

t = uitree(parent,Name,Value) creates the tree in the specified container and sets
one or more Tree property values.

Examples

Tree with One Node

Create a tree that contains one node called Sample Data.

t = uitree('Position',[20 20 150 150]);
node = uitreenode(t,'Text','Sample Data');

 uitree

1-12315

Tree with Nested Nodes and Callback Function

Create a program file called mytreeapp.m that contains the following commands to
create a tree, a set of nested tree nodes, and a callback function for the tree. The
SelectionChangedFcn property specifies the function to execute when the user clicks a
node in the tree.

function mytreeapp
 f = uifigure;
 t = uitree(f,'Position',[20 20 150 150]);

 % Assign Tree callback in response to node selection
 t.SelectionChangedFcn = @nodechange;

 % First level nodes
 category1 = uitreenode(t,'Text','Runners','NodeData',[]);
 category2 = uitreenode(t,'Text','Cyclists','NodeData',[]);

 % Second level nodes.
 % Node data is age (y), height (m), weight (kg)
 p1 = uitreenode(category1,'Text','Joe','NodeData',[40 1.67 58]);
 p2 = uitreenode(category1,'Text','Linda','NodeData',[49 1.83 90]);
 p3 = uitreenode(category2,'Text','Rajeev','NodeData',[25 1.47 53]);
 p4 = uitreenode(category2,'Text','Anne','NodeData',[88 1.92 100]);

1 Alphabetical List

1-12316

 % Expand the tree
 expand(t);

 function nodechange(src,event)
 node = event.SelectedNodes;
 display(node.NodeData);
 end
end

When the user runs mytreeapp and clicks a node in the tree, MATLAB displays the
NodeData for that node.

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

 uitree

1-12317

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset. For a full list, see Tree.
Example: t = uitree('Position',[100 100 150 150]) creates a tree with a
specific location and size.

SelectedNodes — Selected nodes
[] (default) | TreeNode object | array of TreeNode objects

Selected nodes, specified as a TreeNode object or an array of TreeNode objects. Use this
property to get or set the selected nodes in a tree.

To allow users to select multiple nodes, set the Multiselect property to 'on'. MATLAB
always returns SelectedNodes as a column vector when the tree has multiple selected
nodes.

Multiselect — Multiple node selection
'off' (default) | 'on'

Multiple node selection, specified as 'off' or 'on'. Set this property to 'on' to allow
users to select multiple nodes simultaneously.

SelectionChangedFcn — Selection changed callback
'' (default) | function handle | cell array | character vector

Selection changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Use this callback function to execute commands when the user selects a different node in
the tree.

1 Alphabetical List

1-12318

This callback function can access specific information about the user’s interaction with
the tree, such as the selected nodes. MATLAB passes this information in a
SelectedNodesChangedData object as the second argument to your callback function.
In App Designer, the argument is called event. You can query the object properties using
dot notation. For example, event.SelectedNodes returns the selected TreeNode
object or objects. The SelectedNodesChangedData object is not available to callback
functions specified as character vectors.

The following table describes properties of the SelectedNodesChangedData object.

Property Description
SelectedNodes Most recently selected TreeNode object or objects
PreviousSelect
edNodes

Previously selected TreeNode object or objects

Source Component that executes the callback
EventName 'SelectionChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size
[20 20 100 300] (default) | [left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. This table describes each element in the vector. All measurements are in pixel
units.

Element Description
left Distance from the inner left edge of the parent container to

the left edge of the bounding box that encloses the tree
bottom Distance from the inner bottom edge of the parent

container to the bottom edge of the bounding box that
encloses the tree

width Distance between the right and left edges of the bounding
box

height Distance between the top and bottom edges of the
bounding box

 uitree

1-12319

See Also
Functions
appdesigner | scroll | uitreenode

Properties
Tree

Topics
“App That Displays Data in a Hierarchy Using Tree”

Introduced in R2017b

1 Alphabetical List

1-12320

uitreenode
Create tree node component

Syntax
node = uitreenode
node = uitreenode(parent)
node = uitreenode(parent,sibling)
node = uitreenode(parent,sibling,location)
node = uitreenode(___ ,Name,Value)

Description
node = uitreenode creates a tree node UI component inside a tree within a new figure
window and returns the TreeNode object. MATLAB calls the uifigure function to create
the figure.

node = uitreenode(parent) creates a tree node in the specified parent container.
The parent container can be a Tree or TreeNode object.

node = uitreenode(parent,sibling) creates a tree node in the specified parent
container, after the specified sibling node.

node = uitreenode(parent,sibling,location) creates a tree node, and places it
after or before the sibling node. Specify location as 'after' or 'before'.

node = uitreenode(___ ,Name,Value) specifies TreeNode property values using
one or more Name,Value pair arguments. Specify Name,Value as the last set of
arguments when you use any of the previous syntaxes.

Examples

 uitreenode

1-12321

One Node in a Tree

Create a tree that contains one node called Sample Data.

t = uitree('Position',[20 20 150 150]);
node = uitreenode(t,'Text','Sample Data');

Tree with Nested Nodes

Create a program file called mytreeapp.m that contains the following commands to
create a tree, a set of nested tree nodes, and a callback function for the tree. The
SelectionChangedFcn property specifies the function to execute when the user clicks a
node in the tree.

function mytreeapp
 f = uifigure;
 t = uitree(f,'Position',[20 20 150 150]);

 % Assign Tree callback in response to node selection
 t.SelectionChangedFcn = @nodechange;

 % First level nodes
 category1 = uitreenode(t,'Text','Runners','NodeData',[]);
 category2 = uitreenode(t,'Text','Cyclists','NodeData',[]);

1 Alphabetical List

1-12322

 % Second level nodes.
 % Node data is age (y), height (m), weight (kg)
 p1 = uitreenode(category1,'Text','Joe','NodeData',[40 1.67 58]);
 p2 = uitreenode(category1,'Text','Linda','NodeData',[49 1.83 90]);
 p3 = uitreenode(category2,'Text','Rajeev','NodeData',[25 1.47 53]);
 p4 = uitreenode(category2,'Text','Anne','NodeData',[88 1.92 100]);

 % Expand the tree
 expand(t);

 function nodechange(src,event)
 node = event.SelectedNodes;
 display(node.NodeData);
 end
end

When the user runs mytreeapp and clicks a node in the tree, MATLAB displays the
NodeData for that node.

Input Arguments
parent — Parent object
Tree object | TreeNode object

Parent object, specified as a Tree or TreeNode object.

 uitreenode

1-12323

sibling — Sibling node
TreeNode

Sibling node, specified as a TreeNode object.

location — Location relative to sibling
'after' (default) | 'before'

Location of the node relative to its sibling, specified as a 'after' or 'before'.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset. For a full list, see TreeNode.
Example: node = uitreenode(t,'Text','Measurements') creates a tree node with
the label, 'Measurements'.

Text — Node text
'Tree Node' (default) | character vector | string scalar

Node text, specified as a character vector or string scalar.

Icon — Icon image file
' ' (default) | character vector | string scalar

Icon image file, specified as a character vector or string scalar. Specify a file name that is
on the MATLAB path when the user runs the app. Alternatively, specify a full path to the
image file.

NodeData — Node data
[] (default) | array

Node data, specified as an array of any type. Specify NodeData to share node-relevant
data within your app code.

1 Alphabetical List

1-12324

See Also
Functions
collapse | expand | move | scroll | uitree

Properties
TreeNode

Topics
“App That Displays Data in a Hierarchy Using Tree”

Introduced in R2017b

 uitreenode

1-12325

readEncodedStrip
Read data from specified strip

Syntax
stripData = readEncodedStrip(t,stripNumber)
[Y,Cb,Cr] = readEncodedStrip(t,stripNumber)

Description
stripData = readEncodedStrip(t,stripNumber) returns the image data from the
strip specified by stripNumber from the TIFF file represented by the Tiff object t.

The readEncodedStrip function trims the area in a strip that falls outside of the
ImageLength boundary. Therefore, image data from a strip at the bottom edge of the
image can have different dimensions.

[Y,Cb,Cr] = readEncodedStrip(t,stripNumber) returns the YCbCr components
of the strip data specified by stripNumber from the TIFF file represented by the Tiff
object t. Use this syntax only with images that have a YCbCr photometric interpretation.

Depending upon the values of the YCbCrSubSampling tag, the size of the Cb component
can differ from the Y component.

Examples

Read Strip of Data from TIFF Image

Read a strip of image data from a TIFF file that contains an image with a stripped layout.

t = Tiff('peppers_RGB_stripped.tif','r');

Determine the number of strips and the length of the strip in the image.

numberOfStrips(t)

1 Alphabetical List

1-12326

ans = 6

getTag(t,'RowsPerStrip')

ans = 35

Read and display the third strip of the image. The readEncodedStrip function trims the
area in a strip that falls outside of the ImageLength boundary. Therefore, image data
from a strip at the bottom edge of the image can have different dimensions.

strip = readEncodedStrip(t,3);
imshow(strip);
title('3^{rd} Strip Peppers Image');

Close the Tiff object.

close(t);

Read Strip of Data from YCbCr TIFF Image

Read a strip of image data from a YCbCr TIFF file that contains an image with a stripped
layout.

t = Tiff('peppers_YCbCr_stripped.tif','r');

Determine the number of strips and the length of each strip in the image.

numberOfStrips(t)

ans = 6

getTag(t,'RowsPerStrip')

 readEncodedStrip

1-12327

ans = 35

Read and display the Y component of the third strip of the image. The
readEncodedStrip function trims the area in a strip that falls outside of the
ImageLength boundary. Therefore, image data from a strip at the bottom edge of the
image can have different dimensions.

[Y,Cb,Cr] = readEncodedStrip(t,3);
imshow(Y);
title('3^{rd} Strip of Peppers Image (YCbCr)')

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

stripNumber — Strip number
positive integer

Strip number, specified as a positive integer. Strip numbers are one-based numbers.
Example: 15
Data Types: double

1 Alphabetical List

1-12328

Output Arguments
stripData — Strip data
numeric array

Strip data, returned as a numeric array.

Y — Luma component
numeric array

Luma component of the strip data, returned as a two-dimensional numeric array.

Cb — Blue-difference chroma component
numeric array

Blue-difference chroma component of the strip data, returned as a two-dimensional
numeric array.

Cr — Red-difference chroma component
numeric array

Red-difference chroma component of the strip data, returned as a two-dimensional
numeric array.

Algorithms

References
This function corresponds to the TIFFReadEncodedStrip function in the LibTIFF C API.
To use this method, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | isTiled | readEncodedTile

Topics
“Importing Images”

 readEncodedStrip

1-12329

http://www.simplesystems.org/libtiff/

“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-12330

readEncodedTile
Read data from specified tile

Syntax
tileData = readEncodedTile(t,tileNumber)
[Y,Cb,Cr] = readEncodedTile(t,tileNumber)

Description
tileData = readEncodedTile(t,tileNumber) returns image data contained in the
tile specified by tileNumber from the TIFF file represented by the Tiff object t.

The readEncodedTile function trims the area in a tile that is outside of the
ImageLength and ImageWidth boundaries. Therefore, image data from tiles that occur
on the right edge or the bottom edge of the image can have different dimensions.

[Y,Cb,Cr] = readEncodedTile(t,tileNumber) returns the YCbCr components of
the image data contained in the tile specified by tileNumber from the TIFF file
represented by the Tiff object t. Use this syntax only with images that have a YCbCr
photometric interpretation.

Depending upon the values of the YCbCrSubSampling tag, the size of the Cb component
can differ from the Y component.

Examples

Read Tile of Data from TIFF Image

Read a tile of image data from a TIFF file that contains an image with a tiled layout.

t = Tiff('peppers_RGB_tiled.tif','r');

Determine the number of tiles and the tile size in the image.

 readEncodedTile

1-12331

nTiles = numberOfTiles(t)

nTiles = 36

tileSize = [getTag(t,'TileLength') getTag(t,'TileWidth')]

tileSize = 1×2

 32 48

Read and display the 19th tile of the image. The readEncodedTile function trims the
area in a tile that is outside of the ImageLength and ImageWidth boundaries.
Therefore, image data from tiles that occur on the right edge or the bottom edge of the
image can have different dimensions.

tile = readEncodedTile(t,19);
imshow(tile,'InitialMagnification','fit'); % Magnify for display
title('19^{th} Tile of Peppers Image (RGB)');

1 Alphabetical List

1-12332

Close the Tiff object.

close(t);

Read Tile from YCbCr TIFF Image

Read a tile of image data from a YCbCr TIFF file that contains an image with a tiled
layout.

t = Tiff('peppers_YCbCr_tiled.tif','r');

Determine the number of tiles and the tile size in the image.

 readEncodedTile

1-12333

nTiles = numberOfTiles(t)

nTiles = 36

tileSize = [getTag(t,'TileLength') getTag(t,'TileWidth')]

tileSize = 1×2

 32 48

Read and display the Y component of the 19th tile of the image. The readEncodedTile
function trims the area in a tile that is outside of the ImageLength and ImageWidth
boundaries. Therefore, image data from tiles that occur on the right edge or the bottom
edge of the image can have different dimensions.

[Y,Cb,Cr] = readEncodedTile(t,19);
imshow(Y,'InitialMagnification','fit') % Magnify for display
title('19^{th} Tile of Peppers Image (YCbCr)')

1 Alphabetical List

1-12334

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

 readEncodedTile

1-12335

tileNumber — Tile number
positive integer

Tile number, specified as a positive integer. Tile numbers are one-based numbers.
Example: 15
Data Types: double

Output Arguments
tileData — Tile data
numeric array

Tile data, returned as a numeric array.

Y — Luma component
numeric array

Luma component of the tile data, returned as a two-dimensional numeric array.

Cb — Blue-difference chroma component
numeric array

Blue-difference chroma component of the tile data, returned as a two-dimensional
numeric array.

Cr — Red-difference chroma component
numeric array

Red-difference chroma component of the tile data, returned as a two-dimensional numeric
array.

Algorithms
References
This function corresponds to the TIFFReadEncodedTile function in the LibTIFF C API.
To use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

1 Alphabetical List

1-12336

http://www.simplesystems.org/libtiff/

See Also
Tiff | isTiled | readEncodedStrip

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 readEncodedTile

1-12337

readRGBAImage
Read image using RGBA interface

Syntax
[RGB,alpha] = readRGBAImage(t)

Description
[RGB,alpha] = readRGBAImage(t) reads the image and alpha matting data from the
TIFF file associated with the Tiff object t using the RGBA interface.

Examples

Get Image Data and Associated Alpha Matting

Get all image data and its associated alpha matting from a TIFF file.

Create a Tiff object for an image file.

t = Tiff('example.tif','r');

Read the image data and the associated alpha matting.

[RGB,A] = readRGBAImage(t);

Display the image.

imshow(RGB)

1 Alphabetical List

1-12338

Close the Tiff object.

 readRGBAImage

1-12339

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Output Arguments
RGB — Image data
numeric array

Image data, returned as a m-by-n-by-3 numeric array. Where m and n are the height and
width of the image, respectively.

The readRGBAImage function can transform the pixel values based on specifications in
these tags:
PhotometricInterpretation
BitsPerSample
SamplesPerPixel
Orientation
ExtraSamples
ColorMap

alpha — Alpha matting
numeric array

Alpha matting associated with the image, returned as an m-by-n numeric array. Where m
and n are the height and width of the image, respectively.

If the image does not have associated alpha matting, then alpha is a matrix with all
values set to 255 (transparent).

1 Alphabetical List

1-12340

Algorithms

References
This function corresponds to the TIFFReadRGBAImage function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
read | readRGBAStrip | readRGBATile

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 readRGBAImage

1-12341

http://www.simplesystems.org/libtiff/

readRGBAStrip
Read strip data using RGBA interface

Syntax
[RGB,alpha] = readRGBAStrip(t,row)

Description
[RGB,alpha] = readRGBAStrip(t,row) reads a strip of image data specified by row
from the TIFF file associated with the Tiff object t using the RGBA interface.

The readRGBAStrip function trims the area in a strip that falls outside of the
ImageLength boundary. Therefore, image data from a strip at the bottom edge of the
image can have different dimensions.

Examples

Get Strip from RGBA TIFF Image

Read a strip of data from a TIFF file using the RGBA interface.

Create a Tiff object for the image file.

t = Tiff('peppers_RGB_stripped.tif','r');

Get the number of strips and strip size. The readRGBAStrip function trims the area in a
strip that falls outside of the ImageLength boundary. Therefore, image data from a strip
at the bottom edge of the image can have different dimensions.

numberOfStrips(t)

ans = 6

getTag(t,'RowsPerStrip')

1 Alphabetical List

1-12342

ans = 35

Read the strip containing the fourth row of the image. Since each strip contains 35 rows,
specifying any row between 1 and 35 returns the first strip of data.

[RGB,A] = readRGBAStrip(t,4);

Display the image.

imshow(RGB)

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

row — Row number
positive integer

Row number, specified as positive integer. Specify row as a one-based number of any row
contained by the strip.
Example: 25
Data Types: double

 readRGBAStrip

1-12343

Output Arguments
RGB — Image strip data
numeric array

Image strip data, returned as a m-by-n-by-3 numeric array. Where m and n are the height
and width of the strip, respectively.

The value in the RowsPerStrip tag determines the height the strip and the ImageWidth
tag determines the width of the strip.

The readRGBAStrip function can transform the pixel values based on specifications in
these tags:
PhotometricInterpretation
BitsPerSample
SamplesPerPixel
Orientation
ExtraSamples
ColorMap

alpha — Alpha matting
numeric array

Alpha matting associated with the image strip, returned as a numeric array. The number
of rows and columns in the alpha matting data are the same as the strip data.

If the image does not have associated alpha matting, then alpha is a matrix with all
values set to 255 (transparent).

Algorithms

References
This function corresponds to the TIFFReadRGBAStrip function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

1 Alphabetical List

1-12344

http://www.simplesystems.org/libtiff/

See Also
Tiff | readRGBAImage | readRGBATile

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 readRGBAStrip

1-12345

readRGBATile
Read tile data using RGBA interface

Syntax
[RGB,alpha] = readRGBATile(t,row,col)

Description
[RGB,alpha] = readRGBATile(t,row,col) uses the RGBA interface to read a tile
from the TIFF file associated with the Tiff object t. The tile is specified by row and col
which are the one-based row and column numbers of any pixel in the requested tile.

The readRGBATile function trims the area in a tile that falls outside of the
ImageLength and ImageWidth boundaries. Therefore, image data from tiles that occur
on the bottom edge or the right edge of the image can have different dimensions.

Examples

Get Tile from RGBA TIFF Image

Read a tile of data from a TIFF file using the RGBA interface.

Create a Tiff object for the image file.

t = Tiff('peppers_RGB_tiled.tif','r');

Get the number of tiles and tile size.

numTiles = numberOfTiles(t)

numTiles = 36

tileSize = [getTag(t,'TileLength') getTag(t,'TileWidth')]

1 Alphabetical List

1-12346

tileSize = 1×2

 32 48

Read the tile containing the 100th row and 100th column from the image. The
readRGBATile function trims the area in a tile that is outside of the ImageLength and
ImageWidth boundaries.Therefore, image data from tiles that occur on the right edge or
the bottom edge of the image can have different dimensions.

row = 100;
col = 100;
[RGB,A] = readRGBATile(t,row,col);

Display the image.

imshow(RGB,'InitialMagnification','fit') % magnify for display

 readRGBATile

1-12347

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

1 Alphabetical List

1-12348

row — Row number
positive integer

Row number, specified as positive integer. Specify row as a one-based row index of any
pixel in the tile.
Example: 100
Data Types: double

col — Column number
positive integer

Column number, specified as positive integer. Specify col as a one-based column index of
any pixel in the tile.
Example: 57
Data Types: double

Output Arguments
RGB — Image tile data
numeric array

Image tile data, returned as an m-by-n-by-3 numeric array. Where m and n are the height
and width of the tile, respectively.

The value in the TileLength tag determines the number of rows and the TileWidth tag
determines the number of columns in the tile data.

The readRGBATile function can transform the pixel values based on specifications in
these tags:
PhotometricInterpretation
BitsPerSample
SamplesPerPixel
Orientation
ExtraSamples
ColorMap

alpha — Alpha matting
numeric array

 readRGBATile

1-12349

Alpha matting associated with the image tile, returned as a numeric array. The number of
rows and columns in the alpha matting data are the same as the tile data.

If the image does not have associated alpha matting, then alpha is a matrix with all
values set to 255 (transparent).

Algorithms

References
This function corresponds to the TIFFReadRGBATile function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
readRGBAImage | readRGBAStrip

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-12350

http://www.simplesystems.org/libtiff/

Remove
Convenience function for static .NET System.Delegate Remove method

Syntax
result = Remove(combinedDelegate,removedDelegate)

Description
result = Remove(combinedDelegate,removedDelegate) removes last instance of
the removedDelegate delegate from the combinedDelegate delegate.

Input Arguments
combinedDelegate

.NET System.Delegate object. The combined delegate from which to remove the
removedDelegate delegate.

Default:

removedDelegate

.NET System.Delegate object. The delegate to remove from the combinedDelegate
delegate.

Default:

 Remove

1-12351

Output Arguments
result

.NET System.Delegate object. A new delegate which is the same as the
combinedDelegate delegate except without the last instance of the removedDelegate
delegate.

Alternatives
Use the static Remove method of the System.Delegate class.

See Also
Combine | RemoveAll

Topics
“Combine and Remove .NET Delegates”

External Websites
MSDN System.Delegate.Remove Method reference page

Introduced in R2011a

1 Alphabetical List

1-12352

https://msdn.microsoft.com/en-us/library/system.delegate.remove.aspx

RemoveAll
Convenience function for static .NET System.Delegate RemoveAll method

Syntax
result = RemoveAll(combinedDelegate,removedDelegate)

Description
result = RemoveAll(combinedDelegate,removedDelegate) removes all
instances of removedDelegate from combinedDelegate.

Input Arguments
combinedDelegate

.NET System.Delegate object. The combined delegate from which to remove all
instances of the removedDelegate delegate.

Default:

removedDelegate

.NET System.Delegate object. The delegate to remove from the combinedDelegate
delegate.

Default:

 RemoveAll

1-12353

Output Arguments
result

.NET System.Delegate object. A new delegate which is the same as the
combinedDelegate delegate except without all instances of the removedDelegate
delegate.

Alternatives
Use the static RemoveAll method of the System.Delegate class.

See Also
Combine | Remove

Topics
“Combine and Remove .NET Delegates”

External Websites
MSDN System.Delegate.RemoveAll Method reference page

Introduced in R2011a

1 Alphabetical List

1-12354

https://msdn.microsoft.com/en-us/library/system.delegate.removeall.aspx

timeseries
Create timeseries object

Description
Time series represent the time-evolution of a dynamic population or process. They are
used to identify, model, and forecast patterns and behaviors in data that is sampled over
discrete time intervals.

Creation
To create a timeseries object, use the timeseries function with input arguments that
describe the data samples.

Syntax
ts = timeseries(datavals)
ts = timeseries(datavals,timevals)
ts = timeseries(datavals,timevals,quality)
ts = timeseries(___ ,'Name',tsname)

ts = timeseries()
ts = timeseries(tsname)

Description
ts = timeseries(datavals) returns a timeseries object containing the data in
datavals.

ts = timeseries(datavals,timevals) returns a timeseries object containing the
data in datavals corresponding to the times in the vector timevals.

ts = timeseries(datavals,timevals,quality) specifies quality descriptions in
terms of the codes defined by QualityInfo.Code.

 timeseries

1-12355

ts = timeseries(___ ,'Name',tsname) specifies a name tsname for the
timeseries object.

ts = timeseries() returns an empty timeseries object.

ts = timeseries(tsname) creates an empty timeseries object with name tsname.

Input Arguments
datavals — Sample data
scalar | vector | multidimensional array

Sample data, specified as a numeric or logical scalar, vector, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

timevals — Sample times
scalar | vector

Sample times, specified as a numeric scalar or vector, or a cell array of date character
vectors. Valid date character vectors can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

1 Alphabetical List

1-12356

quality — Quality codes
[] (default) | scalar | vector | multidimensional array

Quality codes, specified as [] or a scalar, vector, or multidimensional array of integers
ranging from -128 to 127.

• When the quality code value is a vector, it must have the same length as the time
vector. Each element applies to the corresponding data sample.

• When the quality code value is an array, it must have the same size as the data array.
Each element applies to the corresponding element of the data array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

tsname — timeseries name
character vector

timeseries name, specified as a character vector.

Properties
Data — Sample data
scalar | vector | multidimensional array

Sample data, represented as a numeric or logical scalar, vector, or multidimensional
array. Either the first or the last dimension of the data must align with the orientation of
the time vector.

Data has the following attributes:

Dependent true

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

DataInfo — Data information
collection of fields

Data information, represented as a collection of the following fields:

 timeseries

1-12357

• Units — Character vector specifying data units.
• Interpolation — A tsdata.interpolation object that specifies the interpolation

method.

Fields of the tsdata.interpolation object include the following:

• Fhandle — Function handle to a user-defined interpolation function.
• Name — Character vector specifying the name of the interpolation method.

Methods include 'linear' (default) for linear interpolation and 'zoh' for zero-
order hold.

• UserData — Additional user-defined information entered as a character vector.

Events — Event information
array of tsdata.event objects

Event information, represented as an array of tsdata.event objects containing event
information.

Fields of the tsdata.event object include the following:

• EventData — Additional user-defined information about the event.
• Name — Character vector specifying the name of the event
• Time — Time for which the event occurs, specified as a real number or a date

character vector.
• Units — Time units.
• StartDate — A reference date specified as a date character vector. StartDate is

empty when the time vector is numeric.

IsTimeFirst — Time vector alignment
true | false

Time vector alignment, represented as one of the following options:

• true — The first dimension of the data array is aligned with the time vector. For
example, ts = timeseries(rand(3,3),1:3);

• false — The last dimension of the data array is aligned with the time vector. For
example, ts = timeseries(rand(3,4,5),1:5);

IsTimeFirst has the following attributes:

1 Alphabetical List

1-12358

Dependent true
SetAccess 'protected'

Length — Time vector length
scalar

Time vector length, represented as a scalar.

Length has the following attributes:

Dependent true
SetAccess 'protected'

Name — timeseries name
character vector

timeseries name, represented as a character vector.

Quality — Quality codes
[] (default) | scalar | vector | multidimensional array

Quality codes, represented as [] or a scalar, vector, or multidimensional array of integers
ranging from -128 to 127.

• When the quality code value is a vector, it must have the same length as the time
vector. Each element applies to the corresponding data sample.

• When the quality code value is an array, it must have the same size as the data array.
Each element applies to the corresponding element of the data array.

Quality has the following attributes:

Dependent true

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

QualityInfo — Quality information
collection of fields

Quality information to describe Quality codes, represented as a collection of the
following fields:

 timeseries

1-12359

• Code — Integer vector containing values -128 to 127 that define the quality codes.
You can assign one of these integer values to each Data value by using the Quality
property.

• Description — Cell array of character vectors, where each element provides a
readable description of the associated quality Code.

• UserData — Additional user-defined information.

The lengths of Code and Description must match.

Time — Time values
vector

Time values, represented as a vector.

When TimeInfo.StartDate is empty, values are measured relative to 0. When
TimeInfo.StartDate is defined, values represent date character vectors measured
relative to the StartDate.

The length of Time must be the same as the first or the last dimension of Data.

Time has the following attributes:

Dependent true

TimeInfo — Time information
collection of fields

Time information, represented as a collection of the following fields describing the time
vector:

• Units — Time units with the value 'weeks', 'days', 'hours', 'minutes',
'seconds', 'milliseconds', 'microseconds', or 'nanoseconds'.

• Start — Start time.
• End — End time (read only).
• Increment — Interval between subsequent time values (NaN when times are not

uniformly sampled).
• Length — Length of time vector (read only).
• Format — Character vector defining the date display (see datestr).
• StartDate — Date character vector defining the reference date (see setabstime).

1 Alphabetical List

1-12360

• UserData — Additional user-defined information.

To access the value of a field, use the form ts.TimeInfo.field for a timeseries
object ts.

TreatNaNasMissing — Missing value indicator
true (default) | false

Missing value indicator, represented as one of the following options:

• true — Treat all NaN values as missing data except for descriptive statistics functions.
• false — Include NaN values in descriptive statistics functions, propagating NaN to the

result.

UserData — User data
[] (default)

User data, represented as any additional data to add to the timeseries object.

Object Functions

Modify and Plot
addevent Add event to timeseries
addsample Add data sample to timeseries object
append Concatenate timeseries objects in time
delevent Remove event from timeseries
delsample Remove sample from timeseries object
detrend Subtract mean or best-fit line from timeseries object
filter Modify frequency content of timeseries objects
idealfilter timeseries ideal filter
plot Plot timeseries
resample Resample timeseries time vector
set Set timeseries properties
setabstime Set timeseries times as date character vectors
setinterpmethod Set default interpolation method for timeseries object
setuniformtime Modify uniform timeseries time vector
synchronize Synchronize and resample two timeseries objects using common time

vector

 timeseries

1-12361

Query
get Query timeseries properties
getabstime Convert timeseries time vector to cell array
getdatasamples Access timeseries data samples
getdatasamplesize timeseries data sample size
getinterpmethod timeseries interpolation method
getqualitydesc timeseries data quality
getsamples Subset of timeseries
getsampleusingtime Subset of timeseries data
gettsafteratevent Create timeseries at or after event
gettsafterevent Create timeseries after event
gettsatevent Create timeseries at event
gettsbeforeatevent Create timeseries at or before event
gettsbeforeevent Create timeseries before event
gettsbetweenevents Create timeseries between events

Descriptive Statistics
iqr Interquartile range of timeseries data
max Maximum of timeseries data
mean Mean of timeseries data
median Median of timeseries data
min Minimum of timeseries data
std Standard deviation of timeseries data
sum Sum of timeseries data
var Variance of timeseries data

Examples

Create timeseries

Create a timeseries object with 5 scalar data samples, specifying a name for the
timeseries.

ts1 = timeseries((1:5)','Name','MyTimeSeries');

Create a timeseries with 5 data samples, where each sample is a column vector of
length 2.

1 Alphabetical List

1-12362

ts2 = timeseries(rand(2,5));

Create a timeseries with 5 data samples that were sampled in intervals of 10 time
units.

ts3 = timeseries((1:5)',[0 10 20 30 40]);

See Also
timetable | tscollection | tsdata.event

Topics
“What Are Time Series?”
“Time Series Objects”

Introduced before R2006a

 timeseries

1-12363

addsample
Add data sample to timeseries object

Syntax
tsout = addsample(tsin,'Data',datavals,'Time',timevals)
tsout = addsample(tsin,'Data',datavals,'Time',timevals,Name,Value)
tsout = addsample(tsin,s)

Description
tsout = addsample(tsin,'Data',datavals,'Time',timevals) adds one or more
data samples to a timeseries object tsin using an array of data datavals and a
corresponding time vector timevals.

tsout = addsample(tsin,'Data',datavals,'Time',timevals,
Name,Value)specifies additional information for adding data samples using one or more
name-value pairs.

tsout = addsample(tsin,s) adds data whose information is contained in the
structure s.

Examples

Add Data Samples

Add and change data in a timeseries object.

Create a timeseries object ts1 and display the data and time samples.

ts1 = timeseries((0:10:50)',(0:5)');
ts1.Data

ans = 6×1

1 Alphabetical List

1-12364

 0
 10
 20
 30
 40
 50

ts1.Time

ans = 6×1

 0
 1
 2
 3
 4
 5

Add a data sample to the end of ts1.

ts2 = addsample(ts1,'Data',60,'Time',6);
ts2.Data

ans = 7×1

 0
 10
 20
 30
 40
 50
 60

ts2.Time

ans = 7×1

 0
 1
 2
 3
 4
 5

 addsample

1-12365

 6

Change the last data sample in ts2 from 60 to 100.

ts3 = addsample(ts2,'Data',100,'Time',6,'OverwriteFlag',true);
ts3.Data

ans = 7×1

 0
 10
 20
 30
 40
 50
 100

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.

datavals — Sample data
scalar | vector | multidimensional array

Sample data, specified as a numeric or logical scalar, vector, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

timevals — Sample times
scalar | vector

Sample times, specified as a numeric scalar or vector, or a cell array of date character
vectors. Valid date character vectors and strings can have the following forms:

1 Alphabetical List

1-12366

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

s — Sample structure
scalar

Sample structure, specified as a scalar of type struct with the following optional fields:

• s.data — Numeric array of data
• s.time — Numeric time vector or cell array of valid date character vectors or strings
• s.quality — Integer array of quality codes from -128 to 127
• s.overwriteflag — Overwrite indicator specified as true to overwrite existing data

samples with the added samples

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 addsample

1-12367

Example: tsout =
addsample(tsin,'Data',5,'Time',3,'OverwriteFlag',true)

Quality — Quality codes
[] (default) | scalar | vector | multidimensional array

Quality codes, specified as [] or a scalar, vector, or multidimensional array of integers
ranging from -128 to 127.

• When the quality code value is a vector, it must have the same length as the time
vector. Each element applies to the corresponding data sample.

• When the quality code value is an array, it must have the same size as the data array.
Each element applies to the corresponding element of the data array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

OverwriteFlag — Overwrite indicator
false (default) | true

Overwrite indicator, specified as a logical value that controls whether to overwrite data
samples that have the same associated time as the added samples. true indicates the
added data overwrites the previous data, while false adds the sample resulting in a
repeated time value.
Data Types: logical

See Also
delsample | getdatasamples | timeseries

Introduced before R2006a

1 Alphabetical List

1-12368

append
Concatenate timeseries objects in time

Syntax
ts = append(ts1,ts2,…,tsN)

Description
ts = append(ts1,ts2,…,tsN) creates a new timeseries object by concatenating
timeseries objects ts1, ts2, and so on, along the time dimension.

Examples

Append Two timeseries Objects

Create two timeseries objects, and append them by time. Display the time samples of
the resulting timeseries.

ts1 = timeseries(rand(5,1),[1 2 3 4 5]);
ts2 = timeseries(rand(5,1),[6 7 8 9 10]);
ts = append(ts1,ts2);
ts.Time

ans = 10×1

 1
 2
 3
 4
 5
 6
 7
 8
 9

 append

1-12369

 10

Input Arguments
ts1,ts2,…,tsN — Input timeseries
list of scalar timeseries objects

Input timeseries, specified as a list of scalar timeseries objects to concatenate.

• The last time sample of an input timeseries must be earlier than or equal to the first
time of the following timeseries in the list.

• The sample size of each input timeseries must be the same.

Data Types: timeseries

See Also
timeseries

Introduced before R2006a

1 Alphabetical List

1-12370

delsample
Remove sample from timeseries object

Syntax
tsout = delsample(tsin,'Index',timeind)
tsout = delsample(tsin,'Value',timevals)

Description
tsout = delsample(tsin,'Index',timeind) deletes the samples in tsin
corresponding to the time indices in timeind.

tsout = delsample(tsin,'Value',timevals) deletes the samples corresponding
to the time values in timevals.

Examples

Delete Sample

Delete a sample in a timeseries object.

Create a timeseries and display its time samples and corresponding data.

tsin = timeseries((0:10:50)',(0:5)');
tsin.Time

ans = 6×1

 0
 1
 2
 3
 4

 delsample

1-12371

 5

tsin.Data

ans = 6×1

 0
 10
 20
 30
 40
 50

Delete the last sample by referencing its index, which is 6.

tsout = delsample(tsin,'Index',6);
tsout.Time

ans = 5×1

 0
 1
 2
 3
 4

Alternatively, you can specify the time value 5 to remove the last sample of tsin.

tsout = delsample(tsin,'Value',5);

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

1 Alphabetical List

1-12372

timeind — Time indices
scalar | vector

Time indices, specified as a numeric scalar or vector.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

timevals — Sample times
scalar | vector

Sample times, specified as a numeric scalar or vector, or a cell array of date character
vectors. Valid date character vectors can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

See Also
set | timeseries

Introduced before R2006a

 delsample

1-12373

detrend
Subtract mean or best-fit line from timeseries object

Syntax
tsout = detrend(tsin,method)
tsout = detrend(tsin,method,ind)

Description
tsout = detrend(tsin,method) subtracts either a mean or a best-fit line from 2-D
data in a timeseries using the specified method, and also removes all NaN values.

tsout = detrend(tsin,method,ind) specifies the indices of the columns or rows to
detrend. ind is a vector of integers representing column indices for column-oriented data
(tsin.IsTimeFirst is true) and representing row indices for row-oriented data
(tsin.IsTimeFirst is false).

Examples

Subtract Mean from Data

Create a timeseries object with 2-D data, and subtract the mean of each column from
the data.

A = magic(3)

A = 3×3

 8 1 6
 3 5 7
 4 9 2

1 Alphabetical List

1-12374

tsin = timeseries(A,[1 2 3]);
tsout = detrend(tsin,'constant');
tsout.Data

ans = 3×3

 3 -4 1
 -2 0 2
 -1 4 -3

Subtract the mean of each column for only the second and third columns of data.

tscol = detrend(tsin,'constant',[2 3]);
tscol.Data

ans = 3×3

 8 -4 1
 3 0 2
 4 4 -3

Input Arguments
tsin — Input timeseries
scalar

Input timeseries containing 2-D data, specified as a scalar.
Data Types: timeseries

method — Detrend method
'constant' | 'linear'

Detrend method, specified as one of the following options:

• 'constant' — Subtract the mean from the data.
• 'linear' — Subtract the best-fit line from the data.

ind — Row or column indices
scalar | vector

 detrend

1-12375

Row or column indices, specified as a positive integer numeric scalar or vector. ind
represents column indices for column-oriented data (tsin.IsTimeFirst is true) and
represents row indices for row-oriented data (tsin.IsTimeFirst is false).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
timeseries

Introduced before R2006a

1 Alphabetical List

1-12376

filter
Modify frequency content of timeseries objects

Syntax
tsout = filter(tsin,b,a)
tsout = filter(tsin,b,a,ind)

Description
tsout = filter(tsin,b,a) applies the rational transfer function on page 1-12377
filter b(z−1)/a(z−1) to the uniformly-spaced data in the timeseries object tsin. The
numerator b and denominator a are vectors containing the transfer function coefficients.

tsout = filter(tsin,b,a,ind) specifies the indices of the columns or rows to filter.
ind is a vector of integers representing column indices for column-oriented data
(tsin.IsTimeFirst is true) and representing row indices for row-oriented data
(tsin.IsTimeFirst is false).

Examples

Apply Transfer Function

This example applies the following transfer function to a set of data:

H(z−1) = b(z−1)
a(z−1)

= 2 + 3z−1

1 + 0 . 2z−1

Create a timeseries object from the matrix count in count.dat.

load count.dat
tsin = timeseries(count(:,1),[1:24]);

 filter

1-12377

Enter the coefficients for the denominator and numerator of the transfer function. Order
the coefficients in ascending powers of z−1 to represent 1 + 0 . 2x and 2− 3z−1.

a = [1 0.2];
b = [2 3];

Apply the transfer function using filter, and compare the original data to the filtered
data.

tsout = filter(tsin,b,a);
plot(tsin)
hold on
plot(tsout)
legend('Original Data','Filtered Data','Location','NorthWest')

1 Alphabetical List

1-12378

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar. tsin must be uniformly sampled.
Data Types: timeseries

b — Numerator coefficients
scalar | vector

Numerator coefficients of the transfer function, specified as a scalar or vector.

a — Denominator coefficients
scalar | vector

Denominator coefficients of the transfer function, specified as a scalar or vector.

ind — Row or column indices
scalar | vector

Row or column indices, specified as a positive integer numeric scalar or vector. ind
represents column indices for column-oriented data (tsin.IsTimeFirst is true) and
represents row indices for row-oriented data (tsin.IsTimeFirst is false).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Definitions
Rational Transfer Function
The input-output description of the filter operation on a vector in the Z-transform
domain is a rational transfer function. A rational transfer function is of the form,

Y(z) =
b(1) + b(2)z−1 + ... + b(nb + 1)z−nb

1 + a(2)z−1 + ... + a(na + 1)z−na
X(z),

 filter

1-12379

which handles both FIR and IIR filters [1]. na is the feedback filter order, and nb is the
feedforward filter order.

You also can express the rational transfer function as the following difference equation,

a(1)y(n) = b(1)x(n) + b(2)x(n− 1) + ... + b(nb + 1)x(n− nb)
−a(2)y(n− 1)− ...− a(na + 1)y(n− na) .

Furthermore, you can represent the rational transfer function using its direct form II
transposed implementation, as in the following diagram. Due to normalization, assume
a(1) = 1.

The operation of filter at sample m is given by the time domain difference equations

y(m) = b(1)x(m) + w1(m− 1)
w1(m) = b(2)x(m) + w2(m− 1)− a(2)y(m)
 ⋮ = ⋮ ⋮
wn− 2(m) = b(n− 1)x(m) + wn− 1(m− 1)− a(n− 1)y(m)
wn− 1(m) = b(n)x(m)− a(n)y(m) .

See Also
timeseries

Introduced before R2006a

1 Alphabetical List

1-12380

get
Query timeseries properties

Syntax
tsinfo = get(ts)
tsinfo = get(ts,propname)

Description
tsinfo = get(ts) returns all properties of the timeseries object ts.

tsinfo = get(ts,propname) returns the specified property propname of ts, and is
equivalent to tsinfo = ts.propname. For a full list of timeseries property names,
see timeseries.

Examples

Display Properties

Create a timeseries object, and display its properties.

ts = timeseries(rand(5,1));
tsinfo = get(ts)

tsinfo = struct with fields:
 Events: []
 Name: 'unnamed'
 UserData: []
 Data: [5x1 double]
 DataInfo: [1x1 tsdata.datametadata]
 Time: [5x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Quality: []
 QualityInfo: [1x1 tsdata.qualmetadata]

 get

1-12381

 IsTimeFirst: 1
 TreatNaNasMissing: 1
 Length: 5

Display only the Length property.

tslength = get(ts,'Length')

tslength = 5

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

propname — Property name
character vector

Property name, specified as a character vector. For a full list of timeseries property
names, see timeseries.
Data Types: char

See Also
set | timeseries

Introduced before R2006a

1 Alphabetical List

1-12382

getabstime
Convert timeseries time vector to cell array

Syntax
tstime = getabstime(ts)

Description
tstime = getabstime(ts) returns a cell array whose elements are the dates in the
time vector associated with a timeseries object ts. The property
ts.TimeInfo.StartDate must represent a date as a character vector.

Examples

Cell Array of Time Vector Elements

Extract time values in a timeseries time vector as a cell array of dates and times.

Create a timeseries object with the default time vector [0 1 2 3 4].

ts = timeseries([3 6 8 0 10]);

Set the TimeInfo.StartDate property to a date character vector and display the new
times associated with ts, which are in increments of 1 second.

ts.TimeInfo.StartDate = '10/27/2005';
tstime = getabstime(ts)

tstime = 5x1 cell array
 {'27-Oct-2005 00:00:00'}
 {'27-Oct-2005 00:00:01'}
 {'27-Oct-2005 00:00:02'}
 {'27-Oct-2005 00:00:03'}

 getabstime

1-12383

 {'27-Oct-2005 00:00:04'}

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.

Tips
• To define the timeseries time vector relative to a calendar date, set the

TimeInfo.StartDate property to a valid date character vector. Valid dates can have
the following formats:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

See Also
setabstime | timeseries

1 Alphabetical List

1-12384

Introduced before R2006a

 getabstime

1-12385

getdatasamples
Access timeseries data samples

Syntax
tsdata = getdatasamples(ts,ind)

Description
tsdata = getdatasamples(ts,ind) returns the data of a timeseries object ts
corresponding to the indices in ind. The data in tsdata corresponds to the time samples
in ts.time(ind).

Examples

Access Data Samples

Create a timeseries object, and extract the second and third data samples.

ts = timeseries((1:5)');
tsdata = getdatasamples(ts,[2,3])

tsdata = 2×1

 2
 3

Input Arguments
ts — Input timeseries
scalar

1 Alphabetical List

1-12386

Input timeseries, specified as a scalar.
Data Types: timeseries

ind — Row or column indices
scalar | vector

Row or column indices, specified as a positive integer numeric scalar or vector. ind
represents column indices for column-oriented data (ts.IsTimeFirst is true) and
represents row indices for row-oriented data (ts.IsTimeFirst is false).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
getsamples | resample | timeseries

Introduced before R2006a

 getdatasamples

1-12387

getdatasamplesize
timeseries data sample size

Syntax
tsdatasize = getdatasamplesize(ts)

Description
tsdatasize = getdatasamplesize(ts) returns the size of each data sample in a
timeseries object ts.

Examples

Display Data Sample Size

Create a timeseries object from a 24-by-3 array of data and display the size of each
data sample.

load count.dat
ts = timeseries(count,[1:24]);
tsdatasize = getdatasamplesize(ts)

tsdatasize = 1×2

 1 3

Input Arguments
ts — Input timeseries
scalar

1 Alphabetical List

1-12388

Input timeseries, specified as a scalar.
Data Types: timeseries

See Also
timeseries

Introduced before R2006a

 getdatasamplesize

1-12389

getinterpmethod
timeseries interpolation method

Syntax
tsinterp = getinterpmethod(ts)

Description
tsinterp = getinterpmethod(ts) returns the interpolation method used by the
timeseries object. tsinterp can be 'linear' for linear interpolation (default) or
'zoh' for zero-order hold.

Examples

Display Interpolation Method

Create a timeseries object and display its interpolation method.

ts = timeseries(rand(5,1));
tsinterp = getinterpmethod(ts)

tsinterp =
'linear'

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

1 Alphabetical List

1-12390

See Also
setinterpmethod | timeseries

Introduced before R2006a

 getinterpmethod

1-12391

getqualitydesc
timeseries data quality

Syntax
tsquality = getqualitydesc(ts)

Description
tsquality = getqualitydesc(ts) returns a cell array of data quality descriptions
based on the Quality values assigned to a timeseries object ts.

Examples

Quality Descriptions

Create a timeseries object ts, specifying a quality vector made up of zeros and ones.
Assign values to the QualityInfo.Code and QualityInfo.Description properties,
and display the quality descriptions.

ts = timeseries([3 4.2 5 6.1 8]',1:5,[1 0 1 0 1]');
ts.QualityInfo.Code = [0 1];
ts.QualityInfo.Description = {'Good' 'Bad'};
tsquality = getqualitydesc(ts)

tsquality = 5x1 cell array
 {'Bad' }
 {'Good'}
 {'Bad' }
 {'Good'}
 {'Bad' }

1 Alphabetical List

1-12392

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

See Also
timeseries

Introduced before R2006a

 getqualitydesc

1-12393

getsamples
Subset of timeseries

Syntax
tsout = getsamples(tsin,ind)

Description
tsout = getsamples(tsin,ind) returns a timeseries object that is a subset of the
input timeseries. The samples in tsout are the samples of tsin corresponding to
tsin.Time(ind).

Examples

Subset of timeseries

Create a timeseries object tsout that is a subset of the samples in the timeseries
object tsin.

tsin = timeseries([10 20 30 40 50]',[1 2 3 4 5]);
tsout = getsamples(tsin, tsin.time([2 3]));
tsout.Data

ans = 2×1

 20
 30

1 Alphabetical List

1-12394

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

ind — Row or column indices
scalar | vector

Row or column indices, specified as a positive integer numeric scalar or vector. ind
represents column indices for column-oriented data (ts.IsTimeFirst is true) and
represents row indices for row-oriented data (ts.IsTimeFirst is false).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
getdatasamples | resample | timeseries

Introduced before R2006a

 getsamples

1-12395

getsampleusingtime
Subset of timeseries data

Syntax
tsout = getsampleusingtime(tsin,timeval)
tsout = getsampleusingtime(tsin,timeval,'AllowDuplicateTimes',true)
tsout = getsampleusingtime(tsin,starttime,endtime)

Description
tsout = getsampleusingtime(tsin,timeval) returns a timeseries object that
contains the single data sample of an input timeseries corresponding to the time
timeval.

tsout = getsampleusingtime(tsin,timeval,'AllowDuplicateTimes',true)
includes multiple data samples with the same time value specified in timeval.

tsout = getsampleusingtime(tsin,starttime,endtime) includes samples of
tsin between the times starttime and endtime.

Examples

Extract Subset of timeseries

Create a timeseries object and extract the data samples corresponding to the 2nd
through 4th time values.

tsin = timeseries((1:5)',1:5);
tsout = getsampleusingtime(tsin,2,4);
tsout.Data

ans = 3×1

1 Alphabetical List

1-12396

 2
 3
 4

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.

timeval — Sample time
scalar | vector

Sample time, specified as a numeric scalar, date character vector, or datenum scalar.
Valid date character vectors can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

starttime — Start time
scalar | vector

 getsampleusingtime

1-12397

Start time, specified as a numeric scalar, date character vector, or datenum scalar.

endtime — End time
scalar | vector

End time, specified as a numeric scalar, date character vector, or datenum scalar.

Tips
• If the time vector in tsin is not relative to a calendar date, then starttime and

endtime must be numeric.
• If the time vector in tsin is relative to a calendar date, then starttime and

endtime values must be date character vectors or datenum values.

See Also
timeseries

Introduced before R2006a

1 Alphabetical List

1-12398

idealfilter
timeseries ideal filter

Syntax
tsout = idealfilter(tsin,interval,filtertype)
tsout = idealfilter(tsin,interval,filtertype,ind)

Description
tsout = idealfilter(tsin,interval,filtertype) applies an ideal (noncausal)
filter of type filtertype to the frequency intervals specified by interval for a
timeseries object tsin.

Ideal filters are noncausal, and the ends of the filter amplitude are flat in the frequency
domain. The data in ts must have zero mean.

tsout = idealfilter(tsin,interval,filtertype,ind) optionally specifies the
row or column indices of tsin to apply the filter to.

Examples

Apply Ideal Notch and Pass Filters

First apply an ideal notch filter to a timeseries object, then apply a pass filter.

Load the data in the file count.dat, and create a timeseries object from the matrix
count.

load count.dat
tsin = timeseries(count(:,1),1:24);

Compute the mean of the data in tsin.

tsinmean = mean(tsin);

 idealfilter

1-12399

Define the frequency interval, in hertz, for filtering the data.

interval = [0.08 0.2];

Invoke an ideal notch filter.

tsoutnotch = idealfilter(tsin,interval,'notch');

Compare the original data and the filtered data.

plot(tsin,'-.')
hold on
plot(tsoutnotch,'-')

Restore the mean to the filtered data.

tsoutnotchmean = tsoutnotch + tsinmean;
plot(tsoutnotchmean,':')
title('Notch Filter')
legend('Original Data','Filtered Data','Mean Restored',...
 'Location','NorthWest')
hold off

1 Alphabetical List

1-12400

Repeat the filtering process using a pass filter.

plot(tsin,'-.')
hold on
tsoutpass = idealfilter(tsin,interval,'pass');
plot(tsoutpass,'-')

tsoutpassmean = tsoutpass + tsinmean;
plot(tsoutpassmean,':')
title('Pass Filter')
legend('Original Data','Filtered Data','Mean Restored',...
 'Location','NorthWest')

 idealfilter

1-12401

Input Arguments
tsin — Input timeseries
scalar

Input timeseries with zero mean, specified as a scalar.

• If tsin is nonuniformly sampled, then idealfilter resamples the data on a uniform
time vector before applying the filter.

• idealfilter replaces any NaN elements of tsin using the interpolation method
associated with tsin prior to applying the filter.

1 Alphabetical List

1-12402

Data Types: timeseries

interval — Frequency interval
two-column matrix

Frequency interval, specified as a two-column matrix where each row represents the start
and end frequencies for each interval.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

filtertype — Filter type
'pass' | 'notch'

Filter type, specified as one of the following options:

• 'pass' — Allow variations in a specific frequency range
• 'notch' — Remove variations in a specific frequency range

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ind — Row or column indices
scalar | vector

Row or column indices, specified as a positive integer numeric scalar or vector. ind
represents column indices for column-oriented data (tsin.IsTimeFirst is true) and
represents row indices for row-oriented data (tsin.IsTimeFirst is false).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
filter | timeseries

Introduced before R2006a

 idealfilter

1-12403

iqr
Interquartile range of timeseries data

Syntax
tsiqr = iqr(ts)
tsiqr = iqr(ts,Name,Value)

Description
tsiqr = iqr(ts) returns the interquartile range of the data samples in a timeseries
object.

tsiqr = iqr(ts,Name,Value) specifies additional options when computing the
interquartile range using one or more name-value pair arguments. For example, tsiqr =
iqr(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the interquartile
range.

Examples

Interquartile Range of Sample Data

Create a timeseries object and compute the interquartile range of the sample data.

ts = timeseries((1:10)');
tsiqr = iqr(ts)

tsiqr = 5

1 Alphabetical List

1-12404

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tsiqr = iqr(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, iqr removes any missing data before computing the interquartile range. To
interpolate the data instead of removing it, specify the name-value pair
'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values before
computing the interquartile range or 'interpolate' to fill missing values by
interpolating the data. Specify the 'Quality' name-value pair to indicate which data
samples are considered missing.

 iqr

1-12405

See Also
mean | std | timeseries | var

Introduced before R2006a

1 Alphabetical List

1-12406

max
Maximum of timeseries data

Syntax
tsmax = max(ts)
tsmax = max(ts,Name,Value)

Description
tsmax = max(ts) returns the maximum value of the data samples in a timeseries
object.

tsmax = max(ts,Name,Value) specifies additional options when computing the
maximum using one or more name-value pair arguments. For example, tsmax =
max(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the maximum.

Examples

Maximum Data Sample

Create a timeseries object and compute the maximum data sample.

ts = timeseries((1:5)');
tsmax = max(ts)

tsmax = 5

 max

1-12407

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tsmax = max(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, max removes any missing data before computing the maximum. To interpolate
the data instead of removing it, specify the name-value pair
'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values before
computing the maximum or 'interpolate' to fill missing values by interpolating the
data. Specify the 'Quality' name-value pair to indicate which data samples are
considered missing.

1 Alphabetical List

1-12408

See Also
mean | min | timeseries

Introduced before R2006a

 max

1-12409

mean
Mean of timeseries data

Syntax
tsmean = mean(ts)
tsmean = mean(ts,Name,Value)

Description
tsmean = mean(ts) returns the mean of the data samples in a timeseries object.

tsmean = mean(ts,Name,Value) specifies additional options when computing the
mean using one or more name-value pair arguments. For example, tsmean =
mean(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the mean.

Examples

Mean of Data Samples

Create a timeseries object and compute the mean of the data samples.

ts = timeseries((1:5)');
tsmean = mean(ts)

tsmean = 3

Input Arguments
ts — Input timeseries
scalar

1 Alphabetical List

1-12410

Input timeseries, specified as a scalar.
Data Types: timeseries

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tsmean = mean(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, missing data is removed before computing. To interpolate the data instead of
removing it, specify the name-value pair 'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values or
'interpolate' to fill missing values by interpolating the data. Specify the 'Quality'
name-value pair to indicate which data samples are considered missing.

Weighting — Weights
'none' (default) | 'time'

Weights, specified as 'none' or 'time'.
When you specify 'time', larger time values correspond to larger weights.

Algorithms
MATLAB determines weighting by:

 mean

1-12411

1 Attaching a weighting to each time value, depending on its order, as follows:

• First time point — The duration of the first time interval (t(2) - t(1)).
• Time point that is neither the first nor last time point — The duration between the

midpoint of the previous time interval to the midpoint of the subsequent time
interval ((t(k + 1) - t(k))/2 + (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval (t(end) - t(end -
1)).

2 Normalizing the weighting for each time by dividing each weighting by the mean of
all weightings.

Note If the timeseries object is uniformly sampled, then the normalized weighting
for each time is 1.0. Therefore, time weighting has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also
median | std | sum | timeseries | var

Introduced before R2006a

1 Alphabetical List

1-12412

median
Median of timeseries data

Syntax
tsmedian = median(ts)
tsmedian = median(ts,Name,Value)

Description
tsmedian = median(ts) returns the median of the data samples in a timeseries
object.

tsmedian = median(ts,Name,Value) specifies additional options when computing
the median using one or more name-value pair arguments. For example, tsmedian =
median(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the median.

Examples

Median of Data Samples

Create a timeseries object and compute the median of the data samples.

ts = timeseries((1:5)');
tsmedian = mean(ts)

tsmedian = 3

 median

1-12413

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tsmedian = median(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, missing data is removed before computing. To interpolate the data instead of
removing it, specify the name-value pair 'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values or
'interpolate' to fill missing values by interpolating the data. Specify the 'Quality'
name-value pair to indicate which data samples are considered missing.

Weighting — Weights
'none' (default) | 'time'

Weights, specified as 'none' or 'time'.
When you specify 'time', larger time values correspond to larger weights.

1 Alphabetical List

1-12414

Algorithms
MATLAB determines weighting by:

1 Attaching a weighting to each time value, depending on its order, as follows:

• First time point — The duration of the first time interval (t(2) - t(1)).
• Time point that is neither the first nor last time point — The duration between the

midpoint of the previous time interval to the midpoint of the subsequent time
interval ((t(k + 1) - t(k))/2 + (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval (t(end) - t(end -
1)).

2 Normalizing the weighting for each time by dividing each weighting by the mean of
all weightings.

Note If the timeseries object is uniformly sampled, then the normalized weighting
for each time is 1.0. Therefore, time weighting has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also
mean | std | timeseries | var

Introduced before R2006a

 median

1-12415

min
Minimum of timeseries data

Syntax
tsmin = min(ts)
tsmin = min(ts,Name,Value)

Description
tsmin = min(ts) returns the minimum value of the data samples in a timeseries
object.

tsmin = min(ts,Name,Value) specifies additional options when computing the
minimum using one or more name-value pair arguments. For example, tsmin =
min(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the minimum.

Examples

Minimum Data Sample

Create a timeseries object and compute the minimum data sample.

ts = timeseries((1:5)');
tsmin = min(ts)

tsmin = 1

1 Alphabetical List

1-12416

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tsmin = min(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, min removes any missing data before computing the minimum. To interpolate
the data instead of removing it, specify the name-value pair
'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values before
computing the minimum or 'interpolate' to fill missing values by interpolating the
data. Specify the 'Quality' name-value pair to indicate which data samples are
considered missing.

 min

1-12417

See Also
max | mean | timeseries

Introduced before R2006a

1 Alphabetical List

1-12418

plot
Plot timeseries

Syntax
plot(ts)
plot(ts,specs)

Description
plot(ts) plots the timeseries data in ts against time, interpolating values between
samples.

plot(ts,specs) plots the timeseries data using a line graph and applies the
specified specs to lines, markers, or both. You can also specify name-value pairs to define
Line Properties.

Examples

Plot Time Series Object with Specified Start Date

Create a time series object, set the start date, and then plot the time vector relative to the
start date.

x = [2 5 8 2 11 3 6];
ts1 = timeseries(x,1:7);

ts1.Name = 'Daily Count';
ts1.TimeInfo.Units = 'days';
ts1.TimeInfo.StartDate = '01-Jan-2011'; % Set start date.
ts1.TimeInfo.Format = 'mmm dd, yy'; % Set format for display on x-axis.

ts1.Time = ts1.Time - ts1.Time(1); % Express time relative to the start date.

plot(ts1)

 plot

1-12419

Plot Two Time Series Objects on the Same Axes

Create two time series objects from traffic count data, and then plot them in sequence on
the same axes. Add an event to one series, which is automatically displayed with a red
marker.

load count.dat;
count1 = timeseries(count(:,1),1:24);
count1.Name = 'Oak St. Traffic Count';
count1.TimeInfo.Units = 'hours';

1 Alphabetical List

1-12420

plot(count1,':b')
grid on

Obtain time of maximum value and add it as an event:

[~,index] = max(count1.Data);
max_event = tsdata.event('peak',count1.Time(index));
max_event.Units = 'hours';

Add the event to the time series:

count1 = addevent(count1,max_event);

Replace plot with new one showing the event:

 plot

1-12421

plot(count1,'.-b')
grid on

Make a new time series object from column 2 of the same data source:

count2 = timeseries(count(:,2),1:24);
count2.Name = 'Maple St. Traffic Count';
count2.TimeInfo.Units = 'Hours';

Turn hold on to add the new data to the plot:

hold on

The plot method does not add labels to a held plot. Use property/value pairs to customize
markers:

1 Alphabetical List

1-12422

plot(count2,'s-m','MarkerSize',6),

Labels are erased, so generate them manually:

title('Time Series: Oak Street and Maple Street')
xlabel('Hour of day')
ylabel('Vehicle count')

Add a legend in the upper left:

legend('Oak St.','Maple St.','Location','northwest')

 plot

1-12423

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.

specs — Line specifications
character vector

1 Alphabetical List

1-12424

Line specifications, specified as a character vector defining the appearance of lines,
markers, or both. See LineSpec for more information. You can also specify name-value
pairs to define Line Properties.
Data Types: char

Tips
• The plot function generates titles and axis labels automatically. These labels are:

• Plot Title — 'Time Series Plot: <name>'

where <name> is the string assigned to ts.Name, or by default, 'unnamed'
• X-Axis Label — 'Time (<units>)'

where <units> is the value of the ts.TimeInfo.Units field, which defaults to
'seconds'

• Y-Axis Label — '<name>'

where <name> is the string assigned to ts.Name, or by default, 'unnamed'
• You can place new time series data on a time series plot (by setting hold on, for

example, and issuing another timeseries/plot command). When you add data to a
plot, the title and axis labels become blank strings to avoid labeling confusion. You can
add your own labels after plotting using the title, xlabel, and ylabel commands.

• Time series events, when defined, are marked in the plot with a circular marker with
red fill. You can also specify markers for all data points using a linespec or name/
value syntax in addition to any event markers your data defines. The event markers
plot on top of the markers you define.

• The value assigned to ts.DataInfo.Interpolation.Name controls the type of
interpolation the plot method uses when plotting and resampling time series data.
Invoke the timeseries method setinterpmethod to change default linear
interpolation to zero-order hold interpolation (staircase). This method creates a new
timeseries object, with which you can overwrite the original one if you want. For
example, to cause time series ts to use zero-order hold interpolation, type the
following:

ts = ts.setinterpmethod('zoh');

 plot

1-12425

See Also
plot | setinterpmethod | timeseries

Introduced before R2006a

1 Alphabetical List

1-12426

resample
Resample timeseries time vector

Syntax
tsout = resample(tsin,timevec)
tsout = resample(tsin,timevec,interpmethod)
tsout = resample(tsin,timevec,interpmethod,code)

Description
tsout = resample(tsin,timevec) resamples a timeseries object tsin using a
new time vector timevec. The resample function uses the interpolation method
associated with tsin, which you can display using the command
getinterpmethod(tsin).

tsout = resample(tsin,timevec,interpmethod) resamples tsin using a
specified interpolation method. interpmethod can be 'linear' for linear interpolation
or 'zoh' for zero-order hold.

tsout = resample(tsin,timevec,interpmethod,code) applies the quality codes
in code to all samples.

Examples

Resample timeseries

Create a timeseries object, and resample it using linear interpolation according to the
times in timevec. Compare the original data to the resampled data.

tsin = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5);
tsout = resample(tsin,[1 1.5 3.5 4.5 4.9]);
tsindata = tsin.Data

 resample

1-12427

tsindata = 5×1

 1.1000
 2.9000
 3.7000
 4.0000
 3.0000

tsoutdata = tsout.Data

tsoutdata = 5×1

 1.1000
 2.0000
 3.8500
 3.5000
 3.1000

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.

timevec — New time vector
vector

New time vector, specified as a vector of times for resampling.

When the original time vector contains dates and times but timevec is numeric,
resample defines timevec relative to the tsin.TimeInfo.StartDate property using
the existing units.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

interpmethod — Interpolation method
'linear' (default) | 'zoh'

1 Alphabetical List

1-12428

Interpolation method, specified as one of the following options:

• 'linear' — Linear interpolation
• 'zoh' — Zero-order hold

code — Quality codes
[] (default) | scalar | vector | multidimensional array

Quality codes, specified as [] or a scalar, vector, or multidimensional array of integers
ranging from -128 to 127.

• When the quality code value is a vector, it must have the same length as the time
vector. Each element applies to the corresponding data sample.

• When the quality code value is an array, it must have the same size as the data array.
Each element applies to the corresponding data element of the data array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
getinterpmethod | retime | synchronize | timeseries

Introduced before R2006a

 resample

1-12429

set
Set timeseries properties

Syntax
tsprop = set(ts)
tsprop = set(ts,propname)
tsprop = set(ts,propname,propval)

Description
tsprop = set(ts) returns all property values of a timeseries object ts.

tsprop = set(ts,propname) returns the property specified in propname. This syntax
is equivalent to the command tsprop = ts.propname. For a full list of timeseries
property names, see timeseries.

tsprop = set(ts,propname,propval) sets the property propname of ts to the value
propval. This syntax is equivalent to the command ts.propname = propval. For a full
list of timeseries property names and corresponding valid values, see timeseries.

Examples

Name of timeseries

Create an unnamed timeseries object, and use the set function to assign a name to the
Name property.

ts = timeseries((1:5));
tsprop = set(ts,'Name','newname')

 timeseries

 Common Properties:

1 Alphabetical List

1-12430

 Name: 'newname'
 Time: [5x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [1x1x5 double]
 DataInfo: tsdata.datametadata

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

propname — Property name
character vector

Property name, specified as a character vector. For a full list of timeseries property
names, see timeseries.
Data Types: char

propval — Property value
scalar

Property value, specified as a scalar. For a full list of timeseries property names and
valid values, see timeseries.

See Also
get | timeseries

Introduced before R2006a

 set

1-12431

setabstime
Set timeseries times as date character vectors

Syntax
tsout = setabstime(tsin,timevals)
tsout = setabstime(tsin,timevals,timeformat)

Description
tsout = setabstime(tsin,timevals) sets the times in timeseries object tsin to
the date character vectors specified in timevals.

tsout = setabstime(tsin,timevals,timeformat) explicitly specifies the format
of timeformat used in timevals.

Examples

timeseries Dates

Set date character vectors as the time values in a timeseries object.

tsin = timeseries((1:3)');
tsout = setabstime(tsin,{'12-DEC-2005 12:34:56','12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'});

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.

1 Alphabetical List

1-12432

timevals — Sample times
array

Sample times, specified as a cell array of date character vectors. Valid date character
vectors can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: cell

timeformat — Time format
scalar

Time format, specified as a scalar date format used for the time values.

See Also
getabstime | timeseries

Introduced before R2006a

 setabstime

1-12433

setinterpmethod
Set default interpolation method for timeseries object

Syntax
ts = setinterpmethod(ts,interpmethod)
ts = setinterpmethod(ts,fun)
ts = setinterpmethod(ts,interpobj)

Description
ts = setinterpmethod(ts,interpmethod) sets the default interpolation method of
a timeseries object. interpmethod can be 'linear' for linear interpolation or 'zoh'
for zero-order hold.

ts = setinterpmethod(ts,fun) uses a function handle fun to set the default
interpolation method of ts.

ts = setinterpmethod(ts,interpobj) uses a tsdata.interpolation object
interpobj to replace the interpolation object stored in ts.

Examples

Set timeseries Interpolation Method

Set the interpolation method of a timeseries object in three ways.

Create a timeseries object and set the interpolation method to zero-order hold.

ts = timeseries(rand(100,1),1:100);
ts = setinterpmethod(ts,'zoh');
plot(ts)

1 Alphabetical List

1-12434

Set the default interpolation method using a function handle.

fun = @(newtime,oldtime,olddata)...
 interp1(oldtime,olddata,newtime,...
 'linear','extrap');
ts = setinterpmethod(ts,fun);
plot(ts)

 setinterpmethod

1-12435

Set the default interpolation method to a tsdata.interpolation object.

interpobj = tsdata.interpolation(fun);
ts = setinterpmethod(ts,interpobj);
plot(ts)

1 Alphabetical List

1-12436

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

interpmethod — Interpolation method
'linear' (default) | 'zoh'

 setinterpmethod

1-12437

Interpolation method, specified as one of the following options:

• 'linear' — Linear interpolation
• 'zoh' — Zero-order hold

fun — Interpolation method handle
scalar

Interpolation method handle, specified as a scalar function handle defining the
interpolation method. The order of input arguments for the function handle must be
newtime, oldtime, and olddata. A single output argument must contain the
interpolated data.
Data Types: function_handle

interpobj — Interpolation object
scalar

Interpolation object, specified as a tsdata.interpolation object that directly replaces
the interpolation object stored in ts.

See Also
getinterpmethod | timeseries

Introduced before R2006a

1 Alphabetical List

1-12438

setuniformtime
Modify uniform timeseries time vector

Syntax
tsout = setuniformtime(tsin,'StartTime',starttime)
tsout = setuniformtime(tsin,'Interval',interval)
tsout = setuniformtime(tsin,'EndTime',endtime)
tsout = setuniformtime(tsin,'StartTime',starttime,'Interval',
interval)
tsout = setuniformtime(tsin,'StartTime',starttime,'EndTime',endtime)
tsout = setuniformtime(tsin,'Interval',interval,'EndTime',endtime)

Description
tsout = setuniformtime(tsin,'StartTime',starttime) returns a timeseries
object with a modified uniform time vector determined from starttime. The end time is
given by starttime+(length(tsin)-1). The unit of time is unchanged.

tsout = setuniformtime(tsin,'Interval',interval) sets the start time to 0
and defines the end time as (length(tsin)-1)*interval.

tsout = setuniformtime(tsin,'EndTime',endtime) sets the start time to 0 and
defines the interval as endtime/(length(tsin)-1).

tsout = setuniformtime(tsin,'StartTime',starttime,'Interval',
interval) defines the end time as starttime+(length(tsin)-1)*interval.

tsout = setuniformtime(tsin,'StartTime',starttime,'EndTime',
endtime)defines the interval as (endtime-starttime)/(length(tsin)-1).

tsout = setuniformtime(tsin,'Interval',interval,'EndTime',endtime)
defines the start time as endtime-(length(tsin)-1)*interval.

 setuniformtime

1-12439

Examples

Modify Uniform Time Vector

Create a timeseries object with a uniform time vector.

tsin = timeseries((1:5)',1:5);
tsin.Time

ans = 5×1

 1
 2
 3
 4
 5

Modify the time vector by specifying a new start time and end time.

tsout = setuniformtime(tsin,'StartTime',10,'EndTime',20);
tsout.Time

ans = 5×1

 10.0000
 12.5000
 15.0000
 17.5000
 20.0000

Input Arguments
tsin — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

1 Alphabetical List

1-12440

starttime — Start time
numeric scalar

Start time of the uniform time vector, specified as a numeric scalar.

interval — Interval
numeric scalar

Interval of the uniform time vector, specified as a numeric scalar.

endtime — End time
numeric scalar

End time of the uniform time vector, specified as a numeric scalar.

See Also
timeseries

Introduced before R2006a

 setuniformtime

1-12441

synchronize
Synchronize and resample two timeseries objects using common time vector

Syntax
[ts1,ts2] = synchronize(ts1,ts2,synchronizemethod)
[ts1,ts2] = synchronize(___ ,Name,Value)

Description
[ts1,ts2] = synchronize(ts1,ts2,synchronizemethod) creates two new
timeseries objects by synchronizing ts1 and ts2 using a common time vector and the
specified method.

[ts1,ts2] = synchronize(___ ,Name,Value) creates the two new timeseries
objects with additional options specified by one or more Name,Value pair arguments for
the previous syntax.

Examples

Synchronize timeseries Objects

Create two timeseries objects such that ts1.timeinfo.StartDate is one day after
ts2.timeinfo.StartDate.

ts1 = timeseries([1 2],[datestr(now); datestr(now+1)]);
ts2 = timeseries([1 2],[datestr(now-1); datestr(now)]);

Change ts1.timeinfo.StartDate to match ts2.timeinfo.StartDate and change
ts1.Time to 1.

[ts1 ts2] = synchronize(ts1,ts2,'union');

The following command preserves ts1.timeinfo.StartDate and keeps ts1.Time as
0.

1 Alphabetical List

1-12442

[ts1 ts2] = synchronize(ts1,ts2,'union','KeepOriginalTimes',true);

Input Arguments
ts1 — First input timeseries
scalar

First input timeseries, specified as a scalar.
Data Types: timeseries

ts2 — Second input timeseries
scalar

Second input timeseries, specified as a scalar.
Data Types: timeseries

synchronizemethod — Synchronize method
'Union' | 'Intersection' | 'Uniform'

Synchronize method, specified as one of the following options:

• 'Union' — Resample timeseries objects using a time vector that is a union of the
time vectors of ts1 and ts2 on the time range where the two time vectors overlap.

• 'Intersection' — Resample timeseries objects on a time vector that is the
intersection of the time vectors of ts1 and ts2.

• 'Uniform' — Requires an additional argument as follows:

[ts1,ts2] = synchronize(ts1,ts2,'Uniform','Interval',value)

This method resamples time series on a uniform time vector, where value specifies
the time interval between two consecutive samples. The uniform time vector is the
overlap of the time vectors of ts1 and ts2. The interval units are the smaller units of
ts1 and ts2.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 synchronize

1-12443

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [ts1,ts2] = synchronize(ts1,ts2,'tolerance',1e-13)

InterpMethod — Interpolation method
'linear' (default) | 'zoh'

Interpolation method for the synchronize operation, specified as 'linear' for linear
interpolation or 'zoh' for zero-order hold. The interpolation method can also be specified
as tsdata.interpolation object containing a user-defined interpolation method.

QualityCode — Quality codes
[] (default) | scalar | vector | multidimensional array

Quality codes, specified as [] or a scalar, vector, or multidimensional array of integers
ranging from -128 to 127.

• When the quality code value is a vector, it must have the same length as the time
vector. Each element applies to the corresponding data sample.

• When the quality code value is an array, it must have the same size as the data array.
Each element applies to the corresponding data element of the data array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

KeepOriginalTimes — Original time indicator
true | false

Original time vector, specified as either true to keep the original time values or false to
use different time values.
Data Types: logical

tolerance — Tolerance
1e-10 (default) | real numeric scalar

Tolerance, specified as a real numeric scalar defining the tolerance for differentiating
between two time values of ts1 and ts2. For example, when the sixth time value in ts1
is 5+(1e-12) and the sixth time value in ts2 is 5-(1e-13), both values are treated as 5
by default. To differentiate the two times, you can set 'tolerance' to a smaller value
such as 1e-15.

1 Alphabetical List

1-12444

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
ts1 — First output timeseries
scalar

First output timeseries that was synchronized and resampled, specified as a scalar.
Data Types: timeseries

ts2 — Second output timeseries
scalar

Second output timeseries that was synchronized and resampled, specified as a scalar.
Data Types: timeseries

See Also
set | synchronize | timeseries

Introduced before R2006a

 synchronize

1-12445

std
Standard deviation of timeseries data

Syntax
tsstd = std(ts)
tsstd = std(ts,Name,Value)

Description
tsstd = std(ts) returns the standard deviation of the data in a timeseries object.

tsstd = std(ts,Name,Value) specifies additional options when computing the
standard deviation using one or more name-value pair arguments. For example, tsstd =
std(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the standard
deviation.

Examples

Standard Deviation of Sample Data

Create a timeseries object and compute the standard deviation of the sample data.

ts = timeseries((1:10)');
tsstd = std(ts)

tsstd = 3.0277

1 Alphabetical List

1-12446

Input Arguments
ts — Input timeseries
scalar

Input timeseries, specified as a scalar.
Data Types: timeseries

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tsstd = std(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, missing data is removed before computing. To interpolate the data instead of
removing it, specify the name-value pair 'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values or
'interpolate' to fill missing values by interpolating the data. Specify the 'Quality'
name-value pair to indicate which data samples are considered missing.

Weighting — Weights
'none' (default) | 'time'

Weights, specified as 'none' or 'time'.

 std

1-12447

When you specify 'time', larger time values correspond to larger weights.

Algorithms
MATLAB determines weighting by:

1 Attaching a weighting to each time value, depending on its order, as follows:

• First time point — The duration of the first time interval (t(2) - t(1)).
• Time point that is neither the first nor last time point — The duration between the

midpoint of the previous time interval to the midpoint of the subsequent time
interval ((t(k + 1) - t(k))/2 + (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval (t(end) - t(end -
1)).

2 Normalizing the weighting for each time by dividing each weighting by the mean of
all weightings.

Note If the timeseries object is uniformly sampled, then the normalized weighting
for each time is 1.0. Therefore, time weighting has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also
iqr | mean | timeseries | var

Introduced before R2006a

1 Alphabetical List

1-12448

sum
Sum of timeseries data

Syntax
tssum = sum(ts)
tssum = sum(ts,Name,Value)

Description
tssum = sum(ts) returns the sum of the data samples in a timeseries object.

tssum = sum(ts,Name,Value) specifies additional options when computing the sum
using one or more name-value pair arguments. For example, tssum =
sum(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the sum.

Examples

Sum of Sample Data

Create a timeseries object and compute the sum of the sample data.

ts = timeseries((1:5)');
tssum = sum(ts)

tssum = 15

Input Arguments
ts — Input timeseries
scalar

 sum

1-12449

Input timeseries, specified as a scalar.
Data Types: timeseries

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tssum = sum(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, missing data is removed before computing. To interpolate the data instead of
removing it, specify the name-value pair 'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values or
'interpolate' to fill missing values by interpolating the data. Specify the 'Quality'
name-value pair to indicate which data samples are considered missing.

Weighting — Weights
'none' (default) | 'time'

Weights, specified as 'none' or 'time'.
When you specify 'time', larger time values correspond to larger weights.

Algorithms
MATLAB determines weighting by:

1 Alphabetical List

1-12450

1 Attaching a weighting to each time value, depending on its order, as follows:

• First time point — The duration of the first time interval (t(2) - t(1)).
• Time point that is neither the first nor last time point — The duration between the

midpoint of the previous time interval to the midpoint of the subsequent time
interval ((t(k + 1) - t(k))/2 + (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval (t(end) - t(end -
1)).

2 Normalizing the weighting for each time by dividing each weighting by the mean of
all weightings.

Note If the timeseries object is uniformly sampled, then the normalized weighting
for each time is 1.0. Therefore, time weighting has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also
mean | timeseries

Introduced before R2006a

 sum

1-12451

var
Variance of timeseries data

Syntax
tsvar = var(ts)
tsvar = var(ts,Name,Value)

Description
tsvar = var(ts) returns the variance of the data samples in a timeseries object.

tsvar = var(ts,Name,Value) specifies additional options when computing the
variance using one or more name-value pair arguments. For example, tsvar =
var(ts,'Quality',-99,'MissingData','remove') defines -99 as the missing
sample quality code, and removes the missing samples before computing the variance.

Examples

Variance of Sample Data

Create a timeseries object and compute the variance of the sample data.

ts = timeseries((1:10)');
tsvar = var(ts)

tsvar = 9.1667

Input Arguments
ts — Input timeseries
scalar

1 Alphabetical List

1-12452

Input timeseries, specified as a scalar.
Data Types: timeseries

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tsvar = var(ts,'Quality',-99,'MissingData','remove')

Quality — Missing value indicator
scalar | vector | matrix | multidimensional array

Missing value indicator, specified a scalar, vector, matrix, or multidimensional array of
integers ranging from -128 to 127. Each element is a quality code to treat as missing
data.

By default, missing data is removed before computing. To interpolate the data instead of
removing it, specify the name-value pair 'MissingData','interpolation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MissingData — Missing data method
'remove' (default) | 'interpolate'

Missing data method, specified as either 'remove' to remove missing values or
'interpolate' to fill missing values by interpolating the data. Specify the 'Quality'
name-value pair to indicate which data samples are considered missing.

Weighting — Weights
'none' (default) | 'time'

Weights, specified as 'none' or 'time'.
When you specify 'time', larger time values correspond to larger weights.

Algorithms
MATLAB determines weighting by:

 var

1-12453

1 Attaching a weighting to each time value, depending on its order, as follows:

• First time point — The duration of the first time interval (t(2) - t(1)).
• Time point that is neither the first nor last time point — The duration between the

midpoint of the previous time interval to the midpoint of the subsequent time
interval ((t(k + 1) - t(k))/2 + (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval (t(end) - t(end -
1)).

2 Normalizing the weighting for each time by dividing each weighting by the mean of
all weightings.

Note If the timeseries object is uniformly sampled, then the normalized weighting
for each time is 1.0. Therefore, time weighting has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also
iqr | mean | std | timeseries

Introduced before R2006a

1 Alphabetical List

1-12454

triangulation
Triangulation in 2-D or 3-D

Description
Use triangulation to create an in-memory representation of any 2-D or 3-D
triangulation data that is in matrix format, such as the matrix output from the delaunay
function or other software tools. When your data is represented using triangulation,
you can perform topological and geometric queries, which you can use to develop
geometric algorithms. For example, you can find the triangles or tetrahedra attached to a
vertex, those that share an edge, their circumcenters, and other features.

Creation
To create a triangulation object, use the triangulation function with input
arguments that define the triangulation's points and connectivity.

Syntax
TR = triangulation(T,P)
TR = triangulation(T,x,y)
TR = triangulation(T,x,y,z)

Description
TR = triangulation(T,P) creates a 2-D or 3-D triangulation representation using the
triangulation connectivity list T and the points in matrix P.

TR = triangulation(T,x,y) creates a 2-D triangulation representation with the point
coordinates specified as column vectors x and y.

TR = triangulation(T,x,y,z) creates a 3-D triangulation representation with the
point coordinates specified as column vectors x, y, and z.

 triangulation

1-12455

Input Arguments
T — Triangulation connectivity list
m-by-n matrix

Triangulation connectivity list, specified as an m-by-n matrix, where m is the number of
triangles or tetrahedra, and n is the number of vertices per triangle or tetrahedron. Each
row of T contains the vertex IDs that define a triangle or tetrahedron. The vertex IDs are
the row numbers of the input points. The ID of a triangle or tetrahedron in the
triangulation is the corresponding row number in T.

P — Points
matrix

Points, specified as a matrix whose columns are the x-coordinates, y-coordinates, and
(possibly) z-coordinates of the triangulation points. The row numbers of P are the vertex
IDs in the triangulation.

x — x-coordinates
column vector

x-coordinates of triangulation points, specified as a column vector.

y — y-coordinates
column vector

y-coordinates of triangulation points, specified as a column vector.

z — z-coordinates
column vector

z-coordinates of triangulation points, specified as a column vector.

Properties
Points — Triangulation points
matrix

Triangulation points, represented as a matrix with the following characteristics:

1 Alphabetical List

1-12456

• Each row in TR.Points contains the coordinates of a vertex.
• Each row number of TR.Points is a vertex ID.

ConnectivityList — Triangulation connectivity list
matrix

Triangulation connectivity list, represented as a matrix with the following characteristics:

• Each element in TR.ConnectivityList is a vertex ID.
• Each row represents a triangle or tetrahedron in the triangulation.
• Each row number of TR.ConnectivityList is a triangle or tetrahedron ID.

Object Functions
barycentricToCartesian Convert coordinates from barycentric to Cartesian
cartesianToBarycentric Convert coordinates from Cartesian to barycentric
circumcenter Circumcenter of triangle or tetrahedron
edgeAttachments Triangles or tetrahedra attached to specified edge
edges Triangulation edges
faceNormal Triangulation unit normal vectors
featureEdges Handle sharp edges of triangulation
freeBoundary Free boundary facets
incenter Incenter of triangulation elements
isConnected Test if two vertices are connected by an edge
nearestNeighbor Closest vertex
neighbors Triangle or tetrahedron neighbors
pointLocation Triangle or tetrahedron enclosing point
size Size of triangulation connectivity list
vertexAttachments Triangles or tetrahedra attached to vertex
vertexNormal Triangulation vertex normal

Examples

2-D Triangulation

Define and plot the points in a 2-D triangulation.

 triangulation

1-12457

P = [2.5 8.0
 6.5 8.0
 2.5 5.0
 6.5 5.0
 1.0 6.5
 8.0 6.5];

Define the triangulation connectivity list.

T = [5 3 1;
 3 2 1;
 3 4 2;
 4 6 2];

Create and plot the triangulation representation.

TR = triangulation(T,P)

TR =
 triangulation with properties:

 Points: [6x2 double]
 ConnectivityList: [4x3 double]

triplot(TR)

1 Alphabetical List

1-12458

Examine the coordinates of the vertices of the first triangle.

TR.Points(TR.ConnectivityList(1,:),:)

ans = 3×2

 1.0000 6.5000
 2.5000 5.0000
 2.5000 8.0000

 triangulation

1-12459

See Also
delaunayTriangulation

Topics
“Triangulation Representations”

Introduced in R2013a

1 Alphabetical List

1-12460

barycentricToCartesian
Convert coordinates from barycentric to Cartesian

Syntax
C = barycentricToCartesian(TR,ID,B)

Description
C = barycentricToCartesian(TR,ID,B) returns the Cartesian coordinates of the
points in B relative to the triangulation object TR. Each row of B contains the barycentric
coordinates of a point with respect to the triangle or tetrahedron indexed by ID. The
identification numbers of the triangles or tetrahedra in TR are the corresponding row
numbers of the property TR.ConnectivityList.

Examples

Convert Barycentric Coordinates to Cartesian Coordinates

Create a triangulation from a set of points P and a triangulation connectivity list T, and
plot the triangulation.

P = [2.5 8.0; 6.5 8.0; 2.5 5.0; 6.5 5.0; 1.0 6.5; 8.0 6.5];
T = [5 3 1; 3 2 1; 3 4 2; 4 6 2];
TR = triangulation(T,P);
triplot(TR)

 barycentricToCartesian

1-12461

Specify the identification number of the first (leftmost) triangle in TR, and the barycentric
coordinates of the triangle's second point.

ID = 1;
B = [0 1 0];

Convert the barycentric coordinates to Cartesian coordinates with respect to the first
triangle in TR.

C = barycentricToCartesian(TR,ID,B)

C = 1×2

 2.5000 5.0000

1 Alphabetical List

1-12462

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Triangle or tetrahedron identification
scalar | column vector

Triangle or tetrahedron identification, specified as a scalar or a column vector whose
elements each correspond to a single triangle or tetrahedron in the triangulation object.
The identification number of each triangle or tetrahedron is the corresponding row
number of the ConnectivityList property.
Data Types: double

B — Barycentric coordinates
matrix

Barycentric coordinates, specified as a three-column matrix for 2-D coordinates or a four-
column matrix for 3-D coordinates.
Data Types: double

See Also
cartesianToBarycentric | delaunayTriangulation | triangulation

Introduced in R2013a

 barycentricToCartesian

1-12463

cartesianToBarycentric
Convert coordinates from Cartesian to barycentric

Syntax
B = cartesianToBarycentric(TR,ID,C)

Description
B = cartesianToBarycentric(TR,ID,C) returns the barycentric coordinates of the
points in C relative to the triangulation object TR. Each row of C contains the Cartesian
coordinates of a point with respect to the triangle or tetrahedron indexed by ID. The
identification numbers of the triangles or tetrahedra in TR are the corresponding row
numbers of the property TR.ConnectivityList.

Examples

Convert Cartesian Coordinates to Barycentric Coordinates

Create a triangulation from a set of points P and triangulation connectivity list T, and plot
the triangulation.

P = [2.5 8.0; 6.5 8.0; 2.5 5.0; 6.5 5.0; 1.0 6.5; 8.0 6.5];
T = [5 3 1; 3 2 1; 3 4 2; 4 6 2];
TR = triangulation(T,P);
triplot(TR)

1 Alphabetical List

1-12464

Find the Cartesian coordinates of the third vertex in the first (leftmost) triangle in TR.

L = TR.ConnectivityList(1,3);
C = TR.Points(L,:)

C = 1×2

 2.5000 8.0000

Convert the point C to barycentric coordinates with respect to the first triangle.

B = cartesianToBarycentric(TR,1,C)

 cartesianToBarycentric

1-12465

B = 1×3

 0 0 1

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Triangle or tetrahedron identification
scalar | column vector

Triangle or tetrahedron identification, specified as a scalar or a column vector whose
elements each correspond to a single triangle or tetrahedron in the triangulation object.
The identification number of each triangle or tetrahedron is the corresponding row
number of the ConnectivityList property.
Data Types: double

C — Cartesian coordinates
matrix

Cartesian coordinates, specified as a two-column matrix for 2-D coordinates or a three-
column matrix for 3-D coordinates.
Data Types: double

See Also
barycentricToCartesian | delaunayTriangulation | triangulation

Introduced in R2013a

1 Alphabetical List

1-12466

circumcenter
Circumcenter of triangle or tetrahedron

Syntax
C = circumcenter(TR)
C = circumcenter(TR,ID)
[C,r] = circumcenter(___)

Description
C = circumcenter(TR) returns the coordinates of the circumcenters for each triangle
or tetrahedron in the triangulation TR.

C = circumcenter(TR,ID) returns the coordinates of the circumcenters for the
triangles or tetrahedra indexed by ID. The identification numbers of the triangles or
tetrahedra in TR are the corresponding row numbers of the property
TR.ConnectivityList.

[C,r] = circumcenter(___) also returns the radii of the circumscribed circles or
spheres in TR for either of the previous syntaxes.

Examples

Compute Circumcenters of 2-D Triangulation

Load 2-D triangulation data and create a triangulation representation.

load trimesh2d
TR = triangulation(tri,x,y);

Compute the circumcenters of each triangle in TR.

C = circumcenter(TR);

 circumcenter

1-12467

Plot the triangulation along with the circumcenters in red. The x-coordinates of the
circumcenters are contained in the first column of C and the corresponding y-coordinates
are contained in the second column.

triplot(TR)
axis([-100 400 -50 350])
hold on
plot(C(:,1),C(:,2),'r.')
hold off

1 Alphabetical List

1-12468

Radii of Circumscribed Spheres

Create a Delaunay triangulation for a set of points.

P = gallery('uniformdata',10,3,0);
TR = delaunayTriangulation(P);

Compute the circumcenters of the first five tetrahedra in TR, and the radii of their
circumscribed spheres.

[C,r] = circumcenter(TR,[1:5]')

C = 5×3

 0.9626 0.3892 0.0928
 6.3458 0.2377 3.1814
 0.4820 0.9064 0.5176
 -1.2993 1.8384 -1.2185
 -0.1595 1.0852 -0.2536

r = 5×1

 0.2292
 6.2460
 0.3212
 2.4303
 0.7787

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Triangle or tetrahedron identification
scalar | column vector

 circumcenter

1-12469

Triangle or tetrahedron identification, specified as a scalar or a column vector whose
elements each correspond to a single triangle or tetrahedron in the triangulation object.
The identification number of each triangle or tetrahedron is the corresponding row
number of the ConnectivityList property.
Data Types: double

Output Arguments
C — Circumcenters
matrix

Circumcenters of triangles or tetrahedra, returned as a two-column matrix for 2-D
coordinates or a three-column matrix for 3-D coordinates.
Data Types: double

r — Radii
scalar | vector

Radii of the circumscribed circles or spheres, returned as a scalar or vector.
Data Types: double

See Also
delaunayTriangulation | incenter | triangulation

Introduced in R2013a

1 Alphabetical List

1-12470

edgeAttachments
Triangles or tetrahedra attached to specified edge

Syntax
ID = edgeAttachments(TR,startID,endID)
ID = edgeAttachments(TR,E)

Description
ID = edgeAttachments(TR,startID,endID) identifies the triangles or tetrahedra
attached to the specified edges. startID and endID specify edges by their start and end
points, where each point is represented by its row number in TR.Points. The return
value ID identifies triangles by their identification numbers.

ID = edgeAttachments(TR,E) specifies the starting and ending vertices of each edge
in a two-column matrix E.

Examples

2-D Delaunay Triangulation

Create and plot a Delaunay triangulation.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
TR = delaunayTriangulation(x,y);
triplot(TR)

 edgeAttachments

1-12471

Compute the identifications of the triangles attached to the edge defined by the starting
point (0,0) and ending point (0.5,0.5). The respective vertex identifications of these points
are 1 and 5.

ID = edgeAttachments(TR,1,5);
ID{:}

ans = 1×2

 4 1

1 Alphabetical List

1-12472

The ConnectivityList property indicates which vertices belong to each triangle. The
fourth triangle is defined by vertices (0.5,0.5), (0,0), and (1,0), and the first triangle is
defined by vertices (0,1), (0,0), and (0.5,0.5).

TR.ConnectivityList

ans = 4×3

 4 1 5
 4 5 3
 5 2 3
 5 1 2

TR.Points

ans = 5×2

 0 0
 1.0000 0
 1.0000 1.0000
 0 1.0000
 0.5000 0.5000

3-D Triangulation

Load 2-D triangulation data and create a triangulation representation.

load tetmesh
TR = triangulation(tet,X);

Select two edges by their starting and ending vertex identifications.

startID = [15; 21];
endID = [936; 716];

Find the edge attachments, and examine the identifications of the triangles attached to
each edge.

ID = edgeAttachments(TR,startID,endID);
ID{1}

 edgeAttachments

1-12473

ans = 1×6

 927 2060 3438 3423 2583 4690

ID{2}

ans = 1×5

 2652 3946 3953 4665 4218

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

startID — Starting vertex identification
column vector

Starting vertex identification for each edge, specified as a column vector. A vertex
identification number is the number of the row in the Points property that corresponds
to the vertex.
Data Types: double

endID — Ending vertex identification
column vector

Ending vertex identification for each edge, specified as a column vector. A vertex
identification number is the number of the row in the Points property that corresponds
to the vertex.
Data Types: double

E — Edge matrix
two-column matrix

1 Alphabetical List

1-12474

Edge matrix, specified as a two-column matrix. Each row contains the starting and ending
vertex identifications for an edge. A vertex identification number is the number of the row
in the Points property that corresponds to the vertex.
Data Types: double

See Also
delaunayTriangulation | edges | triangulation | vertexAttachments

Introduced in R2013a

 edgeAttachments

1-12475

edges
Triangulation edges

Syntax
E = edges(TR)

Description
E = edges(TR) returns the triangulation edges as a two-column matrix of vertex
identification numbers. Vertex identifications are the row numbers of the triangulation
vertices in TR.Points. The first column of E contains the starting vertex identification of
each edge, and the second column contains the ending vertex identification.

Examples

Find Edges of 2-D Triangulation

Load 2-D triangulation data and create a triangulation representation.

P = [2.5 8.0; 6.5 8.0; 2.5 5.0; 6.5 5.0; 1.0 6.5; 8.0 6.5];
T = [5 3 1; 3 2 1; 3 4 2; 4 6 2];
TR = triangulation(T,P);

Find the starting and ending vertex identification numbers of the edges in the
triangulation.

E = edges(TR)

E = 9×2

 1 2
 1 3
 1 5
 2 3

1 Alphabetical List

1-12476

 2 4
 2 6
 3 4
 3 5
 4 6

Define the coordinates of the first point in the triangulation. Then define the coordinates
of the three vertices sharing an edge with the first point (the second, third, and fifth).

startVert = TR.Points(1,:);
endVert = TR.Points([2 3 5],:);

Plot the triangulation. Plot the first vertex in green, and plot the connecting points along
an edge in red.

triplot(TR)
hold on
plot(startVert(1,1),startVert(1,2),'g.','MarkerSize',20)
plot(endVert(:,1),endVert(:,2),'r.','MarkerSize',20)
hold off

 edges

1-12477

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

1 Alphabetical List

1-12478

See Also
delaunayTriangulation | edgeAttachments | triangulation

Introduced in R2013a

 edges

1-12479

faceNormal
Triangulation unit normal vectors

Syntax
F = faceNormal(TR)
F = faceNormal(TR,ID)

Description
F = faceNormal(TR) returns the unit normal vectors to all triangles in a 2-D
triangulation. The faceNormal function supports 2-D triangulations only. F is a three-
column matrix where each row contains the unit normal coordinates corresponding to a
triangle in TR.ConnectivityList.

F = faceNormal(TR,ID) returns the unit normal vector to each triangle indexed by ID.
The identification numbers of the triangles in TR are the corresponding row numbers of
the property TR.ConnectivityList.

Examples

Unit Normals on a Surface

Compute and plot the unit normal vectors to the facets of a triangulation on a spherical
surface.

Create a set of points on a spherical surface.

theta = gallery('uniformdata',[100,1],0)*2*pi;
phi = gallery('uniformdata',[100,1],1)*pi;
x = cos(theta).*sin(phi);
y = sin(theta).*sin(phi);
z = cos(phi);

Triangulate the sphere using the delaunayTriangulation function.

1 Alphabetical List

1-12480

DT = delaunayTriangulation(x,y,z);

Find the free boundary facets of the triangulation, and use them to create a 2-D
triangulation on the surface.

[T,Xb] = freeBoundary(DT);
TR = triangulation(T,Xb);

Compute the centers and face normals of each triangular facet in TR.

P = incenter(TR);
F = faceNormal(TR);

Plot the triangulation along with the centers and face normals.

trisurf(T,Xb(:,1),Xb(:,2),Xb(:,3), ...
 'FaceColor','cyan','FaceAlpha',0.8);
axis equal
hold on
quiver3(P(:,1),P(:,2),P(:,3), ...
 F(:,1),F(:,2),F(:,3),0.5,'color','r');

 faceNormal

1-12481

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation for 2-D triangulations only, specified as a scalar
triangulation or delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Triangle identification
scalar | column vector

1 Alphabetical List

1-12482

Triangle identification, specified as a scalar or a column vector whose elements each
correspond to a single triangle in the triangulation object. The identification number of
each triangle is the corresponding row number of the ConnectivityList property.
Data Types: double

See Also
delaunayTriangulation | freeBoundary | triangulation

Introduced in R2013a

 faceNormal

1-12483

featureEdges
Handle sharp edges of triangulation

Syntax
F = featureEdges(TR,theta)

Description
F = featureEdges(TR,theta) returns the feature edges on page 1-12487 in a 2-D
triangulation according to an angle theta. This function is typically used to extract sharp
edges in a surface mesh plot.

Examples

Surface Feature Edges

Find and plot the feature edges of a surface.

Create a 2-D Delaunay triangulation.

x = [0 0 0 0 0 3 3 3 3 3 3 6 6 6 6 6 9 9 9 9 9 9]';
y = [0 2 4 6 8 0 1 3 5 7 8 0 2 4 6 8 0 1 3 5 7 8]';
DT = delaunayTriangulation(x,y);
T = DT.ConnectivityList;

Add elevations to the triangulation to create a surface and plot the surface.

z = [0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0]';
trisurf(T,x,y,z,'FaceColor','cyan')
axis equal

1 Alphabetical List

1-12484

Create a new triangulation on the elevated surface, and compute and plot its feature
edges using a filter angle of π6 .

TR = triangulation(T,x,y,z);
F = featureEdges(TR,pi/6)';
plot3(x(F),y(F),z(F),'k','LineWidth',1.5);
axis equal

 featureEdges

1-12485

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation for 2-D triangulations only, specified as a scalar
triangulation or delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

theta — Filter angle
scalar

1 Alphabetical List

1-12486

Filter angle in radians, specified as a scalar in the range [0,π]. featureEdges returns
adjacent triangles that have a dihedral angle that deviates from π by an angle greater
than theta.
Data Types: double

Definitions

Feature Edge
A feature edge is a triangulation edge that has any of the following attributes:

• The edge belongs to only one triangle.
• The edge is shared by more than two triangles.
• The edge is shared by a pair of triangles with angular deviation greater than the angle

theta.

F is a two-column matrix whose rows correspond to a feature edge. The first element of
each row is the identification number of the starting edge vertex, and the second element
is the identification number of the ending edge vertex. A vertex identification is the row
number of the corresponding vertex in the Points property.

See Also
delaunayTriangulation | edges | triangulation

Introduced in R2013a

 featureEdges

1-12487

freeBoundary
Free boundary facets

Syntax
F = freeBoundary(TR)
[F,P] = freeBoundary(TR)

Description
F = freeBoundary(TR) returns the free boundary facets of the triangles or tetrahedra
in TR. A facet in TR is on the free boundary if it is referenced by only one triangle or
tetrahedron.

[F,P] = freeBoundary(TR) also returns a matrix containing the vertices of the free
boundary facets.

Examples

2-D Delaunay Triangulation

You can use the freeBoundary function to highlight the outer edges of a 2-D Delaunay
triangulation.

Create a triangulation from a 2-D set of points.

x = gallery('uniformdata',[20,1],0);
y = gallery('uniformdata',[20,1],1);
TR = delaunayTriangulation(x,y);

Find the free boundary edges.

F = freeBoundary(TR);

Plot the triangulation and highlight the free boundary edges in red.

1 Alphabetical List

1-12488

triplot(TR)
hold on
plot(x(F),y(F),'-r','LineWidth',2)

Surface of 3-D Triangulation

You can use the freeBoundary function to extract the facets of a 3-D triangulation that
cover the surface of an object.

Load a 3-D triangulation.

 freeBoundary

1-12489

load tetmesh
TR = triangulation(tet,X);

Compute the boundary triangulation.

[F,P] = freeBoundary(TR);

Plot the boundary triangulation.

trisurf(F,P(:,1),P(:,2),P(:,3), ...
 'FaceColor','cyan','FaceAlpha',0.8);

1 Alphabetical List

1-12490

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

Output Arguments
F — Triangulation connectivity list
matrix

Triangulation connectivity list, returned as a matrix.

If you call freeBoundary with one output argument, then the elements of F are row
numbers in the Points property of the input triangulation. If you call freeBoundary
with two output arguments, then the elements of F are row numbers in P.
Data Types: double

P — Free boundary points
matrix

Free boundary points, returned as a matrix containing the coordinates of the vertices of
the free boundary facets. Each row of P contains the coordinates of a vertex.
Data Types: double

See Also
delaunayTriangulation | faceNormal | featureEdges | triangulation

Introduced in R2013a

 freeBoundary

1-12491

incenter
Incenter of triangulation elements

Syntax
C = incenter(TR)
C = incenter(TR,ID)
[C,r] = incenter(___)

Description
C = incenter(TR) returns the coordinates of the incenters of each triangle or
tetrahedron in the triangulation TR.

C = incenter(TR,ID) returns the coordinates of the incenter of each triangle or
tetrahedron specified by ID. The identification numbers of the triangles or tetrahedra in
TR are the corresponding row numbers of the property TR.ConnectivityList.

[C,r] = incenter(___) also returns the radii of the inscribed circles or spheres.

Examples

Compute Incenters of 2-D Delaunay Triangulation

Create a 2-D Delaunay triangulation.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
TR = delaunayTriangulation(x,y);

Compute the incenters of the triangles.

C = incenter(TR);

Plot the triangles and incenters.

1 Alphabetical List

1-12492

triplot(TR)
axis equal
axis([-0.2 1.2 -0.2 1.2])
hold on
plot(C(:,1),C(:,2),'*r')

3-D Triangulation

Load a 3-D triangulation.

load tetmesh

 incenter

1-12493

Calculate the incenter coordinates of the first five tetrahedra in the triangulation, in
addition to the radii of their inscribed spheres.

TR = triangulation(tet,X);
[C,r] = incenter(TR,[1:5]')

C = 5×3

 -6.1083 -31.0234 8.1439
 -2.1439 -31.0283 5.8742
 -1.9555 -31.9463 7.4112
 -4.3019 -30.8460 10.5169
 -3.1596 -29.3642 6.1851

r = 5×1

 0.7528
 0.9125
 0.8430
 0.6997
 0.7558

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Triangle or tetrahedron IDs
scalar | column vector

Triangle or tetrahedron IDs, specified as a scalar or a column vector whose elements each
correspond to a single triangle or tetrahedron in the triangulation object. The
identification number of each triangle or tetrahedron is the corresponding row number of
the ConnectivityList property.

1 Alphabetical List

1-12494

Data Types: double

Output Arguments
C — Incenters
matrix

Incenters, returned as a matrix whose rows contain the coordinates of an incenter.
Data Types: double

r — Radii
vector

Radii of the inscribed circles or spheres, returned as a vector.
Data Types: double

See Also
circumcenter | delaunayTriangulation | triangulation

Introduced in R2013a

 incenter

1-12495

isConnected
Test if two vertices are connected by an edge

Syntax
TF = isConnected(TR,startID,endID)
TF = isConnected(TR,E)

Description
TF = isConnected(TR,startID,endID) returns a logical column vector whose
elements are 1 (true) when the specified starting and ending pairs of vertices are
connected by an edge. startID and endID specify edges by their starting and ending
points, where each point is represented by its row number in TR.Points. The return
value ID identifies triangles by their identification numbers.

TF = isConnected(TR,E) specifies the edge start and end vertex IDs in a two-column
matrix E.

Examples

Determine Connecting Points in 2-D Triangulation

Load a 2-D triangulation.

load trimesh2d
TR = triangulation(tri,x,y);

Determine whether vertices 3 and 117 are connected by an edge.

TF = isConnected(TR,3,117)

TF = logical
 1

1 Alphabetical List

1-12496

Determine whether vertices 3 and 164 are connected by an edge.

TF = isConnected(TR,3,164)

TF = logical
 0

Represent Vertices in a Matrix

Create a 3-D Delaunay triangulation.

X = gallery('uniformdata',[10,3],0);
DT = delaunayTriangulation(X);

Determine whether vertices 2 and 7 are connected by an edge, and whether vertices 4
and 9 are connected.

E = [2 7; 4 9];
TF = isConnected(DT,E)

TF = 2x1 logical array

 1
 0

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

startID — Starting vertex identification
column vector

 isConnected

1-12497

Starting vertex identification for each edge, specified as a column vector. A vertex
identification number is the number of the row in the Points property that corresponds
to the vertex.
Data Types: double

endID — Ending vertex identification
column vector

Ending vertex identification for each edge, specified as a column vector. A vertex
identification number is the number of the row in the Points property that corresponds
to the vertex.
Data Types: double

E — Edge matrix
two-column matrix

Edge matrix, specified as a two-column matrix. Each row contains the starting and ending
vertex identifications for an edge. A vertex identification number is the number of the row
in the Points property that corresponds to the vertex.
Data Types: double

See Also
delaunayTriangulation | edgeAttachments | edges | triangulation

Introduced in R2013a

1 Alphabetical List

1-12498

nearestNeighbor
Closest vertex

Syntax
ID = nearestNeighbor(TR,P)
ID = nearestNeighbor(TR,x,y)
ID = nearestNeighbor(TR,x,y,z)
[ID,d] = nearestNeighbor(___)

Description
ID = nearestNeighbor(TR,P) returns the IDs of the vertices closest to the query
points in P. Each row in the matrix P contains the coordinates of a query point.

ID = nearestNeighbor(TR,x,y) specifies the x-coordinates and y-coordinates of 2-D
query points as separate column vectors.

ID = nearestNeighbor(TR,x,y,z) specifies the x-coordinates, y-coordinates, and z-
coordinates of 3-D query points as separate column vectors.

[ID,d] = nearestNeighbor(___) also returns the Euclidean distance between each
query point and its nearest neighbor for any of the previous syntaxes.

Examples

3-D Query

Compute the nearest neighbors in a 3-D triangulation.

Create a 3-D Delaunay triangulation.

P = [1 1 0; -1 1 0; -1 -1 0; 1 -1 0; 0 0 2; 0 0 0];
TR = delaunayTriangulation(P);

 nearestNeighbor

1-12499

Plot the triangulation and a query point.

tri = TR(:,:);
trisurf(tri,P(:,1),P(:,2),P(:,3),'FaceAlpha',0.5)
hold on
x = 0;
y = -0.5;
z = 2;
plot3(x,y,z,'k*')

Find the coordinates of the nearest neighbor to the query point.

ID = nearestNeighbor(TR,x,y,z);
C = TR.Points(ID,:)

1 Alphabetical List

1-12500

C = 1×3

 0 0 2

2-D Query

Compute the nearest neighbors in a 2-D triangulation.

Create a 2-D triangulation.

C = [5 3 1; 3 2 1; 3 4 2; 4 6 2];
TP = [2.5 8.0; 6.5 8.0; 2.5 5.0; 6.5 5.0; 1.0 6.5; 8.0 6.5];
TR = triangulation(C,TP);

Define two query points.

P = [2 4; 6 6.5];

Plot the triangulation and the query points.

triplot(TR)
hold on
plot(P(:,1),P(:,2),'k*')
ylim([1.5 8.5])
xlim([0.5 8.5])

 nearestNeighbor

1-12501

Find the nearest neighbors to the query points and the distances between them.

[ID,d] = nearestNeighbor(TR,P);

Highlight in red the points in the triangulation that are the nearest neighbors to the query
points.

N = TP(ID,:);
plot(N(:,1),N(:,2),'*r')

1 Alphabetical List

1-12502

Display the distance between each query point and its nearest neighbor.

d

d = 2×1

 1.1180
 1.5811

 nearestNeighbor

1-12503

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object. nearestNeighbor does not support
delaunayTriangulation objects with constrained edges.
Data Types: triangulation | delaunayTriangulation

P — Query points
2-column matrix (2-D) | 3-column matrix (3-D)

Query points, specified as a matrix with 2 or 3 columns. P contains the x-coordinates, y-
coordinates, and (possibly) z-coordinates of the query points.
Data Types: double

x — x-coordinates
column vector

x-coordinates of query points, specified as a column vector.
Data Types: double

y — y-coordinates
column vector

y-coordinates of query points, specified as a column vector.
Data Types: double

z — z-coordinates
column vector

z-coordinates of query points, specified as a column vector.
Data Types: double

1 Alphabetical List

1-12504

Output Arguments
ID — Vertex IDs
column vector

Vertex IDs of the nearest neighbors to the query points, returned as a column vector. A
vertex ID is the row number of the corresponding vertex in the Points property.
Data Types: double

d — Euclidean distances
column vector

Euclidean distances from the query points to their nearest neighbors, returned as a
column vector the same length as ID.
Data Types: double

See Also
delaunayTriangulation | triangulation

Introduced in R2013a

 nearestNeighbor

1-12505

neighbors
Triangle or tetrahedron neighbors

Syntax
N = neighbors(TR)
N = neighbors(TR,ID)

Description
N = neighbors(TR) returns the IDs of the neighbors to all triangles or tetrahedra in
TR. N is a 3-column (2-D) or 4-column (3-D) matrix whose rows contain the IDs of the
neighboring triangles or tetrahedra to that element in the triangulation.

N = neighbors(TR,ID) returns the neighbors of the triangles or tetrahedra specified
in ID.

By convention, the (i,j) element of N is the neighbor opposite to the jth vertex of the ith
element of ID.

Examples

3-D Triangulation

Find neighboring tetrahedra in a 3-D triangulation.

Create a 3-D triangulation.

load tetmesh
TR = triangulation(tet,X);

Compute the IDs of the neighboring tetrahedra to each element of the triangulation.

N = neighbors(TR);

1 Alphabetical List

1-12506

Display the IDs of the neighbors to the fifth tetrahedron.

N(5,:)

ans = 1×4

 2360 1539 2 1851

Examine the vertex IDs of the first neighbor.

TR.ConnectivityList(N(1),:)

ans = 1×4

 1093 891 893 858

2-D Delaunay Triangulation

Find neighboring triangles in a 2-D Delaunay triangulation.

Create a 2-D Delaunay triangulation.

x = gallery('uniformdata',[10,1],0);
y = gallery('uniformdata',[10,1],1);
TR = delaunayTriangulation(x,y);

Find the neighbors of the first triangle. NaN indicates that the triangle is on the boundary
of the triangulation and only has two neighbors.

N = neighbors(TR,1)

N = 1×3

 NaN 4 5

Examine the vertex IDs of the third neighbor.

TR.ConnectivityList(N(3),:)

ans = 1×3

 neighbors

1-12507

 4 3 7

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Triangle or tetrahedron IDs
scalar | column vector

Triangle or tetrahedron IDs, specified as a scalar or a column vector whose elements
correspond to a single triangle or tetrahedron in the triangulation object. The ID of each
triangle or tetrahedron is the corresponding row number of the ConnectivityList
property.

If a triangle or tetrahedron has one or more boundary facets, the nonexistent neighbors
are represented as NaN values in N.
Data Types: double

See Also
delaunayTriangulation | edgeAttachments | triangulation

Introduced in R2013a

1 Alphabetical List

1-12508

pointLocation
Triangle or tetrahedron enclosing point

Syntax
ID = pointLocation(TR,P)
ID = pointLocation(TR,x,y)
ID = pointLocation(TR,x,y,z)
[ID,B] = pointLocation(___)

Description
ID = pointLocation(TR,P) returns the IDs of the triangles or tetrahedra enclosing
the query points in P. Each row in the matrix P contains the coordinates of a query point.

ID = pointLocation(TR,x,y) specifies the x-coordinates and y-coordinates of 2-D
query points as separate column vectors.

ID = pointLocation(TR,x,y,z) specifies the x-coordinates, y-coordinates, and z-
coordinates of 3-D query points as separate column vectors.

[ID,B] = pointLocation(___) also returns the barycentric coordinates of each
query point with respect to its enclosing triangle or tetrahedron for any of the previous
syntaxes.

Examples

Enclosing Triangles

Find the triangles of a triangulation that enclose a set of query points.

Define the points and connectivity of a triangulation.

 pointLocation

1-12509

TP = [2.5 8.0; 6.5 8.0; 2.5 5.0; 6.5 5.0; 1.0 6.5; 8.0 6.5];
C = [5 3 1; 3 2 1; 3 4 2; 4 6 2];
TR = triangulation(C,TP);

Define two query points.

P = [2.25 7; 6 6.5];

Plot the triangulation and the query points.

triplot(TR)
hold on
plot(P(:,1),P(:,2),'k*')
ylim([4 9])
xlim([0 9])

1 Alphabetical List

1-12510

Determine the IDs of the triangles that enclose each query point.

ID = pointLocation(TR,P)

ID = 2×1

 1
 3

Highlight the triangles that enclose the query points in red.

triplot(TR.ConnectivityList(ID,:),TP(:,1),TP(:,2),'r')

 pointLocation

1-12511

Enclosing Tetrahedra

Find the tetrahedra of a 3-D triangulation that enclose a set of query points.

Create a Delaunay triangulation from a set of 3-D points.

x = gallery('uniformdata',[20 1],0);
y = gallery('uniformdata',[20 1],1);
z = gallery('uniformdata',[20 1],2);
TR = delaunayTriangulation(x,y,z);

Find the IDs of the tetrahedra that enclose the query points, and compute the barycentric
coordinates of the query points.

P = [0.7 0.6 0.3; 0.5 0.5 0.5];
[ID,B] = pointLocation(TR,P)

ID = 2×1

 57
 56

B = 2×4

 0.2796 0.0184 0.5286 0.1734
 0.3687 0.0149 0.5343 0.0821

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

P — Query points
2-column matrix (2-D) | 3-column matrix (3-D)

1 Alphabetical List

1-12512

Query points, specified as a 2-column matrix (2-D) or a 3-column matrix (3-D). P contains
the x-coordinates, y-coordinates, and (possibly) z-coordinates of the query points.
Data Types: double

x — x-coordinates
column vector

x-coordinates of query points, specified as a column vector.
Data Types: double

y — y-coordinates
column vector

y-coordinates of query points, specified as a column vector.
Data Types: double

z — z-coordinates
column vector

z-coordinates of query points, specified as a column vector.
Data Types: double

Output Arguments
ID — Triangle or tetrahedra IDs
column vector

Triangle or tetrahedra IDs of the triangles or tetrahedra enclosing the query points,
returned as a column vector. A triangle or tetrahedron ID is the row number of the
corresponding triangle or tetrahedron in the ConnectivityList property.

If a query point lies on the boundary of two or more triangles or tetrahedra, then the
largest ID is returned.

ID contains NaN values for points that are not located in a triangle or tetrahedron of the
triangulation.
Data Types: double

 pointLocation

1-12513

B — Barycentric coordinates
3-column matrix (2-D) | 4-column matrix (3-D)

Barycentric coordinates of each query point with respect to its enclosing triangle or
tetrahedron, returned as a 3-column matrix (2-D) or a 4-column matrix (3-D).
Data Types: double

See Also
delaunayTriangulation | triangulation

Introduced in R2013a

1 Alphabetical List

1-12514

size
Size of triangulation connectivity list

Syntax
sz = size(TR)

Description
sz = size(TR) returns the size of the triangulation connectivity list in the property
TR.ConnectivityList. The output sz is a two-element row vector. The first element is
the number of triangles or tetrahedra in the triangulation, and the second element is the
number of vertices per triangle (three) or tetrahedron (four).

Examples

Size of 2-D Triangulation

Create a 2-D triangulation.

P = [2.5 8.0
 6.5 8.0
 2.5 5.0
 6.5 5.0
 1.0 6.5
 8.0 6.5];

C = [5 3 1;
 3 2 1;
 3 4 2;
 4 6 2];

TR = triangulation(C,P)

TR =
 triangulation with properties:

 size

1-12515

 Points: [6x2 double]
 ConnectivityList: [4x3 double]

Get the size of the connectivity list. The triangulation has 4 triangles, and each triangle
has 3 vertices.

size(TR)

ans = 1×2

 4 3

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

See Also
delaunayTriangulation | triangulation

Introduced in R2013a

1 Alphabetical List

1-12516

vertexAttachments
Triangles or tetrahedra attached to vertex

Syntax
V = vertexAttachments(TR)
V = vertexAttachments(TR,ID)

Description
V = vertexAttachments(TR) returns the IDs of the triangles or tetrahedra attached
to every vertex in the triangulation TR. A triangle or tetrahedron ID is the row number of
the corresponding triangle or tetrahedron in the property TR.ConnectivityList.

The output v is an m-by-1 cell array where m is the number of vertices in TR. Each
element of V contains the IDs of the attached triangles or tetrahedra corresponding to
that vertex. The vertices can have a different number of attached triangles or tetrahedra
depending on where they are located in the triangulation.

V = vertexAttachments(TR,ID) returns the IDs of the triangles or tetrahedra
attached to the vertices specified in ID. The vertex IDs in ID are the row numbers of the
corresponding vertices in the property TR.Points.

Examples

2-D Delaunay Triangulation

Locate and plot the attachments to a specified vertex in a 2-D Delaunay triangulation.

Create a Delaunay triangulation from a set of 2-D points.

x = gallery('uniformdata',[20,1],0);
y = gallery('uniformdata',[20,1],1);
TR = delaunayTriangulation(x,y);

 vertexAttachments

1-12517

Find the triangles attached to the 5th vertex.

V = vertexAttachments(TR,5);
V{:}

ans = 1×4

 18 23 21 22

Plot the triangulation, and plot the triangles attached to vertex 5 in red.

triplot(TR)
hold on
triplot(TR(V{:},:),x,y,'Color','r')

1 Alphabetical List

1-12518

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation, specified as a scalar triangulation or
delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Vertex IDs
column vector

Vertex IDs of the query points, returned as a column vector. A vertex ID is the row
number of the corresponding vertex in the Points property.
Data Types: double

See Also
delaunayTriangulation | edgeAttachments | triangulation

Introduced in R2013a

 vertexAttachments

1-12519

vertexNormal
Triangulation vertex normal

Syntax
V = vertexNormal(TR)
V = vertexNormal(TR,ID)

Description
V = vertexNormal(TR) returns the unit normal vectors to all vertices in a 3-D surface
triangulation. V is a three-column matrix with each row containing the unit normal
coordinates corresponding to the vertices in TR.Points.

V = vertexNormal(TR,ID) returns the unit normal vector to each vertex indexed by
ID. A vertex ID is the row number corresponding to the vertices in the property
TR.Points.

Examples

Surface of a Cube

Compute and plot the unit normal vectors to the vertices of a triangulation.

Create a 3-D triangulation representing the volume of a cube.

[X,Y,Z] = meshgrid(1:4);
x = X(:);
y = Y(:);
z = Z(:);
DT = delaunayTriangulation(x,y,z);

Triangulate the boundary of the cube.

1 Alphabetical List

1-12520

[Tfb,Xfb] = freeBoundary(DT);
TR = triangulation(Tfb,Xfb);

Find the unit normal vectors to the triangle vertices.

V = vertexNormal(TR);

Plot the triangulated surface and the unit normal vectors.

trisurf(TR,'FaceColor',[0.8 0.8 1.0]);
axis equal
hold on
quiver3(Xfb(:,1),Xfb(:,2),Xfb(:,3), ...
 V(:,1),V(:,2),V(:,3),0.5,'Color','b');

 vertexNormal

1-12521

Input Arguments
TR — Triangulation representation
scalar triangulation object

Triangulation representation for 3-D surface triangulations only, specified as a scalar
triangulation or delaunayTriangulation object.
Data Types: triangulation | delaunayTriangulation

ID — Vertex IDs
scalar | column vector

Vertex IDs, specified as a scalar or a column vector whose elements correspond to a
single vertex in the triangulation object. The ID of each vertex is the corresponding row
number of the vertices in the Points property.
Data Types: double

See Also
delaunayTriangulation | faceNormal | triangulation

Introduced in R2013a

1 Alphabetical List

1-12522

readcell
Read cell array from file

Syntax
C = readcell(filename)
C = readcell(filename,opts)
C = readcell(___ ,Name,Value)

Description
C = readcell(filename) creates a cell array by reading column-oriented data from a
file.

readcell determines the file format from the file extension:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

C = readcell(filename,opts) additionally uses the import options opts.

C = readcell(___ ,Name,Value) creates cell array from a file with additional options
specified by one or more name-value pair arguments. Use any of the input arguments
from the previous syntaxes before specifying the name-value pairs.

To set specific import options for your data, you can either use the opts object or you can
specify name-value pairs. When you specify name-value pairs in addition to opts, then
readcell supports only these name-value pairs:

• Text Files — DateLocale, Encoding
• Spreadsheet Files — Sheet, UseExcel

Examples

 readcell

1-12523

Read Tabular Data into Cell Array from Text File

Display the contents of basic_cell.txt, and then import the mixed data into a cell
array.

type basic_cell.txt

1,2,3
hello,world,NaN
10-Oct-2018 10:27:56,1,

C = readcell('basic_cell.txt')

C = 3x3 cell array
 {[1]} {[2]} {[3]}
 {'hello' } {'world'} {[NaN]}
 {[10-Oct-2018 10:27:56]} {[1]} {1x1 missing}

Read Tabular Data into Cell Array from Spreadsheet

Import mixed tabular data from basic_cell.xls into a cell array.

C = readcell('basic_cell.xls')

C = 3x3 cell array
 {[1]} {[2]} {[3]}
 {'hello' } {'world'} {1x1 missing}
 {[10-Oct-2018 10:27:56]} {[1]} {1x1 missing}

Read Cell Array from Specified Sheet and Range

Preview the data from a spreadsheet file and import the mixed data into a cell array from
a specified sheet and range.

The spreadsheet file airlinesmall_subset.xlsx contains data in multiple
worksheets for years between 1996 and 2008. Each worksheet has data for a given year.
Preview the data from file airlinesmall_subset.xlsx. The preview function shows
data from the from the first worksheet by default.

1 Alphabetical List

1-12524

opts = detectImportOptions('airlinesmall_subset.xlsx');
preview('airlinesmall_subset.xlsx',opts)

ans=8×29 table
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay SDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ ________ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ______ _____________ _________________

 1996 1 18 4 2117 2120 2305 2259 'HP' 415 'N637AW' 108 99 85 6 -3 'COS' 'PHX' 551 5 18 0 '' 0 '' '' '' '' ''
 1996 1 12 5 1252 1245 1511 1500 'HP' 610 'N905AW' 79 75 58 11 7 'LAX' 'PHX' 370 3 18 0 '' 0 '' '' '' '' ''
 1996 1 16 2 1441 1445 1708 1721 'HP' 211 'N165AW' 87 96 74 -13 -4 'RNO' 'PHX' 601 4 9 0 '' 0 '' '' '' '' ''
 1996 1 1 1 2258 2300 2336 2335 'HP' 1245 'N183AW' 38 35 20 1 -2 'TUS' 'PHX' 110 6 12 0 '' 0 '' '' '' '' ''
 1996 1 4 4 1814 1814 1901 1910 'US' 683 'N963VJ' 47 56 34 -9 0 'DTW' 'PIT' 201 6 7 0 '' 0 '' '' '' '' ''
 1996 1 31 3 1822 1820 1934 1925 'US' 757 'N912VJ' 72 65 52 9 2 'PHL' 'PIT' 267 6 14 0 '' 0 '' '' '' '' ''
 1996 1 18 4 729 730 841 843 'US' 1564 'N941VJ' 72 73 58 -2 -1 'DCA' 'PVD' 357 3 11 0 '' 0 '' '' '' '' ''
 1996 1 26 5 1704 1705 1829 1839 'NW' 1538 'N960N' 85 94 69 -10 -1 'DTW' 'RIC' 456 3 13 0 '' 0 '' '' '' '' ''

Import ten rows of data for variables 7, 8, and 9 from the worksheet named '2007'. The
Excel range 'G2:I11' represents columns 7 through 9, and ten rows starting at row 2
after the variable names.

M = readcell('airlinesmall_subset.xlsx','Sheet','2007','Range','G2:I11')

M = 10x3 cell array
 {[935]} {[935]} {'WN'}
 {[1041]} {[1040]} {'WN'}
 {[1430]} {[1500]} {'WN'}
 {[940]} {[950]} {'WN'}
 {[1515]} {[1515]} {'WN'}
 {[2042]} {[2035]} {'WN'}
 {[2116]} {[2130]} {'WN'}
 {[1604]} {[1605]} {'WN'}
 {[1258]} {[1230]} {'WN'}
 {[1134]} {[1145]} {'WN'}

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or a string scalar.

 readcell

1-12525

Depending on the location of your file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myFile.txt'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name in
filename.

Example: 'C:\myFolder\myFile.xlsx'

Example: 'dataDir\myFile.txt'
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.csv'

• If filename includes the file extension, then the importing function determines the
file format from the extension. Otherwise, you must specify the 'FileType' name-
value pair arguments to indicate the type of file.

• On Windows systems with Microsoft Excel software, the importing function reads any
Excel spreadsheet file format recognized by your version of Excel.

1 Alphabetical List

1-12526

• If your system does not have Excel for Windows or if you are using MATLAB Online,
the importing function operates with the UseExcel property set to false, and reads
only .xls, .xlsx, .xlsm, .xltx, and .xltm files.

• For delimited text files, the importing function converts empty fields in the file to
either NaN (for a numeric variable) or an empty character vector (for a text variable).
All lines in the text file must have the same number of delimiters. The importing
function ignores insignificant white space in the file.

Data Types: char | string

opts — File import options
SpreadsheetImportOptions | DelimitedtextImportOptions |
FixedWidthImportOptions

File import options, specified as an SpreadsheetImportOptions,
DelimitedTextImportOptions, or FixedWidthImportOptions object created by the
detectImportOptions function. The opts object contains properties that control the
data import process. For more information on the properties of each object, see the
appropriate object page.

Type of Files Output
Spreadsheet files SpreadsheetImportOptions object
Text files DelimitedTextImportOptions object
Fixed-width text files FixedWidthImportOptions object

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumHeaderLines',5 indicates that the first five lines that precede the
tabular data are header lines.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

 readcell

1-12527

Type of file, specified as the comma-separated pair consisting of 'FileType' and
'text' or 'spreadsheet'.

Specify the 'FileType' name-value pair argument when the filename does not include
the file extension or if the extension is other than one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

Example: 'FileType','text'
Data Types: char | string

NumHeaderLines — Number of header lines
positive integer

Number of header lines in the file, specified as the comma-separated pair consisting of
'NumHeaderLines' and a positive integer. If unspecified, the importing function
automatically detects the number of header lines in the file.
Example: 'NumHeaderLines',7
Data Types: single | double

ExpectedNumVariables — Expected number of variables
positive integer

Expected number of variables, specified as the comma-separated pair consisting of
'ExpectedNumVariables' and a positive integer. If unspecified, the importing function
automatically detects the number of variables.
Data Types: single | double

Range — Portion of data to read
character vector | string scalar | numeric vector

Portion of the data to read from text or spreadsheet files, specified as the comma
separated pair consisting of 'Range' and a character vector, string scalar, or numeric
vector in one of these forms.

1 Alphabetical List

1-12528

Ways to specify Range Description
Starting Cell

'Cell' or [row col]

Specify the starting cell for the data as a character
vector or string scalar or a two element numeric vector.

• Character vector or string scalar containing a
column letter and row number using Excel A1
notation. For example, A5 is the identifier for the
cell at the intersection of column A and row 5.

• Two element numeric vector of the form [row col]
indicating the starting row and column.

Using the starting cell, the importing function
automatically detects the extent of the data by
beginning the import at the start cell and ending at the
last empty row or footer range.

Example: 'A5' or [5 1]
Rectangular Range

'Corner1:Corner2' or [r1
c1 r2 c2]

Specify the exact range to read using the rectangular
range in one of these forms.

• 'Corner1:Corner2' — Specify the range using
Corner1 and Corner2 which are the two opposing
corners that define the region to read in Excel A1
notation. For example, 'C2:N15'.

• [r1 c1 r2 c2] — Specify the range using a four
element numeric vector containing start-row, start-
column, end-row, and end-column. For example, [2
3 15 13].

The importing function only reads the data contained in
the specified range. Any empty fields within the
specified range are imported as missing cells.

 readcell

1-12529

Ways to specify Range Description
Row Range or Column Range

'Row1:Row2' or
'Column1:Column2'

Specify the range by identifying the beginning and
ending rows using Excel row numbers.

Using the specified row range, the importing function
automatically detects the column extent by reading
from the first nonempty column to the end of the data,
and creates one variable per column.

Example: '5:500'

Alternatively, specify the range by identifying the
beginning and ending columns using Excel column
letters or numbers.

Using the specified column range, the import function
automatically detects the row extent by reading from
the first nonempty row to the end of the data or the
footer range.

The number of columns in the specified range must
match the number specified in the
ExpectedNumVariables property.

Example: 'A:K'
Starting Row Number

n

Specify the first row containing the data using the
positive scalar row index.

Using the specified row index, the importing function
automatically detects the extent of the data by reading
from the specified first row to the end of the data or the
footer range.

Example:5

1 Alphabetical List

1-12530

Ways to specify Range Description
Excel’s Named Range

'NamedRange'

In Excel, you can create names to identify ranges in the
spreadsheet. For instance, you can select a rectangular
portion of the spreadsheet and call it 'myTable'. If
such named ranges exist in a spreadsheet, then the
importing function can read that range using its name.

Example: 'Range','myTable'
Unspecified or Empty

''

If unspecified, the importing function automatically
detects the used range.

Example: 'Range',''

Note: Used Range refers to the rectangular portion of
the spreadsheet that actually contains data. The
importing function automatically detects the used
range by trimming any leading and trailing rows and
columns that do not contain data. Text that is only
white space is considered data and is captured within
the used range.

Data Types: char | string | double

TextType — Type for imported text data
'char' (default) | 'string'

Type for imported text data, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'.

• 'char' — Import text data into MATLAB as character vectors.
• 'string' — Import text data into MATLAB as string arrays.

Example: 'TextType','char'

DatetimeType — Type for imported date and time data
'datetime' (default) | 'text' | 'exceldatenum' (spreadsheet files only)

Type for imported date and time data, specified as the comma-separated pair consisting
of 'DatetimeType' and one of these values: 'datetime', 'text', or
'exceldatenum'. The value 'exceldatenum' is applicable only for spreadsheet files,
and is not valid for text files.

 readcell

1-12531

Value Type for Imported Date and Time Data
'datetime' MATLAB datetime data type

For more information, see datetime.
'text' If 'DatetimeType' is specified as 'text', then the type

for imported date and time data depends on the value
specified in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns dates as a cell array of character
vectors.

• If 'TextType' is set to 'string', then the importing
function returns dates as an array of strings.

'exceldatenum' Excel serial date numbers

A serial date number is a single number equal to the
number of days from a given reference date. Excel serial
date numbers use a different reference date than MATLAB
serial date numbers. For more information on Excel dates,
see https://support.microsoft.com/en-us/kb/
214330.

Data Types: char | string

Text Files Only

Delimiter — Field delimiter characters
character vector | string scalar | cell array of character vectors | string array

Field delimiter characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'Delimiter','|'
Example: 'Delimiter',{';','*'}
Data Types: char | string | cell

Whitespace — Characters to treat as white space
character vector | string scalar

1 Alphabetical List

1-12532

https://support.microsoft.com/en-us/kb/214330
https://support.microsoft.com/en-us/kb/214330

Characters to treat as white space, specified as a character vector or string scalar
containing one or more characters.
Example: 'Whitespace',' _'
Example: 'Whitespace','?!.,'

LineEnding — End-of-line characters
{'\n','\r','\r\n'} (default) | character vector | string scalar | cell array of character
vectors | string array

End-of-line characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'LineEnding','\n'
Example: 'LineEnding','\r\n'
Example: 'LineEnding',{'\b',':'}
Data Types: char | string | cell

CommentStyle — Style of comments
character vector | string scalar | cell array of character vectors | string array

Style of comments, specified as a character vector, string scalar, cell array of character
vectors, or string array.

For example, to ignore the text following a percent sign on the same line, specify
CommentStyle as '%'.
Example: 'CommentStyle',{'/*'}
Data Types: char | string | cell

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name, such as one of the values in this table.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'

 readcell

1-12533

'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' uses the system default encoding.
Data Types: char | string

DurationType — Output data type of duration data
'duration' (default) | 'text'

Output data type of duration data from text files, specified as the comma-separated pair
consisting of 'DurationType' and either 'duration' or 'text'.

Value Type for Imported Duration Data
'duration' MATLAB duration data type

For more information, see duration.

1 Alphabetical List

1-12534

Value Type for Imported Duration Data
'text' If 'DurationType' is specified as 'text', then the type

for imported duration data depends on the value specified
in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns duration data as a cell array of
character vectors.

• If 'TextType' is set to 'string', then the importing
function returns duration data as an array of strings.

Data Types: char | string

DateLocale — Locale for reading dates
character vector | string scalar

Locale for reading dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar of the form xx_YY, where:

• YY is an uppercase ISO 3166-1 alpha-2 code indicating a country.
• xx is a lowercase ISO 639-1 two-letter code indicating a language.

For a list of common values for the locale, see the Locale name-value pair argument for
the datetime function.

When using the %D format specifier to read text as datetime values, use DateLocale to
specify the locale in which the importing function should interpret month and day-of-week
names and abbreviations.

If you specify the DateLocale argument in addition to opts the import options, then the
importing function uses the specified value for the DateLocale argument, overriding the
locale defined in the import options.
Example: 'DateLocale','ja_JP'

ConsecutiveDelimitersRule — Procedure to handle consecutive delimiters
'split' | 'join' | 'error'

Procedure to handle consecutive delimiters, specified as one of the values in this table.

 readcell

1-12535

Consecutive Delimiters
Rule

Behavior

'split' Split the consecutive delimiters into multiple fields.
'join' Join the delimiters into one delimiter.
'error' Return an error and abort the import operation.

Data Types: char | string

LeadingDelimitersRule — Procedure to manage leading delimiters
'keep' | 'ignore' | 'error'

Procedure to manage leading delimiters, specified as one of the values in this table.

Leading Delimiters Rule Behavior
'keep' Keep the delimiter.
'ignore' Ignore the delimiter.
'error' Return an error and abort the import operation.

Spreadsheet Files Only

Sheet — Sheet to read from
'' empty character array (default) | character vector | string scalar | positive scalar
integer

Sheet to read from, specified as an empty character array, a character vector or string
scalar containing the sheet name, or a positive scalar integer denoting the sheet index.
Based on the value specified for the Sheet property, the import function behaves as
described in the table.

Specification Behavior
'' (default) Import data from the first sheet.
Name Import data from the matching sheet name, regardless of

order of sheets in the spreadsheet file.
Integer Import data from sheet in the position denoted by the

integer, regardless of the sheet names in the spreadsheet
file.

Data Types: char | string | single | double

1 Alphabetical List

1-12536

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when reading spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When reading from spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The importing function starts an instance of Microsoft Excel when reading the
file. This setting is the default for Windows systems with Excel installed.

• false — The importing function does not start an instance of Microsoft Excel when
reading the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, the importing function functionality differs in the
support of file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

See Also
readmatrix | readtable | readtimetable | readvars | writecell

Introduced in R2019a

 readcell

1-12537

readmatrix
Read matrix from file

Syntax
A = readmatrix(filename)
A = readmatrix(filename,opts)
A = readmatrix(___ ,Name,Value)

Description
A = readmatrix(filename) creates an array by reading column-oriented data from a
file. The readmatrix function performs automatic detection of import parameters for
your file.

readmatrix determines the file format from the file extension:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

For files containing mixed numeric and text data, readmatrix imports the data as a
numeric array by default.

A = readmatrix(filename,opts) creates a table using the import options opts.

A = readmatrix(___ ,Name,Value) creates an array from a file with additional
options specified by one or more name-value pair arguments. Use any of the input
arguments from the previous syntaxes before specifying the name-value pairs.

To set specific import options for your data, you can either use the opts object or you can
specify name-value pairs. When you specify name-value pairs in addition to opts, then
readmatrix supports only these name-value pairs:

• Text Files — DateLocale, Encoding
• Spreadsheet Files — Sheet, UseExcel

1 Alphabetical List

1-12538

Examples

Read Matrix from Text File

Display the contents of basic_matrix.txt and then import the data into a matrix.

type basic_matrix.txt

6,8,3,1
5,4,7,3
1,6,7,10
4,2,8,2
2,7,5,9

M = readmatrix('basic_matrix.txt')

M = 5×4

 6 8 3 1
 5 4 7 3
 1 6 7 10
 4 2 8 2
 2 7 5 9

Read Matrix from Spreadsheet File

Import numeric data from basic_matrix.xls into a matrix.

M = readmatrix('basic_matrix.xls')

M = 5×4

 6 8 3 1
 5 4 7 3
 1 6 7 10
 4 2 8 2
 2 7 5 9

 readmatrix

1-12539

Read Matrix from Specified Sheet and Range Using Import Options

Preview the data from a spreadsheet file and import numerical data as a matrix from a
specified sheet and range.

The spreadsheet file airlinesmall_subset.xlsx contains data in multiple
worksheets for years between 1996 and 2008. Each worksheet has data for a given year.
Preview the data from file airlinesmall_subset.xlsx. The preview function shows
data from the from the first worksheet by default. The first eight variables in the file
contain numerical data.

opts = detectImportOptions('airlinesmall_subset.xlsx');
preview('airlinesmall_subset.xlsx',opts)

ans=8×29 table
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay SDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ ________ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ______ _____________ _________________

 1996 1 18 4 2117 2120 2305 2259 'HP' 415 'N637AW' 108 99 85 6 -3 'COS' 'PHX' 551 5 18 0 '' 0 '' '' '' '' ''
 1996 1 12 5 1252 1245 1511 1500 'HP' 610 'N905AW' 79 75 58 11 7 'LAX' 'PHX' 370 3 18 0 '' 0 '' '' '' '' ''
 1996 1 16 2 1441 1445 1708 1721 'HP' 211 'N165AW' 87 96 74 -13 -4 'RNO' 'PHX' 601 4 9 0 '' 0 '' '' '' '' ''
 1996 1 1 1 2258 2300 2336 2335 'HP' 1245 'N183AW' 38 35 20 1 -2 'TUS' 'PHX' 110 6 12 0 '' 0 '' '' '' '' ''
 1996 1 4 4 1814 1814 1901 1910 'US' 683 'N963VJ' 47 56 34 -9 0 'DTW' 'PIT' 201 6 7 0 '' 0 '' '' '' '' ''
 1996 1 31 3 1822 1820 1934 1925 'US' 757 'N912VJ' 72 65 52 9 2 'PHL' 'PIT' 267 6 14 0 '' 0 '' '' '' '' ''
 1996 1 18 4 729 730 841 843 'US' 1564 'N941VJ' 72 73 58 -2 -1 'DCA' 'PVD' 357 3 11 0 '' 0 '' '' '' '' ''
 1996 1 26 5 1704 1705 1829 1839 'NW' 1538 'N960N' 85 94 69 -10 -1 'DTW' 'RIC' 456 3 13 0 '' 0 '' '' '' '' ''

Configure the values in the opts object to import 10 rows for the first five variables from
the worksheet named '2007'.

opts.Sheet = '2007';
opts.SelectedVariableNames = [1:5];
opts.DataRange = '2:11';
M = readmatrix('airlinesmall_subset.xlsx',opts)

M = 10×5

 2007 1 2 2 711
 2007 1 3 3 652
 2007 1 4 4 1116
 2007 1 5 5 825
 2007 1 7 7 1411
 2007 1 8 1 1935

1 Alphabetical List

1-12540

 2007 1 9 2 2005
 2007 1 11 4 1525
 2007 1 12 5 1133
 2007 1 13 6 922

Read Matrix from Specified Sheet and Range

Preview the data from a spreadsheet file and import numerical data, as a matrix, from a
specified sheet and range.

The spreadsheet file airlinesmall_subset.xlsx contains data in multiple
worksheets for years between 1996 and 2008. Each worksheet has data for a given year.
Preview the data from file airlinesmall_subset.xlsx. The preview function shows
data from the from the first worksheet by default. The first eight variables in the file
contain numerical data.

opts = detectImportOptions('airlinesmall_subset.xlsx');
preview('airlinesmall_subset.xlsx',opts)

ans=8×29 table
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay SDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ ________ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ______ _____________ _________________

 1996 1 18 4 2117 2120 2305 2259 'HP' 415 'N637AW' 108 99 85 6 -3 'COS' 'PHX' 551 5 18 0 '' 0 '' '' '' '' ''
 1996 1 12 5 1252 1245 1511 1500 'HP' 610 'N905AW' 79 75 58 11 7 'LAX' 'PHX' 370 3 18 0 '' 0 '' '' '' '' ''
 1996 1 16 2 1441 1445 1708 1721 'HP' 211 'N165AW' 87 96 74 -13 -4 'RNO' 'PHX' 601 4 9 0 '' 0 '' '' '' '' ''
 1996 1 1 1 2258 2300 2336 2335 'HP' 1245 'N183AW' 38 35 20 1 -2 'TUS' 'PHX' 110 6 12 0 '' 0 '' '' '' '' ''
 1996 1 4 4 1814 1814 1901 1910 'US' 683 'N963VJ' 47 56 34 -9 0 'DTW' 'PIT' 201 6 7 0 '' 0 '' '' '' '' ''
 1996 1 31 3 1822 1820 1934 1925 'US' 757 'N912VJ' 72 65 52 9 2 'PHL' 'PIT' 267 6 14 0 '' 0 '' '' '' '' ''
 1996 1 18 4 729 730 841 843 'US' 1564 'N941VJ' 72 73 58 -2 -1 'DCA' 'PVD' 357 3 11 0 '' 0 '' '' '' '' ''
 1996 1 26 5 1704 1705 1829 1839 'NW' 1538 'N960N' 85 94 69 -10 -1 'DTW' 'RIC' 456 3 13 0 '' 0 '' '' '' '' ''

Import 10 rows of the first 5 variables from the worksheet named '2007'.

M = readmatrix('airlinesmall_subset.xlsx','Sheet','2007','Range','A2:E11')

M = 10×5

 2007 1 2 2 711
 2007 1 3 3 652

 readmatrix

1-12541

 2007 1 4 4 1116
 2007 1 5 5 825
 2007 1 7 7 1411
 2007 1 8 1 1935
 2007 1 9 2 2005
 2007 1 11 4 1525
 2007 1 12 5 1133
 2007 1 13 6 922

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or a string scalar.

Depending on the location of your file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myFile.txt'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name in
filename.

Example: 'C:\myFolder\myFile.xlsx'

Example: 'dataDir\myFile.txt'

1 Alphabetical List

1-12542

Location Form
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.csv'

• If filename includes the file extension, then the importing function determines the
file format from the extension. Otherwise, you must specify the 'FileType' name-
value pair arguments to indicate the type of file.

• On Windows systems with Microsoft Excel software, the importing function reads any
Excel spreadsheet file format recognized by your version of Excel.

• If your system does not have Excel for Windows or if you are using MATLAB Online,
the importing function operates with the UseExcel property set to false, and reads
only .xls, .xlsx, .xlsm, .xltx, and .xltm files.

• For delimited text files, the importing function converts empty fields in the file to
either NaN (for a numeric variable) or an empty character vector (for a text variable).
All lines in the text file must have the same number of delimiters. The importing
function ignores insignificant white space in the file.

Data Types: char | string

opts — File import options
SpreadsheetImportOptions | DelimitedtextImportOptions |
FixedWidthImportOptions

 readmatrix

1-12543

File import options, specified as an SpreadsheetImportOptions,
DelimitedTextImportOptions, or FixedWidthImportOptions object created by the
detectImportOptions function. The opts object contains properties that control the
data import process. For more information on the properties of each object, see the
appropriate object page.

Type of Files Output
Spreadsheet files SpreadsheetImportOptions object
Text files DelimitedTextImportOptions object
Fixed-width text files FixedWidthImportOptions object

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumHeaderLines',5 indicates that the first five lines that precede the
tabular data are header lines.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and
'text' or 'spreadsheet'.

Specify the 'FileType' name-value pair argument when the filename does not include
the file extension or if the extension is other than one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

Example: 'FileType','text'
Data Types: char | string

NumHeaderLines — Number of header lines
positive integer

1 Alphabetical List

1-12544

Number of header lines in the file, specified as the comma-separated pair consisting of
'NumHeaderLines' and a positive integer. If unspecified, the importing function
automatically detects the number of header lines in the file.
Example: 'NumHeaderLines',7
Data Types: single | double

ExpectedNumVariables — Expected number of variables
positive integer

Expected number of variables, specified as the comma-separated pair consisting of
'ExpectedNumVariables' and a positive integer. If unspecified, the importing function
automatically detects the number of variables.
Data Types: single | double

Range — Portion of data to read
character vector | string scalar | numeric vector

Portion of the data to read from text or spreadsheet files, specified as the comma
separated pair consisting of 'Range' and a character vector, string scalar, or numeric
vector in one of these forms.

Ways to specify Range Description
Starting Cell

'Cell' or [row col]

Specify the starting cell for the data as a character
vector or string scalar or a two element numeric vector.

• Character vector or string scalar containing a
column letter and row number using Excel A1
notation. For example, A5 is the identifier for the
cell at the intersection of column A and row 5.

• Two element numeric vector of the form [row col]
indicating the starting row and column.

Using the starting cell, the importing function
automatically detects the extent of the data by
beginning the import at the start cell and ending at the
last empty row or footer range.

Example: 'A5' or [5 1]

 readmatrix

1-12545

Ways to specify Range Description
Rectangular Range

'Corner1:Corner2' or [r1
c1 r2 c2]

Specify the exact range to read using the rectangular
range in one of these forms.

• 'Corner1:Corner2' — Specify the range using
Corner1 and Corner2 which are the two opposing
corners that define the region to read in Excel A1
notation. For example, 'C2:N15'.

• [r1 c1 r2 c2] — Specify the range using a four
element numeric vector containing start-row, start-
column, end-row, and end-column. For example, [2
3 15 13].

The importing function only reads the data contained in
the specified range. Any empty fields within the
specified range are imported as missing cells.

Row Range or Column Range

'Row1:Row2' or
'Column1:Column2'

Specify the range by identifying the beginning and
ending rows using Excel row numbers.

Using the specified row range, the importing function
automatically detects the column extent by reading
from the first nonempty column to the end of the data,
and creates one variable per column.

Example: '5:500'

Alternatively, specify the range by identifying the
beginning and ending columns using Excel column
letters or numbers.

Using the specified column range, the import function
automatically detects the row extent by reading from
the first nonempty row to the end of the data or the
footer range.

The number of columns in the specified range must
match the number specified in the
ExpectedNumVariables property.

Example: 'A:K'

1 Alphabetical List

1-12546

Ways to specify Range Description
Starting Row Number

n

Specify the first row containing the data using the
positive scalar row index.

Using the specified row index, the importing function
automatically detects the extent of the data by reading
from the specified first row to the end of the data or the
footer range.

Example:5
Excel’s Named Range

'NamedRange'

In Excel, you can create names to identify ranges in the
spreadsheet. For instance, you can select a rectangular
portion of the spreadsheet and call it 'myTable'. If
such named ranges exist in a spreadsheet, then the
importing function can read that range using its name.

Example: 'Range','myTable'
Unspecified or Empty

''

If unspecified, the importing function automatically
detects the used range.

Example: 'Range',''

Note: Used Range refers to the rectangular portion of
the spreadsheet that actually contains data. The
importing function automatically detects the used
range by trimming any leading and trailing rows and
columns that do not contain data. Text that is only
white space is considered data and is captured within
the used range.

Data Types: char | string | double

TreatAsMissing — Text to interpret as missing data
character vector | string scalar | cell array of character vectors | string array

Text to interpret as missing data, specified as a character vector, string scalar, cell array
of character vectors, or string array.
Example: 'TreatAsMissing',{'NA','TBD'} instructs the importing function to treat
any occurrence of NA or TBD as a missing fields.

 readmatrix

1-12547

Data Types: char | string | cell

OutputType — Output data type
character vector | string scalar

Output data type, specified as the comma-separated pair consisting of 'OutputType'
and a character vector or string scalar containing name of any of the data types in this
table.

Type of Data Output data type
Numeric 'uint8', 'int8', 'int16', 'int32',

'int64', 'uint16', 'uint32',
'uint64', 'single', or 'double'

Text 'char' or 'string'
Other types 'datetime', 'duration', or

'categorical'

Example: 'OutputType','uint8'
Data Types: char | string

Text Files Only

Delimiter — Field delimiter characters
character vector | string scalar | cell array of character vectors | string array

Field delimiter characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'Delimiter','|'
Example: 'Delimiter',{';','*'}
Data Types: char | string | cell

Whitespace — Characters to treat as white space
character vector | string scalar

Characters to treat as white space, specified as a character vector or string scalar
containing one or more characters.
Example: 'Whitespace',' _'
Example: 'Whitespace','?!.,'

1 Alphabetical List

1-12548

LineEnding — End-of-line characters
{'\n','\r','\r\n'} (default) | character vector | string scalar | cell array of character
vectors | string array

End-of-line characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'LineEnding','\n'
Example: 'LineEnding','\r\n'
Example: 'LineEnding',{'\b',':'}
Data Types: char | string | cell

CommentStyle — Style of comments
character vector | string scalar | cell array of character vectors | string array

Style of comments, specified as a character vector, string scalar, cell array of character
vectors, or string array.

For example, to ignore the text following a percent sign on the same line, specify
CommentStyle as '%'.
Example: 'CommentStyle',{'/*'}
Data Types: char | string | cell

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name, such as one of the values in this table.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'

 readmatrix

1-12549

'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' uses the system default encoding.
Data Types: char | string

DateLocale — Locale for reading dates
character vector | string scalar

Locale for reading dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar of the form xx_YY, where:

• YY is an uppercase ISO 3166-1 alpha-2 code indicating a country.
• xx is a lowercase ISO 639-1 two-letter code indicating a language.

For a list of common values for the locale, see the Locale name-value pair argument for
the datetime function.

When using the %D format specifier to read text as datetime values, use DateLocale to
specify the locale in which the importing function should interpret month and day-of-week
names and abbreviations.

If you specify the DateLocale argument in addition to opts the import options, then the
importing function uses the specified value for the DateLocale argument, overriding the
locale defined in the import options.
Example: 'DateLocale','ja_JP'

DecimalSeparator — Characters indicating decimal separator
character vector | string scalar

Characters indicating the decimal separator in numeric variables, specified as a character
vector or string scalar. The importing function uses the characters specified in the

1 Alphabetical List

1-12550

DecimalSeparator name-value pair to distinguish the integer part of a number from the
decimal part.

When converting to integer data types, numbers with a decimal part are rounded to the
nearest integer.
Example: If name-value pair is specified as 'DecimalSeparator',',', then the
importing function imports the text "3,14159" as the number 3.14159.
Data Types: char | string

ThousandsSeparator — Characters that indicate thousands grouping
character vector | string scalar

Characters that indicate the thousands grouping in numeric variables, specified as a
character vector or string scalar. The thousands grouping characters act as visual
separators, grouping the number at every three place values. The importing function uses
the characters specified in the ThousandsSeparator name-value pair to interpret the
numbers being imported.
Example: If name-value pair is specified as 'ThousandsSeparator',',', then the
importing function imports the text "1,234,000" as 1234000.
Data Types: char | string

TrimNonNumeric — Remove nonnumeric characters
false (default) | true

Remove nonnumeric characters from a numeric variable, specified as a logical true or
false.
Example: If name-value pair is specified as 'TrimNonNumeric',true, then the
importing function reads '$500/-' as 500.
Data Types: logical

ConsecutiveDelimitersRule — Procedure to handle consecutive delimiters
'split' | 'join' | 'error'

Procedure to handle consecutive delimiters, specified as one of the values in this table.

 readmatrix

1-12551

Consecutive Delimiters
Rule

Behavior

'split' Split the consecutive delimiters into multiple fields.
'join' Join the delimiters into one delimiter.
'error' Return an error and abort the import operation.

Data Types: char | string

LeadingDelimitersRule — Procedure to manage leading delimiters
'keep' | 'ignore' | 'error'

Procedure to manage leading delimiters, specified as one of the values in this table.

Leading Delimiters Rule Behavior
'keep' Keep the delimiter.
'ignore' Ignore the delimiter.
'error' Return an error and abort the import operation.

Spreadsheet Files Only

Sheet — Sheet to read from
'' empty character array (default) | character vector | string scalar | positive scalar
integer

Sheet to read from, specified as an empty character array, a character vector or string
scalar containing the sheet name, or a positive scalar integer denoting the sheet index.
Based on the value specified for the Sheet property, the import function behaves as
described in the table.

Specification Behavior
'' (default) Import data from the first sheet.
Name Import data from the matching sheet name, regardless of

order of sheets in the spreadsheet file.
Integer Import data from sheet in the position denoted by the

integer, regardless of the sheet names in the spreadsheet
file.

Data Types: char | string | single | double

1 Alphabetical List

1-12552

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when reading spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When reading from spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The importing function starts an instance of Microsoft Excel when reading the
file. This setting is the default for Windows systems with Excel installed.

• false — The importing function does not start an instance of Microsoft Excel when
reading the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, the importing function functionality differs in the
support of file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

See Also
readcell | readtable | readtimetable | readvars | writematrix

Introduced in R2019a

 readmatrix

1-12553

readtable
Create table from file

Syntax
T = readtable(filename)
T = readtable(filename,opts)
T = readtable(___ ,Name,Value)

Description
T = readtable(filename) creates a table by reading column oriented data from a file.

readtable determines the file format from the file extension:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

readtable creates one variable in T for each column in the file and reads variable names
from the first row of the file. By default, the variables created are double when the entire
column is numeric, or cell arrays of character vectors when any element in a column is
not numeric.

T = readtable(filename,opts) creates a table using the import options opts.

T = readtable(___ ,Name,Value) creates a table from a file with additional options
specified by one or more name-value pair arguments. For example, you can specify
whether readtable reads the first row of the file as variable names or as data.

To set specific import options for your data, you can either use the opts object or you can
specify name-value pairs. When you specify name-value pairs in addition to opts, then
readtable supports only these name-value pairs:

• Text and spreadsheet parameters — ReadVariableNames, ReadRowNames
• Text only parameters — DateLocale, Encoding

1 Alphabetical List

1-12554

• Spreadsheet only parameters — Sheet, UseExcel

Examples

Create Table from Text File

Load the file myCsvTable.dat and preview its contents in a text editor. A screen shot is
shown below. Notice that the file contains comma-separated column oriented data.

filename = fullfile(matlabroot,'examples','matlab','myCsvTable.dat');

Create a table from the comma-separated text file. The resulting table T contains one
variable for each column in the file and readtable treats the entries in the first line of
the file as variable names.

T = readtable(filename)

T=5×6 table
 LastName Gender Age Height Weight Smoker
 __________ ______ ___ ______ ______ ______

 'Smith' 'M' 38 71 176 1
 'Johnson' 'M' 43 69 163 0
 'Williams' 'F' 38 64 131 0
 'Jones' 'F' 40 67 133 0
 'Brown' 'F' 49 64 119 0

 readtable

1-12555

Create Table from Text File without Column Headings

Load the file mySpaceDelimTable.txt and preview its contents in a text editor. A
screen shot is shown below. Notice that the file contains space delimited, column oriented
data.

filename = fullfile(matlabroot,'examples','matlab','mySpaceDelimTable.txt');

Create a table from the space delimited text file that does not contain variable names as
column headings.

T = readtable(filename,...
 'Delimiter',' ','ReadVariableNames',false)

T=3×5 table
 Var1 Var2 Var3 Var4 Var5
 ____ ____ ____ ____ _______

 'M' 45 45 'NY' 'true'
 'F' 41 32 'CA' 'false'
 'M' 40 34 'MA' 'false'

T contains default variable names.

Create and Format Table from Text File

Load the file myCsvTable.dat and preview its contents in a text editor. A screen shot is
shown below. Notice that the file contains comma-separated column oriented data.

filename = fullfile(matlabroot,'examples','matlab','myCsvTable.dat');

1 Alphabetical List

1-12556

Create a table from the comma-separated text file. Import the first two columns as
character vectors, the third column as uint32, and the next two columns as double-
precision, floating-point numbers. Import the entries of the last column as character
vectors.

T = readtable(filename,'Format','%s%s%u%f%f%s')

T=5×6 table
 LastName Gender Age Height Weight Smoker
 __________ ______ ___ ______ ______ ______

 'Smith' 'M' 38 71 176 '1'
 'Johnson' 'M' 43 69 163 '0'
 'Williams' 'F' 38 64 131 '0'
 'Jones' 'F' 40 67 133 '0'
 'Brown' 'F' 49 64 119 '0'

The conversion specifiers are %s for a cell array of character vectors, %f for double, and
%u for uint32.

Read Foreign-Language Dates from Text File

Read German dates from a file and add them to a table as English dates.

Load the file german_dates.txt and preview its contents in a text editor. A screen shot
is shown below. Notice that the first column of values contains dates in German and the
second and third columns are numeric values.

 readtable

1-12557

filename = fullfile(matlabroot,'examples','matlab','german_dates.txt');

Read the sample file using readtable. The conversion specifiers is %D dates and %f for
floating-point values. Specify the file encoding using the FileEncoding name-value pair
argument. Specify the format and locale of the dates using the DateLocale name-value
pair argument.

T = readtable(filename,'ReadVariableNames',false,...
 'Format','%{dd MMMM yyyy}D %f %f',...
 'FileEncoding','ISO-8859-15',...
 'DateLocale','de_DE')

T=3×3 table
 Var1 Var2 Var3
 ________________ ____ _____

 01 January 2014 20.2 100.5
 01 February 2014 21.6 102.7
 01 March 2014 20.7 99.8

Create Table from Spreadsheet Including Row Names

Create a table from a spreadsheet that contains variable names in the first row and row
names in the first column.

T = readtable('patients.xls','ReadRowNames',true);

Display the first five rows and first four variables of the table.

T(1:5,1:4)

1 Alphabetical List

1-12558

ans=5×4 table
 Gender Age Location Height
 ________ ___ ___________________________ ______

 Smith 'Male' 38 'County General Hospital' 71
 Johnson 'Male' 43 'VA Hospital' 69
 Williams 'Female' 38 'St. Mary's Medical Center' 64
 Jones 'Female' 40 'VA Hospital' 67
 Brown 'Female' 49 'County General Hospital' 64

View the DimensionNames property of the table.

T.Properties.DimensionNames

ans = 1x2 cell array
 {'LastName'} {'Variables'}

'LastName' is the name in the first column of the first row of the spreadsheet.

Read Specific Range of Data from Spreadsheet

Create a table using data from a specified region of the spreadsheet patients.xls. Use
the data from the 5-by-3 rectangular region between the corners C2 and E6. Do not use
the first row of this region as variable names.

T = readtable('patients.xls',...
 'Range','C2:E6',...
 'ReadVariableNames',false)

T =

 Var1 Var2 Var3
 ____ ___________________________ ____

 38 'County General Hospital' 71
 43 'VA Hospital' 69
 38 'St. Mary's Medical Center' 64
 40 'VA Hospital' 67
 49 'County General Hospital' 64

 readtable

1-12559

T contains default variable names.

Detect and Use Import Options for Text Files

Create import options, tailor the data types for multiple variables, and then read the data.

Create an import options object from a text file.

opts = detectImportOptions('airlinesmall.csv')

opts =
 DelimitedTextImportOptions with properties:

 Format Properties:
 Delimiter: {','}
 Whitespace: '\b\t '
 LineEnding: {'\n' '\r' '\r\n'}
 CommentStyle: {}
 ConsecutiveDelimitersRule: 'split'
 LeadingDelimitersRule: 'keep'
 EmptyLineRule: 'skip'
 Encoding: 'windows-1252'

 Replacement Properties:
 MissingRule: 'fill'
 ImportErrorRule: 'fill'
 ExtraColumnsRule: 'addvars'

 Variable Import Properties: Set types by name using setvartype
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 VariableTypes: {'double', 'double', 'double' ... and 26 more}
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 VariableOptions: Show all 29 VariableOptions
 Access VariableOptions sub-properties using setvaropts/getvaropts

 Location Properties:
 DataLines: [2 Inf]
 VariableNamesLine: 1
 RowNamesColumn: 0
 VariableUnitsLine: 0
 VariableDescriptionsLine: 0
 To display a preview of the table, use preview

1 Alphabetical List

1-12560

Examine the Type property of variables TaxiIn and TaxiOut.

getvaropts(opts,{'TaxiIn','TaxiOut'})

ans =
 1x2 TextVariableImportOptions array with properties:

 Name
 Type
 FillValue
 TreatAsMissing
 QuoteRule
 Prefixes
 Suffixes
 EmptyFieldRule
 WhitespaceRule

Change the type of the variables TaxiIn and TaxiOut to double.

 opts = setvartype(opts,{'TaxiIn','TaxiOut'},'double');

Specify the subset of variables to import and examine.

opts.SelectedVariableNames = {'TaxiIn','TaxiOut'};

Use the readtable function along with the options object to import the selected
variables. Display a summary of the table.

T = readtable('airlinesmall.csv',opts);
summary(T)

Variables:

 TaxiIn: 123523x1 double

 Values:

 Min 0
 Median 5
 Max 1451
 NumMissing 37383

 TaxiOut: 123523x1 double

 readtable

1-12561

 Values:

 Min 0
 Median 13
 Max 755
 NumMissing 37364

Detect and Use Import Options for Spreadsheet Files

Detect import options for a spreadsheet file, specify the variables to import, and then
read the data.

Create an import options object from a file.

opts = detectImportOptions('patients.xls')

opts =
 SpreadsheetImportOptions with properties:

 Sheet Properties:
 Sheet: ''

 Replacement Properties:
 MissingRule: 'fill'
 ImportErrorRule: 'fill'

 Variable Import Properties: Set types by name using setvartype
 VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 VariableTypes: {'char', 'char', 'double' ... and 7 more}
 SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 VariableOptions: Show all 10 VariableOptions
 Access VariableOptions sub-properties using setvaropts/getvaropts

 Range Properties:
 DataRange: 'A2' (Start Cell)
 VariableNamesRange: 'A1'
 RowNamesRange: ''
 VariableUnitsRange: ''
 VariableDescriptionsRange: ''
 To display a preview of the table, use preview

Modify the options object to specify which variables to import.

1 Alphabetical List

1-12562

opts.SelectedVariableNames = {'Systolic','Diastolic'};

Use readtable along with the options object to import the specified variables.

T = readtable('patients.xls',opts);
summary(T)

Variables:

 Systolic: 100x1 double

 Values:

 Min 109
 Median 122
 Max 138

 Diastolic: 100x1 double

 Values:

 Min 68
 Median 81.5
 Max 99

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or a string scalar.

Depending on the location of your file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myFile.txt'

 readtable

1-12563

Location Form
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name in
filename.

Example: 'C:\myFolder\myFile.xlsx'

Example: 'dataDir\myFile.txt'
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.csv'

• If filename includes the file extension, then the importing function determines the
file format from the extension. Otherwise, you must specify the 'FileType' name-
value pair arguments to indicate the type of file.

• On Windows systems with Microsoft Excel software, the importing function reads any
Excel spreadsheet file format recognized by your version of Excel.

• If your system does not have Excel for Windows or if you are using MATLAB Online,
the importing function operates with the UseExcel property set to false, and reads
only .xls, .xlsx, .xlsm, .xltx, and .xltm files.

• For delimited text files, the importing function converts empty fields in the file to
either NaN (for a numeric variable) or an empty character vector (for a text variable).

1 Alphabetical List

1-12564

All lines in the text file must have the same number of delimiters. The importing
function ignores insignificant white space in the file.

Data Types: char | string

opts — File import options
SpreadsheetImportOptions | DelimitedtextImportOptions |
FixedWidthImportOptions

File import options, specified as an SpreadsheetImportOptions,
DelimitedTextImportOptions, or FixedWidthImportOptions object created by the
detectImportOptions function. The opts object contains properties that control the
data import process. For more information on the properties of each object, see the
appropriate object page.

Type of Files Output
Spreadsheet files SpreadsheetImportOptions object
Text files DelimitedTextImportOptions object
Fixed-width text files FixedWidthImportOptions object

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ReadVariableNames',false indicates that the first row of the file does not
correspond to variable names.

When reading:

• Text files, only these parameter names apply: FileType, ReadVariableNames,
ReadRowNames, TreatAsEmpty, DatetimeType, Delimiter, HeaderLines,
Format, EmptyValue, MultipleDelimsAsOne, CollectOutput, CommentStyle,
ExpChars, EndOfLine, DateLocale, and Encoding.

• Spreadsheet files, only these parameter names apply: FileType,
ReadVariableNames, ReadRowNames, TreatAsEmpty, DatetimeType, Sheet,
Range, UseExcel, and TextType.

 readtable

1-12565

• Text or Spreadsheet files with the opts import options, only these parameter names
apply: ReadVariableNames, ReadRowNames, DateLocale, Encoding, Sheet, and
UseExcel.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and
'text' or 'spreadsheet'.

Specify the 'FileType' name-value pair argument when the filename does not include
the file extension or if the extension is other than one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

Example: 'FileType','text'
Data Types: char | string

ReadVariableNames — Read first row as variable names
true | false | 1 | 0

Indicator for reading the first row as variable names, specified as the comma-separated
pair consisting of 'ReadVariableNames' and either true, false, 1, or 0. If
unspecified, readtable automatically detects the presence of variable names.

Indicator Description
true Use when the first row of the region to read contains the variable

names for the table. readtable creates a variable, with the
detected variable name, for each column in T.

false Use when the first row of the region to read contains data in the
table. readtable creates default variable names of the form
'Var1',...,'VarN', where N is the number of variables.

unspecified When left unspecified, readtable automatically detects true or
false and proceeds accordingly.

1 Alphabetical List

1-12566

Note: If both the 'ReadVariableNames' and 'ReadRowNames' logical indicators are
true, then readtable saves the name in the first column of the first row of the region to
read as the first dimension name in the property, T.Properties.DimensionNames.

If you specify the ReadVariableNames argument in addition to opts the import options,
then the readtable behavior changes based on the specification:

• If ReadVariableNames is true, then read the variable names from the specified file
by using the VariableNamesRange or the VariableNamesLine property of the
import options object.

• If ReadVariableNames is false, then read the variable names from the
VariableNames property of the import options object.

ReadRowNames — Indicator for reading the first column as row names
false (default) | true | 0 | 1

Indicator for reading first column as row names, specified as the comma-separated pair
consisting of 'ReadRowNames' and either false, true, 0, or 1.

Indicator Description
false Use when the first column of the region to read contains data, and

not the row names for the table.
true Use when the first column of the region to read contains the row

names for the table.
unspecified When left unspecified, readtable assumes false.

Note: If both the 'ReadVariableNames' and 'ReadRowNames' logical indicators are
true, then readtable saves the name in the first column of the first row of the region to
read as the first dimension name in the property, T.Properties.DimensionNames.

If you specify the ReadRowNames argument in addition to opts the import options , then
the readtable behavior changes based on the specification:

• If ReadRowNames is true, then read the row names from the specified file by using
the RowNamesRange or the RowNameColumn property of the import options object.

• If ReadRowNames is false, then do not import row names.

TreatAsEmpty — Placeholder text to treat as empty value
character vector | cell array of character vectors | string | string array

 readtable

1-12567

Placeholder text to treat as an empty value, specified as the comma-separated pair
consisting of 'TreatAsEmpty' and a character vector, cell array of character vectors,
string, or string array. Table elements corresponding to these characters are set to NaN.

'TreatAsEmpty' only applies to numeric columns in the file, and readtable does not
accept numeric literals, such as '-99'.
Example: 'TreatAsEmpty','N/A' or 'TreatAsEmpty',"N/A" sets N/A within
numeric columns to NaN.
Example: 'TreatAsEmpty',{'.','NA','N/A'} or 'TreatAsEmpty',
[".","NA","N/A"] sets ., NA and N/A within numeric columns to NaN.
Data Types: char | string

TextType — Type for imported text data
'char' (default) | 'string'

Type for imported text data, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'.

• 'char' — Import text data into MATLAB as character vectors.
• 'string' — Import text data into MATLAB as string arrays.

Example: 'TextType','char'

DatetimeType — Type for imported date and time data
'datetime' (default) | 'text' | 'exceldatenum' (spreadsheet files only)

Type for imported date and time data, specified as the comma-separated pair consisting
of 'DatetimeType' and one of these values: 'datetime', 'text', or
'exceldatenum'. The value 'exceldatenum' is applicable only for spreadsheet files,
and is not valid for text files.

Value Type for Imported Date and Time Data
'datetime' MATLAB datetime data type

For more information, see datetime.

1 Alphabetical List

1-12568

Value Type for Imported Date and Time Data
'text' If 'DatetimeType' is specified as 'text', then the type

for imported date and time data depends on the value
specified in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns dates as a cell array of character
vectors.

• If 'TextType' is set to 'string', then the importing
function returns dates as an array of strings.

'exceldatenum' Excel serial date numbers

A serial date number is a single number equal to the
number of days from a given reference date. Excel serial
date numbers use a different reference date than MATLAB
serial date numbers. For more information on Excel dates,
see https://support.microsoft.com/en-us/kb/
214330.

Data Types: char | string

Text Files Only

Delimiter — Field delimiter character
character vector | cell array of character vectors | string

Field delimiter character, specified as the comma-separated pair consisting of
'Delimiter' and a character vector, a cell array of character vectors, or a string.
Specify Delimiter using any valid character such as a comma ',' or a period '.'.

This table lists some commonly used field delimiter characters.

Specifier Field Delimiter
','

'comma'

Comma

' '

'space'

Space

 readtable

1-12569

https://support.microsoft.com/en-us/kb/214330
https://support.microsoft.com/en-us/kb/214330

Specifier Field Delimiter
'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

unspecified If unspecified, readtable automatically detects the delimiter.

To treat consecutive delimiters as a single delimiter, specify Delimiter as a cell array of
character vectors. In addition, you must also specify the MultipleDelimsAsOne option.
Example: 'Delimiter',',' or 'Delimiter','comma'
Data Types: char | string | cell

HeaderLines — Lines to skip
positive integer

Lines to skip at beginning of the file, specified as the comma-separated pair consisting of
'HeaderLines' and a positive integer. If unspecified, readtable automatically detects
the number of lines to skip.
Data Types: single | double

Format — Column format
character vector | string

Column format of the file, specified as the comma-separated pair consisting of 'Format'
and a character vector or a string scalar of one or more conversion specifiers. The
conversion specifiers are the same as the specifiers accepted by the textscan function.

Specifying the format can significantly improve speed for some large files. If you do not
specify a value for Format, then readtable uses %q to interpret nonnumeric columns.
The %q specifier reads the text and omits double quotation marks (") if appropriate.

By default, the variables created are either double or cell array of character vectors,
depending on the data. If the entire column is numeric, variables are imported as

1 Alphabetical List

1-12570

double. If any element in a column is not numeric, the variables are imported as cell
arrays of character vectors.
Data Types: char | string

EmptyValue — Returned value for empty numeric fields
NaN (default) | scalar

Returned value for empty numeric fields in delimited text files, specified as the comma-
separated pair consisting of 'EmptyValue' and a scalar.

MultipleDelimsAsOne — Multiple delimiter handling
0 (false) (default) | 1 (true)

Multiple delimiter handling, specified as the comma-separated pair consisting of
'MultipleDelimsAsOne' and either true or false. If true, then the importing
function treats consecutive delimiters as a single delimiter. Repeated delimiters separated
by white-space are also treated as a single delimiter. You must also specify the
Delimiter option.
Example: 'MultipleDelimsAsOne',1

CollectOutput — Logical indicator determining data concatenation
false (default) | true

Logical indicator determining data concatenation, specified as the comma-separated pair
consisting of 'CollectOutput' and either true or false. If true, then the importing
function concatenates consecutive output cells of the same fundamental MATLAB class
into a single array.

CommentStyle — Symbols designating text to ignore
character vector | cell array of character vectors | string | string array

Symbols designating text to ignore, specified as the comma-separated pair consisting of
'CommentStyle' and a character vector, cell array of character vectors, string, or string
array.

For example, specify a character such as '%' to ignore text following the symbol on the
same line. Specify a cell array of two character vectors, such as {'/*','*/'}, to ignore
any text between those sequences.

MATLAB checks for comments only at the start of each field, not within a field.
Example: 'CommentStyle',{'/*','*/'}

 readtable

1-12571

Data Types: char | string

ExpChars — Exponent characters
'eEdD' (default) | character vector | string

Exponent characters, specified as the comma-separated pair consisting of 'ExpChars'
and a character vector or string. The default exponent characters are e, E, d, and D.
Data Types: char | string

EndOfLine — End-of-line characters
character vector | string

End-of-line characters, specified as the comma-separated pair consisting of 'EndOfLine'
and a character vector or string. The character vector must be '\r\n' or it must specify
a single character. Common end-of-line characters are a newline character ('\n') or a
carriage return ('\r'). If you specify '\r\n', then the importing function treats any of
\r, \n, and the combination of the two (\r\n) as end-of-line characters.

The default end-of-line sequence is \n, \r, or \r\n, depending on the contents of your
file.

If there are missing values and an end-of-line sequence at the end of the last line in a file,
then the importing function returns empty values for those fields. This ensures that
individual cells in output cell array, C, are the same size.
Example: 'EndOfLine',':'
Data Types: char | string

DateLocale — Locale for reading dates
character vector | string scalar

Locale for reading dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar of the form xx_YY, where:

• YY is an uppercase ISO 3166-1 alpha-2 code indicating a country.
• xx is a lowercase ISO 639-1 two-letter code indicating a language.

For a list of common values for the locale, see the Locale name-value pair argument for
the datetime function.

1 Alphabetical List

1-12572

When using the %D format specifier to read text as datetime values, use DateLocale to
specify the locale in which the importing function should interpret month and day-of-week
names and abbreviations.

If you specify the DateLocale argument in addition to opts the import options, then the
importing function uses the specified value for the DateLocale argument, overriding the
locale defined in the import options.
Example: 'DateLocale','ja_JP'

Encoding — Character encoding scheme
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name like one of the values in this table. When you do not specify any encoding or specify
encoding as 'system', the readtable function uses your system default encoding to
read the file.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

If you specify the Encoding argument in addition to opts the import options, then the
readtable function uses the specified value for Encoding argument, overriding the
encoding defined in the import options.

 readtable

1-12573

Example: 'Encoding', 'UTF-8'
Example: 'Encoding', 'system' uses the system default encoding.
Data Types: char | string

DurationType — Output data type of duration data
'duration' (default) | 'text'

Output data type of duration data from text files, specified as the comma-separated pair
consisting of 'DurationType' and either 'duration' or 'text'.

Value Type for Imported Duration Data
'duration' MATLAB duration data type

For more information, see duration.
'text' If 'DurationType' is specified as 'text', then the type

for imported duration data depends on the value specified
in the 'TextType' parameter:

• If 'TextType' is 'char', then the importing function
returns duration data as a cell array of character
vectors.

• If 'TextType' is 'string', then the importing
function returns duration data as an array of strings.

Data Types: char | string

Spreadsheet Files Only

Sheet — Worksheet to read
1 (default) | positive integer | character vector | string

Worksheet to read, specified as the comma-separated pair consisting of 'Sheet' and a
positive integer indicating the worksheet index or a character vector or string containing
the worksheet name. The worksheet name cannot contain a colon (:). To determine the
names of sheets in a spreadsheet file, use [status,sheets] = xlsfinfo(filename).
For more information, see xlsfinfo.

If you specify the Sheet argument in addition to opts the import options, then the
readtable function uses the specified value for Sheet argument, overriding the sheet
name defined in the import options.

1 Alphabetical List

1-12574

Example: 'Sheet', 2
Example: 'Sheet', 'MySheetName'
Example: 'Sheet', "MySheetName"
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Range — Portion of worksheet to read
character vector | string scalar

Portion of the worksheet to read, indicated as a rectangular area specified by a comma
separated pair consisting of 'Range' and a character vector or string scalar in one of the
following forms.

Ways to specify Range Description
'Corner1:Corner2'

Rectangular Range

Specify the range using the syntax
'Corner1:Corner2', where Corner1 and Corner2 are
two opposing corners that define the region. For
example, 'D2:H4' represents the 3-by-5 rectangular
region between the two corners D2 and H4 on the
worksheet. The 'Range' name-value pair argument is
not case-sensitive, and uses Excel A1 reference style (see
Excel help).

Example: 'Range','Corner1:Corner2'
''

Unspecified or Empty

If unspecified, readtable automatically detects the
used range.

Example: 'Range',''

Note: Used Range refers to the rectangular portion of
the spreadsheet that actually contains data. readtable
automatically detects the used range by trimming any
leading and trailing rows and columns that do not
contain data. Text that is only white space is considered
data and is captured within the used range.

 readtable

1-12575

Ways to specify Range Description
'Row1:Row2'

Row Range

You can identify range by specifying the beginning and
ending rows using Excel row designators. Then
readtable automatically detects the used column range
within the designated rows. For instance, readtable
interprets the range specification '1:7' as an
instruction to read all columns in the used range in rows
1 through 7 (inclusive).

Example: 'Range','1:7'
'Column1:Column2'

Column Range

You can identify range by specifying the beginning and
ending columns using Excel column designators. Then
readtable automatically detects the used row range
within the designated columns. For instance, readtable
interprets the range specification 'A:F' as an
instruction to read all rows in the used range in columns
A through F (inclusive).

Example: 'Range','A:F'
'NamedRange'

Excel’s Named Range

In Excel, you can create names to identify ranges in the
spreadsheet. For instance, you can select a rectangular
portion of the spreadsheet and call it 'myTable'. If such
named ranges exist in a spreadsheet, then readtable
can read that range using its name.

Example: 'Range','myTable'

Example: 'Range', 'A1:F10'
Example: 'Range', "A1:F10"
Data Types: char | string

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when reading spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

1 Alphabetical List

1-12576

When reading from spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The importing function starts an instance of Microsoft Excel when reading the
file. This setting is the default for Windows systems with Excel installed.

• false — The importing function does not start an instance of Microsoft Excel when
reading the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, the importing function functionality differs in the
support of file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

Output Arguments
T — Output table
table

Output table, returned as a table. The table can store metadata such as descriptions,
variable units, variable names, and row names. For more information, see the Properties
section of table.

Tips
• Large files in XLSX format sometimes load slowly. For better import and export

performance, Microsoft recommends that you use the XLSB format.

 readtable

1-12577

See Also
Import Tool | detectImportOptions | preview | readcell | readmatrix |
readtimetable | readvars | table | textscan | writetable

Topics
“Access Data in a Table”
“Ways to Import Text Files”
“Ways to Import Spreadsheets”

Introduced in R2013b

1 Alphabetical List

1-12578

readtimetable
Create timetable from file

Syntax
TT = readtimetable(filename)
TT = readtimetable(filename,opts)
TT = readtimetable(___ ,Name,Value)

Description
TT = readtimetable(filename) creates a timetable by reading column-oriented data
from a file.

readtimetable determines the file format from the file extension:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

readtimetable creates one variable in TT for each column in the file and reads variable
names from the first row of the file.

readtimetable sets the first column of type datetime or duration in the tabular data
to be the row times of the timetable. The remaining columns become variables of the
timetable.

TT = readtimetable(filename,opts) creates a table using the import options opts.

TT = readtimetable(___ ,Name,Value) creates a table from a file with additional
options specified by one or more name-value pair arguments. Use any of the input
arguments from the previous syntaxes before specifying the name-value pairs.

To set specific import options for your data, you can either use the opts object or you can
specify name-value pairs. When you specify name-value pairs in addition to opts, then
readtimetable supports only these name-value pairs:

 readtimetable

1-12579

• Text and spreadsheet parameters — ReadVariableNames, RowTimes, SampleRate,
TimeStep, StartTime

• Text only parameters — DateLocale, Encoding
• Spreadsheet only parameters — Sheet, UseExcel

Examples

Create Timetable from Text File

Create a table from the comma-separated text file.

TT = readtimetable('outages.csv');

Display a summary of the table. When creating a timetable, if you do not specify any
parameters for row times, then the readtimetable function detects and designates the
first datetime or duration variable in the data, OutageTime, as the row times
variable.The remaining variables become the variables of the timetable.

summary(TT)

RowTimes:

 OutageTime: 1468x1 datetime
 Values:
 Min 01-Feb-2002 12:18:00
 Median 18-Mar-2010 21:05:30
 Max 15-Jan-2014 02:41:00

Variables:

 Region: 1468x1 cell array of character vectors

 Loss: 1468x1 double

 Values:

 Min 0
 Median 180.26
 Max 23418
 NumMissing 604

1 Alphabetical List

1-12580

 Customers: 1468x1 double

 Values:

 Min 0
 Median 75765
 Max 5.9689e+06
 NumMissing 328

 RestorationTime: 1468x1 datetime

 Values:

 Min 07-Feb-2002 16:50:00
 Median 31-Mar-2010 10:54:00
 Max 18-Sep-2042 23:31:00
 NumMissing 29

 Cause: 1468x1 cell array of character vectors

Create Timetable from File using Import Options

Detect import options for a text file, specify the variable types, and then create a
timetable from the data.

Create an import options object from a file and examine the variable options.

opts = detectImportOptions('outages.csv');
opts.VariableOptions

ans =
 1x6 heterogeneous VariableImportOptions (TextVariableImportOptions, DatetimeVariableImportOptions, NumericVariableImportOptions) array with properties:

 Name
 Type
 FillValue
 TreatAsMissing
 QuoteRule
 Prefixes
 Suffixes
 EmptyFieldRule

 readtimetable

1-12581

Modify the options object to specify the desired datatypes for the variables in the data.
Change the datatypes for the variables Region and Cause to categorical.

opts = setvartype(opts,{'Region','Cause'},{'categorical','categorical'});

Use readtimetable along with the options object to import the timetable. Then display
a summary of the timetable.

TT = readtimetable('outages.csv',opts);
summary(TT)

RowTimes:

 OutageTime: 1468x1 datetime
 Values:
 Min 01-Feb-2002 12:18:00
 Median 18-Mar-2010 21:05:30
 Max 15-Jan-2014 02:41:00

Variables:

 Region: 1468x1 categorical

 Values:

 MidWest 142
 NorthEast 557
 SouthEast 389
 SouthWest 26
 West 354

 Loss: 1468x1 double

 Values:

 Min 0
 Median 180.26
 Max 23418
 NumMissing 604

 Customers: 1468x1 double

 Values:

 Min 0

1 Alphabetical List

1-12582

 Median 75765
 Max 5.9689e+06
 NumMissing 328

 RestorationTime: 1468x1 datetime

 Values:

 Min 07-Feb-2002 16:50:00
 Median 31-Mar-2010 10:54:00
 Max 18-Sep-2042 23:31:00
 NumMissing 29

 Cause: 1468x1 categorical

 Values:

 attack 294
 earthquake 2
 energy emergency 188
 equipment fault 156
 fire 25
 severe storm 338
 thunder storm 201
 unknown 24
 wind 95
 winter storm 145

Create Timetable from File and Specify Row Times

Read a table from the comma-separated text file and create a timetable with a row times
variable of your choice.

Create an import options object and preview the tabular data.

opts = detectImportOptions('outages.csv');
preview('outages.csv',opts)

ans=8×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ____________________ ______ __________ ____________________ _________________

 readtimetable

1-12583

 'SouthWest' 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00 'winter storm'
 'SouthEast' 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00 'winter storm'
 'West' 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00 'equipment fault'
 'MidWest' 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00 'severe storm'
 'West' 18-Jun-2003 02:49:00 0 0 18-Jun-2003 10:54:00 'attack'
 'West' 20-Jun-2004 14:39:00 231.29 NaN 20-Jun-2004 19:16:00 'equipment fault'
 'West' 06-Jun-2002 19:28:00 311.86 NaN 07-Jun-2002 00:51:00 'equipment fault'

Create a timetable by specifying the RestorationTime variable to be the row times
variable for the timetable. Then, display a summary of the timetable.

TT = readtimetable('outages.csv','RowTimes','RestorationTime');
summary(TT)

RowTimes:

 RestorationTime: 1468x1 datetime
 Values:
 Min 07-Feb-2002 16:50:00
 Median 31-Mar-2010 10:54:00
 Max 18-Sep-2042 23:31:00
 NumMissing 29

Variables:

 Region: 1468x1 cell array of character vectors

 OutageTime: 1468x1 datetime

 Values:

 Min 01-Feb-2002 12:18:00
 Median 18-Mar-2010 21:05:30
 Max 15-Jan-2014 02:41:00

 Loss: 1468x1 double

 Values:

 Min 0
 Median 180.26
 Max 23418
 NumMissing 604

1 Alphabetical List

1-12584

 Customers: 1468x1 double

 Values:

 Min 0
 Median 75765
 Max 5.9689e+06
 NumMissing 328

 Cause: 1468x1 cell array of character vectors

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or a string scalar.

Depending on the location of your file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myFile.txt'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name in
filename.

Example: 'C:\myFolder\myFile.xlsx'

Example: 'dataDir\myFile.txt'

 readtimetable

1-12585

Location Form
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.csv'

• If filename includes the file extension, then the importing function determines the
file format from the extension. Otherwise, you must specify the 'FileType' name-
value pair arguments to indicate the type of file.

• On Windows systems with Microsoft Excel software, the importing function reads any
Excel spreadsheet file format recognized by your version of Excel.

• If your system does not have Excel for Windows or if you are using MATLAB Online,
the importing function operates with the UseExcel property set to false, and reads
only .xls, .xlsx, .xlsm, .xltx, and .xltm files.

• For delimited text files, the importing function converts empty fields in the file to
either NaN (for a numeric variable) or an empty character vector (for a text variable).
All lines in the text file must have the same number of delimiters. The importing
function ignores insignificant white space in the file.

Data Types: char | string

opts — File import options
SpreadsheetImportOptions | DelimitedtextImportOptions |
FixedWidthImportOptions

1 Alphabetical List

1-12586

File import options, specified as an SpreadsheetImportOptions,
DelimitedTextImportOptions, or FixedWidthImportOptions object created by the
detectImportOptions function. The opts object contains properties that control the
data import process. For more information on the properties of each object, see the
appropriate object page.

Type of Files Output
Spreadsheet files SpreadsheetImportOptions object
Text files DelimitedTextImportOptions object
Fixed-width text files FixedWidthImportOptions object

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumHeaderLines',5 indicates that the first five lines that precede the
tabular data are header lines.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and
'text' or 'spreadsheet'.

Specify the 'FileType' name-value pair argument when the filename does not include
the file extension or if the extension is other than one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

Example: 'FileType','text'
Data Types: char | string

NumHeaderLines — Number of header lines
positive integer

 readtimetable

1-12587

Number of header lines in the file, specified as the comma-separated pair consisting of
'NumHeaderLines' and a positive integer. If unspecified, the importing function
automatically detects the number of header lines in the file.
Example: 'NumHeaderLines',7
Data Types: single | double

ExpectedNumVariables — Expected number of variables
positive integer

Expected number of variables, specified as the comma-separated pair consisting of
'ExpectedNumVariables' and a positive integer. If unspecified, the importing function
automatically detects the number of variables.
Data Types: single | double

Range — Portion of data to read
character vector | string scalar | numeric vector

Portion of the data to read from text or spreadsheet files, specified as the comma
separated pair consisting of 'Range' and a character vector, string scalar, or numeric
vector in one of these forms.

Ways to specify Range Description
Starting Cell

'Cell' or [row col]

Specify the starting cell for the data as a character
vector or string scalar or a two element numeric vector.

• Character vector or string scalar containing a
column letter and row number using Excel A1
notation. For example, A5 is the identifier for the
cell at the intersection of column A and row 5.

• Two element numeric vector of the form [row col]
indicating the starting row and column.

Using the starting cell, the importing function
automatically detects the extent of the data by
beginning the import at the start cell and ending at the
last empty row or footer range.

Example: 'A5' or [5 1]

1 Alphabetical List

1-12588

Ways to specify Range Description
Rectangular Range

'Corner1:Corner2' or [r1
c1 r2 c2]

Specify the exact range to read using the rectangular
range in one of these forms.

• 'Corner1:Corner2' — Specify the range using
Corner1 and Corner2 which are the two opposing
corners that define the region to read in Excel A1
notation. For example, 'C2:N15'.

• [r1 c1 r2 c2] — Specify the range using a four
element numeric vector containing start-row, start-
column, end-row, and end-column. For example, [2
3 15 13].

The importing function only reads the data contained in
the specified range. Any empty fields within the
specified range are imported as missing cells.

Row Range or Column Range

'Row1:Row2' or
'Column1:Column2'

Specify the range by identifying the beginning and
ending rows using Excel row numbers.

Using the specified row range, the importing function
automatically detects the column extent by reading
from the first nonempty column to the end of the data,
and creates one variable per column.

Example: '5:500'

Alternatively, specify the range by identifying the
beginning and ending columns using Excel column
letters or numbers.

Using the specified column range, the import function
automatically detects the row extent by reading from
the first nonempty row to the end of the data or the
footer range.

The number of columns in the specified range must
match the number specified in the
ExpectedNumVariables property.

Example: 'A:K'

 readtimetable

1-12589

Ways to specify Range Description
Starting Row Number

n

Specify the first row containing the data using the
positive scalar row index.

Using the specified row index, the importing function
automatically detects the extent of the data by reading
from the specified first row to the end of the data or the
footer range.

Example:5
Excel’s Named Range

'NamedRange'

In Excel, you can create names to identify ranges in the
spreadsheet. For instance, you can select a rectangular
portion of the spreadsheet and call it 'myTable'. If
such named ranges exist in a spreadsheet, then the
importing function can read that range using its name.

Example: 'Range','myTable'
Unspecified or Empty

''

If unspecified, the importing function automatically
detects the used range.

Example: 'Range',''

Note: Used Range refers to the rectangular portion of
the spreadsheet that actually contains data. The
importing function automatically detects the used
range by trimming any leading and trailing rows and
columns that do not contain data. Text that is only
white space is considered data and is captured within
the used range.

Data Types: char | string | double

TextType — Type for imported text data
'char' (default) | 'string'

Type for imported text data, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'.

• 'char' — Import text data into MATLAB as character vectors.
• 'string' — Import text data into MATLAB as string arrays.

1 Alphabetical List

1-12590

Example: 'TextType','char'

DatetimeType — Type for imported date and time data
'datetime' (default) | 'text' | 'exceldatenum' (spreadsheet files only)

Type for imported date and time data, specified as the comma-separated pair consisting
of 'DatetimeType' and one of these values: 'datetime', 'text', or
'exceldatenum'. The value 'exceldatenum' is applicable only for spreadsheet files,
and is not valid for text files.

Value Type for Imported Date and Time Data
'datetime' MATLAB datetime data type

For more information, see datetime.
'text' If 'DatetimeType' is specified as 'text', then the type

for imported date and time data depends on the value
specified in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns dates as a cell array of character
vectors.

• If 'TextType' is set to 'string', then the importing
function returns dates as an array of strings.

'exceldatenum' Excel serial date numbers

A serial date number is a single number equal to the
number of days from a given reference date. Excel serial
date numbers use a different reference date than MATLAB
serial date numbers. For more information on Excel dates,
see https://support.microsoft.com/en-us/kb/
214330.

Data Types: char | string

TreatAsMissing — Text to interpret as missing data
character vector | string scalar | cell array of character vectors | string array

Text to interpret as missing data, specified as a character vector, string scalar, cell array
of character vectors, or string array.

 readtimetable

1-12591

https://support.microsoft.com/en-us/kb/214330
https://support.microsoft.com/en-us/kb/214330

Example: 'TreatAsMissing',{'NA','TBD'} instructs the importing function to treat
any occurrence of NA or TBD as a missing fields.
Data Types: char | string | cell

ReadVariableNames — Read first row as variable names
true | false

Read the first row as variable names, specified as the comma-separated pair consisting of
'ReadVariableNames' and either true or false. If unspecified, the importing function
automatically detects the presence of variable names.

Indicator Description
true Use when the first row of the region to read contains the variable

names for the table. The importing function creates a variable,
with the detected variable name, for each column in T.

false Use when the first row of the region to read contains data in the
table. The importing function creates default variable names of the
form 'Var1',...,'VarN', where N is the number of variables.

Unspecified When left unspecified, the importing function automatically detects
true or false and proceeds accordingly.

When you specify ReadVariableNames name-value pair in addition to opts, then the
importing function proceeds as follows.

• If ReadVariableNames is set to true, then the importing function reads the variable
names from the specified file by using the VariableNamesRange or the
VariableNamesLine property of the import options object.

• If ReadVariableNames is set to false, then the importing function reads the
variable names from the VariableNames property of the import options object.

Data Types: logical

RowTimes — Row times variable
variable name | time vector

Row times variable, specified as the comma-separated pair consisting of 'RowTimes' and
a variable name or a time vector.

• Variable name must be a character vector or string scalar containing the name of any
variable in the input table that contains datetime or duration values. The variable

1 Alphabetical List

1-12592

specified by the variable name provides row time labels for the rows. The remaining
variables of the input table become the variables of the timetable.

• Time vector must be a datetime vector or a duration vector. The number of
elements of time vector must equal the number of rows of the input table. The time
values in the time vector do not need to be unique, sorted, or regular. All the variables
of the input table become variables of the timetable.

Data Types: char | string | datetime | duration

SampleRate — Sample rate for row times
positive numeric scalar

Sample rate for row times, specified as the comma-separated pair consisting of
'SampleRate' and a positive numeric scalar. The sample rate is the number of samples
per second (Hz) of the time vector of the output timetable.

When you use 'SampleRate' to specify the row time vector of the timetable, the default
first row time (start time) is zero second. To set a start time other than zero, specify
the'StartTime' name-value pair.
Data Types: double

TimeStep — Time step between row times
duration scalar | calendarDuration scalar

Time step between row times, specified as the comma-separated pair consisting of
'TimeStep' and a duration scalar or calendarDuration scalar. The value of the
'TimeStep' parameter specifies the length of time between consecutive row times. The
importing function uses the time step value to calculate regularly spaced row times.

When you use 'TimeStep' to specify the row time vector of the timetable, the default
first row time (start time) is zero second. To set a start time other than zero, specify the
'StartTime' name-value pair.

If the 'TimeStep' is a calendar duration value, then the 'StartTime' must be a
datetime value.
Data Types: duration | calendarDuration

StartTime — Start time of row times
datetime scalar | duration scalar

 readtimetable

1-12593

Start time of the row times, specified as the comma-separated pair consisting of
StartTime and a datetime scalar or duration scalar.

To define the time vector for the timetable, use 'StartTime' with either the
'SampleRate' or the 'TimeStep' name-value pair arguments.

The data type of the start time, dictates the data type of the row time vector.

• If the start time is a datetime value, then the row times of the timetable are datetime
values.

• If the start time is a duration value, then the row times are durations.

Data Types: datetime | duration

Text Files Only

Delimiter — Field delimiter characters
character vector | string scalar | cell array of character vectors | string array

Field delimiter characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'Delimiter','|'
Example: 'Delimiter',{';','*'}
Data Types: char | string | cell

Whitespace — Characters to treat as white space
character vector | string scalar

Characters to treat as white space, specified as a character vector or string scalar
containing one or more characters.
Example: 'Whitespace',' _'
Example: 'Whitespace','?!.,'

LineEnding — End-of-line characters
{'\n','\r','\r\n'} (default) | character vector | string scalar | cell array of character
vectors | string array

End-of-line characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.

1 Alphabetical List

1-12594

Example: 'LineEnding','\n'
Example: 'LineEnding','\r\n'
Example: 'LineEnding',{'\b',':'}
Data Types: char | string | cell

CommentStyle — Style of comments
character vector | string scalar | cell array of character vectors | string array

Style of comments, specified as a character vector, string scalar, cell array of character
vectors, or string array.

For example, to ignore the text following a percent sign on the same line, specify
CommentStyle as '%'.
Example: 'CommentStyle',{'/*'}
Data Types: char | string | cell

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name, such as one of the values in this table.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'

 readtimetable

1-12595

'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' uses the system default encoding.
Data Types: char | string

DurationType — Output data type of duration data
'duration' (default) | 'text'

Output data type of duration data from text files, specified as the comma-separated pair
consisting of 'DurationType' and either 'duration' or 'text'.

Value Type for Imported Duration Data
'duration' MATLAB duration data type

For more information, see duration.
'text' If 'DurationType' is specified as 'text', then the type

for imported duration data depends on the value specified
in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns duration data as a cell array of
character vectors.

• If 'TextType' is set to 'string', then the importing
function returns duration data as an array of strings.

Data Types: char | string

DateLocale — Locale for reading dates
character vector | string scalar

Locale for reading dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar of the form xx_YY, where:

• YY is an uppercase ISO 3166-1 alpha-2 code indicating a country.
• xx is a lowercase ISO 639-1 two-letter code indicating a language.

For a list of common values for the locale, see the Locale name-value pair argument for
the datetime function.

1 Alphabetical List

1-12596

When using the %D format specifier to read text as datetime values, use DateLocale to
specify the locale in which the importing function should interpret month and day-of-week
names and abbreviations.

If you specify the DateLocale argument in addition to opts the import options, then the
importing function uses the specified value for the DateLocale argument, overriding the
locale defined in the import options.
Example: 'DateLocale','ja_JP'

DecimalSeparator — Characters indicating decimal separator
character vector | string scalar

Characters indicating the decimal separator in numeric variables, specified as a character
vector or string scalar. The importing function uses the characters specified in the
DecimalSeparator name-value pair to distinguish the integer part of a number from the
decimal part.

When converting to integer data types, numbers with a decimal part are rounded to the
nearest integer.
Example: If name-value pair is specified as 'DecimalSeparator',',', then the
importing function imports the text "3,14159" as the number 3.14159.
Data Types: char | string

ThousandsSeparator — Characters that indicate thousands grouping
character vector | string scalar

Characters that indicate the thousands grouping in numeric variables, specified as a
character vector or string scalar. The thousands grouping characters act as visual
separators, grouping the number at every three place values. The importing function uses
the characters specified in the ThousandsSeparator name-value pair to interpret the
numbers being imported.
Example: If name-value pair is specified as 'ThousandsSeparator',',', then the
importing function imports the text "1,234,000" as 1234000.
Data Types: char | string

TrimNonNumeric — Remove nonnumeric characters
false (default) | true

Remove nonnumeric characters from a numeric variable, specified as a logical true or
false.

 readtimetable

1-12597

Example: If name-value pair is specified as 'TrimNonNumeric',true, then the
importing function reads '$500/-' as 500.
Data Types: logical

ConsecutiveDelimitersRule — Procedure to handle consecutive delimiters
'split' | 'join' | 'error'

Procedure to handle consecutive delimiters, specified as one of the values in this table.

Consecutive Delimiters
Rule

Behavior

'split' Split the consecutive delimiters into multiple fields.
'join' Join the delimiters into one delimiter.
'error' Return an error and abort the import operation.

Data Types: char | string

LeadingDelimitersRule — Procedure to manage leading delimiters
'keep' | 'ignore' | 'error'

Procedure to manage leading delimiters, specified as one of the values in this table.

Leading Delimiters Rule Behavior
'keep' Keep the delimiter.
'ignore' Ignore the delimiter.
'error' Return an error and abort the import operation.

Spreadsheet Files Only

Sheet — Sheet to read from
'' empty character array (default) | character vector | string scalar | positive scalar
integer

Sheet to read from, specified as an empty character array, a character vector or string
scalar containing the sheet name, or a positive scalar integer denoting the sheet index.
Based on the value specified for the Sheet property, the import function behaves as
described in the table.

1 Alphabetical List

1-12598

Specification Behavior
'' (default) Import data from the first sheet.
Name Import data from the matching sheet name, regardless of

order of sheets in the spreadsheet file.
Integer Import data from sheet in the position denoted by the

integer, regardless of the sheet names in the spreadsheet
file.

Data Types: char | string | single | double

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when reading spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When reading from spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The importing function starts an instance of Microsoft Excel when reading the
file. This setting is the default for Windows systems with Excel installed.

• false — The importing function does not start an instance of Microsoft Excel when
reading the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, the importing function functionality differs in the
support of file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

 readtimetable

1-12599

Output Arguments
TT — Output timetable
timetable

Output timetable. The timetable can store metadata such as descriptions, variable units,
variable names, and row times. For more information, see the Properties sections of
timetable.

See Also
readcell | readmatrix | readtable | readvars | timetable | timetable2table |
writetimetable

Introduced in R2019a

1 Alphabetical List

1-12600

readvars
Read variables from file

Syntax
[Var1,Var2,...,VarN] = readvars(filename)
[Var1,Var2,...,VarN] = readvars(filename,opts)
[Var1,Var2,...,VarN] = readvars(___ ,Name,Value)

Description
[Var1,Var2,...,VarN] = readvars(filename) creates variables by reading
column-oriented data from a file. If the file contains N columns of data, then readvars
returns N variables Var1,Var2,...,VarN.

readmatrix determines the file format from the file extension:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

[Var1,Var2,...,VarN] = readvars(filename,opts) uses the import options
opts to import variables.

[Var1,Var2,...,VarN] = readvars(___ ,Name,Value) creates variables from a
file with additional options specified by one or more name-value pair arguments. Use any
of the input arguments from the previous syntaxes before specifying the name-value
pairs.

To set specific import options for your data, you can either use the opts object or you can
specify name-value pairs. If you specify name-value pairs in addition to opts, then
readvars supports only these name-value pairs:

• Text Files — DateLocale, Encoding
• Spreadsheet Files — Sheet, UseExcel

 readvars

1-12601

Examples

Read Variables from Text File

Import columns from tabular data in a text file as separate variables. First, preview the
contents of the text file outages.csv and then read columns.

Preview the data in outages.csv. The file has 6 variables.

opts = detectImportOptions('outages.csv');
preview('outages.csv',opts)

ans=8×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ____________________ ______ __________ ____________________ _________________

 'SouthWest' 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00 'winter storm'
 'SouthEast' 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00 'winter storm'
 'West' 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00 'equipment fault'
 'MidWest' 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00 'severe storm'
 'West' 18-Jun-2003 02:49:00 0 0 18-Jun-2003 10:54:00 'attack'
 'West' 20-Jun-2004 14:39:00 231.29 NaN 20-Jun-2004 19:16:00 'equipment fault'
 'West' 06-Jun-2002 19:28:00 311.86 NaN 07-Jun-2002 00:51:00 'equipment fault'

Import the first three columns as separate variables in the workspace.

[Region,OutageTime,Loss] = readvars('outages.csv');
whos Region OutageTime Loss

 Name Size Bytes Class Attributes

 Loss 1468x1 11744 double
 OutageTime 1468x1 23489 datetime
 Region 1468x1 186732 cell

1 Alphabetical List

1-12602

Read Variables from Spreadsheet File

Import columns from a spreadsheet file as separate variables in the workspace. First,
preview the contents of the text file outages.csv and then read columns as separate
variables.

Preview the data in patients.xls. The file has 10 variables.

opts = detectImportOptions('patients.xls');
preview('patients.xls',opts)

ans=8×10 table
 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 __________ ________ ___ ___________________________ ______ ______ ______ ________ _________ ________________________

 'Smith' 'Male' 38 'County General Hospital' 71 176 true 124 93 'Excellent'
 'Johnson' 'Male' 43 'VA Hospital' 69 163 false 109 77 'Fair'
 'Williams' 'Female' 38 'St. Mary's Medical Center' 64 131 false 125 83 'Good'
 'Jones' 'Female' 40 'VA Hospital' 67 133 false 117 75 'Fair'
 'Brown' 'Female' 49 'County General Hospital' 64 119 false 122 80 'Good'
 'Davis' 'Female' 46 'St. Mary's Medical Center' 68 142 false 121 70 'Good'
 'Miller' 'Female' 33 'VA Hospital' 64 142 true 130 88 'Good'
 'Wilson' 'Male' 40 'VA Hospital' 68 180 false 115 82 'Good'

Import the first three columns as separate variables in the workspace.

[LastName,Gender,Age] = readvars('patients.xls');
whos LastName Gender Age

 Name Size Bytes Class Attributes

 Age 100x1 800 double
 Gender 100x1 12212 cell
 LastName 100x1 12416 cell

Read Variables from Specified Sheet and Range using Import Options

Preview the data from a spreadsheet file and import columns of data from a specified
sheet and range as separate variables.

The spreadsheet file airlinesmall_subset.xlsx contains data in multiple
worksheets for years between 1996 and 2008. Each worksheet has data for a given year.

 readvars

1-12603

Preview the data from file airlinesmall_subset.xlsx. The preview function shows
data from the from the first worksheet by default.

opts = detectImportOptions('airlinesmall_subset.xlsx');
preview('airlinesmall_subset.xlsx',opts)

ans=8×29 table
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay SDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ ________ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ______ _____________ _________________

 1996 1 18 4 2117 2120 2305 2259 'HP' 415 'N637AW' 108 99 85 6 -3 'COS' 'PHX' 551 5 18 0 '' 0 '' '' '' '' ''
 1996 1 12 5 1252 1245 1511 1500 'HP' 610 'N905AW' 79 75 58 11 7 'LAX' 'PHX' 370 3 18 0 '' 0 '' '' '' '' ''
 1996 1 16 2 1441 1445 1708 1721 'HP' 211 'N165AW' 87 96 74 -13 -4 'RNO' 'PHX' 601 4 9 0 '' 0 '' '' '' '' ''
 1996 1 1 1 2258 2300 2336 2335 'HP' 1245 'N183AW' 38 35 20 1 -2 'TUS' 'PHX' 110 6 12 0 '' 0 '' '' '' '' ''
 1996 1 4 4 1814 1814 1901 1910 'US' 683 'N963VJ' 47 56 34 -9 0 'DTW' 'PIT' 201 6 7 0 '' 0 '' '' '' '' ''
 1996 1 31 3 1822 1820 1934 1925 'US' 757 'N912VJ' 72 65 52 9 2 'PHL' 'PIT' 267 6 14 0 '' 0 '' '' '' '' ''
 1996 1 18 4 729 730 841 843 'US' 1564 'N941VJ' 72 73 58 -2 -1 'DCA' 'PVD' 357 3 11 0 '' 0 '' '' '' '' ''
 1996 1 26 5 1704 1705 1829 1839 'NW' 1538 'N960N' 85 94 69 -10 -1 'DTW' 'RIC' 456 3 13 0 '' 0 '' '' '' '' ''

Configure the values in the opts object to import 10 rows for the columns 5 and 6 of the
worksheet named '2007'.

opts.Sheet = '2007';
opts.SelectedVariableNames = [5 6];
opts.DataRange = '2:11';
[DepTime,CRSDepTime] = readvars('airlinesmall_subset.xlsx',opts);

Display the variables.

[DepTime, CRSDepTime]

ans = 10×2

 711 710
 652 655
 1116 1120
 825 825
 1411 1400
 1935 1935
 2005 2005
 1525 1525
 1133 1105
 922 925

1 Alphabetical List

1-12604

Read Variables from Specified Sheet and Range

Preview the data from a spreadsheet file and import columns as separate variables from a
specified sheet and range.

The spreadsheet file airlinesmall_subset.xlsx contains data in multiple
worksheets for years between 1996 and 2008. Each worksheet has data for a given year.
Preview the data from file airlinesmall_subset.xlsx. The preview function shows
data from the from the first worksheet by default.

opts = detectImportOptions('airlinesmall_subset.xlsx');
preview('airlinesmall_subset.xlsx',opts)

ans=8×29 table
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay SDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ ________ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ______ _____________ _________________

 1996 1 18 4 2117 2120 2305 2259 'HP' 415 'N637AW' 108 99 85 6 -3 'COS' 'PHX' 551 5 18 0 '' 0 '' '' '' '' ''
 1996 1 12 5 1252 1245 1511 1500 'HP' 610 'N905AW' 79 75 58 11 7 'LAX' 'PHX' 370 3 18 0 '' 0 '' '' '' '' ''
 1996 1 16 2 1441 1445 1708 1721 'HP' 211 'N165AW' 87 96 74 -13 -4 'RNO' 'PHX' 601 4 9 0 '' 0 '' '' '' '' ''
 1996 1 1 1 2258 2300 2336 2335 'HP' 1245 'N183AW' 38 35 20 1 -2 'TUS' 'PHX' 110 6 12 0 '' 0 '' '' '' '' ''
 1996 1 4 4 1814 1814 1901 1910 'US' 683 'N963VJ' 47 56 34 -9 0 'DTW' 'PIT' 201 6 7 0 '' 0 '' '' '' '' ''
 1996 1 31 3 1822 1820 1934 1925 'US' 757 'N912VJ' 72 65 52 9 2 'PHL' 'PIT' 267 6 14 0 '' 0 '' '' '' '' ''
 1996 1 18 4 729 730 841 843 'US' 1564 'N941VJ' 72 73 58 -2 -1 'DCA' 'PVD' 357 3 11 0 '' 0 '' '' '' '' ''
 1996 1 26 5 1704 1705 1829 1839 'NW' 1538 'N960N' 85 94 69 -10 -1 'DTW' 'RIC' 456 3 13 0 '' 0 '' '' '' '' ''

Import 10 rows of the first three variables from the worksheet named '2007'.

[Year, Month, DayOfMonth] = readvars('airlinesmall_subset.xlsx','Sheet','2007','Range','A2:C11');
whos Year Month DayOfMonth

 Name Size Bytes Class Attributes

 DayOfMonth 10x1 80 double
 Month 10x1 80 double
 Year 10x1 80 double

disp([Year Month DayOfMonth])

 2007 1 2
 2007 1 3

 readvars

1-12605

 2007 1 4
 2007 1 5
 2007 1 7
 2007 1 8
 2007 1 9
 2007 1 11
 2007 1 12
 2007 1 13

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or a string scalar.

Depending on the location of your file, filename can take on one of these forms.

Location Form
Current folder or folder
on the MATLAB path

Specify the name of the file in filename.

Example: 'myFile.txt'
File in a folder If the file is not in the current folder or in a folder on the

MATLAB path, then specify the full or relative path name in
filename.

Example: 'C:\myFolder\myFile.xlsx'

Example: 'dataDir\myFile.txt'

1 Alphabetical List

1-12606

Location Form
Remote Location If the file is stored at a remote location, then filename must

contain the full path of the file specified as an
internationalized resource identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.csv'

• If filename includes the file extension, then the importing function determines the
file format from the extension. Otherwise, you must specify the 'FileType' name-
value pair arguments to indicate the type of file.

• On Windows systems with Microsoft Excel software, the importing function reads any
Excel spreadsheet file format recognized by your version of Excel.

• If your system does not have Excel for Windows or if you are using MATLAB Online,
the importing function operates with the UseExcel property set to false, and reads
only .xls, .xlsx, .xlsm, .xltx, and .xltm files.

• For delimited text files, the importing function converts empty fields in the file to
either NaN (for a numeric variable) or an empty character vector (for a text variable).
All lines in the text file must have the same number of delimiters. The importing
function ignores insignificant white space in the file.

Data Types: char | string

opts — File import options
SpreadsheetImportOptions | DelimitedtextImportOptions |
FixedWidthImportOptions

 readvars

1-12607

File import options, specified as an SpreadsheetImportOptions,
DelimitedTextImportOptions, or FixedWidthImportOptions object created by the
detectImportOptions function. The opts object contains properties that control the
data import process. For more information on the properties of each object, see the
appropriate object page.

Type of Files Output
Spreadsheet files SpreadsheetImportOptions object
Text files DelimitedTextImportOptions object
Fixed-width text files FixedWidthImportOptions object

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumHeaderLines',5 indicates that the first five lines that precede the
tabular data are header lines.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and
'text' or 'spreadsheet'.

Specify the 'FileType' name-value pair argument when the filename does not include
the file extension or if the extension is other than one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet files

Example: 'FileType','text'
Data Types: char | string

NumHeaderLines — Number of header lines
positive integer

1 Alphabetical List

1-12608

Number of header lines in the file, specified as the comma-separated pair consisting of
'NumHeaderLines' and a positive integer. If unspecified, the importing function
automatically detects the number of header lines in the file.
Example: 'NumHeaderLines',7
Data Types: single | double

ExpectedNumVariables — Expected number of variables
positive integer

Expected number of variables, specified as the comma-separated pair consisting of
'ExpectedNumVariables' and a positive integer. If unspecified, the importing function
automatically detects the number of variables.
Data Types: single | double

Range — Portion of data to read
character vector | string scalar | numeric vector

Portion of the data to read from text or spreadsheet files, specified as the comma
separated pair consisting of 'Range' and a character vector, string scalar, or numeric
vector in one of these forms.

Ways to specify Range Description
Starting Cell

'Cell' or [row col]

Specify the starting cell for the data as a character
vector or string scalar or a two element numeric vector.

• Character vector or string scalar containing a
column letter and row number using Excel A1
notation. For example, A5 is the identifier for the
cell at the intersection of column A and row 5.

• Two element numeric vector of the form [row col]
indicating the starting row and column.

Using the starting cell, the importing function
automatically detects the extent of the data by
beginning the import at the start cell and ending at the
last empty row or footer range.

Example: 'A5' or [5 1]

 readvars

1-12609

Ways to specify Range Description
Rectangular Range

'Corner1:Corner2' or [r1
c1 r2 c2]

Specify the exact range to read using the rectangular
range in one of these forms.

• 'Corner1:Corner2' — Specify the range using
Corner1 and Corner2 which are the two opposing
corners that define the region to read in Excel A1
notation. For example, 'C2:N15'.

• [r1 c1 r2 c2] — Specify the range using a four
element numeric vector containing start-row, start-
column, end-row, and end-column. For example, [2
3 15 13].

The importing function only reads the data contained in
the specified range. Any empty fields within the
specified range are imported as missing cells.

Row Range or Column Range

'Row1:Row2' or
'Column1:Column2'

Specify the range by identifying the beginning and
ending rows using Excel row numbers.

Using the specified row range, the importing function
automatically detects the column extent by reading
from the first nonempty column to the end of the data,
and creates one variable per column.

Example: '5:500'

Alternatively, specify the range by identifying the
beginning and ending columns using Excel column
letters or numbers.

Using the specified column range, the import function
automatically detects the row extent by reading from
the first nonempty row to the end of the data or the
footer range.

The number of columns in the specified range must
match the number specified in the
ExpectedNumVariables property.

Example: 'A:K'

1 Alphabetical List

1-12610

Ways to specify Range Description
Starting Row Number

n

Specify the first row containing the data using the
positive scalar row index.

Using the specified row index, the importing function
automatically detects the extent of the data by reading
from the specified first row to the end of the data or the
footer range.

Example:5
Excel’s Named Range

'NamedRange'

In Excel, you can create names to identify ranges in the
spreadsheet. For instance, you can select a rectangular
portion of the spreadsheet and call it 'myTable'. If
such named ranges exist in a spreadsheet, then the
importing function can read that range using its name.

Example: 'Range','myTable'
Unspecified or Empty

''

If unspecified, the importing function automatically
detects the used range.

Example: 'Range',''

Note: Used Range refers to the rectangular portion of
the spreadsheet that actually contains data. The
importing function automatically detects the used
range by trimming any leading and trailing rows and
columns that do not contain data. Text that is only
white space is considered data and is captured within
the used range.

Data Types: char | string | double

TextType — Type for imported text data
'char' (default) | 'string'

Type for imported text data, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'.

• 'char' — Import text data into MATLAB as character vectors.
• 'string' — Import text data into MATLAB as string arrays.

 readvars

1-12611

Example: 'TextType','char'

DatetimeType — Type for imported date and time data
'datetime' (default) | 'text' | 'exceldatenum' (spreadsheet files only)

Type for imported date and time data, specified as the comma-separated pair consisting
of 'DatetimeType' and one of these values: 'datetime', 'text', or
'exceldatenum'. The value 'exceldatenum' is applicable only for spreadsheet files,
and is not valid for text files.

Value Type for Imported Date and Time Data
'datetime' MATLAB datetime data type

For more information, see datetime.
'text' If 'DatetimeType' is specified as 'text', then the type

for imported date and time data depends on the value
specified in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns dates as a cell array of character
vectors.

• If 'TextType' is set to 'string', then the importing
function returns dates as an array of strings.

'exceldatenum' Excel serial date numbers

A serial date number is a single number equal to the
number of days from a given reference date. Excel serial
date numbers use a different reference date than MATLAB
serial date numbers. For more information on Excel dates,
see https://support.microsoft.com/en-us/kb/
214330.

Data Types: char | string

TreatAsMissing — Text to interpret as missing data
character vector | string scalar | cell array of character vectors | string array

Text to interpret as missing data, specified as a character vector, string scalar, cell array
of character vectors, or string array.

1 Alphabetical List

1-12612

https://support.microsoft.com/en-us/kb/214330
https://support.microsoft.com/en-us/kb/214330

Example: 'TreatAsMissing',{'NA','TBD'} instructs the importing function to treat
any occurrence of NA or TBD as a missing fields.
Data Types: char | string | cell

Text Files Only

Delimiter — Field delimiter characters
character vector | string scalar | cell array of character vectors | string array

Field delimiter characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'Delimiter','|'
Example: 'Delimiter',{';','*'}
Data Types: char | string | cell

Whitespace — Characters to treat as white space
character vector | string scalar

Characters to treat as white space, specified as a character vector or string scalar
containing one or more characters.
Example: 'Whitespace',' _'
Example: 'Whitespace','?!.,'

LineEnding — End-of-line characters
{'\n','\r','\r\n'} (default) | character vector | string scalar | cell array of character
vectors | string array

End-of-line characters, specified as a character vector, string scalar, cell array of
character vectors, or string array.
Example: 'LineEnding','\n'
Example: 'LineEnding','\r\n'
Example: 'LineEnding',{'\b',':'}
Data Types: char | string | cell

CommentStyle — Style of comments
character vector | string scalar | cell array of character vectors | string array

 readvars

1-12613

Style of comments, specified as a character vector, string scalar, cell array of character
vectors, or string array.

For example, to ignore the text following a percent sign on the same line, specify
CommentStyle as '%'.
Example: 'CommentStyle',{'/*'}
Data Types: char | string | cell

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name, such as one of the values in this table.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' uses the system default encoding.
Data Types: char | string

DurationType — Output data type of duration data
'duration' (default) | 'text'

1 Alphabetical List

1-12614

Output data type of duration data from text files, specified as the comma-separated pair
consisting of 'DurationType' and either 'duration' or 'text'.

Value Type for Imported Duration Data
'duration' MATLAB duration data type

For more information, see duration.
'text' If 'DurationType' is specified as 'text', then the type

for imported duration data depends on the value specified
in the 'TextType' parameter:

• If 'TextType' is set to 'char', then the importing
function returns duration data as a cell array of
character vectors.

• If 'TextType' is set to 'string', then the importing
function returns duration data as an array of strings.

Data Types: char | string

DateLocale — Locale for reading dates
character vector | string scalar

Locale for reading dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar of the form xx_YY, where:

• YY is an uppercase ISO 3166-1 alpha-2 code indicating a country.
• xx is a lowercase ISO 639-1 two-letter code indicating a language.

For a list of common values for the locale, see the Locale name-value pair argument for
the datetime function.

When using the %D format specifier to read text as datetime values, use DateLocale to
specify the locale in which the importing function should interpret month and day-of-week
names and abbreviations.

If you specify the DateLocale argument in addition to opts the import options, then the
importing function uses the specified value for the DateLocale argument, overriding the
locale defined in the import options.
Example: 'DateLocale','ja_JP'

 readvars

1-12615

DecimalSeparator — Characters indicating decimal separator
character vector | string scalar

Characters indicating the decimal separator in numeric variables, specified as a character
vector or string scalar. The importing function uses the characters specified in the
DecimalSeparator name-value pair to distinguish the integer part of a number from the
decimal part.

When converting to integer data types, numbers with a decimal part are rounded to the
nearest integer.
Example: If name-value pair is specified as 'DecimalSeparator',',', then the
importing function imports the text "3,14159" as the number 3.14159.
Data Types: char | string

ThousandsSeparator — Characters that indicate thousands grouping
character vector | string scalar

Characters that indicate the thousands grouping in numeric variables, specified as a
character vector or string scalar. The thousands grouping characters act as visual
separators, grouping the number at every three place values. The importing function uses
the characters specified in the ThousandsSeparator name-value pair to interpret the
numbers being imported.
Example: If name-value pair is specified as 'ThousandsSeparator',',', then the
importing function imports the text "1,234,000" as 1234000.
Data Types: char | string

TrimNonNumeric — Remove nonnumeric characters
false (default) | true

Remove nonnumeric characters from a numeric variable, specified as a logical true or
false.
Example: If name-value pair is specified as 'TrimNonNumeric',true, then the
importing function reads '$500/-' as 500.
Data Types: logical

ConsecutiveDelimitersRule — Procedure to handle consecutive delimiters
'split' | 'join' | 'error'

Procedure to handle consecutive delimiters, specified as one of the values in this table.

1 Alphabetical List

1-12616

Consecutive Delimiters
Rule

Behavior

'split' Split the consecutive delimiters into multiple fields.
'join' Join the delimiters into one delimiter.
'error' Return an error and abort the import operation.

Data Types: char | string

LeadingDelimitersRule — Procedure to manage leading delimiters
'keep' | 'ignore' | 'error'

Procedure to manage leading delimiters, specified as one of the values in this table.

Leading Delimiters Rule Behavior
'keep' Keep the delimiter.
'ignore' Ignore the delimiter.
'error' Return an error and abort the import operation.

Spreadsheet Files Only

Sheet — Sheet to read from
'' empty character array (default) | character vector | string scalar | positive scalar
integer

Sheet to read from, specified as an empty character array, a character vector or string
scalar containing the sheet name, or a positive scalar integer denoting the sheet index.
Based on the value specified for the Sheet property, the import function behaves as
described in the table.

Specification Behavior
'' (default) Import data from the first sheet.
Name Import data from the matching sheet name, regardless of

order of sheets in the spreadsheet file.
Integer Import data from sheet in the position denoted by the

integer, regardless of the sheet names in the spreadsheet
file.

Data Types: char | string | single | double

 readvars

1-12617

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when reading spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When reading from spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The importing function starts an instance of Microsoft Excel when reading the
file. This setting is the default for Windows systems with Excel installed.

• false — The importing function does not start an instance of Microsoft Excel when
reading the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, the importing function functionality differs in the
support of file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

See Also
readcell | readmatrix | readtable | readtimetable

Introduced in R2019a

1 Alphabetical List

1-12618

real
Real part of complex number

Syntax
X = real(Z)

Description
X = real(Z) returns the real part of each element in array Z.

Examples

Real Part of Complex Number

Find the real part of the complex number Z.

Z = 2+3i;
X = real(Z)

X = 2

Real Part of Vector of Complex Values

Find the real part of each element in vector Z. The real function acts on Z element-wise.

Z = [0.5i 1+3i -2.2];
X = real(Z)

X = 1×3

 0 1.0000 -2.2000

 real

1-12619

Input Arguments
Z — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. real operates
element-wise when Z is nonscalar.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-12620

See Also
abs | complex | conj | i | imag | j

Introduced before R2006a

 real

1-12621

reallog
Natural logarithm for nonnegative real arrays

Syntax
Y = reallog(X)

Description
Y = reallog(X) returns the natural logarithm of each element in array X. Array X must
contain only nonnegative real numbers. The size of Y is the same as the size of X.

Examples

Natural Log of Matrix

Create a 4-by-4 matrix and compute the natural log of each element.

X = magic(4)

X = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Y = reallog(X)

Y = 4×4

 2.7726 0.6931 1.0986 2.5649
 1.6094 2.3979 2.3026 2.0794
 2.1972 1.9459 1.7918 2.4849

1 Alphabetical List

1-12622

 1.3863 2.6391 2.7081 0

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

If the output of the function running on the GPU can be complex, then you must explicitly
specify its input arguments as complex. For more information, see “Work with Complex
Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 reallog

1-12623

See Also
log | realpow | realsqrt

Introduced before R2006a

1 Alphabetical List

1-12624

realmax
Largest positive floating-point number

Syntax
n = realmax

Description
n = realmax returns the largest finite floating-point number in IEEE double precision.

realmax('double') is the same as realmax with no arguments.

realmax('single') returns the largest finite floating-point number in IEEE single
precision.

Examples
Find the value of the constant realmax:

ndouble = realmax
nsingle = realmax('single')

ndouble =

 1.7977e+308

nsingle =

 3.4028e+38

 realmax

1-12625

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eps | intmax | realmin

Topics
“Floating-Point Numbers”

Introduced before R2006a

1 Alphabetical List

1-12626

realmin
Smallest positive normalized floating-point number

Syntax
n = realmin
realmin('double')
realmin('single')

Description
n = realmin returns the smallest positive normalized floating-point number in IEEE
double precision.

realmin('double') is the same as realmin with no arguments.

realmin('single') returns the smallest positive normalized floating-point number in
IEEE single precision.

Examples
Find the value of the constant realmin:

ndouble = realmin
nsingle = realmin('single')

ndouble =

 2.2251e-308

nsingle =

 1.1755e-38

 realmin

1-12627

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eps | intmin | realmax

Topics
“Floating-Point Numbers”

Introduced before R2006a

1 Alphabetical List

1-12628

realpow
Array power for real-only output

Syntax
Z = realpow(X,Y)

Description
Z = realpow(X,Y) raises each element of array X to the power of its corresponding
element in array Y. Arrays X and Y must be the same size. The range of realpow is the
set of all real numbers, i.e., all elements of the output array Z must be real.

Examples

Powers of Matrix Elements

Create a 3-by-3 matrix with the same value in each element.

X = -2*ones(3,3)

X = 3×3

 -2 -2 -2
 -2 -2 -2
 -2 -2 -2

Compute a 3-by-3 matrix of integer values.

Y = pascal(3)

Y = 3×3

 1 1 1

 realpow

1-12629

 1 2 3
 1 3 6

Compute the element-wise powers of the elements in X corresponding to the exponents
defined in Y.

Z = realpow(X,Y)

Z = 3×3

 -2 -2 -2
 -2 4 -8
 -2 -8 64

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-12630

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
mpower | power | reallog | realsqrt

Introduced before R2006a

 realpow

1-12631

realsqrt
Square root for nonnegative real arrays

Syntax
Y = realsqrt(X)

Description
Y = realsqrt(X) returns the square root of each element of array X. The size of Y is
the same as the size of X.

If you want negative and complex numbers to return complex results instead of error
messages, then use sqrt instead.

Examples

Square Root of Matrix Elements

Create a 4-by-4 matrix of real, positive values.

X = magic(4)

X = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Compute the square root of each element in X.

Y = realsqrt(X)

1 Alphabetical List

1-12632

Y = 4×4

 4.0000 1.4142 1.7321 3.6056
 2.2361 3.3166 3.1623 2.8284
 3.0000 2.6458 2.4495 3.4641
 2.0000 3.7417 3.8730 1.0000

Input Arguments
X — Input matrix
scalar | vector | matrix | multidimensional array

Input matrix, specified as a scalar, vector, matrix, or multidimensional array. The values in
X must be nonnegative and real.
Data Types: single | double

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 realsqrt

1-12633

If the output of the function running on the GPU can be complex, then you must explicitly
specify its input arguments as complex. For more information, see “Work with Complex
Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
reallog | realpow | sqrt | sqrtm

Introduced before R2006a

1 Alphabetical List

1-12634

record
Record data and event information to file

Syntax
record(obj)
record(obj,'switch')

Description
record(obj) toggles the recording state for the serial port object, obj.

record(obj,'switch') initiates or terminates recording for obj. switch can be on or
off. If switch is on, recording is initiated. If switch is off, recording is terminated.

Examples
This example creates the serial port object s on a Windows platform. It connects s to the
device, configures s to record information to a file, writes and reads text data, and then
disconnects s from the device.

s = serial('COM1');
fopen(s)
s.RecordDetail = 'verbose';
s.RecordName = 'MySerialFile.txt';
record(s,'on')
fprintf(s,'*IDN?')
out = fscanf(s);
record(s,'off')
fclose(s)

Tips
Before you can record information to disk, obj must be connected to the device with the
fopen function. A connected serial port object has a Status property value of open. An

 record

1-12635

error is returned if you attempt to record information while obj is not connected to the
device. Each serial port object must record information to a separate file. Recording is
automatically terminated when obj is disconnected from the device with fclose.

The RecordName and RecordMode properties are read-only while obj is recording, and
must be configured before using record.

See Also
RecordDetail | RecordMode | RecordName | RecordStatus | Status | fclose | fopen

Introduced before R2006a

1 Alphabetical List

1-12636

record
Record audio to audiorecorder object

Syntax
record(recorderObj)
record(recorderObj, length)

Description
record(recorderObj) records audio from an input device, such as a microphone
connected to your system. recorderObj is an audiorecorder object that defines the
sample rate, bit depth, and other properties of the recording.

record(recorderObj, length) records for the number of seconds specified by
length.

Examples
Record 5 seconds of your speech with a microphone:

myVoice = audiorecorder;

% Define callbacks to show when
% recording starts and completes.
myVoice.StartFcn = 'disp(''Start speaking.'')';
myVoice.StopFcn = 'disp(''End of recording.'')';

record(myVoice, 5);

To listen to the recording, call the play method:

play(myVoice);

 record

1-12637

See Also
audiorecorder | getaudiodata | recordblocking

Topics
“Record Audio”
“Record or Play Audio within a Function”

1 Alphabetical List

1-12638

recordblocking
Record audio to audiorecorder object, hold control until recording completes

Syntax
recordblocking(recorderObj, length)

Description
recordblocking(recorderObj, length) records audio from an input device, such as
a microphone connected to your system, for the number of seconds specified by length.
The recordblocking method does not return control until recording completes.
recorderObj is an audiorecorder object that defines the sample rate, bit depth, and
other properties of the recording.

Examples
Record 5 seconds of your speech with a microphone, and play it back:

myVoice = audiorecorder;

disp('Start speaking.');
recordblocking(myVoice, 5);
disp('End of recording. Playing back ...');

play(myVoice);

See Also
audiorecorder | getaudiodata | record

Topics
“Record Audio”

 recordblocking

1-12639

rectangle
Create rectangle with sharp or curved corners

Syntax
rectangle('Position',pos)
rectangle('Position',pos,'Curvature',cur)
rectangle(___ ,Name,Value)
rectangle(ax, ___)
r = rectangle(___)

Description
rectangle('Position',pos) creates a rectangle in 2-D coordinates. Specify pos as a
four-element vector of the form [x y w h] in data units. The x and y elements
determine the location and the w and h elements determine the size. The function plots
into the current axes without clearing existing content from the axes.

rectangle('Position',pos,'Curvature',cur) adds curvature to the sides of the
rectangle. For different curvatures along the horizontal and vertical sides, specify cur as
a two-element vector of the form [horizontal vertical]. For the same length of
curvature along all sides, specify cur as a scalar value. Specify values between 0 (no
curvature) and 1 (maximum curvature). Use [1 1] to create an ellipse or circle.

rectangle(___ ,Name,Value) specifies rectangle properties using one or more name-
value pair arguments. For example, 'FaceColor','red' specifies a red fill color. You
can specify rectangle properties with any of the input argument combinations in the
previous syntaxes.

rectangle(ax, ___) creates the rectangle in the axes specified by ax instead of in the
current axes (gca). The option ax can precede any of the input argument combinations in
the previous syntaxes.

r = rectangle(___) returns the rectangle object. Use r to modify properties of the
rectangle after it is created. For a list of properties, see Rectangle. You can return an
output argument with any of the previous syntaxes.

1 Alphabetical List

1-12640

Examples

Draw Rectangle

Draw a rectangle that has a lower left corner at the point (1,2). Make the width of the
rectangle 5 units and the height 6 units. Then, change the axis limits.

rectangle('Position',[1 2 5 6])
axis([0 10 0 10])

 rectangle

1-12641

Draw Rectangle with Curved Edges

Draw a rectangle that has a lower left corner at (0,0) and an upper right corner at (2,4).
Create the rectangle with curved corners by specifying the curvature as the scalar value
0.2. For data units of equal length along both the x-axis and y-axis, use axis equal.

figure
rectangle('Position',[0 0 2 4],'Curvature',0.2)
axis equal

Add a second rectangle that has the shortest side completely curved by specifying the
curvature as the scalar value 1.

rectangle('Position',[3 0 2 4],'Curvature',1)

1 Alphabetical List

1-12642

Add a third rectangle and use different curvatures along the horizontal and vertical sides.
Use a horizontal curvature of 0.5 to make 50 percent of each horizontal side curved. Use
a vertical curvature of 1 to make both vertical sides completely curved.

rectangle('Position',[6 0 2 4],'Curvature',[0.5,1])

 rectangle

1-12643

Draw Circle

Draw a circle by setting the Curvature property to [1 1]. Draw the circle so that it fills
the rectangular area between the points (2,4) and (4,6). The Position property defines
the smallest rectangle that contains the circle.

pos = [2 4 2 2];
rectangle('Position',pos,'Curvature',[1 1])
axis equal

1 Alphabetical List

1-12644

Draw a red rectangle using the same position values to show how the circle fills the
rectangular area.

rectangle('Position',pos,'EdgeColor','r')

 rectangle

1-12645

Specify Rectangle Outline and Fill Color

Draw a rectangle and specify the fill color, outline color, and outline width.

rectangle('Position',[1,2,5,10],'FaceColor',[0 .5 .5],'EdgeColor','b',...
 'LineWidth',3)

1 Alphabetical List

1-12646

Modify Rectangle After Creation

Add a rectangle to the current axes and return the rectangle object, r.

r = rectangle('Position',[0 0 1 1]')

 rectangle

1-12647

r =
 Rectangle with properties:

 FaceColor: 'none'
 EdgeColor: [0 0 0]
 LineWidth: 0.5000
 LineStyle: '-'
 Curvature: [0 0]
 Position: [0 0 1 1]

 Show all properties

1 Alphabetical List

1-12648

Modify the rectangle after creation using r. Change the fill color, outline color, and
outline width.

r.FaceColor = [0 .5 .5];
r.EdgeColor = 'b';
r.LineWidth = 3;

Input Arguments
pos — Size and location of rectangle
four-element vector of the form [x y w h]

 rectangle

1-12649

Size and location of the rectangle, specified as a four-element vector of the form [x y w
h]. The x and y elements define the coordinate for the lower left corner of the rectangle.
The w and h elements define the dimensions of the rectangle.

All values are in data units.
Example: rectangle('Position',[0.5 0.5 0.3 0.4])
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

cur — Amount of horizontal and vertical curvature
[0 0] (default) | two-element vector | scalar

Amount of horizontal and vertical curvature, specified as a two-element vector or a scalar
value. Use this property to vary the shape of the rectangle from rectangular to ellipsoidal.

The horizontal curvature is the fraction of the width that is curved along the top and
bottom edges. The vertical curvature is the fraction of the height that is curved along the
left and right edges.

• To use different horizontal and vertical curvatures, specify a two-element vector of the
form [horizontal vertical]. The horizontal element determines the horizontal
curvature and the vertical element determines the vertical curvature. Specify the
values between 0 (no curvature) and 1 (maximum curvature). For example, a value of
[0 0] creates a rectangle with square edges and value of [1 1] creates an ellipse.

• To use the same curvature for the horizontal and vertical edges, specify a scalar value
between 0 and 1, inclusive. The shorter dimension determines the length of the
curvature.

Example: [0.5 0.6]
Example: 0.75
Data Types: double

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then rectangle uses the current axes.

1 Alphabetical List

1-12650

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: rectangle('Position',[0 0 1 1],'EdgeColor','k','FaceColor',
[0 .5 .5])

FaceColor — Fill color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Fill color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

 rectangle

1-12651

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

EdgeColor — Outline color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Outline color, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The default RGB triplet value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-12652

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineWidth — Line width
0.5 (default) | positive value

 rectangle

1-12653

Line width, specified as a positive value in point units.
Example: 0.75

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

See Also
Functions
annotation | line | patch

Properties
Rectangle

Introduced before R2006a

1 Alphabetical List

1-12654

Rectangle Properties
Rectangle appearance and behavior

Description
Rectangle properties control the appearance and behavior of a rectangle object. By
changing property values, you can modify certain aspects of the rectangle.

Starting in R2014b, you can use dot notation to query and set properties.

h = rectangle;
w = h.LineWidth;
h.LineWidth = 3;

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

FaceColor — Fill color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Fill color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Rectangle Properties

1-12655

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

EdgeColor — Outline color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

1 Alphabetical List

1-12656

Outline color, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 Rectangle Properties

1-12657

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in point units.
Example: 0.75

Curvature — Amount of horizontal and vertical curvature
[0 0] (default) | two-element vector | scalar

Amount of horizontal and vertical curvature, specified as a two element vector of the form
[x y] or a scalar value. Use this property to vary the shape of the rectangle from

1 Alphabetical List

1-12658

rectangular to ellipsoidal. The horizontal curvature is the fraction of the width that is
curved along the top and bottom edges. The vertical curvature is the fraction of the
height that is curved along the left and right edges.

• To use different horizontal and vertical curvatures, specify a two-element vector of the
form [x y]. The x element determines the horizontal curvature and the y element
determines the vertical curvature. Specify x and y as values between 0 (no curvature)
and 1 (maximum curvature). For example, a value of [0 0] creates a rectangle with
square edges and value of [1 1] creates an ellipse.

• To use the same curvature for the horizontal and vertical edges, specify a scalar value
in the range [0,1]. The shorter dimension determines the length of the curvature.

Example: [0.5 0.6]
Example: 0.75

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

Position

Position — Size and location of rectangle
[0 0 1 1] (default) | four-element vector

 Rectangle Properties

1-12659

Size and location of the rectangle, specified as a four-element vector of the form [x y
width height]. Specify the values in data units. The x and y elements define the
coordinate for the lower-left corner of the rectangle. The width and height elements
define the dimensions of the rectangle.
Example: [0.5 0.5 0.3 0.4]

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

1 Alphabetical List

1-12660

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

 Rectangle Properties

1-12661

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

1 Alphabetical List

1-12662

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

 Rectangle Properties

1-12663

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

1 Alphabetical List

1-12664

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Rectangle object that has a defined color.
You cannot click a part that has an associated color property set to 'none'. The
HitTest property determines if the Rectangle object responds to the click or if an
ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the Rectangle object that has no
color. The HitTest property determines if the Rectangle object responds to the
click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Rectangle object passes the
click through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Rectangle object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Rectangle object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Rectangle object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

 Rectangle Properties

1-12665

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

1 Alphabetical List

1-12666

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'rectangle'

This property is read-only.

Type of graphics object, returned as 'rectangle'. Use this property to find all objects of
a given type within a plotting hierarchy, for example, searching for the type using
findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
rectangle

Topics
“Access Property Values”
“Graphics Object Properties”

 Rectangle Properties

1-12667

Introduced before R2006a

1 Alphabetical List

1-12668

rectint
Rectangle intersection area

Syntax
area = rectint(A,B)

Description
area = rectint(A,B) returns the area of intersection of the rectangles specified by
position vectors A and B.

If A and B each specify one rectangle, the output area is a scalar.

A and B can also be matrices, where each row is a position vector. area is then a matrix
giving the intersection of all rectangles specified by A with all the rectangles specified by
B. That is, if A is n-by-4 and B is m-by-4, then area is an n-by-m matrix where area(i,j)
is the intersection area of the rectangles specified by the ith row of A and the jth row of
B.

Note A position vector is a four-element vector [x,y,width,height], where the point
defined by x and y specifies one corner of the rectangle, and width and height define
the size in units along the x and y axes respectively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 rectint

1-12669

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
polyarea

Introduced before R2006a

1 Alphabetical List

1-12670

recycle
Set option to move deleted files to recycle folder

Syntax
status = recycle
previousState = recycle(state)

Description
status = recycle returns the current state for recycling files you remove using the
delete function. When status is off, the delete function permanently removes the
files. When status is on, deleted files move to a different location. For details, see the
Tips on page 1-12672 section.

Note On Mac platforms, the recycle option is not applied to files deleted from network
drives.

previousState = recycle(state) sets the recycle option for MATLAB to the
specified state, either on or off. The returned previousState value is the recycle state
before running the statement.

Examples

View Current Recycling State

Start from a state where file recycling is off. Verify the current recycle state.

state = recycle

 recycle

1-12671

state =

off

Turn File Recycling On

Turn on file recycling. Then, delete an existing file and move it to the recycle bin or
temporary folder.

recycle('on');
delete('myfile.txt')

Input Arguments
state — State of recycle option
'on' | 'off'

State of the recycle option, specified as 'on' or 'off'.

Tips
• The location for storing recycled files varies by platform, as follows:

• Microsoft Windows platforms — Recycle bin.
• Mac platforms — Trash.
• Linux platforms — Subfolder with the prefix MATLAB_Files_ in the system

temporary folder, as returned by the tempdir function.
• The general preference for Deleting files sets the state of the recycle function at

startup. When you change the preference, MATLAB changes the state of recycle.
When you change the state of recycle, MATLAB also updates the Deleting files
preference.

See Also
delete | dir | ls | rmdir

1 Alphabetical List

1-12672

Topics
“General Preferences”

Introduced before R2006a

 recycle

1-12673

reducepatch
Reduce number of patch faces

Syntax
reducepatch(p,r)
nfv = reducepatch(p,r)
nfv = reducepatch(fv,r)
nfv = reducepatch(p)
nfv = reducepatch(fv)
reducepatch(...,'fast')
reducepatch(...,'verbose')
nfv = reducepatch(f,v,r)
[nf,nv] = reducepatch(...)

Description
reducepatch(p,r) reduces the number of faces of the patch identified by handle p,
while attempting to preserve the overall shape of the original object. The MATLAB
software interprets the reduction factor r in one of two ways depending on its value:

• If r is less than 1, r is interpreted as a fraction of the original number of faces. For
example, if you specify r as 0.2, then the number of faces is reduced to 20% of the
number in the original patch.

• If r is greater than or equal to 1, then r is the target number of faces. For example, if
you specify r as 400, then the number of faces is reduced until there are 400 faces
remaining.

nfv = reducepatch(p,r) returns the reduced set of faces and vertices but does not
set the Faces and Vertices properties of patch p. The struct nfv contains the faces and
vertices after reduction.

nfv = reducepatch(fv,r) performs the reduction on the faces and vertices in the
struct fv.

nfv = reducepatch(p) and nfv = reducepatch(fv)uses a reduction value of 0.5.

1 Alphabetical List

1-12674

reducepatch(...,'fast') assumes the vertices are unique and does not compute
shared vertices.

reducepatch(...,'verbose') prints progress messages to the command window as
the computation progresses.

nfv = reducepatch(f,v,r)performs the reduction on the faces in f and the vertices
in v.

[nf,nv] = reducepatch(...) returns the faces and vertices in the arrays nf and nv.

Examples

Reduce Number of Patch Faces

This example illustrates the effect of reducing the number of faces to only 15% of the
original value.

figure
[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
p.FaceColor = 'w';
p.EdgeColor = 'b';
daspect([1,1,1])
view(3)

 reducepatch

1-12675

Reduce the number of faces.

reducepatch(p,0.15)

1 Alphabetical List

1-12676

Tips
If the patch contains nonshared vertices, MATLAB computes shared vertices before
reducing the number of faces. If the faces of the patch are not triangles, MATLAB
triangulates the faces before reduction. The faces returned are always defined as
triangles.

The number of output triangles may not be exactly the number specified with the
reduction factor argument (r), particularly if the faces of the original patch are not
triangles.

 reducepatch

1-12677

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isocaps | isonormals | isosurface | reducevolume | smooth3 | subvolume

Topics
“Vector Field Displayed with Cone Plots”

Introduced before R2006a

1 Alphabetical List

1-12678

reducevolume
Reduce number of elements in volume data set

Syntax
[nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz])
[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz])
nv = reducevolume(...)

Description
[nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz]) reduces the number of
elements in the volume by retaining every Rxth element in the x direction, every Ryth

element in the y direction, and every Rzth element in the z direction. If a scalar R is used
to indicate the amount or reduction instead of a three-element vector, the MATLAB
software assumes the reduction to be [R R R].

The arrays X, Y, and Z define the coordinates for the volume V. The reduced volume is
returned in nv, and the coordinates of the reduced volume are returned in nx, ny, and nz.

[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz]) assumes the arrays X, Y, and Z
are defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p), where [m,n,p] = size(V).

nv = reducevolume(...) returns only the reduced volume.

Examples

Reduce Volume Data Set

This example uses a data set that is a collection of MRI slices of a human skull. This data
is processed in a variety of ways:

 reducevolume

1-12679

• The 4-D array is squeezed (squeeze) into three dimensions and then reduced
(reducevolume) so that what remains is every fourth element in the x and y
directions and every element in the z direction.

• The reduced data is smoothed (smooth3).
• The outline of the skull is an isosurface generated as a patch (p1) whose vertex

normals are recalculated to improve the appearance when lighting is applied (patch,
isosurface, isonormals).

• A second patch (p2) with an interpolated face color draws the end caps (FaceColor)
isocaps).

• The view of the object is set (view, axis, daspect).
• A 100-element grayscale colormap provides coloring for the end caps (colormap).
• Adding a light to the right of the camera illuminates the object (camlight,

lighting).

load mri
D = squeeze(D);
[x,y,z,D] = reducevolume(D,[4,4,1]);
D = smooth3(D);
p1 = patch(isosurface(x,y,z,D,5),...
 'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1)
p2 = patch(isocaps(x,y,z,D,5),...
 'FaceColor','interp','EdgeColor','none');
view(3)
axis tight
daspect([1,1,.4])
colormap(gray(100))
camlight
lighting gouraud

1 Alphabetical List

1-12680

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 reducevolume

1-12681

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isocaps | isonormals | isosurface | reducepatch | smooth3 | subvolume

Introduced before R2006a

1 Alphabetical List

1-12682

refresh
Redraw current figure

Syntax
refresh
refresh(h)

Description
refresh erases and redraws the current figure.

refresh(h) redraws the figure identified by h.

See Also
Introduced before R2006a

 refresh

1-12683

refreshdata
Refresh data in graph when data source is specified

Syntax
refreshdata
refreshdata(figure_handle)
refreshdata(object_handles)
refreshdata(object_handles,'workspace')

Description
refreshdata evaluates any data source properties (XDataSource, YDataSource, or
ZDataSource) on all objects in graphs in the current figure. If the specified data source
has changed, the MATLAB software updates the graph to reflect this change.

Note The variable assigned to the data source property must be in the base workspace or
you must specify the workspace option as 'caller'.

refreshdata(figure_handle) refreshes the data of the objects in the specified
figure.

refreshdata(object_handles) refreshes the data of the objects specified in
object_handles or the children of those objects. Therefore, object_handles can
contain figure, axes, or plot object handles.

refreshdata(object_handles,'workspace') enables you to specify whether the
data source properties are evaluated in the base workspace or the workspace of the
function in which refreshdata was called. 'workspace' is can be one of these values:

• 'base' — Evaluate the data source properties in the base workspace.
• 'caller' — Evaluate the data source properties in the workspace of the function that

called refreshdata.

1 Alphabetical List

1-12684

Examples

Refresh Graph with Updated Data

Plot a sine wave and return the chart line handle, h.

x = linspace(0,8);
y = sin(x);
figure
h = plot(x,y);

 refreshdata

1-12685

Identify the data sources for the plot by setting the XDataSource and YDataSource
properties of the line to x and y, respectively. Then, modify y. Call refreshdata so that
the graph updates with the changes to y.

h.XDataSource = 'x';
h.YDataSource = 'y';

y = sin(x.^3);
refreshdata

1 Alphabetical List

1-12686

Tips
The Linked Plots feature (see documentation for linkdata) sets up data sources for
graphs and synchronizes them with the workspace variables they display. When you use
this feature, you do not also need to call refreshdata, as it is essentially automatically
triggered every time a data source changes.

If you are not using the Linked Plots feature, you need to set the XDataSource,
YDataSource, and/or ZDataSource properties of a graph in order to use refreshdata.
You can do that programmatically or use the Property Editor, one of the plotting tools. In
the Property Editor, select the graph (e.g., a chart line object) and type in (or select from
the drop-down choices) the name(s) of the workspace variable(s) from which you want the
plot to refresh, in the fields labelled X Data Source, Y Data Source, and/or Z Data
Source. The call to refreshdata causes the graph to update.

See Also
linkaxes | linkdata | linkprop

Introduced before R2006a

 refreshdata

1-12687

regexp
Match regular expression (case sensitive)

Syntax
startIndex = regexp(str,expression)
[startIndex,endIndex] = regexp(str,expression)

out = regexp(str,expression,outkey)
[out1,...,outN] = regexp(str,expression,outkey1,...,outkeyN)

___ = regexp(___ ,option1,...,optionM)

___ = regexp(___ ,'forceCellOutput')

Description
startIndex = regexp(str,expression) returns the starting index of each substring
of str that matches the character patterns specified by the regular expression. If there
are no matches, startIndex is an empty array.

[startIndex,endIndex] = regexp(str,expression) returns the starting and
ending indices of all matches.

out = regexp(str,expression,outkey) returns the output specified by outkey.
For example, if outkey is 'match', then regexp returns the substrings that match the
expression rather than their starting indices.

[out1,...,outN] = regexp(str,expression,outkey1,...,outkeyN) returns
the outputs specified by multiple output keywords, in the specified order. For example, if
you specify 'match','tokens', then regexp returns substrings that match the entire
expression and tokens on page 1-12715 that match parts of the expression.

___ = regexp(___ ,option1,...,optionM) modifies the search using the specified
option flags. For example, specify 'ignorecase' to perform a case-insensitive match.
You can include any of the inputs and request any of the outputs from previous syntaxes.

1 Alphabetical List

1-12688

___ = regexp(___ ,'forceCellOutput') returns each output argument as a scalar
cell. The cells contain the numeric arrays or substrings that are described as the outputs
of the previous syntaxes. You can include any of the inputs and request any of the outputs
from previous syntaxes.

Examples

Find Patterns in Text

Find words that start with c, end with t, and contain one or more vowels between them.

str = 'bat cat can car coat court CUT ct CAT-scan';
expression = 'c[aeiou]+t';
startIndex = regexp(str,expression)

startIndex = 1×2

 5 17

The regular expression 'c[aeiou]+t' specifies this pattern:

• c must be the first character.
• c must be followed by one of the characters inside the brackets, [aeiou].
• The bracketed pattern must occur one or more times, as indicated by the + operator.
• t must be the last character, with no characters between the bracketed pattern and

the t.

Values in startIndex indicate the index of the first character of each word that matches
the regular expression. The matching word cat starts at index 5, and coat starts at index
17. The words CUT and CAT do not match because they are uppercase.

Find Patterns in Multiple Pieces of Text

Find the location of capital letters and spaces within character vectors in a cell array.

str = {'Madrid, Spain','Romeo and Juliet','MATLAB is great'};
capExpr = '[A-Z]';

 regexp

1-12689

spaceExpr = '\s';

capStartIndex = regexp(str,capExpr);
spaceStartIndex = regexp(str,spaceExpr);

capStartIndex and spaceStartIndex are cell arrays because the input str is a cell
array.

View the indices for the capital letters.

celldisp(capStartIndex)

capStartIndex{1} =

 1 9

capStartIndex{2} =

 1 11

capStartIndex{3} =

 1 2 3 4 5 6

View the indices for the spaces.

celldisp(spaceStartIndex)

spaceStartIndex{1} =

 8

spaceStartIndex{2} =

 6 10

1 Alphabetical List

1-12690

spaceStartIndex{3} =

 7 10

Return Substrings Using match Keyword

Capture words within a character vector that contain the letter x.

str = 'EXTRA! The regexp function helps you relax.';
expression = '\w*x\w*';
matchStr = regexp(str,expression,'match')

matchStr = 1x2 cell array
 {'regexp'} {'relax'}

The regular expression '\w*x\w*' specifies that the character vector:

• Begins with any number of alphanumeric or underscore characters, \w*.
• Contains the lowercase letter x.
• Ends with any number of alphanumeric or underscore characters after the x, including

none, as indicated by \w*.

Split Text at Delimiter Using split Keyword

Split a character vector into several substrings, where each substring is delimited by a ^
character.

str = ['Split ^this text into ^several pieces'];
expression = '\^';
splitStr = regexp(str,expression,'split')

 regexp

1-12691

splitStr = 1x3 cell array
 {'Split '} {'this text into '} {'several pieces'}

Because the caret symbol has special meaning in regular expressions, precede it with the
escape character, a backslash (\). To split a character vector at other delimiters, such as a
semicolon, you do not need to include the backslash.

Return Both Matching and Nonmatching Substrings

Capture parts of a character vector that match a regular expression using the 'match'
keyword, and the remaining parts that do not match using the 'split' keyword.

str = 'She sells sea shells by the seashore.';
expression = '[Ss]h.';
[match,noMatch] = regexp(str,expression,'match','split')

match = 1x3 cell array
 {'She'} {'she'} {'sho'}

noMatch = 1x4 cell array
 {0x0 char} {' sells sea '} {'lls by the sea'} {'re.'}

The regular expression '[Ss]h.' specifies that:

• S or s is the first character.
• h is the second character.
• The third character can be anything, including a space, as indicated by the dot (.).

When the first (or last) character in a character vector matches a regular expression, the
first (or last) return value from the 'split' keyword is an empty character vector.

Optionally, reassemble the original character vector from the substrings.

combinedStr = strjoin(noMatch,match)

combinedStr =
'She sells sea shells by the seashore.'

1 Alphabetical List

1-12692

Capture Substrings of Matches Using Ordinal Tokens

Find the names of HTML tags by defining a token within a regular expression. Tokens are
indicated with parentheses, ().

str = '<title>My Title</title><p>Here is some text.</p>';
expression = '<(\w+).*>.*</\1>';
[tokens,matches] = regexp(str,expression,'tokens','match');

The regular expression <(\w+).*>.*</\1> specifies this pattern:

• <(\w+) finds an opening angle bracket followed by one or more alphanumeric or
underscore characters. Enclosing \w+ in parentheses captures the name of the HTML
tag in a token.

• .*> finds any number of additional characters, such as HTML attributes, and a closing
angle bracket.

• </\1> finds the end tag corresponding to the first token (indicated by \1). The end
tag has the form </tagname>.

View the tokens and matching substrings.

celldisp(tokens)

tokens{1}{1} =

title

tokens{2}{1} =

p

celldisp(matches)

matches{1} =

<title>My Title</title>

 regexp

1-12693

matches{2} =

<p>Here is some text.</p>

Capture Substrings of Matches Using Named Tokens

Parse dates that can appear with either the day or the month first, in these forms: mm/dd/
yyyy or dd-mm-yyyy. Use named tokens to identify each part of the date.

str = '01/11/2000 20-02-2020 03/30/2000 16-04-2020';
expression = ['(?<month>\d+)/(?<day>\d+)/(?<year>\d+)|'...
 '(?<day>\d+)-(?<month>\d+)-(?<year>\d+)'];
tokenNames = regexp(str,expression,'names');

The regular expression specifies this pattern:

• (?<name>\d+) finds one or more numeric digits and assigns the result to the token
indicated by name.

• | is the logical or operator, which indicates that there are two possible patterns for
dates. In the first pattern, slashes (/) separate the tokens. In the second pattern,
hyphens (-) separate the tokens.

View the named tokens.

for k = 1:length(tokenNames)
 disp(tokenNames(k))
end

 month: '01'
 day: '11'
 year: '2000'

 month: '02'
 day: '20'
 year: '2020'

 month: '03'
 day: '30'
 year: '2000'

1 Alphabetical List

1-12694

 month: '04'
 day: '16'
 year: '2020'

Perform Case-Insensitive Matches

Find both uppercase and lowercase instances of a word.

By default, regexp performs case-sensitive matching.

str = 'A character vector with UPPERCASE and lowercase text.';
expression = '\w*case';
matchStr = regexp(str,expression,'match')

matchStr = 1x1 cell array
 {'lowercase'}

The regular expression specifies that the character vector:

• Begins with any number of alphanumeric or underscore characters, \w*.
• Ends with the literal text case.

The regexpi function uses the same syntax as regexp, but performs case-insensitive
matching.

matchWithRegexpi = regexpi(str,expression,'match')

matchWithRegexpi = 1x2 cell array
 {'UPPERCASE'} {'lowercase'}

Alternatively, disable case-sensitive matching for regexp using the 'ignorecase'
option.

matchWithIgnorecase = regexp(str,expression,'match','ignorecase')

matchWithIgnorecase = 1x2 cell array
 {'UPPERCASE'} {'lowercase'}

 regexp

1-12695

For multiple expressions, disable case-sensitive matching for selected expressions using
the (?i) search flag.

expression = {'(?-i)\w*case';...
 '(?i)\w*case'};
matchStr = regexp(str,expression,'match');
celldisp(matchStr)

matchStr{1}{1} =

lowercase

matchStr{2}{1} =

UPPERCASE

matchStr{2}{2} =

lowercase

Parse Text with Newline Characters

Create a character vector that contains a newline, \n, and parse it using a regular
expression. Since regexp returns matchStr as a cell array containing text that has
multiple lines, you can take the text out of the cell array to display all lines.

str = sprintf('abc\n de');
expression = '.*';
matchStr = regexp(str,expression,'match');
matchStr{:}

ans =
 'abc
 de'

By default, the dot (.) matches every character, including the newline, and returns a
single match that is equivalent to the original character vector.

1 Alphabetical List

1-12696

Exclude newline characters from the match using the 'dotexceptnewline' option. This
returns separate matches for each line of text.

matchStrNoNewline = regexp(str,expression,'match','dotexceptnewline')

matchStrNoNewline = 1x2 cell array
 {'abc'} {' de'}

Find the first or last character of each line using the ^ or $ metacharacters and the
'lineanchors' option.

expression = '.$';
lastInLine = regexp(str,expression,'match','lineanchors')

lastInLine = 1x2 cell array
 {'c'} {'e'}

Return Matches in Cell

Find matches within a piece of text and return the output in a scalar cell.

Find words that start with c, end with t, and contain one or more vowels between them.
Return the starting indices in a scalar cell.

str = 'bat cat can car coat court CUT ct CAT-scan';
expression = 'c[aeiou]+t';
startIndex = regexp(str,expression,'forceCellOutput')

startIndex = 1x1 cell array
 {1x2 double}

To access the starting indices as a numeric array, index into the cell.

startIndex{1}

ans = 1×2

 5 17

 regexp

1-12697

Return the matching and nonmatching substrings. Each output is in its own scalar cell.

[match,noMatch] = regexp(str,expression,'match','split','forceCellOutput')

match = 1x1 cell array
 {1x2 cell}

noMatch = 1x1 cell array
 {1x3 cell}

To access the array of matches, index into match.

match{1}

ans = 1x2 cell array
 {'cat'} {'coat'}

To access the substrings that do not match, index into noMatch.

noMatch{1}

ans = 1x3 cell array
 {'bat '} {' can car '} {' court CUT ct C...'}

Input Arguments
str — Input text
character vector | cell array of character vectors | string array

Input text, specified as a character vector, a cell array of character vectors, or a string
array. Each character vector in a cell array, or each string in a string array, can be of any
length and contain any characters.

If str and expression are string arrays or cell arrays, they must have the same
dimensions.
Data Types: string | char | cell

1 Alphabetical List

1-12698

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a
string array. Each expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.

Metacharacter Description Example
. Any single character, including white

space
'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within the
square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[rp.]ain' matches 'rain' or 'pain'
or '.ain'.

[^c1c2c3] Any character not contained within
the square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and '*ain'. For
example, it matches 'gain', 'lain', or
'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character in
the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to
[^a-zA-Z_0-9]

'\W*' identifies a term that is not a
word.

 regexp

1-12699

Metacharacter Description Example
\s Any white-space character;

equivalent to [\f\n\r\t\v]
'\w*n\s' matches words that end with
the letter n, followed by a white-space
character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed
by any non-white-space character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character; equivalent to
[^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character,
defined by hex 2C.

Character Representation

Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

1 Alphabetical List

1-12700

Quantifier Matches the expression when it
occurs...

Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.
expr? 0 times or 1 time. '\w*(\.m)?' matches words that

optionally end with the extension .m.
expr+ 1 or more times consecutively. '' matches an

 HTML tag when the file name
contains one or more characters.

expr{m,n} At least m times, but no more than n
times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to * and
+, respectively.

'' matches
an <a> HTML tag when the file name
contains one or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

Quantifiers can appear in three modes, described in the following table. q represents any
of the quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many

characters as possible.
Given the text
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*?>' ends each
match at the first occurrence of the
closing angle bracket (>):

'<tr>' '<td>' '</td>'

 regexp

1-12701

Mode Description Example
exprq+ Possessive expression: match as much as

possible, but do not rescan any portions
of the text.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*+>' does not
return any matches, because the closing
angle bracket is captured using .*, and
is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements,
or disable backtracking in a specific group.

Grouping
Operator

Description Example

(expr) Group elements of the expression and
capture tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches
two consecutive patterns of a vowel
followed by a nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack
within the group to complete the match,
and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the
atomic group, Z is captured using .* and
is not rescanned.

(expr1|
expr2)

Match expression expr1 or expression
expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.

'(let|tel)\w+' matches words that
start with let or tel.

1 Alphabetical List

1-12702

Anchors

Anchors in the expression match the beginning or end of the input text or word.

Anchor Matches the... Example
^expr Beginning of the input text. '^M\w*' matches a word starting with M

at the beginning of the text.
expr$ End of the input text. '\w*m$' matches words ending with m

at the end of the text.
\<expr Beginning of a word. '\<n\w*' matches any words starting

with n.
expr\> End of a word. '\w*e\>' matches any words ending

with e.

Lookaround Assertions

Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.

The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match
test.

'\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and
'fall' in the input text 'Flying,
not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that
follow 're', such as 'new', 'use', and
'cycle' in the input text 'renew,
reuse, recycle'

 regexp

1-12703

Lookaround
Assertion

Description Example

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do not
precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a
logical AND.

Operation Description Example
(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches

consonants.
(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches

consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and then
use the outcome to determine which pattern, if any, to match next. These operators
support logical OR, and if or if/else conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?
@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expr1|expr2 Match expression expr1 or

expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+' matches words
that start with let or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as C:\,
when run on a Windows system.

(?(cond)expr1|
expr2)

If condition cond is true, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

1 Alphabetical List

1-12704

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

Ordinal Token Operator Description Example
(expr) Capture in a token the characters

that match the enclosed
expression.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such as
'title' from the text
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Named Token Operator Description Example
(?<name>expr) Capture in a named token the

characters that match the enclosed
expression.

'(?<month>\d+)-(?<day>\d+)-
(?<yr>\d+)' creates named
tokens for the month, day, and year
in an input date of the form mm-dd-
yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</
\k<tag>>' captures tokens for
HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(name)expr1|
expr2)

If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?
(sex)her|his) \w*' matches
text that includes her when the text
begins with Mrs, or that includes
his when the text begins with Mr.

 regexp

1-12705

Note If an expression has nested parentheses, MATLAB captures tokens that correspond
to the outermost set of parentheses. For example, given the search pattern '(and(y|
rew))', MATLAB creates a token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to
determine the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

Operator Description Example
(??expr) Parse expr and include the resulting

term in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions that
use the backslash escape character (\)
require two backslashes: one for the
initial parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters to
match by reading a digit at the
beginning of the match. The dynamic
expression is enclosed in a second set
of parentheses so that the resulting
match is captured in a token. For
instance, matching '5XXXXX'
captures tokens for '5' and
'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the
output returned by the command in
the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at least
four characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement text.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match

1 Alphabetical List

1-12706

Replacement Operator Description
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

Comments

Characters Description Example
(?#comment) Insert a comment in the regular

expression. The comment text is
ignored when matching the input.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a
search flag within an expression is to pass an option input argument.

Flag Description
(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text

(default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and

'\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

 regexp

1-12707

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.
Data Types: char | cell | string

outkey — Keyword that indicates which outputs to return
'start' (default) | 'end' | 'tokenExtents' | 'match' | 'tokens' | 'names' |
'split'

Keyword that indicates which outputs to return, specified as one of the following
character vectors.

Output Keyword Returns
'start' (default) Starting indices of all matches, startIndex
'end' Ending indices of all matches, endIndex
'tokenExtents' Starting and ending indices of all tokens
'match' Text of each substring that matches the pattern in

expression
'tokens' Text of each captured token in str
'names' Name and text of each named token
'split' Text of nonmatching substrings of str

Data Types: char | string

option — Search option
'once' | 'warnings' | 'ignorecase' | 'emptymatch' | 'dotexceptnewline' |
'lineanchors' | ...

Search option, specified as a character vector. Options come in pairs: one option that
corresponds to the default behavior, and one option that allows you to override the
default. Specify only one option from a pair. Options can appear in any order.

Default Override Description
'all' 'once' Match the expression as many times as possible

(default), or only once.
'nowarnings' 'warnings' Suppress warnings (default), or display them.

1 Alphabetical List

1-12708

Default Override Description
'matchcase' 'ignorecase' Match letter case (default), or ignore case.
'noemptymatch' 'emptymatch' Ignore zero length matches (default), or include

them.
'dotall' 'dotexceptnewline' Match dot with any character (default), or all

except newline (\n).
'stringanchors' 'lineanchors' Apply ^ and $ metacharacters to the beginning

and end of a character vector (default), or to the
beginning and end of a line. The newline character
(\n) specifies the end of a line. The beginning of a
line is specified as the first character, or any
character that immediately follows a newline
character.

'literalspacing' 'freespacing' Include space characters and comments when
matching (default), or ignore them. With
freespacing, use '\ ' and '\#' to match space
and # characters.

Data Types: char | string

Output Arguments
startIndex — Starting index of each match
row vector | cell array of row vectors

Starting indices of each match, returned as a row vector or cell array, as follows:

• If str and expression are both character vectors or string scalars, the output is a
row vector (or, if there are no matches, an empty array).

• If either str or expression is a cell array of character vectors or a string array, and
the other is a character vector or a string scalar, the output is a cell array of row
vectors. The output cell array has the same dimensions as the input array.

• If str and expression are both cell arrays or string arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

endIndex — Ending index of each match
row vector | cell array of row vectors

 regexp

1-12709

Ending index of each match, returned as a row vector or cell array, as follows:

• If str and expression are both character vectors or string scalars, the output is a
row vector (or, if there are no matches, an empty array).

• If either str or expression is a cell array of character vectors or a string array, and
the other is a character vector or a string scalar, the output is a cell array of row
vectors. The output cell array has the same dimensions as the input array.

• If str and expression are both cell arrays or string arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

out — Information about matches
numeric array | cell array | string array | structure array

Information about matches, returned as a numeric, cell, string, or structure array. The
information in the output depends upon the value you specify for outkey, as follows.

Output Keyword Output Description Output Type and Dimensions
'start' Starting indices of

matches
For both 'start' and 'end':

• If str and expression are both character
vectors or string scalars, the output is a row
vector (or, if there are no matches, an empty
array).

• If either str or expression is a cell array of
character vectors or a string array, and the other
is a character vector or a string scalar, the output
is a cell array of row vectors. The output cell
array has the same dimensions as the input array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

'end' Ending indices of
matches

1 Alphabetical List

1-12710

Output Keyword Output Description Output Type and Dimensions
'tokenExtents' Starting and ending

indices of all tokens
By default, when returning all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
cell array, where n is the number of matches.
Each cell contains an m-by-2 numeric array of
indices, where m is the number of tokens in the
match.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array. Each cell contains a 1-by-n cell array,
where each inner cell contains an m-by-2 numeric
array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

When you specify the 'once' option to return only
one match, the output is either an m-by-2 numeric
array or a cell array with the same dimensions as
str and/or expression.

If a token is expected at a particular index N, but is
not found, then MATLAB returns extents for that
token of [N,N-1].

 regexp

1-12711

Output Keyword Output Description Output Type and Dimensions
'match' Text of each substring

that matches the pattern
in expression

By default, when returning all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
array, where n is the number of matches.

If str is a character vector, then the output is a
cell array of character vectors. If str is a string
scalar, then the output is a string array.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

When you specify the 'once' option to return only
one match, the output is either a character vector, a
string array, or a cell array with the same dimensions
as str and expression.

1 Alphabetical List

1-12712

Output Keyword Output Description Output Type and Dimensions
'tokens' Text of each captured

token in str
By default, when returning all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
cell array, where n is the number of matches.
Each cell contains a 1-by-m cell array of matches,
where m is the number of tokens in the match.

If str is a character vector, then the output is a
cell array of character vectors. If str is a string
array, then the output is a cell array in which
each cell contains a string array.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array. Each cell contains a 1-by-n cell array,
where each inner cell contains a 1-by-m array.

If str is a cell array of character vectors, then
each inner cell contains a 1-by-m cell array. If str
is a string array, then each inner cell contains a 1-
by-m string array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which the innermost cells
contain string arrays.

When you specify the 'once' option to return only
one match, the output is a 1-by-m string array, cell
array of character vectors, or a cell array that has
the same dimensions as str and/or expression.

 regexp

1-12713

Output Keyword Output Description Output Type and Dimensions
If a token is expected at a particular index, but is not
found, then MATLAB returns an empty value for the
token, '' for character vectors, or "" for strings.

'names' Name and text of each
named token

For all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
structure array, where n is the number of
matches. The structure field names correspond to
the token names.

• If str or expression is a cell array of character
vectors or a string array, the output is a cell array
with the same dimensions as the input array.
Each cell contains a 1-by-n structure array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

1 Alphabetical List

1-12714

Output Keyword Output Description Output Type and Dimensions
'split' Text of nonmatching

substrings of str
For all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
array, where n is the number of nonmatches.

If str is a character vector, then the output is a
cell array of character vectors. If str is a string
scalar, then the output is a string array.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array. Each cell contains a 1-by-n cell array of
character vectors.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

• If str and expression are both cell arrays, they
must have the same dimensions. The output is a
cell array with the same dimensions.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

Definitions
Tokens
Tokens are portions of the matched text that correspond to portions of the regular
expression. To create tokens, enclose part of the regular expression in parentheses.

For example, this expression finds a date of the form dd-mmm-yyyy, including tokens for
the day, month, and year.

 regexp

1-12715

str = 'Here is a date: 01-Apr-2020';
expression = '(\d+)-(\w+)-(\d+)';

mydate = regexp(str,expression,'tokens');
mydate{:}

ans =
 '01' 'April' '2020'

You can associate names with tokens so that they are more easily identifiable:

str = 'Here is a date: 01-Apr-2020';
expression = '(?<day>\d+)-(?<month>\w+)-(?<year>\d+)';

mydate = regexp(str,expression,'names')

mydate =
 day: '01'
 month: 'Apr'
 year: '2020'

For more information, see “Tokens in Regular Expressions”.

Tips
• Use contains or strfind to find an exact character match within text. Use regexp

to look for a pattern of characters.

Algorithms
MATLAB parses each input character vector or string from left to right, attempting to
match the text in the character vector or string with the first element of the regular
expression. During this process, MATLAB skips over any text that does not match.

When MATLAB finds the first match, it continues parsing to match the second piece of the
expression, and so on.

1 Alphabetical List

1-12716

See Also
contains | regexpi | regexprep | regexptranslate | replace | strfind | strjoin
| strrep | strsplit

Topics
“Regular Expressions”
“Lookahead Assertions in Regular Expressions”
“Dynamic Regular Expressions”

Introduced before R2006a

 regexp

1-12717

regexpi
Match regular expression (case insensitive)

Syntax
startIndex = regexpi(str,expression)
[startIndex,endIndex] = regexpi(str,expression)

out = regexpi(str,expression,outkey)
[out1,...,outN] = regexpi(str,expression,outkey1,...,outkeyN)

___ = regexpi(___ ,option1,...,optionM)

___ = regexpi(___ ,'forceCellOutput')

Description
startIndex = regexpi(str,expression) returns the starting index of each
substring of str that matches the character patterns specified by the regular expression,
without regard to letter case. If there are no matches, startIndex is an empty array.

[startIndex,endIndex] = regexpi(str,expression) returns the starting and
ending indices of all matches.

out = regexpi(str,expression,outkey) returns the output specified by outkey.
For example, if outkey is 'match', then regexpi returns the substrings that match the
expression rather than their starting indices.

[out1,...,outN] = regexpi(str,expression,outkey1,...,outkeyN) returns
the outputs specified by multiple output keywords, in the specified order. For example, if
you specify 'match','tokens', then regexpi returns substrings that match the entire
expression and tokens on page 1-12738 that match parts of the expression.

___ = regexpi(___ ,option1,...,optionM) modifies the search using the
specified option flags. For example, specify 'matchcase' to perform a case-sensitive
match. You can include any of the inputs and request any of the outputs from previous
syntaxes.

1 Alphabetical List

1-12718

___ = regexpi(___ ,'forceCellOutput') returns each output argument as a
scalar cell. The cells contain the numeric arrays or substrings that are described as the
outputs of the previous syntaxes. You can include any of the inputs and request any of the
outputs from previous syntaxes.

Examples

Pattern Matching

Find words that start with c, end with t, and contain one or more vowels between them.

str = 'bat cat can car COAT court cut ct CAT-scan';
expression = 'c[aeiou]+t';
startIndex = regexpi(str,expression)

startIndex = 1×4

 5 17 28 35

Values in startIndex indicate the index of the first character of each word that matches
the regular expression.

The regular expression 'c[aeiou]+t' specifies this pattern:

• c must be the first character.
• c must be followed by one of the characters inside the brackets, [aeiou].
• The bracketed pattern must occur one or more times, as indicated by the + operator.
• t must be the last character, with no characters between the bracketed pattern and

the t.

Case-Sensitive Match

Match letter case in all or part of an expression.

By default, regexpi performs case-insensitive matching.

 regexpi

1-12719

str = 'A character vector with UPPERCASE and lowercase text.';
expression = '\w*case';
matchStr = regexpi(str,expression,'match')

matchStr = 1x2 cell array
 {'UPPERCASE'} {'lowercase'}

Use the regexp function with the same syntax as regexpi to perform case-sensitive
matching.

matchWithRegexp = regexp(str,expression,'match')

matchWithRegexp = 1x1 cell array
 {'lowercase'}

To disable case-sensitive matching for regexp, use the 'ignorecase' option.

matchWithIgnorecase = regexp(str,expression,'match','ignorecase')

matchWithIgnorecase = 1x2 cell array
 {'UPPERCASE'} {'lowercase'}

For multiple expressions, enable and disable case-insensitive matching for selected
expressions using the (?i) and (?-i) search flags.

expression = {'(?-i)\w*case';...
 '(?i)\w*case'};
matchStr = regexp(str,expression,'match');
celldisp(matchStr)

matchStr{1}{1} =

lowercase

matchStr{2}{1} =

UPPERCASE

matchStr{2}{2} =

1 Alphabetical List

1-12720

lowercase

Input Arguments
str — Input text
character vector | cell array of character vectors | string array

Input text, specified as a character vector, a cell array of character vectors, or a string
array. Each character vector in a cell array, or each string in a string array, can be of any
length and contain any characters.

If str and expression are string arrays or cell arrays, they must have the same
dimensions.
Data Types: string | char | cell

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a
string array. Each expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.

Metacharacter Description Example
. Any single character, including white

space
'..ain' matches sequences of five
consecutive characters that end with
'ain'.

 regexpi

1-12721

Metacharacter Description Example
[c1c2c3] Any character contained within the

square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[rp.]ain' matches 'rain' or 'pain'
or '.ain'.

[^c1c2c3] Any character not contained within
the square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and '*ain'. For
example, it matches 'gain', 'lain', or
'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character in
the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to
[^a-zA-Z_0-9]

'\W*' identifies a term that is not a
word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end with
the letter n, followed by a white-space
character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed
by any non-white-space character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character; equivalent to
[^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character,
defined by hex 2C.

Character Representation

1 Alphabetical List

1-12722

Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Matches the expression when it
occurs...

Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.
expr? 0 times or 1 time. '\w*(\.m)?' matches words that

optionally end with the extension .m.
expr+ 1 or more times consecutively. '' matches an

 HTML tag when the file name
contains one or more characters.

expr{m,n} At least m times, but no more than n
times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to * and
+, respectively.

'' matches
an <a> HTML tag when the file name
contains one or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

 regexpi

1-12723

Quantifiers can appear in three modes, described in the following table. q represents any
of the quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many

characters as possible.
Given the text
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*?>' ends each
match at the first occurrence of the
closing angle bracket (>):

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as much as
possible, but do not rescan any portions
of the text.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*+>' does not
return any matches, because the closing
angle bracket is captured using .*, and
is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements,
or disable backtracking in a specific group.

Grouping
Operator

Description Example

(expr) Group elements of the expression and
capture tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

1 Alphabetical List

1-12724

Grouping
Operator

Description Example

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches
two consecutive patterns of a vowel
followed by a nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack
within the group to complete the match,
and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the
atomic group, Z is captured using .* and
is not rescanned.

(expr1|
expr2)

Match expression expr1 or expression
expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.

'(let|tel)\w+' matches words that
start with let or tel.

Anchors

Anchors in the expression match the beginning or end of the input text or word.

Anchor Matches the... Example
^expr Beginning of the input text. '^M\w*' matches a word starting with M

at the beginning of the text.
expr$ End of the input text. '\w*m$' matches words ending with m

at the end of the text.
\<expr Beginning of a word. '\<n\w*' matches any words starting

with n.
expr\> End of a word. '\w*e\>' matches any words ending

with e.

Lookaround Assertions

 regexpi

1-12725

Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.

The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match
test.

'\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and
'fall' in the input text 'Flying,
not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that
follow 're', such as 'new', 'use', and
'cycle' in the input text 'renew,
reuse, recycle'

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do not
precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a
logical AND.

Operation Description Example
(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches

consonants.
(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches

consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and then
use the outcome to determine which pattern, if any, to match next. These operators
support logical OR, and if or if/else conditions.

1 Alphabetical List

1-12726

Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?
@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expr1|expr2 Match expression expr1 or

expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+' matches words
that start with let or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as C:\,
when run on a Windows system.

(?(cond)expr1|
expr2)

If condition cond is true, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

Ordinal Token Operator Description Example
(expr) Capture in a token the characters

that match the enclosed
expression.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such as
'title' from the text
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

 regexpi

1-12727

Named Token Operator Description Example
(?<name>expr) Capture in a named token the

characters that match the enclosed
expression.

'(?<month>\d+)-(?<day>\d+)-
(?<yr>\d+)' creates named
tokens for the month, day, and year
in an input date of the form mm-dd-
yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</
\k<tag>>' captures tokens for
HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(name)expr1|
expr2)

If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?
(sex)her|his) \w*' matches
text that includes her when the text
begins with Mrs, or that includes
his when the text begins with Mr.

Note If an expression has nested parentheses, MATLAB captures tokens that correspond
to the outermost set of parentheses. For example, given the search pattern '(and(y|
rew))', MATLAB creates a token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to
determine the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

1 Alphabetical List

1-12728

Operator Description Example
(??expr) Parse expr and include the resulting

term in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions that
use the backslash escape character (\)
require two backslashes: one for the
initial parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters to
match by reading a digit at the
beginning of the match. The dynamic
expression is enclosed in a second set
of parentheses so that the resulting
match is captured in a token. For
instance, matching '5XXXXX'
captures tokens for '5' and
'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the
output returned by the command in
the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at least
four characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement text.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

Comments

 regexpi

1-12729

Characters Description Example
(?#comment) Insert a comment in the regular

expression. The comment text is
ignored when matching the input.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a
search flag within an expression is to pass an option input argument.

Flag Description
(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text

(default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and

'\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.
Data Types: char | cell | string

outkey — Keyword that indicates which outputs to return
'start' (default) | 'end' | 'tokenExtents' | 'match' | 'tokens' | 'names' |
'split'

1 Alphabetical List

1-12730

Keyword that indicates which outputs to return, specified as one of the following
character vectors.

Output Keyword Returns
'start' (default) Starting indices of all matches, startIndex
'end' Ending indices of all matches, endIndex
'tokenExtents' Starting and ending indices of all tokens
'match' Text of each substring that matches the pattern in

expression
'tokens' Text of each captured token in str
'names' Name and text of each named token
'split' Text of nonmatching substrings of str

Data Types: char | string

option — Search option
'once' | 'warnings' | 'matchcase' | 'emptymatch' | 'dotexceptnewline' |
'lineanchors' | ...

Search option, specified as a character vector. Options come in pairs: one option that
corresponds to the default behavior, and one option that allows you to override the
default. Specify only one option from a pair. Options can appear in any order.

Default Override Description
'all' 'once' Match the expression as many times as possible

(default), or only once.
'nowarnings' 'warnings' Suppress warnings (default), or display them.
'ignorecase' 'matchcase' Ignore letter case (default), or match case.
'noemptymatch' 'emptymatch' Ignore zero length matches (default), or include

them.
'dotall' 'dotexceptnewline' Match dot with any character (default), or all

except newline (\n).

 regexpi

1-12731

Default Override Description
'stringanchors' 'lineanchors' Apply ^ and $ metacharacters to the beginning

and end of a character vector (default), or to the
beginning and end of a line. The newline character
(\n) specifies the end of a line. The beginning of a
line is specified as the first character, or any
character that immediately follows a newline
character.

'literalspacing' 'freespacing' Include space characters and comments when
matching (default), or ignore them. With
freespacing, use '\ ' and '\#' to match space
and # characters.

Data Types: char

Output Arguments
startIndex — Starting index of each match
row vector | cell array of row vectors

Starting indices of each match, returned as a row vector or cell array, as follows:

• If str and expression are both character vectors or string scalars, the output is a
row vector (or, if there are no matches, an empty array).

• If either str or expression is a cell array of character vectors or a string array, and
the other is a character vector or a string scalar, the output is a cell array of row
vectors. The output cell array has the same dimensions as the input array.

• If str and expression are both cell arrays or string arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

endIndex — Ending index of each match
row vector | cell array of row vectors

Ending index of each match, returned as a row vector or cell array, as follows:

• If str and expression are both character vectors or string scalars, the output is a
row vector (or, if there are no matches, an empty array).

1 Alphabetical List

1-12732

• If either str or expression is a cell array of character vectors or a string array, and
the other is a character vector or a string scalar, the output is a cell array of row
vectors. The output cell array has the same dimensions as the input array.

• If str and expression are both cell arrays or string arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

out — Information about matches
numeric array | cell array | string array | structure array

Information about matches, returned as a numeric, cell, string, or structure array. The
information in the output depends upon the value you specify for outkey, as follows.

Output Keyword Output Description Output Type and Dimensions
'start' Starting indices of

matches
For both 'start' and 'end':

• If str and expression are both character
vectors or string scalars, the output is a row
vector (or, if there are no matches, an empty
array).

• If either str or expression is a cell array of
character vectors or a string array, and the other
is a character vector or a string scalar, the output
is a cell array of row vectors. The output cell
array has the same dimensions as the input array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

'end' Ending indices of
matches

 regexpi

1-12733

Output Keyword Output Description Output Type and Dimensions
'tokenExtents' Starting and ending

indices of all tokens
By default, when returning all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
cell array, where n is the number of matches.
Each cell contains an m-by-2 numeric array of
indices, where m is the number of tokens in the
match.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array. Each cell contains a 1-by-n cell array,
where each inner cell contains an m-by-2 numeric
array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

When you specify the 'once' option to return only
one match, the output is either an m-by-2 numeric
array or a cell array with the same dimensions as
str and/or expression.

If a token is expected at a particular index N, but is
not found, then MATLAB returns extents for that
token of [N,N-1].

1 Alphabetical List

1-12734

Output Keyword Output Description Output Type and Dimensions
'match' Text of each substring

that matches the pattern
in expression

By default, when returning all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
array, where n is the number of matches.

If str is a character vector, then the output is a
cell array of character vectors. If str is a string
scalar, then the output is a string array.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

When you specify the 'once' option to return only
one match, the output is either a character vector, a
string array, or a cell array with the same dimensions
as str and expression.

 regexpi

1-12735

Output Keyword Output Description Output Type and Dimensions
'tokens' Text of each captured

token in str
By default, when returning all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
cell array, where n is the number of matches.
Each cell contains a 1-by-m cell array of matches,
where m is the number of tokens in the match.

If str is a character vector, then the output is a
cell array of character vectors. If str is a string
array, then the output is a cell array in which
each cell contains a string array.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array. Each cell contains a 1-by-n cell array,
where each inner cell contains a 1-by-m array.

If str is a cell array of character vectors, then
each inner cell contains a 1-by-m cell array. If str
is a string array, then each inner cell contains a 1-
by-m string array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which the innermost cells
contain string arrays.

When you specify the 'once' option to return only
one match, the output is a 1-by-m string array, cell
array of character vectors, or a cell array that has
the same dimensions as str and/or expression.

1 Alphabetical List

1-12736

Output Keyword Output Description Output Type and Dimensions
If a token is expected at a particular index, but is not
found, then MATLAB returns an empty value for the
token, '' for character vectors, or "" for strings.

'names' Name and text of each
named token

For all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
structure array, where n is the number of
matches. The structure field names correspond to
the token names.

• If str or expression is a cell array of character
vectors or a string array, the output is a cell array
with the same dimensions as the input array.
Each cell contains a 1-by-n structure array.

• If str and expression are both cell arrays or
string arrays, they must have the same
dimensions. The output is a cell array with the
same dimensions.

 regexpi

1-12737

Output Keyword Output Description Output Type and Dimensions
'split' Text of nonmatching

substrings of str
For all matches:

• If str and expression are both character
vectors or string scalars, the output is a 1-by-n
array, where n is the number of nonmatches.

If str is a character vector, then the output is a
cell array of character vectors. If str is a string
scalar, then the output is a string array.

• If either str or expression is a cell array of
character vectors or a string array, the output is a
cell array with the same dimensions as the input
array. Each cell contains a 1-by-n cell array of
character vectors.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

• If str and expression are both cell arrays, they
must have the same dimensions. The output is a
cell array with the same dimensions.

If str is a cell array of character vectors, then so
is the output. If str is a string array, then the
output is a cell array in which each cell contains a
string array.

Definitions
Tokens
Tokens are portions of the matched text that correspond to portions of the regular
expression. To create tokens, enclose part of the regular expression in parentheses.

For example, this expression finds a date of the form dd-mmm-yyyy, including tokens for
the day, month, and year.

1 Alphabetical List

1-12738

str = 'Here is a date: 01-Apr-2020';
expression = '(\d+)-(\w+)-(\d+)';

mydate = regexp(str,expression,'tokens');
mydate{:}

ans =
 '01' 'April' '2020'

You can associate names with tokens so that they are more easily identifiable:

str = 'Here is a date: 01-Apr-2020';
expression = '(?<day>\d+)-(?<month>\w+)-(?<year>\d+)';

mydate = regexp(str,expression,'names')

mydate =
 day: '01'
 month: 'Apr'
 year: '2020'

For more information, see “Tokens in Regular Expressions”.

See Also
contains | regexp | regexprep | regexptranslate | replace | strfind | strjoin |
strrep | strsplit

Topics
“Lookahead Assertions in Regular Expressions”
“Dynamic Regular Expressions”

Introduced before R2006a

 regexpi

1-12739

regexprep
Replace text using regular expression

Syntax
newStr = regexprep(str,expression,replace)
newStr = regexprep(str,expression,replace,option1,...optionM)

Description
newStr = regexprep(str,expression,replace) replaces the text in str that
matches expression with the text described by replace. The regexprep function
returns the updated text in newStr.

• If str is a single piece of text (either a character vector or a string scalar), then
newStr is also a single piece of text of the same type. newStr is a single piece of text
even when expression or replace is a cell array of character vectors or a string
array. When expression is a cell array or a string array, regexprep applies the first
expression to str, and then applies each subsequent expression to the preceding
result.

• If str is a cell array or a string array, then newStr is a cell array or string array with
the same dimensions as str. For each element of str, the regexprep function
applies each expression in sequence.

• If there are no matches to expression, then newStr is equivalent to str.

newStr = regexprep(str,expression,replace,option1,...optionM) modifies
the search using the specified options. For example, specify 'ignorecase' to perform a
case-insensitive match.

Examples

1 Alphabetical List

1-12740

Update Text

Replace words that begin with M, end with y, and have at least one character between
them.

str = 'My flowers may bloom in May';
expression = 'M(\w+)y';
replace = 'April';

newStr = regexprep(str,expression,replace)

newStr =
'My flowers may bloom in April'

Include Tokens in Replacement Text

Replace variations of the phrase 'walk up' by capturing the letters that follow 'walk'
in a token.

str = 'I walk up, they walked up, we are walking up.';
expression = 'walk(\w*) up';
replace = 'ascend$1';

newStr = regexprep(str,expression,replace)

newStr =
'I ascend, they ascended, we are ascending.'

Include Dynamic Expression in Replacement Text

Replace lowercase letters at the beginning of sentences with their uppercase equivalents
using the upper function.

str = 'here are two sentences. neither is capitalized.';
expression = '(^|\.)\s*.';
replace = '${upper($0)}';

newStr = regexprep(str,expression,replace)

 regexprep

1-12741

newStr =
'Here are two sentences. Neither is capitalized.'

The regular expression matches single characters (.) that follow the beginning of the
character vector (^) or a period (\.) and any whitespace (\s*). The replace
expression calls the upper function for the currently matching character ($0).

Update Multiple Pieces of Text

Replace each occurrence of a double letter in a set of character vectors with the symbols
'--'.

str = { ...
'Whose woods these are I think I know.' ; ...
'His house is in the village though;' ; ...
'He will not see me stopping here' ; ...
'To watch his woods fill up with snow.'};

expression = '(.)\1';
replace = '--';
newStr = regexprep(str,expression,replace)

newStr = 4x1 cell array
 {'Whose w--ds these are I think I know.'}
 {'His house is in the vi--age though;' }
 {'He wi-- not s-- me sto--ing here' }
 {'To watch his w--ds fi-- up with snow.'}

Preserve Case in Original Text

Ignore letter case in the regular expression when finding matches, but mimic the letter
case of the original text when updating.

str = 'My flowers may bloom in May';
expression = 'M(\w+)y';
replace = 'April';

newStr = regexprep(str,expression,replace,'preservecase')

1 Alphabetical List

1-12742

newStr =
'My flowers april bloom in April'

Replace Zero-Length Matches

Insert text at the beginning of a character vector using the '^' operator, which returns a
zero-length match, and the 'emptymatch' keyword.

str = 'abc';
expression = '^';
replace = '__';

newStr = regexprep(str,expression,replace,'emptymatch')

newStr =
'__abc'

Input Arguments
str — Text to update
character vector | cell array of character vectors | string array

Text to update, specified as a character vector, a cell array of character vectors, or a
string array.
Data Types: char | cell | string

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a
string array. Each expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

 regexprep

1-12743

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.

Metacharacter Description Example
. Any single character, including white

space
'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within the
square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[rp.]ain' matches 'rain' or 'pain'
or '.ain'.

[^c1c2c3] Any character not contained within
the square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and '*ain'. For
example, it matches 'gain', 'lain', or
'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character in
the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to
[^a-zA-Z_0-9]

'\W*' identifies a term that is not a
word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end with
the letter n, followed by a white-space
character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed
by any non-white-space character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character; equivalent to
[^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

1 Alphabetical List

1-12744

Metacharacter Description Example
\oN or \o{N} Character of octal value N '\o{40}' matches the space character,

defined by octal 40.
\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character,

defined by hex 2C.

Character Representation

Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Matches the expression when it
occurs...

Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.
expr? 0 times or 1 time. '\w*(\.m)?' matches words that

optionally end with the extension .m.
expr+ 1 or more times consecutively. '' matches an

 HTML tag when the file name
contains one or more characters.

 regexprep

1-12745

Quantifier Matches the expression when it
occurs...

Example

expr{m,n} At least m times, but no more than n
times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to * and
+, respectively.

'' matches
an <a> HTML tag when the file name
contains one or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

Quantifiers can appear in three modes, described in the following table. q represents any
of the quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many

characters as possible.
Given the text
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*?>' ends each
match at the first occurrence of the
closing angle bracket (>):

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as much as
possible, but do not rescan any portions
of the text.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*+>' does not
return any matches, because the closing
angle bracket is captured using .*, and
is not rescanned.

Grouping Operators

1 Alphabetical List

1-12746

Grouping operators allow you to capture tokens, apply one operator to multiple elements,
or disable backtracking in a specific group.

Grouping
Operator

Description Example

(expr) Group elements of the expression and
capture tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches
two consecutive patterns of a vowel
followed by a nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack
within the group to complete the match,
and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the
atomic group, Z is captured using .* and
is not rescanned.

(expr1|
expr2)

Match expression expr1 or expression
expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.

'(let|tel)\w+' matches words that
start with let or tel.

Anchors

Anchors in the expression match the beginning or end of the input text or word.

Anchor Matches the... Example
^expr Beginning of the input text. '^M\w*' matches a word starting with M

at the beginning of the text.
expr$ End of the input text. '\w*m$' matches words ending with m

at the end of the text.

 regexprep

1-12747

Anchor Matches the... Example
\<expr Beginning of a word. '\<n\w*' matches any words starting

with n.
expr\> End of a word. '\w*e\>' matches any words ending

with e.

Lookaround Assertions

Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.

The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match
test.

'\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and
'fall' in the input text 'Flying,
not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that
follow 're', such as 'new', 'use', and
'cycle' in the input text 'renew,
reuse, recycle'

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do not
precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a
logical AND.

Operation Description Example
(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches

consonants.

1 Alphabetical List

1-12748

Operation Description Example
(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches

consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and then
use the outcome to determine which pattern, if any, to match next. These operators
support logical OR, and if or if/else conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?
@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expr1|expr2 Match expression expr1 or

expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+' matches words
that start with let or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as C:\,
when run on a Windows system.

(?(cond)expr1|
expr2)

If condition cond is true, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

 regexprep

1-12749

Ordinal Token Operator Description Example
(expr) Capture in a token the characters

that match the enclosed
expression.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such as
'title' from the text
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Named Token Operator Description Example
(?<name>expr) Capture in a named token the

characters that match the enclosed
expression.

'(?<month>\d+)-(?<day>\d+)-
(?<yr>\d+)' creates named
tokens for the month, day, and year
in an input date of the form mm-dd-
yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</
\k<tag>>' captures tokens for
HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(name)expr1|
expr2)

If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?
(sex)her|his) \w*' matches
text that includes her when the text
begins with Mrs, or that includes
his when the text begins with Mr.

Note If an expression has nested parentheses, MATLAB captures tokens that correspond
to the outermost set of parentheses. For example, given the search pattern '(and(y|
rew))', MATLAB creates a token for 'andrew' but not for 'y' or 'rew'.

1 Alphabetical List

1-12750

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to
determine the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

Operator Description Example
(??expr) Parse expr and include the resulting

term in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions that
use the backslash escape character (\)
require two backslashes: one for the
initial parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters to
match by reading a digit at the
beginning of the match. The dynamic
expression is enclosed in a second set
of parentheses so that the resulting
match is captured in a token. For
instance, matching '5XXXXX'
captures tokens for '5' and
'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the
output returned by the command in
the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at least
four characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement text.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

 regexprep

1-12751

Comments

Characters Description Example
(?#comment) Insert a comment in the regular

expression. The comment text is
ignored when matching the input.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a
search flag within an expression is to pass an option input argument.

Flag Description
(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text

(default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and

'\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.
Data Types: char | cell | string

replace — Replacement text
character vector | cell array of character vectors | string array

1 Alphabetical List

1-12752

Replacement text, specified as a character vector, a cell array of character vectors, or a
string array, as follows:

• If replace is a single character vector and expression is a cell array of character
vectors, then regexprep uses the same replacement text for each expression.

• If replace is a cell array of N character vectors and expression is a single character
vector, then regexprep attempts N matches and replacements.

• If both replace and expression are cell arrays of character vectors, then they must
contain the same number of elements. regexprep pairs each replace element with
its matching element in expression.

The replacement text can include regular characters, special characters (such as tabs or
new lines), or replacement operators, as shown in the following tables.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Data Types: char | cell | string

 regexprep

1-12753

option — Search or replacement option
'once' | N | 'warnings' | 'ignorecase' | 'preservecase' | 'emptymatch' |
'dotexceptnewline' | 'lineanchors' | ...

Search or replacement option, specified as a character vector or an integer value, as
shown in the following table.

Options come in sets: one option that corresponds to the default behavior, and one or two
options that allow you to override the default. Specify only one option from a set. Options
can appear in any order.

Default Override Description
'all' 'once' Match and replace the expression as many times

as possible (default), or only once.
N Replace only the Nth occurrence of the match,

where N is an integer value.
'nowarnings' 'warnings' Suppress warnings (default), or display them.
'matchcase' 'ignorecase' Match letter case (default), or ignore case while

matching and replacing.
'preservecase' Ignore case while matching, but preserve the case

of corresponding characters in the original text
while replacing.

'noemptymatch' 'emptymatch' Ignore zero length matches (default), or include
them.

'dotall' 'dotexceptnewline' Match dot with any character (default), or all
except newline (\n).

'stringanchors' 'lineanchors' Apply ^ and $ metacharacters to the beginning
and end of a character vector (default), or to the
beginning and end of a line. The newline character
(\n) specifies the end of a line. The beginning of a
line is specified as the first character, or any
character that immediately follows a newline
character.

'literalspacing' 'freespacing' Include space characters and comments when
matching (default), or ignore them. With
freespacing, use '\ ' and '\#' to match space
and # characters.

1 Alphabetical List

1-12754

Data Types: char | string

Output Arguments
newStr — Updated text
character vector | cell array of character vectors | string array

Updated text, returned as a character vector, a cell array of character vectors, or a string
array. The data type of newStr is the same as the data type of str.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
contains | regexp | replace | strcmp | strfind | strrep

Topics
“Lookahead Assertions in Regular Expressions”
“Tokens in Regular Expressions”
“Dynamic Regular Expressions”

Introduced before R2006a

 regexprep

1-12755

regexptranslate
Translate text into regular expression

Syntax
newStr = regexptranslate(op,str)

Description
newStr = regexptranslate(op,str) translates str into a regular expression and
returns the result in newStr. You can use newStr as a regular expression in the regexp,
regexpi, and regexprep functions. The input argument op specifies the type of
translation that regexptranslate performs. For example, if you specify op as
'escape', then regexptranslate translates special characters in str so that they are
literal characters in the output. newStr has the same data type as str.

Examples

Translate Special Character

Translate a special character in a character vector using the regexptranslate function.
Then use the result as a regular expression in regexp.

Create a character vector that contains the characters '\n'.

chr = 'The sequence \n generates a new line.'

chr =
'The sequence \n generates a new line.'

Create a regular expression that finds '\n' as a sequence of the two consecutive
characters '\' and 'n'. Since the regexp function interprets '\n' as a newline
character, use regexptranslate to create a regular expression to escape '\n'.

pattern = regexptranslate('escape','\n')

1 Alphabetical List

1-12756

pattern =
'\\n'

Find the starting index of '\n' in chr. To prevent regexp from interpreting '\n' as a
newline, use pattern as the regular expression.

idx = regexp(chr,pattern)

idx = 14

Call regexp without escaping '\n'. Since regexp interprets '\n' as a newline, it does
not find the literal characters in chr. The regexp function returns an empty array when
it does not find a match.

idx = regexp(chr,'\n')

idx =

 []

Escape Special Characters in Replacement Text

Create a string. Starting in R2017a, you can create strings using double quotes.

str = "Put your money in."

str =
"Put your money in."

Specify the text, '$0.02', as the text to replace the word 'money'. To escape the '$'
and '.' characters, use regexptranslate.

r = regexptranslate('escape','$0.02')

r =
'\$0\.02'

Replace 'money' using the regexprep function.

newStr = regexprep(str,'money',r)

newStr =
"Put your $0.02 in."

 regexptranslate

1-12757

Translate Wildcard Characters

Create a string array that contains file names. Then find only the file names that end with
'.mat'.

str = ["test1.mat","myfile.mat","my-matlab-script.m", ...
 "jan30.mat","table3.xls"]

str = 1x5 string array
 Columns 1 through 4

 "test1.mat" "myfile.mat" "my-matlab-script.m" "jan30.mat"

 Column 5

 "table3.xls"

To match strings with a regular expression, specify '*.mat' as the regular expression.
Then translate the wildcard character, '*', using the regexptranslate function.

pattern = regexptranslate('wildcard','*.mat')

pattern =
'.*\.mat'

Find matching elements in str using the regular expression specified by pattern.

matches = regexp(str,pattern)

matches = 1x5 cell array
 {[1]} {[1]} {0x0 double} {[1]} {0x0 double}

Create a logical array, TF, that contains 1 where corresponding elements of str matched
pattern. Then index into str using TF to display the file names that end with '.mat'.

tf = ~cellfun('isempty',matches);
newStr = str(tf)

newStr = 1x3 string array
 "test1.mat" "myfile.mat" "jan30.mat"

1 Alphabetical List

1-12758

Replace Text with Regular Expression

Create a character vector that contains words separated by whitespace characters, such
as spaces and newline characters.

chr = 'Whose woods these are I think I know.';
chr = [chr newline 'His house is in the village though']

chr =
 'Whose woods these are I think I know.
 His house is in the village though'

Specify '\s' as a regular expression that matches whitespace characters. Then replace
those characters in chr.

expression = '\s';
newChr = regexptranslate('flexible',chr,expression)

newChr =
'Whose\swoods\sthese\sare\sI\sthink\sI\sknow.\sHis\shouse\sis\sin\sthe\svillage\sthough'

Input Arguments
op — Translation type
'escape' | 'wildcard' | 'flexible'

Type of translation, specified as a character vector or string scalar. You can translate
special characters or wildcard characters, or replace text with a matching regular
expression, using the options in the table.

 regexptranslate

1-12759

Type of Translation Description
'escape' Translate all special characters in str,

such as '$', '.', '?','[', so that they are
treated as literal characters when used in
regexp, regexpi, and regexprep. The
translation inserts a backslash, or escape,
character, '\', before each special
character in str.

'wildcard' Translate all wildcard and '.' characters
in str so that they are treated as literal
wildcard characters and periods when used
in regexp, regexpi, and regexprep. The
translation replaces all instances of '*'
with '.*', all instances of '?' with '.',
and all instances of '.' with '\.'.

'flexible' Replace text in str with a regular
expression that matches the text. If you
specify 'flexible', then also specify a
regular expression to use as a replacement:
newStr =
regexptranslate('flexible',str,ex
pression). The expression input can be
a character vector or string scalar.

This syntax is equivalent to newStr =
regexprep(str,expression,regexptr
anslate('escape',expression)).

str — Input text
character vector | cell array of character vectors | string array

Input text, specified as a character vector, a cell array of character vectors, or a string
array.

See Also
contains | regexp | regexpi | regexprep | replace | strfind | strjoin | strrep |
strsplit

1 Alphabetical List

1-12760

Topics
“Regular Expressions”

Introduced before R2006a

 regexptranslate

1-12761

registerevent
Associate event handler for COM object event at run time

Syntax
registerevent(c,eventhandler)

Description
registerevent(c,eventhandler) registers event handler routines with their
corresponding events.

Examples

Register All Events with Same Event Handler

Register all events in the mwsamp control with the same event handler routine sampev.

f = figure('position',[100 200 200 200]);
C = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);
registerevent(C,'sampev')
eventlisteners(C)

ans =

 4×2 cell array

 'Click' 'sampev'
 'DblClick' 'sampev'
 'MouseDown' 'sampev'
 'Event_Args' 'sampev'

1 Alphabetical List

1-12762

Register Event Using Function Handle

C = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200]);
registerevent(C,{'Click' @myclick})
eventlisteners(C)

ans =

 1×2 cell array

 'Click' @myclick

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

eventhandler — Function to call when event occurs
string | character vector | function handle

Function to call when an event occurs, specified as a string or a character vector naming
the function or a function handle that maps to that function. Strings and character
vectors are not case-sensitive.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
eventlisteners | isevent | unregisterallevents | unregisterevent

Topics
“COM Event Handlers”

Introduced before R2006a

 registerevent

1-12763

regionZoomInteraction
Region-zoom interaction

Description
A region-zoom interaction allows you to zoom into a rectangular region of a 2-D chart
without having to select any buttons in the axes toolbar. To enable region zooming, set the
Interactions property of the axes to a regionZoomInteraction object. When this
interaction is enabled, you can zoom into a region by dragging within the chart.

To enable multiple interactions, set the Interactions property to an array of objects.

Creation

Syntax
rz = regionZoomInteraction
rz = regionZoomInteraction('Dimensions',d)

Description
rz = regionZoomInteraction creates a region-zoom interaction object.

rz = regionZoomInteraction('Dimensions',d) sets the Dimensions property.
Use this property to constrain zooming to specific dimensions. For example, rz =
regionZoomInteraction('Dimensions','x') constrains zooming to the x-
dimension.

Properties
Dimensions — Dimensions
'xyz' (default) | 'xy' | 'yz' | 'xz' | 'x' | 'y' | 'z'

1 Alphabetical List

1-12764

Dimensions to allow zooming, specified as one of these values:

• 'xyz' — Allows zooming in all dimensions.
• 'xy' — Allows zooming in the x and y dimensions only.
• 'yz' — Allows zooming in the y and z dimensions only.
• 'xz' — Allows zooming in the x and z dimensions only.
• 'x' — Allows zooming in the x dimension only.
• 'y' — Allows zooming in the y dimension only.
• 'z' — Allows zooming in the z dimension only.

Examples

Axes with Region Zoom and Data Tip Interactions

Create a plot of fifty random numbers. Get the current axes, and replace the default
interactions with the region-zoom and data tip interactions. Then hover over the plotted
points to display data tips. Drag to zoom into a region of the plot.

plot(rand(1,50),'-o')
ax = gca;
ax.Interactions = [regionZoomInteraction dataTipInteraction];

 regionZoomInteraction

1-12765

Restrict Region Zooming to X-Dimension

Create a scatter plot of normally distributed random data. Replace the default set of
interactions with a region-zoom interaction that operates only in the x-dimension. Then
drag within the plot to zoom into a region of interest.

x = linspace(-1,1,1000);
y = randn(1,1000);
scatter(x,y,'.')
ax = gca;
ax.Interactions = regionZoomInteraction('Dimensions','x');

1 Alphabetical List

1-12766

Limitations
Region-zoom interactions are not supported in 3-D axes or in the Live Editor.

Tips
In most cases, the axes have a default set of interactions which depend on the type of
chart you are displaying. You can replace the default set with a new set of interactions,
but you cannot access or modify any of the interactions in the default set.

 regionZoomInteraction

1-12767

See Also
dataTipInteraction | disableDefaultInteractivity |
enableDefaultInteractivity | panInteraction | rotateInteraction |
rulerPanInteraction | zoomInteraction

Topics
“Control Chart Interactivity”

Introduced in R2019a

1 Alphabetical List

1-12768

regmatlabserver
Register current MATLAB as Automation server

Syntax
regmatlabserver
[status,message] = regmatlabserver

Description
regmatlabserver registers the current MATLAB executable as an Automation server.

[status,message] = regmatlabserver returns the status and error message, if any,
reported by the operating system.

Examples

Register MATLAB as Automation Server

Start MATLAB with the Run as administrator option.

At the MATLAB prompt, type:

[s,msg] = regmatlabserver

s =

 0

msg =

 ''

 regmatlabserver

1-12769

MATLAB successfully registered.

Output Arguments
status — MATLAB registration status
0 | nonzero

MATLAB registration status returned as 0 or nonzero. If the attempt to register MATLAB
is successful, status is 0. Otherwise, status is nonzero.

message — System error message
character vector

System error message returned as a character vector if registration is unsuccessful.

See Also

Topics
“Register MATLAB as Automation Server”

Introduced before R2006a

1 Alphabetical List

1-12770

rehash
Refresh function and file system path caches

Syntax
rehash
rehash path
rehash toolbox
rehash toolboxcache

Description
rehash updates the MATLAB list of known files and classes for folders on the search path
that are not in matlabroot. It compares the timestamps for loaded functions against
their timestamps on disk. It clears loaded functions if the files on disk are newer. All of
this normally happens each time MATLAB displays the Command Window prompt. Use
rehash with no arguments only when you run a program file that updates another
program file, and the calling file needs to use the updated version of the second file
before the calling file has finished running.

rehash path performs the same updates as rehash, except that it unconditionally
updates the list of known files and classes for all folders on the search path that are not in
matlabroot. Run rehash path only if you receive a warning during MATLAB startup
notifying you that MATLAB could not tell if a folder has changed, and you encounter
problems with MATLAB not using the most current versions of your program files.

rehash toolbox performs the same updates as rehash path, except it updates the list
of known files and classes for all folders on the search path, including those in
matlabroot. Run rehash toolbox when you change, add, or remove files in
matlabroot during a session. Typically, you should not make changes to files and folders
in matlabroot.

rehash toolboxcache performs the same updates as rehash toolbox, and also
updates the cache file. This is equivalent to clicking the Update Toolbox Path Cache
button in the General Preferences dialog box.

 rehash

1-12771

See Also
addpath | matlabroot | path | rmpath

Topics
“Toolbox Path Caching in MATLAB”
“What Is the MATLAB Search Path?”

Introduced before R2006a

1 Alphabetical List

1-12772

release
Release COM interface

Syntax
release(c)

Description
release(c) releases the interface and all resources used by the interface. Other
interfaces on that object might still be active.

You must release the handle when you are done with the interface. A released interface is
no longer valid. MATLAB generates an error if you try to use an object that represents
that interface.

To release the interface and delete the control itself, use the delete function.

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
actxcontrol | actxserver

 release

1-12773

Topics
“Releasing COM Interfaces and Objects”

Introduced before R2006a

1 Alphabetical List

1-12774

rem
Remainder after division

Syntax
r = rem(a,b)

Description
r = rem(a,b) returns the remainder after division of a by b, where a is the dividend
and b is the divisor. This function is often called the remainder operation, which can be
expressed as r = a - b.*fix(a./b). The rem function follows the convention that
rem(a,0) is NaN.

Examples

Remainder After Division of Scalar

Compute the remainder after dividing 5 into 23.

a = 23;
b = 5;
r = rem(a,b)

r = 3

Remainder After Division of Vector

Find the remainder after division for a vector of integers and the divisor 3.

a = 1:5;
b = 3;
r = rem(a,b)

 rem

1-12775

r = 1×5

 1 2 0 1 2

Remainder After Division for Positive and Negative Values

Find the remainder after division for a set of integers including both positive and negative
values. Note that nonzero results have the same sign as the dividend.

a = [-4 -1 7 9];
b = 3;
r = rem(a,b)

r = 1×4

 -1 -1 1 0

Remainder After Division for Floating-Point Values

Find the remainder after division for several angles using a divisor of 2*pi. When
possible, rem attempts to produce exact integer results by compensating for floating-
point round-off effects.

theta = [0.0 3.5 5.9 6.2 9.0 4*pi];
b = 2*pi;
r = rem(theta,b)

r = 1×6

 0 3.5000 5.9000 6.2000 2.7168 0

1 Alphabetical List

1-12776

Input Arguments
a — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional array. a must be a real-
valued array of any numerical type. Numeric inputs a and b must either be the same size
or have sizes that are compatible (for example, a is an M-by-N matrix and b is a scalar or
1-by-N row vector). For more information, see “Compatible Array Sizes for Basic
Operations”.

If a and b are duration arrays, then they must be the same size unless one is a scalar. If
one input is a duration array, the other input can be a duration array or a numeric array.
In this context, rem treats numeric values as a number of standard 24-hour days.

If one input has an integer data type, then the other input must be of the same integer
data type or be a scalar double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char

b — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a scalar, vector, matrix, or multidimensional array. b must be a real-
valued array of any numerical type. Numeric inputs a and b must either be the same size
or have sizes that are compatible (for example, a is an M-by-N matrix and b is a scalar or
1-by-N row vector). For more information, see “Compatible Array Sizes for Basic
Operations”.

If a and b are duration arrays, then they must be the same size unless one is a scalar. If
one input is a duration array, the other input can be a duration array or a numeric array.
In this context, rem treats numeric values as a number of standard 24-hour days.

If one input has an integer data type, then the other input must be of the same integer
data type or be a scalar double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | duration | char

 rem

1-12777

Definitions

Differences Between mod and rem
The concept of remainder after division is not uniquely defined, and the two functions mod
and rem each compute a different variation. The mod function produces a result that is
either zero or has the same sign as the divisor. The rem function produces a result that is
either zero or has the same sign as the dividend.

Another difference is the convention when the divisor is zero. The mod function follows
the convention that mod(a,0) returns a, whereas the rem function follows the
convention that rem(a,0) returns NaN.

Both variants have their uses. For example, in signal processing, the mod function is
useful in the context of periodic signals because its output is periodic (with period equal
to the divisor).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code performs the arithmetic using the output class. Results might not
match MATLAB due to differences in rounding errors.

• If one of the inputs has type int64 or uint64, then both inputs must have the same
type.

1 Alphabetical List

1-12778

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
mod

Introduced before R2006a

 rem

1-12779

remove
Package: containers

Delete key-value pairs from Map object

Syntax
remove(M,keySet)

Description
remove(M,keySet) deletes the specified keys, and the values associated with them,
from the input Map object.

Examples

Remove Key-Value Pair

Create a Map object. Display its keys and values.

ids = [437 1089 2362];
names = {'Li, N.','Jones, R.','Sanchez, C.'};
M = containers.Map(ids,names)

M =
 Map with properties:

 Count: 3
 KeyType: double
 ValueType: char

keys(M)

1 Alphabetical List

1-12780

ans = 1x3 cell array
 {[437]} {[1089]} {[2362]}

values(M)

ans = 1x3 cell array
 {'Li, N.'} {'Jones, R.'} {'Sanchez, C.'}

Remove a key-value pair. Display the updated keys and values.

remove(M,2362);
keys(M)

ans = 1x2 cell array
 {[437]} {[1089]}

values(M)

ans = 1x2 cell array
 {'Li, N.'} {'Jones, R.'}

Remove Multiple Key-Value Pairs

Create a Map object.

months = {'Jan','Feb','Mar','Apr'};
rainfall = [327.2 368.2 197.6 178.4];
M = containers.Map(months,rainfall);
keys(M)

ans = 1x4 cell array
 {'Apr'} {'Feb'} {'Jan'} {'Mar'}

values(M)

ans = 1x4 cell array
 {[178.4000]} {[368.2000]} {[327.2000]} {[197.6000]}

 remove

1-12781

To remove multiple key-value pairs, specify the keys as a cell array.

keySet = {'Feb','Mar','Apr'};
remove(M,keySet);
keys(M)

ans = 1x1 cell array
 {'Jan'}

values(M)

ans = 1x1 cell array
 {[327.2000]}

Input Arguments
M — Input Map object
Map object

Input Map object.

keySet — Keys of key-value pairs to remove
numeric scalar | character vector | string scalar | cell array

Keys of the key-value pairs to remove from the Map object, specified as a numeric scalar,
character vector, string scalar, or cell array. To remove multiple key-value pairs, specify
keySet as a cell array—even when you specify the keys as numeric scalars or strings.

See Also
containers.Map | isKey | keys | values

Topics
“Overview of Map Data Structure”
“Examine Contents of Map”
“Read and Write Using Key Index”
“Modify Keys and Values in Map”

1 Alphabetical List

1-12782

Introduced in R2008b

 remove

1-12783

removecats
Remove categories from categorical array

Syntax
B = removecats(A)
B = removecats(A,oldcats)

Description
B = removecats(A) removes unused categories from the categorical array, A. The
output categorical array, B, has the same size and values as A. However, B possibly has
fewer categories.

B = removecats(A,oldcats) removes the categories specified by oldcats. The
function removecats removes categories, but does not remove any elements of the array.
Therefore, elements of B, whose values correspond to oldcats, are undefined.

Examples

Remove All Unused Categories

Create a categorical array representing political parties of four people.

A = categorical({'republican' 'democrat' 'democrat' 'republican'},...
 {'democrat' 'republican' 'independent'})

A = 1x4 categorical array
 republican democrat democrat republican

A is a 1-by-4 categorical array.

Summarize the categorical array, A.

1 Alphabetical List

1-12784

summary(A)

 democrat republican independent
 2 2 0

A has three categories. democrat appears twice in the array, republican appears twice
in the array, and independent is unused.

Remove the unused category, independent.

B = removecats(A)

B = 1x4 categorical array
 republican democrat democrat republican

B has the same values as A.

Display the categories of B.

categories(B)

ans = 2x1 cell array
 {'democrat' }
 {'republican'}

B has fewer categories than A.

Remove Categories and Make Corresponding Values Undefined

Create a categorical array, A, containing modes of transportation.

A = categorical({'plane' 'car'; 'train' 'car'; 'plane' 'car'})

A = 3x2 categorical array
 plane car
 train car
 plane car

A is a 3-by-2 categorical array.

 removecats

1-12785

Display the categories of A.

categories(A)

ans = 3x1 cell array
 {'car' }
 {'plane'}
 {'train'}

A has three categories, car, plane, and train.

Remove the category, train.

B = removecats(A,'train')

B = 3x2 categorical array
 plane car
 <undefined> car
 plane car

The element that was from the category train is now undefined.

Display the categories of B.

categories(B)

ans = 2x1 cell array
 {'car' }
 {'plane'}

B has one fewer category than A.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

1 Alphabetical List

1-12786

oldcats — Categories to remove
character vector | cell array of character vectors | string array

Categories to remove, specified as a character vector, a cell array of character vectors, or
a string array. The default is all the unused categories from A.

Tips
• ~ismember(categories(A),unique(A)) returns logical true (1) for any unused

category of A.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
addcats | categories | iscategory | mergecats | renamecats | reordercats |
setcats | summary

Introduced in R2013b

 removecats

1-12787

removeToolbarExplorationButtons
Remove data exploration buttons from figure toolbar

Syntax
removeToolbarExplorationButtons(fig)

Description
removeToolbarExplorationButtons(fig) removes any data exploration buttons on
page 1-12789 from the figure toolbar of the specified figure.

In R2018b, the data exploration buttons were moved from the figure toolbar to the axes
toolbar. In most cases, you do not need to use this function. However, if you have code
that relies on the buttons appearing in the figure toolbar, you can use the
addToolbarExplorationButtons and removeToolbarExplorationButtons
functions to control the appearance of the buttons in the figure toolbar.

Examples

Add and Remove Data Exploration Buttons

Create a figure with a surface plot. Then add the data exploration buttons to the figure
toolbar.

fig = figure;
surf(peaks);
addToolbarExplorationButtons(fig)

Notice that the figure toolbar now includes buttons to zoom in, zoom out, and so on.

Remove the buttons from the figure toolbar.

1 Alphabetical List

1-12788

removeToolbarExplorationButtons(fig)

Input Arguments
fig — Target figures
single Figure object | vector of Figure objects

Target figures, specified as a single Figure object or a vector of Figure objects.

Definitions

Data Exploration Buttons
The standard data exploration buttons include options to:

• Zoom in or out of the axes view
• Pan the axes view
• Rotate the axes view
• Show data tips
• Brush data

In R2018b, the data exploration buttons were moved from the figure toolbar to the axes
toolbar. This figure illustrates the relocation of the buttons.

 removeToolbarExplorationButtons

1-12789

See Also
addToolbarExplorationButtons | axtoolbar

Introduced in R2018a

1 Alphabetical List

1-12790

removets
Remove timeseries from tscollection

Syntax
tscout = removets(tscin,tsname)

Description
tscout = removets(tscin,tsname) removes a timeseries object with name
tsname from a tscollection object. tsname can be a single character vector or a cell
array of character vectors.

Examples

Remove timeseries

Create a tscollection object from two timeseries objects. Then, remove the
timeseries named Speed from the tscollection.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,...
 'Name','Acceleration');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,...
 'Name','Speed');
tscin = tscollection({ts1;ts2});
tscout = removets(tscin,'Speed')

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 5 seconds

Member Time Series Objects:

 removets

1-12791

 Acceleration

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

tsname — timeseries name
character vector | cell array of character vectors

timeseries name, specified as a character vector or a cell array of character vectors.

See Also
addts | timeseries | tscollection

Introduced before R2006a

1 Alphabetical List

1-12792

removevars
Delete variables from table or timetable

Syntax
T2 = removevars(T1,vars)

Description
T2 = removevars(T1,vars) deletes the table variables specified by vars and copies
the remaining variables to T2 (see diagram). You can specify variables by name, by
position, or using logical indices.

Examples

 removevars

1-12793

Remove Variable

Create a table and remove variables one at a time. You can specify variables by name or
by position in the table.

Read data from a spreadsheet into a table. Display the first three rows.

T1 = readtable('outages.csv');
head(T1,3)

ans=3×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ ______________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

Remove the variable that is named Region.

T2 = removevars(T1,'Region');
head(T2,3)

ans=3×5 table
 OutageTime Loss Customers RestorationTime Cause
 ________________ ______ __________ ________________ ______________

 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

Remove the fourth variable from T2.

T3 = removevars(T2,4);
head(T3,3)

ans=3×4 table
 OutageTime Loss Customers Cause
 ________________ ______ __________ ______________

 2002-02-01 12:18 458.98 1.8202e+06 'winter storm'
 2003-01-23 00:49 530.14 2.1204e+05 'winter storm'
 2003-02-07 21:15 289.4 1.4294e+05 'winter storm'

1 Alphabetical List

1-12794

Specify Multiple Variables

Remove multiple table variables using the removevars function. You can specify
variables by name or by position.

Read data from a spreadsheet into a table.

T1 = readtable('outages.csv');
head(T1,3)

ans=3×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ ______________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

Remove the variables named Loss and Customers. Specify names using a cell array of
character vectors.

T2 = removevars(T1,{'Loss','Customers'});
head(T2,3)

ans=3×4 table
 Region OutageTime RestorationTime Cause
 ___________ ________________ ________________ ______________

 'SouthWest' 2002-02-01 12:18 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 2003-02-17 08:14 'winter storm'

Remove the first and fourth variables, using a numeric array to indicate their positions in
T2.

T3 = removevars(T2,[1 4]);
head(T3,3)

ans=3×2 table
 OutageTime RestorationTime

 removevars

1-12795

 ________________ ________________

 2002-02-01 12:18 2002-02-07 16:50
 2003-01-23 00:49 NaT
 2003-02-07 21:15 2003-02-17 08:14

Input Arguments
T1 — Input table
table | timetable

Input table, specified as a table or timetable.

vars — Variables in input table
character vector | cell array of character vectors | string array | numeric array | logical
array

Variables in the input table, specified as a character vector, cell array of character
vectors, string array, numeric array, or logical array.
Example: T2 = removevars(T1,2) removes the second table variable.
Example: T2 = removevars(T1,'Date') removes the table variable named Date.
Example: T2 = removevars(T1,{'Latitude','Longitude','Elevation'})
removes the table variables named Latitude, Longitude, and Elevation.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-12796

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
addvars | mergevars | movevars | splitvars

Topics
“Add, Delete, and Rearrange Table Variables”
“Add and Delete Table Rows”
“Access Data in a Table”
“Modify Units, Descriptions, and Table Variable Names”
“Clean Messy and Missing Data in Tables”

Introduced in R2018a

 removevars

1-12797

renamecats
Rename categories in categorical array

Syntax
B = renamecats(A,newnames)
B = renamecats(A,oldnames,newnames)

Description
B = renamecats(A,newnames) renames all the categories in the categorical array, A.
Elements of B use the new category names.

B = renamecats(A,oldnames,newnames) renames only the categories specified by
oldnames.

Examples

Rename All Categories

Create a categorical array containing states from New England.

A = categorical({'MA';'ME';'CT';'VT';'ME';'NH';'VT';'MA';'NH';'CT';'RI'})

A = 11x1 categorical array
 MA
 ME
 CT
 VT
 ME
 NH
 VT
 MA
 NH
 CT

1 Alphabetical List

1-12798

 RI

A is an 11-by-1 categorical array.

Display the categories of A.

categories(A)

ans = 6x1 cell array
 {'CT'}
 {'MA'}
 {'ME'}
 {'NH'}
 {'RI'}
 {'VT'}

A has six categories.

Rename the categories to use the full state name instead of the abbreviation.

B = renamecats(A,{'Connecticut','Massachusetts',...
 'Maine','New Hampshire','Rhode Island' 'Vermont'})

B = 11x1 categorical array
 Massachusetts
 Maine
 Connecticut
 Vermont
 Maine
 New Hampshire
 Vermont
 Massachusetts
 New Hampshire
 Connecticut
 Rhode Island

Elements of B use the new category names.

Display the categories of B.

categories(B)

 renamecats

1-12799

ans = 6x1 cell array
 {'Connecticut' }
 {'Massachusetts'}
 {'Maine' }
 {'New Hampshire'}
 {'Rhode Island' }
 {'Vermont' }

Rename One Category

Create a categorical array containing colors.

A = categorical({'red' 'blue'; 'purple' 'white'; 'green' 'red'})

A = 3x2 categorical array
 red blue
 purple white
 green red

A is a 3-by-2 categorical array.

Display the categories of A.

categories(A)

ans = 5x1 cell array
 {'blue' }
 {'green' }
 {'purple'}
 {'red' }
 {'white' }

A has five categories that are listed in alphabetical order.

Change the category name from purple to violet.

B = renamecats(A,'purple','violet')

B = 3x2 categorical array
 red blue

1 Alphabetical List

1-12800

 violet white
 green red

The element B(2,1) is violet instead of purple.

Display the categories of B.

categories(B)

ans = 5x1 cell array
 {'blue' }
 {'green' }
 {'violet'}
 {'red' }
 {'white' }

violet replaces purple and the categories are no longer in alphabetical order. Note
that the category has not changed its position.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

newnames — New category names for B
character vector | cell array of character vectors | string array

New category names for B, specified as a character vector, a cell array of character
vectors, or a string array. The new category names must be unique, and must not
duplicate any existing names.

oldnames — Old category names from A
character vector | cell array of character vectors | string array

Old category names from A, specified as a character vector, a cell array of character
vectors, or a string array.

 renamecats

1-12801

Tips
• Renaming categories does not change their position in categories(B). Use

reordercats to change the category ordering. For example, you can use B =
reordercats(B,sort(categories(B))) to put the categories in alphabetical
order.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
addcats | categories | iscategory | mergecats | removecats | reordercats |
setcats

Introduced in R2013b

1 Alphabetical List

1-12802

reordercats
Reorder categories in categorical array

Syntax
B = reordercats(A)
B = reordercats(A,neworder)

Description
B = reordercats(A) reorders the categories in the categorical array, A, to be in
alphanumeric order.

The order of the categories is used by functions such as summary and histogram. If the
categorical array is ordinal, the order of the categories defines their mathematical
ordering. The first category specified is the smallest and the last category is the largest.

B = reordercats(A,neworder) puts the categories in the order specified by
neworder.

Examples

Alphabetize Categories of Nonordinal Categorical Array

Create two categorical arrays, X and Y.

X = categorical({'frog';'cat';'cat';'ant';'frog'})

X = 5x1 categorical array
 frog
 cat
 cat
 ant
 frog

 reordercats

1-12803

Y = categorical({'deer';'bear';'eagle';'deer'})

Y = 4x1 categorical array
 deer
 bear
 eagle
 deer

X is a 5-by-1 categorical array. The categories of X are the sorted unique values from the
array: {'ant';'cat';'frog'}.

Y is a 4-by-1 categorical array. The categories of Y are the sorted unique values from the
array: {'bear';'deer';'eagle'}.

Concatenate X and Y into a single categorical array, A.

A = [X;Y]

A = 9x1 categorical array
 frog
 cat
 cat
 ant
 frog
 deer
 bear
 eagle
 deer

vertcat appends the values from Y to the values from X.

List the categories of the categorical array, A.

acats = categories(A)

acats = 6x1 cell array
 {'ant' }
 {'cat' }
 {'frog' }
 {'bear' }
 {'deer' }
 {'eagle'}

1 Alphabetical List

1-12804

vertcat appends the categories of Y to the categories from X. The categories of A are
not in alphabetical order.

Reorder the categories of A into alphabetical order.

B = reordercats(A)

B = 9x1 categorical array
 frog
 cat
 cat
 ant
 frog
 deer
 bear
 eagle
 deer

The output categorical array, B, has the same elements in the same order as the input
categorical array, A.

List the categories of the categorical array, B.

bcats = categories(B)

bcats = 6x1 cell array
 {'ant' }
 {'bear' }
 {'cat' }
 {'deer' }
 {'eagle'}
 {'frog' }

The categories of B are in alphabetical order.

Reorder Categories in Nonordinal Categorical Array

Create a categorical array containing the color of various items.

A = categorical({'red';'green';'blue';'red';'green';'red';'blue';'blue'})

 reordercats

1-12805

A = 8x1 categorical array
 red
 green
 blue
 red
 green
 red
 blue
 blue

A is an 8-by-1 categorical array.

Display the categories of A.

categories(A)

ans = 3x1 cell array
 {'blue' }
 {'green'}
 {'red' }

The categories of A are in alphabetical order and have no mathematical meaning.

Reorder the categories to match the order commonly used for colors.

B = reordercats(A,{'red','green','blue'})

B = 8x1 categorical array
 red
 green
 blue
 red
 green
 red
 blue
 blue

B contains the same values as A.

Display the categories of B.

categories(B)

1 Alphabetical List

1-12806

ans = 3x1 cell array
 {'red' }
 {'green'}
 {'blue' }

B is not ordinal and the order of the categories has no mathematical meaning. Although
the categories appear in the order of the color spectrum, relational operations, such as
greater than and less than, have no meaning.

Reorder Categories in Ordinal Categorical Array

Create an ordinal categorical array, A, containing modes of transportation. Order the
categories based on the average price of travel.

A = categorical({'plane';'car'; 'train';'car';'plane';'car'},...
 {'car','train','plane'},'Ordinal',true)

A = 6x1 categorical array
 plane
 car
 train
 car
 plane
 car

A is a 6-by-1 ordinal categorical array.

Display the categories of A.

categories(A)

ans = 3x1 cell array
 {'car' }
 {'train'}
 {'plane'}

Since A is ordinal, car < train < plane.

Reorder the categories to reflect a decrease in the cost of train travel.

 reordercats

1-12807

B = reordercats(A,{'train','car','plane'})

B = 6x1 categorical array
 plane
 car
 train
 car
 plane
 car

B contains the same values as A.

Display the categories of B.

categories(B)

ans = 3x1 cell array
 {'train'}
 {'car' }
 {'plane'}

The mathematical ordering of the categories is now train < car < plane. The results
from relational operations, min, and max reflect the new category ordering.

Reorder Categories with Numeric Vector

Create a categorical array, A, containing modes of transportation.

A = categorical({'plane';'car';'train';'car';'car';'plane';'car'})

A = 7x1 categorical array
 plane
 car
 train
 car
 car
 plane
 car

Display the categories of A.

1 Alphabetical List

1-12808

categories(A)

ans = 3x1 cell array
 {'car' }
 {'plane'}
 {'train'}

Reorder categories from least to most frequent occurrence in A.

B = countcats(A);
[C,neworder] = sort(B);
neworder

neworder = 3×1

 3
 2
 1

D = reordercats(A,neworder);
categories(D)

ans = 3x1 cell array
 {'train'}
 {'plane'}
 {'car' }

Because countcats counts the occurrences of each category, neworder describes how
to reorder the categories—not the elements—of A.

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array. If A is an
ordinal categorical array, a reordering of the categories changes the mathematical
meaning. Consequently, the relational operators, such as greater than and less than,
might return different results.

 reordercats

1-12809

neworder — New category order for B
cell array of character vectors | string array | numeric vector

New category order for B, specified as a cell array of character vectors, a string array, or
a numeric vector. neworder must be a permutation of categories(A).

Tips
• To convert the categorical array, B, to an ordinal categorical array, use B =

categorical(B,'Ordinal',true). You can specify the order of the categories with
B = categorical(B,valueset,'Ordinal',true), where the order of the values
in valueset defines the category order.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
addcats | categories | iscategory | mergecats | removecats | renamecats |
setcats

Introduced in R2013b

1 Alphabetical List

1-12810

rename
Rename file on FTP server

Syntax
rename(ftpobj,oldname,newname)

Description
rename(ftpobj,oldname,newname) changes the name of the file oldname to
newname in the current folder on the FTP server associated with ftpobj.

Examples

Rename File

Connect to an FTP server and rename a file on the server. This example shows a
hypothetical FTP session on ftp.example.com, a machine that does not exist. If you
have an account on an FTP server that grants you permission to upload or change files on
that server, then you can use the rename function as shown in this example.

First, connect to the server.

ftpobj = ftp('ftp.example.com')

ftpobj =

 FTP Object
 host: ftp.example.com
 user: anonymous
 dir: /
 mode: binary

Display the contents of the current folder on the FTP server.

 rename

1-12811

dir(ftpobj)

myscript.m README.txt pub

Rename a file on the FTP server.

rename(ftpobj,'README.txt','INTRO.txt')

Display the updated contents on the FTP server, including the renamed file.

dir(ftpobj)

INTRO.txt myscript.m pub

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

oldname — Original name of file
character vector | string scalar

Original name of the file on the FTP server, specified as a character vector or string
scalar.

newname — New name of file
character vector | string scalar

New name of the file on the FTP server, specified as a character vector or string scalar.

Tips
• The rename function only renames files on an FTP server. To rename files on your

local machine, use the movefile function.

1 Alphabetical List

1-12812

See Also
delete | dir | ftp | mget | mput

Introduced before R2006a

 rename

1-12813

repelem
Repeat copies of array elements

Syntax
u = repelem(v,n)
B = repelem(A,r1,...,rN)

Description
u = repelem(v,n), where v is a scalar or vector, returns a vector of repeated elements
of v.

• If n is a scalar, then each element of v is repeated n times. The length of u is
length(v)*n.

• If n is a vector, then it must be the same length as v. Each element of n specifies the
number of times to repeat the corresponding element of v.

This syntax is not supported for table input.

B = repelem(A,r1,...,rN) returns an array with each element of A repeated
according to r1,...,rN. Each r1,...,rN must either be a scalar or a vector with the
same length as A in the corresponding dimension. For example, if A is a matrix,
repelem(A,2,3) returns a matrix containing a 2-by-3 block of each element of A.

Examples

Repeat Vector Elements

Create a vector and repeat each of its elements three times into a new vector.

v = [1 2 3 4];
u = repelem(v,3)

1 Alphabetical List

1-12814

u = 1×12

 1 1 1 2 2 2 3 3 3 4 4 4

Repeat the first two elements of v twice and the last two elements three times.

u = repelem(v,[2 2 3 3])

u = 1×10

 1 1 2 2 3 3 3 4 4 4

Repeat Matrix Elements

Create a matrix and repeat each element into a 3-by-2 block of a new matrix.

A = [1 2; 3 4]

A = 2×2

 1 2
 3 4

B = repelem(A,3,2)

B = 6×4

 1 1 2 2
 1 1 2 2
 1 1 2 2
 3 3 4 4
 3 3 4 4
 3 3 4 4

 repelem

1-12815

Repeat Matrix Columns

Create a matrix and copy its columns into a new array, repeating the first column twice
and second column three times.

A = [1 2; 3 4]

A = 2×2

 1 2
 3 4

B = repelem(A,1,[2 3])

B = 2×5

 1 1 2 2 2
 3 3 4 4 4

Input Arguments
v — Input element
scalar | vector

Input element, specified as a scalar or a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | table | cell | datetime |
duration
Complex Number Support: Yes

n — Number of times to repeat each element
scalar | vector

Number of times to repeat each element, specified as a scalar or a vector. If n is a scalar,
then all elements of v are repeated n times. If n is a vector, then each element of n
specifies the number of times to repeat the corresponding element of v. In either case, n
must be integer-valued.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-12816

A — Input array
matrix | multidimensional array

Input array, specified as a matrix or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | struct | table | cell | datetime | duration
Complex Number Support: Yes

r1,...,rN — Repetition factors for each dimension (as separate arguments)
scalars | vectors

Repetition factors for each dimension, specified as separate arguments of integer-valued
scalars or vectors. If A is a table, each repetition factor must be a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
u — Output vector
vector

Output vector. If v is a row vector or scalar, u is a row vector. If v is a column vector, u is
also a column vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | table | cell | datetime |
duration

B — Output array
matrix | multidimensional array

Output array, returned as a matrix or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | table | cell | datetime |
duration

 repelem

1-12817

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• The two-input syntax is not supported.
• The replication factor in the first dimension must be 1. For example,

repelem(TA,1,n,p,...).

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input must be a vector or matrix. The input cannot be a multidimensional array.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-12818

See Also
kron | repmat

Introduced in R2015a

 repelem

1-12819

replace
Find and replace one or more substrings

Syntax
newStr = replace(str,old,new)

Description
newStr = replace(str,old,new) replaces all occurrences of the substring old with
new. If old contains multiple substrings, then new either must be the same size as old,
or must be a single substring.

Examples

Replace Substring in String Array

Replace placeholder text in a list of file names.

Starting in R2017a, you can create strings using double quotes.

str = ["<ROOT_DIR>\MyData\data.tar.gz";
 "<ROOT_DIR>\MyScripts\cleandata.m";
 "<ROOT_DIR>\MyScripts\preprocess.m";
 "<ROOT_DIR>\MyScripts\publishResults.m"]

str = 4x1 string array
 "<ROOT_DIR>\MyData\data.tar.gz"
 "<ROOT_DIR>\MyScripts\cleandata.m"
 "<ROOT_DIR>\MyScripts\preprocess.m"
 "<ROOT_DIR>\MyScripts\publishResults.m"

Replace <ROOT_DIR> with a string that is the name of a file path.

1 Alphabetical List

1-12820

old = "<ROOT_DIR>";
new = "C:\MyProject";
newStr = replace(str,old,new)

newStr = 4x1 string array
 "C:\MyProject\MyData\data.tar.gz"
 "C:\MyProject\MyScripts\cleandata.m"
 "C:\MyProject\MyScripts\preprocess.m"
 "C:\MyProject\MyScripts\publishResults.m"

Replace Multiple Substrings

Replace carriage returns with newline characters.

Starting in R2017a, you can create strings using double quotes.

str = ["Submission Date: 11/29/15\r";
 "Acceptance Date: 1/20/16\r";
 "Contact: john.smith@example.com\r\n"]

str = 3x1 string array
 "Submission Date: 11/29/15\r"
 "Acceptance Date: 1/20/16\r"
 "Contact: john.smith@example.com\r\n"

Replace the carriage returns.

old = {'\r\n','\r'};
new = '\n';
newStr = replace(str,old,new)

newStr = 3x1 string array
 "Submission Date: 11/29/15\n"
 "Acceptance Date: 1/20/16\n"
 "Contact: john.smith@example.com\n"

 replace

1-12821

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

old — Substring to replace
string array | character vector | cell array of character vectors

Substring to replace, specified as a string array, character vector, or cell array of
character vectors.
Data Types: string | char | cell

new — New substring
string array | character vector | cell array of character vectors

New substring, specified as a string array, character vector, or cell array of character
vectors.
Data Types: string | char | cell

Tips
• To perform multiple replacements for overlapping patterns, use the strrep function.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-12822

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str, old, and new must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
count | erase | eraseBetween | extractAfter | extractBefore | extractBetween
| insertAfter | insertBefore | join | regexp | regexprep | replaceBetween |
size | split | strlength | strrep

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

 replace

1-12823

replaceBetween
Replace substrings between start and end points

Syntax
newStr = replaceBetween(str,startStr,endStr,newText)
newStr = replaceBetween(str,startPos,endPos,newText)
newStr = replaceBetween(___ ,'Boundaries',bounds)

Description
newStr = replaceBetween(str,startStr,endStr,newText) replaces substrings
in str with the text in newText. The substrings that are replaced occur between the
substrings startStr and endStr. However, replaceBetween does not replace
startStr and endStr themselves. replaceBetween returns the result as newStr. The
newText argument can have a different number of characters than the substring it
replaces.

If str is a string array or a cell array of character vectors, then replaceBetween
replaces substrings in each element of str. The output argument newStr has the same
data type as str.

newStr = replaceBetween(str,startPos,endPos,newText) replaces substrings
in str. The substrings that are replaced occur between the positions startPos and
endPos in str, including the characters at those positions.

newStr = replaceBetween(___ ,'Boundaries',bounds) forces the starts and
ends specified in any of the previous syntaxes to be either inclusive or exclusive. They are
inclusive when bounds is 'inclusive', and exclusive when bounds is 'exclusive'.
For example,
replaceBetween(str,startStr,endStr,newText,'Boundaries','inclusive')
replaces startStr, endStr, and all the text between them with the text specified by
newText.

1 Alphabetical List

1-12824

Examples

Replace Text Between Substrings

Create string arrays and replace text that occurs between substrings.

Starting in R2017a, you can create strings using double quotes.

str = "The quick brown fox"

str =
"The quick brown fox"

Replace the text that occurs between the substrings quick and fox. The
replaceBetween function replaces the text but does not replace quick or fox in the
output.

newStr = replaceBetween(str,"quick "," fox","red")

newStr =
"The quick red fox"

Replace substrings from each element of a string array. When you specify different
substrings as start and end indicators, they must be contained in a string array or a cell
array that is the same size as str. The replacement text also must be in a string array or
a cell array of the same size.

str = ["The quick brown fox jumps";"over the lazy dog"]

str = 2x1 string array
 "The quick brown fox jumps"
 "over the lazy dog"

newText = ["red";"sleeping"];
newStr = replaceBetween(str,["quick ";"the "],[" fox";" dog"],newText)

newStr = 2x1 string array
 "The quick red fox jumps"
 "over the sleeping dog"

 replaceBetween

1-12825

Replace Substrings Between Start and End Positions

Create string arrays and replace substrings between start and end positions that are
specified as numbers.

Starting in R2017a, you can create strings using double quotes. Create a string that
contains a name. To replace the middle name, specify the seventh and 11th positions in
the string.

str = "Edgar Allen Poe"

str =
"Edgar Allen Poe"

newStr = replaceBetween(str,7,11,'A.')

newStr =
"Edgar A. Poe"

Replace substrings from each element of a string array. When you specify different start
and end positions with numeric arrays, they must be the same size as the input string
array. The replacement text also must be in a string array or a cell array of the same size.

str = ["Edgar Allen Poe";"Louisa May Alcott"]

str = 2x1 string array
 "Edgar Allen Poe"
 "Louisa May Alcott"

newText = ["A.";"M."];
newStr = replaceBetween(str,[7;8],[11;10],newText)

newStr = 2x1 string array
 "Edgar A. Poe"
 "Louisa M. Alcott"

Replace Text Within Inclusive and Exclusive Boundaries

Replace text from string arrays within boundaries that are forced to be inclusive or
exclusive. replaceBetween replaces the boundaries along with the text when the

1 Alphabetical List

1-12826

boundaries are inclusive. replaceBetween does not replace the boundaries when the
boundaries are exclusive.

Starting in R2017a, you can create strings using double quotes.

str = "small|medium|large"

str =
"small|medium|large"

Replace the text between sixth and 13th positions, but do not replace the characters at
those positions.

newText = "regular";
newStr = replaceBetween(str,6,13,newText,'Boundaries','exclusive')

newStr =
"small|regular|large"

Replace the text between two substrings, and also the substrings themselves.

str = "The quick brown fox jumps over the lazy dog"

str =
"The quick brown fox jumps over the lazy dog"

newText = "red bird flies";
newStr = replaceBetween(str,'brown','jumps',newText,'Boundaries','inclusive')

newStr =
"The quick red bird flies over the lazy dog"

Replace Text Between Positions in Character Vector

Create a character vector and replace text between start and end positions.

chr = 'mushrooms, peppers, and onions'

chr =
'mushrooms, peppers, and onions'

newChr = replaceBetween(chr,12,18,'pineapple')

 replaceBetween

1-12827

newChr =
'mushrooms, pineapple, and onions'

Replace text between substrings.

newChr = replaceBetween(chr,'mushrooms,',' and',' extra cheese,')

newChr =
'mushrooms, extra cheese, and onions'

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

startStr — String that indicates start of substring to replace
string array | character vector | cell array of character vectors

String that indicates the start of the substring to replace, specified as a string array, a
character vector, or a cell array of character vectors.

If str is a string array or a cell array of character vectors, then startStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Example: replaceBetween(str,"AB","YZ",newText) replaces the substring
between AB and YZ in each element of str with the text specified by newText.
Example: If str is a 2-by-1 string array, then replaceBetween(str,["AB";"FG"],
["YZ";"ST"],newText) replaces the substrings between AB and YZ in str(1), and
between FG and ST in str(2).
Data Types: string | char | cell

endStr — String that indicates end of substring to replace
string array | character vector | cell array of character vectors

Substring that indicates the end of the text to replace, specified as a string array, a
character vector, or a cell array of character vectors.

1 Alphabetical List

1-12828

If str is a string array or a cell array of character vectors, then endStr can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Example: replaceBetween(str,"AB","YZ",newText) replaces the substring
between AB and YZ in each element of str with the text specified by newText.
Example: If str is a 2-by-1 string array, then replaceBetween(str,["AB";"FG"],
["YZ";"ST"],newText) replaces the substrings between AB and YZ in str(1), and
between FG and ST in str(2).
Data Types: string | char | cell

startPos — Start position of substring to replace
numeric array

Start position of substring to replace, specified as a numeric array.

If str is a string array or a cell array of character vectors, then startPos can be a
numeric scalar or a numeric array of the same size as str.
Example: replaceBetween(str,5,9,newText) replaces the substring from the fifth to
the ninth positions in each element of str with the text specified by newText.
Example: If str is a 2-by-1 string array, then replaceBetween(str,[5;10],
[9;21],newText) replaces the substring from the fifth through the ninth positions in
str(1), and the 10th through the 21st positions in str(2).
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

endPos — End position of substring to replace
numeric array

End position of substring to replace, specified as a numeric array.

If str is a string array or a cell array of character vectors, then endPos can be a numeric
scalar or a numeric array of the same size as str.
Example: replaceBetween(str,5,9,newText) replaces the substring from the fifth to
the ninth positions in each element of str with the text specified by newText.
Example: If str is a 2-by-1 string array, then replaceBetween(str,[5;10],
[9;21],newText) replaces the substring from the fifth through the ninth positions in
str(1), and the 10th through the 21st positions in str(2).

 replaceBetween

1-12829

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

newText — Replacement text
string array | character vector | cell array of character vectors

Replacement text, specified as a string array, a character vector, or a cell array of
character vectors.

If str is a string array or a cell array of character vectors, then newText can be a
character vector, a string scalar, or a string array or a cell array of the same size as str.
Example: replaceBetween(str,"AB","YZ","efg") replaces the substring between
AB and YZ in each element of str with efg.
Example: If str is a 2-by-1 string array, then replaceBetween(str,["AB";"FG"],
["YZ";"ST"],["efg";"lmnop"]) replaces the substrings between AB and YZ in
str(1) with efg, and between FG and ST in str(2) with lmnop.
Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors. str and newStr have the same data type.
Data Types: string | char | cell

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-12830

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str, startStr, endStr, and newText must be a string scalar, a character vector, or
a cell array containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
join | replace | split

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

 replaceBetween

1-12831

repmat
Repeat copies of array

Syntax
B = repmat(A,n)
B = repmat(A,r1,...,rN)
B = repmat(A,r)

Description
B = repmat(A,n) returns an array containing n copies of A in the row and column
dimensions. The size of B is size(A)*n when A is a matrix.

B = repmat(A,r1,...,rN) specifies a list of scalars, r1,..,rN, that describes how
copies of A are arranged in each dimension. When A has N dimensions, the size of B is
size(A).*[r1...rN]. For example, repmat([1 2; 3 4],2,3) returns a 4-by-6
matrix.

B = repmat(A,r) specifies the repetition scheme with row vector r. For example,
repmat(A,[2 3]) returns the same result as repmat(A,2,3).

Examples

Initialize Matrix with Same Element Value

Create a 3-by-2 matrix whose elements contain the value 10.

A = repmat(10,3,2)

A = 3×2

 10 10
 10 10

1 Alphabetical List

1-12832

 10 10

Square Block Format

Repeat copies of a matrix into a 2-by-2 block arrangement.

A = diag([100 200 300])

A = 3×3

 100 0 0
 0 200 0
 0 0 300

B = repmat(A,2)

B = 6×6

 100 0 0 100 0 0
 0 200 0 0 200 0
 0 0 300 0 0 300
 100 0 0 100 0 0
 0 200 0 0 200 0
 0 0 300 0 0 300

Rectangular Block Format

Repeat copies of a matrix into a 2-by-3 block arrangement.

A = diag([100 200 300])

A = 3×3

 100 0 0
 0 200 0
 0 0 300

 repmat

1-12833

B = repmat(A,2,3)

B = 6×9

 100 0 0 100 0 0 100 0 0
 0 200 0 0 200 0 0 200 0
 0 0 300 0 0 300 0 0 300
 100 0 0 100 0 0 100 0 0
 0 200 0 0 200 0 0 200 0
 0 0 300 0 0 300 0 0 300

3-D Block Array

Repeat copies of a matrix into a 2-by-3-by-2 block arrangement.

A = [1 2; 3 4]

A = 2×2

 1 2
 3 4

B = repmat(A,[2 3 2])

B =
B(:,:,1) =

 1 2 1 2 1 2
 3 4 3 4 3 4
 1 2 1 2 1 2
 3 4 3 4 3 4

B(:,:,2) =

 1 2 1 2 1 2
 3 4 3 4 3 4
 1 2 1 2 1 2
 3 4 3 4 3 4

1 Alphabetical List

1-12834

Vertical Stack of Row Vectors

Vertically stack a row vector four times.

A = 1:4;
B = repmat(A,4,1)

B = 4×4

 1 2 3 4
 1 2 3 4
 1 2 3 4
 1 2 3 4

Horizontal Stack of Column Vectors

Horizontally stack a column vector four times.

A = (1:3)';
B = repmat(A,1,4)

B = 3×4

 1 1 1 1
 2 2 2 2
 3 3 3 3

Tabular Block Format

Create a table with variables Age and Height.

A = table([39; 26],[70; 63],'VariableNames',{'Age' 'Height'})

A=2×2 table
 Age Height
 ___ ______

 repmat

1-12835

 39 70
 26 63

Repeat copies of the table into a 2-by-3 block format.

B = repmat(A,2,3)

B=4×6 table
 Age Height Age_1 Height_1 Age_2 Height_2
 ___ ______ _____ ________ _____ ________

 39 70 39 70 39 70
 26 63 26 63 26 63
 39 70 39 70 39 70
 26 63 26 63 26 63

repmat repeats the entries of the table and appends a number to the new variable
names.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | table | cell
Complex Number Support: Yes

n — Number of times to repeat input array in row and column dimensions
integer value

Number of times to repeat the input array in the row and column dimensions, specified as
an integer value. If n is 0 or negative, the result is an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Alphabetical List

1-12836

r1,...,rN — Repetition factors for each dimension (as separate arguments)
integer values

Repetition factors for each dimension, specified as separate arguments of integer values.
If any repetition factor is 0 or negative, the result is an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

r — Vector of repetition factors for each dimension (as a row vector)
integer values

Vector of repetition factors for each dimension, specified as a row vector of integer
values. If any value in r is 0 or negative, the result is an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
• To build block arrays by forming the tensor product of the input with an array of ones,

use kron. For example, to stack the row vector A = 1:3 four times vertically, you can
use B = kron(A,ones(4,1)).

• To create block arrays and perform a binary operation in a single pass, use bsxfun. In
some cases, bsxfun provides a simpler and more memory efficient solution. For
example, to add the vectors A = 1:5 and B = (1:10)' to produce a 10-by-5 array,
use bsxfun(@plus,A,B) instead of repmat(A,10,1) + repmat(B,1,5).

• When A is a scalar of a certain type, you can use other functions to get the same result
as repmat.

repmat Syntax Equivalent Alternative
repmat(NaN,m,n) NaN(m,n)
repmat(single(inf),m,n) inf(m,n,'single')
repmat(int8(0),m,n) zeros(m,n,'int8')
repmat(uint32(1),m,n) ones(m,n,'uint32')
repmat(eps,m,n) eps(ones(m,n))

 repmat

1-12837

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• The replication factor in the first dimension must be 1. For example,
repmat(TA,1,n,p,...).

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Size arguments must have a fixed size.
• For sparse matrices, the repmat function does not support trailing ones as inputs

after the first two dimensions.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-12838

See Also
bsxfun | kron | meshgrid | ndgrid | repelem | reshape

Introduced before R2006a

 repmat

1-12839

resample
Resample tscollection time vector

Syntax
tscout = resample(tscin,timevec)
tscout = resample(tscin,timevec,interpmethod)
tscout = resample(tscin,timevec,interpmethod,code)

Description
tscout = resample(tscin,timevec) resamples a tscollection object tscin
using a new time vector timevec. The resample function uses the interpolation method
associated with each timeseries in tscin.

tscout = resample(tscin,timevec,interpmethod) resamples tscin using a
specified interpolation method. interpmethod can be 'linear' for linear interpolation
or 'zoh' for zero-order hold.

tscout = resample(tscin,timevec,interpmethod,code) applies the quality
codes in code to all samples.

Examples

Resample tscollection

Resample a tscollection object made up of two timeseries objects.

Create a tscollection object from two timeseries objects.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,'Name','Acceleration');
ts2=timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,'Name','Speed');
tscin = tscollection({ts1,ts2})

1 Alphabetical List

1-12840

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 5 seconds

Member Time Series Objects:

 Acceleration
 Speed

Resample the data in tscin according to a new time vector using zero-order hold
interpolation.

tsout = resample(tscin,[1 1.5 3.5 4.5 4.9],'zoh')

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 4.900000e+00 seconds

Member Time Series Objects:

 Acceleration
 Speed

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

timevec — New time vector
vector

New time vector, specified as a vector of times for resampling.

 resample

1-12841

When the original time vector contains dates and times but timevec is numeric,
resample defines timevec relative to the tscin.TimeInfo.StartDate property using
the existing units.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

interpmethod — Interpolation method
'linear' (default) | 'zoh'

Interpolation method, specified as one of the following options:

• 'linear' — Linear interpolation
• 'zoh' — Zero-order hold

code — Quality codes
[] (default) | scalar | vector | multidimensional array

Quality codes, specified as [] or a scalar, vector, or multidimensional array of integers
ranging from -128 to 127.

• When the quality code value is a vector, it must have the same length as the time
vector. Each element applies to the corresponding data sample.

• When the quality code value is an array, it must have the same size as the data array.
Each element applies to the corresponding data element of the data array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
getinterpmethod | setinterpmethod | synchronize | timeseries |
tscollection

Introduced before R2006a

1 Alphabetical List

1-12842

reset
Reset graphics object properties to their defaults

Syntax
reset(h)

Description
reset(h) resets all properties on the object identified by h to their default values.
Properties that do not have default values are not affected.

If h is a figure, the MATLAB software does not reset Position, Units, WindowStyle, or
PaperUnits. If h is an axes, MATLAB does not reset Position and Units.

Examples
reset(gca) resets the properties of the current axes.

reset(gcf) resets the properties of the current figure.

See Also
cla | clf | gca | gcf | hold

Topics
“Default Property Values”

Introduced before R2006a

 reset

1-12843

reset (RandStream)
Reset random number stream

Class
RandStream

parallel.gpu.RandStream

Syntax
reset(s)
reset(s,seed)

Description
reset(s) resets the generator for the random stream, s, to the internal state
corresponding to its seed. This is similar to clearing s and recreating it using
RandStream(Type,...), except that reset does not set the stream's
NormalTransform, Antithetic, and FullPrecision properties to their original
values.

reset(s,seed) resets the generator for the random stream, s, to the internal state
corresponding to seed (the seed value), and it updates the seed property of s. The value
of seed must be an integer between 0 and 232 − 1. Resetting a stream's seed can
invalidate independence with other streams.

Note Resetting a stream should be used primarily for reproducing results.

1 Alphabetical List

1-12844

Examples

Example 1
Reset a random number stream to its initial state. This does not create a random number
stream, it simply resets the stream:

stream = RandStream('twister','Seed',0)

stream =

mt19937ar random stream
 Seed: 0
 NormalTransform: Ziggurat

reset(stream);
stream.Seed

ans =

 0

Example 2
Reset a random number stream using a specific seed:

stream = RandStream('twister','Seed',0)

stream =

mt19937ar random stream
 Seed: 0
 NormalTransform: Ziggurat

reset(stream,1);
stream.Seed

ans =

 1

 reset (RandStream)

1-12845

See Also
RandStream | RandStream.getGlobalStream | parallel.gpu.RandStream

1 Alphabetical List

1-12846

rescale
Scale range of array elements

Syntax
B = rescale(A)
B = rescale(A,l,u)
B = rescale(___ ,Name,Value)

Description
B = rescale(A) scales the entries of an array to the interval [0,1]. The output array B
is the same size as A.

B = rescale(A,l,u) scales the entries of an array to the interval [l,u].

B = rescale(___ ,Name,Value) specifies additional parameters for scaling an array
for either of the previous syntaxes. For example, rescale(A,'InputMin',5) sets all
elements in A that are less than 5 equal to 5 before scaling to the range [0,1].

Examples

Scale to Unit Interval

Scale the entries of a vector to the interval [0,1].

A = 1:5;
B = rescale(A)

B = 1×5

 0 0.2500 0.5000 0.7500 1.0000

 rescale

1-12847

Scale to Specified Range

Scale the elements of a vector to the interval [-1,1].

A = 1:5;
B = rescale(A,-1,1)

B = 1×5

 -1.0000 -0.5000 0 0.5000 1.0000

Scale Matrix Columns and Rows

Scale each column of a matrix to the interval [0,1] by specifying the minimum and
maximum of each column. rescale scales along the dimension of the input array that
corresponds with the shape of the 'InputMin' and 'InputMax' parameter values.

A = magic(3)

A = 3×3

 8 1 6
 3 5 7
 4 9 2

colmin = min(A)

colmin = 1×3

 3 1 2

colmax = max(A)

colmax = 1×3

 8 9 7

1 Alphabetical List

1-12848

Bcol = rescale(A,'InputMin',colmin,'InputMax',colmax)

Bcol = 3×3

 1.0000 0 0.8000
 0 0.5000 1.0000
 0.2000 1.0000 0

Scale each row of A to the interval [0,1].

rowmin = min(A,[],2)

rowmin = 3×1

 1
 3
 2

rowmax = max(A,[],2)

rowmax = 3×1

 8
 7
 9

Brow = rescale(A,'InputMin',rowmin,'InputMax',rowmax)

Brow = 3×3

 1.0000 0 0.7143
 0 0.5000 1.0000
 0.2857 1.0000 0

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

 rescale

1-12849

Input array, specified as a scalar, vector, matrix, or multidimensional array.

• If A has type single, then the output also has type single. Otherwise, the output has
type double.

• If A is a scalar, then rescale returns the lower bound of the interval (0 by default) or
NaN (when the output range contains Inf).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

l — Lower bound
0 (default) | scalar | vector | matrix | multidimensional array

Lower bound, specified as a scalar, vector, matrix, or multidimensional array. l must have
a size that is compatible with the input array. For example, if A is an M-by-N matrix, then
rescale operates along the dimension dictated by the shape of l:

• If l is a scalar, then rescale uses it as the lower bound for all elements of A.
• If l is a 1-by-N row vector, then rescale uses each element as the lower bound for

the corresponding column of A.
• If l is an M-by-1 column vector, then rescale uses each element as the lower bound

for the corresponding row of A.

For more information on compatible array sizes, see “Compatible Array Sizes for Basic
Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

u — Upper bound
1 (default) | scalar | vector | matrix | multidimensional array

Upper bound, specified as a scalar, vector, matrix, or multidimensional array. u must have
a size that is compatible with the input array. For example, if A is an M-by-N matrix, then
rescale operates along the dimension dictated by the shape of u:

• If u is a scalar, then rescale uses it as the upper bound for all elements of A.
• If u is a 1-by-N row vector, then rescale uses each element as the upper bound for

the corresponding column of A.
• If u is an M-by-1 column vector, then rescale uses each element as the upper bound

for the corresponding row of A.

1 Alphabetical List

1-12850

For more information on compatible array sizes, see “Compatible Array Sizes for Basic
Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = rescale(A,'InputMin',5,'InputMax',10)

InputMin — Minimum of input range
scalar | vector | matrix | multidimensional array

Minimum of input range, specified as a scalar, vector, matrix, or multidimensional array.
The default value for an input array A is min(A(:)). Specifying an input range either
expands or shrinks the range of the input data. For instance, rescale sets all elements
that are less than the specified input minimum to the 'InputMin' value before scaling.

The 'InputMin' value must have a size that is compatible with the input array. For
example, if A is an M-by-N matrix, then rescale operates along the dimension dictated
by the shape of the input minimum:

• If the input minimum is a scalar, then rescale uses that minimum value for all
elements of A.

• If the input minimum is a 1-by-N row vector, then rescale uses each element as the
minimum for the corresponding column of A.

• If the input minimum is an M-by-1 column vector, then rescale uses each element as
the minimum for the corresponding row of A.

For more information on compatible array sizes, see “Compatible Array Sizes for Basic
Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

InputMax — Maximum of input range
scalar | vector | matrix | multidimensional array

 rescale

1-12851

Maximum of input range, specified as a scalar, vector, matrix, or multidimensional array.
The default value for an input array A is max(A(:)). Specifying an input range either
expands or shrinks the range of the input data. For instance, rescale sets all elements
that are greater than the specified input maximum to the 'InputMax' value before
scaling.

The 'InputMax' value must have a size that is compatible with the input array. For
example, if A is an M-by-N matrix, then rescale operates along the dimension dictated
by the shape of the input maximum:

• If the input maximum is a scalar, then rescale uses that maximum value for all
elements of A.

• If the input maximum is a 1-by-N row vector, then rescale uses each element as the
maximum for the corresponding column of A.

• If the input maximum is an M-by-1 column vector, then rescale uses each element as
the maximum for the corresponding row of A.

For more information on compatible array sizes, see “Compatible Array Sizes for Basic
Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Algorithms
B = rescale(A,l,u,'InputMin',inmin,'InputMax',inmax) uses the formula

l + [(A-inmin)./(inmax-inmin)].*(u-l)

to scale the elements of an array A.

• If l and u are not specified, then rescale uses the default values 0 and 1,
respectively.

• If the 'InputMin' name-value pair is not specified, then rescale sets its value to the
default min(A(:)).

• If the 'InputMax' name-value pair is not specified, then rescale sets its value to the
default max(A(:)).

1 Alphabetical List

1-12852

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The inputs l and u, and the value of the name-value pairs 'InputMin' and
'InputMax', cannot have more than one row.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
bounds | max | min

 rescale

1-12853

Introduced in R2017b

1 Alphabetical List

1-12854

reshape
Reshape array

Syntax
B = reshape(A,sz)
B = reshape(A,sz1,...,szN)

Description
B = reshape(A,sz) reshapes A using the size vector, sz, to define size(B). For
example, reshape(A,[2,3]) reshapes A into a 2-by-3 matrix. sz must contain at least 2
elements, and prod(sz) must be the same as numel(A).

B = reshape(A,sz1,...,szN) reshapes A into a sz1-by-...-by-szN array where
sz1,...,szN indicates the size of each dimension. You can specify a single dimension
size of [] to have the dimension size automatically calculated, such that the number of
elements in B matches the number of elements in A. For example, if A is a 10-by-10
matrix, then reshape(A,2,2,[]) reshapes the 100 elements of A into a 2-by-2-by-25
array.

Examples

Reshape Vector into Matrix

Reshape a 1-by-10 vector into a 5-by-2 matrix.

A = 1:10;
B = reshape(A,[5,2])

B = 5×2

 1 6
 2 7

 reshape

1-12855

 3 8
 4 9
 5 10

Reshape Matrix to Have Specified Number of Columns

Reshape a 4-by-4 square matrix into a matrix that has 2 columns. Specify [] for the first
dimension to let reshape automatically calculate the appropriate number of rows.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

B = reshape(A,[],2)

B = 8×2

 16 3
 5 10
 9 6
 4 15
 2 13
 11 8
 7 12
 14 1

The result is an 8-by-2 matrix, which maintains the same number of elements as the
original matrix. The elements in B also maintain their columnwise order from A.

Reshape Multidimensional Array into Matrix

Reshape a 3-by-2-by-3 array of zeros into a 9-by-2 matrix.

1 Alphabetical List

1-12856

A = zeros(3,2,3);
B = reshape(A,9,2)

B = 9×2

 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | datetime | duration |
calendarDuration
Complex Number Support: Yes

sz — Output size
row vector of integers

Output size, specified as a row vector of integers. Each element of sz indicates the size of
the corresponding dimension in B. You must specify sz so that the number of elements in
A and B are the same. That is, prod(sz) must be the same as numel(A).

Beyond the second dimension, the output, B, does not reflect trailing dimensions with a
size of 1. For example, reshape(A,[3,2,1,1]) produces a 3-by-2 matrix.
Example: reshape(A,[3,2])
Example: reshape(A,[6,4,10])
Example: reshape(A,[5,5,5,5])

 reshape

1-12857

sz1,...,szN — Size of each dimension
two or more integers | [] (optional)

Size of each dimension, specified as two or more integers with at most one [] (optional).
You must specify at least 2 dimension sizes, and at most one dimension size can be
specified as [], which automatically calculates the size of that dimension to ensure that
numel(B) matches numel(A). When you use [] to automatically calculate a dimension
size, the dimensions that you do explicitly specify must divide evenly into the number of
elements in the input matrix, numel(A).

Beyond the second dimension, the output, B, does not reflect trailing dimensions with a
size of 1. For example, reshape(A,3,2,1,1) produces a 3-by-2 matrix.
Example: reshape(A,3,2)
Example: reshape(A,6,[],10)
Example: reshape(A,2,5,3,[])
Example: reshape(A,5,5,5,5)

Output Arguments
B — Reshaped array
vector | matrix | multidimensional array | cell array

Reshaped array, returned as a vector, matrix, multidimensional array, or cell array. The
data type and number of elements in B are the same as the data type and number of
elements in A. The elements in B preserve their columnwise ordering from A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | datetime | duration |
calendarDuration

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-12858

This function supports tall arrays with the limitations:

• Reshaping the tall dimension (dimension one) is not supported. The first dimension
input should always be empty, such as reshape(X,[],M,N,...).

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the input is a compile-time empty cell array, then the size arguments must be
constants.

• Size arguments must have a fixed size.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).
• For sparse matrices, the reshape function does not support trailing ones as inputs

after the first two dimensions.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 reshape

1-12859

See Also
colon | permute | repmat | shiftdim | squeeze

Introduced before R2006a

1 Alphabetical List

1-12860

residue
Partial fraction expansion (partial fraction decomposition)

Syntax
[r,p,k] = residue(b,a)
[b,a] = residue(r,p,k)

Description
[r,p,k] = residue(b,a) finds the residues, poles, and direct term of a “Partial
Fraction Expansion” on page 1-12865 of the ratio of two polynomials, where the
expansion is of the form

b(s)
a(s) =

bmsm + bm− 1sm− 1 + … + b1s + b0
ansn + an− 1sn− 1 + … + a1s + a0

=
rn

s− pn
+ ... +

r2
s− p2

+
r1

s− p1
+ k s .

The inputs to residue are vectors of coefficients of the polynomials b = [bm ... b1
b0] and a = [an ... a1 a0]. The outputs are the residues r = [rn ... r2 r1],
the poles p = [pn ... p2 p1], and the polynomial k. For most textbook problems, k is
0 or a constant.

[b,a] = residue(r,p,k) converts the partial fraction expansion back to the ratio of
two polynomials and returns the coefficients in b and a.

Examples

Find Partial Fraction Expansion with Real Roots

Find the partial fraction expansion of the following ratio of polynomials F(s) using
residue

F(s) = b(s)
a(s) = −4s + 8

s2 + 6s + 8
.

 residue

1-12861

b = [-4 8];
a = [1 6 8];
[r,p,k] = residue(b,a)

r = 2×1

 -12
 8

p = 2×1

 -4
 -2

k =

 []

This represents the partial fraction expansion

−4s + 8
s2 + 6s + 8

= −12
s + 4 + 8

s + 2 .

Convert the partial fraction expansion back to polynomial coefficients using residue.

[b,a] = residue(r,p,k)

b = 1×2

 -4 8

a = 1×3

 1 6 8

This result represents the original fraction F(s).

1 Alphabetical List

1-12862

Expansion with Complex Roots and Equal Degree of Numerator and Denominator

If the degree of the numerator is equal to the degree of the denominator, the output k can
be nonzero.

Find the partial fraction expansion of a ratio of two polynomials F(s) with complex roots
and equal degree of numerator and denominator, where F(s) is

F(s) = b(s)
a(s) = 2s3 + s2

s3 + s + 1
.

b = [2 1 0 0];
a = [1 0 1 1];
[r,p,k] = residue(b,a)

r = 3×1 complex

 0.5354 + 1.0390i
 0.5354 - 1.0390i
 -0.0708 + 0.0000i

p = 3×1 complex

 0.3412 + 1.1615i
 0.3412 - 1.1615i
 -0.6823 + 0.0000i

k = 2

residue returns the complex roots and poles, and a constant term in k, representing the
partial fraction expansion

F(s) = b(s)
a(s) = 2s3 + s2

s3 + s2 + 1
= 0 . 5354 + 1 . 0390i

s− (0 . 3412 + 1 . 1615i) + 0 . 5354− 1 . 0390i
s− (0 . 3412− 1 . 1615i)

+ −0 . 0708
s + 0 . 6823 + 2 .

 residue

1-12863

Expansion with Numerator Degree Greater Than Denominator Degree

When the degree of the numerator is greater than the degree of the denominator, the
output k is a vector that represents the coefficients of a polynomial in s.

Perform the following partial fraction expansion of F(s) using residue.

F(s) = b(s)
a(s) = 2s4 + s

s2 + 1
= 0 . 5− 1i

s− 1i + 0 . 5 + 1i
s + 1i + 2s2− 2 .

b = [2 0 0 1 0];
a = [1 0 1];
[r,p,k] = residue(b,a)

r = 2×1 complex

 0.5000 - 1.0000i
 0.5000 + 1.0000i

p = 2×1 complex

 0.0000 + 1.0000i
 0.0000 - 1.0000i

k = 1×3

 2 0 -2

k represents the polynomial 2s2− 2.

Input Arguments
b — Coefficients of numerator polynomial
vector of numbers

Coefficients of the polynomial in the numerator, specified as a vector of numbers
representing the coefficients of the polynomial in descending powers of s.
Data Types: single | double

1 Alphabetical List

1-12864

Complex Number Support: Yes

a — Coefficients of denominator polynomial
vector of numbers

Coefficients of the polynomial in the denominator, specified as a vector of numbers
representing the coefficients of the polynomial in descending powers of s.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
r — Residues of partial fraction expansion
column vector of numbers

Residues of partial fraction expansion, returned as a column vector of numbers.

p — Poles of partial fraction expansion
column vector of numbers

Poles of partial fraction expansion, returned as a column vector of numbers.

k — Direct term
row vector of numbers

Direct term, returned as a row vector of numbers that specify the coefficients of the
polynomial in descending powers of s.

Definitions
Partial Fraction Expansion
Consider the fraction F(s) of two polynomials b and a of degree n and m, respectively

F s = b s
a s =

bnsn + … + b2s2 + b1s + b0
amsm + … + a2s2 + a1s + a0

.

The fraction F(s) can be represented as a sum of simple fractions

 residue

1-12865

b(s)
a(s) =

rm
s− pm

+
rm− 1

s− pm− 1
+ … +

r0
s− p0

+ k(s)

This sum is called the partial fraction expansion of F. The values rm,...,r1 are the residues,
the values pm,...,p1 are the poles, and k(s) is a polynomial in s. For most textbook
problems, k(s) is 0 or a constant.

The number of poles n is

n = length(a)-1 = length(r) = length(p)

The direct term vector is empty if length(b) < length(a); otherwise

length(k) = length(b)-length(a)+1

If p(j) = ... = p(j+m-1) is a pole of multiplicity m, then the expansion includes
terms of the form

r j
s− p j

+
r j + 1

(s− p j)2
+ … +

r j + m− 1

(s− p j)m
.

Algorithms
residue first obtains the poles using roots. Next, if the fraction is nonproper, the direct
term k is found using deconv, which performs polynomial long division. Finally, residue
determines the residues by evaluating the polynomial with individual roots removed. For
repeated roots, resi2 computes the residues at the repeated root locations.

Numerically, the partial fraction expansion of a ratio of polynomials represents an ill-
posed problem. If the denominator polynomial, a(s), is near a polynomial with multiple
roots, then small changes in the data, including roundoff errors, can result in arbitrarily
large changes in the resulting poles and residues. Problem formulations making use of
state-space or zero-pole representations are preferable.

References
[1] Oppenheim, A.V. and R.W. Schafer. Digital Signal Processing. Prentice-Hall, 1975, p.

56.

1 Alphabetical List

1-12866

See Also
deconv | poly | roots

Topics
“Create and Evaluate Polynomials”

Introduced before R2006a

 residue

1-12867

restoredefaultpath
Restore search path to factory-installed state

Syntax
restoredefaultpath

Description
restoredefaultpath resets the MATLAB search path to the factory-installed state. By
default, the search path includes the MATLAB userpath folder, the folders defined as
part of the MATLABPATH environment variable, and the folders provided with MATLAB
and other MathWorks products.

Note restoredefaultpath is intended only for situations where MATLAB is
experiencing startup problems due to a corrupt search path. For general search path
cleanup, see “Alternative Functionality” on page 1-12868.

If MATLAB fails to initialize properly on startup, then call both restoredefaultpath
and matlabrc. For more details, see “Path Unsuccessfully Set at Startup”.

MATLAB does not support issuing restoredefaultpath from a UNC path name. Doing
so might result in MATLAB being unable to find files on the search path. If you do use
restoredefaultpath from a UNC path name, restore the expected behavior by
changing the current folder to an absolute path and then reissuing the
restoredefaultpath command.

Alternative Functionality
For general search path cleanup, use the rmpath function or the Set Path dialog box. To
open the Set Path dialog box, go to the Home tab and in the Environment section, click
Set Path. Alternatively, use the pathtool function.

1 Alphabetical List

1-12868

See Also
addpath | matlabrc | pathtool | rmpath | userpath

Topics
“Path Unsuccessfully Set at Startup”
“What Is the MATLAB Search Path?”

Introduced before R2006a

 restoredefaultpath

1-12869

rethrow
Reissue error

Note As of version 7.5, MATLAB supports error handling that is based on the
MException class. Calling rethrow with a structure argument, as described on this
page, is now replaced by calling rethrow with an MException object, as described on the
reference page for MException.rethrow. rethrow called with a structure input will be
removed in a future version.

Syntax
rethrow(errorStruct)

Description
rethrow(errorStruct) reissues the error specified by errorStruct. The currently
running function terminates and control returns to the keyboard (or to any enclosing
catch block). The errorStruct argument must be a MATLAB structure containing at
least the message and identifier fields:

Fieldname Description
message Text of the error message
identifier Message identifier of the error message
stack Information about the error from the program stack

See "Message Identifiers" in the MATLAB documentation for more information on the
syntax and usage of message identifiers.

1 Alphabetical List

1-12870

Examples
rethrow is usually used in conjunction with try, catch statements to reissue an error
from a catch block after performing catch-related operations. For example,

try
 do_something
catch
 do_cleanup
 rethrow(previous_error)
end

Tips
The errorStruct input can contain the field stack, identical in format to the output of
the dbstack command. If the stack field is present, the stack of the rethrown error will
be set to that value. Otherwise, the stack will be set to the line at which the rethrow
occurs.

See Also
MException | MException.rethrow | MException.throw |
MException.throwAsCaller | assert | error | try, catch

Introduced before R2006a

 rethrow

1-12871

retime
Resample or aggregate data in timetable, and resolve duplicate or irregular times

Syntax
TT2 = retime(TT1,newTimeStep,method)
TT2 = retime(TT1,'regular',method,'TimeStep',dt)
TT2 = retime(TT1,'regular',method,'SampleRate',Fs)
TT2 = retime(TT1,newTimes,method)

TT2 = retime(TT1,newTimeStep)
TT2 = retime(TT1,'regular','TimeStep',dt)
TT2 = retime(TT1,'regular','SampleRate',Fs)
TT2 = retime(TT1,newTimes)

TT2 = retime(___ ,Name,Value)

Description
TT2 = retime(TT1,newTimeStep,method) returns a timetable that contains the
variables from TT1 and row times that are regularly spaced by the time step
newTimeStep. The retime function resamples or aggregates data in the variables of TT1
using the function specified by method. You can use retime to:

• Interpolate data values from TT1 at different times.
• Aggregate data into time bins (for example, to create a timetable containing quarterly

means from monthly data).
• Remove rows from TT1 that have duplicate row times.
• Make an irregular timetable into a regular timetable, since newTimeStep specifies

regular row times.

The newTimeStep input argument is a character vector or string that specifies a
predefined time step. For example, when newTimeStep is 'daily', and method is
'mean', then TT2 contains the daily means of the data from TT1.

1 Alphabetical List

1-12872

The first row time of TT2 is on the time step before the earliest row time from TT1. The
row times in TT2 cover the range of row times from TT1. However, TT2 might not include
any of the actual row times from TT1, since TT1 might not have any row times that fall on
any of the regular row times of TT2.

To interpolate or fill in values in TT2 using different methods for different variables,
specify the VariableContinuity property of TT1. For more information, see “Retime
and Synchronize Timetable Variables Using Different Methods”.

To resample or aggregate data from multiple timetables, see synchronize.

TT2 = retime(TT1,'regular',method,'TimeStep',dt) calculates regularly
spaced row times using the time step dt. The dt input argument is a scalar duration or
calendar duration, specifying a time step of any size. The row times of TT2 span the range
of row times of TT1.

Use this syntax when the time step is not one of the predefined time steps you can specify
as a character vector or string.

TT2 = retime(TT1,'regular',method,'SampleRate',Fs) calculates regularly
spaced row times using the sample rate Fs. The Fs input argument is a positive numeric
scalar that specifies the number of samples per second (Hz).

TT2 = retime(TT1,newTimes,method) adjusts the timetable variables data to the
time vector newTimes, using the method specified by method. The newTimes time vector
can be irregular, but it must be a sorted datetime or duration vector and contain unique
values. The times in newTimes become the row times of TT2.

TT2 = retime(TT1,newTimeStep) adjusts timetable data using the
'fillwithmissing' method. TT2 has missing data indicators wherever TT2 has a row
time that does not match any row time in TT1.

If TT1 has rows with duplicate row times and TT2 has row times that match the
duplicates, then TT2 contains the first row from each group of rows in TT1 with duplicate
row times that match.

TT2 = retime(TT1,'regular','TimeStep',dt) calculates regularly spaced row
times using the time step dt and, where needed, inserts missing data indicators.

TT2 = retime(TT1,'regular','SampleRate',Fs) calculates regularly spaced row
times using the sample rate Fs and, where needed, inserts missing data indicators.

 retime

1-12873

TT2 = retime(TT1,newTimes) returns a timetable containing missing data indicators
wherever newTimes does not match row times in TT1.

TT2 = retime(___ ,Name,Value) adjusts timetable data using additional options
specified by one or more Name,Value pairs. You can use this syntax with the input
arguments of any of the previous syntaxes.

Examples

Interpolate Irregular Timetable Data at Hourly Times

Create timetable data that are approximately hourly, but with some irregularity in the
times. Interpolate the data so that the output timetable has regular hourly row times.

Time = datetime({'2015-12-18 07:02:12';'2015-12-18 08:00:47';...
 '2015-12-18 09:01:37';'2015-12-18 10:03:10';...
 '2015-12-18 10:59:34'});
Temp = [37.3;41.9;45.7;42.3;39.8];
Pressure = [30.1;29.9;30.03;29.9;29.8];
TT = timetable(Time,Temp,Pressure)

TT=5×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 07:02:12 37.3 30.1
 18-Dec-2015 08:00:47 41.9 29.9
 18-Dec-2015 09:01:37 45.7 30.03
 18-Dec-2015 10:03:10 42.3 29.9
 18-Dec-2015 10:59:34 39.8 29.8

To resample with cubic spline interpolation, specify 'spline'.

TT2 = retime(TT,'hourly','spline')

TT2=5×3 timetable
 Time Temp Pressure
 ____________________ ______ ________

 18-Dec-2015 07:00:00 37.228 30.124
 18-Dec-2015 08:00:00 41.824 29.899

1 Alphabetical List

1-12874

 18-Dec-2015 09:00:00 45.694 30.029
 18-Dec-2015 10:00:00 42.552 29.91
 18-Dec-2015 11:00:00 39.808 29.8

Aggregate Timetable Data and Calculate Mean Values

Create a timetable with temperature and pulse readings taken every fifteen minutes.

Time = [minutes(0):minutes(15):minutes(105)]';
Temp = [98;97.5;97.9;98.1;97.9;98;98.3;97.8];
Pulse = [80;75;73;68;69;65;72;71];
TT = timetable(Time,Temp,Pulse)

TT=8×3 timetable
 Time Temp Pulse
 _______ ____ _____

 0 min 98 80
 15 min 97.5 75
 30 min 97.9 73
 45 min 98.1 68
 60 min 97.9 69
 75 min 98 65
 90 min 98.3 72
 105 min 97.8 71

Calculate the mean for each reading over hourly time bins. When you aggregate data over
time bins, the row times of the output timetable are the left edges of the time bins.

TT2 = retime(TT,'hourly','mean')

TT2=2×3 timetable
 Time Temp Pulse
 ______ ______ _____

 0 min 97.875 74
 60 min 98 69.25

 retime

1-12875

Specify Time Step of Your Own

Create a timetable that contains times, temperature, and pressure readings taken
approximately at the half-hour mark, but with one measurement from 9:00 AM missing.

Time = datetime({'2015-12-18 07:29:53';'2015-12-18 08:00:00';...
 '2015-12-18 08:31:02';'2015-12-18 09:30:00'});
Temp = [37.3;41.9;45.7;39.8];
Pressure = [30.1;29.9;30.03;29.8];
TT1 = timetable(Time,Temp,Pressure)

TT1=4×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 07:29:53 37.3 30.1
 18-Dec-2015 08:00:00 41.9 29.9
 18-Dec-2015 08:31:02 45.7 30.03
 18-Dec-2015 09:30:00 39.8 29.8

Specify a 30 minute time step. Since 30 minutes is not a predefined time step, you must
specify it as a duration value, using the 'TimeStep' name-value pair argument.
Resample the data from TT1 using linear interpolation.

dt = minutes(30);
TT2 = retime(TT1,'regular','linear','TimeStep',dt)

TT2=6×3 timetable
 Time Temp Pressure
 ____________________ ______ ________

 18-Dec-2015 07:00:00 32.736 30.298
 18-Dec-2015 07:30:00 37.318 30.099
 18-Dec-2015 08:00:00 41.9 29.9
 18-Dec-2015 08:30:00 45.573 30.026
 18-Dec-2015 09:00:00 42.802 29.917
 18-Dec-2015 09:30:00 39.8 29.8

1 Alphabetical List

1-12876

Specify Sample Rate

Create a timetable using column vectors of data. The row times are between 10 and 50
milliseconds.

Intensity = [100 98.7 95.2 101.4 99.1]';
Time = milliseconds([11 20 34 40.3 49.9])';
TT1 = timetable(Time,Intensity)

TT1=5×2 timetable
 Time Intensity
 __________ _________

 0.011 sec 100
 0.02 sec 98.7
 0.034 sec 95.2
 0.0403 sec 101.4
 0.0499 sec 99.1

Resample the data in TT1 using a sample rate of 100 Hz.

TT2 = retime(TT1,'regular','linear','SampleRate',100)

TT2=5×2 timetable
 Time Intensity
 ________ _________

 0.01 sec 100.14
 0.02 sec 98.7
 0.03 sec 96.2
 0.04 sec 101.1
 0.05 sec 99.076

Interpolate Timetable Data to Time Vector

Create a timetable that contains times, temperature, and pressure readings.

Time = datetime({'2015-12-18 07:29:53';'2015-12-18 08:00:00';...
 '2015-12-18 08:31:02';'2015-12-18 09:30:00'});
Temp = [37.3;41.9;45.7;39.8];

 retime

1-12877

Pressure = [30.1;29.9;30.03;29.8];
TT1 = timetable(Time,Temp,Pressure)

TT1=4×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 07:29:53 37.3 30.1
 18-Dec-2015 08:00:00 41.9 29.9
 18-Dec-2015 08:31:02 45.7 30.03
 18-Dec-2015 09:30:00 39.8 29.8

Create a time vector and interpolate the timetable data at the times in the vector. This
time vector starts at 8:00 AM. If you instead use the 'TimeStep' name-value pair
argument, then the output timetable would start at 7:00 AM. One reason to use a time
vector is to ensure that the output timetable starts, and ends, with times you specify.

newTimes = [datetime('2015-12-18 08:00:00'):minutes(30):datetime('2015-12-18 09:30:00')];
TT2 = retime(TT1,newTimes,'linear')

TT2=4×3 timetable
 Time Temp Pressure
 ____________________ ______ ________

 18-Dec-2015 08:00:00 41.9 29.9
 18-Dec-2015 08:30:00 45.573 30.026
 18-Dec-2015 09:00:00 42.802 29.917
 18-Dec-2015 09:30:00 39.8 29.8

Adjust Timetable by Inserting Missing Data Indicators

Create a timetable that contains times and measurements of wind speed and direction.

Time = datetime({'2015-12-18 07:00:00';'2015-12-18 08:03:47';...
 '2015-12-18 09:00:00';'2015-12-18 10:00:00';...
 '2015-12-18 10:59:34'});
WindSpeed = [13.4;6.5;7.3;8.5;2.3];
WindDirection = categorical({'NE';'N';'NE';'NW';'W'});
TT1 = timetable(Time,WindSpeed,WindDirection)

1 Alphabetical List

1-12878

TT1=5×3 timetable
 Time WindSpeed WindDirection
 ____________________ _________ _____________

 18-Dec-2015 07:00:00 13.4 NE
 18-Dec-2015 08:03:47 6.5 N
 18-Dec-2015 09:00:00 7.3 NE
 18-Dec-2015 10:00:00 8.5 NW
 18-Dec-2015 10:59:34 2.3 W

Adjust the data to an hourly time vector. Insert missing data indicators in TT2 where TT1
does not have data on the hourly time vector.

TT2 = retime(TT1,'hourly')

TT2=5×3 timetable
 Time WindSpeed WindDirection
 ____________________ _________ _____________

 18-Dec-2015 07:00:00 13.4 NE
 18-Dec-2015 08:00:00 NaN <undefined>
 18-Dec-2015 09:00:00 7.3 NE
 18-Dec-2015 10:00:00 8.5 NW
 18-Dec-2015 11:00:00 NaN <undefined>

Apply Multiple Methods to Timetable

Load a timetable. Adjust the timetable variables using the retime function and different
methods for different variables.

Load a timetable with temperature, wind speed, and rainfall measurements for Boston.

load bostonTT
Boston

Boston=6×4 timetable
 Time Temp WindSpeed Rain
 ___________________ ____ _________ ____

 2016-06-09 06:03:00 59.5 0.1 0.05

 retime

1-12879

 2016-06-09 12:00:23 63 2.3 0.08
 2016-06-09 18:02:57 61.7 3.1 0.13
 2016-06-10 06:01:47 55.4 5.7 0.15
 2016-06-10 12:06:00 62.3 2.6 0.87
 2016-06-10 18:02:57 58.8 6.2 0.33

Adjust the data to produce daily mean temperatures and wind speeds, and daily sums of
the rainfall. retime applies the same method to all timetable variables. To apply different
methods, index into the timetable to select variables, and call retime for each method
you use.

BOS = Boston(:,{'Temp','WindSpeed'});
TT1 = retime(BOS,'daily','mean')

TT1=2×3 timetable
 Time Temp WindSpeed
 ___________________ ______ _________

 2016-06-09 00:00:00 61.4 1.8333
 2016-06-10 00:00:00 58.833 4.8333

BOS = Boston(:,'Rain');
TT2 = retime(BOS,'daily','sum')

TT2=2×2 timetable
 Time Rain
 ___________________ ____

 2016-06-09 00:00:00 0.26
 2016-06-10 00:00:00 1.35

To combine all results in one timetable, concatenate TT1 and TT2.

TT = [TT1 TT2]

TT=2×4 timetable
 Time Temp WindSpeed Rain
 ___________________ ______ _________ ____

 2016-06-09 00:00:00 61.4 1.8333 0.26
 2016-06-10 00:00:00 58.833 4.8333 1.35

1 Alphabetical List

1-12880

Include Right Edges of Time Bins

Bin timetable data into hourly bins. Specify the right edges, or end times, of the time bins
as row times. By default, the left edges, or start times of the time bins, are row times.

Create a timetable with temperature and pulse readings taken at fifteen minutes
intervals.

Time = [minutes(15):minutes(15):minutes(105)]';
Temp = [97.5;97.9;98.1;97.9;98;98.3;97.8];
Pulse = [75;73;68;69;65;72;71];
TT = timetable(Time,Temp,Pulse)

TT=7×3 timetable
 Time Temp Pulse
 _______ ____ _____

 15 min 97.5 75
 30 min 97.9 73
 45 min 98.1 68
 60 min 97.9 69
 75 min 98 65
 90 min 98.3 72
 105 min 97.8 71

Calculate the mean for each reading over hourly time bins. Specify that the row times of
the output timetable are the right edges of the time bins. Since the right edges are
included, the reading at 60 minutes is included in the first time bin.

TT2 = retime(TT,'hourly','mean','IncludedEdge','right')

TT2=2×3 timetable
 Time Temp Pulse
 _______ ______ ______

 60 min 97.85 71.25
 120 min 98.033 69.333

Calculate the means, with the left edges as the row times. The mean values are different
from those in TT2, because the reading at 60 minutes is now in the second time bin.

 retime

1-12881

TT3 = retime(TT,'hourly','mean')

TT3=2×3 timetable
 Time Temp Pulse
 ______ ______ _____

 0 min 97.833 72
 60 min 98 69.25

Input Arguments
TT1 — Input timetable
timetable

Input timetable.

newTimeStep — Time step for spacing times in output timetable
character vector

Time step for spacing times in the output timetable, specified as a character vector.
newTimeStep can be any of the predefined time steps in the table.

Time Step Description
'yearly' One year
'quarterly' One quarter
'monthly' One month
'weekly' One week
'daily' One day
'hourly' One hour
'minutely' One minute
'secondly' One second

dt — Time step of any size
datetime scalar | duration scalar

Time step of any size, specified as a datetime scalar or duration scalar.

1 Alphabetical List

1-12882

Data Types: datetime | duration | calendarDuration

Fs — Sample rate
positive numeric scalar

Sample rate, specified as a positive numeric scalar. Fs specifies the number of samples
per second (Hz).

newTimes — New time vector
datetime vector | duration vector

New time vector, specified as a datetime vector or a duration vector. The new time vector
must be a column vector. newTimes can have a different number of rows than TT1.

method — Method for adjusting timetable data
character vector | string scalar | function handle

Method for adjusting timetable data, specified as a character vector, string scalar, or
function handle. You can use any of the listed methods listed to adjust the data from TT1.

Fill Methods

Copy data from the rows of TT1 when row times of TT2 match row times of TT1. Then, fill
the remaining rows of TT2 with missing data indicators.

To fill the remaining rows with a constant instead of a missing data indicator, specify
method as 'fillwithconstant' and use the 'Constant' name-value pair argument.

Method Description
'fillwithmissing' Fill gaps with missing data indicators (for

example, NaN for numeric variables).
'fillwithconstant' Fill gaps with the value of the 'Constant'

name-value pair argument. The default
value is 0.

Nearest Neighbor Methods

Copy data from the rows of TT1 to the rows of TT2 whose row times are the nearest
match, according to the specified method. TT1 must be sorted by its row times.

 retime

1-12883

Method Description
'previous' Copy data from the nearest preceding

neighbor in the input timetable, proceeding
from the end of the vector of row times. If
there are duplicate row times, then
'previous' indicates the last of the
duplicates.

'next' Copy data from the nearest following
neighbor in the input timetable, proceeding
from the beginning of the vector of row
times. If there are duplicate row times, then
'next' indicates the first of the duplicates.

'nearest' Copy data from the nearest neighbor in the
input timetable.

Interpolation Methods

Interpolate data values in TT2 from data values in neighboring rows of TT1. The input
timetable must have row times that are sorted and unique. To control how the data are
extrapolated beyond the first and last row times of TT1, use the 'EndValues' name-
value pair argument.

Method Description
'linear' Use linear interpolation.
'spline' Use piecewise cubic spline interpolation.
'pchip' Use shape-preserving piecewise cubic

interpolation.
'makima' Use modified Akima cubic Hermite

interpolation.

Aggregation Methods

Aggregate data from the rows of TT1 over time bins specified by the row times of TT2.
Each row time of TT2 is the left edge of a time bin, with the next consecutive row time
being the right edge. By default, the left edges are included in the time bins. To control
whether the left or the right bin edges are included in the time bins, use the
'IncludedEdge' name-value pair argument.

1 Alphabetical List

1-12884

If you specify the time vector newTimes, then newTimes must be sorted in ascending
order.

All the listed methods omit NaNs, NaTs, and other missing data indicators, except for
func. To include missing data indicators, specify func as a function handle to a function
that includes them when aggregating data.

Method Description
'sum' Sum the values in each time bin.
'mean' Calculate the mean of the values in each

time bin.
'prod' Calculate the product of the values in each

time bin.
'min' Calculate the minimum of the values in

each time bin.
'max' Calculate the maximum of the values in

each time bin.
'count' Count the number of values in each time

bin.
'firstvalue' Use the first value in each time bin.
'lastvalue' Use the last value in each time bin.
@func Use the function specified by the function

handle (for example, @std to calculate the
standard deviation for the values in each
time bin). func must return an output
argument that is a scalar or a row vector,
and must accept empty inputs.

Default Method

The default method is equivalent to leaving method unspecified.

 retime

1-12885

Method Description
'default' (default) Either fill gaps with missing data

indicators, or use per-variable methods if
they are specified by the
VariableContinuity property of the
input timetable.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TT2 = retime(TT1,newTimes,'Constant',-1) creates the timetable TT2
and assigns the value -1 to elements in rows of TT2 with row times that do not match row
times from TT1.

Constant — Value for filling gaps when method is 'fillwithconstant'
array

Value for filling gaps when the method is 'fillwithconstant', specified as the comma-
separated pair consisting of 'Constant' and an array. The default value is 0. The data
type of the value specified by 'Constant' must be compatible with the data types of the
timetable variables.
Example: TT2 =
retime(TT1,'hourly','fillwithconstant','Constant','NONE') fills gaps in
TT2 with the character vector 'NONE' when all the variables in TT2 contain text.

EndValues — Method for extrapolation when using interpolation method
'extrap' (default) | array

Method for extrapolation when using an interpolation method, specified as the comma-
separated pair consisting of 'EndValues' and either 'extrap', or an array. If you
specify an array, then its data type must be compatible with all the timetable variables.

Method Description
'extrap' (default) Extrapolate using the method specified by

the method input argument

1 Alphabetical List

1-12886

Method Description
array Extrapolate by filling gaps outside the

range of input row times with an array

Example: TT2 = retime(TT1,'daily','previous','EndValues',1000) fills gaps
in TT2 with previous row values where TT2 has row times within the range of row times
from TT1, and with the value 1000 where TT2 has row times outside that range.

IncludedEdge — Edges to include in each time bin
'left' (default) | 'right'

Edges to include in each time bin, specified as the comma-separated pair consisting of
'IncludedEdge' and either 'left' or 'right'. Each row time of TT2 is the left edge
of a time bin, with the next consecutive row time being the right edge.

Edges to Include Description
'left' (default) All bins include the left bin edge, except for

the last bin, which includes both edges
'right' All bins include the right bin edge, except

for the first bin, which includes both edges

If you specify 'left', then the time bins include the left edges except for the last bin,
which includes both edges. If you specify 'right', then the time bins include the right
edges except for the first bin, which includes both edges.
Example: TT2 = retime(TT1,'hourly','mean','IncludedEdge','right')
includes the right bin edge of each time bin.

Compatibility Considerations
'SamplingRate' is not recommended
Not recommended starting in R2018b

The 'SamplingRate' name-value pair argument is not recommended. Use
'SampleRate' instead. The corresponding timetable property is also named
SampleRate.

For backward compatibility, you still can specify 'SamplingRate' as the name of the
name-value pair. However, the value is assigned to the SampleRate property.

 retime

1-12887

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Nearest neighbor and interpolation methods are not supported.
• The 'EndValues' name-value pair is not supported.

For more information, see “Tall Arrays”.

See Also
horzcat | innerjoin | lag | outerjoin | resample | synchronize | vertcat

Topics
“Create Timetables”
“Clean Timetable with Missing, Duplicate, or Nonuniform Times”
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”

Introduced in R2016b

1 Alphabetical List

1-12888

return
Return control to invoking function

Syntax
return

Description
return forces MATLAB to return control to the invoking function before it reaches the
end of the function. The invoking function is the function that calls the script or function
containing the call to return. If you call the function or script that contains return
directly, there is no invoking function and MATLAB returns control to the command
prompt.

Note Be careful when you use return within conditional blocks, such as if or switch,
or within loop control statements, such as for or while. When MATLAB reaches a
return statement, it does not just exit the loop; it exits the script or function and returns
control to the invoking function or command prompt.

Examples

Return Control to Keyboard

In your current working folder, create a function, findSqrRootIndex, to find the index
of the first occurrence of the square root of a value within an array. If the square root isn't
found, the function returns NaN.

function idx = findSqrRootIndex(target,arrayToSearch)

idx = NaN;
if target < 0

 return

1-12889

 return
end

for idx = 1:length(arrayToSearch)
 if arrayToSearch(idx) == sqrt(target)
 return
 end
end

At the command prompt, call the function.

A = [3 7 28 14 42 9 0];
b = 81;
findSqrRootIndex(b,A)

ans =

 6

When MATLAB encounters the return statement, it returns control to the keyboard
because there is no invoking function.

Return Control to Invoking Function

In a file, returnControlExample.m, in your current working folder, create the following
function to find the index of the first occurrence of the square root of a value within an
array. This function calls the findSqrRootIndex function you created in the previous
example.

function returnControlExample(target)
 arrayToSearch = [3 7 28 14 42 9 0];
 idx = findSqrRootIndex(target,arrayToSearch);

 if isnan(idx)
 disp('Square root not found.')
 else
 disp(['Square root found at index ' num2str(idx)])
 end

1 Alphabetical List

1-12890

end

At the command prompt, call the function.

returnControlExample(49)

Square root found at index 2

When MATLAB encounters the return statement within findSqrRootIndex, it returns
control to the invoking function, returnControlExample, and displays the relevant
message.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
break | continue | disp | end | error | for | if | keyboard | switch | while

Introduced before R2006a

 return

1-12891

reverse
Reverse order of characters in strings

Syntax
newStr = reverse(str)

Description
newStr = reverse(str) reverses the order of the characters in str.

Examples

Reverse Strings

Reverse the strings in a string array and find strings that read the same when reversed.
Starting in R2017a, you can create strings using double quotes.

str = ["airport","control tower","radar","runway"]

str = 1x4 string array
 "airport" "control tower" "radar" "runway"

newStr = reverse(str)

newStr = 1x4 string array
 "tropria" "rewot lortnoc" "radar" "yawnur"

tf = (newStr == str)

tf = 1x4 logical array

 0 0 1 0

1 Alphabetical List

1-12892

str(tf)

ans =
"radar"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors. str and newStr are the same data type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str must be a string scalar, a character vector, or a cell array containing not more
than one character vector.

 reverse

1-12893

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
eq | flip | fliplr | lower | replace | reshape | upper

Introduced in R2016b

1 Alphabetical List

1-12894

rewriteDirectory
Write modified metadata to existing IFD

Syntax
rewriteDirectory(t)

Description
rewriteDirectory(t) writes modified metadata (tag) data to an existing directory. Use
this function when you want to change the value of a tag in an existing image file
directory.

Examples

Modify Value of Tag

Create image data, write it to a TIFF file, and modify the value of a tag.

Write a sample TIFF file, mytif.tif and create a Tiff object associated with this file.

imdata = peaks(256);
imwrite(imdata,'mytif.tif');
t = Tiff('mytif.tif','r+');

Modify the value of a tag.

setTag(t,'Software','MATLAB');
rewriteDirectory(t);
close(t);

 rewriteDirectory

1-12895

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Algorithms

References
This function corresponds to the TIFFRewriteDirectory function in the LibTIFF C API.
To use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
writeDirectory

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-12896

http://www.simplesystems.org/libtiff/

rgb2gray
Convert RGB image or colormap to grayscale

Syntax
I = rgb2gray(RGB)
newmap = rgb2gray(map)

Description
I = rgb2gray(RGB) converts the truecolor image RGB to the grayscale image I. The
rgb2gray function converts RGB images to grayscale by eliminating the hue and
saturation information while retaining the luminance. If you have Parallel Computing
Toolbox installed, rgb2gray can perform this conversion on a GPU.

newmap = rgb2gray(map) returns a grayscale colormap equivalent to map.

Examples

Convert RGB Image to Grayscale Image

Read and display an RGB image, and then convert it to grayscale.

Read the sample file, peppers.png, and display the RGB image.

RGB = imread('peppers.png');
imshow(RGB)

 rgb2gray

1-12897

Convert the RGB image to a grayscale image and display it.

I = rgb2gray(RGB);
figure
imshow(I)

1 Alphabetical List

1-12898

Convert RGB Colormap to Grayscale Colormap

Read an indexed image with an RGB colormap. Then, convert the colormap to grayscale.

Read the sample file, corn.tif, which is an indexed image with an RGB colormap.

[X,map] = imread('corn.tif');

Display the image.

imshow(X,map)

 rgb2gray

1-12899

Convert the RGB colormap to a grayscale colormap and redisplay the image.

newmap = rgb2gray(map);
imshow(X,newmap)

1 Alphabetical List

1-12900

Input Arguments
RGB — Truecolor image
m-by-n-by-3 numeric array

 rgb2gray

1-12901

Truecolor image, specified as an m-by-n-by-3 numeric array.

If you have Parallel Computing Toolbox installed, RGB can also be a gpuArray.
Data Types: single | double | uint8 | uint16

map — Colormap
c-by-3 numeric matrix

Colormap, specified as a c-by-3 numeric matrix with values in the range [0, 1]. Each row
of map is a three-element RGB triplet that specifies the red, green, and blue components
of a single color of the colormap.

If you have Parallel Computing Toolbox installed, map can also be a gpuArray.
Data Types: double

Output Arguments
I — Grayscale image
m-by-n numeric array

Grayscale image, returned as an m-by-n numeric array.

If you have Parallel Computing Toolbox installed, then I can also be a gpuArray.

newmap — Grayscale colormap
c-by-3 numeric matrix

Grayscale colormap, returned as an c-by-3 numeric matrix with values in the range [0, 1].
The three columns of newmap are identical, so that each row of map specifies a single
intensity value.

If you have Parallel Computing Toolbox installed, then newmap can also be a gpuArray.
Data Types: double

Tips
• rgb2gray supports the generation of C code using MATLAB Coder.

1 Alphabetical List

1-12902

Algorithms
rgb2gray converts RGB values to grayscale values by forming a weighted sum of the R,
G, and B components:

0.2989 * R + 0.5870 * G + 0.1140 * B

These are the same weights used by the rgb2ntsc function to compute the Y component.

The coefficients used to calculate grayscale values in rgb2gray are identical to those
used to calculate luminance (E'y) in Rec.ITU-R BT.601-7 after rounding to 3 decimal
places.

Rec.ITU-R BT.601-7 calculates E'y using the following formula:

0.299 * R + 0.587 * G + 0.114 * B

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When generating code, if you choose the generic MATLAB Host Computer target
platform, rgb2gray generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the target
platforms for which code can be generated.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 rgb2gray

1-12903

See Also
ind2gray | mat2gray | ntsc2rgb | rgb2ind | rgb2ntsc

Topics
“Image Types”

1 Alphabetical List

1-12904

rgb2hsv
Convert RGB colors to HSV

Syntax
HSV = rgb2hsv(RGB)
hsvmap = rgb2hsv(rgbmap)

Description
HSV = rgb2hsv(RGB) converts the red, green, and blue values of an RGB image to hue,
saturation, and value (HSV) values of an HSV image.

hsvmap = rgb2hsv(rgbmap) converts an RGB colormap to an HSV colormap.

Examples

Convert Colormap to HSV

Get a down-sampled version of the prism colormap.

rgb = prism(6)

rgb = 6×3

 1.0000 0 0
 1.0000 0.5000 0
 1.0000 1.0000 0
 0 1.0000 0
 0 0 1.0000
 0.6667 0 1.0000

Convert the RGB values in the colormap to HSV.

 rgb2hsv

1-12905

hsv = rgb2hsv(rgb)

hsv = 6×3

 0 1.0000 1.0000
 0.0833 1.0000 1.0000
 0.1667 1.0000 1.0000
 0.3333 1.0000 1.0000
 0.6667 1.0000 1.0000
 0.7778 1.0000 1.0000

Convert Truecolor Image to HSV

Create a 2-by-2 truecolor image.

rgb(:,:,1) = [1 1; 0 .5];
rgb(:,:,2) = [0 1; 0 .5];
rgb(:,:,3) = [0 0; 1 .5];
image(rgb);

1 Alphabetical List

1-12906

Convert the image to an HSV array.

hsv = rgb2hsv(rgb)

hsv =
hsv(:,:,1) =

 0 0.1667
 0.6667 0

hsv(:,:,2) =

 1 1

 rgb2hsv

1-12907

 1 0

hsv(:,:,3) =

 1.0000 1.0000
 1.0000 0.5000

Input Arguments
RGB — RGB image
m-by-n-by-3 numeric array

RGB image to convert, specified as an m-by-n-by-3 numeric array. The third dimension of
RGB defines the red, green, and blue intensity of each pixel, respectively.
Data Types: single | double | uint8 | uint16

rgbmap — RGB colormap
c-by-3 numeric matrix

RGB colormap, specified as a c-by-3 numeric matrix with values in the range [0, 1]. Each
row of rgbmap is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.
Data Types: double

Output Arguments
HSV — HSV image
m-by-n-by-3 numeric array

HSV image, returned as an m-by-n-by-3 numeric array with values in the range [0, 1]. The
third dimension of HSV defines the hue, saturation, and value for each pixel, respectively,
as described in the table.

1 Alphabetical List

1-12908

Attribute Description
Hue Value from 0 to 1 that corresponds to the color’s position on a

color wheel. As hue increases from 0 to 1, the color transitions
from red to orange, yellow, green, cyan, blue, magenta, and finally
back to red.

Saturation Amount of hue or departure from neutral. 0 indicates a neutral
shade, whereas 1 indicates maximum saturation.

Value Maximum value among the red, green, and blue components of a
specific color.

The data type of HSV depends on the type of RGB:

• If RGB is of type single, then HSV is of type single.
• Otherwise, HSV is of type double.

Data Types: double | single

hsvmap — HSV colormap
c-by-3 numeric matrix

HSV colormap, returned as a c-by-3 numeric matrix with values in the range [0, 1]. Each
row of hsvmap is a three-element HSV triplet that specifies the hue, saturation, and value
components of a single color of the colormap.

The data type depends on the type of rgbmap:

• If rgbmap is of type single, then hsvmap is of type single.
• Otherwise, hsvmap is of type double.

Data Types: single | double

References
[1] Smith, A. R. “Color Gamut Transform Pairs”. SIGGRAPH 78 Conference Proceedings.

1978, pp. 12–19.

 rgb2hsv

1-12909

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
hsv | hsv2rgb

Introduced before R2006a

1 Alphabetical List

1-12910

rgb2ind
Convert RGB image to indexed image

Syntax
[X,cmap] = rgb2ind(RGB,Q)
[X,cmap] = rgb2ind(RGB,tol)
X = rgb2ind(RGB,inmap)
___ = rgb2ind(___ ,dithering)

Description
[X,cmap] = rgb2ind(RGB,Q) converts the RGB image to an indexed image X with
associated colormap cmap using minimum variance quantization with Q quantized colors
and dithering.

[X,cmap] = rgb2ind(RGB,tol) converts the RGB image to an indexed image using
uniform quantization with tolerance tol and dithering.

X = rgb2ind(RGB,inmap) converts the RGB image to an indexed image using the
inverse colormap algorithm with specified colormap inmap and dithering.

___ = rgb2ind(___ ,dithering) enables or disables dithering.

Examples

Convert RGB Image to Indexed Image

Read and display a truecolor uint8 JPEG image of a nebula.

RGB = imread('ngc6543a.jpg');
figure
imagesc(RGB)

 rgb2ind

1-12911

axis image
zoom(4)

Convert RGB to an indexed image with 32 colors.

[IND,map] = rgb2ind(RGB,32);
figure
imagesc(IND)
colormap(map)
axis image
zoom(4)

1 Alphabetical List

1-12912

Input Arguments
RGB — RGB image
m-by-n-by-3 array

RGB image, specified as an m-by-n-by-3 array.
Data Types: single | double | uint8 | uint16

Q — Number of quantized colors
positive integer

 rgb2ind

1-12913

Number of quantized colors used for minimum variance quantization, specified as a
positive integer that is less than or equal to 65,536. The returned colormap cmap has Q or
fewer colors.

tol — Tolerance
number in the range [0, 1]

Tolerance used for uniform quantization, specified as a number in the range [0, 1]. The
returned colormap cmap has (floor(1/tol)+1)^3 or fewer colors.

inmap — Input colormap
c-by-3 matrix

Input colormap, specified as a c-by-3 matrix with values in the range [0, 1]. Each row of
inmap is a three-element RGB triplet that specifies the red, green, and blue components
of a single color of the colormap. The colormap has a maximum of 65,536 colors.
Data Types: double

dithering — Perform dithering
'dither' (default) | 'nodither'

Perform dithering, specified as 'dither' or 'nodither'. Dithering increases the color
resolution at the expense of spatial resolution. For more information, see dither.

If you select 'nodither', then rgb2ind does not perform dithering. Instead, the
function maps each color in the original image to the closest color in the new colormap.

Output Arguments
X — Indexed image
m-by-n matrix of nonnegative integers

Indexed image, returned as an m-by-n matrix of nonnegative integers. If the length of map
is less than or equal to 256, then the output image is of class uint8. Otherwise, the
output image is of class uint16. The value 0 in the output array X corresponds to the
first color in the colormap.

Note The values in image X are indexes into the colormap map and should not be used in
mathematical processing, such as filtering operations.

1 Alphabetical List

1-12914

Data Types: uint8 | uint16

cmap — Colormap
c-by-3 matrix

Colormap, returned as a c-by-3 matrix with values in the range [0, 1]. Each row of cmap is
a three-element RGB triplet that specifies the red, green, and blue components of a single
color of the colormap. The colormap has a maximum of 65,536 colors.
Data Types: double

Algorithms
• Uniform Quantization — If you specify tol, then rgb2ind uses uniform quantization

to convert the image. Uniform quantization cuts the RGB color cube into smaller cubes
of length tol. For example, if you specify a tol of 0.1, then the edges of the cubes are
one-tenth the length of the RGB cube. The total number of small cubes is:

t = (floor(1/tol)+1)^3

Each cube represents a single color in the output image. Therefore, t is the maximum
length of the colormap . rgb2ind removes any colors that don’t appear in the input
image, so the actual colormap can be smaller than t.

• Minimum Variance Quantization — If you specify Q, then rgb2ind uses minimum
variance quantization. Minimum variance quantization cuts the RGB color cube into
smaller boxes (not necessarily cubes) of different sizes, depending on how the colors
are distributed in the image. If the input image actually uses fewer colors than the
number specified, then the output colormap is also smaller.

• Inverse Colormap — If you specify an input colormap inmap, then rgb2ind uses
colormap mapping. The inverse colormap algorithm quantizes the specified colormap
into 32 distinct levels per color component. Then, for each pixel in the input image,
the closest color in the quantized colormap is found.

References
[1] Spencer W. Thomas, "Efficient Inverse Color Map Computation", Graphics Gems II,

(ed. James Arvo), Academic Press: Boston. 1991. (includes source code)

 rgb2ind

1-12915

See Also
cmunique | dither | imapprox | ind2rgb

Topics
“Image Types”
“Reduce the Number of Colors in an Image” (Image Processing Toolbox)

Introduced before R2006a

1 Alphabetical List

1-12916

rgbplot
Plot colormap

Syntax
rgbplot(map)

Description
rgbplot(map) plots the red, green, and blue intensities of the specified colormap.

Examples

Plot a Predefined Colormap

Plot the parula colormap, and display a colorbar as a visual reference.

rgbplot(parula)
hold on
colormap(parula)
colorbar('Ticks',[])

 rgbplot

1-12917

Plot a Custom Colormap

Create a custom colormap and plot it. Then display a colorbar as a visual reference.

r = (0:.1:.9)';
g = r.^1.8;
b = r.^2.1;
mymap = [r g b];
rgbplot(mymap)
hold on
colormap(mymap)
colorbar('Ticks',[])

1 Alphabetical List

1-12918

Input Arguments
map — Colormap
three-column matrix of RGB triplets

Colormap to plot, specified as a three-column matrix of RGB triplets. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of a color. The intensities must be in the range [0, 1]. For example, here
is a colormap that contains five colors:

 rgbplot

1-12919

map = [0.2 0.1 0.5
 0.1 0.5 0.8
 0.2 0.7 0.6
 0.8 0.7 0.3
 0.9 1 0];

This table lists the RGB triplet values for common colors.

Color RGB Triplet
yellow [1 1 0]
magenta [1 0 1]
cyan [0 1 1]
red [1 0 0]
green [0 1 0]
blue [0 0 1]
white [1 1 1]
black [0 0 0]

Alternatively, you can create the matrix by calling one of the predefined colormap
functions. Call the function as the input argument to the rgbplot function. For example,
this command plots the parula colormap.

rgbplot(parula)

Data Types: double | single

See Also
colormap

Introduced before R2006a

1 Alphabetical List

1-12920

ribbon
Ribbon plot

Syntax
ribbon(Y)
ribbon(X,Y)
ribbon(X,Y,width)
ribbon(axes_handle,...)
h = ribbon(...)

Description
ribbon(Y) plots the columns of Y as three-dimensional ribbons of uniform width using X
= 1:size(Y,1). Ribbons advance along the x-axis centered on tick marks at unit
intervals, three-quarters of a unit in width. Ribbon maps values in X to colors in colormap
linearly. To change ribbon colors in the graph, change the colormap.

ribbon(X,Y) plots three dimensional ribbons for data in Y, centered at locations
specified in X. X and Y are vectors or matrices of the same size. Additionally, X can be a
row or a column vector, and Y a matrix with length(X) rows. When Y is a matrix,
ribbon plots each column in Y as a ribbon at the corresponding X location.

ribbon(X,Y,width) specifies the width of the ribbons. The default is 0.75. If width =
1, the ribbons touch, leaving no space between them when viewed down the z-axis. If
width > 1, ribbons overlap and can intersect.

ribbon(axes_handle,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

 ribbon

1-12921

h = ribbon(...) returns a vector of handles to surface graphics objects. ribbon
returns one handle per strip.

Examples

Ribbon Plot

Create a ribbon plot of the peaks function.

[x,y] = meshgrid(-3:.5:3,-3:.1:3);
z = peaks(x,y);

figure
ribbon(y,z)

1 Alphabetical List

1-12922

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 ribbon

1-12923

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
plot | plot3 | surface | waterfall

Introduced before R2006a

1 Alphabetical List

1-12924

rlim
Set or query r-axis limits for polar axes

Syntax
rlim(limits)

rlim('auto')
rlim('manual')

rl = rlim
m = rlim('mode')

___ = rlim(pax, ___)

Description
rlim(limits) specifies the r-axis limits for the current polar axes. Specify limits as a
two-element vector of the form [rmin rmax], where rmax is a numeric value greater
than rmin.

rlim('auto') lets MATLAB choose the r-axis limits. This command sets the RLimMode
property for the polar axes object to 'auto'.

rlim('manual') prevents the limits from changing automatically. Use this option if you
want to retain the current limits when adding new data to the polar axes using the hold
on command. This command sets the RLimMode property for the polar axes object to
'manual'.

rl = rlim returns a two-element vector containing the limits for the current polar axes.

m = rlim('mode') returns the current value of the limits mode, which is either 'auto'
or 'manual'. By default, the mode is automatic unless you specify limits or set the mode
to manual.

 rlim

1-12925

___ = rlim(pax, ___) uses the polar axes specified by pax instead of the current
polar axes. Specify pax as the first input argument. Include additional input or output
arguments only if the original syntax supported them.

Examples

Specify r-Axis Limits

Create a polar plot and change the r-axis limits.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
polarplot(theta,rho)
rlim([0 1])

1 Alphabetical List

1-12926

Set the limits back to the original values.

rlim('auto')

 rlim

1-12927

Plot Negative Radius Values

Create a polar plot using negative radius values. By default, polarplot reflects negative
values through the origin.

theta = linspace(0,2*pi);
rho = sin(theta);
polarplot(theta,rho)

1 Alphabetical List

1-12928

Change the limits of the r-axis so it ranges from -1 to 1.

rlim([-1 1])

 rlim

1-12929

Return r-Axis Limits

Create a polar plot and return the r-axis limits.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
polarplot(theta,rho)

1 Alphabetical List

1-12930

rl = rlim

rl = 1×2

 0 0.5000

Specify r-Axis Limits for Specific Polar Axes

Set the limits for a specific polar axes by specifying the polar axes object as the first input
to rlim. Otherwise, rlim sets the limits for the current axes.

 rlim

1-12931

pax = polaraxes;
rlim(pax,[0 5])

Input Arguments
limits — Minimum and maximum limits
two-element vector

Minimum and maximum limits, specified as a two-element vector of the form [rmin
rmax], where rmax is a numeric value greater than rmin. You can specify both limits, or
specify one limit and let MATLAB automatically calculate the other.

1 Alphabetical List

1-12932

• To automatically set the minimum limit to the minimum data value, specify the first
element as -inf, for example, rlim([-inf 0]).

• To automatically set the maximum limit to the maximum data value, specify the second
element as inf, for example, rlim([0 inf]).

When you specify the limits, the RLim property for the polar axes object updates to the
specified values and the RLimMode property changes to 'manual'.
Example: rlim([0 1])

pax — Polar axes object
polar axes object

Polar axes object. If you do not specify a polar axes object, then rlim sets the limits for
the current polar axes.

Output Arguments
rl — Current limits
two-element vector

Current limits, returned as a two-element vector of the form [rmin rmax]. Querying the
limits returns the value of the RLim property for the polar axes object.

m — Current limits mode
'auto' | 'manual'

Current limits mode, returned as one of these values:

• 'auto' — The limits automatically update to reflect changes in the data.
• 'manual' — The limits do not automatically update to reflect changes in the data.

Querying the r-axis limits mode returns the value of the RLimMode property for the polar
axes object.

See Also
Functions
deg2rad | polarplot | rad2deg | thetalim | title

 rlim

1-12933

Properties
PolarAxes

Introduced in R2016a

1 Alphabetical List

1-12934

rmappdata
Remove application-defined data

Syntax
rmappdata(h,name)

Description
rmappdata(h,name) removes the application-defined data, name, from its association
with the UI component, h.

See Also
getappdata | isappdata | setappdata

Introduced before R2006a

 rmappdata

1-12935

rmdir
Remove folder

Syntax
rmdir folderName
rmdir folderName s

status = rmdir(___)
[status,msg] = rmdir(___)
[status,msg,msgID] = rmdir(___)

Description
rmdir folderName removes the folder folderName from the current folder.
folderName must be empty. If the operation is not successful, MATLAB throws an error
to the Command Window.

rmdir folderName s also attempts to remove all subfolders and files in folderName,
regardless of their write permissions. The result for read-only files follows the practices of
the operating system.

status = rmdir(___) removes the specified folder and returns a status of 1 if the
operation is successful. Otherwise, rmdir returns 0. Warnings and errors are not thrown
to the Command Window. You can use this syntax with any of the input argument
combinations in the previous syntaxes.

[status,msg] = rmdir(___) also returns the message text for any warning or error
that occurs.

[status,msg,msgID] = rmdir(___) also returns the message ID for any warning or
error that occurs.

Examples

1 Alphabetical List

1-12936

Remove Folders from Current Folder

Create the folders myproject and myproject/myfiles in the current folder, and then
remove them.

mkdir myproject
mkdir myproject/myfiles

rmdir myproject/myfiles
rmdir myproject

Remove Nonempty Folder

Remove the folder myfiles, which contains the files myfile1.m and myfile2.m.

Create the folder myfiles and move the files myfile1.m and myfile2.m from the
current folder into the new folder.

mkdir myfiles
movefile myfile1.m myfiles
movefile myfile2.m myfiles

Try to remove the folder myfiles using rmdir. Because the myfiles folder is not
empty, the operation fails and returns a status of 0 and an error message detailing why
the operation failed.

[status, message, messageid] = rmdir('myfiles')

status = logical
 0

message =
'No directories were removed.'

messageid =
'MATLAB:RMDIR:NoDirectoriesRemoved'

Now, use the 's' flag to remove the folder myfiles. A status of 1 and an empty message
and messageid indicate that the operation is successful.

[status, message, messageid] = rmdir('myfiles', 's')

 rmdir

1-12937

status = logical
 1

message =

 0x0 empty char array

messageid =

 0x0 empty char array

Input Arguments
folderName — Folder name
character vector | string scalar

Folder name to remove, specified as a character vector or string scalar. Specify
folderName as an absolute or relative path.
Data Types: char | string

Output Arguments
status — Folder removal status
0 | 1

Status of folder indicating if the attempt to remove the folder is successful, specified as 0
or 1. If the attempt is successful, status is 1. Otherwise, status is 0.
Data Types: logical

msg — Error message
character vector

Error message, specified as a character vector. If an error or warning occurs, msg
contains the message text of the error or warning. Otherwise, msg is empty, ''.

msgID — Error message identifier
character vector

1 Alphabetical List

1-12938

Error message identifier, specified as a character vector. If an error or warning occurs,
msgID contains the message identifier of the error or warning. Otherwise, msgID is
empty, ''.

Alternative Functionality
In the Current Folder browser, right-click the folder name and select Delete from the
context menu. To open the Current Folder browser, use the Current Folder Browser
command.

See Also
Current Folder Browser | copyfile | delete | dir | mkdir | movefile

Introduced before R2006a

 rmdir

1-12939

rmdir
Remove folder on FTP server

Syntax
rmdir(ftpobj,folder)

Description
rmdir(ftpobj,folder) removes the specified folder from the current folder on the
FTP server associated with ftpobj.

Examples

Remove Folder

Connect to an FTP server and remove a folder on the server. This example shows a
hypothetical FTP session on ftp.example.com, a machine that does not exist. If you
have an account on an FTP server that grants you permission to upload or change files on
that server, then you can use the rmdir function as shown in this example.

First, connect to the server.

ftpobj = ftp('ftp.example.com')

ftpobj =

 FTP Object
 host: ftp.example.com
 user: anonymous
 dir: /
 mode: binary

Display the contents of the current folder on the FTP server.

1 Alphabetical List

1-12940

dir(ftpobj)

myscript.m README.txt pub

Remove the pub folder from the FTP server.

rmdir(ftpobj,'pub')

Display the updated contents on the FTP server.

dir(ftpobj)

myscript.m README.txt

Input Arguments
ftpobj — Connection to FTP server
FTP object

Connection to an FTP server, specified as an FTP object.

folder — Remote folder
character vector | string scalar

Remote folder to delete, specified as a character vector or string scalar.

See Also
cd | delete | dir | ftp | mkdir

Introduced before R2006a

 rmdir

1-12941

rmfield
Remove fields from structure

Syntax
s = rmfield(s,field)

Description
s = rmfield(s,field) removes the specified field or fields from structure array s.
Specify multiple fields using a cell array of character vectors or a string array. The
dimensions of s remain the same.

Examples

Remove Single Field

Define a scalar structure with fields named a, b, and c.

s.a = 1;
s.b = 2;
s.c = 3;

Remove field b.

field = 'b';
s = rmfield(s,field)

s = struct with fields:
 a: 1
 c: 3

1 Alphabetical List

1-12942

Remove Multiple Fields

Define a scalar structure with fields first, second, third, and fourth.

S.first = 1;
S.second = 2;
S.third = 3;
S.fourth = 4;

Remove fields first and fourth.

fields = {'first','fourth'};
S = rmfield(S,fields)

S = struct with fields:
 second: 2
 third: 3

Input Arguments
s — Input structure
structure array

Input structure, specified as a structure array.
Data Types: struct

field — Field name or names
character array | cell array of character vectors | string array

Field name or names, specified as a character array, cell array of character vectors, or
string array.
Example: 'f1'
Example: {'f1';'f2'}
Data Types: char | cell | string

 rmfield

1-12943

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fieldnames | isfield | orderfields

Topics
“Generate Field Names from Variables”

Introduced before R2006a

1 Alphabetical List

1-12944

rmmissing
Remove missing entries

Syntax
R = rmmissing(A)
R = rmmissing(A,dim)
R = rmmissing(___ ,Name,Value)
[R,TF] = rmmissing(___)

Description
R = rmmissing(A) removes missing entries from an array or table. If A is a vector, then
rmmissing removes any entry that contains missing data. If A is a matrix or table, then
rmmissing removes any row that contains missing data. Missing values are defined
according to the data type of A:

• NaN — double, single, duration, and calendarDuration
• NaT — datetime
• <missing> — string
• <undefined> — categorical
• ' ' — char
• {''} — cell of character arrays

R = rmmissing(A,dim) specifies the dimension of A to operate along. By default,
rmmissing operates along the first dimension whose size does not equal 1.

R = rmmissing(___ ,Name,Value) specifies additional parameters for removing
missing entries using one or more name-value pair arguments. For example, you can use
rmmissing('MinNumMissing',n) to remove rows that contain at least n missing
values.

[R,TF] = rmmissing(___) also returns a logical vector corresponding to the rows or
columns of A that were removed.

 rmmissing

1-12945

Examples

Vector with NaN Values

Create a vector with NaN values and remove each NaN.

A = [1 3 NaN 6 NaN];
R = rmmissing(A)

R = 1×3

 1 3 6

Table with Multiple Data Types

Remove incomplete rows from a table with multiple data types.

First, create a table whose variables include categorical, double, and char data
types.

A = table(categorical({'';'F';'M'}),[45;32;NaN],{'';'CA';'MA'},[6051;7234;NaN],...
 'VariableNames',{'Gender' 'Age' 'State' 'ID'})

A=3×4 table
 Gender Age State ID
 ___________ ___ _____ ____

 <undefined> 45 '' 6051
 F 32 'CA' 7234
 M NaN 'MA' NaN

Remove any row of the table that contains missing data.

R = rmmissing(A)

R=1×4 table
 Gender Age State ID
 ______ ___ _____ ____

1 Alphabetical List

1-12946

 F 32 'CA' 7234

Only remove rows with missing values in the Age or ID table variables.

R = rmmissing(A,'DataVariables',{'Age','ID'})

R=2×4 table
 Gender Age State ID
 ___________ ___ _____ ____

 <undefined> 45 '' 6051
 F 32 'CA' 7234

Alternatively, use the isnumeric function to identify the numeric variables to operate on.

R = rmmissing(A,'DataVariables',@isnumeric)

R=2×4 table
 Gender Age State ID
 ___________ ___ _____ ____

 <undefined> 45 '' 6051
 F 32 'CA' 7234

Matrix with Missing Data

Create a matrix with missing data and remove any column (second dimension) containing
two or more missing values. Return the new matrix and the logical row vector that
indicates which columns of A were removed.

A = [NaN NaN 5 3 NaN 5 7 NaN 9 2;
 8 9 NaN 1 4 5 6 5 NaN 5;
 NaN 4 9 8 7 2 4 1 NaN 3]

A = 3×10

 NaN NaN 5 3 NaN 5 7 NaN 9 2
 8 9 NaN 1 4 5 6 5 NaN 5
 NaN 4 9 8 7 2 4 1 NaN 3

 rmmissing

1-12947

[R,TF] = rmmissing(A,2,'MinNumMissing',2)

R = 3×8

 NaN 5 3 NaN 5 7 NaN 2
 9 NaN 1 4 5 6 5 5
 4 9 8 7 2 4 1 3

TF = 1x10 logical array

 1 0 0 0 0 0 0 0 1 0

Input Arguments
A — Input data
vector | matrix | table | timetable

Input data, specified as a vector, matrix, table, or timetable. If A is a timetable, then
rmmissing(A) removes any row of A containing missing data and also removes the
corresponding time vector element. If the time vector contains a NaT or NaN, then
rmmissing(A) removes it from the time vector and also removes the corresponding row
of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | table | timetable |
categorical | datetime | duration | calendarDuration

dim — Dimension to operate along
1 | 2

Dimension to operate along, specified as 1 or 2. By default, rmmissing operates along
the first dimension whose size does not equal 1.

Consider a two-dimensional input array A.

• If dim=1, then rmmissing removes rows of A.

1 Alphabetical List

1-12948

• If dim=2, then rmmissing removes columns of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: rmmissing(A,'DataVariables',{'Temperature','Altitude'})
removes rows of A that contain missing data in the Temperature or Altitude variables

MinNumMissing — Minimum number missing
non-negative scalar

Minimum number of missing entries required to remove a row or column, specified as the
comma-separated pair consisting of 'MinNumMissing' and a non-negative scalar, which
is 1 by default.
Example: 'MinNumMissing',6
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 rmmissing

1-12949

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. When operating on the rows of A, rmmissing removes any row that
has missing data in the column corresponding to the variables specified. When operating
on the columns of A, rmmissing removes the specified variables from the table. The
value for 'DataVariables' can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that returns a logical scalar, such as @isnumeric

Example: 'Age'
Example: {'Height','Weight'}
Example: @iscategorical
Data Types: char | cell | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | function_handle

Output Arguments
R — Data with missing entries removed
vector | matrix | table | timetable

Data with missing entries removed, returned as a vector, matrix, table, or timetable. The
size of R depends on the number of removed rows or columns.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | table | timetable |
categorical | datetime | duration | calendarDuration

TF — Removed entry indicator
vector

1 Alphabetical List

1-12950

Removed entry indicator, returned as a logical vector. The value 1 (true) corresponds to
rows or columns in R that were removed. The value 0 (false) corresponds to unchanged
rows and columns. The orientation and size of TF depends on A and the dimension of
operation.
Data Types: logical

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The 'DataVariables' name-value pair cannot specify a function handle.
• rmmissing(A,2) is not supported for tall tables.

For more information, see “Tall Arrays”.

See Also
fillmissing | ismissing | isnan | isnat | standardizeMissing

Introduced in R2016b

 rmmissing

1-12951

rmoutliers
Detect and remove outliers in data

Syntax
B = rmoutliers(A)
B = rmoutliers(A,method)
B = rmoutliers(A,'percentiles',threshold)
B = rmoutliers(A,movmethod,window)
B = rmoutliers(___ ,dim)
B = rmoutliers(___ ,Name,Value)
[B,TF] = rmoutliers(___)

Description
B = rmoutliers(A) detects and removes outliers from the data in a vector, matrix,
table, or timetable.

• If A is a row or column vector, rmoutliers detects outliers and removes them.
• If A is a matrix, table, or timetable, rmoutliers detects outliers in each column or

variable of A separately and removes the entire row.

By default, an outlier is a value that is more than three scaled median absolute deviations
(MAD).

B = rmoutliers(A,method) specifies a method for determining outliers. For example,
rmoutliers(A,'mean') defines an outlier as an element of A more than three standard
deviations from the mean.

B = rmoutliers(A,'percentiles',threshold) defines outliers as points outside of
the percentiles specified in threshold. The threshold argument is a two-element row
vector containing the lower and upper percentile thresholds, such as [10 90].

B = rmoutliers(A,movmethod,window) specifies a moving method for detecting
local outliers according to a specified window. For example,

1 Alphabetical List

1-12952

rmoutliers(A,'movmean',5) defines outliers as elements more than three local
standard deviations away from the local mean within a five-element window.

B = rmoutliers(___ ,dim) removes outliers along dimension dim of A for any of the
previous syntaxes. For example, rmoutliers(A,2) removes columns instead of rows for
a matrix A.

B = rmoutliers(___ ,Name,Value) specifies additional parameters for detecting and
removing outliers using one or more name-value pair arguments. For example,
rmoutliers(A,'SamplePoints',t) detects outliers in A relative to the corresponding
elements of a time vector t.

[B,TF] = rmoutliers(___) also returns a logical vector corresponding to the rows
or columns of A that were removed.

Examples

Remove Outliers in Vector

Create a vector containing two outliers, and remove them. TF allows you to identify which
elements of the input vector were detected as outliers and removed.

A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
[B,TF] = rmoutliers(A)

B = 1×13

 57 59 60 59 58 57 58 61 62 60 62 58 57

TF = 1x15 logical array

 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

A(TF)

ans = 1×2

 100 300

 rmoutliers

1-12953

Detect Outliers using Mean

Remove outliers of a vector where an outlier is defined as a point more than three
standard deviations from the mean of the data.

A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
[B,TF] = rmoutliers(A,'mean')

B = 1×14

 57 59 60 100 59 58 57 58 61 62 60 62 58 57

TF = 1x15 logical array

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

A(TF)

ans = 300

Detect Outliers with Sliding Window

Create a vector of data containing a local outlier.

x = -2*pi:0.1:2*pi;
A = sin(x);
A(47) = 0;

Create a time vector that corresponds to the data in A.

t = datetime(2017,1,1,0,0,0) + hours(0:length(x)-1);

Define outliers as points more than three local scaled MAD away from the local median
within a sliding window. Find the locations of the outliers in A relative to the points in t
with a window size of 5 hours, and remove them.

[B,TF] = rmoutliers(A,'movmedian',hours(5),'SamplePoints',t);

1 Alphabetical List

1-12954

Plot the input data and the data with the outlier removed.

plot(t,A,'b.-',t(~TF),B,'r-')
legend('Input Data','Output Data')

Remove Columns Containing Outliers

Create a matrix containing two outliers, and remove the columns containing them.

A = magic(5);
A(4,4) = 500;

 rmoutliers

1-12955

A(5,5) = 500;
A

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 500 3
 11 18 25 2 500

B = rmoutliers(A,2)

B = 5×3

 17 24 1
 23 5 7
 4 6 13
 10 12 19
 11 18 25

Input Arguments
A — Input data
vector | matrix | table | timetable

Input data, specified as a vector, matrix, table, or timetable.
Data Types: double | single

method — Method for detecting outliers
'median' (default) | 'mean' | 'quartiles' | 'grubbs' | 'gesd'

Method for detecting outliers, specified as one of the following:

1 Alphabetical List

1-12956

Method Description
'median' Outliers are defined as elements more than

three scaled MAD from the median. The
scaled MAD is defined as
c*median(abs(A-median(A))), where
c=-1/(sqrt(2)*erfcinv(3/2)).

'mean' Outliers are defined as elements more than
three standard deviations from the mean.
This method is faster but less robust than
'median'.

'quartiles' Outliers are defined as elements more than
1.5 interquartile ranges above the upper
quartile (75 percent) or below the lower
quartile (25 percent). This method is useful
when the data in A is not normally
distributed.

'grubbs' Outliers are detected using Grubbs’s test
for outliers, which removes one outlier per
iteration based on hypothesis testing. This
method assumes that the data in A is
normally distributed.

'gesd' Outliers are detected using the generalized
extreme Studentized deviate test for
outliers. This iterative method is similar to
'grubbs', but can perform better when
there are multiple outliers masking each
other.

threshold — Percentile thresholds
two-element row vector

Percentile thresholds, specified as a two-element row vector whose elements are in the
interval [0,100]. The first element indicates the lower percentile threshold and the second
element indicates the upper percentile threshold. For example, a threshold of [10 90]
defines outliers as points below the 10th percentile and above the 90th percentile. The
first element of threshold must be less than the second element.

 rmoutliers

1-12957

movmethod — Moving method
'movmedian' | 'movmean'

Moving method for determining outliers, specified as one of the following:

Method Description
'movmedian' Outliers are defined as elements more than

three local scaled MAD from the local
median over a window length specified by
window.

'movmean' Outliers are defined as elements more than
three local standard deviations from the
local mean over a window length specified
by window.

window — Window length
scalar | two-element vector

Window length, specified as a scalar or two-element vector.

When window is a positive integer scalar, the window is centered about the current
element and contains window-1 neighboring elements. If window is even, then the
window is centered about the current and previous elements.

When window is a two-element vector of positive integers [b f], the window contains
the current element, b elements backward, and f elements forward.

When A is a timetable or 'SamplePoints' is specified as a datetime or duration
vector, window must be of type duration, and the windows are computed relative to the
sample points.

dim — Operating dimension
1 (default) | 2

Operating dimension, specified as 1 or 2. By default, rmoutliers operates along the first
dimension whose size does not equal 1.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-12958

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: rmoutliers(A,'ThresholdFactor',4)

ThresholdFactor — Detection threshold factor
nonnegative scalar

Detection threshold factor, specified as the comma-separated pair consisting of
'ThresholdFactor' and a nonnegative scalar.

For methods 'median' and 'movmedian', the detection threshold factor replaces the
number of scaled MAD, which is 3 by default.

For methods 'mean' and 'movmean', the detection threshold factor replaces the number
of standard deviations from the mean, which is 3 by default.

For methods 'grubbs' and 'gesd', the detection threshold factor is a scalar ranging
from 0 to 1. Values close to 0 result in a smaller number of outliers and values close to 1
result in a larger number of outliers. The default detection threshold factor is 0.5.

For the 'quartile' method, the detection threshold factor replaces the number of
interquartile ranges, which is 1.5 by default.

This name-value pair is not supported when the specified method is 'percentiles'.

SamplePoints — Sample points
vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the location of the data in A, and must be
sorted and contain unique elements. Sample points do not need to be uniformly sampled.
If A is a timetable, then the default sample points vector is the vector of row times.
Otherwise, the default vector is [1 2 3 ...].

Moving windows are defined relative to the sample points. For example, if t is a vector of
times corresponding to the input data, then
rmoutliers(rand(1,10),'movmean',3,'SamplePoints',t) has a window that
represents the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

 rmoutliers

1-12959

Data Types: single | double | datetime | duration

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. The 'DataVariables' value indicates which columns of the input
table to detect outliers in, and can be one of the following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes the table as input and returns a logical scalar

Example: 'Age'
Example: {'Height','Weight'}
Example: @isnumeric
Data Types: char | cell | double | single | logical | function_handle

MinNumOutliers — Minimum outlier count
1 (default) | positive integer scalar

Minimum outlier count, specified as the comma-separated pair consisting of
'MinNumOutliers' and a positive scalar. The 'MinNumOutliers' value specifies the
minimum number of outliers required to remove a row or column. For example,
rmoutliers(A,'MinNumOutliers',3) removes a row of a matrix A when there are 3
or more outliers detected in that column.

MaxNumOutliers — Maximum outlier count
positive scalar

Maximum outlier count, for the 'gesd' method only, specified as the comma-separated
pair consisting of 'MaxNumOutliers' and a positive scalar. The 'MaxNumOutliers'
value specifies the maximum number of outliers returned by the 'gesd' method. For
example, rmoutliers(A,'MaxNumOutliers',5) returns no more than five outliers.

1 Alphabetical List

1-12960

The default value for 'MaxNumOutliers' is the integer nearest to 10 percent of the
number of elements in A. Setting a larger value for the maximum number of outliers can
ensure that all outliers are detected, but at the cost of reduced computational efficiency.

Output Arguments
B — Data with outliers removed
vector | matrix | table | timetable

Data with outliers removed, returned as a vector, matrix, table, or timetable. The size of B
depends on the number of removed rows or columns.

TF — Removed data indicator
logical vector

Removed data indicator, returned as a logical vector. The value 1 (true) corresponds to
rows or columns in A that were removed. The value 0 (false) corresponds to unchanged
rows or columns. The orientation and size of TF depends on A and the dimension of
operation.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The 'percentiles', 'grubbs', and 'gesd' methods are not supported.
• The 'movmedian' and 'movmean' methods do not support tall timetables.
• The 'SamplePoints' and 'MaxNumOutliers' name-value pairs are not supported.
• The value of 'DataVariables' cannot be a function handle.
• Computation of rmoutliers(A), rmoutliers(A,'median',...), or

rmoutliers(A,'quartiles',...) along the first dimension is only supported for
tall column vectors A.

 rmoutliers

1-12961

• rmoutliers(A,2) is not supported for tall tables.

For more information, see “Tall Arrays”.

See Also
fillmissing | filloutliers | ismissing | isoutlier | rmmissing

Topics
“Data Smoothing and Outlier Detection”

Introduced in R2018b

1 Alphabetical List

1-12962

rmpath
Remove folders from search path

Syntax
rmpath(folderName)

Description
rmpath(folderName) removes the specified folder from the search path.

Examples

Remove Folder from Search Path

Remove /usr/local/matlab/mytools from the search path.

rmpath('/usr/local/matlab/mytools')

Input Arguments
folderName — Name of folder
character vector | string scalar

Name of folder to remove from the search path, specified as a character vector or string
scalar. Use the full path name for folderName.
Example: 'c:\matlab\work'
Example: '/home/user/matlab'

MATLAB resolves all path names containing '.', '..', and symbolic links to their target
location before removing them from the path. For example, if you specify c:\matlab
\..\work, MATLAB removes the folder c:\work from the path.

 rmpath

1-12963

Data Types: char | string

See Also
addpath | path | savepath

Topics
“What Is the MATLAB Search Path?”

Introduced before R2006a

1 Alphabetical List

1-12964

rmpref
Remove custom preference

Syntax
rmpref(group,pref)
rmpref(group)

Description
rmpref(group,pref) removes the specified preference in the specified group. If pref
specifies multiple preferences, rmpref removes each one. If a specified preference does
not exist, MATLAB returns an error.

rmpref(group) removes the specified group and all the preferences in that group. If the
group does not exist, MATLAB returns an error.

Examples

Remove a Preference

Add a preference called version to the mytoolbox group of preferences and then
remove it.

addpref('mytoolbox','version','1.0')
rmpref('mytoolbox','version')

Input Arguments
group — Custom preference group name
character vector | string scalar

Custom preference group name, specified as a character vector or a string scalar.

 rmpref

1-12965

Example: 'mytoolbox'
Data Types: char | string

pref — Custom preference name
character vector | cell array of character vectors | string array

Custom preference name, specified as a character vector, a cell array of character
vectors, or a string array.
Example: 'version'
Example: {'version','modifieddate','docpath'}
Data Types: char | string

See Also
addpref | getpref | ispref | setpref | uigetpref | uisetpref

Topics
“Preferences”

Introduced before R2006a

1 Alphabetical List

1-12966

rmprop
Remove custom properties from table or timetable

Syntax
T = rmprop(T,propertyNames)

Description
T = rmprop(T,propertyNames) removes properties that contain custom metadata
from the table or timetable T. The input argument propertyNames specifies the names
of the properties.

Examples

Remove Custom Properties

Add properties that contain custom metadata to a table. Then remove some of the
properties.

First, read measurements of humidity and air quality into a table. Display the first three
rows.

T = readtable('indoors.csv');
head(T,3)

ans=3×3 table
 Time Humidity AirQuality
 ___________________ ________ __________

 2015-11-15 00:00:24 36 80
 2015-11-15 01:13:35 36 80
 2015-11-15 02:26:47 37 79

 rmprop

1-12967

Add properties for custom metadata using the addprop function. Then assign metadata
to those properties.

T = addprop(T,{'Instrument','Precision','SourceFile'},{'variable','variable','table'});
T.Properties.CustomProperties.Instrument = ["clock" "hygrometer" "air quality meter"];
T.Properties.CustomProperties.Precision = [NaN 0.5 0.1];
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Humidity' 'AirQuality'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 SourceFile: []
 Instrument: ["clock" "hygrometer" "air quality meter"]
 Precision: [NaN 0.5000 0.1000]

To remove properties, use the rmprop function. The only properties that you can remove
are the custom properties that you previously added using addprop. You cannot remove
the other properties in T.Properties, although you can delete the values they contain.

Remove the Instrument and SourceFile properties from
T.Properties.CustomProperties.

T = rmprop(T,{'Instrument','SourceFile'});
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Humidity' 'AirQuality'}
 VariableDescriptions: {}
 VariableUnits: {}

1 Alphabetical List

1-12968

 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 Precision: [NaN 0.5000 0.1000]

Input Arguments
T — Input table
table | timetable

Input table, specified as a table or timetable.

propertyNames — Names of custom properties
character vector | cell array of character vectors | string array

Names of the custom properties, specified as a character vector, cell array of character
vectors, or string array.

See Also
addprop | summary | table | timetable

Topics
“Add Custom Properties to Tables and Timetables”
“Access Data in a Table”
“Modify Units, Descriptions, and Table Variable Names”

Introduced in R2018b

 rmprop

1-12969

rng
Control random number generation

Syntax
rng(seed)
rng('shuffle')
rng(seed, generator)
rng('shuffle', generator)
rng('default')
scurr = rng
rng(s)
sprev = rng(...)

Description

Note To use the rng function instead of rand or randn with the 'seed', 'state', or
'twister' inputs, see the documentation on “Replace Discouraged Syntaxes of rand and
randn”.

rng(seed) seeds the random number generator using the nonnegative integer seed so
that rand, randi, and randn produce a predictable sequence of numbers.

rng('shuffle') seeds the random number generator based on the current time. Thus,
rand, randi, and randn produce a different sequence of numbers after each time you
call rng.

rng(seed, generator) and rng('shuffle', generator) additionally specify the
type of the random number generator used by rand, randi, and randn. The generator
input is one of:

• 'twister': Mersenne Twister
• 'simdTwister': SIMD-oriented Fast Mersenne Twister

1 Alphabetical List

1-12970

• 'combRecursive': Combined Multiple Recursive
• 'philox': Philox 4x32 generator with 10 rounds
• 'threefry': Threefry 4x64 generator with 20 rounds
• 'multFibonacci': Multiplicative Lagged Fibonacci
• 'v5uniform': Legacy MATLAB 5.0 uniform generator
• 'v5normal': Legacy MATLAB 5.0 normal generator
• 'v4': Legacy MATLAB 4.0 generator

rng('default') puts the settings of the random number generator used by rand,
randi, and randn to their default values. This way, the same random numbers are
produced as if you restarted MATLAB. The default settings are the Mersenne Twister with
seed 0.

scurr = rng returns the current settings of the random number generator used by
rand, randi, and randn. The settings are returned in a structure scurr with fields
'Type', 'Seed', and 'State'.

rng(s) restores the settings of the random number generator used by rand, randi, and
randn back to the values captured previously with a command such as s = rng.

sprev = rng(...) returns the previous settings of the random number generator used
by rand, randi, and randn before changing the settings.

Examples

Example 1 — Retrieve and Restore Generator Settings
Save the current generator settings in s:

s = rng;

Call rand to generate a vector of random values:

x = rand(1,5)

x =

 0.8147 0.9058 0.1270 0.9134 0.6324

 rng

1-12971

Restore the original generator settings by calling rng. Generate a new set of random
values and verify that x and y are equal:

rng(s);
y = rand(1,5)

y =

 0.8147 0.9058 0.1270 0.9134 0.6324

Example 2 — Restore Settings for Legacy Generator
Use the legacy generator.

sprev = rng(0,'v5uniform')

sprev =
 Type: 'twister'
 Seed: 0
 State: [625x1 uint32]

x = rand

x =

 0.9501

Restore the previous settings by calling rng:

rng(sprev)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the 'twister', 'v5normal', and 'v4' generators are supported.

1 Alphabetical List

1-12972

• The generated code for rng('shuffle') might produce different seeds than
MATLAB produces.

• For a MEX target:

• If extrinsic calls are disabled or rng is called inside a parfor loop, the output of
rng in the MEX function is not compatible with the rng function in MATLAB. You
cannot pass the output of s = rng from the MEX function to rng in MATLAB.

• If extrinsic calls are enabled and rng is not called from inside a parfor loop, only
rng can access the data in the structure that rng returns.

See Also
RandStream | now | rand | randi | randn

Topics
“Generate Random Numbers That Are Repeatable”
“Generate Random Numbers That Are Different”
“Creating and Controlling a Random Number Stream”
“Why Do Random Numbers Repeat After Startup?”

 rng

1-12973

Root Properties
Graphics environment and state information

Description
The Root object is the root of the graphics object tree. Root properties contain
information about the graphics environment and the current state of the graphics system.
Starting in R2014b, you can use dot notation to refer to a particular object and property:

r = groot;
fig = r.Children;

If you are using an earlier release, use the get function to query property values.

Properties
Display Information

MonitorPositions — Width and height of displays
n-by-4 matrix

This property is read-only.

Width and height of displays, returned as an n-by-4 matrix, where n is the number of
displays. Each row corresponds to one display and is a four-element vector of the form [x
y width height]. For example, if there are two displays, then the matrix has this form:

[x1 y1 width1 height1
 x2 y2 width2 height2]

The first two elements in each row indicate the display location with respect to the origin
point. The last two elements in each row indicate the display size. The origin point is the
lower-left corner of the primary display. If the units are pixels, then the origin point is
(1,1). For all other units, the origin point is (0,0). The Units property determines the
units of this measurement.

1 Alphabetical List

1-12974

Note MATLAB sets the display information values for this property at startup. The values
are static. If your system display settings change, the values do not update. To refresh the
values, restart MATLAB.

PointerLocation — Current location of pointer
two-element vector

Current location of pointer, specified as a two-element vector of the form [x y]. The x
and y values are the coordinates of the pointer position measured from the origin point.
The origin point is the lower-left corner of the primary display. If the units are pixels, then
the origin point is (1,1). For all other units, the origin point is (0,0). The Units
property determines the units of this measurement.

This property contains the current pointer location, even if the pointer is outside a
MATLAB window. Move the pointer by changing the values of this property. On Macintosh
systems, you cannot change the pointer location by setting this property.

Querying the PointerLocation property in a callback routine might return a value that
is different from the location of the pointer when the callback was triggered. This
difference results from delays in callback execution caused by competition for system
resources.
Example: [500 400]

ScreenDepth — Number of bits that define each pixel color
scalar

Number of bits that define each pixel color, specified as a scalar. The default value
depends on the computer. The maximum number of simultaneously displayed colors on
the current graphics device equals 2 raised to the value of this property.

ScreenPixelsPerInch — Display resolution
scalar

This property is read-only.

Display resolution, returned as a scalar in pixels per inch. The value depends on the
system.

• On Windows systems, the value is 96 DPI.
• On Macintosh systems, the value is 72 DPI.

 Root Properties

1-12975

• On Linux system, the value is determined by your system resolution.

Note The ScreenPixelsPerInch property became a read-only property in R2015b. To
change the size of text and other elements on the screen, adjust the display scaling for
your operating system.

ScreenSize — Size of primary display
four-element vector

This property is read-only.

Size of primary display, returned as a four-element vector of the form [left bottom
width height].

• The left and bottom values are both 1 when the units are pixels, and 0 for all other
units.

• The width and height values are the width and height of the display, respectively.

Note Starting in R2015b on Windows systems, if the Units property is set to 'pixels',
then the width and height values might differ from the screen size reported by the
operating system. The values MATLAB reports are based on a pixel size of 1/96th of an
inch. On Macintosh and Linux systems, the values match the size reported by the
operating system.

Some important information to consider when using this property:

• The values might not represent the usable display size due to the presence of UIs,
such as the Microsoft Windows task bar.

• MATLAB sets the display size values for this property at startup. The values are static.
If your system display settings change, the display size values do not update. To
refresh the values, restart MATLAB.

FixedWidthFontName — Font name for fixed-width font
character vector | string

Font name for fixed-width font, specified as a character vector or string giving the name
of a system supported font. This property determines the font for axes, text, and
uicontrols that have a FontName property set to 'FixedWidth'. The default value

1 Alphabetical List

1-12976

depends on the system. 'Courier New' is the default in systems that use Latin-based
characters.

Specifying the FixedWidthFontName property eliminates the need to hardcode font
names in MATLAB applications. MATLAB attempts to set FixedWidthFontName property
to the correct value for the system.

If you are a MATLAB application developer and want to use a fixed-width font, set the
FontName property for axes, text, and uicontrol objects to 'FixedWidth' instead of
setting this root property. Users of the application can set the root property if they do not
want to use the preselected value.
Example: 'Courier New'

Units — Units for MonitorPositions, ScreenSize, and PointerLocation
'pixels' (default) | 'inches' | 'centimeters' | 'points' | 'characters' |
'normalized'

Units for the MonitorPositions, ScreenSize, and PointerLocation properties,
specified as one of the values shown in this table.

Units Description
'pixels' (default) Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72 inch.

 Root Properties

1-12977

Units Description
'normalized' Normalized with respect to the display. The

lower left corner of the display maps to
(0,0) and the upper right corner maps to
(1,1).

'characters' Based on the default system font character
size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.

All units are measured from the lower-left corner of the primary display. If the units are
pixels, then the lower-left corner maps to (1,1). For all other units, the lower-left corner
maps to (0,0).

If you change the units, it is good practice to return it to its default value after completing
your operation to prevent affecting other functions that assume the Units property is set
to the default value.

Identifiers

CallbackObject — Object whose callback is executing
[] (default) | graphics object

This property is read-only.

Object whose callback is executing, returned as a graphics object. For more information,
see the gcbo command.

CurrentFigure — Current figure
empty GraphicsPlaceholder (default) | figure object

Current figure, specified as a figure object. The current figure is typically the one most
recently created, clicked on, or made current by calling the figure function. Setting this
property makes a figure the current figure without sorting it to the front of other figures
on the display. However, using the figure function to make a figure the current figure
sorts that figure to the front of the display. To become the current figure, the
HandleVisibility property of the figure must be set to 'on'.

1 Alphabetical List

1-12978

This property returns an empty GraphicsPlaceholder array if there are no figures.
However, the gcf command always returns a figure object. If there are no figure objects,
then gcf creates one.

Type — Type of graphics object
'root'

This property is read-only.

Type of graphics object, returned as 'root'. The Root object handle is always visible
using the groot function.

Tag — Tag to associate with root
'' (default) | character vector | string

Tag to associate with root, specified as a character vector or string. There is only one
Root object, which you can always access using the groot function.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

Parent/Child

Parent — Parent
empty GraphicsPlaceholder

The Root object has no parent. This property is always an empty
GraphicsPlaceholder.

Children — Children
empty GraphicsPlaceholder | array of figure objects

Children, specified as an array of figure objects that have visible handles. The
HandleVisibility property of the figure determines if the handle is visible or hidden.
This property does not contain figures with hidden handles.

 Root Properties

1-12979

Change the order of the children to change the sorting order of the figures on the display.

HandleVisibility — Visibility of Root object handle
'on' (default) | 'callback' | 'off'

This property has no effect. The Root object handle is always visible using the groot
function.

ShowHiddenHandles — Hidden handle display
'off' (default) | 'on'

Hidden handle display, specified as one of these values:

• 'off' — Do not display hidden object handles. The HandleVisibility property of
the object determines if the handle is visible or hidden.

• 'on' — Expose all object handles regardless of the HandleVisibility property.

See Also
groot

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-12980

matlab.project.rootProject
Package: matlab.project

Get root project

Syntax
proj = matlab.project.rootProject

Description
proj = matlab.project.rootProject gets the root project of the currently loaded
project and returns a project object that you can use to manipulate the root project
programmatically. If no project is open, MATLAB returns an empty array. Use
matlab.project.rootProject when working with referenced projects.

To get the project which currently has context, for example, if the project is running a
shortcut, startup file, or shutdown file for a referenced project, use currentProject
instead.

For more information about referenced projects, see “Componentize Large Projects”

Examples

Get Root Project

Open the Times Table App example project and get the root project object to manipulate
the project at the command line.

matlab.project.example.timesTable
proj = matlab.project.rootProject

proj =

 Project with properties:

 matlab.project.rootProject

1-12981

 Name: "Times Table App"
 SourceControlIntegration: "Git"
 RepositoryLocation: "C:\myProjects\examples\repositories\TimesTableApp"
 SourceControlMessages: [1×3 string]
 ReadOnly: 0
 TopLevel: 1
 Dependencies: [1×1 digraph]
 Categories: [1×1 matlab.project.Category]
 Files: [1×14 matlab.project.ProjectFile]
 Shortcuts: [1×4 matlab.project.Shortcut]
 ProjectPath: [1×3 matlab.project.PathFolder]
 ProjectReferences: [1×0 matlab.project.ProjectReference]
 StartupFiles: [1×0 string]
 ShutdownFiles: [1×0 string]
 Description: "This example project contains the source code and tests for a...
 RootFolder: "C:\Users\myProjects\examples\TimesTableApp"
 ProjectStartupFolder: "C:\myProjects\examples\TimesTableApp"

Examine the project files.

files = proj.Files

files =

 1×14 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Output Arguments
proj — Project
matlab.project.Project object

Project, returned as a matlab.project.Project object. Use the
matlab.project.Project object to programmatically manipulate the currently open
project.

See Also
currentProject | openProject

Topics
“Create and Edit Projects Programmatically”

1 Alphabetical List

1-12982

“Componentize Large Projects”

Introduced in R2019a

 matlab.project.rootProject

1-12983

roots
Polynomial roots

Syntax
r = roots(p)

Description
r = roots(p) returns the roots of the polynomial represented by p as a column vector.
Input p is a vector containing n+1 polynomial coefficients, starting with the coefficient of
xn. A coefficient of 0 indicates an intermediate power that is not present in the equation.
For example, p = [3 2 -2] represents the polynomial 3x2 + 2x− 2.

The roots function solves polynomial equations of the form p1xn + ... + pnx + pn + 1 = 0.
Polynomial equations contain a single variable with nonnegative exponents.

Examples

Roots of Quadratic Polynomial

Solve the equation 3x2− 2x− 4 = 0.

Create a vector to represent the polynomial, then find the roots.

p = [3 -2 -4];
r = roots(p)

r = 2×1

 1.5352
 -0.8685

1 Alphabetical List

1-12984

Roots of Quartic Polynomial

Solve the equation x4− 1 = 0.

Create a vector to represent the polynomial, then find the roots.

p = [1 0 0 0 -1];
r = roots(p)

r = 4×1 complex

 -1.0000 + 0.0000i
 0.0000 + 1.0000i
 0.0000 - 1.0000i
 1.0000 + 0.0000i

Input Arguments
p — Polynomial coefficients
vector

Polynomial coefficients, specified as a vector. For example, the vector [1 0 1]
represents the polynomial x2 + 1, and the vector [3.13 -2.21 5.99] represents the
polynomial 3.13x2− 2.21x + 5.99.

For more information, see “Create and Evaluate Polynomials”.
Data Types: single | double
Complex Number Support: Yes

Tips
• Use the poly function to obtain a polynomial from its roots: p = poly(r). The poly

function is the inverse of the roots function.

 roots

1-12985

• Use the fzero function to find the roots of nonlinear equations. While the roots
function works only with polynomials, the fzero function is more broadly applicable
to different types of equations.

Algorithms
The roots function considers p to be a vector with n+1 elements representing the nth
degree characteristic polynomial of an n-by-n matrix, A. The roots of the polynomial are
calculated by computing the eigenvalues of the companion matrix, A.

A = diag(ones(n-1,1),-1);
A(1,:) = -p(2:n+1)./p(1);
r = eig(A)

The results produced are the exact eigenvalues of a matrix within roundoff error of the
companion matrix, A. However, this does not mean that they are the exact roots of a
polynomial whose coefficients are within roundoff error of those in p.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Output is variable-size and always complex.
• Roots are not always in the same order as in MATLAB.
• Roots of poorly conditioned polynomials do not always match MATLAB.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-12986

Usage notes and limitations:

• The output r is always complex even if all the imaginary parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
fzero | poly | polyval | residue

Topics
“Roots of Polynomials”
“Create and Evaluate Polynomials”

Introduced before R2006a

 roots

1-12987

rose
Angle histogram plot

Note rose is not recommended. Use polarhistogram instead.

Syntax
rose(theta)
rose(theta,x)
rose(theta,nbins)
rose(ax,...)
h = rose(...)
[tout,rout] = rose(...)

Description
rose(theta) creates an angle histogram, which is a polar plot showing the distribution
of values grouped according to their numeric range, showing the distribution of theta in
20 angle bins or less. The vector theta, expressed in radians, determines the angle of
each bin from the origin. The length of each bin reflects the number of elements in theta
that fall within a group, which ranges from 0 to the greatest number of elements
deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the locations of bins.
length(x) is the number of bins and the values of x specify the center angle of each bin.
For example, if x is a five-element vector, rose distributes the elements of theta in five
bins centered at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0,2*pi]. The
default is 20.

rose(ax,...) plots into the axes ax instead of the current axes (gca).

h = rose(...) returns the handle of the line object used to create the graph.

1 Alphabetical List

1-12988

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout,rout) generates the histogram for the data. This syntax does not generate
a plot.

Examples

Create Angle Histogram

Create an angle histogram of values between 0 and 2π. Distribute the data among 10
bins.

theta = [0.4 1.4 3.1 2.3 0.4 2.5 3.9 2.8 2.3 1.6 4.6 4.5 6.1 3.9 5.1];
rose(theta,10)

 rose

1-12989

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-12990

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
compass | histogram | polarhistogram | polarplot

Introduced before R2006a

 rose

1-12991

rosser
Classic symmetric eigenvalue test problem

Syntax
A = rosser
A = rosser(classname)

Description
A = rosser returns the Rosser matrix on page 1-12992 in double precision.

A = rosser(classname) returns the Rosser matrix with a class specified by
classname. Specify classname as 'single' to return the Rosser matrix in single
precision.

Examples

Generate the Rosser matrix

rosser returns the Rosser matrix.

rosser

ans = 8×8

 611 196 -192 407 -8 -52 -49 29
 196 899 113 -192 -71 -43 -8 -44
 -192 113 899 196 61 49 8 52
 407 -192 196 611 8 44 59 -23
 -8 -71 61 8 411 -599 208 208
 -52 -43 49 44 -599 411 208 208
 -49 -8 8 59 208 208 99 -911
 29 -44 52 -23 208 208 -911 99

1 Alphabetical List

1-12992

Generate matrix of class ‘single’

Specify classname as single to return a Rosser matrix of that class.

Y = rosser('single')

Y = 8x8 single matrix

 611 196 -192 407 -8 -52 -49 29
 196 899 113 -192 -71 -43 -8 -44
 -192 113 899 196 61 49 8 52
 407 -192 196 611 8 44 59 -23
 -8 -71 61 8 411 -599 208 208
 -52 -43 49 44 -599 411 208 208
 -49 -8 8 59 208 208 99 -911
 29 -44 52 -23 208 208 -911 99

whos('Y')

 Name Size Bytes Class Attributes

 Y 8x8 256 single

Input Arguments
classname — Input class
'double' (default) | 'single'

Input class, specified as 'double' (default) or 'single'. rosser(C) produces a matrix
of the specified class.

 rosser

1-12993

Definitions

Rosser Matrix
The Rosser matrix is a well known matrix used, for example, to evaluate eigenvalue
algorithms. The matrix is 8-by-8 with integer elements. It has:

• A double eigenvalue
• Three nearly equal eigenvalues
• Dominant eigenvalues of the opposite sign
• A zero eigenvalue
• A small, nonzero eigenvalue

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eig

Introduced before R2006a

1 Alphabetical List

1-12994

rot90
Rotate array 90 degrees

Syntax
B = rot90(A)
B = rot90(A,k)

Description
B = rot90(A) rotates array A counterclockwise by 90 degrees. For multidimensional
arrays, rot90 rotates in the plane formed by the first and second dimensions.

B = rot90(A,k) rotates array A counterclockwise by k*90 degrees, where k is an
integer.

Examples

Rotate Column Vector

Create a column vector of sequential elements.

A = (1:5)'

A = 5×1

 1
 2
 3
 4
 5

Rotate A counterclockwise by 90 degrees using rot90.

 rot90

1-12995

B = rot90(A)

B = 1×5

 1 2 3 4 5

The result, B, has the same elements as A but a different orientation.

Rotate Multidimensional Array

Create a 3-by-3-by-2 cell array of characters.

A = cat(3,{'a' 'b' 'c';'d' 'e' 'f';'g' 'h' 'i'},{'j' 'k' 'l';'m' 'n' 'o';'p' 'q' 'r'})

A = 3x3x2 cell array
A(:,:,1) =

 {'a'} {'b'} {'c'}
 {'d'} {'e'} {'f'}
 {'g'} {'h'} {'i'}

A(:,:,2) =

 {'j'} {'k'} {'l'}
 {'m'} {'n'} {'o'}
 {'p'} {'q'} {'r'}

Rotate the cell array by 270 degrees.

B = rot90(A,3)

B = 3x3x2 cell array
B(:,:,1) =

 {'g'} {'d'} {'a'}
 {'h'} {'e'} {'b'}
 {'i'} {'f'} {'c'}

B(:,:,2) =

1 Alphabetical List

1-12996

 {'p'} {'m'} {'j'}
 {'q'} {'n'} {'k'}
 {'r'} {'o'} {'l'}

The function rotates each page of the array independently. Since a full 360 degree
rotation (k = 4) leaves the array unchanged, rot90(A,3) is equivalent to
rot90(A,-1).

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | categorical |
datetime | duration | calendarDuration
Complex Number Support: Yes

k — Rotation constant
integer

Rotation constant, specified as an integer. Specify k to rotate by k*90 degrees rather
than nesting calls to rot90.
Example: rot90(A,-2) rotates A by -180 degrees and is equivalent to rot90(A,2),
which rotates by 180 degrees.

Tips
• Use the flip function to flip arrays in any dimension.

 rot90

1-12997

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays for the first argument.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
flip | fliplr | flipud

Introduced before R2006a

1 Alphabetical List

1-12998

rotate
Rotate object about specified origin and direction

Syntax
rotate(h,direction,alpha)
rotate(...,origin)

Description
The rotate function rotates a graphics object in three-dimensional space.

rotate(h,direction,alpha) rotates the graphics object h by alpha degrees. Specify
h as a surface, patch, line, text, or image object. direction is a two- or three-element
vector that describes the axis of rotation in conjunction with the origin of the axis of
rotation. The default origin of the axis of rotation is the center of the plot box. This point
is not necessarily the origin of the axes.

Positive alpha is defined as the righthand-rule angle about the direction vector as it
extends from the origin of rotation.

If h is an array of handles, all objects must be children of the same axes.

rotate(...,origin) specifies the origin of the axis of rotation as a three-element
vector [x0,y0,z0].

Examples

Rotate Plot Around x-Axis

Create a surface plot of the peaks function and return the surface handle.

hSurface = surf(peaks(20));

 rotate

1-12999

Rotate the surface plot 25 degrees around its x-axis.

direction = [1 0 0];
rotate(hSurface,direction,25)

1 Alphabetical List

1-13000

Rotate Plot Around y-Axis

Create a surface plot of the peaks function and return the surface handle.

hSurface = surf(peaks(20));

 rotate

1-13001

Rotate the surface plot 25 degrees around its y-axis.

direction = [0 1 0];
rotate(hSurface,direction,25)

1 Alphabetical List

1-13002

Rotate Plot Around x-Axis and y-Axis

Create a surface plot of the peaks function and return the surface handle.

hSurface = surf(peaks(20));

 rotate

1-13003

Rotate the surface plot 25 degrees around its x-axis and y-axis.

direction = [1 1 0];
rotate(hSurface,direction,25)

1 Alphabetical List

1-13004

Tips
The rotation transformation modifies the object's data. This technique is different from
that used by view and rotate3d, which modify only the viewpoint.

The axis of rotation is defined by an origin of rotation and a point P. Specify P as the
spherical coordinates [theta phi] or as the Cartesian coordinates [xp,yp,zp].

 rotate

1-13005

In the two-element form for direction, theta is the angle in the x-y plane
counterclockwise from the positive x-axis. phi is the elevation of the direction vector
from the x-y plane.

The three-element form for direction specifies the axis direction using Cartesian
coordinates. The direction vector is the vector from the origin of rotation to P.

1 Alphabetical List

1-13006

Tips
rotate changes the values of the Xdata, Ydata, and Zdata properties to rotate
graphics objects.

See Also
rotate3d | sph2cart | view

Introduced before R2006a

 rotate

1-13007

rotate3d
Rotate 3-D view using mouse

Syntax
rotate3d on
rotate3d off
rotate3d
rotate3d(figure_handle,...)
rotate3d(axes_handle,...)
h = rotate3d(figure_handle)

Description
rotate3d on turns on rotate mode and enables rotation on all axes within the current
figure.

rotate3d off turns off rotate mode and disables interactive axes rotation in the current
figure. Starting in R2018b, some rotate interactions are enabled by default, regardless of
the rotate mode. If you want to disable these default interactions, then use the
disableDefaultInteractivity function.

rotate3d toggles interactive axes rotation in the current figure.

rotate3d(figure_handle,...) enables rotation within the specified figure instead of
the current figure.

rotate3d(axes_handle,...) turns on rotate mode only in the specified axes.

h = rotate3d(figure_handle) returns a rotate3d mode object for figure
figure_handle for you to customize the mode's behavior.

Using Rotate Mode Objects
You access the following properties of rotate mode objects.

1 Alphabetical List

1-13008

• FigureHandle <handle> — The associated figure handle, a read-only property that
cannot be set

• Enable 'on'|'off' — Specifies whether this figure mode is currently enabled on
the figure

• RotateStyle 'orbit'|'box' — Sets the method of rotation

'orbit' rotates the entire axes; 'box' rotates a plot-box outline of the axes.

Rotate3D Mode Callbacks
You can program the following callbacks for rotate3d mode operations.

• ButtonDownFilter <function_handle> — Function to intercept ButtonDown
events

The application can inhibit the rotate operation under circumstances the programmer
defines, depending on what the callback returns. The input function handle should
reference a function with two implicit arguments (similar to handle callbacks):

function [res] = myfunction(obj,event_obj)
% obj handle to the object that has been clicked on
% event_obj handle to event data object (empty in this release)
% res [output] logical flag to determine whether the rotate
% operation should take place or the 'ButtonDownFcn'
% property of the object should take precedence

• ActionPreCallback <function_handle> — Function to execute before rotating

Set this callback to listen to when a rotate operation will start. The input function
handle should reference a function with two implicit arguments (similar to graphics
object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data has the following field:

Axes The handle of the axes that is being panned

• ActionPostCallback <function_handle> — Function to execute after rotating

 rotate3d

1-13009

Set this callback to listen to when a rotate operation has finished. The input function
handle should reference a function with two implicit arguments (similar to graphics
object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data (same as the
% event data of the 'ActionPreCallback' callback)

Rotate3D Mode Utility Functions
The following functions in pan mode query and set certain of its properties.

• flags = isAllowAxesRotate(h,axes) — Function querying permission to rotate
axes

Calling the function isAllowAxesRotate on the rotate3d object, h, with a vector of
axes handles, axes, as input will return a logical array of the same dimension as the
axes handle vector which indicate whether a rotate operation is permitted on the axes
objects.

• setAllowAxesRotate(h,axes,flag) — Function to set permission to pan axes

Calling the function setAllowAxesRotate on the rotate3d object, h, with a vector of
axes handles, axes, and a logical scalar, flag, will either allow or disallow a rotate
operation on the axes objects.

Examples

Example 1
Rotate the plot using the mouse:

surf(peaks);
rotate3d on;

Example 2
Rotate the plot using the "Plot Box" rotate style:

1 Alphabetical List

1-13010

surf(peaks);
h = rotate3d;
h.RotateStyle = 'box';
h.Enable = 'on';

Example 3
Create two axes as subplots and then prevent one from rotating:

ax1 = subplot(1,2,1);
surf(peaks);
h = rotate3d;
h.Enable = 'on';
ax2 = subplot(1,2,2);
surf(membrane);
setAllowAxesRotate(h,ax2,false); % disable rotating for second plot

Example 4
Create a buttonDown callback for rotate mode objects to trigger. Copy the following code
to a new file, execute it, and observe rotation behavior:

function demo_mbd
% Allow a line to have its own 'ButtonDownFcn' callback
hLine = plot(rand(1,10),'ButtonDownFcn','disp(''This executes'')');
hLine.Tag = 'DoNotIgnore';
h = rotate3d;
h.ButtonDownFilter = @mycallback;
h.Enable = 'on';
% mouse-click on the line
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true
objTag = obj.Tag;
if strcmpi(objTag,'DoNotIgnore')
 flag = true;
else
 flag = false;
end

Example 5
Create callbacks for pre- and post-buttonDown events for rotate3D mode objects to
trigger. Copy the following code to a new file, execute it, and observe rotation behavior:

 rotate3d

1-13011

function demo_mbd2
% Listen to rotate events
surf(peaks);
h = rotate3d;
h.ActionPreCallback = @myprecallback;
h.ActionPostCallback = @mypostcallback;
h.Enable = 'on';

function myprecallback(obj,evd)
disp('A rotation is about to occur.');

function mypostcallback(obj,evd)
newView = round(evd.Axes.View);
msgbox(sprintf('The new view is [%d %d].',newView));

Tips
When enabled, rotate3d provides continuous rotation of axes and the objects it contains
through mouse movement. A numeric readout appears in the lower left corner of the
figure during rotation, showing the current azimuth and elevation of the axes. Releasing
the mouse button removes the animated box and the readout. This differs from the
camorbit function in that while the rotate3d tool modifies the View property of the
axes, the camorbit function fixes the aspect ratio and modifies the CameraTarget,
CameraPosition and CameraUpVector properties of the axes. See Axes for more
information.

You can also enable 3-D rotation from the figure Tools menu or the figure toolbar.

You can create a rotate3d mode object once and use it to customize the behavior of
different axes, as example 3 illustrates. You can also change its callback functions on the
fly.

Note Do not change figure callbacks within an interactive mode. While a mode is
active (when panning, zooming, etc.), you will receive a warning if you attempt to change
any of the figure's callbacks and the operation will not succeed. The one exception to this
rule is the figure WindowButtonMotionFcn callback, which can be changed from within
a mode. Therefore, if you are creating a UI that updates a figure's callbacks, the UI
should some keep track of which interactive mode is active, if any, before attempting to
do this.

1 Alphabetical List

1-13012

When you assign different 3-D rotation behaviors to different subplot axes via a mode
object and then link them using the linkaxes function, the behavior of the axes you
manipulate with the mouse will carry over to the linked axes, regardless of the behavior
you previously set for the other axes.

Alternatives
Use the Rotate3D tool on the toolbar to enable and disable rotate3D mode on a plot, or
select Rotate 3D from the figure's Tools menu.

See Also
camorbit | pan | rotate | view | zoom

Topics
“Interactively Explore Plotted Data”

Introduced before R2006a

 rotate3d

1-13013

rotateInteraction
Rotate interaction

Description
A rotate interaction allows you to rotate a chart without having to select any buttons in
the axes toolbar. To enable chart rotation, set the Interactions property of the axes to
a rotateInteraction object. When this interaction is enabled, you can rotate a chart
by dragging it.

To enable multiple interactions, set the Interactions property to an array of objects.

Creation

Syntax
r = rotateInteraction

Description
r = rotateInteraction creates a rotate interaction object.

Examples

Axes with Rotate and Data Tip Interactions

Create a surface plot. Get the current axes and replace the default interactions with the
rotate and data tip interactions. Then hover over the surface to display data tips. Drag to
rotate the plot.

1 Alphabetical List

1-13014

surf(peaks)
ax = gca;
ax.Interactions = [rotateInteraction dataTipInteraction];

Limitations
The rotateInteraction function is not supported in the Live Editor.

 rotateInteraction

1-13015

Tips
In most cases, the axes have a default set of interactions which depend on the type of
chart you are displaying. You can replace the default set with a new set of interactions,
but you cannot access or modify any of the interactions in the default set.

See Also
dataTipInteraction | disableDefaultInteractivity |
enableDefaultInteractivity | panInteraction | regionZoomInteraction |
rulerPanInteraction | zoomInteraction

Topics
“Control Chart Interactivity”

Introduced in R2019a

1 Alphabetical List

1-13016

round
Round to nearest decimal or integer

Syntax
Y = round(X)
Y = round(X,N)
Y = round(X,N,type)

Y = round(t)
Y = round(t,unit)

Description
Y = round(X) rounds each element of X to the nearest integer. In the case of a tie,
where an element has a fractional part of exactly 0.5, the round function rounds away
from zero to the integer with larger magnitude.

Y = round(X,N) rounds to N digits:

• N > 0: round to N digits to the right of the decimal point.
• N = 0: round to the nearest integer.
• N < 0: round to N digits to the left of the decimal point.

Y = round(X,N,type) specifies the type of rounding. Specify 'significant' to
round to N significant digits (counted from the leftmost digit). In this case, N must be a
positive integer.

Y = round(t) rounds each element of the duration array t to the nearest number of
seconds.

Y = round(t,unit) rounds each element of t to the nearest number of the specified
unit of time.

 round

1-13017

Examples

Round Matrix Elements

Round the elements of a 2-by-2 matrix to the nearest integer.

X = [2.11 3.5; -3.5 0.78];
Y = round(X)

Y = 2×2

 2 4
 -4 1

Round to Specified Number of Decimal Digits

Round pi to the nearest 3 decimal digits.

Y = round(pi,3)

Y = 3.1420

Round to Nearest Multiple of 100

Round the number 863178137 to the nearest multiple of 100.

round(863178137,-2)

ans = 863178100

Round Elements to Specified Number of Significant Digits

Round the elements of a vector to retain 2 significant digits.

1 Alphabetical List

1-13018

format shortg
x = [1253 1.345 120.44]

x = 1×3

 1253 1.345 120.44

y = round(x,2,'significant')

y = 1×3

 1300 1.3 120

Controlling Number Display While Rounding

The format command controls how MATLAB® displays numbers at the command line. If
a number has extra digits that cannot be displayed in the current format, then MATLAB
automatically rounds the number for display purposes. This can lead to unexpected
results when combined with the round function.

Consider the result of the following subtraction operation, which displays 5 digits.

format short
x = 112.05 - 110

x = 2.0500

Based on the displayed value of x, rounding x to 1 decimal should return 2.1.

round(x,1)

ans = 2

In fact, the problem here is that MATLAB is rounding x to 5 digits for display purposes.
The round function returns the correct answer. Confirm the answer by viewing x with
format long, which displays x rounded to 15 digits.

format long
x

 round

1-13019

x =
 2.049999999999997

Round Duration Values

Round each value in a duration array to the nearest number of seconds.

t = hours(8) + minutes(29:31) + seconds(1.3:0.5:2.3);
t.Format = 'hh:mm:ss.SS'

t = 1x3 duration array
 08:29:01.30 08:30:01.80 08:31:02.30

Y1 = round(t)

Y1 = 1x3 duration array
 08:29:01.00 08:30:02.00 08:31:02.00

Round each value in t to the nearest number of hours.

Y2 = round(t,'hours')

Y2 = 1x3 duration array
 08:00:00.00 09:00:00.00 09:00:00.00

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. For complex X,
round treats the real and imaginary parts independently.

X must be single or double when you use round with more than one input.

round converts logical and char elements of X into double values.

1 Alphabetical List

1-13020

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | logical
Complex Number Support: Yes

N — Number of digits
scalar integer

Number of digits, specified as a scalar integer. When you specify N, the round function
rounds X to the nearest multiple of 10 -N.

If you specify the 'significant' rounding type, then N must be a positive integer.

type — Rounding type
'decimals' (default) | 'significant'

Rounding type, specified as 'decimals' or 'significant'. The rounding type
determines whether round considers digits in relation to the decimal point or the overall
number of significant digits. N must be a positive integer when you specify
'significant'. In that case, the round function rounds to the nearest number with N
significant digits.

The default value is 'decimals', so that round(X,N,'decimals') is equivalent to
round(X,N).
Example: round(3132,2,'significant') returns 3100, which is the closest number
to 3132 that has 2 significant digits.
Data Types: char | string

t — Input duration
duration array

Input duration, specified as a duration array.

unit — Unit of time
'seconds' (default) | 'minutes' | 'hours' | 'days' | 'years'

Unit of time, specified as 'seconds', 'minutes', 'hours', 'days', or 'years'. A
duration of 1 year is equal to exactly 365.2425 24-hour days.
Data Types: char | string

 round

1-13021

Definitions

Compatibility Considerations
In R2014b, these syntaxes were added to round to any number of decimal or significant
digits and to round duration values:

Y = round(X,N)
Y = round(X,N,type)
Y = round(t)
Y = round(t,unit)

Older versions support only this syntax, which rounds to the nearest integer:

Y = round(X)

Tips
• format short and format long both display rounded numbers. This can cause

unexpected results when combined with the round function.
• For display purposes, use sprintf to control the exact display of a number as a

string. For example, to display exactly 2 decimal digits of pi (and no trailing zeros),
use sprintf('%.2f',pi).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-13022

Usage notes and limitations:

• Code generation supports only the syntax Y = round(X).
• Code generation does not support char or logical data types for X.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• These syntaxes are not supported:

Y = round(X,N)

Y = round(X,N,type)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
ceil | fix | floor

Topics
“Integers”
“Floating-Point Numbers”

Introduced before R2006a

 round

1-13023

rowfun
Apply function to table or timetable rows

Syntax
B = rowfun(func,A)
B = rowfun(func,A,Name,Value)

Description
B = rowfun(func,A) applies the function func to each row of the table or timetable A
and returns the results in the table or timetable B.

func accepts size(A,2) inputs.

If A is a timetable and func aggregates data over groups of rows, then rowfun assigns
the first row time from each group of rows in A as the corresponding row time in B. To
return B as a table without row times, specify 'OutputFormat' as 'table'.

B = rowfun(func,A,Name,Value) applies the function func to each row of the table
A with additional options specified by one or more Name,Value pair arguments.

For example, you can specify which variables to pass to the function func and how to call
func.

Examples

Apply Function with Single Output to Rows

Apply the function hypot to each row of the 5-by-2 table A to find the shortest distance
between the variables x and y.

Create a table, A, with two variables of numeric data.

1 Alphabetical List

1-13024

x = gallery('integerdata',10,[5,1],2);
y = gallery('integerdata',10,[5,1],8);

A = table(x,y)

A=5×2 table
 x y
 _ __

 9 1
 4 5
 3 2
 7 3
 1 10

Apply the function, hypot, to each row of A. The function hypot takes two inputs and
returns one output.

B = rowfun(@hypot,A,'OutputVariableNames','z')

B=5×1 table
 z

 9.0554
 6.4031
 3.6056
 7.6158
 10.05

B is a table.

Append the function output, B, to the input table, A.

[A B]

ans=5×3 table
 x y z
 _ __ ______

 9 1 9.0554
 4 5 6.4031
 3 2 3.6056

 rowfun

1-13025

 7 3 7.6158
 1 10 10.05

Apply Function with Multiple Outputs to Rows

Define and apply a geometric Brownian motion model to a range of parameters.

Create a function in a file named gbmSim.m that contains the following code.

% Copyright 2015 The MathWorks, Inc.

function [m,mtrue,s,strue] = gbmSim(mu,sigma)
% Discrete approximation to geometric Brownian motion
%
% [m,mtrue,s,strue] = gbmSim(mu,sigma) computes the
% simulated mean, true mean, simulated standard deviation,
% and true standard deviation based on the parameters mu and sigma.
numReplicates = 1000; numSteps = 100;
y0 = 1;
t1 = 1;
dt = t1 / numSteps;
y1 = y0*prod(1 + mu*dt + sigma*sqrt(dt)*randn(numSteps,numReplicates));
m = mean(y1); s = std(y1);

% Theoretical values
mtrue = y0 * exp(mu*t1); strue = mtrue * sqrt(exp(sigma^2*t1) - 1);
end

gbmSim accepts two inputs, mu and sigma, and returns four outputs, m, mtrue, s, and
strue.

Define the table, params, containing the parameters to input to the Brownian Motion
Model.

mu = [-.5; -.25; 0; .25; .5];
sigma = [.1; .2; .3; .2; .1];

params = table(mu,sigma)

1 Alphabetical List

1-13026

params =

 5x2 table

 mu sigma
 _____ _____

 -0.5 0.1
 -0.25 0.2
 0 0.3
 0.25 0.2
 0.5 0.1

Apply the function, gbmSim, to the rows of the table, params.

stats = rowfun(@gbmSim,params,...
 'OutputVariableNames',...
 {'simulatedMean' 'trueMean' 'simulatedStd' 'trueStd'})

stats =

 5x4 table

 simulatedMean trueMean simulatedStd trueStd
 _____________ ________ ____________ ________

 0.60501 0.60653 0.05808 0.060805
 0.77916 0.7788 0.161 0.15733
 1.0024 1 0.3048 0.30688
 1.2795 1.284 0.25851 0.25939
 1.6498 1.6487 0.16285 0.16529

The four variable names specified by the 'OutputVariableNames' name-value pair
argument indicate that rowfun should obtain four outputs from gbmSim. You can specify
fewer output variable names to return fewer outputs from gbmSim.

Append the function output, stats, to the input, params.

[params stats]

ans =

 rowfun

1-13027

 5x6 table

 mu sigma simulatedMean trueMean simulatedStd trueStd
 _____ _____ _____________ ________ ____________ ________

 -0.5 0.1 0.60501 0.60653 0.05808 0.060805
 -0.25 0.2 0.77916 0.7788 0.161 0.15733
 0 0.3 1.0024 1 0.3048 0.30688
 0.25 0.2 1.2795 1.284 0.25851 0.25939
 0.5 0.1 1.6498 1.6487 0.16285 0.16529

Apply Function to Groups of Rows

Create a table, A, where g is a grouping variable.

g = gallery('integerdata',3,[15,1],1);
x = gallery('uniformdata',[15,1],9);
y = gallery('uniformdata',[15,1],2);

A = table(g,x,y)

A=15×3 table
 g x y
 _ _______ ________

 3 0.24756 0.87516
 3 0.4358 0.3179
 3 0.97755 0.27323
 2 0.85995 0.6765
 3 0.30063 0.071171
 2 0.26589 0.19659
 3 0.13338 0.52908
 2 0.7425 0.17176
 1 0.85692 0.86996
 2 0.24286 0.24369
 3 0.19492 0.84291
 2 0.39076 0.55766
 1 0.29683 0.35681
 1 0.39031 0.2324
 2 0.18726 0.6476

1 Alphabetical List

1-13028

Define the anonymous function, func, to compute the average difference between x and
y.

func = @(x,y) mean(x-y);

Find the average difference between variables in groups 1, 2, and 3 defined by the
grouping variable, g.

B = rowfun(func,A,...
 'GroupingVariable','g',...
 'OutputVariableName','MeanDiff')

B=3×3 table
 g GroupCount MeanDiff
 _ __________ ________

 1 3 0.028298
 2 6 0.032569
 3 6 -0.10327

The variable GroupCount indicates the number of rows in A for each group.

Input Arguments
func — Function
function handle

Function, specified as a function handle. You can define the function in a file or as an
anonymous function. If func corresponds to more than one function file (that is, if func
represents a set of overloaded functions), MATLAB determines which function to call
based on the class of the input arguments.

func can accept no more than size(A,2) inputs. By default, rowfun returns the first
output of func. To return more than one output from func, use the 'NumOutputs' or
'OutputVariableNames' name-value pair arguments.
Example: func = @(x,y) x.^2+y.^2; takes two inputs and finds the sum of the
squares.

A — Input table
table | timetable

 rowfun

1-13029

Input table, specified as a table or a timetable.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'InputVariables',2 uses only the second variable in A as an input to func.

InputVariables — Specifiers for selecting variables of A to pass to func
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector | function handle

Specifiers for selecting variables of A to pass to func, specified as the comma-separated
pair consisting of 'InputVariables' and a positive integer, vector of positive integers,
character vector, cell array of character vectors, string array, logical vector, or a function
handle.

If you specify 'InputVariables' as a function handle, then it must return a logical
scalar, and rowfun passes only the variables in A where the function returns 1 (true).

GroupingVariables — One or more variables in A that define groups of rows
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

One or more variables in A that define groups of rows, specified as the comma-separated
pair consisting of 'GroupingVariables' and a positive integer, vector of positive
integers, character vector, cell array of character vectors, string array, or logical vector.

The value of 'GroupingVariables' specifies which table variables are the grouping
variables, not their data types. A grouping variable can be numeric, or have data type
categorical, calendarDuration, datetime, duration, logical, or string.

Rows in A that have the same grouping variable values belong to the same group. rowfun
applies func to each group of rows, rather than separately to each row of A. The output,
B, contains one row for each group.

If any grouping variable contains NaNs or missing values (such as NaTs, undefined
categorical values, or missing strings), then the corresponding rows do not belong to any
group, and are excluded from the output.

1 Alphabetical List

1-13030

Row labels can be grouping variables. You can group on row labels alone, on one or more
variables in A, or on row labels and variables together.

• If A is a table, then the labels are row names.
• If A is a timetable, then the labels are row times.

SeparateInputs — Indicator for calling func with separate inputs
true (default) | false | 1 | 0

Indicator for calling func with separate inputs, specified as the comma-separated pair
consisting of 'SeparateInputs' and either true, false, 1, or 0.

true func expects separate inputs. rowfun calls func with size(A,2)
inputs, one argument for each data variable.

This is the default behavior.
false func expects one vector containing all inputs. rowfun creates the

input vector to func by concatenating the values in each row of A.

ExtractCellContents — Indicator to pass values from cell variables to func
false (default) | true | 0 | 1

Indicator to pass values from cell variables to func, specified as the comma-separated
pair consisting of 'ExtractCellContents' and either false, true, 0, or 1.

true rowfun extracts the contents of a variable in A whose data type is
cell and passes the values, rather than the cells, to func

For grouped computation, the values within each group in a cell
variable must allow vertical concatenation.

false rowfun passes the cells of a variable in A whose data type is cell
to func.

This is the default behavior.

OutputVariableNames — Variable names for outputs of func
character vector | cell array of character vectors | string array

Variable names for outputs of func, specified as the comma-separated pair consisting of
'OutputVariableNames' and a character vector, cell array of character vectors, or

 rowfun

1-13031

string array, with names that are nonempty and distinct. The number of names must equal
the number of outputs desired from func.

Furthermore, the variable names must be valid MATLAB identifiers. If valid MATLAB
identifiers are not available for use as variable names, MATLAB uses a cell array of N
character vectors of the form {'Var1' ... 'VarN'} where N is the number of
variables. You can determine valid MATLAB variable names using the function
isvarname.

NumOutputs — Number of outputs from func
0 | positive integer

Number of outputs from func, specified as the comma-separated pair consisting of
'NumOutputs' and 0 or a positive integer. The integer must be less than or equal to the
possible number of outputs from func.
Example: 'NumOutputs',2 causes rowfun to call func with two outputs.

OutputFormat — Format of B
'table' (default) | 'timetable' | 'uniform' | 'cell'

Format of B, specified as the comma-separated pair consisting of 'OutputFormat' and
either the value 'table', 'uniform', or 'cell'.

'table' rowfun returns a table with one variable for each output of func. For
grouped computation, B, also contains the grouping variables.

'table' allows you to use a function that returns values of different sizes
or data types. However, for ungrouped computation, all of the outputs
from func must have one row each time it is called. For grouped
computation, all of the outputs from func must have the same number of
rows.

This is the default output format.

1 Alphabetical List

1-13032

'timetable
'

rowfun returns a timetable with one variable for each variable in A (or
each variable specified with 'InputVariables'). For grouped
computation, B also contains the grouping variables.

rowfun creates the row times of B from the row times of A. If the row
times assigned to B do not make sense in the context of the calculations
performed using func, then specify the output format as
'OutputFormat','table'.

If A is a timetable, then this is the default output format.
'uniform' rowfun concatenates the values returned by func into a vector. All of the

outputs from func must be scalars with the same data type.
'cell' rowfun returns B as a cell array. 'cell' allows you to use a function that

returns values of different sizes or data types.

ErrorHandler — Function to call if func fails
function handle

Function to call if func fails, specified as the comma-separated pair consisting of
'ErrorHandler' and a function handle. Define this function so that it rethrows the error
or returns valid outputs for function func.

MATLAB calls the specified error-handling function with two input arguments:

• A structure with these fields:

identifier Error identifier.
message Error message text.
index Row or group index at which the error occurred.

• The set of input arguments to function func at the time of the error.

For example,

function [A, B] = errorFunc(S, varargin)
warning(S.identifier, S.message);
A = NaN; B = NaN;

 rowfun

1-13033

Output Arguments
B — Output table
table | timetable

Output table, returned as a table or a timetable. B can store metadata such as
descriptions, variable units, variable names, and row names. For more information, see
the Properties sections of table or timetable.

See Also
arrayfun | cellfun | findgroups | groupsummary | isvarname | splitapply |
structfun | varfun

Topics
“Calculations on Tables”
“Split Table Data Variables and Apply Functions”
“Anonymous Functions”

Introduced in R2013b

1 Alphabetical List

1-13034

rows2vars
Reorient table or timetable so that rows become variables

Syntax
T2 = rows2vars(T1)
T2 = rows2vars(T1,'VariableNamesSource',varnames)
T2 = rows2vars(___ ,'DataVariables',datavars)

Description
T2 = rows2vars(T1) reorients the rows of T1, so that they become variables in the
output table T2, as shown in the diagram. If rows2vars can concatenate the contents of
the rows of T1, then the corresponding variables of T2 are arrays. Otherwise, the
variables of T2 are cell arrays. rows2vars always returns a table, though T1 can be
either a table or a timetable.

The rows2vars function copies the names of the variables of T1 to a new variable of T2.
If T1 has row names or row times, then those names or times become the variable names

 rows2vars

1-13035

of T2. Otherwise, rows2vars generates names Var1,…,VarN as the variable names of
T2.

T2 = rows2vars(T1,'VariableNamesSource',varnames) specifies a variable in T1
as the source of the names given to the variables of T2. You can specify varnames as a
variable name or a numeric or logical index.

T2 = rows2vars(___ ,'DataVariables',datavars) selects the variables of T1
specified by datavars and reorients only those variables to become the rows of T2. The
remaining variables of T1 are discarded. datavars can be one or more variable names,
an array of numeric or logical indices, or a subscripting object (for example, the output of
the vartype function). You can use this syntax with the input arguments of either of the
previous syntaxes.

If you specify a variable using the 'VariableNamesSource' name-value pair argument
from the previous syntax, then you cannot specify that variable in datavars.

Examples

Reorient Rows as Variables

Create tables, and then reorient their rows to be variables in new tables.

Load arrays of data from the patients.mat file. Create a table that contains the
LastName, Gender, Age, Height, and Weight variables.

load patients
T1 = table(LastName,Gender,Age,Height,Weight);
head(T1,3)

ans=3×5 table
 LastName Gender Age Height Weight
 __________ ________ ___ ______ ______

 'Smith' 'Male' 38 71 176
 'Johnson' 'Male' 43 69 163
 'Williams' 'Female' 38 64 131

Reorient the rows of T1 to be the variables of the output table.

1 Alphabetical List

1-13036

T2 = rows2vars(T1);

Display the first four variables of T2. The first variable of T2 contains the names of the
variables of T1. The remaining variables of T2 correspond to rows of T1. Since T1 did not
have any row labels, the variables of T2 have default names, Var1 to VarN for N
variables.

T2(:,1:4)

ans=5×4 table
 OriginalVariableNames Var1 Var2 Var3
 _____________________ _______ _________ __________

 'LastName' 'Smith' 'Johnson' 'Williams'
 'Gender' 'Male' 'Male' 'Female'
 'Age' [38] [43] [38]
 'Height' [71] [69] [64]
 'Weight' [176] [163] [131]

Create a table with row names. If a table has row names, then rows2vars turns the row
names into the names of variables.

T3 = table(Gender,Age,Height,Weight,'RowNames',LastName);
head(T3,3)

ans=3×4 table
 Gender Age Height Weight
 ________ ___ ______ ______

 Smith 'Male' 38 71 176
 Johnson 'Male' 43 69 163
 Williams 'Female' 38 64 131

Reorient the rows of T3.

T4 = rows2vars(T3);
T4(:,1:4)

ans=4×4 table
 OriginalVariableNames Smith Johnson Williams
 _____________________ ______ _______ ________

 'Gender' 'Male' 'Male' 'Female'

 rows2vars

1-13037

 'Age' [38] [43] [38]
 'Height' [71] [69] [64]
 'Weight' [176] [163] [131]

Reorient Timetable Rows

Load a timetable and display it.

load bostonTT
Boston

Boston=6×3 timetable
 Time Temp WindSpeed Rain
 ___________________ ____ _________ ____

 2016-06-09 06:03:00 59.5 0.1 0.05
 2016-06-09 12:00:23 63 2.3 0.08
 2016-06-09 18:02:57 61.7 3.1 0.13
 2016-06-10 06:01:47 55.4 5.7 0.15
 2016-06-10 12:06:00 62.3 2.6 0.87
 2016-06-10 18:02:57 58.8 6.2 0.33

Reorient it so that its rows become variables in the output. The rows2vars function turns
the row times into names, but must modify them so that they are valid variable names.
Also, the output argument returned by rows2vars is always a table, even when the input
argument is a timetable.

T = rows2vars(Boston)

Warning: Variable names were modified to make them valid MATLAB identifiers.

T=3×7 table
 OriginalVariableNames x2016_06_0906_03_00 x2016_06_0912_00_23 x2016_06_0918_02_57 x2016_06_1006_01_47 x2016_06_1012_06_00 x2016_06_1018_02_57
 _____________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________

 'Temp' 59.5 63 61.7 55.4 62.3 58.8
 'WindSpeed' 0.1 2.3 3.1 5.7 2.6 6.2
 'Rain' 0.05 0.08 0.13 0.15 0.87 0.33

1 Alphabetical List

1-13038

Names of Output Table Variables

Read data from a spreadsheet into a table. Display the first three rows.

T1 = readtable('patients.xls');
head(T1,3)

ans=3×10 table
 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 __________ ________ ___ ___________________________ ______ ______ ______ ________ _________ ________________________

 'Smith' 'Male' 38 'County General Hospital' 71 176 true 124 93 'Excellent'
 'Johnson' 'Male' 43 'VA Hospital' 69 163 false 109 77 'Fair'
 'Williams' 'Female' 38 'St. Mary's Medical Center' 64 131 false 125 83 'Good'

Reorient the rows of T1 to be variables of a new table, T2. Specify that the LastName
variable from T1 is the source of the names of the variables of T2.

T2 = rows2vars(T1,'VariableNamesSource','LastName');

Display the first four variables of T2. The first variable of T2 contains the names of the
variables of T1. The remaining variables of T2 correspond to rows of T1.

T2(:,1:4)

ans=9×4 table
 OriginalVariableNames Smith Johnson Williams
 __________________________ _________________________ _____________ ___________________________

 'Gender' 'Male' 'Male' 'Female'
 'Age' [38] [43] [38]
 'Location' 'County General Hospital' 'VA Hospital' 'St. Mary's Medical Center'
 'Height' [71] [69] [64]
 'Weight' [176] [163] [131]
 'Smoker' [1] [0] [0]
 'Systolic' [124] [109] [125]
 'Diastolic' [93] [77] [83]
 'SelfAssessedHealthStatus' 'Excellent' 'Fair' 'Good'

Display the data in T2.Smith. In this example, every variable of T2 is a 9-by-1 cell array,
because the values in the rows of T1 cannot be concatenated into arrays.

 rows2vars

1-13039

T2.Smith

ans = 9x1 cell array
 {'Male' }
 {[38]}
 {'County General Hospital'}
 {[71]}
 {[176]}
 {[1]}
 {[124]}
 {[93]}
 {'Excellent' }

Specify Data Variables

Read data from a spreadsheet into a table. Use the first column of the spreadsheet as the
row names of the table. Display the first three rows.

T1 = readtable('patients.xls','ReadRowNames',true);
head(T1,3)

ans=3×9 table
 Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 ________ ___ ___________________________ ______ ______ ______ ________ _________ ________________________

 Smith 'Male' 38 'County General Hospital' 71 176 true 124 93 'Excellent'
 Johnson 'Male' 43 'VA Hospital' 69 163 false 109 77 'Fair'
 Williams 'Female' 38 'St. Mary's Medical Center' 64 131 false 125 83 'Good'

Reorient specified variables from T1 and discard the rest. To specify data variables by
name, use a cell array of character vectors.

T2 = rows2vars(T1,'DataVariables',{'Gender','Age','Height','Weight'});
T2(:,1:4)

ans=4×4 table
 OriginalVariableNames Smith Johnson Williams
 _____________________ ______ _______ ________

 'Gender' 'Male' 'Male' 'Female'

1 Alphabetical List

1-13040

 'Age' [38] [43] [38]
 'Height' [71] [69] [64]
 'Weight' [176] [163] [131]

You also can specify data variables by position in the input table. To specify positions of
variables, use a numeric array.

T3 = rows2vars(T1,'DataVariables',[1 2 6:9]);
T3(:,1:4)

ans=6×4 table
 OriginalVariableNames Smith Johnson Williams
 __________________________ ___________ _______ ________

 'Gender' 'Male' 'Male' 'Female'
 'Age' [38] [43] [38]
 'Smoker' [1] [0] [0]
 'Systolic' [124] [109] [125]
 'Diastolic' [93] [77] [83]
 'SelfAssessedHealthStatus' 'Excellent' 'Fair' 'Good'

Input Arguments
T1 — Input table
table | timetable

Input table, specified as a table or timetable.

varnames — Source of names for output table variables
character vector | string scalar | integer | logical array

Source of names for the output table variables, specified as a character vector, string
scalar, integer, or logical array.

• If varnames is a character vector or string scalar, then it is the name of a variable in
the input table T1.

• If varnames is the integer n, then it indicates the nth variable in T1.
• If varnames is a logical array, then it indicates the nth variable by specifying its nth

element as 1 (true). All other elements must be 0 (false).

 rows2vars

1-13041

While varnames must be a name, number, or logical array that specifies a table variable,
the variable itself can have any data type, with these limitations.

• The values contained in the specified table variable must have a data type that allows
the values to be converted to strings. For example, varnames can be the name of a
table variable that contains a datetime array, because datetime values can be
converted to strings.

• The number of names taken from the specified table variable must match the number
of rows of the input table.

datavars — Variables in input table
character vector | cell array of character vectors | string array | numeric array | logical
array | subscripting object

Variables in the input table, specified as a character vector, cell array of character
vectors, string array, numeric array, logical array, or subscripting object.

See Also
inner2outer | innerjoin | join | outerjoin | stack | unstack | vartype

Introduced in R2018a

1 Alphabetical List

1-13042

rref
Reduced row echelon form (Gauss-Jordan elimination)

Syntax
R = rref(A)
R = rref(A,tol)
[R,p] = rref(A)

Description
R = rref(A) returns the reduced row echelon form on page 1-13049 of A using Gauss-
Jordan elimination with partial pivoting on page 1-13049.

R = rref(A,tol) specifies a pivot tolerance that the algorithm uses to determine
negligible columns.

[R,p] = rref(A) also returns the nonzero pivots p.

Examples

Reduced Row Echelon Form of Matrix

Create a matrix and calculate the reduced row echelon form. In this form, the matrix has
leading 1s in the pivot position of each column.

A = magic(3)

A = 3×3

 8 1 6
 3 5 7
 4 9 2

 rref

1-13043

RA = rref(A)

RA = 3×3

 1 0 0
 0 1 0
 0 0 1

The 3-by-3 magic square matrix is full rank, so the reduced row echelon form is an
identity matrix.

Now, calculate the reduced row echelon form of the 4-by-4 magic square matrix. Specify
two outputs to return the nonzero pivot columns. Since this matrix is rank deficient, the
result is not an identity matrix.

B = magic(4)

B = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

[RB,p] = rref(B)

RB = 4×4

 1 0 0 1
 0 1 0 3
 0 0 1 -3
 0 0 0 0

p = 1×3

 1 2 3

1 Alphabetical List

1-13044

Row Reduction of Augmented Matrices

Use Gauss-Jordan elimination on augmented matrices to solve a linear system and
calculate the matrix inverse. These techniques are mainly of academic interest, since
there are more efficient and numerically stable ways to calculate these values.

Create a 3-by-3 magic square matrix. Add an additional column to the end of the matrix.
This augmented matrix represents a linear system Ax = b, with the extra column
corresponding to b.

A = magic(3);
A(:,4) = [1; 1; 1]

A = 3×4

 8 1 6 1
 3 5 7 1
 4 9 2 1

Calculate the reduced row echelon form of A. Index into R to extract the entries in the
extra (augmented) column, which contains the solution to the linear system.

R = rref(A)

R = 3×4

 1.0000 0 0 0.0667
 0 1.0000 0 0.0667
 0 0 1.0000 0.0667

x = R(:,end)

x = 3×1

 0.0667
 0.0667
 0.0667

A more efficient way to solve this linear system is with the backslash operator, x = A\b.

Create a similar magic square matrix, but this time append an identity matrix of the same
size to the end columns.

 rref

1-13045

A = [magic(3) eye(3)]

A = 3×6

 8 1 6 1 0 0
 3 5 7 0 1 0
 4 9 2 0 0 1

Calculate the reduced row echelon form of A. In this form the extra columns contain the
inverse matrix for the 3-by-3 magic square matrix.

R = rref(A)

R = 3×6

 1.0000 0 0 0.1472 -0.1444 0.0639
 0 1.0000 0 -0.0611 0.0222 0.1056
 0 0 1.0000 -0.0194 0.1889 -0.1028

inv_A = R(:,4:end)

inv_A = 3×3

 0.1472 -0.1444 0.0639
 -0.0611 0.0222 0.1056
 -0.0194 0.1889 -0.1028

A more efficient way to calculate the inverse matrix is with inv(A).

Solve System of Equations

Consider a linear system of equations with four equations and three unknowns.

x1 + x2 + 5x3 = 6
2x1 + x2 + 8x3 = 8
x1 + 2x2 + 7x3 = 10
−x1 + x2− x3 = 2 .

1 Alphabetical List

1-13046

Create an augmented matrix that represents the system of equations.

A = [1 1 5;
 2 1 8;
 1 2 7;
 -1 1 -1];
b = [6 8 10 2]';
M = [A b];

Use rref to express the system in reduced row echelon form.

R = rref(M)

R = 4×4

 1 0 3 2
 0 1 2 4
 0 0 0 0
 0 0 0 0

The first two rows of R contain equations that express x1 and x2 in terms of x3. The second
two rows imply that there exists at least one solution that fits the right-hand side vector
(otherwise one of the equations would read 1 = 0). The third column does not contain a
pivot, so x3 is an independent variable. Therefore, there are infinitely many solutions for
x1 and x2, and x3 can be chosen freely.

x1 = 2− 3x3
x2 = 4− 2x3 .

For example, if x3 = 1, then x1 = − 1 and x2 = 2.

From a numerical standpoint, a more efficient way to solve this system of equations is
with x0 = A\b, which (for a rectangular matrix A) calculates the least-squares solution.
In that case, you can check the accuracy of the solution with norm(A*x0-b)/norm(b)
and the uniqueness of the solution by checking if rank(A) is equal to the number of
unknowns. If more than one solution exists, then they all have the form of x = x0 + nt,
where n is the null space null(A) and t can be chosen freely.

 rref

1-13047

Input Arguments
A — Input matrix
matrix

Input matrix.
Data Types: single | double
Complex Number Support: Yes

tol — Pivot tolerance
max(size(A))*eps*norm(A,inf) (default) | scalar

Pivot tolerance, specified as a scalar. If the largest element (by absolute value) in a pivot
column is below the tolerance, then the column is zeroed out. This prevents division and
multiplication with nonzero pivot elements smaller than the tolerance.
Data Types: single | double

Output Arguments
R — Reduced row echelon form of A
matrix

Reduced row echelon form on page 1-13049 of A, returned as a matrix.

p — Nonzero pivot columns
vector

Nonzero pivot columns, returned as a vector. Each element in p is a column index of A.
You can use p to estimate several quantities:

• length(p) is an estimate of the rank of A.
• x(p) contains the pivot variables in a linear system Ax = b.
• A(:,p) is a basis for the range of A.
• R(1:r,p) is the r-by-r identity matrix, where r = length(p).

1 Alphabetical List

1-13048

Limitations
• rank, orth, and null are typically faster and more accurate for computing the rank

and basis vectors of a matrix.
• mldivide is recommended to solve linear systems.

Definitions
Partial Pivoting
Partial pivoting is the practice of selecting the column element with largest absolute value
in the pivot column, and then interchanging the rows of the matrix so that this element is
in the pivot position (the leftmost nonzero element in the row).

For example, in the matrix below the algorithm starts by identifying the largest value in
the first column (the value in the (2,1) position equal to 1.1), and then interchanges the
complete first and second rows so that this value appears in the (1,1) position.

The use of partial pivoting in Gaussian elimination reduces (but does not eliminate)
roundoff errors in the calculation.

Reduced Row Echelon Form
A matrix is in row echelon form when:

• All nonzero rows are above rows of all zeros.
• The leading coefficient of each row is strictly to the right of the one in the row above

it.

 rref

1-13049

An example of a matrix in row echelon form is

A =
1 2 3
0 4 1
0 0 2

.

An additional requirement for reduced row echelon form is:

• Every leading coefficient must be 1, and must be the only nonzero in its column.

While the identity matrix is most commonly associated with reduced row echelon form,
other forms are possible. Another example of a matrix in reduced row echelon form is

A =

1 0 0 1
0 1 0 3
0 0 1 −3
0 0 0 0

.

Algorithms
rref implements Gauss-Jordan elimination with partial pivoting. A default tolerance of
max(size(A))*eps*norm(A,inf) tests for negligible column elements that are zeroed-
out to reduce roundoff error.

See Also
inv | lu | mldivide | rank

Introduced before R2006a

1 Alphabetical List

1-13050

rsf2csf
Convert real Schur form to complex Schur form

Syntax
[U,T] = rsf2csf(U,T)

Description
The complex Schur form of a matrix is upper triangular with the eigenvalues of the matrix
on the diagonal. The real Schur form has the real eigenvalues on the diagonal and the
complex eigenvalues in 2-by-2 blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex form.

Arguments U and T represent the unitary and Schur forms of a matrix A, respectively, that
satisfy the relationships: A = U*T*U' and U'*U = eye(size(A)). See schur for details.

Examples
Given matrix A,

 1 1 1 3
 1 2 1 1
 1 1 3 1
-2 1 1 4

with the eigenvalues

4.8121 1.9202 + 1.4742i 1.9202 + 1.4742i 1.3474

Generating the Schur form of A and converting to the complex Schur form

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

 rsf2csf

1-13051

yields a triangular matrix T whose diagonal (underlined here for readability) consists of
the eigenvalues of A.
U =

-0.4916 -0.2756 - 0.4411i 0.2133 + 0.5699i -0.3428
-0.4980 -0.1012 + 0.2163i -0.1046 + 0.2093i 0.8001
-0.6751 0.1842 + 0.3860i -0.1867 - 0.3808i -0.4260
-0.2337 0.2635 - 0.6481i 0.3134 - 0.5448i 0.2466

T =

4.8121 -0.9697 + 1.0778i -0.5212 + 2.0051i -1.0067
 0 1.9202 + 1.4742i 2.3355 0.1117 + 1.6547i
 0 0 1.9202 - 1.4742i 0.8002 + 0.2310i
 0 0 0 1.3474

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

See Also
schur

Introduced before R2006a

1 Alphabetical List

1-13052

rtickangle
Rotate r-axis tick labels

Syntax
rtickangle(angle)
rtickangle(pax,angle)

ang = rtickangle
ang = rtickangle(pax)

Description
rtickangle(angle) rotates the r-axis tick labels for the current axes to the specified
angle in degrees, where 0 is horizontal. Specify a positive value for counterclockwise
rotation or a negative value for clockwise rotation.

rtickangle(pax,angle) rotates the tick labels for the axes specified by pax instead of
the current axes.

ang = rtickangle returns the rotation angle for the r-axis tick labels of the current
axes as a scalar value in degrees. Positive values indicate counterclockwise rotation.
Negative values indicate clockwise rotation.

ang = rtickangle(pax) uses the polar axes specified by pax instead of the current
axes.

Examples

Rotate r-Axis Tick Labels

Create a polar plot and rotate the r-axis tick labels 45 degrees counterclockwise.

 rtickangle

1-13053

polarplot(1:100)
rtickangle(45)

Rotate r-Axis Tick Labels for Specific Polar Axes

Create a polar plot and assign the polar axes object to the variable pax. Then, rotate the
r-axis tick labels for the polar axes. Ensure that rtickangle affects pax by specifying
the polar axes object as the first input argument.

polarplot(1:100)
pax = gca;
rtickangle(pax,45)

1 Alphabetical List

1-13054

Query Current Angle for r-Axis Tick Labels

Create a polar plot. Then, query the rotation angle for the r-axis tick labels. By default,
the labels are not rotated.

polarplot(1:100)

 rtickangle

1-13055

ang = rtickangle

ang = 0

Input Arguments
angle — Rotation of tick labels
0 (default) | scalar value in degrees

Rotation of tick labels, specified as a scalar value in degrees, where 0 is horizontal.
Example: rtickangle(90)

1 Alphabetical List

1-13056

pax — One or more polar axes
current axes (default) | single object | vector of objects

One or more polar axes, specified as a single object or a vector of objects. If you do not
specify the polar axes, then rtickangle uses the current axes.

Algorithms
The rtickangle function sets and queries the RTickLabelRotation property of the
axes object.

See Also
Functions
rlim | rtickformat | rticklabels | rticks | thetalim

Properties
PolarAxes

Introduced in R2016b

 rtickangle

1-13057

rtickformat
Specify r-axis tick label format

Syntax
rtickformat(fmt)
rtickformat(pax, ___)

rfmt = rtickformat
rfmt = rtickformat(pax)

Description
rtickformat(fmt) sets the format for the r-axis tick labels. For example, specify fmt as
'usd' to display the labels in U.S. dollars.

rtickformat(pax, ___) uses the axes specified by pax instead of the current axes.
Specify ax as the first input argument.

rfmt = rtickformat returns the format style used for r-axis tick labels of the current
axes. Depending on the type of labels along the r-axis, rfmt is a character vector or
string containing a numeric format.

rfmt = rtickformat(pax) returns the format style used for the axes specified by pax
instead of the current axes.

Examples

Display r-Axis Tick Labels as Percentages

Create a polar plot. Display the tick labels along the r-axis as percentages.

th = linspace(0,2*pi,10);
r = [11 49 95 68 74 75 88 76 65 67];

1 Alphabetical List

1-13058

polarplot(th,r,'o')
rtickformat('percentage')

Display Text After Each r-Axis Tick Label

Display the tick labels along the r-axis with the text "cm" after each value.

polarplot(1:10)
rtickformat('%g cm')

 rtickformat

1-13059

Control Number of Decimals for r-Axis Tick Labels

Display the r-axis tick labels with two decimal places. Control the decimal places by
passing rtickformat a character vector of a numeric format that uses fixed-point
notation for the conversion character and a precision value of 2.

theta = 0:0.01:2*pi;
rho = 50*sin(2*theta);
polarplot(theta,rho)
rtickformat('%.2f')

1 Alphabetical List

1-13060

Specify r-Axis Tick Label Format for Specific Polar Axes

Create a polar plot and assign the polar axes object to the variable pax. Ensure that
rtickformat affects the polar axes you just created by passing pax as the first input
argument to the function.

polarplot(1:10)
pax = gca;
rtickformat(pax,'percentage')

 rtickformat

1-13061

Input Arguments
fmt — Format for numeric tick labels
'%g' (default) | character vector | string

Format for numeric tick labels, specified as a character vector or string. You can specify
one of the formats listed in this table. Alternatively, you can specify a custom format.

1 Alphabetical List

1-13062

Predefined Format Description
'usd' U.S. dollars. This option is equivalent using

'$%,.2f'. If the labels use scientific
notation, this option sets the exponent
value to 0.

'eur' Euro. This option is equivalent to using
'\x20AC%,.2f' with an exponent value of
0.

'gbp' British pound. This option is equivalent to
using '\x00A3%,.2f' with an exponent
value of 0.

'jpy' Japanese yen. This option is equivalent to
using '\x00A5%,d' with an exponent
value of 0.

'degrees' Display degree symbol after values. This
option is equivalent to using '%g\x00B0'
with the default exponent value.

'percentage' Display percent sign after values. This
option is equivalent to using '%g%%' with
the default exponent value.

'auto' Default format of '%g' with the default
exponent value.

Example: rtickformat('usd')

Custom Numeric Format

You can specify a custom numeric format by creating a character vector or string
containing identifiers.

 rtickformat

1-13063

Identifiers are optional, except the percent sign and conversion character. Construct the
format in this order:

• One or more flags — Options such as adding a plus sign before positive values. For a
full list of options, see the table of Optional Flags.

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

• Conversion character — Value type. For a full list of options, see the table of
Conversion Characters. If you specify a conversion that does not fit the data, then
MATLAB overrides the specified conversion, and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

Example: rtickformat('%.2f') displays the values using fixed-point notation with
two decimal places.

Example: rtickformat('$%.2f') displays a dollar sign before each value.

Example: rtickformat('%.2f million') displays million after each value.

1 Alphabetical List

1-13064

Optional Flags

Identifier Description Example of Numeric
Format

, Display commas every three
digits, such as '1,000'.

'%,4.4g'

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left-justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

 rtickformat

1-13065

Conversion Characters

Identifier Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

pax — One or more polar axes
current axes (default) | single object | vector of objects

One or more polar axes, specified as a single object or a vector of objects. If you do not
specify a polar axes object, then rtickformat uses the current axes.

Algorithms
The rtickformat function sets and queries the TickLabelFormat property of the ruler
object associated with the r-axis.

See Also
rlim | rtickangle | rticklabels | rticks | thetatickformat

Introduced in R2016b

1 Alphabetical List

1-13066

rticklabels
Set or query r-axis tick labels

Syntax
rticklabels(labels)
rl = rticklabels

rticklabels('auto')
rticklabels('manual')
m = rticklabels('mode')

___ = rticklabels(pax, ___)

Description
rticklabels(labels) sets the r-axis tick labels for the current axes. Specify labels
as a string array or a cell array of character vectors; for example,
{'January','February','March'}. If you specify the labels, then the r-axis tick
values and tick labels no longer update automatically based on changes to the axes.

rl = rticklabels returns the r-axis tick labels for the current axes.

rticklabels('auto') sets an automatic mode, enabling the axes to determine the r-
axis tick labels. Use this option if you set the labels and then want to set them back to the
default values.

rticklabels('manual') sets a manual mode, freezing the r-axis tick labels at the
current values.

m = rticklabels('mode') returns the current value of the r-axis tick labels mode,
which is either 'auto' or 'manual'. By default, the mode is automatic unless you
specify the tick labels or set the mode to manual.

___ = rticklabels(pax, ___) uses the axes specified by pax instead of the current
axes. Specify ax as the first input argument for any of the previous syntaxes.

 rticklabels

1-13067

Examples

Specify r-Axis Tick Values and Labels

Create a polar plot. Display tick marks and grid lines along the r-axis at the values 0.1,
0.3, and 0.5. Then, specify a label for each tick mark.

theta = linspace(0,2*pi);
rho = theta/10;
polarplot(theta,rho)
rticks([0.1 0.25 0.5])
rticklabels({'r = .1','r = .3','r = .5'})

1 Alphabetical List

1-13068

Specify r-Axis Tick Labels for Specific Polar Axes

Create a polar plot and assign the polar axes object to the variable pax. Ensure that
rticks and rticklabels affect the polar axes you just created by specifying pax as the
first input argument to the functions.

theta = 0:0.01:2*pi;
rho = 50*sin(2*theta);
polarplot(theta,rho)
pax = gca;

rticks(pax,[10 25 50])
rticklabels(pax,{'r = 10','r = 25','r = 50'})

 rticklabels

1-13069

Set r-Axis Tick Labels Back to Default Labels

Create a polar plot and specify the r-axis tick values and corresponding labels. Then, set
the r-axis tick values and labels back to the default values.

theta = linspace(0,2*pi);
rho = theta/10;
polarplot(theta,rho)
rticks([0.1 0.25 0.5])
rticklabels({'r = .1','r = .3','r = .5'})

1 Alphabetical List

1-13070

rticks('auto')
rticklabels('auto')

 rticklabels

1-13071

Remove r-Axis Tick Labels

Remove the tick labels along the r-axis by specifying the tick labels as an empty array.

theta = 0:0.01:2*pi;
rho = 50*sin(2*theta);
polarplot(theta,rho)
rticklabels({})

1 Alphabetical List

1-13072

Input Arguments
labels — Tick labels
cell array of character vectors | string array | categorical array

Tick labels on page 1-13075, specified as a cell array of character vectors, string array, or
categorical array. If you do not want tick labels to show, then specify an empty cell array
{}. Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter
property of the axes object for more information.
Example: rticklabels({'0','\pi','2\pi'})

 rticklabels

1-13073

Example: rticklabels({'January','Febrary','March'})
Example: rticklabels({})

Note

• If you specify the tick labels as a categorical array, MATLAB uses the values in the
array, not the categories.

• To specify the tick values, use the rticks function.

pax — One or more polar axes
current axes (default) | single object | vector of objects

One or more polar axes, specified as a single object or a vector of objects. If you do not
specify the polar axes, then rticklabels uses the current axes.

Output Arguments
rl — Current tick labels
cell array of character vectors | character array

Current tick labels, returned as a cell array of character vectors or a character array.

m — Current tick labels mode
'auto' | 'manual'

Current tick labels mode, returned as one of these values:

• 'auto' — Axes automatically determines the r-axis tick labels.
• 'manual' — Axes uses manually specified r-axis tick labels.

1 Alphabetical List

1-13074

Definitions

Tick Labels
The tick labels are the labels that you see next to each tick mark. The tick values are the
locations along the r-axis where the tick marks appear. Set the tick values using the
rticks function. Set the corresponding tick labels using the rticklabels function.

Algorithms
The rticklabels function sets and queries several polar axes properties related to the
r-axis tick labels.

• RTickLabel — Property that stores the text for the r-axis tick labels.
• RTickLabelMode — Property that stores the r-axis tick label mode. When you set the

r-axis tick labels using rticklabels, this property changes to 'manual'.
• RTickMode — Property that stores the r-axis tick value mode. When you set the r-axis

tick labels using rticklabels, this property changes to 'manual'.

 rticklabels

1-13075

See Also
Functions
rlim | rtickangle | rtickformat | rticks | thetaticklabels

Properties
PolarAxes

Introduced in R2016b

1 Alphabetical List

1-13076

rticks
Set or query r-axis tick values

Syntax
rticks(ticks)
rt = rticks

rticks('auto')
rticks('manual')
m = rticks('mode')

___ = rticks(pax, ___)

Description
rticks(ticks) sets the r-axis tick values on page 1-13085, which are the locations
along the r-axis where the tick marks and grid lines appear. Specify ticks as a vector of
increasing values; for example, [0 2 4 6]. This command affects the current axes.

rt = rticks returns the current r-axis tick values as a vector.

rticks('auto') sets an automatic mode, enabling the axes to determine the r-axis tick
values. Use this option if you change the tick values and then want to set them back to
the default values.

rticks('manual') sets a manual mode, freezing the r-axis tick values at the current
values. Use this option if you want to retain the current tick values when resizing the axes
or adding new data to the axes.

m = rticks('mode') returns the current r-axis tick labels mode, which is either
'auto' or 'manual'. By default, the mode is automatic unless you specify tick values or
change the mode to manual.

___ = rticks(pax, ___) uses the axes object pax instead of the current axes.
Specify pax as the first input argument for any of the previous syntaxes.

 rticks

1-13077

Examples

Specify r-Axis Tick Values and Labels

Create a polar plot. Display tick marks and grid lines along the r-axis at the values 0.1,
0.3, and 0.5. Then, specify a label for each tick mark.

theta = linspace(0,2*pi);
rho = theta/10;
polarplot(theta,rho)
rticks([0.1 0.25 0.5])
rticklabels({'r = .1','r = .3','r = .5'})

1 Alphabetical List

1-13078

Specify Nonuniform r-Axis Tick Values

Display tick marks and grid lines along the r-axis at nonuniform values between 0 and 10.
MATLAB® labels the tick marks with the numeric values.

theta = 0:0.01:2*pi;
rho = 10*sin(2*theta);
polarplot(theta,rho)
rticks([0 4 5 6 10])

 rticks

1-13079

Increment r-Axis Tick Values by 10

Display tick marks and grid lines along the r-axis at increments of 10, starting from 0 and
ending at 50.

theta = 0:0.01:2*pi;
rho = 50*sin(2*theta);
polarplot(theta,rho)
rticks(0:10:50)

1 Alphabetical List

1-13080

Set r-Axis Tick Values Back to Default Values

Create a polar plot and specify the r-axis tick values. Then, set the r-axis tick values back
to the default values.

polarplot(1:10)
rticks([0 5 10])

rticks('auto')

 rticks

1-13081

Specify r-Axis Tick Values for Specific Polar Axes

Create polar axes and return the polar axes object pax. Ensure that rticks affects the
polar axes you just created by passing pax as the first input argument to the function.

pax = polaraxes;
rticks(pax,[0 .5 1])

1 Alphabetical List

1-13082

Remove r-Axis Tick Marks and Grid Lines

Remove the tick marks and grid lines along the r-axis by specifying the tick values as an
empty array.

polarplot(1:100)
rticks([])

 rticks

1-13083

Input Arguments
ticks — Tick values
vector of increasing values

Tick values on page 1-13085, specified as a vector of increasing values. If you do not want
tick marks along the r-axis, specify an empty vector [].
Example: rticks([0 1 2 3 4])
Example: rticks(0:10:100)

1 Alphabetical List

1-13084

Example: rticks([])

Note To specify the tick labels, use the rticklabels function.

pax — One or more polar axes
current axes (default) | single object | vector of objects

One or more polar axes, specified as a single object or a vector of objects. If you do not
specify the polar axes, then rticks uses the current axes.

Output Arguments
rt — Current tick values
vector

Current tick values, returned as a vector.

m — Current mode
'auto' | 'manual'

Current mode, returned as one of these values:

• 'auto' — Axes automatically determines the r-axis tick values.
• 'manual' — Axes uses manually specified r-axis tick values.

Definitions

Tick Values
The tick values are the locations along the r-axis where the tick marks appear. The tick
labels are the labels that you see next to each tick mark. Set the tick values using the
rticks function. Set the corresponding tick labels using the rticklabels function.

 rticks

1-13085

Algorithms
The rticks function sets and queries several axes properties related to the r-axis tick
values.

• RTick — Property that stores the r-axis tick values.
• RTickMode — Property that stores the r-axis tick value mode. When you set the r-axis

tick values, this property changes to 'manual'.

See Also
Functions
rlim | rtickangle | rtickformat | rticklabels | thetaticks

Properties
PolarAxes

Introduced in R2016b

1 Alphabetical List

1-13086

ruler2num
Convert data from specific ruler to numeric data

Syntax
num = ruler2num(data,ruler)

Description
num = ruler2num(data,ruler) converts the values in data to numeric values. The
ruler input indicates the ruler associated with data, which determines how to map the
values to the corresponding numeric values. The output num is the same size as the input
data.

Examples

Convert Date Value to Equivalent Numeric Value

Convert a date value to the equivalent numeric value in order to set the Position
property of a text object.

Create a plot with dates along the x-axis. Add a text description to the fourth data point
and return the text object.

t = datetime(2015,1,1:10);
y = [.2 .3 .5 .2 .8 .2 .3 .1 .3 .4];
plot(t,y,'-o')
txt = text(t(4),y(4),'My text');

 ruler2num

1-13087

Change the position of the text to the sixth data point by setting the Position property
of the text object. Since the Position property accepts only numeric values, convert the
datetime value at the sixth data point to the equivalent numeric value.

ax = gca;
x6 = ruler2num(t(6),ax.XAxis);
txt.Position = [x6 y(6)];

1 Alphabetical List

1-13088

Input Arguments
data — Input array
scalar | vector | matrix

Input array, specified as a scalar, vector, or matrix. If data is already numeric, then the
output num is equal to the input data.

ruler — Ruler
DatetimeRuler object | DurationRuler object | NumericRuler object

 ruler2num

1-13089

Ruler associated with the input data, specified as a DatetimeRuler, DurationRuler, or
NumericRuler object. Specify the ruler object using the XAxis, YAxis, or ZAxis
property of the Axes object. For example:

ax = gca;
num = ruler2num(data,ax.XAxis)

If you specify a NumericRuler object and the input data is not numeric, then the output
num is determined by:

num = full(double(data))

See Also
axes | datetime | duration | num2ruler

Introduced in R2016b

1 Alphabetical List

1-13090

rulerPanInteraction
Ruler-pan interaction

Description
A ruler-pan interaction allows you to pan an axis without having to select any buttons in
the axes toolbar. To enable ruler panning, set the Interactions property of the axes to
a rulerPanInteraction object. When this interaction is enabled, you can pan an axis
by dragging it.

To enable multiple interactions, set the Interactions property to an array of objects.

Creation

Syntax
rp = rulerPanInteraction
rp = rulerPanInteraction('Dimensions',d)

Description
rp = rulerPanInteraction creates a ruler-pan interaction object.

rp = rulerPanInteraction('Dimensions',d) sets the Dimensions property. Use
this property to constrain panning to a single axis or a subset of axes. For example, rp =
rulerPanInteraction('Dimensions','x') constrains panning to the x-axis.

Properties
Dimensions — Dimensions
'xyz' (default) | 'xy' | 'yz' | 'xz' | 'x' | 'y' | 'z'

Dimensions to allow panning, specified as one of these values:

 rulerPanInteraction

1-13091

• 'xyz' — Allows panning on all three axes.
• 'xy' — Allows panning on the x- and y-axes only.
• 'yz' — Allows panning on the y- and z-axes only.
• 'xz' — Allows panning on the x- and z-axes only.
• 'x' — Allows panning on the x-axis only.
• 'y' — Allows panning on the y-axis only.
• 'z' — Allows panning on the z-axis only.

Examples

Axes with Ruler Pan and Data Tip Interactions

Create a surface plot. Get the current axes and replace the default interactions with the
ruler-pan and data tip interactions. Then hover over the surface to display data tips. Drag
any axis to pan the limits.

surf(peaks)
ax = gca;
ax.Interactions = [rulerPanInteraction dataTipInteraction];

1 Alphabetical List

1-13092

Restrict Ruler Panning to X-Dimension

Create x and y values, and plot them using custom x-axis limits. Replace the default set of
interactions with a ruler-pan interaction that is restricted to the x-dimension. Then drag
the x-axis to pan. Notice that you cannot pan the y-axis.

x = linspace(-500,500,5000);
y = sin(x)./x;
plot(x,y)
xlim([-50 50])
ax = gca;
ax.Interactions = rulerPanInteraction('Dimensions','x');

 rulerPanInteraction

1-13093

Limitations
The rulerPanInteraction function is not supported in the Live Editor.

Tips
In most cases, the axes have a default set of interactions which depend on the type of
chart you are displaying. You can replace the default set with a new set of interactions,
but you cannot access or modify any of the interactions in the default set.

1 Alphabetical List

1-13094

See Also
dataTipInteraction | disableDefaultInteractivity |
enableDefaultInteractivity | panInteraction | regionZoomInteraction |
rotateInteraction | zoomInteraction

Topics
“Control Chart Interactivity”

Introduced in R2019a

 rulerPanInteraction

1-13095

run
Run MATLAB script

Syntax
run(scriptname)

Description
run(scriptname) runs the MATLAB script specified by scriptname.

Examples

Run Script Not on Current Path

Create a temporary folder that is not on your current path.

tmp = tempname;
mkdir(tmp)

Write MATLAB code to a file in the folder.

newFile = fullfile(tmp,'ANewFile.m');
fid = fopen(newFile,'w');
fprintf(fid,'Z = magic(5);\n');
fprintf(fid,'b = bar3(Z);\n');
fclose(fid);

Run the script.

run(newFile)

1 Alphabetical List

1-13096

Input Arguments
scriptname — Full or relative script path
character vector | string scalar

Full or relative script path to a MATLAB script, specified as a character vector or string
scalar. scriptname can specify any file type that MATLAB can execute, such as MATLAB
script files, Simulink models, or MEX-files.
Example: scriptname = 'myScript'
Example: scriptname = 'anotherScript.m'

 run

1-13097

Example: scriptname = 'oneMoreScript.mlx'

Tips
• run executes scripts not currently on the MATLAB path. However, you should use cd

or addpath to navigate to or to add the appropriate folder, making a script executable
by entering its name alone.

• scriptname can access any variables in the current workspace.
• run changes to the folder that contains the script, executes it, and resets back to the

original folder. If the script itself changes folders, then run does not revert to the
original folder, unless scriptname changes to the folder in which this script resides.

• If scriptname corresponds to both a .m file and a P-file residing in the same folder,
then run executes the P-file. This occurs even if you specify scriptname with a .m
extension.

• If a script is not on the MATLAB path, executing the run command caches the script.
In the same session and after calling run, you can edit the script using an external
editor. Call clear scriptname before calling run again to use the changed version
of the script rather than the cached version. If you edit the script with the MATLAB
editor, run executes the changed version and there is no need to call clear
scriptname.

See Also
addpath | cd | path | pwd

Topics
“Files and Folders that MATLAB Accesses”

Introduced before R2006a

1 Alphabetical List

1-13098

runperf
Run set of tests for performance measurement

Syntax
results = runperf
results = runperf(tests)
results = runperf(tests,Name,Value)

Description
results = runperf runs all the tests in your current folder for performance
measurements and returns an array of matlab.perftest.TimeResult objects. Each
element in results corresponds to an element in the test suite.

The performance test framework runs the tests using a variable number of measurements
to reach a sample mean with a 0.05 relative margin of error within a 0.95 confidence
level. It runs the tests four times to warm up the code, and then between 4 and 256 times
to collect measurements that meet the statistical objectives. If the sample mean does not
meet the 0.05 relative margin of error within a 0.95 confidence level after 256 test runs,
the performance test framework stops running the test and displays a warning. In this
case, the matlab.perftest.TimeResult object contains information for the 4 warm-up
runs and 256 measurement runs.

The runperf function provides a simple way to run a collection of tests as a performance
experiment.

results = runperf(tests) runs a specified set of tests.

results = runperf(tests,Name,Value) runs a set of tests with additional options
specified by one or more Name,Value pair arguments.

Examples

 runperf

1-13099

Run Script as Performance Test

In your current working folder, create a script-based test, onesTest.m, that uses three
different methods to initialize a 1000x1500 matrix of ones.

rows = 1000;
cols = 1500;

%% Ones Function
X = ones(rows,cols);

%% Loop Assignment Without Preallocation
for r = 1:rows
 for c = 1:cols
 X(r,c) = 1;
 end
end

%% Loop Assignment With Preallocation
X = zeros(rows,cols);
for r = 1:rows
 for c = 1:cols
 X(r,c) = 1;
 end
end

Run the script as a performance test. Your results might vary.

results = runperf('onesTest');

Running onesTest
..........
.......
Done onesTest

Display the results. The results variable is a 1x3 TimeResult array. Each element in
the array corresponds to one of the tests defined in the code section in onesTest.m.

results

results =

 1×3 TimeResult array with properties:

1 Alphabetical List

1-13100

 Name
 Valid
 Samples
 TestActivity

Totals:
 3 Valid, 0 Invalid.

Display the measurement results for the second test, which loops the assignment without
preallocation.

results(2)

ans =

 TimeResult with properties:

 Name: 'onesTest/LoopAssignmentWithoutPreallocation'
 Valid: 1
 Samples: [4×7 table]
 TestActivity: [8×12 table]

Totals:
 1 Valid, 0 Invalid.

Display the complete table of test measurements.

results(2).TestActivity

ans =

 8×12 table

 Name Passed Failed Incomplete MeasuredTime Objective Timestamp Host Platform Version TestResult RunIdentifier
 ___ ______ ______ __________ ____________ _________ ____________________ ___________ ________ _____________________ ________________________________ ____________________________________

 onesTest/LoopAssignmentWithoutPreallocation true false false 0.32388 warmup 05-Oct-2018 10:38:19 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d
 onesTest/LoopAssignmentWithoutPreallocation true false false 0.31146 warmup 05-Oct-2018 10:38:19 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d
 onesTest/LoopAssignmentWithoutPreallocation true false false 0.30751 warmup 05-Oct-2018 10:38:20 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d
 onesTest/LoopAssignmentWithoutPreallocation true false false 0.31201 warmup 05-Oct-2018 10:38:20 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d
 onesTest/LoopAssignmentWithoutPreallocation true false false 0.31579 sample 05-Oct-2018 10:38:20 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d
 onesTest/LoopAssignmentWithoutPreallocation true false false 0.30977 sample 05-Oct-2018 10:38:21 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d
 onesTest/LoopAssignmentWithoutPreallocation true false false 0.30909 sample 05-Oct-2018 10:38:21 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d
 onesTest/LoopAssignmentWithoutPreallocation true false false 0.30911 sample 05-Oct-2018 10:38:21 MY-HOSTNAME win64 9.6.0.966561 (R2019a) [1x1 matlab.unittest.TestResult] b05f851b-8150-4b27-afc6-6cc917a90b9d

 runperf

1-13101

The performance testing framework ran four warm-up runs, followed by four
measurements runs (indicated as sample in the Objective column).

Display the mean measured time for the second test. To exclude data collected in the
warm-up runs, use the values in the Samples field.

mean(results(2).Samples.MeasuredTime)

ans =

 0.3109

To compare the different initialization methods in the script, display the mean measured
time for all the tests. Concatenate the values from the Samples field across the three
elements in the results array. Then use varfun to group the table entries by name and
compute the mean.

fullTable = vertcat(results.Samples);
varfun(@mean,fullTable,'InputVariables','MeasuredTime','GroupingVariables','Name')

ans =

 3×3 table

 Name GroupCount mean_MeasuredTime
 ___ __________ _________________

 onesTest/OnesFunction 4 0.0084816
 onesTest/LoopAssignmentWithoutPreallocation 4 0.31094
 onesTest/LoopAssignmentWithPreallocation 37 0.025127

In the example output, the ones function was the fastest way to initialize the matrix to
ones. The performance testing framework made 45 measurement runs for this test. Your
results might vary.

Performance Tests from Select Unit Tests

In your current working folder, create a class-based test, preallocationTest.m, that
compares different methods of preallocation.

classdef preallocationTest < matlab.perftest.TestCase

1 Alphabetical List

1-13102

 methods(Test)
 function testOnes(testCase)
 x = ones(1,1e7);
 end

 function testIndexingWithVariable(testCase)
 id = 1:1e7;
 x(id) = 1;
 end

 function testIndexingOnLHS(testCase)
 x(1:1e7) = 1;
 end

 function testForLoop(testCase)
 for i=1:1e7
 x(i) = 1;
 end
 end

 end
end

The measurement boundary for the preallocationTest class is the test method. The
time measurement for each test method includes all the code in method. For information
on designating measurement boundaries, see the startMeasuring and stopMeasuring
methods of matlab.perftest.TestCase.

Run performance tests for all the elements that contain 'Indexing' in the name. Your
results might vary, and you might see a warning if runperf doesn't meet statistical
objectives.

results = runperf('preallocationTest','Name','*Indexing*')

Running preallocationTest
..........
..........
..........
..........
..
Done preallocationTest

 runperf

1-13103

results =

 1x2 MeasurementResult array with properties:

 Name
 Valid
 Samples
 TestActivity

Totals:
 2 Valid, 0 Invalid.

Display the mean measured time for each of the tests. Concatenate the values from the
Samples field across the two elements in the results array. Then use varfun to group
the table entries by name and compute the mean.

fullTable = vertcat(results.Samples);
varfun(@mean,fullTable,'InputVariables','MeasuredTime','GroupingVariables','Name')

ans =

 Name GroupCount mean_MeasuredTime
 __ __________ _________________

 preallocationTest/testIndexingWithVariable 4 0.16637
 preallocationTest/testIndexingOnLHS 30 0.076792

Input Arguments
tests — Suite of tests
character vector | cell array of character vectors

Suite of tests specified as a character vector or cell array of character vectors. Each
character vector in the cell array can contain the name of a test file, a test class, a test
suite element name, a package containing your test classes, a folder containing your test
files, or a project folder containing test files.
Example: runperf('ATestFile.m')

1 Alphabetical List

1-13104

Example: runperf('ATestFile/aTest')
Example: runperf('mypackage.MyTestClass')
Example: runperf(pwd)
Example:
runperf({'mypackage.MyTestClass','ATestFile.m',pwd,'mypackage.subpac
kage'})

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: runperf(tests,'Name','productA_*') runs test elements with a name
that starts with 'productA_'.

BaseFolder — Name of base folder
character vector

Name of the base folder that contains the file defining the test class, function, or script,
specified as a character vector. This argument filters TestSuite array elements. For a
test element to be included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character * to match any number of characters.
Use the question mark character ? to match a single character. For test files defined in
packages, the base folder is the parent of the top-level package folder.

IncludeSubfolders — Indicator to run tests in subfolders
false (default) | true | 0 | 1

Indicator to run tests in subfolders, specified as false or true (0 or 1). By default the
framework runs tests in the specified folders, but not in their subfolders.
Data Types: logical

IncludeSubpackages — Indicator to run tests in subpackages
false (default) | true | 0 | 1

Indicator to run tests in subpackages, specified as false or true (0 or 1). By default the
framework runs tests in the specified packages, but not in their subpackages.

 runperf

1-13105

Data Types: logical

Name — Name of suite element
character vector

Name of the suite element, specified as a character vector. This argument filters
TestSuite array elements. For the testing framework to run a test, the Name property of
the test element must match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to match a single
character.

ParameterName — Name of parameter
character vector

Name of a parameter used by the test suite element, specified as a character vector. This
argument filters TestSuite array elements. Use the wildcard character * to match any
number of characters. Use the question mark character ? to match a single character.

ParameterProperty — Name of parameterization property
character vector

Name of a parameterization property used by the test suite element, specified as a
character vector. This argument filters TestSuite array elements. Use the wildcard
character * to match any number of characters. Use the question mark character ? to
match to a single character.

ProcedureName — Name of the test procedure in the test
character vector

Name of test procedure, specified as a character vector. This argument filters TestSuite
array elements. Use the wildcard character, *, to match any number of characters. Use
the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass — Name of a class that the test class derives from
character vector | string scalar

1 Alphabetical List

1-13106

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag — Name of test element tag
character vector | string scalar

Name of test element tag, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character * to match any number of
characters. Use the question mark character ? to match a single character.

Tips
• To customize the statistical objectives of the performance test, use the

TimeExperiment class to construct and run the performance test.

Alternatives
To create a test suite explicitly, you can use the testsuite function or the
matlab.unittest.TestSuite methods to create a suite. Then, you can run your
performance test with the run method of your specified TimeExperiment.

See Also
matlab.perftest.FrequentistTimeExperiment |
matlab.unittest.measurement.MeasurementResult | runtests

Topics
“Overview of Performance Testing Framework”

Introduced in R2016a

 runperf

1-13107

runtests
Run set of tests

Syntax
results = runtests
results = runtests(tests)
results = runtests(tests,Name,Value)

Description
results = runtests runs all the tests in your current folder, and returns the results as
a TestResult object.

results = runtests(tests) runs a specified set of tests.

results = runtests(tests,Name,Value) runs a set of tests with additional options
specified by one or more Name,Value pair arguments.

Examples

Run Tests in Working Folder

Create a folder myExample in your current working folder, and change into that folder.

In the myExample folder, create a test script, typeTest.m.

%% Test double class
exp = 'double';
act = ones;
assert(isa(act,exp))

%% Test single class

1 Alphabetical List

1-13108

exp = 'single';
act = ones('single');
assert(isa(act,exp))

%% Test uint16 class
exp = 'uint16';
act = ones('uint16');
assert(isa(act,exp))

In the myExample folder, create a test script, sizeValueTest.m.

%% Test size
exp = [7 13];
act = ones([7 13]);
assert(isequal(size(act),exp))

%% Test values
act = ones(42);
assert(unique(act) == 1)

Run all tests in the current folder.

runtests

Running sizeValueTest
..
Done sizeValueTest

Running typeTest
...
Done typeTest

ans =

 1x5 TestResult array with properties:

 Name
 Passed
 Failed

 runtests

1-13109

 Incomplete
 Duration
 Details

Totals:
 5 Passed, 0 Failed, 0 Incomplete.
 0.038077 seconds testing time.

MATLAB® ran 5 tests. There are 2 passing tests from sizeValueTest and 3 passing
tests from typeTest.

Run Tests Using File Name

Create the test file shown below, and save it as runtestsExampleTest.m on your
MATLAB path.

function tests = runtestsExampleTest
tests = functiontests(localfunctions);

function testFunctionOne(testCase)

Run the tests.

results = runtests('runtestsExampleTest.m');

Running runtestsExampleTest
.
Done runtestsExampleTest

Run Tests in Subfolder

If it does not exist, create the test file, runtestsExampleTest.m, in the example above.

Create a subfolder, tmpTest, and, in that folder, create the following
runtestsExampleSubFolderTest.m file.

1 Alphabetical List

1-13110

function tests = runtestsExampleSubFolderTest
tests = functiontests(localfunctions);

function testFunctionTwo(testCase)

Run the tests from the folder above tmpTest by setting 'IncludeSubfolders' to true.

results = runtests(pwd,'IncludeSubfolders',true);

Running runtestsExampleTest
.
Done runtestsExampleTest

Running runtestsExampleSubFolderTest
.
Done runtestsExampleSubFolderTest

runtests ran the tests in both the current folder and the subfolder.

If you do not specify the 'IncludeSubfolders' property for the runtests function, it
does not run the test in the subfolder.

results = runtests(pwd);

Running runtestsExampleTest
.
Done runtestsExampleTest

Run Tests in Parallel

Create the following test file, and save it as runInParallelTest.m on your MATLAB
path.

function tests = runInParallelTest
tests = functiontests(localfunctions);

function testA(testCase)
verifyEqual(testCase,5,5);

function testB(testCase)

 runtests

1-13111

verifyTrue(testCase,logical(1));

function testC(testCase)
verifySubstring(testCase,'SomeLongText','Long');

function testD(testCase)
verifySize(testCase,ones(2,5,3),[2 5 3]);

function testE(testCase)
verifyGreaterThan(testCase,3,2);

function testF(testCase)
verifyEmpty(testCase,{},'Cell array is not empty.');

function testG(testCase)
verifyMatches(testCase,'Some Text','Some [Tt]ext');

Run the tests in parallel. Running tests in parallel requires the Parallel Computing
Toolbox. The testing framework might vary the order and number of groups or which
tests it includes in each group.

results = runtests('runInParallelTest','UseParallel',true);

Split tests into 7 groups and running them on 4 workers.

Finished Group 2

Running runInParallelTest
.
Done runInParallelTest

Finished Group 3

Running runInParallelTest
.
Done runInParallelTest

Finished Group 1

1 Alphabetical List

1-13112

Running runInParallelTest
.
Done runInParallelTest

Finished Group 4

Running runInParallelTest
.
Done runInParallelTest

Finished Group 6

Running runInParallelTest
.
Done runInParallelTest

Finished Group 5

Running runInParallelTest
.
Done runInParallelTest

Finished Group 7

Running runInParallelTest
.
Done runInParallelTest

 runtests

1-13113

Run Select Parameterized Tests

In your working folder, create testZeros.m. This class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The full test suite has 11 test elements: 6 from the testClass method, 2 from the
testSize method, and 1 each from the testDefaultClass, testDefaultSize, and
testDefaultValue methods.

At the command prompt, run all the parameterizations for the testSize method.

runtests('testZeros/testSize')

Running testZeros
..
Done testZeros

1 Alphabetical List

1-13114

ans =

 1x2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 0.048743 seconds testing time.

The runtests function executed the two parameterized tests from the testSize
method. Alternatively, you can specify the test procedure name with
runtests('testZeros','ProcedureName','testSize').

Run the test elements that use the outSize parameter property.

runtests('testZeros','ParameterProperty','outSize')

Running testZeros
........
Done testZeros

ans =

 1x8 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:

 runtests

1-13115

 8 Passed, 0 Failed, 0 Incomplete.
 0.071546 seconds testing time.

The runtests function executed eight tests that use the outSize parameter property:
six from the testClass method and two from the testSize method.

Run the test elements that use the single parameter name.

runtests('testZeros','ParameterName','single')

Running testZeros
..
Done testZeros

ans =

 1x2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 0.0086079 seconds testing time.

The runtests function executed the two tests from the testClass method that use the
outSize parameter name.

Input Arguments
tests — Array of tests
character vector | cell array of character vectors

Suite of tests specified as a character vector or cell array of character vectors. Each
character vector in the cell array can contain the name of a test file, a test class, a test

1 Alphabetical List

1-13116

suite element name, a package containing your test classes, a folder containing your test
files, or a project folder containing test files.
Example: runtests('ATestFile.m')
Example: runtests('ATestFile/aTest')
Example: runtests('mypackage.MyTestClass')
Example: runtests(pwd)
Example:
runtests({'mypackage.MyTestClass','ATestFile.m',pwd,'mypackage.subpa
ckage'})

Example: runtests('C:/projects/project1/')

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: runtests(tests,'Name','productA_*') runs test elements with a name
that starts with 'productA_'.

BaseFolder — Name of base folder
character vector

Name of the base folder that contains the file defining the test class, function, or script,
specified as a character vector. This argument filters TestSuite array elements. For a
test element to be included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character * to match any number of characters.
Use the question mark character ? to match a single character. For test files defined in
packages, the base folder is the parent of the top-level package folder.

Debug — Indicator to apply debugging capabilities
false (default) | true | 0 | 1

Indicator to apply debugging capabilities when running tests, specified as false or
true (0 or 1). For example, if a test failure is encountered, the framework pauses test
execution to enter debug mode.
Data Types: logical

 runtests

1-13117

IncludeSubfolders — Indicator to run tests in subfolders
false (default) | true | 0 | 1

Indicator to run tests in subfolders, specified as false or true (0 or 1). By default the
framework runs tests in the specified folders, but not in their subfolders.
Data Types: logical

IncludeSubpackages — Indicator to run tests in subpackages
false (default) | true | 0 | 1

Indicator to run tests in subpackages, specified as false or true (0 or 1). By default the
framework runs tests in the specified packages, but not in their subpackages.
Data Types: logical

IncludeReferenceProjects — Indicator to include tests from referenced
projects
false (default) | true | 0 | 1

Indicator to include tests from referenced projects, specified as logical false or true.
For more information on referenced projects, see “Componentize Large Projects”.
Data Types: logical

LoggingLevel — Maximum verbosity level for logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration

Maximum verbosity level for logged diagnostics included for the test run, specified as an
integer value from 0 through 4, or as a matlab.unittest.Verbosity enumeration
object. The runtests function includes diagnostics that are logged at this level and
below. Integer values correspond to the members of the matlab.unittest.Verbosity
enumeration.

By default runtests includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

1 Alphabetical List

1-13118

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

OutputDetail — Display level for event details
3 (default) | 0 | 1 | 2 | 4 | matlab.unittest.Verbosity enumeration

Display level for event details, specified as an integer value from 0 through 4, or as a
matlab.unittest.Verbosity enumeration object. Integer values correspond to the
members of the matlab.unittest.Verbosity enumeration.

The runtests function displays failing and logged events with the amount of detail
specified by OutputDetail. By default the runtests displays events at the
matlab.unittest.Verbosity.Detailed level (level 3).

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

Name — Name of suite element
character vector

Name of the suite element, specified as a character vector. This argument filters
TestSuite array elements. For the testing framework to run a test, the Name property of
the test element must match the specified name. Use the wildcard character, *, to match

 runtests

1-13119

any number of characters. Use the question mark character, ?, to match a single
character.

ParameterName — Name of parameter
character vector

Name of a parameter used by the test suite element, specified as a character vector. This
argument filters TestSuite array elements. Use the wildcard character * to match any
number of characters. Use the question mark character ? to match a single character.

ParameterProperty — Name of parameterization property
character vector

Name of a parameterization property used by the test suite element, specified as a
character vector. This argument filters TestSuite array elements. Use the wildcard
character * to match any number of characters. Use the question mark character ? to
match to a single character.

ProcedureName — Name of the test procedure in the test
character vector

Name of test procedure, specified as a character vector. This argument filters TestSuite
array elements. Use the wildcard character, *, to match any number of characters. Use
the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

ReportCoverageFor — Path to source code to include in code coverage report
path to file or folder

Path to source code to include in code coverage report, specified as a character vector,
string array, or cell array of character vectors. Using this option with runtests runs the
specified tests and produces a code coverage report for the specified code files. The
report shows which lines in the source code were executed by the tests.

The source code can be an absolute or relative path to one or more folders or to files that
have a .m or .mlx extension.
Example: runtests(tests,'ReportCoverageFor','mySource.m')

1 Alphabetical List

1-13120

Data Types: char | string | cell

Strict — Indicator to apply strict checks
false (default) | true | 0 | 1

Indicator to apply strict checks when running tests, specified as false or true (0 or 1).
For example, the framework generates a qualification failure if a test issues a warning.
Data Types: logical

Superclass — Name of a class that the test class derives from
character vector | string scalar

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag — Name of test element tag
character vector | string scalar

Name of test element tag, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character * to match any number of
characters. Use the question mark character ? to match a single character.

UseParallel — Indicator to run tests in parallel
false (default) | true | 0 | 1

Indicator to run tests in parallel, specified as false or true (0 or 1). By default
runtests runs tests in serial. If you set UseParallel to true, the runtests function
divides the test suite into separate groups and runs the groups in parallel if:

• The Parallel Computing Toolbox is installed.
• An open parallel pool exists or automatic pool creation is enabled in the Parallel

Preferences.

Otherwise, runtests runs tests in serial regardless of the value for UseParallel.

Note Running tests in parallel requires the Parallel Computing Toolbox. The testing
framework might vary the order and number of groups or which tests it includes in each
group.

Testing in parallel might not be compatible with other options. For example, testing
occurs in serial if 'UseParallel' and 'Debug' are both set to true.

 runtests

1-13121

Data Types: logical

See Also
functiontests | matlab.unittest.TestResult | matlab.unittest.TestRunner
| matlab.unittest.TestSuite

Topics
“Write Function-Based Unit Tests”
“Write Simple Test Case Using Functions”
“Write Test Using Setup and Teardown Functions”

Introduced in R2013b

1 Alphabetical List

1-13122

Surface Properties
Chart surface appearance and behavior

Description
Surface properties control the appearance and behavior of Surface objects. By
changing property values, you can modify certain aspects of the surface chart.

Starting in R2014b, you can use dot notation to query and set properties.

h = surf(...);
c = h.CData;
h.CDataMapping = 'direct';

If you are using an earlier release, use the get and set functions instead.

Properties
Faces

FaceColor — Face color
'flat' (default) | 'interp' | 'none' | 'texturemap' | RGB triplet | hexadecimal color
code | 'r' | 'g' | 'b' | ...

Face color, specified as one of the values in this table.

 Surface Properties

1-13123

Value Description
'flat' Use a different color for each face based on

the values in the CData property. First you
must specify the CData property as a
matrix the same size as ZData. The color
value at the first vertex of each face (in the
positive x and y directions) determines the
color for the entire face. You cannot use
this value when the FaceAlpha property is
set to 'interp'.

1 Alphabetical List

1-13124

Value Description
'interp' Use interpolated coloring for each face

based on the values in the CData property.
First you must specify the CData property
as a matrix the same size as ZData. The
color varies across each face by
interpolating the color values at the
vertices. You cannot use this value when
the FaceAlpha property is set to 'flat'.

RGB triplet, hexadecimal color code, or
color name

Use the specified color for all the faces.
This option does not use the color values in
the CData property.

'texturemap' Transform the color data in CData so that it
conforms to the surface.

'none' Do not draw the faces.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

 Surface Properties

1-13125

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-13126

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1] | 'flat' | 'interp' | 'texturemap'

Face transparency, specified as one of these values:

• Scalar in range [0,1] — Use uniform transparency across all the faces. A value of 1 is
fully opaque and 0 is completely transparent. Values between 0 and 1 are
semitransparent. This option does not use the transparency values in the AlphaData
property.

• 'flat' — Use a different transparency for each face based on the values in the
AlphaData property. The transparency value at the first vertex determines the
transparency for the entire face. First you must specify the AlphaData property as a
matrix the same size as the ZData property. The FaceColor property also must be set
to 'flat'.

• 'interp' — Use interpolated transparency for each face based on the values in
AlphaData property. The transparency varies across each face by interpolating the
values at the vertices. First you must specify the AlphaData property as a matrix the
same size as the ZData property. The FaceColor property also must be set to
'interp'.

• 'texturemap' — Transform the data in AlphaData so that it conforms to the
surface.

FaceLighting — Effect of light objects on faces
'flat' (default) | 'gouraud' | 'none'

Effect of light objects on faces, specified as one of these values:

• 'flat' — Apply light uniformly across each face. Use this value to view faceted
objects.

• 'gouraud' — Vary the light across the faces. Calculate the light at the vertices and
then linearly interpolate the light across the faces. Use this value to view curved
surfaces.

• 'none' — Do not apply light from light objects to the faces.

To add a light object to the axes, use the light function.

Note The 'phong' value has been removed. Use 'gouraud' instead.

 Surface Properties

1-13127

BackFaceLighting — Face lighting when normals point away from camera
'reverselit' (default) | 'unlit' | 'lit'

Face lighting when the vertex normals point away from camera, specified as one of these
values:

• 'reverselit' — Light the face as if the vertex normal pointed towards the camera.
• 'unlit' — Do not light the face.
• 'lit' — Light the face according to the vertex normal.

Use this property to discriminate between the internal and external surfaces of an object.
For an example, see “Back Face Lighting”.

Edges

MeshStyle — Edges to display
'both' (default) | 'row' | 'column'

Edges to display, specified as 'both', 'row', or 'column'.

EdgeColor — Edge line color
[0 0 0] (default) | 'none' | 'flat' | 'interp' | RGB triplet | hexadecimal color code |
'r' | 'g' | 'b' | ...

Edge line color, specified as one of the values listed here. The default color of [0 0 0]
corresponds to black edges.

Value Description
'none' Do not draw the edges.

1 Alphabetical List

1-13128

Value Description
'flat' Use a different color for each edge based

on the values in the CData property. First
you must specify the CData property as a
matrix the same size as ZData. The color
value at the first vertex of each face (in the
positive x and y directions) determines the
color for the adjacent edges. You cannot
use this value when the EdgeAlpha
property is set to 'interp'.

 Surface Properties

1-13129

Value Description
'interp' Use interpolated coloring for each edge

based on the values in the CData property.
First you must specify the CData property
as a matrix the same size as ZData. The
color varies across each edge by linearly
interpolating the color values at the
vertices. You cannot use this value when
the EdgeAlpha property is set to 'flat'.

RGB triplet, hexadecimal color code, or
color name

Use the specified color for all the edges.
This option does not use the color values in
the CData property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-13130

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

EdgeAlpha — Edge transparency
1 (default) | scalar value in range[0,1] | 'flat' | 'interp'

Edge transparency, specified as one of these values:

 Surface Properties

1-13131

• Scalar in range [0,1] — Use uniform transparency across all of the edges. A value of
1 is fully opaque and 0 is completely transparent. Values between 0 and 1 are
semitransparent. This option does not use the transparency values in the AlphaData
property.

• 'flat' — Use a different transparency for each edge based on the values in the
AlphaData property. First you must specify the AlphaData property as a matrix the
same size as the ZData property. The transparency value at the first vertex determines
the transparency for the entire edge. The EdgeColor property also must be set to
'flat'.

• 'interp' — Use interpolated transparency for each edge based on the values in
AlphaData property. First you must specify the AlphaData property as a matrix the
same size as the ZData property. The transparency varies across each edge by
interpolating the values at the vertices. The EdgeColor property also must be set to
'interp'.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

1 Alphabetical List

1-13132

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

EdgeLighting — Effect of light objects on edges
'none' (default) | 'flat' | 'gouraud'

Effect of light objects on edges, specified as one of these values:

• 'flat' — Apply light uniformly across the each edges.
• 'none' — Do not apply lights from light objects to the edges.
• 'gouraud' — Calculate the light at the vertices, and then linearly interpolate across

the edges.

Note The 'phong' value has been removed. Use 'gouraud' instead.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

 Surface Properties

1-13133

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | 'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Marker outline color, specified as 'auto', 'flat', an RGB triplet, a hexadecimal color
code, a color name, or a short name. The 'auto' option uses the same color as the
EdgeColor property. The 'flat' option uses the CData value at the vertex to set the
color.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

1 Alphabetical List

1-13134

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | 'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

 Surface Properties

1-13135

Marker fill color, specified as 'auto', 'flat', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The 'auto' option uses the same color as the Color
property for the axes. The 'flat' option uses the CData value of the vertex to set the
color.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'

1 Alphabetical List

1-13136

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

This property affects only the circle, square, diamond, pentagram, hexagram, and the four
triangle marker types.
Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Coordinate Data

XData — x-coordinate data
matrix | vector

x-coordinate data specified as a matrix that is the same size as ZData or as a vector of
length n, where [m,n] = size(ZData).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataMode — Selection mode for XData
'auto' | 'manual'

Selection mode for XData, specified as one of these values:

• 'auto' — Use the column indices of ZData..
• 'manual' — Use manually specified values. To specify the values, use an input

argument to the plotting function or directly set the XData property.

XDataSource — Variable linked to XData
'' (default) | character vector | string

 Surface Properties

1-13137

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y-coordinate data
matrix | vector

y-coordinate data, specified as a matrix that is the same size as ZData or a vector of
length m, where [m,n] = size(ZData).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataMode — Selection mode for YData
'auto' | 'manual'

Selection mode for YData, specified as one of these values:

• 'auto' — Use the row indices of ZData.
• 'manual' — Use manually specified values. To specify the values, use an input

argument to the plotting function or directly set the YData property.

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

1 Alphabetical List

1-13138

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

ZData — z-coordinate data
matrix

z-coordinate data, specified as a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ZDataSource — Variable linked to ZData
'' (default) | character vector | string

Variable linked to ZData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

Color and Transparency Data

CData — Vertex colors
2-D or 3-D array

 Surface Properties

1-13139

Vertex colors, specified in one of these forms:

• 2-D array — Use colormap colors. Specify a color for each vertex by setting CData to
an array the same size as ZData. The CDataMapping property determines how these
values map into the current colormap. If the FaceColor property is set to
'texturemap', then CData does not need to be the same size as ZData. However, it
must be of type double or uint8. The CData values map to conform to the surface
defined by ZData.

• 3-D array — Use true colors. Specify an RGB triplet color for each vertex by setting
CData to an m-by-n-by-3 array where [m,n] = size(ZData). An RGB triplet is a
three-element vector that specifies the intensities of the red, green, and blue
components of a color. The first page of the array contains the red components, the
second the green components, and the third the blue components of the colors. Since
the surface uses true colors instead of colormap colors, the CDataMapping property
has no effect.

• If CData is of type double or single, then an RGB triplet value of [0 0 0]
corresponds to black and [1 1 1] corresponds to white.

• If CData is an integer type, then the surface uses the full range of data to
determine the color. For example, if CData is of type uint8, then [0 0 0]
corresponds to black and [255 255 255] corresponds to white. If CData is of
type int8, then [-128 -128 -128] corresponds to black and [127 127 127]
corresponds to white.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

CDataMode — Selection mode for CData
'auto' (default) | 'manual'

Selection mode for CData, specified as one of these values:

• 'auto' — Use the ZData values to set the colors.
• 'manual' — Use manually specified values. To specify the values, set the CData

property.

CDataSource — Variable linked to CData
'' | character vector | string

1 Alphabetical List

1-13140

Variable linked to CData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the CData.

By default, there is no linked variable, so the value is an empty character vector, ''. If
you link a variable, then MATLAB does not update the CData values immediately. To force
an update of the values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, then you might cause the function to generate a warning and not
render the graph until you have changed all data source properties to appropriate values.

CDataMapping — Color mapping method
'scaled' (default) | 'direct'

Color mapping method, specified as 'scaled' or 'direct'. Use this property to control
the mapping of color data values in CData into the colormap.

The methods have these effects:

• 'direct' — Interpret the values as indices into the current colormap. Values with a
decimal portion are fixed to the nearest lower integer.

• If the values are of type double or single, then values of 1 or less map to the first
color in the colormap. Values equal to or greater than the length of the colormap
map to the last color in the colormap.

• If the values are of type uint8, uint16, uint32, uint64 , int8, int16, int32,
or int64, then values of 0 or less map to the first color in the colormap. Values
equal to or greater than the length of the colormap map to the last color in the
colormap (or up to the range limits of the type).

• If the values are of type logical, then values of 0 map to the first color in the
colormap and values of 1 map to the second color in the colormap.

• 'scaled' — Scale the values to range between the minimum and maximum color
limits. The CLim property of the axes contains the color limits.

AlphaData — Transparency data
1 (default) | array same size as ZData

Transparency data for each vertex, specified as an array the same size as the ZData
property. After specifying the values, set the FaceAlpha and EdgeAlpha properties to

 Surface Properties

1-13141

control the type of transparency. If the FaceAlpha and EdgeAlpha properties are both
set to scalar values, then the surface does not use the AlphaData values.

The AlphaDataMapping property determines how the surface interprets the AlphaData
property values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

AlphaDataMapping — Interpretation of AlphaData values
'scaled' (default) | 'direct' | 'none'

Interpretation of AlphaData values, specified as one of these values:

• 'none' — Interpret the values as transparency values. A value of 1 or greater is
completely opaque, a value of 0 or less is completely transparent, and a value between
0 and 1 is semitransparent.

• 'scaled' — Map the values into the figure’s alphamap. The minimum and maximum
alpha limits of the axes determine the AlphaData values that map to the first and last
elements in the alphamap, respectively. For example, if the alpha limits are [3 5],
then values of 3 or less map to the first element in the alphamap. Values of 5 or
greater map to the last element in the alphamap. The ALim property of the axes
contains the alpha limits. The Alphamap property of the figure contains the alphamap.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Values with a
decimal portion are fixed to the nearest lower integer.

• If the values are of type double or single, then values of 1 or less map to the first
element in the alphamap. Values equal to or greater than the length of the
alphamap map to the last element in the alphamap.

• If the values are of integer type, then values of 0 or less map to the first element in
the alphamap. Values equal to or greater than the length of the alphamap map to
the last element in the alphamap (or up to the range limits of the type). The integer
types are uint8, uint16, uint32, uint64 , int8, int16, int32, and int64.

• If the values are of type logical, then values of 0 map to the first element in the
alphamap and values of 1 map to the second element in the alphamap.

Normals

VertexNormals — Normal vectors for each surface vertex
[] (default) | m-by-n-by-3 array

1 Alphabetical List

1-13142

Normal vectors for each surface vertex, specified as a m-by-n-by-3 array, where [m,n] =
size(ZData). Specify one normal vector per vertex.

Specifying values for this property sets the associated mode to manual. If you do not
specify normal vectors, then the surface generates this data for lighting calculations.
Data Types: single | double

VertexNormalsMode — Selection mode for VertexNormals
'auto' (default) | 'manual'

Selection mode for VertexNormals, specified as one of these values:

• 'auto' — Calculate the normal vectors based on the coordinate data.
• 'manual' — Use manually specified values. To specify the values, set the

VertexNormals property.

FaceNormals — Normal vectors for each surface face
[] (default) | (m-1)-by-(n-1)-by-3 array

Normal vectors for each surface face, specified as a (m-1)-by-(n-1)-by-3 array, where
[m,n] = size(ZData). Specify one normal vector per face.

Specifying values for this property sets the associated mode to manual. If you do not
specify normal vectors, then the surface generates this data for lighting calculations.
Data Types: single | double

FaceNormalsMode — Selection mode for FaceNormals
'auto' (default) | 'manual'

Selection mode for FaceNormals, specified as one of these values:

• 'auto' — Calculate the normal vectors based on the coordinate data.
• 'manual' — Use manually specified values. To specify the values, set the

FaceNormals property.

Lighting

AmbientStrength — Strength of ambient light
0.3 (default) | scalar in range [0,1]

 Surface Properties

1-13143

Strength of ambient light, specified as a scalar value in the range [0,1]. Ambient light is
a nondirectional light that illuminates the entire scene. There must be at least one visible
light object in the axes for the ambient light to be visible.

The AmbientLightColor property for the axes sets the color of the ambient light. The
color is the same for all objects in the axes.
Example: 0.5
Data Types: double

DiffuseStrength — Strength of diffuse light
0.6 (default) | scalar in range [0,1]

Strength of diffuse light, specified as a scalar value in the range [0,1]. Diffuse light is
the nonspecular reflectance from light objects in the axes.
Example: 0.3
Data Types: double

SpecularStrength — Strength of specular reflection
0.9 (default) | scalar in range [0,1]

Strength of specular reflection, specified as a scalar value in the range [0,1]. Specular
reflections are the bright spots on the surface from light objects in the axes.
Example: 0.3
Data Types: double

SpecularExponent — Size of specular spot
10 (default) | scalar greater than or equal to 1

Size of specular spot, specified as a scalar value greater than or equal to 1. Most
materials have exponents in the range [5 20].
Example: 7
Data Types: double

SpecularColorReflectance — Color of specular reflections
1 (default) | scalar in range [0,1]

Color of specular reflections, specified as a scalar value in the range [0,1]. A value of 1
sets the color using only the color of the light source. A value of 0 sets the color using

1 Alphabetical List

1-13144

both the color of the object from which it reflects and the color of the light source. The
Color property of the light contains the color of the light source. The proportions vary
linearly for values in between.
Example: 0.5
Data Types: double

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

 Surface Properties

1-13145

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content
that appears in a data tip by modifying the properties of the underlying
DataTipTemplate object. For a list of properties, see DataTipTemplate.

For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is
not copied by copyobj.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

1 Alphabetical List

1-13146

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

 Surface Properties

1-13147

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.

1 Alphabetical List

1-13148

• Cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.

 Surface Properties

1-13149

MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

1 Alphabetical List

1-13150

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Surface object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Surface object responds to
the click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the Surface object that has no color.
The HitTest property determines if the Surface object responds to the click or if an
ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Surface object passes the click
through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Surface object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Surface object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Surface object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

 Surface Properties

1-13151

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties

1 Alphabetical List

1-13152

cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'surface'

This property is read-only.

Type of graphics object, returned as 'surface'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
mesh | meshc | meshz | surf | surfc

Topics
“Access Property Values”
“Graphics Object Properties”

 Surface Properties

1-13153

Introduced before R2006a

1 Alphabetical List

1-13154

Surface Properties
Primitive surface appearance and behavior

Description
Surface properties control the appearance and behavior of Surface objects. By
changing property values, you can modify certain aspects of the surface chart.

Starting in R2014b, you can use dot notation to query and set properties.

s = surface;
c = s.CData;
s.CDataMapping = 'direct';

If you are using an earlier release, use the get and set functions instead.

Properties
Faces

FaceColor — Face color
'flat' (default) | 'interp' | 'none' | 'texturemap' | RGB triplet | hexadecimal color
code | 'r' | 'g' | 'b' | ...

Face color, specified as one of the values in this table.

 Surface Properties

1-13155

Value Description
'flat' Use a different color for each face based on

the values in the CData property. First you
must specify the CData property as a
matrix the same size as ZData. The color
value at the first vertex of each face (in the
positive x and y directions) determines the
color for the entire face. You cannot use
this value when the FaceAlpha property is
set to 'interp'.

1 Alphabetical List

1-13156

Value Description
'interp' Use interpolated coloring for each face

based on the values in the CData property.
First you must specify the CData property
as a matrix the same size as ZData. The
color varies across each face by
interpolating the color values at the
vertices. You cannot use this value when
the FaceAlpha property is set to 'flat'.

RGB triplet, hexadecimal color code, or
color name

Use the specified color for all the faces.
This option does not use the color values in
the CData property.

'texturemap' Transform the color data in CData so that it
conforms to the surface.

'none' Do not draw the faces.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

 Surface Properties

1-13157

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-13158

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1] | 'flat' | 'interp' | 'texturemap'

Face transparency, specified as one of these values:

• Scalar in range [0,1] — Use uniform transparency across all the faces. A value of 1 is
fully opaque and 0 is completely transparent. Values between 0 and 1 are
semitransparent. This option does not use the transparency values in the AlphaData
property.

• 'flat' — Use a different transparency for each face based on the values in the
AlphaData property. The transparency value at the first vertex determines the
transparency for the entire face. First you must specify the AlphaData property as a
matrix the same size as the ZData property. The FaceColor property also must be set
to 'flat'.

• 'interp' — Use interpolated transparency for each face based on the values in
AlphaData property. The transparency varies across each face by interpolating the
values at the vertices. First you must specify the AlphaData property as a matrix the
same size as the ZData property. The FaceColor property also must be set to
'interp'.

• 'texturemap' — Transform the data in AlphaData so that it conforms to the
surface.

FaceLighting — Effect of light objects on faces
'flat' (default) | 'gouraud' | 'none'

Effect of light objects on faces, specified as one of these values:

• 'flat' — Apply light uniformly across each face. Use this value to view faceted
objects.

• 'gouraud' — Vary the light across the faces. Calculate the light at the vertices and
then linearly interpolate the light across the faces. Use this value to view curved
surfaces.

• 'none' — Do not apply light from light objects to the faces.

To add a light object to the axes, use the light function.

Note The 'phong' value has been removed. Use 'gouraud' instead.

 Surface Properties

1-13159

BackFaceLighting — Face lighting when normals point away from camera
'reverselit' (default) | 'unlit' | 'lit'

Face lighting when the vertex normals point away from camera, specified as one of these
values:

• 'reverselit' — Light the face as if the vertex normal pointed towards the camera.
• 'unlit' — Do not light the face.
• 'lit' — Light the face according to the vertex normal.

Use this property to discriminate between the internal and external surfaces of an object.
For an example, see “Back Face Lighting”.

Edges

MeshStyle — Edges to display
'both' (default) | 'row' | 'column'

Edges to display, specified as 'both', 'row', or 'column'.

EdgeColor — Edge line color
[0 0 0] (default) | 'none' | 'flat' | 'interp' | RGB triplet | hexadecimal color code |
'r' | 'g' | 'b' | ...

Edge line color, specified as one of the values listed here. The default color of [0 0 0]
corresponds to black edges.

Value Description
'none' Do not draw the edges.

1 Alphabetical List

1-13160

Value Description
'flat' Use a different color for each edge based

on the values in the CData property. First
you must specify the CData property as a
matrix the same size as ZData. The color
value at the first vertex of each face (in the
positive x and y directions) determines the
color for the adjacent edges. You cannot
use this value when the EdgeAlpha
property is set to 'interp'.

 Surface Properties

1-13161

Value Description
'interp' Use interpolated coloring for each edge

based on the values in the CData property.
First you must specify the CData property
as a matrix the same size as ZData. The
color varies across each edge by linearly
interpolating the color values at the
vertices. You cannot use this value when
the EdgeAlpha property is set to 'flat'.

RGB triplet, hexadecimal color code, or
color name

Use the specified color for all the edges.
This option does not use the color values in
the CData property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-13162

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

EdgeAlpha — Edge transparency
1 (default) | scalar value in range[0,1] | 'flat' | 'interp'

Edge transparency, specified as one of these values:

 Surface Properties

1-13163

• Scalar in range [0,1] — Use uniform transparency across all of the edges. A value of
1 is fully opaque and 0 is completely transparent. Values between 0 and 1 are
semitransparent. This option does not use the transparency values in the AlphaData
property.

• 'flat' — Use a different transparency for each edge based on the values in the
AlphaData property. First you must specify the AlphaData property as a matrix the
same size as the ZData property. The transparency value at the first vertex determines
the transparency for the entire edge. The EdgeColor property also must be set to
'flat'.

• 'interp' — Use interpolated transparency for each edge based on the values in
AlphaData property. First you must specify the AlphaData property as a matrix the
same size as the ZData property. The transparency varies across each edge by
interpolating the values at the vertices. The EdgeColor property also must be set to
'interp'.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

AlignVertexCenters — Sharp vertical and horizontal lines
'off' (default) | 'on'

Sharp vertical and horizontal lines, specified as 'off' or 'on'.

1 Alphabetical List

1-13164

If the associated figure has a GraphicsSmoothing property set to 'on' and a
Renderer property set to 'opengl', then the figure applies a smoothing technique to
plots. In some cases, this smoothing technique can cause vertical and horizontal lines to
appear uneven in thickness or color. Use the AlignVertexCenters property to
eliminate the uneven appearance.

• 'off' — Do not sharpen vertical or horizontal lines. The lines might appear uneven in
thickness or color.

• 'on' — Sharpen vertical and horizontal lines to eliminate an uneven appearance.

Note You must have a graphics card that supports this feature. To see if the feature is
supported, call the rendererinfo function. If it is supported, rendererinfo returns
value of 1 for info.Details.SupportsAlignVertexCenters.

EdgeLighting — Effect of light objects on edges
'none' (default) | 'flat' | 'gouraud'

Effect of light objects on edges, specified as one of these values:

• 'flat' — Apply light uniformly across the each edges.
• 'none' — Do not apply lights from light objects to the edges.
• 'gouraud' — Calculate the light at the vertices, and then linearly interpolate across

the edges.

Note The 'phong' value has been removed. Use 'gouraud' instead.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

 Surface Properties

1-13165

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | 'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Marker outline color, specified as 'auto', 'flat', an RGB triplet, a hexadecimal color
code, a color name, or a short name. The 'auto' option uses the same color as the
EdgeColor property. The 'flat' option uses the CData value at the vertex to set the
color.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

1 Alphabetical List

1-13166

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | 'flat' | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

 Surface Properties

1-13167

Marker fill color, specified as 'auto', 'flat', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The 'auto' option uses the same color as the Color
property for the axes. The 'flat' option uses the CData value of the vertex to set the
color.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'

1 Alphabetical List

1-13168

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

This property affects only the circle, square, diamond, pentagram, hexagram, and the four
triangle marker types.
Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Coordinate Data

XData — x-coordinate data
vector or matrix

x-coordinate data specified as a matrix that is the same size as ZData or a vector of
length(n), where [m,n] = size(ZData).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataMode — Selection mode for XData
'auto' | 'manual'

Selection mode for XData, specified as one of these values:

• 'auto' — Use the column indices of ZData.
• 'manual' — Use manually specified value. To specify the value, pass an input

argument to the plotting function or directly set the XData property.

YData — y-coordinate data
vector or matrix

 Surface Properties

1-13169

y-coordinate data specified as a matrix that is the same size as ZData or a vector of
length(m), where [m,n] = size(ZData).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataMode — Selection mode for YData
'auto' | 'manual'

Selection mode for YData, specified as one of these values:

• 'auto' — Use the row indices of ZData.
• 'manual' — Use manually specified value. To specify the value, pass an input

argument to the plotting function or directly set the YData property.

ZData — z-coordinate data
matrix

z-coordinate data specified as a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Color and Transparency Data

CData — Vertex colors
2-D or 3-D array

Vertex colors, specified in one of these forms:

• 2-D array — Use colormap colors. Specify a color for each vertex by setting CData to
an array the same size as ZData. The CDataMapping property determines how these
values map into the current colormap. If the FaceColor property is set to
'texturemap', then CData does not need to be the same size as ZData. However, it
must be of type double or uint8. The CData values map to conform to the surface
defined by ZData.

• 3-D array — Use true colors. Specify an RGB triplet color for each vertex by setting
CData to an m-by-n-by-3 array where [m,n] = size(ZData). An RGB triplet is a
three-element vector that specifies the intensities of the red, green, and blue
components of a color. The first page of the array contains the red components, the
second the green components, and the third the blue components of the colors. Since
the surface uses true colors instead of colormap colors, the CDataMapping property
has no effect.

1 Alphabetical List

1-13170

• If CData is of type double or single, then an RGB triplet value of [0 0 0]
corresponds to black and [1 1 1] corresponds to white.

• If CData is an integer type, then the surface uses the full range of data to
determine the color. For example, if CData is of type uint8, then [0 0 0]
corresponds to black and [255 255 255] corresponds to white. If CData is of
type int8, then [-128 -128 -128] corresponds to black and [127 127 127]
corresponds to white.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

CDataMode — Selection mode for CData
'auto' (default) | 'manual'

Selection mode for CData, specified as one of these values:

• 'auto' — Use the ZData values to set the colors.
• 'manual' — Use manually specified values. To specify the values, set the CData

property.

CDataMapping — Direct or scaled colormapping
'scaled' (default) | 'direct'

Direct or scaled colormapping, specified as one of these values:

• scaled — Transform the color data to span the portion of the colormap indicated by
the axes CLim property, linearly mapping data values to colors. See the caxis
reference page for more information on this mapping.

• direct — Use the color data as indices directly into the colormap. The color data
should then be integer values ranging from 1 to length(colormap). MATLAB maps
values less than 1 to the first color in the colormap, and values greater than
length(colormap) to the last color in the colormap. Values with a decimal portion
are fixed to the nearest lower integer.

AlphaData — Transparency data
1 (default) | array same size as ZData

Transparency data for each vertex, specified as an array the same size as the ZData
property. After specifying the values, set the FaceAlpha and EdgeAlpha properties to
control the type of transparency. If the FaceAlpha and EdgeAlpha properties are both
set to scalar values, then the surface does not use the AlphaData values.

 Surface Properties

1-13171

The AlphaDataMapping property determines how the surface interprets the AlphaData
property values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

AlphaDataMapping — Interpretation of AlphaData values
'scaled' (default) | 'direct' | 'none'

Interpretation of AlphaData values, specified as one of these values:

• 'none' — Interpret the values as transparency values. A value of 1 or greater is
completely opaque, a value of 0 or less is completely transparent, and a value between
0 and 1 is semitransparent.

• 'scaled' — Map the values into the figure’s alphamap. The minimum and maximum
alpha limits of the axes determine the AlphaData values that map to the first and last
elements in the alphamap, respectively. For example, if the alpha limits are [3 5],
then values of 3 or less map to the first element in the alphamap. Values of 5 or
greater map to the last element in the alphamap. The ALim property of the axes
contains the alpha limits. The Alphamap property of the figure contains the alphamap.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Values with a
decimal portion are fixed to the nearest lower integer.

• If the values are of type double or single, then values of 1 or less map to the first
element in the alphamap. Values equal to or greater than the length of the
alphamap map to the last element in the alphamap.

• If the values are of integer type, then values of 0 or less map to the first element in
the alphamap. Values equal to or greater than the length of the alphamap map to
the last element in the alphamap (or up to the range limits of the type). The integer
types are uint8, uint16, uint32, uint64 , int8, int16, int32, and int64.

• If the values are of type logical, then values of 0 map to the first element in the
alphamap and values of 1 map to the second element in the alphamap.

Normals

VertexNormals — Normal vectors for each surface vertex
[] (default) | m-by-n-by-3 array

Normal vectors for each surface vertex, specified as a m-by-n-by-3 array, where [m,n] =
size(ZData). Specify one normal vector per vertex.

1 Alphabetical List

1-13172

Specifying values for this property sets the associated mode to manual. If you do not
specify normal vectors, then the surface generates this data for lighting calculations.
Data Types: single | double

VertexNormalsMode — Selection mode for VertexNormals
'auto' (default) | 'manual'

Selection mode for VertexNormals, specified as one of these values:

• 'auto' — Calculate the normal vectors based on the coordinate data.
• 'manual' — Use manually specified values. To specify the values, set the

VertexNormals property.

FaceNormals — Normal vectors for each surface face
[] (default) | (m-1)-by-(n-1)-by-3 array

Normal vectors for each surface face, specified as a (m-1)-by-(n-1)-by-3 array, where
[m,n] = size(ZData). Specify one normal vector per face.

Specifying values for this property sets the associated mode to manual. If you do not
specify normal vectors, then the surface generates this data for lighting calculations.
Data Types: single | double

FaceNormalsMode — Selection mode for FaceNormals
'auto' (default) | 'manual'

Selection mode for FaceNormals, specified as one of these values:

• 'auto' — Calculate the normal vectors based on the coordinate data.
• 'manual' — Use manually specified values. To specify the values, set the

FaceNormals property.

Lighting

AmbientStrength — Strength of ambient light
0.3 (default) | scalar in range [0,1]

Strength of ambient light, specified as a scalar value in the range [0,1]. Ambient light is
a nondirectional light that illuminates the entire scene. There must be at least one visible
light object in the axes for the ambient light to be visible.

 Surface Properties

1-13173

The AmbientLightColor property for the axes sets the color of the ambient light. The
color is the same for all objects in the axes.
Example: 0.5
Data Types: double

DiffuseStrength — Strength of diffuse light
0.6 (default) | scalar in range [0,1]

Strength of diffuse light, specified as a scalar value in the range [0,1]. Diffuse light is
the nonspecular reflectance from light objects in the axes.
Example: 0.3
Data Types: double

SpecularStrength — Strength of specular reflection
0.9 (default) | scalar in range [0,1]

Strength of specular reflection, specified as a scalar value in the range [0,1]. Specular
reflections are the bright spots on the surface from light objects in the axes.
Example: 0.3
Data Types: double

SpecularExponent — Size of specular spot
10 (default) | scalar greater than or equal to 1

Size of specular spot, specified as a scalar value greater than or equal to 1. Most
materials have exponents in the range [5 20].
Example: 7
Data Types: double

SpecularColorReflectance — Color of specular reflections
1 (default) | scalar in range [0,1]

Color of specular reflections, specified as a scalar value in the range [0,1]. A value of 1
sets the color using only the color of the light source. A value of 0 sets the color using
both the color of the object from which it reflects and the color of the light source. The
Color property of the light contains the color of the light source. The proportions vary
linearly for values in between.

1 Alphabetical List

1-13174

Example: 0.5
Data Types: double

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

 Surface Properties

1-13175

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.

1 Alphabetical List

1-13176

• 'off' — Display the entire object, even if parts of it appear outside the axes limits.
Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

 Surface Properties

1-13177

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-13178

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 Surface Properties

1-13179

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Surface object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Surface object responds to
the click or if an ancestor does.

1 Alphabetical List

1-13180

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off' and you can click a part of the Surface object that has no color.
The HitTest property determines if the Surface object responds to the click or if an
ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Surface object passes the click
through it to the object below it in the current view of the figure window. The
HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Surface object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Surface object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Surface object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

 Surface Properties

1-13181

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

Identifiers

Type — Type of graphics object
'surface'

This property is read-only.

1 Alphabetical List

1-13182

Type of graphics object, returned as 'surface'

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
pcolor | surface

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Surface Properties

1-13183

save
Save workspace variables to file

Syntax
save(filename)
save(filename,variables)
save(filename,variables,fmt)

save(filename,variables,version)
save(filename,variables,version,'-nocompression')
save(filename,variables,'-append')
save(filename,variables,'-append','-nocompression')

save filename

Description
save(filename) saves all variables from the current workspace in a MATLAB formatted
binary file (MAT-file) called filename. If filename exists, save overwrites the file.

save(filename,variables) saves only the variables or fields of a structure array
specified by variables.

save(filename,variables,fmt) saves in the file format specified by fmt. The
variables argument is optional. If you do not specify variables, the save function
saves all variables in the workspace.

save(filename,variables,version) saves to the MAT-file version specified by
version. The variables argument is optional.

save(filename,variables,version,'-nocompression') saves the variables to
the MAT-file without compression. The '-nocompression' flag only supports MAT-file
Version 7.3. Therefore, you must specify version as '-v7.3'. The variables
argument is optional.

1 Alphabetical List

1-13184

save(filename,variables,'-append') adds new variables to an existing file. If a
variable already exists in a MAT-file, then save overwrites it with the value in the
workspace.

For ASCII files, '-append' adds data to the end of the file.

To append to a Version 6 MAT-file, you must also include '-v6' as an input argument.

save(filename,variables,'-append','-nocompression') adds new variables to
an existing file without compression. The existing file must be a MAT-file Version 7.3.

save filename is the command form of the syntax. Command form requires fewer
special characters. You do not need to type parentheses or enclose the input in single or
double quotes. Separate inputs with spaces instead of commas.

For example, to save a file named test.mat, these statements are equivalent:

save test.mat % command form
save('test.mat') % function form

You can include any of the inputs described in previous syntaxes. For example, to save the
variable named X:

save test.mat X % command form
save('test.mat','X') % function form

Do not use command form when any of the inputs, such as filename, are variables or
strings.

Examples

Save All Workspace Variables to MAT-File

Save all variables from the workspace in a binary MAT-file, test.mat. If filename is a
variable, use function syntax.

filename = 'test.mat';
save(filename)

Otherwise, you also can use command syntax.

 save

1-13185

save test.mat

Remove the variables from the workspace, and then retrieve the data with the load
function.

clear
load('test.mat')

Save Specific Variables to MAT-File

Create and save two variables, p and q, to a file called pqfile.mat.

p = rand(1,10);
q = ones(10);
save('pqfile.mat','p','q')

MATLAB® saves the variables to the file, pqfile.mat, in the current folder.

You also can use command syntax to save the variables, p and q.

save pqfile.mat p q

Save Data to ASCII File

Create two variables, save them to an ASCII file, and then view the contents of the file.

p = rand(1,10);
q = ones(10);
save('pqfile.txt','p','q','-ascii')
type('pqfile.txt')

The type function displays the contents of the file.

Alternatively, use command syntax for the save operation.

save pqfile.txt p q -ascii

1 Alphabetical List

1-13186

Save Structure Fields as Individual Variables

Create a structure, s1, that contains three fields, a, b, and c.

s1.a = 12.7;
s1.b = {'abc',[4 5; 6 7]};
s1.c = 'Hello!';

Save the fields of structure s1 as individual variables in a file called newstruct.mat.

save('newstruct.mat','-struct','s1');

Check the contents of the file using the whos function.

disp('Contents of newstruct.mat:')

Contents of newstruct.mat:

whos('-file','newstruct.mat')

 Name Size Bytes Class Attributes

 a 1x1 8 double
 b 1x2 262 cell
 c 1x6 12 char

Save Variables to Version 7.3 MAT-File

Create two variables and save them to a Version 7.3 MAT-file called example.mat.

A = rand(5);
B = magic(10);
save('example.mat','A','B','-v7.3')

You also can use command syntax for the save operation.

save example.mat A B -v7.3

 save

1-13187

Save Variables to Version 7.3 MAT-File Without Compression

Create two variables and save them, without compression, to a Version 7.3 MAT-file
called myFile.mat.

A = rand(5);
B = magic(10);
save('myFile.mat','A','B','-v7.3','-nocompression')

Alternatively, use the command syntax for the save operation.

save myFile.mat A B -v7.3 -nocompression

The '-nocompression' flag facilitates a faster save for those variables that are larger
than 2 GB or those that do not benefit from compression.

Append Variable to MAT-File

Save two variables to a MAT-file. Then, append a third variable to the same file.

p = rand(1,10);
q = ones(10);
save('test.mat','p','q')

View the contents of the MAT-file.

whos('-file','test.mat')

 Name Size Bytes Class Attributes

 p 1x10 80 double
 q 10x10 800 double

Create a new variable, a, and append it to the MAT-file.

a = 50;
save('test.mat','a','-append')

View the contents of the MAT-file.

whos('-file','test.mat')

 Name Size Bytes Class Attributes

1 Alphabetical List

1-13188

 a 1x1 8 double
 p 1x10 80 double
 q 10x10 800 double

The variable, a, is appended to test.mat, without overwriting the previous variables, p
and q.

Note To append to a Version 6 MAT-file, specify both '-v6' and '-append'. For
example, to save variable a to the file, test.mat, call:

save('test.mat','a','-v6','-append')

Append Variable to MAT-File Without Compression

Save two variables to a MAT-file. Then, append a third variable, without compression, to
the same file.

Create two variables A and B and save them to a MAT-file Version 7.3. By default, the
save function compresses variables A and B before saving them to myFile.mat.

A = rand(5);
B = magic(10);
save('myFile.mat','A','B','-v7.3')

View the contents of the MAT-file.

whos('-file','myFile.mat')

 Name Size Bytes Class Attributes

 A 5x5 200 double
 B 10x10 800 double

Create a new variable C and append it, without compression, to myFile.mat.

C = 5;
save('myFile.mat','C','-append','-nocompression')

View the contents of the MAT-file.

 save

1-13189

whos('-file','myFile.mat')

 Name Size Bytes Class Attributes

 A 5x5 200 double
 B 10x10 800 double
 C 1x1 8 double

Input Arguments
filename — Name of file
'matlab.mat' (default) | character vector | string scalar

Name of file, specified as a character vector or string scalar. If you do not specify
filename, the save function saves to a file named matlab.mat.

If filename has no extension (that is, no period followed by text), and the value of
format is not specified, then MATLAB appends .mat. If filename does not include a full
path, MATLAB saves to the current folder. You must have permission to write to the file.

When using the command form of save, it is unnecessary to enclose the input in single
quotes. However, if filename contains a space, you must enclose the argument in single
quotes. For example, save 'filename withspace.mat'.

Note Do not use command form when filename is a string.

Example: 'myFile.mat'

variables — Names of variables to save
character vector | string scalar

Names of variables to save, specified as character vectors or string scalars. When using
the command form of save, you do not need to enclose the input in single quotes.

Note Do not use command form when variables is a string.

variables can be in one of the following forms.

1 Alphabetical List

1-13190

Form of variables Input Variables to Save
var1,...,varN Save the listed variables, specified as individual

character vectors or strings.
Use the '*' wildcard to match patterns. For
example, save('filename.mat','A*') saves
all variables in the file that start with A.

'-regexp',expr1,...,exprN Save only the variables whose names match the
regular expressions, specified as character
vectors or strings. For example,
save('filename.mat','-
regexp','^Mon','^Tues') saves only the
variables in the file whose names begin with Mon
or Tues.

'-struct',structName Store the fields of the scalar structure specified
by structName as individual variables in the
file. For example, save('filename.mat','-
struct','S') saves the scalar structure, S.

'-
struct',structName,field1,...
,fieldN

Store the specified fields of the specified scalar
structure as individual variables in the file. For
example, save('filename.mat','-
struct','S','a','b') saves the fields S.a
and S.b.

'-struct',structName,'-
regexp',expr1,...,exprN

Store only the fields whose names match the
regular expressions, specified as character
vectors or strings.

fmt — File format
'-mat' (default) | '-ascii' | '-ascii','-tabs' | '-ascii','-double' | '-
ascii','-double','-tabs'

File format, specified as one of the following. When using the command form of save, you
do not need to enclose the input in single or double quotes, for example, save
myFile.txt -ascii -tabs.

Value of fmt File Format
'-mat' Binary MAT-file format.
'-ascii' Text format with 8 digits of precision.

 save

1-13191

Value of fmt File Format
'-ascii','-tabs' Tab-delimited text format with 8 digits of

precision.
'-ascii','-double' Text format with 16 digits of precision.
'-ascii','-double','-tabs' Tab-delimited text format with 16 digits of

precision.

For MAT-files, data saved on one machine and loaded on another machine retains as much
accuracy and range as the different machine floating-point formats allow.

Use one of the text formats to save MATLAB numeric values to text files. In this case:

• Each variable must be a two-dimensional double array.
• The output includes only the real component of complex numbers.
• MATLAB writes data from each variable sequentially to the file. If you plan to use the

load function to read the file, all variables must have the same number of columns.
The load function creates a single variable from the file.

If you specify a text format and any variable is a two-dimensional character array, then
MATLAB translates characters to their corresponding internal ASCII codes. For example,
'abc' appears in a text file as:

 9.7000000e+001 9.8000000e+001 9.9000000e+001

Data Types: char | string

version — MAT-file version
'-v7.3' | '-v7' | '-v6' | '-v4'

MAT-file version, specified as one of the following. When using the command form of
save, you do not need to enclose the input in single or double quotes.

1 Alphabetical List

1-13192

Value of
version

Loads in
MATLAB
Versions

Supported Features Compression Maximum
Size of Each
Variable

'-v7.3' 7.3 (R2006b)
or later

Saving and loading parts
of variables, and all
Version 7 features.
Version 7.3 also supports
saving variables without
compression using the '-
nocompression' option.

Yes (default) ≥ 2 GB on 64-
bit computers

'-v7' 7.0 (R14) or
later

Unicode character
encoding, which enables
file sharing between
systems that use different
default character
encoding schemes, and
all Version 6 features.

Yes 2^31 bytes
per variable

'-v6' 5 (R8) or
later

N-dimensional arrays,
cell arrays, structure
arrays, variable names
longer than 19
characters, and all
Version 4 features.

No 2^31 bytes
per variable

'-v4' All Two-dimensional double,
character, and sparse
arrays.

No 100,000,000
elements per
array, and
2^31 bytes
per variable

If any data items require features that the specified version does not support, MATLAB
does not save those items and issues a warning. You cannot specify a version later than
your current version of MATLAB software.

Note Version 7.3 MAT-files use an HDF5 based format that requires some overhead
storage to describe the contents of the file. For cell arrays, structure arrays, or other
containers that can store heterogeneous data types, Version 7.3 MAT-files are sometimes
larger than Version 7 MAT-files.

 save

1-13193

To view or set the default version for MAT-files, go to the Home tab and in the
Environment section, click Preferences. Select MATLAB > General > MAT-Files
and then choose a MAT-file save format option.
Data Types: char | string

Tips
• For more flexibility in creating ASCII files, use dlmwrite or fprintf.
• Saving graphics objects with the save function can result in a large file since the file

contains all the information required to regenerate the object.
• Avoid saving figures with the save function. Use the savefig function instead. Using

save to save a figure in R2014b or later makes MAT-file inaccessible in earlier
versions of MATLAB. If you use save to save a figure, then the function displays a
warning message. Delete any figures before using save. Keep in mind that the figures
might not be directly in your workspace. For example, they might be stored in a
structure or in the workspace of a callback function.

See Also
clear | hgsave | load | matfile | regexp | saveas | whos

Topics
“Create and Edit Variables”
“Save and Load Workspace Variables”
“Write Data to Text Files”
“Regular Expressions”

Introduced before R2006a

1 Alphabetical List

1-13194

save (serial)
Save serial port objects and variables to file

Syntax
save filename
save filename obj1 obj2...

Description
save filename saves all MATLAB variables to the file filename. If an extension is not
specified for filename, then the .mat extension is used.

save filename obj1 obj2... saves the serial port objects obj1 obj2... to the file
filename.

Examples
This example illustrates how to use the command and functional form of save on a
Windows platform.

s = serial('COM1');
set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s
set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

Tips
You can use save in the functional form as well as the command form shown above. When
using the functional form, you must specify the filename and serial port objects as strings.
For example. to save the serial port object s to the file MySerial.mat on a Windows
platform

 save (serial)

1-13195

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the serial port object is not automatically stored in the
file. For example, suppose there is data in the input buffer for obj. To save that data to a
file, you must bring it into the MATLAB workspace using one of the synchronous read
functions, and then save to the file using a separate variable name. You can also save data
to a text file with the record function.

You return objects and variables to the MATLAB workspace with the load command.
Values for read-only properties are restored to their default values upon loading. For
example, the Status property is restored to closed. To determine if a property is read-
only, examine its reference pages.

See Also
Status | load | record

Introduced before R2006a

1 Alphabetical List

1-13196

saveas
Save figure to specific file format

Syntax
saveas(fig,filename)
saveas(fig,filename,formattype)

Description
saveas(fig,filename) saves the figure or Simulink block diagram specified by fig to
file filename. Specify the file name as a character vector or string that includes a file
extension, for example, 'myplot.jpg'. The file extension defines the file format. If you
do not specify an extension, then saveas saves the figure to a FIG-file. To save the
current figure, specify fig as gcf.

saveas(fig,filename,formattype) creates the file using the specified file format,
formattype. If you do not specify a file extension in the file name, for example,
'myplot', then the standard extension corresponding to the specified format
automatically appends to the file name. If you specify a file extension, it does not have to
match the format. saveas uses formattype for the format, but saves the file with the
specified extension. Thus, the file extension might not match the actual format used.

Examples

Save Figure as PNG File

Create a bar chart and save it as a PNG file.

x = [2 4 7 2 4 5 2 5 1 4];
bar(x);
saveas(gcf,'Barchart.png')

 saveas

1-13197

Save Figure as EPS File

Create a bar chart and save it as an EPS file. Specify the 'epsc' driver to save it in color.

x = [2 4 7 2 4 5 2 5 1 4];
bar(x);
saveas(gcf,'Barchart','epsc')

saveas saves the bar chart as Barchart.eps.

Save Simulink Block Diagram as BMP File

Save a Simulink block diagram named 'sldemo_tank' as a BMP file. Use get_param to
get the handle of the diagram. You must have Simulink installed to run this code.

sldemo_tank
fig = get_param('sldemo_tank','Handle');
saveas(fig,'MySimulinkDiagram.bmp');

Input Arguments
fig — Figure to save
figure object | Simulink block diagram

Figure to save, specified as a figure object or a Simulink block diagram. If you specify
other types of graphics objects, such as an axes, then saveas saves the parent figure to
the object. This means that saveas cannot save a subplot without also saving all subplots
in the parent figure.
Example: saveas(gcf,'MyFigure.png')

To save a Simulink block diagram, use get_param to get the handle of the diagram. For
example, save a block diagram named 'sldemo_tank'.

sldemo_tank
saveas(get_param('sldemo_tank','Handle'),'MySimulinkDiagram.bmp');

filename — File name
character vector | string

File name, specified as a character vector or string with or without a file extension.

1 Alphabetical List

1-13198

Example: 'Bar Chart'
Example: 'Bar Chart.png'

If you specify a file extension, then saveas uses the associated format. If you specify a
file extension and additionally specify the formattype input argument, then saveas
uses formattype for the format and saves the file with the specified file name. Thus, the
file extension might not match the actual format used.

You can specify any extension corresponding to a file format. This table lists some
common file extensions.

Extension Resulting Format
.fig MATLAB FIG-file (invalid for Simulink block

diagrams)
.m MATLAB FIG-file and MATLAB code that

opens figure (invalid for Simulink block
diagrams)

.jpg JPEG image

.png Portable Network Graphics

.eps EPS Level 3 Black and White

.pdf Portable Document Format

.bmp Windows bitmap

.emf Enhanced metafile

.pbm Portable bitmap

.pcx Paintbrush 24-bit

.pgm Portable Graymap

.ppm Portable Pixmap

.tif TIFF image, compressed

Data Types: char | string

formattype — File format
'fig' | 'm' | 'mfig' | bitmap image file format | vector graphics file format

File format, specified as one of these options:

 saveas

1-13199

• 'fig' — Save the figure as a MATLAB figure file with the .fig extension. To open
figures saved with the .fig extension, use the openfig function. This format is not
valid for Simulink block diagrams.

• 'm' or 'mfig' — Save the figure as a MATLAB figure file and additionally create a
MATLAB file that opens the figure. To open the figure, run the MATLAB file. This
option is not valid for Simulink block diagrams.

• Bitmap image file format — Specify the format as one of the bitmap image options in
the table, Bitmap Image Formats.

• Vector graphics file format — Specify the format as one of the vector graphics options
in the table, Vector Graphics Formats.

Bitmap Image File

Bitmap images contain a pixel-based representation of the figure. The size of the
generated file depends on the figure, the format, and your system resolution. Bitmap
images are widely used by web browsers and other applications that display graphics.
However, they do not support transparency or scale well and you cannot modify individual
graphics objects (such as lines and text) in other graphics applications.

1 Alphabetical List

1-13200

Bitmap Image Formats

Option Format Default File Extension
'jpeg' JPEG 24-bit .jpg
'png' PNG 24-bit .png
'tiff' TIFF 24-bit (compressed) .tif
'tiffn' TIFF 24-bit (not

compressed)
.tif

'meta' Enhanced metafile
(Windows only)

.emf

'bmpmono' BMP Monochrome .bmp
'bmp' BMP 24-bit .bmp
'bmp16m' BMP 24-bit .bmp
'bmp256' BMP 8-bit (256 color, uses a

fixed colormap)
.bmp

'hdf' HDF 24-bit .hdf
'pbm' PBM (plain format) 1-bit .pbm
'pbmraw' PBM (raw format) 1-bit .pbm
'pcxmono' PCX 1-bit .pcx
'pcx24b' PCX 24-bit color (three 8-bit

planes)
.pcx

'pcx256' PCX 8-bit newer color (256
color)

.pcx

'pcx16' PCX older color (EGA/VGA
16-color)

.pcx

'pgm' PGM (plain format) .pgm
'pgmraw' PGM (raw format) .pgm
'ppm' PPM (plain format) .ppm
'ppmraw' PPM (raw format) .ppm

 saveas

1-13201

Vector Graphics File

Vector graphics files store commands that redraw the figure. This type of format scales
well, but can result in a large file. In some cases, a vector graphics format might not
produce the correct 3-D arrangement of objects. Some applications support extensive
editing of vector graphics formats, but others do not support editing beyond resizing the
graphic. The best practice is to make all the necessary changes while your figure is still in
MATLAB.

Typically, saveas uses the Painters renderer when generating vector graphics files. For
some complex figures, saveas uses the OpenGL renderer instead. If it uses the OpenGL
renderer, then the vector graphics file contains an embedded image, which might limit
the extent to which you can edit the image in other applications. Also, if saveas uses the
OpenGL renderer to generate the file, then transparency is not supported. To ensure that
saveas uses the Painters renderer, set the Renderer property for the figure to
'painters'.

If you set the Renderer property for the figure, then saveas uses that renderer.
Otherwise, it chooses the appropriate renderer. However, if saveas chooses a renderer
that differs from the renderer used for the figure on the display, then some details of the
saved figure can differ from the displayed figure. If necessary, you can make the displayed
figure and the saved figure use the same renderer by setting the Renderer property for
the figure.

1 Alphabetical List

1-13202

Vector Graphics Formats

Option Format Default File Extension
'pdf' Full page Portable

Document Format (PDF)
color

.pdf

'eps' Encapsulated PostScript
(EPS) Level 3 black and
white

.eps

'epsc' Encapsulated PostScript
(EPS) Level 3 color

.eps

'eps2' Encapsulated PostScript
(EPS) Level 2 black and
white

.eps

'epsc2' Encapsulated PostScript
(EPS) Level 2 color

.eps

'meta' Enhanced Metafile
(Windows only)

.emf

'svg' SVG (scalable vector
graphics)

.svg

'ps' Full-page PostScript (PS)
Level 3 black and white

.ps

'psc' Full-page PostScript (PS)
Level 3 color

.ps

'ps2' Full-page PostScript (PS)
Level 2 black and white

.ps

'psc2' Full-page PostScript (PS)
Level 2 color

.ps

Note Only PDF and PS formats use the PaperOrientation property of the figure and
the left and bottom elements of the PaperPosition property. Other formats ignore
these values.

 saveas

1-13203

Definitions

Compatibility Considerations
Starting in R2016a, saved figures match the size of the figure on the screen by default.
Previously, saved figures were 8-by-6 inches by default.

Tips
• To control the size or resolution when you save a figure, use the print function

instead.
• The saveas function and the Save As dialog box (accessed from the File menu) do

not produce identical results. The Save As dialog box produces images at screen
resolution and at screen size. The saveas function uses a resolution of 150 DPI and
uses the PaperPosition and PaperPositionMode properties of the figure to
determine the size of the image.

• Details of saved and printed figures can differ from the figure on the display. To get
output that is more consistent with the display, see “Save Figure Preserving
Background Color” and “Save Figure at Specific Size and Resolution”.

See Also
open | print | savefig

Topics
“Save Plot as Image or Vector Graphics File”

Introduced before R2006a

1 Alphabetical List

1-13204

savefig
Save figure and contents to FIG-file

Syntax
savefig(filename)
savefig(H,filename)
savefig(H,filename,'compact')

Description
savefig(filename) saves the current figure to a FIG-file named filename.fig.

savefig(H,filename) saves the figures identified by the graphics array H to a FIG-file
named filename.fig.

savefig(H,filename,'compact') saves the specified figures in a FIG-file that can be
opened only in MATLAB R2014b or later releases. The 'compact' option reduces the
size of the .fig file and the time required to create the file.

Examples

Save Current Figure to FIG-File

Create a surface plot of the peaks function. Save the figure to the file PeaksFile.fig.

figure
surf(peaks)
savefig('PeaksFile.fig')

To open the saved figure, use the command:

openfig('PeaksFile.fig');

 savefig

1-13205

MATLAB creates a new figure using the saved .fig file.

Save Multiple Figures to FIG-File

Create two plots and store the figure handles in array h. Save the figures to the file
TwoFiguresFile.fig. Close the figures after saving them.

h(1) = figure;
z = peaks;
surf(z)

h(2) = figure;
plot(z)

savefig(h,'TwoFiguresFile.fig')
close(h)

To open the two figures, use the command:

figs = openfig('TwoFiguresFile.fig');

figs contains the handles of the two figures created.

Save Figure Using 'compact' Option

Save a figure using the compact option:

h = figure
surf(peaks)
savefig(h,'PeaksFile.fig','compact')

To open the figure, use the command:

openfig('PeaksFile.fig');

Input Arguments
H — One or more figures
single figure | array of figures

1 Alphabetical List

1-13206

One or more figures, specified as a single figure or an array of figures.

filename — File name
'Untitled.fig' (default) | character vector | string

File name, specified as a character vector or string. If you do not specify a file name, then
MATLAB saves the file as Untitled.fig, which is the default.

If the specified file name does not include a .fig file extension, then MATLAB appends
the extension. savefig does not accept other file extensions.
Example: 'ExampleFile.fig'
Data Types: char | string

'compact' — File format for R2014b or later releases
'compact'

File format for R2014b or later releases of MATLAB, specified as 'compact'. This option
results in smaller .fig files. However, do not use the 'compact' option if you want to
open the .fig file in versions of MATLAB before R2014b.

Tips
• You must use MATLAB to open files saved using savefig. To open the file, pass the
file name to the function openfig or open. For example,

openfig('ExampleFile.fig')

opens the file, ExampleFile.fig, in MATLAB.
• savefig saves the full MATLAB figure. To save only part of a figure, such as an axes,

or to save handles in addition to the data, use the save function to create a MAT-file.

See Also
findobj | load | open | openfig | save

Topics
“Save Plot as Image or Vector Graphics File”

 savefig

1-13207

Introduced in R2013b

1 Alphabetical List

1-13208

saveobj
Modify save process for object

Syntax
b = saveobj(a)

Description
b = saveobj(a) is called by the save function if the class of a defines a saveobj
method. save writes the returned value, b, to the MAT-file.

Define a loadobj method to take the appropriate action when loading the object.

If A is an array of objects, MATLAB invokes saveobj separately for each object saved.

Examples
Call the superclass saveobj method from the subclass implementation of saveobj with
the following syntax:

classdef mySub < super
 methods
 function sobj = saveobj(obj)
 % Call superclass saveobj method
 sobj = saveobj@super(obj);
 % Perform subclass save operations
 ...
 end
 ...
 end
...
end

Update object when saved:

 saveobj

1-13209

function b = saveobj(a)
 % If the object does not have an account number,
 % Add account number to AccountNumber property
 if isempty(a.AccountNumber)
 a.AccountNumber = getAccountNumber(a);
 end
 b = a;
end

See Also
load | loadobj | save

Topics
“Save and Load Process for Objects”
“Object Save and Load”

Introduced before R2006a

1 Alphabetical List

1-13210

savepath
Save current search path

Syntax
savepath
savepath folderName/pathdef.m

status = savepath(___)

Description
savepath saves the current MATLAB search path to an existing pathdef.m file in the
current folder. If there is no pathdef.m file in the current folder, then savepath saves
the search path to the first pathdef.m file on the current path. If there is no such file on
the current path, then savepath saves the search path to the pathdef.m file that
MATLAB located at startup.

On a Windows system with User Account Control (UAC) enabled, you might be prompted
to allow the update operation because it requires administrator-level permission.

In MATLAB Online, changes to the path are automatically saved. Therefore, calling
savepath is not necessary.

savepath folderName/pathdef.m saves the current search path to pathdef.m
located in the folder specified by folderName. If you do not specify folderName, then
savepath saves pathdef.m in the current folder.

Use this syntax if you do not have write access to the current pathdef.m file.

To automatically use the saved search path in a future session, specify folderName as
the MATLAB startup folder.

status = savepath(___) additionally indicates if the operation is successful, using
any of the input arguments in the previous syntaxes. The status output is 0 when
savepath is successful, and 1 otherwise.

 savepath

1-13211

Examples

Save Search Path to Specific Folder

Save the current search path to pathdef.m located in the folder, I:/my_matlab_files.

savepath I:/my_matlab_files/pathdef.m

Input Arguments
folderName — Folder name
string array | character vector

Folder name, specified as a string array or character vector. folderName can be a
relative or absolute path.
Example: C:\myFolder

Tips
• To display the paths to all pathdef.m files in the current folder and on the current

search path, use which.

which pathdef.m -all

The savepath command updates the first pathdef.m file in this list.
• To save the search path programmatically each time you exit MATLAB, use savepath

in a finish.m file.

See Also
addpath | finish | path | rmpath | userpath

Topics
“What Is the MATLAB Search Path?”
“Run Script When Exiting”

1 Alphabetical List

1-13212

Introduced before R2006a

 savepath

1-13213

scatter
Scatter plot

Syntax
scatter(x,y)
scatter(x,y,sz)
scatter(x,y,sz,c)
scatter(___ ,'filled')
scatter(___ ,mkr)
scatter(___ ,Name,Value)

scatter(ax, ___)

s = scatter(___)

Description
scatter(x,y) creates a scatter plot with circles at the locations specified by the vectors
x and y. This type of graph is also known as a bubble plot.

scatter(x,y,sz) specifies the circle sizes. To plot each circle with equal size, specify
sz as a scalar. To plot each circle with a different size, specify sz as a vector with length
equal to the length of x and y.

scatter(x,y,sz,c) specifies the circle colors. To plot all circles with the same color,
specify c as a color name or an RGB triplet. To use varying color, specify c as a vector or a
three-column matrix of RGB triplets.

scatter(___ ,'filled') fills in the circles. Use the 'filled' option with any of the
input argument combinations in the previous syntaxes.

scatter(___ ,mkr) specifies the marker type.

scatter(___ ,Name,Value) modifies the scatter chart using one or more name-value
pair arguments. For example, 'LineWidth',2 sets the marker outline width to 2 points.

1 Alphabetical List

1-13214

scatter(ax, ___) plots into the axes specified by ax instead of into the current axes.
The option ax can precede any of the input argument combinations in the previous
syntaxes.

s = scatter(___) returns the Scatter object. Use s to make future modifications to
the scatter chart after it is created.

Examples

Create Scatter Plot

Create x as 200 equally spaced values between 0 and 3π. Create y as cosine values with
random noise. Then, create a scatter plot.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
scatter(x,y)

 scatter

1-13215

Vary Circle Size

Create a scatter plot using circles with different sizes. Specify the size in points squared

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
sz = linspace(1,100,200);
scatter(x,y,sz)

1 Alphabetical List

1-13216

Corresponding elements in x, y, and sz determine the location and size of each circle. To
plot all circles with the equal area, specify sz as a numeric scalar.

Vary Circle Color

Create a scatter plot and vary the circle color.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
c = linspace(1,10,length(x));
scatter(x,y,[],c)

 scatter

1-13217

Corresponding elements in x, y, and c determine the location and color of each circle.
The scatter function maps the elements in c to colors in the current colormap.

Fill the Markers

Create a scatter plot and fill in the markers. scatter fills each marker using the color of
the marker edge.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
sz = 25;

1 Alphabetical List

1-13218

c = linspace(1,10,length(x));
scatter(x,y,sz,c,'filled')

Specify Marker Symbol

Create vectors x and y as sine and cosine values with random noise. Then, create a
scatter plot and use diamond markers with an area of 140 points squared.

theta = linspace(0,2*pi,150);
x = sin(theta) + 0.75*rand(1,150);
y = cos(theta) + 0.75*rand(1,150);

 scatter

1-13219

sz = 140;
scatter(x,y,sz,'d')

Change Marker Color and Line Width

Create vectors x and y as sine and cosine values with random noise. Create a scatter plot
and set the marker edge color, marker face color, and line width.

theta = linspace(0,2*pi,300);
x = sin(theta) + 0.75*rand(1,300);
y = cos(theta) + 0.75*rand(1,300);

1 Alphabetical List

1-13220

sz = 40;
scatter(x,y,sz,'MarkerEdgeColor',[0 .5 .5],...
 'MarkerFaceColor',[0 .7 .7],...
 'LineWidth',1.5)

Specify Subplot for Scatter Plot

Create a figure with two subplots and add a scatter plot to each subplot. Use filled
diamond markers for the scatter plot in the lower subplot.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);

 scatter

1-13221

ax1 = subplot(2,1,1);
scatter(ax1,x,y)

ax2 = subplot(2,1,2);
scatter(ax2,x,y,'filled','d')

Modify Scatter Series After Creation

Create a scatter plot and return the scatter series object, s.

theta = linspace(0,1,500);
x = exp(theta).*sin(100*theta);

1 Alphabetical List

1-13222

y = exp(theta).*cos(100*theta);
s = scatter(x,y);

Use s to query and set properties of the scatter series after it has been created. Set the
line width to 0.6 point. Set the marker edge color to blue. Set the marker face color
using an RGB triplet color.

Note: Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead, such as set(s,'LineWidth',0.6).

s.LineWidth = 0.6;
s.MarkerEdgeColor = 'b';
s.MarkerFaceColor = [0 0.5 0.5];

 scatter

1-13223

Input Arguments
x — x values
vector

x values, specified as a vector. x and y must be vectors of equal length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

y — y values
vector

1 Alphabetical List

1-13224

y values, specified as a vector. x and y must be vectors of equal length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

sz — Marker area
36 (default) | numeric scalar | row or column vector | []

Marker area in points squared, specified in one of these forms:

• Numeric scalar — Plot all markers with equal size.
• Row or column vector — Use different sizes for each marker. Corresponding elements

in x, y, and sz determine the location and area of each marker. The length of sz must
equal the length of x and y.

• [] — Use the default area of 36 points squared.

The units for the marker area is points squared.
Example: 50
Example: [36 25 25 17 46]

c — Marker color
[0 0 1] (default) | RGB triplet | three-column matrix of RGB triplets | vector | 'r' | 'g'
| 'b' | ...

Marker color, specified in one of these forms:

• RGB triplet or color name — Plot all markers with the same color.
• Three column matrix of RGB triplets — Use different colors for each marker. Each row

of the matrix specifies an RGB triplet color for the corresponding marker. The number
of rows must equal the length of x and y.

• Vector — Use different colors for each marker and linearly map values in c to the
colors in the current colormap. The length of c must equal the length of x and y. To
change the colormap for the axes, use the colormap function.

If you have three points in the scatter plot and want the colors to be indices into the
colormap, specify c as a three-element column vector.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by

 scatter

1-13225

name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'k'
Example: [1 2 3 4]

mkr — Marker type
'o' (default) | '+' | '*' | '.' | 'x' | ...

Marker type, specified as one of the values listed in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle

1 Alphabetical List

1-13226

Value Description
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

'filled' — Option to fill interior of markers
'filled'

Option to fill the interior of the markers, specified as 'filled'. Use this option with
markers that have a face, for example, 'o' or 'square'. Markers that do not have a face
and contain only edges do not draw ('+', '*', '.', and 'x').

The 'filled' option sets the MarkerFaceColor property of the Scatter object to
'flat' and the MarkerEdgeColor property to 'none', so the marker faces draw, but
the edges do not.

ax — Target axes
Axes object | PolarAxes object | GeographicAxes object

Target axes, specified as an Axes object, a PolarAxes object, or a GeographicAxes
object. If you do not specify the axes and if the current axes are Cartesian axes, then the
scatter function uses the current axes. To plot into polar axes, specify the PolarAxes
object as the first input argument or use the polarscatter function. To plot into
geographic axes, specify the GeographicAxes object as the first input argument or use
the geoscatter function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MarkerFaceColor','red' sets the marker face color to red.

The Scatter object properties listed here are only a subset. For a complete list, see
Scatter.

 scatter

1-13227

MarkerEdgeColor — Marker outline color
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified 'flat', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'flat' uses colors from the CData property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-13228

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'flat' | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The 'flat' option uses the CData values. The 'auto'
option uses the same color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 scatter

1-13229

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

LineWidth — Width of marker edge
0.5 (default) | positive value

Width of marker edge, specified as a positive value in point units.

1 Alphabetical List

1-13230

Example: 0.75

Output Arguments
s — Scatter object
Scatter object

Scatter object. Use s to access and modify properties of the scatter chart after it has
been created.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Supported syntaxes for tall arrays X and Y are:

• scatter(X,Y)
• scatter(X,Y,sz)
• scatter(X,Y,sz,c)
• scatter(___,'filled')
• scatter(___,mkr)
• scatter(___,Name,Value)
• scatter(ax,___)

• sz must be scalar or empty [].
• c must be scalar or an RGB triplet.
• Categorical inputs are not supported.
• With tall arrays, the scatter function plots in iterations, progressively adding to the

plot as more data is read. During the updates, a progress indicator shows the
proportion of data that has been plotted. Zooming and panning is supported during

 scatter

1-13231

the updating process, before the plot is complete. To stop the update process, press
the pause button in the progress indicator.

For more information, see “Visualization of Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
hold | plot | scatter3

Properties
Scatter

Topics
“Plot Dates and Durations”

1 Alphabetical List

1-13232

“Plot Categorical Data”

External Websites
MATLAB Plot Gallery

Introduced before R2006a

 scatter

1-13233

https://www.mathworks.com/products/matlab/plot-gallery.html

scatter3
3-D scatter plot

Syntax
scatter3(X,Y,Z)
scatter3(X,Y,Z,S)
scatter3(X,Y,Z,S,C)
scatter3(___ ,'filled')
scatter3(___ ,markertype)
scatter3(___ ,Name,Value)

scatter3(ax, ___)

h = scatter3(___)

Description
scatter3(X,Y,Z) displays circles at the locations specified by the vectors X, Y, and Z.

scatter3(X,Y,Z,S) draws each circle with the size specified by S. To plot each circle
with equal size, specify S as a scalar. To plot each circle with a specific size, specify S as a
vector.

scatter3(X,Y,Z,S,C) draws each circle with the color specified by C.

• If C is a RGB triplet or character vector or string containing a color name, then all
circles are plotted with the specified color.

• If C is a three column matrix with the number of rows in C equal to the length of X, Y,
and Z, then each row of C specifies an RGB color value for the corresponding circle.

• If C is a vector with length equal to the length of X, Y, and Z, then the values in C are
linearly mapped to the colors in the current colormap.

scatter3(___ ,'filled') fills in the circles, using any of the input argument
combinations in the previous syntaxes.

1 Alphabetical List

1-13234

scatter3(___ ,markertype) specifies the marker type.

scatter3(___ ,Name,Value) modifies the scatter chart using one or more name-value
pair arguments.

scatter3(ax, ___) plots into the axes specified by ax instead of into the current axes
(gca). The ax option can precede any of the input argument combinations in the previous
syntaxes.

h = scatter3(___) returns the Scatter object. Use h to modify properties of the
scatter chart after it is created.

Examples

Create 3-D Scatter Plot

Create a 3-D scatter plot. Use sphere to define vectors x, y, and z.

figure
[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];
scatter3(x,y,z)

 scatter3

1-13235

Vary Marker Size

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vector s to specify the marker sizes.

1 Alphabetical List

1-13236

S = repmat([100,50,5],numel(X),1);
s = S(:);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,s)
view(40,35)

Corresponding entries in x, y, z, and s determine the location and size of each marker.

 scatter3

1-13237

Vary Marker Color

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vectors s and c to specify the size and color of each marker.

S = repmat([50,25,10],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,s,c)
view(40,35)

1 Alphabetical List

1-13238

Corresponding entries in x, y, z, and c determine the location and color of each marker.

Fill in Markers

Create vectors x and y as cosine and sine values with random noise.

z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and fill in the markers. Use view to change the angle of the axes
in the figure.

 scatter3

1-13239

scatter3(x,y,z,'filled')
view(-30,10)

Set Marker Type

Initialize the random-number generator to make the output of rand repeatable. Define
vectors x and y as cosine and sine values with random noise.

rng default
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

1 Alphabetical List

1-13240

Create a 3-D scatter plot and set the marker type. Use view to change the angle of the
axes in the figure.

figure
scatter3(x,y,z,'*')
view(-30,10)

Set Marker Properties

Initialize the random-number generator to make the output of rand repeatable. Define
vectors x and y as cosine and sine values with random noise.

 scatter3

1-13241

rng default
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and set the marker edge color and the marker face color. Use
view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[0 .75 .75])
view(-30,10)

1 Alphabetical List

1-13242

Specify Axes for 3-D Scatter Plot

Load the seamount data set to get vectors x, y, and z.

load seamount

Create a figure with two subplots and return the handles to the two axes in array hs. In
each subplot, create a 3-D scatter plot. Specify the marker properties for each scatter
plot.

figure
hs(1) = subplot(2,1,1);
hs(2) = subplot(2,1,2);
scatter3(hs(1),x,y,z,'MarkerFaceColor',[0 .75 .75])
scatter3(hs(2),x,y,z,'*')

 scatter3

1-13243

Set Scatter Series Properties Using Handle

Use the sphere function to create vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Create vectors s and c to specify the size and color for each marker.

1 Alphabetical List

1-13244

S = repmat([70,50,20],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and return the scatter series object.

h = scatter3(x,y,z,s,c);

Use an RGB triplet color value to set the marker face color. Starting in R2014b, you can
use dot notation to set properties. If you are using an earlier release, use the set function
instead.

h.MarkerFaceColor = [0 0.5 0.5];

 scatter3

1-13245

Input Arguments
X — x values
vector

x values, specified as a vector. X, Y, and Z must be vectors of equal length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Y — y values
vector

1 Alphabetical List

1-13246

y values, specified as a vector. X, Y, and Z must be vectors of equal length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Z — z values
vector

z values, specified as a vector. X, Y, and Z must be vectors of equal length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

S — Marker area
36 (default) | scalar | vector | []

Marker area, specified as a scalar, a vector, or []. The values in S must be positive. The
units for area are points squared.

• If S is a scalar, then scatter3 plots all markers with the specified area.
• If S is a row or column vector, then each entry in S specifies the area for the

corresponding marker. The length of S must equal the length of X, Y and Z.
Corresponding entries in X, Y, Z and S determine the location and area of each marker.

• If S is empty, then the default size of 36 points squared is used.

Example: 50
Example: [36,25,25,17,46]

C — Marker color
[0 0 1] (blue) (default) | RGB triplet | three-column matrix of RGB triplets | vector | 'r'
| 'g' | 'b' | ...

Marker color, specified as a an RGB triplet, a three-column matrix of RGB triplet, a vector,
or one of the color options in the table.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

 scatter3

1-13247

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

If you have three points in the scatter plot and want the colors to be indices into the
colormap, specify C as a three-element column vector.
Example: 'y'
Example: [1,2,3,4]

markertype — Marker
'o' (default) | '+' | '*' | '.' | 'x' | ...

Marker, specified as one of the markers in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle

1 Alphabetical List

1-13248

Value Description
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

ax — Axes object
axes object

Axes object. If you do not specify an axes, then scatter3 plots into the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MarkerFaceColor','red' sets the marker face color to red.

The properties listed here are only a subset. For a complete list, see Scatter.

LineWidth — Width of marker edge
0.5 (default) | positive value

Width of marker edge, specified as a positive value in point units.
Example: 0.75

MarkerEdgeColor — Marker outline color
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified 'flat', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'flat' uses colors from the CData property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

 scatter3

1-13249

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

1 Alphabetical List

1-13250

MarkerFaceColor — Marker fill color
'none' (default) | 'flat' | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The 'flat' option uses the CData values. The 'auto'
option uses the same color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 scatter3

1-13251

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Output Arguments
h — Scatter object
Scatter object

Scatter object. This is a unique identifier, which you can use to query and modify the
properties of the Scatter object after it is created.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

1 Alphabetical List

1-13252

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | plot3 | scatter

Properties
Scatter

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

 scatter3

1-13253

Scatter Properties
Scatter chart appearance and behavior

Description
Scatter properties control the appearance and behavior of Scatter object. By changing
property values, you can modify certain aspects of the scatter chart.

Starting in R2014b, you can use dot notation to query and set properties.

s = scatter(1:10,1:10);
m = s.Marker;
s.Marker = '*';

If you are using an earlier release, use the get and set functions instead.

Properties
Markers

Marker — Marker symbol
'o' (default) | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the options listed in this table:

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond

1 Alphabetical List

1-13254

Value Description
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

LineWidth — Width of marker edge
0.5 (default) | positive value

Width of marker edge, specified as a positive value in point units.
Example: 0.75

MarkerEdgeColor — Marker outline color
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified 'flat', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'flat' uses colors from the CData property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

 Scatter Properties

1-13255

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'flat' | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' |
'b' | ...

1 Alphabetical List

1-13256

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code,
a color name, or a short name. The 'flat' option uses the CData values. The 'auto'
option uses the same color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 Scatter Properties

1-13257

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerEdgeAlpha — Edge transparency
1 (default) | scalar in range [0,1]

Marker edge transparency, specified as a scalar in the range [0,1]. A value of 1 is
opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.
Example: s.MarkerEdgeAlpha = 0.5;

MarkerFaceAlpha — Marker face transparency
1 (default) | scalar in range [0,1]

Marker face transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque
and 0 is completely transparent. Values between 0 and 1 are semitransparent.
Example: s.MarkerFaceAlpha = 0.5;

Color and Size Data

CData — Marker colors
[] (default) | RGB triplet | matrix of RGB triplets | vector

Marker colors, specified as one of these values:

• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for example,
[0.5 0.6 0.7].

1 Alphabetical List

1-13258

• Three-column matrix of RGB triplets — Use a different color for each marker in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of markers.

• Vector — Use a different color for each marker in the plot. Specify CData as a vector
the same length as XData. Linearly map the values in the vector to the colors in the
current colormap.

Example: [1 0 0; 0 1 0; 0 0 1]

CDataSource — Variable linked to CData
'' | character vector or string containing MATLAB workspace variable

Variable linked to CData, specified as a character vector or string containing a MATLAB
workspace variable. MATLAB evaluates the variable in the base workspace to generate
the CData.

By default, there is no linked variable so the value is an empty character vector. If you
link a variable, then MATLAB does not update the CData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

SizeData — Marker sizes
[] (default) | scalar | vector

Marker sizes, specified in one of these forms:

• Scalar — Use the same size for all of the markers.
• Vector — Use a different size for each marker. Specify SizeData as a vector the same

length as XData.

Specify the values in point units, where one point equals 1/72 inch. To specify a marker
that has an area of one square inch, use a value of 72^2.
Example: 50

SizeDataSource — Variable linked to SizeData
'' | character vector or string containing MATLAB workspace variable

 Scatter Properties

1-13259

Variable linked to SizeData, specified as a character vector or string containing a
MATLAB workspace variable. MATLAB evaluates the variable in the base workspace to
generate the SizeData.

By default, there is no linked variable so the value is an empty character vector. If you
link a variable, then MATLAB does not update the SizeData values. To force an update of
the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Cartesian Coordinate Data

XData — x values
[] (default) | scalar | vector

x values, specified as a scalar or a vector. The scatter plot displays an individual marker
for each value in XData.

The input argument X to the scatter and scatter3 functions set the x values. XData
and YData must have equal lengths.
Example: [1 2 4 2 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataSource — Variable linked to XData
'' (default) | character vector | string

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

1 Alphabetical List

1-13260

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y values
[] (default) | scalar | vector

y values, specified as a scalar or a vector. The scatter plot displays an individual marker
for each value in YData.

The input argument Y to the scatter and scatter3 functions set the y values. XData
and YData must have equal lengths.
Example: [1 3 3 4 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

ZData — z values
[] (default) | scalar | vector

z values, specified as a scalar or a vector.

 Scatter Properties

1-13261

• For 2-D scatter plots, ZData is empty by default.
• For 3-D scatter plots, the input argument Z to the scatter3 function sets the z

values. XData, YData, and ZData must have equal lengths.

Example: [1 2 2 1 0]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ZDataSource — Variable linked to ZData
'' (default) | character vector | string

Variable linked to ZData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

Polar Coordinate Data

RData — Radius values
vector

Radius values, specified as a vector. ThetaData and RData must be vectors of equal
length.

This property applies only to polar axes.

RDataSource — Variable linked to RData
'' (default) | character vector or string containing MATLAB workspace variable name

1 Alphabetical List

1-13262

Variable linked to RData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the RData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the RData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to polar axes.

ThetaData — Angle values
vector

Angle values, specified as a vector. ThetaData and RData must be vectors of equal
length.

This property applies only to polar axes.

ThetaDataSource — Variable linked to ThetaData
'' (default) | character vector or string containing MATLAB workspace variable name

Variable linked to ThetaData, specified as a character vector or string containing a
MATLAB workspace variable name. MATLAB evaluates the variable in the base
workspace to generate the RData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ThetaData values immediately. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to polar axes.

 Scatter Properties

1-13263

Geographic Coordinate Data

LatitudeData — Latitude values
vector

Latitude values, specified as a vector. LatitudeData and LongitudeData must be
vectors of equal length.

This property applies only to geographic axes.

LatitudeDataSource — Variable linked to LatitudeData
'' (default) | character vector or string containing MATLAB workspace variable name

Variable linked to LatitudeData, specified as a character vector or string containing a
MATLAB workspace variable name. MATLAB evaluates the variable in the base
workspace to generate the RData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, MATLAB does not update the LatitudeData values immediately. To force
an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to geographic axes.

LongitudeData — Longitude values
vector

Longitude values, specified as a vector. LongitudeData and LatitudeData must be
vectors of equal length.

This property applies only to geographic axes.

LongitudeDataSource — Variable linked to LongitudeData
'' (default) | character vector or string containing MATLAB workspace variable name

Variable linked to LongitudeData, specified as a character vector or string containing a
MATLAB workspace variable name. MATLAB evaluates the variable in the base
workspace to generate the RData.

1 Alphabetical List

1-13264

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, MATLAB does not update the LatitudeData values immediately. To force
an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

This property applies only to geographic axes.

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

 Scatter Properties

1-13265

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content
that appears in a data tip by modifying the properties of the underlying
DataTipTemplate object. For a list of properties, see DataTipTemplate.

For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is
not copied by copyobj.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

1 Alphabetical List

1-13266

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

 Scatter Properties

1-13267

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-13268

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

 Scatter Properties

1-13269

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

1 Alphabetical List

1-13270

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Scatter object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Scatter object responds to
the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Scatter object passes the click
to the object below it in the current view of the figure window. The HitTest property
of the Scatter object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Scatter object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Scatter object that
has one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

 Scatter Properties

1-13271

Note The PickableParts property determines if the Scatter object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

1 Alphabetical List

1-13272

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'scatter'

This property is read-only.

Type of graphics object, returned as 'scatter'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
scatter | scatter3

 Scatter Properties

1-13273

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

1 Alphabetical List

1-13274

scatterhistogram
Create scatter plot with histograms

Syntax
s = scatterhistogram(tbl,xvar,yvar)
s = scatterhistogram(tbl,xvar,yvar,'GroupVariable',grpvar)

s = scatterhistogram(xvalues,yvalues)
s = scatterhistogram(xvalues,yvalues,'GroupData',grpvalues)

s = scatterhistogram(___ ,Name,Value)
s = scatterhistogram(parent, ___)

Description
s = scatterhistogram(tbl,xvar,yvar) creates a scatter plot with marginal
histograms from the table tbl and returns the ScatterHistogramChart object. The
xvar input indicates the table variable to display along the x-axis. The yvar input
indicates the table variable to display along the y-axis. Use s to modify the object after it
is created. For a list of properties, see ScatterHistogramChart.

s = scatterhistogram(tbl,xvar,yvar,'GroupVariable',grpvar) uses the
table variable specified by grpvar to group observations specified by xvar and yvar.

s = scatterhistogram(xvalues,yvalues) creates a scatter plot of the data in
xvalues and yvalues and displays the marginal histograms for the xvalues and
yvalues data along the x-axis and y-axis, respectively.

s = scatterhistogram(xvalues,yvalues,'GroupData',grpvalues) uses the
data in grpvalues to group the data in xvalues and yvalues.

s = scatterhistogram(___ ,Name,Value) specifies additional options for the
scatter plot with marginal histograms using one or more name-value pair arguments.
Specify the options after all other input arguments. For a list of properties, see
ScatterHistogramChart.

 scatterhistogram

1-13275

s = scatterhistogram(parent, ___) creates the scatter plot with marginal
histograms in the figure, panel, or tab specified by parent.

Examples

Scatter Histogram Chart with Tabular Data

Create a scatter plot with marginal histograms from a table of data for medical patients.

Load the patients data set and create a table from a subset of the variables loaded into
the workspace. Then, create a scatter histogram chart comparing the Height values to
the Weight values.

load patients
tbl = table(LastName,Age,Gender,Height,Weight);
s = scatterhistogram(tbl,'Height','Weight');

1 Alphabetical List

1-13276

Specify Table Variable for Grouping Data

Using the patients data set, create a scatter plot with marginal histograms and specify
the table variable to use for grouping the data.

Load the patients data set and create a scatter histogram chart from the data. Compare
the patients' Systolic and Diastolic values. Group the data according to the patients'
smoker status by setting the 'GroupVariable' name-value pair argument to 'Smoker'.

 scatterhistogram

1-13277

load patients
tbl = table(LastName,Diastolic,Systolic,Smoker);
s = scatterhistogram(tbl,'Diastolic','Systolic','GroupVariable','Smoker');

Visualize Categorical and Numeric Data

Use a scatter plot with marginal histograms to visualize categorical and numeric medical
data.

Load the patients data set, and convert the Smoker data to a categorical array. Then,
create a scatter histogram chart that compares patients' Age values to their smoker

1 Alphabetical List

1-13278

status. The resulting scatter plot contains overlapping data points. However, the y-axis
marginal histogram indicates that there are far more nonsmokers than smokers in the
data set.

load patients
Smoker = categorical(Smoker);
s = scatterhistogram(Age,Smoker);
xlabel('Age')
ylabel('Smoker')

 scatterhistogram

1-13279

Specify Group Data and Customize Chart Properties

Create a scatter plot with marginal histograms using arrays of shoe data. Group the data
according to shoe color, and customize properties of the scatter histogram chart.

Create arrays of data. Then, create a scatter histogram chart to visualize the data. Use
custom labels along the x-axis and y-axis to specify the variable names of the first two
input arguments. You can specify the title, axis labels, and legend title by setting
properties of the ScatterHistogramChart object.

xvalues = [7 6 5 6.5 9 7.5 8.5 7.5 10 8];
yvalues = categorical({'onsale','regular','onsale','onsale', ...
 'regular','regular','onsale','onsale','regular','regular'});
grpvalues = {'Red','Black','Blue','Red','Black','Blue','Red', ...
 'Red','Blue','Black'};
s = scatterhistogram(xvalues,yvalues,'GroupData',grpvalues);

s.Title = 'Shoe Sales';
s.XLabel = 'Shoe Size';
s.YLabel = 'Price';
s.LegendTitle = 'Shoe Color';

Change the colors in the scatter histogram chart to match the group labels. Change the
histogram bin widths to be the same for all groups.

s.Color = {'Red','Black','Blue'};
s.BinWidths = 1;

1 Alphabetical List

1-13280

Specify Scatter Histogram Chart Appearance

Create a scatter plot with marginal histograms. Specify the number of bins and line
widths of the histograms, the location of the scatter plot, and the legend visibility.

Load the patients data set and create a scatter histogram chart from the data. Compare
the patients' Diastolic and Systolic values, and group the data according to the
patients' SelfAssessedHealthStatus values. Adjust the histograms by specifying the
NumBins and LineWidth options. Place the scatter plot in the 'NorthEast' location of
the figure by using the ScatterPlotLocation option. Ensure the legend is visible by
specifying the LegendVisible option as 'on'.

 scatterhistogram

1-13281

load patients
tbl = table(LastName,Diastolic,Systolic,SelfAssessedHealthStatus);
s = scatterhistogram(tbl,'Diastolic','Systolic','GroupVariable','SelfAssessedHealthStatus', ...
 'NumBins',4,'LineWidth',1.5,'ScatterPlotLocation','NorthEast','LegendVisible','on');

Group Data Using Two Variables

Create a scatter plot with marginal histograms. Group the data by using a combination of
two different variables.

1 Alphabetical List

1-13282

Load the patients data set. Combine the Smoker and Gender data to create a new
variable. Create a scatter histogram chart that compares the Diastolic and Systolic
values of the patients. Use the new variable SmokerGender to group the data in the
scatter histogram chart.

load patients
[idx,genderStatus,smokerStatus] = findgroups(string(Gender),string(Smoker));
SmokerGender = strcat(genderStatus(idx),"-",smokerStatus(idx));
s = scatterhistogram(Diastolic,Systolic,'GroupData',SmokerGender,'LegendVisible','on');
xlabel('Diastolic')
ylabel('Systolic')

 scatterhistogram

1-13283

Specify Kernel Density Histograms

Create a scatter plot with kernel density marginal histograms. This example requires a
Statistics and Machine Learning Toolbox license.

Load the carsmall data set and create a scatter histogram chart from the data. Compare
the Horsepower and MPG values. Use the number of cylinders to group the data by
setting the GroupVariable option to Cylinders. Specify kernel density histograms by
setting the HistogramDisplayStyle option to 'smooth'. Specify a solid line for all the
histograms by setting the LineStyle option to '-'.

load carsmall
tbl = table(Horsepower,MPG,Cylinders);
s = scatterhistogram(tbl,'Horsepower','MPG', ...
 'GroupVariable','Cylinders','HistogramDisplayStyle','smooth', ...
 'LineStyle','-');

1 Alphabetical List

1-13284

Input Arguments
tbl — Source table
table

Source table, specified as a table.

You can create a table from workspace variables using the table function, or you can
import data as a table using the readtable function.

The SourceTable property of the ScatterHistogramChart object stores the source
table.

 scatterhistogram

1-13285

xvar — Table variable for x-axis
character vector | string scalar | numeric scalar | logical vector

Table variable for x-axis, specified in one of these forms:

• Character vector or string scalar — Indicating one of the variable names. For example,
scatterhistogram(tbl,'Acceleration','Horsepower') selects the variable
named 'Acceleration' for the x-axis.

• Numeric scalar — Indicating the table variable index. For example,
scatterhistogram(tbl,5,3) selects the fifth variable in the table for the x-axis.

• Logical vector — Containing one true element.

The values associated with your table variable must be of a numeric type or
categorical.

The XVariable property of the ScatterHistogramChart object stores the selected
variable name.

yvar — Table variable for y-axis
character vector | string scalar | numeric scalar | logical vector

Table variable for y-axis, specified in one of these forms:

• Character vector or string scalar — Indicating one of the variable names. For example,
scatterhistogram(tbl,'Acceleration','Horsepower') selects the variable
named 'Horsepower' for the y-axis.

• Numeric scalar — Indicating the table variable index. For example,
scatterhistogram(tbl,5,3) selects the third variable in the table for the y-axis.

• Logical vector — Containing one true element.

The values associated with your table variable must be of a numeric type or
categorical.

The YVariable property of the ScatterHistogramChart object stores the selected
variable name.

grpvar — Table variable for grouping data
character vector | string scalar | numeric scalar | logical vector

Table variable for grouping data, specified in one of these forms:

1 Alphabetical List

1-13286

• Character vector or string scalar — Indicating one of the variable names
• Numeric scalar — Indicating the table variable index
• Logical vector — Containing one true element

The values associated with your table variable must form a numeric vector, logical vector,
categorical array, string array, or cell array of character vectors.

grpvar splits the data in xvar and yvar into unique groups. Each group has a default
color and an independent histogram in each axis. In the legend, scatterhistogram
displays the group names in order of their first appearance in GroupData.
Example: 'Model_Year'
Example: 2

xvalues — Values appearing along x-axis
numeric vector | categorical array

Values appearing along the x-axis, specified as a numeric vector or categorical array.

The XData property of the ScatterHistogramChart object stores the xvalues data.
Example: [0.5 4.3 2.4 5.6 3.4]
Example:
categorical({'small','medium','small','large','medium','small'})

yvalues — Values appearing along y-axis
numeric vector | categorical array

Values appearing along the y-axis, specified as a numeric vector or categorical array.

The YData property of the ScatterHistogramChart object stores the yvalues data.
Example: [0.5 4.3 2.4 5.6 3.4]
Example:
categorical({'small','medium','small','large','medium','small'})

grpvalues — Group values
numeric vector | logical vector | categorical array | string array | cell array of character
vectors

 scatterhistogram

1-13287

Group values for the scatter plot and the corresponding marginal histograms, specified as
a numeric vector, logical vector, categorical array, string array, or cell array of character
vectors.

grpvalues splits the data in xvalues and yvalues into unique groups. Each group has
a default color and an independent histogram in each axis. In the legend,
scatterhistogram displays the group names in order of their first appearance in
GroupData.
Example: [1 2 1 3 2 1 3]
Example: categorical({'blue','green','green','blue','green'})

parent — Parent container
Figure object | Panel object | Tab object

Parent container in which to plot, specified as a Figure, Panel, or Tab object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
scatterhistogram(tbl,xvar,yvar,'GroupVariable',grpvar,'HistogramDisp
layStyle','stairs') specifies grpvar as the grouping variable and displays stairstep
plots next to the scatter plot.

Note The properties listed here are only a subset. For a complete list, see
ScatterHistogramChart.

Title — Chart title
'' (default) | character vector | string scalar

Chart title, specified as a character vector or string scalar. The default chart has no title.
Example: s = scatterhistogram(__,'Title','My Title Text')
Example: s.Title = 'My Title Text'

1 Alphabetical List

1-13288

NumBins — Number of histogram bins
positive integer scalar | positive integer column vector | positive integer matrix

Number of histogram bins, specified as a positive integer scalar, 2-by-1 positive integer
vector, or 2-by-n positive integer matrix, where n is the number of groups in GroupData.

Specified Value Description
scalar The value is the number of bins for the x and y histograms.
2-by-1 vector The first value is the number of bins for the x data, and the

second value is the number of bins for the y data.
2-by-n matrix The (1,j) value is the number of bins for the histogram of

the x data that is in the jth group. Similarly, the (2,j) value
is the number of bins for the histogram of the y data that is
in the jth group.

scatterhistogram uses the 'BinMethod','auto' name-value pair argument of
histogram to determine the default NumBins and BinWidths values.

You cannot change NumBins for categorical data.
Example: s = scatterhistogram(__,'NumBins',20)
Example: s.NumBins = [10; 15]

HistogramDisplayStyle — Histogram display style
'stairs' (default) | 'bar' | 'smooth'

Histogram display style, specified as one of these options.

Display
Style

Description

'stairs' Display a stairstep plot that shows the outline of the histogram without
filling the bars.

'bar' Display a histogram bar plot.
'smooth' Display a smooth plot generated through kernel density estimates. This

option requires a Statistics and Machine Learning Toolbox license.

scatterhistogram uses the 'pdf' type of normalization to generate the histograms.
For more information, see the 'Normalization' name-value pair argument of
histogram.

 scatterhistogram

1-13289

Example: s = scatterhistogram(__,'HistogramDisplayStyle','smooth')
Example: s.HistogramDisplayStyle = 'bar'

LineWidth — Histogram line width
positive scalar | positive vector

Histogram line width, specified as a positive scalar or positive vector in points. By default,
scatterhistogram assigns a line width of 0.5 to each histogram plot line.

When the total number of groups exceeds the number of specified line widths,
scatterhistogram cycles through the specified line widths.
Example: s = scatterhistogram(__,'LineWidth',0.75)
Example: s.LineWidth = [0.5 0.75 0.5]

MarkerStyle — Marker symbol
character vector | string array | cell array of character vectors

Marker symbol for each scatter plot group, specified in one of these forms:

• Character vector designating a marker style
• String array or cell array of character vectors designating one or more marker styles

Choose among these marker options.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle

1 Alphabetical List

1-13290

Value Description
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

By default, scatterhistogram assigns the marker symbol 'o' to each group in the
scatter plot. When the total number of groups exceeds the number of specified symbols,
scatterhistogram cycles through the specified symbols.
Example: s = scatterhistogram(__,'MarkerStyle','x')
Example: s.MarkerStyle = {'x','o'}

ScatterPlotLocation — Location of scatter plot
'SouthWest' (default) | 'SouthEast' | 'NorthEast' | 'NorthWest'

Location of the scatter plot, specified as one of these options.

Location Description
'SouthWes
t'

Plot the histograms above and to the right of the scatter plot.

'SouthEas
t'

Plot the histograms above and to the left of the scatter plot.

'NorthEas
t'

Plot the histograms below and to the left of the scatter plot.

'NorthWes
t'

Plot the histograms below and to the right of the scatter plot.

Example: s = scatterhistogram(__,'ScatterPlotLocation','NorthEast')
Example: s.ScatterPlotLocation = 'SouthEast'

LegendVisible — State of legend visibility
'on' | 'off'

State of legend visibility, specified as 'on' or 'off'. Set LegendVisible to 'on' to
display the legend or 'off' to hide the legend.

 scatterhistogram

1-13291

If GroupData is empty ([]) or contains a single group, then scatterhistogram does
not display a legend. Otherwise, scatterhistogram displays a legend by default, unless
the legend overlaps the scatter plot or marginal histograms.

In the legend, scatterhistogram displays the group names in order of their first
appearance in GroupData.
Example: s = scatterhistogram(__,'LegendVisible','on')
Example: s.LegendVisible = 'off'

Tips
• To interactively explore the data in your ScatterHistogramChart object, use these

options. Some of these options are not available in the Live Editor.

• Zoom/pan — Use the scroll wheel or the + and - buttons to zoom. Click and drag
the scatter plot to pan. scatterhistogram updates the marginal histograms
based on the data within the current scatter plot limits.

• Data tips — Hover over the scatter plot or marginal histograms to display a data
tip.

See Also
Functions
categorical | histogram | scatter | table

Properties
ScatterHistogramChart

Topics
“Access Data in a Table”

Introduced in R2018b

1 Alphabetical List

1-13292

ScatterHistogramChart Properties
Control scatter histogram chart appearance and behavior

Description
ScatterHistogramChart properties control the appearance and behavior of a
ScatterHistogramChart object. By changing property values, you can modify certain
aspects of the chart display. For example, you can add a title:

s = scatterhistogram(rand(10,1),rand(10,1));
s.Title = 'My Title';

Properties
Labels

Title — Chart title
'' (default) | character vector | string scalar

Chart title, specified as a character vector or string scalar. The default chart has no title.
Example: s = scatterhistogram(__,'Title','My Title Text')
Example: s.Title = 'My Title Text'

XLabel — Label for x-axis
character vector | string scalar

Label for the x-axis, specified as a character vector or string scalar. Use '' for no label.
Example: s = scatterhistogram(__,'XLabel','My Label')
Example: s.XLabel = 'My Label'

YLabel — Label for y-axis
character vector | string scalar

Label for the y-axis, specified as a character vector or string scalar. Use '' for no label.

 ScatterHistogramChart Properties

1-13293

Example: s = scatterhistogram(__,'YLabel','My Label')
Example: s.YLabel = 'My Label'

LegendTitle — Legend title
character vector | string scalar

Legend title, specified as a character vector or string scalar. Use '' for no title.
Example: s = scatterhistogram(__,'LegendTitle','My Title Text')
Example: s.LegendTitle = 'My Title Text'

Histograms

NumBins — Number of histogram bins
positive integer scalar | positive integer column vector | positive integer matrix

Number of histogram bins, specified as a positive integer scalar, 2-by-1 positive integer
vector, or 2-by-n positive integer matrix, where n is the number of groups in GroupData.

Specified Value Description
scalar The value is the number of bins for the x and y histograms.
2-by-1 vector The first value is the number of bins for the x data, and the

second value is the number of bins for the y data.
2-by-n matrix The (1,j) value is the number of bins for the histogram of

the x data that is in the jth group. Similarly, the (2,j) value
is the number of bins for the histogram of the y data that is
in the jth group.

scatterhistogram uses the 'BinMethod','auto' name-value pair argument of
histogram to determine the default NumBins and BinWidths values.

You cannot change NumBins for categorical data.
Example: s = scatterhistogram(__,'NumBins',20)
Example: s.NumBins = [10; 15]

BinWidths — Histogram bin widths
positive scalar | positive column vector | positive matrix

Histogram bin widths, specified as a positive scalar, 2-by-1 positive vector, or 2-by-n
positive matrix, where n is the number of groups in GroupData.

1 Alphabetical List

1-13294

Specified Value Description
scalar The value is the bin width for the x and y histograms.
2-by-1 vector The first value is the bin width for the x data, and the second

value is the bin width for the y data.
2-by-n matrix The (1,j) value is the bin width for the histogram of the x

data that is in the jth group. Similarly, the (2,j) value is
the bin width for the histogram of the y data that is in the
jth group.

scatterhistogram uses the 'BinMethod','auto' name-value pair argument of
histogram to determine the default NumBins and BinWidths values. The BinWidths
values for categorical data are always 0.

If you set BinWidths, then scatterhistogram ignores the NumBins value.
Example: s = scatterhistogram(__,'BinWidths',0.5)
Example: s.BinWidths = [1.5; 2]

XHistogramDirection — Direction of x data histograms
'up' (default) | 'down'

Direction of the x data histograms, specified as 'up' or 'down'. If the
XHistogramDirection value is 'up', then the x data histograms have bars directed
upwards. If the XHistogramDirection value is 'down', then the x data histograms
have bars directed downwards.
Example: s = scatterhistogram(__,'XHistogramDirection','down')
Example: s.XHistogramDirection = 'down'

YHistogramDirection — Direction of y data histograms
'right' (default) | 'left'

Direction of the y data histograms, specified as 'right' or 'left'. If the
YHistogramDirection value is 'right', then the y data histograms have bars directed
rightwards. If the YHistogramDirection value is 'left', then the y data histograms
have bars directed leftwards.
Example: s = scatterhistogram(__,'YHistogramDirection','left')
Example: s.YHistogramDirection = 'left'

 ScatterHistogramChart Properties

1-13295

HistogramDisplayStyle — Histogram display style
'stairs' (default) | 'bar' | 'smooth'

Histogram display style, specified as one of these options.

Display
Style

Description

'stairs' Display a stairstep plot that shows the outline of the histogram without
filling the bars.

'bar' Display a histogram bar plot.
'smooth' Display a smooth plot generated through kernel density estimates. This

option requires a Statistics and Machine Learning Toolbox license.

scatterhistogram uses the 'pdf' type of normalization to generate the histograms.
For more information, see the 'Normalization' name-value pair argument of
histogram.
Example: s = scatterhistogram(__,'HistogramDisplayStyle','smooth')
Example: s.HistogramDisplayStyle = 'bar'

LineStyle — Histogram line style
character vector | string array | cell array of character vectors

Histogram line style, specified in one of these forms:

• Character vector designating one line style
• String array or cell array of character vectors designating one or more line styles

Choose among these line style options.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

1 Alphabetical List

1-13296

Line Style Description Resulting Line
'none' No line No line

When the total number of groups exceeds the number of specified line styles,
scatterhistogram cycles through the specified line styles.
Example: s = scatterhistogram(__,'LineStyle',':')
Example: s.LineStyle = {':','-','-.'}

LineWidth — Histogram line width
positive scalar | positive vector

Histogram line width, specified as a positive scalar or positive vector in points. By default,
scatterhistogram assigns a line width of 0.5 to each histogram plot line.

When the total number of groups exceeds the number of specified line widths,
scatterhistogram cycles through the specified line widths.
Example: s = scatterhistogram(__,'LineWidth',0.75)
Example: s.LineWidth = [0.5 0.75 0.5]

Color and Font

Color — Group color
character vector | string array | cell array of character vectors | matrix of RGB values

Group color, specified in one of these forms:

• Character vector designating a color name.
• String array or cell array of character vectors designating one or more color names.
• Three-column matrix of RGB values in the range [0,1]. The three columns represent

the R value, G value, and B value, respectively.

Choose among these predefined colors and their equivalent RGB triplets.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]

 ScatterHistogramChart Properties

1-13297

Option Description Equivalent RGB Triplet
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

By default, scatterhistogram assigns a maximum of seven unique group colors. When
the total number of groups exceeds the number of specified colors, scatterhistogram
cycles through the specified colors.
Example: s = scatterhistogram(__,'Color',{'blue','green',red'})
Example: s.Color = [0 0 1; 0 0.5 0.5; 0.5 0.5 0.5]

FontName — Font name
system-supported font name

Font name, specified as a system-supported font name. The same font is used for the title,
axis labels, legend title, and group names. The default font depends on the specific
operating system and locale.
Example: s = scatterhistogram(__,'FontName','Cambria')
Example: s.FontName = 'Cambria'

FontSize — Font size
scalar numeric value

Font size, specified as a scalar value. FontSize is the same for the title, axis labels,
legend title, and group names. The default font size depends on the specific operating
system and locale.

As you adjust the size of plot elements, the software automatically updates the font size.
However, changing the FontSize property disables this automatic resizing.
Example: s = scatterhistogram(__,'FontSize',12)
Example: s.FontSize = 12

1 Alphabetical List

1-13298

Markers

MarkerStyle — Marker symbol
character vector | string array | cell array of character vectors

Marker symbol for each scatter plot group, specified in one of these forms:

• Character vector designating a marker style
• String array or cell array of character vectors designating one or more marker styles

Choose among these marker options.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

By default, scatterhistogram assigns the marker symbol 'o' to each group in the
scatter plot. When the total number of groups exceeds the number of specified symbols,
scatterhistogram cycles through the specified symbols.
Example: s = scatterhistogram(__,'MarkerStyle','x')
Example: s.MarkerStyle = {'x','o'}

 ScatterHistogramChart Properties

1-13299

MarkerSize — Marker size
nonnegative scalar | nonnegative vector

Marker size for each scatter plot group, specified as a nonnegative scalar or nonnegative
vector, with values measured in points. By default, scatterhistogram assigns 36 as the
marker size for each group in the scatter plot. When the total number of groups exceeds
the number of specified values, scatterhistogram cycles through the specified values.
Example: s = scatterhistogram(__,'MarkerSize',30)
Example: s.MarkerSize = 40

MarkerFilled — State of marker face fill
'on' (default) | 'off'

State of marker face fill, specified as 'on' or 'off'. If MarkerFilled is set to 'on',
then scatterhistogram fills the interior of the markers in the scatter plot. If
MarkerFilled is set to 'off', then scatterhistogram leaves the interior of the
scatter plot markers empty.
Example: s = scatterhistogram(__,'MarkerFilled','off')
Example: s.MarkerFilled = 'off'

MarkerAlpha — Marker transparency
numeric scalar | numeric vector

Marker transparency for each scatter plot group, specified as a numeric scalar or
numeric vector with values between 0 and 1. Values closer to 0 specify more transparent
markers, and values closer to 1 specify more opaque markers. By default,
scatterhistogram assigns a MarkerAlpha value of 1 to all markers in the scatter plot.
Example: s = scatterhistogram(__,'MarkerAlpha',0.75)
Example: s.MarkerAlpha = [0.2 0.7 0.4]

Layout

ScatterPlotLocation — Location of scatter plot
'SouthWest' (default) | 'SouthEast' | 'NorthEast' | 'NorthWest'

Location of the scatter plot, specified as one of these options.

1 Alphabetical List

1-13300

Location Description
'SouthWes
t'

Plot the histograms above and to the right of the scatter plot.

'SouthEas
t'

Plot the histograms above and to the left of the scatter plot.

'NorthEas
t'

Plot the histograms below and to the left of the scatter plot.

'NorthWes
t'

Plot the histograms below and to the right of the scatter plot.

Example: s = scatterhistogram(__,'ScatterPlotLocation','NorthEast')
Example: s.ScatterPlotLocation = 'SouthEast'

ScatterPlotProportion — Ratio of scatter plot length to chart length
0.75 (default) | numeric scalar between 0 and 1

Ratio of the scatter plot length to the overall chart length, specified as a numeric scalar
between 0 and 1. The ScatterPlotProportion value applies to both x and y axes.
Example: s = scatterhistogram(__,'ScatterPlotProportion',0.7)
Example: s.ScatterPlotProportion = 0.6

LegendVisible — State of legend visibility
'on' | 'off'

State of legend visibility, specified as 'on' or 'off'. Set LegendVisible to 'on' to
display the legend or 'off' to hide the legend.

If GroupData is empty ([]) or contains a single group, then scatterhistogram does
not display a legend. Otherwise, scatterhistogram displays a legend by default, unless
the legend overlaps the scatter plot or marginal histograms.

In the legend, scatterhistogram displays the group names in order of their first
appearance in GroupData.
Example: s = scatterhistogram(__,'LegendVisible','on')
Example: s.LegendVisible = 'off'

 ScatterHistogramChart Properties

1-13301

Position

ActivePositionProperty — Position property to hold constant
'outerposition' (default) | 'innerposition'

Position property to hold constant during resize operations, specified as
'outerposition' or 'innerposition'. The default value of 'outerposition'
means that the OuterPosition property remains constant. The InnerPosition
property value can change when the parent container changes size, the data changes, or
the labels change.

This figure shows the innerposition and outerposition definitions for
ScatterHistogramChart.

1 Alphabetical List

1-13302

Example: s.ActivePositionProperty = 'outerposition'

InnerPosition — Inner size and position
four-element numeric vector

Inner size and position of the chart within the parent container (typically a figure, panel,
or tab), specified as a four-element numeric vector of the form [left bottom width
height]. The inner position includes only the scatter plot.

• The left and bottom elements define the distance from the lower left corner of the
container to the lower left corner of the scatter plot.

• The width and height elements are the dimensions of the scatter plot.

For an illustration, see “ActivePositionProperty” on page 1-0 .

OuterPosition — Outer size and position
[0 0 1 1] (default) | four-element numeric vector

Outer size and position of the full scatter histogram chart within the parent container
(typically a figure, panel, or tab), specified as a four-element numeric vector of the form
[left bottom width height]. The default value of [0 0 1 1] includes the whole
interior of the container.

For an illustration, see “ActivePositionProperty” on page 1-0 .

Position — Inner size and position
four-element numeric vector

Inner size and position of the chart within the parent container (typically a figure, panel,
or tab), specified as a four-element numeric vector of the form [left bottom width
height]. This property is equivalent to the “InnerPosition” on page 1-0 property.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

 ScatterHistogramChart Properties

1-13303

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0), and the upper right corner maps to
(1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96
inch.

• On Macintosh systems, a pixel is 1/72
inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
OuterPosition.

Visible — State of object visibility
'on' (default) | 'off'

State of object visibility, specified as one of these values:

1 Alphabetical List

1-13304

• 'on' — Display the ScatterHistogramChart object.
• 'off' — Hide the ScatterHistogramChart object without deleting it. You can still

access the properties of an invisible ScatterHistogramChart object.

Data and Limits

SourceTable — Source table
table

Source table, specified as a table.

You can create a table from workspace variables using the table function, or you can
import data as a table using the readtable function.

Note The property is ignored and read-only when you use arrays instead of tabular data.

XVariable — Table variable for x-axis
character vector | string scalar | numeric scalar | logical vector

Table variable for x-axis, specified in one of these forms:

• Character vector or string scalar indicating one of the variable names
• Numeric scalar indicating the table variable index
• Logical vector containing one true element

The values associated with your table variable must be of a numeric type or
categorical.

If you set the XVariable property value, then the XData property automatically updates
to appropriate values.

Note The property is ignored and read-only when you use arrays instead of tabular data.

Example: s.XVariable = 'Acceleration' specifies the variable named
'Acceleration'.

YVariable — Table variable for y-axis
character vector | string scalar | numeric scalar | logical vector

 ScatterHistogramChart Properties

1-13305

Table variable for y-axis, specified in one of these forms:

• Character vector or string scalar indicating one of the variable names
• Numeric scalar indicating the table variable index
• Logical vector containing one true element

The values associated with your table variable must be of a numeric type or
categorical.

If you set the YVariable property value, then the YData property automatically updates
to appropriate values.

Note The property is ignored and read-only when you use arrays instead of tabular data.

Example: s.YVariable = 'Horsepower' specifies the variable named 'Horsepower'.

GroupVariable — Table variable for grouping data
character vector | string scalar | numeric scalar | logical vector

Table variable for grouping data, specified in one of these forms:

• Character vector or string scalar indicating one of the variable names
• Numeric scalar indicating the table variable index
• Logical vector containing one true element

The values associated with your table variable must form a numeric vector, logical vector,
categorical array, string array, or cell array of character vectors.

GroupVariable splits the data in XVariable and YVariable into unique groups. Each
group has a default color and an independent histogram in each axis. In the legend,
scatterhistogram displays the group names in order of their first appearance in
GroupData.

When you specify the group variable, MATLAB updates the GroupData property values.

Note This property is ignored and read-only when you use arrays instead of tabular data.

Example: s.GroupVariable = 'Origin'

1 Alphabetical List

1-13306

XData — x values
numeric vector | categorical array

Values appearing along the x-axis, specified as a numeric vector or categorical array.

If you are using tabular data, you cannot set this property. The XData values
automatically populate based on the table variable you select with the XVariable
property.
Example: s.XData = [0.5 4.3 2.4 5.6 3.4]

YData — y values
numeric vector | categorical array

Values appearing along the y-axis, specified as a numeric vector or categorical array.

If you are using tabular data, you cannot set this property. The YData values
automatically populate based on the table variable you select with the YVariable
property.
Example: s.YData = [0.5 4.3 2.4 5.6 3.4]

GroupData — Group values
numeric vector | logical vector | categorical array | string array | cell array of character
vectors

Group values for the scatter plot and the corresponding marginal histograms, specified as
a numeric vector, logical vector, categorical array, string array, or cell array of character
vectors.

GroupData splits the data in XData and YData into unique groups. Each group has a
default color and an independent histogram in each axis. In the legend,
scatterhistogram displays the group names in order of their first appearance in
GroupData.

If you are using tabular data, you cannot set this property. The GroupData values
automatically populate based on the table variable you select with the GroupVariable
property.
Example: s.GroupData = [1 2 1 3 2 1 3]
Example: s.GroupData = {'blue','green','green','blue','green'}

 ScatterHistogramChart Properties

1-13307

XLimits — x-axis limits
two-element numeric vector | two-element categorical vector

x-axis limits, specified as a two-element numeric vector or two-element categorical vector.
By default, the values are derived from the XData values.
Example: s.XLimits = categorical({'blue','green'})
Example: s.XLimits = [10 50]

YLimits — y-axis limits
two-element numeric vector | two-element categorical vector

y-axis limits, specified as a two-element numeric vector or two-element categorical vector.
By default, the values are derived from the YData values.
Example: s.YLimits = categorical({'blue','green'})
Example: s.YLimits = [10 50]

Parent/Child

Parent — Parent container
figure object | panel object | tab object

Parent container, specified as a figure, panel, or tab object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle for ScatterHistogramChart in the Children property of
the parent, specified as one of these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is always invisible. This option is useful for preventing

unintended changes to the UI by another function. To temporarily hide the handle
during the execution of that function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but allows callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties

1 Alphabetical List

1-13308

cannot return the object. These functions include get, findobj, gca, gcf, gco,
newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles, regardless of their HandleVisibility property setting.

See Also
scatterhistogram

Topics
“Access Property Values”

Introduced in R2018b

 ScatterHistogramChart Properties

1-13309

schur
Schur decomposition

Syntax
T = schur(A)
T = schur(A,flag)
[U,T] = schur(A,...)

Description
The schur function computes the Schur form of a matrix.

T = schur(A) returns the Schur matrix T.

T = schur(A,flag) for real matrix A, returns a Schur matrix T in one of two forms
depending on the value of flag:

'complex' T is triangular and is complex if A is real and has complex
eigenvalues.

'real' T has the real eigenvalues on the diagonal and the complex
eigenvalues in 2-by-2 blocks on the diagonal. 'real' is the
default when A is real.

If A is complex, schur returns the complex Schur form in matrix T and flag is ignored.
The complex Schur form is upper triangular with the eigenvalues of A on the diagonal.

The function rsf2csf converts the real Schur form to the complex Schur form.

[U,T] = schur(A,...) also returns a unitary matrix U so that A = U*T*U' and
U'*U = eye(size(A)).

Examples
H is a 3-by-3 eigenvalue test matrix:

1 Alphabetical List

1-13310

H = [-149 -50 -154
 537 180 546
 -27 -9 -25]

Its Schur form is

schur(H)

ans =
 1.0000 -7.1119 -815.8706
 0 2.0000 -55.0236
 0 0 3.0000

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal. The fact that the
off-diagonal elements are so large indicates that this matrix has poorly conditioned
eigenvalues; small changes in the matrix elements produce relatively large changes in its
eigenvalues.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code can return a different Schur decomposition than MATLAB returns.
• When the input matrix contains a nonfinite value, the generated code does not issue

an error. Instead, the output contains NaN values.
• Code generation does not support sparse matrix inputs for this function.

See Also
eig | hess | qz | rsf2csf

Introduced before R2006a

 schur

1-13311

scatteredInterpolant
Interpolate 2-D or 3-D scattered data

Description
Use scatteredInterpolant to perform interpolation on a 2-D or 3-D data set of
scattered data on page 1-13325. scatteredInterpolant returns the interpolant on
page 1-13325 F for the given data set. You can evaluate F at a set of query points, such as
(xq,yq) in 2-D, to produce interpolated values vq = F(xq,yq).

Use griddedInterpolant to perform interpolation with gridded data on page 1-13325.

Creation

Syntax
F = scatteredInterpolant
F = scatteredInterpolant(x,y,v)
F = scatteredInterpolant(x,y,z,v)
F = scatteredInterpolant(P,v)
F = scatteredInterpolant(___ ,Method)
F = scatteredInterpolant(___ ,Method,ExtrapolationMethod)

Description
F = scatteredInterpolant creates an empty scattered data interpolant object.

F = scatteredInterpolant(x,y,v) creates an interpolant that fits a surface of the
form v = F(x,y). Vectors x and y specify the (x,y) coordinates of the sample points. v is a
vector that contains the sample values associated with the points (x,y).

F = scatteredInterpolant(x,y,z,v) creates a 3-D interpolant of the form v =
F(x,y,z).

1 Alphabetical List

1-13312

F = scatteredInterpolant(P,v) specifies the coordinates of the sample points as an
array. The rows of P contain the (x, y) or (x, y, z) coordinates for the values in v.

F = scatteredInterpolant(___ ,Method) specifies an interpolation method:
'nearest', 'linear', or 'natural'. Specify Method as the last input argument in any
of the first three syntaxes.

F = scatteredInterpolant(___ ,Method,ExtrapolationMethod) specifies both
the interpolation and extrapolation methods. Pass Method and ExtrapolationMethod
together as the last two input arguments in any of the first three syntaxes.

• Method can be: 'nearest', 'linear', or 'natural'.
• ExtrapolationMethod can be: 'nearest', 'linear', or 'none'.

Input Arguments
x, y, z — Sample points
vector

Sample points, specified as vectors of the same size as v. The sample points should be
unique. However, if the sample points contain duplicates, scatteredInterpolant
displays a warning and merges the duplicates into a single point.
Data Types: double

P — Sample points array
matrix

Sample points array, specified as an m-by-n matrix, where m is the number of points and n
is the dimension of the space where the points reside. Each row of P contains the (x, y) or
(x, y, z) coordinates of a sample point. The sample points should be unique. However, if
the sample points contain duplicates, scatteredInterpolant displays a warning and
merges the duplicates into a single point.
Data Types: double

v — Sample values
vector

Sample values, specified as a vector that defines the function values at the sample points,
v = F(x,y,z).
Data Types: double

 scatteredInterpolant

1-13313

Method — Interpolation method
'linear' (default) | 'nearest' | 'natural'

Interpolation method, specified as one of these options.

Method Description Continuity
'linear'
(default)

Linear interpolation C0

'nearest' Nearest neighbor interpolation Discontinuous
'natural' Natural neighbor interpolation C1 (except at sample points)

ExtrapolationMethod — Extrapolation method
'linear' | 'nearest' | 'none'

Extrapolation method, specified as one of these options.

ExtrapolationMethod Description
'linear' Linear extrapolation based on boundary gradients.

Default when Method is 'linear' or 'natural'.
'nearest' Nearest neighbor extrapolation. This method evaluates to

the value of the nearest neighbor on the boundary.
Default when Method is 'nearest'.

'none' No extrapolation. Any queries outside the convex hull of
Points return NaN.

Properties
Points — Sample points
matrix

Sample points, specified as a matrix. The size of the matrix is m-by-2 or m-by-3 to
represent m points in 2-D or 3-D space. Each row of Points contains the (x, y) or (x, y, z)
coordinates of a unique sample point. The rows in Points correspond to the function
values in Values.
Data Types: double

1 Alphabetical List

1-13314

Values — Function values at sample points
vector

Function values at sample points, specified as a vector of values associated with each
point in Points.
Data Types: double

Method — Interpolation method
'linear' (default) | 'nearest' | 'natural'

Interpolation method, specified as 'linear','nearest' , or 'natural'. See Method
for descriptions of these methods.

ExtrapolationMethod — Extrapolation method
'linear' | 'nearest' | 'none'

Extrapolation method, specified as 'nearest', 'linear', or 'none'. See
ExtrapolationMethod for descriptions of these methods.
Data Types: double

Evaluate Interpolant at Specific Points
Use scatteredInterpolant to create the interpolant on page 1-13325, F. Then you can
evaluate F at specific points using any of the following syntaxes:

F = scatteredInterpolant
F = scatteredInterpolant(x,y,v)
F = scatteredInterpolant(x,y,z,v)
F = scatteredInterpolant(P,v)
F = scatteredInterpolant(___ ,Method)
F = scatteredInterpolant(___ ,Method,ExtrapolationMethod)
Vq = F(Pq)
Vq = F(Xq,Yq)
Vq = F(Xq,Yq,Zq)
Vq = F({xq,yq})
Vq = F({xq,yq,zq})

• Vq = F(Pq) specifies the query points in the matrix Pq. Each row in Pq contains the
coordinates of a query point.

 scatteredInterpolant

1-13315

• Vq = F(Xq,Yq) and Vq = F(Xq,Yq,Zq) specify the query points as two or three
matrices of equal size.

• Vq = F({xq,yq}) and Vq = F({xq,yq,zq}) specify the query points as grid
vectors on page 1-13326. Use this syntax to conserve memory when you want to query
a large grid of points.

Examples

2-D Interpolation

Define some sample points and calculate the value of a trigonometric function at those
locations. These points are the sample values for the interpolant.

t = linspace(3/4*pi,2*pi,50)';
x = [3*cos(t); 2*cos(t); 0.7*cos(t)];
y = [3*sin(t); 2*sin(t); 0.7*sin(t)];
v = repelem([-0.5; 1.5; 2],length(t));

Create the interpolant.

F = scatteredInterpolant(x,y,v);

Evaluate the interpolant at query locations (xq,yq).

tq = linspace(3/4*pi+0.2,2*pi-0.2,40)';
xq = [2.8*cos(tq); 1.7*cos(tq); cos(tq)];
yq = [2.8*sin(tq); 1.7*sin(tq); sin(tq)];
vq = F(xq,yq);

Plot the result.

plot3(x,y,v,'.',xq,yq,vq,'.'), grid on
title('Linear Interpolation')
xlabel('x'), ylabel('y'), zlabel('Values')
legend('Sample data','Interpolated query data','Location','Best')

1 Alphabetical List

1-13316

3-D Interpolation

Create an interpolant for a set of scattered sample points, then evaluate the interpolant at
a set of 3-D query points.

Define 200 random points and sample a trigonometric function. These points are the
sample values for the interpolant.

P = -2.5 + 5*gallery('uniformdata',[200 3],0);
v = sin(P(:,1).^2 + P(:,2).^2 + P(:,3).^2)./(P(:,1).^2+P(:,2).^2+P(:,3).^2);

Create the interpolant.

 scatteredInterpolant

1-13317

F = scatteredInterpolant(P,v);

Evaluate the interpolant at query locations (xq,yq,zq).

[xq,yq,zq] = meshgrid(-2:0.25:2);
vq = F(xq,yq,zq);

Plot slices of the result.

xslice = [-.5,1,2];
yslice = [0,2];
zslice = [-2,0];
slice(xq,yq,zq,vq,xslice,yslice,zslice)

1 Alphabetical List

1-13318

Replacement of Sample Values

Replace the elements in the Values property when you want to change the values at the
sample points. You get immediate results when you evaluate the new interpolant because
the original triangulation does not change.

Create 50 random points and sample an exponential function. These points are the
sample values for the interpolant.

x = -2.5 + 5*gallery('uniformdata',[50 1],0);
y = -2.5 + 5*gallery('uniformdata',[50 1],1);
v = x.*exp(-x.^2-y.^2);

Create the interpolant.

F = scatteredInterpolant(x,y,v)

F =
 scatteredInterpolant with properties:

 Points: [50x2 double]
 Values: [50x1 double]
 Method: 'linear'
 ExtrapolationMethod: 'linear'

Evaluate the interpolant at (1.40,1.90).

F(1.40,1.90)

ans = 0.0029

Change the interpolant sample values and reevaluate the interpolant at the same point.

vnew = x.^2 + y.^2;
F.Values = vnew;
F(1.40,1.90)

ans = 6.1109

 scatteredInterpolant

1-13319

Compare Scattered Data Interpolation Methods

Compare the results of several different interpolation algorithms offered by
scatteredInterpolant.

Create a sample data set of 50 scattered points. The number of points is artificially small
to highlight the differences between the interpolation methods.

x = -3 + 6*rand(50,1);
y = -3 + 6*rand(50,1);
v = sin(x).^4 .* cos(y);

Create the interpolant and a grid of query points.

F = scatteredInterpolant(x,y,v);
[xq,yq] = meshgrid(-3:0.1:3);

Plot the results using the 'nearest', 'linear', and 'natural' methods. Each time
the interpolation method changes, you need to requery the interpolant to get the updated
results.

F.Method = 'nearest';
vq1 = F(xq,yq);
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq1)
title('Nearest Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

1 Alphabetical List

1-13320

F.Method = 'linear';
vq2 = F(xq,yq);
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq2)
title('Linear')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

 scatteredInterpolant

1-13321

F.Method = 'natural';
vq3 = F(xq,yq);
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq3)
title('Natural Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

1 Alphabetical List

1-13322

Plot the exact solution.

figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,sin(xq).^4 .* cos(yq))
title('Exact Solution')
legend('Sample Points','Exact Surface','Location','NorthWest')

 scatteredInterpolant

1-13323

2-D Extrapolation

Query an interpolant at a single point outside the convex hull using nearest neighbor
extrapolation.

Define a matrix of 200 random points and sample an exponential function. These points
are the sample values for the interpolant.

P = -2.5 + 5*gallery('uniformdata',[200 2],0);
x = P(:,1);
y = P(:,2);
v = x.*exp(-x.^2-y.^2);

1 Alphabetical List

1-13324

Create the interpolant, specifying linear interpolation and nearest neighbor extrapolation.

F = scatteredInterpolant(P,v,'linear','nearest')

F =
 scatteredInterpolant with properties:

 Points: [200x2 double]
 Values: [200x1 double]
 Method: 'linear'
 ExtrapolationMethod: 'nearest'

Evaluate the interpolant outside the convex hull.

vq = F(3.0,-1.5)

vq = 0.0031

Disable extrapolation and evaluate F at the same point.

F.ExtrapolationMethod = 'none';
vq = F(3.0,-1.5)

vq = NaN

Definitions

Interpolant
Interpolating function that you can evaluate at query points.

Gridded Data
A set of points that are axis-aligned and ordered.

Scattered Data
A set of points that have no structure among their relative locations.

 scatteredInterpolant

1-13325

Full Grid
A grid represented as a set of arrays. For example, you can create a full grid using
ndgrid.

Grid Vectors
A set of vectors that serve as a compact representation of a grid in ndgrid format.

For example, [X,Y] = ndgrid(xg,yg) returns a full grid in the matrices X and Y. You
can represent the same grid using the grid vectors xg and yg.

Tips
• It is quicker to evaluate a scatteredInterpolant object F at many different sets of

query points than it is to compute the interpolations separately using the functions
griddata or griddatan. For example:

% Fast to create interpolant F and evaluate multiple times
F = scatteredInterpolant(X,Y,V)
v1 = F(Xq1,Yq1)
v2 = F(Xq2,Yq2)

% Slower to compute interpolations separately using griddata
v1 = griddata(X,Y,V,Xq1,Yq1)
v2 = griddata(X,Y,V,Xq2,Yq2)

• To change the interpolation sample values or interpolation method, it is more efficient
to update the properties of the interpolant object F than it is to create a new
scatteredInterpolant object. When you update Values or Method, the
underlying Delaunay triangulation of the input data does not change, so you can
compute new results quickly.

Algorithms
scatteredInterpolant uses a Delaunay triangulation of the scattered sample points to
perform interpolation [1].

1 Alphabetical List

1-13326

References
[1] Amidror, Isaac. “Scattered data interpolation methods for electronic imaging systems:

a survey.” Journal of Electronic Imaging. Vol. 11, No. 2, April 2002, pp. 157–176.

See Also
griddata | griddatan | griddedInterpolant | meshgrid | ndgrid

Introduced in R2013a

 scatteredInterpolant

1-13327

matlab.unittest.Scope class
Package: matlab.unittest

Test scope enumeration class

Description
The matlab.unittest.Scope enumeration class provides a means to specify the scope
of test execution. The enumeration class contains the following members.

Numeric Representation Enumeration Member
Name

Scope Description

1 TestMethod TestMethodSetup, Test, and
TestMethodTeardown
methods

2 TestClass TestClassSetup and
TestClassTeardown methods

3 SharedTestFixture shared test fixture setup and
teardown methods

Construction
matlab.unittest.Scope.MemberName creates an instance of the test scope
enumeration class.

Examples

Create Instance of Enumeration Class

n = matlab.unittest.Scope.TestClass

1 Alphabetical List

1-13328

n =

 TestClass

Display information about the variables.

whos n

 Name Size Bytes Class Attributes

 n 1x1 0 matlab.unittest.Scope

See Also
matlab.unittest.plugins.diagnosticrecord

Introduced in R2017a

 matlab.unittest.Scope class

1-13329

sec
Secant of angle in radians

Syntax
Y = sec(X)

Description
Y = sec(X) returns the secant of the elements of X. The sec function operates element-
wise on arrays. The function accepts both real and complex inputs.

• For real values of X, sec(X) returns real values in the interval [-∞, -1] and [1, ∞].
• For complex values of X, sec(X) returns complex values.

Examples

Plot Secant Function

Plot the secant over the domain −π/2 < x < π/2 and π/2 < x < 3π/2 .

x1 = -pi/2+0.01:0.01:pi/2-0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2)), grid on

1 Alphabetical List

1-13330

Secant of Vector of Complex Angles

Calculate the secant of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = sec(x)

y = 1×3 complex

 0.6481 + 0.0000i -0.3985 + 0.0000i 0.0198 - 0.0308i

 sec

1-13331

Input Arguments
X — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Secant of input angle
scalar | vector | matrix | multidimensional array

Secant of input angle, returned as real-valued or complex-valued scalar, vector, matrix or
multidimensional array.

Definitions

Secant Function
The secant of an angle, α, defined with reference to a right angled triangle is

sec(α) = 1
cos α = hypotenuse

adjacent side = h
b .

1 Alphabetical List

1-13332

The secant of a complex argument, α, is

sec(α) = 2
eiα + e−iα .

Tips
• In floating-point arithmetic, sec is a bounded function. That is, sec does not return

values of Inf or -Inf at points of divergence that are multiples of pi, but a large
magnitude number instead. This stems from the inaccuracy of the floating-point
representation of π.

 sec

1-13333

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asec | asecd | asech | secd | sech

Introduced before R2006a

1 Alphabetical List

1-13334

secd
Secant of argument in degrees

Syntax
Y = secd(X)

Description
Y = secd(X) returns the secant of the elements of X, which are expressed in degrees.

Examples

Secant of 90 degrees compared to secant of π/2 radians

secd(90)

ans = Inf

sec(pi/2)

ans = 1.6331e+16

secd(90) is infinite, whereas sec(pi/2) is large but finite.

Secant of vector of complex angles, specified in degrees

z = [35+i 15+2i 10+3i];
y = secd(z)

y = 1×3 complex

 secd

1-13335

 1.2204 + 0.0149i 1.0346 + 0.0097i 1.0140 + 0.0094i

Input Arguments
X — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar, vector, matrix, or N-
D array. The secd operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Secant of angle
scalar value | vector | matrix | N-D array

Secant of angle, returned as a real-valued or complex-valued scalar, vector, matrix, or N-D
array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Alphabetical List

1-13336

• In some cases, generated code returns -Inf when MATLAB returns Inf.
• In some cases, generated code returns Inf when MATLAB returns -Inf.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asec | asecd | sec

Introduced before R2006a

 secd

1-13337

sech
Hyperbolic secant

Syntax
Y = sech(X)

Description
Y = sech(X) returns the hyperbolic secant of the elements of X. The sech function
operates element-wise on arrays. The function accepts both real and complex inputs. All
angles are in radians.

Examples

Hyperbolic Secant of Vector

Create a vector and calculate the hyperbolic secant of each value.

X = [0 pi 2*pi 3*pi];
Y = sech(X)

Y = 1×4

 1.0000 0.0863 0.0037 0.0002

Graph of Hyperbolic Secant Function

Plot the hyperbolic secant over the domain −2π ≤ x ≤ 2π.

x = -2*pi:0.01:2*pi;
y = sech(x);

1 Alphabetical List

1-13338

plot(x,y)
grid on

Input Arguments
X — Input angles in radians
scalar | vector | matrix | multidimensional array

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

 sech

1-13339

Definitions

Hyperbolic Secant
The hyperbolic secant of x is equal to the inverse of the hyperbolic cosine

sech x = 1
cosh x = 2

ex + e−x .

In terms of the traditional secant function with a complex argument, the identity is

sech x = sec ix .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-13340

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asech | cosh | sec | sinh

Introduced before R2006a

 sech

1-13341

second
Second number

Syntax
s = second(t)
s = second(t,secondType)

Description
s = second(t) returns the second values, including a fractional part, for the datetime
values in t. The s output is a double array the same size as t and contains values from 0
to less than 60.

For datetime values whose time zone is UTCLeapSeconds, the s output can contain a
value between 60 and 61 for times that fall during a leap second occurrence.

s = second(t,secondType) returns the type of second number specified by
secondType.

The second function returns the second numbers of datetime values. To assign second
values to datetime array t, use t.Second and modify the Second property.

Examples

Find Second Number of Datetime Values

t1 = datetime('now','Format','dd-MMM-yyyy HH:mm:ss.SSS');
t = t1 + seconds(30:15:60)

t = 1x3 datetime array
Columns 1 through 2

 02-Mar-2019 22:09:56.497 02-Mar-2019 22:10:11.497

1 Alphabetical List

1-13342

Column 3

 02-Mar-2019 22:10:26.497

s = second(t)

s = 1×3

 56.4970 11.4970 26.4970

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

secondType — Type of second values
'secondofminute' (default) | 'secondofday'

Type of second values, specified as either 'secondofminute' or 'secondofday'.

• If secondType is 'secondofminute', then second returns the second of the
minute.

• If secondType is 'secondofday', then second returns the second of the day, which
(except for leap seconds) is in the range [0, 86400).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 second

1-13343

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datetime | hms | hour | minute | timeofday

Introduced in R2014b

1 Alphabetical List

1-13344

seconds
Duration in seconds

Syntax
S = seconds(X)

Description
S = seconds(X) returns an array of seconds equivalent to the values in X.

• If X is a numeric array, then S is a duration array in units of seconds.
• If X is a duration array, then S is a double array with each element equal to the

number of seconds in the corresponding element of X.

The seconds function converts between duration and double values. To display a
duration in units of seconds, set its Format property to 's'.

Examples

Create Duration Array of Seconds

X = magic(4);
S = seconds(X)

S = 4x4 duration array
 16 sec 2 sec 3 sec 13 sec
 5 sec 11 sec 10 sec 8 sec
 9 sec 7 sec 6 sec 12 sec
 4 sec 14 sec 15 sec 1 sec

 seconds

1-13345

Convert Durations to Numeric Array of Seconds

Create a duration array.

X = hours(1) + minutes(1:4)

X = 1x4 duration array
 1.0167 hr 1.0333 hr 1.05 hr 1.0667 hr

Convert each duration in X to a number of seconds.

S = seconds(X)

S = 1×4

 3660 3720 3780 3840

S is a double array.

Find the natural logarithm of S. The log function accepts inputs of type double.

Y = log(S)

Y = 1×4

 8.2052 8.2215 8.2375 8.2532

Input Arguments
X — Input array
numeric array | duration array | logical array

Input array, specified as a numeric array, duration array, or logical array.

1 Alphabetical List

1-13346

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
duration

Introduced in R2014b

 seconds

1-13347

selectmoveresize
Select, move, resize, or copy axes and uicontrol graphics objects

Note The selectmoveresize function is not recommended. Use the plotedit
function to copy, move, resize, and edit objects instead.

Syntax
A = selectmoveresize
set(gca,'ButtonDownFcn','selectmoveresize')

Description
In releases before R2014b, selectmoveresize was useful as the callback routine for
axes and uicontrol button down functions. It allowed users to move, resize, and copy axes
and uicontrol objects.

A = selectmoveresize returns a structure array containing

• A.Type: Action type, which can be 'Select', 'Move', 'Resize', or 'Copy'
• A.Handles: a list of the selected handles, or, for a Copy, an m-by-2 matrix containing

the original handles in the first column and the new handles in the second column

set(gca,'ButtonDownFcn','selectmoveresize') sets the ButtonDownFcn
property of the current axes to 'selectmoveresize'.

See Also
Axes | Uicontrol | plotedit

Introduced before R2006a

1 Alphabetical List

1-13348

matlab.unittest.selectors Package
Summary of classes in MATLAB Selectors Interface

Description
Use selectors to filter or select elements of a test suite based on their attributes. The
matlab.unittest.selectors package consists of the following selectors.

Classes
matlab.unittest.selectors.AndSelector Boolean conjunction of two selectors
matlab.unittest.selectors.HasBaseFolder Selector for TestSuite elements

determined by folder
matlab.unittest.selectors.HasName Selector for TestSuite elements

determined by name
matlab.unittest.selectors.HasParameter Selector for TestSuite elements

determined by parameterization
matlab.unittest.selectors.HasProcedureName Selector for TestSuite elements

determined by procedure name
matlab.unittest.selectors.HasSharedTestFixture Selector for TestSuite elements that

use shared test fixture
matlab.unittest.selectors.HasSuperclass Selector for TestSuite elements

determined by test class hierarchy
matlab.unittest.selectors.HasTag Selector for TestSuite elements

determined by tag
matlab.unittest.selectors.NotSelector Boolean complement of selector
matlab.unittest.selectors.OrSelector Boolean disjunction of two selectors

See Also
matlab.unittest.TestSuite.selectIf

Introduced in R2014a

 matlab.unittest.selectors Package

1-13349

matlab.unittest.selectors.AndSelector class
Package: matlab.unittest.selectors

Boolean conjunction of two selectors

Description
The testing framework constructs an AndSelector when you denote the conjunction of
two selectors with the logical AND operator (&). The framework constructs instances of
the class, so there is no need to construct this class directly.

Properties
FirstSelector — Left side selector
instance of class in matlab.unittest.selectors package

This property is read-only.

Left side selector in the Boolean conjunction, specified as an instance of a class in the
matlab.unittest.selectors package.

SecondSelector — Right side selector
instance of class in matlab.unittest.selectors package

This property is read-only.

Right side selector in the Boolean conjunction, specified as an instance of a class in the
matlab.unittest.selectors package.

See Also
matlab.unittest.selectors.NotSelector |
matlab.unittest.selectors.OrSelector

Introduced in R2018a

1 Alphabetical List

1-13350

matlab.unittest.selectors.HasParameter
class
Package: matlab.unittest.selectors

Selector for TestSuite elements determined by parameterization

Description
The HasParameter selector filters TestSuite array elements determined by
parameterization.

Construction
matlab.unittest.selectors.HasParameter constructs a selector for TestSuite
elements determined by their parameterization. When you instantiate HasParameter
without input arguments, the resulting TestSuite array only contains elements that
have parameterized test methods.

matlab.unittest.selectors.HasParameter(Name,Value) constructs a selector
with additional options specified by one or more Name,Value pair arguments. The
selector filters based on the name of the property that defines a parameter, the name of
the parameter, and the value of the parameter. For an element to be selected for the
TestSuite array, it must have at least one parameter that satisfies all the conditions.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 matlab.unittest.selectors.HasParameter class

1-13351

Property

Name of the property that defines the parameter specified as a character vector or as an
instance of the matlab.unittest.constraints.Constraint class. If the specified
property name is a character vector, the testing framework creates an IsEqualTo
constraint with Property as the expected value.

Name

Name of the parameter specified as a character vector or as an instance of the
matlab.unittest.constraints.Constraint class. If the specified name is a
character vector, the testing framework creates an IsEqualTo constraint with Name as
the expected value.

Value

Value of the parameter specified as any MATLAB data type or as an instance of the
matlab.unittest.constraints.Constraint class. If the specified property name is
not a constraint, the testing framework creates an IsEqualTo constraint with the input
data, Value, as the expected value.

Properties
PropertyConstraint

Condition that the test element’s parameter property name must satisfy to be included in
the test suite, specified as an instance of the Constraint in the Property input
argument.

NameConstraint

Condition that the test element’s parameter name must satisfy to be included in the test
suite, specified as an instance of the Constraint in the Name input argument.

ValueConstraint

Condition that the test element’s parameter property value must satisfy to be included in
the test suite, specified as an instance of the Constraint in the Value input argument.

1 Alphabetical List

1-13352

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Filter Test Suite by Parameterization

In your working folder, create testZeros.m. This class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3],'s3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The test class contains two parameterized test methods, testClass and testSize.

At the command prompt, create a test suite from the file.

 matlab.unittest.selectors.HasParameter class

1-13353

s = matlab.unittest.TestSuite.fromFile('testZeros.m');
{s.Name}'

ans =

 11×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=single,outSize=s3d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}
 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s3d)'}
 {'testZeros/testSize(outSize=s2d)' }
 {'testZeros/testSize(outSize=s3d)' }
 {'testZeros/testDefaultClass' }
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue' }

The suite contains 11 test elements: 6 from the parameterized testClass method, 2
from the parameterized testSize method, and 1 from each of the testDefaultClass,
testDefaultSize, and testDefaultValue methods.

Select all of the test elements from parameterized test methods.

import matlab.unittest.selectors.HasParameter;

s1 = s.selectIf(HasParameter);
{s1.Name}'

ans =

 8×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=single,outSize=s3d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}
 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s3d)'}
 {'testZeros/testSize(outSize=s2d)' }
 {'testZeros/testSize(outSize=s3d)' }

The suite contains the eight test elements from the two parameterized test methods.

1 Alphabetical List

1-13354

Select all of the test elements from nonparameterized test methods.

s2 = s.selectIf(~HasParameter);
{s2.Name}'

ans =

 3×1 cell array

 {'testZeros/testDefaultClass'}
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue'}

Select all test elements that are parameterized and have a property named 'type' with a
parameter name 'double'.

s3 = s.selectIf(HasParameter('Property','type', 'Name','double'));
{s3.Name}'

ans =

 2×1 cell array

 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}

The resulting suite contains two elements. The testClass method is the only method in
testZeros that uses the 'type' property. Selecting only 'double' from the
parameters results in two test elements — one for each value of 'outSize'.

Select all test elements that a have a parameter defined by a property starting with 't'.

import matlab.unittest.constraints.StartsWithSubstring;

s4 = s.selectIf(HasParameter('Property',StartsWithSubstring('t')));
{s4.Name}'

ans =

 6×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=single,outSize=s3d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}

 matlab.unittest.selectors.HasParameter class

1-13355

 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s3d)'}

The resulting suite contains the six parameterized test elements from the testClass
method. The testSize method is parameterized, but the elements from the method are
not included in the suite because the method does not use a property that starts with 't'.

Select all test elements that are parameterized and test the zeros function with a 2-D
array. A parameter value representing a 2-D array has a length of 1 (for example
zeros(3)) or 2 (for example zeros(2,3)).

import matlab.unittest.constraints.HasLength;

s5 = s.selectIf(HasParameter('Property','outSize',...
 'Value', HasLength(1)|HasLength(2)));
{s5.Name}'

ans =

 4×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testSize(outSize=s2d)' }

Select only the test element that tests that the output is a double data type and that it
has the correct size for a 2-D array.

s6 = s.selectIf(HasParameter('Property','type','Name','double')...
 & HasParameter('Property','outSize','Name','s2d'))

s6 =

 Test with properties:

 Name: 'testZeros/testClass(type=double,outSize=s2d)'
 ProcedureName: 'testClass'
 TestClass: "testZeros"
 BaseFolder: 'C:\work'
 Parameterization: [1×2 matlab.unittest.parameters.TestParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

1 Alphabetical List

1-13356

Tests Include:
 2 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

See Also
fromClass | fromFile | fromFolder | fromMethod | fromPackage |
matlab.unittest.parameters | matlab.unittest.selectors | selectIf

Topics
“Create Basic Parameterized Test”
“Create Advanced Parameterized Test”

Introduced in R2014a

 matlab.unittest.selectors.HasParameter class

1-13357

matlab.unittest.selectors.HasSharedTestFixt
ure class
Package: matlab.unittest.selectors

Selector for TestSuite elements that use shared test fixture

Description
The HasSharedTestFixture selector filters TestSuite array elements based on
shared test fixtures.

Construction
matlab.unittest.selectors.HasSharedTestFixture(f) constructs a selector for
TestSuite elements based on their required shared test fixtures. For an element to be
selected for the TestSuite array, it must use a fixture that is compatible with the
specified fixture, f.

Input Arguments
f — Shared test fixture
Fixture

Shared test fixture specified as a matlab.unittest.fixtures.Fixture instance. The
TestSuite array element must use the shared text fixture, f, to be selected for the
TestSuite.

1 Alphabetical List

1-13358

Properties
ExpectedFixture

The shared test fixture that a TestSuite array element must use to be selected for the
TestSuite. The ExpectedFixture property is specified as a
matlab.unittest.fixtures.Fixture in the input argument, f.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Filter Test Suite by Shared Test Fixtures

Create a package folder, +mytestpackage, in your current working folder. This package
contains two test classes.

In the +mytestpackage folder, create AExampleTest.m. This class contains two tests
that use a suppressed warnings fixture.

classdef (SharedTestFixtures={ ...
 matlab.unittest.fixtures.SuppressedWarningsFixture(...
 'MATLAB:rmpath:DirNotFound')}) ...
 AExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testOne(testCase)
 % test code
 end
 function testTwo(testCase)
 % test code
 end
 end
end

In the +mytestpackage folder, create BExampleTest.m. This class contains one test
that uses a shared path fixture and a suppressed warnings fixture.

 matlab.unittest.selectors.HasSharedTestFixture class

1-13359

classdef (SharedTestFixtures={ ...
 matlab.unittest.fixtures.PathFixture(...
 fullfile(matlabroot,'help','techdoc','matlab_oop','examples')),...
 matlab.unittest.fixtures.SuppressedWarningsFixture(...
 'MATLAB:rmpath:DirNotFound')}) ...
 BExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testPathAdd(testCase)
 % test code
 end
 end
end

At the command prompt, define the following fixtures.

pf = matlab.unittest.fixtures.PathFixture(...
 fullfile(matlabroot,'help','techdoc','matlab_oop','examples'));
swf = matlab.unittest.fixtures.SuppressedWarningsFixture(...
 'MATLAB:rmpath:DirNotFound');

Create a test suite from the package.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasSharedTestFixture;

suite = TestSuite.fromPackage('mytestpackage')

suite =

 1×3 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 2 Unique Shared Test Fixture Classes, 0 Tags.

The test suite has three test elements.

Create a filtered suite that only contains tests that use the path fixture, pf.

s1 = suite.selectIf(HasSharedTestFixture(pf));

1 Alphabetical List

1-13360

The resulting suite, s1, contains the test element from BExampleTest.m, since the test
in that class uses the shared test fixture, pf.

Alternatively, pass the selector to the TestSuite.fromPackage method instead of
generating a full test suite, and then using the TestSuite.selectIf method to filter
the suite.

s1 = TestSuite.fromPackage('mytestpackage', HasSharedTestFixture(pf));

Create a filtered test suite that contains tests that use the suppressed warnings fixture,
swf, but not the path fixture, pf.
s2 = suite.selectIf(~HasSharedTestFixture(pf) & HasSharedTestFixture(swf));

The test suite, s2, only contains the two test elements from AExampleTest.m. Tests in
BExampleTest.m are excluded because, in addition to the suppressed warnings fixture,
they use the path fixture.

Create a filtered suite that only contains tests that use the path fixture to a different
location.

pf2 = matlab.unittest.fixtures.PathFixture(fullfile(matlabroot));
s3 = TestSuite.fromPackage('mytestpackage', HasSharedTestFixture(pf2))

s3 =

 1×0 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

 matlab.unittest.selectors.HasSharedTestFixture class

1-13361

The test suite does not contain any test elements. The tests in BExampleTest.m use a
shared path fixture, but the selected path fixture, pf2, adds a different folder to the path
so its tests are not included in the suite.

See Also
fromClass | fromFile | fromFolder | fromMethod | fromPackage |
matlab.unittest.selectors | selectIf

Introduced in R2014a

1 Alphabetical List

1-13362

matlab.unittest.selectors.HasBaseFolder
class
Package: matlab.unittest.selectors

Selector for TestSuite elements determined by folder

Description
The HasBaseFolder selector filters TestSuite array elements determined by the name
of the folder that contains the file that defines the test class or function.

Construction
matlab.unittest.selectors.HasBaseFolder(f) constructs a selector for
TestSuite elements determined by the folder, f, which contains the file that defines the
test class or function. You can specify the base folder as a character vector or as an
instance of the matlab.unittest.constraints.Constraint class. If the specified
base folder, f, is a character vector instead of a Constraint, the testing framework
creates an IsEqualTo constraint with fas the expected value.

For a test element to be included in the suite, the file that defines it must be contained in
the specified base folder. For test classes defined in packages, the base folder is the
parent of the top-level package folder. The base folder never contains any folders that
start with '+' or '@'.

Input Arguments
f — Base folder
character vector | Constraint

Base folder specified as a character vector or a
matlab.unittest.constraints.Constraint instance. The following conditions must
be satisfied for the test element to be selected for the TestSuite:

 matlab.unittest.selectors.HasBaseFolder class

1-13363

• If f is a character vector, the test element’s base folder must exactly match the
specified folder.

• If f is a constraint, the test element’s base folder must satisfy the specified constraint.

Properties
Constraint

Condition the base folder must satisfy to be included in the test suite, specified as an
instance of the matlab.unittest.constraints.Constraints class.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Filter Test Suite by Base Folder

Create a folder, MyTests, in your current working folder. In this folder, create two
subfolders, Feature1 and Feature2.

In a new file, Feature1_Test.m, in the Feature1 subfolder, create the following test
class.

classdef Feature1_Test < matlab.unittest.TestCase
 methods (Test)
 function testA1(testCase)
 % test code
 end
 function testB1(testCase)
 % test code
 end
 end
end

1 Alphabetical List

1-13364

In a new file, Feature2_Test.m, in the Feature2 subfolder, create the following test
class.

classdef Feature2_Test < matlab.unittest.TestCase
 methods (Test)
 function testA2(testCase)
 % test code
 end
 function testB2(testCase)
 % test code
 end
 end
end

If necessary, set your current working folder to the folder above MyTests. At the
command prompt, create a test suite from the MyTests folder and examine the contents.

import matlab.unittest.TestSuite
import matlab.unittest.selectors.HasBaseFolder;
import matlab.unittest.constraints.ContainsSubstring;

suite = TestSuite.fromFolder('MyTests', 'IncludingSubfolders', true);
{suite.Name}

ans =

 'Feature1_Test/testA1' 'Feature1_Test/testB1' 'Feature2_Test/testA2' 'Feature2_Test/testB2'

The suite contains the four tests from the two test files.

Select all test suite elements for classes that are defined in the 'Feature1' folder.

 s1 = suite.selectIf(HasBaseFolder(fullfile(pwd,'MyTests','Feature1')));
{s1.Name}

ans =

 'Feature1_Test/testA1' 'Feature1_Test/testB1'

The filtered test suite contains only test elements from the Feature1 folder.

Select all the test suite elements for classes that are defined in folders that do not contain
'Feature1', and then examine the contents.

 matlab.unittest.selectors.HasBaseFolder class

1-13365

s1 = suite.selectIf(HasBaseFolder(...
 fullfile(pwd,'MyTests','Feature1')));
{s1.Name}

ans =

 'Feature2_Test/testA2' 'Feature2_Test/testB2'

The filtered test suite only contains test elements from the Feature2 folder.

Alternatively, to generate a filtered suite directly, pass the selector to the
TestSuite.fromFolder method.

s1 = TestSuite.fromFolder('MyTests',...
 ~HasBaseFolder(ContainsSubstring('Feature1')),...
 'IncludingSubfolders',true);

See Also
fromClass | fromFile | fromFolder | fromMethod | fromPackage |
matlab.unittest.selectors | selectIf

Introduced in R2014a

1 Alphabetical List

1-13366

matlab.unittest.selectors.HasName class
Package: matlab.unittest.selectors

Selector for TestSuite elements determined by name

Description
The HasName selector filters TestSuite array elements determined by the test element
name.

Construction
matlab.unittest.selectors.HasName(n) constructs a selector for TestSuite
elements determined by the test element name, n. You can specify the name as a
character vector or as an instance of the
matlab.unittest.constraints.Constraint class. If the specified name, n, is a
character vector, the testing framework creates an IsEqualTo constraint with n as the
expected value.

For a test element to be included in the suite, the test element must have the same name
as the specified name.

Input Arguments
n — Test element name
character vector | Constraint

Test element name specified as a character vector or
matlab.unittest.constraints.Constraint instance. The following conditions must
be satisfied for the test element to be selected for the TestSuite:

• If n is a character vector, the test element’s name must exactly match the specified
name.

• If n is a constraint, the test element’s name must satisfy the specified constraint.

 matlab.unittest.selectors.HasName class

1-13367

Properties
Constraint

Condition the test element name must satisfy to be included in the test suite, specified as
an instance of the matlab.unittest.constraints.Constraints class.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Filter Test Suite by Name

Create the following test class in a file, ExampleTest.m, in your current working folder.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testPathAdd(testCase)
 % test code
 end
 function testOne(testCase)
 % test code
 end
 function testTwo(testCase)
 % test code
 end
 end
end

At the command prompt, create a test suite from the ExampleTest.m file and examine
the contents.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasName;
import matlab.unittest.constraints.EndsWithSubstring;

1 Alphabetical List

1-13368

suite = TestSuite.fromFile('ExampleTest.m');
{suite.Name}

ans =

 1×3 cell array

 {'ExampleTest/testPathAdd'} {'ExampleTest/testOne'} {'ExampleTest/testTwo'}

The suite contains three tests.

Select all the test suite elements that have the name 'ExampleTest/testPathAdd',
and examine the contents.

s1 = suite.selectIf(HasName('ExampleTest/testPathAdd'));
{s1.Name}

ans =

 1×1 cell array

 {'ExampleTest/testPathAdd'}

The filtered test suite only contains one test element.

Select all the test suite elements that end in either 'One' or 'Two', and examine the
contents.

s1 = suite.selectIf(HasName(EndsWithSubstring('One')) | ...
 HasName(EndsWithSubstring('Two')));
{s1.Name}

ans =

 1×2 cell array

 {'ExampleTest/testOne'} {'ExampleTest/testTwo'}

At the time of the test suite construction, create a test suite that only contains tests with
the substring 'One'.

import matlab.unittest.constraints.ContainsSubstring;
s2 = TestSuite.fromFile('ExampleTest.m',...
 HasName(ContainsSubstring('One')))

s2 =

 matlab.unittest.selectors.HasName class

1-13369

 Test with properties:

 Name: 'ExampleTest/testOne'
 ProcedureName: 'testOne'
 TestClass: "ExampleTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

See Also
fromClass | fromFile | fromFolder | fromMethod | fromPackage |
matlab.unittest.selectors | selectIf

Introduced in R2014a

1 Alphabetical List

1-13370

matlab.unittest.selectors.HasProcedureNam
e class
Package: matlab.unittest.selectors

Selector for TestSuite elements determined by procedure name

Description
The HasProcedureName selector filters TestSuite array elements determined by the
procedure name. The name of the test procedure does not include any class or package
name or information about parameterization. In a class-based test, the procedure name is
the name of the test method. In a function-based, test it is the name of the local function
that contains the test. In a script-based test, it is a name generated from the test section
title.

Construction
matlab.unittest.selectors.HasProcedureName(n) constructs a selector for
TestSuite elements determined by the procedure name, n.

For a test element to be included in the suite, the procedure name of the test element
must match the specified name or satisfy the specified constraint.

Input Arguments
n — Procedure name
string scalar | character vector | instance of
matlab.unittest.constraints.Constraint

Procedure name specified as a string scalar, character vector, or an instance of
matlab.unittest.constraints.Constraint. The name of the test procedure does
not include any class or package name or information about parameterization. In a class-
based test, the procedure name is the name of the test method. In a function-based test, it
is the name of the local function that contains the test. In a script-based test, it is the
name of a test section.

 matlab.unittest.selectors.HasProcedureName class

1-13371

Example: "Test1"
Example: ContainsSubstring('Test')

Properties
Constraint — Condition procedure name must satisfy
instance of matlab.unittest.constraints.Constraints class

Condition the procedure name must satisfy to be included in the test suite, specified as an
instance of the matlab.unittest.constraints.Constraints class.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Filter Test Suite by Procedure Name

Create the following test class in a file, ExampleTest.m, in your current working folder.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testPathAdd(testCase)
 % test code
 end
 function testOne(testCase)
 % test code
 end
 function testTwo(testCase)
 % test code
 end
 end
end

At the command prompt, create a test suite from the ExampleTest.m file and examine
the contents.

1 Alphabetical List

1-13372

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasProcedureName;
import matlab.unittest.constraints.EndsWithSubstring;

suite = TestSuite.fromFile('ExampleTest.m');
{suite.Name}

ans =

 1×3 cell array

 {'ExampleTest/testPathAdd'} {'ExampleTest/testOne'} {'ExampleTest/testTwo'}

The suite contains three tests.

Select all the test suite elements that have the procedure name testPathAdd, and
examine the contents.

s1 = suite.selectIf(HasProcedureName("testPathAdd"))

s1 =

 Test with properties:

 Name: 'ExampleTest/testPathAdd'
 ProcedureName: 'testPathAdd'
 TestClass: "ExampleTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

The filtered test suite only contains one test element.

Select all the test suite elements with a procedure name that ends in either 'One' or
'Two', and examine the contents.

s1 = suite.selectIf(HasProcedureName(EndsWithSubstring('One')) | ...
 HasProcedureName(EndsWithSubstring('Two')));
{s1.Name}

ans =

 matlab.unittest.selectors.HasProcedureName class

1-13373

 1×2 cell array

 {'ExampleTest/testOne'} {'ExampleTest/testTwo'}

At the time of the test suite construction, create a test suite that only contains tests with
the substring 'One'.

import matlab.unittest.constraints.ContainsSubstring;
s2 = TestSuite.fromFile('ExampleTest.m',...
 HasProcedureName(ContainsSubstring('One')))

s2 =

 Test with properties:

 Name: 'ExampleTest/testOne'
 ProcedureName: 'testOne'
 TestClass: "ExampleTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Alternatives
Use the HasProcedureName selector for maximum flexibility to create test suites from
procedure names. Alternatively, at the time of test suite construction, you can filter the
test suite Using the 'ProcedureName' name-value pair. For example, the following lines
of code are functionally equivalent.

s = TestSuite.fromClass(?ExampleTest,'ProcedureName','Test1');
s = testsuite('ExampleTest.m','ProcedureName','Test1');

See Also
fromClass | fromFile | fromFolder | fromMethod | fromPackage |
matlab.unittest.selectors | selectIf

1 Alphabetical List

1-13374

Introduced in R2017a

 matlab.unittest.selectors.HasProcedureName class

1-13375

matlab.unittest.selectors.HasSuperclass
class
Package: matlab.unittest.selectors

Selector for TestSuite elements determined by test class hierarchy

Construction
matlab.unittest.selectors.HasSuperclass(n) creates a selector that filters
TestSuite array elements by retaining only those elements whose test class derives
from n.

Input Arguments
n — Superclass name
character vector | string scalar

Superclass name, specified as a character vector or string scalar.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Filter Test Suite by Test Class

Create the following handle class in your current working folder.

classdef MyClass < handle
 properties
 % properties of class
 end
 methods

1 Alphabetical List

1-13376

 % methods of class
 end
end

Create the following test class in your current working folder.

classdef Feature1_Test < matlab.unittest.TestCase
 methods (Test)
 function testA1(testCase)
 % test code
 end
 function testB1(testCase)
 % test code
 end
 end
end

Create the following test class in your current working folder. This test class subclasses
MyClass.

classdef Feature2_Test < matlab.unittest.TestCase & MyClass
 methods (Test)
 function testA2(testCase)
 % test code
 end
 function testB2(testCase)
 % test code
 end
 end
end

Create a test suite from all the files in your current working folder. Depending on what
files are in your folder, your test suite might differ.

import matlab.unittest.TestSuite;
suite = TestSuite.fromFolder(pwd)

suite =

 1×4 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder

 matlab.unittest.selectors.HasSuperclass class

1-13377

 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

View the names of the test elements in the suite.

{suite.Name}'

ans =

 4×1 cell array

 {'Feature1_Test/testA1'}
 {'Feature1_Test/testB1'}
 {'Feature2_Test/testA2'}
 {'Feature2_Test/testB2'}

Create another test suite that contains only the suite elements that have MyClass in the
class hierarchy. View the test element names. Since the test class Feature2_Test is the
only test class to subclass MyClass, only test elements from that class are included in the
suite.

newSuite = suite.selectIf(HasSuperclass('MyClass'));
{newSuite.Name}'

ans =

 2×1 cell array

 {'Feature2_Test/testA2'}
 {'Feature2_Test/testB2'}

Alternatively, use the testsuite function to create the filtered suite directly.

newSuite = testsuite(pwd,'Superclass','MyClass');

See Also
fromClass | fromFile | fromFolder | fromMethod | fromPackage |
matlab.unittest.selectors | selectIf

1 Alphabetical List

1-13378

Introduced in R2018a

 matlab.unittest.selectors.HasSuperclass class

1-13379

matlab.unittest.selectors.HasTag class
Package: matlab.unittest.selectors

Selector for TestSuite elements determined by tag

Description
The HasTag selector filters TestSuite array elements determined by the test element
tag.

Construction
matlab.unittest.selectors.HasTag constructs a selector for TestSuite elements
determined by the test element tag. When you instantiate HasTag without input
arguments, the resulting TestSuite array contains only elements with one or more tags.

matlab.unittest.selectors.HasTag(t) constructs a selector for TestSuite
elements determined by the test element tag, t. You can specify the name as a character
vector, string scalar, or as an instance of the
matlab.unittest.constraints.Constraint class. If the specified name, t, is a
character vector or string scalar, the testing framework creates an IsEqualTo constraint
t as the expected value.

For a test element to be included in the suite, the test element must be tagged with the
specified character vector or string scalar or with a value that satisfies the specified
constraint.

Input Arguments
t — Test element tag
character vector | string scalar | Constraint

Test element tag, specified as a character vector, string scalar, or
matlab.unittest.constraints.Constraint instance. If a test element tag meets
the following conditions, the TestSuite contains the test:

1 Alphabetical List

1-13380

• If t is a character vector or string scalar, the test element tag is the specified value.
• If t is a constraint, the test element tag is a value that satisfies the specified

constraint.

Properties
Constraint — Condition test element tag must satisfy
instance of matlab.unittest.constraints.Constraints class

Condition the test element tag must satisfy to be included in the test suite, specified as an
instance of the matlab.unittest.constraints.Constraints class.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Filter Test Suite by Tag

Create the following test class in a file, ExampleTest.m, in your current working folder.

classdef ExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testA (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'Unit'})
 function testB (testCase)
 % test code
 end
 function testC (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'Unit','FeatureA'})

 matlab.unittest.selectors.HasTag class

1-13381

 function testD (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'System','FeatureA'})
 function testE (testCase)
 % test code
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class and examine the
contents.

import matlab.unittest.TestSuite
import matlab.unittest.selectors.HasTag

suite = TestSuite.fromClass(?ExampleTest)

suite =

 1×5 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 3 Unique Tags.

Click the hyperlink for 3 Unique Tags to display all the tags in the suite.

 Tag

 'FeatureA'
 'System'
 'Unit'

Select all the test suite elements that have the tag 'Unit'.

1 Alphabetical List

1-13382

s1 = suite.selectIf(HasTag('Unit'))

s1 =

 1×3 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 2 Unique Tags.

Select all the test suite elements that do not contain the tag 'FeatureA'.

s2 = suite.selectIf(~HasTag('FeatureA'));
{s2.Name}

ans =

 1×3 cell array

 {'ExampleTest/testB'} {'ExampleTest/testC'} {'ExampleTest/testA'}

Select all the test suite elements that have no tags.

s3 = suite.selectIf(~HasTag)

s3 =

 Test with properties:

 Name: 'ExampleTest/testA'
 ProcedureName: 'testA'
 TestClass: "ExampleTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

 matlab.unittest.selectors.HasTag class

1-13383

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Alternatives
Use the HasTag selector for maximum flexibility to create test suites from tags.
Alternatively, at the time of test suite construction, you can filter the test suite Using the
'Tag' name-value pair. For example,

s = TestSuite.fromClass(?ExampleTest,'Tag','Unit');

You can also select and run tagged tests using the 'Tag' name-value pair with the
runtests function. For example,

runtests('ExampleTest.m','Tag','Unit')

See Also
fromClass | fromFile | fromFolder | fromMethod | fromPackage |
matlab.unittest.selectors | selectIf

Topics
“Tag Unit Tests”

Introduced in R2015a

1 Alphabetical List

1-13384

matlab.unittest.selectors.NotSelector class
Package: matlab.unittest.selectors

Boolean complement of selector

Description
The testing framework constructs a NotSelector when you denote the complement of a
selector with the logical NOT operator (~). The framework constructs instances of the
class, so there is no need to construct this class directly.

Properties
Selector — Selector being complemented
instance of class in matlab.unittest.selectors package

This property is read-only.

Selector being complemented, specified as an instance of a class in the
matlab.unittest.selectors package.

See Also
matlab.unittest.selectors.AndSelector |
matlab.unittest.selectors.OrSelector

Introduced in R2018a

 matlab.unittest.selectors.NotSelector class

1-13385

matlab.unittest.selectors.OrSelector class
Package: matlab.unittest.selectors

Boolean disjunction of two selectors

Description
The testing framework constructs an OrSelector when you denote the disjunction of
two selectors with the logical OR operator (|). The framework constructs instances of the
class, so there is no need to construct this class directly.

Properties
FirstSelector — Left side selector
instance of class in matlab.unittest.selectors package

This property is read-only.

Left side selector in the Boolean disjunction, specified as an instance of a class in the
matlab.unittest.selectors package.

SecondSelector — Right side selector
instance of class in matlab.unittest.selectors package

This property is read-only.

Right side selector in the Boolean disjunction, specified as an instance of a class in the
matlab.unittest.selectors package.

See Also
matlab.unittest.selectors.AndSelector |
matlab.unittest.selectors.NotSelector

Introduced in R2018a

1 Alphabetical List

1-13386

semilogx
Semilogarithmic plot

Syntax
semilogx(Y)
semilogx(X1,Y1,...)
semilogx(X1,Y1,LineSpec,...)
semilogx(...,'PropertyName',PropertyValue,...)
semilogx(ax,...)
h = semilogx(...)

Description
semilogx plot data as logarithmic scales for the x-axis.

semilogx(Y) creates a plot using a base 10 logarithmic scale for the x-axis and a linear
scale for the y-axis. It plots the columns of Y versus their index. The values in Y can be
numeric, datetime, duration, or categorical values. If Y contains complex values, then
semilogx(Y) is equivalent to semilogx(real(Y),imag(Y)). The semilogx function
ignores the imaginary component in all other uses of this function.

semilogx(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or Yn is a matrix,
semilogx plots the vector argument versus the rows or columns of the matrix, along the
dimension of the matrix whose length matches the length of the vector. If the matrix is
square, its columns plot against the vector if their lengths match. The values in Yn can be
numeric, datetime, duration, or categorical values. The values in Xn must be numeric.

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples. LineSpec determines line style, marker symbol, and color of the plotted lines.

 semilogx

1-13387

semilogx(...,'PropertyName',PropertyValue,...) sets property values for all
charting lines created by semilogx. For a list of properties, see Chart Line.

semilogx(ax,...) creates the line in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

h = semilogx(...) return a vector of chart line objects.

Examples

Logarithmic Scale for x-Axis

Create a plot with a logarithmic scale for the x-axis and a linear scale for the y-axis.

x = 0:1000;
y = log(x);

figure
semilogx(x,y)

1 Alphabetical List

1-13388

Tips
If you do not specify a color when plotting more than one line, semilogx automatically
cycle through the colors and line styles in the order specified by the current axes
ColorOrder and LineStyleOrder properties.

You can mix Xn,Yn pairs with Xn,Yn,LineSpec triples; for example,

semilogx(X1,Y1,X2,Y2,LineSpec,X3,Y3)

If you attempt to add a loglog, semilogx, or semilogy plot to a linear axis mode graph
with hold on, the axis mode remains as it is and the new data plots as linear.

 semilogx

1-13389

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | loglog | plot | semilogy

Properties
Chart Line

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

1 Alphabetical List

1-13390

Introduced before R2006a

 semilogx

1-13391

semilogy
Semilogarithmic plot

Syntax
semilogy(Y)
semilogy(X1,Y1,...)
semilogy(X1,Y1,LineSpec,...)
semilogy(...,'PropertyName',PropertyValue,...)
semilogy(ax,...)
h = semilogy(...)

Description
semilogy plots data with logarithmic scale for the y-axis.

semilogy(Y) creates a plot using a base 10 logarithmic scale for the y-axis and a linear
scale for the x-axis. It plots the columns of Y versus their index. If Y contains complex
values, then semilogy(Y) is equivalent to semilogy(real(Y),imag(Y)). The
semilogy function ignores the imaginary component in all other uses of this function.

semilogy(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or Yn is a matrix,
semilogy plots the vector argument versus the rows or columns of the matrix, along the
dimension of the matrix whose length matches the length of the vector. If the matrix is
square, its columns plot against the vector if their lengths match. The values in Xn can be
numeric, datetime, duration, or categorical values. The values in Yn must be numeric.

semilogy(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples. LineSpec determines line style, marker symbol, and color of the plotted lines.

1 Alphabetical List

1-13392

semilogy(...,'PropertyName',PropertyValue,...) sets property values for all
the charting lines created by semilogy. For a list of properties, see Chart Line.

semilogy(ax,...) creates the line in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

h = semilogy(...) returns a vector of chart line objects.

Examples

Logarithmic Scale for y-Axis

Create a plot with a logarithmic scale for the y-axis and a linear scale for the x-axis.

x = 0:0.1:10;
y = exp(x);

figure
semilogy(x,y)

 semilogy

1-13393

Tips
If you do not specify a color when plotting more than one line, semilogy automatically
cycle through the colors and line styles in the order specified by the current axes
ColorOrder and LineStyleOrder properties.

You can mix Xn,Yn pairs with Xn,Yn,LineSpec triples; for example,

semilogy(X1,Y1,X2,Y2,LineSpec,X3,Y3)

If you attempt to add a loglog, semilogx, or semilogy plot to a linear axis mode graph
with hold on, the axis mode remains as it is and the new data plots as linear.

1 Alphabetical List

1-13394

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | loglog | plot | semilogx

Properties
Chart Line

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

 semilogy

1-13395

Introduced before R2006a

1 Alphabetical List

1-13396

sendmail
Send email message to address list

Syntax
sendmail(recipients,subject)
sendmail(recipients,subject,message)
sendmail(recipients,subject,message,attachments)

Description
sendmail(recipients,subject) sends email to recipients with the specified
subject. For a single recipient, specify recipients as a character vector or a string.
For multiple recipients, specify recipients as a cell array of character vectors or a
string array. subject must be a character vector or string.

sendmail(recipients,subject,message) includes the specified message. If
message is a character vector or a string, sendmail automatically wraps text at 75
characters. To force a line break in the message text, use 10, as shown in the Examples. If
message is a cell array of character vectors or a string array, then each element
represents a new line of text.

sendmail(recipients,subject,message,attachments) attaches the files listed in
the attachments input argument. attachments can be a character vector, cell array of
character vectors, or string array.

Examples
Send a message with two attachments to a hypothetical email address:

sendmail('user@otherdomain.com',...
 'Test subject','Test message',...
 {'folder/attach1.html','attach2.doc'});

Send a message with forced line breaks (using 10) to a hypothetical email address:

 sendmail

1-13397

sendmail('user@otherdomain.com','New subject', ...
 ['Line1 of message' 10 'Line2 of message' 10 ...
 'Line3 of message' 10 'Line4 of message']);

The resulting message is:

Line1 of message
Line2 of message
Line3 of message
Line4 of message

Tips
• The sendmail function does not support HTML-formatted messages. However, you

can send HTML files as attachments.
• If sendmail cannot determine your email address or outgoing SMTP mail server from

your system registry, specify those settings using the setpref function. For example:

setpref('Internet','SMTP_Server','my_server.example.com');
setpref('Internet','E_mail','my_email@example.com');

To identify the SMTP server for the call to setpref, check the preferences for your
electronic mail application, or consult your email system administrator. If you cannot
easily determine the server name, try 'mail', which is a common default, such as:

setpref('Internet','SMTP_Server','mail');

• By default, the sendmail function does not support email servers that require
authentication. To support these servers, change your system settings and set
preferences for the SMTP user name and password, with commands in the following
form:

props = java.lang.System.getProperties;
props.setProperty('mail.smtp.auth','true');

setpref('Internet','SMTP_Username','myaddress@example.com');
setpref('Internet','SMTP_Password','mypassword');

• To override the default character encoding, set the preference for email character
encoding as follows:

setpref('Internet','E_mail_Charset',encoding);

1 Alphabetical List

1-13398

where encoding is a character vector specifying the character encoding, such as
'SJIS'.

Alternatives
On Windows systems with Microsoft Outlook®, you can send email directly through
Outlook by accessing the COM server with actxserver. For an example, see Solution 1-
RTY6J.

See Also
getpref | setpref

Topics
“Specify Proxy Server Settings for Connecting to the Internet”

 sendmail

1-13399

https://www.mathworks.com/support/solutions/en/data/1-RTY6J/index.html?solution=1-RTY6J
https://www.mathworks.com/support/solutions/en/data/1-RTY6J/index.html?solution=1-RTY6J

serial
Create serial port object

Syntax
s = serial('port')
s = serial('port', Name,Value)

Description
s = serial('port') creates a serial port object s associated with the serial port
specified by 'port'. If 'port' does not exist, or if it is in use, you cannot connect the
serial port object to the device.

s = serial('port', Name,Value) creates a serial port object with the specified
property names and property values. If an invalid property name or property value is
specified, an error is returned, and the serial port object is not created.

Examples

Create Serial Port Object

This example shows how to create a serial port object.

Find available serial ports.

Use the seriallist function to find your available serial ports.

seriallist

ans =

 1×2 string array

1 Alphabetical List

1-13400

 "COM1" "COM3"

Create a serial port object and assign port.

This example creates the serial port object s and associates it with the serial port COM1.
You must specify the port as the first argument to create a serial port object.

s = serial('COM1');

Create a serial port object and specify properties.

This example creates the serial port object s2, associated with the serial port COM3, and
sets properties. You can optionally set communication properties by specifying name-
value pairs during object creation, after the port argument. This example sets the baud
rate to 4800 and the terminator to CR. You can see these values in the object output.

s2 = serial('COM3','BaudRate',4800,'Terminator','CR')

 Serial Port Object : Serial-COM3

 Communication Settings
 Port: COM3
 BaudRate: 4800
 Terminator: 'CR'

 Communication State
 Status: closed
 RecordStatus: off

 Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

 serial

1-13401

Input Arguments
'port' — Serial port name
character vector | string

Serial port name, specified as a character vector or string. The seriallist function
provides a list of available serial ports. You must specify the port to create a serial port
object.

The port name depends on the platform that the serial port is on. This list is an example
of serial constructors on different platforms:

Platform Serial Port Constructor
Linux 64 s = serial('/dev/ttyS0')
macOS 64 s = serial('/dev/tty.KeySerial1')
Windows 64 s = serial('COM1')

Example: s = serial('COM1')
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: s = serial('COM2','BaudRate',1200,'DataBits',7);

For a list of serial port object properties that you can use with serial, refer to “Property
Reference”.

Note Port must be the first argument used to create the serial object. You can then follow
port with any number of supported name-value pairs.

1 Alphabetical List

1-13402

BaudRate — Rate at which bits are transmitted
9600 (default) | double

Rate at which bits are transmitted, specified as the comma-separated pair consisting of
'BaudRate' and a double. You configure baud rate as bits per second. The transferred
bits include the start bit, the data bits, the parity bit (if used), and the stop bits. However,
only the data bits are stored.

The baud rate is the rate at which information is transferred in a communication channel.
In the serial port context, 9600 baud means that the serial port is capable of transferring
a maximum of 9600 bits per second. If the information unit is one baud (one bit), the bit
rate and the baud rate are identical. If one baud is given as 10 bits, (for example, eight
data bits plus two framing bits), the bit rate is still 9600 but the baud rate is 9600/10, or
960. You always configure BaudRate as bits per second.

Note Both the computer and the peripheral device must be configured to the same baud
rate before you can successfully read or write data.

Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, 128000, and 256000 bits per second.

You can also set the BaudRate property after creating the serial object using this syntax:

s.BaudRate = 4800;

Example: s = serial('COM1','BaudRate',4800);
Data Types: double

ByteOrder — Byte order of the device
littleEndian (default) | bigEndian

Byte order of the device, specified as the comma-separated pair consisting of
'ByteOrder' and littleEndian or bigEndian. If ByteOrder is littleEndian, the
device stores the first byte in the first memory address. If ByteOrder is bigEndian, the
device stores the last byte in the first memory address.

For example, suppose the hexadecimal value 4F52 is to be stored in device memory.
Because this value consists of two bytes, 4F and 52, two memory locations are used.
Using big-endian format, 4F is stored first in the lower storage address. Using little-
endian format, 52 is stored first in the lower storage address.

 serial

1-13403

The byte order of littleEndian is the default and is used in read and write operations if
you do not specify the property. You need to specify the property only to change the byte
order to bigEndian.

You can also set the ByteOrder property after creating the serial object using this
syntax:

s.ByteOrder = 'bigEndian';

Note Configure ByteOrder to the appropriate value for your device before performing a
read or write operation. Refer to your device documentation for information about the
order in which it stores bytes.

Example: s = serial('COM1','ByteOrder','bigEndian');
Data Types: char | string

DataBits — Number of data bits to transmit
8 (default) | 5 | 6 | 7

Number of data bits to transmit, specified as the comma-separated pair consisting of
'DataBits' and 5, 6, 7, or 8, which is the default. Data is transmitted as a series of five,
six, seven, or eight bits with the least significant bit sent first. At least seven data bits are
required to transmit ASCII characters. Eight bits are required to transmit binary data.
Five-bit and six-bit data formats are used for specialized communications equipment.

Note Both the computer and the peripheral device must be configured to transmit the
same number of data bits.

In addition to the data bits, the serial data format consists of a start bit, one or two stop
bits, and possibly a parity bit. You specify the number of stop bits with the StopBits
property, and the type of parity checking with the Parity property.

You can also set the DataBits property after creating the serial object using this syntax:

s.DataBits = 7;

Example: s = serial('COM1','DataBits',7);
Data Types: double

1 Alphabetical List

1-13404

Parity — Type of parity checking
none (default) | odd | even | mark | space

Type of parity checking, specified as the comma-separated pair consisting of 'Parity'
and none, odd, even, mark, or space.

{none} Default. No parity checking. Parity checking is not performed and
the parity bit is not transmitted.

odd Odd parity checking. The number of mark bits (1s) in the data is
counted, and the parity bit is asserted or unasserted to obtain an
odd number of mark bits.

even Even parity checking. The number of mark bits in the data is
counted, and the parity bit is asserted or unasserted to obtain an
even number of mark bits.

mark Mark parity checking. The parity bit is asserted.
space Space parity checking. The parity bit is unasserted.

Parity checking can detect errors of one bit only. An error in two bits might cause the data
to have a seemingly valid parity, when in fact it is incorrect.

In addition to the parity bit, the serial data format consists of a start bit, between five and
eight data bits, and one or two stop bits. You specify the number of data bits with the
DataBits property, and the number of stop bits with the StopBits property.

You can also set the Parity property after creating the serial object using this syntax:

s.Parity = 'even';

Example: s = serial('COM1','Parity','even');
Data Types: char | string

StopBits — Number of bits used to indicate the end of a byte
1 (default) | 1.5 | 2

Number of bits used to indicate the end of a byte, specified as the comma-separated pair
consisting of 'StopBits' and 1, 1.5, or 2. If StopBits is 1, one stop bit is used to
indicate the end of data transmission. If StopBits is 2, two stop bits are used to indicate
the end of data transmission. If StopBits is 1.5, the stop bit is transferred for 150% of
the normal time used to transfer one bit.

 serial

1-13405

Note Both the computer and the peripheral device must be configured to transmit the
same number of stop bits.

Summary of the possible values:

{1} Default. One stop bit is transmitted to indicate the end of a byte.
1.5 The stop bit is transferred for 150% of the normal time used to

transfer one bit.
2 Two stop bits are transmitted to indicate the end of a byte.

In addition to the stop bits, the serial data format consists of a start bit, between five and
eight data bits, and possibly a parity bit. You specify the number of data bits with the
DataBits property, and the type of parity checking with the Parity property.

You can also set the StopBits property after creating the serial object using this syntax:

s.StopBits = 2;

Example: s = serial('COM1','StopBits',2);
Data Types: double

Terminator — Terminator character
string

Terminator character, specified as the comma-separated pair consisting of
'Terminator' and a string. You can configure Terminator to an integer value ranging
from 0 to 127, which represents the ASCII code for the character, or you can configure
Terminator to the ASCII character. For example, to configure Terminator to a carriage
return, specify the value to be CR or 13. To configure Terminator to a linefeed, specify
the value to be LF or 10. You can also set Terminator to CR/LF or LF/CR. If
Terminator is CR/LF, the terminator is a carriage return followed by a line feed. If
Terminator is LF/CR, the terminator is a linefeed followed by a carriage return. Note that
there are no integer equivalents for these two values.

Additionally, you can set Terminator to a 1-by-2 cell array. The first element of the cell is
the read terminator and the second element of the cell array is the write terminator.

When performing a write operation using the fprintf function, all occurrences of \n are
replaced with the Terminator property value. Note that %s\n is the default format for

1 Alphabetical List

1-13406

fprintf. A read operation with fgetl, fgets, or fscanf completes when the
Terminator value is read. The terminator is ignored for binary operations.

You can also use the terminator to generate a bytes-available event when the
BytesAvailableFcnMode is set to terminator.

You can also set the Terminator property after creating the serial object, using this
syntax:

s.Terminator = 'CR';

Example: s = serial('COM1','Terminator','CR');
Data Types: char | string

Tips
Refer to “Property Reference” for a list of serial port object properties that you can use
with serial.

Before you can communicate with the device, it must be connected to obj with the fopen
function. A connected serial port object has a Status property value of open. An error is
returned if you attempt a read or write operation while the object is not connected to the
device. You can connect only one serial port object to a given serial port.

See Also
seriallist

Topics
“Create a Serial Port Object”
“Property Reference”

Introduced before R2006a

 serial

1-13407

Serial Port Properties
Configure serial port communications

Description
Serial port properties are used to configure communications using the serial object and
to configure read and write behavior.

Some properties can be set during object creation with the serial function. See the
serial reference page for information about those properties, which include Port,
BaudRate, ByteOrder, DataBits, Parity, StopBits, and Terminator.

Read and write properties are used to configure factors involved in the reading and
writing of data, such as setting a timeout for completing the operation. Use control pin
properties to configure the state of control pins and data flow control. Use recording
properties to set up and control recording information to disk.

Note This sample syntax for all the properties assumes you have created a serial object,
s. Many of the properties can only be set before calling fopen on the object. Some can be
changed while the object is open.

Properties can be set after you create the serial object. A read-only property is called as
follows:

s = serial('COM1');
s.TransferStatus
ans =
 idle

A property you can configure is set as follows:

s = serial('COM1');
s.Timeout = 30;

1 Alphabetical List

1-13408

Properties
Read and Write Properties

BytesAvailable — Number of bytes available in the input buffer
0 (default) | double

Number of bytes available in the input buffer, specified as a double. This read-only
property indicates the number of bytes currently available to be read from the input
buffer. The property value is continuously updated as the input buffer is filled, and is set
to 0 after the fopen function is issued.

You can make use of BytesAvailable only when reading data asynchronously. This is
because when reading data synchronously, control is returned to the MATLAB command
line only after the input buffer is empty. Therefore, the BytesAvailable value is always
0.

The BytesAvailable value can range from zero to the size of the input buffer. Use the
InputBufferSize property to specify the size of the input buffer. Use the
ValuesReceived property to return the total number of values read.
Example: s.BytesAvailable
Data Types: double

InputBufferSize — Size of the input buffer in bytes
512 (default) | double

Size of the input buffer in bytes, specified as a double. You configure InputBufferSize
as the total number of bytes that can be stored in the input buffer during a read
operation.

A read operation is terminated if the amount of data stored in the input buffer equals the
InputBufferSize value. You can read text data with the fgetl, fget, or fscanf
functions. You can read binary data with the fread function.

You can configure InputBufferSize only when the serial port object is disconnected
from the device. You can configure it before calling the fopen function. You disconnect an
object with the fclose function. A disconnected object has a Status property value of
closed.

If you configure InputBufferSize while there is data in the input buffer, that data is
purged.

 Serial Port Properties

1-13409

Example: s.InputBufferSize = 768;
Data Types: double

ReadAsyncMode — Specify whether an asynchronous read operation is
continuous or manual
continuous (default) | manual

Specify whether an asynchronous read operation is continuous or manual, specified as
manual or continuous. If ReadAsyncMode is continuous, the serial port object
continuously queries the device to determine if data is available to be read. If data is
available, it is automatically read and stored in the input buffer. If issued, the readasync
function is ignored.

If ReadAsyncMode is manual, the object does not query the device to determine if data is
available to be read. Instead, you must manually issue the readasync function to
perform an asynchronous read operation. Because readasync checks for the terminator,
this function can be slow. To increase speed, configure ReadAsyncMode to continuous.

Note If the device is ready to transmit data, it will do so regardless of the
ReadAsyncMode value. Therefore, if ReadAsyncMode is manual and a read operation is
not in progress, data might be lost. To guarantee that all transmitted data is stored in the
input buffer, you should configure ReadAsyncMode to continuous.

To determine the amount of data available in the input buffer, use the BytesAvailable
property. For either ReadAsyncMode value, you can bring data into the MATLAB
workspace with one of the synchronous read functions such as fscanf, fgetl, fgets, or
fread.
Example: s.ReadAsyncMode = 'manual';
Data Types: char | string

Timeout — Waiting time to complete a read or write operation
10 (default) | double

Waiting time to complete a read or write operation, specified as a double. You configure
Timeout to be the maximum time (in seconds) to wait to complete a read or write
operation. The default value of 10 seconds is used if you do not specify a different value.
Timeouts are rounded upwards to full seconds.

1 Alphabetical List

1-13410

If a timeout occurs, the read or write operation aborts. Additionally, if a timeout occurs
during an asynchronous read or write operation, then:

• An error event is generated.
• The callback function specified for ErrorFcn is executed.

Example: s.Timeout = 30;
Data Types: double

TransferStatus — Status of asynchronous read or write operation
idle (default) | read | write | read&write

Status of asynchronous read or write operation, specified as idle, read, write, or
read&write. This read-only property indicates if an asynchronous read or write
operation is in progress. If TransferStatus is idle, no asynchronous read or write
operations are in progress. If it is read, an asynchronous read operation is in progress. If
it is write, an asynchronous write operation is in progress. If TransferStatus is
read&write, both an asynchronous read and an asynchronous write operation are in
progress.

You can write data asynchronously using the fprintf or fwrite functions. You can read
data asynchronously using the readasync function, or by configuring the
ReadAsyncMode property to continuous. While readasync is executing,
TransferStatus might indicate that data is being read even though data is not filling
the input buffer. If ReadAsyncMode is continuous, TransferStatus indicates that
data is being read only when data is filling the input buffer.

You can execute an asynchronous read and an asynchronous write operation
simultaneously because serial ports have separate read and write pins.

Summary the possible values:

{idle} No asynchronous operations are in
progress.

read An asynchronous read operation is in
progress.

write An asynchronous write operation is in
progress.

 Serial Port Properties

1-13411

read&write Asynchronous read and write operations
are in progress.

Example: s.TransferStatus
Data Types: char | string

ValuesReceived — Total number of values read from the device
0 (default) | double

Total number of values read from the device, specified as a double. This is a read-only
property, and the value is updated after each successful read operation and set to 0 after
the fopen function is issued. If the terminator is read from the device, then this value is
reflected by ValuesReceived.

If you are reading data asynchronously, use the BytesAvailable property to return the
number of bytes currently available in the input buffer.

When performing a read operation, the received data is represented by values rather than
bytes. A value consists of one or more bytes. For example, one uint32 value consists of
four bytes.

For example, create a serial port object associated with the serial port COM1, and open
the connection.

s = serial('COM1');
fopen(s)

If you write the RS232? command, and read back the response using fscanf,
ValuesReceived is 17 because the instrument is configured to send the LF terminator.

fprintf(s,'RS232?')
out = fscanf(s)
out =
9600;0;0;NONE;LF
s.ValuesReceived
ans =
 17

Example: s.ValuesReceived
Data Types: double

1 Alphabetical List

1-13412

BytesToOutput — Number of bytes currently in the output buffer
0 (default) | double

Number of bytes currently in the output buffer, specified as a double. This read-only
property indicates the number of bytes currently in the output buffer waiting to be
written to the device. The property value is continuously updated as the output buffer is
filled and emptied, and is set to 0 after the fopen function is issued.

You can make use of BytesToOutput only when writing data asynchronously. This is
because when writing data synchronously, control is returned to the MATLAB command
line only after the output buffer is empty. Therefore, the BytesToOutput value is always
0.

Use the ValuesSent property to return the total number of values written to the device.

Note If you attempt to write out more data than can fit in the output buffer, an error is
returned and BytesToOutput is 0. Specify the size of the output buffer with the
OutputBufferSize property.

Example: s.BytesToOutput
Data Types: double

OutputBufferSize — Size of the output buffer in bytes
512 (default) | double

Size of the output buffer in bytes, specified as a double. You configure
OutputBufferSize as the total number of bytes that can be stored in the output buffer
during a write operation.

You can configure OutputBufferSize only when the serial port object is disconnected
from the device. You can configure it before calling the fopen function. You disconnect an
object with the fclose function. A disconnected object has a Status property value of
closed.

An error occurs if the output buffer cannot hold all the data to be written. You write text
data with the fprintf function. You write binary data with the fwrite function.
Example: s.OutputBufferSize = 256;
Data Types: double

 Serial Port Properties

1-13413

ValuesSent — Total number of values written to the device
0 (default) | double

Total number of values written to the device, specified as a double. This is a read-only
property, and the value is updated after each successful write operation and set to 0 after
the fopen function is issued. If you are writing the terminator, ValuesSent reflects this
value.

If you are writing data asynchronously, use the BytesToOutput property to return the
number of bytes currently in the output buffer.

When performing a write operation, the transmitted data is represented by values rather
than bytes. A value consists of one or more bytes. For example, one uint32 value
consists of four bytes.

For example, create a serial port object associated with the serial port COM1 and open
the connection.

s = serial('COM1');
fopen(s)

If you write the *IDN? command using the fprintf function, ValuesSent is 6 because
the default data format is %s\n, and the terminator was written.

fprintf(s,'*IDN?')
s.ValuesSent
ans =
 6

Example: s.ValuesSent
Data Types: double

Status — Status of serial port device connection
closed (default) | open

Status of serial port device connection, returned as closed or open. This read-only
property indicates whether the serial port object is connected to the device. If Status is
closed, the serial port object is not connected to the device. If Status is open, the
serial port object is connected to the device.

Before you can write or read data, you must connect the serial port object to the device
with the fopen function. Use the fclose function to disconnect a serial port object from
the device.

1 Alphabetical List

1-13414

Example: s.Status
Data Types: char | string

Control Pin Properties

DataTerminalReady — State of the DTR pin
on (default) | off

State of the DTR pin, specified as on or off. If DataTerminalReady is on, the Data
Terminal Ready (DTR) pin is asserted. If DataTerminalReady is off, the DTR pin is
unasserted.

In normal usage, the DTR and Data Set Ready (DSR) pins work together, and are used to
signal if devices are connected and powered. However, there is nothing in the RS-232
standard that states the DTR pin must be used in any specific way. For example, DTR and
DSR might be used for handshaking. You should refer to your device documentation to
determine its specific pin behavior.

You can return the value of the DSR pin with the PinStatus property.
Example: s.DataTerminalReady = 'off';
Data Types: char | string

FlowControl — Data flow control method
none (default) | hardware | software

Data flow control method, specified as none, hardware, or software. If FlowControl
is none, data flow control (handshaking) is not used. If FlowControl is hardware,
hardware handshaking is used to control data flow. If FlowControl is software,
software handshaking is used to control data flow.

Hardware handshaking typically utilizes the Request to Send (RTS) and Clear to Send
(CTS) pins to control data flow. Software handshaking uses control characters (Xon and
Xoff) to control data flow.

You can return the value of the CTS pin with the PinStatus property. You can specify the
value of the RTS pin with the RequestToSend property. However, if FlowControl is
hardware, and you specify a value for RequestToSend, that value might not be honored.

 Serial Port Properties

1-13415

Note Although you might be able to configure your device for both hardware
handshaking and software handshaking at the same time, MATLAB does not support this
behavior.

Example: s.FlowControl = 'hardware';
Data Types: char | string

PinStatus — State of the CD, CTS, DSR, and RI pins
structure

State of the CD, CTS, DSR, and RI pins, returned as a structure. This read-only property
returns a structure array that contains the fields CarrierDetect, ClearToSend,
DataSetReady and RingIndicator. These fields indicate the state of the Carrier
Detect (CD), Clear to Send (CTS), Data Set Ready (DSR) and Ring Indicator (RI) pins,
respectively.

PinStatus can be on or off for any of these fields. A value of on indicates the
associated pin is asserted. A value of off indicates the associated pin is unasserted. A pin
status event occurs when any of these pins changes its state. A pin status event executes
the call back function specified by PinStatusFcn.

In normal usage, the Data Terminal Ready (DTR) and DSR pins work together, while the
Request to Send (RTS) and CTS pins work together. You can specify the state of the DTR
pin with the DataTerminalReady property. You can specify the state of the RTS pin with
the RequestToSend property.
Example: s.PinStatus
Data Types: struct

RequestToSend — State of the RTS pin
on (default) | off

State of the RTS pin, specified as on or off. If RequestToSend is on, the Request to
Send (RTS) pin is asserted. If RequestToSend is off, the RTS pin is unasserted.

In normal usage, the RTS and Clear to Send (CTS) pins work together, and are used as
standard handshaking pins for data transfer. In this case, RTS and CTS are automatically
managed by the DTE and DCE. However, there is nothing in the RS-232 standard that
requires the RTS pin must be used in any specific way. Therefore, if you manually
configure the RequestToSend value, it is probably for nonstandard operations.

1 Alphabetical List

1-13416

If your device does not use hardware handshaking in the standard way, and you need to
manually configure RequestToSend, configure the FlowControl property to none.
Otherwise, the RequestToSend value that you specify might not be honored. Refer to
your device documentation to determine its specific pin behavior.

You can return the value of the CTS pin with the PinStatus property.
Example: s.RequestToSend = 'off';
Data Types: char | string

Recording Properties

RecordDetail — Detail level of information saved to a record file
compact (default) | verbose

Detail level of information saved to a record file, specified as compact or verbose. If
RecordDetail is compact, the number of values written to the device, the number of
values read from the device, the data type of the values, and event information are saved
to the record file. If RecordDetail is verbose, the data written to the device and the
data read from the device are also saved to the record file.

Summary of the possible values:

{compact} The number of values written to the device, the number of values
read from the device, the data type of the values, and event
information are saved to the record file.

verbose The data written to the device, and the data read from the device
are also saved to the record file.

Example: s.RecordDetail = 'verbose';
Data Types: char | string

RecordMode — Method for saving data and event information in record files
overwrite (default) | append | index

Method for saving data and event information in record files, specified as overwrite,
append, or index. If RecordMode is overwrite, the record file is overwritten each time
recording is initiated. If RecordMode is append, data is appended to the record file each
time recording is initiated. If RecordMode is index, a different record file is created each
time recording is initiated, each with an indexed filename.

 Serial Port Properties

1-13417

You can configure RecordMode only when the object is not recording. You terminate
recording with the record function. An object that is not recording has a RecordStatus
property value of off.

You specify the record filename with the RecordName property. The indexed filename
follows a prescribed set of rules.

Summary of the possible values:

{overwrite} The record file is overwritten.
append Data is appended to an existing record file.
index A different record file is created, each with an indexed filename.

For example, record serial data using the record properties. Create the serial port object
and open the connection.

s = serial('COM1');
fopen(s)

Specify the record filename with the RecordName property, configure RecordMode to
index, and initiate recording.

s.RecordName = 'MyRecord.txt';
s.RecordMode = 'index';
record(s)

The record filename is automatically updated with an indexed filename after recording is
turned off.

record(s,'off')
s.RecordName
ans =
MyRecord01.txt

Disconnect s from the peripheral device, remove s from memory, and remove s from the
MATLAB workspace.

fclose(s)
delete(s)
clear s

Example: s.RecordMode = 'index';
Data Types: char | string

1 Alphabetical List

1-13418

RecordName — Name of the record file
string

Name of the record file, specified as a string. You can specify any value for RecordName -
including a directory path - provided the file name is supported by your operating system.

The default record filename is record.txt, which is used if you record a data file and do
not specify a different name.

MATLAB supports any file name supported by your operating system. You can access the
file using the type function. For example, if you name the record file MyRecord.txt, to
type this file at the MATLAB command line, enter:

type('MyRecord.txt')

You can specify whether data and event information are saved to one disk file or to
multiple disk files with the RecordMode property. If RecordMode is index, the filename
follows a prescribed set of rules.

You can configure RecordName only when the object is not recording. You terminate
recording with the record function. An object that is not recording has a RecordStatus
property value of off.
Example: s.RecordName = 'MonthlyDataFile_April';
Data Types: char | string

RecordStatus — Status of recording serial data and event information
off (default) | on

Status of recording serial data and event information, returned as on or off. This read-
only property indicates whether recording is on or off, which is controlled by the record
function. If RecordStatus is off, then data and event information are not saved to a
record file. If RecordStatus is on, then data and event information are saved to the
record file specified by RecordName.

Use the record function to initiate or complete recording. RecordStatus is
automatically configured to reflect the recording state.
Example: s.RecordStatus
Data Types: char | string

 Serial Port Properties

1-13419

See Also
Introduced before R2006a

1 Alphabetical List

1-13420

serialbreak
Send break to device connected to serial port

Syntax
serialbreak(obj)
serialbreak(obj,time)

Description
serialbreak(obj) sends a break of 10 milliseconds to the device connected to the
serial port object, obj.

serialbreak(obj,time) sends a break to the device with a duration, in milliseconds,
specified by time. Note that the duration of the break might be inaccurate under some
operating systems.

Tips
For some devices, the break signal provides a way to clear the hardware buffer.

Before you can send a break to the device, it must be connected to obj with the fopen
function. A connected serial port object has a Status property value of open. An error is
returned if you attempt to send a break while obj is not connected to the device.

serialbreak is a synchronous function, and blocks the command line until execution is
complete.

If you issue serialbreak while data is being asynchronously written, an error is
returned. In this case, you must call the stopasync function or wait for the write
operation to complete.

 serialbreak

1-13421

See Also
Status | fopen | stopasync

Introduced before R2006a

1 Alphabetical List

1-13422

seriallist
List of serial ports connected to your system

Syntax
seriallist

Description
seriallist returns a list of all serial ports on a system. The list includes virtual serial
ports provided by USB-to-serial devices and Bluetooth Serial Port Profile devices. This
provides a list of the serial ports that you have access to on your computer and could use
for serial port communication.

Examples

Display List of Serial Ports

The seriallist function displays a list of all serial ports on a system.

Display available serial ports.

seriallist

ans =

 1×2 string array

 "COM1" "COM3"

 seriallist

1-13423

You can now create a serial object and communicate over the serial port.

See Also
serial

Topics
“Create a Serial Port Object”
“Overview of the Serial Port”

Introduced in R2017a

1 Alphabetical List

1-13424

set
Set graphics object properties

Syntax
set(H,Name,Value)
set(H,NameArray,ValueArray)
set(H,S)
s = set(H)
values = set(H,Name)

Description

Note Do not use the set function on Java objects as it will cause a memory leak. For
more information, see “Access Public and Private Data”.

set(H,Name,Value) specifies a value for the property Name on the object identified by
H. Use single quotes around the property name, for example, set(H,'Color','red').
If H is a vector of objects, then set sets the property for all the objects. If H is empty (that
is, []), set does nothing, but does not return an error or warning.

set(H,NameArray,ValueArray) specifies multiple property values using the cell
arrays NameArray and ValueArray. To set n property values on each of m graphics
objects, specify ValueArray as an m-by-n cell array, where m = length(H) and n is
equal to the number of property names contained in NameArray.

set(H,S) specifies multiple property values using S, where S is a structure whose field
names are the object property names and whose field values are the corresponding
property values. MATLAB ignores empty structures.

s = set(H) returns the user-settable properties and possible values for the object
identified by H. s is a structure whose field names are the object's property names and
whose field values are the possible values of the corresponding properties. If you do not

 set

1-13425

specify an output argument, the MATLAB software displays the information on the screen.
H must be a single object.

values = set(H,Name) returns the possible values for the specified property. If the
possible values are character vectors, set returns each in a cell of the cell array values.
For other properties, set returns a statement indicating that Name does not have a fixed
set of property values. If you do not specify an output argument, MATLAB displays the
information on the screen. H must be a single object.

Note For more information about properties you can set, see the property pages for each
object, for example, Figure, Axes, Chart Line, Text, and so on.

Examples
Change Color of Specific Line
Plot a line and return the chart line object as p. Set the Color property of the line to
'red'.

p = plot(1:10);
set(p,'Color','red')

Change Color for Multiple Lines
Create a plot with four lines using random data and return the four chart line objects as
P. Set the Color property for all of the lines to 'red'.

P = plot(rand(4));
set(P,'Color','red')

Set Line Style to Different Value for Multiple Lines
Set the value of the LineStyle property for four chart line objects each to a different
value. Transpose the value of the cell array so that it has the proper shape.

P = plot(rand(4));
NameArray = {'LineStyle'};
ValueArray = {'-','--',':','-.'}';
set(P,NameArray,ValueArray)

1 Alphabetical List

1-13426

Set Different Values for Multiple Properties on Multiple
Objects
Set the values of the Marker and Tag properties on three different stem series objects to
different values. Each row of the value cell array corresponds to an object in h and
contains two values, one for the Marker property and one for the Tag property.

x = 0:30;
y = [1.5*cos(x); 4*exp(-.1*x).*cos(x); exp(.05*x).*cos(x)]';
S = stem(x,y);
NameArray = {'Marker','Tag'};
ValueArray = {'o','Decaying Exponential';...
 'square','Growing Exponential';...
 '*','Steady State'};
set(S,NameArray,ValueArray)

Tips
You can use any combination of property name/property value pairs, structure arrays, and
cell arrays in one call to set.

Setting Property Units
Note that if you are setting both the FontSize and the FontUnits properties in one
function call, you must set the FontUnits property first so that the MATLAB software
can correctly interpret the specified FontSize. The same applies to figure and axes units
— always set the Units property before setting properties whose values you want to be
interpreted in those units. For example,

f = figure('Units','characters','Position',[30 30 120 35]);

See Also
findobj | gca | gcbo | gcf | gco | get

Topics
“Graphics Object Properties”

 set

1-13427

Introduced before R2006a

1 Alphabetical List

1-13428

set
Set property values for audioplayer object

Syntax
set(obj,Name,Value)
set(obj,cellOfNames,cellOfValues)
set(obj,structOfProperties)
settableProperties = set(obj)

Description
set(obj,Name,Value) sets the named property to the specified value for the object
obj.

set(obj,cellOfNames,cellOfValues) sets the properties listed in the cell array
cellOfNames to the corresponding values in the cell array cellOfValues. Each cell
array must contain the same number of elements.

set(obj,structOfProperties) sets the properties identified by each field of the
structure array structOfProperties to the values of the associated fields.

settableProperties = set(obj) returns the names of the properties that you can
set in a structure array. The field names of settableProperties are the property
names.

Examples
View the list of properties that you can set for an audioplayer object:

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj)

Set the Tag and UserData properties of an audioplayer object using a structure array:

 set

1-13429

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj, newValues)

% View the values all properties.
get(handelObj)

Tips
The set function allows combinations of property name/value pairs, cell array pairs, and
structure arrays in the same function call.

Alternatives
To set the value of a single property, you can use dot notation. Reference each property as
though it is a field of a structure array. For example, set the Tag property for an object
called handelObj (as created in the Examples):

handelObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(handelObj, 'Tag', 'This is my tag.');

See Also
audioplayer | get

1 Alphabetical List

1-13430

set
Set property values for audiorecorder object

Syntax
set(obj,Name,Value)
set(obj,cellOfNames,cellOfValues)
set(obj,structOfProperties)
settableProperties = set(obj)

Description
set(obj,Name,Value) sets the named property to the specified value for the object
obj.

set(obj,cellOfNames,cellOfValues) sets the properties listed in the cell array
cellOfNames to the corresponding values in the cell array cellOfValues. Each cell
array must contain the same number of elements.

set(obj,structOfProperties) sets the properties identified by each field of the
structure array structOfProperties to the values of the associated fields.

settableProperties = set(obj) returns the names of the properties that you can
set in a structure array. The field names of settableProperties are the property
names.

Examples
View the list of properties that you can set for an audiorecorder object:

recorderObj = audiorecorder;
set(recorderObj)

Set the Tag and UserData properties of an audiorecorder object using a structure
array:

 set

1-13431

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

recorderObj = audiorecorder;
set(recorderObj, newValues)

% View the values all properties.
get(recorderObj)

Tips
The set function allows combinations of property name/value pairs, cell array pairs, and
structure arrays in the same function call.

Alternatives
To set the value of a single property, you can use dot notation. Reference each property as
though it is a field of a structure array. For example, set the Tag property for an object
called recorderObj (as created in the Examples):

recorderObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(recorderObj, 'Tag', 'This is my tag.');

See Also
audiorecorder | get

1 Alphabetical List

1-13432

matlab.io.datastore.Shuffleable class
Package: matlab.io.datastore

Add shuffling support to datastore

Description
matlab.io.datastore.Shuffleable is an abstract mixin class that adds support for
shuffling samples in a datastore in random order.

To use this mixin class, you must inherit from the
matlab.io.datastore.Shuffleable class, in addition to inheriting from the
matlab.io.Datastore base class. Type the following syntax as the first line of your
class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.Shuffleable
 ...
end

To add support for shuffling to your custom datastore, you must:

• Inherit from the additional class matlab.io.datastore.Shuffleable.
• Define this additional method: shuffle.

For more details and steps to create your custom datastore, see “Develop Custom
Datastore”.

Methods
shuffle Return a shuffled version of a datastore

Attributes
Abstract true

 matlab.io.datastore.Shuffleable class

1-13433

Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
datastore | matlab.io.Datastore | matlab.io.datastore.HadoopFileBased |
matlab.io.datastore.Partitionable

Topics
“Develop Custom Datastore”

Introduced in R2018a

1 Alphabetical List

1-13434

shuffle
Class: matlab.io.datastore.Shuffleable
Package: matlab.io.datastore

Return a shuffled version of a datastore

Syntax
ds2 = shuffle(ds)

Description
ds2 = shuffle(ds) shuffles samples of the datastore ds in random order, and returns
the shuffled datastore, ds2.

Input Arguments
ds — Input datastore
matlab.io.Datastore object

Input datastore, specified as a matlab.io.Datastore object.

Output Arguments
ds2 — Shuffled datastore
matlab.io.Datastore object

Shuffled datastore, returned as a matlab.io.Datastore object.

 shuffle

1-13435

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Tips
• You must implement the shuffle method by deriving a subclass from the

matlab.io.datastore.Shuffleable class. For more information, see “Develop
Custom Datastore”.

See Also
matlab.io.Datastore | matlab.io.datastore.Shuffleable

Introduced in R2018a

1 Alphabetical List

1-13436

matlab.mixin.SetGet class
Package: matlab.mixin

Provide handle classes with set and get methods

Description
Use the matlab.mixin.SetGet class to derive classes that inherit set and get
methods that behave like the MATLAB graphics set and get functions.

The set and get methods inherited from matlab.mixin.SetGet support inexact
property name matching. You can use a combination of partial and case-insensitive names
as long as the inexact name is not ambiguous.

In contrast, dot-based property references require exact property name matches. To
implement exact name matching with set and get methods, use the
matlab.mixin.SetGetExactNames class.

The matlab.mixin.SetGet class is a handle class.

Class Attributes
Abstract

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

Methods

Public Methods
<infotypegroup type="method"> set get setdisp getdisp </infotypegroup>

 matlab.mixin.SetGet class

1-13437

Examples

Subclass SetGet

Define a class that derives from matlab.mixin.SetGet and has two properties

classdef PropSetGet < matlab.mixin.SetGet
 properties
 Number {mustBeNumeric}
 Str string
 end
end

Create an instance of the class and use the inherited set method to set a property value.

p = PropSetGet;
set(p,'Number',8)
p.Number

ans =

 8

See Also
matlab.mixin.SetGetExactNames

Topics
“Implement Set/Get Interface for Properties”
Class Attributes

Introduced in R2014b

1 Alphabetical List

1-13438

matlab.mixin.SetGetExactNames class
Package: matlab.mixin
Superclasses:

Require exact name match for set and get methods

Description
Use the matlab.mixin.SetGetExactNames class to derive classes that inherit methods
named set and get that set and get property values. For information on how to use the
set and get methods, see the MATLAB set and get functions.

Classes derived from matlab.mixin.SetGetExactNames require case-sensitive, exact
property name matches. To support inexact name matches, derive from the
matlab.mixin.SetGet class.

The matlab.mixin.SetGetExactNames class is a handle class.

Class Attributes
Abstract

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

Methods

Public Methods
<infotypegroup type="method"> set get setdisp getdisp </infotypegroup>

 matlab.mixin.SetGetExactNames class

1-13439

Examples

Subclass SetGetExactNames

Define a class that has two properties.

classdef PropSetGet < matlab.mixin.SetGetExactNames
 properties
 Number {mustBeNumeric}
 Str string
 end
end

Create an instance of the class and try to use the inherited set method to set a property
value. The method fails because the property name must be a case-sensitive match for the
name defined in the class.

p = PropSetGet;
set(p,'number',8)

Error using PropSetGetExact/set
The name 'number' is not an accessible property for an instance of class 'PropSetGetExact'.

See Also
matlab.mixin.SetGet

Topics
“Implement Set/Get Interface for Properties”

Introduced in R2016b

1 Alphabetical List

1-13440

set
Class: matlab.mixin.SetGet
Package: matlab.mixin

Assign specified property-name/property-value pairs

Syntax
set(H,Name,Value,...)
set(H,pn,pv)
set(H,s)
S = set(h)

Description
set(H,Name,Value,...) sets the named property to the specified value for the objects
in the handle array H. set matches partial and case-insensitive names that are not
ambiguous. Inexact name matching applies only to class properties. Dynamic properties
require exact name matches.

set(H,pn,pv) sets the named properties specified in the cell array of strings pn to the
corresponding values in the cell array pv for all objects specified in H. The cell array pn
must be 1-by-n (where n is the number of property names), but the cell array pv can be m-
by-n where m is equal to length(H). set updates each object with the associated set of
values for the list of property names contained in.

set(H,s) sets the properties identified by each field name of struct s with the values
contained in s. s is a struct whose field names are object property names.

S = set(h) returns the user-settable properties of scalar h. S is a struct whose field
names are the object's property names and values that are either empty cell arrays or cell
arrays of possible values for properties that have a finite set of predefined possible
values.

 set

1-13441

Input Arguments
H — Input handle array
handle array

Input handle array, specified as a single handle or an array of handles

Name — Property name
character vector | string scalar

Property name, specified as a combination of partial and case-insensitive names. The
inexact name must not be ambiguous. Dynamic properties must use exact names.
Data Types: char | string

Value — Property value to assign to the named property
property value

Property value to assign to the named property, specified as appropriate for that property.

pn — Property names
cell array of character vectors or strings

Property names, specified as a cell array of character vectors or scalar strings. The cell
array pn must be 1-by-n (where n is the number of property names).
Data Types: cell

pv — Property values
cell array

Property values, specified as a cell array. The cell array pv can be m-by-n where m is equal
to length(H) and n is the number of property names in pn.
Data Types: cell

s — Property name and value structure
struct

Property name and value structure. The fields of S correspond to property names and the
values of the fields are the property values to set.
Data Types: struct

1 Alphabetical List

1-13442

h — Scalar object handle
handle

Scalar object handle. To obtain user-settable properties, input argument must be a scalar
object handle.

Output Arguments
S — Settable properties
struct

Settable properties, returned as a structure with fields corresponding to property names
and values that are either empty cell arrays or cell arrays of possible values for properties
that have a finite set of predefined possible values.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

Examples
Set the value of a property named Data on an instance of a class that derives from
matlab.mixin.SetGet.

set(obj,'Data',[1 2 3 4])

Tips
• Override the matlab.mixin.SetGet class setdisp method to change how MATLAB

displays information returned by set.

 set

1-13443

See Also
matlab.mixin.SetGet | matlab.mixin.SetGet.get |
matlab.mixin.SetGet.setdisp | set

Topics
“Implement Set/Get Interface for Properties”

1 Alphabetical List

1-13444

setdisp
Class: matlab.mixin.SetGet
Package: matlab.mixin

Customize set method display

Syntax
setdisp(h)

Description
setdisp(h) called by set when set is called with no output arguments and a single
input argument that is a scalar handle. Override this matlab.mixin.SetGet class
method in a subclass to change how property information is displayed in the command
window.

Input Arguments
h — Object handle
handle

Object handle whose settable properties and their possible values are to be displayed.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

 setdisp

1-13445

See Also
matlab.mixin.SetGet | matlab.mixin.SetGet.getdisp |
matlab.mixin.SetGet.set | set

Topics
“Implement Set/Get Interface for Properties”

1 Alphabetical List

1-13446

get
Class: matlab.mixin.SetGet
Package: matlab.mixin

Query specified property values

Syntax
CV = get(H,Name)
SV = get(H)
get(H)

Description
CV = get(H,Name) returns the value of the named property from the objects in the
handle array H. If H is scalar, get returns a single value; if H is an array, get returns a cell
array of property values. get matches partial and case-insensitive names that are not
ambiguous. Inexact name matching applies only to class properties. Dynamic properties
require exact name matches.

If you specify a cell array of property names as the second argument, then get returns a
cell array of values, where each row in the cell corresponds to an element in H and each
column in the cell corresponds to an element in the property name cell array.

If H is nonscalar and Name is the name of a dynamic property, get returns a value only if
the property exists in all objects referenced in H.

SV = get(H) returns a structure in which the field names are the object's property
names and the values are the current values of the corresponding properties. If H is
nonscalar, then SV is a numel(H)-by-1 array of structures.

get(H) displays all property names and their current values for the MATLAB objects with
handle H.

Your subclass can override the matlab.mixin.SetGet getdisp method to control how
MATLAB displays this information.

 get

1-13447

Input Arguments
H — Input handle array
object array

Input handle array, specified as a single handle or an array of handles

Name — Property to query
character vector | string scalar

Property to query, specified as a combination of partial and case-insensitive names. The
inexact name must not be ambiguous. Dynamic properties must use exact names.
Data Types: char | string

Output Arguments
CV — Value of queried property
property value

Value of queried property, returned as a single value or a cell array of values.

SV — Structure of property names and values
struct

Structure of property names and values, in which the field names are the object's
property names and the values are the current values of the corresponding properties.
Data Types: struct

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

1 Alphabetical List

1-13448

Examples
Get the value of a property named Data from an instance of a class derived from
matlab.mixin.SetGet.

propValue = get(obj,'Data');

Tips
• Override the matlab.mixin.SetGet class matlab.mixin.SetGet.getdisp

method to change how MATLAB displays information returned by get.

See Also
get | matlab.mixin.SetGet | matlab.mixin.SetGet.getdisp

Topics
“Implement Set/Get Interface for Properties”

 get

1-13449

getdisp
Class: matlab.mixin.SetGet
Package: matlab.mixin

Customize get method display

Syntax
getdisp(h)

Description
getdisp(h) called by get when get is called with no output arguments and a single
input argument that is a scalar handle. Override this matlab.mixin.SetGet class
method in a subclass to change how property information is displayed in the command
window.

Input Arguments
h — Object handle
object

Object handle whose gettable properties and their current values are to be displayed.

Attributes
Access public

To learn about attributes of methods, see Method Attributes.

See Also
get | matlab.mixin.SetGet.getdisp | matlab.mixin.SetGet.getdisp

1 Alphabetical List

1-13450

Topics
“Implement Set/Get Interface for Properties”

 getdisp

1-13451

set (RandStream)
Set random number stream property

Class
RandStream

parallel.gpu.RandStream

Syntax
set(stream,'PropertyName',Value)
set(stream,'Property1',Value1,'Property2',Value2,...)
set(stream,A)
A = set(stream,'Property')
set(stream,'Property')
A = set(stream)
set(stream)

Description
set(stream,'PropertyName',Value) sets the property 'PropertyName' of the
random stream stream to the value Value.

set(stream,'Property1',Value1,'Property2',Value2,...) sets multiple
random stream property values with a single statement.

set(stream,A) where A is a structure whose field names are property names of the
random stream stream sets the properties of stream named by each field with the
values contained in those fields.

A = set(stream,'Property') or set(stream,'Property') displays possible
values for the specified property of stream.

1 Alphabetical List

1-13452

A = set(stream) or set(stream) displays or returns all writable properties of
stream and their possible values.

See Also
RandStream | get (RandStream) | parallel.gpu.RandStream | rand | randi |
randn

 set (RandStream)

1-13453

set (serial)
Configure or display serial port object properties

Syntax
set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Description
set(obj) displays all configurable properties values for the serial port object, obj. If a
property has a finite list of possible string values, then these values are also displayed.

props = set(obj) returns all configurable properties and their possible values for obj
to props. props is a structure whose field names are the property names of obj, and
whose values are cell arrays of possible property values. If the property does not have a
finite set of possible values, then the cell array is empty.

set(obj,'PropertyName') displays the valid values for PropertyName if it possesses
a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for PropertyName to
props. If PropertyName does not have a finite list of possible values, props is a cell
array of possible string values or an empty cell array.

set(obj,'PropertyName',PropertyValue,...) configures multiple property values
with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of strings PN to the
corresponding values in the cell array PV. PN must be a vector. PV can be m-by-n where m
is equal to the number of serial port objects in obj and n is equal to the length of PN.

1 Alphabetical List

1-13454

set(obj,S) configures the named properties to the specified values for obj. S is a
structure whose field names are serial port object properties, and whose field values are
the values of the corresponding properties.

Examples
This example illustrates shows how to use the set function to configure or return
property values, on a Windows platform.

s = serial('COM1');
set(s,'BaudRate',9600,'Parity','even')
set(s,{'StopBits','RecordName'},{2,'sydney.txt'})
set(s,'Parity')
[{none} | odd | even | mark | space]

Tips
Refer to “Property Reference” for a list of serial port object properties that you can
configure with set.

You can use any combination of property name/property value pairs, structures, and cell
arrays in one call to the set function. Additionally, you can specify a property name
without regard to case, and you can use property name completion. For example, if s is a
serial port object, then the following commands are all valid.

set(s,'BaudRate')
set(s,'baudrate')
set(s,'BAUD')

See Also
get

Introduced before R2006a

 set (serial)

1-13455

set
Set tscollection properties

Syntax
tscprop = set(tsc)
tscprop = set(tsc,propname)
set(tsc,propname,propval)

Description
tscprop = set(tsc) returns all property values of a tscollection object tsc.

tscprop = set(tsc,propname) displays the property specified in propname. This
syntax is equivalent to the command tscprop = tsc.propname. For a full list of
tscollection property names, see tscollection.

set(tsc,propname,propval) sets the property propname of tsc to the value
propval. This syntax is equivalent to the command tsc.propname = propval. You can
set multiple properties and their values at a time by using comma-separated pairs. For a
full list of tscollection property names and corresponding valid values, see
tscollection.

Examples

Name of tscollection

Create a tscollection object from two timeseries objects and set the Name property.

ts1 = timeseries(rand(5,1),'Name','ts1');
ts2 = timeseries(rand(5,1),'Name','ts2');
tsc = tscollection({ts1,ts2});
tscprop = set(tsc,'Name','newname')

1 Alphabetical List

1-13456

Time Series Collection Object: newname

Time vector characteristics

 Start time 0 seconds
 End time 4 seconds

Member Time Series Objects:

 ts1
 ts2

Input Arguments
tsc — Input tscollection
scalar

Input tscollection, specified as a scalar.

propname — Property name
character vector

Property name, specified as a character vector. For a full list of tscollection property
names, see tscollection.
Data Types: char

propval — Property value
scalar

Property value, specified as a scalar. For a full list of tscollection property names and
valid values, see tscollection.

See Also
get | timeseries | tscollection

Introduced before R2006a

 set

1-13457

setabstime
Set tscollection times as date character vectors

Syntax
tscout = setabstime(tscin,timevals)
tscout = setabstime(tscin,timevals,timeformat)

Description
tscout = setabstime(tscin,timevals) sets the times in tscollection object
tscin to the date character vectors specified in timevals.

tscout = setabstime(tscin,timevals,timeformat) explicitly specifies the
format of timeformat used in timevals.

Examples

Absolute Time Vector

Create a tscollection object and define the absolute time vector.

tscin = tscollection(timeseries(rand(3,1)));
tscout = setabstime(tscin,{'12-DEC-2005 12:34:56','12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'})

Time Series Collection Object: unnamed

Time vector characteristics

 Start date 12-Dec-2005 12:34:56
 End date 12-Dec-2005 14:34:56

Member Time Series Objects:

 unnamed

1 Alphabetical List

1-13458

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

timevals — Sample times
array

Sample times, specified as a cell array of date character vectors. Valid date character
vectors can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: cell

timeformat — Time format
scalar

Time format, specified as a scalar date format used for the time values.

 setabstime

1-13459

See Also
getabstime | timeseries | tscollection

Introduced before R2006a

1 Alphabetical List

1-13460

setappdata
Store application-defined data

Use this function to store data in a UI. You can retrieve the data elsewhere in your code
using the getappdata function. Both of these functions provide a convenient way to
share data between callbacks or between separate UIs.

Syntax
setappdata(obj,name,val)

Description
setappdata(obj,name,val) stores the contents of val. The graphics object, obj, and
the name identifier, name, uniquely identify the data for later retrieval.

Examples

Store and Retrieve Date Information

Create a figure window. Then, get the current time using the date function.

f = figure;
val = date

val =

23-Dec-2014

Store the contents of val using the setappdata function. In this case, val is stored in
the figure object using the name identifier, 'todaysdate'.

setappdata(f,'todaysdate',val);

Retrieve the data and display it.

 setappdata

1-13461

getappdata(f,'todaysdate')

ans =

23-Dec-2014

Input Arguments
obj — Graphics object in which to store the value
figure | uipanel | uibuttongroup | uicontrol | ...

Graphics object in which to store the value, specified as any graphics object (except an
ActiveX component). The graphics object must be accessible from within the functions
you plan to store and retrieve the data.

name — Name identifier
character vector

Name identifier, specified as a character vector. Select a unique name identifier that is
easy to remember so that you can easily recall it when you want to retrieve the data.
Example: setappdata(h,'mydata',5) stores the value 5 using the name 'mydata'.
Data Types: char

val — Value to store
any MATLAB data type

Value to store, specified as any MATLAB data type.

See Also
getappdata | guidata | isappdata | rmappdata

Topics
“Share Data Among Callbacks”

Introduced before R2006a

1 Alphabetical List

1-13462

setcats
Set categories in categorical array

Syntax
B = setcats(A,newcats)

Description
B = setcats(A,newcats) sets categories in output categorical array B using
categories defined by newcats and elements defined by A.

• If an element of A is in a category listed in newcats, then the corresponding element
of B has the same value as in A.

• If A has a category not listed in newcats, then B does not have that category. The
corresponding elements in B are undefined.

• If newcats lists a category that is not a category of A, then B has no elements equal to
that category.

Examples

Set New Categories

Create a categorical array containing various colors.

A = categorical({'blue','black','red';'red','blue','black';'black','red','blue'})

A = 3x3 categorical array
 blue black red
 red blue black
 black red blue

Set new categories.

 setcats

1-13463

B = setcats(A,{'red','black'})

B = 3x3 categorical array
 <undefined> black red
 red <undefined> black
 black red <undefined>

Elements that were blue in A are undefined in B.

Set New Categories and Assign Elements

Create a categorical array containing various colors.

A = categorical({'blue','black','red';'red','blue','black';'black','red','blue'})

A = 3x3 categorical array
 blue black red
 red blue black
 black red blue

Set new categories. Include a category that is not a category of A.

B = setcats(A,{'red','pink','blue'})

B = 3x3 categorical array
 blue <undefined> red
 red blue <undefined>
 <undefined> red blue

No element of B is pink, because pink is not a category of A. Assign an element of B to
be pink.

B(1,2) = 'pink';
B

B = 3x3 categorical array
 blue pink red
 red blue <undefined>
 <undefined> red blue

1 Alphabetical List

1-13464

Input Arguments
A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

newcats — New categories
character vector | cell array of character vectors | string array

New categories, specified as a character vector, a cell array of character vectors, or a
string array.

Tips
• To change category names in a categorical array, use renamecats.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 setcats

1-13465

See Also
addcats | categories | iscategory | mergecats | removecats | renamecats |
reordercats

Introduced in R2014b

1 Alphabetical List

1-13466

setdiff
Set difference of two arrays

Syntax
C = setdiff(A,B)
C = setdiff(A,B,setOrder)
C = setdiff(A,B, ___ ,'rows')
C = setdiff(A,B,'rows', ___)
[C,ia] = setdiff(___)

[C,ia] = setdiff(A,B,'legacy')
[C,ia] = setdiff(A,B,'rows','legacy')

Description
C = setdiff(A,B) returns the data in A that is not in B, with no repetitions. C is in
sorted order.

• If A and B are tables or timetables, then setdiff returns the rows from A that are not
in B. For timetables, setdiff takes row times into account to determine equality, and
sorts the output timetable C by row times.

C = setdiff(A,B,setOrder) returns C in a specific order. setOrder can be
'sorted' or 'stable'.

C = setdiff(A,B, ___ ,'rows') and C = setdiff(A,B,'rows', ___) treat each
row of A and each row of B as single entities and return the rows from A that are not in B,
with no repetitions. You must specify A and B and optionally can specify setOrder.

The 'rows' option does not support cell arrays, unless one of the inputs is either a
categorical array or a datetime array.

[C,ia] = setdiff(___) also returns the index vector ia using any of the previous
syntaxes.

 setdiff

1-13467

• Generally, C = A(ia).
• If the 'rows' option is specified, then C = A(ia,:).
• If A and B are tables or timetables, then C = A(ia,:).

[C,ia] = setdiff(A,B,'legacy') and [C,ia] = setdiff(
A,B,'rows','legacy') preserve the behavior of the setdiff function from R2012b
and prior releases.

The 'legacy' option does not support categorical arrays, datetime arrays, duration
arrays, tables, or timetables.

Examples

Difference of Two Vectors

Define two vectors with values in common.

A = [3 6 2 1 5 1 1];
B = [2 4 6];

Find the values in A that are not in B.

C = setdiff(A,B)

C = 1×3

 1 3 5

Difference of Two Tables

Define two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))

A=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

1 Alphabetical List

1-13468

 1 A false
 2 B true
 3 C false
 4 D true
 5 E false

B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

B=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 3 C false
 5 E false
 7 G false
 9 I false

Find the rows in A that are not in B.

C = setdiff(A,B)

C=2×3 table
 Var1 Var2 Var3
 ____ ____ _____

 2 B true
 4 D true

Difference of Two Vectors and Indices to Different Values

Define two vectors with values in common.

A = [3 6 2 1 5 1 1];
B = [2 4 6];

Find the values in A that are not in B as well as the index vector ia, such that C =
A(ia).

 setdiff

1-13469

[C,ia] = setdiff(A,B)

C = 1×3

 1 3 5

ia = 3×1

 4
 1
 5

Difference of Two Tables and Indices to Different Rows

Define a table, A, of gender, age, and height for five people.

A = table(['M';'M';'F';'M';'F'],[27;52;31;46;35],[74;68;64;61;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty' 'Bob' 'Judy'})

A=5×3 table
 Gender Age Height
 ______ ___ ______

 Ted M 27 74
 Fred M 52 68
 Betty F 31 64
 Bob M 46 61
 Judy F 35 64

Define a table, B, with the same variables as A.

B = table(['F';'M';'F';'F'],[64;68;62;58],[31;47;35;23],...
'VariableNames',{'Gender' 'Height' 'Age'},...
'RowNames',{'Meg' 'Joe' 'Beth' 'Amy'})

B=4×3 table
 Gender Height Age
 ______ ______ ___

1 Alphabetical List

1-13470

 Meg F 64 31
 Joe M 68 47
 Beth F 62 35
 Amy F 58 23

Find the rows in A that are not in B, as well as the index vector ia, such that C =
A(ia,:).

[C,ia] = setdiff(A,B)

C=4×3 table
 Gender Age Height
 ______ ___ ______

 Judy F 35 64
 Ted M 27 74
 Bob M 46 61
 Fred M 52 68

ia = 4×1

 5
 1
 4
 2

The rows of C are in sorted order first by Gender and next by Age.

Difference of Rows in Two Matrices

Define two matrices with rows in common.

A = [7 9 7; 0 0 0; 7 9 7; 5 5 5; 1 4 5];
B = [0 0 0; 5 5 5];

Find the rows from A that are not in B as well as the index vector ia, such that C =
A(ia,:).

[C,ia] = setdiff(A,B,'rows')

 setdiff

1-13471

C = 2×3

 1 4 5
 7 9 7

ia = 2×1

 5
 1

Difference of Two Vectors with Specified Output Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' or 'sorted' when the order of the values in C are important.

A = [3 6 2 1 5 1 1];
B = [2 4 6];
[C,ia] = setdiff(A,B,'stable')

C = 1×3

 3 1 5

ia = 3×1

 1
 4
 5

Alternatively, you can specify 'sorted' order.

 [C,ia] = setdiff(A,B,'sorted')

C = 1×3

 1 3 5

1 Alphabetical List

1-13472

ia = 3×1

 4
 1
 5

Difference of Vectors Containing NaNs

Define two vectors containing NaN.

A = [5 NaN NaN];
B = [5 NaN];

Find the set difference of A and B.

C = setdiff(A,B)

C = 1×2

 NaN NaN

setdiff treats NaN values as distinct.

Cell Array of Character Vectors with Trailing White Space

Create a cell array of character vectors, A.

A = {'dog','cat','fish','horse'};

Create a cell array of character vectors, B, where some of the vectors have trailing white
space.

B = {'dog ','cat','fish ','horse'};

Find the character vectors in A that are not in B.

[C,ia] = setdiff(A,B)

 setdiff

1-13473

C = 1x2 cell array
 {'dog'} {'fish'}

ia = 2×1

 1
 3

setdiff treats trailing white space in cell arrays of character vectors as distinct
characters.

Difference of Char and Cell Array of Character Vectors

Create a character vector, A.

A = ['cat';'dog';'fox';'pig'];
class(A)

ans =
'char'

Create a cell array of character vectors, B.

B={'dog','cat','fish','horse'};
class(B)

ans =
'cell'

Find the character vectors in A that are not in B.

C = setdiff(A,B)

C = 2x1 cell array
 {'fox'}
 {'pig'}

The result, C, is a cell array of character vectors.

class(C)

1 Alphabetical List

1-13474

ans =
'cell'

Preserve Legacy Behavior of setdiff

Use the 'legacy' flag to preserve the behavior of setdiff from R2012b and prior
releases in your code.

Find the difference of A and B with the current behavior.

A = [3 6 2 1 5 1 1];
B = [2 4 6];
[C1,ia1] = setdiff(A,B)

C1 = 1×3

 1 3 5

ia1 = 3×1

 4
 1
 5

Find the difference of A and B, and preserve the legacy behavior.

[C2,ia2] = setdiff(A,B,'legacy')

C2 = 1×3

 1 3 5

ia2 = 1×3

 7 1 5

 setdiff

1-13475

Input Arguments
A,B — Input arrays
numeric arrays | logical arrays | character arrays | string arrays | categorical arrays |
datetime arrays | duration arrays | cell arrays of character vectors | tables | timetables

Input arrays, specified as numeric arrays, logical arrays, character arrays, string arrays,
categorical arrays, datetime arrays, duration arrays, cell arrays of character vectors,
tables, or timetables. If you specify the 'rows' option, A and B must have the same
number of columns.

A and B must belong to the same class with the following exceptions:

• logical, char, and all numeric classes can combine with double arrays.
• Cell arrays of character vectors can combine with character arrays or string arrays.
• Categorical arrays can combine with character arrays, cell arrays of character vectors,

or string arrays.
• Datetime arrays can combine with cell arrays of date character vectors or single date

character vectors.

There are additional requirements for A and B based on data type:

• If A and B are both ordinal categorical arrays, they must have the same sets of
categories, including their order. If neither A nor B are ordinal, they need not have the
same sets of categories, and the comparison is performed using the category names.
In this case, the categories of C are the sorted union of the categories from A and B.

• If A and B are tables or timetables, they must have the same variable names (except
for order). For tables, row names are ignored, so that two rows that have the same
values, but different names, are considered equal. For timetables, row times are taken
into account, so that two rows that have the same values, but different times, are not
considered equal.

• If A and B are datetime arrays, they must be consistent with each other in whether
they specify a time zone.

A and B also can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)
• eq

1 Alphabetical List

1-13476

• ne

The object class methods must be consistent with each other. These objects include
heterogeneous arrays derived from the same root class. For example, A and B can be
arrays of handles to graphics objects.

setOrder — Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of the values (or
rows) in C.

Order Flag Meaning
'sorted' The values (or rows) in C return in sorted order. For

example: C = setdiff([4 1 3 2],[2
1],'sorted') returns C = [3 4].

'stable' The values (or rows) in C return in the same order as
in A. For example: C = setdiff([4 1 3 2],[2
1],'stable') returns C = [4 3].

Data Types: char | string

Output Arguments
C — Difference of A and B
vector | matrix | table | timetable

Difference of A and B, returned as a vector, matrix, table, or timetable. If the inputs A and
B are tables or timetables, then the order of the variables in C is the same as the order of
the variables in A.

The following describes the shape of C when the inputs are vectors or matrices and when
the 'legacy' flag is not specified:

• If the 'rows' flag is not specified and A is a row vector, then C is a row vector.
• If the 'rows' flag is not specified and A is not a row vector, then C is a column vector.
• If the'rows' flag is specified, then C is a matrix containing the rows of A that are not

in B.

 setdiff

1-13477

• If all the values (or rows) of A are also in B, then C is an empty matrix.

The class of C is the same as the class of A, unless:

• A is a character array and B is a cell array of character vectors, in which case C is a
cell array of character vectors.

• A is a character vector, cell array of character vectors, or string, and B is a categorical
array, in which case C is a categorical array.

• A is a cell array of character vectors or single character vector and B is a datetime
array, in which case C is a datetime array.

• A is a character vector or cell array of character vectors and B is a string array, in
which case C is a string array.

ia — Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not specified. ia
identifies the values (or rows) in A that are not in B. If there is a repeated value (or row)
appearing exclusively in A, then ia contains the index to the first occurrence of the value
(or row).

Tips
• To find the set difference with respect to a subset of variables from a table or

timetable, you can use column subscripting. For example, you can use
setdiff(A(:,vars),B(:,vars)), where vars is a positive integer, a vector of
positive integers, a variable name, a cell array of variable names, or a logical vector.
Alternatively, you can use vartype to create a subscript that selects variables of a
specified type.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Alphabetical List

1-13478

• Code generation does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option, then inputs A
and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed length 1. The
second dimension of a variable-size column vector must have fixed length 1.

• Do not use [] to represent the empty set. Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, then empty outputs are row vectors, 1-by-0.
They are never 0-by-0.

• When you specify both the 'legacy' and 'rows' options, the output ia is a column
vector. If ia is empty, then it is 0-by-1. It is never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the 'legacy' option, the
inputs must already be sorted in ascending order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute value). Suppose the

real input is x. Use sort(complex(x))or sortrows(complex(x)).
• See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'legacy' flag is not supported.
• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 setdiff

1-13479

See Also
intersect | ismember | issorted | setxor | sort | union | unique

Topics
“Combine Categorical Arrays”

Introduced before R2006a

1 Alphabetical List

1-13480

setDirectory
Make specified IFD the current IFD

Syntax
setDirectory(t,dirNum)

Description
setDirectory(t,dirNum) sets the image file directory (IFD) specified by dirNum as
the current IFD. Tiff object functions operate on the current IFD.

Examples

Navigate Through Multiple Images in TIFF File

Navigate the image file directories (IFDs) in a TIFF file and get tag or image data from
the different IFDs.

Create a Tiff object for the file example.tif which contains three IFDs and display the
directory index number for the current IFD in the file.

t = Tiff('example.tif','r');
currentDirectory(t)

ans = 1

Change the current IFD to 2 and get the value of the ImageDescription tag.

setDirectory(t,2);
getTag(t,'ImageDescription')

ans =
'First image converted to grayscale.'

 setDirectory

1-13481

Change the current IFD to 3 and get the value of the ImageDescription tag.

setDirectory(t,3);
getTag(t,'ImageDescription')

ans =
'Credit: Jeff Mather and Alex Taylor.'

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

dirNum — Directory index number
positive integer

Directory index number, specified as a one-based positive integer.
Example: 2
Data Types: double

Algorithms

References
This function corresponds to the TIFFSetDirectory function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
currentDirectory | nextDirectory

1 Alphabetical List

1-13482

http://www.simplesystems.org/libtiff/

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 setDirectory

1-13483

setenv
Set environment variable

Syntax
setenv(name,value)
setenv(name)

Description
setenv(name,value) sets the value of an operating system environment variable. If
name exists as an environment variable, then setenv replaces its current value with
value. If name does not exist, then setenv creates an environment variable called name
and assigns value to it.

setenv passes name and value to the operating system unchanged. Special characters,
such as ;, /, :, $, and %, are unexpanded and intact in value.

A process spawned using the MATLAB system, unix, dos, or ! function reads the values
assigned to variables using the setenv function. You can retrieve any value set with
setenv by calling getenv(name).

setenv(name) assigns a null value to name. This syntax is equivalent to
setenv(name,''). On the Microsoft Windows platform, this syntax is equivalent to
undefining the variable. On most UNIX platforms, it is possible to have an environment
variable defined as empty.

Examples

Create Environment Variable TEMP

setenv('TEMP','C:\TEMP');
getenv('TEMP')

1 Alphabetical List

1-13484

ans = 'C:\TEMP'

Append Folder to System Path

setenv('PATH', [getenv('PATH') ';D:\mypath']);

Input Arguments
name — Environment variable name
string | character vector

Environment variable name, specified as a string or a character vector.

The maximum number of characters in name is 215 - 2 (or 32766). If name contains the =
character, then setenv throws an error. The behavior of environment variables with = in
the name is not well-defined.
Example: 'PATH'

value — Environment variable value
string | character vector

Environment variable value, specified as a string or a character vector.
Example: 'C:\TEMP'

See Also
dos | getenv | system | unix

Topics
“MATLAB Operators and Special Characters”

Introduced before R2006a

 setenv

1-13485

setfield
Assign value to structure array field

Syntax
S = setfield(S,field,value)
S = setfield(S,field1,...,fieldN,value)
S = setfield(S,idx,field1,...,fieldN,value)
S = setfield(S,idx,field1,idx1,...,fieldN,idxN,value)

Description
S = setfield(S,field,value) assigns a value to the specified field of the structure
S. For example, S = setfield(S,'a',1) makes the assignment S.a = 1.

As an alternative to setfield, use dot notation: S.field = value. Dot notation is
typically more efficient.

If S does not have the specified field, then setfield creates it and assigns value to it.

S = setfield(S,field1,...,fieldN,value) assigns a value to the specified field
of a nested structure. For example, S = setfield(S,'a','b','c',1) makes the
assignment S.a.b.c = 1, where the fields S.a and S.a.b are also structures.

S = setfield(S,idx,field1,...,fieldN,value) specifies an element of S and
assigns a value to one of its fields. For example, S = setfield(S,{3,4},'a',1)
makes the assignment S(3,4).a = 1.

S = setfield(S,idx,field1,idx1,...,fieldN,idxN,value) specifies elements
of fields. For example, S = setfield(S,'a',{2},1) makes the assignment S.a(2) =
1. Similarly, S = setfield(S,{3,4},'a',{2},'b',1) makes the assignment
S(3,4).a(2).b = 1.

Examples

1 Alphabetical List

1-13486

Assign Values to Fields

Create a scalar structure.

S.x = linspace(0,2*pi);
S.y = sin(S.x);
S.title = ''

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: ''

Assign a value to a field using the setfield function.

S = setfield(S,'title','y = sin(x)')

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'

Assign a value to another field. If you specify a field that does not exist, then setfield
creates it.

e = sqrt(abs(S.y));
S = setfield(S,'sqrty',e)

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'
 sqrty: [1x100 double]

You also can assign a value to a field using dot notation.

S.title = 'y = sin(x), with error bar values'

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x), with error bar values'

 setfield

1-13487

 sqrty: [1x100 double]

Field of Nested Structure

Create a nested structure. In a nested structure, a structure at any level can have fields
that are structures, and other fields that are not structures.

S.a.b.c = 1;
S.a.b.d = 2;
S.a.b.e = struct('f',[3 4],'g',5);
S.h = 50

S = struct with fields:
 a: [1x1 struct]
 h: 50

While S is a structure, the fields S.a, S.a.b, and S.a.b.e are also structures.

S.a

ans = struct with fields:
 b: [1x1 struct]

S.a.b

ans = struct with fields:
 c: 1
 d: 2
 e: [1x1 struct]

S.a.b.e

ans = struct with fields:
 f: [3 4]
 g: 5

Assign a value to S.a.b.d using the setfield function. When you specify a comma-
separated list of nested structure names, include the structure names at every level

1 Alphabetical List

1-13488

between the top and the field name you specify. In this case, the comma-separated list of
structure names is 'a','b' and the field name is 'd'.

S = setfield(S,'a','b','d',1024);
S.a.b

ans = struct with fields:
 c: 1
 d: 1024
 e: [1x1 struct]

You also can use dot notation to assign a value.

S.a.b.d = 2048;
S.a.b

ans = struct with fields:
 c: 1
 d: 2048
 e: [1x1 struct]

Fields of Elements of Structure Array

Assign values to fields of elements of a structure array.

First, create a structure array. As in all structure arrays, each element is a structure with
the same fields.

S.x = linspace(0,2*pi);
S.y = sin(S.x);
S(2).x = S.x;
S(2).y = cos(S(2).x)

S = 1x2 struct array with fields:
 x
 y

You also can assign values using setfield. If a field does not exist, setfield creates it.
Create a field named title.

 setfield

1-13489

S = setfield(S,{1},'title','y = sin(x)')

S = 1x2 struct array with fields:
 x
 y
 title

The setfield function assigns a value to a field of an individual element, but the output
argument is the entire structure array.

Display the first element of S.

S(1)

ans = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'

As an alternative, index into the structure array, and then use dot notation to assign a
value to a field of an element.

S(2).title = 'y = cos(x)';
S(2)

ans = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = cos(x)'

Indices of Nested Structure Array

Assign a value to a field of a nested structure, in which the structures at some levels are
structure arrays. In this example, S is a 1-by-2 structure array. The second element, S(2),
has a nested structure a.b, where b is a 1-by-3 structure array.

First, create a nested structure. After creating the structure using dot notation, create
another nonscalar structure array using the struct function and add it as a field.

1 Alphabetical List

1-13490

S.a = 1;
S(2).a.b = struct('d',{5,10,20});
S

S = 1x2 struct array with fields:
 a

S(2).a.b

ans = 1x3 struct array with fields:
 d

Display the third element of S(2).a.b.

S(2).a.b(3)

ans = struct with fields:
 d: 20

Assign a new value to the field d of S(2).a.b(3) using the setfield function. Display
the structure with the updated field.

S = setfield(S,{2},'a','b',{3},'d',3.1416);
S(2).a.b(3)

ans = struct with fields:
 d: 3.1416

Elements of Field

Create a structure with a field whose value is an array.

S.a = [5 10 15 20 25]

S = struct with fields:
 a: [5 10 15 20 25]

Assign values to elements of S.a using the setfield function. To assign values to
particular elements, specify indices after the name of the field. You must specify the

 setfield

1-13491

indices within a cell array. However, specify the new values in an array whose data type
matches the data type of the field.

S = setfield(S,'a',{3:5},[0 -50 -100])

S = struct with fields:
 a: [5 10 0 -50 -100]

You also can use dot notation and array indexing to assign values to the same elements.

S.a(3:5) = [20 40 80]

S = struct with fields:
 a: [5 10 20 40 80]

Input Arguments
S — Structure array
structure array

Structure array. If S is nonscalar, then each element of S is a structure, and all elements
have the same fields with the same names.

field — Field name
character vector | string scalar

Field name, specified as a character vector or string scalar.

idx — Indices
cell array of numeric or logical values

Indices, specified as a cell array of numeric or logical values. Indices for S and fields 1
through N-1 specify individual elements of structure arrays. Indices for field N specify one
or more elements of the array in that field, which can be of any type.
Example: S = setfield(S,{1,2},'a',1) is equivalent to S(1,2).a = 1.
Example: If S.a = [5 10 20], then S = setfield(S,'a',{[2,3]},[50 100]) is
equivalent to S.a(2:3) = [50 100].

1 Alphabetical List

1-13492

value — Values
array

Values, specified as any type of array having any size.

See Also
fieldnames | getfield | isfield | orderfields | rmfield | struct

Topics
“Access Data in a Structure Array”
“Generate Field Names from Variables”

Introduced before R2006a

 setfield

1-13493

setpixelposition
Set component position in pixels

Note

Use this function only with GUIDE, or with apps created using the figure
function.

Syntax
setpixelposition(handle,position)
setpixelposition(handle,position,recursive)

Description
setpixelposition(handle,position) sets the position, in pixels on page 1-13496,
of the component specified by handle. The position argument is a four-element vector
that specifies the location and size of the component: [pixels from left, pixels from bottom,
pixels across, pixels high]. The first two values in this vector are the number of pixels
from the left and bottom edge of the parent container. The last two values specify the
width and height of the component.

setpixelposition(handle,position,recursive) sets the position as above. If
Boolean recursive is true, the position is set relative to the parent figure of handle.

Examples
This example first creates a push button within a panel.

f = figure('Position',[300 300 300 200]);
p = uipanel('Position',[.2 .2 .6 .6]);
h1 = uicontrol(p,'Style','PushButton',...
 'Units','normalized',...
 'String','Push Button',...
 'Position',[.1 .1 .5 .2]);

1 Alphabetical List

1-13494

The example then retrieves the position of the push button and changes its position with
respect to the panel.

pos1 = getpixelposition(h1);
setpixelposition(h1,pos1 + [10 10 25 25]);

 setpixelposition

1-13495

Definitions

Pixels
Distances in pixels are independent of your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your system resolution.

See Also
figure | getpixelposition | uicontrol | uipanel

1 Alphabetical List

1-13496

setpref
Set custom preference value

Syntax
setpref(group,pref,value)

Description
setpref(group,pref,value) sets the specified preference in the specified group to
the specified value. If the preference or group does not exist, MATLAB creates it.

Preferences are persistent and maintain their values between MATLAB sessions.

Examples

Modify Preference Value

Create a preference group and preference and then change the preference value.

Use addpref to create a preference group called mytoolbox and add a preference
within it called version.

addpref('mytoolbox','version','1.0')

Change the value of the version preference and then get the preference value.

setpref('mytoolbox','version',{'1.0','beta'})
getpref('mytoolbox','version')

 setpref

1-13497

ans =
 1×2 cell array
 {'1.0'} {'beta'}

Input Arguments
group — Custom preference group name
character vector | string scalar

Custom preference group name, specified as a character vector or a string scalar. group
must be a valid variable name. For more information, see “Variable Names”.
Example: 'mytoolbox'
Data Types: char | string

pref — Custom preference name
character vector | cell array of character vectors | string array

Custom preference name, specified as a character vector, a cell array of character
vectors, or a string array. pref must be a valid variable name. For more information, see
“Variable Names”.

If pref is a cell array of character vectors or a non-scalar string, value must specify a
value for each preference specified in pref.
Example: 'version'
Example: {'version','modifieddate','docpath'}
Data Types: char | string

value — Custom preference value
any MATLAB data type

Custom preference value, specified as any MATLAB data type, including numeric types,
character vectors, cell arrays, structures, and objects. If pref is a cell array of character
vectors or a nonscalar string array, value must specify a value for each preference
specified in pref.
Example: 1.1
Example: {{1.1,'beta'},datetime(2018,1,9),'C:\mytoolbox
\documentation'}

1 Alphabetical List

1-13498

See Also
addpref | getpref | ispref | rmpref | uigetpref | uisetpref

Topics
“Preferences”

Introduced before R2006a

 setpref

1-13499

setstr
(Not recommended) Convert numeric values or strings into character representation

Note setstr is not recommended. Use char instead.

Description
This MATLAB 4 function has been renamed char in MATLAB 5.

Introduced before R2006a

1 Alphabetical List

1-13500

setSubDirectory
Make subIFD the current IFD

Syntax
setSubDirectory(t,offset)

Description
setSubDirectory(t,offset) sets the current IFD to the subimage file directory
(subIFD) specified by offset. Use this function when you want to access subIFDs linked
through the SubIFD tag.

Examples

Set Subimage File Directory

Open a TIFF file and read the value of the SubIFD tag in the current IFD. The SubIFD tag
contains byte offsets that specify the location of subIFDs in the IFD.

t = Tiff('example.tif','r');

Read the value of the SubIFD tag to get the subdirectory offsets. Multiple values in the
offsets array indicate multiple subdirectories.

offsets = getTag(t,'SubIFD')

offsets = uint64
 90114

Navigate to the first subIFD. If you have multiple subdirectories, then you can set any one
of the subdirectories as the current directory.

setSubDirectory(t,offsets(1))
close(t);

 setSubDirectory

1-13501

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

offset — Offset from current directory
positive integer

Offset from the current directory, specified as a positive integer. Specify offset value in
bytes from the start of the file.

Get value of offset from the SubIFD tag.
Data Types: double

Algorithms

References
This function corresponds to the TIFFSetSubDirectory function in the LibTIFF C API.
To use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
setDirectory

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-13502

http://www.simplesystems.org/libtiff/

setTag
Set value of tag

Syntax
setTag(t,tagID,tagValue)
setTag(t,tagStruct)

Description
setTag(t,tagID,tagValue) sets the value of the TIFF tag specified by tagID to the
value specified by tagValue in the TIFF file associated with the tiff object t.

setTag(t,tagStruct) sets all the tags specified in tagStruct. The tagStruct
structure can contain multiple tag names and their corresponding values.

Examples

Set Tag Values

You can set tags for a TIFF file by specifying the tag name, the tag numeric identifier, or
by specifying a structure of multiple tag names and values.

Create a new TIFF file, write image data, and then set tag values in different ways.

Read sample data into an array, imdata. Create a Tiff object associated with a new file,
myfile.tif, and open the file for writing.

imdata = imread('example.tif');
t = Tiff('myfile.tif','w');

Set tag values by specifying the tag name.

setTag(t,'Photometric',Tiff.Photometric.RGB)
setTag(t,'PlanarConfiguration',Tiff.PlanarConfiguration.Chunky)

 setTag

1-13503

Set tag values by specifying the numeric tag identifier. Use the fields of the Tiff.TagID
structure to obtain the tag IDs. For instance, the Tiff.TagID.ImageLength contains
the numeric identifier for the ImageLength tag.

setTag(t,Tiff.TagID.ImageLength,size(imdata,1))
setTag(t,Tiff.TagID.ImageWidth,size(imdata,2))

Create a structure with fields named after TIFF tags and assign values to the fields. Pass
this structure to the setTag method to set the values of these tags.

tagStruct.BitsPerSample = 8;
tagStruct.SamplesPerPixel = 3;
tagStruct.TileWidth = 128;
tagStruct.TileLength = 128;
tagStruct.Compression = Tiff.Compression.JPEG;
tagStruct.Software = 'MATLAB';
setTag(t,tagStruct)

Write the image data to the TIFF file and close the Tiff object.

write(t,imdata);
close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

tagID — Tag ID
character vector | string scalar | numeric identifier

Tag ID of a Tiff object, specified as a character vector or string scalar, or a numeric
identifier.

For example, you can specify tagId for the ImageWidth tag as any of these:

• Character vector or string scalar containing the tag name 'ImageWidth'
• Numeric identifier 256 for the ImageWidth tag defined by the TIFF specification

1 Alphabetical List

1-13504

• Field of the Tiff.TagID structure Tiff.TagID.ImageWidth.

The names of the fields of the Tiff.TagID structure are valid tag names that contain the
corresponding tag numeric identifiers. For instance, the field Tiff.TagID.ImageWidth
contains the value 256. To see a list of all the tags along with their numeric identifiers,
type Tiff.TagID in the command window.
Example: 'ImageWidth'
Example: 256
Example: Tiff.TagID.ImageWidth
Data Types: double | char | string

tagValue — Tag value
numeric identifier

Tag value, specified as a valid numeric identifier.

For example, you can specify tagValue for the PlanarConfiguration tag in one of
these ways:

• Numeric identifier 2 that sets the value of the PlanarConfiguration tag indicating
a separate configuration

• Field of the Tiff.PlanarConfiguration structure
Tiff.PlanarConfiguration.Separate

The Tiff.PlanarConfiguration structure contains the numeric identifiers for all the
valid values for the PlanarConfiguration tag. To see all the valid tag values for any
given tag, type Tiff.TagName in the command window. For example, to see all the valid
values for the Photometric tag, type Tiff.Photometric in the command window.
Data Types: double

tagStruct — Multiple tags
structure

Multiple tags, specified as a structure containing tag names and their corresponding
values. The names of fields in tagstruct must be the name of supported TIFF tags, and
their corresponding values must be valid TIFF tag values.
Data Types: struct

 setTag

1-13505

Tips
• If you are modifying a tag rather than creating it, then you must use the

rewriteDirectory method after using the setTag method.

Algorithms

References
This function corresponds to the TIFFSetField function in the LibTIFF C API. To use
this function, you must be familiar with the TIFF specification and technical notes. View
this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | Tiff.getTagNames | getTag

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-13506

http://www.simplesystems.org/libtiff/

settimeseriesnames
Rename timeseries in tscollection

Syntax
tscout = settimeseriesnames(tscin,oldname,newname)

Description
tscout = settimeseriesnames(tscin,oldname,newname) renames a
timeseries object in a tscollection object from oldname to newname.

Examples

Rename timeseries

Create a tscollection object from a timeseries object. Then, change the
timeseries name from Speed to Velocity.

ts = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,...
 'Name','Speed');
tscin = tscollection(ts);
tscout = settimeseriesnames(tscin,'Speed','Velocity')

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 5 seconds

Member Time Series Objects:

 Velocity

 settimeseriesnames

1-13507

Input Arguments
tscin — Input tscollection
scalar

Input tscollection, specified as a scalar.

oldname — Existing timeseries name
character vector

Existing timeseries name, specified as a character vector.

newname — New timeseries name
character vector

New timeseries name, specified as a character vector.

See Also
timeseries | tscollection

Introduced before R2006a

1 Alphabetical List

1-13508

Setting
Setting object

Description
A Setting object represents an individual setting within the settings hierarchical tree.

Creation
Access individual Setting objects using the root SettingsGroup object returned by the
settings function. For example, this code accesses the MaxWidth setting.

s = settings
s.matlab.editor.language.matlab.comments.MaxWidth

Properties
ActiveValue — Current or active setting value
numeric array | logical array | character array

Current or active value, specified as a numeric array, logical array, or character array,
depending on the setting.

The active value is determined as follows:

• If the setting has a temporary value, then the active value is the temporary value.
• If the setting has no temporary value, but it has a personal value, then the active value

is the personal value.
• If the setting has no temporary value or personal value, then the active value is the

factory value.

For example, suppose you have a setting MySetting with these values:

• Temporary value: 12

 Setting

1-13509

• Personal value: no value
• Factory value: 10

In this case, the active value for MySetting is the temporary value, 12.

TemporaryValue — Temporary setting value
numeric array | logical array | character array

Temporary setting value, specified as a numeric array, logical array, or character array,
depending on the setting.

The temporary value is available only for the current MATLAB session and is cleared at
the end of the session.

Some settings are linked to a preference. If a setting is linked to a preference, changing
the temporary value for a setting temporarily changes the corresponding preference. At
the end of the MATLAB session, the preference regains its original value. For more
information about preferences, see “Preferences”.

PersonalValue — Personal setting value
numeric array | logical array | character array

Personal setting value, specified as a numeric array, logical array, or character array,
depending on the setting.

The personal value is available across MATLAB sessions for an individual user. When
modified, the value is saved to the preferences folder.

Some settings are linked to a preference. If a setting is linked to a preference, changing
the personal value for the setting changes the corresponding preference as well. For
more information about preferences, see “Preferences”.

FactoryValue — Factory setting value
numeric array | logical array | character array

This property is read-only.

Factory setting value, specified as a numeric array, logical array, or character array,
depending on the setting.

The factory value is the default product setting. It is not modifiable.

1 Alphabetical List

1-13510

Object Functions
clearTemporaryValue Clear the temporary value for a setting
clearPersonalValue Clear the personal value for a setting
hasTemporaryValue Determine whether the setting has a temporary value set
hasPersonalValue Determine whether the setting has a personal value set
hasFactoryValue Determine whether the setting has a factory value set

Examples
View All the Values of a Setting

View the current values for the maximum column width for comments in the Editor.
s = settings;
s.matlab.editor.language.matlab.comments.MaxWidth

ans =
 Setting 'matlab.editor.language.matlab.comments.MaxWidth' with properties.

 ActiveValue: 80
 TemporaryValue: 80
 PersonalValue: <no value>
 FactoryValue: 75

Access and Modify a Setting

Get and set the value for the maximum column width for comments in MATLAB.

Get the root SettingsGroup object and view the active value for the maximum column
width for comments in MATLAB.

s = settings
s.matlab.editor.language.matlab.comments.MaxWidth.ActiveValue

ans =
 int32
 75

Set the temporary value for the maximum column width for comments in MATLAB.
s.matlab.editor.language.matlab.comments.MaxWidth.TemporaryValue = 80
s.matlab.editor.language.matlab.comments.MaxWidth.ActiveValue

 Setting

1-13511

ans =
 int32
 80

See Also
SettingsGroup | settings

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-13512

settings
Access the SettingsGroup root object

Syntax
s = settings

Description
s = settings returns the root SettingsGroup object in the settings hierarchical tree.
Use the returned object to access and modify settings. For documentation on available
settings, see “System Commands”.

Examples

Access and Modify a Setting

Get and set the value for the maximum column width for comments in MATLAB.

Get the root SettingsGroup object and access the value for the maximum column width
for comments in MATLAB.

s = settings
s.matlab.editor.language.matlab.comments.MaxWidth

ans =

 Setting 'matlab.editor.language.matlab.comments.MaxWidth' with properties.

 ActiveValue: 75
 TemporaryValue: <no value>
 PersonalValue: <no value>
 FactoryValue: 75

Set the temporary value for the maximum column width for comments in MATLAB.
s.matlab.editor.language.matlab.comments.MaxWidth.TemporaryValue = 80
s.matlab.editor.language.matlab.comments.MaxWidth

 settings

1-13513

ans =

 Setting 'matlab.editor.language.matlab.comments.MaxWidth' with properties.

 ActiveValue: 80
 TemporaryValue: 80
 PersonalValue: <no value>
 FactoryValue: 75

See Also
SettingsGroup

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-13514

SettingsGroup
Group of settings and subgroup objects

Description
A SettingsGroup is an object within the settings hierarchical tree. At the top of the tree
is the root SettingsGroup. Each SettingsGroup can contain a collection of other
SettingsGroups and Setting objects.

Creation
Access the root SettingsGroup object using the settings function. For example:

s = settings

Examples

Access and Modify a Setting

Get and set the value for the maximum column width for comments in MATLAB.

Get the root SettingsGroup object and view the active value for the maximum column
width for comments in MATLAB.

s = settings
s.matlab.editor.language.matlab.comments.MaxWidth.ActiveValue

ans =
 int32
 75

Set the temporary value for the maximum column width for comments in MATLAB.
s.matlab.editor.language.matlab.comments.MaxWidth.TemporaryValue = 80
s.matlab.editor.language.matlab.comments.MaxWidth.ActiveValue

 SettingsGroup

1-13515

ans =
 int32
 80

See Also
settings

Topics
“Access and Modify Settings”

Introduced in R2018a

1 Alphabetical List

1-13516

setxor
Set exclusive OR of two arrays

Syntax
C = setxor(A,B)
C = setxor(A,B,setOrder)
C = setxor(A,B, ___ ,'rows')
C = setxor(A,B,'rows', ___)
[C,ia,ib] = setxor(___)

[C,ia,ib] = setxor(A,B,'legacy')
[C,ia,ib] = setxor(A,B,'rows','legacy')

Description
C = setxor(A,B) returns the data of A and B that are not in their intersection (the
symmetric difference), with no repetitions. That is, setxor returns the data that occurs
in A or B, but not both. C is in sorted order.

• If A and B are tables or timetables, then setxor returns the rows that occur in one or
the other of the two tables, but not both. For timetables, setxor takes row times into
account to determine equality, and sorts the output timetable C by row times.

C = setxor(A,B,setOrder) returns C in a specific order. setOrder can be 'sorted'
or 'stable'.

C = setxor(A,B, ___ ,'rows') and C = setxor(A,B,'rows', ___) treat each row
of A and each row of B as single entities and returns the rows of A and B that are not in
their intersection, with no repetitions. You must specify A and B and optionally can specify
setOrder.

The 'rows' option does not support cell arrays, unless one of the inputs is either a
categorical array or a datetime array.

[C,ia,ib] = setxor(___) also returns index vectors ia and ib using any of the
previous syntaxes.

 setxor

1-13517

• Generally, the values in C are a sorted combination of the elements of A(ia) and
B(ib).

• If the 'rows' option is specified, then C is a sorted combination of the rows of
A(ia,:) and B(ib,:).

• If A and B are tables or timetables, then C is a sorted combination of the rows of
A(ia,:) and B(ib,:).

[C,ia,ib] = setxor(A,B,'legacy') and [C,ia,ib] = setxor(
A,B,'rows','legacy') preserve the behavior of the setxor function from R2012b
and prior releases.

The 'legacy' option does not support categorical arrays, datetime arrays, duration
arrays, tables, or timetables.

Examples

Symmetric Difference of Two Vectors

Define two vectors with a value in common.

A = [5 1 3 3 3]; B = [4 1 2];

Find the values of A and B that are not in their intersection.

C = setxor(A,B)

C = 1×4

 2 3 4 5

Symmetric Difference of Two Tables

Define two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))

A=5×3 table
 Var1 Var2 Var3

1 Alphabetical List

1-13518

 ____ ____ _____

 1 A false
 2 B true
 3 C false
 4 D true
 5 E false

B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

B=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 3 C false
 5 E false
 7 G false
 9 I false

Find the rows of A and B that are not in their intersection.

C = setxor(A,B)

C=4×3 table
 Var1 Var2 Var3
 ____ ____ _____

 2 B true
 4 D true
 7 G false
 9 I false

Symmetric Difference of Two Vectors and Indices to Different Values

Define two vectors with a value in common.

A = [5 1 3 3 3]; B = [4 1 2];

 setxor

1-13519

Find the values of A and B that are not in their intersection as well as the index vectors ia
and ib.

[C,ia,ib] = setxor(A,B)

C = 1×4

 2 3 4 5

ia = 2×1

 3
 1

ib = 2×1

 3
 1

C is a sorted combination of the elements A(ia) and B(ib).

Symmetric Difference of Two Tables and Indices to Different Rows

Define a table, A, of gender, age, and height for five people.

A = table(['M';'M';'F'],[27;52;31],[74;68;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty'})

A=3×3 table
 Gender Age Height
 ______ ___ ______

 Ted M 27 74
 Fred M 52 68
 Betty F 31 64

Define a table, B, with the same variables as A.

1 Alphabetical List

1-13520

B = table(['F';'M'],[64;68],[31;47],...
'VariableNames',{'Gender' 'Height' 'Age'},...
'RowNames',{'Meg' 'Joe'})

B=2×3 table
 Gender Height Age
 ______ ______ ___

 Meg F 64 31
 Joe M 68 47

Find the rows of A and B that are not in their intersection, as well as the index vectors ia
and ib.

[C,ia,ib] = setxor(A,B)

C=3×3 table
 Gender Age Height
 ______ ___ ______

 Ted M 27 74
 Joe M 47 68
 Fred M 52 68

ia = 2×1

 1
 2

ib = 2

C is a sorted combination of the elements A(ia,:) and B(ib,:).

Symmetric Difference of Rows in Two Matrices

Define two matrices with rows in common.

A = [7 8 9; 7 7 1; 7 7 1; 1 2 3; 4 5 6];
B = [1 2 3; 4 5 6; 7 7 2];

 setxor

1-13521

Find the rows of A and B that are not in their intersection as well as the index vectors ia
and ib.

[C,ia,ib] = setxor(A,B,'rows')

C = 3×3

 7 7 1
 7 7 2
 7 8 9

ia = 2×1

 2
 1

ib = 3

C is a sorted combination of the rows of A(ia,:) and B(ib,:).

Symmetric Difference of Two Vectors in Specified Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order as A and B.

A = [5 1 3 3 3]; B = [4 1 2];
[C,ia,ib] = setxor(A,B,'stable')

C = 1×4

 5 3 4 2

ia = 2×1

 1
 3

ib = 2×1

1 Alphabetical List

1-13522

 1
 3

Alternatively, you can specify 'sorted' order.

[C,ia,ib] = setxor(A,B,'sorted')

C = 1×4

 2 3 4 5

ia = 2×1

 3
 1

ib = 2×1

 3
 1

Symmetric Difference of Vectors Containing NaNs

Define two vectors containing NaN.

A = [5 NaN NaN]; B = [5 NaN NaN];

Find the symmetric difference of vectors A and B.

C = setxor(A,B)

C = 1×4

 NaN NaN NaN NaN

The setxor function treats NaN values as distinct.

 setxor

1-13523

Cell Array of Character Vectors with Trailing White Space

Create a cell array of character vectors, A.

A = {'dog','cat','fish','horse'};

Create a cell array of character vectors, B, where some of the vectors have trailing white
space.

B = {'dog ','cat','fish ','horse'};

Find the character vectors that are not in the intersection of A and B.

[C,ia,ib] = setxor(A,B)

C = 1x4 cell array
 {'dog'} {'dog '} {'fish'} {'fish '}

ia = 2×1

 1
 3

ib = 2×1

 1
 3

setxor treats trailing white space in cell arrays of character vectors as distinct
characters.

Symmetric Difference of Vectors of Different Classes and Shapes

Create a column vector character array.

A = ['A';'B';'C'], class(A)

A = 3x1 char array
 'A'
 'B'

1 Alphabetical List

1-13524

 'C'

ans =
'char'

Create a row vector containing elements of numeric type double.

B = [66 67 68], class(B)

B = 1×3

 66 67 68

ans =
'double'

Find the symmetric difference of A and B.

C = setxor(A,B)

C = 2x1 char array
 'A'
 'D'

The result is a column vector character array.

class(C)

ans =
'char'

Symmetric Difference of Char and Cell Array of Character Vectors

Create a character vector, A.

A = ['cat';'dog';'fox';'pig'];
class(A)

ans =
'char'

 setxor

1-13525

Create a cell array of character vectors, B.

B={'dog','cat','fish','horse'};
class(B)

ans =
'cell'

Find the character vectors that are not in the intersection of A and B.

C = setxor(A,B)

C = 4x1 cell array
 {'fish' }
 {'fox' }
 {'horse'}
 {'pig' }

The result, C, is a cell array of character vectors.

class(C)

ans =
'cell'

Preserve Legacy Behavior of setxor

Use the 'legacy' flag to preserve the behavior of setxor from R2012b and prior
releases in your code.

Find the symmetric difference of A and B with the current behavior.

A = [5 1 3 3 3]; B = [4 1 2 2];
[C1,ia1,ib1] = setxor(A,B)

C1 = 1×4

 2 3 4 5

ia1 = 2×1

1 Alphabetical List

1-13526

 3
 1

ib1 = 2×1

 3
 1

Find the symmetric difference and preserve the legacy behavior.

[C2,ia2,ib2] = setxor(A,B,'legacy')

C2 = 1×4

 2 3 4 5

ia2 = 1×2

 5 1

ib2 = 1×2

 4 1

Input Arguments
A,B — Input arrays
numeric arrays | logical arrays | character arrays | string arrays | categorical arrays |
datetime arrays | duration arrays | cell arrays of character vectors | tables | timetables

Input arrays, specified as numeric arrays, logical arrays, character arrays, string arrays,
categorical arrays, datetime arrays, duration arrays, cell arrays of character vectors,
tables, or timetables. If you specify the 'rows' option, A and B must have the same
number of columns.

A and B must belong to the same class with the following exceptions:

 setxor

1-13527

• logical, char, and all numeric classes can combine with double arrays.
• Cell arrays of character vectors can combine with character arrays or string arrays.
• Categorical arrays can combine with character arrays, cell arrays of character vectors,

or string arrays.
• Datetime arrays can combine with cell arrays of date character vectors or single date

character vectors.

There are additional requirements for A and B based on data type:

• If A and B are both ordinal categorical arrays, they must have the same sets of
categories, including their order. If neither A nor B are ordinal, they need not have the
same sets of categories, and the comparison is performed using the category names.
In this case, the categories of C are the sorted union of the categories from A and B.

• If A and B are tables or timetables, they must have the same variable names (except
for order). For tables, row names are ignored, so that two rows that have the same
values, but different names, are considered equal. For timetables, row times are taken
into account, so that two rows that have the same values, but different times, are not
considered equal.

• If A and B are datetime arrays, they must be consistent with each other in whether
they specify a time zone.

A and B also can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)
• eq
• ne

The object class methods must be consistent with each other. These objects include
heterogeneous arrays derived from the same root class. For example, A and B can be
arrays of handles to graphics objects.

setOrder — Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of the values (or
rows) in C.

1 Alphabetical List

1-13528

Order Flag Meaning
'sorted' The values (or rows) in C return in sorted order. For

example: C = setxor([5 1 3],[4 1
2],'sorted') returns C = [2 3 4 5].

'stable' The values (or rows) in C return in the same order as
in A and B. For example: C = setxor([5 1 3],[4
1 2],'stable') returns C = [5 3 4 2].

Data Types: char | string

Output Arguments
C — Symmetric difference array
vector | matrix | table | timetable

Symmetric difference array, returned as a vector, matrix, table, or timetable. If the inputs
A and B are tables or timetables, then the order of the variables in C is the same as the
order of the variables in A.

The following describes the shape of C when the inputs are vectors or matrices and when
the 'legacy' flag is not specified:

• If the 'rows' flag is not specified, then C is a column vector unless both A and B are
row vectors, in which case C is a row vector. For example, setxor([],[1 2])
returns a column vector.

• If the'rows' flag is specified, then C is a matrix containing the rows of A and B that
are not in the intersection.

• If all the values (or rows) of A are also in B, then C is empty.

The class of the inputs A and B determines the class of C:

• If the class of A and B are the same, then C is the same class.
• If you combine a char or nondouble numeric class with double, then C is the same

class as the nondouble input.
• If you combine a logical class with double, then C is double.
• If you combine a cell array of character vectors with char, then C is a cell array of

character vectors.

 setxor

1-13529

• If you combine a categorical array with a character vector, cell array of character
vectors, or string, then C is a categorical array.

• If you combine a datetime array with a cell array of date character vectors or single
date character vector, then C is a datetime array.

• If you combine a string array with a character vector or cell array of character
vectors, then C is a string array.

ia — Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not specified. ia
identifies the values (or rows) in A that contribute to the symmetric difference. If there is
a repeated value (or row) appearing exclusively in A, then ia contains the index to the
first occurrence of the value (or row).

ib — Index to B
column vector

Index to B, returned as a column vector when the 'legacy' flag is not specified. ib
identifies the values (or rows) in B that contribute to the symmetric difference. If there is
a repeated value (or row) appearing exclusively in B, then ib contains the index to the
first occurrence of the value (or row).

Tips
• To find the symmetric difference with respect to a subset of variables from a table or

timetable, you can use column subscripting. For example, you can use
setxor(A(:,vars),B(:,vars)), where vars is a positive integer, a vector of
positive integers, a variable name, a cell array of variable names, or a logical vector.
Alternatively, you can use vartype to create a subscript that selects variables of a
specified type.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-13530

Usage notes and limitations:

• Code generation does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you specify the
'legacy' option, then inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed length 1. The
second dimension of a variable-size column vector must have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, then empty outputs are row vectors, 1-by-0,
never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the outputs ia
and ib are column vectors. If these outputs are empty, then they are 0-by-1. They are
never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the 'legacy' flag, the
inputs must already be sorted in ascending order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute value). Suppose the

real input is x. Use sort(complex(x))or sortrows(complex(x)).
• See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'legacy' flag is not supported.
• 64-bit integers are not supported.

 setxor

1-13531

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
intersect | ismember | issorted | setdiff | sort | union | unique

Topics
“Combine Categorical Arrays”

Introduced before R2006a

1 Alphabetical List

1-13532

sgtitle
Add title to subplot grid

Syntax
sgtitle(txt)
sgtitle(target,txt)
sgtitle(___ ,Name,Value)
sgt = sgtitle(___)

Description
sgtitle(txt) adds a title above the grid of subplots in the current figure. If a figure
does not it exist, then this command creates one.

sgtitle(target,txt) adds the title to the subplot grid in the specified figure, panel,
or tab, instead of the current figure.

sgtitle(___ ,Name,Value) modifies text properties using one or more name-value
pair arguments. For example, 'FontSize',12 specifies 12-point font. For a list of
properties, see Text. Specify name-value pair arguments after all the other input
arguments.

sgt = sgtitle(___) returns the subplot Text object used to create the title.

Examples

Add Title to Subplot Grid

Create a figure with four subplots. Add a title to each subplot, and then add an overall
title to the subplot grid.

subplot(2,2,1)
title('First Subplot')

 sgtitle

1-13533

subplot(2,2,2)
title('Second Subplot')
subplot(2,2,3)
title('Third Subplot')
subplot(2,2,4)
title('Fourth Subplot')

sgtitle('Subplot Grid Title')

Modify Title Appearance

Modify a title appearance by setting properties, first by using name-value pair arguments,
and then by returning the Text object created and using dot notation.

1 Alphabetical List

1-13534

Change the Color property using a name-value pair argument. Next, change the
FontSize property using dot notation.

subplot(2,1,1)
title('First Subplot')
subplot(2,1,2)
title('Second Subplot')

sgt = sgtitle('Subplot Grid Title','Color','red');
sgt.FontSize = 20;

 sgtitle

1-13535

Input Arguments
txt — Text to display
character vector | cell array of character vectors | string array | numeric value

Text to display, specified as a character vector, cell array of character vectors, string
array, or numeric value.
Example: 'my label'
Example: {'first line','second line'}
Example: string('my label')

1 Alphabetical List

1-13536

Example: 123

To include numeric variables with text, use the num2str function. For example:

x = 42;
txt = ['The value is ',num2str(x)];

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property of the Text object.

To create multiline text, use these conventions:

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a string array, where each element contains a line of text, such as
string({'line one','line two'}).

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line'). This property converts text with new line characters to
cell arrays.

If the text contains only a numeric value, then it is converted using
sprintf('%g',value). For example, 12345678 displays as 1.23457e+07.

target — Subplot grid container
Figure object | Panel object | Tab object

Subplot grid container, specified as a Figure, Panel, or Tab object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: sgtitle('My Title','FontSize',14)

Note The properties listed here are only a subset. For a full list, see Text.

 sgtitle

1-13537

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

See Also
Functions
subplot | title | xlabel | ylabel

Properties
Text

Introduced in R2018b

1 Alphabetical List

1-13538

shading
Set color shading properties

Syntax
shading flat
shading faceted
shading interp
shading(axes_handle,...)

Description
The shading function controls the color shading of surface and patch graphics objects.

shading flat each mesh line segment and face has a constant color determined by the
color value at the endpoint of the segment or the corner of the face that has the smallest
index or indices.

shading faceted flat shading with superimposed black mesh lines. This is the default
shading mode.

shading interp varies the color in each line segment and face by interpolating the
colormap index or true color value across the line or face.

shading(axes_handle,...) applies the shading type to the objects in the axes
specified by axes_handle, instead of the current axes. Use single quotes when using a
function form. For example:

shading(gca,'interp')

Examples

 shading

1-13539

Display Sphere with Different Types of Shading

Plot the sphere function and use different types of shading.

figure
subplot(2,2,1)
sphere(16)
title('Faceted Shading (Default)')

subplot(2,2,2)
sphere(16)
shading flat
title('Flat Shading')

subplot(2,2,3)
sphere(16)
shading interp
title('Interpolated Shading')

1 Alphabetical List

1-13540

Algorithms
shading sets the EdgeColor and FaceColor properties of all surface and patch
graphics objects in the current axes. shading sets the appropriate values, depending on
whether the surface or patch objects represent meshes or solid surfaces.

See Also
fill | fill3 | hidden | light | lighting | mesh | patch | pcolor | surf

 shading

1-13541

Introduced before R2006a

1 Alphabetical List

1-13542

shg
Show most recent graph window

Syntax
shg

Description

shg makes the current figure visible and raises it above all other figures on the screen.
This is identical to using the command figure(gcf).

See Also
figure | gca | gcf

 shg

1-13543

shiftdim
Shift array dimensions

Syntax
B = shiftdim(A,n)
B = shiftdim(A)
[B,m] = shiftdim(A)

Description
B = shiftdim(A,n) shifts the dimensions of an array A by n positions. shiftdim shifts
the dimensions to the left when n is a positive integer and to the right when n is a
negative integer. For example, if A is a 2-by-3-by-4 array, then shiftdim(A,2) returns a
4-by-2-by-3 array.

B = shiftdim(A) returns an array with the same elements as A but with leading
dimensions of length 1 removed.

[B,m] = shiftdim(A) also returns the number of dimensions of length 1 that were
removed.

Examples

4-D Array

Create a 4-by-2-by-3-by-5 array. Shift the dimensions 2 positions to the left, wrapping the
first 2 lengths to the last 2 dimensions.

A = rand(4,2,3,5);
B = shiftdim(A,2);
size(B)

ans = 1×4

1 Alphabetical List

1-13544

 3 5 4 2

Shift the dimensions 2 positions to the right, resulting in 2 leading dimensions of length 1.
Shifting to the right does not wrap the dimension lengths.

C = shiftdim(A,-2);
size(C)

ans = 1×6

 1 1 4 2 3 5

Shift Array Dimensions

Shift the dimensions of an array.

Compute a 5-D array A, and remove the leading dimensions of length 1. The shiftdim
function shifts 2 dimensions and returns the 3-D array B.

A = rand(1,1,3,2,4);
[B,nshifts] = shiftdim(A);
nshifts

nshifts = 2

size(B)

ans = 1×3

 3 2 4

Shift the dimensions of B twice to the left.

C = shiftdim(B,2);
size(C)

ans = 1×3

 4 3 2

 shiftdim

1-13545

Shift the dimensions of C once to the right.

D = shiftdim(C,-1);
size(D)

ans = 1×4

 1 4 3 2

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

n — Number of positions
integer

Number of dimension positions to shift, specified as an integer. When n is positive,
shiftdim shifts the dimensions to the left, wrapping the leading dimensions to the end.
When n is negative, shiftdim shifts the dimensions to the right, padding additional
leading dimensions with length 1.

Output Arguments
B — Output array
vector | matrix | multidimensional array

Output array, specified as a vector, matrix, or multidimensional array.

m — Number of dimensions removed
non-negative integer

Number of dimensions removed, specified as a non-negative integer. shiftdim removes
only leading dimensions of length 1.

1 Alphabetical List

1-13546

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays for the first argument.
• Second argument must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
circshift | permute | reshape | squeeze

Introduced before R2006a

 shiftdim

1-13547

showplottool
Show or hide figure plot tool

Syntax
showplottool('tool')
showplottool('on','tool')
showplottool('off','tool')
showplottool('toggle','tool')
showplottool(figure_handle,...)

Description
showplottool('tool') shows the specified plot tool on the current figure. 'tool' can
be one of these values:

• 'figurepalette'
• 'plotbrowser'
• 'propertyeditor'

showplottool('on','tool') shows the specified plot tool on the current figure.

showplottool('off','tool') hides the specified plot tool on the current figure.

showplottool('toggle','tool') toggles the visibility of the specified plot tool on
the current figure.

showplottool(figure_handle,...) operates on the specified figure instead of the
current figure.

Note When you dock, undock, resize, or reposition a plotting tool and then close it, it will
still be configured as you left it the next time you open it. There is no command to reset
plotting tools to their original, default locations.

1 Alphabetical List

1-13548

Examples

Open One of the Plot Tools
Create a simple plot and open the property editor.

plot(1:10);
showplottool('propertyeditor')

 showplottool

1-13549

Alternatives
Select the Figure Palette, Plot Browser, and Property Editor tools from the figure's
View menu.

1 Alphabetical List

1-13550

See Also
figurepalette | plotbrowser | plottools | propertyeditor

Topics
“Interactively Explore Plotted Data”

Introduced before R2006a

 showplottool

1-13551

shrinkfaces
Reduce size of patch faces

Syntax
shrinkfaces(p,sf)
nfv = shrinkfaces(p,sf)
nfv = shrinkfaces(fv,sf)
shrinkfaces(p)
nfv = shrinkfaces(f,v,sf)
[nf,nv] = shrinkfaces(...)

Description
shrinkfaces(p,sf) shrinks the area of the faces in patch p to shrink factor sf. A
shrink factor of 0.6 shrinks each face to 60% of its original area. If the patch contains
shared vertices, the MATLAB software creates nonshared vertices before performing the
face-area reduction.

nfv = shrinkfaces(p,sf) returns the face and vertex data in the struct nfv, but does
not set the Faces and Vertices properties of patch p.

nfv = shrinkfaces(fv,sf) uses the face and vertex data from the struct fv.

shrinkfaces(p) and shrinkfaces(fv) (without specifying a shrink factor) assume a
shrink factor of 0.3.

nfv = shrinkfaces(f,v,sf) uses the face and vertex data from the arrays f and v.

[nf,nv] = shrinkfaces(...) returns the face and vertex data in two separate arrays
instead of a struct.

Examples

1 Alphabetical List

1-13552

Reduce Size of Patch Faces

Load the flow data set, which represents the speed profile of a submerged jet within an
infinite tank. Create two isosurfaces that provide a before and after view of the effects of
shrinking the face size.

Sample the flow data at every other point using reducevolume and then use
isosurface to generate the faces and vertices data. Draw the first isosurface. Then set
up the view and add a title.

[x,y,z,v] = flow;
[x,y,z,v] = reducevolume(x,y,z,v,2);
fv = isosurface(x,y,z,v,-3);
p1 = patch(fv);
p1.FaceColor = 'red';
p1.EdgeColor = [0.5 0.5 0.5];
daspect([1 1 1]);
view(3);
axis tight
title('Original')

 shrinkfaces

1-13553

Use shrinkfaces to modify the face and vertex data and draw a second patch.

figure
p2 = patch(shrinkfaces(fv,.3));
p2.FaceColor = 'red';
p2.EdgeColor = [0.5 0.5 0.5];
daspect([1 1 1]);
view(3);
axis tight
title('After Shrinking')

1 Alphabetical List

1-13554

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 shrinkfaces

1-13555

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
axis | daspect | isosurface | patch | reducevolume | view

Introduced before R2006a

1 Alphabetical List

1-13556

sign
Sign function (signum function)

Syntax
sign(x)

Description
Y = sign(x) returns an array Y the same size as x, where each element of Y is:

• 1 if the corresponding element of x is greater than 0.
• 0 if the corresponding element of x equals 0.
• -1 if the corresponding element of x is less than 0.
• x./abs(x) if x is complex.

Examples

Find Sign Function

Find the sign function of a number.

sign(2)

ans = 1

Find the sign function of the values of a vector.

V = [-11 0 1.5 Inf NaN];
sign(V)

ans = 1×5

 sign

1-13557

 -1 0 1 1 NaN

Find the sign function of the values of a matrix.

M = magic(3) - 5;
sign(M)

ans = 3×3

 1 -1 1
 -1 0 1
 -1 1 -1

Find the sign function of a complex number.

z = 4 - 3*i;
sign(z)

ans = 0.8000 - 0.6000i

Plot Sign Function

Plot the sign function and show its behavior at the zero-crossing. Use eps to represent
values just above and below 0.

x = [-5 -eps(1) 0 eps(1) 5];
y = sign(x);
plot(x,y)
ylim([-2 2])
grid on

1 Alphabetical List

1-13558

Plot Real and Imaginary Parts of Sign Function

Plot real and imaginary parts of the sign function over −3 < x < − 3 and −3 < y < 3.

First, create a mesh of values over -3 < x < 3 and -3 < y < 3 using meshgrid. Then
create complex numbers from these values using z = x + 1i*y.

v = -3:0.1:3;
[x, y] = meshgrid(v);
z = x + 1i*y;

Find the real and imaginary parts of the sign function of z.

 sign

1-13559

s = sign(z);
re = real(s);
im = imag(s);

Plot the real and imaginary parts.

surf(x,y,re)
title('Real part of sign function')
xlabel('x')
ylabel('y')

figure(2)
surf(x,y,im)
title('Imaginary part of sign function')

1 Alphabetical List

1-13560

xlabel('x')
ylabel('y')

Input Arguments
x — Input
number | vector | matrix | multidimensional array

Input, specified as a number, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

 sign

1-13561

Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
abs | conj | imag | real

Introduced before R2006a

1 Alphabetical List

1-13562

sin
Sine of argument in radians

Syntax
Y = sin(X)

Description
Y = sin(X) returns the sine of the elements of X. The sin function operates element-
wise on arrays. The function accepts both real and complex inputs.

• For real values of X, sin(X) returns real values in the interval [-1, 1].
• For complex values of X, sin(X) returns complex values.

Examples

Plot Sine Function

Plot the sine function over the domain −π ≤ x ≤ π.

x = -pi:0.01:pi;
plot(x,sin(x)), grid on

 sin

1-13563

Sine of Vector of Complex Angles

Calculate the sine of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = sin(x)

y = 1×3 complex

 0.0000 - 1.1752i 0.0000 - 2.3013i -22.9791 +14.7448i

1 Alphabetical List

1-13564

Input Arguments
X — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Sine of input angle
scalar | vector | matrix | multidimensional array

Sine of input angle, returned as a real-valued or complex-valued scalar, vector, matrix or
multidimensional array.

Definitions

Sine Function
The sine of an angle, α, defined with reference to a right angled triangle is

sin α = opposite side
hypotenuse = a

h .

 sin

1-13565

The sine of a complex argument, α, is

sin α = eiα− e−iα

2i .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-13566

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asin | asind | sind | sinh | sinpi

Introduced before R2006a

 sin

1-13567

sind
Sine of argument in degrees

Syntax
Y = sind(X)

Description
Y = sind(X) returns the sine of the elements in X, which are expressed in degrees.

Examples

Sine of 180 degrees compared to sine of π radians

sind(180)

ans = 0

sin(pi)

ans = 1.2246e-16

Sine of vector of complex angles, specified in degrees

z = [90+i 15+2i 10+3i];
y = sind(z)

y = 1×3 complex

 1.0002 + 0.0000i 0.2590 + 0.0337i 0.1739 + 0.0516i

1 Alphabetical List

1-13568

Input Arguments
X — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar, vector, matrix, or N-
D array. The sind operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Sine of angle
scalar value | vector | matrix | N-D array

Sine of angle, returned as a real-valued or complex-valued scalar, vector, matrix, or N-D
array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 sind

1-13569

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asin | asind | sin

Introduced before R2006a

1 Alphabetical List

1-13570

sinpi
Compute sin(X*pi) accurately

Syntax
Y = sinpi(X)

Description
Y = sinpi(X) computes sin(X*pi) without explicitly computing X*pi. This
calculation is more accurate than sin(X*pi) because the floating-point value of pi is an
approximation of π. In particular:

• For integers, sinpi(n) is exactly zero.
• For odd integers, sinpi(n/2) is +1 or -1.

Examples

Calculate Sine of Multiples of π

Compare the accuracy of sinpi(X) vs. sin(X*pi).

Create a vector of values.

X = [0 1/2 1 3/2 2];

Calculate the sine of X*pi using the normal sin function.

Y = sin(X*pi)

Y = 1×5

 0 1.0000 0.0000 -1.0000 -0.0000

 sinpi

1-13571

The results contain small numerical errors due to the fact that pi is a floating-point
approximation of the true value of π. For instance, Y(3) is not exactly zero even though
sin π = 0.

Y(3)

ans = 1.2246e-16

Use sinpi to calculate the same values. In this case, the results are exact.

Z = sinpi(X)

Z = 1×5

 0 1 0 -1 0

Z(3)

ans = 0

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-13572

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cospi | sin | sind

Introduced in R2018b

 sinpi

1-13573

single
Single-precision arrays

Description
Single-precision variables in MATLAB are stored as 4-byte (32-bit) floating-point values of
data type (class) single. For example:

y = single(10);
whos y

Name Size Bytes Class Attributes

 y 1x1 4 single

For more information on floating-point values, see “Floating-Point Numbers”.

Creation
If you have an array of a different type, such as double or int8, then you can convert
that array to single precision using the single function.

Syntax
Y = single(X)

Description
Y = single(X) converts the values in X to single precision.

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

1 Alphabetical List

1-13574

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char

Examples

Convert to Single-Precision Variable

Convert a double-precision variable to single precision with the single function.

x = 100;
xtype = class(x)

xtype =
'double'

y = single(x)

y = single
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 single

1-13575

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | double | typecast

Topics
“Floating-Point Numbers”
“Identifying Numeric Classes”

Introduced before R2006a

1 Alphabetical List

1-13576

sinh
Hyperbolic sine

Syntax
Y = sinh(X)

Description
Y = sinh(X) returns the hyperbolic sine of the elements of X. The sinh function
operates element-wise on arrays. The function accepts both real and complex inputs. All
angles are in radians.

Examples

Hyperbolic Sine of Vector

Create a vector and calculate the hyperbolic sine of each value.

X = [0 pi 2*pi 3*pi];
Y = sinh(X)

Y = 1×4
103 ×

 0 0.0115 0.2677 6.1958

Graph of Hyperbolic Sine Function

Plot the hyperbolic sine over the domain −5 ≤ x ≤ 5.

 sinh

1-13577

x = -5:0.01:5;
y = sinh(x);
plot(x,y)
grid on

Plot Hyperbolic Sine and Exponential Functions

The hyperbolic sine satisfies the identity sinh x = ex− e−x
2 . In other words, sinh x is half

the difference of the functions ex and e−x. Verify this by plotting the functions.

1 Alphabetical List

1-13578

Create a vector of values between -3 and 3 with a step of 0.25. Calculate and plot the
values of sinh(x), exp(x), and exp(-x). As expected, the sinh curve is positive where
exp(x) is large, and negative where exp(-x) is large.

x = -3:0.25:3;
y1 = sinh(x);
y2 = exp(x);
y3 = exp(-x);
plot(x,y1,x,y2,x,y3)
grid on
legend('sinh(x)','exp(x)','exp(-x)','Location','bestoutside')

 sinh

1-13579

Input Arguments
X — Input angles in radians
scalar | vector | matrix | multidimensional array

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Definitions

Hyperbolic Sine
The hyperbolic sine of an angle x can be expressed in terms of exponential functions as

sinh x = ex− e−x

2 .

In terms of the traditional sine function with a complex argument, the identity is

sinh x = − isin ix .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-13580

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
asinh | cosh | sin

Introduced before R2006a

 sinh

1-13581

size
Array size

Syntax
sz = size(A)
szdim = size(A,dim)
[m,n] = size(A)
[sz1,...,szN] = size(A)

Description
sz = size(A) returns a row vector whose elements contain the length of the
corresponding dimension of A. For example, if A is a 3-by-4 matrix, then size(A) returns
the vector [3 4]. The length of sz is ndims(A).

If A is a table or timetable, then size(A) returns a two-element row vector consisting of
the number of rows and the number of table variables.

szdim = size(A,dim) returns the length of dimension dim.

[m,n] = size(A) returns the number of rows and columns when A is a matrix.

[sz1,...,szN] = size(A) returns the length of each dimension of A separately.

Examples

Size of Matrix

Create a random matrix and compute the number of rows and columns.

A = rand(4,3);
[m,n] = size(A)

m = 4

1 Alphabetical List

1-13582

n = 3

Size of 3-D Array

Create a random 3-D array and find its size.

A = rand(2,3,4);
sz = size(A)

sz = 1×3

 2 3 4

Find only the length of the second dimension of A.

szdim2 = size(A,2)

szdim2 = 3

Assign the length of each dimension to a separate variable.

[sz1,sz2,sz3] = size(A)

sz1 = 2

sz2 = 3

sz3 = 4

Size of Table

Create a table with 5 rows and 4 variables.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

A = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

 size

1-13583

A=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Smith 38 71 176 124 93
 Johnson 43 69 163 109 77
 Williams 38 64 131 125 83
 Jones 40 67 133 117 75
 Brown 49 64 119 122 80

Find the size of the table. Although the BloodPressure variable contains two columns,
size only counts the number of variables.

sz = size(A)

sz = 1×2

 5 4

Multiple Output Arguments

Create a 3-D array and assign the length of each dimension to a separate variable. Each
output argument corresponds to one dimension of A.

A = ones(3,4,5);
[sz1,sz2,sz3] = size(A)

sz1 = 3

sz2 = 4

sz3 = 5

Specify only two output arguments when computing the size of A. Since a third output
argument is not specified, the lengths of the second and third dimensions of A are
collapsed into sz2.

[sz1,sz2] = size(A)

sz1 = 3

1 Alphabetical List

1-13584

sz2 = 20

Specify more than three output variables when computing the size of A. The fourth and
fifth output arguments are set to 1.

[sz1,sz2,sz3,sz4,sz5] = size(A)

sz1 = 3

sz2 = 4

sz3 = 5

sz4 = 1

sz5 = 1

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, a vector, a matrix, or a multidimensional array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | function_handle | cell |
categorical | datetime | duration | calendarDuration | table | timetable
Complex Number Support: Yes

dim — Queried dimension
positive integer scalar

Queried dimension, specified as a positive integer scalar. size returns the length of
dimension dim of A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 size

1-13585

Output Arguments
sz — Array size
row vector of nonnegative integers

Array size, returned as a row vector of nonnegative integers. Each element of the vector
represents the length of the corresponding dimension of A. If A is a scalar, then sz is the
row vector [1 1]. If A is a table or timetable, then sz is a two-element row vector
containing the number of rows and the number of variables. Multiple columns within a
single variable are not counted.

If A is a character vector of type char, then size returns the row vector [1 N] where N
is the number of characters. However, if A is a string scalar, size returns [1 1] because
it is a single element of a string array. For example, compare the output of size for a
character vector and string:

szchar = size('mytext')

szchar =

 1 6

szstr = size("mytext")

szstr =

 1 1

To find the number of characters in a string, use the strlength function.
Data Types: double

szdim — Length of specified dimension
nonnegative integer scalar

Length of specified dimension, returned as a nonnegative integer scalar.
Data Types: double

m — Number of rows
nonnegative integer scalar

Number of rows, returned as a nonnegative integer scalar when A is a matrix.
Data Types: double

1 Alphabetical List

1-13586

n — Number of columns
nonnegative integer scalar

Number of columns, returned as a nonnegative integer scalar when A is a matrix.
Data Types: double

sz1,...,szN — Dimension lengths
nonnegative integer scalars

Dimension lengths, returned as nonnegative integer scalars. When the specified number
of output arguments is equal to ndims(A), then each argument is the length of the
corresponding dimension of A. If more than ndims(A) output arguments are specified,
then the extra output arguments are set to 1. For example, for a matrix A with size [4 5],
[sz1,sz2,sz3] = size(A) returns sz1 = 4, sz2 = 5, and sz3 = 1.

If fewer than ndims(A) output arguments are specified, then all remaining dimension
lengths are collapsed into the last argument in the list. For example, if A is a 3-D array
with size [3 4 5], then [sz1,sz2] = size(A) returns sz1 = 3 and sz2 = 20.
Data Types: double

Tips
• To determine if an array is empty, a scalar, or a matrix, use the functions isempty,

isscalar, and ismatrix. You can also determine the orientation of a vector with the
isrow and iscolumn functions.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 size

1-13587

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
height | length | ndims | numel | strlength | width

Introduced before R2006a

1 Alphabetical List

1-13588

size
Package: containers

Size of Map object

Syntax
n = size(M,1)
szdim = size(M,dim)
sz = size(M)
[sz1,sz2,...,szL] = size(M)

Description
n = size(M,1) returns the number of key-value pairs in the input Map object.
size(M,1) is equivalent to length(M) and to the property M.Count.

szdim = size(M,dim) returns the length of dimension dim. Since a Map object stores
data as an n-by-1 set of key-value pairs, size returns 1 when dim > 1.

sz = size(M) returns a two-element vector [n 1], where n is the number of key-value
pairs in M.

[sz1,sz2,...,szL] = size(M) returns [n,1,...,1].

Examples

Size of Map

Create a Map object.

months = {'Jan','Feb','Mar','Apr'};
rainfall = [327.2 368.2 197.6 178.4];
M = containers.Map(months,rainfall)

 size

1-13589

M =
 Map with properties:

 Count: 4
 KeyType: char
 ValueType: double

Return the number of key-value pairs.

n = size(M,1)

n = 4

Return the number of pairs as a vector.

sz = size(M)

sz = 1×2

 4 1

Input Arguments
M — Input Map object
Map object

Input Map object.

dim — Queried dimension
positive numeric scalar

Queried dimension, specified as a positive numeric scalar.

See Also
containers.Map | isKey | keys | length | values

Topics
“Overview of Map Data Structure”

1 Alphabetical List

1-13590

“Create Map Object”
“Examine Contents of Map”

Introduced in R2008b

 size

1-13591

size
Class: matlab.io.MatFile
Package: matlab.io

Array dimensions

Syntax
allDims = size(matObj,variable)
[dim1,...,dimN] = size(matObj,variable)
selectedDim = size(matObj,variable,dim)

Description
allDims = size(matObj,variable) returns the size of each dimension of the
specified variable in the file corresponding to matObj. Output allDims is a 1-by-m vector,
where m = ndims(variable).

[dim1,...,dimN] = size(matObj,variable) returns the sizes of each dimension in
separate output variables dim1,...,dimN.

selectedDim = size(matObj,variable,dim) returns the size of the specified
dimension.

Input Arguments
matObj

Object created by the matfile function.

variable

String enclosed in single quotation marks that specifies the name of a variable in the
MAT-file corresponding to matObj.

1 Alphabetical List

1-13592

dim

Nonzero positive scalar integer that specifies a dimension of the variable.

Output Arguments
allDims

1-by-m vector of sizes of the dimensions of the specified variable, where m =
ndims(variable).

dim1,...,dimN

Scalar numeric values, where dimK contains the size of the Kth dimension of variable:

• If N < ndims(variable), then dimN, equals the product of the sizes of dimensions N
through ndims(variable).

• If N > ndims(variable), the size method returns ones in the output variables
corresponding to dimensions ndims(variable)+1 through N.

selectedDim

Scalar numeric value that contains the size of the selected dimension for the specified
variable.

Examples
Find the size of the matrix topo in topography.mat without loading any data:

matObj = matfile('topography.mat');
[nrows,ncols] = size(matObj,'topo');

Determine the dimensions of a variable, and process one part of the variable at a time. In
this case, calculate and store the average of each column of variable stocks in the
example file stocks.mat:

filename = 'stocks.mat';
matObj = matfile(filename);
[nrows, ncols] = size(matObj,'stocks');

 size

1-13593

avgs = zeros(1,ncols);
for idx = 1:ncols
 avgs(idx) = mean(matObj.stocks(:,idx));
end

Create a three-dimensional array, and call the size method with different numbers of
output arguments:

matObj = matfile('temp.mat','Writable',true);
matObj.X = rand(2,3,4);

d = size(matObj,'X')
d2 = size(matObj,'X',2)
[m,n] = size(matObj,'X')
[m1,m2,m3,m4] = size(matObj,'X')

This code returns

d =
 2 3 4

d2 =
 3

m =
 2
n =
 12

m1 =
 2
m2 =
 3
m3 =
 4
m4 =
 1

Tips
• Do not call size with the syntax size(matObj.variable). This syntax loads the

entire contents of the variable into memory. For very large variables, this load
operation results in Out of Memory errors.

1 Alphabetical List

1-13594

See Also
matfile | whos

 size

1-13595

size (serial)
Size of serial port object array

Syntax
d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Description
d = size(obj) returns the two-element row vector d containing the number of rows
and columns in the serial port object, obj.

[m,n] = size(obj) returns the number of rows, m and columns, n in separate output
variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar dim.
For example, size(obj,1) returns the number of rows.

See Also
length

Introduced before R2006a

1 Alphabetical List

1-13596

size
Class: TriRep

(Not recommended) Size of triangulation matrix

Note size(TriRep) is not recommended. Use size(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
size(TR)

Description
size(TR) provides size information for a triangulation matrix. The matrix is of size mtri-
by-nv, where mtri is the number of simplices and nv is the number of vertices per
simplex (triangle/tetrahedron, etc).

Input Arguments
TR Triangulation matrix

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

 size

1-13597

See Also
delaunayTriangulation | size | triangulation

1 Alphabetical List

1-13598

size
Size of tscollection

Syntax
tscsize = size(tsc)

Description
tscsize = size(tsc) returns a vector of the form [n m] where n is the length of the
time vector of a tscollection object, and m is the number of tscollection members.

Examples

Size of tscollection

Create a tscollection object and display its size.

ts = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5);
tsc = tscollection(ts);
tscsize = size(tsc)

tscsize = 1×2

 5 1

Input Arguments
tsc — Input tscollection
scalar

Input tscollection, specified as a scalar.

 size

1-13599

See Also
length | timeseries | tscollection

Introduced before R2006a

1 Alphabetical List

1-13600

slice
Volume slice planes

Syntax
slice(X,Y,Z,V,xslice,yslice,zslice)
slice(V,xslice,yslice,zslice)
slice(___ ,method)
slice(ax, ___)
s = slice(___)

Description
slice(X,Y,Z,V,xslice,yslice,zslice) draws slices for the volumetric data V.
Specify X,Y, and Z as the coordinate data. Specify xslice, yslice, and zslice as the
slice locations using one of these forms:

• To draw one or more slice planes that are orthogonal to a particular axis, specify the
slice arguments as a scalar or vector.

• To draw a single slice along a surface, specify all the slice arguments as matrices that
define a surface.

slice(V,xslice,yslice,zslice) uses the default coordinate data for V. The (x,y,z)
location for each element in V is based on the column, row, and page index, respectively.

slice(___ ,method) specifies the interpolation method, where method can be
'linear' (the default), 'cubic', or 'nearest'. Use this option with any of the input
arguments in previous syntaxes.

slice(ax, ___) plots into the specified axes, instead of the current axes (gca).

s = slice(___) returns the Surface objects created. slice returns one Surface
object for each slice.

 slice

1-13601

Examples

Volume Data Along Slices

Show volumetric data along slice planes that are orthogonal to each axis.

Create slice planes through the volume defined by v = xe−x2− y2− z2, where x, y, and z
range from [-2,2]. Create slice planes orthogonal to the x-axis at the values -1.2, 0.8,
and 2 and orthogonal to the z-axis at the value 0. Do not create any slice planes that are
orthogonal to the y-axis by specifying an empty array.

[X,Y,Z] = meshgrid(-2:.2:2);
V = X.*exp(-X.^2-Y.^2-Z.^2);

xslice = [-1.2,0.8,2];
yslice = [];
zslice = 0;
slice(X,Y,Z,V,xslice,yslice,zslice)

1 Alphabetical List

1-13602

Volume Data Along Surface

Show volumetric data along a nonplanar slice. Define the surface where you want to show
the volumetric data.

Create volume array V as the volume defined by v = xe−x2− y2− z2, where x, y, and z
range from [-5,5]. Then, show a slice of the volume data along the surface defined by
z = x2− y2.

[X,Y,Z] = meshgrid(-5:0.2:5);
V = X.*exp(-X.^2-Y.^2-Z.^2);

 slice

1-13603

[xsurf,ysurf] = meshgrid(-2:0.2:2);
zsurf = xsurf.^2-ysurf.^2;
slice(X,Y,Z,V,xsurf,ysurf,zsurf)

Specify Interpolation Method

Create a slice plane through volumetric data. Specify the interpolation method for the
data values.

1 Alphabetical List

1-13604

Create a slice plane orthogonal to the x-axis at the value 0.8. Since the volume data is not
defined for x values of 0.8, the slice function interpolates the nearby values. To use the
nearest data point value, specify the interpolation method as 'nearest'.

[X,Y,Z] = meshgrid(-2:2);
V = X.*exp(-X.^2-Y.^2-Z.^2);
xslice = 0.8;
yslice = [];
zslice = [];
slice(X,Y,Z,V,xslice,yslice,zslice,'nearest')

 slice

1-13605

Input Arguments
X — x-axis coordinate data
vector | 3-D array

x-axis coordinate data, specified as a vector or a 3-D array the same size as V. If you
specify a 3-D array, it must be monotonic and orthogonally spaced, as if produced by the
meshgrid function.
Data Types: single | double

Y — y-axis coordinate data
vector | 3-D array

y-axis coordinate data, specified as a vector or a 3-D array the same size as V. If you
specify a 3-D array, it must be monotonic and orthogonally spaced, as if produced by the
meshgrid function.
Data Types: single | double

Z — z-axis coordinate data
vector | 3-D array

z-axis coordinate data, specified as a vector or a 3-D array the same size as V. If you
specify a 3-D array, it must be monotonic and orthogonally spaced, as if produced by the
meshgrid function.
Data Types: single | double

V — Volume data
3-D array

Volume data, specified as a 3-D array.
Data Types: single | double

xslice — x-axis slice values
scalar | vector | [] | matrix

x-axis slice values, specified in one of these forms:

• Scalar — Draw one slice plane orthogonal to the x-axis at the specified location.
• Vector — Draw multiple slice planes orthogonal to the x-axis at the specified locations.

1 Alphabetical List

1-13606

• [] — Do not draw any slice planes.
• Matrix — Draw the slice along a surface, instead of a plane. If you use this option, then

yslice and zslice also must be matrices that are the same size.

Example: [2 4] draws slice planes orthogonal to the x-axis at the values 2 and 4.
Data Types: single | double

yslice — y-axis slice values
scalar | vector | [] | matrix

y-axis slice values, specified in one of these forms:

• Scalar — Draw one slice plane orthogonal to the y-axis at the specified location.
• Vector — Draw multiple slice planes orthogonal to the y-axis at the specified locations.
• [] — Do not draw any slice planes.
• Matrix — Draw the slice along a surface, instead of a plane. If you use this option, then

xslice and zslice also must be matrices that are the same size.

Example: [2 4] draws slice planes orthogonal to the y-axis at the values 2 and 4.
Data Types: single | double

zslice — z-axis slice values
scalar | vector | [] | matrix

z-axis slice values, specified in one of these forms:

• Scalar — Draw one slice plane orthogonal to the z-axis at the specified location.
• Vector — Draw multiple slice planes orthogonal to the z-axis at the specified locations.
• [] — Do not draw any slice planes.
• Matrix — Draw the slice along a surface, instead of a plane. If you use this option, then

xslice and yslice also must be matrices that are the same size.

Example: [2 4] draws slice planes orthogonal to the z-axis at the values 2 and 4.
Data Types: single | double

method — Interpolation method
'linear' (default) | 'cubic' | 'nearest'

Interpolation method, specified as one of these values:

 slice

1-13607

• 'linear' — Linear interpolation of the values at neighboring grid points in each
respective dimension

• 'cubic' — Cubic interpolation of the values at neighboring grid points in each
respective dimension

• 'nearest' — Nearest grid point value

ax — Target axes
current axes (default) | Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then slice plots
into the current axes.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

1 Alphabetical List

1-13608

See Also
contourslice | interp3 | isosurface | meshgrid

Introduced before R2006a

 slice

1-13609

smooth3
Smooth 3-D data

Syntax

Description
W = smooth3(V) smooths the input data V and returns the smoothed data in W.

W = smooth3(V,'filter') filter determines the convolution kernel and can be one
of these values:

• 'gaussian'
• 'box' (default)

W = smooth3(V,'filter',size) sets the size of the convolution kernel (default is [3
3 3]). If size is scalar, then size is interpreted as [size, size, size].

W = smooth3(V,'filter',size,sd) sets an attribute of the convolution kernel. When
filter is gaussian, sd is the standard deviation (default is .65).

Examples

Smooth Isosurface Data

Create a 10-by-10-by-10 array of random data and smooth it.

data = rand(10,10,10);
data = smooth3(data,'box',5);

Display the data as an isosurface with end caps.

patch(isocaps(data,.5),...
 'FaceColor','interp','EdgeColor','none');

1 Alphabetical List

1-13610

p1 = patch(isosurface(data,.5),...
 'FaceColor','blue','EdgeColor','none');
isonormals(data,p1);
view(3);
axis vis3d tight
camlight left
colormap('jet');
lighting gouraud

 smooth3

1-13611

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isocaps | isonormals | isosurface | patch

Topics
“Techniques for Visualizing Scalar Volume Data”

Introduced before R2006a

1 Alphabetical List

1-13612

smoothdata
Smooth noisy data

Syntax
B = smoothdata(A)
B = smoothdata(A,dim)

B = smoothdata(___ ,method)
B = smoothdata(___ ,method,window)

B = smoothdata(___ ,nanflag)

B = smoothdata(___ ,Name,Value)

[B,window] = smoothdata(___)

Description
B = smoothdata(A) returns a moving average of the elements of a vector using a fixed
window length that is determined heuristically. The window slides down the length of the
vector, computing an average over the elements within each window.

• If A is a matrix, then smoothdata computes the moving average down each column.
• If A is a multidimensional array, then smoothdata operates along the first dimension

whose size does not equal 1.
• If A is a table or timetable with numeric variables, then smoothdata operates on each

variable separately.

B = smoothdata(A,dim) operates along the dimension dim of A. For example, if A is a
matrix, then smoothdata(A,2) smooths the data in each row of A.

B = smoothdata(___ ,method) specifies the smoothing method for either of the
previous syntaxes. For example, B = smoothdata(A,'sgolay') uses a Savitzky-Golay
filter to smooth the data in A.

 smoothdata

1-13613

B = smoothdata(___ ,method,window) specifies the length of the window used by
the smoothing method. For example, smoothdata(A,'movmedian',5) smooths the
data in A by taking the median over a five-element sliding window.

B = smoothdata(___ ,nanflag) specifies how NaN values are treated for any of the
previous syntaxes. 'omitnan' ignores NaN values and 'includenan' includes them
when computing within each window.

B = smoothdata(___ ,Name,Value) specifies additional parameters for smoothing
using one or more name-value pair arguments. For example, if t is a vector of time
values, then smoothdata(A,'SamplePoints',t) smooths the data in A relative to the
times in t.

[B,window] = smoothdata(___) also returns the moving window length.

Examples

Smooth Data with Moving Average

Create a vector containing noisy data, and smooth the data with a moving average. Plot
the original and smoothed data.

x = 1:100;
A = cos(2*pi*0.05*x+2*pi*rand) + 0.5*randn(1,100);
B = smoothdata(A);
plot(x,A,'-o',x,B,'-x')
legend('Original Data','Smoothed Data')

1 Alphabetical List

1-13614

Matrix of Noisy Data

Create a matrix whose rows represent three noisy signals. Smooth the three signals using
a moving average, and plot the smoothed data.

x = 1:100;
s1 = cos(2*pi*0.03*x+2*pi*rand) + 0.5*randn(1,100);
s2 = cos(2*pi*0.04*x+2*pi*rand) + 0.4*randn(1,100) + 5;
s3 = cos(2*pi*0.05*x+2*pi*rand) + 0.3*randn(1,100) - 5;
A = [s1; s2; s3];
B = smoothdata(A,2);
plot(x,B(1,:),x,B(2,:),x,B(3,:))

 smoothdata

1-13615

Gaussian Filter

Smooth a vector of noisy data with a Gaussian-weighted moving average filter. Display the
window length used by the filter.

x = 1:100;
A = cos(2*pi*0.05*x+2*pi*rand) + 0.5*randn(1,100);
[B, window] = smoothdata(A,'gaussian');
window

window = 4

1 Alphabetical List

1-13616

Smooth the original data with a larger window of length 20. Plot the smoothed data for
both window lengths.

C = smoothdata(A,'gaussian',20);
plot(x,B,'-o',x,C,'-x')
legend('Small Window','Large Window')

Vector with NaN

Create a noisy vector containing NaN values, and smooth the data ignoring NaN, which is
the default.

 smoothdata

1-13617

A = [NaN randn(1,48) NaN randn(1,49) NaN];
B = smoothdata(A);

Smooth the data including NaN values. The average in a window containing NaN is NaN.

C = smoothdata(A,'includenan');

Plot the smoothed data in B and C.

plot(1:100,B,'-o',1:100,C,'-x')
legend('Ignore NaN','Include NaN')

1 Alphabetical List

1-13618

Smooth Data with Sample Points

Create a vector of noisy data that corresponds to a time vector t. Smooth the data
relative to the times in t, and plot the original data and the smoothed data.

x = 1:100;
A = cos(2*pi*0.05*x+2*pi*rand) + 0.5*randn(1,100);
t = datetime(2017,1,1,0,0,0) + hours(0:99);
B = smoothdata(A,'SamplePoints',t);
plot(t,A,'-o',t,B,'-x')
legend('Original Data','Smoothed Data')

 smoothdata

1-13619

Input Arguments
A — Input array
vector | matrix | multidimensional array | table | timetable

Input array, specified as a vector, matrix, multidimensional array, table, or timetable. If A
is a table or timetable, then either the variables must be numeric, or you must use the
'DataVariables' name-value pair to list numeric variables explicitly. Specifying
variables is useful when you are working with a table that also contains non-numeric
variables.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | table | timetable
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a matrix A.

B = smoothdata(A,1) smooths the data in each column of A.

B = smoothdata(A,2) smooths the data in each row of A.

1 Alphabetical List

1-13620

When A is a table or timetable, dim is not supported. smoothdata operates along each
table or timetable variable separately.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

method — Smoothing method
'movmean' (default) | 'movmedian' | 'gaussian' | 'lowess' | 'loess' | 'rlowess'
| 'rloess' | 'sgolay'

Smoothing method, specified as one of the following:

• 'movmean' — Moving average over each window of A. This method is useful for
reducing periodic trends in data.

• 'movmedian' — Moving median over each window of A. This method is useful for
reducing periodic trends in data when outliers are present.

• 'gaussian' — Gaussian-weighted moving average over each window of A.
• 'lowess' — Linear regression over each window of A. This method can be

computationally expensive, but results in fewer discontinuities.
• 'loess' — Quadratic regression over each window of A. This method is slightly more

computationally expensive than 'lowess'.
• 'rlowess' — Robust linear regression over each window of A. This method is a more

computationally expensive version of the method 'lowess', but it is more robust to
outliers.

• 'rloess' — Robust quadratic regression over each window of A. This method is a
more computationally expensive version of the method 'loess', but it is more robust
to outliers.

• 'sgolay' — Savitzky-Golay filter, which smooths according to a quadratic polynomial
that is fitted over each window of A. This method can be more effective than other
methods when the data varies rapidly.

 smoothdata

1-13621

window — Window length
positive integer scalar | two-element vector of positive integers | positive duration scalar |
two-element vector of positive durations

Window length, specified as a positive integer scalar, a two-element vector of positive
integers, a positive duration scalar, or a two-element vector of positive durations.

When window is a positive integer scalar, then the window is centered about the current
element and contains window-1 neighboring elements. If window is even, then the
window is centered about the current and previous elements. If window is a two-element
vector of positive integers [b f], then the window contains the current element, b
elements backward, and f elements forward.

When A is a timetable or when 'SamplePoints' is specified as a datetime or
duration vector, window must be of type duration, and the window is computed
relative to the sample points.

When the window length is also specified as an output argument, the output value
matches the input value.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

nanflag — NaN condition
'omitnan' (default) | 'includenan'

NaN condition, specified as one of the following values:

• 'omitnan' — Ignore NaN values in the input. If a window contains all NaN values,
then smoothdata returns NaN.

• 'includenan' — Include NaN values when computing within each window, resulting
in NaN.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: smoothdata(A,'SmoothingFactor',0.5)

1 Alphabetical List

1-13622

SmoothingFactor — Window size factor
scalar ranging from 0 to 1

Window size factor, specified as the comma-separated pair consisting of
'SmoothingFactor' and a scalar ranging from 0 to 1. The value of
'SmoothingFactor' adjusts the level of smoothing by scaling the heuristic window size.
Values near 0 produce smaller moving window lengths, resulting in less smoothing.
Values near 1 produce larger moving window lengths, resulting in more smoothing.

'SmoothingFactor' is 0.25 by default and can only be specified when window is not
specified.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SamplePoints — Sample points
vector

Sample points, specified as the comma-separated pair consisting of 'SamplePoints'
and a vector. The sample points represent the location of the data in A. Sample points do
not need to be uniformly sampled. By default, the sample points vector is [1 2 3 ...].

Moving windows are defined relative to the sample points, which must be sorted and
contain unique elements. For example, if t is a vector of times corresponding to the input
data, then smoothdata(rand(1,10),3,'SamplePoints',t) has a window that
represents the time interval between t(i)-1.5 and t(i)+1.5.

When the sample points vector has data type datetime or duration, then the moving
window length must have type duration.

This name-value pair is not supported when the input data is a timetable.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

DataVariables — Table variables
variable name | cell array of variable names | numeric vector | logical vector | function
handle

Table variables, specified as the comma-separated pair consisting of 'DataVariables'
and a variable name, a cell array of variable names, a numeric vector, a logical vector, or
a function handle. The 'DataVariables' value indicates which columns of the input
table to smooth, and can be one of the following:

 smoothdata

1-13623

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that takes the table as input and returns a logical scalar

Example: 'Age'
Example: {'Height','Weight'}
Example: @isnumeric
Data Types: char | cell | double | single | logical | function_handle

Degree — Savitzky-Golay degree
nonnegative integer

Savitzky-Golay degree, specified as the comma-separated pair consisting of 'Degree'
and a nonnegative integer. This name-value pair can only be specified when 'sgolay' is
the specified smoothing method. The value of 'Degree' corresponds to the degree of the
polynomial in the Savitzky-Golay filter that fits the data within each window, which is 2 by
default.

The value of 'Degree' must be less than the window length for uniform sample points.
For nonuniform sample points, the value must be less than the maximum number of
points in any window.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Output array
vector | matrix | multidimensional array

Output array, returned as a vector, matrix, or multidimensional array. B is the same size
and type as A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | table | timetable

1 Alphabetical List

1-13624

window — Window length
positive integer scalar | two-element vector of positive integers | positive duration scalar |
two-element vector of positive durations

Window length, returned as a positive integer scalar, a two-element vector of positive
integers, a positive duration scalar, or a two-element vector of positive durations.

When window is specified as an input argument, the output value matches the input
value. When window is not specified as an input argument, then its value is the scalar
heuristically determined by smoothdata based on the input data.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

Algorithms
When the window size for the smoothing method is not specified, smoothdata computes
a default window size based on a heuristic. For a smoothing factor τ, the heuristic
estimates a moving average window size that attenuates approximately 100*τ percent of
the energy of the input data.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Tall timetables are not supported.
• The 'rlowess' and 'rloess' methods are not supported.
• Multiple outputs are not supported.
• You must specify the window size. Automatic selection of the window size is not

supported.
• The 'SamplePoints' and 'SmoothingFactor' name-value pairs are not supported.

 smoothdata

1-13625

• The value of 'DataVariables' cannot be a function handle.

For more information, see “Tall Arrays”.

See Also
fillmissing | filter | movmad | movmean | movmedian

Topics
“Data Smoothing and Outlier Detection”

Introduced in R2017a

1 Alphabetical List

1-13626

snapnow
Take snapshot of image for inclusion in published document

Syntax
snapnow

Description
snapnow, in a file being published, takes a snapshot of the most recently generated
image or plot. The snapshot appears at the end of the code section that contains the
snapnow command. For more information about publishing, see “Publish and Share
MATLAB Code”.

Outside of the context of publishing a file, MATLAB interprets a snapnow command as a
drawnow command.

Examples

Capture Snapshot of Figure in Loop

Use snapnow to capture a snapshot of an image after each iteration of a loop.

Create a file loopIterations.m with this code that runs a for loop three times and
produces graphics after every iteration.

%% Scale magic Data and Display as Image
for i=1:3
 imagesc(magic(i))
end

Save and then publish the file. MATLAB displays the published file with only a snapshot of
the final image.

 snapnow

1-13627

publish('loopIterations.m')
web('html/loopIterations.html')

Add a call to the snapnow function inside the for loop.

%% Scale magic Data and Display as Image
for i=1:3
 imagesc(magic(i))
 snapnow;
end

1 Alphabetical List

1-13628

Save and then publish the file. MATLAB displays the published file with a snapshot for
each loop iteration.

publish('loopIterations.m')
web('html/loopIterations.html')

See Also
drawnow | publish

Topics
“Publishing Markup”

Introduced in R2008b

 snapnow

1-13629

sort
Sort array elements

Syntax
B = sort(A)
B = sort(A,dim)
B = sort(___ ,direction)
B = sort(___ ,Name,Value)
[B,I] = sort(___)

Description
B = sort(A) sorts the elements of A in ascending order.

• If A is a vector, then sort(A) sorts the vector elements.
• If A is a matrix, then sort(A) treats the columns of A as vectors and sorts each

column.
• If A is a multidimensional array, then sort(A) operates along the first array

dimension whose size does not equal 1, treating the elements as vectors.

B = sort(A,dim) returns the sorted elements of A along dimension dim. For example,
if A is a matrix, then sort(A,2) sorts the elements of each row.

B = sort(___ ,direction) returns sorted elements of A in the order specified by
direction using any of the previous syntaxes. 'ascend' indicates ascending order (the
default) and 'descend' indicates descending order.

B = sort(___ ,Name,Value) specifies additional parameters for sorting. For example,
sort(A,'ComparisonMethod','abs') sorts the elements of A by magnitude.

[B,I] = sort(___) also returns a collection of index vectors for any of the previous
syntaxes. I is the same size as A and describes the arrangement of the elements of A into
B along the sorted dimension. For example, if A is a vector, then B = A(I).

1 Alphabetical List

1-13630

Examples

Sort Vector in Ascending Order

Create a row vector and sort its elements in ascending order.

A = [9 0 -7 5 3 8 -10 4 2];
B = sort(A)

B = 1×9

 -10 -7 0 2 3 4 5 8 9

Sort Matrix Rows in Ascending Order

Create a matrix and sort each of its rows in ascending order.

A = [3 6 5; 7 -2 4; 1 0 -9]

A = 3×3

 3 6 5
 7 -2 4
 1 0 -9

B = sort(A,2)

B = 3×3

 3 5 6
 -2 4 7
 -9 0 1

Sort Matrix Columns in Descending Order

Create a matrix and sort its columns in descending order.

 sort

1-13631

A = [10 -12 4 8; 6 -9 8 0; 2 3 11 -2; 1 1 9 3]

A = 4×4

 10 -12 4 8
 6 -9 8 0
 2 3 11 -2
 1 1 9 3

B = sort(A,'descend')

B = 4×4

 10 3 11 8
 6 1 9 3
 2 -9 8 0
 1 -12 4 -2

Sort String Array

Starting in R2017a, you can create string arrays using double quotes, and sort them using
the sort function. Sort strings in each column of a string array according to Unicode®
dictionary order.

A = ["Santos","Burns"; ...
 "Jones","Morita"; ...
 "Petrov","Adams"];
B = sort(A)

B = 3x2 string array
 "Jones" "Adams"
 "Petrov" "Burns"
 "Santos" "Morita"

Sort the strings in each row.

B = sort(A,2)

B = 3x2 string array
 "Burns" "Santos"

1 Alphabetical List

1-13632

 "Jones" "Morita"
 "Adams" "Petrov"

Sort and Index datetime Array

Create an array of datetime values and sort them in ascending order, that is, from the
earliest to the latest calendar date.

ds = {'2012-12-22';'2063-04-05';'1992-01-12'};
A = datetime(ds,'Format','yyyy-MM-dd')

A = 3x1 datetime array
 2012-12-22
 2063-04-05
 1992-01-12

[B,I] = sort(A)

B = 3x1 datetime array
 1992-01-12
 2012-12-22
 2063-04-05

I = 3×1

 3
 1
 2

B lists the sorted dates and I contains the corresponding indices of A.

Access the sorted elements from the original array directly by using the index array I.

A(I)

ans = 3x1 datetime array
 1992-01-12
 2012-12-22

 sort

1-13633

 2063-04-05

Sort 3-D Array

Create a 2-by-2-by-2 array and sort its elements in ascending order along the third
dimension.

A(:,:,1) = [2 3; 1 6];
A(:,:,2) = [-1 9; 0 12];
A

A =
A(:,:,1) =

 2 3
 1 6

A(:,:,2) =

 -1 9
 0 12

B = sort(A,3)

B =
B(:,:,1) =

 -1 3
 0 6

B(:,:,2) =

 2 9
 1 12

Use A(:), the column representation of A, to sort all of the elements of A.

B = sort(A(:))

1 Alphabetical List

1-13634

B = 8×1

 -1
 0
 1
 2
 3
 6
 9
 12

Complex Vector

Sort the elements of a complex vector by their real parts. For elements with equal real
parts, sort breaks the tie based on their imaginary parts.

A = [1+2i 3+i i 0 -i];
B = sort(A,'ComparisonMethod','real')

B = 1×5 complex

 0.0000 - 1.0000i 0.0000 + 0.0000i 0.0000 + 1.0000i 1.0000 + 2.0000i 3.0000 + 1.0000i

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

• If A is a scalar, then sort(A) returns A.
• If A is complex, then by default, sort sorts the elements by magnitude. If more than

one element has equal magnitude, then the elements are sorted by phase angle on the
interval (−π, π].

• If A is a cell array of character vectors or a string array, then sort(A) sorts the
elements according to the code order for the UTF-16 character encoding scheme. The

 sort

1-13635

sort is case-sensitive. For more information on sorting character and string arrays, see
“Sort Order for Character and String Arrays” on page 1-13638.

• If A is a string array, then sort reorders the elements of the array, but does not
reorder characters within the strings.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | categorical | datetime |
duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

• Consider a matrix A. sort(A,1) sorts the elements in the columns of A.

• sort(A,2) sorts the elements in the rows of A.

sort returns A if dim is greater than ndims(A). dim is not supported when A is a cell
array, that is, sort only operates along the first array dimension whose size does not
equal 1.

1 Alphabetical List

1-13636

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

direction — Sorting direction
'ascend' (default) | 'descend'

Sorting direction, specified as 'ascend' or 'descend'. direction is not supported
when A is a cell array, that is, sort only sorts in ascending order.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: sort(A,'MissingPlacement','last')

MissingPlacement — Placement of missing values
'auto' (default) | 'first' | 'last'

Placement of missing values (NaN, NaT, <undefined>, and missing) specified as the
comma-separated pair consisting of 'MissingPlacement' and one of the following:

• 'auto' — Missing elements are placed last for ascending order and first for
descending order.

• 'first' — Missing elements are placed first.
• 'last' — Missing elements are placed last.

ComparisonMethod — Element comparison method
'auto' (default) | 'real' | 'abs'

Element comparison method, specified as the comma-separated pair consisting of
'ComparisonMethod' and one of the following:

• 'auto' — Sort A by real(A) when A is real, and sort by abs(A) when A is complex.
• 'real' — Sort A by real(A) when A is real or complex. If A has elements with equal

real parts, then use imag(A) to break ties.
• 'abs' — Sort A by abs(A) when A is real or complex. If A has elements with equal

magnitude, then use angle(A) in the interval (-π,π] to break ties.

 sort

1-13637

Output Arguments
B — Sorted array
vector | matrix | multidimensional array

Sorted array, returned as a vector, matrix, or multidimensional array. B is the same size
and type as A. The order of the elements in B preserves the order of any equal elements in
A.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | categorical | datetime |
duration

I — Sort index
vector | matrix | multidimensional array

Sort index, returned as a vector, matrix, or multidimensional array. I is the same size as
A. The index vectors are oriented along the same dimension that sort operates on. For
example, if A is a 2-by-3 matrix, then [B,I] = sort(A,2) sorts the elements in each
row of A. The output I is a collection of 1-by-3 row index vectors describing the
rearrangement of each row of A.

Definitions

Sort Order for Character and String Arrays
MATLAB stores characters as Unicode using the UTF-16 character encoding scheme.
Character and string arrays are sorted according to the UTF-16 code point order. For the
characters that are also the ASCII characters, this order means that uppercase letters
come before lowercase letters. Digits and some punctuation also come before letters.

Tips
• The sortrows function provides additional flexibility for subsorting over multiple

columns of matrix or table inputs.
• The sort function and the relational operators use different orderings for complex

numbers. For more information, see “Relational Operations”.

1 Alphabetical List

1-13638

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• You must specify the dimension to sort, as in sort(X,dim).
• Sorting the tall dimension, as in sort(X,1), is only supported for column vectors.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The first input argument must not be a cell array.
• If A is complex with all zero imaginary parts, then MATLAB might convert A to

real(A) before calling sort(A). In this case, MATLAB sorts A by real(A), but the
generated code sorts A by abs(A). To make the generated code match MATLAB, use
sort(real(A)) or sort(A,'ComparisonMethod','real'). See “Code
Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB Coder).

• If you supply dim, then it must be constant.
• For limitations related to variable-size inputs, see “Variable-Sizing Restrictions for

Code Generation of Toolbox Functions” (MATLAB Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 sort

1-13639

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
issorted | max | min | sortrows | topkrows | unique

Topics
“Reshaping and Rearranging Arrays”

Introduced before R2006a

1 Alphabetical List

1-13640

sortrows
Sort rows of matrix or table

Syntax
B = sortrows(A)
B = sortrows(A,column)
B = sortrows(___ ,direction)
B = sortrows(___ ,Name,Value)
[B,index] = sortrows(___)

tblB = sortrows(tblA)

tblB = sortrows(tblA,'RowNames')
tblB = sortrows(tblA,rowDimName)
tblB = sortrows(tblA,vars)
tblB = sortrows(___ ,direction)
tblB = sortrows(___ ,Name,Value)
[tblB,index] = sortrows(___)

Description
B = sortrows(A) sorts the rows of a matrix in ascending order based on the elements
in the first column. When the first column contains repeated elements, sortrows sorts
according to the next column and repeats this behavior for succeeding equal values.

B = sortrows(A,column) sorts A based on the columns specified in the vector
column. For example, sortrows(A,4) sorts the rows of A in ascending order based on
the elements in the fourth column. sortrows(A,[4 6]) first sorts the rows of A based
on the elements in the fourth column, then based on the elements in the sixth column to
break ties.

B = sortrows(___ ,direction) sorts the rows of A in the order specified by
direction for any of the previous syntaxes. direction can be 'ascend' (default) for
ascending order or 'descend' for descending order. direction can also be a cell array
whose elements are 'ascend' and 'descend', where each element corresponds to a

 sortrows

1-13641

column that sortrows operates on. For example, sortrows(A,[4 6],{'ascend'
'descend'}) sorts the rows of A in ascending order based on the fourth column, then in
descending order based on the sixth column to break ties.

B = sortrows(___ ,Name,Value) specifies additional parameters for sorting rows.
For example, sortrows(A,'ComparisonMethod','abs') sorts the elements of A by
magnitude.

[B,index] = sortrows(___) also returns an index vector that describes the
rearrangement of rows such that B = A(index,:).

tblB = sortrows(tblA) sorts the rows of a table in ascending order based on the
values in the first variable. If elements in the first variable are repeated, then sortrows
sorts by the elements in the second variable, and so on.

If tblA is a timetable, then sortrows sorts the rows of tblA in ascending order based
on its row times. Row times of a timetable label the rows along the first dimension of the
timetable.

tblB = sortrows(tblA,'RowNames') sorts a table based on its row names. Row
names of a table label the rows along the first dimension of the table. If tblA does not
have row names, that is, if tblA.Properties.RowNames is empty, then sortrows
returns tblA.

This syntax is not supported when tblA is a timetable.

tblB = sortrows(tblA,rowDimName) sorts tblA by row labels rowDimName along
the first dimension.

• If tblA is a table, then row labels are row names.
• If tblA is a timetable, then row labels are row times.

tblB = sortrows(tblA,vars) sorts a table by the elements in the variables specified
by vars. For example, sortrows(tblA,{'Var1','Var2'}) first sorts the rows of
tblA based on the elements in Var1, then by the elements in Var2.

• If tblA is a table and it has row names, then vars can include the row names.
• If tblA is a timetable, then vars can include the row times.

tblB = sortrows(___ ,direction) sorts tblA in the order specified by direction
for any of the previous table syntaxes. direction can be 'ascend' or 'descend',
which is applied to all specified variables, row names, or row times that sortrows

1 Alphabetical List

1-13642

operates on. direction can also be a cell array whose elements are 'ascend' and
'descend', where each element corresponds to the specified variables, row names, or
row times being sorted on.

tblB = sortrows(___ ,Name,Value) specifies additional parameters for sorting rows
of a table or timetable. For example,
sortrows(tblA,'Var1','MissingPlacement','first') sorts based on the
elements in Var1, ordering missing elements such as NaN at the beginning of the table.

[tblB,index] = sortrows(___) also returns an index vector such that tblB =
tblA(index,:).

Examples

Sort Rows of Matrix

Create a matrix and sort its rows in ascending order based on the elements in the first
column. When the first column contains repeated elements, sortrows looks to the
elements in the second column to break the tie. For repeated elements in the second
column, sortrows looks to the third column, and so on.

A = floor(gallery('uniformdata',[6 7],0)*100);
A(1:4,1) = 95; A(5:6,1) = 76; A(2:4,2) = 7; A(3,3) = 73

A = 6×7

 95 45 92 41 13 1 84
 95 7 73 89 20 74 52
 95 7 73 5 19 44 20
 95 7 40 35 60 93 67
 76 61 93 81 27 46 83
 76 79 91 0 19 41 1

B = sortrows(A)

B = 6×7

 76 61 93 81 27 46 83
 76 79 91 0 19 41 1
 95 7 40 35 60 93 67

 sortrows

1-13643

 95 7 73 5 19 44 20
 95 7 73 89 20 74 52
 95 45 92 41 13 1 84

Sort the rows of A based on the values in the second column. When the specified column
has repeated elements, the corresponding rows maintain their original order.

C = sortrows(A,2)

C = 6×7

 95 7 73 89 20 74 52
 95 7 73 5 19 44 20
 95 7 40 35 60 93 67
 95 45 92 41 13 1 84
 76 61 93 81 27 46 83
 76 79 91 0 19 41 1

Sort the rows of A based on the elements in the first column, and look to the seventh
column to break any ties.

D = sortrows(A,[1 7])

D = 6×7

 76 79 91 0 19 41 1
 76 61 93 81 27 46 83
 95 7 73 5 19 44 20
 95 7 73 89 20 74 52
 95 7 40 35 60 93 67
 95 45 92 41 13 1 84

Sort the rows of A in descending order based on the elements in the fourth column, and
display the output vector index to see how the rows were rearranged.

[E,index] = sortrows(A,4,'descend')

E = 6×7

 95 7 73 89 20 74 52
 76 61 93 81 27 46 83
 95 45 92 41 13 1 84

1 Alphabetical List

1-13644

 95 7 40 35 60 93 67
 95 7 73 5 19 44 20
 76 79 91 0 19 41 1

index = 6×1

 2
 5
 1
 4
 3
 6

Complex Matrix

Create a matrix containing complex numbers, and sort the rows of the matrix in
ascending order based on the elements in the first column. Since the magnitudes of
A(1,1) and A(3,1) are equal, sortrows computes their angles to break the tie.

A = [1+2i 3+i i; 2+10i 6i 2+5i; 2+i 4 3+3i]

A = 3×3 complex

 1.0000 + 2.0000i 3.0000 + 1.0000i 0.0000 + 1.0000i
 2.0000 +10.0000i 0.0000 + 6.0000i 2.0000 + 5.0000i
 2.0000 + 1.0000i 4.0000 + 0.0000i 3.0000 + 3.0000i

B = sortrows(A)

B = 3×3 complex

 2.0000 + 1.0000i 4.0000 + 0.0000i 3.0000 + 3.0000i
 1.0000 + 2.0000i 3.0000 + 1.0000i 0.0000 + 1.0000i
 2.0000 +10.0000i 0.0000 + 6.0000i 2.0000 + 5.0000i

angle(A(1,1))

ans = 1.1071

 sortrows

1-13645

angle(A(3,1))

ans = 0.4636

Use the 'real' option to sort the rows of A by their real part. Since A(2,1) and A(3,1)
have equal real parts, sortrows uses the imaginary part to break the tie.

C = sortrows(A,'ComparisonMethod','real')

C = 3×3 complex

 1.0000 + 2.0000i 3.0000 + 1.0000i 0.0000 + 1.0000i
 2.0000 + 1.0000i 4.0000 + 0.0000i 3.0000 + 3.0000i
 2.0000 +10.0000i 0.0000 + 6.0000i 2.0000 + 5.0000i

imag(A(2,1))

ans = 10

imag(A(3,1))

ans = 1

Sort Rows of Cell Array

Create a 6-by-2 cell array of character vectors, and sort its rows. The result is an
alphabetized list sorted by both country and name.

A = {'Germany' 'Lukas'; 'USA' 'William'; 'USA' 'Andrew'; ...
'Germany' 'Andreas'; 'USA' 'Olivia'; 'Germany' 'Julia'}

A = 6x2 cell array
 {'Germany'} {'Lukas' }
 {'USA' } {'William'}
 {'USA' } {'Andrew' }
 {'Germany'} {'Andreas'}
 {'USA' } {'Olivia' }
 {'Germany'} {'Julia' }

B = sortrows(A)

1 Alphabetical List

1-13646

B = 6x2 cell array
 {'Germany'} {'Andreas'}
 {'Germany'} {'Julia' }
 {'Germany'} {'Lukas' }
 {'USA' } {'Andrew' }
 {'USA' } {'Olivia' }
 {'USA' } {'William'}

Sort the countries first, then sort the names in descending order.

C = sortrows(A,[1 2],{'ascend' 'descend'})

C = 6x2 cell array
 {'Germany'} {'Lukas' }
 {'Germany'} {'Julia' }
 {'Germany'} {'Andreas'}
 {'USA' } {'William'}
 {'USA' } {'Olivia' }
 {'USA' } {'Andrew' }

Sort Rows of Table

Sort the rows of a table by variable values.

Create a table with four variables listing patient information for five people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Smith 38 71 176 124 93
 Johnson 43 69 163 109 77

 sortrows

1-13647

 Williams 38 64 131 125 83
 Jones 40 67 133 117 75
 Brown 49 64 119 122 80

Sort the rows of the table. The sortrows function sorts the rows in ascending order first
by the variable Age, and then by the variable Height to break the tie between the two
rows with equal ages.

tblB = sortrows(tblA)

tblB=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Williams 38 64 131 125 83
 Smith 38 71 176 124 93
 Jones 40 67 133 117 75
 Johnson 43 69 163 109 77
 Brown 49 64 119 122 80

Sort Rows of Table by Row Names

Create a table with four variables listing patient information for five people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Smith 38 71 176 124 93
 Johnson 43 69 163 109 77
 Williams 38 64 131 125 83
 Jones 40 67 133 117 75

1 Alphabetical List

1-13648

 Brown 49 64 119 122 80

Sort the rows of the table in ascending order based on the row names, and return the
index vector that describes how the rows were rearranged.

[tblB,index] = sortrows(tblA,'RowNames')

tblB=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Brown 49 64 119 122 80
 Johnson 43 69 163 109 77
 Jones 40 67 133 117 75
 Smith 38 71 176 124 93
 Williams 38 64 131 125 83

index = 5×1

 5
 2
 4
 1
 3

Sort Rows of Table by Variables

Create a table with four variables listing patient information for five people.

LastName = {'Sweet';'Jacobson';'Wang';'Joiner';'Berger'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 sortrows

1-13649

 Sweet 38 71 176 124 93
 Jacobson 43 69 163 109 77
 Wang 38 64 131 125 83
 Joiner 40 67 133 117 75
 Berger 49 64 119 122 80

Sort the rows of the table in ascending order by Height, and then in descending order by
Weight.

tblB = sortrows(tblA,{'Height','Weight'},{'ascend','descend'})

tblB=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Wang 38 64 131 125 83
 Berger 49 64 119 122 80
 Joiner 40 67 133 117 75
 Jacobson 43 69 163 109 77
 Sweet 38 71 176 124 93

Table with Missing Elements

Create a table with four variables listing patient information for five people. The Weight
variable contains missing values.

LastName = {'Sweet';'Jacobson';'Wang';'Joiner';'Berger'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;NaN;131;133;NaN];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];
tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Sweet 38 71 176 124 93
 Jacobson 43 69 NaN 109 77

1 Alphabetical List

1-13650

 Wang 38 64 131 125 83
 Joiner 40 67 133 117 75
 Berger 49 64 NaN 122 80

Sort the rows of the table in ascending order by Weight, placing the rows containing NaN
first.

tblB = sortrows(tblA,'Weight','MissingPlacement','first')

tblB=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Jacobson 43 69 NaN 109 77
 Berger 49 64 NaN 122 80
 Wang 38 64 131 125 83
 Joiner 40 67 133 117 75
 Sweet 38 71 176 124 93

Sort Rows of Timetable

Create a timetable, and sort the rows by row times.

TimeDuration = [hours(3) hours(2) hours(1) hours(5) hours(6)]';
TT = timetable(TimeDuration,[98;97.5;97.9;98.1;101],[120;111;119;117;118]);

B = sortrows(TT,'TimeDuration')

B=5×3 timetable
 TimeDuration Var1 Var2
 ____________ ____ ____

 1 hr 97.9 119
 2 hr 97.5 111
 3 hr 98 120
 5 hr 98.1 117
 6 hr 101 118

 sortrows

1-13651

Input Arguments
A — Input array
column vector | matrix

Input array, specified as a column vector or matrix.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | categorical | datetime |
duration
Complex Number Support: Yes

column — Column sorting vector
nonzero integer scalar | vector of nonzero integers

Column sorting vector, specified as a nonzero integer scalar or a vector of nonzero
integers. Each specified integer value indicates a column to sort by. Negative integers
indicate that the sort order is descending.

direction — Sorting direction
character vector | cell array of character vectors

Sorting direction, specified as a character vector or cell array of character vectors
containing 'ascend' (default) or 'descend'. If direction is a cell array of character
vectors, then the number of entries must match the number of columns or variables being
sorted on.

If the column argument and the direction argument are specified together, then
sortrows sorts according to direction, ignoring the signs of the elements in column.
Data Types: char | cell

tblA — Input table
table | timetable

Input table, specified as a table or a timetable. Each variable in tblA must be a valid
input to sort or sortrows.

Data Types: table | timetable

rowDimName — Name of first dimension of input table or timetable
character vector

1 Alphabetical List

1-13652

Name of the first dimension of the input table or timetable, specified as a character
vector.

• If tblA is a table with row names, then rowDimName is the name of the first
dimension of the table. By default, the name of the first dimension is 'Row'.
Dimension names are a property of tables. You can access the dimension names of
tblA using tblA.Properties.DimensionNames.

• If tblA is a timetable, then rowDimName is the name of the vector of row times. You
can specify its name when you create a timetable, such as Time or Date. You can also
access the dimension names using tblA.Properties.DimensionNames.

Example: If a table T has row names, and you changed the name of the first dimension
using T.Properties.DimensionName{1} = 'Name', then sortrows(T,'Name')
sorts the table by row name.
Example: If a timetable TT has a time vector named Date, then sortrows(TT,'Date')
sorts the timetable on the dates and times that Date contains.
Data Types: char

vars — Sorting variables
scalar integer | vector of integers | variable name | cell array of variable names | logical
vector

Sorting variables, specified as a scalar integer, a vector of integers, a variable name, a
cell array of variable names, or a logical vector. vars indicates the table variables to sort
by.

If an element of vars is a positive integer, then sortrows sorts the corresponding
variable in tblA in ascending order. If an element of vars is a negative integer, then
sortrows sorts the corresponding variable in tblA in descending order.
Example: sortrows(tblA,{'Height','Weight'}) sorts the rows of tblA in
ascending order, first by the variable Height, then by the variable Weight to break ties.
Example: sortrows(tblA,[1 4]) sorts by the first variable of tblA in ascending order,
then sorts by the fourth variable to break ties.
Example: sortrows(TT,{'Time','X'}) sorts the row times of timetable TT in
ascending order first, then sorts by the table variable 'X' to break ties.
Data Types: double | single | char | cell | logical

 sortrows

1-13653

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: sortrows(A,'MissingPlacement','last')

MissingPlacement — Placement of missing values
'auto' (default) | 'first' | 'last'

Placement of missing values (NaN, NaT, <undefined>, and missing) specified as the
comma-separated pair consisting of 'MissingPlacement' and one of the following:

• 'auto' — Missing elements are placed last for ascending order and first for
descending order.

• 'first' — Missing elements are placed first.
• 'last' — Missing elements are placed last.

ComparisonMethod — Element comparison method
'auto' (default) | 'real' | 'abs'

Element comparison method, specified as the comma-separated pair consisting of
'ComparisonMethod' and one of the following:

• 'auto' — Sort rows of A by real(A) when A is real, and sort by abs(A) when A is
complex.

• 'real' — Sort rows of A by real(A) when A is real or complex. If a column of A has
elements with equal real parts, then use imag(A) to break ties.

• 'abs' — Sort rows of A by abs(A) when A is real or complex. If a column of A has
elements with equal magnitude, then use angle(A) in the interval (-π,π] to break ties.

Output Arguments
B — Sorted array
vector | matrix | multidimensional array

Sorted array, returned as a vector, matrix, or multidimensional array. B is the same size as
A.

1 Alphabetical List

1-13654

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | categorical | datetime |
duration

tblB — Sorted table
table | timetable

Sorted table, returned as a table or timetable with the same variables as tblA.

Data Types: table | timetable

index — Sort index
index vector

Sort index, returned as an index vector. The sort index describes the rearrangement of
the rows in the input such that B = A(index,:).
Data Types: double

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• Sorting by row names is not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The first input argument must not be a cell array.

 sortrows

1-13655

• If A is complex with all zero imaginary parts, then MATLAB might convert A to
real(A) before calling sortrows(A). In this case, MATLAB sorts the rows of A by
real(A), but the generated code sorts the rows of A by abs(A). To make the
generated code match MATLAB, use sortrows(real(A)) or
sortrows(A,'ComparisonMethod','real'). See “Code Generation for Complex
Data with Zero-Valued Imaginary Parts” (MATLAB Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Sorting of cell arrays is not supported.
• Sparse inputs are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
issorted | issortedrows | sort | topkrows

Introduced before R2006a

1 Alphabetical List

1-13656

sortx
Sort elements in heatmap row

Syntax
sortx(h,row)
sortx(h,row,direction)
sortx(___ ,'MissingPlacement',lcn)
sortx(h)

C = sortx(___)
[C,x] = sortx(___)

Description
sortx(h,row) displays the elements in row in ascending order (from left to right). This
function sorts the row elements by rearranging the columns. Specify row as one element
or as an array of elements from YData. If the first row that you specify has repeating
values, then sortx rearranges the remaining columns according to the second row, and
so on.

sortx(h,row,direction), where direction is 'descend', sorts the values in
descending order instead of ascending order (default). To sort in a unique direction for
each row in row, specify direction as an array whose elements are 'ascend' or
'descend'.

sortx(___ ,'MissingPlacement',lcn) specifies whether to put NaN elements first
or last in the sort order. Specify lcn as 'first', 'last', or 'auto'. The default setting
is 'auto', which lists NaN elements last for ascending order and first for descending
order. Use this option after any of the previous input argument combinations.

sortx(h) displays the elements in the top row in ascending order. If the first row has
repeating elements, then sortx rearranges the remaining columns according to the
second row, and so on.

 sortx

1-13657

C = sortx(___) returns the sorted color data, which is a matrix of values as they
appear in the heatmap chart.

[C,x] = sortx(___) also returns the sorted x values in the order they are displayed.

Examples

Display Heatmap Row in Ascending Order

Create a heatmap of utility outages and sort the values in a particular row so that they
appear in ascending order, from left to right.

First, create a heatmap. Read the sample file outages.csv into a table. The sample file
contains data representing electric utility outages in the United States. The table contains
six columns: Region, OutageTime, Loss, Customers, RestorationTime, and Cause.
Create a heatmap that shows the different regions along the x-axis and the different
outage causes along the y-axis. In each cell, show how many times each region
experienced a power outage due to a particular cause.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');

1 Alphabetical List

1-13658

Sort the values in the 'winter storm' row so that they appear in ascending order from
left to right.

sortx(h,'winter storm')

 sortx

1-13659

Display Heatmap Row in Descending Order

Create a heatmap of utility outages and display the values in the 'winter storm' row
in descending order by rearranging the columns.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
sortx(h,'winter storm','descend')

1 Alphabetical List

1-13660

Rearrange Heatmap Columns Based on Multiple Rows

Create a heatmap of utility outages and rearrange the columns using values from multiple
rows. Sort the columns so that the row 'unknown' appears in ascending order. Since that
row contains duplicate values, use the row 'earthquake' to sort the remaining columns.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
sortx(h,{'unknown','earthquake'})

 sortx

1-13661

Return Rearranged Heatmap Column Values

Create a heatmap of utility outages and sort the values in the 'winter storm' row so
that they appear in ascending order. Return the sorted color data and the column values
(x values) in the order that they appear along the x-axis.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
[C,x] = sortx(h,'winter storm')

1 Alphabetical List

1-13662

C = 10×5

 0 12 127 20 135
 0 0 1 0 1
 8 19 49 81 31
 2 9 85 42 18
 0 0 17 3 5
 6 31 23 135 143
 6 32 7 54 102
 0 5 4 4 11
 3 16 22 13 41
 1 18 19 37 70

 sortx

1-13663

x = 5x1 cell array
 {'SouthWest'}
 {'MidWest' }
 {'West' }
 {'SouthEast'}
 {'NorthEast'}

Restore Original Heatmap Column Order

Create a heatmap of utility outages and sort the values in the top row in ascending order
by rearranging the columns. Then, restore the original order.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
sortx(h)

1 Alphabetical List

1-13664

Restore the original column order by setting the XDisplayData property of the
HeatmapChart object equal to the XData property.

h.XDisplayData = h.XData;

 sortx

1-13665

Input Arguments
h — Heatmap
HeatmapChart object

Heatmap to update, specified as a HeatmapChart object.

row — Row to sort
character vector | cell array of character vectors | string array

1 Alphabetical List

1-13666

Row to sort, specified as a character vector, cell array of character vectors, or string array
indicating one or more elements from the YData or YDisplayData property of the
HeatmapChart object.
Example: sortx(h,'MyRowName') sorts the elements in the row called 'MyRowName' in
ascending order.

direction — Direction to sort
'ascend' (default) | 'descend' | cell array of character vectors | string array

Direction to sort, specified as one of these values:

• 'ascend' — Sort all rows in row in ascending order.
• 'descend' — Sort all rows in row in descending order.
• Array — Sort in a unique direction for each row in row. Specify direction as a cell

array of character vectors or a string array containing the elements 'ascend' or
'descend'. The array must be the same length as row.

Example: sortx(h,row,{'ascend','descend','ascend'}) sorts the elements in
the first row in row in ascending order. If there are any repeating values in the first row,
then it breaks ties using the elements of the second row in descending order, and so on.

lcn — NaN placement
'auto' (default) | 'first' | 'last'

NaN placement, specified as one of these values:

• 'auto' — List NaN elements last for ascending order and first for descending order.
• 'first' — List NaN elements first.
• 'last' — List NaN elements last.

Example: sortx(h,row,'MissingPlacement','last')

Output Arguments
C — Sorted color data
matrix

Sorted color data, returned as a matrix. The values in the matrix appear in the same order
as they appear on the heatmap.

 sortx

1-13667

The ColorDisplayData property of the HeatmapChart object stores the sorted color
data. The ColorData property stores the unsorted color data.

x — Rearranged column order
cell array of character vectors

Rearranged column order, returned as a cell array of character vectors.

The XDisplayData property of the HeatmapChart object stores the sorted column
order. The XData property stores the unsorted column order.

Algorithms
The sortx function sets and queries these HeatmapChart object properties:

• XDisplayData — Property that stores the x-axis data.
• ColorDisplayData — Property that stores the color display data.

The sortx function also resets the XLimits property.

See Also
Functions
heatmap | sorty

Properties
HeatmapChart

Introduced in R2017b

1 Alphabetical List

1-13668

sorty
Sort elements in heatmap column

Syntax
sorty(h,column)
sorty(h,column,direction)
sorty(___ ,'MissingPlacement',lcn)
sorty(h)

C = sorty(___)
[C,y] = sorty(___)

Description
sorty(h,column) displays the elements in column in ascending order (from top to
bottom). This function sorts the column elements by rearranging the rows. Specify
column as one element or as an array of elements from XData. If the first column that
you specify has repeating values, then sorty rearranges the remaining rows according to
the second column, and so on.

sorty(h,column,direction), where direction is 'descend', sorts the values in
descending order instead of ascending order (default). To sort in a unique direction for
each column in column, specify direction as an array whose elements are 'ascend'
or 'descend'.

sorty(___ ,'MissingPlacement',lcn) specifies whether to put NaN elements first
or last in the sort order. Specify lcn as 'first', 'last', or 'auto'. The default setting
is 'auto', which lists NaN elements last for ascending order and first for descending
order. Use this option after any of the previous input argument combinations.

sorty(h) displays the elements in the first column in ascending order. If the first column
has repeating elements, then sorty rearranges the remaining rows according to the
second column, and so on.

 sorty

1-13669

C = sorty(___) returns the sorted color data, which is a matrix of values as they
appear in the heatmap chart.

[C,y] = sorty(___) also returns the sorted y values in the order they are displayed.

Examples

Display Heatmap Column in Ascending Order

Create a heatmap of utility outages and sort the values in a particular column so that they
appear in ascending order, from top to bottom.

First, create a heatmap. Read the sample file outages.csv into a table. The sample file
contains data representing electric utility outages in the United States. The table contains
six columns: Region, OutageTime, Loss, Customers, RestorationTime, and Cause.
Create a heatmap that shows the different regions along the x-axis and the different
outage causes along the y-axis. In each cell, show how many times each region
experienced a power outage due to a particular cause.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');

1 Alphabetical List

1-13670

Sort the values in the 'NorthEast' column so that they appear in ascending order from
top to bottom.

sorty(h,'NorthEast')

 sorty

1-13671

Display Heatmap Column in Descending Order

Create a heatmap of utility outages and display the values in the 'NorthEast' column in
descending order by rearranging the rows.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
sorty(h,'NorthEast','descend')

1 Alphabetical List

1-13672

Rearrange Heatmap Rows Based on Multiple Columns

Create a heatmap of utility outages and rearrange the rows using values from multiple
columns. Sort the rows so that the column 'SouthWest' appears in ascending order.
Since that column contains duplicate values, use the column 'NorthEast' to sort the
remaining rows.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
sorty(h,{'SouthWest','NorthEast'})

 sorty

1-13673

Return Rearranged Heatmap Row Values

Create a heatmap of utility outages and sort the values in the 'NorthEast' column so
that they appear in ascending order, from top to bottom. Return the sorted color data and
the row values (y values) in the order they appear along the y-axis.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
[C,y] = sorty(h,'NorthEast')

1 Alphabetical List

1-13674

C = 10×5

 0 1 0 0 1
 0 5 3 0 17
 5 11 4 0 4
 9 18 42 2 85
 19 31 81 8 49
 16 41 13 3 22
 18 70 37 1 19
 32 102 54 6 7
 12 135 20 0 127
 31 143 135 6 23

 sorty

1-13675

y = 10x1 cell array
 {'earthquake' }
 {'fire' }
 {'unknown' }
 {'equipment fault' }
 {'energy emergency'}
 {'wind' }
 {'winter storm' }
 {'thunder storm' }
 {'attack' }
 {'severe storm' }

Restore Original Heatmap Row Order

Create a heatmap of utility outages and sort the values in the left column in ascending
order (from top to bottom) by rearranging the columns. Then, restore the original order.

T = readtable('outages.csv');
h = heatmap(T,'Region','Cause');
sorty(h)

1 Alphabetical List

1-13676

Restore the original row order by setting the YDisplayData property of the
HeatmapChart object equal to the YData property.

h.YDisplayData = h.YData;

 sorty

1-13677

Input Arguments
h — Heatmap
HeatmapChart object

Heatmap to update, specified as a HeatmapChart object.

column — Column to sort
character vector | cell array of character vectors | string array

1 Alphabetical List

1-13678

Column to sort, specified as a character vector, cell array of character vectors, or string
array indicating of one or more elements from the XData or XDisplayData property of
the HeatmapChart object.
Example: sorty(h,'MyColumnName') sorts the elements in the column called
'MyColumnName' in ascending order.

direction — Direction to sort
'ascend' (default) | 'descend' | cell array of character vectors | string array

Direction to sort, specified as 'ascend', 'descend', a cell array of character vectors, or
a string array.

• 'ascend' — Sort all columns listed in column in ascending order.
• 'descend' — Sort all columns listed in column in descending order.
• Array — Sort in a unique direction for each column in column. Specify direction as

a cell array of character vectors or a string array containing the elements 'ascend'
or 'descend'. The array must be the same length as column.

Example: {'ascend','descend','ascend'} sorts the elements in the first column in
ascending order. If there are any repeating values in the first column, then sorty breaks
ties using the elements of the second column in descending order, and so on.

lcn — NaN placement
'auto' (default) | 'first' | 'last'

NaN placement, specified as one of these values:

• 'auto' — List NaN elements last for ascending order and first for descending order.
• 'first' — List NaN elements first.
• 'last' — List NaN elements last.

Example: sortx(h,column,'MissingPlacement','last')

Output Arguments
C — Sorted color data
matrix

 sorty

1-13679

Sorted color data, returned as a matrix. The values in the matrix appear in the same order
as they appear on the heatmap.

The ColorDisplayData property of the HeatmapChart object stores the sorted color
data. The ColorData property stores the unsorted color data.

y — Rearranged row order
cell array of character vectors

Rearranged row order, returned as a cell array of character vectors.

The YDisplayData property of the HeatmapChart object stores the sorted row order.
The YData property stores the unsorted row order.

Algorithms
The sorty function sets these HeatmapChart object properties:

• YDisplayData — Property that stores the y-axis data.
• ColorDisplayData — Property that stores the color display data.

The sorty function also resets the YLimits property.

See Also
Functions
heatmap | sortx

Properties
HeatmapChart

Introduced in R2017b

1 Alphabetical List

1-13680

sound
Convert matrix of signal data to sound

Syntax
sound(y)
sound(y,Fs)
sound(y,Fs,nBits)

Description
sound(y) sends audio signal y to the speaker at the default sample rate of 8192 hertz.

sound(y,Fs) sends audio signal y to the speaker at sample rate Fs.

sound(y,Fs,nBits) uses nBits bits per sample for audio signal y.

Examples

Play Sample Data at Default Sample Rate

Load the example file gong.mat, which contains sample data y and rate Fs, and listen to
the audio.

load gong.mat;
sound(y);

Play Sample Data at Specific Sample Rate

Play an excerpt from Handel's “Hallelujah Chorus” at twice the recorded sample rate.

 sound

1-13681

load handel.mat;
sound(y, 2*Fs);

Play Sample Data with Specific Bit Depth

load handel.mat;
nBits = 16;
sound(y,Fs,nBits);

MATLAB® plays the audio with a bit depth of 16 bits per sample, if this is supported on
your system.

Input Arguments
y — Audio data
column vector | m-by-2 matrix

Audio data, specified as an m-by-1 column vector for single-channel (mono) audio, or an m-
by-2 matrix for stereo playback, where m is the number of audio samples. If y is an m-by-2
matrix, then the first column corresponds to the left channel, and the second column
corresponds to the right channel. Stereo playback is available only if your system
supports it.
Data Types: double

Fs — Sample rate
8192 (default) | positive number

Sample rate, in hertz, of audio data y, is specified as a positive number from 1000
through 384000. Valid values depend on both the sample rates permitted by MATLAB and
the specific audio hardware on your system. MATLAB has a hard restriction of 1000 Hz
<= Fs <= 384000 Hz, although further hardware-dependent restrictions apply.
Data Types: single | double

nBits — Bit depth of sample values
16 (default) | 8 | 24

Bit depth of the sample values, specified as an integer. Valid values depend on the audio
hardware installed. Most platforms support bit depths of 8 bits or 16 bits.

1 Alphabetical List

1-13682

Tips
• The sound function supports sound devices on all Windows and most UNIX platforms.
• Most sound cards support sample rates between 5 and 48 kilohertz. Specifying a

sample rate outside this range might produce unexpected results.

See Also
audioplayer | audioread | audiowrite | soundsc

Topics
“Characteristics of Audio Files”
“Play Audio”

Introduced before R2006a

 sound

1-13683

soundsc
Scale data and play as sound

Syntax
soundsc(y)
soundsc(y,Fs)
soundsc(y,Fs,nBits)

soundsc(___ ,yRange)

Description
soundsc(y) scales the values of audio signal y to fit in the range from –1.0 to 1.0, and
then sends the data to the speaker at the default sample rate of 8192 hertz. By first
scaling the data, soundsc plays the audio as loudly as possible without clipping. The
mean of the dynamic range of the data is set to zero.

soundsc(y,Fs) sends audio signal y to the speaker at sample rate Fs.

soundsc(y,Fs,nBits) uses nBits bits per sample for audio signal y.

soundsc(___ ,yRange), where yRange is a vector of the form [low,high], linearly
scales the values in y between low and high to the full sound range [-1.0,1.0]. Values
outside [low,high] scale beyond [-1.0,1.0]. You can use yRange with any of the
input arguments in the previous syntaxes.

Examples

Play Sample Data at Default Sample Rate

Load the example file gong.mat, which contains sample data y and rate Fs, and listen to
the audio.

1 Alphabetical List

1-13684

load gong.mat;
soundsc(y);

Play Sample Data at Specific Sample Rate

Play an excerpt from Handel's "Hallelujah Chorus" at twice the recorded sample rate.

load handel.mat;
soundsc(y, 2*Fs);

Play Sample Data with Specific Bit Depth

load handel.mat;
nBits = 16;
soundsc(y,Fs,nBits);

MATLAB® plays the scaled audio with a bit depth of 16 bits per sample.

Scale Selected Audio Data

load handel.mat;
yRange = [-0.7,0.7];
soundsc(y,yRange);

Input Arguments
y — Audio data
column vector | m-by-2 matrix

Audio data, specified as an m-by-1 column vector for single-channel (mono) audio, or an m-
by-2 matrix for stereo playback, where m is the number of audio samples. If y is an m-by-2
matrix, then the first column corresponds to the left channel, and the second column
corresponds to the right channel. Stereo playback is available only if your system
supports it.
Data Types: double

 soundsc

1-13685

Fs — Sample rate
8192 (default) | positive number

Sample rate, in hertz, of audio data y, is specified as a positive number from 1000
through 384000. Valid values depend on both the sample rates permitted by MATLAB and
the specific audio hardware on your system. MATLAB has a hard restriction of 1000 Hz
<= Fs <= 384000 Hz, although further hardware-dependent restrictions apply.
Data Types: single | double

nBits — Bit depth of sample values
16 (default) | 8 | 24

Bit depth of the sample values, specified as an integer. Valid values depend on the audio
hardware installed. Most platforms support bit depths of 8 bits or 16 bits.

yRange — Range of audio data to scale
[-max(abs(y)),max(abs(y))] (default) | two-element vector

Range of audio data to scale, specified as a two-element vector of the form [low,high],
where low and high are the lower and upper limits of the range. Values in y that are
scaled beyond [-1.0, 1.0] are clipped when played back on a sound device.
Example: [-0.8,0.8]
Data Types: double

Tips
• The sound function supports sound devices on all Windows and most UNIX platforms.
• Most sound cards support sample rates between 5 and 48 kilohertz. Specifying a

sample rate outside this range might produce unexpected results.

See Also
audioplayer | audioread | audiowrite | sound

Introduced before R2006a

1 Alphabetical List

1-13686

spalloc
Allocate space for sparse matrix

Syntax
S = spalloc(m,n,nz)

Description
S = spalloc(m,n,nz) creates an all zero sparse matrix S of size m-by-n with room to
hold nz nonzeros, where nz >= 1. The matrix can then be generated column by column
without requiring repeated storage allocation as the number of nonzeros grows.

spalloc(m,n,nz) is shorthand for

sparse([],[],[],m,n,nz)

If you specify a value of 0 for nz, then spalloc instead sets the value of nz to 1.

Examples
Use spalloc to initialize an n-by-n empty sparse matrix with space for 3*n nonzeros.
Then use a for-loop to fill in the columns of S one at a time. The result is a tridiagonal
matrix with about 50% band density.

S = spalloc(n,n,3*n);
for j = 1:n
 ind = [max(j-1,1) j min(j+1,n)];
 S(:,j) = sparse(ind,1,round(rand(3,1)),n,1,3);
end

 spalloc

1-13687

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nnz | nzmax | sparse

Introduced before R2006a

1 Alphabetical List

1-13688

sparse
Create sparse matrix

Syntax
S = sparse(A)

S = sparse(m,n)

S = sparse(i,j,v)
S = sparse(i,j,v,m,n)
S = sparse(i,j,v,m,n,nz)

Description
S = sparse(A) converts a full matrix into sparse form by squeezing out any zero
elements. If a matrix contains many zeros, converting the matrix to sparse storage saves
memory.

S = sparse(m,n) generates an m-by-n all zero sparse matrix.

S = sparse(i,j,v) generates a sparse matrix S from the triplets i, j, and v such that
S(i(k),j(k)) = v(k). The max(i)-by-max(j) output matrix has space allotted for
length(v) nonzero elements. sparse adds together elements in v that have duplicate
subscripts in i and j.

If the inputs i, j, and v are vectors or matrices, they must have the same number of
elements. Alternatively, the argument v and/or one of the arguments i or j can be
scalars.

S = sparse(i,j,v,m,n) specifies the size of S as m-by-n.

S = sparse(i,j,v,m,n,nz) allocates space for nz nonzero elements. Use this syntax
to allocate extra space for nonzero values to be filled in after construction.

 sparse

1-13689

Examples

Save Memory Using Sparse Storage

Create a 10,000-by-10,000 full storage identity matrix.

A = eye(10000);
whos A

 Name Size Bytes Class Attributes

 A 10000x10000 800000000 double

This matrix uses 800-megabytes of memory.

Convert the matrix to sparse storage.

S = sparse(A);
whos S

 Name Size Bytes Class Attributes

 S 10000x10000 240008 double sparse

In sparse form, the same matrix uses roughly 0.25-megabytes of memory. In this case, you
can avoid full storage completely by using the speye function, which creates sparse
identity matrices directly.

Sparse Matrix of All Zeros

S = sparse(10000,5000)

S =
 All zero sparse: 10000x5000

1 Alphabetical List

1-13690

Sparse Matrix of Nonzeros with Specified Size

Create a 1500-by-1500 sparse matrix from the triplets i, j, and v.

i = [900 1000];
j = [900 1000];
v = [10 100];
S = sparse(i,j,v,1500,1500)

S =
 (900,900) 10
(1000,1000) 100

When you specify a size larger than max(i) -by- max(j), the sparse function pads the
output with extra rows and columns of zeros.

size(S)

ans = 1×2

 1500 1500

Preallocate Storage in Sparse Matrix

Create a sparse matrix with 10 nonzero values, but which has space allocated for 100
nonzero values.

S = sparse(1:10,1:10,5,20,20,100);
N = nnz(S)

N = 10

N_alloc = nzmax(S)

N_alloc = 100

The spalloc function is a shorthand way to create a sparse matrix with no nonzero
elements but which has space allotted for some number of nonzeros.

 sparse

1-13691

Accumulate Values into Sparse Matrix

Use repeated subscripts to accumulate values into a single sparse matrix that would
otherwise require one or more loops.

Create a column vector of data and two column vectors of subscripts.

i = [6 6 6 5 10 10 9 9]';
j = [1 1 1 2 3 3 10 10]';
v = [100 202 173 305 410 550 323 121]';

Visualize the subscripts and values side-by-side.

[i,j,v]

ans = 8×3

 6 1 100
 6 1 202
 6 1 173
 5 2 305
 10 3 410
 10 3 550
 9 10 323
 9 10 121

Use the sparse function to accumulate the values that have identical subscripts.

S = sparse(i,j,v)

S =
 (6,1) 475
 (5,2) 305
 (10,3) 960
 (9,10) 444

Input Arguments
A — Input matrix
full matrix | sparse matrix

1 Alphabetical List

1-13692

Input matrix, specified as a full or sparse matrix. If A is already sparse, then sparse(A)
returns A.
Data Types: double | logical
Complex Number Support: Yes

i,j — Subscript pairs (as separate arguments)
scalars | vectors | matrices

Subscript pairs, specified as separate arguments of scalars, vectors, or matrices.
Corresponding elements in i and j specify S(i,j) subscript pairs, which determine the
placement of the values in v into the output. If either i or j is a vector or matrix, then the
other input can be a scalar or can be a vector or matrix with the same number of
elements. In that case, sparse uses i(:) and j(:) as the subscripts. If i and j have
identical values for several elements in v, then those elements are added together.

Note If any value in i or j is larger than 2^31-1 for 32-bit platforms, or 2^48-1 on 64-
bit platforms, then the sparse matrix cannot be constructed.

Data Types: double | logical

v — Values
scalar | vector | matrix

Values, specified as a scalar, vector, or matrix. If v is a vector or matrix, then one of the
inputs i or j must also be a vector or matrix with the same number of elements.

Any elements in v that are zero are ignored, as are the corresponding subscripts in i and
j. However, if you do not specify the dimension sizes of the output, m and n, then sparse
calculates the maxima m = max(i) and n = max(j) before ignoring any zero elements
in v.
Data Types: double | logical
Complex Number Support: Yes

m,n — Size of each dimension (as separate arguments)
integer values

Size of each dimension, specified as separate arguments of integer values. If you specify m
(the row size), you also must specify n (the column size).

 sparse

1-13693

If you do not specify m and n, then sparse uses the default values m = max(i) and n =
max(j). These maxima are computed before any zeros in v are removed.
Data Types: double

nz — Storage allocation for nonzero elements
nonnegative integer

Storage allocation for nonzero elements, specified as a nonnegative integer. nz generally
must be greater than or equal to max([numel(i), numel(j), numel(v), 1]).
However, if the sizes of i, j, and v allow you to specify a value of 0 for nz, then sparse
instead sets the value to 1.

For a sparse matrix, S, the nnz function returns the number of nonzero elements in the
matrix, and the nzmax function returns the amount of storage allocated for nonzero
matrix elements. If nnz(S) and nzmax(S) return different results, then more storage
might be allocated than is actually required. For this reason, set nz only in anticipation of
later fill-in.

If you do not specify nz, then sparse uses a default value of max([numel(i),
numel(j), numel(v), 1]).
Data Types: double

Tips
• MATLAB stores sparse matrices in compressed sparse column format. For more

information, see John R. Gilbert, Cleve Moler, and Robert Schreiber's Sparse Matrices
In MATLAB: Design and Implementation.

• The accumarray function has similar accumulation behavior to that of sparse.

• accumarray groups data into bins using n-dimensional subscripts, but sparse
groups data into bins using 2-D subscripts.

• accumarray adds elements that have identical subscripts into the output by
default, but can optionally apply any function to the bins. sparse only adds
elements that have identical subscripts into the output.

1 Alphabetical List

1-13694

https://www.mathworks.com/help/pdf_doc/otherdocs/simax.pdf
https://www.mathworks.com/help/pdf_doc/otherdocs/simax.pdf

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The number of rows, columns, and nonzero elements must each have a value less than
intmax.

• In MATLAB, you can construct a sparse matrix using scalar expansion. For example,
sparse([1 2],[3 4], 2). For code generation, you can only use scalar expansion
for compile-time scalar inputs. Variable-size arrays that are scalar at run time are not
expanded.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
accumarray | diag | find | full | issparse | nnz | nonzeros | nzmax | spalloc |
speye | spones | sprandn | sprandsym | spy

Topics
“Constructing Sparse Matrices”

 sparse

1-13695

“Sparse Matrix Operations”
“Accessing Sparse Matrices”

Introduced before R2006a

1 Alphabetical List

1-13696

spaugment
Form least-squares augmented system

Syntax
S = spaugment(A,c)
S = spaugment(A)

Description
S = spaugment(A,c) creates the sparse, square, symmetric indefinite matrix S =
[c*I A; A' 0]. The matrix S is related to the least-squares problem

min norm(b - A*x)

by

r = b - A*x
S * [r/c; x] = [b; 0]

The optimum value of the residual scaling factor c, involves min(svd(A)) and norm(r),
which are usually too expensive to compute.

S = spaugment(A) without a specified value of c, uses max(max(abs(A)))/1000.

Note In previous versions of MATLAB, the augmented matrix was used by sparse linear
equation solvers, \ and /, for nonsquare problems. Now, MATLAB calculates a least-
squares solution using the qr factorization of A.

See Also
spparms

Introduced before R2006a

 spaugment

1-13697

spconvert
Import from sparse matrix external format

Syntax
S = spconvert(D)

Description
S = spconvert(D) constructs sparse matrix S from the columns of D in a manner
similar to the sparse function.

• If D is of size N-by-3, then spconvert uses the columns [i,j,re] of D to construct S,
such that S(i(k), j(k)) = re(k).

• If D is of size N-by-4, then spconvert uses the columns [i,j,re,im] of D to
construct S, such that S(i(k), j(k)) = re(k) + 1i*im(k).

Examples

Convert Data File to Sparse Matrix

Create an ASCII file, uphill.dat, which contains the following values. Save the file in
your current directory.

1 1 1.000000000000000
1 2 0.500000000000000
2 2 0.333333333333333
1 3 0.333333333333333
2 3 0.250000000000000
3 3 0.200000000000000
1 4 0.250000000000000
2 4 0.200000000000000
3 4 0.166666666666667
4 4 0.142857142857143
4 4 0.000000000000000

1 Alphabetical List

1-13698

It is common to purposefully make the last line of the file include the desired size of the
matrix with a value of 0. This practice ensures that the converted sparse matrix has that
size.

Load the data into MATLAB and convert it into a sparse matrix.

load uphill.dat
H = spconvert(uphill)

H =

 (1,1) 1.0000
 (1,2) 0.5000
 (2,2) 0.3333
 (1,3) 0.3333
 (2,3) 0.2500
 (3,3) 0.2000
 (1,4) 0.2500
 (2,4) 0.2000
 (3,4) 0.1667
 (4,4) 0.1429

In this case, the last line in the file is not necessary because the earlier lines already
specify that the matrix is at least 4-by-4.

Input Arguments
D — Input matrix
matrix

Input matrix, specified as a matrix with either three or four columns. In both cases, the
first two columns of D are subscripts and the third column is composed of data values. A
four column matrix specifies the real (third column) and imaginary (fourth column) parts
of complex numbers.

If D is already a sparse matrix, then spconvert returns D.
Data Types: single | double

 spconvert

1-13699

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
full | sparse

Introduced before R2006a

1 Alphabetical List

1-13700

spdiags
Extract and create sparse band and diagonal matrices

Syntax
B = spdiags(A)
[B,d] = spdiags(A)
B = spdiags(A,d)
A = spdiags(B,d,A)
A = spdiags(B,d,m,n)

Description
The spdiags function generalizes the function diag. Four different operations,
distinguished by the number of input arguments, are possible.

B = spdiags(A) extracts all nonzero diagonals from the m-by-n matrix A. B is a
min(m,n)-by-p matrix whose columns are the p nonzero diagonals of A.

[B,d] = spdiags(A) returns a vector d of length p, whose integer components specify
the diagonals in A.

B = spdiags(A,d) extracts the diagonals specified by d.

A = spdiags(B,d,A) replaces the diagonals specified by d with the columns of B. The
output is sparse.

A = spdiags(B,d,m,n) creates an m-by-n sparse matrix by taking the columns of B and
placing them along the diagonals specified by d.

Note In this syntax, if a column of B is longer than the diagonal it is replacing, and m >=
n, spdiags takes elements of super-diagonals from the lower part of the column of B, and
elements of sub-diagonals from the upper part of the column of B. However, if m < n ,
then super-diagonals are from the upper part of the column of B, and sub-diagonals from
the lower part. (See “Example 5A” on page 1-13707 and “Example 5B” on page 1-13708,
below).

 spdiags

1-13701

Arguments
The spdiags function deals with three matrices, in various combinations, as both input
and output.

A An m-by-n matrix, usually (but not necessarily) sparse, with its nonzero or
specified elements located on p diagonals.

B A min(m,n)-by-p matrix, usually (but not necessarily) full, whose columns
are the diagonals of A.

d A vector of length p whose integer components specify the diagonals in A.

Roughly, A, B, and d are related by

for k = 1:p
 B(:,k) = diag(A,d(k))
end

Some elements of B, corresponding to positions outside of A, are not defined by these
loops. They are not referenced when B is input and are set to zero when B is output.

How the Diagonals of A are Listed in the Vector d
An m-by-n matrix A has m+n-1diagonals. These are specified in the vector d using indices
from -m+1 to n-1. For example, if A is 5-by-6, it has 10 diagonals, which are specified in
the vector d using the indices -4, -3 , ... 4, 5. The following diagram illustrates this for a
vector of all ones.

1 Alphabetical List

1-13702

Examples

Example 1
For the following matrix,

A=[0 5 0 10 0 0;...
0 0 6 0 11 0;...
3 0 0 7 0 12;...
1 4 0 0 8 0;...
0 2 5 0 0 9]

A =

 0 5 0 10 0 0
 0 0 6 0 11 0
 3 0 0 7 0 12
 1 4 0 0 8 0
 0 2 5 0 0 9

the command

[B, d] =spdiags(A)

returns

B =

 0 0 5 10
 0 0 6 11
 0 3 7 12
 1 4 8 0
 2 5 9 0

d =

 -3
 -2
 1
 3

 spdiags

1-13703

The columns of the first output B contain the nonzero diagonals of A. The second output d
lists the indices of the nonzero diagonals of A, as shown in the following diagram. See
“How the Diagonals of A are Listed in the Vector d” on page 1-13702.

Note that the longest nonzero diagonal in A is contained in column 3 of B. The other
nonzero diagonals of A have extra zeros added to their corresponding columns in B, to
give all columns of B the same length. For the nonzero diagonals below the main diagonal
of A, extra zeros are added at the tops of columns. For the nonzero diagonals above the
main diagonal of A, extra zeros are added at the bottoms of columns. This is illustrated by
the following diagram.

1 Alphabetical List

1-13704

Example 2
This example generates a sparse tridiagonal representation of the classic second
difference operator on n points.

e = ones(n,1);
A = spdiags([e -2*e e], -1:1, n, n)

Turn it into Wilkinson's test matrix (see gallery):

A = spdiags(abs(-(n-1)/2:(n-1)/2)',0,A)

Finally, recover the three diagonals:

B = spdiags(A)

Example 3
The second example is not square.

A = [11 0 13 0
 0 22 0 24
 0 0 33 0

 spdiags

1-13705

 41 0 0 44
 0 52 0 0
 0 0 63 0
 0 0 0 74]

Here m =7, n = 4, and p = 3.

The statement [B,d] = spdiags(A) produces d = [-3 0 2]' and

B = [41 11 0
 52 22 0
 63 33 13
 74 44 24]

Conversely, with the above B and d, the expression spdiags(B,d,7,4) reproduces the
original A.

Example 4
This example shows how spdiags creates the diagonals when the columns of B are
longer than the diagonals they are replacing.

B = repmat((1:6)',[1 7])

B =

 1 1 1 1 1 1 1
 2 2 2 2 2 2 2
 3 3 3 3 3 3 3
 4 4 4 4 4 4 4
 5 5 5 5 5 5 5
 6 6 6 6 6 6 6

d = [-4 -2 -1 0 3 4 5];
A = spdiags(B,d,6,6);
full(A)

ans =

 1 0 0 4 5 6
 1 2 0 0 5 6
 1 2 3 0 0 6
 0 2 3 4 0 0

1 Alphabetical List

1-13706

 1 0 3 4 5 0
 0 2 0 4 5 6

Example 5A
This example illustrates the use of the syntax A = spdiags(B,d,m,n), under three
conditions:

• m is equal to n
• m is greater than n
• m is less than n

The command used in this example is

A = full(spdiags(B, [-2 0 2], m, n))

where B is the 5-by-3 matrix shown below. The resulting matrix A has dimensions m-by-n,
and has nonzero diagonals at [-2 0 2] (a sub-diagonal at -2, the main diagonal, and a
super-diagonal at 2).

B = [1 6 11
 2 7 12
 3 8 13
 4 9 14
 5 10 15]

The first and third columns of matrix B are used to create the sub- and super-diagonals of
A respectively. In all three cases though, these two outer columns of B are longer than the
resulting diagonals of A. Because of this, only a part of the columns are used in A.

When m == n or m > n, spdiags takes elements of the super-diagonal in A from the
lower part of the corresponding column of B, and elements of the sub-diagonal in A from
the upper part of the corresponding column of B.

A = full(spdiags(B, [-2 0 2], 5, 5))
 Matrix B Matrix A

1 6 11 6 0 13 0 0
2 7 12 0 7 0 14 0
3 8 13 == spdiags => 1 0 8 0 15
4 9 14 0 2 0 9 0
5 10 15 0 0 3 0 10

 spdiags

1-13707

A(3,1), A(4,2), and A(5,3) are taken from the upper part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the lower part of B(:,3).

A = full(spdiags(B, [-2 0 2], 5, 4))
 Matrix B Matrix A

1 6 11 6 0 13 0
2 7 12 0 7 0 14
3 8 13 == spdiags => 1 0 8 0
4 9 14 0 2 0 9
5 10 15 0 0 3 0

Same as in Part A.

When m < n, spdiags does the opposite, taking elements of the super-diagonal in A from
the upper part of the corresponding column of B, and elements of the sub-diagonal in A
from the lower part of the corresponding column of B.

A = full(spdiags(B, [-2 0 2], 4, 5))
 Matrix B Matrix A

1 6 11 6 0 11 0 0
2 7 12 0 7 0 12 0
3 8 13 == spdiags => 3 0 8 0 13
4 9 14 0 4 0 9 0
5 10 15

A(3,1) and A(4,2) are taken from the lower part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the upper part of B(:,3).

Example 5B
Extract the diagonals from the first part of this example back into a column format using
the command

B = spdiags(A)

You can see that in each case the original columns are restored (minus those elements
that had overflowed the super- and sub-diagonals of matrix A).

 Matrix A Matrix B

1 Alphabetical List

1-13708

6 0 13 0 0 1 6 0
0 7 0 14 0 2 7 0
1 0 8 0 15 == spdiags => 3 8 13
0 2 0 9 0 0 9 14
0 0 3 0 10 0 10 15

 Matrix A Matrix B

6 0 13 0 1 6 0
0 7 0 14 2 7 0
1 0 8 0 == spdiags => 3 8 13
0 2 0 9 0 9 14
0 0 3 0

 Matrix A Matrix B

6 0 11 0 0 0 6 11
0 7 0 12 0 0 7 12
3 0 8 0 13 == spdiags => 3 8 13
0 4 0 9 0 4 9 0

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The first input cannot be sparse.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 spdiags

1-13709

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
diag | speye

Introduced before R2006a

1 Alphabetical List

1-13710

specular
Calculate specular reflectance

Syntax
R = specular(Nx,Ny,Nz,S,V)

Description
R = specular(Nx,Ny,Nz,S,V) returns the reflectance of a surface with normal vector
components [Nx,Ny,Nz]. S and V specify the direction to the light source and to the
viewer, respectively. You can specify these directions as three vectors[x,y,z] or two
vectors [Theta Phi (in spherical coordinates).

The specular highlight is strongest when the normal vector is in the direction of (S+V)/2
where S is the source direction, and V is the view direction.

The surface spread exponent can be specified by including a sixth argument as in
specular(Nx,Ny,Nz,S,V,spread).

 specular

1-13711

speye
Sparse identity matrix

Syntax
S = speye(m,n)
S = speye([m n])
S = speye(n)
S = speye

Description
S = speye(m,n) and S = speye([m n]) form an m-by-n sparse matrix with 1s on the
main diagonal.

S = speye(n) abbreviates speye(n,n).

S = speye returns the sparse form of the 1-by-1 identity matrix.

Examples
I = speye(1000) forms the sparse representation of the 1000-by-1000 identity matrix,
which requires only about 16 kilobytes of storage. This is the same final result as I =
sparse(eye(1000,1000)), but the latter requires eight megabytes for temporary
storage for the full representation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-13712

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
spalloc | spdiags | spones | sprand | sprandn

Introduced before R2006a

 speye

1-13713

spfun
Apply function to nonzero sparse matrix elements

Syntax
f = spfun(fun,S)

Description
The spfun function selectively applies a function to only the nonzero elements of a sparse
matrix S, preserving the sparsity pattern of the original matrix (except for underflow or if
fun returns zero for some nonzero elements of S).

f = spfun(fun,S) evaluates fun(S) on the elements of S that are nonzero. fun is a
function handle.

“Parameterizing Functions” explains how to provide additional parameters to the function
fun, if necessary.

Examples
Given the 4-by-4 sparse diagonal matrix

S = spdiags([1:4]',0,4,4)

S =
 (1,1) 1
 (2,2) 2
 (3,3) 3
 (4,4) 4

Because fun returns nonzero values for all nonzero element of S, f = spfun(@exp,S)
has the same sparsity pattern as S.

f =
 (1,1) 2.7183

1 Alphabetical List

1-13714

 (2,2) 7.3891
 (3,3) 20.0855
 (4,4) 54.5982

whereas exp(S) has 1s where S has 0s.

full(exp(S))

ans =
 2.7183 1.0000 1.0000 1.0000
 1.0000 7.3891 1.0000 1.0000
 1.0000 1.0000 20.0855 1.0000
 1.0000 1.0000 1.0000 54.5982

Tips
Functions that operate element-by-element, like those in the elfun directory, are the
most appropriate functions to use with spfun.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 spfun

1-13715

Usage notes and limitations:

• On each lab, fun receives as input only the nonzero elements of S that are local to the
lab. Therefore, functions that operate element by element are the most appropriate for
use with spfun.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
sparse

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-13716

sph2cart
Transform spherical coordinates to Cartesian

Syntax
[x,y,z] = sph2cart(azimuth,elevation,r)

Description
[x,y,z] = sph2cart(azimuth,elevation,r) transforms corresponding elements of
the spherical coordinate arrays azimuth, elevation, and r to Cartesian, or xyz,
coordinates.

Examples

Spherical to Cartesian Coordinates

Convert the spherical coordinates defined by corresponding entries in the matrices az,
el, and r to Cartesian coordinates x, y, and z. These points correspond to the eight
vertices of a cube.

az = [0.7854 0.7854 -0.7854 -0.7854; 2.3562 2.3562 -2.3562 -2.3562]

az = 2×4

 0.7854 0.7854 -0.7854 -0.7854
 2.3562 2.3562 -2.3562 -2.3562

el = [0.6155 -0.6155 0.6155 -0.6155; 0.6155 -0.6155 0.6155 -0.6155]

el = 2×4

 0.6155 -0.6155 0.6155 -0.6155

 sph2cart

1-13717

 0.6155 -0.6155 0.6155 -0.6155

r = 1.7321*ones(2,4)

r = 2×4

 1.7321 1.7321 1.7321 1.7321
 1.7321 1.7321 1.7321 1.7321

[x,y,z] = sph2cart(az,el,r)

x = 2×4

 1.0000 1.0000 1.0000 1.0000
 -1.0000 -1.0000 -1.0000 -1.0000

y = 2×4

 1.0000 1.0000 -1.0000 -1.0000
 1.0000 1.0000 -1.0000 -1.0000

z = 2×4

 1.0001 -1.0001 1.0001 -1.0001
 1.0001 -1.0001 1.0001 -1.0001

Input Arguments
azimuth — Azimuth angle
scalar | vector | matrix | multidimensional array

Azimuth angle, specified as a scalar, vector, matrix, or multidimensional array. azimuth,
elevation, and r must be the same size, or any of them can be scalar.

azimuth is the counterclockwise angle in the x-y plane measured in radians from the
positive x-axis.
Data Types: single | double

1 Alphabetical List

1-13718

Complex Number Support: Yes

elevation — Elevation angle
scalar | vector | matrix | multidimensional array

Elevation angle, specified as a scalar, vector, matrix, or multidimensional array. azimuth,
elevation, and r must be the same size, or any of them can be scalar.

elevation is the elevation angle in radians from the x-y plane.
Data Types: single | double
Complex Number Support: Yes

r — Radius
scalar | vector | matrix | multidimensional array

Radius, specified as a scalar, vector, matrix, or multidimensional array. azimuth,
elevation, and r must be the same size, or any of them can be scalar.

The length units of r can be arbitrary, and the output arrays x, y, and z use the same
units.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
x,y,z — Cartesian coordinates
arrays

Cartesian coordinates, returned as arrays.

Algorithms
The mapping from spherical coordinates to three-dimensional Cartesian coordinates is

x = r .* cos(elevation) .* cos(azimuth)
y = r .* cos(elevation) .* sin(azimuth)
z = r .* sin(elevation)

 sph2cart

1-13719

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-13720

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cart2pol | cart2sph | pol2cart

Introduced before R2006a

 sph2cart

1-13721

sphere
Generate sphere

Syntax
sphere
sphere(n)
sphere(ax,...)
[X,Y,Z] = sphere(...)

Description
The sphere function generates the x-, y-, and z-coordinates of a unit sphere for use with
surf and mesh.

sphere generates a sphere consisting of 20-by-20 faces.

sphere(n) draws a surf plot of an n-by-n sphere in the current figure.

sphere(ax,...) creates the sphere in the axes specified by ax instead of in the current
axes. Specify ax as the first input argument.

[X,Y,Z] = sphere(...) returns the coordinates of the n-by-n sphere in three
matrices that are (n+1)-by-(n+1) in size. You draw the sphere with surf(X,Y,Z) or
mesh(X,Y,Z).

Examples

Plot Sphere

Generate and plot a sphere.

figure
sphere

1 Alphabetical List

1-13722

Plot Multiple Spheres

Define x, y, and z as coordinates of a sphere.

[x,y,z] = sphere;

Plot a sphere centered at the origin. Plot two more spheres centered at (3,-2,0) and
(0,1,-3).

figure
surf(x,y,z)

 sphere

1-13723

hold on
surf(x+3,y-2,z) % centered at (3,-2,0)
surf(x,y+1,z-3) % centered at (0,1,-3)

See Also
axis | cylinder

Introduced before R2006a

1 Alphabetical List

1-13724

spinmap
Rotate colormap colors

Syntax
spinmap
spinmap(t)
spinmap(t,n)

Description
spinmap rotates the current colormap by two rows repeatedly for approximately three
seconds.

spinmap(t) rotates the current colormap by two rows repeatedly for t seconds.

spinmap(t,n) rotates the current colormap by n rows for t seconds.

Examples

Rotate Colormap with Specific Duration and Increment

Create a surface plot that uses the default colormap. Then rotate the colormap by one
row for five seconds.

surf(peaks);
colorbar
spinmap(5,1)

 spinmap

1-13725

Input Arguments
t — Rotation duration
3 (default) | scalar numeric value | 'inf'

Rotation duration, specified as a scalar numeric value or 'inf'. A numeric value
specifies the number of seconds to rotate the colormap. A value of 'inf' makes the
colormap rotate indefinitely.

n — Rotation amount
2 (default) | scalar numeric value

1 Alphabetical List

1-13726

Rotation amount, specified as a numeric scalar value. The first rotation shifts each color
in the colormap by n rows. Subsequent rotations shift the colormap by an additional n
rows.

Positive values increment the rows, where the last color wraps to the first row. A negative
value decrements the rows, where the first color wraps to the last row.

Tips
Press Ctrl+C to interrupt the rotation before t has elapsed.

See Also
Colormap Editor | colormap

Introduced before R2006a

 spinmap

1-13727

spline
Cubic spline data interpolation

Syntax
s = spline(x,y,xq)
pp = spline(x,y)

Description
s = spline(x,y,xq) returns a vector of interpolated values s corresponding to the
query points in xq. The values of s are determined by cubic spline interpolation of x and
y.

pp = spline(x,y) returns a piecewise polynomial structure for use by ppval and the
spline utility unmkpp.

Examples

Spline Interpolation of Sine Data

Use spline to interpolate a sine curve over unevenly-spaced sample points.

x = [0 1 2.5 3.6 5 7 8.1 10];
y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)

1 Alphabetical List

1-13728

Spline Interpolation of Distribution with Specified Endpoint Slopes

Use clamped or complete spline interpolation when endpoint slopes are known. This
example enforces zero slopes at the end points of the interpolation.

x = -4:4;
y = [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];
cs = spline(x,[0 y 0]);
xx = linspace(-4,4,101);
plot(x,y,'o',xx,ppval(cs,xx),'-');

 spline

1-13729

Extrapolation Using Cubic Spline

Extrapolate a data set to predict population growth.

Create two vectors to represent the census years from 1900 to 1990 (t) and the
corresponding United States population in millions of people (p).

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669 ...
 150.697 179.323 203.212 226.505 249.633];

Extrapolate and predict the population in the year 2000 using a cubic spline.

1 Alphabetical List

1-13730

spline(t,p,2000)

ans = 270.6060

Spline Interpolation of Angular Data

Generate the plot of a circle, with the five data points y(:,2),...,y(:,6) marked with
o's. The matrix y contains two more columns than does x. Therefore, spline uses
y(:,1) and y(:,end) as the endslopes. The circle starts and ends at the point (1,0), so
that point is plotted twice.

x = pi*[0:.5:2];
y = [0 1 0 -1 0 1 0;
 1 0 1 0 -1 0 1];
pp = spline(x,y);
yy = ppval(pp, linspace(0,2*pi,101));
plot(yy(1,:),yy(2,:),'-b',y(1,2:5),y(2,2:5),'or')
axis equal

 spline

1-13731

Spline Interpolation of Sine and Cosine Data

Use spline to sample a function over a finer mesh.

Generate sine and cosine curves for a few values between 0 and 1. Use spline
interpolation to sample the functions over a finer mesh.

x = 0:.25:1;
Y = [sin(x); cos(x)];
xx = 0:.1:1;
YY = spline(x,Y,xx);

1 Alphabetical List

1-13732

plot(x,Y(1,:),'o',xx,YY(1,:),'-')
hold on
plot(x,Y(2,:),'o',xx,YY(2,:),':')
hold off

Data Interpolation Using spline and pchip

Compare the interpolation results produced by spline and pchip for two different
functions.

 spline

1-13733

Create vectors of x values, function values at those points y, and query points xq.
Compute interpolations at the query points using both spline and pchip. Plot the
interpolated function values at the query points for comparison.

x = -3:3;
y = [-1 -1 -1 0 1 1 1];
xq1 = -3:.01:3;
p = pchip(x,y,xq1);
s = spline(x,y,xq1);
plot(x,y,'o',xq1,p,'-',xq1,s,'-.')
legend('Sample Points','pchip','spline','Location','SouthEast')

In this case, pchip is favorable since it does not oscillate as freely between the sample
points.

1 Alphabetical List

1-13734

Perform a second comparison using an oscillatory sample function.

x = 0:25;
y = besselj(1,x);
xq2 = 0:0.01:25;
p = pchip(x,y,xq2);
s = spline(x,y,xq2);
plot(x,y,'o',xq2,p,'-',xq2,s,'-.')
legend('Sample Points','pchip','spline')

When the underlying function is oscillatory, spline captures the movement between
points better than pchip.

 spline

1-13735

Input Arguments
x — x-coordinates
vector

x-coordinates, specified as a vector. The vector x specifies the points at which the data y
is given. The elements of x must be unique.
Data Types: single | double

y — Function values at x-coordinates
vector | matrix | array

Function values at x-coordinates, specified as a numeric vector, matrix, or array. x and y
typically have the same length, but y also can have exactly two more elements than x to
specify endslopes.

If y is a matrix or array, then the values in the last dimension, y(:,...,:,j), are taken
as the values to match with x. In that case, the last dimension of y must be the same
length as x or have exactly two more elements.

The endslopes of the cubic spline follow these rules:

• If x and y are vectors of the same size, then the not-a-knot end conditions are used.
• If x or y is a scalar, then it is expanded to have the same length as the other and the

not-a-knot end conditions are used.
• If y is a vector that contains two more values than x has entries, then spline uses the
first and last values in y as the endslopes for the cubic spline. For example, if y is a
vector, then:

• y(2:end-1) gives the function values at each point in x
• y(1) gives the slope at the beginning of the interval located at min(x)
• y(end) gives the slope at the end of the interval located at max(x)

• Similarly, if y is a matrix or an N-dimensional array with size(y,N) equal to
length(x)+2, then:

• y(:,...,:,j+1) gives the function values at each point in x for j =
1:length(x)

• y(:,:,...:,1) gives the slopes at the beginning of the intervals located at
min(x)

1 Alphabetical List

1-13736

• y(:,:,...:,end) gives the slopes at the end of the intervals located at max(x)

Data Types: single | double

xq — Query points
vector

Query points, specified as a vector. The points specified in xq are the x-coordinates for the
interpolated function values s that spline computes.
Data Types: single | double

Output Arguments
s — Interpolated values at query points
vector | matrix | array

Interpolated values at query points, returned as a vector, matrix, or array.

The size of s is related to the sizes of y and xq:

• If y is a vector, then s has the same size as xq.
• If y is an array of size Ny = size(y), then these conditions apply:

• If xq is a scalar or vector, then size(s) returns [Ny(1:end-1) length(xq)].
• If xq is an array, then size(s) returns [Ny(1:end-1) size(xq)].

pp — Piecewise polynomial
structure

Piecewise polynomial, returned as a structure. Use this structure with the ppval function
to evaluate the piecewise polynomial at one or more query points. The structure has these
fields.

Field Description
form 'pp' for piecewise polynomial
breaks Vector of length L+1 with strictly

increasing elements that represent the start
and end of each of L intervals

 spline

1-13737

Field Description
coefs L-by-k matrix with each

row coefs(i,:) containing the local
coefficients of an order k polynomial on
the ith interval, [breaks(i),breaks(i
+1)]

pieces Number of pieces, L
order Order of the polynomials
dim Dimensionality of target

Since the polynomial coefficients in coefs are local coefficients for each interval, you
must subtract the lower endpoint of the corresponding knot interval to use the
coefficients in a conventional polynomial equation. In other words, for the coefficients
[a,b,c,d] on the interval [x1,x2], the corresponding polynomial is

f x = a x− x1
3 + b x− x1

2 + c x− x1 + d .

Tips
• You also can perform spline interpolation using the interp1 function with the

command interp1(x,y,xq,'spline'). While spline performs interpolation on
rows of an input matrix, interp1 performs interpolation on columns of an input
matrix.

Algorithms
A tridiagonal linear system (possibly with several right-hand sides) is solved for the
information needed to describe the coefficients of the various cubic polynomials that
make up the interpolating spline. spline uses the functions ppval, mkpp, and unmkpp.
These routines form a small suite of functions for working with piecewise polynomials.
For access to more advanced features, see interp1 or the Curve Fitting Toolbox™ spline
functions.

References
[1] de Boor, Carl. A Practical Guide to Splines. Springer-Verlag, New York: 1978.

1 Alphabetical List

1-13738

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input x must be strictly increasing.
• Code generation does not remove y entries with NaN values.
• Code generation does not report an error for infinite endslopes in y.
• If you generate code for the pp = spline(x,y) syntax, then you cannot input pp to

the ppval function in MATLAB. To create a MATLAB pp structure from a pp structure
created by the code generator:

• In code generation, use unmkpp to return the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp structure.
• If you supply xq, and if y has a variable-size and is not a variable-length vector, then

the orientation of vector outputs in the generated code might not match the
orientation in MATLAB.

See Also
interp1 | mkpp | pchip | ppval | unmkpp

Introduced before R2006a

 spline

1-13739

split
Split strings at delimiters

Syntax
newStr = split(str)
newStr = split(str,delimiter)
newStr = split(str,delimiter,dim)
[newStr,matches] = split(___)

Description
newStr = split(str) divides str at whitespace characters and returns the result as
the output array newStr. The input array str can be a string array, a character vector, or
a cell array of character vectors. If str is a string array, then so is newStr. Otherwise,
newStr is a cell array of character vectors. newStr does not include the whitespace
characters from str.

If str is a string array or cell array of character vectors, and has multiple elements, then
each element must be divisible into the same number of substrings.

• If str is a string scalar or character vector, then newStr is an N-by-1 string array or
cell array of character vectors, where N is the number of substrings.

• If str is an M-by-1 string array or cell array, then newStr is an M-by-N array.
• If str is a 1-by-M string array or cell array, then newStr is an 1-by-M-by-N array.

For a string array or cell array of any size, split orients the N substrings along the first
trailing dimension with a size of 1.

If the number of substrings is not the same for every element of str, then call split in a
for-loop to divide the elements of str one at a time.

newStr = split(str,delimiter) divides each element of str at the delimiters
specified by delimiter. The output newStr does not include the delimiters.

1 Alphabetical List

1-13740

newStr = split(str,delimiter,dim) divides each element of str into a vector
oriented along the dimension specified by dim.

[newStr,matches] = split(___) additionally returns an array, matches, that
contains all occurrences of delimiters at which the split function splits str. You can use
this syntax with any of the input arguments of the previous syntaxes.

Examples

Split Strings at Whitespace and Rejoin Them

Split names in a string array at whitespace characters. Then reorder the strings and join
them so that the last names precede the first names.

Create a 3-by-1 string array containing names. Starting in R2017a, you can create strings
using double quotes.

names = ["Mary Butler";
 "Santiago Marquez";
 "Diana Lee"]

names = 3x1 string array
 "Mary Butler"
 "Santiago Marquez"
 "Diana Lee"

Split names at whitespace characters, making it a 3-by-2 string array.

names = split(names)

names = 3x2 string array
 "Mary" "Butler"
 "Santiago" "Marquez"
 "Diana" "Lee"

Switch the columns of names so that the last names are in the first column. Add a comma
after each last name.

names = [names(:,2) names(:,1)];
names(:,1) = names(:,1) + ','

 split

1-13741

names = 3x2 string array
 "Butler," "Mary"
 "Marquez," "Santiago"
 "Lee," "Diana"

Join the last and first names. The join function places a space character between the
strings it joins. After the join, names is a 3-by-1 string array.

names = join(names)

names = 3x1 string array
 "Butler, Mary"
 "Marquez, Santiago"
 "Lee, Diana"

Split String at Delimiter and Join with New Delimiter

Create a string that contains the path to a folder. Starting in R2017a, you can create
strings using double quotes.

myPath = "/Users/jdoe/My Documents/Examples"

myPath =
"/Users/jdoe/My Documents/Examples"

Split the path at the / character. split returns myFolders as a 5-by-1 string array. The
first string is "" because myPath starts with the / character.

myFolders = split(myPath,"/")

myFolders = 5x1 string array
 ""
 "Users"
 "jdoe"
 "My Documents"
 "Examples"

Join myFolders into a new path with \ as the delimiter. Add C: as the beginning of the
path.

1 Alphabetical List

1-13742

myNewPath = join(myFolders,"\");
myNewPath = 'C:' + myNewPath

myNewPath =
"C:\Users\jdoe\My Documents\Examples"

Split String at Multiple Delimiters

Create a string. Starting in R2017a, you can create strings using double quotes.

str = "A horse! A horse! My kingdom for a horse!"

str =
"A horse! A horse! My kingdom for a horse!"

Split str at exclamation points and at whitespace characters. newStr is a 10-by-1 string
array. The last string is an empty string, "", because the last character in str is a
delimiter.

newStr = split(str,[" ","!"])

newStr = 12x1 string array
 "A"
 "horse"
 ""
 "A"
 "horse"
 ""
 "My"
 "kingdom"
 "for"
 "a"
 "horse"
 ""

Split String Array with Missing Data Between Delimiters

Create a string array in which each element contains comma-delimited data about a
patient. Starting in R2017a, you can create strings using double quotes.

 split

1-13743

patients = ["LastName,Age,Gender,Height,Weight";
 "Adams,47,F,64,123";
 "Jones,,,68,175";
 "King,,M,66,180";
 "Smith,38,F,63,118"]

patients = 5x1 string array
 "LastName,Age,Gender,Height,Weight"
 "Adams,47,F,64,123"
 "Jones,,,68,175"
 "King,,M,66,180"
 "Smith,38,F,63,118"

Split the string array. A pair of commas with nothing between them indicates missing
data. When split divides on repeated delimiters, it returns empty strings as
corresponding elements of the output array.

patients = split(patients,",")

patients = 5x5 string array
 "LastName" "Age" "Gender" "Height" "Weight"
 "Adams" "47" "F" "64" "123"
 "Jones" "" "" "68" "175"
 "King" "" "M" "66" "180"
 "Smith" "38" "F" "63" "118"

Orient Strings Along Specified Dimension

Create a 3-by-1 string array containing names. Starting in R2017a, you can create strings
using double quotes.

names = ["Mary Butler";
 "Santiago Marquez";
 "Diana Lee"]

names = 3x1 string array
 "Mary Butler"
 "Santiago Marquez"
 "Diana Lee"

1 Alphabetical List

1-13744

Split the array at whitespace characters. By default, split orients the output substrings
along the first trailing dimension with a size of 1. Because names is a 3-by-1 string array,
split orients the substrings along the second dimension of splitNames, that is, the
columns.

splitNames = split(names)

splitNames = 3x2 string array
 "Mary" "Butler"
 "Santiago" "Marquez"
 "Diana" "Lee"

To orient the substrings along the rows, or first dimension, specify the dimension after
you specify the delimiter. splitNames is now a 2-by-3 string array, with the first names in
the first row and the last names in the second row.

splitNames = split(names," ",1)

splitNames = 2x3 string array
 "Mary" "Santiago" "Diana"
 "Butler" "Marquez" "Lee"

Split String and Return Delimiters

Create a string. Starting in R2017a, you can create strings using double quotes.

str = "bacon, lettuce, and tomato"

str =
"bacon, lettuce, and tomato"

Split str on delimiters. Return the results of the split in a string array, and the delimiters
in a second string array. When there is no text between consecutive delimiters, split
returns an empty string.

[newStr,matches] = split(str,["and",","," "])

newStr = 7x1 string array
 "bacon"
 ""

 split

1-13745

 "lettuce"
 ""
 ""
 ""
 "tomato"

matches = 6x1 string array
 ","
 " "
 ","
 " "
 "and"
 " "

Join newStr and matches back together with the join function.

originalStr = join(newStr,matches)

originalStr =
"bacon, lettuce, and tomato"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

delimiter — Delimiting substrings
string array | character vector | cell array of character vectors

Delimiting substrings, specified as a string array, a character vector, or a cell array of
character vectors. The substrings specified in delimiter do not appear in the output
newStr.

Specify multiple delimiters in a string array or a cell array of character vectors. The
split function splits str on the elements of delimiter. The order in which delimiters

1 Alphabetical List

1-13746

appear in delimiter does not matter unless multiple delimiters begin a match at the
same character in str. In that case, the split function splits on the first matching
delimiter in delimiter.
Example: split(str,{' ',',','--'}) splits str on spaces, commas, and pairs of
consecutive dashes.
Data Types: string | char | cell

dim — Dimension along which to split strings
positive integer

Dimension along which to split strings, specified as a positive integer. If dim is not
specified, then the default is the last array dimension with a size that does not equal 1.

Output Arguments
newStr — Substrings split out of original array
string array | cell array of character vectors

Substrings split out of original array, returned as a string array or a cell array of
character vectors. If the input array str is a string array, then so is newStr. Otherwise,
newStr is a cell array of character vectors.
Data Types: string

matches — Identified delimiters
string array | cell array of character vectors

Identified delimiters, returned as a string array or a cell array of character vectors. If the
input array str is a string array, then so is matches. Otherwise, matches is a cell array
of character vectors.

matches always contains one fewer element than output newStr contains.
Data Types: string

 split

1-13747

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
compose | join | newline | regexp | splitlines | sprintf | string

Topics
“Create String Arrays”
“Analyze Text Data with String Arrays”
“Regular Expressions”

Introduced in R2016b

1 Alphabetical List

1-13748

splitlines
Split strings at newline characters

Syntax
newStr = splitlines(str)

Description
newStr = splitlines(str) splits str at newline characters and returns the result as
the output array newStr.

splitlines splits at actual newline characters, not at the literal \n. To split a string that
contains \n, first use compose and then use splitlines.

Examples

Split String at Newline

Split a string at a newline character. When the literal \n represents a newline character,
convert it to an actual newline using the compose function. Then use splitlines to
split the string at the newline character.

Create a string in which two lines of text are separated by \n. You can use + to
concatenate text onto the end of a string. Starting in R2017a, you can create strings using
double quotes.

str = "In Xanadu did Kubla Khan";
str = str + "\n" + "A stately pleasure-dome decree"

str =
"In Xanadu did Kubla Khan\nA stately pleasure-dome decree"

Convert \n into an actual newline character. Although str displays on two lines, str is a
1-by-1 string containing both lines of text.

 splitlines

1-13749

str = compose(str)

str =
 "In Xanadu did Kubla Khan
 A stately pleasure-dome decree"

Split str at the newline character. newStr is a 1-by-2 string array. Each element contains
one line of the text.

newStr = splitlines(str)

newStr = 2x1 string array
 "In Xanadu did Kubla Khan"
 "A stately pleasure-dome decree"

Split Character Vector at Newlines

Create a character vector and split it at newline characters. The newline function
returns the newline character, char(10).

chr = 'Whose woods these are I think I know.';
chr = [chr newline 'His house is in the village though;']

chr =
 'Whose woods these are I think I know.
 His house is in the village though;'

C = splitlines(chr)

C = 2x1 cell array
 {'Whose woods these are I think I know.'}
 {'His house is in the village though;' }

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

1 Alphabetical List

1-13750

Input text, specified as a string array, a character vector, or a cell array of character
vectors. If str is a string array or cell array of character vectors, then each element of
str must contain the same number of newlines.

Output Arguments
newStr — Output text
string array | cell array of character vectors

Output text, returned as a string array or a cell array of character vectors. newStr has
one more dimension than str. The size of the new dimension is one more than the
number of newlines in a string element. splitlines assigns the results of the split along
the new dimension. For example, if str is a 2-by-3 string array, and each string has three
newline characters, then newStr is a 2-by-3-by-4 array.

If the input array str is a string array, then so is newStr. Otherwise, newStr is a cell
array of character vectors.

Tips
If the elements of a string array have different numbers of newline characters, use a for-
loop to access the string elements individually and split them.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
compose | join | newline | regexp | split | sprintf | string

 splitlines

1-13751

Topics
“Create String Arrays”
“Analyze Text Data with String Arrays”

Introduced in R2016b

1 Alphabetical List

1-13752

splitapply
Split data into groups and apply function

Syntax
Y = splitapply(func,X,G)
Y = splitapply(func,X1,...,XN,G)
Y = splitapply(func,T,G)
[Y1,...,YM] = splitapply(___)

Description
Y = splitapply(func,X,G) splits X into groups specified by G and applies the
function func to each group. splitapply returns Y as an array that contains the
concatenated outputs from func for the groups split out of X. The input argument G is a
vector of positive integers that specifies the groups to which corresponding elements of X
belong. If G contains NaN values, splitapply omits the corresponding values in X when
it splits X into groups. To create G, you can use the findgroups function.

splitapply combines two steps in the “Split-Apply-Combine Workflow” on page 1-
13760.

Y = splitapply(func,X1,...,XN,G) splits X1,...,XN into groups and applies
func. The splitapply function calls func once per group, with corresponding elements
from X1,...,XN as the N input arguments to func.

Y = splitapply(func,T,G) splits variables of table T into groups and applies func.
The splitapply function treats the variables of T as vectors, matrices, or cell arrays,
depending on the data types of the table variables. If T has N variables, then func must
accept N input arguments.

[Y1,...,YM] = splitapply(___) splits variables into groups and applies func to
each group. func returns multiple output arguments. Y1,...,YM contains the
concatenated outputs from func for the groups split out of the input data variables. func
can return output arguments that belong to different classes, but the class of each output

 splitapply

1-13753

must be the same each time func is called. You can use this syntax with any of the input
arguments of the previous syntaxes.

The number of output arguments from func need not be the same as the number of input
arguments specified by X1,...,XN.

Examples

Calculate Mean Values of Groups of Data

Calculate the mean heights by gender for groups of patients and display the results.

Load patient heights and genders from the data file patients.mat.

load patients
whos Gender Height

 Name Size Bytes Class Attributes

 Gender 100x1 12212 cell
 Height 100x1 800 double

Specify groups by gender with findgroups.

G = findgroups(Gender);

Split Height into groups specified by G. Calculate the mean height by gender. The first
row of the output argument is the mean height of the female patients, and the second row
is the mean height of the male patients.

splitapply(@mean,Height,G)

ans = 2×1

 65.1509
 69.2340

1 Alphabetical List

1-13754

Split Two Data Variables and Apply Function

Calculate the variances of the differences in blood pressure readings for groups of
patients, and display the results. The blood pressure readings are contained in two data
variables. To calculate the differences, use a function that takes two input arguments.

Load blood pressure readings and smoking data for 100 patients from the data file
patients.mat.

load patients
whos Systolic Diastolic Smoker

 Name Size Bytes Class Attributes

 Diastolic 100x1 800 double
 Smoker 100x1 100 logical
 Systolic 100x1 800 double

Define func as a function that calculates the variances of the differences between systolic
and diastolic blood-pressure readings for smokers and nonsmokers. func requires two
input arguments.

func = @(x,y) var(x-y);

Use findgroups and splitapply to split the patient data into groups and calculate the
variances of the differences. findgroups also returns group identifiers in smokers. The
splitapply function calls func once per group, with Systolic and Diastolic as the
two input arguments.

[G,smokers] = findgroups(Smoker);
varBP = splitapply(func,Systolic,Diastolic,G)

varBP = 2×1

 44.4459
 48.6783

Create a table that contains the variances of the differences, with the number of patients
in each group.

numPatients = splitapply(@numel,Smoker,G);
T = table(smokers,numPatients,varBP)

T=2×3 table
 smokers numPatients varBP

 splitapply

1-13755

 _______ ___________ ______

 false 66 44.446
 true 34 48.678

Return Nonscalar Output for Groups

Calculate the minimum, median, and maximum weights for groups of patients and return
these results as arrays for each group. splitapply concatenates the output arguments
so that you can distinguish output for each group from output for the other groups.

Define a function that returns the minimum, median, and maximum as a row vector.

mystats = @(x)[min(x) median(x) max(x)];

Load patient weights, genders, and status as smokers from patients.mat.

load patients
whos Weight Gender Smoker

 Name Size Bytes Class Attributes

 Gender 100x1 12212 cell
 Smoker 100x1 100 logical
 Weight 100x1 800 double

Use findgroups and splitapply to split the patient weights into groups and calculate
statistics for each group.

G = findgroups(Gender,Smoker);
Y = splitapply(mystats,Weight,G)

Y = 4×3

 111.0000 131.0000 147.0000
 115.0000 131.0000 146.0000
 158.0000 181.5000 194.0000
 164.0000 181.0000 202.0000

1 Alphabetical List

1-13756

In this example, you can return nonscalar output as row vectors because the data and
grouping variables are column vectors. Each row of Y contains statistics for a different
group of patients.

Split Table Data Variables and Apply Function

Calculate the mean body-mass-index (BMI) from tables of patient data. Group the patients
by gender and status as smokers or nonsmokers.

Load patient data and grouping variables into tables.

load patients
DT = table(Height,Weight);
GT = table(Gender,Smoker);

Define a function that calculates mean BMI from the weights and heights of groups or
patients.

meanBMIFcn = @(h,w)mean((w ./ (h.^2)) * 703);

Create a table that contains the mean BMI for each group.

[G,results] = findgroups(GT);
meanBMI = splitapply(meanBMIFcn,DT,G);
results.meanBMI = meanBMI

results=4×3 table
 Gender Smoker meanBMI
 ________ ______ _______

 'Female' false 21.672
 'Female' true 21.669
 'Male' false 26.578
 'Male' true 26.458

 splitapply

1-13757

Return Multiple Statistics for Groups

Calculate the minimum, mean, and maximum heights for groups of patients and return
results in a table.

Define a function in a file named multiStats.m that accepts an input vector and returns
the minimum, mean, and maximum values of the vector.

% Copyright 2015 The MathWorks, Inc.

function [lo,avg,hi] = multiStats(x)
lo = min(x);
avg = mean(x);
hi = max(x);
end

Load patient data into a table.

load patients
T = table(Gender,Height);
summary(T)

Variables:

 Gender: 100x1 cell array of character vectors

 Height: 100x1 double

 Values:

 Min 60
 Median 67
 Max 72

Group patient heights by gender. Create a table that contains the outputs from
multiStats for each group.

[G,gender] = findgroups(T.Gender);
[minHeight,meanHeight,maxHeight] = splitapply(@multiStats,T.Height,G);
result = table(gender,minHeight,meanHeight,maxHeight)

1 Alphabetical List

1-13758

result =

 2x4 table

 gender minHeight meanHeight maxHeight
 ________ _________ __________ _________

 'Female' 60 65.151 70
 'Male' 66 69.234 72

Input Arguments
func — Function to apply to groups of data
function handle

Function to apply to groups of data, specified as a function handle.

If func returns a nonscalar output argument, then the argument must be oriented so that
splitapply can concatenate the output arguments from successive calls to func. For
example, if the input data variables are column vectors, then func must return either a
scalar or a row vector as an output argument.
Example: Y = splitapply(@sum,X,G) returns the sums of the groups of data in X.

X — Data variable
vector | matrix | cell array

Data variable, specified as a vector, matrix, or cell array. The elements of X belong to
groups specified by the corresponding elements of G.

If X is a matrix, splitapply treats each column or row as a separate data variable. The
orientation of G determines whether splitapply treats the columns or rows of X as data
variables.

G — Group numbers
vector of positive integers

Group numbers, specified as a vector of positive integers.

 splitapply

1-13759

• If X is a vector or cell array, then G must be the same length as X.
• If X is a matrix, then the length of G must be equal to the number of columns or rows

of X, depending on the orientation of G.
• If the input argument is table T, then G must be a column vector. The length of G must

be equal to the number of rows of T.

T — Data variables
table

Data variables, specified as a table. splitapply treats each table variable as a separate
data variable.

Definitions

Split-Apply-Combine Workflow
The Split-Apply-Combine workflow is common in data analysis. In this workflow, the
analyst splits the data into groups, applies a function to each group, and combines the
results. The diagram shows a typical example of the workflow and the parts of the
workflow implemented by findgroups and splitapply.

1 Alphabetical List

1-13760

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

The specified function must not rely on any state, such as persistent variables or
random number functions like rand.

For more information, see “Tall Arrays”.

See Also
accumarray | arrayfun | discretize | findgroups | groupsummary | histcounts |
rowfun | unique | varfun

Topics
“Split Table Data Variables and Apply Functions”
“Split Data into Groups and Calculate Statistics”
“Calculations on Tables”
“Grouping Variables To Split Data”

Introduced in R2015b

 splitapply

1-13761

splitvars
Split multicolumn variables in table or timetable

Syntax
T2 = splitvars(T1)
T2 = splitvars(T1,vars)
T2 = splitvars(___ ,'NewVariableNames',newNames)

Description
T2 = splitvars(T1) splits all multicolumn variables in T1 so that they are single-
column variables in T2 (see diagram). All single-column variables from T1 are unaltered.

• If a variable in T1 has multiple columns, then splitvars makes unique names for the
new variables in T2 from the name of the original variable in T1.

• If a variable in T1 is a table itself, then splitvars uses the names of its variables
(and, if necessary, the name of that table) to make unique names for the new variables
in T2.

1 Alphabetical List

1-13762

To merge variables into one multicolumn variable, use the mergevars function.

T2 = splitvars(T1,vars) splits only the table variables specified by vars. You can
specify variables by name, by position, or using logical indices.

T2 = splitvars(___ ,'NewVariableNames',newNames) specifies newNames as the
names of the variables that are split and copied to T2.

Examples

Split Variables

Create a table from workspace variables. Some of the variables are matrices with multiple
columns.

A = (1:3)';
B = [5 11 12; 20 30 50; 0.1 3.4 5.9]';
C = {'a','XX';'b','YY';'c','ZZ'};
D = [128 256 512]';
T1 = table(A,B,C,D)

T1=3×4 table
 A B C D
 _ ________________ ___________ ___

 1 5 20 0.1 'a' 'XX' 128
 2 11 30 3.4 'b' 'YY' 256
 3 12 50 5.9 'c' 'ZZ' 512

Split the variables B and C. All variables in the output table have one column.

T2 = splitvars(T1)

T2=3×7 table
 A B_1 B_2 B_3 C_1 C_2 D
 _ ___ ___ ___ ___ ____ ___

 1 5 20 0.1 'a' 'XX' 128
 2 11 30 3.4 'b' 'YY' 256
 3 12 50 5.9 'c' 'ZZ' 512

 splitvars

1-13763

Specify Variable

Create a table that contains tables, using arrays of data from the patients.mat file.
Display the first three rows.

load patients
Personal_Data = table(Gender,Age);
BMI_Data = table(Height,Weight);
BloodPressure = table(Systolic,Diastolic);
T1 = table(LastName,Personal_Data,BMI_Data,BloodPressure);
head(T1,3)

ans=3×4 table
 LastName Personal_Data BMI_Data BloodPressure
 Gender Age Height Weight Systolic Diastolic
 __________ _______________ ________________ _____________________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

Specify BloodPressure as the variable to split.

T2 = splitvars(T1,'BloodPressure');
head(T2,3)

ans=3×5 table
 LastName Personal_Data BMI_Data Systolic Diastolic
 Gender Age Height Weight
 __________ _______________ ________________ ________ _________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

To specify multiple variables by name, use a cell array of character vectors.

T3 = splitvars(T1,{'BMI_Data','BloodPressure'});
head(T3,3)

1 Alphabetical List

1-13764

ans=3×6 table
 LastName Personal_Data Height Weight Systolic Diastolic
 Gender Age
 __________ _______________ ______ ______ ________ _________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

To specify variables by position, use a numeric array.

T4 = splitvars(T1,[2 4]);
head(T4,3)

ans=3×6 table
 LastName Gender Age BMI_Data Systolic Diastolic
 Height Weight
 __________ ________ ___ ________________ ________ _________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

New Names for Split Variables

Create a table that contains multi-column variables, using data from the patients.mat
file. Display the first three rows.

load patients
Personal_Data = [Age,Height,Weight];
BloodPressure = [Systolic,Diastolic];
T1 = table(LastName,Gender,Personal_Data,BloodPressure);
head(T1,3)

ans=3×4 table
 LastName Gender Personal_Data BloodPressure
 __________ ________ ________________ _____________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77

 splitvars

1-13765

 'Williams' 'Female' 38 64 131 125 83

Split BloodPressure and specify new names for the new variables in the output table.

T2 = splitvars(T1,'BloodPressure','NewVariableNames',{'Systolic','Diastolic'});
head(T2,3)

ans=3×5 table
 LastName Gender Personal_Data Systolic Diastolic
 __________ ________ ________________ ________ _________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

Split both BMI_Data and BloodPressure. For each variable being split, you must
provide a cell array with the correct number of new names.

T3 = splitvars(T1,{'Personal_Data','BloodPressure'},...
 'NewVariableNames',{{'Age','Height','Weight'},{'Systolic','Diastolic'}});
head(T3,3)

ans=3×7 table
 LastName Gender Age Height Weight Systolic Diastolic
 __________ ________ ___ ______ ______ ________ _________

 'Smith' 'Male' 38 71 176 124 93
 'Johnson' 'Male' 43 69 163 109 77
 'Williams' 'Female' 38 64 131 125 83

Input Arguments
T1 — Input table
table | timetable

Input table, specified as a table or timetable.

vars — Variables in input table
character vector | cell array of character vectors | string array | numeric array | logical
array

1 Alphabetical List

1-13766

Variables in the input table, specified as a character vector, cell array of character
vectors, string array, numeric array, or logical array.

newNames — Names of split variables
cell array of character vectors | string array

Names of the split variables, specified as a cell array of character vectors or string array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
addvars | mergevars | movevars | removevars

Topics
“Add, Delete, and Rearrange Table Variables”
“Add and Delete Table Rows”
“Access Data in a Table”
“Modify Units, Descriptions, and Table Variable Names”
“Clean Messy and Missing Data in Tables”

Introduced in R2018a

 splitvars

1-13767

spones
Replace nonzero sparse matrix elements with ones

Syntax
R = spones(S)

Description
R = spones(S) generates a matrix R with the same sparsity structure as S, but with 1's
in the nonzero positions.

Examples
c = sum(spones(S)) is the number of nonzeros in each column.

r = sum(spones(S'))' is the number of nonzeros in each row.

sum(c) and sum(r) are equal, and are equal to nnz(S).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-13768

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
nnz | spalloc | spfun

Introduced before R2006a

 spones

1-13769

spparms
Set parameters for sparse matrix routines

Syntax
spparms('key',value)
spparms
values = spparms
[keys,values] = spparms
spparms(values)
value = spparms('key')
spparms('default')
spparms('tight')

Description
spparms('key',value) sets one or more of the tunable parameters used in the sparse
routines. In ordinary use, you should never need to deal with this function.

The meanings of the key parameters are

'spumoni' Sparse Monitor flag:
0 Produces no diagnostic output, the default
1 Produces information about choice of algorithm based on matrix

structure, and about storage allocation
2 Also produces very detailed information about the sparse matrix

algorithms
'thr_rel',
'thr_abs'

Minimum degree threshold is thr_rel*mindegree + thr_abs.

'exact_d' Nonzero to use exact degrees in minimum degree. Zero to use
approximate degrees.

1 Alphabetical List

1-13770

'supernd' If positive, minimum degree amalgamates the supernodes every
supernd stages.

'rreduce' If positive, minimum degree does row reduction every rreduce
stages.

'wh_frac' Rows with density > wh_frac are ignored in colmmd.
'autommd' Nonzero to use minimum degree (MMD) orderings with QR-based

\ and /.
'autoamd' Nonzero to use colamd ordering with the LU-based \ and /, and to

use amd with Cholesky-based \ and /.
'piv_tol' Pivot tolerance used by the LU-based \ and /.
'bandden' Band density used by \ and / for banded matrices. Band density is

defined as (# nonzeros in the band)/(# nonzeros in a full band). If
bandden = 1.0, never use band solver. If bandden = 0.0,
always use band solver. Default is 0.5.

'umfpack' Nonzero to use UMFPACK instead of the v4 LU-based solver in \
and /.

'sym_tol' Symmetric pivot tolerance. See lu for more information about the
role of the symmetric pivot tolerance.

spparms, by itself, prints a description of the current settings.

values = spparms returns a vector whose components give the current settings.

[keys,values] = spparms returns that vector, and also returns a character matrix
whose rows are the keywords for the parameters.

spparms(values), with no output argument, sets all the parameters to the values
specified by the argument vector.

value = spparms('key') returns the current setting of one parameter.

spparms('default') sets all the parameters to their default settings.

spparms('tight') sets the minimum degree ordering parameters to their tight
settings, which can lead to orderings with less fill-in, but which make the ordering
functions themselves use more execution time.

The key parameters for default and tight settings are

 spparms

1-13771

 Keyword Default Tight
values(1) 'spumoni' 0.0
values(2) 'thr_rel' 1.1 1.0
values(3) 'thr_abs' 1.0 0.0
values(4) 'exact_d' 0.0 1.0
values(5) 'supernd' 3.0 1.0
values(6) 'rreduce' 3.0 1.0
values(7) 'wh_frac' 0.5 0.5
values(8) 'autommd' 1.0
values(9) 'autoamd' 1.0
values(10) 'piv_tol' 0.1
values(11) 'bandden' 0.5
values(12) 'umfpack' 1.0
values(13) 'sym_tol' 0.001

See Also
chol | colamd | lu | qr | symamd

Introduced before R2006a

1 Alphabetical List

1-13772

sprand
Sparse uniformly distributed random matrix

Syntax
R = sprand(S)
R = sprand(m,n,density)
R = sprand(m,n,density,rc)

Description
R = sprand(S) has the same sparsity structure as S, but uniformly distributed random
entries.

R = sprand(m,n,density) is a random, m-by-n, sparse matrix with approximately
density*m*n uniformly distributed nonzero entries (0 <= density <= 1).

R = sprand(m,n,density,rc) also has reciprocal condition number approximately
equal to rc. R is constructed from a sum of matrices of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc as its first lr
singular values, all others are zero. In this case, R is generated by random plane rotations
applied to a diagonal matrix with the given singular values. It has a great deal of
topological and algebraic structure.

Tips
• sprand uses the same random number generator as rand, randi, and randn. You

control this generator with rng.

 sprand

1-13773

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The rc argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See distributed.sprand in the Parallel Computing Toolbox documentation.

See Also
sprandn | sprandsym

Introduced before R2006a

1 Alphabetical List

1-13774

sprandn
Sparse normally distributed random matrix

Syntax
R = sprandn(S)
R = sprandn(m,n,density)
R = sprandn(m,n,density,rc)

Description
R = sprandn(S) has the same sparsity structure as S, but normally distributed random
entries with mean 0 and variance 1.

R = sprandn(m,n,density) is a random, m-by-n, sparse matrix with approximately
density*m*n normally distributed nonzero entries (0 <= density <= 1).

R = sprandn(m,n,density,rc) also has reciprocal condition number approximately
equal to rc. R is constructed from a sum of matrices of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc as its first lr
singular values, all others are zero. In this case, R is generated by random plane rotations
applied to a diagonal matrix with the given singular values. It has a great deal of
topological and algebraic structure.

Tips
• sprandn uses the same random number generator as rand, randi, and randn. You

control this generator with rng.

 sprandn

1-13775

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The rc argument is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See distributed.sprandn in the Parallel Computing Toolbox documentation.

See Also
sprand | sprandsym

Introduced before R2006a

1 Alphabetical List

1-13776

sprandsym
Sparse symmetric random matrix

Syntax
R = sprandsym(S)
R = sprandsym(n,density)
R = sprandsym(n,density,rc)
R = sprandsym(n,density,rc,kind)
R = sprandsym(S,[],rc,3)

Description
R = sprandsym(S) returns a symmetric random matrix whose lower triangle and
diagonal have the same structure as S. Its elements are normally distributed, with mean 0
and variance 1.

R = sprandsym(n,density) returns a symmetric random, n-by-n, sparse matrix with
approximately density*n*n nonzeros; each entry is the sum of one or more normally
distributed random samples, and (0 <= density <= 1).

R = sprandsym(n,density,rc) returns a matrix with a reciprocal condition number
equal to rc. The distribution of entries is nonuniform; it is roughly symmetric about 0; all
are in [−1,1].

If rc is a vector of length n, then R has eigenvalues rc. Thus, if rc is a positive
(nonnegative) vector then R is a positive (nonnegative) definite matrix. In either case, R is
generated by random Jacobi rotations applied to a diagonal matrix with the given
eigenvalues or condition number. It has a great deal of topological and algebraic
structure.

R = sprandsym(n,density,rc,kind) is positive definite.

• If kind = 1, R is generated by random Jacobi rotation of a positive definite diagonal
matrix. R has the desired condition number exactly.

 sprandsym

1-13777

• If kind = 2, R is a shifted sum of outer products. R has the desired condition number
only approximately, but has less structure.

R = sprandsym(S,[],rc,3) has the same structure as the matrix S and approximate
condition number 1/rc.

Tips
sprandsym uses the same random number generator as rand, randi, and randn. You
control this generator with rng.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Supports these syntaxes only:

R = sprandsym(S)

R = sprandsym(n,density)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• Supports these syntaxes only:

1 Alphabetical List

1-13778

R = sprandsym(S)

R = sprandsym(n,density)

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
sprand | sprandn

Introduced before R2006a

 sprandsym

1-13779

sprank
Structural rank

Syntax
r = sprank(A)

Description
r = sprank(A) is the structural rank of the sparse matrix A. For all values of A,

sprank(A) >= rank(full(A))

In exact arithmetic, sprank(A) == rank(full(sprandn(A))) with a probability of
one.

Examples
A = [1 0 2 0
 2 0 4 0];

A = sparse(A);

sprank(A)

ans =
 2

rank(full(A))

ans =
 1

See Also
dmperm

1 Alphabetical List

1-13780

Introduced before R2006a

 sprank

1-13781

spring
Spring colormap array

Syntax
c = spring
c = spring(m)

Description
c = spring returns the spring colormap as a three-column array with the same number
of rows as the colormap for the current figure. If no figure exists, then the number of
rows is equal to the default length of 64. Each row in the array contains the red, green,
and blue intensities for a specific color. The intensities are in the range [0,1], and the
color scheme looks like this image.

c = spring(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the spring colormap.

surf(peaks);
colormap('spring');

1 Alphabetical List

1-13782

Get the spring colormap array and reverse the order. Then apply the modified colormap to
the surface.

c = spring;
c = flipud(c);
colormap(c);

 spring

1-13783

Downsample the Spring Colormap

Get a downsampled version of the spring colormap containing only ten colors. Then
display the contours of the peaks function by applying the colormap and interpolated
shading.

c = spring(10);
surf(peaks);
colormap(c);
shading interp;

1 Alphabetical List

1-13784

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

 spring

1-13785

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

1 Alphabetical List

1-13786

sprintf
Format data into string or character vector

Syntax
str = sprintf(formatSpec,A1,...,An)
[str,errmsg] = sprintf(formatSpec,A1,...,An)
str = sprintf(literalText)

Description
str = sprintf(formatSpec,A1,...,An) formats the data in arrays A1,...,An
using the formatting operators specified by formatSpec and returns the resulting text in
str. The sprintf function formats the values in A1,...,An in column order. If
formatSpec is a string, then so is the output str. Otherwise, str is a character vector.

To return multiple pieces of formatted text as a string array or a cell array of character
vectors, use the compose function.

[str,errmsg] = sprintf(formatSpec,A1,...,An) returns an error message as a
character vector when the operation is unsuccessful. Otherwise, errmsg is empty.

str = sprintf(literalText) translates escape-character sequences in
literalText, such as \n and \t. It returns all other characters unaltered. If
literalText contain a formatting operator (such as %f), then str discards it and all
characters after.

Examples

Floating-Point Formats

Format a floating-point number using %e, %f, and %g specifiers.

 sprintf

1-13787

A = 1/eps;
str_e = sprintf('%0.5e',A)

str_e =
'4.50360e+15'

str_f = sprintf('%0.5f',A)

str_f =
'4503599627370496.00000'

str_g = sprintf('%0.5g',A)

str_g =
'4.5036e+15'

Literal Text and Array Inputs

Combine literal text with array values to create a character vector.

formatSpec = 'The array is %dx%d.';
A1 = 2;
A2 = 3;
str = sprintf(formatSpec,A1,A2)

str =
'The array is 2x3.'

Specify Formatted Text as String Array

To return formatted text as a string, specify formatSpec as a string instead of a
character vector when you call the sprintf function.

Starting in R2017a, you can create strings using double quotes. Convert data and return
the result as a string.

formatSpec = "The current time is: %d:%d %s";
A1 = 11;
A2 = 20;
A3 = 'a.m.';
str = sprintf(formatSpec,A1,A2,A3)

1 Alphabetical List

1-13788

str =
"The current time is: 11:20 a.m."

Convert input string. Input arrays that contain text either can be character vectors or
strings.

A1 = 2;
A2 = 35;
A3 = "p.m.";
str = sprintf(formatSpec,A1,A2,A3)

str =
"The current time is: 2:35 p.m."

Integer Format with Floating-Point Inputs

Explicitly convert double-precision values to integers.

str = sprintf('%d',round(pi))

str =
'3'

Specify Field Width of a Printed Value

Specify the minimum width of the printed value.

str = sprintf('%025d',[123456])

str =
'0000000000000000000123456'

The 0 flag in the %025d format specifier requests leading zeros in the output.

Reorder Inputs Using Position Identifier (n$)

Reorder the input values using the n$ position identifier.

 sprintf

1-13789

A1 = 'X';
A2 = 'Y';
A3 = 'Z';
formatSpec = ' %3$s %2$s %1$s';
str = sprintf(formatSpec,A1,A2,A3)

str =
' Z Y X'

Create Character Vector from Values in Cell Array

C = { 1, 2, 3 ;
 'AA','BB','CC'};

str = sprintf(' %d %s',C{:})

str =
' 1 AA 2 BB 3 CC'

The syntax C{:} creates a comma-separated list of arrays that contain the contents of
each cell from C in column order. For example, C{1}==1 and C{2}=='AA'.

Input Arguments
formatSpec — Format of output fields
formatting operators

Format of the output fields, specified using formatting operators. formatSpec also can
include ordinary text and special characters.

formatSpec can be a character vector in single quotes, or, starting in R2016b, a string
scalar.

Formatting Operator

A formatting operator starts with a percent sign, %, and ends with a conversion character.
The conversion character is required. Optionally, you can specify identifier, flags, field
width, precision, and subtype operators between % and the conversion character. (Spaces
are invalid between operators and are shown here only for readability).

1 Alphabetical List

1-13790

% 3$ 0� 12 .5 b u

Conversion characterIdentifier

Flags

PrecisionField width

Subtype

Conversion Character

This table shows conversion characters to format numeric and character data as text.

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters

a–f
%X Same as %x, uppercase letters A–F

Floating-point number %f Fixed-point notation (Use a precision
operator to specify the number of digits
after the decimal point.)

%e Exponential notation, such as
3.141593e+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%E Same as %e, but uppercase, such as
3.141593E+00 (Use a precision
operator to specify the number of digits
after the decimal point.)

%g The more compact of %e or %f, with no
trailing zeros (Use a precision operator
to specify the number of significant
digits.)

 sprintf

1-13791

Value Type Conversion Details
%G The more compact of %E or %f, with no

trailing zeros (Use a precision operator
to specify the number of significant
digits.)

Characters or strings %c Single character
%s Character vector or string array. The

type of the output text is the same as the
type of formatSpec.

Optional Operators

The optional identifier, flags, field width, precision, and subtype operators further define
the format of the output text.

• Identifier

Order for processing the function input arguments. Use the syntax n$, where n
represents the positions of the other input arguments in the function call.

Example: ('%3$s %2$s %1$s %2$s','A','B','C') prints input arguments 'A',
'B', 'C' as follows: C B A B.

Note: If an input argument is an array, you cannot use identifiers to specify particular
array elements from that input argument.

• Flags

'–' Left-justify.
Example: %-5.2f
Example: %-10s

'+' Always print a sign character (+ or –) for any numeric value.
Example: %+5.2f
Right-justify text.
Example: %+10s

' ' Insert a space before the value.
Example: % 5.2f

'0' Pad to field width with zeros before the value.
Example: %05.2f

1 Alphabetical List

1-13792

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.
• For %f, %e, or %E, print decimal point even when precision is 0.
• For %g or %G, do not remove trailing zeros or decimal point.

Example: %#5.0f
• Field Width

Minimum number of characters to print. The field width operator can be a number, or
an asterisk (*) to refer to an input argument.

When you specify * as the field width operator, the other input arguments must
provide both a width and a value to be printed. Widths and values can be pairs of
arguments or pairs within a numeric array. With * as the field width operator, you can
print different values with different widths.

Example: The input arguments ('%12d',intmax) are equivalent to
('%*d',12,intmax).

Example: The input arguments ('%*d',[2 10 5 100]) return '10 100', with two
spaces allocated for 10 and five spaces for 100. As an alternative, you also can specify
the field widths and values as multiple arguments, as in ('%*d',2,10,5,100).

The function pads to field width with spaces before the value unless otherwise
specified by flags.

• Precision

For %f, %e, or %E Number of digits to the right of the decimal point
Example: '%.4f' prints pi as '3.1416'

For %g or %G Number of significant digits
Example: '%.4g' prints pi as '3.142'

The precision operator can be a number, or an asterisk (*) to refer to an argument.

When you specify * as the field precision operator, the other input arguments must
provide both a precision and a value to be printed. Precisions and values can be pairs
of arguments, or pairs within a numeric array. With * as the precision operator, you
can print different values to different precisions.

 sprintf

1-13793

When you specify *.* as field width and precision operators, you must specify field
widths, precisions, and values as triplets.

Example: The input arguments ('%.4f',pi) are equivalent to ('%.*f',4,pi).

Example: The input arguments ('%6.4f',pi) are equivalent to ('%.*f',6,4,pi).

Example: The input arguments ('%*.*f',6,4,pi,9,6,exp(1)) return '3.1416
2.718282', with 9 and 6 as the field width and precision for the output of exp(1).

Note If you specify a precision operator for floating-point values that exceeds the
precision of the input numeric data type, the results might not match the input values
to the precision you specified. The result depends on your computer hardware and
operating system.

• Subtypes

You can use a subtype operator to print a floating-point value as its octal, decimal, or
hexadecimal value. The subtype operator immediately precedes the conversion
character. This table shows the conversions that can use subtypes.

Input Value Type Subtype and
Conversion Character

Output Value Type

Floating-point number %bx or %bX
%bo
%bu

Double-precision
hexadecimal, octal, or
decimal value
Example: %bx prints pi
as 400921fb54442d18

%tx or %tX
%to
%tu

Single-precision
hexadecimal, octal, or
decimal value
Example: %tx prints pi
as 40490fdb

Text Before or After Formatting Operators

formatSpec can also include additional text before a percent sign, %, or after a
conversion character. The text can be:

• Ordinary text to print.

1 Alphabetical List

1-13794

• Special characters that you cannot enter as ordinary text. This table shows how to
represent special characters in formatSpec.

Special Character Representation
Single quotation mark ''
Percent character %%
Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v
Character whose Unicode numeric value can be
represented by the hexadecimal number, N

\xN

Example:
sprintf('\x5A') returns
'Z'

Character whose Unicode numeric value can be
represented by the octal number, N

\N

Example:
sprintf('\132') returns
'Z'

Notable Behavior of Conversions with Formatting Operators

• Numeric conversions print only the real component of complex numbers.
• If you specify a conversion that does not fit the data, such as a text conversion for a

numeric value, MATLAB overrides the specified conversion, and uses %e.

Example: '%s' converts pi to 3.141593e+00.
• If you apply a text conversion (either %c or %s) to integer values, MATLAB converts

values that correspond to valid character codes to characters.

Example: '%s' converts [65 66 67] to ABC.

 sprintf

1-13795

Data Types: char | string

A1,...,An — Numeric, character, or string arrays
arrays

Numeric, character, or string arrays.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

literalText — Input text without formatting operators
character vector | string scalar

Input text without formatting operators, specified as a character vector or string scalar.
sprintf translates any escape-character sequences in literalText.
Data Types: char | string

Output Arguments
str — Formatted text
character vector | string scalar

Formatted text, returned as a character vector or a string scalar. The type of output
matches the type of formatSpec.

errmsg — Error message
character vector

Error message, returned as a character vector, when the operation is unsuccessful.
Otherwise, errmsg is empty.

Tips
• The sprintf function is similar to fprintf, but fprintf prints to a file or to the

Command Window.
• Format specifiers for the reading functions sscanf and fscanf differ from the

formats for the writing functions sprintf and fprintf. The reading functions do not
support a precision field. The width field specifies a minimum for writing, but a
maximum for reading.

1 Alphabetical List

1-13796

References
[1] Kernighan, B. W., and D. M. Ritchie, The C Programming Language, Second Edition,

Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430 Broadway,
New York, NY 10018.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The formatSpec parameter must be constant.
• In formatSpec, hexadecimal numbers must be in the range [0 7F] and octal numbers

must be in the range [0 177].
• If all the input arrays are constant, the code generator evaluates the sprintf call in

MATLAB at compile time. In this case, the code generation restrictions for sprintf
do not apply and the behavior of sprintf in the generated code is the same as the
behavior in MATLAB.

• If extrinsic calls are not possible, the code generator produces C code for sprintf.
Extrinsic calls are not possible when extrinsic calls are disabled or when sprintf is
called inside a parfor loop.

• The behavior of sprintf in the generated code matches the C compiler behavior
instead of the MATLAB behavior in these cases:

• The format specifier has a corresponding C format specifier, for example, %e or %E.
• The sprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• These options and capabilities are not supported:

• The n$ position identifier for reordering input values

 sprintf

1-13797

• Printing arrays
• Using subtypes to print a floating-point number as its octal, decimal, or

hexadecimal value
• When you call sprintf with the format specifier %s, you cannot put a null character

in the middle of the input character vector. To write a null character, use
sprintf(fid, '%c', char(0)).

• Input argument types must match their format types. For example, if n is a double,
code generation does not allow the following code:

str = sprintf('%d',n)

For code generation, first cast n to a signed integer type such as int8.

str = sprintf('%d',int8(n))

• When you call sprintf with an integer format specifier, the type of the integer
argument must be a type that the target hardware can represent as a native C type.
For example, if you call sprintf('%d', int64(n)), then the target hardware must
have a native C type that supports a 64-bit integer.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
char | compose | fprintf | fscanf | int2str | num2str | sscanf

Topics
“Formatting Text”

1 Alphabetical List

1-13798

Introduced before R2006a

 sprintf

1-13799

spy
Visualize sparsity pattern

Syntax
spy(S)
spy(S,markersize)
spy(S,LineSpec)
spy(S,LineSpec,markersize)

Description

spy(S) plots the sparsity pattern of any matrix S.

spy(S,markersize), where markersize is an integer, plots the sparsity pattern using
markers of the specified point size.

spy(S,LineSpec), where LineSpec is a character vector, uses the specified plot
marker type and color.

spy(S,LineSpec,markersize) uses the specified type, color, and size for the plot
markers.

S is usually a sparse matrix, but full matrices are acceptable, in which case the locations
of the nonzero elements are plotted.

Note spy replaces format +, which takes much more space to display essentially the
same information.

Examples

1 Alphabetical List

1-13800

Plot Sparsity Pattern

This example plots the 60-by-60 sparse adjacency matrix of the connectivity graph of the
Buckminster Fuller geodesic dome. This matrix also represents the soccer ball and the
carbon-60 molecule.

B = bucky;
spy(B)

 spy

1-13801

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
LineSpec | find | gplot | symamd | symrcm

Introduced before R2006a

1 Alphabetical List

1-13802

sqrt
Square root

Syntax
B = sqrt(X)

Description
B = sqrt(X) returns the square root of each element of the array X. For the elements of
X that are negative or complex, sqrt(X) produces complex results.

The sqrt function’s domain includes negative and complex numbers, which can lead to
unexpected results if used unintentionally. For negative and complex numbers z = u +
i*w, the complex square root sqrt(z) returns

sqrt(r)*(cos(phi/2) + 1i*sin(phi/2))

where r = abs(z) is the radius and phi = angle(z) is the phase angle on the closed
interval -pi <= phi <= pi.

If you want negative and complex numbers to return error messages rather than return
complex results, use realsqrt instead.

Examples

Square Root of Vector Elements

Create a row vector containing both negative and positive values.

X = -2:2

X = 1×5

 sqrt

1-13803

 -2 -1 0 1 2

Compute the square root of each element of X.

Y = sqrt(X)

Y = 1×5 complex

 0.0000 + 1.4142i 0.0000 + 1.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i 1.4142 + 0.0000i

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a numeric scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Definitions

IEEE Compliance
For real inputs, sqrt has a few behaviors that differ from those recommended in the
IEEE-754 Standard. In particular, negative inputs produce complex results instead of NaN.

 MATLAB IEEE
sqrt(-0) 0 -0
sqrt(X) for X < 0 0+sqrt(-X)*i NaN

Tips
• See sqrtm for the matrix square root.

1 Alphabetical List

1-13804

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Simulation produces an error. Generated standalone code returns NaN when the input
value x is real, but the output should be complex. To get the complex result, make the
input value complex by passing in complex(x).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

If the output of the function running on the GPU can be complex, then you must explicitly
specify its input arguments as complex. For more information, see “Work with Complex
Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 sqrt

1-13805

See Also
nthroot | realsqrt | sqrtm

Introduced before R2006a

1 Alphabetical List

1-13806

sqrtm
Matrix square root

Syntax
X = sqrtm(A)
[X,residual] = sqrtm(A)
[X,alpha,condx] = sqrtm(A)

Description
X = sqrtm(A) returns the principal square root of the matrix A, that is, X*X = A.

X is the unique square root for which every eigenvalue has nonnegative real part. If A has
any eigenvalues with negative real parts, then a complex result is produced. If A is
singular, then A might not have a square root. If exact singularity is detected, a warning is
printed.

[X,residual] = sqrtm(A) also returns the residual, residual = norm(A-X^2,1)/
norm(A,1). This syntax does not print warnings if exact singularity is detected.

[X,alpha,condx] = sqrtm(A) returns stability factor alpha and an estimate of the
matrix square root condition number of X in 1-norm, condx. The residual norm(A-
X^2,1)/norm(A,1) is bounded approximately by n*alpha*eps and the 1-norm relative
error in X is bounded approximately by n*alpha*condx*eps, where
n = max(size(A)).

Examples

Matrix Squareroot of Difference Operator

Create a matrix representation of the fourth difference operator, A. This matrix is
symmetric and positive definite.

 sqrtm

1-13807

A = [5 -4 1 0 0; -4 6 -4 1 0; 1 -4 6 -4 1; 0 1 -4 6 -4; 0 0 1 -4 6]

A = 5×5

 5 -4 1 0 0
 -4 6 -4 1 0
 1 -4 6 -4 1
 0 1 -4 6 -4
 0 0 1 -4 6

Calculate the unique positive definite square root of A using sqrtm. X is the matrix
representation of the second difference operator.

X = round(sqrtm(A))

X = 5×5

 2 -1 0 0 0
 -1 2 -1 0 0
 0 -1 2 -1 0
 0 0 -1 2 -1
 0 0 0 -1 2

Matrix with Multiple Squareroots

Consider a matrix that has four squareroots, A.

A =
7 10
15 22

Two of the squareroots of A are given by Y1 and Y2:

Y1 =
1 . 5667 1 . 7408
2 . 6112 4 . 1779

Y2 =
1 2
3 4

Confirm that Y1 and Y2 are squareroots of matrix A.

1 Alphabetical List

1-13808

A = [7 10; 15 22];
Y1 = [1.5667 1.7408; 2.6112 4.1779];
A - Y1*Y1

ans = 2×2
10-3 ×

 -0.1258 -0.1997
 -0.2995 -0.4254

Y2 = [1 2; 3 4];
A - Y2*Y2

ans = 2×2

 0 0
 0 0

The other two squareroots of A are -Y1 and -Y2. All four of these roots can be obtained
from the eigenvalues and eigenvectors of A. If [V,D] = eig(A), then the squareroots
have the general form Y = V*S/V, where D = S*S and S has four choices of sign to
produce four different values of Y:

S =
±0 . 3723 0

0 ±5 . 3723

Calculate the squareroot of A with sqrtm. The sqrtm function chooses the positive
square roots and produces Y1, even though Y2 seems to be a more natural result.

Y = sqrtm(A)

Y = 2×2

 1.5667 1.7408
 2.6112 4.1779

 sqrtm

1-13809

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square matrix.
Data Types: single | double
Complex Number Support: Yes

Tips
• Some matrices, like A = [0 1; 0 0], do not have any square roots, real or complex,

and sqrtm cannot be expected to produce one.

Algorithms
The algorithm sqrtm uses is described in [3].

References
[1] N.J. Higham, “Computing real square roots of a real matrix,” Linear Algebra and Appl.,

88/89, pp. 405–430, 1987

[2] Bjorck, A. and S. Hammerling, “A Schur method for the square root of a matrix,”
Linear Algebra and Appl., 52/53, pp. 127–140, 1983

[3] Deadman, E., Higham, N. J. and R. Ralha, “Blocked Schur algorithms for computing
the matrix square root,” Lecture Notes in Comput. Sci., 7782, Springer-Verlag, pp.
171–182, 2013

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-13810

Usage notes and limitations:

• When the input matrix contains a nonfinite value, the generated code does not issue
an error. Instead, the output contains NaN values.

• Code generation does not support sparse matrix inputs for this function.

See Also
expm | funm | logm

Introduced before R2006a

 sqrtm

1-13811

squeeze
Remove dimensions of length 1

Syntax
B = squeeze(A)

Description
B = squeeze(A) returns an array with the same elements as the input array A, but with
dimensions of length 1 removed. For example, if A is a 3-by-1-by-1-by-2 array, then
squeeze(A) returns a 3-by-2 matrix.

If A is a row vector, column vector, scalar, or an array with no dimensions of length 1, then
squeeze returns the input A.

Examples

3-D Array to Matrix

Create a 2-by-1-by-2 array and remove the dimension of length 1, resulting in a 2-by-2
matrix.

A = zeros(2,1,2);
A(:,:,1) = [1 2]';
A(:,:,2) = [3 4]'

A =
A(:,:,1) =

 1
 2

A(:,:,2) =

1 Alphabetical List

1-13812

 3
 4

B = squeeze(A)

B = 2×2

 1 3
 2 4

3-D Array to Vector

Create a 1-by-1-by-3 array and remove the dimensions of length 1, resulting in a 3-by-1
column vector.

A = zeros(1,1,3);
A(:,:,1:3) = [1 2 3]

A =
A(:,:,1) =

 1

A(:,:,2) =

 2

A(:,:,3) =

 3

B = squeeze(A)

B = 3×1

 1
 2

 squeeze

1-13813

 3

Input Arguments
A — Input array
multidimensional array

Input array, specified as a multidimensional array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support cell arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-13814

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
permute | reshape | shiftdim

Introduced before R2006a

 squeeze

1-13815

ss2tf
Convert state-space representation to transfer function

Syntax
[b,a] = ss2tf(A,B,C,D)
[b,a] = ss2tf(A,B,C,D,ni)

Description
[b,a] = ss2tf(A,B,C,D) converts a state-space representation of a system into an
equivalent transfer function. ss2tf returns the Laplace-transform transfer function for
continuous-time systems and the Z-transform transfer function for discrete-time systems.

[b,a] = ss2tf(A,B,C,D,ni) returns the transfer function that results when the nith
input of a system with multiple inputs is excited by a unit impulse.

Examples

Mass-Spring System

A one-dimensional discrete-time oscillating system consists of a unit mass, m, attached to
a wall by a spring of unit elastic constant. A sensor samples the acceleration, a, of the
mass at Fs = 5 Hz.

1 Alphabetical List

1-13816

Generate 50 time samples. Define the sampling interval Δt = 1/Fs.

Fs = 5;
dt = 1/Fs;
N = 50;
t = dt*(0:N-1);

The oscillator can be described by the state-space equations

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r v T is the state vector, r and v are respectively the position and velocity of
the mass, and the matrices

A =
cosΔt sinΔt
−sinΔt cosΔt

, B =
1− cosΔt

sinΔt
, C = −1 0 , D = 1 .

A = [cos(dt) sin(dt);-sin(dt) cos(dt)];
B = [1-cos(dt);sin(dt)];
C = [-1 0];
D = 1;

The system is excited with a unit impulse in the positive direction. Use the state-space
model to compute the time evolution of the system starting from an all-zero initial state.

u = [1 zeros(1,N-1)];

x = [0;0];
for k = 1:N
 y(k) = C*x + D*u(k);
 x = A*x + B*u(k);
end

Plot the acceleration of the mass as a function of time.

stem(t,y,'filled')
xlabel('t')

 ss2tf

1-13817

Compute the time-dependent acceleration using the transfer function H(z) to filter the
input. Plot the result.

[b,a] = ss2tf(A,B,C,D);
yt = filter(b,a,u);
stem(t,yt,'filled')
xlabel('t')

1 Alphabetical List

1-13818

The transfer function of the system has an analytic expression:

H(z) = 1− z−1(1 + cosΔt) + z−2cosΔt
1− 2z−1cosΔt + z−2 .

Use the expression to filter the input. Plot the response.

bf = [1 -(1+cos(dt)) cos(dt)];
af = [1 -2*cos(dt) 1];
yf = filter(bf,af,u);
stem(t,yf,'filled')
xlabel('t')

 ss2tf

1-13819

The result is the same in all three cases.

Two-Body Oscillator

An ideal one-dimensional oscillating system consists of two unit masses, m1 and m2,
confined between two walls. Each mass is attached to the nearest wall by a spring of unit
elastic constant. Another such spring connects the two masses. Sensors sample a1 and a2,
the accelerations of the masses, at Fs = 16 Hz.

1 Alphabetical List

1-13820

Specify a total measurement time of 16 s. Define the sampling interval Δt = 1/Fs.

Fs = 16;
dt = 1/Fs;
N = 257;
t = dt*(0:N-1);

The system can be described by the state-space model

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n) + Du(n),

where x = r1 v1 r2 v2
T is the state vector and ri and vi are respectively the location and

the velocity of the i-th mass. The input vector u = u1 u2
T and the output vector

y = a1 a2
T. The state-space matrices are

A = exp(AcΔt), B = Ac
−1(A− I)Bc, C =

−2 0 1 0
1 0 −2 0

, D = I,

the continuous-time state-space matrices are

Ac =

0 1 0 0
−2 0 1 0
0 0 0 1
1 0 −2 0

, Bc =

0 0
1 0
0 0
0 1

,

and I denotes an identity matrix of the appropriate size.

Ac = [0 1 0 0;-2 0 1 0;0 0 0 1;1 0 -2 0];
A = expm(Ac*dt);
Bc = [0 0;1 0;0 0;0 1];
B = Ac\(A-eye(4))*Bc;

 ss2tf

1-13821

C = [-2 0 1 0;1 0 -2 0];
D = eye(2);

The first mass, m1, receives a unit impulse in the positive direction.

ux = [1 zeros(1,N-1)];
u0 = zeros(1,N);
u = [ux;u0];

Use the model to compute the time evolution of the system starting from an all-zero initial
state.

x = [0;0;0;0];
for k = 1:N
 y(:,k) = C*x + D*u(:,k);
 x = A*x + B*u(:,k);
end

Plot the accelerations of the two masses as functions of time.

stem(t,y','.')
xlabel('t')
legend('a_1','a_2')
title('Mass 1 Excited')
grid

1 Alphabetical List

1-13822

Convert the system to its transfer function representation. Find the response of the
system to a positive unit impulse excitation on the first mass.

[b1,a1] = ss2tf(A,B,C,D,1);
y1u1 = filter(b1(1,:),a1,ux);
y1u2 = filter(b1(2,:),a1,ux);

Plot the result. The transfer function gives the same response as the state-space model.

stem(t,[y1u1;y1u2]','.')
xlabel('t')
legend('a_1','a_2')
title('Mass 1 Excited')
grid

 ss2tf

1-13823

The system is reset to its initial configuration. Now the other mass, m2, receives a unit
impulse in the positive direction. Compute the time evolution of the system.

u = [u0;ux];

x = [0;0;0;0];
for k = 1:N
 y(:,k) = C*x + D*u(:,k);
 x = A*x + B*u(:,k);
end

Plot the accelerations. The responses of the individual masses are switched.

1 Alphabetical List

1-13824

stem(t,y','.')
xlabel('t')
legend('a_1','a_2')
title('Mass 2 Excited')
grid

Find the response of the system to a positive unit impulse excitation on the second mass.

[b2,a2] = ss2tf(A,B,C,D,2);
y2u1 = filter(b2(1,:),a2,ux);
y2u2 = filter(b2(2,:),a2,ux);

Plot the result. The transfer function gives the same response as the state-space model.

 ss2tf

1-13825

stem(t,[y2u1;y2u2]','.')
xlabel('t')
legend('a_1','a_2')
title('Mass 2 Excited')
grid

Input Arguments
A — State matrix
matrix

1 Alphabetical List

1-13826

State matrix, specified as a matrix. If the system has p inputs and q outputs and is
described by n state variables, then A is n-by-n.
Data Types: single | double

B — Input-to-state matrix
matrix

Input-to-state matrix, specified as a matrix. If the system has p inputs and q outputs and
is described by n state variables, then B is n-by-p.
Data Types: single | double

C — State-to-output matrix
matrix

State-to-output matrix, specified as a matrix. If the system has p inputs and q outputs and
is described by n state variables, then C is q-by-n.
Data Types: single | double

D — Feedthrough matrix
matrix

Feedthrough matrix, specified as a matrix. If the system has p inputs and q outputs and is
described by n state variables, then D is q-by-p.
Data Types: single | double

ni — Input index
1 (default) | integer scalar

Input index, specified as an integer scalar. If the system has p inputs, use ss2tf with a
trailing argument ni = 1, …, p to compute the response to a unit impulse applied to the
nith input.
Data Types: single | double

Output Arguments
b — Transfer function numerator coefficients
vector | matrix

 ss2tf

1-13827

Transfer function numerator coefficients, returned as a vector or matrix. If the system has
p inputs and q outputs and is described by n state variables, then b is q-by-(n + 1) for
each input. The coefficients are returned in descending powers of s or z.

a — Transfer function denominator coefficients
vector

Transfer function denominator coefficients, returned as a vector. If the system has p
inputs and q outputs and is described by n state variables, then a is 1-by-(n + 1) for each
input. The coefficients are returned in descending powers of s or z.

Definitions
Transfer Function
• For discrete-time systems, the state-space matrices relate the state vector x, the input

u, and the output y through

x(k + 1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k) .

The transfer function is the Z-transform of the system’s impulse response. It can be
expressed in terms of the state-space matrices as

H(z)=C(zI− A)−1B + D .
• For continuous-time systems, the state-space matrices relate the state vector x, the

input u, and the output y through

ẋ = A x + B u
y = C x + D u .

The transfer function is the Laplace transform of the system’s impulse response. It can
be expressed in terms of the state-space matrices as

H(s) = C(sI− A)−1B + D .

See Also
latc2tf | sos2tf | ss2sos | ss2zp | tf2ss | zp2tf

1 Alphabetical List

1-13828

Introduced before R2006a

 ss2tf

1-13829

sscanf
Read formatted data from strings

Syntax
A = sscanf(str,formatSpec)
A = sscanf(str,formatSpec,sizeA)
[A,n] = sscanf(___)
[A,n,errmsg] = sscanf(___)
[A,n,errmsg,nextindex] = sscanf(___)

Description
A = sscanf(str,formatSpec) reads data from str, converts it according to the
format specified by formatSpec, and returns the results in an array. str is either a
character array or a string scalar. The sscanf function repeatedly applies formatSpec
to sequences of characters in str until it either reaches the end of str or fails to match
formatSpec to a sequence of characters. If str is a character array with more than one
row, sscanf reads the characters in column order.

A = sscanf(str,formatSpec,sizeA) sets the size of the output array to be sizeA
and then reads data from str into the output array. sizeA must be a positive integer or
have the form [m n], where m and n are positive integers.

[A,n] = sscanf(___) also returns the number of elements that sscanf successfully
reads into A.

[A,n,errmsg] = sscanf(___) also returns a character vector containing an error
message when sscanf fails to read all the data into A. If sscanf succeeds, then errmsg
is an empty character vector.

[A,n,errmsg,nextindex] = sscanf(___) also returns the index of the position in
str that immediately follows the last character scanned by sscanf.

1 Alphabetical List

1-13830

Examples

Convert Character Vector to Numbers

Create a character vector that represents several numbers separated by whitespace
characters. Convert the character vector to a column vector of numbers. sscanf treats
whitespace characters as separators between numbers.

chr = '2.7183 3.1416 0.0073'

chr =
'2.7183 3.1416 0.0073'

A = sscanf(chr,'%f')

A = 3×1

 2.7183
 3.1416
 0.0073

Convert Text and Resize Output Array

Create a string that represents several numbers and convert it using sscanf. Specify the
size of the output array.

Starting in R2017a, you can create strings using double quotes.

str = "2.7183 3.1416 0.0073"

str =
"2.7183 3.1416 0.0073"

A = sscanf(str,'%f',[1 3])

A = 1×3

 2.7183 3.1416 0.0073

 sscanf

1-13831

Convert str to a 2-by-2 matrix. Because str represents only three numbers, sscanf
pads A with enough zeroes to fill in the matrix.

A = sscanf(str,'%f',[2 2])

A = 2×2

 2.7183 0.0073
 3.1416 0

Count Elements Found in Text

Create a string that contains numbers separated by whitespace characters. Count the
elements that sscanf puts into the output array when it converts the string to numbers.

Starting in R2017a, you can create strings using double quotes.

str = "78 72 64 66 49"

str =
"78 72 64 66 49"

Count the elements in the output array A. Convert the numbers in the string using the %d
operator. %d matches integers separated by whitespace. To return the number of
elements in A, specify a second output argument.

[A,n] = sscanf(str,'%d')

A = 5×1

 78
 72
 64
 66
 49

n = 5

1 Alphabetical List

1-13832

Display Error Message

Create a string and read data from it. When sscanf fails to convert all of the input string,
display the error message.

Starting in R2017a, you can create strings using double quotes.

str = "3.14159 are the first 6 digits of pi"

str =
"3.14159 are the first 6 digits of pi"

Convert the number in str. Since str also contains characters that %f cannot match,
sscanf returns an error message. sscanf stops processing as soon as it encounters the
word 'are' because it cannot be converted to a number.

[A,n,errmsg] = sscanf(str,'%f')

A = 3.1416

n = 1

errmsg =
'Matching failure in format.'

Return Last Position Scanned

Create a character vector and read data from it. When sscanf fails to convert all of the
input, return the index that immediately follows the position at which sscanf stopped.
Use this index to display the unscanned input.

chr = '3.14159 are the first 6 digits of pi'

chr =
'3.14159 are the first 6 digits of pi'

Convert the data in chr. Return the index.

[A,~,~,nextindex] = sscanf(chr,'%f')

A = 3.1416

nextindex = 9

 sscanf

1-13833

Display the characters from chr that sscanf did not scan.

chr(nextindex:end)

ans =
'are the first 6 digits of pi'

Match Specified Characters

Create a string that contains several temperatures, indicated by the degree symbol and
the letter F. Convert the temperatures to a numeric array.

Starting in R2017a, you can create strings using double quotes. To insert the degree
symbol (char(176)), use the insertBefore function.

T = "78F 72F 64F 66F 49F";
degreeSymbol = char(176);
T = insertBefore(T,'F',degreeSymbol)

T =
"78°F 72°F 64°F 66°F 49°F"

Return the temperatures as a numeric array.

A = sscanf(T,strcat("%d",degreeSymbol,"F"))

A = 5×1

 78
 72
 64
 66
 49

Input Arguments
str — Input text to scan
character array | string scalar

1 Alphabetical List

1-13834

Input text to scan, specified as a character array or string scalar. If str is a character
array, then it can have multiple rows, and sscanf reads the characters in column order.
Data Types: char | string

formatSpec — Format of input fields
formatting operators

Format of the input fields, specified using formatting operators. formatSpec can be a
character vector in single quotes, or a string scalar.

Numeric Fields

This table lists available conversion specifiers to convert text to numeric outputs. sscanf
converts values to their decimal (base 10) representation.

Numeric Field Type Conversion
Specifier

Description

Integer, signed %d Base 10.
%i The values determine the base:

• The default is base 10.
• If the initial digits are 0x or 0X, then the

values are base 16 (hexadecimal).
• If the initial digit is 0, then values are base

8 (octal).
%ld or %li 64-bit values, base 10, 8, or 16.

Integer, unsigned %u Base 10.
%o Base 8 (octal).
%x Base 16 (hexadecimal).
%lu, %lo, %lx 64-bit values, base 10, 8, or 16.

 sscanf

1-13835

Numeric Field Type Conversion
Specifier

Description

Floating-point number %f, %e, or %g Floating-point values. Input fields can contain
any of the following (not case sensitive): Inf,
-Inf, NaN, or -NaN. Input fields that
represent floating-point numbers can include
leading + or - symbols and exponential
notation using e or E. The conversion
specifiers %f, %e, and %g all treat input fields
the same way.

Character Fields

This table lists available conversion specifiers to convert text so that the output is a
character array.

Character Field Type Conversion
Specifier

Description

Character vector or
string scalar

%s Read the text until sscanf encounters
whitespace.

%c Read any single character, including
whitespace.
To read multiple characters at a time, specify
field width. For example, %10c reads 10
characters at a time.

Pattern-matching %[...] Read only characters in the brackets up to the
first nonmatching character or whitespace.

Example: %[mus] reads 'summer ' as
'summ'.

If formatSpec contains a combination of numeric and character specifiers, then sscanf
converts each character to its numeric equivalent.

Optional Operators

• Fields and Characters to Ignore

1 Alphabetical List

1-13836

sscanf reads all numeric values and characters in sequence, unless you tell it to
ignore a particular field or a portion of a field. To skip fields, insert an asterisk (*)
after the percent sign (%). For example, to skip integers, specify %*d.

• Field Width

To specify the maximum number of digits or text characters to read at a time, insert a
number after the percent character. For example, %10c reads up to 10 characters at a
time, including whitespace. %4f reads up to four digits at a time, including the decimal
point.

• Literal Text to Ignore

sscanf ignores specified text immediately before or after the conversion specifier.

Example: Level%u reads 'Level1' as 1.

Example: %uStep reads '2Step' as 2.

Data Types: char | string

sizeA — Dimensions of output array
Inf (default) | integer | two-element row vector

Dimensions of the output array, A, specified as Inf, a positive integer, or a two-element
row vector.

Form of sizeA Input Description
Inf Read input to the end.

For numeric data, A is a column vector.
For text data, A is a character vector.

n Read at most n numeric values or space-delimited
character fields.
For numeric data, A is a column vector.
For text data, A is a character vector.

[m n] Read at most m*n numeric values or character fields.
n can be Inf, but m cannot. A is m-by-n, filled in
column order.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 sscanf

1-13837

Output Arguments
A — Output data
column vector | matrix | character array

Output data, returned as a column vector, matrix, or character array. The class and size of
A depend on the conversions specified by formatSpec and the size of the output array
specified by sizeA:

• If formatSpec contains only numeric specifiers, then A is a numeric column vector. If
you also specify the sizeA argument, then A is a matrix of the specified size, and is
padded with zeroes if necessary. If the input contains fewer than sizeA values, then
the size of A is smaller than sizeA. Instead, it is the size required to store the values
scanned from the input.

• If formatSpec contains only 64-bit signed integer specifiers, then A is of class
int64.

• If formatSpec contains only 64-bit unsigned integer specifiers, then A is of class
uint64.

• Otherwise, A is of class double.
• If formatSpec contains only %c or %s specifiers, then A is a character vector. If you

also specify sizeA, then A is a character array, and is padded as necessary with null
characters. (The null character is a control character with the value zero.) If the input
contains fewer than sizeA characters, then the size of A is smaller than sizeA.
Instead, it is the size required to store the characters scanned from the input.

• If formatSpec contains a combination of numeric and character specifiers, then A is
numeric, of class double, and sscanf converts each character to its numeric
equivalent. This conversion occurs even when formatSpec explicitly skips all numeric
fields (for example, formatSpec is '%*d %s').

• If sscanf cannot match all of the input to formatSpec, then A can be numeric or a
character array. The class of A depends on the values that sscanf reads before it
stops processing.

Data Types: double | int64 | uint64 | char

n — Number of elements read into output array
integer

Number of elements read into the output array, returned as an integer.

1 Alphabetical List

1-13838

Data Types: double

errmsg — Error message
character vector

Error message, returned as a character vector. If str contains any data that sscanf
cannot convert, then errmsg contains an error message. If sscanf converts all the data
successfully, then errmsg is an empty character vector.
Data Types: char

nextindex — Position after last character scanned
integer

Position after the last character scanned, returned as an integer.
Data Types: double

Tips
• Format specifiers for the reading functions sscanf and fscanf differ from the

formats for the writing functions sprintf and fprintf. The reading functions do not
support a precision field. The width field specifies a minimum for writing, but a
maximum for reading.

See Also
compose | fprintf | fscanf | sprintf | textscan

Topics
“Formatting Text”

Introduced before R2006a

 sscanf

1-13839

stack
Stack data from multiple variables into single variable

Syntax
S = stack(U,vars)
S = stack(U,vars,Name,Value)
[S,iu] = stack(___)

Description
S = stack(U,vars) converts the table or timetable, U, into an equivalent table or
timetable, S, that is stacked. The stack function stacks up multiple variables from U,
specified by vars, into a single variable in S. In general, S contains fewer variables, but
more rows, than U.

The output argument, S, contains a new categorical variable to indicate which variable in
U the stacked data in each row came from. stack replicates data from the variables in U
that are not stacked.

• If U is a table, then you cannot stack row names.
• If U is a timetable, then you cannot stack row times.

S = stack(U,vars,Name,Value) converts the table, U, with additional options
specified by one or more Name,Value pair arguments.

For example, you can specify variable names for the new and stacked variables in U.

[S,iu] = stack(___) also returns an index vector, iu, indicating the correspondence
between rows in S and rows in U. You can use any of the previous input arguments.

Examples

1 Alphabetical List

1-13840

Stack Three Variables into One

Create a table containing test scores from three separate tests. The table is in unstacked
format.

Test1 = [93;57;87;89];
Test2 = [89;77;92;86];
Test3 = [95;62;89;91];

U = table(Test1,Test2,Test3)

U=4×3 table
 Test1 Test2 Test3
 _____ _____ _____

 93 89 95
 57 77 62
 87 92 89
 89 86 91

The table contains four rows and three variables.

Stack the test scores into a single variable.

S = stack(U,1:3)

S=12×2 table
 Test1_Test2_Test3_Indicator Test1_Test2_Test3
 ___________________________ _________________

 Test1 93
 Test2 89
 Test3 95
 Test1 57
 Test2 77
 Test3 62
 Test1 87
 Test2 92
 Test3 89
 Test1 89
 Test2 86
 Test3 91

S contains twelve rows and two variables. S is in stacked format.

 stack

1-13841

The categorical variable, Test1_Test2_Test3_Indicator, identifies which test
corresponds to the score in the stacked data variable, Test1_Test2_Test3.

Stack Variables and Specify Variable Names

Create a table indicating the amount of snowfall at three locations from five separate
storms.

Storm = [1;2;3;4;5];
Date = {'12/25/11';'1/2/12';'1/23/12';'2/7/12';'2/15/12'};
Natick = [20;5;13;0;17];
Boston = [18;9;21;5;12];
Worcester = [26;10;16;3;15];

U = table(Storm,Date,Natick,Boston,Worcester)

U=5×5 table
 Storm Date Natick Boston Worcester
 _____ __________ ______ ______ _________

 1 '12/25/11' 20 18 26
 2 '1/2/12' 5 9 10
 3 '1/23/12' 13 21 16
 4 '2/7/12' 0 5 3
 5 '2/15/12' 17 12 15

The variables Storm and Date contain data that is constant at each location.

Stack the variables Natick, Boston, and Worcester into a single variable. Name the
variable containing the stacked data, Snowfall, and name the new indicator variable,
Town.

S = stack(U,{'Natick','Boston','Worcester'},...
 'NewDataVariableName','Snowfall',...
 'IndexVariableName','Town')

S=15×4 table
 Storm Date Town Snowfall
 _____ __________ _________ ________

 1 '12/25/11' Natick 20

1 Alphabetical List

1-13842

 1 '12/25/11' Boston 18
 1 '12/25/11' Worcester 26
 2 '1/2/12' Natick 5
 2 '1/2/12' Boston 9
 2 '1/2/12' Worcester 10
 3 '1/23/12' Natick 13
 3 '1/23/12' Boston 21
 3 '1/23/12' Worcester 16
 4 '2/7/12' Natick 0
 4 '2/7/12' Boston 5
 4 '2/7/12' Worcester 3
 5 '2/15/12' Natick 17
 5 '2/15/12' Boston 12
 5 '2/15/12' Worcester 15

S contains three rows for each storm, and stack repeats the data in the constant
variables, Storm and Date, accordingly.

The categorical variable, Town, identifies which variable in U contains the corresponding
Snowfall data.

Stack Variables and Output Index Vector

Create a table containing estimated influenza rates along the east coast of the United
States. Create a different variable for the Northeast, Mid Atlantic, and South Atlantic.
Data Source: Google Flu Trends (https://www.google.org/flutrends).

Month = {'October';'November';'December';...
 'January';'February';'March'};
Year = [2005*ones(3,1); 2006*ones(3,1)];
NE = [1.1902; 1.3610; 1.5003; 1.7772; 2.1350; 2.2345];
MidAtl = [1.1865; 1.4120; 1.6043; 1.8830; 2.1227; 1.9920];
SAtl = [1.2730; 1.5820; 1.8625; 1.9540; 2.4803; 2.0203];

fluU = table(Month,Year,NE,MidAtl,SAtl)

fluU=6×5 table
 Month Year NE MidAtl SAtl
 __________ ____ ______ ______ ______

 'October' 2005 1.1902 1.1865 1.273

 stack

1-13843

https://www.google.org/flutrends

 'November' 2005 1.361 1.412 1.582
 'December' 2005 1.5003 1.6043 1.8625
 'January' 2006 1.7772 1.883 1.954
 'February' 2006 2.135 2.1227 2.4803
 'March' 2006 2.2345 1.992 2.0203

The variables Month and Year contain data that is constant across the row.

Stack the variables NE, MidAtl, and SAtl into a single variable called FluRate. Name
the new indicator variable Region and output an index vector, ifluU, to indicate the
correspondence between rows in the input unstacked table, fluU, and the output stacked
table, fluS.

[fluS,ifluU] = stack(fluU,3:5,...
 'NewDataVariableName','FluRate',...
 'IndexVariableName','Region')

fluS=18×4 table
 Month Year Region FluRate
 __________ ____ ______ _______

 'October' 2005 NE 1.1902
 'October' 2005 MidAtl 1.1865
 'October' 2005 SAtl 1.273
 'November' 2005 NE 1.361
 'November' 2005 MidAtl 1.412
 'November' 2005 SAtl 1.582
 'December' 2005 NE 1.5003
 'December' 2005 MidAtl 1.6043
 'December' 2005 SAtl 1.8625
 'January' 2006 NE 1.7772
 'January' 2006 MidAtl 1.883
 'January' 2006 SAtl 1.954
 'February' 2006 NE 2.135
 'February' 2006 MidAtl 2.1227
 'February' 2006 SAtl 2.4803
 'March' 2006 NE 2.2345
 ⋮

ifluU = 18×1

 1
 1

1 Alphabetical List

1-13844

 1
 2
 2
 2
 3
 3
 3
 4
 ⋮

ifluU(5) is 2. The fifth row in the output table, fluS, contains data from the second row
in the input table fluU.

Input Arguments
U — Input table
table | timetable

Input table, specified as a table or a timetable.

vars — Variables in U to stack
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables in U to stack, specified as a positive integer, vector of positive integers,
character vector, cell array of character vectors, string array, or logical vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NewDataVariableName','StackedData' names the new data variable
StackedData.

ConstantVariables — Variables other than vars to include in the output
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

 stack

1-13845

Variables other than vars to include in the output, specified as the comma-separated pair
consisting of 'ConstantVariables' and a positive integer, vector of positive integers,
character vector, cell array of character vectors, string array, or logical vector. stack
replicates the data from the constant variables for each stacked entry from a row.

The default is all the variables in U not specified by vars. You can specify the
'ConstantVariables' name-value pair argument to exclude variables not specified by
vars or 'ConstantVariables' from the output table, S.

U can have row labels along its first dimension. If U is a table, then it can have row names
as the labels. If U is a timetable, then it must have row times as the labels.

• You can include the row names or row times when you specify the value of
'ConstantVariables'.

• stack replicates the row names or row times even when you do not include them in
'ConstantVariables'.

NewDataVariableName — Name for the new data variable in S
character vector | string scalar

Name for the new data variable in S, specified as the comma-separated pair consisting of
'NewDataVariableName' and a character vector or string scalar. The default is a
concatenation of the names of the variables from U that are stacked up.

IndexVariableName — Name for the new indicator variable in S
character vector | string scalar

Name for the new indicator variable in S, specified as the comma-separated pair
consisting of 'IndexVariableName' and a character vector or string scalar. The default
is a name based on NewDataVariableName.

Output Arguments
S — Output table
table | timetable

Stacked table, returned as a table or a timetable. S contains a stacked data variable, a
categorical indicator variable, and any constant variables.

1 Alphabetical List

1-13846

You can store additional metadata such as descriptions, variable units, variable names,
and row names in S. For more information, see the Properties sections of table or
timetable.

stack assigns the variable units and variable description property values from the first
variable listed in vars to the corresponding S.Properties.VariableUnits and
S.Properties.VariableDescrisciptions values for the new data variable.

iu — Index to U
column vector

Index to U, returned as a column vector. The index vector, iu, identifies the row in the
input table, U, containing the corresponding data. stack creates the jth row in the
output table, S, using U(iu(j),vars).

Tips
• You can specify more than one group of data variables in U, and each group becomes a

stacked data variable in S. Use a cell array to contain multiple values for vars, and a
cell array of character vectors or string array to contain multiple values for the
'NewDataVariableName' name-value pair argument. All groups must contain the
same number of variables.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
join | unstack

Introduced in R2013b

 stack

1-13847

StackedAxesProperties Properties
Appearance and behavior of individual axes in stacked plot

Description
StackedAxesProperties properties control the appearance and behavior of individual
y-axes in a stacked plot. In a stacked plot, you can plot the variables of a table or
timetable, or the columns of a matrix, in separate y-axes, stacked vertically. By changing
property values, you can modify certain aspects of the stacked plot.

The stackedplot function returns a StackedLineChart object. In turn, this object has
an array of StackedAxesProperties objects, named AxesProperties. To set
properties of an individual y-axis, index into AxesProperties and access properties of
the corresponding object.

You can use dot notation to query and set properties. For example, change y-limits of the
third plot using its YLimits property.

T = readtable('outages.csv');
s = stackedplot(T);
c = s.AxesProperties(3).YLimits
s.AxesProperties(3).YLimits = [0 1e6];

Properties
YLimits — Minimum and maximum y-axis limits
two-element vector of the form [min max]

Minimum and maximum y-axis limits, specified as a two-element vector of the form [min
max], where max is greater than min. You can specify the limits as numeric, categorical,
datetime, or duration values. However, the type of values that you specify must match the
type of values along the axis.

You can specify both limits or you can specify one limit and let the axes automatically
calculate the other. For an automatically calculated minimum or maximum limit, use -inf
or inf, respectively.

1 Alphabetical List

1-13848

Example: s.AxesProperties(3).YLimits = [0 1e6]
Example: s.AxesProperties(3).YLimits = [-inf 1e6]
Example: s.AxesProperties(3).YLimits = [0 inf]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

LegendLabels — Legend labels
cell array of character vectors | string array

Legend labels, specified as a cell array of character vectors or string array. If you do not
specify labels, then the labels are variable names (for tables and timetables) or 'Column
N' (for the Nth column of a matrix).

Legends do not display unless the LegendVisible property is set to 'on'.
Example: s.AxesProperties(1).LegendLabels = {'Label Text'}

LegendLocation — Location with respect to axes
'north' | 'south' | 'east' | 'west' | 'northeast' | ...

Location with respect to the axes, specified as one of the location values listed in this
table.

Value Description
'north' Inside top of axes
'south' Inside bottom of axes
'east' Inside right of axes
'west' Inside left of axes
'northeast' Inside top-right of axes (default for 2-D

axes)
'northwest' Inside top-left of axes
'southeast' Inside bottom-right of axes
'southwest' Inside bottom-left of axes

Example: s.AxesProperties(2).LegendLocation = 'southeast'

LegendVisible — State of legend visibility
'on' | 'off'

 StackedAxesProperties Properties

1-13849

State of legend visibility, specified as 'on' or 'off'. Set LegendVisible to 'on' to
display the legend or 'off' to hide the legend.
Example: s.AxesProperties(3).LegendVisible = 'on'

See Also
Functions
stackedplot

Properties
StackedLineChart Properties | StackedLineProperties

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2018b

1 Alphabetical List

1-13850

StackedLineChart Properties
Stacked plot appearance and behavior

Description
StackedLineChart properties control the appearance and behavior of a stacked plot. In
a stacked plot, you can plot the variables of a table or timetable, or the columns of a
matrix, in separate y-axes stacked vertically. By changing property values, you can modify
certain aspects of the stacked plot.

You can use dot notation to query and set properties.

T = readtable('outages.csv');
s = stackedplot(T);
c = s.Color;
s.Color = 'red';

Properties
Table Data

SourceTable — Source table
table | timetable

Source table, specified as a table or a timetable.

You can create a table from workspace variables using the table function, or you can
import data as a table using the readtable function. You can create a timetable from
workspace variables using the timetable function.

Note The property is ignored and read-only when the plotted data comes from an array.

Array Data

XData — x-values
vector

 StackedLineChart Properties

1-13851

x-values, specified as a vector. The number of elements in the vector must equal the
number of rows in the value of the YData property.

Note The property is ignored and read-only when the plotted data comes from a table or
timetable.

Example: [1:10]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YData — y-values
array

y-values, specified as an array. The stackedplot function plots each column of the value
of YData in its own y-axis.

Note The property is ignored and read-only when the plotted data comes from a table or
timetable.

Example: [1:10;5:5:50]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Stacked Plot Display

DisplayVariables — Displayed variables
cell array of character vectors | string array | numeric array | logical array

Displayed variables, specified as a character vector, cell array of character vectors, string
array, numeric array, or logical array. By setting this property you can plot a subset or a
permutation of the variables in the input table or timetable.

If DisplayVariables is a cell array, it also can be a nested cell array. The
stackedplot function plots all the variables specified in a nested cell in the same y-axis.
Example: s.DisplayVariables = [1 3 4] specifies the first, third, and fourth
variables.

1 Alphabetical List

1-13852

Example: s.DisplayVariables = {{'Temp1','Temp2'},'Pressure'} uses a
nested cell array to specify that Temp1 and Temp2 are plotted together.
Example: s.DisplayVariables = {{1,2},5} specifies variables by number and plots
the first and second variables together.

DisplayLabels — Labels for y-axes
cell array of character vectors | string array

Labels for the stacked y-axes values, specified as a cell array of character vectors or a
string array. Specify one label for each value in DisplayVariables. By default, the
values are the same as the values in DisplayVariables.

If you add a value, delete a value, or rearrange the values in DisplayVariables, then
this property updates accordingly to maintain the pairings of values and labels.
Example: s.DisplayLabels = {'Temperature','Humidity','Pressure'}

XVariable — Table variable for x-axis
character vector | string | numeric scalar | logical vector

Table variable for the x-axis, specified in one of these forms:

• Character vector or string indicating the name of one table variable
• Numeric scalar indicating the index of one table variable
• Logical vector containing one true element

Note The property is ignored and read-only when the plotted data come from an array or
a timetable.

XLimits — Minimum and maximum x-axis limits
two-element vector of the form [min max]

Minimum and maximum x-axis limits, specified as a two-element vector of the form [min
max], where max is greater than min. You can specify the limits as numeric, categorical,
datetime, or duration values. However, the type of values that you specify must match the
type of values along the axis.

You can specify both limits or you can specify one limit and let the axes automatically
calculate the other. For an automatically calculated minimum or maximum limit, use -inf
or inf, respectively.

 StackedLineChart Properties

1-13853

Example: s.XLimits = [0 100]
Example: s.XLimits = [-inf 100]
Example: s.XLimits = [0 inf]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

AxesProperties — Properties of y-axes
array of StackedAxesProperties objects

Properties of the y-axes, specified as an array of StackedAxesProperties objects. You
can index into AxesProperties to change the y-axis properties for one variable in the
stacked plot. For more information, see StackedAxesProperties.
Example: s.AxesProperties(2).YLimits = [0 10] specifies limits for the second
plot in the stacked plot. The other plots are unaltered.

LineProperties — Properties of lines
array of StackedLineProperties objects

Properties of lines, specified as an array of StackedLineProperties objects. You can
index into LineProperties to change the properties of a line for one variable in the
stacked plot. For more information, see StackedLineProperties.
Example: s.LineProperties(3).Color = 'red' changes the line color of the third
plot in the stacked plot. The other plots are unaltered.

GridVisible — Display of grid lines
'on' | 'off'

Display of grid lines, specified as 'on' or 'off'.

Line

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the first table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-13854

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 StackedLineChart Properties

1-13855

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

1 Alphabetical List

1-13856

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'none' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'none', an RGB triplet, a hexadecimal color code, or
one of the color options listed in the first table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 StackedLineChart Properties

1-13857

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

1 Alphabetical List

1-13858

Marker fill color, specified as 'none', an RGB triplet, a hexadecimal color code, or one of
the color options listed in the first table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 StackedLineChart Properties

1-13859

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
8 (default) | scalar numeric value

Font size, specified as a scalar numeric value. The font size affects the title, axis labels,
and tick labels. It also affects any legends associated with the axes. The font size is
measured in points.
Example: s.FontSize = 12

Labels

Title — Title of stacked plot
character vector | string scalar | numeric scalar | string array | numeric array | cell array |
categorical array

1 Alphabetical List

1-13860

Title of the stacked plot, specified as a character vector, string scalar, numeric scalar,
string array, numeric array, cell array, or categorical array.

If the value of Title is an array, then the elements of the array are stacked vertically and
displayed as the title. If the value is a cell array, then its elements can be character
vectors, strings, or numbers.

Alternatively, use the title function to add a title.

title('My Title')

Example: s.Title = 'A Title';
Example: s.Title = 137
Example: s.Title = {'Stacked plot',char(datetime('now'))};
Example: s.Title = {'Stacked plot',137};

XLabel — Text for x-axis label
character vector | string scalar | numeric scalar | string array | numeric array | cell array |
categorical array

Text for x-axis label, specified as a character vector, string scalar, numeric scalar, string
array, numeric array, cell array, or categorical array.

If the value of XLabel is an array, then the elements of the array are stacked vertically
and displayed as the x-axis label. If the value is a cell array, then its elements can be
character vectors, strings, or numbers.

Alternatively, use the xlabel function to add an x-axis label.

xlabel('My x-Axis Label')

Example: s.XLabel = 'An x-axis Label';
Example: s.XLabel = 137
Example: s.XLabel = {'An x-axis Label',char(datetime('now'))};
Example: s.XLabel = {'An x-axis Label',137};

Position

OuterPosition — Size and location, including labels and margin
[0 0 1 1] (default) | four-element vector of the form [left bottom width height]

 StackedLineChart Properties

1-13861

Size and location, including the labels and a margin, specified as a four-element vector of
the form [left bottom width height]. By default, MATLAB measures the values in
units normalized to the container. To change the units, set the Units property. The
default value of [0 0 1 1] includes the whole interior of the container.

• The left and bottom elements define the distance from the lower left corner of the
container (typically a figure, panel, or tab) to the lower left corner of the outer position
boundary.

• The width and height elements are the outer position boundary dimensions.

These figures show the areas defined by the OuterPosition values (blue) and the
Position values (red).

2-D View of Axes 3-D View of Axes

For more information on the axes position, see “Control Axes Layout”.

InnerPosition — Inner size and position
four-element vector

Inner size and position of the plot within the parent container (typically a figure, panel, or
tab) specified as a four-element vector of the form [left bottom width height]. The
inner position does not include the title or axis labels.

• The left and bottom elements define the distance from the lower left corner of the
container to the lower left corner of the plot.

• The width and height elements are the dimensions.

Position — Size and location, excluding margin for labels
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector of form [left
bottom width height]

1 Alphabetical List

1-13862

Size and location, excluding a margin for the labels, specified as a four-element vector of
the form [left bottom width height]. By default, MATLAB measures the values in
units normalized to the container. To change the units, set the Units property.

• The left and bottom elements define the distance from the lower left corner of the
container (typically a figure, panel, or tab) to the lower left corner of the position
boundary.

• The width and height elements are the position boundary dimensions. For axes in a
3-D view, the Position property is the smallest rectangle that encloses the axes.

If you want to specify the position and account for the text around the axes, then set the
OuterPosition property instead. These figures show the areas defined by the
OuterPosition values (blue) and the Position values (red).

2-D View of Axes 3-D View of Axes

For more information on the axes position, see “Control Axes Layout”.

ActivePositionProperty — Active position property
'outerposition' (default) | 'innerposition' | 'position'

Active position property during resize operation, specified as one of these values:

• 'outerposition' — Hold the OuterPosition property constant.
• 'innerposition' — Hold the InnerPosition property constant.
• 'position' — Hold the Position property constant.

A figure can change size if you interactively resize it or during a printing or exporting
operation.

 StackedLineChart Properties

1-13863

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' |
'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container,

which is typically the figure or a panel. The
lower left corner of the container maps to
(0,0) and the upper right corner maps to
(1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Typography points. One point equals 1/72

inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a Name,Value pair during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as
Position.

1 Alphabetical List

1-13864

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

Parent/Child

Parent — Parent
Figure object | Panel object | Tab object

Parent, specified as a Figure, Panel, or Tab object. For more information, see Figure
Properties, Panel Properties, or Tab Properties.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

 StackedLineChart Properties

1-13865

See Also
Functions
stackedplot

Properties
StackedAxesProperties | StackedLineProperties

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2018b

1 Alphabetical List

1-13866

StackedLineProperties Properties
Appearance and behavior of individual lines in stacked plot

Description
StackedLineProperties properties control the appearance and behavior of individual
lines in a stacked plot. In a stacked plot, you can plot the variables of a table or timetable,
or the columns of a matrix, in separate y-axes, stacked vertically. By changing property
values, you can modify certain aspects of the stacked plot.

The stackedplot function returns a StackedLineChart object. In turn, this object has
an array of StackedLineProperties objects, named LineProperties. To set
properties of an individual line, index into LineProperties and access properties of the
corresponding object.

You can use dot notation to query and set properties. For example, change the third plot
to a scatter plot using its PlotType property.

T = readtable('outages.csv');
s = stackedplot(T);
c = s.LineProperties(3).PlotType
s.LineProperties(3).PlotType = 'scatter';

Properties
Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the first table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 StackedLineProperties Properties

1-13867

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'

1 Alphabetical List

1-13868

Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross

 StackedLineProperties Properties

1-13869

Value Description
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'none' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'none', an RGB triplet, a hexadecimal color code, or
one of the color options listed in the first table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

1 Alphabetical List

1-13870

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'none', an RGB triplet, a hexadecimal color code, or one of
the color options listed in the first table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 StackedLineProperties Properties

1-13871

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-13872

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

PlotType — Plot type
'plot' (default) | 'stairs' | 'scatter'

Plot type, specified as 'plot', 'stairs', or 'scatter'.

See Also
Functions
stackedplot

Properties
StackedAxesProperties | StackedLineChart Properties

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2018b

 StackedLineProperties Properties

1-13873

stackedplot
Stacked plot of several variables with common x-axis

Syntax
s = stackedplot(tbl)
s = stackedplot(tbl,vars)
s = stackedplot(___ ,'XVariable',xvar)

s = stackedplot(X,Y)
s = stackedplot(Y)

s = stackedplot(___ ,LineSpec)
s = stackedplot(___ ,Name,Value)
s = stackedplot(parent, ___)

Description
s = stackedplot(tbl) plots the variables of a table or timetable in a stacked plot and
returns a StackedLineChart object. You can use s to change properties of the stacked
plot after you have created it. For a list of properties, see StackedLineChart.

The function plots the variables in separate y-axes, stacked vertically. The variables share
a common x-axis.

• If tbl is a table, then the function plots the variables against row numbers.
• If tbl is a timetable, then the function plots the variables against row times.

The stackedplot function plots all the numeric, logical, categorical, datetime, and
duration variables of tbl, and ignores table variables having any other data type.

s = stackedplot(tbl,vars) plots only the table or timetable variables specified by
vars.

1 Alphabetical List

1-13874

s = stackedplot(___ ,'XVariable',xvar) specifies the table variable that
provides the x-values for the stacked plot. This syntax supports only tables, and not
timetables.

s = stackedplot(X,Y) plots the columns of Y versus the vector X.

s = stackedplot(Y) plots the columns of Y versus their row number. The x-axis scale
ranges from 1 to the number of rows in Y.

s = stackedplot(___ ,LineSpec) sets the line style, marker symbol, and color. You
can use this syntax with the input arguments of any of the previous syntaxes.

s = stackedplot(___ ,Name,Value) sets properties for the stacked plot using one or
more Name,Value pair arguments. For a list of properties, see Stacked Line Chart. Use
this option with any of the input argument combinations in the previous syntaxes. Name-
value pair settings apply to all the plots in the stacked plot. Enclose each property name
in quotes.

s = stackedplot(parent, ___) creates the stacked plot in the figure, panel, or tab
specified by parent. The option parent can precede any of the input argument
combinations in the previous syntaxes.

Examples

Plot Timetable Variables

Read data from a spreadsheet to a table. Then convert the table to a timetable. The first
variable that contains dates and times, OutageTime, provides the row times for the
timetable. Display the first five rows.

tbl = readtable('outages.csv');
tbl = table2timetable(tbl);
head(tbl,5)

ans=5×6 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ ___________ ______ __________ ________________ _________________

 2002-02-01 12:18 'SouthWest' 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 2003-01-23 00:49 'SouthEast' 530.14 2.1204e+05 NaT 'winter storm'

 stackedplot

1-13875

 2003-02-07 21:15 'SouthEast' 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 2004-04-06 05:44 'West' 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 2002-03-16 06:18 'MidWest' 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'

Sort the timetable so that its row times are in order. The row times of a timetable do not
need to be in order. However, if you use the row times as the x-axis of a plot, then it is
better to ensure the timetable is sorted by its row times.

tbl = sortrows(tbl);
head(tbl,5)

ans=5×6 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ ___________ ______ __________ ________________ ______________

 2002-02-01 12:18 'SouthWest' 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 2002-03-05 17:53 'MidWest' 96.563 2.8666e+05 2002-03-10 14:41 'wind'
 2002-03-16 06:18 'MidWest' 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'
 2002-03-26 01:59 'MidWest' 388.04 5.6422e+05 2002-03-28 19:55 'winter storm'
 2002-04-20 16:46 'MidWest' 23141 NaN NaT 'unknown'

Create a stacked plot of data from tbl. The row times, OutageTime, provide the values
along the x-axis. The stackedplot function plots the values from the Loss, Customers,
and RestorationTime variables, with each variable plotted along its own y-axis.
However, the plot does not include the Region and Cause variables because they contain
data that cannot be plotted.

s = stackedplot(tbl);

1 Alphabetical List

1-13876

Specify Variables

Create a table from patient data. Display the first three rows.

tbl = readtable('patients.xls');
head(tbl,3)

ans=3×10 table
 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 __________ ________ ___ ___________________________ ______ ______ ______ ________ _________ ________________________

 'Smith' 'Male' 38 'County General Hospital' 71 176 true 124 93 'Excellent'

 stackedplot

1-13877

 'Johnson' 'Male' 43 'VA Hospital' 69 163 false 109 77 'Fair'
 'Williams' 'Female' 38 'St. Mary's Medical Center' 64 131 false 125 83 'Good'

Plot only four of the variables from the table.

stackedplot(tbl,{'Height','Weight','Systolic','Diastolic'});

Reorder Variables

Create a timetable and display its first three rows.

1 Alphabetical List

1-13878

tbl = readtable('outages.csv');
tbl = table2timetable(tbl);
tbl = sortrows(tbl);
head(tbl,3)

ans=3×6 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ ___________ ______ __________ ________________ ______________

 2002-02-01 12:18 'SouthWest' 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 2002-03-05 17:53 'MidWest' 96.563 2.8666e+05 2002-03-10 14:41 'wind'
 2002-03-16 06:18 'MidWest' 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'

Reorder the variables by specifying them in an order that differs from their order in the
table. For example, RestorationTime is the last variable in the timetable that can be
plotted. By default, stackedplot places it at the bottom of the plot. But you can reorder
the variables to put RestorationTime at the top.

stackedplot(tbl,{'RestorationTime','Loss','Customers'});

 stackedplot

1-13879

There are also other ways to reorder the variables.

• Specify them by their numeric order in the table: stackedplot(tbl,[4 2 3]);
• Reorder the values in the DisplayVariables property of the StackedLineChart

object: s = stackedplot(tbl); s.DisplayVariables =
{'RestorationTime','Loss','Customers'}

Plot Multiple Variables Using One Y-Axis

Create a table from a subset of patient data, using the Weight, Systolic, and
Diastolic variables.

1 Alphabetical List

1-13880

load patients
tbl = table(Weight,Systolic,Diastolic);
head(tbl,3)

ans=3×3 table
 Weight Systolic Diastolic
 ______ ________ _________

 176 124 93
 163 109 77
 131 125 83

Create a stacked plot, with Systolic and Diastolic plotted using the same y-axis. To
plot variables together, specify them within a nested cell array.

vars = {{'Systolic','Diastolic'},'Weight'}

vars = 1x2 cell array
 {1x2 cell} {'Weight'}

stackedplot(tbl,vars);

 stackedplot

1-13881

Plot Columns of Matrix

Create a numeric matrix and a numeric vector.

X = [0:4:20]

X = 1×6

 0 4 8 12 16 20

Y = randi(100,6,3)

1 Alphabetical List

1-13882

Y = 6×3

 82 28 96
 91 55 49
 13 96 81
 92 97 15
 64 16 43
 10 98 92

Create a stacked plot using X and Y.

stackedplot(X,Y);

 stackedplot

1-13883

Specify Title and Labels Using Name-Value Pairs

Load a timetable that has a set of weather measurements. Display its first three rows.

load outdoors
outdoors(1:3,:)

ans=3×4 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61
 2015-11-15 03:00:24 48.9 51.5 29.61

Create a stacked plot. Specify the title and labels for the y-axes using name-value pair
arguments. You can use name-values pairs to change any properties from their defaults
values. (Also note that you can specify the degree symbol using char(176).)

degreeSymbol = char(176);
newYlabels = {'RH (%)',['T (' degreeSymbol 'F)'],'P (in Hg)'};
stackedplot(outdoors,'Title','Weather Data','DisplayLabels',newYlabels);

1 Alphabetical List

1-13884

Change Individual Plots to Scatter and Stair Plots

The stackedplot function returns a StackedLineChart object. You can use it to set
the same property value for all plots, or to set different property values for individual
plots. In this example, first change the line widths for all plots in a stacked plot. Then, use
the PlotType property of individual plots, so that the stacked plot has a line plot, scatter
plot, and stair plot.

Load a timetable that has a set of weather measurements.

 stackedplot

1-13885

load outdoors
outdoors(1:3,:)

ans=3×4 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61
 2015-11-15 03:00:24 48.9 51.5 29.61

Create a stacked plot and return a StackedLineChart object.

s = stackedplot(outdoors)

1 Alphabetical List

1-13886

s =
 StackedLineChart with properties:

 SourceTable: [51x3 timetable]
 DisplayVariables: {'Humidity' 'TemperatureF' 'PressureHg'}
 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerSize: 6

 Show all properties

The object provides access to many properties that apply to all of the plots. For example,
you can use s.LineWidth to make the lines wider.

s.LineWidth = 2;

 stackedplot

1-13887

The object also provides access to arrays of objects that you can use to modify the lines
and y-axes for individual plots. To access properties of individual lines, use
s.LineProperties. For each plot, you can specify a different line style, marker, plot
type, and so on.

s.LineProperties

ans =
 3x1 StackedLineProperties array with properties:

 Color
 MarkerFaceColor
 MarkerEdgeColor
 LineStyle

1 Alphabetical List

1-13888

 LineWidth
 Marker
 MarkerSize
 PlotType

Change the second plot to a scatter plot, and the third plot to a stair plot, using the
PlotType property.

s.LineProperties(2).PlotType = 'scatter';
s.LineProperties(3).PlotType = 'stairs';

You also can access individual y-axes through the s.AxesProperties property.

s.AxesProperties

 stackedplot

1-13889

ans =
 3x1 StackedAxesProperties array with properties:

 YLimits
 LegendLabels
 LegendLocation
 LegendVisible

Input Arguments
tbl — Input table or timetable
table | timetable

Input table or timetable.

vars — Variables in input table or timetable
cell array of character vectors | string array | numeric array | logical array

Variables in the input table, specified as a cell array of character vectors, string array,
numeric array, or logical array.

If vars is a cell array, it also can be a nested cell array. The stackedplot function plots
all the variables specified in a nested cell in the same y-axis.

xvar — Table variable that contains x-values
character vector | string scalar | integer | logical array

Table variable that contains x-values, specified as a character vector, string scalar,
integer, or logical array.

You can specify xvar only when the input argument tbl is a table, not a timetable.

X — x-values
numeric vector | datetime vector | duration vector | logical vector

x-values, specified as a numeric, datetime, duration, or logical vector. The length of X
must equal the number of rows of Y.

Y — y-values
numeric array | datetime array | duration array | categorical array | logical array

1 Alphabetical List

1-13890

y-values, specified as a numeric, datetime, duration, categorical, or logical array. The
stackedplot function plots each column in a separate y-axis.

LineSpec — Line style, marker, and color
character vector | string scalar

Line style, marker, and color, specified as a character vector or string scalar containing
symbols. The symbols can appear in any order. You do not need to specify all three
characteristics (line style, marker, and color). For example, if you omit the line style and
specify the marker, then the plot shows only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

 stackedplot

1-13891

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

parent — Parent container
Figure object | Panel object | Tab object

Parent container in which to plot, specified as a Figure, Panel, or Tab object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The stacked chart line properties listed here are only a subset common to all stacked
plots, whether the data source is a table or array. For a complete list, see
StackedLineChart Properties.
Example: 'Marker','o','MarkerSize',10

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the first table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-13892

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 stackedplot

1-13893

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers in this table. By default, a stacked chart
line does not have markers. Add markers at each data point along the line by specifying a
marker symbol.

Value Description
'o' Circle

1 Alphabetical List

1-13894

Value Description
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: 'Marker','+'
Example: 'Marker','diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Tips
• To interactively explore the data in your stacked plot, use these features.

• Zoom — Use the scroll wheel to zoom.
• Pan — Click and drag the stacked plot to pan across the x-values.
• Data cursor — Hover over a location to display y-values for each plot.

 stackedplot

1-13895

See Also
Functions
plot | scatter | stairs | table | timetable

Properties
StackedAxesProperties | StackedLineChart | StackedLineProperties

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2018b

1 Alphabetical List

1-13896

stairs
Stairstep graph

Syntax
stairs(Y)
stairs(X,Y)
stairs(___ ,LineSpec)
stairs(___ ,Name,Value)

stairs(ax, ___)

h = stairs(___)

[xb,yb] = stairs(___)

Description
stairs(Y) draws a stairstep graph of the elements in Y.

• If Y is a vector, then stairs draws one line.
• If Y is a matrix, then stairs draws one line per matrix column.

stairs(X,Y) plots the elements in Y at the locations specified by X. The inputs X and Y
must be vectors or matrices of the same size. Additionally, X can be a row or column
vector and Y must be a matrix with length(X) rows.

stairs(___ ,LineSpec) specifies a line style, marker symbol, and color. For example,
':*r' specifies a dotted red line with asterisk markers. Use this option with any of the
input argument combinations in the previous syntaxes.

stairs(___ ,Name,Value) modifies the stairstep chart using one or more name-value
pair arguments. For example, 'Marker','o','MarkerSize',8 specifies 8 point circle
markers.

 stairs

1-13897

stairs(ax, ___) plots into the axes specified by ax instead of into the current axes
(gca). The option, ax, can precede any of the input argument combinations in the
previous syntaxes.

h = stairs(___) returns one or more Stair objects. Use h to make changes to
properties of a specific Stair object after it is created.

[xb,yb] = stairs(___) does not create a plot, but returns matrices xb and yb of the
same size, such that plot(xb,yb) plots the stairstep graph.

Examples

Plot Single Data Series

Create a stairstep plot of sine evaluated at 40 equally spaced values between 0 and 4π.

X = linspace(0,4*pi,40);
Y = sin(X);

figure
stairs(Y)

1 Alphabetical List

1-13898

The length of Y automatically determines and generates the x-axis scale.

Plot Multiple Data Series

Create a stairstep plot of two cosine functions evaluated at 50 equally spaced values
between 0 and 4π.

X = linspace(0,4*pi,50)';
Y = [0.5*cos(X), 2*cos(X)];

figure
stairs(Y)

 stairs

1-13899

The number of rows in Y automatically determines and generates the x-axis scale.

Plot Single Data Series at Specified x-Values

Create a stairstep plot of a sine wave evaluated at equally spaced values between 0 and
4π. Specify the set of x-values for the plot.

X = linspace(0,4*pi,40);
Y = sin(X);

figure
stairs(X,Y)

1 Alphabetical List

1-13900

The entries in Y are plotted against the corresponding entries in X.

Plot Multiple Data Series at Specified x-Values

Create a stairstep plot of two cosine waves evaluated at equally spaced values between 0
and 4π. Specify the set of x-values for the plot.

X = linspace(0,4*pi,50)';
Y = [0.5*cos(X), 2*cos(X)];

figure
stairs(X,Y)

 stairs

1-13901

The first vector input, X, determines the x-axis positions for both data series.

Plot Multiple Data Series at Unique Sets of x-Values

Create a stairstep plot of two sine waves evaluated at different values. Specify a unique
set of x-values for plotting each data series.

x1 = linspace(0,2*pi)';
x2 = linspace(0,pi)';
X = [x1,x2];
Y = [sin(5*x1),exp(x2).*sin(5*x2)];

1 Alphabetical List

1-13902

figure
stairs(X,Y)

Each column of X is plotted against the corresponding column of Y.

Specify Line Style, Marker Symbol and Color

Create a stairstep plot and set the line style to a dot-dashed line, the marker symbol to
circles, and the color to red.

 stairs

1-13903

X = linspace(0,4*pi,20);
Y = sin(X);

figure
stairs(Y, '-.or')

Specify Additional Style Options

Create a stairstep plot and set the line width to 2, the marker symbols to diamonds, and
the marker face color to cyan using Name,Value pair arguments.

1 Alphabetical List

1-13904

X = linspace(0,4*pi,20);
Y = sin(X);

figure
stairs(Y,'LineWidth',2,'Marker','d','MarkerFaceColor','c')

Specify Axes for Stairstep Plots

Create a figure with two subplots and return the two axes handles, s(1) and s(2).
Create a stairstep plot in each subplot by referring to the axes handles.

 stairs

1-13905

figure
s(1) = subplot(2,1,1);
s(2) = subplot(2,1,2);

X = linspace(0,2*pi);
Y1 = 5*sin(X);
Y2 = sin(5*X);
stairs(s(1),X,Y1)
stairs(s(2),X,Y2)

1 Alphabetical List

1-13906

Modify Stairstep Plot After Creation

Create a stairstep plot of two data series and return the two stair objects.

X = linspace(0,1,30)';
Y = [cos(10*X), exp(X).*sin(10*X)];
h = stairs(X,Y);

Use small circle markers for the first data series. Use magenta filled circles for the
second series. Starting in R2014b, you can use dot notation to set properties. If you are
using an earlier release, use the set function instead.

h(1).Marker = 'o';
h(1).MarkerSize = 4;

 stairs

1-13907

h(2).Marker = 'o';
h(2).MarkerFaceColor = 'm';

Create a Stairstep Plot using plot Function

Evaluate two cosine functions at 50 equally spaced values between 0 and 4π and create a
stairstep plot using plot.

X = linspace(0,4*pi,50)';
Y = [0.5*cos(X), 2*cos(X)];
[xb,yb] = stairs(X,Y);

1 Alphabetical List

1-13908

stairs returns two matrices of the same size, xb and yb, but no plot.

Use plot to create the stairstep plot with xb and yb.

figure
plot(xb,yb)

Input Arguments
Y — y values
vector or matrix

 stairs

1-13909

y values, specified as a vector or matrix. When Y is a vector, stairs creates one stair
object. When Y is a matrix, stairs draws one line per matrix column and creates a
separate stair object for each column.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

X — x values
vector or matrix

x values, specified as a vector or matrix. When Y is a vector, X must be a vector of the
same size. When Y is a matrix, X must be a matrix of the same size, or a vector whose
length equals the number of rows in Y.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

LineSpec — Line style, marker symbol, and color
character vector | string

Line style, marker symbol, and color, specified as a character vector or string. For more
information on line style, marker symbol, and color options see LineSpec.
Example: ':*r'

ax — Axes object
Axes object

Axes object. If you do not specify the axes, then stairs plots into the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','s','MarkerFaceColor','red' plots the stairstep graph with
red square markers.

The properties listed here are only a subset. For a complete list, see Stair.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

1 Alphabetical List

1-13910

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 stairs

1-13911

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

1 Alphabetical List

1-13912

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 stairs

1-13913

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-13914

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

 stairs

1-13915

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Output Arguments
h — Stair objects
Stair objects

Stair objects. These are unique identifiers, which you can use to query and modify the
properties of a specific Stair object after it is created.

xb — x values for use with plot
vector or matrix

x values for use with plot, returned as a vector or matrix. xb contains the appropriate
values such that plot(xb,yb) creates the stairstep graph.

yb — y values for use with plot
vector or matrix

y values for use with plot, returned as a vector or matrix. yb contains the appropriate
values such that plot(xb,yb) creates the stairstep graph.

1 Alphabetical List

1-13916

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | bar | histogram | stem

Properties
Stair

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

 stairs

1-13917

Introduced before R2006a

1 Alphabetical List

1-13918

Stair Properties
Stair chart appearance and behavior

Description
Stair properties control the appearance and behavior of a Stair object. By changing
property values, you can modify certain aspects of the stair chart.

Starting in R2014b, you can use dot notation to query and set properties.

h = stairs(1:10);
c = h.Color;
h.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Line color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Stair Properties

1-13919

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

1 Alphabetical List

1-13920

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Markers

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values listed in this table. By default, the object
does not display markers. Specifying a marker symbol adds markers at each data point or
vertex.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle

 Stair Properties

1-13921

Value Description
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

1 Alphabetical List

1-13922

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 Stair Properties

1-13923

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-13924

Data

XData — x values
[] (default) | vector

x values, specified as a vector. The input argument X to the stairs function sets the x
values. If you do not specify the x values, then stairs uses the indices of YData. XData
and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for XData, specified as one of these values:

• 'auto' — Use the indices of the values in YData (or ZData for 3-D plots).
• 'manual' — Use manually specified values. To specify the values, set the XData

property or specify the input argument X to the plotting function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y values
[] (default) | vector

 Stair Properties

1-13925

y values, specified as a vector. The input argument Y to the stairs function sets the y
values. XData and YData must have equal lengths.
Example: 1:10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

1 Alphabetical List

1-13926

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not
specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content
that appears in a data tip by modifying the properties of the underlying
DataTipTemplate object. For a list of properties, see DataTipTemplate.

For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is
not copied by copyobj.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

 Stair Properties

1-13927

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

1 Alphabetical List

1-13928

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

 Stair Properties

1-13929

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

1 Alphabetical List

1-13930

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

 Stair Properties

1-13931

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Stair object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Stair object responds to the
click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Stair object passes the click to
the object below it in the current view of the figure window. The HitTest property of
the Stair object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Stair object. If you have defined
the UIContextMenu property, then invoke the context menu.

1 Alphabetical List

1-13932

• 'off' — Trigger the callbacks for the nearest ancestor of the Stair object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Stair object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

 Stair Properties

1-13933

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'stair'

This property is read-only.

Type of graphics object, returned as 'stair'. Use this property to find all objects of a
given type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

1 Alphabetical List

1-13934

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
stairs

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Stair Properties

1-13935

standardizeMissing
Insert standard missing values

Syntax
B = standardizeMissing(A,indicator)
B = standardizeMissing(A,indicator,'DataVariables',vars)

Description
B = standardizeMissing(A,indicator) replaces values specified in indicator
with standard missing values in an array or table.

Standard missing values depend on the data type:

• NaN for double, single, duration, and calendarDuration
• NaT for datetime
• <missing> for string
• <undefined> for categorical
• ' ' for char
• {''} for cell of character arrays

B = standardizeMissing(A,indicator,'DataVariables',vars) standardizes
missing values in the variables specified by vars when A is a table or timetable.

Examples

Nonstandard Missing Numbers

Create a row vector and replace all instances of -99 with the standard missing value for
double data types, NaN.

1 Alphabetical List

1-13936

A = [0 1 5 -99 8 3 4 -99 16];
B = standardizeMissing(A,-99)

B = 1×9

 0 1 5 NaN 8 3 4 NaN 16

Replace All Instances of Specified Values

Create a table containing Inf and 'N/A' to represent missing values.

dblVar = [NaN;3;Inf;7;9];
cellstrVar = {'one';'three';'';'N/A';'nine'};
charVar = ['A';'C';'E';' ';'I'];
categoryVar = categorical({'red';'yellow';'blue';'violet';''});

A = table(dblVar,cellstrVar,charVar,categoryVar)

A=5×4 table
 dblVar cellstrVar charVar categoryVar
 ______ __________ _______ ___________

 NaN 'one' A red
 3 'three' C yellow
 Inf '' E blue
 7 'N/A' violet
 9 'nine' I <undefined>

Replace all instances of Inf with NaN and replace all instances of 'N/A' with the empty
character vector, ''.

B = standardizeMissing(A,{Inf,'N/A'})

B=5×4 table
 dblVar cellstrVar charVar categoryVar
 ______ __________ _______ ___________

 NaN 'one' A red
 3 'three' C yellow
 NaN '' E blue
 7 '' violet

 standardizeMissing

1-13937

 9 'nine' I <undefined>

Replace Only Values in Specified Variables

Replace instances of Inf and 'N/A' occurring in specified variables of a table with the
standard missing value indicators.

Create a table containing Inf and 'N/A' to represent missing values.

a = {'alpha';'bravo';'charlie';'';'N/A'};
x = [1;NaN;3;Inf;5];
y = [57;732;93;1398;Inf];

A = table(a,x,y)

A=5×3 table
 a x y
 _________ ___ ____

 'alpha' 1 57
 'bravo' NaN 732
 'charlie' 3 93
 '' Inf 1398
 'N/A' 5 Inf

For the variables a and x, replace instances of Inf with NaN and 'N/A' with the empty
character vector, ''.

B = standardizeMissing(A,{Inf,'N/A'},'DataVariables',{'a','x'})

B=5×3 table
 a x y
 _________ ___ ____

 'alpha' 1 57
 'bravo' NaN 732
 'charlie' 3 93
 '' NaN 1398
 '' 5 Inf

1 Alphabetical List

1-13938

Inf in the variable y remains unchanged because y is not included in the
'DataVariables' name-value pair argument.

Input Arguments
A — Input data
vector | matrix | multidimensional array | table | timetable

Input data, specified as a vector, matrix, multidimensional array, table, or timetable. If A is
a timetable, then ismissing operates on the table data only and ignores NaT and NaN
values in the vector of row times.

Data Types: double | single | char | string | cell | table | timetable |
categorical | datetime | duration

indicator — Nonstandard missing value indicator
scalar | vector | cell array

Nonstandard missing-value indicator, specified as a scalar, vector, or cell array. The
elements of indicator define the values that standardizeMissing treats as missing.
If A is an array, then indicator must be a vector. If A is a table or timetable, then
indicator can also be a cell array with entries of multiple data types.

The data types specified in indicator match data types in the corresponding entries of
A. The following are additional data type matches between the elements of indicator
and elements of A:

• double indicators match double, single, integer, and logical entries of A.
• string and char indicators match categorical entries of A.

Example: B = standardizeMissing(A,'N/A') replaces the character vector 'N/A'
with the empty character vector, ''.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell | datetime | duration

vars — Table variables to standardize
variable name | cell array of variable names | numeric vector | logical vector | function
handle

 standardizeMissing

1-13939

Table variables to standardize, specified as a variable name, a cell array of variable
names, a numeric vector, a logical vector, or a function handle. vars can be one of the
following:

• A character vector specifying a single table variable name
• A cell array of character vectors where each element is a table variable name
• A vector of table variable indices
• A logical vector whose elements each correspond to a table variable, where true

includes the corresponding variable and false excludes it
• A function handle that returns a logical scalar, such as @isnumeric

Example: 'Age'
Example: {'Height','Weight'}
Example: @iscategorical
Data Types: char | cell | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | function_handle

Output Arguments
B — Standardized array or table
vector | matrix | multidimensional array | table | timetable

Standardized array or table, specified as a vector, matrix, multidimensional array, table,
or timetable. B has the same size as A.

Data Types: double | single | char | string | cell | table | timetable |
categorical | datetime | duration | calendarDuration

Algorithms
standardizeMissing treats leading and trailing white space differently for cell arrays
of character vectors, character arrays, and categorical arrays.

• For cell arrays of character vectors, standardizeMissing does not ignore white
space. All character vectors must match exactly a character vector specified in
indicator.

1 Alphabetical List

1-13940

• For character arrays, standardizeMissing ignores trailing white space.
• For categorical arrays, standardizeMissing ignores leading and trailing white

space.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
fillmissing | ismissing | rmmissing

Topics
“Missing Data in MATLAB”

Introduced in R2013b

 standardizeMissing

1-13941

startsWith
Determine if strings start with pattern

Syntax
TF = startsWith(str,pattern)
TF = startsWith(str,pattern,'IgnoreCase',true)

Description
TF = startsWith(str,pattern) returns 1 (true) if str starts with the specified
pattern, and returns 0 (false) otherwise.

If pattern is an array containing multiple patterns, then startsWith returns 1 if it
finds that str starts with any element of pattern.

TF = startsWith(str,pattern,'IgnoreCase',true) ignores case when
determining if str starts with pattern.

Examples

Determine If String Starts with Pattern

Create a string array that contains file names. Determine which file names start with the
word data.

Starting in R2017a, you can create strings using double quotes.

str = ["abstract.docx","data.tar","code.m"; ...
 "data-analysis.ppt","results.ptx","summary.ppt"]

str = 2x3 string array
 "abstract.docx" "data.tar" "code.m"
 "data-analysis.ppt" "results.ptx" "summary.ppt"

1 Alphabetical List

1-13942

Return a logical array where the position of each element equal to 1 corresponds to the
position of a string in str that starts with data.

pattern = "data";
TF = startsWith(str,pattern)

TF = 2x3 logical array

 0 1 0
 1 0 0

Display the file names that start with data. Index back into str using TF.

str(TF)

ans = 2x1 string array
 "data-analysis.ppt"
 "data.tar"

Test Start of String Against Multiple Patterns

Create a string array that contains file names. Determine which file names start with
either abstract or data.

Starting in R2017a, you can create strings using double quotes.

str = ["abstract.docx","data.tar.gz","mycode.m","results.ptx"]

str = 1x4 string array
 "abstract.docx" "data.tar.gz" "mycode.m" "results.ptx"

pattern = ["abstract","data"];
TF = startsWith(str,pattern)

TF = 1x4 logical array

 1 1 0 0

 startsWith

1-13943

Display the strings that start with either abstract or data. Index back into str using
TF.

str(TF)

ans = 1x2 string array
 "abstract.docx" "data.tar.gz"

Ignore Case When Testing Start of String

Create a string array that contains file names. Determine which file names start with
data, ignoring case.

Starting in R2017a, you can create strings using double quotes.

str = ["DATA.TAR.GZ","data.xlsx","SUMMARY.PPT","tmp.gz"]

str = 1x4 string array
 "DATA.TAR.GZ" "data.xlsx" "SUMMARY.PPT" "tmp.gz"

pattern = "data";
TF = startsWith(str,pattern,'IgnoreCase',true)

TF = 1x4 logical array

 1 1 0 0

Display the strings that start with data. Index back into str using TF.

str(TF)

ans = 1x2 string array
 "DATA.TAR.GZ" "data.xlsx"

1 Alphabetical List

1-13944

Determine if Character Vector Starts with Pattern

Create a character vector that contains the name of a file. Determine if the name starts
with different patterns.

chr = 'data-analysis.ppt'

chr =
'data-analysis.ppt'

TF = startsWith(chr,'data')

TF = logical
 1

TF = startsWith(chr,'test')

TF = logical
 0

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.

pattern — Search pattern
string array | character vector | cell array of character vectors

Search pattern, specified as a string array, a character vector, or a cell array of character
vectors.

 startsWith

1-13945

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and pattern must be a string scalar, a character vector, or a cell array
containing not more than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
contains | endsWith | find | regexp | strcmp | strfind

Topics
“Create String Arrays”
“Search and Replace Text”
“Compare Text”
“Test for Empty Strings and Missing Values”

Introduced in R2016b

1 Alphabetical List

1-13946

startup
User-defined startup script for MATLAB

Syntax
startup

Description
startup executes user-specified commands when starting.

Create a startup.m file in the userpath folder, which is on the MATLAB search path.
Add commands you want executed at startup. For example, your startup function might
include physical constants, defaults for graphics properties, engineering conversion
factors, or anything else you want predefined in your workspace.

Tips
• To specify the current folder in MATLAB when it starts, set the Initial working folder

preference, described in “General Preferences”.

Algorithms
At startup, MATLAB automatically executes the matlabrc function and, if it exists on the
MATLAB search path, startup. The matlabrc file, which is in the matlabroot/
toolbox/local folder, is reserved for use by MathWorks and by system administrators
on multiuser systems.

See Also
finish | matlabrc | matlabroot | path | quit | userpath

 startup

1-13947

Topics
“Startup Options in MATLAB Startup File”
“Preferences”

Introduced before R2006a

1 Alphabetical List

1-13948

stats
Return cached values and statistics for MemoizedFunction object

Syntax
s = stats(mfcn)

Description
s = stats(mfcn) returns cached values and statistics on the use of a
MemoizedFunction object.

Examples

Obtain Statistics for Memoized Function

Create a MemoizedFunction object by memozing the plus function.

mf = memoize(@plus)

mf =
 MemoizedFunction with properties:

 Function: @plus
 Enabled: 1
 CacheSize: 10

Call the memoized function several times. The first time you call the function with a
particular set of inputs, MATLAB caches the results.

a = mf(13,42); % calls plus; caches results
b = mf(7,33); % calls plus; caches results
c = mf(13,42); % does not call plus; returns cached results
d = mf(5,120); % calls plus; caches results

 stats

1-13949

e = mf(13,42); % does not call plus; returns cached results
f = mf(7,33); % does not call plus; returns cached results

Call the stats function.

s = stats(mf)

s = struct with fields:
 Cache: [1x1 struct]
 MostHitCachedInput: [1x1 struct]
 CacheHitRatePercent: 50
 CacheOccupancyPercent: 30

Determine which sets of inputs you used the most.

s.MostHitCachedInput

ans = struct with fields:
 Hits: 2
 Input: {[13] [42]}

Obtain the cached results.

c = s.Cache

c = struct with fields:
 Inputs: {{1x2 cell} {1x2 cell} {1x2 cell}}
 Nargout: [1 1 1]
 Outputs: {{1x1 cell} {1x1 cell} {1x1 cell}}
 HitCount: [2 1 0]
 TotalHits: 3
 TotalMisses: 3

Display all sets of cached inputs and outputs alongside how many times MATLAB
accessed the cached values.

T = cell2table([c.Inputs' c.Outputs'],'VariableNames',{'Inputs','Outputs'});
T.Times_Cache_Accessed = c.HitCount'

T=3×3 table
 Inputs Outputs Times_Cache_Accessed
 _____________ _______ ____________________

1 Alphabetical List

1-13950

 [13] [42] [55] 2
 [7] [33] [40] 1
 [5] [120] [125] 0

Input Arguments
mfcn — Function with memoization semantics
MemoizedFunction object

Function with memoization semantics, specified as a MemoizedFunction object.

Output Arguments
s — MemoizedFunction statistics
structure

MemoizedFunction statistics, returned as a structure containing these fields.

Field Description
Cache Cached results, returned as a structure. If m is the number of function

calls with cached results, then the structure contains the following fields:

• Inputs – Cached input values, returned as a 1-by-m cell array. Each
element in the Inputs cell array is a 1-by-n cell array, where n is the
number of inputs for a particular function call.

• Outputs – Cached output values, returned as a 1-by-m cell array. Each
element in the Outputs cell array is a 1-by-p cell array, where p is the
number of outputs for a particular function call.

• HitCount – Number of times each cached set of input values was
accessed, returned as 1-by-m double array.

• TotalHits – Total number of times a set of input values was found in
the cache, returned as a double.

• TotalMisses – Total number of times a set of input values was not
found in the cache, returned as a double.

 stats

1-13951

Field Description
MostHitCach
edInput

Inputs for the most accessed cached values, returned as a structure. The
structure contains the following fields:

• Hits – Number of times the cached values were accessed, returned as
an integer

• Input – Input values for the most accessed cached values, returned
as a cell array of input values

CacheHitRat
ePercent

Percentage of times an input was found in the cache, returned as a
double. This property is computed by (TotalHits/(TotalHits
+TotalMisses))*100.

CacheOccupa
ncyPercent

How full the cache is, returned as a double representing a percentage.
This property is computed by (Number of cache entries/cache
size)*100.

See Also
Functions
memoize

Objects
MemoizedFunction

Introduced in R2017a

1 Alphabetical List

1-13952

std
Standard deviation

Syntax
S = std(A)
S = std(A,w)
S = std(A,w,'all')
S = std(A,w,dim)
S = std(A,w,vecdim)
S = std(___ ,nanflag)

Description
S = std(A) returns the standard deviation on page 1-13959 of the elements of A along
the first array dimension whose size does not equal 1.

• If A is a vector of observations, then the standard deviation is a scalar.
• If A is a matrix whose columns are random variables and whose rows are observations,

then S is a row vector containing the standard deviations corresponding to each
column.

• If A is a multidimensional array, then std(A) operates along the first array dimension
whose size does not equal 1, treating the elements as vectors. The size of this
dimension becomes 1 while the sizes of all other dimensions remain the same.

• By default, the standard deviation is normalized by N-1, where N is the number of
observations.

S = std(A,w) specifies a weighting scheme for any of the previous syntaxes. When w =
0 (default), S is normalized by N-1. When w = 1, S is normalized by the number of
observations, N. w also can be a weight vector containing nonnegative elements. In this
case, the length of w must equal the length of the dimension over which std is operating.

S = std(A,w,'all') computes the standard deviation over all elements of A when w is
either 0 or 1. This syntax is valid for MATLAB versions R2018b and later.

 std

1-13953

S = std(A,w,dim) returns the standard deviation along dimension dim for any of the
previous syntaxes. To maintain the default normalization while specifying the dimension
of operation, set w = 0 in the second argument.

S = std(A,w,vecdim) computes the standard deviation over the dimensions specified
in the vector vecdim when w is 0 or 1. For example, if A is a matrix, then std(A,0,[1
2]) computes the standard deviation over all elements in A, since every element of a
matrix is contained in the array slice defined by dimensions 1 and 2.

S = std(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. For example, std(A,'includenan')
includes all NaN values in A while std(A,'omitnan') ignores them.

Examples

Standard Deviation of Matrix Columns

Create a matrix and compute the standard deviation of each column.

A = [4 -5 1; 2 3 5; -9 1 7];
S = std(A)

S = 1×3

 7.0000 4.1633 3.0551

Standard Deviation of 3-D Array

Create a 3-D array and compute the standard deviation along the first dimension.

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
S = std(A)

S =
S(:,:,1) =

1 Alphabetical List

1-13954

 2.8284 2.1213

S(:,:,2) =

 9.8995 4.2426

S(:,:,3) =

 2.8284 4.9497

Specify Standard Deviation Weights

Create a matrix and compute the standard deviation of each column according to a
weight vector w.

A = [1 5; 3 7; -9 2];
w = [1 1 0.5];
S = std(A,w)

S = 1×2

 4.4900 1.8330

Standard Deviation Along Matrix Rows

Create a matrix and calculate the standard deviation along each row.

A = [6 4 23 -3; 9 -10 4 11; 2 8 -5 1];
S = std(A,0,2)

S = 3×1

 11.0303
 9.4692

 std

1-13955

 5.3229

Standard Deviation of Array Page

Create a 3-D array and compute the standard deviation over each page of data (rows and
columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
S = std(A,0,[1 2])

S =
S(:,:,1) =

 2.5000

S(:,:,2) =

 7.7460

S(:,:,3) =

 4.5735

Standard Deviation Excluding NaN

Create a vector and compute its standard deviation, excluding NaN values.

A = [1.77 -0.005 3.98 -2.95 NaN 0.34 NaN 0.19];
S = std(A,'omitnan')

S = 2.2797

1 Alphabetical List

1-13956

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. If A is a scalar, then
std(A) returns 0. If A is a 0-by-0 empty array, then std(A) returns NaN.
Data Types: single | double | datetime | duration
Complex Number Support: Yes

w — Weight
0 (default) | 1 | vector

Weight, specified as one of these values:

• 0 — Normalize by N-1, where N is the number of observations. If there is only one
observation, then the weight is 1.

• 1 — Normalize by N.
• Vector made up of nonnegative scalar weights corresponding to the dimension of A

along which the standard deviation is calculated.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(S,dim) is
1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A.

• If dim = 1, then std(A,0,1) returns a row vector containing the standard deviation
of the elements in each column.

 std

1-13957

• If dim = 2, then std(A,0,2) returns a column vector containing the standard
deviation of the elements in each row.

If dim is greater than ndims(A), then std(A) returns an array of zeros the same size as
A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then std(A,0,[1 2]) returns a 1-by-1-by-3 array
whose elements are the standard deviations computed over each page of A.

1 Alphabetical List

1-13958

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values when computing the standard deviation,
resulting in NaN.

• 'omitnan' — Ignore NaN values appearing in either the input array or weight vector.

For datetime arrays, you can also use 'omitnat' or 'includenat' to omit and
include NaT values, respectively.
Data Types: char

Definitions

Standard Deviation
For a random variable vector A made up of N scalar observations, the standard deviation
is defined as

 std

1-13959

S = 1
N − 1 ∑i = 1

N
Ai− μ 2,

where μ is the mean of A:

μ = 1
N ∑i = 1

N
Ai .

The standard deviation is the square root of the variance. Some definitions of standard
deviation use a normalization factor of N instead of N-1, which you can specify by setting
w to 1.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

• The weighting scheme cannot be a vector.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you specify dim, then it must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

1 Alphabetical List

1-13960

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
corrcoef | cov | mean | median | var

Introduced before R2006a

 std

1-13961

stem
Plot discrete sequence data

Syntax
stem(Y)
stem(X,Y)
stem(___ ,'filled')
stem(___ ,LineSpec)
stem(___ ,Name,Value)

stem(ax, ___)

h = stem(___)

Description
stem(Y) plots the data sequence, Y, as stems that extend from a baseline along the x-
axis. The data values are indicated by circles terminating each stem.

• If Y is a vector, then the x-axis scale ranges from 1 to length(Y).
• If Y is a matrix, then stem plots all elements in a row against the same x value, and

the x-axis scale ranges from 1 to the number of rows in Y.

stem(X,Y) plots the data sequence, Y, at values specified by X. The X and Y inputs must
be vectors or matrices of the same size. Additionally, X can be a row or column vector and
Y must be a matrix with length(X) rows.

• If X and Y are both vectors, then stem plots entries in Y against corresponding entries
in X.

• If X is a vector and Y is a matrix, then stem plots each column of Y against the set of
values specified by X, such that all elements in a row of Y are plotted against the same
value.

• If X and Y are both matrices, then stem plots columns of Y against corresponding
columns of X.

1 Alphabetical List

1-13962

stem(___ ,'filled') fills the circles. Use this option with any of the input argument
combinations in the previous syntaxes.

stem(___ ,LineSpec) specifies the line style, marker symbol, and color.

stem(___ ,Name,Value) modifies the stem chart using one or more Name,Value pair
arguments.

stem(ax, ___) plots into the axes specified by ax instead of into the current axes (gca).
The option, ax, can precede any of the input argument combinations in the previous
syntaxes.

h = stem(___) returns a vector of Stem objects in h. Use h to modify the stem chart
after it is created.

Examples

Plot Single Data Series

Create a stem plot of 50 data values between −2π and 2π.

figure
Y = linspace(-2*pi,2*pi,50);
stem(Y)

 stem

1-13963

Data values are plotted as stems extending from the baseline and terminating at the data
value. The length of Y automatically determines the position of each stem on the x-axis.

Plot Multiple Data Series

Plot two data series using a two-column matrix.

figure
X = linspace(0,2*pi,50)';
Y = [cos(X), 0.5*sin(X)];
stem(Y)

1 Alphabetical List

1-13964

Each column of Y is plotted as a separate series, and entries in the same row of Y are
plotted against the same x value. The number of rows in Y automatically generates the
position of each stem on the x-axis.

Plot Single Data Series at Specified x values

Plot 50 data values of cosine evaluated between 0 and 2π and specify the set of x values
for the stem plot.

figure
X = linspace(0,2*pi,50)';

 stem

1-13965

Y = cos(X);
stem(X,Y)

The first vector input determines the position of each stem on the x-axis.

Plot Multiple Data Series at Specified x values

Plot 50 data values of sine and cosine evaluated between 0 and 2π and specify the set of x
values for the stem plot.

figure
X = linspace(0,2*pi,50)';

1 Alphabetical List

1-13966

Y = [cos(X), 0.5*sin(X)];
stem(X,Y)

The vector input determines the x-axis positions for both data series.

Plot Multiple Data Series at Unique Sets of x values

Plot 50 data values of sine and cosine evaluated at different sets of x values. Specify the
corresponding sets of x values for each series.

figure
x1 = linspace(0,2*pi,50)';

 stem

1-13967

x2 = linspace(pi,3*pi,50)';
X = [x1, x2];
Y = [cos(x1), 0.5*sin(x2)];
stem(X,Y)

Each column of X is plotted against the corresponding column of Y.

Fill in Plot Markers

Create a stem plot and fill in the circles that terminate each stem.

1 Alphabetical List

1-13968

X = linspace(0,10,20)';
Y = (exp(0.25*X));
stem(X,Y,'filled')

Specify Stem and Marker Options

Create a stem plot and set the line style to a dotted line, the marker symbols to diamonds,
and the color to red using the LineSpec option.

figure
X = linspace(0,2*pi,50)';

 stem

1-13969

Y = (exp(X).*sin(X));
stem(X,Y,':diamondr')

To color the inside of the diamonds, use the 'fill' option.

Specify Additional Stem and Marker Options

Create a stem plot and set the line style to a dot-dashed line, the marker face color to red,
and the marker edge color to green using Name,Value pair arguments.

figure
X = linspace(0,2*pi,25)';

1 Alphabetical List

1-13970

Y = (cos(2*X));
stem(X,Y,'LineStyle','-.',...
 'MarkerFaceColor','red',...
 'MarkerEdgeColor','green')

The stem remains the default color.

Specify Axes for Stem Plot

Create a figure with two subplots and return the handles to each axes, s(1) and s(2).
Create a stem plot in the lower subplot by referring to its axes handle, s(2).

 stem

1-13971

figure
s(1) = subplot(2,1,1);
s(2) = subplot(2,1,2);

X = 0:25;
Y = [exp(0.1*X); -exp(.05*X)]';
stem(s(2),X,Y)

Modify Stem Series After Creation

Create a stem plot.

1 Alphabetical List

1-13972

X = 0:25;
Y = [cos(X); exp(0.05*X)]';
h = stem(X,Y);

The stem function creates a stem series object for each column of data. The output
argument, h, contains the two stem series objects.

Set the first stem series color to green. Change the markers of the second stem series to
squares. Starting in R2014b, you can use dot notation to set properties. If you are using
an earlier release, use the set function instead.

h(1).Color = 'green';
h(2).Marker = 'square';

 stem

1-13973

Adjust Baseline Properties

Create a stem plot and change properties of the baseline.

X = linspace(0,2*pi,50);
Y = exp(0.3*X).*sin(3*X);
h = stem(X,Y);

1 Alphabetical List

1-13974

Change the line style of the baseline. Starting in R2014b, you can use dot notation to set
properties. If you are using an earlier release, use the set function instead.

hbase = h.BaseLine;
hbase.LineStyle = '--';

 stem

1-13975

Hide the baseline by setting its Visible property to 'off' .

hbase.Visible = 'off';

1 Alphabetical List

1-13976

Change Baseline Level

Create a stem plot with a baseline level at 2.

X = linspace(0,2*pi,50)';
Y = (exp(0.3*X).*sin(3*X));
stem(X,Y,'BaseValue',2);

 stem

1-13977

Input Arguments
Y — Data sequence to display
vector or matrix

Data sequence to display, specified as a vector or matrix. When Y is a vector, stem creates
one Stem object. When Y is a matrix, stem creates a separate Stem object for each
column.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

1 Alphabetical List

1-13978

X — Locations to plot data values in Y
vector or matrix

Locations to plot data values in Y, specified as a vector or matrix. When Y is a vector, X
must be a vector of the same size. When Y is a matrix, X must be a matrix of the same
size, or a vector whose length equals the number of rows in Y.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string. For more
information, see LineSpec.
Example: ':*r'

ax — Axes object
Axes object

Axes object. If you do not specify the axes, then stem plots into the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'LineStyle',':','MarkerFaceColor','red' plots the stem as a dotted
line and colors the marker face red.

The Stem properties listed here are only a subset. For a complete list, see Stem.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

 stem

1-13979

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Color — Stem color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Stem color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

1 Alphabetical List

1-13980

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Marker — Marker symbol
'o' (default) | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table.

 stem

1-13981

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-13982

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 stem

1-13983

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'

1 Alphabetical List

1-13984

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Output Arguments
h — Stem objects
Stem objects

Stem objects. These are unique identifiers, which you can use to modify the properties of
a specific Stem object after it is created.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 stem

1-13985

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
LineSpec | bar | plot | stairs

Properties
Stem

Topics
“Combine Line and Stem Plots”
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

1 Alphabetical List

1-13986

stem3
Plot 3-D discrete sequence data

Syntax
stem3(Z)
stem3(X,Y,Z)
stem3(___ ,'filled')
stem3(___ ,LineSpec)
stem3(___ ,Name,Value)

stem3(ax, ___)

h = stem3(___)

Description
stem3(Z) plots entries in Z as stems extending from the xy-plane and terminating with
circles at the entry values. The stem locations in the xy-plane are automatically
generated.

stem3(X,Y,Z) plots entries in Z as stems extending from the xy-plane where X and Y
specify the stem locations in the xy-plane. The inputs X, Y, and Z must be vectors or
matrices of the same size.

stem3(___ ,'filled') fills the circles. Use this option with any of the input argument
combinations in the previous syntaxes.

stem3(___ ,LineSpec) specifies the line style, marker symbol, and color.

stem3(___ ,Name,Value) modifies the stem chart using one or more name-value pair
arguments.

stem3(ax, ___) plots into the axes specified by ax instead of into the current axes
(gca). The option, ax, can precede any of the input argument combinations in the
previous syntaxes.

 stem3

1-13987

h = stem3(___) returns the Stem object h.

Examples

Row Vector Input

Create a 3-D stem plot of cosine values between −π/2 and π/2 with a row vector input.

figure
X = linspace(-pi/2,pi/2,40);
Z = cos(X);
stem3(Z)

1 Alphabetical List

1-13988

stem3 plots elements of Z against the same y value at equally space x values.

Column Vector Input

Create a 3-D stem plot of cosine values between −π/2 and π/2 with a column vector
input.

figure
X = linspace(-pi/2,pi/2,40)';
Z = cos(X);
stem3(Z)

 stem3

1-13989

stem3 plots elements of Z against the same x value at equally space y values.

Matrix Input

Create a 3-D stem plot of sine and cosine values between −π/2 and π/2 with a matrix
input.

figure
X = linspace(-pi/2,pi/2,40);
Z = [sin(X); cos(X)];
stem3(Z)

1 Alphabetical List

1-13990

stem3 plots each row of Z against the same y value at equally space x values.

Specify Stem Locations with Vector Inputs

Create a 3-D stem plot and specify the stem locations along a curve. Use view to adjust
the angle of the axes in the figure.

figure
X = linspace(-5,5,60);
Y = cos(X);
Z = X.^2;
stem3(X,Y,Z)
view(-8,30)

 stem3

1-13991

X and Y determine the stem locations. Z determines the marker heights.

Specify Stem Locations with Matrix Inputs

Create a 3-D stem plot with matrix data and specify the stem locations in the xy-plane.

figure
[X,Y] = meshgrid(0:.1:1);
Z = exp(X+Y);
stem3(X,Y,Z)

1 Alphabetical List

1-13992

X and Y determine the stem locations. Z determines the marker heights.

Fill in Markers

Create a 3-D stem plot of cosine values between −π and π and fill in the markers.

X = linspace(-pi,pi,40);
Z = cos(X);
stem3(Z,'filled')

 stem3

1-13993

Line Style, Marker Symbol, and Color Options

Create a 3-D stem plot of cosine values between −π and π. Use a dashed line style for the
stem, set the marker symbols to stars, and set the color to magenta.

figure
X = linspace(-pi,pi,40);
Z = cos(X);
stem3(Z,'--*m')

1 Alphabetical List

1-13994

To specify only two of the three LineSpec options, omit the third option from the
character vector. For example, '*m' sets the marker symbol and the color and uses the
default line style.

Line Style, Marker Symbol, and Color Options

Create a 3-D stem plot and specify the stem locations along a circle. Set the stem to a
dotted line style, the marker symbols to stars, and the color to magenta.

figure
theta = linspace(0,2*pi);

 stem3

1-13995

X = cos(theta);
Y = sin(theta);
Z = theta;
stem3(X,Y,Z,':*m')

X and Y determine the stem locations. Z determines the marker heights.

Additional Style Options

Create a 3-D stem plot of cosine values between −π and π. Set the marker symbols to
squares with green faces and magenta edges.

1 Alphabetical List

1-13996

figure
X = linspace(-pi,pi,40);
Z = cos(X);
stem3(Z,'Marker','s',...
 'MarkerEdgeColor','m',...
 'MarkerFaceColor','g')

Axes Handles

Specify the axes for a 3-D stem plot.

Define vectors X, Y and Z.

 stem3

1-13997

X = linspace(-2,2,50);
Y = X.^3;
Z = exp(X);

Create a figure with two subplots and return the handles to each axes, s(1) and s(2).
Plot a 3-D stem plot in the lower subplot by referring to its axes handle, s(2). For
comparison, plot a 2-D stem plot in the upper subplot by referring to its axes handle,
s(1).

figure
s(1) = subplot(2,1,1);
s(2) = subplot(2,1,2);

stem(s(1),X,Z)
stem3(s(2),X,Y,Z)

1 Alphabetical List

1-13998

Modify Stem Series After Creation

Create a 3-D stem plot and return the stem series object.

X = linspace(0,2);
Y = X.^3;
Z = exp(X).*cos(Y);
h = stem3(X,Y,Z,'filled');

 stem3

1-13999

Change the color to magenta and set the marker face color to yellow. Use view to adjust
the angle of the axes in the figure. Starting in R2014b, you can use dot notation to set
properties. If you are using an earlier release, use the set function instead.

h.Color = 'm';
h.MarkerFaceColor = 'y';
view(-10,35)

1 Alphabetical List

1-14000

Input Arguments
Z — Data sequence to display
vector or matrix

Data sequence to display, specified as a vector or matrix. stem3 plots each element in Z
as a stem extending from the xy-plane and terminating at the data value.

• If Z is a row vector, stem3 plots all elements against the same y value at equally
spaced x values.

 stem3

1-14001

• If Z is a column vector, stem3 plots all elements against the same x value at equally
spaced y values.

• If Z is a matrix, stem3 plots each row of Z against the same y value at equally spaced
x values.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

X — Locations to plot values of Z
vector or matrix

Locations to plot values ofZ, specified as a vector or a matrix. Inputs X, Y and Z must be
vectors or matrices of the same size.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Y — Locations to plot values of Z
vector or matrix

Locations to plot values of Z, specified as a vector or a matrix. Inputs X, Y and Z must be
vectors or matrices of the same size.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string. For more
information, see LineSpec.
Example: ':*r'
Data Types: char

ax — Axes object
Axes object

Axes object. If you do not specify the axes, then stem plots into the current axes.

1 Alphabetical List

1-14002

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'LineStyle',':','MarkerFaceColor','red' plots the stem as a dotted
line and sets the marker face color to red.

The properties listed here are only a subset. For a complete list, see Stem.

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width of stem and marker edge
0.5 (default) | positive value

Line width of stem and marker edge, specified as a positive value in point units.
Example: 0.75

Color — Stem color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Stem color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 stem3

1-14003

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-14004

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Marker — Marker symbol
'o' (default) | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

 stem3

1-14005

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-14006

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

 stem3

1-14007

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Output Arguments
h — Stem object
Stem

Stem object. This is a unique identifier, which you can use to modify the properties of the
Stem object after it is created.

1 Alphabetical List

1-14008

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
bar | plot | stairs | stem

Properties
Stem

Topics
“Combine Line and Stem Plots”

 stem3

1-14009

Introduced before R2006a

1 Alphabetical List

1-14010

Stem Properties
Stem chart appearance and behavior

Description
Stem properties control the appearance and behavior of a Stem object. By changing
property values, you can modify certain aspects of the stem chart.

Starting in R2014b, you can use dot notation to query and set properties.

h = stem(1:10);
c = h.Color;
h.Color = 'red';

If you are using an earlier release, use the get and set functions instead.

Properties
Color and Styling

Color — Stem color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Stem color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Stem Properties

1-14011

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Stem line style
'-' (default) | '--' | ':' | '-.' | 'none'

1 Alphabetical List

1-14012

Stem line style, specified as one of the line styles listed in this table.

Line Style Description
'-' Solid line
'--' Dashed line
':' Dotted line
'-.' Dash-dotted line
'none' No stems

Example: '--'

LineWidth — Line width of stem and marker edge
0.5 (default) | scalar numeric value greater than 0

Line width of stem and marker edge, specified as a scalar numeric value greater than 0 in
point units. The default line width is 0.5 points.
Example: 0.75

Markers

Marker — Marker symbol
'o' (default) | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as one of the markers listed in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle

 Stem Properties

1-14013

Value Description
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

Example: '+'
Example: 'diamond'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

1 Alphabetical List

1-14014

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' option uses the same color as the Color property of
the parent axes. If you specify 'auto' and the axes plot box is invisible, the marker fill
color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 Stem Properties

1-14015

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-14016

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Baseline

BaseValue — Baseline value
0 (default) | numeric scalar value

Baseline value, specified as a numeric scalar value.

The baseline value that you specify applies to either the x-axis or the y-axis depending on
the bar chart orientation. If you change the orientation of the bar chart from vertical to
horizontal, or vice versa, the baseline value might change. Set the BaseValue property
after setting the Horizontal property.

ShowBaseLine — Baseline visibility
'on' (default) | 'off'

Baseline visibility, specified as one of these values:

• 'on' — Show the baseline.
• 'off' — Hide the baseline.

BaseLine — Baseline
baseline object

This property is read-only.

Baseline object. For a list of baseline properties, see Baseline.

Data

XData — Values along x-axis
[] (default) | vector

Values along the x-axis, specified as a vector.

• For 2-D stem charts, the input argument X to the stem function determines the x-
values. If you do not specify X, then stem uses the indices of YData as the x-values.
XData and YData must have equal lengths.

 Stem Properties

1-14017

• For 3-D stem charts, the input argument X to the stem3 function determines the x-
values. If you do not specify X, then stem3 uses the indices of ZData as the x-values.
XData, YData, and ZData must have equal lengths.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataMode — Selection mode for XData
'auto' (default) | 'manual'

Selection mode for XData, specified as one of these values:

• 'auto' — Use the indices of the values in YData (or ZData for 3-D plots).
• 'manual' — Use manually specified values. To specify the values, set the XData

property or specify the input argument X to the plotting function.

XDataSource — Variable linked to XData
'' (default) | character vector | string

Variable linked to XData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — Values along y-axis
[] (default) | vector

Values along the y-axis, specified as a vector.

• For 2-D stem charts, the input argument Y to the stem function determines the y-
values. YData defines the stem heights. XData and YData must have equal lengths.

1 Alphabetical List

1-14018

• For 3-D stem charts, the input argument Y to the stem3 function determines the y-
values. YData defines the locations of the stems along the y-axis. XData, YData, and
ZData must have equal lengths.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataSource — Variable linked to YData
'' (default) | character vector | string

Variable linked to YData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

ZData — Values along z-axis
[] (default) | vector

Values along the z-axis, specified as a vector.

• For 2-D stem charts, ZData is empty by default.
• For 3-D stem charts, the input argument Z to the stem3 function determines the z-

values. XData, YData, and ZData must have equal lengths.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ZDataSource — Variable linked to ZData
'' (default) | character vector | string

 Stem Properties

1-14019

Variable linked to ZData, specified as a character vector or string containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the
IconDisplayStyle property to 'off'.

go.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include. If you do not

1 Alphabetical List

1-14020

specify an existing graphics object in the first input argument, then it does not appear in
the legend. However, graphics objects added to the axes after the legend is created do
appear in the legend. Consider creating the legend after creating all the plots to avoid
extra items.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content
that appears in a data tip by modifying the properties of the underlying
DataTipTemplate object. For a list of properties, see DataTipTemplate.

For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is
not copied by copyobj.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

 Stem Properties

1-14021

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Clipping — Clipping of object to axes limits
'on' (default) | 'off'

Clipping of the object to the axes limits, specified as one of these values:

• 'on' — Do not display parts of the object that are outside the axes limits.
• 'off' — Display the entire object, even if parts of it appear outside the axes limits.

Parts of the object might appear outside the axes limits if you create a plot, set hold
on, freeze the axis scaling, and then create the object so that it is larger than the
original plot.

The Clipping property of the axes that contains the object must be set to 'on'.
Otherwise, this property has no effect. For more information about the clipping behavior,
see the Clipping property of the axes.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

1 Alphabetical List

1-14022

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

 Stem Properties

1-14023

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

1 Alphabetical List

1-14024

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

 Stem Properties

1-14025

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when visible. The Visible property must be set
to 'on' and you must click a part of the Stem object that has a defined color. You
cannot click a part that has an associated color property set to 'none'. If the plot
contains markers, then the entire marker is clickable if either the edge or the fill has a
defined color. The HitTest property determines if the Stem object responds to the
click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the Stem object passes the click to
the object below it in the current view of the figure window. The HitTest property of
the Stem object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Stem object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Stem object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

1 Alphabetical List

1-14026

Note The PickableParts property determines if the Stem object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

 Stem Properties

1-14027

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'stem' (default)

This property is read-only.

Type of graphics object, returned as 'stem'. Use this property to find all objects of a
given type within a plotting hierarchy, such as searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
stem | stem3

1 Alphabetical List

1-14028

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Stem Properties

1-14029

stlread
Create triangulation from STL file

Syntax
TR = stlread(filename)
[TR,fileformat,attributes,solidID] = stlread(filename)

Description
TR = stlread(filename) returns a triangulation object TR containing the
triangles defined in an STL file.

[TR,fileformat,attributes,solidID] = stlread(filename) also returns the
file format of filename, attributes when the file is binary, and solid identification
numbers when the file is text.

Examples

Read Triangulation from STL Text File

Create and plot a triangulation object from the data contained in the file
tristltext.stl.

TR = stlread('tristltext.stl');
triplot(TR)

1 Alphabetical List

1-14030

Input Arguments
filename — STL file name
character vector | scalar string

STL file name, specified as a character vector or scalar string. The file name must end
with the .stl or .STL extension. If the file contains degenerate triangles, then stlread
automatically removes them.
Example: 'stltextfile.stl'

 stlread

1-14031

Output Arguments
TR — Triangulation
triangulation object

Triangulation, returned as a triangulation object.

fileformat — File format
'binary' | 'text'

File format, returned as either 'binary' or 'text'.

attributes — Binary attributes
uint16 vector

Binary attributes, returned as a uint16 vector. When the input file is binary,
attributes contains coded information about the triangles. Its length is equal to the
number of triangles in the triangulation. If the input file is a text file, then attributes is
an empty array.

solidID — Solid grouping index
vector

Solid grouping index, returned as a vector of identification numbers. When the input file
is a text file, the identification numbers assign each triangle to a grouping of triangles in
the triangulation. When the input file is binary, solidID contains all ones. The length of
solidID is equal to the number of triangles in the triangulation.
Data Types: double

See Also
triangulation

Introduced in R2018b

1 Alphabetical List

1-14032

stlwrite
Create STL file from triangulation

Syntax
stlwrite(TR,filename)
stlwrite(TR,filename,fileformat)
stlwrite(___ ,Name,Value)

Description
stlwrite(TR,filename) writes a triangulation TR to a binary STL file filename. The
triangulation can be either a triangulation object or a 2-D delaunayTriangulation
object.

stlwrite(TR,filename,fileformat) also specifies a file format for the written file.
fileformat can be either 'binary' (default) or 'text'.

stlwrite(___ ,Name,Value) specifies additional options for writing to the STL file
using one or more Name,Value pair arguments for either of the previous syntaxes. For
example, stlwrite(TR,'stlbinary','Attribute',attributes) also writes a
uint16 vector of attributes for each triangle in TR.

Examples

Write Triangulation to STL Text File

Create and plot a 2-D triangulation object.

P = [2.5 8.0; 6.5 8.0; 2.5 5.0; 6.5 5.0; 1.0 6.5; 8.0 6.5];
T = [5 3 1; 3 2 1; 3 4 2; 4 6 2];
TR = triangulation(T,P);
triplot(TR)

 stlwrite

1-14033

Write the triangulation to a text file named tritext.stl.

stlwrite(TR,'tritext.stl','text')

Input Arguments
TR — Triangulation
triangulation object | 2-D delaunayTriangulation object

Triangulation, specified as a triangulation object or a 2-D delaunayTriangulation
object.

1 Alphabetical List

1-14034

filename — STL file name
character vector | scalar string

STL file name, specified as a character vector or scalar string. The file name must end
with the .stl or .STL extension.
Example: 'stltextfile.stl'

fileformat — File format
'binary' | 'text'

File format, specified as either 'binary' or 'text'.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify the name and value pair arguments in any order as
Name1,Value1,Name2,Value2.
Example: stlwrite(TR,'stltext','SolidIndex',solidIDs)

Attribute — Binary attributes
uint16 vector

Binary attributes, specified as a uint16 vector. When the input file is a binary file,
attributes can contain coded information about the triangles. Its length must be equal
to the number of triangles in the triangulation. This parameter is not supported when the
input file is a text file.

SolidIndex — Solid grouping index
vector

Solid grouping index, specified as a vector of identification numbers. When the input file
is a text file, the identification numbers must assign each triangle to a grouping of
triangles in the triangulation. The length of the vector must be equal to the number of
triangles in the triangulation. This parameter is not supported when the input file is
binary.

See Also
delaunayTriangulation | triangulation

 stlwrite

1-14035

Introduced in R2018b

1 Alphabetical List

1-14036

stopasync
Stop asynchronous read and write operations

Syntax
stopasync(obj)

Description
stopasync(obj) stops any asynchronous read or write operation that is in progress for
the serial port object, obj.

Tips
You can write data asynchronously using the fprintf or fwrite function. You can read
data asynchronously using the readasync function, or by configuring the
ReadAsyncMode property to continuous. In-progress asynchronous operations are
indicated by the TransferStatus property.

If obj is an array of serial port objects and one of the objects cannot be stopped, the
remaining objects in the array are stopped and a warning is returned. After an object
stops:

• Its TransferStatus property is configured to idle.
• Its ReadAsyncMode property is configured to manual.
• The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the MATLAB workspace
using any of the synchronous read functions. If you execute the readasync function, or
configure the ReadAsyncMode property to continuous, then the new data is appended
to the existing data in the input buffer.

 stopasync

1-14037

See Also
ReadAsyncMode | TransferStatus | fprintf | fwrite | readasync

Introduced before R2006a

1 Alphabetical List

1-14038

str2double
Convert strings to double precision values

Syntax
X = str2double(str)

Description
X = str2double(str) converts the text in str to double precision values. str
contains text that represents real or complex numeric values. str can be a character
vector, a cell array of character vectors, or a string array. If str is a character vector or
string scalar, then X is a numeric scalar. If str is a cell array of character vectors or a
string array, then X is a numeric array that is the same size as str.

Text that represents a number can contain digits, a comma (thousands separator), a
decimal point, a leading + or - sign, an e preceding a power of 10 scale factor, and an i
or a j for a complex unit. You cannot use a period as a thousands separator, or a comma
as a decimal point.

If str2double cannot convert text to a number, then it returns a NaN value.

Examples

Convert Character Vectors to Numbers

Convert character vectors that represent numbers to double precision values. You can
also convert a cell array of character vectors to a numeric array of the same size.

Convert a character vector to a real number.

X = str2double('3.1416')

X = 3.1416

 str2double

1-14039

Convert a character vector when it represents a number using exponential notation.

X = str2double('2.998e8')

X = 299800000

Convert a character vector that uses a comma as the thousands separator.

X = str2double('1,200.34')

X = 1.2003e+03

Convert a character vector to a complex number.

X = str2double('3.14 + 2.7i')

X = 3.1400 + 2.7000i

Convert a cell array of character vectors to a numeric array.

str = {'2.718','3.1416';
 '137','0.015'};
X = str2double(str)

X = 2×2

 2.7180 3.1416
 137.0000 0.0150

Convert String Arrays to Numeric Arrays

Starting in R2016b, you can create string arrays using the string function. You can
convert strings to numbers using the str2double function.

Create a string that represents a number. Convert it to a numeric scalar.

str = string('81470.5')

str =
"81470.5"

X = str2double(str)

1 Alphabetical List

1-14040

X = 8.1471e+04

Create a string array representing numbers. Convert it to a numeric array that is the
same size.

str = string({'91.57','95.95','3.57';
 '79.22','65.57','84.91'})

str = 2x3 string array
 "91.57" "95.95" "3.57"
 "79.22" "65.57" "84.91"

X = str2double(str)

X = 2×3

 91.5700 95.9500 3.5700
 79.2200 65.5700 84.9100

Input Arguments
str — Text that represents numbers
character vector | cell array of character vectors | string array

Text that represents numbers, specified as a character vector, a cell array of character
vectors, or a string array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 str2double

1-14041

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be a string scalar or a character vector.
• Generated code always returns a complex result.

See Also
cast | char | hex2num | num2str | str2num

Introduced before R2006a

1 Alphabetical List

1-14042

str2func
Construct function handle from character vector

Syntax
fh = str2func(str)

Description
fh = str2func(str) constructs a function handle, fh, from a function name or text
representation of an anonymous function.

Function handles created using str2func do not have access to variables outside of their
local workspace or to nested functions. If your function handle contains these variables or
functions, MATLAB throws an error when you invoke the handle. Also, if you use a text
representation of an anonymous function, the resulting function handle does not have
access to private or local functions.

Examples

Convert Character Vector to Function Handle

Convert the character vector 'ones' to a function handle, and call the ones function
using the handle.

c = 'ones';
fh = str2func(c)

fh = function_handle with value:
 @ones

fh(1,5)

 str2func

1-14043

ans = 1×5

 1 1 1 1 1

Convert Character Vector to Handle to Anonymous Function

Convert a character vector that represents an anonymous function to a function handle.
Workspace variables are not available to the str2func function. Therefore, include
values in the character vector that are necessary to evaluate the expression and that are
not defined as function inputs.

Define a character vector that represents the anonymous function 7x – 13. Convert the
character vector to a function handle.

str = '@(x)7*x-13';
fh = str2func(str)

fh =

 @(x)7*x-13

Call the anonymous function using the handle.

fh(3)

ans =

 8

If you include workspace variables in your character vector, str2func creates the
function handle, but MATLAB throws an error when you invoke the function handle.

a = 13;
str = '@(x)7*x-a';
fh = str2func(str);

fh(3)

1 Alphabetical List

1-14044

Undefined function or variable 'a'.

Error in @(x)7*x-a

Examine Differences Between str2func and eval

Create a function that returns two function handles used to simulate the roll of dice. The
first die (d1) returns a number from 1 through 6, but the second die (d2) always returns
the number 1.

Create the following function in a folder on your MATLAB path. When str2func is used
with a character vector representing an anonymous function, it does not have access to
the local function. Therefore, MATLAB calls the built-in randi function, and returns a
number from 1 through 6. The eval function does have access to the local function, so d2
uses the overloaded randi and always returns 1.

function [d1,d2] = diceRoll
str = '@()randi([1 6],1)';
d1 = str2func(str);
d2 = eval(str);
end

function r = randi(~,~)
r = 1;
end

At the command prompt, call the diceRoll function.

[p1,p2] = diceRoll

p1 =

 function_handle with value:

 @()randi([1,6],1)

p2 =

 str2func

1-14045

 function_handle with value:

 @()randi([1,6],1)

Both p1 and p2 appear to be associated with the same anonymous function.

Invoke the function handles. The result from p1 varies from 1 through 6. The result from
p2 is always 1.

p1()
p2()

ans =

 5

ans =

 1

Input Arguments
str — Text to convert to function handle
function name | character vector representation of anonymous function | string scalar
representation of anonymous function

Text to convert to a function handle, specified as a function name or a character vector or
string scalar representation of an anonymous function.
Example: str = 'cos'
Example: str = '@(x) x.^2'

Tips
• A function handle that stores variable values does not retain its original value when

you use func2str to convert it to a character vector, and then convert it back to a
handle with str2func.

1 Alphabetical List

1-14046

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument must be constant/known at compile time.
• Code generation does not support an input argument that represents an anonymous

function.

See Also
func2str | functions

Topics
“Create Function Handle”

Introduced before R2006a

 str2func

1-14047

str2mat
(Not recommended) Form blank-padded character array from strings

Note str2mat is not recommended. Use char instead.

Syntax
S = str2mat(T1, T2, T3, ...)

Description
S = str2mat(T1, T2, T3, ...) forms the character array S containing the
character arrays T1, T2, T3, ... as rows. The function automatically pads each row
with blanks so that every row of S has the same number of characters. Each input
argument, Ti, can itself be a character array with one or more rows. This function allows
for the creation of arbitrarily large character arrays. Empty character arrays are
significant.

Examples
x = str2mat('36842', '39751', '38453', '90307');

whos x
 Name Size Bytes Class

 x 4x5 40 char array

x(2,3)

ans =

 7

1 Alphabetical List

1-14048

Tips
str2mat differs from strvcat in that empty character arrays produce blank rows in the
output. In strvcat, empty character arrays are ignored.

See Also
char

Introduced before R2006a

 str2mat

1-14049

str2num
Convert character array or string to numeric array

Syntax
X = str2num(chr)
[X,tf] = str2num(chr)

Description
X = str2num(chr) converts a character array or string scalar to a numeric matrix. The
input can include spaces, commas, and semicolons to indicate separate elements. If
str2num cannot parse the input as numeric values, then it returns an empty matrix.

The str2num function does not convert cell arrays or nonscalar string arrays, and is
sensitive to spacing around + and - operators. In addition, str2num uses the eval
function, which can cause unintended side effects when the input includes a function
name. To avoid these issues, use str2double.

[X,tf] = str2num(chr) additionally returns a second output argument that is 1
(true) if str2num successfully converts chr. Otherwise, str2num returns 0 (false).

Examples

Convert to Numeric Matrix

Convert character vectors that represent numbers.

X = str2num('100')

X = 100

X = str2num('100 200 300 400')

1 Alphabetical List

1-14050

X = 1×4

 100 200 300 400

str2num interprets exponential notation.

X = str2num('12e-3 5.9e-3 -8.1e-3 2.56e-3; 5 11.2 17.9 33')

X = 2×4

 0.0120 0.0059 -0.0081 0.0026
 5.0000 11.2000 17.9000 33.0000

Convert to Integer

Convert a character vector to an unsigned 16-bit integer using str2num and uint16.

X = str2num('256');
X = uint16(X)

X = uint16
 256

Convert to Logical

Convert a character vector containing true and false to a logical array.

X = str2num('false true true false')

X = 1x4 logical array

 0 1 1 0

 str2num

1-14051

Check Conversion Status

Return the status of a conversion that fails. tf is 0, and X is an empty matrix.

[X,tf] = str2num('12e-3 m/s, 5.9e-3 m/s')

X =

 []

tf = logical
 0

If you remove the extra text (m/s), then conversion succeeds.

[X,tf] = str2num('12e-3 5.9e-3')

X = 1×2

 0.0120 0.0059

tf = logical
 1

Input Arguments
chr — Representation of numeric matrix
character array | string scalar

Representation of a numeric matrix, specified as a character array or string scalar.

Text that represents a numeric matrix can contain spaces, commas, or semicolons, such
as '5', '10,11,12', or '5,10;15,20'. In addition to numeric values and delimiters,
input text also can include any of the following items:

• A decimal point
• Leading + or - signs
• The letter e or d preceding a power of 10 scale factor

1 Alphabetical List

1-14052

• The letter i or j indicating a complex or imaginary number
• true or false indicating logical values

Space characters, or the lack of them, can be significant. For instance,
str2num('1+2i') and str2num('1 + 2i') both return the complex number 1.0000
+ 2.0000i, while str2num('1 +2i') returns the 1-by-2 vector [1.0000 + 0.0000i
0.0000 + 2.0000i]. To avoid this problem, use the str2double function.

str2num converts character arrays and string scalars only. To convert nonscalar string
arrays or cell arrays to numeric arrays, use the str2double function.

Output Arguments
X — Output array
numeric matrix

Output array, returned as a numeric matrix.

tf — True or false
1 | 0

True or false result, returned as a 1 or 0 of data type logical.

See Also
cast | char | hex2num | num2str | sscanf | str2double

Topics
“Convert from Character Arrays to Numeric Values”
“Convert from Numeric Values to Character Array”

Introduced before R2006a

 str2num

1-14053

strcat
Concatenate strings horizontally

Syntax
s = strcat(s1,...,sN)

Description
s = strcat(s1,...,sN) horizontally concatenates s1,...,sN. Each input argument
can be a character array, a cell array of character vectors, or a string array.

• If any input is a string array, then the result is a string array.
• If any input is a cell array, and none are string arrays, then the result is a cell array of

character vectors.
• If all inputs are character arrays, then the result is a character array.

For character array inputs, strcat removes trailing ASCII white-space characters: space,
tab, vertical tab, newline, carriage return, and form feed. For cell and string array inputs,
strcat does not remove trailing white space.

Examples

Concatenate Two Character Vectors

s1 = 'Good';
s2 = 'morning';
s = strcat(s1,s2)

s =
'Goodmorning'

1 Alphabetical List

1-14054

Concatenate Two Cell Arrays
s1 = {'abcde','fghi'};
s2 = {'jkl','mn'};
s = strcat(s1,s2)

s = 1x2 cell array
 {'abcdejkl'} {'fghimn'}

Concatenate Two Cell Arrays with Scalar Cell Array
firstnames = {'Abraham'; 'George'};
lastnames = {'Lincoln'; 'Washington'};
names = strcat(lastnames, {', '}, firstnames)

names = 2x1 cell array
 {'Lincoln, Abraham' }
 {'Washington, George'}

Concatenate Two String Arrays

Starting in R2017a, you can create string arrays using double quotes. Concatenate them
with the strcat function.

str1 = ["John ","Mary "];
str2 = ["Smith","Jones"];
str = strcat(str1,str2)

str = 1x2 string array
 "John Smith" "Mary Jones"

Concatenate a character vector onto each element of the string array.

str = strcat(str,', M.D.')

str = 1x2 string array
 "John Smith, M.D." "Mary Jones, M.D."

 strcat

1-14055

Input Arguments
s1,...,sN — Input text
character arrays | cell array of character vectors | string arrays

Input text, specified as character arrays, cell arrays of character vectors, or string arrays.
When combining string or cell arrays with character arrays, the string or cell arrays must
be either scalars or column vectors with the same number of rows as the character
arrays.
Data Types: char | cell | string

Tips
• Character arrays also can be concatenated using left and right square brackets.

s1 = 'Good ';
s2 = 'Morning';
s = [s1 s2]

s =

Good Morning

See Also
cat | cellstr | horzcat | join | strjoin | vertcat

Introduced before R2006a

1 Alphabetical List

1-14056

strcmp
Compare strings

Syntax
tf = strcmp(s1,s2)

Description
tf = strcmp(s1,s2) compares s1 and s2 and returns 1 (true) if the two are identical
and 0 (false) otherwise. Text is considered identical if the size and content of each are
the same. The return result tf is of data type logical.

The input arguments can be any combination of string arrays, character vectors, and cell
arrays of character vectors.

Examples

Compare Two Character Vectors

Compare two different character vectors.

s1 = 'Yes';
s2 = 'No';
tf = strcmp(s1,s2)

tf = logical
 0

strcmp returns 0 because s1 and s2 are not equal.

Compare two equal character vectors.

 strcmp

1-14057

s1 = 'Yes';
s2 = 'Yes';
tf = strcmp(s1,s2)

tf = logical
 1

strcmp returns 1 because s1 and s2 are equal.

Find Text in Cell Array

Find the word 'upon' in a cell array of character vectors.

s1 = 'upon';
s2 = {'Once','upon';
 'a','time'};
tf = strcmp(s1,s2)

tf = 2x2 logical array

 0 1
 0 0

There is only one occurrence of s1 in array s2, and it occurs at element s2(1,2).

Compare Two Cell Arrays of Character Vectors

Compare each element in two cell arrays of character vectors.

s1 = {'Time','flies','when';
 'you''re','having','fun.'};
s2 = {'Time','drags','when';
 'you''re','anxiously','waiting.'};
tf = strcmp(s1,s2)

tf = 2x3 logical array

 1 0 1

1 Alphabetical List

1-14058

 1 0 0

There are three instances of equal elements in s1 and s2. These are 'Time' at indices
(1,1), 'when' at indices (1,3), and 'you''re' at indices (2,1).

Compare String Arrays

Starting in R2017a, you can create strings using double quotes. Compare string arrays
using strcmp.

s1 = ["A","bc";
 "def","G"];
s2 = ["B","c";
 "def","G"];

tf = strcmp(s1,s2)

tf = 2x2 logical array

 0 0
 1 1

You can compare and sort string arrays with relational operators, just as you can with
numeric arrays.

Use == to determine which elements of two string arrays are equal.

s1 == s2

ans = 2x2 logical array

 0 0
 1 1

Use < to determine which elements of s1 are less than the corresponding elements of s2
according to ASCII dictionary order.

s1 < s2

 strcmp

1-14059

ans = 2x2 logical array

 1 1
 0 0

Input Arguments
s1,s2 — Input text
character vector | character array | cell array of character vectors | string array

Input text, with each input specified as a character vector, a character array, a cell array
of character vectors, or a string array. The order of the inputs does not affect the
comparison results.

• If both s1 and s2 are string arrays or cell arrays of character vectors, then s1 and s2
must be the same size, unless one of them is scalar.

• If both s1 and s2 are character arrays with multiple rows, then s1 and s2 can have
different numbers of rows.

• When comparing a nonscalar cell array of character vectors or a string array to a
multirow character array, the cell array or string array must be a column vector with
the same number of rows as the character array.

Data Types: char | cell | string

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

• If each input is either a string scalar, scalar cell, or a character vector, then tf is a
scalar.

• If at least one input is either a string array or a cell array of character vectors, then tf
is an array the same size as the input array.

1 Alphabetical List

1-14060

• If one input is a character array with multiple rows, and the other input is either a
scalar cell or a string scalar, then tf is an n-by-1 array, where n is the number of rows
in the character array.

• If both inputs are character arrays, tf is a scalar.

Tips
• The strcmp function is intended for comparison of text. If used on unsupported data

types, strcmp always returns 0.
• For case-insensitive text comparison, use strcmpi instead of strcmp.
• Although strcmp shares a name with a C function, it does not follow the C language

convention of returning 0 when the text inputs match.
• With string arrays, you can use relational operators (==, ~=, <, >, <=, >=) instead of

strcmp. You can compare and sort string arrays just as you can with numeric arrays.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Enumeration inputs are not supported.
• When one input is a cell array and the other input is a character array, the character

array must be a compile-time row vector.
• When both inputs are empty character arrays that have different sizes, the generated

code returns true.

 strcmp

1-14061

See Also
eq | ne | regexp | regexpi | sort | strcmpi | strfind | strncmp | strncmpi

Topics
“Compare Text”

Introduced before R2006a

1 Alphabetical List

1-14062

strcmpi
Compare strings (case insensitive)

Syntax
tf = strcmpi(s1,s2)

Description
tf = strcmpi(s1,s2) compares s1 and s2, ignoring any differences in letter case. The
function returns 1 (true) if the two are identical and 0 (false) otherwise. Text is
considered identical if the size and content of each are the same, aside from case. The
return result tf is of data type logical.

The input arguments can be any combination of string arrays, character vectors, and cell
arrays of character vectors.

Examples

Compare Two Character Vectors While Ignoring Case

Compare two different character vectors, ignoring any differences in letter case.

s1 = 'Yes';
s2 = 'No';
tf = strcmpi(s1,s2)

tf = logical
 0

strcmpi returns 0 because s1 and s2 are not equal, even when ignoring case.

Compare two equal character vectors.

 strcmpi

1-14063

s1 = 'Yes';
s2 = 'yes';
tf = strcmpi(s1,s2)

tf = logical
 1

strcmpi returns 1 because s1 and s2 are equal when ignoring case.

Find Case-Insensitive Match in Cell Array

Find text that matches the word 'once' in a cell array of character vectors. Ignore case.

s1 = 'once';
s2 = {'Once','upon';
 'a','time'};
tf = strcmpi(s1,s2)

tf = 2x2 logical array

 1 0
 0 0

When you ignore case, there is one occurrence of s1 in the array s2, and it occurs at the
element s2(1,1).

Compare Cell Arrays While Ignoring Case

Create two cell arrays of character vectors. To compare them while ignoring case, use the
strcmpi function.

s1 = {'Tinker', 'Tailor';
 ' Soldier', 'Spy'};
s2 = {'Tinker', 'Baker';
 'Soldier', 'SPY'};

tf = strcmpi(s1,s2)

1 Alphabetical List

1-14064

tf = 2x2 logical array

 1 0
 0 1

tf(1,1) is 1 because 'Tinker' is in the first cell of both arrays. tf(2,2) is 1 because
'Spy' and 'SPY' differ only in case. tf(2,1) is 0 because ' Soldier' in s1(2,1) has
whitespace characters, and 'Soldier' in s2(2,1) does not.

Compare String Arrays While Ignoring Case

Starting in R2017a, you can create strings using double quotes. Compare two string
arrays, ignoring case, using strcmpi.

s1 = ["A","bc";
 "def","G"];
s2 = ["B","c";
 "DEF","G"];

tf = strcmpi(s1,s2)

tf = 2x2 logical array

 0 0
 1 1

Input Arguments
s1,s2 — Input text
character vector | character array | cell array of character vectors | string array

Input text, with each input specified as a character vector, a character array, a cell array
of character vectors, or a string array. The order of the inputs does not affect the
comparison results.

• If both s1 and s2 are string arrays or cell arrays of character vectors, then s1 and s2
must be the same size, unless one of them is scalar.

 strcmpi

1-14065

• If both s1 and s2 are character arrays with multiple rows, then s1 and s2 can have
different numbers of rows.

• When comparing a nonscalar cell array of character vectors or a string array to a
multirow character array, the cell array or string array must be a column vector with
the same number of rows as the character array.

Data Types: char | cell | string

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

• If each input is either a string scalar or a character vector, then tf is a scalar.
• If at least one input is either a string array or a cell array of character vectors, then tf

is an array the same size as the input array.
• If one input is a character array with multiple rows, and the other input is either a

scalar cell or a string scalar, then tf is an n-by-1 array, where n is the number of rows
in the character array.

• If both inputs are character arrays, tf is a scalar.

Tips
• The strcmpi function is intended for comparison of text. If used on an unsupported

data type, strcmpi always returns 0.
• For case-sensitive text comparison, use strcmp instead of strcmpi.
• Although strcmpi shares a name with a C function, it does not follow the C language

convention of returning 0 when the text inputs match.

1 Alphabetical List

1-14066

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Enumeration inputs are not supported.
• Input values from the char class must be in the range 0-127.
• When one input is a cell array and the other input is a character array, the character

array must be a compile-time row vector.
• When both inputs are empty character arrays that have different sizes, the generated

code returns true.

See Also
eq | ne | regexp | regexpi | sort | strcmp | strfind | strncmp | strncmpi

Topics
“Compare Text”

Introduced before R2006a

 strcmpi

1-14067

stream2
Compute 2-D streamline data

Syntax
XY = stream2(x,y,u,v,startx,starty)
XY = stream2(u,v,startx,starty)
XY = stream2(...,options)

Description
XY = stream2(x,y,u,v,startx,starty) computes streamlines from vector data u
and v.

The arrays x and y, which define the coordinates for u and v, must be monotonic, but do
not need to be uniformly spaced. x and y must have the same number of elements, as if
produced by meshgrid.

startx and starty define the starting positions of the streamlines.

The returned value XY contains a cell array of vertex arrays.

XY = stream2(u,v,startx,starty) assumes the arrays x and y are defined as
[x,y] = meshgrid(1:n,1:m) where [m,n] = size(u).

XY = stream2(...,options) specifies the options used when creating the
streamlines. Define options as a one- or two-element vector containing the step size or
the step size and the maximum number of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify a value, MATLAB software uses the default:

1 Alphabetical List

1-14068

• Step size = 0.1 (one tenth of a cell)
• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream2.

Examples

Plot 2-D Streamlines

Plot 2-D streamlines from data representing air currents over regions of North America.

load wind
[sx,sy] = meshgrid(80,20:10:50);
streamline(stream2(x(:,:,5),y(:,:,5),u(:,:,5),v(:,:,5),sx,sy));

 stream2

1-14069

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-14070

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
coneplot | stream3 | streamline

Topics
“Visualizing Vector Volume Data”

Introduced before R2006a

 stream2

1-14071

stream3
Compute 3-D streamline data

Syntax
XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz)
XYZ = stream3(U,V,W,startx,starty,startz)
XYZ = stream3(...,options)

Description
XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz) computes streamlines from
vector data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must be monotonic,
but do not need to be uniformly spaced. X, Y, and Z must have the same number of
elements, as if produced by meshgrid.

startx, starty, and startz define the starting positions of the streamlines.

The returned value XYZ contains a cell array of vertex arrays.

XYZ = stream3(U,V,W,startx,starty,startz) assumes the arrays X, Y, and Z are
defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P) where [M,N,P] = size(U).

XYZ = stream3(...,options) specifies the options used when creating the
streamlines. Define options as a one- or two-element vector containing the step size or
the step size and the maximum number of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB software uses the default:

1 Alphabetical List

1-14072

• Step size = 0.1 (one tenth of a cell)
• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream3.

Examples

Plot 3-D Streamlines

Plot 3-D streamlines from data representing air currents over regions of North America.

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
streamline(stream3(x,y,z,u,v,w,sx,sy,sz))
view(3);

 stream3

1-14073

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-14074

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
coneplot | stream2 | streamline

Topics
“Visualizing Vector Volume Data”

Introduced before R2006a

 stream3

1-14075

streamline
Plot streamlines from 2-D or 3-D vector data

Syntax
streamline(X,Y,Z,U,V,W,startx,starty,startz)
streamline(U,V,W,startx,starty,startz)
streamline(XYZ)
streamline(X,Y,U,V,startx,starty)
streamline(U,V,startx,starty)
streamline(XY)
streamline(...,options)
streamline(axes_handle,...)
h = streamline(...)

Description
streamline(X,Y,Z,U,V,W,startx,starty,startz) draws streamlines from 3-D
vector data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must be monotonic,
but do not need to be uniformly spaced. X, Y, and Z must have the same number of
elements, as if produced by meshgrid.

startx, starty, startz define the starting positions of the streamlines.

streamline(U,V,W,startx,starty,startz) assumes the arrays X, Y, and Z are
defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P), where [M,N,P] = size(U).

streamline(XYZ) assumes XYZ is a precomputed cell array of vertex arrays (as
produced by stream3).

1 Alphabetical List

1-14076

streamline(X,Y,U,V,startx,starty) draws streamlines from 2-D vector data U, V.

The arrays X and Y, which define the coordinates for U and V, must be monotonic, but do
not need to be uniformly spaced. X and Y must have the same number of elements, as if
produced by meshgrid.

startx and starty define the starting positions of the streamlines. The output
argument h contains a vector of line handles, one handle for each streamline.

streamline(U,V,startx,starty) assumes the arrays X and Y are defined as [X,Y]
= meshgrid(1:N,1:M), where [M,N] = size(U).

streamline(XY) assumes XY is a precomputed cell array of vertex arrays (as produced
by stream2).

streamline(...,options) specifies the options used when creating the streamlines.
Define options as a one- or two-element vector containing the step size or the step size
and the maximum number of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB uses the default:

• Step size = 0.1 (one tenth of a cell)
• Maximum number of vertices = 1000

streamline(axes_handle,...) plots into the axes object with the handle
axes_handle instead of the into current axes object (gca).

h = streamline(...) returns a vector of line handles, one handle for each streamline.

Examples

Draw Streamlines

Define arrays x, y, u, and v.

 streamline

1-14077

[x,y] = meshgrid(0:0.1:1,0:0.1:1);
u = x;
v = -y;

Create a quiver plot of the data. Plot streamlines that start at different points along the
line y = 1.

figure
quiver(x,y,u,v)

startx = 0.1:0.1:1;
starty = ones(size(startx));
streamline(x,y,u,v,startx,starty)

1 Alphabetical List

1-14078

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
coneplot | meshgrid | stream2 | stream3 | streamparticles

Topics
“Visualizing Vector Volume Data”
“Stream Line Plots of Vector Data”

Introduced before R2006a

 streamline

1-14079

streamparticles
Plot stream particles

Syntax
streamparticles(vertices)
streamparticles(vertices,n)
streamparticles(...,'PropertyName',PropertyValue,...)
streamparticles(ax,...)
streamparticles(line_handle,...)
h = streamparticles(...)

Description
streamparticles(vertices) draws stream particles of a vector field. Stream
particles are usually represented by markers and can show the position and velocity of a
streamline. vertices is a cell array of 2-D or 3-D vertices (as if produced by stream2 or
stream3).

streamparticles(vertices,n) uses n to determine how many stream particles to
draw. The ParticleAlignment property controls how n is interpreted.

• If ParticleAlignment is set to off (the default) and n is greater than 1,
approximately n particles are drawn evenly spaced over the streamline vertices.

If n is less than or equal to 1, n is interpreted as a fraction of the original stream
vertices; for example, if n is 0.2, approximately 20% of the vertices are used.

n determines the upper bound for the number of particles drawn. The actual number
of particles can deviate from n by as much as a factor of 2.

• If ParticleAlignment is on, n determines the number of particles on the streamline
having the most vertices and sets the spacing on the other streamlines to this value.
The default value is n = 1.

1 Alphabetical List

1-14080

streamparticles(...,'PropertyName',PropertyValue,...) controls the stream
particles using named properties and specified values. Any unspecified properties have
default values. MATLAB ignores the case of property names.

streamparticles(ax,...) creates the stream particles in the axes specified by ax
instead of in the current axes (gca). The option ax can precede any of the input argument
combinations in the previous syntaxes.

Stream Particle Properties
Animate — Stream particle motion [nonnegative integer]

The number of times to animate the stream particles. The default is 0, which does not
animate. Inf animates until you enter Ctrl+C.

FrameRate — Animation frames per second [nonnegative integer]

This property specifies the number of frames per second for the animation. Inf, the
default, draws the animation as fast as possible. Note that the speed of the animation
might be limited by the speed of the computer. In such cases, the value of FrameRate
cannot necessarily be achieved.

ParticleAlignment — Align particles with streamlines [on | {off}]

Set this property to on to draw particles at the beginning of each streamline. This
property controls how streamparticles interprets the argument n (number of stream
particles).

Stream particles are primitive line objects. In addition to stream particle properties, you
can specify any line property, such as Marker. streamparticles sets the following line
properties when called.

Line Property Value Set by streamparticles
LineStyle 'none'
Marker 'o'
MarkerEdgeColor 'none'
MarkerFaceColor 'red'

 streamparticles

1-14081

You can override any of these properties by specifying a property name and value as
arguments to streamparticles. For example, this statement uses RGB values to set the
MarkerFaceColor to medium gray:

streamparticles(vertices,'MarkerFaceColor',[.5 .5 .5])

streamparticles(line_handle,...) uses the line object identified by line_handle
to draw the stream particles.

h = streamparticles(...) returns a vector of handles to the primitive line objects it
creates. For a list of properties, see Primitive Line.

Examples

Animate Flow Without Displaying Streamlines

This example uses streamlines in the z = 5 plane to animate the flow along these lines
with stream particles.

load wind
figure
daspect([1,1,1]);
view(2)
[verts,averts] = streamslice(x,y,z,u,v,w,[],[],[5]);
sl = streamline([verts averts]);
axis tight manual off;
ax = gca;
ax.Position = [0,0,1,1];
set(sl,'Visible','off')
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.05);
zlim([4.9,5.1]);
streamparticles(iverts, 200, ...
 'Animate',15,'FrameRate',40, ...
 'MarkerSize',10,'MarkerFaceColor',[0 .5 0])

1 Alphabetical List

1-14082

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 streamparticles

1-14083

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
interpstreamspeed | stream2 | stream3 | streamline

Topics
“Creating Stream Particle Animations”
“Visualizing Vector Volume Data”

Introduced before R2006a

1 Alphabetical List

1-14084

streamribbon
3-D stream ribbon plot from vector volume data

Syntax
streamribbon(X,Y,Z,U,V,W,startx,starty,startz)
streamribbon(U,V,W,startx,starty,startz)
streamribbon(vertices,X,Y,Z,cav,speed)
streamribbon(vertices,cav,speed)
streamribbon(vertices,twistangle)
streamribbon(...,width)
streamribbon(axes_handle,...)
h = streamribbon(...)

Description
streamribbon(X,Y,Z,U,V,W,startx,starty,startz) draws stream ribbons from
vector volume data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must be monotonic,
but do not need to be uniformly spaced. X, Y, and Z must have the same number of
elements, as if produced by meshgrid.

startx, starty, and startz define the starting positions of the stream ribbons at the
center of the ribbons.

The twist of the ribbons is proportional to the curl of the vector field. The width of the
ribbons is calculated automatically.

streamribbon(U,V,W,startx,starty,startz) assumes X, Y, and Z are determined
by the expression

 streamribbon

1-14085

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamribbon(vertices,X,Y,Z,cav,speed) assumes precomputed streamline
vertices, curl angular velocity, and flow speed. vertices is a cell array of streamline
vertices (as produced by stream3). X, Y, Z, cav, and speed are 3-D arrays.

streamribbon(vertices,cav,speed) assumes X, Y, and Z are determined by the
expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(cav).

streamribbon(vertices,twistangle) uses the cell array of vectors twistangle for
the twist of the ribbons (in radians). The size of each corresponding element of vertices
and twistangle must be equal.

streamribbon(...,width) sets the width of the ribbons to width.

streamribbon(axes_handle,...) plots into the axes object with the handle
axes_handle instead of into the current axes object (gca).

h = streamribbon(...) returns a vector of handles (one per start point) to surface
objects.

Examples

Use Stream Ribbons to Indicate Flow

Use stream ribbons to indicate the flow in a data set.

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
axis tight
shading interp
view(3);
camlight
lighting gouraud

1 Alphabetical List

1-14086

Indicate Flow Using Precalculated Data

Use precalculated vertex data, curl average velocity, and speed to indicate flow.

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
cav = curl(x,y,z,u,v,w);
spd = sqrt(u.^2 + v.^2 + w.^2).*.1;
streamribbon(verts,x,y,z,cav,spd);
axis tight

 streamribbon

1-14087

shading interp
view(3);
camlight;
lighting gouraud

Using precalculated data enables you to use values other than those calculated from the
single data source. In this case, the speed is reduced by a factor of 10 compared to the
previous example.

1 Alphabetical List

1-14088

Stream Ribbon With Twist Angle

Specify a twist angle for the stream ribbon

t = 0:.15:15;
verts = {[cos(t)' sin(t)' (t/3)']};
twistangle = {cos(t)'};
streamribbon(verts,twistangle);
axis tight
shading interp
view(3)
camlight
lighting gouraud

 streamribbon

1-14089

Combination of Cone and Stream Ribbon Plots

Create 3-D arrays and a cone plot.

xmin = -7; xmax = 7;
ymin = -7; ymax = 7;
zmin = -7; zmax = 7;
x = linspace(xmin,xmax,30);
y = linspace(ymin,ymax,20);
z = linspace(zmin,zmax,20);
[x,y,z] = meshgrid(x,y,z);
u = y;
v = -x;
w = 0*x+1;
[cx,cy,cz] = meshgrid(linspace(xmin,xmax,30),...
 linspace(ymin,ymax,30),[-3 4]);
h = coneplot(x,y,z,u,v,w,cx,cy,cz,'quiver');
set(h,'Color','k');

1 Alphabetical List

1-14090

Plot two sets of stream ribbons. Then define the view and lighting.

[sx,sy,sz] = meshgrid([-1 0 1],[-1 0 1],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
[sx,sy,sz] = meshgrid([1:6],[0],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
shading interp
view(-30,10)
axis off tight
camproj perspective
camva(66)
camlookat
camdolly(0,0,.5,'fixtarget')
camlight

 streamribbon

1-14091

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-14092

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
coneplot | curl | meshgrid | stream3 | streamline | streamtube

Topics
“Volume Visualization”
“Displaying Curl with Stream Ribbons”
“Visualizing Vector Volume Data”

Introduced before R2006a

 streamribbon

1-14093

streamslice
Plot streamlines in slice planes

Syntax
streamslice(X,Y,Z,U,V,W,startx,starty,startz)
streamslice(U,V,W,startx,starty,startz)
streamslice(X,Y,U,V)
streamslice(U,V)
streamslice(...,density)
streamslice(...,'arrowsmode')
streamslice(...,'method')
streamslice(axes_handle,...)
h = streamslice(...)
[vertices arrowvertices] = streamslice(...)

Description
streamslice(X,Y,Z,U,V,W,startx,starty,startz) draws well-spaced
streamlines (with direction arrows) from vector data U, V, W in axis aligned x-, y-, z-planes
at the points in the vectors startx, starty, startz.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must be monotonic,
but do not need to be uniformly spaced. X, Y, and Z must have the same number of
elements, as if produced by meshgrid. U, V, W must be m-by-n-by-p volume arrays.

Do not assume that the flow is parallel to the slice plane. For example, in a stream slice at
a constant z, the z component of the vector field W is ignored when you are calculating
the streamlines for that plane.

1 Alphabetical List

1-14094

Stream slices are useful for determining where to start streamlines, stream tubes, and
stream ribbons.

streamslice(U,V,W,startx,starty,startz) assumes X, Y, and Z are determined
by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamslice(X,Y,U,V) draws well-spaced streamlines (with direction arrows) from
vector volume data U, V.

The arrays X and Y, which define the coordinates for U and V, must be monotonic, but do
not need to be uniformly spaced. X and Y must have the same number of elements, as if
produced by meshgrid.

streamslice(U,V) assumes X, Y, and Z are determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamslice(...,density) modifies the automatic spacing of the streamlines.
density must be greater than 0. The default value is 1; higher values produce more
streamlines on each plane. For example, 2 produces approximately twice as many
streamlines, while 0.5 produces approximately half as many.

streamslice(...,'arrowsmode') determines if direction arrows are present or not.
arrowmode can be

• arrows — Draw direction arrows on the streamlines (default).
• noarrows — Do not draw direction arrows.

streamslice(...,'method') specifies the interpolation method to use. method can
be

• linear — Linear interpolation (default)
• cubic — Cubic interpolation
• nearest — Nearest-neighbor interpolation

See interp3 for more information on interpolation methods.

 streamslice

1-14095

streamslice(axes_handle,...) plots into the axes object with the handle
axes_handle instead of into the current axes object (gca).

h = streamslice(...) returns a vector of handles to the line objects created.

[vertices arrowvertices] = streamslice(...) returns two cell arrays of
vertices for drawing the streamlines and the arrows. You can pass these values to any of
the streamline drawing functions (streamline, streamribbon, streamtube).

Examples

Plot Streamlines in Slice Plane

Load the wind data set, which loads the three-dimensional arrays u, v, w, x, y, and z.
Draw streamlines along the slice plane where z = 5.

load wind
streamslice(x,y,z,u,v,w,[],[],5)
axis tight

1 Alphabetical List

1-14096

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 streamslice

1-14097

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
contourslice | interp2 | interp3 | meshgrid | slice | streamline |
streamribbon | streamtube | volumebounds

Topics
“Visualizing Vector Volume Data”

Introduced before R2006a

1 Alphabetical List

1-14098

streamtube
Create 3-D stream tube plot

Syntax
streamtube(X,Y,Z,U,V,W,startx,starty,startz)
streamtube(U,V,W,startx,starty,startz)
streamtube(vertices,X,Y,Z,divergence)
streamtube(vertices,divergence)
streamtube(vertices,width)
streamtube(vertices)
streamtube(...,[scale n])
streamtube(ax,...)
h = streamtube(...)

Description
streamtube(X,Y,Z,U,V,W,startx,starty,startz) draws stream tubes from
vector volume data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must be monotonic,
but do not need to be uniformly spaced. X, Y, and Z must have the same number of
elements, as if produced by meshgrid.

startx, starty, and startz define the starting positions of the streamlines at the
center of the tubes.

The width of the tubes is proportional to the normalized divergence of the vector field.

streamtube(U,V,W,startx,starty,startz) assumes X, Y, and Z are determined by
the expression

 streamtube

1-14099

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamtube(vertices,X,Y,Z,divergence) assumes precomputed streamline
vertices and divergence. vertices is a cell array of streamline vertices (as produced by
stream3). X, Y, Z, and divergence are 3-D arrays.

streamtube(vertices,divergence) assumes X, Y, and Z are determined by the
expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(divergence).

streamtube(vertices,width) specifies the width of the tubes in the cell array of
vectors, width. The size of each corresponding element of vertices and width must be
equal. width can also be a scalar, specifying a single value for the width of all stream
tubes.

streamtube(vertices) selects the width automatically.

streamtube(...,[scale n]) scales the width of the tubes by scale. The default is
scale = 1. When the stream tubes are created, using start points or divergence,
specifying scale = 0 suppresses automatic scaling. n is the number of points along the
circumference of the tube. The default is n = 20.

streamtube(ax,...) plots into the axes object ax instead of into the current axes
object (gca).

h = streamtube(...) returns a vector of surface objects (one per start point) used
to draw the stream tubes.

Examples

Visualize flow

Use the streamtube function to indicate flow in the wind data set. The inputs include
the coordinates, vector field components, and starting location for the stream tubes.

1 Alphabetical List

1-14100

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
streamtube(x,y,z,u,v,w,sx,sy,sz);
view(3);
axis tight
shading interp;
camlight;
lighting gouraud

Visualize Flow Using Vertex Data and Divergence

Use vertex data returned by the stream3 function and divergence data to visualize flow.

 streamtube

1-14101

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
div = divergence(x,y,z,u,v,w);
streamtube(verts,x,y,z,-div);
view(3);
axis tight
shading interp
camlight
lighting gouraud

1 Alphabetical List

1-14102

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
divergence | meshgrid | stream3 | stream3 | streamline | streamribbon

Topics
“Displaying Divergence with Stream Tubes”
“Visualizing Vector Volume Data”

Introduced before R2006a

 streamtube

1-14103

strfind
Find strings within other strings

Syntax
k = strfind(str,pattern)
k = strfind(str,pattern,'ForceCellOutput',cellOutput)

Description
k = strfind(str,pattern) searches str for occurrences of pattern. The output, k,
indicates the starting index of each occurrence of pattern in str. If pattern is not
found, then strfind returns an empty array, []. The strfind function executes a case-
sensitive search.

• If str is a character vector or a string scalar, then strfind returns a vector of type
double.

• If str is a cell array of character vectors or a string array, then strfind returns a
cell array of vectors of type double.

k = strfind(str,pattern,'ForceCellOutput',cellOutput) forces strfind to
return k as a cell array when cellOutput is true, even when str is a character vector.

Examples

Find Pattern in Character Vector

Find the starting indices for occurrences of patterns in a character vector.

First, create a character vector.

str = 'Find the starting indices of a pattern in a character vector';

Find the pattern in.

1 Alphabetical List

1-14104

k = strfind(str,'in')

k = 1×4

 2 15 19 40

There are four instances of the pattern in str.

Find the pattern In.

k = strfind(str,'In')

k =

 []

Since strfind is case sensitive, the pattern is not found. k is an empty array.

Find the blank spaces in str.

k = strfind(str,' ')

k = 1×10

 5 9 18 26 29 31 39 42 44 54

There are ten blank spaces in str.

Find Pattern in Cell Array

Find the starting indices for occurrences of a pattern in a cell array of character vectors.

Create a cell array of character vectors.

str = {'How much wood would a woodchuck chuck';
 'if a woodchuck could chuck wood?'};

Find the pattern wood in str.

idx = strfind(str,'wood')

 strfind

1-14105

idx = 2x1 cell array
 {1x2 double}
 {1x2 double}

Examine the output cell array to find the instances of the pattern.

idx{:,:}

ans = 1×2

 10 23

ans = 1×2

 6 28

The pattern wood occurs at indices 10 and 23 in the first character vector and at indices 6
and 28 in the second character vector.

Return Indices in Cell Array

Find the occurrences of a pattern in a character vector. Force strfind to return the
indices of those occurrences in a cell array. Then display the indices.

Create a character vector and find the occurrences of the pattern ain.

str = 'The rain in Spain.';
k = strfind(str,'ain','ForceCellOutput',true)

k = 1x1 cell array
 {1x2 double}

strfind returns a scalar cell that contains a numeric array, which contains indices of
occurrences of the pattern ain in str. To access the numeric array within the cell, use
curly braces.

k{1}

1 Alphabetical List

1-14106

ans = 1×2

 6 15

Input Arguments
str — Data to be searched
character vector | cell array of character vectors | string array

Data to be searched, specified as a character vector, a cell array of character vectors, or a
string array.
Data Types: char | cell | string

pattern — Search pattern
character vector | string scalar

Search pattern, specified as a character vector or a string scalar.
Data Types: char | string

cellOutput — Indicator for forcing output to be returned as cell array
false (default) | true | 0 | 1

Indicator for forcing output to be returned as a cell array, specified as false, true, 0, or
1.
Data Types: logical

Output Arguments
k — Indices of occurrences of pattern
array

Indices of occurrences of pattern, returned as an array. If pattern is not found, then k
is an empty array, [].

• If str is a character vector or a string scalar, k is a vector of doubles indicating the
index of each occurrence of pattern.

 strfind

1-14107

• If str is a cell array of character vectors or a string array, k is a cell array. For each
piece of text in str, the corresponding cell of k contains a vector of doubles indicating
the index of each occurrence of pattern.

Tips
• If pattern is a character vector or string scalar with no characters ('' or ""), then

strfind returns an empty array.
• Starting in R2016b, the contains function is recommended for finding patterns

within string arrays.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• The text input must be a tall array of strings or a tall cell array of character vectors.
• The text pattern must be a non-tall single string.
• The output is a cell array of index vectors, with one element per input string.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str must be a string scalar or a character vector.
• Generated code returns an empty output as a 1-by-0 character array.

1 Alphabetical List

1-14108

See Also
contains | regexp | regexpi | regexprep | strcmp | strcmpi | strncmp | strncmpi
| strrep | strsplit | strtok

Introduced before R2006a

 strfind

1-14109

string
String array

Description
Starting in R2016b, you can represent text using string arrays instead of character
arrays. Each element of a string array stores a sequence of characters. The sequences
can have different lengths without padding, such as "yes" and "no". A string array that
has only one element is also called a string scalar.

You can index into, reshape, and concatenate string arrays using standard array
operations, and you can append text to strings using the + operator. If a string array
represents numbers, then you can convert it to a numeric array using the double
function.

Creation
You can create a string by enclosing a piece of text in double quotes. Double quotes were
introduced in R2017a.

str = "Hello, world"

str =
"Hello, world"

One way to create a string array is to concatenate strings into an array using square
brackets, just as you can concatenate numbers into a numeric array.

str = ["Mercury","Gemini","Apollo";
 "Skylab","Skylab B","ISS"]

str = 2x3 string array
 "Mercury" "Gemini" "Apollo"
 "Skylab" "Skylab B" "ISS"

You also can convert variables of different data types into string arrays using the string
function, described below.

1 Alphabetical List

1-14110

Syntax
str = string(A)

str = string(D)
str = string(D,fmt)
str = string(D,fmt,locale)

Description
str = string(A) converts the input array to a string array.

str = string(D) converts a datetime, duration, or calendar duration array into a
string array in the format specified by the Format property of D. The output contains one
date or duration in each row.

str = string(D,fmt) represents dates or durations in the specified format, such as
'HH:mm:ss'.

str = string(D,fmt,locale) represents dates or durations in the specified locale,
such as 'en_US'. The locale affects the language used to represent strings such as
month and day names.

Input Arguments
A — Input array
array

Input array. The data type of A determines how string converts A to a string array.

• If A is a character vector, then string converts A to a string scalar. The output str
and input A have the same characters in the same order.

• If A is a cell array or a categorical array, then string converts each element in A to a
string element in str.

• If A is a numeric array, then string converts each number to a string element in str.

Unlike the char function, string does not treat numbers as ASCII or Unicode code
points.

• If A is a logical array, then string converts each value to either "false" or "true".

 string

1-14111

• If A is [], then string returns a 0-by-0 string array.

D — Input date and time
datetime or duration array

Input date and time, specified as a datetime or duration array.
Data Types: datetime | duration | calendarDuration

fmt — Date and time format
[] (default) | character vector | string scalar

Date and time format, specified as [], a character vector, or a string scalar. If you specify
[], then string represents input D in the format specified by the Format property of D.

The supported formats depend on the data type of D.

• datetime formats can include combinations of units and delimiters, such as 'yyyy-
MMM-dd HH:mm:ss.SSS'. For details, see the Format property for datetime arrays.

• duration formats are either single characters ('y', 'd', 'h', 'm', or 's') or one of
these combinations:

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'
• Any of the above, with up to nine S characters to indicate fractional second digits,

such as 'hh:mm:ss.SSSS'
• calendarDuration formats can include combinations of the characters 'y', 'q',

'm', 'w', 'd', and 't' in order from largest to smallest unit of time, such as 'ym'.

For more information on the duration and calendarDuration formats, see “Set Date
and Time Display Format”.

locale — Locale represented in output
character vector | string scalar

Locale represented in the output, specified as a character vector or a string scalar. The
locale affects the language used to represent certain components of dates and times, such
as month names.

1 Alphabetical List

1-14112

locale can be:

• 'system', to specify your system locale.
• A character vector in the form xx_YY, where xx is a lowercase ISO 639-1 two-letter

code that specifies a language, and YY is an uppercase ISO 3166-1 alpha-2 code that
specifies a country.

The locale input argument can be any of the values accepted by the 'Locale' name-
value pair argument for the datetime function.
Example: 'en_US'
Example: 'ja_JP'

Output Arguments
str — Output array
string array

Output array, returned as a string array.

MATLAB stores all characters as Unicode characters using the UTF-16 encoding. For
more information on Unicode, see Unicode.

Examples

Split String and Find Unique Words

To find the unique words in a string, split it on space characters and call the unique
function.

First, create a string scalar.

str = "A horse! A horse! My kingdom for a horse!"

str =
"A horse! A horse! My kingdom for a horse!"

Remove the exclamation point.

str = erase(str,"!")

 string

1-14113

https://en.wikipedia.org/wiki/Unicode

str =
"A horse A horse My kingdom for a horse"

Convert all letters in str to lowercase characters.

str = lower(str)

str =
"a horse a horse my kingdom for a horse"

Split str on space characters using the split function. split discards the space
characters and returns the result as a string array.

str = split(str)

str = 9x1 string array
 "a"
 "horse"
 "a"
 "horse"
 "my"
 "kingdom"
 "for"
 "a"
 "horse"

Find the unique words in str using the unique function.

str = unique(str)

str = 5x1 string array
 "a"
 "for"
 "horse"
 "kingdom"
 "my"

Convert Character Vector

A = 'Four score and seven years ago'

1 Alphabetical List

1-14114

A =
'Four score and seven years ago'

str = string(A)

str =
"Four score and seven years ago"

str contains the same characters as A. But while A is a character vector, str is a string
scalar.

c = size(A)

c = 1×2

 1 30

s = size(str)

s = 1×2

 1 1

To return the number of characters in str, use the strlength function.

n = strlength(str)

n = 30

Convert Cell Array

Convert a cell array of character vectors to a string array.

A = {'Mercury','Gemini','Apollo';...
 'Skylab','Skylab B','ISS'}

A = 2x3 cell array
 {'Mercury'} {'Gemini' } {'Apollo'}
 {'Skylab' } {'Skylab B'} {'ISS' }

str = string(A)

 string

1-14115

str = 2x3 string array
 "Mercury" "Gemini" "Apollo"
 "Skylab" "Skylab B" "ISS"

To access the second element in the first row of str, index using smooth parentheses. You
can access strings in a string array with matrix indexing, just as you would access
elements of a numeric array.

str(1,2)

ans =
"Gemini"

Access the third column.

str(:,3)

ans = 2x1 string array
 "Apollo"
 "ISS"

Convert Numeric Array

A = [77 65 84 76 65 66]

A = 1×6

 77 65 84 76 65 66

str = string(A)

str = 1x6 string array
 "77" "65" "84" "76" "65" "66"

str is a string array in which each element represents a number from A. Note that
string does not treat numbers as ASCII or Unicode® values the way that the char
function does.

1 Alphabetical List

1-14116

Convert Strings That Represent Numbers

Create a string array in which each element represents a number. To convert the string
array to a numeric array, use the double function.

str = ["256","3.1416","8.9e-3"]

str = 1x3 string array
 "256" "3.1416" "8.9e-3"

X = double(str)

X = 1×3

 256.0000 3.1416 0.0089

When the input argument is a string array, the double function treats each element as
the representation of a floating-point value. However, when the input is a character array,
double instead converts each character to a number representing its Unicode® value.

As an alternative, use the str2double function. str2double is suitable when the input
argument might be a string array, character vector, or cell array of character vectors.

Y = str2double(str)

Y = 1×3

 256.0000 3.1416 0.0089

C = '2.7183';
Z = str2double(C)

Z = 2.7183

Convert Duration Array

Create a duration array.

 string

1-14117

D = hours(23:25) + minutes(8) + seconds(1.2345)

D = 1x3 duration array
 23.134 hr 24.134 hr 25.134 hr

Convert D to a string array.

str = string(D)

str = 1x3 string array
 "23.134 hr" "24.134 hr" "25.134 hr"

str is a string array with one duration value per element. str is the same size as D.

Specify the format of the duration values in str.

str = string(D,'hh:mm')

str = 1x3 string array
 "23:08" "24:08" "25:08"

Tips
• For a list of functions to create and manipulate text in string arrays, see “Characters

and Strings”.
• If the input argument is an object, then it must belong to a class that implements a

string method to represent the object as a string.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-14118

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• A cell array input must be scalar at compile time.
• An enumeration input must be scalar at compile time. Arrays of enumerations are not

supported.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cellstr | char | isstring | isstrprop | strings | strlength

Topics
“Create String Arrays”
“Analyze Text Data with String Arrays”
“Frequently Asked Questions About String Arrays”
“Locale Settings for MATLAB Process”

Introduced in R2016b

 string

1-14119

strings
Create string array with no characters

Syntax
str = strings
str = strings(n)
str = strings(sz1,...,szN)
str = strings(sz)

Description
str = strings returns a string with no characters. For more information on string
arrays, see string.

Note: Starting in R2017a, you also can use double quotes. For example, str = ""
creates a string scalar that contains no characters.

str = strings(n) returns an n-by-n string array. Each element is a string with no
characters.

str = strings(sz1,...,szN) returns a sz1-by-...-by-szN string array, where
sz1,...,szN indicate the size of each dimension. For example, strings(2,3) returns
a 2-by-3 string array where each element is "".

str = strings(sz) returns a string array where size vector sz defines size(str).
For example, strings([2,3]) returns a 2-by-3 string array.

Examples

Square Array of Empty Strings

str = strings(4)

1 Alphabetical List

1-14120

str = 4x4 string array
 "" "" "" ""
 "" "" "" ""
 "" "" "" ""
 "" "" "" ""

Rectangular Array of Empty Strings

str = strings([2,6])

str = 2x6 string array
 "" "" "" "" "" ""
 "" "" "" "" "" ""

Clone String Array Size from Existing Array

Create an array of empty strings that is the same size as an existing array.

A = [1 2 3; 4 5 6];
sz = size(A);
str = strings(sz)

str = 2x3 string array
 "" "" ""
 "" "" ""

It is a common pattern to combine the previous two lines of code into a single line:

str = strings(size(A));

You can use strings to preallocate the space required for a large string array.

 strings

1-14121

Input Arguments
n — Size of square array
nonnegative integer

Size of a square array, specified as a nonnegative integer.

• If n is 0, then str is an empty array.
• If n is negative, then strings treats n as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension (as separate arguments)
nonnegative integers

Size of each dimension, specified as separate nonnegative integer arguments.

• If the size of any dimension is 0, then str is an empty array.
• If the size of any dimension is negative, then strings treats it as 0.
• Beyond the second dimension, strings ignores trailing dimensions with a size of 1.

For example, strings(3,1,1,1) produces a 3-by-1 vector of strings with no
characters.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension (as a row vector)
nonnegative integers

Size of each dimension, specified as a row vector of nonnegative integers. Each element
of this vector indicates the size of the corresponding dimension:

• If the size of any dimension is 0, then str is an empty array.
• If the size of any dimension is negative, then strings treats it as 0.
• Beyond the second dimension, strings ignores trailing dimensions with a size of 1.

For example, strings([3,1,1,1]) produces a 3-by-1 vector of strings with no
characters.

Example: sz = [2,3,4] creates a 2-by-3-by-4 array.

1 Alphabetical List

1-14122

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
cellstr | char | empty | isempty | isstring | size | string | strlength | zeros

Topics
“Create String Arrays”
“Analyze Text Data with String Arrays”
“Test for Empty Strings and Missing Values”
“Preallocation”

Introduced in R2016b

 strings

1-14123

strip
Remove leading and trailing characters from stringS

Syntax
newStr = strip(str)
newStr = strip(str,side)
newStr = strip(___ ,stripCharacter)

Description
newStr = strip(str) removes all consecutive whitespace characters from the
beginning and end of str, and returns the result as newStr.

newStr = strip(str,side) removes all consecutive whitespace characters from the
side specified by side. The side argument can be 'left', 'right', or 'both'.

newStr = strip(___ ,stripCharacter) strips the character specified by
stripCharacter, instead of the space character. You can use any of the input arguments
in the previous syntaxes.

Examples

Strip Leading and Trailing Spaces from Strings

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["Ann Marie ";
 " James";
 "Pauline "]

str = 3x1 string array
 "Ann Marie "
 " James"

1 Alphabetical List

1-14124

 "Pauline "

Delete the leading and trailing space characters in each string.

newStr = strip(str)

newStr = 3x1 string array
 "Ann Marie"
 "James"
 "Pauline"

Strip Spaces from Side of String

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = [" Ann Marie ";
 " James ";
 " Pauline "]

str = 3x1 string array
 " Ann Marie "
 " James "
 " Pauline "

Delete space characters from the right side only.

newStr = strip(str,'right')

newStr = 3x1 string array
 " Ann Marie"
 " James"
 " Pauline"

 strip

1-14125

Strip Different Character from String Array

Create a string array with elements that represent numbers. Starting in R2017a, you can
create strings using double quotes. The strings include leading zeroes that make them all
the same length.

str = ["0095.36";
 "0003.44";
 "0007.82"]

str = 3x1 string array
 "0095.36"
 "0003.44"
 "0007.82"

Delete the leading zeroes.

newStr = strip(str,'left','0')

newStr = 3x1 string array
 "95.36"
 "3.44"
 "7.82"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

side — Side of string to strip
'both' (default) | 'left' | 'right'

Side of string to strip, specified as 'left', 'right', or 'both'. The default behavior of
strip is to strip characters from both the left and the right side of the input text.
Data Types: char | string

1 Alphabetical List

1-14126

stripCharacter — Character to strip from input text
' ' (default) | character | string

Character to strip from input text, specified as a character or as a string that contains one
character.
Data Types: char | string

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or a cell array of character
vectors. str and newStr are the same data type.
Data Types: string | char | cell

Algorithms
strip does not remove significant whitespace characters.

This table shows the most common characters that are significant whitespace characters
and their descriptions. For more information, see Whitespace character.

Significant Whitespace Character Description
char(133) Next line
char(160) Nonbreaking space
char(8199) Figure space
char(8239) Narrow no-break space

 strip

1-14127

https://en.wikipedia.org/wiki/Whitespace_character

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str must be a string scalar, a character vector, or a cell array containing not more
than one character vector.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
erase | join | pad | replace | split | strsplit

Topics
“Create String Arrays”
“Search and Replace Text”
“Analyze Text Data with String Arrays”

Introduced in R2016b

1 Alphabetical List

1-14128

strjoin
Join strings in array

Syntax
str = strjoin(C)
str = strjoin(C,delimiter)

Description
str = strjoin(C) constructs str by linking the elements of C with a space between
consecutive elements. C can be a cell array of character vectors or a string array.

str = strjoin(C,delimiter) constructs str by linking each element of C with the
elements in delimiter.

Examples

Join List of Words with Whitespace

Join individual character vectors in a cell array of character vectors, C, with a single
space.

C = {'one','two','three'};
str = strjoin(C)

str =
'one two three'

 strjoin

1-14129

Join Cell Array of Character Vectors with Delimiter

Join the character vectors in a cell array into one character vector. Specify a comma
followed by a space character as the delimiter.

C = {'Newton','Gauss','Euclid','Lagrange'}

C = 1x4 cell array
 {'Newton'} {'Gauss'} {'Euclid'} {'Lagrange'}

str = strjoin(C,', ')

str =
'Newton, Gauss, Euclid, Lagrange'

Join Character Vectors with Multiple Different Delimiters

Specify multiple different delimiters in a cell array of character vectors. The delimiter
cell array must have one fewer element than C.

C = {'one','two','three'};
str = strjoin(C,{' + ',' = '})

str =
'one + two = three'

Input Arguments
C — Input text
1-by-n cell array of character vectors | 1-by-n string array

Input text, specified as a 1-by-n cell array of character vectors or string array.
Example: {'The','rain','in','Spain'}
Example: string({'Four','score','and','seven'})
Data Types: cell | string

1 Alphabetical List

1-14130

delimiter — Delimiting characters
character vector | 1-by-n cell array of character vectors | 1-by-n string array

Delimiting characters, specified as a character vector, a 1-by-n cell array of character
vectors, or a 1-by-n string array.

• If delimiter is a character vector, then strjoin forms str by inserting delimiter
between each element of C. The delimiter input can include any of these escape
sequences:

\\ Backslash
\0 Null
\a Alarm
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab

• If delimiter is a cell array of character vectors, then it must contain one fewer
element than C. Each element in the cell array must contain a character vector.
strjoin forms str by interleaving the elements of delimiter and C. All characters
in delimiter are inserted as literal text, and escape sequences are not supported.

Example: ', '
Example: {',',' '}
Data Types: char | cell | string

Tips
• Starting in R2016b, the join function is recommended to join elements of a string

array.

 strjoin

1-14131

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be a string scalar or a cell array of character vectors.
• Generated code returns an empty output as a 1-by-0 character array.

See Also
cellstr | join | regexp | strcat | strsplit

Introduced in R2013a

1 Alphabetical List

1-14132

strlength
Lengths of strings

Syntax
L = strlength(str)

Description
L = strlength(str) returns the number of characters in str.

Examples

Number of Characters in String Scalar

Starting in R2017a, you can create a string using double quotes. The result is a 1-by-1
string array, or string scalar.

str = "Hello, World"

str =
"Hello, World"

Return the number of characters in str.

L = strlength(str)

L = 12

Length of Each String in String Array

Create a string array using the [] operator. str is a 2-by-3 string array that contains six
strings.

 strlength

1-14133

str = ["Amis","Chekhov","Joyce";"Stein","","Proust"]

str = 2x3 string array
 "Amis" "Chekhov" "Joyce"
 "Stein" "" "Proust"

Find the length of each string in str. Use strlength, not length, to determine the
number of characters in each element of a string array.

L = strlength(str)

L = 2×3

 4 7 5
 5 0 6

Number of Characters in Character Vector

Create a character vector. To return the number of characters in the character vector, use
the strlength function.

chr = 'The rain in Spain.'

chr =
'The rain in Spain.'

L = strlength(chr)

L = 18

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.

1 Alphabetical List

1-14134

Tips
• To find the length of the largest array dimension of str, use the length function, not

strlength.

Algorithms
strlength counts the number of code units in text. Code units are bit sequences for
encoding characters of a character encoding system. In some character encodings, such
as UTF-16, there are some characters that are encoded with multiple code units.

If you have a string or a character vector that contains such characters, then the number
of code units is greater than the number of characters.

length(C) also returns the number of code units when C is a character vector.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 strlength

1-14135

See Also
isStringScalar | isstring | length | ndims | numel | size | string

Topics
“Create Character Arrays”
“Create String Arrays”
“Analyze Text Data with String Arrays”
“Search and Replace Text”
“Compare Text”

Introduced in R2016b

1 Alphabetical List

1-14136

strjust
Justify strings

Syntax
newStr = strjust(str)
newStr = strjust(str,side)

Description
newStr = strjust(str) returns a right-justified version of the text in str.

• If str has trailing whitespace characters, then they become leading whitespace
characters in newStr.

• If str does not have trailing whitespace characters, then strjust returns str
unaltered.

newStr = strjust(str,side) returns a version of the text that is justified on the side
specified by side. The text in str can be justified on the left, right, or center.

Examples

Right-Justify Text

Create a string array in which some elements have trailing whitespace characters.
Starting in R2017a, you can create strings using double quotes.

str1 = ["Skylab";
 "Mir ";
 "ISS "]

str1 = 3x1 string array
 "Skylab"
 "Mir "

 strjust

1-14137

 "ISS "

Justify the text on the right. strjust does not alter the first element because "Skylab"
has no whitespace.

str2 = strjust(str1)

str2 = 3x1 string array
 "Skylab"
 " Mir"
 " ISS"

Center-Justify Text

Create a cell array of character vectors. Some of the character vectors have leading and
trailing whitespace characters.

C1 = {'Euler ';
 'Fibonacci';
 ' Gauss'}

C1 = 3x1 cell array
 {'Euler '}
 {'Fibonacci'}
 {' Gauss'}

Center-justify the text. If a piece of text has leading or trailing whitespace, or both, then
strjust adjusts the text to have an equal number of leading and trailing whitespace
characters. strjust does not alter a piece of text when it has neither leading nor trailing
whitespace.

C2 = strjust(C1,'center')

C2 = 3x1 cell array
 {' Euler '}
 {'Fibonacci'}
 {' Gauss '}

1 Alphabetical List

1-14138

Input Arguments
str — Input text
character array | cell array of character vectors | string array

Input text, specified as a character array, a cell array of character vectors, or a string
array.

side — Side to justify text on
'right' (default) | 'left' | 'center'

Side to justify text on, specified as 'left', 'right', or 'center'. The default behavior
is to justify the text on the right.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be a string scalar or a character vector.
• Generated code returns an empty output as a 1-by-0 character array.

See Also
deblank | pad | strip | strtrim

Topics
“Formatting Text”
“Search and Replace Text”

Introduced before R2006a

 strjust

1-14139

strmatch
(Not recommended) Find possible matches for string

Note strmatch is not recommended. Use startsWith, strncmp, or validatestring,
depending on your requirements, instead. startsWith and strncmp return a logical
array indicating which array elements begin with the specified string, whereas
validatestring returns a single string that represents the best match to the specified
string. See Example 2, below.

To find an exact match for a string, use strcmp.

Syntax
x = strmatch(str, strarray)
x = strmatch(str, strarray, 'exact')

Description
x = strmatch(str, strarray) looks through the rows of the character array or cell
array of character vectors strarray to find character vectors that begin with the text
contained in str, and returns the matching row indices. If strmatch does not find str in
strarray, x is an empty matrix ([]). Any trailing space characters in str or strarray
are ignored when matching. strmatch is fastest when strarray is a character array.

x = strmatch(str, strarray, 'exact') compares str with each row of
strarray, looking for an exact match of the entire character vector. Any trailing space
characters in str or strarray are ignored when matching.

Examples
Example 1
The statement

1 Alphabetical List

1-14140

x = strmatch('max', char('max', 'minimax', 'maximum'))

returns x = [1; 3] since rows 1 and 3 begin with 'max'. The statement
x = strmatch('max', char('max', 'minimax', 'maximum'),'exact')

returns x = 1, since only row 1 matches 'max' exactly.

Example 2
This example shows how to replace use of the strmatch function with validatestring
or strncmp.

To start with, use strmatch to return the index of those elements for which there is a
match:

list = {'max', 'minimax', 'maximum', 'max'}
x = strmatch('max',list)
x =
 1
 3
 4

validatestring returns the string representing the best match. If multiple or no
matches exist, this statement would return an error:

list = {'max', 'minimax', 'maximum', 'max'};
x = validatestring('max', list)
x =
 max

strncmp returns a logical array indicating which strings match the specified string:

list = {'max', 'minimax', 'maximum', 'max'};
x = strncmp('max', list, 3)
x =
 1 0 1 1

If you prefer that MATLAB return the numeric indices of list, use find as follows:

list = {'max', 'minimax', 'maximum', 'max'}
x = find(strncmp(list, 'max', 3))

 strmatch

1-14141

If your input to strmatch is a character array with multiple rows, then first convert the
character array to a cell array using cellstr. Then, pass the output from cellstr to
strncmp or validatestring

See Also
regexp | regexpi | regexprep | startsWith | strcmp | strcmpi | strfind |
strncmp | strncmpi

Introduced before R2006a

1 Alphabetical List

1-14142

strncmp
Compare first n characters of strings (case sensitive)

Syntax
tf = strncmp(s1,s2,n)

Description
tf = strncmp(s1,s2,n) compares the first n characters of s1 and s2. The function
returns 1 (true) if the two are identical and 0 (false) otherwise. Text is considered
identical if the size and content of each are the same, up to the first n characters of each
piece of text. The return result tf is of data type logical.

The first two input arguments can be any combination of string arrays, character vectors,
and cell arrays of character vectors.

Examples

Compare First N Characters of Character Vectors

Create two different character vectors. Compare the first 11 characters of them.

s1 = 'Kansas City, KS';
s2 = 'Kansas City, MO';
tf = strncmp(s1,s2,11)

tf = logical
 1

tf is 1 because both character vectors start with 'Kansas City'.

Compare the two character vectors using strcmp.

 strncmp

1-14143

tf = strcmp(s1,s2)

tf = logical
 0

tf is 0 because s1 and s2 end with different characters.

Find Text That Starts with Same Characters

Starting in R2017a, you can create strings using double quotes. Create a string array that
contains names. Find the names that start with 'Jean'.

s1 = ["Jacques";
 "Jean";
 "Jeanne";
 "Jean-Luc";
 "Julie"];
s2 = "Jean";

tf = strncmp(s1,s2,4)

tf = 5x1 logical array

 0
 1
 1
 1
 0

tf is 1 for all names whose first four characters are 'Jean'.

Alternatively, you can use the startsWith function.

tf = startsWith(s1,s2)

tf = 5x1 logical array

 0
 1
 1

1 Alphabetical List

1-14144

 1
 0

Input Arguments
s1,s2 — Input text
character vector | character array | cell array of character vectors | string array

Input text, with each input specified as a character vector, a character array, a cell array
of character vectors, or a string array. The order of the inputs does not affect the
comparison results.

• If both s1 and s2 are string arrays or cell arrays of character vectors, then s1 and s2
must be the same size, unless one of them is scalar.

• If both s1 and s2 are character arrays with multiple rows, then s1 and s2 can have
different numbers of rows.

• When comparing a nonscalar cell array of character vectors or string array to a
multirow character array, the cell array or string array must be a column vector with
the same number of rows as the character array.

Data Types: char | cell | string

n — Number of characters to compare
integer

Number of characters to compare, specified as an integer.

• If n is 0, then strncmp always returns 1. By convention, the zeroth character of a
character vector or a string scalar is always '', a 0-by-0 character array.

• If n is less than 0, then strncmp treats it as 0.
• If n is greater than the length of the shortest input text, then strncmp returns 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 strncmp

1-14145

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

• If each input is either a string scalar or a character vector, then tf is a scalar.
• If at least one input is either a string array or a cell array of character vectors, then tf

is an array the same size as the input array.
• If one input is a character array with multiple rows, and the other input is either a

scalar cell or a string scalar, then tf is an n-by-1 array, where n is the number of rows
in the character array.

• If both inputs are character arrays, then tf is a scalar.

Tips
• The strncmp function is intended for comparison of text. If used on numeric arrays,

strncmp always returns 0.
• For case-insensitive text comparison, use strncmpi instead of strncmp.
• Although strncmp shares a name with a C function, it does not follow the C language

convention of returning 0 when the text inputs match.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-14146

Usage notes and limitations:

• Enumeration inputs are not supported.
• When one input is a cell array and the other input is a character array, the character

array must be a compile-time row vector.

See Also
endsWith | eq | ne | regexp | regexpi | sort | startsWith | strcmp | strcmpi |
strfind | strncmpi

Topics
“Compare Text”

Introduced before R2006a

 strncmp

1-14147

strncmpi
Compare first n characters of strings (case insensitive)

Syntax
tf = strncmpi(s1,s2,n)

Description
tf = strncmpi(s1,s2,n) compares the first n characters of s1 and s2, ignoring any
differences in letter case. The function returns 1 (true) if the two are identical and 0
(false) otherwise. Text is considered identical if the size and content of each are the
same, up to the first n characters of each piece of text, ignoring case. The return result
tf is of data type logical.

The first two input arguments can be any combination of string arrays, character vectors,
and cell arrays of character vectors.

Examples

Compare First N Characters While Ignoring Case

Create two character vectors. Compare the first four characters of each, ignoring case.

s1 = 'DATA.TAR.GZ';
s2 = 'data-samples.xls';

tf = strncmpi(s1,s2,4)

tf = logical
 1

tf is 1 because s1 starts with 'DATA', and s2 starts with 'data'.

1 Alphabetical List

1-14148

Find Starting Text While Ignoring Case

Starting in R2017a, you can create strings using double quotes. Create a string array that
contains names. Find the names that start with 'JEAN', ignoring case.

s1 = ["Jacques";
 "Jean";
 "Jeanne";
 "Jean-Luc";
 "Julie"];
s2 = "JEAN";

tf = strncmpi(s1,s2,4)

tf = 5x1 logical array

 0
 1
 1
 1
 0

tf is 1 for all names whose first four characters match 'JEAN' when you ignore case.

Alternatively, you can use the startsWith function.

tf = startsWith(s1,s2,'IgnoreCase',true)

tf = 5x1 logical array

 0
 1
 1
 1
 0

 strncmpi

1-14149

Input Arguments
s1,s2 — Input text
character vector | character array | cell array of character vectors | string array

Input text, with each input specified as a character vector, a character array, a cell array
of character vectors, or a string array. The order of the inputs does not affect the
comparison results.

• If both s1 and s2 are string arrays or cell arrays of character vectors, then s1 and s2
must be the same size, unless one of them is scalar.

• If both s1 and s2 are character arrays with multiple rows, then s1 and s2 can have
different numbers of rows.

• When comparing a nonscalar cell array of character vectors or string array to a
multirow character array, the cell array or string array must be a column vector with
the same number of rows as the character array.

Data Types: char | cell | string

n — Number of characters to compare
integer

Number of characters to compare, specified as an integer.

• If n is 0, then strncmpi always returns 1. By convention, the zeroth character of a
character vector or a string scalar is always '', a 0-by-0 character array.

• If n is less than 0, then strncmpi treats it as 0.
• If n is greater than the length of the shortest input text, then strncmpi returns 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

1 Alphabetical List

1-14150

• If each input is either a string scalar or a character vector, then tf is a scalar.
• If at least one input is either a string array or a cell array of character vectors, then tf

is an array the same size as the input array.
• If one input is a character array with multiple rows, and the other input is either a

scalar cell or a string scalar, then tf is an n-by-1 array, where n is the number of rows
in the character array.

• If both inputs are character arrays, tf is a scalar.

Tips
• The strncmpi function is intended for comparison of text. If used on numeric arrays,

strncmpi always returns 0.
• For case-sensitive text comparison, use strncmp instead of strncmpi.
• Although strncmpi shares a name with a C function, it does not follow the C

language convention of returning 0 when the text inputs match.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Enumeration inputs are not supported.
• Input values from the char class must be in the range 0-127.
• When one input is a cell array and the other input is a character array, the character

array must be a compile-time row vector.

 strncmpi

1-14151

See Also
endsWith | eq | ne | regexp | regexpi | sort | startsWith | strcmp | strcmpi |
strfind | strncmp

Topics
“Compare Text”

Introduced before R2006a

1 Alphabetical List

1-14152

strread
(Not recommended) Read formatted data from string

Note strread is not recommended. Use textscan instead.

Syntax
A = strread('str')
[A, B, ...] = strread('str')
[A, B, ...] = strread('str', 'format')
[A, B, ...] = strread('str', 'format', N)
[A, B, ...] = strread('str', 'format', N, param, value, ...)

Description
A = strread('str') reads numeric data from input character vector str into a 1-by-N
vector A, where N equals the number of whitespace-separated numbers in str. Use this
form only with character vectors containing numeric data. See “Example 1” on page 1-
14156 below.

[A, B, ...] = strread('str') reads numeric data from the character vector input
str into scalar output variables A, B, and so on. The number of output variables must
equal the number of whitespace-separated numbers in str. Use this form only with
character vectors containing numeric data. See “Example 2” on page 1-14157 below.

[A, B, ...] = strread('str', 'format') reads data from str into variables A, B,
and so on using the specified format. The number of output variables A, B, etc. must be
equal to the number of format specifiers (e.g., %s or %d) in the format argument. You can
read all of the data in str to a single output variable as long as you use only one format
specifier in the command. See “Example 4” on page 1-14157 and “Example 5” on page 1-
14158 below.

The table Formats for strread lists the valid format specifiers. More information on using
formats is available under “Formats” on page 1-14160 in the “Tips” on page 1-14159
section below.

 strread

1-14153

[A, B, ...] = strread('str', 'format', N) reads data from str reusing the
format character vector N times, where N is an integer greater than zero. If N is -1,
strread reads the entire character vector. When str contains only numeric data, you
can set format to the empty character vector (''). See “Example 3” on page 1-14157
below.

[A, B, ...] = strread('str', 'format', N, param, value, ...)
customizes strread using param/value pairs, as listed in the table Parameters and
Values for strread below. When str contains only numeric data, you can set format to
the empty character vector (''). The N argument is optional and may be omitted entirely.
See “Example 7” on page 1-14158 below.

1 Alphabetical List

1-14154

Formats for strread

Format Action Output
Literals

(ordinary
characters)

Ignore the matching characters. For
example, in a character vector that has
Dept followed by a number (for
department number), to skip the Dept
and read only the number, use 'Dept' in
the format character vector.

None

%d Read a signed integer value. Double array
%u Read an integer value. Double array
%f Read a floating-point value. Double array
%s Read a white-space separated character

vector.
Cell array of character
vectors

%q Read a double quoted character vector,
ignoring the quotes.

Cell array of character
vectors

%c Read characters, including white space. Character array
%[...] Read the longest character vector

containing characters specified in the
brackets.

Cell array of character
vectors

%[^...] Read the longest nonempty character
vector containing characters that are not
specified in the brackets.

Cell array of character
vectors

%*... Ignore the characters following *. See
“Example 8” on page 1-14159 below.

No output

%w... Read field width specified by w. The %f
format supports %w.pf, where w is the
field width and p is the precision.

 strread

1-14155

Parameters and Values for strread

param value Action
whitespace Any from the list below: Treats vector of characters,

*, as white space. Default is
\b\r\n\t.

\b
\n
\r
\t
\\
%%
''

Backspace
New line
Carriage return
Horizontal tab
Backslash
Percent sign
Single quotation mark

delimiter Delimiter character Specifies delimiter character.
Default is one or more
whitespace characters.

expchars Exponent characters Default is eEdD.
bufsize Positive integer Specifies the maximum

character vector length, in
bytes. Default is 4095.

commentstyle matlab Ignores characters after %.
commentstyle shell Ignores characters after #.
commentstyle c Ignores characters

between /* and */.
commentstyle c++ Ignores characters after //.
emptyvalue Value to return for empty numeric

fields in delimited files
Default is 0.

Examples

Example 1
Read numeric data into a 1-by-5 vector:

a = strread('0.41 8.24 3.57 6.24 9.27')
a =
 0.4100 8.2400 3.5700 6.2400 9.2700

1 Alphabetical List

1-14156

Example 2
Read numeric data into separate scalar variables:

[a b c d e] = strread('0.41 8.24 3.57 6.24 9.27')
a =
 0.4100
b =
 8.2400
c =
 3.5700
d =
 6.2400
e =
 9.2700

Example 3
Read the only first three numbers in the character vector, also formatting as floating
point:

a = strread('0.41 8.24 3.57 6.24 9.27', '%4.2f', 3)

a =
 0.4100
 8.2400
 3.5700

Example 4
Truncate the data to one decimal digit by specifying format %3.1f. The second specifier,
%*1d, tells strread not to read in the remaining decimal digit:

a = strread('0.41 8.24 3.57 6.24 9.27', '%3.1f %*1d')

a =
 0.4000
 8.2000
 3.5000
 6.2000
 9.2000

 strread

1-14157

Example 5
Read six numbers into two variables, reusing the format specifiers:

[a b] = strread('0.41 8.24 3.57 6.24 9.27 3.29', '%f %f')

a =
 0.4100
 3.5700
 9.2700
b =
 8.2400
 6.2400
 3.2900

Example 6
Read character vector and numeric data to two output variables. Ignore commas in the
input character vector:

str = 'Section 4, Page 7, Line 26';

[name value] = strread(str, '%s %d,')
name =
 'Section'
 'Page'
 'Line'
value =
 4
 7
 26

Example 7
Read the character vector used in the last example, but this time delimiting with commas
instead of spaces:

str = 'Section 4, Page 7, Line 26';

[a b c] = strread(str, '%s %s %s', 'delimiter', ',')
a =
 'Section 4'
b =

1 Alphabetical List

1-14158

 'Page 7'
c =
 'Line 26'

Example 8
Read selected portions of the input character vector:

str = '<table border=5 width="100%" cellspacing=0>';

[border width space] = strread(str, ...
 '%*s%*s %c %*s "%4s" %*s %c', 'delimiter', '= ')
border =
 5
width =
 '100%'
space =
 0

Example 9
Read the character vector into two vectors, restricting the Answer values to T and F. Also
note that two delimiters (comma and space) are used here:

str = 'Answer_1: T, Answer_2: F, Answer_3: F';

[a b] = strread(str, '%s %[TF]', 'delimiter', ', ')
a =
 'Answer_1:'
 'Answer_2:'
 'Answer_3:'
b =
 'T'
 'F'
 'F'

Tips
If you terminate the input character vector with a newline character (\n), strread
returns arrays of equal size by padding arrays of lesser size with the emptyvalue
character:

 strread

1-14159

[A,B,C] = strread(sprintf('5,7,1,9\n'),'%d%d%d', ...
 'delimiter', ',', 'emptyvalue',NaN)
A =
 5
 9
B =
 7
 NaN
C =
 1
 NaN

If you remove the \n from the input character vector of this example, array A continues to
be a 2-by-1 array, but B and C are now 1-by-1.

Delimiters
If your data uses a character other than a space as a delimiter, you must use the strread
parameter 'delimiter' to specify the delimiter. For example, if the character vector
str used a semicolon as a delimiter, you would use this command:

[names, types, x, y, answer] = strread(str,'%s %s %f ...
 %d %s','delimiter',';')

Formats
The format character vector determines the number and types of return arguments. The
number of return arguments must match the number of conversion specifiers in the
format character vector.

The strread function continues reading str until the entire character vector is read. If
there are fewer format specifiers than there are entities in str, strread reapplies the
format specifiers, starting over at the beginning. See “Example 5” on page 1-14158 below.

The format character vector supports a subset of the conversion specifiers and
conventions of the C language fscanf routine. White-space characters in the format
character vector are ignored.

1 Alphabetical List

1-14160

Preserving White-Space
If you want to preserve leading and trailing spaces in a character vector, use the
whitespace parameter as shown here:

str = ' An example of preserving spaces ';

strread(str, '%s', 'whitespace', '')
ans =
 ' An example of preserving spaces '

See Also
sscanf | textscan

Introduced before R2006a

 strread

1-14161

strrep
Find and replace substrings

Syntax
newStr = strrep(str,old,new)

Description
newStr = strrep(str,old,new) replaces all occurrences of old in str with new.

Examples

Replace Text in Character Vector

Create a character vector and replace a substring within it.

chr = 'The quick brown fox'

chr =
'The quick brown fox'

newChr = strrep(chr,'quick','sly')

newChr =
'The sly brown fox'

Replace Text in String Array

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["the quick brown fox";
 "and the lazy dog"]

1 Alphabetical List

1-14162

str = 2x1 string array
 "the quick brown fox"
 "and the lazy dog"

Replace a substring in each element of the array.

newStr = strrep(str,'the','a')

newStr = 2x1 string array
 "a quick brown fox"
 "and a lazy dog"

Replace Substrings with Multiple Values

Replace placeholder content in a cell array, '___', with different values in a second cell
array.

C1 = {'Date Received: ___';
 'Date Accepted: ___'};
old = '___';
new = {'2016-09-06';
 '2016-10-11'};
C2 = strrep(C1,old,new)

C2 = 2x1 cell array
 {'Date Received: 2016-09-06'}
 {'Date Accepted: 2016-10-11'}

Replace Repeated Pattern

Create a character vector with a repeated, overlapping pattern. Compare the results of
using the strrep, replace, and regexprep functions to replace the pattern.

repeats = 'abc 2 def 22 ghi 222 jkl 2222'

repeats =
'abc 2 def 22 ghi 222 jkl 2222'

 strrep

1-14163

Find the indices of the repeating pattern '22' using the strfind function. strfind
finds all instances of the pattern, including instances that overlap.

indices = strfind(repeats, '22')

indices = 1×6

 11 18 19 26 27 28

Replace '22' using strrep. When you use strrep, it replaces every instance identified
by strfind.

using_strrep = strrep(repeats, '22', '*')

using_strrep =
'abc 2 def * ghi ** jkl ***'

Replace '22' using replace. It does not replace every instance that strrep replaces.

using_replace = replace(repeats, '22', '*')

using_replace =
'abc 2 def * ghi *2 jkl **'

Replace '22' using regexprep. The results are identical to the results using the
replace function.

using_regexprep = regexprep(repeats, '22', '*')

using_regexprep =
'abc 2 def * ghi *2 jkl **'

strrep finds all instances of a pattern before replacing any instance. However, the
replace and regexprep functions replace an instance of a pattern as soon as they find
it within the text.

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

1 Alphabetical List

1-14164

Data Types: string | char | cell

old — Substring to replace
string array | character vector | cell array of character vectors

Substring to replace, specified as a string array, character vector, or cell array of
character vectors.

If old is a nonscalar string or cell array, then it must be the same size as str. Otherwise,
it can be a character vector or string scalar.
Data Types: string | char | cell

new — New substring
string array | character vector | cell array of character vectors

New substring, specified as a string array, character vector, or cell array of character
vectors.

If new is a nonscalar string or cell array, then it must be the same size as str. Otherwise,
it can be a character vector or string scalar.
Data Types: string | char | cell

Algorithms
• The strrep function does not find empty character vectors or empty strings for

replacement. That is, when str and old both contain the empty character vector ('')
or the empty string(""), strrep does not replace empty character vectors or strings
with the contents of new.

• Before replacing text, strrep finds all instances of old in str, like the strfind
function. For overlapping patterns, strrep performs multiple replacements.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

 strrep

1-14165

This function supports tall arrays with the limitations:

• The original string must be a tall array of strings or a tall cell array of character
vectors.

• The old string and new string inputs can be single strings or tall arrays of strings with
the same size.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str, old, and new must be a string scalar or a character vector.
• Generated code returns an empty output as a 1-by-0 character array.

See Also
erase | regexp | regexprep | replace | strfind

Topics
“Create String Arrays”
“Search and Replace Text”
“Test for Empty Strings and Missing Values”

Introduced before R2006a

1 Alphabetical List

1-14166

strsplit
Split string or character vector at specified delimiter

Syntax
C = strsplit(str)
C = strsplit(str,delimiter)
C = strsplit(str,delimiter,Name,Value)

[C,matches] = strsplit(___)

Description
C = strsplit(str) splits str at whitespace into C. A whitespace character is
equivalent to any sequence in the set {' ','\f','\n','\r','\t','\v'}.

If str has consecutive whitespace characters, then strsplit treats them as one
whitespace.

C = strsplit(str,delimiter) splits str at the delimiters specified by delimiter.

If str has consecutive delimiters, with no other characters between them, then
strsplit treats them as one delimiter. For example, both
strsplit('Hello,world',',') and strsplit('Hello,,,world',',') return the
same output.

C = strsplit(str,delimiter,Name,Value) specifies additional delimiter options
using one or more name-value pair arguments. For example, to treat consecutive
delimiters as separate delimiters, you can specify 'CollapseDelimiters',false.

[C,matches] = strsplit(___) additionally returns the array, matches. The
matches output argument contains all occurrences of delimiters upon which strsplit
splits str. You can use this syntax with any of the input arguments of the previous
syntaxes.

 strsplit

1-14167

Examples

Split Character Vector on Whitespace

str = 'The rain in Spain.';
C = strsplit(str)

C = 1x4 cell array
 {'The'} {'rain'} {'in'} {'Spain.'}

C is a cell array containing four character vectors.

Split Character Vector of Values on Specific Delimiter

Split a character vector that contains comma-separated values.

data = '1.21, 1.985, 1.955, 2.015, 1.885';
C = strsplit(data,', ')

C = 1x5 cell array
 {'1.21'} {'1.985'} {'1.955'} {'2.015'} {'1.885'}

Split a character vector, data, which contains the units m/s with an arbitrary number of
whitespace on either side of the text. The regular expression, \s*, matches any
whitespace character appearing zero or more times.

data = '1.21m/s1.985m/s 1.955 m/s2.015 m/s 1.885m/s';
[C,matches] = strsplit(data,'\s*m/s\s*',...
 'DelimiterType','RegularExpression')

C = 1x6 cell array
 {'1.21'} {'1.985'} {'1.955'} {'2.015'} {'1.885'} {0x0 char}

matches = 1x5 cell array
 {'m/s'} {'m/s '} {' m/s'} {' m/s '} {'m/s'}

1 Alphabetical List

1-14168

In this case, the last character vector in C is empty. This empty character vector follows
the last matched delimiter.

Split Path on File Separator

myPath = 'C:\work\matlab';
C = strsplit(myPath,'\')

C = 1x3 cell array
 {'C:'} {'work'} {'matlab'}

Split Character Vector with Multiple Delimiters

Split a character vector on ' ' and 'ain', treating multiple delimiters as one. Specify
multiple delimiters in a cell array of character vectors.

str = 'The rain in Spain stays mainly in the plain.';
[C,matches] = strsplit(str,{' ','ain'},'CollapseDelimiters',true)

C = 1x11 cell array
 Columns 1 through 7

 {'The'} {'r'} {'in'} {'Sp'} {'stays'} {'m'} {'ly'}

 Columns 8 through 11

 {'in'} {'the'} {'pl'} {'.'}

matches = 1x10 cell array
 Columns 1 through 7

 {' '} {'ain '} {' '} {'ain '} {' '} {'ain'} {' '}

 Columns 8 through 10

 {' '} {' '} {'ain'}

 strsplit

1-14169

Split the same character vector on whitespace and on 'ain', using regular expressions
and treating multiple delimiters separately.

[C,matches] = strsplit(str,{'\s','ain'},'CollapseDelimiters',...
 false, 'DelimiterType','RegularExpression')

C = 1x13 cell array
 Columns 1 through 6

 {'The'} {'r'} {0x0 char} {'in'} {'Sp'} {0x0 char}

 Columns 7 through 13

 {'stays'} {'m'} {'ly'} {'in'} {'the'} {'pl'} {'.'}

matches = 1x12 cell array
 Columns 1 through 8

 {' '} {'ain'} {' '} {' '} {'ain'} {' '} {' '} {'ain'}

 Columns 9 through 12

 {' '} {' '} {' '} {'ain'}

In this case, strsplit treats the two delimiters separately, so empty character vectors
appear in output C between the consecutively matched delimiters.

Split Text with Multiple, Overlapping Delimiters

Split text on the character vectors ', ' and ', and '.

str = 'bacon, lettuce, and tomato';
[C,matches] = strsplit(str,{', ',', and '})

C = 1x3 cell array
 {'bacon'} {'lettuce'} {'and tomato'}

matches = 1x2 cell array
 {', '} {', '}

1 Alphabetical List

1-14170

Because the command lists ', ' first and ', and ' contains ', ', the strsplit
function splits str on the first delimiter and never proceeds to the second delimiter.

If you reverse the order of delimiters, ', and ' takes priority.

str = 'bacon, lettuce, and tomato';
[C,matches] = strsplit(str,{', and ',', '})

C = 1x3 cell array
 {'bacon'} {'lettuce'} {'tomato'}

matches = 1x2 cell array
 {', '} {', and '}

Input Arguments
str — Input text
character vector | string scalar

Input text, specified as a character vector or a string scalar.
Data Types: char | string

delimiter — Delimiting characters
character vector | 1-by-n cell array of character vectors | 1-by-n string array

Delimiting characters, specified as a character vector, a 1-by-n cell array of character
vectors, or a 1-by-n string array. Text specified in delimiter does not appear in the
output C.

Specify multiple delimiters in a cell array or a string array. The strsplit function splits
str on the elements of delimiter. The order in which delimiters appear in delimiter
does not matter unless multiple delimiters begin a match at the same character in str. In
that case strsplit splits on the first matching delimiter in delimiter.

delimiter can include the following escape sequences:

\\ Backslash

 strsplit

1-14171

\0 Null
\a Alarm
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab

Example: ','
Example: {'-',','}
Data Types: char | cell | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DelimiterType','RegularExpression' instructs strsplit to treat
delimiter as a regular expression.

CollapseDelimiters — Multiple delimiter handling
1 (true) (default) | 0 (false)

Multiple delimiter handling, specified as the comma-separated pair consisting of
'CollapseDelimiters' and either true or false. If true, then consecutive
delimiters in str are treated as one. If false, then consecutive delimiters are treated as
separate delimiters, resulting in empty character vector '' elements between matched
delimiters.
Example: 'CollapseDelimiters',true

DelimiterType — Delimiter type
'Simple' (default) | 'RegularExpression'

1 Alphabetical List

1-14172

Delimiter type, specified as the comma-separated pair consisting of 'DelimiterType'
and one of the following character vectors.

'Simple' Except for escape sequences, strsplit
treats delimiter as literal text.

'RegularExpression' strsplit treats delimiter as a regular
expression.

In both cases, delimiter can include escape sequences.

Output Arguments
C — Parts of original text
cell array of character vectors | string array

Parts of the original character vector, returned as a cell array of character vectors or as a
string array. C always contains one more element than matches contains. Therefore, if
str begins with a delimiter, then the first element of C contains no characters. If str
ends with a delimiter, then the last cell in C contains no characters.

matches — Identified delimiters
cell array of character vectors | string array

Identified delimiters, returned as a cell array of character vectors or as a string array.
matches always contains one less element than output C contains. If str is a character
vector or a cell array of character vectors, then matches is a cell array. If str is a string
array, then matches is a string array.

Tips
• Starting in R2016b, the split function is recommended to split elements of a string

array.

See Also
regexp | split | strfind | strjoin

 strsplit

1-14173

Topics
“Regular Expressions”

Introduced in R2013a

1 Alphabetical List

1-14174

strtok
Selected parts of strings

Syntax
token = strtok(str)
token = strtok(str,delimiters)
[token,remain] = strtok(___)

Description
token = strtok(str) parses str from left to right, using whitespace characters as
delimiters, and returns part or all of the text in token. First, strtok ignores any leading
whitespace in str. Then, strtok starts at the first character that is not whitespace, and
includes all characters up to, but not including, the next whitespace character. strtok
returns that part of the text in token. If strtok does not find any whitespace to use as a
delimiter, then token includes all characters up to, and including, the end of str.

token = strtok(str,delimiters) parses str using the characters in delimiters.
If delimiters includes more than one character, then strtok treats each character in
delimiters as a separate delimiter. Because the delimiters are individual characters,
delimiters can be any size, and the characters within delimiters can be in any order.

In this syntax, whitespace characters are not delimiters unless you include them within
delimiters.

[token,remain] = strtok(___) returns the remaining text, if any, in remain. If
strtok finds a delimiter, then it is included at the start of remain. If strtok finds no
delimiters in str, then it returns the whole of str, except for leading delimiters, in
token, and remain has no characters. You can use this syntax with any of the input
arguments of the previous syntaxes.

Examples

 strtok

1-14175

Return Token from Character Vector

Create a character vector. Return all text up to the first whitespace character that is a
delimiter. strtok discards leading whitespace characters.

chr = ' Four score and seven years ago'

chr =
' Four score and seven years ago'

token = strtok(chr)

token =
'Four'

Return Token Using Delimiter

Create a string. Starting in R2017a, you can create strings using double quotes.

str = "A horse! A horse! My kingdom for a horse!"

str =
"A horse! A horse! My kingdom for a horse!"

Return the first part of the string using the '!' character as a delimiter.

token = strtok(str,'!')

token =
"A horse"

Return Tokens and Remaining Text

Create a string array. Starting in R2017a, you can create strings using double quotes.

str = ["all in good time";
 "my dog has fleas";
 "leave no stone unturned"]

str = 3x1 string array
 "all in good time"

1 Alphabetical List

1-14176

 "my dog has fleas"
 "leave no stone unturned"

Return tokens in a string array, and return the remaining text in a second string array.

[token,remain] = strtok(str)

token = 3x1 string array
 "all"
 "my"
 "leave"

remain = 3x1 string array
 " in good time"
 " dog has fleas"
 " no stone unturned"

Parse Delimited Text into String Array

Create a string that contains sample HTML code. Break it down into segments delimited
by the < and > characters. Store the segments in a string array.

Starting in R2017a, you can create strings using double quotes. To concatenate several
strings into one string, use the plus operator, +.

str = "<ul class=continued><li class=continued>" + ...
 "<pre>token = strtok" + ...
 "(str,delimiter)" + ...
 "token = strtok(str)"

str =
"<ul class=continued><li class=continued><pre>token = strtok(str,delimiter)token = strtok(str)"

Create an empty string array to contain the code segments.

segments = strings(0)

segments =

 0x0 empty string array

 strtok

1-14177

Break str into segments. Write a while loop that repeatedly calls strtok on the
remaining HTML text. The while loop exits when there is no more text to parse.

remain = str;
while (remain ~= "")
 [token,remain] = strtok(remain, '<>');
 segments = [segments ; token];
end

Display the code segments.

segments

segments = 9x1 string array
 "ul class=continued"
 "li class=continued"
 "pre"
 "a name="13474""
 "/a"
 "token = strtok(str,delimiter)"
 "a name="13475""
 "/a"
 "token = strtok(str)"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, a character vector, or a cell array of character
vectors.
Data Types: string | char | cell

delimiters — Delimiting characters
string array | character vector | cell array of character vectors

Delimiting characters, specified as a string array, a character vector, or a cell array of
character vectors. Because strtok treats individual characters as delimiters,
delimiters can be any size and can contain characters in any order.

1 Alphabetical List

1-14178

Example: strtok(str,{'YZ','X'}) treats 'X', 'Y', and 'Z' as separate delimiters. It
does not treat 'YZ' as a delimiter.
Data Types: string | char | cell

Output Arguments
token — Selected part of text
string array | character vector | cell array of character vectors

Selected part of the text, returned as a string array, a character vector, or a cell array of
character vectors. token includes all text starting at the first character that is not a
delimiter and ending at, but not including, the next delimiter. str and token are the
same data type.
Data Types: string | char | cell

remain — Remainder of text
string array | character vector | cell array of character vectors

Remainder of the text, returned as a string array, a character vector, or a cell array of
character vectors. If strtok finds a delimiter in str, then remain includes all text
starting at, and including, that delimiter and ending at the end of the text. str and
remain are the same data type.
Data Types: string | char | cell

Tips
Do not specify an escape-character sequence as a delimiter. strtok does not translate
escape character sequences. Instead, you can use the char function to specify such
characters. For example, to specify a tab as a delimiter use char(9) instead of '\t'.

 strtok

1-14179

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• str and delimiters must be a string scalar or a character vector.
• Generated code returns an empty output as a 1-by-0 character array.

See Also
regexp | split | splitlines | sprintf | strcmp | strfind | strncmp | strsplit |
textscan

Topics
“Formatting Text”
“Regular Expressions”

Introduced before R2006a

1 Alphabetical List

1-14180

strtrim
Remove leading and trailing whitespace from strings

Syntax
newStr = strtrim(str)

Description
newStr = strtrim(str) removes leading and trailing whitespace characters from str
and returns the result as newStr. However, strtrim does not remove significant
whitespace characters. For example, strtrim removes leading and trailing space and tab
characters, but does not remove the nonbreaking space character, char(160).

Examples

Remove Leading Whitespace from Character Vector

Create a character vector with spaces and a tab character as leading whitespace.

chr = sprintf(' \t Remove leading whitespace')

chr =
' Remove leading whitespace'

Remove the leading tab and spaces.

newChr = strtrim(chr)

newChr =
'Remove leading whitespace'

strtrim removes the leading whitespace characters, but not the whitespace between
other characters.

 strtrim

1-14181

Remove Leading and Trailing Spaces from String Array

Starting in R2017a, you can create strings using double quotes. Create a string array, and
remove leading and trailing whitespace with the strtrim function.

str = [" Gemini "," Apollo ";
 " ISS "," Skylab "]

str = 2x2 string array
 " Gemini " " Apollo "
 " ISS " " Skylab "

newStr = strtrim(str)

newStr = 2x2 string array
 "Gemini" "Apollo"
 "ISS" "Skylab"

Remove Leading and Trailing Whitespace from Cell Array

Remove the leading and trailing whitespace from all the character vectors in a cell array
and display them.

chr = {' Trim leading whitespace';
 'Trim trailing whitespace '}

chr = 2x1 cell array
 {' Trim leading whitespace' }
 {'Trim trailing whitespace '}

newChr = strtrim(chr)

newChr = 2x1 cell array
 {'Trim leading whitespace' }
 {'Trim trailing whitespace'}

1 Alphabetical List

1-14182

Keep Nonbreaking Space Character

Create a character vector that includes the nonbreaking space character, char(160), as
a trailing whitespace character.

chr = ' Keep nonbreaking space';
chr = [chr char(160) ' '];

Display chr between | symbols to show the leading and trailing whitespace.

['|' chr '|']

ans =
'| Keep nonbreaking space |'

Remove the leading and trailing whitespace characters.

newChr = strtrim(chr);

Display newChr between | symbols. strtrim removes the space characters but leaves
the nonbreaking space at the end of newChr.

['|' newChr '|']

ans =
'|Keep nonbreaking space |'

Input Arguments
str — Input text
character array | cell array of character arrays | string array

Input text, specified as a character array or as a cell array of character arrays, or a string
array.

Algorithms
strtrim does not remove significant whitespace characters.

 strtrim

1-14183

This table shows the most common characters that are significant whitespace characters
and their descriptions. For more information, see Whitespace character.

Significant Whitespace Character Description
char(133) Next line
char(160) Nonbreaking space
char(8199) Figure space
char(8239) Narrow no-break space

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input text must be string scalar or a character array.
• Input values must be in the range 0–127.
• Generated code returns an empty output as a 1-by-0 character array.

See Also
cellstr | deblank | isspace | strjust

Introduced before R2006a

1 Alphabetical List

1-14184

https://en.wikipedia.org/wiki/Whitespace_character

struct
Structure array

Description
A structure array is a data type that groups related data using data containers called
fields. Each field can contain any type of data. Access data in a field using dot notation of
the form structName.fieldName.

Creation
When you have data to put into a new structure, create the structure using dot notation to
name its fields one at a time:

s.a = 1;
s.b = {'A','B','C'}

s = struct with fields:
 a: 1
 b: {'A' 'B' 'C'}

You also can create a structure array using the struct function, described below. You
can specify many fields simultaneously, or create a nonscalar structure array.

Syntax
s = struct
s = struct(field,value)
s = struct(field1,value1,...,fieldN,valueN)
s = struct([])

s = struct(obj)

 struct

1-14185

Description
s = struct creates a scalar (1-by-1) structure with no fields.

s = struct(field,value) creates a structure array with the specified field and value.
The value input argument can be any data type, such as a numeric, logical, character, or
cell array.

• If value is not a cell array, or if value is a scalar cell array, then s is a scalar
structure. For instance, s = struct('a',[1 2 3]) creates a 1-by-1 structure,
where s.a = [1 2 3].

• If value is a nonscalar cell array, then s is a structure array with the same dimensions
as value. Each element of s contains the corresponding element of value. For
example, s = struct('x',{'a','b'}) returns s(1).x = 'a' and s(2).x =
'b'.

• If value is an empty cell array {}, then s is an empty (0-by-0) structure.

s = struct(field1,value1,...,fieldN,valueN) creates a structure array with
multiple fields.

• If none of the value inputs are cell arrays, or if all value inputs that are cell arrays
are scalars, then s is a scalar structure.

• If any of the value inputs is a nonscalar cell array, then s has the same dimensions as
that cell array. Also, if two or more value inputs are nonscalar cell arrays, then they
all must have the same dimensions.

For any value that is a scalar cell array or an array of any other data type, struct
inserts the contents of value in the relevant field for all elements of s. For example, s
= struct('x',{'a','b'},'y','c') returns s(1).x = 'a', s(2).x = 'b',
s(1).y = 'c', and s(2).y = 'c'.

• If any value input is an empty cell array, {}, then output s is an empty (0-by-0)
structure. To specify an empty field and keep the values of the other fields, use [] as a
value input instead.

s = struct([]) creates an empty (0-by-0) structure with no fields.

s = struct(obj) creates a scalar structure with field names and values that
correspond to properties of obj. The struct function does not convert obj, but rather
creates s as a new structure. This structure does not retain the class information, so
private, protected, and hidden properties become public fields in s. The struct function
issues a warning when you use this syntax.

1 Alphabetical List

1-14186

Input Arguments
field — Field name
character vector | string scalar

Field name, specified as a character vector or string scalar. Valid field names begin with a
letter, and can contain letters, digits, and underscores. The maximum length of a field
name is the value that the namelengthmax function returns.

value — Values
array

Values, specified as any type of array. If any value input is a nonscalar cell array, then all
nonscalar cell array inputs must have the same dimensions.

If any value input is an empty cell array, {}, then the output is an empty structure array.
To specify a single empty field, use [].

obj — Object
scalar | array

Object, specified as a scalar or array of objects. The struct function copies the
properties of obj to the fields of a new scalar structure.

The struct function does not create a structure from most of the fundamental data
types. For example, if obj has the double or char data type, then struct issues an
error message. However, struct does return the properties of a table or timetable as a
structure. See “Fundamental MATLAB Classes” for the list of fundamental data types.

Examples

Store Related Data Variables in Structure

Store related pieces of data in the fields of a structure. You can give the fields human-
readable names that describe the data.

Create a structure by adding fields to it using dot notation. The fields contain x- and y-
values for a sine wave, and text that describes the data.

 struct

1-14187

data.x = linspace(0,2*pi);
data.y = sin(data.x);
data.title = 'y = sin(x)'

data = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'

Plot the sine wave. You can refer to the arrays of x- and y-values by their field names.
Then add the title.

plot(data.x,data.y)
title(data.title)

1 Alphabetical List

1-14188

Structure with One Field

Create a nonscalar structure that contains a single field.

field = 'f';
value = {'some text';
 [10, 20, 30];
 magic(5)};
s = struct(field,value)

s = 3x1 struct array with fields:
 f

View the contents of each element.

s.f

ans =
'some text'

ans = 1×3

 10 20 30

ans = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

When you access a field of a nonscalar structure, such as s.f, MATLAB® returns a
comma-separated list. In this case, s.f is equivalent to s(1).f, s(2).f, s(3).f.

 struct

1-14189

Structure with Multiple Fields

Create a nonscalar structure that contains several fields.

field1 = 'f1'; value1 = zeros(1,10);
field2 = 'f2'; value2 = {'a', 'b'};
field3 = 'f3'; value3 = {pi, pi.^2};
field4 = 'f4'; value4 = {'fourth'};

s = struct(field1,value1,field2,value2,field3,value3,field4,value4)

s = 1x2 struct array with fields:
 f1
 f2
 f3
 f4

The cell arrays for value2 and value3 are 1-by-2, so s is also 1-by-2. Because value1 is
a numeric array and not a cell array, both s(1).f1 and s(2).f1 have the same contents.
Similarly, because the cell array for value4 has a single element, s(1).f4 and s(2).f4
have the same contents.

s(1)

ans = struct with fields:
 f1: [0 0 0 0 0 0 0 0 0 0]
 f2: 'a'
 f3: 3.1416
 f4: 'fourth'

s(2)

ans = struct with fields:
 f1: [0 0 0 0 0 0 0 0 0 0]
 f2: 'b'
 f3: 9.8696
 f4: 'fourth'

1 Alphabetical List

1-14190

Structure with Empty Field

Create a structure that contains an empty field. Use [] to specify the value of the empty
field.

s = struct('f1','a','f2',[])

s = struct with fields:
 f1: 'a'
 f2: []

Fields with Cell Arrays

Create a structure with a field that contains a cell array.

field = 'mycell';
value = {{'a','b','c'}};
s = struct(field,value)

s = struct with fields:
 mycell: {'a' 'b' 'c'}

Empty Structure

Create an empty structure that contains several fields.

s = struct('a',{},'b',{},'c',{})

s =

 0x0 empty struct array with fields:

 a
 b
 c

Assign a value to a field in an empty structure.

 struct

1-14191

s(1).a = 'a'

s = struct with fields:
 a: 'a'
 b: []
 c: []

Nested Structure

Create a nested structure, where a is a structure with a field that contains another
structure.

a.b = struct('c',{},'d',{})

a = struct with fields:
 b: [0x0 struct]

View the names of the fields of a.b.

fieldnames(a.b)

ans = 2x1 cell array
 {'c'}
 {'d'}

Compatibility Considerations

Structure array expansion is consistent with general array
expansion
Behavior changed in R2019a

Starting in R2019a, the dimensions of an expanded structure array are consistent
whether you assign a value to a single field using dot notation or assign an entire
structure to the array. Previously, the output dimensions were different when you did not
specify indices for all dimensions. Assigning to a field using dot notation now matches the

1 Alphabetical List

1-14192

previous behavior of assigning a structure, which is consistent with general array
expansion. For example:

• If S is 1-by-2-by-3-by-4, then S(5,2)=struct('a',3) and S(5,2).a=3 both expand
S to 5-by-2-by-3-by-4. Previously, S(5,2).a=3 resulted in a 5-by-24 array.

• If S is 0-by-5 or 5-by-0, then S(3)=struct('a',2) and S(3).a=2 both expand S to
1-by-3. Previously, S(3).a=1 resulted in a 1-by-5 array when S was 0-by-5 and in a 3-
by-1 array when S was 5-by-0.

• If S is 0-by-2-by-3, then S(3) = struct('a',2) andS(3).a=2 produce errors
because it is ambiguous which dimension to expand. Previously, S(3).a=2 resulted in
a 1-by-6 array.

• If S is 1-by-1-by-3 with two fields, then S(5)=struct('a',7,'b',[]) and
S(5).a=7 both expand S to 1-by-1-by-5. Previously, S(5).a=7 resulted in a 1-by-5
array.

• If S is 0-by-1 with two fields, then S(5)=struct('a',7,'b',[]) and S(5).a=7
both expand S to 5-by-1. Previously, S(5).a=7 resulted in a 1-by-5 array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the value argument is a cell array, all elements must have the same type.

See Also
cell2struct | fieldnames | isfield | isstruct | orderfields | rmfield |
struct2cell | struct2table | substruct | table | table2struct

Topics
“Create Structure Array”
“Access Data in a Structure Array”
“Access Data in Nested Structures”

 struct

1-14193

“Generate Field Names from Variables”
“Cell vs. Structure Arrays”

Introduced before R2006a

1 Alphabetical List

1-14194

struct2cell
Convert structure to cell array

Syntax
C = struct2cell(S)

Description
C = struct2cell(S) converts a structure into a cell array. The cell array C contains
values copied from the fields of S.

The struct2cell function does not return field names. To return the field names in a
cell array, use the fieldnames function.

Examples

Return Values and Field Names

Create a structure.

S.x = linspace(0,2*pi);
S.y = sin(S.x);
S.title = 'y = sin(x)'

S = struct with fields:
 x: [1x100 double]
 y: [1x100 double]
 title: 'y = sin(x)'

Convert S to a cell array.

C = struct2cell(S)

 struct2cell

1-14195

C = 3x1 cell array
 {1x100 double}
 {1x100 double}
 {'y = sin(x)'}

The cell array does not include field names. To return the field names in a cell array, use
the fieldnames function. fieldnames and struct2cell return the field names and
the values in the same order.

fields = fieldnames(S)

fields = 3x1 cell array
 {'x' }
 {'y' }
 {'title'}

Input Arguments
S — Input structure array
structure array

Input structure array. S can be a structure array of any size. If S is an m-by-n structure
array with p fields, then C is a p-by-m-by-n cell array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If S is a variable-size array of structures, then each field of every element must have
the same type. Heterogeneous cell arrays cannot be variable-size.

1 Alphabetical List

1-14196

• For a fixed-size array of structures S, if struct2cell cannot convert S to a
homogeneous cell array, then the output cell array is heterogeneous. A heterogeneous
output cell array can have a maximum of 1024 elements.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cell | cell2struct | fieldnames | iscell | isstruct | struct | struct2table |
table2cell

Topics
dynamic field names

Introduced before R2006a

 struct2cell

1-14197

struct2table
Convert structure array to table

Syntax
T = struct2table(S)
T = struct2table(S,Name,Value)

Description
T = struct2table(S) converts the structure array, S, to a table, T. Each field of S
becomes a variable in T.

T = struct2table(S,Name,Value) creates a table from a structure array, S, with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify row names to include in the table.

Examples

Convert Scalar Structure to Table

Convert a scalar structure to a table using the default options.

Create a structure array, S.

S.Name = {'CLARK';'BROWN';'MARTIN'};
S.Gender = {'M';'F';'M'};
S.SystolicBP = [124;122;130];
S.DiastolicBP = [93;80;92];

S

S = struct with fields:
 Name: {3x1 cell}

1 Alphabetical List

1-14198

 Gender: {3x1 cell}
 SystolicBP: [3x1 double]
 DiastolicBP: [3x1 double]

The scalar structure, S, has four fields, each with three rows.

Convert the structure array to a table.

T = struct2table(S)

T=3×4 table
 Name Gender SystolicBP DiastolicBP
 ________ ______ __________ ___________

 'CLARK' 'M' 124 93
 'BROWN' 'F' 122 80
 'MARTIN' 'M' 130 92

The structure field names in S become the variable names in the output table. The size of
T is 3-by-4.

Change Name from a variable to row names by modifying the table property,
T.Properties.RowNames, and then deleting the variable Name.

T.Properties.RowNames = T.Name;
T.Name = [];

T

T=3×3 table
 Gender SystolicBP DiastolicBP
 ______ __________ ___________

 CLARK 'M' 124 93
 BROWN 'F' 122 80
 MARTIN 'M' 130 92

Convert Nonscalar Structure Array to Table

Create a nonscalar structure array, S.

 struct2table

1-14199

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;

S

S = 3x1 struct array with fields:
 Name
 Gender
 SystolicBP
 DiastolicBP

S is a 3-by-1 structure array with four fields.

Convert the structure array to a table.

T = struct2table(S)

T=3×4 table
 Name Gender SystolicBP DiastolicBP
 ________ ______ __________ ___________

 'CLARK' 'M' 124 93
 'BROWN' 'F' 122 80
 'MARTIN' 'M' 130 92

The structure field names in S become the variable names in the output table. The size of
T is 3-by-4.

1 Alphabetical List

1-14200

Treat Scalar Structure As Array

Use 'AsArray',true to create a table from a scalar structure whose fields have
different numbers of rows.

Create a scalar structure, S, with fields name, billing, and test.

S.name = 'John Doe';
S.billing = 127.00;
S.test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];
S

S = struct with fields:
 name: 'John Doe'
 billing: 127
 test: [3x3 double]

The fields have different numbers of rows. Therefore, you cannot use struct2table(S),
which uses 'AsArray',false by default.

Treat the scalar structure as an array and convert it to a table.

T = struct2table(S,'AsArray',true)

T=1×3 table
 name billing test
 __________ _______ ____________

 'John Doe' 127 [3x3 double]

T contains one row.

Input Arguments
S — Structure array
structure array

Structure array, specified as a scalar structure array.

• If S is a scalar structure with n fields, all of which have m rows, then T is an m-by-n
table.

 struct2table

1-14201

• If S is a nonscalar m-by-1 structure array with n fields, then T is an m-by-n table.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RowNames',{'row1','row2','row3'} uses the row names, row1, row2,
and row3 for the table, T.

RowNames — Row names for T
{} (default) | cell array of character vectors | string array

Row names for T, specified as the comma-separated pair consisting of 'RowNames' and a
cell array of character vectors or a string array, whose elements are nonempty and
distinct.

AsArray — Indicator for how to treat scalar structure
false (default) | true | 0 | 1

Indicator for how to treat scalar structure, specified as the comma-separated pair
consisting of 'AsArray' and either false, true, 0, or 1.

true struct2table converts S to a table with one row and n variables.
The variables can be different sizes.

false struct2table converts a scalar structure array with n fields into
an m-by-n table. Each field must have m rows. This is the default
behavior

Output Arguments
T — Output table
table

Output table, returned as a table. The table can store metadata such as descriptions,
variable units, variable names, and row names. For more information, see the Properties
section of table.

1 Alphabetical List

1-14202

See Also
array2table | cell2table | table | table2struct

Topics
“Access Data in a Table”

Introduced in R2013b

 struct2table

1-14203

structfun
Apply function to each field of scalar structure

Syntax
A = structfun(func,S)
A = structfun(func,S,Name,Value)
[A1,...,Am] = structfun(___)

Description
A = structfun(func,S) applies the function func to each field of scalar structure S,
one field at a time. structfun then concatenates the outputs from func into the column
vector A. The input argument func is a function handle to a function that takes one input
argument and returns a scalar. The output from func can have any data type, so long as
objects of that type can be concatenated. The number of elements in A equals the number
of fields in S.

You cannot specify the order in which structfun calculates the elements of A or rely on
them being done in any particular order.

A = structfun(func,S,Name,Value) applies func with additional options specified
by one or more Name,Value pair arguments. For example, to return output values in a
structure, specify 'UniformOutput',false. You can return A as a structure when func
returns values that cannot be concatenated into an array. The returned structure has the
same fields as S.

[A1,...,Am] = structfun(___) returns multiple output arrays A1,...,Am when
func returns m output values. func can return output arguments that have different data
types, but the data type of each output must be the same each time func is called. You
can use this syntax with any of the input arguments of the previous syntaxes.

Examples

1 Alphabetical List

1-14204

Apply Function to Fields of Structure

Create a scalar structure with fields that contain numeric arrays of different sizes.

S.f1 = 1:10;
S.f2 = [2; 4; 6];
S.f3 = []

S = struct with fields:
 f1: [1 2 3 4 5 6 7 8 9 10]
 f2: [3x1 double]
 f3: []

Calculate the mean of each numeric array, and return the means in an array.

A = structfun(@mean,S)

A = 3×1

 5.5000
 4.0000
 NaN

Return Object Array

Create a scalar structure in which each field contains an array of random numbers.

S.X = rand(1,10);
S.Y = rand(1,10);
S.Z = rand(1,10)

S = struct with fields:
 X: [0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649]
 Y: [0.1576 0.9706 0.9572 0.4854 0.8003 0.1419 0.4218 0.9157 0.7922 0.9595]
 Z: [0.6557 0.0357 0.8491 0.9340 0.6787 0.7577 0.7431 0.3922 0.6555 0.1712]

Plot the arrays. Return an array of chart line objects from the plot function and use them
to add different markers to each set of data points. structfun can return arrays of any
data type, so long as objects of that data type can be concatenated.

 structfun

1-14205

figure
hold on
p = structfun(@plot,S);
p(1).Marker = 'o';
p(2).Marker = '+';
p(3).Marker = 's';
hold off

Return Scalar Structure

Create a scalar structure with fields that contain matrices.

1 Alphabetical List

1-14206

S.f1 = 1:10;
S.f2 = [2 3; 4 5; 6 7];
S.f3 = rand(4,4)

S = struct with fields:
 f1: [1 2 3 4 5 6 7 8 9 10]
 f2: [3x2 double]
 f3: [4x4 double]

Calculate the means of each matrix. mean returns vectors containing the mean of each
column, so the means cannot be returned as an array. To return the means in a structure,
specify the 'UniformOutput',false name-value pair.

A = structfun(@mean,S,'UniformOutput',false)

A = struct with fields:
 f1: 5.5000
 f2: [4 5]
 f3: [0.6902 0.3888 0.7627 0.5962]

Return Multiple Output Arrays

Create a scalar structure.

S.f1 = 1:10;
S.f2 = [2 3; 4 5; 6 7];
S.f3 = rand(4,4)

S = struct with fields:
 f1: [1 2 3 4 5 6 7 8 9 10]
 f2: [3x2 double]
 f3: [4x4 double]

Calculate the sizes of each array in S. The number of rows and columns are each in 3-by-1
numeric arrays.

[nrows,ncols] = structfun(@size,S)

nrows = 3×1

 structfun

1-14207

 1
 3
 4

ncols = 3×1

 10
 2
 4

Input Arguments
func — Function to apply
function handle

Function to apply to the fields of the input scalar structure, specified as a function handle.

func can correspond to more than one function file and therefore can represent a set of
overloaded functions. In these cases, MATLAB determines which function to call based on
the class of the input arguments.
Example: A = structfun(@max,S) returns the maximum of each field of S.

S — Input structure
scalar structure

Input structure, specified as a scalar structure.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: A = structfun(@mean,S,'UniformOutput',false) returns the outputs
from mean in a structure with the same fields as S.

1 Alphabetical List

1-14208

UniformOutput — True or false
true (default) | false

True or false, specified as the comma-separated pair consisting of 'UniformOuput' and
either true (1) or false (0).

Value of 'UniformOutput' Description
true (1) func must return scalars that structfun

concatenates into a column vector.
false (0) structfun returns the outputs of func in

one or more scalar structures. The output
scalar structures have the same fields as
the input scalar structure. The outputs of
func can have any data type.

ErrorHandler — Function to catch errors
function handle

Function to catch errors, specified as the comma-separated pair consisting of
'ErrorHandler' and a function handle. If func throws an error, then the error handler
specified by 'ErrorHandler' catches the error and takes the action specified in the
function. The error handler either must throw an error or return the same number of
outputs as func. If the value of 'UniformOutput' is true, then the output arguments of
the error handler must be scalars and have the same data type as the outputs of func.

The first input argument of the error handler is a structure with these fields:

• identifier — Error identifier
• message — Error message text
• index — Linear index into the input arrays at which func threw the error

The remaining input arguments to the error handler are the input arguments for the call
to func that made func throw the error.

Suppose func returns two doubles as output arguments. You can specify the error
handler as 'ErrorHandler',@errorFunc, where errorFunc is a function that raises a
warning and returns two output arguments.

function [A,B] = errorFunc(S,varargin)
 warning(S.identifier, S.message);

 structfun

1-14209

 A = NaN;
 B = NaN;
end

If you do not specify 'ErrorHandler', then structfun rethrows the error thrown by
func.

Output Arguments
A — Output array
column vector of any data type | scalar structure

Output array, returned as a column vector of any data type or as a scalar structure.

By default, structfun concatenates the outputs from func into a column vector. func
must return scalars. If func returns objects, then the class that the objects belong to
must meet these requirements.

• Support assignment by linear indexing into the object array
• Have a reshape method that returns an array that has the same size as the input

If the value of the 'UniformOutput' name-value pair argument is false (0), then
structfun returns outputs as fields of a scalar structure. In that case, the outputs from
func can have any sizes and different data types.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The ErrorHandler option is not supported.
• The number of outputs must be less than or equal to three.

1 Alphabetical List

1-14210

See Also
arrayfun | cell2mat | cellfun | spfun | splitapply

Topics
“Anonymous Functions”
“Create Function Handle”

Introduced before R2006a

 structfun

1-14211

strvcat
(Not recommended) Concatenate strings vertically

Note strvcat is not recommended. Use char instead. Unlike strvcat, the char
function does not ignore empty character vectors.

Syntax
S = strvcat(t1, t2, t3, ...)
S = strvcat(c)

Description
S = strvcat(t1, t2, t3, ...) forms the character array S containing the
character arrays t1,t2,t3,... as rows. Spaces are appended to each input argument
as necessary so that the rows of S have the same number of characters. Empty arguments
are ignored.

S = strvcat(c) when c is a cell array of character vectors, passes each element of c as
an input to strvcat. Empty character vectors in the input are ignored.

Examples
The command strvcat('Hello','Yes') is the same as ['Hello';'Yes '], except
that strvcat performs the padding automatically.

t1 = 'first'; t2 = 'character'; t3 = 'array'; t4 = 'second';

S1 = strvcat(t1, t2, t3)

S1 =

 3×9 char array

1 Alphabetical List

1-14212

 'first '
 'character'
 'array '

S2 = strvcat(t4, t2, t3)

S2 =

 3×9 char array

 'second '
 'character'
 'array '

S3 = strvcat(S1, S2)

S3 =

 6×9 char array

 'first '
 'character'
 'array '
 'second '
 'character'
 'array '

Tips
If each text parameter, ti, is itself a character array, strvcat appends them vertically to
create arbitrarily large character arrays.

See Also
cat | char | horzcat | int2str | mat2str | num2str | strcat | vertcat

Introduced before R2006a

 strvcat

1-14213

sub2ind
Convert subscripts to linear indices

Syntax
linearInd = sub2ind(matrixSize, rowSub, colSub)
linearInd = sub2ind(arraySize, dim1Sub, dim2Sub, dim3Sub, ...)

Description
linearInd = sub2ind(matrixSize, rowSub, colSub) returns the linear index
equivalents to the row and column subscripts rowSub and colSub for a matrix of size
matrixSize. The matrixSize input is a 2-element vector that specifies the number of
rows and columns in the matrix as [nRows, nCols]. The rowSub and colSub inputs are
positive, whole number scalars or vectors that specify one or more row-column subscript
pairs for the matrix.

linearInd = sub2ind(arraySize, dim1Sub, dim2Sub, dim3Sub, ...) returns
the linear index equivalents to the specified subscripts for each dimension of an N-
dimensional array of size arraySize. The arraySize input is an n-element vector that
specifies the number of dimensions in the array. The dimNSub inputs are positive, whole
number scalars or vectors that specify one or more row-column subscripts for the matrix.

All subscript inputs can be single, double, or any integer type. The linearInd output
is always of class double.

If needed, sub2ind assumes that unspecified trailing subscripts are 1.

Examples

Linear Index of 3-D Array

Convert an index of a 3-D array to a single linear index.

1 Alphabetical List

1-14214

Create an array A, and find the linear index corresponding to the element in the (2,1,2)
position.

A = rand(3,4,2);
linearInd = sub2ind(size(A),2,1,2)

linearInd = 14

Check that both index versions refer to the same element of A.

A(2,1,2)

ans = 0.4854

A(14)

ans = 0.4854

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The first argument must be a valid size vector. Code generation does not support size
vectors for arrays with more than intmax elements.

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

 sub2ind

1-14215

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
find | ind2sub | size

Introduced before R2006a

1 Alphabetical List

1-14216

subplot
Create axes in tiled positions

Syntax
subplot(m,n,p)
subplot(m,n,p,'replace')
subplot(m,n,p,'align')
subplot(m,n,p,ax)

subplot('Position',pos)

subplot(___ ,Name,Value)
ax = subplot(___)

subplot(ax)

Description
subplot(m,n,p) divides the current figure into an m-by-n grid and creates axes in the
position specified by p. MATLAB numbers subplot positions by row. The first subplot is the
first column of the first row, the second subplot is the second column of the first row, and
so on. If axes exist in the specified position, then this command makes the axes the
current axes.

subplot(m,n,p,'replace') deletes existing axes in position p and creates new axes.

subplot(m,n,p,'align') creates new axes so that the plot boxes are aligned. This
option is the default behavior.

subplot(m,n,p,ax) converts the existing axes, ax, into a subplot in the same figure.

subplot('Position',pos) creates axes in the custom position specified by pos. Use
this option to position a subplot that does not align with grid positions. Specify pos as a
four-element vector of the form [left bottom width height]. If the new axes
overlap existing axes, then the new axes replace the existing axes.

 subplot

1-14217

subplot(___ ,Name,Value) modifies axes properties using one or more name-value
pair arguments. For a list of properties, see Axes. Set axes properties after all other input
arguments.

ax = subplot(___) returns the Axes object created. Use ax to make future
modifications to the axes. For a list of properties, see Axes.

subplot(ax) makes the axes specified by ax the current axes for the parent figure. This
option does not make the parent figure the current figure if it is not already the current
figure.

Examples

Upper and Lower Subplots

Create a figure with two stacked subplots. Plot a sine wave in each one.

subplot(2,1,1);
x = linspace(0,10);
y1 = sin(x);
plot(x,y1)

subplot(2,1,2);
y2 = sin(5*x);
plot(x,y2)

1 Alphabetical List

1-14218

Quadrant of Subplots

Create a figure divided into four subplots. Plot a sine wave in each one and title each
subplot.

subplot(2,2,1)
x = linspace(0,10);
y1 = sin(x);
plot(x,y1)
title('Subplot 1: sin(x)')

 subplot

1-14219

subplot(2,2,2)
y2 = sin(2*x);
plot(x,y2)
title('Subplot 2: sin(2x)')

subplot(2,2,3)
y3 = sin(4*x);
plot(x,y3)
title('Subplot 3: sin(4x)')

subplot(2,2,4)
y4 = sin(8*x);
plot(x,y4)
title('Subplot 4: sin(8x)')

1 Alphabetical List

1-14220

Subplots with Different Sizes

Create a figure containing with three subplots. Create two subplots across the upper half
of the figure and a third subplot that spans the lower half of the figure. Add titles to each
subplot.

subplot(2,2,1);
x = linspace(-3.8,3.8);
y_cos = cos(x);
plot(x,y_cos);
title('Subplot 1: Cosine')

subplot(2,2,2);
y_poly = 1 - x.^2./2 + x.^4./24;
plot(x,y_poly,'g');
title('Subplot 2: Polynomial')

subplot(2,2,[3,4]);
plot(x,y_cos,'b',x,y_poly,'g');
title('Subplot 3 and 4: Both')

 subplot

1-14221

Replace Subplot with Empty Axes

Create a figure with four stem plots of random data. Then replace the second subplot with
empty axes.

for k = 1:4
 data = rand(1,10);
 subplot(2,2,k)
 stem(data)
end

1 Alphabetical List

1-14222

subplot(2,2,2,'replace')

 subplot

1-14223

Subplots at Custom Positions

Create a figure with two subplots that are not aligned with grid positions. Specify a
custom position for each subplot.

pos1 = [0.1 0.3 0.3 0.3];
subplot('Position',pos1)
y = magic(4);
plot(y)
title('First Subplot')

1 Alphabetical List

1-14224

pos2 = [0.5 0.15 0.4 0.7];
subplot('Position',pos2)
bar(y)
title('Second Subplot')

Create Subplots with Polar Axes

Create a figure with two polar axes. Create a polar line chart in the upper subplot and a
polar scatter chart in the lower subplot.

figure
ax1 = subplot(2,1,1,polaraxes);

 subplot

1-14225

theta = linspace(0,2*pi,50);
rho = sin(theta).*cos(theta);
polarplot(ax1,theta,rho)

ax2 = subplot(2,1,2,polaraxes);
polarscatter(ax2,theta,rho)

1 Alphabetical List

1-14226

Modify Axes Properties After Creation

Create a figure with two subplots. Assign the Axes objects to the variables ax1 and ax2.
Specify the Axes objects as inputs to the plotting functions to ensure that the functions
plot into a specific subplot.

ax1 = subplot(2,1,1);
Z = peaks;
plot(ax1,Z(1:20,:))

ax2 = subplot(2,1,2);
plot(ax2,Z)

 subplot

1-14227

Modify the axes by setting properties of the Axes objects. Change the font size for the
upper subplot and the line width for the lower subplot. Some plotting functions set axes
properties. Execute plotting functions before specifying axes properties to avoid
overriding existing axes property settings.

Note: Starting in R2014b, you can use dot notation to set properties. If you are using an
earlier release, use the set function instead.

ax1.FontSize = 15;
ax2.LineWidth = 2;

1 Alphabetical List

1-14228

Make Subplot the Current Axes

Create a figure with multiple subplots. Store the Axes objects in vector ax. Then make
the second subplot the current axes. Create a line chart and change the axis limits for the
second subplot. By default, graphics functions target the current axes.

for k = 1:4
 ax(k) = subplot(2,2,k);
end

subplot(ax(2))
x = linspace(1,50);
y = sin(x);
plot(x,y,'Color',[0.1, 0.5, 0.1])
title('Second Subplot')
axis([0 50 -1 1])

 subplot

1-14229

Convert Existing Axes to Subplot

Create a line chart. Then convert the axes so that it is the lower subplot of the figure. The
subplot function uses the figure in which the original axes existed.

x = linspace(1,10);
y = sin(x);
plot(x,y)
title('Sine Plot')

1 Alphabetical List

1-14230

ax = gca;
subplot(2,1,2,ax)

 subplot

1-14231

Convert Axes in Separate Figures to Subplots

Combine axes that exist in separate figures in a single figure with subplots.

Create two plots in two different figures. Assign the Axes objects to the variables ax1 and
ax2. Assign the Legend object to the variable lgd.

figure
x = linspace(0,10);
y1 = sin(x);
plot(x,y1)
title('Line Plot 1')

1 Alphabetical List

1-14232

ax1 = gca;

figure
y2 = 2*sin(x);
plot(x,y2)
title('Line Plot 2')
lgd = legend('2*Sin(x)');

 subplot

1-14233

ax2 = gca;

Create copies of the two Axes objects using copyobj. Specify the parents of the copied
axes as a new figure. Since legends and colorbars do not get copied with the associated
axes, copy the legend with the axes.

fnew = figure;
ax1_copy = copyobj(ax1,fnew);
subplot(2,1,1,ax1_copy)

copies = copyobj([ax2,lgd],fnew);
ax2_copy = copies(1);
subplot(2,1,2,ax2_copy)

1 Alphabetical List

1-14234

Input Arguments
m — Number of grid rows
1 (default) | positive integer

Number of grid rows, specified as a positive integer.
Data Types: single | double

n — Number of grid columns
1 (default) | positive integer

Number of grid columns, specified as a positive integer.
Data Types: single | double

p — Grid position for new axes
scalar | vector

Grid position for the new axes, specified as a scalar or vector of positive integers.

• If p is a scalar positive integer, then subplot creates a subplot in grid position p.

 subplot

1-14235

• If p is a vector of positive integers, then subplot creates a subplot that spans the grid
positions listed in p.

Example: subplot(2,3,1) creates a subplot in position 1.
Example: subplot(2,3,[2,5]) creates a subplot spanning positions 2 and 5.
Example: subplot(2,3,[2,6]) creates a subplot spanning positions 2, 3, 5, and 6.
Data Types: single | double

pos — Custom position for new axes
four-element vector

Custom position for the new axes, specified as a four-element vector of the form [left
bottom width height].

• The left and bottom elements specify the position of the bottom-left corner of the
subplot in relation to the bottom-left corner of the figure.

• The width and height elements specify the subplot dimensions.

Specify values between 0 and 1 that are normalized with respect to the interior of the
figure.

Note When using a script to create subplots, MATLAB does not finalize the Position
property value until either a drawnow command is issued or MATLAB returns to await a
user command. The Position property value for a subplot is subject to change until the
script either refreshes the plot or exits.

Example: subplot('Position',[0.1 0.1 0.45 0.45])
Data Types: single | double

ax — Existing axes to make current or convert to subplot
Axes object | PolarAxes object | graphics object

Existing axes to make current or convert to a subplot, specified as an Axes object, a
PolarAxes object, or a graphics object with an ActivePositionProperty property,
such as a HeatmapChart object.

To create empty polar axes in a subplot position, specify ax as the polaraxes function,
for example, subplot(2,1,2,polaraxes).

1 Alphabetical List

1-14236

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: subplot(m,n,p,'XGrid','on')

For a list of properties you can set, see Axes. Some plotting functions override property
settings. Consider setting axes properties after plotting.

Tips
• To clear the contents of the figure, use clf. For example, you might clear the existing

subplot layout from the figure before creating a new subplot layout.
• To overlay axes, use the axes command instead. The subplot function deletes

existing axes that overlap new axes. For example, subplot('Position',
[.35 .35 .3 .3]) deletes any underlying axes, but axes('Position',
[.35 .35 .3 .3]) positions new axes in the middle of the figure without deleting
underlying axes.

• subplot(111) is an exception and not identical in behavior to subplot(1,1,1). For
reasons of backwards compatibility, subplot(111) is a special case of subplot that
does not immediately create axes, but sets up the figure so that the next graphics
command executes clf reset. The next graphics command deletes all the figure
children and creates new axes in the default position. subplot(111) does not return
an Axes object and an error occurs if code specifies a return argument.

See Also
Functions
axes | cla | clf | figure | gca

Properties
Axes

Topics
“Combine Multiple Plots”

 subplot

1-14237

Introduced before R2006a

1 Alphabetical List

1-14238

subsasgn
Redefine subscripted assignment

Syntax
A = subsasgn(A,S,B)

Description
A = subsasgn(A,S,B) called by MATLAB for the syntax A(i) = B, A{i} = B, or A.i
= B when A is an object.

MATLAB uses the built-in subsasgn function to interpret indexed assignment statements.
Modify the indexed assignment behavior of classes by overloading subsasgn in the class.

Note You must call subsasgn with an output argument. subsasgn does not modify the
object used in the indexing operation (the first input argument). You must assign the
output to obtain a modified object.

Input Arguments
A

Object used in indexing operation

S

Structure with two fields, type and subs. For compound indexing expressions, S is an
array of structures, one for each level of indexing.

• type is a char vector or string containing (), {}, or ., indicating the type of indexing
used.

• subs is a cell array, character array, or string array containing the actual subscripts.

 subsasgn

1-14239

B

Value being assigned (right side of assignment statement)

Output Arguments
A

Result of the assignment statement, which is the modified object passed in as the first
argument.

If your implementation of a subsasgn method assigns more than one value, use
varargin for the third input argument. For more information, see “Syntax for subsref,
and subsasgn Methods”.

Examples
Argument values for the subsasgn for the expression shown:

A(1:2,:) = B;

The syntax A(1:2,:) = B calls A = subsasgn(A,S,B) where S is a structure with
S.type = '()' and S.subs = {1:2,':'}. The colon character (':') indicates a
colon used as a subscript.

For the expression:

A{1:2} = B;

The syntax A{1:2} = B calls A = subsasgn(A,S,B) where S.type = '{}' and
S.subs = {[1 2]}.

For the expression:

A.field = B;

The syntax A.field = B calls A = subsasgn(A,S,B) where S.type = '.' and
S.subs = 'field'.

For the expression:

1 Alphabetical List

1-14240

A(1,2).name(3:5) = B;

Simple calls combine in a straightforward way for more complicated indexing
expressions. In such cases, length(S) is the number of subscripting levels. For instance,
A(1,2).name(3:5) = B calls A = subsasgn(A,S,B) where S is a 3-by-1 array of
structures with the following values:

S(1).type = '()' S(2).type = '.' S(3).type = '()'
S(1).subs = {1,2} S(2).subs = 'name' S(3).subs = {[3 4 5]}

Tips
Within the subsasgn method defined by a class, MATLAB calls the built-in subsasgn.
Calling the built-in enables you to use the default indexing behavior when defining
specialized indexing. For more information, see “Built-In subsref and subsasgn Called in
Methods”.

Algorithms
In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N, and so on, can be
scalar, vector, or arrays, when all the following are true:

• The number of subscripts specified for B, excluding trailing subscripts equal to 1, does
not exceed the value returned by ndims(B).

• The number of nonscalar subscripts specified for A equals the number of nonscalar
subscripts specified for B. For example, A(5,1:4,1,2) = B(5:8) is valid because
both sides of the equation use one nonscalar subscript.

• The order and length of all nonscalar subscripts specified for A matches the order and
length of nonscalar subscripts specified for B. For example, A(1:4,3,3:9) =
B(5:8,1:7) is valid because both sides of the equation (ignoring the one scalar
subscript 3) use a 4-element subscript followed by a 7-element subscript.

 subsasgn

1-14241

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Subscripts must not contain repeated values.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• Expansion by using linear indexing is not supported.
• Curly brace indexing for cell arrays and dot indexing for structures are not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
numArgumentsFromSubscript | subsref | substruct

Topics
“Number of Arguments for subsref and subsasgn”
“Modify nargout and nargin for Indexing Methods”
“Indexed Assignment”
“Code Patterns for subsref and subsasgn Methods”
“Comma-Separated Lists”

1 Alphabetical List

1-14242

Introduced before R2006a

 subsasgn

1-14243

subsindex
Convert object to array index

Syntax
ind = subsindex(A)

Description
MATLAB calls subsindex to convert an object into an integer index. Define a subsindex
method for your class if you want to use objects of the class as array indices.

ind = subsindex(A) called by MATLAB for the expression X(A) when A is an object.
MATLAB does not call subsindex if the indexing expression results in a call to an
overloaded subsref or subsasgn method for the class of X. subsindex must return the
value of the object as a zero-based integer index. ind must contain integer values in the
range 0 to prod(size(X))-1.

MATLAB invokes subsindex separately on all the subscripts in an expression, such as
X(A,B).

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-14244

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
subsasgn | subsref

Topics
“Objects in Index Expressions”

Introduced before R2006a

 subsindex

1-14245

subspace
Angle between two subspaces

Syntax
theta = subspace(A,B)

Description
theta = subspace(A,B) finds the angle between two subspaces specified by the
columns of A and B. If A and B are column vectors of unit length, this is the same as
acos(abs(A'*B)).

Examples
Consider two subspaces of a Hadamard matrix, whose columns are orthogonal.

H = hadamard(8);
A = H(:,2:4);
B = H(:,5:8);

Note that matrices A and B are different sizes — A has three columns and B four. It is not
necessary that two subspaces be the same size in order to find the angle between them.
Geometrically, this is the angle between two hyperplanes embedded in a higher
dimensional space.

theta = subspace(A,B)
theta =
 1.5708

That A and B are orthogonal is shown by the fact that theta is equal to π/2.

theta - pi/2
ans =
 0

1 Alphabetical List

1-14246

Tips
If the angle between the two subspaces is small, the two spaces are nearly linearly
dependent. In a physical experiment described by some observations A, and a second
realization of the experiment described by B, subspace(A,B) gives a measure of the
amount of new information afforded by the second experiment not associated with
statistical errors of fluctuations.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Introduced before R2006a

 subspace

1-14247

subsref
Subscripted reference

Classes overload subsref to implement custom indexing behavior for objects of the
class. For more information, see “Object Indexing”.

Syntax
B = subsref(A,S)

Description
B = subsref(A,S) is called by MATLAB for the syntax A(i), A{i}, or A.i when A is an
object.

Examples

Parentheses Indexing

This example shows how MATLAB® calls subsref for the following indexing expression.

A = magic(5);
A(1:2,:)

ans = 2×5

 17 24 1 8 15
 23 5 7 14 16

The syntax, A(1:2,:), results in a call to B = subsref(A,S) where S is a 1-by-1
structure where S.type is '()' and S.subs is {1:2,':'}. The colon character
indicates a colon used as a subscript.

1 Alphabetical List

1-14248

Brace Indexing

This example shows how MATLAB® calls subsref for indexing expression that use
braces.

C = {"one", 2, 'three'};
C{1:2}

ans =
"one"

ans = 2

The syntax, C{1:2}, results in a call to [c1,c2] = subsref(C,S) where S.type is
'{}' and S.subs is {[1 2]}.

Dot Indexing

This example shows how MATLAB® calls subsref for indexing expression that use dot
notation.

A = struct('number',10);
A.number

ans = 10

The syntax A.number results in a call to B = subsref(A,S) where S.Type is '.' and
S.subs is 'number'.

Input Arguments
A — Indexed object array
any object

Indexed object array, passed by MATLAB as the object array that is part of the indexing
expression.

 subsref

1-14249

S — Indexing structure
specialized indexing structure

Indexing structure, passed by MATLAB as the indexing substruct for the indexing
expression that caused the call to subsref. This structure has these fields:

• type – Character vector or string scalar containing (), {}, or ., specifying the
subscript type.

• subs – Cell array, character vector, or string scalar containing the actual subscripts.

Index expressions can use more than one level to form more complicated expressions. For
example A{1}.field(3:5) has three levels of indexing. For this expression, S is a 3-
by-1 structure array with these fields:

disp(S(1))
 type: '()'
 subs: {[1]}
disp(S(2))
 type: '.'
 subs: 'field'
disp(S(3))
 type: '()'
 subs: {[3 4 5]}

Data Types: struct

Output Arguments
B — Result of indexing expression
any type of value

Result of indexing expression.

Definitions

Understanding Indexing Expressions
A(I) is an array formed from the elements of A specified by the subscript vector I. The
resulting array is the same size as I except for the special case where A and I are both

1 Alphabetical List

1-14250

vectors. In this case, A(I) has the same number of elements as I but has the orientation
of A.

A(I,J) is an array formed from the elements of the rectangular submatrix of A, specified
by the subscript vectors I and J. The resulting array has length(I) rows and
length(J) columns. A colon used as a subscript indicates all elements in that dimension.
For example, A(I,:) means all columns of those rows specified by vector I. Similarly,
A(:,J) means all rows of columns specified by J.

A(I,J,K,...) is the array specified by the subscripts. The result is length(I)-by-
length(J)-by-length(K)....

A{I} where A is a cell array and I is a scalar forms a copy of the array in the specified
cell of A. If I has more than one element, this expression is a comma-separated list. You
can also use multiple subscripts that specify a scalar element, as in A{3,4}.

A(I).field when A is a structure array and I is a scalar forms a copy of the array in the
field with the name field. If I has more than one element, this expression is a comma-
separated list. If A is a 1-by-1 structure array, then the subscript can be dropped. In this
case, A.field is the same as A(1).field.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The index I in A(I) must be :, scalar, or vector.
• Curly brace indexing for cell arrays and dot indexing for structures are not supported

(GPU arrays do not support cell arrays or structures).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 subsref

1-14251

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The index I in A(I) must be :, scalar, or vector.
• Curly brace indexing for cell arrays and dot indexing for structures are not supported.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
numArgumentsFromSubscript | subsasgn | substruct

Topics
“Number of Arguments for subsref and subsasgn”
“Modify nargout and nargin for Indexing Methods”
“Indexed Reference”
“Code Patterns for subsref and subsasgn Methods”
“Comma-Separated Lists”
“Assigning Output from a Comma-Separated List”

Introduced before R2006a

1 Alphabetical List

1-14252

substruct
Create structure argument for subsasgn or subsref

Syntax
S = substruct(type1, subs1, type2, subs2, ...)

Description
S = substruct(type1, subs1, type2, subs2, ...) creates a structure with the
fields required by an overloaded subsref or subsasgn method. Each type char vector
must be one of '.', '()', or '{}'. The corresponding subs argument must be either a
field name (for the '.' type) or a cell array containing the index vectors (for the '()' or
'{}' types).

Output Arguments
S

struct with these fields:

• type: one of '.', '()', or '{}'
• subs: subscript values (field name or cell array of index vectors)

Examples
Call subsref with arguments equivalent to the syntax:

B = A(3,5).field;

where A is an object of a class that implements a subsref method

Use substruct to form the input struct, S:

 substruct

1-14253

S = substruct('()',{3,5},'.','field');

Call the class method:

B = subsref(A,S);

The struct created by substruct in this example contains:

disp(S(1))
 type: '()'
 subs: {[3] [5]}

disp(S(2))
 type: '.'
 subs: 'field'

See Also
subsasgn | subsref

Topics
“Object Array Indexing”

Introduced before R2006a

1 Alphabetical List

1-14254

subvolume
Extract subset of volume data set

Syntax
[Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits)
[Nx,Ny,Nz,Nv] = subvolume(V,limits)
Nv = subvolume(...)

Description
[Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits) extracts a subset of the volume
data set V using the specified axis-aligned limits. limits = [xmin,xmax,ymin,
ymax,zmin,zmax] (Any NaNs in the limits indicate that the volume should not be
cropped along that axis.)

The arrays X, Y, and Z define the coordinates for the volume V. The subvolume is returned
in NV and the coordinates of the subvolume are given in NX, NY, and NZ.

[Nx,Ny,Nz,Nv] = subvolume(V,limits) assumes the arrays X, Y, and Z are defined
as

[X,Y,Z] = meshgrid(1:N,1:M,1:P)

where [M,N,P] = size(V).

Nv = subvolume(...) returns only the subvolume.

Examples

Extract Subset of Volume Data Set

Load the mri data set, which is a collection of MRI slices of a human skull. Then:

 subvolume

1-14255

• Squeeze the four-dimensional array into three dimensions and extract a subset using
subvolume.

• Use a patch to display an isosurface of the skull outline.
• Add a second patch with interpolated face colors.
• Set the view of the object.
• Change the colormap to a grayscale colormap.
• Add lights to the right and left of the camera to illuminate the object.

load mri
D = squeeze(D);
[x,y,z,D] = subvolume(D,[60,80,nan,80,nan,nan]);
p1 = patch(isosurface(x,y,z,D, 5),...
 'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...
 'FaceColor','interp','EdgeColor','none');
view(3);
axis tight;
daspect([1 1 0.4])
colormap(gray(100))
camlight right;
camlight left;
lighting gouraud

1 Alphabetical List

1-14256

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 subvolume

1-14257

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isocaps | isonormals | isosurface | reducepatch | reducevolume | smooth3

Introduced before R2006a

1 Alphabetical List

1-14258

sum
Sum of array elements

Syntax
S = sum(A)
S = sum(A,'all')
S = sum(A,dim)
S = sum(A,vecdim)
S = sum(___ ,outtype)
S = sum(___ ,nanflag)

Description
S = sum(A) returns the sum of the elements of A along the first array dimension whose
size does not equal 1.

• If A is a vector, then sum(A) returns the sum of the elements.
• If A is a matrix, then sum(A) returns a row vector containing the sum of each column.
• If A is a multidimensional array, then sum(A) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. This dimension becomes
1 while the sizes of all other dimensions remain the same.

S = sum(A,'all') computes the sum of all elements of A. This syntax is valid for
MATLAB versions R2018b and later.

S = sum(A,dim) returns the sum along dimension dim. For example, if A is a matrix,
then sum(A,2) is a column vector containing the sum of each row.

S = sum(A,vecdim) sums the elements of A based on the dimensions specified in the
vector vecdim. For example, if A is a matrix, then sum(A,[1 2]) is the sum of all
elements in A, since every element of a matrix is contained in the array slice defined by
dimensions 1 and 2.

 sum

1-14259

S = sum(___ ,outtype) returns the sum with a specified data type, using any of the
input arguments in the previous syntaxes. outtype can be 'default', 'double', or
'native'.

S = sum(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. sum(A,'includenan') includes all NaN
values in the calculation while sum(A,'omitnan') ignores them.

Examples

Sum of Vector Elements

Create a vector and compute the sum of its elements.

A = 1:10;
S = sum(A)

S = 55

Sum of Matrix Columns

Create a matrix and compute the sum of the elements in each column.

A = [1 3 2; 4 2 5; 6 1 4]

A = 3×3

 1 3 2
 4 2 5
 6 1 4

S = sum(A)

S = 1×3

 11 6 11

1 Alphabetical List

1-14260

Sum of Matrix Rows

Create a matrix and compute the sum of the elements in each row.

A = [1 3 2; 4 2 5; 6 1 4]

A = 3×3

 1 3 2
 4 2 5
 6 1 4

S = sum(A,2)

S = 3×1

 6
 11
 11

Sum of Array Slices

Use a vector dimension argument to operate on specific slices of an array.

Create a 3-D array whose elements are 1.

A = ones(4,3,2);

To sum all elements in each page of A, specify the dimensions in which to sum (row and
column) using a vector dimension argument. Since both pages are a 4-by-3 matrix of
ones, the sum of each page is 12.

S1 = sum(A,[1 2])

S1 =
S1(:,:,1) =

 12

 sum

1-14261

S1(:,:,2) =

 12

If you slice A along the first dimension, you can sum the elements of the resulting 4
pages, which are each 3-by-2 matrices.

S2 = sum(A,[2 3])

S2 = 4×1

 6
 6
 6
 6

Slicing along the second dimension, each page sum is over a 4-by-2 matrix.

S3 = sum(A,[1 3])

S3 = 1×3

 8 8 8

Starting in R2018b, to sum over all dimensions of an array, you can either specify each
dimension in the vector dimension argument, or use the 'all' option.

S4 = sum(A,[1 2 3])

S4 = 24

Sall = sum(A,'all')

Sall = 24

Sum of 3-D Array

Create a 4-by-2-by-3 array of ones and compute the sum along the third dimension.

1 Alphabetical List

1-14262

A = ones(4,2,3);
S = sum(A,3)

S = 4×2

 3 3
 3 3
 3 3
 3 3

Sum of 32-bit Integers

Create a vector of 32-bit integers and compute the int32 sum of its elements by
specifying the output type as native.

A = int32(1:10);
S = sum(A,'native')

S = int32
 55

Sum Excluding NaN

Create a vector and compute its sum, excluding NaN values.

A = [1.77 -0.005 3.98 -2.95 NaN 0.34 NaN 0.19];
S = sum(A,'omitnan')

S = 3.3250

If you do not specify 'omitnan', then sum(A) returns NaN.

Input Arguments
A — Input array
vector | matrix | multidimensional array

 sum

1-14263

Input array, specified as a vector, matrix, or multidimensional array.

• If A is a scalar, then sum(A) returns A.
• If A is an empty 0-by-0 matrix, then sum(A) returns 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | duration
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(S,dim) is
1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A:

• sum(A,1) operates on successive elements in the columns of A and returns a row
vector of the sums of each column.

• sum(A,2) operates on successive elements in the rows of A and returns a column
vector of the sums of each row.

1 Alphabetical List

1-14264

sum returns A when dim is greater than ndims(A) or when size(A,dim) is 1.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then sum(A,[1 2]) returns a 1-by-1-by-3 array
whose elements are the sums of each page of A.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 sum

1-14265

outtype — Output data type
'default' (default) | 'double' | 'native'

Output data type, specified as 'default', 'double', or 'native'. These options also
specify the data type in which the operation is performed.

outtype Output data type
'default' double, unless the input data type is single or duration, in

which case, the output is 'native'
'double' double, unless the data type is duration, in which case,

'double' is not supported
'native' same data type as the input, unless the input data type is char,

in which case, 'native' is not supported

Data Types: char

nanflag — NaN condition
‘includenan’ (default) | ‘omitnan’

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values when computing the sum, resulting in NaN.
• 'omitnan' — Ignore all NaN values in the input.

Data Types: char

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-14266

Usage notes and limitations:

• If you specify dim, then it must be a constant.
• The outtype and nanflag options must be constant character vectors.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The order of the additions in the sum operation is not defined. Therefore, the sum
operation on a GPU array might not return exactly the same answer as the sum
operation on the corresponding MATLAB numeric array. The difference might be
significant when A is a signed integer type and its product is accumulated natively.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The order of the additions in sum operation is not defined. Therefore, the sum
operation on a distributed array might not return exactly the same answer as the sum
operation on the corresponding MATLAB numeric array. The difference might be
significant when A is a signed integer type and its product is accumulated natively.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
cumsum | diff | mean | prod

 sum

1-14267

Introduced before R2006a

1 Alphabetical List

1-14268

summary
Print summary of table, timetable, or categorical array

Syntax
summary(T)
s = summary(T)

summary(A)
summary(A,dim)

Description
summary(T) prints a summary of the table or timetable T.

• If T is a table, then the table summary on page 1-14285 displays the description from
T.Properties.Description followed by a summary of the table variables.

• If T is a timetable, then the timetable summary displays the description from
T.Properties.Description, a summary of the row times, and then a summary of
the timetable variables.

s = summary(T) returns a structure, s, that contains a summary of the input table or
timetable. Each field of s is itself a structure that summarizes the values in the
corresponding variable of T. If T is a timetable, then s also has a field that summarizes
the row times of T.

summary(A) prints a summary of the categorical array A.

• If A is a vector, then summary(A) displays the category names along with the number
of elements in each category (the category counts). It also displays the number of
elements that are undefined.

• If A is a matrix, then summary treats the columns of A as vectors and displays the
category counts for each column of A.

• If A is a multidimensional array, then summary acts along the first array dimension
whose size does not equal 1.

 summary

1-14269

summary(A,dim) prints the category counts of the categorical array A along dimension
dim.

For example, you can display the counts of each row in a categorical array using
summary(A,2).

Examples

Summary of Table

Create a table.

load patients
BloodPressure = [Systolic Diastolic];
T = table(Gender,Age,Smoker,BloodPressure,'RowNames',LastName);

Add descriptions and units to table T. You can add a description for the table as a whole,
and also for individual variables.

T.Properties.Description = 'Simulated patient data';
T.Properties.VariableUnits = {'' 'Yrs' '' 'mm Hg'};
T.Properties.VariableDescriptions{4} = 'Systolic/Diastolic';

Print a summary of table T.

format compact

summary(T)

Description: Simulated patient data
Variables:
 Gender: 100x1 cell array of character vectors
 Age: 100x1 double
 Properties:
 Units: Yrs
 Values:
 Min 25
 Median 39
 Max 50
 Smoker: 100x1 logical
 Values:
 True 34

1 Alphabetical List

1-14270

 False 66
 BloodPressure: 100x2 double
 Properties:
 Units: mm Hg
 Description: Systolic/Diastolic
 Values:
 BloodPressure_1 BloodPressure_2
 _______________ _______________
 Min 109 68
 Median 122 81.5
 Max 138 99

summary displays the minimum, median, and maximum values for each column of the
variable BloodPressure.

Summary of Timetable

Create a small timetable.

Time = [seconds(1:5)]';
TT = timetable(Time,[98;97.5;97.9;98.1;97.9],[120;111;119;117;116],...
 'VariableNames',{'Reading1','Reading2'})

TT=5×3 timetable
 Time Reading1 Reading2
 _____ ________ ________

 1 sec 98 120
 2 sec 97.5 111
 3 sec 97.9 119
 4 sec 98.1 117
 5 sec 97.9 116

Print a summary of the timetable. summary prints a summary of the row times, followed
by a summary of the variables. If the timetable is regular, then summary also prints the
size of the time step between row times.

summary(TT)

RowTimes:

 summary

1-14271

 Time: 5x1 duration
 Values:
 Min 1 sec
 Median 3 sec
 Max 5 sec
 TimeStep 1 sec

Variables:

 Reading1: 5x1 double

 Values:

 Min 97.5
 Median 97.9
 Max 98.1

 Reading2: 5x1 double

 Values:

 Min 111
 Median 117
 Max 120

Return Summary of Table as Structure

Create a table. Add units to the table variables. Then display the first few rows.

load patients
BloodPressure = [Systolic Diastolic];
T = table(Gender,Age,Smoker,BloodPressure,'RowNames',LastName);
T.Properties.VariableUnits = {'' 'Years' '' 'mm Hg'};
head(T,3)

ans=3×4 table
 Gender Age Smoker BloodPressure
 ________ ___ ______ _____________

 Smith 'Male' 38 true 124 93
 Johnson 'Male' 43 false 109 77
 Williams 'Female' 38 false 125 83

1 Alphabetical List

1-14272

Return a summary of the table. To return a summary as a structure, specify an output
argument when using the summary function.

s = summary(T)

s = struct with fields:
 Gender: [1x1 struct]
 Age: [1x1 struct]
 Smoker: [1x1 struct]
 BloodPressure: [1x1 struct]

Display the summary of the table variable Age. For each variable of T, the output
argument s has a field that contains its summary.

s.Age

ans = struct with fields:
 Size: [100 1]
 Type: 'double'
 Description: ''
 Units: 'Years'
 Continuity: []
 Min: 25
 Median: 39
 Max: 50
 NumMissing: 0

The NumMissing field shows the number of elements that are the missing value. In this
case, Age does not contain any NaN values, so NumMissing is zero. summary includes the
NumMissing field for numeric, duration, datetime, and categorical variables.

Display the minimum age contained in the table. You can access any field of the summary
by name.

s.Age.Min

ans = 25

Display the summary of the table variable Smoker. You can determine the numbers of
smokers and nonsmokers from the True and False fields. The information contained in
the summary of a table variable depends on the data type of the variable.

s.Smoker

 summary

1-14273

ans = struct with fields:
 Size: [100 1]
 Type: 'logical'
 Description: ''
 Units: ''
 Continuity: []
 True: 34
 False: 66

Return Summary of Timetable as Structure

Create a timetable.

Time = datetime({'2015-12-18 08:00:00';'2015-12-18 10:00:00';'2015-12-18 12:00:00'});
Temp = [37.3;39.1;42.3];
Pressure = [30.1;30.03;29.9];
TT = timetable(Time,Temp,Pressure)

TT=3×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 08:00:00 37.3 30.1
 18-Dec-2015 10:00:00 39.1 30.03
 18-Dec-2015 12:00:00 42.3 29.9

Return a summary of the timetable as a structure.

s = summary(TT)

s = struct with fields:
 Time: [1x1 struct]
 Temp: [1x1 struct]
 Pressure: [1x1 struct]

Display the summary of the row times. The TimeStep field shows that the time interval
between consecutive row times is two hours. The NumMissing field shows there are no
missing values (NaT) in the vector of row times.

s.Time

1 Alphabetical List

1-14274

ans = struct with fields:
 Size: [3 1]
 Type: 'datetime'
 Min: 18-Dec-2015 08:00:00
 Median: 18-Dec-2015 10:00:00
 Max: 18-Dec-2015 12:00:00
 NumMissing: 0
 TimeStep: 02:00:00

Change the last row time so that the row times have different intervals between them.

TT.Time(3) = '2015-12-18 11:00:00';
TT

TT=3×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 08:00:00 37.3 30.1
 18-Dec-2015 10:00:00 39.1 30.03
 18-Dec-2015 11:00:00 42.3 29.9

Return a summary of the updated timetable. Since the time steps between row times are
different, the TimeStep field has a NaN.

s = summary(TT);
s.Time

ans = struct with fields:
 Size: [3 1]
 Type: 'datetime'
 Min: 18-Dec-2015 08:00:00
 Median: 18-Dec-2015 10:00:00
 Max: 18-Dec-2015 11:00:00
 NumMissing: 0
 TimeStep: NaN

 summary

1-14275

Table Summary Including Custom Properties

Starting in R2018b, you can add custom properties to tables and timetables. If you add
custom properties, then the summary of a table or timetable includes those properties.

First, create a table and add values to some of its predefined properties.

load patients
BloodPressure = [Systolic Diastolic];
T = table(Gender,Age,Smoker,BloodPressure,'RowNames',LastName);
T.Properties.Description = 'Simulated patient data';
T.Properties.VariableUnits = {'' 'Yrs' '' 'mm Hg'};
T.Properties.VariableDescriptions{4} = 'Systolic/Diastolic';

Add custom properties using the addprop function. For each custom property, specify a
name. Also, specify whether the value of each custom property stores metadata that
applies to the table or to individual table variables.

T = addprop(T,{'SourceFile','DataOrigin'},{'table','variable'});

Store metadata values in the custom properties.

T.Properties.CustomProperties.SourceFile = 'patients.mat';
T.Properties.CustomProperties.DataOrigin = {'census','census','self report','blood pressure reading'};

Print a summary of the table. Aside from T.Properties.Description, the summary
function does not display properties that apply to the table as a whole. So, it does not
display the value of T.Properties.CustomProperties.SourceFile. However,
summary does display properties that apply to table variables. For each variable,
summary displays the corresponding value from
T.Properties.CustomProperties.DataOrigin.

summary(T)

Description: Simulated patient data

Variables:

 Gender: 100x1 cell array of character vectors

 Custom Properties:
 DataOrigin: census
 Age: 100x1 double

1 Alphabetical List

1-14276

 Properties:
 Units: Yrs
 Custom Properties:
 DataOrigin: census
 Values:

 Min 25
 Median 39
 Max 50

 Smoker: 100x1 logical

 Custom Properties:
 DataOrigin: self report
 Values:

 True 34
 False 66

 BloodPressure: 100x2 double

 Properties:
 Units: mm Hg
 Description: Systolic/Diastolic
 Custom Properties:
 DataOrigin: blood pressure reading
 Values:
 BloodPressure_1 BloodPressure_2
 _______________ _______________

 Min 109 68
 Median 122 81.5
 Max 138 99

Return the summary as a structure. Each field has a structure corresponding to one of the
table variables.

s = summary(T)

s = struct with fields:
 Gender: [1x1 struct]
 Age: [1x1 struct]
 Smoker: [1x1 struct]
 BloodPressure: [1x1 struct]

 summary

1-14277

The structure s.Age stores the summary for the Age variable.

s.Age

ans = struct with fields:
 Size: [100 1]
 Type: 'double'
 Description: ''
 Units: 'Yrs'
 Continuity: []
 Min: 25
 Median: 39
 Max: 50
 NumMissing: 0
 CustomProperties: [1x1 struct]

The s.Age.CustomProperties structure stores the corresponding value from the
T.Properties.CustomProperties.DataOrigin property.

s.Age.CustomProperties

ans = struct with fields:
 DataOrigin: {'census'}

Summary of Categorical Vector

Create a 1-by-5 categorical vector.

A = categorical({'plane' 'car' 'train' 'car' 'plane'})

A = 1x5 categorical array
 plane car train car plane

A has three categories, car, plane, and train.

Print a summary of A.

summary(A)

1 Alphabetical List

1-14278

 car plane train
 2 2 1

car appears in two elements of A, plane appears in two elements, and train appears in
one element.

Since A is a row vector, summary lists the occurrences of each category horizontally.

Summary of Each Column in Categorical Array

Create a 4-by-2 categorical array, A, from a numeric array.

X = [1 3; 2 1; 3 1; 4 2];
valueset = 1:3;
catnames = {'red','green','blue'};

A = categorical(X,valueset,catnames)

A = 4x2 categorical array
 red blue
 green red
 blue red
 <undefined> green

A has three categories, red, green, and blue. The value, 4, was not included in the
valueset input to the categorical function. Therefore, the corresponding element,
A(4,1), does not have a corresponding category and is undefined.

Print a summary of A.

summary(A)

 red 1 2
 green 1 1
 blue 1 1
 <undefined> 1 0

red appears once in the first column of A and twice in the second column.

green appears once in the first column of A and once in the second column.

 summary

1-14279

blue appears once in the first column of A and once in the second column.

A contains only one undefined element. It occurs in the first column.

Category Counts of Each Row in Categorical Array

Create a 3-by-2 categorical array, A, from a numeric array.

A = categorical([1 3; 2 1; 3 1],1:3,{'red','green','blue'})

A = 3x2 categorical array
 red blue
 green red
 blue red

A has three categories, red, green, and blue.

Print a summary of A along the second dimension.

summary(A,2)

 red green blue
 1 0 1
 1 1 0
 1 0 1

red appears once in the first row of A, once in the second row, and once in the third row.

green appears in only one element. It occurs in the second row of A.

blue appears once in the first row of A and once in the third row.

Input Arguments
T — Input table
table | timetable

Input table, specified as a table or a timetable.

1 Alphabetical List

1-14280

A — Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional array.

dim — Dimension of A to operate along
positive integer scalar

Dimension of A to operate to along, specified as a positive integer scalar. If no value is
specified, the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional categorical array A:

If dim = 1, then summary(A,dim) displays the category counts for each column of A.

If dim = 2, then summary(A,dim) returns the category counts of each row of A.

 summary

1-14281

If dim is greater than ndims(A), then summary(A) returns an array the same size as A
for each category. summary returns 1 for elements in the corresponding category and 0
otherwise.

Output Arguments
s — Summary of table or timetable variables
scalar structure

Summary of the table or timetable variables, returned as a scalar structure. For each
variable T.VarName in the input T, the output structure s contains a field s.VarName
with the summary for that variable.

For each data type, s.VarName contains the fields shown below. You can access the fields
with dot indexing. For example, s.VarName.Size returns the size of the table variable
named VarName.

Type of Table or
Timetable Variable

Fields for Summary of
Variable

Description

Numeric, datetime, or
duration

Size Size of variable, stored as a
numeric array

Type Type of variable, stored as a
character vector

Description Description of variable,
stored as a character vector

Units Units of variable, stored as a
character vector

1 Alphabetical List

1-14282

Type of Table or
Timetable Variable

Fields for Summary of
Variable

Description

Min Minimum value
Median Median value
Max Maximum value
NumMissing Number of missing values

(NaN or NaT)
CustomProperties
(omitted if there are no
custom properties)

Names and values for
custom properties
associated with variable,
stored as a structure

logical Size Size of variable, stored as a
numeric array

Type Type of variable, stored as a
character vector

Description Description of variable,
stored as a character vector

Units Units of variable, stored as a
character vector

True Number of true values
False Number of false values
CustomProperties
(omitted if there are no
custom properties)

Names and values for
custom properties
associated with variable,
stored as a structure

categorical Size Size of variable, stored as a
numeric array

Type Type of variable, stored as a
character vector

Description Description of variable,
stored as a character vector

Units Units of variable, stored as a
character vector

 summary

1-14283

Type of Table or
Timetable Variable

Fields for Summary of
Variable

Description

Categories Categories, stored as a cell
array of character vectors

Counts Number of elements in each
category, stored as a
numeric array

NumMissing Number of missing values
(<undefined>)

CustomProperties
(omitted if there are no
custom properties)

Names and values for
custom properties
associated with variable,
stored as a structure

Other Size Size of variable, stored as a
numeric array

Type Type of variable, stored as a
character vector

Description Description of variable,
stored as a character vector

Units Units of variable, stored as a
character vector

CustomProperties
(omitted if there are no
custom properties)

Names and values for
custom properties
associated with variable,
stored as a structure

If T is a timetable, then s also has a field with a summary of the row times. For timetable
row times only, the summary includes the TimeStep field. If the row times increase or
decrease monotonically by a fixed time step, then TimeStep has a numeric value. If the
row times are irregular, then TimeStep is NaN.

Fields for Summary of Timetable Row
Times

Description of Fields

Size Size of vector of row times, stored as a
numeric array

1 Alphabetical List

1-14284

Fields for Summary of Timetable Row
Times

Description of Fields

Type Data type, stored as a character vector
Min Minimum value
Median Median value
Max Maximum value
NumMissing Number of missing values (NaT or NaN)
TimeStep Time step between consecutive row times

(NaN if irregular)

Definitions

Table Summary
The table summary displays the table description from T.Properties.Description
followed by information on the variables of T.

The summary contains the following information on the variables:

• Name: Size and Data Type — Variable name from T.Properties.VariableNames,
the size of the variable, and the data type of the variable.

• Units — Variable units from T.Properties.VariableUnits.
• Description — Variable description from T.Properties.VariableDescriptions.
• Custom Properties: — Names of the custom properties that apply to variables, and

their corresponding values, from T.Properties.CustomProperties. If there are
no custom properties, then this section is omitted.

• Values — Only included for numeric, logical, categorical, datetime, or duration
variables.

• Numeric, datetime, or duration variables — minimum, median, and maximum
values. Also, the number of missing values (NaNs or NaTs) is included when that
number is greater than zero.

• Logical variables — number of values that are true and the number of values that
are false.

 summary

1-14285

• categorical variables — number of elements from each category. Also, the
number of undefined elements is included when that number is greater than zero.

If T is a timetable, then the summary contains the same information on the vector of row
times.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

Some fields in the summary can be impossible to calculate in a reasonable amount of
time, such as the median.

For more information, see “Tall Arrays”.

See Also
categorical | categories | countcats | head | table | tail | timetable

Topics
“Create and Work with Tables”
“Modify Units, Descriptions, and Table Variable Names”
“Access Data in a Table”
“Create Categorical Arrays”
“Access Data Using Categorical Arrays”

Introduced in R2013b

1 Alphabetical List

1-14286

summer
Summer colormap array

Syntax
c = summer
c = summer(m)

Description
c = summer returns the summer colormap as a three-column array with the same
number of rows as the colormap for the current figure. If no figure exists, then the
number of rows is equal to the default length of 64. Each row in the array contains the
red, green, and blue intensities for a specific color. The intensities are in the range [0,1],
and the color scheme looks like this image.

c = summer(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the summer colormap.

surf(peaks);
colormap('summer');

 summer

1-14287

Get the summer colormap array and reverse the order. Then apply the modified colormap
to the surface.

c = summer;
c = flipud(c);
colormap(c);

1 Alphabetical List

1-14288

Downsample the Summer Colormap

Get a downsampled version of the summer colormap containing only ten colors. Then
display the contours of the peaks function by applying the colormap and interpolated
shading.

c = summer(10);
surf(peaks);
colormap(c);
shading interp;

 summer

1-14289

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-14290

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 summer

1-14291

superclasses
Names of superclasses

Syntax
superclasses(ClassName)
superclasses(obj)
s = superclasses(___)

Description
superclasses(ClassName) displays the names of all visible superclasses of the
MATLAB class with the name ClassName. Visible classes have a Hidden attribute value
of false (the default).

superclasses(obj) displays the names of all visible superclasses of object obj, where
obj is an instance of a MATLAB class. obj can be either a scalar object or an array of
objects.

s = superclasses(___) returns the superclass names in a cell array of character
vectors.

Examples

Superclass from Class Name

Find the superclass of the matlab.lang.OnOffSwitchState class

superclasses('matlab.lang.OnOffSwitchState')

Superclasses for class matlab.lang.OnOffSwitchState:

 logical

1 Alphabetical List

1-14292

Superclass Names from Object

Find the superclasses from an instance of the containers.Map class.

m = containers.Map('May',70);
superclasses(m)

Superclasses for class containers.Map:

 handle

Input Arguments
ClassName — Class name
character vector | string

Class name specified as a character vector or string scalar.
Data Types: char | string

obj — Object
object

Object of a MATLAB class, specified as a single object or an object array.

Output Arguments
s — Superclass names
cell array

Superclass names, returned as a cell array of character vectors.

See Also
events | methods | properties

 superclasses

1-14293

Topics
“Class Hierarchies”

Introduced in R2008b

1 Alphabetical List

1-14294

support
Open MathWorks Technical Support Web page

Note support will be removed in a future release.

Syntax
support

Description
support opens the MathWorks Technical Support Web page, https://
www.mathworks.com/support, in a Web browser.

This Web page contains resources including

• A search engine, including an option for solutions to common problems
• Information about installation and licensing
• A patch archive for bug fixes you can download
• Other useful resources

See Also
doc | web

Introduced before R2006a

 support

1-14295

https://www.mathworks.com/support.html
https://www.mathworks.com/support.html

Support Package Installer
Install support for third-party hardware or software

Description
Use Support Package Installer to install support packages. The support packages add
support for specific third-party hardware or software to specific MathWorks products.

Support Package Installer can:

• Display a list of available, installable, installed, or updatable support packages.
• Install, update, download, or uninstall a support package.
• Update the firmware on specific third-party hardware.

If the support package installs third-party software, Support Package Installer displays a
list of the software and licenses for you to review before continuing with the installation.

Open the Support Package Installer App
• On the MATLAB toolstrip, click Add-Ons > Get Hardware Support Packages.

1 Alphabetical List

1-14296

• In the MATLAB Command Window, enter supportPackageInstaller.
• Double-click a support package installation file (*.mlpkginstall).

See Also
Functions
matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled | supportPackageInstaller

 Support Package Installer

1-14297

supportPackageInstaller
Install support for third-party hardware or software (Not recommended)

Note supportPackageInstaller is not recommended. To install support packages, on
the MATLAB® Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages

To uninstall support packages, click Add-Ons > Manage Add-ons.

See “Get Add-Ons” for more details.

Syntax
supportPackageInstaller

Description
The supportPackageInstaller function opens Add-Ons Explorer.

Use the Add-Ons Explorer to install support packages. The support packages add support
for specific third-party hardware or software to specific MathWorks products.

Examples

Use the supportPackageInstaller Function

Enter the function in the MATLAB Command Window:

supportPackageInstaller

1 Alphabetical List

1-14298

This action starts the Add-Ons Explorer.

See Also

Topics
“Get Add-Ons”
“Manage Your Add-Ons”

External Websites
Hardware Support Catalog

 supportPackageInstaller

1-14299

https://www.mathworks.com/hardware-support/home.html

surf
Surface plot

Syntax
surf(X,Y,Z)
surf(X,Y,Z,C)

surf(Z)
surf(Z,C)

surf(ax, ___)
surf(___ ,Name,Value)
s = surf(___)

Description
surf(X,Y,Z) creates a three-dimensional surface plot. The function plots the values in
matrix Z as heights above a grid in the x-y plane defined by X and Y. The function also
uses Z for the color data, so color is proportional to height.

surf(X,Y,Z,C) additionally specifies the surface color.

surf(Z) creates a surface and uses the column and row indices of the elements in Z as
the x and y coordinates, respectively.

surf(Z,C) additionally specifies the surface color.

surf(ax, ___) plots into the axes specified by ax instead of the current axes. Specify
the axes as the first input argument.

surf(___ ,Name,Value) specifies surface properties using one or more name-value
pair arguments. For example, 'FaceAlpha',0.5 creates a semitransparent surface.
Specify name-value pairs after all other input arguments.

s = surf(___) returns the chart surface object. Use s to modify the surface after it is
created. For a list, see Chart Surface.

1 Alphabetical List

1-14300

Examples

Create Surface Plot

Create X, Y, and Z as matrices of the same size. Then plot the data as a surface. The
surface uses Z for both the height and color data.

[X,Y] = meshgrid(1:0.5:10,1:20);
Z = sin(X) + cos(Y);
surf(X,Y,Z)

 surf

1-14301

Specify Colormap Colors for Surface Plot

Specify the colors for a surface plot by including a fourth matrix input, C. Use colormap
colors by specifying C as a matrix the same size as Z. Add a colorbar to the graph to show
how the data values in C map to the colors in the colormap.

[X,Y] = meshgrid(1:0.5:10,1:20);
Z = sin(X) + cos(Y);
C = X.*Y;
surf(X,Y,Z,C)
colorbar

1 Alphabetical List

1-14302

Specify True Colors for Surface Plot

Specify the colors for a surface plot by including a fourth matrix input, CO. Use true
colors by creating CO as an m-by-n-by-3 array of RGB triplet values, where Z is m-by-n.
The first page of the array indicates the red component for each color; the second page
indicates the green component; and the third page indicates the blue component.

[X,Y,Z] = peaks(25);
CO(:,:,1) = zeros(25); % red
CO(:,:,2) = ones(25).*linspace(0.5,0.6,25); % green
CO(:,:,3) = ones(25).*linspace(0,1,25); % blue
surf(X,Y,Z,CO)

 surf

1-14303

Modify Surface Plot Appearance

Create a semitransparent surface by setting the FaceAlpha property as a name-value
pair argument. Assign the surface object to the variable s.

[X,Y] = meshgrid(-5:.5:5);
Z = Y.*sin(X) - X.*cos(Y);
s = surf(X,Y,Z,'FaceAlpha',0.5)

s =
 Surface with properties:

1 Alphabetical List

1-14304

 EdgeColor: [0 0 0]
 LineStyle: '-'
 FaceColor: 'flat'
 FaceLighting: 'flat'
 FaceAlpha: 0.5000
 XData: [21x21 double]
 YData: [21x21 double]
 ZData: [21x21 double]
 CData: [21x21 double]

 Show all properties

Use s to access and modify properties of the surface object after it is created. For
example, turn off the display of the edges by setting the EdgeColor property.

s.EdgeColor = 'none';

 surf

1-14305

Input Arguments
X — x coordinates
matrix | vector

x coordinates, specified as a matrix the same size as Z or as a vector with length n, where
[m,n] = size(Z). To create a matrix for arbitrary domains, use the meshgrid function.

The XData property of the surface object stores the x values.
Example: [X,Y] = meshgrid(-5:0.5:5)

1 Alphabetical List

1-14306

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Y — y coordinates
matrix | vector

y coordinates, specified as a matrix the same size as Z or as a vector with length m, where
[m,n] = size(Z). To create a matrix for arbitrary domains, use the meshgrid function.

The YData property of the surface object stores the y values.
Example: [X,Y] = meshgrid(-5:0.5:5)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

Z — z coordinates
matrix

z coordinates, specified as a matrix. If you do not specify the colors, then Z also sets the
surface colors.

The ZData property of the surface object stores the z values.
Example: Z = [1 2 3; 4 5 6]
Example: Z = sin(x) + cos(y)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

C — Color for each vertex
matrix | m-by-n-by-3 array of RGB triplets

Color for each vertex, specified as a matrix the same size as Z or as an m-by-n-by-3 array
of RGB triplets, where Z is m-by-n.

• If you want to use colormap colors, then specify C as a matrix. The CDataMapping
property of the surface object controls how the values in C map to colors in the
colormap.

• If you want to use true colors, then specify C as an array of RGB triplets.

The CData property of the surface object stores the color data. For additional control
over the surface coloring, use the FaceColor and EdgeColor properties.

 surf

1-14307

ax — Axes in which to plot
axes object

Axes in which to plot, specified as an axes object. If you do not specify the axes, then
surf plots into the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note The properties listed here are only a subset. For a full list, see Chart Surface.

Example: surf(X,Y,Z,'FaceAlpha',0.5,'EdgeColor','none') creates a
semitransparent surface with no edges drawn.

EdgeColor — Edge line color
[0 0 0] (default) | 'none' | 'flat' | 'interp' | RGB triplet | hexadecimal color code |
'r' | 'g' | 'b' | ...

Edge line color, specified as one of the values listed here. The default color of [0 0 0]
corresponds to black edges.

Value Description
'none' Do not draw the edges.

1 Alphabetical List

1-14308

Value Description
'flat' Use a different color for each edge based

on the values in the CData property. First
you must specify the CData property as a
matrix the same size as ZData. The color
value at the first vertex of each face (in the
positive x and y directions) determines the
color for the adjacent edges. You cannot
use this value when the EdgeAlpha
property is set to 'interp'.

 surf

1-14309

Value Description
'interp' Use interpolated coloring for each edge

based on the values in the CData property.
First you must specify the CData property
as a matrix the same size as ZData. The
color varies across each edge by linearly
interpolating the color values at the
vertices. You cannot use this value when
the EdgeAlpha property is set to 'flat'.

RGB triplet, hexadecimal color code, or
color name

Use the specified color for all the edges.
This option does not use the color values in
the CData property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-14310

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

 surf

1-14311

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

FaceColor — Face color
'flat' (default) | 'interp' | 'none' | 'texturemap' | RGB triplet | hexadecimal color
code | 'r' | 'g' | 'b' | ...

Face color, specified as one of the values in this table.

Value Description
'flat' Use a different color for each face based on

the values in the CData property. First you
must specify the CData property as a
matrix the same size as ZData. The color
value at the first vertex of each face (in the
positive x and y directions) determines the
color for the entire face. You cannot use
this value when the FaceAlpha property is
set to 'interp'.

1 Alphabetical List

1-14312

Value Description
'interp' Use interpolated coloring for each face

based on the values in the CData property.
First you must specify the CData property
as a matrix the same size as ZData. The
color varies across each face by
interpolating the color values at the
vertices. You cannot use this value when
the FaceAlpha property is set to 'flat'.

RGB triplet, hexadecimal color code, or
color name

Use the specified color for all the faces.
This option does not use the color values in
the CData property.

'texturemap' Transform the color data in CData so that it
conforms to the surface.

'none' Do not draw the faces.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

 surf

1-14313

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-14314

FaceAlpha — Face transparency
1 (default) | scalar in range [0,1] | 'flat' | 'interp' | 'texturemap'

Face transparency, specified as one of these values:

• Scalar in range [0,1] — Use uniform transparency across all the faces. A value of 1 is
fully opaque and 0 is completely transparent. Values between 0 and 1 are
semitransparent. This option does not use the transparency values in the AlphaData
property.

• 'flat' — Use a different transparency for each face based on the values in the
AlphaData property. The transparency value at the first vertex determines the
transparency for the entire face. First you must specify the AlphaData property as a
matrix the same size as the ZData property. The FaceColor property also must be set
to 'flat'.

• 'interp' — Use interpolated transparency for each face based on the values in
AlphaData property. The transparency varies across each face by interpolating the
values at the vertices. First you must specify the AlphaData property as a matrix the
same size as the ZData property. The FaceColor property also must be set to
'interp'.

• 'texturemap' — Transform the data in AlphaData so that it conforms to the
surface.

FaceLighting — Effect of light objects on faces
'flat' (default) | 'gouraud' | 'none'

Effect of light objects on faces, specified as one of these values:

• 'flat' — Apply light uniformly across each face. Use this value to view faceted
objects.

• 'gouraud' — Vary the light across the faces. Calculate the light at the vertices and
then linearly interpolate the light across the faces. Use this value to view curved
surfaces.

• 'none' — Do not apply light from light objects to the faces.

To add a light object to the axes, use the light function.

Note The 'phong' value has been removed. Use 'gouraud' instead.

 surf

1-14315

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
colormap | imagesc | mesh | meshgrid | pcolor | shading | view

Properties
Chart Surface

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

1 Alphabetical List

1-14316

Introduced before R2006a

 surf

1-14317

surfc
Contour plot under a 3-D shaded surface plot

Syntax
surfc(Z)
surfc(Z,C)
surfc(X,Y,Z)
surfc(X,Y,Z,C)
surfc(...,'PropertyName',PropertyValue)
surfc(axes_handles,...)
h = surfc(...)

Description
surfc(Z) creates a contour plot under the three-dimensional shaded surface from the z
components in matrix Z, using x = 1:n and y = 1:m, where [m,n] = size(Z). The
height, Z, is a single-valued function defined over a geometrically rectangular grid. Z
specifies the color data, as well as surface height, so color is proportional to surface
height.

surfc(Z,C) plots the height of Z, a single-valued function defined over a geometrically
rectangular grid, and uses matrix C, assumed to be the same size as Z, to color the
surface.

surfc(X,Y,Z) uses Z for the color data and surface height. X and Y are vectors or
matrices defining the x and y components of a surface. If X and Y are vectors, length(X)
= n and length(Y) = m, where [m,n] = size(Z). In this case, the vertices of the surface
faces are (X(j), Y(i), Z(i,j)) triples. To create X and Y matrices for arbitrary domains, use
the meshgrid function.

1 Alphabetical List

1-14318

surfc(X,Y,Z,C) uses C to define color. MATLAB performs a linear transformation on
this data to obtain colors from the current colormap.

surfc(...,'PropertyName',PropertyValue) specifies surface properties along
with the data.

surfc(axes_handles,...) plots into the axes with handle axes_handle instead of
the current axes (gca).

h = surfc(...) returns handles to a chart surface and a contour object.

Examples

Display Contour Plot Under Surface Plot

Display a contour plot under a surface plot of the peaks function.

[X,Y,Z] = peaks(30);
figure
surfc(X,Y,Z)

 surfc

1-14319

Tips
surfc does not accept complex inputs.

Algorithms
Consider a parametric surface parameterized by two independent variables, i and j,
which vary continuously over a rectangle; for example, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The
three functions x(i,j), y(i,j), and z(i,j) specify the surface. When i and j are

1 Alphabetical List

1-14320

integer values, they define a rectangular grid with integer grid points. The functions
x(i,j), y(i,j), and z(i,j) become three m-by-n matrices, X, Y, and Z. Surface color is
a fourth function, c(i,j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected to its four nearest
neighbors.

 i-1,j
 |
i,j-1 - i,j - i,j+1
 |
 i+1,j

This underlying rectangular grid induces four-sided patches on the surface. To express
this another way, [X(:) Y(:) Z(:)] returns a list of triples specifying points in 3-D
space. Each interior point is connected to the four neighbors inherited from the matrix
indexing. Points on the edge of the surface have three neighbors. The four points at the
corners of the grid have only two neighbors. This defines a mesh of quadrilaterals or a
quad-mesh.

You can specify surface color in two different ways: at the vertices or at the centers of
each patch. In this general setting, the surface need not be a single-valued function of x
and y. Moreover, the four-sided surface patches need not be planar. For example, you can
have surfaces defined in polar, cylindrical, and spherical coordinate systems.

The shading function sets the shading. If the shading is interp, C must be the same
size as X, Y, and Z; it specifies the colors at the vertices. The color within a surface patch
varies depending on the color at the local coordinates. If the shading is faceted (the
default) or flat, C(i,j) specifies the constant color in the surface patch:

 (i,j) - (i,j+1)
 | C(i,j) |
(i+1,j) - (i+1,j+1)

In this case, C can be the same size as X, Y, and Z and its last row and column are
ignored. Alternatively, its row and column dimensions can be one less than those of X, Y,
and Z.

The surfc function specifies the viewpoint using view(3).

The range of X, Y, and Z or the current setting of the axes XLimMode, YLimMode, and
ZLimMode properties (also set by the axis function) determines the axis labels.

 surfc

1-14321

The range of C or the current setting of the axes CLim and CLimMode properties (also set
by the caxis function) determines the color scaling. The scaled color values are used as
indices into the current colormap.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
Functions
axis | caxis | colormap | contour | delaunay | imagesc | mesh | meshgrid | pcolor
| shading | surf | trisurf | view

Properties
Chart Surface | Contour

1 Alphabetical List

1-14322

Topics
“Representing Data as a Surface”

Introduced before R2006a

 surfc

1-14323

surf2patch
Convert surface data to patch data

Syntax
fvc = surf2patch(h)
fvc = surf2patch(Z)
fvc = surf2patch(Z,C)
fvc = surf2patch(X,Y,Z)
fvc = surf2patch(X,Y,Z,C)
fvc = surf2patch(...,'triangles')
[f,v,c] = surf2patch(...)

Description
fvc = surf2patch(h) converts the geometry and color data from the surface object,
h, into patch format. The output, fvc, is a structure containing the face, vertex, and color
data. You can pass this structure directly to the patch command.

fvc = surf2patch(Z) calculates the patch data from the surface's ZData matrix Z.

fvc = surf2patch(Z,C) calculates the patch data from the surface's ZData and
CData matrices Z and C.

fvc = surf2patch(X,Y,Z) calculates the patch data from the surface's XData,
YData, and ZData matrices X, Y, and Z.

fvc = surf2patch(X,Y,Z,C) calculates the patch data from the surface's XData,
YData, ZData, and CData matrices X, Y, Z, and C.

fvc = surf2patch(...,'triangles') creates triangular faces instead of the
quadrilaterals that compose surfaces.

[f,v,c] = surf2patch(...) returns the face, vertex, and color data in the three
arrays f, v, and c instead of a struct.

1 Alphabetical List

1-14324

Examples

Calculate Patch Data from Surface Data

Use the sphere command to generate the XData, YData, and ZData of a surface. Then,
calculate the patch data. Pass the ZData (z) to surf2patch as both the third and fourth
arguments - the third argument is the ZData and the fourth argument is taken as the
CData. You must do this since the patch command does not automatically use the z-
coordinate data for the color data, as does the surface command.

Since patch is a low-level command, you must set the view and shading to produce the
same results produced by the surf command.

[x,y,z] = sphere;
figure
patch(surf2patch(x,y,z,z));
shading faceted;
view(3)

 surf2patch

1-14325

Calculate Patch Data Using Surface Object

Calculate face, vertex, and color data from a surface whose handle has been passed as an
argument.

figure
s = surf(peaks);
patch(surf2patch(s));
delete(s)
shading faceted;
view(3)

1 Alphabetical List

1-14326

See Also
patch | reducepatch | shrinkfaces | surf | surface

Introduced before R2006a

 surf2patch

1-14327

surface
Create surface object

Syntax
surface(Z)
surface(Z,C)
surface(X,Y,Z)
surface(X,Y,Z,C)
surface(x,y,Z)
surface(...'PropertyName',PropertyValue,...)
surface(ax,...)
h = surface(...)

Properties
For a list of properties, see Primitive Surface.

Description
surface is the low-level function for creating surface graphics objects. Surfaces are plots
of matrix data created using the row and column indices of each element as the x- and y-
coordinates and the value of each element as the z-coordinate.

surface(Z) plots the surface specified by the matrix Z. Here, Z is a single-valued
function, defined over a geometrically rectangular grid. The values in Z can be numeric,
datetime, duration, or categorical values.

surface(Z,C) plots the surface specified by Z and colors it according to the data in C
(see "Examples").

surface(X,Y,Z) uses C = Z, so color is proportional to surface height above the x-y
plane.

1 Alphabetical List

1-14328

surface(X,Y,Z,C) plots the parametric surface specified by X, Y, and Z, with color
specified by C. The values in X, Y, and Z can be numeric, datetime, duration, or
categorical values.

surface(x,y,Z), surface(x,y,Z,C) replaces the first two matrix arguments with
vectors and must have length(x) = n and length(y) = m where [m,n] = size(Z).
In this case, the vertices of the surface facets are the triples (x(j),y(i),Z(i,j)).
Note that x corresponds to the columns of Z and y corresponds to the rows of Z. For a
complete discussion of parametric surfaces, see the surf function. The values in x, y, and
Z can be numeric, datetime, duration, or categorical values.

surface(...'PropertyName',PropertyValue,...) follows the X, Y, Z, and C
arguments with property name/property value pairs to specify additional surface
properties. For a description of the properties, see Primitive Surface.

surface(ax,...) creates the surface in the axes specified by ax instead of in the
current axes (gca). The option ax can precede any of the input argument combinations in
the previous syntaxes.

h = surface(...) returns a primitive surface object.

Examples

Create Surface Plot

Plot the function z = xe−x2− y2 on the domain −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Use meshgrid
to define X and Y. Then, define Z and create a surface plot. Change the view of the plot
using view.

[X,Y] = meshgrid(-2:0.2:2,-2:0.2:2);
Z = X.*exp(-X.^2 - Y.^2);
figure
surface(X,Y,Z)
view(3)

 surface

1-14329

surface creates the plot from corresponding values in X, Y, and Z. If you do not define
the color data C, then surface uses Z to determine the color, so color is proportional to
surface height.

Display Image Along Surface Plot

Use the peaks function to define XD, YD, and ZD as 25-by-25 matrices.

[XD,YD,ZD] = peaks(25);

1 Alphabetical List

1-14330

Load the clown data set to get the image data X and its associated colormap, map. Flip X
using the flipud function and define the flipped image as the color data for the surface,
C.

load clown
C = flipud(X);

Create a surface plot and display the image along the surface. Since the surface data ZD
and the color data C have different dimensions, you must set the surface FaceColor to
'texturemap'.

figure
surface(XD,YD,ZD,C,...
 'FaceColor','texturemap',...
 'EdgeColor','none',...
 'CDataMapping','direct')
colormap(map)
view(-35,45)

 surface

1-14331

The clown data is typically viewed with the image function, which uses 'ij' axis
numbering. This example reverses the image data in the vertical direction using flipud.

Tutorials
For examples, see “Representing Data as a Surface”.

1 Alphabetical List

1-14332

Tips
surface does not respect the settings of the figure and axes NextPlot properties. It
simply adds the surface object to the current axes.

If you do not specify separate color data (C), MATLAB uses the matrix (Z) to determine
the coloring of the surface. In this case, color is proportional to values of Z. You can
specify a separate matrix to color the surface independently of the data defining the area
of the surface.

You can specify properties as property name/property value pairs or using dot notation.

surface provides convenience forms that allow you to omit the property name for the
XData, YData, ZData, and CData properties. For example,

surface('XData',X,'YData',Y,'ZData',Z,'CData',C)

is equivalent to

surface(X,Y,Z,C)

When you specify only a single matrix input argument,

surface(Z)

MATLAB assigns the data properties as if you specified

surface('XData',[1:size(Z,2)],...
 'YData',[1:size(Z,1)],...
 'ZData',Z,...
 'CData',Z)

The axis, caxis, colormap, hold, shading, and view commands set graphics
properties that affect surfaces. You can also set and query surface property values after
creating them using dot notation.

See Also
Functions
patch | pcolor | surf

 surface

1-14333

Properties
Primitive Surface

Topics
“Plot Dates and Durations”
“Plot Categorical Data”

Introduced before R2006a

1 Alphabetical List

1-14334

surfl
Surface plot with colormap-based lighting

Syntax
surfl(Z)
surfl(...,'light')
surfl(...,s)
surfl(X,Y,Z,s,k)
surfl(ax,...)
h = surfl(...)

Description
The surfl function displays a shaded surface based on a combination of ambient, diffuse,
and specular lighting models.

surfl(Z) and surfl(X,Y,Z) create three-dimensional shaded surfaces using the
default direction for the light source and the default lighting coefficients for the shading
model. X, Y, and Z are vectors or matrices that define the x, y, and z components of a
surface.

surfl(...,'light') produces a colored, lighted surface using a MATLAB light object.
This produces results different from the default lighting method, surfl(...,'cdata'),
which changes the color data for the surface to be the reflectance of the surface.

surfl(...,s) specifies the direction of the light source. s is a two- or three-element
vector that specifies the direction from a surface to a light source. s = [sx sy sz] or s =
[azimuth elevation]. The default s is 45° counterclockwise from the current view
direction.

 surfl

1-14335

surfl(X,Y,Z,s,k) specifies the reflectance constant. k is a four-element vector
defining the relative contributions of ambient light, diffuse reflection, specular reflection,
and the specular shine coefficient. k = [ka kd ks shine] and defaults to
[.55,.6,.4,10].

surfl(ax,...) creates the surface in the axes specified by ax instead of in the current
axes (gca). The option ax can precede any of the input argument combinations in the
previous syntaxes.

h = surfl(...) returns the chart surface object. If you specify the 'light' option,
then h contains both the surface and the light objects.

Examples

Create Surface Plot With Colormap-Based Lighting

Create a surface plot of the peaks function using colormap-based lighting. Set the
shading to interp to interpolate the colors across lines and faces.

[x,y] = meshgrid(-3:1/8:3);
z = peaks(x,y);
surfl(x,y,z)
shading interp

1 Alphabetical List

1-14336

Tips
surfl does not accept complex inputs.

For smoother color transitions, use colormaps that have linear intensity variations (e.g.,
gray, copper, bone, pink).

The ordering of points in the X, Y, and Z matrices defines the inside and outside of
parametric surfaces. If you want the opposite side of the surface to reflect the light
source, use surfl(X',Y',Z'). Because of the way surface normal vectors are
computed, surfl requires matrices that are at least 3-by-3.

 surfl

1-14337

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
colormap | light | shading

Introduced before R2006a

1 Alphabetical List

1-14338

surfnorm
Compute and display 3-D surface normals

Syntax
surfnorm(Z)
surfnorm(X,Y,Z)
surfnorm(axes_handle, ___)
surfnorm(___ ,Name,Value)
[Nx,Ny,Nz] = surfnorm(___)

Description
surfnorm(Z) plots a surface of the matrix Z with surf and displays its surface normals
as radiating vectors.

surfnorm(X,Y,Z) plots a surface and its surface normals from the vectors or matrices
X, Y, and matrix Z. X, Y, and Z must be the same size.

surfnorm(axes_handle, ___) plots into axes_handle instead of gca and it can
include any of the input arguments in previous syntaxes.

surfnorm(___ ,Name,Value) can be used to set the value of the specified Chart
Surface properties.

[Nx,Ny,Nz] = surfnorm(___) returns the components of the 3-D surface normals
for the surface without plotting the surface or surface normals.

Input Arguments
Z

2–D array of real numbers representing a surface

Default:

 surfnorm

1-14339

X

2–D array of real numbers that defines the x component of the surface grid

Y

2–D array of real numbers that defines the y component of the surface grid

axes_handle

Handle to the target axes in which to plot the surface

If you do not specify axes_handle, MATLAB uses current axes.

Name,Value

Specify optional comma-separated pairs of Name,Value arguments, where Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Property names and values of the surface object

See Chart Surface for description of property names and values.

Output Arguments
[Nx,Ny,Nz]

x, y, and z components of the three-dimensional surface normals for the surface

Examples

Display 3-D Surface Normals for Cone Plot

Compute and plot the normal vectors for a truncated cone. Set the axis limits using the
axis function.

[x,y,z] = cylinder(1:10);
figure

1 Alphabetical List

1-14340

surfnorm(x,y,z)
axis([-12 12 -12 12 -0.1 1])

Use Computed Surface Normals for Lighting

Compute the normal vectors of an expression representing a surface.

[nx, ny, nz] = surfnorm(peaks);

Assign these normals to the VertexNormals property which MATLAB® uses to calculate
the surface lighting. Set the lighting algorithm to gouraud and add a light using
camlight.

 surfnorm

1-14341

b = reshape([nx ny nz], 49,49,3);
figure
surf(ones(49),'VertexNormals',b,'EdgeColor','none');
lighting gouraud
camlight

1 Alphabetical List

1-14342

Definitions

Surface Normal
An imaginary line perpendicular to a flat surface or perpendicular to the tangent plane at
a point on a non-flat surface

Tips
• surfnorm does not accept complex inputs.
• Reverse the direction of the normals by calling surfnorm with transposed arguments:

surfnorm(X',Y',Z')
• The surface normals represent conditions at vertices and are not normalized. Normals

for surface elements that face away from the viewer do not display.
• surfl uses surfnorm to compute surface normals when calculating the reflectance of

a surface.

Algorithms
After performing a bicubic fit of the data in the x, y, and z directions, diagonal vectors are
computed and crossed to form the normal at each vertex.

See Also
isonormals | quiver3 | surf | surface | surfl

Introduced before R2006a

 surfnorm

1-14343

svd
Singular value decomposition

Syntax
s = svd(A)

[U,S,V] = svd(A)
[U,S,V] = svd(A,'econ')
[U,S,V] = svd(A,0)

Description
s = svd(A) returns the singular values of matrix A in descending order.

[U,S,V] = svd(A) performs a singular value decomposition of matrix A, such that A =
U*S*V'.

[U,S,V] = svd(A,'econ') produces an economy-size decomposition of m-by-n matrix
A:

• m > n — Only the first n columns of U are computed, and S is n-by-n.
• m = n — svd(A,'econ') is equivalent to svd(A).
• m < n — Only the first m columns of V are computed, and S is m-by-m.

The economy-size decomposition removes extra rows or columns of zeros from the
diagonal matrix of singular values, S, along with the columns in either U or V that multiply
those zeros in the expression A = U*S*V'. Removing these zeros and columns can
improve execution time and reduce storage requirements without compromising the
accuracy of the decomposition.

[U,S,V] = svd(A,0) produces a different economy-size decomposition of m-by-n matrix
A:

• m > n — svd(A,0) is equivalent to svd(A,'econ').

1 Alphabetical List

1-14344

• m <= n — svd(A,0) is equivalent to svd(A).

Examples

Singular Values of Matrix

Compute the singular values of a full rank matrix.

A = [1 0 1; -1 -2 0; 0 1 -1]

A = 3×3

 1 0 1
 -1 -2 0
 0 1 -1

s = svd(A)

s = 3×1

 2.4605
 1.6996
 0.2391

Singular Value Decomposition

Find the singular value decomposition of a rectangular matrix A.

A = [1 2; 3 4; 5 6; 7 8]

A = 4×2

 1 2
 3 4
 5 6
 7 8

 svd

1-14345

[U,S,V] = svd(A)

U = 4×4

 -0.1525 -0.8226 -0.3945 -0.3800
 -0.3499 -0.4214 0.2428 0.8007
 -0.5474 -0.0201 0.6979 -0.4614
 -0.7448 0.3812 -0.5462 0.0407

S = 4×2

 14.2691 0
 0 0.6268
 0 0
 0 0

V = 2×2

 -0.6414 0.7672
 -0.7672 -0.6414

Confirm the relation A = U*S*V', within machine precision.

U*S*V'

ans = 4×2

 1.0000 2.0000
 3.0000 4.0000
 5.0000 6.0000
 7.0000 8.0000

Economy-Size Decomposition

Calculate the full and economy-size decompositions of a rectangular matrix.

A = [1 2; 3 4; 5 6; 7 8]

A = 4×2

1 Alphabetical List

1-14346

 1 2
 3 4
 5 6
 7 8

[U,S,V] = svd(A)

U = 4×4

 -0.1525 -0.8226 -0.3945 -0.3800
 -0.3499 -0.4214 0.2428 0.8007
 -0.5474 -0.0201 0.6979 -0.4614
 -0.7448 0.3812 -0.5462 0.0407

S = 4×2

 14.2691 0
 0 0.6268
 0 0
 0 0

V = 2×2

 -0.6414 0.7672
 -0.7672 -0.6414

[U,S,V] = svd(A,'econ')

U = 4×2

 -0.1525 -0.8226
 -0.3499 -0.4214
 -0.5474 -0.0201
 -0.7448 0.3812

S = 2×2

 14.2691 0
 0 0.6268

 svd

1-14347

V = 2×2

 -0.6414 0.7672
 -0.7672 -0.6414

Since A is 4-by-2, svd(A,'econ') returns fewer columns in U and fewer rows in S
compared to a full decomposition. Extra rows of zeros in S are excluded, along with the
corresponding columns in U that would multiply with those zeros in the expression A =
U*S*V'.

Rank, Column Space, and Null Space of Matrix

Use the results of the singular value decomposition to determine the rank, column space,
and null space of a matrix.

A = [2 0 2; 0 1 0; 0 0 0]

A = 3×3

 2 0 2
 0 1 0
 0 0 0

[U,S,V] = svd(A)

U = 3×3

 1 0 0
 0 1 0
 0 0 1

S = 3×3

 2.8284 0 0
 0 1.0000 0
 0 0 0

V = 3×3

1 Alphabetical List

1-14348

 0.7071 0 -0.7071
 0 1.0000 0
 0.7071 0 0.7071

Calculate the rank using the number of nonzero singular values.

s = diag(S);
rank_A = nnz(s)

rank_A = 2

Compute an orthonormal basis for the column space of A using the columns of U that
correspond to nonzero singular values.

column_basis = U(:,logical(s))

column_basis = 3×2

 1 0
 0 1
 0 0

Compute an orthonormal basis for the null space of A using the columns of V that
correspond to singular values equal to zero.

null_basis = V(:,~s)

null_basis = 3×1

 -0.7071
 0
 0.7071

The functions rank, orth, and null provide convenient ways to calculate these
quantities.

Input Arguments
A — Input matrix
matrix

 svd

1-14349

Input matrix. A can be either square or rectangular in size.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
s — Singular values
column vector

Singular values, returned as a column vector. The singular values are nonnegative real
numbers listed in decreasing order.

U — Left singular vectors
matrix

Left singular vectors, returned as the columns of a matrix.

• For an m-by-n matrix A with m > n, the economy-sized decompositions
svd(A,'econ') and svd(A,0) compute only the first n columns of U. In this case,
the columns of U are orthogonal and U is an m-by-n matrix that satisfies UHU = In.

• For full decompositions, svd(A) returns U as an m-by-m unitary matrix satisfying
UUH = UHU = Im. The columns of U that correspond to nonzero singular values form a
set of orthonormal basis vectors for the range of A.

Different machines and releases of MATLAB can produce different singular vectors that
are still numerically accurate. Corresponding columns in U and V can flip their signs,
since this does not affect the value of the expression A = U*S*V'.

S — Singular values
diagonal matrix

Singular values, returned as a diagonal matrix. The diagonal elements of S are
nonnegative singular values in decreasing order. The size of S is as follows:

• For an m-by-n matrix A, the economy-sized decomposition svd(A,'econ') returns S
as a square matrix of order min([m,n]).

• For full decompositions, svd(A) returns S with the same size as A.
• If m > n, then svd(A,0) returns S as a square matrix of order min([m,n]).

1 Alphabetical List

1-14350

• If m < n, then svd(A,0) returns S with the same size as A.

V — Right singular vectors
matrix

Right singular vectors, returned as the columns of a matrix.

• For an m-by-n matrix A with m < n, the economy decomposition svd(A,'econ')
computes only the first m columns of V. In this case, the columns of V are orthogonal
and V is an n-by-m matrix that satisfies VHV = Im.

• For full decompositions, svd(A) returns V as an n-by-n unitary matrix satisfying
VVH = VHV = In. The columns of V that do not correspond to nonzero singular values
form a set of orthonormal basis vectors for the null space of A.

Different machines and releases of MATLAB can produce different singular vectors that
are still numerically accurate. Corresponding columns in U and V can flip their signs,
since this does not affect the value of the expression A = U*S*V'.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The three-output syntax [U,S,V] = svd(X) is not supported. For three outputs, you
must specify svd(X,'econ') or svd(X,0).

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 svd

1-14351

• Code generation uses a different SVD implementation than MATLAB uses. Because the
singular value decomposition is not unique, left and right singular vectors might differ
from those computed by MATLAB.

• When the input matrix contains a nonfinite value, the generated code does not issue
an error. Instead, the output contains NaN values.

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
gsvd | null | orth | rank | svds

Topics
“Singular Values”

Introduced before R2006a

1 Alphabetical List

1-14352

svds
Subset of singular values and vectors

Syntax
s = svds(A)
s = svds(A,k)
s = svds(A,k,sigma)
s = svds(A,k,sigma,Name,Value)
s = svds(A,k,sigma,opts)

s = svds(Afun,n, ___)

[U,S,V] = svds(___)
[U,S,V,flag] = svds(___)

Description
s = svds(A) returns a vector of the six largest singular values of matrix A. This is useful
when computing all of the singular values with svd is computationally expensive, such as
with large sparse matrices.

s = svds(A,k) returns the k largest singular values.

s = svds(A,k,sigma) returns k singular values based on the value of sigma. For
example, svds(A,k,'smallest') returns the k smallest singular values.

s = svds(A,k,sigma,Name,Value) specifies additional options with one or more
name-value pair arguments. For example, svds(A,k,sigma,'Tolerance',1e-3)
adjusts the convergence tolerance for the algorithm.

s = svds(A,k,sigma,opts) specifies options using a structure.

s = svds(Afun,n, ___) specifies a function handle Afun instead of a matrix. The
second input n gives the size of matrix A used in Afun. You can optionally specify k,
sigma, opts, or name-value pairs as additional input arguments.

 svds

1-14353

[U,S,V] = svds(___) returns the left singular vectors U, diagonal matrix S of
singular values, and right singular vectors V. You can use any of the input argument
combinations in previous syntaxes.

[U,S,V,flag] = svds(___) also returns a convergence flag. If flag is 0, then all the
singular values converged.

Examples

Largest Singular Values

The matrix A = delsq(numgrid('C',15)) is a symmetric positive definite matrix with
singular values reasonably well-distributed in the interval (0 8). Compute the six largest
singular values.

A = delsq(numgrid('C',15));
s = svds(A)

s = 6×1

 7.8666
 7.7324
 7.6531
 7.5213
 7.4480
 7.3517

Specify a second input to compute a specific number of the largest singular values.

s = svds(A,3)

s = 3×1

 7.8666
 7.7324
 7.6531

1 Alphabetical List

1-14354

Smallest Singular Values

The matrix A = delsq(numgrid('C',15)) is a symmetric positive definite matrix with
singular values reasonably well-distributed in the interval (0 8). Compute the five smallest
singular values.

A = delsq(numgrid('C',15));
s = svds(A,5,'smallest')

s = 5×1

 0.5520
 0.4787
 0.3469
 0.2676
 0.1334

Smallest Nonzero Singular Values

Create a sparse 100-by-100 Neumann matrix.

C = gallery('neumann',100);

Compute the ten smallest singular values.

ss = svds(C,10,'smallest')

ss = 10×1

 0.9828
 0.9049
 0.5625
 0.5625
 0.4541
 0.4506
 0.2256
 0.1139
 0.1139
 0

 svds

1-14355

Compute the 10 smallest nonzero singular values. Since the matrix has a singular value
that is equal to zero, the 'smallestnz' option omits it.

snz = svds(C,10,'smallestnz')

snz = 10×1

 0.9828
 0.9828
 0.9049
 0.5625
 0.5625
 0.4541
 0.4506
 0.2256
 0.1139
 0.1139

Largest Singular Values Using Function Handle

Create two matrices representing the upper-right and lower-left nonzero blocks in a
sparse matrix.

n = 500;
B = rand(500);
C = rand(500);

Save Afun in your current directory so that it is available for use with svds.

function y = Afun(x,tflag,B,C,n)
if strcmp(tflag,'notransp')
 y = [B*x(n+1:end); C*x(1:n)];
else
 y = [C'*x(n+1:end); B'*x(1:n)];
end

The function Afun uses B and C to compute either A*x or A'*x (depending on the
specified flag) without actually forming the entire sparse matrix A = [zeros(n) B; C

1 Alphabetical List

1-14356

zeros(n)]. This exploits the sparsity pattern of the matrix to save memory in the
computation of A*x and A'*x.

Use Afun to calculate the 10 largest singular values of A. Pass B, C, and n as additional
inputs to Afun.

s = svds(@(x,tflag) Afun(x,tflag,B,C,n),[1000 1000],10)

s =

 250.3248
 249.9914
 12.7627
 12.7232
 12.6988
 12.6608
 12.6166
 12.5643
 12.5419
 12.4512

Directly compute the 10 largest singular values of A to compare the results.

A = [zeros(n) B; C zeros(n)];
s = svds(A,10)

s =

 250.3248
 249.9914
 12.7627
 12.7232
 12.6988
 12.6608
 12.6166
 12.5643
 12.5419
 12.4512

 svds

1-14357

Singular Value Decomposition of Sparse Matrix

west0479 is a real-valued 479-by-479 sparse matrix. The matrix has a few large singular
values, and many small singular values.

Load west0479 and store it as A.

load west0479
A = west0479;

Compute the singular value decomposition of A, returning the six largest singular values
and the corresponding singular vectors. Specify a fourth output argument to check
convergence of the singular values.

[U,S,V,cflag] = svds(A);
cflag

cflag = 0

cflag indicates that all of the singular values converged. The singular values are on the
diagonal of the output matrix S.

s = diag(S)

s = 6×1
105 ×

 3.1895
 3.1725
 3.1695
 3.1685
 3.1669
 0.3038

Check the results by computing the full singular value decomposition of A. Convert A to a
full matrix and use svd.

[U1,S1,V1] = svd(full(A));

Plot the six largest singular values of A computed by svd and svds using a logarithmic
scale.

s2 = diag(S1);
semilogy(s2(1:6),'r.')

1 Alphabetical List

1-14358

hold on
semilogy(s,'ro','MarkerSize',10)
title('Singular Values of west0479')
legend('svd','svds')

Fix Convergence Problem

Create a sparse diagonal matrix and calculate the six largest singular values.

A = diag(sparse([1e4*ones(1, 8) 1e4:-1:1]));
s = svds(A)

 svds

1-14359

Warning: Only 2 of the 6 requested singular values converged. Singular values that did not converge are NaN.

s = 6×1
104 ×

 1.0000
 0.9999
 NaN
 NaN
 NaN
 NaN

The svds algorithm produces a warning since the maximum number of iterations were
performed but the tolerance could not be met.

The most effective way to address convergence problems is to increase the maximum size
of the Krylov subspace used in the calculation by using a larger value for
'SubspaceDimension'. Do this by passing in the name-value pair
'SubspaceDimension' with a value of 60.

s = svds(A,6,'largest','SubspaceDimension',60)

s = 6×1
104 ×

 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

Use QR Decomposition to Compute SVD of Nearly Singular Matrix

Compute the 10 smallest singular values of a nearly singular matrix.

rng default
format shortg
B = spdiags([repelem([1; 1e-7], [198, 2]) ones(200, 1)], [0 1], 200, 200);
s1 = svds(B,10,'smallest')

1 Alphabetical List

1-14360

Warning: Large residual norm detected. This is likely due to bad condition of the input matrix (condition number 1.0008e+16).

s1 = 10×1

 7.0945
 7.0945
 7.0945
 7.0945
 7.0945
 7.0945
 7.0945
 7.0945
 0.25927
 7.0888e-16

The warning indicates that svds fails to calculate the proper singular values. The failure
with svds is because of the gap between the smallest and second smallest singular
values. svds(...,'smallest') needs to invert B, which leads to large numerical error.

For comparison, compute the exact singular values using svd.

s = svd(full(B));
s = s(end-9:end)

s = 10×1

 0.14196
 0.12621
 0.11045
 0.094686
 0.078914
 0.063137
 0.047356
 0.031572
 0.015787
 7.0888e-16

In order to reproduce this calculation with svds, do a QR decomposition of B. The
singular values of the triangular matrix R are the same as for B.

[Q,R,p] = qr(B,0);

Plot the norm of each row of R.

 svds

1-14361

rownormR = sqrt(diag(R*R'));
semilogy(rownormR)
hold on;
semilogy(size(R, 1), rownormR(end), 'ro')

The last entry in R is nearly zero, which causes instability in the solution.

Prevent this entry from corrupting the good parts of the solution by setting the last row of
R to be exactly zero.

R(end,:) = 0;

Use svds to find the 10 smallest singular values of R. The results are comparable to those
obtained by svd.

1 Alphabetical List

1-14362

sr = svds(R,10,'smallest')

sr = 10×1

 0.14196
 0.12621
 0.11045
 0.094686
 0.078914
 0.063137
 0.047356
 0.031572
 0.015787
 0

To compute the singular vectors of B using this method, transform the left and right
singular vectors using Q and the permutation vector p.

[U,S,V] = svds(R,20,'s');
U = Q*U;
V(p,:) = V;

Input Arguments
A — Input matrix
matrix

Input matrix. A is typically, but not always, a large and sparse matrix.
Data Types: double
Complex Number Support: Yes

k — Number of singular values to compute
scalar

Number of singular values to compute, specified as a positive scalar integer. svds returns
fewer singular values than requested if either of these conditions are met:

• k is larger than min(size(A))
• sigma = 'smallestnz' and k is larger than the number of nonzero singular values

of A

 svds

1-14363

If k is too large, then svds replaces it with the maximum valid value of k.
Example: svds(A,2) returns the two largest singular values of A.

sigma — Type of singular values
'largest' (default) | 'smallest' | 'smallestnz' | scalar

Type of singular values, specified as one of these values.

Option Description
'largest' (default) Largest singular values
'smallest' Smallest singular values
'smallestnz' Smallest nonzero singular values
scalar Singular values closest to a scalar

Example: svds(A,k,'smallest') computes the k smallest singular values.
Example: svds(A,k,100) computes the k singular values closest to 100.
Data Types: double | char | string

opts — Options structure
structure

Options structure, specified as a structure containing one or more of the fields in this
table.

Note Use of the options structure to specify options is not recommended. Use name-
value pairs instead.

Option Field Description Name-Value Pair
tol Convergence tolerance 'Tolerance'
maxit Maximum number of

iterations
'MaxIterations'

p Maximum size of Krylov
subspace

'SubspaceDimension'

u0 Left initial starting vector 'LeftStartVector'

1 Alphabetical List

1-14364

Option Field Description Name-Value Pair
v0 Right initial starting vector 'RightStartVector'
disp Diagnostic information

display level
'Display'

fail Treatment of nonconverged
singular values in the output

'FailureTreatment'

Note svds ignores the option p when using a numeric scalar shift sigma.

Example: opts.tol = 1e-6, opts.maxit = 500 creates a structure with values set
for the fields tol and maxit.
Data Types: struct

Afun — Matrix function
function handle

Matrix function, specified as a function handle. The function Afun must satisfy these
conditions:

• Afun(x,'notransp') accepts a vector x and returns the product A*x.
• Afun(x,'transp') accepts a vector x and returns the product A'*x.

Note Use function handles only in the case where sigma = 'largest' (which is the
default).

Example: svds(Afun,[1000 1200])

n — Size of matrix used by Afun
two-element vector

Size of matrix A that is used by Afun, specified as a two-element size vector [m n].

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 svds

1-14365

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: s = svds(A,k,sigma,'Tolerance',1e-10,'MaxIterations',100)
loosens the convergence tolerance and uses fewer iterations.

Tolerance — Convergence tolerance
1e-14 (default) | nonnegative real scalar

Convergence tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative real numeric scalar.
Example: s = svds(A,k,sigma,'Tolerance',1e-3)

MaxIterations — Maximum number of algorithm iterations
300 (default) | positive integer

Maximum number of algorithm iterations, specified as the comma-separated pair
consisting of 'MaxIterations' and a positive integer.
Example: s = svds(A,k,sigma,'MaxIterations',350)

SubspaceDimension — Maximum size of Krylov subspace
max(3*k,15) (default) | nonnegative integer

Maximum size of Krylov subspace, specified as the comma-separated pair consisting of
'SubspaceDimension' and a nonnegative integer. The 'SubspaceDimension' value
must be greater than or equal to k + 2, where k is the number of singular values.

For problems where svds fails to converge, increasing the value of
'SubspaceDimension' can improve the convergence behavior.

This option is ignored for numeric values of sigma.
Example: s = svds(A,k,sigma,'SubspaceDimension',25)

LeftStartVector — Left initial starting vector
vector

Left initial starting vector, specified as the comma-separated pair consisting of
'LeftStartVector' and a numeric vector.

You can specify either 'LeftStartVector' or 'RightStartVector', but not both. If
neither option is specified, then for an m-by-n matrix A, the default is:

1 Alphabetical List

1-14366

• m < n — Left initial starting vector set to randn(m,1)
• m >= n — Right initial starting vector set to randn(n,1)

The primary reason to specify a different random starting vector is to control the random
number stream used to generate the vector.

Note svds selects the starting vectors in a reproducible manner using a private random
number stream. Changing the random number seed does not affect this use of randn.

Example: s = svds(A,k,sigma,'LeftStartVector',randn(m,1)) uses a random
starting vector that draws values from the global random number stream.
Data Types: double

RightStartVector — Right initial starting vector
vector

Right initial starting vector, specified as the comma-separated pair consisting of
'RightStartVector' and a numeric vector.

You can specify either 'LeftStartVector' or 'RightStartVector', but not both. If
neither option is specified, then for an m-by-n matrix A, the default is:

• m < n — Left initial starting vector set to randn(m,1)
• m >= n — Right initial starting vector set to randn(n,1)

The primary reason to specify a different random starting vector is to control the random
number stream used to generate the vector.

Note svds selects the starting vectors in a reproducible manner using a private random
number stream. Changing the random number seed does not affect this use of randn.

Example: s = svds(A,k,sigma,'RightStartVector',randn(n,1)) uses a random
starting vector that draws values from the global random number stream.
Data Types: double

FailureTreatment — Treatment of nonconverged singular values
'replacenan' | 'keep' | 'drop'

 svds

1-14367

Treatment of nonconverged singular values, specified as the comma-separated pair
consisting of 'FailureTreatment' and one of the options: 'replacenan', 'keep', or
'drop'.

The value of 'FailureTreatment' determines how nonconverged singular values are
displayed in the output.

Option Affect on Output
'drop' Nonconverged singular values are removed

from the output, which can result in svds
returning fewer singular values than
requested. This value is the default for
numeric values of sigma.

'replacenan' Nonconverged singular values are replaced
with NaN values. This value is the default
whenever sigma is not numeric.

'keep' Nonconverged singular values are included
in the output.

Example: s = svds(A,k,sigma,'FailureTreatment','drop') removes
nonconverged singular values from the output.
Data Types: char | string

Display — Toggle for diagnostic information display
false (default) | true | 0 | 1

Toggle for diagnostic information display, specified as false, true, 0, or 1. Values of
false or 0 turn off the display, while values of true or 1 turn it on.

Output Arguments
s — Singular values
column vector

Singular values, returned as a column vector. The singular values are nonnegative real
numbers listed in decreasing order.

U — Left singular vectors
matrix

1 Alphabetical List

1-14368

Left singular vectors, returned as the columns of a matrix. If A is an m-by-n matrix and you
request k singular values, then U is an m-by-k matrix with orthonormal columns.

Different machines, releases of MATLAB, or parameters (such as the starting vector and
subspace dimension) can produce different singular vectors that are still numerically
accurate. Corresponding columns in U and V can flip their signs, since this does not affect
the value of the expression A = U*S*V'.

S — Singular values
diagonal matrix

Singular values, returned as a diagonal matrix. The diagonal elements of S are
nonnegative singular values. If A is an m-by-n matrix and you request k singular values,
then S is k-by-k.

V — Right singular vectors
matrix

Right singular vectors, returned as the columns of a matrix. If A is an m-by-n matrix and
you request k singular values, then V is an n-by-k matrix with orthonormal columns.

Different machines, releases of MATLAB, or parameters (such as the starting vector and
subspace dimension) can produce different singular vectors that are still numerically
accurate. Corresponding columns in U and V can flip their signs, since this does not affect
the value of the expression A = U*S*V'.

flag — Convergence flag
scalar

Convergence flag, returned as a scalar. A value of 0 indicates that all the singular values
converged. Otherwise, not all the singular values converged.

Use of this convergence flag output suppresses warnings about failed convergence.

Tips
• svds generates the default starting vectors using a private random number stream to

ensure reproducibility across runs. Setting the random number generator state using
rng before calling svds does not affect the output.

• Using svds is not the most efficient way to find a few singular values of small, dense
matrices. For such problems, using svd(full(A)) might be quicker. For example,

 svds

1-14369

finding three singular values in a 500-by-500 matrix is a relatively small problem that
svd can handle easily.

• If svds fails to converge for a given matrix, increase the size of the Krylov subspace
by increasing the value of 'SubspaceDimension'. As secondary options, adjusting
the maximum number of iterations ('MaxIterations') and the convergence
tolerance ('Tolerance') also can help with convergence behavior.

• Increasing k can sometimes improve performance, especially when the matrix has
repeated singular values.

Compatibility Considerations

Reproducibility change
Behavior changed in R2016a

• Reproducibility

Calling svds multiple times in succession now produces the same result. To change
this behavior:

• In R2017a or earlier, set the u0 or v0 field of the options structure to a random
vector.

• In R2017b or later, prefer setting 'LeftStartVector' or 'RightStartVector'
to a random vector.

References
[1] Baglama, J. and L. Reichel, “Augmented Implicitly Restarted Lanczos Bidiagonalization

Methods.” SIAM Journal on Scientific Computing. Vol. 27, 2005, pp. 19–42.

[2] Larsen, R. M. “Lanczos Bidiagonalization with partial reorthogonalization.” Dept. of
Computer Science, Aarhus University. DAIMI PB-357, 1998.

1 Alphabetical List

1-14370

https://ojs.statsbiblioteket.dk/index.php/daimipb/article/viewFile/7070/6029

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• If you provide the sigma parameter, the value must be 'largest'.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If you provide the sigma parameter, the value must be 'largest'.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
eigs | svd

Topics
“Singular Values”

Introduced before R2006a

 svds

1-14371

swapbytes
Swap byte ordering

Syntax
Y = swapbytes(X)

Description
Y = swapbytes(X) reverses the byte ordering of each element in array X, converting
little-endian values to big-endian (and vice versa). The input array must contain all full,
noncomplex, numeric elements.

Examples

Example 1
Reverse the byte order for a scalar 32-bit value, changing hexadecimal 12345678 to
78563412:

A = uint32(hex2dec('12345678'));

B = dec2hex(swapbytes(A))
B =
 78563412

Example 2
Reverse the byte order for each element of a 1-by-4 matrix:

X = uint16([0 1 128 65535])
X =
 0 1 128 65535

1 Alphabetical List

1-14372

Y = swapbytes(X);
Y =
 0 256 32768 65535

Examining the output in hexadecimal notation shows the byte swapping:

format hex

X, Y
X =
 0000 0001 0080 ffff
Y =
 0000 0100 8000 ffff

Example 3
Create a three-dimensional array A of 16-bit integers and then swap the bytes of each
element:

format hex

A = uint16(magic(3) * 150);
A(:,:,2) = A * 40;

A
A(:,:,1) =
 04b0 0096 0384
 01c2 02ee 041a
 0258 0546 012c
A(:,:,2) =
 bb80 1770 8ca0
 4650 7530 a410
 5dc0 d2f0 2ee0

swapbytes(A)
ans(:,:,1) =
 b004 9600 8403
 c201 ee02 1a04
 5802 4605 2c01
ans(:,:,2) =
 80bb 7017 a08c
 5046 3075 10a4
 c05d f0d2 e02e

 swapbytes

1-14373

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Inheritance of the class of the input to swapbytes in a MATLAB Function block is
supported only when the class of the input is double. For non-double inputs, the input
port data types must be specified, not inherited.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
typecast

1 Alphabetical List

1-14374

Introduced before R2006a

 swapbytes

1-14375

switch, case, otherwise
Execute one of several groups of statements

Syntax
switch switch_expression
 case case_expression
 statements
 case case_expression
 statements
 ...
 otherwise
 statements
end

Description
switch switch_expression, case case_expression, end evaluates an
expression and chooses to execute one of several groups of statements. Each choice is a
case.

The switch block tests each case until one of the case expressions is true. A case is true
when:

• For numbers, case_expression == switch_expression.
• For character vectors, strcmp(case_expression,switch_expression) == 1.
• For objects that support the eq function, case_expression ==

switch_expression.
• For a cell array case_expression, at least one of the elements of the cell array

matches switch_expression, as defined above for numbers, character vectors, and
objects.

When a case expression is true, MATLAB executes the corresponding statements and
exits the switch block.

1 Alphabetical List

1-14376

An evaluated switch_expression must be a scalar or character vector. An evaluated
case_expression must be a scalar, a character vector, or a cell array of scalars or
character vectors.

The otherwise block is optional. MATLAB executes the statements only when no case is
true.

Examples

Compare Single Values

Display different text conditionally, depending on a value entered at the command
prompt.

n = input('Enter a number: ');

switch n
 case -1
 disp('negative one')
 case 0
 disp('zero')
 case 1
 disp('positive one')
 otherwise
 disp('other value')
end

At the command prompt, enter the number 1.

positive one

Repeat the code and enter the number 3.

other value

Compare Against Multiple Values

Determine which type of plot to create based on the value of plottype. If plottype is
either 'pie' or 'pie3', create a 3-D pie chart. Use a cell array to contain both values.

 switch, case, otherwise

1-14377

x = [12 64 24];
plottype = 'pie3';

switch plottype
 case 'bar'
 bar(x)
 title('Bar Graph')
 case {'pie','pie3'}
 pie3(x)
 title('Pie Chart')
 otherwise
 warning('Unexpected plot type. No plot created.')
end

1 Alphabetical List

1-14378

Tips
• A case_expression cannot include relational operators such as < or > for

comparison against the switch_expression. To test for inequality, use if,
elseif, else statements.

• The MATLAB switch statement does not fall through like a C language switch
statement. If the first case statement is true, MATLAB does not execute the other
case statements. For example:

result = 52;

switch(result)
 case 52
 disp('result is 52')
 case {52, 78}
 disp('result is 52 or 78')
end

result is 52
• Define all variables necessary for code in a particular case within that case. Since

MATLAB executes only one case of any switch statement, variables defined within
one case are not available for other cases. For example, if your current workspace
does not contain a variable x, only cases that define x can use it:

switch choice
 case 1
 x = -pi:0.01:pi;
 case 2
 % does not know anything about x
end

• The MATLAB break statement ends execution of a for or while loop, but does not
end execution of a switch statement. This behavior is different than the behavior of
break and switch in C.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 switch, case, otherwise

1-14379

Usage notes and limitations:

• If all case expressions are scalar integer values, then the code generator produces a C
switch statement. At run time, if the switch value is not an integer, then the code
generator produces an error.

• When the case expressions contain noninteger or nonscalar values, the code generator
produces C if statements in place of a C switch statement.

See Also
end | for | if | while

Introduced before R2006a

1 Alphabetical List

1-14380

sylvester
Solve Sylvester equation AX + XB = C for X

Syntax
X = sylvester(A,B,C)

Description
X = sylvester(A,B,C) returns the solution, X, to the Sylvester equation on page 1-
14383.

Input A is an m-by-m matrix, input B is an n-by-n matrix, and both C and X are m-by-n
matrices.

Examples

Solve Sylvester Equation with 3-by-3 Output

Create the coefficient matrices A and B.

A = [1 -1 1; 1 1 -1; 1 1 1];
B = magic(3);

Define C as the 3-by-3 identity matrix.

C = eye(3);

Use the sylvester function to solve the Sylvester equation for these values of A, B, and
C.

X = sylvester(A,B,C)

X = 3×3

 sylvester

1-14381

 0.1223 -0.0725 0.0131
 -0.0806 -0.0161 0.1587
 -0.0164 0.1784 -0.1072

The result is a 3-by-3 matrix.

Solve Sylvester Equation with 4-by-2 Output

Create a 4-by-4 coefficient matrix, A, and 2-by-2 coefficient matrix, B.

A = [1 0 2 3; 4 1 0 2; 0 5 5 6; 1 7 9 0];
B = [0 -1; 1 0];

Define C as a 4-by-2 matrix to match the corresponding sizes of A and B.

C = [1 0; 2 0; 0 3; 1 1]

C = 4×2

 1 0
 2 0
 0 3
 1 1

Use the sylvester function to solve the Sylvester equation for these values of A, B, and
C.

X = sylvester(A,B,C)

X = 4×2

 0.4732 -0.3664
 -0.4006 0.3531
 0.3305 -0.1142
 0.0774 0.3560

The result is a 4-by-2 matrix.

1 Alphabetical List

1-14382

Input Arguments
A,B,C — Input matrices
matrices

Input matrices, specified as matrices. Input A is an m-by-m square matrix, input B is an n-
by-n square matrix, and input C is an m-by-n rectangular matrix. The function returns an
error if any input matrix is sparse.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
X — Solution
matrix

Solution, returned as a matrix of the same size as C. The function returns an error if the
eigenvalues of A and -B are not distinct (in this case, the solution, X, is singular or not
unique).

Definitions

Sylvester Equation
The Sylvester equation is

AX + XB = C .

The equation has a unique solution when the eigenvalues of A and -B are distinct. In
terms of the Kronecker tensor product, ⊗, the equation is

I ⊗ A + BT ⊗ I X(:) = C(:),

where I is the identity matrix, and X(:) and C(:) denote the matrices X and C as single
column vectors.

 sylvester

1-14383

See Also
ctranspose | eig | kron | mldivide | mtimes

Introduced in R2014a

1 Alphabetical List

1-14384

symamd
Symmetric approximate minimum degree permutation

Syntax
p = symamd(S)
p = symamd(S,knobs)
[p,stats] = symamd(...)

Description
p = symamd(S) for a symmetric positive definite matrix S, returns the permutation
vector p such that S(p,p) tends to have a sparser Cholesky factor than S. To find the
ordering for S, symamd constructs a matrix M such that spones(M'*M) = spones (S),
and then computes p = colamd(M). The symamd function may also work well for
symmetric indefinite matrices.

S must be square; only the strictly lower triangular part is referenced.

p = symamd(S,knobs) where knobs is a scalar. If S is n-by-n, rows and columns with
more than knobs*n entries are removed prior to ordering, and ordered last in the output
permutation p. If the knobs parameter is not present, then
knobs = spparms('wh_frac').

[p,stats] = symamd(...) produces the optional vector stats that provides data
about the ordering and the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by symamd
stats(2) Number of dense or empty columns ignored by symamd
stats(3) Number of garbage collections performed on the internal data

structure used by symamd (roughly of size
8.4*nnz(tril(S,-1)) + 9n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

 symamd

1-14385

stats(5) Rightmost column index that is unsorted or contains duplicate
entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the column index
given by stats(5), or 0 if no such row index exists

stats(7) Number of duplicate and out-of-order row indices

Although, MATLAB built-in functions generate valid sparse matrices, a user may construct
an invalid sparse matrix using the MATLAB C or Fortran APIs and pass it to symamd. For
this reason, symamd verifies that S is valid:

• If a row index appears two or more times in the same column, symamd ignores the
duplicate entries, continues processing, and provides information about the duplicate
entries in stats(4:7).

• If row indices in a column are out of order, symamd sorts each column of its internal
copy of the matrix S (but does not repair the input matrix S), continues processing,
and provides information about the out-of-order entries in stats(4:7).

• If S is invalid in any other way, symamd cannot continue. It prints an error message,
and returns no output arguments (p or stats).

The ordering is followed by a symmetric elimination tree post-ordering.

Examples

Compare Reverse Cuthill-McKee and Minimum Degree

Here is a comparison of reverse Cuthill-McKee and minimum degree on the Bucky ball
example mentioned in the symrcm reference page.

B = bucky+4*speye(60);
r = symrcm(B);
p = symamd(B);
R = B(r,r);
S = B(p,p);
subplot(2,2,1), spy(R,4), title('B(r,r)')
subplot(2,2,2), spy(S,4), title('B(s,s)')
subplot(2,2,3), spy(chol(R),4), title('chol(B(r,r))')
subplot(2,2,4), spy(chol(S),4), title('chol(B(s,s))')

1 Alphabetical List

1-14386

Even though this is a very small problem, the behavior of both orderings is typical. RCM
produces a matrix with a narrow bandwidth which fills in almost completely during the
Cholesky factorization. Minimum degree produces a structure with large blocks of
contiguous zeros which do not fill in during the factorization. Consequently, the minimum
degree ordering requires less time and storage for the factorization.

References
The authors of the code for symamd are Stefan I. Larimore and Timothy A. Davis
(davis@cise.ufl.edu), University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National

 symamd

1-14387

Laboratory. Sparse Matrix Algorithms Research at the University of Florida: https://
www.cise.ufl.edu/research/sparse/

See Also
amd | colamd | colperm | dissect | spparms | symrcm

Introduced before R2006a

1 Alphabetical List

1-14388

https://www.cise.ufl.edu/research/sparse/
https://www.cise.ufl.edu/research/sparse/

symbfact
Symbolic factorization analysis

Syntax
count = symbfact(A)
count = symbfact(A,'sym')
count = symbfact(A,'col')
count = symbfact(A,'row')
count = symbfact(A,'lo')
[count,h,parent,post,R] = symbfact(...)
[count,h,parent,post,L] = symbfact(A,type,'lower')

Description
count = symbfact(A) returns the vector of row counts of R=chol(A). symbfact
should be much faster than chol(A).

count = symbfact(A,'sym') is the same as count = symbfact(A).

count = symbfact(A,'col') returns row counts of R=chol(A'*A) (without forming
it explicitly).

count = symbfact(A,'row') returns row counts of R=chol(A*A').

count = symbfact(A,'lo') is the same as count = symbfact(A) and uses
tril(A).

[count,h,parent,post,R] = symbfact(...) has several optional return values.

The flop count for a subsequent Cholesky factorization is sum(count.^2)

Return Value Description
h Height of the elimination tree
parent The elimination tree itself

 symbfact

1-14389

Return Value Description
post Postordering of the elimination tree
R 0-1 matrix having the structure of chol(A) for the symmetric case,

chol(A'*A) for the 'col' case, or chol(A*A') for the 'row' case.

symbfact(A) and symbfact(A,'sym') use the upper triangular part of A (triu(A))
and assume the lower triangular part is the transpose of the upper triangular part.
symbfact(A,'lo') uses tril(A) instead.

[count,h,parent,post,L] = symbfact(A,type,'lower') where type is one of
'sym','col', 'row', or'lo' returns a lower triangular symbolic factor L=R'. This form
is quicker and requires less memory.

See Also
chol | etree | treelayout

Introduced before R2006a

1 Alphabetical List

1-14390

symmlq
Symmetric LQ method

Syntax
x = symmlq(A,b)
symmlq(A,b,tol)
symmlq(A,b,tol,maxit)
symmlq(A,b,tol,maxit,M)
symmlq(A,b,tol,maxit,M1,M2)
symmlq(A,b,tol,maxit,M1,M2,x0)
[x,flag] = symmlq(A,b,...)
[x,flag,relres] = symmlq(A,b,...)
[x,flag,relres,iter] = symmlq(A,b,...)
[x,flag,relres,iter,resvec] = symmlq(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...)

Description
x = symmlq(A,b) attempts to solve the system of linear equations A*x=b for x. The n-
by-n coefficient matrix A must be symmetric but need not be positive definite. It should
also be large and sparse. The column vector b must have length n. You can specify A as a
function handle, afun, such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional parameters to the function
afun, as well as the preconditioner function mfun described below, if necessary.

If symmlq converges, a message to that effect is displayed. If symmlq fails to converge
after the maximum number of iterations or halts for any reason, a warning message is
printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number
at which the method stopped or failed.

symmlq(A,b,tol) specifies the tolerance of the method. If tol is [], then symmlq uses
the default, 1e-6.

 symmlq

1-14391

symmlq(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is [],
then symmlq uses the default, min(n,20).

symmlq(A,b,tol,maxit,M) and symmlq(A,b,tol,maxit,M1,M2) use the symmetric
positive definite preconditioner M or M = M1*M2 and effectively solve the system
inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b for y and then return x =
in(sqrt(M))*y. If M is [] then symmlq applies no preconditioner. M can be a function
handle mfun such that mfun(x) returns M\x.

symmlq(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
symmlq uses the default, an all-zero vector.

[x,flag] = symmlq(A,b,...) also returns a convergence flag.

Flag Convergence
0 symmlq converged to the desired tolerance tol within maxit

iterations.
1 symmlq iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 symmlq stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during symmlq became too

small or too large to continue computing.
5 Preconditioner M was not symmetric positive definite.

Whenever flag is not 0, the solution x returned is that with minimal norm residual
computed over all the iterations. No messages are displayed if the flag output is
specified.

[x,flag,relres] = symmlq(A,b,...) also returns the relative residual norm(b-
A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = symmlq(A,b,...) also returns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = symmlq(A,b,...) also returns a vector of
estimates of the symmlq residual norms at each iteration, including norm(b-A*x0).

[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...) also returns a
vector of estimates of the conjugate gradients residual norms at each iteration.

1 Alphabetical List

1-14392

Examples

Example 1
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50; M1 = spdiags(4*on,0,n,n);

x = symmlq(A,b,tol,maxit,M1);
symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 2
This example replaces the matrix A in Example 1 with a handle to a matrix-vector product
function afun. The example is contained in the function run_symmlq that:

• Calls symmlq with the function handle @afun as its first argument.
• Contains afun as a nested function, so that all variables in run_symmlq are available

to afun.

The following shows the code for run_symmlq:

function x1 = run_symmlq
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = symmlq(@afun,b,tol,maxit,M1);

 function y = afun(x)
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);

 symmlq

1-14393

 end
end

When you enter

x1=run_symmlq;

MATLAB software displays the message

symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 3
Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1,-1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, symmlq can handle the indefinite matrix A.

x = symmlq(A,b,1e-6,40);
symmlq converged at iteration 39 to a solution with relative
residual 1.3e-007

References

[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, "Solution of Sparse Indefinite Systems of Linear
Equations." SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.

1 Alphabetical List

1-14394

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• If M1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | cgs | gmres | lsqr | minres | mldivide | pcg | qmr

Topics
“Create Function Handle”

Introduced before R2006a

 symmlq

1-14395

symrcm
Sparse reverse Cuthill-McKee ordering

Syntax
r = symrcm(S)

Description
r = symrcm(S) returns the symmetric reverse Cuthill-McKee ordering of S. This is a
permutation r such that S(r,r) tends to have its nonzero elements closer to the
diagonal. This is a good preordering for LU or Cholesky factorization of matrices that
come from long, skinny problems. The ordering works for both symmetric and
nonsymmetric S.

For a real, symmetric sparse matrix, S, the eigenvalues of S(r,r) are the same as those
of S, but eig(S(r,r)) probably takes less time to compute than eig(S).

Examples

Reverse Cuthill-McKee Ordering

The statement

B = bucky;

uses a function in the demos toolbox to generate the adjacency graph of a truncated
icosahedron. This is better known as a soccer ball, a Buckminster Fuller geodesic dome
(hence the name bucky), or, more recently, as a 60-atom carbon molecule. There are 60
vertices. The vertices have been ordered by numbering half of them from one
hemisphere, pentagon by pentagon; then reflecting into the other hemisphere and gluing
the two halves together.

1 Alphabetical List

1-14396

With this numbering, the matrix does not have a particularly narrow bandwidth, as the
first spy plot shows:

figure();
subplot(1,2,1),spy(B),title('B')

The reverse Cuthill-McKee ordering is obtained with:

p = symrcm(B);
R = B(p,p);

The spy plot shows a much narrower bandwidth.

subplot(1,2,2),spy(R),title('B(p,p)')

 symrcm

1-14397

This example is continued in the reference page for symamd.

The bandwidth can also be computed with:

[i,j] = find(B);
bw = max(i-j) + 1;

The bandwidths of B and R are 35 and 12, respectively.

1 Alphabetical List

1-14398

Algorithms
The algorithm first finds a pseudoperipheral vertex of the graph of the matrix. It then
generates a level structure by breadth-first search and orders the vertices by decreasing
distance from the pseudoperipheral vertex. The implementation is based closely on the
SPARSPAK implementation described by George and Liu.

References
[1] George, Alan and Joseph Liu, Computer Solution of Large Sparse Positive Definite

Systems, Prentice-Hall, 1981.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in MATLAB:
Design and Implementation,” SIAM Journal on Matrix Analysis, 1992. A slightly
expanded version is also available as a technical report from the Xerox Palo Alto
Research Center.

See Also
colamd | colperm | dissect | symamd

Introduced before R2006a

 symrcm

1-14399

symvar
Determine symbolic variables in expression

Syntax
C = symvar(expr)

Description
C = symvar(expr) searches the expression, expr, for identifiers other than i, j, pi,
inf, nan, eps, and common functions. These identifiers are the names of variables in the
expression. symvar returns the identifiers in a cell array of character vectors, C. If
symvar finds no identifiers, then C is an empty cell array.

Examples

Find Identifiers in Expression

Create a character vector that contains an expression. Find the identifiers in the
expression and return them in a cell array.

C = symvar('cos(pi*x - beta1)')

C = 2x1 cell array
 {'beta1'}
 {'x' }

Input Arguments
expr — Input expression
character vector | string scalar

1 Alphabetical List

1-14400

Input expression, specified as a character vector or string scalar.

See Also
eval | evalc | strfind

Introduced before R2006a

 symvar

1-14401

synchronize
Synchronize timetables to common time vector, and resample or aggregate data from
input timetables

The synchronize function collects the variables from all input timetables, synchronizes
them to a common time vector, and returns the result as a single timetable. The effect is
similar to a horizontal concatenation, though the input timetables can have different row
times. When the synchronize function synchronizes timetable variables to different
times, it also resamples or aggregates the data in the variables using a method that you
specify.

Syntax
TT = synchronize(TT1,TT2)

TT = synchronize(TT1,TT2,newTimeBasis,method)
TT = synchronize(TT1,TT2,newTimeStep,method)
TT = synchronize(TT1,TT2,'regular',method,'TimeStep',dt)
TT = synchronize(TT1,TT2,'regular',method,'SampleRate',Fs)
TT = synchronize(TT1,TT2,newTimes,method)

TT = synchronize(TT1,TT2,newTimeBasis)
TT = synchronize(TT1,TT2,newTimeStep)
TT = synchronize(TT1,TT2,'regular','TimeStep',dt)
TT = synchronize(TT1,TT2,'regular','SampleRate',Fs)
TT = synchronize(TT1,TT2,newTimes)

TT = synchronize(TT1,TT2, ___ ,Name,Value)
TT = synchronize(TT1,...,TTN, ___)

Description
TT = synchronize(TT1,TT2) creates a timetable, TT, that contains all variables from
both the input timetables TT1 and TT2, synchronized to a vector of row times that is the
union of the row times from TT1 and TT2. The row times of TT are in sorted order with no
repeated times.

1 Alphabetical List

1-14402

In effect, synchronize horizontally concatenates the variables of TT1 and TT2, even
when they have row times that differ. As a result, synchronize inserts a missing data
indicator in TT wherever it has:

• A row time only from TT1 but no corresponding data from the variables of TT2.
• A row time only from TT2 but no corresponding data from the variables of TT1.

If TT1 and TT2 have variables with the same names, then synchronize renames them
and copies both variables into TT.

To interpolate or fill in values in TT using different methods for different variables, specify
the VariableContinuity property of each input timetable. For more information, see
“Retime and Synchronize Timetable Variables Using Different Methods”.

TT = synchronize(TT1,TT2,newTimeBasis,method) creates TT by synchronizing
the variables from TT1 and TT2 to a new time vector specified by newTimeBasis.
synchronize resamples or aggregates data from the variables in TT1 and TT2 using the
operation specified by method. The input argument, newTimeBasis, specifies how
synchronize constructs the row times of TT from the row times of TT1 and TT2.

For example, if newTimeBasis is 'union' and method is 'linear', then TT contains
the row times from TT1 and TT2, and synchronize uses linear interpolation to resample
the data from the input timetables to the output row times.

TT = synchronize(TT1,TT2,newTimeStep,method) creates TT by synchronizing
the variables from TT1 and TT2 to a new time vector that is regularly spaced by the time
unit specified by newTimeStep.

For example, if newTimeStep is 'daily' and method is 'mean', then TT contains row
times that are one day apart, and TT contains daily means for each variable from TT1 and
TT2.

TT = synchronize(TT1,TT2,'regular',method,'TimeStep',dt) uses the time
step dt to calculate regularly spaced row times. dt is a scalar duration or calendar
duration. The row times of TT span the range of row times of TT1 and TT2.

TT = synchronize(TT1,TT2,'regular',method,'SampleRate',Fs) uses the
sample rate Fs to calculate regularly spaced row times. Fs is a positive numeric scalar
that specifies the number of samples per second (Hz).

 synchronize

1-14403

TT = synchronize(TT1,TT2,newTimes,method) creates TT by synchronizing the
variables from TT1 and TT2 to newTimes, a datetime or duration vector of unique, sorted
times that you specify. The times in newTimes become the row times of TT.

TT = synchronize(TT1,TT2,newTimeBasis) creates TT by synchronizing the
variables from TT1 and TT2 to a new time vector. synchronize inserts missing data
indicators where needed in TT.

TT = synchronize(TT1,TT2,newTimeStep) creates TT by synchronizing the
variables from TT1 and TT2 to a new time vector that is regularly spaced by the time unit
specified by newTimeStep. The synchronize function inserts missing data indicators
where needed in TT.

TT = synchronize(TT1,TT2,'regular','TimeStep',dt) uses the time step dt to
calculate regularly spaced row times. dt is a scalar duration or calendar duration. The
row times of TT span the range of row times of TT1 and TT2.

TT = synchronize(TT1,TT2,'regular','SampleRate',Fs) uses the sample rate
Fs to calculate regularly spaced row times. Fs is a positive numeric scalar that specifies
the number of samples per second (Hz).

TT = synchronize(TT1,TT2,newTimes) creates TT by synchronizing the variables
from TT1 and TT2 to the time vector, newTimes. The synchronize function inserts
missing data indicators where needed in TT.

TT = synchronize(TT1,TT2, ___ ,Name,Value) synchronizes timetables with
additional options specified by one or more Name,Value pairs. You can use this syntax
with the input arguments of any of the previous syntaxes.

TT = synchronize(TT1,...,TTN, ___) creates the timetable, TT, by synchronizing
the N timetables TT1,...,TTN. You can use this syntax with the input arguments of any
of the previous syntaxes.

Examples

Synchronize Timetables and Insert Missing Data Indicators

Load two sample timetables from a file. Then synchronize their data to a vector of new
row times.

1 Alphabetical List

1-14404

load smallTT

Display the timetables. TT1 has row times that are out of order. TT1 and TT2 have
different variables.

TT1

TT1=3×2 timetable
 Time Temp
 ____________________ ____

 18-Dec-2015 12:00:00 42.3
 18-Dec-2015 08:00:00 37.3
 18-Dec-2015 10:00:00 39.1

TT2

TT2=3×2 timetable
 Time Pressure
 ____________________ ________

 18-Dec-2015 09:00:00 30.1
 18-Dec-2015 11:00:00 30.03
 18-Dec-2015 13:00:00 29.9

Synchronize TT1 and TT2. The output timetable, TT, contains all the row times from both
timetables, in sorted order. In TT, Temp contains NaN for row times from TT2, and
Pressure contains NaN for row times from TT1.

TT = synchronize(TT1,TT2)

TT=6×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 08:00:00 37.3 NaN
 18-Dec-2015 09:00:00 NaN 30.1
 18-Dec-2015 10:00:00 39.1 NaN
 18-Dec-2015 11:00:00 NaN 30.03
 18-Dec-2015 12:00:00 42.3 NaN
 18-Dec-2015 13:00:00 NaN 29.9

 synchronize

1-14405

Interpolate Data Values to Row Times

Load two sample timetables that contain weather measurements. Synchronize their data
to the union of the row times from the timetables.

load firstTT

Display the timetables.

TT1

TT1=3×2 timetable
 Time Temp
 ____________________ ____

 06-Jun-2016 15:00:00 79.7
 06-Jun-2016 16:00:00 76.3
 06-Jun-2016 17:00:00 74.9

TT2

TT2=4×2 timetable
 Time Humidity
 ____________________ ________

 06-Jun-2016 14:35:48 49.7
 06-Jun-2016 15:35:48 52.2
 06-Jun-2016 16:35:48 56.7
 06-Jun-2016 17:35:48 60

Synchronize the timetables. To select the union of row times, specify 'union'. To
resample TT1.Temp and TT2.Humidity using linear interpolation, specify 'linear'.

TT = synchronize(TT1,TT2,'union','linear')

TT=7×3 timetable
 Time Temp Humidity
 ____________________ ______ ________

 06-Jun-2016 14:35:48 81.071 49.7
 06-Jun-2016 15:00:00 79.7 50.708

1 Alphabetical List

1-14406

 06-Jun-2016 15:35:48 77.671 52.2
 06-Jun-2016 16:00:00 76.3 54.014
 06-Jun-2016 16:35:48 75.464 56.7
 06-Jun-2016 17:00:00 74.9 58.03
 06-Jun-2016 17:35:48 74.064 60

Aggregate Data When Synchronizing Timetables

Synchronize two timetables to new row times that specify time bins that each span a day.
Aggregate the data from the input timetables into the daily time bins.

Load sample timetables that contain two different sets of environmental measurements,
indoors and outdoors. The air quality data come from a sensor inside a building, while
the weather measurements come from sensors outside. The timetables include
measurements taken from November 15, 2015, to November 19, 2015.

load indoors
load outdoors

Display the first three lines of each timetable. They do not contain the same row times or
variables.

indoors(1:3,:)

ans=3×3 timetable
 Time Humidity AirQuality
 ___________________ ________ __________

 2015-11-15 00:00:24 36 80
 2015-11-15 01:13:35 36 80
 2015-11-15 02:26:47 37 79

outdoors(1:3,:)

ans=3×4 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61

 synchronize

1-14407

 2015-11-15 03:00:24 48.9 51.5 29.61

Aggregate the data from the timetables into daily time bins using the synchronize
function. Specify 'daily' to aggregate the data into time bins that span one day apiece.
Specify 'mean' to obtain the mean values in each time bin for each variable.

TT = synchronize(indoors,outdoors,'daily','mean');
TT(1:3,:)

ans=3×6 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:00 36.5 80.05 48.931 51.394 29.607
 2015-11-16 00:00:00 36.85 80.35 47.924 51.571 29.611
 2015-11-17 00:00:00 36.85 79.45 48.45 51.238 29.613

Synchronize Timetables to Regular Times

Synchronize two small timetables with weather measurements to a set of regular row
times that span the row times in the input timetables. Specify a time step as the interval
between consecutive row times in the output timetable. Use linear interpolation to
resample data for times in the time vector that do not match row times from the input
timetables.

First, load the two timetables.

load indoors
load outdoors

Display the first three lines of each timetable. They do not contain the same row times or
variables.

indoors(1:3,:)

ans=3×3 timetable
 Time Humidity AirQuality
 ___________________ ________ __________

 2015-11-15 00:00:24 36 80

1 Alphabetical List

1-14408

 2015-11-15 01:13:35 36 80
 2015-11-15 02:26:47 37 79

outdoors(1:3,:)

ans=3×4 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61
 2015-11-15 03:00:24 48.9 51.5 29.61

Aggregate the data from the timetables into 30-minute time bins using the synchronize
function. Specify a regular time step using the 'regular' input argument and the
'TimeStep' name-value pair argument. You can use these arguments to create a
timetable that is regular, but whose time step is not a predefined step such as 'hourly'.

TT = synchronize(indoors,outdoors,'regular','linear','TimeStep',minutes(30));
TT(1:3,:)

ans=3×6 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:00 36 80 49 51.299 29.61
 2015-11-15 00:30:00 36 80 48.967 51.366 29.61
 2015-11-15 01:00:00 36 80 48.934 51.432 29.61

Synchronize Timetables to Arbitrary Time Vector

Synchronize two small timetables with weather measurements to an arbitrary time vector.
Use linear interpolation to resample data for times in the time vector that do not match
row times from the input timetables.

Load two small timetables, with row times for measurements taken at the half-hour mark.
However, in each timetable, there is a row time for data that was not collected at the half-
hour mark. Both timetables are irregular, which means that the time step is different
between consecutive row times.

 synchronize

1-14409

load halfHoursTT

Display the timetables. TT1 and TT2 have three rows and different variables.

TT1

TT1=3×2 timetable
 Time Temp
 ____________________ ____

 18-Dec-2015 08:30:00 47.6
 18-Dec-2015 09:30:00 49.2
 18-Dec-2015 10:47:23 51.4

TT2

TT2=3×2 timetable
 Time Pressure
 ____________________ ________

 18-Dec-2015 07:00:00 29.7
 18-Dec-2015 09:30:00 30.03
 18-Dec-2015 10:30:00 29.9

Specify a time vector that includes some of the row times from each timetable.

newTimes = datetime('2015-12-18 08:30:00') + hours(0:1:2)

newTimes = 1x3 datetime array
 18-Dec-2015 08:30:00 18-Dec-2015 09:30:00 18-Dec-2015 10:30:00

Synchronize TT1 and TT2 to newTimes. The newTimes vector has times that are not row
times of TT1 or TT2. To interpolate data values for times in newTimes that do not match
row times in TT1 or TT2, specify 'linear'.

TT = synchronize(TT1,TT2,newTimes,'linear')

TT=3×3 timetable
 Time Temp Pressure
 ____________________ ______ ________

 18-Dec-2015 08:30:00 47.6 29.898
 18-Dec-2015 09:30:00 49.2 30.03

1 Alphabetical List

1-14410

 18-Dec-2015 10:30:00 50.906 29.9

Synchronize Timetables with Intersecting Row Times

Load two sample timetables and synchronize their data to a vector of row times they have
in common.

load intersectTT

Display the timetables. TT1 and TT2 have three rows and different variables.

TT1

TT1=3×2 timetable
 Time Temp
 ____________________ ____

 18-Dec-2015 08:00:00 37.3
 18-Dec-2015 10:00:00 39.1
 18-Dec-2015 12:00:00 42.3

TT2

TT2=3×2 timetable
 Time Pressure
 ____________________ ________

 18-Dec-2015 06:00:00 30.1
 18-Dec-2015 08:00:00 30.03
 18-Dec-2015 10:00:00 29.9

Synchronize TT1 and TT2, specifying 'intersection' as the basis for the row times of
the output timetable. TT has only two rows because TT1 and TT2 have only two row times
in common.

TT = synchronize(TT1,TT2,'intersection')

TT=2×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 synchronize

1-14411

 18-Dec-2015 08:00:00 37.3 30.03
 18-Dec-2015 10:00:00 39.1 29.9

There is no need to interpolate or fill unmatched rows, because TT1 and TT2 both have
data for the row times they have in common.

Synchronize Timetables to Hourly Times

Synchronize two small timetables with weather measurements to an hourly time vector.

Load two small timetables. In each timetable, there is a row time for data that was not
collected on the hour. Both timetables are irregular, which means that the time step is
different between consecutive row times.

load irregularTT

Display the timetables. TT1 and TT2 have three rows and different variables.

TT1

TT1=3×2 timetable
 Time Temp
 ____________________ ____

 18-Dec-2015 08:00:00 37.3
 18-Dec-2015 09:11:17 39.1
 18-Dec-2015 10:00:00 42.3

TT2

TT2=3×2 timetable
 Time Pressure
 ____________________ ________

 18-Dec-2015 08:00:00 29.8
 18-Dec-2015 09:27:23 29.7
 18-Dec-2015 10:00:00 30.3

1 Alphabetical List

1-14412

Synchronize TT1 and TT2, specifying 'hourly' as the time step for the row times of the
output timetable. TT has data from TT1 and TT2 where they have row times that are on
the hour. TT has missing data indicators where it has a row time that TT1 and TT2 do not
have.

TT = synchronize(TT1,TT2,'hourly')

TT=3×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 08:00:00 37.3 29.8
 18-Dec-2015 09:00:00 NaN NaN
 18-Dec-2015 10:00:00 42.3 30.3

Synchronize Timetables Using Multiple Methods

Synchronize two timetables. Apply the mean method to some timetable variables and the
sum method to others.

Load two small timetables that contain weather measurements for Boston and Natick.
Each timetable contains temperature and rainfall readings.

load citiesTT
Boston

Boston=6×3 timetable
 Time Temp Rain
 ___________________ ____ ____

 2016-06-09 06:03:00 59.5 0.05
 2016-06-09 12:00:23 63 0.08
 2016-06-09 18:02:57 61.7 0.13
 2016-06-10 06:01:47 55.4 0.15
 2016-06-10 12:06:00 62.3 0.87
 2016-06-10 18:02:57 58.8 0.33

Natick

Natick=5×3 timetable
 Time Temp Rain

 synchronize

1-14413

 ___________________ _____ _____

 2016-06-09 12:00:23 61.2 0.076
 2016-06-09 17:59:00 60.3 0.11
 2016-06-10 09:03:01 56.1 0.19
 2016-06-10 12:07:03 62.17 0.72
 2016-06-10 17:59:57 58.3 0.1

Synchronize the measurements to daily times to produce mean temperatures and the
sums of the rainfall measurements. synchronize applies the specified method to all
timetable variables. To apply different methods to different timetable variables, index into
the timetables to select different variables, and call synchronize for each method you
use.

BOS = Boston(:,'Temp');
NTK = Natick(:,'Temp');
TT1 = synchronize(BOS,NTK,'daily','mean')

TT1=2×3 timetable
 Time Temp_BOS Temp_NTK
 ___________________ ________ ________

 2016-06-09 00:00:00 61.4 60.75
 2016-06-10 00:00:00 58.833 58.857

BOS = Boston(:,'Rain');
NTK = Natick(:,'Rain');
TT2 = synchronize(BOS,NTK,'daily','sum')

TT2=2×3 timetable
 Time Rain_BOS Rain_NTK
 ___________________ ________ ________

 2016-06-09 00:00:00 0.26 0.186
 2016-06-10 00:00:00 1.35 1.01

To combine all results in one timetable, concatenate TT1 and TT2.

TT = [TT1 TT2]

TT=2×5 timetable
 Time Temp_BOS Temp_NTK Rain_BOS Rain_NTK

1 Alphabetical List

1-14414

 ___________________ ________ ________ ________ ________

 2016-06-09 00:00:00 61.4 60.75 0.26 0.186
 2016-06-10 00:00:00 58.833 58.857 1.35 1.01

Input Arguments
TT1,TT2 — Input timetables
timetables

Input timetables.

newTimeBasis — Basis for computing row times of output timetable
character vector

Basis for computing row times of output timetable, specified as a character vector.
newTimeBasis can be any of the listed methods.

Method Description
'union' (default) Union of the row times
'intersection' Intersection of the row times
'commonrange' Union of the row times, but over the

intersection of the time ranges
'first' Row times from the first input timetable

only
'last' Row times from the last input timetable

only

newTimeStep — Time step for spacing times in output timetable
character vector

Time step for spacing times in the output timetable, specified as a character vector.
newTimeStep can be any of the listed time steps.

 synchronize

1-14415

Time Step Description
'yearly' One year
'quarterly' One quarter
'monthly' One month
'weekly' One week
'daily' One day
'hourly' One hour
'minutely' One minute
'secondly' One second

The first row time of TT is at the beginning of the time unit that includes the earliest row
time from the input timetables. The range of row times in TT covers the range of row
times from TT1 and TT2. However, TT might not include any of the actual row times from
TT1 or TT2, since they can have row times that are not at the beginnings of any time unit.

Fs — Sample rate
positive numeric scalar

Sample rate, specified as a positive numeric scalar. Fs specifies the number of samples
per second (Hz).

dt — Time step
datetime scalar | duration scalar

Time step, specified as a datetime scalar or duration scalar.
Data Types: datetime | duration | calendarDuration

newTimes — New time vector
datetime vector | duration vector

New time vector, specified as a datetime vector or a duration vector. The new time vector
must be a column vector. newTimes can have a different number of rows than any of the
input timetables.

method — Method for adjusting timetable data
character vector | string scalar | function handle

1 Alphabetical List

1-14416

Method for adjusting timetable data, specified as a character vector, string scalar, or
function handle. You can use any of the listed methods to adjust the data from the input
timetables.

Fill Methods

Copy data from the rows of each input timetable when row times of the output timetable
match row times of the corresponding input. Then, fill the remaining elements of the
output timetable with missing data indicators.

To fill the remaining elements with a constant instead of a missing data indicator, use the
'Constant' name-value pair argument.

Method Description
'fillwithmissing' (default) Fill gaps in output with missing data

indicators (for example, NaN for numeric
variables).

'fillwithconstant' Fill gaps in output with the value of the
'Constant' name-value pair argument.
The default value is 0.

Nearest Neighbor Methods

Copy data from the rows of the input timetables to output timetable rows whose row
times are the nearest match, according to the specified method. Input timetables must be
sorted by row times.

Method Description
'previous' Copy data from the nearest preceding

neighbor in the input timetable, proceeding
from the end of the vector of row times. If
there are duplicate row times, then
'previous' indicates the last of the
duplicates.

'next' Copy data from the nearest following
neighbor in the input timetable, proceeding
from the beginning of the vector of row
times. If there are duplicate row times, then
'next' indicates the first of the duplicates.

 synchronize

1-14417

Method Description
'nearest' Copy data from the nearest neighbor in the

input timetable.

Interpolation Methods

Interpolate data values in the output timetable from data values in neighboring rows of
the input timetables. Input timetables must have row times that are sorted and unique. To
control how the data are extrapolated beyond the first and last row times of the input
timetables, use the 'EndValues' name-value pair argument.

Method Description
'linear' Use linear interpolation.
'spline' Use piecewise cubic spline interpolation.
'pchip' Use shape-preserving piecewise cubic

interpolation.
'makima' Use modified Akima cubic Hermite

interpolation.

Aggregation Methods

Aggregate data from rows of the input timetables over time bins specified by the row
times of the output timetable. Each row time of TT is the left edge of a time bin, with the
next consecutive row time being the right edge. By default, the left edges are included in
the time bins. To control whether the left or the right bin edges are included in the time
bins, use the 'IncludedEdge' name-value pair argument.

If you specify the time vector, newTimes, then newTimes must be sorted in ascending
order. If you specify the time basis of the output timetable as 'first' or 'last', then
the row times of either the first or the last timetable must be sorted in ascending order.

All the listed methods omit NaNs, NaTs, and other missing data indicators, except for
func. To include missing data indicators, specify func as a function handle to a function
that includes them when aggregating data.

Method Description
'sum' Sum the values in each time bin.

1 Alphabetical List

1-14418

Method Description
'mean' Calculate the mean of the values in each

time bin.
'prod' Calculate the product of the values in each

time bin.
'min' Calculate the minimum of the values in

each time bin.
'max' Calculate the maximum of the values in

each time bin.
'count' Count the number of values in each time

bin.
'firstvalue' Use the first value in each time bin.
'lastvalue' Use the last value in each time bin.
@func Use the function specified by the function

handle (for example, @std to calculate the
standard deviation for the values in each
time bin). func must return an output
argument that is a scalar or a row vector,
and must accept empty inputs.

Default Method

The default method is equivalent to leaving method unspecified.

Method Description
'default' (default) Either fill gaps with missing data

indicators, or use per-variable methods if
they are specified by the
VariableContinuity property of the
input timetables.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 synchronize

1-14419

Example: TT =
synchronize(TT1,TT2,newTimes,'fillwithconstant','Constant',-1)
synchronizes the timetables TT1 and TT2 and assigns the value -1 to elements in rows of
TT with row times that do not match row times in the corresponding input timetables.

Constant — Value for filling gaps when method is 'fillwithconstant'
array

Value for filling gaps when the method is 'fillwithconstant', specified as the comma-
separated pair consisting of 'Constant' and an array. The default value is 0. The data
type of the value specified by 'Constant' must be compatible with the data types of the
timetable variables.
Example: TT =
synchronize(TT1,TT2,'hourly','fillwithconstant','Constant','NONE')
fills gaps in TT with the character vector 'NONE' when all the variables in TT contain
text.

EndValues — Method for extrapolation when using interpolation method
'extrap' (default) | array

Method for extrapolation when using an interpolation method, specified as the comma-
separated pair consisting of 'EndValues' and either 'extrap', or an array. If you
specify an array, then its data type must be compatible with the timetable variables.

Method Description
'extrap' (default) Extrapolate using the method specified by

the method input argument
array Extrapolate by filling gaps outside the

range of input row times with an array

Example: TT = synchronize(TT1,TT2,'daily','previous','EndValues',1000)
fills gaps in TT with previous row values where TT has row times within the range of row
times from TT1 and TT2, and with the value 1000 where TT has row times outside that
range.

IncludedEdge — Edges to include in each time bin
'left' (default) | 'right'

Edges to include in each time bin, specified as the comma-separated pair consisting of
'IncludedEdge' and either 'left' or 'right'. Each row time of TT is the left edge of
a time bin, with the next consecutive row time being the right edge.

1 Alphabetical List

1-14420

Edges to Include Description
'left' (default) All bins include the left bin edge, except for

the last bin, which includes both edges
'right' All bins include the right bin edge, except

for the first bin, which includes both edges

If you specify 'left', then the time bins include the left edges except for the last bin,
which includes both edges. If you specify 'right', then the time bins include the right
edges except for the first bin, which includes both edges.
Example: TT =
synchronize(TT1,TT2,'hourly','mean','IncludedEdge','right') includes the
right bin edge of each time bin.

Compatibility Considerations

'SamplingRate' is not recommended
Not recommended starting in R2018b

The 'SamplingRate' name-value pair argument is not recommended. Use
'SampleRate' instead. The corresponding timetable property is also named
SampleRate.

For backward compatibility, you still can specify 'SamplingRate' as the name of the
name-value pair. However, the value is assigned to the SampleRate property.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The newTimes input must be strictly increasing instead of strictly monotonic.

 synchronize

1-14421

• The 'commonrange' option for the newTimeBasis input is not supported.
• The 'spline' interpolation method is not supported.
• The 'EndValues' name-value pair is not supported.

For more information, see “Tall Arrays”.

See Also
horzcat | innerjoin | outerjoin | retime | synchronize | vertcat

Topics
“Create Timetables”
“Clean Timetable with Missing, Duplicate, or Nonuniform Times”
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”

Introduced in R2016b

1 Alphabetical List

1-14422

syntax
Two ways to call MATLAB functions

Description
You can call MATLAB functions using either command syntax or function syntax, as
described below.

Command Syntax
A function call in this syntax consists of the function name followed by one or more
arguments separated by spaces:

functionname arg1 arg2 ... argn

Command syntax does not allow you to obtain any values that might be returned by the
function. Attempting to assign output from the function to a variable using command
syntax generates an error. Use function syntax instead.

Examples of command syntax:

save mydata.mat x y z
import java.awt.Button java.lang.String

Arguments are treated as character vectors. See the examples below, under “Argument
Passing” on page 1-14424.

Function Syntax
A function call in this syntax consists of the function name followed by one or more
arguments separated by commas and enclosed in parentheses:

functionname(arg1, arg2, ..., argn)

You can assign the output of the function to one or more output values. When assigning to
more than one output variable, separate the variables by commas or spaces and enclose
them in square brackets ([]):

 syntax

1-14423

[out1,out2,...,outn] = functionname(arg1, arg2, ..., argn)

Examples of function syntax:

copyfile('srcfile', '..\mytests', 'writable')
[x1,x2,x3,x4] = deal(A{:})

Arguments are passed to the function by value. See the examples below, under “Argument
Passing” on page 1-14424.

Argument Passing
When calling a function using command syntax, MATLAB passes the arguments as
character vectors. When using function syntax, arguments are passed by value.

In the following example, assign a value to A and then call disp on the variable to display
the value passed. Calling disp with command syntax passes the variable name, 'A':

A = pi;
disp A
 A

while function syntax passes the value assigned to A:

A = pi;
disp(A)
 3.1416

The next example passes two character vectors to strcmp for comparison. Calling the
function with command syntax compares the variable names, 'str1' and 'str2':

str1 = 'one'; str2 = 'one';
strcmp str1 str2
ans =
 0 (unequal)

while function syntax compares the values assigned to the variables, 'one' and 'one':

str1 = 'one'; str2 = 'one';
strcmp(str1, str2)
ans =
 1 (equal)

1 Alphabetical List

1-14424

Passing Character Vectors
When using the function syntax to pass a character vector to a function, you must enclose
the character vector in single quotes, ('text'). For example, to create a new folder
called myapptests, use

mkdir('myapptests')

On the other hand, variables that contain character vectors do not need to be enclosed in
quotes:

folder = 'myapptests';
mkdir(folder)

See Also
mlint

Topics
“Check Code for Errors and Warnings”

 syntax

1-14425

system
Execute operating system command and return output

Syntax
status = system(command)
[status,cmdout] = system(command)
[status,cmdout] = system(command,'-echo')

Description
status = system(command) calls the operating system to execute the specified
command. The operation waits for the command to finish execution before returning the
exit status of the command to the status variable.

The function starts a new cmd/shell process, executes command, exits the process, and
returns to the MATLAB process. Updates to the system environment made by command
are not visible to MATLAB.

[status,cmdout] = system(command) also returns the output of the command to
cmdout. This syntax is most useful for commands that do not require user input, such as
dir.

[status,cmdout] = system(command,'-echo') also displays (echoes) the
command output in the MATLAB Command Window. This syntax is most useful for
commands that require user input and that run correctly in the MATLAB Command
Window.

Examples

1 Alphabetical List

1-14426

Windows: Display Operating System Command Status and Output

Display the current folder using the cd command. A status of zero indicates that the
command completed successfully. MATLAB returns a character vector containing the
current folder in cmdout.

command = 'cd';
[status,cmdout] = system(command)

Windows: Save Command Exit Status

To create a folder named mynew, call the mkdir command and save the exit status to a
variable. A status of zero indicates that the mynew folder was created successfully.

command = 'mkdir mynew';
status = system(command)

Windows: Open and Run a UI Command

Open Microsoft Notepad and immediately return the exit status to MATLAB by appending
an ampersand (&) to the notepad command. A status of zero indicates that Notepad
successfully started.

status = system('notepad &')

Windows: Save Command Output

Execute the dir command and view the exit status and command output. cmdout
contains the command output.

[~,cmdout] = system('dir');

Windows: Save Unsuccessful Command Status and Error Message

Attempt to execute a command called badcmd. Then, view the status and results
output arguments. When you call an invalid command, status indicates failure and
results contains the DOS error message.

 system

1-14427

[status,results] = system('badcmd')

UNIX: Save Command Exit Status and Output

List all users who are currently logged in, and save the command exit status and output.
Then, view the status. A status of zero indicates that the command completed
successfully. MATLAB® returns a list of users in cmdout.

command = 'who';
[status,cmdout] = system(command);
status

status = 0

Input Arguments
command — Operating system command
string | character vector

Operating system command, specified as a string or a character vector. The command
executes in a system shell, which might not be the shell from which you started MATLAB.
Example: 'dir'
Example: 'ls'

Output Arguments
status — Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When the command is
successful, status is 0. Otherwise, status is a nonzero integer.

• If command includes the ampersand character (&), then status is the exit status when
command starts

• If command does not include the ampersand character (&), then status is the exit
status upon command completion.

1 Alphabetical List

1-14428

cmdout — Output of operating system command
character vector

Output of the operating system command, returned as a character vector. The system
shell might not properly represent non-Unicode characters.

Limitations
• MATLAB converts characters to the encoding that your operating system shell

accepts. Output from the command is converted to the MATLAB encoding to be
displayed in the command window. If you get unexpected results from the command,
enter the command argument directly at the operating system prompt to see how the
operating system treats your input.

• Callback functions are not called while the system command is executing.

Definitions

Windows Tips and Limitations
• MS-DOS does not support UNC path names. Therefore, if the current folder uses a

UNC path name, then running system with a DOS command that relies on the current
folder fails. To work around this limitation, change the folder to a mapped drive before
calling system.

• You can override an environment variable in the system command. For example, the
following code sets the PATH variable to myPath, then calls the system command
dosCommand with that value.

system(['set PATH=' myPath ' && ' dosCommand])

• To execute the operating system command in the background, include the trailing
character, &, in the command argument. For example, type 'notepad &'. The exit
status is immediately returned to the status variable. This syntax is useful for
console programs that require interactive user command input while they run, and
that do not run correctly in the MATLAB Command Window.

If command includes the trailing & character, then cmdout is empty.

 system

1-14429

• The system command uses the same credentials as the credentials used to start
MATLAB. To set credentials for program myprogram.exe to require admin privileges,
type:

system('cmd /C myprogram.exe');

UNIX Tips and Limitations
• MATLAB uses a shell program to execute the given command. It determines which

shell program to use by checking environment variables on your system. MATLAB first
checks the MATLAB_SHELL variable, and if either empty or not defined, then checks
SHELL. If SHELL is also empty or not defined, MATLAB uses /bin/sh.

• The system function redirects stdin to command by default. This redirection also
passes MATLAB script commands and the keyboard type-ahead buffer to the invoked
command while the system function executes. This behavior can lead to corrupted
output when system does not complete execution immediately. To disable stdin and
type-ahead redirection, include the formatted text < /dev/null in the call to the
invoked command.

• You can override an environment variable in the system command. The syntax
depends on the UNIX shell. For example, using the BASH shell, the following code sets
the PATH variable to myPath, then calls the system command command with that
value.

system(['export PATH=' myPath ' ; ' command])
• To execute the operating system command in the background, include the trailing

character, &, in the command argument. For example, type 'emacs &'. The exit status
is immediately returned to the status variable. This syntax is useful for console
programs that require interactive user command input while they run, and that do not
run correctly in the MATLAB Command Window.

If command includes the trailing & character, then cmdout is empty.

See Also
computer | perl

Topics
“Run External Commands, Scripts, and Programs”
! (exclamation point)

1 Alphabetical List

1-14430

External Websites
Why does the output of my FORTRAN script not show up in the MATLAB command
window when I execute it using the SYSTEM function in MATLAB 7.14 (R2012a)?
On some Linux platforms, system might return partial results when called in a loop

Introduced before R2006a

 system

1-14431

https://www.mathworks.com/matlabcentral/answers/91919-why-does-the-output-of-my-fortran-script-not-show-up-in-the-matlab-command-window-when-i-execute-it
https://www.mathworks.com/matlabcentral/answers/91919-why-does-the-output-of-my-fortran-script-not-show-up-in-the-matlab-command-window-when-i-execute-it
https://www.mathworks.com/support/bugreports/1400063

table
Table array with named variables that can contain different types

Description
table arrays store column-oriented or tabular data, such as columns from a text file or
spreadsheet. Tables store each piece of column-oriented data in a variable. Table
variables can have different data types and sizes as long as all variables have the same
number of rows. Use the summary function to get information about a table.

To index into a table, use smooth parentheses () to return a subtable or curly braces {}
to extract the contents. You can reference variables and rows using names. For more
information on indexing using numbers and names, see “Access Data in a Table”.

Creation
You can read data from a file into a table using either the Import Tool or the
readtable function. Alternatively, use the table function described below to create a
table from existing workspace variables.

You also can create a table that allows space for variables whose values are filled in later.
To create a table with preallocated space for variables, use the table function with
'Size' as the first input argument, as described below.

Syntax
T = table(var1,...,varN)
T = table('Size',sz,'VariableTypes',varTypes)
T = table(___ ,'VariableNames',varNames)
T = table(___ ,'RowNames',rowNames)
T = table

1 Alphabetical List

1-14432

Description
T = table(var1,...,varN) creates a table from the input variables var1,...,varN.
Variables can be of different sizes and data types, but all variables must have the same
number of rows.

T = table('Size',sz,'VariableTypes',varTypes) creates a table and
preallocates space for the variables that have data types you specify. sz is a two-element
numeric array, where sz[1] specifies the number of rows and sz[2] specifies the
number of variables. varTypes is a cell array of character vectors specifying data types.

T = table(___ ,'VariableNames',varNames) specifies the names of the variables
in the output table. You can use this syntax with the input arguments from any of the
other syntaxes for this function.

T = table(___ ,'RowNames',rowNames) specifies names of the rows in the output
table. You can use this syntax with the input arguments of any of the previous syntaxes.

T = table creates an empty 0-by-0 table.

Input Arguments
var1,...,varN — Input variables
arrays

Input variables, specified as arrays with the same number of rows. The input variables
can be of different sizes and different data types.

Common input variables are numeric arrays, logical arrays, character arrays, structure
arrays, or cell arrays. Input variables also can be objects that are arrays. Such an array
must support indexing of the form var(index1,...,indexN), where index1 is a
numeric or logical vector that corresponds to rows of the variable var. In addition, the
array must implement both a vertcat method and a size method with a dim argument.
Example: table([1:4]',ones(4,3,2),eye(4,2)) creates a table from variables with
four rows, but different sizes.
Example: table([1:3]',
{'one';'two';'three'},categorical({'A';'B';'C'})) creates a table from
variables with three rows, but different data types.

 table

1-14433

sz — Size of preallocated table
two-element numeric vector

Size of the preallocated table, specified as a two-element numeric vector. The first
element of sz specifies the number of rows, and the second element specifies the number
of table variables.

To create variables only, without any rows, specify 0 as the first element of sz.
Example: T = table('Size',[50 3],'VariableTypes',
{'string','double','datetime'}) preallocates 50 rows for a table that contains a
string array, a double array, and a datetime array.
Example: T = table('Size',[0 4],'VariableTypes',varTypes) specifies zero
rows and four variables.

varTypes — Data types of preallocated variables
cell array of character vectors | string array

Data types of the preallocated variables, specified as a cell array of character vectors or a
string array. The number of types specified by varTypes must equal the number of
variables specified by the second element of sz.

varTypes can contain the names of any data types, including the names shown in the
table.

Data Type Name Initial Value in Each Element
'double', 'single' Double- or single-precision 0
'doublenan',
'doubleNaN', 'singlenan',
'singleNaN'

Double- or single-precision NaN

'int8', 'int16', 'int32', 'int64' Signed 8-, 16-, 32-, or 64-bit integer 0
'uint8', 'uint16', 'uint32', 'uint64
'

Unsigned 8-, 16-, 32-, or 64-bit integer 0

'logical' 0 (false)
'categorical' <undefined> categorical value
'datetime' NaT datetime value
'duration' 0 seconds, as a duration value

1 Alphabetical List

1-14434

Data Type Name Initial Value in Each Element
'calendarDuration' 0 days, as a calendar duration value
'string' "" (1-by-1 string with no characters)
'cellstr' {''} (cell with 0-by-0 character array)
'cell' {[]} (cell with 0-by-0 double array)
'struct' Scalar structure with no fields
'table' Table with no variables

For any other data type, the initial value is the value used by that type or class to "in-fill"
unassigned elements of an array.

If you specify 'char' as a data type, then table preallocates the corresponding variable
as a cell array of character vectors, not as a character array. Best practice is to avoid
creating table or timetable variables that are character arrays. When working with text
data in a table or a timetable, consider using a string array or a categorical array.

varNames — Names of variables
cell array of character vectors | string array

Names of the variables in the output table, specified as a cell array of character vectors
or a string array. The number of names in varNames must equal the number of variables.

rowNames — Names of rows
cell array of character vectors | string array

Names of the rows in the output table, specified as a cell array of character vectors or a
string array. The number of names in rowNames must equal the number of rows.
Example: T = table([10;20;30],{'M';'F';'F'},'VariableNames',
{'Age','Gender'},'RowNames',{'P1','P2','P3'}) creates a table with both
variable names and row names.

Properties
Access Table Metadata Properties

A table contains metadata properties that describe the table and its variables. Access
these properties using the syntax tableName.Properties.PropertyName, where

 table

1-14435

PropertyName is the name of a property. For example, you can access the names of the
variables in table T using the syntax T.Properties.VariableNames.

You can return a summary of all the metadata properties using the syntax
tableName.Properties.

Tables provide metadata access through the Properties property because you can
access table data directly using dot syntax. For example, if table T has a variable named
Var1, then you can access the variable as an array using the syntax T.Var1.

Table Metadata
DimensionNames — Dimension names
{'Row','Variables'} (default) | two-element cell array of character vectors | two-
element string array

Dimension names, specified as a two-element cell array of character vectors or a two-
element string array.

You can access table data using the two dimension names. If the table has row names,
and you use dot syntax and the first dimension name, then you can access the row names
as a vector. If you use dot syntax and the second dimension name, then the data from all
the variables are concatenated together in one array, as though you had indexed into the
timetable using {:,:} syntax.

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.
Example

Create a table and display its dimension names. You can access row names and data using
dimension names with dot syntax.

load patients
T = table(Age,Height,Weight,Systolic,Diastolic, ...
 'RowNames',LastName);
T.Properties.DimensionNames

ans = 1x2 cell array
 {'Row'} {'Variables'}

Access the row names using the first dimension name. Display the first five names.

1 Alphabetical List

1-14436

T.Row(1:5)

ans = 5x1 cell array
 {'Smith' }
 {'Johnson' }
 {'Williams'}
 {'Jones' }
 {'Brown' }

Access the data using the second dimension name. This syntax is equivalent to T{:,:}.

T.Variables

ans = 100×5

 38 71 176 124 93
 43 69 163 109 77
 38 64 131 125 83
 40 67 133 117 75
 49 64 119 122 80
 46 68 142 121 70
 33 64 142 130 88
 40 68 180 115 82
 28 68 183 115 78
 31 66 132 118 86
 ⋮

Modify the names of its dimensions using the Properties.DimensionNames property.
Having changed the dimension names, you can access the row times and data using the
syntaxes T.Patient and T.Data respectively.

T.Properties.DimensionNames = {'Patient','Data'};
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Patient' 'Data'}
 VariableNames: {'Age' 'Height' 'Weight' 'Systolic' 'Diastolic'}
 VariableDescriptions: {}
 VariableUnits: {}

 table

1-14437

 VariableContinuity: []
 RowNames: {100x1 cell}
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

RowNames — Row names
{} (default) | cell array of character vectors | string array

Row names, specified as a cell array of character vectors or a string array, whose
elements are nonempty and distinct. If RowNames is not empty, then the number of row
names must equal the number of rows in the table. MATLAB removes any leading or
trailing white space from the row names.

The row names are visible when you view the table. Furthermore, you can use the row
names within parentheses or curly braces to access the table data.

Another way to access the row names is to use dot syntax and the name of the first
dimension of the table.

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.
Example

Create a table. Then add row names and access rows by their names.

load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);

Add row names using the Properties.RowNames property. By default, tables do not
have row names, but you can add them at any time.

T.Properties.RowNames = LastName;
head(T,4)

ans=4×7 table
 Gender Age Height Weight Smoker Systolic Diastolic
 ________ ___ ______ ______ ______ ________ _________

 Smith 'Male' 38 71 176 true 124 93
 Johnson 'Male' 43 69 163 false 109 77
 Williams 'Female' 38 64 131 false 125 83
 Jones 'Female' 40 67 133 false 117 75

1 Alphabetical List

1-14438

Another way to access the row names is by using dot syntax with the name of the first
dimension of the table. Display the first five row names.

T.Properties.DimensionNames

ans = 1x2 cell array
 {'Row'} {'Variables'}

T.Row(1:5)

ans = 5x1 cell array
 {'Smith' }
 {'Johnson' }
 {'Williams'}
 {'Jones' }
 {'Brown' }

Index into the table by row names.

T({'Smith','Williams'},:)

ans=2×7 table
 Gender Age Height Weight Smoker Systolic Diastolic
 ________ ___ ______ ______ ______ ________ _________

 Smith 'Male' 38 71 176 true 124 93
 Williams 'Female' 38 64 131 false 125 83

Description — Table description
'' (default) | character vector | string scalar

Table description, specified as a character vector or string scalar. This description is
visible when using the summary function.

If you specify this property using a string scalar, then it is converted and stored as a
character vector.
Example

Create a table. Modify the description of the table. Display a summary of the result.

load patients
T = table(Gender,Age,Height,Weight);

 table

1-14439

T.Properties.Description = 'Simulated patient data';
summary(T)

Description: Simulated patient data

Variables:

 Gender: 100x1 cell array of character vectors

 Age: 100x1 double

 Values:

 Min 25
 Median 39
 Max 50

 Height: 100x1 double

 Values:

 Min 60
 Median 67
 Max 72

 Weight: 100x1 double

 Values:

 Min 111
 Median 142.5
 Max 202

UserData — Additional table information
[] (default) | array

Additional table information, specified as an array. You can attach data of any kind to a
table using this property.

Example

Create a table. Attach an anonymous function as a piece of user data that is associated
with the table.

1 Alphabetical List

1-14440

load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);
formula = @(x) x.^2;
T.Properties.UserData = formula;
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: @(x)x.^2
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x7 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Variable Metadata
VariableNames — Variable names
cell array of character vectors | string array

Variable names, specified as a cell array of character vectors or a string array, whose
elements are nonempty and distinct. Variable names must be valid MATLAB identifiers.
You can determine valid variable names using the function isvarname. MATLAB removes
any leading or trailing whitespace from the variable names. The number of names must
equal the number of variables.

If you do not specify variable names, or you specify invalid identifiers, then MATLAB
specifies names of the form 'Var1' ... 'VarN' where N is the number of variables.

The variable names are visible when viewing the table and when using the summary
function. Furthermore, you can use the variable names within parentheses, within curly
braces, or with dot indexing to access table data.

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.

 table

1-14441

Example

Create a table with default variable names. Then modify the names using the
Properties.VariableNames property.

T = table({'M';'M';'F';'F';'F'},[38;43;38;40;49], ...
 [71;69;64;67;64],[176;163;131;133;119])

T=5×4 table
 Var1 Var2 Var3 Var4
 ____ ____ ____ ____

 'M' 38 71 176
 'M' 43 69 163
 'F' 38 64 131
 'F' 40 67 133
 'F' 49 64 119

T.Properties.VariableNames = {'Gender','Age','Height','Weight'}

T=5×4 table
 Gender Age Height Weight
 ______ ___ ______ ______

 'M' 38 71 176
 'M' 43 69 163
 'F' 38 64 131
 'F' 40 67 133
 'F' 49 64 119

A fundamental way to display and modify variables is to access them by name using dot
syntax.

T.Age

ans = 5×1

 38
 43
 38
 40
 49

1 Alphabetical List

1-14442

T.Age(1) = 53

T=5×4 table
 Gender Age Height Weight
 ______ ___ ______ ______

 'M' 53 71 176
 'M' 43 69 163
 'F' 38 64 131
 'F' 40 67 133
 'F' 49 64 119

VariableDescriptions — Variable descriptions
{} (default) | cell array of character vectors | string array

Variable descriptions, specified as a cell array of character vectors or a string array This
property can be an empty cell array, which is the default. If the array is not empty, then it
must contain as many elements as there are variables. You can specify an individual
empty character vector or empty string for a variable that does not have a description.

The variable descriptions are visible when using the summary function.

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.
Example

Create a table. Modify the variable descriptions. Display a summary of the result.

load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);
T.Properties.VariableDescriptions = {'','','','', ...
 'Has the patient ever been a smoker', ...
 'Systolic Pressure','Diastolic Pressure'};
summary(T)

Variables:

 Gender: 100x1 cell array of character vectors

 Age: 100x1 double

 Values:

 table

1-14443

 Min 25
 Median 39
 Max 50

 Height: 100x1 double

 Values:

 Min 60
 Median 67
 Max 72

 Weight: 100x1 double

 Values:

 Min 111
 Median 142.5
 Max 202

 Smoker: 100x1 logical

 Properties:
 Description: Has the patient ever been a smoker
 Values:

 True 34
 False 66

 Systolic: 100x1 double

 Properties:
 Description: Systolic Pressure
 Values:

 Min 109
 Median 122
 Max 138

 Diastolic: 100x1 double

 Properties:
 Description: Diastolic Pressure
 Values:

1 Alphabetical List

1-14444

 Min 68
 Median 81.5
 Max 99

VariableUnits — Variable units
{} (default) | cell array of character vectors | string array

Variable units, specified as a cell array of character vectors or a string array. This
property can be an empty cell array, which is the default. If the array is not empty, then it
must contain as many elements as there are variables. You can specify an individual
empty character vector or empty string for a variable that does not have units.

The variable units are visible when using the summary function.

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.
Example

Create a table. Modify the variable units. Display a summary of the result.

load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);
T.Properties.VariableUnits = {'','Yrs','In','Lbs','','mm Hg','mm Hg'};
summary(T)

Variables:

 Gender: 100x1 cell array of character vectors

 Age: 100x1 double

 Properties:
 Units: Yrs
 Values:

 Min 25
 Median 39
 Max 50

 Height: 100x1 double

 Properties:
 Units: In

 table

1-14445

 Values:

 Min 60
 Median 67
 Max 72

 Weight: 100x1 double

 Properties:
 Units: Lbs
 Values:

 Min 111
 Median 142.5
 Max 202

 Smoker: 100x1 logical

 Values:

 True 34
 False 66

 Systolic: 100x1 double

 Properties:
 Units: mm Hg
 Values:

 Min 109
 Median 122
 Max 138

 Diastolic: 100x1 double

 Properties:
 Units: mm Hg
 Values:

 Min 68
 Median 81.5
 Max 99

1 Alphabetical List

1-14446

Custom Metadata
CustomProperties — Customized metadata of table and its variables
CustomProperties object

Customized metadata of a table and its variables, specified as a CustomProperties
object.

The CustomProperties object is a container for customized metadata that you can add
to a table. By default, CustomProperties has zero properties. Each property you add to
CustomProperties can contain either table metadata or variable metadata. If a
property contains variable metadata, then its value must be an array, and the number of
elements in the array must equal the number of table variables.

• To add properties for customized metadata to a table, use the addprop function.
• To access or modify customized metadata, use the syntax

tableName.Properties.CustomProperties.PropertyName. In this syntax,
PropertyName is the name you chose when you added that property using addprop.

• To remove properties, use the rmprop function.

Note: You can add or remove only properties for customized metadata using addprop
and rmprop. You cannot add or remove properties of the tableName.Properties
object.

Example

Create a table.

load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);

Add properties that can hold customized metadata about the table and its variables. In
this example, the metadata are names of instruments, true and false values indicating
whether variables are to be plotted, and the name of an output file. To add properties, use
the addprop function.

T = addprop(T,{'Instrument','ToPlot','OutputFile'},{'variable','variable','table'});
T.Properties

ans =
 TableProperties with properties:

 table

1-14447

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x7 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFile: []
 Instrument: []
 ToPlot: []

Assign values to the customized metadata using dot syntax. When you assign an array of
text values to customized metadata, the best practice is to use a string array, not a cell
array of character vectors. If a property of CustomProperties is a cell array of
character vectors, then there is no mechanism to prevent you from later assigning
nontext values as elements of the cell array.

T.Properties.CustomProperties.Instrument = ["","","height rod","scale","","blood pressure cuff","blood pressure cuff"];
T.Properties.CustomProperties.ToPlot = [false false true true false true true];
T.Properties.CustomProperties.OutputFile = 'patientData.csv';
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x7 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFile: 'patientData.csv'
 Instrument: [1x7 string]
 ToPlot: [0 0 1 1 0 1 1]

Remove the OutputFile property from T.

1 Alphabetical List

1-14448

T = rmprop(T,'OutputFile');
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x7 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 Instrument: [1x7 string]
 ToPlot: [0 0 1 1 0 1 1]

Examples

Store Related Data Variables in Table

Store data about a group of patients in a table. You can perform calculations and store
results in the same table. Also, you can annotate the table to describe your work and the
variables of the table.

First, create workspace variables that have the patient data. The variables can have any
data types but must have the same number of rows.

LastName = {'Sanchez';'Johnson';'Li';'Diaz';'Brown'};
Age = [38;43;38;40;49];
Smoker = logical([1;0;1;0;1]);
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

Create a table, T, as a container for the workspace variables. The table function uses the
workspace variable names as the names of the table variables in T. A table variable can
have multiple columns. For example, the BloodPressure variable in T is a 5-by-2 array.

 table

1-14449

T = table(LastName,Age,Smoker,Height,Weight,BloodPressure)

T=5×6 table
 LastName Age Smoker Height Weight BloodPressure
 _________ ___ ______ ______ ______ _____________

 'Sanchez' 38 true 71 176 124 93
 'Johnson' 43 false 69 163 109 77
 'Li' 38 true 64 131 125 83
 'Diaz' 40 false 67 133 117 75
 'Brown' 49 true 64 119 122 80

You can use dot indexing to access table variables. For example, calculate the mean
height of the patients using the values in T.Height.

meanHeight = mean(T.Height)

meanHeight = 67

Calculate body mass index (BMI), and add it as a new table variable. You also can add and
name table variables in one step, using dot syntax.

T.BMI = (T.Weight*0.453592)./(T.Height*0.0254).^2

T=5×7 table
 LastName Age Smoker Height Weight BloodPressure BMI
 _________ ___ ______ ______ ______ _____________ ______

 'Sanchez' 38 true 71 176 124 93 24.547
 'Johnson' 43 false 69 163 109 77 24.071
 'Li' 38 true 64 131 125 83 22.486
 'Diaz' 40 false 67 133 117 75 20.831
 'Brown' 49 true 64 119 122 80 20.426

Annotate the table with a description of the BMI calculation. You can annotate T and its
variables using metadata accessed through T.Properties.

T.Properties.Description = 'Patient data, including body mass index (BMI) calculated using Height and Weight';
T.Properties

ans =
 TableProperties with properties:

1 Alphabetical List

1-14450

 Description: 'Patient data, including body mass index (BMI) calculated using Height and Weight'
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x7 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Access All Table Data as Matrix

Access all the data from a table as a matrix, using the name of the second dimension of
the table.

Create a table that has five rows of data about a set of patients.

Age = [38;43;38;40;49];
Smoker = logical([1;0;1;0;1]);
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

T = table(Age,Smoker,Height,Weight,BloodPressure)

T=5×5 table
 Age Smoker Height Weight BloodPressure
 ___ ______ ______ ______ _____________

 38 true 71 176 124 93
 43 false 69 163 109 77
 38 true 64 131 125 83
 40 false 67 133 117 75
 49 true 64 119 122 80

Display the names of the table dimensions using the DimensionNames property. The
default name of the second dimension is Variables.

T.Properties.DimensionNames

 table

1-14451

ans = 1x2 cell array
 {'Row'} {'Variables'}

Access the table data as a matrix using the syntax T.Variables. This syntax is
equivalent to accessing all the contents using curly brace syntax, T{:,:}. If the table
data cannot be concatenated into a matrix, then an error message is raised.

T.Variables

ans = 5×6

 38 1 71 176 124 93
 43 0 69 163 109 77
 38 1 64 131 125 83
 40 0 67 133 117 75
 49 1 64 119 122 80

Rename the second dimension. If you change the name, then you can use the new name
to access the data.

T.Properties.DimensionNames{2} = 'PatientData';
T.PatientData

ans = 5×6

 38 1 71 176 124 93
 43 0 69 163 109 77
 38 1 64 131 125 83
 40 0 67 133 117 75
 49 1 64 119 122 80

Specify Size and Variable Types

Preallocate a table by specifying its size and the data types of the variables. The table
function fills the variables with default values that are appropriate for the data types you
specify. It also gives the variables default names, but you also can assign variable names
of your own. Preallocation provides room for data you add to the table later.

1 Alphabetical List

1-14452

sz = [4 3];
varTypes = {'double','datetime','string'};
T = table('Size',sz,'VariableTypes',varTypes)

T=4×3 table
 Var1 Var2 Var3
 ____ ____ _________

 0 NaT <missing>
 0 NaT <missing>
 0 NaT <missing>
 0 NaT <missing>

To specify names for the variables, use the 'VariableNames' name-value pair
argument.

varNames = {'Temperature','Time','Station'};
T2 = table('Size',sz,'VariableTypes',varTypes,'VariableNames',varNames)

T2=4×3 table
 Temperature Time Station
 ___________ ____ _________

 0 NaT <missing>
 0 NaT <missing>
 0 NaT <missing>
 0 NaT <missing>

Add rows of data to the first two rows of T2. Preallocation can be a useful technique when
your code adds one row of data, or a few rows of data, at a time. Instead of growing the
table every time you add a row, you can fill in table variables that already have room for
your data.

T2(1,:) = {75,datetime('now'),"S1"};
T2(2,:) = {68,datetime('now')+1,"S2"}

T2=4×3 table
 Temperature Time Station
 ___________ ____________________ _________

 75 02-Mar-2019 20:56:23 "S1"
 68 03-Mar-2019 20:56:23 "S2"
 0 NaT <missing>

 table

1-14453

 0 NaT <missing>

You can encapsulate a row of data values in a cell array. When you assign a row from a
cell array, elements from the cell array are assigned to the row in the table.

Specify Variable Names

Create a table from arrays. To specify table variable names, use the 'VariableNames'
name-value pair argument. For example, you can use 'VariableNames' to specify
names when the other input arguments are not workspace variables.

T = table(categorical({'M';'F';'M'}),[45;32;34],...
 {'NY';'CA';'MA'},logical([1;0;0]),...
 'VariableNames',{'Gender','Age','State','Vote'})

T=3×4 table
 Gender Age State Vote
 ______ ___ _____ _____

 M 45 'NY' true
 F 32 'CA' false
 M 34 'MA' false

Create a table with the state names as row names. You can specify both the
'VariableNames' and 'RowNames' name-value pairs when using the table function.

T = table(categorical({'M';'F';'M'}),[45;32;34],logical([1;0;0]),...
 'VariableNames',{'Gender','Age','Vote'},...
 'RowNames',{'NY';'CA';'MA'})

T=3×3 table
 Gender Age Vote
 ______ ___ _____

 NY M 45 true
 CA F 32 false
 MA M 34 false

1 Alphabetical List

1-14454

Specify Row Names

Specify row names for a table. Tables do not have to have row names, but if you specify
them, then you can index into a table by row name. You also can access the set of row
names using the name of the first dimension of a table.

Create arrays containing patient data.

LastName = {'Sanchez';'Johnson';'Lee';'Diaz';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];

Create a table containing the arrays. Specify LastName as the source of row names for
the table. The table has only three variables. The row names are not a table variable, but
instead a property of the table.

T = table(Age,Weight,Height,'RowNames',LastName)

T=5×3 table
 Age Weight Height
 ___ ______ ______

 Sanchez 38 176 71
 Johnson 43 163 69
 Lee 38 131 64
 Diaz 40 133 67
 Brown 49 119 64

Since the rows have row names, you can index into the rows of T by name.

T('Lee',:)

ans=1×3 table
 Age Weight Height
 ___ ______ ______

 Lee 38 131 64

To specify multiple rows, use a cell array.

T({'Lee','Brown'},:)

 table

1-14455

ans=2×3 table
 Age Weight Height
 ___ ______ ______

 Lee 38 131 64
 Brown 49 119 64

To access all the row names of T as a cell array, use the syntax T.Row. By default, Row is
the name of the first dimension of a table.

T.Row

ans = 5x1 cell array
 {'Sanchez'}
 {'Johnson'}
 {'Lee' }
 {'Diaz' }
 {'Brown' }

Change the name of the first dimension. If you change the name, then you can access the
row names using the new name.

T.Properties.DimensionNames{1} = 'LastNames';
T.LastNames

ans = 5x1 cell array
 {'Sanchez'}
 {'Johnson'}
 {'Lee' }
 {'Diaz' }
 {'Brown' }

Specify Table Variables and Row Names Using String Arrays

Starting in R2017a, you can create strings using double quotes, and add string arrays as
table variables.

FlightNum = [1261;547;3489];
Customer = ["Jones";"Brown";"Smith"];

1 Alphabetical List

1-14456

Date = datetime(2016,12,20:22)';
Rating = categorical(["Good";"Poor";"Fair"]);
Comment = ["Flight left on time, not crowded";...
 "Late departure, ran out of dinner options";...
 "Late, but only by half an hour. Otherwise fine."];
T = table(FlightNum,Customer,Date,Rating,Comment)

T=3×5 table
 FlightNum Customer Date Rating Comment
 _________ ________ ___________ ______ ___

 1261 "Jones" 20-Dec-2016 Good "Flight left on time, not crowded"
 547 "Brown" 21-Dec-2016 Poor "Late departure, ran out of dinner options"
 3489 "Smith" 22-Dec-2016 Fair "Late, but only by half an hour. Otherwise fine."

To use the text in a string array as row names, convert the string array to a cell array of
character vectors. Then create a table with row names.

Customer = cellstr(Customer);
T = table(FlightNum,Date,Rating,Comment,'RowNames',Customer)

T=3×4 table
 FlightNum Date Rating Comment
 _________ ___________ ______ ___

 Jones 1261 20-Dec-2016 Good "Flight left on time, not crowded"
 Brown 547 21-Dec-2016 Poor "Late departure, ran out of dinner options"
 Smith 3489 22-Dec-2016 Fair "Late, but only by half an hour. Otherwise fine."

Build Table by Assigning Variables Individually

Create workspace variables containing snowfall totals on different dates at three
locations. These variables are row vectors.

Date = {'12/25/11','1/2/12','1/23/12','2/7/12','2/15/12'};
location1 = [20 5 13 0 17];
location2 = [18 9 21 5 12];
location3 = [26 10 16 3 15];

One way to create a table from these variables is to call the table function with the
syntax T = table(Date',location1',location2',location3'). Because the

 table

1-14457

workspace variables are row vectors, you must transpose them to put them into the table
as column-oriented data. Therefore, the input arguments are expressions, not simple
variables. As a result, table creates T with the default variable names Var1, Var2,
Var3, and Var4. You can assign more meaningful names to
T.Properties.VariableNames after you create T. But, it might be more convenient to
create an empty table, and then add variables one at a time with new names.

Create an empty table. Transpose the workspace variables and add them to the table as
column vectors. As part of assigning each workspace variable into T, provide a
meaningful name for the table variable.

T = table;
T.Date = Date';
T.Natick = location1';
T.Boston = location2';
T.Worcester = location3'

T=5×4 table
 Date Natick Boston Worcester
 __________ ______ ______ _________

 '12/25/11' 20 18 26
 '1/2/12' 5 9 10
 '1/23/12' 13 21 16
 '2/7/12' 0 5 3
 '2/15/12' 17 12 15

Limitations
• Use single quotes for the input names 'Size', 'VariableTypes',

'VariableNames', and 'RowNames'. To avoid confusion with variable inputs, do not
use double-quoted string scalars (such as "Size") for these names.

Tips
• For a list of functions that accept or return tables, see “Tables”.

1 Alphabetical List

1-14458

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

• The syntax TT = table(T1,T2,...) constructs a tall table from several tall arrays
(T1,T2,...). You can use the 'VariableNames' name-value pair argument to
specify variable names.

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• The input arrays must be distributed and have the same number of rows.
• The result is distributed, using a 1D distribution scheme over the first dimension.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
array2table | cell2table | isvarname | readtable | struct2table | summary |
tall | uitable

Topics
“Create and Work with Tables”
“Modify Units, Descriptions, and Table Variable Names”
“Access Data in a Table”
“Calculations on Tables”

 table

1-14459

Introduced in R2013b

1 Alphabetical List

1-14460

join
Combine two tables or timetables by rows using key variables

Syntax
C = join(A,B)
C = join(A,B,Name,Value)
[C,ib] = join(___)

Description
C = join(A,B) merges tables or timetables A and B by matching up rows using all the
variables with the same names as key variables on page 1-14475. For example, if A has
variables named X, Y, and Z, and B has variables W, X, and Y, then C=join(A,B) uses X
and Y as the key variables.

The matching values within the key variables, or key values on page 1-14476, must be
common to both inputs but can appear in different rows of A and B.

The inputs can be tables, timetables, or one of each.

• If A is a table, then join returns C as a table.
• If A is a timetable, then join returns C as a timetable.

join retains all the variables from A and appends the corresponding contents from the
nonkey variables of B.

The vectors of row labels of A and B can be key variables. Row labels are the row names
of a table, or the row times of a timetable.

C = join(A,B,Name,Value) joins the tables or timetables with additional options
specified by one or more Name,Value pair arguments.

For example, you can specify which variables to use as key variables.

 join

1-14461

[C,ib] = join(___) also returns an index vector ib such that each element of ib
identifies the row in B that corresponds to that row in C. You can use this syntax with any
of the input arguments of the previous syntaxes.

Examples

Append Values from One Table to Another

Create a table, A.

A = table({'Janice','Jonas','Javier','Jerry','Julie'}',[1;2;1;2;1],...
 'VariableNames',{'Employee' 'Department'})

A=5×2 table
 Employee Department
 ________ __________

 'Janice' 1
 'Jonas' 2
 'Javier' 1
 'Jerry' 2
 'Julie' 1

Create a table, B, with a variable in common with A.

B = table([1 2]',{'Mary' 'Mona'}',...
 'VariableNames',{'Department' 'Manager'})

B=2×2 table
 Department Manager
 __________ _______

 1 'Mary'
 2 'Mona'

Create a new table, C, containing data from tables A and B. Use the join function to
repeat and append Manager data from table B to the data from table A, based on the key
variable, Department.

C = join(A,B)

1 Alphabetical List

1-14462

C=5×3 table
 Employee Department Manager
 ________ __________ _______

 'Janice' 1 'Mary'
 'Jonas' 2 'Mona'
 'Javier' 1 'Mary'
 'Jerry' 2 'Mona'
 'Julie' 1 'Mary'

Merge Tables with One Variable in Common

Create a table, A.

A = table([5;12;23;2;6],...
 {'cereal';'pizza';'salmon';'cookies';'pizza'},...
 'VariableNames',{'Age','FavoriteFood'},...
 'RowNames',{'Amy','Bobby','Holly','Harry','Sally'})

A=5×2 table
 Age FavoriteFood
 ___ ____________

 Amy 5 'cereal'
 Bobby 12 'pizza'
 Holly 23 'salmon'
 Harry 2 'cookies'
 Sally 6 'pizza'

Create a table, B, with one variable in common with A.

B = table({'cereal';'cookies';'pizza';'salmon';'cake'},...
 [110;160;140;367;243],...
 {'B';'D';'B-';'A';'C-'},...
 'VariableNames',{'FavoriteFood','Calories','NutritionGrade'})

B=5×3 table
 FavoriteFood Calories NutritionGrade
 ____________ ________ ______________

 join

1-14463

 'cereal' 110 'B'
 'cookies' 160 'D'
 'pizza' 140 'B-'
 'salmon' 367 'A'
 'cake' 243 'C-'

Create a new table, C, with data from tables A and B. The variable in common,
FavoriteFood, is used as a key variable by the join function.

C = join(A,B)

C=5×4 table
 Age FavoriteFood Calories NutritionGrade
 ___ ____________ ________ ______________

 Amy 5 'cereal' 110 'B'
 Bobby 12 'pizza' 140 'B-'
 Holly 23 'salmon' 367 'A'
 Harry 2 'cookies' 160 'D'
 Sally 6 'pizza' 140 'B-'

Table C does not include information from the last row of table B about 'cake' because
there is no corresponding entry in table A.

Merge Tables by Specifying One Key Variable

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1],[10;3;8;8;4])

A=5×3 table
 Var1 Var2 Var3
 ____ ____ ____

 10 5 10
 4 4 3
 2 9 8
 3 6 8
 7 1 4

1 Alphabetical List

1-14464

Create a table, B, giving Var2 of table B the same contents as Var2 from table A.

B = table([6;1;1;6;8],[5;4;9;6;1])

B=5×2 table
 Var1 Var2
 ____ ____

 6 5
 1 4
 1 9
 6 6
 8 1

Create a new table, C, containing data from tables A and B. Use Var2 in tables A and B as
the key variable to the join function.

C = join(A,B,'Keys','Var2')

C=5×4 table
 Var1_A Var2 Var3 Var1_B
 ______ ____ ____ ______

 10 5 10 6
 4 4 3 1
 2 9 8 1
 3 6 8 6
 7 1 4 8

join adds a unique suffix to the nonkey variable, Var1, to distinguish the data from
tables A and B.

Keep One Copy of Nonkey Variables

Create a new table with data from tables A and B. If any nonkey variables have the same
name in both tables, keep only the copy from table A.

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1])

 join

1-14465

A=5×2 table
 Var1 Var2
 ____ ____

 10 5
 4 4
 2 9
 3 6
 7 1

Create a table, B, giving Var2 of table B the same contents as Var2 from table A.

B = table([6;1;1;6;8],[5;4;9;6;1],[10;3;8;8;4])

B=5×3 table
 Var1 Var2 Var3
 ____ ____ ____

 6 5 10
 1 4 3
 1 9 8
 6 6 8
 8 1 4

Create a new table, C, with data from tables A and B. Use Var2 as a key variable to the
join function and keep only the copy of Var1 from table A. The output table C does not
contain the Var1 data from table B.

C = join(A,B,'Keys','Var2','KeepOneCopy','Var1')

C=5×3 table
 Var1 Var2 Var3
 ____ ____ ____

 10 5 10
 4 4 3
 2 9 8
 3 6 8
 7 1 4

1 Alphabetical List

1-14466

Merge Tables Using Row Names as Keys

Create a table, A.

A = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...
 'VariableNames',{'Gender' 'Age'},...
 'RowNames',{'Smith' 'Johnson' 'Williams' 'Jones' 'Brown'})

A=5×2 table
 Gender Age
 ______ ___

 Smith M 38
 Johnson M 43
 Williams F 38
 Jones F 40
 Brown F 49

Create a table, B, such that the rows of A and the rows of B have a one-to-one
correspondence.

B = table([64;69;67;71;64],...
 [119;163;133;176;131],...
 [122 80; 109 77; 117 75; 124 93; 125 83],...
 'VariableNames',{'Height' 'Weight' 'BloodPressure'},...
 'RowNames',{'Brown' 'Johnson' 'Jones' 'Smith' 'Williams'})

B=5×3 table
 Height Weight BloodPressure
 ______ ______ _____________

 Brown 64 119 122 80
 Johnson 69 163 109 77
 Jones 67 133 117 75
 Smith 71 176 124 93
 Williams 64 131 125 83

Create a new table, C, with data from tables A and B. Use the vectors of row names as key
variables. (The name of the vector of row names of a table is 'Row', as shown by
A.Properties.DimensionNames{1}.)

C = join(A,B,'Keys','Row')

 join

1-14467

C=5×5 table
 Gender Age Height Weight BloodPressure
 ______ ___ ______ ______ _____________

 Smith M 38 71 176 124 93
 Johnson M 43 69 163 109 77
 Williams F 38 64 131 125 83
 Jones F 40 67 133 117 75
 Brown F 49 64 119 122 80

The rows of C are in the same order as A.

Merge Tables Using Left and Right Keys

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1],[10;3;8;8;4])

A=5×3 table
 Var1 Var2 Var3
 ____ ____ ____

 10 5 10
 4 4 3
 2 9 8
 3 6 8
 7 1 4

Create a table, B, giving Var2 of table B the same contents as Var1 from table A, but in a
different order.

B = table([6;1;1;6;8],[2;3;4;7;10])

B=5×2 table
 Var1 Var2
 ____ ____

 6 2
 1 3
 1 4

1 Alphabetical List

1-14468

 6 7
 8 10

Create a new table, C, containing data from tables A and B. Use Var1 from table A with
Var2 from table B as key variables to the join function.

[C,ib] = join(A,B,'LeftKeys',1,'RightKeys',2)

C=5×4 table
 Var1_A Var2 Var3 Var1_B
 ______ ____ ____ ______

 10 5 10 8
 4 4 3 1
 2 9 8 6
 3 6 8 1
 7 1 4 6

ib = 5×1

 5
 3
 1
 2
 4

C is the horizontal concatenation of A and B(ib,2).

Merge Timetables

Create two timetables that have the same row times but different variables.

Traffic = [0.8 0.9 0.1 0.7 0.9]';
Noise = [0 1 1.5 2 2.3]';
A = timetable(hours(1:5)',Traffic,Noise)

A=5×3 timetable
 Time Traffic Noise
 ____ _______ _____

 join

1-14469

 1 hr 0.8 0
 2 hr 0.9 1
 3 hr 0.1 1.5
 4 hr 0.7 2
 5 hr 0.9 2.3

Distance = [0.88 0.86 0.91 0.9 0.86]';
B = timetable(hours(1:5)',Distance)

B=5×2 timetable
 Time Distance
 ____ ________

 1 hr 0.88
 2 hr 0.86
 3 hr 0.91
 4 hr 0.9
 5 hr 0.86

Merge the timetables. join uses the row times as the key variables.

C = join(A,B)

C=5×4 timetable
 Time Traffic Noise Distance
 ____ _______ _____ ________

 1 hr 0.8 0 0.88
 2 hr 0.9 1 0.86
 3 hr 0.1 1.5 0.91
 4 hr 0.7 2 0.9
 5 hr 0.9 2.3 0.86

Merge Timetable and Table

Create a timetable and a table.

1 Alphabetical List

1-14470

Measurements = [0.13 0.22 0.31 0.42 0.53 0.57 0.67 0.81 0.90 1.00]';
Device = ['A';'B';'A';'B';'A';'B';'A';'B';'A';'B'];
A = timetable(seconds(1:10)',Measurements,Device)

A=10×3 timetable
 Time Measurements Device
 ______ ____________ ______

 1 sec 0.13 A
 2 sec 0.22 B
 3 sec 0.31 A
 4 sec 0.42 B
 5 sec 0.53 A
 6 sec 0.57 B
 7 sec 0.67 A
 8 sec 0.81 B
 9 sec 0.9 A
 10 sec 1 B

Device = ['A';'B'];
Accuracy = [0.023;0.037];
B = table(Device,Accuracy)

B=2×2 table
 Device Accuracy
 ______ ________

 A 0.023
 B 0.037

Merge the timetable and table. Device is the key variable because both A and B have a
variable with that name. C is a timetable.

C = join(A,B)

C=10×4 timetable
 Time Measurements Device Accuracy
 ______ ____________ ______ ________

 1 sec 0.13 A 0.023
 2 sec 0.22 B 0.037
 3 sec 0.31 A 0.023
 4 sec 0.42 B 0.037

 join

1-14471

 5 sec 0.53 A 0.023
 6 sec 0.57 B 0.037
 7 sec 0.67 A 0.023
 8 sec 0.81 B 0.037
 9 sec 0.9 A 0.023
 10 sec 1 B 0.037

Input Arguments
A,B — Input tables
tables | timetables

Input tables, specified as tables, timetables, or as one of each. For all key variables, each
row of A must match exactly one row in B.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Keys',2 uses the second variable in A and the second variable in B as key
variables.

Keys — Variables to use as keys
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys, specified as the comma-separated pair consisting of 'Keys' and
a positive integer, vector of positive integers, character vector, cell array of character
vectors, string array, logical vector, or 'RowNames'.

You cannot use the 'Keys' name-value pair argument with the 'LeftKeys' and
'RightKeys' name-value pair arguments.

A vector of row labels can be a key variable. Row labels are the row names of a table or
the row times of a timetable. You can specify 'Keys' as the row labels only, as one or
more variables in A and B, or as row labels and variables together.

1 Alphabetical List

1-14472

Example: 'Keys',[1 3] uses the first and third variables from A and B as key variables.
Example: 'Keys',{'X','Y'} uses the variables named X and Y in A and B as key
variables.
Example: 'Keys','Row' uses the vectors of row names of A and B as key variables, if
both A and B are tables with row names.

LeftKeys — Variables to use as keys in A
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys in A, specified as the comma-separated pair consisting of
'LeftKeys' and a positive integer, vector of positive integers, character vector, cell
array of character vectors, string array, or logical vector.

You must use the 'LeftKeys' name-value pair argument in conjunction with the
'RightKeys' name-value pair argument. 'LeftKeys' and 'RightKeys' both must
specify the same number of key variables. join pairs key values in A and B based on their
order.

A vector of row labels can be a key variable. Row labels are the row names of a table or
the row times of a timetable. You can specify 'LeftKeys' as the row labels of A, as one
or more variables in A, or as row labels and variables together.
Example: 'LeftKeys',1 uses only the first variable in A as a key variable.

RightKeys — Variables to use as keys in B
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables to use as keys in B, specified as the comma-separated pair consisting of
'RightKeys' and a positive integer, vector of positive integers, character vector, cell
array of character vectors, string array, or logical vector.

You must use the 'RightKeys' name-value pair argument in conjunction with the
'LeftKeys' name-value pair argument. 'LeftKeys' and 'RightKeys' both must
specify the same number of key variables. join pairs key values in A and B based on their
order.

A vector of row labels can be a key variable. Row labels are the row names of a table or
the row times of a timetable. You can specify 'RightKeys' as the row labels of B, as one
or more variables in B, or as row labels and variables together.

 join

1-14473

Example: 'RightKeys',3 uses only the third variable in B as a key variable.

LeftVariables — Variables from A to include in C
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables from A to include in C, specified as the comma-separated pair consisting of
'LeftVariables' and a positive integer, vector of positive integers, character vector,
cell array of character vectors, string array, or logical vector.

You can use 'LeftVariables' to include or exclude key variables, as well as nonkey
variables, from C. However, you cannot include row names or row times from A, because
they are not variables.

By default, join includes all variables from A.

RightVariables — Variables from B to include in C
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables from B to include in C, specified as the comma-separated pair consisting of
'RightVariables' and a positive integer, vector of positive integers, character vector,
cell array of character vectors, string array, or logical vector.

You can use 'RightVariables' to include or exclude key variables, as well as nonkey
variables, from C. However, you cannot include row names or row times from B, because
they are not variables.

By default, join includes all variables from B except the key variables.

KeepOneCopy — Variables for which join retains only the copy from A
character vector | cell array of character vectors | string array

Variables for which join retains only the copy from A, specified as the comma-separated
pair consisting of 'KeepOneCopy' and a character vector, cell array of character vectors,
or string array that specifies variable names.

Key variables appear once in C, but if nonkey variables with identical names occur in A
and B, then join retains both copies in C by default. Use the 'KeepOneCopy' name-
value pair to retain only the copy from A.
Example: 'KeepOneCopy',Var2 keeps only the copy from A of the nonkey variable
Var2.

1 Alphabetical List

1-14474

Output Arguments
C — Merged data from A and B
table | timetable

Merged data from A and B, returned as a table or a timetable. The table, C, contains one
row for each row in A, appearing in the same order.

join creates C by horizontally concatenating A(:,LeftVars) and B(ib,RightVars).
By default, LeftVars is all the variables of A, and RightVars is all the nonkey variables
from B. Otherwise, LeftVars consists of the variables specified by the
'LeftVariables' name-value pair argument, and RightVars consists of the variables
specified by the 'RightVariables' name-value pair argument.

If A and B contain nonkey variables with the same name, join adds a unique suffix to the
corresponding variable names in C, unless you specify the 'KeepOneCopy' name-value
pair argument.

If A is a table, then C is also a table. If A is a timetable and B is either a timetable or a
table, then C is a timetable.

You can store additional metadata in C, such as descriptions, variable units, variable
names, and row names. For more information, see the Properties sections of table or
timetable.

ib — Index to B
column vector

Index to B, returned as a column vector. Each element of ib identifies the row in B that
corresponds to that row in the output table or timetable, C.

Definitions

Key Variable
Variable used to match and combine data between input tables A and B.

 join

1-14475

Key Value
Entry in a key variable of A.

Algorithms
The join function first finds one or more key variables. Then, join uses the key
variables to find the row in input table B that matches each row in input table A, and
combines those rows to create a row in output table C.

• If there is a one-to-one mapping between key values in A and B, then join sorts the
data in B and appends it to table A.

• If there is a many-to-one mapping between key values in A and B, then join sorts and
repeats the data in B before appending it to table A.

• If there is data in a key variable of B that does not map to a key value in A, then join
does not include that data in the output table, C.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• To join a tall timetable and a tall table, the timetable must be the first input to join.

For more information, see “Tall Arrays”.

See Also
innerjoin | outerjoin

Introduced in R2013b

1 Alphabetical List

1-14476

table2array
Convert table to homogeneous array

Syntax
A = table2array(T)

Description
A = table2array(T) converts the table, T, to a homogeneous array, A.

Examples

Convert Table of Numeric Data to Array

Create a table, T, consisting of numeric data.

T = table([1;2;3],[2 8; 4 10; 6 12],[3 12 21; 6 15 24; 9 18 27],...
 'VariableNames',{'One' 'Two' 'Three'})

T=3×3 table
 One Two Three
 ___ _______ _____________

 1 2 8 3 12 21
 2 4 10 6 15 24
 3 6 12 9 18 27

Convert table, T, to an array.

A = table2array(T)

A = 3×6

 table2array

1-14477

 1 2 8 3 12 21
 2 4 10 6 15 24
 3 6 12 9 18 27

A contains two columns from variable Two and three columns from variable Three.

Convert Numeric Subset of Table to Array

Define the numeric subset of a table to convert to an array.

Create a table with nonnumeric data in the first variable.

T = table(categorical({'M';'M';'F';'F';'F'}),[38;43;38;40;49],...
 [71;69;64;67;64],[176;163;131;133;119],...
 'VariableNames',{'Gender' 'Age' 'Height' 'Weight'})

T=5×4 table
 Gender Age Height Weight
 ______ ___ ______ ______

 M 38 71 176
 M 43 69 163
 F 38 64 131
 F 40 67 133
 F 49 64 119

Convert T(:,2:4) to an array.

A = table2array(T(:,2:4))

A = 5×3

 38 71 176
 43 69 163
 38 64 131
 40 67 133
 49 64 119

A does not include data from the variable Gender.

1 Alphabetical List

1-14478

Convert Table with Three-Dimensional Variables to Array

Create a table, T, with two rows and three variables where each variable has three
dimensions.

T = table(ones(2,1,3),2*ones(2,2,3),3*ones(2,3,3),...
 'VariableNames',{'One' 'Two' 'Three'})

T=2×3 table
 One Two Three
 ______________ ______________ ______________

 [1x1x3 double] [1x2x3 double] [1x3x3 double]
 [1x1x3 double] [1x2x3 double] [1x3x3 double]

The size of the table is 2-by-3.

Convert table T to an array.

A = table2array(T)

A =
A(:,:,1) =

 1 2 2 3 3 3
 1 2 2 3 3 3

A(:,:,2) =

 1 2 2 3 3 3
 1 2 2 3 3 3

A(:,:,3) =

 1 2 2 3 3 3
 1 2 2 3 3 3

The size of A is 2-by-6-by-3.

 table2array

1-14479

Input Arguments
T — Input table
table

Input table, specified as a table. All variables in T must have sizes and data types that are
compatible for horizontal concatenation. Specifically, the size of all variable dimensions
greater than 2 must match.

• If T is an m-byn table with variables that each have one column, then each variable
becomes one column in A, and A is an m-by-n array.

• If T contains variables that consist of more than one column, those variables become
multiple columns in A, and the size of A is greater than the size of T.

• If T contains variables with more than two dimensions, the number of dimensions of A
is the same as the number of variable dimensions.

Tips
• table2array horizontally concatenates the variables in T to create A. If the variables

in T are cell arrays, table2array does not concatenate their contents, and A is a cell
array, equivalent to table2cell(T). To create an array containing the contents of
variables that are all cell arrays, use cell2mat(table2cell(T)).

• table2array(T) is equivalent to T{:,:}.

Algorithms
If T contains variables with different data types that are compatible for horizontal
concatenation, table2array creates a homogeneous array, A, of the dominant data type.
For example, if T contains double and single numeric data, table2array(T) returns
an array with data type single.

1 Alphabetical List

1-14480

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
array2table | table | table2cell | table2struct

Topics
“Concatenating Objects of Different Classes”

Introduced in R2013b

 table2array

1-14481

table2cell
Convert table to cell array

Syntax
C = table2cell(T)

Description
C = table2cell(T) converts the table, T, to a cell array, C. Each variable in T becomes
a column of cells in C.

Examples

Convert Table to Cell Array

Create a table, T, with five rows and three variables.

T = table(categorical({'M';'M';'F';'F';'F'}),[38;43;38;40;49],...
 [124 93;109 77; 125 83; 117 75; 122 80],...
 'VariableNames',{'Gender' 'Age' 'BloodPressure'},...
 'RowNames',{'Smith' 'Johnson' 'Williams' 'Jones' 'Brown'})

T=5×3 table
 Gender Age BloodPressure
 ______ ___ _____________

 Smith M 38 124 93
 Johnson M 43 109 77
 Williams F 38 125 83
 Jones F 40 117 75
 Brown F 49 122 80

Convert T to a cell array.

1 Alphabetical List

1-14482

C = table2cell(T)

C = 5x3 cell array
 {[M]} {[38]} {1x2 double}
 {[M]} {[43]} {1x2 double}
 {[F]} {[38]} {1x2 double}
 {[F]} {[40]} {1x2 double}
 {[F]} {[49]} {1x2 double}

C is a 5-by-3 cell array.

Vertically concatenate the table property, T.Properties.VariableNames, with C to
include column headings for the cell array.

[T.Properties.VariableNames;C]

ans = 6x3 cell array
 {'Gender'} {'Age'} {'BloodPressure'}
 {[M]} {[38]} {1x2 double }
 {[M]} {[43]} {1x2 double }
 {[F]} {[38]} {1x2 double }
 {[F]} {[40]} {1x2 double }
 {[F]} {[49]} {1x2 double }

T.Properties.VariableNames is a cell array of character vectors.

Input Arguments
T — Input table
table

Input table, specified as a table.

If T is an m-byn table, then C is an m-by-n cell array.

 table2cell

1-14483

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cell2table | table | table2array | table2struct

Introduced in R2013b

1 Alphabetical List

1-14484

table2struct
Convert table to structure array

Syntax
S = table2struct(T)
S = table2struct(T,'ToScalar',true)

Description
S = table2struct(T) converts the table, T, to a structure array, S. Each variable of T
becomes a field in S. If T is an m-by-n table, then S is a m-by-1 structure array with n
fields.

S = table2struct(T,'ToScalar',true) converts the table, T, to a scalar structure
S. Each variable of T becomes a field in S. If T is a m-by-n table, then S has n fields, each
of which has m rows.

Examples

Convert Table to Structure Array

Create a table, T, with five rows and three variables.

T = table(categorical({'M';'M';'F';'F';'F'}),[38;43;38;40;49],...
 [124 93;109 77; 125 83; 117 75; 122 80],...
 'VariableNames',{'Gender' 'Age' 'BloodPressure'})

T=5×3 table
 Gender Age BloodPressure
 ______ ___ _____________

 M 38 124 93
 M 43 109 77

 table2struct

1-14485

 F 38 125 83
 F 40 117 75
 F 49 122 80

Convert T to a structure array.

S = table2struct(T)

S = 5x1 struct array with fields:
 Gender
 Age
 BloodPressure

The structure is 5-by-1, corresponding to the five rows of the table, T. The three fields of
S correspond to the three variables from T.

Display the field data for the first element of S.

S(1)

ans = struct with fields:
 Gender: M
 Age: 38
 BloodPressure: [124 93]

The information corresponds to the first row of the table.

Convert Table to Scalar Structure

Create a table, T, with five rows and three variables.

T = table(categorical({'M';'M';'F';'F';'F'}),[38;43;38;40;49],...
 [124 93;109 77; 125 83; 117 75; 122 80],...
 'VariableNames',{'Gender' 'Age' 'BloodPressure'})

T=5×3 table
 Gender Age BloodPressure
 ______ ___ _____________

 M 38 124 93

1 Alphabetical List

1-14486

 M 43 109 77
 F 38 125 83
 F 40 117 75
 F 49 122 80

Convert T to a scalar structure.

S = table2struct(T,'ToScalar',true)

S = struct with fields:
 Gender: [5x1 categorical]
 Age: [5x1 double]
 BloodPressure: [5x2 double]

The data in the fields of the scalar structure are 5-by-1, corresponding to the five rows in
the table T.

Display the data for the field BloodPressure.

S.BloodPressure

ans = 5×2

 124 93
 109 77
 125 83
 117 75
 122 80

The structure field BloodPressure contains all of the data that was in the variable of the
same name from table T.

Convert Table with Row Names to Structure

Create a table, T, that includes row names.

T = table(categorical({'M';'M';'F';'F';'F'}),[38;43;38;40;49],...
 [124 93;109 77; 125 83; 117 75; 122 80],...
 'VariableNames',{'Gender' 'Age' 'BloodPressure'},...
 'RowNames',{'Smith' 'Johnson' 'Williams' 'Jones' 'Brown'})

 table2struct

1-14487

T=5×3 table
 Gender Age BloodPressure
 ______ ___ _____________

 Smith M 38 124 93
 Johnson M 43 109 77
 Williams F 38 125 83
 Jones F 40 117 75
 Brown F 49 122 80

Convert T to a scalar structure.

S = table2struct(T,'ToScalar',true)

S = struct with fields:
 Gender: [5x1 categorical]
 Age: [5x1 double]
 BloodPressure: [5x2 double]

Add a field for the row names from the table.

S.RowNames = T.Properties.RowNames

S = struct with fields:
 Gender: [5x1 categorical]
 Age: [5x1 double]
 BloodPressure: [5x2 double]
 RowNames: {5x1 cell}

If S is a nonscalar structure, use [S.RowNames] = T.Properties.RowNames{:} to
include a field with the row names from the table.

Input Arguments
T — Input table
table

Input table, specified as a table.

1 Alphabetical List

1-14488

See Also
struct2table | table | table2array | table2cell

Introduced in R2013b

 table2struct

1-14489

table2timetable
Convert table to timetable

Syntax
TT = table2timetable(T)
TT = table2timetable(T,'RowTimes',timeVarName)
TT = table2timetable(T,'RowTimes',rowTimes)
TT = table2timetable(T,'SampleRate',Fs)
TT = table2timetable(T,'TimeStep',dt)
TT = table2timetable(___ ,'StartTime',t0)

Description
TT = table2timetable(T) converts the table T to a timetable. The first datetime or
duration variable in T becomes the vector of row times of TT. The remaining variables of
T become the variables of TT.

• If T is an M-by-N table without row names, then TT is an M-by-(N-1) timetable.
• If T is an M-by-N table with row names, then table2timetable assigns the row

names of T to a variable of TT. As a result, TT is an M-by-N timetable.

For more information on creating and using timetables, see “Timetables”.

To create a timetable from data in a text or spreadsheet file, first use the readtable
function to read the data to a table. Then convert the table to a timetable with
table2timetable.

TT = table2timetable(T,'RowTimes',timeVarName) assigns the table variable
timeVarName as the vector of row times of the output timetable. timeVarName can be
the name of any variable in T that contains datetime or duration values. The remaining
variables of T become the variables of TT.

TT = table2timetable(T,'RowTimes',rowTimes) assigns the vector rowTimes as
the vector of row times of the output timetable. All of the variables of T become variables
of TT.

1 Alphabetical List

1-14490

TT = table2timetable(T,'SampleRate',Fs) uses the sample rate Fs to calculate
regularly spaced row times. Fs is a positive numeric scalar that specifies the number of
samples per second (Hz). The first row time is zero seconds.

TT = table2timetable(T,'TimeStep',dt) uses the time step dt to calculate
regularly spaced row times. dt is a duration or calendar duration value that specifies the
length of time between consecutive row times. The first row time is zero seconds.

TT = table2timetable(___ ,'StartTime',t0) specifies start time t0, instead of
zero seconds, as the first row time. You can use this syntax when you create a regular
timetable using either the 'SampleRate' or 'TimeStep' name-value pair arguments
from either of the previous two syntaxes.

Examples

Convert Table to Timetable

Convert a table that contains dates and times to a timetable.

Read power outage data from the file outages.csv to a table. The table contains both
outage and restoration times.

T = readtable('outages.csv');
T(1:5,:)

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 'West' 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 'MidWest' 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'

Convert the table to a timetable. The first variable with times, OutageTime, becomes the
time vector of TT.

TT = table2timetable(T);
TT(1:5,:)

 table2timetable

1-14491

ans=5×6 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ ___________ ______ __________ ________________ _________________

 2002-02-01 12:18 'SouthWest' 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 2003-01-23 00:49 'SouthEast' 530.14 2.1204e+05 NaT 'winter storm'
 2003-02-07 21:15 'SouthEast' 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 2004-04-06 05:44 'West' 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 2002-03-16 06:18 'MidWest' 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'

Index into TT using row times from its time vector. You can treat the row times as labels
that specify rows.

TT('2003-02-07 21:15',:)

ans=1×6 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ ___________ _____ __________ ________________ ______________

 2003-02-07 21:15 'SouthEast' 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'

Calculate the duration of power outages. Use dot syntax to extract the row times as a
vector.

TT.OutageDuration = TT.RestorationTime - TT.OutageTime;
TT(1:5,:)

ans=5×7 timetable
 OutageTime Region Loss Customers RestorationTime Cause OutageDuration
 ________________ ___________ ______ __________ ________________ _________________ ______________

 2002-02-01 12:18 'SouthWest' 458.98 1.8202e+06 2002-02-07 16:50 'winter storm' 148:32:00
 2003-01-23 00:49 'SouthEast' 530.14 2.1204e+05 NaT 'winter storm' NaN
 2003-02-07 21:15 'SouthEast' 289.4 1.4294e+05 2003-02-17 08:14 'winter storm' 226:59:00
 2004-04-06 05:44 'West' 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault' 00:26:00
 2002-03-16 06:18 'MidWest' 186.44 2.1275e+05 2002-03-18 23:23 'severe storm' 65:05:00

1 Alphabetical List

1-14492

Specify Table Variable as Row Times

Convert a table to a timetable and specify the table variable that becomes the time vector
of the timetable.

Read power outage data from the file outages.csv to a table. The table contains both
outage and restoration times.

T = readtable('outages.csv');
T(1:5,:)

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 'West' 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 'MidWest' 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'

Convert the table to a timetable. Specify the second variable with dates and times,
RestorationTime, as the time vector of the timetable.

TT = table2timetable(T,'RowTimes','RestorationTime');
TT(1:5,:)

ans=5×6 timetable
 RestorationTime Region OutageTime Loss Customers Cause
 ________________ ___________ ________________ ______ __________ _________________

 2002-02-07 16:50 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 'winter storm'
 NaT 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 'winter storm'
 2003-02-17 08:14 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 'winter storm'
 2004-04-06 06:10 'West' 2004-04-06 05:44 434.81 3.4037e+05 'equipment fault'
 2002-03-18 23:23 'MidWest' 2002-03-16 06:18 186.44 2.1275e+05 'severe storm'

 table2timetable

1-14493

Convert Table with Separate Time Vector

Convert a table to a timetable by adding a separate time vector that contains the row
times. All the table variables become variables of the timetable.

Reading1 = [98;97.5;97.9;98.1;97.9];
Reading2 = [120;111;119;117;116];
T = table(Reading1,Reading2)

T=5×2 table
 Reading1 Reading2
 ________ ________

 98 120
 97.5 111
 97.9 119
 98.1 117
 97.9 116

Time = [seconds(1):seconds(1):seconds(5)];
TT = table2timetable(T,'RowTimes',Time)

TT=5×3 timetable
 Time Reading1 Reading2
 _____ ________ ________

 1 sec 98 120
 2 sec 97.5 111
 3 sec 97.9 119
 4 sec 98.1 117
 5 sec 97.9 116

Specify Sample Rate

Create a table.

Reading1 = [98;97.5;97.9;98.1;97.9];
Reading2 = [120;111;119;117;116];
T = table(Reading1,Reading2)

T=5×2 table
 Reading1 Reading2

1 Alphabetical List

1-14494

 ________ ________

 98 120
 97.5 111
 97.9 119
 98.1 117
 97.9 116

Specify a sample rate of 500 Hz. Convert T to a timetable using that sample rate and a
starting row time of zero seconds.

TT = table2timetable(T,'SampleRate',500)

TT=5×3 timetable
 Time Reading1 Reading2
 _________ ________ ________

 0 sec 98 120
 0.002 sec 97.5 111
 0.004 sec 97.9 119
 0.006 sec 98.1 117
 0.008 sec 97.9 116

Specify Time Step

Create a table.

Reading1 = [98;97.5;97.9;98.1;97.9];
Reading2 = [120;111;119;117;116];
T = table(Reading1,Reading2)

T=5×2 table
 Reading1 Reading2
 ________ ________

 98 120
 97.5 111
 97.9 119
 98.1 117
 97.9 116

 table2timetable

1-14495

Specify a time step of ten seconds, using the seconds function. Convert T to a timetable
using that sampling rate and a starting row time of zero seconds.

TT = table2timetable(T,'TimeStep',seconds(10))

TT=5×3 timetable
 Time Reading1 Reading2
 ________ ________ ________

 00:00:00 98 120
 00:00:10 97.5 111
 00:00:20 97.9 119
 00:00:30 98.1 117
 00:00:40 97.9 116

Specify Start Time

Create a table.

Reading1 = [98;97.5;97.9;98.1;97.9];
Reading2 = [120;111;119;117;116];
T = table(Reading1,Reading2)

T=5×2 table
 Reading1 Reading2
 ________ ________

 98 120
 97.5 111
 97.9 119
 98.1 117
 97.9 116

Convert it to a timetable by specifying a time step of ten seconds and a start time of 5
seconds.

dt = seconds(10);
t0 = seconds(5);
TT = table2timetable(T,'TimeStep',dt,'StartTime',t0)

1 Alphabetical List

1-14496

TT=5×3 timetable
 Time Reading1 Reading2
 ______ ________ ________

 5 sec 98 120
 15 sec 97.5 111
 25 sec 97.9 119
 35 sec 98.1 117
 45 sec 97.9 116

Input Arguments
T — Input table
table

Input table.

timeVarName — Name of variable from input table
character vector | string scalar

Name of a variable from the input table, specified as a character vector or a string scalar.

rowTimes — Row times assigned to output timetable
datetime vector | duration vector

Row times assigned to the output timetable, specified as a datetime vector or a duration
vector. The number of elements of rowTimes must equal the number of rows of the input
table. The time values in rowTimes do not need to be unique, sorted, or regular.

Fs — Sample rate
positive numeric scalar

Sample rate, specified as a positive numeric scalar. Fs specifies the number of samples
per second (Hz).

dt — Time step
datetime scalar | duration scalar

Time step, specified as a datetime scalar or duration scalar.

 table2timetable

1-14497

Data Types: datetime | duration | calendarDuration

t0 — Start time
datetime scalar | duration scalar

Start time, specified as a datetime scalar or duration scalar.

• If t0 is a datetime value, then the row times of TT are datetime values.
• If t0 is a duration, then the row times are durations.

If the time step dt is a calendar duration value, then t0 must be a datetime value.
Data Types: datetime | duration

Output Arguments
TT — Output timetable
timetable

Output timetable. The timetable can store metadata such as descriptions, variable units,
variable names, and row times. For more information, see the Properties sections of
timetable.

Tips
• In certain cases, you can call table2timetable with a syntax that specifies a regular

time step between row times, and yet table2timetable returns an irregular
timetable. This result occurs when you specify the time step using a calendar unit of
time and there is a row time that introduces an irregular step. For example, if you
create a timetable with a time step of one calendar month, starting on January 31,
2019, then it is irregular with respect to months.

stime = datetime(2019,1,31);
tstep = calmonths(1);
T = table([1:3]');
TT = table2timetable(T,'TimeStep',tstep,'StartTime',stime)

TT =

 3×1 timetable

1 Alphabetical List

1-14498

 Time Var1
 ___________ ____

 31-Jan-2019 1
 28-Feb-2019 2
 31-Mar-2019 3

In addition, there are other cases where irregularities are due to shifts from Daylight
Saving Time (DST) or to row times that are leap seconds. This table specifies the row
time values and time steps that can produce irregular timetables unexpectedly.

Row Time Value Time Step
Start time specified as the 29th, 30th, or
31st day of the month

Number of calendar months or quarters

Start time specified as February 29 Number of calendar years
Any row time occurring between 1:00
a.m. and 2:00 a.m. on a day shifting
from DST to standard time (when row
times are specified as datetime values
whose time zone observes DST)

Number of calendar days or months

Any row time that is a leap second
(when row times are specified as
datetime values whose time zone is the
UTCLeapSecond time zone)

Time step specified in any calendar unit
(days, weeks, months, quarters, or
years)

Compatibility Considerations
'SamplingRate' is not recommended
Not recommended starting in R2018b

The 'SamplingRate' name-value pair argument is not recommended. Use
'SampleRate' instead. The corresponding timetable property is also named
SampleRate.

For backward compatibility, you still can specify 'SamplingRate' as the name of the
name-value pair. However, the value is assigned to the SampleRate property.

 table2timetable

1-14499

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
array2timetable | isvarname | summary | timetable | uitable

Topics
“Create Timetables”
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Select Timetable Data by Row Time and Variable Type”
“Access Data in a Table”
“Tables”
“Represent Dates and Times in MATLAB”

Introduced in R2016b

1 Alphabetical List

1-14500

tail
Get bottom rows of table, timetable, or tall array

Syntax
B = tail(A)
B = tail(A,k)

Description
B = tail(A) returns the last eight rows of table or timetable A.

B = tail(A,k) returns the last k rows of A.

Examples

Preview Table

Create a table that contains 100 rows and five variables.

load patients
T = table(LastName,Gender,Age,Height,Weight);
size(T)

ans = 1×2

 100 5

Preview the last eight rows.

T2 = tail(T)

T2=8×5 table
 LastName Gender Age Height Weight

 tail

1-14501

 ___________ ________ ___ ______ ______

 'Foster' 'Female' 30 70 124
 'Gonzales' 'Male' 48 71 174
 'Bryant' 'Female' 48 66 134
 'Alexander' 'Male' 25 69 171
 'Russell' 'Male' 44 69 188
 'Griffin' 'Male' 49 70 186
 'Diaz' 'Male' 45 68 172
 'Hayes' 'Male' 48 66 177

Preview Contents of Tall Table

Create a tall table and preview the bottom few rows of data.

Create a tall table for the airlinesmall.csv data set. Select a subset of the variables
to work with. Use tail to extract the last few rows of data.

varnames = {'Year','Month','ArrDelay','DepDelay','UniqueCarrier'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames',varnames);
T = tall(ds)

T =

 Mx5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'
 : : : : :
 : : : : :

tt = tail(T)

1 Alphabetical List

1-14502

tt =

 Mx5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 ? ? ? ? ?
 ? ? ? ? ?
 ? ? ? ? ?
 : : : : :
 : : : : :

Collect the results into memory to view the data.

last_rows = gather(tt)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.4 sec

last_rows=8×5 table
 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 2008 12 14 1 'DL'
 2008 12 -8 -1 'DL'
 2008 12 1 9 'DL'
 2008 12 -8 -4 'DL'
 2008 12 15 -2 'DL'
 2008 12 -15 -1 'DL'
 2008 12 -12 1 'DL'
 2008 12 -1 11 'DL'

Retrieve Specified Number of Rows in Tall Array

Preview the last 20 rows of data in a tall table.

Create a tall table for the airlinesmall.csv data set. Select a subset of the variables
to work with, and treat 'NA' values as missing data so that datastore replaces them
with NaN values. Use tail to view the last 20 rows of data.

 tail

1-14503

varnames = {'Year','Month','ArrDelay','DepDelay','UniqueCarrier'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames',varnames);
T = tall(ds)

T =

 Mx5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 1987 10 8 12 'PS'
 1987 10 8 1 'PS'
 1987 10 21 20 'PS'
 1987 10 13 12 'PS'
 1987 10 4 -1 'PS'
 1987 10 59 63 'PS'
 1987 10 3 -2 'PS'
 1987 10 11 -1 'PS'
 : : : : :
 : : : : :

tt = tail(T,20)

tt =

 Mx5 tall table

 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 ? ? ? ? ?
 ? ? ? ? ?
 ? ? ? ? ?
 : : : : :
 : : : : :

Collect the results into memory to view the data.

b20 = gather(tt)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.4 sec

1 Alphabetical List

1-14504

b20=20×5 table
 Year Month ArrDelay DepDelay UniqueCarrier
 ____ _____ ________ ________ _____________

 2008 12 0 -4 'CO'
 2008 12 -16 13 'CO'
 2008 12 17 -3 'CO'
 2008 12 3 -5 'CO'
 2008 12 2 6 'DL'
 2008 12 6 -2 'DL'
 2008 12 37 35 'DL'
 2008 12 -1 -6 'DL'
 2008 12 39 12 'DL'
 2008 12 -3 -6 'DL'
 2008 12 -6 -1 'DL'
 2008 12 -2 1 'DL'
 2008 12 14 1 'DL'
 2008 12 -8 -1 'DL'
 2008 12 1 9 'DL'
 2008 12 -8 -4 'DL'
 ⋮

Input Arguments
A — Input array
table | timetable

Input array, specified as a table or timetable.

Data Types: table | timetable

k — Number of rows to extract
scalar

Number of rows to extract, specified as a positive scalar integer. If A has fewer than k
rows, then tail returns all of A.

 tail

1-14505

Output Arguments
B — Requested rows
table | timetable

Requested rows, returned as a table or timetable. The data type of B is the same as A.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

You can use head and tail with tall arrays of any valid underlying data type (single,
double, int8, datetime, table, and so on).

If you are unsure whether the result returned by gather(A) will fit in memory, then use
gather(head(A)) or gather(tail(A)). These commands still fully evaluate the tall
array A, but only return a small subset of the result in memory.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-14506

See Also
gather | head | summary | table | tall | timetable | topkrows

Topics
“Index and View Tall Array Elements”

Introduced in R2016b

 tail

1-14507

matlab.tall.transform
Package: matlab.tall

Transform array by applying function handle to blocks of data

Syntax
tA = matlab.tall.transform(fcn,tX)
tA = matlab.tall.transform(fcn,tX,tY,...)
[tA,tB,...] = matlab.tall.transform(fcn,tX,tY,...)
[tA,tB,...] = matlab.tall.transform(___ ,'OutputsLike',{PA,PB,...})

Description
tA = matlab.tall.transform(fcn,tX) applies the function handle fcn to each
block on page 1-14516 of array tX and returns a transformed array, tA.

tA = matlab.tall.transform(fcn,tX,tY,...) specifies several arrays tX,tY,...
that are inputs to fcn. The same rows of each array are operated on by fcn; for example,
fcn(tX(n:m,:),tY(n:m,:)). Inputs with a height of one are passed to every call of
fcn.

[tA,tB,...] = matlab.tall.transform(fcn,tX,tY,...) , where fcn is a
function that returns multiple outputs, returns arrays tA,tB,..., each corresponding to
one of the output arguments of fcn. All outputs of fcn must have the same height, and
the number of outputs must be the same as the number that are requested from
matlab.tall.transform.

[tA,tB,...] = matlab.tall.transform(___ ,'OutputsLike',{PA,PB,...})
specifies that the outputs tA,tB,... have the same data types as the prototype arrays
PA,PB,..., respectively. You can use any of the input argument combinations in previous
syntaxes.

Examples

1 Alphabetical List

1-14508

Apply Function to Tall Vector

Use matlab.tall.transform to build a tall array of zeros with attributes similar to
another array.

Create a tall table for the airlinesmall.csv data set. The data contains information
about arrival and departure times of US flights. Extract the ArrDelay variable, which is a
vector of arrival delays.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay' 'DepDelay'};
tt = tall(ds);
tX = tt.ArrDelay

tX =

 Mx1 tall double column vector

 8
 8
 21
 13
 4
 59
 3
 11
 :
 :

Write an anonymous function that creates an array of zeros with the same size and data
type as the input.

zerosLike = @(in) zeros(size(in),'like',in);

Use matlab.tall.transform to apply the zerosLike function to the vector of arrival
delays. The result is a tall vector of the same size, but whose values are all zero.

s = matlab.tall.transform(zerosLike, tX)

s =

 Mx1 tall double column vector

 0
 0

 matlab.tall.transform

1-14509

 0
 0
 0
 0
 0
 0
 :
 :

Transform Two Vectors

Calculate the mean total flight delay from vectors of arrival and departure delays.

Create a tall table for the airlinesmall.csv data set. The data contains information
about arrival and departure times of US flights. Extract the ArrDelay and DepDelay
variables, which are vectors of arrival and departure delays.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay' 'DepDelay'};
tt = tall(ds);
tX = tt.ArrDelay;
tY = tt.DepDelay;

The meanDelay function concatenates the input vectors into a matrix, sums the values in
each row (ignoring NaNs), and then it calculates the mean. Display the contents of that
function file.

type meanDelay

function D = meanDelay(a,b)
X = [a b];
Y = sum(X,2,'omitnan');
D = mean(Y);
end

Use matlab.tall.transform to apply the meanDelay function to each block of data in
tX and tY. The result is the mean total delay in each block of data.

d = matlab.tall.transform(@meanDelay, tX, tY)

d =

1 Alphabetical List

1-14510

 7x1 tall double column vector

 14.0621
 11.1639
 17.2311
 15.1852
 12.5860
 19.8596
 14.4036

This operation assumes that the result of reducing each block of data to a scalar value
can fit in memory. For extremely large data sets and data sets that use a small block size,
that assumption might not be true.

Apply Function with Multiple Outputs

Find the maximum value and the index of that value in each row of data.

Create a tall table for the airlinesmall.csv data set. The data contains information
about arrival and departure times of US flights. Extract the ArrDelay and DepDelay
variables, which are vectors of arrival and departure delays.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay' 'DepDelay'};
tt = tall(ds);
tX = tt.ArrDelay;
tY = tt.DepDelay;

The maxDelay function concatenates the input vectors, and then it finds the maximum
arrival or departure delay duration and its column index. Display the contents of that file.

type maxDelay

function [M,I] = maxDelay(A,B)
X = [A B];
[M,I] = max(X,[],2);
end

Use matlab.tall.transform to apply the maxDelay function to each block of data in
tX and tY. The result is the maximum arrival or departure delay for each row of data, as
well as an index vector indicating which column the maximum value came from. An index

 matlab.tall.transform

1-14511

of 1 indicates that the arrival delay in that row is larger, and an index of 2 indicates that
the departure delay is larger.

[M, idx] = matlab.tall.transform(@maxDelay, tX, tY)

M =

 Mx1 tall double column vector

 12
 8
 21
 13
 4
 63
 3
 11
 :
 :

idx =

 Mx1 tall double column vector

 2
 1
 1
 1
 1
 2
 1
 1
 :
 :

Output Table with Different Variables

Use the 'OutputsLike' option to return a table from matlab.tall.transform that
has different variables from the input table.

Create a tall table with two variables of random values.

1 Alphabetical List

1-14512

T = tall(table(rand(1e6,1),rand(1e6,1)))

T =

 1,000,000x2 tall table

 Var1 Var2
 _______ _______

 0.81472 0.90399
 0.90579 0.94095
 0.12699 0.80252
 0.91338 0.24205
 0.63236 0.97566
 0.09754 0.31723
 0.2785 0.81279
 0.54688 0.69743
 : :
 : :

The function tableDiff calculates the difference between two input table variables and
adds the result as a new variable in the table. Display the contents of the file.

type tableDiff

function Tout = tableDiff(Tin)
d = Tin.Var2 - Tin.Var1;
Tin.Var3 = abs(d);
Tout = Tin;
end

Use matlab.tall.transform to apply the tableDiff function to each block of data in
T. Since the output table has different variables from the input table, use the
'OutputsLike' name-value pair to supply a prototype table with similar variables as the
output (three variables with the default names Var1, Var2, and Var3).

Z = matlab.tall.transform(@tableDiff, T, 'OutputsLike', {table(1,1,1)})

Z =

 1,000,000x3 tall table

 Var1 Var2 Var3
 _______ _______ ________

 matlab.tall.transform

1-14513

 0.81472 0.90399 0.089267
 0.90579 0.94095 0.035156
 0.12699 0.80252 0.67553
 0.91338 0.24205 0.67133
 0.63236 0.97566 0.3433
 0.09754 0.31723 0.21969
 0.2785 0.81279 0.53429
 0.54688 0.69743 0.15054
 : : :
 : : :

Input Arguments
fcn — Transform function to apply
function handle | anonymous function

Transform function to apply, specified as a function handle or anonymous function. Each
output of fcn must be the same type as the first input tX. You can use the
'OutputsLike' option to return outputs of different data types. If fcn returns more
than one output, then the outputs must all have the same height.

The general functional signature of fcn is

[a, b, c, ...] = fcn(x, y, z, ...)

fcn must satisfy these requirements:

1 Input Arguments — The inputs [x, y, z, ...] are blocks of data that fit in
memory. The blocks are produced by extracting data from the respective tall array
inputs [tX, tY, tZ, ...]. The inputs [x, y, z, ...] satisfy these properties:

• All of [x, y, z, ...] have the same size in the first dimension after any
allowed expansion.

• The blocks of data in [x, y, z, ...] come from the same index in the tall
dimension, assuming the tall array is nonsingleton in the tall dimension. For
example, if tX and tY are nonsingleton in the tall dimension, then the first set of
blocks might be x = tX(1:20000,:) and y = tY(1:20000,:).

• If the first dimension of any of [tX, tY, tZ, ...] has a size of 1, then the
corresponding block [x, y, z, ...] consists of all the data in that tall array.

1 Alphabetical List

1-14514

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory,
to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b,
c, ...] satisfy these properties:

• All of [a, b, c, ...] must have the same size in the first dimension.
• All of [a, b, c, ...] are vertically concatenated with the respective results of

previous calls to fcn.
• All of [a, b, c, ...] are sent to the same index in the first dimension in their

respective destination output arrays.
3 Functional Rules — fcn must satisfy the functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the
function to the concatenation of the inputs should be the same as applying the
function to the inputs separately and then concatenating the results.

4 Empty Inputs — Ensure that fcn can handle an input that has a height of 0. Empty
inputs can occur when a file is empty or if you have done a lot of filtering on the data.

For example, this function accepts two input arrays, squares them, and returns two
output arrays:

function [xx,yy] = sqInputs(x,y)
xx = x.^2;
yy = y.^2;
end

After you save this function to an accessible folder, you can invoke the function to square
tX and tY with this command:

[tA,tB] = matlab.tall.transform(@sqInputs,tX,tY)

Example: tA = matlab.tall.transform(@(x) x .* 2, tX) specifies an
anonymous function to multiply the values in tX by 2.
Example: tC = matlab.tall.transform(@plus,tX,tY) specifies a function handle
@plus to add two arrays together.
Data Types: function_handle

tX, tY — Input arrays
scalars | vectors | matrices | multidimensional arrays

Input arrays, specified as scalars, vectors, matrices, or multidimensional arrays. The input
arrays are used as inputs to the specified function fcn. Each input array tX,tY,...

 matlab.tall.transform

1-14515

must have compatible heights. Two inputs have compatible height when they have the
same height, or when one input is of height one.

PA, PB — Prototype of output arrays
arrays

Prototype of output arrays, specified as arrays. When you specify 'OutputsLike', the
output arrays tA,tB,... returned by matlab.tall.transform have the same data
types as the specified arrays {PA,PB,...}.
Example: tA = matlab.tall.transform(fcn,tX,'OutputsLike',{int8(1)});,
where tX is a double-precision array, returns A as int8 instead of double.

Output Arguments
tA, tB — Output arrays
scalars | vectors | matrices | multidimensional arrays

Output arrays, returned as scalars, vectors, matrices, or multidimensional arrays. If any
input to matlab.tall.transform is tall, then all output arguments are also tall.
Otherwise, all output arguments are in-memory arrays.

The size and data type of the output arrays depend on the specified function fcn. In
general, the outputs tA,tB,... must all have the same data type as the first input X.
However, you can specify 'OutputsLike' to return different data types. The output
arrays tA,tB,... all have the same height.

Definitions
Tall Array Blocks
When you create a tall array from a datastore, the underlying datastore facilitates the
movement of data during a calculation. The data moves in discrete pieces called blocks or
chunks, where each block is a set of consecutive rows that can fit in memory. For
example, one block of a 2-D array (such as a table) is X(n:m,:), for some subscripts n
and m. The size of each block is based on the value of the ReadSize property of the
datastore, but the block might not be exactly that size. For the purposes of
matlab.tall.transform, a tall array is considered to be the vertical concatenation of
many such blocks:

1 Alphabetical List

1-14516

For example, if you use the sum function as the transform function, the result is the sum
per block. Therefore, instead of returning a single scalar value for the sum of the
elements, the result is a vector with length equal to the number of blocks.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay' 'DepDelay'};
tt = tall(ds);
tX = tt.ArrDelay;

 matlab.tall.transform

1-14517

f = @(x) sum(x,'omitnan');
s = matlab.tall.transform(f, tX);
s = gather(s)

s =

 140467
 101065
 164355
 135920
 111182
 186274
 21321

See Also
matlab.tall.reduce | tall

Topics
“Develop Custom Tall Array Algorithms”

Introduced in R2018b

1 Alphabetical List

1-14518

matlab.tall.reduce
Package: matlab.tall

Reduce arrays by applying reduction algorithm to blocks of data

Syntax
tA = matlab.tall.reduce(fcn,reducefcn,tX)
tA = matlab.tall.reduce(fcn,reducefcn,tX,tY,...)
[tA,tB,...] = matlab.tall.reduce(fcn,reducefcn,tX,tY,...)
[tA,tB,...] = matlab.tall.reduce(___ ,'OutputsLike',{PA,PB,...})

Description
tA = matlab.tall.reduce(fcn,reducefcn,tX) applies the function fcn to each
block on page 1-14530 of array tX to generate partial results. Then the function applies
reducefcn to the vertical concatenation of partial results repeatedly until it has one final
result, tA.

tA = matlab.tall.reduce(fcn,reducefcn,tX,tY,...) specifies several arrays
tX,tY,... that are inputs to fcn. The same rows of each array are operated on by fcn;
for example, fcn(tX(n:m,:),tY(n:m,:)). Inputs with a height of one are passed to
every call of fcn. With this syntax, fcn must return one output, and reducefcn must
accept one input and return one output.

[tA,tB,...] = matlab.tall.reduce(fcn,reducefcn,tX,tY,...) , where fcn
and reducefcn are functions that return multiple outputs, returns arrays tA,tB,...,
each corresponding to one of the output arguments of fcn and reducefcn. This syntax
has these requirements:

• fcn must return the same number of outputs as were requested from
matlab.tall.reduce.

• reducefcn must have the same number of inputs and outputs as the number of
outputs requested from matlab.tall.reduce.

• Each output of fcn and reducefcn must be the same type as the first input tX.

 matlab.tall.reduce

1-14519

• Corresponding outputs of fcn and reducefcn must have the same height.

[tA,tB,...] = matlab.tall.reduce(___ ,'OutputsLike',{PA,PB,...})
specifies that the outputs tA,tB,... have the same data types as the prototype arrays
PA,PB,..., respectively. You can use any of the input argument combinations in previous
syntaxes.

Examples

Apply Reduction Functions to Tall Vector

Create a tall table, extract a tall vector from the table, and then find the total number of
elements in the vector.

Create a tall table for the airlinesmall.csv data set. The data contains information
about arrival and departure times of US flights. Extract the ArrDelay variable, which is a
vector of arrival delays.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay' 'DepDelay'};
tt = tall(ds);
tX = tt.ArrDelay;

Use matlab.tall.reduce to count the total number of non-NaN elements in the tall
vector. The first function numel counts the number of elements in each block of data, and
the second function sum adds together all of the counts for each block to produce a scalar
result.

s = matlab.tall.reduce(@numel,@sum,tX)

s =

 MxNx... tall double array

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

Gather the result into memory.

1 Alphabetical List

1-14520

s = gather(s)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec

s = 123523

Calculate Statistics by Group

Create a tall table, then calculate the mean flight delay for each year in the data.

Create a tall table for the airlinesmall.csv data set. The data contains information
about arrival and departure times of US flights. Remove rows of missing data from the
table and extract the ArrDelay, DepDelay, and Year variables. These variables are
vectors of arrival and departure delays and of the associated years for each flight in the
data set.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay' 'DepDelay' 'Year'};
tt = tall(ds);
tt = rmmissing(tt);

Use matlab.tall.reduce to apply two functions to the tall table. The first function
combines the ArrDelay and DepDelay variables to find the total mean delay for each
flight. The function determines how many unique years are in each chunk of data, and
then cycles through each year and calculates the average total delay for flights in that
year. The result is a two-variable table containing the year and mean total delay. This
intermediate data needs to be reduced further to arrive at the mean delay per year. Save
this function in your current folder as transform_fcn.m.

type transform_fcn

function t = transform_fcn(a,b,c)
ii = gather(unique(c));

for k = 1:length(ii)
 jj = (c == ii(k));
 d = mean([a(jj) b(jj)], 2);

 if k == 1

 matlab.tall.reduce

1-14521

 t = table(c(jj),d,'VariableNames',{'Year' 'MeanDelay'});
 else
 t = [t; table(c(jj),d,'VariableNames',{'Year' 'MeanDelay'})];
 end
end

end

The second function uses the results from the first function to calculate the mean total
delay for each year. The output from reduce_fcn is compatible with the output from
transform_fcn, so that blocks of data can be concatenated in any order and continually
reduced until only one row remains for each year.

type reduce_fcn

function TT = reduce_fcn(t)
[groups,Y] = findgroups(t.Year);
D = splitapply(@mean, t.MeanDelay, groups);

TT = table(Y,D,'VariableNames',{'Year' 'MeanDelay'});
end

Apply the transform and reduce functions to the tall vectors. Since the inputs (type
double) and outputs (type table) have different data types, use the 'OutputsLike'
name-value pair to specify that the output is a table. A simple way to specify the type of
the output is to call the transform function with dummy inputs.

a = tt.ArrDelay;
b = tt.DepDelay;
c = tt.Year;
d1 = matlab.tall.reduce(@transform_fcn, @reduce_fcn, a, b, c, 'OutputsLike',{transform_fcn(0,0,0)})

d1 =

 Mx2 tall table

 Year MeanDelay
 ____ _________

 ? ?
 ? ?
 ? ?
 : :
 : :

1 Alphabetical List

1-14522

Gather the results into memory to see the mean total flight delay per year.

d1 = gather(d1)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 3.1 sec
Evaluation completed in 3.5 sec

d1=22×2 table
 Year MeanDelay
 ____ _________

 1987 7.6889
 1988 6.7918
 1989 8.0757
 1990 7.1548
 1991 4.0134
 1992 5.1767
 1993 5.4941
 1994 6.0303
 1995 8.4284
 1996 9.6981
 1997 8.4346
 1998 8.3789
 1999 8.9121
 2000 10.595
 2001 6.8975
 2002 3.4325
 ⋮

Alternative Approach

Another way to calculate the same statistics by group is to use splitapply to call
matlab.tall.reduce (rather than using matlab.tall.reduce to call splitapply).

Using this approach, you call findgroups and splitapply directly on the data. The
function mySplitFcn that operates on each group of data includes a call to
matlab.tall.reduce. The transform and reduce functions employed by
matlab.tall.reduce do not need to group the data, so those functions just perform
calculations on the pregrouped data that splitapply passes to them.

type mySplitFcn

function T = mySplitFcn(a,b,c)
T = matlab.tall.reduce(@non_group_transform_fcn, @non_group_reduce_fcn, ...

 matlab.tall.reduce

1-14523

 a, b, c, 'OutputsLike', {non_group_transform_fcn(0,0,0)});

 function t = non_group_transform_fcn(a,b,c)
 d = mean([a b], 2);
 t = table(c,d,'VariableNames',{'Year' 'MeanDelay'});
 end

 function TT = non_group_reduce_fcn(t)
 D = mean(t.MeanDelay);
 TT = table(t.Year(1),D,'VariableNames',{'Year' 'MeanDelay'});
 end

end

Call findgroups and splitapply to operate on the data and apply mySplitFcn to
each group of data.

groups = findgroups(c);
d2 = splitapply(@mySplitFcn, a, b, c, groups);
d2 = gather(d2)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.76 sec
- Pass 2 of 2: Completed in 1.6 sec
Evaluation completed in 3 sec

d2=22×2 table
 Year MeanDelay
 ____ _________

 1987 7.6889
 1988 6.7918
 1989 8.0757
 1990 7.1548
 1991 4.0134
 1992 5.1767
 1993 5.4941
 1994 6.0303
 1995 8.4284
 1996 9.6981
 1997 8.4346
 1998 8.3789
 1999 8.9121
 2000 10.595
 2001 6.8975

1 Alphabetical List

1-14524

 2002 3.4325
 ⋮

Weighted Standard Deviation and Variance of Tall Vectors

Calculate weighted standard deviation and variance of a tall array using a vector of
weights. This is one example of how you can use matlab.tall.reduce to work around
functionality that tall arrays do not support yet.

Create two tall vectors of random data. tX contains random data, and tP contains
corresponding probabilities such that sum(tP) is 1. These probabilities are suitable to
weight the data.

rng default
tX = tall(rand(1e4,1));
p = rand(1e4,1);
tP = tall(normalize(p,'scale',sum(p)));

Write an identity function that returns outputs equal to the inputs. This approach skips
the transform step of matlab.tall.reduce and passes the data directly to the
reduction step, where the reduction function is repeatedly applied to reduce the size of
the data.

type identityTransform.m

function [A,B] = identityTransform(X,Y)
 A = X;
 B = Y;
end

Next, write a reduction function that operates on blocks of the tall vectors to calculate the
weighted variance and standard deviation.

type weightedStats.m

function [wvar, wstd] = weightedStats(X, P)
 wvar = var(X,P);
 wstd = std(X,P);
end

Use matlab.tall.reduce to apply these functions to the blocks of data in the tall
vectors.

 matlab.tall.reduce

1-14525

[tX_var_weighted, tX_std_weighted] = matlab.tall.reduce(@identityTransform, @weightedStats, tX, tP)

tX_var_weighted =

 tall double

 0.0832

tX_std_weighted =

 tall double

 0.2885

Input Arguments
fcn — Transform function to apply
function handle | anonymous function

Transform function to apply, specified as a function handle or anonymous function. Each
output of fcn must be the same type as the first input tX. You can use the
'OutputsLike' option to return outputs of different data types. If fcn returns more
than one output, then the outputs must all have the same height.

The general functional signature of fcn is

[a, b, c, ...] = fcn(x, y, z, ...)

fcn must satisfy these requirements:

1 Input Arguments — The inputs [x, y, z, ...] are blocks of data that fit in
memory. The blocks are produced by extracting data from the respective tall array
inputs [tX, tY, tZ, ...]. The inputs [x, y, z, ...] satisfy these properties:

• All of [x, y, z, ...] have the same size in the first dimension after any
allowed expansion.

• The blocks of data in [x, y, z, ...] come from the same index in the tall
dimension, assuming the tall array is nonsingleton in the tall dimension. For
example, if tX and tY are nonsingleton in the tall dimension, then the first set of
blocks might be x = tX(1:20000,:) and y = tY(1:20000,:).

1 Alphabetical List

1-14526

• If the first dimension of any of [tX, tY, tZ, ...] has a size of 1, then the
corresponding block [x, y, z, ...] consists of all the data in that tall array.

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory,
to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b,
c, ...] satisfy these properties:

• All of [a, b, c, ...] must have the same size in the first dimension.
• All of [a, b, c, ...] are vertically concatenated with the respective results of

previous calls to fcn.
• All of [a, b, c, ...] are sent to the same index in the first dimension in their

respective destination output arrays.
3 Functional Rules — fcn must satisfy the functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the
function to the concatenation of the inputs should be the same as applying the
function to the inputs separately and then concatenating the results.

4 Empty Inputs — Ensure that fcn can handle an input that has a height of 0. Empty
inputs can occur when a file is empty or if you have done a lot of filtering on the data.

For example, this function accepts two input arrays, squares them, and returns two
output arrays:

function [xx,yy] = sqInputs(x,y)
xx = x.^2;
yy = y.^2;
end

After you save this function to an accessible folder, you can invoke the function to square
tX and tY and find the maximum value with this command:

tA = matlab.tall.reduce(@sqInputs, @max, tX, tY)

Example: tC = matlab.tall.reduce(@numel,@sum,tX,tY) finds the number of
elements in each block, and then it sums the results to count the total number of
elements.
Data Types: function_handle

reducefcn — Reduction function to apply
function handle | anonymous function

Reduction function to apply, specified as a function handle or anonymous function. Each
output of reducefcn must be the same type as the first input tX. You can use the

 matlab.tall.reduce

1-14527

'OutputsLike' option to return outputs of different data types. If reducefcn returns
more than one output, then the outputs must all have the same height.

The general functional signature of reducefcn is

[rA, rB, rC, ...] = reducefcn(a, b, c, ...)

reducefcn must satisfy these requirements:

1 Input Arguments — The inputs [a, b, c, ...] are blocks that fit in memory. The
blocks of data are either outputs returned by fcn, or a partially reduced output from
reducefcn that is being operated on again for further reduction. The inputs [a, b,
c, ...] satisfy these properties:

• The inputs [a, b, c, ...] have the same size in the first dimension.
• For a given index in the first dimension, every row of the blocks of data [a, b,

c, ...] either originates from the input, or originates from the same previous
call to reducefcn.

• For a given index in the first dimension, every row of the inputs [a, b, c, ...]
for that index originates from the same index in the first dimension.

2 Output Arguments — All outputs [rA, rB, rC, ...] must have the same size in
the first dimension. Additionally, they must be vertically concatenable with the
respective inputs [a, b, c, ...] to allow for repeated reductions when necessary.

3 Functional Rules — reducefcn must satisfy these functional rules (up to roundoff
error):

• F(input) == F(F(input)): Applying the function repeatedly to the same
inputs should not change the result.

• F([input1; input2]) == F([input2; input1]): The result should not
depend on the order of concatenation.

• F([input1; input2]) == F([F(input1); F(input2)]): Applying the
function once to the concatenation of some intermediate results should be the
same as applying it separately, concatenating, and applying it again.

4 Empty Inputs — Ensure that reducefcn can handle an input that has a height of 0.
Empty inputs can occur when a file is empty or if you have done a lot of filtering on
the data. For this call, all input blocks are empty arrays of the correct type and size in
dimensions beyond the first.

Some examples of suitable reduction functions are all of the built-in dimension reduction
functions such as sum, mean, max, and so on. These functions can work on intermediate

1 Alphabetical List

1-14528

results produced by fcn and return a single scalar. The order in which concatenations
occur does not change the final answer.
Example: tC = matlab.tall.reduce(@numel,@sum,tX,tY) finds the number of
elements in each block, and then it sums the results to count the total number of
elements.
Data Types: function_handle

tX, tY — Input arrays
scalars | vectors | matrices | multidimensional arrays

Input arrays, specified as scalars, vectors, matrices, or multidimensional arrays. The input
arrays are used as inputs to the transform function fcn. Each input array tX,tY,...
must have compatible heights. Two inputs have compatible height when they have the
same height, or when one input is of height one.

PA, PB — Prototype of output arrays
arrays

Prototype of output arrays, specified as arrays. When you specify 'OutputsLike', the
output arrays tA,tB,... returned by matlab.tall.reduce have the same data types
and attributes as the specified arrays {PA,PB,...}.
Example: tA = matlab.tall.reduce(fcn,reducefcn,tX,'OutputsLike',
{int8(1)});, where tX is a double-precision tall array, returns tA as int8 instead of
double.

Output Arguments
tA, tB — Output arrays
scalars | vectors | matrices | multidimensional arrays

Output arrays, returned as scalars, vectors, matrices, or multidimensional arrays. If any
input to matlab.tall.reduce is tall, then all output arguments are also tall. Otherwise,
all output arguments are in-memory arrays.

The size and data type of the output arrays depend on the specified functions fcn and
reducefcn. In general, the outputs tA,tB,... must all have the same data type as the
first input tX. However, you can specify 'OutputsLike' to return different data types.
The output arrays tA,tB,... all have the same height.

 matlab.tall.reduce

1-14529

Definitions

Tall Array Blocks
When you create a tall array from a datastore, the underlying datastore facilitates the
movement of data during a calculation. The data moves in discrete pieces called blocks or
chunks, where each block is a set of consecutive rows that can fit in memory. For
example, one block of a 2-D array (such as a table) is X(n:m,:), for some subscripts n
and m. The size of each block is based on the value of the ReadSize property of the
datastore, but the block might not be exactly that size. For the purposes of
matlab.tall.reduce, a tall array is considered to be the vertical concatenation of
many such blocks:

1 Alphabetical List

1-14530

For example, if you use the sum function as the transform function, the intermediate
result is the sum per block. Therefore, instead of returning a single scalar value for the
sum of the elements, the result is a vector with length equal to the number of blocks.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay' 'DepDelay'};
tt = tall(ds);
tX = tt.ArrDelay;

 matlab.tall.reduce

1-14531

f = @(x) sum(x,'omitnan');
s = matlab.tall.reduce(f, @(x) x, tX);
s = gather(s)

s =

 140467
 101065
 164355
 135920
 111182
 186274
 21321

See Also
matlab.tall.transform | tall

Topics
“Develop Custom Tall Array Algorithms”

Introduced in R2018b

1 Alphabetical List

1-14532

matlab.tall.movingWindow
Package: matlab.tall

Apply moving window function to blocks of data

Syntax
tA = matlab.tall.movingWindow(fcn,window,tX)
[tA,tB,...] = matlab.tall.movingWindow(fcn,window,tX,tY,...)
[___] = matlab.tall.movingWindow(___ ,Name,Value)

Description
tA = matlab.tall.movingWindow(fcn,window,tX) applies the function fcn once
per window as the window moves over the first dimension of tX. The output tA is the
vertical concatenation of the results of applying fcn to each window.

[tA,tB,...] = matlab.tall.movingWindow(fcn,window,tX,tY,...), where
fcn is a function handle that returns multiple outputs, returns arrays tA,tB,..., each
corresponding to one of the output arguments of fcn. The inputs to fcn are windows of
data from the arguments tX, tY, This syntax has these requirements:

• fcn must return the same number of outputs as were requested from
matlab.tall.movingWindow.

• Each output of fcn must be the same type as the first data input tX.
• All outputs tA,tB,... must have the same height.

[___] = matlab.tall.movingWindow(___ ,Name,Value) specifies additional
options with one or more name-value pair arguments using any of the previous syntaxes.
For example, to adjust the step size between windows, you can specify 'Stride' and a
scalar. Or to change the treatment of endpoints where there are not enough elements to
complete a window, you can specify 'EndPoints' and a valid option ('shrink',
'discard', or a numeric padding value).

 matlab.tall.movingWindow

1-14533

Examples

Moving Window Calculation with Tall Array

Use matlab.tall.movingWindow to calculate the moving median of airline arrival and
departure delays.

Create a datastore for the airlinesmall.csv data set and convert it into a tall array.
The data contains information about arrival and departure times of US flights. Extract the
ArrDelay and DepDelay variables, which are vectors of flight delays, to create a tall
array containing the delays as separate columns.

varnames = {'ArrDelay', 'DepDelay'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
 'SelectedVariableNames', varnames);
tt = tall(ds);
tX = [tt.ArrDelay tt.DepDelay]

tX =

 Mx2 tall double matrix

 8 12
 8 1
 21 20
 13 12
 4 -1
 59 63
 3 -2
 11 -1
 : :
 : :

Use matlab.tall.movingWindow to calculate the moving median of the data in the first
dimension. Use a window size of 5,000.

fcn = @(x) median(x,1,'omitnan');
tA = matlab.tall.movingWindow(fcn,5000,tX)

tA =

 MxNx... tall double array

1 Alphabetical List

1-14534

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

Gather the unique rows of the result into memory.

tA = gather(unique(tA,'rows'))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.6 sec
- Pass 2 of 2: Completed in 1 min 15 sec
Evaluation completed in 1 min 17 sec

tA = 31×2

 -4.0000 -2.0000
 -3.5000 -2.0000
 -3.0000 -2.0000
 -3.0000 -1.5000
 -3.0000 -1.0000
 -3.0000 -0.5000
 -3.0000 0
 -2.5000 -1.0000
 -2.5000 0
 -2.0000 -1.0000
 ⋮

Apply Window Function with Multiple Outputs

Use matlab.tall.movingWindow to apply a function with multiple outputs to windows
of data.

Create a tall array from an in-memory random matrix.

X = rand(1000,5);
tX = tall(X)

tX =

 matlab.tall.movingWindow

1-14535

 1,000x5 tall double matrix

 0.8147 0.6312 0.7449 0.3796 0.4271
 0.9058 0.3551 0.8923 0.3191 0.9554
 0.1270 0.9970 0.2426 0.9861 0.7242
 0.9134 0.2242 0.1296 0.7182 0.5809
 0.6324 0.6525 0.2251 0.4132 0.5403
 0.0975 0.6050 0.3500 0.0986 0.7054
 0.2785 0.3872 0.2871 0.7346 0.0050
 0.5469 0.1422 0.9275 0.6373 0.7825
 : : : : :
 : : : : :

Create a function that finds the sum, mean, median, and mode of each window of data in
the first dimension. Each output needs to have the same size in the first dimension, but
the other dimensions can have different sizes. For each window of data, the sum
calculation produces a scalar, while the other calculations produce 1-by-N vectors.

Save the function in your local workspace.

function [S,mn,mdn,md] = mystats(X)
 S = sum(X,[2 1]);
 mn = mean(X,1);
 mdn = median(X,1);
 md = mode(X,1);
end

Note: This function is included at the end of the example as a local function.

Use matlab.tall.movingWindow to apply the mystats function to the data with a
window size of 250. Specify four output arguments to return all of the outputs from
mystats. Use the 'EndPoints' name-value pair to discard incomplete windows.

[tS,tmn,tmdn,tmd] = matlab.tall.movingWindow(@mystats, 250, tX, 'EndPoints', 'discard')

tS =

 751x1 tall double column vector

 631.7095
 630.8637
 630.1174
 629.4130
 629.4731

1 Alphabetical List

1-14536

 630.1447
 630.6657
 631.5536
 :
 :

tmn =

 751x5 tall double matrix

 0.4910 0.5113 0.5289 0.4968 0.4987
 0.4916 0.5100 0.5265 0.4973 0.4980
 0.4902 0.5107 0.5253 0.4976 0.4967
 0.4918 0.5107 0.5246 0.4939 0.4967
 0.4890 0.5126 0.5274 0.4925 0.4964
 0.4885 0.5134 0.5294 0.4917 0.4976
 0.4906 0.5127 0.5317 0.4922 0.4956
 0.4922 0.5130 0.5325 0.4925 0.4960
 : : : : :
 : : : : :

tmdn =

 751x5 tall double matrix

 0.4793 0.5321 0.5472 0.4890 0.4953
 0.4793 0.5289 0.5417 0.4920 0.4953
 0.4793 0.5321 0.5417 0.4920 0.4953
 0.4861 0.5321 0.5417 0.4890 0.4953
 0.4793 0.5349 0.5472 0.4854 0.4953
 0.4793 0.5349 0.5553 0.4854 0.4953
 0.4861 0.5321 0.5633 0.4854 0.4912
 0.4877 0.5321 0.5633 0.4854 0.4912
 : : : : :
 : : : : :

tmd =

 751x5 tall double matrix

 0.0046 0.0098 0.0058 0.0018 0.0002

 matlab.tall.movingWindow

1-14537

 0.0046 0.0098 0.0058 0.0018 0.0002
 0.0046 0.0098 0.0058 0.0018 0.0002
 0.0046 0.0098 0.0058 0.0018 0.0002
 0.0046 0.0098 0.0058 0.0018 0.0002
 0.0046 0.0098 0.0058 0.0018 0.0002
 0.0046 0.0098 0.0058 0.0018 0.0002
 0.0046 0.0098 0.0058 0.0018 0.0002
 : : : : :
 : : : : :

function [S,mn,mdn,md] = mystats(X)
 S = sum(X,[2 1]);
 mn = mean(X,1);
 mdn = median(X,1);
 md = mode(X,1);
end

Input Arguments
fcn — Window function to apply
function handle | anonymous function

Window function to apply, specified as a function handle or anonymous function. Each
output of fcn must be the same type as the first input tX. You can use the
'OutputsLike' option to return outputs of different data types.

The general functional signature of fcn is

[a, b, c, ...] = fcn(x, y, z, ...)

fcn must satisfy these requirements:

1 Input Arguments — The inputs [x, y, z, ...] are blocks of data that fit in
memory. The blocks are produced by extracting data from the respective tall array
inputs [tX, tY, tZ, ...]. The inputs [x, y, z, ...] satisfy these properties:

• All of the inputs [x, y, z, ...] have the same size in the first dimension after
any allowed expansion.

• The blocks of data in [x, y, z, ...] come from the same index in the tall
dimension, assuming the tall array is nonsingleton in the tall dimension. For
example, if tX and tY are nonsingleton in the tall dimension, then the first set of
blocks might be x = tX(1:20000,:) and y = tY(1:20000,:).

1 Alphabetical List

1-14538

• When the first dimension of any of [tX, tY, tZ, ...] has a size of 1, the
corresponding block [x, y, z, ...] consists of all the data in that tall array.

• Applying fcn must result in a reduction of the input data to a scalar or a slice of
an array of height 1.

When the input is a matrix, N-D array, table, or timetable, applying fcn must
result in a reduction of the input data in each of its columns or variables.

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory,
to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b,
c, ...] satisfy these properties:

• All of the outputs [a, b, c, ...] must have the same size in the first
dimension.

• All of the outputs [a, b, c, ...] are vertically concatenated with the
respective results of previous calls to fcn.

• All of the outputs [a, b, c, ...] are sent to the same index in the first
dimension in their respective destination output arrays.

3 Functional Rules — fcn must satisfy the functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the
function to the concatenation of the inputs should be the same as applying the
function to the inputs separately and then concatenating the results.

4 Empty Inputs — Ensure that fcn can handle an input that has a height of 0. Empty
inputs can occur when a file is empty or if you have done a lot of filtering on the data.

For example, this function calculates the mean and standard deviation of the elements in
a window and returns two output arrays:

function [mv,sd] = movstats(tX)
mv = mean(tX,1,'omitnan');
sd = std(tX,1,'omitnan');
end

After you save this function to an accessible folder, you can invoke the function with a
window size of 5 using this command:

[tA,tB] = matlab.tall.movingWindow(@movstats,5,tX)

Example: tA = matlab.tall.movingWindow(@(x) std(x,1,'omitnan'), tX)
specifies an anonymous function to calculate the standard deviation of each window,
ignoring NaNs.

 matlab.tall.movingWindow

1-14539

Example: tA = matlab.tall.movingWindow(@mean,3,tX) specifies a function
handle @mean to calculate the mean value of each three-element window.
Data Types: function_handle

window — Window size
positive integer scalar | two-element row vector

Window size, specified as a positive integer scalar or a two-element row vector [NB NF].

• If window is a scalar, then:

• When the window size is odd, each window is centered on the corresponding
element in the data.

• When the window size is even, each window is centered about the current and
previous elements.

• If window is a vector [NB NF], then the window includes the previous NB elements,
the current element, and the next NF elements of the inputs.

1 Alphabetical List

1-14540

By default, the window size is automatically truncated at the endpoints when not enough
elements are available to fill the window. When the window is truncated in this manner,
the function operates only on the elements that fill the window. You can change this
behavior with the EndPoints name-value pair.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

tX, tY — Input arrays (as separate arguments)
scalars | vectors | matrices | multidimensional arrays | tables | timetables

Input arrays, specified as separate arguments of scalars, vectors, matrices,
multidimensional arrays, tables, or timetables. The input arrays can be tall or in-memory
arrays. The input arrays are used as inputs to the transform function fcn. Each input
array tX,tY,... must have compatible heights. Two inputs have compatible height
when they have the same height, or when one input is of height 1.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tA = matlab.tall.movingWindow(@myFcn, window, tX, 'Stride',
2)

Stride — Step size between windows
1 (default) | positive integer scalar

Step size between windows, specified as the comma-separated pair consisting of
'Stride' and a positive integer scalar. After fcn operates on a window of data, the
calculation advances by the 'Stride' value before operating on the next window.

 matlab.tall.movingWindow

1-14541

Increasing the value of 'Stride' from the default value of 1 is the same as reducing the
size of the output by picking out every other element, or every third element, and so on.

By default, the value of 'Stride' is 1, so that each window is centered on each element
in the input. For example, here is a moving sum calculation with a window size of 3
operating on the vector [1 2 3 4 5 6]':

If the value of 'Stride' is 2, then the calculation changes so that each window is
centered on every second element in the input (1, 3, 5). The moving sum now returns
three partial sums rather than six:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

EndPoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | padding value

1 Alphabetical List

1-14542

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'EndPoints' and one of the values in the table.

At the beginning and end of a windowed calculation, the window of elements being
operated on is incomplete. The 'EndPoints' option specifies how to treat these
incomplete windows.

'EndPoints' Value Description Example: Moving Sum
'shrink' Shrink the window size near

the endpoints of the input to
include only existing
elements.

'discard' Do not output any results
where the window does not
completely overlap with
existing elements.

 matlab.tall.movingWindow

1-14543

'EndPoints' Value Description Example: Moving Sum
Numeric or logical padding
value

Substitute nonexisting
elements with a specified
numeric or logical value.

• The padding value must
have the same type as
tX.

• The size of the padding
value in the first
dimension must be equal
to 1, and the size in other
dimensions must match
tX.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

OutputsLike — Prototype of output arrays
cell array

Prototype of output arrays, specified as the comma-separated pair consisting of
'OutputsLike' and a cell array containing prototype arrays. When you specify
'OutputsLike', the output arrays tA,tB,... returned by
matlab.tall.movingWindow have the same data types and attributes as the specified
prototype arrays {PA,PB,...}. You must specify 'OutputsLike' whenever the data
type of an output array is different than that of the input array. If you specify
'OutputsLike', then you must specify a prototype array for each output.
Example: tA = matlab.tall.movingWindow(..., tX, 'OutputsLike',
{int8(1)});, where tX is a double-precision tall array, returns tA as int8 instead of
double.
Data Types: cell

Output Arguments
tA, tB — Output arrays
scalars | vectors | matrices | multidimensional arrays

1 Alphabetical List

1-14544

Output arrays, returned as scalars, vectors, matrices, or multidimensional arrays. If any
input to matlab.tall.movingWindow is tall, then all output arguments are also tall.
Otherwise, all output arguments are in-memory arrays.

• The size and data type of the output arrays depend on the specified window function
fcn.

• In general, the outputs tA,tB,... must all have the same data type as the first input
tX. However, you can specify 'OutputsLike' to return different data types.

• The output arrays tA,tB,... all have the same height, which depends on the value of
'Stride' and 'EndPoints'. By default the output arrays are the same size as the
input arrays.

Tips
• Use matlab.tall.movingWindow for simple sliding-window calculations.

matlab.tall.blockMovingWindow is an advanced API designed to provide more
flexibility to perform sliding-window calculations on tall arrays. As such, it is more
complicated to use since the functions must accurately process blocks of data that
contain many complete windows. However, with properly vectorized calculations, you
can reduce the necessary number of function calls and improve performance.

See Also
matlab.tall.blockMovingWindow | tall

Topics
“Develop Custom Tall Array Algorithms”

Introduced in R2019a

 matlab.tall.movingWindow

1-14545

matlab.tall.blockMovingWindow
Package: matlab.tall

Apply moving window function and block reduction to padded blocks of data

Syntax
tA = matlab.tall.blockMovingWindow(windowfcn,blockfcn,window,tX)
[tA,tB,...] = matlab.tall.blockMovingWindow(windowfcn,blockfcn,
window,tX,tY,...)
[___] = matlab.tall.blockMovingWindow(___ ,Name,Value)

Description
tA = matlab.tall.blockMovingWindow(windowfcn,blockfcn,window,tX)
applies blockfcn to complete windows of data and windowfcn to incomplete windows of
data near the edges. window specifies the size of the sliding window. The result contains
the vertical concatenation of applying blockfcn and windowfcn to these windows of
data.

[tA,tB,...] = matlab.tall.blockMovingWindow(windowfcn,blockfcn,
window,tX,tY,...), where windowfcn and blockfcn are function handles that
return multiple outputs, returns arrays tA, tB, ..., each corresponding to one of the
output arguments of windowfcn and blockfcn. The inputs to windowfcn and
blockfcn are pieces of data from the arguments tX, tY, This syntax has these
requirements:

• windowfcn and blockfcn must return the same number of outputs as were
requested from matlab.tall.blockMovingWindow.

• Each output of windowfcn and blockfcn must be the same type as the first data
input tX.

• All outputs tA,tB,... must have the same height.

[___] = matlab.tall.blockMovingWindow(___ ,Name,Value) specifies
additional options with one or more name-value pair arguments using any of the previous

1 Alphabetical List

1-14546

syntaxes. For example, to adjust the step size between windows, you can specify
'Stride' and a scalar. Or to change the treatment of endpoints where there are not
enough elements to complete a window, you can specify 'EndPoints' and a valid option
('shrink', 'discard', or a numeric padding value).

Examples

Moving Window Calculation with Tall Array

Use matlab.tall.blockMovingWindow to calculate the moving mean of airline arrival
and departure delays.

Create a datastore for the airlinesmall.csv data set and convert it into a tall array.
The data contains information about arrival and departure times of US flights. Extract the
ArrDelay and DepDelay variables, which are vectors of flight delays, to create a tall
array containing the delays as separate columns.

varnames = {'ArrDelay', 'DepDelay'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
 'SelectedVariableNames', varnames);
tt = tall(ds);
tX = [tt.ArrDelay tt.DepDelay]

tX =

 Mx2 tall double matrix

 8 12
 8 1
 21 20
 13 12
 4 -1
 59 63
 3 -2
 11 -1
 : :
 : :

Use matlab.tall.blockMovingWindow to calculate the moving mean of the data in
the first dimension with a window size of 10. Since windowfcn applies only to single
windows of data, you can use the mean function to reduce the windows of data down into

 matlab.tall.blockMovingWindow

1-14547

a matrix with one row. The blockfcn applies to whole blocks of data, so use the movmean
function to calculate the mean of each full window of data in the blocks.

windowfcn = @(info,x) mean(x,1,'omitnan');
blockfcn = @(info,x) movmean(x,info.Window,1,'omitnan','EndPoints','discard');
A = matlab.tall.blockMovingWindow(windowfcn, blockfcn, 10, tX)

A =

 MxNx... tall double array

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

Gather a portion of the results into memory.

gather(A(1:10,:))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.94 sec
- Pass 2 of 2: Completed in 7.6 sec
Evaluation completed in 9 sec

ans = 10×2

 10.8000 8.8000
 18.8333 17.8333
 16.5714 15.0000
 15.8750 13.0000
 14.4444 11.8889
 13.2000 10.8000
 14.0000 11.1000
 13.5000 11.9000
 15.3000 11.4000
 19.7000 13.4000

Moving Table Statistics

Calculate moving statistics on the variables of a table.

1 Alphabetical List

1-14548

Load the outages.csv data set as a tall table. The data contains information about
power outages.

T = tall(readtable('outages.csv'))

T =

 1,468x6 tall table

 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 'SouthWest' 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 'winter storm'
 'SouthEast' 2003-01-23 00:49 530.14 2.1204e+05 NaT 'winter storm'
 'SouthEast' 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 'winter storm'
 'West' 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 'equipment fault'
 'MidWest' 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 'severe storm'
 'West' 2003-06-18 02:49 0 0 2003-06-18 10:54 'attack'
 'West' 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 'equipment fault'
 'West' 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 'equipment fault'
 : : : : : :
 : : : : : :

Use matlab.tall.blockMovingWindow to apply a moving-window function to blocks of
the tall table. Specify these options:

• blkstats as the block function to operate on complete blocks of data (included at the
end of the example as a local function).

• A window size of 50 and a stride of 5.
• EndPoints as 'discard' to ignore incomplete windows of data. With this value, the

windowfcn input can be specified as empty [] since only complete windows of data
are operated on.

• The input table has six variables, but the two outputs are double-precision vectors.
Specify prototype outputs as the value for OutputsLike so that the function permits
this change in data type and size.

info = struct('Window',1,'Stride',1);
[proto1, proto2] = blkstats(info,T);

[A, B] = matlab.tall.blockMovingWindow([], @blkstats, 50, T, 'Stride', 5, ...
 'EndPoints', 'discard', 'OutputsLike', {proto1, proto2});

Preview a few rows in the results.

 matlab.tall.blockMovingWindow

1-14549

[A,B] = gather(head(A),head(B))

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 2.3 sec

A = 8×1

 254.0861
 254.0861
 340.3499
 452.0191
 464.8524
 471.9737
 464.8524
 464.8524

B = 8×1
105 ×

 1.3447
 1.0779
 1.4227
 1.4509
 1.2888
 1.2888
 1.2308
 1.3722

The blkstats function calculates the moving median value of the Loss and Customers
table variables in the first dimension using the specified window size. The function applies
the Stride value to reduce the size of the output, and then it returns the results as two
vectors.

function [out1, out2] = blkstats(info, t)
 a = movmedian([t.Loss t.Customers], info.Window, 1, 'omitnan', 'EndPoints', 'discard');
 a = a(1:info.Stride:end, :);
 out1 = a(:,1);
 out2 = a(:,2);
end

1 Alphabetical List

1-14550

Input Arguments
windowfcn — Function to apply to incomplete windows of data
function handle | anonymous function | []

Function to apply to incomplete windows of data, specified as a function handle,
anonymous function, or []. windowfcn is invoked once per incomplete window as the
calculation moves over data in the tall dimension. matlab.tall.blockMovingWindow
applies windowfcn only when 'EndPoints' has the default value of 'shrink'. If you
specify a different value for 'EndPoints', then set windowfcn to [].

Each output of windowfcn must be the same type as the first data input tX. You can use
the 'OutputsLike' option to return outputs of different data types.

The general functional signature of windowfcn is

[a, b, c, ...] = windowfcn(info, x, y, ...)

The info input is a structure provided by matlab.tall.blockMovingWindow that
includes these fields:

• Stride — Specified step size between windows (default: 1). Set this value with the
'Stride' name-value pair.

• Window — Specified window size. Set this value with the window input argument.

windowfcn must satisfy these requirements:

1 Input Arguments — The inputs [x, y, z, ...] are blocks of data that fit in
memory. The blocks are produced by extracting data from the respective tall array
inputs [tX, tY, tZ, ...]. The inputs [x, y, z, ...] satisfy these properties:

• All of the inputs [x, y, z, ...] have the same size in the first dimension after
any allowed expansion.

• The blocks of data in [x, y, z, ...] come from the same index in the tall
dimension, assuming the tall array is nonsingleton in the tall dimension. For
example, if tX and tY are nonsingleton in the tall dimension, then the first set of
blocks might be x = tX(1:20000,:) and y = tY(1:20000,:).

• When the first dimension of any of [tX, tY, tZ, ...] has a size of 1, the
corresponding block [x, y, z, ...] consists of all the data in that tall array.

• Applying windowfcn must result in a reduction of the input data to a scalar or a
slice of an array of height 1.

 matlab.tall.blockMovingWindow

1-14551

When the input is a matrix, N-D array, table, or timetable, applying windowfcn
must result in a reduction of the input data in each of its columns or variables.

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory
to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b,
c, ...] satisfy these properties:

• All of the outputs [a, b, c, ...] must have the same size in the first
dimension.

• All of the outputs [a, b, c, ...] are vertically concatenated with the
respective results of previous calls to windowfcn.

• All of the outputs [a, b, c, ...] are sent to the same index in the first
dimension in their respective destination output arrays.

3 Functional Rules — windowfcn must satisfy this functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the
function to the concatenation of the inputs should be the same as applying the
function to the inputs separately and then concatenating the results.

4 Empty Inputs — Ensure that windowfcn can handle an input that has a height of 0.
Empty inputs can occur when a file is empty or if you have done a lot of filtering on
the data.

Example: A = matlab.tall.blockMovingWindow(@windowfcn, @blockfcn, 10,
tX)

Example: A = matlab.tall.blockMovingWindow([], @blockfcn, 10, tX,
'EndPoints', 'discard')

Data Types: function_handle

blockfcn — Function to apply to blocks of data
function handle | anonymous function

Function to apply to blocks of data, specified as a function handle or anonymous function.
blockfcn is applied to blocks of data that contain complete windows of data. Thus,
blockfcn must operate in a vectorized manner on entire blocks of data and return
output that has the proper size for the specified window size and stride.

Each output of blockfcn must be the same type as the first data input tX. You can use
the 'OutputsLike' option to return outputs of different data types.

1 Alphabetical List

1-14552

matlab.tall.blockMovingWindow applies blockfcn to blocks of data whenever the
block contains only complete windows:

• For middle blocks when 'EndPoints' is set to 'shrink' (default behavior). In this
case windowfcn operates on the incomplete windows of data on the ends.

• For all blocks when 'EndPoints' is set to 'discard' or a padding value.

The general functional signature of blockfcn is

[a, b, c, ...] = blockfcn(info, bX, bY, bZ, ...)

The info input is a structure provided by matlab.tall.blockMovingWindow that
includes these fields:

• Stride — Specified step size between windows (default: 1). Set this value with the
'Stride' name-value pair.

• Window — Specified window size. Set this value with the window input argument.

The blocks of data bX, bY, bZ, ... that matlab.tall.blockMovingWindow
provides to blockfcn have these properties:

• The blocks contain only full-sized windows. blockfcn does not have to define a
behavior for incomplete windows of data.

• The first window of data starts at the first element of the block. The last element of the
last window is the last element of the block.

blockfcn must satisfy these requirements:

1 Input Arguments — The inputs [bX, bY, bZ, ...] are blocks of data that fit in
memory. The blocks are produced by extracting data from the respective tall array
inputs [tX, tY, tZ, ...]. The inputs [bX, bY, bZ, ...] satisfy these
properties:

• All of the inputs [bX, bY, bZ, ...] have the same size in the first dimension
after any allowed expansion.

• The blocks of data in [bX, bY, bZ, ...] come from the same index in the tall
dimension, assuming the tall array is nonsingleton in the tall dimension. For
example, if tX and tY are nonsingleton in the tall dimension, then the first set of
blocks might be bX = tX(1:20000,:) and bY = tY(1:20000,:).

• If the first dimension of any of the data inputs [tX, tY, tZ, ...] has a size of
1, then the corresponding block [bX, bY, bZ, ...] consists of all the data in
that tall array.

 matlab.tall.blockMovingWindow

1-14553

• Applying blockfcn must result in a reduction of the input data such that the
result has height equal to the number of windows in the block. You can use
info.Window and info.Stride to determine the number of windows in a block.

If the input is a matrix, N-D array, table, or timetable, then applying blockfcn
must result in a reduction of the input data in each of its columns or variables.

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory,
to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b,
c, ...] satisfy these properties:

• All of the outputs [a, b, c, ...] must have the same size in the first
dimension.

• All of the outputs [a, b, c, ...] are vertically concatenated with the
respective results of previous calls to blockfcn.

• All of the outputs [a, b, c, ...] are sent to the same index in the first
dimension in their respective destination output arrays.

3 Functional Rules — blockfcn must satisfy this functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the
function to the concatenation of the inputs should be the same as applying the
function to the inputs separately and then concatenating the results.

4 Empty Inputs — Ensure that blockfcn can handle an input that has a height of 0.
Empty inputs can occur when a file is empty or if you have done a lot of filtering on
the data.

Example: A = matlab.tall.blockMovingWindow(@windowfcn, @blockfcn, 10,
tX)

Example: A = matlab.tall.blockMovingWindow([], @blockfcn, 10, tX,
'EndPoints', 'discard')

Data Types: function_handle

window — Window size
positive integer scalar | two-element row vector

Window size, specified as a positive integer scalar or a two-element row vector [NB NF].

• If window is a scalar, then:

• When the window size is odd, each window is centered on the corresponding
element in the data.

1 Alphabetical List

1-14554

• When the window size is even, each window is centered about the current and
previous elements.

• If window is a vector [NB NF], then the window includes the previous NB elements,
the current element, and the next NF elements of the inputs.

By default, the window size is automatically truncated at the endpoints when not enough
elements are available to fill the window. When the window is truncated in this manner,
the function operates only on the elements that fill the window. You can change this
behavior with the EndPoints name-value pair.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

tX, tY — Input arrays (as separate arguments)
scalars | vectors | matrices | multidimensional arrays | tables | timetables

Input arrays, specified as separate arguments of scalars, vectors, matrices,
multidimensional arrays, tables, or timetables. The input arrays can be tall or in-memory

 matlab.tall.blockMovingWindow

1-14555

arrays. The input arrays are used as inputs to the transform function fcn. Each input
array tX,tY,... must have compatible heights. Two inputs have compatible height
when they have the same height, or when one input is of height 1.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tA = matlab.tall.blockMovingWindow(@windowfcn, blockfcn,
window, tX, 'Stride', 2)

Stride — Step size between windows
1 (default) | positive integer scalar

Step size between windows, specified as the comma-separated pair consisting of
'Stride' and a positive integer scalar. After fcn operates on a window of data, the
calculation advances by the 'Stride' value before operating on the next window.
Increasing the value of 'Stride' from the default value of 1 is the same as reducing the
size of the output by picking out every other element, or every third element, and so on.

By default, the value of 'Stride' is 1, so that each window is centered on each element
in the input. For example, here is a moving sum calculation with a window size of 3
operating on the vector [1 2 3 4 5 6]':

1 Alphabetical List

1-14556

If the value of 'Stride' is 2, then the calculation changes so that each window is
centered on every second element in the input (1, 3, 5). The moving sum now returns
three partial sums rather than six:

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

EndPoints — Method to treat leading and trailing windows
'shrink' (default) | 'discard' | padding value

Method to treat leading and trailing windows, specified as the comma-separated pair
consisting of 'EndPoints' and one of the values in the table.

At the beginning and end of a windowed calculation, the window of elements being
operated on is incomplete. The 'EndPoints' option specifies how to treat these
incomplete windows.

 matlab.tall.blockMovingWindow

1-14557

'EndPoints' Value Description Example: Moving Sum
'shrink' Shrink the window size near

the endpoints of the input to
include only existing
elements.

'discard' Do not output any results
where the window does not
completely overlap with
existing elements.

Numeric or logical padding
value

Substitute nonexisting
elements with a specified
numeric or logical value.

• The padding value must
have the same type as
tX.

• The size of the padding
value in the first
dimension must be equal
to 1, and the size in other
dimensions must match
tX.

1 Alphabetical List

1-14558

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

OutputsLike — Prototype of output arrays
cell array

Prototype of output arrays, specified as the comma-separated pair consisting of
'OutputsLike' and a cell array containing prototype arrays. When you specify
'OutputsLike', the output arrays tA,tB,... returned by
matlab.tall.movingWindow have the same data types and attributes as the specified
prototype arrays {PA,PB,...}. You must specify 'OutputsLike' whenever the data
type of an output array is different than that of the input array. If you specify
'OutputsLike', then you must specify a prototype array for each output.
Example: tA = matlab.tall.blockMovingWindow(..., tX, 'OutputsLike',
{int8(1)});, where tX is a double-precision tall array, returns tA as int8 instead of
double.
Data Types: cell

Output Arguments
tA, tB — Output arrays
scalars | vectors | matrices | multidimensional arrays

Output arrays, returned as scalars, vectors, matrices, or multidimensional arrays. If any
input to matlab.tall.blockMovingWindow is tall, then all output arguments are also
tall. Otherwise, all output arguments are in-memory arrays.

• The size and data type of the output arrays depend on the specified window functions
windowfcn and blockfcn.

• In general, the outputs tA,tB,... must all have the same data type as the first data
input tX. However, you can specify 'OutputsLike' to return different data types.

• The output arrays tA,tB,... all have the same height, which depends on the value of
'Stride' and 'EndPoints'. By default the output arrays are the same size as the
input arrays.

 matlab.tall.blockMovingWindow

1-14559

Tips
• Use matlab.tall.movingWindow for simple sliding-window calculations.

matlab.tall.blockMovingWindow is an advanced API designed to provide more
flexibility to perform sliding-window calculations on tall arrays. As such, it is more
complicated to use since the functions must accurately process blocks of data that
contain many complete windows. However, with properly vectorized calculations, you
can reduce the necessary number of function calls and improve performance.

See Also
matlab.tall.movingWindow | tall

Topics
“Develop Custom Tall Array Algorithms”

Introduced in R2019a

1 Alphabetical List

1-14560

tall
Create tall array

Syntax
t = tall(ds)
t = tall(A)

Description
t = tall(ds) creates a tall array on top of datastore ds.

• If ds is a datastore for tabular data (so that the read and readall methods of
datastore return tables), then t is a tall table. Tabular data is data that is arranged in
a rectangular fashion with each row having the same number of entries.

• Otherwise, t is a tall cell array.

t = tall(A) converts the in-memory array A into a tall array. The underlying data type
of t is the same as class(A).

Examples

Create Tall Array

Convert a datastore into a tall array.

First, create a datastore for the data set. You can specify either a full or relative file
location for the data set using datastore(location) to create the datastore. The
location argument can specify:

• A single file, such as 'airlinesmall.csv'
• Several files with the same extension, such as '*.csv'

 tall

1-14561

• An entire folder of files, such as 'C:\MyData'

datastore also has several options to specify file and text format properties when you
create the datastore.

Create a datastore for the airlinesmall.csv data set. Treat 'NA' values as missing
data so that they are replaced with NaN values. Select a small subset of the variables to
work with.

varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
 'SelectedVariableNames', varnames);

Use tall to create a tall array for the data in the datastore. Since the data in ds is
tabular, the result is a tall table. If the data is not tabular, then tall creates a tall cell
array instead.

T = tall(ds)

T =

 Mx4 tall table

 ArrDelay DepDelay Origin Dest
 ________ ________ ______ _____

 8 12 'LAX' 'SJC'
 8 1 'SJC' 'BUR'
 21 20 'SAN' 'SMF'
 13 12 'BUR' 'SJC'
 4 -1 'SMF' 'LAX'
 59 63 'LAX' 'SJC'
 3 -2 'SAN' 'SFO'
 11 -1 'SEA' 'LAX'
 : : : :
 : : : :

You can use many common MATLAB® operators and functions to work with tall arrays. To
see if a function works with tall arrays, check the Extended Capabilities section at the
bottom of the function reference page.

1 Alphabetical List

1-14562

Calculate Size of Tall Array

Convert a datastore into a tall table, calculate its size using a deferred calculation, and
then perform the calculation and return the result in memory.

First, create a datastore for the airlinesmall.csv data set. Treat 'NA' values as
missing data so that they are replaced with NaN values. Set the text format of a few
columns so that they are read as a cell array of character vectors. Convert the datastore
into a tall table.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'CancellationCode')} = '%s';

T = tall(ds)

T =

 Mx29 tall table

 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay NASDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ _______ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ________ _____________ _________________

 1987 10 21 3 642 630 735 727 'PS' 1503 'NA' 53 57 NaN 8 12 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 26 1 1021 1020 1124 1116 'PS' 1550 'NA' 63 56 NaN 8 1 'SJC' 'BUR' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 23 5 2055 2035 2218 2157 'PS' 1589 'NA' 83 82 NaN 21 20 'SAN' 'SMF' 480 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 23 5 1332 1320 1431 1418 'PS' 1655 'NA' 59 58 NaN 13 12 'BUR' 'SJC' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 22 4 629 630 746 742 'PS' 1702 'NA' 77 72 NaN 4 -1 'SMF' 'LAX' 373 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 28 3 1446 1343 1547 1448 'PS' 1729 'NA' 61 65 NaN 59 63 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 8 4 928 930 1052 1049 'PS' 1763 'NA' 84 79 NaN 3 -2 'SAN' 'SFO' 447 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 10 6 859 900 1134 1123 'PS' 1800 'NA' 155 143 NaN 11 -1 'SEA' 'LAX' 954 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
 : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

The display of the tall table indicates that MATLAB® does not yet know how many rows of
data are in the table.

Calculate the size of the tall table. Since calculating the size of a tall array requires a full
pass through the data, MATLAB does not immediately calculate the value. Instead, like
most operations with tall arrays, the result is an unevaluated tall array whose values and
size are currently unknown.

s = size(T)

 tall

1-14563

s =

 1x2 tall double row vector

 ? ?

Use the gather function to perform the deferred calculation and return the result in
memory. The result returned by size is a trivially small 1-by-2 vector, which fits in
memory.

sz = gather(s)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.6 sec
Evaluation completed in 1.7 sec

sz = 1×2

 123523 29

If you use gather on an unreduced tall array, then the result might not fit in memory. If
you are unsure whether the result returned by gather can fit in memory, use
gather(head(X)) or gather(tail(X)) to bring only a small portion of the calculation
result into memory.

Convert In-Memory Array to Tall Array

Create an in-memory array of random numbers, and then convert it into a tall array.
Creating tall arrays from in-memory arrays is useful for debugging or prototyping new
programs.

A = rand(100,4);
tA = tall(A)

tA =

 100x4 tall double matrix

 0.8147 0.1622 0.6443 0.0596
 0.9058 0.7943 0.3786 0.6820
 0.1270 0.3112 0.8116 0.0424

1 Alphabetical List

1-14564

 0.9134 0.5285 0.5328 0.0714
 0.6324 0.1656 0.3507 0.5216
 0.0975 0.6020 0.9390 0.0967
 0.2785 0.2630 0.8759 0.8181
 0.5469 0.6541 0.5502 0.8175
 : : : :
 : : : :

Input Arguments
ds — Input datastore
datastore object

Input datastore, specified as a datastore object. Use the datastore function to create a
datastore object for your data set.

Tall arrays work only with datastores that are deterministic. That is, if you use read on
the datastore, reset the datastore with reset, and then read the datastore again, then
the data returned must be the same in both cases. Tall array calculations involving a
datastore that is not deterministic can produce unpredictable results. See “Select
Datastore for File Format or Application” for more information.
Example: ds = datastore('airlinesmall.csv') specifies a single file.
Example: ds = datastore('*.csv') specifies a collection of .csv files.
Example: ds = datastore('C:\MyData') specifies a folder of files.
Example: ds = datastore('hdfs:///data/') specifies a data set in an HDFS file
system.

A — In-memory variable
array

In-memory variable, specified as an array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | table | string | cell | categorical | datetime |
duration | calendarDuration
Complex Number Support: Yes

 tall

1-14565

Output Arguments
t — Tall array
array

Tall array.

• When converting a datastore, t is a tall table for tabular datastores. Otherwise, t is a
tall cell array.

• When converting an in-memory array, the underlying data type of t is the same as
class(A).

Tips
• See “Extend Tall Arrays with Other Products” for information on how to use tall arrays

with:

• Statistics and Machine Learning Toolbox
• Parallel Computing Toolbox
• MATLAB Parallel Server
• Database Toolbox
• MATLAB Compiler

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

If you have Parallel Computing Toolbox installed, then when you use tall, MATLAB
automatically opens a parallel pool of workers on your local machine. MATLAB runs the

1 Alphabetical List

1-14566

computations across the available workers. Control parallel behavior with the parallel
preferences, including scaling up to a cluster.

For details, see “Use Tall Arrays on a Parallel Pool” (Parallel Computing Toolbox).

See Also
classUnderlying | datastore | gather | isaUnderlying | istall | mapreducer |
topkrows | write

Topics
“Tall Arrays”
“Deferred Evaluation of Tall Arrays”
“Visualization of Tall Arrays”

Introduced in R2016b

 tall

1-14567

tallrng
Control random number generation for tall arrays

Syntax
tallrng('default')
tallrng('shuffle')
tallrng(seed)
tallrng(seed,generator)
tallrng('shuffle',generator)
state = tallrng
tallrng(state)

Description
tallrng('default') puts the settings of the random number generator used in tall
array calculations to their default values. The random numbers produced are the same as
if you restart MATLAB.

tallrng('shuffle') sets the seed of the random number generator based on the
current time. Use this syntax when you want different sequences of random numbers
each time they are generated.

tallrng(seed) sets the starting point, or seed, of the random number generator. Use
this syntax when you want to produce predictable sequences of numbers.

tallrng(seed,generator) or tallrng('shuffle',generator) selects the random
number generator. For example, tallrng(0,'mlfg6331_64').

state = tallrng returns the current state of the random number generator as a
structure. Use the structure to restore the random number generator to the captured
state at a later time with tallrng(state).

tallrng(state) restores the state of the random number generator using settings
previously captured with state = tallrng.

1 Alphabetical List

1-14568

Examples

Capture and Restore Generator Settings

Capture the generator settings, generate an array of random numbers, and then restore
the generator to the initial settings to create predictable arrays of random numbers.

Save the current state of the random number generator.

state = tallrng

state = struct with fields:
 Type: 'threefry'
 Seed: 0
 StreamIndex: 1
 Substream: 1

Create a tall array of random numbers using arrayfun.

t = tall(zeros(10,1));
n1 = arrayfun(@(x) x+randn, t)

n1 =

 10x1 tall double column vector

 -0.3479
 0.1057
 0.3969
 0.6544
 -1.8228
 0.9587
 0.5360
 -0.5779
 :
 :

Restore the generator to the previous state and regenerate the array of random numbers.
The two arrays n1 and n2 are equal.

tallrng(state)
n2 = arrayfun(@(x) x+randn, t)

 tallrng

1-14569

n2 =

 10x1 tall double column vector

 -0.3479
 0.1057
 0.3969
 0.6544
 -1.8228
 0.9587
 0.5360
 -0.5779
 :
 :

Input Arguments
seed — Random number seed
nonnegative integer

Random number seed, specified as a nonnegative integer. The seed specifies the starting
point for the algorithm to generate random numbers. Specify the seed when you want
reproducible results.

The maximum value of the seed is 232-1.
Example: tallrng(3)

generator — Random number generator
'threefry' (default) | 'multFibonacci' | 'philox' | 'combRecursive'

Random number generator, specified as one of the random number generators in this
table. You can specify the regular or convenience name.

Name Convenience Name Description
'threefry4x64_20'
(default)

'threefry' Threefry 4x64 generator
with 20 rounds

'mrg32k3a' 'combRecursive' Combined multiple
recursive generator

1 Alphabetical List

1-14570

Name Convenience Name Description
'mlfg6331_64' 'multFibonacci' Multiplicative lagged

Fibonacci generator
'philox4x32_10' 'philox' Philox 4x32 generator with

10 rounds

tallrng supports random number generators that have multiple stream and substream
support. See “Choosing a Random Number Generator” for a complete list of available
generators in MATLAB.
Example: tallrng(0,'mlfg6331_64')

state — Previous random number generator state
structure

Previous random number generator state, specified as a structure previously created
using state = tallrng.
Example: state = tallrng captures the current state of the random number generator,
and tallrng(state) restores the generator to those settings.
Data Types: struct

Output Arguments
state — Random number generator state
structure

Random number generator state, returned as a structure with these fields.

Field Description Example Value
Type Type of random number

generator
'threefry'

Seed Number indicating the
starting point for the
algorithm (for
reproducibility)

0

 tallrng

1-14571

Field Description Example Value
StreamIndex Index indicating the

associated global stream
1

Substream Index indicating the
associated substream

1

Example: state = tallrng captures the current state of the random number generator,
and tallrng(state) restores the generator to those settings.
Data Types: struct

Tips
• If you have Statistics and Machine Learning Toolbox, then tallrng controls the

random numbers that functions such as datasample, cvpartition, and
TreeBagger generate during tall array calculations.

Compatibility Considerations

Default random number generator change for tallrng
Behavior changed in R2019a

Starting in R2019a, the default random number generator for tallrng is threefry. This
generator offers performance enhancements for parallel calculations over the old default.
In releases up to R2018b, the default random number generator for tallrng was
combRecursive.

With a different default generator, MATLAB will generate different sequences of random
numbers by default in the context of tall arrays. However, the statistics of these
calculations will remain unaffected. Therefore, you should update any code that relies on
the specific random numbers being generated. However, most calculations on the random
numbers should be unaffected.

To set the generator to the settings used by default in R2018b and earlier releases, use
the command:

tallrng(0,'combRecursive')

1 Alphabetical List

1-14572

See Also
rng | tall

Introduced in R2017b

 tallrng

1-14573

tan
Tangent of argument in radians

Syntax
Y = tan(X)

Description
Y = tan(X) returns the tangent of each element of X. The tan function operates
element-wise on arrays. The function accepts both real and complex inputs.

• For real values of X, tan(X) returns real values in the interval [-∞, ∞].
• For complex values of X, tan(X) returns complex values.

Examples

Plot Tangent Function

Plot the tangent function over the domain −π/2 ≤ x ≤ π/2 .

x = (-pi/2)+0.01:0.01:(pi/2)-0.01;
plot(x,tan(x)), grid on

1 Alphabetical List

1-14574

Tangent of Vector of Complex Angles

Calculate the tangent of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = tan(x)

y = 1×3 complex

 0.0000 - 0.7616i -0.0000 + 0.9172i -0.0006 + 1.0003i

 tan

1-14575

Input Arguments
X — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Tangent of input angle
scalar | vector | matrix | multidimensional array

Tangent of input angle, returned as a real-valued or complex-valued scalar, vector, matrix
or multidimensional array.

Definitions

Tangent Function
The tangent of an angle, α, defined with reference to a right angled triangle is

tan(α) = opposite side
adjacent side = a

b .

.

1 Alphabetical List

1-14576

The tangent of a complex argument, α, is

tan α = eiα− e−iα

i eiα + e−iα .

.

Tips
• In floating-point arithmetic, tan is a bounded function. That is, tan does not return

values of Inf or -Inf at points of divergence that are multiples of pi, but a large
magnitude number instead. This stems from the inaccuracy of the floating-point
representation of π.

 tan

1-14577

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
atan | atan2 | atan2d | atand | tand | tanh

Introduced before R2006a

1 Alphabetical List

1-14578

tand
Tangent of argument in degrees

Syntax
Y = tand(X)

Description
Y = tand(X) returns the tangent of the elements of X, which are expressed in degrees.

Examples

Tangent of 90 degrees compared to tangent of π/2 radians

tand(90)

ans = Inf

tan(pi/2)

ans = 1.6331e+16

tand(90) is infinite, whereas tan(pi/2) is large but finite.

Tangent of vector of complex angles, specified in degrees

z = [180+i 15+2i 10+3i];
y = tand(z)

y = 1×3 complex

 tand

1-14579

 0.0000 + 0.0175i 0.2676 + 0.0374i 0.1758 + 0.0539i

Input Arguments
X — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar, vector, matrix, or N-
D array. The tand operation is element-wise when X is nonscalar.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Y — Tangent of angle
scalar value | vector | matrix | N-D array

Tangent of angle, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Alphabetical List

1-14580

• In some cases, generated code returns -Inf when MATLAB returns Inf.
• In some cases, generated code returns Inf when MATLAB returns -Inf.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
atan | atand | tan

Introduced before R2006a

 tand

1-14581

tanh
Hyperbolic tangent

Syntax
Y = tanh(X)

Description
Y = tanh(X) returns the hyperbolic tangent of the elements of X. The tanh function
operates element-wise on arrays. The function accepts both real and complex inputs. All
angles are in radians.

Examples

Hyperbolic Tangent of Vector

Create a vector and calculate the hyperbolic tangent of each value.

X = [0 pi 2*pi 3*pi];
Y = tanh(X)

Y = 1×4

 0 0.9963 1.0000 1.0000

Graph of Hyperbolic Tangent Function

Plot the hyperbolic tangent function over the domain −5 ≤ x ≤ 5.

x = -5:0.01:5;
y = tanh(x);

1 Alphabetical List

1-14582

plot(x,y)
grid on

Input Arguments
X — Input angles in radians
scalar | vector | matrix | multidimensional array

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

 tanh

1-14583

Definitions

Hyperbolic Tangent
The hyperbolic tangent of an angle x is the ratio of the hyperbolic sine and hyperbolic
cosine

tanh x = sinh x
cosh x = e2x− 1

e2x + 1
.

In terms of the traditional tangent function with a complex argument, the identity is

tanh x = − itan ix .

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-14584

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
atan | atan2 | atanh | cosh | sinh | tan

Introduced before R2006a

 tanh

1-14585

tar
Compress files into tar file

Syntax
tar(tarfilename,filenames)
tar(tarfilename,filenames,rootfolder)
entrynames = tar(___)

Description
tar(tarfilename,filenames) compresses contents of filenames into the tar file
tarfilename. tar recursively compresses the content in folders. The resulting tar file
contains the paths of filenames relative to the current folder. The tar file does not store
absolute paths.

tar(tarfilename,filenames,rootfolder) specifies the paths for filenames
relative to rootfolder rather than the current folder.

entrynames = tar(___) returns a cell array of character vectors containing the
names of the files included in tarfilename. You can use this syntax with any of the input
argument combinations in the previous syntaxes.

Examples

Compress Select Files to TAR Files

Compress all files with a .m and .mlx extension in the current folder to the file
backup.tar.

tarfiles = tar('backup.tar',{'*.m','*.mlx'})

1 Alphabetical List

1-14586

tarfiles = 1x1 cell array
 {'CompressFilesToTarExample.mlx'}

Create Tar File of a Folder

Create a tar file of a folder including all subfolders, and store the relative paths in the file.

Create a folder myfolder containing a subfolder mysubfolder and the files
membrane.m and logo.m.

mkdir myfolder;
movefile('membrane.m','myfolder');
movefile('logo.m','myfolder');
cd myfolder;
mkdir mysubfolder;
cd ..

Create a tar file of the contents of myfolder, including all subfolders.

tarfiles = tar('myfiles.tar','myfolder');

Input Arguments
tarfilename — Name of tar file
character vector | string scalar

Name of tar file to create, specified as a character vector or a string scalar. If
tarfilename has no extension, MATLAB appends the .tar extension. If you specify
a .tgz or .gz extension, tar compresses the specified files using gzip.

tarfilename must include a path relative to the current folder or an absolute path.
Data Types: char | string

filenames — Names of files or folders
character vector | cell array of character vectors | string array

 tar

1-14587

Names of files or folders to compress, specified as a character vector, a cell array of
character vectors, or a string array. filenames must be smaller than 2 GB.

Files that are on the MATLAB path can include a partial path. Otherwise, files must
include a path relative to the current folder or an absolute path.

Folders must include a path relative to the current folder or an absolute path. On UNIX
systems, folders also can start with ~/ or ~username/, which expands to the current
user's home folder or the specified user's home folder, respectively. You can use the
wildcard character * when specifying files or folders, except when relying on the MATLAB
path to resolve a file name or partial path name.
Data Types: char | string

rootfolder — Root paths
character vector | string scalar

Root paths for the files to compress, specified as a character vector or a string scalar.
Data Types: char | string

See Also
gunzip | gzip | untar | unzip | zip

Introduced before R2006a

1 Alphabetical List

1-14588

targetupdater
Set up support package that is already installed (Not recommended)

Note targetupdater is not recommended. To manage your support packages and setup
your hardware, on the MATLAB® Home tab, in the Environment section, click Add-Ons
> Manage Add-Ons.

Syntax
targetupdater

Description
targetupdater sets up a support package that is already installed.

Setting up a support package can include:

• Updating firmware on the target hardware.
• Validating the installation folder of third-party software.
• Validating licenses.

The targetupdater function starts Support Package Installer at the Set up support
package screen.

 targetupdater

1-14589

Tip Some support packages do not require set up. If the Set up support package
screen does not display an installed support package, the support package does not
require set up.

To check whether a support package is installed, use the
matlabshared.supportpkg.getInstalled function.

1 Alphabetical List

1-14590

See Also
matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled | supportPackageInstaller

 targetupdater

1-14591

tcpclient
Create TCP/IP client object to communicate over TCP/IP

Syntax
t = tcpclient('Address',Port)
t = tcpclient('Address',Port,'Timeout',<timeout_value>)
t = tcpclient('Address',
Port,'ConnectTimeout',<connect_timeout_value>)

Description
t = tcpclient('Address',Port) constructs a TCP/IP object, t, associated with
remote host, Address, and remote port value, Port. The address can be either a remote
host name or a remote IP address. The port must be a positive integer between 1 and
65535.

If an invalid address or port is specified, or the connection to the server cannot be
established, the object will not be created.

t = tcpclient('Address',Port,'Timeout',<timeout_value>) additionally sets
a timeout value. The Timeout property specifies the waiting time to complete read and
write operations in seconds, and the default is 10.

t = tcpclient('Address',
Port,'ConnectTimeout',<connect_timeout_value>) additionally sets a
connection timeout value. The ConnectTimeout property specifies the maximum time in
seconds to wait for a connection request to the specified remote host to succeed or fail.
The default is Inf.

Examples

1 Alphabetical List

1-14592

Create Object Using Host Name

Create the TCP/IP object t using the host address shown and Port of 80.

t = tcpclient('www.mathworks.com', 80)

t =

 tcpclient with properties:

 Address: 'www.mathworks.com'
 Port: 80
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: Inf

Note When connecting using a host name, such as a specified web address or
'localhost', the IP address will default to an IPv6 format. If the server you are
connecting to is expecting an IPv4 format, it will fail. If this happens, you can connect by
specifying an explicit IP address, rather than a host name.

Create Object Using IP Address

Create the TCP/IP object t using the IP address shown and Port of 4012.

t = tcpclient('172.28.154.231', 4012)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: Inf

 tcpclient

1-14593

Create Object and Set the Timeout Property

Create the TCP/IP object t and increase the Timeout to 20 seconds.

t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 20
 BytesAvailable: 0
 ConnectTimeout: Inf

The output reflects the Timeout property change.

Create Object and Set the Connect Timeout Property

Create the TCP/IP object t and set the ConnectTimeout to 30 seconds.

t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 30)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: 30

The output reflects the ConnectTimeout property change.

Input Arguments
Address — Remote host name or IP address for connection
character vector

1 Alphabetical List

1-14594

Remote host name or IP address for connection, specified as a character vector. Specify
address as the first argument when you create the tcpclient object.
Example: t = tcpclient('www.mathworks.com', 4012)
Data Types: char

Port — Remote host port for connection
numeric scalar

Remote host port for connection, specified as a numeric scalar. Specify port number as
the second argument when you create the tcpclient object. The Port must be a
positive integer between 1 and 65535.
Example: t = tcpclient('www.mathworks.com', 4012)
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: t = tcpclient('172.28.154.231', 120, 'Timeout', 15,
'ConnectTimeout', 30)

Timeout — Timeout for read/write operation
10 (default) | numeric scalar

Timeout for read/write operation specified as the comma-separated pair consisting of
'Timeout' and a positive value of type double. You can change the value either during
object creation or after you create the object.

For information on how to change the timeout value after object creation, see Configure
Properties for TCP/IP Communication.
Example: t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)
Data Types: double

ConnectTimeout — Timeout for connection to remote host
Inf (default) | numeric scalar

 tcpclient

1-14595

Timeout for connection to remote host specified as the comma-separated pair consisting
of 'ConnectTimeout' and a positive value of type double. The property specifies the
maximum time in seconds to wait for a connection request to the specified remote host to
succeed or fail. You can only change the value during object creation.
Example: t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 30)
Data Types: double

See Also

Topics
“Create a TCP/IP Connection”
“Configure Properties for TCP/IP Communication”
“Write and Read Data over TCP/IP Interface”

Introduced in R2014b

1 Alphabetical List

1-14596

tempdir
Name of temporary folder for the system

Syntax
temp = tempdir

Description
temp = tempdir returns the name of the temporary folder for the system, if one exists.
tempdir does not create a new folder.

Examples

Store Temporary Folder Name on Windows System

temp = tempdir

temp =

 'C:\Users\guest\AppData\Local\Temp\'

See Also
delete | recycle | tempname

Topics
“Create Temporary Files”

Introduced before R2006a

 tempdir

1-14597

tempname
Unique name for temporary file

Syntax
tmpName = tempname
tmpName = tempname(folderName)

Description
tmpName = tempname returns a character vector containing a unique path for a
temporary file in your system’s temporary folder.

tmpName = tempname(folderName) returns a unique path for a temporary file in the
specified folder.

Examples

Create Temporary File Name with Extension

Create a temporary file name that has the extension, .dat, by concatenating two
character vectors.

tmpName = [tempname,'.dat'];

Create Temporary File Name in Folder

Create a temporary file name for use in the C:\myTemporaryFiles folder.

tmpName = tempname('C:\myTemporaryFiles');

1 Alphabetical List

1-14598

Write Data to Temporary File

Create a temporary file name.

filename = tempname;

Create a new file with the temporary file name, and write data to the file.

fileID = fopen(filename,'w');
fwrite(fileID,magic(5));
fclose(fileID);

Input Arguments
folderName — Folder name
string scalar | character vector

Folder name, specified as a string scalar or a character vector containing the folder name.

Limitations
• In most cases, tempname generates a universally unique identifier (UUID). However, if

you run MATLAB without JVM software, then tempname generates a random
character vector using the CPU counter and time, which is not guaranteed to be
unique. For more information about the MATLAB startup option that does not load
JVM software, see “Commonly Used Startup Options”.

See Also
tempdir

Topics
“Create Temporary Files”

Introduced before R2006a

 tempname

1-14599

testsuite
Create suite of tests

Syntax
suite = testsuite
suite = testsuite(tests)
suite = testsuite(tests,Name,Value)

Description
suite = testsuite creates a suite of tests from your current folder, and returns the
suite as a Test array.

To run a test suite created with testsuite, use the run method of
matlab.unittest.TestSuite, matlab.unittest.TestRunner, or
matlab.perftest.TimeExperiment.

suite = testsuite(tests) creates a suite from a set of specified tests.

suite = testsuite(tests,Name,Value) creates a suite of tests with additional
options specified by one or more Name,Value pair arguments.

Examples

Test Suite from Working Folder

Create a folder myExample in your current working folder, make it your current working
folder, and create a couple of tests.

In the myExample folder, create a script-based test, onesTest.m.

%% Test double class
expClass = 'double';

1 Alphabetical List

1-14600

act = ones;
assert(isa(act,expClass))

%% Test single class
expClass = 'single';
act = ones('single');
assert(isa(act,expClass))

%% Test uint16 class
expClass = 'uint16';
act = ones('uint16');
assert(isa(act,expClass))

%% Test size
expSize = [7 13];
act = ones([7 13]);
assert(isequal(size(act),expSize))

%% Test values
act = ones(42);
assert(unique(act) == 1)

In the myExample folder, create a function-based test, eyeTest.m.

function tests = eyeTest
tests = functiontests(localfunctions);

function doubleClassTest(testCase)
actValue = eye;
verifyClass(testCase,actValue,'double')

function singleClassTest(testCase)
actValue = eye('single');
verifyClass(testCase,actValue,'single')

function uint16ClassTest(testCase)
actValue = eye('uint16');
verifyClass(testCase,actValue,'uint16')

function sizeTest(testCase)
expSize = [7 13];
actValue = eye(expSize);
verifySize(testCase,actValue,expSize);

function valueTest(testCase)

 testsuite

1-14601

actValue = eye(42);
verifyEqual(testCase,unique(diag(actValue)),1) % diagonal are 1s
verifyEqual(testCase,unique(triu(actValue,1)),0) % upper tri vals are 0
verifyEqual(testCase,unique(tril(actValue,-1)),0) % lower tri vals are 0

Create a test suite from all tests in the current folder.

suite = testsuite

suite =

 1×10 Test array with properties:

 Name
 BaseFolder
 ProcedureName
 SharedTestFixtures
 Parameterization
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

If onesTest and eyesTest are the only tests in your folder, MATLAB creates a suite of
10 tests.

View the names of the tests in suite.

{suite.Name}'

ans =

 'eyeTest/doubleClassTest'
 'eyeTest/singleClassTest'
 'eyeTest/uint16ClassTest'
 'eyeTest/sizeTest'
 'eyeTest/valueTest'
 'onesTest/TestDoubleClass'
 'onesTest/TestSingleClass'
 'onesTest/TestUint16Class'
 'onesTest/TestSize'
 'onesTest/TestValues'

Create a test suite from all tests in eyeTest.

suite2 = testsuite('eyeTest')

1 Alphabetical List

1-14602

suite2 =

 1×5 Test array with properties:

 Name
 BaseFolder
 ProcedureName
 SharedTestFixtures
 Parameterization
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Test Suite from Select Tests

In your working folder, create a class-based test, testZeros.m. This class contains five
test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)

 testsuite

1-14603

 testCase.verifyEqual(zeros,0);
 end
 end
end

The full test suite has 11 test elements: 6 from the testClass method, 2 from the
testSize method, and 1 each from the testDefaultClass, testDefaultSize, and
testDefaultValue methods.

Create a test suite from the test elements with test names that contain 'Default'.

suite = testsuite('testZeros','Name','*Default*')

suite =

 1x3 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Create a test suite from the test elements that use the outSize parameter property.

suite = testsuite('testZeros','ParameterProperty','outSize')

suite =

 1x8 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization

1 Alphabetical List

1-14604

 SharedTestFixtures
 Tags

Tests Include:
 5 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

The test suite contains eight tests that use the outSize parameter property: six from the
testClass method and two from the testSize method.

Input Arguments
tests — Array of tests
character vector | cell array of character vectors

Suite of tests specified as a character vector or cell array of character vectors. Each
character vector in the cell array can contain the name of a test file, a test class, a test
suite element name, a package containing your test classes, a folder containing your test
files, or a project folder containing test files.
Example: testsuite('ATestFile.m')
Example: testsuite('ATestFile/aTest')
Example: testsuite('mypackage.MyTestClass')
Example: testsuite(pwd)
Example:
testsuite({'mypackage.MyTestClass','ATestFile.m',pwd,'mypackage.subp
ackage'})

Example: testsuite('C:/projects/project1/')

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: suite = testsuite(tests,'Name','productA_*') creates a test suite
from tests that have names starting with 'productA_'.

 testsuite

1-14605

BaseFolder — Name of base folder
character vector

Name of the folder that contains the file defining the test class, function, or script,
specified as a character vector. This argument filters TestSuite array elements. To
include a test element in the suite, the specified base folder must contain that test
element. Use the wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match a single character. For test files defined in packages,
the base folder is the parent of the top-level package folder.

IncludeSubfolders — Indicator to include tests in subfolders
false (default) | true | 0 | 1

Indicator to include tests in subfolders in the suite, specified as false or true (0 or 1).
By default the framework creates a suite from tests in the specified folders and not in
their subfolders.
Data Types: logical

IncludeSubpackages — Indicator to include tests in subpackages
false (default) | true | 0 | 1

Indicator to include tests in subpackages in the suite, specified as false or true (0 or 1).
By default the framework creates a suite from tests in the specified package and not in
their subpackages.
Data Types: logical

IncludeReferenceProjects — Indicator to include tests from referenced
projects
false (default) | true | 0 | 1

Indicator to include tests from referenced projects, specified as logical false or true.
For more information on referenced projects, see “Componentize Large Projects”.
Data Types: logical

Name — Name of suite element
character vector

Name of the suite element, specified as a character vector. This argument filters
TestSuite array elements. For the testing framework to include a test in the suite, the
Name property of the test element must match the specified name. Use the wildcard

1 Alphabetical List

1-14606

character, *, to match any number of characters. Use the question mark character, ?, to
match a single character.

ParameterName — Name of parameter
character vector

Name of a parameter used by the test suite element, specified as a character vector. This
argument filters TestSuite array elements. Use the wildcard character, *, to match any
number of characters. Use the question mark character, ?, to match a single character.

ParameterProperty — Name of parameterization property
character vector

Name of a property that defines a parameter used by the test suite element, specified as a
character vector. This argument filters TestSuite array elements. Use the wildcard
character, *, to match any number of characters. Use the question mark character, ?, to
match a single character.

ProcedureName — Name of the test procedure in the test
character vector

Name of test procedure, specified as a character vector. This argument filters TestSuite
array elements. Use the wildcard character, *, to match any number of characters. Use
the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass — Name of a class that the test class derives from
character vector | string scalar

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag — Name of test element tag
character vector | string scalar

Name of test element tag, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.

 testsuite

1-14607

Tips
• If you do not need to create a test suite explicitly, use runtests or runperf to create

the suite implicitly before running the tests.
• An alternative way to create an explicit test suite is to use the

matlab.unittest.TestSuite methods.

See Also
matlab.perftest.TimeExperiment.run | matlab.unittest.TestRunner.run |
matlab.unittest.TestSuite | matlab.unittest.TestSuite.run

Introduced in R2016a

1 Alphabetical List

1-14608

tetramesh
Tetrahedron mesh plot

Syntax
tetramesh(T,X,c)
tetramesh(T,X)
tetramesh(TR)
h = tetramesh(...)
tetramesh(...,'param','value','param','value'...)

Description
tetramesh(T,X,c) displays the tetrahedrons defined in the m-by-4 matrix T as mesh. T
is usually the output of a Delaunay triangulation of a 3-D set of points. A row of T contains
indices into X of the vertices of a tetrahedron. X is an n-by-3 matrix, representing n points
in 3 dimension. The tetrahedron colors are defined by the vector C, which is used as
indices into the current colormap.

tetramesh(T,X) uses C = 1:m as the color for the m tetrahedra. Each tetrahedron has
a different color (modulo the number of colors available in the current colormap).

tetramesh(TR) displays the tetrahedra in a triangulation representation.

h = tetramesh(...) returns a vector of tetrahedron handles. Each element of h is a
handle to the set of patches forming one tetrahedron. You can use these handles to view a
particular tetrahedron by turning the patch 'Visible' property 'on' or 'off'.

tetramesh(...,'param','value','param','value'...) allows additional patch
property name/property value pairs to be used when displaying the tetrahedrons. For
example, the default transparency parameter is set to 0.9. You can overwrite this value
by using the property name/property value pair ('FaceAlpha',value) where value is
a number between 0 and 1. See Patch for information about the available properties.

 tetramesh

1-14609

Examples

Plot Tetrahedrons of 3-D Delaunay Triangulation

Generate a 3-D Delaunay triangulation, then use tetramesh to visualize the
tetrahedrons.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % a cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];

[x,y,z] are corners of a cube plus the center.

DT = delaunayTriangulation(x,y,z);
tetramesh(DT);
camorbit(20,0)

1 Alphabetical List

1-14610

See Also
delaunayTriangulation | delaunayn | freeBoundary(triangulation) | patch |
triangulation | trimesh | trisurf

Introduced before R2006a

 tetramesh

1-14611

matlab.test.behavior.Missing class
Package: matlab.test.behavior
Superclasses:

Test if class satisfies contract for missing values

Description
To test if the missing value for your class satisfies the missing contract on page 1-14621
in MATLAB, create a test class that derives from the matlab.test.behavior.Missing
class. If your class represents a data type and you want MATLAB to treat missing values
of your class similar to built-in classes, ensure that your class satisfies the missing
contract.

Typically, you use the behavior test as part of a test-driven development workflow. If you
want the missing value for your class to satisfy the missing contract with MATLAB, write
the behavior test and modify the class under test until the test results are as you expect.
For example, if your class supports comparisons and ordering and is usable as a missing
value indicator, all tests should pass. If your class does not support ordering, set the
SupportsOrdering property to false and expect that MATLAB filters out tests
associated with ordering.

Your behavior test only must derive from matlab.test.behavior.Missing and define
the abstract properties. However, since matlab.test.behavior.Missing is a subclass
of matlab.unittest.TestCase, you can use the functionality of the Unit Testing
Framework.

Class Attributes
Abstract

true
HandleCompatible

true

For information on class attributes, see “Class Attributes”.

1 Alphabetical List

1-14612

Properties
Define values for all abstract properties in the properties block of your test class.

MissingValue — Missing value for class under test
valid MATLAB scalar value | expression that returns non-missing value

Missing value for class under test, specified as a valid MATLAB scalar value or an
expression that returns a non-missing value.
Example: NaN or missing or ' '

Attributes:

SetAccess
public

GetAccess
public

Abstract
true

PrototypeValue — Non-missing value for class under test
valid MATLAB scalar value | expression that returns non-missing value

Any non-missing value for the class under test, specified as a valid MATLAB scalar value
or an expression that returns a non-missing value. Typically, if the class constructor
returns a non-missing value, PrototypeValue is a call to the constructor.
Example: 0 or datetime

Attributes:

SetAccess
public

GetAccess
public

Abstract
true

 matlab.test.behavior.Missing class

1-14613

ClassesWithSupportedConversions — Classes that can be converted to class
under test
string array of class names

List of classes that can be converted to the class under test, specified as a string array of
class names.

If you can convert to the other class and then back to your class, then your class has a
supported conversion from the other class. For example, if
MyClass(OtherClass(missing)) == MyClass(missing) than OtherClass is a
class with supported covnersions.
Example: "string" or ["double","single"]

Attributes:

SetAccess
public

GetAccess
public

Abstract
true

Data Types: string

If necessary, redefine values for concrete properties in a function in the
TestClassSetup methods block of your test class.

SupportsComparison — Class supports comparison
true (default) | false

Indicator that the class supports comparison, specified as true or false. A class that
supports comparisons allows use of == and ~=.

If you set SupportsComparison to false, expect comparison and ordering tests to be
filtered by assumption failure. MATLAB does not run the tests.

Attributes:

SetAccess
protected

1 Alphabetical List

1-14614

GetAccess
public

Data Types: logical

SupportsOrdering — logical scalar to control the run of <, >, and so forth
true (default) | false

Indicator that the class supports ordering, specified as true or false. A class that
supports ordering allows use of <, >, <=, and >=.

If you set SupportsOrdering to false, expect associated tests to be filtered by
assumption failure. MATLAB does not run the tests.

Attributes:

SetAccess
protected

GetAccess
public

Data Types: logical

UsableAsMissingIndicator — Class is usable as missing value indicator
true (default) | false

Indicator that the class is usable as a missing value indicator to the ismissing function,
specified as true or false.

If you set UsableAsMissingIndicator to false, expect associated tests to be filtered
by assumption failure. MATLAB does not run the tests.

Attributes:

SetAccess
protected

GetAccess
public

Data Types: logical

 matlab.test.behavior.Missing class

1-14615

FillValue — Value for growing array
value of MissingValue property (default) | valid MATLAB scalar value

The fill value that your class uses for growing arrays, specified as a valid MATLAB scalar
value. By default, the value of FillValue is the same as the value of the MissingValue
property.
Example: 0

Attributes:

SetAccess
protected

GetAccess
public

Examples

Verify Class Satisfies Missing Value Contract

Create the MyDataClass class that can contain a missing value. The class supports
comparison and ordering, and the missing value implementation should satisfy the
missing contract in MATLAB. If you call the constructor with no inputs, it returns a
missing value.

classdef MyDataClass
 properties
 SomeData;
 MissingVal = false;
 end

 methods
 function obj = MyDataClass(value)
 if nargin
 m = size(value,1);
 n = size(value,2);
 for i = 1:m
 for j = 1:n
 if ismissing(value(i,j))
 obj(i,j).MissingVal = true;

1 Alphabetical List

1-14616

 else
 obj(i,j).SomeData = value(i,j);
 obj(i,j).MissingVal = false;
 end
 end
 end
 else
 obj.MissingVal = true;
 end
 end

 % Define ismissing behavior
 function m = ismissing(obj,v)
 if nargin > 1
 m = isequaln(obj,v);
 else
 m = [obj.MissingVal];
 end
 m = reshape(m,size(obj));
 end
 end
end

To create a simple test class that checks that MyDataClass satisfies the missing value
contract, subclass matlab.test.behavior.Missing. The test can use the functionality
of the unit testing framework, but MissingValueTest is checking the missing contract
only.

classdef MissingValueTest < matlab.test.behavior.Missing
 properties
 MissingValue = MyDataClass;
 PrototypeValue = MyDataClass(7);
 ClassesWithSupportedConversions = [];
 end
end

Run the tests and review the results. The tests for comparison, ordering, equality, and
using MyDataClass as the second input to ismissing fail.

results = runtests('MissingValueTest');

Running MissingValueTest
....
==
Error occurred in MissingValueTest/comparison and it did not run to completion.

 matlab.test.behavior.Missing class

1-14617

 Error ID:

 'MATLAB:UndefinedFunction'

 Error Details:

 Undefined function 'eq' for input arguments of type 'MyDataClass'.

 Error in matlab.test.behavior.Missing/comparison (line 129)
 testCase.verifyFalse(testCase.MissingValue == testCase.MissingValue,
 getString(message('MATLAB:test:behavior:missing:EqualFalse')));
==
.
==
Error occurred in MissingValueTest/ordering and it did not run to completion.

 Error ID:

 'MATLAB:UndefinedFunction'

 Error Details:

 Undefined function 'lt' for input arguments of type 'MyDataClass'.

 Error in matlab.test.behavior.Missing/ordering (line 136)
 testCase.verifyFalse(testCase.MissingValue < testCase.MissingValue,
 getString(message('MATLAB:test:behavior:missing:LessThanFalse')));
==
.
==
Verification failed in MissingValueTest/isequalRules.

 Test Diagnostic:

 isequal(MissingValue, MissingValue) must return false, because all missing values are unequal.

 Framework Diagnostic:

 verifyFalse failed.
 --> The value must evaluate to "false".

 Actual Value:
 logical

 1

 Stack Information:

1 Alphabetical List

1-14618

 In <matlabroot>\toolbox\matlab\datatypes\+matlab\+test\+behavior\Missing.m (Missing.isequalRules) at 145
==

==
Verification failed in MissingValueTest/isequalRules.

 Test Diagnostic:

 isequaln(MissingValue, missing) must return true.

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must evaluate to "true".

 Actual Value:
 logical

 0

 Stack Information:

 In <matlabroot>\toolbox\matlab\datatypes\+matlab\+test\+behavior\Missing.m (Missing.isequalRules) at 147
==
.
==
Verification failed in MissingValueTest/IsMissing2ndInput.

 Test Diagnostic:

 ismissing(MissingValue, missing) must return true.

 Framework Diagnostic:

 verifyTrue failed.
 --> The value must evaluate to "true".

 Actual Value:
 logical

 0

 Stack Information:

 In <matlabroot>\toolbox\matlab\datatypes\+matlab\+test\+behavior\Missing.m (Missing.IsMissing2ndInput) at 154
==
...
Done MissingValueTest

 matlab.test.behavior.Missing class

1-14619

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 MissingValueTest/comparison X X Errored.

 MissingValueTest/ordering X X Errored.

 MissingValueTest/isequalRules X Failed by verification.

 MissingValueTest/IsMissing2ndInput X Failed by verification.

Iteratively update MyDataClass to satisfy the missing contract. To satisfy comparison
and ordering, define eq, ne, lt, gt, le, and ge in the methods block of MyDataClass.
 % Class supports comparison
 function tf = eq(obj1,obj2)
 tf = ~any(ismissing([obj1 obj2])) && eq(obj1.SomeData,obj2.SomeData);
 end
 function tf = ne(obj1,obj2)
 tf = ~eq(obj1,obj2);
 end

 % Class supports ordering
 function tf = lt(obj1,obj2)
 tf = ~any(ismissing([obj1 obj2])) && lt(obj1.SomeData,obj2.SomeData);
 end
 function tf = gt(obj1,obj2)
 tf = lt(obj2,obj1);
 end
 function tf = le(obj1,obj2)
 tf = ~any(ismissing([obj1 obj2])) && ~gt(obj1,obj2);
 end
 function tf = ge(obj1,obj2)
 tf = le(obj2,obj1);
 end

Run the tests with a terse level output detail and review the results.

results = runtests('MissingValueTest','OutputDetail',1);

......
FAIL: MissingValueTest/isequalRules in Missing.isequalRules at 145 :: verifyFalse failed.

FAIL: MissingValueTest/isequalRules in Missing.isequalRules at 147 :: verifyTrue failed.
.
FAIL: MissingValueTest/IsMissing2ndInput in Missing.IsMissing2ndInput at 154 :: verifyTrue failed.
...

Iteratively update MyDataClass to satisfy the equality rules. Define isqual and
isequaln in the methods block of MyDataClass.
 % Class supports isequal/isequaln rules
 function tf = isequal(obj1,obj2)
 tf = eq(obj1,obj2);
 end

1 Alphabetical List

1-14620

 function tf = isequaln(obj1,obj2)
 tf = all(ismissing([obj1 obj2])) || eq(obj1,obj2);
 end

Run the tests and review the results. The tests pass and MyDataClass satisfies the
missing value contract.

results = runtests('MissingValueTest');

Running MissingValueTest
..........
Done MissingValueTest

Definitions

Contract Details
Basic Validation

The behavior test asserts the following conditions are true.

• The missing value in the MissingValue property is the same class as the value in the
PrototypeValue property.

• The MissingValue and PrototypeValue values are scalar.
• The ismissing function called with the MissingValue value returns true.
• The ismissing function called with the PrototypeValue value returns false.

Conversion

The behavior test verifies that converting the missing value to an instance of your class
returns the same value as the MissingValue property.

Additionally, for each class that your class can convert, the behavior test verifies
conversion of missing values. For example, if you can convert between OtherClass and
MyClass, the behavior test verifies that MyClass(OtherClass(missing)) ==
MyClass(missing). The ClassesWithSupportedConversions property indicates
which classes your class can convert.

 matlab.test.behavior.Missing class

1-14621

Subscripted Assignment

Given an array of objects of your class, subscripted assignment tests verify that you can
expand the array using the missing value and assign the missing value to a range of
elements in the array.

Concatenation

Concatenation tests verify that arrays of objects of your class can be concatenated with
missing values.

Equality Rules

Equality tests verify that isequal returns false for two missing values and isequaln
returns true for two missing values.

SupportsComparison

By default, the behavior test assumes that your class supports comparison of values,
including missing values. Comparison tests verify that you implemented == and ~= as
MATLAB expects, with respect to missing values.

• The comparison of two missing values with == returns false.
• The comparison of two missing values with ~= returns true.

If your class does not support comparisons, set the SupportsComparison property to
false so MATLAB does not run these tests. In this case, comparison tests are filtered as
assumption failures. Additionally, if SupportsComparison = false, MATLAB does not
run the ordering tests.

SupportsOrdering

By default, the behavior test assumes that your class supports ordering of values,
including missing values. Ordering tests verify that you implemented <, >, <=, and >= as
MATLAB expects, with respect to missing values. For missing values, MATLAB expects
that all the ordering operations return false.

If your class supports ordering, to satisfy the behavior contract, it must also support
comparisons. If SupportsComparison = false, MATLAB does not run the ordering
tests or the comparison tests. In this case, ordering tests are marked as assumption
failures (filtered tests).

1 Alphabetical List

1-14622

If your class does not support ordering, set the SupportsOrdering property to false
so MATLAB does not run these tests. In this case, ordering tests are marked as
assumption failures (filtered tests).

UsableAsMissingIndicator

By default, the behavior test assumes that an instance of your class can be used as the
optional input argument to the ismissing function that represents the missing value
indicator.

If your class is unable to be a missing value indicator, set the
UsableAsMissingIndicator property to false so MATLAB does not run these tests.
In this case, ordering tests are marked as assumption failures (filtered tests).

FillValue

The behavior test verifies that when MATLAB grows an array of elements of your class,
the new elements have the value specified by the FillValue property. By default, the
FillValue property is the same as the MissingValue property. However, you can
specify a different value for FillValue.

See Also
ismissing | matlab.unittest.TestCase | missing

Introduced in R2018b

 matlab.test.behavior.Missing class

1-14623

matlab.unittest.Test class
Package: matlab.unittest
Superclasses:

Specification of a single test method

Description
The matlab.unittest.Test class holds the information needed for the TestRunner
object to be able to run a single Test method of a TestCase class. A scalar Test
instance is the fundamental element contained in TestSuite arrays. A simple array of
Test instances is a commonly used form of a TestSuite array.

Properties
Name

Name of the Test element.

ProcedureName

Name of the test procedure that runs for the Test. In a class-based test, the
ProcedureName is the name of the test method. In a function-based, test it is the name of
the local function that contains the test. In a script-based test, it is a name generated
from the test section title. Unlike the Name property, ProcedureName does not include
any class or package name or information about parameterization.

TestClass

Name f the test class for the TestCase. If a Test element is not a class-based test, then
TestClass is an empty string.

BaseFolder

Name of the folder that contains the file defining the test content. For tests defined in
packages, the base folder is the parent of the top-level package folder.

1 Alphabetical List

1-14624

Parameterization

Row vector of parameters required for the Test. The Parameterization property
contains all the parameterized data needed by the TestRunner.

SharedTestFixtures

Row vector of fixtures required for the Test. The SharedTestFixtures property
contains all the fixtures specified by the SharedTestFixtures class-level attribute of
the TestCase class.

Tags

Cell array of tags applied to the test element.

Examples

Show Class of a TestSuite Array

Create a suite of Test objects of all test methods in the BankAccountTest class.

import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?BankAccountTest);

whos suite

 Name Size Bytes Class Attributes

 suite 1x5 1636 matlab.unittest.Test

Each test is a matlab.unittest.Test object.

Display test method names.

{suite.Name}'

ans =

 'BankAccountTest/testConstructor'
 'BankAccountTest/testConstructorNotEnoughInputs'
 'BankAccountTest/testDesposit'

 matlab.unittest.Test class

1-14625

 'BankAccountTest/testWithdraw'
 'BankAccountTest/testNotifyInsufficientFunds'

See Also
matlab.unittest.TestCase | matlab.unittest.TestRunner |
matlab.unittest.TestSuite | matlab.unittest.fixtures

1 Alphabetical List

1-14626

matlab.unittest.TestCase class
Package: matlab.unittest

Superclass of all matlab.unittest test classes

Description
The TestCase class is the means by which a test is written in the matlab.unittest
framework. It provides the means to write and identify test content, as well as test fixture
setup and teardown routines. Creating such a test requires deriving from TestCase to
produce a TestCase subclass. Then, subclasses can leverage the metadata attributes to
specify tests and test fixtures.

Construction
Use the forInteractiveUse static method to create a TestCase for interactive,
command line use. When tests are run in the framework, TestCase instances are
constructed by the matlab.unittest.TestRunner.

Methods
addTeardown Dynamically add teardown routine
applyFixture Use fixture with TestCase
forInteractiveUse Create TestCase for interactive use
getSharedTestFixtures Provide access to shared test fixtures
log Record diagnostic information
onFailure Dynamically add diagnostics for test failures
run Run TestCase test

Inherited Methods
The TestCase class inherits methods from the following classes:

 matlab.unittest.TestCase class

1-14627

matlab.unittest.qualifications.Assertable
Qualification to validate preconditions of a
test

matlab.unittest.qualifications.Assumable
Qualification to filter test content

matlab.unittest.qualifications.FatalAssertable
Qualification to abort test execution

matlab.unittest.qualifications.Verifiable
Qualification to produce soft failure
conditions

Attributes

Class Attributes
TestCase objects support the following class level attributes. Specify class-level
attributes in the classdef block before the class name.

SharedTestFix
tures

Class block to contain shared test fixtures. You must define
SharedTestFixtures as a cell array of
matlab.unittest.fixtures.Fixture instances.

TestTags Class block to contain tests tagged with a specified value. You must
define TestTags as a cell array of non-empty character vectors or an
array of non-empty strings, where each element is a tag for the test.

Method Attributes
Classes that derive from TestCase can define methods blocks which contain
matlab.unittest framework-specific attributes to specify test content.

Test Method block to contain test methods.
TestMethodSet
up

Method block to contain setup code.

TestMethodTea
rdown

Method block to contain teardown code.

1 Alphabetical List

1-14628

TestClassSetu
p

Method block to contain class level setup code.

TestClassTear
down

Method block to contain class level teardown code.

ParameterComb
ination

Method block to contain parameterized testing code. This attribute
accepts the following values:

• 'exhaustive' (default): Test methods are invoked for all
combinations of parameters.

• 'sequential': Test methods are invoked with corresponding
values from each parameter. Each parameter must contain the
same number of values.

• 'pairwise': Test methods are invoked for every pair of
parameter values at least once.

TestTags Method block to contain tests tagged with a specified value. You must
define TestTags as a cell array of non-empty character vectors or an
array of non-empty strings, where each element is a tag for the test.

Property Attributes
Classes that derive from TestCase can define properties blocks which contain
matlab.unittest framework-specific attributes to specify test content.

ClassSetupPar
ameter

Property block to define parameterized testing properties for methods
in the TestClassSetup block

MethodSetupPa
rameter

Property block to define parameterized testing properties for methods
in the MethodSetup block

TestParameter Property block to define parameterized testing properties for methods
in the Test block

Events
VerificationF
ailed

Triggered upon failing verification. A QualificationEventData
object is passed to listener callback functions.

 matlab.unittest.TestCase class

1-14629

VerificationP
assed

Triggered upon passing verification. A QualificationEventData
object is passed to listener callback functions.

AssertionFail
ed

Triggered upon failing assertion. A QualificationEventData
object is passed to listener callback functions.

AssertionPass
ed

Triggered upon passing assertion. A QualificationEventData
object is passed to listener callback functions.

FatalAssertio
nFailed

Triggered upon failing fatal assertion. A QualificationEventData
object is passed to listener callback functions.

FatalAssertio
nPassed

Triggered upon passing fatal assertion. A
QualificationEventData object is passed to listener callback
functions.

AssumptionFai
led

Triggered upon failing assumption. A QualificationEventData
object is passed to listener callback functions.

AssumptionPas
sed

Triggered upon passing assumption. A QualificationEventData
object is passed to listener callback functions.

ExceptionThro
wn

Triggered by the TestRunner when an exception is thrown. An
ExceptionEventData object is passed to listener callback functions.

DiagnosticLog
ged

Triggered by the TestRunner upon a call to the log method. A
LoggedDiagnosticEventData object is passed to the listener
callback functions.

Examples

Create Test Case Class

Create a test case class, FigurePropertiesTest, with TestMethodSetup and
TestMethodTeardown methods.

classdef FigurePropertiesTest < matlab.unittest.TestCase

 properties
 TestFigure
 end

 methods(TestMethodSetup)
 function createFigure(testCase)

1 Alphabetical List

1-14630

 testCase.TestFigure = figure;
 end
 end

 methods(TestMethodTeardown)
 function closeFigure(testCase)
 close(testCase.TestFigure)
 end
 end

 methods(Test)

 function defaultCurrentPoint(testCase)

 cp = testCase.TestFigure.CurrentPoint;
 testCase.verifyEqual(cp, [0 0], ...
 'Default current point is incorrect')
 end

 function defaultCurrentObject(testCase)
 import matlab.unittest.constraints.IsEmpty

 co = testCase.TestFigure.CurrentObject;
 testCase.verifyThat(co, IsEmpty, ...
 'Default current object should be empty')
 end

 end

end

See Also
TestRunner | addlistener | matlab.unittest.constraints |
matlab.unittest.diagnostics.LoggedDiagnosticEventData |
matlab.unittest.qualifications |
matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Topics
“Create Basic Parameterized Test”
“Create Advanced Parameterized Test”

 matlab.unittest.TestCase class

1-14631

“Tag Unit Tests”
“Method Attributes”
“Class Attributes”

Introduced in R2013a

1 Alphabetical List

1-14632

addTeardown
Class: matlab.unittest.TestCase
Package: matlab.unittest

Dynamically add teardown routine

Syntax
addTeardown(testCase,tearDownFcn)
addTeardown(testCase,tearDownFcn,arg1,...,argN)

Description
addTeardown(testCase,tearDownFcn) adds the tearDownFcn function handle that
defines fixture teardown code to the testCase instance.

The function handle executes in the scope where it is registered. This scope can be a test
class, a test method, or a shared fixture. The teardown code is executed in the reverse
order to which it is added. This is a last-in, first-out (LIFO) execution order policy. To
restore the correct pre-test state, the function handle is dynamically invoked with the
conclusion of the scope.

addTeardown(testCase,tearDownFcn,arg1,...,argN) provides input arguments
to the tearDownFcn.

Input Arguments
testCase

matlab.unittest.TestCase instance

Default:

 addTeardown

1-14633

tearDownFcn

Function, specified as a function handle, that defines the fixture teardown code

Default:

arg1,...,argN

Input arguments, 1 through N (if any), required by tearDownFcn, specified by any type.
The argument type is specified by the function argument list.

Default:

Examples

Call addTeardown in a TestMethodSetup Method

classdef SomeTest < matlab.unittest.TestCase

 methods(TestMethodSetup)
 function createFixture(testCase)
 p = path;
 testCase.addTeardown(@path, p);
 addpath(fullfile(pwd,'testHelpers'));
 end
 end
end

See Also

1 Alphabetical List

1-14634

applyFixture
Class: matlab.unittest.TestCase
Package: matlab.unittest

Use fixture with TestCase

Syntax
applyFixture(testCase,fixture)

Description
applyFixture(testCase,fixture) prepares the specified fixture for use with the
TestCase. This method enables the use of a fixture within the scope of a single Test
method or TestCase class. The life cycle of the fixture is tied to the TestCase. When the
TestCase goes out of scope, the test framework tears down the fixture.

Call applyFixture within a Test method or TestMethodSetup method to use a fixture
for the current test method alone. Use applyFixture within a TestClassSetup
method to set up a fixture for the entire class.

Input Arguments
testCase

matlab.unittest.TestCase instance

fixture

matlab.unittest.fixtures.Fixture instance

Examples

 applyFixture

1-14635

Apply Fixtures to TestCase Class

Create a temporary folder and make it the current working folder.

classdef applyFixtureTest < matlab.unittest.TestCase
 methods(TestMethodSetup)
 function addHelpers(testCase)
 import matlab.unittest.fixtures.TemporaryFolderFixture;
 import matlab.unittest.fixtures.CurrentFolderFixture;

 % Create a temporary folder and make it the current working
 % folder.
 tempFolder = testCase.applyFixture(TemporaryFolderFixture);
 testCase.applyFixture(CurrentFolderFixture(tempFolder.Folder));
 end
 end
end

Each test method can write files to the current working folder, which is the temporary
folder. After each test method runs, the test framework restores the working folder to its
previous state and deletes the temporary folder.

See Also
matlab.unittest.fixtures

1 Alphabetical List

1-14636

matlab.unittest.TestCase.forInteractiveUse
Class: matlab.unittest.TestCase
Package: matlab.unittest

Create TestCase for interactive use

Syntax
tc = matlab.unittest.TestCase.forInteractiveUse
tc = matlab.unittest.TestCase.forInteractiveUse(testclass)

Description
tc = matlab.unittest.TestCase.forInteractiveUse creates a TestCase
instance for interactive use. The TestCase is configured for experimentation at the
command prompt. It reacts to qualification tests by printing messages to the screen for
both passing and failing conditions.

tc = matlab.unittest.TestCase.forInteractiveUse(testclass) creates an
instance of the testclass class for interactive use.

Input Arguments
testclass

meta.class instance that describes a matlab.unittest.TestCase subclass

Examples

Verify Values Using Interactive TestCase

Create a TestCase for interactive use.

 matlab.unittest.TestCase.forInteractiveUse

1-14637

import matlab.unittest.TestCase;
testCase = TestCase.forInteractiveUse;

Produce a passing verification.

testCase.verifyTrue(true, 'true should be true');

Interactive verification passed.

Produce a failing verification.

testCase.verifyTrue(false);

Interactive verification failed.

Framework Diagnostic:

verifyTrue failed.
--> The value must evaluate to "true".

Actual Value:
 0

Create Interactive TestCase for Specified Class

In a file in your working folder, create ExampleTest.m. This class is a subclass of
TestCase and provides a helper verification method, verifySameSize.

classdef ExampleTest < matlab.unittest.TestCase
 methods
 function verifySameSize(testCase, actual, expected)
 import matlab.unittest.constraints.ReturnsTrue;

 diagnostic = ['Actual and expected value sizes do not match.'...
 '\nActual size: ' num2str(size(actual)) ...
 '\nExpected size: ' num2str(size(expected))];

 testCase.verifyThat(@()isequal(size(actual),size(expected)),...
 ReturnsTrue, sprintf(diagnostic));
 end
 end
end

1 Alphabetical List

1-14638

At the command prompt, create an interactive test case from the ExampleTest class.

tc = matlab.unittest.TestCase.forInteractiveUse(?ExampleTest);

Use the test case at the command prompt to call the verifySameSize method
interactively.

tc.verifySameSize(1:10,5)

Interactive verification failed.

Test Diagnostic:

Actual and expected value sizes do not match.
Actual size: 1 10
Expected size: 1 1

Framework Diagnostic:

ReturnsTrue failed.
--> The function handle should have evaluated to "true".
--> Returned value:
 0

Actual function_handle:
 @()isequal(size(actual),size(expected))

See Also
matlab.unittest.TestCase | matlab.unittest.qualifications

Introduced in R2014a

 matlab.unittest.TestCase.forInteractiveUse

1-14639

getSharedTestFixtures
Class: matlab.unittest.TestCase
Package: matlab.unittest

Provide access to shared test fixtures

Syntax
fixtures = getSharedTestFixtures(testCase)
fixtures = getSharedTestFixtures(testCase,fixtureClassName)

Description
fixtures = getSharedTestFixtures(testCase) provides access to the array of all
shared test fixtures for testCase. getSharedTestFixtures returns an array of fixture
objects, fixtures. Specify shared fixtures are using the SharedTestFixtures
attribute for the testCase class.

fixtures = getSharedTestFixtures(testCase,fixtureClassName) returns only
the shared fixtures that have the class name fixtureClassName.

Input Arguments
testCase

matlab.unittest.TestCase instance

Default:

fixtureClassName

Name of test fixture class, specified as a character vector or string scalar

1 Alphabetical List

1-14640

Examples

Obtain Array of All Shared Fixtures

Create the following class, myTest, on your MATLAB path. Two shared fixtures are used
within the test method. This example assumes that the subfolder helperFiles exists in
your working folder. Create the subfolder helperFiles in your working folder if it does
not exist.

classdef (SharedTestFixtures={...
matlab.unittest.fixtures.PathFixture('helperFiles'),...
 matlab.unittest.fixtures.TemporaryFolderFixture}) ...
 myTest < matlab.unittest.TestCase
 methods(Test)
 function accessFixtures(testCase)
 myFixtures = testCase.getSharedTestFixtures
 end
 end
end

At the command prompt, run the test.

run(myTest);

Setting up PathFixture.
Description: Adds 'H:\Documents\doc_examples\helperFiles' to the path.

Setting up TemporaryFolderFixture.
Description: Creates a temporary folder.

Running myTest

myFixtures =

 1x2 heterogeneous Fixture (PathFixture, TemporaryFolderFixture) array with no properties.

.
Done myTest

Tearing down TemporaryFolderFixture.

 getSharedTestFixtures

1-14641

Description: Deletes the temporary folder and all its contents.

Tearing down PathFixture.
Description: Restores the path to its previous state.

Access Shared Fixtures of Particular Class

Create the class, mySecondTest, on your MATLAB path.

classdef (SharedTestFixtures={...
 matlab.unittest.fixtures.TemporaryFolderFixture})...
 mySecondTest < matlab.unittest.TestCase
 methods(Test)
 function accessTemporaryFolderFixture(testCase)
 tempFolderFixture = testCase.getSharedTestFixtures...
 ('matlab.unittest.fixtures.TemporaryFolderFixture');
 temporaryFolder = tempFolderFixture.Folder
 end
 end
end

At the command prompt, run the test. The name of the temporary folder varies.

run(mySecondTest);

Setting up TemporaryFolderFixture.
Description: Creates a temporary folder.

Running mySecondTest

temporaryFolder =

C:\Temp\tpb92c9c67_02fa_4714_bfb0_b2127df0f31d

.
Done mySecondTest

Tearing down TemporaryFolderFixture.

1 Alphabetical List

1-14642

Description: Deletes the temporary folder and all its contents.

See Also
matlab.unittest.TestCase | matlab.unittest.fixtures

Topics
Class Attributes

 getSharedTestFixtures

1-14643

log
Class: matlab.unittest.TestCase
Package: matlab.unittest

Record diagnostic information

Syntax
log(testCase,diagnostic)
log(testCase,v,diagnostic)

Description
log(testCase,diagnostic) logs the supplied diagnostic. The log method provides a
means for tests to log information during their execution. The testing framework displays
logged messages only if you configure it to do so by adding an appropriate plugin, such as
the matlab.unittest.plugins.LoggingPlugin.

log(testCase,v,diagnostic) logs the diagnostic at the specified verbosity level, v.

Input Arguments
testCase — Instance of test case
matlab.unittest.TestCase instance

Instance of test case, specified as a matlab.unittest.TestCase.

diagnostic — Diagnostic information to display upon a failure
character array | string array | function handle |
matlab.unittest.diagnostics.Diagnostic instance

Diagnostic information to display upon a failure, specified as a string array, character
array, function handle, or matlab.unittest.diagnostics.Diagnostic instance.

1 Alphabetical List

1-14644

v — Verbosity level
2 (default) | 1 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration name
as string or char vector

Verbosity level, specified as an integer value between 1 and 4, a
matlab.unittest.Verbosity enumeration object, or a string scalar or character
vector corresponding to one of the predefined enumeration member names. The default
verbosity level for diagnostic messages is Concise. Integer values correspond to the
members of the matlab.unittest.Verbosity enumeration.

Numeric Representation Enumeration Member
Name

Verbosity Description

1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

Examples

Log Diagnostic Information

Create a function-based test in a file, sampleLogTest.m, in your working folder.

function tests = sampleLogTest
tests = functiontests(localfunctions);

function svdTest(testCase)
import matlab.unittest.Verbosity

log(testCase,'Generating matrix.');
m = rand(1000);

log(testCase,1,'About to call SVD.');
[U,S,V] = svd(m);

log(testCase,Verbosity.Terse,'SVD finished.');

 log

1-14645

verifyEqual(testCase,U*S*V',m,'AbsTol',1e-6)

At the command prompt, run the test.

results = run(sampleLogTest);

Running sampleLogTest
 [Terse] Diagnostic logged (2014-04-14T14:20:59): About to call SVD.
 [Terse] Diagnostic logged (2014-04-14T14:20:59): SVD finished.
.
Done sampleLogTest

The default runner reports the diagnostics at level 1 (Terse).

Create a test runner to report the diagnostics at levels 1 and 2, and rerun the test.

import matlab.unittest.TestRunner
import matlab.unittest.plugins.LoggingPlugin

runner = TestRunner.withNoPlugins;
p = LoggingPlugin.withVerbosity(2);
runner.addPlugin(p);

results = runner.run(sampleLogTest);

 [Concise] Diagnostic logged (2014-04-14T14:28:14): Generating matrix.
 [Terse] Diagnostic logged (2014-04-14T14:28:14): About to call SVD.
 [Terse] Diagnostic logged (2014-04-14T14:28:15): SVD finished.

See Also
matlab.unittest.Verbosity | matlab.unittest.plugins.LoggingPlugin

Introduced in R2014b

1 Alphabetical List

1-14646

onFailure
Class: matlab.unittest.TestCase
Package: matlab.unittest

Dynamically add diagnostics for test failures

Syntax
onFailure(testcase,failureDiag)
onFailure(testcase,failureDiag,'IncludingAssumptionFailures',tf)

Description
onFailure(testcase,failureDiag) adds diagnostics for test failures. If a test fails,
then the test framework executes the diagnostics. By default, these diagnostics execute
upon verification failures, assertion failures, fatal assertion failures, and uncaught
exceptions.

onFailure(testcase,failureDiag,'IncludingAssumptionFailures',tf)
indicates if the test framework also executes diagnostics upon assumption failures. To
execute diagnostics upon assumption failures also, set tf to true.

Input Arguments
testCase — Instance of test case
matlab.unittest.TestCase instance

Instance of test case, specified as a matlab.unittest.TestCase.

failureDiag — Diagnostic information
character vector | string array | function handle | array of
matlab.unittest.diagnostics.Diagnostic instances

 onFailure

1-14647

Diagnostic information to display upon a failure, specified as a character vector, string
array, function handle, or array of matlab.unittest.diagnostics.Diagnostic
instances.
Example: @() disp('Failure Detected')
Example: matlab.unittest.diagnostics.ScreenshotDiagnostic

tf — React to assumption failures
false (default) | true

React to assumption failures, specified as false (logical 0) or true (logical 1). By
default, this value is false and the test framework executes diagnostics upon verification
failures, assertion failures, fatal assertion failures, and uncaught exceptions. However, the
test framework does not execute diagnostics upon assumption failures. To execute
additional diagnostics upon assumption failures, specify this value as true.

Examples

Add Diagnostics to Execute Upon Test Failure

In your current working folder, create the following test class SampleOnFailureTest.m.

classdef SampleOnFailureTest < matlab.unittest.TestCase
 methods(TestMethodSetup)
 function addFailureDiag(testCase)
 testCase.onFailure('Failure Detected');
 end
 end
 methods (Test)
 function verificationFailTest(testCase)
 testCase.onFailure(@datetime)
 testCase.verifyEqual(42,13)
 end
 function passingTest(testCase)
 testCase.assertTrue(true)
 end
 function assumptionFailTest(testCase)
 testCase.assumeEmpty(rand(2))
 end
 function assertionFailTest(testCase)
 act = randi(100,1,15);

1 Alphabetical List

1-14648

 floor = randi(100,1,15);
 f = figure; hold on;
 plot(1:length(act),act,1:length(floor),floor);
 legend('actual','floor')
 testCase.addTeardown(@close,f)

 import matlab.unittest.diagnostics.FigureDiagnostic
 testCase.onFailure(FigureDiagnostic(f,'Formats','png'))

 testCase.assertGreaterThan(act,floor)
 end
 end
end

At the command prompt, run the tests. The SampleOnFailureTest class has these
results.

• The diagnostic message 'Failure Detected' displays for each test with a
verification, assertion, or fatal assertion failure because addFailureDiag calls
onFailure in a function in the TestMethodSetup block.

• The verificationFailTest test adds another diagnostic upon failure that displays
the current date and time.

• The assumptionFailTest test fails by assumption. Therefore the 'Failure
Detected' message does not display.

• The assertionFailTest test plots the data. If the test fails, the test framework
saves the plot.

results = runtests('SampleOnFailureTest');

Running SampleOnFailureTest

==
Verification failed in SampleOnFailureTest/verificationFailTest.

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ ________________

 42 13 29 2.23076923076923

 Actual Value:

 onFailure

1-14649

 42
 Expected Value:
 13

 Additional Diagnostic:

 Failure Detected

 Stack Information:

 In C:\work\SampleOnFailureTest.m (SampleOnFailureTest.verificationFailTest) at 10
==
..
==
SampleOnFailureTest/assumptionFailTest was filtered.
Details
==
.
==
Assertion failed in SampleOnFailureTest/assertionFailTest and it did not run to completion.

 Framework Diagnostic:

 assertGreaterThan failed.
 --> Each element must be greater than each corresponding element of the minimum value array.

 Failing Indices:
 1 2 3 4 5 6 9 12 13 14

 Actual Value:
 55 68 4 81 75 13 53 33 55 40 42 19 26 3 93
 Minimum Value (Exclusive):
 66 94 17 93 80 58 45 26 76 23 7 77 68 72 65

 Additional Diagnostic:

 Failure Detected

 Additional Diagnostic:

 Figure saved to:
 --> C:\Temp\070a23db-3903-4abb-9976-2d29ec0a1e38\Figure_c2528bb2-6d72-48d5-a8ed-2a9d5ae7b3ee.png

 Stack Information:

 In C:\work\SampleOnFailureTest.m (SampleOnFailureTest.assertionFailTest) at 28
==
.
Done SampleOnFailureTest

1 Alphabetical List

1-14650

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 SampleOnFailureTest/verificationFailTest X Failed by verification.

 SampleOnFailureTest/assumptionFailTest X Filtered by assumption.

 SampleOnFailureTest/assertionFailTest X X Failed by assertion.

Tips
• To add a diagnostic for each test in your class, call the onFailure method from a

function in the TestMethodSetup block.

See Also
matlab.unittest.diagnostics

Introduced in R2017b

 onFailure

1-14651

run
Class: matlab.unittest.TestCase
Package: matlab.unittest

Run TestCase test

Syntax
result = run(testCase)
result = run(testCase,testMethod)

Description
result = run(testCase) uses testCase as a prototype to run a TestSuite array
created from all test methods in the class defining testCase. This suite is run using a
TestRunner object configured for text output.

result = run(testCase,testMethod) uses testCase as a prototype to run a
TestSuite array created from testMethod. This test is run using a TestRunner object
configured for text output.

This is a convenience method to allow interactive experimentation of TestCase classes in
MATLAB, yet running the tests contained in them using a supported TestRunner object.

Input Arguments
testCase

matlab.unittest.TestCase instance

Default:

testMethod

Name of desired test method, specified as one of the following:

1 Alphabetical List

1-14652

• character vector
• string scalar
• meta.method instance

The method must correspond to a valid Test method of the testCase instance.

Default:

Output Arguments
result

A matlab.unittest.TestResult object containing the result of the test run.

Examples

Run Test Directly from Test Case

Add the FigurePropertiesTest.m test case file to a folder on your MATLAB path.

classdef FigurePropertiesTest < matlab.unittest.TestCase

 properties
 TestFigure
 end

 methods(TestMethodSetup)
 function createFigure(testCase)
 % comment
 testCase.TestFigure = figure;
 end
 end

 methods(TestMethodTeardown)
 function closeFigure(testCase)
 close(testCase.TestFigure)
 end
 end

 run

1-14653

 methods(Test)

 function defaultCurrentPoint(testCase)

 cp = testCase.TestFigure.CurrentPoint;
 testCase.verifyEqual(cp, [0 0], ...
 'Default current point is incorrect')
 end

 function defaultCurrentObject(testCase)
 import matlab.unittest.constraints.IsEmpty

 co = testCase.TestFigure.CurrentObject;
 testCase.verifyThat(co, IsEmpty, ...
 'Default current object should be empty')
 end

 end

end

Create a testcase object.

tc = FigurePropertiesTest;

Run the tests.

tc.run;

Running FigurePropertiesTest
..
Done FigurePropertiesTest

All tests passed.

See Also
matlab.unittest.TestRunner.run | matlab.unittest.TestSuite.run

1 Alphabetical List

1-14654

matlab.unittest.TestResult class
Package: matlab.unittest

Result of running test suite

Description
The matlab.unittest.TestResult class holds the information describing the result of
running a test suite using the matlab.unittest framework. The results include
information describing whether the test passed, failed, or ran to completion, as well as
the duration of each test.

Construction
TestResult arrays are created and returned by the test runner, and are of the same size
as the suite which was run.

Properties
Name

The name of the TestSuite object for the result.

The Name property is a character vector that holds the name of the test corresponding to
this result.

Passed

Logical value showing if the test passed.

When the Passed property is TRUE, then the test completed as expected without any
failure. When it is FALSE, then the test did not run to completion and/or encountered a
failure condition.

 matlab.unittest.TestResult class

1-14655

Failed

Logical value showing if test failed.

A TRUE Failed property indicates some form of test failure. When Failed is FALSE,
then no failing conditions were encountered. A failing result can occur with a failure
condition either in a test or in setting up and tearing down test fixtures. Failures can
occur due to the following:

• Verification failures
• Assertion failures
• Uncaught MExceptions

Fatal assertions are also failing conditions, but in the event of a fatal assertion failure, the
entire framework aborts and a TestResult object is never produced.

Incomplete

Logical value showing if test did not run to completion.

A TRUE Incomplete property indicates a test did not run to completion. When it is
FALSE, then no conditions were encountered that prevented the test from completing. In
other words, when FALSE there were no stack disruptions out of the running test content.
An incomplete result can occur with a stack disruption in either a test or when setting up
and tearing down test fixtures. Incomplete tests can occur due to the following:

• Assertion failures
• Tests filtered through assumption
• Uncaught MExceptions

Fatal assertions are also conditions that prevent the completion of tests, but in the event
of a fatal assertion failure the entire framework aborts and a TestResult object is never
produced.

Duration

Time elapsed running test.

The Duration property indicates the amount of time taken to run a particular test,
including the time taken setting up and tearing down any test fixtures.

1 Alphabetical List

1-14656

Fixture setup time is accounted for in the duration of the first test suite array element
that uses the fixture. Fixture teardown time is accounted for in the duration of the last
test suite array element that uses the fixture.

The total run time for a suite of tests exceeds the sum of the durations for all the
elements of the suite because the Duration property does not include all the overhead of
the TestRunner object, nor any of the time consumed by test runner plugins.

Details

Data for test result.

The Details property contains additional information relevant to the test execution. The
type of information depends on the configuration of the TestRunner and its plugins. For
example, the DiagnosticsRecordingPlugin uses this property to include diagnostic
information it encounters during the test.

Tips
• Create a table from the TestResult object for access to table functionality such as

sorting rows, displaying a summary, and writing the table to a file. For example,

rt = table(results);

See Also
TestRunner | TestSuite | table

Topics
“Analyze Test Case Results”
“Analyze Failed Test Results”
Property Attributes

 matlab.unittest.TestResult class

1-14657

matlab.unittest.TestRunner class
Package: matlab.unittest

Class for running tests in matlab.unittest framework

Description
The matlab.unittest.TestRunner class is the fundamental API used to run a suite of
tests in the matlab.unittest framework. It runs and operates on TestSuite arrays.
Use this class to customize running tests.

The TestRunner class is a sealed class; you cannot derive classes from the TestRunner
class.

Construction
To create a simple, silent TestRunner object, call the static withNoPlugins method.

runner = matlab.unittest.TestRunner.withNoPlugins

To create a TestRunner object to run tests from the MATLAB Command Window, call the
static withTextOutput method.

runner = matlab.unittest.TestRunner.withTextOutput

To create a customized TestRunner object, call the addPlugin method.

runner = TestRunner.withNoPlugins;
runner.addPlugin(SomePlugin())

Properties
ArtifactsRootFolder — Root folder where test run artifacts are stored
string scalar | character vector

1 Alphabetical List

1-14658

Root folder where test run artifacts are stored, specified as a string scalar or character
vector. By default, the value of ArtifactsRootFolder is the value from
string(tempdir), but you can set it to any writable folder.

Any artifacts produced during a test run are stored in a subfolder within
ArtifactsRootFolder. The subfolder name is a unique identifier associated with the
specific test run. MATLAB creates a subfolder only if the test run produces artifacts.

For example, assume the ArtifactsRootFolder is set to "C:\Temp" and the
automatically-generated test run identifier is "1231df38-7515-4dbe-a869-
c3d9f885f379". If a test run produces an artifact, "artifact.txt", the artifact is
stored as "C:\Temp\1231df38-7515-4dbe-a869-c3d9f885f379\artifact.txt".

PrebuiltFixtures — Fixtures set up outside the test runner
scalar Fixture instance | row vector of Fixture instances

Fixtures that are set up outside the test runner, specified as a scalar or row vector of
matlab.unittest.fixtures.Fixture instances. Use this property to specify that the
environmental configuration is performed manually instead of automatically during
fixture setup and teardown.

The test runner considers these fixtures as already set up and never attempts to set up or
tear down any fixtures specified by the PrebuiltFixtures property. If a test suite
requires a shared test fixture and that test fixture is specified as a prebuilt fixture, the
test runner does not perform set up or tear down actions.

Note The test runner uses a prebuilt fixture only if it is specified by the
PrebuiltFixtures property and is listed as a SharedTestFixture in the test class
definition. The test runner does not use a prebuilt fixture if the fixture is registered using
the TestCase.applyFixture method.

 matlab.unittest.TestRunner class

1-14659

Methods
addPlugin Add plugin to TestRunner object
run Run all tests in TestSuite array
runInParallel Run all tests in TestSuite array in parallel
withNoPlugins Create simplest runner possible
withTextOutput Create TestRunner object for command window output

Examples

Create TestRunner Object Configured for Text Output

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

Create the TestRunner object and run the suite.

runner = TestRunner.withTextOutput;
result = run(runner,suite);

Include Prebuilt Fixture

This example uses a shared test fixture and then specifies the fixture as prebuilt. The test
runner does not set up and tear down the prebuilt fixture. Since the test assumes that the
fixture exists, you must manually perform the setup work that the fixture ordinarily
performs.

Create a test class in a file in your working folder. The test class uses a PathFixture as
a shared test fixture. This example assumes that the subfolder, helperFiles, exists in
your working folder.

1 Alphabetical List

1-14660

classdef (SharedTestFixtures={ ...
 matlab.unittest.fixtures.PathFixture('helperFiles')}) ...
 SampleTest < matlab.unittest.TestCase
 methods(Test)
 function test1(testCase)
 f = testCase.getSharedTestFixtures;

 import matlab.unittest.constraints.ContainsSubstring
 testCase.assertThat(path,ContainsSubstring(f.Folder))
 end
 end
end

Create a test suite and test runner at the command prompt.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?SampleTest);
runner = TestRunner.withTextOutput;

Run the tests using the shared test fixture. In this case, the fixture is not prebuilt.

runner.run(suite);

Setting up PathFixture
Done setting up PathFixture: Added 'C:\Work\helperFiles' to the path.

Running SampleTest
.
Done SampleTest

Tearing down PathFixture
Done tearing down PathFixture: Restored the path to its original state.

The test runner sets up and tears down the shared test fixture.

Create an instance of the fixture and add it to the test runner.

f = matlab.unittest.fixtures.PathFixture('helperFiles');
runner.PrebuiltFixtures = f;

 matlab.unittest.TestRunner class

1-14661

Manually add the 'helperFiles' folder to your path. The PathFixture adds the
specified folder to your path, and the tests rely on this setup action. However, since the
fixture is defined as prebuilt, the test runner does not perform set up or tear down
actions, and you must perform them manually. In this case, if you do not manually add it
to your path, the test fails.

p = fullfile(pwd,'helperFiles');
oldPath = addpath(p);

Run the tests.

runner.run(suite);

Running SampleTest
.
Done SampleTest

The test runner assumes that the fixture is prebuilt and does not set it up or tear it down.

Manually reset your path.

path(oldPath)

See Also
TestResult | TestSuite

Topics
“Write Tests Using Shared Fixtures”

Introduced in R2013a

1 Alphabetical List

1-14662

addPlugin
Class: matlab.unittest.TestRunner
Package: matlab.unittest

Add plugin to TestRunner object

Syntax
addPlugin(runner,plugin)

Description
addPlugin(runner,plugin) adds plugin to runner.

Input Arguments
runner

matlab.unittest.TestRunner object.

Default:

plugin

Mechanism provided to customize the manner in which a TestSuite array is run,
specified as a TestRunnerPlugin object.

Default:

Examples

 addPlugin

1-14663

Run Test with Custom Plugin

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

Create a TestRunner object.

runner = TestRunner.withNoPlugins;

Add a custom plugin.

import matlab.unittest.plugins.DiagnosticsValidationPlugin;
runner.addPlugin(DiagnosticsValidationPlugin);

Run the test.

result = run(runner,suite);

See Also

1 Alphabetical List

1-14664

run
Class: matlab.unittest.TestRunner
Package: matlab.unittest

Run all tests in TestSuite array

Syntax
result = run(runner,suite)

Description
result = run(runner,suite) runs the TestSuite array defined by suite using the
TestRunner object provided in runner, and returns the result in result.

This method runs all of the appropriate methods of the TestCase class to set up fixtures
and run test content. It handles errors and qualification failures and records the
information in result.

Input Arguments
runner

matlab.unittest.TestRunner object.

Default:

suite

Set of tests, specified as a matlab.unittest.TestSuite array.

 run

1-14665

Output Arguments
result

A matlab.unittest.TestResult object containing the result of the test run. result
is the same size as suite and each element is the result of the corresponding element in
suite.

Examples

Run All Tests in a Package

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a test suite, and a test runner that displays text.

suite = TestSuite.fromClass(?mypackage.MyTestClass);
runner = TestRunner.withTextOutput;

Run the test suite.

result = runner.run(suite)

See Also
matlab.unittest.TestCase.run | matlab.unittest.TestSuite.run

1 Alphabetical List

1-14666

runInParallel
Class: matlab.unittest.TestRunner
Package: matlab.unittest

Run all tests in TestSuite array in parallel

Syntax
result = runInParallel(runner,suite)

Description
result = runInParallel(runner,suite) runs all tests in the TestSuite array in
parallel and returns the results in a TestResult object. The runInParallel method
divides suite into separate groups and uses runner to run each group on the current
parallel pool.

Note The runInParallel method requires the Parallel Computing Toolbox. The testing
framework might vary the order and number of groups or which tests it includes in each
group.

When you select a test suite to run in parallel, consider possible resource contention. For
example, if your test fixtures access global resources, such as a shared file on the same
network, the parallel sessions could conflict with each other. In such cases, consider using
a prebuilt shared test fixture.

Input Arguments
runner — Test runner for parallel test groups
matlab.unittest.TestRunner instance

Test runner for parallel test groups, specified as a matlab.unittest.TestRunner
instance.

 runInParallel

1-14667

Consider your test runner configuration before running tests in parallel. Since the
runInParallel method runs separate groups of tests on different workers, some
plugins, such as StopOnFailuresPlugin, are not well suited for parallelization. The
framework does not support running parallelized tests using a test runner with a custom
plugin.

suite — Set of tests to run in parallel
matlab.unittest.Test array

Set of tests to run in parallel, specified as a matlab.unittest.Test array.

Examples

Run Tests in Parallel

Create the following parameterized test in a file in your current working folder.

classdef TestRand < matlab.unittest.TestCase
 properties (TestParameter)
 dim1 = createDimensionSizes;
 dim2 = createDimensionSizes;
 dim3 = createDimensionSizes;
 type = {'single','double'};
 end

 methods (Test)
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun);
 end
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

function sizes = createDimensionSizes
% Create logarithmicly spaced sizes up to 100

1 Alphabetical List

1-14668

sizes = num2cell(round(logspace(0,2,10)));
end

At the command prompt, create a suite from TestRand.m and a test runner that displays
text in the Command Window.

suite = matlab.unittest.TestSuite.fromClass(?TestRand);
runner = matlab.unittest.TestRunner.withTextOutput();

The suite contains 1200 test elements.

Run the test suite in parallel.

result = runInParallel(runner,suite)

Split tests into 12 groups and running them on 4 workers.

Finished Group 2

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
Done TestRand

Finished Group 4

Running TestRand
..........
..........
..........
..........
..........
..........

 runInParallel

1-14669

..........

..........

..........

..........

.....
Done TestRand

Finished Group 3

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.......
Done TestRand

Finished Group 1

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..

1 Alphabetical List

1-14670

Done TestRand

Finished Group 7

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
Done TestRand

Finished Group 5

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...
Done TestRand

Finished Group 6

 runInParallel

1-14671

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.
Done TestRand

Finished Group 8

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
.......
Done TestRand

Finished Group 11

Running TestRand
..........
..........
..........
..........
..........
..........

1 Alphabetical List

1-14672

..........

..........

..........

.
Done TestRand

Finished Group 12

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
........
Done TestRand

Finished Group 10

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
...
Done TestRand

 runInParallel

1-14673

Finished Group 9

Running TestRand
..........
..........
..........
..........
..........
..........
..........
..........
..........
.....
Done TestRand

result =

 1200x1 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 1200 Passed, 0 Failed, 0 Incomplete.
 11.4023 seconds testing time.

See Also
matlab.unittest.TestResult | matlab.unittest.TestRunner |
matlab.unittest.TestRunner.run | matlab.unittest.TestSuite |
matlab.unittest.plugins.TestRunnerPlugin

Topics
“Write Tests Using Shared Fixtures”
“Parallel Computing Fundamentals” (Parallel Computing Toolbox)

1 Alphabetical List

1-14674

Introduced in R2015a

 runInParallel

1-14675

matlab.unittest.TestRunner.withNoPlugins
Class: matlab.unittest.TestRunner
Package: matlab.unittest

Create simplest runner possible

Syntax
runner = matlab.unittest.TestRunner.withNoPlugins

Description
runner = matlab.unittest.TestRunner.withNoPlugins creates a TestRunner
that is guaranteed to have no plugins installed and returns it in runner. It is the method
one can use to create the simplest runner possible without violating the guarantees a test
writer has when writing TestCase classes. This runner is a silent runner, meaning that
regardless of passing or failing tests, this runner produces no command window output,
although the results returned after running a test suite are accurate.

This method can also be used when it is desirable to have complete control over which
plugins are installed and in what order. It is the only method guaranteed to produce the
minimal TestRunner with no plugins, so one can create it and add additional plugins as
desired.

Output Arguments
runner

matlab.unittest.TestRunner object.

Default:

1 Alphabetical List

1-14676

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Create a Silent TestRunner Object with no Plugins

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

Create a TestRunner object.

runner = TestRunner.withNoPlugins;

% Run the suite silently
result = run(runner,suite)

Control Plugins

Using the TestRunner object created in the previous example, control which plugins are
installed and in what order they are installed.

Add matlab.unittest class to the current import list.

import matlab.unittest.plugins;

Add specific plugins.

runner.addPlugin(DiagnosticsValidationPlugin);
runner.addPlugin(TestRunProgressPlugin.withVerbosity(2));

 matlab.unittest.TestRunner.withNoPlugins

1-14677

Rerun the tests.

result = run(runner,suite)

See Also

1 Alphabetical List

1-14678

matlab.unittest.TestRunner.withTextOutput
Class: matlab.unittest.TestRunner
Package: matlab.unittest

Create TestRunner object for command window output

Syntax
runner = matlab.unittest.TestRunner.withTextOutput
runner = matlab.unittest.TestRunner.withTextOutput(Name,Value)

Description
runner = matlab.unittest.TestRunner.withTextOutput creates a TestRunner
object that is configured for running tests from the MATLAB Command Window and
returns it in runner. The output produced includes test progress as well as diagnostics in
the event of test failures.

runner = matlab.unittest.TestRunner.withTextOutput(Name,Value) creates
a TestRunner with additional options specified by one or more Name,Value pair
arguments. For example, to create a TestRunner that excludes logged diagnostics,
specify matlab.unittest.TestRunner.withTextOutput('LoggingLevel',0).

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: matlab.unittest.TestRunner.withTextOutput('OutputDetail',4)
displays event detail at them most verbose level

 matlab.unittest.TestRunner.withTextOutput

1-14679

LoggingLevel — Maximum verbosity level for logged diagnostics
1 (default) | 0 | 2 | 3 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Maximum verbosity level for logged diagnostics included by the TestRunner instance,
specified as an integer value from 0 through 4, a matlab.unittest.Verbosity
enumeration object, or a string scalar or character vector corresponding to one of the
predefined enumeration member names. The TestRunner includes diagnostics that are
logged at this level and below. Integer values correspond to the members of the
matlab.unittest.Verbosity enumeration.

By default the TestRunner includes diagnostics logged at the
matlab.unittest.Verbosity.Terse level (level 1). To exclude logged diagnostics,
specify LoggingLevel as Verbosity.None (level 0).

Logged diagnostics are diagnostics that you supply to the testing framework with a call to
the TestCase.log or Fixture.log method.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

OutputDetail — Display level for event details
3 (default) | 0 | 1 | 2 | 4 | matlab.unittest.Verbosity enumeration | enumeration
name as string or char vector

Display level for event details, specified as an integer value from 0 through 4, or as a
matlab.unittest.Verbosity enumeration object. Integer values correspond to the
members of the matlab.unittest.Verbosity enumeration, or a string scalar or
character vector corresponding to one of the predefined enumeration member names.

The TestRunner displays failing and logged events with the amount of detail specified by
OutputDetail. By default the TestRunner displays events at the
matlab.unittest.Verbosity.Detailed level (level 3).

1 Alphabetical List

1-14680

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

Examples

Display Test Results in Command Window

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

Create a TestRunner object that produced output to the Command Window.

runner = TestRunner.withTextOutput;

% Run the suite
result = run(runner,suite)

Specify Logged Diagnostic Detail

Create the follow class In a file in your current working folder, ExampleLogTest.m.
classdef ExampleLogTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase)
 log(testCase,matlab.unittest.Verbosity.Detailed,'Starting Test')

 matlab.unittest.TestRunner.withTextOutput

1-14681

 log(testCase,'Testing 5==5')
 testCase.verifyEqual(5,5)
 log(testCase,matlab.unittest.Verbosity.Verbose,'Test Complete')
 end
 end
end

At the command prompt, run the test.

result = run(ExampleLogTest);

Running ExampleLogTest
.
Done ExampleLogTest

Create a test runner to display logged messages at verbosity level 4 and lower, and then
run the test.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
suite = TestSuite.fromClass(?ExampleLogTest);
runner = TestRunner.withTextOutput('LoggingLevel',4);

results = runner.run(suite);

Running ExampleLogTest

[Detailed] Diagnostic logged (2018-04-12 12:53:47): Starting Test

[Concise] Diagnostic logged (2018-04-12 12:53:47): Testing 5==5

[Verbose] Diagnostic logged (2018-04-12 12:53:47): Test Complete
.
Done ExampleLogTest

See Also
matlab.unittest.TestCase.log | matlab.unittest.Verbosity |
matlab.unittest.fixtures.Fixture.log | run

1 Alphabetical List

1-14682

matlab.unittest.TestSuite class
Package: matlab.unittest

Class for grouping tests to run

Description
The matlab.unittest.TestSuite class is the fundamental interface used to group and
run a set of tests in the unit test framework. The matlab.unittest.TestRunner object
can only run arrays of TestSuite objects.

Construction
TestSuite arrays are created using static methods of the TestSuite class. These
methods may return subclasses of the TestSuite class depending on the method call
and context.

Methods
fromClass Create suite from TestCase class
fromFile Create TestSuite array from test file
fromFolder Create TestSuite array from all tests in folder
fromProject Create test suite array from tests in project
fromMethod Create TestSuite array from single test method
fromName Create Test object from name of test element
fromPackage Create TestSuite array from all tests in package
run Run TestSuite array using TestRunner object configured for text

output
selectIf Select test suite elements that satisfy conditions
sortByFixtures Reorder test suite based on shared fixtures

 matlab.unittest.TestSuite class

1-14683

Examples

Create Test Suite of Every Type of Test Set

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

Create test suites using each method.

fileSuite = TestSuite.fromFile('SomeTestFile.m');
folderSuite = TestSuite.fromFolder(pwd);
packageSuite = TestSuite.fromPackage('mypackage.subpackage');
classSuite = TestSuite.fromClass(?mypackage.MyTestClass);
methodSuite = TestSuite.fromMethod(?SomeTestClass,'testMethod');

Concatenate the suites.
largeSuite = [fileSuite, folderSuite, packageSuite, classSuite, methodSuite];

Run the full suite.

result = run(largeSuite)

See Also
Test | TestResult | TestRunner

1 Alphabetical List

1-14684

matlab.unittest.TestSuite.fromClass
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Create suite from TestCase class

Syntax
suite = matlab.unittest.TestSuite.fromClass(testClass)
suite = matlab.unittest.TestSuite.fromClass(testClass,s)
suite = matlab.unittest.TestSuite.fromClass(___ ,Name,Value)

Description
suite = matlab.unittest.TestSuite.fromClass(testClass) creates a
TestSuite array from all of the Test methods contained in testClass and returns that
array in suite.

suite = matlab.unittest.TestSuite.fromClass(testClass,s) creates a
TestSuite array from all of the Test methods contained in testClass that satisfy the
conditions specified by the selector, s.

suite = matlab.unittest.TestSuite.fromClass(___ ,Name,Value) creates a
TestSuite array with additional options specified by one or more Name,Value pair
arguments. You can use this syntax with any of the input arguments of the previous
syntaxes.

Input Arguments
testClass

Class containing test methods, specified as a meta.class instance. Use the ? operator to
create a meta.class instance. testClass must derive from
matlab.unittest.TestCase.

 matlab.unittest.TestSuite.fromClass

1-14685

s

Selector, specified as an instance of a class from the matlab.unittest.selector
package.

Name-Value Pair Arguments
BaseFolder

Character vector or string scalar indicating the name of the parent of the top-level
package folder that contains the file defining the test class or function. This argument
filters TestSuite array elements. For a test element to be included in the suite, the test
element must be contained in the specified base folder. Use the wildcard character, *, to
match any number of characters. Use the question mark character, ?, to match to exactly
one character.

ExternalParameters

Array of matlab.unittest.parameters.Parameter instances for use in
parameterized tests. The framework uses these external parameters in place of the
corresponding parameters that are defined within a parameterized test. For more
information, see “Use External Parameters in Parameterized Test”.

Name

Character vector or string scalar indicating the name of the suite element. This argument
filters TestSuite array elements. To include a test element in the suite, the Name
property of the test element must match the specified name. Use the wildcard character,
*, to match any number of characters. Use the question mark character, ?, to match to
exactly one character.

ParameterName

Character vector or string scalar indicating the name of a parameter used by the test
suite element. This argument filters TestSuite array elements. Use the wildcard
character, *, to match any number of characters. Use the question mark character, ?, to
match to exactly one character.

ParameterProperty

Character vector or string scalar indicating the name of a property that defines a
parameter used by the test suite element. This argument filters TestSuite array

1 Alphabetical List

1-14686

elements. Use the wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match to exactly one character.

ProcedureName

Name of test procedure, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag

Character vector or string scalar indicating the name of the tag applied to the test suite
element. This argument filters TestSuite array elements. This argument filters
TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match exactly one character.

Output Arguments
suite

Set of tests, specified as a matlab.unittest.Test array.

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

 matlab.unittest.TestSuite.fromClass

1-14687

Examples

Run Tests in a Package Class

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?mypackage.MyTestClass);
result = run(suite)

Run Tests in a Class Without a Package

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?MyTestClass);
result = run(suite)

Create Suite of Test Elements Using Selector

In your working folder, create the following testZeros.m test file. This class contains
four test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

1 Alphabetical List

1-14688

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The test class contains two parameterized test methods, testClass and testSize.

At the command prompt, create a test suite from the test elements that tests the
'double' data type.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromClass(?testZeros, ...
 HasParameter('Property','type','Name','double'));
{suite.Name}'

ans =

 'testZeros/testClass(type=double,outSize=s2d)'
 'testZeros/testClass(type=double,outSize=s3d)'

Create Suite of Test Elements Using Name-Value Arguments

Create the testZeros.m class from the previous example.

At the command prompt, create a test suite from the test elements that tests the
'double' data type.

import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?testZeros, ...
 'ParameterProperty','type', 'ParameterName','double');
{suite.Name}'

 matlab.unittest.TestSuite.fromClass

1-14689

ans =

 'testZeros/testClass(type=double,outSize=s2d)'
 'testZeros/testClass(type=double,outSize=s3d)'

Tips
• testClass must be on the MATLAB path when using this method to create suite, as

well as when suite is run.

See Also
TestRunner | fromMethod | fromPackage | matlab.unittest.selectors

Introduced in R2013a

1 Alphabetical List

1-14690

matlab.unittest.TestSuite.fromFile
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Create TestSuite array from test file

Syntax
suite = matlab.unittest.TestSuite.fromFile(file)
suite = matlab.unittest.TestSuite.fromFile(file,s)
suite = matlab.unittest.TestSuite.fromFile(___ ,Name,Value)

Description
suite = matlab.unittest.TestSuite.fromFile(file) creates a TestSuite
array from all of the tests in file. When the test suite is run, MATLAB changes the
current folder to the folder that defines the test content, and adds it to the path for the
duration of the test run.

suite = matlab.unittest.TestSuite.fromFile(file,s) creates a TestSuite
array from all of the tests in file that satisfy the conditions specified by the selector, s.

suite = matlab.unittest.TestSuite.fromFile(___ ,Name,Value) creates a
TestSuite array with additional options specified by one or more Name,Value pair
arguments. You can use this syntax with any of the input arguments of the previous
syntaxes.

Input Arguments
file

Absolute or relative path to the test file, specified as a character vector or string scalar.

 matlab.unittest.TestSuite.fromFile

1-14691

s

Selector, specified as an instance of a class from the matlab.unittest.selector
package.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

BaseFolder

Character vector or string scalar indicating the name of the folder that contains the file
defining the tests. This argument filters TestSuite array elements. For a test element to
be included in the suite, the test element must be contained in the specified base folder.
Use the wildcard character, *, to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

ExternalParameters

Array of matlab.unittest.parameters.Parameter instances for use in
parameterized tests. The framework uses these external parameters in place of the
corresponding parameters that are defined within a parameterized test. For more
information, see “Use External Parameters in Parameterized Test”.

Name

Character vector or string scalar indicating the name of the suite element. This argument
filters TestSuite array elements. To include a test element in the suite, the Name
property of the test element must match the specified name. Use the wildcard character,
*, to match any number of characters. Use the question mark character, ?, to match to
exactly one character.

ParameterName

Character vector or string scalar indicating the name of a parameter used by the test
suite element. This argument filters TestSuite array elements. Use the wildcard
character, *, to match any number of characters. Use the question mark character, ?, to
match to exactly one character.

1 Alphabetical List

1-14692

ParameterProperty

Character vector or string scalar indicating the name of a property that defines a
parameter used by the test suite element. This argument filters TestSuite array
elements. Use the wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match to exactly one character.

ProcedureName

Name of test procedure, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag

Character vector or string scalar indicating the name of the tag applied to the test suite
element. This argument filters TestSuite array elements. This argument filters
TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match exactly one character.

Output Arguments
suite

Set of tests, specified as a matlab.unittest.Test array.

 matlab.unittest.TestSuite.fromFile

1-14693

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Run Tests in Class File

Function for unit testing:

function res = add5(x)
% ADD5 Increment input by 5.
if ~isa(x,'numeric')
 error('add5:InputMustBeNumeric','Input must be numeric.')
end
res = x + 5;
end

TestCase class containing test methods:

classdef Add5Test < matlab.unittest.TestCase
 methods (Test)
 function testDoubleOut(testCase)
 actOutput = add5(1);
 testCase.verifyClass(actOutput,'double')
 end
 function testNonNumericInput(testCase)
 testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric')
 end
 end
end

Create a test suite from the Add5Test class file.

suite = matlab.unittest.TestSuite.fromFile('Add5Test.m')

result = run(suite);

Running Add5Test
..

1 Alphabetical List

1-14694

Done Add5Test

Create Suite of Test Elements Using Selector

In your working folder, create testZeros.m. This class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The test class contains two parameterized test methods, testClass and testSize.

At the command prompt, create a test suite from all parameterized test methods in
testZeros.m using the HasParameter selector.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

 matlab.unittest.TestSuite.fromFile

1-14695

suite = TestSuite.fromFile('testZeros.m', HasParameter)

suite =

 1×8 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 5 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Create a test suite from only the test elements from the testSize method using the
HasName selector with the StartsWithSubstring constraint.

import matlab.unittest.selectors.HasName;
import matlab.unittest.constraints.StartsWithSubstring;

suite = TestSuite.fromFile('testZeros.m',...
 HasName(StartsWithSubstring('testZeros/testSize')));
{suite.Name}'

ans =

 'testZeros/testSize(outSize=s2d)'
 'testZeros/testSize(outSize=s3d)'

The test suite contains the two parameterized tests from the testSize method.

Create Suite of Test Elements Using Name-Value Arguments

Create the testZeros.m class from the previous example.

At the command prompt, create a test suite from all test methods in testZeros.m that
have a name starting with 'testZeros/testSize'. This test suite contains
parameterized tests from the testSize method.

1 Alphabetical List

1-14696

import matlab.unittest.TestSuite;

suite = TestSuite.fromFile('testZeros.m', 'Name', 'testZeros/testSize*');
{suite.Name}'

ans =

 'testZeros/testSize(outSize=s2d)'
 'testZeros/testSize(outSize=s3d)'

To ensure that a test suite is comprised of test elements associated with one particular
test method, use the fromMethod method of TestSuite.

At the command prompt, create a test suite from all test methods in testZeros.m that
have a name ending in 'Size'.

import matlab.unittest.TestSuite;

suite = TestSuite.fromFile('testZeros.m', 'Name', '*Size');
{suite.Name}'

ans =

 'testZeros/testDefaultSize'

Note that elements from the testSize method are not included in the test suite. The
name of these elements contains information about the parameterization, and therefore it
does not end with 'Size'.

Create a test suite of all tests that use the parameter name 'double'.

suite = TestSuite.fromFile('testZeros.m', 'ParameterName', 'double');
{suite.Name}'

ans =

 'testZeros/testClass(type=double,outSize=s2d)'
 'testZeros/testClass(type=double,outSize=s3d)'

To construct the same test suite using selectors, use suite =
TestSuite.fromFile('testZeros.m', HasParameter('Name','double')).

See Also
TestRunner | fromFolder | matlab.unittest.selectors

 matlab.unittest.TestSuite.fromFile

1-14697

Introduced in R2013a

1 Alphabetical List

1-14698

matlab.unittest.TestSuite.fromFolder
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Create TestSuite array from all tests in folder

Syntax
suite = matlab.unittest.TestSuite.fromFolder(folder)
suite = matlab.unittest.TestSuite.fromFolder(folder,s)
suite = matlab.unittest.TestSuite.fromFolder(___ ,Name,Value)

Description
suite = matlab.unittest.TestSuite.fromFolder(folder) creates a
TestSuite array from all of the Test methods of all concrete TestCase classes
contained in folder and returns that array in suite. If tests are function-based or
script-based, a Test file is included in the TestSuite array if it follows the naming
convention of starting or ending in the word ‘test’, which is case-insensitive. Class-based
tests do not need to follow this naming convention. The method is not recursive, returning
only those tests directly in the specified folder.

When the test suite is run, MATLAB changes the current folder to the folder that defines
the test content, and adds it to the path for the duration of the test run.

suite = matlab.unittest.TestSuite.fromFolder(folder,s) creates a
TestSuite array from all of the Test methods contained in folder that satisfy the
conditions specified by the selector, s.

suite = matlab.unittest.TestSuite.fromFolder(___ ,Name,Value) creates a
TestSuite array with additional options specified by one or more Name,Value pair
arguments. You can use this syntax with any of the input arguments of the previous
syntaxes.

 matlab.unittest.TestSuite.fromFolder

1-14699

Input Arguments
folder

Folder containing tests, specified as a character vector or string scalar. folder can be
either an absolute or relative path to the desired folder.

s

Selector, specified as an instance of a class from the matlab.unittest.selector
package.

Name-Value Pair Arguments
BaseFolder

Character vector or string scalar indicating the name of the folder that contains the file
defining the tests. This argument filters TestSuite array elements. For a test element to
be included in the suite, the test element must be contained in the specified base folder.
Use the wildcard character, *, to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

ExternalParameters

Array of matlab.unittest.parameters.Parameter instances for use in
parameterized tests. The framework uses these external parameters in place of the
corresponding parameters that are defined within a parameterized test. For more
information, see “Use External Parameters in Parameterized Test”.

IncludingSubfolders

Indicator for whether to include tests from any folder subfolders, excluding package,
class, and private folders, specified as false or true (logical 0 or 1). This property is
false by default. You can specify it as true during construction.

Name

Character vector or string scalar indicating the name of the suite element. This argument
filters TestSuite array elements. To include a test element in the suite, the Name
property of the test element must match the specified name. Use the wildcard character,
*, to match any number of characters. Use the question mark character, ?, to match to
exactly one character.

1 Alphabetical List

1-14700

ParameterName

Character vector or string scalar indicating the name of a parameter used by the test
suite element. This argument filters TestSuite array elements. Use the wildcard
character, *, to match any number of characters. Use the question mark character, ?, to
match to exactly one character.

ParameterProperty

Character vector or string scalar indicating the name of a property that defines a
parameter used by the test suite element. This argument filters TestSuite array
elements. Use the wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match to exactly one character.

ProcedureName

Name of test procedure, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag

Character vector or string scalar indicating the name of the tag applied to the test suite
element. This argument filters TestSuite array elements. This argument filters
TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match exactly one character.

 matlab.unittest.TestSuite.fromFolder

1-14701

Output Arguments
suite

Set of tests, specified as a matlab.unittest.Test array.

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Run Tests in Current Folder

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromFolder(pwd);
result = run(suite);

Run Tests in Subfolders

suite = TestSuite.fromFolder(pwd, 'IncludingSubfolders', true);
result = run(suite);

Create Suite of Test Elements Using Selector

In your working folder, create a new folder, myTests. In that folder, create the following
testZeros.m test file. This class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)

1 Alphabetical List

1-14702

 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The test class contains two parameterized test methods, testClass and testSize.

At the command prompt, create a test suite from all parameterized tests that use the
parameter name 'double'.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromFolder('myTests', HasParameter('Name','double'));
{suite.Name}'

ans =

 'testZeros/testClass(type=double,outSize=s2d)'
 'testZeros/testClass(type=double,outSize=s3d)'

 matlab.unittest.TestSuite.fromFolder

1-14703

Create Suite of Test Elements Using Name-Value Arguments

Create the myTests folder and testZeros.m class from the previous example.

Create a test suite of all tests that use the parameter name 'double'.

import matlab.unittest.TestSuite;

suite = TestSuite.fromFolder('myTests', 'ParameterName', 'double');
{suite.Name}'

ans =

 'testZeros/testClass(type=double,outSize=s2d)'
 'testZeros/testClass(type=double,outSize=s3d)'

See Also
TestRunner | fromFile | matlab.unittest.selectors

Introduced in R2013a

1 Alphabetical List

1-14704

matlab.unittest.TestSuite.fromProject
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Create test suite array from tests in project

Syntax
suite = matlab.unittest.TestSuite.fromProject(project)
suite = matlab.unittest.TestSuite.fromProject(project,selector)
suite = matlab.unittest.TestSuite.fromProject(project,Name,Value)

Description
suite = matlab.unittest.TestSuite.fromProject(project) creates a
TestSuite array from all test files contained in the specified project that are labeled
with the Test classification. The project input is either a loaded
matlab.project.Project object or the root folder of a project. This method is not
recursive. It includes only those tests in the project specified. To include tests from
referenced projects, set 'IncludingReferencedProjects' to true. For more
information on projects, see “Projects”.

suite = matlab.unittest.TestSuite.fromProject(project,selector)
creates a TestSuite array from all test files contained in the specified project that are
labeled with the Test classification and that satisfy the selector. For more information
on selectors, see matlab.unittest.selectors Package.

suite = matlab.unittest.TestSuite.fromProject(project,Name,Value)
creates a TestSuite array from all test files contained in the specified project that are
labeled with the Test classification and that satisfy the conditions specified by one or
more Name,Value pair arguments.

 matlab.unittest.TestSuite.fromProject

1-14705

Input Arguments
project — Project containing test files
path to project root folder | open Project object

Project containing test files, specified as the path to the project root folder or an open
Project object. A test file is a file that is classified as test by adding the Test label in
the project.
Example: 'C:\MyProjects\ThisProject'
Data Types: char | string

selector — Filter for TestSuite array elements
instance of a class in the matlab.unittest.selectors package

Filter for TestSuite array elements, specified as an instance of a selector class from the
matlab.unittest.selectors Package.
Example:
matlab.unittest.selectors.HasBaseFolder(fullfile(pwd,'MyTests','Feat
ure1'))

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

BaseFolder — Folder containing tests to include in TestSuite array
path to folder

Folder containing tests to include in TestSuite array, specified as an absolute or relative
path. Use this argument to filter TestSuite array elements to those tests in the specified
folder. For a test element to be included in the suite, the test element must be contained
in the specified base folder. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.
Data Types: char | string

ExternalParameters — External parameters to use with test
instance of a class in the matlab.unittest.parameter package

1 Alphabetical List

1-14706

External parameters to use with test, specified as an instance of a class in the
matlab.unittest.parameters Package. Parameter instances provide external data
for use in parameterized tests. The framework uses these external parameters in place of
the corresponding parameters that are defined within a parameterized test. For more
information, see “Use External Parameters in Parameterized Test”.

IncludingReferencedProjects — Indicator to include tests from referenced
projects
false (default) | true | 0 | 1

Indicate whether to include tests from referenced projects in the TestSuite, specified as
logical true or false. By default, fromProject includes test files only from the project
specified in the input. Passing a value of true for IncludingReferencedProjects
results in a TestSuite array that includes the tests from the project specified in the
input and tests from projects referenced from the parent project. For more information on
referenced projects, see “Componentize Large Projects”.
Example: suite =
matlab.unittest.TestSuite.fromProject(project,'IncludingReferencedPr
ojects',true);

Data Types: logical

Name — Name of test element in test suite array
name of a test element

Name of test element in TestSuite array, specified as a character vector or string scalar.
Use this argument to filter TestSuite array elements to those tests that have the
specified name. To include a test element in the suite, the Name property of the test
element must match the specified value for Name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to match to exactly one
character.
Example: suite =
matlab.unittest.TestSuite.fromProject(project,'Name','testZeros/
testSize');

Data Types: char | string

ParameterName — Name of parameter used by test suite array element
name of a parameter

Name of a parameter used by the test suite element, specified as a character vector or a
string scalar. Use this argument to filter TestSuite array elements to those tests that

 matlab.unittest.TestSuite.fromProject

1-14707

use the specified parameter. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.
Example:
Data Types: char | string

ParameterProperty — Name of property that defines a parameter
name of property

Name of property that defines a parameter used by TestSuite array element, specified
as character vector or a string scalar. Use this argument to filter TestSuite array
elements to those tests that have the named property. Use the wildcard character, *, to
match any number of characters. Use the question mark character, ?, to match to exactly
one character.
Data Types: char | string

ProcedureName — Name of test procedure
test name

Name of test procedure, specified as a character vector or a string scalar. Use this
argument to filter TestSuite array elements to those that have the named test
procedure. Use the wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match to exactly one character.
Data Types: char | string

Superclass — Name of the test class superclass
superclass name

Name of the test class superclass, specified as a character vector or string scalar. Use this
argument to filter TestSuite array elements to those tests that derive from the specified
superclass.
Data Types: char | string

Tag — Name of the tag applied to test suite array element
test tag

Name of the tag applied to TestSuite array element, specified as a character array or
string scalar. Use this argument to filter TestSuite array elements to those tests with
the specified tag. Use the wildcard character, *, to match any number of characters. Use
the question mark character, ?, to match to exactly one character.

1 Alphabetical List

1-14708

Data Types: char | string

Output Arguments
suite — Set of tests
test suite

Set of tests, returned as a matlab.unittest.Test array

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Build Test Suite from Project Files

Build a test suite from project files that are labeled as Test files. This examples assumes
that a project folder at C:/projects/project1 contains test files that are labeled with
the Test classification. Use the matlab.unittest.TestSuite.fromProject static
method to create a test suite using those tests.

Open project1 and pass the matlab.project.Project object to fromProject. Run
the test suite and capture the results.

import matlab.unittest.TestSuite
project = openProject('C:/projects/project1/');
suite = TestSuite.fromProject(project);
result = run(suite)

 matlab.unittest.TestSuite.fromProject

1-14709

Include Tests from Referenced Projects

Build a test suite from project files that are labeled as Test files in the project and all
referenced projects.
import matlab.unittest.TestSuite
project = openProject('C:/projects/project1/');
suite = TestSuite.fromProject(project,'IncludingReferencedProjects',true);
result = run(suite)

See Also
matlab.unittest.Test | matlab.unittest.TestRunner |
matlab.unittest.TestSuite.fromFolder |
matlab.unittest.TestSuite.fromPackage

Introduced in R2019a

1 Alphabetical List

1-14710

matlab.unittest.TestSuite.fromMethod
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Create TestSuite array from single test method

Syntax
suite = matlab.unittest.TestSuite.fromMethod(testClass,testMethod)
suite = matlab.unittest.TestSuite.fromMethod(testClass,testMethod,s)
suite = matlab.unittest.TestSuite.fromMethod(___ ,Name,Value)

Description
suite = matlab.unittest.TestSuite.fromMethod(testClass,testMethod)
creates a TestSuite array from the test class described by testClass and the test
method described by testMethod and returns it in suite.

suite = matlab.unittest.TestSuite.fromMethod(testClass,testMethod,s)
creates a TestSuite array from all of the Test methods contained in testMethod that
satisfy the conditions specified by the selector, s.

suite = matlab.unittest.TestSuite.fromMethod(___ ,Name,Value) creates a
TestSuite array with additional options specified by one or more Name,Value pair
arguments. You can use this syntax with any of the input arguments of the previous
syntaxes.

Input Arguments
testClass

Class describing the test methods, specified as a meta.class instance which must derive
from matlab.unittest.TestCase.

 matlab.unittest.TestSuite.fromMethod

1-14711

testMethod

Test method, specified by either the meta.method instance or the name as a character
vector or string scalar. The method must be defined with a Test method attribute.

s

Selector, specified as an instance of a class from the matlab.unittest.selector
package.

Name-Value Pair Arguments
BaseFolder

Character vector or string scalar indicating the name of the parent of the top-level
package folder that contains the file defining the test class or function. This argument
filters TestSuite array elements. For a test element to be included in the suite, the test
element must be contained in the specified base folder. Use the wildcard character, *, to
match any number of characters. Use the question mark character, ?, to match to exactly
one character.

ExternalParameters

Array of matlab.unittest.parameters.Parameter instances for use in
parameterized tests. The framework uses these external parameters in place of the
corresponding parameters that are defined within a parameterized test. For more
information, see “Use External Parameters in Parameterized Test”.

Name

Character vector or string scalar indicating the name of the suite element. This argument
filters TestSuite array elements. To include a test element in the suite, the Name
property of the test element must match the specified name. Use the wildcard character,
*, to match any number of characters. Use the question mark character, ?, to match to
exactly one character.

ParameterName

Character vector or string scalar indicating the name of a parameter used by the test
suite element. This argument filters TestSuite array elements. Use the wildcard
character, *, to match any number of characters. Use the question mark character, ?, to
match to exactly one character.

1 Alphabetical List

1-14712

ParameterProperty

Character vector or string scalar indicating the name of a property that defines a
parameter used by the test suite element. This argument filters TestSuite array
elements. Use the wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match to exactly one character.

ProcedureName

Name of test procedure, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag

Character vector or string scalar indicating the name of the tag applied to the test suite
element. This argument filters TestSuite array elements. This argument filters
TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match exactly one character.

Output Arguments
suite

Set of tests, specified as a matlab.unittest.Test array.

 matlab.unittest.TestSuite.fromMethod

1-14713

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Run a Single Test Method

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

cls = ?mypackage.MyTestClass;

% Create the suite using the method name
suite = TestSuite.fromMethod(cls, 'testMethod');
result = run(suite)

% Create the suite using the meta.method instance
metaMethod = findobj(cls.MethodList, 'Name', 'testMethod');
suite = TestSuite.fromMethod(cls, metaMethod);
result = run(suite)

Create Suite of Test Elements Using Selector

In your working folder, create the following testZeros.m test file. This class contains
four test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);

1 Alphabetical List

1-14714

 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The test class contains two parameterized test methods, testClass and testSize.

At the command prompt, create a test suite from all parameterized tests from the
testClass method that use the parameter name 'single'.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromMethod(?testZeros,'testClass', ...
 HasParameter('Name','single'));
{suite.Name}'

ans =

 'testZeros/testClass(type=single,outSize=s2d)'
 'testZeros/testClass(type=single,outSize=s3d)'

Create Suite of Test Elements Using Name-Value Arguments

Create the testZeros.m class from the previous example.

At the command prompt, create a test suite from all parameterized tests from the
testClass method that use the parameter name 'single'.

 matlab.unittest.TestSuite.fromMethod

1-14715

import matlab.unittest.TestSuite;

suite = TestSuite.fromMethod(?testZeros,'testClass', ...
 'ParameterName','single');
{suite.Name}'

ans =

 'testZeros/testClass(type=single,outSize=s2d)'
 'testZeros/testClass(type=single,outSize=s3d)'

Tips
• testClass must be on the MATLAB path when using this method to create suite, as

well as when suite is run.

See Also
TestRunner | fromClass | fromPackage | matlab.unittest.selectors

Introduced in R2013a

1 Alphabetical List

1-14716

matlab.unittest.TestSuite.fromName
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Create Test object from name of test element

Syntax
testObj = matlab.unittest.TestSuite.fromName(name)
testObj = matlab.unittest.TestSuite.fromName(
name,'ExternalParameters',ExternalParameters)

Description
testObj = matlab.unittest.TestSuite.fromName(name) creates a scalar Test
object, testObj, from the name of the test element, name.

testObj = matlab.unittest.TestSuite.fromName(
name,'ExternalParameters',ExternalParameters) allows the suite to use the
specified external parameters in place of corresponding parameters that are defined
within a parameterized test.

Input Arguments
name

Name of the matlab.unittest.Test element, specified as a character vector or string
scalar. For class-based tests, name contains the name of the TestCase class and the test
method, as well as information about parameterization. For function-based tests, name
contains the name of the main function and the local test function. For script-based tests,
name contains the name of the script and the title of the test section or cell. If the section
does not have a title, MATLAB assigns one. The name argument corresponds to the Name
property of the Test object.

 matlab.unittest.TestSuite.fromName

1-14717

The test class, function or script described by name must be on the MATLAB path when
you are creating and running the TestSuite.

ExternalParameters

Array of matlab.unittest.parameters.Parameter instances for use in
parameterized tests. The framework uses these external parameters in place of the
corresponding parameters that are defined within a parameterized test. For more
information, see “Use External Parameters in Parameterized Test”.

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Create and Run Test from Test Suite Element

Create a function to test, add5, in a file on your MATLAB path.

function res = add5(x)
% ADD5 Increment input by 5.
if ~isa(x,'numeric')
 error('add5:InputMustBeNumeric','Input must be numeric.')
end
res = x + 5;
end

Create a file, Add5Test.m, on your MATLAB path that contains the following TestCase
class.

classdef Add5Test < matlab.unittest.TestCase
 properties (TestParameter)
 Type = {'double','single','int8','int32'};
 end

 methods (Test)

1 Alphabetical List

1-14718

 function testNonNumericInput(testCase)
 testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric')
 end
 function testResultType(testCase, Type)
 actOutput = add5(cast(1,Type));
 testCase.verifyClass(actOutput, Type)
 end

 end
end

At the command prompt, create a test object for the testNonNumericInput method in
the Add5Test class.

import matlab.unittest.TestSuite
testObj = TestSuite.fromName('Add5Test/testNonNumericInput');

Run the test

result = run(testObj);

Running Add5Test
.
Done Add5Test

Create a parameterized test for the testResultType method in the Add5Test class,
and run the test.

testObj = TestSuite.fromName('Add5Test/testResultType(Type=single)');
result = run(testObj);

Running Add5Test
.
Done Add5Test

See Also
TestRunner

 matlab.unittest.TestSuite.fromName

1-14719

matlab.unittest.TestSuite.fromPackage
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Create TestSuite array from all tests in package

Syntax
suite = matlab.unittest.TestSuite.fromPackage(package)
suite = matlab.unittest.TestSuite.fromPackage(package,s)
suite = matlab.unittest.TestSuite.fromPackage(___ ,Name,Value)

Description
suite = matlab.unittest.TestSuite.fromPackage(package) creates a
TestSuite array from all of the Test methods of all the tests contained in package and
returns that array in suite. The method is not recursive, returning only those tests
directly in the package specified.

suite = matlab.unittest.TestSuite.fromPackage(package,s) creates a
TestSuite array from all the tests contained in package that satisfy the conditions
specified by the selector, s.

suite = matlab.unittest.TestSuite.fromPackage(___ ,Name,Value) creates
a TestSuite array with additional options specified by one or more Name,Value pair
arguments. You can use this syntax with any of the input arguments of the previous
syntaxes.

Input Arguments
package

The name of the desired package to find tests, specified as a character vector or string
scalar.

1 Alphabetical List

1-14720

s

Selector, specified as an instance of a class from the matlab.unittest.selector
package.

Name-Value Pair Arguments
BaseFolder

Character vector or string scalar indicating the name of the parent of the top-level
package folder that contains the tests. This argument filters TestSuite array elements.
For a test element to be included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character, *, to match any number of characters.
Use the question mark character, ?, to match to exactly one character.

ExternalParameters

Array of matlab.unittest.parameters.Parameter instances for use in
parameterized tests. The framework uses these external parameters in place of the
corresponding parameters that are defined within a parameterized test. For more
information, see “Use External Parameters in Parameterized Test”.

IncludingSubpackages

Indicator for whether to include subpackages in the TestSuite array, specified as false
or true (logical 0 or 1). This property is false by default. You can specify it as true
during construction.

Name

Character vector or string scalar indicating the name of the suite element. This argument
filters TestSuite array elements. To include a test element in the suite, the Name
property of the test element must match the specified name. Use the wildcard character,
*, to match any number of characters. Use the question mark character, ?, to match to
exactly one character.

ParameterName

Character vector or string scalar indicating the name of a parameter used by the test
suite element. This argument filters TestSuite array elements. Use the wildcard
character, *, to match any number of characters. Use the question mark character, ?, to
match to exactly one character.

 matlab.unittest.TestSuite.fromPackage

1-14721

ParameterProperty

Character vector or string scalar indicating the name of a property that defines a
parameter used by the test suite element. This argument filters TestSuite array
elements. Use the wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match to exactly one character.

ProcedureName

Name of test procedure, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based
test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag

Character vector or string scalar indicating the name of the tag applied to the test suite
element. This argument filters TestSuite array elements. This argument filters
TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match exactly one character.

Output Arguments
suite

Set of tests, specified as a matlab.unittest.Test array.

1 Alphabetical List

1-14722

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Run All Tests in a Package

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromPackage('mypackage.subpackage');
result = run(suite)

Run tests in mypackage including all subpackages.

suite = TestSuite.fromPackage('mypackage','IncludingSubpackages',true);
result = run(suite)

Create Suite of Test Elements Using Selector

In your working folder, create a new package by creating a new folder, +myPackage. In
that folder, create the following testZeros.m test file. This class contains four test
methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 matlab.unittest.TestSuite.fromPackage

1-14723

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The test class contains two parameterized test methods, testClass and testSize.

At the command prompt, create a test suite from all parameterized tests that use the
parameter property 'outSize'.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromPackage('myPackage', ...
 HasParameter('Property','outSize'));
{suite.Name}'

ans =

 'myPackage.testZeros/testClass(type=single,outSize=s2d)'
 'myPackage.testZeros/testClass(type=single,outSize=s3d)'
 'myPackage.testZeros/testClass(type=double,outSize=s2d)'
 'myPackage.testZeros/testClass(type=double,outSize=s3d)'
 'myPackage.testZeros/testClass(type=uint16,outSize=s2d)'
 'myPackage.testZeros/testClass(type=uint16,outSize=s3d)'
 'myPackage.testZeros/testSize(outSize=s2d)'
 'myPackage.testZeros/testSize(outSize=s3d)'

Create Suite of Test Elements Using Name-Value Arguments

Create the +myPackage folder and testZeros.m class from the previous example.

1 Alphabetical List

1-14724

At the command prompt, create a test suite from all parameterized tests that use the
parameter property 'outSize'.

import matlab.unittest.TestSuite;

suite = TestSuite.fromPackage('myPackage', ...
 'ParameterProperty', 'outSize');
{suite.Name}'

ans =

 'myPackage.testZeros/testClass(type=single,outSize=s2d)'
 'myPackage.testZeros/testClass(type=single,outSize=s3d)'
 'myPackage.testZeros/testClass(type=double,outSize=s2d)'
 'myPackage.testZeros/testClass(type=double,outSize=s3d)'
 'myPackage.testZeros/testClass(type=uint16,outSize=s2d)'
 'myPackage.testZeros/testClass(type=uint16,outSize=s3d)'
 'myPackage.testZeros/testSize(outSize=s2d)'
 'myPackage.testZeros/testSize(outSize=s3d)'

Tips
• The root folder(s) where package is defined must be on the MATLAB path when

creating suite using this method as well as when suite is run.

See Also
TestRunner | fromClass | fromMethod | matlab.unittest.selectors

Introduced in R2013a

 matlab.unittest.TestSuite.fromPackage

1-14725

run
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Run TestSuite array using TestRunner object configured for text output

Syntax
result = run(suite)

Description
result = run(suite) runs the TestSuite object defined by suite using a
TestRunner object configured for text output.

Input Arguments
suite

Set of tests, specified as a matlab.unittest.TestSuite array.

Output Arguments
result

A matlab.unittest.TestResult object containing the result of the test run. result
is the same size as suite and each element is the result of the corresponding element in
suite.

Examples

1 Alphabetical List

1-14726

Compare TestSuite.run with TestRunner.run

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a test suite and a test runner.

suite = TestSuite.fromClass(?mypackage.MyTestClass);
runner = TestRunner.withTextOutput;

The following test results are equivalent.

result = runner.run(suite)
result = run(suite)

Tips
• This is a convenience method which is equivalent to using a TestRunner object

created from the TestRunner.withTextOutput method to run suite.

See Also
matlab.unittest.TestCase.run | matlab.unittest.TestRunner.run

 run

1-14727

selectIf
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Select test suite elements that satisfy conditions

Syntax
newsuite = selectIf(suite,s)
newsuite = selectIf(suite,Name,Value)

Description
newsuite = selectIf(suite,s) selects from suite the test elements that satisfy the
conditions specified by the selector, s, and returns them in the TestSuite array,
newsuite.

newsuite = selectIf(suite,Name,Value) creates a TestSuite array with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
suite

Set of tests, specified as a matlab.unittest.TestSuite array.

s

Selector, specified as an instance of a class from the matlab.unittest.selector
package.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-14728

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

BaseFolder

Character vector indicating the name of the folder that contains the tests. This argument
filters TestSuite array elements. For a test element to be included in the suite, the test
element must be contained in the specified base folder. Use the wildcard character, *, to
match any number of characters. Use the question mark character, ?, to match to exactly
one character. For tests defined in packages, the base folder is the parent of the top-level
package folder.

Name

Character vector indicating the name of the suite element. This argument filters
TestSuite array elements. To include a test element in the suite, the Name property of
the test element must match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to match to exactly one
character.

ParameterName

Character vector indicating the name of a parameter used by the test suite element. This
argument filters TestSuite array elements. Use the wildcard character, *, to match any
number of characters. Use the question mark character, ?, to match to exactly one
character.

ParameterProperty

Character vector indicating the name of a property that defines a parameter used by the
test suite element. This argument filters TestSuite array elements. Use the wildcard
character, *, to match any number of characters. Use the question mark character, ?, to
match to exactly one character.

ProcedureName

Name of test procedure, specified as a character vector or string scalar. This argument
filters TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly one character.

In a class-based test, the ProcedureName is the name of the test method. In a function-
based, test it is the name of the local function that contains the test. In a script-based

 selectIf

1-14729

test, it is a name generated from the test section title. Unlike Name, the name of the test
procedure does not include any class or package name or information about
parameterization.

Superclass

Name of a class that the test class derives from, specified as a character vector or string
scalar. This argument filters TestSuite array elements.

Tag

Character vector or string scalar indicating the name of the tag applied to the test suite
element. This argument filters TestSuite array elements. This argument filters
TestSuite array elements. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match exactly one character.

Examples

Select Test Elements Using Selector

In your working folder, create the file ExampleTest.m containing the following test
class.

classdef (SharedTestFixtures={...
 matlab.unittest.fixtures.PathFixture(fullfile(...
 matlabroot, 'help', 'techdoc', 'matlab_oop', 'examples'))})...
 ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testPathAdd(testCase)
 % test code
 end
 function testOne(testCase)
 % test code
 end
 function testTwo(testCase)
 % test code
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class.

1 Alphabetical List

1-14730

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasSharedTestFixture;
import matlab.unittest.selectors.HasName;
import matlab.unittest.fixtures.PathFixture;
import matlab.unittest.constraints.EndsWithSubstring;
import matlab.unittest.constraints.ContainsSubstring;

suite = TestSuite.fromClass(?ExampleTest)

suite =

 1×3 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 1 Unique Shared Test Fixture Class, 0 Tags.

The test suite contains three test elements.

Create a filtered test suite of tests comprising tests with names that contain the case-
insensitive text 'pAtH'.
newSuite = selectIf(suite,HasName(ContainsSubstring('pAtH','IgnoringCase',true)))

newSuite =

 Test with properties:

 Name: 'ExampleTest/testPathAdd'
 ProcedureName: 'testPathAdd'
 TestClass: "ExampleTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [1×1 matlab.unittest.fixtures.PathFixture]
 Tags: {1×0 cell}

Tests Include:
 0 Parameterizations, 1 Unique Shared Test Fixture Class, 0 Tags.

 selectIf

1-14731

Only the testPathAdd test is part of the suite.

Alternatively, create the same suite using a name-value pair.

newSuite = selectIf(suite,'Name','*Path*');

However, unlike the ContainsSubstring constraint, the name-value pair does not have
an option to ignore case.

Create a filtered suite of tests comprising tests that use a shared path fixture and do not
have names ending with 'One'.

newSuite = suite.selectIf(~HasName(EndsWithSubstring('One')) ...
 & HasSharedTestFixture(PathFixture(fullfile(matlabroot, 'help',...
 'techdoc', 'matlab_oop', 'examples'))));
{newSuite.Name}

ans =

 'ExampleTest/testPathAdd' 'ExampleTest/testTwo'

The test suite contains two tests. All of the tests use the specified path fixture, but the
test named 'testOne' is excluded from the suite.

Select Test Elements Using Parameterization

In your working folder, create testZeros.m. This class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 outSize = struct('s2d',[3 3], 's3d',[2 5 4]);
 end

 methods (Test)
 function testClass(testCase, type, outSize)
 testCase.verifyClass(zeros(outSize,type), type);
 end

 function testSize(testCase, outSize)
 testCase.verifySize(zeros(outSize), outSize);
 end

1 Alphabetical List

1-14732

 function testDefaultClass(testCase)
 testCase.verifyClass(zeros, 'double');
 end
 function testDefaultSize(testCase)
 testCase.verifySize(zeros, [1 1]);
 end

 function testDefaultValue(testCase)
 testCase.verifyEqual(zeros,0);
 end
 end
end

The test class contains two parameterized test methods, testClass and testSize.

At the command prompt, create a test suite from the file.

s = matlab.unittest.TestSuite.fromFile('testZeros.m');
{s.Name}'

ans =

 11×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=single,outSize=s3d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}
 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s3d)'}
 {'testZeros/testSize(outSize=s2d)' }
 {'testZeros/testSize(outSize=s3d)' }
 {'testZeros/testDefaultClass' }
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue' }

The suite contains 11 test elements. Six from the parameterized testClass method, two
from the parameterized testSize method, and one from each of the
testDefaultClass, testDefaultSize, and testDefaultValue methods.

Select all of the test elements from parameterized test methods.

import matlab.unittest.selectors.HasParameter;

 selectIf

1-14733

s1 = s.selectIf(HasParameter);
{s1.Name}'

ans =

 8×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=single,outSize=s3d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}
 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s3d)'}
 {'testZeros/testSize(outSize=s2d)' }
 {'testZeros/testSize(outSize=s3d)' }

The suite contains the eight test elements from the two parameterized test methods.

Select all of the test elements from non-parameterized test methods.

s2 = s.selectIf(~HasParameter);
{s2.Name}'

ans =

 3×1 cell array

 {'testZeros/testDefaultClass'}
 {'testZeros/testDefaultSize' }
 {'testZeros/testDefaultValue'}

Select all test elements that are parameterized and have a property named 'type' with a
parameter name 'double'.

s3 = s.selectIf('ParameterProperty','type', 'ParameterName','double');
{s3.Name}'

ans =

 2×1 cell array

 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}

1 Alphabetical List

1-14734

The resulting suite contains two elements. The testClass method is the only method in
testZeros that uses the 'type' property, and selecting only 'double' from the
parameters results in two test elements — one for each value of 'outSize'.

Select all test elements that are parameterized and have a parameters defined by a
property starting with 't'.

s4 = s.selectIf('ParameterProperty','t*');
{s4.Name}'

ans =

 6×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=single,outSize=s3d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s3d)'}
 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s3d)'}

The resulting suite contains the six parameterized test elements from the testClass
method. The testSize method is parameterized, but the elements from the method are
not included in the suite because the method does not use a property that starts with 't'.

Select all test elements that are parameterized and test the zeros function with a 2-D
array. A parameter value representing a 2-D array will have a length of 1 (e.g. zeros(3))
or 2 (e.g. zeros(2,3)).

import matlab.unittest.constraints.HasLength;

s5 = s.selectIf(HasParameter('Property','outSize',...
 'Value', HasLength(1)|HasLength(2)));
{s5.Name}'

ans =

 4×1 cell array

 {'testZeros/testClass(type=single,outSize=s2d)'}
 {'testZeros/testClass(type=double,outSize=s2d)'}
 {'testZeros/testClass(type=uint16,outSize=s2d)'}
 {'testZeros/testSize(outSize=s2d)' }

 selectIf

1-14735

Select only the test element that tests that the output is a double data type and the has
the correct size for a 2-D array.

s6 = s.selectIf(HasParameter('Property','type','Name','double')...
 & HasParameter('Property','outSize','Name','s2d'))

s6 =

 Test with properties:

 Name: 'testZeros/testClass(type=double,outSize=s2d)'
 ProcedureName: 'testClass'
 TestClass: "testZeros"
 BaseFolder: 'C:\work'
 Parameterization: [1×2 matlab.unittest.parameters.TestParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

Tests Include:
 2 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Select Test Elements Using Tags

Create the following test class in a file, ExampleTest.m, in your current working folder.

classdef ExampleTest < matlab.unittest.TestCase
 methods (Test)
 function testA (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'Unit'})
 function testB (testCase)
 % test code
 end
 function testC (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'Unit','FeatureA'})
 function testD (testCase)
 % test code
 end

1 Alphabetical List

1-14736

 end
 methods (Test, TestTags = {'System','FeatureA'})
 function testE (testCase)
 % test code
 end
 end
end

At the command prompt, create a test suite from the ExampleTest class and examine the
contents.

import matlab.unittest.TestSuite
import matlab.unittest.selectors.HasTag

suite = TestSuite.fromClass(?ExampleTest)

suite =

 1×5 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 3 Unique Tags.

Click the hyperlink for 3 Unique Tags to display all the tags in the suite.

 Tag

 'FeatureA'
 'System'
 'Unit'

Select all the test suite elements that have the tag 'Unit'.

s1 = suite.selectIf(HasTag('Unit'))

 selectIf

1-14737

s1 =

 1×3 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 2 Unique Tags.

Select all the test suite elements that do not contain the tag 'FeatureA'.

s2 = suite.selectIf(~HasTag('FeatureA'));
{s2.Name}

ans =

 1×3 cell array

 {'ExampleTest/testB'} {'ExampleTest/testC'} {'ExampleTest/testA'}

Select all the test suite elements that have no tags.

s3 = suite.selectIf(~HasTag)

s3 =

 Test with properties:

 Name: 'ExampleTest/testA'
 ProcedureName: 'testA'
 TestClass: "ExampleTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

1 Alphabetical List

1-14738

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

See Also
matlab.unittest.constraints | matlab.unittest.selectors

Introduced in R2014a

 selectIf

1-14739

sortByFixtures
Class: matlab.unittest.TestSuite
Package: matlab.unittest

Reorder test suite based on shared fixtures

Syntax
sortedSuite = sortByFixtures(suite)
[sortedSuite,I] = sortByFixtures(suite)

Description
sortedSuite = sortByFixtures(suite) reorders the test suite to reduce shared
fixture setup and teardown operations. Do not rely on the order of elements in
sortedSuite as it might change in a future release.

[sortedSuite,I] = sortByFixtures(suite) also returns a sort index I that
describes the arrangement of the elements of suite into sortedSuite.

Input Arguments
suite — Set of tests
matlab.unittest.Test array

Set of tests, specified as a matlab.unittest.Test array.

Output Arguments
sortedSuite — Ordered set of tests
matlab.unittest.Test array

Ordered set of tests, returned as a matlab.unittest.Test array. sortedSuite is a
permutation of the test elements of suite.

1 Alphabetical List

1-14740

I — Sort index
vector | matrix | multidimensional array

Sort index, returned as a vector, matrix, or multidimensional array. I is the same size as
suite and describes the arrangement of the elements of suite into orderedSuite.
Specifically, sortedSuite = suite(I).

Examples
Reorder Test Suite Based on Shared Fixtures

Create three test classes in your current working folder. Test classes MyTestClassA and
MyTestClassC use the same shared path fixture.

classdef (SharedTestFixtures={ ...
 matlab.unittest.fixtures.PathFixture('offPathFolder')}) ...
 MyTestClassA < matlab.unittest.TestCase
 methods (Test)
 function test_A(testCase)
 % test content
 end
 end
end

classdef MyTestClassB < matlab.unittest.TestCase
 methods (Test)
 function test_B(testCase)
 % test content
 end
 end
end

classdef (SharedTestFixtures={ ...
 matlab.unittest.fixtures.PathFixture('offPathFolder')}) ...
 MyTestClassC < matlab.unittest.TestCase
 methods (Test)
 function test_C(testCase)
 % test content
 end
 end
end

Create a test suite from each class.

 sortByFixtures

1-14741

import matlab.unittest.TestSuite;
suiteA = TestSuite.fromClass(?MyTestClassA);
suiteB = TestSuite.fromClass(?MyTestClassB);
suiteC = TestSuite.fromClass(?MyTestClassC);

Concatenate the suites and view the order of test elements.

suite = [suiteA suiteB suiteC];
{suite.Name}'

ans =

 3×1 cell array

 {'MyTestClassA/test_A'}
 {'MyTestClassB/test_B'}
 {'MyTestClassC/test_C'}

Sort the suite by shared fixtures and view the order of test elements.

sortedSuite = sortByFixtures(suite);
{sortedSuite.Name}'

ans =

 3×1 cell array

 {'MyTestClassA/test_A'}
 {'MyTestClassC/test_C'}
 {'MyTestClassB/test_B'}

Since the tests in MyTestClassA and MyTestClassC have the same shared test fixture,
the test elements are reordered so that they are adjacent in the suite.

Tips
If you create a test suite using a single call to the testsuite function instead of several
calls to a method of matlab.unittest.TestSuite, the suite is automatically sorted
based on shared fixtures. However, if you add, remove, or reorder elements after initial
suite creation, call the sortByFixtures method to sort the suite.

1 Alphabetical List

1-14742

See Also
matlab.unittest.fixtures

Topics
“Write Tests Using Shared Fixtures”

Introduced in R2018b

 sortByFixtures

1-14743

texlabel
Format text with TeX characters

Syntax
txt = texlabel(f)
txt = texlabel(f,'literal')

Description
txt = texlabel(f) converts the MATLAB expression f into the TeX equivalent for use
in text. texlabel converts Greek variable names (for example, lambda, delta, and so on)
into a character vector that is displayed as Greek letters. The txt output is useful as an
argument to annotation functions such as title, xlabel, and text.

If txt is too long to fit into a figure window, then the center of the expression is replaced
with a tilde ellipsis (~~~).

txt = texlabel(f,'literal') interprets Greek variable names literally.

Examples

Create Text with TeX Characters

Plot a line. Create text that contains TeX characters and add the text to the line plot.

plot((1:10).^2)
txt = texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)');
text(3,90,txt)

1 Alphabetical List

1-14744

If you include the 'literal' argument, texlabel interprets Greek variable names
literally. Add text with the literal variable names to the line plot.

text(4,60,texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)','literal'))

 texlabel

1-14745

Input Arguments
f — Input MATLAB expression
character vector | string scalar

Input MATLAB expression, specified as a character vector or string scalar.
Example: 'theta (degrees)'

1 Alphabetical List

1-14746

See Also
text | title | xlabel | ylabel | zlabel

Introduced before R2006a

 texlabel

1-14747

text
Add text descriptions to data points

Syntax
text(x,y,txt)
text(x,y,z,txt)
text(___ ,Name,Value)
text(ax, ___)

t = text(___)

Description
text(x,y,txt) adds a text description to one or more data points in the current axes
using the text specified by txt. To add text to one point, specify x and y as scalars in data
units. To add text to multiple points, specify x and y as vectors with equal length.

text(x,y,z,txt) positions the text in 3-D coordinates.

text(___ ,Name,Value) specifies Text object properties using one or more name-
value pairs. For example, 'FontSize',14 sets the font size to 14 points. You can specify
text properties with any of the input argument combinations in the previous syntaxes. If
you specify the Position and String properties as name-value pairs, then you do not
need to specify the x, y, z, and txt inputs.

text(ax, ___) creates the text in the axes specified by ax instead of in the current axes
(gca). The option ax can precede any of the input argument combinations in the previous
syntaxes.

t = text(___) returns one or more text objects. Use t to modify properties of the text
objects after they are created. For a list of properties and descriptions, see Text. You can
specify an output with any of the previous syntaxes.

1 Alphabetical List

1-14748

Examples

Add Text Description to Data Point

Plot a sine curve. At the point (π, 0), add the text description sin(π). Use the TeX markup
\pi for the Greek letter π. Use \leftarrow to display a left-pointing arrow.

x = 0:pi/20:2*pi;
y = sin(x);
plot(x,y)
text(pi,0,'\leftarrow sin(\pi)')

 text

1-14749

For a list of Greek characters and other TeX markup, see the Interpreter property
description.

Add Text to Multiple Data Points

Plot a line. Add the same text to two points along the line.

x = linspace(-5,5);
y = x.^3-12*x;
plot(x,y)

xt = [-2 2];
yt = [16 -16];
str = 'dy/dx = 0';
text(xt,yt,str)

1 Alphabetical List

1-14750

Add different text to each point by specifying str as a cell array.

x = linspace(-5,5);
y = x.^3-12*x;
plot(x,y)

xt = [-2 2];
yt = [16 -16];
str = {'local max','local min'};
text(xt,yt,str)

 text

1-14751

Display Multiline Text

Create a line plot and add one text description to the axes. Display multiline text by
specifying str as a cell array.

plot(1:10)
str = {'A simple plot','from 1 to 10'};
text(2,7,str)

1 Alphabetical List

1-14752

Create a line plot and add two text descriptions to the axes. When adding multiple text
descriptions to the axes, display multiline text by specifying nested cell arrays.

plot(1:10)
str = {{'A simple plot','from 1 to 10'},'y = x'};
text([2 8],[7 7],str)

 text

1-14753

Specify Text Size and Color

Create a line plot and add a text description to the axes. Use red, size 14 font.

plot(1:10)
text(2,8,'A Simple Plot','Color','red','FontSize',14)

1 Alphabetical List

1-14754

Modify Existing Text

Create a line plot and add two text descriptions along the line. Return the text objects, t.

x = linspace(-5,5);
y = x.^3-12*x;
plot(x,y)
t = text([-2 2],[16 -16],'dy/dx = 0')

 text

1-14755

t =
 2x1 Text array:

 Text (dy/dx = 0)
 Text (dy/dx = 0)

The text function creates one text object for each text description. Thus, t contains two
text objects.

Change the color and font size for the first text object using t(1). Starting in R2014b,
you can use dot notation to set properties. If you are using an earlier release, use the set
function instead.

1 Alphabetical List

1-14756

t(1).Color = 'red';
t(1).FontSize = 14;

Input Arguments
x — Text placement along x-axis
scalar | vector

Text placement along the x-axis, specified in one of these forms:

• Scalar — Add text to single point.

 text

1-14757

• Vector — Add text to multiple points.

x and y must be equal sizes. The default units are data units. To change the units, set the
Units property for the Text object.

To control the placement of the text with relation to the specified point, use the
HorizontalAlignment, VerticalAlignment, and Extent properties of the Text
object.
Data Types: double | categorical | datetime | duration

y — Text placement along y-axis
scalar | vector

Text placement along the y-axis, specified in one of these forms:

• Scalar — Add text to single point.
• Vector — Add text to multiple points.

x and y must be equal sizes. The default units are data units. To change the units, set the
Units property for the Text object.

To control the placement of the text with relation to the specified point, use the
HorizontalAlignment, VerticalAlignment, and Extent properties of the Text
object.
Data Types: double | categorical | datetime | duration

z — Text placement along z-axis
0 (default) | scalar | vector

Text placement along the z-axis, specified in one of these forms:

• Scalar — Add text to single point.
• Vector — Add text to multiple points.

x, y, and z must be equal sizes. The default units are data units. To change the units, set
the Units property for the Text object.
Data Types: double | categorical | datetime | duration

txt — Text to display
character vector | string scalar | character array | string array | cell array | categorical
array

1 Alphabetical List

1-14758

Text to display, specified as a character vector, string scalar, character array, string array,
cell array, or categorical array.
Text for Single Data Point

To add text to a single point, specify txt as a character vector or string scalar. For
example, text(.5,.5,'my text').

For multiline text:

• Use a cell array, where each cell contains a line of text. For example, text(.5,.5,
{'first','second'}).

• Use a string array, where each element is a line of text. For example, text(.5,.5,
["first","second"]).

• Use a character array with multiple rows, where each row contains the same number
of characters. For example, text(.5,.5,['first '; 'second']).

• Use sprintf to create a new line character. For example,
text(.5,.5,sprintf('first \nsecond')).

If you specify the text as a categorical array, MATLAB uses the values in the array, not the
categories.
Text for Multiple Data Points

To display the same text at each location, specify txt as a character vector or string. For
example, text([0 1],[0 1],'my text').

To display different text at each location, use a cell array. For example, text([0 1],[0
1],{'first','second'}).

For multiline text, use nested cell arrays. For example, text([0 1],[0 1],
{{'first','new line'},'second'}).
Greek Letters, Special Characters, and Numeric Variables

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols, use TeX markup. For a list of supported markup, see the
Interpreter property.

To include numeric variables in the text, use the num2str function.

v = 42;
txt = ['The value is ',num2str(v)];

 text

1-14759

ax — Target axes
Axes object | PolarAxes object

Target axes, specified as an Axes object or a PolarAxes object. If you do not specify the
axes, then text uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: text(.5,.5,'my text','FontSize',14,'Color','red')

The properties listed here are only a subset. For a full list, see Text.

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontName — Font name
supported font name | 'FixedWidth'

1 Alphabetical List

1-14760

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

 text

1-14761

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

HorizontalAlignment — Horizontal alignment of text with respect to position
point
'left' (default) | 'center' | 'right'

Horizontal alignment of the text with respect to the x value in the Position property,
specified as one of the values in this table. The vertical line indicates where the x value
lies in relation to the text.

Value Result
'left' (default)

1 Alphabetical List

1-14762

Value Result
'center'

'right'

Position — Location of text
[0 0 0] (default) | two-element vector of form [x y] | three-element vector of form [x
y z]

Location of the text, specified as a two-element vector of the form [x y] or a three-
element vector of the form [x y z]. If you omit the third element, z, then MATLAB sets
it to 0.

Specify the position using numeric values. To convert datetime or duration values to the
appropriate numeric values for a particular coordinate direction, see ruler2num.

By default, the position value is defined in data units. To change the units, use the Units
property.
Example: [0.5 0.5 0]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Units — Position and extent units
'data' (default) | 'normalized' | 'inches' | 'centimeters' | 'characters' |
'points' | 'pixels'

Position units, specified as one of the values in this table.

Units Description
'data' (default) Data coordinates.
'normalized' Normalized with respect to the axes. The

lower left corner of the axes maps to (0,0)
and the upper right corner maps to (1,1).

'inches' Inches.

 text

1-14763

Units Description
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units, except for 'data', are measured from the lower left corner of the axes. This
property affects the Position and Extent properties.

If you specify the Position and Units properties as Name,Value pairs when creating
the Text object, then the order of specification matters. To define the position with
particular units, set the Units property before the Position property.

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

1 Alphabetical List

1-14764

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

 text

1-14765

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

1 Alphabetical List

1-14766

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

 text

1-14767

https://www.latex-project.org
https://www.latex-project.org

Output Arguments
t — Text objects
Text objects

Text objects. Use the elements of t to modify a specific Text object after it is created.
For a list of properties, see Text.

Tips
• By default, the Clipping property for text objects is set to 'off' so the text might

appear outside the axes. To clip the text to the axes boundaries, set the property to
'on'.

See Also
Functions
annotation | int2str | num2str | title | xlabel | ylabel | zlabel

Properties
Text

Topics
“Add Text to Chart”
“Greek Letters and Special Characters in Chart Text”
“Plot Dates and Durations”

Introduced before R2006a

1 Alphabetical List

1-14768

Text Properties
Text appearance and behavior

Description
Text properties control the appearance and behavior of a Text object. By changing
property values, you can modify certain aspects of the text.

Starting in R2014b, you can use dot notation to query and set properties.

t = text(0.5,0.5,'text here');
s = t.FontSize;
t.FontSize = 12;

If you are using an earlier release, use the get and set functions instead.

Properties
Text

String — Text to display
'' (default) | character array | string array | cell array | categorical array | numeric value

Text to display, specified as a character array, string array, cell array, categorical array, or
numeric value.
Example: 'my label'
Example: string('my label')
Example: {'first line','second line'}
Example: 123

To include numeric variables with text, use the num2str function. For example:

x = 42;
str = ['The value is ',num2str(x)];

 Text Properties

1-14769

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline text:

• Use a string array, where each element contains a line of text, such as
string({'line one','line two'}).

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line'). This property converts text with new line characters to
cell arrays.

Text that contains only a numeric value is converted using sprintf('%g',value). For
example, 12345678 displays as 1.23457e+07.

Note

• The words default, factory, and remove are reserved words that will not appear in
text when quoted as a normal characters. To display any of these words individually,
precede them with a backslash, such as '\default' or '\remove'.

• If you specify this property as a categorical array, MATLAB uses the values in the
array, not the categories.

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-14770

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'

 Text Properties

1-14771

Example: [0 0 1]
Example: '#0000FF'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

1 Alphabetical List

1-14772

Modifier Description Example
\fontsize{specifier} Font size —Replace

specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑

 Text Properties

1-14773

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\iota ι \Sigma Σ \rightarro
w

→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

1 Alphabetical List

1-14774

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontWeight — Character thickness
'normal' (default) | 'bold'

 Text Properties

1-14775

https://www.latex-project.org
https://www.latex-project.org

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'normalized' | 'pixels'

Font size units, specified as one of the values in this table.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the axes

plot box height. If you resize the axes, the
font size modifies accordingly. For example,
if the FontSize is 0.1 in normalized units,
then the text is 1/10 of the plot box height.

1 Alphabetical List

1-14776

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

If you set both the font size and the font units in one function call, you must set the
FontUnits property first so that the axes correctly interprets the specified font size.

FontSmoothing — Smooth font character appearance
'on' (default) | 'off'

Smooth font character appearance, specified as one of these values:

• 'on' — Apply font smoothing. Reduce the appearance of jaggedness in the text
characters to make the text easier to read.

• 'off' — Do not apply font smoothing.

Text Box

Rotation — Text orientation
0 (default) | scalar value in degrees

Text orientation, specified as a scalar value in degrees. The default rotation of 0 degrees
makes the text horizontal. For vertical text, set this property to 90 or -90. Positive values
rotate the text counterclockwise. Negative values rotate the text clockwise.
Example: 90
Example: -90
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 Text Properties

1-14777

EdgeColor — Color of box outline
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of box outline, specified as an RGB triplet, a hexadecimal color code, a color name,
or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-14778

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

BackgroundColor — Color of text box background
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of text box background, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

 Text Properties

1-14779

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style of box outline
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of box outline, specified as one of the options in this table.

1 Alphabetical List

1-14780

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' Line is invisible

LineWidth — Width of box outline
0.5 (default) | scalar numeric value

Width of box outline, specified as a scalar numeric value in point units. One point equals
1/72 inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Margin — Space around text within the text box
3 (default) | scalar numeric value

The space around the text within the text box, specified as scalar numeric value in point
units.

MATLAB uses the Extent property value plus the Margin property value to determine
the size of the text box.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Clipping — Clipping to axes plot box
'off' (default) | 'on'

Clipping of the text to the axes plot box, which is the box defined by the axis limits,
specified as one of these values:

 Text Properties

1-14781

• 'off' — Do not clip the text. Portions of it might appear outside the axes plot box.
• 'on' — Clips the text to the axes plot box.

• If the axes ClippingStyle property is set to '3dbox', which is the default, then
MATLAB either displays the entire text or none of the text, depending on the text
position. If the point defined by the text Position property lies inside the axes,
then MATLAB displays the entire text. If the point lies outside the axes, then
MATLAB displays none of it.

• If the axes ClippingStyle property is set to 'rectangle', then MATLAB
displays portions of the text lying inside the axes plot box and does not display
portions of the text lying outside the axes plot box.

Note If the Clipping property of the associated axes is set to 'on', which is the
default, then each individual object controls its own clipping behavior. If the Clipping
property of the axes is set to 'off', then MATLAB does not clip any objects in the axes,
regardless of the Clipping property of the individual object.

Position

Position — Location of text
[0 0 0] (default) | two-element vector of form [x y] | three-element vector of form [x
y z]

Location of the text, specified as a two-element vector of the form [x y] or a three-
element vector of the form [x y z]. If you omit the third element, z, then MATLAB sets
it to 0.

Specify the position using numeric values. To convert datetime or duration values to the
appropriate numeric values for a particular coordinate direction, see ruler2num.

By default, the position value is defined in data units. To change the units, use the Units
property.
Example: [0.5 0.5 0]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Extent — Size and location of rectangle that encloses text
four-element vector

1 Alphabetical List

1-14782

This property is read-only.

Size and location of the rectangle that encloses the text, not including the margin,
returned as a four-element vector of the form [left bottom width height]. The first
two elements, left and bottom, define the position of the lower left corner of the
rectangle. The last two elements, width and height, define the dimensions of the
rectangle.

By default, the extent value is defined in data units. To change the units, use the Units
property.
Example: [0.5 0.5 0.4 0.2]

Units — Position and extent units
'data' (default) | 'normalized' | 'inches' | 'centimeters' | 'characters' |
'points' | 'pixels'

Position units, specified as one of the values in this table.

Units Description
'data' (default) Data coordinates.
'normalized' Normalized with respect to the axes. The

lower left corner of the axes maps to (0,0)
and the upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default system font character

size.

• Character width = width of letter x.
• Character height = distance between

the baselines of two lines of text.
'points' Points. One point equals 1/72 inch.

 Text Properties

1-14783

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

All units, except for 'data', are measured from the lower left corner of the axes. This
property affects the Position and Extent properties.

If you specify the Position and Units properties as Name,Value pairs when creating
the Text object, then the order of specification matters. To define the position with
particular units, set the Units property before the Position property.

HorizontalAlignment — Horizontal alignment of text with respect to position
point
'left' (default) | 'center' | 'right'

Horizontal alignment of the text with respect to the x value in the Position property,
specified as one of the values in this table. The vertical line indicates where the x value
lies in relation to the text.

Value Result
'left' (default)

'center'

1 Alphabetical List

1-14784

Value Result
'right'

VerticalAlignment — Vertical alignment of text with respect to position point
'middle' (default) | 'top' | 'bottom' | 'baseline' | 'cap'

Vertical alignment of the text with respect to the y value in the Position property,
specified as one of the values in this table. The horizontal line indicates where the y value
lies in relation to the text.

Value Result
'middle'

'top'

'cap'

'bottom'

'baseline'

Interactivity

Editing — Interactive edit mode
'off' (default) | 'on'

Interactive edit mode, specified as one of these values:

• 'off' — Do no allow interactive text editing. To change the text, you must set the
String property. This is the default value.

• 'on' — Allow interactive text editing. MATLAB places an insert cursor within the text
and typing changes the text. To apply the new text, do any of the following:

• Press the Esc key.

 Text Properties

1-14785

• Click anywhere away from the text.
• Reset the Editing property to 'off'.

MATLAB updates the String property to contain the new text and resets the
Editing property to 'off'.

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

1 Alphabetical List

1-14786

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 Text Properties

1-14787

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-14788

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

 Text Properties

1-14789

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Text object responds to the
click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off'. The HitTest property determines if the Text object responds
to the click or if an ancestor does.

1 Alphabetical List

1-14790

• 'none' — Cannot capture mouse clicks. Clicking the Text object passes the click to
the object below it in the current view of the figure window, which is typically the axes
or the figure. The HitTest property has no effect.

If you want an object to be clickable when it is underneath other objects that you do not
want to be clickable, then set the PickableParts property of the other objects to
'none' so that the click passes through them.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Text object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Text object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Text object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

 Text Properties

1-14791

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'text'

This property is read-only.

Type of graphics object, returned as 'text'. Use this property to find all objects of a
given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

1 Alphabetical List

1-14792

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
text

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Text Properties

1-14793

Text Properties
Subplot grid title appearance and behavior

Description
Text properties control the appearance and behavior of the Text object used to title a
grid of subplots. By changing property values, you can modify certain aspects of the text.
For example:

t = sgtitle('Title Text')
t.FontSize = 14;

Properties
Text

String — Text to display
'' (default) | character vector | cell array of character vectors | string array | categorical
array | numeric value

Text to display, specified as a character vector, cell array of character vectors, string
array, categorical array, or numeric value.
Example: 'my label'
Example: {'first line','second line'}
Example: string('my label')
Example: 123

To include numeric variables with text, use the num2str function. For example:

x = 42;
txt = ['The value is ',num2str(x)];

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property.

1 Alphabetical List

1-14794

To create multiline text:

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a string array, where each element contains a line of text, such as
string({'line one','line two'}).

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line'). This property converts text with new line characters to
cell arrays.

Text that contains only a numeric value is converted using sprintf('%g',value). For
example, 12345678 displays as 1.23457e+07.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 Text Properties

1-14795

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

1 Alphabetical List

1-14796

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

 Text Properties

1-14797

Modifier Description Example
\color{specifier} Font color — Replace

specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

1 Alphabetical List

1-14798

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

 Text Properties

1-14799

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

HorizontalAlignment — Horizontal alignment
'center' (default) | 'left' | 'right'

Horizontal alignment of text within the text box, specified as 'center', 'left', or
'right'.

Font

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

FontSize — Font size
scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. The default font size
depends on the specific operating system and locale. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontSizeMode — Selection mode for font size
'auto' (default) | 'manual'

1 Alphabetical List

1-14800

https://www.latex-project.org
https://www.latex-project.org

Selection mode for the font size, specified as either 'auto' or 'manual'.

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

FontUnits — Font size units
'points' (default) | 'inches' | 'centimeters' | 'normalized' | 'pixels'

Font size units, specified as one of the values in this table.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the axes

plot box height. If you resize the axes, the
font size modifies accordingly. For example,
if the FontSize is 0.1 in normalized units,
then the text is 1/10 of the plot box height.

 Text Properties

1-14801

Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

If you set both the font size and the font units in one function call, you must set the
FontUnits property first so that the axes correctly interprets the specified font size.

Text Box

EdgeColor — Color of box outline
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of box outline, specified as an RGB triplet, a hexadecimal color code, a color name,
or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-14802

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

BackgroundColor — Color of text box background
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of text box background, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name.

 Text Properties

1-14803

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

1 Alphabetical List

1-14804

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style of box outline
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of box outline, specified as one of the options in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' Line is invisible

LineWidth — Width of box outline
0.5 (default) | scalar numeric value

Width of box outline, specified as a scalar numeric value in point units. One point equals
1/72 inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Margin — Space around text within the text box
3 (default) | scalar numeric value

 Text Properties

1-14805

The space around the text within the text box, specified as scalar numeric value in point
units.

MATLAB uses the Extent property value plus the Margin property value to determine
the size of the text box.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Interactivity

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

1 Alphabetical List

1-14806

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

 Text Properties

1-14807

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-14808

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 Text Properties

1-14809

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks only when visible. The Visible property must be
set to 'on'. The HitTest property determines if the Text object responds to the
click or if an ancestor does.

• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be
set to 'on' or 'off'. The HitTest property determines if the Text object responds
to the click or if an ancestor does.

1 Alphabetical List

1-14810

• 'none' — Cannot capture mouse clicks. Clicking the Text object passes the click to
the object below it in the current view of the figure window, which is typically the axes
or the figure. The HitTest property has no effect.

If you want an object to be clickable when it is underneath other objects that you do not
want to be clickable, then set the PickableParts property of the other objects to
'none' so that the click passes through them.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Text object. If you have defined
the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the Text object that has
one of these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture

mouse clicks

Note The PickableParts property determines if the Text object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Figure object

 Text Properties

1-14811

Parent, specified as a Figure object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'subplottext'

This property is read-only.

Type of graphics object, returned as 'subplottext'. Use this property to find all objects
of a given type within a plotting hierarchy, for example, searching for the type using
findobj.

1 Alphabetical List

1-14812

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Introduced in R2018b

 Text Properties

1-14813

textread
Read data from text file; write to multiple outputs

Note textread is not recommended. Use textscan instead.

Syntax
[A,B,C,...] = textread(filename,format)
[A,B,C,...] = textread(filename,format,N)
[...] = textread(...,param,value,...)

Description
[A,B,C,...] = textread(filename,format) reads data from the file filename
into the variables A, B, C, and so on, using the specified format, until the entire file is
read. Specify filename and format inputs as character vectors or string scalars.
textread is useful for reading text files with a known format. textread handles both
fixed and free format files.

Note When reading large text files, reading from a specific point in a file, or reading file
data into a cell array rather than multiple outputs, you might prefer to use the textscan
function.

textread matches and converts groups of characters from the input. Each input field is
defined as a group of non-white-space characters that extends to the next white-space or
delimiter character, or to the maximum field width. Repeated delimiter characters are
significant, while repeated white-space characters are treated as one.

The format input, specified as a character vector or a string scalar, determines the
number and types of return arguments. The number of return arguments is the number of
items indicated by the contents of format. format supports a subset of the conversion

1 Alphabetical List

1-14814

specifiers and conventions of the C language fscanf routine. Values for format are
listed in the table below. White-space characters in format are ignored.

format Action Output
Literals

(ordinary
characters)

Ignore the matching characters. For example, in a file that
has Dept followed by a number (for department number),
to skip the Dept and read only the number, use 'Dept' in
the format specifier format.

None

%d Read a signed integer value. Double array
%u Read an integer value. Double array
%f Read a floating-point value. Double array
%s Read a white-space or delimiter-separated text. Cell array of

character vectors
%q Read double quoted text, ignoring the quotes. Cell array of

character vectors
%c Read characters, including white space. Character array
%[...] Read the longest group of characters containing

characters specified in the brackets.
Cell array of
character vectors

%[^...] Read the longest nonempty group of characters containing
characters that are not specified in the brackets.

Cell array of
character vectors

%*...
instead of %

Ignore the matching characters specified by *. No output

%w...
instead of %

Read field width specified by w. The %f format supports
%w.pf, where w is the field width and p is the precision.

[A,B,C,...] = textread(filename,format,N) reads the data, reusing the format
specified in format, N times, where N is an integer greater than zero. If N is smaller than
zero, textread reads the entire file.

[...] = textread(...,param,value,...) customizes textread using param/
value pairs, as listed in the table below.

param value Action
bufsize Positive integer Specifies the maximum length of the

character vector, in bytes. Default is 4095.

 textread

1-14815

param value Action
commentstyle matlab Ignores characters after %.
commentstyle shell Ignores characters after #.
commentstyle c Ignores characters between /* and */.
commentstyle c++ Ignores characters after //.
delimiter One or more characters Act as delimiters between elements. Default

is none.
emptyvalue Scalar double Value given to empty cells when reading

delimited files. Default is 0.
endofline Single character or '\r\n' Character that denotes the end of a line.

Default is determined from file
expchars Exponent characters Default is eEdD.
headerlines Positive integer Ignores the specified number of lines at the

beginning of the file.
whitespace Any from the list below: Treats vector of characters as white space.

Default is ' \b\t'.' '
\b
\n
\r
\t

Space
Backspace
Newline
Carriage return
Horizontal tab

Note When textread reads a consecutive series of whitespace values, it treats them
as one white space. When it reads a consecutive series of delimiter values, it treats
each as a separate delimiter.

Examples

Example 1 — Read All Fields in Free Format File Using %
The first line of mydata.dat is

Sally Level1 12.34 45 Yes

1 Alphabetical List

1-14816

Read the first line of the file as a free format file using the % format.

[names, types, x, y, answer] = textread('mydata.dat', ...
'%s %s %f %d %s', 1)

returns

names =
 'Sally'
types =
 'Level1'
x =
 12.34000000000000
y =
 45
answer =
 'Yes'

Example 2 — Read as Fixed Format File, Ignoring the Floating
Point Value
The first line of mydata.dat is

Sally Level1 12.34 45 Yes

Read the first line of the file as a fixed format file, ignoring the floating-point value.

[names, types, y, answer] = textread('mydata.dat', ...
'%9c %6s %*f %2d %3s', 1)

returns

names =
Sally
types =
 'Level1'
y =
 45
answer =
 'Yes'

%*f in format causes textread to ignore the floating point value, in this case, 12.34.

 textread

1-14817

Example 3 — Read Using Literal to Ignore Matching
Characters
The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file, ignoring the characters Type in the second field.

[names, typenum, x, y, answer] = textread('mydata.dat', ...
'%s Type%d %f %d %s', 1)

returns

names =
 'Sally'
typenum =
 1
x =
 12.34000000000000
y =
 45
answer =
 'Yes'

Specifying Type%d in format causes the characters Type in the second field to be
ignored, while the rest of the second field is read as a signed integer, in this case, 1.

Example 4 — Specify Value to Fill Empty Cells
For files with empty cells, use the emptyvalue parameter. Suppose the file data.csv
contains:

1,2,3,4,,6
7,8,9,,11,12

Read the file using NaN to fill any empty cells:

data = textread('data.csv', '', 'delimiter', ',', ...
 'emptyvalue', NaN);

1 Alphabetical List

1-14818

Example 5 — Read File into a Cell Array of Character Vectors
Read the file fft.m into a cell array of character vectors.

file = textread('fft.m', '%s', 'delimiter', '\n', ...
 'whitespace', '');

Tips
If you want to preserve leading and trailing spaces in the text, use the whitespace
parameter as shown here:

textread('myfile.txt', '%s', 'whitespace', '')
ans =
 ' An example of preserving spaces '

See Also
fscanf | readmatrix | textscan

Introduced before R2006a

 textread

1-14819

textscan
Read formatted data from text file or string

Syntax
C = textscan(fileID,formatSpec)
C = textscan(fileID,formatSpec,N)

C = textscan(chr,formatSpec)
C = textscan(chr,formatSpec,N)

C = textscan(___ ,Name,Value)

[C,position] = textscan(___)

Description
C = textscan(fileID,formatSpec) reads data from an open text file into a cell
array, C. The text file is indicated by the file identifier, fileID. Use fopen to open the file
and obtain the fileID value. When you finish reading from a file, close the file by calling
fclose(fileID).

textscan attempts to match the data in the file to the conversion specifier in
formatSpec. The textscan function reapplies formatSpec throughout the entire file
and stops when it cannot match formatSpec to the data.

C = textscan(fileID,formatSpec,N) reads file data using the formatSpec N
times, where N is a positive integer. To read additional data from the file after N cycles,
call textscan again using the original fileID. If you resume a text scan of a file by
calling textscan with the same file identifier (fileID), then textscan automatically
resumes reading at the point where it terminated the last read.

C = textscan(chr,formatSpec) reads the text from character vector chr into cell
array C. When reading text from a character vector, repeated calls to textscan restart
the scan from the beginning each time. To restart a scan from the last position, request a
position output.

1 Alphabetical List

1-14820

textscan attempts to match the data in character vector chr to the format specified in
formatSpec.

C = textscan(chr,formatSpec,N) uses the formatSpec N times, where N is a
positive integer.

C = textscan(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments, in addition to any of the input arguments in the previous syntaxes.

[C,position] = textscan(___) returns the position in the file or the character
vector at the end of the scan as the second output argument. For a file, this is the value
that ftell(fileID) would return after calling textscan. For a character vector,
position indicates how many characters textscan read.

Examples

Read Floating-Point Numbers

Read a character vector containing floating-point numbers.

chr = '0.41 8.24 3.57 6.24 9.27';
C = textscan(chr,'%f');

The specifier '%f' in formatSpec tells textscan to match each field in chr to a double-
precision floating-point number.

Display the contents of cell array C.

celldisp(C)

C{1} =

 0.4100
 8.2400
 3.5700
 6.2400
 9.2700

Read the same character vector, and truncate each value to one decimal digit.

 textscan

1-14821

C = textscan(chr,'%3.1f %*1d');

The specifier %3.1f indicates a field width of 3 digits and a precision of 1. The textscan
function reads a total of 3 digits, including the decimal point and the 1 digit after the
decimal point. The specifier, %*1d, tells textscan to skip the remaining digit.

Display the contents of cell array C.

celldisp(C)

C{1} =

 0.4000
 8.2000
 3.5000
 6.2000
 9.2000

Read Different Types of Data

Load the data file and read each column with the appropriate type.

Load file scan1.dat and preview its contents in a text editor. A screen shot is shown
below.

 filename = fullfile(matlabroot,'examples','matlab','scan1.dat');

1 Alphabetical List

1-14822

Open the file, and read each column with the appropriate conversion specifier. textscan
returns a 1-by-9 cell array C.

fileID = fopen(filename);
C = textscan(fileID,'%s %s %f32 %d8 %u %f %f %s %f');
fclose(fileID);
whos C

 Name Size Bytes Class Attributes

 C 1x9 2249 cell

View the MATLAB® data type of each of the cells in C.

C

C = 1x9 cell array
 Columns 1 through 5

 {3x1 cell} {3x1 cell} {3x1 single} {3x1 int8} {3x1 uint32}

 Columns 6 through 9

 {3x1 double} {3x1 double} {3x1 cell} {3x1 double}

Examine the individual entries. Notice that C{1} and C{2} are cell arrays. C{5} is of data
type uint32, so the first two elements of C{5} are the maximum values for a 32-bit
unsigned integer, or intmax('uint32').

celldisp(C)

C{1}{1} =

09/12/2005

C{1}{2} =

10/12/2005

C{1}{3} =

 textscan

1-14823

11/12/2005

C{2}{1} =

Level1

C{2}{2} =

Level2

C{2}{3} =

Level3

C{3} =

 12.3400
 23.5400
 34.9000

C{4} =

 45
 60
 12

C{5} =

 4294967295
 4294967295
 200000

C{6} =

1 Alphabetical List

1-14824

 Inf
 -Inf
 10

C{7} =

 NaN
 0.0010
 100.0000

C{8}{1} =

Yes

C{8}{2} =

No

C{8}{3} =

No

C{9} =

 5.1000 + 3.0000i
 2.2000 - 0.5000i
 3.1000 + 0.1000i

Remove Literal Text

Remove the literal text 'Level' from each field in the second column of the data from
the previous example. A preview of the file is shown below.

 textscan

1-14825

Open the file and match the literal text in the formatSpec input.

filename = fullfile(matlabroot,'examples','matlab','scan1.dat');
fileID = fopen(filename);
C = textscan(fileID,'%s Level%d %f32 %d8 %u %f %f %s %f');
fclose(fileID);
C{2}

ans = 3x1 int32 column vector

 1
 2
 3

View the MATLAB® data type of the second cell in C. The second cell of the 1-by-9 cell
array, C, is now of data type int32.

disp(class(C{2}))

int32

Skip the Remainder of a Line

Read the first column of the file in the previous example into a cell array, skipping the rest
of the line.

filename = fullfile(matlabroot,'examples','matlab','scan1.dat');
fileID = fopen(filename);
dates = textscan(fileID,'%s %*[^\n]');
fclose(fileID);
dates{1}

1 Alphabetical List

1-14826

ans = 3x1 cell array
 {'09/12/2005'}
 {'10/12/2005'}
 {'11/12/2005'}

textscan returns a cell array dates.

Specify Delimiter and Empty Value Conversion

Load the file data.csv and preview its contents in a text editor. A screen shot is shown
below. Notice the file contains data separated by commas and also contains empty values.

Read the file, converting empty cells to -Inf.

filename = fullfile(matlabroot,'examples','matlab','data.csv');
fileID = fopen(filename);
C = textscan(fileID,'%f %f %f %f %u8 %f',...
'Delimiter',',','EmptyValue',-Inf);
fclose(fileID);
column4 = C{4}, column5 = C{5}

column4 = 2×1

 4
 -Inf

column5 = 2x1 uint8 column vector

 0
 11

 textscan

1-14827

textscan returns a 1-by-6 cell array, C. The textscan function converts the empty
value in C{4} to -Inf, where C{4} is associated with a floating-point format. Because
MATLAB® represents unsigned integer -Inf as 0, textscan converts the empty value in
C{5} to 0, and not -Inf.

Specify Text to be Treated as Empty or Comments

Load the file data2.csv and preview its contents in a text editor. A screen shot is shown
below. Notice the file contains data that can be interpreted as comments and other
entries such as 'NA' or 'na' that may indicate empty fields.

filename = fullfile(matlabroot,'examples','matlab','data2.csv');

Designate the input that textscan should treat as comments or empty values and scan
the data into C.

fileID = fopen(filename);
C = textscan(fileID,'%s %n %n %n %n','Delimiter',',',...
'TreatAsEmpty',{'NA','na'},'CommentStyle','//');
fclose(fileID);

Display the output.

celldisp(C)

C{1}{1} =

abc

1 Alphabetical List

1-14828

C{1}{2} =

def

C{2} =

 2
 NaN

C{3} =

 NaN
 5

C{4} =

 3
 6

C{5} =

 4
 7

Treat Repeated Delimiters as One

Load the file data3.csv and preview its contents in a text editor. A screen shot is shown
below. Notice the file contains repeated delimiters.

filename = fullfile(matlabroot,'examples','matlab','data3.csv');

 textscan

1-14829

To treat the repeated commas as a single delimiter, use the MultipleDelimsAsOne
parameter, and set the value to 1 (true).

fileID = fopen(filename);
C = textscan(fileID,'%f %f %f %f','Delimiter',',',...
'MultipleDelimsAsOne',1);
fclose(fileID);

celldisp(C)

C{1} =

 1
 5

C{2} =

 2
 6

C{3} =

 3
 7

C{4} =

1 Alphabetical List

1-14830

 4
 8

Specify Repeated Conversion Specifiers and Collect Numeric Data

Load the data file grades.txt for this example and preview its contents in a text editor.
A screen shot is shown below. Notice the file contains repeated delimiters.

filename = fullfile(matlabroot,'examples','matlab','grades.txt');

Read the column headers using the format '%s' four times.

fileID = fopen(filename);
formatSpec = '%s';
N = 4;
C_text = textscan(fileID,formatSpec,N,'Delimiter','|');

Read the numeric data in the file.

C_data0 = textscan(fileID,'%d %f %f %f')

C_data0 = 1x4 cell array
 {4x1 int32} {4x1 double} {4x1 double} {4x1 double}

The default value for CollectOutput is 0 (false), so textscan returns each column of
the numeric data in a separate array.

 textscan

1-14831

Set the file position indicator to the beginning of the file.

frewind(fileID);

Reread the file and set CollectOutput to 1 (true) to collect the consecutive columns of the
same class into a single array. You can use the repmat function to indicate that the %f
conversion specifier should appear three times. This technique is useful when a format
repeats many times.

C_text = textscan(fileID,'%s',N,'Delimiter','|');
C_data1 = textscan(fileID,['%d',repmat('%f',[1,3])],'CollectOutput',1)

C_data1 = 1x2 cell array
 {4x1 int32} {4x3 double}

The test scores, which are all double, are collected into a single 4-by-3 array.

Close the file.

fclose(fileID);

Read or Skip Quoted Text and Numeric Fields

Read the first and last columns of data from a text file. Skip a column of text and a column
of integer data.

Load the file names.txt and preview its contents in a text editor. A screen shot is shown
below. Notice that the file contains two columns of quoted text, followed by a column of
integers, and finally a column of floating point numbers.

filename = fullfile(matlabroot,'examples','matlab','names.txt');

1 Alphabetical List

1-14832

Read the first and last columns of data in the file. Use the conversion specifier, %q to read
the text enclosed by double quotation marks ("). %*q skips the quoted text, %*d skips the
integer field, and %f reads the floating-point number. Specify the comma delimiter using
the 'Delimiter' name-value pair argument.

fileID = fopen(filename,'r');
C = textscan(fileID,'%q %*q %*d %f','Delimiter',',');
fclose(fileID);

Display the output. textscan returns a cell array C where the double quotation marks
enclosing the text are removed.

celldisp(C)

C{1}{1} =

Smith, J.

C{1}{2} =

Bates, G.

C{1}{3} =

Curie, M.

C{1}{4} =

Murray, G.

C{1}{5} =

Brown, K.

C{2} =

 71.1000
 69.3000
 64.1000

 textscan

1-14833

 133.0000
 64.9000

Read Foreign-Language Dates

Load the file german_dates.txt and preview its contents in a text editor. A screen shot
is shown below. Notice that the first column of values contains dates in German and the
second and third columns are numeric values.

filename = fullfile(matlabroot,'examples','matlab','german_dates.txt');

Open the file. Specify the character encoding scheme associated with the file as the last
input to fopen.

fileID = fopen(filename,'r','n','ISO-8859-15');

Read the file. Specify the format of the dates in the file using the %{dd % MMMM yyyy}D
specifier. Specify the locale of the dates using the DateLocale name-value pair
argument.

C = textscan(fileID,'%{dd MMMM yyyy}D %f %f',...
 'DateLocale','de_DE','Delimiter',',');
fclose(fileID);

View the contents of the first cell in C. The dates display in the language MATLAB uses
depending on your system locale.

C{1}

1 Alphabetical List

1-14834

ans = 3x1 datetime array
 01 January 2014
 01 February 2014
 01 March 2014

Read Nondefault Control Characters

Use sprintf to convert nondefault escape sequences in your data.

Create text that includes a form feed character, \f. Then, to read the text using
textscan, call sprintf to explicitly convert the form feed.

lyric = sprintf('Blackbird\fsinging\fin\fthe\fdead\fof\fnight');
C = textscan(lyric,'%s','delimiter',sprintf('\f'));
C{1}

ans = 7x1 cell array
 {'Blackbird'}
 {'singing' }
 {'in' }
 {'the' }
 {'dead' }
 {'of' }
 {'night' }

textscan returns a cell array, C.

Resume Scanning

Resume scanning from a position other than the beginning.

If you resume a scan of the text, textscan reads from the beginning each time. To
resume a scan from any other position, use the two-output argument syntax in your initial
call to textscan.

For example, create a character vector called lyric. Read the first word of the character
vector, and then resume the scan.

 textscan

1-14835

lyric = 'Blackbird singing in the dead of night';
[firstword,pos] = textscan(lyric,'%9c',1);
lastpart = textscan(lyric(pos+1:end),'%s');

Input Arguments
fileID — File identifier
numeric scalar

File identifier of an open text file, specified as a number. Before reading a file with
textscan, you must use fopen to open the file and obtain the fileID.
Data Types: double

formatSpec — Format of the data fields
character vector | string

Format of the data fields, specified as a character vector or a string of one or more
conversion specifiers. When textscan reads the input, it attempts to match the data to
the format specified in formatSpec. If textscan fails to match a data field, it stops
reading and returns all fields read before the failure.

The number of conversion specifiers determines the number of cells in output array, C.

Numeric Fields

This table lists available conversion specifiers for numeric inputs.

Numeric Input Type Conversion
Specifier

Output Class

Integer, signed %d int32
%d8 int8
%d16 int16
%d32 int32
%d64 int64

Integer, unsigned %u uint32
%u8 uint8

1 Alphabetical List

1-14836

Numeric Input Type Conversion
Specifier

Output Class

%u16 uint16
%u32 uint32
%u64 uint64

Floating-point number %f double
%f32 single
%f64 double
%n double

Nonnumeric Fields

This table lists available conversion specifiers for inputs that include nonnumeric
characters.

Nonnumeric Input
Type

Conversion
Specifier

Details

Character %c Read any single character, including a delimiter.
Text Array %s Read as a cell array of character vectors.

%q Read as a cell array of character vectors. If the
text begins with a double quotation mark ("),
omit the leading quotation mark and its
accompanying closing mark, which is the second
instance of a lone double quotation mark.
Replace escaped double quotation marks (for
example, ""abc"") with lone double quotation
marks ("abc"). %q ignores any double quotation
marks that appear after the closing double
quotation mark.

Example: '%q' reads '"Joe ""Lightning""
Smith, Jr."' as 'Joe "Lightning" Smith,
Jr.'.

Dates and time %D Read the same way as %q above, and then
convert to a datetime value.

 textscan

1-14837

Nonnumeric Input
Type

Conversion
Specifier

Details

%{fmt}D Read the same way as %q above, and then
convert it to a datetime value. fmt describes the
format of the input text. The fmt input is a
character vector of letter identifiers that is a
valid value for the Format property of a
datetime. textscan converts text that does not
match this format to NaT values.

For more information about datetime display
formats, see the Format property for datetime
arrays.

Example: '%{dd-MMM-yyyy}D' specifies the
format of a date such as '01-Jan-2014' .

Duration %T Read the same way as %q above, and then
convert to a duration value.

%{fmt}T Read the same way as %q above, and then
convert it to a duration value. fmt describes the
format of the input text. The fmt input is a
character vector of letter identifiers that is a
valid value for the Format property of a
duration. textscan converts text that does not
match this format to NaN values.

For more information about duration display
formats, see the format property for duration
arrays.

Example: '%{hh:mm:ss}T' specifies the format
of a duration such as '10:30:15', which
represents 10 hours, 30 minutes, and 15
seconds.

Category %C Read the same way as %q, and then convert to a
category name in a categorical array. textscan
converts <undefined> text to an undefined
value in the output categorical array.

1 Alphabetical List

1-14838

Nonnumeric Input
Type

Conversion
Specifier

Details

Pattern-matching %[...] Read as a cell array of character vectors, the
characters inside the brackets up to the first
nonmatching character. To include] in the set,
specify it first: %[]...].

Example: %[mus] reads 'summer ' as 'summ'.
%[^...] Exclude characters inside the brackets, reading

until the first matching character. To exclude],
specify it first: %[^]...].

Example: %[^xrg] reads 'summer ' as
'summe'.

Optional Operators

Conversion specifiers in formatSpec can include optional operators, which appear in the
following order (includes spaces for clarity):

Optional operators include:

• Fields and Characters to Ignore

textscan reads all characters in your file in sequence, unless you tell it to ignore a
particular field or a portion of a field.

Insert an asterisk character (*) after the percent character (%) to skip a field or a
portion of a character field.

 textscan

1-14839

Operator Action Taken
%*k Skip the field. k is any conversion specifier identifying the field

to skip. textscan does not create an output cell for any such
fields.

Example: '%s %*s %s %s %*s %*s %s' (spaces are optional)
converts the text
'Blackbird singing in the dead of night' into four
output cells with
'Blackbird' 'in' 'the' 'night'

'%*ns' Skip up to n characters, where n is an integer less than or equal
to the number of characters in the field.

Example: '%*3s %s' converts 'abcdefg' to 'defg'. When
the delimiter is a comma, the same delimiter converts
'abcde,fghijkl' to a cell array containing 'de';'ijkl'.

'%*nc' Skip n characters, including delimiter characters.

• Field Width

textscan reads the number of characters or digits specified by the field width or
precision, or up to the first delimiter, whichever comes first. A decimal point, sign (+ or
-), exponent character, and digits in the numeric exponent are counted as characters
and digits within the field width. For complex numbers, the field width refers to the
individual widths of the real part and the imaginary part. For the imaginary part, the
field width includes + or − but not i or j. Specify the field width by inserting a
number after the percent character (%) in the conversion specifier.

Example: %5f reads '123.456' as 123.4.

Example: %5c reads 'abcdefg' as 'abcde'.

When the field width operator is used with single characters (%c), textscan also
reads delimiter, white-space, and end-of-line characters.
Example: %7c reads 7 characters, including white-space, so'Day and night' reads
as 'Day and'.

• Precision

For floating-point numbers (%n, %f, %f32, %f64), you can specify the number of
decimal digits to read.

1 Alphabetical List

1-14840

Example: %7.2f reads '123.456' as 123.45.
• Literal Text to Ignore

textscan ignores the text appended to the formatSpec conversion specifier.

Example: Level%u8 reads 'Level1' as 1.

Example: %u8Step reads '2Step' as 2.

Data Types: char | string

N — Number of times to apply formatSpec
Inf (default) | positive integer

Number of times to apply formatSpec, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

chr — Input text
character vector | string

Input text to read.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Names are not case sensitive.
Example: C =
textscan(fileID,formatSpec,'HeaderLines',3,'Delimiter',',') skips the
first three lines of the data, and then reads the remaining data, treating commas as a
delimiter.

CollectOutput — Logical indicator determining data concatenation
false (default) | true

 textscan

1-14841

Logical indicator determining data concatenation, specified as the comma-separated pair
consisting of 'CollectOutput' and either true or false. If true, then the importing
function concatenates consecutive output cells of the same fundamental MATLAB class
into a single array.

CommentStyle — Symbols designating text to ignore
character vector | cell array of character vectors | string | string array

Symbols designating text to ignore, specified as the comma-separated pair consisting of
'CommentStyle' and a character vector, cell array of character vectors, string, or string
array.

For example, specify a character such as '%' to ignore text following the symbol on the
same line. Specify a cell array of two character vectors, such as {'/*','*/'}, to ignore
any text between those sequences.

MATLAB checks for comments only at the start of each field, not within a field.
Example: 'CommentStyle',{'/*','*/'}
Data Types: char | string

DateLocale — Locale for reading dates
character vector | string

Locale for reading dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector in the form xx_YY, where xx is a lowercase ISO
639-1 two-letter code that specifies a language, and YY is an uppercase ISO 3166-1
alpha-2 code that specifies a country. For a list of common values for the locale, see the
Locale name-value pair argument for the datetime function.

Use DateLocale to specify the locale in which textscan should interpret month and day
of week names and abbreviations when reading text as dates using the %D format
specifier.
Example: 'DateLocale','ja_JP'

Delimiter — Field delimiter characters
character vector | cell array of character vectors | string | string array

Field delimiter characters, specified as the comma-separated pair consisting of
'Delimiter' and a character vector or a cell array of character vectors. Specify
multiple delimiters in a cell array of character vectors.

1 Alphabetical List

1-14842

Example: 'Delimiter',{';','*'}

textscan interprets repeated delimiter characters as separate delimiters, and returns an
empty value to the output cell.

Within each row of data, the default field delimiter is white-space. White-space can be any
combination of space (' '), backspace ('\b'), or tab ('\t') characters. If you do not
specify a delimiter, then:

• the delimiter characters are the same as the white-space characters. The default
white-space characters are ' ', '\b', and '\t'. Use the 'Whitespace' name-value
pair argument to specify alternate white-space characters.

• textscan interprets repeated white-space characters as a single delimiter.

When you specify one of the following escape sequences as a delimiter, textscan
converts that sequence to the corresponding control character:

\b Backspace
\n Newline
\r Carriage return
\t Tab
\\ Backslash (\)

Data Types: char | string

EmptyValue — Returned value for empty numeric fields
NaN (default) | scalar

Returned value for empty numeric fields in delimited text files, specified as the comma-
separated pair consisting of 'EmptyValue' and a scalar.

EndOfLine — End-of-line characters
character vector | string

End-of-line characters, specified as the comma-separated pair consisting of 'EndOfLine'
and a character vector or string. The character vector must be '\r\n' or it must specify
a single character. Common end-of-line characters are a newline character ('\n') or a
carriage return ('\r'). If you specify '\r\n', then the importing function treats any of
\r, \n, and the combination of the two (\r\n) as end-of-line characters.

 textscan

1-14843

The default end-of-line sequence is \n, \r, or \r\n, depending on the contents of your
file.

If there are missing values and an end-of-line sequence at the end of the last line in a file,
then the importing function returns empty values for those fields. This ensures that
individual cells in output cell array, C, are the same size.
Example: 'EndOfLine',':'
Data Types: char | string

ExpChars — Exponent characters
'eEdD' (default) | character vector | string

Exponent characters, specified as the comma-separated pair consisting of 'ExpChars'
and a character vector or string. The default exponent characters are e, E, d, and D.
Data Types: char | string

HeaderLines — Number of header lines
0 (default) | positive integer

Number of header lines, specified as the comma-separated pair consisting of
'HeaderLines' and a positive integer. textscan skips the header lines, including the
remainder of the current line.

MultipleDelimsAsOne — Multiple delimiter handling
0 (false) (default) | 1 (true)

Multiple delimiter handling, specified as the comma-separated pair consisting of
'MultipleDelimsAsOne' and either true or false. If true, then the importing
function treats consecutive delimiters as a single delimiter. Repeated delimiters separated
by white-space are also treated as a single delimiter. You must also specify the
Delimiter option.
Example: 'MultipleDelimsAsOne',1

ReturnOnError — Behavior when textscan fails to read or convert
1 (true) (default) | 0 (false)

Behavior when textscan fails to read or convert, specified as the comma-separated pair
consisting of 'ReturnOnError' and either true or false. If true, textscan
terminates without an error and returns all fields read. If false, textscan terminates
with an error and does not return an output cell array.

1 Alphabetical List

1-14844

TreatAsEmpty — Placeholder text to treat as empty value
character vector | cell array of character vectors | string | string array

Placeholder text to treat as empty value, specified as the comma-separated pair
consisting of 'TreatAsEmpty' and a character vector, cell array of character vectors,
string, or string array. This option only applies to numeric fields.
Data Types: char | string

Whitespace — White-space characters
' \b\t' (default) | character vector | string

White-space characters, specified as the comma-separated pair consisting of
'Whitespace' and a character vector or string containing one or more characters.
textscan adds a space character, char(32), to any specified Whitespace, unless
Whitespace is empty ('') and formatSpec includes any conversion specifier.

When you specify one of the following escape sequences as any white-space character,
textscan converts that sequence to the corresponding control character:

\b Backspace
\n Newline
\r Carriage return
\t Tab
\\ Backslash (\)

Data Types: char | string

TextType — Output data type of text
'char' (default) | 'string'

Output data type of text, specified as the comma-separated pair consisting of
'TextType' and either 'char' or 'string'. If you specify the value 'char', then
textscan returns text as a cell array of character vectors. If you specify the value
'string', then textscan returns text as an array of type string.

Output Arguments
C — File or text data
cell array

 textscan

1-14845

File or text data, returned as a cell array.

For each numeric conversion specifier in formatSpec, the textscan function returns a
K-by-1 MATLAB numeric vector to the output cell array, C, where K is the number of times
that textscan finds a field matching the specifier.

For each text conversion specifier (%s, %q, or %[...]) in formatSpec, the textscan
function returns a K-by-1 cell array of character vectors, where K is the number of times
that textscan finds a field matching the specifier. For each character conversion that
includes a field width operator, textscan returns a K-by-M character array, where M is the
field width.

For each datetime or categorical conversion specifier in formatSpec, the textscan
function returns a K-by-1 datetime or categorical vector to the output cell array, C, where
K is the number of times that textscan finds a field matching the specifier.

position — Position in the file or character vector
integer

Position at the end of the scan, in the file or the character vector, returned as an integer
of class double. For a file, ftell(fileID) would return the same value after calling
textscan. For a character vector, position indicates how many characters textscan
read.

Algorithms
textscan converts numeric fields to the specified output type according to MATLAB
rules regarding overflow, truncation, and the use of NaN, Inf, and -Inf. For example,
MATLAB represents an integer NaN as zero. If textscan finds an empty field associated
with an integer format specifier (such as %d or %u), it returns the empty value as zero and
not NaN.

When matching data to a text conversion specifier, textscan reads until it finds a
delimiter or an end-of-line character. When matching data to a numeric conversion
specifier, textscan reads until it finds a nonnumeric character. When textscan can no
longer match the data to a particular conversion specifier, it attempts to match the data to
the next conversion specifier in the formatSpec. Sign (+ or -), exponent characters, and
decimal points are considered numeric characters.

1 Alphabetical List

1-14846

Sign Digits Decimal
Point

Digits Exponent
Character

Sign Digits

Read one
sign
character if
it exists.

Read one
or more
digits.

Read one
decimal
point if it
exists.

If there is a
decimal
point, read
one or
more digits
that
immediatel
y follow it.

Read one
exponent
character if
it exists.

If there is
an
exponent
character,
read one
sign
character.

If there is
an
exponent
character,
read one or
more digits
that follow
it.

textscan imports any complex number as a whole into a complex numeric field,
converting the real and imaginary parts to the specified numeric type (such as %d or %f).
Valid forms for a complex number are:

±<real>±<imag>i|j Example: 5.7-3.1i
±<imag>i|j Example: -7j

Do not include embedded white space in a complex number. textscan interprets
embedded white space as a field delimiter.

See Also
fopen | fread | fscanf | load | readcell | readmatrix | readtable | readvars |
uiimport

Topics
“Import Block of Mixed Data from Text File”
“Access Data in Cell Array”

 textscan

1-14847

“Ways to Import Text Files”

Introduced before R2006a

1 Alphabetical List

1-14848

textwrap
Wrap text for user interface control

Note

Use this function only with GUIDE, or with apps created using the figure
function

Syntax
wrappedtext = textwrap(c,txt)
wrappedtext = textwrap(c,txt,numchar)
[wrappedtext,position] = textwrap(___)

Description
wrappedtext = textwrap(c,txt) returns text wrapped at a character width that fits
within the specified UIControl object, c. The UI control object must be one created with
the uicontrol function whose 'Style' property value is set to 'text' or 'edit'. For
example, c = uicontrol('Style','text').

wrappedtext = textwrap(c,txt,numchar) returns text that wraps each line at the
specified number of characters. Spaces are included in the character count. textwrap
avoids splitting words when possible. If a word cannot be accommodated within the
specified number of characters, then textwrap moves it to the start of the next line.

[wrappedtext,position] = textwrap(___) also returns the recommended
position for the UI control based on the text to be wrapped. The returned position is one
that allows the full text to display in the uicontrol without clipping. If a UI control is
not specified, the position vector contains all zeros.

Examples

 textwrap

1-14849

Preview Cell Array of Wrapped Text

Specify two lines of text for the String property of a static text field.

c = uicontrol('Style','text');
c.String = {'Extraordinarily long text will be wrapped', ...
'inside of a static text field.'};

The text is cut off and wraps across more than two lines because the default width and
height of the text field are not large enough to accommodate the full length of the
specified text. Notice how the word "Extraordinarily" is also split across two lines.

Preview the cell array of character vectors that is recommended for wrapping the text so
that it fits inside the width of the UI control with the least amount of resizing.

wrappedtext = textwrap(c,c.String)

wrappedtext =

 7×1 cell array

1 Alphabetical List

1-14850

 {'Extraordinarily'}
 {'long text' }
 {'will be' }
 {'wrapped' }
 {'inside of a' }
 {'static text' }
 {'field.' }

Display Wrapped Text in UI Control

Wrap text at a specified character width and display it in a static text field.

Create a static text field at the default position of [20 20 60 20]. Specify text to display
in it.

c = uicontrol('Style','text');
c.String = {'The data shown represents 18 months of observations.'};

The text is cut off and displays on multiple lines because the default width and height
values of the uicontrol are too small to accommodate the full text.

 textwrap

1-14851

Preview the wrapped text and the recommended position of the uicontrol based on a
maximum text width of 16 characters.

[wrappedtext,position] = textwrap(c,c.String,16)

wrappedtext =

 4×1 cell array

 {'The data shown '}
 {'represents 18 ' }
 {'months of ' }
 {'observations.' }

position =

 20 20 86 64

Display the wrapped text in the text field and move it to the recommended position.

c.String = wrappedtext;
c.Position = position;

1 Alphabetical List

1-14852

Input Arguments
c — UI control object
UIControl object (default)

UI control object, specified as a UIControl object. The UIControl object must support
multiline text. For instance, its 'Style property can be 'text' or 'edit'. Use this
argument to determine how text wraps in the specified UI control, or to determine the
recommended size for the UI control based on the text to be wrapped.

txt — Text
cell array of character vectors | string array

Text to wrap, specified as a cell array of character vectors, a string array, or a string
scalar.
Example: {'Please select an answer from the options below.'}
Example: ["Enter your name using","the format LastName, FirstName"]

numchar — Number of characters
positive integer

 textwrap

1-14853

Number of characters in each line of text, specified as a positive integer. Use this
argument to specify the maximum character width for each line. If numchar exceeds the
number of characters in txt, then the text does not wrap.

Output Arguments
wrappedtext — Wrapped text
cell array of character vectors

Wrapped text, returned as a cell array of character vectors. To display the text on the
specified UI control, you must assign wrappedtext to the String property of the UI
control.

position — Position
[left bottom width height]

Position recommended for the UI control, returned as a four-element vector of the form
[left bottom width height]. The units are the same as the units of the UI control.
The returned position optimizes the width and height of the uicontrol so that the
specified text can display across multiple lines, without clipping. If a UI control is not
specified, then the position vector contains all zeros.

See Also
align | uicontrol

Introduced before R2006a

1 Alphabetical List

1-14854

tfqmr
Transpose-free quasi-minimal residual method

Syntax
x = tfqmr(A,b)
x = tfqmr(afun,b)
x = tfqmr(a,b,tol)
x = tfqmr(a,b,tol,maxit)
x = tfqmr(a,b,tol,maxit,m)
x = tfqmr(a,b,tol,maxit,m1,m2,x0)
[x,flag] = tfqmr(A,B,...)
[x,flag,relres] = tfqmr(A,b,...)
[x,flag,relres,y]y(A,b,...)
[x,flag,relres,iter,resvec] = tfqmr(A,b,...)

Description
x = tfqmr(A,b) attempts to solve the system of linear equations A*x=b for x. The n-by-
n coefficient matrix A must be square and the right-hand side column vector b must have
length n.

x = tfqmr(afun,b) accepts a function handle, afun, instead of the matrix A. The
function, afun(x), accepts a vector input x and returns the matrix-vector product A*x.
In all of the following syntaxes, you can replace A by afun. “Parameterizing Functions”
explains how to provide additional parameters to the function afun.

x = tfqmr(a,b,tol) specifies the tolerance of the method. If tol is [] then tfqmr
uses the default, 1e-6.

x = tfqmr(a,b,tol,maxit) specifies the maximum number of iterations. If maxit is
[] then tfqmr uses the default, min(N,20).

x = tfqmr(a,b,tol,maxit,m) and x = tfqmr(a,b,tol,maxit,m1,m2) use
preconditioners m or m=m1*m2 and effectively solve the system A*inv(M)*x = B for x. If

 tfqmr

1-14855

M is [] then a preconditioner is not applied. M may be a function handle mfun such that
mfun(x) returns m\x.

x = tfqmr(a,b,tol,maxit,m1,m2,x0) specifies the initial guess. If x0 is [] then
tfqmr uses the default, an all zero vector.

[x,flag] = tfqmr(A,B,...) also returns a convergence flag:

Flag Convergence
0 tfqmr converged to the desired tolerance tol within maxit iterations.
1 tfqmr iterated maxit times but did not converge.
2 Preconditioner m was ill-conditioned.
3 tfqmr stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during tfqmr became too small or

too large to continue computing.

[x,flag,relres] = tfqmr(A,b,...) also returns the relative residual norm(b-
A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,y]y(A,b,...) also returns the iteration number at which x was
computed: 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = tfqmr(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples
Using tfqmr with Matrix or Function Handle Input
This example shows how to use tfqmr with a matrix input and with a function input.

n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = tfqmr(A,b,tol,maxit,M1,M2,[]);

1 Alphabetical List

1-14856

You can also use a matrix-vector product function as input:

function y = afun(x,n)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);
x1 = tfqmr(@(x)afun(x,n),b,tol,maxit,M1,M2);

If applyOp is a function suitable for use with qmr, it may be used with tfqmr by
wrapping it in an anonymous function:

x1 = tfqmr(@(x)applyOp(x,'notransp'),b,tol,maxit,M1,M2);

Using tfqmr with a Preconditioner
This example demonstrates the use of a preconditioner.

Load A = west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12;
maxit = 20;

Use tfqmr to find a solution at the requested tolerance and number of iterations.

[x0,fl0,rr0,it0,rv0] = tfqmr(A,b,tol,maxit);

fl0 is 1 because tfqmr does not converge to the requested tolerance 1e-12 within the
requested 20 iterations. The seventeenth iterate is the best approximate solution and is
the one returned as indicated by it0 = 17. MATLAB® stores the residual history in rv0.

Plot the behavior of tfqmr.

semilogy(0:maxit,rv0(1:maxit+1)/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

 tfqmr

1-14857

Note that like bicgstab, tfqmr keeps track of half iterations. The plot shows that the
solution does not converge. You can use a preconditioner to improve the outcome.

Create the preconditioner with ilu, since the matrix A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

MATLAB cannot construct the incomplete LU as it would result in a singular factor, which
is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the error message.

1 Alphabetical List

1-14858

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = tfqmr(A,b,tol,maxit,L,U);

fl1 is 0 because tfqmr drives the relative residual to 4.1410e-014 (the value of rr1).
The relative residual is less than the prescribed tolerance of 1e-12 at the sixth iteration
(the value of it1) when preconditioned by the incomplete LU factorization with a drop
tolerance of 1e-6. The output rv1(1) is norm(b), and the output rv1(7) is norm(b-
A*x2).

You can follow the progress of tfqmr by plotting the relative residuals at each iteration
starting from the initial estimate (iterate number 0).

semilogy(0:0.5:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

 tfqmr

1-14859

Extended Capabilities

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-14860

• If m1 is a function, then it is applied independently to each row.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
bicg | bicgstab | bicgstabl | cgs | gmres | ilu | lsqr | minres | mldivide | pcg |
qmr | symmlq

Topics
“Create Function Handle”

 tfqmr

1-14861

thetalim
Set or query theta-axis limits for polar axes

Syntax
thetalim(limits)

thetalim('auto')
thetalim('manual')

tl = thetalim
m = thetalim('mode')

___ = thetalim(pax, ___)

Description
thetalim(limits) specifies the theta-axis limits for the current polar axes. Specify
limits as a two-element vector of the form [thetamin thetamax], where thetamax
is a numeric value greater than thetamin.

thetalim('auto') lets MATLAB choose the theta-axis limits. This command sets the
ThetaLimMode property for the polar axes object to 'auto'.

thetalim('manual') prevents the limits from changing automatically. This command
sets the ThetaLimMode property for the polar axes object to 'manual'.

tl = thetalim returns a two-element vector containing the limits for the current polar
axes.

m = thetalim('mode') returns the current value of the limits mode, which is either
'auto' or 'manual'. By default, the mode is automatic unless you specify limits or set
the mode to manual.

___ = thetalim(pax, ___) uses the polar axes object specified by pax instead of the
current polar axes. Specify pax as the first input argument. Include additional input or
output arguments only if the original syntax supported them.

1 Alphabetical List

1-14862

Examples

Specify theta-Axis Limits

Create a polar plot and change the theta-axis limits.

theta = linspace(0,pi);
rho = theta/10;
polarplot(theta,rho)
thetalim([0 180])

Set the limits back to the original values.

 thetalim

1-14863

thetalim('auto')

Specify theta-Axis Limits for Specific Polar Axes

Set the limits for a specific polar axes by specifying the polar axes object as the first input
to thetalim. Otherwise, thetalim sets the limits for the current axes.

pax = polaraxes;
thetalim(pax,[0 180])

1 Alphabetical List

1-14864

Input Arguments
limits — Minimum and maximum limits
two-element vector

Minimum and maximum limits, specified as a two-element vector of the form [thetamin
thetamax]. When you specify the limits, the ThetaLim property for the polar axes object
updates to the specified values.
Example: [0 1]

 thetalim

1-14865

pax — Polar axes object
polar axes object

Polar axes object. If you do not specify a polar axes object, then thetalim sets the limits
for the current polar axes.

Output Arguments
tl — Current limits
two-element vector

Current limits, returned as a two-element vector of the form [thetamin thetamax].
Querying the limits returns the value of the ThetaLim property for the polar axes object.

m — Current limits mode
'auto' | 'manual'

Current limits mode, returned as one of these values:

• 'auto' — Limits automatically update to reflect changes in the data.
• 'manual' — Limits do not automatically update.

Querying the theta-axis limits mode returns the value of the ThetaLimMode property for
the polar axes object.

See Also
Functions
deg2rad | polarplot | rad2deg | rlim | title

Properties
PolarAxes

Introduced in R2016a

1 Alphabetical List

1-14866

thetatickformat
Specify theta-axis tick label format

Syntax
thetatickformat(fmt)
thetatickformat(pax, ___)

tfmt = thetatickformat
tfmt = thetatickformat(pax)

Description
thetatickformat(fmt) sets the format for the theta-axis tick labels. For example,
specify fmt as 'usd' to display the labels in U.S. dollars.

thetatickformat(pax, ___) uses the axes specified by ax instead of the current axes.
Specify pax as the first input argument.

tfmt = thetatickformat returns the format style used for theta-axis tick labels of the
current axes. Depending on the type of labels along the theta-axis, tfmt is a character
vector of a numeric format.

tfmt = thetatickformat(pax) returns the format style used for the axes specified by
pax instead of the current axes.

Examples

Display theta-Axis Tick Labels as Degrees

Create a polar plot. Display the tick labels along the theta-axis as degree values.

th = linspace(0,2*pi);
r = 2*th;

 thetatickformat

1-14867

polarplot(th,r)
thetatickformat('degrees')

Display Text After Each theta-Axis Tick Label

Create a polar plot. Display the tick labels along the theta-axis with the text "deg" after
each value.

th = linspace(0,2*pi);
r = th.^2;
polarplot(th,r)
thetatickformat('%g deg')

1 Alphabetical List

1-14868

Control Number of Decimals for theta-Axis Tick Labels

Display the theta-axis tick labels with two decimal places. Control the decimal places by
passing thetatickformat a character vector of a numeric format that uses fixed-point
notation for the conversion character and a precision value of 2.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
polarplot(theta,rho)
thetatickformat('%.2f')

 thetatickformat

1-14869

Specify theta-Axis Tick Label Format for Specific Polar Axes

Create a polar plot and assign the polar axes object to the variable pax. Ensure that
thetatickformat affects the polar axes you just created by passing pax as the first
input argument to the function.

polarplot(1:10,'->')
pax = gca;
thetatickformat(pax,'degrees')

1 Alphabetical List

1-14870

Input Arguments
fmt — Format for numeric tick labels
'%g' (default) | character vector | string

Format for numeric tick labels, specified as a character vector or string. You can specify
one of the formats listed in this table. Alternatively, you can specify a custom format.

 thetatickformat

1-14871

Predefined Format Description
'usd' U.S. dollars. This option is equivalent using

'$%,.2f'. If the labels use scientific
notation, this option sets the exponent
value to 0.

'eur' Euro. This option is equivalent to using
'\x20AC%,.2f' with an exponent value of
0.

'gbp' British pound. This option is equivalent to
using '\x00A3%,.2f' with an exponent
value of 0.

'jpy' Japanese yen. This option is equivalent to
using '\x00A5%,d' with an exponent
value of 0.

'degrees' Display degree symbol after values. This
option is equivalent to using '%g\x00B0'
with the default exponent value.

'percentage' Display percent sign after values. This
option is equivalent to using '%g%%' with
the default exponent value.

'auto' Default format of '%g' with the default
exponent value.

Example: thetatickformat('usd')

Custom Numeric Format

You can specify a custom numeric format by creating a character vector or string
containing identifiers.

1 Alphabetical List

1-14872

Identifiers are optional, except the percent sign and conversion character. Construct the
format in this order:

• One or more flags — Options such as adding a plus sign before positive values. For a
full list of options, see the table of Optional Flags.

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

• Conversion character — Value type. For a full list of options, see the table of
Conversion Characters. If you specify a conversion that does not fit the data, then
MATLAB overrides the specified conversion, and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

Example: thetatickformat('%.2f') displays the values using fixed-point notation
with two decimal places.

Example: thetatickformat('$%.2f') displays a dollar sign before each value.

Example: thetatickformat('%.2f million') displays million after each value.

 thetatickformat

1-14873

Optional Flags

Identifier Description Example of Numeric
Format

, Display commas every three
digits, such as '1,000'.

'%,4.4g'

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left-justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

1 Alphabetical List

1-14874

Conversion Characters

Identifier Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

pax — One or more polar axes
current axes (default) | single object | vector of objects

One or more polar axes, specified as a single object or a vector of objects. If you do not
specify a polar axes object, then thetatickformat uses the current axes.

Algorithms
The thetatickformat function sets and queries the TickLabelFormat property of the
ruler object associated with the theta-axis.

See Also
rtickformat | thetalim | thetaticklabels | thetaticks

Introduced in R2016b

 thetatickformat

1-14875

thetaticklabels
Set or query theta-axis tick labels

Syntax
thetaticklabels(labels)
tl = thetaticklabels

thetaticklabels('auto')
thetaticklabels('manual')
m = thetaticklabels('mode')

___ = thetaticklabels(pax, ___)

Description
thetaticklabels(labels) sets the theta-axis tick labels for the current axes. Specify
labels as a string array or a cell array of character vectors; for example,
{'E','N','W','S'}. If you specify the labels, then the theta-axis tick values and tick
labels no longer update automatically based on changes to the axes.

tl = thetaticklabels returns the theta-axis tick labels for the current axes.

thetaticklabels('auto') sets an automatic mode, enabling the axes to determine
the theta-axis tick labels. Use this option if you set the labels and then want to set them
back to the default values.

thetaticklabels('manual') sets a manual mode, freezing the theta-axis tick labels at
the current values.

m = thetaticklabels('mode') returns the current value of the theta-axis tick labels
mode, which is either 'auto' or 'manual'. By default, the mode is automatic unless you
specify the tick labels or set the mode to manual.

___ = thetaticklabels(pax, ___) uses the axes specified by pax instead of the
current axes. Specify ax as the first input argument for any of the previous syntaxes.

1 Alphabetical List

1-14876

Examples

Specify theta-Axis Tick Values and Labels

Create a polar plot. Display tick marks and grid lines along the theta-axis at 0, 90, 180,
and 270 degrees. Then, specify a label for each tick mark.

theta = linspace(0,2*pi);
rho = theta/10;
polarplot(theta,rho)

thetaticks([0 90 180 270])
thetaticklabels({'East','North','West','South'})

 thetaticklabels

1-14877

Set theta-Axis Tick Labels for Specific Polar Axes

Create a polar plot and assign the polar axes object to the variable pax. Then, specify the
theta-axis tick values and labels for the polar axes. Ensure that the thetaticks and
thetaticklabels functions affect pax by passing the polar axes object as the first input
argument to the functions.

theta = 0:0.01:2*pi;
rho = 50*sin(2*theta);
polarplot(theta,rho)
pax = gca;

1 Alphabetical List

1-14878

thetaticks(pax,[0 90 180 270])
thetaticklabels(pax,{'East','North','West','South'})

Set theta-Axis Tick Labels Back to Default Labels

Create a polar plot and specify the theta-axis tick values and corresponding labels. Then,
set the theta-axis tick values and labels back to the default values.

polarplot(1:100)
thetaticks([45 135 225 315])
thetaticklabels({'NE','NW','SW','SE'})

 thetaticklabels

1-14879

thetaticks('auto')
thetaticklabels('auto')

1 Alphabetical List

1-14880

Remove theta-Axis Tick Labels

Remove the tick labels along the theta-axis by specifying the tick labels as an empty array.

theta = 0:0.01:2*pi;
rho = 50*sin(2*theta);
polarplot(theta,rho)
thetaticklabels({})

 thetaticklabels

1-14881

Input Arguments
labels — Tick labels
cell array of character vectors | string array | categorical array

Tick labels on page 1-14883, specified as a cell array of character vectors, string array, or
categorical array. If you do not want tick labels to show, then specify an empty cell array
{}. Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter
property of the axes object for more information.
Example: thetaticklabels({'0','\pi','2\pi'})

1 Alphabetical List

1-14882

Example: thetaticklabels({'January','Febrary','March'})
Example: thetaticklabels({})

Note

• If you specify the tick labels as a categorical array, MATLAB uses the values in the
array, not the categories.

• To specify the tick values, use the thetaticks function.

pax — One or more polar axes
current axes (default) | single object | vector of objects

One or more polar axes, specified as a single object or a vector of objects. If you do not
specify the polar axes, then thetaticklabels uses the current axes.

Output Arguments
tl — Current tick labels
cell array of character vectors | character array

Current tick labels, returned as a cell array of character vectors or a character array.

m — Current tick labels mode
'auto' | 'manual'

Current tick labels mode, returned as one of these values:

• 'auto' — Axes automatically determines the theta-axis tick labels.
• 'manual' — Axes uses manually specified theta-axis tick labels.

Definitions
Tick Labels
The tick labels are the labels that you see next to each tick mark. The tick values are the
locations along the theta-axis where the tick marks appear. Set the tick values using the

 thetaticklabels

1-14883

thetaticks function. Set the corresponding tick labels using the thetaticklabels
function.

Algorithms
The thetaticklabels function sets and queries several polar axes properties related to
the theta-axis tick labels.

• ThetaTickLabel — Property that stores the text for the theta-axis tick labels.
• ThetaTickLabelMode — Property that stores the theta-axis tick label mode. When

you set the theta-axis tick labels using thetaticklabels, this property changes to
'manual'.

• ThetaTickMode — Property that stores the theta-axis tick value mode. When you set
the theta-axis tick labels using thetaticklabels, this property changes to
'manual'.

See Also
Functions
rticklabels | thetalim | thetatickformat | thetaticks

1 Alphabetical List

1-14884

Properties
PolarAxes

Introduced in R2016b

 thetaticklabels

1-14885

thetaticks
Set or query theta-axis tick values

Syntax
thetaticks(ticks)
tv = thetaticks

thetaticks('auto')
thetaticks('manual')
m = thetaticks('mode')

___ = thetaticks(pax, ___)

Description
thetaticks(ticks) sets the theta-axis tick values on page 1-14895, which are the
locations along the theta-axis where the tick marks and grid lines appear. Specify ticks
as a vector of increasing values; for example, [0 90 180 270]. This command affects
the current axes.

tv = thetaticks returns the current theta-axis tick values as a vector.

thetaticks('auto') sets an automatic mode, enabling the axes to determine the
theta-axis tick values. Use this option if you change the tick values and then want to set
them back to the default values.

thetaticks('manual') sets a manual mode, freezing the theta-axis tick values at the
current values. Use this option if you want to retain the current tick values when resizing
the axes or adding new data to the axes.

m = thetaticks('mode') returns the current theta-axis tick labels mode, which is
either 'auto' or 'manual'. By default, the mode is automatic unless you specify tick
values or change the mode to manual.

___ = thetaticks(pax, ___) uses the axes specified by pax instead of the current
axes. Specify pax as the first input argument for any of the previous syntaxes.

1 Alphabetical List

1-14886

Examples

Specify theta-Axis Tick Values and Labels

Create a polar plot. Display tick marks and grid lines along the theta-axis at 0, 90, 180,
and 270 degrees. Then, specify a label for each tick mark.

theta = linspace(0,2*pi);
rho = theta/10;
polarplot(theta,rho)

thetaticks([0 90 180 270])
thetaticklabels({'East','North','West','South'})

 thetaticks

1-14887

Specify Nonuniform theta-Axis Tick Values

Display tick marks along the theta-axis at nonuniform values between 0 and 360 degrees.

theta = linspace(0,2*pi);
rho = theta/10;
polarplot(theta,rho)
thetaticks([0 30 60 90 180 210 240 270])

1 Alphabetical List

1-14888

Increment theta-Axis Values by 15 Degrees

Display tick marks along the theta-axis every 15 degrees.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
polarplot(theta,rho)
thetaticks(0:15:360)

 thetaticks

1-14889

Set theta-Axis Tick Values Back to Default Values

Create a polar plot and specify the theta-axis tick values. Then, set the theta-axis tick
values back to the default values.

polarplot(1:10)
thetaticks([0 120 240])

1 Alphabetical List

1-14890

thetaticks('auto')

 thetaticks

1-14891

Set theta-Axis Tick Values for Specific Polar Axes

Create polar axes and return the polar axes object pax. Ensure that thetaticks affects
the polar axes you just created by passing pax as the first input argument to the function.

pax = polaraxes;
thetaticks(pax,0:45:360)

1 Alphabetical List

1-14892

Remove theta-Axis Tick Marks and Grid Lines

Remove the tick marks and grid lines along the theta-axis by specifying the tick values as
an empty array.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);
polarplot(theta,rho)
thetaticks([])

 thetaticks

1-14893

Input Arguments
ticks — Tick values
vector of increasing values

Tick values on page 1-14895, specified as a vector of increasing values. The tick values
are interpreted in units determined by the ThetaAxisUnits property. By default, the
units are degrees.

If you do not want tick marks along the theta-axis, specify an empty vector [].
Example: thetaticks([0 90 180 270])

1 Alphabetical List

1-14894

Example: thetaticks([0:30:330])
Example: thetaticks([])

Note To specify the tick labels, use the thetaticklabels function.

pax — One or more polar axes
current axes (default) | single object | vector of objects

One or more polar axes, specified as a single object or a vector of objects. If you do not
specify the polar axes, then thetaticks uses the current axes.

Output Arguments
tv — Current tick values
vector

Current tick values, returned as a vector.

m — Current mode
'auto' | 'manual'

Current mode, returned as one of these values:

• 'auto' — Axes automatically determines the theta-axis tick values.
• 'manual' — Axes uses manually specified theta-axis tick values.

Definitions

Tick Values
The tick values are the locations along the theta-axis where the tick marks appear. The
tick labels are the labels that you see next to each tick mark. Set the tick values using the
thetaticks function. Set the corresponding tick labels using the thetaticklabels
function.

 thetaticks

1-14895

Algorithms
The thetaticks function sets and queries several axes properties related to the theta-
axis tick values.

• ThetaTick — Property that stores the theta-axis tick values.
• ThetaTickMode — Property that stores the theta-axis tick value mode. When you set

the theta-axis tick values, this property changes to 'manual'.

See Also
Functions
rticklabels | rticks | thetalim | thetatickformat | thetaticklabels

Properties
PolarAxes

Introduced in R2016b

1 Alphabetical List

1-14896

thingSpeakRead
Read data stored in a ThingSpeak channel

Syntax
data = thingSpeakRead(channelID)
data = thingSpeakRead(channelID,Name,Value)
data = thingSpeakRead(___ ,'ReadKey','channel Read API key')

[data,timestamps] = thingSpeakRead(___)

[data,timestamps,channelInfo] = thingSpeakRead(___)

Description
data = thingSpeakRead(channelID) reads the most recent data from all fields of the
specified public channel on ThingSpeak.com and returns the data as a numeric type.

data = thingSpeakRead(channelID,Name,Value) uses additional options specified
by one or more Name,Value pair arguments. To read nonnumeric data, you must specify
the ‘OutputFormat’.

data = thingSpeakRead(___ ,'ReadKey','channel Read API key') uses the
ThingSpeak™ Read API key to read from a private channel.

[data,timestamps] = thingSpeakRead(___) also returns timestamps from the
specified channel on ThingSpeak.com and can include any of the input arguments in
previous syntaxes.

[data,timestamps,channelInfo] = thingSpeakRead(___) also returns channel
information.

Examples

 thingSpeakRead

1-14897

https://www.thingspeak.com
https://www.thingspeak.com

Retrieve Three Points of Data from a Channel

Retrieve the last five minutes of data from fields 1 and 4 of a public channel, and return
the data in a timetable.

data = thingSpeakRead(12397,'Fields',[1,4],'NumPoints',3,'OutputFormat','TimeTable')

data =

 3×2 timetable

 Timestamps WindDirectionNorth0Degrees TemperatureF
 ____________________ __________________________ ____________

 15-Jan-2019 08:16:15 129 26.1
 15-Jan-2019 08:17:16 115 26.1
 15-Jan-2019 08:18:19 133 26.2

Return Five Minutes of Data in a Timetable

Read the last five minutes of data from fields 1 and 4 of a public channel, and return the
data in a table.

data = thingSpeakRead(12397,'Fields',[1,4],'Numminutes',5,'OutputFormat','TimeTable')

data =

 5×2 timetable

 Timestamps WindDirectionNorth0Degrees TemperatureF
 ____________________ __________________________ ____________

 13-Nov-2018 09:22:48 117 53.4
 13-Nov-2018 09:23:48 110 53.4
 13-Nov-2018 09:24:50 90 53.5
 13-Nov-2018 09:25:52 95 53.5
 13-Nov-2018 09:26:55 90 53.5

1 Alphabetical List

1-14898

Retrieve Data Along with Timestamp

Retrieve the most recent result for all fields of a public channel, including the
timestamps.

[data,timestamps] = thingSpeakRead(12397)

data =

 Columns 1 through 7

 175.0000 7.5000 45.0000 47.5000 0 29.6000 3.4000

 Column 8

 39.0000

timestamps =

 datetime

 03-Jan-2019 14:30:36

Return Five Minutes of Data Along with Timestamps and Channel Information

Retrieve the last five minutes of data from fields 1 and 4 of a public channel, including the
timestamp and channel information.

[data,timestamps,channelInfo] = thingSpeakRead(12397,'Fields',[1,4],'NumMinutes',5)

data =

 315.0000 39.7000
 314.0000 39.7000
 314.0000 39.8000
 314.0000 39.9000
 315.0000 39.9000

 thingSpeakRead

1-14899

timestamps =

 5×1 datetime array

 20-Nov-2018 08:29:39
 20-Nov-2018 08:30:40
 20-Nov-2018 08:31:41
 20-Nov-2018 08:32:41
 20-Nov-2018 08:33:43

channelInfo =

 struct with fields:

 ChannelID: 12397
 Name: 'WeatherStation'
 Description: 'MathWorks Weather Station, West Garage, Natick, MA 01760, USA'
 Latitude: 42.2997
 Longitude: -71.3505
 Altitude: 60
 Created: 20-May-2014 17:50:32
 Updated: 25-Sep-2018 20:08:42
 LastEntryID: 2132316
 FieldDescriptions: {1×8 cell}
 FieldIDs: [1 2 3 4 5 6 7 8]
 URL: 'https://api.thingspeak.com/channels/12397/feed.json?'

Retrieve a Specific Date Range of Data with Timestamps and Channel
Information

Retrieve the data from 11:59:01 on August 9, 2018 through 12:02:52 on August 10, 2018
for fields 1 and 4 of a public channel, including the timestamp and channel information.

[data,timestamps,channelInfo] = thingSpeakRead(12397,'Fields',[1 4],'DateRange',[datetime(2018,8,9,23,59,01),datetime(2018,8,10,0,02,52)])

data =

 202.0000 83.3000
 184.0000 83.2000
 185.0000 83.1000

1 Alphabetical List

1-14900

 155.0000 83.1000

timestamps =

 4×1 datetime array

 09-Aug-2018 23:59:17
 10-Aug-2018 00:00:20
 10-Aug-2018 00:01:21
 10-Aug-2018 00:02:22

channelInfo =

 struct with fields:

 ChannelID: 12397
 Name: 'WeatherStation'
 Description: 'MathWorks Weather Station, West Garage, Natick, MA 01760, USA'
 Latitude: 42.2997
 Longitude: -71.3505
 Altitude: 60
 Created: 20-May-2014 17:50:32
 Updated: 25-Sep-2018 20:08:42
 LastEntryID: 2122785
 FieldDescriptions: {1×8 cell}
 FieldIDs: [1 2 3 4 5 6 7 8]
 URL: 'https://api.thingspeak.com/channels/12397/feed.json?'

Input Arguments
channelID — Channel identification number
numeric

The channel identification number, specified as a positive integer. For private channels,
you must also specify the ‘ReadKey’ argument.
Data Types: double

 thingSpeakRead

1-14901

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: thingSpeakRead(12397,'Location',true);

DateRange — Range of data to return
datetime vector

Range of data to return, specified as a comma-separated pair consisting of 'DateRange'
and an array of values that have [startdate,enddate] in MATLAB datetime values.
ThingSpeak server limits the number of points returned to a maximum of 8000. Adjust
your ranges or make multiple calls if you need more than 8000 points of data.

Note You cannot use DateRange with NumDays or NumMinutes.

Example: thingSpeakRead(12397,'DateRange',[datetime('Aug 8,
2014'),datetime('Aug 12, 2014')]);

Fields — Channel fields
positive numeric scalar

Channel field IDs, specified as a comma-separated pair consisting of 'Fields' and
numeric values of the channel field ID to retrieve data from.
Example: thingSpeakRead(12397,'Fields',[1,3,4]);

Location — Positional information of data
logical

Indicator to display positional information of data from the channel, specified as a
comma-separated pair consisting of 'Location' and a logical value. Location
information includes latitude, longitude, and altitude.
Example: thingSpeakRead(12397,'Location',true);

NumDays — Number of days of data
positive numeric scalar

1 Alphabetical List

1-14902

Number of days of data to extract data from, specified as a comma-separated pair
consisting of 'NumDays' and a numeric value. Number of days is measured in 24-hour
periods. The ThingSpeak server limits the number of points returned to a maximum of
8000. Adjust your number of days, or make multiple calls if you need more than 8000
points of data.

Note You cannot use NumDays with DateRange or NumMinutes.

Example: thingSpeakRead(12397,'NumDays',2);

NumMinutes — Number of minutes of data
positive numeric scalar

Number of minutes of data to extract data from, specified as a comma-separated pair
consisting of 'NumMinutes' and a numeric value. Number of minutes of data to retrieve
is measured from the time the command is issued. The ThingSpeak server limits the
number of points returned to a maximum of 8000. Adjust your number of minutes, or
make multiple calls if you need more than 8000 points of data.

Note You cannot use NumMinutes with DateRange or NumDays.

Example: thingSpeakRead(12397,'NumMinutes',20);
Data Types: double

NumPoints — Number of data points
positive numeric scalar

Number of data points to extract, specified as a comma-separated pair consisting of
'NumPoints' and a numeric value. The number of points or rows of data is counted from
the time the command is issued. The ThingSpeak server limits the number of points
returned to a maximum of 8000.
Example: thingSpeakRead(12397,'NumPoints',200);

OutputFormat — Class of the output data
matrix (default) | table | timetable

Class of the output data, specified as a comma-separated pair consisting of
'OutputFormat' and a text value. Valid values are 'matrix', 'table', and

 thingSpeakRead

1-14903

'timetable'. Use 'matrix' format for numeric data. You can use 'timetable' or
'table' for any nonnumeric data. The 'table' format outputs [data,channelInfo],
where data contains the timestamps and the data from the fields of the channel. The
'timetable' format outputs [data,channelInfo], where data is a timetable and
contains as many variables as the number of requested 'fields'.
Example: thingSpeakRead(12397,'OutputFormat','table');
Example: thingSpeakRead(12397,'OutputFormat','timetable');

ReadKey — Read API key of channel
character vector of API Key | string scalar of API Key

Read API key of the channel, specified as a comma-separated pair consisting of
'ReadKey' and a character vector representing the channel read API key. The Read API
key allows you to read data from a private channel. If you are reading data from a public
channel, you do not need a Read API key. Save your channel Read API key in a variable
for convenience.
Example: thingSpeakRead(12397,'ReadKey','F6CSCVKX42WFZN9Y');
Data Types: char

Timeout — Server connection timeout period
10 (default) | positive numeric scalar

Server connection timeout period, specified as a comma-separated pair consisting of
'Timeout' and a numeric value. The value is the number of seconds allowed for
thingSpeakRead to connect to the server.
Example: thingSpeakRead(12397,'Timeout',15);

Output Arguments
data — Data from the channel
array (default) | table | timetable

Data from the channel, returned as an array, table, or timetable.

timestamps — Timestamp of each data element
array (default)

Timestamp of each data element, returned as an array of datetime values.

1 Alphabetical List

1-14904

Data Types: datetime

channelInfo — Channel information
structure

Channel information, returned as a structure with fields in the order shown in the table..

Field Description
ChannelID Channel identification number
Name Name of the channel
Description Channel description
Latitude Latitude for the channel as provided in the

channel settings
Longitude Longitude for the channel as provided in

the channel settings
Altitude Elevation for the channel as provided in the

channel settings
Created Datetime of channel creation date
Updated Datetime when the channels settings were

last changed
Last EntryID Entry ID for the most recent channel

update
Field Descriptions List of field names
Field IDs List of enabled fields
URL URL for feed data

Definitions

ThingSpeak
ThingSpeak is an IoT analytics platform service that allows you to aggregate, visualize,
and analyze live data streams in the cloud. See License Options and the Commercial Use
for more information.

 thingSpeakRead

1-14905

https://www.thingspeak.com
https://thingspeak.com/prices
https://thingspeak.com/pages/commercial_learn_more

See Also
Functions
thingSpeakWrite | webread

Introduced in R2019a

1 Alphabetical List

1-14906

thingSpeakWrite
Write data to a ThingSpeak channel

Syntax
thingSpeakWrite(channelID,data,'WriteKey','channel Write API key')
thingSpeakWrite(___ ,Name,Value)
response = thingSpeakWrite(___)

Description
thingSpeakWrite(channelID,data,'WriteKey','channel Write API key')
writes the data to the specified channel. The Write API key is specified as a comma-
separated pair consisting of 'WriteKey' and a character vector or string representing
the channel write key.

thingSpeakWrite(___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

response = thingSpeakWrite(___) returns the response provided by the
ThingSpeak server on successful completion of the write operation.

Examples

Write Data to a ThingSpeak channel

Write a single numeric value to Field 1 of a channel.

thingSpeakWrite(17504,2.3,'WriteKey','23ZLGOBBU9TWHG2H')

Write Multiple Values and View Response

Write numeric values to the first four consecutive fields [1,2,3,4] of a channel.

 thingSpeakWrite

1-14907

response = thingSpeakWrite(17504,[2.3,1.2,3.2,0.1],'WriteKey','23ZLGOBBU9TWHG2H')

response =

 struct with fields:

 Field1: '2.3'
 Field2: '1.2'
 Field3: '3.2'
 Field4: '0.1'
 Field5: []
 Field6: []
 Field7: []
 Field8: []
 Latitude: []
 Longitude: []
 ChannelID: 17504
 Created: 13-Nov-2018 09:21:25
 LastEntryID: 3758
 Altitude: []

Write Nonnumeric Data

Write nonnumeric data to the first three consecutive fields [1,2,3] of a channel.

thingSpeakWrite(17504,{2.3,'on','good'},'WriteKey','23ZLGOBBU9TWHG2H')

Write Mixed Data

Write mixed values to nonconsecutive fields [1,4,6] of a channel.

thingSpeakWrite(17504,'Fields',[1,4,6],'Values',{2.3,'on','good'},'WriteKey','23ZLGOBBU9TWHG2H')

Write Field and Location Data

Update three fields, and write latitude, longitude, and altitude data for the entry.

1 Alphabetical List

1-14908

thingSpeakWrite(17504,[1.1,2.3,4],'Location',[-40,23,3500],'WriteKey','23ZLGOBBU9TWHG2H')

Write Location Data Only

Write latitude, longitude, and altitude data to a channel without adding values to fields.

thingSpeakWrite(17504,'Location',[-40,23,3500],'WriteKey','23ZLGOBBU9TWHG2H')

Write Data with Timestamp

Write a timestamp for the value being written to a channel. The timestamp provided is
interpreted as local time.

tStamp = datetime('now')
thingSpeakWrite(17504,[2.3,1.2,3.2,0.1],'WriteKey','23ZLGOBBU9TWHG2H','TimeStamp',tStamp)

tStamp =

 datetime

 13-Nov-2018 08:53:23

Write a Matrix of Data

Write a matrix of data to the first three fields of a channel. The timestamps provided are
interpreted as local time.

% Generate Random Data
data = randi(10,10,3);

% Generate timestamps for the data
tStamps = datetime('now')-minutes(9):minutes(1):datetime('now');

channelID = 17504; % Change to your Channel ID
writeKey = '23ZLGOBBU9TWHG2H'; % Change to your Write API Key

 thingSpeakWrite

1-14909

% Write 10 values to each field of your channel along with timestamps
thingSpeakWrite(channelID,data,'TimeStamp',tStamps,'WriteKey',writeKey)

Write a TimeTable of Data

Write a timetable of data to the first two fields of a channel. The timestamps provided are
interpreted as local time.

% Generate random data
dataField1 = randi(10,10,1);
dataField2 = randi(10,10,1);

% Generate timestamps for the data
tStamps = [datetime('now')-minutes(9):minutes(1):datetime('now')]';

% Create timetable
dataTable = timetable(tStamps,dataField1,dataField2);
channelID = 17504; % Change to your channel ID
writeKey = '23ZLGOBBU9TWHG2H'; % Change to your Write API Key

% Write 10 values to each field of your channel along with timestamps
thingSpeakWrite(channelID,dataTable,'WriteKey',writeKey)

Input Arguments
channelID — Channel identification number
numeric

The channel identification number, specified as a positive integer.

data — Data to write to channel
array | numeric | table | timetable

Data to write to channel, specified as a numeric scalar or numeric vector, a cell array, a
string of cell arrays, table, or a timetable. If you specify scalar data, the value is written to
the first field in the channel (Field 1). For a vector or a 1-D cell array, data is written to
consecutive fields starting with Field 1.
Example: thingSpeakWrite(17504,{2,3,'on','good'},'WriteKey','channel
write api key');

1 Alphabetical List

1-14910

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: thingSpeakWrite(17504,[1.1,2.2],'Fields',
[1,2,3],'WriteKey','channel write api key');

Fields — Channel fields
numeric

Channel fields IDs, specified as a comma-separated pair consisting of 'Fields' and a 1-
by-n positive integer value.
Example: thingSpeakWrite(17504,[2.3,1.2,3.2,0.1],'Fields',
[1,2,3,4],'WriteKey','channel write api key');

Values — Data values
numeric | array | table | timetable

Data values, specified as a comma-separated pair consisting of 'Values' and numeric
scalar, numeric vector, a cell array, a string of cell arrays, table, or timetable values.
Specify the data to be written to channel fields specified by the 'Fields' parameter.
Example: thingSpeakWrite(17504,'Fields',[1,3,4],'Values',
[1,2,3],'WriteKey','channel write api key');

Location — Positional information of data
numeric

Positional information of data in the channel, specified as a comma-separated pair
consisting of 'Location' and numeric array. Location information includes latitude,
longitude, and altitude. This example writes the same location information for each of the
three points provided to field 1.
Example: thingSpeakWrite(17504,[2.3,1.2,3.2,0.1],'Location',
[-40,23,200],'WriteKey',' write api key');

Timeout — Server connection timeout period
10 (default) | numeric

 thingSpeakWrite

1-14911

Server connection timeout period, specified as a comma-separated pair consisting of
'TimeOut' and a numeric value. The timeout period is the number of seconds allowed
for thingSpeakRead to connect to the server before the request is terminated.
Example: thingSpeakWrite(17504,[2.3,1.2,3.2,0.1],'WriteKey','channel
Write API key','Timeout',15);

Timestamp — Timestamp of data values
datetime

Timestamp of data values written to fields in the write channel, specified as a comma-
separated pair consisting of 'Timestamp' and a value. The value must be a MATLAB
datetime value. All timestamps must be unique. If you submit duplicate timestamps, all
your updates are rejected, otherwise only updates with timestamps already in channel are
rejected.

Note Do not specify 'Timestamp' if you have specified 'Values' as a timetable.

Example: thingSpeakWrite(17504,[2.3,1.2,3.2,0.1],'WriteKey','channel
write api key','Timestamp',[datetime('2/6/2018
9:27:12','format','MM/dd/uuuu HH:mm:ss')]);

Data Types: datetime

Output Arguments
response — Channel response of the write operation
structure

Channel response of the write operation, returned as a structure with fields in the order
shown in the table. The fields of the structure indicate the values written to the fields of
the channel:

Field Description
FieldX FieldX data for the entry, up to eight fields
Latitude Latitude for the write operation
Longitude Longitude for the write operation

1 Alphabetical List

1-14912

Field Description
Channel ID Channel Identification number
Created Datetime of write operation and feed entry
Last EntryID Entry ID for the most recent channel

update
Created Datetime of channel creation date
Updated Datetime when the channels settings were

last changed
Last EntryID Entry ID for the most recent channel

update
Altitude Elevation for the write operation

Limitations
• All timestamps must be unique. You cannot write new data with timestamps that

match existing data in the channel.
• The allowed update frequency for a channel is limited based on your license type. See

Frequently Asked Questions and How to Buy for specific information. Updates with
multiple entries, such as in a table or timetable, are limited to the slower update
frequency. For users of free accounts, the number of messages in a single call to
thingSpeakWrite is limited to 960 messages. For users of paid accounts, the limit is
14,400 messages. Attempts to publish at a rate faster than the allowed limit will return
the following error: Requests are too frequent. For further information, see
Limitations in the documentation.

Definitions

ThingSpeak
ThingSpeak is an IoT analytics platform service that allows you to aggregate, visualize,
and analyze live data streams in the cloud. See License Options and the Commercial Use
for more information.

 thingSpeakWrite

1-14913

https://thingspeak.com/pages/license_faq
https://thingspeak.com/prices
https://www.thingspeak.com
https://thingspeak.com/prices
https://thingspeak.com/pages/commercial_learn_more

See Also
Functions
thingSpeakRead | webwrite

Introduced in R2019a

1 Alphabetical List

1-14914

tic
Start stopwatch timer

Syntax
tic
timerVal = tic

Description
tic starts a stopwatch timer to measure performance. The function records the internal
time at execution of the tic command. Display the elapsed time with the toc function.

timerVal = tic returns the value of the internal timer at the execution of the tic
command, so that you can record time for simultaneous time spans.

Output Arguments
timerVal

Value of the internal timer at the execution of the tic command. This value is used as an
input argument for a subsequent call to toc. You should not rely on the meaning of this
value.

Examples
Measure time to generate two random matrices and compute element-by-element
multiplication of their transposes.

tic
A = rand(12000, 4400);
B = rand(12000, 4400);
toc

 tic

1-14915

C = A'.*B';
toc

Measure how the time required to solve a linear system varies with the order of a matrix:

t = zeros(1,100);
for n = 1:100
 A = rand(n,n);
 b = rand(n,1);
 tic;
 x = A\b;
 t(n) = toc;
end
plot(t)

Measure multiple time spans simultaneously using two pairs of tic/toc calls. To do this,
measure the minimum and average time to compute a summation of Bessel functions:

REPS = 1000; minTime = Inf; nsum = 10;
tic; % TIC, pair 1

for i=1:REPS
 tStart = tic; % TIC, pair 2
 total = 0;
 for j=1:nsum
 total = total + besselj(j,REPS);
 end

 tElapsed = toc(tStart); % TOC, pair 2
 minTime = min(tElapsed, minTime);
end
averageTime = toc/REPS; % TOC, pair 1

Tips
• Consecutive tic commands overwrite the internally recorded starting time.
• The clear function does not reset the starting time recorded by a tic command.
• The following actions result in unexpected output:

• Using tic and toc to time timeit
• Using tic and toc within a function timed by timeit

1 Alphabetical List

1-14916

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The data type returned from tic is different between MATLAB and the generated
code. To avoid errors, do not use a MEX-function tic output value in MATLAB, or a
MATLAB tic output value in a MEX function.

• If you call tic in a MATLAB session and toc in a MEX function, or vice versa, the
timing results are not coordinated.

• To avoid printing the output of timestamp data from generated MEX code, use a
semicolon after the tic call in your MATLAB code.

• The C/C++ implementation for tic in the generated code differs depending on the
hardware settings stored in the code generation configuration object. By default, the
hardware settings are configured for the host platform, with Hardware Board in the
MATLAB Coder app set to MATLAB Host Computer.

• When generating code on Windows with Windows-compatible hardware settings,
the generated C/C++ implementation uses the Windows API functions
QueryPerformanceFrequency and QueryPerformanceCounter.

• In all other cases, the implementation uses the POSIX API clock_gettime. When
compiling code that uses the POSIX API, the preprocessor macro
_POSIX_C_SOURCE must be set to an integer greater than or equal to 199309L.
The code generator sets the macro to 199309L for compilation.

See Also
clock | cputime | etime | profile | timeit | toc

Introduced before R2006a

 tic

1-14917

Tiff
MATLAB Gateway to LibTIFF library routines

Description
A Tiff object represents a connection to a Tagged Image File Format (TIFF) file and
provides access to many of the functions of the LibTIFF library. Tiff offers more
capabilities than the imread and imwrite functions, such as reading subimages, writing
tiles and strips of image data, and modifying individual TIFF tags.

In most cases, the syntax of the Tiff object function is similar to the syntax of the
corresponding LibTIFF library function. To fully understand the capabilities of the Tiff
object, refer to the LibTIFF API and the TIFF specification and technical notes. View this
documentation at LibTIFF - TIFF Library and Utilities.

MATLAB supports LibTIFF version 4.0.0. For copyright information on the LibTIFF
library, see the libtiffcopyright.txt file.

Creation

Syntax
obj = Tiff(filename)
obj = Tiff(filename,mode)

Description
obj = Tiff(filename) creates a Tiff object for read access to the TIFF file
filename.

obj = Tiff(filename,mode) creates a Tiff object with the type of access to the
TIFF file specified by mode.

1 Alphabetical List

1-14918

http://www.simplesystems.org/libtiff/

Input Arguments
filename — Name of file
character vector | string scalar

Name of file, specified as a character vector or string scalar.
Example: 'myfile.tif'

mode — File access type
'r' (default) | 'w' | 'w8' | 'a' | 'r+'

File access type, specified as one of these values.

Parameter Description
'r' Open file for reading (default).
'w' Open file for writing; discard existing contents.
'w8' Open file for writing a BigTIFF file; discard existing contents.
'a' Open or create file for writing; append data to end of file.
'r+' Open (do not create) file for reading and writing.

When you open a TIFF file for writing or appending, the Tiff object automatically
creates an IFD in the file for writing subsequent data. This IFD has all the default values
specified in TIFF Revision 6.0.

Properties
TIFF files consist of image file directories (IFDs) that contain image data and associated
tags. The tags contain image related information, such as the image width, the image
height, and the number of samples. Each TIFF property is a structure that provides values
for a tag. Set the tag values using the setTag function. For instance, create a file and
specify the JPEG compression.

t = Tiff('myfile.tif','w');
setTag(t,'Compression',Tiff.Compression.JPEG);

When you create a file, before writing data to the file, you must set these tags:

 Tiff

1-14919

ImageWidth Compression
ImageLength PlanarConfiguration
BitsPerSample Photometric
SamplesPerPixel

Depending on the layout of the image, you must set these additional tags:

• Stripped layout — Set the RowsPerStrip tag.
• Tiled layout — Set the TileWidth and TileHeight tags.

Compression — Scheme to compress image data
structure

Scheme to compress image data, stored in a structure with these fields.

Field Name
None
CCITTRLE (Read-only)
CCITTFax3
CCITTFax4
LZW
OJPEG
JPEG
AdobeDeflate
...

To see a full list of values that MATLAB supports for the Compression tag, type
Tiff.Compression in the command window.
Example: setTag(t,'Compression',Tiff.Compression.JPEG);

ExtraSamples — Extra channel description
structure

Extra channel description, stored in a structure with these fields.

1 Alphabetical List

1-14920

Field Name Description
Unspecified Unspecified data
AssociatedAlpha Associated alpha (premultiplied)
UnassociatedAlpha Unassociated alpha data

If extra channels exist in addition to the usual colorimetric channels, then the
ExtraSamples tag is required. For an example usage, see “Write Tiff Image with Color
and Alpha Channel Data” on page 1-14929.
Example: setTag(t,'ExtraSamples',Tiff.ExtraSamples.AssociatedAlpha)

Group3Options — Group 3 Fax compression options
structure

Group 3 Fax compression options, stored in a structure with these fields.

Field Name Description
Encoding2D Bit 0 is 1.

This value specifies two-dimensional coding. If
more than one strip is specified, each strip must
begin with a one-dimensionally coded line. That
is, RowsPerStrip must be a multiple of
parameter K, as documented in the CCITT
specification.

Uncompressed Bit 1 is 1.

This value specifies an uncompressed mode
when encoding.

FillBits Bit 2 is 1.

Add fill bits as necessary before the EOL codes,
such that EOL always ends on a byte boundary.
This ensures that a zero nibble precedes an EOL
sequence by 1 byte. For example, xxxx-0000
0000-0001.

This property also is referred to as Fax3 or T4Options. The value of the property is a bit
mask controlled by the first 3 bits.

 Tiff

1-14921

Example: setTag(t,'Group3Options',Tiff.Group3Options.Uncompressed);

InkSet — Separated image ink set
structure

Separated image ink set, stored in a structure with these fields.

Field Name Description
CMYK Order of components: cyan, magenta,

yellow, black. Usually, a value of 0
represents 0% ink coverage and a value of
255 represents 100% ink coverage for that
component, but consult the TIFF
specification for DotRange. When you
specify CMYK, do not set the InkNames
tag.

MultiInk Any ordering other than CMYK. Consult the
TIFF specification for InkNames field for a
description of the inks used.

In the context of this property, separated refers to the photometric interpretation (not the
planar configuration).
Example: setTag(t,'InkSet',Tiff.InkSet.CMYK);

JPEGColorMode — Color mode
structure

Color mode, stored in a structure with these fields.

Field Name Description
Raw (default) Keep input as separate Y, Cb, and Cr matrices.
RGB Convert RGB input to YCbCr.

Do not use this property to read YCbCr imagery as RGB. Instead use the RGBA interface
provided by the readRGBAImage, readRGBAStrip, and readRGBATile functions.

For an example, see “Create YCbCr/JPEG image from RGB data” on page 1-14930.
Example: setTag(t,'JPEGColorMode',Tiff.JPEGColorMode.RGB);

1 Alphabetical List

1-14922

Orientation — Visual orientation of image data
structure

Visual orientation of the image data, stored in a structure with these fields.

Field Name
TopLeft
TopRight
BottomRight
BottomLeft
LeftTop
RightTop
RightBottom
LeftBottom

The Orientation property describes the image orientation with respect to rows and
columns. For instance, when Orientation is set to TopLeft, then the first row
represents the top of the image, and the first column represents the left side. The value
specified in the Orientation is for informational purposes only, and it does not affect
how MATLAB reads or writes the image data.
Example: setTag(t,'Orientation',Tiff.Orientation.TopLeft);

Photometric — Color space of image data
structure

Color space of image data, stored in a structure with these fields.

Field Name
MinIsWhite
MinIsBlack
RGB
Palette
Mask
Separated (CMYK)

 Tiff

1-14923

Field Name
YCbCr
CIELab
ICCLab
ITULab
LogL
LogLUV
CFA
LinearRaw

Example: setTag(t,'Photometric',Tiff.Photometric.RGB);

PlanarConfiguration — Storage configuration
structure

Storage configuration of the image component values, stored in a structure with these
fields.

Field Name Description
Chunky Store component values for each pixel

contiguously. For example, in the case of
RGB data, store the first three pixels in the
file as RGBRGBRGB. Almost all TIFF
images have contiguous planar
configurations.

Separate Store component values for each pixel
separately. For example, in the case of RGB
data, the red component is stored
separately in the file from the green and
blue components.

Example:
setTag(t,'PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);

ResolutionUnit — Resolution units
structure

1 Alphabetical List

1-14924

Resolution units to interpret the values contained in XResolution and YResolution
tags, stored in a structure with these fields.

Field Name Description
None Default value.
Inch Assign unit inches for values contained in

XResolution and YResolution tags.
Centimeter Assign unit centimeters for values

contained in XResolution and
YResolution tags.

For example, the following code sets the value of the image resolution in X and Y
directions to 300 pixels per inch:

setTag(t,'ResolutionUnit',Tiff.ResolutionUnit.Inch);
setTag(t,'XResolution',300);
setTag(t,'YResolution',300);

Example: setTag(t,'ResolutionUnit',Tiff.ResolutionUnit.Inch);

SampleFormat — Pixel sample format
structure

Pixel sample format, stored in a structure with these fields.

Field Name Description
UInt (default) Unsigned integer data
Int Two's complement signed integer data
IEEEFP IEEE floating point data

MATLAB does not support the formats Void, ComplexInt, and ComplexIEEEFP.
Example: setTag(t,'SampleFormat',Tiff.SampleFormat.IEEEFP);

SGILogDataFmt — SGIL codec data format
structure

SGIL codec data format, stored in a structure with these fields.

 Tiff

1-14925

Field Name Description
Float Single precision samples.
Bits8 uint8 samples (read-only).

Setting the SGILogDataFmt to Float or Bits8 implies a SamplesPerPixel value of 3
for LogLuv images and a value of 1 for LogL images.

You can set the SGILogDataFmt tag only once per instance for a LogL/LogLuv TIFF
image object.

Use the following code to create a Tiff object, set the SGIL data format, and then read
the image data.

tiffobj = Tiff('example.tif','r');
setDirectory(tiffobj,3); % image three is a LogLuv image
setTag(tiffobj,'SGILogDataFmt',Tiff.SGILogDataFmt.Float);
imdata = read(tiffobj);

Example: setTag(t,'SGILogDataFmt',Tiff.SGILogDataFmt.Float);

SubFileType — Type of image
structure

Type of the image, stored in a structure with these fields.

Field Name Description
Default Default value for single image file or first

image.
ReducedImage The image is a single image of a multiimage

(or multipage) file.
Page Unassociated alpha data.
Mask The image is a transparency mask for

another image in the file. The photometric
interpretation value must be
Photometric.Mask.

Example: setTag(t,'SubFileType',Tiff.SubFileType.Mask);

TagID — TIFF tag IDs
structure

1 Alphabetical List

1-14926

TIFF tag IDs that MATLAB supports, stored in a structure with these fields.

Field Name Value
SubFileType 254
ImageWidth 256
ImageLength 257
BitsPerSample 258
Compression 259
Photometric 262
Thresholding 263
FillOrder 266
... ...

For a complete list of tag names and their corresponding tag IDs, type Tiff.TagID in the
Command Window.

Use this property to specify a tag when you are using the setTag function. For example,
Tiff.TagID.ImageWidth returns the ID of the ImageWidth tag. To get a list of all
supported tags, use the Tiff.getTagNames function.
Example: setTag(t,Tiff.TagID.ImageWidth,300);

Thresholding — Thresholding technique
structure

Thresholding technique, stored in a structure with these fields.

Field Name
BiLevel
HalfTone
ErrorDiffuse

Use this tag to specify which algorithm to use when converting pixels from grayscale to
black and white.
Example: setTag(t,'Thresholding',Tiff.Thresholding.HalfTone);

 Tiff

1-14927

YCbCrPositioning — Position of chrominance samples
structure

Position of chrominance samples relative to luminance samples, stored in a structure with
these fields.

Field Name Description
Centered Specify for compatibility with industry standards, such

as PostScript Level 2.
Cosited Specify for compatibility with most digital video

standards, such as CCIR Recommendation 601-1.

Example: setTag(t,'YCbCrPositioning',Tiff.YCbCrPositioning.Centered);

Object Functions
A TIFF file is made up of one or more image file directories (IFDs). An IFD contains image
data and its associated metadata. IFDs can contain subIFDs, which also contain image
data and metadata. When you open a TIFF file for reading, the Tiff object makes the
first IFD in the file the current IFD. The Tiff object functions operate on the current IFD.

Read Image
read Read entire TIFF image
readEncodedStrip Read data from specified strip
readEncodedTile Read data from specified tile
readRGBAImage Read image using RGBA interface
readRGBAStrip Read strip data using RGBA interface
readRGBATile Read tile data using RGBA interface
close Close Tiff object

Write Image
write Write entire image
writeEncodedStrip Write data to specified strip
writeEncodedTile Write data to specified tile
close Close Tiff object

1 Alphabetical List

1-14928

Set or Get Tags
getTag Value of specified tag
setTag Set value of tag
Tiff.getTagNames List of recognized TIFF tags

Change Image File Directory (IFD)
currentDirectory Return index of current IFD
lastDirectory Determine if current IFD is last in file
nextDirectory Make next IFD the current IFD
setDirectory Make specified IFD the current IFD
setSubDirectory Make subIFD the current IFD
rewriteDirectory Write modified metadata to existing IFD
writeDirectory Create new IFD and make it current IFD

Get Tile, Strip, or Library Information
isTiled Determine if image is tiled
computeTile Index number of tile containing specified coordinates
numberOfTiles Total number of tiles in image
computeStrip Index number of strip containing specified coordinate
numberOfStrips Total number of strips in image
getVersion LibTIFF library version

Examples

Create New TIFF File Using Tiff object

Create a new file called myfile.tif. To run this example, you must have write access to
the folder.

t = Tiff('myfile.tif','w');

Close the Tiff object.

close(t);

 Tiff

1-14929

Write Tiff Image with Color and Alpha Channel Data

For a dataset with color and alpha channels, set the Tiff tags and then write the data to
a file.

Create an array of data, data, that contains color channels and an alpha channel.

rgb = imread('example.tif');
numrows = size(rgb,1);
numcols = size(rgb,2);
alpha = 255*ones([numrows numcols], 'uint8');
data = cat(3,rgb,alpha);

Create a Tiff object.

t = Tiff('myfile.tif','w');

Set the Tiff tags and specify the value of the ExtraSamples tag because the data
contains the alpha channel in addition to the color channels.

setTag(t,'Photometric',Tiff.Photometric.RGB);
setTag(t,'Compression',Tiff.Compression.None);
setTag(t,'BitsPerSample',8);
setTag(t,'SamplesPerPixel',4);
setTag(t,'SampleFormat',Tiff.SampleFormat.UInt);
setTag(t,'ExtraSamples',Tiff.ExtraSamples.Unspecified);
setTag(t,'ImageLength',numrows);
setTag(t,'ImageWidth',numcols);
setTag(t,'TileLength',32);
setTag(t,'TileWidth',32);
setTag(t,'PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);

Write the data to the TIFF file and close the Tiff object.

write(t,data);
close(t);

Create YCbCr/JPEG image from RGB data

Write RGB image data to a TIFF file as an YCbCr/JPEG image.

Get RGB data.

1 Alphabetical List

1-14930

rgb = imread('example.tif');

Create a Tiff object, t, and set the tags. Specify that the input data is RGB using the
JPEGColorMode tag.

t = Tiff('myfile.tif','w');
setTag(t,'Photometric',Tiff.Photometric.YCbCr);
setTag(t,'Compression',Tiff.Compression.JPEG);
setTag(t,'YCbCrSubSampling',[2 2]);
setTag(t,'BitsPerSample',8);
setTag(t,'SamplesPerPixel',3);
setTag(t,'SampleFormat',Tiff.SampleFormat.UInt);
setTag(t,'ImageLength',size(rgb,1));
setTag(t,'ImageWidth',size(rgb,2));
setTag(t,'TileLength',32);
setTag(t,'TileWidth',32);
setTag(t,'PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);
setTag(t,'JPEGColorMode',Tiff.JPEGColorMode.RGB);
setTag(t,'JPEGQuality',75);

Write the data to the TIFF file and close the Tiff object.

write(t,rgb);
close(t);

See Also
imfinfo | imread | imwrite

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 Tiff

1-14931

timeit
Measure time required to run function

Syntax
t = timeit(f)
t = timeit(f,numOutputs)

Description
t = timeit(f) measures the typical time (in seconds) required to run the function
specified by the function handle f.

t = timeit(f,numOutputs) calls f with the desired number of outputs, numOutputs.
By default, timeit calls the function f with one output (or no outputs, if the function
does not return any outputs).

Examples

Determine Time to Obtain Current Date

Use timeit to time a function call to date. This example uses a handle to a function that
accepts no input.

f = @date;
t = timeit(f)

t = 1.0398e-04

1 Alphabetical List

1-14932

Determine Time to Compute Matrix Summation

Time the combination of several mathematical matrix operations: matrix transposition,
element-by-element multiplication, and summation of columns.

A = rand(12000,400);
B = rand(400,12000);
f = @() sum(A.'.*B, 1);
timeit(f)

ans = 0.0715

Compare Time to Run svd with Multiple Outputs

Determine how long it takes to run svd with one output argument, s = svd(X).

X = rand(100);
f = @() svd(X);
t1 = timeit(f)

t1 = 0.0018

Compare the results to svd with three output arguments, [U,S,V] = svd(X).

t2 = timeit(f,3)

t2 = 0.0050

Compare Time to Execute Custom Preallocation to Calling zeros

Create a short function to allocate a matrix using nested loops. Preallocating an array
using a nested loop is inefficient, but is shown here for illustrative purposes.

function mArr = preAllocFcn(x,y)
for m = 1:x
 for n = 1:y
 mArr(m,n) = 0;
 end
end

 timeit

1-14933

end

Compare the time to allocate zeros to a matrix using nested loops and using the zeros
function.

x = 1000;
y = 500;
g = @() preAllocFcn(x,y);
h = @() zeros(x,y);
diffRunTime = timeit(g)-timeit(h)

diffRunTime =

 0.1584

Input Arguments
f — function to be measured
function handle

Function to be measured, specified as a function handle. f is either a handle to a function
that takes no input, or a handle to an anonymous function with an empty argument list.

numOutputs — Number of desired outputs from f
integer

Number of desired outputs from f, specified as an integer. If the function specified by f
has a variable number of outputs, numOutputs specifies which syntax timeit uses to
call the function. For example, the svd function returns a single output, s, or three
outputs, [U,S,V]. Set numOutputs to 1 to time the s = svd(X) syntax, or set it to 3 to
time the [U,S,V] = svd(X) syntax.

Tips
• The following actions result in unexpected output:

• Using timeit between tic and toc

1 Alphabetical List

1-14934

• Using timeit to time a function that includes calls to tic and toc
• Using timeit recursively

Algorithms
timeit calls the specified function multiple times, and computes the median of the
measurements.

See Also
cputime | tic | toc

Topics
“Create Function Handle”
Anonymous Functions
Analyzing Your Program's Performance
MATLAB Performance Measurement White Paper on MATLAB Central File Exchange

Introduced in R2013b

 timeit

1-14935

https://www.mathworks.com/matlabcentral/fileexchange/18510-matlab-performance-measurement

toc
Read elapsed time from stopwatch

Syntax
toc
elapsedTime = toc
toc(timerVal)
elapsedTime = toc(timerVal)

Description
toc reads the elapsed time from the stopwatch timer started by the tic function. The
function reads the internal time at the execution of the toc command, and displays the
elapsed time since the most recent call to the tic function that had no output, in
seconds.

elapsedTime = toc returns the elapsed time in a variable.

toc(timerVal) displays the time elapsed since the tic command corresponding to
timerVal.

elapsedTime = toc(timerVal) returns the elapsed time since the tic command
corresponding to timerVal.

Input Arguments
timerVal

Value of the internal timer saved from a previous call to the tic command.

1 Alphabetical List

1-14936

Output Arguments
elapsedTime

Scalar double representing the time elapsed between tic and toc commands, in
seconds.

Examples
Measure time to generate two random matrices and compute element-by-element
multiplication of their transposes.

tic
A = rand(12000, 4400);
B = rand(12000, 4400);
toc
C = A'.*B';
toc

Measure how the time required to solve a linear system varies with the order of a matrix:

t = zeros(1,100);
for n = 1:100
 A = rand(n,n);
 b = rand(n,1);
 tic;
 x = A\b;
 t(n) = toc;
end
plot(t)

Measure multiple time spans simultaneously using two pairs of tic/toc calls. To do this,
measure the minimum and average time to compute a summation of Bessel functions:

REPS = 1000; minTime = Inf; nsum = 10;
tic; % TIC, pair 1

for i=1:REPS
 tStart = tic; % TIC, pair 2
 total = 0;
 for j=1:nsum
 total = total + besselj(j,REPS);

 toc

1-14937

 end

 tElapsed = toc(tStart); % TOC, pair 2
 minTime = min(tElapsed, minTime);
end
averageTime = toc/REPS; % TOC, pair 1

Tips
• Consecutive calls to the toc function with no input return the elapsed since the most

recent tic. Therefore, you can take multiple measurements from a single point in
time.

Consecutive calls to the toc function with the same timerVal input return the
elapsed time since the tic function call that corresponds to that input.

• The following actions result in unexpected output:

• Using tic and toc to time timeit
• Using tic and toc within a function timed by timeit

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The data type returned from toc is different between MATLAB and the generated
code. To avoid errors, do not use a MEX-function toc output value in MATLAB, or a
MATLAB toc output value in a MEX function.

• If you call tic in a MATLAB session and toc in a MEX function, or vice versa, the
timing results are not coordinated.

• To avoid printing the output of timestamp data from generated MEX code, use a
semicolon after the toc call in your MATLAB code.

• The C/C++ implementation for toc in the generated code differs depending on the
hardware settings stored in the code generation configuration object. By default, the

1 Alphabetical List

1-14938

hardware settings are configured for the host platform, with Hardware Board in the
MATLAB Coder app set to MATLAB Host Computer.

• When generating code on Windows with Windows-compatible hardware settings,
the generated C/C++ implementation uses the Windows API functions
QueryPerformanceFrequency and QueryPerformanceCounter.

• In all other cases, the implementation uses the POSIX API clock_gettime. When
compiling code that uses the POSIX API, the preprocessor macro
_POSIX_C_SOURCE must be set to an integer greater than or equal to 199309L.
The code generator sets the macro to 199309L for compilation.

See Also
clock | cputime | etime | profile | tic | timeit

Introduced before R2006a

 toc

1-14939

time
Convert time of calendar duration to duration

Syntax
t = time(d)

Description
t = time(d) returns the time components of the calendar duration values in d as
durations. The t output is the same size as d.

Examples

Convert Time of Calendar Durations to Durations

Create an array of calendar durations.

d = caldays(8:10) + hours(1.2345)

d = 1x3 calendarDuration array
 8d 1h 14m 4.2s 9d 1h 14m 4.2s 10d 1h 14m 4.2s

Convert the time components of the array to durations.

t = time(d)

t = 1x3 duration array
 01:14:04 01:14:04 01:14:04

View the data type of t.

whos t

1 Alphabetical List

1-14940

 Name Size Bytes Class Attributes

 t 1x3 40 duration

Input Arguments
d — Input calendar duration
scalar | vector | matrix | multidimensional array

Input calendar duration, specified as a scalar, vector, matrix, or multidimensional
calendarDuration array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
caldays | calmonths | calquarters | calweeks | calyears | duration

Introduced in R2014b

 time

1-14941

timeofday
Elapsed time since midnight for datetimes

Syntax
d = timeofday(t)

Description
d = timeofday(t) returns an array of durations equal to the elapsed time since
midnight for each of the datetime values in t. The output argument, d, is equal to the
result of t - dateshift(t,'start','day'), and is the same size as t.

• If you have datetime values with no time zone, then d also is equal to

e = hours(t.Hour) + minutes(t.Minute) + seconds(t.Second)
• If a datetime value has its TimeZone property set to a time zone that does not

observe Daylight Saving Time (DST), then d is equal to e.
• If a datetime value has its TimeZone property set to a time zone that observes DST,

then timeofday accounts for the DST shift on days when the shift occurs. On those
days, for times after the DST shift occurs, d differs from e by the amount of the shift.

Examples

Calculate Times of Day

Create a datetime array. Calculate the elapsed time since midnight for each datetime
value.

t = datetime('now') + hours(1:3)

t = 1x3 datetime array
 02-Mar-2019 10:52:27 02-Mar-2019 11:52:27 02-Mar-2019 12:52:27

1 Alphabetical List

1-14942

d = timeofday(t)

d = 1x3 duration array
 10:52:27 11:52:27 12:52:27

List the data type of d. The timeofday function returns a duration array, not a
datetime array.

whos d

 Name Size Bytes Class Attributes

 d 1x3 40 duration

Calculate Elapsed Times on DST Shift

Calculate elapsed times since midnight on a day with a Daylight Saving Time (DST) shift.

Create a datetime array. Set its TimeZone property to a time zone that observes DST.
Set the date to a date when a DST shift occurred.

tz = 'America/New_York';
fmt = 'dd-MMM-yyyy HH:mm:ss z';
t = datetime(2015,3,8,'TimeZone',tz,'Format',fmt) + hours(1:4)

t = 1x4 datetime array
Columns 1 through 2

 08-Mar-2015 01:00:00 EST 08-Mar-2015 03:00:00 EDT

Columns 3 through 4

 08-Mar-2015 04:00:00 EDT 08-Mar-2015 05:00:00 EDT

Calculate the elapsed times. The DST shift occurred at 02:00 on March 8, 2015 in this
time zone. timeofday accounts for the shift for times at or after 02:00 on this date.

d = timeofday(t)

 timeofday

1-14943

d = 1x4 duration array
 01:00:00 02:00:00 03:00:00 04:00:00

Set Times of Day for Datetimes

Set the times of day in a datetime array according to the times of day in another
datetime array. There are two ways to set the times of day. Only the second method is
correct across Daylight Saving Time (DST) shifts.

Create a datetime array. Each element has a different time component.

t1 = datetime(2015,3,7) + hours(1:4)

t1 = 1x4 datetime array
Columns 1 through 3

 07-Mar-2015 01:00:00 07-Mar-2015 02:00:00 07-Mar-2015 03:00:00

Column 4

 07-Mar-2015 04:00:00

Create a second datetime array. Each element has the same date and time components.

t2 = datetime(2015,3,[8 8 8 8])

t2 = 1x4 datetime array
 08-Mar-2015 08-Mar-2015 08-Mar-2015 08-Mar-2015

Set the times of day in t2 according to the times of day in t1.

t2 = dateshift(t2,'start','day') + timeofday(t1)

t2 = 1x4 datetime array
Columns 1 through 3

 08-Mar-2015 01:00:00 08-Mar-2015 02:00:00 08-Mar-2015 03:00:00

Column 4

1 Alphabetical List

1-14944

 08-Mar-2015 04:00:00

Create a datetime array with elements that have the TimeZone property set to
'America/New_York'.

tz = 'America/New_York';
fmt = 'dd-MMM-yyyy HH:mm:ss z';
t3 = datetime(2015,3,8,'TimeZone',tz,'Format',fmt) + hours(1:4)

t3 = 1x4 datetime array
Columns 1 through 2

 08-Mar-2015 01:00:00 EST 08-Mar-2015 03:00:00 EDT

Columns 3 through 4

 08-Mar-2015 04:00:00 EDT 08-Mar-2015 05:00:00 EDT

Calculate the elapsed time since midnight. timeofday accounts for the DST shift that
occurred on March 8, 2015.

d = timeofday(t3)

d = 1x4 duration array
 01:00:00 02:00:00 03:00:00 04:00:00

Set the times of day in t4 according to times of day in t1. To set the times of day
correctly regardless of the time zone or the day of year, use the Hour, Minute, and
Second properties of t1.

t4 = datetime(2015,3,[8 8 8 8],'TimeZone',tz,'Format',fmt);
t4.Hour = t1.Hour;
t4.Minute = t1.Minute;
t4.Second = t1.Second;
t4

t4 = 1x4 datetime array
Columns 1 through 2

 08-Mar-2015 01:00:00 EST 08-Mar-2015 03:00:00 EDT

 timeofday

1-14945

Columns 3 through 4

 08-Mar-2015 03:00:00 EDT 08-Mar-2015 04:00:00 EDT

In this time zone 2:00 a.m. Eastern Standard Time did not exist on March 8, 2015,
because the DST shift occurred then. The second element of the result has a time
component of 3:00 a.m. Eastern Daylight Time.

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
dateshift | duration | hms | hour | minute | second

1 Alphabetical List

1-14946

Introduced in R2014b

 timeofday

1-14947

timer class
Create object to schedule execution of MATLAB commands

Description
Use a timer object to schedule the execution of MATLAB commands one or multiple
times. If you schedule the timer to execute multiple times, you can define the time
between executions and how to handle queuing conflicts.

The timer object uses callback functions to execute commands. Callback functions
execute code during some event. For the timer object, you can specify the callback
function as a function handle or as a character vector. If the callback function is a
character vector, MATLAB evaluates it as executable code. The timer object supports
callback functions when a timer starts (StartFcn), executes (TimerFcn), stops
(StopFcn), or encounters an error (ErrorFcn).

Note The timer object is subject to the limitations of your hardware, operating system,
and software. Avoid using timer objects for real-time applications.

Construction
t = timer creates an empty timer object to schedule execution of MATLAB commands.
An error occurs if the timer starts and TimerFcn is not defined.

t = timer(Name,Value) creates a timer object with additional options that you
specify using one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-14948

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The argument name, Name, corresponds to a timer property name. In the constructor,
the property values are specified using Name,Value pair arguments.

BusyMode

Character vector or string scalar that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the TimerFcn. When
Running='on', BusyMode is read only. This table summarizes the busy modes.

BusyMode Values Behavior if Queue
Empty

Behavior if Queue
Not Empty

Notes

'drop' Adds task to queue Drops task Possible skipping of
TimerFcn calls

'error' Adds task to queue Completes task;
throws error
specified by
ErrorFcn; stops
timer

Stops timer after
completing task in
execution queue

'queue' Adds task to queue Waits for queue to
clear, and then
enters task in queue

Adjusts Period
property to manage
tasks in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

ErrorFcn

Character vector, string scalar, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this function executes, and
then calls StopFcn.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.

 timer class

1-14949

The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

ExecutionMode

Character vector or string scalar that defines how the timer object schedules timer
events. When Running='on', ExecutionMode is read only. This table summarizes the
execution modes.

Execution Mode Time Period Start Point
'singleShot' In this mode, the timer callback function is only executed once.

Therefore, the Period property has no effect. This is the default
execution mode.

'fixedRate' Starts immediately after the timer callback function is added to the
MATLAB execution queue

'fixedDelay' Starts when the timer function callback restarts execution after a
time lag due to delays in the MATLAB execution queue

'fixedSpacing' Starts when the timer callback function finishes executing.

• 'singleShot' is the single execution mode for the timer class, and is the default
value.

1 Alphabetical List

1-14950

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the three supported
multiexecution modes. These modes define the starting point of the Period property.
The Period property specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

Default: 'singleShot'

Name

Character vector or string scalar representing the timer name.

Default: 'timer-i', where i is a number indicating the ith timer object created this
session. To reset i to 1, execute the clear classes command.

 timer class

1-14951

ObjectVisibility

Character vector or string scalar with possible values of 'on' or 'off', that provides a
way for you to discourage end-user access to the timer objects your application creates.
The timerfind function does not return an object whose ObjectVisibility property
is set to 'off'. Objects that are not visible are still valid. To retrieve a list of all the timer
objects in memory, including the invisible ones, use the timerfindall function.

Default: 'on'

Period

Number greater than 0.001 that specifies the delay, in seconds, between executions of
TimerFcn. For the timer to use Period, you must set ExecutionMode and
TasksToExecute to schedule multiple timer object callback events.

Default: 1.0

StartDelay

Number greater than or equal to 0 that specifies the delay, in seconds, between the start
of the timer and the first execution of the function specified in TimerFcn. When Running
= 'on', StartDelay is read only.

Default: 0

StartFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer starts.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

1 Alphabetical List

1-14952

StopFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer stops.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

The timer stops when

• You call the timer stop method.
• The timer finishes executing TimerFcn. In other words, the value of TasksExecuted

reaches the limit set by TasksToExecute.
• An error occurs. The ErrorFcn callback is called first, followed by the StopFcn

callback.

You can use StopFcn to define clean up actions, such as deleting the timer object from
memory.

Tag

Character vector or string scalar that represents a label for the object.

TasksToExecute

Number greater than 0, indicating the number of times the timer object is to execute the
TimerFcn callback. Use the TasksToExecute property to set the number of executions.
To use TasksToExecute, you must set ExecutionMode to schedule multiple timer
callback events.

Default: Inf

 timer class

1-14953

TimerFcn

Character vector, string scalar, function handle, or cell array defining the timer callback
function. You must define this property before you can start the timer.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

UserData

Generic field for data that you want to add to the object.

Read-Only Properties
AveragePeriod

Average time in seconds between TimerFcn executions since the timer started. Value is
NaN until timer executes two timer callbacks.

InstantPeriod

The time in seconds between the last two executions of TimerFcn. Value is NaN until
timer executes two timer callbacks.

Running

Character vector defined as 'off' or 'on', indicating whether the timer is currently
executing callback functions.

TasksExecuted

The number of times the timer called TimerFcn since the timer started.

1 Alphabetical List

1-14954

Type

Character vector that identifies the object type.

Methods
delete Remove timer object from memory
get Query property values for timer object
isvalid Determine timer object validity
set Set property values for timer object
start Start timer object
startat Schedule timer to fire at specified time
stop Stop timer object
timerfind Find timer object
timerfindall Find timer object, regardless of visibility
wait Block command prompt until timer stops running

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Display Message Using Timer

Display a message using an anonymous function as a callback function. It is important to
note that the first two arguments the callback function passes are a handle to the timer
object and an event structure. Even if the function doesn't use these arguments, the
function definition requires them.

Wait 3 seconds, and then display the message ‘3 seconds have elapsed’.

t = timer;
t.StartDelay = 3;

 timer class

1-14955

t.TimerFcn = @(myTimerObj, thisEvent)disp('3 seconds have elapsed');
start(t)

3 seconds have elapsed

Suppose the function does not require the timer or event object. Use the tilde (~) operator
to ignore the inputs.

t.TimerFcn = @(~,~) disp('3 seconds have elapsed');
start(t)

3 seconds have elapsed

Delete the timer object.

delete(t)

Execute Callback Function Multiple Times

Display the event and date/time output when the timer starts, fires, and stops. The timer
callback function will be executed 3 times with 2 seconds between calls. The first two
arguments the callback function passes are a handle to the timer object and an event
structure. The event structure contains two fields: Type is a character vector that
identifies the type of event that caused the callback, and Data is a structure that contains
a date time vector of when the event occurred.

t = timer;
t.StartFcn = @(~,thisEvent)disp([thisEvent.Type ' executed '...
 datestr(thisEvent.Data.time,'dd-mmm-yyyy HH:MM:SS.FFF')]);
t.TimerFcn = @(~,thisEvent)disp([thisEvent.Type ' executed '...
 datestr(thisEvent.Data.time,'dd-mmm-yyyy HH:MM:SS.FFF')]);
t.StopFcn = @(~,thisEvent)disp([thisEvent.Type ' executed '...
 datestr(thisEvent.Data.time,'dd-mmm-yyyy HH:MM:SS.FFF')]);
t.Period = 2;
t.TasksToExecute = 3;
t.ExecutionMode = 'fixedRate';
start(t)

StartFcn executed 14-Mar-2013 09:08:50.865
TimerFcn executed 14-Mar-2013 09:08:50.865
TimerFcn executed 14-Mar-2013 09:08:52.865
TimerFcn executed 14-Mar-2013 09:08:54.866
StopFcn executed 14-Mar-2013 09:08:54.869

1 Alphabetical List

1-14956

Delete the timer object.

delete(t)

Define Custom Callback Functions

Create a timer object to remind yourself to take 30-second ergonomic breaks every 10
minutes over the course of 8 hours.

Create a function in a file named createErgoTimer.m that returns a timer object. Have
this file include three local functions to handle timer start, execute, and stop tasks.

function t = createErgoTimer()
secondsBreak = 30;
secondsBreakInterval = 600;
secondsPerHour = 60^2;
secondsWorkTime = 8*secondsPerHour;

t = timer;
t.UserData = secondsBreak;
t.StartFcn = @ergoTimerStart;
t.TimerFcn = @takeBreak;
t.StopFcn = @ergoTimerCleanup;
t.Period = secondsBreakInterval+secondsBreak;
t.StartDelay = t.Period-secondsBreak;
t.TasksToExecute = ceil(secondsWorkTime/t.Period);
t.ExecutionMode = 'fixedSpacing';
end

Using StartDelay allows the timer to start without directing you to take a break
immediately. Set the execution mode to 'fixedSpacing' so that 10 minutes and 30
seconds (t.Period) elapses after the completion of a TimerFcn execution. This allows
you to stretch for 30 seconds before the start of the next 10 minute interval.

In the createErgoTimer.m file, add a local function to handle the tasks associated with
starting the timer. By default, the timer object passes itself and event data to the
callback function. The function disregards the event data.

function ergoTimerStart(mTimer,~)
secondsPerMinute = 60;
secondsPerHour = 60*secondsPerMinute;
str1 = 'Starting Ergonomic Break Timer. ';

 timer class

1-14957

str2 = sprintf('For the next %d hours you will be notified',...
 round(mTimer.TasksToExecute*(mTimer.Period + ...
 mTimer.UserData)/secondsPerHour));
str3 = sprintf(' to take a %d second break every %d minutes.',...
 mTimer.UserData, (mTimer.Period - ...
 mTimer.UserData)/secondsPerMinute);
disp([str1 str2 str3])
end

Add a local function to handle the tasks associated with executing the timer. The
TimerFcn callback should tell you to take a 30 second break.

function takeBreak(mTimer,~)
disp('Take a 30 second break.')
end

Add a local function to handle the tasks associated with stopping the timer.

function ergoTimerCleanup(mTimer,~)
disp('Stopping Ergonomic Break Timer.')
delete(mTimer)
end

Deleting the timer object removes it from memory.

From the command line, call the createErgoTimer function to create and start a timer.

t = createErgoTimer;
start(t)

Starting Ergonomic Break Timer. For the next 8 hours you will be notified to take a 30 second break every 10 minutes.

Every 10 minutes, you will be reminded to take a 30 second break.

Take a break.

You can leave the timer running for 8 hours or stop it manually. Recall that you included
the task of deleting the timer from memory in the StopFcn callback.

stop(t)

1 Alphabetical List

1-14958

Stopping Ergonomic Break Timer.

Tips
• To force the execution of the callback functions in the event queue, include a call to

the drawnow function in your code. The drawnow function flushes the event queue.

See Also

Topics
Timer Callback Functions
“Handling Timer Queuing Conflicts”
“Ignore Function Outputs”
“Create Function Handle”
Property Attributes

Introduced before R2006a

 timer class

1-14959

delete
Class: timer

Remove timer object from memory

Syntax
delete(t)

Description
delete(t) removes the timer object, t, from memory. If t is an array of timer objects,
delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and you cannot reuse it. If multiple
references to a timer object exist in the workspace, deleting the timer object invalidates
the remaining references. To remove invalid timer objects references from the workspace,
use the clear command.

Input Arguments
t

Object of class timer.

Examples

Delete a Timer

Create and start a timer that generates a 10-by-10 array of random numbers.

t = timer('TimerFcn','rand(10);');
start(t)

1 Alphabetical List

1-14960

Delete the timer from memory.

delete(t)

Call the whos function to see if a reference still exists in the workspace.

whos

 Name Size Bytes Class Attributes

 ans 10x10 800 double
 t 1x1 104 timer

Try to restart the timer.

start(t)

Error using timer/start (line 27)
Invalid timer object. This object has been deleted and should be removed from your workspace using CLEAR.

The timer cannot be restarted.

Clear the timer object reference from the workspace.

clear t

Delete Multiple Timers Using timerfind

Use delete with the timerfind method to remove all visible timers from memory. This
is an alternative to deleting individual timers by variable name.

Create and start three timers that compute the sine, cosine and tangent of pi/4.

t1 = timer('TimerFcn','sin(pi/4);');
t2 = timer('TimerFcn','cos(pi/4);');
t3 = timer('TimerFcn','tan(pi/4);');

Delete the timers from memory using timerfind. This removes all visible timer objects
from memory.

delete(timerfind)

Warning: You are deleting one or more running timer objects. MATLAB has automatically stopped them before deletion.

 delete

1-14961

Tips
• Use the isvalid method to determine if a timer object exists in memory, but is not

cleared from the workspace.
• Use the timerfind and timerfindall methods to return timer objects currently

existing in memory. This approach is useful if the reference to the timer object is
cleared from the workspace (using the clear command), but not deleted from
memory.

See Also
isvalid | timer | timerfind | timerfindall

Introduced before R2006a

1 Alphabetical List

1-14962

get
Class: timer

Query property values for timer object

Syntax
get(t)
V = get(t)
V = get(t,propName)

Description
get(t) queries property values for timer object, t, and displays all property names and
current values. t must be a scalar timer object.

V = get(t) queries property values for timer object, t and returns a structure, V, where
each field name is the name of a property of t and each field contains the value of that
property. If t is an M-by-1 vector of timer objects, V is an M-by-1 array of structures.

V = get(t,propName) returns the value, V, of the timer object property specified in
propName. If propNames is a vector cell array of N property names, and t is a vector of
M timer objects, v is an M-by-N cell array of property values.

Input Arguments
t

Object of class timer.

propName

Character vector or string scalar that specifies a timer property name.

 get

1-14963

Examples

Display All Properties of Timer
t = timer;
get(t)

 AveragePeriod: NaN
 BusyMode: 'drop'
 ErrorFcn: ''
 ExecutionMode: 'singleShot'
 InstantPeriod: NaN
 Name: 'timer-2'
 ObjectVisibility: 'on'
 Period: 1
 Running: 'off'
 StartDelay: 0
 StartFcn: ''
 StopFcn: ''
 Tag: ''
 TasksExecuted: 0
 TasksToExecute: Inf
 TimerFcn: ''
 Type: 'timer'
 UserData: []

Delete the timer from memory.

delete(t)

Obtain Properties for Array of Timers

Create three timers.

t1 = timer;
t2 = timer;
t3 = timer;

Get properties of an array of timers.

V = get([t1,t2,t3])

1 Alphabetical List

1-14964

V = 3x1 struct array with fields:
 BusyMode
 ErrorFcn
 ExecutionMode
 Name
 ObjectVisibility
 Period
 StartDelay
 StartFcn
 StopFcn
 Tag
 TasksToExecute
 TimerFcn
 UserData
 AveragePeriod
 InstantPeriod
 Running
 TasksExecuted
 Type

Delete the timers from memory.

delete([t1,t2,t3])

Obtain Single Property for Timer

Create a timer and determine if it is running.

t = timer;
get(t,'Running')

ans =
'off'

Delete the timer from memory.

delete(t)

 get

1-14965

Obtain Specified Properties for Array of Timers

Create three timers.

t1 = timer;
t2 = timer;
t3 = timer;

Obtain name, period, and running property values from the array of timers.

V = get([t1,t2,t3],{'Name','Running','Period'})

V = 3x3 cell array
 {'timer-2'} {'off'} {[1]}
 {'timer-3'} {'off'} {[1]}
 {'timer-4'} {'off'} {[1]}

Delete the timers

delete([t1,t2,t3])

Alternatives
You can also use dot notation can also be used to query timer object properties. For
example, t.Running returns the same value as get(t,'Running').

See Also
set | timer

Introduced before R2006a

1 Alphabetical List

1-14966

isvalid
Class: timer

Determine timer object validity

Syntax
validCheck = isvalid(t)

Description
validCheck = isvalid(t) determines timer object validity and returns a logical array,
validCheck, that contains a 0 where the elements of t are invalid timer objects and a 1
where the elements of t are valid timer objects.

An invalid timer object is an object that is deleted from memory using delete and cannot
be reused. Use the clear command to remove an invalid timer object from the
workspace.

Input Arguments
t

Object or array of objects of class timer

Examples

Check Timer Object Validity

Create a timer object. While this timer object is valid, it cannot start because a TimerFcn
is not defined.

 isvalid

1-14967

t = timer;
out = isvalid(t)

out =

 1

Delete the timer object, making it invalid.

delete(t)
out1 = isvalid(t)

out1 =

 0

Tips
• To return timer objects existing in memory, use the timerfind and timerfindall

methods. This practice is useful if the reference to the timer object is cleared from the
workspace (using the clear function), but the object has not been deleted from
memory.

See Also
delete | timer | timerfind | timerfindall

Introduced before R2006a

1 Alphabetical List

1-14968

set
Class: timer

Set property values for timer object

Syntax
set(t)
propStruct = set(t)

set(t,Name)
propCell = set(t,Name)

set(t,Name,Value)
set(t,S)
set(t,PN,PV)

Description
set(t) displays the property names and their possible values for all configurable
properties of timer object t.

propStruct = set(t) returns the values in a struct.

set(t,Name) displays the possible values for the specified property, Name, of timer
object, t.

propCell = set(t,Name) returns the values in a cell.

set(t,Name,Value) sets the properties specified by one or more Name,Value pair
arguments. t can be a single timer object or a vector of timer objects, in which case set
configures the property values for all timer objects, t.

set(t,S) configures the properties of t, with the values specified in S, where S is a
structure whose field names are object property names.

 set

1-14969

set(t,PN,PV) configures the properties specified in the cell array of character vectors,
PN, to the corresponding values in the cell array PV, for the timer object t.

Input Arguments
t

Object of class timer.

S

Structure whose field names are timer property names.

PN,PV

Cell array of character vectors, PN, and corresponding cell array of values, PV. The cell
array of PN must be a 1-by-N or N-by-1 array. If t is an array of timer objects, PV can be
an M-by-N cell array, where M is equal to the length of t and N is equal to the length of
PN. In this case, each timer object is updated with a different set of values for the list of
property names contained in PN.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

BusyMode

Character vector or string scalar that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the TimerFcn. When
Running='on', BusyMode is read only. This table summarizes the busy modes.

BusyMode Values Behavior if Queue
Empty

Behavior if Queue
Not Empty

Notes

'drop' Adds task to queue Drops task Possible skipping of
TimerFcn calls

1 Alphabetical List

1-14970

BusyMode Values Behavior if Queue
Empty

Behavior if Queue
Not Empty

Notes

'error' Adds task to queue Completes task;
throws error
specified by
ErrorFcn; stops
timer

Stops timer after
completing task in
execution queue

'queue' Adds task to queue Waits for queue to
clear, and then
enters task in queue

Adjusts Period
property to manage
tasks in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

ErrorFcn

Character vector, string scalar, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this function executes, and
then calls StopFcn.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

ExecutionMode

Character vector or string scalar that defines how the timer object schedules timer
events. When Running='on', ExecutionMode is read only. This table summarizes the
execution modes.

 set

1-14971

Execution Mode Time Period Start Point
'singleShot' In this mode, the timer callback function is only executed once.

Therefore, the Period property has no effect. This is the default
execution mode.

'fixedRate' Starts immediately after the timer callback function is added to the
MATLAB execution queue

'fixedDelay' Starts when the timer function callback restarts execution after a
time lag due to delays in the MATLAB execution queue

'fixedSpacing' Starts when the timer callback function finishes executing.

• 'singleShot' is the single execution mode for the timer class, and is the default
value.

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the three supported
multiexecution modes. These modes define the starting point of the Period property.
The Period property specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

1 Alphabetical List

1-14972

Default: 'singleShot'

Name

Character vector or string scalar representing the timer name.

Default: 'timer-i', where i is a number indicating the ith timer object created this
session. To reset i to 1, execute the clear classes command.

ObjectVisibility

Character vector or string scalar with possible values of 'on' or 'off', that provides a
way for you to discourage end-user access to the timer objects your application creates.

 set

1-14973

The timerfind function does not return an object whose ObjectVisibility property
is set to 'off'. Objects that are not visible are still valid. To retrieve a list of all the timer
objects in memory, including the invisible ones, use the timerfindall function.

Default: 'on'

Period

Number greater than 0.001 that specifies the delay, in seconds, between executions of
TimerFcn. For the timer to use Period, you must set ExecutionMode and
TasksToExecute to schedule multiple timer object callback events.

Default: 1.0

StartDelay

Number greater than or equal to 0 that specifies the delay, in seconds, between the start
of the timer and the first execution of the function specified in TimerFcn. When Running
= 'on', StartDelay is read only.

Default: 0

StartFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer starts.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

1 Alphabetical List

1-14974

StopFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer stops.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

The timer stops when

• You call the timer stop method.
• The timer finishes executing TimerFcn. In other words, the value of TasksExecuted

reaches the limit set by TasksToExecute.
• An error occurs. The ErrorFcn callback is called first, followed by the StopFcn

callback.

You can use StopFcn to define clean up actions, such as deleting the timer object from
memory.

Tag

Character vector or string scalar that represents a label for the object.

TasksToExecute

Number greater than 0, indicating the number of times the timer object is to execute the
TimerFcn callback. Use the TasksToExecute property to set the number of executions.
To use TasksToExecute, you must set ExecutionMode to schedule multiple timer
callback events.

Default: Inf

 set

1-14975

TimerFcn

Character vector, string scalar, function handle, or cell array defining the timer callback
function. You must define this property before you can start the timer.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

UserData

Generic field for data that you want to add to the object.

Output Arguments
propStruct

Configurable properties of t, returned as a structure. The field names of propStruct are
the property names of t, and the associated values of propStruct are cell arrays of the
possible property values. If the property in t does not have a finite set of possible values,
the property value in propStruct is an empty cell array.

propCell

Possible values of a given property name, returned as cell array of character vectors. If
the property does not have a finite set of possible values, set returns an empty cell array.

Examples

1 Alphabetical List

1-14976

Display Configurable Timer Object Properties

Instantiate a timer object and call the set method.

t = timer;
set(t)

 BusyMode: [{drop} | queue | error]
 ErrorFcn: string -or- function handle -or- cell array
 ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]
 Name
 ObjectVisibility: [{on} | off]
 Period
 StartDelay
 StartFcn: string -or- function handle -or- cell array
 StopFcn: string -or- function handle -or- cell array
 Tag
 TasksToExecute
 TimerFcn: string -or- function handle -or- cell array
 UserData

Some of the timer properties, such as Running, are not displayed because they are read
only.

Use the set method to output a structure.

out = set(t)

out = struct with fields:
 BusyMode: {3x1 cell}
 ErrorFcn: {}
 ExecutionMode: {4x1 cell}
 Name: {}
 ObjectVisibility: {2x1 cell}
 Period: {}
 StartDelay: {}
 StartFcn: {}
 StopFcn: {}
 Tag: {}
 TasksToExecute: {}
 TimerFcn: {}
 UserData: {}

Delete the timer object from memory.

 set

1-14977

delete(t)

Display Possible Property Values

Instantiate a timer object and display possible values for the BusyMode property.

t = timer;
set(t,'BusyMode')

[{drop} | queue | error]

The output shows the three possible values for BusyMode. The default value, drop, is
indicated by curly braces.

Display the possible values for ErrorFcn.

set(t,'ErrorFcn')

string scalar -or- character vector -or- function handle -or- cell array

A description of the possible values is displayed since ErrorFcn does not have a set list
of possible values.

Output the possible property values.

out1 = set(t,'BusyMode')

out1 = 3x1 cell array
 {'drop' }
 {'queue'}
 {'error'}

out2 = set(t,'ErrorFcn')

out2 =

 0x0 empty cell array

While set(t,'ErrorFcn') displays a description of the possible values, out2 =
set(t,'ErrorFcn') returns an empty cell.

Delete the timer from memory.

1 Alphabetical List

1-14978

delete(t)

Set Timer Object Property

Instantiate a timer object and make the object invisible. Display the object's visibility and
delete the object.

t = timer;
set(t,'ObjectVisibility','off')
get(t,'ObjectVisibility')

ans =
'off'

delete(t)

Set Timer Object Properties Using Structure

Construct a structure to modify several timer object properties.

s.BusyMode = 'queue';
s.ExecutionMode = 'fixedDelay';
s.ObjectVisibility = 'off'

s = struct with fields:
 BusyMode: 'queue'
 ExecutionMode: 'fixedDelay'
 ObjectVisibility: 'off'

Create a timer, display the properties in s, modify the timer, display the new values of the
properties, and delete the timer.

t = timer;
get(t,{'BusyMode','ExecutionMode','ObjectVisibility'})

ans = 1x3 cell array
 {'drop'} {'singleShot'} {'on'}

 set

1-14979

set(t,s)
get(t,{'BusyMode','ExecutionMode','ObjectVisibility'})

ans = 1x3 cell array
 {'queue'} {'fixedDelay'} {'off'}

delete(t)

Set Timer Objects Using Cell Arrays

Create a cell array of properties to modify, and a cell array of the values of the
corresponding properties. Instantiate a timer, and display the initial values of the
properties in the property name cell array, nameArr.

nameArr = {'BusyMode','ExecutionMode','Period'};
valArr = {'queue','fixedDelay',3};
t = timer;
get(t,nameArr)

ans = 1x3 cell array
 {'drop'} {'singleShot'} {[1]}

Modify the timer object and display the new property values. Delete the timer.

set(t,nameArr,valArr)
get(t,nameArr)

ans = 1x3 cell array
 {'queue'} {'fixedDelay'} {[3]}

delete(t)

Instantiate an array of three timers. Create a new property name cell array to modify the
BusyMode, ExecutionMode, and UserData properties. Display the initial values of the
properties for each timer.

tArr = [timer timer timer];
nameArr = {'BusyMode','ExecutionMode','UserData'};
get(tArr,nameArr)

1 Alphabetical List

1-14980

ans = 3x3 cell array
 {'drop'} {'singleShot'} {0x0 double}
 {'drop'} {'singleShot'} {0x0 double}
 {'drop'} {'singleShot'} {0x0 double}

Assign each property a different value in each timer. Create a cell array containing the
new values. Each row indicates the values for the properties in the corresponding timer.

valArr = {'queue','fixedDelay',3;...
 'error','fixedSpacing',42;...
 'drop','fixedRate','hello'};

Modify the timer object properties and display the updated values.

set(tArr,nameArr,valArr)
get(tArr,nameArr)

ans = 3x3 cell array
 {'queue'} {'fixedDelay' } {[3]}
 {'error'} {'fixedSpacing'} {[42]}
 {'drop' } {'fixedRate' } {'hello'}

Delete the timers from memory.

delete(tArr)

Alternatives
You can also use dot notation to set timer object properties. For example,
t.ObjectVisibility = 'off' sets the property to the same value as
set(t,'ObjectVisibility','off').

See Also
get | timer

Introduced before R2006a

 set

1-14981

start
Class: timer

Start timer object

Syntax
start(t)

Description
start(t) starts the timer object, t. If t is an array of timer objects, start starts all the
timers.

The start method sets the Running property of the timer object to 'on', executes the
StartFcn callback, and initiates TimerFcn callback .

Input Arguments
t

Object of class timer.

Examples

Start Timer

Create and start a timer that displays the message ’timer started.’ as the StartFcn
callback and generates a random number as the TimerFcn callback. Delete the timer.

t = timer('StartFcn',@(~,~)disp('timer started.'),'TimerFcn',@(~,~)disp(rand(1)));
start(t)
delete(t)

1 Alphabetical List

1-14982

timer started.
 0.9706

Your output from rand will vary.

Start Several Timers

Create and start three timers that displays a message for the StartFcn callbacks and
compute the sine, cosine, and tangent of pi/4 as the TimerFcn callbacks. Delete the
timers.

t1 = timer('StartFcn',@(~,~)disp('t1 started.'),'TimerFcn',@(~,~)sin(pi/4));
t2 = timer('StartFcn',@(~,~)disp('t2 started.'),'TimerFcn',@(~,~)cos(pi/4));
t3 = timer('StartFcn',@(~,~)disp('t3 started.'),'TimerFcn',@(~,~)tan(pi/4));
start([t1 t2 t3]);
delete([t1 t2 t3]);

t1 started.
t2 started.
t3 started.

See Also
delete | startat | stop | timer

Introduced before R2006a

 start

1-14983

startat
Class: timer

Schedule timer to fire at specified time

Syntax
startat(t,firingTime)
startat(t,Y,M,D)
startat(t,Y,M,D,H,MI,S)

Description
startat(t,firingTime) schedules timer, t, to fire at specified time, firingTime. A
timer fires by executing the callback function, timerFcn. firingTime must be within 25
days of the current time.

• If t is an array of timer objects and firingTime is a scalar, startat sets all the
timers to fire at the specified time.

• If t is an array of timer objects and firingTime is an array of the same size as t,
startat sets each timer to fire at the corresponding time.

startat(t,Y,M,D) starts the timer and schedules execution of TimerFcn at the year
(Y), month (M), and day (D) specified.

startat(t,Y,M,D,H,MI,S) also specifies the hour (H), minute (MI), and second (S)
specified.

Input Arguments
t

Object of class timer.

1 Alphabetical List

1-14984

firingTime

Time at which the timer object is to fire, specified as a serial date number, character
representation of date format, or a date vector. firingTime can be a single date or an
array of dates with the same number of rows as timer objects in t.

• A serial date number indicates the number of days that have elapsed since 1-Jan-0000
(starting at 1). See datenum for additional information about serial date numbers.

• To specify character representation of dates, use the following date formats defined by
the datestr function: 0, 1, 2, 6, 13, 14, 15, 16, or 23. These numeric identifiers
correspond to formats defined by the formatOut property of the datestr function.
Dates with two-character years are interpreted to be within the 100 years centered on
the current year.

• Date vectors are specified as an m-by-6 or m-by-3 matrix containing m full or partial
date vectors, respectively. A full date vector has six elements indicating year, month,
day, hour, minute, and second, in that order. A partial date vector has three elements
indicating year, month, and day, in that order.

Y,M,D

Time at which the timer object is to fire, specified as numbers indicating the year (Y),
month (M), and day (D). Month values less than 1 are set to 1; other arguments can wrap
and have negative values.

Y,M,D,H,MI,S

Time at which the timer object is to fire, specified as numbers indicating the year (Y),
month (M), day (D), hour (H), minute (MI), and second (S) specified. Month values less than
1 are set to 1; other arguments can wrap and have negative values.

Examples

Start Timer in 2 Seconds

Create a timer that displays messages at start time and firing time.

t = timer('TimerFcn', @(~,~)disp('Fired.'), ...
 'StartFcn', @(~,~)disp('Started.'));

 startat

1-14985

Set the timer to fire 2 seconds from the present time using a serial date. A serial date is
specified in days.

two = 2/(60^2*24); % two seconds in serial time
fTime = now + two
startat(t,fTime);

fTime =

 7.3527e+05

Started.
Fired.

Wait for the timer to fire, and then delete the timer.

delete(t)

Start Timer Using Year, Month, Day

Create a timer that displays messages at start time and firing time.

t = timer('TimerFcn', @(~,~)disp('Fired.'), ...
 'StartFcn', @(~,~)disp('Started.'));

Schedule the timer to start 2 days from present at 00:00:00

[Y, M, D, H, MI, S] = datevec(now+2);
startat(t,Y,M,D)

Started.

Manually stop and delete the timer.

stop(t)
delete(t)

Algorithms
• The startat method specifies when the timer object executes the TimerFcn

callback, not when the timer starts running. The timer starts running with the call to
the startat method.

1 Alphabetical List

1-14986

• Based on the specified time, startat computes and sets the required StartDelay
property of the timer object, t. Additionally, it sets the Running property of the timer
object to 'on', and executes the StartFcn callback.

• startat modifies the timer object’s startDelay property. As such, startat
overrides specified values of the timer’s startDelay property.

See Also
delete | start | stop | timer

Topics
“Carryover in Date Vectors and Strings”

Introduced before R2006a

 startat

1-14987

stop
Class: timer

Stop timer object

Syntax
stop(t)

Description
stop(t) stops the timer object, t. If t is an array of timer objects, the stop method
stops each timer.

The stop method sets the Running property of the timer object to 'off' and executes
the StopFcn callback .

Input Arguments
t

Object of class timer.

Examples

Stop Timer

Create a timer object that generates 100 random numbers and executes one million
times. Define a StopFcn callback that displays the message 'Timer has stopped.' Start
the timer and verify the timer is running

t = timer('TimerFcn','rand(100,1);',...
 'ExecutionMode','fixedSpacing','TasksToExecute',1e6,...

1 Alphabetical List

1-14988

 'StopFcn','disp(''Timer has stopped.'')');
start(t)
t.Running

ans =
'on'

Manually stop the timer and verify it is no longer running. Delete the timer.

stop(t)
t.Running

ans =
'off'

delete(t)

Tips
• Use the stop method to stop a timer manually. The timer automatically stops when

the TimerFcn callback executes the number of times specified by the
ExecutionMode and TasksToExecute properties or when an error occurs while
executing a TimerFcn callback.

See Also
delete | start | startat | timer

Introduced before R2006a

 stop

1-14989

timerfind
Class: timer

Find timer object

Syntax
out = timerfind
out = timerfind(Name,Value)
out = timerfind(t,Name,Value)
out = timerfind(S)

Description
out = timerfind finds the “visible timer objects” on page 1-15003and returns an array,
out.

out = timerfind(Name,Value) finds “visible timer objects” on page 1-15003 with
property values matching those passed as Name,Value pair arguments and returns an
array, out.

out = timerfind(t,Name,Value) matches Name,Value pair arguments to the timer
objects listed in t, where t can be an array of timer objects, and returns an array, out.

out = timerfind(S) matches property values defined in the structure, S, and returns
an array, out. The field names of S are timer object property names and the field values
are the corresponding property values.

Input Arguments
t

Array of objects of class timer

1 Alphabetical List

1-14990

S

Structure with field names corresponding to timer object property names. Field values
are the corresponding property values.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

BusyMode

Character vector or string scalar that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the TimerFcn. When
Running='on', BusyMode is read only. This table summarizes the busy modes.

BusyMode Values Behavior if Queue
Empty

Behavior if Queue
Not Empty

Notes

'drop' Adds task to queue Drops task Possible skipping of
TimerFcn calls

'error' Adds task to queue Completes task;
throws error
specified by
ErrorFcn; stops
timer

Stops timer after
completing task in
execution queue

'queue' Adds task to queue Waits for queue to
clear, and then
enters task in queue

Adjusts Period
property to manage
tasks in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

 timerfind

1-14991

ErrorFcn

Character vector, string scalar, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this function executes, and
then calls StopFcn.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

ExecutionMode

Character vector or string scalar that defines how the timer object schedules timer
events. When Running='on', ExecutionMode is read only. This table summarizes the
execution modes.

Execution Mode Time Period Start Point
'singleShot' In this mode, the timer callback function is only executed once.

Therefore, the Period property has no effect. This is the default
execution mode.

'fixedRate' Starts immediately after the timer callback function is added to the
MATLAB execution queue

'fixedDelay' Starts when the timer function callback restarts execution after a
time lag due to delays in the MATLAB execution queue

'fixedSpacing' Starts when the timer callback function finishes executing.

• 'singleShot' is the single execution mode for the timer class, and is the default
value.

1 Alphabetical List

1-14992

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the three supported
multiexecution modes. These modes define the starting point of the Period property.
The Period property specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

 timerfind

1-14993

Default: 'singleShot'

Name

Character vector or string scalar representing the timer name.

Default: 'timer-i', where i is a number indicating the ith timer object created this
session. To reset i to 1, execute the clear classes command.

ObjectVisibility

Character vector or string scalar with possible values of 'on' or 'off', that provides a
way for you to discourage end-user access to the timer objects your application creates.

1 Alphabetical List

1-14994

The timerfind function does not return an object whose ObjectVisibility property
is set to 'off'. Objects that are not visible are still valid. To retrieve a list of all the timer
objects in memory, including the invisible ones, use the timerfindall function.

Default: 'on'

Period

Number greater than 0.001 that specifies the delay, in seconds, between executions of
TimerFcn. For the timer to use Period, you must set ExecutionMode and
TasksToExecute to schedule multiple timer object callback events.

Default: 1.0

StartDelay

Number greater than or equal to 0 that specifies the delay, in seconds, between the start
of the timer and the first execution of the function specified in TimerFcn. When Running
= 'on', StartDelay is read only.

Default: 0

StartFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer starts.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

 timerfind

1-14995

StopFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer stops.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

The timer stops when

• You call the timer stop method.
• The timer finishes executing TimerFcn. In other words, the value of TasksExecuted

reaches the limit set by TasksToExecute.
• An error occurs. The ErrorFcn callback is called first, followed by the StopFcn

callback.

You can use StopFcn to define clean up actions, such as deleting the timer object from
memory.

Tag

Character vector or string scalar that represents a label for the object.

TasksToExecute

Number greater than 0, indicating the number of times the timer object is to execute the
TimerFcn callback. Use the TasksToExecute property to set the number of executions.
To use TasksToExecute, you must set ExecutionMode to schedule multiple timer
callback events.

Default: Inf

1 Alphabetical List

1-14996

TimerFcn

Character vector, string scalar, function handle, or cell array defining the timer callback
function. You must define this property before you can start the timer.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

UserData

Generic field for data that you want to add to the object.

Read Only Name-Value Pair Arguments
AveragePeriod

Average time in seconds between TimerFcn executions since the timer started. Value is
NaN until timer executes two timer callbacks.

InstantPeriod

The time in seconds between the last two executions of TimerFcn. Value is NaN until
timer executes two timer callbacks.

Running

Character vector defined as 'off' or 'on', indicating whether the timer is currently
executing callback functions.

TasksExecuted

The number of times the timer called TimerFcn since the timer started.

 timerfind

1-14997

Type

Character vector that identifies the object type.

Examples

Find Timer Objects Existing in Memory

Create several individual timers and an array of timers.

t1 = timer('Tag','broadcastProgress','UserData','Monday');
t2 = timer('Tag','displayProgress','UserData','Monday');
timerArr = [timer('Tag','broadcastProgress','UserData','Tuesday');
 timer('Tag','displayProgress','UserData','Tuesday');
 timer('Tag','displayProgress','UserData','Wednesday');];

Find all the timers in memory.

out1 = timerfind

out1 =
Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 fixedSpacing 30 @(~,~)logStack() timer-1
 2 singleShot 1 '' timer-2
 3 singleShot 1 '' timer-3
 4 singleShot 1 '' timer-4
 5 singleShot 1 '' timer-5
 6 singleShot 1 '' timer-6

Find only those timers in memory that have the Tag property value
'displayProgress'.

out2 = timerfind('Tag','displayProgress')

out2 =
Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-3

1 Alphabetical List

1-14998

 2 singleShot 1 '' timer-5
 3 singleShot 1 '' timer-6

Limit the search for timers to timer objects in timerArr with the Tag property value
'displayProgress'.

out3 = timerfind(timerArr,'Tag','displayProgress')

out3 =
Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-5
 2 singleShot 1 '' timer-6

Define a struct containing the Tag and UserData properties of interest.

searchStruct = struct('Tag','broadcastProgress','UserData','Monday')

searchStruct = struct with fields:
 Tag: 'broadcastProgress'
 UserData: 'Monday'

Use the struct as the search criteria to find timer objects in memory.

out4 = timerfind(searchStruct)

out4 =
 Timer Object: timer-2

 Timer Settings
 ExecutionMode: singleShot
 Period: 1
 BusyMode: drop
 Running: off

 Callbacks
 TimerFcn: ''
 ErrorFcn: ''
 StartFcn: ''
 StopFcn: ''

 timerfind

1-14999

Delete the timer objects.

delete(t1)
delete(t2)
delete(timerArr)

Delete Timer by Name

Simulate having existing timers in memory by creating an array of timers. Create a new
timer with a custom name. List all visible timers.

existingTimers = [timer timer timer];

myTimerName = 'myTimer';
anotherTimer = timer('Name',myTimerName);

timerfind

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-1
 2 singleShot 1 '' timer-2
 3 singleShot 1 '' timer-3
 4 singleShot 1 '' myTimer

Delete the specified timer and list all visible timers.

delete(timerfind('Name',myTimerName));
timerfind

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-1
 2 singleShot 1 '' timer-2
 3 singleShot 1 '' timer-3

Delete all visible timers from memory.

delete(timerfind)

1 Alphabetical List

1-15000

Find Valid Timer Objects Cleared from Workspace

Use timerfind to find ‘lost' timer object references. References are lost when you clear
the timer object from the workspace, but do not delete it from memory.

Create two timer objects. Since the callback function does not require the timer or event
object, you can use the tilde (~) operator to ignore the inputs in the function handle.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
whos

 Name Size Bytes Class Attributes

 t1 1x1 104 timer
 t2 1x1 104 timer

Clear one of the timer objects from the workspace. To actually remove the timer from
memory, you need to both clear it and delete it.

clear t1
whos

 Name Size Bytes Class Attributes

 t2 1x1 104 timer

Try to delete the timer, t1.

delete(t1)

Undefined function or variable 't1'.

The timer, t1, cannot be removed from memory using delete because its reference has
been cleared.

Find valid timer objects in memory.

out = timerfind

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 1x1 function_handle arraytimer-1
 2 singleShot 1 1x1 function_handle arraytimer-2

 timerfind

1-15001

Since two timers were found, determine which timer does not exist in the workspace.

out ~= t2

ans =

 1 0

The first timer object in out is not equal to t2. This was previously t1. It is reassigned to
t1. Since it is still valid, the timer can be started.

t1 = out(1);
start(t1)

Timer 1 Fired!

Delete timer objects. timerfind provides a way of accessing timer objects in memory. It
does not copy the objects; therefore you do not need to delete out from memory. To
verify, use timerfind.

delete(t1)
delete(t2)
timerfind

ans =

 []

Delete All Timer Objects in Memory

Create four timer objects.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
t3 = timer('TimerFcn',@(~,~)disp('Timer 3 Fired!'));
t4 = timer('TimerFcn',@(~,~)disp('Timer 4 Fired!'));

Clear two timers from the workspace.

clear t2 t3

Pass timerfind to delete to remove all timer objects from memory, whether or not they
exist in the workspace.

1 Alphabetical List

1-15002

delete(timerfind)
timerfind

ans =

 []

Definitions

visible timer objects
Visible timer objects are timer objects that are in memory and have the
ObjectVisibility property set to 'on'.

Tips
• timerfind only finds “visible timer objects” on page 1-15003. Visible timer objects

are those that are in memory and have the ObjectVisibility property set to 'on'.
To find objects that are hidden, but still valid, use timerfindall.

See Also
delete | timer | timerfindall

Introduced before R2006a

 timerfind

1-15003

timerfindall
Class: timer

Find timer object, regardless of visibility

Syntax
out = timerfindall
out = timerfindall(Name,Value)
out = timerfindall(t,Name,Value)
out = timerfindall(S)

Description
out = timerfindall finds timer objects existing in memory, regardless of visibility and
returns an array, out. Use the ObjectVisibility property to set the object’s visibility.

out = timerfindall(Name,Value) finds timer objects existing in memory, regardless
of visibility whose property values match those passed as Name,Value pair arguments
and returns an array, out.

out = timerfindall(t,Name,Value) matches Name,Value pair arguments to the
timer objects listed in t, where t can be an array of timer objects, and returns an array,
out.

out = timerfindall(S) matches property values defined in the structure, S and
returns an array, out. The field names of S are timer object property names and the field
values are the corresponding property values.

Input Arguments
t

Array of objects of class timer.

1 Alphabetical List

1-15004

S

Structure with field names corresponding to timer object property names. Field values
are the corresponding property values.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

BusyMode

Character vector or string scalar that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the TimerFcn. When
Running='on', BusyMode is read only. This table summarizes the busy modes.

BusyMode Values Behavior if Queue
Empty

Behavior if Queue
Not Empty

Notes

'drop' Adds task to queue Drops task Possible skipping of
TimerFcn calls

'error' Adds task to queue Completes task;
throws error
specified by
ErrorFcn; stops
timer

Stops timer after
completing task in
execution queue

'queue' Adds task to queue Waits for queue to
clear, and then
enters task in queue

Adjusts Period
property to manage
tasks in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

 timerfindall

1-15005

ErrorFcn

Character vector, string scalar, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this function executes, and
then calls StopFcn.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

ExecutionMode

Character vector or string scalar that defines how the timer object schedules timer
events. When Running='on', ExecutionMode is read only. This table summarizes the
execution modes.

Execution Mode Time Period Start Point
'singleShot' In this mode, the timer callback function is only executed once.

Therefore, the Period property has no effect. This is the default
execution mode.

'fixedRate' Starts immediately after the timer callback function is added to the
MATLAB execution queue

'fixedDelay' Starts when the timer function callback restarts execution after a
time lag due to delays in the MATLAB execution queue

'fixedSpacing' Starts when the timer callback function finishes executing.

• 'singleShot' is the single execution mode for the timer class, and is the default
value.

1 Alphabetical List

1-15006

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the three supported
multiexecution modes. These modes define the starting point of the Period property.
The Period property specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

 timerfindall

1-15007

Default: 'singleShot'

Name

Character vector or string scalar representing the timer name.

Default: 'timer-i', where i is a number indicating the ith timer object created this
session. To reset i to 1, execute the clear classes command.

ObjectVisibility

Character vector or string scalar with possible values of 'on' or 'off', that provides a
way for you to discourage end-user access to the timer objects your application creates.

1 Alphabetical List

1-15008

The timerfind function does not return an object whose ObjectVisibility property
is set to 'off'. Objects that are not visible are still valid. To retrieve a list of all the timer
objects in memory, including the invisible ones, use the timerfindall function.

Default: 'on'

Period

Number greater than 0.001 that specifies the delay, in seconds, between executions of
TimerFcn. For the timer to use Period, you must set ExecutionMode and
TasksToExecute to schedule multiple timer object callback events.

Default: 1.0

StartDelay

Number greater than or equal to 0 that specifies the delay, in seconds, between the start
of the timer and the first execution of the function specified in TimerFcn. When Running
= 'on', StartDelay is read only.

Default: 0

StartFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer starts.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

 timerfindall

1-15009

StopFcn

Character vector, string scalar, function handle, or cell array defining the function that
executes when the timer stops.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

The timer stops when

• You call the timer stop method.
• The timer finishes executing TimerFcn. In other words, the value of TasksExecuted

reaches the limit set by TasksToExecute.
• An error occurs. The ErrorFcn callback is called first, followed by the StopFcn

callback.

You can use StopFcn to define clean up actions, such as deleting the timer object from
memory.

Tag

Character vector or string scalar that represents a label for the object.

TasksToExecute

Number greater than 0, indicating the number of times the timer object is to execute the
TimerFcn callback. Use the TasksToExecute property to set the number of executions.
To use TasksToExecute, you must set ExecutionMode to schedule multiple timer
callback events.

Default: Inf

1 Alphabetical List

1-15010

TimerFcn

Character vector, string scalar, function handle, or cell array defining the timer callback
function. You must define this property before you can start the timer.

• If you specify this property using a character vector or string scalar, when MATLAB
executes the callback it evaluates the MATLAB code contained in the character vector.

• If you specify this property using a function handle, when MATLAB executes the
callback it passes the timer object and an event structure to the callback function.
The event structure contains the type of event in the Type field and the time of the
event in the Data field.

• If your callback function accepts arguments in addition to the timer object and event
data, specify this property as a cell array containing the function handle and the
additional arguments.

For more information, see “Timer Callback Functions”.

UserData

Generic field for data that you want to add to the object.

Read Only Name-Value Pair Arguments
AveragePeriod

Average time in seconds between TimerFcn executions since the timer started. Value is
NaN until timer executes two timer callbacks.

InstantPeriod

The time in seconds between the last two executions of TimerFcn. Value is NaN until
timer executes two timer callbacks.

Running

Character vector defined as 'off' or 'on', indicating whether the timer is currently
executing callback functions.

TasksExecuted

The number of times the timer called TimerFcn since the timer started.

 timerfindall

1-15011

Type

Character vector that identifies the object type.

Examples

Find and Delete All Timers From Memory

Create four timer objects.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
t3 = timer('TimerFcn',@(~,~)disp('Timer 3 Fired!'));
t4 = timer('TimerFcn',@(~,~)disp('Timer 4 Fired!'));

Set timers t2 and t4 to be invisible.

t2.ObjectVisibility = 'off';
t4.ObjectVisibility = 'off';

Clear timers t1 and t2 from the workspace.

clear t1 t2
whos

 Name Size Bytes Class Attributes

 t3 1x1 104 timer
 t4 1x1 104 timer

Find all visible timers in memory.

timerfind

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 1x1 function_handle arraytimer-1
 2 singleShot 1 1x1 function_handle arraytimer-3

timerfind finds only timers t1 and t2, since they are visible. Timer t2 is still valid and
in memory even though it was cleared from the workspace

1 Alphabetical List

1-15012

Find all timers in memory.

timerfindall

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 1x1 function_handle arraytimer-1
 2 singleShot 1 1x1 function_handle arraytimer-2
 3 singleShot 1 1x1 function_handle arraytimer-3
 4 singleShot 1 1x1 function_handle arraytimer-4

timerfindall finds all four valid timers in memory even though t2 and t4 are invisible
and t1 and t2 were cleared from the workspace.

Delete all timers from memory.

delete(timerfindall)

Find Timer Objects Existing in Memory

Create several individual timers and an array of timers.

t1 = timer('Tag', 'broadcastProgress','UserData','Monday');
t2 = timer('Tag', 'displayProgress','UserData','Monday');
timerArr = [timer('Tag', 'broadcastProgress','UserData','Tuesday');
 timer('Tag', 'displayProgress','UserData','Tuesday');
 timer('Tag', 'displayProgress','UserData','Wednesday');];

Make timer t1 and timerArr(2) invisible.

t1.ObjectVisibility = 'off';
timerArr(2).ObjectVisibility = 'off';

Find all the timers in memory using timerfind.

out1 = timerfind

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-2
 2 singleShot 1 '' timer-3
 3 singleShot 1 '' timer-5

 timerfindall

1-15013

timerfind does not find the hidden timers.

Find all the timers in memory using timerfindall.

out2 = timerfindall

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-1
 2 singleShot 1 '' timer-2
 3 singleShot 1 '' timer-3
 4 singleShot 1 '' timer-4
 5 singleShot 1 '' timer-5

timerfindall finds all timers, even the invisible ones.

Find only those timers in memory that have the value, 'displayProgress', as the Tag
property.

out3 = timerfindall('Tag','displayProgress')

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-2
 2 singleShot 1 '' timer-4
 3 singleShot 1 '' timer-5

Limit the search for timers that have the value, 'displayProgress', as the Tag
property to timer objects in timerArr.

out4 = timerfindall(timerArr,'Tag','displayProgress')

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-4
 2 singleShot 1 '' timer-5

Define a struct containing the Tag and UserData properties of interest.

searchStruct = struct('Tag','broadcastProgress','UserData','Monday')

searchStruct =

1 Alphabetical List

1-15014

 Tag: 'broadcastProgress'
 UserData: 'Monday'

Use the struct as the search criteria to find timer objects in memory.

out5 = timerfindall(searchStruct)

 Timer Object: timer-1

 Timer Settings
 ExecutionMode: singleShot
 Period: 1
 BusyMode: drop
 Running: off

 Callbacks
 TimerFcn: ''
 ErrorFcn: ''
 StartFcn: ''
 StopFcn: ''

Delete the timer objects.

delete(timerfindall)

Find Invisible Timers

Create four timer objects.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
t3 = timer('TimerFcn',@(~,~)disp('Timer 3 Fired!'));
t4 = timer('TimerFcn',@(~,~)disp('Timer 4 Fired!'));

Set timers t2 and t4 to be invisible, and clear timers t1 and t2 from the workspace.

t2.ObjectVisibility = 'off';
t4.ObjectVisibility = 'off';
clear t1 t2;
whos

 Name Size Bytes Class Attributes

 timerfindall

1-15015

 t3 1x1 104 timer
 t4 1x1 104 timer

Find all valid invisible timers.

out = timerfindall('ObjectVisibility','off')

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 1x1 function_handle arraytimer-2
 2 singleShot 1 1x1 function_handle arraytimer-4

Both valid invisible timers were found by timerfindall, regardless of whether they
were in the workspace.

Tips
• timerfindall finds timer objects in memory, regardless of the value of the

ObjectVisibility property. To limit the search to objects with ObjectVisibility
set to 'on', use timerfind. .

See Also
delete | timer | timerfind

Introduced before R2006a

1 Alphabetical List

1-15016

wait
Class: timer

Block command prompt until timer stops running

Syntax
wait(t)

Description
wait(t) blocks the command prompt until timer, t, stops running. If t is an array of
timer objects, wait blocks the MATLAB command line until each timer in t has stopped
running.

To block the command line, the timer object must first start via start or startat before
calling the wait method. If the timer is not running, wait returns immediately.

Input Arguments
t

Array of timer objects

Default:

Examples

Block Command Prompt While Timer Runs

Create a timer that waits 10 seconds, and then displays a message. Start the timer and
wait for it to finish.

 wait

1-15017

T = timer('TimerFcn',@(~,~)disp('Fired.'),'StartDelay',10);
start(T)

Fired.

Notice that after the timer starts, the MATLAB prompt returns.

Start the timer and use the wait method to block anyone from entering commands at the
MATLAB command line. You must start the timer before calling the wait command.

start(T)
wait(T)

Fired.

Notice that after the timer starts, the MATLAB prompt disappears until the timer stops.

Delete the timer.

delete(T)

See Also
start | timer

Introduced before R2006a

1 Alphabetical List

1-15018

times, .*
Element-wise multiplication

Syntax
C = A.*B
C = times(A,B)

Description
C = A.*B multiplies arrays A and B element by element and returns the result in C.

C = times(A,B) is an alternate way to execute A.*B, but is rarely used. It enables
operator overloading for classes.

Examples

Multiply Two Vectors

Create two vectors, A and B, and multiply them element by element.

A = [1 0 3];
B = [2 3 7];
C = A.*B

C = 1×3

 2 0 21

Multiply Two Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

 times, .*

1-15019

A = [1 0 3; 5 3 8; 2 4 6];
B = [2 3 7; 9 1 5; 8 8 3];
C = A.*B

C = 3×3

 2 0 21
 45 3 40
 16 32 18

Multiply Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector
and 6-by-1 column vector combine to produce a 6-by-3 matrix with all combinations of
elements multiplied.

a = [1 2 3]

a = 1×3

 1 2 3

b = (1:6)'

b = 6×1

 1
 2
 3
 4
 5
 6

a.*b

ans = 6×3

 1 2 3
 2 4 6
 3 6 9

1 Alphabetical List

1-15020

 4 8 12
 5 10 15
 6 12 18

Input Arguments
A — Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional array. Numeric inputs
A and B must either be the same size or have sizes that are compatible (for example, A is
an M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.

If A and B are datetime, duration, or calendar duration arrays, then they must be the
same size unless one is a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | categorical | duration | calendarDuration
Complex Number Support: Yes

B — Right array
scalar | vector | matrix | multidimensional array

Right array, specified as a scalar, vector, matrix, or multidimensional array. Numeric
inputs A and B must either be the same size or have sizes that are compatible (for
example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more
information, see “Compatible Array Sizes for Basic Operations”.

If A and B are datetime, duration, or calendar duration arrays, then they must be the
same size unless one is a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | categorical | duration | calendarDuration
Complex Number Support: Yes

 times, .*

1-15021

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Multiplication of pure imaginary numbers by non-finite numbers might not match
MATLAB. The code generator does not specialize multiplication by pure imaginary
numbers—it does not eliminate calculations with the zero real part. For example, (Inf
+ 1i)*1i = (Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1 Alphabetical List

1-15022

See Also
mtimes

Topics
“Combine Categorical Arrays Using Multiplication”
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 times, .*

1-15023

timerange
Time range for timetable row subscripting

Syntax
S = timerange(startTime,endTime)
S = timerange(startTime,endTime,intervalType)

S = timerange(startPeriod,endPeriod,unitOfTime)
S = timerange(timePeriod,unitOfTime)

Description
S = timerange(startTime,endTime) creates a subscript to select rows of a
timetable within a range of times. S selects all rows whose times are in the time interval
specified by startTime and endTime, including startTime but not endTime. In other
words, the time interval is a half-open interval. startTime and endTime are datetime or
duration scalars, or character vectors or strings that specify dates and times.

If startTime and endTime are datetime values, then you only can use S to subscript into
a timetable whose row times are datetime values. Similarly, if startTime and endTime
are duration values, then you only can use S to subscript into a timetable whose row
times are duration values.

S = timerange(startTime,endTime,intervalType) creates a subscript over the
type of interval specified by intervalType. For example, if intervalType is
'closed', then S includes both startTime and endTime in the time range it specifies.

S = timerange(startPeriod,endPeriod,unitOfTime) creates a subscript over the
time period between startPeriod and endPeriod, using the date or time component
specified by unitOfTime. For example, if unitOfTime is 'months', then S includes the
start of the month that is a component of startPeriod, and the end of the month of
endPeriod. The inputs startPeriod and endPeriod can be datetime scalars, or if text,
they can be character vectors or strings that specify dates and times.

S = timerange(timePeriod,unitOfTime) creates a subscript spanning the
beginning and end of timePeriod, using the date or time component specified by

1 Alphabetical List

1-15024

unitOfTime. For example, if unitOfTime is 'day', then S includes the start and end of
the day that is a component of timePeriod.

Examples

Select Timetable Rows in Specified Time Interval

Create a timetable that contains times along with measurements of temperature,
pressure, and wind speed and direction. Select rows whose times fall within a specified
time interval.

Time = datetime({'12/18/2015 08:00:00';'12/18/2015 10:00:0';'12/18/2015 12:00:00';...
 '12/18/2015 14:00:00';'12/18/2015 16:00:00';'12/18/2015 18:00:00'});
Temp = [37.3;39.1;42.3;45.7;41.2;39.9];
Pressure = [30.1;30.03;29.9;29.8;30.0;29.9];
WindSpeed = [13.4;6.5;7.3;8.5;9.2;4.3];
WindDirection = categorical({'NW';'N';'NW';'NW';'NNW';'N'});
TT = timetable(Time,Temp,Pressure,WindSpeed,WindDirection)

TT=6×5 timetable
 Time Temp Pressure WindSpeed WindDirection
 ____________________ ____ ________ _________ _____________

 18-Dec-2015 08:00:00 37.3 30.1 13.4 NW
 18-Dec-2015 10:00:00 39.1 30.03 6.5 N
 18-Dec-2015 12:00:00 42.3 29.9 7.3 NW
 18-Dec-2015 14:00:00 45.7 29.8 8.5 NW
 18-Dec-2015 16:00:00 41.2 30 9.2 NNW
 18-Dec-2015 18:00:00 39.9 29.9 4.3 N

Specify a time range between 12/18/2015 08:00:00 and 12/18/2015 12:00:00.

S = timerange('12/18/2015 08:00:00','12/18/2015 12:00:00')

S =
 timetable timerange subscript:

 Select timetable rows with times in the half-open interval:
 [18-Dec-2015 08:00:00, 18-Dec-2015 12:00:00)

 timerange

1-15025

 See Select Timetable Data by Row Time and Variable Type.

Select rows with times in the range specified by S. The output timetable includes the start
of the time range, but not the end.

TT2 = TT(S,:)

TT2=2×5 timetable
 Time Temp Pressure WindSpeed WindDirection
 ____________________ ____ ________ _________ _____________

 18-Dec-2015 08:00:00 37.3 30.1 13.4 NW
 18-Dec-2015 10:00:00 39.1 30.03 6.5 N

Select Timetable Rows in Closed Time Interval

Create a timetable.

Time = [seconds(1):seconds(1):seconds(5)];
TT = timetable(Time',[98;97.5;97.9;98.1;97.9],[120;111;119;117;116],...
 'VariableNames',{'Reading1','Reading2'})

TT=5×3 timetable
 Time Reading1 Reading2
 _____ ________ ________

 1 sec 98 120
 2 sec 97.5 111
 3 sec 97.9 119
 4 sec 98.1 117
 5 sec 97.9 116

Specify a closed time interval between two and four seconds.

S = timerange(seconds(2),seconds(4),'closed')

S =
 timetable timerange subscript:

 Select timetable rows with times in the closed interval:

1 Alphabetical List

1-15026

 [2 sec, 4 sec]

 See Select Timetable Data by Row Time and Variable Type.

Select rows with times in the range specified by S. The closed interval includes both the
start and end times.

TT2 = TT(S,:)

TT2=3×3 timetable
 Time Reading1 Reading2
 _____ ________ ________

 2 sec 97.5 111
 3 sec 97.9 119
 4 sec 98.1 117

Specify Time Period

Create a timetable containing prices set at the middle of each month.

Time = datetime(2018,1:12,15)';
Price = randi([85 110],12,1);
TT = timetable(Time,Price)

TT=12×2 timetable
 Time Price
 ___________ _____

 15-Jan-2018 106
 15-Feb-2018 108
 15-Mar-2018 88
 15-Apr-2018 108
 15-May-2018 101
 15-Jun-2018 87
 15-Jul-2018 92
 15-Aug-2018 99
 15-Sep-2018 109
 15-Oct-2018 110
 15-Nov-2018 89

 timerange

1-15027

 15-Dec-2018 110

Specify a time range using 'quarters' as the unit of time. The start of the time range is
the quarter that includes January 1, 2018. The end of the range is the quarter that
includes May 1, 2018. The time range includes whole quarters, meaning that the end of
the range is the instant before the start of July 1, 2018.

S = timerange('2018-01-01','2018-05-01','quarters')

S =
 timetable timerange subscript:

 Select timetable rows with times in: QUARTERS
 Starting at, including: 01-Jan-2018 00:00:00
 Ending at, but excluding: 01-Jul-2018 00:00:00

 See Select Timetable Data by Row Time and Variable Type.

Select rows of TT. The output timetable includes the rows for May 15 and June 15, 2018,
but not the row for July 15, or any row with a time outside the first two quarters of 2018.

TT(S,:)

ans=6×2 timetable
 Time Price
 ___________ _____

 15-Jan-2018 106
 15-Feb-2018 108
 15-Mar-2018 88
 15-Apr-2018 108
 15-May-2018 101
 15-Jun-2018 87

Specify Time Period from One Date

Create a timetable containing prices set at the beginning and middle of each month.

Time = datetime({'2018-01-01';'2018-01-15';'2018-02-01';'2018-02-15';
 '2018-03-01';'2018-03-15'});

1 Alphabetical List

1-15028

Price = randi([85 110],6,1);
TT = timetable(Time,Price)

TT=6×2 timetable
 Time Price
 ___________ _____

 01-Jan-2018 106
 15-Jan-2018 108
 01-Feb-2018 88
 15-Feb-2018 108
 01-Mar-2018 101
 15-Mar-2018 87

Specify a time range using 'months' as the unit of time. As the first input is a date in
February, 2018, the time range spans the whole month of February.

S = timerange('2018-02-01','months')

S =
 timetable timerange subscript:

 Select timetable rows with times in: MONTHS
 Starting at, including: 01-Feb-2018 00:00:00
 Ending at, but excluding: 01-Mar-2018 00:00:00

 See Select Timetable Data by Row Time and Variable Type.

Select rows of TT.

TT(S,:)

ans=2×2 timetable
 Time Price
 ___________ _____

 01-Feb-2018 88
 15-Feb-2018 108

 timerange

1-15029

Input Arguments
startTime,endTime — Start and end times of time range
pair of datetime scalars | pair of duration scalars | pair of character vectors | pair of string
scalars

Start and end times of time range, specified as a pair of datetime or duration scalars, or
as a pair of character vectors or string scalars.

If startTime and endTime are character vectors or string scalars, then they specify
dates and times. If startTime and endTime have formats that timerange does not
recognize, then convert them to datetime or duration values using the datetime or
duration function. Specify the format using the 'InputFormat' argument of
datetime or duration.

To create one-sided time ranges, use '-inf' or 'inf' as start or end times. The syntax
timerange('-inf',endTime) specifies all dates and times before endTime, while
timerange(startTime,'inf') specifies all dates and times after startTime.

intervalType — Type of time range interval
character vector | string scalar

Type of time range interval, specified as a character vector or string scalar. The table
shows the types of time range intervals.

Interval Type Description
'open' Select rows with times that satisfy the open

interval startTime < rowTime and
rowTime < endTime.

'closed' Select rows with times that satisfy the
closed interval startTime <= rowTime
and rowTime <= endTime.

'openleft' Select rows with times that satisfy the half-
open interval startTime < rowTime and
rowTime <= endTime.

'openright' (default) Select rows with times that satisfy the half-
open interval startTime <= rowTime
and rowTime < endTime.

1 Alphabetical List

1-15030

Interval Type Description
'closedright' Equivalent to 'openleft'.
'closedleft' Equivalent to 'openright'.

startPeriod,endPeriod — Start and end time periods
pair of datetime scalars | pair of character vectors | pair of string scalars

Start and end time periods, specified as a pair of datetime scalars, or as a pair of
character vectors or string scalars.

If startPeriod and endPeriod are character vectors or string scalars, then they
specify dates and times. If startPeriod and endPeriod have formats that timerange
does not recognize, then convert them to datetime values using the datetime function.
Specify the format using the 'InputFormat' argument of datetime.

To create one-sided time ranges, use '-inf' or 'inf' as start or end periods. For
example, the syntax timerange('-inf',endPeriod,'days') specifies all dates and
times before the end of the day of endPeriod. The syntax
timerange(startTime,'inf','days') specifies all dates and times after the start of
the day of startPeriod.

timePeriod — Time period
datetime scalar | character vector | string scalar

Time period, specified as a datetime scalar, character vector, or string scalar. If
timePeriod is a character vector or a string scalar, then it specifies a date and time that
the datetime function can convert into a datetime value.

unitOfTime — Component of time periods
character vector | string scalar

Component of time periods, specified as a character vector or string scalar. The table
shows the components that you can specify.

Note: You can specify unitOfTime only when the other input arguments specify
datetime values, and not duration values.

 timerange

1-15031

Date or Time Component Description
'years' Select rows with times such that

year(startPeriod) <=
year(rowTime) and year(rowTime) <=
year(endPeriod).

'quarters' Select rows with times such that
quarter(startPeriod) <=
quarter(rowTime) and
quarter(rowTime) <=
quarter(endPeriod).

'months' Select rows with times such that
month(startPeriod) <=
month(rowTime) and month(rowTime)
<= month(endPeriod).

'weeks' Select rows with times such that
week(startPeriod) <=
week(rowTime) and week(rowTime) <=
week(endPeriod).

'days' Select rows with times such that
day(startPeriod) <= day(rowTime)
and day(rowTime) <=
day(endPeriod).

'hours' Select rows with times such that
hour(startPeriod) <=
hour(rowTime) and hour(rowTime) <=
hour(endPeriod).

'minutes' Select rows with times such that
minute(startPeriod) <=
minute(rowTime) and
minute(rowTime) <=
minute(endPeriod).

'seconds' Select rows with times such that
second(startPeriod) <=
second(rowTime) and
second(rowTime) <=
second(endPeriod).

1 Alphabetical List

1-15032

See Also
retime | synchronize | vartype | withtol

Topics
“Create Timetables”
“Select Timetable Data by Row Time and Variable Type”
“Tables”
“Represent Dates and Times in MATLAB”

Introduced in R2016b

 timerange

1-15033

timetable
Timetable array with time-stamped rows and variables of different types

Description
timetable is a type of table that associates a time with each row. Like tables, timetables
can store column-oriented data variables that have different data types and sizes as long
as they have the same number of rows. In addition, timetables provide time-specific
functions to align, combine, and perform calculations with time-stamped data in one or
more timetables.

The row times of a timetable are datetime or duration values that label the rows. You
can index into a timetable by row time and variable. To index into a timetable, use smooth
parentheses () to return a subtable or curly braces {} to extract the contents. You can
reference variables and the vector of row times using names. For more information on
indexing, see “Select Timetable Data by Row Time and Variable Type” and “Access Data in
a Table”.

Creation
To create a timetable from a table or an array, use the table2timetable or
array2timetable functions. Alternatively, you can use the timetable function
described below.

When you use the timetable function, you can specify a vector of row times, or create
row times using a sample rate or time step. Also, you can create a timetable with
preallocated space for variables whose values are filled in later.

Syntax
TT = timetable(rowTimes,var1,...,varN)
TT = timetable(var1,...,varN,'RowTimes',rowTimes)
TT = timetable(var1,...,varN,'SampleRate',Fs)
TT = timetable(var1,...,varN,'TimeStep',dt)

1 Alphabetical List

1-15034

TT = timetable('Size',sz,'VariableTypes',varTypes,'RowTimes',
rowTimes)
TT = timetable('Size',sz,'VariableTypes',varTypes,'SampleRate',Fs)
TT = timetable('Size',sz,'VariableTypes',varTypes,'TimeStep',dt)

TT = timetable(___ ,Name,Value)

Description
TT = timetable(rowTimes,var1,...,varN) creates a timetable from the input data
variables var1,...,varN and the time vector rowTimes. The data variables can be
different sizes and data types as long as they have the same number of rows. rowTimes
must be a datetime or duration vector, also with the same number of rows.

TT = timetable(var1,...,varN,'RowTimes',rowTimes) specifies rowTimes as
the source of the row times of TT. When you use this syntax, the name of the row times
vector of TT is always Time, even when rowTimes is a workspace variable with a
different name.

TT = timetable(var1,...,varN,'SampleRate',Fs) creates a timetable using the
sample rate Fs to calculate regularly spaced row times. Fs is a positive numeric scalar
that specifies the number of samples per second (Hz). The first row time is zero seconds.

TT = timetable(var1,...,varN,'TimeStep',dt) creates a timetable using the
time step dt to calculate regularly spaced row times. dt is a duration or calendar
duration value that specifies the length of time between consecutive row times. The first
row time is zero seconds.

TT = timetable('Size',sz,'VariableTypes',varTypes,'RowTimes',
rowTimes) creates a timetable and preallocates space for the variables that have data
types you specify. sz is a two-element numeric array, where sz[1] specifies the number
of rows and sz[2] specifies the number of variables. varTypes is a cell array of
character vectors specifying data types. The number of times in rowTimes must equal
sz[1].

TT = timetable('Size',sz,'VariableTypes',varTypes,'SampleRate',Fs)
preallocates variables with data types and adds row times using the sample rate Fs. The
first row time is zero seconds.

 timetable

1-15035

TT = timetable('Size',sz,'VariableTypes',varTypes,'TimeStep',dt)
preallocates variables with data types and adds row times using the time step dt. The
first row time is zero seconds.

TT = timetable(___ ,Name,Value) specifies additional input arguments using one or
more name-value pair arguments. For example, you can specify variable names using the
'VariableNames' name-value pair. You also can specify a start time using the
'StartTime' name-value pair with a sample rate or time step. You can use this syntax
with any of the input arguments of the previous syntaxes.

Input Arguments
var1,...,varN — Input variables
arrays

Input variables, specified as arrays with the same number of rows. The input variables
can be of different sizes and different data types, as long as they have the same number of
rows.

Common input variables are numeric arrays, logical arrays, string arrays, structure
arrays, and cell arrays.

Input variables also can be objects that are arrays. Such an array must support indexing
of the form var(index1,...,indexN), where index1 is a numeric or logical vector
that corresponds to rows of the variable var. In addition, the array must implement both
a vertcat method and a size method with a dim argument.

rowTimes — Times associated with rows of timetable
datetime vector | duration vector

Times associated with rows of a timetable, specified as a datetime vector or a duration
vector. Each time labels a row in the output timetable, TT. The time values in rowTimes
do not need to be unique, sorted, or regular.
Data Types: datetime | duration

sz — Size of preallocated timetable
two-element numeric vector

Size of the preallocated timetable, specified as a two-element numeric vector. The first
element of sz specifies the number of rows, and the second element specifies the number
of timetable variables.

1 Alphabetical List

1-15036

varTypes — Data types of preallocated variables
cell array of character vectors | string array

Data types of the preallocated variables, specified as a cell array of character vectors or a
string array. The number of types specified by varTypes must equal the number of
variables specified by the second element of sz.

varTypes can contain the names of any data types, including the names shown in the
table.

Data Type Name Initial Value in Each Element
'double', 'single' Double- or single-precision 0
'doublenan',
'doubleNaN', 'singlenan',
'singleNaN'

Double- or single-precision NaN

'int8', 'int16', 'int32', 'int64' Signed 8-, 16-, 32-, or 64-bit integer 0
'uint8', 'uint16', 'uint32', 'uint64
'

Unsigned 8-, 16-, 32-, or 64-bit integer 0

'logical' 0 (false)
'categorical' <undefined> categorical value
'datetime' NaT datetime value
'duration' 0 seconds, as a duration value
'calendarDuration' 0 days, as a calendar duration value
'string' "" (1-by-1 string with no characters)
'cellstr' {''} (cell with 0-by-0 character array)
'cell' {[]} (cell with 0-by-0 double array)
'struct' Scalar structure with no fields
'table' Table with no variables

For any other data type, the initial value is the value used by that type or class to "in-fill"
unassigned elements of an array.

If you specify 'char' as a data type, then timetable preallocates the corresponding
variable as a cell array of character vectors, not as a character array. Best practice is to
avoid creating table or timetable variables that are character arrays. When working with
text data in a table or a timetable, consider using a string array or a categorical array.

 timetable

1-15037

Fs — Sample rate
positive numeric scalar

Sample rate, specified as a positive numeric scalar. Fs specifies the number of samples
per second (Hz).

dt — Time step
duration scalar

Time step, specified as a duration scalar.

If you specify dt as a calendar duration, and you specify the 'StartTime' name-value
pair argument, then the value of 'StartTime' must be a datetime scalar.
Data Types: duration | calendarDuration

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TT = timetable(rowTimes,T,W,'VariableNames',
{'Temperature','WindSpeed'}) creates a timetable from input arrays T and W, and
names the corresponding timetable variables Temperature and WindSpeed.

VariableNames — Variable names
cell array of character vectors | string array

Variable names, specified as the comma-separated pair consisting of 'VariableNames'
and a cell array of character vectors or a string array. The number of names in the array
must equal the number of table variables.

StartTime — Start time
datetime scalar | duration scalar

Start time, specified as the comma-separated pair consisting of 'StartTime' and a
datetime scalar or duration scalar. The start time is also the row time of the first row of
the timetable.

You can specify 'StartTime' only when you also specify the 'SampleRate' or
'TimeStep' name-value pair argument.

1 Alphabetical List

1-15038

• If the start time is a datetime value, then the row times of TT are datetime values.
• If the start time is a duration, then the row times are durations.
• If the time step dt is a calendar duration value, then the start time must be a datetime

value.

Data Types: datetime | duration

Properties
Access Timetable Metadata Properties

A timetable contains metadata properties that describe the timetable, its row times, and
its variables. Access these properties using the syntax
timetableName.Properties.PropertyName, where PropertyName is the name of a
property. For example, you can access the names of the variables in the timetable TT
through the TT.Properties.VariableNames property.

You can return a summary of the metadata properties using the syntax
timetableName.Properties.

Timetables provides metadata access through the Properties property because you can
access timetable data directly using dot syntax. For example, if timetable TT has a
variable named Var1, then you can access the variable using the syntax TT.Var1,
accessing the values in an array.

Timetable Metadata
DimensionNames — Dimension names
{'Time','Variables'} (default) | two-element cell array of character vectors | two-
element string array

Dimension names, specified as a two-element cell array of character vectors or two-
element string array.

You can access timetable data using the two dimension names. If you use dot syntax and
the first dimension name, then you can access the row times as a vector. If you use dot
syntax and the second dimension name, then the data from all the variables are
concatenated together in one array, as though you had indexed into the timetable using
{:,:} syntax.

 timetable

1-15039

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.
Example

Create a timetable and display its dimension names. You can access row times and data
using dimension names with dot syntax.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[30.1;30.03;29.9],[13.4;6.5;7.3]);
TT.Properties.DimensionNames

ans = 1x2 cell array
 {'Time'} {'Variables'}

Access the row times using the first dimension name.

TT.Time

ans = 3x1 datetime array
 18-Dec-2015
 19-Dec-2015
 20-Dec-2015

Access the data using the second dimension name. This syntax is equivalent to TT{:,:,}.

TT.Variables

ans = 3×3

 37.3000 30.1000 13.4000
 39.1000 30.0300 6.5000
 42.3000 29.9000 7.3000

Modify the names of its dimensions using the Properties.DimensionNames property.
Having changed the dimension names, you can access the row times and data using the
syntaxes TT.Date and TT.WeatherData respectively.

TT.Properties.DimensionNames = {'Date','WeatherData'};
TT.Properties

ans =
 TimetableProperties with properties:

1 Alphabetical List

1-15040

 Description: ''
 UserData: []
 DimensionNames: {'Date' 'WeatherData'}
 VariableNames: {'Var1' 'Var2' 'Var3'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [3x1 datetime]
 StartTime: 18-Dec-2015
 SampleRate: NaN
 TimeStep: 1d
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Description — Timetable description
'' (default) | character vector | string scalar

Timetable description, specified as a character vector or string scalar. This description is
visible when using the summary function.

If you specify this property using a string scalar, then it is converted and stored as a
character vector.
Example

Create a timetable. Modify the variable names and the description of the timetable.
Display a summary of the result.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[30.1;30.03;29.9],[13.4;6.5;7.3]);
TT.Properties.VariableNames = {'Temp','Pressure','WindSpeed'};
TT.Properties.Description = 'Weather Data from December 2015';
summary(TT)

Description: Weather Data from December 2015

RowTimes:

 Time: 3x1 datetime
 Values:
 Min 18-Dec-2015
 Median 19-Dec-2015
 Max 20-Dec-2015

 timetable

1-15041

 TimeStep 24:00:00

Variables:

 Temp: 3x1 double

 Values:

 Min 37.3
 Median 39.1
 Max 42.3

 Pressure: 3x1 double

 Values:

 Min 29.9
 Median 30.03
 Max 30.1

 WindSpeed: 3x1 double

 Values:

 Min 6.5
 Median 7.3
 Max 13.4

UserData — Additional timetable information
[] (default) | array

Additional timetable information, specified as an array. You can attach data of any kind to
a timetable using this property.
Example

Create a timetable. Modify the variable names. Attach an anonymous function as a piece
of user data that is associated with the timetable.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[30.1;30.03;29.9],[13.4;6.5;7.3]);
TT.Properties.VariableNames = {'Temp','Pressure','WindSpeed'};
Fahrenheit2Celsius = @(x) (5.0/9.0).*(x - 32);
TT.Properties.UserData = Fahrenheit2Celsius;
TT.Properties

1 Alphabetical List

1-15042

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: @(x)(5.0/9.0).*(x-32)
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'Temp' 'Pressure' 'WindSpeed'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [3x1 datetime]
 StartTime: 18-Dec-2015
 SampleRate: NaN
 TimeStep: 1d
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Row Times Metadata
RowTimes — Row times
datetime vector | duration vector

Row times, specified as a datetime vector or duration vector. There must be a row time
for every row of the timetable. However, a timetable can have row times that are
duplicates, out of order, or NaT or NaN values.

The row times are visible when you view the timetable. Furthermore, you can use the row
times within parentheses or curly braces to access the timetable data.

Another way to access the row times is to use dot syntax and the name of the first
dimension of the table.
Example

Create a timetable. Then replace its row times using the Properties.RowTimes
property.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[30.1;30.03;29.9],[13.4;6.5;7.3])

TT=3×4 timetable
 Time Var1 Var2 Var3
 ___________ ____ _____ ____

 timetable

1-15043

 18-Dec-2015 37.3 30.1 13.4
 19-Dec-2015 39.1 30.03 6.5
 20-Dec-2015 42.3 29.9 7.3

Dates = datetime(2017,1,1:3);
TT.Properties.RowTimes = Dates

TT=3×4 timetable
 Time Var1 Var2 Var3
 ___________ ____ _____ ____

 01-Jan-2017 37.3 30.1 13.4
 02-Jan-2017 39.1 30.03 6.5
 03-Jan-2017 42.3 29.9 7.3

Another way to access the row times is by using dot syntax with the name of the first
dimension of the timetable.

TT.Properties.DimensionNames

ans = 1x2 cell array
 {'Time'} {'Variables'}

TT.Time

ans = 3x1 datetime array
 01-Jan-2017
 02-Jan-2017
 03-Jan-2017

StartTime — Start time of row times
datetime scalar | duration scalar

Start time of the row times, specified as a datetime scalar or duration scalar. The start
time is equal to the row time for the first row of the timetable, and has the same data
type.

• If the start time is a datetime, then the row times of TT are datetime values.
• If the start time is a duration, then the row times are durations.

1 Alphabetical List

1-15044

• If the time step is a calendar duration, then the start time must be a datetime value.

If the timetable is empty, then the start time is NaN.

Example

Create a timetable. In this timetable, the time step between consecutive rows is not the
same, so the timetable is irregular.

TT = timetable(datetime({'2015-12-18';'2015-12-20';'2015-12-21'}), ...
 [37.3;39.1;42.3],[13.4;6.5;7.3],{'N';'SE';'NW'});
TT.Properties.VariableNames = {'Temperature','WindSpeed','WindDirection'}

TT=3×4 timetable
 Time Temperature WindSpeed WindDirection
 ___________ ___________ _________ _____________

 18-Dec-2015 37.3 13.4 'N'
 20-Dec-2015 39.1 6.5 'SE'
 21-Dec-2015 42.3 7.3 'NW'

Display its properties. The value of the StartTime property is equal to the first row time.
Whether a timetable is regular or irregular, it always has a start time, unless it is empty.

TT.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'Temperature' 'WindSpeed' 'WindDirection'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [3x1 datetime]
 StartTime: 18-Dec-2015
 SampleRate: NaN
 TimeStep: NaN
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

 timetable

1-15045

Modify the StartTime property. Note that all the row times have new values. For each
row time, the change in value is equal to the difference between the original value of the
first row time and the new start time.

TT.Properties.StartTime = datetime('2018-04-09')

TT=3×4 timetable
 Time Temperature WindSpeed WindDirection
 ____________________ ___________ _________ _____________

 09-Apr-2018 00:00:00 37.3 13.4 'N'
 11-Apr-2018 00:00:00 39.1 6.5 'SE'
 12-Apr-2018 00:00:00 42.3 7.3 'NW'

SampleRate — Sample rate
positive numeric scalar

Sample rate, specified as a positive numeric scalar. The sample rate is the number of
samples per second (Hz).

If the row times are not regular, or the timetable is empty, then the sample rate is NaN.

Example

TimeStep — Time step
duration scalar

Time step, specified as a duration scalar.

• If you specify the time step as a calendar duration (for example, calendar months),
then the vector of row times must be a datetime vector.

• If you specify the time step as a duration (for example, seconds), then the vector of
row times either can be a datetime or duration vector.

If the row times are not regular, or the timetable is empty, then the time step is NaN.

Example

Create a regular timetable. In this timetable, the row times are durations, created using
the same time step.

Intensity = [100;98.7;95.2;101.4;99.1];
TT = timetable(Intensity,'TimeStep',seconds(0.01))

1 Alphabetical List

1-15046

TT=5×2 timetable
 Time Intensity
 ________ _________

 0 sec 100
 0.01 sec 98.7
 0.02 sec 95.2
 0.03 sec 101.4
 0.04 sec 99.1

Display its properties. The TimeStep property stores the time step as a duration.

TT.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'Intensity'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [5x1 duration]
 StartTime: 0 sec
 SampleRate: 100
 TimeStep: 0.01 sec
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Modify the TimeStep property. The start time is the same, but all the other row times are
different because the time step is larger. However, the variable Intensity remains the
same.

TT.Properties.TimeStep = seconds(0.04)

TT=5×2 timetable
 Time Intensity
 ________ _________

 0 sec 100
 0.04 sec 98.7

 timetable

1-15047

 0.08 sec 95.2
 0.12 sec 101.4
 0.16 sec 99.1

Data Types: duration | calendarDuration

Variable Metadata
VariableNames — Variable names
cell array of character vectors | string array

Variable names, specified as a cell array of character vectors or a string array, with names
that are nonempty and distinct. Variable names must be valid MATLAB identifiers. You
can determine valid variable names using the function isvarname. MATLAB removes any
leading or trailing whitespace from the character vectors. The number of character
vectors must equal the number of variables.

If you do not specify variable names, or you specify invalid identifiers, then MATLAB uses
a cell array of N character vectors of the form {'Var1' ... 'VarN'} where N is the
number of variables.

The variable names are visible when viewing the timetable and when using the summary
function. Furthermore, you can use the variable names within parentheses, within curly
braces, or with dot indexing to access timetable data.

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.

Example

Create a timetable with default variable names. Then modify the names using the
Properties.VariableNames property.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[30.1;30.03;29.9],[13.4;6.5;7.3])

TT=3×4 timetable
 Time Var1 Var2 Var3
 ___________ ____ _____ ____

 18-Dec-2015 37.3 30.1 13.4
 19-Dec-2015 39.1 30.03 6.5

1 Alphabetical List

1-15048

 20-Dec-2015 42.3 29.9 7.3

TT.Properties.VariableNames = {'Temp','Pressure','WindSpeed'}

TT=3×4 timetable
 Time Temp Pressure WindSpeed
 ___________ ____ ________ _________

 18-Dec-2015 37.3 30.1 13.4
 19-Dec-2015 39.1 30.03 6.5
 20-Dec-2015 42.3 29.9 7.3

A fundamental way to display and modify variables is to access them by name using dot
syntax.

TT.Temp

ans = 3×1

 37.3000
 39.1000
 42.3000

TT.Pressure(3) = 30

TT=3×4 timetable
 Time Temp Pressure WindSpeed
 ___________ ____ ________ _________

 18-Dec-2015 37.3 30.1 13.4
 19-Dec-2015 39.1 30.03 6.5
 20-Dec-2015 42.3 30 7.3

VariableDescriptions — Variable descriptions
{} (default) | cell array of character vectors | string array

Variable descriptions, specified as a cell array of character vectors or a string array. This
property can be an empty cell array, which is the default. If the array is not empty, then it
must contain as many elements as there are variables. You can specify an individual
empty character vector or empty string for a variable that does not have a description.

The variable descriptions are visible when using the summary function.

 timetable

1-15049

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.

Example

Create a timetable. Modify the variable names and descriptions. Display a summary of the
result.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[30.1;30.03;29.9],[13.4;6.5;7.3]);
TT.Properties.VariableNames = {'Temp','Pressure','WindSpeed'};
TT.Properties.VariableDescriptions = {'Temperature (external)', ...
 'Pressure in Hg', ...
 'Wind speed at sensor 123'};
summary(TT)

RowTimes:

 Time: 3x1 datetime
 Values:
 Min 18-Dec-2015
 Median 19-Dec-2015
 Max 20-Dec-2015
 TimeStep 24:00:00

Variables:

 Temp: 3x1 double

 Properties:
 Description: Temperature (external)
 Values:

 Min 37.3
 Median 39.1
 Max 42.3

 Pressure: 3x1 double

 Properties:
 Description: Pressure in Hg
 Values:

 Min 29.9
 Median 30.03

1 Alphabetical List

1-15050

 Max 30.1

 WindSpeed: 3x1 double

 Properties:
 Description: Wind speed at sensor 123
 Values:

 Min 6.5
 Median 7.3
 Max 13.4

VariableUnits — Variable units
{} (default) | cell array of character vectors | string array

Variable units, specified as a cell array of character vectors or a string array. This
property can be an empty cell array, which is the default. If the array is not empty, then it
must contain as many elements as there are variables. You can specify an individual
empty character vector or empty string for a variable that does not have units.

The variable units are visible when using the summary function.

If you specify this property using a string array, then it is converted and stored as a cell
array of character vectors.
Example

Create a timetable. Modify the variable names and units. Display a summary of the result.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[30.1;30.03;29.9],[13.4;6.5;7.3]);
TT.Properties.VariableNames = {'Temp','Pressure','WindSpeed'};
TT.Properties.VariableUnits = {'degrees F','mm Hg','mph'};
summary(TT)

RowTimes:

 Time: 3x1 datetime
 Values:
 Min 18-Dec-2015
 Median 19-Dec-2015
 Max 20-Dec-2015
 TimeStep 24:00:00

Variables:

 timetable

1-15051

 Temp: 3x1 double

 Properties:
 Units: degrees F
 Values:

 Min 37.3
 Median 39.1
 Max 42.3

 Pressure: 3x1 double

 Properties:
 Units: mm Hg
 Values:

 Min 29.9
 Median 30.03
 Max 30.1

 WindSpeed: 3x1 double

 Properties:
 Units: mph
 Values:

 Min 6.5
 Median 7.3
 Max 13.4

VariableContinuity — Status as continuous or discrete variables
[] (default) | cell array of character vectors | string array

Status as continuous or discrete variables, specified as a cell array of character vectors or
a string array. This property can be an empty array, which is the default. If the array is not
empty, then it must contain as many elements as there are variables. Each element can be
either 'unset', 'continuous', 'step', or 'event'.

The values in VariableContinuity affect how the retime or synchronize functions
work. If you specify VariableContinuity and call retime or synchronize, then you
do not need to specify a method. Instead, retime and synchronize fill in the output
timetable variables using the following default methods:

1 Alphabetical List

1-15052

• 'unset' — Fill in values using missing data indicator for that type (such as NaN for
numeric variables).

• 'continuous' — Fill in values using linear interpolation.
• 'step' — Fill in values using previous value.
• 'event' — Fill in values using missing data indicator for that type (such as NaN for

numeric variables).

If you do specify a method as an input argument to retime or synchronize, then that
method overrides the values you specify in VariableContinuity.

For more information on using the VariableContinuity property, see “Retime and
Synchronize Timetable Variables Using Different Methods”.

Example

Create a timetable. Specify a matlab.tabular.Continuity value for each variable.

TT = timetable(datetime({'2015-12-18';'2015-12-19';'2015-12-20'}), ...
 [37.3;39.1;42.3],[13.4;6.5;7.3],{'N';'SE';'NW'});
TT.Properties.VariableNames = {'Temperature','WindSpeed','WindDirection'};
TT.Properties.VariableContinuity = {'continuous','event','event'};
TT.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'Temperature' 'WindSpeed' 'WindDirection'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: [continuous event event]
 RowTimes: [3x1 datetime]
 StartTime: 18-Dec-2015
 SampleRate: NaN
 TimeStep: 1d
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

 timetable

1-15053

Custom Metadata
CustomProperties — Customized metadata of timetable and its variables
CustomProperties object

Customized metadata of a timetable and its variables, specified as a CustomProperties
object.

The CustomProperties object is a container for customized metadata that you can add
to a timetable. By default, CustomProperties has zero properties. Each property you
add to CustomProperties can contain either table metadata or variable metadata. If a
property contains variable metadata, then its value must be an array, and the number of
elements in the array must equal the number of timetable variables.

• To add properties for customized metadata to a timetable, use the addprop function.
• To access or modify customized metadata, use the syntax

timetableName.Properties.CustomProperties.PropertyName. In this syntax,
PropertyName is the name you chose when you added that property using addprop.

• To remove properties, use the rmprop function.

Note: You can add or remove only properties for customized metadata using addprop
and rmprop. You cannot add or remove properties of the timetableName.Properties
object.
Example

Create a timetable containing weather data.

TT = timetable(datetime({'2015-12-18';'2015-12-20';'2015-12-21'}), ...
 [37.3;39.1;42.3],[13.4;6.5;7.3],{'N';'SE';'NW'});
TT.Properties.VariableNames = {'Temperature','WindSpeed','WindDirection'}

TT=3×4 timetable
 Time Temperature WindSpeed WindDirection
 ___________ ___________ _________ _____________

 18-Dec-2015 37.3 13.4 'N'
 20-Dec-2015 39.1 6.5 'SE'
 21-Dec-2015 42.3 7.3 'NW'

To describe the instruments that measured these data, and the name of an output file, add
customized metadata using the addprop function. The Instruments property has

1 Alphabetical List

1-15054

variable metadata that apply to the variables of TT. The OutputFile property has table
metadata.

TT = addprop(TT,{'Instruments','OutputFile'},{'variable','table'});
TT.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'Temperature' 'WindSpeed' 'WindDirection'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [3x1 datetime]
 StartTime: 18-Dec-2015
 SampleRate: NaN
 TimeStep: NaN

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFile: []
 Instruments: []

Assign values to the customized metadata using dot syntax. When you assign an array of
text values to customized metadata, the best practice is to use a string array, not a cell
array of character vectors. If a property of CustomProperties is a cell array of
character vectors, then there is no mechanism to prevent you from later assigning
nontext values as elements of the cell array.

TT.Properties.CustomProperties.Instruments = ["thermometer","anemometer","wind vane"];
TT.Properties.CustomProperties.OutputFile = 'weatherReadings.csv';
TT.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'Temperature' 'WindSpeed' 'WindDirection'}
 VariableDescriptions: {}
 VariableUnits: {}

 timetable

1-15055

 VariableContinuity: []
 RowTimes: [3x1 datetime]
 StartTime: 18-Dec-2015
 SampleRate: NaN
 TimeStep: NaN

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFile: 'weatherReadings.csv'
 Instruments: ["thermometer" "anemometer" "wind vane"]

Remove the OutputFile property from TT.

TT = rmprop(TT,'OutputFile');
TT.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'Temperature' 'WindSpeed' 'WindDirection'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [3x1 datetime]
 StartTime: 18-Dec-2015
 SampleRate: NaN
 TimeStep: NaN

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 Instruments: ["thermometer" "anemometer" "wind vane"]

Examples

Store and Synchronize Related Data Variables in Timetable

Store data about weather conditions measured at different times in a timetable. Aside
from storage, timetables provide functions to synchronize data to times that you specify.

1 Alphabetical List

1-15056

Also, you can annotate the timetable to describe your work and the variables of the
timetable.

Create a timetable from workspace variables. The values in MeasurementTime become
the row times of the timetable. All the other input arguments become the timetable
variables. When you use this syntax, the names of the row times vector and the variables
of TT are the names of the corresponding input arguments.

MeasurementTime = datetime({'2015-12-18 08:03:05';'2015-12-18 10:03:17';'2015-12-18 12:03:13'});
Temp = [37.3;39.1;42.3];
Pressure = [30.1;30.03;29.9];
WindSpeed = [13.4;6.5;7.3];
TT = timetable(MeasurementTime,Temp,Pressure,WindSpeed)

TT=3×4 timetable
 MeasurementTime Temp Pressure WindSpeed
 ____________________ ____ ________ _________

 18-Dec-2015 08:03:05 37.3 30.1 13.4
 18-Dec-2015 10:03:17 39.1 30.03 6.5
 18-Dec-2015 12:03:13 42.3 29.9 7.3

Synchronize the weather data to regular times with an hourly time step. Adjust the data
to the new times using linear interpolation.

TT2 = retime(TT,'hourly','linear')

TT2=6×4 timetable
 MeasurementTime Temp Pressure WindSpeed
 ____________________ ______ ________ _________

 18-Dec-2015 08:00:00 37.254 30.102 13.577
 18-Dec-2015 09:00:00 38.152 30.067 10.133
 18-Dec-2015 10:00:00 39.051 30.032 6.6885
 18-Dec-2015 11:00:00 40.613 29.969 6.8783
 18-Dec-2015 12:00:00 42.214 29.903 7.2785
 18-Dec-2015 13:00:00 43.815 29.838 7.6788

Since the row times of the output are not the measured times, rename the vector of row
times. This vector is also the name of the first dimension of the timetable.

TT2.Properties.DimensionNames{1} = 'InterpolatedTimes'

 timetable

1-15057

TT2=6×4 timetable
 InterpolatedTimes Temp Pressure WindSpeed
 ____________________ ______ ________ _________

 18-Dec-2015 08:00:00 37.254 30.102 13.577
 18-Dec-2015 09:00:00 38.152 30.067 10.133
 18-Dec-2015 10:00:00 39.051 30.032 6.6885
 18-Dec-2015 11:00:00 40.613 29.969 6.8783
 18-Dec-2015 12:00:00 42.214 29.903 7.2785
 18-Dec-2015 13:00:00 43.815 29.838 7.6788

Annotate TT2 with a description. You can annotate TT2 and its variables using metadata
accessed through TT2.Properties.

TT2.Properties.Description = 'Weather data, interpolated to regular hourly times';
TT2.Properties

ans =
 TimetableProperties with properties:

 Description: 'Weather data, interpolated to regular hourly times'
 UserData: []
 DimensionNames: {'InterpolatedTimes' 'Variables'}
 VariableNames: {'Temp' 'Pressure' 'WindSpeed'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [6x1 datetime]
 StartTime: 18-Dec-2015 08:00:00
 SampleRate: 2.7778e-04
 TimeStep: 01:00:00
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Access Row Times and Variable Data

You can use dot syntax to access the row times of a timetable. Also, you can access
individual variables using dot syntax, or all the data in a timetable using its second
dimension name.

1 Alphabetical List

1-15058

Load a timetable from the MAT-file outdoors. Display the first three rows.

load outdoors
outdoors(1:3,:)

ans=3×4 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61
 2015-11-15 03:00:24 48.9 51.5 29.61

Access the row times using the name of the row times vector. This name is also the name
of the first dimension of the timetable. outdoors stores the row times as a datetime
vector. Display the first three times.

outdoors.Time(1:3)

ans = 3x1 datetime array
 2015-11-15 00:00:24
 2015-11-15 01:30:24
 2015-11-15 03:00:24

Access the temperatures as a numeric vector, using its variable name.

outdoors.TemperatureF(1:3)

ans = 3×1

 51.3000
 51.5000
 51.5000

Access all the timetable data as a matrix, using the syntax outdoors.Variables. This
syntax uses the second dimension name of the timetable, and is equivalent to accessing
all the contents using curly brace indexing, outdoors{:,:}. However, the matrix does
not include row times, because the vector of row times is timetable metadata, not a
variable. If the timetable data cannot be concatenated into a matrix, then an error
message is raised.

outdoors.Variables

 timetable

1-15059

ans = 51×3

 49.0000 51.3000 29.6100
 48.9000 51.5000 29.6100
 48.9000 51.5000 29.6100
 48.8000 51.5000 29.6100
 48.7000 51.5000 29.6000
 48.8000 51.5000 29.6000
 49.0000 51.5000 29.6000
 49.1000 51.3000 29.6000
 49.1000 51.3000 29.6100
 49.1000 51.5000 29.6100
 ⋮

Rename the second dimension of outdoors. If you change the name, then you can use
the new name to access the data.

outdoors.Properties.DimensionNames{2} = 'Data';
outdoors.Data

ans = 51×3

 49.0000 51.3000 29.6100
 48.9000 51.5000 29.6100
 48.9000 51.5000 29.6100
 48.8000 51.5000 29.6100
 48.7000 51.5000 29.6000
 48.8000 51.5000 29.6000
 49.0000 51.5000 29.6000
 49.1000 51.3000 29.6000
 49.1000 51.3000 29.6100
 49.1000 51.5000 29.6100
 ⋮

Specify Time Vector

Create a timetable using the 'RowTimes' name-value pair argument. Note that the name
of the row times vector of TT is Time, not MeasurementTime. When you use this syntax,
the name of the row times vector is always Time.

1 Alphabetical List

1-15060

MeasurementTime = datetime({'2015-12-18 08:03:05';'2015-12-18 10:03:17';'2015-12-18 12:03:13'});
Temp = [37.3;39.1;42.3];
Pressure = [29.4;29.6;30.0];
Precip = [0.1;0.9;0.0];
StormDuration = [hours(1);hours(2);NaN];
TT = timetable(Temp,Pressure,Precip,StormDuration,'RowTimes',MeasurementTime)

TT=3×5 timetable
 Time Temp Pressure Precip StormDuration
 ____________________ ____ ________ ______ _____________

 18-Dec-2015 08:03:05 37.3 29.4 0.1 1 hr
 18-Dec-2015 10:03:17 39.1 29.6 0.9 2 hr
 18-Dec-2015 12:03:13 42.3 30 0 NaN hr

Default Names

Create a timetable. If there are input arguments that are not workspace variables, then
the timetable function assigns default names to the corresponding row times vector
and the variables of the timetable. For example, if you transpose some input arguments to
make them column vectors, then those input arguments are not workspace variables. The
default names are Time for the vector of row times, and VarN for the Nth timetable
variable.

T = hours(1:3);
Temp = [37.3;39.1;42.3];
P = [29.4 29.6 30];
TT = timetable(T',Temp,P')

TT=3×3 timetable
 Time Temp Var2
 ____ ____ ____

 1 hr 37.3 29.4
 2 hr 39.1 29.6
 3 hr 42.3 30

 timetable

1-15061

Specify Sample Rate

Create a regular timetable using a sample rate of 100 Hz.

Intensity = [100;98.7;95.2;101.4;99.1];
TT = timetable(Intensity,'SampleRate',100)

TT=5×2 timetable
 Time Intensity
 ________ _________

 0 sec 100
 0.01 sec 98.7
 0.02 sec 95.2
 0.03 sec 101.4
 0.04 sec 99.1

Create a timetable with 30 seconds as the first row time. To specify a start time, use the
'StartTime' name-value pair argument.

TT = timetable(Intensity,'SampleRate',100,'StartTime',seconds(30))

TT=5×2 timetable
 Time Intensity
 _________ _________

 30 sec 100
 30.01 sec 98.7
 30.02 sec 95.2
 30.03 sec 101.4
 30.04 sec 99.1

Specify Time Step

Create a regular timetable using a time step of 0.01 seconds. You must specify the time
step as a duration or calendar duration value.

Intensity = [100;98.7;95.2;101.4;99.1];
TT = timetable(Intensity,'TimeStep',seconds(0.01))

1 Alphabetical List

1-15062

TT=5×2 timetable
 Time Intensity
 ________ _________

 0 sec 100
 0.01 sec 98.7
 0.02 sec 95.2
 0.03 sec 101.4
 0.04 sec 99.1

Create a timetable with 30 seconds as the first row time. To specify a start time, use the
'StartTime' name-value pair argument.

TT = timetable(Intensity,'TimeStep',seconds(0.01),'StartTime',seconds(30))

TT=5×2 timetable
 Time Intensity
 _________ _________

 30 sec 100
 30.01 sec 98.7
 30.02 sec 95.2
 30.03 sec 101.4
 30.04 sec 99.1

Specify Size and Variable Types

Preallocate a table by specifying its size and the data types of the variables. The
timetable function fills the variables with default values that are appropriate for the
data types you specify. It also gives the variables default names.

T = [datetime('now') datetime(2017,11,1:3)];
sz = [4 3];
varTypes = {'double','double','string'};
TT = timetable('Size',sz,'VariableTypes',varTypes,'RowTimes',T)

TT=4×4 timetable
 Time Var1 Var2 Var3
 ____________________ ____ ____ _________

 timetable

1-15063

 02-Mar-2019 21:44:52 0 0 <missing>
 01-Nov-2017 00:00:00 0 0 <missing>
 02-Nov-2017 00:00:00 0 0 <missing>
 03-Nov-2017 00:00:00 0 0 <missing>

To specify names for the variables, use the 'VariableNames' name-value pair
argument.

varNames = {'Temperature','WindSpeed','Station'};
TT = timetable('Size',sz,'VariableTypes',varTypes,'RowTimes',T,'VariableNames',varNames)

TT=4×4 timetable
 Time Temperature WindSpeed Station
 ____________________ ___________ _________ _________

 02-Mar-2019 21:44:52 0 0 <missing>
 01-Nov-2017 00:00:00 0 0 <missing>
 02-Nov-2017 00:00:00 0 0 <missing>
 03-Nov-2017 00:00:00 0 0 <missing>

Add a row of data to TT. Preallocation can be a useful technique when your code adds one
row of data, or a few rows of data, at a time. Instead of growing the timetable every time
you add a row, you can fill in table variables that already have room for your data. You can
encapsulate a row of data values in a cell array, and assign it to a row of the timetable.

Subscript into a row by its time and assign a row of data values. You also can subscripting
into rows and variables by number. However, subscripting into a timetable by time is a
useful technique.

TT(datetime(2017,11,2),:) = {48.2,13.33,"S1"}

TT=4×4 timetable
 Time Temperature WindSpeed Station
 ____________________ ___________ _________ _________

 02-Mar-2019 21:44:52 0 0 <missing>
 01-Nov-2017 00:00:00 0 0 <missing>
 02-Nov-2017 00:00:00 48.2 13.33 "S1"
 03-Nov-2017 00:00:00 0 0 <missing>

You can encapsulate a row of data values in a cell array. When you assign a row from a
cell array, the assignment converts the cell array into a timetable row.

1 Alphabetical List

1-15064

Preallocate Timetable Using Sample Rate

Specify a sample rate of 1000 Hz and preallocate a timetable. You also can specify a start
time.

sz = [4 3];
varTypes = {'uint64','double','duration'};
TT = timetable('Size',sz,'VariableTypes',varTypes,'SampleRate',1000,'StartTime',seconds(15))

TT=4×4 timetable
 Time Var1 Var2 Var3
 __________ ____ ____ ________

 15 sec 0 0 00:00:00
 15.001 sec 0 0 00:00:00
 15.002 sec 0 0 00:00:00
 15.003 sec 0 0 00:00:00

Index into the third row, by specifying its time, and add a row of data.

TT(seconds(15.002),:) = {50,1.37,minutes(76)}

TT=4×4 timetable
 Time Var1 Var2 Var3
 __________ ____ ____ ________

 15 sec 0 0 00:00:00
 15.001 sec 0 0 00:00:00
 15.002 sec 50 1.37 01:16:00
 15.003 sec 0 0 00:00:00

Preallocate Timetable Using Time Step

Specify a time step, and names for the variables.

sz = [3 2];
varTypes = {'double','double'};
TT = timetable('Size',sz,'VariableTypes',varTypes,'TimeStep',seconds(0.1),'VariableNames',{'Intensity','Distance'})

 timetable

1-15065

TT=3×3 timetable
 Time Intensity Distance
 _______ _________ ________

 0 sec 0 0
 0.1 sec 0 0
 0.2 sec 0 0

Index into the second row, by specifying its time, and add a row of data.

TT(seconds(0.1),:) = {93.6,11.27}

TT=3×3 timetable
 Time Intensity Distance
 _______ _________ ________

 0 sec 0 0
 0.1 sec 93.6 11.27
 0.2 sec 0 0

Create Timetable and Specify Variable Names

Create a timetable and specify the names of the timetable variables. The vector of row
times is a duration vector, whose units are seconds.

Time = seconds(1:5)';
TT = timetable(Time,[98;97.5;97.9;98.1;97.9],[120;111;119;117;116],...
 'VariableNames',{'Reading1','Reading2'})

TT=5×3 timetable
 Time Reading1 Reading2
 _____ ________ ________

 1 sec 98 120
 2 sec 97.5 111
 3 sec 97.9 119
 4 sec 98.1 117
 5 sec 97.9 116

1 Alphabetical List

1-15066

Limitations
• Use single quotes for these input names:

• 'RowTimes'
• 'SampleRate'
• 'Size'
• 'StartTime'
• 'TimeStep'
• 'VariableTypes'
• 'VariableNames'

To avoid confusion with variable inputs, do not use double-quoted string scalars (such
as "RowTimes") for these names.

Tips
• For a list of functions that accept or return timetables, see “Timetables”.
• In certain cases, you can call timetable with a syntax that specifies a regular time

step between row times, and yet timetable returns an irregular timetable. This
result occurs when you specify the time step using a calendar unit of time and there is
a row time that introduces an irregular step. For example, if you create a timetable
with a time step of one calendar month, starting on January 31, 2019, then it is
irregular with respect to months.

stime = datetime(2019,1,31);
tstep = calmonths(1);
TT = timetable('Size',[3 1],'VariableTypes',{'double'},...
 'TimeStep',tstep,'StartTime',stime)

TT =

 3×1 timetable

 Time Var1
 ___________ ____

 31-Jan-2019 0

 timetable

1-15067

 28-Feb-2019 0
 31-Mar-2019 0

In addition, there are other cases where irregularities are due to shifts from Daylight
Saving Time (DST) or to row times that are leap seconds. This table specifies the row
time values and time steps that can produce irregular timetables unexpectedly.

Row Time Value Time Step
Start time specified as the 29th, 30th, or
31st day of the month

Number of calendar months or quarters

Start time specified as February 29 Number of calendar years
Any row time occurring between 1:00
a.m. and 2:00 a.m. on a day shifting
from DST to standard time (when row
times are specified as datetime values
whose time zone observes DST)

Number of calendar days or months

Any row time that is a leap second
(when row times are specified as
datetime values whose time zone is the
UTCLeapSecond time zone)

Time step specified in any calendar unit
(days, weeks, months, quarters, or
years)

Compatibility Considerations

'SamplingRate' is not recommended
Not recommended starting in R2018b

The 'SamplingRate' name-value pair argument is not recommended. Use
'SampleRate' instead. The corresponding timetable property is also named
SampleRate.

For backward compatibility, you still can specify 'SamplingRate' as the name of the
name-value pair. However, the value is assigned to the SampleRate property.

1 Alphabetical List

1-15068

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays with these usage notes.

• Creation. There are several ways to create a tall timetable:

1 Convert an existing tall table using table2timetable.

ds = datastore('data/folder/path.csv');
tt = tall(ds);
TT = table2timetable(tt);

The default behavior is to use the first datetime or duration variable in the tall
table tt for the row times. To specify the row times yourself, use the 'RowTimes'
name-value pair to specify either a tall datetime or a tall duration vector of row
times.

TT = table2timetable(tt,'RowTimes',rowTimes)
2 Convert an existing tall array using array2timetable.
3 Manually construct a tall timetable from the variables in a tall table using the

timetable constructor.

ds = datastore('data/folder/path.csv');
tt = tall(ds);
TT = timetable(rowTimes, tt.Var1, tt.Var2, ...)

4 Convert an in-memory timetable into a tall timetable using the syntax TT =
tall(tt).

• Indexing. The timerange and withtol functions are supported for indexing into tall
timetables. The vartype function is not supported.

• Supported Functions. These functions support tall timetables.

head join stack topkrows
height ndims standardizeMiss

ing
timetable2table

 timetable

1-15069

horzcat numel summary unique
isempty retime synchronize varfun
innerjoin size table2array width
ismember sortrows table2cell
ismissing splitapply tail

For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• Only these syntaxes are supported:

TT = timetable(rowTimes,var1,...,varN)

TT = timetable(var1,...,varN,'RowTimes',rowTimes)

TT = timetable(___ ,'VariableNames',{'name1',...,'nameN'})
• All data variables must be distributed.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
addprop | array2timetable | rmprop | summary | table | table2timetable |
timeseries | timetable2table | uitable

Topics
“Create Timetables”
“Clean Timetable with Missing, Duplicate, or Nonuniform Times”
“Represent Dates and Times in MATLAB”

1 Alphabetical List

1-15070

Introduced in R2016b

 timetable

1-15071

timetable2table
Convert timetable to table

Syntax
T = timetable2table(TT)
T = timetable2table(TT,'ConvertRowTimes',false)

Description
T = timetable2table(TT) converts the M-by-N timetable TT to an M-by-(N+1) table.
The vector of row times from TT becomes the first variable in T.

To write a timetable out to a text or spreadsheet file, first convert it to a table with
timetable2table. Then write the table to a file with the writetable function.

T = timetable2table(TT,'ConvertRowTimes',false) converts the M-by-N
timetable TT to an M-by-N table. timetable2table discards the vector of row times from
TT.

Examples

Convert Timetable to Table

Create a timetable and convert it to a table.

Time = datetime({'2015-12-18';'2015-12-19';'2015-12-20'});
Temp = [37.3;39.1;42.3];
Pressure = [29.4;29.6;30.0];
Precip = [0.1;0.9;0.0];
TT = timetable(Time,Temp,Pressure,Precip);
T = timetable2table(TT)

T=3×4 table
 Time Temp Pressure Precip

1 Alphabetical List

1-15072

 ___________ ____ ________ ______

 18-Dec-2015 37.3 29.4 0.1
 19-Dec-2015 39.1 29.6 0.9
 20-Dec-2015 42.3 30 0

Display the sizes of T and TT. T has one more variable than TT because
timetable2table converts the row times of TT to a variable of T.

whos T TT

 Name Size Bytes Class Attributes

 T 3x4 1845 table
 TT 3x3 1615 timetable

Convert Timetable and Discard Row Times

Create a timetable.

Time = datetime({'2015-12-18';'2015-12-19';'2015-12-20'});
Temp = [37.3;39.1;42.3];
Pressure = [29.4;29.6;30.0];
Precip = [0.1;0.9;0.0];
TT = timetable(Time,Temp,Pressure,Precip)

TT=3×4 timetable
 Time Temp Pressure Precip
 ___________ ____ ________ ______

 18-Dec-2015 37.3 29.4 0.1
 19-Dec-2015 39.1 29.6 0.9
 20-Dec-2015 42.3 30 0

Convert TT to a table and discard its row times.

T = timetable2table(TT,'ConvertRowTimes',false)

T=3×3 table
 Temp Pressure Precip
 ____ ________ ______

 timetable2table

1-15073

 37.3 29.4 0.1
 39.1 29.6 0.9
 42.3 30 0

Input Arguments
TT — Input timetable
timetable

Input timetable.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
array2timetable | isvarname | summary | table2timetable | timetable |
uitable

1 Alphabetical List

1-15074

Topics
“Create Timetables”
“Select Timetable Data by Row Time and Variable Type”
“Access Data in a Table”
“Tables”
“Represent Dates and Times in MATLAB”

Introduced in R2016b

 timetable2table

1-15075

timezones
List time zones

Syntax
timezones
timezones(area)

T = (___)

Description
timezones displays a list of all IANA time zones accepted by the datetime function. For
each time zone, the list includes the offset from UTC (in hours, where east is positive) and
the daylight saving time shift (in hours).

timezones(area) displays a list containing all IANA time zones in the specified
geographic area.

T = (___) returns the list in a table.

Examples

List All Time Zones in Australia

Store all Australian time zones accepted by the datetime function in a table.

T = timezones('Australia')

T=12×4 table
 Name Area UTCOffset DSTOffset
 _______________________ _________ _________ _________

 'Australia/Adelaide' Australia 9.5 1

1 Alphabetical List

1-15076

 'Australia/Brisbane' Australia 10 0
 'Australia/Broken_Hill' Australia 9.5 1
 'Australia/Currie' Australia 10 1
 'Australia/Darwin' Australia 9.5 0
 'Australia/Eucla' Australia 8.75 0
 'Australia/Hobart' Australia 10 1
 'Australia/Lindeman' Australia 10 0
 'Australia/Lord_Howe' Australia 10.5 0.5
 'Australia/Melbourne' Australia 10 1
 'Australia/Perth' Australia 8 0
 'Australia/Sydney' Australia 10 1

Sort the table by UTC offset.

sortrows(T,'UTCOffset')

ans=12×4 table
 Name Area UTCOffset DSTOffset
 _______________________ _________ _________ _________

 'Australia/Perth' Australia 8 0
 'Australia/Eucla' Australia 8.75 0
 'Australia/Adelaide' Australia 9.5 1
 'Australia/Broken_Hill' Australia 9.5 1
 'Australia/Darwin' Australia 9.5 0
 'Australia/Brisbane' Australia 10 0
 'Australia/Currie' Australia 10 1
 'Australia/Hobart' Australia 10 1
 'Australia/Lindeman' Australia 10 0
 'Australia/Melbourne' Australia 10 1
 'Australia/Sydney' Australia 10 1
 'Australia/Lord_Howe' Australia 10.5 0.5

Input Arguments
area — Geographic area
'All' | 'Africa' | 'America' | 'Antarctica' | ...

Geographic area, specified as one of the areas in the table.

 timezones

1-15077

'Africa' 'Asia' 'Europe'
'America' 'Atlantic' 'Indian'
'Antarctica' 'Australia' 'Pacific'
'Arctic' 'Etc' 'All'

See Also
datetime

Topics
“Specify Time Zones”

Introduced in R2015b

1 Alphabetical List

1-15078

title
Add title

Syntax
title(txt)
title(target,txt)

title(___ ,Name,Value)
t = title(___)

Description
title(txt) adds the specified title to the axes or chart returned by the gca command.
Reissuing the title command causes the new title to replace the old title.

title(target,txt) adds the title to the axes, legend, or chart specified by target.

title(___ ,Name,Value) modifies the title appearance using one or more name-value
pair arguments. For example, 'FontSize',12 sets the font size to 12 points. Specify
name-value pair arguments after all other input arguments. Modifying the title
appearance is not supported for all types of charts.

t = title(___) returns the object used for the title. Use t to make future
modifications to the title.

Examples

Add Title to Current Axes

Create a figure and display a title in the current axes.

plot((1:10).^2)
title('My Title')

 title

1-15079

You also can call title with a function that returns text. For example, the date function
returns text with today's date.

title(date)

1 Alphabetical List

1-15080

MATLAB® sets the output of date as the axes title.

Include Variable's Value in Title

Include the value of variable c in a title.

figure
plot((1:10).^2)
f = 70;
c = (f-32)/1.8;
title(['Temperature is ',num2str(c),' C'])

 title

1-15081

Create Multicolored Title Using TeX Markup

Use the color modifier \color to change the color of characters following it from the
previous color.

plot((1:10).^2)
title(['\fontsize{16}black {\color{magenta}magenta '...
'\color[rgb]{0 .5 .5}teal \color{red}red} black again'])

1 Alphabetical List

1-15082

Create Colored Title Using Name,Value Pair Argument

Use the Name,Value pair 'Color','m' to set the color of the title to magenta.

figure
plot((1:10).^2)
title('Case number # 3','Color', 'm')

 title

1-15083

Include Greek Symbols in Title

Use TeX markup to include Greek symbols in a title.

t = (0:0.01:0.2);
y = exp(-25*t);
figure
plot(t,y)
title('y = \ite^{\lambda t}','Color','b')

1 Alphabetical List

1-15084

The 'Interpreter' property must be 'tex' (the default).

Include Superscript or Subscript Character in Title

figure
plot((1:10).^2)
title('\alpha^2 and X_1')

 title

1-15085

The superscript character, "^", and the subscript character, "_", modify the character or
substring defined in braces immediately following.

Create Multiline Title

Create a multiline title using a multiline cell array.

figure
plot((1:10).^2)
title({'First line';'Second line'})

1 Alphabetical List

1-15086

Display Text As Typed

Set the Interpreter property as 'none' so that the text X_1 is displayed in the figure
as typed, without making 1 a subscript of X.

plot((1:10).^2)
title('X_1','Interpreter','none')

 title

1-15087

Add Title to Specific Axes

Create two subplots and return the handles to the axes objects, s(1) and s(2).

figure
s(1) = subplot(2,1,1);
plot((1:10).^2)
s(2) = subplot(2,1,2);
plot((1:10).^3)

1 Alphabetical List

1-15088

Add a title to each subplot by referring to its axes handle, s(1), or s(2).

title(s(1),'Top Plot')
title(s(2),'Bottom Plot')

 title

1-15089

Add Title and Return Text Handle

Add a title to a plot and return the text object.

plot((1:10).^2)
t = title('My Title');

1 Alphabetical List

1-15090

Set the color of the title to red. Starting in R2014b, you can use dot notation to set
properties. If you are using an earlier release, use the set function instead.

t.Color = 'red';

 title

1-15091

Input Arguments
txt — Text to display as title
string scalar | character vector | character array | cell array | categorical array | numeric
value

Text to display as title, specified as a string scalar, character vector, string array,
character array, cell array, categorical array, or numeric value.
Example: 'my label'
Example: {'first line','second line'}

1 Alphabetical List

1-15092

Example: 123

To include numeric variables with text in a title, use the num2str function. For example:

x = 42;
str = ['The value is ',num2str(x)];

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols, use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline titles:

• Use a string array where each element contains a line of text, such as ["first
line", "second line"].

• Use a cell array where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array where each row contains a line of text, such as ['abc'; 'ab
']. If you use this technique, each row must have the same number of characters.

• Use sprintf to create a character vector with a new line character, such as
sprintf('first line \n second line').

Numeric titles are converted to text using sprintf('%g',value). For example,
12345678 displays as 1.23457e+07.

Note

• If you specify the label as a categorical array, MATLAB uses the values in the array, not
the categories.

• The words default, factory, and remove are reserved words that will not appear in
a title when quoted as a normal character vector. To display any of these words
individually, precede them with a backslash, such as '\default' or '\remove'.

target — Target for title
Axes object | PolarAxes object | Legend object | graphics object

Target for the title, specified as an Axes object, a PolarAxes object, Legend object, or a
graphics object that has a Title property. For example, you can add a title to a
HeatmapChart object.

 title

1-15093

If you do not specify the target for the title, then the title function adds the title to the
graphics object returned by the gca command.

Note Some charts do not support modifying the title appearance, such as the color, or
returning the text object as an output argument.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','red','FontSize',14 adds a title with red, 14-point font.

In addition to the following, you can specify other text object properties using
Name,Value pair arguments. See Text.

FontSize — Font size
11 (default) | scalar value greater than 0

Font size, specified as a scalar value greater than 0 in point units. One point equals 1/72
inch. To change the font units, use the FontUnits property.

If you add a title to an axes object, then the font size properties for the axes also affect
the title font size. The title font size updates to equal the axes font size multiplied by the
title scale factor. The FontSize property of the axes contains the axes font size. The
TitleFontSizeMultiplier property of the axes contains the scale factor. By default,
the axes font size is 10 points and the scale factor is 1.1, so the title font size is 11 points.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontWeight — Thickness of text characters
'bold' (default) | 'normal'

Thickness of the text characters, specified as one of these values:

• 'bold' — Thicker characters outlines than normal
• 'normal' — Normal weight as defined by the particular font

1 Alphabetical List

1-15094

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight
could still result in the normal font weight.

If you add a title to an axes object, then the TitleFontWeight property for the
associated axes affects the FontWeight value for the title.

Note The 'light' and 'demi' font weight values have been removed. Use 'normal'
instead.

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

Color — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 title

1-15095

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

1 Alphabetical List

1-15096

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

 title

1-15097

Modifier Description Example
\color{specifier} Font color — Replace

specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

1 Alphabetical List

1-15098

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

 title

1-15099

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

Output Arguments
t — Object used for title text
text object

Object used for the title text, returned as one of these types of objects:

• Text object — If you add a title to axes, then title returns a text object. Use this text
object to access and modify properties of the title after it is created. For a list of text
object properties, see Text. You also can access the title through the Title property of
the axes object.

• Legend text object — If you add a title to a legend, then title returns a legend text
object. Use this legend text object to access and modify properties of the title after it
is created. For a list of legend text object properties, see Legend Text. You also can
access the title through the Title property of the legend object.

See Also
Functions
num2str | text | xlabel | ylabel | zlabel

Properties
Text

Topics
“Add Title and Axis Labels to Chart”

Introduced before R2006a

1 Alphabetical List

1-15100

https://www.latex-project.org
https://www.latex-project.org

todatenum
Convert CDF epoch object to MATLAB serial date number

Syntax
n = todatenum(obj)

Description
n = todatenum(obj) converts the CDF epoch object ep_obj into a MATLAB serial
date number. Note that a CDF epoch is the number of milliseconds since 01-Jan-0000
whereas a MATLAB datenum is the number of days since 00-Jan-0000.

Examples
Construct a CDF epoch object from text that represents a date. Then, convert the object
back into its original form.

dstr = datestr(today)
dstr =
 08-Oct-2003

obj = cdfepoch(dstr)
obj =
 cdfepoch object:
 08-Oct-2003 00:00:00

dstr2 = datestr(todatenum(obj))
dstr2 =
 08-Oct-2003

See Also
cdfepoch | cdfinfo | cdfread | datenum | datetime

 todatenum

1-15101

Introduced before R2006a

1 Alphabetical List

1-15102

toeplitz
Toeplitz matrix

Syntax
T = toeplitz(c,r)
T = toeplitz(r)

Description
T = toeplitz(c,r) returns a nonsymmetric Toeplitz matrix on page 1-15108 with c as
its first column and r as its first row. If the first elements of c and r differ, toeplitz
issues a warning and uses the column element for the diagonal.

T = toeplitz(r) returns the symmetric Toeplitz matrix where:

• If r is a real vector, then r defines the first row of the matrix.
• If r is a complex vector with a real first element, then r defines the first row and r'
defines the first column.

• If the first element of r is complex, the Toeplitz matrix is Hermitian off the main
diagonal, which means Ti, j = conj(T j, i) for i ≠ j. The elements of the main diagonal are
set to r(1).

Examples

Create Symmetric Toeplitz Matrix

r = [1 2 3];
toeplitz(r)

ans = 3×3

 1 2 3

 toeplitz

1-15103

 2 1 2
 3 2 1

Create Nonsymmetric Toeplitz Matrix

Create a nonsymmetric Toeplitz matrix with a specified column and row vector. Because
the first elements of the column and row vectors do not match, toeplitz issues a
warning and uses the column for the diagonal element.

c = [1 2 3 4];
r = [4 5 6];
toeplitz(c,r)

Warning: First element of input column does not match first element of input row.
 Column wins diagonal conflict.

ans = 4×3

 1 5 6
 2 1 5
 3 2 1
 4 3 2

Create a Toeplitz matrix with complex row and column vectors.

c = [1+3i 2-5i -1+3i];
r = [1+3i 3-1i -1-2i];
T = toeplitz(c,r)

T = 3×3 complex

 1.0000 + 3.0000i 3.0000 - 1.0000i -1.0000 - 2.0000i
 2.0000 - 5.0000i 1.0000 + 3.0000i 3.0000 - 1.0000i
 -1.0000 + 3.0000i 2.0000 - 5.0000i 1.0000 + 3.0000i

1 Alphabetical List

1-15104

Create Circulant Matrices Using toeplitz Function

You can create circulant matrices using toeplitz. Circulant matrices are used in
applications such as circular convolution.

Create a circulant matrix from vector v using toeplitz.

v = [9 1 3 2];
toeplitz([v(1) fliplr(v(2:end))], v)

ans = 4×4

 9 1 3 2
 2 9 1 3
 3 2 9 1
 1 3 2 9

Perform discrete-time circular convolution by using toeplitz to form the circulant
matrix for convolution.

Define the periodic input x and the system response h.

x = [1 8 3 2 5];
h = [3 5 2 4 1];

Form the column vector c to create a circulant matrix where length(c) = length(h).

c = [x(1) fliplr(x(end-length(h)+2:end))]

c = 1×5

 1 5 2 3 8

Form the row vector r from x.

r = x;

Form the convolution matrix xConv using toeplitz. Find the convolution using
h*xConv.

xConv = toeplitz(c,r)

xConv = 5×5

 toeplitz

1-15105

 1 8 3 2 5
 5 1 8 3 2
 2 5 1 8 3
 3 2 5 1 8
 8 3 2 5 1

h*xConv

ans = 1×5

 52 50 73 46 64

If you have the Signal Processing Toolbox™, you can use the cconv function to find the
circular convolution.

Discrete-Time Convolution Using Toeplitz

Perform discrete-time convolution by using toeplitz to form the arrays for convolution.

Define the input x and system response h.

x = [1 8 3 2 5];
h = [3 5 2];

Form r by padding x with zeros. The length of r is the convolution length x + h - 1.

r = [x zeros(1,length(h)-1)]

r = 1×7

 1 8 3 2 5 0 0

Form the column vector c. Set the first element to x(1) because the column determines
the diagonal. Pad c because length(c) must equal length(h) for convolution.

c = [x(1) zeros(1,length(h)-1)]

c = 1×3

1 Alphabetical List

1-15106

 1 0 0

Form the convolution matrix xConv using toeplitz. Then, find the convolution using
h*xConv.

xConv = toeplitz(c,r)

xConv = 3×7

 1 8 3 2 5 0 0
 0 1 8 3 2 5 0
 0 0 1 8 3 2 5

h*xConv

ans = 1×7

 3 29 51 37 31 29 10

Check that the result is correct using conv.

conv(x,h)

ans = 1×7

 3 29 51 37 31 29 10

Input Arguments
c — Column of Toeplitz matrix
scalar | vector

Column of Toeplitz matrix, specified as a scalar or vector. If the first elements of c and r
differ, toeplitz uses the column element for the diagonal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

 toeplitz

1-15107

r — Row of Toeplitz matrix
scalar | vector

Row of Toeplitz matrix, specified as a scalar or vector. If the first elements of c and r
differ, then toeplitz uses the column element for the diagonal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

Definitions

Toeplitz Matrix
A Toeplitz matrix is a diagonal-constant matrix, which means all elements along a
diagonal have the same value. For a Toeplitz matrix A, we have Ai,j = ai–j which results in
the form

A =

a0 a−1 a−2 ⋯ ⋯ a1− n

a1 a0 a−1 ⋱ ⋱ ⋮
a2 a1 a0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ a−2

⋮ ⋱ ⋱ ⋱ a0 a−1

an− 1 ⋯ ⋯ a2 a1 a0

.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-15108

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
hankel | kron

Introduced before R2006a

 toeplitz

1-15109

ToolbarStateButton Properties
Axes toolbar state button appearance and behavior

Description
ToolbarStateButton properties control the appearance and behavior of the axes
ToolbarStateButton object. By changing property values, you can modify certain
aspects of the state button.

tb = axtoolbar('default')
btn = axtoolbarbtn(tb,'state')
btn.Tooltip = 'My State Button';

Properties
Button

Icon — Button icon
'none' (default) | file name | m-by-n-by-3 array | m-by-n matrix | predefined icon

Button icon, specified as one of these values:

• File name — Specify the file name as a character vector or a string scalar. The file
name can be an image file on the path or a full path to an image file. The image file
type must be JPEG, GIF, or PNG. MATLAB scales down the image to fit, if necessary.

• Array — Specify an m-by-n-by-3 array of RGB triplets.
• Matrix — Specify an m-by-n matrix of numeric values.

• If the values are of an integer type, then specify values between 0 and 63. A value
of 0 is the darkest color and a value of 63 is transparent. NaN is also transparent.

• If the values are of type double, then specify values between 1 and 64. A value of
1 is the darkest color and a value of 64 is transparent. NaN is also transparent.

• Predefined icon — Specify one of the names in this table.

1 Alphabetical List

1-15110

Icon Name Result
'brush'

'datacursor'

'rotate'

'pan'

'zoomin'

'zoomout'

'restoreview'

'none' No icon

Example: btn.Icon = 'icon.png'
Example: btn.Icon = 'C:\Documents\icon.png'
Example: btn.Icon = 'rotate'

Tooltip — Button tool tip
'' (default) | character vector | cell array of character vectors | string array

Button tool tip, specified as a character vector, cell array of character vectors, or a string
array. Use this property to display a message when you hover the pointer over the button.
To display multiple lines of text, specify a cell array of character vectors or a string array.
Each element in the array displays a separate line of text.
Example: btn.Tooltip = 'My Tooltip'

Value — Current state of button
'on' | 'off'

Current state of the button, specified as 'on' (pressed) or 'off' (depressed).

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

 ToolbarStateButton Properties

1-15111

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

Callbacks

ValueChangedFcn — State button callback
'' (default) | function handle | cell array | character vector

State button callback that executes when you click the button, specified as one of these
values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when you click a state button. It does not execute if a state button
Value property changes programmatically.

If you specify this property using a function handle, then MATLAB passes the source
StateButton object and an event data structure as the first and second input arguments
to the function. This table describes the fields in the event data structure.

Field Description
Source StateButton object
Axes Associated Axes object
EventName 'ValueChanged'
Value Current value (either 'on' or 'off')
PreviousValue Previous value (either 'on' or 'off')

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle

1 Alphabetical List

1-15112

• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

 ToolbarStateButton Properties

1-15113

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the ToolbarStateButton object. The Interruptible
property has two values:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

1 Alphabetical List

1-15114

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the ToolbarStateButton object tries to interrupt a running callback
that cannot be interrupted, then the BusyAction property determines if it is discarded
or put in the queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

• 'cancel' — Discard the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

 ToolbarStateButton Properties

1-15115

Parent/Child

Children — Children
empty GraphicsPlaceholder array

This object has no children. You cannot set this property.

Parent — Parent
AxesToolbar object

Parent container, specified as an AxesToolbar object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'toolbarstatebutton' (default)

This property is read-only.

1 Alphabetical List

1-15116

Type of graphics object, returned as 'toolbarstatebutton'.

Tag — User-specified tag
'' (default) | character vector | string scalar

Tag to associate with the toolbarstatebutton object, specified as a character vector
or string scalar.

Use this property to find toolbarstatebutton objects in a hierarchy. For example, you
can use the findobj function to find toolbarstatebutton objects that have a specific
Tag property value.
Example: 'January Data'

UserData — User data
[] (default) | any MATLAB data

User data to associate with the toolbarstatebutton object, specified as any MATLAB
data, for example, a scalar, vector, matrix, cell array, character array, table, or structure.
MATLAB does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

Unused Properties

UIContextMenu — Context menu (not used)
uicontextmenu object

Context menu, specified as a ContextMenu object.

Note The button does not use this property.

ButtonDownFcn — Mouse-click callback (not used)
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as a function handle, a cell array, or a character vector.

Note The button does not use this property.

 ToolbarStateButton Properties

1-15117

See Also
axtoolbarbtn

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2018b

1 Alphabetical List

1-15118

ToolbarPushButton Properties
Axes toolbar push button appearance and behavior

Description
ToolbarPushButton properties control the appearance and behavior of the axes
ToolbarPushButton object. By changing property values, you can modify certain
aspects of the push button.

tb = axtoolbar('default')
btn = axtoolbarbtn(tb,'push')
btn.Tooltip = 'My Push Button';

Properties
Button

Icon — Button icon
'none' (default) | file name | m-by-n-by-3 array | m-by-n matrix | predefined icon

Button icon, specified as one of these values:

• File name — Specify the file name as a character vector or a string scalar. The file
name can be an image file on the path or a full path to an image file. The image file
type must be JPEG, GIF, or PNG. MATLAB scales down the image to fit, if necessary.

• Array — Specify an m-by-n-by-3 array of RGB triplets.
• Matrix — Specify an m-by-n matrix of numeric values.

• If the values are of an integer type, then specify values between 0 and 63. A value
of 0 is the darkest color and a value of 63 is transparent. NaN is also transparent.

• If the values are of type double, then specify values between 1 and 64. A value of
1 is the darkest color and a value of 64 is transparent. NaN is also transparent.

• Predefined icon — Specify one of the names in this table.

 ToolbarPushButton Properties

1-15119

Icon Name Result
'brush'

'datacursor'

'rotate'

'pan'

'zoomin'

'zoomout'

'restoreview'

'none' No icon

Example: btn.Icon = 'icon.png'
Example: btn.Icon = 'C:\Documents\icon.png'
Example: btn.Icon = 'rotate'

Tooltip — Button tool tip
'' (default) | character vector | cell array of character vectors | string array

Button tool tip, specified as a character vector, cell array of character vectors, or a string
array. Use this property to display a message when you hover the pointer over the button.
To display multiple lines of text, specify a cell array of character vectors or a string array.
Each element in the array displays a separate line of text.
Example: btn.Tooltip = 'My Tooltip'

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

1 Alphabetical List

1-15120

Callbacks

ButtonPushedFcn — Push button callback
'' (default) | function handle | cell array | character vector

Push button callback that executes when you click the button, specified as one of these
values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

If you specify this property using a function handle, then MATLAB passes the source
PushButton object and an event data structure as the first and second input arguments
to the function. This table describes the fields in the event data structure.

Field Description
Source PushButton object
Axes Associated Axes object
EventName 'ButtonPushed'

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. MATLAB executes the
callback after creating the object and setting all of its properties. Setting the CreateFcn
property on an existing object has no effect. To have an effect, you must specify the
CreateFcn property during object creation. One way to specify the property during
object creation is to set the default property value for the object. See “Default Property
Values” for more information.

 ToolbarPushButton Properties

1-15121

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — Access properties of the object from within the callback function.
You also can access the object through the CallbackObject property of the graphics
root object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object. MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Deleted object — Access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the graphics root
object, which can be queried using the gcbo function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

1 Alphabetical List

1-15122

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note Consider these callback states where:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

The Interruptible property determines if another callback can interrupt the
ButtonDownFcn callback of the ToolbarPushButton object. The Interruptible
property has two values:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue. For example, queues are processed by commands such as drawnow,
figure, getframe, waitfor, pause, and waitbar.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution”.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Consider these callback states where:

 ToolbarPushButton Properties

1-15123

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If a callback of the ToolbarPushButton object tries to interrupt a running callback that
cannot be interrupted, then the BusyAction property determines if it is discarded or put
in the queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. (default behavior)

• 'cancel' — Discard the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property if you need to verify that the object is not
about to be deleted before querying or modifying it.

Parent/Child

Children — Children
empty GraphicsPlaceholder array

This object has no children. You cannot set this property.

Parent — Parent
AxesToolbar object

Parent container, specified as an AxesToolbar object.

1 Alphabetical List

1-15124

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'toolbarpushbutton' (default)

This property is read-only.

Type of graphics object, returned as 'toolbarpushbutton'.

Tag — User-specified tag
'' (default) | character vector | string scalar

Tag to associate with the toolbarpushbutton object, specified as a character vector or
string scalar.

Use this property to find toolbarpushbutton objects in a hierarchy. For example, you
can use the findobj function to find toolbarpushbutton objects that have a specific
Tag property value.

 ToolbarPushButton Properties

1-15125

Example: 'January Data'

UserData — User data
[] (default) | any MATLAB data

User data to associate with the toolbarpushbutton object, specified as any MATLAB
data, for example, a scalar, vector, matrix, cell array, character array, table, or structure.
MATLAB does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

Unused Properties

UIContextMenu — Context menu (not used)
uicontextmenu object

Context menu, specified as a ContextMenu object.

Note The axes toolbar does not use this property.

ButtonDownFcn — Mouse-click callback (not used)
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as a function handle, a cell array, or a character vector.

Note The axes toolbar does not use this property.

See Also
axtoolbarbtn

Topics
“Access Property Values”
“Graphics Object Properties”

1 Alphabetical List

1-15126

Introduced in R2018b

 ToolbarPushButton Properties

1-15127

toolboxdir
Root folder for specified toolbox

Syntax
s = toolboxdir(toolboxName)

Description
s = toolboxdir(toolboxName) returns a character vector containing the absolute
path to the root folder for the specified toolbox.

It is important to use the toolboxdir function when writing code using MATLAB
Compiler. A toolbox can have a different path depending on whether it is running from
MATLAB or from an application deployed with the MATLAB Compiler. toolboxdir
ensures that the correct path is used.

Examples

Get Toolbox Path

Suppose that you have MATLAB R2017b installed with the Control System Toolbox. Get
the path for the Control System Toolbox.

s = toolboxdir('control')

s = C:\Program Files\MATLAB\R2017b\toolbox\control

Input Arguments
toolboxName — Toolbox name
character vector | string scalar

1 Alphabetical List

1-15128

Toolbox name, specified as a character vector or string scalar.
Data Types: char | string

Tips
• To determine the toolbox name to use for a given toolbox, run this code, substituting

toolbxfcn with the name of a function in the product.

n = 'toolbxfcn';
pat = '(?<=[\\/]toolbox[\\/])[^\\/]+';
regexp(which(n), pat, 'match', 'once')

For example, to determine the toolbox name for Control System Toolbox, set n to the
name of a function unique to Control System Toolbox, such as dss.

n = 'dss'
pat = '(?<=[\\/]toolbox[\\/])[^\\/]+'
regexp(which(n), pat, 'match', 'once')

control

See Also
fullfile | matlabroot | path

Introduced in R2006a

 toolboxdir

1-15129

topkrows
Top rows in sorted order

Syntax
B = topkrows(X,k)
B = topkrows(X,k,col)
B = topkrows(___ ,direction)
B = topkrows(___ ,'ComparisonMethod',method)
[B,I] = topkrows(X, ___)

B = topkrows(T,k)
B = topkrows(T,k,vars)
B = topkrows(T,k,vars,direction)
B = topkrows(___ ,'ComparisonMethod',method)
[B,I] = topkrows(T, ___)

Description
B = topkrows(X,k) returns the first k rows in array X sorted in descending order (for
numeric data) or reverse alphabetical order (for text data). topkrows sorts based on the
elements in the first column. When the first column contains elements of equal value,
topkrows sorts according to the elements in the next column and repeats this behavior
for succeeding equal values.

B = topkrows(X,k,col) sorts the results by the columns specified by col. Use this
syntax to perform multiple column sorts in succession. For example, topkrows(X,k,5)
sorts the rows of X in descending order based on the elements in the fifth column.
topkrows(X,k,[4 6]) first sorts the rows in descending order by the elements in the
fourth column, and then it sorts based on the elements in the sixth column to break ties.

B = topkrows(___ ,direction) specifies the direction of the sorting using any of the
previous syntaxes. direction can be 'ascend', 'descend', or a cell array containing
those values.

1 Alphabetical List

1-15130

For example, topkrows(A,2,[2 3],{'ascend' 'descend'}) gets the top 2 rows by
first sorting rows in ascending order by the elements in column 2. Then, it sorts the rows
with equal entries in column 2 in descending order by the elements in column 3.

B = topkrows(___ ,'ComparisonMethod',method) specifies how to compare
complex numbers. The comparison method can be 'auto', 'real', or 'abs'.

[B,I] = topkrows(X, ___) also returns an index vector I that describes the order of
the selected rows such that B = X(I,:).

B = topkrows(T,k) returns the first k rows in table or timetable T, in sorted order.
Table rows are in descending sorted order by all of their variables, and timetable rows are
in descending sorted order by time.

B = topkrows(T,k,vars) sorts the results by the variables specified by vars. Use this
syntax to sort with multiple variables in succession. For example, topkrows(T,k,
{'Var1','Var2'}) first sorts the rows of T based on the elements in Var1, and then it
sorts by the elements in Var2.

B = topkrows(T,k,vars,direction) specifies the direction of the sorting. For
example, use 'ascend' to sort T in ascending order.

B = topkrows(___ ,'ComparisonMethod',method) specifies how to compare
complex numbers. The comparison method can be 'auto', 'real', or 'abs'.

[B,I] = topkrows(T, ___) also returns an index vector I that describes the order of
the selected rows such that B = T(I,:).

Examples

Sort Rows of Matrix

Sort the rows of a matrix using different sorting orders and view the top rows.

Create a 20-by-5 matrix of random integers between 1 and 10.

rng default % for reproducibility
X = randi(10,20,5);

 topkrows

1-15131

Sort the rows of X in descending order and return the top 4 rows. By default, topkrows
sorts using the first column of the matrix. For any rows that have equal elements in a
particular column, the sorting is based on the column immediately to the right.

TA = topkrows(X,4)

TA = 4×5

 10 10 8 7 6
 10 7 8 2 4
 10 4 4 3 5
 10 3 7 9 6

When called with three input arguments, topkrows bases the sort entirely on the column
specified in the third argument. This means that rows with equal values in the specified
column remain in their original order. Sort X in descending order using the values in the
third column and return the top 5 rows.

TB = topkrows(X,5,3)

TB = 5×5

 5 7 10 2 6
 2 9 8 6 6
 10 10 8 7 6
 10 7 8 2 4
 10 2 8 3 6

Sort X using both the third and fourth columns. In this case, topkrows sorts the rows by
column 3. Then, for any rows with equal values in column 3, it sorts by column 4.

TC = topkrows(X,5,[3 4])

TC = 5×5

 5 7 10 2 6
 10 10 8 7 6
 2 9 8 6 6
 10 2 8 3 6
 10 7 8 2 4

1 Alphabetical List

1-15132

Specify Sorting Directions for Matrix Columns

Sort a matrix using several columns with different sorting directions.

Create a 100-by-5 matrix of random integers between 1 and 10.

rng default % for reproducibility
X = randi(10,100,5);

Sort X using the first three columns and return the top 10 rows. Specify a sorting
direction for each column using a cell array.

TA = topkrows(X,10,1:3,{'descend','ascend','ascend'})

TA = 10×5

 10 1 4 6 7
 10 1 8 5 1
 10 2 3 4 7
 10 3 5 10 5
 10 4 7 2 4
 10 5 5 2 7
 10 5 5 6 7
 10 6 5 5 7
 10 6 6 1 5
 10 7 7 8 1

Sort Rows of Table

Sort rows of heterogeneous data in a table.

Create a table from the patients.mat data set, which includes basic health information
for a group of patients. Include the patients age, gender, height, and their self-assessed
health status in the table. Make the SelfAssessedHealthStatus variable an ordinal
categorical array.

load patients
vals = {'Poor','Fair','Good','Excellent'};
SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus,vals,'Ordinal',true);
T = table(Age,Gender,Height,SelfAssessedHealthStatus);

 topkrows

1-15133

Find the top 10 rows when the table is sorted in descending order. The result is sorted by
the first variable, Age, in descending order. The remaining columns are subsorted to
break ties:

• The Gender variable is subsorted to break ties with age.
• The Height variable breaks ties with gender.
• The SelfAssessedHealthStatus variable breaks ties with height.

TA = topkrows(T,10)

TA=10×4 table
 Age Gender Height SelfAssessedHealthStatus
 ___ ________ ______ ________________________

 50 'Male' 72 Excellent
 50 'Male' 68 Good
 49 'Male' 70 Fair
 49 'Male' 68 Poor
 49 'Female' 64 Good
 49 'Female' 63 Good
 48 'Male' 71 Good
 48 'Male' 71 Good
 48 'Male' 66 Fair
 48 'Female' 66 Excellent

Find the top 10 rows containing the youngest women by sorting on the Gender variable
and subsorting on the Age variable.

TB = topkrows(T,10,{'Gender','Age'},'ascend')

TB=10×4 table
 Age Gender Height SelfAssessedHealthStatus
 ___ ________ ______ ________________________

 25 'Female' 63 Good
 25 'Female' 64 Excellent
 27 'Female' 69 Fair
 28 'Female' 65 Good
 28 'Female' 65 Good
 28 'Female' 66 Good
 29 'Female' 63 Excellent
 29 'Female' 68 Excellent
 29 'Female' 64 Good

1 Alphabetical List

1-15134

 30 'Female' 67 Excellent

Find the top 10 oldest women by changing the sorting direction of the Age variable to
'descend'.

TB = topkrows(T,10,{'Gender','Age'},{'ascend','descend'})

TB=10×4 table
 Age Gender Height SelfAssessedHealthStatus
 ___ ________ ______ ________________________

 49 'Female' 64 Good
 49 'Female' 63 Good
 48 'Female' 65 Excellent
 48 'Female' 66 Excellent
 48 'Female' 64 Excellent
 48 'Female' 64 Good
 48 'Female' 66 Excellent
 47 'Female' 66 Excellent
 46 'Female' 68 Good
 45 'Female' 68 Excellent

Sort Complex Numbers

Sort a matrix of complex numbers by absolute value and then by real part.

Create a 100-by-2 matrix of random complex numbers.

valRange = [-10 10];
X = randi(valRange,100,2) + 1i*randi(valRange,100,2);

Find the top 10 rows of the matrix. By default, topkrows compares the complex numbers
by absolute value.

TA = topkrows(X,10)

TA = 10×2 complex

 -10.0000 + 9.0000i 10.0000 - 2.0000i
 -8.0000 + 9.0000i 2.0000 - 8.0000i

 topkrows

1-15135

 9.0000 + 8.0000i 4.0000 + 7.0000i
 -6.0000 +10.0000i -8.0000 - 7.0000i
 6.0000 -10.0000i -1.0000 - 5.0000i
 6.0000 -10.0000i 0.0000 + 5.0000i
 -7.0000 + 9.0000i -2.0000 - 5.0000i
 9.0000 - 7.0000i 10.0000 + 7.0000i
 9.0000 - 7.0000i 6.0000 + 6.0000i
 -9.0000 - 7.0000i 9.0000 + 9.0000i

Find the top 10 rows of the matrix using only the real part of the complex numbers by
specifying the 'ComparisonMethod' name-value pair.

TB = topkrows(X,10,'ComparisonMethod','real')

TB = 10×2 complex

 10.0000 + 4.0000i -3.0000 - 7.0000i
 10.0000 + 3.0000i 4.0000 + 5.0000i
 10.0000 + 2.0000i 5.0000 - 7.0000i
 10.0000 - 1.0000i -1.0000 - 8.0000i
 10.0000 - 1.0000i -6.0000 +10.0000i
 10.0000 - 4.0000i -9.0000 + 0.0000i
 10.0000 - 5.0000i -8.0000 - 3.0000i
 9.0000 + 8.0000i 4.0000 + 7.0000i
 9.0000 + 5.0000i -10.0000 + 0.0000i
 9.0000 + 1.0000i 1.0000 - 9.0000i

Input Arguments
X — Input array
numeric array | logical array | character array | string array | categorical array | datetime
array | duration array

Input array, specified as a numeric, logical, character, string, categorical, datetime, or
duration array.

• If X is a nonordinal categorical array, then topkrows sorts the elements in descending
order based on the order of the categories returned by categories(X).

• If X contains NaN, NaT, or other missing values, then topkrows places the missing
values at the end of a descending sort.

1 Alphabetical List

1-15136

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | categorical | datetime | duration

T — Input table
table | timetable

Input table, specified as a table or timetable.
Data Types: table | timetable

k — Number of rows to return
scalar

Number of rows to return, specified as a nonnegative scalar integer. If k is greater than
the number of rows in X, then topkrows returns all of the rows in X.

col — Columns to sort by
scalar | vector

Columns to sort by, specified as a positive scalar integer or a vector of positive integers.
Example: B = topkrows(X,100,[1 3]) sorts over the first and third columns before
returning the top 100 rows.

vars — Variables to sort by
scalar | vector | variable name | cell array | 'RowNames'

Variables to sort by, specified as one of the options in this table.

Option Example Description
positive integer topkrows(T,k,3) The integer n specifies the

index of the variable to sort
by as returned by
T.Properties.Variable
Names{n}.

vector of positive integers topkrows(T,k,[1 3]) The vector [n1 n2 …]
specifies the indices of
several variables to sort by
as returned by
T.Properties.Variable
Names{[n1 n2 …]}.

 topkrows

1-15137

Option Example Description
logical vector topkrows(T,k,[true

false true])
Specifies one or more
variables to sort by using
values of true or false.

variable name topkrows(T,k,'Var3') Specifies the sorting
variable as one of the
variable names listed in
T.Properties.Variable
Names.

cell array topkrows(T,k,{'Var1
'Var3'})

Specifies several sorting
variables selected from
T.Properties.Variable
Names.

'RowNames' topkrows(T,k,'RowName
s')

For tables only. This option
sorts the results by the row
names.

Example: B = topkrows(X,k,[1 3]) sorts over the first and third columns.
Example: B = topkrows(X,k,'Year') sorts using the Year variable.

direction — Sorting direction
'descend' (default) | 'ascend' | cell array

Sorting direction, specified as either 'descend', 'ascend', or a cell array that specifies
some combination of these values.

If direction is a cell array, then it must contain 'descend' or 'ascend' for each
sorting column specified by col or vars. If you do not specify col or vars, then the cell
array must contain 'descend' or 'ascend' for each column in X or variable in T.

method — Comparison method for complex numbers
'auto' (default) | 'real' | 'abs'

Comparison method for complex numbers, specified as one of these values:

• 'auto' — (default) Compares real numbers according to 'real' and complex
numbers according to 'abs'.

• 'real' — Compares numbers by real part real(A). Numbers with equal real part
are subsorted by imaginary part imag(A).

1 Alphabetical List

1-15138

• 'abs' — Compares numbers by absolute value abs(A). Numbers with equal
magnitude are subsorted by phase angle angle(A).

This option does not support nonnumeric input data (datetime, duration, string, and
so on).

Output Arguments
B — Requested rows
array

Requested rows, returned as an array of the same class as X or T.

I — Row indices
vector

Row indices, returned as a vector. I describes the order of the selected rows such that B
= X(I,:) or B = T(I,:).

Tips
• topkrows does not do a full sort of the input data, so it is generally faster than sort

and sortrows when the number of requested rows is small.

Compatibility Considerations
Behavior change with tall arrays
Behavior changed in R2017b

Some behaviors of topkrows operating on tall arrays have changed:

• topkrows places NaN, NaT, and other missing values at the end of a descending sort.
In previous releases topkrows placed missing values at the beginning of a descending
sort.

• topkrows no longer accepts tall cell arrays containing only scalar numeric values as
inputs. Use cell2mat to convert the tall cell array of scalar numeric values into a tall
matrix before using topkrows.

 topkrows

1-15139

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The 'ComparisonMethod' name-value pair is not supported.
• The 'RowNames' option for tables is not supported.

For more information, see “Tall Arrays”.

See Also
head | maxk | mink | sort | sortrows | tail

Introduced in R2016b

1 Alphabetical List

1-15140

trace
Sum of diagonal elements

Syntax
b = trace(A)

Description
b = trace(A) calculates the sum of the diagonal elements of matrix A:

tr A = ∑
i = 1

n
aii = a11 + a22 + ... + ann .

Examples

Sum of Matrix Diagonal

Create a 3-by-3 matrix and calculate the sum of the diagonal elements.

A = [1 -5 2;
 -3 7 9;
 4 -1 6];

b = trace(A)

b = 14

The result tr A = 14 agrees with a manual calculation.

A =
a11 a12 a13
a21 a22 a23
a31 a32 a33

=
1 −5 2
−3 7 9
4 −1 6

,

 trace

1-15141

tr A = ∑
i = 1

3
aii = a11 + a22 + a33 = 1 + 7 + 6 = 14 .

Matrix Trace Properties

Verify several properties of the trace of a matrix (up to round-off error).

Create two matrices. Verify that tr A + B = tr A + tr B .

A = magic(3);
B = rand(3);
trace(A+B)

ans = 17.4046

trace(A) + trace(B)

ans = 17.4046

Verify that tr A = tr AT .

trace(A)

ans = 15

trace(A')

ans = 15

Verify that tr ATB = tr ABT .

trace(A'*B)

ans = 22.1103

trace(A*B')

ans = 22.1103

Verify that tr cA = c tr A for a scalar c.

1 Alphabetical List

1-15142

c = 5;
trace(c*A)

ans = 75

c*trace(A)

ans = 75

Verify that the trace equals the sum of the eigenvalues tr A = ∑i λi.

trace(A)

ans = 15

sum(eig(A))

ans = 15.0000

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square matrix. A can be full or sparse.
Data Types: single | double
Complex Number Support: Yes

Algorithms
trace extracts the diagonal elements and adds them together with the command
sum(diag(A)). The value of the trace is the same (up to round-off error) as the sum of
the matrix eigenvalues sum(eig(A)).

 trace

1-15143

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
det | eig | sum

Introduced before R2006a

1 Alphabetical List

1-15144

Transform Properties
Transform object appearance and behavior

Description
Transform properties control the behavior of Transform objects. By changing property
values, you can modify certain aspects of the Transform object.

Starting in R2014b, you can use dot notation to query and set properties.

h = hgtransform;
c = h.Children;
h.Matrix = makehgtform('scale',0.5);

If you are using an earlier release, use the get and set functions instead.

Properties
Transform Matrix

Matrix — Transform matrix
4-by-4 matrix

Transform matrix applied to the transform object and its children, specified as a 4-by-4
matrix. For more information about defining this matrix, see “Transforms Supported by
hgtransform”.
Data Types: double

Legend

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

 Transform Properties

1-15145

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend.
• 'off' — Do not include the object in the legend. (default)
• 'children' — Include only children of the object as separate items in the legend.

Interactivity

Visible — Visibility
'on' (default) | 'off'

Visibility, specified as one of these values:

• 'on' — Display all objects in the Transform object.
• 'off' — Hide all objects in the Transform object. You still can access the properties

of invisible Transform objects. Setting the Visible property for the Transform
object does not change the Visible property for objects in the Transform object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

1 Alphabetical List

1-15146

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

 Transform Properties

1-15147

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.

1 Alphabetical List

1-15148

If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

 Transform Properties

1-15149

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

PickableParts — Children that can capture mouse clicks
'visible' (default) | 'none'

Children that can capture mouse clicks, specified as one of these values:

• 'visible' — Any child object can capture a mouse click, depending on the
PickableParts property value of the child.

1 Alphabetical List

1-15150

• 'none' — No child objects can capture mouse clicks, regardless of the
PickableParts property value of the child.

HitTest — Response to mouse clicks captured by children
'on' (default) | 'off'

Response to mouse clicks captured by children, specified one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the Transform object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Do not trigger the callbacks of the Transform object. Instead, trigger the
callbacks for the nearest ancestor that has a HitTest property set to 'on' and a
PickableParts property value that enables the ancestor to capture mouse clicks.

A Transform object cannot capture mouse clicks. However, if you click a child of the
Transform object and if the child has a HitTest property set to 'off', then the child
passes the click to the Transform object.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object | Group object | Transform object

Parent, specified as an Axes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array | array of graphics objects

Children, returned as an array of graphics objects. Use this property to view a list of the
children or to reorder the children by setting the property to a permutation of itself.

 Transform Properties

1-15151

You cannot add or remove children using the Children property. To add a child to this
list, set the Parent property of the child graphics object to the Transform object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'hgtransform'

This property is read-only.

Type of graphics object, returned as 'hgtransform'. Use this property to find all objects
of a given type within a plotting hierarchy, for example, searching for the type using
findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object

1 Alphabetical List

1-15152

elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
hgtransform

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced before R2006a

 Transform Properties

1-15153

transpose, .'
Transpose vector or matrix

Syntax
B = A.'
B = transpose(A)

Description
B = A.' returns the nonconjugate transpose of A, that is, interchanges the row and
column index for each element. If A contains complex elements, then A.' does not affect
the sign of the imaginary parts. For example, if A(3,2) is 1+2i and B = A.', then the
element B(2,3) is also 1+2i.

B = transpose(A) is an alternate way to execute A.' and enables operator
overloading for classes.

Examples

Real Matrix

Create a matrix of real numbers and compute its transpose. B has the same elements as
A, but the rows of B are the columns of A and the columns of B are the rows of A.

A = magic(4)

A = 4×4

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

1 Alphabetical List

1-15154

B = A.'

B = 4×4

 16 5 9 4
 2 11 7 14
 3 10 6 15
 13 8 12 1

Complex Matrix

Create a matrix containing complex elements and compute its nonconjugate transpose. B
contains the same elements as A, except the rows and columns are interchanged. The
signs of the imaginary parts are unchanged.

A = [1 3 4-1i 2+2i; 0+1i 1-1i 5 6-1i]

A = 2×4 complex

 1.0000 + 0.0000i 3.0000 + 0.0000i 4.0000 - 1.0000i 2.0000 + 2.0000i
 0.0000 + 1.0000i 1.0000 - 1.0000i 5.0000 + 0.0000i 6.0000 - 1.0000i

B = A.'

B = 4×2 complex

 1.0000 + 0.0000i 0.0000 + 1.0000i
 3.0000 + 0.0000i 1.0000 - 1.0000i
 4.0000 - 1.0000i 5.0000 + 0.0000i
 2.0000 + 2.0000i 6.0000 - 1.0000i

Input Arguments
A — Input array
vector | matrix

Input array, specified as a vector or matrix.

 transpose, .'

1-15155

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | categorical |
datetime | duration | calendarDuration
Complex Number Support: Yes

Tips
• The complex conjugate transpose operator, A', also negates the sign of the imaginary

part of the complex elements in A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
conj | ctranspose | permute

1 Alphabetical List

1-15156

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

 transpose, .'

1-15157

trapz
Trapezoidal numerical integration

Syntax
Q = trapz(Y)
Q = trapz(X,Y)
Q = trapz(___ ,dim)

Description
Q = trapz(Y) computes the approximate integral of Y via the trapezoidal method on
page 1-15163 with unit spacing. The size of Y determines the dimension to integrate
along:

• If Y is a vector, then trapz(Y) is the approximate integral of Y.
• If Y is a matrix, then trapz(Y) integrates over each column and returns a row vector

of integration values.
• If Y is a multidimensional array, then trapz(Y) integrates over the first dimension

whose size does not equal 1. The size of this dimension becomes 1, and the sizes of
other dimensions remain unchanged.

Q = trapz(X,Y) integrates Y with respect to the coordinates or scalar spacing specified
by X.

• If X is a vector of coordinates, then length(X) must be equal to the size of the first
dimension of Y whose size does not equal 1.

• If X is a scalar spacing, then trapz(X,Y) is equivalent to X*trapz(Y).

Q = trapz(___ ,dim) integrates along the dimension dim using any of the previous
syntaxes. You must specify Y, and optionally can specify X. If you specify X, then it can be
a scalar or a vector with length equal to size(Y,dim). For example, if Y is a matrix, then
trapz(X,Y,2) integrates each row of Y.

1 Alphabetical List

1-15158

Examples

Integrate Vector of Data with Unit Spacing

Calculate the integral of a vector where the spacing between data points is 1.

Create a numeric vector of data.

Y = [1 4 9 16 25];

Y contains function values for f (x) = x2 in the domain [1, 5].

Use trapz to integrate the data with unit spacing.

Q = trapz(Y)

Q = 42

This approximate integration yields a value of 42. In this case, the exact answer is a little
less, 411

3 . The trapz function overestimates the value of the integral because f(x) is
concave up.

Integrate Vector of Data with Nonunit Spacing

Calculate the integral of a vector where the spacing between data points is uniform, but
not equal to 1.

Create a domain vector.

X = 0:pi/100:pi;

Calculate the sine of X.

Y = sin(X);

Integrate Y using trapz.

Q = trapz(X,Y)

Q = 1.9998

 trapz

1-15159

When the spacing between points is constant, but not equal to 1, an alternative to
creating a vector for X is to specify the scalar spacing value. In that case, trapz(pi/
100,Y) is the same as pi/100*trapz(Y).

Integrate Matrix with Nonuniform Spacing

Integrate the rows of a matrix where the data has a nonuniform spacing.

Create a vector of x-coordinates and a matrix of observations that take place at the
irregular intervals. The rows of Y represent velocity data, taken at the times contained in
X, for three different trials.

X = [1 2.5 7 10];
Y = [5.2 7.7 9.6 13.2;
 4.8 7.0 10.5 14.5;
 4.9 6.5 10.2 13.8];

Use trapz to integrate each row independently and find the total distance traveled in
each trial. Since the data is not evaluated at constant intervals, specify X to indicate the
spacing between the data points. Specify dim = 2 since the data is in the rows of Y.

Q1 = trapz(X,Y,2)

Q1 = 3×1

 82.8000
 85.7250
 82.1250

The result is a column vector of integration values, one for each row in Y.

Multiple Numerical Integrations

Create a grid of domain values.

x = -3:.1:3;
y = -5:.1:5;
[X,Y] = meshgrid(x,y);

1 Alphabetical List

1-15160

Calculate the function f (x, y) = x2 + y2 on the grid.

F = X.^2 + Y.^2;

trapz integrates numeric data rather than functional expressions, so in general the
expression does not need to be known to use trapz on a matrix of data. In cases where
the functional expression is known, you can instead use integral, integral2, or
integral3.

Use trapz to approximate the double integral

I =∫−5
5∫−3

3
x2 + y2 dx dy

To perform double or triple integrations on an array of numeric data, nest function calls
to trapz.

I = trapz(y,trapz(x,F,2))

I = 680.2000

trapz performs the integration over x first, producing a column vector. Then, the
integration over y reduces the column vector to a single scalar. trapz slightly
overestimates the exact answer of 680 because f(x,y) is concave up.

Input Arguments
Y — Numeric data
vector | matrix | multidimensional array

Numeric data, specified as a vector, matrix, or multidimensional array. By default, trapz
integrates along the first dimension of Y whose size does not equal 1.
Data Types: single | double
Complex Number Support: Yes

X — Point spacing
1 (default) | uniform scalar spacing | vector of coordinates

Point spacing, specified as 1 (default), a uniform scalar spacing, or a vector of
coordinates.

 trapz

1-15161

• If X is a scalar, then it specifies a uniform spacing between the data points and
trapz(X,Y) is equivalent to X*trapz(Y).

• If X is a vector, then it specifies x-coordinates for the data points and length(X) must
be the same as the size of the integration dimension in Y.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Consider a two-dimensional input array, Y:

• trapz(Y,1) works on successive elements in the columns of Y and returns a row
vector.

• trapz(Y,2) works on successive elements in the rows of Y and returns a column
vector.

1 Alphabetical List

1-15162

If dim is greater than ndims(Y), then trapz returns an array of zeros of the same size
as Y.

Definitions
Trapezoidal Method
trapz performs numerical integration via the trapezoidal method. This method
approximates the integration over an interval by breaking the area down into trapezoids
with more easily computable areas. For example, here is a trapezoidal integration of the
sine function using eight evenly-spaced trapezoids:

 trapz

1-15163

For an integration with N+1 evenly spaced points, the approximation is

∫
a

b
f x dx ≈ b− a

2N ∑
n = 1

N
f xn + f xn + 1

= b− a
2N f x1 + 2f x2 + ... + 2f xN + f xN + 1 ,

where the spacing between each point is equal to the scalar value b− a
N . By default

MATLAB uses a spacing of 1.

If the spacing between the N+1 points is not constant, then the formula generalizes to

∫
a

b
f x dx ≈ 1

2 ∑n = 1

N
xn + 1− xn f xn + f xn + 1 ,

where a = x1 < x2 < ... < xN < xN + 1 = b, and xn + 1− xn is the spacing between each
consecutive pair of points.

Tips
• Use trapz and cumtrapz to perform numerical integrations on discrete data sets.

Use integral, integral2, or integral3 instead if a functional expression for the
data is available.

• trapz reduces the size of the dimension it operates on to 1, and returns only the final
integration value. cumtrapz also returns the intermediate integration values,
preserving the size of the dimension it operates on.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Alphabetical List

1-15164

• If you supply dim, then it must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cumsum | cumtrapz | integral | integral2 | integral3

Topics
“Integration of Numeric Data”

Introduced before R2006a

 trapz

1-15165

treelayout
Lay out tree or forest

Syntax
[x,y] = treelayout(parent,post)
[x,y,h,s] = treelayout(parent,post)

Description
[x,y] = treelayout(parent,post) lays out a tree or a forest. parent is the vector
of parent pointers, with 0 for a root. post is an optional postorder permutation on the
tree nodes. If you omit post, treelayout computes it. x and y are vectors of
coordinates in the unit square at which to lay out the nodes of the tree to make a nice
picture.

[x,y,h,s] = treelayout(parent,post) also returns the height of the tree h and
the number of vertices s in the top-level separator.

See Also
etree | etreeplot | symbfact | treeplot

Introduced before R2006a

1 Alphabetical List

1-15166

treeplot
Plot picture of tree

Syntax
treeplot(p)
treeplot(p,nodeSpec,edgeSpec)

Description
treeplot(p) plots a picture of a tree given a vector of parent pointers, with p(i) = 0
for a root.

treeplot(p,nodeSpec,edgeSpec) allows optional parameters nodeSpec and
edgeSpec to set the node or edge color, marker, and linestyle. Use '' to omit one or
both.

Examples
To plot a tree with 12 nodes, call treeplot with a 12-element input vector. The index of
each element in the vector is shown adjacent to each node in the figure below. (These
indices are shown only for the point of illustrating the example; they are not part of the
treeplot output.)

 treeplot

1-15167

To generate this plot, set the value of each element in the nodes vector to the index of its
parent, (setting the parent of the root node to zero).

The node marked 1 in the figure is represented by nodes(1) in the input vector, and
because this is the root node which has a parent of zero, you set its value to zero:

nodes(1) = 0; % Root node

nodes(2) and nodes(8) are children of nodes(1), so set these elements of the input
vector to 1:

nodes(2) = 1; nodes(8) = 1;

nodes(5:7) are children of nodes(4), so set these elements to 4:

nodes(5) = 4; nodes(6) = 4; nodes(7) = 4;

Continue in this manner until each element of the vector identifies its parent. For the plot
shown above, the nodes vector now looks like this:

nodes = [0 1 2 2 4 4 4 1 8 8 10 10];

Now call treeplot to generate the plot:

treeplot(nodes)

1 Alphabetical List

1-15168

See Also
etree | etreeplot | treelayout

Introduced before R2006a

 treeplot

1-15169

tril
Lower triangular part of matrix

Syntax
L = tril(A)
L = tril(A,k)

Description
L = tril(A) returns the lower triangular on page 1-15172 portion of matrix A.

L = tril(A,k) returns the elements on and below the kth diagonal of A.

Examples

Extract Lower Triangular Portions of Matrix

Create a 4-by-4 matrix of ones. Extract the lower triangular portion.

A = ones(4)

A = 4×4

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

B = tril(A)

B = 4×4

 1 0 0 0

1 Alphabetical List

1-15170

 1 1 0 0
 1 1 1 0
 1 1 1 1

Extract only the elements below the main diagonal.

C = tril(A,-1)

C = 4×4

 0 0 0 0
 1 0 0 0
 1 1 0 0
 1 1 1 0

Input Arguments
A — Input matrix
matrix

Input matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

k — Diagonals to include
0 (default) | scalar

Diagonals to include, specified as a scalar. k = 0 is the main diagonal, k > 0 is above
the main diagonal, and k < 0 is below the main diagonal.

 tril

1-15171

Example: tril(A,3)

Definitions

Lower Triangular
The lower triangular portion of a matrix includes the main diagonal and all elements
below it. The shaded blocks in this graphic depict the lower triangular portion of a 6-by-6
matrix.

1 Alphabetical List

1-15172

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you supply the argument that represents the order of the diagonal matrix, then it
must be a real and scalar integer value.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 tril

1-15173

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
bandwidth | diag | istril | triu

Introduced before R2006a

1 Alphabetical List

1-15174

trimesh
Triangular mesh plot

Syntax
trimesh(Tri,X,Y,Z,C)
trimesh(Tri,X,Y,Z)
trimesh(Tri,X,Y)
trimesh(TR)
trimesh(...'PropertyName',PropertyValue...)
h = trimesh(...)

Description
trimesh(Tri,X,Y,Z,C) displays triangles defined in the m-by-3 face matrix Tri as a
mesh. Each row of Tri defines a single triangular face by indexing into the vectors or
matrices that contain the X, Y, and Z vertices. The edge color is defined by the vector C.

trimesh(Tri,X,Y,Z) uses C = Z so color is proportional to surface height.

trimesh(Tri,X,Y) displays the triangles in a 2-D plot.

trimesh(TR) displays the triangles in a triangulation representation.

trimesh(...'PropertyName',PropertyValue...) specifies additional patch
property names and values for the patch graphics object created by the function.

h = trimesh(...) returns a handle to the displayed triangles.

Examples

Create Triangular Mesh Plot

Create vertex vectors and a face matrix, and then create a triangular mesh plot.

 trimesh

1-15175

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);
z = peaks(15);
trimesh(tri,x,y,z)

If the surface is already a triangulation representation, then you can pass the
triangulation to trimesh:

tr = triangulation(tri,x(:),y(:),z(:));
trimesh(tr)

1 Alphabetical List

1-15176

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

 trimesh

1-15177

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
delaunay | delaunayTriangulation | patch | triangulation | trisurf

Introduced before R2006a

1 Alphabetical List

1-15178

triplequad
(Not recommended) Numerically evaluate triple integral

Note triplequad is not recommended. Use integral3 instead.

Syntax
q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax)
q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol)
q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method)

Description
q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax) evaluates the triple
integral fun(x,y,z) over the three dimensional rectangular region
xmin <= x <= xmax, ymin <= y <= ymax, zmin <= z <= zmax. The first input,
fun, is a function handle. fun(x,y,z) must accept a vector x and scalars y and z, and
return a vector of values of the integrand.

“Parameterizing Functions” explains how to provide additional parameters to the function
fun, if necessary.

q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol) uses a tolerance
tol instead of the default, which is 1.0e-6.

q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method) uses the
quadrature function specified as method, instead of the default quad. Valid values for
method are @quadl or the function handle of a user-defined quadrature method that has
the same calling sequence as quad and quadl.

Examples
Pass function handle @integrnd to triplequad:P

 triplequad

1-15179

Q = triplequad(@integrnd,0,pi,0,1,-1,1);

where the file integrnd.m is

function f = integrnd(x,y,z)
f = y*sin(x)+z*cos(x);

Pass anonymous function handle F to triplequad:

F = @(x,y,z)y*sin(x)+z*cos(x);
Q = triplequad(F,0,pi,0,1,-1,1);

This example integrates y*sin(x)+z*cos(x) over the region 0 <= x <= pi,
0 <= y <= 1, -1 <= z <= 1. Note that the integrand can be evaluated with a vector x
and scalars y and z.

See Also
dblquad | integral | integral2 | integral3 | quad | quad2d | quadgk | quadl

Topics
“Anonymous Functions”
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-15180

triplot
2-D triangular plot

Note The behavior of h = triplot(...) has changed. The new behavior returns a
single chart line handle.

Syntax
triplot(TRI,x,y)
triplot(TRI,x,y,color)
triplot(TR)
h = triplot(...)
triplot(...,'param',value,'param',value...)

Description
triplot(TRI,x,y) displays the triangles defined in the m-by-3 matrix TRI. A row of TRI
contains indices into the vectors x and y that define a single triangle. The default line
color is blue.

triplot(TRI,x,y,color) specifies color as the line color. color can also be a line
specification. See ColorSpec for a list of valid colors. See LineSpec for information
about line specifications.

triplot(TR) displays the triangles in a triangulation representation.

h = triplot(...) returns a single chart line handle to the displayed triangles.

triplot(...,'param',value,'param',value...) allows additional line property
name/property value pairs to be used when creating the plot. See Chart Line for
information about the available properties.

 triplot

1-15181

Examples

Plot Delaunay Triangulation

Plot a Delaunay triangulation for 10 randomly generated points.

P = gallery('uniformdata',10,2,2);
DT = delaunayTriangulation(P);
triplot(DT)

1 Alphabetical List

1-15182

See Also
delaunay | delaunayTriangulation | triangulation | trimesh | trisurf

Introduced before R2006a

 triplot

1-15183

TriRep class
(Not recommended) Triangulation representation

Note TriRep is not recommended. Use triangulation instead.

Description
TriRep provides topological and geometric queries for triangulations in 2-D and 3-D
space. For example, for triangular meshes you can query triangles attached to a vertex,
triangles that share an edge, neighbor information, circumcenters, or other features. You
can create a TriRep directly using existing triangulation data. Alternatively, you can
create a Delaunay triangulation, via DelaunayTri, which provides access to the TriRep
functionality.

Construction
TriRep (Not recommended) Triangulation representation

1 Alphabetical List

1-15184

Methods
baryToCart (Not recommended) Convert point coordinates from barycentric to

Cartesian
cartToBary (Not recommended) Convert point coordinates from Cartesian to

barycentric
circumcenters (Not recommended) Circumcenters of specified simplices
edgeAttachments (Not recommended) Simplices attached to specified edges
edges (Not recommended) Triangulation edges
faceNormals (Not recommended) Unit normals to specified triangles
featureEdges (Not recommended) Sharp edges of surface triangulation
freeBoundary (Not recommended) Facets referenced by only one simplex
incenters (Not recommended) Incenters of specified simplices
isEdge (Not recommended) Test if vertices are joined by edge
neighbors (Not recommended) Simplex neighbor information
size (Not recommended) Size of triangulation matrix
vertexAttachments (Not recommended) Return simplices attached to specified vertices

Properties
X Coordinates of the points in the triangulation
Triangulation Triangulation data structure

Copy Semantics
Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

 TriRep class

1-15185

Indexing
TriRep objects support indexing into the triangulation using parentheses (). The syntax
is the same as for arrays.

Examples
Load a 2-D triangulation and use the TriRep constructor to build an array of the free
boundary edges:

 load trimesh2d

This loads triangulation tri and vertex coordinates x, y:

trep = TriRep(tri, x,y);
fe = freeBoundary(trep)';
triplot(trep);

1 Alphabetical List

1-15186

You can add the free edges fe to the plot:

hold on;
plot(x(fe), y(fe), 'r','LineWidth',2);
hold off;
axis([-50 350 -50 350]);
axis equal;

 TriRep class

1-15187

See Also
delaunayTriangulation | scatteredInterpolant | triangulation

1 Alphabetical List

1-15188

TriRep
Class: TriRep

(Not recommended) Triangulation representation

Note TriRep is not recommended. Use triangulation instead.

Syntax
TR = TriRep(TRI, X, Y)
TR = TriRep(TRI, X, Y, Z)
TR = TriRep(TRI, X)

Description
TR = TriRep(TRI, X, Y) creates a 2-D triangulation representation from the
triangulation matrix TRI and the vertex coordinates (X, Y). TRI is an m-by-3 matrix that
defines the triangulation in face-vertex format, where m is the number of triangles. Each
row of TRI is a triangle defined by indices into the column vector of vertex coordinates
(X, Y).

TR = TriRep(TRI, X, Y, Z) creates a 3-D triangulation representation from the
triangulation matrix TRI and the vertex coordinates (X, Y, Z). TRI is an m-by-3 or m-
by-4 matrix that defines the triangulation in simplex-vertex format, where m is the number
of simplices; triangles or tetrahedra in this case. Each row of TRI is a simplex defined by
indices into the column vector of vertex coordinates (X, Y, Z).

TR = TriRep(TRI, X) creates a triangulation representation from the triangulation
matrix TRI and the vertex coordinates X. TRI is an m-by-n matrix that defines the
triangulation in simplex-vertex format, where m is the number of simplices and n is the
number of vertices per simplex. Each row of TRI is a simplex defined by indices into the
array of vertex coordinates X. X is an mpts-by-ndim matrix where mpts is the number of

 TriRep

1-15189

points and ndim is the dimension of the space where the points reside, where
2 ≤ ndim ≤ 3.

Examples
Load a 3-D tetrahedral triangulation compute the free boundary. First, load triangulation
tet and vertex coordinates X.

load tetmesh

Create the triangulation representation and compute the free boundary.

trep = TriRep(tet, X);
[tri, Xb] = freeBoundary(trep);

See Also
delaunayTriangulation | scatteredInterpolant

1 Alphabetical List

1-15190

TriScatteredInterp class

(Not recommended) Interpolate scattered data

Note TriScatteredInterp is not recommended. Use scatteredInterpolant
instead.

Description
TriScatteredInterp is used to perform interpolation on a scattered dataset that
resides in 2-D or 3-D space. A scattered data set defined by locations X and corresponding
values V can be interpolated using a Delaunay triangulation of X. This produces a surface
of the form V = F(X). The surface can be evaluated at any query location QX, using QV =
F(QX), where QX lies within the convex hull of X. The interpolant F always goes through
the data points specified by the sample.

Construction

TriScatteredInterp (Not recommended) Interpolate scattered data

Properties
X Defines locations of scattered data points in 2-D or 3-D

space.
V Defines value associated with each data point.
Method Defines method used to interpolate the data .

natural Natural neighbor
interpolation

 TriScatteredInterp class

1-15191

linear Linear interpolation
(default)

nearest Nearest neighbor
interpolation

Copy Semantics
Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

Examples
Create a data set:

x = rand(100,1)*4-2;
y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

Construct the interpolant:

F = TriScatteredInterp(x,y,z);

Evaluate the interpolant at the locations (qx, qy). The corresponding value at these
locations is qz:

ti = -2:.25:2;
[qx,qy] = meshgrid(ti,ti);
qz = F(qx,qy);
mesh(qx,qy,qz);
hold on;
plot3(x,y,z,'o');

1 Alphabetical List

1-15192

Definitions

Delaunay Triangulation
The Delaunay triangulation of a set of points is a triangulation such that the unique circle
circumscribed about each triangle contains no other points in the set. The convex hull of a
set of points is the smallest convex set containing all points of the original set. These
definitions extend naturally to higher dimensions.

See Also
interp1 | interp2 | interp3 | meshgrid | scatteredInterpolant |
triangulation

 TriScatteredInterp class

1-15193

TriScatteredInterp
Class: TriScatteredInterp

(Not recommended) Interpolate scattered data

Note TriScatteredInterp is not recommended. Use scatteredInterpolant
instead.

Syntax
F = TriScatteredInterp()
F = TriScatteredInterp(X, V)
F = TriScatteredInterp(X, Y, V)
F = TriScatteredInterp(X, Y, Z, V)
F = TriScatteredInterp(DT, V)
F = TriScatteredInterp(..., method)

Description
F = TriScatteredInterp() creates an empty scattered data interpolant. This can
subsequently be initialized with sample data points and values (Xdata, Vdata) via F.X =
Xdata and F.V = Vdata.

F = TriScatteredInterp(X, V) creates an interpolant that fits a surface of the form
V = F(X) to the scattered data in (X, V). X is a matrix of size mpts-by-ndim, where mpts
is the number of points and ndim is the dimension of the space where the points reside
(ndim is 2 or 3). The column vector V defines the values at X, where the length of V equals
mpts.

F = TriScatteredInterp(X, Y, V) and F = TriScatteredInterp(X, Y, Z, V)
allow the data point locations to be specified in alternative column vector format when
working in 2-D and 3-D.

1 Alphabetical List

1-15194

F = TriScatteredInterp(DT, V) uses the specified DelaunayTri object DT as a
basis for computing the interpolant. DT is a Delaunay triangulation of the scattered data
locations, DT.X. The matrix DT.X is of size mpts-by-ndim, where mpts is the number of
points and ndim is the dimension of the space where the points reside, 2 <= ndim <=
3. V is a column vector that defines the values at DT.X, where the length of V equals
mpts.

F = TriScatteredInterp(..., method) allows selection of the technique method
used to interpolate the data.

Input Arguments
X Matrix of size mpts-by-ndim, where mpts is the number of points

and ndim is the dimension of the space where the points reside.
Input may also be specified as column vectors (X, Y) or (X, Y, Z)

V Column vector that defines the values at X, where the length of V
equals mpts.

DT Delaunay triangulation of the scattered data locations
method natural Natural neighbor interpolation

linear Linear interpolation (default)
nearest Nearest-neighbor interpolation

Output Arguments
F Creates an interpolant that fits a surface of the form V = F(X) to

the scattered data.

Evaluation
To evaluate the interpolant, express the statement in Monge's form Vq = F(Xq), Vq =
F(Xq,Yq), or Vq = F(Xq,Yq,Zq) where Vq is the value of the interpolant at the query
location and Xq, Yq, and Zq are the vectors of point locations.

 TriScatteredInterp

1-15195

Examples
Create a data set:

x = rand(100,1)*4-2;
y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

Construct the interpolant:

F = TriScatteredInterp(x,y,z);

Evaluate the interpolant at the locations (qx, qy). The corresponding value at these
locations is qz .

ti = -2:.25:2;
[qx,qy] = meshgrid(ti,ti);
qz = F(qx,qy);
mesh(qx,qy,qz);
hold on;
plot3(x,y,z,'o');

1 Alphabetical List

1-15196

Definitions

Delaunay Triangulation
The Delaunay triangulation of a set of points is a triangulation such that the unique circle
circumscribed about each triangle contains no other points in the set.

See Also
delaunayTriangulation | interp1 | interp2 | interp3 | meshgrid

 TriScatteredInterp

1-15197

trisurf
Triangular surface plot

Syntax
trisurf(Tri,X,Y,Z,C)
trisurf(Tri,X,Y,Z)
trisurf(TR)
trisurf(...'PropertyName',PropertyValue...)
h = trisurf(...)

Description
trisurf(Tri,X,Y,Z,C) displays triangles defined in the m-by-3 face matrix Tri as a
surface. Each row of Tri defines a single triangular face by indexing into the vectors or
matrices that contain the X, Y, and Z vertices. The color is defined by the vector C.

trisurf(Tri,X,Y,Z) uses C=Z so color is proportional to surface height.

trisurf(TR) displays the triangles in a triangulation representation. It uses C =
TR.Points(:,3) to make sure the surface color is proportional to height.

trisurf(...'PropertyName',PropertyValue...) specifies additional patch
property names and values for the patch graphics object created by the function.

h = trisurf(...) returns a patch handle.

Examples

Create Triangular Surface Plot

Create vertex vectors and a face matrix, then create a triangular surface plot.

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);

1 Alphabetical List

1-15198

z = peaks(15);
trisurf(tri,x,y,z)

If the surface is in the form of a triangulation representation, you can pass it to trisurf
alone:

tr = triangulation(tri,x(:),y(:),z(:));
trisurf(tr)

 trisurf

1-15199

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Alphabetical List

1-15200

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
delaunay | delaunayTriangulation | patch | surf | tetramesh | triangulation |
trimesh | triplot

Introduced before R2006a

 trisurf

1-15201

triu
Upper triangular part of matrix

Syntax
U = triu(A)
U = triu(A,k)

Description
U = triu(A) returns the upper triangular on page 1-15204 portion of matrix A.

U = triu(A,k) returns the elements on and above the kth diagonal of A.

Examples

Extract Upper Triangular Portions of Matrix

Create a 4-by-4 matrix of ones. Extract the upper triangular portion.

A = ones(4)

A = 4×4

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

B = triu(A)

B = 4×4

 1 1 1 1

1 Alphabetical List

1-15202

 0 1 1 1
 0 0 1 1
 0 0 0 1

Extract only the elements above the main diagonal.

C = triu(A,1)

C = 4×4

 0 1 1 1
 0 0 1 1
 0 0 0 1
 0 0 0 0

Input Arguments
A — Input matrix
matrix

Input matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

k — Diagonals to include
0 (default) | scalar

Diagonals to include, specified as a scalar. k = 0 is the main diagonal, k > 0 is above
the main diagonal, and k < 0 is below the main diagonal.

 triu

1-15203

Example: triu(A,3)

Definitions

Upper Triangular
The upper triangular portion of a matrix includes the main diagonal and all elements
above it. The shaded blocks in this graphic depict the upper triangular portion of a 6-by-6
matrix.

1 Alphabetical List

1-15204

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you supply the argument that represents the order of the diagonal matrix, then it
must be a real and scalar integer value.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

 triu

1-15205

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
bandwidth | diag | istriu | tril

Introduced before R2006a

1 Alphabetical List

1-15206

true
Logical 1 (true)

Syntax
true
T = true(n)
T = true(sz)
T = true(sz1,...,szN)
T = true(___ ,'like',p)

Description
true is shorthand for the logical value 1.

T = true(n) is an n-by-n matrix of logical ones.

T = true(sz) is an array of logical ones where the size vector, sz, defines size(T).
For example, true([2 3]) returns a 2-by-3 array of logical ones.

T = true(sz1,...,szN) is a sz1-by-...-by-szN array of logical ones where
sz1,...,szN indicates the size of each dimension. For example, true(2,3) returns a 2-
by-3 array of logical ones.

T = true(___ ,'like',p) returns an array of logical ones of the same sparsity as the
logical variable p using any of the previous size syntaxes.

Examples

Generate Square Matrix of Logical Ones

Use true to generate a 3-by-3 square matrix of logical ones.

A = true(3)

 true

1-15207

A = 3x3 logical array

 1 1 1
 1 1 1
 1 1 1

class(A)

ans =
'logical'

The result is of class logical.

Generate Array of Logical Ones with Arbitrary Dimensions

Use true to generate a 3-by-2-by-2 matrix of logical ones.

true(3,2,2)

ans = 3x2x2 logical array
ans(:,:,1) =

 1 1
 1 1
 1 1

ans(:,:,2) =

 1 1
 1 1
 1 1

Alternatively, you can use a size vector to specify the size of the matrix.

true([3,2,2])

ans = 3x2x2 logical array
ans(:,:,1) =

 1 1

1 Alphabetical List

1-15208

 1 1
 1 1

ans(:,:,2) =

 1 1
 1 1
 1 1

Note that specifying multiple vector inputs returns an error.

Execute Logic Statement

true along with false can be used to execute logic statements.

Test the logical statement

~(A and B) = (~A) or (~B)

for A = true and B = false.

~(true & false) == (~true) | (~false)

ans = logical
 1

The result is logical 1 (true), since the logical statements on both sides of the equation
are equivalent. This logical statement is an instance of De Morgan's Law.

Generate Logical Array of Selected Sparsity

Generate a logical array of the same sparsity as the selected array.

A = logical(sparse(5,3));
whos A

 true

1-15209

 Name Size Bytes Class Attributes

 A 5x3 41 logical sparse

T = true(4,'like',A);
whos T

 Name Size Bytes Class Attributes

 T 4x4 184 logical sparse

The output array T has the same sparse attribute and data-type as the specified array A.

Input Arguments
n — Size of square matrix
integer

Size of square matrix, specified as an integer. n sets the output array size to n-by-n. For
example, true(3) returns a 3-by-3 array of logical ones.

• If n is 0, then T is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Size vector
row vector of integers

Size vector, specified as a row vector of integers. For example, true([2 3]) returns a 2-
by-3 array of logical ones.

• If the size of any dimension is 0, then T is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• If any trailing dimensions greater than 2 have a size of 1, then the output, T, does not

include those dimensions.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz1,...,szN — Size inputs
comma-separated list of integers

1 Alphabetical List

1-15210

Size inputs, specified by a comma-separated list of integers. For example, true(2,3)
returns a 2-by-3 array of logical ones.

• If the size of any dimension is 0, then T is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• If any trailing dimensions greater than 2 have a size of 1, then the output, T, does not

include those dimensions.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
logical variable

Prototype, specified as a logical variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

Output Arguments
T — Output of logical ones
scalar | vector | matrix | N-D array

Output of logical ones, returned as a scalar, vector, matrix, or N-D array.
Data Types: logical

Tips
• true(n) is much faster and more memory efficient than logical(true(n)).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 true

1-15211

Usage notes and limitations:

• Dimensions must be real, nonnegative, integers.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See true in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See true in the Parallel Computing Toolbox documentation.

See Also
false | logical

Topics
“Class Support for Array-Creation Functions”

Introduced before R2006a

1 Alphabetical List

1-15212

try, catch
Execute statements and catch resulting errors

Syntax
try
 statements
catch exception
 statements
end

Description
try statements, catch statements end executes the statements in the try block
and catches resulting errors in the catch block. This approach allows you to override the
default error behavior for a set of program statements. If any statement in a try block
generates an error, program control goes immediately to the catch block, which contains
your error handling statements.

exception is an MException object that allows you to identify the error. The catch
block assigns the current exception object to the variable in exception.

Both try and catch blocks can contain nested try/catch statements.

Examples

Supplement Error Message

Create two matrices that you cannot concatenate vertically.

A = rand(3);
B = ones(5);

C = [A; B];

 try, catch

1-15213

Error using vertcat
Dimensions of matrices being concatenated are not consistent.

Use try/catch to display more information about the dimensions.

try
 C = [A; B];
catch ME
 if (strcmp(ME.identifier,'MATLAB:catenate:dimensionMismatch'))
 msg = ['Dimension mismatch occurred: First argument has ', ...
 num2str(size(A,2)),' columns while second has ', ...
 num2str(size(B,2)),' columns.'];
 causeException = MException('MATLAB:myCode:dimensions',msg);
 ME = addCause(ME,causeException);
 end
 rethrow(ME)
end

Error using vertcat
Dimensions of matrices being concatenated are not consistent.

Caused by:
 Dimension mismatch occurred: First argument has 3 columns while second has 5 columns.

If matrix dimensions do not agree, MATLAB displays more information about the
mismatch. Any other errors appear as usual.

Repackage Error as Warning

Catch any exception generated by calling the nonexistent function, notaFunction. If
there is an exception, issue a warning and assign the output a value of 0.

try
 a = notaFunction(5,6);
catch
 warning('Problem using function. Assigning a value of 0.');
 a = 0;
end

Warning: Problem using function. Assigning a value of 0.

1 Alphabetical List

1-15214

By itself, the call to notaFunction results in an error. If you use try and catch, this
code catches any exception and repackages it as a warning, allowing MATLAB to continue
executing subsequent commands.

Handle Different Types of Errors

Use try/catch to handle different types of errors in different ways.

• If the function notaFunction is undefined, issue a warning instead of an error and
assign the output a value of NaN.

• If notaFunction.m exists, but is a script instead of a function, issue a warning
instead of an error, run the script, and assign the output a value of 0.

• If MATLAB throws an error for any other reason, rethrow the exception.

try
 a = notaFunction(5,6);
catch ME
 switch ME.identifier
 case 'MATLAB:UndefinedFunction'
 warning('Function is undefined. Assigning a value of NaN.');
 a = NaN;
 case 'MATLAB:scriptNotAFunction'
 warning(['Attempting to execute script as function. '...
 'Running script and assigning output a value of 0.']);
 notaFunction;
 a = 0;
 otherwise
 rethrow(ME)
 end
end

Warning: Function is undefined. Assigning a value of NaN.

Tips
• You cannot use multiple catch blocks within a try block, but you can nest complete

try/catch blocks.
• Unlike some other languages, MATLAB does not allow the use of a finally block

within try/catch statements.

 try, catch

1-15215

See Also
MException | assert | error

Introduced before R2006a

1 Alphabetical List

1-15216

tscollection
Create tscollection object

Description
A tscollection object is a collection of one or more timeseries objects with the same
time vector. Collections of timeseries are useful for analyzing multiple data trends that
occur simultaneously.

Creation
To create a tscollection object, use the tscollection function.

Syntax
tsc = tscollection(ts)
tsc = tscollection(timevals)

Description
tsc = tscollection(ts) creates a tscollection object containing the
timeseries objects in ts. The input ts can be a single timeseries object or a cell
array of timeseries objects. Each timeseries must have the same time vector.

tsc = tscollection(timevals) defines the time vector of a tscollection.

Input Arguments
ts — Input timeseries
scalar | cell array

Input timeseries, specified as a scalar or a cell array.

 tscollection

1-15217

timevals — Sample times
scalar | vector

Sample times, specified as a numeric scalar or vector, or a cell array of date character
vectors. Valid date character vectors can have the following forms:

Format Example
dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17
dd-mmm-yyyy 01-Mar-2000
mm/dd/yy 03/01/00
mm/dd 03/01
HH:MM:SS 15:45:17
HH:MM:SS PM 3:45:17 PM
HH:MM 15:45
HH:MM PM 3:45 PM
mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

Name-Value Pair Arguments
Example: tsc = tscollection(ts,'Name','MyTSC')

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify the name and value pair arguments in any order as
Name1,Value1,Name2,Value2.

Name — tscollection name
character vector

tscollection name, specified as a character vector.

isDatenum — datenum indicator
true (default) | false

1 Alphabetical List

1-15218

datenum indicator, specified as true or false. A value of true indicates that the time
vector of the tscollection object consists of datenum values. For more information,
see datenum.
Data Types: logical

Properties
Name — tscollection name
character vector

tscollection name, represented as a character vector.

Time — Time values
vector

Time values, represented as a vector.

When TimeInfo.StartDate is empty, values are measured relative to 0. When
TimeInfo.StartDate is defined, values represent date character vectors measured
relative to the StartDate.

The length of Time must be the same as the first or the last dimension of Data for each
collection.

TimeInfo — Time information
collection of fields

Time information, represented as a collection of the following fields describing the time
vector:

• Units — Time units with the value 'weeks', 'days', 'hours', 'minutes',
'seconds', 'milliseconds', 'microseconds', or 'nanoseconds'.

• Start — Start time.
• End — End time (read only).
• Increment — Interval between subsequent time values (NaN when times are not

uniformly sampled).
• Length — Length of time vector (read only).
• Format — Character vector defining the date display (see datestr).

 tscollection

1-15219

• StartDate — Date character vector defining the reference date (see setabstime).
• UserData — Additional user-defined information.

To access the value of a field, use the form tsc.TimeInfo.field for a tscollection
object tsc.

Object Functions
Modify and Combine
addsampletocollection Add sample to tscollection
addts Add timeseries to tscollection
delsamplefromcollection Delete sample from tscollection
horzcat Horizontally concatenate tscollection objects
removets Remove timeseries from tscollection
resample Resample tscollection time vector
set Set tscollection properties
setabstime Set tscollection times as date character vectors
settimeseriesnames Rename timeseries in tscollection
vertcat Vertically concatenate tscollection objects

Query
get Query tscollection properties
getabstime Convert tscollection time vector to cell array
getsampleusingtime Subset of tscollection data
gettimeseriesnames Names of timeseries in tscollection
isempty Determine if tscollection is empty
length Length of tscollection time vector
size Size of tscollection

Examples

Create tscollection

Create a tscollection object from two timeseries objects.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,...
'Name','Acceleration');

1 Alphabetical List

1-15220

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',1:5,...
'Name','Speed');
ts = tscollection({ts1;ts2})

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 5 seconds

Member Time Series Objects:

 Acceleration
 Speed

See Also
timeseries

Topics
“Time Series Objects”

Introduced before R2006a

 tscollection

1-15221

tsdata.event
Create tsdata.event object

Description
A tsdata.event object contains event information for a timeseries object within its
properties. To add events in a tsdata.event to a timeseries, you can use the
addevent function.

Creation
To create a tsdata.event object, use the tsdata.event function.

Syntax
tse = tsdata.event(eventname,eventtime)
tse = tsdata.event(eventname,eventtime,'Datenum')

Description
tse = tsdata.event(eventname,eventtime) creates a tsdata.event object
named eventname occurring at the time eventtime.

tse = tsdata.event(eventname,eventtime,'Datenum') indicates that the
eventtime value is a serial date number generated by the datenum function.
eventtime is converted to a date character vector after the event is created.

Input Arguments
eventname — Event name
character vector

Event name, specified as a character vector.

1 Alphabetical List

1-15222

eventtime — Event time
scalar

Event time, specified as a numeric scalar.

Properties
EventData — Event data
array

Event data, represented as an array containing user-defined information about the event.

Name — Event name
character vector

Event name, represented as a character vector.

Time — Event time
vector

Time values, represented as a numeric scalar.

Units — Time units
'weeks' | 'days' | 'hours' | 'minutes' | 'seconds' | 'milliseconds' |
'microseconds' | 'nanoseconds'

Time units, specified as 'weeks', 'days', 'hours', 'minutes', 'seconds',
'milliseconds', 'microseconds', or 'nanoseconds'.

StartDate — Start date
character vector

Start date, specified as a valid datestr character vector.

Object Functions
findEvent Query tsdata.event by name
get Query tsdata.event properties
getTimeStr Query tsdata.event times
set Set tsdata.event properties

 tsdata.event

1-15223

Examples

Create Event

Create a tsdata.event object.

tse = tsdata.event('MyEvent',6)

 EventData: []
 Name: 'MyEvent'
 Time: 6
 Units: 'seconds'
 StartDate: ''

Create a timeseries object and add the event to the timeseries.

ts = timeseries((1:5)',1:5);
ts = addevent(ts,tse);
ts.Events

 EventData: []
 Name: 'MyEvent'
 Time: 6
 Units: 'seconds'
 StartDate: ''

See Also
addevent | datenum | datestr | timeseries

Topics
“Time Series Objects”

Introduced before R2006a

1 Alphabetical List

1-15224

findEvent
Query tsdata.event by name

Syntax
[event,ind] = findEvent(tse,tsename)
[event,ind] = findEvent(tse,tsename,n)

Description
[event,ind] = findEvent(tse,tsename) returns the first tsdata.event object
event with the name tsename in an array of tsdata.event objects tse. The output
argument ind is the index of tse corresponding to event.

[event,ind] = findEvent(tse,tsename,n) returns the nth tsdata.event object
in the array tse and its index.

Examples

Find Event by Name

Create a vector containing two tsdata.event objects with the name MyEvent. Find the
first event named MyEvent.

tse1 = tsdata.event('MyEvent',1);
tse2 = tsdata.event('MyEvent',2);
tse = [tse1 tse2];
[event1,ind1] = findEvent(tse,'MyEvent');
event1

 EventData: []
 Name: 'MyEvent'
 Time: 1
 Units: 'seconds'
 StartDate: ''

 findEvent

1-15225

ind1

ind1 = 1

Find the second event named MyEvent.

[event2,ind2] = findEvent(tse,'MyEvent',2);
event2

 EventData: []
 Name: 'MyEvent'
 Time: 2
 Units: 'seconds'
 StartDate: ''

ind2

ind2 = 2

Input Arguments
tse — Input tsdata.event
array

Input tsdata.event, specified as an array.

tsename — tsdata.event name
character vector

tsdata.event name, specified as a character vector.

n — tsdata.event number
integer scalar

tsdata.event number, specified as an integer scalar.

Output Arguments
event — Output tsdata.event
scalar

1 Alphabetical List

1-15226

Output tsdata.event, specified as a scalar.

ind — tsdata.event index
integer scalar

tsdata.event index, specified as an integer scalar.

See Also
timeseries | tscollection | tsdata.event

Introduced before R2006a

 findEvent

1-15227

get
Query tsdata.event properties

Syntax
tseinfo = get(tse)
tseinfo = get(tse,propname)

Description
tseinfo = get(tse) returns all properties of the tsdata.event object tse.

tseinfo = get(tse,propname) returns the property value of the property propname.
For a full list of tsdata.event property names, see tsdata.event.

Examples

Display tsdata.event Property

Create a tsdata.event object and display its time units.

tse = tsdata.event('MyEvent',3);
tseinfo = get(tse,'Units')

tseinfo =
'seconds'

Input Arguments
tse — Input tsdata.event
scalar

1 Alphabetical List

1-15228

Input tsdata.event, specified as a scalar.

propname — Property name
character vector

Property name, specified as a character vector. For a full list of tsdata.event property
names, see tsdata.event.

See Also
set | timeseries | tscollection | tsdata.event

Introduced before R2006a

 get

1-15229

getTimeStr
Query tsdata.event times

Syntax
eventtimes = getTimeStr(tse,timeunits)

Description
eventtimes = getTimeStr(tse,timeunits) returns a cell array containing the
times for each tsdata.event in an array tse with units timeunits.

Examples

Event Times

Create an array of tsdata.event objects and display their times in seconds.

tse1 = tsdata.event('MyEvent',1);
tse2 = tsdata.event('MyEvent',2);
tse = [tse1 tse2];
eventtimes = getTimeStr(tse,'seconds')

eventtimes = 1x2 cell array
 {'1.000'} {'2.000'}

Input Arguments
tse — Input tsdata.event
array

Input tsdata.event, specified as an array.

1 Alphabetical List

1-15230

timeunits — Time units
'weeks' | 'days' | 'hours' | 'minutes' | 'seconds' | 'milliseconds' |
'microseconds' | 'nanoseconds'

Time units, specified as 'weeks', 'days', 'hours', 'minutes', 'seconds',
'milliseconds', 'microseconds', or 'nanoseconds'.

See Also
timeseries | tscollection | tsdata.event

Introduced before R2006a

 getTimeStr

1-15231

set
Set tsdata.event properties

Syntax
tseprop = set(tse)
tseprop = set(tse,propname)
set(tse,propname,propval)

Description
tseprop = set(tse) returns all property values of a tsdata.event object tse.

tseprop = set(tse,propname) displays the property specified in propname. This
syntax is equivalent to the command tseprop = tse.propname. For a full list of
tsdata.event property names, see tsdata.event.

set(tse,propname,propval) sets the property propname of tse to the value
propval. This syntax is equivalent to the command tse.propname = propval. You can
set multiple properties and their values at a time by using comma-separated pairs. For a
full list of tsdata.event property names and corresponding valid values, see
tsdata.event.

Examples

Set tsdata.event Property

Create a tsdata.event object and set the time units to 'hours'.

tse = tsdata.event('MyEvent',3);
set(tse,'Units','hours');
tseunits = tse.Units

tseunits =
'hours'

1 Alphabetical List

1-15232

Input Arguments
tse — Input tsdata.event
scalar

Input tsdata.event, specified as a scalar.

propname — Property name
character vector

Property name, specified as a character vector. For a full list of tsdata.event property
names, see tsdata.event.

propval — Property value
scalar

Property value, specified as a scalar. For a full list of tsdata.event property names and
valid values, see tsdata.event.

See Also
get | timeseries | tscollection | tsdata.event

Introduced before R2006a

 set

1-15233

tsearchn
N-D closest simplex search

Syntax
t = tsearchn(X,TRI,XI)
[t,P] = tsearchn(X,TRI,XI)

Description
t = tsearchn(X,TRI,XI) returns the indices t of the enclosing simplex of the
Delaunay triangulation TRI for each point in XI. X is an m-by-n matrix, representing m
points in N-dimensional space. XI is a p-by-n matrix, representing p points in N-
dimensional space. tsearchn returns NaN for all points outside the convex hull of X. If a
point in XI lies on the boundary of two or more simplexes, then the largest index is
returned. tsearchn requires a triangulation TRI of the points X obtained from
delaunayn.

[t,P] = tsearchn(X,TRI,XI) also returns the barycentric coordinate P of XI in the
simplex TRI. P is a p-by-n+1 matrix. Each row of P is the barycentric coordinate of the
corresponding point in XI. It is useful for interpolation.

Tips
• The pointLocation function can provide better search performance for some 2-D

and 3-D triangulations, such as finite element meshes.

See Also
delaunayTriangulation

Introduced before R2006a

1 Alphabetical List

1-15234

type
Display contents of file

Syntax
type filename

Description
type filename displays the contents of the specified file in the MATLAB Command
Window.

Examples

View File Contents

Display the contents of the file diceRoll. Since diceRoll does not exist, but
diceRoll.m does exist, MATLAB displays the contents of diceRoll.m.

type diceRoll

function [d1,d2] = diceRoll
str = '@()randi([1 6],1)';
d1 = str2func(str);
d2 = eval(str);
end

function r = randi(~,~)
r = 1;
end

 type

1-15235

Input Arguments
filename — File name
character vector | string

File name to display, specified as a character vector or a string. filename can be an
absolute or relative path and can include a path and a file extension. type supports file
names with these extensions.

File Extension Description
.mlx MATLAB Live Script — An interactive

document created using MATLAB Live
Editor

.mlapp MATLAB App File — An app created using
MATLAB App Designer

.m MATLAB Code — A MATLAB script,
function, or class

If you do not specify a file extension and a file without an extension does not exist, then
type assumes that the extension is .mlx, .mlapp, or .m. For example, if a file
myscript.m exists, then the command type myscript displays the contents of that file.

See Also
dbtype | more | which

Introduced in R2006a

1 Alphabetical List

1-15236

typecast
Convert data types without changing underlying data

Syntax
Y = typecast(X, type)

Description
Y = typecast(X, type) converts a numeric value in X to the data type specified by
type. Input X must be a full, noncomplex, numeric scalar or vector. The type input is a
string set to one of the following: 'uint8', 'int8', 'uint16', 'int16', 'uint32',
'int32', 'uint64', 'int64', 'single', or 'double'.

typecast is different from the MATLAB cast function in that it does not alter the input
data. typecast always returns the same number of bytes in the output Y as were in the
input X. For example, casting the 16-bit integer 1000 to uint8 with typecast returns
the full 16 bits in two 8-bit segments (3 and 232) thus keeping its original value (3*256 +
232 = 1000). The cast function, on the other hand, truncates the input value to 255.

The output of typecast can be formatted differently depending on what system you use
it on. Some computer systems store data starting with its most significant byte (an
ordering called big-endian), while others start with the least significant byte (called little-
endian).

Note MATLAB issues an error if X contains fewer values than are needed to make an
output value.

Examples
Example 1
This example converts between data types of the same size:

 typecast

1-15237

typecast(uint8(255), 'int8')
ans =
 -1

typecast(int16(-1), 'uint16')
ans =
 65535

Example 2
Set X to a 1-by-3 vector of 32-bit integers, then cast it to an 8-bit integer type:

X = uint32([1 255 256])
X =
 1 255 256

Running this on a little-endian system produces the following results. Each 32-bit value is
divided up into four 8-bit segments:

Y = typecast(X, 'uint8')
Y =
 1 0 0 0 255 0 0 0 0 1 0 0

The third element of X, 256, exceeds the 8 bits that it is being converted to in Y(9) and
thus overflows to Y(10):

Y(9:12)
ans =
 0 1 0 0

Note that length(Y) is equal to 4.*length(X). Also note the difference between the
output of typecast versus that of cast:

Z = cast(X, 'uint8')
Z =
 1 255 255

Example 3
This example casts a smaller data type (uint8) into a larger one (uint16). Displaying the
numbers in hexadecimal format makes it easier to see just how the data is being
rearranged:

1 Alphabetical List

1-15238

format hex
X = uint8([44 55 66 77])
X =
 2c 37 42 4d

The first typecast is done on a big-endian system. The four 8-bit segments of the input
data are combined to produce two 16-bit segments:

Y = typecast(X, 'uint16')
Y =
 2c37 424d

The second is done on a little-endian system. Note the difference in byte ordering:

Y = typecast(X, 'uint16')
Y =
 372c 4d42

You can format the little-endian output into big-endian (and vice versa) using the
swapbytes function:

Y = swapbytes(typecast(X, 'uint16'))
Y =
 2c37 424d

Example 4
This example attempts to make a 32-bit value from a vector of three 8-bit values. MATLAB
issues an error because there are an insufficient number of bytes in the input:

format hex
typecast(uint8([120 86 52]), 'uint32')

Error using typecast
Too few input values to make output type.

Repeat the example, but with a vector of four 8-bit values, and it returns the expected
answer:

typecast(uint8([120 86 52 18]), 'uint32')
ans =
 12345678

 typecast

1-15239

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Value of data type argument must be lowercase.
• When you use typecast with inheritance of input port data types in MATLAB

Function blocks, you can receive a size error. To avoid this error, specify the block
input port data types explicitly.

• Integer input or result classes must map directly to a C type on the target hardware.
• The input must be a variable-length vector or a fixed-size vector. See “Variable-Sizing

Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).
• The output vector always has the same orientation as the input vector.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | class | swapbytes

1 Alphabetical List

1-15240

Introduced before R2006a

 typecast

1-15241

tzoffset
Time zone offset from UTC

Syntax
dt = tzoffset(t)
[dt,dst] = tzoffset(t)

Description
dt = tzoffset(t) returns an array of durations equal to the time zone offset from UTC
of each datetime value in t. That is, dt is the amount of time that each datetime in t
differs from UTC. For datetimes that occur during Daylight Saving Time (DST), dt
includes the time shift for DST. The offset for unzoned datetime values is not defined.

[dt,dst] = tzoffset(t) additionally returns the time shift for Daylight Saving Time
for each datetime in t.

Examples

Find Time Zone Offset

Create a datetime array in the time zone for New York City.

t1 = datetime('today','TimeZone','America/New_York');
t = dateshift(t1,'end','month',[1:3:9])

t = 1x3 datetime array
 30-Apr-2019 31-Jul-2019 31-Oct-2019

Find the time zone offset from UTC and the time shift for Daylight Saving Time for each
datetime value.

[dt,dst] = tzoffset(t)

1 Alphabetical List

1-15242

dt = 1x3 duration array
 -04:00 -04:00 -04:00

dst = 1x3 duration array
 01:00 01:00 01:00

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Output Arguments
dt — Time zone offset from UTC
scalar | vector | matrix | multidimensional array

Time zone offset from UTC, returned as a scalar, vector, matrix, or multidimensional
duration array. dt is the same size as t.

dst — Time shift for Daylight Saving Time
scalar | vector | matrix | multidimensional array

Time shift for Daylight Saving Time, returned as a scalar, vector, matrix, or
multidimensional duration array. dt is the same size as t. A value of 01:00 indicates
that the corresponding datetime in t occurs during Daylight Saving Time in a location
that observes it. For locations that do not observe Daylight Saving Time, the elements of
the dst array are all 00:00.

 tzoffset

1-15243

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
isdst

Introduced in R2014b

1 Alphabetical List

1-15244

uibuttongroup
Create button group to manage radio buttons and toggle buttons

Syntax
bg = uibuttongroup
bg = uibuttongroup(Name,Value)
bg = uibuttongroup(parent)
bg = uibuttongroup(parent,Name,Value)

Description
bg = uibuttongroup creates a button group in the current figure and returns the
ButtonGroup object. If there is no figure available, MATLAB calls the figure function to
create one.

bg = uibuttongroup(Name,Value) specifies button group property values using one
or more name-value pair arguments.

bg = uibuttongroup(parent) creates the button group in the specified parent
container. The parent container can be a figure created with either the figure or
uifigure function, or a child container such as a panel. Property values for
uibuttongroup vary slightly depending on whether the app is created with the figure
or uifigure function. For more information, see “Name-Value Pair Arguments” on page
1-15249.

bg = uibuttongroup(parent,Name,Value) specifies the parent container and one or
more properties values.

Examples

 uibuttongroup

1-15245

Code Response to Radio Button Selection

Show the previous and current button selections in the MATLAB Command Window when
the user selects a different radio button in a button group.

Copy and paste this code into the Editor and run it to see how it works.
function myui
bg = uibuttongroup('Visible','off',...
 'Position',[0 0 .2 1],...
 'SelectionChangedFcn',@bselection);

% Create three radio buttons in the button group.
r1 = uicontrol(bg,'Style',...
 'radiobutton',...
 'String','Option 1',...
 'Position',[10 350 100 30],...
 'HandleVisibility','off');

r2 = uicontrol(bg,'Style','radiobutton',...
 'String','Option 2',...
 'Position',[10 250 100 30],...
 'HandleVisibility','off');

r3 = uicontrol(bg,'Style','radiobutton',...
 'String','Option 3',...
 'Position',[10 150 100 30],...
 'HandleVisibility','off');

% Make the uibuttongroup visible after creating child objects.
bg.Visible = 'on';

 function bselection(source,event)
 disp(['Previous: ' event.OldValue.String]);
 disp(['Current: ' event.NewValue.String]);
 disp('------------------');
 end
end

The bselection function displays the OldValue and NewValue properties of event.

1 Alphabetical List

1-15246

Scrollable Button Group

The Scrollable property enables scrolling within a button group that has components
outside its borders. Scrolling is only possible when the button group is in a figure created
with the uifigure function. App Designer uses this type of figure for creating apps.

Create a button group within a figure. Add six toggle buttons, with the first three lying
outside the upper border of the button group.

f = uifigure;
bg = uibuttongroup(f,'Position',[20 20 196 135]);
tb1 = uitogglebutton(bg,'Position',[11 165 140 22],'Text','One');
tb2 = uitogglebutton(bg,'Position',[11 140 140 22],'Text','Two');
tb3 = uitogglebutton(bg,'Position',[11 115 140 22],'Text','Three');
tb4 = uitogglebutton(bg,'Position',[11 90 140 22],'Text','Four');

 uibuttongroup

1-15247

tb5 = uitogglebutton(bg,'Position',[11 65 140 22],'Text','Five');
tb6 = uitogglebutton(bg,'Position',[11 40 140 22],'Text','Six');

Enable scrolling by setting the Scrollable property of the button group to 'on'. By
default, the scroll box displays at the top.

bg.Scrollable = 'on';

1 Alphabetical List

1-15248

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a figure created with either the figure or uifigure
function, or a child container:

• Panels, tabs and button groups can be containers in either type of figure.
• Grid layouts can be containers only in figures created with the uifigure function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 uibuttongroup

1-15249

quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.
Example: 'Title','Options' specifies that the button group title is Options.

• For a list of properties available for GUIDE, or for creating apps with the figure
function, see Uibuttongroup for GUIDE.

• For a list of properties available for App Designer, or for creating apps with the
uifigure function, see ButtonGroup for App Designer.

Tips
• A button group can contain any UI component type (except an ActiveX control), but it

only manages the selection of radio buttons and toggle buttons.
• To make your program respond when the app user selects a radio button or toggle

button that is inside a button group. define a SelectionChangedFcn callback
function for the button group. You cannot define callbacks for the individual buttons.

• To determine which radio button or toggle button is selected, query the
SelectedObject property of the button group. You can execute this query anywhere
in your code.

• If you set the Visible property of a button group object to 'off', then any child
objects it contains (buttons, other button groups, etc.) become invisible along with the
parent button group. However, the Visible property value of each child object
remains unaffected.

See Also
Functions
uicontrol | uipanel | uiradiobutton | uitogglebutton

Properties
ButtonGroup

Introduced before R2006a

1 Alphabetical List

1-15250

ButtonGroup Properties
Control appearance and behavior of button group

Note The properties listed here are valid for button groups in GUIDE or in apps
created with the figure function. If you are using App Designer or the uifigure
function, see ButtonGroup Properties instead. For more information, see “Migrating
GUIDE Apps to App Designer”.

Description
Button groups are containers for managing exclusive selection of radio buttons and toggle
buttons. Properties control the appearance and behavior of a button group. Use dot
notation to refer to a specific object and property.

f = figure;
b = uibuttongroup(f);
b.BackgroundColor = [.5 .5 .5];

Properties
Title

Title — Title
character vector | string scalar | categorical array

Title, specified as a character vector, string scalar, or categorical array. If you specify this
property as a categorical array, MATLAB displays only the first element in the array.

MATLAB does not interpret a vertical slash ('|') character as a line break, it displays as
a vertical slash in the title.

If you want to specify a Unicode character, pass the Unicode decimal code to the char
function. For example, ['Multiples of ' char(960)] displays as Multiples of π.

 ButtonGroup Properties

1-15251

TitlePosition — Title location
'lefttop' (default) | 'centertop' | 'righttop' | 'leftbottom' |
'centerbottom' | 'rightbottom'

Title location, specified as 'lefttop', 'centertop', 'righttop', 'leftbottom',
'centerbottom', or 'rightbottom'.

Color and Styling

ForegroundColor — Title color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Title color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

1 Alphabetical List

1-15252

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0 0 1]
Example: 'b'
Example: 'blue'

BackgroundColor — Background color
[.94 .94 .94] (default) | RGB Triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 ButtonGroup Properties

1-15253

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BorderType — Border type
'etchedin' (default) | 'etchedout' | 'beveledin' | 'beveledout' | 'line' |
'none'

Border type, specified as 'etchedin', 'none', 'etchedout', 'beveledin',
'beveledout', or 'line'.

• For a 3-D appearance, use etched or beveled borders.

Use the HighlightColor and ShadowColor properties to specify the color of 3-D
borders.

1 Alphabetical List

1-15254

• For a simpler appearance, use a line border.

Use the HighlightColor property to specify the line border color.

BorderWidth — Border width
1 (default) | positive integer value

Border width, specified as a positive integer value. The unit of measurement is pixels.
Etched and beveled borders wider than three pixels might not appear correctly at the
corners.

HighlightColor — Border highlight color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Border highlight color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

 ButtonGroup Properties

1-15255

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

ShadowColor — Border shadow color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Border shadow color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-15256

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Clipping — Child component clipping (not recommended)
'on' (default) | 'off'

Note The behavior of the Clipping property has changed. It no longer has any effect on
ButtonGroup objects. Child objects are now clipped to the boundaries of their parent
container regardless of the value of this property. This property might be removed in a
future release.

 ButtonGroup Properties

1-15257

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific operating system and locale.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'. The actual
fixed-width font used depends on the FixedWidthFontName property of the root object.
Changing the FixedWidthFontName property causes an immediate update of the display
to use the new font.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The FontUnits property specifies the units.
The default size is system-dependent.
Example: 12
Example: 12.5

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as a value from the following table.

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than normal

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note The 'light' and 'demi' font weight values have been removed in R2014b. If you
specify either of these values, the result is a normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

1 Alphabetical List

1-15258

Font angle, specified as 'normal' or 'italic'. MATLAB uses this property to select a
font from those available on your system. Setting this property to 'italic' selects a
slanted version of the font, if it is available on your system.

Note The 'oblique' value has been removed. Use 'italic' instead.

FontUnits — Font units
'points' (default) | 'normalized' | 'inches' | 'centimeters' | 'pixels'

Font units, specified as one of the values from this table.

Units Value Description
'points' Points. One point is 1/72nd of an inch.
'normalized' Normalized values for specifying the font size as a fraction

of the height. When you resize a UI component, MATLAB
scales the displayed font to maintain that fraction.

'inches' Inches.
'centimeters' Centimeters.
'pixels' Pixels.

Starting in R2015b, distances in pixels are independent of
your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your
system resolution.

Interactivity

Visible — Button group visibility
'on' (default) | 'off'

Button group visibility, specified as 'on' or 'off'. The Visible property determines
whether the button group displays on the screen. If the Visible property is set to

 ButtonGroup Properties

1-15259

'off', the entire button group is invisible, but you can still specify and access its
properties.

Changing the size of an invisible container triggers the SizeChangedFcn callback when
it becomes visible.

Note Changing the Visible property of a container does not change the Visible
property of its child components even though hiding the container prevents its children
from displaying.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | uicontextmenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when the user right-clicks on a UI component. Create the context menu using the
uicontextmenu function.

SelectedObject — Currently selected radio button or toggle button
UIControl object | []

Currently selected radio button or toggle button, specified as a UIControl object.

Use this property to determine the currently selected button within a button group. You
can also use this property to set a default button selection. If you want no selection, then
set this property to [].

The default value of the SelectedObject property is the first radio button or toggle
button that you add to the button group.

Note The SelectionChangedFcn callback does not execute when you set the
SelectedObject property programmatically.

Selected — Selection state (not recommended)
'off' (default) | 'on'

Note The behavior of the Selected property changed in R2014b, and it is not
recommended. It no longer has any effect on ButtonGroup objects. This property might
be removed in a future release.

1 Alphabetical List

1-15260

SelectionHighlight — Display of selection handles (not recommended)
'on' (default) | 'off'

Note The behavior of the SelectionHighlight property changed in R2014b, and it is
not recommended. It no longer has any effect on ButtonGroup objects. This property
might be removed in a future release.

Position

Position — Location and size (including borders and title)
[left bottom width height]

Location and size (including borders and title), specified as a four-element vector of the
form [left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the button group
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the button group
width Distance between the right and left outer edges of the

button group
height Distance between the top and bottom outer edges of the

button group

All measurements are in units specified by the Units property.

Note The Position values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and does not include the
area occupied by the title. If the parent container is a figure, then the drawable area also
excludes the menu bar and tool bar.

Example: Modify One Value in the Position Vector

You can combine dot notation and array indexing when you want to change one value in
the Position vector. For example, this code sets the width to 0.5:

 ButtonGroup Properties

1-15261

b = uibuttongroup;
b.Position(3) = 0.5;
b.Position

ans =

 0 0 0.5000 1.0000

InnerPosition — Location and size (excluding borders and title)
[left bottom width height]

This property is read-only.

Location and size (excluding borders and title), returned as a four-element vector of the
form [left bottom width height]. This table describes each element in the vector.

Value Description
left Distance from the inner left edge of the parent container to

the inner left edge of the button group.
bottom Distance from the inner bottom edge of the parent

container to the inner bottom edge of the button group.
width Distance between the inner edges of the button group's

right and left borders.
height Distance between the inner edges of the button group's top

and bottom borders. This distance excludes the title, if it
exists.

All measurements are in units specified by the Units property.

Note These are some important points to consider when using the InnerPosition
property:

• InnerPosition values are affected by the presence of a title, font characteristics,
BorderType, and BorderWidth.

• InnerPosition values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and exclude the area
occupied by the title. If the parent container is a figure, then the drawable area also
excludes the menu bar and tool bar.

1 Alphabetical List

1-15262

OuterPosition — Location and size (including borders and title)
[left bottom width height]

Location and size (including borders and title), specified as a four-element vector of the
form [left bottom width height]. All measurements are in units specified by the
Units property.

This property value is identical to the Position property value.

Units — Units of measurement
'normalized' (default) | 'pixels' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified one of the values from this table.

Units Value Description
'normalized' These units are normalized with respect to

the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.

 ButtonGroup Properties

1-15263

Units Value Description
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

If you change the value of the Units property, it is good practice to return it to its default
value after completing your computation to avoid affecting other functions that assume
the Units property is set to the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units property before the Position property, then MATLAB sets
Position using the units you specified.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position values to the
equivalent values in the units you specified.

Callbacks

SelectionChangedFcn — Selection changed callback
'' (default) | function handle | cell array | character vector

Note The name of this property changed from SelectionChangeFcn to
SelectionChangedFcn in R2014b.

Selection changed callback, specified as one of these values:

• A function handle.

1 Alphabetical List

1-15264

• A cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This callback function executes when the user selects a different button within the button
group.

If you specify this property as a function handle (or cell array containing a function
handle), MATLAB passes an object containing callback data as the second argument to
the callback function. This object contains the properties described in this table. You can
access these properties inside the callback function using dot notation.

Property Description
OldValue Previously selected button, or [] if none was selected
NewValue Currently selected button
Source The parent ButtonGroup object
EventName 'SelectionChanged'

Define a SelectionChangedFcn callback to make your program respond when the user
selects different buttons within the button group. Do not code the response in the
individual component callback functions.

If you want another component to respond to the selection, then that component's
callback function can access the selected radio button or toggle button from the
SelectedObject property of the ButtonGroup object.

SizeChangedFcn — Size change callback function
'' (default) | function handle | cell array | character vector

Size change callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 ButtonGroup Properties

1-15265

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.
• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible
property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

Tip As an easy alternative to specifying a SizeChangedFcn callback, you can set the
Units property of all the objects you put inside a container to 'normalized'. Doing so
makes those components scale proportionally with the container.

See “Lay Out a UI Programmatically” for more information about managing layouts with
SizeChangedFcn callbacks.

ButtonDownFcn — Button-press callback function
'' (default) | function handle | cell array | character vector

Button-press callback function, specified as one of these values:

• A function handle.

1 Alphabetical List

1-15266

• A cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The ButtonDownFcn callback is a function that executes when the user clicks a mouse
button within the container.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.

 ButtonGroup Properties

1-15267

• A cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

ResizeFcn — Resize callback function (not recommended)
'' (default) | function handle | cell array | character vector

Resize callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Note Use of the ResizeFcn property is not recommended. It might be removed in a
future release. Use SizeChangedFcn instead.

Data Types: function_handle | cell | char

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

1 Alphabetical List

1-15268

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

 ButtonGroup Properties

1-15269

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-15270

HitTest — Ability to become current object
'on' (default) | 'off'

Ability to become current object, specified as 'on' or 'off':

• 'on' — Sets the current object to the ButtonGroup when the user clicks the
component in the running app. Both the CurrentObject property of the Figure and
the gco function return the ButtonGroup as the current object.

• 'off' — Sets the current object to be the closest ancestor of the ButtonGroup
whose HitTest is 'on' when the user clicks the component in the running app.

Parent/Child

Parent — Parent object
Figure | Panel | ButtonGroup | Tab

Parent object, specified as a Figure, Panel, ButtonGroup, or Tab object. Use this
property to specify the parent container when creating a UI component or to move an
existing UI component to a different parent container.

Children — ButtonGroup children
empty GraphicsPlaceholder array (default) | 1-D array of component objects

ButtonGroup children, returned as an empty GraphicsPlaceholder or a 1-D array of
component objects. Although a button group manages only the selection of radio buttons
and toggle buttons, its children can be instances of Axes, Panel, ButtonGroup, or any
style of UIControl objects.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the children. The order of the children reflects the
front-to-back order (stacking order) of the components on the screen. MATLAB might not
allow you to change the order of certain objects. For example, UIControl and Legend
objects are always in front of Axes objects.

To add a child to this list, set the Parent property of the child component to be the
ButtonGroup object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of ButtonGroup handle
'on' (default) | 'callback' | 'off'

 ButtonGroup Properties

1-15271

Visibility of ButtonGroup handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the ButtonGroup handle in its parent's list of
children. When a handle is not visible in its parent's list of children, it is not returned by
functions that obtain handles by searching the object hierarchy or querying handle
properties. These functions include get, findobj, gca, gcf, gco, newplot, cla, clf,
and close. The HandleVisibility property also controls the visibility of the object’s
handle in the parent figure's CurrentObject property. Handles are still valid even if
they are not visible. If you know an object's handle, you can set and get its properties, and
pass it to any function that operates on handles.

HandleVisibility Value Description
'on' The ButtonGroup handle is always visible.
'callback' The ButtonGroup handle is visible from within callbacks

or functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the ButtonGroup at the command-line,
but allows callback functions to access it.

'off' The ButtonGroup handle is invisible at all times. This
option is useful for preventing unintended changes to the
UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution
of that function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Note Do not try to access radio buttons and toggle buttons that are managed by a
uibuttongroup outside of the button group. Set the HandleVisibility of those radio
buttons and toggle buttons to 'off' to prevent accidental access.

Identifiers

Type — Type of graphics object
'uibuttongroup'

This property is read-only.

1 Alphabetical List

1-15272

Type of graphics object, returned as 'uibuttongroup'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
guide | uibuttongroup | uicontrol

Topics
“Access Property Values”
“Default Property Values”

Introduced before R2006a

 ButtonGroup Properties

1-15273

uicontextmenu
Create context menu

Note

Use this function only with GUIDE, or with figures created using the figure
function.

Syntax
c = uicontextmenu
c = uicontextmenu(Name,Value)

c = uicontextmenu(parent)
c = uicontextmenu(parent,Name,Value)

Description
c = uicontextmenu creates a context menu in the current figure and returns the
ContextMenu object as c. If a figure does not exist, then MATLAB calls the figure
function to create one.

c = uicontextmenu(Name,Value) creates a context menu with property values
specified using one or more name-value pair arguments. Use this syntax to override the
default property values.

c = uicontextmenu(parent) creates a context menu in the specified parent figure.

Note Specifying a parent alone does not make the context menu accessible in the UI. You
must also take these steps:

• Assign the context menu to a component using the UIContextMenu property.
• Create at least one child uimenu for the uicontextmenu.

See the “Tips” on page 1-15281 section for more information.

1 Alphabetical List

1-15274

c = uicontextmenu(parent,Name,Value) specifies a parent figure for the context
menu and one or more name-value pair arguments.

Examples

Context Menu Attached to a Plot Line

Specify a value for the line object’s UIContextMenu property to attach a
uicontextmenu to that line. The context menu becomes visible when the user right-
clicks on the line. For instance, create a program file called myprogram.m that creates a
plot and attaches a uicontextmenu to the plot line:

function myprogram

 f = figure('WindowStyle','normal');
 ax = axes;
 x = 0:100;
 y = x.^2;

 plotline = plot(x,y);
 c = uicontextmenu;

 % Assign the uicontextmenu to the plot line
 plotline.UIContextMenu = c;

 % Create child menu items for the uicontextmenu
 m1 = uimenu(c,'Label','dashed','Callback',@setlinestyle);
 m2 = uimenu(c,'Label','dotted','Callback',@setlinestyle);
 m3 = uimenu(c,'Label','solid','Callback',@setlinestyle);

 function setlinestyle(source,callbackdata)
 switch source.Label
 case 'dashed'
 plotline.LineStyle = '--';
 case 'dotted'
 plotline.LineStyle = ':';
 case 'solid'
 plotline.LineStyle = '-';
 end
 end
end

 uicontextmenu

1-15275

The context menu appears when the user right-clicks the plot line.

Selecting an item from the context menu changes the line style.

1 Alphabetical List

1-15276

Context Menu with Submenus

Specify the Parent property value of any uimenu to make it into a submenu. For
instance, create a program file called myprogram2 that creates a context menu
containing one top-level menu and two submenu items:

function myprogram2
 f = figure('WindowStyle','normal');
 c = uicontextmenu(f);

 % Assign the uicontextmenu to the figure

 uicontextmenu

1-15277

 f.UIContextMenu = c;

 % Create child menu of the uicontextmenu
 topmenu = uimenu('Parent',c,'Label','Change Color');

 % Create submenu items
 m1 = uimenu('Parent',topmenu,'Label','Red','Callback',@changecolor);
 m2 = uimenu('Parent',topmenu,'Label','Green','Callback',@changecolor);

 function changecolor(source,callbackdata)
 switch source.Label
 case 'Red'
 f.Color = [1.0 0.80 0.80];
 case 'Green'
 f.Color = [0.80 1.0 0.80];
 end
 end
end

The resulting context menu appears when the user right-clicks the mouse inside the
figure.

1 Alphabetical List

1-15278

Selecting a color from the context menu changes the color of the window.

 uicontextmenu

1-15279

Input Arguments
parent — Parent figure
Figure object

Parent figure, specified as a Figure object created with the figure. If a parent figure is
not specified, then MATLAB calls the figure function to create one that serves as the
parent.

Name-Value Pair Arguments
The properties listed here are only a subset, for a complete list see Uicontextmenu.
Example: 'Callback',@myfunction specifies myfunction to be the function that
executes when the user interacts with the context menu.

1 Alphabetical List

1-15280

Callback — Context menu callback function
'' (default) | function handle | cell array | character vector

Context menu callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.
Data Types: function_handle | cell | char

Children — Menu children
empty GraphicsPlaceholder array (default) | 1-D array of Menu objects

Menu children, returned as an empty GraphicsPlaceholder or a 1-D array of Menu
objects. The children of menus are other menus that function as submenus.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the child menu items. The order of the children in
this array reflects the order of the displayed menu items.

To add a child to this list, set the Parent property of the child component to be the
uicontextmenu object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

Tips
The context menu becomes accessible in the UI when these requirements are met:

• You assign the context menu to a component using the UIContextMenu property. The
assigned component must be a child of the same figure as the context menu.

• You create at least one child uimenu for the uicontextmenu.

For example:

 uicontextmenu

1-15281

f = figure;
c = uicontextmenu(f);
% Create a new component and assign the uicontextmenu to it
b = uicontrol(f,'UIContextMenu',c);
% Create a child menu for the uicontextmenu
m = uimenu('Parent',c,'Label','Disable');

See Also
Functions
uibuttongroup | uicontrol | uimenu | uipanel

Properties
Uicontextmenu

Introduced before R2006a

1 Alphabetical List

1-15282

ContextMenu Properties
Control appearance and behavior of context menu

Note

The properties listed here are valid for ContextMenu objects in GUIDE or in apps
created with the figure function.

Description
A context menu is a menu that appears when the user right-clicks on a graphics object or
UI component. The uicontextmenu function creates a context menu and sets any
required properties. By changing property values, you can modify the appearance and
behavior of a context menu. Use dot notation to refer to a specific object and property.

c = uicontextmenu;
c.Position = [20 20];

Properties
Interactivity

Visible — Context menu visibility
'off' (default) | 'on'

Context menu visibility, specified as 'on' or 'off'. You can use the Visible property in
one of two ways:

• Query the value to find out if the context menu is currently posted. The context menu
is posted while the Visible property value is set to 'on'.

• Set the Visible property to 'on' to make the context menu to appear. Set this
property to 'off' to make the context menu to disappear.

 ContextMenu Properties

1-15283

Position

Position — Context menu location
[left bottom]

Content menu location, specified as the vector, [left bottom]. This table describes
each element in the vector.

Element Description
left Distance from the inner left edge of the figure to the left

edge of the context menu
bottom Distance from the inner bottom edge of the figure to the

top edge of the context menu

The Position property defines the location of a context menu when its Visible
property is set to 'on'.

Callbacks

Callback — Context menu callback function
'' (default) | function handle | cell array | character vector

Context menu callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.
Data Types: function_handle | cell | char

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.

1 Alphabetical List

1-15284

• A cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

 ContextMenu Properties

1-15285

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

1 Alphabetical List

1-15286

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

 ContextMenu Properties

1-15287

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent object
figure

Parent object, specified as a figure. You can move a ContextMenu to a different figure by
setting this property to the target Figure object.

Children — Menu children
empty GraphicsPlaceholder array (default) | 1-D array of Menu objects

Menu children, returned as an empty GraphicsPlaceholder or a 1-D array of Menu
objects. The children of menus are other menus that function as submenus.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the child menu items. The order of the children in
this array reflects the order of the displayed menu items.

To add a child to this list, set the Parent property of the child component to be the
ContextMenu object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not

1 Alphabetical List

1-15288

visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

'off' The object handle is invisible at all times. This option is
useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uicontextmenu'

This property is read-only.

Type of graphics object, returned as 'uicontextmenu'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

 ContextMenu Properties

1-15289

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
uicontextmenu

Topics
“Access Property Values”
“Default Property Values”

Introduced before R2006a

1 Alphabetical List

1-15290

uicontrol
Create user interface control

Note Use this function only with GUIDE, or with apps created using the figure
function. App Designer is the recommended environment for building apps. For more
information, see “Migrating GUIDE Apps to App Designer”.

Syntax
c = uicontrol
c = uicontrol(Name,Value)
c = uicontrol(parent)
c = uicontrol(parent,Name,Value)

uicontrol(c)

Description
c = uicontrol creates a push button (the default user interface control) in the current
figure, and returns the UIControl object. If a figure does not exist, then MATLAB calls
the figure function to create one.

c = uicontrol(Name,Value) creates a user interface control with property values
specified using one or more name-value pair arguments. For example,
'Style','checkbox' creates a check box.

c = uicontrol(parent) creates the default user interface control in the specified
parent, instead of defaulting to the current figure.

c = uicontrol(parent,Name,Value) specifies the parent for the user interface
control and one or more name-value pair arguments.

uicontrol(c) gives focus to a previously defined user interface control.

 uicontrol

1-15291

Examples

Create Radio Button

Create a radio button by specifying the 'Style' name-value pair argument as
'radiobutton'. Label the radio button by specifying a value for the 'String' name-
value pair argument.

c = uicontrol('Style','radiobutton','String','Option 1');

Create Slider Within Panel

Create a figure and a panel positioned within it. Then, create a slider within the panel by
calling the uicontrol function with the panel specified as the parent and 'Style'
specified as 'slider'. Next, set the slider Value property to 0.5.

f = figure;
p = uipanel(f,'Position',[0.1 0.1 0.35 0.65]);
c = uicontrol(p,'Style','slider');
c.Value = 0.5;

1 Alphabetical List

1-15292

Code Response to Pop-Up Menu Selection

Create a pop-up menu that displays a list of choices when clicked. Use a callback function
to determine the list item selected by the user and display the selection in the MATLAB
Command Window.

Save this code as mytemps.m. This code creates a figure window with a pop-up menu
containing three list items. Then, it uses a callback function to query the Value and
String properties of the pop-up menu and displays the selected item at the command
line.

function mytemps
f = figure;
c = uicontrol(f,'Style','popupmenu');
c.Position = [20 75 60 20];
c.String = {'Celsius','Kelvin','Fahrenheit'};
c.Callback = @selection;

 function selection(src,event)
 val = c.Value;
 str = c.String;
 str{val};

 uicontrol

1-15293

 disp(['Selection: ' str{val}]);
 end

end

Run the program to generate the figure and its contents.

mytemps

Choose a different menu item to change the selection. For example, if you select "Kelvin"
from the pop-up menu, the command line then displays the text Selection: Kelvin.

Code Response to Button Click

Create a push button that plots data when you click it.

Save this code as pushbuttonPlot.m. This code creates a figure window that contains
axes and a push button. Each time you click the button, the callback function executes
and plots a bar chart of five normally distributed random numbers.

function pushbuttonPlot
f = figure;

1 Alphabetical List

1-15294

ax = axes(f);
ax.Units = 'pixels';
ax.Position = [75 75 325 280]
c = uicontrol;
c.String = 'Plot Data';
c.Callback = @plotButtonPushed;

 function plotButtonPushed(src,event)
 bar(randn(1,5));
 end

end

Run pushbuttonPlot, and then click the push button. MATLAB plots the data.

Bring Editable Text Field into Focus

Create an editable text field and bring it into focus by passing its function handle into the
uicontrol function. This action causes the cursor to become active, and blink, within
the editable text field.

 uicontrol

1-15295

c = uicontrol('Style','edit');
uicontrol(c);

Input Arguments
parent — Parent object
current figure (default) | Figure object | Panel object | ButtonGroup object | Tab
object

Parent object, specified as a Figure object created using the figure function, or as one
of its child containers: a Panel, ButtonGroup, or Tab object. Use this argument to
specify the parent container when creating a user interface control.

c — User interface control object
UIControl object

User interface control object, specified as a UIControl object. Use this argument to
specify a previously defined user interface control that you wish to bring into focus.
Example: uicontrol(c)

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-15296

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: uicontrol('Style','checkbox') specifies a check box as the style of the
user interface control.

Note The properties listed here are only a subset. For a complete list, see UIControl
Properties.

Style — Style of UIControl object
'pushbutton' (default) | 'togglebutton' | 'checkbox' | 'radiobutton' | ...

Style of UIControl object, specified as a value from the following table.

Style Property
Value

Example Description

'pushbutton' Button that appears to depress until you release the
mouse button.

'togglebutto
n'

Button that looks like a push button, but that visually
indicates its state: selected or cleared.

'checkbox' Option that can be selected or cleared independently.

'radiobutton
'

Option that is intended to form part of a group, such
that, when selected, it clears the other options within
the group.

To implement mutually exclusive behavior for a set of
radio buttons, place them within a uibuttongroup.

'edit' Editable text field.

To enable multiple lines of text, set the Max and Min
properties so that Max-Min > 1.

 uicontrol

1-15297

Style Property
Value

Example Description

'text' Static text field. Use static text to label other user
interface controls, provide information to the user, or
indicate values associated with a slider.

To make static text respond to mouse clicks, set the
Enable property to 'Inactive' and code a
response with the ButtonDownFcn callback.

'slider' "Thumb" button that the user moves along a
horizontal or vertical bar. The location of the button
along the bar indicates a value within a specified
range.

'listbox' List of items from which the user can select one or
more items. Unlike pop-up menus, list boxes do not
expand when clicked.

To enable multiple selection of items, set the Max and
Min properties so that Max-Min > 1. To delay action
when multiple items can be selected from a list box,
you can associate a Done push button with the list
box. Then, use the callback for that button to evaluate
the list box Value property.

'popupmenu' Pop-up menu (also known as drop-down menu) that
expands to display a list of choices. When closed, a
pop-up menu indicates the current choice. Use pop-
up menus when you want to provide a number of
mutually exclusive choices.

'frame' The 'frame' option is not recommended. Use uipanel or
uibuttongroup instead of frames. GUIDE continues to support frames
in UIs that contain them, but the frame component does not appear in
the GUIDE Layout Editor component palette.

String — Text to display
character vector | cell array of character vectors | string array | categorical array | ...

1 Alphabetical List

1-15298

Text to display, specified as a character vector, cell array of character vectors, string
array, categorical array, or pipe-delimited row vector. The Style property dictates the
array format you can use.

Style Property Supported Array Formats Examples
'pushbutton' Character vector

Cell array of character vectors

String array

Categorical array

'Option 1'

{'Option 1'}

"Option 1"

categorical({'Option 1'})

'togglebutton'
'checkbox'
'radiobutton'
'edit'
'text'
'listbox' Character vector

Cell array of character vectors

String array

Categorical array

Pipe-delimited row vector

'One'

{'One','Two','Three'}

["One" "Two" "Three"]

categorical({'one','two',
'three'})

'One|Two|Three'

'popupmenu'

Note If you specify a cell array or a categorical array for a push button, toggle button,
check box, or radio button, MATLAB displays only the first element in the array.

Position — Location and size
[20 20 60 20] (default) | [left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. Default measurement units are in pixels. The table describes each element in
the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of the user interface control.

 uicontrol

1-15299

Element Description
bottom Distance from the inner bottom edge of the parent container to

the outer bottom edge of the user interface control.
width Distance between the right and left outer edges of the user

interface control.
height Distance between the top and bottom outer edges of the user

interface control.

Position values are relative to the parent container's drawable area. The drawable area
is the area inside the borders of the container and does not include the area occupied by
the title. If the parent container is a figure, the drawable area also excludes the menu bar
and tool bar.

Value — Current value
number

Current value, specified as a number. Use to query or modify the status of certain user
interface controls. The table describes the Value property in relation to specific
UIControl styles.

Style Property Description of Value Property
'togglebutton' • Selected: Value of the Max property.

• Cleared: Value of the Min property.
'checkbox' • Selected: Value of the Max property.

• Cleared: Value of the Min property.
'radiobutton' • Selected: Value of the Max property.

• Cleared: Value of the Min property.
'slider' Value associated with the thumb location along the slider bar.
'listbox' Array index corresponding to the selected item in the list box. A

value of 1 (default) corresponds to the first item in the list. When
multiple items are selected, the Value property stores the row
indexes as a vector.

'popupmenu' Array index corresponding to the selected item in the pop-up
menu. A value of 1 (default) corresponds to the first item in the
pop-up menu.

1 Alphabetical List

1-15300

See Also
Functions
figure | uibuttongroup

Properties
UIControl Properties

Topics
“Add Components to a Programmatic App”
“Callbacks for Specific Components”
“Access Property Values”

Introduced before R2006a

 uicontrol

1-15301

UIControl Properties
Control appearance and behavior of user interface control

Note The properties listed here are valid for UIControl objects in GUIDE or in
apps created with the figure function. App Designer is the recommended
environment for building apps. For more information, see “Migrating GUIDE Apps to App
Designer”.

Description
User interface controls are components such as buttons and sliders that users can
interact with. The uicontrol function creates a user interface control and sets any
required properties before displaying it. By changing property values, you can modify the
appearance and behavior of user interface controls. Use dot notation to refer to a specific
object and property.

f = figure;
b = uicontrol(f,'Style','pushbutton');
b.Position = [100 100 50 20];

Properties
Type of Control

Style — Style of UIControl
'pushbutton' (default) | 'togglebutton' | 'checkbox' | 'radiobutton' | ...

Style of UIControl, specified as a value from the following table.

Style Value Description
'pushbutton' Button that appears to depress until you release the mouse

button.
'togglebutton' Button that can have two states: up or depressed. The

state of the toggle button changes every time you click it.

1 Alphabetical List

1-15302

Style Value Description
'checkbox' Check box that can have two states: checked or

unchecked. The state changes when the user clicks and
releases the mouse button over it.

'radiobutton' Button that can have two states: selected or deselected.
Radio buttons are intended to be mutually exclusive within
a group of related radio buttons.

'edit' Editable text field.
'text' Static text field.
'slider' Button that the user pushes along a horizontal or vertical

bar. The position of the button indicates a value within a
specified range.

'listbox' List of items from which the user can select one or more
items. Unlike pop-up menus, list boxes do not expand when
clicked.

'popupmenu' Isolated menu that expands to display a list of choices
when you click it. When it is collapsed, the menu shows the
current choice.

Value — Current value
number

Current value, specified as a number. The Value property is useful in querying or
modifying the status of certain uicontrols:

Style of uicontrol Description of Value Property
'togglebutton' • Raised: Value property equals the value of the Min

property.
• Depressed: Value property equals the value of the

Max property.
'checkbox' • Unchecked: Value property changes to the value of

the Min property.
• Checked: Value property changes to the value of the

Max property.

 UIControl Properties

1-15303

Style of uicontrol Description of Value Property
'radiobutton' • Deselected: Value property changes to the value of

the Min property.
• Selected: Value property changes to the value of the

Max property.
'slider' Value property equals the corresponding slider value.
'listbox' Value property equals an array index corresponding to the

selected item in the list box. A value of 1 corresponds to
the first item in the list.

'popupmenu' Value property equals an array index corresponding to the
selected item in the pop-up menu. A value of 1 corresponds
to the first item in the pop-up menu.

Max — Maximum value
1 (default) | number

Maximum value, specified as a number. The Max property affects the presentation of
certain uicontrols:

Style of uicontrol Description of Value Property
'togglebutton' When the toggle button is depressed, the Value property

changes to the value of the Max property.
'checkbox' When the check box is checked, the Value property

changes to the value of the Max property.
'radiobutton' When the radio button is selected, the Value property

changes to the value of the Max property.
'edit' The edit text box accepts multiple lines of input when Max

– Min > 1. Otherwise, the edit text box accepts a single
line of input.

The absolute values of Max and Min have no effect on the
number of possible lines. As long as the difference is
greater than 1, the edit box can contain any number of
lines.

'slider' The Max property value is the maximum slider value, which
must be greater than the Min property value.

1 Alphabetical List

1-15304

Style of uicontrol Description of Value Property
'listbox' The Max property value helps determine whether the user

can select multiple items in the list box simultaneously. If
Max – Min > 1, then the user can select multiple items
simultaneously. Otherwise, the user cannot select multiple
items simultaneously. If you set the Max and Min properties
to allow multiple selections, then the Value property value
can be a vector of indices.

Min — Minimum value
0 (default) | number

Minimum value, specified as a number. The Min property affects the presentation of
certain uicontrols:

Style of uicontrol Description of Value Property
'togglebutton' When the toggle button is raised, the Value property

changes to the value of the Min property.
'checkbox' When the check box is unchecked, the Value property

changes to the value of the Min property.
'radiobutton' When the radio button is deselected, the Value property

changes to the value of the Min property.
'edit' The edit text box accepts multiple lines of input when Max

– Min > 1. Otherwise, the edit text box accepts a single
line of input.

The absolute values of Max and Min have no effect on the
number of possible lines. As long as the difference is
greater than 1, the edit box can contain any number of
lines.

'slider' The Min property value is the minimum slider value, which
must be less than the Max property value.

 UIControl Properties

1-15305

Style of uicontrol Description of Value Property
'listbox' The Max property value helps determine whether the user

can select multiple items in the list box simultaneously. If
Max – Min > 1, then the user can select multiple items
simultaneously. Otherwise, the user cannot select multiple
items simultaneously. If you set the Max and Min properties
to allow multiple selections, then the Value property value
can be a vector of indices.

SliderStep — Slider step size
[0.01 0.10] (default) | [minorstep majorstep]

Slider step size, specified as the array, [minorstep majorstep]. This property controls
the magnitude of the slider value change when the user clicks the arrow buttons or the
slider trough (slider channel):

• minorstep is the fraction of the slider range by which the Value property increases
or decreases when the user clicks one of the arrow buttons.

• majorstep is the fraction of the slider range by which the Value property increases
or decreases when the user clicks the slider trough.

When the value of majorstep is greater than 1, the slider fraction is no greater than
100%.

Both minorstep and majorstep must be greater than 1e-6, and minorstep must be
less than or equal to majorstep.

As majorstep increases, the slider thumb indicator grows longer. When majorstep is
equal to 1, the thumb indicator is half as long as the trough. The thumb indicator is larger
for majorstep values greater than 1.
Example

This slider has a range of Max – Min = 1. The slider Value property changes by 1% when
the user presses an arrow button. It changes by 10% when the user clicks in the trough.

s = uicontrol('Style','Slider','Min',0,'Max',1,'SliderStep',[0.01 0.10]);

ListboxTop — Index of top item in list box
1 (default) | integer value

Index of top item in list box, specified as an integer value. This property applies only to
the listbox style of UIControl. This property specifies which item appears in the top-

1 Alphabetical List

1-15306

most position in a list box that is not large enough to display all list entries. The
ListboxTop value is an index into the array of you specify as the String property value.
The ListboxTop value must be between 1 and the number of elements in the array.
Noninteger values are fixed to the next lowest integer.

Note The String and Value properties might override the value of the ListboxTop
property regardless of the ListboxTop value you specify. The ListboxTop value can
change depending on the value of other UIControl properties. For example, explicitly
setting the Value property scrolls the list to that value.

For the most reliable results, query or modify the ListboxTop property after MATLAB
finishes drawing the user interface control on the screen.

Text and Styling

String — Text to display
character vector | cell array of character vectors | string array | categorical array | ...

Text to display, specified as a character vector, cell array of character vectors, string
array, categorical array, or pipe-delimited row vector. The Style property dictates the
array format you can use.

Style Property Supported Array Formats Examples
'pushbutton' Character vector

Cell array of character vectors

String array

Categorical array

'Option 1'

{'Option 1'}

"Option 1"

categorical({'Option 1'})

'togglebutton'
'checkbox'
'radiobutton'
'edit'
'text'
'listbox' Character vector

Cell array of character vectors

String array

Categorical array

'One'

{'One','Two','Three'}

["One" "Two" "Three"]

categorical({'one','two',
'three'})

 UIControl Properties

1-15307

Style Property Supported Array Formats Examples
'popupmenu' Pipe-delimited row vector 'One|Two|Three'

Note If you specify a cell array or categorical array for a push button, toggle button,
check box, or radio button, MATLAB displays only the first element in the array.

ForegroundColor — Text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

1 Alphabetical List

1-15308

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Note If you change the value of ForegroundColor for a listbox, then MATLAB uses
that color for all listbox items, except for the currently selected listbox item. For selected
items, MATLAB uses a color that ensures good contrast between the text of selected items
and the selection color.

Example: [0 0 1]
Example: 'b'
Example: 'blue'
Data Types: double | char

BackgroundColor — Background color
[.94 .94 .94] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

 UIControl Properties

1-15309

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

CData — Optional icon
3-D array of truecolor RGB values

Optional icon, specified as a 3-D array of truecolor RGB values. The values in the array
can be:

1 Alphabetical List

1-15310

• Double-precision values between 0.0 and 1.0
• uint8 values between 0 and 255

Push buttons and toggle buttons are the only UIControl objects that fully support
CData. If you specify the CData property for a radio button or check box, the image
might overlap with the text. Also, specifying an image for radio button or check box
disables the ability to show when they are selected or deselected.
Data Types: double | uint8

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific operating system and locale.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'. The actual
fixed-width font used depends on the FixedWidthFontName property of the root object.
Changing the FixedWidthFontName property causes an immediate update of the display
to use the new font.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The FontUnits property specifies the units.
The default size is system-dependent.
Example: 12
Example: 12.5

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as a value from the following table.

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than normal

 UIControl Properties

1-15311

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note The 'light' and 'demi' font weight values have been removed in R2014b. If you
specify either of these values, the result is a normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. MATLAB uses this property to select a
font from those available on your system. Setting this property to 'italic' selects a
slanted version of the font, if it is available on your system.

Note The 'oblique' value has been removed. Use 'italic' instead.

FontUnits — Font units
'points' (default) | 'normalized' | 'inches' | 'centimeters' | 'pixels'

Font units, specified as one of the values from this table.

Units Value Description
'points' Points. One point is 1/72nd of an inch.
'normalized' Normalized values for specifying the font size as a fraction

of the height. When you resize a UI component, MATLAB
scales the displayed font to maintain that fraction.

'inches' Inches.
'centimeters' Centimeters.

1 Alphabetical List

1-15312

Units Value Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are independent of
your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your
system resolution.

Interactivity

Visible — User interface control visibility
'on' (default) | 'off'

User interface control visibility, specified as 'on' or 'off'. When Visible is 'off', the
user interface control is not visible, but you can query and set its properties.

To make your app start faster, set the Visible property of all user interface controls that
are not initially displayed to 'off'.

Enable — Operational state of user interface control
'on' (default) | 'off' | 'inactive'

Operational state of user interface control, specified as 'on', 'off', or 'inactive'.
The Enable property controls whether or not the user interface control responds to user
interaction. These are the possible values:

• 'on' – The user interface control is operational.
• 'off' – The user interface control is not operational and appears grayed-out.
• 'inactive' – The user interface control is not operational, but it has the same

appearance as when Enable is set to 'on'.

Tooltip — Tooltip
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. Use this
property to display a message when the user hovers the pointer over the component at

 UIControl Properties

1-15313

run time. The tooltip does not display when the component is disabled. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

To create multiple lines of text, use the sprintf function to insert newline characters
('\n') in your text. For example:

txt = sprintf('Line 1\nLine 2');

Then set the Tooltip property to the value returned by sprintf.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | uicontextmenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when the user right-clicks on a UI component. Create the context menu using the
uicontextmenu function.

TooltipString — Tooltip (not recommended)
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. The tooltip
displays when the user hovers the mouse pointer over the component in the app. If you
specify this property as a categorical array, MATLAB uses the values in the array, not the
full set of categories.

Note The TooltipString property is not recommended starting in R2018b. Use the
Tooltip property instead.

Selected — Selection state (not recommended)
'off' (default) | 'on'

Note The behavior of the Selected property changed in R2014b, and it is not
recommended. It no longer has any effect on UIControl objects. This property might be
removed in a future release.

SelectionHighlight — Display of selection handles (not recommended)
'on' (default) | 'off'

1 Alphabetical List

1-15314

Note The behavior of the SelectionHighlight property changed in R2014b, and it is
not recommended. It no longer has any effect on UIControl objects. This property might
be removed in a future release.

Position

Position — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the user interface control
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the user interface
control

width Distance between the right and left outer edges of the user
interface control

height Distance between the top and bottom outer edges of the
user interface control

All measurements are in units specified by the Units property.

Note The Position values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and does not include the
area occupied by the title. If the parent container is a figure, then the drawable area also
excludes the menu bar and tool bar.

Modify One Value in the Position Vector

You can combine dot notation and array indexing when you want to change one value in
the Position vector. For example, this code changes the width of the user interface
control to 52:

 UIControl Properties

1-15315

b = uicontrol;
b.Position(3) = 52;
b.Position

ans =

 20 20 52 20

InnerPosition — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

This property value is identical to the Position and OuterPosition property values.

OuterPosition — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

This property value is identical to the Position and InnerPosition property values.

Extent — Size of enclosing rectangle
four-element row vector

This property is read-only.

Size of enclosing rectangle, returned as a four-element row vector. The first two elements
of the vector are always zero. The third and fourth elements are the width and height of
the rectangle, respectively. All measurements are in units specified by the Units
property.

MATLAB determines the size of the rectangle based on the size of the String property
value and the font characteristics. To adjust the width and height to accommodate the
size of the String value, set the Position width and height values to be slightly larger
than the Extent width and height values.

For a String value that is a single line of text, the height element of the Extent
property indicates the height of a single line. The width element indicates the width of the
longest line, even if the text wraps when displayed on the control. For multiple lines of

1 Alphabetical List

1-15316

text, the Extent rectangle encompasses all lines of text. Editable text fields are
considered multiline if Max – Min > 1.

Units — Units of measurement
'pixels' (default) | 'normalized' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified as one of the values from this table.

Units Value Description
'pixels' (default) Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'normalized' These units are normalized with respect to
the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.

 UIControl Properties

1-15317

Units Value Description
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

This property affects the Position property. If you change the Units property, consider
returning its value to the default value after completing your computation to avoid
affecting other functions that assume the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units before the Position property, then MATLAB sets Position
using the units you specify.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position value to the
equivalent value in the units you specify.

HorizontalAlignment — Alignment of uicontrol text
'center' (default) | 'left' | 'right'

Alignment of the uicontrol text, specified as 'center', 'left', or 'right'. This
property determines the justification of the String property text.

The HorizontalAlignment property affects only 'text' and 'edit' styles of
uicontrols.

Callbacks

Callback — Primary callback function
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-15318

Primary callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This function executes in response to user interaction, such as push button clicks, slider
movements, or check box selections. This function can execute only when the Enable
property of the UIControl object is set to 'on'.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.
Data Types: function_handle | cell | char

ButtonDownFcn — Button-press callback function
'' (default) | function handle | cell array | character vector

Button-press callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The ButtonDownFcn callback is a function that executes when the user clicks a mouse
button on a UI component. The callback executes in the following situations:

• The user right-clicks the UI component, and the Enable property is set to 'on'.
• The user right-clicks or left-clicks the UI component, and the Enable property is set

to 'off' or 'inactive'.

KeyPressFcn — Key press callback function
'' (default) | function handle | cell array | character vector

Key press callback function, specified as one of these values:

 UIControl Properties

1-15319

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This callback function executes when the UIControl object has focus and the user
presses a key. If you do not define a function for this property, MATLAB passes key
presses to the parent figure. Repeated key presses retain the focus of the UIControl
object, and the function executes with each key press. If the user presses multiple keys at
approximately the same time, MATLAB detects the key press for the last key pressed.

If you specify this property as a function handle (or cell array containing a function
handle), MATLAB passes an object containing callback data as the second argument to
the callback function. This object contains the properties described in the following table.
You can access these properties inside the callback function using dot notation.

Property Description Examples:
a = Shift Shift-a

Character The character that displays as a
result of pressing a key or keys.
The character can be empty or
unprintable.

'a' '=' '' 'A'

Modifier A cell array containing the names
of one or more modifier keys that
are being pressed (such as, Ctrl,
Alt, Shift).

{1x0
cell}

{1x0
cell}

{'shift
'}

{'shift'}

Key The key being pressed, identified
by the (lowercase) label on the
key, or a text description.

'a' 'equal
'

'shift' 'a'

Source The object that has focus when
the user presses the key.

UICont
rol
object

UICont
rol
object

UIContr
ol object

UIControl
object

1 Alphabetical List

1-15320

Property Description Examples:
a = Shift Shift-a

EventName The action that caused the
callback function to execute.

'KeyPr
ess'

'KeyPr
ess'

'KeyPre
ss'

'KeyPress'

Pressing modifier keys affects the callback data in the following ways:

• Modifier keys can affect the Character property, but do not change the Key property.
• Certain keys, and keys modified with Ctrl, put unprintable characters in the

Character property.
• Ctrl, Alt, Shift, and several other keys, do not generate Character property data.

You also can query the CurrentCharacter property of the figure to determine which
character the user pressed.

KeyReleaseFcn — Key-release callback function
'' (default) | function handle | cell array | character vector

Key-release callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This callback function executes when the UIControl object has focus and the user
releases a key.

If you specify this property as a function handle (or cell array containing a function
handle), MATLAB passes an object containing callback data as the second argument to
the callback function. This object contains the properties described in the following table.
You can access these properties inside the callback function using dot notation.

 UIControl Properties

1-15321

Property Description Examples:
a = Shift Shift-a

Character Character interpretation of the
key that was released.

'a' '=' '' 'A'

Modifier Current modifier, such as
'control', or an empty cell
array if there is no modifier.

{1x0
cell}

{1x0
cell}

{1x0
cell}

{1x0 cell}

Key Name of the key that was
released, identified by the
lowercase label on the key, or a
text description.

'a' 'equal
'

'shift' 'a'

Source The object that has focus when
the user presses the key.

UICont
rol
object

UICont
rol
object

UIContr
ol object

UIControl
object

EventName The action that caused the
callback function to execute.

'ase' 'ase' 'ase' 'ase'

Pressing modifier keys affects the callback data in the following ways:

• Modifier keys can affect the Character property, but do not change the Key property.
• Certain keys, and keys modified with Ctrl, put unprintable characters in the

Character property.
• Ctrl, Alt, Shift, and several other keys, do not generate Character property data.

You also can query the CurrentCharacter property of the figure to determine which
character the user pressed.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

1 Alphabetical List

1-15322

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

 UIControl Properties

1-15323

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

1 Alphabetical List

1-15324

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

 UIControl Properties

1-15325

HitTest — Ability to become current object
'on' (default) | 'off'

Ability to become current object, specified as 'on' or 'off':

• 'on' — Sets the current object to the UIControl when the user clicks the component
in the running app. Both the CurrentObject property of the Figure and the gco
function return the UIControl as the current object.

• 'off' — Sets the current object to be the closest ancestor of the UIControl whose
HitTest is 'on' when the user clicks the component in the running app.

Note Use the Enable property to enable or disable a component.

Parent/Child

Parent — Parent object
Figure | Panel | ButtonGroup | Tab

Parent object, specified as a Figure, Panel, ButtonGroup, or Tab object. Use this
property to specify the parent container when creating a UI component or to move an
existing UI component to a different parent container.

Children — UIControl children
empty array

UIControl children, returned as an empty array. UIControl objects have no children.
Setting this property has no effect.

HandleVisibility — Visibility of UIControl handle
'on' (default) | 'callback' | 'off'

Visibility of UIControl handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the UIControl handle in its parent's list of
children. When a handle is not visible in its parent's list of children, it is not returned by
functions that obtain handles by searching the object hierarchy or querying handle
properties. These functions include get, findobj, gca, gcf, gco, newplot, cla, clf,
and close. The HandleVisibility property also controls the visibility of the object’s
handle in the parent figure's CurrentObject property. Handles are still valid even if
they are not visible. If you know an object's handle, you can set and get its properties, and
pass it to any function that operates on handles.

1 Alphabetical List

1-15326

HandleVisibility Value Description
'on' The UIControl handle is always visible.
'callback' The UIControl handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the UIControl at the command-line, but
allows callback functions to access it.

'off' The UIControl handle is invisible at all times. This option
is useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Note Do not try to access radio buttons and toggle buttons that are managed by a
uibuttongroup outside of the button group. Set the HandleVisibility of those radio
buttons and toggle buttons to 'off' to prevent accidental access.

Identifiers

Type — Type of graphics object
'uicontrol'

This property is read-only.

Type of graphics object, returned as 'uicontrol'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

 UIControl Properties

1-15327

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
guide | uicontrol

Topics
“Access Property Values”
“Default Property Values”

Introduced before R2006a

1 Alphabetical List

1-15328

uidatepicker
Create date picker component

Syntax
d = uidatepicker
d = uidatepicker(Name,Value)
d = uidatepicker(parent)
d = uidatepicker(parent,Name,Value)

Description
d = uidatepicker creates a date picker in a new figure and returns the DatePicker
object. MATLAB calls the uifigure function to create the figure.

d = uidatepicker(Name,Value) specifies DatePicker property values using one or
more Name,Value pair arguments.

d = uidatepicker(parent) creates a date picker in the specified parent container.
The parent can be a Figure created using the uifigure function, or one of its child
containers.

d = uidatepicker(parent,Name,Value) creates the date picker in the specified
container and sets one or more DatePicker property values.

Examples

Create a Date Picker in a Figure

Create a date picker in the upper left corner of a figure.

f = uifigure('Position',[500 500 320 280]);
d = uidatepicker(f,'Position',[18 235 150 22]);

 uidatepicker

1-15329

Display Custom Date Format

Create a date picker that displays the date in the text field using the dd-MM-yyyy format.
The watermark in the running app displays the new format, and all selected dates use
that format.

f = uifigure('Position',[500 500 320 280]);
d = uidatepicker(f,'Position',[18 235 150 22]);
d.DisplayFormat = 'dd-MM-yyyy';

1 Alphabetical List

1-15330

Disable Sundays and a Holiday

Create a date picker that disables Sundays and New Year's day 2018.

f = uifigure('Position',[500 500 375 280]);
d = uidatepicker(f,'Position',[18 225 150 22]);
d.DisabledDaysOfWeek = 1;
d.DisabledDates = datetime(2018,1,1);

When you expand the date picker and browse to January 2018, the first day of the year
and all Sundays are disabled.

 uidatepicker

1-15331

Create a Callback for Date Selection

Create a program file called mydateapp.m that creates a figure and a date picker with a
ValueChangedFcn callback.

function mydateapp
f = uifigure('Position',[340 400 415 300]);
d = uidatepicker(f,'DisplayFormat','MM-dd-yyyy',...
 'Position',[130 190 150 22],...
 'Value',datetime(2014,4,9),...
 'ValueChangedFcn', @datechange);

 function datechange (src,event)
 lastdate = char(event.PreviousValue);
 newdate = char(event.Value);
 msg = ['Change date from ' lastdate ' to ' newdate '?'];
 % Confirm new date
 selection = uiconfirm(f,msg,'Confirm Date');

 if (strcmp(selection,'Cancel'))
 % Revert to previous selection if cancelled
 d.Value = event.PreviousValue;
 end
 end
end

1 Alphabetical List

1-15332

The datechange function displays a confirmation dialog box and determines which
button the user clicks in that dialog box. The date picker reverts to the previous date if
the user clicks Cancel.

Run the program, and click a date to see the confirmation dialog box.

mydateapp

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 uidatepicker

1-15333

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: d = uidatepicker('Value',datetime('today')) creates a date picker
with today's date selected in the UI.

Note The properties listed here are only a subset. For a complete list, see DatePicker
Properties.

Value — Selected date
NaT (default) | datetime object

Selected date, specified as a datetime object within the range of the Limits property.
To make the selected date unspecified, set this property to NaT.

If the specified datetime object contains time information, only the date information is
preserved in the Value property.
Example: d = uidatepicker('Value',datetime('today'))
Data Types: datetime

DisplayFormat — Display format
character vector | string scalar

Display format for the date picker text field, specified as a character vector or string
scalar. The default format depends on the locale of the system running the app.

The format you specify must use valid letter identifiers that correspond to the Unicode
Locale Data Markup Language (LDML) standard for dates and times. To separate fields,
you can include nonletter characters such as a hyphen, space, colon, or any non-ASCII
characters.
Example: d = uidatepicker('DisplayFormat','dd/MM/yy')

Examples of Common Formats

This table lists common display formats. The examples show formatted output for the
date, Wednesday, April 9, 2014.

1 Alphabetical List

1-15334

Value of Format Example
'yyyy-MM-dd' 2014-04-09
'dd/MM/yyyy' 09/04/2014
'dd.MM.yyyy' 09.04.2014
'yyyy年 MM月 dd日' 2014年 04月 09日

'MMMM d, yyyy' April 9, 2014

All Date and Time Formats

Use these letter identifiers to create a display format. The third column of this table
shows output for the date, Wednesday, April 9, 2014.

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. 2014
yy Year, using last two digits. 14
yyy, yyyy ... Year, using at least as many digits

as there are instances of 'y'
For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year, a single number
designating the year.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2
QQQQ Quarter, full name 2nd quarter
M Month, numerical, using one or two

digits
4

MM Month, numerical, using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A

 uidatepicker

1-15335

Letter
Identifier

Description Display

W Week of the month, using one digit 2
d Day of the month, using one or two

digits
9

dd Day of the month, using two digits 09
D Day of the year, using one, two, or

three digits
99

DD Day of the year, using two digits 99
DDD Day of the year using three digits 099
e Day of the week, numerical, using

one or two digits
4, where Sunday is the first day of
the week

ee Day of the week, numerical, using
two digits

04

eee Day, abbreviated name Wed
eeee Day, full name Wednesday
eeeee Day, capitalized first letter W

Note

• The edit field in the running app accepts delimited numeric values, even when the
DisplayFormat includes words. For instance, if the month format is specified as
'MMMM', the app accepts a numeric month such as 04, but will display a month name
such as 'April'.

• If the user specifies a day-of-year number in the running app, and the format contains
identifiers for both the day of year (D) and Gregorian year (y), then datetime might
not read the day-of-year number correctly. Use ISO year (u) in place of y.

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

ValueChangedFcn — Value changed function
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-15336

Value changed function, specified as one of the following:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

The ValueChangedFcn callback executes when the user changes the date by typing in
the text field or by expanding the date picker and selecting a date.

This callback function can access specific information about the user’s interaction with
the date picker. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can get the object properties using dot notation. For example,
event.PreviousValue gets the previously selected date. The ValueChangedData
object is not available to callback functions specified as character vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value New selected date
PreviousValue Previously selected date
Source Component that executes the callback
EventName 'ValueChanged'

The ValueChangedFcn callback does not execute when the user re-selects or re-types
the currently selected date. The callback also does not execute when the Value property
changes programmatically.

For more information about creating callbacks in App Designer, see “Write Callbacks in
App Designer”.

Position — Location and size
[100 100 150 22] (default) | [left bottom width height]

Location and size of the collapsed date picker relative to the parent container, specified as
a vector of the form [left bottom width height]. This table describes each element
in the vector.

 uidatepicker

1-15337

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the date picker
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the date picker
width Distance between the right and left outer edges of the date

picker
height Distance between the top and bottom outer edges of the

date picker

All measurements are in pixel units.

See Also
Functions
NaT | datetime

Properties
DatePicker Properties

Introduced in R2018a

1 Alphabetical List

1-15338

uigetdir
Open folder selection dialog box

Syntax
selpath = uigetdir
selpath = uigetdir(path)
selpath = uigetdir(path,title)

Description
selpath = uigetdir opens a modal on page 1-15342 dialog box that displays the
folders in the current working directory and returns the path that the user selects from
the dialog box.

This dialog box enables a user to navigate to a folder and select it (or type the name of a
folder). If the specified folder exists, then MATLAB returns the selected path when the
user clicks OK. If the user clicks Cancel or the close button (X) on the title bar, then
MATLAB returns 0.

selpath = uigetdir(path) specifies the start path in which the dialog box opens. If
path is empty or is not a valid path, then the dialog box opens in the current working
directory.

selpath = uigetdir(path,title) specifies a title for the dialog box.

Note The visual characteristics of the dialog box depend on the operating system that
runs your code. For instance, some operating systems do not show title bars on dialog
boxes. If you pass a dialog box title to the uigetdir function, those operating systems do
not display the title.

Examples

 uigetdir

1-15339

Display Folders on C: Drive

dname = uigetdir('C:\');

Display Folders in MATLAB Root Folder

Pass the command form of the matlabroot function to uigetdir to display folders in
the MATLAB root folder.

uigetdir(matlabroot,'MATLAB Root Folder');

1 Alphabetical List

1-15340

Input Arguments
path — Initial folder
current working directory (default) | character vector | string scalar

The initial folder in which the dialog box opens, specified as character vector or string
scalar.
Example: 'C:\Users\hharvey\Documents'

title — Dialog box title
Select Folder to Open (default) | character vector | string scalar

The dialog box title, specified as a character vector or string scalar
Example: 'Open Directory'

 uigetdir

1-15341

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

See Also
uigetfile | uiputfile

Introduced before R2006a

1 Alphabetical List

1-15342

uigetfile
Open file selection dialog box

Syntax
file = uigetfile
[file,path] = uigetfile
[file,path,indx] = uigetfile
___ = uigetfile(filter)
___ = uigetfile(filter,title)
___ = uigetfile(filter,title,defname)
___ = uigetfile(___ ,'MultiSelect',mode)

Description
file = uigetfile opens a modal on page 1-15355 dialog box that lists files in the
current folder. It enables a user to select or enter the name of a file. If the file exists and
is valid, uigetfile returns the file name when the user clicks Open. If the user clicks
Cancel or the window close button (X), uigetfile returns 0.

[file,path] = uigetfile returns the file name and path to the file when the user
clicks Open. If the user clicks Cancel or the window close button (X), then uigetfile
returns 0 for both of the output arguments.

[file,path,indx] = uigetfile returns the index of the filter selected in the dialog
box when the user clicks Open.

___ = uigetfile(filter) specifies a file extension by which files displayed in the
dialog box are filtered. Use this syntax with any of the output argument combinations in
the previous syntaxes.

Typically, only files with a matching file extension are displayed. On some platforms,
uigetfile displays files that do not match the filter, but dims those file names. If the
filter is missing or empty, uigetfile uses the default list of file types (for example, all
MATLAB files).

 uigetfile

1-15343

___ = uigetfile(filter,title) specifies a dialog box title. To filter using the
default file filter, but specify a custom title, use empty quotes for the filter value. For
example:

file = uigetfile('','Select a File')

___ = uigetfile(filter,title,defname) specifies a default file name for the File
name field.

___ = uigetfile(___ ,'MultiSelect',mode) specifies whether a user can select
multiple files. Set the mode to 'on' to enable multifile selection. By default it is set to
'off'.

Windows libraries can span multiple folders.

Note The visual characteristics of the dialog box depend on the operating system that
runs your code. For instance, some operating systems do not show title bars on dialog
boxes. If you pass a dialog box title to the uigetfile function, those operating systems do
not display the title.

Examples

Display Full File Specification
Display the full file specification of the file selected in the dialog box. Use the disp and
fullfile functions to add explanatory text and concatenate the path and file output
values.

[file,path] = uigetfile('*.m');
if isequal(file,0)
 disp('User selected Cancel');
else
 disp(['User selected ', fullfile(path,file)]);
end

1 Alphabetical List

1-15344

User selected H:\Documents\MyCode\surf.m

Display Filter Index Selection
Display the filter index selection with explanatory text in the Command Window. Use the
num2str function to convert the numeric filter index value (indx) to a character array.
Doing so makes the value valid input to the disp function.

[file,path,indx] = uigetfile;
if isequal(file,0)
 disp('User selected Cancel')
else
 disp(['User selected ', fullfile(path, file),...
 ' and filter index: ', num2str(indx)])
end

 uigetfile

1-15345

User selected H:\Documents\MyCode\peaks.fig and filter index: 3

Filter Files by Extension
Display only files with a .m extension in the dialog box by specifying '*. m' as the
filter input argument.
[file,path] = uigetfile('*.m');

1 Alphabetical List

1-15346

Specify Filter List and Dialog Box Title
Create a list of file extensions in the file filter drop-down list. Pass the filter input
argument as a cell array of character vectors and separate the file extensions with
semicolons.

[file,path] = uigetfile({'*.m';'*.slx';'*.mat';'*.*'},...
 'File Selector');

 uigetfile

1-15347

Specify Filters and Filter Descriptions
Create a list of file extensions and give them descriptions by passing the filter input
argument as a cell array of character vectors. The first column of the cell array contains
the file extensions, and the second contains custom descriptions of the file types. This
example also associates multiple file types with the 'MATLAB Files' and 'Models'
descriptions.

[file,path,indx] = uigetfile(...
{'*.m;*.mlx;*.fig;*.mat;*.slx;*.mdl',...
 'MATLAB Files (*.m,*.mlx,*.fig,*.mat,*.slx,*.mdl)';
 '*.m;*.mlx','Code files (*.m,*.mlx)'; ...
 '*.fig','Figures (*.fig)'; ...
 '*.mat','MAT-files (*.mat)'; ...
 '*.mdl;*.slx','Models (*.slx, *.mdl)'; ...
 '*.*', 'All Files (*.*)'}, ...
 'Select a File');

1 Alphabetical List

1-15348

Specify Default File Name
To display a default file name in the File name field when the dialog box opens, pass the
file name as the defname input argument

 [file,path] = uigetfile('*.png',...
 'Select an icon file','icon.png')

 uigetfile

1-15349

Specify Default Path and File
To display a default path and file name in the File name field when the dialog box opens,
pass the full file name as the defname input argument.

[file,path] = uigetfile('C:\Documents\Work\icon.png',...
 'Select an Image File')

1 Alphabetical List

1-15350

Enable Multifile Selection
Enable multifile selection by setting the 'Multiselect' option to 'on'. Users can select
multiple files by holding down the Shift or Ctrl key and clicking file names.

[file,path] = uigetfile('*.m',...
 'Select One or More Files', ...
 'MultiSelect', 'on');

 uigetfile

1-15351

Input Arguments
filter — File filter
character vector (default) | character vector | cell array of character vectors | string array

File filter, specified as a character vector, cell array of character vectors, or a string array.

• If filter is a file name, then that file name appears in the File name field. The
extension of the file is the default filter value. (The filter field is unlabeled and appears
to the right of the File name field.)

• The filter can include a path. That path can contain the following characters:

• .
• ..
• \
• /
• ~

1 Alphabetical List

1-15352

For example, '../*.m' lists all code files with a .m extension in the folder above the
current folder.

• If you or a user includes either an asterisk (*) or a question mark (?) in a file name,
then uigetfile does not respond to clicking Open. The dialog box remains open
until the user clicks Cancel or removes the wildcard characters from the name. This
restriction applies to all platforms, even to file systems that permit these characters in
file names

• If the specified path does not exist, then uigetfile opens the dialog box in the
current folder.

• If filter is a folder name, then MATLAB displays the contents of that folder. The File
name field is empty, and no filter applies. To specify a folder name, the last character
of filter must be either a backslash (\) or a slash (/).

• If filter is a cell array of character vectors or a string array, it can include two
columns. The first column contains a list of file extensions. The optional second column
contains a corresponding list of descriptions. These descriptions replace standard
descriptions in the filter field. A description cannot be empty.

Example: 'myfile.m'
Example: '../myfile.m'
Example: '../..'

title — Dialog box title
'Select File to Open' (default) | character vector

Dialog box title, specified as a character vector.
Example: 'Select a File'

defname — Default File name field value
' ' (default) | character vector | string scalar

Default File name field value, specified as a character vector or a string scalar. The
defname value can specify a path, or a path and a file name.

• If you specify a path, it can contain the following characters:

• .
• ..
• \

 uigetfile

1-15353

• /
• ~

• To specify a folder name only, make the last character of DefaultName either a
backslash (\) or a slash (/).

Example: 'myfile.mat'
Example: 'C:\Documents\my_MATLAB_files'
Example: '..\myfile.mat'
Example: '..\Documents\'

mode — Multiselect mode
'off' (default) | 'on'

Multiselect mode, specified as 'on' or 'off'. If multiselect mode is off, then a user can
select one file only. If multiselect mode is on, then a user can select multiple files. If a
user selects multiple files, then they must be in the same folder; otherwise MATLAB
displays a warning dialog box. Microsoft Windows libraries can span multiple folders.

Output Arguments
file — File name
character vector | cell array of character vectors

File name that the user specified in the dialog box, returned as a character vector or a
cell array of character vectors.

A cell array of character vectors is returned when 'MultiSelect' is set to 'on' and a
user selects multiple files. Each array element contains the name of a selected file. File
names in the cell array are sorted in the order that the user's platform uses. If a user
selects multiple files, they must be in the same folder, otherwise MATLAB displays a
warning dialog box.

If the user clicks the Cancel button or the window close button (X), then MATLAB returns
the file value as 0.

path — Path to specified file
character vector

Path to the specified file or files, returned as a character vector.

1 Alphabetical List

1-15354

If the user clicks the Cancel button or the window close button (X), then MATLAB returns
the file value as 0.

indx — Selected filter index
integer

Selected filter index, returned as an integer.

The filter is the unlabeled dialog box control to the right of the File name field in the
dialog box. The filter index value corresponds to the item selected in the filter drop-down
list. The index of the first row is 1.

If the user clicks the Cancel button or the window close button (X), then MATLAB returns
an index value of 0.

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Tips
• Use the path and file name that uigetfile returns to open, read, or analyze the file

using various input and output functions in MATLAB and MATLAB toolboxes. For
example: listed here.

• imread for reading images.
• xlsread for reading Microsoft Excel files.

 uigetfile

1-15355

• open, edit, or run with MATLAB code files. For example, this code creates a
dialog box to get a MATLAB code file name from the user, builds a full file name
from the returned values, and then runs the user-specified code file.

[file,path] = uigetfile('*.m');
selectedfile = fullfile(path,file);
run(selectedfile);

Alternative Functionality
Use the dir function to return a filtered or unfiltered list of files in your current folder or
a folder you specify. The dir function can return file attributes too.

See Also
uigetdir | uiopen | uiputfile

Introduced before R2006a

1 Alphabetical List

1-15356

uigetpref
Create dialog box that opens according to user preference

Syntax
pval = uigetpref(group,pref,title,quest,pbtns)
[pval,tf] = uigetpref(group,pref,title,quest,pbtns)
[___] = uigetpref(___ ,Name,Value)

Description
pval = uigetpref(group,pref,title,quest,pbtns)creates a nonmodal on page
1-15366 dialog box that opens with the specified group name and preference name. The
group and preference names, in combination, uniquely identify the dialog box. The dialog
box contains:

• The specified question (quest) and one or more buttons (pbtns) that enable the
dialog box user to answer the question. The clicked button value is returned as pval.

• A check box that, by default, is labeled Do not show this dialog again.

If the user selects the check box, MATLAB stores and returns the value of the clicked
button as the preference value (pval). Subsequent calls to uigetpref for the same
dialog box, detect that the preference value was stored and apply that choice without
opening the dialog box.

If the user does not select the check box, then MATLAB returns, but does not store the
value of the clicked button. Instead, MATLAB stores the value 'ask'. MATLAB opens the
specified dialog box on subsequent calls to uigetpref.

[pval,tf] = uigetpref(group,pref,title,quest,pbtns) returns a logical value
that indicates whether the dialog box opened. If the dialog box opened, then the value of
tf is 1 (true). Otherwise, the value of tf is 0 (false).

[___] = uigetpref(___ ,Name,Value) specifies one or more optional name-value
pairs that enable you to do any of the following.

 uigetpref

1-15357

• Customize the check box label.
• Specify whether the check box is selected when the dialog box opens.
• Provide a help button and the help button callback.
• Specify buttons that are not mapped to preference values.
• Specify the value that uigetpref returns for pval if the user closes the dialog box

without clicking a preference button. For example, this value is returned if the user
clicks the dialog box close button (X), presses the keyboard Esc key, or clicks a button
that is not mapped to a preference value.

Use this option with any of the output argument combinations in the previous syntaxes.

Examples

Create Basic Dialog Box

Define each of the required uigetpref input arguments, and then pass them to
uigetpref.

group = 'Updates';
pref = 'Conversion';
title = 'Converting';
quest = {'Are you sure you want to convert this code?',...
 'Conversions cannot be undone.'};
pbtns = {'Yes','No'};

[pval,tf] = uigetpref(group,pref,title,quest,pbtns)

1 Alphabetical List

1-15358

Click Yes. The MATLAB Command Window shows that the value of pval is 'yes' and
that value of tf is 1, indicating that the dialog box was displayed.

Run the uigetpref command again, but this time select Do not show this dialog
again, and then click No.

[pval,tf] = uigetpref(group,pref,title,quest,pbtns)

The MATLAB Command Window shows that the value of pval is 'no' and that value of
tf is 1.

Run the uigetpref command again.

[pval,tf] = uigetpref(group,pref,title,quest,pbtns)

As expected, the dialog box does not display. The MATLAB Command Window shows that
the value of pval is 'no' and that value of tf is 0.

Reenable the dialog box display by setting the preference value to 'ask'.

setpref('Updates','Conversion','ask');

Run the uigetpref command again. The dialog box opens.

[pval,tf] = uigetpref(group,pref,title,quest,pbtns)

 uigetpref

1-15359

Add Cancel Button to Dialog Box

Specify 'ExtraOptions','Cancel' as a name-value pair to add a Cancel button to the
dialog box. If the user clicks Cancel, MATLAB returns the button label to pval.

group = 'Updates';
pref = 'Conversion';
title = 'Converting';
quest = {'Are you sure you want to convert this code?',...
 'Conversions cannot be undone.'};
pbtns = {'Yes','No'};
[pval] = uigetpref(group,pref,title,quest,pbtns,...
'ExtraOptions','Cancel');

Get Preferences in Figure CloseRequestFcn Callback

Create a function that creates a preferences dialog box. The dialog box asks the user
about saving the figure before closing it. Based on the value of the button that the user
clicks, the function opens a Save dialog box or closes the figure without saving it.

1 Alphabetical List

1-15360

function savefigconditionally
fig = gcf;

group ='mygraphics';
pref = 'savefigbeforeclosing';
title = 'Closing Figure';
quest = {'Do you want to save your figure before closing?'
 ''
 'If you do not save the figure, all changes will be lost'};
pbtns = {'Yes','No'};
[pval,tf] = uigetpref(group,pref,title,quest,pbtns);

switch pval
 case 'yes'
 [file,path,indx] = uiputfile('fig', ...
 'Save current figure', ...
 'untitled.fig');
 if indx == 0
 delete(fig);
 else
 saveas(fig,[path,file])
 delete(fig);
 end
 case 'no'
 delete(fig);
 return
 end

To run this example, copy and paste the code into a new program file. Name the file
savefigconditionally.m and save it on your search path. To use the function as a
CloseRequestFcn callback, create a figure and optionally plot some data.

figure('CloseRequestFcn','savefigconditionally');
x = [1 2 3 4 5];
y = [10 50 25 75 25];
plot(x,y);

Each time you run the preceding block of commands and click the close button (X) in the
figure title bar, the dialog box opens unless you select Do not show this dialog again.

 uigetpref

1-15361

Input Arguments
group — Preference group name
character vector | string scalar

Preference group name, specified as a character vector or string scalar. The group
includes the preference specified by the pref input argument. If the group does not exist,
MATLAB creates it.
Example: 'My Graphics'

pref — Preference name
character vector | string scalar

Preference name, specified as a character vector or string scalar.

This preference stores the value of the button within the specified pbtns that the user
clicks. If the preference name does not exist, then MATLAB creates it.
Example: 'Save Graphic'

1 Alphabetical List

1-15362

title — Dialog box title
character vector | string scalar

Dialog box title, specified as a character vector or string scalar.
Example: 'Save preference'

quest — Dialog box question
character vector | cell array of character vectors | string array

Dialog box question, specified as a character vector, a cell array of character vectors, or a
string array. Line breaks occur within the question text as follows:

• If the question is specified as a character vector, then line breaks occur after a vertical
bar (|) character or a newline character specified with the newline function.

• If the question is specified as a cell array of character vectors, then line breaks occur
after each cell array element.

Example: {'Are you sure you want to convert this code?', 'Conversions
cannot be undone.'}

Example: 'Do you want to save this file before closing?'

pbtns — Preference button labels
character vector | cell array of character vectors | vertical bar-delimited character vector
| string array

Preference button labels, specified as a character vector, a cell array of character vectors,
a vertical bar-delimited character vector, or a string array.

If you want to specify internal preference values that are different from the button labels,
then specify the pbtns value as a 2-by-n cell array or string array. The first row contains
the preference names and the second row contains the associated button labels. For
example, consider using this approach if you plan to localize your dialog box for various
languages. You can specify the button labels using a foreign language without having to
change your code logic (for instance, switch and case statements) for each localization.

When pbtns is not a 2-by-n cell array, MATLAB stores the label name as the preference
value.
Example: 'Yes'
Example: {'Yes','No'}

 uigetpref

1-15363

Example: ['Yes|No']
Example: {'Oui','Non';'yes','no'} sets the button labels to 'Oui' and 'Non' and
their corresponding preference values to 'yes' and 'no'.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: line(x,y,'Color','red','LineWidth',3) creates a red line that is 3 points wide.

CheckboxState — Initial state of check box
0 (default) | true | false | 1 | 0

Initial state of check box when the dialog box opens, specified as the comma-separated
pair consisting of 'CheckboxState' and 1,0, true, or false.

• The check box is selected when the value is true or 1
• The check box is not selected when the value is false or 0.

Example: 'CheckboxState',0

CheckboxString — Check box label
'Do not show this dialog again.' (default) | character vector | string scalar

Check box label, specified as the comma-separated pair consisting of
'CheckboxString' and a character vector or string scalar.

Example: 'CheckboxSting','Do not ask again.'

HelpString — Help button label
character vector | string scalar

Help button label, specified as the comma-separated pair consisting of 'Help' and a
character vector or a string scalar. If you do not specify this name-value pair, no help
button is displayed in the dialog box. If you specify this name-value pair, but do not
specify the HelpFcn name-value pair, then MATLAB uses
'HelpFcn','doc(uigetpref)' by default.
Example: 'HelpString','Info'

1 Alphabetical List

1-15364

HelpFcn — Help button callback
function handle | string array | character vector

Help button callback, specified as the comma-separated pair consisting of 'HelpFcn'
and a function handle, string array, or character vector (not recommended). The callback
executes when a user clicks the help button. When you specify this name-value pair, you
also must specify the 'HelpString' name-value pair.

See also, “Write Callbacks for Apps Created Programmatically”
Example: 'HelpFcn',@myfunc specifies the HelpFcn callback function as a function
handle.

ExtraOptions — Labels for extra buttons
{ } (default) | character vector | cell array of character vectors | string array

Labels for extra buttons, specified as the comma separated pair consisting of
'ExtraOptions' and a character vector, cell array of character vectors, or a string
array. The additional buttons are not mapped to any preferences. If a user clicks any of
these buttons, the dialog box closes and returns the button label as the output argument
pval.
Example: 'ExtraOptions','Cancel'

DefaultButton — Default button selection
character vector | string scalar

Default button selection, specified as the comma separated pair consisting of
'DefaultButton' and a character vector or string scalar. The default button selection is
returned to p if a user closes the dialog box without clicking any button. This value does
not have to correspond to any preference button or an ExtraOption button.
Example: 'nobtn'

Output Arguments
pval — Selected preference button
string scalar

Selected preference button returned as a string scalar. The returned value is one of the
following:

 uigetpref

1-15365

• Label of the clicked preference button (pbtns)
• Internal value of the clicked preference button

tf — True or false result
1 | 0

True or false result, returned as 1 or 0. The function returns 1 (true) if the dialog box
opened. Otherwise, it returns 0. This value corresponds to the check box selection stored
the last time the dialog box was open and the user selected the check box (which is
labeled 'Do not show this dialog again' by default).

Definitions

Nonmodal Dialog Box
A nonmodal dialog box enables a user to interact with other MATLAB windows before
responding to the nonmodal dialog box. A nonmodal dialog box is also referred to as
normal.

Preferences
Preferences enable you to specify how applications behave and how users interact with
them. Preferences persist across sessions and are stored in a preference data base.

The uigetpref function uses the same preference data base as MATLAB built-in
products. However, uigetpref registers the preferences it sets as a separate list, so that
it and uisetpref can manage those preferences.

To modify preferences registered with uigetpref, use uisetpref or setpref. For
example, use setpref to change a preference value to 'ask'.

Tips
• uigetpref creates specified groups and preferences, if they do not currently exist. To

delete a preference group you no longer need, use rmpref.
• To get a structure of previously created groups and preferences, use the getpref

function.

1 Alphabetical List

1-15366

• After a user selects the check box Do not show this dialog again and closes the
dialog box, the dialog box does not open again for the same group and preference. To
reenable dialog boxes that are being suppressed set the preference value to 'ask'
using setpref.

• Users of your dialog box do not know the group and preference names you specified
when creating the dialog box. Therefore, to reenable dialog boxes that are being
suppressed by preferences, users can call the uisetpref command.

uisetpref('clearall')

Executing uisetpref as shown reenables all preference dialog boxes defined with
uigetpref, not just the most recent one.

See Also
addpref | getpref | ispref | rmpref | setpref | uisetpref

Introduced before R2006a

 uigetpref

1-15367

uigridlayout
Create grid layout manager

Syntax
g = uigridlayout
g = uigridlayout(parent)
g = uigridlayout(___ ,sz)
g = uigridlayout(___ ,Name,Value)

Description
g = uigridlayout creates a 2-by-2 grid layout in a new figure and returns the
GridLayout object. MATLAB calls the uifigure function to create the figure.

A grid layout is useful for laying out apps. It positions UI components along the rows and
columns of an invisible grid that spans an entire figure or container. This method of
positioning components is easier to manage than setting pixel values in Position
vectors.

g = uigridlayout(parent) creates a grid layout in the specified parent container.
The parent can be a figure created using the uifigure function, or one of its child
containers.

g = uigridlayout(___ ,sz) specifies the size of the grid as the vector sz. The first
element in this vector is the number of rows, and the second element is the number of
columns. Specify the sz argument by itself or after the parent argument.

g = uigridlayout(___ ,Name,Value) specifies GridLayout property values using
one or more name-value pair arguments. Specify the name-value pair arguments after all
other arguments in any of the previous syntaxes.

Examples

1 Alphabetical List

1-15368

Simple 3-by-2 Grid

Create a figure and a grid. Then configure the grid by setting the row heights and column
widths. In this case, configure a 3-by-2 grid in which the top two rows are fixed at 22
pixels, while the bottom row has a variable height. Set the left column to be 150 pixels
wide, and set the right column to have a variable width. The grid fills the entire figure,
but because the grid is invisible, the figure appears to be empty.

f = uifigure('Position',[100 100 440 320]);
g = uigridlayout(f);
g.RowHeight = {22,22,'1x'};
g.ColumnWidth = {150,'1x'};

Add two drop-downs, a list box, and an axes component to the grid. If you do not specify
row or column locations for the Layout property of components, they populate the grid
from left to right and top to bottom by default. In this case, move the second drop-down
(dd2) and the list box (chanlist) to specific rows and columns by setting the Layout
property.

% Device drop-down
dd1 = uidropdown(g);
dd1.Items = {'Select a device'};

% Range drop-down
dd2 = uidropdown(g);

 uigridlayout

1-15369

dd2.Items = {'Select a range'};
dd2.Layout.Row = 2;
dd2.Layout.Column = 1;

% List box
chanlist = uilistbox(g);
chanlist.Items = {'Channel 1','Channel 2','Channel 3'};
chanlist.Layout.Row = 3;
chanlist.Layout.Column = 1;

% Axes
ax = uiaxes(g);

Set the axes to span rows 1 through 3, filling the vertical space.

ax.Layout.Row = [1 3];

1 Alphabetical List

1-15370

When you resize the figure, the axes grow and shrink to fill the available space that the
left column does not use. The components on the left side remain fixed because that
column is defined as 150 pixels wide.

 uigridlayout

1-15371

Variable-Width Columns That Have Different Weights

When you assign different weights to variable-width columns, the width of each column is
proportional to the weight. Variable-height rows allocate space the same way.

Create a figure and a 2-by-2 grid. Then configure the row heights and the column widths.
In this case, the top row is fixed at 40 pixels, while the bottom row has a variable height.
Both columns have a variable width, but the second column has twice the weight of the
first column. Because the grid is invisible, the figure appears to be empty.

f = uifigure('Position',[100 100 437 317]);
g = uigridlayout(f,[2 2]);
g.RowHeight = {40,'1x'};
g.ColumnWidth = {'1x','2x'};

1 Alphabetical List

1-15372

Add a label across both columns of the top row. Then add an axes component to each
column of the bottom row.

% Add title
title = uilabel(g,'Text','Market Trends');
title.HorizontalAlignment = 'center';
title.FontSize = 24;
title.Layout.Row = 1;
title.Layout.Column = [1,2];

% Add two axes
ax1 = uiaxes(g);
ax2 = uiaxes(g);

 uigridlayout

1-15373

Because the left column has a weight of 1, and the right column has a weight of 2, the
axes on the right use twice as much of the horizontal space as the axes on the left. The
grid maintains this ratio when you resize the figure.

Figure and Panel That Each Have a Grid

One way to arrange UI components in a panel is to create a grid in the panel.

Create a figure and a 1-by-2 grid. Then configure the column widths. In this case, the left
column is fixed at 220 pixels, while the right column has a variable width. Because the
grid is invisible, the figure appears to be empty.

f = uifigure('Position',[100 100 500 315]);
grid1 = uigridlayout(f,[1 2]);
grid1.ColumnWidth = {220,'1x'};

1 Alphabetical List

1-15374

Add a panel and axes to grid1.

p = uipanel(grid1,'Title','Configuration');
ax = uiaxes(grid1);

 uigridlayout

1-15375

Create a grid called grid2 inside the panel. Then place three components and three
labels inside grid2. The left column of grid2 aligns the labels with the components.
Since each row uses only 22 pixels, the panel has extra space below the third row.

% Grid in the panel
grid2 = uigridlayout(p,[3 2]);
grid2.RowHeight = {22,22,22};
grid2.ColumnWidth = {80,'1x'};

% Device label
dlabel = uilabel(grid2);
dlabel.HorizontalAlignment = 'right';
dlabel.Text = 'Device';

% Device drop-down
devicedd = uidropdown(grid2);
devicedd.Items = {'Select a device'};

% Channel label
chlabel = uilabel(grid2);
chlabel.HorizontalAlignment = 'right';
chlabel.Text = 'Channel';

% Channel drop-down
channeldd = uidropdown(grid2);
channeldd.Items = {'Channel 1', 'Channel 2'};

% Rate Label
ratelabel = uilabel(grid2);
ratelabel.HorizontalAlignment = 'right';
ratelabel.Text = 'Rate (scans/s)';

% Rate edit field
ef = uieditfield(grid2, 'numeric');
ef.Value = 50;

1 Alphabetical List

1-15376

When you resize the figure, the axes grow and shrink to fill the available space that the
left column of grid1 does not use. The panel remains fixed because that column is
defined as 220 pixels wide.

 uigridlayout

1-15377

Nested Grid

Nested grids allow you to manage subsets of components. In this case, there are three
grids: one grid that covers the entire figure, a second grid that manages a vertical stack
of components, and a third grid that manages two buttons that are side by side at the
bottom of the vertical stack.

Create a figure and a 1-by-2 grid. Then configure the column widths. In this case, the left
column is fixed at 150 pixels, while the right column has a variable width. Because the
grid is invisible, the figure appears to be empty.

f = uifigure('Position',[100 100 500 315]);
grid1 = uigridlayout(f,[1 2]);
grid1.ColumnWidth = {150,'1x'};

Create a 4-by-1 grid called grid2 inside the first column of grid1. Then add an axes
component to the second column of grid1.

grid2 = uigridlayout(grid1,[4 1]);
grid2.RowHeight = {22,22,22,44};

ax = uiaxes(grid1);

1 Alphabetical List

1-15378

Add three drop-downs to the first three rows of grid2.

% Routes drop-down
ddRoutes = uidropdown(grid2);
ddRoutes.Items = {'Route 1', 'Route 2'};

% Direction drop-down
ddDirection = uidropdown(grid2);
ddDirection.Items = {'Inbound', 'Outbound'};

% Time drop-down
ddTime = uidropdown(grid2);
ddTime.Items = {'Morning', 'Afternoon'};

 uigridlayout

1-15379

Create a 1-by-2 grid called grid3 inside the last row of grid2. Then add two buttons to
grid3. Remove the padding on the left and right edges of grid3 so that the buttons align
with the left and right edges of the drop-downs.

grid3 = uigridlayout(grid2,[1 2]);
grid3.Padding = [0 10 0 10];
b1 = uibutton(grid3,'Text','Start');
b2 = uibutton(grid3,'Text','Stop');

1 Alphabetical List

1-15380

When you resize the figure, the axes grow and shrink to fill the available space that the
left column of grid1 does not use. The components on the left side remain fixed because
that column is defined as 150 pixels wide.

 uigridlayout

1-15381

Scroll to Location in Grid

Bring child components of a scrollable grid layout into view by specifying pixel
coordinates or a location name.

Create a 5-by-2 grid layout and set the Scrollable property of the grid to 'on'. Then
add a label, a table, and a panel to the grid. Set the Scrollable property of the panel to
'off' and then add a chart to the panel.

uf = uifigure('Position',[782 497 435 311]);
g = uigridlayout(uf,'Scrollable','on');
g.RowHeight = {22,40,22,22,400};
g.ColumnWidth = {400,400};

lbl = uilabel(g,'Text','Tsunamis');
lbl.Layout.Row = 2;
lbl.Layout.Column = [1,2];
lbl.HorizontalAlignment = 'center';
lbl.FontSize = 28;

tsunamis = readtable('tsunamis.xlsx');
tsunamis.Cause = categorical(tsunamis.Cause);
t = uitable(g,'Data',tsunamis);
t.Layout.Row = [3,5];
t.Layout.Column = 2;

p = uipanel(g);
p.Scrollable = 'off';
p.Layout.Row = [3,5];
p.Layout.Column = 1;
gb = geobubble(p,tsunamis.Latitude,tsunamis.Longitude,...
 tsunamis.MaxHeight,tsunamis.Cause);

1 Alphabetical List

1-15382

Scroll to a location in the grid.

scroll(g,100,-30);

 uigridlayout

1-15383

Now use location names to scroll to the bottom-right corner of the grid.

scroll(g,'bottom','right');

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

sz — Size
[2 2] (default) | two-element vector

Size of the grid, specified as a two-element vector. The first element is the number of
rows, and the second element is the number of columns. Both values must be greater
than 0. When you specify this argument without setting the RowHeight or ColumnWidth
properties, MATLAB automatically sets the row heights and column widths to '1x'.

1 Alphabetical List

1-15384

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: uigridlayout('RowHeight',{100,100}) creates a grid containing two
rows that are 100 pixels in height.

Note The properties listed here are only a subset. For a complete list, see GridLayout
Properties.

ColumnWidth — Column width
{'1x','1x'} (default) | cell array

Column width, specified as a cell array containing either numbers or numbers paired with
'x' characters. You can specify any combination of values. The number of elements in the
cell array controls the number of columns in the grid. For example, to create a 4-column
grid, specify a 1-by-4 cell array.

There are two different types of column widths:

• Fixed width in pixels — Specify a number. The column width is fixed at the number of
pixels you specify. When the parent container resizes, the column width does not
change.

• Variable width — Specify a number paired with an 'x' character (for example, '1x').
When the parent container resizes, the column width grows or shrinks. Variable-width
columns fill the remaining horizontal space that the fixed-width columns do not use.
The number you pair with the 'x' character is a weight for dividing up the remaining
space among all the variable-width columns. If the grid has only one variable-width
column, then it uses all the remaining space regardless of the number. If there are
multiple variable-width columns that use the same number, then they share the space
equally. Otherwise, the amount of space is proportional to the number.

For example, {100,'2x','1x'} specifies 100 pixels for the first column, and the last
two columns share the remaining horizontal space. The second column uses twice as
much space as the third column.

 uigridlayout

1-15385

Changing certain aspects of a layout can affect the value of this property. For example,
adding more components to a fully populated grid changes the size of the grid to
accommodate the new components. And if you try to delete a column that contains
components, the ColumnWidth property does not change until you move those
components out of that column.

RowHeight — Row height
{'1x','1x'} (default) | cell array

Row height, specified as a cell array containing either numbers or numbers paired with
'x' characters. You can specify any combination of values. The number of elements in the
cell array controls the number of rows in the grid. For example, to create a grid that has 4
rows, specify a 1-by-4 cell array.

There are two different types of row heights:

• Fixed height in pixels — Specify a number. The row height is fixed at the number of
pixels you specify. When the parent container resizes, the row height does not change.

• Variable height — Specify a number paired with an 'x' character (for example, '1x').
When the parent container resizes, the row grows or shrinks. Variable-height rows fill
the remaining vertical space that the fixed-height rows do not use. The number you
pair with the 'x' character is a weight for dividing up the remaining space among all
the variable-height rows. If the grid has only one variable-height row, then it uses all
the remaining space regardless of the number. If there are multiple variable-height
rows that use the same number, then they share the space equally. Otherwise, the
amount of space is proportional to the number.

For example {100,'2x','1x'} specifies 100 pixels for the first row, and the last two
rows share the remaining vertical space. The second row uses twice as much space as the
third row.

Changing certain aspects of a layout can affect the value of this property. For example,
adding more components to a fully populated grid changes the size of the grid to
accommodate the new components. And if you try to delete a row that contains
components, the RowHeight property does not change until you move those components
out of that row.

1 Alphabetical List

1-15386

Tips
To view the list of component objects in the grid, query the Children property of the
grid. Changing the order in the list does not change the layout in the grid.

See Also
Functions
appdesigner | scroll | uifigure

Properties
GridLayout Properties

Topics
“Using Grid Layout Managers”

Introduced in R2018b

 uigridlayout

1-15387

uiimage
Create image component

Syntax
im = uiimage
im = uiimage(Name,Value)
im = uiimage(parent)
im = uiimage(parent,Name,Value)

Description
im = uiimage creates an image component in a new figure and returns the Image
object. MATLAB calls the uifigure function to create the new figure. Use uiimage to
display a picture, icon, or logo in your app.

im = uiimage(Name,Value) specifies Image property values using one or more name-
value pair arguments.

im = uiimage(parent) creates an image component in the specified parent container.
The parent can be a figure created using the uifigure function, or one of its child
containers.

im = uiimage(parent,Name,Value) specifies the parent container and one or more
property values.

Examples

Display a Picture

Create an image component within a figure. The default image displays.

f = uifigure;
im = uiimage(f);

1 Alphabetical List

1-15388

Now, add a picture to the image component.

im.ImageSource = 'peppers.png';

 uiimage

1-15389

Display Animated GIF With Letterboxing

Create an image component that displays an animated GIF using the actual size of the
image.

f = uifigure;
im = uiimage(f,'ImageSource','questions.gif');
im.ScaleMethod = 'none';

Now, scale the image so that it fits within the default component area, preserving aspect
ratio and without clipping. Then, apply a black background to create the appearance of
letterboxing (black bars above and below the image).

im.ScaleMethod = 'scaledown';
im.BackgroundColor = 'black';

1 Alphabetical List

1-15390

Configure Image to Perform Action When Clicked

Create an image and a callback that executes when the image is clicked. In this case, the
image opens the MathWorks® website.

This program file, called imagetoURL.m, shows you how to:

• Create an image component with an ImageClickedFcn callback.
• Use the web function within the callback to open a URL in the MATLAB® browser.
• Create a tooltip that appears when you hover over the image.

When you run the program file, click the image to open the MathWorks® website.

function imagetoURL
f = uifigure('Visible','off');
f.Position(3:4) = [333 239];

im = uiimage(f);
im.Position = [20 120 100 100];
im.ImageSource = 'membrane.png';
im.ImageClickedFcn = @ImageClicked;
im.Tooltip = 'Go to www.mathworks.com';

 function ImageClicked(src,event)

 uiimage

1-15391

 url = 'https://www.mathworks.com/';
 web(url);
 end

f.Visible = 'on';
end

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-15392

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: im = uiimage('ScaleMethod','none')

Note The properties listed here are only a subset. For a complete list, see Image
Properties.

ImageSource — Image source or file
' ' (default) | file path | m-by-n-by-3 truecolor image array

Image source or file, specified as a file path or an m-by-n-by-3 truecolor image array.
Supported image formats include JPEG, PNG, GIF, SVG, or m-by-n-by-3 truecolor image
array.

For more information on truecolor image arrays, see “Image Types”.
Example: im = uiimage('ImageSource','peppers.png');
Example: im.ImageSource = 'C:\TEMP\ngc6543a.jpg';

ScaleMethod — Image scaling method
'fit' (default) | 'fill' | 'none' | 'scaledown' | 'scaleup' | 'stretch'

Image scaling method, specified as one of the values listed in the table. Use this name-
value pair argument to specify how you want your image to render within the component
area.

The table also demonstrates each scale method with an example image. In the rendered
image examples, the BackgroundColor property of the image component has been set
to 'magenta'. The scaling behavior of SVG image files may vary based on how the file is
defined.

 uiimage

1-15393

Value Description Example Scal
es
Up

Scales
Down

Maint
ains
Aspec
t
Ratio

Clips
ImageOriginal

Image
Rendered
Image

'fit' Scales in any
direction to
display the
image within the
component area,
and maintains
aspect ratio
without clipping.

Yes Yes Yes No

'fill' Scales in any
direction to fill
the component
area,
maintaining
aspect ratio and
clipping if
necessary.

Yes Yes Yes Yes

'none' Uses the actual
size of the image
and maintains
aspect ratio. If
the component
area is smaller
than the image,
the image is
clipped.

No No Yes Yes

1 Alphabetical List

1-15394

Value Description Example Scal
es
Up

Scales
Down

Maint
ains
Aspec
t
Ratio

Clips
ImageOriginal

Image
Rendered
Image

'scaledo
wn'

Scales down and
maintains aspect
ratio without
clipping.

If the original
image is larger
than the
component area,
the image scales
down and
renders as if the
ScaleMethod
was set to
'fit'. If the
original image is
smaller than the
component area,
the image does
not scale down
and renders as if
the
ScaleMethod
was set to
'none'.

No Yes Yes No

 uiimage

1-15395

Value Description Example Scal
es
Up

Scales
Down

Maint
ains
Aspec
t
Ratio

Clips
ImageOriginal

Image
Rendered
Image

'scaleup
'

Scales up and
maintains aspect
ratio with
clipping.

If the original
image is smaller
than the
component area,
the image scales
up and renders
as if the
ScaleMethod
was set to
'fit'. If the
original image is
larger than the
component area,
the image does
not scale up and
renders as if the
ScaleMethod
was set to
'none'.

Yes No Yes Yes

'stretch
'

Scales in any
direction to fill
the component
area, without
maintaining the
aspect ratio and
without clipping.

Yes Yes No No

ImageClickedFcn — Image clicked callback
' ' (default) | function handle | cell array | character vector

1 Alphabetical List

1-15396

Image clicked callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user clicks the image in the app.

This callback function can access specific information about the user's interaction with
the image. MATLAB passes this information in an ImageClickedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.Source returns the Image object that the user is interacting with to trigger the
callback. The ImageClickedData object is not available to callback functions specified
as character vectors.

The following table lists the properties of the ImageClickedData object.

Property Value
EventName 'ImageClicked'
Source Component executing the callback

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size of image component
[100 100 100 100] (default) | [left bottom width height]

Location and size of image component relative to the parent, specified as a four element
vector of the form [left bottom width height]. This table describes each element
in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the image component
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the image
component

 uiimage

1-15397

Element Description
width Distance between the right and left outer edges of the

image component
height Distance between the top and bottom outer edges of the

image component

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.

Tips
• For image analysis and processing, see graphics functions image and imshow.

See Also
Functions
appdesigner | image | imshow | uifigure

Properties
Image Properties

Introduced in R2019a

1 Alphabetical List

1-15398

uimenu
Create menu or menu items

Syntax
m = uimenu
m = uimenu(Name,Value)
m = uimenu(parent)
m = uimenu(parent,Name,Value)

Description
m = uimenu creates a menu in the current figure and returns the Menu object. If there is
no figure available, MATLAB calls the figure function to create one.

m = uimenu(Name,Value) specifies menu property values using one or more name-
value pair arguments.

m = uimenu(parent) creates the menu in the specified parent container. The parent
container can be a figure created with either the figure or uifigure function, or
another Menu object. Property values for uimenu vary slightly depending on whether the
app is created with the figure or uifigure function. For more information, see “Name-
Value Pair Arguments” on page 1-15405.

m = uimenu(parent,Name,Value) specifies the parent container and one or more
property values.

Examples

Menu in Default Menu Bar

Create a figure that displays the default menu bar. Add a menu and a menu item.

 uimenu

1-15399

f = figure('Toolbar','none');
m = uimenu('Text','Options');
mitem = uimenu(m,'Text','Reset');

Menu Item with Keyboard Shortcuts and Callback

Add a menu item with keyboard shortcuts to the menu bar and define a callback that
executes when the menu item is selected.

First, create a program file called importmenu.m. Within the program file:

• Create a figure.
• Add a menu called Import. Create a mnemonic keyboard shortcut for the menu by

specifying '&Import' as the text label.
• Create a menu item and specify mnemonic and accelerator keyboard shortcuts.
• Define a MenuSelectedFcn callback that executes when the user clicks the menu

item or uses the mnemonic or accelerator keyboard shortcuts.

Run the program file.

function importmenu
f = uifigure;
m = uimenu(f,'Text','&Import');

mitem = uimenu(m,'Text','&Text File');
mitem.Accelerator = 'T';
mitem.MenuSelectedFcn = @MenuSelected;

 function MenuSelected(src,event)
 file = uigetfile('*.txt');

1 Alphabetical List

1-15400

 end

end

You can interact with the menu and menu item, using the keyboard, in the following ways:

• Select the Import menu by pressing Alt+I.
• Select the Text File menu item and execute the callback by pressing Alt+I+T.
• Select the Text File menu item and execute the callback by using the accelerator Ctrl

+T.

When you select the Text File menu item, the Select File to Open dialog box opens with
the extension field filtered to text files.

 uimenu

1-15401

Menu with Checked Menu Item and Shared Callback

Create a checked menu item that can be selected or cleared to show a grid in axes. Share
the callback with a push button so that pushing it also shows or hides the grid.

First, create a program file called plotOptions.m. Within the program file:

• Create a figure with a push button, and axes that display a grid.
• Add a menu and a menu item with mnemonics. Specify that the menu item is checked.
• Define a MenuSelectedFcn callback that hides or shows the grid when the user

interacts with the menu item.
• Define a ButtonPushedFcn that uses the same callback function as the menu item.

Run the program file.

function plotOptions
f = uifigure;
ax = uiaxes(f);
grid(ax);

1 Alphabetical List

1-15402

btn = uibutton(f,'Text','Show Grid');
btn.Position = [155 325 100 20];

m = uimenu(f,'Text','&Plot Options');
mitem = uimenu(m,'Text','Show &Grid','Checked','on');
mitem.MenuSelectedFcn = @ShowGrid;
btn.ButtonPushedFcn = @ShowGrid;

 function ShowGrid(src,event)
 grid(ax);
 if strcmp(mitem.Checked,'on')
 mitem.Checked = 'off';
 else
 mitem.Checked = 'on';
 end
 end
end

 uimenu

1-15403

Input Arguments
parent — Parent container
Figure object | Menu object

Parent container, specified as a Figure object created with either the figure or
uifigure function, or another Menu object. If you do not specify a parent container, then
MATLAB calls figure to create one, and places the menu in the menu bar of that figure.
Specify the parent as an existing Menu object to add menu items to a menu, or to nest
menu items.

1 Alphabetical List

1-15404

To add menu items to a context menu in GUIDE, or context menus in a figure created with
the figure function, specify the parent as a ContextMenu object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: m = uimenu('Text','Open') creates a menu and sets its label to 'Open'.

• For a list of properties available for App Designer, or for creating apps with the
uifigure function, see Menu for App Designer.

• For a list of properties available for GUIDE, or for creating apps with the figure
function, see Menu for GUIDE.

See Also
Properties
Menu Properties

Topics
“Use One Callback for Multiple App Designer Components”

Introduced before R2006a

 uimenu

1-15405

Menu Properties
Control appearance and behavior of menu

Note The properties listed here are valid for menus in GUIDE or in apps created
with the figure function. If you are using App Designer or the uifigure function, see
Menu Properties instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Description
Menus display drop-down lists of options at the top of an app window. Call the uimenu
function to create a menu or add a submenu to an existing menu. Properties control the
appearance and behavior of a menu. Use dot notation to refer to a specific object and
property.

f = figure;
m = uimenu(f);
m.Text = 'Open Selection';

Properties
Menu

Text — Menu label
character vector | string scalar

Menu label, specified as a character vector or string scalar. This property specifies the
label that appears on the menu or menu item.

Avoid using these case-sensitive reserved words: "default", "remove", and "factory". If you
must use a reserved word, then specify a backslash character before the word. For
instance, specify "default" as '\default'.

You can specify a mnemonic keyboard shortcut (Alt+mnemonic) by using the ampersand
(&) character in the text for the label. The character that follows the ampersand appears

1 Alphabetical List

1-15406

underlined in the menu when Alt is pressed. You can select the menu item by holding
down the Alt key and typing the character shown.

To use mnemonics, you must specify a mnemonic for all menus and menu items that you
define in the app. If you define mnemonics only for some menus or menu items, pressing
the Alt key does not have any effect. Mnemonics cannot be used on menus or menu items
within a context menu.

The table shows some examples:

Text Value Menu Label with Mnemonic Hints
'&Open Selection'

'O&pen Selection'

'&Save && Go'

Accelerator — Keyboard shortcut
character

Keyboard shortcut, specified as a character. Use this property to define a keyboard
shortcut for selecting a menu item.
Example: mitem.Accelerator = 'H'

Specifying an accelerator value enables users to select the menu item by pressing a
character and another key, instead of using the mouse. The key sequence is platform
specific.

• Windows systems: Ctrl+accelerator
• Macintosh systems: Command+accelerator
• Linux systems: Ctrl+accelerator

Things to keep in mind when using accelerators:

• The app window must be in focus when entering the accelerator key sequence.
• Accelerators cannot be used on top-level menus.
• Accelerators only work when the menu item meets all these criteria.

 Menu Properties

1-15407

• It does not contain any submenu items.
• It executes a callback function.
• It has the Visible property set to 'on'.

If the menu item is nested within a context menu, then the accelerator will only work if
the context menu is in focus.

Separator — Separator line above menu item
'off' (default) | 'on'

Separator line above menu item, specified as 'off' or 'on'. Setting this property to
'on' draws a dividing line above the menu item.

Note The Separator property is ignored when the menu item is a top-level menu item.

Checked — Menu check indicator
'off' (default) | 'on'

Menu check indicator, specified as 'off' or 'on'. Setting this property to 'on' places a
check mark next to the corresponding menu item. Setting it to 'off' removes the check
mark. You can use this feature to show the state of menu items that enable or disable
functionality in your application.

Note The Checked property is ignored when the menu item is:

• A top-level menu item
• A menu item that contains one or more child menu items

ForegroundColor — Menu label color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Menu label color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

1 Alphabetical List

1-15408

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

 Menu Properties

1-15409

Label — Menu label (not recommended)
character vector | string scalar

Menu label, specified as a character vector or string scalar. This property specifies the
label that appears on the menu (or menu item).

Note Use of the Label property is not recommended. It might be removed in a future
release. Use the Text property instead.

Position — Relative menu position (not recommended)
scalar integer value

Relative menu position, specified as a scalar integer value. The value of Position
property indicates placement on the menu bar or within a menu. Top-level menus appear
from left to right on the menu bar according to the value of their Position property,
with 1 representing the left-most position. The individual items within a given menu
appear from top to bottom according to the value of their Position property, with 1
representing the top-most position.

Note Use of the Position property is not recommended. It might be removed in a
future release. To change the order of menu items, use the Children property or the
uistack function instead.

Interactivity

Visible — Component visibility
'on' (default) | 'off'

Component visibility, specified as 'on' or 'off'. When the Visible property is set to
'off', the component is not visible in the UI, but you can query and set its properties.

Enable — Operational state of menu
'on' (default) | 'off'

Operational state of menu, specified as 'on' or 'off'. This property controls whether
the user can select a menu item. When the value is 'off', the menu label appears
dimmed, indicating that the user cannot select it.

1 Alphabetical List

1-15410

Callbacks

MenuSelectedFcn — Menu selected callback
'' (default) | function handle | cell array | character vector

Menu selected callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This callback responds depending on the location of the menu item and the type of
interaction:

• Left-clicking a menu expands that menu and triggers its callback.
• While any menu is expanded, hovering any other parent menu (or top-level menu)

expands that menu and triggers its callback.

Note Do not use a callback to dynamically change menu items. Deleting, adding, and
replacing menu items in a callback can result in a blank menu. Instead, use the Visible
property to hide or show menu items. You can also enable and disable menu items by
setting the Enable property. To fully repopulate menu items, delete and create them
outside the callback.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

 Menu Properties

1-15411

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

Callback — Menu selected callback (not recommended)
'' (default) | function handle | cell array | character vector

Menu selected callback, specified as one of these values:

• A function handle.

1 Alphabetical List

1-15412

• A cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

Note Use of the Callback property is not recommended. It might be removed in a
future release. Use MenuSelectedFcn instead.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

 Menu Properties

1-15413

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

1 Alphabetical List

1-15414

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

HitTest — Ability to become current object (not recommended)
'on' (default) | 'off'

This property has no effect on Menu objects.

Parent/Child

Parent — Parent object
Figure object | ContextMenu object | Menu object

This property is read-only.

Parent object, specified as a Figure, ContextMenu, or a Menu object. You can move a
menu item to a different window, or move it under a different menu by setting this
property.

Children — Menu children
empty GraphicsPlaceholder array (default) | 1-D array of Menu objects

Menu children, returned as an empty GraphicsPlaceholder or a 1-D array of Menu
objects. The children of menus are other menus that function as submenus.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the child menu items. The order of the children in
this array reflects the order of the displayed menu items.

 Menu Properties

1-15415

To add a child to this list, set the Parent property of the child component to be the Menu
object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not
visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

'off' The object handle is invisible at all times. This option is
useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uimenu'

1 Alphabetical List

1-15416

This property is read-only.

Type of graphics object, returned as 'uimenu'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
guide | uimenu

Topics
“Default Property Values”

Introduced before R2006a

 Menu Properties

1-15417

uint8
8-bit unsigned integer arrays

Description
Variables in MATLAB of data type (class) uint8 are stored as 1-byte (8-bit) unsigned
integers. For example:

y = uint8(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 1 uint8

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'uint8') creates a 100-by-100 matrix of zeros of type uint8.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type uint8 by using the uint8 function.

Syntax
Y = uint8(X)

Description
Y = uint8(X) converts the values in X to type uint8. Values outside the range [0,28-1]
map to the nearest endpoint.

1 Alphabetical List

1-15418

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint16 | uint32 |
uint64 | logical | char

Examples

Convert to 8-Bit Unsigned Integer Variable

Convert a double-precision variable to an 8-bit unsigned integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = uint8(x)

y = uint8
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 uint8

1-15419

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int8 | typecast | uint16 | uint32 | uint64

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

1 Alphabetical List

1-15420

uint16
16-bit unsigned integer arrays

Description
Variables in MATLAB of data type (class) uint16 are stored as 2-byte (16-bit) unsigned
integers. For example:

y = uint16(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 2 uint16

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'uint16') creates a 100-by-100 matrix of zeros of type uint16.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type uint16 by using the uint16 function.

Syntax
Y = uint16(X)

Description
Y = uint16(X) converts the values in X to type uint16. Values outside the range
[0,216-1] map to the nearest endpoint.

 uint16

1-15421

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint32 |
uint64 | logical | char

Examples

Convert to 16-Bit Unsigned Integer Variable

Convert a double-precision variable to a 16-bit unsigned integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = uint16(x)

y = uint16
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-15422

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int16 | typecast | uint32 | uint64 | uint8

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

 uint16

1-15423

uint32
32-bit unsigned integer arrays

Description
Variables in MATLAB of data type (class) uint32 are stored as 4-byte (32-bit) unsigned
integers. For example:

y = uint32(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 4 uint32

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'uint32') creates a 100-by-100 matrix of zeros of type uint32.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type uint32 by using the uint32 function.

Syntax
Y = uint32(X)

Description
Y = uint32(X) converts the values in X to type uint32. Values outside the range
[0,232-1] map to the nearest endpoint.

1 Alphabetical List

1-15424

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint64 | logical | char

Examples

Convert to 32-Bit Unsigned Integer Variable

Convert a double-precision variable to a 32-bit unsigned integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = uint32(x)

y = uint32
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

 uint32

1-15425

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int32 | typecast | uint16 | uint64 | uint8

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

1 Alphabetical List

1-15426

uint64
64-bit unsigned integer arrays

Description
Variables in MATLAB of data type (class) uint64 are stored as 8-byte (64-bit) unsigned
integers. For example:

y = uint64(10);
whos y

 Name Size Bytes Class Attributes

 y 1x1 8 uint64

For more information on integer types, see “Integers”.

Creation
Some array creation functions allow you to specify the data type. For instance,
zeros(100,'uint64') creates a 100-by-100 matrix of zeros of type uint64.

If you have an array of a different type, such as double or single, then you can convert
that array to an array of type uint64 by using the uint64 function.

Syntax
Y = uint64(X)

Description
Y = uint64(X) converts the values in X to type uint64. Values outside the range
[0,264-1] map to the nearest endpoint.

 uint64

1-15427

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | logical | char

Examples

Convert to 64-Bit Unsigned Integer Variable

Convert a double-precision variable to a 64-bit unsigned integer.

x = 100;
xtype = class(x)

xtype =
'double'

y = uint64(x)

y = uint64
 100

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

1 Alphabetical List

1-15428

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cast | int64 | typecast | uint16 | uint32 | uint8

Topics
“Integers”
“Identifying Numeric Classes”

Introduced before R2006a

 uint64

1-15429

uiopen
Open file selection dialog box and load selected file into workspace

Syntax
uiopen
uiopen(type)
uiopen(file)
uiopen(file,tf)

Description
uiopen opens a modal on page 1-15436 dialog box entitled Open. The file filter in the
dialog box is set to all MATLAB files. If the user enters a valid file name in the File Name
field and clicks Open, then MATLAB opens the specified file in the appropriate
application. If the appropriate application is not installed, then either the file opens in the
MATLAB Editor or an error is returned.

Note The visual characteristics of the dialog box depend on the operating system that
runs your code. For instance, some operating systems do not show title bars on dialog
boxes.

uiopen(type) sets the file filter according to the type of file specified (which is not the
same as the file extension). For example, if type is 'figure', then MATLAB sets the filter
to all figure files (*.fig).

uiopen(file) specifies the file name that appears as the default value in the dialog box
File name field. Only files that have the same file extension are displayed in the dialog
box.

If you specify a wildcard character and a file extension (such as *.m), then no file name
appears in the File name field. The dialog box displays only files with the specified
extension. The type value appears in the filter field to the right of the File name field.

1 Alphabetical List

1-15430

uiopen(file,tf) opens the specified file without displaying the Open dialog box when
the value of tf is logical true (1). The Open dialog box is displayed when the value of tf
is logical false (0).

Examples

Filter Files by Type

Display all the files in the current folder in the Open dialog box. Then, rerun the uiopen
command to filter the files by the 'editor' type.

uiopen

The uiopen command with no arguments displays all MATLAB files in the current folder.

Set the type argument to 'editor' to display only those files that can be opened in the
Editor. FIG-files, MAT-files, SLX-files, MLAPP-files, and MLAPPINSTALL-files are excluded
from the list presented in the dialog box.

 uiopen

1-15431

uiopen('editor')

Filter Files by File Extension

uiopen('*.m')

1 Alphabetical List

1-15432

Specify Default File

Set the file input argument to a file name. That file appears in the File name field when
the dialog box opens.

uiopen('surf.m')

 uiopen

1-15433

If the user clicks Open, then surf.m opens in the MATLAB Editor.

If the user enters a different file in the File name field and then clicks Open, then that
file opens if it is in the current folder. However, notice that only files with the same file
extension as the one specified in the uiopen function call are listed in the Open dialog
box.

Input Arguments
type — file filter
'matlab' (default) | 'load' | 'figure' | 'simulink' | 'editor'

File filter, specified as 'matlab', 'load','figure','simulink', or 'editor'. The
files that MATLAB displays for each type value are as follows.

Type Value Files Displayed
'matlab' All MATLAB files.

1 Alphabetical List

1-15434

Type Value Files Displayed
'load' All MAT-files (*.mat)
'figure' All figure files (*.fig)
'simulink' All Simulink model files (*.mdl and *.slx)
'editor' All MATLAB files except

for .mat, .fig, .slx , .mlapp,
and .mlappinstall files

The only the form of uiopen that you can compile into a standalone application is
uiopen('load'). To create a file selection dialog box that you can compile, use
uigetfile.

file — File name
character vector | string scalar

A file name, specified as a character vector or string scalar that includes the file
extension. If tf is false (the default), then the file name can be a wildcard character plus
a file extension. For example, *.txt displays a list of all files with the .txt file extension.
Example: 'surf.m'
Example: 't.fig'
Example: '*.mat'

tf — Logical open file
0 (default) | 1 | true | false

Logical open file specified as logical true (1), logical false (0), true, false, or a MATLAB
expression that evaluates to logical true or false.

If tf is set to true, 1, or evaluates to 1, then the Open dialog box does not appear and
MATLAB attempts to open the specified file in the appropriate tool.

If tf is set to false, 0 or evaluates to 0, then the Open dialog box appears.
Example: 1
Example: true

 uiopen

1-15435

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Tips
• This table lists file extensions and the application in which such a file opens when a

user selects a file with that extension and clicks Open. If the listed tool is not installed
and the file is a text file, then the file opens in the MATLAB Editor. MATLAB returns an
error if Simulink is not installed and the user selects a file with an .mdl or .slx file
extension.

File Extension Where File Loads
.m or .mlx MATLAB Editor
.fig MATLAB Figure window.
.mat MATLAB workspace.
.mlapp MATLAB App Designer.
.mlappinstall MATLAB app installer
.mdl or .slx Simulink

• To open a file in Microsoft Windows, use the winopen function.

Alternatives
You can also use these functions to open a file in a MATLAB code file or in a command.

File to Open Function
Based on file extension open
In the Editor edit
FIG-file load

1 Alphabetical List

1-15436

File to Open Function
MAT-file openfig

See Also
uisave

Introduced before R2006a

 uiopen

1-15437

uipanel
Create panel container object

Syntax
p = uipanel
p = uipanel(Name,Value)
p = uipanel(parent)
p = uipanel(parent,Name,Value)

Description
p = uipanel creates a panel in the current figure and returns the Panel object. If there
is no figure available, MATLAB calls the figure function to create one. Panels cannot
contain ActiveX controls.

p = uipanel(Name,Value) specifies panel property values using one or more name-
value pair arguments.

p = uipanel(parent) creates the panel in the specified parent container. The parent
container can be a figure created with either the figure or uifigure function, or a
child container such as a tab or grid layout. Property values for uipanel vary slightly
depending on whether the app is created with the figure or uifigure function. For
more information, see “Name-Value Pair Arguments” on page 1-15441.

p = uipanel(parent,Name,Value) specifies the parent container and one or more
properties values.

Examples

1 Alphabetical List

1-15438

Nested Panels

Create a figure containing two panels and a push button. The panels use the default
Units property value, 'normalized'. The default units for the uicontrol is
'pixels'.

h = figure;
hp = uipanel('Title','Main Panel','FontSize',12,...
 'BackgroundColor','white',...
 'Position',[.25 .1 .67 .67]);
hsp = uipanel('Parent',hp,'Title','Subpanel','FontSize',12,...
 'Position',[.4 .1 .5 .5]);
hbsp = uicontrol('Parent',hsp,'String','Push here',...
 'Position',[18 18 72 36]);

 uipanel

1-15439

Scrollable Panel

The Scrollable property enables scrolling within a panel that has components outside
its borders. Scrolling is only possible when the panel is in a figure created with the
uifigure function. App Designer uses this type of figure for creating apps.

Create a panel within a figure. Add six UI components to the panel, with the first three
lying outside the upper border of the panel.

f = uifigure;
p = uipanel(f,'Position',[20 20 196 135]);
ef1 = uieditfield(p,'text','Position',[11 165 140 22],'Value','First Name');
ef2 = uieditfield(p,'text','Position',[11 140 140 22],'Value','Last Name');
ef3 = uieditfield(p,'text','Position',[11 115 140 22],'Value','Addess');
dd = uidropdown(p,'Position',[11 90 140 22],'Items',{'Male','Female'});
cb = uicheckbox(p,'Position',[11 65 140 22],'Text','Member');
b = uibutton(p,'Position',[11 40 140 22],'Text','Send');

Enable scrolling by setting the Scrollable property of the panel to 'on'. By default,
the scroll box displays at the top.

p.Scrollable = 'on';

1 Alphabetical List

1-15440

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a figure created with either the figure or uifigure
function, or a child container:

• Panels, tabs, and button groups can be containers in either type of figure.
• Grid layouts can be containers only in figures created with the uifigure function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 uipanel

1-15441

quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.
Example: 'Title','Options' specifies that the panel title is Options.

• For a list of properties available for GUIDE, or for creating apps with the figure
function, see Uipanel for GUIDE.

• For a list of properties available for App Designer, or for creating apps with the
uifigure function, see Panel for App Designer.

Tips
If you set the Visible property of a panel object to 'off', then any child objects it
contains (buttons, button groups, axes, etc.) become invisible along with the parent panel.
However, the Visible property value of each child object remains unaffected.

See Also
Properties
Panel

Introduced before R2006a

1 Alphabetical List

1-15442

uiprogressdlg
Create progress dialog box

Syntax
d = uiprogressdlg(f)
d = uiprogressdlg(f,Name,Value)

Description
d = uiprogressdlg(f) displays a determinate progress dialog box in figure f and
returns the ProgressDialog object. The figure must be created using the uifigure
function.

d = uiprogressdlg(f,Name,Value) specifies ProgressDialog property values
using Name,Value pair arguments. Use property values to control the appearance and
behavior of the dialog box. For example, you can add a title or message to the dialog box,
or specify an indeterminate progress bar.

Examples

Determinate Progress Bar

Create a program file called myprogress1.m that creates a figure and a progress dialog
box. Update the Value and Message properties at three different points in the code.

function myprogress1
 f = uifigure;
 d = uiprogressdlg(f,'Title','Please Wait',...
 'Message','Opening the application');
 pause(.5)

 % Perform calculations
 % ...

 uiprogressdlg

1-15443

 d.Value = .33;
 d.Message = 'Loading your data';
 pause(1)

 % Perform calculations
 % ...
 d.Value = .67;
 d.Message = 'Processing the data';
 pause(1)

 % Finish calculations
 % ...
 d.Value = 1;
 d.Message = 'Finishing';
 pause(1)

 % Close dialog box
 close(d);
end

Run the program to display the progress dialog box.

myprogress1

1 Alphabetical List

1-15444

Indeterminate Progress Bar

Create a program file called myprogress2.m that creates a figure and displays an
indeterminate progress bar during a singular value decomposition.

function myprogress2
 f = uifigure;
 d = uiprogressdlg(f,'Title','Computing SVD',...
 'Indeterminate','on');

 % Do the SVD computation
 svd(rand(5000));

 % close the dialog box
 close(d);
end

Setting the Indeterminate property to 'on' animates the progress bar to indicate that
there is no projected completion time. After completing the calculation, the close
function closes the dialog box.

Run the program to perform the singular value decomposition and display the progress
dialog box.

myprogress2

 uiprogressdlg

1-15445

Determinate Progress Bar with Cancel Button

Create a program file called myprogress3.m that creates a figure and displays a
progress bar while approximating the value of pi.

function myprogress3
 f = uifigure;
 d = uiprogressdlg(f,'Title','Approximating Pi',...
 'Message','1','Cancelable','on');

 % Approximate pi^2/8 as: 1 + 1/9 + 1/25 + 1/49 + ...
 pisqover8 = 1;
 denom = 3;
 valueofpi = sqrt(8 * pisqover8);
 steps = 20000;
 for step = 1:steps
 % Check for Cancel button press
 if d.CancelRequested
 break
 end
 % Update progress, report current estimate
 d.Value = step/steps;
 d.Message = sprintf('%12.9f',valueofpi);

1 Alphabetical List

1-15446

 % Calculate next estimate
 pisqover8 = pisqover8 + 1 / (denom * denom);
 denom = denom + 2;
 valueofpi = sqrt(8 * pisqover8);
 end

 % Close the dialog box
 close(d);
end

Setting the Cancelable property to 'on' creates a cancel button with the default label,
Cancel. The first command in the for loop checks the value of d.CancelRequested to
see if the user clicked the cancel button. If the value is true, the program exits the loop.
Finally, the close(d) command closes the dialog box after the for loop finishes or the
user cancels.

Run the program to approximate pi and display the progress dialog box.

myprogress3

 uiprogressdlg

1-15447

Input Arguments
f — Target figure
Figure object

Target figure, specified as a Figure object. The figure must be created with the
uifigure function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: d = uiprogressdlg(uifigure,'Value',0.25)

Note The properties listed here are only a subset. For a complete list, see ProgressDialog
Properties.

1 Alphabetical List

1-15448

Value — Fraction complete
0 (default) | number between 0 and 1

Fraction complete, specified as a number between 0 and 1. The progress bar reaches its
full length when the value is 1. Change Value at different points in your code to provide a
visual indication of progress in the running app.
Data Types: double

Message — message
'' (default) | character vector | cell array of character vectors | string array

Message, specified as a character vector, cell array of character vectors, or string array.
The message displays within the dialog box, above the progress bar.

To display multiple lines of text, specify a cell array of character vectors or a string array.
Each element in the array corresponds to a line of text. Hard breaks within each element,
such as '\n', create additional lines of text.
Example: d = uiprogressdlg(uifigure,'Message','Calculating result.');

Title — Title
'' (default) | character vector | string scalar

Title, specified as a character vector or a string scalar. The title displays in the title bar of
the dialog box.
Example: d = uiprogressdlg(uifigure,'Title','Calculating');

Indeterminate — Indeterminate progress
'off' (default) | 'on'

Indeterminate progress, specified as 'off' or 'on'. Set this property to 'on' to provide
an animated bar without any specific progress information. This animation is useful when
you do not know how long a calculation will take.

To prevent indeterminate progress bars from displaying indefinitely, call the close
function after completing your calculations.

Cancelable — Allow cancellation
'off' (default) | 'on'

 uiprogressdlg

1-15449

Allow cancellation, specified as 'off' or 'on'. A value of 'on' displays a cancel button
in the dialog box. You can customize the button label by specifying the CancelText
property.

When you allow cancellation, you must check the value of the CancelRequested
property, and call the close function when the value is true. Otherwise, the dialog box
displays indefinitely.

See Also
Functions
uialert | uiconfirm

Properties
ProgressDialog Properties

Introduced in R2018a

1 Alphabetical List

1-15450

Panel Properties
Control appearance and behavior of panel

Note The properties listed here are valid for panels in GUIDE or in apps created
with the figure function. If you are using App Designer or the uifigure function, see
Panel Properties instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Description
Panels are containers for grouping together UI components. Properties control the
appearance and behavior of a panel. Use dot notation to refer to a particular object and
property.

f = figure;
p = uipanel(f);
p.Position = [.1 .1 .7 .8];

Properties
Title

Title — Title
character vector | string scalar | categorical array

Title, specified as a character vector, string scalar, or categorical array. If you specify this
property as a categorical array, MATLAB displays only the first element in the array.

MATLAB does not interpret a vertical slash ('|') character as a line break, it displays as
a vertical slash in the title.

If you want to specify a Unicode character, pass the Unicode decimal code to the char
function. For example, ['Multiples of ' char(960)] displays as Multiples of π.

 Panel Properties

1-15451

TitlePosition — Title location
'lefttop' (default) | 'centertop' | 'righttop' | 'leftbottom' |
'centerbottom' | 'rightbottom'

Title location, specified as 'lefttop', 'centertop', 'righttop', 'leftbottom',
'centerbottom', or 'rightbottom'.

Color and Styling

ForegroundColor — Title color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Title color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

1 Alphabetical List

1-15452

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0 0 1]
Example: 'b'
Example: 'blue'

BackgroundColor — Background color
[.94 .94 .94] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 Panel Properties

1-15453

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BorderType — Border type
'etchedin' (default) | 'etchedout' | 'beveledin' | 'beveledout' | 'line' |
'none'

Border type, specified as 'etchedin', 'none', 'etchedout', 'beveledin',
'beveledout', or 'line'.

• For a 3-D appearance, use etched or beveled borders.

Use the HighlightColor and ShadowColor properties to specify the color of 3-D
borders.

1 Alphabetical List

1-15454

• For a simpler appearance, use a line border.

Use the HighlightColor property to specify the line border color.

BorderWidth — Border width
1 (default) | positive integer value

Border width, specified as a positive integer value. The unit of measurement is pixels.
Etched and beveled borders wider than three pixels might not appear correctly at the
corners.

HighlightColor — Border highlight color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Border highlight color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

 Panel Properties

1-15455

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

ShadowColor — Border shadow color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Border shadow color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-15456

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Clipping — Child component clipping (not recommended)
'on' (default) | 'off'

Note The behavior of the Clipping property has changed. It no longer has any effect on
Panel objects. Child objects are now clipped to the boundaries of their parent container
regardless of the value of this property. This property might be removed in a future
release.

 Panel Properties

1-15457

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific operating system and locale.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'. The actual
fixed-width font used depends on the FixedWidthFontName property of the root object.
Changing the FixedWidthFontName property causes an immediate update of the display
to use the new font.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The FontUnits property specifies the units.
The default size is system-dependent.
Example: 12
Example: 12.5

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as a value from the following table.

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than normal

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note The 'light' and 'demi' font weight values have been removed in R2014b. If you
specify either of these values, the result is a normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

1 Alphabetical List

1-15458

Font angle, specified as 'normal' or 'italic'. MATLAB uses this property to select a
font from those available on your system. Setting this property to 'italic' selects a
slanted version of the font, if it is available on your system.

Note The 'oblique' value has been removed. Use 'italic' instead.

FontUnits — Font units
'points' (default) | 'normalized' | 'inches' | 'centimeters' | 'pixels'

Font units, specified as one of the values from this table.

Units Value Description
'points' Points. One point is 1/72nd of an inch.
'normalized' Normalized values for specifying the font size as a fraction

of the height. When you resize a UI component, MATLAB
scales the displayed font to maintain that fraction.

'inches' Inches.
'centimeters' Centimeters.
'pixels' Pixels.

Starting in R2015b, distances in pixels are independent of
your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your
system resolution.

Interactivity

Visible — Panel visibility
'on' (default) | 'off'

Panel visibility, specified as 'on' or 'off'. The Visible property determines whether
the panel displays on the screen. If the Visible property is set to 'off', the entire
panel is invisible, but you can still specify and access its properties.

 Panel Properties

1-15459

Changing the size of an invisible container triggers the SizeChangedFcn callback when
it becomes visible.

Note Changing the Visible property of a container does not change the Visible
property of its child components even though hiding the container prevents its children
from displaying.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | uicontextmenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when the user right-clicks on a UI component. Create the context menu using the
uicontextmenu function.

Selected — Selection state (not recommended)
'off' (default) | 'on'

Note The behavior of the Selected property changed in R2014b, and it is not
recommended. It no longer has any effect on Panel objects. This property might be
removed in a future release.

SelectionHighlight — Display of selection handles (not recommended)
'on' (default) | 'off'

Note The behavior of the SelectionHighlight property changed in R2014b, and it is
not recommended. It no longer has any effect on Panel objects. This property might be
removed in a future release.

Position

Position — Location and size (including borders and title)
[left bottom width height]

Location and size (including borders and title), specified as the four-element vector of the
form [left bottom width height]. This table describes each element in the vector.

1 Alphabetical List

1-15460

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the panel
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the panel
width Distance between the right and left outer edges of the

panel
height Distance between the top and bottom outer edges of the

panel

All measurements are in units specified by the Units property.

Note The Position values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and does not include the
area occupied by the title. If the parent container is a figure, then the drawable area also
excludes the menu bar and tool bar.

Example: Modify One Value in the Position Vector

You can combine dot notation and array indexing when you want to change one value in
the Position vector. For example, this code changes the width of the panel to 0.5:

p = uipanel;
p.Position(3) = 0.5;
p.Position

ans =

 0 0 0.5000 1.0000

InnerPosition — Location and size (excluding borders and title)
[left bottom width height]

This property is read-only.

Location and size (excluding borders and title), returned as a four-element vector of the
form [left bottom width height]. This table describes each element in the vector.

 Panel Properties

1-15461

Value Description
left Distance from the inner left edge of the parent container to

the inner left edge of the container.
bottom Distance from the inner bottom edge of the parent

container to the inner bottom edge of the container.
width Distance between the inner edges of the container’s right

and left borders.
height Distance between the inner edges of the container’s top

and bottom borders. This distance excludes the title, if it
exists.

All measurements are in units specified by the Units property.

Note These are some important points to consider when using the InnerPosition
property:

• InnerPosition values are affected by the presence of a title, font characteristics,
BorderType, and BorderWidth.

• InnerPosition values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and exclude the area
occupied by the title. If the parent container is a figure, then the drawable area also
excludes the menu bar and tool bar.

OuterPosition — Location and size (including borders and title)
[left bottom width height]

Location and size (including borders and title), specified as a four-element vector of the
form [left bottom width height]. All measurements are in units specified by the
Units property.

This property value is identical to the Position property value.

Units — Units of measurement
'normalized' (default) | 'pixels' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified one of the values from this table.

1 Alphabetical List

1-15462

Units Value Description
'normalized' These units are normalized with respect to

the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

 Panel Properties

1-15463

If you change the value of the Units property, it is good practice to return it to its default
value after completing your computation to avoid affecting other functions that assume
the Units property is set to the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units property before the Position property, then MATLAB sets
Position using the units you specified.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position values to the
equivalent values in the units you specified.

Callbacks

SizeChangedFcn — Size change callback function
'' (default) | function handle | cell array | character vector

Size change callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.
• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible

1 Alphabetical List

1-15464

property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

Tip As an easy alternative to specifying a SizeChangedFcn callback, you can set the
Units property of all the objects you put inside a container to 'normalized'. Doing so
makes those components scale proportionally with the container.

See “Lay Out a UI Programmatically” for more information about managing layouts with
SizeChangedFcn callbacks.

ButtonDownFcn — Button-press callback function
'' (default) | function handle | cell array | character vector

Button-press callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The ButtonDownFcn callback is a function that executes when the user clicks a mouse
button within the container.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 Panel Properties

1-15465

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

ResizeFcn — Resize callback function (not recommended)
'' (default) | function handle | cell array | character vector

Resize callback function, specified as one of these values:

1 Alphabetical List

1-15466

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Note Use of the ResizeFcn property is not recommended. It might be removed in a
future release. Use SizeChangedFcn instead.

Data Types: function_handle | cell | char

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

 Panel Properties

1-15467

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

1 Alphabetical List

1-15468

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

HitTest — Ability to become current object
'on' (default) | 'off'

Ability to become current object, specified as 'on' or 'off':

• 'on' — Sets the current object to the Panel when the user clicks the component in
the running app. Both the CurrentObject property of the Figure and the gco
function return the Panel as the current object.

• 'off' — Sets the current object to be the closest ancestor of the Panel whose
HitTest is 'on' when the user clicks the component in the running app.

Parent/Child

Parent — Parent object
Figure | Panel | ButtonGroup | Tab

 Panel Properties

1-15469

Parent object, specified as a Figure, Panel, ButtonGroup, or Tab object. Use this
property to specify the parent container when creating a UI component or to move an
existing UI component to a different parent container.

Children — Panel children
empty GraphicsPlaceholder array (default) | 1-D array of component objects

Panel children, returned as an empty GraphicsPlaceholder or a 1-D array of
component objects. The children of Panel objects can be Axes, Panel, ButtonGroup, or
any style of UIControl objects.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the children. The order of the children reflects the
front-to-back order (stacking order) of the components on the screen. MATLAB might not
allow you to change the order of certain objects. For example, UIControl and Legend
objects are always in front of Axes objects.

To add a child to this list, set the Parent property of the child component to be the
Panel object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not
visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.

1 Alphabetical List

1-15470

HandleVisibility Value Description
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

'off' The object handle is invisible at all times. This option is
useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uipanel'

This property is read-only.

Type of graphics object, returned as 'uipanel'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

 Panel Properties

1-15471

See Also
figure | guide | uipanel

Topics
“Access Property Values”
“Default Property Values”

Introduced before R2006a

1 Alphabetical List

1-15472

uipushtool
Create push button on toolbar

Note

Use this function only with GUIDE, or with figures created using the figure
function.

Syntax
p = uipushtool
p = uipushtool(Name,Value,...)
p = uipushtool(parent)
p = uipushtool(parent,Name,Value,...)

Description
p = uipushtool creates a uipushtool in the uitoolbar of the current figure and returns
the uipushtool object, p. If there is no uitoolbar available, then MATLAB creates a new
uitoolbar in the current figure to serve as the parent. Similarly, if there no figure is
available, then MATLAB creates a new figure with a uitoolbar.

p = uipushtool(Name,Value,...) creates a uipushtool and specifies one or more
uipushtool property names and corresponding values. Use this syntax to override the
default uipushtool properties.

p = uipushtool(parent) creates a uipushtool and designates a specific parent object.
The parent argument must be a uitoolbar object.

p = uipushtool(parent,Name,Value,...) creates a uipushtool with a specific
parent and one or more uipushtool properties.

A uipushtool is a push button that appears in the figure tool bar. The button has no icon,
but its borders highlight when the user hovers over it with the mouse. You can create a
button icon by setting the CData property of the uipushtool.

 uipushtool

1-15473

Examples

Create uipushtool With Icon and Tool Tip
f = figure('ToolBar','none');
t = uitoolbar(f);

% Read an image
[img,map] = imread(fullfile(matlabroot,...
 'toolbox','matlab','icons','matlabicon.gif'));

% Convert image from indexed to truecolor
icon = ind2rgb(img,map);

% Create a uipushtool in the toolbar
p = uipushtool(t,'TooltipString','Toolbar push button',...
 'ClickedCallback',...
 'disp(''Clicked uipushtool.'')');

% Set the button icon
p.CData = icon;

1 Alphabetical List

1-15474

Tips
• Uitoolbars (and their child uipushtools) do not appear in figures whose WindowStyle

property is set to 'Modal'. If a figure containing a uitoolbar is changed to 'Modal',
the uitoolbar still exists in the Children property of the figure. However, the
uitoolbar does not display while WindowStyle is set to 'Modal'.

• Unlike uicontrol push buttons, uipushtools do not set the figure’s SelectionType
property to 'open' on the second click.

See Also
Uipushtool | uitoggletool | uitoolbar

Topics
“Access Property Values”

 uipushtool

1-15475

“Create Toolbars for Programmatic Apps”

Introduced before R2006a

1 Alphabetical List

1-15476

PushTool Properties
Control appearance and behavior of push tool

Note

The properties listed here are valid for PushTool objects in GUIDE or in apps
created with the figure function.

Description
Push tools are push buttons that appear on the tool bar at the top of the a figure. The
uipushtool function creates a push button on a tool bar and sets any required
properties before displaying it. By changing property values, you can modify certain
aspects of its appearance and behavior. Use dot notation to refer to a specific object and
property.

p = uipushtool;
p.Separator = 'on';

Properties
Button Appearance

CData — Optional icon
3-D array of truecolor RGB values

Optional icon, specified as a 3-D array of truecolor RGB values. The values in the array
can be:

• Double-precision values between 0.0 and 1.0
• uint8 values between 0 and 255

The length of the array’s first and second dimensions must be less than or equal to 16.
Otherwise, it might be clipped or distorted when it displays.
Data Types: double | uint8

 PushTool Properties

1-15477

Separator — Separator line mode
'off' (default) | 'on'

Separator line mode, specified as 'off' or 'on'. Setting this property to 'on' draws a
dividing line to left of a tool in the tool bar.

Interactivity

Visible — Component visibility
'on' (default) | 'off'

Component visibility, specified as 'on' or 'off'. When the Visible property is set to
'off', the component is not visible in the UI, but you can query and set its properties.

Enable — Operational state of tool
'on' (default) | 'off'

Operational state of tool, specified as 'on' or 'off'. The Enable property controls
whether the tool responds to button clicks. The are two possible values:

• 'on' – The tool is operational.
• 'off' – The tool is not operational and appears grayed out.

The value of the Enable property and the type of button click determine the response.

Enable Value Response to Left-Click Response to Right-Click
'on' The ClickedCallback function

executes.
The tool is not operational. No callback
executes.

'off' The tool is not operational. No callback
executes.

The tool is not operational. No callback
executes.

Tooltip — Tooltip
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. Use this
property to display a message when the user hovers the pointer over the component at
run time. The tooltip does not display when the component is disabled. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

To create multiple lines of text, use the sprintf function to insert newline characters
('\n') in your text. For example:

1 Alphabetical List

1-15478

txt = sprintf('Line 1\nLine 2');

Then set the Tooltip property to the value returned by sprintf.

UIContextMenu — Context menu (not recommended)
empty GraphicsPlaceholder array (default) | uicontextmenu handle

This property has no effect on PushTool objects.

TooltipString — Tooltip (not recommended)
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. The tooltip
displays when the user hovers the mouse pointer over the component in the app. If you
specify this property as a categorical array, MATLAB uses the values in the array, not the
full set of categories.

Note The TooltipString property is not recommended starting in R2018b. Use the
Tooltip property instead.

Callbacks

ClickedCallback — Clicked callback
'' (default) | function handle | cell array | character vector

Clicked callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying callback functions as function handles, cell arrays,
or character vectors, see “How to Specify Callback Property Values”.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

 PushTool Properties

1-15479

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

1 Alphabetical List

1-15480

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

 PushTool Properties

1-15481

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

1 Alphabetical List

1-15482

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

HitTest — Ability to become current object (not recommended)
'on' (default) | 'off'

This property has no effect on PushTool objects.

Parent/Child

Parent — Parent object
Toolbar object

Parent object, specified as a Toolbar object. Use this property to specify the parent tool
bar when creating a tool or to move an existing tool to a different tool bar.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not
visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

 PushTool Properties

1-15483

HandleVisibility Value Description
'off' The object handle is invisible at all times. This option is

useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uipushtool'

This property is read-only.

Type of graphics object, returned as 'uipushtool'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
uipushtool | uitoolbar

Topics
“Access Property Values”

1 Alphabetical List

1-15484

“Default Property Values”

Introduced before R2006a

 PushTool Properties

1-15485

uiputfile
Open dialog box for saving files

Syntax
file = uiputfile
[file,path] = uiputfile
[file,path,indx] = uiputfile
___ = uiputfile(filter)
___ = uiputfile(filter,title)
___ = uiputfile(filter,title,defname)

Description
file = uiputfile opens a modal on page 1-15501 dialog box for selecting or
specifying a file. The dialog box lists the files and folders in the current folder.

• If the user specifies a valid file name and clicks Save, then MATLAB returns that file
name in file.

• If the user cancels the dialog box, then MATLAB returns 0 to file.

Note

• Successful execution of uiputfile returns the name of a new or existing file that the
user specifies. It does not create a file.

• The visual characteristics of the dialog box depend on the operating system that runs
your code. For instance, some operating systems do not show title bars on dialog
boxes. If you pass a dialog box title to the uiputfile function, those operating
systems do not display the title.

[file,path] = uiputfile returns the selected or specified file path to path. If the
user cancels the dialog box, then MATLAB returns 0 to both output arguments.

1 Alphabetical List

1-15486

[file,path,indx] = uiputfile returns the index of the Save as type value selected
in the dialog box. Indexing starts at 1. If the user clicks the Cancel button or the window
close button (X), or if the file does not exist, then MATLAB returns 0 to indx. If the user
cancels the dialog box, then MATLAB returns 0 to all output arguments.

___ = uiputfile(filter) displays only those files with extensions that match
filter. On some platforms uiputfile also displays any files that do not match filter,
but they are dimmed. The uiputfile function appends All Files to the list of file types.

If filter is a file name, then uiputfile displays the file name in the File name field
and uses the file extension as the default filter.

Use this syntax with any of the output argument combinations in the previous syntaxes.

___ = uiputfile(filter,title) opens a dialog box with the specified title. To filter
using the default file filter, but specify a custom title, use empty quotes for the filter value.

file = uiputfile('','Select a File')

___ = uiputfile(filter,title,defname) opens a dialog box where the file name
specified by defname appears in the File name field.

Examples

Specify File Name and Type

Create a dialog box and specify the filter as animinit.m. When the code runs, the
File name field contains the specified file name and the Save as type field is set to *.m.

[file,path,indx] = uiputfile('animinit.m');

 uiputfile

1-15487

Display Several File Types as Filters

Display several file types in the Save as type list box, by separating each file extension in
the filter input argument with a semicolon.

filter = {'*.m';'*.slx';'*.mat';'*.*'};
[file, path] = uiputfile(filter);

1 Alphabetical List

1-15488

Specify File Types with Custom Descriptions

Create a list of file types and give them descriptions that are different from the defaults
by using a cell array for the filter input value. Associate multiple file types with the
'MATLAB Files' and 'Models' descriptions.

The first column of the input filter cell array contains the file extensions, and the
second contains the descriptions of the file types. For example, the first entry of column 1
contains several extensions separated by semicolons. These file types are all associated
with the description 'MATLAB Files (*.m,*.mlx,*.fig,*.mat,*.slx,*.mdl)'.

[filename, pathname, filterindex] = uiputfile(...
{'*.m;*.fig;*.mat;*.slx;*.mdl',...
 'MATLAB Files (*.m,*.mlx,*.fig,*.mat,*.slx,*.mdl)';
 '*.m;*.mlx', 'program files (*.m,*.mlx)';...
 '*.fig','Figures (*.fig)';...
 '*.mat','MAT-files (*.mat)';...
 '*.slx;*.mdl','Models (*.slx,*.mdl)';...
 '*.*', 'All Files (*.*)'});

 uiputfile

1-15489

Specify Dialog Box Title and File Type

Create a dialog box entitled 'Workspace File' with the Save as type field set to MAT-
files.

[file,path] = uiputfile('*.mat','Workspace File');

1 Alphabetical List

1-15490

Specify Filter and Default File Name

Specify a wildcard for the filter and a default file name to display a default file in the File
name field, but enable users to view files of all types in the dialog box.

[file,name,path] = uiputfile('*.*','File Selection','test.m');

 uiputfile

1-15491

Display User Action in Command Window

Open the Select a File to Write dialog box, and then select a file. MATLAB automatically
opens a Confirm Save As dialog box.

• If you click OK in the confirmation dialog box, then MATLAB closes both dialog boxes
and displays your selection in the Command Window.

• If you click No in the confirmation dialog box and click Cancel in the Select a File to
Write dialog box, then the Command Window displays User clicked Cancel.

[file,path] = uiputfile('*.m');
if isequal(file,0) || isequal(path,0)
 disp('User clicked Cancel.')
else

1 Alphabetical List

1-15492

 disp(['User selected ',fullfile(path,file),...
 ' and then clicked Save.'])
end

Input Arguments
defname — Default file name
character vector | string scalar

Default file name to display in the File name field when the dialog box opens, specified
as a character vector or a string scalar.

The value of defname can include a path or consist of a path only. You can use any of
these characters in the defname argument:
.
..
\
/
~

To specify defname as a folder only, specify the last character in defname as a backslash
\ or a forward slash /. When you do so, MATLAB opens the dialog box in the folder
specified by the path. If you specify a path that does not exist, then MATLAB opens the
dialog box in the current folder.
Example: 'myfile.m'
Example: '../myfile.m'

filter — File type filter specification
All MATLAB Files (default) | character vector | cell array of character vectors | string
array

File type filter specification, specified as a character vector, a cell array of character
vectors, or a string array. MATLAB appends All Files to the list of file types presented in
the dialog box. The filter value can include the wildcard character (*).
Example: *.m
Example: 'MATLAB Files (*.m,*.mlx,*.fig,*.mat,*.slx,*.mdl)'

title — Dialog box title
Select File to Write (default) | character vector | string scalar

 uiputfile

1-15493

Dialog box title, specified as a character vector or string scalar. To filter using the default
file filter, but specify a custom title, use empty quotes for the filter value. For example:

uiputfile(' ','Select File')

Example: 'File Selector'

Output Arguments
file — User-specified file name
character vector | string scalar

User-specified file name, returned as a character vector or string scalar. The user can
specify the file name by selecting it in the dialog box, typing a file name in the File name
field, or accepting the default file name (if you provide one). If the user cancels the dialog
box, then MATLAB returns file as 0.

• If the user specifies a valid file name and clicks Save, then MATLAB returns that file
name in file.

• If the user types a file name in the dialog box File name field that includes the
asterisk character (*) or the question mark character (?), then MATLAB does not
respond to clicking the Save button. The dialog box remains open until the user
cancels it or removes the wildcard or question mark characters. This restriction
applies to all platforms, even on platforms that permit these characters in file names.

• If the user specifies an existing file name, then a warning dialog box opens stating that
the file already exists and provides an option to replace the file.

• If the user clicks Yes in the warning dialog box, then MATLAB replaces the existing
file and returns the file name.

• If the user clicks No in the warning dialog box, then control returns to the
uiputfile dialog box, enabling the user to specify a different file name.

• If the user cancels the dialog box, then MATLAB returns 0 to file.

path — Path to the user-specified file name
character vector | 0

Path to the user-specified file name, returned as a character vector or 0. If the user
cancels the dialog box, then MATLABreturns path as 0.

1 Alphabetical List

1-15494

indx — Save as type index
integer

Save as type index, returned as an integer. As shown in this figure, the index
corresponds to the Save as type row selection. Indexing starts at 1.

If the user clicks the Cancel button or the dialog box close button (X), or if the file does
not exist, then MATLAB returns indx as 0.

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Tips
• To write data to a user-specified file and location using MATLAB and MATLAB toolbox

functions, use the path and file name that uiputfile returns. For example:

• fprintf for writing data to a text file.
• imwrite for writing an image to a graphics file.
• xlswrite for writing a matrix to a Microsoft Excel spreadsheet. For example, this

code creates a matrix, A, creates a dialog box to get a file name from the user,
builds a full file name from the returned values, and then writes the matrix to the
user-specified Excel file.

A = [12.7 5.02 -98 63.9 0 -.2 56];
[file,path] = uiputfile('*.xlsx');

 uiputfile

1-15495

filename = fullfile(path,file);
xlswrite(filename,A);

See Also
save | uigetdir | uigetfile | uisave

Introduced before R2006a

1 Alphabetical List

1-15496

uiresume
Resume execution of blocked program

Syntax
uiresume(h)

Description
uiresume(h) resumes the program execution that uiwait suspended.

Examples
This example code creates a window containing a push button. The uiwait function
blocks MATLAB execution until the user clicks the push button.

f = figure;
h = uicontrol('Position',[20 20 200 40],'String','Continue',...
 'Callback','uiresume(gcbf)');
disp('This will print immediately');
uiwait(gcf);
disp('This will print after you click Continue');
close(f);

The gcbf function returns the current figure.

Tips
The uiwait and uiresume functions block and resume MATLAB program execution.
When creating a dialog box, you should have a uicontrol component with a callback that
calls uiresume or a callback that destroys the dialog box. These are the only methods
that resume program execution after the uiwait function blocks execution.

 uiresume

1-15497

When used in conjunction with a modal dialog box, uiresume can resume the execution
of the program that uiwait suspended while presenting a dialog box.

See Also
dialog | figure | uicontrol | uifigure | uimenu | uiwait | waitfor

Topics
“Modal Dialog Box in GUIDE”

Introduced before R2006a

1 Alphabetical List

1-15498

uisave
Open dialog box for saving variables to MAT-file

Syntax
uisave
uisave(vars)
uisave(vars,file)

Description
uisave opens a modal on page 1-15501 Save Workspace Variables dialog box. If the user
clicks Save, then MATLAB saves all variables from the user's workspace to the file
displaying in the dialog box File name field.

If the named file already exists in the folder displayed at the top of the dialog box, then a
confirmation dialog box opens and gives the user an opportunity to cancel the operation
or overwrite the existing file.

uisave(vars) specifies which variables from the user's workspace to save.

uisave(vars,file) specifies the file name that appears in the File name field of the
Save Workspace Variables dialog box when it opens, instead of the default, matlab.mat.

Examples

Customize Save Workspace Variables Dialog Box

Create three workspace variables, d, w, and y. Then, open a Save Workspace Variables
dialog box with a default file, var1.mat, displaying in the File name field.

d = 'Sunday';
w = 31;

 uisave

1-15499

y = 2017;
uisave({'d','w'},'var1')

Click Save to save the workspace variables d and w to var1.mat in the folder that is
displayed at the top of the dialog box.

Input Arguments
vars — Set of workspace variables
all workspace variables (default) | character vector | cell array of character vectors |
string array

Set of workspace variables to save in a MAT-file, specified as a character vector, cell array
of character vectors, or a string array. To specify more than one variable, use a cell array
of character vectors.
Example: 'y'
Example: {x','y'}

file — file name
'matlab.mat' (default) | character vector | string scalar

1 Alphabetical List

1-15500

File name that displays in the File name field when the Save Workspace Variables dialog
box opens. You can omit a file extension or specify the file extension as .mat.
Example: 'data1'
Example: 'data1.mat'
Example: 'v'

Definitions

Modal Dialog Box
A modal dialog box prevents the user from interacting with other MATLAB windows
before responding.

See Also
uiopen

Topics
“Save and Load Workspace Variables”

Introduced before R2006a

 uisave

1-15501

uisetcolor
Open color picker

Syntax
c = uisetcolor
c = uisetcolor(RGB)
c = uisetcolor(obj)

c = uisetcolor(___ ,title)

Description
c = uisetcolor displays a modal on page 1-15507 color picker and returns the
selected color as an RGB triplet. The RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the selected
color. The intensities are in the range [0,1] and are of type double.

c = uisetcolor(RGB) specifies the default color selection as an RGB triplet.

c = uisetcolor(obj) sets the default color selection to be the color of an object (such
as a Figure). If you select a different color in the color picker, the color of the object
changes to the new color after you click OK. The object must have a property that
controls some aspect of color. For example, some objects have a Color or
BackgroundColor property.

c = uisetcolor(___ ,title) specifies a custom title for the dialog box. Specify the
title as the last argument for any of the above syntaxes.

Examples

Specify the Default Color

Open the color picker with light blue as the default color.

1 Alphabetical List

1-15502

c = uisetcolor([0.6 0.8 1])

Clicking the OK button without selecting a different color returns the default color.

c =

 0.6000 0.8000 1.0000

Specify a Custom Title for the Dialog Box

Open the color picker with yellow as the default color and set the title to 'Select a
Color'.

c = uisetcolor([1 1 0],'Select a color')

 uisetcolor

1-15503

Clicking the OK button without selecting a different color returns the default color.

c =

 1 1 0

Select a Color from a Gradient

Starting in R2018b, the color picker provides a tab for selecting custom colors from a
gradient.

Open the color picker, and click the Custom Colors tab in the upper-right corner.

c = uisetcolor

1 Alphabetical List

1-15504

Move the vertical slider to display the desired region of color space. Then click the color
gradient to select a color. When you click OK, uisetcolor returns your selection as an
RGB triplet.

 uisetcolor

1-15505

c =

 0.4471 0.9020 0.1451

Input Arguments
RGB — Default color
[1 1 1] (default) | RGB triplet

Default color, specified as an RGB triplet. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the
selected color. The intensities must be in the range [0,1].
Example: c = uisetcolor([1 0 0]) specifies red as the default color selection.

1 Alphabetical List

1-15506

Example: c = uisetcolor([0.5 0.5 0.5]) specifies gray as the default color
selection.
Data Types: single | double

obj — Source object for default color
graphics object

Source object for default color, specified as a graphics object. The object must have a
property that controls some aspect of color. For example, some objects have a Color or
BackgroundColor property.
Example: c = uisetcolor(figure) creates a Figure and sets the default color
selection to be the same color as the figure.

title — Title of dialog box
'Color' (default) | character vector | string scalar

Title of dialog box, specified as a character vector or string scalar.
Example: c = uisetcolor('Choose a Color') specifies 'Choose a Color' as the
dialog box title.
Data Types: char

Definitions

Modal Window
A window that blocks interaction with other windows until the user closes it.

See Also
dialog | questdlg | uigetdir | uigetfile | uiputfile

Introduced before R2006a

 uisetcolor

1-15507

uisetfont
Open font selection dialog box

Syntax
uisetfont
uisetfont(h)
uisetfont(optsin)
uisetfont(___ ,title)
optsout = uisetfont(___)

Description
uisetfont opens a modal on page 1-15513 Font dialog box with default font name and
font style values selected. If the user clicks OK, then the selected font properties are
returned to the MATLAB Command Window. If the user clicks Cancel, or the close button
(X) in the dialog box title bar, then a value of 0 is returned to the Command Window.

uisetfont(h) specifies the object on which the Font dialog box will operate. The values
displaying in the dialog box when it opens are the current settings for that object.

The value of h can be a text, axes, or uicontrol object.

uisetfont(optsin) initializes the Font dialog box selections with the values defined for
the specified optsin structure.

uisetfont(___ ,title) specifies a custom title for the Font dialog box. This syntax
can include any of the input arguments in the previous syntaxes.

optsout = uisetfont(___) returns the values selected in the dialog box to the
optsout structure when the user clicks OK. If the user clicks Cancel or an error occurs,
then optsout is set to 0. This syntax can specify no input arguments or any of the input
arguments in the previous syntaxes.

1 Alphabetical List

1-15508

Examples

Set Font Characteristics for Plot Annotation

Create a plot containing a text annotation.

f = figure('Position',[200 200 392 294]);
x = 0:pi/20:2*pi;
y = sin(x);
plot(x,y);
t = text(pi,0,'\leftarrow sin(\pi)');

Open the Font dialog box, and select the Bold Italic style. (The font names displayed in
the dialog box are system-dependent.)

optsout = uisetfont(t);

 uisetfont

1-15509

Click OK. The font style changes in the plot annotation.

1 Alphabetical List

1-15510

Input Arguments
h — Target object
axes object | text object | uicontrol object

Target object for font changes, specified as an axes, text, or uicontrol object.

optsin — Font
structure

Font values, specified as a structure of font properties.

The following table lists the structure fields, the default values, and the dialog box
controls with which a user can change the values.

 uisetfont

1-15511

Structure Fields

Structure Field Default Value Dialog Box Control
FontName system-dependent Font list.
FontWeight 'normal' Style list.
FontAngle 'normal' Style list.
FontUnits 'points' Not provided because the

value of FontUnits is
always 'points' for the
supported objects.

FontSize system-dependent Size list

A structure field value of 'normal' corresponds to Plain in the dialog box Style list.

The user can select a Size value from the list or type in an unlisted value. If the user
types a floating-point number, MATLAB rounds it to the closest integer value before
storing it.
Example: optsin.FontWeight = 'bold';

title — Dialog box title
'Font' (default) | character vector | string scalar

Dialog box title, specified as a character vector or a string scalar.
Example: 'Font Selection'

Output Arguments
optsout — Font values
structure

Font values, returned as a structure of font property values. The structure fields are:

• FontName
• FontWeight
• FontAngle
• FontUnits

1 Alphabetical List

1-15512

• FontSize

If the user typed a floating-point number for the dialog box field that corresponds to the
FontSize value, then MATLAB rounds it to the closest integer value before returning it.

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

See Also
axes | text | uicontrol

Introduced before R2006a

 uisetfont

1-15513

uisetpref
Manage preferences used in uigetpref

Syntax
uisetpref('clearall')

Description
uisetpref('clearall') resets the value of all preferences registered through
uigetpref to 'ask'. This causes the dialog box to display when you call uigetpref.

Note Use setpref to set the value of a particular preference to 'ask'.

See Also
setpref | uigetpref

Introduced before R2006a

1 Alphabetical List

1-15514

uistack
Reorder visual stacking of UI components

Note

Use this function only with GUIDE, or with apps created using the figure
function.

Syntax
uistack(comp)
uistack(comp,moveto)
uistack(comp,moveto,step)

Description
uistack(comp) shifts the specified component up one level within the front-to-back
visual stacking order of UI components. If comp is specified as a vector of UI components,
each component in the vector gets shifted up by one.

uistack(comp,moveto) moves the UI component to another position in the stack. For
example, uistack(f,'top') moves component f to the top of the current stack.

uistack(comp,moveto,step) specifies the number of levels to move the UI component
up or down. For example, uistack(c,'up',2) moves c up two levels in the current
stack.

Examples

Reorder Vector of Panels

Create five overlapping panels with different titles and background colors.

 uistack

1-15515

f = figure;

a = uipanel(f,'Title','A','BackgroundColor','white');
b = uipanel(f,'Title','B','BackgroundColor','cyan');
c = uipanel(f,'Title','C','BackgroundColor','green');
d = uipanel(f,'Title','D','BackgroundColor','yellow');
e = uipanel(f,'Title','E','BackgroundColor','magenta');

a.Position = [0.35 0.50 0.30 0.35];
b.Position = [0.18 0.40 0.30 0.35];
c.Position = [0.08 0.21 0.30 0.35];
d.Position = [0.25 0.33 0.32 0.35];
e.Position = [0.30 0.27 0.30 0.35];

List the order of children in the figure.

figChildren = f.Children

figChildren =

1 Alphabetical List

1-15516

 5×1 Panel array:

 Panel (E)
 Panel (D)
 Panel (C)
 Panel (B)
 Panel (A)

Reorder the panels by shifting a and c up one level in the stack, relative to their previous
positions.

comp = [a c];
uistack(comp);

List the children again. Changing the stacking order of the panels also changes the order
of the children in the figure.

figChildren = f.Children

 uistack

1-15517

figChildren =

 5×1 Panel array:

 Panel (E)
 Panel (C)
 Panel (D)
 Panel (A)
 Panel (B)

Reorder Tabs in Tab Group

Create a figure that contains a tab group with five tabs.

f = figure;
tg = uitabgroup(f,'Position',[0.05 0.05 0.85 0.85]);
t1 = uitab('Title','Survey Questions');
t2 = uitab('Title','Demographic');
t3 = uitab('Title','Participant List');
t4 = uitab('Title','Raw Data');
t5 = uitab('Title','Plot');

Move the Raw Data tab to the bottom of the stack.

1 Alphabetical List

1-15518

uistack(t4,'bottom');

Move the Survey Questions tab down two levels.

uistack(t1,'down',2);

 uistack

1-15519

Input Arguments
comp — UI component
single object | vector of objects

UI component to reorder, specified as a single object or vector of objects, such as
Figure, Panel, ButtonGroup, UIControl, Axes, or Tab objects. Use this argument to
specify the UI components you wish to reorder within the current stack.

If comp is specified as a vector of UI components, each component in the vector must
share the same parent and the vector must be a subset of the children of the parent
container. For example, if a figure has six child UI components, the vector comp can have
no more than five elements.

moveto — Location
'up' (default) | 'down' | 'top' | 'bottom'

Location to move a UI component, specified as one of the values in the following table.
Use this argument to specify the stack position you want a UI component to move to.

1 Alphabetical List

1-15520

Move To Value Description
'up' Up step positions (one position by default).
'down' Down step positions (one position by default).
'top' To the top of the current stack.
'bottom' To the bottom of the current stack.

step — Number of levels to shift
1 (default) | positive integer

Number of levels to shift a UI component up or down in a stack, specified as a positive
integer.

If you specify a step number that is greater than the number of stack levels available to
move, then the UI component will move to the top or bottom of the stack. For example, if
you have five stack levels and you specify a component to move down six steps, that
component will move to the bottom of the stack.

Compatibility Considerations

Stacking Order Might Display Differently in Older Apps
Behavior changed in R2014b

In previous releases, the order of components listed in the Children property matched
the order in which they were created. However, this order did not necessarily match the
visual stacking order of the components on the screen. To provide more consistent
behavior, starting in R2014b, the order of components listed in the Children property
matches the stacking order of child components on the screen. For more information
about how the stacking behavior of UI components has changed and how to update your
code, see “Why Are Some Components Missing or Partially Obscured?”

See Also
figure | uibuttongroup | uipanel | uitab

Topics
“Manage the Stacking Order of Grouped Components”

 uistack

1-15521

Introduced before R2006a

1 Alphabetical List

1-15522

uitab
Create tabbed panel

Syntax
t = uitab
t = uitab(Name,Value)
t = uitab(parent)
t = uitab(parent,Name,Value)

Description
t = uitab creates a tab inside a tab group and returns the Tab object. If there is no tab
group available, MATLAB calls the figure function to create a figure. Then it creates a
tab group in that figure, and places the tab inside the tab group.

t = uitab(Name,Value) specifies tab property values using one or more name-value
pair arguments.

t = uitab(parent) creates the tab in the specified parent container. The parent
container can be a tab group in a figure created with either the figure or uifigure
function. Property values for uitab vary slightly depending on whether the app is
created with the figure or uifigure function. For more information, see “Name-Value
Pair Arguments” on page 1-15526.

t = uitab(parent,Name,Value) specifies the parent container and one or more
properties values.

Examples

Two Tabs in a Figure

Create a figure containing a tab group and two tabs.

 uitab

1-15523

f = figure;
tabgp = uitabgroup(f,'Position',[.05 .05 .3 .8]);
tab1 = uitab(tabgp,'Title','Settings');
tab2 = uitab(tabgp,'Title','Options');

Get the title of the first tab.

tab1.Title

ans =

Settings

1 Alphabetical List

1-15524

Scrollable Tab

The Scrollable property enables scrolling within a tab that has components outside its
borders. Scrolling is only possible when the parent tab group is in a figure created with
the uifigure function. App Designer uses this type of figure for creating apps.

Create a tab group containing one tab. Add six UI components to the tab, with the first
three lying outside the upper border of the tab.

f = uifigure;
tg = uitabgroup(f,'Position',[20 20 196 145]);
t = uitab(tg,'Title','Member Information');
ef1 = uieditfield(t,'text','Position',[11 165 140 22],'Value','First Name');
ef2 = uieditfield(t,'text','Position',[11 140 140 22],'Value','Last Name');
ef3 = uieditfield(t,'text','Position',[11 115 140 22],'Value','Address');
dd = uidropdown(t,'Position',[11 90 140 22],'Items',{'Male','Female'});
cb = uicheckbox(t,'Position',[11 65 140 22],'Text','Member');
b = uibutton(t,'Position',[11 40 140 22],'Text','Send');

Enable scrolling by setting the Scrollable property of the tab to 'on'. By default, the
scroll box displays at the top.

t.Scrollable = 'on';

 uitab

1-15525

Input Arguments
parent — Parent container
TabGroup object

Parent container, specified as a tab group. The tab group can be a child of a figure
created with either the figure or uifigure function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.
Example: 'Title','Options' specifies that the tab title is Options.

• For a list of properties available for GUIDE, or for creating apps with the figure
function, see Uitab for GUIDE.

1 Alphabetical List

1-15526

• For a list of properties available for App Designer, or for creating apps with the
uifigure function, see Tab for App Designer.

See Also
Functions
uitabgroup

Properties
Tab

Introduced in R2014b

 uitab

1-15527

Tab Properties
Control appearance and behavior of tab

Note The properties listed here are valid for tabs in GUIDE or in apps created
with the figure function. If you are using App Designer or the uifigure function, see
Tab Properties instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Description
Tabs are containers for grouping for grouping UI components together with a tabbed
label. Use the uitab function to create a tab inside a tab group. Properties control the
appearance and behavior of a tab. Use dot notation to refer to a particular object and
property:

f = figure;
tg = uitabgroup(f);
t = uitab;
t.Title = 'Data';

Properties
Title and Color

Title — Title
character vector | string scalar | categorical array

Title, specified as a character vector, string scalar, or categorical array. If you specify this
property as a categorical array, MATLAB displays only the first element in the array.

MATLAB does not interpret a vertical slash ('|') character as a line break, it displays as
a vertical slash in the title.

If you want to specify a Unicode character, pass the Unicode decimal code to the char
function. For example, ['Multiples of ' char(960)] displays as Multiples of π.

1 Alphabetical List

1-15528

ForegroundColor — Title color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Title color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 Tab Properties

1-15529

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0 0 1]
Example: 'b'
Example: 'blue'

BackgroundColor — Background color
[.94 .94 .94] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'

1 Alphabetical List

1-15530

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Tooltip — Tooltip
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. Use this
property to display a message when the user hovers the pointer over the component at
run time. The tooltip does not display when the component is disabled. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

To create multiple lines of text, use the sprintf function to insert newline characters
('\n') in your text. For example:

txt = sprintf('Line 1\nLine 2');

Then set the Tooltip property to the value returned by sprintf.

 Tab Properties

1-15531

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | uicontextmenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when the user right-clicks on a UI component. Create the context menu using the
uicontextmenu function.

TooltipString — Tooltip (not recommended)
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. The tooltip
displays when the user hovers the mouse pointer over the component in the app. If you
specify this property as a categorical array, MATLAB uses the values in the array, not the
full set of categories.

Note The TooltipString property is not recommended starting in R2018b. Use the
Tooltip property instead.

Location and Size

Position — Location and size
[left bottom width height]

This property is read-only.

Location and size, returned as a vector of the form [left bottom width height].
This table describes each element in the vector.

Value Description
left Distance from the inner left edge of the parent tab group

to the inner left edge of the tab.
bottom Distance from the inner bottom edge of the parent tab

group to the inner bottom edge of the tab.
width Distance between the right and left inner edges of the tab.
height Distance between the top and bottom inner edges of the

tab.

All measurements exclude the tab label and are in units specified by the Units property.

1 Alphabetical List

1-15532

Note These are some important points to consider when using the Position property:

• Position values are affected by the length of the tab title and the parent tab group’s
TabLocation property.

• Position values are relative to the parent tab group’s drawable area. The drawable
area of a tab group is the area inside its borders.

InnerPosition — Location and size
[left bottom width height]

This property is read-only.

Location and size, returned as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

This property value is identical to the Position and OuterPosition property values.

OuterPosition — Location and size
[left bottom width height]

This property is read-only.

Location and size, returned as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

This property value is identical to the Position and InnerPosition property values.

Units — Units of measurement
'normalized' (default) | 'pixels' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified one of the values from this table.

Units Value Description
'normalized' These units are normalized with respect to

the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

 Tab Properties

1-15533

Units Value Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB uses these units to display the location and size values in the Position
property.

MATLAB measures all units from the lower left corner of the parent object.

If you change the value of the Units property, it is good practice to return it to its default
value after completing your computation to avoid affecting other functions that assume
the Units property is set to the default value.

1 Alphabetical List

1-15534

Callbacks

SizeChangedFcn — Size change callback function
'' (default) | function handle | cell array | character vector

Size change callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

The SizeChangedFcn callback executes when the parent tab group container:

• Becomes visible for the first time.
• Is visible while its size changes.
• Becomes visible for the first time after its size changes. This situation occurs when the

size changes while the container is invisible, and then it becomes visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To achieve this delay, you delay the display of the
parent tab group container, by setting its Visible property to 'off'. Then, set the
Visible property to 'on' after you define the variables that your SizeChangedFcn
callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

Tip As an easy alternative to specifying a SizeChangedFcn callback, you can set the
Units property of all the objects you put inside a container to 'normalized'. Doing so
makes those components scale proportionally with the container.

 Tab Properties

1-15535

See “Lay Out a UI Programmatically” for more information about managing layouts with
SizeChangedFcn callbacks.

ButtonDownFcn — Button-press callback function
'' (default) | function handle | cell array | character vector

Button-press callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The ButtonDownFcn callback is a function that executes when the user clicks a mouse
button within the container.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

1 Alphabetical List

1-15536

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

 Tab Properties

1-15537

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

1 Alphabetical List

1-15538

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent object
TabGroup object

Parent object, specified as a TabGroup object. You can move a tab to a different tab group
by setting this property to the target TabGroup object.

 Tab Properties

1-15539

Children — Tab children
empty GraphicsPlaceholder array (default) | 1-D array of component objects

Tab children, returned as an empty GraphicsPlaceholder or a 1-D array of UI
component objects. The children of tabs can be Axes, Panel, ButtonGroup, and
UIControl objects.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the children. The order of the children reflects the
front-to-back order (stacking order) of the components on the screen. MATLAB might not
allow you to change the order of certain objects. For example, UIControl and Legend
objects are always in front of Axes objects.

To add a child to this list, set the Parent property of the child component to be the Tab
object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not
visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

1 Alphabetical List

1-15540

HandleVisibility Value Description
'off' The object handle is invisible at all times. This option is

useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uitab'

This property is read-only.

Type of graphics object, returned as 'uitab'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
guide | uitab | uitabgroup

Topics
“Access Property Values”

 Tab Properties

1-15541

“Default Property Values”

Introduced in R2014b

1 Alphabetical List

1-15542

uitabgroup
Create container for tabbed panels

Syntax
tg = uitabgroup
tg = uitabgroup(Name,Value)
tg = uitabgroup(parent)
tg = uitabgroup(parent,Name,Value)

Description
tg = uitabgroup creates a tab group in the current figure and returns the TabGroup
object. If there is no figure available, MATLAB calls the figure function to create one.
Tab groups are containers for tabs. They allow you to identify the selected tab, and detect
when the user selects a different tab.

tg = uitabgroup(Name,Value) specifies tab group property values using one or more
name-value pair arguments.

tg = uitabgroup(parent) creates the tab group in the specified parent container. The
parent container can be a figure created with either the figure or uifigure function,
or a child container such as a panel. Property values for uitabgroup vary slightly
depending on whether the app is created with the figure or uifigure function. For
more information, see “Name-Value Pair Arguments” on page 1-15547.

tg = uitabgroup(parent,Name,Value) specifies the parent container and one or
more properties values.

Examples

Tab Group Containing Two Tabs

Create a figure containing a tab group and two tabs.

 uitabgroup

1-15543

f = figure;
tabgp = uitabgroup(f,'Position',[.05 .05 .3 .8]);
tab1 = uitab(tabgp,'Title','settings');
tab2 = uitab(tabgp,'Title','Options');

Get the currently selected tab.

currenttab = tabgp.SelectedTab

currenttab =

 Tab (settings) with properties:

 Title: 'settings'
 BackgroundColor: [0.9400 0.9400 0.9400]

1 Alphabetical List

1-15544

 Position: [0.0119 0.0089 0.9702 0.9107]
 Units: 'normalized'

Scrollable Tab in a Tab Group

The Scrollable property enables scrolling within a tab that has components outside its
borders. To use scrolling, the figure must be created with the uifigure function. App
Designer uses this type of figure for creating apps.

Create a tab group containing one tab. Add six UI components to the tab, where the first
three lye outside the upper border of the tab.

f = uifigure;
tg = uitabgroup(f,'Position',[20 20 196 145]);
t = uitab(tg,'Title','Member Informaion');
ef1 = uieditfield(t,'text','Position',[11 165 140 22],'Value','First Name');
ef2 = uieditfield(t,'text','Position',[11 140 140 22],'Value','Last Name');
ef3 = uieditfield(t,'text','Position',[11 115 140 22],'Value','Addess');
dd = uidropdown(t,'Position',[11 90 140 22],'Items',{'Male','Female'});
cb = uicheckbox(t,'Position',[11 65 140 22],'Text','Member');
b = uibutton(t,'Position',[11 40 140 22],'Text','Send');

 uitabgroup

1-15545

Enable scrolling by setting the Scrollable property of the tab to 'on'. By default, the
scroll bar displays at the top.

t.Scrollable = 'on';

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a figure created with either the figure or uifigure
function, or a child container:

• Panels, tabs and button groups can be containers in either type of figure.
• Grid layouts can be containers only in figures created with the uifigure function.

1 Alphabetical List

1-15546

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.
Example: 'TabLocation','bottom' specifies that the tab labels are at the bottom of
the tab group.

• For a list of properties available for GUIDE, or for creating apps with the figure
function, see Uitabgroup for GUIDE.

• For a list of properties available for App Designer, or for creating apps with the
uifigure function, see TabGroup for App Designer.

See Also
Functions
uitab

Properties
TabGroup

Introduced in R2014b

 uitabgroup

1-15547

TabGroup Properties
Control appearance and behavior of tab group

Note The properties listed here are valid for tab groups in GUIDE or in apps
created with the figure function. If you are using App Designer or the uifigure
function, see TabGroup Properties instead. For more information, see “Migrating GUIDE
Apps to App Designer”.

Description
Tab groups are containers for grouping and managing tabs. Properties control the
appearance and behavior of a tab group. Use dot notation to refer to a particular object
and property.

f = figure;
tg = uitabgroup(f);
tg.Position = [.1 .1 .8 .8];

Properties
Tabs

TabLocation — Tab label location
'top' (default) | 'bottom' | 'left' | 'right'

Tab label location, specified as 'top', 'bottom', 'left', or 'right'. This property
specifies the location of the tab labels with respect to the tab group.

SelectedTab — Currently selected tab
Tab object

Currently selected tab, specified as a Tab object.

Use this property to determine the currently selected tab within a tab group. You can also
use this property to set the default selection.

1 Alphabetical List

1-15548

The default value of the SelectedTab property is the first tab that you add to the tab
group.

Interactivity

Visible — Tab group visibility
'on' (default) | 'off'

Tab group visibility, specified as 'on' or 'off'. The Visible property determines
whether the tab group displays on the screen. If the Visible property is set to 'off',
the entire tab group is invisible, but you can still specify and access its properties.

Changing the size of an invisible container triggers the SizeChangedFcn callback if and
when the container becomes visible.

Note Changing the Visible property of a container does not change the Visible
property of its child components even though hiding the container prevents its children
from displaying.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | uicontextmenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when the user right-clicks on a UI component. Create the context menu using the
uicontextmenu function.

Position

Position — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the tag group
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the tab group

 TabGroup Properties

1-15549

Element Description
width Distance between the right and left outer edges of the tab

group
height Distance between the top and bottom outer edges of the

tab group

All measurements are in units specified by the Units property.

Note The Position values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and does not include the
area occupied by the title. If the parent container is a figure, then the drawable area also
excludes the menu bar and tool bar.

Example: Modify One Value in the Position Vector

You can combine dot notation and array indexing when you want to change one value in
the Position vector. For example, this code sets the width of the tab group to .5 without
changing any of the other Position values:

tg = uitabgroup;
tg.Position(3) = .5;

InnerPosition — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

This property value is identical to the Position and OuterPosition property values.

OuterPosition — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

This property value is identical to the Position and InnerPosition property values.

1 Alphabetical List

1-15550

Units — Units of measurement
'normalized' (default) | 'pixels' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified one of the values from this table.

Units Value Description
'normalized' These units are normalized with respect to

the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.

 TabGroup Properties

1-15551

Units Value Description
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

If you change the value of the Units property, it is good practice to return it to its default
value after completing your computation to avoid affecting other functions that assume
the Units property is set to the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units property before the Position property, then MATLAB sets
Position using the units you specified.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position values to the
equivalent values in the units you specified.

Callbacks

SelectionChangedFcn — Selection changed callback
'' (default) | function handle | cell array | character vector

Selection changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

1 Alphabetical List

1-15552

This callback function executes when the user selects a different tab within the tab group.

If you set the SelectionChangedFcn property to a function handle (or cell array
containing a function handle), MATLAB passes a SelectionChangedData object
containing event data as the second argument to the callback function. This object
contains the properties described in the following table. You can access these properties
inside the callback function using dot notation. For example, if the second argument in
your callback is called event, then event.NewValue returns the currently selected Tab.

Property Description
OldValue Previously selected Tab, or [] if none was selected
NewValue Currently selected Tab
Source Component that executes the callback
EventName 'SelectionChanged'

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

SizeChangedFcn — Size change callback function
'' (default) | function handle | cell array | character vector

Size change callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.
• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

 TabGroup Properties

1-15553

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible
property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

Tip As an easy alternative to specifying a SizeChangedFcn callback, you can set the
Units property of all the objects you put inside a container to 'normalized'. Doing so
makes those components scale proportionally with the container.

See “Lay Out a UI Programmatically” for more information about managing layouts with
SizeChangedFcn callbacks.

ButtonDownFcn — Button-press callback function
'' (default) | function handle | cell array | character vector

Button-press callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The ButtonDownFcn callback is a function that executes when the user clicks a mouse
button within the container.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

1 Alphabetical List

1-15554

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

 TabGroup Properties

1-15555

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

1 Alphabetical List

1-15556

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

 TabGroup Properties

1-15557

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent object
Figure | Panel | Tab

Parent object, specified as a Figure, Panel, or Tab object. Use this property to specify
the parent container when creating a tab group or to move an existing tab group to a
different parent container.

Children — TabGroup children
empty GraphicsPlaceholder array (default) | 1-D array of component objects

TabGroup children, returned as an empty GraphicsPlaceholder or a 1-D array of
component objects. The children of TabGroup objects are Tab objects.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the children. The order of the children in this array
reflects the order of the tabs displayed on the screen.

To add a child to this list, set the Parent property of the child component to be the
TabGroup object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the

1 Alphabetical List

1-15558

parent figure's CurrentObject property. Handles are still valid even if they are not
visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

'off' The object handle is invisible at all times. This option is
useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uitabgroup'

This property is read-only.

Type of graphics object, returned as 'uitabgroup'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

 TabGroup Properties

1-15559

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
guide | uitab | uitabgroup

Topics
“Access Property Values”
“Default Property Values”

Introduced in R2014b

1 Alphabetical List

1-15560

uitable
Create table user interface component

Syntax
uit = uitable
uit = uitable(Name,Value)
uit = uitable(parent)
uit = uitable(parent,Name,Value)

Description
uit = uitable creates a table user interface component in the current figure and
returns the Table UI component object. If there is no figure available, MATLAB calls the
figure function to create one.

uit = uitable(Name,Value) specifies property values of the Table UI component
using one or more name-value pair arguments.

uit = uitable(parent) creates the table in the specified parent container. The parent
container can be a figure created with either the figure or uifigure function, or a
child container such as a panel. Property values for uitable vary slightly depending on
whether the app is created with the figure or uifigure function. For more information,
see “Name-Value Pair Arguments” on page 1-15568.

uit = uitable(parent,Name,Value) specifies the parent container and one or more
property values.

Examples

 uitable

1-15561

Display Array of Numbers

Create a Table UI component that displays a 3-by-10 array of random integers. The Data
property specifies the values to display, and the Position property specifies the location
and size of the table within the figure.

f = figure;
uit = uitable(f,'Data',randi(100,10,3),'Position',[20 20 262 204]);

Display Mixed Data Types

Table UI components can accommodate a mixture of different data types across the
columns.

Create an empty Table UI component.

1 Alphabetical List

1-15562

f = figure;
uit = uitable(f);

Set the Data property to populate the data as a cell array that contains a mixture of
different types. Then set the Position property to adjust the location and size of the
table to fit the data.

d = {'Male',52,true;'Male',40,true;'Female',25,false};
uit.Data = d;
uit.Position = [20 20 258 78];

Set the ColumnName property to change the column headings to descriptive names. Set
the ColumnEditable property to true so that users can edit the data in the UI. When a
user changes a value in the UI, the Data property updates to reflect that change.

uit.ColumnName = {'Gender','Age','Authorized'};
uit.ColumnEditable = true;

 uitable

1-15563

Display Table Array Data

Starting in R2018a, you can display table array data in a Table UI component. This
type of data is supported only when the Table UI component is in a figure created with
the uifigure function. App Designer uses this type of figure for creating apps.

Create table array t by calling the readtable function to read data from a file. Select
four variables and 15 rows from t.

t = readtable('patients.xls');
vars = {'Age','Systolic','Diastolic','Smoker'};
t = t(1:15,vars);

Create a Table UI component, and specify t as the data.

f = uifigure;
uit = uitable(f,'Data',t);

1 Alphabetical List

1-15564

Update Visualizations for Sorted Display Data

Starting in R2019a, you can sort the columns of a Table UI component that has table
array data stored in its Data property. This type of data is supported only when the
Table UI component is in a figure created with the uifigure function. App Designer
uses this type of figure for creating apps.

Display table array data and update the plot when a user sorts the columns or edits the
cells.

First, create a program file called tsunamisData.m. Within the program file:

• Create a table array by calling the readtable function.
• Create a sortable and editable Table UI component to display in a figure. Store the

table array to component's Data property.

 uitable

1-15565

• Specify a DisplayDataChangedFcn callback that uses the DisplayData property to
update the plot when a user sorts columns or edits cells in the Table UI component.

function tsunamisData
t = readtable('tsunamis.xlsx');
vars = {'Year','MaxHeight','Latitude','Longitude'};
t = t(1:20,vars);

uf = uifigure;
uf.Position(3:4) = [822 360];

uit = uitable(uf);
uit.Data = t;
uit.ColumnSortable = [false true true true];
uit.ColumnEditable = true;
uit.Position(3) = 375;
uit.DisplayDataChangedFcn = @updatePlot;

ax = uiaxes(uf);
ax.Position(1) = 415;
ax.YLabel.String = 'Max Height';
x = t.Year;
y = t.MaxHeight;
area(ax,x,y)

 function updatePlot(src,event)
 t = uit.DisplayData;
 x = t.Year;
 y = t.MaxHeight;
 area(ax,x,y)
 end

end

1 Alphabetical List

1-15566

A sortable column displays arrows in the header when you hover your mouse over it. Find
a sortable column and sort the table. Notice how the displayed data and the plot update
after sorting.

 uitable

1-15567

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a figure created with either the figure or uifigure
function, or a child container:

• Panels, tabs and button groups can be containers in either type of figure.
• Grid layouts can be containers only in figures created with the uifigure function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments as
Name1,Value1,...,NameN,ValueN.
Example: 'Data',[1 2 3; 4 5 6]

You can set Table properties using Name-Value pair arguments.

1 Alphabetical List

1-15568

• For a list of properties available for GUIDE, or for creating apps with the figure
function, see Uitable for GUIDE.

• For a list of properties available for App Designer, or for creating apps with the
uifigure function, see Table for App Designer.

See Also
Properties
Table

Topics
“Table Array Data Types in App Designer Apps”

Introduced in R2008a

 uitable

1-15569

Table Properties
Control appearance and behavior of table UI component

Note The properties listed here are valid for tables in GUIDE or in apps created
with the figure function. If you are using App Designer or the uifigure function, see
Table Properties instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Description
Table UI components display rows and columns of data in an app. The uitable function
creates a table UI component and sets any required properties before displaying it. By
changing property values, you can modify certain aspects of its appearance and behavior.
Use dot notation to refer to a specific object and property.

f = figure;
t = uitable(f,'Data',[1 2 3; 4 5 6; 7 8 9]);
t.FontSize = 9;

Properties
Table

Data — Table data
numeric array | logical array | cell array

Table data, specified as a numeric array, logical array, or cell array. The table data can be
any numeric type, logical, or char. Use a cell array to specify a mixture of different
data types.

Table data is displayed in the format specified by the ColumnFormat property. If there is
a mismatch between the data type of the table data and the value of the ColumnFormat
property, MATLAB converts the data or displays a warning. See the ColumnFormat
property description for more information.

1 Alphabetical List

1-15570

To prevent warnings that might occur when users enter invalid data, write a
CellEditCallback function to convert the data to the appropriate type.

If the number of rows in the Data property array does not match the number of elements
in the RowName array, then the number of rows in the resulting table is the larger of the
two values. The same is true when the ColumnName property does not match the number
of columns in the Data property array.
Example: t = uitable('Data',rand(10,3))
Example: t = uitable('Data',{'blue' 5 true; 'orange' 25 false})

ColumnName — Column heading names
'numbered' (default) | n-by-1 cell array of character vectors | n-by-1 categorical array |
empty cell array ({}) | ...

Column heading names, specified as one of these values:

• 'numbered' — The column headings are sequential numbers that start at 1.
• Cell array of character vectors or categorical array — Each element of the array

becomes the name of a column. If you specify a 1-by-n cell array, MATLAB stores and
returns the value as a n-by-1 cell array. If you specify an m-by-n array, MATLAB
reshapes the array into a column vector. Specify a multiline column name by including
a vertical slash (|) in the column name. For example, the value, 'Telephone|
Number', produces a column heading with a newline character between the words,
“Telephone” and “Number”.

• Empty cell array ({}) — The table has no column headings.
• Empty matrix ([]) — The table has no column headings

If the number of columns in the Data property array does not match the number of
elements in the ColumnName array, then the number of columns in the resulting table is
the larger of the two values.
Example: t = uitable('ColumnName',{'Name'; 'Number'},'Data',{'Bob' 5})
Example: t = uitable('ColumnName',{'Name'; []},'Data',{'Bob' 5})
Example: t = uitable('ColumnName',{'Name'; 'Telephone|Number'},'Data',
{'Bob','555-1212'})

ColumnWidth — Width of table columns
'auto' (default) | 1-by-n cell array

 Table Properties

1-15571

Width of table columns, specified as 'auto' or as a 1-by-n cell array.

Each column in the cell array corresponds to a column in the table. The values are in pixel
units. If you specify 'auto', then MATLAB calculates the width of the column
automatically using several factors, one of which is the ColumnName property value.

You can combine fixed column widths and 'auto' column widths in a cell array, or you
can specify a single value of 'auto' to make all column widths automatic.

Selecting Auto Width in the Table Property Editor has the same effect as setting the
ColumnWidth property to 'auto'.
Example: t = uitable('ColumnWidth','auto','Data',[1 2 3; 4 5 6])
Example: t = uitable('ColumnWidth',{64 60 40},'Data',[1 2 3; 4 5 6])
Example: t = uitable('ColumnWidth',{64 'auto' 40},'Data',[1 2 3; 4 5
6])

ColumnEditable — Ability to edit column cells
[] (default) | logical 1-by-n array | logical scalar

Ability to edit column cells, specified as:

• An empty logical array ([]) — No columns are editable.
• A logical 1-by-n array — This array specifies which columns are editable. The value of

n is equal to the number of columns in the table. Each value in the array corresponds
to a table column. A value of true in the array makes the cells in that column editable.
A value of false makes the cells in that column uneditable.

• A logical scalar— The entire table editable or uneditable.

Example: t = uitable('Data',rand(10,3),'ColumnEditable',[false true
true])

Example: t = uitable('Data',rand(10,3),'ColumnEditable',false)

Table columns that contain check boxes or pop-up menus must be editable so the user can
interact with these controls.

ColumnFormat — Cell display format
empty cell array ({}) (default) | 1-by-n cell array of character vectors

Cell display format, specified as an empty cell array or a 1-by-n cell array of character
vectors.

1 Alphabetical List

1-15572

This property determines how the data in each column displays, and the constraints for
editing that data in the UI. The elements of the cell array correspond to columns in the
Data property array. If you do not want to specify a display format for a particular
column, specify [] for that column. If you do not specify a format for a column, MATLAB
determines the default display by the data type of the data in the cell.

Elements of the cell array must be one of the values described in the following table.

Cell Format Value Description
'char' Display a left-justified values

To edit a cell, the user types text to replace the existing
value.

If an element in the Data property array is logical, then
true or false appears in the table.

'logical' Display check boxes.

To edit a cell, the user selects or clears the check box. Then,
MATLAB sets the corresponding Data value to true or
false.

The ColumnEditable property value must be true to allow
users to select or deselect the check boxes.

Initially, a check box is selected when the corresponding
Data value is true. The corresponding values in the Data
property array must be of type logical to ensure the data
displays correctly in the table.

 Table Properties

1-15573

Cell Format Value Description
'numeric' Display a right-justified value equivalent to the Command

Window display for numeric data. If an element in the Data
property array is logical, then 1 or 0 appears in the table. If
an element in the Data property array is not numeric and
not logical, then NaN appears in the table.

To edit a cell, the user can enter any text.

If a user enters text that represents a constant, such as pi,
you can code the CellEditCallback function to convert
the value to the numeric equivalent. In this case, MATLAB
attempts to convert the user-entered text to a numeric value
and stores it in the Data property. Then, the
CellEditCallback function executes. See the
CellEditCallback description for an example.

A 1-by-n cell array of
character vectors, such as
{'one' 'two'
'three'}

Display a pop-up menu.

To edit a cell, the user selects an item from the pop-up menu.
MATLAB sets the corresponding Data property array value
to the selected menu item. The ColumnEditable property
value must be true to allow users to select items in the pop-
up menu.

A format name accepted
by the format function,
such as: 'short' or
'long'

Display the Data property values using the specified format.

Effect of Pop-Up Menu ColumnFormat and Various Data Types

If the ColumnFormat value defines a pop-up menu, the initial Data value does not have
to be one of the options in that menu. The initial Data value appears until the user makes
a different selection.

For instance, suppose the Data property value for a given column is 'Choose' for all
rows, and the ColumnFormat value specifies a pop-up menu with the choices of 'group
1' and 'group 2'. When MATLAB creates the table, those table cells display 'Choose'
until the user selects an item in the pop-up menu:

1 Alphabetical List

1-15574

f = figure;
myData = {'Andrew' 31 'Male' 'Choose'; ...
 'Bob' 41 'Male' 'Choose'; ...
 'Anne' 20 'Female' 'Choose';};
t = uitable('Parent', f,...
 'Position', [25 25 334 78],...
 'ColumnFormat',({[] [] [] {'group 1' 'group 2'}}),...
 'ColumnEditable', true,...
 'Data', myData);

 Table Properties

1-15575

Data Display of Editable Columns

This table describes how various data types display with specific ColumnFormat values.

 ColumnFormat
'numeric' 'char' 'logical'

1 Alphabetical List

1-15576

Data Type
of Data
Array Value

Any numeric
type

Table displays number
as-is.

MATLAB converts the
value to text and
displays it left-justified
in the table. If
MATLAB cannot
convert the value, then
NaN displays.

Not recommended.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

char Table displays the
value right-justified, as
if it is a number.

Table displays the
value as-is.

Not recommended.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

logical Table displays logical
values as numbers.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

Table displays logical
value as left-justified
'true' or 'false'.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

Table displays logical
values as check boxes.

For example, in the following table, the first column (X-Data) is left justified because the
ColumnFormat value for that column is 'char'.

 Table Properties

1-15577

RowName — Row heading names
'numbered' (default) | n-by-1 cell array of character vectors | n-by-1 categorical array |
empty cell array ({}) | ...

Row heading names, specified as one of these values:

• 'numbered' — The row headings are sequential numbers that start at 1.
• Cell array of character vectors or categorical array — Each element of the array

becomes the name of a row. Row names are restricted to one line of text. If you specify
a 1-by-n cell array, MATLAB stores and returns the value as a n-by-1 cell array. If you
specify an m-by-n array, MATLAB reshapes the array into a column vector.

• Empty cell array ({}) — The table has no row headings.
• Empty matrix ([]) — The table has no row headings

If the number of rows in the Data property array does not match the number of elements
in the RowName array, then the number of rows in the resulting table is the larger of the
two values.
Example: t = uitable('RowName',{'Name';'Number'},'Data',{'Bob';5})
Example: t = uitable('RowName',{'Name';[]},'Data',{'Bob';5})

RearrangeableColumns — Ability to rearrange table columns
'off' (default) | 'on'

1 Alphabetical List

1-15578

Ability to rearrange table columns, specified as 'off' or 'on'. This property provides a
way to let users reorder the table columns (but not the labels) by clicking and dragging
the column headers.

Note Rearranging table columns in the UI does not affect the columns in the Data
property array.

Font

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as a system supported font name or 'FixedWidth'. The default
font depends on the specific operating system and locale.

To use a fixed-width font that looks good in any locale, specify 'FixedWidth'. The actual
fixed-width font used depends on the FixedWidthFontName property of the root object.
Changing the FixedWidthFontName property causes an immediate update of the display
to use the new font.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The FontUnits property specifies the units.
The default size is system-dependent.
Example: 12
Example: 12.5

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as a value from the following table.

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than normal

 Table Properties

1-15579

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

Note The 'light' and 'demi' font weight values have been removed in R2014b. If you
specify either of these values, the result is a normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. MATLAB uses this property to select a
font from those available on your system. Setting this property to 'italic' selects a
slanted version of the font, if it is available on your system.

Note The 'oblique' value has been removed. Use 'italic' instead.

FontUnits — Font units
'points' (default) | 'normalized' | 'inches' | 'centimeters' | 'pixels'

Font units, specified as one of the values from this table.

Units Value Description
'points' Points. One point is 1/72nd of an inch.
'normalized' Normalized values for specifying the font size as a fraction

of the height. When you resize a UI component, MATLAB
scales the displayed font to maintain that fraction.

'inches' Inches.
'centimeters' Centimeters.

1 Alphabetical List

1-15580

Units Value Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are independent of
your system resolution on Windows and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.

On Linux systems, the size of a pixel is determined by your
system resolution.

Interactivity

Visible — Table visibility
'on' (default) | 'off'

Table visibility, specified as 'on' or 'off'. When Visible is 'off', the table is not
visible, but you can query and set its properties.

To make your app start faster, set the Visible property of all components that are not
initially displayed to 'off'.

Enable — Operational state of table
'on' (default) | 'inactive' | 'off'

Operational state of table, specified as 'on', 'off', or 'inactive'. The Enable
property controls whether a UI component responds to button clicks. The are three
possible values:

• 'on' – The UI component is operational.
• 'off' – The UI component is not operational and appears grayed-out.
• 'inactive' – The UI component is not operational, but it has the same appearance

as when Enable is 'on'.

The value of the Enable property and the type of button click determine how the UI
responds.

 Table Properties

1-15581

Enable Value Response to Left-Click Response to Right-Click
'on' The CellSelectionCallback

function executes (only for table cells,
not header cells). The Indices
property updates in the callback data
object that MATLAB passes to the
callback function.

1 The figure’s
WindowButtonDownFcn callback
executes.

2 The ButtonDownFcn callback
executes.

'off' or
'inactive'

1 The figure’s
WindowButtonDownFcn callback
executes.

2 The ButtonDownFcn callback
executes.

1 The figure’s
WindowButtonDownFcn callback
executes.

2 The ButtonDownFcn callback
executes.

Tooltip — Tooltip
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. Use this
property to display a message when the user hovers the pointer over the component at
run time. The tooltip does not display when the component is disabled. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

To create multiple lines of text, use the sprintf function to insert newline characters
('\n') in your text. For example:

txt = sprintf('Line 1\nLine 2');

Then set the Tooltip property to the value returned by sprintf.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | uicontextmenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when the user right-clicks on a UI component. Create the context menu using the
uicontextmenu function.

TooltipString — Tooltip (not recommended)
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. The tooltip
displays when the user hovers the mouse pointer over the component in the app. If you

1 Alphabetical List

1-15582

specify this property as a categorical array, MATLAB uses the values in the array, not the
full set of categories.

Note The TooltipString property is not recommended starting in R2018b. Use the
Tooltip property instead.

Selected — Selection state (not recommended)
'off' (default) | 'on'

Note The behavior of the Selected property changed in R2014b, and it is not
recommended. It no longer has any effect on Table objects. This property might be
removed in a future release.

SelectionHighlight — Display of selection handles (not recommended)
'on' (default) | 'off'

Note The behavior of the SelectionHighlight property changed in R2014b, and it is
not recommended. It no longer has any effect on Table objects. This property might be
removed in a future release.

Color and Styling

ForegroundColor — Cell text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Cell text color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 Table Properties

1-15583

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1; 0.94 0.94 0.94] (default) | RGB triplet | m-by-3 matrix of RGB triplets

Background color, specified as an RGB triplet or an m-by-3 matrix of RGB triplets. An RGB
triplet is a row vector that specifies the intensities of the red, green, and blue components
of the color. The intensities must be in the range, [0,1]. Color names are not valid.

Specify an m-by-3 matrix when you want the shading of the table rows to follow a
repeating pattern of m different colors. Each row of the matrix must be an RGB triplet.

1 Alphabetical List

1-15584

MATLAB uses the rows of the matrix when the RowStriping property is 'on'. The table
background is not striped unless both RowStriping is 'on' and BackgroundColor is
an m-by-3 matrix.
Example: t = uitable('Data',rand(10,3),'BackgroundColor',[0.85 0.85
1])

Example: t = uitable('Data',rand(10,3),'BackgroundColor',[1 1 1 ;0.85
0.85 1])

The following table lists the RGB triplets for certain colors.

Color RGB Triplet
Yellow [1 1 0]
Magenta [1 0 1]
Cyan [0 1 1]
Red [1 0 0]
Green [0 1 0]
Blue [0 0 1]
White [1 1 1]
Black [0 0 0]

RowStriping — Alternate row shading
'on' (default) | 'off'

Alternate row shading, specified as 'on' or 'off'. This property controls the shading
pattern of the table rows.

When the RowStriping value is set to 'on', the BackgroundColor matrix specifies the
row colors to display in a repeating pattern. If the BackgroundColor matrix has only
one row, then the shading is the same in all table rows.

When RowStriping is set to 'off', then the first color in the BackgroundColor matrix
defines the shading for all rows in the table.

Position

Position — Location and size
[left bottom width height]

 Table Properties

1-15585

Location and size, specified as a four-element vector of the form [left bottom width
height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the table
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the table
width Distance between the right and left outer edges of the

table
height Distance between the top and bottom outer edges of the

table

All measurements are in units specified by the Units property.

Note The Position values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and does not include the
area occupied by the title. If the parent container is a figure, then the drawable area also
excludes the menu bar and tool bar.

Use the Extent property to determine proper sizing for a table with respect to the data.
Set the width and height of Position property to the width and height of the Extent
property. Be aware that if the table has large extents, doing this can cause the table to
extend beyond the right or top edge of its parent container.
Example: Set Width and Height to Accommodate Data Size

You can combine dot notation and array indexing when you want to change one or two
consecutive values in the Position vector. For example, this code sets the width and
height of the table to match the Extent of the table:

t = uitable('Data',rand(10,3));
t.Position(3:4) = t.Extent(3:4);

InnerPosition — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

1 Alphabetical List

1-15586

This property value is identical to the Position and OuterPosition property values.

OuterPosition — Location and size
[left bottom width height]

Location and size, specified as a four-element vector of the form [left bottom width
height]. All measurements are in units specified by the Units property.

This property value is identical to the Position and InnerPosition property values.

Extent — Size of enclosing rectangle
four-element row vector

This property is read-only.

Size of enclosing rectangle, returned as a four-element row vector. The first two elements
of the vector are always zero. The third and fourth elements are the width and height of
the rectangle containing the table, respectively. All measurements are in units specified
by the Units property.

MATLAB determines the size of the rectangle based on the current Data, RowName and
ColumnName property values. MATLAB estimates the width and height values using the
column and row widths. The estimated extent can be larger than the figure.

Consider using the Extent property value when specifying the width and height values of
the Position property.

Units — Units of measurement
'pixels' (default) | 'normalized' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified as one of the values from this table.

 Table Properties

1-15587

Units Value Description
'pixels' (default) Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'normalized' These units are normalized with respect to
the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

1 Alphabetical List

1-15588

This property affects the Position property. If you change the Units property, consider
returning its value to the default value after completing your computation to avoid
affecting other functions that assume the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units before the Position property, then MATLAB sets Position
using the units you specify.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position value to the
equivalent value in the units you specify.

Callbacks

CellEditCallback — Cell edit callback function
function handle | cell array | character vector

Cell edit callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This function executes when the user changes the contents of a table cell. You can use
this callback function to perform calculations or validate user input.

If you specify this property as a function handle (or cell array containing a function
handle), MATLAB passes a CellEditData object containing event data as the second
argument to the callback function. This object contains the properties described in the
following table. You can access these properties inside the callback function using dot
notation.

Property Description
Indices 1-by-2 array containing the row and column indices of the cell the user edited.
PreviousData Previous cell data. The default is an empty matrix, [].

 Table Properties

1-15589

Property Description
EditData User-entered value.
NewData Value that MATLAB wrote to the Data property array. This value is either the

same as EditData or a converted value.

The NewData property is empty if MATLAB detects an error in the user-
entered data.

Error Error message returned if MATLAB detects an error in the user-entered data.

The Error property is empty when MATLAB successfully writes the value to
the Data property.

If the Error property is not empty, then the CellEditCallback can display
the message, or it can attempt to fix the problem.

Source Table object that is executing the CellEditCallback function.
EventName 'CellEdit'

When the user edits a table cell, MATLAB performs these steps:

1 Tries to store the new value into the Data property of the table
2 Calls the CellEditCallback function (if it exists)

If the value results in an error and there is no CellEditCallback function, then the cell
data reverts to its previous value and no error displays.
Example: Evaluate User Input

This example shows how to create a callback function that evaluates a user-entered data
in a numeric table cell. Paste this code into an editor and run it to see how it works.

function myui
 f = figure;
 myData = { 'A ' 31; 'B' 41; 'C' 5; 'D' 2.6};
 t = uitable('Parent',f,...
 'Position', [25 25 700 200], ...
 'Data',myData,...
 'ColumnEditable', [false true], ...
 'CellEditCallback',@converttonum);
 function converttonum(hObject,callbackdata)
 numval = eval(callbackdata.EditData);
 r = callbackdata.Indices(1)

1 Alphabetical List

1-15590

 c = callbackdata.Indices(2)
 hObject.Data{r,c} = numval;
 end
end

When you run myui, you can change a value in the second column of the table. In
response, the converttonum callback function executes. The converttonum function
uses the eval function to evaluate your input. Then, it sets the cell data to the value of
numval. For example, if you enter pi or1+1, the converttonum function sets the table
cell value to a numeric representation of the input. Because there is no error checking in
the converttonum function, invalid expressions return an error and the new value of the
table cell becomes NaN.

CellSelectionCallback — Cell selection callback function
function handle | cell array | character vector

Cell selection callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This callback function executes when the user performs one of the following actions:

• Highlights a data cell (not a row or column header cell) by clicking it or navigating to
it with an arrow key

• Selects a rectangular group of cells by holding the Shift key while selecting the cells
• Deselects a cell by Ctrl-clicking it

If you specify this property as a function handle (or cell array containing a function
handle), MATLAB passes a CellSelectionChangeData object containing event data as
the second argument to the callback function. This object contains the properties listed in
the following table.

 Table Properties

1-15591

Property Description
Indices n-by-2 array containing the row and column indices of the cell the user

selected.
Source The table object that is executing the CellSelectionCallback function.
EventName 'CellSelection'

ButtonDownFcn — Button-press callback function
'' (default) | function handle | cell array | character vector

Button-press callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The ButtonDownFcn callback is a function that executes when the user clicks a mouse
button on the UI component. The callback executes in the following situations:

• The user right-clicks the table, and the Enable property is set to 'on'.
• The user right-clicks or left-clicks the table, and the Enable property is set to 'off'

or 'inactive'.

KeyPressFcn — Key press callback function
'' (default) | function handle | cell array | character vector

Key press callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

1 Alphabetical List

1-15592

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This callback function executes when the Table object has focus and the user presses a
key. If you do not define a function for this property, MATLAB passes key presses to the
parent figure. Repeated key presses retain the focus of the Table object, and the function
executes with each key press. If the user presses multiple keys at approximately the same
time, MATLAB detects the key press for the last key pressed.

If you specify this property as a function handle (or cell array containing a function
handle), MATLAB passes an object containing callback data as the second argument to
the callback function. This object contains the properties described in the following table.
You can access these properties inside the callback function using dot notation.

Property Description Examples:
a = Shift Shift-a

Character The character that displays as a
result of pressing a key or keys.
The character can be empty or
unprintable.

'a' '=' '' 'A'

Modifier A cell array containing the names
of one or more modifier keys that
are being pressed (such as, Ctrl,
Alt, Shift).

{1x0
cell}

{1x0
cell}

{'shift
'}

{'shift'}

Key The key being pressed, identified
by the (lowercase) label on the
key, or a text description.

'a' 'equal
'

'shift' 'a'

Source The object that has focus when
the user presses the key.

Table
object

Table
object

Table
object

Table object

EventName The action that caused the
callback function to execute.

'KeyPr
ess'

'KeyPr
ess'

'KeyPre
ss'

'KeyPress'

Pressing modifier keys affects the callback data in the following ways:

• Modifier keys can affect the Character property, but do not change the Key property.
• Certain keys, and keys modified with Ctrl, put unprintable characters in the

Character property.

 Table Properties

1-15593

• Ctrl, Alt, Shift, and several other keys, do not generate Character property data.

You also can query the CurrentCharacter property of the figure to determine which
character the user pressed.

KeyReleaseFcn — Key-release callback function
'' (default) | function handle | cell array | character vector

Key-release callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This callback function executes when the Table object has focus and the user releases a
key.

If you specify this property as a function handle (or cell array containing a function
handle), MATLAB passes an object containing callback data as the second argument to
the callback function. This object contains the properties described in the following table.
You can access these properties inside the callback function using dot notation.

Property Description Examples:
a = Shift Shift-a

Character Character interpretation of the
key that was released.

'a' '=' '' 'A'

Modifier Current modifier, such as
'control', or an empty cell
array if there is no modifier.

{1x0
cell}

{1x0
cell}

{1x0
cell}

{1x0 cell}

Key Name of the key that was
released, identified by the
lowercase label on the key, or a
text description.

'a' 'equal
'

'shift' 'a'

1 Alphabetical List

1-15594

Property Description Examples:
a = Shift Shift-a

Source The object that has focus when
the user presses the key.

Table
object

Table
object

Table
object

Table object

EventName The action that caused the
callback function to execute.

'ase' 'ase' 'ase' 'ase'

Pressing modifier keys affects the callback data in the following ways:

• Modifier keys can affect the Character property, but do not change the Key property.
• Certain keys, and keys modified with Ctrl, put unprintable characters in the

Character property.
• Ctrl, Alt, Shift, and several other keys, do not generate Character property data.

You also can query the CurrentCharacter property of the figure to determine which
character the user pressed.

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

 Table Properties

1-15595

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

1 Alphabetical List

1-15596

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

 Table Properties

1-15597

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

HitTest — Ability to become current object
'on' (default) | 'off'

Ability to become current object, specified as 'on' or 'off':

• 'on' — Sets the current object to the Table when the user clicks the component in
the running app. Both the CurrentObject property of the Figure and the gco
function return the Table as the current object.

• 'off' — Sets the current object to be the closest ancestor of the Table whose
HitTest is 'on' when the user clicks the component in the running app.

Note Use the Enable property to enable or disable a component.

1 Alphabetical List

1-15598

Parent/Child

Parent — Parent object
Figure | Panel | ButtonGroup | Tab

Parent object, specified as a Figure, Panel, ButtonGroup, or Tab object. Use this
property to specify the parent container when creating a UI component or to move an
existing UI component to a different parent container.

Children — Table children
empty array

Table children, returned as an empty array. Table objects have no children. Setting this
property has no effect.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not
visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

 Table Properties

1-15599

HandleVisibility Value Description
'off' The object handle is invisible at all times. This option is

useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uitable'

This property is read-only.

Type of graphics object, returned as 'uitable'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
guide | uitable

Topics
“Access Property Values”

1 Alphabetical List

1-15600

“Default Property Values”

Introduced in R2008a

 Table Properties

1-15601

Table Properties
Control appearance and behavior of table UI component

Description
Table UI components display rows and columns of data in an app. The uitable function
creates a table UI component and sets any required properties before displaying it. By
changing property values, you can modify certain aspects of its appearance and behavior.
Use dot notation to refer to a specific object and property.

uf = uifigure;
t = uitable(uf,'Data',[1 2 3; 4 5 6; 7 8 9]);
t.FontSize = 10;

The properties listed here are valid for tables in App Designer, or in apps created with the
uifigure function. For tables used in GUIDE, or in apps created with the figure
function, see Uitable.

Properties
Table

Data — Table data
table array | numeric array | logical array | cell array | cell array of character vectors

Table data, specified as one of the following types of array:

• Table array — Displays any combination of data types that table arrays support, such
as datetime, duration, and categorical.

• Numeric array — Displays numeric values such as double or single.
• Logical array — Displays check boxes. true values correspond to checked boxes,

whereas false values are not checked.
• Cell array — Displays any combination of numeric, logical, or char values.
• Cell array of character vectors — Displays characters and text.

1 Alphabetical List

1-15602

To prevent warnings or NaN values that display when users enter invalid data, write a
CellEditCallback function to convert the data to the appropriate type. When a user
edits a cell, the Data property updates.

Specify a Table Array

Table arrays provide a convenient way to store tabular data as a MATLAB variable. The
table, readtable, and array2table functions create table arrays. By contrast, the
uitable function creates a Table UI component (a user interface component for an
app).

When you specify the Data property of a Table UI component as a table array, MATLAB
sets the format of the Table UI component automatically based on the values in the table
array:

• By default, the column names displayed in the app match the VariableNames
property of the table array. Changing the ColumnName property of the Table UI
component updates the UI, but it does not update the variable names in the table
array.

• By default, the row names displayed in the app match the RowNames property of the
table array. Changing the RowName property of the Table UI component updates the
UI, but it does not update the row names in the table array.

• The data type of each table array variable controls formatting for the corresponding
column in the app. If you try to set the ColumnFormat property, MATLAB returns a
warning.

For more information on displaying table array data, see “Table Array Data Types in App
Designer Apps”.

Specify a Numeric, Logical, Cell Array, or Cell Array of Character Vectors

Use the ColumnFormat property to specify the format for numeric, logical, cell array,
or cell array of character vectors data. If data is edited and results in a mismatch between
the data type of the data and the ColumnFormat property, MATLAB converts the data or
displays a warning. See “Data Display of Editable Columns” on page 1-0 in the
ColumnFormat property description for more information.

DisplayData — Table data in current display
table array | numeric array | logical array | cell array | cell array of character vectors

This property is read-only.

 Table Properties

1-15603

Table data in the current display, returned as a table, numeric, logical, or cell array, or as
a cell array of character vectors.

Use this property if you want to update your visualizations based on how a user has
sorted a table containing table data.

DisplayData is updated when table columns are sorted. Tables support column sorting
only if they have a table array stored in their Data property. If a user does not sort the
table, or if the value stored in the Data property is not a table array, then DisplayData
has the same content as the value stored in the Data property.

ColumnName — Column names
'numbered' (default) | n-by-1 cell array of character vectors | n-by-1 categorical array |
empty cell array ({}) | ...

Column names, specified as one of these values:

• 'numbered' — The column headings are sequential numbers that start at 1.
• Cell array of character vectors or categorical array — Each element of the array

becomes the name of a column. Column names are restricted to one line of text. If you
specify a 1-by-n cell array, MATLAB stores and returns the value as an n-by-1 cell
array. If you specify an m-by-n array, MATLAB reshapes the array into a column vector.

• Empty cell array ({}) — The table has no column headings.
• Empty matrix ([]) — The table has no column headings

If the number of columns in the Data property array does not match the number of
elements in the ColumnName array, then the number of columns in the resulting table is
the larger of the two values.

If you specify the Data property as a table array, then the default column names match
the VariableNames property of the table array. Changing the ColumnName property of
the Table UI component updates the UI, but it will not update the variable names in the
table array.
Example: t = uitable(uifigure,'ColumnName',{'Name'; 'Number'},'Data',
{'Bob' 5})

Example: t = uitable(uifigure,'ColumnName',{'Name'; []},'Data',{'Bob'
5})

ColumnWidth — Width of table columns
'auto' (default) | 1-by-n cell array

1 Alphabetical List

1-15604

Width of table columns, specified as 'auto' or as a 1-by-n cell array.

Each column in the cell array corresponds to a column in the table. The values are in pixel
units. If you specify 'auto', then MATLAB calculates the width of the column
automatically using several factors, one of which is the ColumnName property value.

You can combine fixed column widths and 'auto' column widths in a cell array, or you
can specify a single value of 'auto' to make all column widths automatic. If the array
has fewer values than the number of columns, then the columns with no specified value
keep the default value, 'auto'. If the array has more values than the number of columns,
MATLAB ignores the excess values.
Example: t = uitable(uifigure,'ColumnWidth','auto','Data',[1 2 3; 4 5
6])

Example: t = uitable(uifigure,'ColumnWidth',{64 60 40},'Data',[1 2 3;
4 5 6])

Example: t = uitable(uifigure,'ColumnWidth',{64 'auto' 40},'Data',[1 2
3; 4 5 6])

ColumnEditable — Ability to edit column cells
[] (default) | logical 1-by-n array | logical scalar

Ability to edit column cells, specified as:

• An empty logical array ([]) — No columns are editable.
• A logical 1-by-n array — This array specifies which columns are editable. The value of

n is equal to the number of columns in the table. Each value in the array corresponds
to a table column. A value of true in the array makes the cells in that column editable.
A value of false makes the cells in that column uneditable. If the array has more
values than the number of columns, MATLAB ignores the excess values. If the array
has fewer values than the number of columns, then the columns with no specified
value are not editable.

• A logical scalar — The entire table is editable or uneditable.

When a user edits a cell, the Data property updates.
Example: t = uitable(uifigure,'Data',rand(10,3),'ColumnEditable',
[false true true])

Example: t =
uitable(uifigure,'Data',rand(10,3),'ColumnEditable',false)

 Table Properties

1-15605

To enable users to interact with the controls in table columns that contain check boxes or
pop-up menus, set the ColumnEditable property to true.

If the Data property is a table array, then any variables that contain duration values,
mixed data types in a cell array, or multiple columns are not editable in the running app,
even when the ColumnEditable property is true.

ColumnSortable — Ability to sort columns
[] (default) | logical scalar | logical 1-by-n array

Ability to sort columns, specified as:

• An empty logical array ([]) — No columns are sortable.
• A logical scalar — The entire table is sortable (true) or unsortable (false).
• A logical 1-by-n array — This array specifies which columns are sortable. The value of

n is equal to the number of columns in the table. Each value in the array corresponds
to a table column. A value of true in the array makes that column sortable. A value of
false makes that column unsortable. If the array has more values than the number of
columns, MATLAB ignores the excess values. If the array has fewer values than the
number of columns, then the columns with no specified value are not sortable.

Example: uit = uitable(uifigure,'Data',t,'ColumnSortable',true);
Example: uit = uitable(uifigure,'Data',t,'ColumnSortable',[true true
false]);

To enable column sorting, the value of the Data property must be a table array. Setting
the ColumnSortable property to true has no effect if the value of the Data property is
a numeric, logical, cell array, or cell array of character vectors data type.

ColumnFormat — Cell display format
empty cell array ({}) (default) | 1-by-n cell array of character vectors

Cell display format, specified as an empty cell array or a 1-by-n cell array of character
vectors.

Do not set this property when the Data property contains a table array. For more
information, see “Table Array Data Types in App Designer Apps”.

This property sets the format for displaying numeric, logical, cell array, and cell array
of character vectors data types. The elements of the cell array correspond to columns in
the Data property array. If you do not want to specify a display format for a particular

1 Alphabetical List

1-15606

column, specify [] for that column. If you do not specify a format for a column, MATLAB
determines the default display by the data type of the data in the cell.

Elements of the cell array must be one of the values described in the following table.

Cell Format Value Description
'char' Display left-justified values. If an element in the Data

property array is logical, then true or false appears in the
table.

To edit a cell, the user types text to replace the existing
value.

'logical' Display a check box. Initially, a check box is selected when
the corresponding Data value evaluates to true. The
corresponding values in the Data property array must be of
type logical to ensure that the data displays correctly in
the table.

To edit a cell, the user selects or clears the check box. Then,
MATLAB sets the corresponding Data value to true or
false. The ColumnEditable property value must be true
to allow users to select or clear the check boxes.

'numeric' Display a right-justified value equivalent to the Command
Window display for numeric data. If an element in the Data
property array is logical, then 1 or 0 appears in the table. If
an element in the Data property array is not numeric and
not logical, then NaN appears in the table.

To edit a cell, the user can enter any text.

If a user enters text that represents a constant, such as pi,
you can code the CellEditCallback function to convert
the value to the numeric equivalent. In this case, MATLAB
attempts to convert the user-entered text to a numeric value
and stores it in the Data property. Then, the
CellEditCallback function executes. See the
CellEditCallback description for an example.

 Table Properties

1-15607

Cell Format Value Description
A 1-by-n cell array of
character vectors, such as
{'one' 'two'
'three'}

Display a pop-up menu in an editable column. The value
displays as-is if the ColumnEditable property is set to
false.

To edit a cell, the user selects an item from the pop-up menu,
or enters text to create a new item. MATLAB sets the
corresponding Data property array value to the selected
menu item. The ColumnEditable property value must be
true to allow users to select items in the pop-up menu.

A format name accepted
by the format function,
such as: 'short' or
'long'

Display the Data property values using the specified format.

Effect of Pop-Up Menu ColumnFormat and Various Data Types

If the ColumnFormat value defines a pop-up menu, the initial Data value does not have
to be one of the options in that menu. The initial Data value appears until the user makes
a different selection.

For instance, suppose the Data property value for a given column is 'Choose' for all
rows, and the ColumnFormat value specifies a pop-up menu with the choices of 'group
1' and 'group 2'. When MATLAB creates the table, those table cells display 'Choose'
until the user selects an item in the pop-up menu:

f = uifigure;
myData = {'Andrew' 31 'Male' 'Choose'; ...
 'Bob' 41 'Male' 'Choose'; ...
 'Anne' 20 'Female' 'Choose';};
t = uitable('Parent', f,...
 'Position', [100 100 334 78],...
 'ColumnFormat',({[] [] [] {'group 1' 'group 2'}}),...
 'ColumnEditable', true,...
 'Data', myData);

1 Alphabetical List

1-15608

Data Display of Editable Columns

This table describes how various data types display with specific ColumnFormat values.

 ColumnFormat
'numeric' 'char' 'logical'

Data Type
of Data
Array Value

Any numeric
type

Table displays number
as-is.

MATLAB converts the
value to text and
displays it left-justified
in the table. If
MATLAB cannot
convert the value, then
NaN displays.

Not recommended.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

char Table displays the
value right-justified, as
if it is a number.

Table displays the
value as-is.

Not recommended.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

 Table Properties

1-15609

logical Table displays logical
values as numbers.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

Table displays logical
value as left-justified
'true' or 'false'.
MATLAB might return
a warning when the
user edits the cell,
unless you define a
CellEditCallback
function.

Table displays logical
values as check boxes.

RowName — Row names
'numbered' (default) | n-by-1 cell array of character vectors | n-by-1 categorical array |
empty cell array ({}) | ...

Row names, specified as one of these values:

• 'numbered' — The row headings are sequential numbers that start at 1.
• Cell array of character vectors or categorical array — Each element of the array

becomes the name of a row. Row names are restricted to one line of text. If you specify
a 1-by-n cell array, MATLAB stores and returns the value as an n-by-1 cell array. If you
specify an m-by-n array, MATLAB reshapes the array into a column vector.

• Empty cell array ({}) — The table has no row headings.
• Empty matrix ([]) — The table has no row headings

If the number of rows in the Data property array does not match the number of elements
in the RowName array, then the number of rows in the resulting table reflects the number
of rows in the Data property.

If you specify the Data property as a table array, then the default row names match the
RowNames property of the table array. Changing the RowName property of the Table UI
component updates the UI, but it will not update the row names in the table array.
Example: t = uitable(uifigure,'RowName',{'Name';'Number'},'Data',
{'Bob';5})

Example: t = uitable(uifigure,'RowName',{'Name';[]},'Data',{'Bob';5})

Font

FontName — Font name
system supported font name

1 Alphabetical List

1-15610

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontUnits — Font size units
'pixels'

Font size units, specified 'pixels'.

Interactivity

Visible — Table visibility
'on' (default) | 'off'

 Table Properties

1-15611

Table visibility, specified as 'on' or 'off'. When Visible is 'off', the table is not
visible, but you can query and set its properties.

To make your app start faster, set the Visible property of all components that are not
initially displayed to 'off'.

Enable — Operational state of table
'on' (default) | 'off'

Operational state of table, specified as 'on' or 'off'. The Enable property controls
whether the table responds to user interaction. The are two possible values:

• 'on' – The table is operational.
• 'off' – The table appears grayed-out and does not respond to user interaction.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Color and Styling

ForegroundColor — Cell text color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Cell text color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

1 Alphabetical List

1-15612

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Table background color
[1 1 1; 0.94 0.94 0.94] (default) | RGB triplet | m-by-3 matrix of RGB triplets

Table background color, specified as an RGB triplet or an m-by-3 matrix of RGB triplets.
An RGB triplet is a row vector that specifies the intensities of the red, green, and blue

 Table Properties

1-15613

components of the color. The intensities must be in the range, [0,1]. Color names are
not valid.

Specify an m-by-3 matrix when you want the shading of the table rows to follow a
repeating pattern of m different colors. Each row of the matrix must be an RGB triplet.
MATLAB uses the rows of the matrix when the RowStriping property is 'on'. The table
background is not striped unless both RowStriping is 'on' and BackgroundColor is
an m-by-3 matrix.
Example: t = uitable(uifigure,'Data',rand(10,3),'BackgroundColor',
[0.85 0.85 1])

Example: t = uitable(uifigure,'Data',rand(10,3),'BackgroundColor',[1 1
1 ;0.85 0.85 1])

The following table lists the RGB triplets for certain colors.

Color RGB Triplet
Yellow [1 1 0]
Magenta [1 0 1]
Cyan [0 1 1]
Red [1 0 0]
Green [0 1 0]
Blue [0 0 1]
White [1 1 1]
Black [0 0 0]

RowStriping — Alternate row shading
'on' (default) | 'off'

Alternate row shading, specified as 'on' or 'off'. This property controls the shading
pattern of the table rows.

When the RowStriping value is set to 'on', the BackgroundColor matrix specifies the
row colors to display in a repeating pattern. If the BackgroundColor matrix has only
one row, then the shading is the same in all table rows.

When RowStriping is set to 'off', then the first color in the BackgroundColor matrix
defines the shading for all rows in the table.

1 Alphabetical List

1-15614

Position

Position — Location and size of table
[left bottom width height]

Location and size of the table, specified as a four-element vector of the form [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the table
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the table
width Distance between the right and left outer edges of the

table
height Distance between the top and bottom outer edges of the

table

All measurements are in units specified by the Units property.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

InnerPosition — Location and size of table
[left bottom width height]

Location and size of the table, specified as a four-element vector of the form [left
bottom width height]. All measurements are in units specified by the Units
property.

This property value is identical to the Position and OuterPosition property values.

OuterPosition — Location and size of table
[left bottom width height]

Location and size of the table, specified as a four-element vector of the form [left
bottom width height]. All measurements are in units specified by the Units
property.

This property value is identical to the Position and InnerPosition property values.

 Table Properties

1-15615

Units — Units of measurement
'pixels' (default)

Units of measurement, specified as 'pixels'. MATLAB measures all units from the
lower left corner of the parent object.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a table UI component in the third row and second column of
its parent grid.

g = uigridlayout([4 3]);
t = uitable(g,'Data',rand(10,3));
t.Layout.Row = 3;
t.Layout.Column = 2;

To make the table span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this table spans columns 2 through 3:

t.Layout.Column = [2 3];

Callbacks

CellEditCallback — Cell edit callback function
function handle | cell array | character vector

Cell edit callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

1 Alphabetical List

1-15616

Use this callback function to perform calculations or validate input when the app user
changes the contents of a table cell.

This callback function can access specific information about the user’s interaction with
the cell (such as the cell indices). MATLAB passes this information in a CellEditData
object as the second argument to your callback function. In App Designer, the argument is
called event. You can query the object properties using dot notation. For example,
event.Indices returns the indices of the selected cell. The CellEditData object is not
available to callback functions specified as character vectors.

The following table describes properties of the CellEditData object.

Property Description
Indices This is a 1-by-2 array containing the row and column indices of the cell the

user edited. If the edited value is an item within a multicolumn variable of a
table array, the column index refers to the location of whole column. When a
column is sorted, Indices returns the original 1-by-2 array of a cell before it
was sorted—DisplayIndices returns the new location of the edited cell that
displays visually in the sorted table.

DisplayIndices This is a 1-by-2 array containing the row and column indices corresponding to
the location of the edited cell in the display of the sorted table. Only tables that
have a table array stored to the Data property support column sorting. If a
user does not sort the table, or if the value stored in the Data property is not a
table array, then DisplayIndices has the same content as the Indices
property.

PreviousData This is the previous cell data. The default is an empty matrix, []. If the edited
value is an item in a multicolumn variable of a table array, PreviousData
contains all the values in the column.

EditData This is the user-entered value. If the edited value is an item in a multicolumn
variable of a table array, EditData contains the edited value within the
column.

NewData This is the value that MATLAB wrote to the Data property array. If the edited
value is an item in a multicolumn variable of a table array, NewData contains
all the values for the column.

The NewData property is empty if MATLAB detects an error in the user-
entered data.

 Table Properties

1-15617

Property Description
Error This is the error message returned if MATLAB detects an error in the user-

entered data.

The Error property is empty when MATLAB successfully writes the value to
the Data property.

If the Error property is not empty, then the CellEditCallback can display
the message, or it can attempt to fix the problem.

Source Component executing the callback.
EventName 'CellEdit'.

When the user edits a table cell, MATLAB performs these steps:

1 Tries to store the new value into the Data property of the table
2 Calls the CellEditCallback function (if it exists)

If the value results in an error and there is no CellEditCallback function, then the cell
data reverts to its previous value and no error displays.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CellSelectionCallback — Cell selection callback function
function handle | cell array | character vector

Cell selection callback function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user selects cells. A single data cell (not a row
or column heading) can be selected by clicking it or navigating to it with an arrow key.
Multiple cells can be selected with any of the actions described in the tables. When
selecting multiple cells, use different actions depending on whether they are contiguous
or discontiguous.

1 Alphabetical List

1-15618

Contiguous Selection Options
Click a cell and drag.
Click one cell, then Shift+click another cell to select all cells in between.
Click one cell, then Shift+arrow key to add contiguous cells.
Click on a row or column header to select the whole row or column.
Click a cell, then Ctrl+space to select all the cells in that column (regardless of whether
all the cells are in view).
Click a cell, then Shift+space to select all the cells in that row (regardless of whether
all the cells are in view).
Select a row or column. Then Shift+click another row or column header to select all the
rows or columns in between.
Click one cell, then Shift+PgUp or Shift+PgDn to select all visible cells above or below
that cell.
Press Ctrl+A to select all of the cells in the table

Discontiguous Selection Options
Click and drag to select a contiguous group of cells (or select a single cell). Then, Ctrl
+click to focus another cell, and finally Shift+click to select the cell that is in focus, or
Shift+click and drag to select a range of cells that spread from it. (Pressing Shift
+arrow key also selects more than one cell.)
Ctrl+click on a row or column header to select the entire row or column. Then repeat to
select another non-adjacent row or column.

When a cell is focused using Ctrl+click, the cell outline turns blue () . When a cell
is selected using click or Shift+click, the cell fill-color changes to blue ().

This callback function can access specific information about the user’s interaction with
the cell (such as the cell indices). MATLAB passes this information in a
CellSelectionChangeData object as the second argument to your callback function. In
App Designer, the argument is called event. You can query the object properties using
dot notation. For example, event.Indices returns the indices of the selected cell. The
CellSelectionChangeData object is not available to callback functions specified as
character vectors.

The following table describes properties of the CellSelectionChangeData object.

 Table Properties

1-15619

Property Description
Indices This is an n-by-2 array containing the row and column indices of the cell the

user selected. For multicolumn variables in a table array, the column indices
refer to the whole column. When a column is sorted, Indices returns the
original 1-by-2 array of a cell before it was sorted—DisplayIndices returns
the new location of the selected cell that displays visually in the sorted table.

DisplayIndices This is an n-by-2 array containing the row and column indices corresponding to
the location of the selected cell in the display of the sorted table. Only tables
that have a table array stored in their Data property support column sorting.
If a user does not sort the table, or if the value stored in the Data property is
not a table array, then DisplayIndices has the same content as the Indices
property.

Source Component executing the callback.
EventName 'CellSelection'.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

DisplayDataChangedFcn — Callback when display data changes
'' (default) | function handle | cell array | character vector

Callback when display data changes, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the DisplayData changes, because a user either edits a cell
or sorts columns of a table. Only tables that have a table array stored to the Data
property support column sorting.

This callback function can access specific information about whether table columns are
sorted. MATLAB passes this information in a DisplayDataChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.InteractionColumn returns the index of the column that was interacted with in
Data. The DisplayDataChangedData object is not available to callback functions
specified as character vectors.

1 Alphabetical List

1-15620

Property Description
DisplayRowName Cell array of RowName property values in

the sorted display. DisplayRowName will
always be a permutation or a subset of the
original RowName property.

DisplayColumnName Cell array of ColumnName property values
in the sorted display. DisplayColumnName
will always be a permutation or a subset of
the original ColumnName property.

Interaction 'sort'
InteractionColumn Index of modified column with respect to

Data.
InteractionDisplayColumn Index of modified column with respect to

DisplayData.
InteractionVariable VariableNames property of the modified

column for table array data. If Data is a
numeric or cell array, then
InteractionVariable returns an empty
character array.

Source Component executing the callback.
EventName 'DisplayDataChanged'.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 Table Properties

1-15621

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

1 Alphabetical List

1-15622

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

 Table Properties

1-15623

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

1 Alphabetical List

1-15624

Children — Children of table
empty array

Children of table, returned as an empty array. Table objects have no children, so setting
this property has no effect.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitable'

This property is read-only.

Type of graphics object, returned as 'uitable'.

 Table Properties

1-15625

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
appdesigner | uitable

Topics
“Table Array Data Types in App Designer Apps”

Introduced in R2016b

1 Alphabetical List

1-15626

uitoggletool
Create toggle button on toolbar

Note

Use this function only with GUIDE, or with figures created using the figure
function.

Syntax
t = uitoggletool
t = uitoggletool(Name,Value,...)
t = uitoggletool(parent)
t = uitoggletool(parent,Name,Value,...)

Description
t = uitoggletool creates a uitoggletool in the current figure’s uitoolbar and returns
the uitoggletool object, t. If there is no uitoolbar available, then MATLAB creates a new
uitoolbar in the current figure to serve as the parent. Similarly, if there no figure is
available, then MATLAB creates a new figure with a uitoolbar.

t = uitoggletool(Name,Value,...) creates a uitoggletool and specifies one or
more uitoggletool property names and corresponding values. Use this syntax to override
the default uitoggletool properties.

t = uitoggletool(parent) creates a uitoggletool and designates a specific parent
object. The parent argument must be a uitoolbar object.

t = uitoggletool(parent,Name,Value,...) creates a uitoggletool with a specific
parent and one or more uitoggletool properties.

A uitoggletool is a toggle button that appears in the figure’s tool bar. The button has no
icon, but its borders highlight when the user hovers over it with the mouse. You can
create a button icon by setting the uitoggletool’s CData property.

 uitoggletool

1-15627

Examples
This example creates a uitoolbar and places a uitoggletool inside it.

f = figure('ToolBar','none');
tb = uitoolbar(f);
img = zeros(16,16,3);
t = uitoggletool(tb,'CData',img,'TooltipString','Hello');

The CData property is set to a 16-by-16-by-3 array in which all elements are 0. The zero
values make the uitoggletool appear black.

1 Alphabetical List

1-15628

Tips
• Uitoolbars (and their child uitoggletools) do not appear in figures whose

WindowStyle property is set to 'Modal'. If a figure containing a uitoolbar is changed
to 'Modal', the uitoolbar still exists in the Children property of the figure. However,
the uitoolbar does not display while WindowStyle is set to 'Modal'.

Alternatives
You can create toolbars with toggle tools using GUIDE.

See Also
Uitoggletool | uipushtool | uitoolbar

Topics
“Access Property Values”
“Create Toolbars for Programmatic Apps”

Introduced before R2006a

 uitoggletool

1-15629

ToggleTool Properties
Control appearance and behavior of toggle tool

Note

The properties listed here are valid for ToggleTool objects in GUIDE or in apps
created with the figure function.

Description
Toggle tools are toggle buttons that appear on the tool bar at the top of the a figure. The
uitoggletool function creates a toggle button on a tool bar and sets any required
properties before displaying it. By changing property values, you can modify certain
aspects of its appearance and behavior. Use dot notation to refer to a specific object and
property.

t = uitoggletool;
t.Separator = 'on';

Properties
Button Appearance

State — Toggle button state
'off' (default) | 'on'

Toggle button state, specified as 'off' or 'on'. When this property value is 'on', the
toggle button appears in the down (depressed) position. When this property value is
'off', the toggle button appears in the up position. Changing the state causes the
appropriate OnCallback or OffCallback function to execute.

CData — Optional icon
3-D array of truecolor RGB values

Optional icon, specified as a 3-D array of truecolor RGB values. The values in the array
can be:

1 Alphabetical List

1-15630

• Double-precision values between 0.0 and 1.0
• uint8 values between 0 and 255

The length of the array’s first and second dimensions must be less than or equal to 16.
Otherwise, it might be clipped or distorted when it displays.
Data Types: double | uint8

Separator — Separator line mode
'off' (default) | 'on'

Separator line mode, specified as 'off' or 'on'. Setting this property to 'on' draws a
dividing line to left of a tool in the tool bar.

Interactivity

Visible — Component visibility
'on' (default) | 'off'

Component visibility, specified as 'on' or 'off'. When the Visible property is set to
'off', the component is not visible in the UI, but you can query and set its properties.

Enable — Operational state of tool
'on' (default) | 'off'

Operational state of tool, specified as 'on' or 'off'. The Enable property controls
whether the tool responds to button clicks. The are two possible values:

• 'on' – The tool is operational.
• 'off' – The tool is not operational and appears grayed-out.

The value of the Enable property and the type of button click determine the response.

Enable Value Response to Left-Click Response to Right-Click
'on' 1 The OnCallback or

OffCallback function execute,
depending on the current state of
the tool.

2 The ClickedCallback function
executes.

The tool is not operational. No callback
executes.

 ToggleTool Properties

1-15631

Enable Value Response to Left-Click Response to Right-Click
'off' The tool is not operational. No callback

executes.
The tool is not operational. No callback
executes.

Tooltip — Tooltip
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. Use this
property to display a message when the user hovers the pointer over the component at
run time. The tooltip does not display when the component is disabled. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

To create multiple lines of text, use the sprintf function to insert newline characters
('\n') in your text. For example:

txt = sprintf('Line 1\nLine 2');

Then set the Tooltip property to the value returned by sprintf.

UIContextMenu — Context menu (not recommended)
empty GraphicsPlaceholder array (default) | uicontextmenu handle

This property has no effect on ToggleTool objects.

TooltipString — Tooltip (not recommended)
character vector | string scalar | categorical array

Tooltip, specified as a character vector, string scalar, or categorical array. The tooltip
displays when the user hovers the mouse pointer over the component in the app. If you
specify this property as a categorical array, MATLAB uses the values in the array, not the
full set of categories.

Note The TooltipString property is not recommended starting in R2018b. Use the
Tooltip property instead.

Callbacks

ClickedCallback — Tool clicked callback
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-15632

Tool clicked callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes after the OnCallback function or OffCallback function
executes (depending on the state of the button).

For more information about specifying callback functions as function handles, cell arrays,
or character vectors, see “How to Specify Callback Property Values”.
Data Types: function_handle | cell | char

OnCallback — Callback to execute when user turns on toggle button
'' (default) | function handle | cell array | character vector

Callback to execute when user turns on the toggle button, specified as one of these
values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying callback functions as function handles, cell arrays,
or character vectors, see “How to Specify Callback Property Values”.
Data Types: function_handle | cell | char

OffCallback — Callback to execute when user turns off the toggle button
'' (default) | function handle | cell array | character vector

Callback to execute when user turns off toggle button, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 ToggleTool Properties

1-15633

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

For more information about specifying callback functions as function handles, cell arrays,
or character vectors, see “How to Specify Callback Property Values”.
Data Types: function_handle | cell | char

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

1 Alphabetical List

1-15634

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

 ToggleTool Properties

1-15635

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

1 Alphabetical List

1-15636

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

HitTest — Ability to become current object (not recommended)
'on' (default) | 'off'

This property has no effect on ToggleTool objects.

Parent/Child

Parent — Parent object
Toolbar object

Parent object, specified as a Toolbar object. Use this property to specify the parent tool
bar when creating a tool or to move an existing tool to a different tool bar.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not

 ToggleTool Properties

1-15637

visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

'off' The object handle is invisible at all times. This option is
useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uitoggletool'

This property is read-only.

Type of graphics object, returned as 'uitoggletool'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

1 Alphabetical List

1-15638

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
uitoggletool | uitoolbar

Topics
“Access Property Values”
“Default Property Values”

Introduced before R2006a

 ToggleTool Properties

1-15639

uitoolbar
Create toolbar on figure

Note

Use this function only with GUIDE, or with figures created using the figure
function.

Syntax
t = uitoolbar
t = uitoolbar(Name,Value,...)
t = uitoolbar(parent)
t = uitoolbar(parent,Name,Value,...)

Description
t = uitoolbar creates a toolbar in an existing figure and returns the Toolbar object,
t. If a figure does not exist, then MATLAB calls the figure function to create one.

t = uitoolbar(Name,Value,...) creates a toolbar and specifies one or more
Toolbar property name-value pair arguments. Use this syntax to override the default
toolbar properties.

t = uitoolbar(parent) creates a toolbar in the specified parent figure.

t = uitoolbar(parent,Name,Value,...) specifies a parent figure for the toolbar
and one or more name-value pair arguments.

Examples
This example creates a figure containing an empty toolbar.

1 Alphabetical List

1-15640

f = figure('ToolBar','none')
t = uitoolbar(f)

Tips
Toolbar objects do not appear in figures whose WindowStyle property is set to
'Modal'. If a figure containing a toolbar child is changed to 'Modal', the toolbar child
still exists in the Children property of the figure. However, the toolbar does not display
while WindowStyle is set to 'Modal'.

See Also
Uitoolbar | figure | uipushtool | uitoggletool

 uitoolbar

1-15641

Topics
“Create Toolbars for Programmatic Apps”
“Create Toolbars for GUIDE UIs”
“Access Property Values”

Introduced before R2006a

1 Alphabetical List

1-15642

Toolbar Properties
Control appearance and behavior of tool bar

Note

The properties listed here are valid for Toolbar objects in GUIDE or in apps
created with the figure function.

Description
A tool bar is a container for a horizontal list of buttons at the top of a figure window. The
uitoolbar function creates a tool bar in a figure and sets any required properties before
displaying it. By changing property values, you can modify the appearance and behavior
of a tool bar. Use dot notation to refer to a particular object and property.

t = uitoolbar;
t.Visible = 'off';

Properties
Interactivity

Visible — Component visibility
'on' (default) | 'off'

Component visibility, specified as 'on' or 'off'. When the Visible property is set to
'off', the component is not visible in the UI, but you can query and set its properties.

UIContextMenu — Context menu (not recommended)
empty GraphicsPlaceholder array (default) | uicontextmenu handle

This property has no effect on Toolbar objects.

Callbacks

CreateFcn — Component creation function
'' (default) | function handle | cell array | character vector

 Toolbar Properties

1-15643

Component creation function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

This property specifies a callback function to execute when MATLAB creates the
component. MATLAB initializes all component property values before executing the
CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB
executes a default creation function.

Use the gcbo function in your CreateFcn code to get the component object that is being
created.

Setting the CreateFcn property on an existing component object has no effect.

DeleteFcn — Component deletion function
'' (default) | function handle | cell array | character vector

Component deletion function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “How to Specify Callback Property Values”.

The DeleteFcn property specifies a callback function to execute when MATLAB deletes
the component (for example, when the user closes the window). MATLAB executes the
DeleteFcn callback before destroying the properties of the component object. If you do
not specify the DeleteFcn property, then MATLAB executes a default deletion function.

1 Alphabetical List

1-15644

Use the gcbo function in your DeleteFcn code to get the component object that is being
deleted.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed:

• A value of 'on' allows other callbacks to interrupt the object's callbacks. The
interruption occurs at the next point where MATLAB processes the queue, such as
when there is a drawnow, figure, getframe, waitfor, or pause.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• A value of 'off' blocks all interruption attempts. The BusyAction property of the
object owning the interrupting callback determines if the interrupting callback is
discarded or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

 Toolbar Properties

1-15645

• Timer objects execute according to schedule regardless of the Interruptible
property value.

• MATLAB does not save the state of properties or the display when an interruption
occurs. For example, the object returned by the gca or gcf command might change
when another callback executes.

See “Interrupt Callback Execution” for an example that shows how the Interruptible
and BusyAction properties affect the behavior of a program.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' (default) or 'cancel'. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There
are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property of the source of the interrupting callback determines how
MATLAB handles its execution. The BusyAction property has these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution.

• 'cancel' — Do not execute the interrupting callback.

Whenever MATLAB invokes a callback, that callback always attempts to interrupt an
executing callback. The Interruptible property of the object whose callback is running
determines if interruption is allowed. If Interruptible is set to:

• on — Interruption occurs at the next point where MATLAB processes the queue. This
is the default.

• off — The BusyAction property (of the object owning the interrupting callback)
determines if MATLAB enqueues or ignores the interrupting callback.

See “Interrupt Callback Execution” for an example that shows how the BusyAction and
Interruptible properties affect the behavior of a program.

BeingDeleted — Deletion status
'off' | 'on'

1 Alphabetical List

1-15646

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

HitTest — Ability to become current object (not recommended)
'on' (default) | 'off'

This property has no effect on Toolbar objects.

Parent/Child

Parent — Parent object
figure

Parent object, specified as a figure. You can move a Toolbar to a different figure by
setting this property to the target Figure object.

Children — Toolbar children
empty GraphicsPlaceholder array (default) | 1-D array of component objects

Toolbar children, returned as an empty GraphicsPlaceholder or a 1-D array of
component objects. The children of Toolbar objects are PushTool and ToggleTool
objects.

You cannot add or remove children using the Children property. Use this property to
view the list of children or to reorder the children. The order of the children in this array
reflects the order of the components displayed in the menu.

To add a child to this list, set the Parent property of the child component to be the
Toolbar object.

Objects with the HandleVisibility property set to 'off' do not list in the Children
property.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of object handle, specified as 'on', 'callback', or 'off'.

 Toolbar Properties

1-15647

This property controls the visibility of the object handle in its parent's list of children.
When a handle is not visible in its parent's list of children, it is not returned by functions
that obtain handles by searching the object hierarchy or querying handle properties.
These functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
The HandleVisibility property also controls the visibility of the object’s handle in the
parent figure's CurrentObject property. Handles are still valid even if they are not
visible. If you can access an object, you can set and get its properties, and pass it to any
function that operates on objects.

HandleVisibility Value Description
'on' The object handle is always visible.
'callback' The object handle is visible from within callbacks or

functions invoked by callbacks, but not from within
functions invoked from the command line. This option
blocks access to the object at the command-line, but allows
callback functions to access it.

'off' The object handle is invisible at all times. This option is
useful for preventing unintended changes to the UI by
another function. Set the HandleVisibility to 'off' to
temporarily hide the handle during the execution of that
function.

Set the graphics root ShowHiddenHandles property to 'on' to make all handles visible,
regardless of their HandleVisibility value. This setting has no effect on their
HandleVisibility values.

Identifiers

Type — Type of graphics object
'uitoolbar'

This property is read-only.

Type of graphics object, returned as 'uitoolbar'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object

1 Alphabetical List

1-15648

elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any array. Specifying UserData can be useful for sharing data
within apps. See “Share Data Among Callbacks” for more information.

See Also
uitoolbar

Topics
“Access Property Values”
“Default Property Values”

Introduced before R2006a

 Toolbar Properties

1-15649

uiwait
Block program execution and wait to resume

Syntax
uiwait
uiwait(h)
uiwait(h,timeout)

Description
uiwait blocks execution until uiresume is called or the current figure is deleted. This
syntax is the same as uiwait(gcf).

uiwait(h) blocks execution until uiresume is called or the figure h is deleted. The
figure can be one that is created with figure or uifigure function. Only figures created
with the figure function are returned by gcf.

uiwait(h,timeout) blocks execution until uiresume is called, the figure h is deleted,
or timeout seconds elapse. The minimum value of timeout is 1. If uiwait receives a
smaller value, it issues a warning and uses a 1 second timeout.

Examples
This example creates a UI with a Continue push button. The example calls uiwait to
block MATLAB execution until uiresume is called. This happens when the user clicks the
Continue push button because the push button's Callback, which responds to the click,
calls uiresume.

f = figure;
h = uicontrol('Position',[20 20 200 40],'String','Continue',...
 'Callback','uiresume(gcbf)');
disp('This will print immediately');
uiwait(gcf);

1 Alphabetical List

1-15650

disp('This will print after you click Continue');
close(f);

gcbf is the handle of the figure that contains the object whose callback is executing.

Tips
The uiwait and uiresume functions block and resume MATLAB and Simulink program
execution. uiwait also blocks the execution of Simulink models. The functions pause
(with no argument) and waitfor also block execution in this manner. uiwait is a
convenient way to use the waitfor command. You typically use it in conjunction with a
dialog box. It provides a way to block the execution of the MATLAB program that created
the dialog, until the user responds to the dialog box. When used in conjunction with a
modal dialog, uiwait can block the execution of the program file and restrict user
interaction to the dialog only.

See Also
dialog | figure | uicontrol | uifigure | uimenu | uiresume | waitfor

Introduced before R2006a

 uiwait

1-15651

matlab.uitest.TestCase class
Package: matlab.uitest

TestCase to write tests with app testing framework

Description
Use the matlab.uitest.TestCase class to write tests that use the app testing
framework. The matlab.uitest.TestCase derives from the
matlab.unittest.TestCase class.

To avoid user interference with the app during testing, the framework locks new figure
instances. The components of locked figures only respond to programmatic gestures via
TestCase methods such as press and choose.

Construction
The testing framework constructs the matlab.uitest.TestCase instances.

Methods
choose Perform choose gesture on UI component
drag Perform drag gesture on UI component
forInteractiveUse Create a TestCase object for interactive use
hover Perform hover gesture on UI component
press Perform press gesture on UI component
type Type in UI component

1 Alphabetical List

1-15652

Inherited Methods

addTeardown Dynamically add teardown routine
applyFixture Use fixture with TestCase
forInteractiveUse Create TestCase for interactive use
getSharedTestFixtures Provide access to shared test fixtures
log Record diagnostic information
onFailure Dynamically add diagnostics for test failures
run Run TestCase test

Also, the TestCase class inherits methods from these classes:

matlab.unittest.qualifications.Assertable
Qualification to validate preconditions of a
test

matlab.unittest.qualifications.Assumable
Qualification to filter test content

matlab.unittest.qualifications.FatalAssertable
Qualification to abort test execution

matlab.unittest.qualifications.Verifiable
Qualification to produce soft failure
conditions

Attributes
Abstract true
HandleCompatibile true

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 matlab.uitest.TestCase class

1-15653

Examples
Choose Value on Discrete Knob

Create a discrete knob.

knob = uiknob('discrete');

Create an interactive test case and choose the 'High' knob value. An animated blue dot
performs the programmatic choose gesture.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.choose(knob,'High')

1 Alphabetical List

1-15654

View the value of the Items property on the knob.

knob.Items

ans =

 1×4 cell array

 {'Off'} {'Low'} {'Medium'} {'High'}

Choose the 'Low' knob value by index. The knob moves from 'High' to 'Low'.

tc.choose(knob,2)

 matlab.uitest.TestCase class

1-15655

Press Button and Verify Value Change

Create a state button.

b = uibutton('state');

Create an interactive test case and verify that the value of the state button is false.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.verifyFalse(b.Value)

Interactive verification passed.

Press the button and verify the state changes to true. A blue dot representing the
programmatic push gesture appears and then disappears on the button.

tc.press(b);
tc.verifyTrue(b.Value)

1 Alphabetical List

1-15656

Interactive verification passed.

Drag Slider and Verify Stop Value

Create a slider with a minimum value of -237, a maximum value of 237, and a starting
value of 7.

slider = uislider('Limits',[-237 237],'Value',7);

Create an interactive test case and verify the initial value of the slider.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.verifyEqual(slider.Value,7)

Interactive verification passed.

Drag the slider between two values and verify the final value. Since the framework
mimics a user manipulating the component to an arbitrarily precisioned value, it is a best
practice to use a tolerance to compare the actual and expected slider values.

val = 26.75;
tc.drag(slider,-val,val)
tc.verifyEqual(slider.Value,val,'AbsTol',0.1)

Interactive verification passed.

See Also
matlab.unittest.TestCase

Topics
“Overview of App Testing Framework”
“Write Test for App”
“Write Test That Uses App Testing and Mocking Frameworks”

Introduced in R2018a

 matlab.uitest.TestCase class

1-15657

choose
Class: matlab.uitest.TestCase
Package: matlab.uitest

Perform choose gesture on UI component

Syntax
choose(testcase,comp,option)
choose(testcase,compNoOpts)

Description
choose(testcase,comp,option) performs a choose gesture on the specified item on
the UI component comp.

choose(testcase,compNoOpts) performs a choose gesture on a UI component that
does not require additional information, such as a tab or a tree node. For example, use
this syntax to choose a specific tab, but use the previous syntax to choose a particular tab
from a tab group.

Input Arguments
testcase — Instance of test case
matlab.uitest.TestCase object

Instance of the test case, specified as a matlab.uitest.TestCase object.

comp — Component to choose
UI component object

Component to choose during test, specified as a UI component object that supports a
choose gesture. Components that support choose gestures include check boxes, knobs,
switches, and drop-down lists.

1 Alphabetical List

1-15658

Supported
Component

Typical Creation Function

Button uiradiobutton

uitogglebutton
Check Box uicheckbox
Drop Down uidropdown
List Box uilistbox
Slider uislider
State Button uibutton('state')
Button Group uibuttongroup
Tab Group uitabgroup
Knob, Discrete Knob uiknob
Switch, Rocker Switch,
Toggle Switch

uiswitch

Data Types: matlab.ui.container.ButtonGroup |
matlab.ui.container.TabGroup | matlab.ui.control.CheckBox |
matlab.ui.control.DiscreteKnob | matlab.ui.control.DropDown |
matlab.ui.control.Knob | matlab.ui.control.ListBox |
matlab.ui.control.RadioButton | matlab.ui.control.RockerSwitch |
matlab.ui.control.Slider | matlab.ui.control.StateButton |
matlab.ui.control.Switch | matlab.ui.control.ToggleButton |
matlab.ui.control.ToggleSwitch

option — Item to choose
depends on component

Item to choose in the component. The data type of option depends on the type of
component under test. For example, if comp is a switch, option is a text or numeric value
from the Items property of the switch. If comp is a check box, option is a logical value.

When a component has an Items property, option can be the value of an element in
Items or an index to an element in Items. For example, for a default discrete knob, you
can choose 'Medium' using a value for option that is either 'Medium' or 3.

 choose

1-15659

compNoOpts — Component to choose without options
UI component object

Component to choose, specified as a UI component object that supports a choose gesture
and does not require additional information. Components that support choose gestures
include tabs and tree nodes.

Supported
Component

Typical Creation Function

Tab uitab
Tree Node uitreenode

Data Types: matlab.ui.container.Tab | matlab.ui.container.TreeNode

Examples
Choose Value on Discrete Knob

Create a discrete knob.

knob = uiknob('discrete');

1 Alphabetical List

1-15660

Create an interactive test case and choose the 'High' knob value. An animated blue dot
performs the programmatic choose gesture.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.choose(knob,'High')

 choose

1-15661

View the value of the Items property on the knob.

knob.Items

ans =

 1×4 cell array

 {'Off'} {'Low'} {'Medium'} {'High'}

Choose the 'Low' knob value by index. The knob moves from 'High' to 'Low'.

tc.choose(knob,2)

1 Alphabetical List

1-15662

Choose Multiple Items in List Box

Create a list box and enable multiple node selection.

listbox = uilistbox('Multiselect','on')

listbox =

 ListBox (Item 1) with properties:

 Value: {'Item 1'}
 Items: {'Item 1' 'Item 2' 'Item 3' 'Item 4'}
 ItemsData: []
 Multiselect: 'on'
 ValueChangedFcn: ''
 Position: [100 100 100 74]

 Show all properties

 choose

1-15663

Create an interactive test case and choose items 1 through 3.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.choose(listbox,1:3);

1 Alphabetical List

1-15664

Choose items 1 and 3 using the values of the Items property.

tc.choose(listbox,{'Item 1','Item 3'});

 choose

1-15665

Choose Slider Value and Verify Change

Create a slider.

s = uislider;

Create an interactive test case and verify that the value of the slider button is 0.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.verifyEqual(s.Value,0)

Interactive verification passed.

Choose a new slider value and verify the slider value changes. Since the framework
mimics a user manipulating the component to an arbitrarily precisioned value, it is a best
practice to use a tolerance to compare the actual and expected slider values.

expVal = 42;
tc.choose(s,expVal);
tc.verifyEqual(s.Value,expVal,'AbsTol',0.1)

1 Alphabetical List

1-15666

Interactive verification passed.

Choose Tab from Group and Verify Change

Create a figure with two tabs.

fig = uifigure;
group = uitabgroup(fig);
tab1 = uitab(group,'Title','Tab #1');
tab2 = uitab(group,'Title','Tab #2');

Create an interactive test case and verify that the selected tab title contains the substring
'#1'.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.verifySubstring(group.SelectedTab.Title,'#1')

Interactive verification passed.

Choose tab 2 and verify that the selected tab changes.

tc.choose(group,'Tab #2');
tc.verifyEqual(group.SelectedTab,tab2)

Interactive verification passed.

See Also
matlab.uitest.TestCase.press

Topics
“Overview of App Testing Framework”
“Write Test for App”

Introduced in R2018a

 choose

1-15667

drag
Class: matlab.uitest.TestCase
Package: matlab.uitest

Perform drag gesture on UI component

Syntax
drag(testcase,comp,start,stop)

Description
drag(testcase,comp,start,stop) performs a drag gesture from start to stop on
the UI component comp.

Input Arguments
testcase — Instance of test case
matlab.uitest.TestCase object

Instance of the test case, specified as a matlab.uitest.TestCase object.

comp — Component to drag
UI component object

Component to drag during test, specified as a UI component object that supports a drag
gesture. Components that support drag gestures include continuous knobs and sliders.

Supported
Component

Typical Creation Function

Knob uiknob
Slider uislider

Data Types: matlab.ui.control.Knob | matlab.ui.control.Slider

1 Alphabetical List

1-15668

start — Starting value
numeric value within component limits

Starting value of the drag gesture, specified as a numeric value within component limits.
Limits are defined by the Limits property of the component.

stop — Stopping value
numeric value within component limits

Stopping value of the drag gesture, specified as a numeric value within component limits.
Limits are defined by the Limits property of the component.

Examples
Drag Knob Between Values

Create a knob.

knob = uiknob;

Create an interactive test case and drag the knob between two values. A blue dot
representing the programmatic drag gesture appears and then disappears when the knob
reaches the stop value.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.drag(knob,13,42)

Drag Slider and Verify Stop Value

Create a slider with a minimum value of -237, a maximum value of 237, and a starting
value of 7.

slider = uislider('Limits',[-237 237],'Value',7);

Create an interactive test case and verify the initial value of the slider.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.verifyEqual(slider.Value,7)

Interactive verification passed.

 drag

1-15669

Drag the slider between two values and verify the final value. Since the framework
mimics a user manipulating the component to an arbitrarily precisioned value, it is a best
practice to use a tolerance to compare the actual and expected slider values.

val = 26.75;
tc.drag(slider,-val,val)
tc.verifyEqual(slider.Value,val,'AbsTol',0.1)

Interactive verification passed.

See Also

Topics
“Overview of App Testing Framework”

Introduced in R2018a

1 Alphabetical List

1-15670

matlab.uitest.TestCase.forInteractiveUse
Class: matlab.uitest.TestCase
Package: matlab.uitest

Create a TestCase object for interactive use

Syntax
tc = matlab.uitest.TestCase.forInteractiveUse

Description
tc = matlab.uitest.TestCase.forInteractiveUse creates a
matlab.uitest.TestCase instance for interactive use. The TestCase is configured so
you can experiment with it at the MATLAB command prompt. The TestCase reacts to
qualification failures and successes by displaying messages to the screen for both passing
and failing conditions.

Examples
Construct Interactive TestCase

Create a red lamp component that changes to green when a button is pressed.
fig = uifigure;
lamp = uilamp(fig,'Position',[50 100 20 20],'Color','red');
button = uibutton(fig,'ButtonPushedFcn',@(btn,event) set(lamp,'Color','green'));

Create a TestCase object configured for interactive use at the MATLAB command
prompt.

tc = matlab.uitest.TestCase.forInteractiveUse;

Press the button.

tc.press(button)

 matlab.uitest.TestCase.forInteractiveUse

1-15671

Verify the lamp color is green. This test fails because the lamp stores color as an RGB
triplet.

tc.verifyEqual(lamp.Color,'green')

Interactive verification failed.

Framework Diagnostic:

verifyEqual failed.
--> Classes do not match.

 Actual Class:
 double
 Expected Class:
 char

Actual Value:
 0 1 0
Expected char:
 green

Verify the lamp color is the RGB triplet for green.

tc.verifyEqual(lamp.Color,[0 1 0])

Interactive verification passed.

See Also
Introduced in R2018a

1 Alphabetical List

1-15672

hover
Class: matlab.uitest.TestCase
Package: matlab.uitest

Perform hover gesture on UI component

Syntax
hover(testcase,comp)
hover(testcase,comp,location)

Description
hover(testcase,comp) performs a hover gesture on the specified UI component that
support this gesture. Supported components include those created with the uifigure,
uiaxes, and axes functions.

hover(testcase,comp,location) specifies the location to hover within the
component.

Input Arguments
testcase — Instance of test case
matlab.uitest.TestCase object

Instance of test case, specified as a matlab.uitest.TestCase object.

comp — Component to hover
UI component object

Component to hover during test, specified as a UI component object that supports a hover
gesture. Components that support hover gestures include UIAxes, Axes, and Figure
objects.

 hover

1-15673

Supported
Component

Typical Creation Function

Axes axes
UI Axes uiaxes
UI Figure uifigure

Data Types: matlab.graphics.axis.Axes | matlab.ui.control.UIAxes |
matlab.ui.Figure

location — Location to hover
coordinates of hover point

Location to hover, specified as the coordinates of the hover point:

• UI Figure - Specify the x- and y-coordinates of the hover point measured in pixels from
the lower-left corner of the UI figure.

• UI Axes and Axes - Location on axes to hover, specified as a 1-by-2 or 1-by-3 numeric
array using the coordinates defined by the x-, y-, and optionally z-axis. If you do not
specify a location, then MATLAB hovers at the center of the axes.

Example: [100 200] (UI figure)
Example: [32.5 13 0.25] (UI axes)

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes.

Examples

Hover UI Axes Object

Create a UI axes and an interactive test case instance.

1 Alphabetical List

1-15674

uiAx = uiaxes;
testCase = matlab.uitest.TestCase.forInteractiveUse;

Hover over the point defined by the axes coordinates (0.2, 0.4).

testCase.hover(uiAx,[0.2 0.4]);

Hover UI Figure Object

Create a UI figure and an interactive test case instance.

uiFig = uifigure;
testCase = matlab.uitest.TestCase.forInteractiveUse;

Hover over the point defined by the pixel coordinates (100, 200).

testCase.hover(uiFig,[100 200]);

See Also
axes | press | uiaxes | uifigure

Topics
“Overview of App Testing Framework”
“Write Test for App”
“Write Test That Uses App Testing and Mocking Frameworks”

Introduced in R2019a

 hover

1-15675

press
Class: matlab.uitest.TestCase
Package: matlab.uitest

Perform press gesture on UI component

Syntax
press(testcase,comp)
press(testcase,ax,location)
press(testcase,s,direction)

Description
press(testcase,comp) performs a press gesture on the UI component comp.

press(testcase,ax,location) specifies the location to press within the axes ax. For
example, press(testcase,ax,[1 2]) presses the axes coordinate (1,2). If you do not
specify the location, MATLAB presses at the center of the axes.

press(testcase,s,direction) specifies whether to press the 'up' or 'down' button in
the spinner s. For example, press(testcase,s,'down') presses the decrement button
within the spinner.

Input Arguments
testcase — Instance of test case
matlab.uitest.TestCase object

Instance of the test case, specified as a matlab.uitest.TestCase object.

comp — Component to press
UI component object

1 Alphabetical List

1-15676

Component to press during test, specified as a UI component object that supports a press
gesture. Components that support press gestures include buttons, check boxes, and
switches.

Supported
Component

Typical Creation Function

Button uibutton

uiradiobutton

uitogglebutton
Check Box uicheckbox
Switch uiswitch
Menu Bar uimenu
Axes axes
UI Axes uiaxes
UI Figure uifigure

Data Types: matlab.ui.control.Button | matlab.ui.control.StateButton |
matlab.ui.control.CheckBox | matlab.ui.control.RadioButton |
matlab.ui.control.ToggleButton | matlab.ui.control.Switch |
matlab.ui.control.ToggleSwitch | matlab.ui.control.RockerSwitch |
matlab.graphics.axis.Axes | matlab.ui.control.UIAxes | matlab.ui.Figure
| matlab.ui.container.Menu

ax — Axes component to press
matlab.ui.control.UIAxes object

Axes component to press during test, specified as a matlab.ui.control.UIAxes
object. Create the axes component with the uiaxes function.
Data Types: matlab.ui.control.UIAxes

location — Location to press
center axes coordinate (default) | 1-by-2 or 1-by-3 numeric array

Location to press, specified as the coordinates of the point:

• UI Figure - Specify the x- and y-coordinates of the point to press measured in pixels
from the lower-left corner of the UI figure.

 press

1-15677

• UI Axes and Axes - Location on axes to press, specified as a 1-by-2 or 1-by-3 numeric
array using the coordinates defined by the x-, y-, and optionally z-axis. If you do not
specify a location, then MATLAB presses at the center of the axes.

Example: [100 200] (UI figure)
Example: [32.5 13 0.25] (UI axes)

s — Spinner component to press
matlab.ui.control.Spinner object

Spinner component to press during test, specified as a matlab.ui.control.Spinner
object. Spinner components are typically created with the uispinner function.
Data Types: matlab.ui.control.Spinner

direction — Direction of change
'up' | 'down'

Direction of change for the spinner, specified as 'up' or 'down'. To increment the value
of the spinner, use 'up'. To decrement the value, use 'down'.
Data Types: char | string

Examples
Press Button

Create a slider switch.

s = uiswitch('slider');

1 Alphabetical List

1-15678

Create an interactive test case and press the switch. A blue dot representing the
programmatic push gesture appears and then disappears at the center of the switch. The
switch moves from 'Off' to 'On'.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.press(s)

 press

1-15679

Press Axes Location

Create UI axes and an interactive test case instance.

ax = uiaxes;
tc = matlab.uitest.TestCase.forInteractiveUse;

Press the center of the axes. A blue dot representing the programmatic push gesture
appears and then disappears at the center of the axes.

tc.press(ax);

1 Alphabetical List

1-15680

Press the axes at the coordinates (0.85,0.2). A blue dot representing the programmatic
push gesture appears and then disappears at the specified axes coordinate.

tc.press(ax,[0.85 0.2]);

Press Button and Verify Value Change

Create a state button.

b = uibutton('state');

Create an interactive test case and verify that the value of the state button is false.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.verifyFalse(b.Value)

Interactive verification passed.

Press the button and verify the state changes to true. A blue dot representing the
programmatic push gesture appears and then disappears on the button.

tc.press(b);
tc.verifyTrue(b.Value)

Interactive verification passed.

Modify Value of Spinner and Verify Change

Create a spinner with an initial value of 42.

s = uispinner('Value',42);
initVal = s.Value;

Create an interactive test case and increment the spinner. Verify that the new value of the
spinner is the initial value plus the spinner step value.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.press(s,'up');
tc.verifyEqual(s.Value,initVal+s.Step)

Interactive verification passed.

Decrement the value of the spinner and verify that the value of the spinner is equal to the
initial value again.

 press

1-15681

tc.press(s,'down');
tc.verifyEqual(s.Value,initVal)

Interactive verification passed.

See Also
matlab.uitest.TestCase.choose

Topics
“Overview of App Testing Framework”
“Write Test for App”
“Write Test That Uses App Testing and Mocking Frameworks”

Introduced in R2018a

1 Alphabetical List

1-15682

type
Class: matlab.uitest.TestCase
Package: matlab.uitest

Type in UI component

Syntax
type(testcase,comp,value)

Description
type(testcase,comp,value) types value in the UI component comp.

Input Arguments
testcase — Instance of test case
matlab.uitest.TestCase object

Instance of the test case, specified as a matlab.uitest.TestCase object.

comp — Component to type in
UI component object

Component to type in during test, specified as a UI component object that supports a type
gesture. Components that support type gestures include edit fields and text areas.

Supported
Component

Typical Creation Function

Drop Down uidropdown
Edit Field (Numeric,
Text)

uieditfield

Text Area uitextarea

 type

1-15683

Supported
Component

Typical Creation Function

Spinner uispinner
Date Picker uidatepicker

Data Types: matlab.ui.control.DropDown | matlab.ui.control.EditField |
matlab.ui.control.NumericEditField | matlab.ui.control.Spinner |
matlab.ui.control.TextArea | matlab.ui.control.DatePicker

value — Value to type
depends on component

Value to type into the component. The data type of value depends on the type of
component under test. For example, if comp is a spinner, value is specified as a numeric.
If comp is a text area, value is specified as a character vector or string.

Examples
Type in Edit Field and Verify Change

Create a text edit field.

ed = uieditfield('Value','Hello')

Create an interactive test case and verify the initial value.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.verifyEqual(ed.Value,'Hello')

Interactive verification passed.

Type the word "Goodbye" in the edit field and verify the new value.

value = 'Goodbye';
tc.type(ed,value)
tc.verifyEqual(ed.Value,value)

Interactive verification passed.

Add Item to Drop-down List and Verify Change

Create an editable drop-down list.

1 Alphabetical List

1-15684

dropdown = uidropdown('Editable','on');

Create an interactive test case and add a custom item to the drop-down list.

tc = matlab.uitest.TestCase.forInteractiveUse;
tc.type(dropdown,'Custom Item');

Verify the new value.

tc.verifyEqual(dropdown.Value,'Custom Item')

Interactive verification passed.

See Also

Topics
“Overview of App Testing Framework”

Introduced in R2018a

 type

1-15685

matlab.uitest.unlock
Unlock figure locked by app testing framework

Syntax
matlab.uitest.unlock(fig)

Description
matlab.uitest.unlock(fig) unlocks a figure that the app testing framework locked
so that you can interact with the figure components.

Examples

Unlock Figure

Create a class-based unit test that derives from matlab.uitest.TestCase and contains
a keyboard statement.

classdef SimpleUITest < matlab.uitest.TestCase
 methods (Test)
 function test1(testCase)
 fig = uifigure;
 testCase.addTeardown(@delete,fig);
 button = uibutton(fig);
 keyboard;
 end
 end
end

Run the test. MATLAB enters debug mode at the keyboard command. The figure is
locked and you cannot interactively press the button.

runtests('SimpleUITest')

1 Alphabetical List

1-15686

While in debug mode, unlock the figure. You can interact with the button.

K>> matlab.uitest.unlock(fig);

Continue execution of the test. The test completes and closes the figure during tear down.

K>> dbcont

Input Arguments
fig — Figure to unlock
figure handle | array of figure handles

Figure to unlock, specified as a figure handle or an array of figure handles. Each figure
handle must correspond to a figure created with the uifigure function.
Example: fh
Example: [fh1 fh2]
Data Types: matlab.ui.Figure

See Also
matlab.uitest.TestCase | uifigure

Introduced in R2018a

 matlab.uitest.unlock

1-15687

uminus, -
Unary minus

Syntax
C = -A
C = uminus(A)

Description
C = -A negates the elements of A and stores the result in C.

C = uminus(A) is an alternative way to execute -A, but is rarely used. It enables
operator overloading for classes.

Examples

Negate Elements of Matrix

Create a 2-by-2 matrix, A.

A = [1 -3; -2 4]

A = 2×2

 1 -3
 -2 4

Negate the elements of A.

C = -A

C = 2×2

1 Alphabetical List

1-15688

 -1 3
 2 -4

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. A can be a
numeric array, logical array, character array, duration array, or calendar duration array.
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 uminus, -

1-15689

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
minus | uplus

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-15690

underlyingValue
Underlying numeric value for C++ enumeration object created in MATLAB

Syntax
underlyingValue(cppEnum)

Description
underlyingValue(cppEnum) returns the underlying numeric value for a C++
enumeration object created in MATLAB. underlyingValue is an instance method of the
enumeration.

Examples

Display Underlying Color Value

Create a file enums.hpp with these statements.

enum class COLOR {

RED=100,
BLUE=500,
BLACK=1000,
WHITE=5000,

};

Build the C++ interface.

clibgen.buildInterface('enums.hpp')
addpath enums

Type clib.enums.COLOR., then press Tab. Select BLACK.

 underlyingValue

1-15691

Display the underlying numeric value.

underlyingValue(clib.enums.COLOR.BLACK)

ans = 1000

Input Arguments
cppEnum — C++ enumeration created in MATLAB
C++ enumeration object

C++ enumeration created in MATLAB, specified as a C++ enumeration object.
Example: clib.enums.COLOR.BLACK

See Also
clibgen.buildInterface

Introduced in R2019a

1 Alphabetical List

1-15692

undocheckout
(Has been removed) Undo previous checkout from source control system (UNIX
platforms)

Note undocheckout has been removed.

Syntax
undocheckout('filename')
undocheckout({'filename1','filename2', ...,'filenamen'})

Description
undocheckout('filename') makes the file filename available for checkout, where
filename does not reflect any of the changes you made after you last checked it out. Use
the full path for filename and include the file extension.

undocheckout({'filename1','filename2', ...,'filenamen'}) makes
filename1 through filenamen available for checkout, where the files do not reflect any
of the changes you made after you last checked them out. Use the full paths for the file
names and include the file extensions.

Examples
Undo the checkouts of /myserver/myfiles/clock.m and /myserver/myfiles/
calendar.m from the source control system:

undocheckout({'/myserver/myfiles/clock.m', ...
'/myserver/myfiles/calendar.m'})

Introduced before R2006a

 undocheckout

1-15693

unicode2native
Convert Unicode character representation to numeric bytes

Syntax
bytes = unicode2native(unicodestr)
bytes = unicode2native(unicodestr,encoding)

Description
bytes = unicode2native(unicodestr) converts the input Unicode character
representation, unicodestr, to the user default encoding, and returns the bytes as a
uint8 vector, bytes. Output vector bytes has the same general array shape as the
unicodestr input. You can save the output of unicode2native to a file using the
fwrite function. unicodestr can be a character vector or a string scalar.

bytes = unicode2native(unicodestr,encoding) converts unicodestr to the
character encoding scheme specified by encoding. The input argument encoding must
have no characters ('') or must be a name or alias for an encoding scheme. Some
examples are 'UTF-8', 'latin1', 'US-ASCII', and 'Shift_JIS'. If encoding is
unspecified or has no characters (''), the default encoding scheme is used. encoding
can be a character vector or a string scalar.

Examples
This example begins with two character vectors containing Unicode character
representations. It assumes that str1 contains text in a Western European language and
that str2 contains Japanese text. The example writes both character vectors into the
same file, using the ISO-8859-1 character encoding scheme for the first character vector
and the Shift-JIS encoding scheme for the second character vector. The example uses
unicode2native to convert str1 and str2 to the appropriate encoding schemes.

fid = fopen('mixed.txt', 'w');
bytes1 = unicode2native(str1, 'ISO-8859-1');

1 Alphabetical List

1-15694

fwrite(fid, bytes1, 'uint8');
bytes2 = unicode2native(str2, 'Shift_JIS');
fwrite(fid, bytes2, 'uint8');
fclose(fid);

See Also
native2unicode

Introduced before R2006a

 unicode2native

1-15695

union
Set union of two arrays

Syntax
C = union(A,B)
C = union(A,B,setOrder)
C = union(A,B, ___ ,'rows')
C = union(A,B,'rows', ___)
[C,ia,ib] = union(___)

[C,ia,ib] = union(A,B,'legacy')
[C,ia,ib] = union(A,B,'rows','legacy')

Description
C = union(A,B) returns the combined data from A and B with no repetitions. C is in
sorted order.

• If A and B are tables or timetables, then union returns the combined set of rows from
both tables. For timetables, union takes row times into account to determine equality,
and sorts the output timetable C by row times.

C = union(A,B,setOrder) returns C in a specific order. setOrder can be 'sorted'
or 'stable'.

C = union(A,B, ___ ,'rows') and C = union(A,B,'rows', ___) treat each row of
A and each row of B as single entities and return the combined rows from A and B, with
no repetitions. You must specify A and B and optionally can specify setOrder.

The 'rows' option does not support cell arrays, unless one of the inputs is either a
categorical array or a datetime array.

[C,ia,ib] = union(___) also returns index vectors ia and ib using any of the
previous syntaxes.

1 Alphabetical List

1-15696

• Generally, the values in C are a sorted combination of the elements of A(ia) and
B(ib).

• If the 'rows' option is specified, then the rows of C are a sorted combination of the
rows of A(ia,:) and B(ib,:).

• If A and B are tables or timetables, then C is a sorted combination of the rows of
A(ia,:) and B(ib,:).

[C,ia,ib] = union(A,B,'legacy') and [C,ia,ib] = union(
A,B,'rows','legacy') preserve the behavior of the union function from R2012b and
prior releases.

The 'legacy' option does not support categorical arrays, datetime arrays, duration
arrays, tables, or timetables.

Examples

Union of Two Vectors

Define two vectors with a value in common.

A = [5 7 1];
B = [3 1 1];

Find the union of vectors A and B.

C = union(A,B)

C = 1×4

 1 3 5 7

Union of Two Tables

Define two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))

 union

1-15697

A=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 2 B true
 3 C false
 4 D true
 5 E false

B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

B=5×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 3 C false
 5 E false
 7 G false
 9 I false

Find the union of tables A and B.

C = union(A,B)

C=7×3 table
 Var1 Var2 Var3
 ____ ____ _____

 1 A false
 2 B true
 3 C false
 4 D true
 5 E false
 7 G false
 9 I false

1 Alphabetical List

1-15698

Union of Two Vectors and Their Indices

Define two vectors with a value in common.

A = [5 7 1];
B = [3 1 1];

Find the union of vectors A and B, as well as the index vectors, ia and ib.

[C,ia,ib] = union(A,B)

C = 1×4

 1 3 5 7

ia = 3×1

 3
 1
 2

ib = 1

The values in C are the combined values of A(ia) and B(ib).

Union of Two Tables and Their Indices

Define a table, A, of gender, age, and height for three people.

A = table(['M';'M';'F'],[27;52;31],[74;68;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty'})

A=3×3 table
 Gender Age Height
 ______ ___ ______

 Ted M 27 74
 Fred M 52 68
 Betty F 31 64

 union

1-15699

Define a table, B with the same variables as A.

B = table(['F';'M'],[64;68],[31;47],...
'VariableNames',{'Gender' 'Height' 'Age'},...
'RowNames',{'Meg' 'Joe'})

B=2×3 table
 Gender Height Age
 ______ ______ ___

 Meg F 64 31
 Joe M 68 47

Find the union of tables A and B, as well as the index vectors, ia and ib.

[C,ia,ib] = union(A,B)

C=4×3 table
 Gender Age Height
 ______ ___ ______

 Betty F 31 64
 Ted M 27 74
 Joe M 47 68
 Fred M 52 68

ia = 3×1

 3
 1
 2

ib = 2

The data for Meg and Betty are the same. union only returns the index from A, which
corresponds to Betty.

Union of Rows in Two Matrices

Define two matrices with a row in common.

1 Alphabetical List

1-15700

A = [2 2 2; 0 0 1];
B = [1 2 3; 2 2 2; 2 2 2];

Find the combined rows of A and B, with no repetition, as well as the index vectors ia and
ib.

[C,ia,ib] = union(A,B,'rows')

C = 3×3

 0 0 1
 1 2 3
 2 2 2

ia = 2×1

 2
 1

ib = 1

The rows of C are the combined rows of A(ia,:) and B(ib,:).

Union of Two Vectors with Specified Output Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order as in A and B.

A = [5 7 1];
B = [3 1 1];
[C,ia,ib] = union(A,B,'stable')

C = 1×4

 5 7 1 3

ia = 3×1

 1

 union

1-15701

 2
 3

ib = 1

Alternatively, you can specify 'sorted' order.

A = [5 7 1];
B = [3 1 1];
[C,ia,ib] = union(A,B,'sorted')

C = 1×4

 1 3 5 7

ia = 3×1

 3
 1
 2

ib = 1

Union of Vectors Containing NaNs

Define two vectors containing NaN.

A = [5 NaN 1];
B = [4 NaN NaN];

Find the union of vectors A and B.

C = union(A,B)

C = 1×6

 1 4 5 NaN NaN NaN

union treats NaN values as distinct.

1 Alphabetical List

1-15702

Cell Array of Character Vectors with Trailing White Space

Create a cell array of character vectors, A.

A = {'dog','cat','fish','horse'};

Create a cell array of character vectors, B, where some of the vectors have trailing white
space.

B = {'dog ','cat','fish ','horse'};

Combine the elements of A and B.

[C,ia,ib] = union(A,B)

C = 1x6 cell array
 {'cat'} {'dog'} {'dog '} {'fish'} {'fish '} {'horse'}

ia = 4×1

 2
 1
 3
 4

ib = 2×1

 1
 3

union treats trailing white space in cell arrays of character vectors as distinct
characters.

Union of Vectors of Different Classes and Shapes

Create a column vector character array.

 union

1-15703

A = ['A';'B';'C']

A = 3x1 char array
 'A'
 'B'
 'C'

class(A)

ans =
'char'

Create a row vector containing elements of numeric type double.

B = [68 69 70]

B = 1×3

 68 69 70

class(B)

ans =
'double'

The union of A and B returns a column vector character array.

C = union(A,B)

C = 6x1 char array
 'A'
 'B'
 'C'
 'D'
 'E'
 'F'

class(C)

ans =
'char'

1 Alphabetical List

1-15704

Union of Char and Cell Array of Character Vectors

Create a character vector containing the letters a , b, and c.

A = ['a';'b';'c'];
class(A)

ans =
'char'

Create a cell array of character vectors containing the letters c, d, and e.

B = {'c','d','e'};
class(B)

ans =
'cell'

Combine the elements of A and B.

C = union(A,B)

C = 5x1 cell array
 {'a'}
 {'b'}
 {'c'}
 {'d'}
 {'e'}

The result, C, is a cell array of character vectors.

class(C)

ans =
'cell'

Preserve Legacy Behavior of union

Use the 'legacy' flag to preserve the behavior of union from R2012b and prior
releases in your code.

Find the union of A and B with the current behavior.

 union

1-15705

A = [5 7 1];
B = [3 1 1];
[C1,ia1,ib1] = union(A,B)

C1 = 1×4

 1 3 5 7

ia1 = 3×1

 3
 1
 2

ib1 = 1

Find the union of A and B, and preserve the legacy behavior.

A = [5 7 1];
B = [3 1 1];
[C2,ia2,ib2] = union(A,B,'legacy')

C2 = 1×4

 1 3 5 7

ia2 = 1×2

 1 2

ib2 = 1×2

 3 1

1 Alphabetical List

1-15706

Input Arguments
A,B — Input arrays
numeric arrays | logical arrays | character arrays | string arrays | categorical arrays |
datetime arrays | duration arrays | cell arrays of character vectors | tables | timetables

Input arrays, specified as numeric arrays, logical arrays, character arrays, string arrays,
categorical arrays, datetime arrays, duration arrays, cell arrays of character vectors,
tables, or timetables. If you specify the 'rows' option, A and B must have the same
number of columns.

A and B must be of the same class with the following exceptions:

• logical, char, and all numeric classes can combine with double arrays.
• Cell arrays of character vectors can combine with character arrays or string arrays.
• Categorical arrays can combine with character arrays, cell arrays of character vectors,

or string arrays.
• Datetime arrays can combine with cell arrays of date character vectors or single date

character vectors.

There are additional requirements for A and B based on data type:

• If A and B are both ordinal categorical arrays, they must have the same sets of
categories, including their order. If neither A nor B are ordinal, they need not have the
same sets of categories, and the comparison is performed using the category names.
In this case, the categories of C are the sorted union of the categories from A and B.

• If A and B are tables or timetables, they must have the same variable names (except
for order). For tables, row names are ignored, so that two rows that have the same
values, but different names, are considered equal. For timetables, row times are taken
into account, so that two rows that have the same values, but different times, are not
considered equal.

• If A and B are datetime arrays, they must be consistent with each other in whether
they specify a time zone.

A and B also can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)
• ne

 union

1-15707

The object class methods must be consistent with each other. These objects include
heterogeneous arrays derived from the same root class. For example, A and B can be
arrays of handles to graphics objects.

setOrder — Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of the values (or
rows) in C.

Order Flag Meaning
'sorted' The values (or rows) in C return in sorted order. For

example: C = union([5 5 3],[1 2],'sorted')
returns C = [1 2 3 5].

'stable' The values (or rows) in C return in the same order as
they appear in A and B. For example: C = union([5
5 3],[1 2],'stable') returns C = [5 3 1 2].

Data Types: char | string

Output Arguments
C — Combined data of A and B
vector | matrix | table | timetable

Combined data of A and B, returned as a vector, matrix, table, or timetable. If the inputs A
and B are tables or timetables, then the order of the variables in C is the same as the
order of the variables in A.

The following describes the shape of C when the inputs are vectors or matrices and when
the 'legacy' flag is not specified:

• If the 'rows' flag is not specified, then C is a column vector unless both A and B are
row vectors, in which case C is a row vector. For example, union([],[1 2]) returns
a column vector.

• If the 'rows' flag is specified, then C is a matrix containing the combined rows of A
and B.

The class of the inputs A and B determines the class of C:

1 Alphabetical List

1-15708

• If the class of A and B are the same, then C is the same class.
• If you combine a char or nondouble numeric class with double, then C is the same

class as the nondouble input.
• If you combine a logical class with double, then C is double.
• If you combine a cell array of character vectors with char, then C is a cell array of

character vectors.
• If you combine a categorical array with a character vector, cell array of character

vectors, or string, then C is a categorical array.
• If you combine a datetime array with a cell array of date character vectors or single

date character vector, then C is a datetime array.
• If you combine a string array with a character vector or cell array of character

vectors, then C is a string array.

ia — Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not specified. ia
indicates the values (or rows) in A that contribute to the union. If a value (or row) appears
multiple times in A, then ia contains the index to the first occurrence of the value (or
row). If a value appears in both A and B, then ia contains the index to the first occurrence
in A.

ib — Index to B
column vector

Index to B, returned as a column vector when the 'legacy' flag is not specified. ib
indicates the values (or rows) in B that contribute to the union. If there is a repeated
value (or row) appearing exclusively in B, then ib contains the index to the first
occurrence of the value. If a value (or row) appears in both A and B, then ib does not
contain an index to the value (or row).

Tips
• To find the union with respect to a subset of variables from a table or timetable, you

can use column subscripting. For example, you can use
union(A(:,vars),B(:,vars)), where vars is a positive integer, a vector of
positive integers, a variable name, a cell array of variable names, or a logical vector.

 union

1-15709

Alternatively, you can use vartype to create a subscript that selects variables of a
specified type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The 'stable' sorting order is not supported.
• The 'legacy' flag is not supported.
• Inputs of type char are not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you specify the
'legacy' option, then inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed length 1. The
second dimension of a variable-size column vector must have fixed length 1.

• The input[] is not supported. Use a 1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, then empty outputs are row vectors, 1-by-0.
They are never 0-by-0.

1 Alphabetical List

1-15710

• When you specify both the 'legacy' option and the 'rows' option, the outputs ia
and ib are column vectors. If these outputs are empty, they are 0-by-1. They are never
0-by-0, even if the output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the 'legacy' option, the
inputs must already be sorted in ascending order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute value). Suppose the

real input is x. Use sort(complex(x))or sortrows(complex(x)).
• See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'legacy' flag is not supported.
• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
intersect | ismember | issorted | setdiff | setxor | sort | unique

Topics
“Combine Categorical Arrays”

Introduced before R2006a

 union

1-15711

unique
Unique values in array

Syntax
C = unique(A)
C = unique(A,setOrder)
C = unique(A,occurrence)
C = unique(A, ___ ,'rows')
C = unique(A,'rows', ___)
[C,ia,ic] = unique(___)

[C,ia,ic] = unique(A,'legacy')
[C,ia,ic] = unique(A,'rows','legacy')
[C,ia,ic] = unique(A,occurrence,'legacy')
[C,ia,ic] = unique(A,'rows',occurrence,'legacy')

Description
C = unique(A) returns the same data as in A, but with no repetitions. C is in sorted
order.

• If A is a table or timetable, then unique returns the unique rows in A in sorted order.
For timetables, unique takes row times and row values into account when
determining whether rows are unique, and sorts the output timetable C by row times.

C = unique(A,setOrder) returns the unique values of A in a specific order. setOrder
can be 'sorted' (default) or 'stable'.

C = unique(A,occurrence) specifies which indices to return in case of repeated
values. occurrence can be 'first' (default) or 'last'.

C = unique(A, ___ ,'rows') and C = unique(A,'rows', ___) treat each row of A
as a single entity and return the unique rows of A in sorted order. You must specify A and
optionally can specify setOrder or occurrence.

The 'rows' option does not support cell arrays.

1 Alphabetical List

1-15712

[C,ia,ic] = unique(___) also returns index vectors ia and ic using any of the
previous syntaxes.

• If A is a vector, then C = A(ia) and A = C(ic).
• If A is a matrix or array, then C = A(ia) and A(:) = C(ic).
• If the 'rows' option is specified, then C = A(ia,:) and A = C(ic,:).
• If A is a table or a timetable, then C = A(ia,:) and A = C(ic,:).

[C,ia,ic] = unique(A,'legacy'), [C,ia,ic] = unique(A,'rows','legacy'),
[C,ia,ic] = unique(A,occurrence,'legacy'),and [C,ia,ic] = unique(
A,'rows',occurrence,'legacy') preserve the behavior of the unique function from
R2012b and prior releases.

The 'legacy' option does not support categorical arrays, datetime arrays, duration
arrays, calendarDuration arrays, tables, or timetables.

Examples

Unique Values in Vector

Define a vector with a repeated value.

A = [9 2 9 5];

Find the unique values of A.

C = unique(A)

C = 1×3

 2 5 9

Unique Rows in Table

Create a table with some repeated data.

 unique

1-15713

Name = {'Fred';'Betty';'Bob';'George';'Jane'};
Age = [38;43;38;40;38];
Height = [71;69;64;67;64];
Weight = [176;163;131;185;131];
A = table(Age,Height,Weight,'RowNames',Name)

A=5×3 table
 Age Height Weight
 ___ ______ ______

 Fred 38 71 176
 Betty 43 69 163
 Bob 38 64 131
 George 40 67 185
 Jane 38 64 131

Find the unique rows of A. unique returns the rows of A in sorted order by the first
variable Age and then by the second variable Height.

C = unique(A)

C=4×3 table
 Age Height Weight
 ___ ______ ______

 Bob 38 64 131
 Fred 38 71 176
 George 40 67 185
 Betty 43 69 163

Find the table rows with unique values in the first variable Age. If you only want one table
variable to contain unique values, you can use the indices returned by unique to extract
those rows from the table.

[C,ia] = unique(A.Age);
B = A(ia,:)

B=3×3 table
 Age Height Weight
 ___ ______ ______

 Fred 38 71 176
 George 40 67 185

1 Alphabetical List

1-15714

 Betty 43 69 163

Unique Values and Their Indices

Define a vector with a repeated value.

A = [9 2 9 5];

Find the unique values of A and the index vectors ia and ic, such that C = A(ia) and A
= C(ic).

[C, ia, ic] = unique(A)

C = 1×3

 2 5 9

ia = 3×1

 2
 4
 1

ic = 4×1

 3
 1
 3
 2

Unique Rows in Matrix

Create a 10-by-3 matrix with some repeated rows.

A = randi(3,10,3)

 unique

1-15715

A = 10×3

 3 1 2
 3 3 1
 1 3 3
 3 2 3
 2 3 3
 1 1 3
 1 2 3
 2 3 2
 3 3 2
 3 3 1

Find the unique rows of A based on the data in the first two columns. Specify three
outputs to return the index vectors ia and ic.

[C,ia,ic] = unique(A(:,1:2),'rows')

C = 7×2

 1 1
 1 2
 1 3
 2 3
 3 1
 3 2
 3 3

ia = 7×1

 6
 7
 3
 5
 1
 4
 2

ic = 10×1

 5
 7

1 Alphabetical List

1-15716

 3
 6
 4
 1
 2
 4
 7
 7

Use ia to index into A and retrieve the rows that have unique combinations of elements in
the first two columns.

uA = A(ia,:)

uA = 7×3

 1 1 3
 1 2 3
 1 3 3
 2 3 3
 3 1 2
 3 2 3
 3 3 1

Count of Unique Elements

Find the unique elements in a vector and then use accumarray to count the number of
times each unique element appears.

Create a vector of random integers from 1 through 5.

a = randi([1 5],200,1);

Find the unique elements in the vector. Return the index vectors ia and ic.

[C,ia,ic] = unique(a);

Count the number of times each element in C appears in a. Specify ic as the first input to
accumarray and 1 as the second input so that the function counts repeated subscripts in
ic. Summarize the results.

 unique

1-15717

a_counts = accumarray(ic,1);
value_counts = [C, a_counts]

value_counts = 5×2

 1 46
 2 36
 3 38
 4 39
 5 41

Unique Values in Vector with Specified Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order as in A.

A = [9 2 9 5];
[C, ia, ic] = unique(A,'stable')

C = 1×3

 9 2 5

ia = 3×1

 1
 2
 4

ic = 4×1

 1
 2
 1
 3

Alternatively, you can specify 'sorted' order.

1 Alphabetical List

1-15718

[C, ia, ic] = unique(A,'sorted')

C = 1×3

 2 5 9

ia = 3×1

 2
 4
 1

ic = 4×1

 3
 1
 3
 2

Unique Values in Array Containing NaNs

Define a vector containing NaN.

A = [5 5 NaN NaN];

Find the unique values of A.

C = unique(A)

C = 1×3

 5 NaN NaN

unique treats NaN values as distinct.

 unique

1-15719

Unique Elements in Presence of Numerical Error

Create a vector x. Obtain a second vector y by transforming and untransforming x. This
transformation introduces round-off differences in y.

x = (1:6)'*pi;
y = 10.^log10(x);

Verify that x and y are not identical by taking the difference.

x-y

ans = 6×1
10-14 ×

 0.0444
 0
 0
 0
 0
 -0.3553

Use unique to find the unique elements in the concatenated vector [x;y]. The unique
function performs exact comparisons and determines that some values in x are not
exactly equal to values in y. These are the same elements that have a nonzero difference
in x-y. Thus, c contains values that appear to be duplicates.

c = unique([x;y])

c = 8×1

 3.1416
 3.1416
 6.2832
 9.4248
 12.5664
 15.7080
 18.8496
 18.8496

Use uniquetol to perform the comparison using a small tolerance. uniquetol treats
elements that are within tolerance as equal.

1 Alphabetical List

1-15720

C = uniquetol([x;y])

C = 6×1

 3.1416
 6.2832
 9.4248
 12.5664
 15.7080
 18.8496

Unique Entries in Cell Array of Character Vectors

Create a cell array of character vectors.

A = {'one','two','twenty-two','One','two'};

Find the unique character vectors contained in A.

C = unique(A)

C = 1x4 cell array
 {'One'} {'one'} {'twenty-two'} {'two'}

Cell Array of Character Vectors with Trailing White Space

Create a cell array of character vectors, A, where some of the vectors have trailing white
space.

A = {'dog','cat','fish','horse','dog ','fish '};

Find the unique character vectors contained in A.

C = unique(A)

C = 1x6 cell array
 {'cat'} {'dog'} {'dog '} {'fish'} {'fish '} {'horse'}

 unique

1-15721

unique treats trailing white space in cell arrays of character vectors as distinct
characters.

Preserve Legacy Behavior of unique

Use the 'legacy' flag to preserve the behavior of unique from R2012b and prior
releases in your code.

Find the unique elements of A with the current behavior.

A = [9 2 9 5];
[C1, ia1, ic1] = unique(A)

C1 = 1×3

 2 5 9

ia1 = 3×1

 2
 4
 1

ic1 = 4×1

 3
 1
 3
 2

Find the unique elements of A, and preserve the legacy behavior.

[C2, ia2, ic2] = unique(A, 'legacy')

C2 = 1×3

 2 5 9

ia2 = 1×3

1 Alphabetical List

1-15722

 2 4 3

ic2 = 1×4

 3 1 3 2

Input Arguments
A — Input array
array

Input array.

• If A is a table, then unique does not take row names into account. Two rows that have
the same values, but different names, are considered equal.

• If A is a timetable, then unique takes row times into account. Two rows that have the
same values, but different times, are not considered equal.

A can also be an object with the following class methods:

• sort (or sortrows for the 'rows' option)
• ne

The object class methods must be consistent with each other. These objects include
heterogeneous arrays derived from the same root class. For example, A can be an array of
handles to graphics objects.

setOrder — Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of the values (or
rows) in C.

Order Flag Meaning
'sorted' The values (or rows) in C return in sorted order. For

example: C = unique([5 5 3 4],'sorted')
returns C = [3 4 5].

 unique

1-15723

Order Flag Meaning
'stable' The values (or rows) in C return in the same order as

in A. For example: C = unique([5 5 3
4],'stable') returns C = [5 3 4].

Data Types: char | string

occurrence — Occurrence flag
'first' (default) | 'last'

Occurrence flag, specified as 'first' or 'last', indicates whether ia should contain
the first or last indices to repeated values found in A.

Occurrence Flag Meaning
'last' If there are repeated values (or rows) in A, then ia

contains the index to the last occurrence of the
repeated value. For example: [C,ia,ic] =
unique([9 9 9],'last','legacy') returns ia =
3. This is the default behavior when the 'legacy'
flag is specified.

'first' If there are repeated values (or rows) in A, then ia
contains the index to the first occurrence of the
repeated value. For example: [C,ia,ic] =
unique([9 9 9],'first') returns ia = 1. This is
the default behavior.

Data Types: char | string

Output Arguments
C — Unique data of A
array

Unique data of A, returned as an array. The class of C is the same as the class of the input
A. The shape of C depends on whether the input is a vector or a matrix:

• If the 'rows' flag is not specified and A is a row vector, then C is a row vector.
• If the 'rows' flag is not specified and A is not a row vector, then C is a column vector.

1 Alphabetical List

1-15724

• If the 'rows' flag is specified, then C is a matrix containing the unique rows of A.

ia — Index to A
column vector

Index to A, returned as a column vector of indices to the first occurrence of repeated
elements. When the 'legacy' flag is specified, ia is a row vector that contains indices to
the last occurrence of repeated elements.

The indices generally satisfy C = A(ia). If A is a table, or if the 'rows' option is
specified, then C = A(ia,:).

ic — Index to C
column vector

Index to C, returned as a column vector when the 'legacy' flag is not specified. ic
contains indices that satisfy the following properties.

• If A is a vector, then A = C(ic).
• If A is a matrix or array, then A(:) = C(ic).
• If A is a table, or if the 'rows' option is specified, then A = C(ic,:).

Tips
• Use uniquetol to find unique floating-point numbers using a tolerance.
• To find unique rows in tables or timetables with respect to a subset of variables, you

can use column subscripting. For example, you can use unique(A(:,vars)), where
vars is a positive integer, a vector of positive integers, a variable name, a cell array of
variable names, or a logical vector. Alternatively, you can use vartype to create a
subscript that selects variables of a specified type.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

 unique

1-15725

This function supports tall arrays with the limitations:

• For tall vectors and tall tables, use the syntaxes:

• C = unique(A)
• [C,ia,ic] = unique(A)

• For tall matrices, use the syntaxes:

• C = unique(A,'rows')
• [C,ia,ic] = unique(A,'rows')

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support cell arrays for the first argument.
• When you do not specify the'rows' option:

• The input A must be a vector. If you specify the 'legacy' option, the input A must
be a row vector.

• The first dimension of a variable-size row vector must have fixed length 1. The
second dimension of a variable-size column vector must have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, then empty outputs are row vectors, 1-by-0.
They are never 0-by-0.

• When you specify both the 'rows' option and the 'legacy'option, outputs ia and
ic are column vectors. If these outputs are empty, then they are 0-by-1, even if the
output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the 'legacy' option, the
input A must already be sorted in ascending order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.

1 Alphabetical List

1-15726

See Also
intersect | ismember | issorted | setdiff | setxor | sort | union | uniquetol

Introduced before R2006a

 unique

1-15727

uniquetol
Unique values within tolerance

Syntax
C = uniquetol(A,tol)
C = uniquetol(A)
[C,IA,IC] = uniquetol(___)
[___] = uniquetol(___ ,Name,Value)

Description
C = uniquetol(A,tol) returns the unique elements in A using tolerance tol. Two
values, u and v, are within tolerance if

abs(u-v) <= tol*max(abs(A(:)))

That is, uniquetol scales the tol input based on the magnitude of the data.

uniquetol is similar to unique. Whereas unique performs exact comparisons,
uniquetol performs comparisons using a tolerance.

C = uniquetol(A) uses a default tolerance of 1e-6 for single-precision inputs and
1e-12 for double-precision inputs.

[C,IA,IC] = uniquetol(___) returns index vectors IA and IC, such that C =
A(IA) and A~C(IC) (or A(:)~C(IC) if A is a matrix), where ~ means the values are
within tolerance of each other. You can use any of the input arguments in previous
syntaxes.

[___] = uniquetol(___ ,Name,Value) uses additional options specified by one or
more Name-Value pair arguments using any of the input or output argument combinations
in previous syntaxes. For example, uniquetol(A,'ByRows',true) determines the
unique rows in A.

1 Alphabetical List

1-15728

Examples

Unique Elements in Presence of Numerical Error

Create a vector x. Obtain a second vector y by transforming and untransforming x. This
transformation introduces round-off differences in y.

x = (1:6)'*pi;
y = 10.^log10(x);

Verify that x and y are not identical by taking the difference.

x-y

ans = 6×1
10-14 ×

 0.0444
 0
 0
 0
 0
 -0.3553

Use unique to find the unique elements in the concatenated vector [x;y]. The unique
function performs exact comparisons and determines that some values in x are not
exactly equal to values in y. These are the same elements that have a nonzero difference
in x-y. Thus, c contains values that appear to be duplicates.

c = unique([x;y])

c = 8×1

 3.1416
 3.1416
 6.2832
 9.4248
 12.5664
 15.7080
 18.8496
 18.8496

 uniquetol

1-15729

Use uniquetol to perform the comparison using a small tolerance. uniquetol treats
elements that are within tolerance as equal.

C = uniquetol([x;y])

C = 6×1

 3.1416
 6.2832
 9.4248
 12.5664
 15.7080
 18.8496

Determine Unique Rows

By default, uniquetol looks for unique elements that are within tolerance, but it also
can find unique rows of a matrix that are within tolerance.

Create a numeric matrix, A. Obtain a second matrix, B, by transforming and
untransforming A. This transformation introduces round-off differences to B.

A = [0.05 0.11 0.18; 0.18 0.21 0.29; 0.34 0.36 0.41; 0.46 0.52 0.76];
B = log10(10.^A);

Use unique to find the unique rows in A and B. The unique function performs exact
comparisons and determines that all of the rows in the concatenated matrix [A;B] are
unique, even though some of the rows differ by only a small amount.

unique([A;B],'rows')

ans = 8×3

 0.0500 0.1100 0.1800
 0.0500 0.1100 0.1800
 0.1800 0.2100 0.2900
 0.1800 0.2100 0.2900
 0.3400 0.3600 0.4100
 0.3400 0.3600 0.4100
 0.4600 0.5200 0.7600

1 Alphabetical List

1-15730

 0.4600 0.5200 0.7600

Use uniquetol to find the unique rows. uniquetol treats rows that are within
tolerance as equal.

uniquetol([A;B],'ByRows',true)

ans = 4×3

 0.0500 0.1100 0.1800
 0.1800 0.2100 0.2900
 0.3400 0.3600 0.4100
 0.4600 0.5200 0.7600

Prepare Vectors for Exact Comparison

Create a vector, x. Obtain a second vector, y, by transforming and untransforming x. This
transformation introduces round-off differences to some elements in y.

x = (1:5)'*pi;
y = 10.^log10(x);

Combine x and y into a single vector, A. Use uniquetol to reconstruct A, treating the
values that are within tolerance as equal.

A = [x;y]

A = 10×1

 3.1416
 6.2832
 9.4248
 12.5664
 15.7080
 3.1416
 6.2832
 9.4248
 12.5664
 15.7080

 uniquetol

1-15731

[C,IA,IC] = uniquetol(A);
newA = C(IC)

newA = 10×1

 3.1416
 6.2832
 9.4248
 12.5664
 15.7080
 3.1416
 6.2832
 9.4248
 12.5664
 15.7080

You can use newA with == or functions that use exact equality like isequal or unique in
subsequent code.

D1 = unique(A)

D1 = 6×1

 3.1416
 3.1416
 6.2832
 9.4248
 12.5664
 15.7080

D2 = unique(newA)

D2 = 5×1

 3.1416
 6.2832
 9.4248
 12.5664
 15.7080

1 Alphabetical List

1-15732

Subset Data Using Large Tolerance

Create a cloud of 2-D sample points constrained to be inside a circle of radius 0.5
centered at the point (1

2, 1
2).

x = rand(10000,2);
insideCircle = sqrt((x(:,1)-.5).^2+(x(:,2)-.5).^2)<0.5;
y = x(insideCircle,:);

Find a reduced set of points, such that each point of the original dataset is within
tolerance of a point.

tol = 0.05;
C = uniquetol(y,tol,'ByRows',true);

Plot the reduced set of points as red dots on top of the original data set. The red dots are
all members of the original data set. All the red dots are at least a distance tol apart.

plot(y(:,1),y(:,2),'.')
hold on
axis equal
plot(C(:,1), C(:,2), '.r', 'MarkerSize', 10)

 uniquetol

1-15733

Average Similar Values in Vector

Create a vector of random numbers and determine the unique elements using a tolerance.
Specify OutputAllIndices as true to return all of the indices for the elements that are
within tolerance of the unique values.

A = rand(100,1);
[C,IA] = uniquetol(A,1e-2,'OutputAllIndices',true);

Find the average value of the elements that are within tolerance of the value C(2).

C(2)

1 Alphabetical List

1-15734

ans = 0.0318

allA = A(IA{2})

allA = 3×1

 0.0357
 0.0318
 0.0344

aveA = mean(allA)

aveA = 0.0340

Specify Absolute Tolerance

By default, uniquetol uses a tolerance test of the form abs(u-v) <= tol*DS, where
DS automatically scales based on the magnitude of the input data. You can specify a
different DS value to use with the DataScale option. However, absolute tolerances
(where DS is a scalar) do not scale based on the magnitude of the input data.

First, compare two small values that are a distance eps apart. Specify tol and DS to
make the within tolerance equation: abs(u-v) <= 10^-6.

x = 0.1;
uniquetol([x, exp(log(x))], 10^-6, 'DataScale', 1)

ans = 0.1000

Next, increase the magnitude of the values. The round-off error in the calculation
exp(log(x)) is proportional to the magnitude of the values, specifically to eps(x).
Even though the two large values are a distance eps from one another, eps(x) is now
much larger. Therefore, 10^-6 is no longer a suitable tolerance.

x = 10^10;
uniquetol([x, exp(log(x))], 10^-6, 'DataScale', 1)

ans = 1×2
1010 ×

 1.0000 1.0000

 uniquetol

1-15735

Correct this issue by using the default (scaled) value of DS.

format long
Y = [0.1 10^10];
uniquetol([Y, exp(log(Y))])

ans = 1×2
1010 ×

 0.000000000010000 1.000000000000000

Specify DataScale by Column

Create a set of random 2-D points, then use uniquetol to group the points into vertical
bands that have a similar (within tolerance) x-coordinate. Use these options with
uniquetol:

• Specify ByRows as true since the point coordinates are in the rows of A.
• Specify OutputAllIndices as true to return the indices for all points that have an

x-coordinate within tolerance of each other.
• Specify DataScale as [1 Inf] to use an absolute tolerance for the x-coordinate

while ignoring the y-coordinate.

A = rand(1000,2);
DS = [1 Inf];
[C,IA] = uniquetol(A, 0.1, 'ByRows', true, ...
 'OutputAllIndices', true, 'DataScale', DS);

Plot the points and average value for each band.

hold on
for k = 1:length(IA)
 plot(A(IA{k},1), A(IA{k},2), '.')
 meanAi = mean(A(IA{k},:));
 plot(meanAi(1), meanAi(2), 'xr')
end

1 Alphabetical List

1-15736

Input Arguments
A — Query array
scalar | vector | matrix | multidimensional array

Query array, specified as a scalar, vector, matrix, or multidimensional array. A must be
full.
Data Types: single | double

tol — Comparison tolerance
positive, real scalar

 uniquetol

1-15737

Comparison tolerance, specified as a positive, real scalar. uniquetol scales the tol
input using the maximum absolute value in input array A. Then uniquetol uses the
resulting scaled comparison tolerance to determine which elements in A are unique. If
two elements in A are within tolerance of each other, then uniquetol considers them to
be equal.

Two values, u and v, are within tolerance if abs(u-v) <= tol*max(abs(A)).

To specify an absolute tolerance, specify both tol and the 'DataScale' Name-Value
pair.
Example: tol = 0.05
Example: tol = 1e-8
Example: tol = eps
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: C = uniquetol(A,'ByRows',true)

OutputAllIndices — Output index type
false (default) | true | 0 | 1

Output index type, specified as the comma-separated pair consisting of
'OutputAllIndices' and either false (default), true, 0, or 1. uniquetol interprets
numeric 0 as false and numeric 1 as true.

When OutputAllIndices is true, the uniquetol function returns the second output,
IA, as a cell array. The cell array contains the indices for all elements in A that are within
tolerance of a value in C. That is, each cell in IA corresponds to a value in C, and the
values in each cell correspond to locations in A.
Example: [C,IA] = uniquetol(A,tol,'OutputAllIndices',true)

ByRows — Row comparison toggle
false (default) | true | 0 | 1

1 Alphabetical List

1-15738

Row comparison toggle, specified as the comma-separated pair consisting of 'ByRows'
and either false (default), true, 0, or 1. uniquetol interprets numeric 0 as false and
numeric 1 as true. Use this option to find rows in A that are unique, within tolerance.

When ByRows is true:

• A must be a 2-D array.
• uniquetol compares the rows of A by considering each column separately. For two

rows to be within tolerance of one another, each column has to be in tolerance.
• Each row in A is within tolerance of a row in C. However, no two rows in C are within

tolerance of each other.

Two rows, u and v, are within tolerance if all(abs(u-v) <= tol*max(abs(A),
[],1)).
Example: C = uniquetol(A,tol,'ByRows',true)

DataScale — Scale of data
scalar | vector

Scale of data, specified as the comma-separated pair consisting of 'DataScale' and
either a scalar or vector. Specify DataScale as a numeric scalar, DS, to change the
tolerance test to be abs(u-v) <= tol*DS.

When used together with the ByRows option, the DataScale value also can be a vector.
In this case, each element of the vector specifies DS for a corresponding column in A. If a
value in the DataScale vector is Inf, then uniquetol ignores the corresponding
column in A.
Example: C = uniquetol(A,'DataScale',1)
Example: [C,IA,IC] = uniquetol(A,'ByRows',true,'DataScale',[eps(1)
eps(10) eps(100)])

Data Types: single | double

Output Arguments
C — Unique elements in A
vector | matrix

 uniquetol

1-15739

Unique elements in A (within tolerance), returned as a vector or matrix. If A is a row
vector, then C is also a row vector. Otherwise, C is a column vector. The elements in C are
sorted in ascending order. Each element in A is within tolerance of an element in C, but no
two elements in C are within tolerance of each other.

If the ByRows option is true, then C is a matrix containing the unique rows in A. In this
case, the rows in C are sorted in ascending order by the first column. Each row in A is
within tolerance of a row in C, but no two rows in C are within tolerance of each other.

IA — Index to A
column vector | cell array

Index to A, returned as a column vector of indices to the first occurrence of repeated
elements, or as a cell array. IA generally satisfies C = A(IA), with the following
exceptions:

• If the ByRows option is true, then C = A(IA,:).
• If the OutputAllIndices option is true, then IA is a cell array and

C(i)~A(IA{i}) where ~ means the values are within tolerance of each other.

IC — Index to C
column vector

Index to C, returned as a column vector of indices. IC satisfies the following properties,
where ~ means the values are within tolerance of each other.

• If A is a vector, then A~C(IC).
• If A is a matrix, then A(:)~C(IC).
• If the ByRows option is true, then A~C(IC,:).

Tips
• There can be multiple valid C outputs that satisfy the condition, no two elements in C

are within tolerance of each other. The uniquetol function just returns one of the
valid outputs.

uniquetol sorts the input lexicographically, and then starts at the lowest value to
find unique values within tolerance. As a result, changing the sorting of the input
could change the output. For example, uniquetol(-A) might not give the same
results as -uniquetol(A).

1 Alphabetical List

1-15740

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'ByRows' and 'OutputAllIndices' options are not supported.
• 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also
eps | ismember | ismembertol | unique

Topics
“Average Similar Data Points Using a Tolerance”

Introduced in R2015a

 uniquetol

1-15741

matlab.unittest Package
Summary of packages and classes in MATLAB Unit Test Framework

Description
The matlab.unittest package consists of the following classes and packages.

Classes
matlab.unittest.FunctionTestCase TestCase used for function-based tests
matlab.unittest.Scope Test scope enumeration class
matlab.unittest.Test Specification of a single test method
matlab.unittest.TestCase Superclass of all matlab.unittest test classes
matlab.unittest.TestResult Result of running test suite
matlab.unittest.TestRunner Class for running tests in matlab.unittest framework
matlab.unittest.TestSuite Class for grouping tests to run
matlab.unittest.Verbosity Verbosity level enumeration class

Packages
matlab.unittest.plugins.constraints Summary of classes in MATLAB Constraints

Interface
matlab.unittest.plugins.diagnostics Summary of classes in MATLAB Diagnostics

Interface
matlab.unittest.plugins.fixtures Summary of classes in MATLAB Fixtures Interface
matlab.unittest.plugins.parameters Summary of classes associated with MATLAB Unit

Test parameters
matlab.unittest.plugins.plugins Summary of classes in MATLAB Plugins Interface
matlab.unittest.plugins.qualifications Summary of classes in MATLAB Qualifications

Interface
matlab.unittest.plugins.selectors Summary of classes in MATLAB Selectors

Interface

1 Alphabetical List

1-15742

See Also
Introduced in R2013a

 matlab.unittest Package

1-15743

unix
Execute UNIX command and return output

Note For platform-independent code, use the system command.

Syntax
[status,cmdout] = unix(command)

Description
[status,cmdout] = unix(command) calls the operating system to execute the
specified command and returns the standard output of the command to cmdout.

MATLAB uses a shell program to execute the given command. It determines which shell
program to use by checking environment variables on your system. MATLAB first checks
the MATLAB_SHELL variable, and if either empty or not defined, then checks SHELL. If
SHELL is also empty or not defined, MATLAB uses /bin/sh.

For tips and information about limitations, see system.

Examples

Display Operating System Command Status and Output

Display the current folder using the cd command. A status of zero indicates that the
command completed successfully. MATLAB returns a character vector containing the
current folder in cmdout.

1 Alphabetical List

1-15744

command = 'cd';
[status,cmdout] = unix(command)

Input Arguments
command — UNIX command
character vector

UNIX command, specified as a character vector. The command executes in a UNIX shell,
which might not be the shell from which you started MATLAB.
Example: 'ls'

Output Arguments
status — Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When the command is
successful, status is 0. Otherwise, status is a nonzero integer.

• If command includes the ampersand character (&), then status is the exit status when
command starts

• If command does not include the ampersand character (&), then status is the exit
status upon command completion.

cmdout — Output of operating system command
character vector

Output of the operating system command, returned as a character vector. The system
shell might not properly represent non-Unicode characters.

See Also
system

Topics
“Run External Commands, Scripts, and Programs”

 unix

1-15745

Introduced before R2006a

1 Alphabetical List

1-15746

unloadlibrary
Unload shared C library from memory

Syntax
unloadlibrary libname

Description
unloadlibrary libname unloads library libname from memory.

Examples

Load and Unload shrlibsample Library

Add the shrlib examples folder to the path.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

Load the library, if it is not already loaded.

if ~libisloaded('shrlibsample')
 loadlibrary('shrlibsample')
end

When finished, unload the library to free memory.

unloadlibrary shrlibsample

Input Arguments
libname — Name of shared library
character vector

 unloadlibrary

1-15747

Name of shared library, specified as a character vector. Do not include the path or file
extension in libname.

If you call loadlibrary using the alias option, then you must use the alias name for
the libname argument.
Data Types: char

Limitations
• Use with libraries that are loaded using the loadlibrary function.

Tips
• To unload a MEX file, use the clear function.

See Also
clear | libisloaded | loadlibrary

Introduced before R2006a

1 Alphabetical List

1-15748

unmesh
Convert edge matrix to coordinate and Laplacian matrices

Syntax
[L,XY] = unmesh(E)

Description
[L,XY] = unmesh(E) returns the Laplacian matrix L and mesh vertex coordinate
matrix XY for the M-by-4 edge matrix E. Each row of the edge matrix must contain the
coordinates [x1 y1 x2 y2] of the edge endpoints.

Input Arguments
E M-by-4 edge matrix E.

Output Arguments
L Laplacian matrix representation of the graph.
XY Mesh vertex coordinate matrix.

Examples
Take a simple example of a square with vertices at (1,1), (1,–1),(–1,–1), and (–1,1), where
the connections between vertices are the four perpendicular edges of the square plus one
diagonal connection between (–1, –1) and (1,1).

 unmesh

1-15749

The edge matrix E for this graph is:

E=[1 1 1 -1; % edge from 1 to 2
1 -1 -1 -1; % edge from 2 to 3
-1 -1 -1 1; % edge from 3 to 4
-1 -1 1 1; % edge from 3 to 1
-1 1 1 1] % edge from 4 to 1

Use unmesh to create the output matrices,

[A,XY]=unmesh(E);
4 vertices:
4/4

The Laplacian matrix is defined as

Li j =
deg(vi) if i = j
−1 if i ≠ j and vi is adjacent to v j
0 otherwise

1 Alphabetical List

1-15750

unmesh returns the Laplacian matrix L in sparse notation.

L

L =

 (1,1) 3
 (2,1) -1
 (3,1) -1
 (4,1) -1
 (1,2) -1
 (2,2) 2
 (4,2) -1
 (1,3) -1
 (3,3) 2
 (4,3) -1
 (1,4) -1
 (2,4) -1
 (3,4) -1

To see L in regular matrix notation, use the full command.

full(L)

ans =

 3 -1 -1 -1
 -1 2 0 -1
 -1 0 2 -1
 -1 -1 -1 3

The mesh coordinate matrix XY returns the coordinates of the corners of the square.

XY

XY =

 -1 -1
 -1 1
 1 -1
 1 1

 unmesh

1-15751

See Also
gplot | treeplot

1 Alphabetical List

1-15752

unmkpp
Extract piecewise polynomial details

Syntax
[breaks,coefs,L,order,dim] = unmkpp(pp)

Description
[breaks,coefs,L,order,dim] = unmkpp(pp) extracts information from the fields of
the piecewise polynomial structure pp.

Examples

Unwrap Piecewise Polynomial Information

Create a piecewise polynomial structure for the polynomial f (x) = x2 + x + 1 on the
interval [0 3], and then extract the information from the fields of the structure.

pp = mkpp([0 3],[1 1 1])

pp = struct with fields:
 form: 'pp'
 breaks: [0 3]
 coefs: [1 1 1]
 pieces: 1
 order: 3
 dim: 1

[breaks,coefs,L,order,dim] = unmkpp(pp)

breaks = 1×2

 unmkpp

1-15753

 0 3

coefs = 1×3

 1 1 1

L = 1

order = 3

dim = 1

Input Arguments
pp — Piecewise polynomial
structure

Piecewise polynomial, specified as a structure. You can create pp using spline, pchip,
interp1, or the spline utility function mkpp.

Output Arguments
breaks — Break points
vector

Break points, returned as a vector of length L+1 with strictly increasing elements that
represent the start and end of each of L intervals.

coefs — Polynomial coefficients
matrix

Polynomial coefficients, returned as an L-by-k matrix with each
row coefs(i,:) containing the local coefficients of an order k polynomial on the ith
interval, [breaks(i),breaks(i+1)].

L — Number of intervals
scalar

1 Alphabetical List

1-15754

Number of intervals, returned as a scalar.

order — Order of polynomials
scalar

Order of polynomials, returned as a scalar.

dim — Dimension of target
scalar | vector

Dimension of target, returned as a scalar or vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pp must be a valid piecewise polynomial structure created by mkpp, spline, or pchip
in MATLAB or by the code generator.

• Code generation does not support pp structures created by interp1 in MATLAB.

See Also
mkpp | pchip | ppval | spline

Introduced before R2006a

 unmkpp

1-15755

unregisterallevents
Unregister all event handlers associated with COM object events

Syntax
unregisterallevents(c)

Description
unregisterallevents(c) unregisters all events previously registered with COM
object c. After calling unregisterallevents, the object no longer responds to any
events.

Examples

Remove All Event Handlers from Excel Workbook

Unregister the event handlers from all Microsoft Excel workbooks events.

To run this example, create a workbook and register events.

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = Add(wbs);
registerevent(wb,{'Activate' 'EvtActivateHndlr'; 'Deactivate' 'EvtDeactivateHndlr'})
eventlisteners(wb)

ans =

 2×2 cell array

 'Activate' 'EvtActivateHndlr'
 'Deactivate' 'EvtDeactivateHndlr'

Unregister the event handlers.

1 Alphabetical List

1-15756

unregisterallevents(wb)
eventlisteners(wb)

ans =

 0×0 empty cell array

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
eventlisteners | isevent | registerevent | unregisterevent

Introduced before R2006a

 unregisterallevents

1-15757

unregisterevent
Unregister event handler associated with COM object event at run time

Syntax
unregisterevent(c,eventhandler)

Description
unregisterevent(c,eventhandler) removes the association of a specific event
handler routine from its corresponding event. Once you unregister an event, the object no
longer responds to the event. You can unregister events at any time after creating a
control.

Examples

Remove Event Handler from Excel Workbook

Unregister the EvtDeactivateHndlr event handler from a Microsoft Excel workbooks
Deactivate event.

To run this example, create a workbook and register events.

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = Add(wbs);
registerevent(wb,{'Activate' 'EvtActivateHndlr'; 'Deactivate' 'EvtDeactivateHndlr'})
eventlisteners(wb)

ans =

 2×2 cell array

 'Activate' 'EvtActivateHndlr'
 'Deactivate' 'EvtDeactivateHndlr'

1 Alphabetical List

1-15758

Unregister the Deactivate event handler. MATLAB shows the remaining registered
event (Activate) with its corresponding event handler.

unregisterevent(wb,{'Deactivate' 'EvtDeactivateHndlr'})
eventlisteners(wb)

ans =

 1×2 cell array

 'Activate' 'EvtActivateHndlr'

Input Arguments
c — COM object
function handle

COM object, specified as a function handle.

eventhandler — Function to call when event occurs
cell array

Function to call when event occurs, specified as a cell array, specifies both events and
event handlers.

Specify events in the eventhandler argument using the names of the events. Strings or
character vectors used in the eventhandler argument are not case-sensitive.
unregisterevent does not accept numeric event identifiers.

Limitations
• COM functions are available on Microsoft Windows systems only.

See Also
eventlisteners | isevent | registerevent | unregisterallevents

Topics
“COM Event Handlers”

 unregisterevent

1-15759

Introduced before R2006a

1 Alphabetical List

1-15760

unstack
Unstack data from single variable into multiple variables

Syntax
U = unstack(S,vars,ivar)
U = unstack(S,vars,ivar,Name,Value)
[U,is] = unstack(___)

Description
U = unstack(S,vars,ivar) converts the table or timetable, S, to an equivalent table
or timetable, U, that is unstacked. vars specifies variables in S, each of which is
unstacked into multiple variables in U. In general, U contains more variables, but fewer
rows, than S.

The ivar input argument specifies the variable in S that unstack uses as an indicator
variable. The values in ivar determine which variables in U contain elements taken from
vars after unstacking.

The unstack function treats the remaining variables differently in tables and timetables.

• If S is a table, then unstack treats the remaining variables as grouping variables on
page 1-15767. Each unique combination of values in the grouping variables identifies
a group of rows in S that is unstacked into a single row of U.

• If S is a timetable, then unstack discards the remaining variables. However, unstack
treats the vector of row times as a grouping variable.

You cannot unstack the row names of a table, or the row times of a timetable, or specify
either as the indicator variable. You can specify row names or row times as constant
variables with the 'ConstantVariables' argument.

U = unstack(S,vars,ivar,Name,Value) converts the table or timetable S with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify how unstack converts variables from S to variables in U.

 unstack

1-15761

[U,is] = unstack(___) also returns an index vector, is, indicating the
correspondence between rows in U and rows in S. You can use any of the previous input
arguments.

Examples

Separate One Variable into Three Variables

Create a table indicating the amount of snowfall in various towns for various storms.

Storm = [3;3;1;3;1;1;4;2;4;2;4;2];
Town = {'T1';'T3';'T1';'T2';'T2';'T3';...
 'T2';'T1';'T3';'T3';'T1';'T2'};
Snowfall = [0;3;5;5;9;10;12;13;15;16;17;21];

S = table(Storm,Town,Snowfall)

S=12×3 table
 Storm Town Snowfall
 _____ ____ ________

 3 'T1' 0
 3 'T3' 3
 1 'T1' 5
 3 'T2' 5
 1 'T2' 9
 1 'T3' 10
 4 'T2' 12
 2 'T1' 13
 4 'T3' 15
 2 'T3' 16
 4 'T1' 17
 2 'T2' 21

S contains three snowfall entries for each storm, one for each town. S is in stacked
format.

Separate the variable Snowfall into three variables, one for each town specified in the
variable, Town. The output table, U, is in unstacked format.

U = unstack(S,'Snowfall','Town')

1 Alphabetical List

1-15762

U=4×4 table
 Storm T1 T2 T3
 _____ __ __ __

 3 0 5 3
 1 5 9 10
 4 17 12 15
 2 13 21 16

Each row in U contains data from rows in S that have the same value in the grouping
variable, Storm. The order of the unique values in Storm determines the order of the
data in U.

Apply Aggregation Function to Each Group

Unstack data and apply an aggregation function to multiple rows in the same group that
have the same values in the indicator variable.

Create a table containing data on the price of two stocks over 2 days.

Date = [repmat({'4/12/2008'},6,1);...
 repmat({'4/13/2008'},5,1)];
Stock = {'Stock1';'Stock2';'Stock1';'Stock2';...
 'Stock2';'Stock2';'Stock1';'Stock2';...
 'Stock2';'Stock1';'Stock2'};
Price = [60.35;27.68;64.19;25.47;28.11;27.98;...
 63.85;27.55;26.43;65.73;25.94];

S = table(Date,Stock,Price)

S=11×3 table
 Date Stock Price
 ___________ ________ _____

 '4/12/2008' 'Stock1' 60.35
 '4/12/2008' 'Stock2' 27.68
 '4/12/2008' 'Stock1' 64.19
 '4/12/2008' 'Stock2' 25.47
 '4/12/2008' 'Stock2' 28.11
 '4/12/2008' 'Stock2' 27.98
 '4/13/2008' 'Stock1' 63.85

 unstack

1-15763

 '4/13/2008' 'Stock2' 27.55
 '4/13/2008' 'Stock2' 26.43
 '4/13/2008' 'Stock1' 65.73
 '4/13/2008' 'Stock2' 25.94

S contains two prices for STOCK1 during the first day and four prices for STOCK2 during
the first day.

Create a table containing separate variables for each stock and one row for each day. Use
Date as the grouping variable and apply the aggregation function, @mean, to the numeric
values from the variable, Price, for each group.

[U,is] = unstack(S,'Price','Stock',...
 'AggregationFunction',@mean)

U=2×3 table
 Date Stock1 Stock2
 ___________ ______ ______

 '4/12/2008' 62.27 27.31
 '4/13/2008' 64.79 26.64

is = 2×1

 1
 7

U contains the average price for each stock grouped by date.

is identifies the index of the first value for each group of rows in S. The first value for the
group '4/13/2008' is in the seventh row of S.

Input Arguments
S — Input table
table | timetable

1 Alphabetical List

1-15764

Input table, specified as a table or a timetable. S must contain data variables to unstack,
vars, and an indicator variable, ivar. The remaining variables in S can be treated as
either grouping variables or constant variables.

vars — Variables in S to unstack
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables in S to unstack, specified as a positive integer, vector of positive integers,
character vector, cell array of character vectors, string array, or logical vector.

ivar — Indicator variable in S
positive integer | character vector | string scalar

Indicator variable in S, specified as a positive integer, a character vector, or a string
scalar. The values in the variable specified by ivar indicate which variables in U contain
elements taken from the variables specified by vars.

The variable specified by ivar can be a numeric vector, logical vector, character array,
cell array of character vectors, string array, or categorical vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'AggregationFunction',@mean applies the aggregation function @mean to
the values in vars.

GroupingVariables — Grouping variables in S that define groups of rows
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Grouping variables in S that define groups of rows, specified as the comma-separated pair
consisting of 'GroupingVariables' and a positive integer, vector of positive integers,
character vector, cell array of character vectors, string array, or logical vector. Each
group of rows in S becomes one row in U.

 unstack

1-15765

S can have row labels along its first dimension. If S is a table, then it can have row names
as the labels. If S is a timetable, then it must have row times as the labels. unstack can
treat row labels as grouping variables.

• If you do not specify 'GroupingVariables', and S is a timetable, then unstack
treats the row times as a grouping variable.

• If you specify 'GroupingVariables', and S has row names or row times, then
unstack does not treat them as grouping variables, unless you include them in the
value of 'GroupingVariables'.

ConstantVariables — Variables constant within a group
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

Variables constant within a group, specified as the comma-separated pair consisting of
'ConstantVariables' and a positive integer, vector of positive integers, character
vector, cell array of character vectors, string array, or logical vector.

The values for these variables in U are taken from the first row in each group in S.

You can include the row names or row times of S when you specify the value of
'ConstantVariables'.

NewDataVariableNames — Names for new data variables in U
cell array of character vectors | string array

Names for the new data variables in U, specified as the comma-separated pair consisting
of 'NewDataVariableNames' and a cell array of character vectors or string array.

If you do not specify 'NewDataVariableNames', then unstack creates names for the
new data variables in U based on values in the indicator variable specified by ivar.

AggregationFunction — Aggregation function from values in vars to single
value
function handle

Aggregation function from values in vars to a single value, specified as the comma-
separated pair consisting of 'AggregationFunction' and a function handle. unstack
applies this function to rows from the same group that have the same value in ivar. The
function must aggregate the data values into a single value.

1 Alphabetical List

1-15766

For a numeric data variable, the default is @sum. For nonnumeric variables, there is no
default function, and you must specify the 'AggregationFunction' name-value pair
argument if multiple rows in the same group have the same value in ivar.

Output Arguments
U — Output table
table | timetable

Output table, returned as a table or a timetable. U contains the unstacked data variables,
the grouping variables, and the first value of each group from any constant variables.

The order of the data in U is based on the order of the unique values in the grouping
variables.

You can store additional metadata such as descriptions, variable units, variable names,
and row names in U. For more information, see the Properties sections of table or
timetable.

is — Index to S
column vector

Index to S, returned as a column vector. For each row in U, the index vector, is, identifies
the index of the first value in the corresponding group of rows in S.

Definitions

Grouping Variables
Grouping variables are utility variables used to group, or categorize, data. Grouping
variables are useful for summarizing or visualizing data by group. You can define groups
in your table by specifying one or more grouping variables.

A grouping variable can be any of the following:

• Categorical vector
• Cell array of character vectors

 unstack

1-15767

• String array
• Character array
• Numeric vector, typically containing positive integers
• Logical vector

Rows that have the same grouping variable value belong to the same group. If you use
multiple grouping variables, rows that have the same combination of grouping variable
values belong to the same group.

Tips
• You can specify more than one data variable in S, and each variable becomes a set of

unstacked data variables in U. Use a vector of positive integers, a cell array or string
array containing multiple variable names, or a logical vector to specify vars. The one
indicator variable, specified by the input argument, ivar, applies to all data variables
specifies by vars.

See Also
join | stack

Introduced in R2013b

1 Alphabetical List

1-15768

untar
Extract contents of tar file

Syntax
untar(tarfilename)
untar(tarfilename,outputfolder)
filenames = untar(___)

Description
untar(tarfilename) extracts the archived contents of tarfilename into the current
folder, preserving the attributes and timestamps of each file. untar can extract files from
your local system or files from an Internet URL.

If a file exists with the same name and the file is not read-only, MATLAB overwrites it. On
Microsoft Windows platforms, MATLAB does not set the hidden, system, and archive
attributes.

untar(tarfilename,outputfolder) extracts the archived contents of tarfilename
into outputfolder. If outputfolder does not exist, MATLAB creates it.

filenames = untar(___) returns a cell array of character vectors containing the
names of the extracted files. You can use this syntax with any of the input argument
combinations in the previous syntaxes.

Examples

Extract Tar File to New Folder

Create a tar file, and then extract it to the folder backup.

Create a tar file of all the program files in the current folder.

 untar

1-15769

tar('myfiles.tar.gz',{'*.m','*.mlx'});

Extract myfiles.tar.gz to the folder backup.

programFiles = untar('myfiles','backup')

programFiles = 1x3 cell array
 {'backup\myfile1.m'} {'backup\myfile2.m'} {'backup\ExtractT...'}

Extract Archive File from URL

Download and extract an archive file from a URL to a local folder.

Suppose you have the archive file example.tar.gz stored at the URL http://
example.com/example.tar.gz. Download and extract the file to the example folder.

url = 'http://example.com/example.tar.gz';
gunzip(url, 'example');
untar('example/example.tar','example');

Input Arguments
tarfilename — Name of tar file
character vector | string scalar

Name of tar file to extract from, specified as a character vector or a string scalar. If
tarfilename has no extension, MATLAB searches for tarfilename appended
with .tgz, .tar.gz, or .tar. If you specify a .tgz or .gz extension, then untar
extracts the specified file using gunzip.

You can specify tarfilename as an absolute path, or a path relative to the current folder.

If tarfilename is a URL, then tarfilename must include the protocol type (for
example, http://). MATLAB downloads the URL to the temporary folder on your system,
and then deletes it the URL on cleanup.
Data Types: char | string

1 Alphabetical List

1-15770

outputfolder — Target folder
character vector | string scalar

Target folder for the extracted files, specified as a character vector or a string scalar.
Data Types: char | string

See Also
gunzip | gzip | tar | unzip | zip

Introduced before R2006a

 untar

1-15771

unwrap
Correct phase angles to produce smoother phase plots

Syntax
Q = unwrap(P)
Q = unwrap(P,tol)
Q = unwrap(P,[],dim)
Q = unwrap(P,tol,dim)

Description
Q = unwrap(P) corrects the radian phase angles in a vector P by adding multiples of
±2π when absolute jumps between consecutive elements of P are greater than or equal to
the default jump tolerance of π radians. If P is a matrix, unwrap operates columnwise. If P
is a multidimensional array, unwrap operates on the first nonsingleton dimension.

Q = unwrap(P,tol) uses a jump tolerance tol instead of the default value, π.

Q = unwrap(P,[],dim) unwraps along dim using the default tolerance.

Q = unwrap(P,tol,dim) uses a jump tolerance of tol.

Note A jump tolerance less than π has the same effect as a tolerance of π. For a tolerance
less than π, if a jump is greater than the tolerance but less than π, adding ±2π would
result in a jump larger than the existing one, so unwrap chooses the current point. If you
want to eliminate jumps that are less than π, try using a finer grid in the domain.

1 Alphabetical List

1-15772

Examples

Example 1
The following phase data comes from the frequency response of a third-order transfer
function. The phase curve jumps 3.5873 radians between w = 3.0 and w = 3.5, from
-1.8621 to 1.7252.

w = [0:.2:3,3.5:1:10];
p = [0
 -1.5728
 -1.5747
 -1.5772
 -1.5790
 -1.5816
 -1.5852
 -1.5877
 -1.5922
 -1.5976
 -1.6044
 -1.6129
 -1.6269
 -1.6512
 -1.6998
 -1.8621
 1.7252
 1.6124
 1.5930
 1.5916
 1.5708
 1.5708
 1.5708];
semilogx(w,p,'b*-'), hold

 unwrap

1-15773

Using unwrap to correct the phase angle, the resulting jump is 2.6959, which is less
than the default jump tolerance π. This figure plots the new curve over the original curve.

semilogx(w,unwrap(p),'r*-')

1 Alphabetical List

1-15774

Example 2
Array P features smoothly increasing phase angles except for discontinuities at elements
(3,1) and (1,2).

P = [0 7.0686 1.5708 2.3562
 0.1963 0.9817 1.7671 2.5525
 6.6759 1.1781 1.9635 2.7489
 0.5890 1.3744 2.1598 2.9452]

The function Q = unwrap(P) eliminates these discontinuities.

Q =
 0 7.0686 1.5708 2.3562
 0.1963 7.2649 1.7671 2.5525
 0.3927 7.4613 1.9635 2.7489
 0.5890 7.6576 2.1598 2.9452

 unwrap

1-15775

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Row vector input is only supported when the first two inputs are vectors and
nonscalar.

• Performs arithmetic in the output class. Therefore, results might not match MATLAB
due to different rounding errors.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
abs | angle

Introduced before R2006a

1 Alphabetical List

1-15776

unzip
Extract contents of zip file

Syntax
unzip(zipfilename)
unzip(zipfilename,outputfolder)
filenames = unzip(___)

Description
unzip(zipfilename) extracts the archived contents of zipfilename into the current
folder, preserving the attributes and timestamps of each file. unzip can extract files from
your local system or from an Internet URL.

If a file exists with the same name and the file is not read-only, MATLAB overwrites it.
Otherwise, MATLAB issues a warning. On Microsoft Windows platforms, the hidden,
system, and archive attributes are not set.

unzip(zipfilename,outputfolder) extracts zipfilename into outputfolder. If
outputfolder does not exist, MATLAB creates it.

filenames = unzip(___) returns a cell array of character vectors containing the
names of the extracted files.

Examples

Extract Zip File to New Folder

Create a zip file and extract it to the folder archive.

Create the zip file examples.zip containing example MAT-files.

 unzip

1-15777

zip('examples.zip','*.mat',...
 fullfile(matlabroot,'toolbox','matlab','demos'))

Extract examples.zip to the folder archive.

exampleFiles = unzip('examples.zip','archive')

exampleFiles = 1×40 cell array
 {'archive\accidents.mat'} {'archive\airfoil.mat'} {'archive\airlineResults.mat'} {'archive\cape.mat'} {'archive\census.mat'} {'archive\clown.mat'} {'archive\detail.mat'} {'archive\dmbanner.mat'} {'archive\durer.mat'} {'archive\earth.mat'} {'archive\fatalities.mat'} {'archive\fluidtemp.mat'} {'archive\flujet.mat'} {'archive\gatlin.mat'} {'archive\gatlin2.mat'} {'archive\integersignal.mat'} {'archive\logo.mat'} {'archive\mandrill.mat'} {'archive\mapredout.mat'} {'archive\membrane.mat'} {'archive\mri.mat'} {'archive\patients.mat'} {'archive\penny.mat'} {'archive\quake.mat'} {'archive\seamount.mat'} {'archive\spine.mat'} {'archive\stocks.mat'} {'archive\tetmesh.mat'} {'archive\topo.mat'} {'archive\topography.mat'} {'archive\trimesh2d.mat'} {'archive\trimesh3d.mat'} {'archive\truss.mat'} {'archive\usapolygon.mat'} {'archive\usastates.mat'} {'archive\usborder.mat'} {'archive\vibesdat.mat'} {'archive\west0479.mat'} {'archive\wind.mat'} {'archive\xpmndrll.mat'}

Extract Zip File from URL

Download and extract a zip file from a URL to a local folder.

Suppose you have the zip file example.zip stored at the URL http://example.com/
example.zip. Download and extract the file to the example folder.

url = 'http://example.com/example.zip';
unzip(url);

Input Arguments
zipfilename — Name of zip file
character vector | string scalar

Name of zip file to extract from, specified as a character vector or a string scalar. If
zipfilename has no extension, MATLAB searches for zipfilename appended
with .zip.

zipfilename must include a path relative to the current folder or an absolute path.

If zipfilename is a URL, zipfilename must include the protocol type (for example,
http://). MATLAB downloads the URL to the temporary folder on your system, and then
it deletes the URL on cleanup.

unzip does not support password-protected or encrypted zip archives.
Data Types: char | string

1 Alphabetical List

1-15778

outputfolder — Target folder
character vector | string scalar

Target folder for the extracted files, specified as a character vector or a string scalar.
Data Types: char | string

Tips
• To extract a zip file that contains non-7-bit ASCII characters, extract the file on a

machine that has the appropriate language/encoding settings.

See Also
gunzip | gzip | tar | unzip | zip

Topics
“Create and Extract from Zip Archives”

Introduced before R2006a

 unzip

1-15779

uplus, +
Unary plus

Syntax
C = +A
C = uplus(A)

Description
C = +A returns array A and stores it in C.

C = uplus(A) is an alternate way to execute +A, but is rarely used. It enables operator
overloading for classes.

Examples

Unary Plus of Matrix

Create a 2-by-2 matrix, A.

A = [1 -3; -2 4]

A = 2×2

 1 -3
 -2 4

Use unary plus on A.

C = +A

C = 2×2

1 Alphabetical List

1-15780

 1 -3
 -2 4

C and A are the same.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 uplus, +

1-15781

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
plus | uminus

Topics
“Array vs. Matrix Operations”
“Operator Precedence”
“MATLAB Operators and Special Characters”

Introduced before R2006a

1 Alphabetical List

1-15782

upper
Convert strings to uppercase

Syntax
newStr = upper(str)

Description
newStr = upper(str) converts all lowercase characters in str to the corresponding
uppercase characters and leaves all other characters unchanged.

Examples

Convert Character Vector to Uppercase
upper('Hello, World.')

ans =
'HELLO, WORLD.'

Convert String Array to Uppercase

Starting in R2017a, you can create string arrays using double quotes.

Convert a string array to contain uppercase characters.

str = ["The SOONER,";"the BETTER."]

str = 2x1 string array
 "The SOONER,"
 "the BETTER."

 upper

1-15783

newStr = upper(str)

newStr = 2x1 string array
 "THE SOONER,"
 "THE BETTER."

Input Arguments
str — Input array
string array | character array | cell array of character vectors

Input array, specified as a string array, character array, or cell array of character vectors.

Tips
For character arrays, the upper function supports the character sets:

• PC: Windows Latin-1
• Other: ISO Latin-1 (ISO 8859-1)

For string arrays, the upper function supports Unicode.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Alphabetical List

1-15784

Usage notes and limitations:

• Input array must be a string scalar or a character array.
• Input values must be in the range 0–127.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
char | isstrprop | lower | reverse | string

Topics
“Create Character Arrays”
“Create String Arrays”
“Analyze Text Data with String Arrays”
“Search and Replace Text”

Introduced before R2006a

 upper

1-15785

urlread
Download URL content to character vector (not recommended)

Note urlread is not recommended. Use webread or webwrite instead.

Syntax
str = urlread(URL)
str = urlread(URL,Name,Value)
[str,status] = urlread(___)

Description
str = urlread(URL) downloads the HTML web content from the specified URL into the
character vector str. urlread does not retrieve hyperlink targets and images.

str = urlread(URL,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

[str,status] = urlread(___) suppresses the display of error messages, using any
of the input arguments in the previous syntaxes. When the operation is successful,
status is 1. Otherwise, status is 0

Examples

Download Web Content by Specifying Complete URL

Download the HTML for the page on the MATLAB® Central File Exchange that lists
submissions related to urlread.

fullURL = ['https://www.mathworks.com/matlabcentral/fileexchange' ...
 '?term=urlread'];
str = urlread(fullURL);

1 Alphabetical List

1-15786

urlread reads from the specified URL and downloads the HTML content to the character
vector str.

Download Web Content Related to Term

Download the HTML for the page on the MATLAB® Central File Exchange that lists
submissions related to urlread.

URL = 'https://www.mathworks.com/matlabcentral/fileexchange';
str = urlread(URL,'Get',{'term','urlread'});

urlread reads from https://www.mathworks.com/matlabcentral/
fileexchange/?term=urlread and downloads the HTML content to the character
vector str.

Specify Timeout Duration

Download content from a page on the MATLAB® Central File Exchange as in the first
example, and specify a timeout duration of 5 seconds.

fullURL = ['https://www.mathworks.com/matlabcentral/fileexchange' ...
 '?term=urlread'];
str = urlread(fullURL,'Timeout',5);

Input Arguments
URL — Content location
character vector

Content location, specified as a character vector. Include the transfer protocol, such as
http, ftp, or file.
Example: 'https://www.mathworks.com/matlabcentral'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 urlread

1-15787

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Timeout',10,'Charset','UTF-8' specifies that urlread should time out
after 10 seconds, and the character encoding of the file is UTF-8.

Get — Data to send to the web form using the GET method
cell array

Parameters of the data to send to the web form using the GET method, specified as the
comma-separated pair consisting of 'get' and a cell array of paired parameter names
and values. The supported parameters depend upon the URL.

'Get' includes the data in the URL, separated by ? and & characters.
Example: 'Get',{'term','urlread'}

Post — Data to send to the web form using the POST method
cell array

Parameters of the data to send to the web form using the POST method, specified as the
comma-separated pair consisting of 'post' and a cell array of paired parameter names
and values. The supported parameters depend upon the URL.

'Post' submits the data as part of the request headers, not explicitly in the URL.

Charset — Character encoding
character vector

Character encoding, specified as the comma-separated pair consisting of 'Charset' and
a character vector. If you do not specify Charset, the function attempts to determine the
character encoding from the headers of the file. If the character encoding cannot be
determined, Charset defaults to the native encoding for the file protocol, and UTF-8 for
all other protocols.
Example: 'Charset','ISO-8859-1'

Timeout — Timeout duration
scalar

Timeout duration in seconds, specified as the comma-separated pair consisting of
'Timeout' and a scalar. The timeout duration determines when the function errors
rather than continues to wait for the server to respond or send data.

1 Alphabetical List

1-15788

Example: 'Timeout',10

UserAgent — Client user agent identification
character vector

Client user agent identification, specified as the comma-separated pair consisting of
'UserAgent' and a character vector.
Example: 'UserAgent','MATLAB R2012b'

Authentication — HTTP authentication mechanism
'Basic'

HTTP authentication mechanism, specified as the comma-separated pair consisting of
'Authentication' and a character vector. Currently, only the value 'Basic' is
supported. 'Authentication','Basic' specifies basic authentication.

If you include the Authentication argument, you must also include the Username and
Password arguments.

Username — User identifier
character vector

User identifier, specified as the comma-separated pair consisting of 'Username' and a
character vector. If you include the Username argument, you must also include the
Password and Authentication arguments.
Example: 'Username','myName'

Password — User authentication password
character vector

User authentication password, specified as the comma-separated pair consisting of
'Password' and a character vector. If you include the Password argument, you must
also include the Username and Authentication arguments.
Example: 'Password','myPassword123'

Output Arguments
str — Contents of the file at the specified URL
character vector

 urlread

1-15789

Contents of the file at the specified URL, returned as a character vector. For example, if
the URL corresponds to an HTML page, str contains the text and markup in the HTML
file. If the URL corresponds to a binary file, str is not readable.

status — Download status
1 | 0

Download status, returned as either 1 or 0. When the download is successful, status is
1. Otherwise, status is 0.

Tips
• urlread saves web content to a character vector. To save content to a file, use

urlwrite.
• urlread and urlwrite can download content from FTP sites. Alternatively, use the

ftp function to connect to an FTP server and the mget function to download a file.

See Also
ftp | mget | urlwrite | web | webread | webwrite

Topics
“Specify Proxy Server Settings for Connecting to the Internet”

Introduced before R2006a

1 Alphabetical List

1-15790

urlwrite
Download URL content and save to file (not recommended)

Note urlwrite is not recommended. Use websave instead.

Syntax
urlwrite(URL,filename)
urlwrite(URL,filename,Name,Value)

[filestr,status] = urlwrite(___)

Description
urlwrite(URL,filename) reads web content at the specified URL and saves it to the
file specified by filename.

urlwrite(URL,filename,Name,Value)uses additional options specified by one or
more Name,Value pair arguments.

[filestr,status] = urlwrite(___) stores the file path in variable filestr, and
suppresses the display of error messages, using any of the input arguments in the
previous syntaxes. When the operation is successful, status is 1. Otherwise, status is
0.

Examples

Download Web Content by Specifying Complete URL

Download the HTML for the page on the MATLAB® Central File Exchange that lists
submissions related to urlwrite. Save the results to samples.html in the current
folder.

 urlwrite

1-15791

fullURL = ['https://www.mathworks.com/matlabcentral/fileexchange' ...
 '?term=urlwrite'];
filename = 'samples.html';
urlwrite(fullURL,filename);

View the file.

web(filename)

Download Web Content Related to Term

Download the HTML for the page on the MATLAB® Central File Exchange that lists
submissions related to urlwrite. Save the results to samples.html in the current
folder.

URL = 'https://www.mathworks.com/matlabcentral/fileexchange';
filename = 'samples.html';
urlwrite(URL,filename,'get',{'term','urlwrite'});

urlwrite downloads the HTML content from https://www.mathworks.com/
matlabcentral/fileexchange/?term=urlwrite and writes it to samples.html.

Specify Timeout Duration

Download content from a page on the MATLAB® Central File Exchange as in the first
example, and specify a timeout duration of 5 seconds.

fullURL = ['https://www.mathworks.com/matlabcentral/fileexchange' ...
 '?term=urlwrite'];
filename = 'samples.html';
urlwrite(fullURL,filename,'Timeout',5);

Input Arguments
URL — Content location
character vector

Content location, specified as a character vector. Include the transfer protocol, such as
http, ftp, or file.

1 Alphabetical List

1-15792

Example: 'https://www.mathworks.com/matlabcentral'

filename — Name of file to store web content
character vector

Name of the file to store the web content, specified as a character vector. If you do not
specify the path for filename, urlwrite saves the file in the current folder.
Example: 'myfile.html'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Timeout',10,'Charset','UTF-8' specifies that urlread should time out
after 10 seconds, and the character encoding of the file is UTF-8.

Get — Data to send to the web form using the GET method
cell array

Parameters of the data to send to the web form using the GET method, specified as the
comma-separated pair consisting of 'get' and a cell array of paired parameter names
and values. The supported parameters depend upon the URL.

'Get' includes the data in the URL, separated by ? and & characters.
Example: 'Get',{'term','urlread'}

Post — Data to send to the web form using the POST method
cell array

Parameters of the data to send to the web form using the POST method, specified as the
comma-separated pair consisting of 'post' and a cell array of paired parameter names
and values. The supported parameters depend upon the URL.

'Post' submits the data as part of the request headers, not explicitly in the URL.

Charset — Character encoding
character vector

 urlwrite

1-15793

Character encoding, specified as the comma-separated pair consisting of 'Charset' and
a character vector. If you do not specify Charset, the function attempts to determine the
character encoding from the headers of the file. If the character encoding cannot be
determined, Charset defaults to the native encoding for the file protocol, and UTF-8 for
all other protocols.
Example: 'Charset','ISO-8859-1'

Timeout — Timeout duration
scalar

Timeout duration in seconds, specified as the comma-separated pair consisting of
'Timeout' and a scalar. The timeout duration determines when the function errors
rather than continues to wait for the server to respond or send data.
Example: 'Timeout',10

UserAgent — Client user agent identification
character vector

Client user agent identification, specified as the comma-separated pair consisting of
'UserAgent' and a character vector.
Example: 'UserAgent','MATLAB R2012b'

Authentication — HTTP authentication mechanism
'Basic'

HTTP authentication mechanism, specified as the comma-separated pair consisting of
'Authentication' and a character vector. Currently, only the value 'Basic' is
supported. 'Authentication','Basic' specifies basic authentication.

If you include the Authentication argument, you must also include the Username and
Password arguments.

Username — User identifier
character vector

User identifier, specified as the comma-separated pair consisting of 'Username' and a
character vector. If you include the Username argument, you must also include the
Password and Authentication arguments.
Example: 'Username','myName'

1 Alphabetical List

1-15794

Password — User authentication password
character vector

User authentication password, specified as the comma-separated pair consisting of
'Password' and a character vector. If you include the Password argument, you must
also include the Username and Authentication arguments.
Example: 'Password','myPassword123'

Output Arguments
filestr — Path of the file
character vector

Path of the file specified by filename, returned as a character vector.

status — Download status
1 | 0

Download status, returned as either 1 or 0. When the download is successful, status is
1. Otherwise, status is 0.

Tips
• urlread and urlwrite can download content from FTP sites. Alternatively, use the

ftp function to connect to an FTP server and the mget function to download a file.

See Also
ftp | mget | urlread | web | websave

Topics
“Specify Proxy Server Settings for Connecting to the Internet”

Introduced before R2006a

 urlwrite

1-15795

usejava
Determine if Java feature is available

Syntax
tf = usejava(feature)

Description
tf = usejava(feature) returns logical 1 (true) if the specified feature is supported.
Otherwise, it returns logical 0 (false). If the Java feature is unavailable, then you can
use this function for error handling.

Examples

Display Error Message

Use the following code snippet to test that the AWT GUI components are available before
attempting to display a Java Frame. If the AWT is not available on your system, MATLAB
displays the message Unable to open a Java Frame.

if usejava('awt')
 myFrame = java.awt.Frame;
else
 disp('Unable to open a Java Frame')
end

Call error Function

Use the following code snippet to terminate a script if MATLAB does not have access to
JVM software.

The variable, filename, is a function that contains Java code.

1 Alphabetical List

1-15796

if ~usejava('jvm')
 error([filename ' requires Java to run.'])
end

Input Arguments
feature — Java feature
'awt' | 'desktop' | 'jvm' | 'swing'

Java feature, specified as one of these values.

'awt' UI components in the Java Abstract Window
Toolkit (AWT) are available.

'desktop' MATLAB interactive desktop is running.
'jvm' Java Virtual Machine software (JVM) is

running.
'swing' Swing components (Java lightweight UI

components in the Java Foundation Classes)
are available.

See Also
error | javachk

Topics
“Java Class Path”

Introduced before R2006a

 usejava

1-15797

userpath
View or change default user work folder

Syntax
userpath

userpath(newpath)
userpath('reset')
userpath('clear')

Description
userpath returns the first folder on the search path, specified as a character vector.
MATLAB adds the folder specified by userpath to the search path at startup.

userpath(newpath) sets the first folder on the search path to newpath. The folder
specified using userpath appears at the top of the search path immediately, and at
startup in future sessions. MATLAB removes the folder previously specified by userpath
from the search path.

userpath('reset') sets the first folder on the search path to the default for your
platform. The default userpath folder is platform-specific.

• Windows platforms — %USERPROFILE%/Documents/MATLAB.
• Mac platforms — $home/Documents/MATLAB.
• Linux platforms — $home/Documents/MATLAB if $home/Documents exists.

MATLAB immediately adds the default folder to the top of the search path, and also adds
it to the search path at startup in future sessions. On Windows and Mac platforms, the
default folder is created if it does not exist. On Linux, the default folder is not created if it
does not exist.

userpath('clear') removes the first folder from the search path immediately, and for
future MATLAB sessions.

1 Alphabetical List

1-15798

Examples

View userpath Folder

This example assumes the userpath folder is set to the default value Documents
\MATLAB on the Windows platform. Start MATLAB and display the current folder:

pwd

H:\Documents\MATLAB

In this example, H is the drive at which Documents is located.

Confirm that the current folder is the userpath folder.

userpath

H:\Documents\MATLAB

Display the search path. MATLAB returns the search path. The folder specified by
userpath is at the top.

path

MATLABPATH

 H:\Documents\MATLAB
 C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
 C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

Set New Value for userpath

Assume the userpath folder is set to the default value on the Windows platform,
Documents\MATLAB.

Change the value from the default to C:\Research_Project.

newpath = 'C:\Research_Project';
userpath(newpath)

View the effect of the change on the search path.

 userpath

1-15799

path

MATLABPATH

 C:\Research_Project
 C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
 C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

MATLAB displays the search path, with the folder specified by userpath at the top.
MATLAB automatically removes the previous value of the userpath folder,
H:\Documents\MATLAB, from the search path when you assign a new folder using
userpath.

Clear the Value for userpath

Assume that the userpath folder is set to the default value, but you do not want it to be
added to the search path at startup.

Confirm that the default is set.

userpath

H:\Documents\MATLAB

Verify that it is at the top of the search path.

path

MATLABPATH

H:\Documents\MATLAB
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

Clear the value.

userpath('clear')

Verify the result.

userpath

1 Alphabetical List

1-15800

ans =
 ''

Confirm that the former userpath folder is removed from the search path.

path

MATLABPATH

C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

Note If you use userpath('clear'), the startup folder will not necessarily be on the
search path. This can also occur if you remove the userpath folder from the search path
and save the changes.

Input Arguments
newpath — New value for the userpath folder
character vector | string scalar

New value for the userpath folder, specified as a character vector or string scalar.
newpath must be an absolute path.
Example: 'C:\myFolder'
Data Types: char | string

Limitations
• In MATLAB Online, you only can view the folder specified by userpath. Changing the

folder is not supported.

Tips
• To specify the startup folder, set the Initial working folder preference, described in

“General Preferences”.

 userpath

1-15801

• To add a folder to the top of the search path, specify the path for the folder in the
MATLABPATH environment variable. MATLAB adds the paths specified in the
MATLABPATH environment variable to the search path below the userpath folder at
startup.

See Also
addpath | path | rmpath | savepath | startup

Topics
“What Is the MATLAB Search Path?”
“MATLAB Startup Folder”

Introduced in R2008a

1 Alphabetical List

1-15802

ValueIterator
An iterator over intermediate values for use with mapreduce

Description
The mapreduce function automatically creates a ValueIterator object during
execution and uses it to store the values associated with each unique intermediate key
added by the map function. Although you never need to explicitly create a
ValueIterator object to use mapreduce, you do need to interact with this object in the
reduce function. Use the hasnext and getnext object functions to retrieve the values
associated with each unique key in the intermediate KeyValueStore object.

Creation
The mapreduce function automatically creates ValueIterator objects during
execution.

Properties
Key — Intermediate key
numeric scalar | character vector

This property is read-only.

Intermediate key, specified as a numeric scalar or character vector. Key is one of the
unique keys added by a map function. All the values in the ValueIterator object are
associated with this key.

Object Functions
hasnext Determine if ValueIterator has one or more values available
getnext Get next value from ValueIterator

 ValueIterator

1-15803

Examples

Get Values from ValueIterator in Reduce Function

Use the hasnext and getnext functions in a while loop within the reduce function to
iteratively get values from the ValueIterator. For example,

function MeanDistReduceFun(sumLenKey, sumLenIter, outKVStore)
 sumLen = [0, 0];
 while hasnext(sumLenIter)
 sumLen = sumLen + getnext(sumLenIter);
 end
 add(outKVStore, 'Mean', sumLen(1)/sumLen(2));
end

Always call hasnext before getnext to confirm availability of a value. mapreduce
returns an error if you call getnext with no remaining values in the ValueIterator.

See Also
mapreduce

Topics
“Getting Started with MapReduce”
KeyValueStore

Introduced in R2014b

1 Alphabetical List

1-15804

validateattributes
Check validity of array

Syntax
validateattributes(A,classes,attributes)
validateattributes(A,classes,attributes,argIndex)
validateattributes(A,classes,attributes,funcName)
validateattributes(A,classes,attributes,funcName,varName)
validateattributes(A,classes,attributes,funcName,varName,argIndex)

Description
validateattributes(A,classes,attributes) validates that array A belongs to at
least one of the specified classes (or its subclass) and has all the specified attributes. If A
does not meet the criteria, then MATLAB throws an error and displays a formatted error
message. Otherwise, validateattributes completes without displaying any output.

validateattributes(A,classes,attributes,argIndex) includes the position of
the input in your function argument list as part of any generated error messages.

validateattributes(A,classes,attributes,funcName) includes the specified
function name in generated error identifiers.

validateattributes(A,classes,attributes,funcName,varName) includes the
specified variable name in generated error messages.

validateattributes(A,classes,attributes,funcName,varName,argIndex)
includes the specified information in generated error messages or identifiers.

Examples

 validateattributes

1-15805

Validate Array Size
classes = {'numeric'};
attributes = {'size',[4,6,2]};

A = rand(3,5,2);
validateattributes(A,classes,attributes)

Expected input to be of size 4x6x2 when it is actually size 3x5x2.

Because A did not match the specified attributes, MATLAB throws an error message.

Validate Array Monotonicity

Determine if an array is increasing or nondecreasing.

A = [1 5 8 2;
 9 6 9 4]
validateattributes(A, {'double'},{'nondecreasing'})
validateattributes(A, {'double'},{'increasing'})

A =

 1 5 8 2
 9 6 9 4

Since A is both increasing and nondecreasing, validateattributes does not throw an
error for either attribute check.

Setting A(2,3) equal to A(1,3) results in a column that is no longer strictly increasing,
so validateattributes throws an error.

A(2,3) = 8
validateattributes(A, {'double'},{'increasing'})

A =

 1 5 8 2
 9 6 8 4

Expected input to be strictly increasing.

However, the columns remain nondecreasing since each column element is equal to or
greater than the previous column element. The following code does not throw an error.

1 Alphabetical List

1-15806

validateattributes(A, {'double'},{'nondecreasing'})

Check Complex Number Attributes

Assuming that a is the second input argument to a function, check that it is nonnegative.

a = complex(1,1);
validateattributes(a,{'numeric'},{'nonnegative'},2)

Expected input number 2 to be nonnegative.

Because complex numbers lack a well-defined ordering in the complex plane,
validateattributes does not recognize them as positive or negative.

Ensure Array Values Are Within Specified Range

Check that the values in an array are 8-bit integers from 0 through 10.

Assume that this code occurs in a function called Rankings.

classes = {'uint8','int8'};
attributes = {'>',0,'<',10};
funcName = 'Rankings';
A = int8(magic(4));

validateattributes(A,classes,attributes,funcName)

Error using Rankings
Expected input to be an array with all of the values < 10.

Validate Function Input Parameters Using inputParser

Create a custom function that checks input parameters with inputParser, and use
validateattributes as the validating function for the addRequired and
addOptional methods.

Define the function.

function a = findArea(shape,dim1,varargin)
 p = inputParser;

 validateattributes

1-15807

 charchk = {'char'};
 numchk = {'numeric'};
 nempty = {'nonempty'};

 addRequired(p,'shape',@(x)validateattributes(x,charchk,nempty))
 addRequired(p,'dim1',@(x)validateattributes(x,numchk,nempty))
 addOptional(p,'dim2',1,@(x)validateattributes(x,numchk,nempty))
 parse(p,shape,dim1,varargin{:})

 switch shape
 case 'circle'
 a = pi * dim1.^2;
 case 'rectangle'
 a = dim1 .* p.Results.dim2;
 end
end

Call the function with a nonnumeric third input.

myarea = findArea('rectangle',3,'x')

Error using findArea (line 10)
The value of 'dim2' is invalid. Expected input to be one of these types:

double, single, uint8, uint16, uint32, uint64, int8, int16, int32, int64

Validate Function Arguments

Check the inputs of a function and include information about the input name and position
in generated error.

Define the function.

function v = findVolume(shape,ht,wd,ln)
 validateattributes(shape,{'char'},{'nonempty'},mfilename,'Shape',1)
 validateattributes(ht,{'numeric'},{'nonempty'},mfilename,'Height',2)
 validateattributes(wd,{'numeric'},{'nonempty'},mfilename,'Width',3)
 validateattributes(ln,{'numeric'},{'nonempty'},mfilename,'Length',4)

Call the function without the shape input argument.

vol = findVolume(10,7,4)

1 Alphabetical List

1-15808

Error using findVolume
Expected input number 1, Shape, to be one of these types:

char

Instead its type was double.

Error in findVolume (line 2)
validateattributes(shape,{'char'},{'nonempty'},mfilename,'Shape',1)

The function name becomes part of the error identifier.

MException.last.identifier

ans =

MATLAB:findVolume:invalidType

Input Arguments
A — Input
any type of array

Input, specified as any type of array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | struct | cell | function_handle
Complex Number Support: Yes

classes — Valid data types
cell array of character vectors | string vector

Valid data types, specified as a cell array of character vectors or a string vector. Each
element of classes can be the name of any built-in or custom class, including:

'single' Single-precision number
'double' Double-precision number
'int8' Signed 8-bit integer
'int16' Signed 16-bit integer
'int32' Signed 32-bit integer

 validateattributes

1-15809

'int64' Signed 64-bit integer
'uint8' Unsigned 8-bit integer
'uint16' Unsigned 16-bit integer
'uint32' Unsigned 32-bit integer
'uint64' Unsigned 64-bit integer
'logical' Logical 1 (true) or 0 (false)
'char' Character
'string' String array
'struct' Structure array
'cell' Cell array
'table' Table
'function_handle' Function handle

'numeric' Any data type for which the isa(A,'numeric') function
returns true, including int8, int16, int32, int64, uint8,
uint16, uint32, uint64, single, or double

'<class_name>' Any other class name

Data Types: cell | string

attributes — Valid attributes
cell array

Valid attributes, specified as a cell array.

Some attributes also require numeric values, such as attributes that specify the size or
number of elements of A. For these attributes, the numeric value or vector must
immediately follow the attribute name in the cell array.

These attributes describe the size and shape of array A.

'2d' Two-dimensional array, including scalars, vectors, matrices,
and empty arrays

'3d' Array with three or fewer dimensions
'column' Column vector, N-by-1

1 Alphabetical List

1-15810

'row' Row vector, 1-by-N
'scalar' Scalar value, 1-by-1
'scalartext' Either a string scalar or a character vector, including inputs

with zero characters
'vector' Row or column vector, or a scalar value
'size', [d1,...,dN] Array with dimensions d1-by-...-by-dN. To skip checking a

particular dimension, specify NaN for that dimension, such as
[3,4,NaN,2].

'numel', N Array with N elements
'ncols', N Array with N columns
'nrows', N Array with N rows
'ndims', N N-dimensional array
'square' Square matrix; in other words, a two-dimensional array with

equal number of rows and columns
'diag' Diagonal matrix
'nonempty' No dimensions that equal zero
'nonsparse' Array that is not sparse

These attributes specify valid ranges for values in A.

'>', N All values greater than N
'>=', N All values greater than or equal to N
'<', N All values less than N
'<=', N All values less than or equal to N
'finite' All values are finite
'nonnan' No values are NaN (Not a Number)

These attributes check types of values in a numeric or logical array, A.

'binary' Array of ones and zeros
'even' Array of even integers (includes zero)
'odd' Array of odd integers

 validateattributes

1-15811

'integer' Array of integer values
'real' Array of real values
'nonnegative' No element is less than zero
'nonzero' No element is equal to zero
'positive' No element is less than or equal to zero
'decreasing' Each element of a column is less than the previous element

and no element is NaN.
'increasing' Each element of a column is greater than the previous element

and no element is NaN.
'nondecreasing' Each element of a column is greater than or equal to the

previous element and no element is NaN.
'nonincreasing' Each element of a column is less than or equal to the previous

element and no element is NaN.

Data Types: cell

funcName — Name of function for validation
character vector | string scalar

Name of function for validation, specified as a character vector or as a string scalar. If you
specify an empty character vector, '', or the <missing> string, then the
validateattributes function ignores the funcName input.
Data Types: char | string

varName — Name of input variable
character vector | string scalar

Name of input variable, specified as a character vector or a string scalar. If you specify an
empty character vector, '', or the <missing> string, then the validateattributes
function ignores the varName input.
Data Types: char | string

argIndex — Position of input argument
positive integer

Position of input argument, specified as a positive integer.
Data Types: double

1 Alphabetical List

1-15812

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Some error messages are a simplified version of the MATLAB error message.
• The classes, funcName, varName, and argIndex arguments must be constant.
• Attribute names must be constant.
• In the generated code, the format of numbers in an error message might be different

from the format in MATLAB. For example, here is an error message in MATLAB:

Expected input to be an array with all of the values > 3.

Here is the error message in the generated code:

Expected input to be an array with all of the values > 3.000000000000000e+00.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
inputParser | is* | isa | isnumeric | validatestring

 validateattributes

1-15813

Introduced in R2007b

1 Alphabetical List

1-15814

validateFunctionSignaturesJSON
Validate functionSignatures.json files

Syntax
validateFunctionSignaturesJSON
validateFunctionSignaturesJSON(filenames)
T = validateFunctionSignaturesJSON(___)

Description
validateFunctionSignaturesJSON displays validation messages for the
functionSignatures.json file in the current folder. Validation messages indicate the
location of any invalid code and the reason the code is invalid. The line number in the
message is a hyperlink that you can click to go directly to that line in the Editor.

JSON syntax errors in the functionSignatures.json file impact validation of the file.
If validateFunctionSignaturesJSON reports JSON syntax errors, correct these
errors and then revalidate the file.

For information on creating a functionSignatures.json file, see “Customize Code
Suggestions and Completions”.

validateFunctionSignaturesJSON(filenames) validates the
functionSignatures.json files in filenames. Use this syntax to validate function
signature files in multiple folders.

T = validateFunctionSignaturesJSON(___) returns a table of results. You can
use this syntax with any of the input argument combinations in the previous syntaxes.

Examples

 validateFunctionSignaturesJSON

1-15815

Validate Function Signature File

Create the myFunc function in your current working folder.
function myFunc(reqA,reqB,varargin)
 NV1 = true;
 NV2 = 'Default';
 posA = [];

 if nargin > 3
 if rem(nargin,2)
 posA = varargin{1};
 V = varargin(2:end);
 else
 V = varargin;
 end
 for n = 1:2:size(V,2)
 switch V{n}
 case 'Name1'
 NV1 = V{n+1};
 case 'Name2'
 NV2 = V{n+1}
 otherwise
 error('Error.')
 end
 end
 end
end

Create the following function signature file, as functionSignatures.json, in your
current working folder. It contains three validation issues.

1 A property (attribute) is incorrect in the first argument object. The property should
be "name" instead of "argument".

2 The argument object for in3 is in the incorrect order. You must specify positional
arguments before name-value pairs.

3 There is an unnecessary comma after the last argument object. A comma in this
position is a JSON syntax error.

{
 "_schemaVersion": "1.0.0",
 "myFunc":
 {
 "inputs":
 [
 {"argument":"input1", "kind":"required", "type":["numeric"], "purpose":"ID of item"},
 {"name":"input2", "kind":"positional", "type":["numeric"], "purpose":"# Items"},
 {"name":"Name1", "kind":"namevalue", "type":["logical","scalar"],"purpose":"Option"},
 {"name":"in3", "kind":"positional", "type":["numeric"], "purpose":"Input Value"},
 {"name":"Name2", "kind":"namevalue", "type":["char", "choices={'Default','Choice1','Choice2'}"]},
]

1 Alphabetical List

1-15816

 }
}

Validate the functionSignatures.json file. The validation function does not report
the first two validation issues because it encounters a JSON syntax error.
validateFunctionSignaturesJSON

functionSignatures.json
=======================
L 12 (C 6-7): JSON syntax error at line 12, column 6 (character 551): expected value but found ']'.

Remove the extra column at the end of line 12 and, to view the remaining validation
issues, revalidate the file.
validateFunctionSignaturesJSON

functionSignatures.json
=======================
L 7 (C 10-19): Invalid attribute "argument".
L 10 (C 32-43): "positional" argument must appear before all "namevalue" and "flag" arguments.

Correct the remaining issues.
{
 "_schemaVersion": "1.0.0",
 "myFunc":
 {
 "inputs":
 [
 {"name":"input1", "kind":"required", "type":["numeric"], "purpose":"ID of item"},
 {"name":"input2", "kind":"positional", "type":["numeric"], "purpose":"# Items"},
 {"name":"in3", "kind":"positional", "type":["numeric"], "purpose":"Input Value"},
 {"name":"Name1", "kind":"namevalue", "type":["logical","scalar"],"purpose":"Option"},
 {"name":"Name2", "kind":"namevalue", "type":["char", "choices={'Default','Choice1','Choice2'}"]}
]
 }
}

Revalidate the functionSignatures.json file.
validateFunctionSignaturesJSON

validateFunctionSignaturesJSON completed without producing any messages.

Input Arguments
filenames — Path to functionSignatures.json files
string array | character vector | cell array of character vectors

 validateFunctionSignaturesJSON

1-15817

Absolute or relative path to functionSignatures.json files, specified as a character
vector, cell array of character vectors, or string array.
Example: ["ProjectA/functionSignatures.json" "ProjectB/
functionSignatures.json"]

Example: 'myFolder/functionSignatures.json'

See Also

Topics
“Customize Code Suggestions and Completions”

Introduced in R2018b

1 Alphabetical List

1-15818

validatestring
Check validity of text

Syntax
matchedStr = validatestring(str,validStrings)

matchedStr = validatestring(str,validStrings,argIdx)
matchedStr = validatestring(str,validStrings,funcName)
matchedStr = validatestring(str,validStrings,funcName,varName)
matchedStr = validatestring(str,validStrings,funcName,varName,
argIdx)

Description
matchedStr = validatestring(str,validStrings) checks the validity of str
against validStrings. The text is valid if it is an unambiguous, case-insensitive match
to any element in validStrings. The validatestring function supports partial
matching of leading characters.

If str is valid, then validatestring returns the matched text. Otherwise, MATLAB
throws an error.

matchedStr = validatestring(str,validStrings,argIdx) includes the position
of the input in your function argument list as part of any generated error messages. Use
this syntax to format any generated error messages.

matchedStr = validatestring(str,validStrings,funcName) includes the
specified function name in generated error identifiers.

matchedStr = validatestring(str,validStrings,funcName,varName)
includes the specified variable name in generated error messages. Use this syntax to
format any generated error messages.

 validatestring

1-15819

matchedStr = validatestring(str,validStrings,funcName,varName,
argIdx) includes the position of the input in your function argument list as part of any
generated error messages. Use this syntax to format any generated error messages.

Examples

Validate Text

Check if a string is in a set of valid values.

validStrings = ["wind","wonder","when"];
str = "wind";
validStr = validatestring(str,validStrings)

validStr =

 "wind"

Check if "WON" is in the set of valid values defined by validStrings. The string is a
case-insensitive, partial-match to "wonder".

str = "WON";
validStr = validatestring(str,validStrings)

validStr =

 "wonder"

If multiple partial matches exist and each string is not a substring of another, then
validatestring throws an error.

validStrings = ["showcase","show up","showtimes"];
str = "show";
validStr = validatestring(str,validStrings)

Expected input to match one of these values:

'showcase', 'show up', 'showtimes'

The input, show, matched more than one valid value.

1 Alphabetical List

1-15820

However, if multiple partial matches exist and each string is a substring of another, then
validatestring returns the shortest match.

validStrings = ["righteously","right","righteous"];
str = "rig";
validStr = validatestring(str,validStrings)

validStr =

 "right"

Validate Text Input to Function

Create a function in a file named findArea.m. The validation for shape includes the
position of the input in your function argument list as part of any generated error
messages. The validation for units also includes the variable name ('units') in the
error message and the file name in the error identifier. Use the mfilename function to
find the file name.
function a = findArea(shape,h,w,units)
 expectedShapes = {'square','rectangle','triangle'};
 expectedUnits = {'cm','m','in','ft','yds'};

 shapeName = validatestring(shape,expectedShapes,1);
 unitAbbrev = validatestring(units,expectedUnits,mfilename,'units',4);

 switch shapeName
 case {'square','rectangle'}
 a = h*w;
 case {'triangle'}
 a = h*w/2;
 otherwise
 error('Unknown shape passing validation.')
 end
end

Call the function with a valid shape name. The value of 'Rect' is valid because it is a
case-insensitive, partial match to 'rectangle'.

a = findArea('Rect',10,3,'cm')

a =

 30

Call the function with an invalid shape name. The error message contains the position of
the invalid text. Here, the invalid text is the first input argument.

 validatestring

1-15821

a = findArea('octagon',7,13,'in')

Error using findArea (line 5)
Expected input number 1 to match one of these values:

'square', 'rectangle', 'triangle'

The input, 'octagon', did not match any of the valid values.

Call the function with an invalid unit. The error message contains the variable name and
the position of the invalid text. The invalid text is the fourth input argument.

a = findArea('TRI',10,3,'mi')

Error using findArea (line 6)
Expected input number 4, units, to match one of these values:

'cm', 'm', 'in', 'ft', 'yds'

The input, 'mi', did not match any of the valid values.

Use mException to view the error identifier, which includes the file name.

id = MException.last.identifier

id =

 'MATLAB:findArea:unrecognizedStringChoice'

Input Arguments
str — Text to validate
string scalar | character vector

Text to validate, specified as a string scalar or a character vector.
Example: 'textToValidate'
Example: "otherTextToValidate"

validStrings — Text to match
string array | cell array of character vectors

Text to match, specified as a string array or a cell array of character vectors.

1 Alphabetical List

1-15822

Example: ["value1","value2"]
Example: {'val1','val2',val3'}

funcName — Name of function
string scalar | character vector

Name of the function whose input to validate, specified as a string scalar or character
vector. If you specify an empty character vector '' or the <missing> string, then the
validatestring function ignores the funcName input.
Example: "myFunctionName"
Example: Call to mfilename function, as in the code
validatestring(units,expectedUnits,mfilename)

varName — Name of input variable
string scalar | character vector

Name of input variable to validate, specified as a string scalar or character vector. If you
specify an empty character vector '' or the <missing> string, then the
validatestring function ignores the varName input.
Example: "inputVariable1"
Example: 'variableB'

argIdx — Position of input argument
positive integer

Position of the input argument to validate, specified as a positive integer.

Output Arguments
matchedStr — Matched text
string scalar | character vector

Matched text, returned as a string scalar if validStrings is a string array or as a
character vector if validStrings is a cell array of character vectors.

 validatestring

1-15823

Example — Match 'ball'
with . . .

Return Value Type of Match

ball, barn, bell ball Exact match
balloon, barn balloon Partial match (leading characters)
ballo, balloo, balloon ballo (shortest

match)
Multiple partial matches where each
character vector is a subset of another

balloon, ballet Error Multiple partial matches to unique
character vectors

barn, bell Error No match

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You must supply the third argument and it must be funcName.
• The validStrings, funcName, varName, and argIdx arguments must be constant.
• MATLAB and the generated code behave differently when multiple partial matches

exist and each string is a substring of another string. In MATLAB, validatestring
returns the shortest match. In the generated code, validatestring throws an error.

See Also
inputParser | validateattributes

Introduced in R2006b

1 Alphabetical List

1-15824

values
Package: containers

Return values of Map object

Syntax
valueSet = values(M)
valueSet = values(M,keySet)

Description
valueSet = values(M) returns all the values of the input Map object as a cell array.

valueSet = values(M,keySet) returns the values that correspond to the keys
specified in the cell array keySet. The output argument valueSet has the same size as
keySet.

Examples

Values of Map

Create a Map object.

ids = [437 1089 2362];
names = {'Li, N.','Jones, R.','Sanchez, C.'};
M = containers.Map(ids,names)

M =
 Map with properties:

 Count: 3
 KeyType: double
 ValueType: char

 values

1-15825

Return a cell array containing its values.

valueSet = values(M)

valueSet = 1x3 cell array
 {'Li, N.'} {'Jones, R.'} {'Sanchez, C.'}

Values Corresponding to Specified Keys

Create a Map object.

months = {'Jan','Feb','Mar','Apr'};
rainfall = [327.2 368.2 197.6 178.4];
M = containers.Map(months,rainfall)

M =
 Map with properties:

 Count: 4
 KeyType: char
 ValueType: double

Return values that correspond to specified keys.

keySet = {'Jan','Feb'};
valueSet = values(M,keySet)

valueSet = 1x2 cell array
 {[327.2000]} {[368.2000]}

Return one value. Even when you specify one key, you must specify it as a cell array.

keySet = {'Apr'};
valueSet = values(M,keySet)

valueSet = 1x1 cell array
 {[178.4000]}

1 Alphabetical List

1-15826

Input Arguments
M — Input Map object
Map object

Input Map object.

keySet — Keys corresponding to values to return
cell array

Keys corresponding to values to return from the Map object, specified as a cell array.

Even when you specify keys as strings, the keys must be contained in a cell array.

See Also
containers.Map | isKey | keys | remove

Topics
“Overview of Map Data Structure”
“Examine Contents of Map”
“Read and Write Using Key Index”
“Modify Keys and Values in Map”

Introduced in R2008b

 values

1-15827

vander
Vandermonde matrix

Syntax
A = vander(v)

Description
A = vander(v) returns the “Vandermonde Matrix” on page 1-15829 such that its
columns are powers of the vector v.

Examples

Find the Vandermonde Matrix for Vector Input

Use the colon operator to create vector v. Find the Vandermonde matrix for v.

v = 1:.5:3

v = 1×5

 1.0000 1.5000 2.0000 2.5000 3.0000

A = vander(v)

A = 5×5

 1.0000 1.0000 1.0000 1.0000 1.0000
 5.0625 3.3750 2.2500 1.5000 1.0000
 16.0000 8.0000 4.0000 2.0000 1.0000
 39.0625 15.6250 6.2500 2.5000 1.0000
 81.0000 27.0000 9.0000 3.0000 1.0000

1 Alphabetical List

1-15828

Find the alternate form of the Vandermonde matrix using fliplr.

A = fliplr(vander(v))

A = 5×5

 1.0000 1.0000 1.0000 1.0000 1.0000
 1.0000 1.5000 2.2500 3.3750 5.0625
 1.0000 2.0000 4.0000 8.0000 16.0000
 1.0000 2.5000 6.2500 15.6250 39.0625
 1.0000 3.0000 9.0000 27.0000 81.0000

Input Arguments
v — Input
numeric vector

Input, specified as a numeric vector.
Data Types: single | double
Complex Number Support: Yes

Definitions

Vandermonde Matrix
For input vector v = v1 v2 … vN , the Vandermonde matrix is

v1
N − 1 ⋯ v1

1 v1
0

v2
N − 1 ⋯ v2

1 v2
0

⋰ ⋮ ⋮
vN

N − 1 vN
1 vN

0

The matrix is described by the formula A i, j = v i N − j such that its columns are powers
of the vector v.

 vander

1-15829

An alternate form of the Vandermonde matrix flips the matrix along the vertical axis, as
shown. Use fliplr(vander(v)) to return this form.

v1
0 v1

1 ⋯ v1
N − 1

v2
0 v2

1 ⋯ v2
N − 1

⋮ ⋮ ⋱
vN

0 vN
1 vN

N − 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
gallery | hilb | mpower | pascal | power | rosser | toeplitz

1 Alphabetical List

1-15830

Introduced before R2006a

 vander

1-15831

var
Variance

Syntax
V = var(A)
V = var(A,w)
V = var(A,w,'all')
V = var(A,w,dim)
V = var(A,w,vecdim)
V = var(___ ,nanflag)

Description
V = var(A) returns the variance on page 1-15838 of the elements of A along the first
array dimension whose size does not equal 1.

• If A is a vector of observations, the variance is a scalar.
• If A is a matrix whose columns are random variables and whose rows are observations,

V is a row vector containing the variances corresponding to each column.
• If A is a multidimensional array, then var(A) treats the values along the first array

dimension whose size does not equal 1 as vectors. The size of this dimension becomes
1 while the sizes of all other dimensions remain the same.

• The variance is normalized by the number of observations-1 by default.
• If A is a scalar, var(A) returns 0. If A is a 0-by-0 empty array, var(A) returns NaN.

V = var(A,w) specifies a weighting scheme. When w = 0 (default), V is normalized by
the number of observations-1. When w = 1, it is normalized by the number of
observations. w can also be a weight vector containing nonnegative elements. In this case,
the length of w must equal the length of the dimension over which var is operating.

V = var(A,w,'all') computes the variation over all elements of A when w is either 0
or 1. This syntax is valid for MATLAB versions R2018b and later.

1 Alphabetical List

1-15832

V = var(A,w,dim) returns the variance along the dimension dim. To maintain the
default normalization while specifying the dimension of operation, set w = 0 in the
second argument.

V = var(A,w,vecdim) computes the variance over the dimensions specified in the
vector vecdim when w is 0 or 1. For example, if A is a matrix, then var(A,0,[1 2])
computes the variance over all elements in A, since every element of a matrix is contained
in the array slice defined by dimensions 1 and 2.

V = var(___ ,nanflag) specifies whether to include or omit NaN values from the
calculation for any of the previous syntaxes. For example, var(A,'includenan')
includes all NaN values in A while var(A,'omitnan') ignores them.

Examples

Variance of Matrix

Create a matrix and compute its variance.

A = [4 -7 3; 1 4 -2; 10 7 9];
var(A)

ans = 1×3

 21.0000 54.3333 30.3333

Variance of Array

Create a 3-D array and compute its variance.

A(:,:,1) = [1 3; 8 4];
A(:,:,2) = [3 -4; 1 2];
var(A)

ans =
ans(:,:,1) =

 var

1-15833

 24.5000 0.5000

ans(:,:,2) =

 2 18

Specify Variance Weight Vector

Create a matrix and compute its variance according to a weight vector w.

A = [5 -4 6; 2 3 9; -1 1 2];
w = [0.5 0.25 0.25];
var(A,w)

ans = 1×3

 6.1875 9.5000 6.1875

Specify Dimension for Variance

Create a matrix and compute its variance along the first dimension.

A = [4 -2 1; 9 5 7];
var(A,0,1)

ans = 1×3

 12.5000 24.5000 18.0000

Compute the variance of A along the second dimension.

var(A,0,2)

ans = 2×1

 9

1 Alphabetical List

1-15834

 4

Variance of Array Page

Create a 3-D array and compute the variance over each page of data (rows and columns).

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
V = var(A,0,[1 2])

V =
V(:,:,1) =

 6.2500

V(:,:,2) =

 60

V(:,:,3) =

 20.9167

Variance Excluding NaN

Create a vector and compute its variance, excluding NaN values.

A = [1.77 -0.005 3.98 -2.95 NaN 0.34 NaN 0.19];
V = var(A,'omitnan')

V = 5.1970

 var

1-15835

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double
Complex Number Support: Yes

w — Weight
0 (default) | 1 | vector

Weight, specified as one of:

• 0 — normalizes by the number of observations-1. If there is only one observation, the
weight is 1.

• 1 — normalizes by the number of observations.
• a vector made up of nonnegative scalar weights corresponding to the dimension of A

along which the variance is calculated.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(V,dim) is
1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A.

• If dim = 1, then var(A,0,1) returns a row vector containing the variance of the
elements in each column.

1 Alphabetical List

1-15836

• If dim = 2, then var(A,0,2) returns a column vector containing the variance of the
elements in each row.

var returns an array of zeros the same size as A when dim is greater than ndims(A).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

vecdim — Vector of dimensions
vector of positive integers

Vector of dimensions, specified as a vector of positive integers. Each element represents a
dimension of the input array. The lengths of the output in the specified operating
dimensions are 1, while the others remain the same.

Consider a 2-by-3-by-3 input array, A. Then var(A,0,[1 2]) returns a 1-by-1-by-3 array
whose elements are the variances computed over each page of A.

 var

1-15837

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — the variance of input containing NaN values is also NaN.
• 'omitnan' — all NaN values appearing in either the input array or weight vector are

ignored.

Data Types: char

Definitions
Variance
For a random variable vector A made up of N scalar observations, the variance is defined
as

V = 1
N − 1 ∑i = 1

N
Ai− μ 2

where μ is the mean of A,

1 Alphabetical List

1-15838

μ = 1
N ∑i = 1

N
Ai .

Some definitions of variance use a normalization factor of N instead of N-1, which can be
specified by setting w to 1. In either case, the mean is assumed to have the usual
normalization factor N.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitation:

The weighting scheme cannot be a vector.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If specified, dim must be a constant.
• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB

Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

 var

1-15839

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
corrcoef | cov | mean | std

Introduced before R2006a

1 Alphabetical List

1-15840

varargin
Variable-length input argument list

Syntax
varargin

Description
varargin is an input variable in a function definition statement that enables the function
to accept any number of input arguments. Specify varargin using lowercase characters,
and include it as the last input argument after any explicitly declared inputs.

When the function executes, varargin is a 1-by-N cell array, where N is the number of
inputs that the function receives after the explicitly declared inputs. However, if the
function receives no inputs after the explicitly declared inputs, then varargin is an
empty cell array.

Examples

Variable Number of Function Inputs

Define a function in a file named acceptVariableNumInputs.m that accepts a variable
number of inputs and displays the values of each input.

type acceptVariableNumInputs

function acceptVariableNumInputs(varargin)
 disp("Number of input arguments: " + nargin)
 celldisp(varargin)
end

Call the function with several inputs.

acceptVariableNumInputs(ones(3),'some text',pi)

 varargin

1-15841

Number of input arguments: 3

ans{1} =

 1 1 1
 1 1 1
 1 1 1

ans{2} =

some text

ans{3} =

 3.1416

varargin and Declared Inputs

Define a function in a file named definedAndVariableNumInputs.m that expects two
inputs and accepts an additional number of inputs.

type definedAndVariableNumInputs

function definedAndVariableNumInputs(X,Y,varargin)
 disp("Total number of input arguments: " + nargin)

 formatSpec = "Size of varargin cell array: %dx%d";
 str = compose(formatSpec,size(varargin));
 disp(str)

end

Call the function with several inputs.

definedAndVariableNumInputs(7,pi,rand(4),datetime('now'),'hello')

Total number of input arguments: 5
Size of varargin cell array: 1x3

1 Alphabetical List

1-15842

Call the function with two inputs. varargin is an empty cell array.

definedAndVariableNumInputs(13,42)

Total number of input arguments: 2
Size of varargin cell array: 0x0

Variable Number of Inputs and Outputs

Define a function in a file named variableNumInputAndOutput.m that accepts a
variable number of inputs and outputs.

type variableNumInputAndOutput

function varargout = variableNumInputAndOutput(varargin)
 disp(['Number of provided inputs: ' num2str(length(varargin))])
 disp(['Number of requested outputs: ' num2str(nargout)])

 for k = 1:nargout
 varargout{k} = k;
 end
end

Call the function with two inputs and three outputs.

[d,g,p] = variableNumInputAndOutput(6,'Nexus')

Number of provided inputs: 2
Number of requested outputs: 3

d = 1

g = 2

p = 3

Call the function again with no inputs or outputs.

variableNumInputAndOutput

Number of provided inputs: 0
Number of requested outputs: 0

 varargin

1-15843

Create Function Wrapper

In a file in your working folder, create a wrapper to the plot function that plots a red line.
The redplot function accepts a variable-length input argument list and returns a
variable-length output argument list. It sets the line color to red, and forwards other input
values to the plot function. This function wrapper enables you to pass redplot the
same inputs as plot and not specify that the line color is red.

type redplot.m

function varargout = redplot(varargin)
 [varargout{1:nargout}] = plot(varargin{:},'Color',[1,0,0]);
end

Use redplot to create a line plot.

x = 0:pi/100:2*pi;
y = sin(x);
redplot(x,y)

1 Alphabetical List

1-15844

Call redplot again, and specify input and output arguments to forward to the plot
function.

h = redplot(x,y,'Marker','o','MarkerEdgeColor','green');

 varargin

1-15845

See Also
nargin | narginchk | varargout

Topics
“Support Variable Number of Inputs”
“Argument Checking in Nested Functions”

Introduced before R2006a

1 Alphabetical List

1-15846

varargout
Variable-length output argument list

Syntax
varargout

Description
varargout is an output variable in a function definition statement that enables the
function to return any number of output arguments. Specify varargout using lowercase
characters, and include it as the last output argument after any explicitly declared
outputs.

When the function executes, varargout is a 1-by-N cell array, where N is the number of
outputs requested after the explicitly declared outputs.

Examples

Variable Number of Function Outputs

Define a function in a file named returnVariableNumOutputs.m that returns an output
size vector s and a variable number of additional outputs.

type returnVariableNumOutputs

function [s,varargout] = returnVariableNumOutputs(x)
 nout = max(nargout,1) - 1;
 s = size(x);
 for k = 1:nout
 varargout{k} = s(k);
 end
end

 varargout

1-15847

Output s contains the dimensions of the input array x. Additional outputs correspond to
the individual dimensions within s.

Call the function with a three-dimensional array and request three outputs.

A = rand(4,5,2);
[s,rows,cols] = returnVariableNumOutputs(A)

s = 1×3

 4 5 2

rows = 4

cols = 5

Call the function again with a four-dimensional array and request four outputs. This time,
the function does not return the individual fourth dimension.

A = zeros(1,4,5,2);
[s,dim1,dim2,dim3] = returnVariableNumOutputs(A)

s = 1×4

 1 4 5 2

dim1 = 1

dim2 = 4

dim3 = 5

Call the function once more on A and request one output. Now the function returns the
dimensions of A and not varargout.

s = returnVariableNumOutputs(A)

s = 1×4

 1 4 5 2

1 Alphabetical List

1-15848

Variable Number of Inputs and Outputs

Define a function in a file named variableNumInputAndOutput.m that accepts a
variable number of inputs and outputs.

type variableNumInputAndOutput

function varargout = variableNumInputAndOutput(varargin)
 disp(['Number of provided inputs: ' num2str(length(varargin))])
 disp(['Number of requested outputs: ' num2str(nargout)])

 for k = 1:nargout
 varargout{k} = k;
 end
end

Call the function with two inputs and three outputs.

[d,g,p] = variableNumInputAndOutput(6,'Nexus')

Number of provided inputs: 2
Number of requested outputs: 3

d = 1

g = 2

p = 3

Call the function again with no inputs or outputs.

variableNumInputAndOutput

Number of provided inputs: 0
Number of requested outputs: 0

Create Function Wrapper

In a file in your working folder, create a wrapper to the plot function that plots a red line.
The redplot function accepts a variable-length input argument list and returns a
variable-length output argument list. It sets the line color to red, and forwards other input
values to the plot function. This function wrapper enables you to pass redplot the
same inputs as plot and not specify that the line color is red.

type redplot.m

 varargout

1-15849

function varargout = redplot(varargin)
 [varargout{1:nargout}] = plot(varargin{:},'Color',[1,0,0]);
end

Use redplot to create a line plot.

x = 0:pi/100:2*pi;
y = sin(x);
redplot(x,y)

Call redplot again, and specify input and output arguments to forward to the plot
function.

h = redplot(x,y,'Marker','o','MarkerEdgeColor','green');

1 Alphabetical List

1-15850

See Also
nargout | nargoutchk | varargin

Topics
“Support Variable Number of Outputs”
“Argument Checking in Nested Functions”

Introduced before R2006a

 varargout

1-15851

varfun
Apply function to table or timetable variables

Syntax
B = varfun(func,A)
B = varfun(func,A,Name,Value)

Description
B = varfun(func,A) applies the function func separately to each variable of the table
or timetable A and returns the results in the table or timetable B.

The function func must take one input argument and return arrays with the same
number of rows each time it is called. The ith variable in the output argument, B{:,i},
is equal to func(A{:,i}).

If A is a timetable and func aggregates data over groups of rows, then varfun assigns
the first row time from each group of rows in A as the corresponding row time in B. To
return B as a table without row times, specify 'OutputFormat' as 'table'.

B = varfun(func,A,Name,Value) applies the function func separately to each
variable of the table or timetable A with additional options specified by one or more
Name,Value pair arguments.

For example, you can specify which variables to pass to the function.

Examples

Apply Element-wise Function

Define and apply an element-wise function to the variables of a table to square all the
elements.

1 Alphabetical List

1-15852

Define a table containing numeric variables.

A = table([0.71;-2.05;-0.35;-0.82;1.57],[0.23;0.12;-0.18;0.23;0.41])

A=5×2 table
 Var1 Var2
 _____ _____

 0.71 0.23
 -2.05 0.12
 -0.35 -0.18
 -0.82 0.23
 1.57 0.41

Define the anonymous function to find the square of an input.

func = @(x) x.^2;

Apply the function to all the variables of table A.

B = varfun(func,A)

B=5×2 table
 Fun_Var1 Fun_Var2
 ________ ________

 0.5041 0.0529
 4.2025 0.0144
 0.1225 0.0324
 0.6724 0.0529
 2.4649 0.1681

The variables of B have names based on the function and the variable names from A.

Apply Function that Returns Scalar From Vector

Compute the mean of each variable in a 5-by-2 table.

Define a table containing numeric variables.

A = table([0.71;-2.05;-0.35;-0.82;1.57],[0.23;0.12;-0.18;0.23;0.41])

 varfun

1-15853

A=5×2 table
 Var1 Var2
 _____ _____

 0.71 0.23
 -2.05 0.12
 -0.35 -0.18
 -0.82 0.23
 1.57 0.41

Define the anonymous function to find the mean of an input.

func = @mean;

func uses an existing MATLAB® function to define the operation.

Apply the function to all the variables of table A.

B = varfun(func,A)

B=1×2 table
 mean_Var1 mean_Var2
 _________ _________

 -0.188 0.162

B is a table containing the average value from each variable. To return a numeric vector
instead of a table, you can use B = varfun(func,A,'OutputFormat','uniform').

Apply Function to Groups Within Variables

Compute the group-wise means of variables in a table, A, and return them as rows in a
table, B.

Create a table where one variable defines groups.

A = table({'test2';'test1';'test2';'test3';'test1'},...
 [0.71;-2.05;-0.35;-0.82;1.57],[0.23;0.12;-0.18;0.23;0.41])

A=5×3 table
 Var1 Var2 Var3

1 Alphabetical List

1-15854

 _______ _____ _____

 'test2' 0.71 0.23
 'test1' -2.05 0.12
 'test2' -0.35 -0.18
 'test3' -0.82 0.23
 'test1' 1.57 0.41

Define the anonymous function to find the mean of an input.

func = @mean;

func uses an existing MATLAB® function to define the operation.

Apply the function to each group of data defined by Var1.

B = varfun(func,A,'GroupingVariables','Var1')

B=3×4 table
 Var1 GroupCount mean_Var2 mean_Var3
 _______ __________ _________ _________

 'test1' 2 -0.24 0.265
 'test2' 2 0.18 0.025
 'test3' 1 -0.82 0.23

B contains a variable called GroupCount to indicate the number of entries from table A in
that group.

Apply Function to Groups Within Timetable Variables

Create a timetable containing sample data. The row times of the timetable also define
groups.

dt = datetime(2016,1,1)+days([0 1 1 2 3 3])';
A = timetable(dt,[0.71;-2.05;-0.35;-0.82;1.57;0.09],...
 [0.23;0.12;-0.18;0.23;0.41;0.02],...
 'VariableNames',{'x' 'y'})

A=6×3 timetable
 dt x y

 varfun

1-15855

 ____________________ _____ _____

 01-Jan-2016 00:00:00 0.71 0.23
 02-Jan-2016 00:00:00 -2.05 0.12
 02-Jan-2016 00:00:00 -0.35 -0.18
 03-Jan-2016 00:00:00 -0.82 0.23
 04-Jan-2016 00:00:00 1.57 0.41
 04-Jan-2016 00:00:00 0.09 0.02

Compute the group-wise means of the variables in the timetable. varfun returns B as a
timetable because A is a timetable. When you specify the row times as the grouping
variable, you cannot specify any variable as another grouping variable.

B = varfun(@mean,A,'GroupingVariables','dt')

B=4×4 timetable
 dt GroupCount mean_x mean_y
 ____________________ __________ ______ ______

 01-Jan-2016 00:00:00 1 0.71 0.23
 02-Jan-2016 00:00:00 2 -1.2 -0.03
 03-Jan-2016 00:00:00 1 -0.82 0.23
 04-Jan-2016 00:00:00 2 0.83 0.215

Input Arguments
func — Function
function handle

Function, specified as a function handle. You can define the function in a file or as an
anonymous function. If func corresponds to more than one function file (that is, if func
represents a set of overloaded functions), MATLAB determines which function to call
based on the class of the input arguments.

Use the 'OutputFormat','cell' name-value pair argument, if the function func take
one input argument and returns arrays with a different numbers of rows each time it is
called. Otherwise, func must return arrays with the same number of rows.
Example: func = @(x) x.^2; computes the square of each element of an input.

1 Alphabetical List

1-15856

A — Input table
table | timetable

Input table, specified as a table or a timetable.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'InputVariables',2 uses only the second variable in A as an input to func.

InputVariables — Specifiers for selecting variables of A to pass to func
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector | function handle

Specifiers for selecting variables of A to pass to func, specified as the comma-separated
pair consisting of 'InputVariables' and a positive integer, vector of positive integers,
character vector, cell array of character vectors, string array, logical vector, or a function
handle.

If you specify 'InputVariables' as a function handle, then it must return a logical
scalar, and varfun passes only the variables in A where the function returns 1 (true).

GroupingVariables — One or more variables in A that define groups of rows
positive integer | vector of positive integers | character vector | cell array of character
vectors | string array | logical vector

One or more variables in A that define groups of rows, specified as the comma-separated
pair consisting of 'GroupingVariables' and a positive integer, vector of positive
integers, character vector, cell array of character vectors, string array, or logical vector.

The value of 'GroupingVariables' specifies which table variables are the grouping
variables, not their data types. A grouping variable can be numeric, or have data type
categorical, calendarDuration, datetime, duration, logical, or string.

Rows in A that have the same grouping variable values belong to the same group. varfun
applies func to each group of rows within each of the variables of A, rather than to each
entire variable.

 varfun

1-15857

If any grouping variable contains NaNs or missing values (such as NaTs, undefined
categorical values, or missing strings), then the corresponding rows do not belong to any
group, and are excluded from the output.

Row labels can be grouping variables. You can group on row labels alone, on one or more
variables in A, or on row labels and variables together.

• If A is a table, then the labels are row names.
• If A is a timetable, then the labels are row times.

The output, B, has one row for each group when you specify
'OutputFormat','uniform' or 'OutputFormat','cell'. When you specify
'OutputFormat','table' or 'OutputFormat','timetable', the sizes of the
outputs from func determine how many rows of B correspond to each group.

OutputFormat — Format of B
'table' (default) | 'timetable' | 'uniform' | 'cell'

Format of B, specified as the comma-separated pair consisting of 'OutputFormat' and
either the value 'uniform', 'table', 'timetable', or 'cell'.

'table' varfun returns a table with one variable for each variable in A (or each
variable specified with 'InputVariables'). For grouped computation, B,
also contains the grouping variables.

'table' allows you to use a function that returns values of different sizes
or data types for the different variables in A. However, for ungrouped
computation, func must return arrays with the same number of rows each
time it is called. For grouped computation, func must return values with
the same number of rows each time it is called for a given group.

If A is a table, then this is the default output format.

1 Alphabetical List

1-15858

'timetable
'

varfun returns a timetable with one variable for each variable in A (or
each variable specified with 'InputVariables'). For grouped
computation, B also contains the grouping variables.

varfun creates the row times of B from the row times of A. If the row
times assigned to B do not make sense in the context of the calculations
performed using func, then specify the output format as
'OutputFormat','table'.

If A is a timetable, then this is the default output format.
'uniform' varfun concatenates the values into a vector. func must return a scalar

with the same data type each time it is called.
'cell' varfun returns B as a cell array. 'cell' allows you to use a function that

returns values of different sizes or data types.

ErrorHandler — Function to call if func fails
function handle

Function to call if func fails, specified as the comma-separated pair consisting of
'ErrorHandler' and a function handle. Define this function so that it rethrows the error
or returns valid outputs for function func.

MATLAB calls the specified error-handling function with two input arguments:

• A structure with these fields:

identifier Error identifier.
message Error message text.
index Index of the variable for which the error occurred.
name Name of the variable for which the error occurred.

• The set of input arguments to function func at the time of the error.

For example,

function [A, B] = errorFunc(S, varargin)
warning(S.identifier, S.message)
A = NaN; B = NaN;

 varfun

1-15859

Output Arguments
B — Output table
table | timetable

Output table, returned as a table or a timetable. B can store metadata such as
descriptions, variable units, variable names, and row names. For more information, see
the Properties sections of table or timetable.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• The func input must always return a tall array.
• Supported name-value pairs are:

• 'InputVariables' — Cannot be specified as a function handle.
• 'OutputFormat' — Value can be 'uniform', 'table', 'timetable', or

'cell' only.
• When the input array is a tall timetable and 'OutputFormat' is 'timetable', the
specified function must return an array with the same size in the first dimension as the
input. Specify 'OutputFormat' as 'table' when the input function is a reduction
function such as mean.

For more information, see “Tall Arrays”.

See Also
arrayfun | cellfun | findgroups | groupsummary | rowfun | splitapply |
structfun

Topics
“Calculations on Tables”

1 Alphabetical List

1-15860

“Split Table Data Variables and Apply Functions”
“Anonymous Functions”

Introduced in R2013b

 varfun

1-15861

vartype
Subscript into table or timetable by variable type

Syntax
S = vartype(type)

Description
S = vartype(type) creates a subscript to select table variables of a specified type. The
type input argument is a character vector that specifies any type that is accepted by the
isa function, such as 'numeric', 'float', 'integer', or 'string'. It also can be
'cellstr' to select variables that contain cell arrays of character vectors.

For example, S = vartype('numeric'); T2 = T1(:,S) returns T2 as a table that
contains only the numeric variables from the table T1.

Examples

Select Variables in Table

Create a table that contains numeric and string variables. Then subscript into the table to
get only its numeric variables.

LastName = string({'Smith';'Johnson';'Williams';'Jones';'Brown'});
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];
T = table(LastName,Age,Height,Weight,BloodPressure)

T=5×5 table
 LastName Age Height Weight BloodPressure
 __________ ___ ______ ______ _____________

1 Alphabetical List

1-15862

 "Smith" 38 71 176 124 93
 "Johnson" 43 69 163 109 77
 "Williams" 38 64 131 125 83
 "Jones" 40 67 133 117 75
 "Brown" 49 64 119 122 80

Create a subscript with the vartype function. Subscript into the second dimension of T
to return a table that contains only the numeric variables.

S = vartype('numeric');
T2 = T(:,S)

T2=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 38 71 176 124 93
 43 69 163 109 77
 38 64 131 125 83
 40 67 133 117 75
 49 64 119 122 80

You can create a subscript for any type that the isa function accepts. Select the string
variable from T.

S = vartype('string');
T3 = T(:,S)

T3=5×1 table
 LastName

 "Smith"
 "Johnson"
 "Williams"
 "Jones"
 "Brown"

 vartype

1-15863

Select Variables in Timetable

Create a timetable that contains numeric, string, and categorical variables. Then
subscript into the table to get only its numeric variables.

Date = datetime({'12/18/2015';'12/19/2015';'12/20/2015'});
Temp = [45;33;36];
Pressure = [30.1;29.3;29.7];
Location = string({'Boston';'Boston';'Worcester'});
SensorType = categorical({'S1';'X7';'S1'});
TT = timetable(Date,Temp,Pressure,Location,SensorType)

TT=3×5 timetable
 Date Temp Pressure Location SensorType
 ___________ ____ ________ ___________ __________

 18-Dec-2015 45 30.1 "Boston" S1
 19-Dec-2015 33 29.3 "Boston" X7
 20-Dec-2015 36 29.7 "Worcester" S1

Create a subscript with the vartype function. Subscript into the second dimension of TT
to return a timetable that contains only the numeric variables. TT2 also has the row times
from TT because the times identify the rows. The vector of row times is a property of the
timetable, and not one of its variables.

S = vartype('numeric');
TT2 = TT(:,S)

TT2=3×3 timetable
 Date Temp Pressure
 ___________ ____ ________

 18-Dec-2015 45 30.1
 19-Dec-2015 33 29.3
 20-Dec-2015 36 29.7

Input Arguments
type — Type of variables to select from a table or a timetable
character vector | string scalar

1 Alphabetical List

1-15864

Type of variables to select from a table or a timetable, specified as a character vector or
string scalar. type can be any type or category that is accepted by the isa function. It
also can be 'cellstr'.

See Also
isa | table | timerange | timetable | withtol

Topics
“Select Timetable Data by Row Time and Variable Type”
“Tables”
“Represent Dates and Times in MATLAB”

Introduced in R2016b

 vartype

1-15865

vecnorm
Vector-wise norm

Syntax
N = vecnorm(A)
N = vecnorm(A,p)
N = vecnorm(A,p,dim)

Description
N = vecnorm(A) returns the 2-norm or Euclidean norm on page 1-15869 of A:

• If A is a vector, then vecnorm returns the norm of the vector.
• If A is a matrix, then vecnorm returns the norm of each column.
• If A is a multidimensional array, then vecnorm returns the norm along the first array

dimension whose size does not equal 1.

N = vecnorm(A,p) calculates the generalized vector p-norm on page 1-15869.

N = vecnorm(A,p,dim) operates along dimension dim. The size of this dimension
reduces to 1 while the sizes of all other dimensions remain the same.

Examples

1-Norm and 2-Norm of Vector

Calculate the 2-norm of a vector corresponding to the point (2,2,2) in 3-D space. The 2-
norm is equal to the Euclidean length of the vector, 12.

x = [2 2 2];
n = vecnorm(x)

n = 3.4641

1 Alphabetical List

1-15866

Calculate the 1-norm of the vector, which is the sum of the element magnitudes.

n = vecnorm(x,1)

n = 6

2-Norm of Matrix Columns

Calculate the 2-norm of the columns of a matrix.

A = [2 0 1;-1 1 0;-3 3 0]

A = 3×3

 2 0 1
 -1 1 0
 -3 3 0

n = vecnorm(A)

n = 1×3

 3.7417 3.1623 1.0000

As an alternative, you can use the norm function to calculate the 2-norm of the entire
matrix.

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. By convention,
vecnorm returns NaN values if the vector being operated on contains a NaN value.
Data Types: single | double
Complex Number Support: Yes

 vecnorm

1-15867

p — Norm type
2 (default) | positive scalar | Inf

Norm type, specified as 2 (default), a positive scalar, or Inf.

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a
value, then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. In other words,
size(N,dim) is 1, while the sizes of all other dimensions remain the same.

Consider a two-dimensional input array, A:

• vecnorm(A,p,1) calculates the norm of each column.

• vecnorm(A,p,2) calculates the norm of each row.

1 Alphabetical List

1-15868

vecnorm returns abs(A) when dim is greater than ndims(A) or when size(A,dim)
is 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Definitions

Euclidean Norm
The Euclidean norm (also called the vector magnitude, Euclidean length, or 2-norm) of a
vector v with N elements is defined by

v = ∑
k = 1

N
vk

2 .

General Vector Norm
The general definition for the p-norm of a vector v that has N elements is

v p = ∑
k = 1

N
vk

p
1/p

,

where p is any positive real value or Inf. Some interesting values of p are:

• If p = 1, then the resulting 1-norm is the sum of the absolute values of the vector
elements.

• If p = 2, then the resulting 2-norm gives the vector magnitude or Euclidean length of
the vector.

• If p = Inf, then v ∞ = maxi v i .

 vecnorm

1-15869

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you supply dim, then it must be constant.
• For limitations related to variable-size inputs, see “Variable-Sizing Restrictions for

Code Generation of Toolbox Functions” (MATLAB Coder).
• Code generation does not support sparse matrix inputs for this function.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
norm

1 Alphabetical List

1-15870

Introduced in R2017b

 vecnorm

1-15871

vectorize
Vectorize expression

Syntax
vectorize(c)
vectorize(f)

Description
vectorize(c), where c is a character row vector or string scalar, inserts a . before any
^, * or / in c. The result is a character row vector.

Note vectorize will not accept inline function objects (f) in a future release.

vectorize(f) where f is an inline function object, vectorizes the formula for f. The
result is the vectorized version of the function.

See Also
cd | dbtype | delete | dir | inline | path | what | who

Introduced before R2006a

1 Alphabetical List

1-15872

ver
Version information for MathWorks products

Syntax
ver
ver product

product_info = ver(product)

Description
ver displays:

• A header containing the current MATLAB product family version number, license
number, operating system, and version of Java software for the MATLAB product.

• The version numbers for MATLAB and all other installed MathWorks products.

ver product displays, in addition to the header information:

• The current version number for product, where product is the name of the folder
that contains the Contents.m file for the product you are inquiring about.

product_info = ver(product) returns product information to the structure array,
product_info.

Examples

Version for All Installed Products

Display version information for all installed products. The output shown here is
representative. Your results might differ.

ver

 ver

1-15873

MATLAB Version: 8.2.0.29 (R2013b)
MATLAB License Number: 234567
Operating System: Microsoft Windows 7 Version 6.1 (Build 7601: Service Pack 1)
Java Version: Java 1.7.0_11-b21 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode

MATLAB Version 8.2 (R2013b)
Simulink Version 8.2 (R2013b)
Control System Toolbox Version 9.6 (R2013b)

Version for a Particular Product

Display version information for MATLAB and the Control System Toolbox product. The
output shown here is representative. Your results might differ.

Determine the product name for Control System Toolbox by setting n to the name of a
function unique to Control System Toolbox, such as dss:

n = 'dss';
pat = '(?<=^.+[\\/]toolbox[\\/])[^\\/]+';
regexp(which(n), pat, 'match', 'once')

ans=
control

Specify the value returned in the previous step as an argument to ver:

ver control

--
MATLAB Version: 8.2.0.29 (R2013b)
MATLAB License Number: 234567
Operating System: Microsoft Windows 7 Version 6.1 (Build 7601: Service Pack 1)
Java Version: Java 1.7.0_11-b21 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode
--
Control System Toolbox Version 9.6 (R2013b)

Structure Containing Version for MATLAB Products

Create a structure containing version information, and then display the structure values.
The output shown here is representative. Your results might differ.

v = ver;
for k = 1:length(v)
 fprintf('%s\n', v(k).Name)

1 Alphabetical List

1-15874

 fprintf(' Version: %s\n', v(k).Version)
end

MATLAB
 Version: 8.2

MATLAB Compiler
 Version: 5.0

My Custom Toolbox
 Version: 1.0

Structure Containing Version for a Particular Product

Create a structure containing version information for just the Symbolic Math Toolbox™
product. The output shown here is representative. Your results might differ.

Determine the product name for Symbolic Math Toolbox by setting n to the name of a
function unique to Symbolic Math Toolbox, such as sym.

n = 'sym';
pat = '(?<=^.+[\\/]toolbox[\\/])[^\\/]+';
regexp(which(n), pat, 'match', 'once')

ans =

symbolic

Specify the value returned in the previous step as an argument to ver.

v = ver('symbolic')

v =

 Name: 'Symbolic Math Toolbox'
 Version: '5.11'
 Release: '(R2013b)'
 Date: '19-May-2013'

Input Arguments
product — product-specific information
character vector

 ver

1-15875

The product or toolbox for which you want to view version information, specified as a
character vector.

Output Arguments
product_info — product name, version, release, and date
structure array

Product name, version, release, and date, returned as a structure array with these fields:
Name, Version, Release, and Date. If a license is a trial version, the letter T precedes
the value in the Version field.

Tips
• To view version information about installed Add-Ons, including MathWorks products in

the Add-On Manager, see “Manage Your Add-Ons”.

See Also
computer | help | license | matlabshared.supportpkg.getInstalled |
verlessthan | version

Topics
“Information About Your Installation”
“Create Help Summary Files — Contents.m”

Introduced before R2006a

1 Alphabetical List

1-15876

matlab.unittest.Verbosity class
Package: matlab.unittest

Verbosity level enumeration class

Description
The matlab.unittest.Verbosity enumeration class provides a means to specify the
level of detail related to running tests. A higher value results in a higher level of detail.
The enumeration class contains the following members.

Numeric Representation Enumeration Member
Name

Verbosity Description

0 None No information
1 Terse Minimal information
2 Concise Moderate amount of

information
3 Detailed Some supplemental information
4 Verbose Lots of supplemental

information

Construction
matlab.unittest.Verbosity.MemberName creates an instance of the verbosity level
enumeration class.

Examples

Create Instance of Enumeration Class

n = matlab.unittest.Verbosity.Detailed

 matlab.unittest.Verbosity class

1-15877

n =

 Detailed

Display information about the variables.

whos n

 Name Size Bytes Class Attributes

 n 1x1 112 matlab.unittest.Verbosity

See Also
matlab.unittest.TestCase.log |
matlab.unittest.TestRunner.withTextOutput |
matlab.unittest.plugins.LoggingPlugin |
matlab.unittest.plugins.TestRunProgressPlugin

Topics
“Define Enumeration Classes”

Introduced in R2014b

1 Alphabetical List

1-15878

verctrl
(Has been removed) Source control actions (Windows platforms)

Note verctrl has been removed. Access source control actions through the context
menu instead.

Syntax
verctrl('action',{'filename1','filename2',....},0)
result=verctrl('action',{'filename1','filename2',....},0)
verctrl('action','filename',0)
result=verctrl('isdiff','filename',0)
list = verctrl('all_systems')

Description
verctrl('action',{'filename1','filename2',....},0) performs the source
control operation specified by 'action' for a single file or multiple files. Enter one file
as a character vector; specify multiple files using a cell array of character vectors. Use
the full paths for each file name and include the extensions. Specify 0 as the last
argument. Complete the resulting dialog box to execute the operation. Available values
for 'action' are as follows:

action Argument Purpose
'add' Adds files to the source control system. Files can be open in the

Editor or closed when added.
'checkin' Checks files into the source control system, storing the changes

and creating a new version.
'checkout' Retrieves files for editing.

 verctrl

1-15879

action Argument Purpose
'get' Retrieves files for viewing and compiling, but not editing. When

you open the files, they are labeled as read-only.
'history' Displays the history of files.
'remove' Removes files from the source control system. It does not delete

the files from disk, but only from the source control system.
'runscc' Starts the source control system. The file name can be an

empty character vector.
'uncheckout' Cancels a previous checkout operation and restores the

contents of the selected files to the precheckout version. All
changes made to the files since the checkout are lost.

result=verctrl('action',{'filename1','filename2',....},0) performs the
source control operation specified by 'action' on a single file or multiple files. The
action can be any one of: 'add', 'checkin', 'checkout', 'get', 'history', or
'undocheckout'. result is a logical 1 (true) when you complete the operation by
clicking OK in the resulting dialog box, and is a logical 0 (false) when you abort the
operation by clicking Cancel in the resulting dialog box.

verctrl('action','filename',0) performs the source control operation specified
by 'action' for a single file. Use the absolute path for 'filename'. Specify 0 as the
last argument. Complete any resulting dialog boxes to execute the operation. Available
values for 'action' are as follows:

action Argument Purpose
'showdiff' Displays the differences between a file and the latest

checked in version of the file in the source control system.
'properties' Displays the properties of a file.

result=verctrl('isdiff','filename',0) compares filename with the latest
checked in version of the file in the source control system. result is a logical 1 (true)
when the files are different, and is a logical 0 (false) when the files are identical. Use the
full path for 'filename'. Specify 0 as the last argument.

list = verctrl('all_systems') displays in the Command Window a list of all
source control systems installed on your computer.

1 Alphabetical List

1-15880

Examples
Check In a File
Check in D:\file1.ext to the source control system:

result = verctrl('checkin','D:\file1.ext', 0)

This opens the Check in file(s) dialog box. Click OK to complete the check in. MATLAB
displays

 result = 1

indicating the checkin was successful.

Add Files to the Source Control System
Add D:\file1.ext and D:\file2.ext to the source control system.

verctrl('add',{'D:\file1.ext','D:\file2.ext'}, 0)

This opens the Add to source control dialog box. Click OK to complete the operation.

Display the Properties of a File
Display the properties of D:\file1.ext.

verctrl('properties','D:\file1.ext', 0)

This opens the source control properties dialog box for your source control system. The
function is complete when you close the properties dialog box.

Show Differences for a File
To show the differences between the version of file1.ext that you just edited and
saved, with the last version in source control, run

verctrl('showdiff','D:\file1.ext',0)

MATLAB displays differences dialog boxes and results specific to your source control
system. After checking in the file, if you run this statement again, MATLAB displays

 verctrl

1-15881

??? The file is identical to latest version under source control.

List All Installed Source Control Systems
To view all of the source control systems installed on your computer, type

list = verctrl ('all_systems')

MATLAB displays all the source control systems currently installed on your computer. For
example:

list =
'Microsoft Visual SourceSafe'
'ComponentSoftware RCS'

See Also

Topics
“MSSCCI Source Control Interface”

Introduced before R2006a

1 Alphabetical List

1-15882

verLessThan
Compare toolbox version to specified character vector

Syntax
tf = verLessThan(toolbox,version)

Description
tf = verLessThan(toolbox,version) returns logical 1 (true) if the version of the
toolbox is older than the value specified by version. Otherwise, it returns logical 0
(false). When there are differences in the behavior of the code in the different versions,
use this function to write code that runs on multiple versions of MATLAB.

Examples

Write Version-Specific Code

Modify code that runs in MATLAB R2014a, but that generates an error in R2014b or later.

Create two surface plots. The default color palettes are different depending on which
version of MATLAB you are using.

s1 = surface(magic(5));
s2 = surface(magic(5)*10,'FaceColor','yellow');

Modify surface s2 by the color of the surface underneath. Starting in R2014b, the
EraseMode property has been removed from all graphics objects. Replace the
EraseMode property with a value of the FaceAlpha property for code running in
MATLAB R2014b and later.

if verLessThan('matlab','8.4')
 % -- Code to run in MATLAB R2014a and earlier here --
 s2.EraseMode = 'xor';

 verLessThan

1-15883

else
 % -- Code to run in MATLAB R2014b and later here --
 s2.FaceAlpha = .25;
end

Check for Minimum Required Version

Compare the Simulink version that is running against Version 4.0. If the version is earlier
than 4.0, display an error message because the feature is not supported.

if verLessThan('simulink','4.0')
 error('Simulink 4.0 or higher is required.')
end

Check Toolbox Version

Compare the Data Acquisition Toolbox version that MATLAB is running.

Find the name of the toolbox folder. Your output depends on the toolboxes installed on
your system.

dir([matlabroot '/toolbox/d*'])

 daq database des distcomp dotnetbuilder
 dastudio datafeed dials dml dspblks

Use the toolbox folder name, daq.

verLessThan('daq','3')

ans =

 0

MATLAB is running Data Acquisition Toolbox Version 3 or later.

Input Arguments
toolbox — Name of MATLAB toolbox folder
character vector

1 Alphabetical List

1-15884

Name of MATLAB toolbox folder, specified as a character vector. To specify toolbox, find
the folder containing the Contents.m file for the toolbox and use that folder name. To
see a list of all toolbox folder names, type:

dir([matlabroot '/toolbox'])

If toolbox does not exist, MATLAB displays an error.
Example: 'images'

version — Version number
character vector

Version number of the program or toolbox to compare against, specified as a character
vector. Specify the version number in the form of major[.minor[.revision]].
Example: '9.2'

See Also
dir | ismac | ispc | isunix | license | ver | version

Introduced in R2007a

 verLessThan

1-15885

version
Version number for MATLAB and libraries

Syntax
version
version = version('-versionOption')
[version date] = version

Description
version displays the version and release number for the currently runningMATLAB.

version = version('-versionOption') returns information for the specified
option.

[version date] = version returns the version, release number, and release date. No
input arguments are allowed in this syntax.

Examples

Display MATLAB Version

version

ans =
'9.6.0.1065788 (R2019a)'

Display MATLAB Release

Display the release, prefaced by descriptive text.

1 Alphabetical List

1-15886

['Release R' version('-release')]

ans =
'Release R2019a'

Display Release Version and Date as Separate Values

[v d] = version

v =
'9.6.0.1065788 (R2019a)'

d =
'February 26, 2019'

Display Java Version

version -java

ans =
'Java 1.8.0_181-b13 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode'

Input Arguments
versionOption — Version option
'-date' | '-description' | '-release' | '-java'

Version option, specified as one of these values.

'-date' Release date.

 version

1-15887

'-description' Description of the version. Returns:

• empty - general release
• 'Update n' - update release n, where n is

an integer
• 'Prerelease' - prerelease
• 'Prerelease n' - prerelease update n,

where n is an integer
'-release' Release number.
'-java' Version of the Oracle JVM software that

MATLAB uses.

Output Arguments
version — Version information
character vector

Version and release information, returned as a character vector.

date — Release date
character vector

Release date, returned as a character vector.

See Also
computer | ver | verLessThan

Topics
“Update an Existing Installation”

Introduced before R2006a

1 Alphabetical List

1-15888

vertcat
Concatenate arrays vertically

Syntax
C = vertcat(A,B)
C = vertcat(A1,A2,…,An)

Description
C = vertcat(A,B) concatenates B vertically to the end of A when A and B have
compatible sizes (the lengths of the dimensions match except in the first dimension).

C = vertcat(A1,A2,…,An) concatenates A1, A2, … , An vertically.

vertcat is equivalent to using square brackets for vertically concatenating arrays. For
example, [A; B] is equal to vertcat(A,B) when A and B are compatible arrays.

Examples

Two Matrices

Create two matrices and concatenate them vertically, first by using square bracket
notation, and then by using vertcat.

A = [1 2 3; 4 5 6]

A = 2×3

 1 2 3
 4 5 6

B = [7 8 9]

 vertcat

1-15889

B = 1×3

 7 8 9

C = [A; B]

C = 3×3

 1 2 3
 4 5 6
 7 8 9

D = vertcat(A,B)

D = 3×3

 1 2 3
 4 5 6
 7 8 9

Two Tables

Create a table A with three rows and five variables.

A = table([5;6;5],['M';'M';'M'],[45;41;40],[45;32;34],{'NY';'CA';'MA'},...
 'VariableNames',{'Age' 'Gender' 'Height' 'Weight' 'Birthplace'},...
 'RowNames',{'Thomas' 'Gordon' 'Percy'})

A=3×5 table
 Age Gender Height Weight Birthplace
 ___ ______ ______ ______ __________

 Thomas 5 M 45 45 'NY'
 Gordon 6 M 41 32 'CA'
 Percy 5 M 40 34 'MA'

Create a table B with the same variables as A except for order.

1 Alphabetical List

1-15890

B = table(['F';'M';'F'],[6;6;5],{'AZ';'NH';'CO'},[31;42;33],[39;43;40],...
 'VariableNames',{'Gender' 'Age' 'Birthplace' 'Weight' 'Height'})

B=3×5 table
 Gender Age Birthplace Weight Height
 ______ ___ __________ ______ ______

 F 6 'AZ' 31 39
 M 6 'NH' 42 43
 F 5 'CO' 33 40

Vertically concatenate tables A and B. The variables of C are in the same order as the
variables of A and default row names are used for the rows from B.

C = vertcat(A,B)

C=6×5 table
 Age Gender Height Weight Birthplace
 ___ ______ ______ ______ __________

 Thomas 5 M 45 45 'NY'
 Gordon 6 M 41 32 'CA'
 Percy 5 M 40 34 'MA'
 Row4 6 F 39 31 'AZ'
 Row5 6 M 43 42 'NH'
 Row6 5 F 40 33 'CO'

Dates with Different Types

Concatenate a date character vector, a string date, and a datetime into a single column of
dates. The result is a datetime column vector.

chardate = '2016-03-24';
strdate = "2016-04-19";
t = datetime('2016-05-10','InputFormat','yyyy-MM-dd');
C = vertcat(chardate,strdate,t)

C = 3x1 datetime array
 24-Mar-2016
 19-Apr-2016

 vertcat

1-15891

 10-May-2016

String Array

Concatenate three string arrays into a single array.

A1 = ["str1" "str2"];
A2 = ["str3" "str4"];
A3 = ["str5" "str6"];
C = vertcat(A1,A2,A3)

C = 3x2 string array
 "str1" "str2"
 "str3" "str4"
 "str5" "str6"

Matrices in a Cell Array

Create a cell array containing two matrices. Vertically concatenate the matrices from the
cell array into one matrix.

M1 = [1 2; 3 4];
M2 = [5 6; 7 8];
A1 = {M1,M2};
C = vertcat(A1{:})

C = 4×2

 1 2
 3 4
 5 6
 7 8

1 Alphabetical List

1-15892

Input Arguments
A — First input
scalar | vector | matrix | multidimensional array | table | timetable

First input, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

B — Second input
scalar | vector | matrix | multidimensional array | table | timetable

Second input, specified as a scalar, vector, matrix, multidimensional array, table, or
timetable.

• The elements of B are concatenated to the end of the first input along the first
dimension. The sizes of the input arguments must be compatible. For example, if the
first input is a matrix of size 3-by-2, then B must have 2 columns.

• You can concatenate valid combinations of different types. For more information, see
“Valid Combinations of Unlike Classes”.

A1,A2,…,An — List of inputs
comma-separated list

List of inputs, specified as a comma-separated list of elements to concatenate in the order
they are specified.

• The inputs must have compatible sizes. For example, if A1 is a row vector of length m,
then the remaining inputs must each have m columns to concatenate vertically.

• You can concatenate valid combinations of different types. For more information, see
“Valid Combinations of Unlike Classes”.

Algorithms
When concatenating an empty array to a nonempty array, vertcat omits the empty array
in the output. For example, vertcat([1; 2],[]) returns the column vector [1; 2].

If all input arguments are empty and have compatible sizes, then vertcat returns an
empty array whose size is equal to the output size as when the inputs are nonempty. For
example, vertcat(zeros(1,0),zeros(2,0)) returns a 3-by-0 empty array. If the
input sizes are not compatible, then vertcat returns a 0-by-0 empty array.

 vertcat

1-15893

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Vertical concatenation of character arrays is not supported.
• When vertically concatenating two tall arrays, the result is a tall array based on a
different datastore than the input tall arrays. Therefore, if you try to combine the
result of the concatenation with one of the input tall arrays, the arrays are
incompatible. For example, the following command results in an error, since the
original tall table T is based on one datastore, and the output of the concatenation
operation is based on another datastore:

T.Var3 = [T.Var1(1); T.Var2(2:end)]

Alternatively, if you only concatenate in-memory values to a tall array, then the result
of the concatenation is based on the same datastore. For example, if you replace
T.Var1(1) in the previous example with an in-memory scalar, then the command
executes:

T.Var3 = [0; T.Var2(2:end)]

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

1 Alphabetical List

1-15894

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
cat | horzcat

Topics
“Creating, Concatenating, and Expanding Matrices”
“Valid Combinations of Unlike Classes”
“Combine Categorical Arrays”
“Concatenating Objects of Different Classes”
“Concatenation Methods”

Introduced before R2006a

 vertcat

1-15895

vertcat
Vertically concatenate tscollection objects

Syntax
tscout = vertcat(tsc1,tsc2,…,tscN)

Description
tscout = vertcat(tsc1,tsc2,…,tscN) vertically concatenates the tscollection
objects tsc1, tsc2,…, tscN by appending them. The time vectors of the tscollection
objects in the list must not overlap. The last time in a tscollection must occur before
the first time of the following tscollection in the list. All tscollection objects must
have the same timeseries members.

Examples

Vertical Concatenation

Create two tscollection objects and vertically concatenate them.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0]',1:5,...
 'Name','Speed');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1]',6:10,...
 'Name','Speed');
tsc1 = tscollection(ts1);
tsc2 = tscollection(ts2);
tscout = vertcat(tsc1,tsc2)

Time Series Collection Object: unnamed

Time vector characteristics

 Start time 1 seconds
 End time 10 seconds

1 Alphabetical List

1-15896

Member Time Series Objects:

 Speed

Input Arguments
tsc1,tsc2,…,tscN — List of tscollection objects
comma-separated list

List of tscollection objects to concatenate, specified as a comma-separated list of
scalar tscollection objects.

See Also
horzcat | timeseries | tscollection

Introduced before R2006a

 vertcat

1-15897

vertexAttachments
Class: TriRep

(Not recommended) Return simplices attached to specified vertices

Note vertexAttachments(TriRep) is not recommended. Use
vertexAttachments(triangulation) instead.

TriRep is not recommended. Use triangulation instead.

Syntax
SI = vertexAttachments(TR, VI)

Description
SI = vertexAttachments(TR, VI) returns the vertex-to-simplex information for the
specified vertices VI. For 2-D triangulations in MATLAB, the triangles SI are arranged in
counter-clockwise order around the attached vertex VI.

Input Arguments
TR Triangulation representation
VI VI is a column vector of indices into the array of points representing the

vertex coordinates, TR.X. The simplices associated with vertex i are the
i'th entry in the cell array. If VI is not specified the vertex-simplex
information for the entire triangulation is returned.

1 Alphabetical List

1-15898

Output Arguments
SI Cell array of indices of the simplices attached to a vertex. A cell array is

used to store the information because the number of simplices associated
with each vertex can vary. The simplices associated with vertex i are in
the i'th entry in the cell array SI.

Examples

Example 1
Load a 2-D triangulation and use TriRep to compute the vertex-to-triangle relations.

load trimesh2d
trep = TriRep(tri, x, y);

Find the indices of the tetrahedra attached to the first vertex:

Tv = vertexAttachments(trep, 1)
Tv{:}

Example 2
Perform a direct query of a 2-D triangulation created using DelaunayTri.

x = rand(20,1);
y = rand(20,1);
dt = DelaunayTri(x,y);

Find the triangles attached to vertex 5:

t = vertexAttachments(dt,5);

Plot the triangulation:

triplot(dt);
hold on;

Plot the triangles attached to vertex 5 (in red):

 vertexAttachments

1-15899

triplot(dt(t{:},:),x,y,'Color','r');
hold off;

Definitions

Simplex
A simplex is a triangle/tetrahedron or higher dimensional equivalent.

See Also
delaunayTriangulation | triangulation

1 Alphabetical List

1-15900

VideoReader
Read video files

Description
Use a VideoReader object to read files containing video data. The object contains
information about the video file and enables you to read data from the video. You can
create a VideoReader object using the VideoReader function, query information about
the video using the object properties, and then read the video using object functions.

For more information, see “Supported Video and Audio File Formats”.

Creation

Syntax
v = VideoReader(filename)
v = VideoReader(filename,Name,Value)

Description
v = VideoReader(filename) creates object v to read video data from the file named
filename.

v = VideoReader(filename,Name,Value) sets the properties CurrentTime, Tag,
and UserData using name-value pairs. For example,
VideoReader('myfile.mp4','CurrentTime',1.2) starts reading 1.2 seconds into
the video. You can specify multiple name-value pairs. Enclose each property name in
single quotes followed by its value.

 VideoReader

1-15901

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

For more information, see “Supported Video and Audio File Formats”.
Example: 'myFile.mp4'
Example: '../dir/videos/myFile.avi'
Data Types: char | string

Properties
The VideoReader object has properties that contain information about the video file.
Properties are read only, except CurrentTime, Tag, and UserData. You can view or
modify the value of a property after creating the object. For example, this command finds
the value of the Duration property of the VideoReader object, v.

D = v.Duration;

BitsPerPixel — Bits per pixel of video data
numeric scalar

This property is read-only.

Bits per pixel of the video data, specified as a numeric scalar.
Data Types: double

CurrentTime — Timestamp of video frame to read
numeric scalar

Timestamp of the video frame to read, specified as a numeric scalar. The timestamp is
specified in seconds from the start of the video file. The value of CurrentTime can be
between zero and the duration of the video.

On some platforms, when you create a VideoReader object, the 'CurrentTime'
property might contain a value close to, but not exactly, zero. This variation in the value of

1 Alphabetical List

1-15902

the 'CurrentTime' property is due to differences in how each platform processes and
reads videos.
Example: 5.6
Data Types: double

Duration — Length of file
numeric scalar

This property is read-only.

Length of the file in seconds, specified as a numeric scalar.
Data Types: double

FrameRate — Number of video frames per second
numeric scalar

This property is read-only.

Number of video frames per second, specified as a numeric scalar. For variable-frame rate
video, FrameRate is the average frame rate.

Note: For OS X Yosemite (Version 10.10) and later, MPEG-4/H.264 files written using
VideoWriter play correctly, but display an inexact frame rate.
Data Types: double

Height — Height of video frame
numeric scalar

This property is read-only.

Height of the video frame in pixels, specified as a numeric scalar.
Data Types: double

Name — File name
character vector | string scalar

This property is read-only.

File name, specified as a character vector or string scalar.
Data Types: char | string

 VideoReader

1-15903

NumberOfFrames — Number of frames in video stream
numeric scalar

This property is read-only.

Note NumberOfFrames is not recommended. Use CurrentTime instead.

Number of frames in the video stream, specified as a numeric scalar˙.
Data Types: double

Path — Full path to video file
character vector | string scalar

This property is read-only.

Full path to the video file associated with the reader object, specified as a character
vector or string scalar.
Data Types: char | string

Tag — Generic text
'' (default) | character vector | string scalar

Generic text, specified as a character vector or string scalar.
Example: 'Experiment 109'
Data Types: char | string

UserData — User-defined data
[] (default) | any data type

User-defined data, specified as a value of any data type.

VideoFormat — MATLAB representation of video format
character vector | string scalar

This property is read-only.

MATLAB representation of the video format, specified as a character vector or string
scalar.

1 Alphabetical List

1-15904

File types, except for Motion JPEG 2000 files, have one of these VideoFormat values.

Video Format Value of VideoFormat
AVI or MPEG-4 files with RGB24 video 'RGB24'
AVI files with indexed video 'Indexed'
AVI files with grayscale video 'Grayscale'

Motion JPEG 2000 files, have one of the following VideoFormat values.

Format of Image Data Value of VideoFormat
Single-band uint8 'Mono8'
Single-band int8 'Mono8 Signed'
Single-band uint16 'Mono16'
Single-band int16 'Mono16 Signed'
Three-banded uint8 'RGB24'
Three-banded int8 'RGB24 Signed'
Three-banded uint16 'RGB48'
Three-banded int16 'RGB48 Signed'

Data Types: char | string

Width — Width of video frame
numeric scalar

This property is read-only.

Width of the video frame in pixels, specified as a numeric scalar.
Data Types: double

Object Functions
read Read video frame data from file
VideoReader.getFileFormats File formats that VideoReader supports
readFrame Read video frame from video file
hasFrame Determine if frame is available to read

 VideoReader

1-15905

Examples

Create VideoReader Object and Read Video

Create a VideoReader object for the example movie file, xylophone.mp4.

v = VideoReader('xylophone.mp4');

Read all video frames.

while hasFrame(v)
 video = readFrame(v);
end
whos video

 Name Size Bytes Class Attributes

 video 240x320x3 230400 uint8

Read Video Starting at Specific Time

Create an object to read the sample file, xylophone.mp4.

v = VideoReader('xylophone.mp4');

Specify the reading to begin 2.5 seconds from the beginning of the video.

v.CurrentTime = 2.5;

Create an axes object. Then, read video frames until no more frames are available to
read.

currAxes = axes;
while hasFrame(v)
 vidFrame = readFrame(v);
 image(vidFrame, 'Parent', currAxes);
 currAxes.Visible = 'off';

1 Alphabetical List

1-15906

 pause(1/v.FrameRate);
end

Tips
• The macOS platform no longer supports certain older video file formats. To read such
files using VideoReader:

• Open the video file using the QuickTime player. If the player detects the file to be
of an older format, then it automatically converts the file to a newer format.

• Save the newly converted video file.
• Use the VideoReader to read this newly converted video file.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for VideoReader supports most formats, syntaxes, methods, and
functions with the following limitations.

• Video Format Support:

• If filename is a compile-time constant, then code generation supports all the
formats supported in MATLAB. For more information on video formats that
MATLAB supports, see “Supported Video and Audio File Formats”.

• If filename is not a compile-time constant, then code generation supports only
video files with data that can be decoded to uint8 datatype. Supported video
formats include: .MP4, .MOV, and .AVI.

• Object Construction:

• For MEX targets, partial path to the video file is supported.
• For RTW targets, you must provide full or relative path to the video file.

 VideoReader

1-15907

• Methods and Functions :

• read and readFrame — Code generation does not support the optional positional
argument native.

• VideoReader.getFileFormats — Code generation does not support this
method.

• saveobj and loadobj — Code generation does not support these functions.
• inspect — Code generation does not support this function.
• inspect — Code generation does not support this function.
• Code generation does not support VideoReader object display.

• Platform Dependencies — If the generated code for VideoReader on one specific
machine does not work on another machine, then:

• Ensure that the suitable codecs for your video are available on the target machine.
• Add test code to check if the video object created on the target machine is valid.

Test code can include checking if the video object has valid height or width. For
example:

videoObj = VideoReader(filename);
if isnan(videoObj.Height)
 fprintf('Failed to create video object.\n');
 return
end

See Also
VideoWriter | mmfileinfo

Topics
“Read Video Files”

Introduced in R2010b

1 Alphabetical List

1-15908

VideoReader.getFileFormats
File formats that VideoReader supports

Syntax
formats = VideoReader.getFileFormats()

Description
formats = VideoReader.getFileFormats() returns an array of
audiovideo.FileFormatInfo objects that indicate which formats VideoReader can
read on the current system.

Examples

View Supported File Formats for Your System

View the list of file formats that VideoReader supports on your system.

fmts = VideoReader.getFileFormats()

Video File Formats:
 .asf - ASF File
 .asx - ASX File
 .avi - AVI File
 .m4v - MPEG-4 Video
 .mj2 - Motion JPEG2000
 .mov - QuickTime movie
 .mp4 - MPEG-4
 .mpg - MPEG-1
 .wmv - Windows Media Video

This output is for a Linux® system. Your results might differ.

 VideoReader.getFileFormats

1-15909

Check if File Format is Supported

Check whether VideoReader can read AVI files on the current system.

fmtList = VideoReader.getFileFormats();

if any(ismember({fmtList.Extension},'avi'))
 disp('VideoReader can read AVI files on this system.');
else
 disp('VideoReader cannot read AVI files on this system.');
end

VideoReader can read AVI files on this system.

Create Dialog Box to Select Video File

Create a dialog box that allows a user to select a video file interactively.

Get the supported file formats.

formats = VideoReader.getFileFormats()

Video File Formats:
 .asf - ASF File
 .asx - ASX File
 .avi - AVI File
 .m4v - MPEG-4 Video
 .mj2 - Motion JPEG2000
 .mov - QuickTime movie
 .mp4 - MPEG-4
 .mpg - MPEG-1
 .wmv - Windows Media Video

This output is for a Windows system. Your results might differ.

Convert the formats array to a filter list.

filterSpec = getFilterSpec(formats)

filterSpec =

1 Alphabetical List

1-15910

 '*.asf;*.asx;*.avi;*.m4v;*.mj2;*.mov;*.mp4;*.mpg;*.wmv;' 'All Video Files'
 '*.asf' 'ASF File (*.asf)'
 '*.asx' 'ASX File (*.asx)'
 '*.avi' 'AVI File (*.avi)'
 '*.m4v' 'MPEG-4 Video (*.m4v)'
 '*.mj2' 'Motion JPEG2000 (*.mj2)'
 '*.mov' 'QuickTime movie (*.mov)'
 '*.mp4' 'MPEG-4 (*.mp4)'
 '*.mpg' 'MPEG-1 (*.mpg)'
 '*.wmv' 'Windows Media Video (*.wmv)'
 '*.*' 'All Files (*.*)'

filterSpec is a cell array that includes 'All Video Files' in the first row, and 'All
Files (*.*)' in the last row.

Create the dialog box using uigetfile.

[filename,pathname] = uigetfile(filterSpec);

Output Arguments
formats — Supported video file formats
array of audiovideo.FileFormatInfo objects

Supported video file formats, returned as an array of audiovideo.FileFormatInfo
objects with the following properties.

Extension File extension.
Description Text description of the file format.
ContainsVideo Logical value that indicates whether VideoReader

can read video from this format.
ContainsAudio Logical value that indicates whether VideoReader

can read audio from this format.

VideoReader cannot always read a particular video file even if getFileFormats lists
its format. For more information, see Supported Video File Formats.

On Windows and UNIX systems, the list of file formats does not always contain all the
formats that VideoReader can read on your system. getFileFormats returns a
platform-dependent, static list of formats that VideoReader can read on most systems.

 VideoReader.getFileFormats

1-15911

See Also
VideoReader | uigetfile

Introduced in R2010b

1 Alphabetical List

1-15912

hasFrame
Determine if frame is available to read

Syntax
tf = hasFrame(v)

Description
tf = hasFrame(v) returns logical 1 (true) if there is a video frame available to read
from the file. Otherwise, it returns logical 0 (false).

Examples

Create VideoReader Object and Read Video

Create a VideoReader object for the example movie file, xylophone.mp4.

v = VideoReader('xylophone.mp4');

Read all video frames.

while hasFrame(v)
 video = readFrame(v);
end
whos video

 Name Size Bytes Class Attributes

 video 240x320x3 230400 uint8

 hasFrame

1-15913

Read and Play Back Movie File

Read and play back the sample movie file, xylophone.mp4.

Create a VideoReader object to read data from the sample file. Then, determine the
width and height of the video.

xyloObj = VideoReader('xylophone.mp4');

vidWidth = xyloObj.Width;
vidHeight = xyloObj.Height;

Create a movie structure array, mov.

mov = struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),...
 'colormap',[]);

Read one frame at a time until the end of the video is reached.

k = 1;
while hasFrame(xyloObj)
 mov(k).cdata = readFrame(xyloObj);
 k = k+1;
end

Size a figure based on the width and height of the video. Then, play back the movie once
at the video frame rate.

hf = figure;
set(hf,'position',[150 150 vidWidth vidHeight]);

movie(hf,mov,1,xyloObj.FrameRate);

Input Arguments
v — Input VideoReader object
VideoReader object

Input VideoReader object. Use the VideoReader function to create a VideoReader
object from your video file.

1 Alphabetical List

1-15914

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
VideoReader | movie | readFrame

Topics
“Read Video Files”

Introduced in R2014b

 hasFrame

1-15915

read
Read video frame data from file

Note VideoReader.read is not recommended. Use VideoReader.readFrame instead.

Syntax
video = read(v)
video = read(v,index)
video = read(___ ,'native')

Description
video = read(v) reads all video frames from the file associated with v.

video = read(v,index) reads only the frames specified by index.

video = read(___ ,'native') returns data in the format specified by the
VideoFormat property and can include any of the input arguments in the previous
syntaxes.

Examples

Select Video Frames to Read

Create a VideoReader object for the example movie file, xylophone.mp4.

v = VideoReader('xylophone.mp4');

Read only the first video frame.

video = read(v,1);

Read only the last video frame.

1 Alphabetical List

1-15916

video = read(v,Inf);

Read frames 5 through 10.

video = read(v,[5 10]);

Read from the 50th frame to the end of the video file.

video = read(v,[50 Inf]);

Input Arguments
v — Input VideoReader object
VideoReader object

Input VideoReader object. Use the VideoReader function to create a VideoReader object
from your video file.

index — Frames to read
[1 Inf] (default) | numeric scalar | two-element array

Frames to read, specified as a numeric scalar or a two-element array.

• To read a single frame, specify a numeric scalar.
• To read a range of frames, specify a two-element array.

The first frame number is 1, and Inf represents the last frame of the file.
Example: 10
Example: Inf
Example: [1 20]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

'native' — Flag to use format specified in VideoFormat property
character vector | string scalar

Flag to use format specified in VideoFormat property, specified as the character vector
or a string scalar, 'native'.

 read

1-15917

Data Types: char | string

Output Arguments
video — Video frame data
numeric array | structure array

Video frame data, returned as a numeric or structure array. The size and format of video
depends on the VideoFormat property of v. When the VideoFormat property of v is
'Indexed' or 'Grayscale', the data type and dimensions of video depend on whether
you call read with the 'native' argument. For most files, the data type and dimensions
of video are as follows.

H is the image frame height, W is the image frame width, and F is the number of frames
read.

Value of
obj.VideoFormat

Data Type of video Dimensions of
video

Description

'RGB24', with or
without specifying
'native'

uint8 H-by-W-by-3-by-F RGB24 image

'Grayscale',
without specifying
'native'

uint8 H-by-W-by-1-by-F Grayscale image

'Indexed', without
specifying 'native'

uint8 H-by-W-by-3-by-F RGB24 image

'Grayscale' or
'Indexed',
specifying 'native'

struct 1-by-F MATLAB movie,
which is an array of
frame structure
arrays, each
containing the fields
cdata and
colormap.

For Motion JPEG 2000 files, the data type and dimensions of video are as follows.

1 Alphabetical List

1-15918

Value of
obj.VideoFormat

Data Type of video Dimensions of
video

Description

'Mono8' uint8 H-by-W-by-1-by-F Mono image
'Mono8 Signed' int8 H-by-W-by-1-by-F Mono signed image
'Mono16' uint16 H-by-W-by-1-by-F Mono image
'Mono16 Signed' int16 H-by-W-by-1-by-F Mono signed image
'RGB24' uint8 H-by-W-by-3-by-F RGB24 image
'RGB24 Signed' int8 H-by-W-by-3-by-F RGB24 signed image
'RGB48' uint16 H-by-W-by-3-by-F RGB48 image
'RGB48 Signed' int16 H-by-W-by-3-by-F RGB48 signed image

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation for read does not support the optional positional argument native.

See Also
VideoReader | movie

Introduced in R2010b

 read

1-15919

readFrame
Read video frame from video file

Syntax
video = readFrame(v)
video = readFrame(v,'native')

Description
video = readFrame(v) reads the next available video frame from the file associated
with v.

video = readFrame(v,'native') returns data in the format specified by the
VideoFormat property.

Examples

Create VideoReader Object and Read Video

Create a VideoReader object for the example movie file, xylophone.mp4.

v = VideoReader('xylophone.mp4');

Read all video frames.

while hasFrame(v)
 video = readFrame(v);
end
whos video

 Name Size Bytes Class Attributes

 video 240x320x3 230400 uint8

1 Alphabetical List

1-15920

Read Video Starting at Specific Time

Create an object to read the sample file, xylophone.mp4.

v = VideoReader('xylophone.mp4');

Specify that reading should begin 2.5 seconds from the beginning of the video.

v.CurrentTime = 2.5;

Create an axes. Then, read video frames until no more frames are available to read.

currAxes = axes;
while hasFrame(v)
 vidFrame = readFrame(v);
 image(vidFrame, 'Parent', currAxes);
 currAxes.Visible = 'off';
 pause(1/v.FrameRate);
end

Read and Play Back Movie File

Read and play back the sample movie file, xylophone.mp4.

Create a VideoReader object to read data from the sample file. Then, determine the
width and height of the video.

xyloObj = VideoReader('xylophone.mp4');

vidWidth = xyloObj.Width;
vidHeight = xyloObj.Height;

Create a movie structure array, mov.

mov = struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),...
 'colormap',[]);

Read one frame at a time until the end of the video is reached.

k = 1;
while hasFrame(xyloObj)

 readFrame

1-15921

 mov(k).cdata = readFrame(xyloObj);
 k = k+1;
end

Size a figure based on the width and height of the video. Then, play back the movie once
at the video frame rate.

hf = figure;
set(hf,'position',[150 150 vidWidth vidHeight]);

movie(hf,mov,1,xyloObj.FrameRate);

Input Arguments
v — Input VideoReader object
VideoReader object

Input VideoReader object. Use the VideoReader function to create a VideoReader object
from your video file.

Output Arguments
video — Video frame data
array

Video frame data, returned as an array. The dimensions and data type of video depend
on the VideoFormat property of obj.

The following table lists the data type and dimensions of video for most files. H is the
image frame height and W is the image frame width. When the VideoFormat property of
obj is 'Indexed', the data type and dimensions of video depend on whether you call
read with the 'native' argument.

Value of
obj.VideoFormat

Data Type of video Dimensions of
video

Description

'RGB24', with or
without specifying
'native'

uint8 H-by-W-by-3 RGB24 image

1 Alphabetical List

1-15922

Value of
obj.VideoFormat

Data Type of video Dimensions of
video

Description

'Grayscale',
without specifying
'native'

uint8 H-by-W-by-1 Grayscale image

'Indexed', without
specifying 'native'

uint8 H-by-W-by-3 RGB24 image

'Grayscale' or
'Indexed',
specifying 'native'

struct 1-by-1 MATLAB movie,
which is an array of
frame structure
arrays, each
containing the fields
cdata and
colormap.

For Motion JPEG 2000 files, the data type and dimensions of video are as follows.

Value of
obj.VideoFormat

Data Type of video Dimensions of
video

Description

'Mono8' uint8 H-by-W-by-1 Mono image
'Mono8 Signed' int8 H-by-W-by-1 Mono signed image
'Mono16' uint16 H-by-W-by-1 Mono image
'Mono16 Signed' int16 H-by-W-by-1 Mono signed image
'RGB24' uint8 H-by-W-by-3 RGB24 image
'RGB24 Signed' int8 H-by-W-by-3 RGB24 signed image
'RGB48' uint16 H-by-W-by-3 RGB48 image
'RGB48 Signed' int16 H-by-W-by-3 RGB48 signed image

'native' — Flag to use format specified in VideoFormat property
character vector | string scalar

Flag to use format specified in VideoFormat property, specified as the character vector
or a string scalar, 'native'.
Data Types: char | string

 readFrame

1-15923

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation for readFrame does not support the optional positional argument
native.

See Also
VideoReader | hasFrame | movie

Topics
“Read Video Files”

Introduced in R2014b

1 Alphabetical List

1-15924

VideoWriter
Write video files

Description
Use a VideoWriter object to create a video file from an array or MATLAB movie. The
object contains information about the video and the properties that control the output
video. You can create a VideoWriter object using the VideoWriter function, specify its
properties, and then write the video using object functions.

Creation

Syntax
v = VideoWriter(filename)
v = VideoWriter(filename,profile)

Description
v = VideoWriter(filename) creates a VideoWriter object to write video data to an
AVI file with Motion JPEG compression.

v = VideoWriter(filename,profile) additionally applies a set of properties
tailored to a specific file format (such as 'MPEG-4' or 'Uncompressed AVI').

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar. VideoWriter creates the file.

VideoWriter supports these file extensions.

 VideoWriter

1-15925

.avi AVI file

.mj2 Motion JPEG 2000 file

.mp4 or .m4v MPEG-4 file (systems with Windows 7 or later, or macOS 10.7
and later)

If you do not specify a valid file extension, VideoWriter appends the
extension .avi, .mj2, or .mp4, depending on the value of the profile argument. If you
do not specify a value for profile, then VideoWriter creates a Motion JPEG
compressed AVI file with the extension .avi.
Example: 'myFile.avi'
Example: '../dir/videos/myFile.mj2'
Data Types: char | string

profile — File type
'Motion JPEG AVI' (default) | 'Archival' | 'Motion JPEG 2000' | ...

File type, specified as one of these.

Value of profile Description
'Archival' Motion JPEG 2000 file with lossless

compression
'Motion JPEG AVI' AVI file using Motion JPEG encoding
'Motion JPEG 2000' Motion JPEG 2000 file
'MPEG-4' MPEG-4 file with H.264 encoding (systems

with Windows 7 or later, or macOS 10.7 and
later)

'Uncompressed AVI' Uncompressed AVI file with RGB24 video
'Indexed AVI' Uncompressed AVI file with indexed video
'Grayscale AVI' Uncompressed AVI file with grayscale video

profile sets default values for video properties, such as VideoCompressionMethod.
Data Types: char | string

1 Alphabetical List

1-15926

Properties
The VideoWriter object contains properties that control the output video. You can
create a VideoWriter object with properties tailored to a specific format, such as
'Uncompressed AVI' or 'MPEG-4', by using the VideoWriter function with a
predefined profile. For example, you can create a VideoWriter object with a Motion
JPEG AVI profile and assign a value to the Quality property.

v = VideoWriter('newfile.avi','Motion JPEG AVI');
v.Quality = 95;

After you call the open function on the VideoWriter object, you cannot change the
value of a property. Therefore, modify property values before opening the video file for
writing.

ColorChannels — Number of color channels
positive integer

This property is read-only.

Number of color channels in each output video frame, specified as a positive integer:

• Uncompressed AVI, Motion JPEG AVI, and MPEG-4 files have three color channels.
• Indexed and grayscale AVI files have one color channel.
• For Motion JPEG 2000 files, the number of channels depends on the input data to the

writeVideo function: one for monochrome data or three for color data.

Data Types: double

Colormap — Color information for video file
P-by-3 numeric matrix

Color information for video file, specified as a numeric matrix with three columns and a
maximum of 256 rows. Each row in the matrix defines one color using an RGB triplet. An
RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1].

You can set the colormap explicitly before the call to open, or by using the colormap
field of a movie frame structure at the time of writing the first frame.

The Colormap property only applies to objects used for writing indexed AVI files.

 VideoWriter

1-15927

Example: colormap(summer(256))
Data Types: double | uint8

CompressionRatio — Target compression ratio
10 (default) | integer greater than 1

Target compression ratio, specified as an integer greater than 1. The compression ratio is
the ratio between the number of bytes in the input image and the number of bytes in the
compressed image. The video data is compressed as much as possible, up to the specified
target.

CompressionRatio is available only for objects used for writing Motion JPEG 2000 files.
After you call open, you cannot change the CompressionRatio value. If you previously
set LosslessCompression to true, then setting CompressionRatio generates an
error.
Example: 5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Duration — Duration of output file
scalar value

This property is read-only.

Duration of the output file in seconds, specified as a scalar value.
Data Types: double

FileFormat — Type of file to write
'avi' | 'mp4' | 'mj2'

This property is read-only.

Type of file to write, specified as 'avi', 'mp4', or 'mj2'.
Data Types: char | string

Filename — Name of file
character vector | string scalar

This property is read-only.

1 Alphabetical List

1-15928

Name of file, specified as a character vector or string scalar.
Data Types: char | string

FrameCount — Number of frames
integer

This property is read-only.

Number of frames written to the video file, specified as an integer.
Data Types: double

FrameRate — Rate of video playback
30 (default) | positive number

Rate of video playback in frames per second, specified as a positive number.

After you call open, you cannot change the FrameRate value.
Example: 10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Height — Height of each video frame
scalar

This property is read-only.

Height of each video frame in pixels, specified as a scalar. The writeVideo method sets
values for Height and Width based on the dimensions of the first frame.

MPEG-4 files require frame dimensions that are divisible by two. If the input frame height
for an MPEG-4 file is not an even number, then VideoWriter pads the frame with a row
of black pixels at the bottom. For MPEG-4 files on Windows systems, the allowed value
depends on the version of Windows.
Data Types: double

LosslessCompression — Lossless compression
true | false

Lossless compression, specified as true or false. The LosslessCompression property
is only available for objects used for writing Motion JPEG 2000 files.

 VideoWriter

1-15929

If LosslessCompression is true, then:

• The writeVideo function writes data so that the decompressed data is identical to
the input data.

• VideoWriter ignores any specified value for CompressionRatio.

After you call open, you cannot change the LosslessCompression value.

By default, LosslessCompression is false for the 'Motion JPEG 2000' profile and
true for the 'Archival' profile.
Data Types: logical

MJ2BitDepth — Bit depth for Motion JPEG 2000 files
integer in the range [1,16]

Bit depth for Motion JPEG 2000 files, specified as an integer in the range [1,16]. The bit
depth is the number of least-significant bits in the input image data

MJ2BitDepth is available only for objects used for writing Motion JPEG 2000 files. If you
do not specify a value before calling the open method, then VideoWriter sets the bit
depth based on the input data type. For example, if the input data to writeVideo is an
array of uint8 or int8 values, then MJ2BitDepth is 8.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Path — Full path to video file
character vector | string scalar

This property is read-only.

Full path to the video file, specified as a character vector or string scalar.
Data Types: char | string

Quality — Video quality
75 (default) | integer in the range [0,100]

Video quality, specified as an integer in the range, [0,100]. Higher quality numbers
result in higher video quality and larger file sizes. Lower quality numbers result in lower
video quality and smaller file sizes.

1 Alphabetical List

1-15930

Quality is available only for objects associated with the MPEG-4 or Motion JPEG AVI
profile. After you call open, you cannot change the Quality value.
Example: 50
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

VideoBitsPerPixel — Number of bits per pixel
numeric scalar

This property is read-only.

Number of bits per pixel in each output video frame, specified as a numeric scalar.

AVI files with truecolor video, Motion JPEG AVI, and MPEG-4 files have 24 bits per pixel
(8 bits for each of three color bands).

Indexed and grayscale AVI files have 8 bits per pixel.

For Motion JPEG 2000 files, the number of bits per pixel depends on the value of
MJ2BitDepth and the number of bands of image data. For example, if the input data to
writeVideo is a three-dimensional array of uint16 or int16 values, then the default
value of MJ2BitDepth is 16, and VideoBitsPerPixel is 48 (three times the bit depth).
Data Types: double

VideoCompressionMethod — Type of video compression
'None' | 'H.264' | 'Motion JPEG' | 'Motion JPEG 2000'

This property is read-only.

Type of video compression, specified as 'None', 'H.264', 'Motion JPEG', or 'Motion
JPEG 2000'.
Data Types: char | string

VideoFormat — MATLAB representation of video format
character vector | string scalar

This property is read-only.

MATLAB representation of the video format, specified as a character vector or string
scalar.

 VideoWriter

1-15931

For file types other than Motion JPEG 2000 files, VideoWriter sets VideoFormat to one
of the following.

Video Format Value of VideoFormat
Uncompressed AVI, Motion JPEG AVI, or
MPEG-4 files

'RGB24'

AVI files with indexed video 'Indexed'
AVI files with grayscale video 'Grayscale'

For Motion JPEG 2000 files, VideoWriter sets the VideoFormat based on the value of
MJ2BitDepth and the format of the input image data to the writeVideo method. For
example, if you do not specify the MJ2BitDepth property, then VideoWriter sets the
format as shown here.

Format of Image Data Value of VideoFormat
Single-band uint8 'Mono8'
Single-band int8 'Mono8 Signed'
Single-band uint16 'Mono16'
Single-band int16 'Mono16 Signed'
Three-banded uint8 'RGB24'
Three-banded int8 'RGB24 Signed'
Three-banded uint16 'RGB48'
Three-banded int16 'RGB48 Signed'

Data Types: char | string

Width — Width of each video frame
numeric scalar

This property is read-only.

Width of each video frame in pixels, specified as a numeric scalar. The writeVideo
function sets values for Height and Width based on the dimensions of the first frame.

MPEG-4 files require frame dimensions that are divisible by two. If the input frame width
for an MPEG-4 file is not an even number, then VideoWriter pads the frame with a

1 Alphabetical List

1-15932

column of black pixels along the right side. For MPEG-4 files on Windows systems, the
allowed value depends on the version of Windows.
Data Types: double

Object Functions
open Open file for writing video data
close Close file after writing video data
writeVideo Write video data to file
VideoWriter.getProfiles Profiles and file formats that VideoWriter supports

Examples

Create VideoWriter Object and Write Video

Write a video to a file by creating an array with random data, making a VideoWriter
object for the output file, and then writing the array to the video.

Create a 300-by-300 matrix of data.

A = rand(300);

Create a VideoWriter object to write a Motion JPEG AVI file named newfile.avi and
open the file for writing.

v = VideoWriter('newfile.avi');
open(v)

Write the matrix of data A to the video file.

writeVideo(v,A)

Close the file.

close(v)

 VideoWriter

1-15933

Specify Profile for Uncompressed AVI and Write Video

Create a video object with a specified profile, make an array containing an RGB image,
and then write the array into a video file.

Create a VideoWriter object for a new uncompressed AVI file for RGB24 video.

v = VideoWriter('newfile.avi','Uncompressed AVI');

Open the file for writing.

open(v)

Create an array containing data from the sample still image, peppers.png. Write the
image in A to the video file.

A = imread('peppers.png');
writeVideo(v,A)

Close the file.

close(v)

Create AVI File from Animation

Write a sequence of frames to a compressed AVI file by generating a sequence of frames,
creating a video object for the file to write to, and then writing the frames to the video
file.

Setup the axes and figure properties to generate frames for the video.

Z = peaks;
surf(Z);
axis tight manual
set(gca,'nextplot','replacechildren');

Create a video writer object for the output video file and open the object for writing.

v = VideoWriter('peaks.avi');
open(v);

1 Alphabetical List

1-15934

Generate a set of frames, get the frame from the figure, and then write each frame to the
file.

for k = 1:20
 surf(sin(2*pi*k/20)*Z,Z)
 frame = getframe(gcf);
 writeVideo(v,frame);
end

close(v);

See Also
VideoReader | mmfileinfo

Topics
“Write Sequence of Images to Video”

Introduced in R2010b

 VideoWriter

1-15935

close
Close file after writing video data

Syntax
close(v)

Description
close(v) closes the video file associated with v. You must call close to ensure that all
data is written to the file. The object, v, remains in the workspace. If you call the open
function after closing the video file, open discards all existing contents of the file.

Examples

Open and Close Video File for Writing

Create a VideoWriter object to write a new Motion JPEG AVI file.

v = VideoWriter('newfile');

Open the file for writing.

open(v)

Write a 300-by-300 matrix of data to the file.

writeVideo(v,rand(300))

Close the file.

close(v)

1 Alphabetical List

1-15936

Input Arguments
v — Input VideoWriter object
VideoWriter object

Input VideoWriter object. Use VideoWriter to create the object.

See Also
VideoWriter | open | writeVideo

Introduced in R2010b

 close

1-15937

VideoWriter.getProfiles
Profiles and file formats that VideoWriter supports

Syntax
profiles = VideoWriter.getProfiles()

Description
profiles = VideoWriter.getProfiles() returns an array of
audiovideo.writer.ProfileInfo objects that indicate the types of files that
VideoWriter can create.

Examples

Get Profile Information

View available profiles and get specific information about the 'Uncompressed AVI'
profile.

View profiles that VideoWriter supports.

profiles = VideoWriter.getProfiles()

 Summary of installed VideoWriter profiles:

 Name Description
 ---------------- ---
 Archival Video file compression with JPEG 2000 codec with lossless mode enabled.
 Grayscale AVI An AVI file with Grayscale Video Data
 Indexed AVI An AVI file with Indexed Video Data
 MPEG-4 A MPEG-4 file with H.264 Compression
 Motion JPEG 2000 Video file compression with JPEG 2000 codec.
 Motion JPEG AVI An AVI file with Motion JPEG compression
 Uncompressed AVI An AVI file with uncompressed RGB24 video data

1 Alphabetical List

1-15938

Find the index number for the 'Uncompressed AVI' profile.

uncompAVI = find(ismember({profiles.Name},'Uncompressed AVI'));

View the properties of the 'Uncompressed AVI' profile.

profiles(uncompAVI)

 audiovideo.writer.ProfileInfo

 ProfileInfo Properties:

 Name: 'Uncompressed AVI'
 Description: 'An AVI file with uncompressed RGB24 video data'
 FileExtensions: {'.avi'}
 ColorChannels: 3
 FrameRate: 30
 VideoBitsPerPixel: 24
 VideoCompressionMethod: 'None'
 VideoFormat: 'RGB24'

Get the file extensions associated with the profile.

ext = profiles(uncompAVI).FileExtensions

ext = 1x1 cell array
 {'.avi'}

Output Arguments
profiles — Supported profiles and video file formats
array of audiovideo.writer.ProfileInfo objects

Supported profiles and video file formats, returned as an array of
audiovideo.writer.ProfileInfo objects, which have the following read-only
properties.

Property Description
Name Character vector indicating the profile

name, such as 'Uncompressed AVI'.

 VideoWriter.getProfiles

1-15939

Property Description
Description Character vector indicating the description

of the profile.
FileExtensions Cell array of character vectors containing

file extensions supported by the file format.
ColorChannels Number of color channels in each output

video frame.
CompressionRatio Number greater than 1 that specifies the

target ratio between the number of bytes in
the input image and the number of bytes in
the compressed image. Only applies to
objects associated with Motion JPEG 2000
files. Default: 10.

FrameRate Rate of playback for the video in frames per
second. Default: 30.

LosslessCompression Boolean value (logical true or false) that
specifies whether to use reversible mode,
so that the decompressed data is identical
to the input data. When true,
VideoWriter ignores values for
CompressionRatio. Only applies to
objects associated with Motion JPEG 2000
files.

MJ2BitDepth Number of least-significant bits in the input
image data, from 1 to 16. Applied only to
objects associated with Motion JPEG 2000
files.

Quality Number from 0 through 100. Higher values
correspond to higher quality video and
larger files. Only applies to objects
associated with the MPEG-4 or Motion
JPEG AVI profile. Default: 75.

VideoBitsPerPixel Number of bits per pixel in each output
video frame.

1 Alphabetical List

1-15940

Property Description
VideoCompressionMethod Character vector indicating the type of

video compression, such as 'None' or
'Motion JPEG'.

VideoFormat Character vector indicating the MATLAB
representation of the video format, such as
'RGB24'.

See Also
VideoWriter

Introduced in R2010b

 VideoWriter.getProfiles

1-15941

open
Open file for writing video data

Syntax
open(v)

Description
open(v) opens the file associated with v for writing. When you open the file, all
properties of the object become read only. open discards all existing contents of the file.

Examples

Open and Close Video File for Writing

Create a VideoWriter object to write a new Motion JPEG AVI file.

v = VideoWriter('newfile');

Open the file for writing.

open(v)

Write a 300-by-300 matrix of data to the file.

writeVideo(v,rand(300))

Close the file.

close(v)

1 Alphabetical List

1-15942

Input Arguments
v — Input VideoWriter object
VideoWriter object

Input VideoWriter object. Use VideoWriter to create the object.

See Also
VideoWriter | close | writeVideo

Introduced in R2010b

 open

1-15943

writeVideo
Write video data to file

Syntax
writeVideo(v,img)
writeVideo(v,frame)

Description
writeVideo(v,img) writes data from an array to the video file associated with v.

You must call open(v) before calling writeVideo.

writeVideo(v,frame) writes one or more movie frames typically returned by the
getframe function.

Examples

Write Image to Motion JPEG 2000 File

Write an RGB image to a Motion JPEG 2000 file with lossless compression.

Create an array containing data from the sample still image, peppers.png.

A = imread('peppers.png');

Create a VideoWriter object for a new video file. Use the 'Archival' profile to specify
a Motion JPEG 2000 file with lossless compression.

v = VideoWriter('myFile','Archival');

Verify the type of video compression for the new file.

v.VideoCompressionMethod

1 Alphabetical List

1-15944

ans =
'Motion JPEG 2000'

Open the video file for writing. Then, write the image data in A to the file.

open(v)
writeVideo(v,A)

Close the video file.

close(v)

Write Indexed Image to AVI File

Read image and colormap data from the sample indexed image file, corn.tif.

[X,map] = imread('corn.tif');

Create a VideoWriter object for a new indexed AVI file.

v = VideoWriter('myIndexed.avi','Indexed AVI');

Assign the colormap data to the Colormap property of v.

v.Colormap = map;

Open the file for writing. After you open the file, you cannot change the properties of v.

open(v)

Write the image data in X to the video file. Then, close the file.

writeVideo(v,X)
close(v)

Convert MPEG-4 to AVI File

Convert the example file, xylophone.mp4, to an uncompressed AVI file.

Create objects to read and write the video, and open the AVI file for writing.

 writeVideo

1-15945

reader = VideoReader('xylophone.mp4');
writer = VideoWriter('transcoded_xylophone.avi', ...
 'Uncompressed AVI');

writer.FrameRate = reader.FrameRate;
open(writer);

Read and write each frame.

while hasFrame(reader)
 img = readFrame(reader);
 writeVideo(writer,img);
end

close(writer);

Create AVI File from Animation

Write a sequence of frames to a compressed AVI file by generating a sequence of frames,
creating a video object for the file to write to, and then writing the frames to the video
file.

Setup the axes and figure properties to generate frames for the video.

Z = peaks;
surf(Z);
axis tight manual
set(gca,'nextplot','replacechildren');

Create a video writer object for the output video file and open the object for writing.

v = VideoWriter('peaks.avi');
open(v);

Generate a set of frames, get the frame from the figure, and then write each frame to the
file.

for k = 1:20
 surf(sin(2*pi*k/20)*Z,Z)
 frame = getframe(gcf);
 writeVideo(v,frame);
end

1 Alphabetical List

1-15946

close(v);

Input Arguments
v — Input VideoWriter object
VideoWriter object

Input VideoWriter object. Use VideoWriter to create the object.

img — Values representing grayscale or RGB color images
2-D array | 3-D array | 4-D array

Values representing grayscale or RGB color images, specified as a 2-D, 3-D, or 4-D array:

• For a single grayscale, monochrome, or indexed image, img must be two dimensional:
height-by-width

• For a single truecolor (RGB) image, img is three dimensional: height-by-width-by-3.
• For a sequence of grayscale images, img is four dimensional:. height-by-width-by-1-by-

frames. The height and width must be consistent for all frames within a file.
• For a sequence of RGB images, img is four dimensional: height-by-width-by-3-by-

frames. The height and width must be consistent for all frames within a file.

When creating AVI or MPEG-4 files:

• img is an array of single, double, or uint8 values representing one or more
grayscale or RGB color images, which writeVideo writes as one or more RGB video
frames.

• Data of type single or double must be in the range [0,1], except when writing
indexed AVI files.

When creating Motion JPEG 2000 files:

• img is an array of uint8, int8, uint16, or int16 values representing one or more
monochrome or RGB color images.

Data Types: single | double | int8 | int16 | uint8 | uint16

frame — Frame data
1-by-1 structure array | 1-by-F array of structures

 writeVideo

1-15947

Frame data, specified as a 1-by-1 structure array representing a single frame, or a 1-by-F
array of structures representing multiple frames. Each frame contains two fields: cdata
and colormap. The frame array is typically returned by the getframe function.

If colormap is not empty, then each element of cdata should be a 2-D (height-by-width)
array. The height and width must be consistent for all frames within a file.

colormap can contain a maximum of 256 entries. Each element of colormap must be in
the range [0,1].

When you create a VideoWriter object. the profile input and the size of cdata
determine how writeVideo uses frame.

profile of VideoWriter
object

Size of each element of
cdata

Behavior of writeVideo

'Indexed AVI' 2-D (height-by-width) Use frame as provided.
'Grayscale AVI' 2-D (height-by-width) Use frame as provided.

colormap should be empty.
All other profiles 2-D (height-by-width) Construct RGB image

frames using the colormap
field

3-D (height-by-width-by-3) Ignore the colormap field.
Construct RGB image
frames using the cdata
field

Data Types: struct

See Also
VideoWriter | close | getframe | open

Topics
“Image Types”

Introduced in R2010b

1 Alphabetical List

1-15948

view
Camera line of sight

Syntax
view(az,el)
view(v)
view(dim)
view(ax, ___)
[caz,cel] = view(___)

Description
view(az,el) sets the azimuth and elevation angles of the camera's line of sight on page
1-15960 for the current axes.

view(v) sets the line of sight according to v, which is a two- or three-element array:

• Two-element array — The values are the azimuth and elevation angles respectively.
• Three-element array — The values are the x-, y-, and z-coordinates of a vector that

starts at the center of the plot box and points toward the camera. MATLAB calculates
the azimuth and elevation angles using a unit vector pointing in the same direction.

view(dim) uses the default line of sight for 2-D or 3-D plots. Specify dim as 2 for the
default 2-D view or 3 for the default 3-D view.

view(ax, ___) specifies the target axes when changing the line of sight.

[caz,cel] = view(___) returns the azimuth and elevation angles as caz and cel,
respectively. Specify input arguments from any of the previous syntaxes to get the angles
for the new line of sight. Or, specify no input arguments to get the angles for the current
line of sight.

Examples

 view

1-15949

Change View of Surface Plot

Use the peaks function to get the x-, y-, and z-coordinates of a surface. Then plot the
surface and label each axis.

[X,Y,Z] = peaks;
surf(X,Y,Z)
xlabel('X')
ylabel('Y')
zlabel('Z')

View the plot using an azimuth of 90 degrees and an elevation of 0 degrees. The new line
of sight is along the x-axis.

1 Alphabetical List

1-15950

view(90,0)

Display Surface in a 2-D View

Use the peaks function to get the x-, y-, and z-coordinates of a surface. Then plot the
surface and label each axis.

[X,Y,Z] = peaks;
surf(X,Y,Z)
xlabel('X')
ylabel('Y')
zlabel('Z')

 view

1-15951

Display the plot in a 2-D view.

view(2)

1 Alphabetical List

1-15952

Change the View Using a Vector

Create a set of x-, y-, and z-coordinates and use them to plot a surface. Then label each
axis.

[X,Y] = meshgrid(-5:.5:5);
Z = Y.*sin(X) - X.*cos(Y);
surf(X,Y,Z)
xlabel('X')
ylabel('Y')
zlabel('Z')

 view

1-15953

Get the azimuth and elevation angles for this plot.

[caz,cel] = view

caz = -37.5000

cel = 30

Change the view by specifying v as the x- y- and z-coordinates of a vector, and return the
new azimuth and elevation angles. The new angles are based on a unit vector pointing in
the same direction as v.

v = [-5 -2 5];
[caz,cel] = view(v)

1 Alphabetical List

1-15954

caz = -68.1986

cel = 42.8760

Change View of Specific Axes

Use the subplot function to create two axes, ax1 and ax2. Use them to create separate
but identical line plots.

% Left plot
ax1 = subplot(1,2,1);
t = 0:pi/20:10*pi;

 view

1-15955

xt1 = sin(t);
yt1 = cos(t);
plot3(ax1,xt1,yt1,t)
xlabel('X')
ylabel('Y')
zlabel('Z')

% Right plot
ax2 = subplot(1,2,2);
plot3(ax2,xt1,yt1,t)
xlabel('X')
ylabel('Y')
zlabel('Z')

1 Alphabetical List

1-15956

Change the view of the right plot to a side view along the x-axis.

view(ax2,[90 0]);

Input Arguments
az — Azimuth
number

Azimuth, specified as an angle in degrees from the negative y-axis. Increasing this angle
corresponds to counterclockwise rotation about the z-axis when viewing the x-y plane
from above.

 view

1-15957

The default value depends on whether your chart is in a 2-D or 3-D view. For 2-D charts,
the default value is 0. For 3-D charts, the default value is -37.5.
Example: view(45,25) sets the azimuth to 45 degrees and the elevation to 25 degrees.

el — Elevation
number

Elevation, specified the minimum angle in degrees between the line of sight and the x-y
plane. Increasing the elevation from -90 to 90 degrees corresponds to a rotation from the
negative z-axis to the positive z-axis.

The default value depends on whether your chart is in a 2-D or 3-D view. For 2-D charts,
the default value is 90. For 3-D charts, the default value is 30.
Example: view(45,25) sets the azimuth to 45 degrees and the elevation to 25 degrees.

v — Line-of-sight vector
[az el] | [x y z]

Line-of-sight vector, specified as one of the following:

• A two-element array containing the azimuth and elevation angles respectively.
• A three-element array containing the x-, y-, and z-coordinates of a vector that

originates from the center of the plot box and points toward the camera. MATLAB
calculates the azimuth and elevation from a unit vector pointing in the same direction.
Thus, the magnitude of the v has no effect on the line of sight.

1 Alphabetical List

1-15958

Example: view([45 25]) sets the azimuth to 45 degrees and the elevation to 25
degrees.
Example: view([20 25 5]) sets the line of sight to a vector that points in the same
direction as the vector [20 25 5].

dim — Dimensions
2 | 3

Dimensions, specified as 2 or 3. This argument sets the azimuth and elevation to the
default values that MATLAB uses for a 2-D or 3-D plot.

Value of dim Azimuth Elevation
2 0 90
3 -37.5 30

 view

1-15959

ax — Target axes
Axes object

Target axes, specified as an Axes object.

Definitions

Line of Sight
The line of sight starts at the center of the plot box and points toward the camera.
MATLAB defines this line using two angles, the azimuth and the elevation. These angles
are measured within a 3-D coordinate system that has its origin at the center of the plot
box.

• Azimuth — The angle of rotation around the z-axis, as measured from the negative y-
axis. Increasing this angle corresponds to counterclockwise rotation about the z-axis
when viewing the x-y plane from above.

• Elevation — The minimum angle between the line of sight and the x-y plane.
Increasing the elevation from -90 to 90 degrees corresponds to a rotation from the
negative z-axis to the positive z-axis.

1 Alphabetical List

1-15960

Tips
The view function controls the direction of the line of sight, but it does not control the
location that the line starts from, nor the camera position. For more control, use the
camera functions such as campos, camtarget, camroll, and cameratoolbar.

See Also
rotate3d

Topics
“View Overview”
“Low-Level Camera Properties”

 view

1-15961

“View Control with the Camera Toolbar”

Introduced before R2006a

1 Alphabetical List

1-15962

viewmtx
View transformation matrices

Syntax
viewmtx
T = viewmtx(az,el)
T = viewmtx(az,el,phi)
T = viewmtx(az,el,phi,xc)

Description
viewmtx computes a 4-by-4 orthographic or perspective transformation matrix that
projects four-dimensional homogeneous vectors onto a two-dimensional view surface
(e.g., your computer screen).

T = viewmtx(az,el) returns an orthographic transformation matrix corresponding to
azimuth az and elevation el. az is the azimuth (i.e., horizontal rotation) of the viewpoint
in degrees. el is the elevation of the viewpoint in degrees.

T = viewmtx(az,el,phi) returns a perspective transformation matrix. phi is the
perspective viewing angle in degrees. phi is the subtended view angle of the normalized
plot cube (in degrees) and controls the amount of perspective distortion.

Phi Description
0 degrees Orthographic projection
10 degrees Similar to telephoto lens
25 degrees Similar to normal lens
60 degrees Similar to wide-angle lens

T = viewmtx(az,el,phi,xc) returns the perspective transformation matrix using xc
as the target point within the normalized plot cube (i.e., the camera is looking at the point
xc). xc is the target point that is the center of the view. You specify the point as a three-
element vector, xc = [xc,yc,zc], in the interval [0,1]. The default value is xc =
[0,0,0].

 viewmtx

1-15963

A four-dimensional homogenous vector is formed by appending a 1 to the corresponding
three-dimensional vector. For example, [x,y,z,1] is the four-dimensional vector
corresponding to the three-dimensional point [x,y,z].

Examples

Compute Transformation Matrices

Determine the projected two-dimensional vector corresponding to the three-dimensional
point (0.5,0.0,-3.0) using the default view direction. Note that the point is a column
vector.

A = viewmtx(-37.5,30);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)

x2d = 2×1

 0.3967
 -2.4459

Create vectors that trace the edges of a unit cube.

x = [0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0];
y = [0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1];
z = [0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0];

Transform the points in these vectors to the screen, then plot the object.

A = viewmtx(-37.5,30);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:);
y2(:) = x2d(2,:);
plot(x2,y2)

1 Alphabetical List

1-15964

Use a perspective transformation with a 25 degree viewing angle.

A = viewmtx(-37.5,30,25);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)/x2d(4)

x2d = 2×1

 0.1777
 -1.8858

Transform the cube vectors to the screen and plot the object.

 viewmtx

1-15965

A = viewmtx(-37.5,30,25);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:)./x2d(4,:);
y2(:) = x2d(2,:)./x2d(4,:);
plot(x2,y2)

See Also
hgtransform | view

1 Alphabetical List

1-15966

Topics
“Camera Graphics Terminology”

Introduced before R2006a

 viewmtx

1-15967

visdiff
Compare two files or folders

Syntax
visdiff(name1,name2)
visdiff(name1,name2,type)
comparison=visdiff(___)

Description
visdiff(name1,name2) displays the differences between the two specified files or
folders in the Comparison Tool. The File Comparison Tool supports many file types such
as MATLABcode files, zip files, MAT-files, and various other MATLAB and Simulink file
formats.

Use visdiff to compare two Simulink models and identify changes or merge differences
between the models. For more information, see “Model Comparison” (Simulink).

visdiff(name1,name2,type) compares the two files or folders using the specified
comparison type. If you do not specify a type, visdiff uses the default comparison type
for your selected files. The type option does not apply when comparing folders.

comparison=visdiff(___) compares two model files and returns a comparison object
containing the differences between the two files. This syntax does not open the
Comparison Tool and is only supported for comparing Simulink models. name1 and name2
must be model files. Use the comparison object to manipulate the comparison at the
command line, for example by applying filters and publishing comparison reports.

Examples

Compare Two Files

Compare two files using both relative and full paths.

1 Alphabetical List

1-15968

Compare the two files lengthofline.m and lengthofline2.m in the current folder.

visdiff('lengthofline.m','lengthofline2.m')

Compare the two demo files gatlin.mat and gatlin2.mat using a fully qualified file
name.

visdiff(fullfile(matlabroot,'toolbox','matlab','demos','gatlin.mat'), ...
fullfile(matlabroot,'toolbox','matlab','demos','gatlin2.mat'))

Compare Two Files and Specify Type

Compare the two files lengthofline.m and lengthofline2.m as binary.

If you do not specify type, visdiff compares the two files using the default text
comparison type. By changing to the binary comparison type you can examine differences
such as end-of-line characters.

visdiff('lengthofline.m','lengthofline2.m','binary')

Publish Comparison Report

When comparing Simulink models, you can manipulate the comparison at the command
line by specifying an output argument to visdiff.

Compare two model files and get the comparison object output from visdiff.

comparison = visdiff(modelname1, modelname2);

(Optional) Filter the comparison result. Supported filters are: 'unfiltered' – removes
all filtering from the comparison, or 'default' – default filtering strategy for
comparisons.

filter(comparison, 'unfiltered');

To publish a comparison report to a file, use publish on the comparison object. The
default format of the published report is HTML. publish saves the file in the current
folder as filename1_filename2.html.

 visdiff

1-15969

file = publish(comparison);
web(file)

To specify options for the report, use the following name-value pairs with publish.

• 'Format' – The file format of the published report.

Options are: 'html' (default) – single-file HTML Document, or 'docx' – Microsoft
Word document.

• 'Name' – The name of the report.

A character vector or scalar string array. If you specify a file extension, then
'Format' is ignored.

• 'OutputFolder' – Where to save the report.

A character vector or scalar string array. The default is the current folder.

Alternatively, you can specify the name-value pairs in an options structure:
publish(comparison, options).

Input Arguments
name — File or folder name
character vector

File or folder name to compare, specified as a character vector. name can include a
relative path, but the relative path must be in the current folder. Otherwise, name must
include a full path.

type — Comparison type
'text' | 'binary' | 'xml'

Comparison type, specified as 'text', 'binary', or 'xml'. Some comparisons do not
support all of the comparison types. If an unsupported comparison type is specified,
MATLAB displays an error.

To examine differences such as end-of-line characters in text files, specify a 'binary'
comparison type.

1 Alphabetical List

1-15970

The default comparison type for XML files depends on the XML type, and is either
'text' or 'xml'. Specify 'text' or 'xml' to override the default comparison type for
the file.

Output Arguments
comparison — Comparison object
object

Comparison object for manipulating the comparison at the command line, for example by
applying filters and publishing comparison reports. Only supported for comparing
Simulink models.

Tips
In some cases, there might be multiple comparison types available for your selection (e.g.,
text, binary, file list, or XML comparison). To select a different comparison type, use the
visdiff function and specify the type argument. You also can select from the available
comparison types in the Comparison Tool. For more information, see “Compare Files and
Folders and Merge Files”.

Alternative Functionality
As an alternative to the visdiff function, use the Comparison Tool to compare files or
folders interactively. To open the Comparison Tool, go to the Home tab, and in the File
section, click Compare. Then select the files or folders to compare.

You can also compare a file that is open in the Editor. On the Editor or Live Editor tab, in
the File section, select Compare. To compare with the autosave version or the version on
disk, select Compare , and then select Save and Compare with Autosave or
Compare with Version on Disk. For more information, see “Compare Files with
Autosave Version or Version on Disk”.

To compare a file or folder in the Current Folder browser, right-click the selected file or
folder and select Compare Against. To compare two files or subfolders, right-click the
selected files or folders and select Compare Selected Files/Folders.

 visdiff

1-15971

See Also

Topics
“Compare Files and Folders and Merge Files”
“Model Comparison” (Simulink)

Introduced in R2008b

1 Alphabetical List

1-15972

volumebounds
Coordinate and color limits for volume data

Syntax
lims = volumebounds(X,Y,Z,V)
lims = volumebounds(X,Y,Z,U,V,W)
lims = volumebounds(V)
lims = volumebounds(U,V,W)

Description
lims = volumebounds(X,Y,Z,V) returns the x, y, z, and color limits of the current
axes for scalar volume data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax cmin cmax]

You can pass this vector to the axis command.

lims = volumebounds(X,Y,Z,U,V,W) returns the x, y, and z limits of the current
axes for vector volume data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax]

lims = volumebounds(V) and lims = volumebounds(U,V,W) assumes X, Y, and Z
are determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(V).

Examples

 volumebounds

1-15973

Set Axes and Color Limits for Isosurface

Use volumebounds to set the axes and color limits for an isosurface returned by the
flow function.

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p);
daspect([1 1 1]);
isocolors(x,y,z,fliplr(v),p);
shading interp
axis(volumebounds(x,y,z,v));

1 Alphabetical List

1-15974

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
isosurface | streamslice

Introduced before R2006a

 volumebounds

1-15975

voronoi
Voronoi diagram

Note Qhull-specific options are no longer supported. Remove the OPTIONS argument
from all instances in your code that pass it to voronoi.

Note The behavior of h = voronoi(...) has changed. The new behavior returns a
vector of two chart line handles; one representing the points and the other representing
the Voronoi edges.

Syntax
voronoi(x,y)
voronoi(x,y,TRI)
voronoi(dt)
voronoi(AX,...)
voronoi(...,'LineSpec')
h = voronoi(...)
[vx,vy] = voronoi(...)

Description
voronoi(x,y) plots the bounded cells of the Voronoi diagram for the points x,y. Lines-
to-infinity are approximated with an arbitrarily distant endpoint.

voronoi(x,y,TRI) uses the triangulation TRI instead of computing internally.

voronoi(dt) uses the Delaunay triangulation dt instead of computing it.

voronoi(AX,...) plots into AX instead of gca.

voronoi(...,'LineSpec') plots the diagram with color and line style specified.

1 Alphabetical List

1-15976

h = voronoi(...) returns h, which is a vector of two chart line handles. One
represents the points and the other represents the Voronoi edges.

[vx,vy] = voronoi(...) returns the finite vertices of the Voronoi edges in vx and vy.

Note For the topology of the Voronoi diagram, i.e., the vertices for each Voronoi cell, use
voronoin.

[v,c] = voronoin([x(:) y(:)])

Visualization
Use one of these methods to plot a Voronoi diagram:

• If you provide no output argument, voronoi plots the diagram.
• To gain more control over color, line style, and other figure properties, use the syntax

[vx,vy] = voronoi(...). This syntax returns the vertices of the finite Voronoi
edges, which you can then plot with the plot function.

• To fill the cells with color, use voronoin with n = 2 to get the indices of each cell,
and then use patch and other plot functions to generate the figure. Note that patch
does not fill unbounded cells with color.

Examples

Voronoi Diagram Based on Points

This code uses the voronoi function to plot the Voronoi diagram for 10 randomly
generated points.

x = gallery('uniformdata',[1 10],0);
y = gallery('uniformdata',[1 10],1);
voronoi(x,y)

 voronoi

1-15977

Voronoi Diagram Based on Vertices of Voronoi Edges

This code uses the vertices of the finite Voronoi edges to plot the Voronoi diagram for the
same 10 points used in the previous example.

x = gallery('uniformdata',[1 10],0);
y = gallery('uniformdata',[1 10],1);
[vx,vy] = voronoi(x,y);
plot(x,y,'r+',vx,vy,'b-')
axis equal

1 Alphabetical List

1-15978

Note that you can add the following code to get the figure shown in the previous example.

xlim([min(x) max(x)])
ylim([min(y) max(y)])

 voronoi

1-15979

Voronoi Diagram with Color

This code uses voronoin and patch to fill the bounded cells of the same Voronoi
diagram with color.

x = gallery('uniformdata',[10 2],5);
[v,c] = voronoin(x);
for i = 1:length(c)
if all(c{i}~=1) % If at least one of the indices is 1,
 % then it is an open region and we can't
 % patch that.

1 Alphabetical List

1-15980

patch(v(c{i},1),v(c{i},2),i); % use color i.
end
end

Definitions
Voronoi Polygon
Consider a set of coplanar points P. For each point Px in the set P, you can draw a
boundary enclosing all the intermediate points lying closer to Px than to other points in
the set P. Such a boundary is called a Voronoi polygon.

 voronoi

1-15981

Voronoi Diagram
The set of all Voronoi polygons for a given point set is called a Voronoi diagram.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
LineSpec | convhull | delaunay | delaunayTriangulation | plot | voronoin

Introduced before R2006a

1 Alphabetical List

1-15982

voronoiDiagram
Class: DelaunayTri

(Not recommended) Voronoi diagram

Note voronoiDiagram(DelaunayTri) is not recommended. Use
voronoiDiagram(delaunayTriangulation) instead.

DelaunayTri is not recommended. Use delaunayTriangulation instead.

Syntax
[V, R] = voronoiDiagram(DT)

Description
[V, R] = voronoiDiagram(DT) returns the vertices V and regions R of the Voronoi
diagram of the points DT.X. The region R{i} is a cell array of indices into V that
represents the Voronoi vertices bounding the region. The Voronoi region associated with
the i'th point, DT.X(i) is R{i}. For 2-D, vertices in R{i} are listed in adjacent order, i.e.
connecting them will generate a closed polygon (Voronoi diagram). For 3-D the vertices in
R{i} are listed in ascending order.

The Voronoi regions associated with points that lie on the convex hull of DT.X are
unbounded. Bounding edges of these regions radiate to infinity. The vertex at infinity is
represented by the first vertex in V.

Input Arguments
DT Delaunay triangulation.

 voronoiDiagram

1-15983

Output Arguments
V numv-by-ndim matrix representing the coordinates of the Voronoi

vertices, where numv is the number of vertices and ndim is the
dimension of the space where the points reside.

R Vector cell array of length(DR.X), representing the Voronoi cell
associated with each point.

Examples
Compute the Voronoi Diagram of a set of points:

X = [0.5 0
 0 0.5
 -0.5 -0.5
 -0.2 -0.1
 -0.1 0.1
 0.1 -0.1
 0.1 0.1]
dt = DelaunayTri(X)
[V,R] = voronoiDiagram(dt)

Definitions

Voronoi Diagram
The Voronoi diagram of a discrete set of points X decomposes the space around each
point X(i) into a region of influence R{i}. Locations within the region are closer to point
i than any other point. The region of influence is called the Voronoi region. The collection
of all the Voronoi regions is the Voronoi diagram.

Convex Hull
The convex hull of a set of points X is the smallest convex polygon (or polyhedron in
higher dimensions) containing all of the points of X.

1 Alphabetical List

1-15984

See Also
delaunayTriangulation | triangulation | voronoi | voronoin

 voronoiDiagram

1-15985

voronoin
N-D Voronoi diagram

Syntax
[V,C] = voronoin(X)
[V,C] = voronoin(X,options)

Description
[V,C] = voronoin(X) returns Voronoi vertices V and the Voronoi cells C of the Voronoi
diagram of X. V is a numv-by-n array of the numv Voronoi vertices in n-dimensional space,
each row corresponds to a Voronoi vertex. C is a vector cell array where each element
contains the indices into V of the vertices of the corresponding Voronoi cell. X is an m-by-n
array, representing m n-dimensional points, where n > 1 and m >= n+1.

The first row of V is a point at infinity. If any index in a cell of the cell array is 1, then the
corresponding Voronoi cell contains the first point in V, a point at infinity. This means the
Voronoi cell is unbounded.

voronoin uses Qhull.

[V,C] = voronoin(X,options) specifies a cell array of Qhull options. The default
options are:

• {'Qbb'} for 2- and 3-dimensional input
• {'Qbb','Qx'} for 4 and higher-dimensional input

If options is [], the default options are used. If code is {''}, no options are used, not
even the default. For more information on Qhull and its options, see http://
www.qhull.org.

1 Alphabetical List

1-15986

http://www.qhull.org
http://www.qhull.org

Visualization
You can plot individual bounded cells of an n-dimensional Voronoi diagram. To do this, use
convhulln to compute the vertices of the facets that make up the Voronoi cell. Then use
patch and other plot functions to generate the figure.

Examples

Voronoi Diagrams

Compute Voronoi vertices and diagram cells.

Define a 2-D array of points and compute the vertices and diagram cells.

X = [0.5 0; 0 0.5; -0.5 -0.5; -0.2 -0.1; -0.1 0.1; 0.1 -0.1; 0.1 0.1]

X = 7×2

 0.5000 0
 0 0.5000
 -0.5000 -0.5000
 -0.2000 -0.1000
 -0.1000 0.1000
 0.1000 -0.1000
 0.1000 0.1000

[V,C] = voronoin(X)

V = 10×2

 Inf Inf
 0.7000 -1.6500
 -0.0500 -0.0500
 -0.0500 -0.5250
 -1.4500 0.6500
 -1.7500 0.7500
 0 0.2875
 0.3833 0.3833
 0.2875 0
 0 0

 voronoin

1-15987

C = 7x1 cell array
 {1x4 double}
 {1x5 double}
 {1x4 double}
 {1x4 double}
 {1x4 double}
 {1x5 double}
 {1x4 double}

Use a for loop to display the contents of the cell array C.

for i = 1:length(C)
 disp(C{i});
end

 9 2 1 8

 8 1 6 5 7

 6 1 2 4

 6 4 3 5

 10 3 5 7

 10 3 4 2 9

 10 7 8 9

Convex Hull Option

Compute the Voronoi vertices and diagram cells of a 2-D set of points by specifying the
convex hull parameters. The first row of C contains a point at infinity.

X = [-1 -1; 1 -1; 1 1; -1 1];
[V,C] = voronoin(X,{'Qbb','Qz'})

V = 2×2

 Inf Inf
 0 0

1 Alphabetical List

1-15988

C = 4x1 cell array
 {1x2 double}
 {1x2 double}
 {1x2 double}
 {1x2 double}

Algorithms
voronoin is based on Qhull [1]. For information about Qhull, see http://
www.qhull.org/.

References
[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull Algorithm for Convex

Hulls,” ACM Transactions on Mathematical Software, Vol. 22, No. 4, Dec. 1996, p.
469-483.

See Also
convhull | convhulln | delaunay | delaunayTriangulation | delaunayn |
voronoi

Introduced before R2006a

 voronoin

1-15989

http://www.qhull.org/
http://www.qhull.org/

waitbar
Create or update wait bar dialog box

Note If you are using App Designer or creating apps with the uifigure function,
then use uiprogressdlg instead. For more information, see “Migrating GUIDE Apps
to App Designer”.

Syntax
f = waitbar(x,msg)
f = waitbar(x,msg,Name,Value)

waitbar(x)
waitbar(x,f)
waitbar(x,f,msg)

Description
f = waitbar(x,msg) creates a nonmodal on page 1-15999 dialog box containing a wait
bar on page 1-15999 with the specified message. The wait bar is fractional length x. The
dialog box remains open until the code that controls it closes it or the user clicks the close
button (X) in the dialog box title bar. The Figure object is returned as f.

f = waitbar(x,msg,Name,Value) specifies additional options using one or more
name-value pair arguments that set figure properties on the dialog box. For example,
'Name','Progress' sets the dialog box name to Progress. Specify name-value pair
arguments after all other input arguments.

waitbar(x) updates the length of the bar in the current wait bar dialog box to x.
Successive values of x normally increase. If they decrease, the wait bar runs in reverse.

waitbar(x,f) updates the length of the bar in the wait bar dialog box f to the new
position x.

waitbar(x,f,msg) updates the message in the wait bar dialog box f.

1 Alphabetical List

1-15990

Examples

Create Basic Wait Bar Dialog Box

Create a wait bar dialog box that updates the fractional wait bar length and message at
three points in the code.

Use this code to simulate performing a lengthy computation. The pause function passes
the figure object of the first wait bar dialog box to subsequent waitbar function calls.
Passing the figure object this way ensures that the dialog box is updated at each point,
rather than recreated. When the simulated calculation completes, the dialog box closes.

function basicwaitbar
f = waitbar(0,'Please wait...');
pause(.5)

waitbar(.33,f,'Loading your data');
pause(1)

waitbar(.67,f,'Processing your data');
pause(1)

waitbar(1,f,'Finishing');
pause(1)

close(f)
end

Update Wait Bar Message and Add Cancel Button

Add a Cancel button to enable a user to stop an in-progress computation.

Use the following code to converge on the value of pi in for loop iterations, updating the
wait bar and message with each iteration. When a user clicks the Cancel button MATLAB

 waitbar

1-15991

sets a logical flag, 'canceling', to 1 (true) in the figure application data (appdata).
The code tests for that value within the for loop and exits the loop if the flag value is 1.
For more information on application data, see “Store Data as Application Data”.

Set the CreateCancelBtn callback to a character vector value. This practice not
recommended unless the code specified by the value is simple, such as is the case in this
callback code. For more information, see “Write Callbacks for Apps Created
Programmatically”.

function approxpi

f = waitbar(0,'1','Name','Approximating pi...',...
 'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');

setappdata(f,'canceling',0);

% Approximate pi^2/8 as: 1 + 1/9 + 1/25 + 1/49 + ...
pisqover8 = 1;
denom = 3;
valueofpi = sqrt(8 * pisqover8);

steps = 20000;
for step = 1:steps
 % Check for clicked Cancel button
 if getappdata(f,'canceling')
 break
 end

 % Update waitbar and message
 waitbar(step/steps,f,sprintf('%12.9f',valueofpi))

 % Calculate next estimate
 pisqover8 = pisqover8 + 1 / (denom * denom);
 denom = denom + 2;
 valueofpi = sqrt(8 * pisqover8);
end

delete(f)
end

1 Alphabetical List

1-15992

Input Arguments
x — Fractional wait bar length
real number

Fractional wait bar length, specified as a real number between 0 and 1. Successive values
of x normally increase. If they decrease, then the wait bar runs in reverse.
Example: .75

msg — Wait bar message
character vector | cell array of character vectors | string array

Wait bar message, specified as a character vector, cell array of character vectors, or
string array. The message displays within the dialog box, above the progress bar.

• If you specify the message as a character vector, then a long message wraps to fit the
dialog box.

• If you specify the message as a cell array of character vectors, then line breaks occur
between each array element. Long elements wrap to fit the dialog box.

Example: 'Please Wait'
Example: {'Please wait', 'The operation is processing'}

f — Figure object
figure object

Figure object of a previously created wait bar dialog box, specified as the output variable
used when that figure object was created.

 waitbar

1-15993

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Name','Wait Bar'

Note The properties listed here are only a subset of the properties you can set. For a full
list, see Figure.

CreateCancelBtn — Cancel button callback
function handle | cell array | character vector

Cancel button callback, specified as a function handle, cell array, or character vector (not
recommended). MATLAB sets both the Cancel button callback and the figure
CloseRequestFcn callback value to the commands specified by the callback argument
value. For more information, see “Write Callbacks for Apps Created Programmatically”.

Note Call the delete function to remove a wait bar dialog box when you specify a
CreateCancelBtn callback. When you specify the CreateCancelBtn callback, the
close function does not close the dialog box and makes the Cancel and close (X) buttons
unresponsive. This situation occurs because the CreateCancelBtn callback recursively
calls itself. In such a situation, you must forcibly remove the wait bar, for example using
code such as this:

set(groot,'ShowHiddenHandles','on')
delete(get(groot,'Children'))

However, issuing these commands deletes all open figures, not just the wait bar dialog
box.

Example: waitbar(.5,'Processing','CreateCancelBtn',@myfun) specifies the
CreateCancelBtn callback function as a function handle.
Example: waitbar(.5,'Processing','CreateCancelBtn',{@myfun,x}) specifies
the CreateCancelBtn callback function as a cell array. In this case, the function accepts
the input argument, x.

1 Alphabetical List

1-15994

Name — Name
'' (default) | character vector | string scalar

Name of the figure, specified as a character vector or a string scalar.
Example: figure('Name','Results') sets the name of the figure to 'Results'.

By default, the name is 'Figure n', where n is an integer. When you specify the Name
property, the title of the figure becomes 'Figure n: name'. If you want only the Name
value to appear, set IntegerHandle or NumberTitle to 'off'.

Position — Location and size of drawable area
[left bottom width height]

Location and size of the drawable area, specified as a vector of the form [left bottom
width height]. This area excludes the figure borders, title bar, menu bar, and tool bars.

This table describes each element in the Position vector.

Element Description
left Distance from the left edge of the primary display to the

inner left edge of the window. This value can be negative
on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

bottom Distance from the bottom edge of the primary display to
the inner bottom edge of the window. This value can be
negative on systems that have more than one monitor.
If the figure is docked, then this value is relative to the
Figure panel within the MATLAB desktop.

width Distance between the right and left inner edges of the
waitbar.

height Distance between the top and bottom inner edges of the
window.

All measurements are in units specified by the Units property.

You cannot specify the figure Position property when the figure is docked.

In MATLAB Online, the bottom and left elements of the Position vector are ignored.

 waitbar

1-15995

To place the full window, including the borders, title bar, menu bar, tool bars, use the
OuterPosition property.

Note The Windows operating system enforces a minimum window width and a maximum
window size. If you specify a figure size outside of those limits, the displayed figure will
conform to the limits instead of the size you specified.

Units — Units of measurement
'pixels' (default) | 'normalized' | 'inches' | 'centimeters' | 'points' |
'characters'

Units of measurement, specified as one of the values from this table.

Units Value Description
'pixels' (default) Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

On Linux systems, the size of a pixel is
determined by your system resolution.

'normalized' These units are normalized with respect to
the parent container. The lower-left corner
of the container maps to (0,0) and the
upper-right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'points' Points. One point equals 1/72nd of an inch.

1 Alphabetical List

1-15996

Units Value Description
'characters' These units are based on the default

uicontrol font of the graphics root object:

• Character width = width of the letter x.
• Character height = distance between

the baselines of two lines of text.

To access the default uicontrol font, use
get(groot,'defaultuicontrolFontNa
me') or
set(groot,'defaultuicontrolFontNa
me').

MATLAB measures all units from the lower left corner of the parent object.

This property affects the Position property. If you change the Units property, consider
returning its value to the default value after completing your computation to avoid
affecting other functions that assume the default value.

The order in which you specify the Units and Position properties has these effects:

• If you specify the Units before the Position property, then MATLAB sets Position
using the units you specify.

• If you specify the Units property after the Position property, MATLAB sets the
position using the default Units. Then, MATLAB converts the Position value to the
equivalent value in the units you specify.

WindowStyle — Window style
'normal' (default) | 'modal' | 'docked'

Window style, specified as one of the following:

• 'normal' — The figure window is independent of other windows, and the other
windows are accessible while the figure is displaying.

• 'modal' — The figure displays on top of all existing figure windows, making them
inaccessible as long as the top figure exists and remains modal. However, any new
figures created after a modal figure will display.

When multiple modal windows exist, the most recently created window keeps focus
and stays above all other windows until it becomes invisible, or is returned to a normal

 waitbar

1-15997

window style, or is deleted. At that time, focus reverts to the window that last had
focus.

• 'docked' — The figure displays in the desktop or a document window. When the
WindowStyle property is set to 'docked', you cannot set the DockControls
property to 'off'. The 'docked' option is not supported in MATLAB Online.

Note These are some important characteristics of the WindowStyle property and some
recommended best practices:

• When you create UI windows, always specify the WindowStyle property. If you also
want to set the Resize, Position, or OuterPosition properties of the figure, then
set the WindowStyle property first.

• You can change the WindowStyle property of a figure at any time, including when the
figure is visible and contains children. However on some systems, setting this property
might cause the figure to flash or disappear and reappear, depending on the system's
implementation of normal and modal windows. For best visual results, set the
WindowStyle property at creation time or when the figure is invisible.

• Calling reset on a figure does not change the value of the WindowStyle property.

Modal Window Style Behavior

When WindowStyle is set to 'modal', the figure window traps all keyboard and mouse
actions over all MATLAB windows as long as the windows are visible. Windows belonging
to applications other than MATLAB are unaffected.

Typing Ctrl+C when a modal figure has focus causes that figure to revert to a 'normal'
WindowStyle property setting. This allows the user to type at the command line.

Figures with the WindowStyle property set to 'modal' and the Visible property set to
'off' do not behave modally until MATLAB makes them visible. Therefore, you can hide
a modal window for later reuse, instead of destroying it.

Modal figures do not display menu children, built-in menus, or toolbars. But, it is not an
error to create menus in a modal figure or to change the WindowStyle property setting
to 'modal' on a figure with menu children. The Menu objects exist and the figure retains
them. If you reset the figure's WindowStyle property to 'normal', the menus display.

1 Alphabetical List

1-15998

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Nonmodal Dialog Box
A nonmodal dialog box enables a user to interact with other MATLAB windows before
responding to the nonmodal dialog box. A nonmodal dialog box is also referred to as
normal.

Wait Bar
An indicator that displays what percentage of a calculation is complete as the calculation
proceeds by progressively filling a bar with color from left to right. A wait bar is also
referred to as a progress bar.

See Also
close | delete | getappdata | setappdata

Introduced before R2006a

 waitbar

1-15999

waitfor
Block execution and wait for condition

Syntax
waitfor(obj)
waitfor(obj,propname)
waitfor(obj,propname,propvalue)

Description
waitfor(obj) blocks statements from executing until the specified object closes (is
deleted). When the object no longer exists, waitfor returns, enabling execution to
resume. If the object does not exist, waitfor returns immediately.

waitfor(obj,propname) specifies a property name of the object and blocks execution
until the value of the property changes or the object closes. For example,
waitfor(mytable,'Data') pauses execution until the value of 'Data' changes for
mytable. If the specified property name is invalid, execution remains blocked.

waitfor(obj,propname,propvalue) specifies a value that the property must change
to before execution can resume. If the specified property is already equal to propvalue,
then waitfor returns immediately and execution resumes.

Examples

Wait for Warning Dialog to Close

Create a warning dialog and wait for it to close. Commands after waitfor do not execute
until you close the dialog.

1 Alphabetical List

1-16000

mydlg = warndlg('This is a warning.', 'A Warning Dialog');
waitfor(mydlg);
disp('This prints after you close the warning dialog.');

Wait for Property Value Change

Wait for the user to select a check box before adding data to a table. The Value property
of the check box is 0 when not selected, and 1 when selected.

t = uitable;
c = uicontrol('Style','checkbox','String','Add data');
c.Position = [320 100 80 20];
waitfor(c,'Value');
t.Data = magic(5);

Wait for Property to Change to Specific Value

Change the background color of a text field when the user stops editing it and clicks
elsewhere in the figure. When the text field loses focus, the Editing property changes
from 'on' to 'off'.

txt = text(.5,.5,'Edit text and click');
txt.Editing = 'on';
txt.BackgroundColor = [1 1 1];

waitfor(txt,'Editing','off');
txt.BackgroundColor = [1 1 0];

Input Arguments
obj — Object
object

Object, such as an Axes, Text, Panel, ButtonGroup, Table, or UIControl object. The
object can be the child of a Figure object created with the figure or uifigure
function, or it can be the child of a container in a Figure object.

propname — Property name
character vector | string scalar

 waitfor

1-16001

Property name, specified as a character vector or string scalar. Use this argument to
specify a property of obj whose value must change before execution resumes.

propvalue — Property value
valid property value associated with propname

Property value, specified as a valid property value associated with propname. Use this
argument to indicate a specific value that the property must change to before execution
resumes.

Tips
• If you close the figure while waitfor is executing, an error occurs because the code

attempts to access objects that no longer exist. You can handle the error by enclosing
waitfor in a try/catch block.

Algorithms
Typically, callbacks can still run if waitfor has been used to prevent programs or
Simulink models from continuing execution. For example, callbacks that respond to user
actions (like pressing a mouse button) can still run even if waitfor has been called.

waitfor can also be used to block nested function calls. For example, a callback that
executes while the waitfor function is running can also call waitfor.

If a callback function of a UI component is currently executing the waitfor function,
then that callback can be interrupted regardless of what the Interruptible property
value for that component has been set to.

See Also
drawnow | keyboard | pause | uiresume | uiwait | waitforbuttonpress

Introduced before R2006a

1 Alphabetical List

1-16002

waitforbuttonpress
Wait for click or key press

Note

Use this function only with GUIDE, or with apps created with the figure
function.

Syntax
w = waitforbuttonpress

Description
w = waitforbuttonpress blocks statements from executing until the user has clicked
a mouse button or pressed a key in the current figure.

The return argument, w, can have the following values:

• 0 if it detects a click
• 1 if it detects a key press

The waitforbuttonpress function does not return a value when any of the following
keys are pressed by themselves or together: Ctrl, Shift, Alt, Caps Lock, Num Lock, or
Scroll Lock.

Examples

Create Axes After Button Press

Create a figure and call the waitforbuttonpress function. Then, create axes and note
that they do not appear.

 waitforbuttonpress

1-16003

figure;
w = waitforbuttonpress;
axes;

Click the figure. Now, waitforbuttonpress returns, execution continues, and the axes
appear.

Tips
• To determine the last key pressed, the mouse selection type, or the location of the

mouse pointer within the current figure, query the Figure properties
CurrentCharacter, SelectionType, and CurrentPoint, respectively.

Algorithms
Some important points to consider when using waitforbuttonpress:

• If a WindowButtonDownFcn is defined for the figure, it executes before
waitforbuttonpress returns a value.

• The waitforbuttonpress function errors if the user closes the figure by clicking the
window close button unless your code calls the waitforbuttonpress function within
a try/catch block.

Compatibility Considerations

waitforbuttonpress is Figure-specific
Behavior changed in R2014b

To resume program execution after the waitforbuttonpress function is called, a click
or key press must occur in the current figure, and not just any figure. This change in
behavior was introduced in order to prevent program execution from proceeding in an
unintended figure. Prior to R2014b, waitforbuttonpress would detect a click or key
press event in any open figure. The execution stream would then resume in the figure in
which the event was detected.

1 Alphabetical List

1-16004

See Also
dragrect | figure | ginput | rbbox | waitfor

Introduced before R2006a

 waitforbuttonpress

1-16005

warndlg
Create warning dialog box

Note If you are using App Designer or creating apps with the uifigure function,
then use uialert instead. For more information, see “Migrating GUIDE Apps to App
Designer”.

Syntax
f = warndlg(msg)
f = warndlg(msg,title)
f = warndlg(msg,title,opts)
f = warndlg

Description
f = warndlg(msg) creates a nonmodal on page 1-16012 warning dialog box with the
specified message and returns the dialog box figure object f. The message text wraps to
fit the dialog box. The dialog box title is Warning Dialog.

f = warndlg(msg,title) specifies a custom dialog box title.

f = warndlg(msg,title,opts) specifies the window style when opts is set to 'non-
modal', 'modal', or 'replace'. It specifies the window style and an interpreter for the
msg argument when opts is a structure array.

f = warndlg creates a warning dialog box with a default title and message, as follows.

• Default title: Warning Dialog
• Default message: This is the default warning.

Examples

1 Alphabetical List

1-16006

Specify Message and Title for Warning Dialog Box

f = warndlg('Pressing ACCEPT clears memory','Warning');

Interpret Message for Modal Warning Dialog Box

Create a structure to specify a modal on page 1-16012 window style and the TeX
interpreter. Then, create a warning dialog box specifying the opts structure as an input
argument. The TeX interpreter reads the \color{blue} characters in the message text
as an instruction to render the message text in blue.

opts = struct('WindowStyle','modal',...
 'Interpreter','tex');
f = warndlg('\color{blue} Pressing ACCEPT clears memory',...
 'Memory Warning', opts);

Input Arguments
msg — Warning message
'This is the default warning' (default) | character vector | cell array of character
vectors | string array

 warndlg

1-16007

Warning message, specified as a character vector, cell array of character vectors, or a
string array.

• If you specify the message as a character vector, then MATLAB wraps the text to fit
the dialog box.

• If you specify the message a cell array, then MATLAB wraps the text after each cell
array element. MATLAB wraps the text of long cell array elements to fit the dialog box.

Example: 'This command clears your workspace.'

title — Dialog box title
'Warning Dialog' (default) | character vector | string scalar

Dialog box title, specified as a character vector or string scalar.
Example: 'Workspace Warning'

opts — Dialog box settings
'non-modal' | 'modal' | 'replace' | structure array

Dialog box settings specified as a window style or a structure. The structure specifies the
window style and an interpreter for the msg argument.

To specify the window style only, set opts to one of the values in this table.

Value Description
'non-modal' Create a warning dialog box that is nonmodal on page 1-

16012. This dialog box has no effect on other open dialog
boxes.

1 Alphabetical List

1-16008

Value Description
'modal' Specify a warning dialog box that is modal on page 1-

16012.

If other warning dialog boxes have the same title, then
MATLAB modifies the most recently active one with the
current specifications. MATLAB deletes all other open
error, message, and warning dialog boxes with the same
dialog box title as the most recently active warning
dialog box. The affected dialog boxes can be modal or
nonmodal.

Message and error dialog boxes are created with the
msgbox, and errordlg functions, respectively.

'replace' Specify a warning dialog box that is nonmodal.

If other warning dialog boxes have the same title, then
MATLAB modifies the most recently active one with the
current specifications. MATLAB deletes all other open
error, message, or warning dialog boxes with the same
title as the most recently active warning dialog box. The
affected dialog boxes can be modal or nonmodal.

Message and error dialog boxes are created with the
msgbox, and errordlg functions, respectively.

To specify the window style and an interpreter for the warning dialog box message, create
an opts structure with the fields WindowStyle and Interpreter. This table shows
valid values for the fields. The structure must include both fields.

Field Values
WindowStyle 'non-modal','modal', or 'replace'.
Interpreter 'none' or 'tex'. If set to 'tex', hen MATLAB renders the message

using the TeX interpreter.

Use TeX markup to add superscripts and subscripts, modify the font
type and color, and include special characters in the message text.

 warndlg

1-16009

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

1 Alphabetical List

1-16010

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘

 warndlg

1-16011

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

Example: opts = 'modal'
Example: opts.WindowStyle = 'non-modal'; opts.Interpreter = 'tex';

Definitions

Modal Dialog Box
A modal dialog box prevents a user from interacting with other MATLAB windows before
responding to the modal dialog box.

Nonmodal Dialog Box
A nonmodal dialog box enables a user to interact with other MATLAB windows before
responding to the nonmodal dialog box. A nonmodal dialog box is also referred to as
normal.

1 Alphabetical List

1-16012

Tips
• MATLAB program execution continues even when a modal Warning dialog box is

active. To block program execution until the user closes the dialog box, use the
uiwait function.

See Also
dialog | errordlg | helpdlg | msgbox

Introduced before R2006a

 warndlg

1-16013

warning
Display warning message

Syntax
warning(msg)
warning(msg,A1,...,An)
warning(msgID, ___)

warning(state)
warning(state,msgID)
warning

warnStruct = warning
warning(warnStruct)

warning(state,mode)
warnStruct = warning(state,mode)

Description
warning(msg) displays the warning message and sets the warning state for the
lastwarn function. If msg is empty, warning resets the warning state for lastwarn, but
does not display any text.

warning(msg,A1,...,An) displays a message that contains formatting conversion
characters, such as those used with the MATLAB sprintf function. Each conversion
character in msg is converted to one of the values A1,...,An.

warning(msgID, ___) attaches a warning identifier to the warning message. You can
include any of the input arguments in the previous syntaxes. The identifier enables you to
distinguish warnings and to control what happens when MATLAB encounters the
warnings.

warning(state) enables, disables, or displays the state of all warnings.

warning(state,msgID) acts on the state of a specified warning.

1 Alphabetical List

1-16014

warning displays the state of all of the warnings. It is equivalent to warning('query').

warnStruct = warning returns a structure or array of structures that contains
information about which warnings are enabled and disabled. warnStruct includes an
identifier field with a msgID or 'all', and a state field that indicates the state of
the corresponding warning.

warning(warnStruct) sets the current warning settings as indicated in the structure
array, warnStruct.

warning(state,mode) controls whether MATLAB displays the stack trace or additional
information about the warning.

warnStruct = warning(state,mode) returns a structure with an identifier field
containing the mode and a state field containing the current state of mode. If you pass
the output structure, warnStruct, into the warning function, you set the state of the
mode, not which warnings are enabled or disabled.

Examples

Issue Warning Message

Generate a warning that displays a message.

n = 7;
if ~ischar(n)
 warning('Input must be a character vector')
end

Warning: Input must be a character vector

Include information about n in the warning message.

if ~ischar(n)
 warning('Input must be a character vector, not a %s',class(n))
end

Warning: Input must be a character vector, not a double

Attach a message identifier to the warning message.

 warning

1-16015

if ~ischar(n)
 warning('MyComponent:incorrectType',...
 'Input must be a character vector, not a %s',class(n))
end

Warning: Input must be a character vector, not a double

Set and Query Warning State

Disable all warnings.

warning('off')

Query the warnings.

warning

All warnings have the state 'off'.

Enable all warnings, disable the singular matrix warning, and query all warnings.

warning('on')
warning('off','MATLAB:singularMatrix')
warning

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

 off MATLAB:singularMatrix

Re-enable the singular matrix warning.

warning('on','MATLAB:singularMatrix')

Save and Restore Warning Settings

Enable all warnings, and then disable the singular matrix warning.

warning('on')
warning('off','MATLAB:singularMatrix')

1 Alphabetical List

1-16016

Save the current warning settings.

s = warning

s =

2x1 struct array with fields:

 identifier
 state

Examine the two structures.

s(1)

ans =

 identifier: 'all'
 state: 'on'

s(2)

ans =

 identifier: 'MATLAB:singularMatrix'
 state: 'off'

All warnings are enabled except for 'MATLAB:singularMatrix'.

Disable and query all warnings.

warning('off')
warning('query')

All warnings have the state 'off'.

Restore the saved warning state structure, and query the state.

warning(s)
warning('query')

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

 warning

1-16017

 off MATLAB:singularMatrix

Control Warning Verbosity

Ensure verbose and backtrace settings are the default values.

warning('off','verbose')
warning('on','backtrace')

Turn on all warnings, and remove a folder that does not exist on the MATLAB path.

warning('on')
rmpath('nosuchfolder')

Warning: "nosuchfolder" not found in path.
> In rmpath at 57

Enable verbosity to display an extended warning message.

warning('on','verbose')
rmpath('nosuchfolder')

Warning: "nosuchfolder" not found in path.
(Type "warning off MATLAB:rmpath:DirNotFound" to suppress this warning.)

> In rmpath at 57

Disable display of the stack trace.

warning('off','backtrace')
rmpath('nosuchfolder')

Warning: "nosuchfolder" not found in path.
(Type "warning off MATLAB:rmpath:DirNotFound" to suppress this warning.)

Temporarily Disable Warning

Compute a singular matrix.

1 Alphabetical List

1-16018

A = eye(2);
B = [3 6; 4 8];
C = B\A;

Warning: Matrix is singular to working precision.

Find the warning ID, save the current warning state, and disable the specific warning

[msgStr,msgId] = lastwarn;
warnStruct = warning('off',msgId);
C = B\A;

Restore previous warning state.

warning(warnStruct);
C = B\A;

Warning: Matrix is singular to working precision.

Input Arguments
msg — Information about cause of warning
character vector | string scalar

Information about the cause of the warning and how you might correct it, specified as a
character vector or string scalar. To format the message, use escape sequences, such as
\t or \n. You also can use any format specifiers supported by the sprintf function, such
as %s or %d. Specify values for the conversion specifiers via the A1,...,An input
arguments. For more information, see “Formatting Text”.

Note You must specify more than one input argument with warning if you want MATLAB
to convert special characters (such as \t, \n, %s, and %d) in the warning message.

Example: 'Input must be a character vector.'

A1,...,An — Values
character vector | string scalar | numeric scalar

Values that replace the conversion specifiers in msg, specified as a character vector,
string scalar, or numeric scalar.

 warning

1-16019

msgID — Identifier for warning
character vector | string scalar | 'all' | 'last'

Identifier for the warning, specified as a character vector, string scalar, 'all', or
'last'. Use the warning identifier to help identify the source of the warning or to
control a selected subset of the warnings in your program.

The message identifier includes a component and mnemonic. The identifier must always
contain a colon and follows this simple format: component:mnemonic. The component
and mnemonic fields must each begin with a letter. The remaining characters can be
alphanumerics (A–Z, a–z, 0–9) and underscores. No whitespace characters can appear
anywhere in msgID. For more information, see “Message Identifiers”.

When you set the state of a warning, the msgID can have a value of 'all' or 'last'.
Use 'all' to set the state of all warnings, and use 'last' to set the state of the last
issued warning.
Example: 'MATLAB:singularMatrix'
Example: 'MATLAB:narginchk:notEnoughInputs'

state — Warning control indicator
'on' | 'off' | 'query'

Warning control indicator specified as 'on', 'off', or 'query'. Use 'on' or 'off' to
control whether MATLAB issues a warning. Use 'query' to query the current state of
the warning.

warnStruct — Warning settings
structure | array of structures

Warning settings, specified as a structure or array of structures that contains information
about which warnings are enabled and which are disabled. warnStruct includes an
identifier field with a msgID or 'all', and state field indicating the state of the
corresponding warning.

mode — Verbosity and stack trace display settings
'backtrace' | 'verbose'

Verbosity and the stack trace display of settings, specified by 'backtrace' or
'verbose'. By default, the state of verbosity is set to 'off' and the state of stack trace
display is set to 'on'.

1 Alphabetical List

1-16020

See Also
dbstop | disp | error | errordlg | lasterror | lastwarn | sprintf | warndlg

Topics
“Issue Warnings and Errors”
“Suppress Warnings”
“Restore Warnings”
“Change How Warnings Display”

Introduced before R2006a

 warning

1-16021

waterfall
Waterfall plot

Syntax
waterfall(Z)
waterfall(X,Y,Z)
waterfall(...,C)
waterfall(ax,...)
h = waterfall(...)

Description
The waterfall function draws a mesh similar to the meshz function, but it does not
generate lines from the columns of the matrices. This produces a “waterfall” effect.

waterfall(Z) creates a waterfall plot using x = 1:size(Z,2) and y =
1:size(Z,1). Z determines the color, so color is proportional to surface height.

waterfall(X,Y,Z) creates a waterfall plot using the values specified in X, Y, and Z. Z
also determines the color, so color is proportional to the surface height. If X and Y are
vectors, X corresponds to the columns of Z, and Y corresponds to the rows, where
length(x) = n, length(y) = m, and [m,n] = size(Z). X and Y are vectors or
matrices that define the x- and y-coordinates of the plot. Z is a matrix that defines the z-
coordinates of the plot (i.e., height above a plane). If C is omitted, color is proportional to
Z.

waterfall(...,C) uses scaled color values to obtain colors from the current colormap.
Color scaling is determined by the range of C, which must be the same size as Z. MATLAB
performs a linear transformation on C to obtain colors from the current colormap.

1 Alphabetical List

1-16022

waterfall(ax,...) plots into the axes ax instead of the current axes (gca).

h = waterfall(...) returns the patch graphics object used to draw the plot.

Examples

Create Waterfall Plot

Create a waterfall plot of the peaks function.

figure
[X,Y,Z] = peaks(30);
waterfall(X,Y,Z)

 waterfall

1-16023

Tips
For column-oriented data analysis, use waterfall(Z') or waterfall(X',Y',Z').

Algorithms
The range of X, Y, and Z, or the current setting of the axes XLim, YLim, and ZLim
properties, determines the range of the axes (also set by axis). The range of C, or the
current setting of the axes CLim property, determines the color scaling (also set by
caxis).

1 Alphabetical List

1-16024

The CData property for the patch graphics objects specifies the color at every point along
the edge of the patch, which determines the color of the lines.

The waterfall plot looks like a mesh surface; however, it is a patch graphics object. To
create a surface plot similar to waterfall, use the meshz function and set the
MeshStyle property of the surface to 'Row'. For a discussion of parametric surfaces and
related color properties, see surf.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
axis | caxis | meshz | ribbon | surf

 waterfall

1-16025

Introduced before R2006a

1 Alphabetical List

1-16026

web
Open web page or file in browser

Syntax
web
web(url)
web(url,opt)
web(url,opt1,...,optN)

stat = web(___)
[stat,h] = web(___)
[stat,h,url] = web(___)

Description
web opens an empty MATLAB web browser.

web(url) opens the page specified by url in the MATLAB web browser. If multiple
browsers are open, the page displays in the one that was most recently used.

web(url,opt) opens the page using the specified browser option, such as '-new' to
create a new browser instance or '-browser' to use the system browser.

web(url,opt1,...,optN) opens the page using one or more browser options.

stat = web(___) returns the status of the operation: 0 if successful, 1 or 2 if
unsuccessful. You can include any of the input arguments in previous syntaxes.

[stat,h] = web(___) returns a handle to the MATLAB web browser that allows you
to close it using the command close(h). If you do not specify any inputs to the web
function, such as [stat,h] = web, then the handle corresponds to the most recently
used MATLAB web browser.

[stat,h,url] = web(___) returns the URL of the current page in the MATLAB web
browser.

 web

1-16027

Examples

Open Web Page in MATLAB Web Browser

Open the MathWorks® Web site home page.

url = 'https://www.mathworks.com';
web(url)

Open the page in a new instance of the browser that does not include a toolbar.

web(url,'-new','-notoolbar')

View File in Web Browser

View an HTML file that resides on your system.

Create an HTML file by publishing an example program file. Copy the program file to the
current folder so that the code can run during the publishing process.

program = fullfile(matlabroot,'help','techdoc',...
 'matlab_env','examples','fourier_demo2.m');
copyfile(program);
htmlFile = publish('fourier_demo2.m');

View a file by specifying the file name.

web(htmlFile)

Alternatively, you can use the file:/// URL scheme, as long as you include the full
path. The publish function returns the path in the htmlFile output.

url = ['file:///',htmlFile];
web(url)

Open Web Page in System Browser

Open the MathWorks® Web site home page in the system browser.

1 Alphabetical List

1-16028

url = 'https://www.mathworks.com';
web(url,'-browser')

Send Email from System Browser

Send an email from your system browser's default mail application using the mailto:
URL scheme.

To run this example, replace the value for email with a valid email address.

email = 'myaddress@provider.ext';
url = ['mailto:',email];
web(url,'-browser')

Create Handle to MATLAB Web Browser

Open the MathWorks® Web site home page, and then close the browser using its handle.

url = 'https://www.mathworks.com';
[stat,h] = web(url);

Close the browser window.

close(h)

Display Text in MATLAB Web Browser

View formatted text using the text:// URL scheme.

web('text://<html><h1>Hello World</h1></html>')

Input Arguments
url — Web page address or file location
character vector | string

 web

1-16029

web page address or file location, specified as a character vector or a string. File
locations can include an absolute or relative path.

If url corresponds to a file in the installed product documentation, then the page displays
in the MATLAB Help browser instead of the web browser.
Example: 'https:\\www.mathworks.com'
Example: "myfolder/myfile.html"

opt — Browser option
'-browser' | '-new' | '-noaddressbox' | '-notoolbar'

Browser option, specified as one of the following. Options can appear in any order.

'-browser' Opens the page in a system browser window instead of the MATLAB
web browser. On Microsoft Windows and Apple Macintosh
platforms, the operating system determines the system web
browser. On other systems, the default is the Mozilla® Firefox®

browser, but you can change the default using MATLAB web
preferences.

'-new' Opens the page in a new MATLAB web browser window. Does not
apply to the system browser.

'-noaddressbox' Opens the page in a browser that does not display the address box.
Only applies to new instances of the MATLAB web browser.

'-notoolbar' Opens the page in a browser that does not display a toolbar or
address box. Only applies to new instances of the MATLAB web
browser.

Example: '-new','-noaddressbox'

Output Arguments
stat — Browser status
0 | 1 | 2

Browser status, returned as an integer with one of these values:

0 Found and started system browser.

1 Alphabetical List

1-16030

1 Could not find system browser.
2 Found, but could not start system browser.

h — Handle to most recent MATLAB web browser
scalar

Handle to the most recent MATLAB web browser, returned as a scalar instance of the
associated Java class. If you specify the '-browser' option to open the page in a system
browser, h is empty, ''.

If you do not request the handle when you open the page, the handle might not
correspond to your most recent use of the web function. Other MATLAB functionality also
uses the web function, such as links to external sites from the Help browser.

url — Current page address
character vector | string

Current page address in the most recent MATLAB web browser, returned as a character
vector or string. url has the same data type as the input argument url. If you specify the
'-browser' option to open the page in a system browser, url is empty, ''.

Limitations
• MATLAB Online only supports the web(url) syntax. Calling web(url) in MATLAB

Online opens the page specified by url in your web browser instead of the MATLAB
web browser.

Tips
• To open external sites in your system browser instead of the MATLAB browser by

default, go to the Home tab, and in the Environment section, click Preferences.
Select MATLAB > Web and in the System Web browser section, select Use system
web browser when opening links to external sites (recommended). Using the
system browser is recommended when opening external sites.

• If you plan to deploy an application that calls the web function using the MATLAB
Compiler product, then use the '-browser' option.

• If you are displaying Japanese streaming text in the MATLAB web browser, specify a
header that includes the charset attribute. For example:

 web

1-16031

https://www.mathworks.com/products/matlab-online.html

web(['text://<html><head><meta http-equiv="content-type" ' ...
 'content="text/html;charset=utf-8"></head><body>TEXT</body></html>'])

Compatibility Considerations

web function will open external sites using your system
browser by default.
Behavior change in future release

In future releases, the web function will open external sites using your system browser by
default. Currently, the web function opens external sites using the MATLAB browser.
Using the system browser is recommended when opening external sites.

To change the default browser, go to the Home tab, and in the Environment section,
click Preferences. Select MATLAB > Web and in the System Web browser section,
select Use system web browser when opening links to external sites
(recommended).

See Also
matlab.net.http.RequestMessage | urlread | urlwrite | weboptions | webread
| websave | webwrite

Topics
“Web Browsers and MATLAB”
“Specify Proxy Server Settings for Connecting to the Internet”
“Specify the System Browser for Linux Platforms”
“HTTP Interface”

Introduced before R2006a

1 Alphabetical List

1-16032

weboptions
Specify parameters for RESTful web service

Syntax
options = weboptions
options = weboptions(Name,Value)

Description
options = weboptions returns a default weboptions object to specify parameters for
a request to a web service. A weboptions object can be an optional input argument to
the webread, websave, and webwrite functions. For options not supported by the
weboptions function, see the “HTTP Interface”.

options = weboptions(Name,Value) specifies one or more properties of a
weboptions object.

Examples

Default weboptions Object
Create a default weboptions object and display the default values for its properties.

options = weboptions

options =
 weboptions with properties:

 CharacterEncoding: 'auto'
 UserAgent: 'MATLAB 9.2.0.556344 (R2017a)'
 Timeout: 5
 Username: ''
 Password: ''
 KeyName: ''
 KeyValue: ''
 ContentType: 'auto'
 ContentReader: []

 weboptions

1-16033

 MediaType: 'application/x-www-form-urlencoded'
 RequestMethod: 'auto'
 ArrayFormat: 'csv'
 HeaderFields: []
 CertificateFilename: 'C:\Program Files\MATLAB\R2017a\sys\certificates\ca\rootcerts.pem'

User Name and Password in weboptions Object
Set your web service user name and password in a weboptions object. You can use the
object as an input argument to webread, websave, or webwrite when your web service
requires authentication.

options = weboptions('Username','jdoe','Password','mypassword');

The password is obscured when you display the weboptions object. However, the object
stores the password as plain text. You can retrieve the password from the
weboptions.Password property.

options.Password

ans =
'mypassword'

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: weboptions('Timeout',60) creates a weboptions object that sets the
timeout connection duration to 60 seconds.

CharacterEncoding — Character encoding
'auto' (default) | string scalar | character vector

The encoding used by webread to convert web content to characters, specified as a string
scalar or character vector. Common encodings include 'US-ASCII', 'UTF-8',
'latin1', 'Shift_JIS', and'ISO-8859-1'. The default encoding depends on the

1 Alphabetical List

1-16034

content type. If you get garbled text, then the webread encoding might be different from
the encoding used by the document. Try setting CharacterEncoding to UTF-8.

UserAgent — User agent identification
['MATLAB ' version] (default) | string scalar | character vector

User agent identification, specified as a string scalar or character vector indicating the
client user agent.

Timeout — Time out connection duration
5 (default) | positive numeric scalar | Inf

Time out connection duration in seconds, specified as a positive numeric scalar. The
maximum value is 2147.483647 seconds. Use Inf to set the maximum value.

Some operating systems have a maximum timeout enforced by the system. This timeout
takes effect even if the value of Timeout is greater than the maximum. For example, on
Windows 10, this timeout is 21 seconds.

Username — User identifier
'' (default) | string scalar | character vector

User identifier, specified as a string scalar or character vector for basic HTTP
authentication (no encryption).

Password — User authentication password
'' (default) | string scalar | character vector

User authentication password, specified as a string scalar or character vector for basic
HTTP authentication (no encryption). If you display a weboptions object with the
Password property set, the value is displayed as a character vector containing ‘*’.
However, the object stores the value of the Password property as plain text.

KeyName — Name of key
'' (default) | string scalar | character vector

Name of a key, specified as a string scalar or character vector. KeyName is an additional
name to add to the HTTP request header. For example, KeyName can be a web service API
key name.
Example: weboptions('KeyName','duration','KeyValue',7) creates a
weboptions object that contains a key name, duration, defined by a web service.

 weboptions

1-16035

KeyValue — Value of key
'' (default) | string scalar | character vector | numeric | logical

Value of a key, specified as a string scalar, a character vector, or a numeric or logical
value to add to the HTTP request header. KeyValue is the value of a key specified by
KeyName.
Example: weboptions('KeyName','duration','KeyValue',7) creates a
weboptions object that contains a key value, 7, paired with a key name, duration.

HeaderFields — Names and values of header fields
m-by-2 array of strings or cell array of character vectors

Names and values of header fields, specified as an m-by-2 array of strings or cell array of
character vectors to add to the HTTP request header. HeaderFields{i,1} is the name
of a field and HeaderFields{i,2} is its value.

These header fields add to or replace fields automatically added by webread, webwrite,
or websave. Normally these fields are added, but if the name of one of these fields is a
case-insensitive match to one of the fields that would be automatically added, and that
field does not support multiple values (for example, Content-Type), then the value you
specify is used instead. Some fields whose value is necessary to send a request
successfully, such as Connection and Content-Length, cannot be overridden.
Example: weboptions('HeaderFields',{'Content-Length' '78';'Content-
Type' 'application/json'}) creates a weboptions object that contains two header
fields: Content-Length with value 78 and Content-Type with value application/
json.

ContentType — Content type
'auto' (default) | string scalar | character vector

Content type, specified as a string scalar or character vector. Use ContentType to
request that the server preferentially return data in a particular format. webread uses
this value to convert the response to a MATLAB type. The server returns this content type
if possible, but is not obligated to do so.

ContentType Specifier Output Type
'auto' (default) Output type automatically determined

based on content type specified by the
server.

1 Alphabetical List

1-16036

ContentType Specifier Output Type
'text' Character vector for content types:

text/plain
text/html
text/xml
application/xml

application/
javascript
application/x-
javascript
application/x-
www-form-
urlencoded

If a web service returns a MATLAB file with
a .m extension, the function returns its
content as a character vector.

'image' Numeric or logical matrix for image/
format content. If the first output
argument is an indexed image, the second
output argument is the colormap, and the
third output argument is the alpha channel.

For supported image formats, see
“Supported File Formats for Import and
Export”.

'audio' Numeric matrix for audio/format content
with numeric scalar sampling rate as a
second output argument.

For supported audio formats, see
“Supported File Formats for Import and
Export”.

'binary' uint8 column vector for binary content
(that is, content not to be treated as type
char).

'table' Scalar table object for spreadsheet and CSV
(text/csv) content.

'json' char, numeric, logical, structure, or cell
array, for application/json content.

 weboptions

1-16037

ContentType Specifier Output Type
'xmldom' Java Document Object Model (DOM) node

for text/xml or application/xml
content. If not specified, the function
returns XML content as a character vector.

'raw' char column vector for 'text',
'xmldom', and 'json' content. The
function returns any other content type as a
uint8 column vector.

Example: weboptions('ContentType','text') creates a weboptions object that
instructs webread to return text, JSON, or XML content as a character vector.

ContentReader — Content reader
[] (default) | function handle

Content reader, specified as a function handle. You can create a weboptions object with
ContentReader specified, and pass the object as an input argument to webread. Then
webread downloads data from a web service and reads the data with the function
specified by the function handle. webread ignores ContentType when ContentReader
is specified.
Example: weboptions('ContentReader',@readtable) creates a weboptions object
that instructs webread to use readtable to read content as a table.

MediaType — Media type
'auto' (default) | 'application/x-www-form-urlencoded' | string scalar |
character vector | matlab.net.http.MediaType

Media type, specified as a string scalar, a character vector, or a
matlab.net.http.MediaType object. MediaType specifies the type of data webwrite
sends to the web service. It specifies the content type that MATLAB specifies to the
server, and it controls how the webwrite data argument, if specified, is converted.

For a complete list of media types, see Internet Media Types.

The default value is 'auto' which indicates that MATLAB chooses the type based on the
input to webwrite. If using PostName/PostValue argument pairs, then MATLAB uses
'application/x-www-form-urlencoded' to send the pairs. If using a data argument
that is a scalar string or character vector, then MATLAB assumes it is a form-encoded
string and sends it as-is using 'application/x-www-form-urlencoded'. If data is

1 Alphabetical List

1-16038

https://www.iana.org/assignments/media-types/media-types.xhtml

anything else, then MATLAB converts it to JSON using jsonencode and uses the content
type 'application/json'.

If you specify a MediaType containing 'json' or 'javascript', and data is a
character vector, then it is sent as-is. All other types, including scalar strings, are
converted using jsonencode.

If you specify 'application/x-www-form-urlencoded', then PostName/PostValue
pairs are sent form-encoded. data, if present, must be a string or character vector to be
sent as-is.

If you specify a MediaType that contains 'xml', and data is a Document Object Model
object (a Java org.apache.xerces.dom.DocumentImpl), then it is converted to XML.
data, if present, must be a string or character vector to be sent as-is.

If you specify any other MediaType, and data is a string or character vector, then
weboptions sends the value as-is.

PostName/PostValue pairs are accepted only for MediaType values 'auto' and
'application/x-www-form-urlencoded', and character vectors are always sent as-is
regardless of the MediaType.

You can specify semicolon-separated name=value parameters within the MediaType
string, for example, 'application/json; odata=verbose'. Some servers require
this format as part of the Content-Type header field in the request.
Example: weboptions('MediaType','application/json') creates a weboptions
object that instructs webwrite to encode character vector data as JSON to post it to a
web service.

RequestMethod — HTTP request method
'auto' (default) | string scalar | character vector | matlab.net.http.RequestMethod
enumeration

HTTP request method, specified as a string scalar, a character vector, or a
matlab.net.http.RequestMethod enumeration as one of these values:

• 'auto'

• webread and websave use the HTTP GET method.
• webwrite uses the HTTP POST method.

 weboptions

1-16039

• 'get' for use with the webread and websave functions.
• 'post' for use with the webread, webwrite, and websave functions.
• 'put' for use with the webread, webwrite, and websave functions.
• 'delete' for use with the webread, webwrite, and websave functions.
• 'patch' for use with the webread, webwrite, and websave functions.

The webread and websave functions put the query into the URL regardless of the
RequestMethod. webwrite puts the query into the data regardless of the
RequestMethod.
Example: weboptions('RequestMethod','post') creates a weboptions object that
instructs webread, websave, or webwrite to use the HTTP POST method of a web
service.

ArrayFormat — Format to form-encode query or post values that represent
multiple values
'csv' (default) | 'json' | 'repeating' | 'php'

Format to form-encode query or post values that represent multiple values, specified as
'csv', 'json', 'repeating', or 'php'. A query or post value contains multiple values
if it is

• A numeric, logical, or datetime vector
• A character array with more than one row
• A cell vector, where each element is a numeric, logical, or datetime scalar or a

character vector with one row

No other data types or dimensions are supported.

This table shows form-encoded conversions for each format, for a query parameter named
'parameter' and a query value of [1 2 3]. The web service specifies the conversion to
use.

ArrayFormat Specifier Form-Encoded Conversion
'csv' (default) parameter=1,2,3
'json' parameter=[1,2,3]
'repeating' parameter=1¶meter=2¶meter

=3

1 Alphabetical List

1-16040

ArrayFormat Specifier Form-Encoded Conversion
'php' parameter[]=1¶meter[]=2¶m

eter[]=3

To encode a scalar as a one-element array with the 'json' or 'php' specifiers, place the
scalar in a one-element cell array.
Example: weboptions('ArrayFormat','repeating') creates a weboptions object
that instructs webread, websave, or webwrite to form-encode any query or post value
with multiple values as repeating query parameters.

CertificateFilename — File name of root certificates
string scalar | character vector | 'default'

File name of root certificates, specified as a string or character vector denoting the
location of a file containing certificates. The file is in privacy-enhanced mail (PEM)
format. The location must be in the current folder, in a folder on the MATLAB path, or a
full or relative path to a file. If you specify the value 'default', then
CertificateFilename is set to the path of the certificate file that ships with MATLAB.
To determine the path, create an empty weboptions or HTTPOptions object and look at
the default value of CertificateFilename.

If you request an HTTPS connection, then the certificate from the server is validated
against the certification authority certificates in the PEM file. Standard HTTPS
mechanisms use this validation to validate the signature on the server certificate and the
entire certificate chain. If verification fails, a connection is not allowed. You can disable
the verification in cases where the server's certificate does not match the URI used to
access it, by creating a matlab.net.http.RequestMessage and setting the
matlab.net.http.HTTPOptions.VerifyServerName property to false. Use this
option if you are confident that you are communicating directly with the intended server.

To add certificates to rootcerts.pem, copy the file to a working folder, edit the file, and
add your certificates to it. PEM files are ASCII files which are easily modified. Since
security of HTTPS connections depends on the integrity of this file, protect it
appropriately. MATLAB does not manage certificates or certificate files, but there are
third-party tools for managing PEM files.

If CertificateFilename is empty, then MATLAB checks if the certificate domain of the
server matches the host name of the server and that it is not expired. The signature is not
validated.

 weboptions

1-16041

Set CertificateFilename to empty ('') only if you cannot establish a connection due
to a missing or expired certificate.

Attributes:

GetAccess
public

SetAccess
public

See Also
HTTPOptions | RequestMethod | webread | websave | webwrite

Topics
“HTTP Interface”

Introduced in R2014b

1 Alphabetical List

1-16042

webread
Read content from RESTful web service

Syntax
data = webread(url)
data = webread(url,
QueryName1,QueryValue1,...,QueryNameN,QueryValueN)
data = webread(___ ,options)

[data,colormap,alpha] = webread(___)

[data,Fs] = webread(___)

Description
data = webread(url) reads content from the web service specified by url and returns
the content in data.

The web service provides a “RESTful” on page 1-16053 that returns data formatted as an
internet media type such as JSON, XML, image, or text.

data = webread(url,
QueryName1,QueryValue1,...,QueryNameN,QueryValueN) appends query
parameters to url, as specified by one or more pairs of name-value arguments. To put a
query into the body of the message, use webwrite. The web service defines the query
parameters.

data = webread(___ ,options) adds other HTTP request options, specified by the
weboptions object options. You can use this syntax with any of the input arguments of
the previous syntaxes.

To return data as a specific output type, specify the ContentType property of options.

To read content with a function, specify the ContentReader property of options as a
handle to the function. webread downloads data from a web service and reads the data
with the specified function:

 webread

1-16043

• If you specify a handle to a function that returns multiple output arguments, webread
returns all output arguments.

• If you specify a handle to a function that returns no output argument (such as Image
Processing Toolbox function @implay for video files), webread returns no output
argument.

[data,colormap,alpha] = webread(___) reads an image from the web service
specified by url and returns the image in data. You can use the previous syntaxes to
return the image only. Use this syntax to return the colormap and alpha channels
associated with the image.

webread returns an image when the HTTP response has a Content-Type header field
that specifies an image media type and if the image format is supported by imread. For
supported image formats, see “Supported File Formats for Import and Export”.

[data,Fs] = webread(___) reads audio data from the web service specified by url
and returns the audio data in data. You can use the previous syntaxes to return the audio
data only. Use this syntax to return the sample rate of the audio data in hertz.

webread returns audio data when the HTTP response has a Content-Type header field
that specifies an audio media type and if the audio format is supported by audioread.
For supported audio formats, see “Supported File Formats for Import and Export”.

Examples

Read Image from Website

Read an image of Jupiter from the Hubble Heritage website and display it.

url = 'http://heritage.stsci.edu/2007/14/images/p0714aa.jpg';
rgb = webread(url);
whos rgb

 Name Size Bytes Class Attributes

 rgb 1000x800x3 2400000 uint8

Resize and display the image.

rgb = imresize(rgb,0.6);
imshow(rgb)

1 Alphabetical List

1-16044

 webread

1-16045

Jupiter image courtesy of NASA, ESA, and the Hubble Heritage Team (STScI/AURA). (See
Hubble Heritage Information Center for terms of use.)

Read Data from Web Service API

Read temperature data for the USA from the World Bank Climate Data API. Plot
temperatures from the years 1901–2012.

Read data from the World Bank. This API returns data as a JSON object.

api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
url = [api 'country/cru/tas/year/USA'];
S = webread(url)

S =

112x1 struct array with fields:

 year
 data

webread converts the JSON object to a structure array. Each structure contains the year
and the average temperature in the USA for that year, in degrees Celsius.

Display the temperature for the first year.

S(1)

ans =

 year: 1901
 data: 6.6187

Plot the average temperatures. Concatenate S.year and S.data into arrays and plot
them.

year = [S.year];
data = [S.data];
plot(year,data)
xlabel('Year');
ylabel('Temperature (Celsius)');
title('USA Average Temperatures')
axis tight

1 Alphabetical List

1-16046

http://heritage.stsci.edu/commonpages/infoindex/ourimages/image_products.html

API and data courtesy of the World Bank: Climate Data API. (See World Bank: Climate
Data API for more information about the API, and World Bank: Terms of Use.)

Specify Web Service Query Parameters

Search the File Exchange for files uploaded within the past seven days that contain the
word Simulink.

Specify the query parameters. webread appends web service query parameter names and
values to the URL. The File Exchange web service defines the term and duration query
parameters, not the webread function.

 webread

1-16047

https://data.worldbank.org/developers/climate-data-api
https://data.worldbank.org/developers/climate-data-api
https://data.worldbank.org/summary-terms-of-use

url = 'https://www.mathworks.com/matlabcentral/fileexchange/';
data = webread(url,'term','simulink','duration',7);

webread returns the HTML for the search result page as a character array.

Specify Request Option

Specify an additional request option to read data from the World Bank Climate Data API
to a character array.

Create a weboptions object and set its ContentType to 'text'. The webread function
converts the JSON object to a character array instead of a structure array. Display the
beginning of the character array.

api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
url = [api 'country/cru/tas/year/USA'];
options = weboptions('ContentType','text');
data = webread(url,options);
data(1:62)

ans =

[{"year":1901,"data":6.6187487},{"year":1902,"data":6.4643273}

API and data courtesy of the World Bank: Climate Data API. (See World Bank: Climate
Data API for more information about the API, and World Bank: Terms of Use.)

Read Data with POST Request

Send an HTTP POST request to search File Exchange for files uploaded within the past
seven days that contain the word Simulink.

url = 'https://www.mathworks.com/matlabcentral/fileexchange/';
options = weboptions('RequestMethod','post');
data = webread(url,'term','simulink','duration',7,options);

Many web services provide a POST method for requesting data in addition to GET.

1 Alphabetical List

1-16048

https://data.worldbank.org/developers/climate-data-api
https://data.worldbank.org/developers/climate-data-api
https://data.worldbank.org/summary-terms-of-use

Specify Date and Time as Query Parameters

Read a Blue Marble: Next Generation image for December 2004 from the NASA Earth
Observation (NEO) Web Mapping Service.

Specify the date of the requested image with a datetime object. Specify the Format
property of D so that the format matches the format required by the web service.

url = 'http://neowms.sci.gsfc.nasa.gov/wms/wms';
D = datetime(2004,12,01,'Format','yyyy-MM-dd');
rgb = webread(url,'Time',D, ...
 'Service','WMS','Layers','BlueMarbleNG-TB','CRS','CRS:84', ...
 'Format','image/jpeg','Height',256,'Width',512, ...
 'BBOX','-180.0,-90.0,180.0,90.0','Version','1.3.0','Request','GetMap');
imshow(rgb)

webread converts datetime objects so that they can be values of web service query
parameters. All the name-value pairs in the example provide query parameters specified
by the NEO Web Mapping Service.

Blue Marble: Next Generation + Topography and Bathymetry image courtesy of NASA’s
Earth Observatory. Access to imagery and services provided by the NEO Web Mapping

 webread

1-16049

Service (WMS). (See NASA Earth Observations for credit and terms of use. For WMS
query parameters, search the NASA Earth Observations site, WMS 1.3.0 Capabilities.)

Input Arguments
url — URL to web service
character vector | string scalar

URL to a web service, specified as a character vector or string scalar. The web service
implements a RESTful interface. See “RESTful” on page 1-16053 for more information.
Example: webread('https://www.mathworks.com/matlabcentral') reads the web
page and returns its HTML as a character array.

QueryName1,QueryValue1,...,QueryNameN,QueryValueN — Web service query
parameters
name-value pairs

Web service query parameters, specified as one or more pairs of name-value arguments. A
QueryName argument must specify the name of a query parameter, as a character vector
or string scalar. A QueryValue argument must be a character vector, a string scalar, or a
numeric, logical, or datetime value that specifies the value of the query parameter.
Numeric, logical, and datetime values can be in arrays. The web service defines name-
value pairs that it accepts as part of a request.

When you specify QueryValue as a datetime object, you must specify its Format
property so that it is consistent with the format required by the web service. If the
Format property includes a time zone or offset, and the datetime object is not zoned,
then webread specifies 'Local' as the time zone.

When QueryValue contains multiple values in an array, you might need to specify the
ArrayFormat property of a weboptions object to form-encode the array as specified by
the web service.
Example: webread('https://www.mathworks.com/matlabcentral/
fileexchange/','term','webread') retrieves a list of files uploaded to the File
Exchange that contain the word webread.

options — Additional HTTP request options
weboptions object

Additional HTTP request options, specified as a weboptions object.

1 Alphabetical List

1-16050

https://neowms.sci.gsfc.nasa.gov/about
https://neo.sci.gsfc.nasa.gov/about/wms.php

You can specify the ContentType property of a weboptions object, and pass the object
as an input argument to webread. Then webread returns data as that type of output.
The table lists the valid content types you can specify in a weboptions object.

ContentType Specifier Output Type
'auto' (default) Output type automatically determined

based on content type specified by the
server.

'text' Character vector for content types:

text/plain
text/html
text/xml
application/xml

application/
javascript
application/x-
javascript
application/x-
www-form-
urlencoded

If a web service returns a MATLAB file with
a .m extension, the function returns its
content as a character vector.

'image' Numeric or logical matrix for image/
format content. If the first output
argument is an indexed image, the second
output argument is the colormap, and the
third output argument is the alpha channel.

For supported image formats, see
“Supported File Formats for Import and
Export”.

'audio' Numeric matrix for audio/format content
with numeric scalar sampling rate as a
second output argument.

For supported audio formats, see
“Supported File Formats for Import and
Export”.

 webread

1-16051

ContentType Specifier Output Type
'binary' uint8 column vector for binary content

(that is, content not to be treated as type
char).

'table' Scalar table object for spreadsheet and CSV
(text/csv) content.

'json' char, numeric, logical, structure, or cell
array, for application/json content.

'xmldom' Java Document Object Model (DOM) node
for text/xml or application/xml
content. If not specified, the function
returns XML content as a character vector.

'raw' char column vector for 'text',
'xmldom', and 'json' content. The
function returns any other content type as a
uint8 column vector.

See weboptions for all request options that are weboptions properties.

Output Arguments
data — Content from web service
scalar | array | structure | table

Content read from a web service, returned as a scalar, array, structure, or table.

colormap — Colormap associated with indexed image
numeric array

Colormap associated with an indexed image, returned as a numeric array.

alpha — Alpha channels associated with indexed image
numeric array

Alpha channels associated with an indexed image, returned as a numeric array.

Fs — Sample rate of audio data in hertz
positive numeric scalar

1 Alphabetical List

1-16052

Sample rate of audio data in hertz, returned as a positive numeric scalar.

Definitions

RESTful
REST means representational state transfer, a common architectural style for web
services. RESTful interfaces provide standard HTTP methods such as GET, PUT, POST, or
DELETE.

Tips
• For functionality not supported by the RESTful web services functions, see the “HTTP

Interface”.
• webread supports HTTP GET and POST methods. Many web services provide both

GET and POST methods to request data. To send an HTTP POST request, specify the
RequestMethod property of options as 'post'. However, webread puts query
options into the url, not in the body of the request message. To put a query into the
body, use webwrite.

• For HTTP POST requests, the webread function supports only the application/x-
www-form-urlencoded media type. To send a POST request with content of any
other internet media type, use webwrite.

• This function does not examine the document contents to determine how to process it.
For example, HTML and XML documents often contain a <meta> tag that specifies the
document character encoding. If the encoding is different from the default webread
encoding, then specify the correct CharacterEncoding option in weboptions.

See Also
audioread | datetime | imread | jsondecode | readtable | weboptions | websave |
webwrite | xmlread

Topics
“Download Data from Web Service”
“Convert Data from Web Service”

 webread

1-16053

“Represent Dates and Times in MATLAB”
“HTTP Interface”

External Websites
Representational State Transfer
JavaScript Object Notation (JSON)

Introduced in R2014b

1 Alphabetical List

1-16054

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON

websave
Save content from RESTful web service to file

Syntax
outfilename = websave(filename,url)
outfilename = websave(filename,url,
QueryName1,QueryValue1,...,QueryNameN,QueryValueN)
outfilename = websave(___ ,options)

Description
outfilename = websave(filename,url) saves content from the web service
specified by url and writes it to filename. The websave function returns the full
filename path as outfilename.

The web service provides a “RESTful” on page 1-16060 that returns data formatted as an
internet media type such as JSON, XML, image, or text.

outfilename = websave(filename,url,
QueryName1,QueryValue1,...,QueryNameN,QueryValueN) appends query
parameters to url, as specified by one or more pairs of name-value arguments. The web
service defines the query parameters.

outfilename = websave(___ ,options) adds other HTTP request options, specified
by the weboptions object options. You can use this syntax with any of the input
arguments of the previous syntaxes.

websave supports HTTP GET and POST methods. To send an HTTP POST request, specify
the RequestMethod property of options as 'post'. Many web services provide both
GET and POST methods to request data.

Examples

 websave

1-16055

Save Image from Website

Save an image of Jupiter from the Hubble Heritage website.

url = 'http://heritage.stsci.edu/2007/14/images/p0714aa.jpg';
filename = 'jupiter_aurora.jpg';
outfilename = websave(filename,url)

outfilename =

C:\Libraries\Documents\jupiter_aurora.jpg

websave saves the image as a JPEG file, as specified by the Hubble web service, even
when you give filename a different extension. (Jupiter image courtesy of NASA, ESA,
and the Hubble Heritage Team (STScI/AURA). See Hubble Heritage Information Center
for terms of use.)

Save Search Results to File

Search File Exchange for files uploaded within the past 7 days that contain the word
Simulink and display the results of the search.

url = 'https://www.mathworks.com/matlabcentral/fileexchange/';
filename = 'simulink_search.html';
outfilename = websave(filename,url,'term','simulink','duration',7)

outfilename =

C:\Libraries\Documents\simulink_search.html

Display the HTML file in a web browser.

web(outfilename)

Save Data to File

Save sunspot data from the National Geophysical Data Center (NGDC) to an ASCII file.
Use a weboptions object to set the timeout value to Inf so that the connection does not
time out.

api = 'http://www.ngdc.noaa.gov/stp/space-weather/';
url = [api 'solar-data/solar-indices/sunspot-numbers/' ...

1 Alphabetical List

1-16056

http://heritage.stsci.edu/commonpages/infoindex/ourimages/image_products.html

 'american/lists/list_aavso-arssn_yearly.txt'];
filename = 'sunspots_annual.txt';
options = weboptions('Timeout',Inf);
outfilename = websave(filename,url,options)

outfilename =

C:\Libraries\Documents\sunspots_annual.txt

Aggregated data and web service courtesy of the NGDC. Sunspot data courtesy of the
American Association of Variable Star Observers (AAVSO), originally published in AAVSO
Sunspot Counts: 1943-2013, AAVSO Solar Section (R. Howe, Chair). (See NGDC Privacy
Policy, Disclaimer, and Copyright for NGDC terms of use, and AAVSO Solar Section for
AAVSO terms of use.)

Save Data with POST Request

Send an HTTP POST request to search File Exchange for files uploaded within the past 7
days that contain the word Simulink. Save the results of the search to an HTML file.

url = 'https://www.mathworks.com/matlabcentral/fileexchange/';
filename = 'simulink_search.html';
options = weboptions('RequestMethod','post');
outfilename = websave(filename,url,'term','simulink','duration',7,options);

Many web services provide a POST method for requesting data in addition to GET.

Save Data for Specified Date and Time

Save the Blue Marble: Next Generation image for December 2004 from the NASA Earth
Observation (NEO) Web Mapping Service.

Specify the date of the requested image with a datetime object. Specify the Format
property of D so that the format matches the format required by the web service.

url = 'http://neowms.sci.gsfc.nasa.gov/wms/wms';
D = datetime(2004,12,01,'Format','yyyy-MM-dd');
filename = 'BlueMarble.jpg';
outfilename = websave(filename,url,'Time',D, ...
 'Service','WMS','Layers','BlueMarbleNG-TB','CRS','CRS:84', ...

 websave

1-16057

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html
https://www.ngdc.noaa.gov/ngdcinfo/privacy.html
https://aavso.org/solar

 'Format','image/jpeg','Height',256,'Width',512, ...
 'BBOX','-180.0,-90.0,180.0,90.0','Version','1.3.0','Request','GetMap')

outfilename =

C:\Libraries\Documents\BlueMarble.jpg

websave converts datetime objects so that they can be values of web service query
parameters. All the name-value pairs in the example provide query parameters specified
by the NEO Web Mapping Service.

Blue Marble: Next Generation + Topography and Bathymetry image courtesy of NASA’s
Earth Observatory. Access to imagery and services provided by the NEO Web Mapping
Service (WMS). (See NASA Earth Observations for credit and terms of use. For WMS
query parameters, search the NASA Earth Observations site, WMS 1.3.0 Capabilities.)

Save JSON Data

Read JSON data from a website and save in file test.txt.

uri = matlab.net.URI('http://httpbin.org/get');
websave('test.txt',uri,weboptions('ContentType','json'));

Read the text from the file into a structure of JSON data.

js = jsondecode(fileread('test.txt'))

js =

 struct with fields:

 args: [1×1 struct]
 headers: [1×1 struct]
 origin: '144.444.4.4'
 url: 'http://httpbin.org/get'

Input Arguments
filename — Name of file to save content to
character vector | string scalar

1 Alphabetical List

1-16058

https://neowms.sci.gsfc.nasa.gov/about
https://neo.sci.gsfc.nasa.gov/about/wms.php

Name of file to save content to, specified as a character vector or string scalar. websave
saves the content as is. websave ignores options.ContentType and
options.ContentReader, even if these properties are set.
Example: websave('matlabcentral.html','https://www.mathworks.com/
matlabcentral') reads the web page and saves its HTML to the file
matlabcentral.html.

url — URL to web service
character vector | string scalar

URL to a web service, specified as a character vector or string scalar. The web service
implements a RESTful interface. See “RESTful” on page 1-16060 for more information.

QueryName1,QueryValue1,...,QueryNameN,QueryValueN — Web service query
parameters
name-value pairs

Web service query parameters, specified as one or more pairs of name-value arguments. A
QueryName argument must specify the name of a query parameter. A QueryValue
argument must be a character vector, a string scalar, or a numeric, logical, or datetime
value that specifies the value of the query parameter. Numeric, logical, and datetime
values can be in arrays. The web service defines name-value pairs that it accepts as part
of a request.

When you specify QueryValue as a datetime object, you must specify its Format
property to be consistent with the format required by the web service. If the Format
property includes a time zone or offset, and the datetime object is not zoned, then
websave specifies 'Local' as the time zone.

When QueryValue contains multiple values in an array, you might need to specify the
ArrayFormat property of a weboptions object to form-encode the array as specified by
the web service.
Example: websave('webread_search.html','https://www.mathworks.com/
matlabcentral/fileexchange/','term','simulink') retrieves a list of files
uploaded to the File Exchange that contain the word simulink and saves the search
results to an HTML file.

options — Additional HTTP request options
weboptions object

 websave

1-16059

Additional HTTP request options, specified as a weboptions object. For all request
options that are weboptions properties, see weboptions.

Definitions

RESTful
REST means representational state transfer, a common architectural style for web
services. RESTful interfaces provide standard HTTP methods such as GET, PUT, POST, or
DELETE.

Tips
• For functionality not supported by the RESTful web services functions, see the “HTTP

Interface”.
• For HTTP POST requests, the websave function supports only the application/x-

www-form-urlencoded media type. To send a POST request with content of any
other internet media type, use webwrite.

See Also
datetime | weboptions | webread | webwrite

Topics
“Download Web Page and Files”
“Represent Dates and Times in MATLAB”
“HTTP Interface”

External Websites
Representational State Transfer
JavaScript Object Notation (JSON)

Introduced in R2014b

1 Alphabetical List

1-16060

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON

webwrite
Write data to RESTful web service

Syntax
response = webwrite(url,
PostName1,PostValue1,...,PostNameN,PostValueN)
response = webwrite(url,data)
response = webwrite(___ ,options)

Description
response = webwrite(url,
PostName1,PostValue1,...,PostNameN,PostValueN) writes content to the web
service specified by url and returns response. The input arguments
PostName1,PostValue1,...,PostNameN,PostValueN specify the content as name-
value pairs. webwrite form-encodes the name-value pairs in the body of an HTTP POST
request to the web service. The web service defines response.

The web service provides a “RESTful” on page 1-16067 that returns data formatted as an
internet media type such as JSON, XML, image, or text.

response = webwrite(url,data) posts data to the web service specified by url and
sets the media type based on the data.

The input argument data specifies the content as a form-encoded character array.
webwrite puts data in the body of an HTTP POST request to the web service. The web
service defines response.

response = webwrite(___ ,options) adds other HTTP request options, specified by
the weboptions object options. You can use this syntax with any of the input
arguments of the previous syntaxes.

To write content as an internet media type other than a form-encoded character array
('application/x-www-form-urlencoded'), specify the MediaType property of
options.

 webwrite

1-16061

To request data with an HTTP POST request and read the response with a function,
specify the ContentReader property of options as a handle to the function. If you
specify a handle to a function that returns multiple output arguments, webwrite returns
all output arguments.

Examples

Write Data to Web Service

Write a number to a channel feed on the ThingSpeak server and read it back.

To run this code, create a ThingSpeak account. Call webwrite using the Write API key
and Channel ID from your ThingSpeak account. The default field name is 'field1'.

thingSpeakURL = 'http://api.thingspeak.com/';
thingSpeakWriteURL = [thingSpeakURL 'update'];
writeApiKey = 'Your Write API Key';
fieldName = 'field1';
fieldValue = 42;
response = webwrite(thingSpeakWriteURL,'api_key',writeApiKey,fieldName,fieldValue)

If this call to webwrite is the first update to your ThingSpeak channel, response is 1.

Read back the number you wrote to your channel. ThingSpeak provides a different URL to
get the last entry to your channel. Your Channel ID is part of the URL.

channelID = num2str(Your Channel ID);
thingSpeakReadURL = [thingSpeakURL 'channels/' channelID '/fields/' fieldName '/last'];
data = webread(thingSpeakReadURL,'api_key',writeApiKey)

data =

42

Write Form-Encoded Character Array

Write a number as a form-encoded character array to a channel feed on the ThingSpeak
server and read it back.

1 Alphabetical List

1-16062

https://thingspeak.com

To run this code, create a ThingSpeak account. Call webwrite using the Write API key
and Channel ID from your ThingSpeak account. Encode your Write API Key and the
number as a form-encoded character array. The default field name is 'field1'.

thingSpeakURL = 'http://api.thingspeak.com/';
thingSpeakWriteURL = [thingSpeakURL 'update'];
writeApiKey = 'Your Write API Key';
data = 42;
data = num2str(data);
data = ['api_key=',writeApiKey,'&field1=',data];
response = webwrite(thingSpeakWriteURL,data)

If this call to webwrite is the first update to your ThingSpeak channel, response is 1.

Read back the number you wrote to your channel. ThingSpeak provides a different URL to
get the last entry to your channel. Your Channel ID is part of the URL.

channelID = num2str(Your Channel ID);
thingSpeakReadURL = [thingSpeakURL 'channels/' channelID '/fields/field1/last'];
data = webread(thingSpeakReadURL,'api_key',writeApiKey)

data =

42

Write JSON Object

Write a number as a JSON object to a channel feed on the ThingSpeak server and read
the response as a JSON object.

To run this code, create a ThingSpeak account. Call webwrite using the Write API key
and Channel ID from your ThingSpeak account. Create a structure where the fields are
your Write API Key and the number. The default field name is 'field1'. Specify the
media type as 'application/json'.

thingSpeakURL = 'http://api.thingspeak.com/update.json';
writeApiKey = 'Your Write API Key';
data = 42;
data = struct('api_key',writeApiKey,'field1',data);
options = weboptions('MediaType','application/json');
response = webwrite(thingSpeakURL,data,options)

 webwrite

1-16063

https://thingspeak.com
https://thingspeak.com

response =

 channel_id: Your Channel ID
 field1: 42
 field2: []
 field3: []
 field4: []
 field5: []
 field6: []
 field7: []
 field8: []
 created_at: '2014-11-14T20:08:14Z'
 entry_id: 1
 status: []
 latitude: []
 longitude: []
 elevation: []
 location: []

As a response webwrite receives a JSON object that contains the number you wrote to
your ThingSpeak channel. webwrite converts the JSON object and returns it as a
structure in response.

Specify Data and Time

Write a number and a specific date to a channel feed on the ThingSpeak server. Read the
number and date back.

To run this code, create a ThingSpeak account. Call webwrite using the Write API key
and Channel ID from your ThingSpeak account. Specify the date for the feed entry with a
datetime object.

thingSpeakURL = 'http://api.thingspeak.com/';
thingSpeakWriteURL = [thingSpeakURL 'update'];
writeApiKey = 'Your Write API Key';
fieldName = 'field1';
fieldValue = 42;
D = datetime(2015,3,22,8,15,30,'Format','yyyy-MM-dd HH:mm:ss');
response = webwrite(thingSpeakWriteURL,'api_key',writeApiKey,...
 fieldName,fieldValue,'created_at',D)

If this call to webwrite is the first update to your ThingSpeak channel, response is 1.

1 Alphabetical List

1-16064

https://thingspeak.com

Read back the last entry to your channel. ThingSpeak provides a different URL to get the
last entry to your channel. Append last.json to the URL to get the data as a JSON
object. Your Channel ID is part of the URL.

channelID = num2str(Your Channel ID);
thingSpeakReadURL = [thingSpeakURL 'channels/' channelID '/fields/' ...
 fieldName '/last.json'];
data = webread(thingSpeakReadURL,'api_key',writeApiKey)

data =

 created_at: '2015-03-22T08:15:30Z'
 entry_id: 1
 field1: '42'

The date in the created_at field matches the date specified in D.

Input Arguments
url — URL to web service
character vector | string scalar

URL to a web service, specified as a character vector or string scalar. The web service
implements a RESTful interface. See “RESTful” on page 1-16067 for more information.

PostName1,PostValue1,...,PostNameN,PostValueN — Web service post
parameters
name-value pairs

Web service post parameters, specified as one or more pairs of name-value arguments. A
PostName argument must specify the name of a post parameter. A PostValue argument
must be a character vector, a string scalar, or a numeric, logical, or datetime value that
specifies the value of the post parameter. Numeric, logical, and datetime values can be
in arrays. The web service defines name-value pairs that it accepts as part of a request.
webwrite encodes the name-value pairs as a form-encoded character array in the body of
an HTTP POST request and sets the content type to application/x-www-form-
urlencoded by default.

When you specify PostValue as a datetime object, you must specify its Format
property so that it is consistent with the format required by the web service. If the
Format property includes a time zone or offset, and the datetime object is not zoned,
then webwrite specifies 'Local' as the time zone.

 webwrite

1-16065

When a PostValue argument contains multiple values in an array, specify the
ArrayFormat property of a weboptions object to form-encode the array as specified by
the web service.
Example: webwrite('https://www.mathworks.com/matlabcentral/
fileexchange/','term','webwrite','duration',7) retrieves a list of files
uploaded to the File Exchange within the past 7 days that contain the word webwrite.
The File Exchange web service defines the term and duration parameters.

data — Data to write to web service
character vector | string scalar | ...

Data to post to a web service, specified as a character vector, a string scalar, or as
numeric, cell, logical, or structure for MediaType value 'json', or as Document Object
Model for MediaType value 'XML'. If data is a character string or character vector, then
webwrite sends it without conversion. All other types are converted based on the
weboptions.MediaType value. For a complete list of media types, see Internet Media
Types.
Example: webwrite('https://www.mathworks.com/matlabcentral/
fileexchange/','term=webwrite&duration=7') retrieves a list of files uploaded to
the File Exchange within the past 7 days that contain the word webwrite. The File
Exchange web service defines the term and duration parameters.

options — Additional HTTP request options
weboptions object

Additional HTTP request options, specified as a weboptions object. See weboptions for
all request options that are weboptions properties.

Output Arguments
response — Response from web service
scalar | array | structure | table

Response from a web service, returned as a scalar, array, structure, or table.

1 Alphabetical List

1-16066

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml

Definitions

RESTful
REST means representational state transfer, a common architectural style for web
services. RESTful interfaces provide standard HTTP methods such as GET, PUT, POST, or
DELETE.

Tips
• For functionality not supported by the RESTful web services functions, see the “HTTP

Interface”.

• The webwrite function writes PostName,PostValue input arguments as form-
encoded character arrays. If you also specify the options input argument, then its
MediaType property must be 'application/x-www-form-urlencoded'.

• webwrite cannot convert datetime objects to JSON, because JSON does not define a
standard date format.

• webwrite always puts PostName,PostValue query parameters into the body of the
message regardless of the value of the RequestMethod property of options.

See Also
datetime | jsonencode | weboptions | webread | websave | xmlwrite

Topics
“Represent Dates and Times in MATLAB”
“HTTP Interface”

External Websites
Representational State Transfer
JavaScript Object Notation (JSON)

Introduced in R2015a

 webwrite

1-16067

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON

week
Week number

Syntax
w = week(t)
w = week(t,weekType)

Description
w = week(t) returns the week-of-year numbers of the datetime values in t. The m output
is a double array the same size as t and contains integer values from 1 to 53.

w = week(t,weekType) returns the type of week number specified by weekType.

Examples

Find Week of Year Numbers of Dates

t = datetime(2013,05,31):calmonths(3):datetime(2014,06,15)

t = 1x5 datetime array
 31-May-2013 31-Aug-2013 30-Nov-2013 28-Feb-2014 31-May-2014

w = week(t)

w = 1×5

 22 35 48 9 22

1 Alphabetical List

1-16068

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

weekType — Type of week values
'weekofyear' (default) | 'weekofmonth'

Type of week values, specified as either 'weekofyear' or 'weekofmonth'.

• If weekType is 'weekofyear', then month returns the week-of-year number. Week 1
is the week in which January 1 falls, even if fewer than 4 days of that week fall in the
same year.

• If weekType is 'weekofmonth', then month returns the week-of-month number.
Week 1 in a month is defined as the week in which the first day of the month falls,
even if fewer than 4 days of that week fall in the same month.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 week

1-16069

See Also
day | month | quarter | year

Introduced in R2014b

1 Alphabetical List

1-16070

weekday
Day of week

Syntax
DayNumber = weekday(D)
[DayNumber,DayName] = weekday(D)
[DayNumber,DayName] = weekday(D,DayForm)
[DayNumber,DayName] = weekday(D,language)
[DayNumber,DayName] = weekday(D,DayForm,language)

Description
DayNumber = weekday(D) returns a number representing the day of the week for each
element in D.

[DayNumber,DayName] = weekday(D) additionally returns abbreviated English names
for the day of the week, in DayName.

[DayNumber,DayName] = weekday(D,DayForm) returns the name for the day of the
week in the format specified by DayForm, in US English.

[DayNumber,DayName] = weekday(D,language) returns the abbreviated name for
the day of the week in the language of the locale specified in language.

[DayNumber,DayName] = weekday(D,DayForm,language) returns the name for the
day of the week in the specified format and in the language of the specified locale. You
can specify DayForm and language in either order.

Examples

Return Day of Week of Date String

Determine the day of the week of December 21, 2012.

 weekday

1-16071

D = '21-Dec-2012';
[DayNumber,DayName] = weekday(D)

DayNumber = 6

DayName =
'Fri'

December 21, 2012 falls on a Friday.

Return Full Day Names of Multiple Date Numbers

Return the full name of the day of the week for a vector of serial date numbers.

D = [734999;735015];
DayForm = 'long';
[DayNumber,DayName] = weekday(D,DayForm)

DayNumber = 2×1

 5
 7

DayName = 2x8 char array
 'Thursday'
 'Saturday'

Return Full Day Names in Local Language

Return a day name in U.S. English using the language input argument.

D = 728647;
DayForm = 'long';
language = 'en_US';
[DayNumber,DayName] = weekday(D,DayForm,language)

DayNumber = 2

1 Alphabetical List

1-16072

DayName =
'Monday'

In U.S. English, the name of the day of the week is Monday.

Return day names in the language of the current locale.

language = 'local';
[DayNumber,DayName] = weekday(D,DayForm,language);

The value of DayName depends on the locale. For example, in a French locale, the name of
the day of the week is Lundi.

Return Day of Week of Date String in Custom Format

Determine the day of the week for a date specified in the format mmm.dd.yyyy. Call
datenum inside of weekday to specify the format of the input text representing a date.

[DayNumber,DayName] = weekday(datenum('Dec.21.2012','mmmm.dd.yyyy'))

DayNumber = 6

DayName =
'Fri'

Input Arguments
D — Serial date numbers or text representing dates and times
vector | matrix | character vector | cell array of character vectors | string array |
character array

Serial date numbers or text representing dates and times. Date numbers can be specified
as a vector or matrix. Text can be specified as a character vector, a cell array of character
vectors, a string array, or a character array where each row represents a date. If D is a
cell array of character vectors or a string array, then it must be 1-by-n or n-by-1.

If D is a character vector, a cell array of character vectors, a string array, or a character
array, then the dates can be in one of the following formats.

 weekday

1-16073

Date Format Example
dd-mmm-yyyy 01-Mar-2000
mm/dd/yyyy 03/01/2000
yyyy-mm-dd 2000-03-01

For text representing dates in other formats, first convert the dates to serial date
numbers using the datenum function, before passing them to weekday.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | cell | string

DayForm — Format of output day names
'short' (default) | 'long'

Format of the output day names, specified as one of the following values.

DayForm Format of DayName
Names

Example

'short' Abbreviated name Mon
'long' Full name Monday

language — Output language of day names
'en_US' (default) | 'local'

Output language of day names in DayName, specified as one of the following values.

language Description
'en_US' US English
'local' Language of the current locale

Output Arguments
DayNumber — Value representing day of week
array of integers in the range [1,7]

Value representing the day of the week, returned as an array of integers in the range
[1,7], where 1 represents Sunday, and 7 represents Saturday.

1 Alphabetical List

1-16074

• If input D is a numeric array, then the size of DayNumber is equivalent to the size of D.
• If input D is a cell array of character vectors, then DayNumber is an m-by-1 vector,

where m is equivalent to the length of D.

DayName — Name of day of week
character array

Name of the day of the week, returned as a character array. The content of DayName
depends on DayForm.

• If DayForm is 'short', then DayName contains an abbreviated name (for example,
Tues).

• If DayForm is 'long', then DayName contains the full name of the weekday (for
example, Tuesday).

DayName is m-by-n, where m is the number of dates represented in D.

See Also
datenum | datevec | eomday

Introduced before R2006a

 weekday

1-16075

what
List MATLAB files in folder

Syntax
what
what folderName
s = what(___)

Description
what lists the path for the current folder and all the MATLAB relevant files and folders
found in the current folder. This includes MATLAB program files (.m and .mlx), MAT-files,
Simulink model files (.mdl and .slx), MEX-files, MATLAB app files (.mlapp), and P-files,
as well as all class and package folders.

what folderName lists path, file, and folder information for folderName. You do not
need to specify the @ or + symbol for class and package folders. For example, what
table lists the MATLAB files and folders in toolbox/matlab/datatypes/@table.

s = what(___) returns the results in a structure array. You can use this syntax with
any of the input argument combinations in the previous syntaxes.

Examples

List Path, File, and Folder Information

List the MATLAB files and folders in the graph2d folder. The location of this folder
depends on your installation.
what graph2d

MATLAB Code files in folder matlabroot\toolbox\matlab\graph2d

Contents figtoolset loglog putdowntext setscribeobjectdata
axis getcolumn middrag rbbox subplot

1 Alphabetical List

1-16076

basicfitdatastat getobj moveaxis scribeclearmode texlabel
box getorcreateobj pan scribeeventhandler text
doclick getscribecontextmenu plot scriberestoresavefcns title
dokeypress getscribeobjectdata plotedit scribetextdlg xlabel
domymenu grid plotyy semilogx ylabel
doresize gtext polar semilogy zoom
enddrag jpropeditutils prepdrag setscribecontextmenu

P-files in folder matlabroot\toolbox\matlab\graph2d

axis jpropeditutils plotyy subplot zoom

Classes in folder matlabroot\toolbox\matlab\graph2d

arrowline axisobj editline fighandle hgbin scribehgobj
axischild axistext editrect figobj scribehandle

Find Supporting Files for Toolbox Package

Find the Fixed-Point Designer™ folders that contain MATLAB files.
s = what('fixpoint')

s =

 path: 'matlabroot\toolbox\fixpoint'
 m: {4x1 cell}
 mlapp: {0x1 cell}
 mat: {0x1 cell}
 mex: {0x1 cell}
 mdl: {0x1 cell}
 slx: {0x1 cell}
 p: {'hasFixedPointDesigner.p'}
 classes: {0x1 cell}
 packages: {'DataTypeWorkflow'}

List the packages in the matlabroot\toolbox\fixpoint folder.

s.packages

ans =

 'DataTypeWorkflow'

Find the supporting files for the DataTypeWorkflow package.

s2 = what('DataTypeWorkflow');
s2.p

ans =

 what

1-16077

 'DTWRun.p'
 'DiffRunResult.p'
 'DiffSignalResult.p'
 'Result.p'

Input Arguments
folderName — Name of folder
character vector | string scalar

Name of folder, specified as a character vector or string scalar.

It is not necessary to give the full path of the folder. Instead, you can specify a relative
partial path. For example, what strfun and what matlab/strfun both list the
MATLAB files in toolbox/matlab/strfun.

The case sensitivity of folderName is determined by your file system. In general,
Windows and Mac systems are case insensitive and therefore, exist returns results for
all case variations of folderName. For example, suppose the folder c:\mycode
containing the file myfile.m exists on a Windows file system. what successfully locates
the folder even if the incorrect case is specified.

what MYCodE

MATLAB Code files in folder c:\mycode
myfile

On Linux systems, which are generally case sensitive, what returns zero results.
Data Types: char | string

Output Arguments
s — List of path, files, and folders
structure array

List of path, files, and folders returned as a structure array with these fields.

1 Alphabetical List

1-16078

Field Description
path Full path to folder
m Cell array of MATLAB program file names
mlapp Cell array of MLAPP-file names
mlx Cell array of MLX-file names
mat Cell array of MAT-file names
mex Cell array of MEX-file names
mdl Cell array of MDL-file names
slx Cell array of SLX-file names
p Cell array of P-file names
classes Cell array of class folders
packages Cell array of package folders

See Also
dir | exist | lookfor | ls | which | who

Introduced before R2006a

 what

1-16079

whatsnew
Release Notes

Note whatsnew will be removed in a future release.

Syntax
whatsnew

Description
whatsnew displays the MATLAB Release Notes in the Help browser, presenting
information about new features, problems from previous releases that have been fixed in
the current release, and compatibility issues.

See Also
help | version

Introduced before R2006a

1 Alphabetical List

1-16080

which
Locate functions and files

Syntax
which item
which fun1 in fun2

which ___ -all

str = which(item)
str = which(fun1,'in',fun2)

str = which(___ ,'-all')

Description
which item displays the full path for item.

• If item is a MATLAB function in a MATLAB code file (.m,.mlx, or .p extension), or a
saved Simulink model (.slx or .mdl extension), then which displays the full path for
the corresponding file. item must be on the MATLAB path.

• If item is a method in a loaded Java class, then which displays the package, class, and
method name for that method.

• If item is a workspace variable, then which displays a message identifying item as a
variable.

• If item is an unsaved Simulink model that is loaded in Simulink, then which displays
a message identifying item as a new Simulink model.

• If item is a file name including the extension, and it is in the current working folder or
on the MATLAB path, then which displays the full path of item.

If item is an overloaded function or method, then which item returns only the path of
the first function or method found.

 which

1-16081

which fun1 in fun2 displays the path to function fun1 that is called by file fun2. Use
this syntax to determine whether a local function is being called instead of a function on
the path. This syntax does not locate nested functions.

which ___ -all displays the paths to all items on the MATLAB path with the
requested name. Such items include methods of instantiated classes. You can use -all
with the input arguments of any of the previous syntaxes.

str = which(item) returns the full path for item to str.

str = which(fun1,'in',fun2) returns the path to function fun1 that is called by file
fun2. Use this syntax to determine whether a local function is being called instead of a
function on the path. This syntax does not locate nested functions.

str = which(___ ,'-all') returns the results of which to str. You can use this
syntax with any of the input arguments in the previous syntax group.

Examples

Locate MATLAB Function

Locate the pinv function.

which pinv

matlabroot\toolbox\matlab\matfun\pinv.m

pinv is in the matfun folder of MATLAB.

You also can use function syntax to return the path to str. When using the function form
of which, enclose all input arguments in single quotes.

str = which('pinv');

Locate Method in a Loaded Java Class

Create an instance of the Java® class. This loads the class into MATLAB®.

myDate = java.util.Date;

1 Alphabetical List

1-16082

Locate the setMonth method.

which setMonth

setMonth is a Java method % java.util.Date method

Locate Private Function

Find the orthog function in a private folder.

which private/orthog

matlabroot\toolbox\matlab\elmat\private\orthog.m % Private to elmat

MATLAB displays the path for orthog.m in the /private subfolder of toolbox/
matlab/elmat.

Determine If Local Function Is Called

Determine which parseargs function is called by area.m.

which parseargs in area

% Local function of area
matlabroot\toolbox\matlab\specgraph\area.m (parseargs)

You also can use function syntax to return the path to str. When using the function form
of which, enclose all input arguments in single quotes.

str = which('parseargs','in','area');

Locate Function Invoked with Given Input Arguments

Suppose that you have a matlab.io.MatFile object that corresponds to the example
MAT-file 'topography.mat':

matObj = matfile('topography.mat');

 which

1-16083

Display the path of the implementation of who that is invoked when called with the input
argument (matObj).

which who(matObj)

% matlab.io.MatFile method
matlabroot\toolbox\matlab\iofun\+matlab\+io\MatFile.m

Store the result to the variable str.

str = which('who(matObj)')

str =
matlabroot\toolbox\matlab\iofun\+matlab\+io\MatFile.m

If you do not specify the input argument (matObj), then which returns only the path of
the first function or method found.

which who

built-in (matlabroot\\toolbox\matlab\general\who)

Locate All Items with Given Name

Display the paths to all items on the MATLAB path with the name fopen.

which fopen -all

built-in (matlabroot\toolbox\matlab\iofun\fopen)
% serial method
matlabroot\toolbox\matlab\iofun\@serial\fopen.m

% icinterface method
matlabroot\toolbox\shared\instrument\@icinterface\fopen.m
matlabroot\toolbox\instrument\instrument\@i2c\fopen.m

Return Path Names

Return the results of which to str.

Find the orthog function in a private folder. You must use the function form of which,
enclosing all arguments in parentheses and single quotes.

1 Alphabetical List

1-16084

str = which('private/orthog','-all');
whos str

 Name Size Bytes Class Attributes

 str 1x1 206 cell

Input Arguments
item — Function or file to locate
character vector | string scalar

Function or file to locate, specified as a character vector or string scalar. When using the
function form of which, enclose all item inputs in single or double quotes. item can be
in one of the following forms.

Form of the item Input Path to Display
fun Display full path for fun, which can be a MATLAB

function, Simulink model, workspace variable, method
in a loaded Java class, or file name that includes the file
extension.

To display the path for a file that has no file extension,
type which file. (The period following the file name
is required). Use exist to check for the existence of
files anywhere else.

/fun Limit the search to functions named fun that are on
the search path. For example, which /myfunction
displays the full path for function myfunction.m, but
not built-in or JAVA functions with the same name.

private/fun Limit the search to private functions named fun. For
example, which private/orthog or
which('private/orthog') displays the path for
orthog.m in the /private subfolder of the parent
folder.

 which

1-16085

Form of the item Input Path to Display
fun(a1,...,an) Display the path to the implementation of function fun

which would be invoked if called with the input
arguments a1,...,an. Use this syntax to query
overloaded functions. See the example, “Locate
Function Invoked with Given Input Arguments” on page
1-16083.

Data Types: char | string

fun1 — Function to locate
character vector | string scalar

Function to locate, specified as a character vector or string scalar. fun1 can be the name
of a function, or it can be in the form fun(a1,...,an). For more information about the
form, fun(a1,...,an), see “Locate Function Invoked with Given Input Arguments” on
page 1-16083.

When using the function form of which, enclose all fun1 inputs in single or double
quotes, for example, which('myfun1','in','myfun2').
Data Types: char | string

fun2 — Calling file
character vector | string scalar

Calling file, specified as a character vector or string scalar. fun2 can be the name of a
file, or it can be in the form fun(a1,...,an). For more information about the form,
fun(a1,...,an), see “Locate Function Invoked with Given Input Arguments” on page 1-
16083.

When using the function form of which, enclose all fun2 inputs in single or double
quotes, for example, which('myfun1','in','myfun2').
Data Types: char | string

Output Arguments
str — Function or file location
character vector | cell array of character vectors

1 Alphabetical List

1-16086

Function or file location, returned as a character vector or cell array of character vectors
if you use '-all'.

• If item is a workspace variable, then str is the character vector 'variable'.
• If str is a cell array of character vectors, then each row of str identifies a result of

which. The results are ordered according to the “Function Precedence Order”, unless
they are shadowed. Among shadowed results, you should not rely on the order of the
functions and methods in str. To determine if a result is shadowed, call which
without specifying an output. which indicates shadowed results by the comment, %
Shadowed.

Limitations
• When the class is not loaded, which only finds methods if they are defined in separate
files in an @-folder and are not in any packages.

Tips
• For more information about how MATLAB uses scope and precedence when calling a

function, see “Function Precedence Order”.

See Also
dir | doc | exist | fileparts | lookfor | mfilename | path | type | what | who

Introduced before R2006a

 which

1-16087

while
while loop to repeat when condition is true

Syntax
while expression
 statements
end

Description
while expression, statements, end evaluates an expression on page 1-16090, and
repeats the execution of a group of statements in a loop while the expression is true. An
expression is true when its result is nonempty and contains only nonzero elements
(logical or real numeric). Otherwise, the expression is false.

Examples

Repeat Statements Until Expression Is False

Use a while loop to calculate factorial(10).

n = 10;
f = n;
while n > 1
 n = n-1;
 f = f*n;
end
disp(['n! = ' num2str(f)])

n! = 3628800

1 Alphabetical List

1-16088

Skip to Next Loop Iteration

Count the number of lines of code in the file magic.m. Skip blank lines and comments
using a continue statement. continue skips the remaining instructions in the while
loop and begins the next iteration.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) || strncmp(line,'%',1) || ~ischar(line)
 continue
 end
 count = count + 1;
end
count

count = 31

fclose(fid);

Exit Loop Before Expression Is False

Sum a sequence of random numbers until the next random number is greater than an
upper limit. Then, exit the loop using a break statement.

limit = 0.8;
s = 0;

while 1
 tmp = rand;
 if tmp > limit
 break
 end
 s = s + tmp;
end

 while

1-16089

Definitions

Expression
An expression can include relational operators (such as < or ==) and logical operators
(such as &&, ||, or ~). Use the logical operators and and or to create compound
expressions. MATLAB evaluates compound expressions from left to right, adhering to
operator precedence rules.

Within the conditional expression of a while...end block, logical operators & and |
behave as short-circuit operators. This behavior is the same as && and ||, respectively.
Since && and || consistently short-circuit in conditional expressions and statements, it is
good practice to use && and || instead of & and | within the expression. For example,

x = 42;
while exist('myfunction.m','file') && (myfunction(x) >= pi)
 disp('Expressions are true')
 break
end

The first part of the expression evaluates to false. Therefore, MATLAB does not need to
evaluate the second part of the expression, which would result in an undefined function
error.

Tips
• If you inadvertently create an infinite loop (that is, a loop that never ends on its own),

stop execution of the loop by pressing Ctrl+C.
• If the conditional expression evaluates to a matrix, MATLAB evaluates the statements

only if all elements in the matrix are true (nonzero). To execute statements if any
element is true, wrap the expression in the any function.

• To programmatically exit the loop, use a break statement. To skip the rest of the
instructions in the loop and begin the next iteration, use a continue statement.

• When nesting a number of while statements, each while statement requires an end
keyword.

1 Alphabetical List

1-16090

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Logical Operators: Short Circuit | break | continue | end | for | if | return |
switch

Topics
“Array Comparison with Relational Operators”

Introduced before R2006a

 while

1-16091

whitebg
Change axes background color

Note whitebg is not recommended.

Syntax
whitebg
whitebg(fig)
whitebg(c)
whitebg(fig,c)
whitebg(fig,c)
whitebg(fig)

Description
whitebg complements the colors in the current figure.

whitebg(fig) complements colors in all figures specified in the vector fig.

whitebg(c) and whitebg(fig,c) change the color of the axes, which are children of
the figure, to the color specified by c. The value of c can be a color name or an RGB
triplet. The possible color names are: 'red', 'green', 'blue', 'cyan', 'magenta',
'yellow', 'black', or 'white'. An RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

whitebg(fig,c) sets the default axes background color of the figures in the vector fig
to the color specified by c. Other axes properties and the figure background color can
change as well, so that graphs maintain adequate contrast.

whitebg(fig) complements the colors of the objects in the specified figures. This syntax
is typically used to toggle between black and white axes background colors, and is where
whitebg gets its name. Include the root window handle (0) in fig to affect the default
properties for new windows or for clf reset.

1 Alphabetical List

1-16092

Examples
Set the background color to blue-gray.

whitebg([0 .5 .6])

Set the background color to blue.

whitebg('blue')

Tips
whitebg works best in cases where all the axes in the figure have the same background
color.

Without a figure specification, whitebg or whitebg(c) affects the current figure and the
root's default properties so subsequent plots and new figures use the new colors.

whitebg changes the colors of the figure's children, with the exception of shaded
surfaces. This ensures that all objects are visible against the new background color.
whitebg sets the default properties on the root such that all subsequent figures use the
new background color.

See Also
colordef

Introduced before R2006a

 whitebg

1-16093

who
List variables in workspace

Syntax
who
who -file filename
who global
who ___ variables
C = who(___)

Description
who lists in alphabetical order the names of all variables in the currently active
workspace.

who -file filename lists the variable names in the specified MAT-file.

who global lists the variable names in the global workspace.

who ___ variables lists only the specified variables. You can specify variables with
any of the arguments in the previous syntaxes.

C = who(___) stores the names of the variables in the cell array C.

Note You must use the functional form of who when there is an output argument.

Examples

Display Workspace Variable Names

List the names of variables in the current workspace that start with the letter a.

1 Alphabetical List

1-16094

who a*

Display the names of variables in the current workspace that end with ion.

who -regexp ion$

List Names of Variables in a MAT-File

List the names of variables stored in the sample MAT-file durer.mat.

who -file durer.mat

Your variables are:

X caption map

Store Variable List in Cell Array

Store the list of variable names in durer.mat in cell array C.

C = who('-file','durer.mat');

Display the contents of C.

for k=1:length(C)
 disp(C{k})
end

X
caption
map

List Workspace Variables Within Nested or Anonymous Function

List all the variable names in the current workspace while paused in a nested function.

Create a file who_demo.m, that contains these statements.

 who

1-16095

function who_demo
date_time = datestr(now,'dd-mmm-yyyy');

date_time_array = strsplit(date_time,{'-',''});
get_date(date_time_array);

 function get_date(d)
 day = d{1}; %#ok<*NASGU>
 mon = d{2};
 year = d{3};
 keyboard
 end

end

K>>

Run who_demo. MATLAB pauses at the line with the keyboard command.

who_demo

Call the who function. MATLAB displays the names of the variables in the nested
get_date function and in all functions containing the nested function.

K>> who

Your variables are:

d mon date_time
day year date_time_array

Input Arguments
variables — Variables to display
character vectors | string scalars

Variables to display, specified as one or more character vectors or string scalars in one of
these forms.

1 Alphabetical List

1-16096

Form of Variables Input Variable Names
var1 ... varN List the variable names, specified as individual

character vectors or string scalars.
Use the '*' wildcard to match patterns. For
example, who A* lists the names of all the
variables in the workspace that start with A.

-regexp expr1 ... exprN List only the variable names that match the
regular expressions, specified as character
vectors or string scalars. For example, who -
regexp ^Mon ^Tues lists only the variables
names in the workspace that begin with Mon or
Tues.

Data Types: char | string

filename — Name of MAT-file
character vector | string scalar

Name of MAT-file, specified as a character vector or string scalar. The file name can
include the full, relative, or partial path. For example, who -file myFile.mat lists the
names of all variables in the MAT-file named myFile.mat.
Data Types: char | string

Output Arguments
C — List of variables
cell array of character vector

List of variables, specified as a cell array of character vector.

Alternatives
• To view the variables in the workspace, use the Workspace browser. To view the

contents of MAT-files, use the Details Panel of the Current Folder browser.

 who

1-16097

See Also
Workspace Browser | assignin | clear | clearvars | exist | inmem | load | save |
what

Topics
“Create and Edit Variables”

Introduced before R2006a

1 Alphabetical List

1-16098

who
Class: matlab.io.MatFile
Package: matlab.io

Names of variables in MAT-file

Syntax
varlist = who(matObj)
varlist = who(matObj,variables)

Description
varlist = who(matObj) lists alphabetically all variables in the MAT-file associated
with matObj. Optionally, returns the list in cell array varlist.

varlist = who(matObj,variables) lists the specified variables.

Input Arguments
matObj

Object created by the matfile function.

variables

Names of variables in the MAT-file corresponding to matObj. Use one of these forms:

var1,...,varN Comma-separated list of variable name
strings. Optionally, match patterns with the
'*' wildcard, such as who(matobj,'A*').

'-regexp',expressions Regular expression strings that describe
variable names.

 who

1-16099

Output Arguments
varlist

Cell array of strings that correspond to each variable name.

Examples
Display a list of variables in the example file topography.mat:

matObj = matfile('topography.mat');
who(matObj)

This code returns:

Your variables are:

topo topolegend topomap1 topomap2

See Also
matfile | whos

1 Alphabetical List

1-16100

whos
List variables in workspace, with sizes and types

Syntax
whos
whos -file filename
whos global
whos ___ variables
S = whos(___)

Description
whos lists in alphabetical order the names, sizes, and types of all variables in the
currently active workspace.

whos -file filename lists variables in the specified MAT-file.

whos global lists variables in the global workspace.

whos ___ variables lists only the specified variables. You can specify variables
with any of the arguments in the previous syntaxes.

S = whos(___) stores information about the variables in the structure array S.

Note You must use the functional form of whos when there is an output argument.

Examples

Display Workspace Variable Information

Display information about specific variables in the current workspace. For example, list
information about variables with names that start with the letter a.

 whos

1-16101

whos a*

Now, list information about variables with names that end with ion.

whos -regexp ion$

Display Information on Variables Stored in a MAT-File

Display all the information on the variables stored in the sample MAT-file durer.mat.

whos -file durer.mat

 Name Size Bytes Class Attributes

 X 648x509 2638656 double
 caption 2x28 112 char
 map 128x3 3072 double

Store Variable Information in a Structure Array

Store information about the variables in durer.mat in structure array S.

S = whos('-file','durer.mat');

Display the contents of S.

for k = 1:length(S)
 disp([' ' S(k).name ...
 ' ' mat2str(S(k).size) ...
 ' ' S(k).class]);
end

 X [648 509] double
 caption [2 28] char
 map [128 3] double

1 Alphabetical List

1-16102

Display Variable Attribute Information

Create variables with various attributes, and then display information about them.

Create a file, show_attributes.m, that contains these statements.

function show_attributes
persistent p;
global g;
p = 1;
g = 2;
s = sparse(eye(5));
c = [4+5i 9-3i 7+6i];
whos

Call show_attributes. When MATLAB® executes the whos command at the end of
show_attributes, it lists each variable and its corresponding attribute.

show_attributes

 Name Size Bytes Class Attributes

 c 1x3 48 double complex
 g 1x1 8 double global
 p 1x1 8 double persistent
 s 5x5 128 double sparse

List Workspace Variables Within Nested or Anonymous Function

List all the variables in the current workspace while paused in a nested function.

Create a file, whos_demo.m, that contains these statements.

function whos_demo
date_time = datestr(now,'dd-mmm-yyyy');

date_time_array = strsplit(date_time,{'-',''});
get_date(date_time_array);

 function get_date(d)

 whos

1-16103

 day = d{1}; %#ok<*NASGU>
 mon = d{2};
 year = d{3};
 keyboard
 end

end

Run whos_demo. MATLAB pauses at the line with the keyboard command.

whos_demo

K>>

Call the whos function. MATLAB displays the variables in the nested get_date function,
and the variables in all functions that contain the nested function, grouped by function
workspace.

K>> whos

Name Size Bytes Class Attributes

 ---- whos_demo/get_date ---------------------------------------
 d 1x3 354 cell
 day 1x2 4 char
 mon 1x3 6 char
 year 1x4 8 char

 ---- whos_demo --
 date_time 1x11 22 char
 date_time_array 1x3 354 cell

Input Arguments
variables — Variables to display
character vectors | string scalars

Variables to display, specified as one or more character vectors or string scalars in one of
the following forms.

1 Alphabetical List

1-16104

Form of Variables Input Variable Names
var1 ... varN List the named variables, specified as individual

character vectors or string scalars.
Use the '*' wildcard to match patterns. For
example, whos A* lists all variables in the
workspace that start with A.

-regexp expr1 ... exprN List only the variables that match the regular
expressions, specified as character vectors or
string scalars. For example, whos -regexp
^Mon ^Tues lists only the variables in the
workspace that begin with Mon or Tues.

Data Types: char | string

filename — Name of MAT-file
character vector | string scalar

Name of MAT-file, specified as a character vector or string scalar. The file name can
include the full, relative, or partial path. For example, whos -file myFile.mat lists all
variables in the MAT-file named myFile.mat. The whos -file filename command
does not return the sizes of any MATLAB objects in file filename.
Data Types: char | string

Output Arguments
S — Variable information
nested structure array

Variable information, returned as a nested structure array containing a scalar struct for
each variable. Each scalar struct contains these fields.

Field Description
name Name of the variable.
size Dimensions of the variable array.

 whos

1-16105

Field Description
bytes Number of bytes allocated for the variable array.

whos returns the number of bytes each variable occupies in the
workspace, which is not necessarily the same as the number of
bytes each variable occupies in a MAT-file. MAT-files Version 7 and
later are compressed, so the number of bytes required in the
workspace is typically larger than the number of bytes in the file.

whos does not report the number of bytes consumed by handle
objects. If a variable contains handle objects, the number of bytes
that the whos function displays for the variable might be smaller
than expected.

class Class of the variable. If the variable has no value, class is
'(unassigned)'.

global true if the variable is global.
sparse true if the variable is sparse.
complex true if the variable is complex.
nesting Structure with these fields:

• function — Name of the nested or outer function that defines
the variable.

• level — Nesting level of that function.
persistent true if the variable is persistent.

Alternatives
• You also can view the contents of MAT-files using the Details Panel of the Current

Folder browser.

See Also
clear | exist | what | who

Topics
“Create and Edit Variables”

1 Alphabetical List

1-16106

Introduced before R2006a

 whos

1-16107

whos
Class: matlab.io.MatFile
Package: matlab.io

Names, sizes, and types of variables in MAT-file

Syntax
details = whos(matObj)
details = whos(matObj,variables)

Description
details = whos(matObj) returns information about all variables in the MAT-file
associated with matObj.

details = whos(matObj,variables) returns information about the specified
variables.

Input Arguments
matObj

Object created by the matfile function.

variables

Names of variables in the MAT-file corresponding to matObj. Use one of these forms:

var1,...,varN Comma-separated list of variable name
strings. Optionally, match patterns with the
'*' wildcard, such as
whos(matobj,'A*').

1 Alphabetical List

1-16108

'-regexp',expressions Regular expression strings that describe
variable names.

Output Arguments
details

Structure array with these fields (identical to the structure returned by the whos
function):

name Variable name
size Dimensions of the variable
bytes Number of bytes allocated for the array when you load the entire

variable
class Class (data type) of the variable
global Whether the variable is global (true or false)
sparse Whether the variable is sparse
complex Whether the variable is complex
nesting Structure with these fields:

• function — Name of the nested or outer function that defines
the variable

• level — Nesting level
persistent Whether the variable is persistent

Examples
Display a list of variables in the example file topography.mat:

matObj = matfile('topography.mat');
whos(matObj)

This code returns:

 Name Size Bytes Class Attributes

 whos

1-16109

 topo 180x360 518400 double
 topolegend 1x3 24 double
 topomap1 64x3 1536 double
 topomap2 128x3 3072 double

Without loading any data, find the size and number of dimensions of the variable topo in
topography.mat:

matObj = matfile('topography.mat');
info = whos(matObj,'topo');
sizeX = info.size
nDimsX = length(sizeX)

This code returns:

sizeX =
 180 360

nDimsX =
 2

See Also
matfile | size

1 Alphabetical List

1-16110

width
Number of table variables

Syntax
W = width(T)

Description
W = width(T) returns the number of variables in table T.

width(T) is equivalent to size(T,2).

Examples

Number of Variables in Table

Create a table, T.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

T = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

T=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Smith 38 71 176 124 93
 Johnson 43 69 163 109 77
 Williams 38 64 131 125 83
 Jones 40 67 133 117 75

 width

1-16111

 Brown 49 64 119 122 80

Find the number of variables in table T.

W = width(T)

W = 4

T contains 4 variables; width does not count the row names.

The variable BloodPressure counts as one variable even though it contains two
columns.

Input Arguments
T — Input table
table

Input table, specified as a table.

Variables in a table can have multiple columns, but width(T) only counts the number of
variables.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

1 Alphabetical List

1-16112

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
height | numel | size

Introduced in R2013b

 width

1-16113

wilkinson
Wilkinson's eigenvalue test matrix

Syntax
W = wilkinson(n)
W = wilkinson(n,classname)

Description
W = wilkinson(n) returns one of J. H. Wilkinson's n-by-n eigenvalue test matrices. W is
a symmetric, tridiagonal matrix with pairs of nearly equal eigenvalues.

W = wilkinson(n,classname) returns a matrix of class classname, which can be
'single' or 'double'.

Examples

Wilkinson Test Matrix

Compute a 7-by-7 Wilkinson eigenvalue test matrix. The most frequently used case is
wilkinson(21), whose two largest eigenvalues are approximately 10.746. The
eigenvalues agree to 14, but not 15, decimal places.

W = wilkinson(7)

W = 7×7

 3 1 0 0 0 0 0
 1 2 1 0 0 0 0
 0 1 1 1 0 0 0
 0 0 1 0 1 0 0
 0 0 0 1 1 1 0
 0 0 0 0 1 2 1

1 Alphabetical List

1-16114

 0 0 0 0 0 1 3

Input Arguments
n — Matrix order
scalar, nonnegative integer

Matrix order, specified as a scalar, nonnegative integer.
Example: wilkinson(10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

classname — Matrix class
'double' (default) | 'single'

Matrix class, specified as either 'double' or 'single'.
Example: wilkinson(10,'single')
Data Types: char

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• n must be a fixed-size scalar.

See Also
eig | gallery | pascal

 wilkinson

1-16115

Introduced before R2006a

1 Alphabetical List

1-16116

winopen
Open file in appropriate application (Windows)

Syntax
winopen name

Description
winopen name opens the specified file in the Microsoft Windows application associated
with the extension of the file. winopen uses a Windows shell command, and performs the
same action as double-clicking the file in Windows Explorer.

Examples

Open File in Microsoft® Word®

Open the file thesis.docx in Microsoft Word.

winopen thesis.docx

Open File in System Web Browser

Open the file my_sine_wave.html in the system Web browser.

winopen my_sine_wave.html

 winopen

1-16117

Open Current Folder in Windows Explorer Tool

winopen(cd)

Input Arguments
name — Name of file
character vector

Name of file to open, specified as a character vector. name can be an absolute or relative
path.

See Also
dos | open | web

Introduced before R2006a

1 Alphabetical List

1-16118

winqueryreg
Item from Windows registry

Syntax
valnames = winqueryreg('name',rootkey,subkey)
value = winqueryreg(rootkey,subkey,valname)
value = winqueryreg(rootkey,subkey)

Description
valnames = winqueryreg('name',rootkey,subkey) returns all value names in
rootkey\subkey of Microsoft Windows operating system registry. The first argument is
the literal, quoted, case-sensitive string or character vector 'name'.

value = winqueryreg(rootkey,subkey,valname) returns the value for valname in
rootkey\subkey.

value = winqueryreg(rootkey,subkey) returns a value in rootkey\subkey that
has no value name property.

Examples

Display Control Panel\Mouse Values

Display Control Panel\Mouse values.

Get a list in variable mousechar for registry subkey Mouse, which is under subkey
Control Panel, which is under root key HKEY_CURRENT_USER.
mousechar = winqueryreg('name','HKEY_CURRENT_USER','control panel\mouse');

For each name in the mousechar list, get its value from the registry and then display the
name and its value:

 winqueryreg

1-16119

for k = 1:length(mousechar)
 setting = winqueryreg('HKEY_CURRENT_USER','control panel\mouse',mousechar{k});
 str = sprintf('%s = %s',mousechar{k},num2str(setting));
 disp(str)
end

mousechar =
 'ActiveWindowTracking'
 'Beep'
 'DoubleClickHeight'
 'DoubleClickSpeed'
 'DoubleClickWidth'
 'ExtendedSounds'
 'MouseHoverHeight'
 'MouseHoverTime'
 'MouseHoverWidth'
 'MouseSensitivity'
 'MouseSpeed'
 'MouseThreshold1'
 'MouseThreshold2'
 'MouseTrails'
 'SmoothMouseXCurve'
 'SmoothMouseYCurve'
 'SnapToDefaultButton'
 'SwapMouseButtons'

Display mwsampctrl.2 CLSID

Display the CLSID for mwsampctrl.2, a sample Microsoft COM control used in MATLAB
examples.

winqueryreg('HKEY_CLASSES_ROOT','mwsamp.mwsampctrl.2\clsid')

ans =
 {5771A80A-2294-4CAC-A75B-157DCDDD3653}

Input Arguments
rootkey — Root key name
string | character vector

Root key name, specified as a case-sensitive string or character vector.

1 Alphabetical List

1-16120

Example: 'HKEY_CLASSES_ROOT'

subkey — Subkey name
string | character vector

Subkey name, specified as a string or a character vector. The value is not case-sensitive.
Example: 'control panel\mouse'

valname — Name of value
string | character vector

Name of value, specified as a string or a character vector. The name is not case-sensitive.

Output Arguments
valnames — Value names
cell array of character vectors

Value names, specified as a cell array of character vectors.

value — Value of specified name
character vector | int32

Value of specified name, specified as a character vector if the value retrieved from the
registry is a registry string value. If the value is a 32-bit integer, winqueryreg returns
the value as an integer of the MATLAB type int32.

Limitations
• This function works for the following registry value types only:

• strings (REG_SZ)
• expanded strings (REG_EXPAND_SZ)
• 32-bit integer (REG_DWORD)

 winqueryreg

1-16121

See Also
Introduced before R2006a

1 Alphabetical List

1-16122

winter
Winter colormap array

Syntax
c = winter
c = winter(m)

Description
c = winter returns the winter colormap as a three-column array with the same number
of rows as the colormap for the current figure. If no figure exists, then the number of
rows is equal to the default length of 64. Each row in the array contains the red, green,
and blue intensities for a specific color. The intensities are in the range [0,1], and the
color scheme looks like this image.

c = winter(m) returns the colormap with m colors.

Examples

Reverse the Colormap

Plot a surface and assign the winter colormap.

surf(peaks);
colormap('winter');

 winter

1-16123

Get the winter colormap array and reverse the order. Then apply the modified colormap
to the surface.

c = winter;
c = flipud(c);
colormap(c);

1 Alphabetical List

1-16124

Downsample the Winter Colormap

Get a downsampled version of the winter colormap containing only ten colors. Then
display the contours of the peaks function by applying the colormap and interpolated
shading.

c = winter(10);
surf(peaks);
colormap(c);
shading interp;

 winter

1-16125

Input Arguments
m — Number of entries
64 (default) | scalar integer value

Number of entries, specified as a scalar integer value. The default value of m is equal to
the length of the colormap for the current figure. If no figure exists, the default value is
64.
Data Types: single | double

1 Alphabetical List

1-16126

See Also
colormap

Topics
“Change Color Scheme Using a Colormap”

Introduced before R2006a

 winter

1-16127

withtol
Time tolerance for timetable row subscripting

Syntax
S = withtol(rowTimes,tol)

Description
S = withtol(rowTimes,tol) creates a subscript to select rows of a timetable. S
selects all rows whose row times match a time in rowTimes within the tolerance specified
by tol. The rowTimes argument is a datetime or duration array, or a cell array of
character vectors that specify dates and times. tol must be a duration value.

If rowTimes contains datetime values, then you can only use S to subscript into a
timetable whose row times are datetime values. Similarly, if rowTimes contains duration
values, then you can only use S to subscript into a timetable whose row times are
duration values.

Examples

Specify Tolerance to Match Row Times

Create a timetable that contains temperature and pressure data with row times in hours.
There is a slight random variance in the row times. Select rows with row times that match
corresponding times in a time vector within a tolerance of five seconds.

Time = datetime(2015,12,18) + hours(1:10)' + seconds(randn(10,1));
Temp = [37.3 39.1 42.3 42.6 43 43.9 44.1 43.3 42.5 42]';
Pressure = [29.4 29.6 30.0 30.0 30.1 29.9 29.9 29.8 29.6 29.7]';
TT = timetable(Time,Temp,Pressure)

TT=10×3 timetable
 Time Temp Pressure

1 Alphabetical List

1-16128

 ____________________ ____ ________

 18-Dec-2015 01:00:00 37.3 29.4
 18-Dec-2015 02:00:01 39.1 29.6
 18-Dec-2015 02:59:57 42.3 30
 18-Dec-2015 04:00:00 42.6 30
 18-Dec-2015 05:00:00 43 30.1
 18-Dec-2015 05:59:58 43.9 29.9
 18-Dec-2015 06:59:59 44.1 29.9
 18-Dec-2015 08:00:00 43.3 29.8
 18-Dec-2015 09:00:03 42.5 29.6
 18-Dec-2015 10:00:02 42 29.7

Create a time vector spanning the hours from 3:00 to 8:00.

newTimes = datetime(2015,12,18) + hours(3:8)

newTimes = 1x6 datetime array
Columns 1 through 3

 18-Dec-2015 03:00:00 18-Dec-2015 04:00:00 18-Dec-2015 05:00:00

Columns 4 through 6

 18-Dec-2015 06:00:00 18-Dec-2015 07:00:00 18-Dec-2015 08:00:00

Select rows of TT with row times that match times in newTimes within five seconds.

S = withtol(newTimes,seconds(5));
TT2 = TT(S,:)

TT2=6×3 timetable
 Time Temp Pressure
 ____________________ ____ ________

 18-Dec-2015 02:59:57 42.3 30
 18-Dec-2015 04:00:00 42.6 30
 18-Dec-2015 05:00:00 43 30.1
 18-Dec-2015 05:59:58 43.9 29.9
 18-Dec-2015 06:59:59 44.1 29.9
 18-Dec-2015 08:00:00 43.3 29.8

 withtol

1-16129

Input Arguments
rowTimes — Times to match in timetable
datetime array | duration array | cell array of character vectors | string array

Times to match in a timetable, specified as a datetime array, duration array, cell array of
character vectors, or string array. rowTimes contains times that do not exactly match
times in the row times of a timetable, but that might be within a specified tolerance.

If rowTimes is a cell array of character vectors or string array, then the elements of the
array specify dates and times that the datetime or duration functions can convert.

tol — Tolerance for matching times to row times of timetable
duration | character vector | string scalar

Tolerance for matching times to the row times of a timetable, specified as a duration,
character vector, or string scalar.

If tol is a character vector or string scalar, then tol specifies a time that the duration
function can convert.

See Also
retime | synchronize | timerange | vartype

Topics
“Create Timetables”
“Select Timetable Data by Row Time and Variable Type”
“Tables”
“Represent Dates and Times in MATLAB”

Introduced in R2016b

1 Alphabetical List

1-16130

wordcloud
Create word cloud chart from text data

Syntax
wc = wordcloud(tbl,wordVar,sizeVar)
wc = wordcloud(words,sizeData)
wc = wordcloud(C)

wc = wordcloud(parent, ___)
wc = wordcloud(___ ,Name,Value)

Description
wc = wordcloud(tbl,wordVar,sizeVar) creates a word cloud chart from the table
tbl. The variables wordVar and sizeVar in the table specify the words and word sizes
respectively.

wc = wordcloud(words,sizeData) creates a word cloud chart from elements of
words with word sizes specified by SizeData.

wc = wordcloud(C) creates a word cloud chart from the unique elements of categorical
array C with sizes corresponding to their frequency counts. If you have Text Analytics
Toolbox™, then C can be a string array, character vector, or a cell array of character
vectors.

wc = wordcloud(parent, ___) creates the word cloud in the figure, panel, or tab
specified by parent.

wc = wordcloud(___ ,Name,Value) specifies additional WordCloudChart properties
using one or more name-value pair arguments.

Note Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB)
function. It adds support for creating word clouds directly from string arrays, and
creating word clouds from bag-of-words models, bag-of-n-gram models, and LDA topics.
For the wordcloud (Text Analytics Toolbox) reference page, see wordcloud.

 wordcloud

1-16131

Examples

Create Word Cloud from Table

Load the example data sonnetsTable. The table tbl contains a list of words in the
variable Word, and the corresponding frequency counts in the variable Count.

load sonnetsTable
head(tbl)

ans=8×2 table
 Word Count
 _________ _____

 '''tis' 1
 ''Amen'' 1
 ''Fair' 2
 ''Gainst' 1
 ''Since' 1
 ''This' 2
 ''Thou' 1
 ''Thus' 1

Plot the table data using wordcloud. Specify the words and corresponding word sizes to
be the Word and Count variables respectively.

figure
wordcloud(tbl,'Word','Count');
title("Sonnets Word Cloud")

1 Alphabetical List

1-16132

Prepare Text Data for Word Clouds

If you have Text Analytics Toolbox™ installed, then you can create word clouds directly
from string arrays. For more information, see wordcloud (Text Analytics Toolbox). If you
do not have Text Analytics Toolbox, then you must preprocess the text data manually.

This example shows how to create a word cloud from plain text by reading it into a string
array, preprocessing it, and passing it to the wordcloud function.

Read the text from Shakespeare's Sonnets with the fileread function and convert it to
string.

 wordcloud

1-16133

sonnets = string(fileread('sonnets.txt'));
extractBefore(sonnets,"II")

ans =
 "THE SONNETS

 by William Shakespeare

 I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:
 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Split sonnets into a string array whose elements contain individual words. To do this,
remove the punctuation characters and join all the string elements into a 1-by-1 string
and then split on the space characters. Then, remove words with fewer than five
characters and convert the words to lowercase.

punctuationCharacters = ["." "?" "!" "," ";" ":"];
sonnets = replace(sonnets,punctuationCharacters," ");
words = split(join(sonnets));
words(strlength(words)<5) = [];
words = lower(words);
words(1:10)

ans = 10x1 string array
 "sonnets"

1 Alphabetical List

1-16134

 "william"
 "shakespeare"
 "fairest"
 "creatures"
 "desire"
 "increase"
 "thereby"
 "beauty's"
 "might"

Convert sonnets to a categorical array and then plot using wordcloud. The function
plots the unique elements of C with sizes corresponding to their frequency counts.

C = categorical(words);
figure
wordcloud(C);
title("Sonnets Word Cloud")

 wordcloud

1-16135

Specify Word Sizes

Create a word cloud from plain text by reading it into a string array, preprocessing it, and
passing it to the wordcloud function.

Read the text from Shakespeare's Sonnets with the fileread function and convert it to
string.

sonnets = string(fileread('sonnets.txt'));
extractBefore(sonnets,"II")

1 Alphabetical List

1-16136

ans =
 "THE SONNETS

 by William Shakespeare

 I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:
 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Split sonnets into a string array whose elements contain individual words. To do this,
remove the punctuation characters and join all the string elements into a 1-by-1 string
and then split on the space characters. Then, remove words with fewer than five
characters and convert the words to lowercase.

punctuationCharacters = ["." "?" "!" "," ";" ":"];
sonnets = replace(sonnets,punctuationCharacters," ");
words = split(join(sonnets));
words(strlength(words)<5) = [];
words = lower(words);
words(1:10)

ans = 10x1 string array
 "sonnets"
 "william"
 "shakespeare"
 "fairest"

 wordcloud

1-16137

 "creatures"
 "desire"
 "increase"
 "thereby"
 "beauty's"
 "might"

Find the unique words in sonnets and count their frequency. Create a word cloud using
the frequency counts as size data.

[numOccurrences,uniqueWords] = histcounts(categorical(words));
figure
wordcloud(uniqueWords,numOccurrences);
title("Sonnets Word Cloud")

1 Alphabetical List

1-16138

Specify Word Colors

Load the example data sonnetsTable. The table tbl contains a list of words in the Word
variable, and corresponding frequency counts in the Count variable.

load sonnetsTable
head(tbl)

ans=8×2 table
 Word Count
 _________ _____

 wordcloud

1-16139

 '''tis' 1
 ''Amen'' 1
 ''Fair' 2
 ''Gainst' 1
 ''Since' 1
 ''This' 2
 ''Thou' 1
 ''Thus' 1

Plot the table data using wordcloud. Specify the words and corresponding word sizes to
be the Word and Count variables respectively. To set the word colors to random values,
set 'Color' to a random matrix or RGB triplets with one row for each word.

numWords = size(tbl,1);
colors = rand(numWords,3);
figure
wordcloud(tbl,'Word','Count','Color',colors);
title("Sonnets Word Cloud")

1 Alphabetical List

1-16140

Create Word Cloud Using Text Analytics Toolbox

If you have Text Analytics Toolbox installed, then you can create word clouds directly from
string arrays. If you do not have Text Analytics Toolbox, then you must preprocess the text
data manually. For an example showing how to create a word cloud without Text Analytics
Toolbox, see “Prepare Text Data for Word Clouds” on page 1-16133.

Extract the text from sonnets.txt using extractFileText.

str = extractFileText("sonnets.txt");
extractBefore(str,"II")

 wordcloud

1-16141

ans =

 "THE SONNETS

 by William Shakespeare

 I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:
 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Display the words from the sonnets in a word cloud.

figure
wordcloud(str);

1 Alphabetical List

1-16142

Input Arguments
tbl — Input table
table

Input table, with columns specifying the words and word sizes. Specify the words and the
corresponding word sizes in the variables given by wordVar and sizeVar input
arguments respectively.
Data Types: table

 wordcloud

1-16143

wordVar — Table variable for word data
string scalar | character vector | numeric index | logical vector

Table variable for word data, specified as a string scalar, character vector, numeric index,
or a logical vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

sizeVar — Table variable for size data
string scalar | character vector | numeric index | logical vector

Table variable for size data, specified as a string scalar, character vector, numeric index,
or a logical vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

C — Input categorical data
categorical array

Input categorical data, specified as a categorical array. The function plots each unique
element of C with size corresponding to histcounts(C).
Data Types: categorical

words — Input words
string vector | cell array of character vectors

Input words, specified as a string vector or cell array of character vectors.
Data Types: string | cell

sizeData — Word size data
numeric vector

Word size data, specified as a numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

parent — Parent
figure | panel | tab

Parent specified as a figure, panel, or tab.

1 Alphabetical List

1-16144

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'HighlightColor','red' sets the highlight color to red.

The WordCloudChart properties listed here are only a subset. For a complete list, see
WordCloudChart Properties.

MaxDisplayWords — Maximum number of words to display
100 (default) | nonnegative integer

Maximum number of words to display, specified as a non-negative integer. The software
displays the MaxDisplayWords largest words.

Color — Word color
[0.2510 0.2510 0.2510] (default) | RGB triplet | character vector containing a color
name | matrix

Word color, specified as an RGB triplet, a character vector containing a color name, or an
N-by-3 matrix where N is the length of WordData. If Color is a matrix, then each row
corresponds to an RGB triplet for the corresponding word in WordData.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 wordcloud

1-16145

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

HighlightColor — Word highlight color
[0.8510 0.3255 0.0980] (default) | RGB triplet | character vector containing a color
name

Word highlight color, specified as an RGB triplet, or a character vector containing a color
name. The software highlights the largest words with this color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

1 Alphabetical List

1-16146

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'

 wordcloud

1-16147

Example: [0 0 1]

Shape — Shape of word cloud
'oval' (default) | 'rectangle'

Shape of word cloud chart, specified as 'oval' or 'rectangle'.
Example: 'rectangle'

LayoutNum — Word placement layout
1 (default) | nonnegative integer

Word placement layout, specified as a nonnegative integer. If you repeatedly call
wordcloud with the same inputs, then the word placement layouts will be the same each
time. To get different word placement layouts, use different values of LayoutNum.

Output Arguments
wc — WordCloudChart object
WordCloudChart object

WordCloudChart object. You can modify the properties of a WordCloudChart after it is
created. For more information, see WordCloudChart Properties.

Tips
Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It
adds support for creating word clouds directly from string arrays, and creating word
clouds from bag-of-words models, bag-of-n-gram models, and LDA topics. For the
wordcloud (Text Analytics Toolbox) reference page, see wordcloud.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

1 Alphabetical List

1-16148

Usage notes and limitations:

• The syntax wc = wordcloud(str), where str is a string array, character vector, or
cell array of character vectors (these inputs require Text Analytics Toolbox) is not
supported.

• When the words and sizedata inputs are provided as tall arrays, then they are
gathered into memory and thus, must fit into memory.

See Also
join | lower | replace | split | splitlines | string | wordcloud

Topics
“Analyze Text Data with String Arrays”
“Create String Arrays”
“Search and Replace Text”
“Compare Text”
“Test for Empty Strings and Missing Values”

Introduced in R2017b

 wordcloud

1-16149

WordCloudChart Properties
Control word cloud chart appearance and behavior

Description
WordCloudChart properties control the appearance and behavior of a WordCloudChart
object. By changing property values, you can modify certain aspects of the word cloud
chart.

Properties
Title

Title — Text displayed above word cloud chart in figure
'' (default) | character array | cell array of character vectors | string | cell array of
strings | numeric value | categorical array

Text displayed above word cloud chart in figure, specified as a character array, cell array
of character vectors, scalar string, cell array of strings, a numeric value, or a categorical
array. If you specify this property as a categorical array, then MATLAB uses the values in
the array, not the full set of categories. You can also use the title function to set this
value.
Example: "Word Cloud"
Data Types: string | char | cell

TitleFontName — Font used for title text in the word cloud chart
'Helvetica' (default) | character vector | string

Font used for title text in the word cloud chart, specified as a string or character vector.
To display and print properly, the font name must be a font that your system supports. The
default font depends on the specific operating system and locale.
Example: 'Cambria'
Data Types: char | string

1 Alphabetical List

1-16150

Color and Styling

Color — Word color
[0.2510 0.2510 0.2510] (default) | RGB triplet | character vector containing a color
name | matrix

Word color, specified as an RGB triplet, a character vector containing a color name, or an
N-by-3 matrix where N is the length of WordData. If Color is a matrix, then each row
corresponds to an RGB triplet for the corresponding word in WordData.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 WordCloudChart Properties

1-16151

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

HighlightColor — Word highlight color
[0.8510 0.3255 0.0980] (default) | RGB triplet | character vector containing a color
name

Word highlight color, specified as an RGB triplet, or a character vector containing a color
name. The software highlights the largest words with this color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

1 Alphabetical List

1-16152

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

FontName — Font used for text in the word cloud chart
'Helvetica' (default) | character vector | string

Font used for text in the word cloud chart, specified as a string or character vector. To
display and print properly, the font name must be a font that your system supports. The
default font depends on the specific operating system and locale.
Example: 'Cambria'
Data Types: char | string

MaxDisplayWords — Maximum number of words to display
100 (default) | nonnegative integer

 WordCloudChart Properties

1-16153

Maximum number of words to display, specified as a non-negative integer. The software
displays the MaxDisplayWords largest words.

Box — Axes box outline
'off' (default) | 'on'

Axes box outline, specified as one of these values:

• 'off' — Do not display the box outline around the axes.
• 'on' — Display the box outline around the axes.

Example: 'on'

Shape — Shape of word cloud
'oval' (default) | 'rectangle'

Shape of word cloud chart, specified as 'oval' or 'rectangle'.
Example: 'rectangle'

LayoutNum — Word placement layout
1 (default) | nonnegative integer

Word placement layout, specified as a nonnegative integer. If you repeatedly call
wordcloud with the same inputs, then the word placement layouts will be the same each
time. To get different word placement layouts, use different values of LayoutNum.

SizePower — Power to apply to SizeData
0.5 (default) | positive scalar

Power to apply to SizeData, specified as a positive scalar. The software displays words
with sizes given by SizeData .^ SizePower.
Example: 2

Data

WordData — Word data
"" (default) | string vector | cell array of character vectors

Word data, specified as a string vector, or a cell array of character vectors.
Example: ["one" "two" "three"]
Data Types: string | cell

1 Alphabetical List

1-16154

SizeData — Size data
[] (default) | numeric vector

Size data, specified as a numeric vector.
Example: [0.1 0.2 0.3]

WordVariable — Word variable in source table
character vector

Word variable in the source table, specified as a character vector.
Data Types: char

SizeVariable — Size variable in source table
character vector

Size variable in the source table, specified as a character vector.
Data Types: char

SourceTable — Source table
table

Source table containing word and size data.
Data Types: table

Position

OuterPosition — Size and position of word cloud chart within its parent
[0 0 1 1] (default) | 1-by-4 numeric vector

Size and position of word cloud chart within its parent, specified as a 1-by-4 numeric
vector of the form [left,bottom,width,height]. This includes labels and margins.
The default value of [0 0 1 1] includes the whole interior of the container.

InnerPosition — Inner size and position
[0 0 1 1] (default) | 1-by-4 numeric vector

Inner size and position of the word cloud within the parent container (typically a figure,
panel, or tab) returned as a 1-by-4 numeric vector of the form [left bottom width
height].

 WordCloudChart Properties

1-16155

• The left and bottom elements define the distance from the lower left corner of the
container to the lower left corner of the word cloud.

• The width and height elements are the word cloud dimensions.

Position — Inner size and position
four element vector

Inner size and position of the word cloud within the parent container (typically a figure,
panel, or tab) specified as a four-element vector of the form [left bottom width
height]. This property is equivalent to the InnerPosition property.

ActivePositionProperty — Active position property
'outerposition' (default) | 'position'

Active position property during resize operation, specified as one of these values:

• 'outerposition' — Hold the OuterPosition property constant.
• 'position' — Hold the Position property constant.

A figure can change size if you interactively resize it or during a printing or exporting
operation.

Units — Units used by OuterPosition property
'normalized' (default) | 'points' | 'pixels' | 'characters' | 'inches' |
'centimeters'

Units used by OuterPosition property, specified as 'normalized', 'points',
'pixels', 'characters', 'inches', or 'centimeters'.

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

Parent/Child

Parent — Parent of word cloud chart
figure object | panel object | tab object

1 Alphabetical List

1-16156

Parent of the word cloud chart, specified as a figure, panel, or tab object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

See Also
wordcloud

Topics
“Analyze Text Data with String Arrays”
“Create String Arrays”
“Search and Replace Text”
“Compare Text”
“Test for Empty Strings and Missing Values”

Introduced in R2017b

 WordCloudChart Properties

1-16157

Workspace Browser
Open Workspace browser to manage workspace

Description
The Workspace browser enables you to view and interactively manage the contents of the
workspace in MATLAB. For each variable or object in the workspace, the Workspace
browser also can display statistics, when relevant, such as the minimum, maximum, and
mean.

You can edit the contents of scalar (1-by-1) variables directly in the Workspace browser.
Right-click the variable and select Edit Value. To edit other variables, double-click the
variable name in the Workspace browser to open it in the Variables editor.

Open the Workspace Browser
To open the Workspace browser if it is not currently visible, do one of the following:

• MATLAB Toolstrip: On the Home tab, in the Environment section, click Layout.
Then, in the Show section, select Workspace.

• MATLAB command prompt: Enter workspace.

Examples

Create and Edit a Variable

Create a 3x3 matrix and then edit the values of the matrix in the Workspace browser.

Create a 3x3 matrix and store it in A.

 A = [1 2 3; 4 5 6; 7 8 9];

Open the Workspace browser to view A.

workspace

1 Alphabetical List

1-16158

Right-click the variable and select Edit Value. Replace the numbers 4, 5, and 6 with the
numbers 10, 11, and 12, respectively.

Programmatic Use
workspace displays the Workspace browser. If the Workspace browser is already open,
MATLAB selects the tool.

See Also
clear | load | openvar | save | who

Topics
“Create and Edit Variables”
“Enter Statements in Command Window”

 Workspace Browser

1-16159

“Use MATLAB Engine Workspace in Python”

Introduced before R2006a

1 Alphabetical List

1-16160

write
Write tall array to local and remote locations for checkpointing

Syntax
write(location,tA)
write(filepattern,tA)
write(___ ,Name,Value)

Description
write(location,tA) calculates the values in tall array tA and writes the array to files
in the folder specified by location. The data is stored in an efficient binary format
suitable for reading back using datastore(location).

write(filepattern,tA) uses the file extension from filepattern to determine the
output format. filepattern must include a folder to write the files into, followed by a
file name that includes a wildcard *. The wildcard represents incremental numbers for
generating unique file names. For example, write('folder/myfile_*.csv',tA).

write(___ ,Name,Value) specifies additional options with one or more name-value
pair arguments using any of the previous syntaxes. For example, you can specify the file
type with 'FileType' and a valid file type ('mat', 'seq', 'parquet', 'text', or
'spreadsheet'), or you can specify a custom write function to process the data with
'WriteFcn' and a function handle.

Examples

Write and Reconstruct Tall Array

Write a tall array to disk, and then recover the tall array by creating a new datastore for
the written files. This process is useful to save your work or share a tall array with a
colleague.

 write

1-16161

Create a datastore for the airlinesmall.csv data set. Select only the Year, Month,
and UniqueCarrier variables, and treat 'NA' values as missing data. Convert the
datastore into a tall table.

ds = datastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedVariableNames = {'Month','Year','UniqueCarrier'};
tt = tall(ds)

tt =

 M×3 tall table

 Month Year UniqueCarrier
 _____ ____ _____________

 10 1987 'PS'
 10 1987 'PS'
 10 1987 'PS'
 10 1987 'PS'
 10 1987 'PS'
 10 1987 'PS'
 10 1987 'PS'
 10 1987 'PS'
 : : :
 : : :

Sort the data in descending order by year and extract the top 25 rows. The resulting tall
table is unevaluated.

tt_new = topkrows(tt,25,'Year')

tt_new =

 M×3 tall table

 Month Year UniqueCarrier
 _____ ____ _____________

 ? ? ?
 ? ? ?
 ? ? ?
 : : :
 : : :

1 Alphabetical List

1-16162

Preview deferred. Learn more.

Save the results to a new folder named ExampleData on the C:\ disk. (You can specify a
different write location, especially if you are not using a Windows® computer.) The write
function evaluates the tall array prior to writing the files, so there is no need to use the
gather function prior to saving the data.

location = 'C:\ExampleData';
write(location,tt_new)

Writing tall data to folder C:\ExampleData
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.52 sec
Evaluation completed in 1.2 sec

Clear tt and ds from your working directory. To recover the tall table that was written to
disk, first create a new datastore that references the same directory. Then convert the
datastore into a tall table. Since the tall table was evaluated before being written to disk,
the display now includes a preview of the values.

clear tt ds
ds2 = datastore(location);
tt2 = tall(ds2)

tt2 =

 M×3 tall table

 Month Year UniqueCarrier
 _____ ____ _____________

 1 2008 'WN'
 1 2008 'WN'
 1 2008 'WN'
 1 2008 'WN'
 1 2008 'WN'
 1 2008 'WN'
 1 2008 'WN'
 1 2008 'WN'
 : : :
 : : :

 write

1-16163

Write Spreadsheet File to Cloud Storage

Create a tall table referencing the tsunamis.xlsx data file, which contains time-
stamped data about the location, magnitude, and cause of tsunamis.

ds = datastore('tsunamis.xlsx');
T = tall(ds)

T =

 Mx20 tall table

 Latitude Longitude Year Month Day Hour Minute Second ValidityCode Validity CauseCode Cause EarthquakeMagnitude Country Location MaxHeight IidaMagnitude Intensity NumDeaths DescDeaths
 ________ _________ ____ _____ ___ ____ ______ ______ ____________ _______________________ _________ ________________ ___________________ _________________ ________________________ _________ _____________ _________ _________ __________

 -3.8 128.3 1950 10 8 3 23 NaN 2 'questionable tsunami' 1 'Earthquake' 7.6 'INDONESIA' 'JAVA TRENCH, INDONESIA' 2.8 1.5 1.5 NaN NaN
 19.5 -156 1951 8 21 10 57 NaN 4 'definite tsunami' 1 'Earthquake' 6.9 'USA' 'HAWAII' 3.6 1.8 NaN NaN NaN
 -9.02 157.95 1951 12 22 NaN NaN NaN 2 'questionable tsunami' 6 'Volcano' NaN 'SOLOMON ISLANDS' 'KAVACHI' 6 2.6 NaN NaN NaN
 42.15 143.85 1952 3 4 1 22 41 4 'definite tsunami' 1 'Earthquake' 8.1 'JAPAN' 'SE. HOKKAIDO ISLAND' 6.5 2.7 2 33 1
 19.1 -155 1952 3 17 3 58 NaN 4 'definite tsunami' 1 'Earthquake' 4.5 'USA' 'HAWAII' 1 NaN NaN NaN NaN
 43.1 -82.4 1952 5 6 NaN NaN NaN 1 'very doubtful tsunami' 9 'Meteorological' NaN 'USA' 'LAKE HURON, MI' 1.52 NaN NaN NaN NaN
 52.75 159.5 1952 11 4 16 58 NaN 4 'definite tsunami' 1 'Earthquake' 9 'RUSSIA' 'KAMCHATKA' 18 4.2 4 2236 3
 50 156.5 1953 3 18 NaN NaN NaN 3 'probable tsunami' 1 'Earthquake' 5.8 'RUSSIA' 'N. KURIL ISLANDS' 1.5 0.6 NaN NaN NaN
 : : : : : : : : : : : : : : : : : : : :
 : : : : : : : : : : : : : : : : : : : :

Combine the Year, Month, Day, Hour, Minute, and Second variables into a single
datetime variable, and then remove those variables from the table. Remove any rows that
contain missing data.

T.DateTime = datetime(T.Year, T.Month, T.Day, T.Hour, T.Minute, T.Second);
T(:,3:8) = [];
TT = rmmissing(T)

TT =

 Mx15 tall table

 Latitude Longitude ValidityCode Validity CauseCode Cause EarthquakeMagnitude Country Location MaxHeight IidaMagnitude Intensity NumDeaths DescDeaths DateTime
 ________ _________ ____________ __________________ _________ __________________________ ___________________ ___________ __________________________ _________ _____________ _________ _________ __________ ____________________

 42.15 143.85 4 'definite tsunami' 1 'Earthquake' 8.1 'JAPAN' 'SE. HOKKAIDO ISLAND' 6.5 2.7 2 33 1 04-Mar-1952 01:22:41
 58.34 -136.52 4 'definite tsunami' 3 'Earthquake and Landslide' 8.3 'USA' 'SE. ALASKA, AK' 524.26 4.6 5 5 1 10-Jul-1958 06:15:53
 -39.5 -74.5 4 'definite tsunami' 1 'Earthquake' 9.5 'CHILE' 'CENTRAL CHILE' 25 4.6 4 1260 3 22-May-1960 19:11:17
 -6.8 -80.7 4 'definite tsunami' 1 'Earthquake' 6.8 'PERU' 'PERU' 9 3.2 2.5 66 2 20-Nov-1960 22:01:56

1 Alphabetical List

1-16164

 61.1 -147.5 4 'definite tsunami' 3 'Earthquake and Landslide' 9.2 'USA' 'PRINCE WILLIAM SOUND, AK' 67 6.1 5 221 3 28-Mar-1964 03:36:14
 38.65 139.2 4 'definite tsunami' 1 'Earthquake' 7.5 'JAPAN' 'NW. HONSHU ISLAND' 5.8 2.7 2 26 1 16-Jun-1964 04:01:44
 0.2 119.8 4 'definite tsunami' 1 'Earthquake' 7.8 'INDONESIA' 'BANDA SEA' 10 3.3 3 200 3 14-Aug-1968 22:14:19
 -3.1 118.9 4 'definite tsunami' 1 'Earthquake' 6.9 'INDONESIA' 'MAKASSAR STRAIT' 4 2 2 600 3 23-Feb-1969 00:36:56
 : : : : : : : : : : : : : : :
 : : : : : : : : : : : : : : :

Write the table as a spreadsheet file to a remote location in Amazon S3® storage. To read
or write data to Amazon S3 you must set the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables using the credentials for your account.
For more information, see “Work with Remote Data”.

setenv('AWS_ACCESS_KEY_ID', 'YOUR_AWS_ACCESS_KEY_ID');
setenv('AWS_SECRET_ACCESS_KEY', 'YOUR_AWS_SECRET_ACCESS_KEY');

location = 's3://bucketname/preprocessedData/';
write(location, TT, 'FileType', 'spreadsheet')

To read the data back, use datastore to point to the remote location where the data now
resides.

ds = datastore(location);
tt = tall(ds);

Write Images with Custom Write Function

Create and use a custom writing function to write data in additional formats that are not
directly supported by write, such as image files.

Create an image datastore that references all of the sample images in the toolbox/
matlab/demos folder. The selected images have the extensions .jpg, .tif, and .png.
Convert the datastore to a tall cell array.

demoFolder = fullfile(matlabroot,'toolbox','matlab','demos');
ds = imageDatastore(demoFolder,'FileExtensions',{'.jpg' '.tif' '.png'});
T = tall(ds);

Bring one of the images into memory and display it.

I = gather(T(1));

 write

1-16165

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 3 sec
Evaluation completed in 3.2 sec

imshow(I{1},'InitialMagnification',30)

write does not support image files directly, so to write the images out in a different
format, you must create a new function to handle the file writing. The writing function
receives two inputs from write:

• info is a structure containing fields with information about the current block of data.
You can use these fields to construct your own unique file name, or simply use the
SuggestedFilename field to use a name suggested by write.

• data is the current block of data, obtained by using read on the datastore.

The function imageWriter uses the filename suggested by write, and uses imwrite to
write the image files to disk as .jpg files. Save this function in your current working
folder.

type imageWriter

1 Alphabetical List

1-16166

function imageWriter(info, data)
 filename = info.SuggestedFilename;
 imwrite(data{:}, filename)
end

Write the images in the datastore to a new folder named exampleImages on the C:\
disk. (You can use a different location, especially if you are not using a Windows®
computer.) Pass imageWriter as the custom write function using the 'WriteFcn' name-
value pair argument.

location = 'C:\exampleImages\image_*.jpg';
write(location, T, 'WriteFcn', @imageWriter)

Writing tall data to folder C:\exampleImages
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.71 sec
Evaluation completed in 0.98 sec

Display the contents of the folder where the files were written.

dir C:\exampleImages

. image_1_000001.jpg image_3_000001.jpg image_5_000001.jpg

.. image_2_000001.jpg image_4_000001.jpg image_6_000001.jpg

To read the images back into MATLAB®, create a datastore that references the same
location.

ds = imageDatastore(location);
T = tall(ds)

T =

 6×1 tall cell array

 {1024×2048×3 uint8}
 { 650×600×3 uint8}
 {1024×2048×3 uint8}
 { 650×600×3 uint8}
 { 480×640×3 uint8}
 { 480×640×3 uint8}

 write

1-16167

Input Arguments
location — Folder location to write data
character vector | string

Folder location to write data, specified as a character vector or string. location can
specify a full or relative path. The specified folder can be either of these options:

• Existing empty folder
• New folder that write creates

You can write data to local folders on your computer, or to remote locations in HDFS,
Azure®, or Amazon S3. For more information about reading and writing data to remote
locations, see “Work with Remote Data”.

Additional considerations apply for Hadoop and Apache Spark:

• If the folder is not available locally, then the full path of the folder must be an
internationalized resource identifier (IRI) of the form:
hdfs:///path_to_file.

• Before writing to HDFS, set the HADOOP_HOME, HADOOP_PREFIX, or
MATLAB_HADOOP_INSTALL environment variable to the folder where Hadoop is
installed.

• Before writing to Apache Spark, set the SPARK_HOME environment variable to the
folder where Apache Spark is installed.

Example: location = 'hdfs:///some/output/folder'
Example: location = '../../dir/data'
Example: location = 'C:\Users\MyName\Desktop'
Data Types: char | string

tA — Input array
tall array

Input array, specified as a tall array.

filepattern — File naming pattern
string | character vector

1 Alphabetical List

1-16168

File naming pattern, specified as a string or a character vector. The file naming pattern
must contain a folder to write the files into, followed by a file name that includes a
wildcard *. The write function replaces the wildcard with sequential numbers to ensure
unique file names.
Example: write('folder/data_*.txt',tA) writes the tall array tA as a series
of .txt files in folder with the file names data_1.txt, data_2.txt, and so on.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: write('C:\myData', tX, 'FileType', 'text',
'WriteVariableNames', false) writes the tall array tX to C:\myData as a
collection of text files that do not use variable names as column headings.

General Options

FileType — Type of file
'auto' (default) | 'mat' | 'parquet' | 'seq' | 'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and one of
the allowed file types: 'auto', 'mat', 'parquet', 'seq', 'text', or 'spreadsheet'.

Use the 'FileType' name-value pair with the location argument to specify what type
of files to write. By default, write attempts to automatically detect the proper file type.
You do not need to specify the 'FileType' name-value pair argument if write can
determine the file type from an extension in the location or filepattern arguments.
write can determine the file type from these extensions:

• .mat for MATLAB data files
• .parquet or .parq for Parquet files
• .seq for sequence files
• .txt, .dat, or .csv for delimited text files
• .xls, .xlsx, .xlsb, .xlsm, .xltx, or .xltm for spreadsheet files

Example: write('C:\myData', tX, 'FileType', 'text')

 write

1-16169

WriteFcn — Custom writing function
function handle

Custom writing function, specified as the comma-separated pair consisting of
'WriteFcn' and a function handle. The specified function receives blocks of data from
tA and is responsible for creating the output files. You can use the 'WriteFcn' name-
value pair argument to write data in a variety of formats, even if write does not directly
support the output format.

Functional Signature

The custom writing function must accept two input arguments, info and data:

function myWriter(info, data)

• data contains a block of data from tA.
• info is a structure with fields that contain information about the block of data. You

can use the fields to build a new file name that is globally unique within the final
location. The structure fields are

Field Description
RequiredLocation Fully qualified path to a temporary

output folder. Only files written to this
folder are copied to the final destination.
The files cannot be in subfolders.

RequiredFilePattern The file pattern required for output file
names. This field is empty if only a
folder name is specified.

SuggestedFilename A fully qualified, globally unique file
name that meets the location and
naming requirements.

PartitionIndex Index of the tall array partition being
written.

NumPartitions Total number of partitions in the tall
array.

BlockIndexInPartition Position of current data block within the
partition.

1 Alphabetical List

1-16170

Field Description
IsFinalBlock true if current block is the final block of

the partition.

File Naming

The file name used for the output files determines the order in which datastore later
reads the files back in. If the order of the files matters, then the best practice is to use the
SuggestedFilename field to name the files, since the suggested name guarantees the
file order. If you do not use the suggested file name, then the custom writing function
must create globally unique, correctly ordered file names. The file names should follow
the naming pattern outlined in RequiredFilePattern. When running in parallel with
Parallel Computing Toolbox, the file names must be unique and correctly ordered between
workers, even though each worker writes to its own local folder.

Arrays with Multiple Partitions

You can divide a tall array into partitions to facilitate running calculations on the array in
parallel with Parallel Computing Toolbox. Each of the partitions is still comprised of
smaller blocks that individually fit into memory.

info contains several fields related to partitions: PartitionIndex, NumPartitions,
BlockIndexInPartition, and IsFinalBlock. These fields are useful when you are
writing out a single file and appending to it, which is a common task for arrays with large
partitions that have been split into many blocks. The custom writing function is called
once per block, and the blocks in one partition are always written in order by the same
worker. However, different partitions can be written by different workers.

Example Function

A simple writing function that writes spreadsheet files is

function dataWriter(info, data)
 filename = info.SuggestedFilename;
 writetable(data, filename, 'FileType', 'spreadsheet')
end

To invoke dataWriter as the writing function for some data tt, use these commands.

tt = tall(array2table(rand(5000,3)));
location = '/tmp/MyData/tt_*.xlsx';
write(location, tt, 'WriteFcn', @dataWriter);

 write

1-16171

For each block, the dataWriter function uses the suggested file name in the info
structure and calls writetable to write a spreadsheet file. The suggested file name
takes into account the file naming pattern that is specified in the location argument.
Data Types: function_handle

Text or Spreadsheet Files

WriteVariableNames — Indicator for writing variable names as column headings
true or 1 (default) | false or 0

Indicator for writing variable names as column headings, specified as the comma-
separated pair consisting of 'WriteVariableNames' and a numeric or logical 1 (true)
or 0 (false).

Indicator Behavior
true Variable names are included as the column headings of the output.

(default)
false Variable names are not included in the output.

DateLocale — Locale for writing dates
character vector | string scalar

Locale for writing dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar. When writing datetime values
to the file, use DateLocale to specify the locale in which write should write month and
day-of-week names and abbreviations. The character vector or string takes the form
xx_YY, where xx is a lowercase ISO 639-1 two-letter code indicating a language, and YY
is an uppercase ISO 3166-1 alpha-2 code indicating a country. For a list of common values
for the locale, see the Locale name-value pair argument for the datetime function.

For Excel files, write writes variables containing datetime arrays as Excel dates and
ignores the 'DateLocale' parameter value. If the datetime variables contain years
prior to either 1900 or 1904, then write writes the variables as text. For more
information on Excel dates, see Differences between the 1900 and the 1904 date system
in Excel.
Example: 'DateLocale','ja_JP' or 'DateLocale',"ja_JP"
Data Types: char | string

1 Alphabetical List

1-16172

https://support.microsoft.com/en-us/kb/214330
https://support.microsoft.com/en-us/kb/214330

Text Files Only

Delimiter — Field delimiter character
',' or 'comma' | ' ' or 'space' | ...

Field delimiter character, specified as the comma-separated pair consisting of
'Delimiter' and one of these specifiers.

Specifier Field Delimiter
','

'comma'

Comma (default)

' '

'space'

Space

'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair argument only for delimited text files.
Example: 'Delimiter','space' or 'Delimiter',"space"

QuoteStrings — Indicator for writing quoted text
false (default) | true

Indicator for writing quoted text, specified as the comma-separated pair consisting of
'QuoteStrings' and either false or true. If 'QuoteStrings' is set to true, then
write encloses the text in double quotation marks and replaces any double-quote
characters that appear as part of that text with two double-quote characters. For an
example, see “Write Quoted Text to CSV File” on page 1-16209.

You can use the 'QuoteStrings' name-value pair argument only with delimited text
files.

 write

1-16173

Encoding — Character encoding scheme
'system' | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name like one of the values in this table. When you do not specify any encoding or specify
encoding as 'system', the write function uses your system default encoding to write
the file.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'Encoding','system' or 'Encoding',"system" uses the system default
encoding.

Spreadsheet Files Only

Sheet — Target worksheet
character vector | string scalar | positive integer

Target worksheet, specified as the comma-separated pair consisting of 'Sheet' and a
character vector or a string scalar containing the worksheet name or a positive integer
indicating the worksheet index. The worksheet name cannot contain a colon (:). To
determine the names of sheets in a spreadsheet file, use [status,sheets] =
xlsfinfo(filename).

1 Alphabetical List

1-16174

If the sheet does not exist, then write adds a new sheet at the end of the worksheet
collection. If the sheet is an index larger than the number of worksheets, then write
appends empty sheets until the number of worksheets in the workbook equals the sheet
index. In either case, write generates a warning indicating that it has added a new
worksheet.

You can use the 'Sheet' name-value pair argument only with spreadsheet files.
Example: 'Sheet',2
Example: 'Sheet', 'MySheetName'
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Parquet Files Only

VariableCompression — Parquet compression algorithm
'Snappy' (default) | 'Brotli' | 'Gzip' | 'Uncompressed' | cell array of character
vectors | string vector

Parquet compression algorithm, specified as one of these values.

• 'Snappy', 'Brotli', 'Gzip', or 'Uncompressed'. If you specify one compression
algorithm then write compresses all variables using the same algorithm.

• Alternatively, you can specify a cell array of character vectors or a string vector
containing the names of the compression algorithms to use for each variable.

In general, 'Snappy' has better performance for reading and writing, 'Gzip' has a
higher compression ratio at the cost of more CPU processing time, and 'Brotli'
typically produces the smallest file size at the cost of compression speed.

The write function writes Parquet 2.0 files using the Parquet dictionary encoding
scheme. This encoding scheme is most efficient when the number of unique values is not
too large. If the size of the dictionary or number of unique values grows to be too big,
then the encoding automatically falls back to plain encoding.
Example: write('C:\myData', tX, 'FileType', 'parquet',
'VariableCompression', 'Brotli')

Example: write('C:\myData', tX, 'FileType', 'parquet',
'VariableCompression', {'Brotli' 'Snappy' 'Gzip'})

 write

1-16175

Limitations
In some cases, write(location, T, 'FileType', type) creates files that do not
represent the original array T exactly. If you use datastore(location) to read the
files, then the result might not have the same format or contents as the original tall table.

1 For the 'text' and 'spreadsheet' file types, write uses these rules:

• write outputs numeric variables using longG format on page 1-0 and
categorical, character, or string variables as unquoted text.

• For nontext variables that have more than one column, write outputs multiple
delimiter-separated fields on each line and constructs suitable column headings
for the first line of the file.

• write outputs variables with more than two dimensions as two-dimensional
variables, with trailing dimensions collapsed.

• For cell-valued variables with contents that are numeric, logical, character, or
categorical, write outputs the contents of each cell as a single row, in multiple
delimiter-separated fields. If the cells have a different data type, write outputs a
single empty field.

Do not use the 'text' or 'spreadsheet' file types if you need to write an exact
checkpoint of the tall array.

2 For the 'parquet' file type, there are some cases where the Parquet format cannot
fully represent the MATLAB table or timetable data types. If you use parquetread
or datastore to read the files, then the result might not have the same format or
contents as the original tall table. For more information, see “Apache Parquet Data
Type Mappings”.

Tips
• Use the write function to create checkpoints or snapshots of your data as you work,

especially when working with huge data sets. This practice allows you to reconstruct
tall arrays directly from files on disk rather than re-executing all of the commands that
produced the tall array.

1 Alphabetical List

1-16176

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datastore | tall

Topics
“Tall Arrays”
“Work with Remote Data”

Introduced in R2016b

 write

1-16177

write
Write data to remote host over TCP/IP

Syntax
write(t,data)

Description
write(t,data) sends the N-dimensional matrix of data from tcpclient object t
connected to the remote host. The function waits until the specified values are written to
the remote host.

Examples

Read and Write uint8 Data

Create a TCP/IP object called t, connecting to a TCP/IP echo server, with Port of 7. This
requires you to have an echotcpip server running on Port 7.

t = tcpclient('localhost', 7)

t =

 tcpclient with properties:

 Address: 'local host'
 Port: 7
 Timeout: 10
 BytesAvailable: 0

The write function synchronously writes data to the remote host connected to the
tcpclient object. First specify the data, then write the data. The function waits until the
specified number of values is written to the remote host.

1 Alphabetical List

1-16178

Assign 10 bytes of uint8 data to the variable data.

data = uint8(1:10)

data =

 1 2 3 4 5 6 7 8 9 10

Check the data.

whos data

Name Size Bytes Class Attributes

data 1x10 10 uint8

Write data to the echo server.

write(t, data)

Check that the data was written using the BytesAvailable property.

t.BytesAvailable

ans =

 10

Read the data from the server.

read(t)

ans =

 1 2 3 4 5 6 7 8 9 10

Close the connection between the TCP/IP client object and the remote host by clearing
the object.

clear t

Input Arguments
data — Data to write to the remote host
1xN matrix of numeric data

 write

1-16179

Data to write to the remote host, specified as a 1xN matrix of numeric data.
Example: write(t, data)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also

Topics
“Create a TCP/IP Connection”
“Configure Properties for TCP/IP Communication”
“Write and Read Data over TCP/IP Interface”

Introduced in R2014b

1 Alphabetical List

1-16180

writecell
Write cell array to file

Syntax
writecell(C)
writecell(C,filename)
writecell(___ ,Name,Value)

Description
writecell(C) writes cell array C to a comma delimited text file. The file name is the
workspace name of the cell array, appended with the extension .txt. If writecell
cannot construct the file name from the input cell array name, then it writes to the file
cell.txt.

Each column of each variable in C becomes a column in the output file. The writecell
function overwrites any existing file.

writecell(C,filename) writes to a file with the name and extension specified by
filename.

writecell determines the file format based on the specified extension. The extension
must be one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files
• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

writecell(___ ,Name,Value) writes the cell array to a file with additional options
specified by one or more Name,Value pair arguments and can include any of the input
arguments in previous syntaxes.

 writecell

1-16181

Examples

Write Cell Array to Text File

Create a cell array, write it to a comma-separated text file, and then write the cell array to
another text file with a different delimiter character.

Create a simple cell array in the workspace.

C = {1,2,3;
 'text',datetime('today'),hours(1)}

C = 2×3 cell array
 {[1]} {[2]} {[3]}
 {'text'} {[09-Jan-2019]} {[1 hr]}

Write the cell array to a comma delimited text file and display the file contents. The
writecell function outputs a text file named C.txt.

writecell(C)
type 'C.txt'

1,2,3
text,09-Jan-2019,1 hr

To write the same cell array to a text file with a different delimiter character, use the
'Delimiter' name-value pair.

writecell(C,'C_tab.txt','Delimiter','tab')
type 'C_tab.txt'

1 2 3
text 09-Jan-2019 1 hr

Write Cell Array to Spreadsheet File

Create a cell array, write it to a spreadsheet file, and then read and display the contents
of the file.

Create a cell array in the workspace.

1 Alphabetical List

1-16182

C = {1,2,3;
 'text',datetime('today'),hours(1)}

C = 2×3 cell array
 {[1]} {[2]} {[3]}
 {'text'} {[09-Jan-2019]} {[1 hr]}

Write the cell array to a spreadsheet file.

writecell(C,'C.xls')

Read and display the matrix from C.xls.

readcell('C.xls')

ans = 2×3 cell array
 {[1]} {[2]} {[3]}
 {'text'} {[09-Jan-2019]} {'1 hr'}

Write Cell Array to Specified Sheet and Range

Create a cell array and write it to a specified sheet and range in a spreadsheet file.

Create a cell array in the workspace.

C = {1,2,3;
 'text',datetime('today'),hours(1)}

C = 2×3 cell array
 {[1]} {[2]} {[3]}
 {'text'} {[09-Jan-2019]} {[1 hr]}

Write the cell array to the file C.xls, in the second worksheet in the file, starting at the
third row.

writecell(C,'C.xls','Sheet',2,'Range','A3:C5')

Read and display the cell array.

readcell('C.xls','Sheet',2,'Range','A3:C5')

 writecell

1-16183

ans = 2×3 cell array
 {[1]} {[2]} {[3]}
 {'text'} {[09-Jan-2019]} {'1 hr'}

Input Arguments
C — Input cell array
cell array

Input data, specified as a cell array.

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

Depending on the location you are writing to, filename can take on one of these forms.

Location Form
Current folder To write to the current folder, specify the name of the file in

filename.

Example: 'myTextFile.csv'
Other folders To write to a folder different from the current folder, specify

the full or relative path name in filename.

Example: 'C:\myFolder\myTextFile.csv'

Example: 'myFolder\myExcelFile.xlsx'

1 Alphabetical List

1-16184

Location Form
Remote Location To write to a remote location, filename must contain the full

path of the file specified as an internationalized resource
identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.xlsx'

• If filename includes the file extension, then the writing function determines the file
format from the extension. Otherwise, the writing function creates a comma separated
text file and appends the extension .txt. Alternatively, you can specify filename
without the file’s extension, and then include the 'FileType' name-value pair
arguments to indicate the type of file.

• If filename does not exist, then the writing function creates the file.
• If filename is the name of an existing text file, then the writing function overwrites

the file.
• If filename is the name of an existing spreadsheet file, then the writing function

writes the data to the specified location, but does not overwrite any values outside the
range of the input data.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 writecell

1-16185

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FileType',text indicates that the variable names should not be included as
the first row of the output file.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and a
character vector or string containing 'text' or 'spreadsheet'.

The 'FileType' name-value pair must be used with the filename input argument. You
do not need to specify the 'FileType' name-value pair argument if the filename input
argument includes a standard file extension. The following standard file extensions are
recognized by the writing function:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files
• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

Example: 'FileType','spreadsheet'
Data Types: char | string

DateLocale — Locale for writing dates
character vector | string scalar

Locale for writing dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar. When writing datetime values
to the file, use DateLocale to specify the locale in which writetable should write
month and day-of-week names and abbreviations. The character vector or string takes the
form xx_YY, where xx is a lowercase ISO 639-1 two-letter code indicating a language,
and YY is an uppercase ISO 3166-1 alpha-2 code indicating a country. For a list of
common values for the locale, see the Locale name-value pair argument for the
datetime function.

The writing function ignores the 'DateLocale' parameter value whenever dates can be
written as Excel-formatted dates.
Example: 'DateLocale','ja_JP'

1 Alphabetical List

1-16186

Data Types: char | string

Text Files Only

Delimiter — Field delimiter character
character vector | string scalar

Field delimiter character, specified as the comma-separated pair consisting of
'Delimiter' and a character vector or string scalar containing one of the following
specifiers.

Specifier Field Delimiter
','

'comma'

Comma. This is the default behavior.

' '

'space'

Space

'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair only for delimited text files.
Example: 'Delimiter','space'
Data Types: char | string

QuoteStrings — Indicator for writing quoted text
false (default) | true

Indicator for writing quoted text, specified as the comma-separated pair consisting of
'QuoteStrings' and either false or true. If 'QuoteStrings' is true, then the
writing function encloses the text in double quotation marks, and replaces any double-
quote characters that appear as part of that text with two double-quote characters.

 writecell

1-16187

You can use the 'QuoteStrings' name-value pair only with delimited text files.

Encoding — Character encoding scheme
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name like one of the values in this table. When you do not specify any encoding or specify
encoding as 'system', the writing function uses your system default encoding to write
the file.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

Example: 'system' uses the system default encoding.
Data Types: char | string

Spreadsheet Files Only

Sheet — Worksheet to write to
character vector | string scalar | positive integer

Worksheet to write to, specified as the comma-separated pair consisting of 'Sheet' and
a character vector or a string scalar containing the worksheet name or a positive integer

1 Alphabetical List

1-16188

indicating the worksheet index. The worksheet name cannot contain a colon (:). To
determine the names of sheets in a spreadsheet file, use [status,sheets] =
xlsfinfo(filename).

If the sheet does not exist, then the writing function adds a new sheet at the end of the
worksheet collection. If the sheet is an index larger than the number of worksheets, then
appends empty sheets until the number of worksheets in the workbook equals the sheet
index. In either case, the writing function also generates a warning indicating that it has
added a new worksheet.

You can use the 'Sheet' name-value pair only with spreadsheet files.
Example: 'Sheet',2
Example: 'Sheet', 'MySheetName'
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Range — Rectangular portion of worksheet to write to
character vector | string scalar

Rectangular portion of worksheet to write to, specified as the comma-separated pair
consisting of 'Range' and a character vector or string scalar in one of the following
forms.

Form of the Value of Range Description
'Corner1' Corner1 specifies the first cell of the region to write.

The writing function writes the data starting at this cell.

Example: 'Range','D2'

 writecell

1-16189

Form of the Value of Range Description
'Corner1:Corner2' Corner1 and Corner2 are two opposing corners that

define the region to write. For example, 'D2:H4'
represents the 3-by-5 rectangular region between the
two corners D2 and H4 on the worksheet. The 'Range'
name-value pair argument is not case sensitive, and uses
Excel A1 reference style (see Excel help).

Example: 'Range','D2:H4'

• If the range you specify is smaller than the size of the
input data, then the writing function writes only a
subset of the input data that fits into the range.

• If the range you specify is larger than the size of the
input data, then the writing function leaves the
remainder of the region as it is.

The 'Range' name-value pair can only be used with Excel files.
Example: 'Range', 'A1:F10'
Data Types: char | string

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when writing spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When writing to spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The writing function starts an instance of Microsoft Excel when writing the
file. This setting is the default for Windows systems with Excel installed.

• false — The writing function does not start an instance of Microsoft Excel when
writing the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, functionality for writing differs in the support of
file formats and interactive features, such as formulas and macros.

1 Alphabetical List

1-16190

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

Algorithms
There are some instances where the writecell function creates a file that does not
represent the input data exactly. You will notice this when you use the readcell function
to read that file. The resulting data might not have the exact same format or contents as
the original data. If you need to save your cell array and retrieve it at a later time to
exactly match the original cell array, with the same data and organization, then save it as
a MAT-file. writecell writes an inexact table in the following instances:

• writecell writes out numeric data using long g format, and categorical or
character data as unquoted text.

• writecell writes out cell arrays that have more than two dimensions as two
dimensional arrays, with the trailing dimensions collapsed.

See Also
readcell | writematrix | writetable | writetimetable

Introduced in R2019a

 writecell

1-16191

writematrix
Write a matrix to a file

Syntax
writematrix(A)
writematrix(A,filename)
writematrix(___ ,Name,Value)

Description
writematrix(A) writes homogeneous array A to a comma delimited text file. The file
name is the workspace variable name of the array, appended with the extension .txt. If
writematrix cannot construct the file name from the array name, then it writes to the
file matrix.txt.

Each column of each variable in A becomes a column in the output file. The writematrix
function overwrites any existing file.

writematrix(A,filename) writes to a file with the name and extension specified by
filename.

writematrix determines the file format based on the specified extension. The extension
must be one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files
• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

writematrix(___ ,Name,Value) writes an array to a file with additional options
specified by one or more Name,Value pair arguments and can include any of the input
arguments in previous syntaxes.

1 Alphabetical List

1-16192

Examples

Write Matrix to Text File

Create a matrix, write it to a comma-separated text file, and then write the matrix to
another text file with a different delimiter character.

Create a matrix in the workspace.

M = magic(5)

M = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Write the matrix to a comma delimited text file and display the file contents. The
writematrix function outputs a text file named M.txt.

writematrix(M)
type 'M.txt'

17,24,1,8,15
23,5,7,14,16
4,6,13,20,22
10,12,19,21,3
11,18,25,2,9

To write the same matrix to a text file with a different delimiter character, use the
'Delimiter' name-value pair.

writematrix(M,'M_tab.txt','Delimiter','tab')
type 'M_tab.txt'

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

 writematrix

1-16193

Write Matrix to Spreadsheet File

Create a matrix, write it to a spreadsheet file, and then read and display the contents of
the file.

Create a matrix in the workspace.

M = magic(5)

M = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Write the matrix to a spreadsheet file.

writematrix(M,'M.xls')

Read and display the matrix from M.xls.

readmatrix('M.xls')

ans = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Write Matrix to Specified Sheet and Range

Create a matrix and write it to a specified sheet and range in a spreadsheet file.

Create a matrix in the workspace.

1 Alphabetical List

1-16194

M = magic(5)

M = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Write the matrix to M.xls, to the second worksheet in the file, starting at the third row.

writematrix(M,'M.xls','Sheet',2,'Range','A3:E8')

Read and display the matrix.

readmatrix('M.xls','Sheet',2,'Range','A3:E8')

ans = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Input Arguments
A — Input data
matrix

Input data, specified as a matrix.

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

Depending on the location you are writing to, filename can take on one of these forms.

 writematrix

1-16195

Location Form
Current folder To write to the current folder, specify the name of the file in

filename.

Example: 'myTextFile.csv'
Other folders To write to a folder different from the current folder, specify

the full or relative path name in filename.

Example: 'C:\myFolder\myTextFile.csv'

Example: 'myFolder\myExcelFile.xlsx'
Remote Location To write to a remote location, filename must contain the full

path of the file specified as an internationalized resource
identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.xlsx'

• If filename includes the file extension, then the writing function determines the file
format from the extension. Otherwise, the writing function creates a comma separated
text file and appends the extension .txt. Alternatively, you can specify filename
without the file’s extension, and then include the 'FileType' name-value pair
arguments to indicate the type of file.

• If filename does not exist, then the writing function creates the file.
• If filename is the name of an existing text file, then the writing function overwrites

the file.

1 Alphabetical List

1-16196

• If filename is the name of an existing spreadsheet file, then the writing function
writes the data to the specified location, but does not overwrite any values outside the
range of the input data.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FileType',text indicates that the variable names should not be included as
the first row of the output file.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and a
character vector or string containing 'text' or 'spreadsheet'.

The 'FileType' name-value pair must be used with the filename input argument. You
do not need to specify the 'FileType' name-value pair argument if the filename input
argument includes a standard file extension. The following standard file extensions are
recognized by the writing function:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files
• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

Example: 'FileType','spreadsheet'
Data Types: char | string

DateLocale — Locale for writing dates
character vector | string scalar

Locale for writing dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar. When writing datetime values

 writematrix

1-16197

to the file, use DateLocale to specify the locale in which writetable should write
month and day-of-week names and abbreviations. The character vector or string takes the
form xx_YY, where xx is a lowercase ISO 639-1 two-letter code indicating a language,
and YY is an uppercase ISO 3166-1 alpha-2 code indicating a country. For a list of
common values for the locale, see the Locale name-value pair argument for the
datetime function.

The writing function ignores the 'DateLocale' parameter value whenever dates can be
written as Excel-formatted dates.
Example: 'DateLocale','ja_JP'
Data Types: char | string

Text Files Only

Delimiter — Field delimiter character
character vector | string scalar

Field delimiter character, specified as the comma-separated pair consisting of
'Delimiter' and a character vector or string scalar containing one of the following
specifiers.

Specifier Field Delimiter
','

'comma'

Comma. This is the default behavior.

' '

'space'

Space

'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair only for delimited text files.

1 Alphabetical List

1-16198

Example: 'Delimiter','space'
Data Types: char | string

QuoteStrings — Indicator for writing quoted text
false (default) | true

Indicator for writing quoted text, specified as the comma-separated pair consisting of
'QuoteStrings' and either false or true. If 'QuoteStrings' is true, then the
writing function encloses the text in double quotation marks, and replaces any double-
quote characters that appear as part of that text with two double-quote characters.

You can use the 'QuoteStrings' name-value pair only with delimited text files.

Encoding — Character encoding scheme
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name like one of the values in this table. When you do not specify any encoding or specify
encoding as 'system', the writing function uses your system default encoding to write
the file.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'

 writematrix

1-16199

 'Shift_JIS'

Example: 'system' uses the system default encoding.
Data Types: char | string

Spreadsheet Files Only

Sheet — Worksheet to write to
character vector | string scalar | positive integer

Worksheet to write to, specified as the comma-separated pair consisting of 'Sheet' and
a character vector or a string scalar containing the worksheet name or a positive integer
indicating the worksheet index. The worksheet name cannot contain a colon (:). To
determine the names of sheets in a spreadsheet file, use [status,sheets] =
xlsfinfo(filename).

If the sheet does not exist, then the writing function adds a new sheet at the end of the
worksheet collection. If the sheet is an index larger than the number of worksheets, then
appends empty sheets until the number of worksheets in the workbook equals the sheet
index. In either case, the writing function also generates a warning indicating that it has
added a new worksheet.

You can use the 'Sheet' name-value pair only with spreadsheet files.
Example: 'Sheet',2
Example: 'Sheet', 'MySheetName'
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Range — Rectangular portion of worksheet to write to
character vector | string scalar

Rectangular portion of worksheet to write to, specified as the comma-separated pair
consisting of 'Range' and a character vector or string scalar in one of the following
forms.

1 Alphabetical List

1-16200

Form of the Value of Range Description
'Corner1' Corner1 specifies the first cell of the region to write.

The writing function writes the data starting at this cell.

Example: 'Range','D2'
'Corner1:Corner2' Corner1 and Corner2 are two opposing corners that

define the region to write. For example, 'D2:H4'
represents the 3-by-5 rectangular region between the
two corners D2 and H4 on the worksheet. The 'Range'
name-value pair argument is not case sensitive, and uses
Excel A1 reference style (see Excel help).

Example: 'Range','D2:H4'

• If the range you specify is smaller than the size of the
input data, then the writing function writes only a
subset of the input data that fits into the range.

• If the range you specify is larger than the size of the
input data, then the writing function leaves the
remainder of the region as it is.

The 'Range' name-value pair can only be used with Excel files.
Example: 'Range', 'A1:F10'
Data Types: char | string

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when writing spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When writing to spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The writing function starts an instance of Microsoft Excel when writing the
file. This setting is the default for Windows systems with Excel installed.

 writematrix

1-16201

• false — The writing function does not start an instance of Microsoft Excel when
writing the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, functionality for writing differs in the support of
file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

Algorithms
There are some instances where the writematrix function creates a file that does not
represent the input data exactly. You will notice this when you use the readmatrix
function to read that file. The resulting data might not have the exact same format or
contents as the original array. If you need to save your array and retrieve it at a later time
to match the original array exactly, with the same data and organization, then save it as a
MAT-file. writematrix writes inexact data in the following instances:

• writematrix writes out numeric data using long g format, and categorical or
character data as unquoted text.

• writematrix writes out arrays that have more than two dimensions as two
dimensional arrays, with the trailing dimensions collapsed.

See Also
readmatrix | writecell | writematrix | writetable | writetimetable

Introduced in R2019a

1 Alphabetical List

1-16202

writetable
Write table to file

Syntax
writetable(T)
writetable(T,filename)
writetable(___ ,Name,Value)

Description
writetable(T) writes table T to a comma delimited text file. The file name is the
workspace variable name of the table, appended with the extension .txt. If writetable
cannot construct the file name from the input table name, then it writes to the file
table.txt.

Each column of each variable in T becomes a column in the output file. The variable
names of T become column headings in the first line of the file.

writetable(T,filename) writes to a file with the name and extension specified by
filename.

writetable determines the file format based on the specified extension. The extension
must be one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files
• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

writetable(___ ,Name,Value) writes the table to a file with additional options
specified by one or more Name,Value pair arguments and can include any of the input
arguments in previous syntaxes.

For example, you can specify whether to write the variable names as column headings in
the output file.

 writetable

1-16203

Examples

Write Table to Text File

Create a table.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
 {'NY';'CA';'MA'},[true;false;false])

T=3×4 table
 Var1 Var2 Var3 Var4
 ____ ________ ____ _____

 M 45 45 'NY' true
 F 41 32 'CA' false
 M 40 34 'MA' false

Write the table to a comma delimited text file and display the file contents.

writetable(T)

writetable outputs a text file named T.txt.

type 'T.txt'

Var1,Var2_1,Var2_2,Var3,Var4
M,45,45,NY,1
F,41,32,CA,0
M,40,34,MA,0

writetable appends a unique suffix to the variable name, Var2, above the two columns
of corresponding data.

Write Table to Space-Delimited Text File

Create a table.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
 {'NY';'CA';'MA'},[true;false;false])

1 Alphabetical List

1-16204

T=3×4 table
 Var1 Var2 Var3 Var4
 ____ ________ ____ _____

 M 45 45 'NY' true
 F 41 32 'CA' false
 M 40 34 'MA' false

Write the table to a space-delimited text file named myData.txt and display the file
contents.

writetable(T,'myData.txt','Delimiter',' ')
type 'myData.txt'

Var1 Var2_1 Var2_2 Var3 Var4
M 45 45 NY 1
F 41 32 CA 0
M 40 34 MA 0

writetable appends a unique suffix to the variable name, Var2, above the two columns
of corresponding data.

Write Table to Text File Including Row Names

Create a table.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

T = table(Age,Height,Weight,BloodPressure,...
 'RowNames',LastName)

T=5×4 table
 Age Height Weight BloodPressure
 ___ ______ ______ _____________

 Smith 38 71 176 124 93
 Johnson 43 69 163 109 77

 writetable

1-16205

 Williams 38 64 131 125 83
 Jones 40 67 133 117 75
 Brown 49 64 119 122 80

Write the table, T, to a comma delimited text file, called myPatientData.dat, and
display the file contents.

writetable(T,'myPatientData.dat','WriteRowNames',true)
type 'myPatientData.dat'

Row,Age,Height,Weight,BloodPressure_1,BloodPressure_2
Smith,38,71,176,124,93
Johnson,43,69,163,109,77
Williams,38,64,131,125,83
Jones,40,67,133,117,75
Brown,49,64,119,122,80

The first column, which contains the row names, has the column heading, Row. This is the
first dimension name for the table from the property T.Properties.DimensionNames.

Write Foreign-Language Dates to Text File

Convert English dates in a table to German and write the table to file.

Create a table that contains a datetime array with dates in English. Create column
vectors of numeric data to go with the dates.

D = datetime({'01-Jan-2014';'01-Feb-2014';'01-Mar-2014'});
D.Format = 'dd MMMM yyyy';
X1 = [20.2;21.6;20.7];
X2 = [100.5;102.7;99.8];
T = table(D,X1,X2)

T =

 D X1 X2
 ________________ ____ _____

 01 January 2014 20.2 100.5
 01 February 2014 21.6 102.7

1 Alphabetical List

1-16206

 01 March 2014 20.7 99.8

Write the table to a text file. Specify German for the locale of the dates using the
DateLocale name-value pair argument, and display the dates in the text file.

writetable(T,'myfile.txt','DateLocale','de_DE');
type myfile.txt

D,X1,X2
01 Januar 2014,20.2,100.5
01 Februar 2014,21.6,102.7
01 März 2014,20.7,99.8

Write Foreign-Language Characters to Text Files

When your data contains foreign-language or non-ASCII characters, use the encoding
parameter to ensure the file is written correctly. First, load the provided table into the
workspace. Then, write the table to a file using the default encoding. Finally, write the
table using 'UTF-8' encoding and examine the result.

Load Table_Japanese_Characters.mat which contains a table T. A preview of the
table is shown below. Notice that the table contains two columns with Japanese
characters.

 writetable

1-16207

load('Table_Japanese_Characters.mat')

Write the table to a file. The writetable function uses your system default encoding
when writing files. Results may differ based on your system settings. To examine the
resulting file, read the table back into the workspace by using the readtable function.
Notice that writetable did not succeed in writing columns (1 and 3) containing foreign-
language characters.

writetable(T,'myTable.txt')
myTable = readtable('myTable.txt')

myTable=9×3 table
 A B C
 _____ ______ _______

 '' 458.98 ''
 '' 530.14 ''
 '' 289.4 ''
 '' 434.81 ''
 '' 186.44 ''
 '' 0 ''
 '' 231.29 ''
 '' 311.86 ''
 '' 239.93 ''

1 Alphabetical List

1-16208

If your table contains foreign-language or non-ASCII characters, you must use the
'Encoding' parameter to ensure your data is written correctly. Set 'Encoding' to
'UTF-8' which supports a wide range of foreign-language and non-ASCII characters. To
examine the resulting file, read the table back into the workspace by using the
readtable function. With the correct encoding parameter the writetable function is
successful in writing the data.

writetable(T,'myTable_UTF8.txt','Encoding','UTF-8')
myTable_UTF8 = readtable('myTable_UTF8.txt','Encoding','UTF-8')

myTable_UTF8=9×3 table
 A B C
 _______ ______ ___________

 '南西' 458.98 '冬の嵐'
 '南東' 530.14 '冬の嵐'
 '南東' 289.4 '冬の嵐'
 '西' 434.81 '機器の故障'
 '中西部' 186.44 '深刻な嵐'
 '西' 0 '攻撃'
 '西' 231.29 '機器の故障'
 '西' 311.86 '機器の故障'
 '北東' 239.93 '火災'

Write Quoted Text to CSV File

Create a table.

T = table(['M';'F';'M'],[45;41;36],...
 {'New York, NY';'San Diego, CA';'Boston, MA'},[true;false;false])

T=3×4 table
 Var1 Var2 Var3 Var4
 ____ ____ _______________ _____

 M 45 'New York, NY' true
 F 41 'San Diego, CA' false
 M 36 'Boston, MA' false

 writetable

1-16209

Write the table to a comma-separated text file named myData.csv and view the file
contents. Use the 'QuoteStrings' name-value pair argument to ensure that the
commas in the third column are not treated as delimiters.

writetable(T,'myData.csv','Delimiter',',','QuoteStrings',true)
type 'myData.csv'

Var1,Var2,Var3,Var4
"M",45,"New York, NY",1
"F",41,"San Diego, CA",0
"M",36,"Boston, MA",0

Write Table to Specific Sheet and Range in Spreadsheet

Create a table.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
 {'NY';'CA';'MA'},[true;false;false])

T=3×4 table
 Var1 Var2 Var3 Var4
 ____ ________ ____ _____

 M 45 45 'NY' true
 F 41 32 'CA' false
 M 40 34 'MA' false

Write the table to a spreadsheet named myData.xls. Include the data on the second
sheet in the 5-by-5 region with corners at B2 and F6.

writetable(T,'myData.xls','Sheet',2,'Range','B2:F6')

Excel® fills the row of the spreadsheet from B6 to F6 with #N/A since the range specified
is larger than the size of the input table T.

Input Arguments
T — Input data
table

1 Alphabetical List

1-16210

Input data, specified as a table.

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

Depending on the location you are writing to, filename can take on one of these forms.

Location Form
Current folder To write to the current folder, specify the name of the file in

filename.

Example: 'myTextFile.csv'
Other folders To write to a folder different from the current folder, specify

the full or relative path name in filename.

Example: 'C:\myFolder\myTextFile.csv'

Example: 'myFolder\myExcelFile.xlsx'
Remote Location To write to a remote location, filename must contain the full

path of the file specified as an internationalized resource
identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.xlsx'

 writetable

1-16211

• If filename includes the file extension, then the writing function determines the file
format from the extension. Otherwise, the writing function creates a comma separated
text file and appends the extension .txt. Alternatively, you can specify filename
without the file’s extension, and then include the 'FileType' name-value pair
arguments to indicate the type of file.

• If filename does not exist, then the writing function creates the file.
• If filename is the name of an existing text file, then the writing function overwrites

the file.
• If filename is the name of an existing spreadsheet file, then the writing function

writes the data to the specified location, but does not overwrite any values outside the
range of the input data.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'WriteVariableNames',false indicates that the variable names should not
be included as the first row of the output file.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and a
character vector or string containing 'text' or 'spreadsheet'.

The 'FileType' name-value pair must be used with the filename input argument. You
do not need to specify the 'FileType' name-value pair argument if the filename input
argument includes a standard file extension. The following standard file extensions are
recognized by the writing function:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files

1 Alphabetical List

1-16212

• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

Example: 'FileType','spreadsheet'
Data Types: char | string

WriteVariableNames — Indicator for writing variable names as column headings
true (default) | false

Indicator for writing variable names as column headings, specified as the comma-
separated pair consisting of 'WriteVariableNames' and either true, or false.

Indicator Behavior
true The writing function includes variable names as the column

headings of the output. This is the default behavior.
false The writing function does not include variable names in the output.

WriteRowNames — Indicator for writing row names in first column
false (default) | true

Indicator for writing row names in first column, specified as the comma-separated pair
consisting of 'WriteRowNames' and either false or true.

Indicator Behavior
false writetable does not include the row names from T in the output.

This is the default behavior.
true writetable includes the row names from T as the first column of

the output.

If both the 'WriteVariableNames' and 'WriteRowNames'
logical indicators are true, then writetable uses the first
dimension name from the property
T.Properties.DimensionNames as the column heading for the
first column of the output.

DateLocale — Locale for writing dates
character vector | string scalar

Locale for writing dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar. When writing datetime values

 writetable

1-16213

to the file, use DateLocale to specify the locale in which writetable should write
month and day-of-week names and abbreviations. The character vector or string takes the
form xx_YY, where xx is a lowercase ISO 639-1 two-letter code indicating a language,
and YY is an uppercase ISO 3166-1 alpha-2 code indicating a country. For a list of
common values for the locale, see the Locale name-value pair argument for the
datetime function.

The writing function ignores the 'DateLocale' parameter value whenever dates can be
written as Excel-formatted dates.
Example: 'DateLocale','ja_JP'
Data Types: char | string

Text Files Only

Delimiter — Field delimiter character
character vector | string scalar

Field delimiter character, specified as the comma-separated pair consisting of
'Delimiter' and a character vector or string scalar containing one of the following
specifiers.

Specifier Field Delimiter
','

'comma'

Comma. This is the default behavior.

' '

'space'

Space

'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair only for delimited text files.

1 Alphabetical List

1-16214

Example: 'Delimiter','space'
Data Types: char | string

QuoteStrings — Indicator for writing quoted text
false (default) | true

Indicator for writing quoted text, specified as the comma-separated pair consisting of
'QuoteStrings' and either false or true. If 'QuoteStrings' is true, then the
writing function encloses the text in double quotation marks, and replaces any double-
quote characters that appear as part of that text with two double-quote characters.

You can use the 'QuoteStrings' name-value pair only with delimited text files.

Encoding — Character encoding scheme
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name like one of the values in this table. When you do not specify any encoding or specify
encoding as 'system', the writing function uses your system default encoding to write
the file.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'

 writetable

1-16215

 'Shift_JIS'

Example: 'system' uses the system default encoding.
Data Types: char | string

Spreadsheet Files Only

Sheet — Worksheet to write to
character vector | string scalar | positive integer

Worksheet to write to, specified as the comma-separated pair consisting of 'Sheet' and
a character vector or a string scalar containing the worksheet name or a positive integer
indicating the worksheet index. The worksheet name cannot contain a colon (:). To
determine the names of sheets in a spreadsheet file, use [status,sheets] =
xlsfinfo(filename).

If the sheet does not exist, then the writing function adds a new sheet at the end of the
worksheet collection. If the sheet is an index larger than the number of worksheets, then
appends empty sheets until the number of worksheets in the workbook equals the sheet
index. In either case, the writing function also generates a warning indicating that it has
added a new worksheet.

You can use the 'Sheet' name-value pair only with spreadsheet files.
Example: 'Sheet',2
Example: 'Sheet', 'MySheetName'
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Range — Rectangular portion of worksheet to write to
character vector | string scalar

Rectangular portion of worksheet to write to, specified as the comma-separated pair
consisting of 'Range' and a character vector or string scalar in one of the following
forms.

1 Alphabetical List

1-16216

Form of the Value of Range Description
'Corner1' Corner1 specifies the first cell of the region to write.

The writing function writes the data starting at this cell.

Example: 'Range','D2'
'Corner1:Corner2' Corner1 and Corner2 are two opposing corners that

define the region to write. For example, 'D2:H4'
represents the 3-by-5 rectangular region between the
two corners D2 and H4 on the worksheet. The 'Range'
name-value pair argument is not case sensitive, and uses
Excel A1 reference style (see Excel help).

Example: 'Range','D2:H4'

• If the range you specify is smaller than the size of the
input data, then the writing function writes only a
subset of the input data that fits into the range.

• If the range you specify is larger than the size of the
input data, then the writing function leaves the
remainder of the region as it is.

The 'Range' name-value pair can only be used with Excel files.
Example: 'Range', 'A1:F10'
Data Types: char | string

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when writing spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When writing to spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The writing function starts an instance of Microsoft Excel when writing the
file. This setting is the default for Windows systems with Excel installed.

 writetable

1-16217

• false — The writing function does not start an instance of Microsoft Excel when
writing the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, functionality for writing differs in the support of
file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

Algorithms
• If both the 'WriteVariableNames' and 'WriteRowNames' logical indicators are

true, then the writetable function uses the first dimension name from the property
T.Properties.DimensionNames as the column heading for the first column of the
output.

• Excel converts Inf values to 65535. MATLAB converts NaN, NaT, <undefined>
categorical values, and <missing> string values to empty cells.

• For Excel files, writetable writes table variables containing datetime arrays as
Excel dates. If the table contains datetime arrays with years prior to either 1900 or
1904, then writetable writes the variables as text. For more information on Excel
dates, see https://support.microsoft.com/en-us/kb/214330.

• There are some instances where the writetable function creates a file that does not
represent T exactly. You will notice this when you use readtable to read that file. The
resulting table might not have the same format or contents as the original table. If you
need to save a table and retrieve it at a later time to match the original table exactly,
with the same data and organization, then save it as a MAT-file. writetable writes an
inexact table in the following instances:

• When writing to text files, writetable outputs numeric variables using long g
format, and categorical or character variables as unquoted characters.

• For variables that have more than one column, writetable appends a unique
identifier to the variable name to use as the column headings.

1 Alphabetical List

1-16218

https://support.microsoft.com/en-us/kb/214330

• For output variables that have more than two dimensions, writetable outputs
these variables as two dimensional where the trailing dimensions are collapsed.
For example, writetable outputs a 4-by-3-by-2 variable as if its size were 4-by-6.

• For variables with a cell data type, writetable outputs the contents of each cell
as a single row, in multiple fields. If the contents are other than numeric, logical,
character, or categorical, then writetable outputs a single empty field.

See Also
readtable | table | writecell | writematrix | writetimetable

Introduced in R2013b

 writetable

1-16219

writetimetable
Write timetable to file

Syntax
writetimetable(TT)
writetimetable(TT,filename)
writetimetable(___ ,Name,Value)

Description
writetimetable(TT) writes the timetable TT to a comma-delimited text file. The file
name is the workspace variable name of the timetable, appended with the
extension .txt. If writetimetable cannot construct the file name from the input
timetable name, then it writes to the file timetable.txt.

Each column of each variable in TT becomes a column in the output file. The variable
names of TT become column headings in the first line of the file. The writetimetable
function overwrites any existing file.

writetimetable(TT,filename) writes to a file with the name and extension specified
by filename.

writetimetable determines the file format based on the specified extension. The
extension must be one of the following:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files
• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

writetimetable(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments and can include any of the input arguments in previous
syntaxes.

For example, you can specify whether to write the variable names as column headings in
the output file.

1 Alphabetical List

1-16220

Examples

Write Timetable to Text File

Create a timetable, write it to a comma-separated text file, and then write the timetable
to another text file with a different delimiter character.

Define a timetable in the workspace with row times duration vector RowTimes.

RowTimes = seconds(1:5)';
TT = timetable(RowTimes,[98;97.5;97.9;98.1;97.9],[120;111;119;117;116],...
 'VariableNames',{'Reading1','Reading2'})

TT=5×3 timetable
 RowTimes Reading1 Reading2
 ________ ________ ________

 1 sec 98 120
 2 sec 97.5 111
 3 sec 97.9 119
 4 sec 98.1 117
 5 sec 97.9 116

Write the timetable to a comma delimited text file and display the file contents. The
writetimetable function outputs a text file named TT.txt.

writetimetable(TT)
type 'TT.txt'

RowTimes,Reading1,Reading2
1 sec,98,120
2 sec,97.5,111
3 sec,97.9,119
4 sec,98.1,117
5 sec,97.9,116

To write the same timetable to a text file with a different delimiter character, use the
'Delimiter' name-value pair.

writetimetable(TT,'TT_bar.txt','Delimiter','bar')
type 'TT_bar.txt'

 writetimetable

1-16221

RowTimes|Reading1|Reading2
1 sec|98|120
2 sec|97.5|111
3 sec|97.9|119
4 sec|98.1|117
5 sec|97.9|116

Write Timetable to Spreadsheet File

Create a timetable, write it to a spreadsheet file, and then display the contents of the file.

Define a timetable in the workspace with row times as a datetime vector.

Y = [2014:2018]'; M = ones(5,1); D = ones(5,1);
RowTimes = datetime(Y,M,D); % Create Row Times
TT = timetable(RowTimes,[98;97.5;97.9;98.1;97.9],[120;111;119;117;116],...
 'VariableNames',{'Reading1','Reading2'})

TT=5×3 timetable
 RowTimes Reading1 Reading2
 ___________ ________ ________

 01-Jan-2014 98 120
 01-Jan-2015 97.5 111
 01-Jan-2016 97.9 119
 01-Jan-2017 98.1 117
 01-Jan-2018 97.9 116

Write the table to spreadsheet file 'TT.xlsx'. By default, the writetimetable function
writes the first worksheet in the file. Use the 'Sheet' name-value pair to specifry the
worksheet to write to.

writetimetable(TT,'TT.xlsx','Sheet',2)

Read and display the file contents.

readtimetable('TT.xlsx','Sheet',2)

ans=5×3 timetable
 RowTimes Reading1 Reading2
 ____________________ ________ ________

1 Alphabetical List

1-16222

 01-Jan-2014 00:00:00 98 120
 01-Jan-2015 00:00:00 97.5 111
 01-Jan-2016 00:00:00 97.9 119
 01-Jan-2017 00:00:00 98.1 117
 01-Jan-2018 00:00:00 97.9 116

Input Arguments
TT — Input timetable
timetable

Input timetable.

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

Depending on the location you are writing to, filename can take on one of these forms.

Location Form
Current folder To write to the current folder, specify the name of the file in

filename.

Example: 'myTextFile.csv'
Other folders To write to a folder different from the current folder, specify

the full or relative path name in filename.

Example: 'C:\myFolder\myTextFile.csv'

Example: 'myFolder\myExcelFile.xlsx'

 writetimetable

1-16223

Location Form
Remote Location To write to a remote location, filename must contain the full

path of the file specified as an internationalized resource
identifier (IRI) of the form:

scheme_name://path_to_file/my_file.ext

Based on your remote location, scheme_name can be one of
the values in this table.

Remote Location scheme_name
Amazon S3 s3
Windows Azure Blob Storage wasb, wasbs
HDFS hdfs

For more information, see “Work with Remote Data”.

Example: 's3://bucketname/path_to_file/
my_file.xlsx'

• If filename includes the file extension, then the writing function determines the file
format from the extension. Otherwise, the writing function creates a comma separated
text file and appends the extension .txt. Alternatively, you can specify filename
without the file’s extension, and then include the 'FileType' name-value pair
arguments to indicate the type of file.

• If filename does not exist, then the writing function creates the file.
• If filename is the name of an existing text file, then the writing function overwrites

the file.
• If filename is the name of an existing spreadsheet file, then the writing function

writes the data to the specified location, but does not overwrite any values outside the
range of the input data.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Alphabetical List

1-16224

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'WriteVariableNames',false indicates that the variable names should not
be included as the first row of the output file.

Text and Spreadsheet Files

FileType — Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and a
character vector or string containing 'text' or 'spreadsheet'.

The 'FileType' name-value pair must be used with the filename input argument. You
do not need to specify the 'FileType' name-value pair argument if the filename input
argument includes a standard file extension. The following standard file extensions are
recognized by the writing function:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files
• .xlsb for Excel spreadsheet files supported on systems with Excel for Windows

Example: 'FileType','spreadsheet'
Data Types: char | string

WriteVariableNames — Indicator for writing variable names as column headings
true (default) | false

Indicator for writing variable names as column headings, specified as the comma-
separated pair consisting of 'WriteVariableNames' and either true, or false.

Indicator Behavior
true The writing function includes variable names as the column

headings of the output. This is the default behavior.
false The writing function does not include variable names in the output.

DateLocale — Locale for writing dates
character vector | string scalar

Locale for writing dates, specified as the comma-separated pair consisting of
'DateLocale' and a character vector or a string scalar. When writing datetime values

 writetimetable

1-16225

to the file, use DateLocale to specify the locale in which writetable should write
month and day-of-week names and abbreviations. The character vector or string takes the
form xx_YY, where xx is a lowercase ISO 639-1 two-letter code indicating a language,
and YY is an uppercase ISO 3166-1 alpha-2 code indicating a country. For a list of
common values for the locale, see the Locale name-value pair argument for the
datetime function.

The writing function ignores the 'DateLocale' parameter value whenever dates can be
written as Excel-formatted dates.
Example: 'DateLocale','ja_JP'
Data Types: char | string

Text Files Only

Delimiter — Field delimiter character
character vector | string scalar

Field delimiter character, specified as the comma-separated pair consisting of
'Delimiter' and a character vector or string scalar containing one of the following
specifiers.

Specifier Field Delimiter
','

'comma'

Comma. This is the default behavior.

' '

'space'

Space

'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair only for delimited text files.

1 Alphabetical List

1-16226

Example: 'Delimiter','space'
Data Types: char | string

QuoteStrings — Indicator for writing quoted text
false (default) | true

Indicator for writing quoted text, specified as the comma-separated pair consisting of
'QuoteStrings' and either false or true. If 'QuoteStrings' is true, then the
writing function encloses the text in double quotation marks, and replaces any double-
quote characters that appear as part of that text with two double-quote characters.

You can use the 'QuoteStrings' name-value pair only with delimited text files.

Encoding — Character encoding scheme
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated
pair consisting of 'Encoding' and 'system' or a standard character encoding scheme
name like one of the values in this table. When you do not specify any encoding or specify
encoding as 'system', the writing function uses your system default encoding to write
the file.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'

 writetimetable

1-16227

 'Shift_JIS'

Example: 'system' uses the system default encoding.
Data Types: char | string

Spreadsheet Files Only

Sheet — Worksheet to write to
character vector | string scalar | positive integer

Worksheet to write to, specified as the comma-separated pair consisting of 'Sheet' and
a character vector or a string scalar containing the worksheet name or a positive integer
indicating the worksheet index. The worksheet name cannot contain a colon (:). To
determine the names of sheets in a spreadsheet file, use [status,sheets] =
xlsfinfo(filename).

If the sheet does not exist, then the writing function adds a new sheet at the end of the
worksheet collection. If the sheet is an index larger than the number of worksheets, then
appends empty sheets until the number of worksheets in the workbook equals the sheet
index. In either case, the writing function also generates a warning indicating that it has
added a new worksheet.

You can use the 'Sheet' name-value pair only with spreadsheet files.
Example: 'Sheet',2
Example: 'Sheet', 'MySheetName'
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Range — Rectangular portion of worksheet to write to
character vector | string scalar

Rectangular portion of worksheet to write to, specified as the comma-separated pair
consisting of 'Range' and a character vector or string scalar in one of the following
forms.

1 Alphabetical List

1-16228

Form of the Value of Range Description
'Corner1' Corner1 specifies the first cell of the region to write.

The writing function writes the data starting at this cell.

Example: 'Range','D2'
'Corner1:Corner2' Corner1 and Corner2 are two opposing corners that

define the region to write. For example, 'D2:H4'
represents the 3-by-5 rectangular region between the
two corners D2 and H4 on the worksheet. The 'Range'
name-value pair argument is not case sensitive, and uses
Excel A1 reference style (see Excel help).

Example: 'Range','D2:H4'

• If the range you specify is smaller than the size of the
input data, then the writing function writes only a
subset of the input data that fits into the range.

• If the range you specify is larger than the size of the
input data, then the writing function leaves the
remainder of the region as it is.

The 'Range' name-value pair can only be used with Excel files.
Example: 'Range', 'A1:F10'
Data Types: char | string

UseExcel — Flag to start instance of Microsoft Excel for Windows
true | false

Flag to start an instance of Microsoft Excel for Windows when writing spreadsheet data,
specified as the comma-separated pair consisting of 'UseExcel' and either true, or
false.

When writing to spreadsheet files on Windows platforms, if you do not want to start an
instance of Microsoft Excel, then set the 'UseExcel' parameter to false.

You can set the 'UseExcel' parameter to one of these values:

• true — The writing function starts an instance of Microsoft Excel when writing the
file. This setting is the default for Windows systems with Excel installed.

 writetimetable

1-16229

• false — The writing function does not start an instance of Microsoft Excel when
writing the file. On Windows without Excel, Mac, and Linux, the default value is
false. When operating in this mode, functionality for writing differs in the support of
file formats and interactive features, such as formulas and macros.

UseExcel true false
Supported file
formats

.xls, .xlsx, .xlsm, .xltx,

.xltm, .xlsb, .ods
.xls, .xlsx, .xlsm, .xltx,
.xltm

Support for
interactive
features, such
as formulas
and macros

Yes No

Algorithms
There are some instances where the writetimetable function creates a file that does
not represent the input data exactly. You will notice this when you use the
readtimetable function to read that file. The resulting data might not have the exact
same format or contents as the original data. If you need to save your timetable and
retrieve it at a later time to exactly match the original timetable, with the same data and
organization, then save it as a MAT-file. writetimetable writes an inexact table in the
following instances:

• writetimetable writes out numeric data using long g format, and categorical or
character data as unquoted text.

• writetimetable writes out variables that have more than two dimensions as two
dimensional variables, with the trailing dimensions collapsed.

• For cell-valued variables, writetimetable writes out the contents of each cell as a
single row, in multiple, delimiter-separated fields. When the contents are numeric,
logical, text, or categorical, the writetimetable function writes out a single empty
field otherwise.

See Also
readtimetable | writecell | writematrix | writetable

1 Alphabetical List

1-16230

Introduced in R2019a

 writetimetable

1-16231

write
Write entire image

Syntax
write(t,imageData)
write(t,Y,Cb,Cr)

Description
write(t,imageData) writes imageData to TIFF file associated with the Tiff object t.
The write method breaks the data into strips or tiles, depending on the value of the
RowsPerStrip tag, or the TileLength and TileWidth tags.

write(t,Y,Cb,Cr) writes the YCbCr component data to the TIFF file. Use this syntax
only for images with a YCbCr photometric interpretation.

Examples

Write Image Data to TIFF File

Write a RGB image and multiple tag values that characterize the image to a new TIFF file.

Load the image data and display the image.

load('peppers_RGB.mat');
imshow(RGB);
title('Peppers Image (RGB)');

1 Alphabetical List

1-16232

Create a Tiff object to write the image data to a TIFF file.

t = Tiff('myfile.tif','w');

Use the tagstruct structure to define multiple tag values that characterize the image.

tagstruct.ImageLength = size(RGB,1);
tagstruct.ImageWidth = size(RGB,2);
tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;
tagstruct.SamplesPerPixel = 3;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';

Set the tag values for the Tiff object.

setTag(t,tagstruct)

Write image data to the file and then close the Tiff object.

write(t,RGB);
close(t);

 write

1-16233

Write YCbCr Image Data to TIFF File

Write a YCbCr image and multiple tag values that characterize the image to a new TIFF
file.

Load and display the Y component of the image.

load('peppers_YCbCr.mat');
imshow(Y);
title('Peppers Image (Y Component)');

Create a Tiff object to write the image data to a TIFF file.

t = Tiff('myfile_YCbCr.tif','w');

Use the tagstruct structure to define multiple tag values that characterize the image.

tagstruct.ImageLength = size(Y,1);
tagstruct.ImageWidth = size(Y,2);
tagstruct.SampleFormat = 1; % uint
tagstruct.Photometric = Tiff.Photometric.YCbCr;
tagstruct.BitsPerSample = 8 ;
tagstruct.SamplesPerPixel = 3;
tagstruct.YCbCrSubSampling = [1,1];

1 Alphabetical List

1-16234

tagstruct.Compression = Tiff.Compression.None;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';

Set the tag values for the Tiff object.

setTag(t,tagstruct)

Write image data to the file, and then close the Tiff object.

write(t,Y,Cb,Cr)
close(t)

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

imageData — Image data
numeric array

Image data, specified as a numeric array. For example, for an RGB image imageData is
an M-by-N-by-3 array. Where M and N are the number of rows and columns in the image,
respectively.
Data Types: double

Y — Luma component
numeric array

Luma component of the image data, specified as a two-dimensional numeric array.
Data Types: double

Cb — Blue-difference chroma component
numeric array

Blue-difference chroma component of the image data, specified as a two-dimensional
numeric array.
Data Types: double

 write

1-16235

Cr — Red-difference chroma component
numeric array

Red-difference chroma component of the image data, specified as a two-dimensional
numeric array.
Data Types: double

See Also
Tiff | writeDirectory | writeEncodedStrip | writeEncodedTile

Topics
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-16236

writeDirectory
Create new IFD and make it current IFD

Syntax
writeDirectory(t)

Description
writeDirectory(t) creates a new image file directory (IFD) and makes it the current
IFD.

Examples

Add IFD to TIFF File

Create a new TIFF file and add two new IFDs to the file.

Create a Tiff object for a new file.

t = Tiff('myfile.tif','w');

Add a new IFD to the file and display the current directory number. You can use this new
IFD to add image data and tags to the TIFF file.

writeDirectory(t);
currentDirectory(t)

ans = 1

Add another IFD to the file and display the current directory number. You can use this IFD
to save an additional image to the same TIFF file.

writeDirectory(t);
currentDirectory(t)

 writeDirectory

1-16237

ans = 2

Close the Tiff object.

close(t);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

Tips
• You do not need this function when creating TIFF files that contain only one image.

Algorithms

References
This function corresponds to the TIFFWriteDirectory function in the LibTIFF C API. To
use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
close | write

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

1 Alphabetical List

1-16238

http://www.simplesystems.org/libtiff/

writeEncodedStrip
Write data to specified strip

Syntax
writeEncodedStrip(t,stripNumber,imageData)
writeEncodedStrip(t,stripNumber,Y,Cb,Cr)

Description
writeEncodedStrip(t,stripNumber,imageData) writes imageData to the strip
specified by stripNumber to the TIFF file associated with the Tiff object t.

writeEncodedStrip(t,stripNumber,Y,Cb,Cr) writes the YCbCr component data to
the strip specified by stripNumber to the TIFF file associated with the Tiff object t. To
use this syntax, you must set the value of the YCbCrSubSampling tag.

Examples

Write Image Strip to TIFF File

Read two strips from a TIFF file and write them to a new TIFF file in different positions.

Open a TIFF file with image data in stripped layout, get the image data and the number of
strips in the image.

tr = Tiff('peppers_RGB_stripped.tif','r');
imageR = read(tr);
nStrips = numberOfStrips(tr)

nStrips = 6

Read the 2nd and 5th strips of the image.

 writeEncodedStrip

1-16239

stripTwo = readEncodedStrip(tr,2);
stripFive = readEncodedStrip(tr,5);

Create a Tiff object for a new file and copy the image and tag information from the first
file.

tw = Tiff('write_strip.tif','w');
tagstruct.ImageLength = getTag(tr,'ImageLength');
tagstruct.ImageWidth = getTag(tr,'ImageWidth');
tagstruct.Photometric = getTag(tr,'Photometric');
tagstruct.RowsPerStrip = getTag(tr,'RowsPerStrip');
tagstruct.BitsPerSample = getTag(tr,'BitsPerSample');
tagstruct.SamplesPerPixel = getTag(tr,'SamplesPerPixel');
tagstruct.PlanarConfiguration = getTag(tr,'PlanarConfiguration');
setTag(tw,tagstruct);
write(tw,imageR)

Write stripFive in the position for strip number 2 and stripTwo in the position for
strip number 5.

writeEncodedStrip(tw,2,stripFive);
writeEncodedStrip(tw,5,stripTwo);

Read and display the new image next to the original image.

imageW = read(tw);
subplot(121);
imshow(imageR);
title('Original Image')
subplot(122);
imshow(imageW);
title('Strips Shuffled Image')

1 Alphabetical List

1-16240

Close the Tiff objects.

close(tr);
close(tw);

Write Image Strip to YCbCr TIFF File

Read two strips from a YCbCr TIFF file and write them to a new TIFF file in different
positions.

Open a TIFF file containing YCbCr image data in stripped layout, get the image data and
the number of strips in the image.

 writeEncodedStrip

1-16241

tr = Tiff('peppers_YCbCr_stripped.tif','r');
[Yr,Cbr,Crr] = read(tr);
nStrips = numberOfStrips(tr)

nStrips = 6

Read the 2nd and 5th strips of the image.

[Y2,Cb2,Cr2] = readEncodedStrip(tr,2);
[Y5,Cb5,Cr5] = readEncodedStrip(tr,5);

Create a Tiff object for a new file and copy the image and tag information from the first
file.

tw = Tiff('write_strip.tif','w');
tagstruct.ImageLength = getTag(tr,'ImageLength');
tagstruct.ImageWidth = getTag(tr,'ImageWidth');
tagstruct.SampleFormat = getTag(tr,'SampleFormat');
tagstruct.Photometric = getTag(tr,'Photometric');
tagstruct.RowsPerStrip = getTag(tr,'RowsPerStrip');
tagstruct.BitsPerSample = getTag(tr,'BitsPerSample');
tagstruct.SamplesPerPixel = getTag(tr,'SamplesPerPixel');
tagstruct.YCbCrSubSampling = getTag(tr,'YCbCrSubSampling');
tagstruct.Compression = getTag(tr,'Compression');
tagstruct.PlanarConfiguration = getTag(tr,'PlanarConfiguration');
setTag(tw,tagstruct);
write(tw,Yr,Cbr,Crr)

Write strip number 5 in the position for strip number 2 and strip number 2 in the position
for strip number 5.

writeEncodedStrip(tw,2,Y5,Cb5,Cr5);
writeEncodedStrip(tw,5,Y2,Cb2,Cr2);

Read and display the Y component of the new image next to the original image.

[Yw,Crw,Cbw] = read(tw);
subplot(121);
imshow(Yr);
title('Original Image (Y)')
subplot(122);
imshow(Yw);
title('Strips Shuffled Image (Y)')

1 Alphabetical List

1-16242

Close the Tiff objects.

close(tr);
close(tw);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

 writeEncodedStrip

1-16243

stripNumber — Strip number
positive integer

Strip number, specified as a positive integer. Strip numbers are one-based numbers.
Example: 15
Data Types: double

imageData — Image data
numeric array

Image data, specified as a numeric array.

• If imageData has more number of bytes than the size of the strip, then
writeEncodedStrip issues a warning and truncates the data.

• If imageData has fewer number of bytes than the size of the strip, then
writeEncodedStrip silently pads the strip.

To determine the size of the strip, view the value of the RowsPerStrip tag.
Data Types: double

Y — Luma component
numeric array

Luma component of the image data, specified as a two-dimensional numeric array.
Data Types: double

Cb — Blue-difference chroma component
numeric array

Blue-difference chroma component of the image data, specified as a two-dimensional
numeric array.
Data Types: double

Cr — Red-difference chroma component
numeric array

Red-difference chroma component of the image data, specified as a two-dimensional
numeric array.
Data Types: double

1 Alphabetical List

1-16244

Algorithms

References
This function corresponds to the TIFFWriteEncodedStrip function in the LibTIFF C
API. To use this function, you must be familiar with the TIFF specification and technical
notes. View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | write | writeEncodedTile

Topics
“Importing Images”
“Exporting to Images”

Introduced in R2009b

 writeEncodedStrip

1-16245

http://www.simplesystems.org/libtiff/

writeEncodedTile
Write data to specified tile

Syntax
writeEncodedTile(t,tileNumber,imageData)
writeEncodedTile(t,tileNumber,Y,Cb,Cr)

Description
writeEncodedTile(t,tileNumber,imageData) writes the data in imageData to the
tile specified by tileNumber to the TIFF file associated with the Tiff object t.

writeEncodedTile(t,tileNumber,Y,Cb,Cr) writes the YCbCr component data to
the tile specified by tileNumber to the TIFF file associated with the Tiff object t. To
use this syntax, you must set the YCbCrSubSampling tag.

Examples

Write Image Tile to TIFF File

Read two tiles from a TIFF file and write them to a new TIFF file in different positions.

Open a TIFF file with image data in tiled layout, get the image data and the number of
tiles in the image.

tr = Tiff('peppers_RGB_tiled.tif','r');
imageR = read(tr);
nTiles = numberOfTiles(tr)

nTiles = 36

Read the 8th and 29th tiles of the image.

1 Alphabetical List

1-16246

tile8 = readEncodedTile(tr,8);
tile29 = readEncodedTile(tr,29);

Create a Tiff object for a new file and copy the image and tag information from the first
file.

tw = Tiff('write_tile.tif','w');
tagstruct.ImageLength = getTag(tr,'ImageLength');
tagstruct.ImageWidth = getTag(tr,'ImageWidth');
tagstruct.Photometric = getTag(tr,'Photometric');
tagstruct.TileLength = getTag(tr,'TileLength');
tagstruct.TileWidth = getTag(tr,'TileWidth');
tagstruct.BitsPerSample = getTag(tr,'BitsPerSample');
tagstruct.SamplesPerPixel = getTag(tr,'SamplesPerPixel');
tagstruct.PlanarConfiguration = getTag(tr,'PlanarConfiguration');
setTag(tw,tagstruct);
write(tw,imageR)

Write tile29 in the position for tile number 8 and tile8 in the position for tile number
29.

writeEncodedTile(tw,8,tile29);
writeEncodedTile(tw,29,tile8);

Read and display the new image next to the original image.

imageW = read(tw);
subplot(121);
imshow(imageR);
title('Original Image')
subplot(122);
imshow(imageW);
title('Tiles Shuffled Image')

 writeEncodedTile

1-16247

Close the Tiff objects.

close(tr);
close(tw);

Write Image Tile to YCbCr TIFF File

Read two tiles from a YCbCr TIFF file and write them to a new TIFF file in different
positions.

Open a TIFF file with image data in tiled layout, get the image data and the number of
tiles in the image.

1 Alphabetical List

1-16248

tr = Tiff('peppers_YCbCr_tiled.tif','r');
[Yr,Cbr,Crr] = read(tr);
nTiles = numberOfTiles(tr)

nTiles = 36

Read the 8th and 29th tiles of the image.

[Y8,Cb8,Cr8] = readEncodedTile(tr,8);
[Y29,Cb29,Cr29] = readEncodedTile(tr,29);

Create a Tiff object for a new file and copy the image and tag information from the first
file.

tw = Tiff('write_tile.tif','w');
tagstruct.ImageLength = getTag(tr,'ImageLength');
tagstruct.ImageWidth = getTag(tr,'ImageWidth');
tagstruct.SampleFormat = getTag(tr,'SampleFormat');
tagstruct.Photometric = getTag(tr,'Photometric');
tagstruct.TileLength = getTag(tr,'TileLength');
tagstruct.TileWidth = getTag(tr,'TileWidth');
tagstruct.BitsPerSample = getTag(tr,'BitsPerSample');
tagstruct.SamplesPerPixel = getTag(tr,'SamplesPerPixel');
tagstruct.YCbCrSubSampling = getTag(tr,'YCbCrSubSampling');
tagstruct.Compression = getTag(tr,'Compression');
tagstruct.PlanarConfiguration = getTag(tr,'PlanarConfiguration');
setTag(tw,tagstruct);
write(tw,Yr,Cbr,Crr)

Write tile number 29 in the position for tile number 8 and tile number 8 in the position for
tile number 29.

writeEncodedTile(tw,8,Y29,Cb29,Cr29);
writeEncodedTile(tw,29,Y8,Cb8,Cr8);

Read and display the Y component of the new image next to the original image.

[Yw,Crw,Cbw] = read(tw);
subplot(121);
imshow(Yr);
title('Original Image (Y)')
subplot(122);
imshow(Yw);
title('Tiles Shuffled Image (Y)')

 writeEncodedTile

1-16249

Close the Tiff objects.

close(tr);
close(tw);

Input Arguments
t — Tiff object
Tiff object

Tiff object representing a TIFF file. Use the Tiff function to create the object.

1 Alphabetical List

1-16250

tileNumber — Tile number
positive integer

Tile number, specified as a positive integer. Tile numbers are one-based numbers.
Example: 15
Data Types: double

imageData — Image data
numeric array

Image data, specified as a numeric array.

• If imageData has fewer number of bytes than the size of the tile, then
writeEncodedTile silently pads the tile.

• If imageData has more bytes than the size of the tile, then writeEncodedTile
issues a warning and truncates the data.

To see the size of the image tile, get the values of the TileLength and TileWidth tags.
Data Types: double

Y — Luma component
numeric array

Luma component of the image tile, specified as a two-dimensional numeric array.
Data Types: double

Cb — Blue-difference chroma component
numeric array

Blue-difference chroma component of the image tile, specified as a two-dimensional
numeric array.
Data Types: double

Cr — Red-difference chroma component
numeric array

Red-difference chroma component of the image tile, specified as a two-dimensional
numeric array.
Data Types: double

 writeEncodedTile

1-16251

Algorithms

References
This function corresponds to the TIFFWriteEncodedTile function in the LibTIFF C API.
To use this function, you must be familiar with the TIFF specification and technical notes.
View this documentation at LibTIFF - TIFF Library and Utilities.

See Also
Tiff | write | writeEncodedStrip

Topics
“Exporting Image Data and Metadata to TIFF Files”
“Reading Image Data and Metadata from TIFF Files”

Introduced in R2009b

1 Alphabetical List

1-16252

http://www.simplesystems.org/libtiff/

xcorr
Cross-correlation

Syntax
r = xcorr(x,y)
r = xcorr(x)

r = xcorr(___ ,maxlag)
r = xcorr(___ ,scaleopt)

[r,lags] = xcorr(___)

Description
r = xcorr(x,y) returns the cross-correlation on page 1-16259 of two discrete-time
sequences. Cross-correlation measures the similarity between a vector x and shifted
(lagged) copies of a vector y as a function of the lag. If x and y have different lengths, the
function appends zeros to the end of the shorter vector so it has the same length as the
other.

r = xcorr(x) returns the autocorrelation sequence of x. If x is a matrix, then r is a
matrix whose columns contain the autocorrelation and cross-correlation sequences for all
combinations of the columns of x.

r = xcorr(___ ,maxlag) limits the lag range from -maxlag to maxlag for either of
the previous syntaxes.

r = xcorr(___ ,scaleopt) also specifies a normalization option for the cross-
correlation or autocorrelation. Any option other than 'none' (the default) requires x and
y to have the same length.

[r,lags] = xcorr(___) also returns the lags at which the correlations are computed.

 xcorr

1-16253

Examples

Cross-Correlation of Two Vectors

Create a vector x and a vector y that is equal to x shifted by 5 elements to the right.
Compute and plot the estimated cross-correlation of x and y. The largest spike occurs at
the lag value when the elements of x and y match exactly (-5).

n = 0:15;
x = 0.84.^n;
y = circshift(x,5);
[c,lags] = xcorr(x,y);
stem(lags,c)

1 Alphabetical List

1-16254

Autocorrelation of Vector

Compute and plot the estimated autocorrelation of a vector x. The largest spike occurs at
zero lag, when x matches itself exactly.

n = 0:15;
x = 0.84.^n;
[c,lags] = xcorr(x);
stem(lags,c)

 xcorr

1-16255

Normalized Cross-Correlation

Compute and plot the normalized cross-correlation of vectors x and y with unity peak,
and specify a maximum lag of 10.

n = 0:15;
x = 0.84.^n;
y = circshift(x,5);
[c,lags] = xcorr(x,y,10,'normalized');
stem(lags,c)

1 Alphabetical List

1-16256

Input Arguments
x — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. If x is a
multidimensional array, then xcorr operates column-wise across all dimensions and
returns each autocorrelation and cross-correlation as the columns of a matrix.
Data Types: single | double
Complex Number Support: Yes

 xcorr

1-16257

y — Input array
vector

Input array, specified as a vector.
Data Types: single | double
Complex Number Support: Yes

maxlag — Maximum lag
integer scalar

Maximum lag, specified as an integer scalar. If you specify maxlag, the returned cross-
correlation sequence ranges from -maxlag to maxlag. If you do not specify maxlag, the
lag range equals 2N – 1, where N is the greater of the lengths of x and y.
Data Types: single | double

scaleopt — Normalization option
'none' (default) | 'biased' | 'unbiased' | 'normalized' | 'coeff'

Normalization option, specified as one of the following.

• 'none' — Raw, unscaled cross-correlation. 'none' is the only valid option when x
and y have different lengths.

• 'biased' — Biased estimate of the cross-correlation:

R xy, biased(m) = 1
N R xy(m) .

• 'unbiased' — Unbiased estimate of the cross-correlation:

R xy, unbiased(m) = 1
N − m R xy(m) .

• 'normalized' or 'coeff' — Normalizes the sequence so that the autocorrelations
at zero lag equal 1:

R xy, coeff(m) = 1
R xx(0)R yy(0)

R xy(m) .

1 Alphabetical List

1-16258

Output Arguments
r — Cross-correlation or autocorrelation
vector | matrix

Cross-correlation or autocorrelation, returned as a vector or matrix.

If x is an M × N matrix, then xcorr(x) returns a (2M – 1) × N2 matrix with the
autocorrelations and cross-correlations of the columns of x. If you specify maxlag, then r
has size (2 × maxlag – 1) × N2.

For example, if S has three columns, S = x1 x2 x3 , then the result of R = xcorr(S) is
organized as

R = Rx1x1 Rx1x2 Rx1x3 Rx2x1 Rx2x2 Rx2x3 Rx3x1 Rx3x2 Rx3x3 .

lags — Lag indices
vector

Lag indices, returned as a vector.

Definitions

Cross-Correlation and Autocorrelation
The result of xcorr can be interpreted as an estimate of the correlation between two
random sequences or as the deterministic correlation between two deterministic signals.

The true cross-correlation sequence of two jointly stationary random processes, xn and yn,
is given by

Rxy(m) = E xn + myn* = E xnyn−m* ,

where −∞ < n < ∞, the asterisk denotes complex conjugation, and E is the expected value
operator. xcorr can only estimate the sequence because, in practice, only a finite
segment of one realization of the infinite-length random process is available.

By default, xcorr computes raw correlations with no normalization:

 xcorr

1-16259

R xy(m) =
∑

n = 0

N −m− 1
xn + myn

∗, m ≥ 0,

R yx* (−m), m < 0.

The output vector, c, has elements given by

c(m) = R xy(m− N), m = 1, 2, …, 2N − 1.

In general, the correlation function requires normalization to produce an accurate
estimate. You can control the normalization of the correlation by using the input
argument scaleopt.

References
[1] Buck, John R., Michael M. Daniel, and Andrew C. Singer. Computer Explorations in

Signals and Systems Using MATLAB. 2nd Edition. Upper Saddle River, NJ:
Prentice Hall, 2002.

[2] Stoica, Petre, and Randolph Moses. Spectral Analysis of Signals. Upper Saddle River,
NJ: Prentice Hall, 2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Leading ones in size(x) must be constant for every input x. If x is variable-size and
is a row vector, it must be 1-by-:. It cannot be :-by-: with size(x,1) = 1 at run time.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-16260

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

For example, create a gpuArray object from a signal x and compute the normalized
autocorrelation.

t = 0:0.001:10-0.001;
x = cos(2*pi*10*t) + randn(size(t));
X = gpuArray(x);
[r,lags] = xcorr(X,200,'normalized');
r = gather(r);

See Also
conv | corrcoef | cov | xcov

 xcorr

1-16261

xcov
Cross-covariance

Syntax
c = xcov(x,y)
c = xcov(x)

c = xcov(___ ,maxlag)
c = xcov(___ ,scaleopt)

[c,lags] = xcov(___)

Description
c = xcov(x,y) returns the cross-covariance on page 1-16269 of two discrete-time
sequences. Cross-covariance measures the similarity between a vector x and shifted
(lagged) copies of a vector y as a function of the lag. If x and y have different lengths, the
function appends zeros to the end of the shorter vector so it has the same length as the
other.

c = xcov(x) returns the autocovariance on page 1-16269 sequence of x. If x is a
matrix, then c is a matrix whose columns contain the autocovariance and cross-
covariance sequences for all combinations of the columns of x.

c = xcov(___ ,maxlag) sets the lag range from -maxlag to maxlag for either of the
previous syntaxes.

c = xcov(___ ,scaleopt) also specifies a normalization option for the cross-
covariance or autocovariance. Any option other than 'none' (the default) requires the
inputs x and y to have the same length.

[c,lags] = xcov(___) also returns the lags at which the covariances are computed.

1 Alphabetical List

1-16262

Examples

Cross-Covariance of Two Random Vectors

Create a vector of random numbers x and a vector y that is equal to x shifted by 3
elements to the right. Compute and plot the estimated cross-covariance of x and y. The
largest spike occurs at the lag value when the elements of x and y match exactly (-3).

rng default
x = rand(20,1);
y = circshift(x,3);
[c,lags] = xcov(x,y);
stem(lags,c)

 xcov

1-16263

Autocovariance of Random Vector

Create a random vector, then compute and plot the estimated autocovariance. The largest
spike occurs at zero lag, where the vector is exactly equal to itself.

rng default
x = rand(20,1);
[c,lags] = xcov(x);
stem(lags,c)

1 Alphabetical List

1-16264

Normalized Autocovariance of Noise

Compute and plot the estimated autocovariance of white Gaussian noise, c(m), for
−10 ≤ m ≤ 10. Normalize the sequence so that it is unity at zero lag.

rng default
x = randn(1000,1);
maxlag = 10;
[c,lags] = xcov(x,maxlag,'normalized');
stem(lags,c)

 xcov

1-16265

Biased Cross-Covariance of Two Shifted Signals

Create a signal made up of two signals that are circularly shifted from each other by 50
samples.

rng default
shft = 50;
s1 = rand(150,1);
s2 = circshift(s1,[shft 0]);
x = [s1 s2];

1 Alphabetical List

1-16266

Compute and plot biased estimates of the autocovariance and mutual cross-covariance
sequences. The output matrix c is organized as four column vectors such that
c = cs1s1 cs1s2 cs2s1 cs2s2 . cs1s2 has maxima at -50 and +100 and cs2s1 has maxima at +50
and -100 as a result of the circular shift.

[c,lags] = xcov(x,'biased');
plot(lags,c)
legend('c_{s_1s_1}','c_{s_1s_2}','c_{s_2s_1}','c_{s_2s_2}')

 xcov

1-16267

Input Arguments
x — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array. If x is a
multidimensional array, then xcov operates column-wise across all dimensions and
returns each autocovariance and cross-covariance as the columns of a matrix.
Data Types: single | double
Complex Number Support: Yes

y — Input array
vector

Input array, specified as a vector.
Data Types: single | double
Complex Number Support: Yes

maxlag — Maximum lag
integer scalar

Maximum lag, specified as an integer scalar. If you specify maxlag, the returned cross-
covariance sequence ranges from -maxlag to maxlag. By default, the lag range equals
2N – 1, where N is the greater of the lengths of inputs x and y.
Data Types: single | double

scaleopt — Normalization option
'none' (default) | 'biased' | 'unbiased' | 'normalized' | 'coeff'

Normalization option, specified as one of the following.

• 'none' — Raw, unscaled cross-covariance. 'none' is the only valid option when
inputs x and y have different lengths.

• 'biased' — Biased estimate of the cross-covariance.
• 'unbiased' — Unbiased estimate of the cross-covariance.
• 'normalized' or 'coeff' — Normalizes the sequence so that the autocovariances

at zero lag equal 1.

1 Alphabetical List

1-16268

Output Arguments
c — Cross-covariance or autocovariance
vector | matrix

Cross-covariance or autocovariance, returned as a vector or matrix.

If x is an M × N matrix, then xcov(x) returns a (2M – 1) × N2 matrix with the
autocovariances and cross-covariances of the columns of x. If you specify a maximum lag
maxlag, then the output c has size (2 × maxlag – 1) × N2.

For example, if S has three columns, S = x1 x2 x3 , then the result of C = xcov(S) is
organized as

c = cx1x1 cx1x2 cx1x3 cx2x1 cx2x2 cx2x3 cx3x1 cx3x2 cx3x3 .

lags — Lag indices
vector

Lag indices, returned as a vector.

Definitions

Cross-Covariance and Autocovariance
xcov computes the mean of its inputs, subtracts the mean, and then calls xcorr.

The result of xcov can be interpreted as an estimate of the covariance between two
random sequences or as the deterministic covariance between two deterministic signals.

The true cross-covariance sequence of two jointly stationary random processes, xn and yn,
is the cross-correlation of mean-removed sequences,

ϕxy(m) = E (xn + m− μx)(yn− μy)∗) ,

where μx and μy are the mean values of the two stationary random processes, the asterisk
denotes complex conjugation, and E is the expected value operator. xcov can only
estimate the sequence because, in practice, only a finite segment of one realization of the
infinite-length random process is available.

 xcov

1-16269

By default, xcov computes raw covariances with no normalization:

cxy(m) =
∑

n = 0

N −m− 1
xn + m−

1
N ∑

i = 0

N − 1
xi yn

∗− 1
N ∑

i = 0

N − 1
yi
∗ , m ≥ 0,

cyx
∗ (−m), m < 0.

The output vector c has elements given by

c(m) = cxy(m− N), m = 1, …, 2N − 1.

The covariance function requires normalization to estimate the function properly. You can
control the normalization of the correlation by using the input argument scaleopt.

References
[1] Orfanidis, Sophocles J. Optimum Signal Processing: An Introduction. 2nd Edition. New

York: McGraw-Hill, 1996.

[2] Larsen, Jan. “Correlation Functions and Power Spectra.” November, 2009. http://
www2.imm.dtu.dk/pubdb/views/edoc_download.php/4932/pdf/imm4932.pdf

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

For example, create a gpuArray object from a signal x and compute the estimated
autocovariance.

1 Alphabetical List

1-16270

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4932/pdf/imm4932.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4932/pdf/imm4932.pdf

t = 0:0.001:10-0.001;
x = cos(2*pi*10*t) + randn(size(t));
X = gpuArray(x);
[c,lags] = xcov(X,200);
c = gather(c);

See Also
conv | corrcoef | cov | xcorr

 xcov

1-16271

xlabel
Label x-axis

Syntax
xlabel(txt)
xlabel(target,txt)

xlabel(___ ,Name,Value)
t = xlabel(___)

Description
xlabel(txt) labels the x-axis of the current axes or chart returned by the gca
command. Reissuing the xlabel command replaces the old label with the new label.

xlabel(target,txt) adds the label to the axes or chart specified by target.

xlabel(___ ,Name,Value) modifies the label appearance using one or more name-
value pair arguments. For example, 'FontSize',12 sets the font size to 12 points.
Specify name-value pair arguments after all other input arguments. Modifying the label
appearance is not supported for all types of charts.

t = xlabel(___) returns the text object used as the x-axis label. Use t to make future
modifications to the label after it is created.

Examples

Label x-Axis

Display Population beneath the x-axis.

plot((1:10).^2)
xlabel('Population')

1 Alphabetical List

1-16272

Create Multiline x-Axis Label

Create a multiline label using a cell array of character vectors.

plot((1:10).^2)
xlabel({'Population','(in thousands)'})

 xlabel

1-16273

Include Greek Letters in x-Axis Label

Include Greek letters and other special characters in the label using TeX markup.

x = linspace(-2*pi,2*pi);
y = sin(x);
plot(x,y)
xlabel('-2\pi \leq x \leq 2\pi')

1 Alphabetical List

1-16274

Include Variable Value in x-Axis Label

Add a label with text and a variable value. Use the num2str function to include a variable
value in the label.

plot((1:10).^2)
year = 2014;
xlabel(['Population for Year ',num2str(year)])

 xlabel

1-16275

Include Superscript and Subscript in Axis Labels

Use the '^' and '_' characters to include superscripts and subscripts in the axis labels.
Use curly braces {} to modify more than one character.

t = linspace(0,1);
y = exp(t);
plot(t,y)
xlabel('t_{seconds}')
ylabel('e^t')

1 Alphabetical List

1-16276

Change x-Axis Label Font Size and Color

Use Name,Value pair arguments to set the font size, font weight, and text color
properties of the x-axis label.

plot((1:10).^2)
xlabel('Population','FontSize',12,'FontWeight','bold','Color','r')

 xlabel

1-16277

Label x-Axis of Specific Subplot

Create a figure with two subplots. Label the x-axis of the top subplot.

ax1 = subplot(2,1,1);
plot((1:10).^2)
xlabel(ax1,'Population')

ax2 = subplot(2,1,2);
plot((1:10).^3)

1 Alphabetical List

1-16278

Modify x-Axis Label After Creation

Label the x-axis and return the text object used as the label.

plot((1:10).^2)
t = xlabel('Population');

 xlabel

1-16279

Use t to set text properties of the label after it has been created. For example, set the
color of the label to red. Starting in R2014b, you can use dot notation to set properties. If
you are using an earlier release, use the set function instead.

t.Color = 'red';

1 Alphabetical List

1-16280

Input Arguments
txt — Axis label
string scalar | character vector | string array | character array | cell array | categorical
array | numeric value

Axis label, specified as a string scalar, character vector, string array, character array, cell
array, categorical array, or numeric value.
Example: 'my label'
Example: {'first line','second line'}

 xlabel

1-16281

Example: 123

To include numeric variables with text in a label, use the num2str function. For example:

x = 42;
txt = ['The value is ',num2str(x)];

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline labels:

• Use a string array, where each element contains a line of text, such as ["first
line","second line"].

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line').

Numeric labels are converted to text using sprintf('%g',value). For example,
12345678 displays as 1.23457e+07.

Note

• If you specify the label as a categorical array, MATLAB uses the values in the array, not
the categories.

• The words default, factory, and remove are reserved words that will not appear in
a label when quoted as a normal characters. To display any of these words individually,
precede them with a backslash, such as '\default' or '\remove'.

target — Target for label
Axes object | graphics object

Target for label, specified as an Axes object or a graphics object that has an XLabel
property. For example, you can add an x-axis label to a HeatmapChart object.

1 Alphabetical List

1-16282

If you do not specify the target, then the xlabel function adds the label to the graphics
object returned by the gca command.

Note Some charts do not support modifying the label appearance, such as the color, or
returning the text object as an output argument.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','red','FontSize',12 specifies red, 12-point font.

The text properties listed here are only a subset. For a complete list, see Text.

FontSize — Font size
11 (default) | scalar value greater than 0

Font size, specified as a scalar value greater than 0 in point units. One point equals 1/72
inch. To change the font units, use the FontUnits property.

Setting the font size properties for the associated axes also affects the label font size. The
label font size updates to equal the axes font size times the label scale factor. The
FontSize property of the axes contains the axes font size. The
LabelFontSizeMultiplier property of the axes contains the label scale factor. By
default, the axes font size is 10 points and the scale factor is 1.1, so the x-axis label font
size is 11 points.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

 xlabel

1-16283

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

Color — Text color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

1 Alphabetical List

1-16284

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

 xlabel

1-16285

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

1 Alphabetical List

1-16286

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

 xlabel

1-16287

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

1 Alphabetical List

1-16288

https://www.latex-project.org
https://www.latex-project.org

Output Arguments
t — Text object
text object

Text object used as the x-axis label. Use t to access and modify properties of the label
after it has been created.

See Also
Functions
num2str | text | title | ylabel | zlabel

Properties
Text

Topics
“Add Title and Axis Labels to Chart”

Introduced before R2006a

 xlabel

1-16289

xline
Vertical line with constant x-value

Syntax
xline(xvalue)
xline(xvalue,LineSpec)
xline(xvalue,LineSpec,label)
xline(___ ,Name,Value)
xline(ax, ___)
xl = xline(___)

Description
xline(xvalue) creates a constant vertical line at the specified x-value in the current
axes. For example, xline(2) creates a line at x = 2.

xline(xvalue,LineSpec) specifies either the line style, the line color, or both. For
example, '-.' creates a dash-dot line, 'b' creates a blue line, and '-.b' creates a blue
dash-dot line.

xline(xvalue,LineSpec,label) adds the specified label to the line.

xline(___ ,Name,Value) specifies constant line properties using one or more name-
value pair arguments. For a list of properties, see ConstantLine Properties. Specify name-
value pairs after all other input arguments.

xline(ax, ___) creates the line in the specified axes instead of the current axes. To
determine the current axes use gca.

xl = xline(___) returns the ConstantLine object created. Use xl to modify or
query properties of the line after it is created.

Examples

1 Alphabetical List

1-16290

Create Vertical Line

Create a vertical line at x = 3.

xline(3);

Specify Vertical Line Style and Color

Create a red dashed line at x = 5.

xline(5,'--r');

 xline

1-16291

Create Vertical Line with Label

To create a line with a label, you must also specify the line style. The default line style is a
solid line, '-'.

x = linspace(0,6,100);
y = exp(x);
plot(x,y)
xline(4.5,'-',{'Acceptable','Limit'});

1 Alphabetical List

1-16292

Specify Vertical Line Properties

Create a vertical dash-dot line with both a label and a display name for a legend.

y = [3187 2693 1771 1826 1958 3222 1645];
barh(y,'DisplayName','Daily Sales')
xl = xline(2328,'-.','Average','DisplayName','Average Sales');

 xline

1-16293

Adjust the vertical and horizontal alignment of the line, then display the legend.

xl.LabelVerticalAlignment = 'middle';
xl.LabelHorizontalAlignment = 'center';
legend('show');

1 Alphabetical List

1-16294

Plot Vertical Line in Specific Axes

Create subplots with cosine and sine waves, then add a vertical line to the cosine plot.
Label the line as 'cos(\pi/2)=0'.

ax1 = subplot(2,1,1);
x = linspace(0,2*pi,200);
y1 = cos(x);
plot(ax1,x,y1)

ax2 = subplot(2,1,2);

 xline

1-16295

x = linspace(0,2*pi,200);
y2 = sin(x);
plot(ax2,x,y2)

xlcosine = xline(ax1,pi/2,':','cos(\pi/2)=0');

Add a line to the sine subplot.

xlsine = xline(ax2,pi,':','sin(\pi)=0');

1 Alphabetical List

1-16296

Input Arguments
xvalue — Location of vertical line
scalar

Location of the vertical line on the x-axis, specified as a scalar. You can specify xvalue as
a numeric, categorical, datetime, or duration value. However, the type of value you
specify must match the data type for the values along the x-axis.
Example: xline(12.4) plots the line at x = 12.4.
Example: xline(D(3)) plots the line at the value of the third element in the array.

 xline

1-16297

Example: xline(categorical({'orange'})) plots the line at the category value
'orange'.

LineSpec — Line style and color
character vector (default) | string scalar

Line style and color, specified as a character vector or string scalar containing symbols.
The characters and symbols can appear in any order. You can specify line style, line color,
or both. You cannot specify a marker symbol.
Example: '--' is a dashed line.
Example: '--g' is a green dashed line.

Line Style Description
'-' Solid line (default)
'-–' Dashed line
':' Dotted line
'-.' Dash-dot line

Color Description
'y' Yellow
'm' Magenta
'c' Cyan
'r' Red
'g' Green
'b' Blue
'w' White
'k' Black

ax — Target axes
current axes (default) | Axes object

Target axes, specified as an Axes object. Use this argument if you want xline to plot in
axes other than the current axes.

1 Alphabetical List

1-16298

label — Line label
'' (default) | character vector | cell array of character vectors | string array | numeric
array

Line label, specified as a character vector, cell array of character vectors, string array, or
numeric array. To create a multiline label, use a string array or a cell array of character
vectors.
Example: xline(-pi/2,':','Lower Bound')
Example: xline(4,'-',{'first','second','third'})

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: xline(5,'-','Max','LabelVerticalAlignment','middle') specifies
the vertical alignment of the label as 'middle'.

Note The properties listed here are only a subset. For a complete list, see ConstantLine
Properties.

Color — Line color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

 xline

1-16299

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'g'
Example: [0.6 0.2 0.5]
Example: '#D2F9A7'

LineWidth — Line width
0.5 (default) | positive value

1 Alphabetical List

1-16300

Line width, specified as a positive value in points.

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

LabelHorizontalAlignment — Horizontal alignment of label
'right' (default) | 'left' | 'center'

Horizontal alignment of the label with respect to the line, specified as one of the options
in the table.

Option Description Example
'right' Right side of the line.

'left' Left side of the line.

 xline

1-16301

Option Description Example
'center' Center of the line. The label

segments the line.

LabelVerticalAlignment — Vertical alignment of label
'top' (default) | 'middle' | 'bottom'

Vertical alignment of the label with respect to the line, specified as one of the options in
the table.

Option Description Example
'top' Top of the line

'middle' Middle of the line

1 Alphabetical List

1-16302

Option Description Example
'bottom' Bottom of the line

LabelOrientation — Label orientation
'aligned' (default) | 'horizontal'

Label orientation, specified as 'aligned' or 'horizontal'. Examples are shown in the
table.

Orientation Description Example
'aligned' Label has the same

orientation as the line.

'horizontal' Label is horizontal,
regardless of the line
orientation.

 xline

1-16303

Algorithms
In a 3-D view of the axes, the constant line appears in the x-y plane at the midpoint of the
z-axis limits. If the axes are rotated, then the constant line rotates accordingly.

See Also
Functions
plot | yline

Properties
ConstantLine Properties

Introduced in R2018b

1 Alphabetical List

1-16304

xtickangle
Rotate x-axis tick labels

Syntax
xtickangle(angle)
xtickangle(ax,angle)

ang = xtickangle
ang = xtickangle(ax)

Description
xtickangle(angle) rotates the x-axis tick labels for the current axes to the specified
angle in degrees, where 0 is horizontal. Specify a positive value for counterclockwise
rotation or a negative value for clockwise rotation.

xtickangle(ax,angle) rotates the tick labels for the axes specified by ax instead of
the current axes.

ang = xtickangle returns the rotation angle for the x-axis tick labels of the current
axes as a scalar value in degrees. Positive values indicate counterclockwise rotation.
Negative values indicate clockwise rotation.

ang = xtickangle(ax) uses the axes specified by ax instead of the current axes.

Examples

Rotate x-Axis Tick Labels

Create a stem chart and rotate the x-axis tick labels so that they appear at a 45-degree
angle from the horizontal plane.

x = linspace(0,10000,21);
y = x.^2;

 xtickangle

1-16305

stem(x,y)
xtickangle(45)

Rotate x-Axis Tick Labels for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Rotate the
x-axis tick labels for the lower subplot by specifying ax2 as the first input argument to
xtickangle.

ax1 = subplot(2,1,1);
plot(rand(6))

1 Alphabetical List

1-16306

ax2 = subplot(2,1,2);
plot(rand(6))
xtickangle(ax2,45)

Query Current Angle for x-Axis Tick Labels

Create a stem chart. Then, query the rotation angle for the x-axis tick labels. By default,
the labels are not rotated.

 xtickangle

1-16307

x = linspace(0,10000,21);
y = x.^2;
stem(x,y)

ang = xtickangle

ang = 0

Input Arguments
angle — Rotation of tick labels
0 (default) | scalar value in degrees

1 Alphabetical List

1-16308

Rotation of tick labels, specified as a scalar value in degrees, where 0 is horizontal.
Example: xtickangle(90)

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then xtickangle uses the current axes.

Algorithms
The xtickangle function sets and queries the XTickLabelRotation property of the
Axes object.

See Also
Functions
xlim | xtickformat | xticklabels | xticks | ytickangle | ztickangle

Properties
Axes

Introduced in R2016b

 xtickangle

1-16309

xtickformat
Specify x-axis tick label format

Syntax
xtickformat(fmt)
xtickformat(datefmt)
xtickformat(durationfmt)
xtickformat(ax, ___)

xfmt = xtickformat
xfmt = xtickformat(ax)

Description
xtickformat(fmt) sets the format for numeric x-axis tick labels. For example, specify
fmt as 'usd' to display the labels in U.S. dollars.

xtickformat(datefmt) sets the format for labels that show dates or times. For
example, specify datefmt as 'MM-dd-yy' to display dates such as 04-19-16. This
option applies only to an x-axis with datetime values.

xtickformat(durationfmt) sets the format for labels that show durations. For
example, specify durationfmt as 'm' to display the durations in minutes. This option
applies only to an x-axis with duration values.

xtickformat(ax, ___) uses the axes specified by ax instead of the current axes.
Specify ax as the first input argument.

xfmt = xtickformat returns the format style used for x-axis tick labels of the current
axes. Depending on the type of labels along the x-axis, xfmt is a character vector of a
numeric format, date format, or duration format.

xfmt = xtickformat(ax) returns the format style used for the axes specified by ax
instead of the current axes.

1 Alphabetical List

1-16310

Examples

Display Tick Labels in Dollars

Display x-axis tick labels in dollars with and without decimal values.

Create a bar chart. Display the tick labels along the x-axis in dollars.

x = 0:20:100;
y = [88 67 98 43 45 65];
bar(x,y)
xtickformat('usd')

 xtickformat

1-16311

Query the tick label format. MATLAB® returns the format as a character vector
containing the formatting operators.

fmt = xtickformat

fmt =
'$%,.2f'

Display the tick labels with no decimal values by tweaking the numeric format to use a
precision value of 0 instead of 2.

xtickformat('$%,.0f')

1 Alphabetical List

1-16312

Display Text After Each Tick Label

After creating a line chart, display the tick labels along the x-axis with the text "GHz"
after each value.

x = 1:10;
y = [.17 .25 .27 .28 .3 .32 .33 .34 .345 .35];
plot(x,y,'-V')
xtickformat('%g GHz')

 xtickformat

1-16313

Control Number of Decimals Displayed

After creating a scatter plot, display the x-axis tick labels with two decimal places.
Control the decimal places by passing xtickformat a character vector of a numeric
format that uses fixed-point notation for the conversion character and a precision value of
2.

x = linspace(0,1,100);
y = randn(1,100).*cos(x);
scatter(x,y)
xtickformat('%.2f')

1 Alphabetical List

1-16314

Format for Date Tick Labels

Create a line plot with datetime values along the x-axis. Then, change the format of the
dates.

t = datetime(2014,6,28) + caldays(1:10);
y = rand(1,10);
plot(t,y);
xtickformat('MM-dd')

 xtickformat

1-16315

Format for Duration Tick Labels

Create a line plot with duration values along the x-axis. Then, change the format of the
tick labels.

t = 0:seconds(30):minutes(3);
y = rand(1,7);
plot(t,y)
xtickformat('mm:ss')

1 Alphabetical List

1-16316

Query Current Tick Label Format

Create a scatter plot and display the x-axis tick labels in Euro. Then, query the tick label
format. MATLAB® returns the format as a character vector containing the formatting
operators.

x = rand(100,1);
y = rand(100,1);
scatter(x,y)
xtickformat('eur')

xfmt = xtickformat

xfmt =
'\x20AC%,.2f'

 xtickformat

1-16317

Tick Label Format for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Specify the
tick label format for the x-axis of the lower subplot by specifying ax2 as the first input
argument to xtickformat. Display the tick labels in U.S. dollars.

ax1 = subplot(2,1,1);
plot(rand(6))

ax2 = subplot(2,1,2);
plot(rand(6))
xtickformat(ax2,'usd')

1 Alphabetical List

1-16318

Input Arguments
fmt — Format for numeric tick labels
'%g' (default) | character vector | string scalar

Format for numeric tick labels, specified as a character vector or string scalar. You can
specify one of the formats listed in this table. Alternatively, you can specify a custom
format.

 xtickformat

1-16319

Predefined Format Description
'usd' U.S. dollars. This option is equivalent using

'$%,.2f'. If the labels use scientific
notation, this option sets the exponent
value to 0.

'eur' Euro. This option is equivalent to using
'\x20AC%,.2f' with an exponent value of
0.

'gbp' British pound. This option is equivalent to
using '\x00A3%,.2f' with an exponent
value of 0.

'jpy' Japanese yen. This option is equivalent to
using '\x00A5%,d' with an exponent
value of 0.

'degrees' Display degree symbol after values. This
option is equivalent to using '%g\x00B0'
with the default exponent value.

'percentage' Display percent sign after values. This
option is equivalent to using '%g%%' with
the default exponent value.

'auto' Default format of '%g' with the default
exponent value.

Example: xtickformat('usd')

Custom Numeric Format

You can specify a custom numeric format by creating a character vector or string
containing identifiers.

1 Alphabetical List

1-16320

Identifiers are optional, except the percent sign and conversion character. Construct the
format in this order:

• One or more flags — Options such as adding a plus sign before positive values. For a
full list of options, see the table of Optional Flags.

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

• Conversion character — Value type. For a full list of options, see the table of
Conversion Characters. If you specify a conversion that does not fit the data, then
MATLAB overrides the specified conversion, and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

Example: xtickformat('%.2f') displays the values using fixed-point notation with
two decimal places.

Example: xtickformat('$%.2f') displays a dollar sign before each value.

Example: xtickformat('%.2f million') displays million after each value.

 xtickformat

1-16321

Optional Flags

Identifier Description Example of Numeric
Format

, Display commas every three
digits, such as '1,000'.

'%,4.4g'

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left-justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

1 Alphabetical List

1-16322

Conversion Characters

Identifier Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

datefmt — Format for dates and times
'auto' | character vector | string scalar

Format for dates and times, specified as 'auto', a character vector, or a string scalar.
The default format is based on the data.
Example: xtickformat('yyyy-MM-dd') displays a date and time such as 2016-04-19.
Example: xtickformat('eeee, MMMM d, yyyy HH:mm:ss') displays a date and time
such as Saturday, April 19, 2016 21:41:06.
Example: xtickformat('MMMM d, yyyy HH:mm:ss Z') displays a date and time such
as April 19, 2016 21:41:06 -0400.

The display format tables show the letter identifiers that you can use to construct the
format. To separate the fields, you can include nonletter characters such as a hyphen,
space, colon, or any non-ASCII characters. The identifiers correspond to the Unicode
Locale Data Markup Language (LDML) standard for dates.

Date and Time Formats

Use these identifiers to specify the display formats of the date and time fields.

 xtickformat

1-16323

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. See the

Note that follows this table.
2014

yy Year, using last two digits. See the
Note that follows this table.

14

yyy, yyyy ... Year, using at least the number of
digits specified by the number of
instances of 'y'

For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year. A single number
designating the year. An ISO year
value assigns positive values to CE
years and negative values to BCE
years, with 1 BCE being year 0.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2
QQQQ Quarter, full name 2nd quarter
M Month, numerical using one or two

digits
4

MM Month, numerical using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A
W Week of the month 1
d Day of the month, using one or two

digits
5

dd Day of the month using two digits 05
D Day of the year, using one, two or

three digits
95

DD Day of the year using two digits 95

1 Alphabetical List

1-16324

Letter
Identifier

Description Display

DDD Day of the year using three digits 095
e Day of the week, numerical using

one or two digits.
7, where Sunday is the first day of
the week.

ee Day of the week, numerical using
two digits

07

eee Day, abbreviated name Sat
eeee Day, full name Saturday
eeeee Day, capitalized first letter S
a Day period (AM or PM) PM
h Hour, 12-hour clock notation using

one or two digits
9

hh Hour, 12-hour clock notation using
two digits

09

H Hour, 24-hour clock notation using
one or two digits

21

HH Hour, 24-hour clock notation using
two digits

21

m Minute, using one or two digits 41
mm Minute, using two digits 41
s Second, using one or two digits 6
ss Second, using two digits 06
S, SS, ...,
SSSSSSSSS

Fractional second, using the
number of digits specified by the
number of instances of 'S' (up to 9
digits).

'SSS' truncates 6.12345 seconds
to 123.

Some tips and considerations:

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

• Datetime values later than 144683 years CE or before 140743 BCE display only the
year numbers, regardless of the specified format value.

 xtickformat

1-16325

Time Zone Offset Formats

Use these identifiers to specify the display format of the time zone offset. A time zone
offset is the amount of time that a specific date and time is offset from UTC. A time zone
offset is different from a time zone in that it comprises rules that determine the offsets for
specific times of the year. Include a time zone offset identifier when you want to ensure
that the time components are displayed unambiguously.

Letter
Identifier

Description Display

z Abbreviated name of the time zone
offset. If this value is not available,
then the time zone offset uses the
short UTC format, such as UTC-4.

EDT

Z ISO 8601 basic format with hours,
minutes, and optional seconds
fields.

-0400

ZZZZ Long UTC format. UTC-04:00
ZZZZZ ISO 8601 extended format with

hours, minutes, and optional
seconds fields. A time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

x or X ISO 8601 basic format with hours
field and optional minutes field. If
you specify X, a time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04

xx or XX ISO 8601 basic format with hours
and minutes fields. If you specify
XX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-0400

1 Alphabetical List

1-16326

Letter
Identifier

Description Display

xxx or XXX ISO 8601 extended format with
hours and minutes fields. If you
specify XXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

xxxx or XXXX ISO 8601 basic format with hours,
minutes, and optional seconds
fields. If you specify XXXX, a time
offset of zero is displayed as the
ISO 8601 UTC indicator “Z”.

-0400

xxxxx or
XXXXX

ISO 8601 extended format with
hours, minutes, and optional
seconds fields. If you specify
XXXXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

durationfmt — Format for duration values
character vector | string scalar

Format for duration values, specified as a character vector or string scalar.

To display a duration as a single number that includes a fractional part (for example,
1.234 hours), specify one of the following formats.

Format Description
'y' Number of exact, fixed-length years. A fixed-length

year is equal to 365.2425 days.
'd' Number of exact, fixed-length days. A fixed-length day

is equal to 24 hours.
'h' Number of hours
'm' Number of minutes
's' Number of seconds

To display a duration in the form of a digital timer, specify one of these formats:

 xtickformat

1-16327

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'

In addition, you can display up to nine fractional second digits by appending up to nine S
characters. For example, 'hh:mm:ss.SSS' displays the milliseconds of a duration value
to three digits.

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then xtickformat uses the current axes.

Algorithms
The xtickformat function sets and queries the TickLabelFormat property of the ruler
object associated with the x-axis.

See Also
Functions
xlim | xtickangle | xticklabels | xticks | ytickformat | ztickformat

Properties
DatetimeRuler | DurationRuler | NumericRuler

Introduced in R2016b

1 Alphabetical List

1-16328

xticklabels
Set or query x-axis tick labels

Syntax
xticklabels(labels)
xl = xticklabels

xticklabels('auto')
xticklabels('manual')
m = xticklabels('mode')

___ = xticklabels(ax, ___)

Description
xticklabels(labels) sets the x-axis tick labels on page 1-16338 for the current axes.
Specify labels as a string array or a cell array of character vectors; for example,
{'January','February','March'}. If you specify the labels, then the x-axis tick
values and tick labels no longer update automatically based on changes to the axes.

xl = xticklabels returns the x-axis tick labels for the current axes.

xticklabels('auto') sets an automatic mode, enabling the axes to determine the x-
axis tick labels. Use this option if you set the labels and then want to set them back to the
default values.

xticklabels('manual') sets a manual mode, freezing the x-axis tick labels at the
current values.

m = xticklabels('mode') returns the current value of the x-axis tick labels mode,
which is either 'auto' or 'manual'. By default, the mode is automatic unless you
specify the tick labels or set the mode to manual.

___ = xticklabels(ax, ___) uses the axes specified by ax instead of the current
axes. Specify ax as the first input argument for any of the previous syntaxes.

 xticklabels

1-16329

Examples

Specify x-Axis Tick Values and Labels

Create a line plot. Display tick marks along the x-axis at the values 0, 5, and 10. Then
specify a label for each tick mark.

x = linspace(0,10);
y = x.^2;
plot(x,y)
xticks([0 5 10])
xticklabels({'x = 0','x = 5','x = 10'})

1 Alphabetical List

1-16330

Display x-Axis Tick Labels in Terms of Pi

Create a line plot. Specify the x-axis limits and display tick marks along at the x-axis at
increments of π.

x = linspace(0,6*pi);
y = sin(x);
plot(x,y)
xlim([0 6*pi])
xticks(0:pi:6*pi)

 xticklabels

1-16331

MATLAB® labels the tick marks with the numeric values. Change the labels to show the π
symbol by specifying text for each label.

xticklabels({'0','\pi','2\pi','3\pi','4\pi','5\pi','6\pi'})

Specify x-Axis Tick Labels for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Plot
random data in each subplot. Set the x-axis tick values and labels for the second subplot
by specifying ax2 as the first input argument.

1 Alphabetical List

1-16332

ax1 = subplot(2,1,1);
plot(rand(3))

ax2 = subplot(2,1,2);
plot(rand(3))
xticks(ax2,[1 2 3])
xticklabels(ax2,{'one','two','three'})

 xticklabels

1-16333

Set x-Axis Tick Labels Back to Default Labels

Create a stem chart, and specify the x-axis tick values and corresponding labels. Then set
the x-axis tick values and labels back to the default values.

stem(1:10)
xticks([1 4 6 10])
xticklabels({'A','B','C','D'})

xticks('auto')
xticklabels('auto')

1 Alphabetical List

1-16334

Remove x-Axis Tick Labels

Remove the tick labels along the x-axis by specifying the tick labels as an empty array.

plot(rand(5))
xticklabels({})

 xticklabels

1-16335

Input Arguments
labels — Tick labels
cell array of character vectors | string array | categorical array

Tick labels on page 1-16338, specified as a cell array of character vectors, string array, or
categorical array. If you do not want tick labels to show, then specify an empty cell array
{}. Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter
property of the Axes object for more information.
Example: xticklabels({'0','\pi','2\pi'})

1 Alphabetical List

1-16336

Example: xticklabels({'January','Febrary','March'})
Example: xticklabels({})

Note

• If you specify the tick labels as a categorical array, MATLAB uses the values in the
array, not the categories.

• To specify the tick values, use the xticks function.

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then xticklabels uses the current axes.

Output Arguments
xl — Current tick labels
cell array of character vectors | character array

Current tick labels, returned as a cell array of character vectors or a character array.

m — Current tick labels mode
'auto' | 'manual'

Current tick labels mode, returned as one of these values:

• 'auto' — Automatically determine the x-axis tick labels.
• 'manual' — Use manually specified x-axis tick labels.

 xticklabels

1-16337

Definitions

Tick Labels
The tick labels are the labels that you see next to each tick mark. The tick values are the
locations along the x-axis where the tick marks appear. Set the values using the xticks
function. Set the corresponding labels using the xticklabels function.

Algorithms
The xticklabels function sets and queries several axes properties related to the x-axis
tick labels.

• XTickLabel — Property that stores the text for the x-axis tick labels.
• XTickLabelMode — Property that stores the x-axis tick label mode. When you set the

x-axis tick labels using xticklabels, this property changes to 'manual'.
• XTickMode — Property that stores the x-axis tick value mode. When you set the x-axis

tick labels using xticklabels, this property changes to 'manual'.

See Also
Functions
xlim | xtickangle | xtickformat | xticks | yticklabels | zticklabels

Properties
Axes

1 Alphabetical List

1-16338

Topics
“Specify Axis Tick Values and Labels”

Introduced in R2016b

 xticklabels

1-16339

xticks
Set or query x-axis tick values

Syntax
xticks(ticks)
xt = xticks

xticks('auto')
xticks('manual')
m = xticks('mode')

___ = xticks(ax, ___)

Description
xticks(ticks) sets the x-axis tick values on page 1-16353, which are the locations
along the x-axis where the tick marks appear. Specify ticks as a vector of increasing
values; for example, [0 2 4 6]. This command affects the current axes.

xt = xticks returns the current x-axis tick values as a vector.

xticks('auto') sets an automatic mode, enabling the axes to determine the x-axis tick
values. Use this option if you change the tick values and then want to set them back to
the default values.

xticks('manual') sets a manual mode, freezing the x-axis tick values at the current
values. Use this option if you want to retain the current tick values when resizing the axes
or adding new data to the axes.

m = xticks('mode') returns the current x-axis tick values mode, which is either
'auto' or 'manual'. By default, the mode is automatic unless you specify tick values or
change the mode to manual.

___ = xticks(ax, ___) uses the axes specified by ax instead of the current axes.
Specify ax as the first input argument for any of the previous syntaxes.

1 Alphabetical List

1-16340

Examples

Specify x-Axis Tick Values and Labels

Create a line plot. Display tick marks along the x-axis at the values 0, 5, and 10. Then
specify a label for each tick mark.

x = linspace(0,10);
y = x.^2;
plot(x,y)
xticks([0 5 10])
xticklabels({'x = 0','x = 5','x = 10'})

 xticks

1-16341

Specify Nonuniform x-Axis Tick Values

Display tick marks along the x-axis at nonuniform values between -5 and 5. MATLAB®
labels the tick marks with the numeric values.

x = linspace(-5,5);
y = x.^2;
plot(x,y)
xticks([-5 -2.5 -1 0 1 2.5 5])

1 Alphabetical List

1-16342

Increment x-Axis Tick Values by 10

Display tick marks along the x-axis at increments of 10, starting from 0 and ending at 50.

x = linspace(0,50);
y = sin(x/2);
plot(x,y)
xticks(0:10:50)

 xticks

1-16343

Increment x-Axis Tick Values by Pi

Create a line plot. Specify the x-axis limits as 0 to 6π. Then, display tick marks along the
x-axis at increments of π.

x = linspace(0,6*pi);
y = sin(x);
plot(x,y)
xlim([0 6*pi])
xticks(0:pi:6*pi)

MATLAB® labels the tick marks with the numeric values. Change the labels to show the π
symbol by specifying the text for each label.

1 Alphabetical List

1-16344

xticklabels({'0','\pi','2\pi','3\pi','4\pi','5\pi','6\pi'})

Change Tick Values for x-Axis with Durations

Create a plot with duration values along the x-axis. Then, change the duration values
where the tick marks are located.

t = minutes(0:.5:3);
y = rand(1,7);
plot(t,y)

 xticks

1-16345

ticks = minutes(0:.25:3);
xticks(ticks)

1 Alphabetical List

1-16346

Set x-Axis Tick Values Back to Default Values

Create a stem chart and specify the x-axis tick values. Then, set the x-axis tick values
back to the default values.

stem(1:10)
xticks([0 4 6 10])

 xticks

1-16347

xticks('auto')

1 Alphabetical List

1-16348

Specify x-Axis Tick Values for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Plot
random data in each subplot. Set the x-axis tick values for the lower subplot by passing
ax2 as the first input argument to the xticks function.

ax1 = subplot(2,1,1);
plot(rand(3))
ax2 = subplot(2,1,2);
plot(rand(3))
xticks(ax2,[1 2 3])

 xticks

1-16349

Remove x-Axis Tick Marks

Remove the tick marks along the x-axis by specifying the tick values as an empty array.

x = linspace(0,10);
y = sin(x);
plot(x,y)
xticks([])

1 Alphabetical List

1-16350

Input Arguments
ticks — Tick values
vector of increasing values

Tick values on page 1-16353, specified as a vector of increasing values. If you do not want
tick marks along the x-axis, specify an empty vector [].

You can specify the tick values as numeric, categorical, datetime, or duration values.
However, the type of values that you specify must match the type of values along the x-
axis.

 xticks

1-16351

Example: xticks([pi 2*pi 3*pi 4*pi])
Example: xticks(0:10:100)
Example: xticks([])

Note To specify the tick labels, use the xticklabels function.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then xticks uses the current axes.

Output Arguments
xt — Current tick values
vector

Current tick values, returned as a vector.

m — Current mode
'auto' | 'manual'

Current mode, returned as one of these values:

• 'auto' — Automatically determine the x-axis tick values.
• 'manual' — Use manually specified x-axis tick values.

1 Alphabetical List

1-16352

Definitions

Tick Values
The tick values are the locations along the x-axis where the tick marks appear. The tick
labels are the labels that you see next to each tick mark. Set the values using the xticks
function. Set the corresponding labels using the xticklabels function.

Algorithms
The xticks function sets and queries several axes properties related to the x-axis tick
values.

• XTick — Property that stores the x-axis tick values.
• XTickMode — Property that stores the x-axis tick value mode. When you set the x-axis

tick values, this property changes to 'manual'.

See Also
Functions
xlim | xtickangle | xtickformat | xticklabels | yticks | zticks

Properties
Axes

Topics
“Specify Axis Tick Values and Labels”

 xticks

1-16353

Introduced in R2016b

1 Alphabetical List

1-16354

matlab.wsdl.createWSDLClient
Create interface to SOAP-based web service

Syntax
matlab.wsdl.createWSDLClient(wsdlURL)
matlab.wsdl.createWSDLClient(wsdlURL,folder)
matlab.wsdl.createWSDLClient(wsdlURL,folder,'silent')

matlab.wsdl.createWSDLClient(___ ,options)

classname = matlab.wsdl.createWSDLClient(___)

Description
matlab.wsdl.createWSDLClient(wsdlURL) creates an interface to a service based
on a Web Services Description Language (WSDL) document specified by wsdlURL. This
function creates a MATLAB class file for each Simple Object Access Protocol (SOAP)
binding in the WSDL in the current folder. If necessary, the function creates additional
support files. You can package and distribute these files to other users.

You must install the WSDL tools, Java JDK™ and Apache CXF software, then set the tool
paths using the matlab.wsdl.setWSDLToolPath function.

You must have write permission for the current folder.

matlab.wsdl.createWSDLClient(wsdlURL,folder) creates the interface files in
folder, which must be on the MATLAB path.

matlab.wsdl.createWSDLClient(wsdlURL,folder,'silent') suppresses display
of generated files and folders.

matlab.wsdl.createWSDLClient(___ ,options) specifies additional information
needed to access the WSDL document. You can use this syntax with any of the input
arguments of the previous syntaxes.

 matlab.wsdl.createWSDLClient

1-16355

classname = matlab.wsdl.createWSDLClient(___) returns a handle to the
created class. If multiple classes were created, the function returns a cell array of
handles. You can use this syntax with any of the input arguments of the previous syntaxes.

To get information on using the class, call the MATLAB help function on the class name.

Examples

Get Map Name from USGSImageryOnly_MapServer Web Service

To run this example, install the WSDL tools and set the tool paths. jdk and cxf are the
paths to these tools on your system.

matlab.wsdl.setWSDLToolPath('JDK',jdk,'CXF',cxf)

Create the class files.

url = ...
'http://basemap.nationalmap.gov/arcgis/services/USGSImageryOnly/MapServer?wsdl';
matlab.wsdl.createWSDLClient(url)

Created USGSImageryOnly_MapServer.
 .\USGSImageryOnly_MapServer.m
 .\+wsdl

In order to use USGSImageryOnly_MapServer, you must run javaaddpath('.\+wsdl\mapserver.jar').

Add the jar files to the Java path.

javaaddpath('.\+wsdl\mapserver.jar')

Create the service.

wsdl = USGSImageryOnly_MapServer;

Read help for the service and its functions.

help USGSImageryOnly_MapServer

USGSImageryOnly_MapServer A client to connect to the USGSImageryOnly_MapServer service
 SERVICE = USGSImageryOnly_MapServer connects to http://basemap.nationalmap.gov/arcgis/services/USGSImageryOnly/MapServer and returns a SERVICE.

1 Alphabetical List

1-16356

 To communicate with the service, call a function on the SERVICE:

 [...] = FUNCTION(SERVICE,arg,...)

 See doc USGSImageryOnly_MapServer for a list of functions.

Call one of the methods, for example GetDefaultMapName that returns the map name.

GetDefaultMapName(wsdl)

ans =

Layers

Input Arguments
wsdlURL — WSDL URL or file path
string | character vector

WSDL URL or file path, specified as a string or a character vector, that defines service
methods, arguments, and transactions.

wsdlURL can be an http or https URL or a local path. wsdlURL cannot be a file://
URL. On Microsoft Windows, UNC paths are not supported.
Example: 'http://www.mywebservice.com/servicename?WSDL'

folder — Folder for generated files
string | character vector

Folder for generated files, specified as a string or a character vector. If omitted or empty
(''), matlab.wsdl.createWSDLClient uses the current folder. You must have write
permission for the folder. The function overwrites existing files with the same names as
the generated files.
Example: 'c:\work'

options — Additional options
weboptions object

Additional options, specified as a weboptions object, needed to access the WSDL
document, such as Username, Password, and Timeout.

 matlab.wsdl.createWSDLClient

1-16357

The additional options specified in weboptions do not apply to any other documents,
such as other imported WSDL documents or schemas, that the primary WSDL document
references. The options also do not apply to requests made to servers by the generated
code.
Example: 'Username','john','Password','mypassword'

Limitations
• “Limitations to WSDL Document Support”

Tips
• If you create WSDL files in multiple locations on your computer, avoid confusion by

deleting the class files from duplicate locations, and then call clear java.

See Also
clear | createClassFromWsdl | matlab.wsdl.setWSDLToolPath | weboptions |
webread

Topics
“Set Up WSDL Tools”

Introduced in R2014b

1 Alphabetical List

1-16358

matlab.wsdl.setWSDLToolPath
Location of WSDL tools

Syntax
matlab.wsdl.setWSDLToolPath(Name,Value)

paths = matlab.wsdl.setWSDLToolPath

Description
matlab.wsdl.setWSDLToolPath(Name,Value) sets the paths to Java JDK and Apache
CXF software. You must download these tools to use the
matlab.wsdl.createWSDLClient interface.

Specify values for both Name arguments 'JDK' and 'CXF' before calling
matlab.wsdl.createWSDLClient. The values are saved across sessions in your user
preferences.

paths = matlab.wsdl.setWSDLToolPath displays paths to the JDK and CXF
software.

Examples

Set Path to Tools

Set jdk and cxf to valid paths on your system. For example,

jdk = 'E:/Program Files/win64/jdk';
cxf = 'c:\apache-cxf-3.2.4'
matlab.wsdl.setWSDLToolPath('JDK',jdk,'CXF',cxf)

 matlab.wsdl.setWSDLToolPath

1-16359

Check If Tool Paths Are Set

p = matlab.wsdl.setWSDLToolPath;
if (isempty(p.JDK) || isempty(p.CXF))
 disp('Install the Java Development Kit (JDK) and Apache CXF programs.')
 disp('See the Set Up WSDL Tools example link at the end of this page.')
else
 disp('Paths set to:')
 matlab.wsdl.setWSDLToolPath
end

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'CXF','C:\apache-cxf-3.2.4'

JDK — Path to Java JDK software
character vector

Path to Java Development Kit (JDK) software, specified as a character vector. Download
the software from http://www.oracle.com/technetwork/java/javase/
downloads and choose Java SE Development Kit 8.
Example: 'E:/Program Files/win64/jdk'

CXF — Path to Apache CXF software
character vector

Path to Apache CXF software, specified as a character vector. CXF is an open-source
services framework. Download the software from http://cxf.apache.org/download
and choose the latest release of 3.2.
Example: 'C:\apache-cxf-3.2.4'

1 Alphabetical List

1-16360

Output Arguments
paths — Tool paths
structure

Tool paths, returned as a structure with the fields:

JDK — Path to Java JDK software
character vector

Path to Java JDK software, specified as a character vector. If the value of JDK is empty,
you cannot call matlab.wsdl.createWSDLClient.

CXF — Path to Apache CXF software
character vector

Path to Apache CXF software, specified as a character vector. If the value of CXF is empty,
you cannot call matlab.wsdl.createWSDLClient.

See Also
matlab.wsdl.createWSDLClient

Topics
“Set Up WSDL Tools”

External Websites
https://www.oracle.com/technetwork/java/javase/downloads
https://cxf.apache.org/download

Introduced in R2014b

 matlab.wsdl.setWSDLToolPath

1-16361

https://www.oracle.com/technetwork/java/javase/downloads
https://cxf.apache.org/download

year
Year number

Syntax
y = year(t)
y = year(t,yearType)

Description
y = year(t) returns the ISO year numbers for the datetime values in t. ISO year
numbers include a year zero and represent years BCE using negative values. The y output
is a double array the same size as t.

y = year(t,yearType) returns the type of year number specified by yearType.

The year function returns the year numbers of datetime values. To assign ISO year
values to a datetime array, t, use t.Year and modify the Year property.

Examples

Extract Year Number from Dates

Extract the year numbers from an array of dates.

t = datetime(2010,05,31):calyears(1):datetime(2015,02,28)

t = 1x5 datetime array
 31-May-2010 31-May-2011 31-May-2012 31-May-2013 31-May-2014

y = year(t)

y = 1×5

1 Alphabetical List

1-16362

 2010 2011 2012 2013 2014

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

yearType — Type of year values
'iso' (default) | 'gregorian'

Type of year values, specified as either 'iso' or 'gregorian'.

• If yearType is 'iso', then year returns the ISO year number, which includes a year
zero and represents years BCE using negative values.

• If yearType is 'gregorian', then year returns the Gregorian year number, which is
an unsigned integer. For example, the Gregorian year number for 5 CE and 5 BCE is 5
in both cases. Gregorian year numbers do not have a year zero.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

 year

1-16363

See Also
datetime | day | month | quarter | week | ymd

Introduced in R2014b

1 Alphabetical List

1-16364

years
Duration in years

Syntax
Y = years(X)

Description
Y = years(X) returns an array of years equivalent to the values in X.

• If X is a numeric array, then Y is a duration array in units of fixed-length years. A
fixed-length year is equal to 365.2425 days.

• If X is a duration array, then Y is a double array with each element equal to the
number of fixed-length years in the corresponding element of X.

The years function converts between duration and double values. To display a
duration in units of years, set its Format property to 'y'.

Leap years have one extra day. To create an array of calendar years that account for leap
years when used in calendar calculations, use the calyears function.

Examples

Create Duration Array of Fixed-Length Years
X = [1 3 5; 10 12 15]

X = 2×3

 1 3 5
 10 12 15

Y = years(X)

 years

1-16365

Y = 2x3 duration array
 1 yr 3 yrs 5 yrs
 10 yrs 12 yrs 15 yrs

Convert Durations to Numeric Array of Years

Find the difference between two arrays of dates. The output is a duration array.

t1 = datetime(2007:2010,10,1);
t2 = datetime(2014,05,1);
dt = t2 - t1

dt = 1x4 duration array
 57696:00:00 48912:00:00 40152:00:00 31392:00:00

Convert each duration in dt to a number of fixed-length years.

Y = years(dt)

Y = 1×4

 6.5819 5.5799 4.5805 3.5812

Input Arguments
X — Input array
numeric array | duration array | logical array

Input array, specified as a numeric array, duration array, or logical array.

1 Alphabetical List

1-16366

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
calyears

Introduced in R2014b

 years

1-16367

ylabel
Label y-axis

Syntax
ylabel(txt)
ylabel(target,txt)

ylabel(___ ,Name,Value)
t = ylabel(___)

Description
ylabel(txt) labels the y-axis of the current axes or chart returned by the gca
command. Reissuing the ylabel command causes the new label to replace the old label.

ylabel(target,txt) adds the label to the axes or chart specified by target.

ylabel(___ ,Name,Value) modifies the label appearance using one or more name-
value pair arguments. For example, 'FontSize',12 sets the font size to 12 points.
Specify name-value pair arguments after all other input arguments. Modifying the label
appearance is not supported for all types of charts.

t = ylabel(___) returns the text object used as the y-axis label. Use t to make future
modifications to the label after it is created.

Examples

Label y-Axis

plot((1:10).^2)
ylabel('Population')

1 Alphabetical List

1-16368

Label y-Axis with Numeric Input

figure
plot((1:10).^2)
ylabel(123)

 ylabel

1-16369

MATLAB® displays 123 beside the y-axis.

Create Multiline Label

Create a multiline label using a multiline cell array.

figure
plot((1:10).^2)
ylabel({2010;'Population';'in Years'})

1 Alphabetical List

1-16370

Include Superscript and Subscript in Axis Labels

Use the '^' and '_' characters to include superscripts and subscripts in the axis labels.
Use curly braces {} to modify more than one character.

t = linspace(0,1);
y = exp(t);
plot(t,y)
xlabel('t_{seconds}')
ylabel('e^t')

 ylabel

1-16371

Create y-Axis Label and Set Font Properties

Use Name,Value pairs to set the font size, font weight, and text color properties of the y-
axis label.

figure
plot((1:10).^2)
ylabel('Population','FontSize',12,...
 'FontWeight','bold','Color','r')

1 Alphabetical List

1-16372

'FontSize',12 displays the label text in 12-point font. 'FontWeight','bold' makes
the text bold. 'Color','r' sets the text color to red.

Label y-Axis of Specific Axes

Create two subplots and return the axes handles, s(1) and s(2).

figure
s(1) = subplot(2,1,1);
plot((1:10).^2)
s(2) = subplot(2,1,2);
plot((1:10).^3)

 ylabel

1-16373

Label the y-axis of the top plot by referring to its axes handle, s(1).

ylabel(s(1),'Population')

1 Alphabetical List

1-16374

Label y-Axis and Return Object Handle

Label the y-axis and return the handle to the text object used as the label.

plot((1:10).^2)
t = ylabel('Population');

 ylabel

1-16375

Set the color of the label to red. Starting in R2014b, you can use dot notation to set
properties. If you are using an earlier release, use the set function instead.

t.Color = 'red';

1 Alphabetical List

1-16376

Input Arguments
txt — Axis label
string scalar | character vector | string array | character array | cell array | categorical
array | numeric value

Axis label, specified as a string scalar, character vector, string array, character array, cell
array, categorical array, or numeric value.
Example: 'my label'
Example: {'first line','second line'}

 ylabel

1-16377

Example: 123

To include numeric variables with text in a label, use the num2str function. For example:

x = 42;
txt = ['The value is ',num2str(x)];

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline labels:

• Use a string array, where each element contains a line of text, such as ["first
line","second line"].

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line').

Numeric labels are converted to text using sprintf('%g',value). For example,
12345678 displays as 1.23457e+07.

Note

• If you specify the label as a categorical array, MATLAB uses the values in the array, not
the categories.

• The words default, factory, and remove are reserved words that will not appear in
a label when quoted as a normal characters. To display any of these words individually,
precede them with a backslash, such as '\default' or '\remove'.

target — Target for label
Axes object | graphics object

Target for label, specified as an Axes object or a graphics object that has a YLabel
property. For example, you can add a y-axis label to a HeatmapChart object.

1 Alphabetical List

1-16378

If you do not specify the target, then the ylabel function adds the label to the graphics
object returned by the gca command.

Note Some charts do not support modifying the label appearance, such as the color, or
returning the text object as an output argument.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','red','FontSize',12 specifies red, 12-point font.

In addition to the following, you can specify other text object properties using
Name,Value pair arguments. See Text.

FontSize — Font size
11 (default) | scalar value greater than 0

Font size, specified as a scalar value greater than 0 in point units. One point equals 1/72
inch. To change the font units, use the FontUnits property.

Setting the font size properties for the associated axes also affects the label font size. The
label font size updates to equal the axes font size times the label scale factor. The
FontSize property of the axes contains the axes font size. The
LabelFontSizeMultiplier property of the axes contains the label scale factor. By
default, the axes font size is 10 points and the scale factor is 1.1, so the y-axis label font
size is 11 points.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

 ylabel

1-16379

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

Color — Text color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

1 Alphabetical List

1-16380

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

 ylabel

1-16381

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

1 Alphabetical List

1-16382

Modifier Description Example
\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝

 ylabel

1-16383

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

1 Alphabetical List

1-16384

https://www.latex-project.org
https://www.latex-project.org

Output Arguments
t — Text object
text object

Text object used as the y-axis label. Use t to access and modify properties of the label
after its created.

See Also
Functions
num2str | text | title | xlabel | zlabel

Properties
Text

Topics
“Add Title and Axis Labels to Chart”

Introduced before R2006a

 ylabel

1-16385

yline
Horizontal line with constant y-value

Syntax
yline(yvalue)
yline(yvalue,LineSpec)
yline(yvalue,LineSpec,label)
yline(___ ,Name,Value)
yline(ax, ___)
yl = yline(___)

Description
yline(yvalue) creates a constant horizontal line at the specified y-value in the current
axes. For example, yline(6) creates a line at y = 6.

yline(yvalue,LineSpec) specifies either the line style, the line color, or both. For
example, ':' creates a dotted line, 'm' creates a magenta line, and ':m' creates a
magenta dotted line.

yline(yvalue,LineSpec,label) adds the specified label to the line.

yline(___ ,Name,Value) specifies constant line properties using one or more name-
value pair arguments. For a list of properties, see ConstantLine Properties. Specify name-
value pairs after all other input arguments.

yline(ax, ___) creates the line in the specified axes instead of the current axes. To
determine the current axes use gca.

yl = yline(___) returns the ConstantLine object created. Use yl to modify or
query properties of the line after it is created.

Examples

1 Alphabetical List

1-16386

Create Horizontal Line

Create a horizontal line at y = 2.5.

yline(2.5);

Specify Horizontal Line Style and Color

Create a blue dash-dot line at y = 4.

yline(4,'-.b');

 yline

1-16387

Create Horizontal Line with Label

To create a line with a label, you must also specify the line style. The default line style is a
solid line, '-'.

fplot(@(x) log(x));
xlim([0 15]);
ylim([0 4]);
yline(3,'-','Threshold');

1 Alphabetical List

1-16388

Specify Horizontal Line Properties

Create a horizontal dashed line with a label and a specified line width.

x = -2:0.25:2;
[X,Y] = meshgrid(x);
Z = X.*exp(-X.^2-Y.^2);
contour(X,Y,Z,30)

yl = yline(0,'--','y = 0','LineWidth',3);

 yline

1-16389

Adjust the horizontal alignment and color of the line.

yl.LabelHorizontalAlignment = 'center';
yl.Color = [.80 0 .40];

1 Alphabetical List

1-16390

Plot Horizontal Line in Specific Axes

Create subplots in a 1-by-2 grid and plot data in each. Then, add a horizontal line to the
first subplot.

ax1 = subplot(1,2,1);
x = -pi/2:pi/60:pi/2;
y1 = tan(sin(x)) + cos(sin(x));
plot(ax1,x,y1)

ax2 = subplot(1,2,2);

 yline

1-16391

x = -pi/2:pi/60:pi/2;
y2 = tan(cos(x)) + exp(x);
plot(ax2,x,y2)

yline(ax1,1.0);

Input Arguments
yvalue — Location of horizontal line
scalar

1 Alphabetical List

1-16392

Location of the horizontal line on the y-axis, specified as a scalar. You can specify yvalue
as a numeric, categorical, datetime, or duration value. However, the type of value you
specify must match the data type for the values along the y-axis.
Example: yline(8.45) plots the line at y = 8.45.
Example: yline(C(2)) plots the line at the value of the second element in the array.
Example: yline(datetime('today')) plots the line at the current date and time.

LineSpec — Line style and color
character vector (default) | string scalar

Line style and color, specified as a character vector or string scalar containing symbols.
The characters and symbols can appear in any order. You can specify line style, line color,
or both. You cannot specify a marker symbol.
Example: '--' is a dashed line.
Example: '--g' is a green dashed line.

Line Style Description
'-' Solid line (default)
'-–' Dashed line
':' Dotted line
'-.' Dash-dot line

Color Description
'y' Yellow
'm' Magenta
'c' Cyan
'r' Red
'g' Green
'b' Blue
'w' White
'k' Black

ax — Target axes
current axes (default) | Axes object

 yline

1-16393

Target axes, specified as an Axes object. Use this argument if you want yline to plot in
axes other than the current axes.

label — Line label
'' (default) | character vector | cell array of character vectors | string array | numeric
array

Line label, specified as a character vector, cell array of character vectors, string array, or
numeric array. To create a multiline label, use a string array or a cell array of character
vectors.
Example: yline(55,'-.','Target Sales')
Example: yline(75,'-',["Average","Student Score"])

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: yline(3,':','Median
Price','LabelHorizontalAlignment','center') specifies the horizontal
alignment of the label as 'center'.

Note The properties listed here are only a subset. For a complete list, see ConstantLine
Properties.

Color — Line color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-16394

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'g'

 yline

1-16395

Example: [0.6 0.2 0.5]
Example: '#D2F9A7'

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points.

DisplayName — Legend label
'' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display
until you call the legend command. If you do not specify the text, then legend sets the
label using the form 'dataN'.

LabelHorizontalAlignment — Horizontal alignment of label
'right' (default) | 'left' | 'center'

Horizontal alignment of the label with respect to the line, specified as one of the options
in the table.

Option Description Example
'right' Right side of the line

1 Alphabetical List

1-16396

Option Description Example
'left' Left side of the line

'center' Center of the line

LabelVerticalAlignment — Vertical alignment of label
'top' (default) | 'middle' | 'bottom'

Vertical alignment of the label with respect to the line, specified as one of the options in
the table.

Option Description Example
'top' Top of the line.

 yline

1-16397

Option Description Example
'middle' Middle of the line. The label

segments the line.

'bottom' Bottom of the line.

LabelOrientation — Label orientation
'aligned' (default) | 'horizontal'

Label orientation, specified as 'aligned' or 'horizontal'. Examples are shown in the
table.

Orientation Description Example
'aligned' Label has the same

orientation as the specified
line.

1 Alphabetical List

1-16398

Orientation Description Example
'horizontal' Label is horizontal,

regardless of the line
orientation.

Algorithms
In a 3-D view of the axes, the constant line appears in the x-y plane at the midpoint of the
z-axis limits. If the axes are rotated, then the constant line rotates accordingly.

See Also
Functions
plot | xline

Properties
ConstantLine Properties

Introduced in R2018b

 yline

1-16399

ymd
Year, month, and day numbers of datetime

Syntax
[y,m,d] = ymd(t)

Description
[y,m,d] = ymd(t) returns the year, month, and day numbers of the datetime values in
t as separate numeric arrays. The y, m, and d outputs are the same size as t, and contain
integer values.

The ymd function is equivalent to calling the year, month, and day functions on the same
datetime array.

Examples

Find Year, Month, and Day Numbers of Dates

t = datetime(2013,05,31):calmonths(3):datetime(2014,06,15)

t = 1x5 datetime array
 31-May-2013 31-Aug-2013 30-Nov-2013 28-Feb-2014 31-May-2014

[y,m,d] = ymd(t)

y = 1×5

 2013 2013 2013 2014 2014

m = 1×5

1 Alphabetical List

1-16400

 5 8 11 2 5

d = 1×5

 31 31 30 28 31

ymd returns the year, month, and day values in separate arrays.

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Output Arguments
y — ISO year numbers
scalar | vector | matrix | multidimensional array

ISO year numbers, returned as a scalar, vector, matrix, or multidimensional array of
integer values. ISO year numbers include a year zero and represent years BCE using
negative values. y is of type double and is the same size as t.

m — Month numbers
scalar | vector | matrix | multidimensional array

Month numbers, returned as a scalar, vector, matrix, or multidimensional array of integer
values from 1 to 12. m is of type double and is the same size as t.

d — Day of month numbers
scalar | vector | matrix | multidimensional array

Day of month numbers, returned as a scalar, vector, matrix, or multidimensional array of
integer values from 1 to 28, 29, 30, or 31, depending on the month and year. d is of type
double and is the same size as t.

 ymd

1-16401

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
day | hms | month | quarter | week | year

Introduced in R2014b

1 Alphabetical List

1-16402

ytickangle
Rotate y-axis tick labels

Syntax
ytickangle(angle)
ytickangle(ax,angle)

ang = ytickangle
ang = ytickangle(ax)

Description
ytickangle(angle) rotates the y-axis tick labels for the current axes to the specified
angle in degrees, where 0 is horizontal. Specify a positive value for counterclockwise
rotation or a negative value for clockwise rotation.

ytickangle(ax,angle) rotates the tick labels for the axes specified by ax instead of
the current axes.

ang = ytickangle returns the rotation angle for the y-axis tick labels of the current
axes as a scalar value in degrees. Positive values indicate counterclockwise rotation.
Negative values indicate clockwise rotation.

ang = ytickangle(ax) uses the axes specified by ax instead of the current axes.

Examples

Rotate y-Axis Tick Labels

Create a stem chart and rotate the y-axis tick labels 90 degrees so that they appear
vertically.

x = linspace(0,50,20);
y = x.^2;

 ytickangle

1-16403

stem(x,y)
ytickangle(90)

Rotate y-Axis Tick Labels for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Rotate the
y-axis tick labels for the lower subplot by specifying ax2 as the first input argument to
ytickangle.

ax1 = subplot(2,1,1);
plot(rand(6))

1 Alphabetical List

1-16404

ax2 = subplot(2,1,2);
plot(rand(6))
ytickangle(ax2,45)

Query Current Angle for y-Axis Tick Labels

Create a stem chart. Then, query the rotation angle for the y-axis tick labels. By default,
the labels are not rotated.

 ytickangle

1-16405

x = linspace(0,50,20);
y = x.^2;
stem(x,y)

ang = ytickangle

ang = 0

Input Arguments
angle — Rotation of tick labels
0 (default) | scalar value in degrees

1 Alphabetical List

1-16406

Rotation of tick labels, specified as a scalar value in degrees, where 0 is horizontal.
Example: ytickangle(90)

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then ytickangle uses the current axes.

Algorithms
The ytickangle function sets and queries the YTickLabelRotation property of the
Axes object.

See Also
Functions
xtickangle | ylim | ytickformat | yticklabels | yticks | ztickangle

Properties
Axes

Introduced in R2016b

 ytickangle

1-16407

ytickformat
Specify y-axis tick label format

Syntax
ytickformat(fmt)
ytickformat(datefmt)
ytickformat(durationfmt)
ytickformat(ax, ___)

yfmt = ytickformat
yfmt = ytickformat(ax)

Description
ytickformat(fmt) sets the format for numeric y-axis tick labels. For example, specify
fmt as 'usd' to display the labels in U.S. dollars.

ytickformat(datefmt) sets the format for labels that show dates or times. For
example, specify datefmt as 'MM-dd-yy' to display dates such as 04-19-16. This
option applies only to a y-axis with datetime values.

ytickformat(durationfmt) sets the format for labels that show durations. For
example, specify durationfmt as 'm' to display the durations in minutes. This option
applies only to a y-axis with duration values.

ytickformat(ax, ___) uses the axes specified by ax instead of the current axes.
Specify ax as the first input argument.

yfmt = ytickformat returns the format style used for y-axis tick labels of the current
axes. Depending on the type of labels along the y-axis, yfmt is a character vector of a
numeric format, date format, or duration format.

yfmt = ytickformat(ax) returns the format style used for the axes specified by ax
instead of the current axes.

1 Alphabetical List

1-16408

Examples

Display Tick Labels in Dollars

Display the y-axis tick labels in dollars with and without decimal values.

Create a bar chart. Display the tick labels along the y-axis in dollars.

x = 0:20:100;
y = [88 67 98 43 45 65];
bar(x,y)
ytickformat('usd')

 ytickformat

1-16409

Query the tick label format. MATLAB® returns the format as a character vector
containing the formatting operators.

fmt = ytickformat

fmt =
'$%,.2f'

Display the tick labels with no decimal values by tweaking the numeric format to use a
precision value of 0 instead of 2.

ytickformat('$%,.0f')

1 Alphabetical List

1-16410

Display Text After Each Tick Label

Create a line chart. Display the tick labels along the y-axis with the text "M" after each
value.

x = 1:10;
y = [17 25 27 28 33 32 33 34 33 35];
plot(x,y,'-V')
ytickformat('%g M')

 ytickformat

1-16411

Control Number of Decimals Displayed

Create a scatter plot of random data. Display the y-axis tick labels with two decimal
places. Control the decimal places by passing ytickformat a character vector of a
numeric format that uses fixed-point notation for the conversion character and a precision
value of 2.

x = rand(30,1);
y = rand(30,1);
scatter(x,y);
ytickformat('%.2f')

1 Alphabetical List

1-16412

Tick Label Format for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Specify the
tick label format for the y-axis of the lower subplot by specifying ax2 as the first input
argument to ytickformat. Display the tick labels in US dollars.

ax1 = subplot(2,1,1);
plot(rand(6))

ax2 = subplot(2,1,2);
plot(rand(6))
ytickformat(ax2,'usd')

 ytickformat

1-16413

Input Arguments
fmt — Format for numeric tick labels
'%g' (default) | character vector | string scalar

Format for numeric tick labels, specified as a character vector or string scalar. You can
specify one of the formats listed in this table. Alternatively, you can specify a custom
format.

Predefined Format Description
'usd' U.S. dollars. This option is equivalent using

'$%,.2f'. If the labels use scientific
notation, this option sets the exponent
value to 0.

'eur' Euro. This option is equivalent to using
'\x20AC%,.2f' with an exponent value of
0.

'gbp' British pound. This option is equivalent to
using '\x00A3%,.2f' with an exponent
value of 0.

'jpy' Japanese yen. This option is equivalent to
using '\x00A5%,d' with an exponent
value of 0.

'degrees' Display degree symbol after values. This
option is equivalent to using '%g\x00B0'
with the default exponent value.

'percentage' Display percent sign after values. This
option is equivalent to using '%g%%' with
the default exponent value.

'auto' Default format of '%g' with the default
exponent value.

Example: ytickformat('usd')

Custom Numeric Format

You can specify a custom numeric format by creating a character vector or string
containing identifiers.

1 Alphabetical List

1-16414

Identifiers are optional, except the percent sign and conversion character. Construct the
format in this order:

• One or more flags — Options such as adding a plus sign before positive values. For a
full list of options, see the table of Optional Flags.

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

• Conversion character — Value type. For a full list of options, see the table of
Conversion Characters. If you specify a conversion that does not fit the data, then
MATLAB overrides the specified conversion, and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

Example: ytickformat('%.2f') displays the values using fixed-point notation with
two decimal places.

Example: ytickformat('$%.2f') displays a dollar sign before each value.

Example: ytickformat('%.2f million') displays million after each value.

 ytickformat

1-16415

Optional Flags

Identifier Description Example of Numeric
Format

, Display commas every three
digits, such as '1,000'.

'%,4.4g'

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left-justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

1 Alphabetical List

1-16416

Conversion Characters

Identifier Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

datefmt — Format for dates and times
'auto' | character vector | string scalar

Format for dates and times, specified as 'auto', a character vector, or a string scalar.
The default format is based on the data.
Example: ytickformat('yyyy-MM-dd') displays a date and time such as 2016-04-19.
Example: ytickformat('eeee, MMMM d, yyyy HH:mm:ss') displays a date and time
such as Saturday, April 19, 2016 21:41:06.
Example: ytickformat('MMMM d, yyyy HH:mm:ss Z') displays a date and time such
as April 19, 2016 21:41:06 -0400.

The display format tables show the letter identifiers that you can use to construct the
format. To separate the fields, you can include nonletter characters such as a hyphen,
space, colon, or any non-ASCII characters. The identifiers correspond to the Unicode
Locale Data Markup Language (LDML) standard for dates.

Date and Time Formats

Use these identifiers to specify the display formats of the date and time fields.

 ytickformat

1-16417

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. See the

Note that follows this table.
2014

yy Year, using last two digits. See the
Note that follows this table.

14

yyy, yyyy ... Year, using at least the number of
digits specified by the number of
instances of 'y'

For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year. A single number
designating the year. An ISO year
value assigns positive values to CE
years and negative values to BCE
years, with 1 BCE being year 0.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2
QQQQ Quarter, full name 2nd quarter
M Month, numerical using one or two

digits
4

MM Month, numerical using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A
W Week of the month 1
d Day of the month, using one or two

digits
5

dd Day of the month using two digits 05
D Day of the year, using one, two or

three digits
95

DD Day of the year using two digits 95

1 Alphabetical List

1-16418

Letter
Identifier

Description Display

DDD Day of the year using three digits 095
e Day of the week, numerical using

one or two digits.
7, where Sunday is the first day of
the week.

ee Day of the week, numerical using
two digits

07

eee Day, abbreviated name Sat
eeee Day, full name Saturday
eeeee Day, capitalized first letter S
a Day period (AM or PM) PM
h Hour, 12-hour clock notation using

one or two digits
9

hh Hour, 12-hour clock notation using
two digits

09

H Hour, 24-hour clock notation using
one or two digits

21

HH Hour, 24-hour clock notation using
two digits

21

m Minute, using one or two digits 41
mm Minute, using two digits 41
s Second, using one or two digits 6
ss Second, using two digits 06
S, SS, ...,
SSSSSSSSS

Fractional second, using the
number of digits specified by the
number of instances of 'S' (up to 9
digits).

'SSS' truncates 6.12345 seconds
to 123.

Some tips and considerations:

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

• Datetime values later than 144683 years CE or before 140743 BCE display only the
year numbers, regardless of the specified format value.

 ytickformat

1-16419

Time Zone Offset Formats

Use these identifiers to specify the display format of the time zone offset. A time zone
offset is the amount of time that a specific date and time is offset from UTC. A time zone
offset is different from a time zone in that it comprises rules that determine the offsets for
specific times of the year. Include a time zone offset identifier when you want to ensure
that the time components are displayed unambiguously.

Letter
Identifier

Description Display

z Abbreviated name of the time zone
offset. If this value is not available,
then the time zone offset uses the
short UTC format, such as UTC-4.

EDT

Z ISO 8601 basic format with hours,
minutes, and optional seconds
fields.

-0400

ZZZZ Long UTC format. UTC-04:00
ZZZZZ ISO 8601 extended format with

hours, minutes, and optional
seconds fields. A time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

x or X ISO 8601 basic format with hours
field and optional minutes field. If
you specify X, a time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04

xx or XX ISO 8601 basic format with hours
and minutes fields. If you specify
XX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-0400

1 Alphabetical List

1-16420

Letter
Identifier

Description Display

xxx or XXX ISO 8601 extended format with
hours and minutes fields. If you
specify XXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

xxxx or XXXX ISO 8601 basic format with hours,
minutes, and optional seconds
fields. If you specify XXXX, a time
offset of zero is displayed as the
ISO 8601 UTC indicator “Z”.

-0400

xxxxx or
XXXXX

ISO 8601 extended format with
hours, minutes, and optional
seconds fields. If you specify
XXXXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

durationfmt — Format for duration values
character vector | string scalar

Format for duration values, specified as a character vector or string scalar.

To display a duration as a single number that includes a fractional part (for example,
1.234 hours), specify one of the following formats.

Format Description
'y' Number of exact, fixed-length years. A fixed-length

year is equal to 365.2425 days.
'd' Number of exact, fixed-length days. A fixed-length day

is equal to 24 hours.
'h' Number of hours
'm' Number of minutes
's' Number of seconds

To display a duration in the form of a digital timer, specify one of these formats:

 ytickformat

1-16421

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'

In addition, you can display up to nine fractional second digits by appending up to nine S
characters. For example, 'hh:mm:ss.SSS' displays the milliseconds of a duration value
to three digits.

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then ytickformat uses the current axes.

Algorithms
The ytickformat function sets and queries the TickLabelFormat property of the ruler
object associated with the y-axis.

See Also
Functions
xtickformat | ylim | ytickangle | yticklabels | yticks | ztickformat

Properties
DatetimeRuler | DurationRuler | NumericRuler

Introduced in R2016b

1 Alphabetical List

1-16422

yticklabels
Set or query y-axis tick labels

Syntax
yticklabels(labels)
yl = yticklabels

yticklabels('auto')
yticklabels('manual')
m = yticklabels('mode')

___ = yticklabels(ax, ___)

Description
yticklabels(labels) sets the y-axis tick labels on page 1-16431 for the current axes.
Specify labels as a string array or a cell array of character vectors; for example,
{'January','February','March'}. If you specify the labels, then the y-axis tick
values and tick labels no longer update automatically based on changes to the axes.

yl = yticklabels returns the y-axis tick labels for the current axes.

yticklabels('auto') sets an automatic mode, enabling the axes to determine the y-
axis tick labels. Use this option if you set the labels and then want to set them back to the
default values.

yticklabels('manual') sets a manual mode, freezing the y-axis tick labels at the
current values.

m = yticklabels('mode') returns the current value of the y-axis tick labels mode,
which is either 'auto' or 'manual'. By default, the mode is automatic unless you
specify the tick labels or set the mode to manual.

___ = yticklabels(ax, ___) uses the axes specified by ax instead of the current
axes. Specify ax as the first input argument for any of the previous syntaxes.

 yticklabels

1-16423

Examples

Specify y-Axis Tick Values and Labels

Create a line plot. Display tick marks along the y-axis at the values 0, 50, and 100. Then,
specify a label for each tick mark.

x = linspace(0,10);
y = x.^2;
plot(x,y)
yticks([0 50 100])
yticklabels({'y = 0','y = 50','y = 100'})

1 Alphabetical List

1-16424

Specify y-Axis Tick Labels for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Plot
random data in each subplot. Set the y-axis tick values and labels for the lower subplot by
specifying ax2 as the first input argument.

ax1 = subplot(2,1,1);
plot(rand(3))

ax2 = subplot(2,1,2);
plot(rand(3))
yticks(ax2,[0 .25 .5 .75 1])
yticklabels(ax2,{'y = 0','1/4','1/2','3/4','y = 1'})

 yticklabels

1-16425

Set y-Axis Tick Labels Back to Default Labels

Create a stem chart and specify the y-axis tick values and corresponding labels. Then, set
the y-axis tick values and labels back to the default values.

stem(1:10)
yticks([1 4 6 10])
yticklabels({'A','B','C','D'})

1 Alphabetical List

1-16426

yticks('auto')
yticklabels('auto')

 yticklabels

1-16427

Remove y-Axis Tick Labels

Remove the tick labels along the y-axis by specifying the tick labels as an empty array.

plot(rand(5))
yticklabels({})

1 Alphabetical List

1-16428

Input Arguments
labels — Tick labels
cell array of character vectors | string array | categorical array

Tick labels on page 1-16431, specified as a cell array of character vectors, string array, or
categorical array. If you do not want tick labels to show, then specify an empty cell array
{}. Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter
property of the Axes object for more information.
Example: yticklabels({'0','\pi','2\pi'})

 yticklabels

1-16429

Example: yticklabels({'January','Febrary','March'})
Example: yticklabels({})

Note

• If you specify the tick labels as a categorical array, MATLAB uses the values in the
array, not the categories.

• To specify the tick values, use the yticks function.

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then yticklabels uses the current axes.

Output Arguments
yl — Current tick labels
cell array of character vectors | character array

Current tick labels, returned as a cell array of character vectors or a character array.

m — Current tick labels mode
'auto' | 'manual'

Current tick labels mode, returned as one of these values:

• 'auto' — Automatically determine the y-axis tick labels.
• 'manual' — Use manually specified y-axis tick labels.

1 Alphabetical List

1-16430

Definitions

Tick Labels
The tick labels are the labels that you see next to each tick mark. The tick values are the
locations along the y-axis where the tick marks appear. Set the tick values using the
yticks function. Set the corresponding tick labels using the yticklabels function.

Algorithms
The yticklabels function sets and queries several axes properties related to the y-axis
tick labels.

• YTickLabel — Property that stores the text for the y-axis tick labels.
• YTickLabelMode — Property that stores the y-axis tick label mode. When you set the

y-axis tick labels using yticklabels, this property changes to 'manual'.
• YTickMode — Property that stores the y-axis tick value mode. When you set the y-axis

tick labels using yticklabels, this property changes to 'manual'.

 yticklabels

1-16431

See Also
Functions
xticklabels | ylim | ytickangle | ytickformat | yticks | zticklabels

Properties
Axes

Topics
“Specify Axis Tick Values and Labels”

Introduced in R2016b

1 Alphabetical List

1-16432

yticks
Set or query y-axis tick values

Syntax
yticks(ticks)
yt = yticks

yticks('auto')
yticks('manual')
m = yticks('mode')

___ = yticks(ax, ___)

Description
yticks(ticks) sets the y-axis tick values on page 1-16442, which are the locations
along the y-axis where the tick marks appear. Specify ticks as a vector of increasing
values; for example, [0 2 4 6]. This command affects the current axes.

yt = yticks returns the current y-axis tick values as a vector.

yticks('auto') sets an automatic mode, enabling the axes to determine the y-axis tick
values. Use this option if you change the tick values and then want to set them back to
the default values.

yticks('manual') sets a manual mode, freezing the y-axis tick values at the current
values. Use this option if you want to retain the current tick values when resizing the axes
or adding new data to the axes.

m = yticks('mode') returns the current y-axis tick values mode, which is either
'auto' or 'manual'. By default, the mode is automatic unless you specify tick values or
change the mode to manual.

___ = yticks(ax, ___) uses the axes specified by ax instead of the current axes.
Specify ax as the first input argument for any of the previous syntaxes.

 yticks

1-16433

Examples

Specify y-Axis Tick Values and Labels

Create a line plot. Display tick marks along the y-axis at the values 0, 50, and 100. Then,
specify a label for each tick mark.

x = linspace(0,10);
y = x.^2;
plot(x,y)
yticks([0 50 100])
yticklabels({'y = 0','y = 50','y = 100'})

1 Alphabetical List

1-16434

Specify Nonuniform y-Axis Tick Values

Display tick marks along the y-axis at nonuniform values between 0 and 25. MATLAB®
labels the tick marks with the numeric values.

x = linspace(-5,5);
y = x.^2;
plot(x,y)
yticks([0 2 4 6 8 10 15 25])

 yticks

1-16435

Increment y-Axis Tick Values by 25

Display tick marks along the y-axis at increments of 25, starting from 0 and ending at
100.

x = linspace(0,10);
y = x.^2;
plot(x,y)
yticks(0:25:100)

1 Alphabetical List

1-16436

Set y-Axis Tick Values Back to Default Values

Create a stem chart and specify the y-axis tick values. Then, set the y-axis tick values
back to the default values.

stem(1:10)
yticks([0 5 10])

yticks('auto')

 yticks

1-16437

Specify y-Axis Tick Values for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Plot
random data in each subplot. Set the y-axis ticks for the lower subplot by passing ax2 as
the first input argument to the yticks function.

ax1 = subplot(2,1,1);
plot(rand(3))

ax2 = subplot(2,1,2);

1 Alphabetical List

1-16438

plot(rand(3))
yticks(ax2,0:.2:1)

Remove y-Axis Tick Marks

Remove the tick marks along the y-axis by specifying the tick values as an empty array.

x = linspace(0,10);
y = sin(x);
plot(x,y)
yticks([])

 yticks

1-16439

Input Arguments
ticks — Tick values
vector of increasing values

Tick values on page 1-16442, specified as a vector of increasing values. If you do not want
tick marks along the y-axis, specify an empty vector [].

You can specify the tick values as numeric, categorical, datetime, or duration values.
However, the type of values that you specify must match the type of values along the y-
axis.

1 Alphabetical List

1-16440

Example: yticks([pi 2*pi 3*pi 4*pi])
Example: yticks(0:10:100)
Example: yticks([])

Note To specify the tick labels, use the yticklabels function.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then yticks uses the current axes.

Output Arguments
yt — Current tick values
vector

Current tick values, returned as a vector.

m — Current mode
'auto' | 'manual'

Current mode, returned as one of these values:

• 'auto' — Automatically determine the y-axis tick values.
• 'manual' — Use manually specified y-axis tick values.

 yticks

1-16441

Definitions

Tick Values
The tick values are the locations along the y-axis where the tick marks appear. The tick
labels are the labels that you see next to each tick mark. Set the tick values using the
yticks function. Set the corresponding tick labels using the yticklabels function.

Algorithms
The yticks function sets and queries several axes properties related to the y-axis tick
values.

• YTick — Property that stores the y-axis tick values.
• YTickMode — Property that stores the y-axis tick value mode. When you set the y-axis

tick values, this property changes to 'manual'.

See Also
Functions
xticks | ylim | ytickangle | ytickformat | yticklabels | zticks

1 Alphabetical List

1-16442

Properties
Axes

Topics
“Specify Axis Tick Values and Labels”

Introduced in R2016b

 yticks

1-16443

yyaxis
Create chart with two y-axes

Syntax
yyaxis left
yyaxis right

yyaxis(ax, ___)

Description
yyaxis left activates the side of the current axes associated with the left y-axis.
Subsequent graphics commands target the left side. If the current axes do not include
two y-axes, then this command adds a second y-axis. If there are no axes, then this
command first creates them.

yyaxis right activates the side of the current axes associated with the right y-axis.
Subsequent graphics commands target the right side.

yyaxis(ax, ___) specifies the active side for the axes ax instead of the current axes. If
the axes do not include two y-axes, then this command adds a second y-axis. Specify the
axes as the first input argument. Use single quotes around 'left' and 'right'.

Examples

Plot Data Using Two y-Axes

Create axes with a y-axis on both the left and right sides. Plot a set of data against the left
y-axis. Then, use yyaxis right to activate the right side so that subsequent graphics
functions target it. Plot a second set of data against the right y-axis and set the limits for
the right y-axis.

x = linspace(0,10);
y = sin(3*x);

1 Alphabetical List

1-16444

yyaxis left
plot(x,y)

z = sin(3*x).*exp(0.5*x);
yyaxis right
plot(x,z)
ylim([-150 150])

Add Title and Axis Labels to Each Side

Create a chart with two y-axes and add a title and axis labels to each side.

 yyaxis

1-16445

Load the matrix hwydata from the example file accidents.mat. Create a scatter plot of
the fifth column in hwydata against the left y-axis. Add a title and axis labels.

load('accidents.mat','hwydata')
ind = 1:51;
drivers = hwydata(:,5);
yyaxis left
scatter(ind,drivers)
title('Highway Data')
xlabel('States')
ylabel('Licensed Drivers (thousands)')

Create a second scatter plot of the seventh column in hwydata against the right y-axis.
Then, label the right y-axis.

1 Alphabetical List

1-16446

pop = hwydata(:,7);
yyaxis right
scatter(ind,pop)
ylabel('Vehicle Miles Traveled (millions)')

Plot Multiple Sets of Data on Each Side

Plot two lines against the left y-axis by using the hold on command.

x = linspace(0,10);
yl1 = sin(x);
yl2 = sin(x/2);

 yyaxis

1-16447

yyaxis left
plot(x,yl1)
hold on
plot(x,yl2)

Plot two lines against the right y-axis. The hold command affects both the left and right
y-axes, so you do not need to reissue it. After plotting, turn hold back off.

yr1 = x;
yr2 = x.^2;
yyaxis right
plot(x,yr1)
plot(x,yr2)
hold off

1 Alphabetical List

1-16448

Clear the left side by making it active and then using the cla command.

yyaxis left
cla

 yyaxis

1-16449

Add Second y-Axis to Specific Axes

Create a figure with two subplots and assign the Axes objects to variables ax1 and ax2.
Add a second y-axis to the upper subplot by specifying ax1 as the first input to yyaxis. If
you do not specify the axes, then yyaxis adds a second y-axis to the current axes.

x = linspace(1,10);
ax1 = subplot(2,1,1);
yyaxis(ax1,'left')
plot(ax1,x,sin(x))
yyaxis(ax1,'right')
plot(ax1,x,exp(x))

1 Alphabetical List

1-16450

ax2 = subplot(2,1,2);
plot(ax2,1:10)

Input Arguments
ax — Target axes
current axes (default) | Axes object

Target axes, specified as an Axes object. If you do not specify an Axes object, then
yyaxis uses the current axes.

 yyaxis

1-16451

Limitations
• When working with two y-axes, you cannot:

• Rotate the axes (2-D view only).
• Pin annotations.
• Copy the axes object using copyobj.

Tips
• To determine which side of the axes is active, query the YAxisLocation property for

the Axes object. The property is set to 'left' when the left side is active and
'right' when the right side is active. The YAxisLocation property for an Axes
object with two y-axes is read only.

• To clear the active side, use cla. To clear both sides of the axes and remove the right
y-axis, use cla reset. Alternatively, you can wait to clear both sides and remove the
right y-axis until the next plotting command by setting the NextPlot property of the
Axes object to 'replaceall'.

Algorithms

Grid Lines
Grid lines correspond with the tick mark locations along the left y-axis.

Colors and Line Styles
Plots associated with a particular side of the axes use the same color as the y-axis on that
side. If a side contains multiple lines, then the lines cycle through the line style order. The
left y-axis uses the first color in the color order of the Axes object, and the right y-axis
uses the second color.

If you add a second y-axis to an Axes object that contains charts, then the existing charts
and the left y-axis do not change colors. The right y-axis uses the next color in the color
order.

1 Alphabetical List

1-16452

Axes Properties
Axes properties related to the y-axis have two values. However, MATLAB gives access
only the value for the active side. For example, if the left side is active, then
the YLim property of the axes object contains the limits for the left y-axis. Similarly, if the
right side is active, then the YLim property contains the limits for the right y-axis.

An exception is that the YAxis property of the Axes object contains an array of two ruler
objects (one for each y-axis). You can use the rulers to access each y-axis without
depending on the active side. For an example, see “Modify Properties of Charts with Two
y-Axes”.

See Also
bar | cla | hold | plot | stairs | stem

Topics
“Create Chart with Two y-Axes”
“Modify Properties of Charts with Two y-Axes”

Introduced in R2016a

 yyaxis

1-16453

yyyymmdd
Convert MATLAB datetime to YYYYMMDD numeric value

Syntax
d = yyyymmdd(t)

Description
d = yyyymmdd(t) returns a double array containing integers whose digits represent
the datetime values in t. For example, the date July 16, 2014 is converted to the integer
20140716. The conversion is performed this way:

d = 10000*year(t) + 100*month(t) + day(t)

Examples

Convert Datetime Array to YYYYMMDD Numeric Values

Create an array of YYYYMMDD numeric values that represent dates.

d = [20140628 20140701 20140704]

d = 1×3

 20140628 20140701 20140704

Convert the dates to datetime values.

t = datetime(d,'ConvertFrom','yyyymmdd')

t = 1x3 datetime array
 28-Jun-2014 00:00:00 01-Jul-2014 00:00:00 04-Jul-2014 00:00:00

1 Alphabetical List

1-16454

Convert the datetime values back to YYYYMMDD numeric values.

d2 = yyyymmdd(t)

d2 = 1×3

 20140628 20140701 20140704

Input Arguments
t — Input date and time
datetime array

Input date and time, specified as a datetime array.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
datenum | datetime | exceltime | juliandate | posixtime

 yyyymmdd

1-16455

Introduced in R2014b

1 Alphabetical List

1-16456

zlabel
Label z-axis

Syntax
zlabel(txt)
zlabel(txt,Name,Value)

zlabel(ax, ___)

h = zlabel(___)

Description
zlabel(txt) labels the z-axis of the current axes with the text, txt. Reissuing the
zlabel command causes the new label to replace the old label.

zlabel(txt,Name,Value) additionally specifies the text object properties using one or
more Name,Value pair arguments.

zlabel(ax, ___) adds the label to the axes specified by ax. This syntax allows you to
specify the axes to which to add a label. ax can precede any of the input argument
combinations in the previous syntaxes.

h = zlabel(___) returns the handle to the text object used as the z-axis label. The
handle is useful when making future modifications to the label.

Examples

Label z-Axis

surf(peaks)
zlabel('Height')

 zlabel

1-16457

Label z-Axis with Numeric Input

figure
surf(peaks)
zlabel(123)

1 Alphabetical List

1-16458

MATLAB® displays 123 beside the z-axis.

Create Multiline z-Axis Label

Create a multiline label using a multiline cell array.

figure
surf(peaks)
zlabel({'First Line';'Second Line'})

 zlabel

1-16459

Label z-Axis and Set Font Properties

Use Name,Value pairs to set the font size, font weight, and text color properties of the z-
axis label.

figure
surf(peaks)
zlabel('Elevation','FontSize',12,...
 'FontWeight','bold','Color','r')

1 Alphabetical List

1-16460

'FontSize',12 displays the label text in 12-point font. 'FontWeight','bold' makes
the text bold. 'Color','r' sets the text color to red.

Label z-Axis of Specific Axes

Create two subplots and return the handles to the axes objects, s(1) and s(2).

figure
s(1) = subplot(2,1,1);
surf(peaks(30))
s(2) = subplot(2,1,2);
surf(peaks(45))

 zlabel

1-16461

Label the z-axis of each plot by referring to the axes handles, s(1) and s(2).

zlabel(s(1),'Height1')
zlabel(s(2),'Height2')

1 Alphabetical List

1-16462

Label z-Axis and Return Object Handle

Label the z-axis and return the text object used as the label.

surf(peaks)
t = zlabel('Population Change');

 zlabel

1-16463

Set the color of the label to red. Starting in R2014b, you can use dot notation to set
properties. If you are using an earlier release, use the set function instead.

t.Color = 'red';

1 Alphabetical List

1-16464

Input Arguments
txt — Axis label
string scalar | character vector | string array | character array | cell array | categorical
array | numeric value

Axis label, specified as a string scalar, character vector, string array, character array, cell
array, categorical array, or numeric value.
Example: 'my label'
Example: {'first line','second line'}

 zlabel

1-16465

Example: 123

To include numeric variables with text in a label, use the num2str function. For example:

x = 42;
txt = ['The value is ',num2str(x)];

To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols use TeX markup. For a list of supported markup, see the
Interpreter property.

To create multiline labels:

• Use a string array, where each element contains a line of text, such as ["first
line","second line"].

• Use a cell array, where each cell contains a line of text, such as {'first
line','second line'}.

• Use a character array, where each row contains the same number of characters, such
as ['abc'; 'ab '].

• Use sprintf to create text with a new line character, such as sprintf('first
line \n second line').

Numeric labels are converted to text using sprintf('%g',value). For example,
12345678 displays as 1.23457e+07.

Note

• If you specify the label as a categorical array, MATLAB uses the values in the array, not
the categories.

• The words default, factory, and remove are reserved words that will not appear in
a label when quoted as a normal characters. To display any of these words individually,
precede them with a backslash, such as '\default' or '\remove'.

ax — Axes object
axes object

Axes object. If you do not specify an axes, then the zlabel function uses the current
axes.

1 Alphabetical List

1-16466

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','red','FontSize',12 specifies red, 12-point font.

In addition to the following, you can specify other text object properties using
Name,Value pair arguments. See Text.

FontSize — Font size
11 (default) | scalar value greater than 0

Font size, specified as a scalar value greater than 0 in point units. One point equals 1/72
inch. To change the font units, use the FontUnits property.

Setting the font size properties for the associated axes also affects the label font size. The
label font size updates to equal the axes font size times the label scale factor. The
FontSize property of the axes contains the axes font size. The
LabelFontSizeMultiplier property of the axes contains the label scale factor. By
default, the axes font size is 10 points and the scale factor is 1.1, so the z-axis label font
size is 11 points.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontName — Font name
supported font name | 'FixedWidth'

Font name, specified as a supported font name or 'FixedWidth'. To display and print
text properly, you must choose a font that your system supports. The default font depends
on your operating system and locale.

 zlabel

1-16467

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The fixed-
width font relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

Color — Text color
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

1 Alphabetical List

1-16468

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Interpreter — Interpretation of text characters
'tex' (default) | 'latex' | 'none'

Interpretation of text characters, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup.
• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the font type and color, and include special characters
in the text.

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an
exception because they modify only the next character or the characters within the curly
braces. When you set the Interpreter property to 'tex', the supported modifiers are
as follows.

 zlabel

1-16469

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the

same as italic font)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Font name — Replace

specifier with the name
of a font family. You can use
this in combination with
other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace
specifier with a numeric
scalar value in point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Custom font color —
Replace specifier with a
three-element RGB triplet.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

1 Alphabetical List

1-16470

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarro

w
→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇

 zlabel

1-16471

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

LaTeX Markup

To use LaTeX markup, set the Interpreter property to 'latex'. Use dollar symbols
around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or '$$
\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. The FontName, FontWeight, and
FontAngle properties do not have an effect. To change the font style, use LaTeX markup.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this reduces by about 10 characters per line.

For more information about the LaTeX system, see The LaTeX Project website at https://
www.latex-project.org/.

Output Arguments
h — Text object
text object

Text object used as the z-axis label. Use h to access and modify properties of the label
after its created.

1 Alphabetical List

1-16472

https://www.latex-project.org
https://www.latex-project.org

See Also
Functions
num2str | text | title | xlabel | ylabel

Properties
Text

Topics
“Add Title and Axis Labels to Chart”

Introduced before R2006a

 zlabel

1-16473

xlim
Set or query x-axis limits

Syntax
xlim(limits)
xl = xlim

xlim auto
xlim manual
m = xlim('mode')

___ = xlim(target, ___)

Description
xlim(limits) sets the x-axis limits for the current axes or chart. Specify limits as a
two-element vector of the form [xmin xmax], where xmax is greater than xmin.

xl = xlim returns the current limits as a two-element vector.

xlim auto sets an automatic mode, enabling the axes to determine the x-axis limits. The
limits span the range of the plotted data. Use this option if you change the limits and then
want to set them back to the default values. This command sets the XLimMode property
for the axes to 'auto'.

xlim manual sets a manual mode, freezing the limits at the current values. Use this
option if you want to retain the current limits when adding new data to the axes using the
hold on command. This command sets the XLimMode property for the axes to
'manual'.

m = xlim('mode') returns the current x-axis limits mode, which is either 'auto' or
'manual'. By default, the mode is automatic unless you specify limits or set the mode to
manual.

___ = xlim(target, ___) uses the axes or chart specified by target instead of the
current axes. Specify target as the first input argument for any of the previous syntaxes.

1 Alphabetical List

1-16474

You can include an output argument if the original syntax supports an output argument.
Use single quotes around the mode inputs, for example, xlim(target,'auto').

Examples

Set x-Axis Limits

Plot a line and set the x-axis limits to range from 0 to 5.

x = linspace(0,10);
y = sin(x);
plot(x,y)
xlim([0 5])

 xlim

1-16475

Use Semiautomatic x-Axis Limits

Create a surface plot and show only x values greater than 0. Specify the minimum x-axis
limit as 0 and let MATLAB choose the maximum limit.

[X,Y,Z] = peaks;
surf(X,Y,Z)
xlim([0 inf])

1 Alphabetical List

1-16476

Set Limits for x-Axis with Dates

Create a stem chart with dates along the x-axis. Set the x-axis limits to range from June 1,
2014 to June 5, 2014.

t = datetime(2014,06,1) + caldays(0:10);
y = rand(11,1);
stem(t,y,'filled')

tstart = datetime(2014,06,1);
tend = datetime(2014,06,5);
xlim([tstart tend])

 xlim

1-16477

Set x-Axis Limits for Specific Axes

Create a figure with two subplots and assign the Axes objects to the variables ax1 and
ax2. Plot the same data in each subplot. Set the x-axis limits for the bottom subplot by
specifying ax2 as the first input argument to xlim.

x = linspace(0,5,1000);
y = sin(100*x)./exp(x);
ax1 = subplot(2,1,1);
plot(x,y)

1 Alphabetical List

1-16478

ax2 = subplot(2,1,2);
plot(x,y)
xlim(ax2,[0 1])

Maintain Current x-Axis Limits

Use manual mode to maintain the current x-axis limits when you add more plots to the
axes.

First, plot a line.

 xlim

1-16479

x = linspace(0,10);
y = sin(x);
plot(x,y);

Set the x-axis limits mode to manual so that the limits do not change. Use hold on to add
a second plot to the axes.

xlim manual
hold on
plot(2*x,2*y)
hold off

1 Alphabetical List

1-16480

The x-axis limits do not update to incorporate the new plot.

Switch back to automatically updated limits by resetting the mode to automatic.

xlim auto

 xlim

1-16481

Return x-Axis Limits

Create a scatter plot of random data. Return the values of the x-axis limits.

x = randn(50,1);
y = randn(50,1);
scatter(x,y)

1 Alphabetical List

1-16482

xl = xlim

xl = 1×2

 -3 4

Input Arguments
limits — Minimum and maximum limits
two-element vector

 xlim

1-16483

Minimum and maximum limits, specified as a two-element vector of the form [xmin
xmax], where xmax is greater than xmin. You can specify the limits as numeric,
categorical, datetime, or duration values. However, the type of values that you specify
must match the type of values along the x-axis.

You can specify both limits, or specify one limit and let MATLAB automatically calculate
the other. For an automatically calculated minimum or maximum limit, use -inf or inf,
respectively.
Example: xlim([0 1])
Example: xlim([-inf 1])
Example: xlim([0 inf])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

target — Target axes or chart
Axes object | graphics object

Target axes or chart, specified as an Axes object or a graphics object with an XLimits
property, such as a HeatmapChart object. If you do not specify the axes or chart, then
xlim sets the limits for the current axes or chart (returned by gca).

Output Arguments
xl — Current limits
two-element vector

Current limits, returned as a two-element vector of the form [xmin xmax].

Querying the limits returns the XLim or XLimits property value for corresponding Axes
or graphics object.

m — Current limits mode
'auto' | 'manual'

Current limits mode, returned as one of these values:

• 'auto' — Automatically determine the limits.

1 Alphabetical List

1-16484

• 'manual' — Use manually specified limits that do not update to reflect changes in the
data.

Querying the x-axis limits mode returns XLimMode property value for the corresponding
Axes object.

Algorithms
The xlim function sets and queries several axes properties related to the x-axis limits.

• XLim — Property that stores the x-axis limits.
• XLimMode — Property that stores the x-axis limits mode. When you set the x-axis

limits, this property changes to 'manual'.

See Also
Functions
grid | xlabel | xtickformat | xticklabels | xticks | ylim | zlim

Properties
Axes

Topics
“Specify Axis Limits”

Introduced before R2006a

 xlim

1-16485

ylim
Set or query y-axis limits

Syntax
ylim(limits)
yl = ylim

ylim auto
ylim manual
m = ylim('mode')

___ = ylim(target, ___)

Description
ylim(limits) sets the y-axis limits for the current axes or chart. Specify limits as a
two-element vector of the form [ymin ymax], where ymax is greater than ymin.

yl = ylim returns the current limits as a two-element vector.

ylim auto sets an automatic mode, enabling the axes to determine the y-axis limits. The
limits span the range of the plotted data. Use this option if you change the limits and then
want to set them back to the default values. This command sets the YLimMode property
for the axes to 'auto'.

ylim manual sets a manual mode, freezing the limits at the current values. Use this
option if you want to retain the current limits when adding new data to the axes using the
hold on command. This command sets the YLimMode property for the axes to
'manual'.

m = ylim('mode') returns the current y-axis limits mode, which is either 'auto' or
'manual'. By default, the mode is automatic unless you specify limits or set the mode to
manual.

___ = ylim(target, ___) uses the axes or chart specified by target instead of the
current axes. Specify target as the first input argument for any of the previous syntaxes.

1 Alphabetical List

1-16486

You can include an output argument if the original syntax supports an output argument.
Use single quotes around the mode inputs, for example, ylim(target,'auto').

Examples

Set y-Axis Limits

Plot a line and set the y-axis limits to range from -2 to 2.

x = linspace(0,10);
y = sin(x);
plot(x,y)
ylim([-2 2])

 ylim

1-16487

Use Semiautomatic y-Axis Limits

Create a surface plot and show only y values greater than 0. Specify the minimum y-axis
limit as 0 and let MATLAB choose the maximum limit.

[X,Y,Z] = peaks;
surf(X,Y,Z)
ylim([0 inf])

1 Alphabetical List

1-16488

Set Limits for y-Axis with Dates

Create a horizontal bar chart with dates along the y-axis. Set the y-axis limits to range
from June 1, 2014 to June 10, 2014.

t = datetime(2014,06,1) + caldays(0:20);
y = rand(21,1);
barh(t,y)

tstart = datetime(2014,06,1);
tend = datetime(2014,06,10);
ylim([tstart tend])

 ylim

1-16489

Set y-Axis Limits for Specific Axes

Create a figure with two subplots and assign the Axes objects to the variables ax1 and
ax2. Plot the same data in each subplot. Set the y-axis limits for the bottom subplot by
specifying ax2 as the first input to ylim.

x = linspace(0,10,1000);
y = sin(10*x).*exp(.5*x);
ax1 = subplot(2,1,1);
plot(x,y)

1 Alphabetical List

1-16490

ax2 = subplot(2,1,2);
plot(x,y)
ylim(ax2,[-10 10])

Maintain Current y-Axis Limits

Use manual mode to maintain the current y-axis limits when you add more plots to the
axes.

First, plot a line.

 ylim

1-16491

x = linspace(0,10);
y = sin(x);
plot(x,y)

Set the y-axis limits mode to manual so that the limits to not change. Use hold on to add
a second plot to the axes.

ylim manual
hold on
y2 = 2*sin(x);
plot(x,y2)
hold off

1 Alphabetical List

1-16492

The y-axis limits do not update to incorporate the new plot.

Switch back to automatically updated limits by resetting the mode to automatic.

ylim auto

 ylim

1-16493

Return y-Axis Limits

Create a scatter plot of random data. Return the values of the y-axis limits.

x = randn(50,1);
y = randn(50,1);
scatter(x,y)

1 Alphabetical List

1-16494

yl = ylim

yl = 1×2

 -2 3

Input Arguments
limits — Minimum and maximum limits
two-element vector

 ylim

1-16495

Minimum and maximum limits, specified as a two-element vector of the form [ymin
ymax], where ymax is greater than ymin. You can specify the limits as numeric,
categorical, datetime, or duration values. However, the type of values that you specify
must match the type of values along the y-axis.

You can specify both limits, or specify one limit and let MATLAB automatically calculate
the other. For an automatically calculated minimum or maximum limit, use -inf or inf,
respectively.
Example: ylim([0 1])
Example: ylim([-inf 1])
Example: ylim([0 inf])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

target — Target axes or chart
Axes object | graphics object

Target axes or chart, specified as an Axes object or a graphics object with an YLimits
property, such as a HeatmapChart object. If you do not specify the axes or chart, then
ylim sets the limits for the current axes or chart (returned by gca).

Output Arguments
yl — Current limits
two-element vector

Current limits, returned as a two-element vector of the form [ymin ymax].

Querying the limits returns the YLim or YLimits property value for the corresponding
Axes or graphics object.

m — Current limits mode
'auto' | 'manual'

Current limits mode, returned as one of these values:

• 'auto' — Automatically determine the limits.

1 Alphabetical List

1-16496

• 'manual' — Use manually specified limits that do not update to reflect changes in the
data.

Querying the y-axis limits mode returns YLimMode property value for the corresponding
Axes object.

Algorithms
The ylim function sets and queries several axes properties related to the y-axis limits.

• YLim — Property that stores the y-axis limits.
• YLimMode — Property that stores the y-axis limits mode. When you set the y-axis

limits, this property changes to 'manual'.

See Also
Functions
grid | xlim | ylabel | ytickformat | yticklabels | yticks | zlim

Properties
Axes

Topics
“Specify Axis Limits”

Introduced before R2006a

 ylim

1-16497

zlim
Set or query z-axis limits

Syntax
zlim(limits)
zl = zlim

zlim auto
zlim manual
m = zlim('mode')

___ = zlim(ax, ___)

Description
zlim(limits) sets the z-axis limits for the current axes. Specify limits as a two-
element vector of the form [zmin zmax], where zmax is greater than zmin.

zl = zlim returns the current limits as a two-element vector.

zlim auto sets an automatic mode, enabling the axes to determine the z-axis limits. The
limits span the range of the plotted data. Use this option if you change the limits and then
want to set them back to the default values. This command sets the ZLimMode property
for the axes to 'auto'.

zlim manual sets a manual mode, freezing the limits at the current values. Use this
option if you want to retain the current limits when adding new data to the axes using the
hold on command. This command sets the ZLimMode property for the axes to
'manual'.

m = zlim('mode') returns the current z-axis limits mode, which is either 'auto' or
'manual'. By default, the mode is automatic unless you specify limits or set the mode to
manual.

___ = zlim(ax, ___) uses the axes specified by ax instead of the current axes.
Specify ax as the first input argument for any of the previous syntaxes. You can include

1 Alphabetical List

1-16498

an output argument if the original syntax supports an output argument. Use single quotes
around the mode inputs, for example, zlim(ax,'auto').

Examples

Set z-Axis Limits

Plot a surface and set the z-axis limits to range from -5 to 5.

[X,Y,Z] = peaks;
surf(X,Y,Z);
zlim([-5 5])

 zlim

1-16499

Use Semiautomatic z-Axis Limits

Create a mesh surface plot and show only z values greater than 0. Specify the minimum z-
axis limit as 0 and let MATLAB choose the maximum limit.

[X,Y,Z] = peaks;
mesh(X,Y,Z)
zlim([0 inf])

1 Alphabetical List

1-16500

Set z-Axis Limits for Specific Axes

Create a figure with two subplots and assign the Axes objects to variables ax1 and ax2.
Plot the same data in each subplot. Set the z-axis limits for the bottom subplot by
specifying ax2 as the first input argument to zlim.

[X,Y,Z] = peaks;
ax1 = subplot(2,1,1);
surf(X,Y,Z)

ax2 = subplot(2,1,2);
surf(X,Y,Z)
zlim(ax2,[-5 5])

 zlim

1-16501

Maintain Current z-Axis Limits

Use manual mode to maintain the current z-axis limits when you add more plots to the
axes.

First, create a 3-D scatter plot.

theta = linspace(0,2*pi);
X = cos(theta);
Y = sin(theta);
Z = theta;
scatter3(X,Y,Z)

1 Alphabetical List

1-16502

Set the z-axis limits mode to manual so that the limits to not change. Use hold on to add
a second plot to the axes.

zlim manual
hold on
Znew = 5*theta;
scatter3(X,Y,Znew)
hold off

The z-axis limits do not update to incorporate the new plot.

Switch back to automatically updated limits by setting the mode to automatic.

zlim auto

 zlim

1-16503

Return z-Axis Limits

Create a 3-D scatter plot of random data. Return the values of the z-axis limits.

x = randn(50,1);
y = randn(50,1);
z = randn(50,1);
scatter3(x,y,z)

1 Alphabetical List

1-16504

zl = zlim

zl = 1×2

 -3 3

Input Arguments
limits — Minimum and maximum limits
two-element vector

 zlim

1-16505

Minimum and maximum limits, specified as a two-element vector of the form [zmin
zmax], where zmax is greater than zmin. You can specify the limits as numeric,
categorical, datetime, or duration values. However, the type of values that you specify
must match the type of values along the z-axis.

You can specify both limits, or specify one limit and let MATLAB automatically calculate
the other. For an automatically calculated minimum or maximum limit, use -inf or inf,
respectively.
Example: zlim([0 1])
Example: zlim([-inf 1])
Example: zlim([0 inf])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ax — Axes object
Axes object

Axes object. If you do not specify an Axes object, then zlim sets the limits for the
current axes (gca).

Output Arguments
zl — Current limits
two-element vector

Current limits, returned as a two-element vector of the form [zmin zmax].

Querying the limits returns the ZLim property value for the corresponding Axes object.

m — Current limits mode
'auto' | 'manual'

Current limits mode, returned as one of these values:

• 'auto' — Automatically determine the limits.
• 'manual' — Use manually specified limits that do not update to reflect changes in the

data.

1 Alphabetical List

1-16506

Querying the z-axis limits mode returns ZLimMode property value for the corresponding
Axes object.

Algorithms
The zlim function sets and queries several axes properties related to the z-axis limits.

• ZLim — Property that stores the z-axis limits.
• ZLimMode — Property that stores the z-axis limits mode. When you set the z-axis

limits, this property changes to 'manual'.

See Also
Functions
grid | xlim | ylim | zlabel | ztickformat | zticklabels | zticks

Properties
Axes

Topics
“Specify Axis Limits”

Introduced before R2006a

 zlim

1-16507

ztickangle
Rotate z-axis tick labels

Syntax
ztickangle(angle)
ztickangle(ax,angle)

ang = ztickangle
ang = ztickangle(ax)

Description
ztickangle(angle) rotates the z-axis tick labels for the current axes to the specified
angle in degrees, where 0 is horizontal. Specify a positive value for counterclockwise
rotation or a negative value for clockwise rotation.

ztickangle(ax,angle) rotates the tick labels for the axes specified by ax instead of
the current axes.

ang = ztickangle returns the rotation angle for the z-axis tick labels of the current
axes as a scalar value in degrees. Positive values indicate counterclockwise rotation.
Negative values indicate clockwise rotation.

ang = ztickangle(ax) uses the axes specified by ax instead of the current axes.

Examples

Rotate z-Axis Tick Labels

Create a surface chart and rotate the z-axis tick labels 45 degrees clockwise.

1 Alphabetical List

1-16508

[x,y,z] = peaks;
surf(x,y,z)
ztickangle(-45)

Rotate z-Axis Tick Labels for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Rotate the
z-axis tick labels for the lower subplot by specifying ax2 as the first input argument to
ztickangle.

ax1 = subplot(2,1,1);
stem3(2*rand(5))

 ztickangle

1-16509

ax2 = subplot(2,1,2);
stem3(2*rand(5))
ztickangle(ax2,-45)

Query Current Angle for z-Axis Tick Labels

Create a surface chart. Then, query the rotation angle for the z-axis tick labels. By
default, the labels are not rotated.

[x,y,z] = peaks;
surf(peaks)

1 Alphabetical List

1-16510

ang = ztickangle

ang = 0

Input Arguments
angle — Rotation of tick labels
0 (default) | scalar value in degrees

Rotation of tick labels, specified as a scalar value in degrees, where 0 is horizontal.
Example: ztickangle(90)

 ztickangle

1-16511

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then ztickangle uses the current axes.

Algorithms
The ztickangle function sets and queries the ZTickLabelRotation property of the
Axes object.

See Also
Functions
xtickangle | ytickangle | zlim | ztickformat | zticklabels | zticks

Properties
Axes

Introduced in R2016b

1 Alphabetical List

1-16512

ztickformat
Specify z-axis tick label format

Syntax
ztickformat(fmt)
ztickformat(datefmt)
ztickformat(durationfmt)
ztickformat(ax, ___)

zfmt = ztickformat
zfmt = ztickformat(ax)

Description
ztickformat(fmt) sets the format for numeric z-axis tick labels. For example, specify
fmt as 'usd' to display the labels in U.S. dollars.

ztickformat(datefmt) sets the format for labels that show dates or times. For
example, specify datefmt as 'MM-dd-yy' to display dates such as 04-19-16. This
option applies only to a z-axis with datetime values.

ztickformat(durationfmt) sets the format for labels that show durations. For
example, specify durationfmt as 'm' to display the durations in minutes. This option
applies only to a z-axis with duration values.

ztickformat(ax, ___) uses the axes specified by ax instead of the current axes.
Specify ax as the first input argument.

zfmt = ztickformat returns the format style used for z-axis tick labels of the current
axes. Depending on the type of labels along the z-axis, zfmt is a character vector of a
numeric format, date format, or duration format.

zfmt = ztickformat(ax) returns the format style used for the axes specified by ax
instead of the current axes.

 ztickformat

1-16513

Examples

Display Tick Labels in Dollars

Create a 3-D stem chart of random data. Display the tick labels along the z-axis in US
dollars.

z = 10*rand(5);
stem3(z)
ztickformat('usd')

Query the tick label format. MATLAB® returns the format as a character vector
containing the formatting operators.

1 Alphabetical List

1-16514

fmt = ztickformat

fmt =
'$%,.2f'

Display the tick labels with no decimal values by tweaking the numeric format to use a
precision value of 0 instead of 2.

ztickformat('$%,.0f')

 ztickformat

1-16515

Display Text After Each Tick Label

Create a 3-D line chart. Display the tick labels along the z-axis with the text "cm" after
each value.

t = 0:pi/10:10*pi;
st = sin(t);
ct = cos(t);
plot3(st,ct,t)
grid on
ztickformat('%g cm')

1 Alphabetical List

1-16516

Control Number of Decimals Displayed

Create a 3-D scatter plot of random data. Display the z-axis tick labels with two decimal
places. Control the decimal places by passing ztickformat a character vector of a
numeric format that uses fixed-point notation for the conversion character and a precision
value of 2.

x = rand(50,1);
y = rand(50,1);
z = rand(50,1);
scatter3(x,y,z)
ztickformat('%.2f')

 ztickformat

1-16517

Tick Label Format for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Specify the
z-axis tick label format for the left subplot by specifying ax1 as the first input argument to
ztickformat. Display the tick labels in US dollars.

ax1 = subplot(1,2,1);
stem3(4*rand(5))
ztickformat(ax1,'usd')

ax2 = subplot(1,2,2);
stem3(4*rand(5))

1 Alphabetical List

1-16518

Input Arguments
fmt — Format for numeric tick labels
'%g' (default) | character vector | string

Format for numeric tick labels, specified as a character vector or string. You can specify
one of the formats listed in this table. Alternatively, you can specify a custom format.

Predefined Format Description
'usd' U.S. dollars. This option is equivalent using

'$%,.2f'. If the labels use scientific
notation, this option sets the exponent
value to 0.

'eur' Euro. This option is equivalent to using
'\x20AC%,.2f' with an exponent value of
0.

'gbp' British pound. This option is equivalent to
using '\x00A3%,.2f' with an exponent
value of 0.

'jpy' Japanese yen. This option is equivalent to
using '\x00A5%,d' with an exponent
value of 0.

'degrees' Display degree symbol after values. This
option is equivalent to using '%g\x00B0'
with the default exponent value.

'percentage' Display percent sign after values. This
option is equivalent to using '%g%%' with
the default exponent value.

'auto' Default format of '%g' with the default
exponent value.

Example: ztickformat('usd')
Custom Numeric Format

You can specify a custom numeric format by creating a character vector or string
containing identifiers.

 ztickformat

1-16519

Identifiers are optional, except the percent sign and conversion character. Construct the
format in this order:

• One or more flags — Options such as adding a plus sign before positive values. For a
full list of options, see the table of Optional Flags.

• Field width — Minimum number of characters to print in the tick label. Specify the
field width as an integer value. If the number of significant digits in the tick value is
smaller than the field width, then the label is padded with spaces.

• Precision — Number of digits to the right of the decimal point or the number of
significant digits, depending on the conversion character. Specify the precision as an
integer value.

• Conversion character — Value type. For a full list of options, see the table of
Conversion Characters. If you specify a conversion that does not fit the data, then
MATLAB overrides the specified conversion, and uses %e.

Also, you can specify literal text at the beginning or end of the format. To print a single
quotation mark, use ''. To print a percent character, use %%.

Example: ztickformat('%.2f') displays the values using fixed-point notation with
two decimal places.

Example: ztickformat('$%.2f') displays a dollar sign before each value.

Example: ztickformat('%.2f million') displays million after each value.

1 Alphabetical List

1-16520

Optional Flags

Identifier Description Example of Numeric
Format

, Display commas every three
digits, such as '1,000'.

'%,4.4g'

+ Print the sign character (+)
for positive values, such as
'+100'.

'%+4.4g'

0 Pad the field width with
leading zeros instead of
spaces, such as '0100'.

'%04.4g'

– Left-justify, which pads the
end of the value with spaces
instead of the beginning.
For example, if the field
width is 4, then this flag
formats the label as '100 '
instead of ' 100'.

'%-4.4g'

For the %f, %e, and %g
conversion characters, print
the decimal point even when
the precision is 0, such as
'100.'. For %g, do not
remove trailing zeros.

'%#4.4g'

 ztickformat

1-16521

Conversion Characters

Identifier Description Example
d or i Signed integer with base 10.

The precision value
indicates the number of
significant digits.

'%.4d' displays π as 0003.

f Fixed-point notation. The
precision value indicates the
number of decimal places.

'%.4f' displays π as
3.1416.

e Exponential notation. The
precision value indicates the
number of decimal places.

'%.4e' displays π as
3.1416x100.

g The more compact version
of e or f, with no trailing
zeros. The precision value
indicates the maximum
number of decimal places.

'%.4g' displays π as
3.1416.

datefmt — Format for dates and times
'auto' | character vector | string

Format for dates and times, specified as 'auto', a character vector, or a string. The
default format is based on the data.
Example: ztickformat('yyyy-MM-dd') displays a date and time such as 2016-04-19.
Example: ztickformat('eeee, MMMM d, yyyy HH:mm:ss') displays a date and time
such as Saturday, April 19, 2016 21:41:06.
Example: ztickformat('MMMM d, yyyy HH:mm:ss Z') displays a date and time such
as April 19, 2016 21:41:06 -0400.

The display format tables show the letter identifiers that you can use to construct the
format. To separate the fields, you can include nonletter characters such as a hyphen,
space, colon, or any non-ASCII characters. The identifiers correspond to the Unicode
Locale Data Markup Language (LDML) standard for dates.

Date and Time Formats

Use these identifiers to specify the display formats of the date and time fields.

1 Alphabetical List

1-16522

Letter
Identifier

Description Display

G Era CE
y Year, with no leading zeros. See the

Note that follows this table.
2014

yy Year, using last two digits. See the
Note that follows this table.

14

yyy, yyyy ... Year, using at least the number of
digits specified by the number of
instances of 'y'

For the year 2014, 'yyy' displays
2014, while 'yyyyy' displays
02014.

u, uu, ... ISO year. A single number
designating the year. An ISO year
value assigns positive values to CE
years and negative values to BCE
years, with 1 BCE being year 0.

2014

Q Quarter, using one digit 2
QQ Quarter, using two digits 02
QQQ Quarter, abbreviated Q2
QQQQ Quarter, full name 2nd quarter
M Month, numerical using one or two

digits
4

MM Month, numerical using two digits 04
MMM Month, abbreviated name Apr
MMMM Month, full name April
MMMMM Month, capitalized first letter A
W Week of the month 1
d Day of the month, using one or two

digits
5

dd Day of the month using two digits 05
D Day of the year, using one, two or

three digits
95

DD Day of the year using two digits 95

 ztickformat

1-16523

Letter
Identifier

Description Display

DDD Day of the year using three digits 095
e Day of the week, numerical using

one or two digits.
7, where Sunday is the first day of
the week.

ee Day of the week, numerical using
two digits

07

eee Day, abbreviated name Sat
eeee Day, full name Saturday
eeeee Day, capitalized first letter S
a Day period (AM or PM) PM
h Hour, 12-hour clock notation using

one or two digits
9

hh Hour, 12-hour clock notation using
two digits

09

H Hour, 24-hour clock notation using
one or two digits

21

HH Hour, 24-hour clock notation using
two digits

21

m Minute, using one or two digits 41
mm Minute, using two digits 41
s Second, using one or two digits 6
ss Second, using two digits 06
S, SS, ...,
SSSSSSSSS

Fractional second, using the
number of digits specified by the
number of instances of 'S' (up to 9
digits).

'SSS' truncates 6.12345 seconds
to 123.

Some tips and considerations:

• Use one or more u characters instead of y characters to represent the year when
working with year numbers near zero.

• Datetime values later than 144683 years CE or before 140743 BCE display only the
year numbers, regardless of the specified format value.

1 Alphabetical List

1-16524

Time Zone Offset Formats

Use these identifiers to specify the display format of the time zone offset. A time zone
offset is the amount of time that a specific date and time is offset from UTC. A time zone
offset is different from a time zone in that it comprises rules that determine the offsets for
specific times of the year. Include a time zone offset identifier when you want to ensure
that the time components are displayed unambiguously.

Letter
Identifier

Description Display

z Abbreviated name of the time zone
offset. If this value is not available,
then the time zone offset uses the
short UTC format, such as UTC-4.

EDT

Z ISO 8601 basic format with hours,
minutes, and optional seconds
fields.

-0400

ZZZZ Long UTC format. UTC-04:00
ZZZZZ ISO 8601 extended format with

hours, minutes, and optional
seconds fields. A time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

x or X ISO 8601 basic format with hours
field and optional minutes field. If
you specify X, a time offset of zero
is displayed as the ISO 8601 UTC
indicator “Z”.

-04

xx or XX ISO 8601 basic format with hours
and minutes fields. If you specify
XX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-0400

 ztickformat

1-16525

Letter
Identifier

Description Display

xxx or XXX ISO 8601 extended format with
hours and minutes fields. If you
specify XXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

xxxx or XXXX ISO 8601 basic format with hours,
minutes, and optional seconds
fields. If you specify XXXX, a time
offset of zero is displayed as the
ISO 8601 UTC indicator “Z”.

-0400

xxxxx or
XXXXX

ISO 8601 extended format with
hours, minutes, and optional
seconds fields. If you specify
XXXXX, a time offset of zero is
displayed as the ISO 8601 UTC
indicator “Z”.

-04:00

durationfmt — Format for duration values
character vector | string

Format for duration values, specified as a character vector or string.

To display a duration as a single number that includes a fractional part (for example,
1.234 hours), specify one of the following formats.

Format Description
'y' Number of exact, fixed-length years. A fixed-length

year is equal to 365.2425 days.
'd' Number of exact, fixed-length days. A fixed-length day

is equal to 24 hours.
'h' Number of hours
'm' Number of minutes
's' Number of seconds

To display a duration in the form of a digital timer, specify one of these formats:

1 Alphabetical List

1-16526

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'

In addition, you can display up to nine fractional second digits by appending up to nine S
characters. For example, 'hh:mm:ss.SSS' displays the milliseconds of a duration value
to three digits.

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then ztickformat uses the current axes.

Algorithms
The ztickformat function sets and queries the TickLabelFormat property of the ruler
object associated with the z-axis.

See Also
Functions
xtickformat | ytickformat | zlim | ztickangle | zticklabels | zticks

Properties
DatetimeRuler | DurationRuler | NumericRuler

Introduced in R2016b

 ztickformat

1-16527

zticklabels
Set or query z-axis tick labels

Syntax
zticklabels(labels)
zl = zticklabels

zticklabels('auto')
zticklabels('manual')
m = zticklabels('mode')

___ = zticklabels(ax, ___)

Description
zticklabels(labels) sets the z-axis tick labels on page 1-16536 for the current axes.
Specify labels as a string array or a cell array of character vectors; for example,
{'January','February','March'}. If you specify the labels, then the z-axis tick
values and tick labels no longer update automatically based on changes to the axes.

zl = zticklabels returns the z-axis tick labels for the current axes.

zticklabels('auto') sets an automatic mode, enabling the axes to determine the z-
axis tick labels. Use this option if you set the labels and then want to set them back to the
default values.

zticklabels('manual') sets a manual mode, freezing the z-axis tick labels at the
current values.

m = zticklabels('mode') returns the current value of the z-axis tick labels mode,
which is either 'auto' or 'manual'. By default, the mode is automatic unless you
specify the tick labels or set the mode to manual.

___ = zticklabels(ax, ___) uses the axes specified by ax instead of the current
axes. Specify ax as the first input argument for any of the previous syntaxes.

1 Alphabetical List

1-16528

Examples

Specify z-Axis Tick Values and Labels

Create a surface plot. Display tick marks along the z-axis at the values -8, 0, and 8. Then,
specify a label for each tick mark.

[x,y,z] = peaks;
surf(x,y,z)
zticks([-8 0 8])
zticklabels({'z = -8','z = 0','z = 8'})

 zticklabels

1-16529

Specify z-Axis Tick Labels for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Set the z-
axis tick values and labels for the left subplot by passing ax1 as the first input argument
to the zticks and zticklabels functions.

ax1 = subplot(1,2,1);
stem3(4*rand(5))
zticks(ax1,[0 2 4])
zticklabels(ax1,{'z = 0','z = 2','z = 4'})

ax2 = subplot(1,2,2);
stem3(4*rand(5))

1 Alphabetical List

1-16530

Set z-Axis Tick Labels Back to Default Labels

Create a surface plot and specify the z-axis tick values and labels. Then, set the values
and labels back to the default values.

[x,y,z] = peaks;
mesh(x,y,z)
zticks([-8 0 8])
zticklabels({'z = -8','z = 0','z = 8'})

 zticklabels

1-16531

zticks('auto')
zticklabels('auto')

1 Alphabetical List

1-16532

Remove z-Axis Tick Labels

Remove the tick labels along the z-axis by specifying the tick labels as an empty array.

[x,y,z] = peaks;
surf(x,y,z)
zticklabels({})

 zticklabels

1-16533

Input Arguments
labels — Tick labels
cell array of character vectors | string array | categorical array

Tick labels on page 1-16536, specified as a cell array of character vectors, string array, or
categorical array. If you do not want tick labels to show, then specify an empty cell array
{}. Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter
property of the Axes object for more information.
Example: zticklabels({'0','\pi','2\pi'})

1 Alphabetical List

1-16534

Example: zticklabels({'January','Febrary','March'})
Example: zticklabels({})

Note

• If you specify the tick labels as a categorical array, MATLAB uses the values in the
array, not the categories.

• To specify the tick values, use the zticks function.

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then zticklabels uses the current axes.

Output Arguments
zl — Current tick labels
cell array of character vectors | character array

Current tick labels, returned as a cell array of character vectors or a character array.

m — Current tick labels mode
'auto' | 'manual'

Current tick labels mode, returned as one of these values:

• 'auto' — Automatically determine the z-axis tick labels.
• 'manual' — Use manually specified z-axis tick labels.

 zticklabels

1-16535

Definitions

Tick Labels
The tick labels are the labels that you see next to each tick mark. The tick values are the
locations along the z-axis where the tick marks appear. Set the tick values using the
zticks function. Set the corresponding tick labels using the zticklabels function.

Algorithms
The zticklabels function sets and queries several axes properties related to the z-axis
tick labels.

• ZTickLabel — Property that stores the text for the z-axis tick labels.
• ZTickLabelMode — Property that stores the z-axis tick label mode. When you set the

z-axis tick labels using zticklabels, this property changes to 'manual'.
• ZTickMode — Property that stores the z-axis tick value mode. When you set the z-axis

tick labels using zticklabels, this property changes to 'manual'.

1 Alphabetical List

1-16536

See Also
Functions
xticklabels | yticklabels | zlim | ztickangle | ztickformat | zticks

Properties
Axes

Introduced in R2016b

 zticklabels

1-16537

zticks
Set or query z-axis tick values

Syntax
zticks(ticks)
zt = zticks

zticks('auto')
zticks('manual')
m = zticks('mode')

___ = zticks(ax, ___)

Description
zticks(ticks) sets the z-axis tick values on page 1-16547, which are the locations
along the z-axis where the tick marks appear. Specify ticks as a vector of increasing
values; for example, [0 2 4 6]. This command affects the current axes.

zt = zticks returns the current z-axis tick values as a vector.

zticks('auto') sets an automatic mode, enabling the axes to determine the z-axis tick
values. Use this option if you change the tick values and then want to set them back to
the default values.

zticks('manual') sets a manual mode, freezing the z-axis tick values at the current
values. Use this option if you want to retain the current tick values when resizing the axes
or adding new data to the axes.

m = zticks('mode') returns the current z-axis tick values mode, which is either
'auto' or 'manual'. By default, the mode is automatic unless you specify tick values or
change the mode to manual.

___ = zticks(ax, ___) uses the axes specified by ax instead of the current axes.
Specify ax as the first input argument for any of the previous syntaxes.

1 Alphabetical List

1-16538

Examples

Specify z-Axis Tick Values and Labels

Create a surface plot. Display tick marks along the z-axis at the values -8, 0, and 8. Then,
specify a label for each tick mark.

[x,y,z] = peaks;
surf(x,y,z)
zticks([-8 0 8])
zticklabels({'z = -8','z = 0','z = 8'})

 zticks

1-16539

Specify Nonuniform z-Axis Tick Values

Display tick marks along the z-axis at nonuniform values between -10 and 10. MATLAB®
labels the tick marks with the numeric values.

[x,y,z] = peaks;
surf(peaks)
zticks([-10 -2.5 0 2.5 10])

1 Alphabetical List

1-16540

Increment z-Axis Tick Values by 2

Display tick marks along the z-axis at increments of 2, starting from -10 and ending at 10.

[x,y,z] = peaks;
surf(peaks)
zticks([-10:2:10])

Set z-Axis Tick Values Back to Default Values

Create a plot and specify the z-axis tick values. Then, set the z-axis tick values back to the
default values.

 zticks

1-16541

t = 0:pi/50:10*pi;
st = sin(t);
ct = cos(t);
plot3(st,ct,t)
zticks(0:8:40)

zticks('auto')

1 Alphabetical List

1-16542

Specify z-Axis Tick Values for Specific Axes

Create a figure with two subplots and return the axes objects as ax1 and ax2. Set the z-
axis tick values for the left subplot by passing ax1 as the first input argument to the
zticks function.

ax1 = subplot(1,2,1);
stem3(4*rand(5))
zticks(ax1,[0 1.5 3.25])

 zticks

1-16543

ax2 = subplot(1,2,2);
stem3(4*rand(5))

Remove z-Axis Tick Marks

Remove the tick marks along the z-axis by specifying the tick values as an empty array.
Removing the tick marks also removes any grid lines in the z direction.

[x,y,z] = peaks;
mesh(x,y,z)
zticks([])

1 Alphabetical List

1-16544

Input Arguments
ticks — Tick values
vector of increasing values

Tick values on page 1-16547, specified as a vector of increasing values. If you do not want
tick marks along the z-axis, specify an empty vector [].

You can specify the tick values as numeric, categorical, datetime, or duration values.
However, the type of values that you specify must match the type of values along the z-
axis.

 zticks

1-16545

Example: zticks([pi 2*pi 3*pi 4*pi])
Example: zticks(0:10:100)
Example: zticks([])

Note To specify the tick labels, use the zticklabels function.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ax — Target axes
current axes (default) | single Axes object | vector of Axes objects

Target axes, specified as a single Axes object or a vector of Axes objects. If you do not
specify the axes, then zticks uses the current axes.

Output Arguments
zt — Current tick values
vector

Current tick values, returned as a vector.

m — Current mode
'auto' | 'manual'

Current mode, returned as one of these values:

• 'auto' — Automatically determine the z-axis tick values.
• 'manual' — Use manually specified z-axis tick values.

1 Alphabetical List

1-16546

Definitions

Tick Values
The tick values are the locations along the z-axis where the tick marks appear. The tick
labels are the labels that you see next to each tick mark. Set the tick values using the
zticks function. Set the corresponding tick labels using the zticklabels function.

Algorithms
The zticks function sets and queries several axes properties related to the z-axis tick
values.

• ZTick — Property that stores the z-axis tick values.
• ZTickMode — Property that stores the z-axis tick value mode. When you set the z-axis

tick values, this property changes to 'manual'.

See Also
Functions
xlim | xtickangle | xtickformat | xticklabels | xticks | yticks

 zticks

1-16547

Properties
Axes

Introduced in R2016b

1 Alphabetical List

1-16548

xlsfinfo
Determine if file contains Microsoft Excel spreadsheet

Syntax
status = xlsfinfo(filename)
[status,sheets] = xlsfinfo(filename)
[status,sheets,xlFormat] = xlsfinfo(filename)

Description
status = xlsfinfo(filename) indicates if filename is a file that the xlsread
function can read.

[status,sheets] = xlsfinfo(filename) additionally returns the name of each
spreadsheet in the file.

[status,sheets,xlFormat] = xlsfinfo(filename) also returns the format
description that Excel returns for the file. On systems without Excel for Windows,
xlFormat is an empty character vector, ''.

Examples

View Information About Spreadsheet File

Create a sample Excel® file named myExample.xlsx.

values = {1, 2, 3 ; 4, 5, 'x' ; 7, 8, 9};
headers = {'First', 'Second', 'Third'};
xlswrite('myExample.xlsx', [headers; values]);

Call xlsfinfo to get information about the file.

[status,sheets,xlFormat] = xlsfinfo('myExample.xlsx')

 xlsfinfo

1-16549

status =

Microsoft Excel Spreadsheet

sheets =

 'Sheet1' 'Sheet2' 'Sheet3'

xlFormat =

xlOpenXMLWorkbook

status contains descriptive text which indicates that the xlsread function can read the
sample file.

Input Arguments
filename — Name of file
character vector | string

Name of file, specified as a character vector or a string.
Example: 'myFile.xlsx'
Data Types: char | string

Output Arguments
status — Type of file
character vector

Type of file, returned as a character vector.

• If filename is a file that xlsread can read, then status is descriptive text, such as
'Microsoft Excel Spreadsheet'.

• If filename is not a file that xlsread can read, then status is empty, ''.

1 Alphabetical List

1-16550

• If MATLAB cannot find the file, then xlsfinfo returns an error.

sheets — Worksheet names
1-by-n cell array of character vectors

Worksheet names, returned as a 1-by-n cell array of character vectors, where n is the
number of worksheets in the file. Each cell contains the name of a worksheet. If xlsread
cannot read a particular worksheet, the corresponding cell contains an error message.

If xlsfinfo cannot read the file, then sheets contains an error message.

xlFormat — File format description returned by Excel
character vector

File format description returned by Excel, returned as a character vector.

On Windows systems with Excel software, xlFormat is one of the following.

'xlOpenXMLWorkbook' Spreadsheet in XLSX format (Excel 2007 or
later)

'xlWorkbookNormal' or 'xlExcel8' Spreadsheet in XLS format (compatible
with Excel 97-2003)

'xlCSV' File in comma-separated value (CSV)
format

'xlHtml' or 'xlWebArchive' Spreadsheet exported to HTML format

On all other systems, xlFormat is an empty character vector, ''.

Limitations
• xlsfinfo supports only 7-bit ASCII characters.

Tips
• If xlsfinfo warns that it cannot start an ActiveX server, then the COM server, which

is part of the typical Excel installation, is unavailable. In this case, consider
reinstalling your Excel software. On systems with Excel for Windows, xlsfinfo uses
the COM server to obtain information.

 xlsfinfo

1-16551

See Also
readcell | readmatrix | writecell | writematrix

Introduced before R2006a

1 Alphabetical List

1-16552

xlsread
(Not recommended) Read Microsoft Excel spreadsheet file

Note xlsread is not recommended. Use readmatrix or readcell instead. For more
information, see Compatibility Considerations.

Syntax
num = xlsread(filename)
num = xlsread(filename,sheet)
num = xlsread(filename,xlRange)
num = xlsread(filename,sheet,xlRange)
num = xlsread(filename,sheet,xlRange,'basic')
[num,txt,raw] = xlsread(___)

___ = xlsread(filename,-1)

[num,txt,raw,custom] = xlsread(filename,sheet,xlRange,'',processFcn)

Description
num = xlsread(filename) reads the first worksheet in the Microsoft Excel
spreadsheet workbook named filename and returns the numeric data in a matrix.

num = xlsread(filename,sheet) reads the specified worksheet.

num = xlsread(filename,xlRange) reads from the specified range of the first
worksheet in the workbook. Use Excel range syntax, such as 'A1:C3'.

num = xlsread(filename,sheet,xlRange) reads from the specified worksheet and
range.

num = xlsread(filename,sheet,xlRange,'basic') reads data from the
spreadsheet in basic import mode. If your computer does not have Excel for Windows or
if you are using MATLAB Online, xlsread automatically operates in basic import mode,
which supports XLS, XLSX, XLSM, XLTX, and XLTM files.

 xlsread

1-16553

If you do not specify all the arguments, use empty character vectors, '' , as placeholders,
for example, num = xlsread(filename,'','','basic').

[num,txt,raw] = xlsread(___) additionally returns the text fields in cell array txt,
and both numeric and text data in cell array raw, using any of the input arguments in the
previous syntaxes.

___ = xlsread(filename,-1) opens an Excel window to interactively select data.
Select the worksheet, drag and drop the mouse over the range you want, and click OK.
This syntax is supported only on Windows computers with Microsoft Excel software
installed.

[num,txt,raw,custom] = xlsread(filename,sheet,xlRange,'',processFcn),
where processFcn is a function handle, reads from the spreadsheet, calls processFcn
on the data, and returns the final results as numeric data in array num. The xlsread
function returns the text fields in cell array txt, both the numeric and text data in cell
array raw, and the second output from processFcn in array custom. The xlsread
function does not change the data stored in the spreadsheet. This syntax is supported
only on Windows computers with Excel software.

Examples

Read Worksheet Into Numeric Matrix

Create an Excel file named myExample.xlsx.

values = {1, 2, 3 ; 4, 5, 'x' ; 7, 8, 9};
headers = {'First','Second','Third'};
xlswrite('myExample.xlsx',[headers; values]);

Sheet1 of myExample.xlsx contains:

 First Second Third
 1 2 3
 4 5 x
 7 8 9

Read numeric data from the first worksheet.

filename = 'myExample.xlsx';
A = xlsread(filename)

1 Alphabetical List

1-16554

A =
 1 2 3
 4 5 NaN
 7 8 9

Read Range of Cells

Read a specific range of data from the Excel file in the previous example.

filename = 'myExample.xlsx';
sheet = 1;
xlRange = 'B2:C3';

subsetA = xlsread(filename,sheet,xlRange)

subsetA =
 2 3
 5 NaN

Read Column

Read the second column from the Excel file in the first example.

filename = 'myExample.xlsx';

columnB = xlsread(filename,'B:B')

columnB =
 2
 5
 8

For better performance, include the row numbers in the range, such as 'B1:B3'.

Request Numeric, Text, and Raw Data

Request the numeric data, text data, and combined data from the Excel file in the first
example.

[num,txt,raw] = xlsread('myExample.xlsx')

 xlsread

1-16555

num =
 1 2 3
 4 5 NaN
 7 8 9

txt =
 'First' 'Second' 'Third'
 '' '' ''
 '' '' 'x'

raw =
 'First' 'Second' 'Third'
 [1] [2] [3]
 [4] [5] 'x'
 [7] [8] [9]

Execute a Function on a Worksheet

In the Editor, create a function to process data from a worksheet. In this case, set values
outside the range [0.2,0.8] to 0.2 or 0.8.

function [Data] = setMinMax(Data)

minval = 0.2;
maxval = 0.8;

for k = 1:Data.Count
 v = Data.Value{k};
 if v > maxval
 Data.Value{k} = maxval;
 elseif v < minval
 Data.Value{k} = minval;
 end
end

In the Command Window, add random data to myExample.xlsx.

A = rand(5);
xlswrite('myExample.xlsx',A,'MyData')

The worksheet named MyData contains values ranging from 0 to 1.

1 Alphabetical List

1-16556

Read the data from the worksheet, and reset any values outside the range [0.2,0.8].
Specify the sheet name, but use '' as placeholders for the xlRange and 'basic' inputs.

trim = xlsread('myExample.xlsx','MyData','','',@setMinMax);

Request Custom Output

Execute a function on a worksheet and display the custom index output.

In the Editor, modify the function setMinMax from the previous example to return the
indices of the changed elements (custom output).

function [Data,indices] = setMinMax(Data)

minval = 0.2;
maxval = 0.8;
indices = [];

for k = 1:Data.Count
 v = Data.Value{k};
 if v > maxval
 Data.Value{k} = maxval;
 indices = [indices k];
 elseif v < minval
 Data.Value{k} = minval;
 indices = [indices k];
 end
end

Read the data from the worksheet MyData, and request the custom index output, idx.

[trim,txt,raw,idx] = xlsread('myExample.xlsx',...
 'MyData','','',@setMinMax);

Input Arguments
filename — File name
character vector | string

 xlsread

1-16557

File name, specified as a character vector or a string. If you do not include an extension,
xlsread searches for a file with the specified name and a supported Excel extension.
xlsread can read data saved in files that are currently open in Excel for Windows.
Example: 'myFile.xlsx' or "myFile.xlsx"
Data Types: char | string

sheet — Worksheet
character vector | string | positive integer

Worksheet, specified as one of the following:

• Character vector or string that contains the worksheet name. The name cannot
contain a colon (:). To determine the names of the sheets in a spreadsheet file, use
xlsfinfo. For XLS files in basic mode, sheet is case sensitive.

• Positive integer that indicates the worksheet index. This option is not supported for
XLS files in basic mode.

Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

xlRange — Rectangular range
character vector | string

Rectangular range, specified as a character vector or a string.

Specify xlRange using two opposing corners that define the region to read. For example,
'D2:H4' represents the 3-by-5 rectangular region between the two corners D2 and H4 on
the worksheet. The xlRange input is not case sensitive, and uses Excel A1 reference style
(see Excel help).

Range selection is not supported when reading XLS files in basic mode. In this case, use
'' in place of xlRange.

If you do not specify sheet, then xlRange must include both corners and a colon
character, even for a single cell (such as 'D2:D2'). Otherwise, xlsread interprets the
input as a worksheet name (such as 'sales' or 'D2').

If you specify sheet, then xlRange:

• Does not need to include a colon and opposite corner to describe a single cell.

1 Alphabetical List

1-16558

• Can refer to a named range that you defined in the Excel file (see the Excel help).

When the specified xlRange overlaps merged cells:

• On Windows computers with Excel, xlsread expands the range to include all merged
cells.

• On computers without Excel for Windows, xlsread returns data for the specified
range only, with empty or NaN values for merged cells.

Data Types: char | string

'basic' — Flag to request reading in basic mode
character vector | string

Flag to request reading in basic mode, specified as the character vector or a string,
'basic'.

basic mode is the default for computers without Excel for Windows. In basic mode,
xlsread:

• Reads XLS, XLSX, XLSM, XLTX, and XLTM files only.
• Does not support an xlRange input when reading XLS files. In this case, use '' in

place of xlRange.
• Does not support function handle inputs.
• Imports all dates as Excel serial date numbers. Excel serial date numbers use a
different reference date than MATLAB date numbers.

Data Types: char | string

processFcn — Handle to a custom function
function handle

Handle to a custom function. This argument is supported only on Windows computers
with Excel software. xlsread reads from the spreadsheet, executes your function on a
copy of the data, and returns the final results. xlsread does not change the data stored
in the spreadsheet.

When xlsread calls the custom function, it passes a range interface from the Excel
application to provide access to the data. The custom function must include this interface
both as an input and output argument. (See “Execute a Function on a Worksheet” on page
1-16556)

 xlsread

1-16559

Example: @myFunction

Output Arguments
num — Numeric data
matrix

Numeric data, returned as a matrix of double values. The array does not contain any
information from header lines, or from outer rows or columns that contain nonnumeric
data. Text data in inner spreadsheet rows and columns appear as NaN in the num output.

txt — Text data
cell array

Text data, returned as a cell array. Numeric values in inner spreadsheet rows and
columns appear as empty character vectors, '', in txt.

For XLS files in basic import mode, the txt output contains empty character vectors,
'', in place of leading columns of numeric data that precede text data in the spreadsheet.
In all other cases, txt does not contain these additional columns.

Undefined values (such as '#N/A') appear in the txt output as '#N/A', except for XLS
files in basic mode.

raw — Numeric and text data
cell array

Numeric and text data from the worksheet, returned as a cell array.

On computers with Excel for Windows, undefined values (such as '#N/A') appear in the
raw output as 'ActiveX VT_ERROR:'. For XLSX, XLSM, XLTX, and XLTM files on other
computers or in MATLAB Online, undefined values appear as '#N/A'.

custom — Second output of the function corresponding to processFcn
defined by the function

Second output of the function corresponding to processFcn. The value and data type of
custom are determined by the function.

1 Alphabetical List

1-16560

Limitations
• xlsread reads only 7-bit ASCII characters.
• xlsread does not support non-contiguous ranges.
• If your computer does not have Excel for Windows or if you are using MATLAB Online,

xlsread automatically operates in basic import mode.
• On Linux and Mac platforms, xlsread cannot open spreadsheet files written by the

writetable function.

Algorithms
• xlsread imports formatted text representing dates (such as '10/31/96'), except

when importing in basic mode.

Compatibility Considerations

xlsread is not recommended
Not recommended starting in R2019a

xlsread is not recommended. Use readmatrix or readcell instead. There are no
plans to remove xlsread.

Starting in R2019a, use the readmatrix or readcell function. Use readmatrix to
read homogeneous numeric or text data into a matrix. Use readcell to read mixed
numeric and text data into a cell array. The readmatrix and readcell functions have
these advantages over the xlsread function:

• Better cross-platform support and performance
• Automatic detection of data format and types
• Ability to use import options to control the data import process, including the handling

of errors and missing data

This table shows typical usages of xlsread and how to update your code to use
readmatrix or readcell instead.

 xlsread

1-16561

Not Recommended Recommended
M = xlsread('myData.xls') % Read as matrix

M = readmatrix('myData.xls')
% Or read as cell array
C = readcell('myData.xls')

See Also
importdata | readcell | readmatrix | readtable | uiimport | xlsfinfo |
xlswrite

Topics
“Create Function Handle”

Introduced before R2006a

1 Alphabetical List

1-16562

xlswrite
(Not recommended) Write Microsoft Excel spreadsheet file

Note xlswrite is not recommended. Use writematrix instead. For more information,
see Compatibility Considerations.

Syntax
xlswrite(filename,A)
xlswrite(filename,A,sheet)
xlswrite(filename,A,xlRange)
xlswrite(filename,A,sheet,xlRange)

status = xlswrite(___)
[status,message] = xlswrite(___)

Description
xlswrite(filename,A) writes matrix A to the first worksheet in the Microsoft Excel
spreadsheet workbook filename starting at cell A1.

xlswrite(filename,A,sheet) writes to the specified worksheet.

xlswrite(filename,A,xlRange) writes to the rectangular region specified by
xlRange in the first worksheet of the workbook. Use Excel range syntax, such as
'A1:C3'.

xlswrite(filename,A,sheet,xlRange) writes to the specified worksheet and range.

status = xlswrite(___) returns the status of the write operation, using any of the
input arguments in previous syntaxes. When the operation is successful, status is 1.
Otherwise, status is 0.

[status,message] = xlswrite(___) additionally returns any warning or error
message generated by the write operation in structure message.

 xlswrite

1-16563

Examples

Write Vector to Spreadsheet

Write a 7-element vector to an Excel® file.

filename = 'testdata.xlsx';
A = [12.7 5.02 -98 63.9 0 -.2 56];
xlswrite(filename,A)

Write to Specific Sheet and Range in Spreadsheet

Write mixed text and numeric data to an Excel® file starting at cell E1 of Sheet2.

filename = 'testdata.xlsx';
A = {'Time','Temperature'; 12,98; 13,99; 14,97};
sheet = 2;
xlRange = 'E1';
xlswrite(filename,A,sheet,xlRange)

Warning: Added specified worksheet.

Input Arguments
filename — File name
character vector | string

File name, specified as a character vector or a string.

If filename does not exist, xlswrite creates a file, determining the format based on the
specified extension. To create a file compatible with Excel 97-2003 software, specify an
extension of .xls. To create files in Excel 2007 formats, specify an extension
of .xlsx, .xlsb, or .xlsm. If you do not specify an extension, xlswrite uses the
default, .xls.
Example: 'myFile.xlsx' or "myFile.xlsx"
Example: 'C:\myFolder\myFile.xlsx'
Example: 'myFile.csv'

1 Alphabetical List

1-16564

Data Types: char | string

A — Input matrix
matrix

Input matrix, specified as a two-dimensional numeric, character array, or string array, or,
if each cell contains a single element, a cell array.

If A is a cell array containing something other than a scalar numeric or text, then
xlswrite silently leaves the corresponding cell in the spreadsheet empty.

The maximum size of array A depends on the associated Excel version. For more
information on Excel specifications and limits, see the Excel help.
Example: [10,2,45;-32,478,50]
Example: {92.0,'Yes',45.9,'No'}
Example: "ABCDEF"
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string | cell

sheet — Worksheet name
character vector | string | positive integer

Worksheet name, specified as one of the following:

• Character vector or string that contains the worksheet name. The name cannot
contain a colon (:). To determine the names of the sheets in a spreadsheet file, use
xlsfinfo.

• Positive integer that indicates the worksheet index.

If sheet does not exist, xlswrite adds a new sheet at the end of the worksheet
collection. If sheet is an index larger than the number of worksheets, xlswrite appends
empty sheets until the number of worksheets in the workbook equals sheet. In either
case, xlswrite generates a warning indicating that it has added a new worksheet.
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

xlRange — Rectangular range
character vector | string

Rectangular range, specified as a character vector or a string.

 xlswrite

1-16565

Specify xlRange using two opposing corners that define the region to write. For example,
'D2:H4' represents the 3-by-5 rectangular region between the two corners D2 and H4 on
the worksheet. The xlRange input is not case sensitive, and uses Excel A1 reference style
(see Excel help). xlswrite does not recognize named ranges.

• If you do not specify sheet, then xlRange must include both corners and a colon
character, even for a single cell (such as 'D2:D2'). Otherwise, xlswrite interprets
the input as a worksheet name (such as 'D2').

• If you specify sheet, then xlRange can specify only the first cell (such as 'D2').
xlswrite writes input array A beginning at this cell.

• If xlRange is larger than the size of input array A, Excel software fills the remainder
of the region with #N/A. If xlRange is smaller than the size of A, then xlswrite
writes only the subset that fits into xlRange to the file.

Data Types: char | string

Output Arguments
status — Status of the write operation
1 | 0

Status of the write operation, returned as either 1 (true) or 0 (false). When the write
operation is successful, status is 1. Otherwise, status is 0.

message — Error or warning generated during the write operation
structure array

Error or warning generated during the write operation, returned as a structure array
containing two fields:

message Text of the warning or error message.
identifier Message identifier.

Limitations
• If your computer does not have Excel for Windows or you are using MATLAB Online,

then the xlswrite function:

1 Alphabetical List

1-16566

• Writes array A to a text file in comma-separated value (CSV) format. A must be a
numeric matrix.

• Ignores the sheet and xlRange arguments.

This limitation also applies when the COM server (part of the typical installation of
Excel) is not available.

Tips
• If your computer has Microsoft Office 2003 software, but you want to create a file in

an Excel 2007 format, install the Office 2007 Compatibility Pack.
• Excel and MATLAB can store dates as text that represents those dates (such as

'10/31/96') or serial date numbers (such as 729329). If your array includes serial
date numbers, convert these dates to their text representation using datestr before
calling xlswrite.

• To write data to Excel files with custom formats (such as fonts or colors), access the
Windows COM server directly using actxserver rather than xlswrite. For example,
this MathWorks Support Answer uses actxserver to establish a connection between
MATLAB and Excel, writes data to a worksheet, and specifies the colors of the cells.

Algorithms
Excel converts Inf values to 65535. MATLAB converts NaN values to empty cells.

Compatibility Considerations

xlswrite is not recommended
Not recommended starting in R2019a

xlswrite is not recommended. Use writematrix or writecell instead. There are no
plans to remove xlswrite.

Starting in R2019a, use the writematrix or writecell instead. The writematrix and
writecell functions have better cross-platform support and performance over the
xlswrite function.

 xlswrite

1-16567

https://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K

This table shows typical usages of xlswrite and how to update your code to use
writematrix and writecell instead.

Not Recommended Recommended
xlswrite('myFile.xlsx',A) % Write a matrix

writematrix(M,'myFile.xlsx')
% Or write a cell array
writecell('myFile.xlsx',C)

See Also
dlmwrite | writematrix | writetable | xlsfinfo | xlsread

Introduced before R2006a

1 Alphabetical List

1-16568

xmlread
Read XML document and return Document Object Model node

Syntax
DOMnode = xmlread(filename)

Description
DOMnode = xmlread(filename) reads the specified XML file and returns DOMnode a
Document Object Model node representing the document. Document Object Model is
defined by the World Wide Web consortium. For more information, see “What Is an XML
Document Object Model (DOM)?”.

Examples

Read XML File into Document Object Model (DOM) Node

Examine the contents of a sample XML file and then read the XML file into a Document
Object Model(DOM) node.

Display the contents of the file info.xml.

sampleXMLfile = 'info.xml';
type(sampleXMLfile)

<productinfo
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.mathworks.com/namespace/info/v1/info.xsd">
<?xml-stylesheet type="text/xsl" href="http://www.mathworks.com/namespace/info/v1/info.xsl"?>

<matlabrelease>R2012a</matlabrelease>
<name>Example Manager</name>
<type>internal</type>
<icon>ApplicationIcon.DEMOS</icon>

 xmlread

1-16569

<list>
<listitem>
<label>Example Manager</label>
<callback>com.mathworks.xwidgets.ExampleManager.showViewer
</callback>
<icon>ApplicationIcon.DEMOS</icon>
</listitem>
</list>

</productinfo>

Read the XML file into a DOM node.

DOMnode = xmlread(sampleXMLfile);

Read XML File into MATLAB® Structure Array

Create a parsing function to read an XML file into a MATLAB® structure, and then read a
sample XML file into the MATLAB workspace.

To create the function parseXML, copy and paste this code into an m-file parseXML.m, or
use the parseXML.m included in this example. The parseXML function parses data from
an XML file into a MATLAB structure array with fields Name, Attributes, Data, and
Children.

type('parseXML.m')

function theStruct = parseXML(filename)
% PARSEXML Convert XML file to a MATLAB structure.
try
 tree = xmlread(filename);
catch
 error('Failed to read XML file %s.',filename);
end

% Recurse over child nodes. This could run into problems
% with very deeply nested trees.
try
 theStruct = parseChildNodes(tree);
catch
 error('Unable to parse XML file %s.',filename);

1 Alphabetical List

1-16570

end

% ----- Local function PARSECHILDNODES -----
function children = parseChildNodes(theNode)
% Recurse over node children.
children = [];
if theNode.hasChildNodes
 childNodes = theNode.getChildNodes;
 numChildNodes = childNodes.getLength;
 allocCell = cell(1, numChildNodes);

 children = struct(...
 'Name', allocCell, 'Attributes', allocCell, ...
 'Data', allocCell, 'Children', allocCell);

 for count = 1:numChildNodes
 theChild = childNodes.item(count-1);
 children(count) = makeStructFromNode(theChild);
 end
end

% ----- Local function MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.

nodeStruct = struct(...
 'Name', char(theNode.getNodeName), ...
 'Attributes', parseAttributes(theNode), ...
 'Data', '', ...
 'Children', parseChildNodes(theNode));

if any(strcmp(methods(theNode), 'getData'))
 nodeStruct.Data = char(theNode.getData);
else
 nodeStruct.Data = '';
end

% ----- Local function PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.

attributes = [];
if theNode.hasAttributes

 xmlread

1-16571

 theAttributes = theNode.getAttributes;
 numAttributes = theAttributes.getLength;
 allocCell = cell(1, numAttributes);
 attributes = struct('Name', allocCell, 'Value', ...
 allocCell);

 for count = 1:numAttributes
 attrib = theAttributes.item(count-1);
 attributes(count).Name = char(attrib.getName);
 attributes(count).Value = char(attrib.getValue);
 end
end

Use the parseXML function to parse the sample file info.xml into a MATLAB structure.

sampleXMLfile = 'info.xml';
mlStruct = parseXML(sampleXMLfile)

mlStruct = struct with fields:
 Name: 'productinfo'
 Attributes: [1x2 struct]
 Data: ''
 Children: [1x13 struct]

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar containing the name of the
local file or URL.
Data Types: char | string

See Also
xmlwrite | xslt

Topics
“Importing XML Documents”

1 Alphabetical List

1-16572

External Websites
DOM Package Summary (methods and properties for nodes)

Introduced before R2006a

 xmlread

1-16573

https://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

xmlwrite
Write XML Document Object Model node

Syntax
xmlwrite(filename,DOMnode)
chr = xmlwrite(DOMnode)

Description
xmlwrite(filename,DOMnode) writes the Document Object Model (DOM) node
DOMnode to the file filename.

chr = xmlwrite(DOMnode) returns a serialized DOM node as a character vector.

Examples

Create XML File

Write an XML file by, first, creating a Document Object Model(DOM) node containing the
XML data. Then, write the DOM node to an XML file. The final XML file should contain
this text.

<?xml version="1.0" encoding="utf-8"?>

<toc version="2.0">

<tocitem target="upslope_product_page.html">Upslope Area Toolbox<!--
Functions -->

<tocitem target="demFlow_help.html">demFlow</tocitem>

<tocitem target="facetFlow_help.html">facetFlow</tocitem>

1 Alphabetical List

1-16574

<tocitem target="flowMatrix_help.html">flowMatrix</tocitem>

<tocitem target="pixelFlow_help.html">pixelFlow</tocitem>

</tocitem>

</toc>

First, create the DOM node object and root element, and populate the elements and the
attributes of the node corresponding to the XML data.

docNode = com.mathworks.xml.XMLUtils.createDocument('toc');

Identify the root element, and set the version attribute.

toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');

Add the tocitem element node for the product page. Each tocitem element in this file
has a target attribute and a child text node.

product = docNode.createElement('tocitem');
product.setAttribute('target','upslope_product_page.html');
product.appendChild(docNode.createTextNode('Upslope Area Toolbox'));
toc.appendChild(product);

Add comment.

product.appendChild(docNode.createComment(' Functions '));

Add a tocitem element node for each function, where the target is of the form
function_help.html.

functions = {'demFlow','facetFlow','flowMatrix','pixelFlow'};
for idx = 1:numel(functions)
 curr_node = docNode.createElement('tocitem');

 curr_file = [functions{idx} '_help.html'];
 curr_node.setAttribute('target',curr_file);

 % Child text is the function name.
 curr_node.appendChild(docNode.createTextNode(functions{idx}));
 product.appendChild(curr_node);
end

 xmlwrite

1-16575

Finally, export the DOM node to an XML file named infoUAT.xml, and view the file using
the type function.

xmlwrite('infoUAT.xml',docNode);
type('infoUAT.xml');

<?xml version="1.0" encoding="utf-8"?>
<toc version="2.0">
 <tocitem target="upslope_product_page.html">Upslope Area Toolbox<!-- Functions --><tocitem target="demFlow_help.html">demFlow</tocitem>
 <tocitem target="facetFlow_help.html">facetFlow</tocitem>
 <tocitem target="flowMatrix_help.html">flowMatrix</tocitem>
 <tocitem target="pixelFlow_help.html">pixelFlow</tocitem>
 </tocitem>
</toc>

Get Document Object Model(DOM) Node as Serialized Text

Read a DOM node from a sample XML file and get the contents of the DOM node as a
character vector.

Display the contents of the sample XML file, and then import the DOM node from the file.

sampleXMLfile = 'info.xml';
type(sampleXMLfile)

<productinfo
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.mathworks.com/namespace/info/v1/info.xsd">
<?xml-stylesheet type="text/xsl" href="http://www.mathworks.com/namespace/info/v1/info.xsl"?>

<matlabrelease>R2012a</matlabrelease>
<name>Example Manager</name>
<type>internal</type>
<icon>ApplicationIcon.DEMOS</icon>

<list>
<listitem>
<label>Example Manager</label>
<callback>com.mathworks.xwidgets.ExampleManager.showViewer
</callback>
<icon>ApplicationIcon.DEMOS</icon>
</listitem>

1 Alphabetical List

1-16576

</list>

</productinfo>

DOMnode = xmlread(sampleXMLfile);

Use xmlwrite to return the DOMnode object as a serialized character vector.

text = xmlwrite(DOMnode)

text =
 '<?xml version="1.0" encoding="utf-8"?>
 <productinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.mathworks.com/namespace/info/v1/info.xsd">
 <?xml-stylesheet type="text/xsl" href="http://www.mathworks.com/namespace/info/v1/info.xsl"?>

 <matlabrelease>R2012a</matlabrelease>
 <name>Example Manager</name>
 <type>internal</type>
 <icon>ApplicationIcon.DEMOS</icon>

 <list>
 <listitem>
 <label>Example Manager</label>
 <callback>com.mathworks.xwidgets.ExampleManager.showViewer
 </callback>
 <icon>ApplicationIcon.DEMOS</icon>
 </listitem>
 </list>

 </productinfo>'

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar containing the name of the
local file or URL.
Data Types: char | string

 xmlwrite

1-16577

DOMnode — Document Object Model(DOM) node
DOM node object

Document Object Model(DOM) node, specified as a DOM node object.

Document Object Model is defined by the World Wide Web consortium. For more
information, see “What Is an XML Document Object Model (DOM)?”.

See Also
xmlread | xslt

Topics
“Exporting to XML Documents”

External Websites
DOM Package Summary (methods and properties for nodes)

Introduced before R2006a

1 Alphabetical List

1-16578

https://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

xor
Find logical exclusive-OR

Syntax
C = xor(A,B)

Description
C = xor(A,B) performs a logical exclusive-OR of arrays A and B and returns an array
containing elements set to either logical 1 (true) or logical 0 (false). An element of the
output array is set to logical 1 (true) if A or B, but not both, contains a nonzero element
at that same array location. Otherwise, the array element is set to 0.

Examples

Exclusive-OR Truth Table

Create a truth table for xor.

A = [true false]

A = 1x2 logical array

 1 0

B = [true; false]

B = 2x1 logical array

 1
 0

C = xor(A,B)

 xor

1-16579

C = 2x2 logical array

 0 1
 1 0

Input Arguments
A,B — Input arrays
scalars | vectors | matrices | multidimensional arrays

Input arrays, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A
and B must either be the same size or have sizes that are compatible (for example, A is an
M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see
“Compatible Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Alphabetical List

1-16580

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also
Logical Operators: Short Circuit | all | and | any | find | not | or

Topics
“Truth Table for Logical Operations”

Introduced before R2006a

 xor

1-16581

xslt
Transform XML document using XSLT engine

Syntax
result = xslt(source,style,dest)
[result,style] = xslt(___)
xslt(___ ,'-web')

Description
result = xslt(source,style,dest) transforms an XML document using a
stylesheet and returns the resulting document's URL. The function uses these inputs, the
first of which is required:

• source is the filename or URL of the source XML file specified as a character vector
or string scalar. source can also specify a DOM node.

• style is the filename or URL of an XSL stylesheet specified as a character vector or
string scalar.

• dest is the filename or URL of the desired output document specified as a character
vector or string scalar. If dest is absent or empty, the function uses a temporary
filename. If dest is '-tostring', the function returns the output document as a
character vector.

[result,style] = xslt(___) returns a processed stylesheet appropriate for passing
to subsequent XSLT calls as style. This prevents costly repeated processing of the
stylesheet.

xslt(___ ,'-web') displays the resulting document in the Help Browser.

1 Alphabetical List

1-16582

Examples
This example converts the file info.xml using the stylesheet info.xsl, writing the
output to the file info.html. It launches the resulting HTML file in the MATLAB Web
Browser.

xslt('info.xml', 'info.xsl', 'info.html', '-web')

Tips
MATLAB uses the Saxon XSLT processor, version 6.5.5, which supports XSLT 1.0
expressions. For more information, see http://saxon.sourceforge.net/
saxon6.5.5/

For additional information on writing XSL stylesheets, see the World Wide Web
Consortium (W3C®) web site, https://www.w3.org/Style/XSL/.

See Also
xmlread | xmlwrite

Introduced before R2006a

 xslt

1-16583

http://saxon.sourceforge.net/saxon6.5.5/index.html
http://saxon.sourceforge.net/saxon6.5.5/index.html
https://www.w3.org/Style/XSL/

zeros
Create array of all zeros

Syntax
X = zeros
X = zeros(n)
X = zeros(sz1,...,szN)
X = zeros(sz)

X = zeros(___ ,typename)
X = zeros(___ ,'like',p)

Description
X = zeros returns the scalar 0.

X = zeros(n) returns an n-by-n matrix of zeros.

X = zeros(sz1,...,szN) returns an sz1-by-...-by-szN array of zeros where
sz1,...,szN indicate the size of each dimension. For example, zeros(2,3) returns a
2-by-3 matrix.

X = zeros(sz) returns an array of zeros where size vector sz defines size(X). For
example, zeros([2 3]) returns a 2-by-3 matrix.

X = zeros(___ ,typename) returns an array of zeros of data type typename. For
example, zeros('int8') returns a scalar, 8-bit integer 0. You can use any of the input
arguments in the previous syntaxes.

X = zeros(___ ,'like',p) returns an array of zeros like p; that is, of the same data
type (class), sparsity, and complexity (real or complex) as p. You can specify typename or
'like', but not both.

1 Alphabetical List

1-16584

Examples

Matrix of Zeros

Create a 4-by-4 matrix of zeros.

X = zeros(4)

X = 4×4

 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

3-D Array of Zeros

Create a 2-by-3-by-4 array of zeros.

X = zeros(2,3,4);
size(X)

ans = 1×3

 2 3 4

Clone Size from Existing Array

Create an array of zeros that is the same size as an existing array.

A = [1 4; 2 5; 3 6];
sz = size(A);
X = zeros(sz)

X = 3×2

 zeros

1-16585

 0 0
 0 0
 0 0

It is a common pattern to combine the previous two lines of code into a single line:

X = zeros(size(A));

Specify Data Type of Zeros

Create a 1-by-3 vector of zeros whose elements are 32-bit unsigned integers.

X = zeros(1,3,'uint32')

X = 1x3 uint32 row vector

 0 0 0

class(X)

ans =
'uint32'

Clone Complexity from Existing Array

Create a scalar 0 that is complex like an existing array instead of real valued.

First, create a complex vector.

p = [1+2i 3i];

Create a scalar 0 that is complex like p.

X = zeros('like',p)

X = 0.0000 + 0.0000i

1 Alphabetical List

1-16586

Clone Sparsity from Existing Array

Create a 10-by-10 sparse matrix.

p = sparse(10,10,pi);

Create a 2-by-3 matrix of zeros that is sparse like p.

X = zeros(2,3,'like',p)

X =
 All zero sparse: 2x3

Clone Size and Data Type from Existing Array

Create a 2-by-3 array of 8-bit unsigned integers.

p = uint8([1 3 5; 2 4 6]);

Create an array of zeros that is the same size and data type as p.

X = zeros(size(p),'like',p)

X = 2x3 uint8 matrix

 0 0 0
 0 0 0

class(X)

ans =
'uint8'

Clone Distributed Array

If you have Parallel Computing Toolbox, create a 1000-by-1000 distributed array of zeros
with underlying data type int8. For the distributed data type, the 'like' syntax
clones the underlying data type in addition to the primary data type.

 zeros

1-16587

p = zeros(1000,'int8','distributed');

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

Create an array of zeros that is the same size, primary data type, and underlying data
type as p.

X = zeros(size(p),'like',p);

class(X)

ans =

distributed

classUnderlying(X)

ans =
int8

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value.

• If n is 0, then X is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension (as separate arguments)
integer values

Size of each dimension, specified as separate arguments of integer values.

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.

1 Alphabetical List

1-16588

• Beyond the second dimension, zeros ignores trailing dimensions with a size of 1. For
example, zeros([3,1,1,1]) produces a 3-by-1 vector of zeros.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of each dimension (as a row vector)
integer values

Size of each dimension, specified as a row vector of integer values. Each element of this
vector indicates the size of the corresponding dimension:

• If the size of any dimension is 0, then X is an empty array.
• If the size of any dimension is negative, then it is treated as 0.
• Beyond the second dimension, zeros ignores trailing dimensions with a size of 1. For

example, zeros([3,1,1,1]) produces a 3-by-1 vector of zeros.

Example: sz = [2,3,4] creates a 2-by-3-by-4 array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

typename — Data type (class) to create
'double' (default) | 'single' | 'logical' | 'int8' | 'uint8' | ...

Data type (class) to create, specified as 'double', 'single', 'logical','int8',
'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64', or the name
of another class that provides zeros support.

p — Prototype of array to create
array

Prototype of array to create, specified as an array.
Data Types: double | single | logical | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

 zeros

1-16589

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Dimensions must be nonnegative real integers.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• See zeros in the Parallel Computing Toolbox documentation.

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• See zeros in the Parallel Computing Toolbox documentation.

See Also
complex | eye | false | ones | rand | size

Topics
“Class Support for Array-Creation Functions”
“Preallocation”

Introduced before R2006a

1 Alphabetical List

1-16590

zip
Compress files into zip file

Syntax
zip(zipfilename,filenames)
zip(zipfilename,filenames,rootfolder)
entrynames = zip(___)

Description
zip(zipfilename,filenames) compresses the contents of filenames into the zip file
zipfilename. zip recursively compresses the content in folders. The resulting zip file
contains the paths of filenames relative to the current folder. The zip file does not store
absolute paths.

zip(zipfilename,filenames,rootfolder) specifies the paths for filenames
relative to rootfolder rather than the current folder.

entrynames = zip(___) returns a cell array of character vectors containing the
names of the files included in zipfilename. You can use this syntax with any of the input
argument combinations in the previous syntaxes.

Examples

Compress a File

Create a zip file of the file membrane.m. Save the zip file tmwlogo.zip in the current
folder.

zip('tmwlogo','membrane.m');

 zip

1-16591

Compress Selected Files

Compress the files membrane.m and logo.m into a file named tmwlogo.zip.

zippedfiles = zip('tmwlogo.zip',{'membrane.m','logo.m'});

Compress all Code in Current Folder

Compress all .m and .mlx files in the current folder to the file backup.zip.

zip('backup',{'*.m','*.mlx'});

Compress a Folder

Compress the contents of a folder including all subfolders, and store the relative paths in
the zip file.

Create a folder myfolder containing a subfolder mysubfolder and the files
membrane.m and logo.m.

mkdir myfolder;
movefile('membrane.m','myfolder');
movefile('logo.m','myfolder');
cd myfolder;
mkdir mysubfolder;
cd ..

Compress the contents of myfolder, including all subfolders.

zippedfiles = zip('myfiles.zip','myfolder');

Compress Files Into Specified Folder

Suppose that you have the files thesis.doc and defense.ppt located in the folder d:/
PhD. Compress these files into thesis.zip, one level up from the current folder.

1 Alphabetical List

1-16592

zip('../thesis.zip',{'thesis.doc','defense.ppt'},'d:/PhD');

Input Arguments
zipfilename — Name of zip file
character vector | string scalar

Name of zip file to create, specified as a character vector or string scalar. If
zipfilename does not have a .zip extension, MATLAB appends the .zip extension.

zipfilename must include a path relative to the current folder or an absolute path.
Data Types: char | string

filenames — Names of files or folders
character vector | cell array of character vectors | string array

Names of files or folders to compress, specified as a character vector, a cell array of
character vectors, or a string array. The total number of files specified by filenames
must be less than 65535, and each individual file must be smaller than 4 GB.

Files that are on the MATLAB path can include a partial path. Otherwise, files must
include a path relative to the current folder or an absolute path.

Folders must include a path relative to the current folder or an absolute path. On UNIX
systems, folders also can start with ~/ or ~username/, which expands to the current
user's home folder or the specified user's home folder, respectively. You can use the
wildcard character * when specifying files or folders, except when relying on the MATLAB
path to resolve a file name or partial path name.
Data Types: char | string

rootfolder — Root paths
character vector | string scalar

Root paths for the files to compress, specified as a character vector or string scalar.
Data Types: char | string

 zip

1-16593

Alternative Functionality
To zip files in the Current Folder browser, select the file, right-click to open the context
menu, and then select Create Zip File.

See Also
gunzip | gzip | tar | untar | unzip

Topics
“Create and Extract from Zip Archives”

Introduced before R2006a

1 Alphabetical List

1-16594

zoom
Turn zooming on or off or magnify by factor

Syntax
zoom on
zoom off
zoom out
zoom reset
zoom
zoom xon
zoom yon
zoom(factor)
zoom(fig, option)
h = zoom(figure_handle)

Description
zoom on turns on zoom mode. When zoom mode is enabled in a figure, pressing a mouse
button while your cursor is within an axes zooms into the point or out from the point
beneath the mouse. Zooming changes the axes limits. When using zoom mode, you

• Zoom in by positioning the mouse cursor where you want the center of the plot to be
and either

• Press the mouse button or
• Rotate the mouse scroll wheel away from you (upward).

• Zoom out by positioning the mouse cursor where you want the center of the plot to be
and either

• Simultaneously press Shift and the mouse button, or
• Rotate the mouse scroll wheel toward you (downward).

Each mouse click or scroll wheel click zooms in or out by a factor of 2.

 zoom

1-16595

Clicking and dragging over an axes when zooming in is enabled draws a rubberband box.
When you release the mouse button, the axes zoom in to the region enclosed by the
rubberband box.

Double-clicking over an axes returns the axes to its initial zoom setting in both zoom-in
and zoom-out modes.

zoom off turns off zoom mode. Starting in R2018b, some zoom interactions are enabled
by default, regardless of the zoom mode. If you want to disable these default interactions,
then use the disableDefaultInteractivity function.

zoom out returns the plot to its initial zoom setting.

zoom reset remembers the current zoom setting as the initial zoom setting. Later calls
to zoom out, or double-clicks when interactive zoom mode is enabled, will return to this
zoom level.

zoom toggles the zoom mode between off and on (restoring the most recently used zoom
tool).

zoom xon and zoom yon set zoom on for the x- and y-axis, respectively.

zoom(factor) zooms in or out by the specified zoom factor, without affecting the
interactive zoom mode. Values greater than 1 zoom in by that amount, while numbers
greater than 0 and less than 1 zoom out by 1/factor.

zoom(fig, option) Any of the preceding options can be specified on a figure other
than the current figure using this syntax.

h = zoom(figure_handle) returns a zoom mode object for the figure figure_handle
for you to customize the mode's behavior.

Using Zoom Mode Objects
You can access the following properties.

• Enable 'on'|'off' — Specifies whether this figure mode is currently enabled on
the figure.

• FigureHandle <handle> — The associated figure handle, a read-only property that
cannot be set.

1 Alphabetical List

1-16596

• Motion 'horizontal'|'vertical'|'both' — The type of zooming enabled for
the figure. This property only affects axes in a 2-D view ([0 90]).

• Direction 'in'|'out' — The direction of the zoom operation.
• RightClickAction 'InverseZoom'|'PostContextMenu' — The behavior of a

right-click action.

A value of 'InverseZoom' causes a right-click to zoom out. A value of
'PostContextMenu' displays a context menu. This setting persists between MATLAB
sessions.

• UIContextMenu <handle> — Specifies a custom context menu to be displayed
during a right-click action.

This property is ignored if the RightClickAction property has been set to
'InverseZoom'.

Zoom Mode Callbacks
You can program the following callbacks for zoom mode operations.

• ButtonDownFilter <function_handle> — Function to intercept ButtonDown
events

The application can inhibit the zoom operation under circumstances the programmer
defines, depending on what the callback returns. The input function handle should
reference a function with two implicit arguments (similar to graphics object callbacks),
as follows:

function [res] = myfunction(obj,event_obj)
% obj handle to the object clicked on
% event_obj struct for event data (empty in this release)
% res [output] a logical flag determines whether the zoom
% operation should take place(for 'res' set
% to 'false' or the 'ButtonDownFcn' property
% of the object should take precedence (when
% 'res' is 'true')

• ActionPreCallback <function_handle> — Function to execute before zooming

Set this callback if you want to execute code when a zoom operation starts. The input
function handle should reference a function with two implicit arguments (similar to
graphics object callbacks), as follows:

 zoom

1-16597

function myfunction(obj,event_obj)
% obj handle to the figure clicked on
% event_obj object containing struct of event data

The event data has the following field.

Axes The handle of the axes that is being
zoomed

• ActionPostCallback <function_handle> — Function to execute after zooming

Set this callback if you want to execute code when a zoom operation finishes. The
input function handle should reference a function with two implicit arguments (similar
to graphics object callbacks), as follows:

function myfunction(obj,event_obj)
% obj handle to the figure clicked on
% event_obj object containing struct of event data
% (same as the event data of the
% 'ActionPreCallback' callback)

Zoom Mode Utility Functions
The following functions in zoom mode query and set certain of its properties.

• flags = isAllowAxesZoom(h,ax) — Function querying permission to zoom axes.

Calling the function isAllowAxesZoom on the zoom object, h, with a vector of axes
handles, ax, as input returns a logical array of the same dimension as the axes handle
vector, which indicates whether a zoom operation is permitted on the axes objects.

• setAllowAxesZoom(h,ax,flag) — Function to set permission to zoom axes.

Calling the function setAllowAxesZoom on the zoom object, h, with a vector of axes
handles, ax, and a logical scalar, flag, either allows or disallows a zoom operation on
the axes objects.

• cn = getAxesZoomConstraint(h,ax) — Function to get constraints of zoom
operations.

Calling the function getAxesZoomConstraint on the zoom object, h, with an axes
object, ax, as input returns the constraint for the axes. The returned constraint is one
of these values: 'x', 'y', 'z', 'xy', 'xz', 'yz', or 'unconstrained'.

1 Alphabetical List

1-16598

• setAxesZoomConstraint(h,ax,cnstr) — Function to set constraints of zoom
operations.

Calling the function setAxesZoomConstraint on the zoom object, h, with an axes
object, ax, and a constraint option, cnstr, sets the constraint for the axes. Specify the
constraint as one of these values: 'x', 'y', 'z', 'xy', 'xz', 'yz', or
'unconstrained'.

• sty = getAxes3DPanAndZoomStyle(h,ax) — Function to get style of zoom
operations.

Calling the function getAxes3DPanAndZoomStyle on the zoom object, h, with a
vector of axes handles, ax, as input returns the style of zooming for each axes. The
returned value for each axes is either 'limits' or 'camera'.

• setAxes3DPanAndZoomStyle(h,ax,style) — Function to set style of zoom
operations.

Calling the function setAxes3DPanAndZoomStyle on the zoom object, h, with a
vector of axes handles, ax, and a character array, style, sets the style of zooming on
each axes. Specify the style as either 'limits' or 'camera'.

• cns = getAxesZoomMotion(h,ax) — Function to get constraints of zoom
operations (not recommended, use getAxesZoomConstraint).

Calling the function getAxesZoomMotion on the zoom object, h, with a vector of axes
objects, ax, as input returns a character cell array of the same dimension as ax, which
indicates the constraint for each axes. The returned value for each axes is
'horizontal', 'vertical' or 'both'.

• setAxesZoomMotion(h,ax,constraints) — Function to set constraints of zoom
operations (not recommended, use setAxesZoomConstraint).

Calling the function setAxesZoomMotion on the zoom object, h, with a vector of axes
objects, ax, and a character array, style, sets the constraint for each axes. Specify
the constraints as 'horizontal', 'vertical' or 'both'.

Examples

Example 1 — Entering Zoom Mode
Plot a graph and turn on Zoom mode:

 zoom

1-16599

plot(1:10);
zoom on
% zoom in on the plot

Example 2 — Constrained Zoom
Create zoom mode object and constrain to x-axis zooming.

Note Starting in R2014b, you can set properties using dot notation. If you are using an
earlier release, use the set function instead, such as
set(h,'Motion','horizontal').

plot(1:10);
h = zoom;
h.Motion = 'horizontal';
h.Enable = 'on';
% zoom in on the plot in the horizontal direction.

Example 3 — Constrained Zoom in Subplots
Create four axes as subplots and set zoom style differently for each by setting a different
property for each axes handle:

ax1 = subplot(2,2,1);
plot(1:10);
h = zoom;
ax2 = subplot(2,2,2);
plot(rand(3));
setAllowAxesZoom(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesZoomMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);
contour(peaks);
setAxesZoomMotion(h,ax4,'vertical');
% Zoom in on the plots.

1 Alphabetical List

1-16600

Example 4 — Coding a ButtonDown Callback
Create a buttonDown callback for zoom mode objects to trigger. Copy the following code
to a new file, execute it, and observe zooming behavior.

Note Starting in R2014b, you can set properties using dot notation. If you are using an
earlier release, use the set function instead, such as
set(hLine,'ButtonDownFcn','disp(''This executes'')').

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
hLine.ButtonDownFcn = 'disp(''This executes'')';
hLine.Tag = 'DoNotIgnore';
h = zoom;
h.ButtonDownFilter = @mycallback;
h.Enable = 'on';
% mouse click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
objTag = obj.Tag;
if strcmpi(objTag,'DoNotIgnore')
 flag = true;
else
 flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior
Create callbacks for pre- and post-buttonDown events for zoom mode objects to trigger.
Copy the following code to a new file, execute it, and observe zoom behavior.

Note Starting in R2014b, you can set properties using dot notation. If you are using an
earlier release, use the set function instead, such as
set(h,'ActionPreCallback',@myprecallback).

function demo
% Listen to zoom events

 zoom

1-16601

plot(1:10);
h = zoom;
h.ActionPreCallback = @myprecallback;
h.ActionPostCallback = @mypostcallback;
h.Enable = 'on';
%
function myprecallback(obj,evd)
disp('A zoom is about to occur.');
%
function mypostcallback(obj,evd)
newLim = evd.Axes.XLim;
msgbox(sprintf('The new X-Limits are [%.2f %.2f].',newLim));

Example 6 — Creating a Context Menu for Zoom Mode
Coding a context menu that lets the user to switch to Pan mode by right-clicking.

Note Starting in R2014b, you can set properties using dot notation. If you are using an
earlier release, use the set function instead, such as
set(hZoom,'UIContextMenu',hCMZ).

figure
plot(magic(10))
hCMZ = uicontextmenu;
hZMenu = uimenu('Parent',hCMZ,'Label','Switch to pan',...
'Callback','pan(gcbf,''on'')');
hZoom = zoom(gcf);
hZoom.UIContextMenu = hCMZ;
zoom('on')

You cannot add items to the built-in zoom context menu, but you can replace it with your
own.

Tips
zoom changes the axes limits by a factor of 2 (in or out) each time you press the mouse
button while the cursor is within an axes. You can also click and drag the mouse to define
a zoom area, or double-click to return to the initial zoom level.

1 Alphabetical List

1-16602

You can create a zoom mode object once and use it to customize the behavior of different
axes, as Example 3 illustrates. You can also change its callback functions on the fly.

Note Do not change figure callbacks within an interactive mode. While a mode is
active (when panning, zooming, etc.), you will receive a warning if you attempt to change
any of the figure's callbacks and the operation will not succeed. The one exception to this
rule is the figure WindowButtonMotionFcn callback, which can be changed from within
a mode. Therefore, if you are creating a UI that updates a figure's callbacks, the UI
should somehow keep track of which interactive mode is active, if any, before attempting
to do this.

When you assign different zoom behaviors to different subplot axes via a mode object
and then link them using the linkaxes function, the behavior of the axes you manipulate
with the mouse carries over to the linked axes, regardless of the behavior you previously
set for the other axes.

Alternatives
Use the Zoom tools in the toolbar to zoom in or zoom out on a plot, or select Zoom In or
Zoom Out from the figure's Tools menu.

See Also
linkaxes | pan | rotate3d

Introduced before R2006a

 zoom

1-16603

zoomInteraction
Zoom interaction

Description
A zoom interaction allows you to zoom into a chart without having to select any buttons in
the axes toolbar. To enable zooming, set the Interactions property of the axes to a
zoomInteraction object. When this interaction is enabled, you can zoom by scrolling or
pinching within the chart.

To enable multiple interactions, set the Interactions property to an array of objects.

Creation

Syntax
z = zoomInteraction
z = zoomInteraction('Dimensions',d)

Description
z = zoomInteraction creates a zoom interaction object.

z = zoomInteraction('Dimensions',d) sets the Dimensions property. Use this
property to constrain zooming to specific dimensions. For example, z =
zoomInteraction('Dimensions','x') constrains zooming to the x-dimension.

Properties
Dimensions — Dimensions
'xyz' (default) | 'xy' | 'yz' | 'xz' | 'x' | 'y' | 'z'

Dimensions to allow zooming, specified as one of these values:

1 Alphabetical List

1-16604

• 'xyz' — Allows zooming in all dimensions.
• 'xy' — Allows zooming in the x and y dimensions only.
• 'yz' — Allows zooming in the y and z dimensions only.
• 'xz' — Allows zooming in the x and z dimensions only.
• 'x' — Allows zooming in the x dimension only.
• 'y' — Allows zooming in the y dimension only.
• 'z' — Allows zooming in the z dimension only.

Examples

Axes with Zoom Interaction

Create a surface plot. Get the current axes and replace the default interactions with just
the zoom interaction. Then scroll or pinch to zoom in or out.

surf(peaks)
ax = gca;
ax.Interactions = zoomInteraction;

 zoomInteraction

1-16605

Restrict Zooming to X-Dimension

Use the sphere function to define vectors x, y, and z. Then create a scatter plot using
those vectors. Replace the default set of interactions with a zoom interaction that is
restricted to the x-dimension. Then scroll or pinch within the plot to zoom.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];
scatter3(x,y,z)
xlabel('X')

1 Alphabetical List

1-16606

ylabel('Y')
zlabel('Z')
ax = gca;
ax.Interactions = zoomInteraction('Dimensions','x');

Limitations
The zoomInteraction function is not supported in the Live Editor.

 zoomInteraction

1-16607

Tips
In most cases, the axes have a default set of interactions which depend on the type of
chart you are displaying. You can replace the default set with a new set of interactions,
but you cannot access or modify any of the interactions in the default set.

See Also
dataTipInteraction | disableDefaultInteractivity |
enableDefaultInteractivity | panInteraction | regionZoomInteraction |
rotateInteraction | rulerPanInteraction

Topics
“Control Chart Interactivity”

Introduced in R2019a

1 Alphabetical List

1-16608

appdesigner
Open App Designer Start Page or existing app file

Syntax
appdesigner
appdesigner(filename)

Description
appdesigner opens the App Designer Start Page. From the Start Page you can create a
new blank app, or a new 2-panel or 3-panel app with auto-reflow, or you can:

• View a list of your most recently used apps.
• Explore featured examples to help you get started.
• Take a guided tutorial to learn the basics of App Designer.
• Discover new App Designer features highlighted in the carousel.

appdesigner(filename) opens the specified .mlapp file in App Designer. If
the .mlapp file is not on the MATLAB path, specify the full path.

Examples

Create New App with Auto-Reflow

Create a new app that automatically resizes and reflows content to respond to different
device screen sizes.

Open the App Designer Start Page.

appdesigner

 appdesigner

1-16609

Select one of the preconfigured apps with auto-reflow from the Start Page. A new file
titled app1.mlapp opens in App Designer. The app1.mlapp file does not appear in the
MATLAB Current Folder browser until you save it.

Open Existing App File

Open and display an existing app file from your MATLAB search path.

appdesigner("valueplots")

Input Arguments
filename — Name or path of app file
character vector | string scalar

Name or path of an app file, specified as a character vector or string scalar.
Including .mlapp in the file name is optional. Only one file name can be passed into the
appdesigner function at time.

If filename appears in multiple folders on the search path, then include a path to the
file. The file specification must be the complete or relative path to a file, or the name of a
file on the MATLAB path.
Example: appdesigner('app1.mlapp')
Example: appdesigner("app1")
Example: appdesigner("C:\Documents\Data\watertables.mlapp")

Tips
You can also create or edit apps using the App Designer development environment in
MATLAB Online (supported only for Google Chrome™ browsers).

1 Alphabetical List

1-16610

See Also

Topics
“Ways to Build Apps”
“Create and Run a Simple App Using App Designer”
“Migrating GUIDE Apps to App Designer”
“Displaying Graphics in App Designer”

Introduced in R2016a

 appdesigner

1-16611

Button Properties
Control button appearance and behavior

Description
Buttons are UI components that respond when the user presses and releases them. By
changing property values, you can modify the appearance and behavior of a button. Use
dot notation to refer to a specific object and property.

uf = uifigure;
b = uibutton(uf);
b.Text = 'Plot';

Properties
Button

Text — Button label
'Button' (default) | character vector | cell array of character vectors | string scalar |
string array | ...

Button label, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Specify a character vector or string scalar to label
the button with a single line of text. Use a cell array or string array to label the button
with multiple lines of text. Each element in the array represents a separate line of text. If
you specify this property as a categorical array, MATLAB uses the values in the array, not
the full set of categories.

Icon — File name of button icon
'' (default) | character vector | string scalar

File name of the button icon, specified as a character vector or string scalar.

The file name can be an image file name on the MATLAB path or a full path to an image
file. If you plan to share an app with others, put the image file on the MATLAB path to
facilitate app packaging.

1 Alphabetical List

1-16612

The image file type must be JPEG, GIF, or PNG.

• If the button text takes up all the space specified by the Position property value,
then MATLAB does not display the icon.

• If some room is available for the icon, then MATLAB scales down the image to fit, if
necessary.

Example: 'icon.png'
Example: 'C:\Documents\icon.png'

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

 Button Properties

1-16613

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-16614

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.96 .96 .96] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 Button Properties

1-16615

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Button visibility
'on' (default) | 'off'

Button visibility, specified as 'on' or 'off'. The Visible property determines whether
the button is displayed on the screen. If the Visible property is set to 'off', the entire
button is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of button
'on' (default) | 'off'

Operational state of the button, specified as 'on' or 'off'.

• If you set this property to 'on', the app user can press the button.
• If you set this property to 'off', the button appears dimmed, indicating that the app

user cannot press it, and that the button will not trigger a callback.

1 Alphabetical List

1-16616

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of button
[100 100 100 22] (default) | [left bottom width height]

Location and size of button, specified as the vector of the form [left bottom width
height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the button
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the button
width Distance between the right and left outer edges of the

button
height Distance between the top and bottom outer edges of the

button

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.

InnerPosition — Location and size of button
[100 100 100 22] (default) | [left bottom width height]

 Button Properties

1-16617

Location and size of button, specified as a four element vector of the form [left bottom
width height]. All measurements are in pixel units. This property value is identical to
the Position property.

OuterPosition — Location and size of button
[100 100 100 22]] (default) | [left bottom width height]

This property is read-only.

Location and size of button, returned as a four element vector of the form [left bottom
width height]. All measurements are in pixel units. This property value is identical to
the Position property.

HorizontalAlignment — Horizontal alignment of icon and text
'center' (default) | 'left' | 'right'

Horizontal alignment of the icon and text, specified as 'center', 'left', or 'right'.
The horizontal alignment is relative to the area inside the borders of the button. Setting
this property when the text spans the full width of the button has no apparent effect in
the UI.

VerticalAlignment — Vertical alignment of icon and text
'center' (default) | 'top' | 'bottom'

Vertical alignment of the icon and the text, specified as 'center', 'top', or 'bottom'.
The vertical alignment is relative to the area inside the borders of the button. Setting this
property when the text height fills the height of the button has no apparent effect in the
UI.

IconAlignment — Location of icon relative to button text
'left' (default) | 'right' | 'center' | 'top' | 'bottom'

Location of icon relative to the button text, specified as 'left', 'right', 'top', or
'bottom'. If the Text property is empty, then the icon uses the HorizontalAlignment
and VerticalAlignment properties instead of the IconAlignment property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then

1 Alphabetical List

1-16618

this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a button in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
b = uibutton(g);
b.Layout.Row = 3;
b.Layout.Column = 2;

To make the button span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this button spans columns 2 through 3:

b.Layout.Column = [2 3];

Callbacks

ButtonPushedFcn — Button pushed callback
'' (default) | function handle | cell array | character vector

Button pushed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user clicks the button in the app.

This callback function can access specific information about the user’s interaction with
the button. MATLAB passes this information in a ButtonPushedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object’s properties using dot notation. For example,
event.Source returns the Button object. The ButtonPushedData object is not
available to callback functions specified as character vectors.

The following table lists the properties of the ButtonPushedData object.

 Button Properties

1-16619

Property Value
EventName 'ButtonPushed'
Source Component that executes the callback

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

1 Alphabetical List

1-16620

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

 Button Properties

1-16621

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

1 Alphabetical List

1-16622

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

 Button Properties

1-16623

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uibutton'

This property is read-only.

Type of graphics object, returned as 'uibutton'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-16624

See Also
Functions
appdesigner | uibutton | uifigure

Introduced in R2016a

 Button Properties

1-16625

ButtonGroup Properties
Control button group appearance and behavior

Description
Button groups are containers for managing exclusive selection of radio buttons and toggle
buttons. Properties control the appearance and behavior of a button group. Use dot
notation to refer to a specific object and property.

uf = uifigure;
bg = uibuttongroup(uf);
bg.Title = 'Options';

The properties listed here are valid for button groups in App Designer, or in apps created
with the uifigure function. For button groups used in GUIDE, or in apps created with
the figure function, see Uibuttongroup.

Properties
Title

Title — Title
character vector | string scalar | categorical array

Title, specified as a character vector, string scalar, or categorical array. If you specify this
property as a categorical array, MATLAB displays only the first element in the array.

MATLAB does not interpret a vertical slash ('|') character as a line break, it displays as
a vertical slash in the title.

If you want to specify a Unicode character, pass the Unicode decimal code to the char
function. For example, ['Multiples of ' char(960)] displays as Multiples of π.

TitlePosition — Location of title
'lefttop' (default) | 'centertop' | 'righttop'

Location of the title, specified as 'lefttop', 'centertop', or 'righttop'.

1 Alphabetical List

1-16626

Color and Styling

ForegroundColor — Title color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Title color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'

 ButtonGroup Properties

1-16627

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.94 .94 .94] (default) | RGB Triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

1 Alphabetical List

1-16628

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BorderType — Button group border
'line' (default) | 'none'

Button group border, specified as 'line' or 'none'.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

 ButtonGroup Properties

1-16629

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontUnits — Font unit of measurement
'pixels' (default)

Font unit of measurement, specified as 'pixels'. Distances in pixels are independent of
your system resolution on Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.
• On Linux systems, the size of a pixel is determined by your system resolution.

Interactivity

Visible — Button group visibility
'on' (default) | 'off'

Button group visibility, specified as 'on' or 'off'. The Visible property determines
whether the button group is displayed on the screen. If the Visible property is set to
'off', the entire button group is hidden. However, you can still specify and access
properties.

1 Alphabetical List

1-16630

To make your app start faster, set the Visible property of all components that are not
initially displayed to 'off'.

Note Changing the Visible property of a ButtonGroup object does not change the
values of the Visible properties of its child components. This is true even though hiding
the button group causes the children to be hidden.

Buttons — Buttons managed by button group
array of RadioButton objects | array of ToggleButton objects

This property is read-only.

Buttons managed by the button group, returned as an array of RadioButton objects or
an array of ToggleButton objects.

This property does not necessarily return all the child components of the ButtonGroup
object. If you need to access child components that are not RadioButton or
ToggleButton objects, use the Children property.

SelectedObject — Currently selected radio button or toggle button
first radio button or toggle button in button group (default)

Currently selected radio button or toggle button, specified as a RadioButton or a
ToggleButton object.

Get the value of this property to determine which button is currently selected within the
button group.

Set the value of this property to change the currently selected button. When you change
the selection using this property, MATLAB adjusts the Value property for the other
buttons within the button group accordingly.

For example, suppose that your button group contains three radio buttons and you set the
SelectedObject property to radiobutton3. MATLAB sets the Value property for each
child RadioButton as follows:

• radiobutton1.Value = false;
• radiobutton2.Value = false;
• radiobutton3.Value = true;

 ButtonGroup Properties

1-16631

In other words, setting the SelectedObject property has the same effect as setting the
Value property of a RadioButton or ToggleButton.

Scrollable — Ability to scroll
'off' (default) | 'on'

Ability to scroll, specified as 'off' or 'on'. Setting this property to 'on' enables
scrolling within the container. However, there are additional requirements:

• The child components in the container must occupy a larger area than the container
can display at one time.

• Components that do not fit in the container must be above or to the right of the
container. You cannot scroll to components that are below or to the left of the
container.

Certain types of charts and axes do not support scrollable containers. However, you can
place the chart or axes in a nonscrollable panel, and then place the panel in the scrollable
container. For more information, see “Displaying Graphics in App Designer”.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. To display multiple lines of text, specify a cell
array of character vectors or a string array. Each element in the array becomes a separate
line of text. If you specify this property as a categorical array, MATLAB uses the values in
the array, not the full set of categories.

Position

Position — Location and size of button group, including borders and title
[left bottom width height]

Location and size of the button group, including borders and title, specified as a vector of
the form [left bottom width height]. This table describes each element in the
vector.

1 Alphabetical List

1-16632

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the button group
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the button group
width Distance between the right and left outer edges of the

button group
height Distance between the top and bottom outer edges of the

button group

All measurements specified by the Units property value.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

InnerPosition — Location and size of button group, excluding borders and title
[left bottom width height]

This property is read-only.

Location and size of the button group, excluding borders and title, returned as a four-
element vector of the form [left bottom width height]. This table describes each
element in the vector.

Value Description
left Distance from the inner left edge of the parent container to

the inner left edge of the button group.
bottom Distance from the inner bottom edge of the parent

container to the inner bottom edge of the button group.
width Distance between the inner edges of the button group’s

right and left borders.
height Distance between the inner edges of the button group’s top

and bottom borders. This distance excludes the title, if it
exists.

All measurements are in units specified by the Units property.

 ButtonGroup Properties

1-16633

Note These are some important points to consider when using the InnerPosition
property:

• InnerPosition values are affected by the presence (or absence) of a title, the font
characteristics, and the BorderType.

• InnerPosition values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and does not include the
area occupied by the title.

OuterPosition — Location and size of button group, including borders and title
[left bottom width height]

Location and size of the button group, including borders and title, specified as a four-
element vector of the form [left bottom width height]. All measurements are in
units specified by the Units property.

This property value is identical to the Position property value.

Units — Units of measurement
'pixels' (default)

Units of measurement, specified as 'pixels'.

AutoResizeChildren — Automatically resize children
'on' (default) | 'off'

Automatically resize children, specified as 'on' or 'off'.

• 'on' — Child components automatically resize when the container resizes.
• 'off' — Child components do not resize.

The AutoResizeChildren property affects direct children of the container, not children
inside nested containers.

To customize the resize behavior, set the AutoResizeChildren property to 'off' and
create a SizeChangedFcn callback for the container. For more information, see
“Managing Resizable Apps in App Designer”.

To disable resizing of an app, set the Resize property of the figure to 'off'.

1 Alphabetical List

1-16634

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a button group in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
bg = uibuttongroup(g);
bg.Layout.Row = 3;
bg.Layout.Column = 2;

To make the button group span multiple rows or columns, specify the Row or Column
property as a two-element vector. For example, this button group spans columns 2
through 3:

bg.Layout.Column = [2 3];

Callbacks

SelectionChangedFcn — Selection changed callback
'' (default) | function handle | cell array | character vector

Selection changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user selects a different button within the button group in
the app. It does not execute if a radio or toggle button Value property changes
programmatically.

This callback function can access specific information about the user’s interaction with
the buttons. MATLAB passes this information in a SelectionChangedData object as the

 ButtonGroup Properties

1-16635

second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.NewValue returns the currently selected button. The SelectionChangedData
object is not available to callback functions specified as character vectors.

The following table lists the properties of the SelectionChangedData object.

Property Description
OldValue Previously selected button
NewValue Currently selected button
Source Component that executes the callback
EventName 'SelectionChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

SizeChangedFcn — Size change callback
'' (default) | function handle | cell array | character vector

Size change callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

Note The SizeChangedFcn callback will not execute unless the AutoResizeChildren
property of this container is set to 'off'. In App Designer, you can make the
SizeChangedFcn executable by clearing the AutoResizeChildren check box in the UI
Figure Properties panel.

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.

1 Alphabetical List

1-16636

• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible
property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

 ButtonGroup Properties

1-16637

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

1 Alphabetical List

1-16638

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 ButtonGroup Properties

1-16639

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Children — ButtonGroup children
empty GraphicsPlaceholder array (default) | 1-D array of component objects

ButtonGroup children, returned as an empty GraphicsPlaceholder or a 1-D array of
component objects. The children of a ButtonGroup object can be any UI component
object, including another ButtonGroup object.

You cannot add or remove child components using the Children property of the
ButtonGroup. Use the Children property value to view the list of children or to reorder

1 Alphabetical List

1-16640

the children. The order of the children in the property value array reflects the front-to-
back order (stacking order) of the components on the screen.

To add a child to this list, set the Parent property of the child component to the
ButtonGroup.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uibuttongroup'

This property is read-only.

Type of graphics object, returned as 'uibuttongroup'.

 ButtonGroup Properties

1-16641

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uibuttongroup | uifigure

Introduced in R2016a

1 Alphabetical List

1-16642

CheckBox Properties
Control check box appearance and behavior

Description
A check box is a UI component for indicating the state of a preference or option.
Properties control the appearance and behavior of a check box. Use dot notation to refer
to a specific object and property.

uf = uifigure;
cb = uicheckbox(uf);
cb.Text = 'Show value';

Properties
Check Box

Value — State of check box
0 (default) | 1

State of the check box, specified as 0 (false) or 1 (true). When the Value property is set
to 1, the check box is checked. When the Value property is set to 0, the check box is not
checked.

Text — Check box label
'Check Box' (default) | character vector | cell array of character vectors | string scalar |
string array | ...

Check box label, specified as one of the following:

• Character vector or string scalar — Displays a single line of text. For example:

uicheckbox('Text','Filter');

• Cell array of character vectors, string array, or 1-D categorical array— Displays
multiple lines of text. Each row of the array is one line of text.

 CheckBox Properties

1-16643

uicheckbox('Text',{'Filter','Results'},...
'Position',[100 100 84 30]);

If you set the Text property to a cell array or string array, change the Position property
to accommodate the additional lines of text.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the full set of categories.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

1 Alphabetical List

1-16644

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 CheckBox Properties

1-16645

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Check box visibility
'on' (default) | 'off'

Check box visibility, specified as 'on' or 'off'. The Visible property determines
whether the check box is displayed on the screen. If the Visible property is set to
'off', the check box is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of check box
'on' (default) | 'off'

Operational state of the check box, specified as 'on' or 'off'.

• If you set this property to 'on', then the app user can select or clear the check box.
• If you set this property to 'off', then the check box appears dimmed, indicating that

the app user cannot select or clear it, and that it will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this

1 Alphabetical List

1-16646

property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of check box
[100 100 84 22] (default) | [left bottom width height]

Location and size of the check box relative to the parent, specified as the vector [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the check box
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the check box
width Distance between the right and left outer edges of the

check box
height Distance between the top and bottom outer edges of the

check box

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.
Example: [200 200 102 15]

InnerPosition — Inner location and size of check box
[100 100 84 22] (default) | [left bottom width height]

Inner location and size of the check box, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property value for check boxes.

OuterPosition — Outer location and size of check box
[100 100 84 22] (default) | [left bottom width height]

This property is read-only.

 CheckBox Properties

1-16647

Outer location and size of the check box returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property value.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a check box in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
c = uicheckbox(g);
c.Layout.Row = 3;
c.Layout.Column = 2;

To make the check box span multiple rows or columns, specify the Row or Column
property as a two-element vector. For example, this check box spans columns 2 through
3:

c.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
[] (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user selects or clears the check box in the app. The
callback does not execute if the check box value changes programmatically.

1 Alphabetical List

1-16648

This callback function can access specific information about the user’s interaction with
the check box. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the check box. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of check box after most recent app

user interaction with it.
PreviousValue Value of check box before most recent app

user interaction with it.
Source Component that executes the callback.
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

 CheckBox Properties

1-16649

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running

1 Alphabetical List

1-16650

callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

 CheckBox Properties

1-16651

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that

1 Alphabetical List

1-16652

obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uicheckbox'

This property is read-only.

Type of graphics object, returned as 'uicheckbox'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

 CheckBox Properties

1-16653

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uicheckbox | uifigure

Introduced in R2016a

1 Alphabetical List

1-16654

DiscreteKnob Properties
Control discrete knob appearance and behavior

Description
A discrete knob is a UI component for selecting an option from a discrete set. By
changing property values, you can modify the appearance and behavior of a discrete
knob. Use dot notation to refer to a specific object and property.

uf = uifigure;
k = uiknob(uf,'discrete');
k.Items = {'Freezing','Cold','Warm','Hot'};

Properties
Knob

Value — Value
element of Items | element of ItemsData

Value, specified as an element of the Items or ItemsData arrays. By default, Value is
the first element in Items.

Specifying Value as an element of Items sets the knob selector to the corresponding
label on the knob. If ItemsData is not empty, then Value must be set to an element of
ItemsData, and the knob selector will point to the associated label.

Items — Knob options
{'Off','Low','Medium','High'} (default) | cell array of character vectors | string
array | ...

Knob options, specified as a cell array of character vectors, string array, or 1-D
categorical array. The array must contain at least two elements. The knob displays as
many options as there are elements in the Items array. The options display in clockwise
order. If you specify this property as a categorical array, MATLAB uses the values in the
array, not the full set of categories.

 DiscreteKnob Properties

1-16655

Example: {'Off','Slow','Fast'}
Example: {'1','2','3','4'}

ItemsData — Data associated with each element of Items
empty array [] (default) | 1-by-n numeric array | 1-by-n cell array

Data associated with each element of the Items property value, specified as a 1-by-n
numeric array or a 1-by-n cell array. It is valid to specify duplicate array elements in the
ItemsData value.

When the number of array elements in the ItemsData and Items do not match:

• If the ItemsData value is empty, then all Items elements are presented to the app
user.

• If the ItemsData value has more elements than the Items value, then all the Items
elements are presented to the app user and MATLAB ignores the extra ItemsData
elements.

• If the ItemsData value has fewer elements than the Items value (but greater than
none), then the only Items elements presented to the app user are those that have a
corresponding ItemsData value.

Example: {'One' 'Two' 'Three'}
Example: {10 20 30 40}

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.

1 Alphabetical List

1-16656

Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'

 DiscreteKnob Properties

1-16657

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of knob
'on' (default) | 'off'

Visibility of the knob, specified as 'on' or 'off'. The Visible property determines
whether the knob is displayed on the screen. If the Visible property is set to 'off', the
entire knob is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of knob
'on' (default) | 'off'

1 Alphabetical List

1-16658

Operational state of the knob, specified as 'on' or 'off'.

• If you set this property to 'on', then the app user can turn the knob.
• If you set this property to 'off', then the appearance of the knob appears dimmed,

indicating that the app user cannot turn the knob and it will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of knob
[100 100 60 60] (default) | [left bottom width height]

Location and size of the knob, excluding the state marks and labels, specified as the
vector, [left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the knob
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the knob
width Distance between the right and left outer edges of the

knob, excluding tick marks and labels
height Distance between the top and bottom outer edges of the

knob, excluding tick marks and labels

All measurements are in pixel units. Due to aspect ratio constraints, you cannot change
the knob height and width independently of each other. To increase the knob size, set
width and height using Position(3:4) = [width height].

 DiscreteKnob Properties

1-16659

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 60 60]

InnerPosition — Inner location and size of knob
[100 100 60 60] (default) | [left bottom width height]

Inner location and size of the knob, excluding state marks and state labels, specified as
the vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units. This property value is identical to
Position for knob components.

OuterPosition — Outer location and size of knob
[73 100 127 76] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the knob, including state marks and labels, returned as the
vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a discrete knob in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
k = uiknob(g,'discrete');
k.Layout.Row = 3;
k.Layout.Column = 2;

To make the knob span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this knob spans columns 2 through 3:

1 Alphabetical List

1-16660

k.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user turns the knob selector in the app. The callback
does not execute if the Value property changes programmatically.

This callback can access specific information about the user’s interaction with the knob.
MATLAB passes this information in a ValueChangedData object as the second argument
to your callback function. In App Designer, the argument is called event. You can query
the object properties using dot notation. For example, event.PreviousValue returns
the previous value of the knob. The ValueChangedData object is not available to
callback functions specified as character vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of knob after app user’s most recent

interaction with it.
PreviousValue Value of knob before app user’s most recent

interaction with it.
Source Component that executes the callback.
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

 DiscreteKnob Properties

1-16661

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-16662

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 DiscreteKnob Properties

1-16663

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-16664

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uidiscreteknob'

 DiscreteKnob Properties

1-16665

This property is read-only.

Type of graphics object, returned as 'uidiscreteknob'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uiknob

Introduced in R2016a

1 Alphabetical List

1-16666

DropDown Properties
Control drop-down list appearance and behavior

Description
Drop-down lists are UI components that enable the user to select an option or type in
text. Properties control the appearance and behavior of a drop-down list. Use dot notation
to refer to a specific object and property.

uf = uifigure;
dd = uidropdown(uf);
dd.Items = {'Red','Green','Blue'};

Properties
Drop-Down

Value — Value
element of Items | element of ItemsData

Value, specified as an element of the Items or ItemsData arrays. By default, Value is
the first element in Items.

Specifying Value as an element of Items selects the drop-down item that matches that
element. If ItemsData is not empty, then Value must be set to an element of
ItemsData, and the drop-down will select the associated item in the list.

Items — Drop-down items
{'Option 1','Option 2','Option 3','Option 4'} (default) | cell array of
character vectors | string array | ...

Drop-down items, specified as a cell array of character vectors, string array, or 1-D
categorical array. Duplicate elements are allowed. The drop-down component displays as
many options as there are elements in the Items array. If you specify this property as a
categorical array, MATLAB uses the values in the array, not the full set of categories.
Example: {'Red','Yellow','Blue'}

 DropDown Properties

1-16667

Example: {'1','2','3'}

ItemsData — Data associated with each element of the Items property value
empty array ([]) (default) | 1-by-n numeric array | 1-by-n cell array

Data associated with each element of the Items property value, specified as a 1-by-n
numeric array or a 1-by-n cell array. Duplicate elements are allowed.

For example, if you set the Items value to employee names, you might set the
ItemsData value to corresponding employee ID numbers. The ItemsData value is not
visible to the app user.

If the number of array elements in the ItemsData value and the Items value do not
match, one of the following occurs:

• When the ItemsData value is empty, then all the elements of the Items value are
presented to the app user.

• When the ItemsData value has more elements than the Items value, then all the
elements of the Items value are presented to the app user. MATLAB ignores the extra
ItemsData elements.

• When the ItemsData value is not empty, but has fewer elements than the Items
value, the only elements of the Items value presented to the app user are those that
have a corresponding element in the ItemsData value.

Example: {'One','Two','Three'}
Example: [10 20 30 40]

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

1 Alphabetical List

1-16668

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 DropDown Properties

1-16669

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.96 .96 .96] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-16670

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Drop-down component visibility
'on' (default) | 'off'

 DropDown Properties

1-16671

Drop-down component visibility, specified as 'on' or 'off'. The Visible property
determines whether the drop-down component is displayed on the screen. If the Visible
property is set to 'off', then the drop-down component is hidden, but you can still
specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Editable — Editable state of drop-down component
'off' (default) | 'on'

Editable state of the drop-down component, specified as 'off' or 'on'.

If the Enable property value is 'off', then the app user cannot change the drop-down
component text, even if the Editable property value is 'on'.

Enable — Operational state of drop-down component
'on' (default) | 'off'

Operational state of the drop-down component , specified as 'on' or 'off'.

• If you set this property value to 'on', then the appearance of the drop-down
component indicates that the app user can change the drop-down component value.

• If you set this property value to 'off', then the appearance of the drop-down
component appears dimmed. This appearance indicates that the app user cannot
change the drop-down component value, and that the drop-down component will not
trigger any callbacks.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

1 Alphabetical List

1-16672

Position

Position — Location and size of drop-down component
[100 100 100 22] (default) | [left bottom width height]

Location and size of the drop-down component relative to the parent, specified as the
vector [left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the drop-down component
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the drop-down
component

width Distance between the right and left outer edges of the
drop-down component

height Distance between the top and bottom outer edges of the
drop-down component

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 22]

InnerPosition — Inner location and size of drop-down component
[100 100 100 22] (default) | [left bottom width height]

Inner location and size of the drop-down component, specified as [left bottom width
height]. Position values are relative to the parent container. All measurements are in
pixel units. This property value is identical to Position for drop-down components.

OuterPosition — Outer location and size of drop-down component
[100 100 100 22]] (default) | [left bottom width height]

This property is read-only.

 DropDown Properties

1-16673

Outer location and size of drop-down component returned as [left bottom width
height]. Position values are relative to the parent container. All measurements are in
pixel units. This property value is identical to Position for drop-down components.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a drop-down in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
dd = uidropdown(g);
dd.Layout.Row = 3;
dd.Layout.Column = 2;

To make the drop-down span multiple rows or columns, specify the Row or Column
property as a two-element vector. For example, this drop-down spans columns 2 through
3:

dd.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user selects a different option from the drop-
down list. It does not execute if the Value property changes programmatically.

1 Alphabetical List

1-16674

This callback function can access specific information about the user’s interaction with
the drop-down. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the drop-down. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Drop-down component value after app

user’s most recent interaction with it.
PreviousValue Drop-down component value before app

user’s most recent interaction with it.
Edited Logical value (0 or 1) that indicates

whether the callback was executed as a
result of typing a value into the drop-down
component. The Edited value is 1 when
the app user typed in the drop-down
component and 0 when the app user
selected an option from the drop-down
component.

Source Component that executes the callback.
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 DropDown Properties

1-16675

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

1 Alphabetical List

1-16676

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

 DropDown Properties

1-16677

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

1 Alphabetical List

1-16678

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uidropdown'

This property is read-only.

Type of graphics object, returned as 'uidropdown'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

 DropDown Properties

1-16679

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uidropdown | uifigure

Introduced in R2016a

1 Alphabetical List

1-16680

EditField Properties
Control edit field appearance and behavior

Description
Edit fields are UI components for entering text. Properties control the appearance and
behavior of an edit field. Use dot notation to refer to a specific object and property.

uf = uifigure;
ef = uieditfield(uf);
ef.Value = 'New sample';

Properties
Text

Value — Text in edit field
'' (default) | character vector | string scalar

Text in the edit field, specified as a character vector or string scalar. MATLAB displays the
text as a single line. If you want to allow multiple lines of text, use a text area component
instead of an edit field.
Example: 'Hello world'

HorizontalAlignment — Horizontal alignment of text within edit field
'left' (default) | 'right' | 'center'

Alignment of text within the edit field, specified as 'left', 'right', or 'center'. The
alignment affects the display as the app user edits the edit field and how MATLAB
displays the text in the app.

Font and Color

FontName — Font name
system supported font name

 EditField Properties

1-16681

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-16682

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 EditField Properties

1-16683

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

1 Alphabetical List

1-16684

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Edit field visibility
'on' (default) | 'off'

Edit field visibility, specified as 'on' or 'off'. The Visible property determines
whether the edit field is displayed on the screen. If the Visible property is set to 'off',
the edit field is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Editable — Whether edit field is editable
'on' (default) | 'off'

Whether the edit field is editable, specified as 'on' or 'off'.

Use this property in combination with the Enable property value to determine if and how
the component responds to app user input:

• To make the edit field editable and the associated callback triggerable, set both the
Enable property and the Editable property values to 'on'.

• To make the edit field uneditable, but the text easy to read, set the Enable property
value to 'on' and the Editable property value to 'off'.

• To make the edit field uneditable and the text dimmed, set both properties to 'off'.

Enable — Operational state of edit field
'on' (default) | 'off'

 EditField Properties

1-16685

Operational state of the edit field, specified as 'on' or 'off'.

Use this property in combination with the Editable property value to determine if and
how the component responds to app user input:

• To make the edit field editable and the associated callback triggerable, set both the
Enable property and the Editable property values to 'on'.

• To make the edit field uneditable, but the text easy to read, set the Enable property
value to 'on' and the Editable property value to 'off'.

• To make the edit field uneditable and the text dimmed, set both properties to 'off'.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of edit field
[100 100 100 22] (default) | [left bottom width height]

Location and size of the edit field relative to the parent, specified as the vector [left
bottom width height]. This table describes each element in the vector.

1 Alphabetical List

1-16686

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the edit field
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the edit field
width Distance between the right and left outer edges of the edit

field
height Distance between the top and bottom outer edges of the

edit field

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [150 130 100 22]

InnerPosition — Inner location and size of edit field
[100 100 100 22] (default) | [left bottom width height]

Inner location and size of the edit field, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of edit field
[100 100 100 22]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of edit field returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then

 EditField Properties

1-16687

this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a edit field in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
ef = uieditfield(g);
ef.Layout.Row = 3;
ef.Layout.Column = 2;

To make the edit field span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this edit field spans columns 2 through 3:

ef.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

The callback executes when the user changes text in the edit field and either presses
Enter or clicks outside the edit field. It does not execute if the edit field value changes
programmatically.

This callback function can access specific information about the user’s interaction with
the edit field. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the edit field. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

1 Alphabetical List

1-16688

Property Value
Value Value of edit field after app user’s most

recent interaction with it
PreviousValue Value of edit field before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

ValueChangingFcn — Value changing callback
'' (default) | function handle | cell array | character vector

Value changing callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes as follows:

• As the user types in the edit field, the callback executes repeatedly.
• When the user presses Enter, the callback executes.

If the edit field value changes programmatically, then the callback does not execute.

This callback function can access specific information about the user’s interaction with
the edit field. MATLAB passes this information in a ValueChangingData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.Value is the value in the edit field that triggered the execution of the callback.
The ValueChangingData object is not available to callback functions specified as
character vectors.

Here are the properties of the ValueChangingData object:

 EditField Properties

1-16689

Property Description
Value Value that triggered the execution of the

callback
Source Component that executes the callback
EventName 'ValueChanging'

The Value property of the EditField object is not updated until the user presses the
Enter key. However, you can get the text that the user is typing before they press Enter
by querying the Value property of the ValueChangingData object.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-16690

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

 EditField Properties

1-16691

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

1 Alphabetical List

1-16692

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

 EditField Properties

1-16693

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uieditfield'

This property is read-only.

Type of graphics object, returned as 'uieditfield'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-16694

See Also
Functions
appdesigner | uieditfield | uifigure

Introduced in R2016a

 EditField Properties

1-16695

Gauge Properties
Control gauge appearance and behavior

Description
Gauges are app components that represent measurement instruments. Properties control
the appearance and behavior of a gauge. Use dot notation to refer to a particular object
and property:

uf = uifigure;
g = uigauge(uf);
g.Value = 45;

Properties
Gauge

Value — Location of gauge needle
0 (default) | numeric

Location of the gauge needle, specified as any numeric value.

• If the value is less than the minimum Limits property value, then the needle points to
a location immediately before the beginning of the scale.

• If the value is more than the maximum Limits property value, then the needle points
to a location immediately after the end of the scale.

Changing the Limits property value has no effect on the Value property setting.
Example: 60

Limits — Minimum and maximum gauge scale values
[0 100] (default) | two-element numeric array

Minimum and maximum gauge scale values, specified as a two-element numeric array.
The first value in the array must be less than the second value.

1 Alphabetical List

1-16696

If you change Limits such that the Value property is less than the new lower limit, or
more than the new upper limit, then the gauge needle points to a location off the scale.

For example, suppose Limits is [0 100] and the Value property is 20. If the Limits
changes to [50 100], then the needle points to a location off the scale, slightly less than
50.

ScaleDirection — Direction of gauge scale
'clockwise' (default) | 'counterclockwise'

Direction of the gauge scale, specified as one of the following:

• 'clockwise' — The scale appears such that the scale tick values increase in a
clockwise manner.

• 'counterclockwise' — The scale appears such that the scale tick values increase
in a counterclockwise manner.

ScaleColors — Scale colors
[] (default) | n-by-3 array of RGB triplets | cell array

Scale colors, specified one of the following arrays:

• An n-by-3 array of RGB triplets
• A cell array containing RGB triplets, any of the color options listed in the table below,

or a combination of both.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]

 Gauge Properties

1-16697

Option Description Equivalent RGB Triplet
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Each color of the ScaleColors array corresponds to a colored section of the gauge. Set
the ScaleColorLimits property to map the colors to specific sections of the gauge.

If you do not set the ScaleColorLimits property, MATLAB distributes the colors equally
over the range of the gauge.

ScaleColorLimits — Scale color limits
[] (default) | n-by-2 array

Scale color limits, specified as a n-by-2 array of numeric values. For every row in the
array, the first element must be less than the second element.

When applying colors to the gauge, MATLAB applies the colors starting with the first
color in the ScaleColors array. Therefore, if two rows in ScaleColorLimits array
overlap, then the color applied later takes precedence.

The gauge does not display any portion of the ScaleColorLimits that fall outside of the
Limits property.

If the ScaleColors and ScaleColorLimits property values are different sizes, then
the gauge shows only the colors that have matching limits. For example, if the
ScaleColors array has three colors, but the ScaleColorLimits has only two rows,
then the gauge displays the first two color/limit pairs only.

Ticks

MajorTicks — Major tick mark locations
[0 20 40 60 80 100] (default) | vector of numeric values | []

Major tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show major tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a major tick falls on the same value as
a minor tick, only the major tick displays.

1 Alphabetical List

1-16698

Setting the MajorTicks property sets the MajorTicksMode property to 'manual'.

MajorTicksMode — Major tick creation mode
'auto' (default) | 'manual'

Major tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of major ticks.
• 'manual' — You specify the MajorTicks value array.

MajorTickLabels — Major tick labels
{'0','20','40','60','80','100'} (default) | cell array of character vectors | string
array | {} | ...

Major tick labels, specified as a cell array of character vectors, string array, or 1-D
categorical array. If you do not want to show tick labels, specify this property as an empty
cell array. If you want to remove a label from a specific tick mark, specify an empty
character vector or empty string scalar for the corresponding element in the
MajorTickLabels array. If you specify this property as a categorical array, MATLAB
uses the values in the array, not the full set of categories.

If the length of the MajorTickLabels array is different from the length of the
MajorTicks vector, MATLAB ignores the extra entries of the longer array. If there are
extra labels, they are ignored. If there are extra tick marks, they display without labels.

Setting MajorTickLabels changes the MajorTickLabelsMode value to 'manual'.

MajorTickLabelsMode — Major tick labels mode
'auto' (default) | 'manual'

Major tick labels mode, specified as one of the following:

• 'auto' — MATLAB specifies the major tick labels.
• 'manual' — You specify the major tick labels using the MajorTickLabels property.

MinorTicks — Minor tick mark locations
[0 4 8 12 ... 100] (default) | vector of numeric values | []

Minor tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show minor tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

 Gauge Properties

1-16699

MATLAB removes duplicate tick values. However, if a minor tick falls on the same value
as a major tick, only the major tick displays.

Setting the MinorTicks property value sets the MinorTicksMode property value to
'manual'.

MinorTicksMode — Minor tick creation mode
'auto' (default) | 'manual'

Minor tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of minor ticks. MATLAB does not
generate minor ticks for major ticks that are beyond scale limits. If the Limits
property value changes, then MATLAB updates minor ticks to populate the full scale
range (the MinorTicks property is updated accordingly).

• 'manual' — You specify the MinorTicks property numeric array. The MinorTicks
property value does not change size or content on its own.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

1 Alphabetical List

1-16700

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 Gauge Properties

1-16701

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-16702

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of gauge
'on' (default) | 'off'

Visibility of the gauge, specified as 'on' or 'off'. The Visible property determines
whether the gauge is displayed on the screen. If the Visible property is set to 'off',
then the entire gauge is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

 Gauge Properties

1-16703

Enable — Operational state of gauge
'on' (default) | 'off'

Operational state of gauge, specified as 'on' or 'off'.

• If you set this property to 'on', then the appearance of the gauge indicates that the
gauge is operational.

• If you set this property to 'off', then the appearance of the gauge appears dimmed,
indicating that the gauge is not operational.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of gauge
[100 100 120 120] (default) | [left bottom width height]

Location and size of the gauge relative to the parent container, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of an imaginary box surrounding the
gauge

bottom Distance from the inner bottom edge of the parent
container to the outer bottom edge of an imaginary box
surrounding the gauge

width Distance between the right and left outer edges of the
gauge

1 Alphabetical List

1-16704

Element Description
height Distance between the top and bottom outer edges of the

gauge

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of gauge
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the gauge, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of gauge
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the gauge returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a gauge in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
gauge = uigauge(g);

 Gauge Properties

1-16705

gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the gauge span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this gauge spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

1 Alphabetical List

1-16706

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

 Gauge Properties

1-16707

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

1 Alphabetical List

1-16708

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

 Gauge Properties

1-16709

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uigauge'

This property is read-only.

Type of graphics object, returned as 'uigauge'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-16710

See Also
Functions
appdesigner | uifigure | uigauge

Introduced in R2016a

 Gauge Properties

1-16711

Knob Properties
Control knob appearance and behavior

Description
Knobs are UI components representing instrument control knobs that the user can adjust
to control a value. Properties control the appearance and behavior of a knob. Use dot
notation to refer to a particular object and property:

uf = uifigure;
k = uiknob(uf);
k.Value = 45;

Properties
Knob

Value — Value of knob
0 (default) | numeric

Value of the knob, specified as a numeric. The numeric must be within the range specified
for Limits.

Limits — Minimum and maximum knob values
[0 100] (default) | two-element numeric array

Minimum and maximum knob values, specified as a two-element numeric array. The first
value in the array must be less than the second value.

If you change Limits such that the Value property is less than the new lower limit, then
the Value property updates to the new lower limit. Similarly, if you change Limits such
that the Value is greater than the new upper limit, then Value property updates to the
new upper limit.

For example, suppose Limits is [0 100] and the Value property is 20. If the Limits
property changes to [50 100], then the Value updates to 50.

1 Alphabetical List

1-16712

Ticks

MajorTicks — Major tick mark locations
[0 10 20 ... 100] (default) | vector of numeric values | []

Major tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show major tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a major tick falls on the same value as
a minor tick, only the major tick displays.

Setting the MajorTicks property sets the MajorTicksMode property to 'manual'.

MajorTicksMode — Major tick creation mode
'auto' (default) | 'manual'

Major tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of major ticks.
• 'manual' — You specify the MajorTicks value array.

MajorTickLabels — Major tick labels
{'0','10','20',...,'100'} (default) | cell array of character vectors | string array |
{} | ...

Major tick labels, specified as a cell array of character vectors, string array, or 1-D
categorical array. If you do not want to show tick labels, specify this property as an empty
cell array. If you want to remove a label from a specific tick mark, specify an empty
character vector or empty string scalar for the corresponding element in the
MajorTickLabels property. If you specify this property as a categorical array, MATLAB
uses the values in the array, not the full set of categories.

If the length of the MajorTickLabels array is different from the length of the
MajorTicks vector, MATLAB ignores the extra entries of the longer array. If there are
extra labels, they are ignored. If there are extra tick marks, they display without labels.

Setting MajorTickLabels changes the MajorTickLabelsMode value to 'manual'.

MajorTickLabelsMode — Major tick labels mode
'auto' (default) | 'manual'

 Knob Properties

1-16713

Major tick labels mode, specified as one of the following:

• 'auto' — MATLAB specifies the major tick labels.
• 'manual' — You specify the major tick labels using the MajorTickLabels property.

MinorTicks — Minor tick mark locations
[0 2.5 5 7.5 ... 100] (default) | numeric array

Minor tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show minor tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a minor tick falls on the same value
as a major tick, only the major tick displays.

Setting the MinorTicks property value sets the MinorTicksMode property value to
'manual'.

MinorTicksMode — Minor tick creation mode
'auto' (default) | 'manual'

Minor tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of minor ticks. MATLAB does not
generate minor ticks for major ticks that are beyond scale limits. If the Limits
property value changes, then MATLAB updates minor ticks to populate the full scale
range (the MinorTicks property is updated accordingly).

• 'manual' — You specify the MinorTicks property numeric array. The MinorTicks
property value does not change size or content on its own.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

1 Alphabetical List

1-16714

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 Knob Properties

1-16715

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of knob
'on' (default) | 'off'

Visibility of the knob, specified as 'on' or 'off'. The Visible property determines
whether the knob is displayed on the screen. If the Visible property is set to 'off', the
entire knob is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

1 Alphabetical List

1-16716

Enable — Operational state of knob
'on' (default) | 'off'

Operational state of the knob, specified as 'on' or 'off'.

• If you set this property to 'on', then the app user can turn the knob.
• If you set this property to 'off', then the appearance of the knob appears dimmed,

indicating that the app user cannot turn the knob and it will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of knob
[100 100 60 60] (default) | [left bottom width height]

Location and size of the knob, excluding tick marks and labels, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the knob
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the knob
width Distance between the right and left outer edges of the

knob, excluding tick marks and labels
height Distance between the top and bottom outer edges of the

knob, excluding tick marks and labels

 Knob Properties

1-16717

All measurements are in pixel units. Due to aspect ratio constraints, you cannot change
the knob height and width independently of one another. To increase the knob size, set
width and height using Position(3:4) = [width height].

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 60 60

InnerPosition — Inner location and size of knob
[100 100 60 60] (default) | [left bottom width height]

Inner location and size of the knob, excluding tick marks and tick labels, specified as the
vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units. This property value is identical to the
Position property.

OuterPosition — Outer location and size of knob
[73 80 115 105] (default) | [left bottom width height]

This property is read-only.

Outer location and size of knob, including tick marks and tick labels, specified as the
vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a knob in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
k = uiknob(g);

1 Alphabetical List

1-16718

k.Layout.Row = 3;
k.Layout.Column = 2;

To make the knob span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this knob spans columns 2 through 3:

k.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user changes the knob selector to point to a different
value.

This callback function can access specific information about the user’s interaction with
the knob. MATLAB passes this information in a ValueChangedData object as the second
argument to your callback function. In App Designer, the argument is called event. You
can query the object properties using dot notation. For example, event.PreviousValue
returns the previous value of the knob. The ValueChangedData object is not available to
callback functions specified as character vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of knob after app user’s most recent

interaction with it.
PreviousValue Value of knob before app user’s most recent

interaction with it.
Source Component that executes the callback.
EventName 'ValueChanged'

 Knob Properties

1-16719

For more information about writing callbacks, see “Write Callbacks in App Designer”.

ValueChangingFcn — Value changing callback
'' (default) | function handle | cell array | character vector

Value changing callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes as the user turns the knob in the app. It does not execute if the
Value property changes programmatically.

This callback function can access specific information about the user’s interaction with
the knob. MATLAB passes this information in a ValueChangingData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.Value returns the current value of the knob. The ValueChangingData object is
not available to callback functions specified as character vectors.

The following table lists the properties of the ValueChangingData object.

Property Value
Value Current value of the knob as the app user is

interacting with it.
Source Component that executes the callback.
EventName 'ValueChanging'

The Value property of the Knob object is not updated until the app user releases the
knob. Therefore, to get the knob values as the knob is being turned, your code must get
the Value property of the ValueChangingData object.

The callback executes as follows:

• If the app user clicks the knob value, the callback executes once. For example, if the
knob is on 1.0, and the app user single-clicks 1.1, the callback executes.

1 Alphabetical List

1-16720

• If the app user clicks and drags the knob to a new position, the callback executes
repeatedly. For example, if the knob value is 1.0, and the app user clicks, holds, and
drags to value 10.0, the callback executes multiple times until the app user releases
the knob.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 Knob Properties

1-16721

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

1 Alphabetical List

1-16722

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

 Knob Properties

1-16723

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

1 Alphabetical List

1-16724

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uiknob'

This property is read-only.

Type of graphics object, returned as 'uiknob'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

 Knob Properties

1-16725

See Also
Functions
appdesigner | uifigure | uiknob

Introduced in R2016a

1 Alphabetical List

1-16726

Label Properties
Control label appearance

Description
Labels are UI components that contain static text for labelling parts of an app. Properties
control the appearance and behavior of a label. Use dot notation to refer to a specific
object and property.

uf = uifigure;
tlabel = uilabel(uf);
tlabel.Text = 'Options';

Properties
Text

Text — Label text
'Label' (default) | character vector | cell array of character vectors | string scalar |
string array | ...

Label text, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Use a cell array of character vectors or a string
array to specify multiple lines of text.

Alternatively, use the sprintf function to create formatted text containing line breaks
and other special characters.

text = sprintf('%s\n%s','Line 1','Line 2');
label = uilabel('Text',text,'Position',[100 100 100 32]);

If you specify text as a character vector without using sprintf, MATLAB will not
interpret control sequences such as \n.

 Label Properties

1-16727

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the full set of categories.
Example: 'Threshold'
Example: {'Threshold' 'Value'}

HorizontalAlignment — Horizontal alignment of text
'left' (default) | 'right' | 'center'

Horizontal alignment of the text, specified as:

• 'right' — Text aligns on the right side of the area specified by the Position
property.

• 'left' — Text aligns on the left side of the area specified by the Position property.
• 'center'— Text centers horizontally in the area specified by the Position property.

Aligning label text is useful when the text spans multiple lines.

VerticalAlignment — Vertical alignment of text
'center' (default) | 'top' | 'bottom'

Vertical alignment of the text, specified as one of the following:

• 'center' — Text centers vertically in the area specified by the Position property.
• 'top' — Text aligns on the top of the area specified by the Position property.
• 'bottom' — Text aligns on the bottom of the area specified by the Position

property.

Aligning label text is useful when the text spans multiple lines.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

1 Alphabetical List

1-16728

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 Label Properties

1-16729

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
'none' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-16730

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

 Label Properties

1-16731

Interactivity

Visible — Label visibility
'on' (default) | 'off'

Label visibility, specified as 'on' or 'off'. The Visible property determines whether
the label is displayed on the screen. If the Visible property is set to 'off', the entire
label is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Visual appearance of label
'on' (default) | 'off'

Visual appearance of the label, specified as one of the following:

• 'on' — Label appears normal

• 'off' — Label appears dimmed

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Label location and size
[100 100 31 22] (default) | [left bottom width height]

1 Alphabetical List

1-16732

Label location and size, relative to the parent, specified as the vector [left bottom
width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the label
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the label
width Distance between the right and left outer edges of the

label
height Distance between the top and bottom outer edges of the

label

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.
Example: [100 100 100 20]

InnerPosition — Inner location and size of label
[100 100 31 22] (default) | [left bottom width height]

Inner location and size of label, specified as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This
property value is identical to Position property.

OuterPosition — Outer location and size of label
[100 100 31 22] (default) | [left bottom width height]

This property is read-only.

Outer location and size of label, returned as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This
property value is identical to Position.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is

 Label Properties

1-16733

not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a label in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
tlabel = uilabel(g);
tlabel.Layout.Row = 3;
tlabel.Layout.Column = 2;

To make the label span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this label spans columns 2 through 3:

tlabel.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

1 Alphabetical List

1-16734

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running

 Label Properties

1-16735

callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

1 Alphabetical List

1-16736

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that

 Label Properties

1-16737

obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uilabel'

This property is read-only.

Type of graphics object, returned as 'uilabel'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

1 Alphabetical List

1-16738

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uilabel

Introduced in R2016a

 Label Properties

1-16739

Lamp Properties
Control lamp appearance

Description
Lamps are app components that indicate state using color. Properties control the
appearance and behavior of a lamp. Use dot notation to refer to a specific object and
property.

uf = uifigure;
mylamp = uilamp(uf);
mylamp.Color = 'red';

Properties
Color

Color — Color of lamp
[0 1 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the lamp, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-16740

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

Interactivity

Visible — Visibility of lamp
'on' (default) | 'off'

Visibility of the lamp, specified as 'on' or 'off'. The Visible property determines
whether the lamp is displayed on the screen. If the Visible property of a lamp is set to
'off', the entire lamp is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

 Lamp Properties

1-16741

Enable — Operational state of the lamp
'on' (default) | 'off'

Operational state of the lamp, specified as 'on' or 'off'.

• If you set this property to 'on', then the lamp appears bright, indicating that the lamp
is operational.

• If you set this property to 'off', then the lamp appears dimmed.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of lamp
[100 100 20 20] (default) | [left bottom width height]

Location and size of the lamp, specified as the vector [left bottom width height].
This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the lamp
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the lamp
width Distance between the right and left outer edges of the

lamp
height Distance between the top and bottom outer edges of the

lamp

All measurements are in pixel units.

1 Alphabetical List

1-16742

Due to aspect ratio constraints, you cannot change the lamp height and width
independently of one another.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 20 20]

InnerPosition — Inner location and size of lamp
[100 100 20 20]] (default) | [left bottom width height]

Inner location and size of the lamp, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of lamp
[100 100 20 20]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the lamp, returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a lamp in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
mylamp = uilamp(g);
mylamp.Layout.Row = 3;
mylamp.Layout.Column = 2;

 Lamp Properties

1-16743

To make the lamp span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this lamp spans columns 2 through 3:

mylamp.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

1 Alphabetical List

1-16744

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

 Lamp Properties

1-16745

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

1 Alphabetical List

1-16746

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

 Lamp Properties

1-16747

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uilamp'

This property is read-only.

Type of graphics object, returned as 'uilamp'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-16748

See Also
Functions
appdesigner | uifigure | uilamp

Introduced in R2016a

 Lamp Properties

1-16749

LinearGauge Properties
Control linear gauge appearance and behavior

Description
A linear gauge is a UI component that represents a measurement instrument. Properties
control the appearance and behavior of a linear gauge. Use dot notation to refer to a
specific object and property.

uf = uifigure;
g = uigauge(uf,'linear');
g.Value = 45;

Properties
Gauge

Value — Location of gauge needle
0 (default) | numeric

Location of the gauge needle, specified as any numeric value.

• If the value is less than the minimum Limits property value, then the needle points to
a location immediately before the beginning of the scale.

• If the value is more than the maximum Limits property value, then the needle points
to a location immediately after the end of the scale.

Changing the Limits property value has no effect on the Value property setting.
Example: 60

Limits — Minimum and maximum gauge scale values
[0 100] (default) | two-element numeric array

Minimum and maximum gauge scale values, specified as a two-element numeric array.
The first value in the array must be less than the second value.

1 Alphabetical List

1-16750

If you change Limits such that the Value property is less than the new lower limit, or
more than the new upper limit, then the gauge needle points to a location off the scale.

For example, suppose Limits is [0 100] and the Value property is 20. If the Limits
changes to [50 100], then the needle points to a location off the scale, slightly less than
50.

Orientation — Orientation
'horizontal' (default) | 'vertical'

Orientation of the gauge, specified as 'horizontal' or 'vertical'.

ScaleColors — Scale colors
[] (default) | n-by-3 array of RGB triplets | cell array

Scale colors, specified one of the following arrays:

• An n-by-3 array of RGB triplets
• A cell array containing RGB triplets, any of the color options listed in the table below,

or a combination of both.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Each color of the ScaleColors array corresponds to a colored section of the gauge. Set
the ScaleColorLimits property to map the colors to specific sections of the gauge.

 LinearGauge Properties

1-16751

If you do not set the ScaleColorLimits property, MATLAB distributes the colors equally
over the range of the gauge.

ScaleColorLimits — Scale color limits
[] (default) | n-by-2 array

Scale color limits, specified as a n-by-2 array of numeric values. For every row in the
array, the first element must be less than the second element.

When applying colors to the gauge, MATLAB applies the colors starting with the first
color in the ScaleColors array. Therefore, if two rows in ScaleColorLimits array
overlap, then the color applied later takes precedence.

The gauge does not display any portion of the ScaleColorLimits that fall outside of the
Limits property.

If the ScaleColors and ScaleColorLimits property values are different sizes, then
the gauge shows only the colors that have matching limits. For example, if the
ScaleColors array has three colors, but the ScaleColorLimits has only two rows,
then the gauge displays the first two color/limit pairs only.

Ticks

MajorTicks — Major tick mark locations
[0 20 40 60 80 100] (default) | vector of numeric values | []

Major tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show major tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a major tick falls on the same value as
a minor tick, only the major tick displays.

Setting the MajorTicks property sets the MajorTicksMode property to 'manual'.

MajorTicksMode — Major tick creation mode
'auto' (default) | 'manual'

Major tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of major ticks.

1 Alphabetical List

1-16752

• 'manual' — You specify the MajorTicks value array.

MajorTickLabels — Major tick labels
{'0','20','40','60','80','100'} (default) | cell array of character vectors | string
array | {} | ...

Major tick labels, specified as a cell array of character vectors, string array, or 1-D
categorical array. If you do not want to show tick labels, specify this property as an empty
cell array. If you want to remove a label from a specific tick mark, specify an empty
character vector or empty string scalar for the corresponding element in the
MajorTickLabels array. If you specify this property as a categorical array, MATLAB
uses the values in the array, not the full set of categories.

If the length of the MajorTickLabels array is different from the length of the
MajorTicks vector, MATLAB ignores the extra entries of the longer array. If there are
extra labels, they are ignored. If there are extra tick marks, they display without labels.

Setting MajorTickLabels changes the MajorTickLabelsMode value to 'manual'.

MajorTickLabelsMode — Major tick labels mode
'auto' (default) | 'manual'

Major tick labels mode, specified as one of the following:

• 'auto' — MATLAB specifies the major tick labels.
• 'manual' — You specify the major tick labels using the MajorTickLabels property.

MinorTicks — Minor tick mark locations
[0 4 8 12 ... 100] (default) | vector of numeric values | []

Minor tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show minor tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a minor tick falls on the same value
as a major tick, only the major tick displays.

Setting the MinorTicks property value sets the MinorTicksMode property value to
'manual'.

MinorTicksMode — Minor tick creation mode
'auto' (default) | 'manual'

 LinearGauge Properties

1-16753

Minor tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of minor ticks. MATLAB does not
generate minor ticks for major ticks that are beyond scale limits. If the Limits
property value changes, then MATLAB updates minor ticks to populate the full scale
range (the MinorTicks property is updated accordingly).

• 'manual' — You specify the MinorTicks property numeric array. The MinorTicks
property value does not change size or content on its own.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

1 Alphabetical List

1-16754

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 LinearGauge Properties

1-16755

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

1 Alphabetical List

1-16756

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of gauge
'on' (default) | 'off'

Visibility of the gauge, specified as 'on' or 'off'. The Visible property determines
whether the gauge is displayed on the screen. If the Visible property is set to 'off',
then the entire gauge is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of gauge
'on' (default) | 'off'

Operational state of gauge, specified as 'on' or 'off'.

• If you set this property to 'on', then the appearance of the gauge indicates that the
gauge is operational.

 LinearGauge Properties

1-16757

• If you set this property to 'off', then the appearance of the gauge appears dimmed,
indicating that the gauge is not operational.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Gauge location and size
[100 100 120 40] (default) | [left bottom width height]

Gauge location and size, specified as the vector, [left bottom width height]. This
table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the gauge
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the gauge
width Distance between the right and left outer edges of the

gauge
height Distance between the top and bottom outer edges of the

gauge

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 20]

1 Alphabetical List

1-16758

InnerPosition — Inner location and size of gauge
[100 100 120 40] (default) | [left bottom width height]

Inner location and size of the gauge, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of gauge
[100 100 120 40]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the gauge, returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a linear gauge in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
gauge = uigauge(g,'linear');
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the gauge span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this gauge spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

 LinearGauge Properties

1-16759

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-16760

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 LinearGauge Properties

1-16761

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-16762

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uilineargauge'

 LinearGauge Properties

1-16763

This property is read-only.

Type of graphics object, returned as 'uilineargauge'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uigauge

Introduced in R2016a

1 Alphabetical List

1-16764

ListBox Properties
Control list box appearance and behavior

Description
List boxes are UI components for displaying items in a list. Properties control the
appearance and behavior of a list box. Use dot notation to refer to a particular object and
property:

uf = uifigure;
list = uilistbox(uf);
list.Items = {'Red','Green','Blue'};

Properties
List Box

Value — Value
element of Items | element of ItemsData | {}

Value, specified as an element of the Items array, ItemsData array, or an empty cell
array. By default, Value is the first element in Items.

To specify no selection, set Value to an empty cell array.

Specifying Value as an element of Items selects the list item that matches that element.
If ItemsData is not empty, then Value must be set to an element of ItemsData, and the
list box will select the associated item in the list.

Items — List box items
{'Item 1','Item 2', 'Item 3', 'Item 4'} (default) | 1-by-n cell array of
character vectors | string array | ...

List box items, specified as a cell array of character vectors, string array, or 1-D
categorical array. Duplicate elements are allowed. The list box displays as many options
as there are elements in the Items array. If you specify this property as a categorical
array, MATLAB uses the values in the array, not the full set of categories.

 ListBox Properties

1-16765

ItemsData — Data associated with each element of the Items property value
empty array ([]) (default) | 1-by-n numeric array | 1-by-n cell array

Data associated with each element of the Items property value, specified as a 1-by-n
numeric array or a 1-by-n cell array. Duplicate elements are allowed.

For example, if you set the Items value to employee names, you might set the
ItemsData value to corresponding employee ID numbers. The ItemsData value is not
visible to the app user.

If the number of array elements in the ItemsData value and the Items value do not
match, one of the following occurs:

• When the ItemsData value is empty, then all the elements of the Items value are
presented to the app user.

• When the ItemsData value has more elements than the Items value, then all the
elements of the Items value are presented to the app user. MATLAB ignores the extra
ItemsData elements.

• When the ItemsData value is not empty, but has fewer elements than the Items
value, the only elements of the Items value presented to the app user are those that
have a corresponding element in the ItemsData value.

Example: {'One','Two','Three'}
Example: [10 20 30 40]

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

1 Alphabetical List

1-16766

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 ListBox Properties

1-16767

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

1 Alphabetical List

1-16768

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — List box visibility
'on' (default) | 'off'

 ListBox Properties

1-16769

List box visibility, specified as 'on' or 'off'. The Visible property determines whether
the list box is displayed on the screen. If the Visible property is set to 'off', the entire
list box is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Multiselect — Multiple node selection
'off' (default) | 'on'

Multiple node selection, specified as 'off' or 'on'. Set this property to 'on' to allow
users to select multiple items simultaneously.

Enable — Operational state of list box
'on' (default) | 'off'

Operational state of list box, specified as 'on' or 'off'. Set this property to 'off' to
make the list box appear dim, indicating that the user cannot interact with the list box.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of list box
[100 100 100 74] (default) | [left bottom width height]

Location and size of the list box relative to the parent container, specified as the vector
[left bottom width height]. This table describes each element in the vector.

1 Alphabetical List

1-16770

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the list box
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the list box
width Distance between the right and left outer edges of the list

box
height Distance between the top and bottom outer edges of the

list box

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 200]

InnerPosition — Inner location and size of list box
[100 100 77 78] (default) | [left bottom width height]

Inner location and size of list box, specified as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This
property value is identical to the Position property.

OuterPosition — Outer location and size of list box
[100 100 77 78]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of list box returned as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This
property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then

 ListBox Properties

1-16771

this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a list box in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
list = uilistbox(g);
list.Layout.Row = 3;
list.Layout.Column = 2;

To make the list box span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this list box spans columns 2 through 3:

list.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed function
'' (default) | function handle | cell array | character vector

Value changed function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user selects a different item in the list box. It
does not execute if the Value property setting changes programmatically.

This callback function can access specific information about the user’s interaction with
the list box. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the list box. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

1 Alphabetical List

1-16772

Property Value
Value Value of list box after app user’s most

recent interaction with it
PreviousValue Value of list box before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

 ListBox Properties

1-16773

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.

1 Alphabetical List

1-16774

MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

 ListBox Properties

1-16775

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

1 Alphabetical List

1-16776

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uilistbox'

This property is read-only.

Type of graphics object, returned as 'uilistbox'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

 ListBox Properties

1-16777

See Also
appdesigner | scroll | uifigure | uilistbox

Introduced in R2016a

1 Alphabetical List

1-16778

NinetyDegreeGauge Properties
Control ninety-degree gauge appearance and behavior

Description
A ninety-degree gauge is a UI component that represents a measurement instrument.
Properties control the appearance and behavior of a ninety-degree gauge. Use dot
notation to refer to a specific object and property.

uf = uifigure;
g = uigauge(uf,'ninetydegree');
g.Value = 45;

Properties
Gauge

Value — Location of gauge needle
0 (default) | numeric

Location of the gauge needle, specified as any numeric value.

• If the value is less than the minimum Limits property value, then the needle points to
a location immediately before the beginning of the scale.

• If the value is more than the maximum Limits property value, then the needle points
to a location immediately after the end of the scale.

Changing the Limits property value has no effect on the Value property setting.
Example: 60

Limits — Minimum and maximum gauge scale values
[0 100] (default) | two-element numeric array

Minimum and maximum gauge scale values, specified as a two-element numeric array.
The first value in the array must be less than the second value.

 NinetyDegreeGauge Properties

1-16779

If you change Limits such that the Value property is less than the new lower limit, or
more than the new upper limit, then the gauge needle points to a location off the scale.

For example, suppose Limits is [0 100] and the Value property is 20. If the Limits
changes to [50 100], then the needle points to a location off the scale, slightly less than
50.

Orientation — Orientation
'northwest' (default) | 'northeast' | 'southwest' | 'southeast'

Orientation of the gauge, specified as one of the following positions:

'northwest'

'northeast'

'southwest'

'southeast'

ScaleDirection — Direction of gauge scale
'clockwise' (default) | 'counterclockwise'

Direction of the gauge scale, specified as one of the following:

• 'clockwise' — The scale appears such that the scale tick values increase in a
clockwise manner.

• 'counterclockwise' — The scale appears such that the scale tick values increase
in a counterclockwise manner.

1 Alphabetical List

1-16780

ScaleColors — Scale colors
[] (default) | n-by-3 array of RGB triplets | cell array

Scale colors, specified one of the following arrays:

• An n-by-3 array of RGB triplets
• A cell array containing RGB triplets, any of the color options listed in the table below,

or a combination of both.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Each color of the ScaleColors array corresponds to a colored section of the gauge. Set
the ScaleColorLimits property to map the colors to specific sections of the gauge.

If you do not set the ScaleColorLimits property, MATLAB distributes the colors equally
over the range of the gauge.

ScaleColorLimits — Scale color limits
[] (default) | n-by-2 array

Scale color limits, specified as a n-by-2 array of numeric values. For every row in the
array, the first element must be less than the second element.

 NinetyDegreeGauge Properties

1-16781

When applying colors to the gauge, MATLAB applies the colors starting with the first
color in the ScaleColors array. Therefore, if two rows in ScaleColorLimits array
overlap, then the color applied later takes precedence.

The gauge does not display any portion of the ScaleColorLimits that fall outside of the
Limits property.

If the ScaleColors and ScaleColorLimits property values are different sizes, then
the gauge shows only the colors that have matching limits. For example, if the
ScaleColors array has three colors, but the ScaleColorLimits has only two rows,
then the gauge displays the first two color/limit pairs only.

Ticks

MajorTicks — Major tick mark locations
[0 25 50 75 100] (default) | vector of numeric values | []

Major tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show major tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a major tick falls on the same value as
a minor tick, only the major tick displays.

Setting the MajorTicks property sets the MajorTicksMode property to 'manual'.

MajorTicksMode — Major tick creation mode
'auto' (default) | 'manual'

Major tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of major ticks.
• 'manual' — You specify the MajorTicks value array.

MajorTickLabels — Major tick labels
{'0','25','50','75','100'} (default) | cell array of character vectors | string array
| 1-D categorical array | {}

Major tick labels, specified as a cell array of character vectors, string array, or 1-D
categorical array. If you do not want to show tick labels, specify this property as an empty
cell array. If you want to remove labels from a specific tick mark, specify an empty

1 Alphabetical List

1-16782

character vector or empty string scalar for the corresponding element in the
MajorTickLabels array. If you specify this property as a categorical array, MATLAB
uses the values in the array, not the full set of categories.

If the length of the MajorTickLabels array is different from the length of the
MajorTicks vector, MATLAB ignores the extra entries of the longer array. If there are
extra labels, they are ignored. If there are extra tick marks, they display without labels.

Setting MajorTickLabels changes the MajorTickLabelsMode value to 'manual'.

MajorTickLabelsMode — Major tick labels mode
'auto' (default) | 'manual'

Major tick labels mode, specified as one of the following:

• 'auto' — MATLAB specifies the major tick labels.
• 'manual' — You specify the major tick labels using the MajorTickLabels property.

MinorTicks — Minor tick locations
[0 5 10 15 … 100] (default) | vector of numeric values | []

Minor tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show minor tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a minor tick falls on the same value
as a major tick, only the major tick displays.

Setting the MinorTicks property value sets the MinorTicksMode property value to
'manual'.

MinorTicksMode — Minor tick creation mode
'auto' (default) | 'manual'

Minor tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of minor ticks. MATLAB does not
generate minor ticks for major ticks that are beyond scale limits. If the Limits
property value changes, then MATLAB updates minor ticks to populate the full scale
range (the MinorTicks property is updated accordingly).

 NinetyDegreeGauge Properties

1-16783

• 'manual' — You specify the MinorTicks property numeric array. The MinorTicks
property value does not change size or content on its own.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

1 Alphabetical List

1-16784

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 NinetyDegreeGauge Properties

1-16785

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-16786

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of gauge
'on' (default) | 'off'

Visibility of the gauge, specified as 'on' or 'off'. The Visible property determines
whether the gauge is displayed on the screen. If the Visible property is set to 'off',
then the entire gauge is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of gauge
'on' (default) | 'off'

Operational state of gauge, specified as 'on' or 'off'.

• If you set this property to 'on', then the appearance of the gauge indicates that the
gauge is operational.

• If you set this property to 'off', then the appearance of the gauge appears dimmed,
indicating that the gauge is not operational.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a

 NinetyDegreeGauge Properties

1-16787

string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of gauge
[100 100 90 90] (default) | [left bottom width height]

Location and size of the gauge relative to the parent container, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of an imaginary box surrounding the
gauge

bottom Distance from the inner bottom edge of the parent
container to the outer bottom edge of an imaginary box
surrounding the gauge

width Distance between the right and left outer edges of the
gauge

height Distance between the top and bottom outer edges of the
gauge

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 180 180]

InnerPosition — Inner location and size of gauge
[100 100 90 90] (default) | [left bottom width height]

Inner location and size of the gauge, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of gauge
[100 100 90 90] (default) | [left bottom width height]

1 Alphabetical List

1-16788

This property is read-only.

Outer location and size of the gauge, returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a ninety-degree gauge in the third row and second column
of its parent grid.

g = uigridlayout([4 3]);
gauge = uigauge(g,'ninetydegree');
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the gauge span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this gauge spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 NinetyDegreeGauge Properties

1-16789

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

1 Alphabetical List

1-16790

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

 NinetyDegreeGauge Properties

1-16791

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

1 Alphabetical List

1-16792

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uininetydegreegauge'

This property is read-only.

Type of graphics object, returned as 'uininetydegreegauge'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

 NinetyDegreeGauge Properties

1-16793

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uigauge

Introduced in R2016a

1 Alphabetical List

1-16794

NumericEditField Properties
Control numeric edit field appearance and behavior

Description
Numeric edit fields are UI components that allow users to type numeric values in an app.
Properties control the appearance and behavior of a numeric edit field. Use dot notation
to refer to a particular object and property:

uf = uifigure;
ef = uieditfield(uf,'numeric');
ef.Value = 20;

Properties
Value

Value — Value in edit field
0 (default) | double-precision number

Value in the edit field, specified as a double-precision number.

When the app user types or changes a value in the edit field, the value is a character
vector. When the app user presses the Enter key or changes focus, MATLAB converts the
app-user-entered value to a double-precision number.

MATLAB rejects the value if:

• It cannot convert the character vector to a scalar number.
• The value is NaN, blank, or a complex number.
• The value is a mathematical expression, such as 1 + 2.
• The value is less than the Limits property lower limit or greater than the upper limit.

When MATLAB rejects the app-user-entered value, a tooltip appears describing the value
requirements. The edit field text immediately reverts to the previous value and no
ValueChangedFcn runs.

 NumericEditField Properties

1-16795

Example: 10

Limits — Minimum and maximum edit field values
[-Inf Inf] (default) | two-element numeric array

Minimum and maximum edit field values, specified as a two-element numeric array. The
first value must be less than the second value. Set array elements to -Inf or Inf to
specify no minimum or no maximum, respectively.

If you change Limits such that Value is less than the new lower limit, MATLAB sets
Value to the lowest value within the new range. For example, suppose Limits is [0
100] and Value is 20. If Limits changes to [50 100], inclusive, then MATLAB sets
Value to 50.

Similarly, if you change Limits such that the Value is greater than the new upper limit,
then MATLAB sets Value to the new upper limit (assuming the limits are inclusive).
Example: [-Inf 200]
Example: [-100 Inf]
Example: [-100 200]

RoundFractionalValues — Rounding of fractional values
'off' (default) | 'on'

Rounding of fractional values entered by app users, specified as one of the following:

• 'on' — MATLAB rounds the value if it results in a valid value and executes the
ValueChangedFcn callback. If the resulting value is outside the lower or upper
Limits, then MATLAB rounds to the nearest value that falls within the Limits and
then executes the callback.

• 'off' — MATLAB does not round a fractional value to a whole number.

If the RoundFractionalValues property value changes from 'off' to 'on'
programmatically, then MATLAB applies these rules:

• If rounding the existing value yields an integer that lies inside the limit range specified
by the Limits property, then MATLAB rounds up the existing value.

• If rounding the existing value yields an integer that is less than the lower limit, then
MATLAB rounds up the existing value.

• If rounding the existing value yields an integer that is greater than the upper limit,
then MATLAB rounds down the existing value.

1 Alphabetical List

1-16796

• If the limits are configured such that there is no valid integer in the range, then
MATLAB sets the RoundFractionalValues property value back to 'off' and
displays an error message.

ValueDisplayFormat — Value display format
'%11.4g' (default) | character vector | string scalar

Value display format, specified as a character vector or string scalar. MATLAB uses
sprintf to display the value using the specified format.

You can mix text with format operators. For example:

numfield = uieditfield('numeric','ValueDisplayFormat','%.0f MS/s');

The resulting edit field looks like this:

When the user clicks in the edit field in the running app, the field shows the value without
the text.

For a complete list of supported format operators, see sprintf.

LowerLimitInclusive — Lower limit inclusiveness
'on' (default) | 'off'

Lower limit inclusiveness, specified as one of the following:

• 'on' — Value must be equal to or greater than the lower limit.
• 'off' — Value must be greater than the lower limit.

UpperLimitInclusive — Upper limit inclusiveness
'on' (default) | 'off'

Upper limit inclusiveness, specified as one of the following:

• 'on' — Value must be equal to or less than the upper limit.
• 'off' — Value must be less than the upper limit.

 NumericEditField Properties

1-16797

For example, if you want the numeric input to be between 0 and 1, excluding 0 and 1, do
all of the following:

• Set the Limits property value to [0 1].
• Set the UpperLimitInclusive property to 'off'.
• Set the LowerLimitInclusive property to 'off'.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

1 Alphabetical List

1-16798

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 NumericEditField Properties

1-16799

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

1 Alphabetical List

1-16800

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Edit field visibility
'on' (default) | 'off'

Edit field visibility, specified as 'on' or 'off'. The Visible property determines
whether the edit field is displayed on the screen. If the Visible property is set to 'off',
the edit field is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Editable — Editability of edit field
'on' (default) | 'off'

Editability of the edit field, specified as 'on' or 'off'.

Use this property in combination with the Enable property value to determine if and how
the component responds to app user input:

 NumericEditField Properties

1-16801

• To make the edit field editable, set both the Enable property and the Editable
property values to 'on'.

• To make the edit field uneditable, but the text easy to read, set the Enable property
value to 'on' and the Editable property value to 'off'.

• To make the edit field uneditable and the text dimmed, set both properties to 'off'.

Enable — Operational state of edit field
'on' (default) | 'off'

Operational state of the edit field, specified as 'on' or 'off'.

Use this property in combination with the Editable property value to determine if and
how the component responds to app user input:

• To make the edit field editable and the associated callback triggerable, set both the
Enable property and the Editable property values to 'on'.

• To make the edit field uneditable, but the text easy to read, set the Enable property
value to 'on' and the Editable property value to 'off'.

• To make the edit field uneditable and the text dimmed, set both properties to 'off'.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

1 Alphabetical List

1-16802

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of edit field
[100 100 100 22] (default) | [left bottom width height]

Location and size of the edit field relative to the parent, specified as the vector [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the edit field
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the edit field
width Distance between the right and left outer edges of the edit

field
height Distance between the top and bottom outer edges of the

edit field

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [150 130 100 22]

InnerPosition — Inner location and size of edit field
[100 100 100 22] (default) | [left bottom width height]

Inner location and size of the edit field, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

 NumericEditField Properties

1-16803

OuterPosition — Outer location and size of edit field
[100 100 100 22]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of edit field returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

HorizontalAlignment — Horizontal alignment of numbers
'right' (default) | 'left' | 'center'

Horizontal alignment of numbers within the edit field, specified as:

• 'right' — Numbers align on the right side of the edit field.
• 'left' — Numbers align on the left side of the edit field.
• 'center'— Numbers align in the center of the edit field.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a numeric edit field in the third row and second column of
its parent grid.

g = uigridlayout([4 3]);
ef = uieditfield(g,'numeric');
ef.Layout.Row = 3;
ef.Layout.Column = 2;

To make the edit field span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this edit field spans columns 2 through 3:

ef.Layout.Column = [2 3];

1 Alphabetical List

1-16804

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

The callback executes when the user changes text in the edit field and either presses
Enter or clicks outside the edit field. It does not execute if the edit field value changes
programmatically.

This callback function can access specific information about the user’s interaction with
the edit field. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the edit field. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of edit field after app user’s most

recent interaction with it
PreviousValue Value of edit field before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

 NumericEditField Properties

1-16805

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-16806

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 NumericEditField Properties

1-16807

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-16808

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uinumericeditfield'

 NumericEditField Properties

1-16809

This property is read-only.

Type of graphics object, returned as 'uinumericeditfield'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uieditfield | uifigure

Introduced in R2016a

1 Alphabetical List

1-16810

Panel Properties
Control panel appearance

Description
Panels are containers for grouping together UI components. Properties control the
appearance and behavior of a panel. Use dot notation to refer to a particular object and
property.

uf = uifigure;
p = uipanel('Parent', uf);
p.Title = 'Display Options';

The properties listed here are valid for panels in App Designer, or in apps created with
the uifigure function. For panels used in GUIDE, or in apps created with the figure
function, see Uipanel.

Properties
Title

Title — Title
character vector | string scalar | categorical array

Title, specified as a character vector, string scalar, or categorical array. If you specify this
property as a categorical array, MATLAB displays only the first element in the array.

MATLAB does not interpret a vertical slash ('|') character as a line break, it displays as
a vertical slash in the title.

If you want to specify a Unicode character, pass the Unicode decimal code to the char
function. For example, ['Multiples of ' char(960)] displays as Multiples of π.

TitlePosition — Location of title
'lefttop' (default) | 'centertop' | 'righttop'

Location of the title, specified as 'lefttop', 'centertop', or 'righttop'.

 Panel Properties

1-16811

Color and Styling

ForegroundColor — Title color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Title color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'

1 Alphabetical List

1-16812

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.94 .94 .94] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

 Panel Properties

1-16813

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BorderType — Panel border
'line' (default) | 'none'

Panel border, specified as 'line' or 'none'.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

1 Alphabetical List

1-16814

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontUnits — Font unit of measurement
'pixels' (default)

Font unit of measurement, specified as 'pixels'. Distances in pixels are independent of
your system resolution on Windows and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.
• On Linux systems, the size of a pixel is determined by your system resolution.

Interactivity

Visible — Panel visibility
'on' (default) | 'off'

Panel visibility, specified as 'on' or 'off'. The Visible property determines whether
the panel is displayed on the screen. If the Visible property is set to 'off', the panel is
hidden. However, you can still specify and access properties of the Panel object.

To make your app start faster, set the Visible property of all components that are not
initially displayed to 'off'.

 Panel Properties

1-16815

Note Changing the Visible property does not change the values of the Visible
properties of child components. This is true even though hiding the panel causes the child
components to be hidden.

Scrollable — Ability to scroll
'off' (default) | 'on'

Ability to scroll, specified as 'off' or 'on'. Setting this property to 'on' enables
scrolling within the container. However, there are additional requirements:

• The child components in the container must occupy a larger area than the container
can display at one time.

• Components that do not fit in the container must be above or to the right of the
container. You cannot scroll to components that are below or to the left of the
container.

Certain types of charts and axes do not support scrollable containers. However, you can
place the chart or axes in a nonscrollable panel, and then place the panel in the scrollable
container. For more information, see “Displaying Graphics in App Designer”.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. To display multiple lines of text, specify a cell
array of character vectors or a string array. Each element in the array becomes a separate
line of text. If you specify this property as a categorical array, MATLAB uses the values in
the array, not the full set of categories.

Position

Position — Location and size of panel, including borders and title
[left bottom width height]

Location and size of the panel, including borders and title, specified as a four-element
vector of the form [left bottom width height]. This table describes each element
in the vector.

1 Alphabetical List

1-16816

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the panel
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the panel
width Distance between the right and left outer edges of the

panel
height Distance between the top and bottom outer edges of the

panel

All measurements are in units specified by the Units property.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

InnerPosition — Location and size of panel, excluding borders and title
[left bottom width height]

This property is read-only.

Location and size of the panel, excluding borders and title, returned as a four-element
vector of the form [left bottom width height]. This table describes each element
in the vector.

Value Description
left Distance from the inner left edge of the parent container to

the inner left edge of the panel.
bottom Distance from the inner bottom edge of the parent

container to the inner bottom edge of the panel.
width Distance between the inner edges of the panel’s right and

left borders.
height Distance between the inner edges of the panel’s top and

bottom borders. This distance excludes the title, if it exists.

All measurements are in units specified by the Units property.

 Panel Properties

1-16817

Note These are some important points to consider when using the InnerPosition
property:

• InnerPosition values are affected by the presence (or absence) of a title, the font
characteristics, and the BorderType.

• InnerPosition values are relative to the parent container’s drawable area. The
drawable area is the area inside the borders of the container and does not include the
area occupied by the title.

OuterPosition — Location and size of panel, including borders and title
[left bottom width height]

Location and size of the panel, including borders and title, specified as a four-element
vector of the form [left bottom width height]. All measurements are in units
specified by the Units property.

This property value is identical to the Position property value.

Units — Units of measurement
'pixels' (default)

Units of measurement, specified as 'pixels'.

AutoResizeChildren — Automatically resize children
'on' (default) | 'off'

Automatically resize children, specified as 'on' or 'off'.

• 'on' — Child components automatically resize when the container resizes.
• 'off' — Child components do not resize.

The AutoResizeChildren property affects direct children of the container, not children
inside nested containers.

To customize the resize behavior, set the AutoResizeChildren property to 'off' and
create a SizeChangedFcn callback for the container. For more information, see
“Managing Resizable Apps in App Designer”.

To disable resizing of an app, set the Resize property of the figure to 'off'.

1 Alphabetical List

1-16818

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a panel in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
p = uipanel(g);
p.Layout.Row = 3;
p.Layout.Column = 2;

To make the panel span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this panel spans columns 2 through 3:

p.Layout.Column = [2 3];

Callbacks

SizeChangedFcn — Size change callback
'' (default) | function handle | cell array | character vector

Size change callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

Note The SizeChangedFcn callback will not execute unless the AutoResizeChildren
property of this container is set to 'off'. In App Designer, you can make the

 Panel Properties

1-16819

SizeChangedFcn executable by clearing the AutoResizeChildren check box in the UI
Figure Properties panel.

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.
• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible
property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

1 Alphabetical List

1-16820

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 Panel Properties

1-16821

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

1 Alphabetical List

1-16822

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Children — Panel children
empty GraphicsPlaceholder array (default) | 1-D array of component objects

Panel child objects, returned as an empty GraphicsPlaceholder or a 1-D array of
component objects. The children of a Panel can be any component object, including
another Panel.

 Panel Properties

1-16823

You cannot add or remove child components using the Children property. Use this
property to view the list of children or to reorder the children. The order of the child
objects in this array reflects the front-to-back stacking order of the components on the
screen.

To add a child object to this list, set the Parent property of the child object to the Panel
object.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uipanel'

This property is read-only.

Type of graphics object, returned as 'uipanel'.

1 Alphabetical List

1-16824

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uipanel

Introduced in R2016a

 Panel Properties

1-16825

RadioButton Properties
Control radio button appearance

Description
Radio buttons are typically presented as a set of options inside a button group. The user
must choose one from the set. Properties control the appearance and behavior of a radio
button. Use dot notation to refer to a specific object and property.

uf = uifigure;
bg = uibuttongroup(uf);
rb = uiradiobutton(bg);
rb.Text = 'One';

Properties
Button

Value — State of radio button
1 | 0

State of radio button, specified as 1 (true) or 0 (false). Within a button group, only one
button can be selected at a time. The state of the first radio button added to a button
group is 1, by default. Subsequent buttons added to the same button group have a default
state of 0.

When the Value property of a RadioButton changes to 1, the Value of the property for
the previously selected RadioButton changes to 0. In addition, the SelectedObject
property value of the parent ButtonGroup is updated.

If you programmatically change the Value property of a RadioButton to 0, MATLAB
sets the Value property of the first RadioButton added to the ButtonGroup to 1. If the
first RadioButton added is the one for which you programmatically set the Value
property to 0, then MATLAB sets the Value property for the second RadioButton added
to the ButtonGroup to 1.

1 Alphabetical List

1-16826

Note The first RadioButton added to a ButtonGroup is not necessarily the first
RadioButton listed in the Children property of the ButtonGroup.

Text — Button label
'Radio Button' (default) | character vector | cell array of character vectors | string
scalar | string array | ...

Button label, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Specify a character vector or string scalar to label
the button with a single line of text. Use a cell array or string array to label the button
with multiple lines of text. Each element in the array represents a separate line of text. If
you specify this property as a categorical array, MATLAB uses the values in the array, not
the full set of categories.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

 RadioButton Properties

1-16827

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

1 Alphabetical List

1-16828

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Button visibility
'on' (default) | 'off'

Button visibility, specified as 'on' or 'off'. The Visible property determines whether
the button is displayed on the screen. If the Visible property of a button is set to 'off',
the entire button is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of button
'on' (default) | 'off'

Operational state of the button, specified as 'on' or 'off'.

• If you set this property to 'on', then the appearance of the button indicates that the
app user can interact with it.

• If you set this property to 'off', then the appearance of the button appears dimmed,
indicating that the app user cannot interact with it.

 RadioButton Properties

1-16829

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of radio button
[10 10 91 22] (default) | [left bottom width height]

Location and size of radio button, specified as a vector of the form [left bottom
width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the button group to

the outer left edge of the radio button
bottom Distance from the inner bottom edge of the button group to

the outer bottom edge of the radio button
width Distance between the right and left outer edges of the

radio button (including text)
height Distance between the top and bottom outer edges of the

radio button

The Position values are relative to the drawable area of the button group. The drawable
area is the area inside the borders of the button group and does not include the area
occupied by the title.

All measurements are in pixel units.

InnerPosition — Location and size of radio button
[10 10 91 22] (default) | [left bottom width height]

1 Alphabetical List

1-16830

Location and size of radio button, specified as a four element vector of the form [left
bottom width height]. All measurements are in pixel units. This property value is
identical to the Position property.

OuterPosition — Location and size of radio button
[10 10 91 22] (default) | [left bottom width height]

This property is read-only.

Location and size of radio button, returned as a four element vector of the form [left
bottom width height]. All measurements are in pixel units. This property value is
identical to the Position property.

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

 RadioButton Properties

1-16831

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

1 Alphabetical List

1-16832

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

 RadioButton Properties

1-16833

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
ButtonGroup object

Parent container, specified as a ButtonGroup object. The ButtonGroup must be in a
Figure created using the uifigure function.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

1 Alphabetical List

1-16834

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uiradiobutton'

This property is read-only.

Type of graphics object, returned as 'uiradiobutton'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

 RadioButton Properties

1-16835

See Also
Functions
appdesigner | uibuttongroup | uifigure | uiradiobutton

Introduced in R2016a

1 Alphabetical List

1-16836

RockerSwitch Properties
Control rocker switch appearance and behavior

Description
Rocker switches are UI components that indicate a logical state. Properties control the
appearance and behavior of a rocker switch. Use dot notation to refer to a particular
object and property.

uf = uifigure;
rs = uiswitch(uf,'rocker');
rs.Items = {'Cold','Hot'};

Properties
Switch

Value — Value
element of Items | element of ItemsData

Value, specified as an element of the Items or ItemsData arrays. By default, Value is
the first element in Items.

Specifying Value as an element of Items moves the switch to the position that matches
that element. If ItemsData is not empty, then Value must be set to an element of
ItemsData, and the switch will move to the associated position.

Items — Switch options
{'Off','On'} (default) | cell array of character vectors | string array | 1-by-2
categorical array

Switch options, specified as a cell array of character vectors, string array, or 1-by-2
categorical array. If you specify an array, it must have two elements. Duplicate elements
are allowed. If you specify this property as a categorical array, MATLAB uses the values in
the array, not the full set of categories.

 RockerSwitch Properties

1-16837

ItemsData — Data associated with each element of Items
empty array ([]) (default) | 1-by-2 numeric array | 1-by-2 cell array

Data associated with each element of the Items property value, specified as a 1-by-2
numeric array or a 1-by-2 cell array. Duplicate elements are allowed.

For example, if you set the Items value to {'Freezing','Boiling'}, then you might
set the ItemsData value to corresponding temperatures in degrees Celsius, [0,100].
The ItemsData value is not visible to the app user.
Example: {'One' 'Two'}
Example: [10 20]

Orientation — Orientation
'vertical' (default) | 'horizontal'

Orientation of the switch, specified as 'vertical' or 'horizontal'.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

1 Alphabetical List

1-16838

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 RockerSwitch Properties

1-16839

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of switch
'on' (default) | 'off'

Visibility of the switch, specified as 'on' or 'off'. The Visible property determines
whether the switch is displayed on the screen. If the Visible property is set to 'off',
the entire switch is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of switch
'on' (default) | 'off'

Operational state of switch, specified as 'on' or 'off'.

If you set this property to 'on', the app user can slide the switch.

1 Alphabetical List

1-16840

If you set this property to 'off', the switch appears dimmed, indicating that the app
user cannot slide the switch and it will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of switch
[100 100 20 45] (default) | [left bottom width height]

Location and size of the switch, excluding state marks and labels, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the switch
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the switch
width Distance between the right and left outer edges of the

switch, excluding labels
height Distance between the top and bottom outer edges of the

switch, excluding labels

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 40 90]

 RockerSwitch Properties

1-16841

InnerPosition — Inner location and size of switch
[100 100 20 45] (default) | [left bottom width height]

Inner location and size of the switch, excluding state marks and state labels, specified as
the vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units. This property value is identical to the
Position property.

OuterPosition — Outer location and size of switch
[100 80 20 85] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the switch, including state marks and state labels, returned as
the vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a rocker switch in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
rs = uiswitch(g,'rocker');
rs.Layout.Row = 3;
rs.Layout.Column = 2;

To make the switch span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this switch spans columns 2 through 3:

rs.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-16842

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the state of the switch changes in the app. The switch
changes state when the user does either of the following:

• Clicking and releasing the mouse button anywhere on the switch (including the state
labels)

• Clicking on the switch, dragging, and then releasing the mouse button while still on
the switch.

The callback does not execute if the Value property changes programmatically.

This callback function can access specific information about the user’s interaction with
the switch. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the switch. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of switch after the app user’s most

recent interaction with it
PreviousValue Value of switch before the app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

 RockerSwitch Properties

1-16843

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-16844

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 RockerSwitch Properties

1-16845

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-16846

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uirockerswitch'

 RockerSwitch Properties

1-16847

This property is read-only.

Type of graphics object, returned as 'uirockerswitch'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uiswitch

Introduced in R2016a

1 Alphabetical List

1-16848

scroll
Package: matlab.ui.container

Scroll to location within container, list box, or tree

Syntax
scroll(component,location)
scroll(component,x,y)

Description
scroll(component,location) scrolls to the specified location within a component.
Use this syntax to scroll within a figure created with the uifigure function, or any of
these child components: grid layout, panel, button group, tab, tree, or list box.

scroll(component,x,y) scrolls to the specified (x, y) coordinates within a container.
The coordinates are measured in pixels from the lower-left corner of the container. This
syntax supports figures created with the uifigure function and any of these child
containers: grid layout, panel, button group, or tab. For more information on when
scrolling is possible, see “Conditions that Enable Scrolling” on page 1-16862.

Examples

Scroll Within a Figure

Create a figure, and set the Scrollable property to 'on'. Then add five child
components. To ensure that the figure is scrollable, place the first component above the
top edge of the figure. Then space the components far enough apart so that they cannot
fit within the figure together.

% Create figure
uf = uifigure('Name','Customer','Scrollable','on');
uf.Position = [100 100 493 283];

 scroll

1-16849

% Title label
title = uilabel(uf,'Text','Customer Record');
title.FontSize = 18;
title.FontWeight = 'bold';
title.Position = [173 315 157 22];

% Name
name = uieditfield(uf,'text');
name.Position = [169 239 173 22];
namelabel = uilabel(uf,'Text','Name','HorizontalAlignment','right');
namelabel.Position = [116 239 38 22];

% Phone
phone = uieditfield(uf,'text');
phone.Position = [169 164 173 22];
phonelabel = uilabel(uf,'Text','Phone','HorizontalAlignment','right');
phonelabel.Position = [114 164 40 22];

% Balance
balance = uieditfield(uf,'numeric');
balance.Position = [169 89 173 22];
balancelabel = uilabel(uf,'Text','Balance','HorizontalAlignment','right');
balancelabel.Position = [105 89 49 22];

% Submit button
button = uibutton(uf,'push','Text','Submit');
button.Position = [169 14 173 22];

1 Alphabetical List

1-16850

By default, MATLAB scrolls to the upper-left corner of the area that encloses the child
components.

Scroll to location (1,1), which is the bottom of the figure.

scroll(uf,1,1);

 scroll

1-16851

Scroll to Location in Grid

Bring child components of a scrollable grid layout into view by specifying pixel
coordinates or a location name.

Create a 5-by-2 grid layout and set the Scrollable property of the grid to 'on'. Then
add a label, a table, and a panel to the grid. Set the Scrollable property of the panel to
'off' and then add a chart to the panel.

uf = uifigure('Position',[782 497 435 311]);
g = uigridlayout(uf,'Scrollable','on');
g.RowHeight = {22,40,22,22,400};
g.ColumnWidth = {400,400};

lbl = uilabel(g,'Text','Tsunamis');
lbl.Layout.Row = 2;
lbl.Layout.Column = [1,2];
lbl.HorizontalAlignment = 'center';
lbl.FontSize = 28;

tsunamis = readtable('tsunamis.xlsx');
tsunamis.Cause = categorical(tsunamis.Cause);
t = uitable(g,'Data',tsunamis);
t.Layout.Row = [3,5];

1 Alphabetical List

1-16852

t.Layout.Column = 2;

p = uipanel(g);
p.Scrollable = 'off';
p.Layout.Row = [3,5];
p.Layout.Column = 1;
gb = geobubble(p,tsunamis.Latitude,tsunamis.Longitude,...
 tsunamis.MaxHeight,tsunamis.Cause);

Scroll to a location in the grid.

scroll(g,100,-30);

 scroll

1-16853

Now use location names to scroll to the bottom-right corner of the grid.

scroll(g,'bottom','right');

1 Alphabetical List

1-16854

Scroll to Component

Bring a component into view by specifying the scroll location as the first two position
coordinates of the component you want to view.

Create a figure with two drop-down components, a list box, and a table. Position the
components so that they cannot all be displayed within the figure at one time.

uf = uifigure;
uf.Scrollable = 'on';
uf.Position = [100 300 328 110];

dd1 = uidropdown(uf);
dd1.Position = [20 360 120 22];

dd2 = uidropdown(uf);
dd2.Position = [20 200 120 22];

lb = uilistbox(uf);
lb.Position = [230 300 120 80];

t = readtable('patients.xls');

 scroll

1-16855

uit = uitable(uf,'Data',t);
uit.Position = [375 100 300 300];

Scroll to the table.

scroll(uf,uit.Position(1:2));

Scroll to List Box Item

Create a list box containing a list of names with associated ItemsData.

uf = uifigure('Position',[680 678 300 200]);
list = uilistbox(uf, 'Position',[70 50, 150 78]);
list.Items = {'Diane Fitzsimmons', 'Naomi Becker', 'Nick Stewart',...
 'Alex Bradford', 'Caroline Eliot', 'Leslie Bond', ...
 'Aaron Silberlicht', 'Ramu Sadasiv', 'Joyce Wu',...
 'Ann Shanahan'};
list.ItemsData = [1 2 3 4 5 6 7 8 9 10];

1 Alphabetical List

1-16856

Scroll to Caroline Eliot.

scroll(list,'Caroline Eliot');

Select Caroline Eliot by setting the Value property to the corresponding element in
the ItemsData property.

list.Value = 5;

 scroll

1-16857

Scroll to Tree Node

Create a tree containing four top-level nodes that each have child nodes.

uf = uifigure;
tree = uitree(uf,'Position',[20 20 175 100]);

% First level nodes
category1 = uitreenode(tree,'Text','Runners');
category2 = uitreenode(tree,'Text','Cyclists');
category3 = uitreenode(tree,'Text','Hikers');
category4 = uitreenode(tree,'Text','Swimmers');

% Second level nodes
r1 = uitreenode(category1,'Text','Joe');
r2 = uitreenode(category1,'Text','Linda');
c1 = uitreenode(category2,'Text','Rajeev');
h1 = uitreenode(category3,'Text','Jack');
s1 = uitreenode(category4,'Text','Logan');

1 Alphabetical List

1-16858

Expand the nodes, so that Swimmers scrolls out of view.

expand(tree);

Scroll to the Swimmers node.

scroll(tree,category4)

 scroll

1-16859

Select the Swimmers node by setting the SelectedNodes property of the Tree object.

tree.SelectedNodes = category4;

1 Alphabetical List

1-16860

Input Arguments
component — Scrollable component
Figure object | GridLayout object | Panel object | ButtonGroup object | Tab object |
ListBox object | ...

Scrollable component, specified as a figure created with the uifigure function, or any of
the following components within that figure: grid layout, panel, button group, tab, list
box, or tree.

location — Scroll location
'top' | 'bottom' | ...

Scroll location, specified as 'top', 'bottom', or a value listed in the table. The values
'top' and 'bottom' scroll to the top and bottom of the component. The other values are
specific to the type of component. To scroll to the corner of a container, you can combine
the 'top' or 'bottom' scroll locations with 'left' or 'right'. For example,
scroll(uf,'left','top').

 scroll

1-16861

Component Values
Figure
Panel
Button group
Tab
Grid Layout

• 'left' — Scrolls to the left edge of the container.
• 'right' — Scrolls to the right edge of the container.

Tree • TreeNode object — Scrolls to the specified tree node.
List box • Element of Items property — Scrolls to the specified item in

the list box.
• Element of ItemsData property — Scrolls to the

corresponding item in the list box.

x — x-coordinate
number

x-coordinate, specified as a number in pixels from the left edge of the container. If the
specified value exceeds the scrollable area of the container, the container scrolls as far as
it can in the specified direction.

y — y-coordinate
number

y-coordinate, specified as a number in pixels from the bottom edge of the container. If the
specified value exceeds the scrollable area of the container, the container scrolls as far as
it can in the specified direction.

If a grid layout is taller than its parent container, you use negative y-coordinates to scroll
to components within the grid that lie below the bottom edge of the parent container.

Definitions

Conditions that Enable Scrolling
To allow scrolling within a container, the 'Scrollable' property of the container must
be set to 'on'. In addition, these container-specific conditions must also be true:

Grid layouts

1 Alphabetical List

1-16862

• The sum of the values specified for the 'RowHeight' property of the grid must be
larger than the height of the parent container.

• The sum of the values specified for the 'ColumnWidth' property of the grid must be
larger than the width of the parent container.

• At least one row or column of the grid must be set to a fixed pixel height or width.
• The grid must contain components.

Containers other than grid layout

• The child components in the container must occupy a larger area than the container
can display at one time.

• Components that do not fit in the container must be above or to the right of the
container.

See Also
Functions
uifigure | uigridlayout | uilistbox | uitree | uitreenode

Properties
GridLayout Properties | ListBox | Tree | TreeNode | UI Figure

Topics
“Displaying Graphics in App Designer”

Introduced in R2016a

 scroll

1-16863

SemicircularGauge Properties
Control semicircular gauge appearance

Description
A semicircular gauge is a UI component that represents a measurement instrument.
Properties control the appearance and behavior of a semicircular gauge. Use dot notation
to refer to a particular object and property.

uf = uifigure;
g = uigauge(uf,'semicircular');
g.Value = 45;

Properties
Gauge

Value — Location of gauge needle
0 (default) | numeric

Location of the gauge needle, specified as any numeric value.

• If the value is less than the minimum Limits property value, then the needle points to
a location immediately before the beginning of the scale.

• If the value is more than the maximum Limits property value, then the needle points
to a location immediately after the end of the scale.

Changing the Limits property value has no effect on the Value property setting.
Example: 60

Limits — Minimum and maximum gauge scale values
[0 100] (default) | two-element numeric array

Minimum and maximum gauge scale values, specified as a two-element numeric array.
The first value in the array must be less than the second value.

1 Alphabetical List

1-16864

If you change Limits such that the Value property is less than the new lower limit, or
more than the new upper limit, then the gauge needle points to a location off the scale.

For example, suppose Limits is [0 100] and the Value property is 20. If the Limits
changes to [50 100], then the needle points to a location off the scale, slightly less than
50.

Orientation — Orientation
'north' (default) | 'south' | 'east' | 'west'

Orientation of the gauge, specified as one of the following:

'north'

'south'

'east'

'west'

ScaleDirection — Direction of gauge scale
'clockwise' (default) | 'counterclockwise'

 SemicircularGauge Properties

1-16865

Direction of the gauge scale, specified as one of the following:

• 'clockwise' — The scale appears such that the scale tick values increase in a
clockwise manner.

• 'counterclockwise' — The scale appears such that the scale tick values increase
in a counterclockwise manner.

ScaleColors — Scale colors
[] (default) | n-by-3 array of RGB triplets | cell array

Scale colors, specified one of the following arrays:

• An n-by-3 array of RGB triplets
• A cell array containing RGB triplets, any of the color options listed in the table below,

or a combination of both.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Each color of the ScaleColors array corresponds to a colored section of the gauge. Set
the ScaleColorLimits property to map the colors to specific sections of the gauge.

If you do not set the ScaleColorLimits property, MATLAB distributes the colors equally
over the range of the gauge.

1 Alphabetical List

1-16866

ScaleColorLimits — Scale color limits
[] (default) | n-by-2 array

Scale color limits, specified as a n-by-2 array of numeric values. For every row in the
array, the first element must be less than the second element.

When applying colors to the gauge, MATLAB applies the colors starting with the first
color in the ScaleColors array. Therefore, if two rows in ScaleColorLimits array
overlap, then the color applied later takes precedence.

The gauge does not display any portion of the ScaleColorLimits that fall outside of the
Limits property.

If the ScaleColors and ScaleColorLimits property values are different sizes, then
the gauge shows only the colors that have matching limits. For example, if the
ScaleColors array has three colors, but the ScaleColorLimits has only two rows,
then the gauge displays the first two color/limit pairs only.

Ticks

MajorTicks — Major tick mark locations
[0 20 40 60 80 100] (default) | vector of numeric values | []

Major tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show major tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a major tick falls on the same value as
a minor tick, only the major tick displays.

Setting the MajorTicks property sets the MajorTicksMode property to 'manual'.

MajorTicksMode — Major tick creation mode
'auto' (default) | 'manual'

Major tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of major ticks.
• 'manual' — You specify the MajorTicks value array.

 SemicircularGauge Properties

1-16867

MajorTickLabels — Major tick labels
{'0','20','40','60','80','100'} (default) | cell array of character vectors | string
array | {} | ...

Major tick labels, specified as a cell array of character vectors, string array, or 1-D
categorical array. If you do not want to show tick labels, specify this property as an empty
cell array. If you want to remove a label from a specific tick mark, specify an empty
character vector or empty string scalar for the corresponding element in the
MajorTickLabels array. If you specify this property as a categorical array, MATLAB
uses the values in the array, not the full set of categories.

If the length of the MajorTickLabels array is different from the length of the
MajorTicks vector, MATLAB ignores the extra entries of the longer array. If there are
extra labels, they are ignored. If there are extra tick marks, they display without labels.

Setting MajorTickLabels changes the MajorTickLabelsMode value to 'manual'.

MajorTickLabelsMode — Major tick labels mode
'auto' (default) | 'manual'

Major tick labels mode, specified as one of the following:

• 'auto' — MATLAB specifies the major tick labels.
• 'manual' — You specify the major tick labels using the MajorTickLabels property.

MinorTicks — Minor tick mark locations
[0 4 8 12 ... 100] (default) | vector of numeric values | []

Minor tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show minor tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a minor tick falls on the same value
as a major tick, only the major tick displays.

Setting the MinorTicks property value sets the MinorTicksMode property value to
'manual'.

MinorTicksMode — Minor tick creation mode
'auto' (default) | 'manual'

Minor tick creation mode, specified as one of the following:

1 Alphabetical List

1-16868

• 'auto' — MATLAB determines the placement of minor ticks. MATLAB does not
generate minor ticks for major ticks that are beyond scale limits. If the Limits
property value changes, then MATLAB updates minor ticks to populate the full scale
range (the MinorTicks property is updated accordingly).

• 'manual' — You specify the MinorTicks property numeric array. The MinorTicks
property value does not change size or content on its own.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

 SemicircularGauge Properties

1-16869

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-16870

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 SemicircularGauge Properties

1-16871

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of gauge
'on' (default) | 'off'

Visibility of the gauge, specified as 'on' or 'off'. The Visible property determines
whether the gauge is displayed on the screen. If the Visible property is set to 'off',
then the entire gauge is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of gauge
'on' (default) | 'off'

Operational state of gauge, specified as 'on' or 'off'.

• If you set this property to 'on', then the appearance of the gauge indicates that the
gauge is operational.

1 Alphabetical List

1-16872

• If you set this property to 'off', then the appearance of the gauge appears dimmed,
indicating that the gauge is not operational.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of gauge
[100 100 120 65] (default) | [left bottom width height]

Location and size of the gauge relative to the parent container, specified as the vector,
[left bottom width height].

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of an imaginary box surrounding the
gauge

bottom Distance from the inner bottom edge of the parent
container to the outer bottom edge of an imaginary box
surrounding the gauge

width Distance between the right and left outer edges of the
gauge

height Distance between the top and bottom outer edges of the
gauge

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

 SemicircularGauge Properties

1-16873

Example: [100 100 100 20

InnerPosition — Inner location and size of gauge
[100 100 120 65] (default) | [left bottom width height]

Inner location and size of the gauge, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of gauge
[100 100 120 65]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the gauge, returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a semicircular gauge in the third row and second column of
its parent grid.

g = uigridlayout([4 3]);
gauge = uigauge(g,'semicircular');
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the gauge span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this gauge spans columns 2 through 3:

gauge.Layout.Column = [2 3];

1 Alphabetical List

1-16874

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

 SemicircularGauge Properties

1-16875

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

1 Alphabetical List

1-16876

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

 SemicircularGauge Properties

1-16877

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

1 Alphabetical List

1-16878

HandleVisibility Value Description
'off' The object is invisible at all times. This option is useful for

preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uisemicirculargauge'

This property is read-only.

Type of graphics object, returned as 'uisemicirculargauge'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uigauge

 SemicircularGauge Properties

1-16879

Introduced in R2016a

1 Alphabetical List

1-16880

Slider Properties
Control slider appearance and behavior

Description
Sliders are UI components that allow the user to select a value along a continuum.
Properties control the appearance and behavior of a slider. Use dot notation to refer to a
particular object and property.

uf = uifigure;
s = uislider(uf);
s.Value = 20;

Properties
Slider

Value — Slider value
0 (default) | numeric value

Slider value, specified as a numeric value. The numeric value must be within the range
specified by the Limits property value.

Limits — Minimum and maximum slider values
[0 100] (default) | two-element numeric array

Minimum and maximum slider values, specified as a two-element numeric array. The first
value must be less than the second value.

If you change Limits such that Value property is less than the new lower limit, MATLAB
sets the Value property to the new lower limit. For example, suppose the Limits
property is [0 100] and Value is 20. If the Limits changes to [50 100], then
MATLAB sets the Value property to 50.

Similarly, if you change Limits such that the Value property is greater than the new
upper limit, MATLAB sets the Value property to the new upper limit.

 Slider Properties

1-16881

Orientation — Orientation
'horizontal' (default) | 'vertical'

Orientation of slider, specified as 'horizontal' or 'vertical'.

Ticks

MajorTicks — Major tick mark locations
[0 20 40 60 80 100] (default) | vector of numeric values | []

Major tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show major tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a major tick falls on the same value as
a minor tick, only the major tick displays.

Setting the MajorTicks property sets the MajorTicksMode property to 'manual'.

MajorTicksMode — Major tick creation mode
'auto' (default) | 'manual'

Major tick creation mode, specified as one of the following:

• 'auto' — MATLAB determines the placement of major ticks.
• 'manual' — You specify the MajorTicks value array.

MajorTickLabels — Major tick labels
{'0','20','40','60','80','100'} (default) | cell array of character vectors | string
array | {} | ...

Major tick labels, specified as a cell array of character vectors, string array, or 1-D
categorical array. If you do not want to show tick labels, specify this property as an empty
cell array. If you want to remove a label from a specific tick mark, specify an empty
character vector or empty string scalar for the corresponding element in the
MajorTickLabels array. If you specify this property as a categorical array, MATLAB
uses the values in the array, not the full set of categories.

If the length of the MajorTickLabels array is different from the length of the
MajorTicks vector, MATLAB ignores the extra entries of the longer array. If there are
extra labels, they are ignored. If there are extra tick marks, they display without labels.

1 Alphabetical List

1-16882

Setting MajorTickLabels changes the MajorTickLabelsMode value to 'manual'.

MajorTickLabelsMode — Major tick labels mode
'auto' (default) | 'manual'

Major tick labels mode, specified as one of the following:

• 'auto' — MATLAB specifies the major tick labels.
• 'manual' — You specify the major tick labels using the MajorTickLabels property.

MinorTicks — Minor tick mark locations
[0 4 8 12 ... 100] (default) | vector of numeric values | []

Minor tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show minor tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a minor tick falls on the same value
as a major tick, only the major tick displays.

Setting the MinorTicks property value sets the MinorTicksMode property value to
'manual'.

MinorTicksMode — Minor tick creation mode
'auto' (default) | 'manual'

Minor tick creation mode, specified as 'auto' or 'manual'.

When MinorTicksMode is set to 'auto', MATLAB determines the placement of minor
ticks.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.

 Slider Properties

1-16883

Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

1 Alphabetical List

1-16884

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Slider visibility
'on' (default) | 'off'

Slider visibility, specified as 'on' or 'off'. The Visible property determines whether
the slider is displayed on the screen. If the Visible property is set to 'off', the entire
slider is hidden, but you can still specify and access its properties.

 Slider Properties

1-16885

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of slider
'on' (default) | 'off'

Operational state of the slider, specified as 'on' or 'off'.

• If you set this property to 'on', then the app user can change the slider value.
• If you set this property to 'off', then the slider appears dimmed, indicating that the

app user cannot change the slider value and the slider will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of slider
[100 100 150 3] (default) | [left bottom width height]

Location and size of the slider excluding tick marks and labels, specified as the vector
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the slider
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the slider
width Distance between the right and left outer edges of the

slider

1 Alphabetical List

1-16886

Element Description
height Distance between the top and bottom outer edges of the

slider

All measurements are in pixel units.

You cannot change the height of a slider when the Orientation property value is
'horizontal'. Similarly, you cannot change the width of a slider when the
Orientation property value is 'vertical'.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 60 60]

InnerPosition — Inner location and size of slider
[100 100 150 3] (default) | [left bottom width height]

Inner location and size of the slider, excluding tick marks and tick labels, specified as the
vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units. This property value is identical to the
Position property.

OuterPosition — Outer location and size of slider
[94 70 166 39] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the slider, including state marks and state labels, specified as
the vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

 Slider Properties

1-16887

For example, this code places a slider in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
s = uislider(g);
s.Layout.Row = 3;
s.Layout.Column = 2;

To make the slider span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this slider spans columns 2 through 3:

s.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user moves the thumb to a different position on the
slider. The callback does not execute if the slider value changes programmatically.

This callback function can access specific information about the user’s interaction with
the slider. MATLAB passes this information in a ValueChangedData object as the second
argument to your callback function. In App Designer, the argument is called event. You
can query the object properties using dot notation. For example, event.PreviousValue
returns the previous value of the slider. The ValueChangedData object is not available to
callback functions specified as character vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of slider after app user’s most recent

interaction with it

1 Alphabetical List

1-16888

Property Value
PreviousValue Value of slider before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

ValueChangingFcn — Value changing callback
'' (default) | function handle | cell array | character vector

Value changing callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes as the user moves the thumb along the slider in the app. It does
not execute if the Value property changes programmatically.

This callback can access specific information about the user’s interaction with the slider.
MATLAB passes this information in a ValueChangingData object as the second
argument to your callback function. In App Designer, the argument is called event. You
can query the object properties using dot notation. For example, event.Value returns
the current value of the slider. The ValueChangingData object is not available to
callback functions specified as character vectors.

The following table lists the properties of the ValueChangingData object.

Property Value
Value Current value of the slider as the app user

is interacting with it
Source Component that executes the callback
EventName 'ValueChanging'

 Slider Properties

1-16889

The Value property of the Slider object is not updated until the user releases the slider
thumb. Therefore, to get the value as the thumb is being moved, your code must get the
Value property of the ValueChangingData object.

The ValueChangingFcn callback executes as follows:

• If the app user clicks the slider value once. then the callback executes a single time.
For example, if the slider is on 1.0, and the app user single-clicks at 1.1, then the
callback executes once.

• If the app user clicks and drags the slider to a new position, the callback executes
repeatedly. For example, if the slider value is 1.0, and the app user clicks, holds, and
drags the thump to value 10.0, then the callback executes multiple times until the app
user releases the thumb.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-16890

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

 Slider Properties

1-16891

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

1 Alphabetical List

1-16892

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If

 Slider Properties

1-16893

you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uislider'

This property is read-only.

Type of graphics object, returned as 'uislider'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

1 Alphabetical List

1-16894

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uislider

Introduced in R2016a

 Slider Properties

1-16895

Spinner Properties
Control spinner appearance and behavior

Description
Spinners are UI components for selecting numeric values from a finite set. Properties
control the appearance and behavior of a spinner. Use dot notation to refer to a particular
object and property.

uf = uifigure;
s = uispinner(uf);
s.Value = 20;

Properties
Value

Value — Spinner value
0 (default) | double-precision number

Spinner value, specified as a double-precision number.

When the app user types a value in the spinner, the value is a character vector. When the
app user presses the Enter key or changes focus, MATLAB converts the app-user-entered
value to a double-precision number.

MATLAB rejects the value if:

• It cannot convert the character vector to a scalar number.
• The value is NaN, blank, or a complex number.
• The value is a mathematical expression, such as 1+2.
• The value is less than or greater than the values specified by the Limits property.

When MATLAB rejects the app-user-entered value, a tooltip appears describing the value
requirements. The spinner immediately reverts to its previous value and no
ValueChangedFcn runs.

1 Alphabetical List

1-16896

Example: 10

Limits — Minimum and maximum spinner values
[-Inf Inf] (default) | two-element numeric array

Minimum and maximum spinner values, specified as a two-element numeric array. The
first value must be less than the second value. Set array elements to -Inf or Inf to
specify no minimum or no maximum, respectively.

If you change Limits such that the Value property is outside the new limits, MATLAB
sets the Value property to a value within the new limits. For example, suppose the
Limits property is [0 100] and the Value property is 20. If the Limits property
changes to [50 100], then MATLAB sets the Value property to 50 (assuming the
LowerLimitInclusive value is 'on'.
Example: [-Inf 200]
Example: [-100 Inf]
Example: [-100 200]

Step — Quantity by which value is incremented or decremented
1 (default) | numeric scalar

Quantity by which the Value property increments or decrements when the app user
presses the up and down arrows, respectively.

RoundFractionalValues — Rounding of fractional values
'off' (default) | 'on'

Rounding of fractional values entered by app users, specified as one of the following:

• 'on' — MATLAB rounds the value if it results in a valid value and executes the
ValueChangedFcn callback. If the resulting value is outside the lower or upper
Limits, then MATLAB rounds to the nearest value that falls within the Limits and
then executes the callback.

• 'off' — MATLAB does not round a fractional value to a whole number.

If the RoundFractionalValues property value changes from 'off' to 'on'
programmatically, then MATLAB applies these rules:

• If rounding the existing value yields an integer that lies inside the limit range specified
by the Limits property, then MATLAB rounds up the existing value.

 Spinner Properties

1-16897

• If rounding the existing value yields an integer that is less than the lower limit, then
MATLAB rounds up the existing value.

• If rounding the existing value yields an integer that is greater than the upper limit,
then MATLAB rounds down the existing value.

• If the limits are configured such that there is no valid integer in the range, then
MATLAB sets the RoundFractionalValues property value back to 'off' and
displays an error message.

ValueDisplayFormat — Value display format
'%11.4g' (default) | character vector | string scalar

Value display format, specified as a character vector or string scalar.

MATLAB uses sprintf to display the value using the specified format.

You can mix text with format operators. For example:

spin = uispinner('ValueDisplayFormat','%.0f MS/s');

The resulting spinner component looks like this:

When the app user clicks in the spinner field, the field shows the value without the text.

For a complete list of supported format operators, see sprintf.

LowerLimitInclusive — Lower limit inclusiveness
'on' (default) | 'off'

Lower limit inclusiveness, specified as one of the following:

• 'on' — Value must be equal to or greater than the lower limit.
• 'off' — Value must be greater than the lower limit.

UpperLimitInclusive — Upper limit inclusiveness
'on' (default) | 'off'

Upper limit inclusiveness, specified as one of the following:

1 Alphabetical List

1-16898

• 'on' — Value must be equal to or less than the upper limit.
• 'off' — Value must be less than the upper limit.

For example, if you want the numeric input to be between 0 and 1, excluding 0 and 1, do
all of the following:

• Set the Limits property value to [0 1].
• Set the UpperLimitInclusive property to 'off'.
• Set the LowerLimitInclusive property to 'off'.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

 Spinner Properties

1-16899

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

1 Alphabetical List

1-16900

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 Spinner Properties

1-16901

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Spinner visibility
'on' (default) | 'off'

Spinner visibility, specified as 'on' or 'off'. The Visible property determines whether
the spinner is displayed on the screen. If the Visible property of a spinner is set to
'off', the entire spinner is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Editable — Editability of spinner
'on' (default) | 'off'

Editability of the spinner, specified as 'on' or 'off'.

Use this property in combination with the Enable property value to determine if and how
the component responds to app user input:

1 Alphabetical List

1-16902

• To make the spinner editable, the arrow buttons operational, and the associated
callback triggerable, set both the Enable property and the Editable property values
to 'on'.

• To make the spinner uneditable, but the arrow buttons operational, set the Editable
property to 'off' and the Enable property to 'on'.

• To make the spinner uneditable and the arrow buttons unoperational, set the
Editable property to 'off' and the Enable property to 'off'.

Enable — Operational state of spinner
'on' (default) | 'off'

Operational state of the spinner, specified as 'on' or 'off'. Use this property in
combination with the Editable property value to determine if and how the component
responds to app user input:

• To make the spinner editable, the arrow buttons operational, and the associated
callback triggerable, set both the Enable property and the Editable property values
to 'on'

• To make the spinner uneditable, but the arrow buttons operational, set the Editable
property to 'off' and the Enable property to 'on'.

• To make the spinner uneditable and the arrow buttons unoperational, set the
Editable property to 'off' and the Enable property to 'off'.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of spinner
[100 100 100 22] (default) | [left bottom width height]

 Spinner Properties

1-16903

Location and size of spinner relative to the parent container, specified as the vector
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the spinner
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the spinner
width Distance between the right and left outer edges of the

spinner
height Distance between the top and bottom outer edges of the

spinner

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 22]

InnerPosition — Inner location and size of spinner
[100 100 100 22] (default) | [left bottom width height]

Inner location and size of the spinner, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of spinner
[100 100 100 22]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of spinner, returned as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This
property value is identical to the Position property.

HorizontalAlignment — Horizontal alignment of numbers within spinner
'right' (default) | 'left' | 'center'

Horizontal alignment of numbers within the spinner, specified as:

1 Alphabetical List

1-16904

• 'right' — Numbers align on the right side of the spinner.
• 'left' — Numbers align on the left side of the spinner.
• 'center' — Numbers align in the center of the spinner.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a spinner in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
s = uispinner(g);
s.Layout.Row = 3;
s.Layout.Column = 2;

To make the spinner span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this spinner spans columns 2 through 3:

s.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user changes focus or presses the Enter key after
changing the spinner value. It does not matter whether the user changes the spinner

 Spinner Properties

1-16905

value by typing or by pressing the arrow keys. The callback does not execute if the
spinner value changes programmatically.

This callback function can access specific information about the user’s interaction with
the spinner. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the spinner. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of spinner after app user’s most

recent interaction with it
PreviousValue Value of spinner before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

ValueChangingFcn — Value changing callback
'' (default) | function handle | cell array | character vector

Value changing callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes as the user clicks and holds the up or down arrow on the
spinner. It does not execute if the Value property changes programmatically.

This callback function can access specific information about the user’s interaction with
the spinner. MATLAB passes this information in a ValueChangingData object as the

1 Alphabetical List

1-16906

second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.Value returns the current value of the spinner. The ValueChangingData object
is not available to callback functions specified as character vectors.

The following table lists the properties of the ValueChangingData object.

Property Value
Value Current value of the spinner as the app

user is interacting with it
Source Component that executes the callback
EventName 'ValueChanging'

The Value property of the Spinner is not updated until the app user releases the arrow
key. Therefore, to get the values while the arrow key is being pressed, your code must get
the Value property of the ValueChangingData object.

The callback executes as follows:

• If the app user clicks a spinner up or down arrow, the callback executes once. For
example, suppose that the spinner value is 2, and the Step value is 1. If the app user
clicks the up arrow, the callback executes.

• If the app user presses and holds a spinner up or down arrow, the callback executes
repeatedly. For example, if the app user clicks and holds the up arrow, the callback
executes multiple times until the app user releases the up arrow.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 Spinner Properties

1-16907

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

1 Alphabetical List

1-16908

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

 Spinner Properties

1-16909

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

1 Alphabetical List

1-16910

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uispinner'

This property is read-only.

Type of graphics object, returned as 'uispinner'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

 Spinner Properties

1-16911

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uispinner

Introduced in R2016a

1 Alphabetical List

1-16912

StateButton Properties
Control state button appearance and behavior

Description
State buttons are components that indicate a logical state. Properties control the
appearance and behavior of a state button. Use dot notation to refer to a specific object
and property.

uf = uifigure;
sb = uibutton(uf,'state');
sb.Value = true;

Properties
Button

Value — Pressed state of button
0 (default) | 1

Pressed state of button, specified as 0 (false) or 1 (true). When the value is 1, the state
button appears pressed. When the value is 0, the state button appears unpressed.

Text — Button label
'State Button' (default) | character vector | cell array of character vectors | string
scalar | string array | ...

Button label, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Specify a character vector or string scalar to label
the button with a single line of text. Use a cell array or string array to label the button
with multiple lines of text. Each element in the array represents a separate line of text. If
you specify this property as a categorical array, MATLAB uses the values in the array, not
the full set of categories.

Icon — File name of button icon
'' (default) | character vector | string scalar

 StateButton Properties

1-16913

File name of the button icon, specified as a character vector or string scalar.

The file name can be an image file name on the MATLAB path or a full path to an image
file. If you plan to share an app with others, put the image file on the MATLAB path to
facilitate app packaging.

The image file type must be JPEG, GIF, or PNG.

• If the button text takes up all the space specified by the Position property value,
then MATLAB does not display the icon.

• If some room is available for the icon, then MATLAB scales down the image to fit, if
necessary.

Example: 'icon.png'
Example: 'C:\Documents\icon.png'

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

1 Alphabetical List

1-16914

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 StateButton Properties

1-16915

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.96 .96 .96] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-16916

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Button visibility
'on' (default) | 'off'

Button visibility, specified as 'on' or 'off'. The Visible property determines whether
the button is displayed on the screen. If the Visible property is set to 'off', the entire
button is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

 StateButton Properties

1-16917

Enable — Operational state of button
'on' (default) | 'off'

Operational state of the button, specified as 'on' or 'off'.

• If you set this property to 'on', the app user can press the button.
• If you set this property to 'off', the button appears dimmed, indicating that the app

user cannot press it, and that the button will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of button
[100 100 100 22] (default) | [left bottom width height]

Location and size of button, specified as the vector of the form [left bottom width
height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the button
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the button
width Distance between the right and left outer edges of the

button
height Distance between the top and bottom outer edges of the

button

1 Alphabetical List

1-16918

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.

InnerPosition — Location and size of button
[100 100 100 22] (default) | [left bottom width height]

Location and size of button, specified as a four element vector of the form [left bottom
width height]. All measurements are in pixel units. This property value is identical to
the Position property.

OuterPosition — Location and size of button
[100 100 100 22]] (default) | [left bottom width height]

This property is read-only.

Location and size of button, returned as a four element vector of the form [left bottom
width height]. All measurements are in pixel units. This property value is identical to
the Position property.

HorizontalAlignment — Horizontal alignment of icon and text
'center' (default) | 'left' | 'right'

Horizontal alignment of the icon and text, specified as 'center', 'left', or 'right'.
The horizontal alignment is relative to the area inside the borders of the button. Setting
this property when the text spans the full width of the button has no apparent effect in
the UI.

VerticalAlignment — Vertical alignment of icon and text
'center' (default) | 'top' | 'bottom'

Vertical alignment of the icon and the text, specified as 'center', 'top', or 'bottom'.
The vertical alignment is relative to the area inside the borders of the button. Setting this
property when the text height fills the height of the button has no apparent effect in the
UI.

IconAlignment — Location of icon relative to button text
'left' (default) | 'right' | 'center' | 'top' | 'bottom'

 StateButton Properties

1-16919

Location of icon relative to the button text, specified as 'left', 'right', 'top', or
'bottom'. If the Text property is empty, then the icon uses the HorizontalAlignment
and VerticalAlignment properties instead of the IconAlignment property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a state button in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
sb = uibutton(g,'state');
sb.Layout.Row = 3;
sb.Layout.Column = 2;

To make the button span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this button spans columns 2 through 3:

sb.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user changes the button's state in the app. It does not
execute if the state changes programmatically.

1 Alphabetical List

1-16920

This callback function can access specific information about the user’s interaction with
the button. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the button. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of state button after the app user’s

most recent interaction with it
PreviousValue Value of state button before the app user’s

most recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

 StateButton Properties

1-16921

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running

1 Alphabetical List

1-16922

callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

 StateButton Properties

1-16923

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that

1 Alphabetical List

1-16924

obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uistatebutton'

This property is read-only.

Type of graphics object, returned as 'uistatebutton'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

 StateButton Properties

1-16925

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uibutton | uifigure

Introduced in R2016a

1 Alphabetical List

1-16926

Switch Properties
Control switch appearance and behavior

Description
Switches are UI components that indicate a logical state. Properties control the
appearance and behavior of a switch. Use dot notation to refer to a particular object and
property.

uf = uifigure;
s = uiswitch(uf);
s.Items = {'Cold','Hot'};

Properties
Switch

Value — Value
element of Items | element of ItemsData

Value, specified as an element of the Items or ItemsData arrays. By default, Value is
the first element in Items.

Specifying Value as an element of Items moves the switch to the position that matches
that element. If ItemsData is not empty, then Value must be set to an element of
ItemsData, and the switch will move to the associated position.

Items — Switch options
{'Off','On'} (default) | cell array of character vectors | string array | 1-by-2
categorical array

Switch options, specified as a cell array of character vectors, string array, or 1-by-2
categorical array. If you specify an array, it must have two elements. Duplicate elements
are allowed. If you specify this property as a categorical array, MATLAB uses the values in
the array, not the full set of categories.

 Switch Properties

1-16927

ItemsData — Data associated with each element of Items
empty array ([]) (default) | 1-by-2 numeric array | 1-by-2 cell array

Data associated with each element of the Items property value, specified as a 1-by-2
numeric array or a 1-by-2 cell array. Duplicate elements are allowed.

For example, if you set the Items value to {'Freezing','Boiling'}, then you might
set the ItemsData value to corresponding temperatures in degrees Celsius, [0,100].
The ItemsData value is not visible to the app user.
Example: {'One' 'Two'}
Example: [10 20]

Orientation — Orientation
'horizontal' (default) | 'vertical'

Orientation of the switch, specified as 'horizontal' or 'vertical'.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

1 Alphabetical List

1-16928

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 Switch Properties

1-16929

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of switch
'on' (default) | 'off'

Visibility of the switch, specified as 'on' or 'off'. The Visible property determines
whether the switch is displayed on the screen. If the Visible property is set to 'off',
the entire switch is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of switch
'on' (default) | 'off'

Operational state of switch, specified as 'on' or 'off'.

If you set this property to 'on', the app user can slide the switch.

1 Alphabetical List

1-16930

If you set this property to 'off', the switch appears dimmed, indicating that the app
user cannot slide the switch and it will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of switch
[100 100 45 20] (default) | [left bottom width height]

Switch location and size of the switch, excluding state marks and labels, specified as the
vector, [left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the switch
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the switch
width Distance between the right and left outer edges of the

switch, excluding labels
height Distance between the top and bottom outer edges of the

switch, excluding labels

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 90 40

 Switch Properties

1-16931

InnerPosition — Inner location and size of switch
[100 100 45 20] (default) | [left bottom width height]

Inner location and size of the switch, excluding state marks and state labels, specified as
the vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units. This property value is identical to the
Position property.

OuterPosition — Outer location and size of switch
[79 100 88 20] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the switch, including state marks and state labels, specified as
the vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a switch in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
s = uiswitch(g);
s.Layout.Row = 3;
s.Layout.Column = 2;

To make the switch span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this switch spans columns 2 through 3:

s.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-16932

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the state of the switch changes in the app. The switch
changes state when the user does either of the following:

• Clicking and releasing the mouse button anywhere on the switch (including the state
labels)

• Clicking on the switch, dragging, and then releasing the mouse button while still on
the switch.

The callback does not execute if the Value property changes programmatically.

This callback function can access specific information about the user’s interaction with
the switch. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the switch. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of switch after the app user’s most

recent interaction with it
PreviousValue Value of switch before the app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

 Switch Properties

1-16933

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-16934

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 Switch Properties

1-16935

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-16936

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uiswitch'

 Switch Properties

1-16937

This property is read-only.

Type of graphics object, returned as 'uiswitch'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uiswitch

Introduced in R2016a

1 Alphabetical List

1-16938

Tab Properties
Control tab appearance

Description
Tabs are containers for grouping for grouping UI components together with a tabbed
label. Use the uitab function to create a tab inside a tab group. Properties control the
appearance and behavior of a tab. Use dot notation to refer to a particular object and
property:

uf = uifigure;
tg = uitabgroup(uf);
t = uitab(tg);
t.Title = 'Data';

The properties listed here are valid for tabs in App Designer, or in apps created with the
uifigure function. For tabs used in GUIDE, or in apps created with the figure
function, see Uitab.

Properties
Title and Color

Title — Title
character vector | string scalar | categorical array

Title, specified as a character vector, string scalar, or categorical array. If you specify this
property as a categorical array, MATLAB displays only the first element in the array.

MATLAB does not interpret a vertical slash ('|') character as a line break, it displays as
a vertical slash in the title.

If you want to specify a Unicode character, pass the Unicode decimal code to the char
function. For example, ['Multiples of ' char(960)] displays as Multiples of π.

ForegroundColor — Title color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 Tab Properties

1-16939

Title color, specified as an RGB triplet, a hexadecimal color code, or one of the color
options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

1 Alphabetical List

1-16940

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.94 .94 .94] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 Tab Properties

1-16941

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Scrollable — Ability to scroll
'off' (default) | 'on'

Ability to scroll, specified as 'off' or 'on'. Setting this property to 'on' enables
scrolling within the container. However, there are additional requirements:

• The child components in the container must occupy a larger area than the container
can display at one time.

• Components that do not fit in the container must be above or to the right of the
container. You cannot scroll to components that are below or to the left of the
container.

Certain types of charts and axes do not support scrollable containers. However, you can
place the chart or axes in a nonscrollable panel, and then place the panel in the scrollable
container. For more information, see “Displaying Graphics in App Designer”.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. To display multiple lines of text, specify a cell
array of character vectors or a string array. Each element in the array becomes a separate
line of text. If you specify this property as a categorical array, MATLAB uses the values in
the array, not the full set of categories.

1 Alphabetical List

1-16942

Position

Position — Location and size of tab
[left bottom width height]

This property is read-only.

Location and size of the tab, returned as a four-element vector of the form [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the tab group to the

inner left edge of the tab
bottom Distance from the inner bottom edge of the tab group to

the inner bottom edge of the tab
width Distance between the right and left inner edges of the tab
height Distance between the top and bottom inner edges of the

tab

All measurements are in units specified by the Units property.

Note These are some important points to consider when using the Position property:

• Position values are affected by the length of the tab title and the TabLocation
property of the parent TabGroup object.

• Position values are relative to the drawable area of the parent TabGroup, which is
the area inside its borders.

InnerPosition — Location and size of tab
[left bottom width height]

This property is read-only.

Location and size of the tab, returned as a four-element vector of the form [left
bottom width height]. All measurements are in units specified by the Units
property.

This property value is identical to the Position and OuterPosition property values.

 Tab Properties

1-16943

OuterPosition — Location and size of tab
[left bottom width height]

This property is read-only.

Location and size of the tab, returned as a four-element vector of the form [left
bottom width height]. All measurements are in units specified by the Units
property.

This property value is identical to the Position and InnerPosition property values.

Units — Units of measurement
'pixels' (default)

Units of measurement, specified as 'pixels'.

AutoResizeChildren — Automatically resize children
'on' (default) | 'off'

Automatically resize children, specified as 'on' or 'off'.

• 'on' — Child components automatically resize when the container resizes.
• 'off' — Child components do not resize.

The AutoResizeChildren property affects direct children of the container, not children
inside nested containers.

To customize the resize behavior, set the AutoResizeChildren property to 'off' and
create a SizeChangedFcn callback for the container. For more information, see
“Managing Resizable Apps in App Designer”.

To disable resizing of an app, set the Resize property of the figure to 'off'.

Callbacks

SizeChangedFcn — Size change callback
'' (default) | function handle | cell array | character vector

Size change callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

1 Alphabetical List

1-16944

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

Note The SizeChangedFcn callback will not execute unless the AutoResizeChildren
property of this container is set to 'off'. In App Designer, you can make the
SizeChangedFcn executable by clearing the AutoResizeChildren check box in the UI
Figure Properties panel.

The SizeChangedFcn callback executes when the parent tab group container:

• Becomes visible for the first time.
• Is visible while its size changes.
• Becomes visible for the first time after its size changes. This situation occurs when the

size changes while the container is invisible, and then it becomes visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To achieve this delay, you delay the display of the
parent tab group container, by setting its Visible property to 'off'. Then, set the
Visible property to 'on' after you define the variables that your SizeChangedFcn
callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback).

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 Tab Properties

1-16945

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

1 Alphabetical List

1-16946

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

 Tab Properties

1-16947

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-16948

Parent/Child

Parent — Parent object
TabGroup object

Parent object, specified as a TabGroup object. The TabGroup must be the child of a
Figure created using the uifigure function.

Children — Children of tab
empty GraphicsPlaceholder array (default) | 1-D array of component objects

Children of tab, returned as an empty GraphicsPlaceholder or a 1-D array of app
component objects.

You cannot add or remove children using the Children property of the tab. Use this
property to view the list of children or to reorder the children. The order of the children
in this array reflects the order of the tabs displayed on the screen.

To add a child to this list, set the Parent property of the child component to be the Tab
object.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

 Tab Properties

1-16949

HandleVisibility Value Description
'off' The object is invisible at all times. This option is useful for

preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitab'

This property is read-only.

Type of graphics object, returned as 'uitab'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uitab | uitabgroup

1 Alphabetical List

1-16950

Properties
TabGroup

Introduced in R2016a

 Tab Properties

1-16951

TabGroup Properties
Control tab group appearance and behavior

Description
Tab groups are containers for grouping and managing tabs. Properties control the
appearance and behavior of a tab group. Use dot notation to refer to a particular object
and property.

uf = uifigure;
tg = uitabgroup(uf);
tg.Position = [20 20 200 200];

The properties listed here are valid for tab groups in App Designer, or in apps created
with the uifigure function. For tab groups used in GUIDE, or in apps created with the
figure function, see Uitabgroup.

Properties
Tabs

TabLocation — Tab label location
'top' (default) | 'bottom' | 'left' | 'right'

Tab label location, specified as 'top', 'bottom', 'left', or 'right'. This property
specifies the location of the tab labels with respect to the tab group.

SelectedTab — Currently selected tab
Tab object

Currently selected tab, specified as a Tab object. Use this property to determine the
currently selected tab within a tab group. You can also use this property to set the default
tab selection. The default value of the SelectedTab property is the first Tab that you
add to the TabGroup.

1 Alphabetical List

1-16952

Interactivity

Visible — Tab group visibility
'on' (default) | 'off'

Tab group visibility, specified as 'on' or 'off'. The Visible property determines
whether the tab group is displayed on the screen. If the Visible property is set to
'off', the entire tab group is hidden. However, you can still specify and access
properties of the TabGroup object.

To make your app start faster, set the Visible property of all components that are not
initially displayed to 'off'.

Note Changing the Visible property of a TabGroup object does not change the values
of the Visible properties of its child components. This is true even though hiding the tab
group causes the children to be hidden.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | categorical
array

Tooltip, specified as a character vector, cell array of character vectors, string array, or
categorical array. Use this property to display a message when the user hovers the
pointer over the tab group at run time. Tooltips for tab groups display only when there
are no tabs in the tab group. To display multiple lines of text, specify a cell array of
character vectors, string array, or categorical array. Each element in the array becomes a
separate line of text. If you specify this property as a categorical array, MATLAB uses the
values in the array, not the full set of categories.

Position

Position — Location and size of tab group
[left bottom width height]

Location and size of the tab group, specified as a four-element vector of the form [left
bottom width height].

This table describes each element in the vector.

 TabGroup Properties

1-16953

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the tab group
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the tab group
width Distance between the right and left outer edges of the tab

group
height Distance between the top and bottom outer edges of the

tab group

All measurements are in units specified by the Units property.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

InnerPosition — Location and size of tab group
[left bottom width height]

Location and size of the tab group, specified as a four-element vector of the form [left
bottom width height]. All measurements are in units specified by the Units
property.

This property value is identical to the Position and OuterPosition property values.

OuterPosition — Location and size of tab group
[left bottom width height]

Location and size of the tab group, specified as a four-element vector of the form [left
bottom width height]. All measurements are in units specified by the Units
property.

This property value is identical to the Position and InnerPosition property values.

Units — Units of measurement
'pixels' (default)

Units of measurement, specified as 'pixels'.

AutoResizeChildren — Automatically resize children
'on' (default) | 'off'

1 Alphabetical List

1-16954

Automatically resize children, specified as 'on' or 'off'.

• 'on' — Child components automatically resize when the container resizes.
• 'off' — Child components do not resize.

The AutoResizeChildren property affects direct children of the container, not children
inside nested containers.

To customize the resize behavior, set the AutoResizeChildren property to 'off' and
create a SizeChangedFcn callback for the container. For more information, see
“Managing Resizable Apps in App Designer”.

To disable resizing of an app, set the Resize property of the figure to 'off'.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a tab group in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
tg = uitabgroup(g);
tg.Layout.Row = 3;
tg.Layout.Column = 2;

To make the tab group span multiple rows or columns, specify the Row or Column
property as a two-element vector. For example, this tab group spans columns 2 through 3:

tg.Layout.Column = [2 3];

Callbacks

SelectionChangedFcn — Selection changed callback
'' (default) | function handle | cell array | character vector

Selection changed callback, specified as one of these values:

 TabGroup Properties

1-16955

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user selects a different tab within the tab group.

This callback function can access specific information about the user’s interaction with
the tabs. MATLAB passes this information in a SelectionChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.NewValue returns the currently selected tab. The SelectionChangedData
object is not available to callback functions specified as character vectors.

The following table lists the properties of the SelectionChangedData object.

Property Description
OldValue Previously selected Tab, or [] if none was selected
NewValue Currently selected Tab
Source Component that executes the callback
EventName 'SelectionChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

SizeChangedFcn — Size change callback
'' (default) | function handle | cell array | character vector

Size change callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

1 Alphabetical List

1-16956

Note The SizeChangedFcn callback will not execute unless the AutoResizeChildren
property of this container is set to 'off'. In App Designer, you can make the
SizeChangedFcn executable by clearing the AutoResizeChildren check box in the UI
Figure Properties panel.

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.
• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible
property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you

 TabGroup Properties

1-16957

do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

1 Alphabetical List

1-16958

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

 TabGroup Properties

1-16959

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Children — TabGroup children
empty GraphicsPlaceholder array (default) | 1-D array of Tab objects

1 Alphabetical List

1-16960

TabGroup children, returned as an empty GraphicsPlaceholder or a one-dimensional
array of Tab objects.

You cannot add or remove tabs using the Children property of the TabGroup. Use this
property to view the list of tabs or to reorder the tabs. The order of the Tab objects in this
array reflects the order of the tabs displayed on the screen.

To add a child to this list, set the Parent property of a Tab object to be the TabGroup
object.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitabgroup'

This property is read-only.

 TabGroup Properties

1-16961

Type of graphics object, returned as 'uitabgroup'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uitab | uitabgroup

Properties
Tab

Introduced in R2016a

1 Alphabetical List

1-16962

TextArea Properties
Control text area appearance and behavior

Description
Text areas are UI components for entering multiple lines of text. Properties control the
appearance and behavior of an text area. Use dot notation to refer to a specific object and
property.
uf = uifigure;
tarea = uitextarea(uf);
tarea.Value = 'This sample is an outlier';

Properties
Text

Value — Value
{''} (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Value, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. MATLAB can properly render formatted text, such as this:

cellArrayText{1} = sprintf('%s\n%s', 'Line 1', 'Line 2')
cellArrayText{2} = sprintf('%s\n%s', 'Line 3', 'Line 4')
textarea = uitextarea('Value',cellArrayText);

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the full set of categories.

If the text does not fit into the width of the text area, MATLAB wraps the text.

If there are too many rows to display in the text area, MATLAB adds a scroll bar.

 TextArea Properties

1-16963

Example: {'Joseph Welford'; 'Mary Reilly'; 'Roberta Silberlicht'}

HorizontalAlignment — Horizontal alignment of text within text area
'left' (default) | 'right' | 'center'

Alignment of text within the text area, specified as 'left', 'right', or 'center'. The
alignment affects the display as the app user edits the text area and how MATLAB
displays the text in the app.

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

1 Alphabetical List

1-16964

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

 TextArea Properties

1-16965

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

1 Alphabetical List

1-16966

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Text area visibility
'on' (default) | 'off'

Text area visibility, specified as 'on' or 'off'. The Visible property determines
whether the text area is displayed on the screen. If the Visible property is set to 'off',
the entire text area is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Editable — Editability of text area
'on' (default) | 'off'

Editability of the text area, specified as 'on' or 'off'.

Use this property in combination with the Enable property value to determine if and how
the component responds to app user input:

 TextArea Properties

1-16967

• To make the text area editable and the associated callback triggerable, set both the
Enable property and the Editable property values to 'on'.

• To make the text area uneditable, but the text easy to read, set the Enable property
value to 'on' and the Editable property value to 'off'.

• To make the text area uneditable and the text dimmed, set both properties to 'off'.

Enable — Operational state of text area
'on' (default) | 'off'

Operational state of the text area, specified as 'on' or 'off'.

Use this property in combination with the Enable property value to determine if and how
the component responds to app user input:

• To make the text area editable and the associated callback triggerable, set both the
Enable property and the Editable property values to 'on'.

• To make the text area uneditable, but the text easy to read, set the Enable property
value to 'on' and the Editable property value to 'off'.

1 Alphabetical List

1-16968

• To make the text area uneditable and the text dimmed, set both properties to 'off'.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of text area
[100 100 150 60] (default) | [left bottom width height]

Location and size of the text area relative to the parent, specified as the vector [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the text area
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the text area
width Distance between the right and left outer edges of the text

area

 TextArea Properties

1-16969

Element Description
height Distance between the top and bottom outer edges of the

text area

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 90]

InnerPosition — Inner location and size of text area
[100 100 150 60] (default) | [left bottom width height]

Inner location and size of the text area, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

OuterPosition — Outer location and size of text area
[100 100 150 60] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the text area returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units.
This property value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a text area in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
tarea = uitextarea(g);

1 Alphabetical List

1-16970

tarea.Layout.Row = 3;
tarea.Layout.Column = 2;

To make the text area span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this text area spans columns 2 through 3:

tarea.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

The callback executes when the user changes the text and either presses Tab or clicks
outside the text area. It does not execute if the Value property changes
programmatically.

This callback function can access specific information about the user’s interaction with
the text area. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the text area. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of text area after app user’s most

recent interaction with it
PreviousValue Value of text area before app user’s most

recent interaction with it

 TextArea Properties

1-16971

Property Value
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

1 Alphabetical List

1-16972

• Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

 TextArea Properties

1-16973

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

1 Alphabetical List

1-16974

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.

 TextArea Properties

1-16975

HandleVisibility Value Description
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitextarea'

This property is read-only.

Type of graphics object, returned as 'uitextarea'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

1 Alphabetical List

1-16976

See Also
Functions
appdesigner | uifigure | uitextarea

Introduced in R2016a

 TextArea Properties

1-16977

ToggleButton Properties
Control toggle button appearance

Description
Toggle buttons are typically presented as a set of options inside a button group. The user
must choose one from the set. Properties control the appearance and behavior of a toggle
button. Use dot notation to refer to a specific object and property.

uf = uifigure;
bg = uibuttongroup(uf)
tbutton = uitogglebutton(bg);
tbutton.Text = 'One';

Properties
Button

Value — State of toggle button
1 | 0

State of the toggle button specified as 0 (unpressed) or 1 (depressed). Within a given
button group, only one toggle button can be selected (depressed) at a time. When the
Value property is set to 1, the toggle button appears depressed. The state of the first
button added to a button group is 1, by default. Subsequent buttons added to the same
button group have a default state of 0.

When the Value property of a ToggleButton changes to 1, the Value property of the
previously selected ToggleButton changes to 0. In addition, the SelectedObject
property value of the ButtonGroup is updated.

If you programmatically change the Value property of a ToggleButton to 0, MATLAB
sets the Value property of the first ToggleButton added to the ButtonGroup to 1. If
the first ToggleButton added is the one for which you programmatically set the Value
property to 0, then MATLAB sets the Value property for the ToggleButton added to the
ButtonGroup to 1.

1 Alphabetical List

1-16978

Note The first ToggleButton added to a ButtonGroup is not necessarily the first
ToggleButton listed in the Children property of the ButtonGroup.

Text — Button label
'Toggle Button' (default) | character vector | cell array of character vectors | string
scalar | string array | ...

Button label, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Specify a character vector or string scalar to label
the button with a single line of text. Use a cell array or string array to label the button
with multiple lines of text. Each element in the array represents a separate line of text. If
you specify this property as a categorical array, MATLAB uses the values in the array, not
the full set of categories.

Icon — File name of button icon
'' (default) | character vector | string scalar

File name of the button icon, specified as a character vector or string scalar.

The file name can be an image file name on the MATLAB path or a full path to an image
file. If you plan to share an app with others, put the image file on the MATLAB path to
facilitate app packaging.

The image file type must be JPEG, GIF, or PNG.

• If the button text takes up all the space specified by the Position property value,
then MATLAB does not display the icon.

• If some room is available for the icon, then MATLAB scales down the image to fit, if
necessary.

Example: 'icon.png'
Example: 'C:\Documents\icon.png'

Font and Color

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

 ToggleButton Properties

1-16979

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

1 Alphabetical List

1-16980

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

BackgroundColor — Background color
[.96 .96 .96] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

 ToggleButton Properties

1-16981

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

1 Alphabetical List

1-16982

Interactivity

Visible — Visibility of button
'on' (default) | 'off'

Visibility of the button, specified as 'on' or 'off'. The Visible property determines
whether the button is displayed on the screen. If the Visible property is set to 'off',
the entire button is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of button
'on' (default) | 'off'

Operational state of the button, specified as 'on' or 'off'.

• If you set this property to 'on', then the appearance of the button indicates that the
app user can interact with it.

• If you set this property to 'off', then the appearance of the button appears dimmed,
indicating that the app user cannot interact with it.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of button
[10 40 100 22] (default) | [left bottom width height]

Location and size button, specified as a vector of the form [left bottom width
height]. This table describes each element in the vector.

 ToggleButton Properties

1-16983

Element Description
left Distance from the inner left edge of the button group to

the outer left edge of the button
bottom Distance from the inner bottom edge of the button group to

the outer bottom edge of the button
width Distance between the right and left outer edges of the

button
height Distance between the top and bottom outer edges of the

button

The Position values are relative to the drawable area of the button group. The drawable
area is the area inside the borders of the button group and does not include the area
occupied by the title.

All measurements are in pixel units.

InnerPosition — Location and size of button
[10 10 100 22] (default) | [left bottom width height]

Location and size of button, specified as a four element vector of the form [left bottom
width height]. All measurements are in pixel units. This property value is identical to
the Position property.

OuterPosition — Outer location and size of button
[10 10 100 22] (default) | [left bottom width height]

This property is read-only.

Location and size of button, returned as a four element vector of the form [left bottom
width height]. All measurements are in pixel units. This property value is identical to
the Position property.

HorizontalAlignment — Horizontal alignment of icon and text
'center' (default) | 'left' | 'right'

Horizontal alignment of the icon and text, specified as 'center', 'left', or 'right'.
The horizontal alignment is relative to the area inside the borders of the button. Setting
this property when the text spans the full width of the button has no apparent effect in
the UI.

1 Alphabetical List

1-16984

VerticalAlignment — Vertical alignment of icon and text
'center' (default) | 'top' | 'bottom'

Vertical alignment of the icon and the text, specified as 'center', 'top', or 'bottom'.
The vertical alignment is relative to the area inside the borders of the button. Setting this
property when the text height fills the height of the button has no apparent effect in the
UI.

IconAlignment — Location of icon relative to button text
'left' (default) | 'right' | 'center' | 'top' | 'bottom'

Location of icon relative to the button text, specified as 'left', 'right', 'top', or
'bottom'. If the Text property is empty, then the icon uses the HorizontalAlignment
and VerticalAlignment properties instead of the IconAlignment property.

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

 ToggleButton Properties

1-16985

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

1 Alphabetical List

1-16986

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

 ToggleButton Properties

1-16987

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
ButtonGroup object

Parent container, specified as a ButtonGroup object. The ButtonGroup must be in a
Figure created using the uifigure function.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

1 Alphabetical List

1-16988

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitogglebutton'

This property is read-only.

Type of graphics object, returned as 'uitogglebutton'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

 ToggleButton Properties

1-16989

See Also
Functions
appdesigner | uibuttongroup | uifigure | uitogglebutton

Introduced in R2016a

1 Alphabetical List

1-16990

ToggleSwitch Properties
Control toggle switch appearance and behavior

Description
Toggle switches are UI components that indicate a logical state. Properties control the
appearance and behavior of a toggle switch. Use dot notation to refer to a particular
object and property.

uf = uifigure;
s = uiswitch(uf,'toggle');
s.Items = {'Cold','Hot'};

Properties
Switch

Value — Value
element of Items | element of ItemsData

Value, specified as an element of the Items or ItemsData arrays. By default, Value is
the first element in Items.

Specifying Value as an element of Items moves the switch to the position that matches
that element. If ItemsData is not empty, then Value must be set to an element of
ItemsData, and the switch will move to the associated position.

Items — Switch options
{'Off','On'} (default) | cell array of character vectors | string array | 1-by-2
categorical array

Switch options, specified as a cell array of character vectors, string array, or 1-by-2
categorical array. If you specify an array, it must have two elements. Duplicate elements
are allowed. If you specify this property as a categorical array, MATLAB uses the values in
the array, not the full set of categories.

 ToggleSwitch Properties

1-16991

ItemsData — Data associated with each element of Items
empty array ([]) (default) | 1-by-2 numeric array | 1-by-2 cell array

Data associated with each element of the Items property value, specified as a 1-by-2
numeric array or a 1-by-2 cell array. Duplicate elements are allowed.

For example, if you set the Items value to {'Freezing','Boiling'}, then you might
set the ItemsData value to corresponding temperatures in degrees Celsius, [0,100].
The ItemsData value is not visible to the app user.
Example: {'One' 'Two'}
Example: [10 20]

Orientation — Orientation
'vertical' (default) | 'horizontal'

Orientation of the switch, specified as 'vertical' or 'horizontal'.

Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
positive number

Font size, specified as a positive number. The units of measurement are pixels. The
default font size depends on the specific operating system and locale.
Example: 14

FontWeight — Font weight
'normal' (default) | 'bold'

Font weight, specified as one of these values:

1 Alphabetical List

1-16992

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result
in the normal font weight.

FontAngle — Font angle
'normal' (default) | 'italic'

Font angle, specified as 'normal' or 'italic'. Setting this property to italic selects
a slanted version of the font, if it is available on the app user’s system.

FontColor — Font color
[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options
listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

 ToggleSwitch Properties

1-16993

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Interactivity

Visible — Visibility of switch
'on' (default) | 'off'

Visibility of the switch, specified as 'on' or 'off'. The Visible property determines
whether the switch is displayed on the screen. If the Visible property is set to 'off',
the entire switch is hidden, but you can still specify and access its properties.

To make your app start faster, set the Visible property of all components that do not
need to appear at startup to 'off'.

Enable — Operational state of switch
'on' (default) | 'off'

Operational state of switch, specified as 'on' or 'off'.

If you set this property to 'on', the app user can slide the switch.

1 Alphabetical List

1-16994

If you set this property to 'off', the switch appears dimmed, indicating that the app
user cannot slide the switch and it will not trigger a callback.

Tooltip — Tooltip
'' (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. Use this property to display a message when the user hovers the
pointer over the component at run time. The tooltip displays even when the component is
disabled. To display multiple lines of text, specify a cell array of character vectors or a
string array. Each element in the array becomes a separate line of text. If you specify this
property as a categorical array, MATLAB uses the values in the array, not the full set of
categories.

Position

Position — Location and size of switch
[100 100 20 45] (default) | [left bottom width height]

Location and size of the switch, excluding state marks and labels, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the switch
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the switch
width Distance between the right and left outer edges of the

switch, excluding labels
height Distance between the top and bottom outer edges of the

switch, excluding labels

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 40 90

 ToggleSwitch Properties

1-16995

InnerPosition — Inner location and size of switch
[100 100 20 45] (default) | [left bottom width height]

Inner location and size of the switch, excluding state marks and labels, specified as the
vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units. This property value is identical to the
Position property.

OuterPosition — Outer location and size of switch
[100 80 20 85] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the switch, including state marks and labels, specified as the
vector, [left bottom width height]. Position values are relative to the parent
container. All measurements are in pixel units.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then
this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a toggle switch in the third row and second column of its
parent grid.

g = uigridlayout([4 3]);
s = uiswitch(g,'toggle');
s.Layout.Row = 3;
s.Layout.Column = 2;

To make the switch span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this switch spans columns 2 through 3:

s.Layout.Column = [2 3];

Callbacks

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-16996

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the state of the switch changes in the app. The switch
changes state when the user does either of the following:

• Clicking and releasing the mouse button anywhere on the switch (including the state
labels)

• Clicking on the switch, dragging, and then releasing the mouse button while still on
the switch.

The callback does not execute if the Value property changes programmatically.

This callback function can access specific information about the user’s interaction with
the switch. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the switch. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of switch after the app user’s most

recent interaction with it
PreviousValue Value of switch before the app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

 ToggleSwitch Properties

1-16997

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

1 Alphabetical List

1-16998

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

 ToggleSwitch Properties

1-16999

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

1 Alphabetical List

1-17000

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an
object is not visible in its parent's list of children, it is not returned by functions that
obtain objects by searching the object hierarchy or querying properties. These functions
include get, findobj, clf, and close. Objects are valid even if they are not visible. If
you can access an object, you can set and get its properties, and pass it to any function
that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions

invoked by callbacks, but not from within functions invoked
from the command line. This option blocks access to the
object at the command-line, but allows callback functions
to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another
function. Set the HandleVisibility to 'off' to
temporarily hide the object during the execution of that
function.

Identifiers

Type — Type of graphics object
'uitoggleswitch'

 ToggleSwitch Properties

1-17001

This property is read-only.

Type of graphics object, returned as 'uitoggleswitch'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
Functions
appdesigner | uifigure | uiswitch

Introduced in R2016a

1 Alphabetical List

1-17002

uialert
Display alert dialog box

Syntax
uialert(f,message,title)
uialert(___ ,Name,Value)

Description
uialert(f,message,title) displays a modal dialog box in front of the specified figure
window. The figure must be created with the uifigure function. The dialog box displays
the specified message and has a title bar with the specified title. By default, the dialog
box also contains an error icon and an OK button.

uialert(___ ,Name,Value) displays a dialog box with properties specified by one or
more Name,Value pair arguments.

Examples

Alert App User to Error

Create a modal alert dialog box. The figure behind it is inaccessible until you close the
dialog box.

f = uifigure;
uialert(f,'File not found','Invalid File');

 uialert

1-17003

Create Multiline Modal Alert Dialog Box with Warning Icon

f = uifigure;
message = sprintf('Fire hazard! \n Consider reducing temperature.');
uialert(f,message,'Warning',...
'Icon','warning');

1 Alphabetical List

1-17004

Input Arguments
f — Target figure
Figure object

Target figure, specified as a Figure object. The figure must be created with the
uifigure function.

message — Message
character vector | cell array of character vectors | string array

 uialert

1-17005

Message, specified as a character vector, cell array of character vectors, or string array.
The message can be any length.

Format characters such as the newline character (\n) are honored. To display multiple
lines of text, use a cell array of character vectors or a string array.
Example: 'Invalid value'

title — Title
'Error' (default) | character vector | string scalar

Title, specified as a character vector or string scalar. Long titles truncate and are followed
by ellipses. The exact length at which a title is truncated depends on your system setup.

Spaces replace format characters, such as the newline (\n) character.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Icon','warning'

CloseFcn — Alert dialog box close request function callback
'' (default) | function handle | cell array | character vector

The alert dialog box close request callback function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector that is a valid MATLAB expression. MATLAB evaluates this

expression in the base workspace.

The CloseFcn callback executes when the app user dismisses the alert dialog box by
clicking the close button in the title bar or clicking the OK button. The CloseFcn
function also executes when the app user closes the figure window for which the alert
dialog box displays from the MATLAB command line. You can close a figure window from
the command line using the close function.

1 Alphabetical List

1-17006

Icon — Icon
'error' (default) | predefined icon | custom icon

Icon, specified as a predefined icon or a custom icon.

Predefined Icon

This table lists the values for the predefined icons. For example, to show the check mark
icon, specify the name-value pair 'Icon','success'.

Value Icon
'error' (default)

'warning'

'info'

'success'

'' No icon displays.

Custom Icon

Specify a custom icon as one of these values:

• A character vector that specifies the file name of an SVG, JPEG, GIF, or PNG image
that is on the MATLAB path. Alternatively, you can specify a full path to the image file.

• A truecolor image array. See “Image Types” for more information.

Modal — Modal
true (default) | false

Modal, specified as true or false.

A modal dialog box is one that makes the figure inaccessible until the dialog box is closed.
However, it does not prevent additional dialog boxes from appearing.

 uialert

1-17007

See Also
Functions
errordlg | msgbox | uiconfirm | uifigure | uiprogressdlg | warndlg

Introduced in R2016a

1 Alphabetical List

1-17008

uiaxes
Create UI axes for plots in App Designer

Syntax
ax = uiaxes
ax = uiaxes(Name,Value)
ax = uiaxes(parent)
ax = uiaxes(parent,Name,Value)

Description
ax = uiaxes creates UI axes in a new figure window and returns the UIAxes object.
MATLAB calls the uifigure function to create the figure.

ax = uiaxes(Name,Value) specifies UIAxes property values using one or more
Name,Value pair arguments.

ax = uiaxes(parent) creates the UI axes in the specified parent container. The parent
can be a Figure created using the uifigure function, or one of its child containers.

ax = uiaxes(parent,Name,Value) specifies UIAxes property values using one or
more Name,Value arguments.

Examples

Create Plots in UI Axes

Create a line plot and a scatter plot in UI axes.

Create a figure window with UI axes and assign the UIAxes object to the variable ax.
Add a line plot to the axes by specifying the UIAxes object as the first input argument for
the plot function.

 uiaxes

1-17009

fig = uifigure;
ax = uiaxes(fig);
x = linspace(-pi,pi,50);
y = 5*sin(x);
plot(ax,x,y)

Set the hold state on and add a scatter plot. Specify the UIAxes object as the first input
argument for the hold and scatter functions.

hold(ax,'on')
y2 = 5*sin(x) + randn(1,50);
scatter(ax,x,y2)

1 Alphabetical List

1-17010

Specify UI Axes Properties

Modify the appearance of the UI axes by setting properties using name-value pair
arguments. For example, reverse the x-axis direction using the XDir name-value pair.

fig = uifigure;
ax = uiaxes(fig,'XDir','reverse');
x = linspace(-pi,pi);
y = sin(x);
plot(ax,x,y)

 uiaxes

1-17011

Alternatively, specify properties after the axes is created using dot notation. For example,
reverse the y-axis direction using dot notation to access the YDir property.

ax.YDir = 'reverse';

Specify UI Axes Position

Specify the UI axes position by setting the Position property. Specify the position in
pixels.

1 Alphabetical List

1-17012

fig = uifigure;
ax = uiaxes(fig,'Position',[10 10 550 400]);

Add UI Axes to Panel

Add UI axes to a panel within a figure window. Specify the panel and axes positions in
pixels.

 uiaxes

1-17013

fig = uifigure;
p = uipanel(fig,'Position',[10 10 400 400]);
ax = uiaxes(p,'Position',[10 10 390 390]);

Explore Data in UI Axes

Create a surface plot in UI axes. Enable zooming using the zoom function. Then click the
surface to zoom in. For UI axes, zoom only supports the on, off, and zoom factor
arguments.

1 Alphabetical List

1-17014

ax = uiaxes;
s = surf(ax,peaks);
zoom(ax,'on')

 uiaxes

1-17015

Similarly, you can rotate the surface or enable panning using the rotate3d or pan
function, respectively. For UI axes, both rotate3d and pan only support the on and off
arguments.

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties list here are only a subset. For a full list, see UIAxes.
Example: 'Xscale','linear','YScale','log'

XLim, YLim, ZLim — Minimum and maximum axis limits
[0 1] (default) | two-element vector of the form [min max]

Minimum and maximum limits, specified as a two-element vector of the form [min max],
where max is greater than min. You can specify the limits as numeric, categorical,
datetime, or duration values. However, the type of values that you specify must match the
type of values along the axis.

You can specify both limits or you can specify one limit and let the axes automatically
calculate the other. For an automatically calculated minimum or maximum limit, use -inf
or inf, respectively.
Example: ax.XLim = [0 10]
Example: ax.YLim = [-inf 10]

1 Alphabetical List

1-17016

Example: ax.ZLim = [0 inf]

Alternatively, use the xlim, ylim, and zlim functions to set the limits. For an example,
see “Specify Axis Limits”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

XScale, YScale, ZScale — Scale of values along axis
'linear' (default) | 'log'

Axis scale, specified as one of these values.

Value Description Result
'linear' Linear scale

Example: ax.XScale =
'linear'

'log' Log scale

Example: ax.XScale =
'log'

GridLineStyle — Line style for grid lines
'-' (default) | '--' | ':' | '-.' | 'none'

Line style for grid lines, specified as one of the line styles in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

To display the grid lines, use the grid on command or set the XGrid, YGrid, or ZGrid
property to 'on'.

 uiaxes

1-17017

Example: ax.GridLineStyle = '--'

Position — Size and location of axes, including labels and margins
[10 10 400 300] (default) | four-element vector

Size and location of axes, including the labels and margins, specified as a four-element
vector of the form [left bottom width height]. This vector defines a rectangle that
encloses the outer bounds of the axes. The left and bottom elements define the position
of the rectangle, measured from the lower left corner to the lower left corner of the
parent container. The width and height define the size of the rectangle. The values are
measured in units determined by the Units property. By default, the units are pixels.

Output Arguments
ax — UIAxes object
UIAxes object

UIAxes object. Use ax to set properties of the UIAxes after they are created.

See Also
Functions
appdesigner | uifigure

Properties
UIAxes

Introduced in R2016a

1 Alphabetical List

1-17018

UIAxes Properties
UI axes appearance and behavior

Description
UIAxes properties control the appearance and behavior of a UIAxes object. By changing
property values, you can modify certain aspects of the axes.

ax = uiaxes;
c = ax.Color;
ax.Color = 'blue';

The properties listed here are valid for axes in App Designer, or in figures created with
the uifigure function. For axes used in GUIDE, or in apps created with the figure
function, see Axes.

Properties
Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the
specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts
available on the system where the app is running.
Example: 'Arial'

FontSize — Font size
scalar numeric value

Font size, specified as a scalar numeric value. The font size affects the title, axis labels,
and tick labels. It also affects any legends or colorbars associated with the axes. The units
of measurement are pixels. The default font size depends on the specific operating system
and locale.

 UIAxes Properties

1-17019

MATLAB automatically scales some of the text to a percentage of the axes font size.

• Titles and axis labels — 110% of the axes font size by default. To control the scaling,
use the TitleFontSizeMultiplier and LabelFontSizeMultiplier properties.

• Legends and colorbars — 90% of the axes font size by default. To specify a different
font size, set the FontSize property for the Legend or Colorbar object instead.

Example: ax.FontSize = 12

FontWeight — Character thickness
'normal' (default) | 'bold'

Character thickness, specified as 'normal' or 'bold'.

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still
result in the normal font weight.

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'.

Not all fonts have both font styles. Therefore, the italic font might look the same as the
normal font.

LabelFontSizeMultiplier — Scale factor for label font size
1.1 (default) | numeric value greater than 0

Scale factor for the label font size, specified as a numeric value greater than 0. The scale
factor is applied to the value of the FontSize property to determine the font size for the
x-axis, y-axis, and z-axis labels.
Example: ax.LabelFontSizeMultiplier = 1.5

TitleFontSizeMultiplier — Scale factor for title font size
1.1 (default) | numeric value greater than 0

Scale factor for the title font size, specified as a numeric value greater than 0. The scale
factor is applied to the value of the FontSize property to determine the font size for the
title.
Example: ax.TitleFontSizeMultiplier = 1.75

1 Alphabetical List

1-17020

TitleFontWeight — Title character thickness
'bold' (default) | 'normal'

Title character thickness, specified as one of these values:

• 'bold' — Thicker characters outlines than normal
• 'normal' — Default weight as defined by the particular font

Example: ax.TitleFontWeight = 'normal'

FontUnits — Font size units
'pixels' (default) | 'inches' | 'centimeters' | 'normalized' | 'points'

Font size units, specified as one of the values in this table.

Units Description
'points' Points. One point equals 1/72 inch.
'inches' Inches.
'centimeters' Centimeters.
'normalized' Interpret font size as a fraction of the axes

height. If you resize the axes, the font size
modifies accordingly. For example, if the
FontSize is 0.1 in normalized units, then
the text is 1/10 of the height value stored in
the axes Position property.

'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

• On Windows systems, a pixel is 1/96th of
an inch.

• On Macintosh systems, a pixel is 1/72nd
of an inch.

• On Linux systems, the size of a pixel is
determined by your system resolution.

 UIAxes Properties

1-17021

To set both the font size and the font units in a single function call, you first must set the
FontUnits property so that the UIAxes object correctly interprets the specified font
size.

FontSmoothing — Character smoothing
'on' (default) | 'off'

This property is read-only.

Character smoothing, specified as 'on' or 'off'.

Value Description Result
'on' Use antialiasing to make

text appear smoother on the
screen.

Example:
ax.FontSmoothing =
'on'

'off' Do not use antialiasing. Use
this setting if the text seems
blurry.

Example:
ax.FontSmoothing =
'off'

Ticks

XTick, YTick, ZTick — Tick values
[] (default) | vector of increasing values

Tick values, specified as a vector of increasing values. If you do not want tick marks along
the axis, then specify an empty vector []. The tick values are the locations along the axis
where the tick marks appear. The tick labels are the labels that you see next to each tick
mark. Use the XTickLabels, YTickLabels, and ZTickLabels properties to specify the
associated labels.
Example: ax.XTick = [2 4 6 8 10]
Example: ax.YTick = 0:10:100

1 Alphabetical List

1-17022

Alternatively, use the xticks, yticks, and zticks functions to specify the tick values.
For an example, see “Specify Axis Tick Values and Labels”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XTickMode, YTickMode, ZTickMode — Selection mode for tick values
'auto' (default) | 'manual'

Selection mode for the tick values, specified as one of these values:

• 'auto' — Automatically select the tick values based on the range of data for the axis.
• 'manual' — Manually specify the tick values. To specify the values, set the XTick,

YTick, or ZTick property.

Example: ax.XTickMode = 'auto'

XTickLabel, YTickLabel, ZTickLabel — Tick labels
'' (default) | cell array of character vectors | string array | categorical array

Tick labels, specified as a cell array of character vectors, string array, or categorical
array. If you do not want tick labels to show, then specify an empty cell array {}. If you do
not specify enough labels for all the ticks values, then the labels repeat.

Tick labels support TeX and LaTeX markup. See the TickLabelInterpreter property
for more information.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the categories.

As an alternative to setting this property, you can use the xticklabels, yticklabels,
and zticklabels functions. For an example, see “Specify Axis Tick Values and Labels”.
Example: ax.XTickLabel = {'Jan','Feb','Mar','Apr'}

XTickLabelMode, YTickLabelMode, ZTickLabelMode — Selection mode for tick
labels
'auto' (default) | 'manual'

Selection mode for the tick labels, specified as one of these values:

• 'auto' — Automatically select the tick labels.

 UIAxes Properties

1-17023

• 'manual' — Manually specify the tick labels. To specify the labels, set the
XTickLabel, YTickLabel, or ZTickLabel property.

Example: ax.XTickLabelMode = 'auto'

TickLabelInterpreter — Tick label interpretation
'tex' (default) | 'latex' | 'none' | x

Tick label interpretation, specified as one of these values:

• 'tex' — Interpret labels using a subset of TeX markup.
• 'latex' — Interpret labels using a subset of LaTeX markup.
• 'none' — Display literal characters.

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add
superscripts and subscripts, modify the text type and color, and include special characters
in the text.

The table that follows lists the supported modifiers when the TickLabelInterpreter
property is set to 'tex', which is the default value. Modifiers remain in effect until the
end of the text, except for superscripts and subscripts which only modify the next
character or the text within the curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely

available)
'\sl text'

\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name

of a font family to change
the font style. You can use
this with other modifiers.

'\fontname{Courier}
text'

1 Alphabetical List

1-17024

Modifier Description Example
\fontsize{specifier} Set specifier as a scalar

numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifer as one of
these colors: red, green,
yellow, magenta, blue,
black, white, gray,
darkGreen, orange, or
lightBlue.

'\color{magenta}
text'

\color[rgb]
{specifier}

Set specifier as a three-
element RGB triplet to
change the font color.

'\color[rgb]
{0,0.5,0.5} text'

This table lists the supported special characters with the Interpreter property set to
'tex'.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi \leq ≤

\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsu

it
♦

\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftright

arrow
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑

 UIAxes Properties

1-17025

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\iota ι \Sigma Σ \rightarro
w

→

\kappa κ \Upsilon ϒ \Rightarro
w

⇒

\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂
\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

1 Alphabetical List

1-17026

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. Use dollar
symbols around the text, for example, use '$\int_1^{20} x^2 dx$' for inline mode or
'$$\int_1^{20} x^2 dx$$' for display mode.

The displayed text uses the default LaTeX font style. To change the font style, use LaTeX
markup within the text. The FontName, FontWeight, and FontAngle properties have no
effect.

The maximum size of the text that you can use with the LaTeX interpreter is 1200
characters. For multiline text, this limit reduces by about 10 characters per line. For more
information about the LaTeX system, see The LaTeX Project website at www.latex-
project.org.

XTickLabelRotation, YTickLabelRotation, ZTickLabelRotation — Tick label
rotation
0 (default) | numeric value in degrees

Tick label rotation, specified as a numeric value in degrees. Positive values give
counterclockwise rotation. Negative values give clockwise rotation.
Example: ax.XTickLabelRotation = 45
Example: ax.YTickLabelRotation = 90

Alternatively, use the xtickangle, ytickangle, and ztickangle functions.

XMinorTick, YMinorTick, ZMinorTick — Minor tick marks
'off' | 'on'

Minor tick marks, specified as one of these values:

• 'off' — Do not display minor tick marks. This value is the default for an axis with a
linear scale.

• 'on' — Display minor tick marks between the major tick marks on the axis. The space
between the major tick marks determines the number of minor tick marks. This value
is the default for an axis with a log scale.

Example: ax.XMinorTick = 'on'

TickDir — Tick mark direction
'in' (default) | 'out' | 'both'

 UIAxes Properties

1-17027

https://www.latex-project.org
https://www.latex-project.org

Tick mark direction, specified as one of these values:

• 'in' — Direct the tick marks inward from the axis lines. (Default for 2-D views)
• 'out' — Direct the tick marks outward from the axis lines. (Default for 3-D views)
• 'both' — Center the tick marks over the axis lines.

Example: ax.TickDir = 'out'

TickDirMode — Selection mode for TickDir
'auto' (default) | 'manual'

Selection mode for the TickDir property, specified as one of these values:

• 'auto' — Automatically select the tick direction based on the current view.
• 'manual' — Manually specify the tick direction. To specify the tick direction, set the

TickDir property.

Example: ax.TickDirMode = 'auto'

TickLength — Tick mark length
[0.01 0.025] (default) | two-element vector

Tick mark length, specified as a two-element vector of the form [2Dlength 3Dlength].
The first element is the tick mark length in 2-D views and the second element is the tick
mark length in 3-D views. Specify the values in units normalized relative to the longest of
the visible x-axis, y-axis, or z-axis lines.
Example: ax.TickLength = [0.02 0.035]

Rulers

XLim, YLim, ZLim — Minimum and maximum axis limits
[0 1] (default) | two-element vector of the form [min max]

Minimum and maximum limits, specified as a two-element vector of the form [min max],
where max is greater than min. You can specify the limits as numeric, categorical,
datetime, or duration values. However, the type of values that you specify must match the
type of values along the axis.

You can specify both limits or you can specify one limit and let the axes automatically
calculate the other. For an automatically calculated minimum or maximum limit, use -inf
or inf, respectively.

1 Alphabetical List

1-17028

Example: ax.XLim = [0 10]
Example: ax.YLim = [-inf 10]
Example: ax.ZLim = [0 inf]

Alternatively, use the xlim, ylim, and zlim functions to set the limits. For an example,
see “Specify Axis Limits”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | datetime | duration

XLimMode, YLimMode, ZLimMode — Selection mode for axis limits
'auto' (default) | 'manual'

Selection mode for the axis limits, specified as one of these values:

• 'auto' — Automatically select the axis limits based on the data plotted, which is, the
total span of the XData, YData, or ZData of all the objects displayed in the axes.

• 'manual' — Manually specify the axis limits. To specify the axis limits, set the XLim,
YLim, or ZLim property.

Example: ax.XLimMode = 'auto'

XAxis, YAxis, ZAxis — Axis ruler
ruler object

Axis ruler, returned as a ruler object. The ruler controls the appearance and behavior of
the x-axis, y-axis, or z-axis. Modify the appearance and behavior of a particular axis by
accessing the associated ruler and setting ruler properties. The type of ruler that
MATLAB creates for each axis depends on the plotted data. For a list of ruler properties,
see:

• NumericRuler
• DatetimeRuler
• DurationRuler
• CategoricalRuler

For example, access the ruler for the x-axis through the XAxis property. Then, change the
Color property of the ruler, and thus the color of the x-axis, to red. Similarly, change the
color of the y-axis to green.

 UIAxes Properties

1-17029

ax = gca;
ax.XAxis.Color = 'r';
ax.YAxis.Color = 'g';

If the Axes object has two y-axes, then the YAxis property stores two ruler objects.

XAxisLocation — x-axis location
'bottom' (default) | 'top' | 'origin'

x-axis location, specified as one of the values in this table. This property applies only to 2-
D views.

Value Description Result
'bottom' Bottom of the axes.

Example:
ax.XAxisLocation =
'bottom'

'top' Top of the axes.

Example:
ax.XAxisLocation =
'top'

1 Alphabetical List

1-17030

Value Description Result
'origin' Through the origin point

(0,0).

Example:
ax.XAxisLocation =
'origin'

YAxisLocation — y-axis location
'left' (default) | 'right' | 'origin'

y-axis location, specified as one of the values in this table. This property applies only to 2-
D views.

Value Description Result
'left' Left side of the axes.

Example:
ax.YAxisLocation =
'left'

 UIAxes Properties

1-17031

Value Description Result
'right' Right side of the axes.

Example:
ax.YAxisLocation =
'right'

'origin' Through the origin point
(0,0).

Example:
ax.YAxisLocation =
'origin'

XColor, YColor, ZColor — Color of axis line, tick values, and labels
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the axis line, tick values, and labels in the x, y, or z direction, specified as an RGB
triplet, a hexadecimal color code, a color name, or a short name. The color also affects the
grid lines, unless you specify the grid line color using the GridColor or
MinorGridColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-17032

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 UIAxes Properties

1-17033

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.XColor = [1 1 0]
Example: ax.YColor = 'yellow'
Example: ax.ZColor = '#FFFF00'

XColorMode — Property for setting x-axis grid color
'auto' (default) | 'manual'

Property for setting the x-axis grid color, specified as 'auto' or 'manual'. The mode
value only affects the x-axis grid color. The x-axis line, tick values, and labels always use
the XColor value, regardless of the mode.

The x-axis grid color depends on both the XColorMode property and the GridColorMode
property, as shown here.

XColorMode GridColorMode x-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' XColor property

'manual' GridColor property

The x-axis minor grid color depends on both the XColorMode property and the
MinorGridColorMode property, as shown here.

XColorMode MinorGridColorMode x-Axis Minor Grid Color
'auto' 'auto' MinorGridColor property

'manual' MinorGridColor property
'manual' 'auto' XColor property

'manual' MinorGridColor property

YColorMode — Property for setting y-axis grid color
'auto' (default) | 'manual'

1 Alphabetical List

1-17034

Property for setting the y-axis grid color, specified as 'auto' or 'manual'. The mode
value only affects the y-axis grid color. The y-axis line, tick values, and labels always use
the YColor value, regardless of the mode.

The y-axis grid color depends on both the YColorMode property and the GridColorMode
property, as shown here.

YColorMode GridColorMode y-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' YColor property

'manual' GridColor property

The y-axis minor grid color depends on both the YColorMode property and the
MinorGridColorMode property, as shown here.

YColorMode MinorGridColorMode y-Axis Minor Grid Color
'auto' 'auto' MinorGridColor property

'manual' MinorGridColor property
'manual' 'auto' YColor property

'manual' MinorGridColor property

ZColorMode — Property for setting z-axis grid color
'auto' (default) | 'manual'

Property for setting the z-axis grid color, specified as 'auto' or 'manual'. The mode
value only affects the z-axis grid color. The z-axis line, tick values, and labels always use
the ZColor value, regardless of the mode.

The z-axis grid color depends on both the ZColorMode property and the GridColorMode
property, as shown here.

ZColorMode GridColorMode z-Axis Grid Color
'auto' 'auto' GridColor property

'manual' GridColor property
'manual' 'auto' ZColor property

 UIAxes Properties

1-17035

ZColorMode GridColorMode z-Axis Grid Color
'manual' GridColor property

The z-axis minor grid color depends on both the ZColorMode property and the
MinorGridColorMode property, as shown here.

ZColorMode MinorGridColorMode z-Axis Minor Grid Color
'auto' 'auto' MinorGridColor property

'manual' MinorGridColor property
'manual' 'auto' ZColor property

'manual' MinorGridColor property

XDir — x-axis direction
'normal' (default) | 'reverse'

x-axis direction, specified as one of these values.

Value Description Result in 2-D Result in 3-D
'normal' Values increase from

left to right.

Example: ax.XDir
= 'normal'

'reverse' Values increase from
right to left.

Example: ax.XDir
= 'reverse'

YDir — y-axis direction
'normal' (default) | 'reverse'

1 Alphabetical List

1-17036

y-axis direction, specified as one of these values.

Value Description Result in 2-D Result in 3-D
'normal' Values increase from

bottom to top (2-D
view) or front to back
(3-D view).

Example: ax.YDir
= 'normal'

'reverse' Values increase from
top to bottom (2-D
view) or back to front
(3-D view).

Example: ax.YDir
= 'reverse'

ZDir — z-axis direction
'normal' (default) | 'reverse'

z-axis direction, specified as one of these values.

Value Description Result in 3-D
'normal' Values increase pointing out

of the screen (2-D view) or
from bottom to top (3-D
view).

Example: ax.ZDir =
'normal'

 UIAxes Properties

1-17037

Value Description Result in 3-D
'reverse' Values increase pointing

into the screen (2-D view) or
from top to bottom (3-D
view).

Example: ax.ZDir =
'reverse'

XScale, YScale, ZScale — Scale of values along axis
'linear' (default) | 'log'

Axis scale, specified as one of these values.

Value Description Result
'linear' Linear scale

Example: ax.XScale =
'linear'

'log' Log scale

Example: ax.XScale =
'log'

Grids

XGrid, YGrid, ZGrid — Grid lines
'off' (default) | 'on'

Grid lines, specified as one of these values:

• 'off' — Do not display the grid lines.
• 'on' — Display grid lines perpendicular to the axis; for example, along lines of

constant x, y, or z values.

Alternatively, use the grid on or grid off command to set all three properties to 'on'
or 'off', respectively. For more information, see grid.
Example: ax.XGrid = 'on'

1 Alphabetical List

1-17038

Layer — Placement of grid lines and tick marks
'bottom' (default) | 'top'

Placement of grid lines and tick marks in relation to graphic objects, specified as one of
these values:

• 'bottom' — Display tick marks and grid lines under graphics objects.
• 'top' — Display tick marks and grid lines over graphics objects.

This property affects only 2-D views.
Example: ax.Layer = 'top'

GridLineStyle — Line style for grid lines
'-' (default) | '--' | ':' | '-.' | 'none'

Line style for grid lines, specified as one of the line styles in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

To display the grid lines, use the grid on command or set the XGrid, YGrid, or ZGrid
property to 'on'.
Example: ax.GridLineStyle = '--'

GridColor — Color of grid lines
[0.15 0.15 0.15] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of grid lines, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 UIAxes Properties

1-17039

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-17040

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

To set the colors for the axes box outline, use the XColor, YColor, and ZColor
properties.

To display the grid lines, use the grid on command or set the XGrid, YGrid, or ZGrid
property to 'on'.
Example: ax.GridColor = [0 0 1]
Example: ax.GridColor = 'blue'
Example: ax.GridColor = '#0000FF'

GridColorMode — Property for setting grid color
'auto' (default) | 'manual'

Property for setting the grid color, specified as one of these values:

• 'auto' — Check the values of the XColorMode, YColorMode, and ZColorMode
properties to determine the grid line colors for the x, y, and z directions.

• 'manual' — Use GridColor to set the grid line color for all directions.

GridAlpha — Grid-line transparency
0.15 (default) | value in the range [0,1]

Grid-line transparency, specified as a value in the range [0,1]. A value of 1 means
opaque and a value of 0 means completely transparent.
Example: ax.GridAlpha = 0.5

GridAlphaMode — Selection mode for GridAlpha
'auto' (default) | 'manual'

Selection mode for the GridAlpha property, specified as one of these values:

• 'auto' — Default transparency value of 0.15.
• 'manual' — Manually specify the transparency value. To specify the value, set the

GridAlpha property.

Example: ax.GridAlphaMode = 'auto'

 UIAxes Properties

1-17041

XMinorGrid, YMinorGrid, ZMinorGrid — Minor grid lines
'off' (default) | 'on'

Minor grid lines, specified as one of these values:

• 'off' — Do not display grid lines.
• 'on' — Display grid lines aligned with the minor tick marks of the axis. You do not

need to enable minor ticks to display minor grid lines.

Alternatively, use the grid minor command to toggle the visibility of the minor grid
lines.
Example: ax.XMinorGrid = 'on'

MinorGridLineStyle — Line style for minor grid lines
':' (default) | '-' | '--' | '-.' | 'none'

Line style for minor grid lines, specified as one of the line styles shown in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

To display minor grid lines, use the grid minor command or set the XMinorGrid,
YMinorGrid, or ZMinorGrid property to 'on'.
Example: ax.MinorGridLineStyle = '-.'

MinorGridColor — Color of minor grid lines
[0.1 0.1 0.1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of minor grid lines, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Alphabetical List

1-17042

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

 UIAxes Properties

1-17043

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

To display minor grid lines, use the grid minor command or set the XMinorGrid,
YMinorGrid, or ZMinorGrid property to 'on'.
Example: ax.MinorGridColor = [0 0 1]
Example: ax.MinorGridColor = 'blue'
Example: ax.MinorGridColor = '#0000FF'

MinorGridColorMode — Property for setting minor grid color
'auto' (default) | 'manual'

Property for setting the minor grid color, specified as one of these values:

• 'auto' — Check the values of the XColorMode, YColorMode, and ZColorMode
properties to determine the grid line colors for the x, y, and z directions.

• 'manual' — Use MinorGridColor to set the minor grid line color for all directions.

MinorGridAlpha — Minor grid line transparency
0.25 (default) | value in the range [0,1]

Minor grid line transparency, specified as a value in the range [0,1]. A value of 1 means
opaque and a value of 0 means completely transparent.
Example: ax.MinorGridAlpha = 0.5

MinorGridAlphaMode — Selection mode for MinorGridAlpha
'auto' (default) | 'manual'

Selection mode for the MinorGridAlpha property, specified as one of these values:

• 'auto' — Default transparency value of 0.25.
• 'manual' — Manually specify the transparency value. To specify the value, set the

MinorGridAlpha property.

Example: ax.MinorGridAlphaMode = 'auto'

Labels

Title — Text object for axes title
text object

1 Alphabetical List

1-17044

Text object for axes title. To add a title, set the String property of the text object. To
change the title appearance, such as the font style or color, set other properties. For a
complete list, see Text.

ax = uiaxes;
ax.Title.String = 'My Graph Title';
ax.Title.FontWeight = 'normal';

Alternatively, use the title function to add a title and control the appearance.

title(ax,'My Title','FontWeight','normal')

XLabel, YLabel, ZLabel — Text object for axis label
text object

Text object for axis label. To add an axis label, set the String property of the text object.
To change the label appearance, such as the font size, set other properties. For a
complete list, see Text.

ax = uiaxes;
ax.YLabel.String = 'y-Axis Label';
ax.YLabel.FontSize = 12;

Alternatively, use the xlabel, ylabel, and zlabel functions to add an axis label and
control the appearance.

ylabel(ax,'My y-Axis Label','FontSize',12)

Legend — Legend associated with axes
empty GraphicsPlaceholder (default) | Legend object

This property is read-only.

Legend associated with the UIAxes object, specified as a Legend object. To add a legend
to the axes, use the legend function. Then, you can use this property to modify the
legend. For a complete list of properties, see Legend.

ax = uiaxes;
ax.Legend.TextColor = 'red';

You also can use this property to determine if the axes has a legend.

ax = uiaxes;
lgd = ax.Legend

 UIAxes Properties

1-17045

if ~isempty(lgd)
 disp('Legend Exists')
end

Multiple Plots

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. Each row of the matrix
defines one color in the color order. The default color order has seven colors.

Default Color Order Associated RGB Triplets
 [0 0.4470 0.7410
 0.8500 0.3250 0.0980
 0.9290 0.6940 0.1250
 0.4940 0.1840 0.5560
 0.4660 0.6740 0.1880
 0.3010 0.7450 0.9330
 0.6350 0.0780 0.1840]

Change Color Order Before Plotting

You must change the color order before plotting. Changing the order has no effect on
existing plots. However, many graphics functions reset the color order back to the default
value before plotting. To ensure that the axes uses your specified color order, use one of
these approaches:

• Change the default color order for the axes before plotting.
• Set the NextPlot property of the axes to 'replacechildren'or 'add' before

plotting. By default, the value is 'replacechildren'.

For example, this code changes the default color order for all future axes.

co = [1 0 0.4
 0.8 0.2 0.5
 0.6 0.4 0.6
 0.4 0.6 0.7
 0.2 0.8 0.8
 0 1 0.9];
set(groot,'defaultAxesColorOrder',co)
ax = uiaxes;
plot(ax,rand(5))

1 Alphabetical List

1-17046

To revert to the original color order, use this command.

set(groot,'defaultAxesColorOrder','remove')

Alternatively, ensure that the NextPlot property of the UIAxes object is
'replacechildren' before plotting. New plots replace existing plots and use the first
color in the color order, but they do not reset other axes properties.

co = [1 0 0.4
 0.8 0.2 0.5
 0.6 0.4 0.6
 0.4 0.6 0.7
 0.2 0.8 0.8
 0 1 0.9];
ax = uiaxes('ColorOrder',co,'NextPlot','replacechildren');
plot(ax,rand(5))

ColorOrderIndex — Next color
1 (default) | positive integer

Next color to use in the color order, specified as a positive integer. For example, if this
property is set to 1, then the next plot added to the axes uses the first color in the color
order. If the index value exceeds the number of colors in the color order, then the index
value modulo of the number of colors determines the next color used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
then the color order index value increases every time a new plot is added. Reset the color
order by setting the ColorOrderIndex property to 1.
Example: ax.ColorOrderIndex = 5

LineStyleOrder — Line-style order
'-' solid line (default) | character vector | cell array of character vectors | string array

Line-style order, specified as a character vector, a cell array of character vectors, or a
string array. Create each element using one or more of the line-style specifiers listed in
the table. You can combine a line and a marker specifier in a single element, such as '-
*'.
Example: {'-*',':','o'}

MATLAB cycles through the line styles only after using all the colors contained in the
ColorOrder property. The default LineStyleOrder has only one line style, '-'.

 UIAxes Properties

1-17047

Specifier Line Style
'-' (default) Solid line
'--' Dashed line
':' Dotted line
'-.' Dash-dotted line
'+' Plus sign markers
'o' Circle markers
'*' Star markers
'.' Point markers
'x' Cross markers
's' Square markers
'd' Diamond markers
'^' Upward-pointing triangle markers
'v' Downward-pointing triangle markers
'>' Right-pointing triangle markers
'<' Left-pointing triangle markers
'p' Five-pointed star (pentagram) markers
'h' Six-pointed star (hexagram) markers

Change Line-Style Order Before Plotting

You must change the line-style order before plotting. Changing the order has no effect on
existing plots. However, many graphics functions reset the line-style order back to the
default value before plotting. To ensure that the axes uses your specified line-style order,
use one of these approaches:

• Change the default line-style order for the axes before plotting.
• Set the NextPlot property of the axes to 'replacechildren'or 'add' before

plotting. By default, the value is 'replacechildren'.

For example, this code changes the default line-style order for all future axes.

set(groot,'defaultAxesLineStyleOrder',{'-*',':','o'})
ax = uiaxes;
plot(ax,rand(15))

1 Alphabetical List

1-17048

To revert to the original line-style order, use this command.

set(groot,'defaultAxesLineStyleOrder','remove')

Alternatively, ensure that the NextPlot property of the UIAxes object is set to
'replacechildren' before plotting. New plots replace existing plots and use the first
color and line style, but they do not reset other axes properties.

ax = uiaxes('LineStyleOrder',{'-*',':','o'},'NextPlot','replacechildren');
plot(ax,rand(15))

LineStyleOrderIndex — Next line style
1 (default) | positive integer

Next line style to use in the line-style order, specified as a positive integer. For example, if
this property is set to 1, then the next plot added to the axes uses the first line style in the
line-style order. If the index value exceeds the number of line styles in the line-style order,
then the index value modulo of the number of line styles determines the next line style
used.

If you used a hold on command or if the NextPlot property of the axes is set to 'add',
then the index value increases every time you add a new plot. Subsequent plots cycle
through the line-style order. Reset the line-style order by setting the
LineStyleOrderIndex property to 1.
Example: ax.LineStyleOrderIndex = 1

NextPlot — Properties to reset
'replacechildren' (default) | 'add' | 'replaceall' | 'replace'

Properties to reset when adding a new plot to the axes, specified as one of these values:

• 'add' — Add new plots to the existing axes. Do not delete existing plots or reset axes
properties before displaying the new plot.

• 'replacechildren' — Delete existing plots before displaying the new plot. Reset
the ColorOrderIndex and LineStyleOrderIndex properties to 1, but do not reset
other axes properties. The next plot added to the axes uses the first color and line
style based on the ColorOrder and LineStyle order properties. This value is similar
to using cla before every new plot.

• 'replace' — Delete existing plots and reset axes properties, except Position and
Units, to their default values before displaying the new plot.

 UIAxes Properties

1-17049

• 'replaceall' — Delete existing plots and reset axes properties, except Position
and Units, to their default values before displaying the new plot. This value is similar
to using cla reset before every new plot.

Note For UIAxes objects with only one y-axis, the 'replace' and 'replaceall'
property values are equivalent. For Axes objects with two y-axes, the 'replace' value
affects only the active side while the 'replaceall' value affects both sides.

Figures created with the uifigure function also have a NextPlot property.
Alternatively, you can use the newplot function to prepare figures and axes for
subsequent graphics commands.

SortMethod — Order for rendering objects
'depth' (default) | 'childorder'

Order for rendering objects, specified as one of these values:

• 'depth' — Draw objects in back-to-front order based on the current view. Use this
value to ensure that objects in front of other objects are drawn correctly.

• 'childorder' — Draw objects in the order in which they are created by graphics
functions, without considering the relationship of the objects in three dimensions. This
value can result in faster rendering, particularly if the figure is very large, but also can
result in improper depth sorting of the objects displayed.

Color and Transparency Maps

Colormap — Color map
parula (default) | m-by-3 array of RGB triplets

Color map, specified as an m-by-3 array of RGB (red, green, blue) triplets that define m
individual colors.
Example: ax.Colormap = [1 0 1; 0 0 1; 1 1 0] sets the color map to three
colors: magenta, blue, and yellow.

MATLAB accesses these colors by their row number.

Alternatively, use the colormap function to change the color map.

ColorScale — Scale for color mapping
'linear' (default) | 'log'

1 Alphabetical List

1-17050

Scale for color mapping, specified as one of these values:

• 'linear' — Linear scale. The tick values along the colorbar also use a linear scale.
• 'log' — Log scale. The tick values along the colorbar also use a log scale.

Example: ax.ColorScale = 'log'

CLim — Color limits
[0 1] (default) | two-element vector of the form [cmin cmax]

Color limits for objects in axes that use the colormap, specified as a two-element vector of
the form [cmin cmax]. This property determines how data values map to the colors in
the colormap where:

• cmin specifies the data value that maps to the first color in the colormap.
• cmax specifies the data value that maps to the last color in the colormap.

The Axes object interpolates data values between cmin and cmax across the colormap.
Values outside this range use either the first or last color, whichever is closest.

CLimMode — Selection mode for CLim
'auto' (default) | 'manual'

Selection mode for the CLim property, specified as one of these values:

• 'auto' — Automatically select the limits based on the color data of the graphics
objects contained in the axes.

• 'manual' — Manually specify the values. To specify the values, set the CLim property.
The values do not change when the limits of the axes children change.

Alphamap — Transparency map
array of 64 values from 0 to 1 (default) | array of finite alpha values from 0 to 1

Transparency map, specified as an array of finite alpha values that progress linearly from
0 to 1. The size of the array can be m-by-1 or 1-by-m. MATLAB accesses alpha values by
their index in the array. Alphamaps can be any length.

AlphaScale — Scale for transparency mapping
'linear' (default) | 'log'

Scale for transparency mapping, specified as one of these values:

 UIAxes Properties

1-17051

• 'linear' — Linear scale
• 'log' — Log scale

Example: ax.AlphaScale = 'log'

ALim — Alpha limits
[0 1] (default) | two-element vector of the form [amin amax]

Alpha limits, specified as a two-element vector of the form [amin amax]. This property
affects the AlphaData values of graphics objects, such as surface, image, and patch
objects. This property determines how the AlphaData values map to the figure alpha
map, where:

• amin specifies the data value that maps to the first alpha value in the figure alpha
map.

• amax specifies the data value that maps to the last alpha value in the figure alpha
map.

The UIAxes object interpolates data values between amin and amax across the figure
alpha map. Values outside this range use either the first or last alpha map value,
whichever is closest.

The Alphamap property of the figure contains the alpha map. For more information, see
the alpha function.

ALimMode — Selection mode for ALim
'auto' (default) | 'manual'

Selection mode for the ALim property, specified as one of these values:

• 'auto' — Automatically select the limits based on the AlphaData values of the
graphics objects contained in the axes.

• 'manual' — Manually specify the alpha limits. To specify the alpha limits, set the
ALim property.

Box Styling

Color — Color of plot area
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of plot area, specified as an RGB triplet, a hexadecimal color code, a color name, or
a short name. The color affects the area defined by the InnerPosition property value.

1 Alphabetical List

1-17052

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 UIAxes Properties

1-17053

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.Color = [0 0 1]
Example: ax.Color = 'blue'
Example: ax.Color = '#0000FF'

BackgroundColor — Color of margin around plot area
[0.94 0.94 0.94] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of margin around plot area, specified as an RGB triplet, a hexadecimal color code, a
color name, or a short name. The color affects the margin between the areas defined by
the InnerPosition and OuterPosition property values.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

1 Alphabetical List

1-17054

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.BackgroundColor = [0 0 1]
Example: ax.BackgroundColor = 'blue'
Example: ax.BackgroundColor = '#0000FF'

LineWidth — Line width
0.5 (default) | positive numeric value

Line width of axes outline, tick marks, and grid lines, specified as a positive numeric value
in point units. One point equals 1/72 inch.
Example: ax.LineWidth = 1.5

Box — Box outline
'off' (default) | 'on'

Box outline, specified as 'off' or 'on'.

 UIAxes Properties

1-17055

Value Description 2-D Result 3-D Result
'off' Do not display the

box outline around
the axes.

Example: ax.Box =
'off'

'on' Display the box
outline around the
axes. For 3-D views,
use the BoxStyle
property to change
extent of the outline.

Example: ax.Box =
'on'

The XColor, YColor, and ZColor properties control the color of the outline.
Example: ax.Box = 'on'

BoxStyle — Box outline style
'back' (default) | 'full'

Box outline style, specified as 'back' or 'full'. This property affects only 3-D views.

1 Alphabetical List

1-17056

Value Description Result
'back' Outline the back planes of

the 3-D box.

Example: ax.BoxStyle =
'back'

'full' Outline the entire 3-D box.

Example: ax.BoxStyle =
'full'

Clipping — Clipping of objects to axes limits
'on' (default) | 'off'

Clipping of objects to the axes limits, specified as either 'on' or 'off'. The clipping
behavior of an object within the Axes object depends on both the Clipping property of
the Axes object and the Clipping property of the individual object. The property value
of the Axes object has these effects:

• 'on' — Enable each individual object within the axes to control its own clipping
behavior based on the Clipping property value for the object.

• 'off' — Disable clipping for all objects within the axes, regardless of the Clipping
property value for the individual objects. Parts of objects can appear outside of the

 UIAxes Properties

1-17057

axes limits. For example, parts can appear outside the limits if you create a plot, use
the hold on command, freeze the axis scaling, and then add a plot that is larger than
the original plot.

This table lists the results for different combinations of Clipping property values.

Clipping Property for
Axes Object

Clipping Property for
Individual Object

Result

'on' 'on' Individual object is clipped.
Others might or might not
be.

'on' 'off' Individual object is not
clipped. Others might or
might not be.

'off' 'on' All objects are unclipped.
'off' 'off' All objects are unclipped.

ClippingStyle — Clipping boundaries
'3dbox' (default) | 'rectangle'

Clipping boundaries, specified as one of the values in this table. If a plot contains
markers, then as long as the data point lies within the axes limits, MATLAB draws the
entire marker.

The ClippingStyle property has no effect if the Clipping property is set to 'off'.

1 Alphabetical List

1-17058

Value Descriptions Illustration of Boundary
Region

'3dbox' Clip plotted objects to the
six sides of the axes box
defined by the axis limits.

Thick lines might display
outside the axes limits.

'rectangle' Clip plotted objects to a
rectangular boundary
enclosing the axes in any
given view.

Clip thick lines at the axes
limits.

AmbientLightColor — Background light color
[1 1 1] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background light color, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short name. The background light is a directionless light that shines uniformly
on all objects in the axes. To add light, use the light function.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 UIAxes Properties

1-17059

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'

1 Alphabetical List

1-17060

RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Example: ax.AmbientLightColor = [1 0 1]
Example: ax.AmbientLightColor = 'magenta'
Example: ax.AmbientLightColor = '#FF00FF'

Position

Position — Size and location of axes, including labels and margins
[10 10 400 300] (default) | four-element vector

Size and location of axes, including the labels and margins, specified as a four-element
vector of the form [left bottom width height]. This vector defines a rectangle that
encloses the outer bounds of the axes. The left and bottom elements define the position
of the rectangle, measured from the lower left corner to the lower left corner of the
parent container. The width and height define the size of the rectangle. The values are
measured in units determined by the Units property. By default, the units are pixels.

InnerPosition — Size and position of inner axes, excluding labels and margins
four-element vector

This property is read-only.

Size and position of the inner axes, excluding labels and margins, returned as a four-
element vector of the form [left bottom width height]. The left and bottom
elements define the position of the rectangle, measured from the lower left corner to the
lower left corner of the parent container. The width and height define the size of the
rectangle. The values are measured in units determined by the Units property. By
default, the units are pixels.

MATLAB automatically sets InnerPosition to the largest possible values that conform
to all other properties. Other UIAxes properties that affect the axes size and shape
include Position, DataAspectRatio and PlotBoxAspectRatio.

OuterPosition — Size and location of axes, including labels and margins
[10 10 400 300] (default) | four-element vector

Size and location of the axes, including the labels and margins, specified as a four-
element vector of the form [left bottom width height]. Position values are relative
to the parent container. By default, the values are measured in pixels.

 UIAxes Properties

1-17061

This property value is identical to the Position property value.

TightInset — Margin for text labels
four-element vector of the form [left bottom right top]

This property is read-only.

Margin for text labels, specified as a four-element vector of the form [left bottom
right top]. The elements define the distances between the bounds of the
InnerPosition property and the extent of the axes text labels and title. By default, the
values are measured in pixels. To change the units, set the Units property.

Units — Position units
'pixels' (default)

Position units, specified as 'pixels'.

• On Windows systems, a pixel is 1/96th of an inch.
• On Macintosh systems, a pixel is 1/72nd of an inch.
• On Linux systems, the size of a pixel is determined by your system resolution.

DataAspectRatio — Relative length of data units
[1 1 1] (default) | three-element vector of the form [dx dy dz]

Relative length of data units along each axis, specified as a three-element vector of the
form [dx dy dz]. This vector defines the relative x, y, and z data scale factors. For
example, specifying this property as [1 2 1] sets the length of one unit of data in the x-
direction to be the same length as two units of data in the y-direction and one unit of data
in the z-direction.

Alternatively, use the daspect function to change the data aspect ratio.
Example: ax.DataAspectRatio = [1 1 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

DataAspectRatioMode — Data aspect ratio mode
'auto' (default) | 'manual'

Data aspect ratio mode, specified as one of these values:

1 Alphabetical List

1-17062

• 'auto' — Automatically select values that make best use of the available space. If
PlotBoxAspectRatioMode and CameraViewAngleMode are also set to 'auto',
then enable "stretch-to-fill" behavior. Stretch the axes so that it fills the available
space as defined by the Position property.

• 'manual' — Disable the "stretch-to-fill" behavior and use the manually specified data
aspect ratio. To specify the values, set the DataAspectRatio property.

PlotBoxAspectRatio — Relative length of each axis
three-element vector of the form [px py pz]

Relative length of each axis, specified as a three-element vector of the form [px py pz]
defining the relative x-axis, y-axis, and z-axis scale factors. The plot box is a box enclosing
the axes data region as defined by the axis limits.

Alternatively, use the pbaspect function to change the data aspect ratio.

If you specify the axis limits, data aspect ratio, and plot box aspect ratio, then MATLAB
ignores the plot box aspect ratio. It adheres to the axis limits and data aspect ratio.
Example: ax.PlotBoxAspectRatio = [1 0.75 0.75]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

PlotBoxAspectRatioMode — Selection mode for PlotBoxAspectRatio
'auto' (default) | 'manual'

Selection mode for the PlotBoxAspectRatio property, specified as one of these values:

• 'auto' — Automatically select values that make best use of the available space. If
DataAspectRatioMode and CameraViewAngleMode also are set to 'auto', then
enable "stretch-to-fill" behavior. Stretch the Axes object so that it fills the available
space as defined by the Position property.

• 'manual' — Disable the "stretch-to-fill" behavior and use the manually specified plot
box aspect ratio. To specify the values, set the PlotBoxAspectRatio property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies
options for components that are children of grid layout containers. If the component is
not a child of a grid layout container (for example, it is a child of a figure or panel), then

 UIAxes Properties

1-17063

this property is empty and has no effect. However, if the component is a child of a grid
layout container, you can place the component in the desired row and column of the grid
by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a UI axes component in the third row and second column of
its parent grid.

g = uigridlayout([4 3]);
ax = uiaxes(g);
ax.Layout.Row = 3;
ax.Layout.Column = 2;

To make the axes span multiple rows or columns, specify the Row or Column property as a
two-element vector. For example, this axes spans columns 2 through 3:

ax.Layout.Column = [2 3];

View

View — Azimuth and elevation of view
[0 90] (default) | two-element vector of the form [azimuth elevation]

Azimuth and elevation of view, specified as a two-element vector of the form [azimuth
elevation] defined in degree units. Alternatively, use the view function to set the view.
Example: ax.View = [45 45]

Projection — Type of projection onto 2-D screen
'orthographic' (default) | 'perspective'

Type of projection onto a 2-D screen, specified as one of these values:

• 'orthographic' — Maintain the correct relative dimensions of graphics objects
regarding the distance of a given point from the viewer, and draw lines that are
parallel in the data parallel on the screen.

• 'perspective' — Incorporate foreshortening, which enables you to perceive depth
in 2-D representations of 3-D objects. Perspective projection does not preserve the
relative dimensions of objects. Instead, it displays a distant line segment smaller than
a nearer line segment of the same length. Lines that are parallel in the data might not
appear parallel on screen.

CameraPosition — Camera location
three-element vector of the form [x y z]

1 Alphabetical List

1-17064

Camera location, or the viewpoint, specified as a three-element vector of the form [x y
z]. This vector defines the axes coordinates of the camera location, which is the point
from which you view the axes. The camera is oriented along the view axis, which is a
straight line that connects the camera position and the camera target. For an illustration,
see “Camera Graphics Terminology”.

If the Projection property is set to 'perspective', then as you change the
CameraPosition setting, the amount of perspective also changes.

Alternatively, use the campos function to set the camera location.
Example: ax.CameraPosition = [0.5 0.5 9]
Data Types: single | double

CameraPositionMode — Selection mode for CameraPosition
'auto' (default) | 'manual'

Selection mode for the CameraPosition property, specified as one of these values:

• 'auto' — Automatically set CameraPosition along the view axis. Calculate the
position so that the camera lies a fixed distance from the target along the azimuth and
elevation specified by the current view, as returned by the view function. Functions
like rotate3d, zoom, and pan, change this mode to 'auto' to perform their actions.

• 'manual' — Manually specify the value. To specify the value, set the
CameraPosition property.

CameraTarget — Camera target point
three-element vector of the form [x y z]

Camera target point, specified as a three-element vector of the form [x y z]. This
vector defines the axes coordinates of the point. The camera is oriented along the view
axis, which is a straight line that connects the camera position and the camera target. For
an illustration, see “Camera Graphics Terminology”.

Alternatively, use the camtarget function to set the camera target.
Example: ax.CameraTarget = [0.5 0.5 0.5]
Data Types: single | double

CameraTargetMode — Selection mode for CameraTarget
'auto' (default) | 'manual'

 UIAxes Properties

1-17065

Selection mode for the CameraTarget property, specified as one of these values:

• 'auto' — Position the camera target at the centroid of the axes plot box.
• 'manual' — Use the manually specified camera target value. To specify a value, set

the CameraTarget property.

CameraUpVector — Vector defining upwards direction
three-element direction vector of the form [x y z]

Vector defining upwards direction, specified as a three-element direction vector of the
form [x y z]. For 2-D views, the default value is [0 1 0]. For 3-D views, the default
value is [0 0 1]. For an illustration, see “Camera Graphics Terminology”.

Alternatively, use the camup function to set the upwards direction.
Example: ax.CameraUpVector = [sin(45) cos(45) 1]

CameraUpVectorMode — Selection mode for CameraUpVector
'auto' (default) | 'manual'

Selection mode for the CameraUpVector property, specified as one of these values:

• 'auto' — Automatically set the value to [0 0 1] for 3-D views so that the positive z-
direction is up. Set the value to [0 1 0] for 2-D views so that the positive y-direction
is up.

• 'manual' — Manually specify the vector defining the upwards direction. To specify a
value, set the CameraUpVector property.

CameraViewAngle — Field of view
6.6086 (default) | scalar angle in range [0,180)

Field of view, specified as a scalar angle greater than 0 and less than or equal to 180.
Changing the camera view angle affects the size of graphics objects displayed in the axes,
but does not affect the degree of perspective distortion. The greater the angle, the larger
the field of view and the smaller objects appear in the scene. For an illustration, see
“Camera Graphics Terminology”.
Example: ax.CameraViewAngle = 15
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Alphabetical List

1-17066

CameraViewAngleMode — Selection mode for CameraViewAngle
'auto' (default) | 'manual'

Selection mode for the CameraViewAngle property, specified as one of these values:

• 'auto' — Automatically select the field of view as the minimum angle that captures
the entire scene, up to 180 degrees.

• 'manual' — Manually specify the field of view. To specify a value, set the
CameraViewAngle property.

Interactivity

Toolbar — Data exploration toolbar
AxesToolbar object (default)

Data exploration toolbar, which is an AxesToolbar object. The toolbar appears at the
top-right corner of the UI axes when you hover over it.

The toolbar buttons depend on the contents of the UI axes, but typically include zooming,
panning, rotating, exporting, and restoring the original view. You can customize the
toolbar buttons using the axtoolbar and axtoolbarbtn functions.

If you do not want the toolbar to appear when you hover over the UI axes, set the
Visible property of the AxesToolbar object to 'off'.

ax = uiaxes;
ax.Toolbar.Visible = 'off';

For more information, see AxesToolbar.

Interactions — Interactions
array of interactions | []

Interactions, specified as an array of interaction objects or an empty array. The
interactions you specify are available within your chart through gestures. You do not have
to select any axes toolbar buttons to use them. For example, a panInteraction object
enables dragging to pan within a chart. For a list of interaction objects, see “Control
Chart Interactivity”.

 UIAxes Properties

1-17067

The default set of interactions depends on the type of chart you are displaying. You can
replace the default set with a new set of interactions, but you cannot access or modify any
of the interactions in the default set. For example, this code replaces the default set of
interactions with the panInteraction and zoomInteraction objects.

ax = uiaxes;
ax.Interactions = [panInteraction zoomInteraction];

To remove all interactions from the axes, set this property to an empty array. To
temporarily disable the current set of interactions, call the
disableDefaultInteractivity function. You can reenable them by calling the
enableDefaultInteractivity function.

Note Interaction objects are not returned by findobj or findall, and they are not
copied by copyobj.

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

CurrentPoint — Location of mouse pointer
2-by-3 array

Location of mouse pointer, specified as a 2-by-3 array. The CurrentPoint property
contains the (x,y,z) coordinates of the mouse pointer with respect to the axes. The
returned array is of the form:

[xfront yfront zfront
 xback yback zback]

The two points indicate the location of the last mouse click. However, if the figure has a
WindowButtonMotionFcn callback defined, then the points indicate the last location of
the mouse pointer. The figure also has a CurrentPoint property.

1 Alphabetical List

1-17068

The values of the current point when using perspective projection can be different from
the same point in orthographic projection because the shape of the axes volume can be
different.

Orthogonal Projection

When using orthogonal projection, the values depend on whether the click is within the
axes or outside the axes.

• If the click is inside the axes, the two points lie on the line that is perpendicular to the
plane of the screen and that passes through the pointer. The coordinates are the
points where this line intersects the front and back surfaces of the axes volume (which
is defined by the axes x, y, and z limits). The first row is the point nearest to the
camera position. The second row is the point farthest from the camera position. This is
true for both 2-D and 3-D views.

• If the click is outside the axes, but within the figure, then the points lie on a line that
passes through the pointer and is perpendicular to the camera target and camera
position planes. The first row is the point in the camera position plane. The second row
is the point in the plane of the camera target.

Perspective Projection

Clicking outside of the UIAxes object in perspective projection returns the front point as
the current camera position. Only the back point updates with the coordinates of a point
that lies on a line extending from the camera position through the pointer and
intersecting the camera target at that point.

Callbacks

SizeChangedFcn — UI axes resize callback function
'' (default) | function handle | cell array | character vector

UI axes resize callback function, specified as one of these values:

• Function handle
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector that is a valid MATLAB expression. MATLAB evaluates this

expression in the base workspace.

Define this callback function to control the layout when the size of the UI axes change.

 UIAxes Properties

1-17069

The SizeChangedFcn callback executes under these circumstances:

• The axes becomes visible for the first time.
• The axes is visible while its drawable area changes. The drawable area is the area

inside the outer bounds of the axes.
• The axes becomes visible for the first time after its drawable area changes. This

situation occurs when the drawable area changes while the axes is invisible, and then
it becomes visible later.

These are some of the important characteristics of the SizeChangedFcn callback and
some recommended best practices:

• Consider delaying the display of the figure until after all the variables that the callback
uses are defined. This practice can prevent the SizeChangedFcn callback from
returning an error. To delay the display of the figure, set its Visible property to
'off'. Then, set the Visible property to 'on' after you define the variables that
your SizeChangedFcn callback uses.

• Use the gcbo function in your SizeChangedFcn code to get the UIAxes object that is
resizing.

Example: @myfun
Example: {@myfun,x}

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you

1 Alphabetical List

1-17070

do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

 UIAxes Properties

1-17071

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

1 Alphabetical List

1-17072

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure object created using the uifigure function, or
one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Children — Children
empty GraphicsPlaceholder array | array of graphics objects

 UIAxes Properties

1-17073

Children, returned as an array of graphics objects. Use this property to view a list of the
children or to reorder the children by setting the property to a permutation of itself.

You cannot add or remove children using the Children property. To add a child to this
list, set the Parent property of the child graphics object to the UIAxes object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type — Type of graphics object
'axes'

This property is read-only.

Type of graphics object returned as 'axes'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object

1 Alphabetical List

1-17074

elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
uiaxes

Topics
“Access Property Values”
“Graphics Object Properties”

Introduced in R2016a

 UIAxes Properties

1-17075

uibutton
Create push button or state button component

Syntax
btn = uibutton
btn = uibutton(style)
btn = uibutton(parent)
btn = uibutton(parent,style)
btn = uibutton(___ ,Name,Value)

Description
btn = uibutton creates a push button in a new figure and returns the Button object.
MATLAB calls the uifigure function to create the figure.

btn = uibutton(style) creates a button of the specified style.

btn = uibutton(parent) creates the button in the specified parent container. The
parent can be a Figure created using the uifigure function, or one of its child
containers.

btn = uibutton(parent,style) creates a Button of the specified style in the
specified parent container.

btn = uibutton(___ ,Name,Value) creates a Button with properties specified by
one or more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create a Button

Create a push button.

1 Alphabetical List

1-17076

fig = uifigure;
btn = uibutton(fig);

Create a State Button

Create a state button by specifying the style as 'state'.

fig = uifigure;
btn = uibutton(fig,'state');

 uibutton

1-17077

Create a Button in a Panel

fig = uifigure('Name','My Figure');
pnl = uipanel(fig);
btn = uibutton(pnl);

1 Alphabetical List

1-17078

Set and Access Button Property Values

Create a state button and specify property values.

fig = uifigure;
btn = uibutton(fig,'state',...
 'Text', 'Record',...
 'Value', true,...
 'Position',[50,100, 100, 22]);

 uibutton

1-17079

Determine the font name of the state button text.

fname = btn.FontName

fname =

Helvetica

Change the font name of the button text.

btn.FontName = 'Arial Narrow';

Code Response to Button Click

Create a button and a UI axes. When the app user presses the button, a graph is created.

1 Alphabetical List

1-17080

Create buttonPlot.m on your MATLAB path. This code creates a window containing a
button and a UI axes. When the app user clicks the button, the ButtonPushedFcn plots
some data.

function buttonPlot
% Create a figure window
fig = uifigure;

% Create a UI axes
ax = uiaxes('Parent',fig,...
 'Units','pixels',...
 'Position', [104, 123, 300, 201]);

% Create a push button
btn = uibutton(fig,'push',...
 'Position',[420, 218, 100, 22],...
 'ButtonPushedFcn', @(btn,event) plotButtonPushed(btn,ax));
end

% Create the function for the ButtonPushedFcn callback
function plotButtonPushed(btn,ax)
 x = linspace(0,2*pi,100);
 y = sin(x);
 plot(ax,x,y)
end

Run buttonPlot, and then click the push button. MATLAB plots the data.

 uibutton

1-17081

Input Arguments
style — Style of button
'push' (default) | 'state'

Style of button, specified as one of the following:

• 'push'

When clicked once, the button appears to press and release.
• 'state'

When clicked once, the button remains in the pressed or released state until it is
clicked again.

1 Alphabetical List

1-17082

parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Each type of Button object supports a different set of properties. For a full list of
properties and descriptions for each type, see the associated property page.

• If style is the default, 'push', see Button
• If style is 'state', see StateButton

See Also
Functions
appdesigner | uifigure

Properties
Button | StateButton

Introduced in R2016a

 uibutton

1-17083

uicheckbox
Create check box component

Syntax
cbx = uicheckbox
cbx = uicheckbox(parent)
cbx = uicheckbox(___ ,Name,Value)

Description
cbx = uicheckbox creates a check box in a new figure window and returns the
CheckBox object. MATLAB calls the uifigure function to create the figure.

cbx = uicheckbox(parent) creates the check box in the specified parent container.
The parent can be a Figure created using the uifigure function, or one of its child
containers.

cbx = uicheckbox(___ ,Name,Value) specifies CheckBox properties using one or
more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Check Box

Create a check box.

fig = uifigure;
cbx = uicheckbox(fig);

1 Alphabetical List

1-17084

Create Check Box Within a Panel

Create a panel. Then create a check box within the panel.

fig = uifigure;
pnl = uipanel(fig);
cbx = uicheckbox(pnl);

 uicheckbox

1-17085

Set and Access Check Box Property Values

Create a check box and specify property values.

fig = uifigure;
cbx = uicheckbox(fig, 'Text','Show Value',...
 'Value', 1,...
 'Position',[150 50 102 15]);

1 Alphabetical List

1-17086

Clear the check box.

cbx.Value = 0;

Determine the font size of the check box text.

fsize = cbx.FontSize

fsize =

 12

Code Response to Check Box Selection

Create a radio button group and a check box. When an app user selects the check box, a
radio button is disabled.

Save the following code to disableRadioButton.m on your MATLAB path.

 uicheckbox

1-17087

This code creates a window containing a radio button group and a check box. When an
app user clears the check box, the check box ValueChangedFcn disables the third radio
button.

function disableRadioButton
% Create a figure window:
fig = uifigure('Position',[100 100 229 276]);

% Create a button group and radio buttons:
bg = uibuttongroup('Parent',fig,...
 'Position',[56 77 123 85]);
rb1 = uiradiobutton(bg,'Position',[10 60 91 15]);
rb2 = uiradiobutton(bg,'Position',[10 38 91 15]);
rb3 = uiradiobutton(bg,'Position',[10 16 91 15]);

% Create a check box:
cbx = uicheckbox(fig,'Position',[55 217 102 15],...
 'ValueChangedFcn',@(cbx,event) cBoxChanged(cbx,rb3));
end

% Create the function for the ValueChangedFcn callback:
function cBoxChanged(cbx,rb3)
val = cbx.Value;
if val
 rb3.Enable = 'off';
else
 rb3.Enable = 'on';
end
end

Run disableRadioButton, and then select the check box. The third radio button is
disabled.

1 Alphabetical List

1-17088

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 uicheckbox

1-17089

The properties listed here are a subset of the available properties. For the full list, see
CheckBox.
Example: 'Value',1 specifies that the check box is displayed with a check mark.

Value — State of check box
0 (default) | 1

State of the check box, specified as 0 (false) or 1 (true). When the Value property is set
to 1, the check box is checked. When the Value property is set to 0, the check box is not
checked.

ValueChangedFcn — Value changed callback
[] (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user selects or clears the check box in the app. The
callback does not execute if the check box value changes programmatically.

This callback function can access specific information about the user’s interaction with
the check box. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the check box. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of check box after most recent app

user interaction with it.

1 Alphabetical List

1-17090

Property Value
PreviousValue Value of check box before most recent app

user interaction with it.
Source Component that executes the callback.
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size of check box
[100 100 84 22] (default) | [left bottom width height]

Location and size of the check box relative to the parent, specified as the vector [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the check box
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the check box
width Distance between the right and left outer edges of the

check box
height Distance between the top and bottom outer edges of the

check box

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.
Example: [200 200 102 15]

See Also
Functions
appdesigner | uifigure

 uicheckbox

1-17091

Properties
CheckBox

Introduced in R2016a

1 Alphabetical List

1-17092

uidropdown
Create drop-down component

Syntax
dd = uidropdown
dd = uidropdown(parent)
dd = uidropdown(___ ,Name,Value)

Description
dd = uidropdown creates a drop-down in a new figure window and returns the
DropDown object. MATLAB calls the uifigure function to create the figure.

dd = uidropdown(parent) creates the drop-down in the specified parent container.
The parent can be a Figure created using the uifigure function, or one of its child
containers.

dd = uidropdown(___ ,Name,Value) specifies object properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes. Use the Name,Value pair, Editable,'on' to
specify a drop-down component that allows the app user to type text into the drop-down
component or select a predefined option.

Examples

Create Drop-Down Component

Create a drop-down component.

fig = uifigure;
dd = uidropdown(fig);

 uidropdown

1-17093

Clicking anywhere in the drop-down component causes it to open.

Drop-Down with Default Items

Create a drop-down with the default items in a figure.

fig = uifigure('Position', [100 100 300 250]);
dd = uidropdown(fig);

1 Alphabetical List

1-17094

Set and Access Drop Down Properties

Create a drop-down component and specify the options.

fig = uifigure;
dd = uidropdown(fig, 'Items',{'Red','Yellow','Blue','Green'},...
 'Value', 'Blue');

 uidropdown

1-17095

Determine the value associated with the selected option.

value = dd.Value

value =

Blue

By default, the ItemsData property is empty, so the drop-down component value
corresponds to the element selected in the drop-down component.

Associate data values with each drop-down component item.

dd.ItemsData = [1 2 3 4];

Determine the value associated with the selected option.

value = dd.Value

1 Alphabetical List

1-17096

value =

3

Notice that when the ItemsData property value is not empty, the value of the drop-down
component is the ItemsData value that corresponds to the selected Items value
element.

Create an Editable Drop Down

fig = uifigure;
dd = uidropdown(fig, 'Editable','on');

Clicking anywhere in the drop-down component, other than the down-arrow, inserts a
caret, enabling the user to type text in the drop-down component.

 uidropdown

1-17097

Code Response to Drop Down Selection

Create a plot and a drop-down component. When the app user makes a selection from the
drop-down component, the plot changes color.

Save the following code to plotOptions.m on your MATLAB path. This code creates a
window containing a plot and a drop-down component. When an app user changes the
drop-down component selection, the ValueChangedFcn callback changes the plot color.

function plotoptions
% Create figure and components:

fig = uifigure;

ax = uiaxes('Parent',fig,...
 'Position',[10 10 400 400]);

% Create a plot
x = linspace(-2*pi,2*pi);
y = sin(x);
p = plot(ax,x,y);
p.Color = 'Blue';

% Create drop-down component
dd = uidropdown(fig,...
 'Position',[430 210 100 22],...
 'Items',{'Red','Yellow','Blue','Green'},...
 'Value','Blue',...
 'ValueChangedFcn',@(dd,event) selection(dd,p));
end

% Create ValueChangedFcn callback:
 function selection(dd,p)
 val = dd.Value;
 p.Color = val;
 end

Run plotOptions. Select green from the drop-down component to change the plot color
to green.

1 Alphabetical List

1-17098

Code Response to Drop-Down Component Entry or Selection

Create a drop-down component and a lamp. When the app user makes a selection from
the drop-down component, the lamp size changes.

Save the following code to a lampSize.m on your MATLAB path. This code creates a
figure window containing a drop-down component and a lamp. When an app user changes
the drop-down component selection, the ValueChangedFcn callback changes the size of
the lamp.

function lampSize
% Create figure and components

fig = uifigure('Position',[100 100 300 275]);

lmp = uilamp(fig,...
 'Position',[100 30 20 20]);

 uidropdown

1-17099

dd = uidropdown(fig,...
 'Editable','on',...
 'Position',[84 204 100 20],...
 'Items',{'Size x 1','Size x 2','Size x 3','Size x 4'},...
 'ItemsData',[1 2 3 4],...
 'Value',1,...
 'ValueChangedFcn',@(dd,event) optionSelected(dd,lmp));
end

% Create ValueChangedFcn callback
function optionSelected(dd,lmp)
val = dd.Value;
s = [20 20];
switch val
 case {1, 2, 3, 4} % User selected a defined option
 size = val * s;
 lmp.Position(3:4) = size;
 otherwise % User typed a value
 m = str2num(val);
 size = m * s;
 lmp.Position(3:4) = size;
end
end

Run lampSize and select various options from the drop-down component.

Type a value in the drop-down component and press Enter. The lamp size changes. (If
you type a large value, you might have to resize the figure to see the lamp.)

1 Alphabetical List

1-17100

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 uidropdown

1-17101

The properties listed here are a subset of the available properties. For the full list,
see .DropDown.
Example: 'Items',{'Red','Yellow','Blue'} specifies the options presented in the
drop-down component.

Value — Value
element of Items | element of ItemsData

Value, specified as an element of the Items or ItemsData arrays. By default, Value is
the first element in Items.

Specifying Value as an element of Items selects the drop-down item that matches that
element. If ItemsData is not empty, then Value must be set to an element of
ItemsData, and the drop-down will select the associated item in the list.

Items — Drop-down items
{'Option 1','Option 2','Option 3','Option 4'} (default) | cell array of
character vectors | string array | ...

Drop-down items, specified as a cell array of character vectors, string array, or 1-D
categorical array. Duplicate elements are allowed. The drop-down component displays as
many options as there are elements in the Items array. If you specify this property as a
categorical array, MATLAB uses the values in the array, not the full set of categories.
Example: {'Red','Yellow','Blue'}
Example: {'1','2','3'}

ItemsData — Data associated with each element of the Items property value
empty array ([]) (default) | 1-by-n numeric array | 1-by-n cell array

Data associated with each element of the Items property value, specified as a 1-by-n
numeric array or a 1-by-n cell array. Duplicate elements are allowed.

For example, if you set the Items value to employee names, you might set the
ItemsData value to corresponding employee ID numbers. The ItemsData value is not
visible to the app user.

If the number of array elements in the ItemsData value and the Items value do not
match, one of the following occurs:

• When the ItemsData value is empty, then all the elements of the Items value are
presented to the app user.

1 Alphabetical List

1-17102

• When the ItemsData value has more elements than the Items value, then all the
elements of the Items value are presented to the app user. MATLAB ignores the extra
ItemsData elements.

• When the ItemsData value is not empty, but has fewer elements than the Items
value, the only elements of the Items value presented to the app user are those that
have a corresponding element in the ItemsData value.

Example: {'One','Two','Three'}
Example: [10 20 30 40]

Editable — Editable state of drop-down component
'off' (default) | 'on'

Editable state of the drop-down component, specified as 'off' or 'on'.

If the Enable property value is 'off', then the app user cannot change the drop-down
component text, even if the Editable property value is 'on'.

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user selects a different option from the drop-
down list. It does not execute if the Value property changes programmatically.

This callback function can access specific information about the user’s interaction with
the drop-down. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the drop-down. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

 uidropdown

1-17103

Property Value
Value Drop-down component value after app

user’s most recent interaction with it.
PreviousValue Drop-down component value before app

user’s most recent interaction with it.
Edited Logical value (0 or 1) that indicates

whether the callback was executed as a
result of typing a value into the drop-down
component. The Edited value is 1 when
the app user typed in the drop-down
component and 0 when the app user
selected an option from the drop-down
component.

Source Component that executes the callback.
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size of drop-down component
[100 100 100 22] (default) | [left bottom width height]

Location and size of the drop-down component relative to the parent, specified as the
vector [left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the drop-down component
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the drop-down
component

width Distance between the right and left outer edges of the
drop-down component

height Distance between the top and bottom outer edges of the
drop-down component

All measurements are in pixel units.

1 Alphabetical List

1-17104

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 22]

See Also
Functions
appdesigner | uifigure

Properties
DropDown

Introduced in R2016a

 uidropdown

1-17105

uieditfield
Create text or numeric edit field component

Syntax
edt = uieditfield
edt = uieditfield(style)
edt = uieditfield(parent)
edt = uieditfield(parent,style)
edt = uieditfield(___ ,Name,Value)

Description
edt = uieditfield creates a text edit field in a new figure window and returns the
EditField object. MATLAB calls the uifigure function to create the figure.

edt = uieditfield(style) creates an edit field of the specified style.

edt = uieditfield(parent) creates the edit field in the specified parent container.
The parent can be a Figure created using the uifigure function, or one of its child
containers.

edt = uieditfield(parent,style) creates an edit field of the specified style in the
specified parent container.

edt = uieditfield(___ ,Name,Value) specifies object properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Text Edit Field

Create a text edit field in a window.

1 Alphabetical List

1-17106

fig = uifigure;
edt = uieditfield(fig);

Create Numeric Edit Field

Create a numeric edit field by specifying the style as numeric.

fig = uifigure;
edt = uieditfield(fig,'numeric');

 uieditfield

1-17107

Create Numeric Edit Field Within Panel

Specify a Panel as the parent object.

fig = uifigure;
pnl = uipanel(fig);
edt = uieditfield(pnl,'numeric');

1 Alphabetical List

1-17108

Set and Access Numeric Edit Field Property Values

Create a numeric edit field with rounding on.

fig = uifigure;
edt = uieditfield(fig,'numeric',...
 'RoundFractionalValues','on');

Determine the default limits.

limits = edt.Limits

limits =

 -Inf Inf

The returned values indicate that there are no limits.

 uieditfield

1-17109

Change the limits to 0 through 100. (By default limits are inclusive.)

edt.Limits = [0 100];

Create Numeric Edit Field Specifying Limit Inclusiveness

Create a numeric edit field that allows the app user to enter a value greater than -5 and
less than or equal to 10.

fig = uifigure;
edt = uieditfield(fig,'numeric',...
 'Limits', [-5 10],...
 'LowerLimitInclusive','off',...
 'UpperLimitInclusive','on',...
 'Value', 5);

If you enter a value in the numeric edit field that is outside the limits, MATLAB displays a
message. The message indicates the problem and restores the value to the previous valid
value.

Create Numeric Edit Field and Specify Display Format

Create a numeric edit field that allows the app user to enter any value, but always
displays the value using exactly two decimal places. MATLAB stores the exact value that
the app user enters.

fig = uifigure;
edt = uieditfield(fig,'numeric',...
 'ValueDisplayFormat', '%.2f');

Type 5.5556 in the numeric edit field, and then click outside it. The edit field displays
5.56.

MATLAB stores the value as 5.556. If you click in the edit field, it displays 5.556.

Code Response to Changed Edit Field Text

Code the ValueChangedFcn callback so that when the app user changes text in the edit
field, a label is updated to match that text.

1 Alphabetical List

1-17110

Save the following code to textValue.m on your MATLAB path.

function textValue
% Create figure and components.

fig = uifigure('Position',[100 100 350 275]);

lbl = uilabel(fig,...
 'Position',[130 100 100 15]);

txt = uieditfield(fig,...
 'Position',[100 175 100 22],...
 'ValueChangedFcn',@(txt,event) textChanged(txt,lbl));
end

% Code the callback function.
function textChanged(txt,lbl)
lbl.Text = txt.Value;
end

Run textValue, and type Velocity in the edit field. Click outside the edit field to
trigger the callback.

 uieditfield

1-17111

Code Response to Changed Numeric Edit Field Value

Code the ValueChangedFcn callback such that when the app user changes the value in
the edit field, a slider is updated to match that value.

Save the following code to numericEditFieldValue.m on your MATLAB path.

function numericEditFieldValue
% Create figure and components

fig = uifigure('Position',[100 100 350 275]);

slider = uislider(fig,...
 'Position',[100 140 120 3]);

numfld = uieditfield(fig,'numeric',...
 'Position',[110 200 100 22],...
 'ValueChangedFcn',@(numfld,event) numberChanged(numfld,slider));

end

1 Alphabetical List

1-17112

% Create ValueChangedFcn callback
function numberChanged(numfld,slider)
slider.Value = numfld.Value;
end

Run numericEditFieldValue.

Enter a value from 0 to 100 in the numeric edit field and click outside the field. The slider
moves to indicate the numeric edit field value.

Use Event Data to Maintain a Log

Code the ValueChangedFcn callback to maintain a log of values entered in a single
session. When the app user changes the value in the edit field, the previous field value is
added to a list maintained in a text area. The callback uses the PreviousValue property
returned in the event argument to populate the text area.

Save the following code to logNames.m on your MATLAB path.

 uieditfield

1-17113

function logNames
% Create figure and components

fig = uifigure('Position',[100 100 410 400]);

loglist = uitextarea(fig,...
 'Position',[134 49 150 277],...
 'Editable','off');

namefld = uieditfield(fig,'text',...
 'Value', 'Bob Langley',...
 'Position',[134 367 100 22],...
 'ValueChangedFcn',@(namefld,event) nValChanged(namefld,event,loglist));
end

% Create ValueChangedFcn callback
function nValChanged(namefld,event,loglist)
newvalue = event.Value;
previousValue = event.PreviousValue;

loglist.Value = [previousValue; loglist.Value];

end

Run logNames.

Each time you enter a name in the text edit field and press enter, the name that was
previously in the text edit field is added to the text area.

1 Alphabetical List

1-17114

Input Arguments
style — Type of edit field
'text' (default) | 'numeric'

Type of edit field, specified as one of the following:

• 'text'

By default, text edit fields are empty.
• 'numeric'

By default, numeric edit fields display the value 0. If the app user types a nonnumeric
value in a numeric edit field, MATLAB opens an error tooltip and reverts the value to
the last valid value.

 uieditfield

1-17115

parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

EditField and NumericEditField objects supports different sets of properties. For a
full list of properties and descriptions for object, see the associated property page.

• EditField — If style is the default,'text'
• NumericEditField — If style is 'numeric'

See Also
Functions
appdesigner | uifigure

Properties
EditField | NumericEditField

Introduced in R2016a

1 Alphabetical List

1-17116

uifigure
Create figure for designing apps in App Designer

Syntax
f = uifigure
f = uifigure(Name,Value)

Description
f = uifigure creates a figure for building a user interface and returns the Figure
object. This is the type of figure that App Designer uses.

f = uifigure(Name,Value) specifies figure properties using one or more
Name,Value pair arguments.

Examples

Create Default UI Figure

f = uifigure;

 uifigure

1-17117

Set and Access Properties

Create a UI figure with a specific title.

f= uifigure('Name','Plotted Results');

1 Alphabetical List

1-17118

Get the Position property value.

p = f.Position

ans =

 680 678 560 420

Code CloseRequestFcn to Confirm Closing UI Figure

Code the CloseRequestFcn callback to open a modal Confirmation dialog box when the
user tries to close the window.

Copy and paste this code into the MATLAB Editor, and then run closeFig.

function closeFig
f = uifigure('Position',[100 100 350 275],...
 'CloseRequestFcn',@(f, event)my_closereq(f));

 uifigure

1-17119

end
function my_closereq(f)
selection = questdlg('Close the figure window?',...
 'Confirmation',...
 'Yes','No','Yes');
switch selection,
 case 'Yes',
 delete(f)
 case 'No'
 return
end
end

Click the figure close button. The Confirmation dialog box opens.

1 Alphabetical List

1-17120

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset of the available properties. For the full list, see UI
Figure.
Example: 'Name','My App' specifies My App as the title of the UI figure.

Name — Name
'' (default) | character vector | string scalar

Name of the figure, specified as a character vector or a string scalar.

 uifigure

1-17121

Example: uifigure('Name','Results') sets the name of the figure to 'Results'.

Position — Location and size of UI figure, excluding borders and title bar
[left bottom width height]

Location and size of the UI figure, excluding borders and title bar, specified as a four-
element vector of the form [left bottom width height].

This table describes each element in the vector.

Element Description
left Distance from the left edge of the primary display to the

inner left edge of the UI figure window. This value can be
negative on systems that have more than one monitor.

bottom Distance from the bottom edge of the primary display to
the inner bottom edge of the UI figure window. This value
can be negative on systems that have more than one
monitor.

width Distance between the right and left inner edges of the UI
figure.

height Distance between the top and bottom inner edges of the UI
figure.

Limitations
• Currently, you cannot pass a Figure object created with the uifigure function to the

print, rotate3d, pan, or zoom functions. If you attempt to do so, MATLAB throws an
error .

See Also
Functions
appdesigner | scroll | uibuttongroup | uipanel | uitab

Properties
UI Figure

1 Alphabetical List

1-17122

Introduced in R2016a

 uifigure

1-17123

UI Figure Properties
Control UI figure appearance and behavior in App Designer

Description
UI figures are containers for creating apps in App Designer. Properties control the
appearance and behavior of the UI figure. Use dot notation to refer to a particular object
and property:

uf = uifigure;
name = uf.Name;
uf.Name = 'My App';

Properties
Window Appearance

Color — Background color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

1 Alphabetical List

1-17124

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

WindowState — Window state
'normal' (default) | 'minimized' | 'maximized' | 'fullscreen'

Window state, specified as one of these values:

• 'normal' — The window displays in a normal state.
• 'minimized' — The window is collapsed, but you can still execute commands to get

or set its properties, to add children, or to create plots in the window.

 UI Figure Properties

1-17125

• 'maximized' — The window fills the screen. The minimize, restore, and close buttons
provided by the operating system appear in the corner of the window. If the window
has menus in the normal state, they are present in this state.

• 'fullscreen' — The window fills the screen. However, the minimize, restore, and
close buttons provided by the operating system are hidden. If the window has menus
in the normal state, they are present in this state.

Clicking the minimize, maximize, or restore button provided by the operating system sets
the WindowState property accordingly. Pressing Ctrl+F11 (Windows and Linux) or Ctrl
+Command+f (Mac OS) toggles the 'fullscreen' state. Setting this property on a
docked figure or in MATLAB Online is not supported.

UI figures cannot be minimized directly from a full screen state.

Position

Position — Location and size of UI figure, excluding borders and title bar
[left bottom width height]

Location and size of the UI figure, excluding borders and title bar, specified as a four-
element vector of the form [left bottom width height].

This table describes each element in the vector.

Element Description
left Distance from the left edge of the primary display to the

inner left edge of the UI figure window. This value can be
negative on systems that have more than one monitor.

bottom Distance from the bottom edge of the primary display to
the inner bottom edge of the UI figure window. This value
can be negative on systems that have more than one
monitor.

width Distance between the right and left inner edges of the UI
figure.

height Distance between the top and bottom inner edges of the UI
figure.

Units — Units of measurement
'pixels' (default)

1 Alphabetical List

1-17126

Units of measurement, specified as 'pixels'.

InnerPosition — Location and size of UI figure, excluding borders and title bar
[left bottom width height]

Location and size of UI figure, excluding borders and title bar, specified as a four-element
vector of the form [left bottom width height]. All measurements are in units
specified by the Units property.

This property value is identical to the Position property value.

Resize — Resizable
'on' (default) | 'off'

Resizable UI figure, specified as 'on' or 'off'. When this property is set to 'on', the UI
figure is resizable. Otherwise, it is not resizable.

AutoResizeChildren — Automatically resize children
'on' (default) | 'off'

Automatically resize children, specified as 'on' or 'off'.

• 'on' — Child components automatically resize when the container resizes.
• 'off' — Child components do not resize.

The AutoResizeChildren property affects direct children of the container, not children
inside nested containers.

To customize the resize behavior, set the AutoResizeChildren property to 'off' and
create a SizeChangedFcn callback for the container. For more information, see
“Managing Resizable Apps in App Designer”.

To disable resizing of an app, set the Resize property of the figure to 'off'.

Plotting

Colormap — Color map for UIAxes content
parula (default) | m-by-3 array of RGB triplets

Color map for UIAxes content, specified as an m-by-3 array of RGB (red, green, blue)
triplets that define m individual colors.
Example: uifigure('Colormap',[1 0 1; 0 0 1; 1 1 0]) sets the color map to
three colors: magenta, blue, and yellow.

 UI Figure Properties

1-17127

MATLAB accesses these colors by their row number.

Alphamap — Transparency map for axes content
vector of 64 values between 0 and 1 (default) | vector of values between 0 and 1

Transparency map for axes content, specified as a vector of values between 0 and 1,
inclusive. The size of the vector can be m-by-1 or 1-by-m. MATLAB accesses alpha values
by their index in the vector. Alphamaps can be any length.

Interactivity

Visible — Visibility of UI figure
'on' (default) | 'off'

Visibility UI figure, specified as 'on' or 'off'. The Visible property determines
whether the UI figure is displayed on the screen. If the Visible property is set to 'off',
the entire UI figure is hidden. However, you can still specify and access properties.

To make your app start faster, set the Visible property of all components that are not
displayed at startup to 'off'.

Note Changing the Visible property does not change the value of the Visible
property in a child component. This is true even though hiding the UI figure causes the
children to be hidden.

CurrentPoint — Current point
two-element vector

Current point, returned as a two-element vector. The vector contains the (x, y)
coordinates of the mouse pointer, measured in pixels from the lower-left corner of the UI
figure. If the UI figure is scrollable, the coordinates are measured from the lower-left
corner of the scrollable area. The scrollable area is the area that is bounded by the limits
of the scroll bars.

The coordinates update when you do any of the following:

• Press the mouse button within the UI figure.
• Release the mouse button after pressing it within the UI figure.
• Press the mouse button within the UI figure, and then release it outside the UI figure.

1 Alphabetical List

1-17128

• Rotate the scroll wheel within the UI figure.
• Move the mouse within the figure (without pressing any buttons), provided that the

WindowButtonMotionFcn property is not empty.

If the UI figure has a callback that responds to mouse interactions, and you trigger that
callback faster than the system can execute the code, the coordinates might not reflect
the actual location of the pointer. Instead, they are the location when the callback began
execution.

If you use the CurrentPoint property to plot points, the coordinate values might contain
rounding error.

CurrentCharacter — Current character
'' (default) | character

Current character, returned as the character of the last key pressed. This property
updates when the UI figure has focus while the user presses a key.

SelectionType — Mouse selection type
'normal' (default) | 'extend' | 'alt' | 'open'

Mouse selection type, returned as 'normal', 'extend', 'alt', or 'open'. This
property provides information about the last mouse button press that occurred in the UI
figure.

This table lists the possible SelectionType values and the user actions that produce
those values.

Value Corresponding Action
'normal' Click the left mouse button.
'extend' Any of the following:

• Shift-click the left mouse button.
• Click the middle mouse button.
• Click both left and right mouse buttons.

'alt' Either of the following:

• Control-click the left mouse button.
• Click the right mouse button.

 UI Figure Properties

1-17129

Value Corresponding Action
'open' Double-click any mouse button.

Scrollable — Ability to scroll
'off' (default) | 'on'

Ability to scroll, specified as 'off' or 'on'. Setting this property to 'on' enables
scrolling within the container. However, there are additional requirements:

• The child components in the container must occupy a larger area than the container
can display at one time.

• Components that do not fit in the container must be above or to the right of the
container. You cannot scroll to components that are below or to the left of the
container.

Certain types of charts and axes do not support scrollable containers. However, you can
place the chart or axes in a nonscrollable panel, and then place the panel in the scrollable
container. For more information, see “Displaying Graphics in App Designer”.

Common Callbacks

ButtonDownFcn — Button down callback
'' (default) | function handle | cell array | character vector

Button down callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user clicks a blank area of the UI figure.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “Write Callbacks in App Designer”.

Use the SelectionType property to determine whether the user pressed modifier keys.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-17130

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

 UI Figure Properties

1-17131

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Keyboard Callbacks

KeyPressFcn — Key-press callback
'' (default) | function handle | cell array | character vector

Key-press callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user presses a key while UI figure or a child
component has focus. Pressing a key on a component that accepts keyboard focus (such
as an edit field) does not execute the callback unless the component is disabled. You can
disable a component by setting the Enable or Editable property to 'off'.

If the user presses multiple keys at approximately the same time, MATLAB detects all the
keys.

The KeyPressFcn callback can access specific information about the user’s interaction
with the keyboard. MATLAB passes this information in a KeyData object as the second
argument to your callback function. This table lists the properties of the KeyData object.

Property Description
Character The character that appears as a result of pressing the key or keys.

Pressing certain keys or modifying keys with the Ctrl key might
return unprintable characters in this property.

Pressing certain keys alone (such as Ctrl, Alt, Shift) does not
generate Character data.

Modifier Cell array containing the names of the modifier keys pressed, such
as control, alt, or shift. If no modifier keys are pressed, the cell
array is empty.

1 Alphabetical List

1-17132

Property Description
Key Key pressed, identified by the lowercase label on the key, or a

descriptive word such as 'space'.
Source Object that has focus when the key is pressed.
EventName 'KeyPress'

For more information about specifying callback property values and using callback
arguments, see “Write Callbacks in App Designer”.

The CurrentCharacter property also returns character information.

KeyReleaseFcn — Key-release callback
'' (default) | function handle | cell array | character vector

Key-release callback, specified as one of these values

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user releases a key while the UI figure or a child
component has focus. Releasing a key on a component that accepts keyboard focus (such
as an edit field) does not execute the callback unless the component is disabled. You can
disable a component by setting the Enable or Editable property to 'off'.

This callback function can access specific information about the user’s interaction with
the keyboard. MATLAB passes this information in a KeyData object as the second
argument to your callback function. This table lists the properties of the KeyData object.

Property Description
Character Character that corresponds to the key or keys that are released.

Certain keys or key combinations might return unprintable characters in
this property.

Pressing and releasing certain keys alone (such as Ctrl, Alt, Shift) does
not generate Character data.

 UI Figure Properties

1-17133

Property Description
Modifier Cell array containing the names of the modifier keys released, such as

control, alt, or shift. If no modifier keys are released, the cell array is
empty.

Key Key released, identified by the (lowercase) label on the key, or a
descriptive word such as 'space'.

Source Object that has focus when the key is released.
EventName 'KeyRelease'

For more information about specifying callback property values and using callback
arguments, see “Write Callbacks in App Designer”.

Window Callbacks

CloseRequestFcn — Close request callback
'closereq' (default) | function handle | cell array | character vector

Close request callback, specified as a function handle, cell array containing a function
handle and additional arguments, or a character vector. MATLAB executes this callback
when the app user attempts to close the app. For example, you can code the callback to
display a dialog box that asks the app user to confirm or cancel the close operation.

Consider calling the delete function to close the Figure in the CloseRequestFcn
callback:

• In App Designer, call delete(app).
• For apps created programmatically, call delete(f), where f is the Figure object.

If the closeRequestFcn callback does not contain a delete command, MATLAB never
closes the window. You can always call the delete function to force the window to close.

SizeChangedFcn — Size change callback
'' (default) | function handle | cell array | character vector

Size change callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

1 Alphabetical List

1-17134

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

Define this callback to customize the app layout when the size of this container changes
(e.g., when the user resizes the window).

Note The SizeChangedFcn callback will not execute unless the AutoResizeChildren
property of this container is set to 'off'. In App Designer, you can make the
SizeChangedFcn executable by clearing the AutoResizeChildren check box in the UI
Figure Properties panel.

The SizeChangedFcn callback executes when:

• This container becomes visible for the first time.
• This container is visible while its size changes.
• This container becomes visible for the first time after its size changes. This situation

occurs when the size changes while the container is invisible, and then it becomes
visible later.

Other important points to consider when defining a SizeChangedFcn callback:

• Consider delaying the display of this container until after all the variables that the
SizeChangedFcn uses are defined. This practice can prevent the SizeChangedFcn
callback from returning an error. To delay the display of the container, set its Visible
property to 'off'. Then, set the Visible property to 'on' after you define the
variables that your SizeChangedFcn callback uses.

• If your app contains nested containers, they resize from the inside out.
• To access the container that is resizing from within the SizeChangedFcn, refer to the

source object (the first input argument in the callback) or use the gcbo function.

WindowButtonDownFcn — Window button down callback
'' (default) | function handle | cell array | character vector

Window button down callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.

 UI Figure Properties

1-17135

• A character vector containing a valid MATLAB expression (not recommended).
MATLAB evaluates this expression in the base workspace.

This callback executes when the user clicks:

• A blank area of the UI figure
• A UI component within the UI figure that supports the ButtonDownFcn property
• A graphics object within the UI figure that supports the ButtonDownFcn property

For example, clicking an axes object triggers the WindowButtonDownFcn callback.

See the list of properties for a specific UI component or graphics object to determine if it
supports the ButtonDownFcn property. See “Designing Apps in App Designer” for the
properties of UI components. See “Graphics Object Properties” for the properties of
graphics objects.

Note The callback executes when the user clicks a uiaxes component, even though
uiaxes components do not support the ButtonDownFcn property.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “Write Callbacks in App Designer”.

WindowButtonMotionFcn — Window button motion callback
'' (default) | function handle | cell array | character vector

Window button motion callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

Typically, this callback function executes whenever the user moves the pointer within the
UI figure. However, if the user clicks and holds the mouse button and moves the pointer
outside the UI figure, the WindowButtonMotionFcn callback executes while the pointer
is outside the UI figure.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “Write Callbacks in App Designer”.

1 Alphabetical List

1-17136

WindowButtonUpFcn — Window button up callback
'' (default) | function handle | cell array | character vector

Window button up callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user:

• Releases the mouse button on a blank area of the UI figure
• Releases the mouse button on a UI component within the UI figure that supports the

ButtonDownFcn property
• Releases the mouse button on a graphics object within the UI figure that supports the

ButtonDownFcn property

For example, releasing the mouse button on an axes object triggers the
WindowButtonUpFcn callback.

See the list of properties for a specific UI component or graphics object to determine if it
supports the ButtonDownFcn property. See “Designing Apps in App Designer” for the
properties of UI components. See “Graphics Object Properties” for the properties of
graphics objects.

Button-up actions are associated with button-down actions in the UI figure. The mouse
pointer must be inside the UI figure when the button-down action occurs, but it can be
outside the figure when the button-up action occurs.

Note The callback executes when the user releases the mouse button on a uiaxes
component, even though uiaxes components do not support the ButtonDownFcn
property.

For more information about specifying a callback property value as a function handle, cell
array, or character vector, see “Write Callbacks in App Designer”.

WindowKeyPressFcn — Window key-press callback
'' (default) | function handle | cell array | character vector

 UI Figure Properties

1-17137

Window key-press callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user presses a key while the UI figure or a child
component has focus. If the user presses multiple keys at approximately the same time,
MATLAB detects all the keys.

This callback function can access specific information about the user’s interaction with
the keyboard. MATLAB passes this information in a KeyData object as the second
argument to your callback function. This table lists the properties of the KeyData object.

Property Description
Character The character that appears as a result of pressing the key or keys.

Pressing certain keys or modifying keys with the Ctrl key might
return unprintable characters in this property.

Pressing certain keys alone (such as Ctrl, Alt, Shift) does not
generate Character data.

Modifier Cell array containing the names of the modifier keys pressed, such
as control, alt, or shift. If no modifier keys are pressed, the cell
array is empty.

Key Key pressed, identified by the lowercase label on the key, or a
descriptive word such as 'space'.

Source Object that has focus when the key is pressed.
EventName 'KeyPress'

For more information about specifying callback property values and using callback
arguments, see “Write Callbacks in App Designer”.

The CurrentCharacter property also returns character information.

WindowKeyReleaseFcn — Window key-release callback
'' (default) | function handle | cell array | character vector

1 Alphabetical List

1-17138

Window key-release callback, specified as one of these values

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user releases a key while the UI figure or a child
component has focus.

This callback function can access specific information about the user’s interaction with
the keyboard. MATLAB passes this information in a KeyData object as the second
argument to your callback function. This table lists the properties of the KeyData object.

Property Description
Character Character that corresponds to the key or keys that are released.

Certain keys or key combinations might return unprintable characters in
this property.

Pressing and releasing certain keys alone (such as Ctrl, Alt, Shift) does
not generate Character data.

Modifier Cell array containing the names of the modifier keys released, such as
control, alt, or shift. If no modifier keys are released, the cell array is
empty.

Key Key released, identified by the (lowercase) label on the key, or a
descriptive word such as 'space'.

Source Object that has focus when the key is released.
EventName 'KeyRelease'

For more information about specifying callback property values and using callback
arguments, see “Write Callbacks in App Designer”.

WindowScrollWheelFcn — Window scroll wheel callback
'' (default) | function handle | cell array | character vector

Window scroll wheel callback, specified as one of these values:

 UI Figure Properties

1-17139

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user moves the scroll wheel while the UI figure or any of
its children have focus. However, other objects can capture scroll wheel movement and
interfere with the execution of this callback.

This callback has no effect on the CurrentObject and SelectionType properties.

This callback can access specific information when the user rotates the scroll wheel.
MATLAB passes this information in a ScrollWheelData object as the second argument
to your callback function. This table lists the properties of the ScrollWheelData object.

1 Alphabetical List

1-17140

P
r
o
p
e
r
t
y

Contents

V
e
r
t
i
c
a
l
S
c
r
o
l
l
C
o
u
n
t

A positive or negative number that indicates the direction and number of scroll wheel
clicks. Scrolling down returns a positive value. Scrolling up returns a negative value.

The vertical scroll count is the sum of all scroll wheel clicks that occurred since the last
time the callback executed. Typically, the value is 1 or -1. However, the scroll count can
have a larger magnitude if the WindowScrollWheelFcn callback takes a long time to
return, or if the user spins the scroll wheel very fast.

 UI Figure Properties

1-17141

P
r
o
p
e
r
t
y

Contents

V
e
r
t
i
c
a
l
S
c
r
o
l
l
A
m
o
u
n
t

A constant value of 3.

S
o
u
r
c
e

Object that executes the callback.

1 Alphabetical List

1-17142

P
r
o
p
e
r
t
y

Contents

E
v
e
n
t
N
a
m
e

'WindowScrollWheel'.

For more information about specifying callback property values and using callback
arguments, see “Write Callbacks in App Designer”

Example: App for Changing x-Axis Limits

This example shows how to create an app that displays a plot. The user can scroll to
change the limits of the x-axis. Copy and paste the following code into the editor and run
it.
function scroll_wheel
% Shows how to use WindowScrollWheelFcn property
%
 f = uifigure('WindowScrollWheelFcn',@figScroll,'Name','Scroll Wheel Demo');
 x = 0:.1:40;
 y = 4.*cos(x)./(x+2);
 a = axes(f);
 h = plot(a,x,y);
 title(a,'Rotate the scroll wheel')

 function figScroll(~,event)
 if event.VerticalScrollCount > 0
 xd = h.XData;
 inc = xd(end)/20;
 x = [0:.1:xd(end)+inc];
 re_eval(x)
 elseif event.VerticalScrollCount < 0
 xd = h.XData;
 inc = xd(end)/20;

 UI Figure Properties

1-17143

 % Don't let xd = 0
 x = [0:.1:xd(end)-inc+.1];
 re_eval(x)
 end
 end

 function re_eval(x)
 y = 4.*cos(x)./(x+2);
 h.YData = y;
 h.XData = x;
 a.XLim = [0 x(end)];
 drawnow
 end
end

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

1 Alphabetical List

1-17144

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

 UI Figure Properties

1-17145

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Children

Parent — Parent object
root object

This property is read-only.

Parent object, returned as a root object.

Children — Children of Figure object
empty GraphicsPlaceholder array (default) | 1-D array of component objects

Children of the Figure object, returned as an empty GraphicsPlaceholder or a one-
dimensional array of component objects. The children can be any component, excluding
another Figure object.

You cannot add or remove a child component using the Children property. Use this
property to view the list of children or to reorder the children. The order of the children
in this array reflects the front-to-back order (stacking order) of the components on the
screen.

To add a child to this list, set the Parent property of the child component to the Figure
object.

HandleVisibility — Visibility of object handle
'off'

This property is read-only.

Visibility of object handle, returned as 'off'. This property provides information about
the visibility of the Figure object in its parent's list of children. Because this property

1 Alphabetical List

1-17146

value is always set to 'off', the Figure object is not visible in its parent’s list of
children and it is not returned by functions that access objects by searching the object
hierarchy or querying object properties. These functions include gcf, get, findobj,
clf, and close.

Objects are valid even if their HandleVisibility property is set to 'off'. If you have
access to an object, you can set and get its properties, and pass it to any function that
operates on objects.

Identifiers

Name — Name
'' (default) | character vector | string scalar

Name of the figure, specified as a character vector or a string scalar.
Example: uifigure('Name','Results') sets the name of the figure to 'Results'.

Number — Number
integer | []

This property is read-only.

Number of the figure, returned as an integer or empty array. You can refer to a figure
using this value. For example, figure(2) makes the figure with a Number property value
of 2 the current figure.

If the IntegerHandle property is set to 'off', the Number property is empty.

If IntegerHandle is 'on', the Number property is an integer. When you delete the
figure, MATLAB reuses the number for the next figure.

NumberTitle — Use number title
'on' (default) | 'off'

Number title, specified as 'on' or 'off'. When you set this property to 'on', the title of
the UI figure includes the phrase 'Figure n', where n is a number.

Both the NumberTitle and IntegerHandle properties must be set to 'on' to show to
show the number in the title.

IntegerHandle — Use integer handle
'off' (default) | 'on'

 UI Figure Properties

1-17147

Use integer handle, specified as 'off' or 'on'.

If you set the IntegerHandle property to 'on', MATLAB finds the lowest integer value
that is not used by an existing figure and sets the Number property to that value. If you
delete a UI figure, MATLAB can reuse its number on a new figure.

If you set the IntegerHandle property to 'off', MATLAB does not assign an integer
value to the UI figure, and it sets the Number property to an empty array.

To show the number in the title bar, both IntegerHandle and NumberTitle must be set
to 'on'.

Type — Type of graphics object
'figure'

This property is read-only.

Type of graphics object, returned as 'figure'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps”.

See Also
appdesigner | uifigure

1 Alphabetical List

1-17148

Introduced in R2016a

 UI Figure Properties

1-17149

uigauge
Create gauge component

Syntax
g = uigauge
g = uigauge(style)
g = uigauge(parent)
g = uigauge(parent,style)
g = uigauge(___ ,Name,Value)

Description
g = uigauge creates a circular gauge in a new figure window and returns the Gauge
object. MATLAB calls the uifigure function to create the figure.

g = uigauge(style) specifies the gauge style.

g = uigauge(parent) creates the gauge in the specified parent container. The parent
can be a Figure created using the uifigure function, or one of its child containers.

g = uigauge(parent,style) creates a gauge of the specified style in the specified
parent container.

g = uigauge(___ ,Name,Value) specifies object properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Circular Gauge

fig = uifigure;
cg = uigauge(fig);

1 Alphabetical List

1-17150

Create Linear Gauge

fig = uifigure;
lg = uigauge(fig,'linear');

 uigauge

1-17151

Create Linear Gauge in Panel

Specify a panel as the parent container for a linear gauge.

fig = uifigure;
pnl = uipanel(fig);
lg = uigauge(pnl,'linear');

1 Alphabetical List

1-17152

Set and Access Gauge Property Values

Create a circular gauge, and set the ScaleDirection property to specify that the needle
moves counterclockwise.

fig = uifigure;
cg = uigauge(fig,'ScaleDirection','counterclockwise');

Change the number of major ticks, specify matching tick labels, and remove minor ticks.

cg.MajorTicks = [0:10:100];
cg.MajorTickLabels = {'0','10','20','30','40','50','60','70','80','90','100'};
cg.MinorTicks = [];

 uigauge

1-17153

Specify Scale Colors and Color Limits

fig = uifigure;
cg = uigauge(fig,'ScaleColors',{'yellow','red'},...
 'ScaleColorLimits', [60 80; 80 100]);

1 Alphabetical List

1-17154

Input Arguments
style — Style of gauge
'circular' (default) | 'linear' | 'ninetydegree' | 'semicircular'

Style of gauge, specified as any one of the following values:

 uigauge

1-17155

Style Appearance
'circular'

'linear'

'ninetydegree'

'semicircular'

parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-17156

Each type of gauge supports a different set of properties. For a full list of properties and
descriptions for each type, see the associated property page.

• Gauge
• SemicircularGauge
• NinetyDegreeGauge
• LinearGauge

See Also
Functions
appdesigner | uifigure

Properties
Gauge | LinearGauge | NinetyDegreeGauge | SemicircularGauge

Introduced in R2016a

 uigauge

1-17157

uiknob
Create knob component

Syntax
kb = uiknob
kb = uiknob(style)
kb = uiknob(parent)
kb = uiknob(parent,style)
kb = uiknob(___ ,Name,Value)

Description
kb = uiknob creates a knob in a new figure window and returns the Knob object.
MATLAB calls the uifigure function to create the figure.

kb = uiknob(style) specifies the knob style.

kb = uiknob(parent) creates the knob in the specified parent container. The parent
can be a Figure created using the uifigure function, or one of its child containers.

kb = uiknob(parent,style) creates a knob of the specified style in the specified
parent container.

kb = uiknob(___ ,Name,Value) specifies object properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Continuous Knob
fig = uifigure;
kb = uiknob(fig);

1 Alphabetical List

1-17158

Create Discrete Knob
Specify a Figure object as the parent container.

fig = uifigure('Position',[100 100 300 250]);
kb = uiknob(fig,'discrete');

 uiknob

1-17159

Set and Access Continuous Knob Property Values
Create a continuous knob in a figure.

fig = uifigure;
kb = uiknob(fig);

Determine the knob limits.

limits = kb.Limits

limits =

 0 100

Change the limits and the knob value.

kb.Limits = [-10 10];
kb.Value = 5;

1 Alphabetical List

1-17160

Set and Access Property Values
Create a discrete knob.

fig = uifigure;
kb = uiknob(fig,'discrete');

Change the knob states. Associate specific data with the knob states by configuring
ItemsData. In this case, ItemsData reflects temperatures in degrees Fahrenheit.

kb.Items = {'Cold', 'Warm', 'Hot'};
kb.ItemsData = {32, 80, 212};

 uiknob

1-17161

Get the temperature associated with the current knob value.

degrees = kb.Value

degrees =

 32

Code Response to Changed Discrete Knob Setting
Create a discrete knob that performs an action after the app user turns it. Turning the
knob updates the value of a text field to reflect the app user's choice.

Copy and paste the following code into a file named displayknobvalue.m on your
MATLAB path. This code creates a window containing a discrete knob and a text field. It
specifies a ValueChangedFcn callback to update the text field when the knob is turned.

function displayKnobValue
% Create figure window

1 Alphabetical List

1-17162

fig = uifigure('Position',[100 100 283 275]);

% Create the text field
txt = uieditfield(fig,'text',...
 'Position', [69 82 100 22]);

% Create the knob
kb = uiknob(fig,'discrete',...
 'Position',[89 142 60 60],...
 'ValueChangedFcn',@(kb,event) knobTurned(kb,txt));
end

% Code the knob callback function
function knobTurned(knob,txt)
txt.Value = knob.Value;
end

Run displayKnobValue, and then turn the knob. When you release the mouse button,
the edit field is updated to reflect the new knob value.

 uiknob

1-17163

Code Response to Changed Continuous Knob Setting
Create a continuous knob that performs an action after the user turns it. Turning the
knob updates the value of a label to reflect the user's choice.

Copy and paste the following code into a file named showknobvalue.m on your MATLAB
path. This code creates a window containing a continuous knob and a label field. It
specifies a ValueChangedFcn callback to update the label when the knob is turned.

function showKnobValue
% Create figure window and components
fig = uifigure('Position',[100 100 283 275]);

% Create label
lbl = uilabel(fig,...
 'Position',[218 177 50 15],...
 'Text','0');

% Create knob
kb = uiknob(fig,...

1 Alphabetical List

1-17164

 'Position',[89 142 60 60],...
 'ValueChangedFcn', @(kb,event) knobTurned(kb,lbl));
end

% Create ValueChangedFcn callback
function knobTurned(kb,lbl)
num = kb.Value;
lbl.Text = num2str(num);
end

Run showKnobValue and turn the knob. When you release the mouse button, the label is
updated to reflect the new knob value.

Code Response to Changing Continuous Knob Setting
Create a continuous knob that repeatedly performs an action as the user is turning it.
Instead of updating a label once when the user releases the mouse button, this knob
updates the label as the knob is being turned.

Copy and paste the following code into a file named showchangingvalue.m on your
MATLAB path. This code creates a window containing a continuous knob and a label field.

 uiknob

1-17165

It specifies a ValueChangingFcn callback to keep updating the label as the knob is
being turned.

function showChangingValue
% Create figure window
fig = uifigure('Position',[100 100 283 275]);

% Create numeric edit field
num = uieditfield(fig,'numeric',...
 'Position',[69 82 100 20]);

% Create knob
kb = uiknob(fig,...
 'Position',[89 142 60 60],...
 'ValueChangingFcn',@(kb,event) knobTurned(kb,event,num));
end

% Create ValueChangingFcn callback
function knobTurned(kb,event,num)
num.Value = event.Value;
end

Run showChangingValue, and turn the knob. As you do so, the numeric edit field is
updated to show the changing knob values.

1 Alphabetical List

1-17166

Code Response to Invalid Knob Setting
Create a continuous knob that performs an action after the user turns it. each turn of the
knob causes MATLAB to perform a calculation using the current and previous knob
values.

Copy and paste the following code into a file named increaseOnly.m on your MATLAB
path. This code creates a window containing a continuous knob. It specifies a
ValueChangedFcn callback for the knob to display an Invalid Value dialog box when
the app user attempts to decrease the knob value.

function increaseOnly
% Create figure window
fig = uifigure('Position',[100 100 400 275]);

% Create knob
kb = uiknob(fig,...
 'Position',[150 125 60 60],...
 'ValueChangedFcn',@(kb,event) nValChanged(kb,event,fig));
end

 uiknob

1-17167

% Create ValueChangedFcn callback
function nValChanged(kb,event,fig)
newvalue = event.Value;
previousvalue = event.PreviousValue;
if previousvalue > newvalue
 uialert(fig, 'Increase value only. Value set to previous value.',...
 'Invalid Value');
 kb.Value = previousvalue;
end
end

Run increaseOnly, increase the knob value, and then try to decrease it. When you try to
decrease the value, an error dialog box displays and the value is reverted to the previous
valid value. You can only increase the knob value.

Input Arguments
style — Style of knob
'continuous' (default) | 'discrete'

1 Alphabetical List

1-17168

Style of knob, specified as one of the following values:

Style Appearance
'continuous'

'discrete'

parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Each type of knob object supports a different set of properties. For a full list of properties
and descriptions for each type, see the associated property page.

• Knob
• DiscreteKnob

 uiknob

1-17169

See Also
Functions
appdesigner | uifigure

Properties
DiscreteKnob | Knob

Introduced in R2016a

1 Alphabetical List

1-17170

uilabel
Create label component

Syntax
lbl = uilabel
lbl = uilabel(parent)
lbl = uilabel(___ ,Name,Value)

Description
lbl = uilabel creates a label component (with the text 'Label') in a new in a new
figure window and returns the Label object. MATLAB calls the uifigure function to
create the figure.

lbl = uilabel(parent) creates the label in the specified parent container. The parent
can be a Figure created using the uifigure function, or one of its child containers.

lbl = uilabel(___ ,Name,Value) specifies label properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Label Component with Default Text

f = uifigure;
label = uilabel(f);

 uilabel

1-17171

Create Label Component in Panel

Specify a Panel as the parent.

fig = uifigure;
pnl = uipanel(fig);
lbl = uilabel(pnl);

1 Alphabetical List

1-17172

Set and Access Label Component Properties

Create a default label.

fig = uifigure;
lbl = uilabel(fig);

Change the label text and font size.

lbl.Text = 'Result';
lbl.FontSize = 14;

 uilabel

1-17173

The label is clipped because the current label size is too small for the new text at the new
font size.

Determine the current label size by getting the third and fourth elements of the
Position property value.

size = lbl.Position(3:4)

size =

 31 15

Change the label size to accommodate the new text.

lbl.Position(3:4) = [62 22];

1 Alphabetical List

1-17174

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 uilabel

1-17175

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset of the available properties. For the full list, see
Label.
Example: 'Text','Sum:' specifies the label displays the text Sum:.

Text — Label text
'Label' (default) | character vector | cell array of character vectors | string scalar |
string array | ...

Label text, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Use a cell array of character vectors or a string
array to specify multiple lines of text.

Alternatively, use the sprintf function to create formatted text containing line breaks
and other special characters.

text = sprintf('%s\n%s','Line 1','Line 2');
label = uilabel('Text',text,'Position',[100 100 100 32]);

If you specify text as a character vector without using sprintf, MATLAB will not
interpret control sequences such as \n.

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the full set of categories.
Example: 'Threshold'
Example: {'Threshold' 'Value'}

Position — Label location and size
[100 100 31 22] (default) | [left bottom width height]

Label location and size, relative to the parent, specified as the vector [left bottom
width height]. This table describes each element in the vector.

1 Alphabetical List

1-17176

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the label
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the label
width Distance between the right and left outer edges of the

label
height Distance between the top and bottom outer edges of the

label

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.
Example: [100 100 100 20]

See Also
Functions
appdesigner | uifigure

Properties
Label

Introduced in R2016a

 uilabel

1-17177

uilamp
Create lamp component

Syntax
lmp = uilamp
lmp = uilamp(parent)
lmp = uilamp(___ ,Name,Value)

Description
lmp = uilamp creates a lamp in a new figure window and returns the Lamp object.
MATLAB calls the uifigure function to create the figure.

lmp = uilamp(parent) creates the lamp in the specified parent container. The parent
can be a Figure created using the uifigure function, or one of its child containers.

lmp = uilamp(___ ,Name,Value) specifies Lamp properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Lamp in Figure

fig = uifigure;
lmp = uilamp(fig);

1 Alphabetical List

1-17178

Create Lamp in Panel

fig = uifigure;
pnl= uipanel(fig);
lmp = uilamp(pnl);

 uilamp

1-17179

Set and Access Lamp Properties

Create a default lamp.

fig = uifigure;
lmp = uilamp(fig);

Determine the current color of the lamp.

color = lmp.Color

color =

 0 1 0

MATLAB returns the RGB value for green.

Change the lamp color to red by setting the Color property to the long name, 'red'.

1 Alphabetical List

1-17180

lmp.Color = 'red';

Change the lamp color to blue by setting the Color property to the RGB triplet for blue.

lmp.Color = [0 0 1];

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset of the available properties. For the full list, see
Lamp.
Example: 'Color','red' specifies that the lamp color is red.

Color — Color of lamp
[0 1 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the lamp, specified as an RGB triplet, a hexadecimal color code, or one of the
color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 uilamp

1-17181

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

Position — Location and size of lamp
[100 100 20 20] (default) | [left bottom width height]

1 Alphabetical List

1-17182

Location and size of the lamp, specified as the vector [left bottom width height].
This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the lamp
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the lamp
width Distance between the right and left outer edges of the

lamp
height Distance between the top and bottom outer edges of the

lamp

All measurements are in pixel units.

Due to aspect ratio constraints, you cannot change the lamp height and width
independently of one another.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 20 20]

See Also
Functions
appdesigner | uifigure

Properties
Lamp

Introduced in R2016a

 uilamp

1-17183

uilistbox
Create list box component

Syntax
lb = uilistbox
lb = uilistbox(parent)
lb = uilistbox(___ ,Name,Value)

Description
lb = uilistbox creates a list box in a new figure window and returns the ListBox
object. MATLAB calls the uifigure function to create the figure.

lb = uilistbox(parent) creates the list box in the specified parent container. The
parent can be a Figure created using the uifigure function, or one of its child
containers.

lb = uilistbox(___ ,Name,Value) specifies ListBox properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create List Box

Create a list box in a figure window.

fig = uifigure('Position', [100 100 300 250]);
lbx = uilistbox(fig);

1 Alphabetical List

1-17184

Set and Access List Box Property Values

Create a list box.

fig = uifigure;
lbx = uilistbox(fig);

Determine whether the list box allows multiple selections.

multi = lbx.Multiselect

multi =

 off

Enable multiselection.

lbx.Multiselect = 'on';

 uilistbox

1-17185

Display List Box Selection

Create a list box that performs an action when the user selects an item in the list.

Save the following code as selectlistbox.m on your MATLAB path.

This code creates an app containing a list box and a text area. The ValueChangedFcn
callback updates the text area to display the list box selection.

function selectlistbox

fig = uifigure('Position',[100 100 350 275]);

% Create text area
txt = uitextarea(fig,...
 'Position',[125 90 100 22],...
 'Value','First');

% Create list box
lbox = uilistbox(fig,...
 'Position',[125 120 100 78],...
 'Items',{'First','Second','Third'},...
 'ValueChangedFcn', @updateEditField);

% ValueChangedFcn callback
function updateEditField(src,event)
 txt.Value = src.Value;
end

end

Run selectlistbox and select an option from the list.

1 Alphabetical List

1-17186

Display List Box Data

Create a list box that has a numeric value associated with each item. When the user
selects an item in the list box, the edit field displays the associated numeric value.

Save the following code as dataselection.m on your MATLAB path. This code creates
an app containing a list box and a numeric edit field. Each item in the list has a
temperature associated with it. When the user selects an item in the list, the
ValueChangedFcn callback displays the corresponding temperature in the edit field.

function dataselection
fig = uifigure('Position',[100 100 350 275]);

% Create Numeric Edit Field
ef = uieditfield(fig,'numeric',...
 'Position',[125 90 100 22]);

% Create List Box
lbox = uilistbox(fig,...

 uilistbox

1-17187

 'Items', {'Freezing', 'Warm', 'Hot', 'Boiling'},...
 'ItemsData', [0, 25, 40, 100],...
 'Position',[125 120 100 78],...
 'ValueChangedFcn', @selectionChanged);

% ValueChangedFcn callback
function selectionChanged(src,event)
 % Display list box data in edit field
 ef.Value = src.Value;
end

end

Run dataselection and select an item in the list. The numeric edit field updates to
reflect the temperature associated with the selection.

1 Alphabetical List

1-17188

List Box That Allows Selection of Multiple Items

Create an app containing a list box that allows multiple items to be selected. Write the
ValueChangedFcn callback to display the selected items in the text area below the list
box.

Save the following code as multiselect.m on your MATLAB path.

function multiselect
fig = uifigure('Position',[100 100 350 275]);

% Create Text Area
txt = uitextarea(fig,...
 'Position',[125 80 100 50]);

% Create List Box
lbox = uilistbox(fig,...
 'Position',[125 150 100 78],...
 'Multiselect','on',...
 'ValueChangedFcn',@selectionChanged);

% ValueChangedFcn callback
function selectionChanged(src,event)
 txt.Value = src.Value;
end

end

Run multiselect and select items from the list. The text area displays your selection.

 uilistbox

1-17189

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-17190

The properties listed here are a subset of the available properties. For the full list, see
ListBox.
Example: 'Items',{'Model 1','Model 2', 'Model 3', 'Model 4'} specifies the
list box options that the app user sees, from top to bottom.

Value — Value
element of Items | element of ItemsData | {}

Value, specified as an element of the Items array, ItemsData array, or an empty cell
array. By default, Value is the first element in Items.

To specify no selection, set Value to an empty cell array.

Specifying Value as an element of Items selects the list item that matches that element.
If ItemsData is not empty, then Value must be set to an element of ItemsData, and the
list box will select the associated item in the list.

Items — List box items
{'Item 1','Item 2', 'Item 3', 'Item 4'} (default) | 1-by-n cell array of
character vectors | string array | ...

List box items, specified as a cell array of character vectors, string array, or 1-D
categorical array. Duplicate elements are allowed. The list box displays as many options
as there are elements in the Items array. If you specify this property as a categorical
array, MATLAB uses the values in the array, not the full set of categories.

ItemsData — Data associated with each element of the Items property value
empty array ([]) (default) | 1-by-n numeric array | 1-by-n cell array

Data associated with each element of the Items property value, specified as a 1-by-n
numeric array or a 1-by-n cell array. Duplicate elements are allowed.

For example, if you set the Items value to employee names, you might set the
ItemsData value to corresponding employee ID numbers. The ItemsData value is not
visible to the app user.

If the number of array elements in the ItemsData value and the Items value do not
match, one of the following occurs:

• When the ItemsData value is empty, then all the elements of the Items value are
presented to the app user.

 uilistbox

1-17191

• When the ItemsData value has more elements than the Items value, then all the
elements of the Items value are presented to the app user. MATLAB ignores the extra
ItemsData elements.

• When the ItemsData value is not empty, but has fewer elements than the Items
value, the only elements of the Items value presented to the app user are those that
have a corresponding element in the ItemsData value.

Example: {'One','Two','Three'}
Example: [10 20 30 40]

Multiselect — Multiple node selection
'off' (default) | 'on'

Multiple node selection, specified as 'off' or 'on'. Set this property to 'on' to allow
users to select multiple items simultaneously.

ValueChangedFcn — Value changed function
'' (default) | function handle | cell array | character vector

Value changed function, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes when the user selects a different item in the list box. It
does not execute if the Value property setting changes programmatically.

This callback function can access specific information about the user’s interaction with
the list box. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the list box. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

1 Alphabetical List

1-17192

Property Value
Value Value of list box after app user’s most

recent interaction with it
PreviousValue Value of list box before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size of list box
[100 100 100 74] (default) | [left bottom width height]

Location and size of the list box relative to the parent container, specified as the vector
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the list box
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the list box
width Distance between the right and left outer edges of the list

box
height Distance between the top and bottom outer edges of the

list box

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 200]

 uilistbox

1-17193

Tips
Use the scroll function to programmatically scroll a list box item or the top or bottom of
the list into view.

See Also
Functions
appdesigner | scroll | uifigure

Properties
ListBox

Introduced in R2016a

1 Alphabetical List

1-17194

uiradiobutton
Create radio button component

Syntax
rb = uiradiobutton
rb = uiradiobutton(parent)
rb = uiradiobutton(___ ,Name,Value)

Description
rb = uiradiobutton creates a radio button within a button group and returns the
RadioButton object. MATLAB calls the uifigure function to create the parent figure of
the button group.

rb = uiradiobutton(parent) creates the radio button within the specified button
group. The button group must be the child of a Figure created with the uifigure
function, or must be parented to a child container of the figure: Tab, Panel,
ButtonGroup, or GridLayout.

rb = uiradiobutton(___ ,Name,Value) specifies RadioButton properties using
one or more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Radio Buttons Within a Button Group

Create a button group in a window.

fig = uifigure('Position',[680 678 398 271]);
bg = uibuttongroup(fig,'Position',[137 113 123 85]);

Create three RadioButton objects, and specify the parent and location of each.

 uiradiobutton

1-17195

rb1 = uiradiobutton(bg,'Position',[10 60 91 15]);
rb2 = uiradiobutton(bg,'Position',[10 38 91 15]);
rb3 = uiradiobutton(bg,'Position',[10 16 91 15]);

Change the text associated with each radio button.

rb1.Text = 'English';
rb2.Text = 'French';
rb3.Text = 'German';

1 Alphabetical List

1-17196

Change the radio button selection to German.

rb3.Value = true;

 uiradiobutton

1-17197

Determine the font name of the German radio button text.

font = rb3.FontName

font =

Helvetica

Input Arguments
parent — Parent container
ButtonGroup object

Parent container, specified as a ButtonGroup object. The ButtonGroup must be
parented to a Figure created using the uifigure function, or to a child container of a
uifigure, such as: Tab, Panel, ButtonGroup, or GridLayout.

1 Alphabetical List

1-17198

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset of the available properties. For the full list, see
RadioButton.
Example: 'Text', 'French' specifies that the text “French” displays next to the radio
button.

Value — State of radio button
1 | 0

State of radio button, specified as 1 (true) or 0 (false). Within a button group, only one
button can be selected at a time. The state of the first radio button added to a button
group is 1, by default. Subsequent buttons added to the same button group have a default
state of 0.

When the Value property of a RadioButton changes to 1, the Value of the property for
the previously selected RadioButton changes to 0. In addition, the SelectedObject
property value of the parent ButtonGroup is updated.

If you programmatically change the Value property of a RadioButton to 0, MATLAB
sets the Value property of the first RadioButton added to the ButtonGroup to 1. If the
first RadioButton added is the one for which you programmatically set the Value
property to 0, then MATLAB sets the Value property for the second RadioButton added
to the ButtonGroup to 1.

Note The first RadioButton added to a ButtonGroup is not necessarily the first
RadioButton listed in the Children property of the ButtonGroup.

Text — Button label
'Radio Button' (default) | character vector | cell array of character vectors | string
scalar | string array | ...

Button label, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Specify a character vector or string scalar to label

 uiradiobutton

1-17199

the button with a single line of text. Use a cell array or string array to label the button
with multiple lines of text. Each element in the array represents a separate line of text. If
you specify this property as a categorical array, MATLAB uses the values in the array, not
the full set of categories.

Position — Location and size of radio button
[10 10 91 22] (default) | [left bottom width height]

Location and size of radio button, specified as a vector of the form [left bottom
width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the button group to

the outer left edge of the radio button
bottom Distance from the inner bottom edge of the button group to

the outer bottom edge of the radio button
width Distance between the right and left outer edges of the

radio button (including text)
height Distance between the top and bottom outer edges of the

radio button

The Position values are relative to the drawable area of the button group. The drawable
area is the area inside the borders of the button group and does not include the area
occupied by the title.

All measurements are in pixel units.

Tips
• Button groups can contain any UI component type, but can only manage the selection

of radio buttons and toggle buttons.
• To make your program respond when the user selects a radio button or toggle button

that is inside a button group. define a SelectionChangedFcn callback function for
the ButtonGroup. You cannot define callbacks for the individual buttons.

• To determine which radio button or toggle button is selected, query the
SelectedObject property of the ButtonGroup. You can execute this query
anywhere in your code.

1 Alphabetical List

1-17200

• If you set the Visible property of a button group object to 'off', then any child
objects it contains become invisible along with the parent ButtonGroup. However,
the Visible property value of each child object remains unaffected.

See Also
Functions
appdesigner | uibuttongroup | uifigure

Properties
RadioButton

Introduced in R2016a

 uiradiobutton

1-17201

uislider
Create slider component

Syntax
sld = uislider
sld = uislider(parent)
sld = uislider(___ ,Name,Value)

Description
sld = uislider creates a slider in a new figure window and returns the Slider object.
MATLAB calls the uifigure function to create the figure.

sld = uislider(parent) creates the slider in the specified parent container. The
parent can be a Figure created using the uifigure function, or one of its child
containers.

sld = uislider(___ ,Name,Value) specifies Slider properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Slider in Figure Window

fig = uifigure;
sld = uislider(fig);

1 Alphabetical List

1-17202

Create Slider in Panel

Create a uifigure window containing a panel. Create a slider and specify its position
within the panel.

fig = uifigure;
pnl = uipanel(fig);
sld = uislider(pnl,'Position',[50 50 150 3]);

 uislider

1-17203

Set and Change Slider Property Values

Create a slider. Set the Value property to 50.

fig = uifigure;
sld = uislider(fig,'Value',50);

Determine the current slider limits.

limits = sld.Limits

limits =

 0 100

Change the slider limits and set the value to 35.

1 Alphabetical List

1-17204

sld.Limits = [-50 50];
sld.Value = 35;

Code Response to Moved Slider Thumb

Create a slider and a gauge. When an app user moves the slider thumb and releases the
mouse button, the needle of the gauge reflects the slider value.

Save the following code to sliderValue.m on your MATLAB path.

This code creates a window containing a slider and a gauge. When an app user moves the
slider thumb, the ValueChangedFcn callback updates the gauge to reflect the slider
value.

function slidervalue
% Create figure window and components

 uislider

1-17205

fig = uifigure('Position',[100 100 350 275]);

cg = uigauge(fig,'Position',[100 100 120 120]);

sld = uislider(fig,...
 'Position',[100 75 120 3],...
 'ValueChangedFcn',@(sld,event) updateGauge(sld,cg));

end

% Create ValueChangedFcn callback
function updateGauge(sld,cg)
cg.Value = sld.Value;
end

Run sliderValue, and then move the slider thumb. When you release the mouse button,
the circular gauge needle moves to the matching value on the gauge.

1 Alphabetical List

1-17206

Code Response to Moving Slider

Create a slider and a gauge. As an app user moves the slider thumb, the needle of the
gauge reflects the changing slider value

This code creates a window containing a slider and a gauge. As an app user moves the
slider thumb, the ValueChangingFcn callback updates the gauge to reflect the slider
value.

Save the following code to sliderChanging.m on your MATLAB path.

function sliderchanging
% Create figure window and components

fig = uifigure('Position',[100 100 350 275]);

cg = uigauge(fig,'Position',[100 100 120 120]);

sld = uislider(fig,...
 'Position',[100 75 120 3],...
 'ValueChangingFcn',@(sld,event) sliderMoving(event,cg));

end

% Create ValueChangingFcn callback
function sliderMoving(event,cg)
cg.Value = event.Value;
end

Run sliderChanging, and then move the slider. As you move the slider, the circular
gauge needle moves, reflecting the slider value.

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

 uislider

1-17207

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset of the available properties. For the full list, see
Slider.
Example: 'Limits',[0 50] specifies the minimum slider value as 0 and the maximum
slider value as 50.

Value — Slider value
0 (default) | numeric value

Slider value, specified as a numeric value. The numeric value must be within the range
specified by the Limits property value.

Limits — Minimum and maximum slider values
[0 100] (default) | two-element numeric array

Minimum and maximum slider values, specified as a two-element numeric array. The first
value must be less than the second value.

If you change Limits such that Value property is less than the new lower limit, MATLAB
sets the Value property to the new lower limit. For example, suppose the Limits
property is [0 100] and Value is 20. If the Limits changes to [50 100], then
MATLAB sets the Value property to 50.

Similarly, if you change Limits such that the Value property is greater than the new
upper limit, MATLAB sets the Value property to the new upper limit.

MajorTicks — Major tick mark locations
[0 20 40 60 80 100] (default) | vector of numeric values | []

Major tick mark locations, specified as a vector of numeric values or an empty vector. If
you do not want to show major tick marks, specify this property as an empty vector.

Tick locations that are outside the range of the Limits property do not display.

MATLAB removes duplicate tick values. However, if a major tick falls on the same value as
a minor tick, only the major tick displays.

1 Alphabetical List

1-17208

Setting the MajorTicks property sets the MajorTicksMode property to 'manual'.

MajorTickLabels — Major tick labels
{'0','20','40','60','80','100'} (default) | cell array of character vectors | string
array | {} | ...

Major tick labels, specified as a cell array of character vectors, string array, or 1-D
categorical array. If you do not want to show tick labels, specify this property as an empty
cell array. If you want to remove a label from a specific tick mark, specify an empty
character vector or empty string scalar for the corresponding element in the
MajorTickLabels array. If you specify this property as a categorical array, MATLAB
uses the values in the array, not the full set of categories.

If the length of the MajorTickLabels array is different from the length of the
MajorTicks vector, MATLAB ignores the extra entries of the longer array. If there are
extra labels, they are ignored. If there are extra tick marks, they display without labels.

Setting MajorTickLabels changes the MajorTickLabelsMode value to 'manual'.

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user moves the thumb to a different position on the
slider. The callback does not execute if the slider value changes programmatically.

This callback function can access specific information about the user’s interaction with
the slider. MATLAB passes this information in a ValueChangedData object as the second
argument to your callback function. In App Designer, the argument is called event. You
can query the object properties using dot notation. For example, event.PreviousValue
returns the previous value of the slider. The ValueChangedData object is not available to
callback functions specified as character vectors.

The following table lists the properties of the ValueChangedData object.

 uislider

1-17209

Property Value
Value Value of slider after app user’s most recent

interaction with it
PreviousValue Value of slider before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

ValueChangingFcn — Value changing callback
'' (default) | function handle | cell array | character vector

Value changing callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes as the user moves the thumb along the slider in the app. It does
not execute if the Value property changes programmatically.

This callback can access specific information about the user’s interaction with the slider.
MATLAB passes this information in a ValueChangingData object as the second
argument to your callback function. In App Designer, the argument is called event. You
can query the object properties using dot notation. For example, event.Value returns
the current value of the slider. The ValueChangingData object is not available to
callback functions specified as character vectors.

The following table lists the properties of the ValueChangingData object.

Property Value
Value Current value of the slider as the app user

is interacting with it
Source Component that executes the callback

1 Alphabetical List

1-17210

Property Value
EventName 'ValueChanging'

The Value property of the Slider object is not updated until the user releases the slider
thumb. Therefore, to get the value as the thumb is being moved, your code must get the
Value property of the ValueChangingData object.

The ValueChangingFcn callback executes as follows:

• If the app user clicks the slider value once. then the callback executes a single time.
For example, if the slider is on 1.0, and the app user single-clicks at 1.1, then the
callback executes once.

• If the app user clicks and drags the slider to a new position, the callback executes
repeatedly. For example, if the slider value is 1.0, and the app user clicks, holds, and
drags the thump to value 10.0, then the callback executes multiple times until the app
user releases the thumb.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size of slider
[100 100 150 3] (default) | [left bottom width height]

Location and size of the slider excluding tick marks and labels, specified as the vector
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the slider
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the slider
width Distance between the right and left outer edges of the

slider
height Distance between the top and bottom outer edges of the

slider

All measurements are in pixel units.

 uislider

1-17211

You cannot change the height of a slider when the Orientation property value is
'horizontal'. Similarly, you cannot change the width of a slider when the
Orientation property value is 'vertical'.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 200 60 60]

See Also
Functions
appdesigner | uifigure

Properties
Slider

Introduced in R2016a

1 Alphabetical List

1-17212

uispinner
Create spinner component

Syntax
spn = uispinner
spn = uispinner(parent)
spn = uispinner(___ ,Name,Value)

Description
spn = uispinner creates a spinner in a new figure window and returns the Spinner
object. MATLAB calls the uifigure function to create the figure.

spn = uispinner(parent) creates the spinner in the specified parent container. The
parent can be a Figure created using the uifigure function, or one of its child
containers.

spn = uispinner(___ ,Name,Value) specifies Spinner properties using one or
more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Spinner in Figure Window

fig = uifigure
spn = uispinner(fig);

 uispinner

1-17213

Create Spinner in Panel

Create a spinner in a panel.

fig = uifigure;
pnl = uipanel(fig);
spn = uispinner(pnl);

1 Alphabetical List

1-17214

Set and Access Spinner Property Values

Create a spinner that limits the values the app user can enter to between 0 and 100,
inclusive.

Create a spinner.

fig = uifigure;
spn = uispinner(fig);

 uispinner

1-17215

Determine the limits. The returned values indicate that the lower and upper limits are
unlimited.

limits = spn.Limits

limits =

 -Inf Inf

Set the limits to 0 and 100.

spn.Limits = [0 100];

Create Spinner and Specify Limit Inclusiveness

Create a spinner that allows the app user to enter a value greater than -5 and less than or
equal to 10.

fig = uifigure;
spn = uispinner(fig,'Limits', [-5 10],...
 'LowerLimitInclusive','off',...
 'UpperLimitInclusive','on',...
 'Value', 5);

Run the code. If you enter a value in the spinner that is outside the limits, MATLAB
automatically displays a message indicating the problem. MATLAB then restores the value
to the previous valid value.

Create Spinner That Displays Values Using Exactly Two Decimals

Create a spinner that allows the app user to enter any value, but always displays the
value using exactly two decimals. Be aware that MATLAB stores the exact value that the
app user enters.

fig = uifigure;
spn = uispinner(fig,'ValueDisplayFormat', '%.2f');

Run the code, and then enter 5.555 in the spinner. Click outside the spinner. The spinner
displays 5.55.

MATLAB stores the original value, 5.555.

1 Alphabetical List

1-17216

Click in the spinner, it displays the value originally typed.

Code Response to Changed Spinner Value

Create a spinner and a slider. When an app user changes the spinner value, the slider
updates to match that value.

Save the following code to spinnerValue.m on your MATLAB path. This code creates a
figure window containing a slider and a spinner. When an app user changes the spinner
value, the ValueChangedFcn updates the spinner to reflect the slider value.

function spinnervalue
% Create figure window and components
fig = uifigure('Position',[100 100 350 275]);

% Create a slider
sld = uislider(fig,...
 'Position',[90 220 120 3]);

% Create a spinner
spn = uispinner(fig,...
 'Position',[100 140 100 22],...
 'ValueChangedFcn',@(spn,event) updateSlider(spn,sld));
end

% Create ValueChangedFcn callback
function updateSlider(spn,sld)
sld.Value = spn.Value;
end

Run spinnerValue.

Click and hold the up arrow in the spinner until the value reaches 24, and then release.
The slider thumb moves to indicate the spinner value.

 uispinner

1-17217

Code Response to Changing Spinner Value

Create a spinner and a slider. As an app user changes the spinner value, the slider
repeatedly updates to match that value.

Save the following code to showChangingValue.m on your MATLAB path. This code
creates a figure window containing a slider and a spinner. As an app user changes the
spinner value, the ValueChangingFcn repeatedly updates the slider to reflect the
spinner value as it changes.

function showChangingValue
% Create figure window and components
fig = uifigure('Position',[100 100 350 275]);
sld = uislider(fig,...
 'Position',[90 220 120 3]);

spn = uispinner(fig,...
 'Position',[100 140 100 22],...
 'ValueChangingFcn',@(spn,event) spinnerChanging(event,sld));

1 Alphabetical List

1-17218

end

% Create ValueChangingFcn callback
function spinnerChanging(event,sld)
sld.Value = event.Value;
end

Run showChangingValue.

Click, and hold the up arrow in the spinner until the value reaches 24, and then release.
The slider moves as the spinner value changes.

Code Response to Calculate Changed Spinner Value

Code the ValueChangedFcn callback to determine if the value is rising or falling
compared to the previous spinner value. Set lamp color to green when the value is
increasing and to red when the value is decreasing

Save the following code to upOrDown.m on your MATLAB path.

 uispinner

1-17219

function upOrDown
% Create figure window
fig = uifigure(...
 'Position',[100 100 189 171]);

% Create Lamp
lmp = uilamp(fig,...
 'Position',[90 50 20 20],...
 'Color','green');

% Create Spinner
spn = uispinner(fig,...
 'Position',[50 100 100 22],...
 'ValueChangedFcn',@(spn,event) spinnerValueChanged(event,lmp));
end

% Create ValueChangedFcn that uses event data
function spinnerValueChanged(event,lmp)
newValue = event.Value;
previousValue = event.PreviousValue;
difference = newValue-previousValue;
if difference > 0
 lmp.Color = 'green';
else
 lmp.Color = 'red';
end
end

Run upOrDown.

Each time you change the spinner value, the ValueChangedFcn determines whether the
value is increasing or decreasing and sets the lamp color accordingly.

1 Alphabetical List

1-17220

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset of the available properties. For the full list, see
Spinner.
Example: 'Value',150 specifies that the number 50 appears in the spinner.

Value — Spinner value
0 (default) | double-precision number

 uispinner

1-17221

Spinner value, specified as a double-precision number.

When the app user types a value in the spinner, the value is a character vector. When the
app user presses the Enter key or changes focus, MATLAB converts the app-user-entered
value to a double-precision number.

MATLAB rejects the value if:

• It cannot convert the character vector to a scalar number.
• The value is NaN, blank, or a complex number.
• The value is a mathematical expression, such as 1+2.
• The value is less than or greater than the values specified by the Limits property.

When MATLAB rejects the app-user-entered value, a tooltip appears describing the value
requirements. The spinner immediately reverts to its previous value and no
ValueChangedFcn runs.
Example: 10

ValueDisplayFormat — Value display format
'%11.4g' (default) | character vector | string scalar

Value display format, specified as a character vector or string scalar.

MATLAB uses sprintf to display the value using the specified format.

You can mix text with format operators. For example:

spin = uispinner('ValueDisplayFormat','%.0f MS/s');

The resulting spinner component looks like this:

When the app user clicks in the spinner field, the field shows the value without the text.

For a complete list of supported format operators, see sprintf.

RoundFractionalValues — Rounding of fractional values
'off' (default) | 'on'

1 Alphabetical List

1-17222

Rounding of fractional values entered by app users, specified as one of the following:

• 'on' — MATLAB rounds the value if it results in a valid value and executes the
ValueChangedFcn callback. If the resulting value is outside the lower or upper
Limits, then MATLAB rounds to the nearest value that falls within the Limits and
then executes the callback.

• 'off' — MATLAB does not round a fractional value to a whole number.

If the RoundFractionalValues property value changes from 'off' to 'on'
programmatically, then MATLAB applies these rules:

• If rounding the existing value yields an integer that lies inside the limit range specified
by the Limits property, then MATLAB rounds up the existing value.

• If rounding the existing value yields an integer that is less than the lower limit, then
MATLAB rounds up the existing value.

• If rounding the existing value yields an integer that is greater than the upper limit,
then MATLAB rounds down the existing value.

• If the limits are configured such that there is no valid integer in the range, then
MATLAB sets the RoundFractionalValues property value back to 'off' and
displays an error message.

Step — Quantity by which value is incremented or decremented
1 (default) | numeric scalar

Quantity by which the Value property increments or decrements when the app user
presses the up and down arrows, respectively.

Limits — Minimum and maximum spinner values
[-Inf Inf] (default) | two-element numeric array

Minimum and maximum spinner values, specified as a two-element numeric array. The
first value must be less than the second value. Set array elements to -Inf or Inf to
specify no minimum or no maximum, respectively.

If you change Limits such that the Value property is outside the new limits, MATLAB
sets the Value property to a value within the new limits. For example, suppose the
Limits property is [0 100] and the Value property is 20. If the Limits property
changes to [50 100], then MATLAB sets the Value property to 50 (assuming the
LowerLimitInclusive value is 'on'.
Example: [-Inf 200]

 uispinner

1-17223

Example: [-100 Inf]
Example: [-100 200]

LowerLimitInclusive — Lower limit inclusiveness
'on' (default) | 'off'

Lower limit inclusiveness, specified as one of the following:

• 'on' — Value must be equal to or greater than the lower limit.
• 'off' — Value must be greater than the lower limit.

UpperLimitInclusive — Upper limit inclusiveness
'on' (default) | 'off'

Upper limit inclusiveness, specified as one of the following:

• 'on' — Value must be equal to or less than the upper limit.
• 'off' — Value must be less than the upper limit.

For example, if you want the numeric input to be between 0 and 1, excluding 0 and 1, do
all of the following:

• Set the Limits property value to [0 1].
• Set the UpperLimitInclusive property to 'off'.
• Set the LowerLimitInclusive property to 'off'.

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback executes when the user changes focus or presses the Enter key after
changing the spinner value. It does not matter whether the user changes the spinner
value by typing or by pressing the arrow keys. The callback does not execute if the
spinner value changes programmatically.

1 Alphabetical List

1-17224

This callback function can access specific information about the user’s interaction with
the spinner. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the spinner. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of spinner after app user’s most

recent interaction with it
PreviousValue Value of spinner before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

ValueChangingFcn — Value changing callback
'' (default) | function handle | cell array | character vector

Value changing callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

This callback function executes as the user clicks and holds the up or down arrow on the
spinner. It does not execute if the Value property changes programmatically.

This callback function can access specific information about the user’s interaction with
the spinner. MATLAB passes this information in a ValueChangingData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.Value returns the current value of the spinner. The ValueChangingData object
is not available to callback functions specified as character vectors.

 uispinner

1-17225

The following table lists the properties of the ValueChangingData object.

Property Value
Value Current value of the spinner as the app

user is interacting with it
Source Component that executes the callback
EventName 'ValueChanging'

The Value property of the Spinner is not updated until the app user releases the arrow
key. Therefore, to get the values while the arrow key is being pressed, your code must get
the Value property of the ValueChangingData object.

The callback executes as follows:

• If the app user clicks a spinner up or down arrow, the callback executes once. For
example, suppose that the spinner value is 2, and the Step value is 1. If the app user
clicks the up arrow, the callback executes.

• If the app user presses and holds a spinner up or down arrow, the callback executes
repeatedly. For example, if the app user clicks and holds the up arrow, the callback
executes multiple times until the app user releases the up arrow.

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size of spinner
[100 100 100 22] (default) | [left bottom width height]

Location and size of spinner relative to the parent container, specified as the vector
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the spinner
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the spinner
width Distance between the right and left outer edges of the

spinner
height Distance between the top and bottom outer edges of the

spinner

1 Alphabetical List

1-17226

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 22]

See Also
Functions
appdesigner | uifigure

Properties
Spinner

Introduced in R2016a

 uispinner

1-17227

uiswitch
Create slider switch, rocker switch, or toggle switch component

Syntax
sw = uiswitch
sw = uiswitch(style)
sw = uiswitch(parent)
sw = uiswitch(parent,style)
sw = uiswitch(___ ,Name,Value)

Description
sw = uiswitch creates a slider switch in a new figure window and returns the Switch
object. MATLAB calls the uifigure function to create the figure.

sw = uiswitch(style) creates a switch of the specified style.

sw = uiswitch(parent) creates the switch in the specified parent container. The
parent can be a Figure created using the uifigure function, or one of its child
containers.

sw = uiswitch(parent,style) creates a switch of the specified style in the specified
parent container.

sw = uiswitch(___ ,Name,Value) specifies object properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

1 Alphabetical List

1-17228

Create Slider Switch in Figure Window

fig = uifigure;
sliderswitch = uiswitch(fig);

Create Toggle Switch in Figure Window

fig = uifigure;
toggleswitch = uiswitch(fig,'toggle');

 uiswitch

1-17229

Create a Rocker Switch in a Panel

Create a rocker switch in a panel.

fig = uifigure;
pnl = uipanel(fig);
rockerswitch = uiswitch(pnl,'rocker');

1 Alphabetical List

1-17230

Set and Access Switch Property Values

Create a rocker switch.

fig = uifigure;
rockerswitch = uiswitch(fig,'rocker'); '

Change the switch text.

rockerswitch.Items = {'Stop','Start'};

 uiswitch

1-17231

Determine the current switch value.

val = rockerswitch.Value

val =

Stop

Switch That Changes Lamp Color

Save the following code as lampswitch.m on your MATLAB path. This code creates an
app containing a lamp and a rocker switch. When the user flips the switch, the
ValueChangedFcn callback changes the lamp color.

function lampswitch
fig = uifigure('Position',[100 100 350 275]);

% Create lamp

1 Alphabetical List

1-17232

lmp = uilamp(fig,...
 'Position',[165 75 20 20],...
 'Color','green');

% Create switch
uiswitch(fig,'toggle',...
 'Items',{'Go','Stop'},...
 'Position',[165 160 20 45],...
 'ValueChangedFcn',@switchMoved);

% ValueChangedFcn callback
function switchMoved(src,event)
 switch src.Value
 case 'Go'
 lmp.Color = 'green';
 case 'Stop'
 lmp.Color = 'red';
 end
 end
end

Run lampswitch, and click the switch to see the color change.

 uiswitch

1-17233

Input Arguments
style — Style of switch
'slider' (default) | 'rocker' | 'toggle'

Style of switch, specified as a value from the following table:

Style Appearance
'slider'

'rocker'

1 Alphabetical List

1-17234

Style Appearance
'toggle'

parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Text',{'0','1'} specifies the two switch states are “0” and “1”.

Each type of switch supports a different set of properties. For a full list of properties and
descriptions for each type, see the associated property page.

• Switch
• RockerSwitch
• ToggleSwitch

See Also
Functions
appdesigner | uifigure

 uiswitch

1-17235

Properties
RockerSwitch | Switch | ToggleSwitch

Introduced in R2016a

1 Alphabetical List

1-17236

uitextarea
Create text area component

Syntax
txa = uitextarea
txa = uitextarea(parent)
txa = uitextarea(___ ,Name,Value)

Description
txa = uitextarea creates a text area in a new figure window and returns the
TextArea object. MATLAB calls the uifigure function to create the figure.

txa = uitextarea(parent) creates the text area in the specified parent container.
The parent can be a Figure created using the uifigure function, or one of its child
containers.

txa = uitextarea(___ ,Name,Value) specifies TextArea properties using one or
more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Text Area in Figure Window

fig = uifigure;
txa = uitextarea(fig);

 uitextarea

1-17237

Set and Access Text Area Properties

Create a populated text area.

fig = uifigure;
txa = uitextarea(fig,...
 'Value', {'First Name Last Name';...
 'Address 1'; 'Address 2';'City, State'; 'Postal Code'});

1 Alphabetical List

1-17238

Notice that the text area includes a scroll bar so that the app user can view the postal
code.

Determine the current size of the text area.

size = txa.Position(3:4)

size =

 150 60

Increase the text area size so that the postal code displays without the use of a scroll bar.

txa.Position(3:4) = [155 75];

 uitextarea

1-17239

Code Response to Changed Text Area Value

Create a text area and two labels. When an app user types text and clicks outside the text
area, a label thanks the app user for the input. If the app user removes the text and clicks
outside the text area, the thank you text is removed.

Save the following code to comments.m on your MATLAB path. This code creates a figure
window containing two labels and a text area. When an app user types text and clicks
outside the text area, the ValueChangedFcn callback updates one of the labels to thank
the user.

function comments
% Create figure window and components

fig = uifigure('Position',[100 100 429 276]);

label1 = uilabel(fig,...

1 Alphabetical List

1-17240

 'Position',[100 164 100 15],...
 'Text','Enter Comments:');

label2 = uilabel(fig,...
 'Position',[100 75 175 15],...
 'Text','');

textarea = uitextarea(fig,...
 'Position',[100 100 150 60],...
 'ValueChangedFcn',@(textarea,event) textEntered(textarea, label2));

% Create ValueChangedFcn callback
 function textEntered(textarea,label2)
 val = textarea.Value;
 label2.Text = '';
 % Check each element of text area cell array for text
 for k = 1:length(val)
 if(~isempty(val{k}))
 label2.Text = 'Thank you for your comments!';
 break;
 end
 end
 end
end

Run comments, and type text in the text area field. Click outside the text area to trigger
the callback.

 uitextarea

1-17241

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout
object

Parent container, specified as a Figure created using the uifigure function, or one of
its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is
specified, MATLAB calls the uifigure function to create a new Figure object that
serves as the parent container.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-17242

The properties listed here are a subset of the available properties. For the full list,
see .TextArea.
Example: 'Editable','off' specifies that the app user cannot change the text area
text.

Value — Value
{''} (default) | character vector | cell array of character vectors | string array | 1-D
categorical array

Value, specified as a character vector, cell array of character vectors, string array, or 1-D
categorical array. MATLAB can properly render formatted text, such as this:

cellArrayText{1} = sprintf('%s\n%s', 'Line 1', 'Line 2')
cellArrayText{2} = sprintf('%s\n%s', 'Line 3', 'Line 4')
textarea = uitextarea('Value',cellArrayText);

If you specify this property as a categorical array, MATLAB uses the values in the array,
not the full set of categories.

If the text does not fit into the width of the text area, MATLAB wraps the text.

If there are too many rows to display in the text area, MATLAB adds a scroll bar.
Example: {'Joseph Welford'; 'Mary Reilly'; 'Roberta Silberlicht'}

ValueChangedFcn — Value changed callback
'' (default) | function handle | cell array | character vector

Value changed callback, specified as one of these values:

• A function handle.
• A cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• A character vector containing a valid MATLAB expression (not recommended).

MATLAB evaluates this expression in the base workspace.

 uitextarea

1-17243

The callback executes when the user changes the text and either presses Tab or clicks
outside the text area. It does not execute if the Value property changes
programmatically.

This callback function can access specific information about the user’s interaction with
the text area. MATLAB passes this information in a ValueChangedData object as the
second argument to your callback function. In App Designer, the argument is called
event. You can query the object properties using dot notation. For example,
event.PreviousValue returns the previous value of the text area. The
ValueChangedData object is not available to callback functions specified as character
vectors.

The following table lists the properties of the ValueChangedData object.

Property Value
Value Value of text area after app user’s most

recent interaction with it
PreviousValue Value of text area before app user’s most

recent interaction with it
Source Component that executes the callback
EventName 'ValueChanged'

For more information about writing callbacks, see “Write Callbacks in App Designer”.

Position — Location and size of text area
[100 100 150 60] (default) | [left bottom width height]

Location and size of the text area relative to the parent, specified as the vector [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to

the outer left edge of the text area
bottom Distance from the inner bottom edge of the parent

container to the outer bottom edge of the text area
width Distance between the right and left outer edges of the text

area

1 Alphabetical List

1-17244

Element Description
height Distance between the top and bottom outer edges of the

text area

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The
drawable area is the area inside the borders of the container and does not include the
area occupied by decorations such as a menu bar or title.
Example: [100 100 100 90]

See Also
Functions
appdesigner | uifigure

Properties
TextArea

Introduced in R2016a

 uitextarea

1-17245

uitogglebutton
Create toggle button component

Syntax
tb = uitogglebutton
tb = uitogglebutton(parent)
tb = uitogglebutton(___ ,Name,Value)

Description
tb = uitogglebutton creates toggle button within a button group and returns the
ToggleButton object. MATLAB calls the uifigure function to create the parent figure
of the button group.

tb = uitogglebutton(parent) creates the toggle button within the specified button
group. The button group must be the child of a Figure created with the uifigure
function, or must be parented to a child container of the figure: Tab, Panel,
ButtonGroup, or GridLayout.

tb = uitogglebutton(___ ,Name,Value) specifies ToggleButton properties using
one or more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Toggle Buttons, Set and Access Property Values

Create toggle buttons by first creating a figure window and a button group to contain the
buttons.

fig = uifigure('Position',[680 678 398 271]);
bg = uibuttongroup(fig,'Position',[137 113 123 85]);

1 Alphabetical List

1-17246

Create three toggle buttons and specify the location of each.

tb1 = uitogglebutton(bg,'Position',[10 50 100 22]);
tb2 = uitogglebutton(bg,'Position',[10 28 100 22]);
tb3 = uitogglebutton(bg,'Position',[10 6 100 22]);

Change the text associated with each toggle button.

tb1.Text = 'English';
tb2.Text = 'French';
tb3.Text = 'German';

 uitogglebutton

1-17247

Change the toggle button selection to German programmatically.

tb3.Value = true;

1 Alphabetical List

1-17248

Determine the font name of the German toggle button text.

font = tb3.FontName

font =

Helvetica

Input Arguments
parent — Parent container
ButtonGroup object

Parent container, specified as a ButtonGroup object. The ButtonGroup must be
parented to a Figure created using the uifigure function, or to a child container of a
uifigure, such as: Tab, Panel, ButtonGroup, or GridLayout.

 uitogglebutton

1-17249

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The properties listed here are a subset of the available properties. For the full list, see
ToggleButton.
Example: 'Text', 'French' specifies that the text “French” displays on the toggle
button.

Value — State of toggle button
1 | 0

State of the toggle button specified as 0 (unpressed) or 1 (depressed). Within a given
button group, only one toggle button can be selected (depressed) at a time. When the
Value property is set to 1, the toggle button appears depressed. The state of the first
button added to a button group is 1, by default. Subsequent buttons added to the same
button group have a default state of 0.

When the Value property of a ToggleButton changes to 1, the Value property of the
previously selected ToggleButton changes to 0. In addition, the SelectedObject
property value of the ButtonGroup is updated.

If you programmatically change the Value property of a ToggleButton to 0, MATLAB
sets the Value property of the first ToggleButton added to the ButtonGroup to 1. If
the first ToggleButton added is the one for which you programmatically set the Value
property to 0, then MATLAB sets the Value property for the ToggleButton added to the
ButtonGroup to 1.

Note The first ToggleButton added to a ButtonGroup is not necessarily the first
ToggleButton listed in the Children property of the ButtonGroup.

Text — Button label
'Toggle Button' (default) | character vector | cell array of character vectors

Button label, specified as a character vector, cell array of character vectors, string scalar,
string array, or 1-D categorical array. Specify a character vector or string scalar to label

1 Alphabetical List

1-17250

the button with a single line of text. Use a cell array or string array to label the button
with multiple lines of text. Each element in the array represents a separate line of text. If
you specify this property as a categorical array, MATLAB uses the values in the array, not
the full set of categories.

Icon — File name of button icon
'' (default) | character vector | string scalar

File name of the button icon, specified as a character vector or string scalar.

The file name can be an image file name on the MATLAB path or a full path to an image
file. If you plan to share an app with others, put the image file on the MATLAB path to
facilitate app packaging.

The image file type must be JPEG, GIF, or PNG.

• If the button text takes up all the space specified by the Position property value,
then MATLAB does not display the icon.

• If some room is available for the icon, then MATLAB scales down the image to fit, if
necessary.

Example: 'icon.png'
Example: 'C:\Documents\icon.png'

Position — Location and size of button
[10 40 100 22] (default) | [left bottom width height]

Location and size button, specified as a vector of the form [left bottom width
height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the button group to

the outer left edge of the button
bottom Distance from the inner bottom edge of the button group to

the outer bottom edge of the button
width Distance between the right and left outer edges of the

button
height Distance between the top and bottom outer edges of the

button

 uitogglebutton

1-17251

The Position values are relative to the drawable area of the button group. The drawable
area is the area inside the borders of the button group and does not include the area
occupied by the title.

All measurements are in pixel units.

Tips
• Button groups can contain any UI component type, but can only manage the selection

of radio buttons and toggle buttons.
• To make your program respond when the app user selects a radio button or toggle

button that is inside a button group. define a SelectionChangedFcn callback
function for the ButtonGroup object. You cannot define callbacks for the individual
buttons.

• To determine which radio button or toggle button is selected, query the
SelectedObject property of the ButtonGroup object. You can execute this query
anywhere in your code.

• If you set the Visible property of a ButtonGroup object to 'off', then any child
objects it contains become invisible along with the parent ButtonGroup. However,
the Visible property value of each child object remains unaffected.

See Also
Functions
appdesigner | uibuttongroup | uifigure

Properties
ToggleButton

Introduced in R2016a

1 Alphabetical List

1-17252

upgradePreviouslyInstalledSupportPackages
Get previously installed hardware support packages and optional features for the
currently installed release

Syntax
upgradePreviouslyInstalledSupportPackages

Description
upgradePreviouslyInstalledSupportPackages checks for hardware support
packages and optional features you installed in prior MATLAB releases. If upgraded
versions are available, you can install them for this release.

Examples

Get Previously Installed Support Packages

upgradePreviouslyInstalledSupportPackages

If MATLAB doesn't already have your credentials, you are prompted to sign in to your
MathWorks Account. This command then launches the Add-Ons Manager, where you can
select all or only specific add-ons to upgrade.

Introduced in R2017b

 upgradePreviouslyInstalledSupportPackages

1-17253

matlab.System class
Package: matlab

Base class for System objects

Description
matlab.System is the base class for System objects. In your class definition file, you
must subclass your object from this base class (or from another class that derives from
this base class). Subclassing allows you to use the implementation and service methods
provided by this base class to build your object. Type this syntax as the first line of your
class definition file to directly inherit from the matlab.System base class, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note You must set Access = protected for each matlab.System method you use in
your code.

1 Alphabetical List

1-17254

Methods
allowModelReferenceDiscreteSampleTimeInheritanceImpl

Model reference sample time
inheritance status for
discrete sample times

getDiscreteStateImpl Discrete state property values
getGlobalNamesImpl Global variable names for

MATLAB System block
getHeaderImpl Header for System object

display
getNumInputsImpl Number of inputs to the

System object
getNumOutputsImpl Number of outputs from

System object
getSimulateUsingImpl Specify value for Simulate

using parameter
getSimulinkFunctionNamesImpl Register Simulink function

names used in your System
object

infoImpl Information about System
object

isInactivePropertyImpl Status of inactive property
isInputSizeLockedImpl Status of locked input size
isDiscreteStateSpecificationMutableImpl

Control whether discrete
states can change data type

isInputComplexityMutableImpl Set whether System object
input complexity can change

isInputDataTypeMutableImpl Set whether System object
input data type can change

isInputSizeMutableImpl Set whether System object
input size can change

isTunablePropertyDataTypeMutableImpl
Set whether tunable
properties can change data
type

loadObjectImpl Load System object from MAT
file

processInputSpecificationChangeImpl
Perform actions when input
size, complexity, or data type
change

processTunedPropertiesImpl Action when tunable
properties change

releaseImpl Release resources
resetImpl Reset System object states
saveObjectImpl Save System object in MAT

file
setProperties Set property values using

name-value pairs when
creating System object

setupImpl Initialize System object
showFiSettingsImpl Fixed point data type tab

visibility for System objects
showSimulateUsingImpl Visibility of Simulate

using parameter
stepImpl System output and state

update equations
supportsMultipleInstanceImpl Support System object in

Simulink For Each subsystem
validateInputsImpl Validate inputs to System

object
validatePropertiesImpl Validate property values of

System object
getImpulseResponseLengthImpl Define length of input effects

for dataflow subsystems
getInputDimensionConstraintImpl

Define input dimension
constraints for dataflow
subsystems

getOutputDimensionConstraintImpl
Define output dimension
constraints for dataflow
subsystems

 matlab.System class

1-17255

Attributes
You can apply attributes to the System object™ class and properties. To learn more about
attributes, see “Class Attributes” or “Property Attributes”.

Class Attribute
This table shows attributes that you can apply to the MATLAB System object class.

Attribute Name Description
StrictDefaults Control the defaults for the methods that restrict specification

modifications changes:

• isInputSizeMutableImpl
• isInputComplexityMutableImpl
• isInputDataTypeMutableImpl
• isTunablePropertyDataTypeMutableImpl
• isDiscreteStateDataTypeMutableImpl

By default, these methods return true. When you add this class
attribute, these methods return false by default. By making
these methods return false, the specified aspects of the inputs,
tunable properties, or discrete states cannot change. You can
always implement these methods individually. Customized
methods take precedence over the StrictDefaults attribute.

For System objects used in Simulink, this attribute only restricts
input size changes because Simulink already restricts complexity
and data type for tunable properties, inputs, and states.

Specify the class attribute value in parentheses followed by the class name, for example:

classdef (StrictDefaults) MySystemObject < matlab.System

Property Attributes
You can apply the following attributes to any property of a custom System object.

1 Alphabetical List

1-17256

Nontunable Use Nontunable to prevent a user from changing that
property value while the object is in use. By default, all
properties are tunable. The Nontunable attribute is useful
to lock down a property that has side effects when changed.
This attribute is also useful for locking a property value
assumed to be constant during processing. You should
always specify properties that affect the number of input or
output ports as Nontunable.

Logical Use Logical to limit the property value to a logical, scalar
value. Any scalar value that can be converted to a logical is
also valid, such as 0 or 1.

PositiveInteger Use PositiveInteger to limit the property value to a
positive integer value.

DiscreteState Use DiscreteState to mark a property so it will display its
state value when you use the getDiscreteState method.

Examples

Create a Basic System Object

Create a simple System object, AddOne, which subclasses from matlab.System. You
place this code into a MATLAB file, AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

 methods (Access = protected)
 % stepImpl method is called when the object is called.
 function y = stepImpl(~,x)
 y = x + 1;
 end
 end
end

Use this object by creating an instance of AddOne, providing an input, and running the
object.

 matlab.System class

1-17257

hAdder = AddOne;
x = 1;
hAdder(x);

Assign the Nontunable attribute to the InitialValue property, which you define in
your class definition file.

properties (Nontunable)
 InitialValue
end

See Also
matlab.system.StringSet | matlab.system.display.Action |
matlab.system.display.Header | matlab.system.display.Section |
matlab.system.display.SectionGroup | matlab.system.mixin.CustomIcon |
matlab.system.mixin.FiniteSource | matlab.system.mixin.Nondirect |
matlab.system.mixin.Propagates | matlab.system.mixin.SampleTime

Topics
“Classes”
Class Attributes
Property Attributes
“Method Attributes”
“Define Basic System Objects”
“Define Property Attributes”

1 Alphabetical List

1-17258

matlab.System Constructor
Construct System object with Name,Value pairs or value-only inputs

Syntax
function obj = ObjectName(varargin)

Description
function obj = ObjectName(varargin) constructs an ObjectName System object
and sets properties from name-value pair inputs.

The System object constructor is a public method in the class file. The method name
matches the class name. When you create a System object, the constructor is called to
initialize properties to nondefault values. The constructor returns a new System object.

Constructor Body
Inside the constructor, call setProperties using one of the syntaxes in the table.

Input Arguments Constructor Body Example
Name,Value pairs setProperties(obj, nargin,

varargin{:})
“Constructor for Name-Value
Pairs” on page 1-17260

Name,Value pairs and
value-only arguments

setProperties(obj, nargin,
varargin{:}, 'Prop1', ...,
'PropN')

“Constructor for Value-Only
Property” on page 1-17260

When you call the System object, properties are specified as comma-separated pairs of
Name,Value arguments or, if specified, Value-only arguments. Name is the property
name and Value is the corresponding value. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Value-only arguments are useful for properties that are frequently set to nondefault
values. For example, System objects that read a file often require the file name property
to be reset.

 matlab.System Constructor

1-17259

Tip: Within the body of the constructor, do not assign property values. This practice can
cause problems if you use the System object in multiple environments (such as in a
System block, in a MATLAB script, and in generated code). Instead, use default property
values or change values inside setupImpl.

Examples

Constructor for Name-Value Pairs

Define a System object constructor that allows name-value pair input arguments.

Define a constructor for name-value pair inputs.

function obj = Counter(varargin)
 % Support name-value pair arguments when constructing object
 setProperties(obj,nargin,varargin{:})
end

With this constructor body, create a Counter object using name-value pairs.

myObj = Counter('StartValue',0,'UseIncrement',true);

Constructor for Value-Only Property

Define a System object constructor with a value-only input property.

Define a constructor with 'StartValue' as a value-only property input. This constructor
also allows name-value inputs.

function obj = Counter(varargin)
 % Support value-only argument for StartValue when instantiating
 setProperties(obj,nargin,varargin{:},'StartValue');
end

With this constructor body, create a Counter object using a value-only argument for
StartValue and name-value pairs for other properties.

1 Alphabetical List

1-17260

myObj = Counter(0,'UseIncrement',true);

See Also
setProperties | setupImpl | nargin | varargin

Introduced in R2010a

 matlab.System Constructor

1-17261

allowModelReferenceDiscreteSampleTimeInh
eritanceImpl
Model reference sample time inheritance status for discrete sample times

Syntax
flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)

Description
flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)
specifies whether a System object in a reference model is allowed to inherit the sample
time of the parent model. Use this method only for System objects that use discrete
sample time and are intended for inclusion in Simulink via the MATLAB System block.

During model compilation, Simulink sets the model reference sample time inheritance
before the System object setupImpl method is called.

Note You must set Access = protected for this method.

Input Arguments
obj

System object handle

Output Arguments
flag

Flag indicating whether model reference discrete sample time inheritance is allowed for
the MATLAB System block containing the System object, returned as a logical value.

1 Alphabetical List

1-17262

The default value for this argument depends on the number of inputs to the System
object. To use the default value, you do not need to include this method in your System
object class definition file.

Number of
System object
Inputs

Default Value and Override Effects

No inputs Default: false — Model reference discrete sample time
inheritance is not allowed.
If your System object uses discrete sample time in its algorithm,
override the default by returning true from
allowModelReferenceDiscreteSampleTimeInheritanceImpl
.

One or more inputs Default: true — If no other Simulink constraint prevents it, model
reference sample time inheritance is allowed.
If your System object does not use sample time in its algorithm,
override the default by returning false from
allowModelReferenceDiscreteSampleTimeInheritanceImpl
.

Examples

Set Sample Time Inheritance for System Object

For a System object that has one or more inputs, to disallow model reference discrete
sample time inheritance for that object, set the sample time inheritance to false. Include
this code in your class definition file for the object.

methods (Access = protected)
 function flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(~)
 flag = false;
 end
end

See Also
matlab.System

 allowModelReferenceDiscreteSampleTimeInheritanceImpl

1-17263

Topics
“Set Model Reference Discrete Sample Time Inheritance” (Simulink)
“Model Reference Basics” (Simulink)
“Referenced Model Sample Times” (Simulink)

1 Alphabetical List

1-17264

getDiscreteStateImpl
Discrete state property values

Syntax
s = getDiscreteStateImpl(obj)

Description
s = getDiscreteStateImpl(obj) returns a struct s of internal state value
properties, which have the DiscreteState attribute. The field names of the struct are
the object’s DiscreteState property names. To restrict or change the values returned
by getDiscreteState method, you can override this getDiscreteStateImpl method.

getDiscreteStatesImpl is called by the getDiscreteState method, which is called
by the setup method.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

Output Arguments
s

State values, returned as a struct

 getDiscreteStateImpl

1-17265

Examples

Get Discrete State Values

Use the getDiscreteStateImpl method in your class definition file to get the discrete
states of the object.

methods (Access = protected)
 function s = getDiscreteStateImpl(obj)
 end
end

See Also
setupImpl

Topics
“Define Property Attributes”

1 Alphabetical List

1-17266

getGlobalNamesImpl
Global variable names for MATLAB System block

Syntax
name = getGlobalNamesImpl(obj)

Description
name = getGlobalNamesImpl(obj) specifies the names of global variables that are
declared in a System object for use in a Simulink P-code file. For P-code files, in addition
to declaring your global variables in stepImpl, outputImpl, or updateImpl, you must
include the getGlobalNamesImpl method. You declare global variables in a cell array in
the getGlobalNamesImpl method. System objects that contain these global variables
are included in Simulink using a MATLAB System block. To enable a global variable in
Simulink, your model also must include a Data Store Memory block with a Data Store
Name that matches the global variable name.

getGlobalNamesImpl is called by the MATLAB System block.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

 getGlobalNamesImpl

1-17267

Output Arguments
name

Name of the cell array containing the global variable names. The elements of the cell
array are character vectors.

Examples

Specify Global Names

Specify two global names in your class definition file.

methods(Access = protected)
 function glnames = getGlobalNamesImpl(obj)
 glnames = {"FEE","OTHERFEE"};
 end

 function y = stepImpl(obj,u)
 global FEE
 global OTHERFEE
 y = u - FEE * obj.lastData + OTHERFEE;
 obj.lastData = u;
 end
end

See Also
outputImpl | stepImpl | updateImpl

Topics
“System Object Global Variables in Simulink” (Simulink)

Introduced in R2016b

1 Alphabetical List

1-17268

getHeaderImpl
Header for System object display

Syntax
header = getHeaderImpl

Description
header = getHeaderImpl specifies the dialog header to display on the MATLAB
System block dialog box. If you do not specify the getHeaderImpl method, no title or
text appears for the header in the block dialog box.

getHeaderImpl is called by the MATLAB System block.

Note You must set Access = protected and Static for this method.

Output Arguments
header

Header text

Examples

Define Header for System Block Dialog Box

Define a header in your class definition file for the EnhancedCounter System object.

 methods (Static, Access = protected)
 function header = getHeaderImpl
 header = matlab.system.display.Header('EnhancedCounter',...

 getHeaderImpl

1-17269

 'Title','Enhanced Counter');
 end
 end

See Also
getPropertyGroupsImpl

Topics
“Add Header to MATLAB System Block” (Simulink)

1 Alphabetical List

1-17270

getInputNamesImpl
Names of MATLAB System block input ports

Syntax
names = getInputNamesImpl(obj)

Description
names = getInputNamesImpl(obj) specifies the names of the input ports from
System object, obj implemented in a MATLAB System block. The size of names matches
the number of inputs returned by the getNumInputs method. If you change a property
value that changes the number of inputs, the names of those inputs also change.

Class Information
This method is part of the matlab.System class.

Run-Time Details
getInputNamesImpl is called by the MATLAB System block.

Method Authoring Tips
You must set Access = protected for this method.

Input Arguments
obj — System object
System object

Specified System object to query.

 getInputNamesImpl

1-17271

Output Arguments
names — Names of inputs
empty string array (default) | string array

Names of the inputs for the specified object, returned as a string array whose length
equals the number of inputs.

Examples

See Also
getNumInputsImpl | getOutputNamesImpl

Topics
“Specify Input and Output Names” (Simulink)

Introduced in R2013b

1 Alphabetical List

1-17272

getNumInputsImpl
Number of inputs to the System object

Syntax
num = getNumInputsImpl(obj)

Description
num = getNumInputsImpl(obj) returns the number of inputs expected by the System
object.

If the signature of stepImpl or updateImpl does not include varargin, the System
object can determine the number of outputs from the method signature. In this case, you
do not need to include getNumInputsImpl in your class definition file.

If the signature of stepImpl or updateImpl does include varargin, you can implement
the getNumInputsImpl method in your class definition file to determine the number of
inputs. You can use nargin in the stepImpl method to get the number of inputs the
object was called with.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

Input Arguments
obj

System object

 getNumInputsImpl

1-17273

Output Arguments
num

Number of inputs expected when running the object, returned as an integer.

Default: 1

Examples

Set Number of Inputs

Specify the number of inputs (2, in this case) expected by the object.

methods (Access = protected)
 function num = getNumInputsImpl(~)
 num = 2;
 end
end

Set Number of Inputs to Zero

Specify that the object does not accept any inputs.

methods (Access = protected)
 function num = getNumInputsImpl(~)
 num = 0;
 end
end

See Also
getNumOutputsImpl | setupImpl | stepImpl

Topics
“Change the Number of Inputs”

1 Alphabetical List

1-17274

getNumOutputsImpl
Number of outputs from System object

Syntax
num = getNumOutputsImpl(obj)

Description
num = getNumOutputsImpl(obj) returns the number of outputs expected from the
System object.

If the signature of stepImpl or outputImpl does not include varargout, the System
object can determine the number of outputs from the method signature. In this case, you
do not need to implement the getNumOutputsImpl method.

If the signature of stepImpl or outputImpl does include varargout, you can
implement the getNumOutputsImpl method in your class definition file to determine the
number of outputs. You can use nargout in the stepImpl method to get the number of
outputs the object was called with.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

Input Arguments
obj

System object

 getNumOutputsImpl

1-17275

Output Arguments
num

Number of outputs from the specified object, returned as an integer.

Examples

Set Number of Outputs

Specify the number of outputs (2, in this case) returned from the object.

methods (Access = protected)
 function num = getNumOutputsImpl(~)
 num = 2;
 end
end

Set Number of Outputs to Zero

Specify that the object does not return any outputs.

methods (Access = protected)
 function num = getNumOutputsImpl(~)
 num = 0;
 end
end

Use nargout for Variable Number of Outputs

Use nargout in the stepImpl method when you have a variable number of outputs and
will generate code.

methods (Access = protected)
 function varargout = stepImpl(~,varargin)
 for i = 1:nargout
 varargout{i} = varargin{i}+1;

1 Alphabetical List

1-17276

 end
 end
end

See Also
getNumInputsImpl | setupImpl | stepImpl

Topics
“Change the Number of Inputs”

 getNumOutputsImpl

1-17277

getOutputNamesImpl
Names of MATLAB System block output ports

Syntax
names = getOutputNamesImpl(obj)

Description
names = getOutputNamesImpl(obj) specifies the names of the output ports from
System object, obj implemented in a MATLAB System block. The size of names matches
the number of outputs returned by the getNumOutputs method. If you change a property
value that affects the number of outputs, the names of those outputs also change.

Class Information
This method is part of the matlab.System class.

Run-Time Details
getOutputNamesImpl is called by the MATLAB System block.

Method Authoring Tips
You must set Access = protected for this method.

Input Arguments
obj — System object
System object

Specified System object to query.

1 Alphabetical List

1-17278

Output Arguments
names — Names of outputs
empty string array (default) | string array

Names of the outputs for the specified object, returned as a string array whose length
equals the number of outputs.

Examples

See Also
getInputNamesImpl | getNumOutputsImpl

Topics
“Specify Input and Output Names” (Simulink)

Introduced in R2013b

 getOutputNamesImpl

1-17279

getPropertyGroupsImpl
Property groups for System object display

Syntax
group = getPropertyGroupsImpl

Description
group = getPropertyGroupsImpl specifies how to display properties in the block
dialog of a MATLAB System block. You can specify:

• Sections — Arrange properties into sections (panel on the MATLAB System block
dialog) with matlab.system.display.Section.

• Section Groups — Arrange properties and sections into groups (tabs on the MATLAB
System block dialog) with matlab.system.display.SectionGroup.

• Order of properties — Specify the order of properties within sections/groups
• Order of sections — Specify the order of sections within groups.

If you create a section, but that section is not in a section group, its properties appear
above the block dialog tab panels.

Class Information
This getPropertyGroupsImpl method is part of the matlab.System class.

Run-Time Details
In Simulink, getPropertyGroupsImpl modifies the MATLAB System block dialog.

In MATLAB, getPropertyGroupsImpl modifies how properties appear when the System
object is displayed at the MATLAB command line. getPropertyGroupsImpl defines the
order and groupings of properties. If your getPropertyGroupsImpl defines multiple
section groups, only properties from the first section group are displayed at the command

1 Alphabetical List

1-17280

line. To display properties in other sections, a link is provided at the end of a System
object property display. Group titles are also displayed at the command line.

Method Authoring Tips
• You must set Access = protected for this method.
• If you include a getPropertyGroupsImpl method but do not list all properties, the

excluded properties do not appear in the dialog box.
• To omit the Main title for the first group of properties, in

matlab.system.display.SectionGroup, set TitleSource to 'Auto'.
• By default if you do not customize this method in your System object, the MATLAB

System block dialog displays all public properties in the order specified in the System
object class file.

• To customize property names, add comments above each property. For an example,
see “System Object to Block Dialog Box Default Mapping” (Simulink).

Output Arguments
group — Property sections and groups
array of SectionGroup or Section objects

Property groups and sections to pass to the MATLAB System block, specified as an array
of matlab.system.display.SectionGroup and matlab.system.display.Section
objects.

See Also
matlab.system.display.Header | matlab.system.display.Section |
matlab.system.display.SectionGroup

Topics
“Add Property Groups to System Object and MATLAB System Block” (Simulink)
“Mapping System Objects to Block Dialog Box” (Simulink)

Introduced in R2013b

 getPropertyGroupsImpl

1-17281

getSimulateUsingImpl
Specify value for Simulate using parameter

Syntax
simmode = getSimulateUsingImpl

Description
simmode = getSimulateUsingImpl specifies the simulation mode of the System
object implemented in a MATLAB System block. The simulation mode restricts your
System object to simulation using either code generation or interpreted execution. The
associated showSimulateUsingImpl method controls whether the Simulate using
option is displayed on the dialog box.

getSimulateUsingImpl is called by the MATLAB System block.

Note You must set Access = protected and Static for this method.

Output Arguments
simmode

Simulation mode, returned as the character vector 'Code generation' or
'Interpreted execution'. If you do not include the getSimulateUsingImpl
method in your class definition file, the simulation mode is unrestricted. Depending on the
value returned by the associated showSimulateUsingImpl method, the simulation
mode is displayed as either a dropdown list on the dialog box or not at all.

Examples

1 Alphabetical List

1-17282

Specify the Simulation Mode

In the class definition file of your System object, define the simulation mode to display in
the MATLAB System block. To prevent Simulate using from displaying, see
showSimulateUsingImpl.

 methods (Static, Access = protected)
 function simMode = getSimulateUsingImpl
 simMode = "Interpreted execution";
 end
 end

See Also
showSimulateUsingImpl

Topics
“Control Simulation Type in MATLAB System Block” (Simulink)

 getSimulateUsingImpl

1-17283

getSimulinkFunctionNamesImpl
Register Simulink function names used in your System object

Syntax
names = getSimulinkFunctionNamesImpl(obj)

Description
names = getSimulinkFunctionNamesImpl(obj) specifies the Simulink function
names used in the System object obj.

If you use a Simulink function in your System object, you can only call a Simulink function
from the stepImpl, updateImpl, or outputImpl method.

Class Information
This method is part of the matlab.System class.

Run-Time Details
getSimulinkFunctionNamesImpl is invoked by the MATLAB System during model
compilation to obtain the list of Simulink functions being called from the System object.
Simulink uses this information to resolve the function names to a Simulink function
declared in a Simulink Function block. If getSimulinkFunctionNamesImpl does not
return the name of a function being called in the System object methods, Simulink
attempts to resolve the function to a function on the MATLAB path.

Method Authoring Tips
You must set Access = protected for this method.

1 Alphabetical List

1-17284

Input Arguments
obj — System object
System object

System object handle. If your getSimulinkFunctionNamesImpl method does not use
the object, you can replace this input with ~.
Example: getSimulinkFunctionNamesImpl(~)

Output Arguments
names — Simulink function names
{''} (default) | cell array of character vectors | string array

The names of the Simulink function you want to call from your System object.

Examples

Syntax for Registering a Simulink Function in a System object

Register three Simulink functions that you want to call from your System object. The
Simulink function names must match the name registered in the Simulink Function block.

methods (Access = protected)
 function names = getSimulinkFunctionNamesImpl(obj)
 names = ["setPosition", "doProcessing", "timesTwo"];
 end
end

Call Simulink Functions from a MATLAB System Block

This example shows two Simulink Functions conditionally called by a MATLAB
System block using the nontunable properties of the System object®.

The MATLAB System block calls one of the Simulink Functions inside two different
subsystems, depending on the value of the signal coming from the Sine Wave block. If

 getSimulinkFunctionNamesImpl

1-17285

the value of the signal is less than 10, the MATLAB System block calls the
timestwo_func Simulink Function inside the SS1 Subsystem block. If the value is
larger than 10, it calls the timesthree_func in the SS2 Subsystem block.

Function names are defined as nontunable properties, are switched from string to
functions using the str2func function. Then, these functions are declared as properties
in the getSimulinkFunctionNamesImpl method.

See Also
Classes
matlab.System

Blocks
MATLAB System | Simulink Function

1 Alphabetical List

1-17286

Topics
“Call Simulink Functions from MATLAB System Block” (Simulink)
“Simulink Functions Overview” (Simulink)

Introduced in R2019a

 getSimulinkFunctionNamesImpl

1-17287

infoImpl
Information about System object

Syntax
s = infoImpl(obj)

Description
s = infoImpl(obj) specifies information about the current configuration of a System
object. This information is returned in a struct from the info method. The default
infoImpl method, which is used if you do not include infoImpl in your class definition
file, returns an empty struct.

infoImpl is called by the info method.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

Examples

Specify System object Information

Define the infoImpl method to return current count information.

methods (Access = protected)
 function s = infoImpl(obj)

1 Alphabetical List

1-17288

 s = struct('Count',obj.Count);
 end
end

See Also

Topics
“Define System Object Information”

 infoImpl

1-17289

isInactivePropertyImpl
Status of inactive property

Syntax
flag = isInactivePropertyImpl(obj,prop)

Description
flag = isInactivePropertyImpl(obj,prop) specifies whether a public, non-state
property is inactive and not visible for the current object configuration. An inactive
property is a property that is not relevant to the object because of the values of other
properties. Inactive properties are not shown if you use the disp method to display object
properties. If you attempt to use public access to directly access or use get or set on an
inactive property, a warning occurs.

isInactiveProperty is called by the disp method and by the get and set methods.

Note You must set Access = protected for this method.

Input Arguments
obj

System object handle

prop

Public, non-state property name

1 Alphabetical List

1-17290

Output Arguments
flag

Inactive status Indicator of the input property prop for the current object configuration,
returned as a logical scalar value

Examples

Specify When a Property Is Inactive

Display the InitialValue property only when the UseRandomInitialValue property
value is false.

methods (Access = protected)
 function flag = isInactivePropertyImpl(obj,propertyName)
 if strcmp(propertyName,'InitialValue')
 flag = obj.UseRandomInitialValue;
 else
 flag = false;
 end
 end
end

See Also
setProperties

Topics
“Hide Inactive Properties”

 isInactivePropertyImpl

1-17291

isInputSizeLockedImpl
Status of locked input size

Syntax
flag = isInputSizeLockedImpl(obj,i)

Note This method will be removed in a future release. Use instead
isInputSizeMutableImpl.

Description
flag = isInputSizeLockedImpl(obj,i) specifies whether the ith input to the
System object cannot change its size during subsequent calls to run that object. If flag is
true, the size is locked and inputs to the System object cannot change size while the
object is locked. If flag is false, the input is variable size and is not locked. In the
unlocked case, the size of inputs to the object can change while the object is running and
locked.

isInputSizeLockedImpl executes once for each input during System object
initialization.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

i

System object input port number

1 Alphabetical List

1-17292

Output Arguments
flag

Flag indicating whether the size of inputs to the specified port is locked, returned as a
logical scalar value. If the value of isInputSizeLockedImpl is true, the size of the
current input to that port is compared to the first input to that port. If the sizes do not
match, an error occurs.

Default: false

Examples

Check If Input Size Is Locked

Specify in your class definition file to check whether the size of the System object input is
locked.

methods (Access = protected)
 function flag = isInputSizeLockedImpl(~,index)
 flag = true;
 end
end

See Also
matlab.System

Topics
“Handle Input Specification Changes”

 isInputSizeLockedImpl

1-17293

isDiscreteStateSpecificationMutableImpl
Control whether discrete states can change data type

Syntax
mutable = isDiscreteStateSpecificationMutableImpl(obj)

Description
mutable = isDiscreteStateSpecificationMutableImpl(obj) returns whether
discrete states can change data type when the object is in use. If this method returns
false, the discrete state must maintain the same data type while the object is in use.

Note You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object whose discrete states are affected by this method.

Output Arguments
mutable — Whether state specification can change or not
true (default) | false

If you do not implement this method, discrete states can change data type unless the
StrictDefaults on page 1-17256 class attribute is set. If you implement this
method, returning true means discrete state data type can change and false means
they cannot change.

1 Alphabetical List

1-17294

Examples

Disallow Changes to Discrete States
Restrict changes to the data type of discrete states by adding the
isDiscreteStateSpecificationMutableImpl method and returning false. By
adding this method, users of the System object cannot change the data type of discrete
states while the System object is in use.

function flag = isDiscreteStateSpecificationMutableImpl(obj)
 flag = false;
end

See Also
getDiscreteStateImpl | getDiscreteStateSpecificationImpl |
isTunablePropertyDataTypeMutableImpl

Introduced in R2018a

 isDiscreteStateSpecificationMutableImpl

1-17295

isInputComplexityMutableImpl
Set whether System object input complexity can change

Syntax
mutable = isInputComplexityMutableImpl(obj,i)

Description
mutable = isInputComplexityMutableImpl(obj,i) returns whether the ith input
to the object can change complexity when the object is in use.

This method is part of the matlab.System class.

Note You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object whose inputs are affected by this method.

i — Ordinal index of input
positive integer

This argument specifies which input to stepImpl is checked for complexity mutability.
The index number is the ordinal position of the input in the stepImpl signature.

Output Arguments
mutable — Whether input complexity can change or not
true | false

1 Alphabetical List

1-17296

If you do not implement this method, inputs can change complexity unless the
StrictDefaults on page 1-17256 class attribute is set. If you implement this
method, returning true means input complexity can change, and false means they
cannot change.

Examples
Restrict Input Complexity Changes for Inputs
Restrict the complexity of all inputs by adding the isInputComplexityMutableImpl
method and returning false. By adding this method, users of the System object cannot
change the complexity of inputs while the System object is in use.

function flag = isInputComplexityMutableImpl(obj,~)
 flag = false;
end

To avoid a warning about unused variables, this examples uses ~ as the second input
argument. For more information about using ~ in place of arguments, see “Using ~ as an
Input Argument in Method Definitions”.

Restrict Input Complexity Changes for One Input
This example shows how to write the isInputComplexityMutableImpl method to only
restrict one input. isInputComplexityMutableImpl returns true for all inputs except
input one.

methods (Access = protected)
 function flag = isInputComplexityMutableImpl(obj,index)
 flag = (index ~= 1);
 end
end

See Also
isInputDataTypeMutableImpl | isInputSizeMutableImpl | matlab.System

Topics
“Change Input Complexity, Dimensions, or Data Type”

 isInputComplexityMutableImpl

1-17297

Introduced in R2018a

1 Alphabetical List

1-17298

isInputDataTypeMutableImpl
Set whether System object input data type can change

Syntax
mutable = isInputDataTypeMutableImpl(obj,i)

Description
mutable = isInputDataTypeMutableImpl(obj,i) returns whether the ith input to
the object can change data type when the object is in use.

This method is part of the matlab.System class.

Note You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object whose inputs are affected by this method.

i — Ordinal index of input
positive integer

This argument specifies which input to stepImpl is checked for data type mutability. The
index number is the ordinal position of the input in the stepImpl signature.

Output Arguments
mutable — Whether input data type can change or not
true (default) | false

 isInputDataTypeMutableImpl

1-17299

If you do not implement this method, inputs can change data type unless the
StrictDefaults on page 1-17256 class attribute is set. If you implement this
method, returning true means input data type can change, and false means they
cannot change.

Examples

Restrict Input Data Type for Inputs
Restrict changes to the data type of all inputs by adding the
isInputDataTypeMutableImpl method and returning false. By adding this method,
users of the System object cannot change the data type of inputs while the System object
is in use.

function flag = isInputDataTypeMutableImpl(obj,~)
 flag = false;
end

To avoid a warning about unused variables, this examples uses ~ as the second input
argument. For more information about using ~ in place of arguments, see “Using ~ as an
Input Argument in Method Definitions”.

Restrict Input Data Type for One Input
This example shows how to write the isInputDataTypeMutableImpl method to only
restrict one input. isInputDataTypeMutableImpl returns true for all inputs except
input one.

methods (Access = protected)
 function flag = isInputDataTypeMutableImpl(obj,index)
 flag = (index ~= 1)
 end
end

See Also
isInputComplexityMutableImpl | isInputSizeMutableImpl |
processInputSpecificationChangeImpl

1 Alphabetical List

1-17300

Introduced in R2018a

 isInputDataTypeMutableImpl

1-17301

isInputSizeMutableImpl
Set whether System object input size can change

Syntax
mutable = isInputSizeMutableImpl(obj,i)

Description
mutable = isInputSizeMutableImpl(obj,i) returns whether the ith input to the
object can change size when the object is in use.

This method is part of the matlab.System class.

Note You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object whose inputs are affected by this method.

i — Ordinal index of input
positive integer

This argument specifies which input to stepImpl is checked for size mutability. The
index number is the ordinal position of the input in the stepImpl signature.

Output Arguments
mutable — Whether input size can change or not
true (default) | false

1 Alphabetical List

1-17302

If you do not implement this method, inputs can change size unless the StrictDefaults
on page 1-17256 class attribute is set. If you implement this method, returning true
means input size can change, and false means they cannot change.

Examples
Restrict Input Size Changes for Inputs
Restrict the size of all inputs by adding the isInputSizeMutableImpl method and
returning false. By adding this method, users of the System object cannot change the
size of inputs while the System object is in use.

function flag = isInputSizeMutableImpl(obj,~)
 flag = false;
end

To avoid a warning about unused variables, this examples uses ~ as the second input
argument. For more information about using ~ in place of arguments, see “Using ~ as an
Input Argument in Method Definitions”.

Restrict Input Size Changes for Single Input
This example shows how to write the isInputSizeMutableImpl method to only restrict
the first input. isInputSizeMutableImpl returns true for all inputs except input the
first input.

methods (Access = protected)
 function flag = isInputSizeMutableImpl(obj,index)
 flag = (index ~= 1);
 end
end

See Also
isInputComplexityMutableImpl | isInputDataTypeMutableImpl |
matlab.System | processInputSpecificationChangeImpl

Topics
“Handle Input Specification Changes”

 isInputSizeMutableImpl

1-17303

Introduced in R2018a

1 Alphabetical List

1-17304

isTunablePropertyDataTypeMutableImpl
Set whether tunable properties can change data type

Syntax
mutable = isTunablePropertyDataTypeMutableImpl(obj)

Description
mutable = isTunablePropertyDataTypeMutableImpl(obj) returns whether
tunable properties can change data type when the object is in use.

This method is part of the matlab.System class.

Input Arguments
obj — System object
System object

System object whose tunable properties are affected by this method.

Output Arguments
mutable — Whether tunable property data types can change
true (default) | false

If you do not implement this method, tunable properties can change data types unless the
StrictDefaults on page 1-17256 class attribute is set. If you implement this
method, returning true means tunable property data types can change and false means
they cannot change.

 isTunablePropertyDataTypeMutableImpl

1-17305

Examples

Restrict Data Type of Tunable Properties
Restrict the data type of tunable properties by adding the
isTunablePropertyDataTypeMutableImpl method and returning false. By adding
this method, users of the System object cannot change the data type of tunable properties
while the System object is in use.

function flag = isTunablePropertyDataTypeMutableImpl(obj)
 flag = false;
end

See Also
isInputComplexityMutableImpl | isInputDataTypeMutableImpl |
isInputDirectFeedthroughImpl | isInputSizeMutableImpl |
processTunedPropertiesImpl

Topics
“Validate Property and Input Values”

Introduced in R2018a

1 Alphabetical List

1-17306

loadObjectImpl
Load System object from MAT file

Syntax
loadObjectImpl(obj,s,wasInUse)

Description
loadObjectImpl(obj,s,wasInUse) implements the code to load a saved System
object from a structure, s, or from a MAT file. If the object was in use when saved, the
wasInUse input indicates that in-use state. Your loadObjectImpl method should
correspond to your saveObjectImpl method to ensure that all saved properties and
data are loaded.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

Examples

Load System object

Load a saved System object. In this example, the object contains:

• A child object

 loadObjectImpl

1-17307

• Protected and private properties
• A discrete state

It also loads states if the object is in use and calls the loadObjectImpl method from the
matlab.System class.

methods (Access = protected)
 function loadObjectImpl(obj,s,wasInUse)
 obj.child = matlab.System.loadObject(s.child);

 obj.protectedprop = s.protectedprop;
 obj.pdependentprop = s.pdependentprop;

 if wasInUse
 obj.state = s.state;
 end

 loadObjectImpl@matlab.System(obj,s,wasInUse);
 end
end

See Also
saveObjectImpl

Topics
“Save and Load System Object”

1 Alphabetical List

1-17308

nargin
Number of input arguments for System object

Syntax
numInputs = nargin(obj)
nargin

Description
numInputs = nargin(obj) returns the number of input arguments that are required
by the obj algorithm definition. This function is a System object extension of the general
nargin function.

If your System object uses the matlab.system.mixin.Nondirect class, nargin
returns the number of input arguments for the updateImpl and outputImpl methods.

nargin returns the number of input arguments specified in the call to the currently
executing System object. Use this syntax in the body of a System object only.

Examples

Use nargin on System object with Variable-Size Input

This example shows the output from nargin when used on a System object AddUp with
variable-sized input.

A marker System object is defined as follows:

classdef AddUp < matlab.System
 methods(Access = protected)
 function y = stepImpl(obj,u,varargin)
 % Implement algorithm.
 y = u + sum([varargin{:}]);

 nargin

1-17309

 end
 end
end

Create the object and call nargin.

total = AddUp();
nargin(total)

ans =
 -2

Input Arguments
obj — System object
System object

System object to query.

Output Arguments
numInputs — Number of inputs
integer

This argument represents the number of inputs needed to call the System object.

If the output is nonnegative, the number of inputs cannot change while the object is in
use.

If the output is negative, the number of inputs can change from call to call. This situation
occurs when the System object does not override getNumInputsImpl and the stepImpl
signature contains varargin.

See Also
getNumInputs | getNumInputsImpl | nargin | nargout

Topics
“Change the Number of Inputs”

1 Alphabetical List

1-17310

Introduced in R2018a

 nargin

1-17311

nargout
Number of output arguments for System object

Syntax
numOutputs = nargout(obj)
nargout

Description
numOutputs = nargout(obj) returns the number of output arguments that are
required by the obj algorithm definition. This function is a System object extension of the
general nargout function.

If your System object uses the matlab.system.mixin.Nondirect class, nargin
returns the number of output arguments for the updateImpl and outputImpl methods.

nargout returns the number of output arguments specified in the call to the currently
executing System object. Use this syntax in the body of a System object only.

Input Arguments
obj — System object
System object

System object to query.

Output Arguments
numOutputs — Number of outputs
integer

This argument represents the number of outputs needed to call the System object.

1 Alphabetical List

1-17312

If the output is nonnegative, the number of outputs is cannot change while the object is in
use.

If the output is negative, the number of outputs can change from call to call. This
situation occurs when the System object does not override getNumOutputsImpl and the
stepImpl signature contains varargout.

See Also
getNumOutputs | getNumOutputsImpl | nargin | nargout

Topics
“Change the Number of Inputs”

Introduced in R2018a

 nargout

1-17313

processInputSpecificationChangeImpl
Perform actions when input size, complexity, or data type change

Syntax
processInputSpecificationChangeImpl(obj,input,input2, ...)

Description
processInputSpecificationChangeImpl(obj,input,input2, ...) implements
specific actions when the input specification changes, such as data type, size, or
complexity. You use this method when properties depend on the data type, size, or
complexity of inputs.

Class Information
This method is part of the matlab.System class.

Run-Time Details
processInputSpecificationChangeImpl is called when running the System object
using the object name or step. For details, see “Detailed Call Sequence”

Method Authoring Tips
You must set Access = protected for this method.

Input Arguments
obj — System object
System object

1 Alphabetical List

1-17314

System object handle used to access properties, states, and methods specific to the
object.

input1,input2,... — Inputs to the System object
inputs to the System object algorithm

Inputs to the algorithm (stepImpl) of the System object. The inputs list must match the
order of inputs in the stepImpl signature.

Examples
Specify Actions When Input Size Changes

This example shows how to use processInputSpecificationChangeImpl to modify
the NumIterations property when the size of x changes. Even though this method does
not take action when the additional varargin inputs change, they are included in the
method signature.

methods (Access = Protected)
 function y = stepImpl(obj,x,varargin)
 for n=1:obj.NumIterations
 y
 end
 end
 function processInputSpecificationChangeImpl(obj,x,varargin)
 obj.NumIterations = size(x,1);
 end
end

See Also
isInputComplexityMutableImpl | isInputDataTypeMutableImpl |
isInputSizeMutableImpl | processTunedPropertiesImpl |
validateInputsImpl

Topics
“Validate Property and Input Values”

Introduced in R2018a

 processInputSpecificationChangeImpl

1-17315

processTunedPropertiesImpl
Action when tunable properties change

Syntax
processTunedPropertiesImpl(obj)

Description
processTunedPropertiesImpl(obj) specifies the algorithm to perform when one or
more tunable property values change. This method is called as part of the next call to the
System object after a tunable property value changes. A property is tunable only if its
Nontunable attribute is false, which is the default.

processTunedPropertiesImpl is called when you run the System object.

Note You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object

Examples

1 Alphabetical List

1-17316

Specify Action When Tunable Property Changes

Use processTunedPropertiesImpl to recalculate the lookup table if the value of
either the NumNotes or MiddleC property changes before the next call to the System
object. propChange indicates if either property has changed.

methods (Access = protected)
 function processTunedPropertiesImpl(obj)
 propChange = isChangedProperty(obj,'NumNotes') ||...
 isChangedProperty(obj,'MiddleC')
 if propChange
 obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12));
 end
 end
end

Tips
Use this method when a tunable property affects the value of a different property.

To check if a property has changed since stepImpl was last called, use
isChangedProperty within processTunedPropertiesImpl. See “Specify Action
When Tunable Property Changes” on page 1-17316 for an example.

In MATLAB when multiple tunable properties are changed before running the System
object, processTunedPropertiesImpl is called only once for all the changes.
isChangedProperty returns true for all the changed properties.

In Simulink, when a parameter is changed in a MATLAB System block dialog, the next
simulation step calls processTunedPropertiesImpl before calling stepImpl. All
tunable parameters are considered changed and processTunedPropertiesImpl
method is called for each of them. isChangedProperty returns true for all the dialog
properties.

See Also
setProperties | validatePropertiesImpl

Topics
“Process Tuned Properties”
“Validate Property and Input Values”

 processTunedPropertiesImpl

1-17317

“Define Property Attributes”

1 Alphabetical List

1-17318

releaseImpl
Release resources

Syntax
releaseImpl(obj)

Description
releaseImpl(obj) releases any resources used by the System object, such as file
handles or devices. This method also performs any necessary cleanup tasks. To release
resources for a System object, you must use releaseImpl instead of a destructor.

releaseImpl is called by the release method. releaseImpl is also called when the
object is deleted or cleared from memory, or when all references to the object have gone
out of scope.

Note You must set Access = protected for this method.

Input Arguments
obj

System object

Examples

Close a File and Release Its Resources

Use the releaseImpl method to close a file opened by the System object.

 releaseImpl

1-17319

methods (Access = protected)
 function releaseImpl(obj)
 fclose(obj.pFileID);
 end
end

See Also
resetImpl

Topics
“Release System Object Resources”

1 Alphabetical List

1-17320

resetImpl
Reset System object states

Syntax
resetImpl(obj)

Description
resetImpl(obj) specifies the algorithm that initializes or resets the states of a System
object. Typically you reset the states to a set of initial values, which is useful for
initialization at the start of simulation.

resetImpl is called by the reset method only if the object is in use. The object remains
as "in-use" after it is reset. For information about when resetImpl is called, see
“Summary of Call Sequence”.

Note You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object

Examples

 resetImpl

1-17321

Reset Property Value

Use the reset method to reset the state of the counter stored in the Count property to
zero.

methods (Access = protected)
 function resetImpl(obj)
 obj.Count = 0;
 end
end

See Also
releaseImpl

Topics
“Reset Algorithm State”

1 Alphabetical List

1-17322

saveObjectImpl
Save System object in MAT file

Syntax
s = saveObjectImpl(obj)

Description
s = saveObjectImpl(obj) specifies the System object properties and state values to
be saved in a structure or MAT file. save calls saveObject, which then calls
saveObjectImpl. To save a System object in generated code, the object must be
unlocked and it cannot contain or be a child object.

If you do not define a saveObjectImpl method for your System object class, only public
properties and properties with the DiscreteState attribute are saved.

To save any private or protected properties or state information, you must define a
saveObjectImpl in your class definition file.

End users can use load, which calls loadObjectImpl to load a saved System object into
their workspace.

Tip Save the state of an object only if the object is in use. When the user loads that saved
object, it loads in that usage state.

To save child object information, use the associated saveObject method within the
saveObjectImpl method.

Note You must set Access = protected for this method.

 saveObjectImpl

1-17323

Input Arguments
obj

System object

Examples

Define Property and State Values to Save

Define what is saved for the System object. Call the base class version of
saveObjectImpl to save public properties. Then, save any child System objects and any
protected and private properties. Finally, save the state if the object is in use.

methods (Access = protected)
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 s.child = matlab.System.saveObject(obj.child);
 s.protectedprop = obj.protectedprop;
 s.pdependentprop = obj.pdependentprop;
 if isLocked(obj)
 s.state = obj.state;
 end
 end
end

See Also
loadObjectImpl

Topics
“Save and Load System Object”

1 Alphabetical List

1-17324

setProperties
Set property values using name-value pairs when creating System object

Syntax
setProperties(obj,numargs,name1,value1,name2,value2,...)
setProperties(obj,numargs,arg1,...,argN,propvalname1,...propvalnameN
)

Description
setProperties(obj,numargs,name1,value1,name2,value2,...) provides the
name-value pair inputs to the System object constructor. Use this syntax if every input
must specify both name and value.

setProperties(obj,numargs,arg1,...,argN,propvalname1,...propvalnameN
) provides the value-only inputs, which you can follow with the name-value pair inputs to
the System object during object construction. Use this syntax if you want to allow users to
specify one or more inputs by their values only.

Input Arguments
obj

System object

numargs

Number of inputs passed in by the object constructor

name1,name2,...

Name of property

 setProperties

1-17325

value1,value2,...

Value of the property

arg1,...argN

Value of property (for value-only input to the object constructor)

propvalname1,...propvalnameN

Name of the value-only property

Examples

Setup Value-Only Inputs

Set up an object so users can specify value-only inputs for VProp1, VProp2, and other
property values via name-value pairs when constructing the object.

methods
 function obj = MyFile(varargin)
 setProperties(obj,nargin,varargin{:},'VProp1','VProp2');
 end
end

See Also

Topics
“Set Property Values at Construction Time”

1 Alphabetical List

1-17326

setupImpl
Initialize System object

Syntax
setupImpl(obj)
setupImpl(obj,input1,input2,...)

Description
setupImpl(obj) implements one-time tasks.

setupImpl(obj,input1,input2,...) sets up a System object using one or more of
the stepImpl input specifications.

Class Information
This method is part of the matlab.System class.

Run-Time Details
setupImpl is called via the setup method. Users never call the setup method directly.
But, setup is called the first time a System object is run and after a System object has
been released. For details, see “Detailed Call Sequence”

Method Authoring Tips
• If your System object does not require any setup tasks, you can omit this method from

your class definition file.
• Use setupImpl to set private properties so they do not need to be calculated each

time stepImpl method is called.
• To acquire resources for a System object, you must use setupImpl instead of a

constructor.

 setupImpl

1-17327

• You must set Access = protected for this method.
• Do not use setupImpl to initialize or reset states. For states, use the resetImpl

method.
• If the System object will be used in the Simulink MATLAB System block, you cannot

modify any tunable properties in the setupImpl method
• Do not use the setupImpl method to set up input values.
• Do not include validation in setupImpl. To validate properties or inputs use the

validatePropertiesImpl, validateInputsImpl, or setProperties methods.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the
object.

input1,input2,... — Inputs to the stepImpl method
inputs to the System object

List the inputs to the System object. The order of inputs must match the order of inputs
defined in the stepImpl method. stepImpl passes the inputs into setupImpl to use the
specifications, such as size and data types in the one-time calculations.

Examples

Setup a File for Writing

This example shows how to open a file for writing using the setupImpl method in your
class definition file.

methods (Access = protected)
 function setupImpl(obj)
 obj.pFileID = fopen(obj.Filename,'wb');
 if obj.pFileID < 0
 error('Opening the file failed');
 end

1 Alphabetical List

1-17328

 end
end

Initialize Properties Based on Object Inputs

This example shows how to use setupImpl to specify that running the object initializes
the properties of an input. In this case, calls to run the object, which includes input u,
initialize the object states in a matrix of size u.

methods (Access = protected)
 function setupImpl(obj, u)
 obj.State = zeros(size(u),'like', u);
 end
end

See Also
matlab.System Constructor | setProperties | validateInputsImpl |
validatePropertiesImpl

Topics
“Initialize Properties and Setup One-Time Calculations”
“Set Property Values at Construction Time”

Introduced in R2011b

 setupImpl

1-17329

showFiSettingsImpl
Fixed point data type tab visibility for System objects

Syntax
flag = showFiSettingsImpl

Description
flag = showFiSettingsImpl specifies whether the Data Types tab appears on the
MATLAB System block dialog box. The Data Types tab includes parameters to control
processing of fixed point data the MATLAB System block. You cannot specify which
parameters appear on the tab. If you implement showFiSettingsImpl, the simulation
mode is set code generation.

showFiSettingsImpl is called by the MATLAB System block.

The parameters that appear on the Data Types tab, which cannot be customized, are

• Saturate on integer overflow is a check box to control the action to take on integer
overflow for built-in integer types. The default is that the box is checked, which
indicates to saturate. This is also the default for when Same as MATLAB is selected
as the MATLAB System fimath option.

• Treat these inherited Simulink signal types as fi objects is a pull down that
indicates which inherited data types to treat as fi data types. Valid options are Fixed
point and Fixed point & integer. The default value is Fixed point.

• MATLAB System fimath has two radio button options: Same as MATLAB and
Specify Other. The default, Same as MATLAB, uses the current MATLAB fixed-point
math settings. Specify Other enables the edit box for specifying the desired fixed-
point math settings. For information on setting fixed-point math, see fimath, in the
Fixed-Point Designer documentation.

Note If you do not want to display the tab, you do not need to implement this method in
your class definition file.

1 Alphabetical List

1-17330

You must set Access = protected and Static for this method.

Output Arguments
flag

Flag indicating whether to display the Data Types tab on the MATLAB System block mask,
returned as a logical scalar value. Returning a true value displays the tab. A false value
does not display the tab.

Default: false

Examples

Show the Data Types Tab

Show the Data Types tab on the MATLAB System block dialog box.

methods (Static, Access = protected)
 function isVisible = showFiSettingsImpl
 isVisible = true;
 end
end

If you set the flag, isVisible, to true, the tab appears as follows when you add the
object to Simulink with the MATLAB System block.

 showFiSettingsImpl

1-17331

See Also

Topics
“Add Data Types Tab to MATLAB System Block” (Simulink)

1 Alphabetical List

1-17332

showSimulateUsingImpl
Visibility of Simulate using parameter

Syntax
flag = showSimulateUsingImpl

Description
flag = showSimulateUsingImpl specifies whether Simulation mode appears on the
MATLAB System block dialog box.

showSimulateUsingImpl is called by the MATLAB System block.

Note You must set Access = protected and Static for this method.

Output Arguments
flag

Flag indicating whether to display the Simulate using parameter and dropdown list on
the MATLAB System block mask, returned as a logical scalar value. A true value displays
the parameter and dropdown list. A false value hides the parameter and dropdown list.

Default: true

Examples

Hide the Simulate using Parameter

Hide the Simulate using parameter on the MATLAB System block dialog box.

 showSimulateUsingImpl

1-17333

methods (Static, Access = protected)
 function flag = showSimulateUsingImpl
 flag = false;
 end
end

If you set the flag to true or omit the showSimulateUsingImpl method, which defaults
to true, the dialog appears as follows when you add the object to Simulink with the
MATLAB System block.

If you also specify a single value for getSimulateUsingImpl, the dialog appears as
follows when you add the object to Simulink with the MATLAB System block.

1 Alphabetical List

1-17334

See Also
getSimulateUsingImpl

Topics
“Control Simulation Type in MATLAB System Block” (Simulink)

 showSimulateUsingImpl

1-17335

stepImpl
System output and state update equations

Syntax
[output,output2,...] = stepImpl(obj,input1,input2,...)

Description
[output,output2,...] = stepImpl(obj,input1,input2,...) specifies the
algorithm to execute when you run the System object. Running the object calculates the
outputs and updates the object’s state values using the inputs, properties, and state
update equations. You can also run an object using function-like syntax instead of the
step method. For example, if you define an FFT object using txfourier = dsp.FFT,
you can run it simply by using txfourier().

Class Information
This method is part of the matlab.System class.

Run-Time Details
stepImpl is called via step when you run the System object. Users can also run the
System object via the System object name, which calls step. For details, see “Detailed
Call Sequence”

Method Authoring Tips
• You must set Access = protected for this method.
• The number of input arguments and output arguments must be greater than or equal

to the numbers returned by the getNumInputsImpl and getNumOutputsImpl
methods, respectively.

• Do not call release within the stepImpl method.

1 Alphabetical List

1-17336

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the
object.

input1,input2,... — Inputs to the System object
inputs to the System object

List the inputs to the System object. For examples of different input variations, see
“Change the Number of Inputs”.

Output Arguments
output — Outputs returned from the System object
outputs

Output returned from the System object. For examples of different output variations, see
“Change the Number of Inputs”.

Examples

Specify System Object Algorithm

Use the stepImpl method to increment two numbers.

methods (Access = protected)
 function [y1,y2] = stepImpl(obj,x1,x2)
 y1 = x1 + 1;
 y2 = x2 + 1;
 end
end

See Also
validateInputsImpl

 stepImpl

1-17337

Topics
“Define Basic System Objects”
“Change the Number of Inputs”

1 Alphabetical List

1-17338

supportsMultipleInstanceImpl
Support System object in Simulink For Each subsystem

Syntax
flag = supportsMultipleInstanceImpl(obj)

Description
flag = supportsMultipleInstanceImpl(obj) specifies whether the System object
can be used in a Simulink For Each subsystem via the MATLAB System block. To enable
For Each support, you must include the supportsMultipleInstanceImpl in your class
definition file and have it return true. Do not enable For Each support if your System
object allocates exclusive resources that may conflict with other System objects, such as
allocating file handles, memory by address, or hardware resources.

During Simulink model compilation and propagation, the MATLAB System block calls the
supportMultipleInstance method, which then calls the
supportsMultipleInstanceImpl method to determine For Each support.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

 supportsMultipleInstanceImpl

1-17339

Output Arguments
flag

Boolean value indicating whether the System object can be used in a For Each subsystem.
The default value, if you do not include the supportMultipleInstance method, is
false.

Examples

Enable For-Each Support for System Object

Specify in your class definition file that the System object can be used in a Simulink For
Each subsystem.

methods (Access = protected)
 function flag = supportsMultipleInstanceImpl(obj)
 flag = true;
 end
end

See Also
matlab.System

Topics
“Enable For Each Subsystem Support” (Simulink)

1 Alphabetical List

1-17340

validateInputsImpl
Validate inputs to System object

Syntax
validateInputsImpl(obj,input1,input2,...)

Description
validateInputsImpl(obj,input1,input2,...) validates inputs to the System
object the first time the object runs. Validation includes checking data types, complexity,
cross-input validation, and validity of inputs controlled by a property value.

Note You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Input Arguments
obj

System object handle

input1,input2,...

Inputs to the setup method

Examples

 validateInputsImpl

1-17341

Validate Input Type

Validate that the input is numeric.

methods (Access = protected)
 function validateInputsImpl(~,x)
 if ~isnumeric(x)
 error('Input must be numeric');
 end
 end
end

See Also
setupImpl | validatePropertiesImpl

Topics
“Validate Property and Input Values”

1 Alphabetical List

1-17342

validatePropertiesImpl
Validate property values of System object

Syntax
validatePropertiesImpl(obj)

Description
validatePropertiesImpl(obj) validates interdependent or interrelated property
values the first time the System object runs.

Note You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Tips
To check if a property has changed since stepImpl was last called, use
isChangedProperty(obj,property) within validatePropertiesImpl.

Input Arguments
obj

System object handle

Examples

 validatePropertiesImpl

1-17343

Validate a Property

Validate that the useIncrement property is true and that the value of the increment
property is greater than zero.

methods (Access = protected)
 function validatePropertiesImpl(obj)
 if obj.useIncrement && obj.increment < 0
 error('The increment value must be positive');
 end
 end
end

See Also
processTunedPropertiesImpl | setupImpl | validateInputsImpl

Topics
“Validate Property and Input Values”

1 Alphabetical List

1-17344

matlab.system.display.Action class
Package: matlab.system.display

Custom button

Syntax
matlab.system.display.Action(action)
matlab.system.display.Action(action,Name,Value)

Description
matlab.system.display.Action(action) specifies a button to display on the
MATLAB System block. This button executes a function by launching a System object
method or invoking any MATLAB function or code.

A typical button function launches a figure. The launched figure is decoupled from the
block dialog box. Changes to the block are not synced to the displayed figure.

You define matlab.system.display.Action within the getPropertyGroupsImpl
method in your class definition file. You can define multiple buttons using separate
instances of matlab.system.display.Action in your class definition file.

matlab.system.display.Action(action,Name,Value) includes Name,Value pair
arguments, which you can use to specify any properties.

Input Arguments
action

Action taken when the user presses the specified button on the MATLAB System block
dialog. The action is defined as a function handle or as a MATLAB command. If you define
the action as a function handle, the function definition must define two inputs. These
inputs are a matlab.system.display.ActionData object and a System object
instance, which can be used to invoke a method.

 matlab.system.display.Action class

1-17345

A matlab.system.display.ActionData object is the callback object for a display
action. You use the UserData property of matlab.system.display.ActionData to
store persistent data, such as a figure handle.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
You specify these properties as part of the input using Name,Value pair arguments.
Optionally, you can define them using object.property syntax.

• ActionCalledFcn — Action to take when the button is pressed. You cannot specify
this property using a Name-Value pair argument.

• Label — Text to display on the button. The default value is an empty character vector.
• Description — Text for the button tooltip. The default value is an empty character

vector.
• Placement — Character vector indicating where on a separate row in the property

group to place the button. Valid values are 'first', 'last', or a property name. If
you specify a property name, the button is placed above that property. The default
value is 'last'.

• Alignment — Character vector indicating how to align the button. Valid values are
'left' and 'right'. The default value is 'left'.

Examples

Define Button on MATLAB System Block

Define a Visualize button and its associated function to open a figure that plots a ramp
using the parameter values in the block dialog.

methods(Static,Access = protected)
 function group = getPropertyGroupsImpl

1 Alphabetical List

1-17346

 group = matlab.system.display.Section(mfilename('class'));
 group.Actions = matlab.system.display.Action(@(~,obj)...
 visualize(obj),'Label','Visualize');
 end
end

methods
 function obj = PlotRamp(varargin)
 setProperties(obj,nargin,varargin{:});
 end

 function visualize(obj)
 figure;
 d = 1:obj.RampLimit;
 plot(d);
 end
end

When you specify the System object in the MATLAB System block, the resulting block
dialog box appears as follows.

To open the same figure, rather than multiple figures, when the button is pressed more
than once, use this code instead.

 matlab.system.display.Action class

1-17347

methods(Static,Access = protected)
 function group = getPropertyGroupsImpl
 group = matlab.system.display.Section(mfilename('class'));
 group.Actions = matlab.system.display.Action(@(actionData,obj)...
 visualize(obj,actionData),'Label','Visualize');
 end
end

methods
 function obj = ActionDemo(varargin)
 setProperties(obj,nargin,varargin{:});
 end

 function visualize(obj,actionData)
 f = actionData.UserData;
 if isempty(f) || ~ishandle(f)
 f = figure;
 actionData.UserData = f;
 else
 figure(f); % Make figure current
 end

 d = 1:obj.RampLimit;
 plot(d);
 end
end

See Also
getPropertyGroupsImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup

Topics
“Classes”
Class Attributes
Property Attributes
“Add Button to MATLAB System Block” (Simulink)

1 Alphabetical List

1-17348

matlab.system.display.Header class
Package: matlab.system.display

Header for System objects properties

Syntax
matlab.system.display.Header(N1,V1,...Nn,Vn)
matlab.system.display.Header(Obj,...)

Description
matlab.system.display.Header(N1,V1,...Nn,Vn) specifies a header for the
System object, with the header properties defined in Name-Value (N,V) pairs. You use
matlab.system.display.Header within the getHeaderImpl method. The available
header properties are

• Title — Header title. The default value is an empty character vector.
• Text — Header description. The default value is an empty character vector.
• ShowSourceLink — Show link to source code for the object.

matlab.system.display.Header(Obj,...) creates a header for the specified
System object (Obj) and sets the following property values:

• Title — Set to the Obj class name.
• Text — Set to help summary for Obj.
• ShowSourceLink — Set to true if Obj is MATLAB code. In this case, the Source

Code link is displayed. If Obj is P-coded and the source code is not available, set this
property to false.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the default
settings.

 matlab.system.display.Header class

1-17349

Examples

Define System Block Header

Define a header in your class definition file.

 methods (Static, Access = protected)
 function header = getHeaderImpl
 header = matlab.system.display.Header(mfilename('class'), ...
 'Title','AlternativeTitle',...
 'Text','An alternative class description');
 end
 end

The resulting output appears as follows. In this case, Source code appears because the
ShowSourceLink property was set to true.

See Also
getHeaderImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup

1 Alphabetical List

1-17350

Topics
“Classes”
“Add Header to MATLAB System Block” (Simulink)

 matlab.system.display.Header class

1-17351

matlab.system.display.Section class
Package: matlab.system.display

Property group section for System objects

Syntax
matlab.system.display.Section(N1,V1,...Nn,Vn)
matlab.system.display.Section(Obj,...)

Description
matlab.system.display.Section(N1,V1,...Nn,Vn) creates a property group
section for displaying System object properties, which you define using property Name-
Value pairs (N,V). You use matlab.system.display.Section to define property groups
using the getPropertyGroupsImpl method. The available Section properties are

• Title — Section title. The default value is an empty character vector.
• TitleSource — Source of section title. Valid values are 'Property' and 'Auto'.

The default value is 'Property', which uses the character vector from the Title
property. If the Obj name is given, the default value is Auto, which uses the Obj
name.

• Description — Section description. The default value is an empty character vector.
• PropertyList — Section property list as a cell array of property names. The default

value is an empty array. If the Obj name is given, the default value is all eligible
display properties.

Note Certain properties are not eligible for display either in a dialog box or in the
System object summary on the command-line. Property types that cannot be displayed
are: hidden, abstract, private or protected access, discrete state, and continuous state.
Dependent properties do not display in a dialog box, but do display in the command-
line summary.

1 Alphabetical List

1-17352

matlab.system.display.Section(Obj,...) creates a property group section for
the specified System object (Obj) and sets the following property values:

• TitleSource — Set to 'Auto', which uses the Obj name.
• PropertyList — Set to all publicly-available properties in the Obj.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the default
settings.

Examples

Define Property Groups

Define two property groups in your class definition file by specifying their titles and
property lists.

 methods (Static, Access = protected)
 function groups = getPropertyGroupsImpl
 valueGroup = matlab.system.display.Section(...
 'Title','Value parameters',...
 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...
 'Title','Threshold parameters',...
 'PropertyList',{'Threshold','UseThreshold'});
 groups = [valueGroup,thresholdGroup];
 end
 end

When you specify the System object in the MATLAB System block, the resulting dialog
box appears as follows.

 matlab.system.display.Section class

1-17353

See Also
getPropertyGroupsImpl | matlab.system.display.Header |
matlab.system.display.SectionGroup

Topics
“Add Property Groups to System Object and MATLAB System Block” (Simulink)

1 Alphabetical List

1-17354

matlab.system.display.SectionGroup class
Package: matlab.system.display

Section group for System objects

Syntax
matlab.system.display.SectionGroup(N1,V1,...Nn,Vn)
matlab.system.display.SectionGroup(Obj,...)

Description
matlab.system.display.SectionGroup(N1,V1,...Nn,Vn) creates a group for
displaying System object properties and display sections created with
matlab.system.display.Section. You define such sections or properties using
property Name-Value pairs (N,V). A section group can contain both properties and
sections. You use matlab.system.display.SectionGroup to define section groups
using the getPropertyGroupsImpl method. Section groups display as separate tabs in
the MATLAB System block. The available Section properties are

• Title — Group title. The default value is an empty character vector.
• TitleSource — Source of group title. Valid values are 'Property' and 'Auto'. The

default value is 'Property', which uses the character vector from the Title
property. If the Obj name is given, the default value is Auto, which uses the Obj
name. In the System object property display at the MATLAB command line, you can
omit the default "Main" title for the first group of properties by setting TitleSource
to 'Auto'.

• Description — Group or tab description that appears above any properties or
panels. The default value is an empty character vector.

• PropertyList — Group or tab property list as a cell array of property names. The
default value is an empty array. If the Obj name is given, the default value is all
eligible display properties.

• Sections — Group sections as an array of section objects. If the Obj name is given,
the default value is the default section for the Obj.

 matlab.system.display.SectionGroup class

1-17355

matlab.system.display.SectionGroup(Obj,...) creates a section group for the
specified System object (Obj) and sets the following property values:

• TitleSource — Set to 'Auto'.
• Sections — Set to matlab.system.display.Section object for Obj.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the default
settings.

Examples

Define Block Dialog Tabs

Define in your class definition file two tabs, each containing specific properties. For this
example, you use the matlab.system.display.SectionGroup,
matlab.system.display.Section, and getPropertyGroupsImpl methods.

methods (Static, Access = protected)
 function groups = getPropertyGroupsImpl
 valueGroup = matlab.system.display.Section(...
 'Title','Value parameters',...
 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...
 'Title','Threshold parameters',...
 'PropertyList',{'Threshold','UseThreshold'});

 mainGroup = matlab.system.display.SectionGroup(...
 'Title','Main', ...
 'Sections',[valueGroup,thresholdGroup]);

 initGroup = matlab.system.display.SectionGroup(...
 'Title','Initial conditions', ...
 'PropertyList',{'IC1','IC2','IC3'});

 groups = [mainGroup,initGroup];
 end
end

1 Alphabetical List

1-17356

The resulting dialog appears as follows when you add the object to Simulink with the
MATLAB System block.

 matlab.system.display.SectionGroup class

1-17357

See Also
getPropertyGroupsImpl | matlab.system.display.Header |
matlab.system.display.Section

Topics
“Add Property Groups to System Object and MATLAB System Block” (Simulink)

1 Alphabetical List

1-17358

matlab.system.mixin.CustomIcon class
Package: matlab.system.mixin

Custom icon mixin class

Description
matlab.system.mixin.CustomIcon is a class that specifies the getIcon method. This
method customizes the name of the icon used for the System object implemented through
a MATLAB System block.

To use this method, you must subclass from this class in addition to the matlab.System
base class. Type the following syntax as the first line of your class definition file, where
ObjectName is the name of your object:

classdef ObjectName < matlab.system &...
 matlab.system.mixin.CustomIcon

Methods
getIconImpl Name to display as block icon

See Also
matlab.System | matlab.system.display.Icon

Topics
“Add Text to Block Icon” (Simulink)

 matlab.system.mixin.CustomIcon class

1-17359

getIconImpl
Class: matlab.system.mixin.CustomIcon
Package: matlab.system.mixin

Name to display as block icon

Syntax
icon = getIconImpl(obj)

Description
icon = getIconImpl(obj) specifies the text or image to display on the block icon of
the MATLAB System block. If you do not specify the getIconImpl method, the block
displays the class name of the System object as the block icon. For example, if you specify
pkg.MyObject in the MATLAB System block, the default icon is labeled MyObject

getIconImpl is called by the MATLAB System block during Simulink model compilation.

Note You must set Access = protected for this method.

Input Arguments
obj

System object handle

Output Arguments
icon

The text or image to display as the block icon. Each cell is displayed as a separate line.

1 Alphabetical List

1-17360

Examples

Add System Block Icon Name

Specify in your class definition file the name of the block icon as 'Enhanced Counter'
using two lines.

methods (Access = protected)
 function icon = getIconImpl(~)
 icon = {'Enhanced','Counter'};
 end
end

Add Image to MATLAB System Block

Define an image in your class definition file.

 methods(Access = protected)
 function icon = getIconImpl(~)
 % Define icon for System block
 icon = matlab.system.display.Icon('my_icon.png');
 end
 end

The image now appears on the System block icon.

See Also
matlab.system.display.Icon | matlab.system.mixin.CustomIcon

 getIconImpl

1-17361

Topics
“Customize System Block Appearance” (Simulink)

1 Alphabetical List

1-17362

matlab.system.mixin.FiniteSource class
Package: matlab.system.mixin

Finite source mixin class

Description
matlab.system.mixin.FiniteSource is a class that specifies the isDone method,
which reports the state of a finite data source, such as an audio file.

To use this method, you must subclass from this class in addition to the matlab.System
base class. Type the following syntax as the first line of your class definition file, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System &...
 matlab.system.mixin.FiniteSource

Methods
isDoneImpl End-of-data flag

See Also
matlab.System

Topics
“Classes”
“Define Finite Source Objects”

 matlab.system.mixin.FiniteSource class

1-17363

isDoneImpl
Class: matlab.system.mixin.FiniteSource
Package: matlab.system.mixin

End-of-data flag

Syntax
status = isDoneImpl(obj)

Description
status = isDoneImpl(obj) specifies whether the end of the data has been reached.
The isDone method should return true when data from a finite source has been
exhausted, typically by having read and output all data from the source. You should also
define the result of future reads from an exhausted source in the isDoneImpl method.

isDoneImpl is called by the isDone method.

Note You must set Access = protected for this method.

Input Arguments
obj

System object handle

Output Arguments
status

Logical value, true or false, that indicates if an end-of-data condition has occurred or
not, respectively.

1 Alphabetical List

1-17364

Examples

Check for End-of-Data

Set up the isDoneImpl method in your class definition file so the isDone method checks
whether the object has completed eight iterations.

methods (Access = protected)
 function bdone = isDoneImpl(obj)
 bdone = obj.NumIters==8;
 end
end

See Also
matlab.system.mixin.FiniteSource

Topics
“Define Finite Source Objects”

 isDoneImpl

1-17365

matlab.system.mixin.Nondirect class
Package: matlab.system.mixin

Nondirect feedthrough mixin class

Description
matlab.system.mixin.Nondirect is a class that uses the output and update
methods to process nondirect feedthrough data through a System object.

For System objects that use direct feedthrough, the object’s input is needed to generate
the output at that time. For these direct feedthrough objects, running the System object
calculates the output and updates the state values. For nondirect feedthrough, however,
the object’s output depends only on the internal states at that time. The inputs are used to
update the object states. For these objects, calculating the output with outputImpl is
separated from updating the state values with updateImpl. If you use the
matlab.system.mixin.Nondirect mixin and include the stepImpl method in your
class definition file, an error occurs. In this case, you must include the updateImpl and
outputImpl methods instead.

The following cases describe when System objects in Simulink use direct or nondirect
feedthrough.

• System object supports code generation and does not inherit from the Propagates
mixin — Simulink automatically infers the direct feedthrough settings from the System
object code.

• System object supports code generation and inherits from the Propagates mixin —
Simulink does not automatically infer the direct feedthrough settings. Instead, it uses
the value returned by the isInputDirectFeedthroughImpl method.

• System object does not support code generation — Default
isInputDirectFeedthroughImpl method returns false, indicating that direct
feedthrough is not enabled. To override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class definition file.

Use the Nondirect mixin to allow a System object to be used in a Simulink feedback
loop. A delay object is an example of a nondirect feedthrough object.

1 Alphabetical List

1-17366

To use this mixin, you must subclass from this class in addition to subclassing from the
matlab.System base class. Type the following syntax as the first line of your class
definition file, where ObjectName is the name of your object:

classdef ObjectName < matlab.system & matlab.system.mixin.Nondirect

Methods
isInputDirectFeedthroughImpl Direct feedthrough status of input
outputImpl Output calculation from input or internal state of System

object
updateImpl Update object states based on inputs

See Also
matlab.System

Topics
“Use Update and Output for Nondirect Feedthrough” (Simulink)

 matlab.system.mixin.Nondirect class

1-17367

isInputDirectFeedthroughImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Direct feedthrough status of input

Syntax
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj)
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,
input,input2, ...)

Description
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj) specifies whether
each input is a direct feedthrough input. If direct feedthrough is true, the output
depends on the input at each time instant.

[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,
input,input2, ...) uses one or more of the System object input specifications to
determine whether inputs have direct feedthrough.

If you do not include the isInputDirectFeedthroughImpl method in your System
object class definition file, all inputs are assumed to be direct feedthrough.

The following cases describe when System objects in Simulink code generation use direct
or nondirect feedthrough.

• System object supports code generation and does not inherit from the Propagates
mixin — Simulink automatically infers the direct feedthrough settings from the System
object code.

• System object supports code generation and inherits from the Propagates mixin —
Simulink does not automatically infer the direct feedthrough settings. Instead, it uses
the value returned by the isInputDirectFeedthroughImpl method.

• System object does not support code generation — Default
isInputDirectFeedthroughImpl method returns false, indicating that direct

1 Alphabetical List

1-17368

feedthrough is not enabled. To override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class definition file.

Class Information
This method is part of the matlab.system.mixin.Nondirect class.

Run-Time Details
isInputDirectFeedthroughImpl is called by the MATLAB System block.

Method Authoring Tips
• You must set Access = protected for this method.
• You cannot modify, implement, or access tunable properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the
object.

input1,input2,... — Inputs to the System object
inputs to the System object algorithm

Inputs to the algorithm (stepImpl) of the System object. The inputs list must match the
order of inputs in the stepImpl signature.

Output Arguments
flag1,...,flagN — Output flag for each input to the System object
logical

 isInputDirectFeedthroughImpl

1-17369

Logical value, either true or false indicating whether the input is direct feedthrough.
The number of output flags must match the number of inputs to the System object (inputs
to stepImpl, outputImpl, or updateImpl).

Examples

Specify Input as Nondirect Feedthrough

Use isInputDirectFeedthroughImpl in your class definition file for marking all
inputs as nondirect feedthrough.

methods (Access = protected)
 function flag = isInputDirectFeedthroughImpl(~)
 flag = false;
 end
end

Complete Class Definition

classdef intDelaySysObj < matlab.System &...
 matlab.system.mixin.Nondirect
 % intDelaySysObj Delay input by specified number of samples.

 properties
 InitialOutput = 0;
 end
 properties (Nontunable)
 NumDelays = 1;
 end
 properties (DiscreteState)
 PreviousInput;
 end

 methods (Access = protected)
 function validatePropertiesImpl(obj)
 if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))
 error('Number of delays must be > 0 scalar value.');
 end
 if (numel(obj.InitialOutput)>1)
 error('Initial Output must be scalar value.');
 end

1 Alphabetical List

1-17370

 end

 function setupImpl(obj)
 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;
 end

 function resetImpl(obj)
 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;
 end

 function [y] = outputImpl(obj,~)
 y = obj.PreviousInput(end);
 end
 function updateImpl(obj, u)
 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];
 end
 function flag = isInputDirectFeedthroughImpl(~)
 flag = false;
 end
 end
end

See Also
matlab.system.mixin.Nondirect

Topics
“Use Update and Output for Nondirect Feedthrough” (Simulink)

 isInputDirectFeedthroughImpl

1-17371

outputImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Output calculation from input or internal state of System object

Syntax
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN)

Description
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN) specifies the algorithm to
output the System object states. . The output values are calculated from the states and
property values. Any inputs that you set to nondirect feedthrough are ignored during
output calculation.

outputImpl is called by the output method. It is also called before the updateImpl
method. For sink objects, calling updateImpl before outputImpl locks the object. For
all other types of objects, calling updateImpl before outputImpl causes an error.

Note You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object handle

1 Alphabetical List

1-17372

u1,u2,...uN

Inputs from the algorithm. The number of inputs must match the number of inputs
returned by the getNumInputs method. Nondirect feedthrough inputs are ignored
during normal execution of the System object. However, for code generation, you must
provide these inputs even if they are empty.

Output Arguments
y1,y2,...yN

Outputs calculated from the specified algorithm. The number of outputs must match the
number of outputs returned by the getNumOutputs method.

Examples

Set Up Output that Does Not Depend on Input

Specify in your class definition file that the output does not directly depend on the current
input with the outputImpl method. PreviousInput is a property of the obj.

methods (Access = protected)
 function [y] = outputImpl(obj, ~)
 y = obj.PreviousInput(end);
 end
end

See Also
matlab.system.mixin.Nondirect | matlab.system.mixin.Propagates

Topics
“Use Update and Output for Nondirect Feedthrough” (Simulink)

 outputImpl

1-17373

updateImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Update object states based on inputs

Syntax
updateImpl(obj,input1,input2,...)

Description
updateImpl(obj,input1,input2,...) specifies the algorithm to update the System
object states. You implement this method when your algorithm outputs depend only on
the object’s internal state and internal properties.

Run-Time Details
updateImpl is called by the update method and after the outputImpl method.

For sink objects, calling updateImpl before outputImpl locks the object. For all other
types of objects, calling updateImpl before outputImpl causes an error.

Method Authoring Tips
• Do not use this method to update the outputs from the inputs.
• You must set Access = protected for this method.
• If the System object will be used in the Simulink MATLAB System block, you cannot

modify any tunable properties in this method.

1 Alphabetical List

1-17374

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the
object.

input1,input2,... — Inputs to the System object
inputs to the System object

List the inputs to the System object. The order of inputs must match the order of inputs
defined in the stepImpl method.

Examples

Set Up Output that Does Not Depend on Current Input

Update the object with previous inputs. Use updateImpl in your class definition file. This
example saves the u input and shifts the previous inputs.

methods (Access = protected)
 function updateImpl(obj,u)
 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];
 end
end

See Also
matlab.system.mixin.Nondirect

Topics
“Use Update and Output for Nondirect Feedthrough” (Simulink)

 updateImpl

1-17375

matlab.system.mixin.Propagates class
Package: matlab.system.mixin

Signal characteristics propagation mixin class

Description
matlab.system.mixin.Propagates specifies the output size, data type, and
complexity of a System object. Use this mixin class and its methods when you will include
your System object in Simulink via the MATLAB System block. This mixin is called by the
MATLAB System block during Simulink model compilation.

Implement the methods of this class when Simulink cannot infer the output specifications
directly from the inputs or when you want bus support. If you do not include this mixin,
Simulink cannot propagate the output or bus data type, an error occurs.

To use this mixin, subclass from this matlab.system.mixin.Propagates in addition to
subclassing from the matlab.System base class. Type the following syntax as the first
line of your class definition file. ObjectName is the name of your System object.

classdef ObjectName < matlab.System &...
 matlab.system.mixin.Propagates

1 Alphabetical List

1-17376

Methods
getDiscreteStateSpecificationImpl

Discrete state size, data type, and complexity
getOutputDataTypeImpl Data types of output ports
getOutputSizeImpl Sizes of output ports
isOutputComplexImpl Complexity of output ports
isOutputFixedSizeImpl Fixed- or variable-size output ports
propagatedInputComplexity Complexity of input during Simulink propagation
propagatedInputDataType Data type of input during Simulink propagation
propagatedInputFixedSize Fixed-size status of input during Simulink

propagation
propagatedInputSize Size of input during Simulink propagation

Note If your System object has exactly one input and one output and no discrete
property states, or if you do not need bus support, you do not have to implement any of
these methods. The matlab.system.mixin.Propagates provides default values in
these cases.

See Also
matlab.System

Topics
“Set Output Data Type” (Simulink)
“Set Output Size” (Simulink)
“Set Output Complexity” (Simulink)
“Set Fixed- or Variable-Size Output” (Simulink)
“Set Discrete State Output Specification” (Simulink)

 matlab.system.mixin.Propagates class

1-17377

getDiscreteStateSpecificationImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Discrete state size, data type, and complexity

Syntax
[sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,propertyname)

Description
[sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,propertyname)
returns the size, data type, and complexity of the discrete state property. This property
must be a discrete state property. You must define this method if your System object has
discrete state properties and is used in the MATLAB System block.

You always set the getDiscreteStateSpecificationImpl method access to
protected because it is an internal method that users do not directly call or run.

getDiscreteStateSpecificationImpl is called by the MATLAB System block during
Simulink model compilation.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

1 Alphabetical List

1-17378

propertyname

Name of discrete state property of the System object

Output Arguments
sz

Vector containing the length of each dimension of the property.

Default: [1 1]

dt

Data type of the property. For built-in data types, dt is a character vector. For fixed-point
data types, dt is a numerictype object.

Default: double

cp

Complexity of the property as a scalar, logical value:

• true = complex
• false = real

Default: false

Examples

Specify Discrete State Property Size, Data Type, and Complexity

Specify in your class definition file the size, data type, and complexity of a discrete state
property.

methods (Access = protected)
 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
 sz = [1 1];
 dt = "double";

 getDiscreteStateSpecificationImpl

1-17379

 cp = false;
 end
end

See Also
matlab.system.mixin.Propagates

Topics
“Set Discrete State Output Specification” (Simulink)

1 Alphabetical List

1-17380

getOutputDataTypeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Data types of output ports

Syntax
[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj)

Description
[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj) returns the data type of
each output port as a character vector for built-in data types or as a numeric object for
fixed-point data types. The number of outputs must match the value returned from the
getNumOutputs method or the number of output arguments listed in the stepImpl
method.

For System objects with one input and one output and where you want the input and
output data types to be the same, you do not need to implement this method. In this case,
getOutputDataTypeImpl assumes the input and output data types are the same and
returns the data type of the input.

If your System object has more than one input or output, and you subclass from
matlab.system.mixin.Propagates, you must set the output data types in the
getOutputDataTypeImpl method. For Simulink, if the input and output data types are
different, you might have to cast the output value to the data type of the appropriate
dt_n output argument. You specify this casting in the stepImpl method. For bus output,
you must specify the name of the output bus in getOutputDataTypeImpl.

If needed to determine the output data type, you can use propagatedInputDataType
within the getOutputDataTypeImpl method to obtain the input type.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

 getOutputDataTypeImpl

1-17381

If you are debugging your code and examine the data types before Simulink completes
propagation, you might see outputs with empty, [], data types. This occurs because
Simulink has not completed setting the output data types.

Input Arguments
obj

System object

Output Arguments
dt_1,dt_2,...

Data type of the property. For built-in data types, dt is a character vector. For fixed-point
data types, dt is a numerictype object.

Examples

Specify Output Data Type

Specify, in your class definition file how to control the output data type from a MATLAB
System block. This example shows how to use the getOutputDataTypeImpl method to
change the output data type from single to double, or propagate the input as a double. It
also shows how to cast the data type to change the output data type in the stepImpl
method.

classdef DataTypeChange < matlab.System & ...
 matlab.system.mixin.Propagates

 properties(Nontunable)
 Quantize = false
 end

 methods(Access = protected)
 function y = stepImpl(obj,u)
 if obj.Quantize == true

1 Alphabetical List

1-17382

 % Cast for output data type to differ from input.
 y = single(u);
 else
 % Propagate output data type.
 y = u;
 end
 end

 function out = getOutputDataTypeImpl(obj)
 if obj.Quantize == true
 out = "single";
 else
 out = propagatedInputDataType(obj,1);
 end
 end
 end
end

Specify Bus Output

Specify, in your class definition file, that the System object data type is a bus. You must
also include a property to specify the bus name.

properties(Nontunable)
 OutputBusName = "myBus";
end

methods (Access = protected)
 function out = getOutputDataTypeImpl(obj)
 out = obj.OutputBusName;
 end
end

See Also
matlab.system.mixin.Propagates | propagatedInputDataType

Topics
“Set Output Data Type” (Simulink)

 getOutputDataTypeImpl

1-17383

getOutputSizeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Sizes of output ports

Syntax
[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj)

Description
[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj) returns the size of each
output port. The number of outputs must match the value returned from the
getNumOutputs method or the number of output arguments listed in the stepImpl
method.

If your System object has only one input and one output and you want the input and
output sizes to be the same, you do not need to implement this method. In this case
getOutputSizeImpl assumes that the input and output sizes are the same and returns
the size of the input. For variable-size inputs in MATLAB, the size varies each time you
run your object. For variable-size inputs in Simulink, the output size is the maximum input
size.

You must implement the getOutputSizeImpl method to define the output size, if:

• Your System object has more than one input or output
• You need the output and input sizes to be different.

If the output size differs from the input size, you must also use the
propagatedInputSize method

During Simulink model compilation and propagation, the MATLAB System block calls the
getOutputSizeImpl method to determine the output size.

1 Alphabetical List

1-17384

All inputs default to variable-size inputs For these inputs, the output size is the maximum
input size.

Note You must set Access = protected for this method.

In this method, you cannot modify any properties.

Input Arguments
obj

System object handle

Output Arguments
sz_1,sz_2,...

Vector containing the size of each output port.

Examples

Specify Output Size

Specify in your class definition file the size of a System object output.

methods (Access = protected)
 function sz_1 = getOutputSizeImpl(obj)
 sz_1 = [1 1];
 end
end

Specify Multiple Output Ports

Specify in your class definition file the sizes of multiple System object outputs.

 getOutputSizeImpl

1-17385

methods (Access = protected)
 function [sz_1,sz_2] = getOutputSizeImpl(obj)
 sz_1 = propagatedInputSize(obj,1);
 sz_2 = [1 1];
 end
 end

Specify Output When Using Propagated Input Size

Specify in your class definition file the size of System object output when it depends on
the propagated input size.

methods (Access = protected)
 function varargout = getOutputSizeImpl(obj)
 varargout{1} = propagatedInputSize(obj,1);
 if obj.HasSecondOutput
 varargout{2} = [1 1];
 end
 end
end

See Also
matlab.system.mixin.Propagates | propagatedInputSize

Topics
“Set Output Size” (Simulink)

1 Alphabetical List

1-17386

isOutputComplexImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Complexity of output ports

Syntax
[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj)

Description
[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj) returns whether each
output port has complex data. The number of outputs must match the value returned from
the getNumOutputs method or the number of output arguments listed in the stepImpl
method.

For System objects with one input and one output and where you want the input and
output complexities to be the same, you do not need to implement this method. In this
case isOutputComplexImpl assumes the input and output complexities are the same
and returns the complexity of the input.

If your System object has more than one input or output or you need the output and input
complexities to be different, you must implement the isOutputComplexImpl method to
define the output complexity. You also must use the propagatedInputComplexity
method if the output complexity differs from the input complexity.

During Simulink model compilation and propagation, the MATLAB System block calls the
isOutputComplex method, which then calls the isOutputComplexImpl method to
determine the output complexity.

Note You must set Access = protected for this method.

You cannot modify any properties in this method.

 isOutputComplexImpl

1-17387

Input Arguments
obj

System object handle

Output Arguments
cp_1,cp_2,...

Logical, scalar value indicating whether the specific output port is complex (true) or real
(false).

Examples

Specify Output as Real-Valued

Specify in your class definition file that the output from a System object is a real value.

methods (Access = protected)
 function c1 = isOutputComplexImpl(obj)
 c1 = false;
 end
end

See Also
matlab.system.mixin.Propagates | propagatedInputComplexity

Topics
“Set Output Complexity” (Simulink)

1 Alphabetical List

1-17388

isOutputFixedSizeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Fixed- or variable-size output ports

Syntax
[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj)

Description
[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj) returns whether
each output port is fixed size. The number of outputs must match the value returned from
the getNumOutputs method, which is the number of output arguments listed in the
stepImpl method.

For System objects with one input and one output and where you want the input and
output fixed sizes to be the same, you do not need to implement this method. In this case
isOutputFixedSizeImpl assumes the input and output fixed sizes are the same and
returns the fixed size of the input.

If your System object has more than one input or output or you need the output and input
fixed sizes to be different, you must implement the isOutputFixedSizeImpl method to
define the output fixed size. You also must use the propagatedInputFixedSize method
if the output fixed size status differs from the input fixed size status.

During Simulink model compilation and propagation, the MATLAB System block calls the
isOutputFixedSize method, which then calls the isOutputFixedSizeImpl method
to determine the output fixed size.

All inputs default to variable-size inputs For these inputs, the output size is the maximum
input size.

Note You must set Access = protected for this method.

 isOutputFixedSizeImpl

1-17389

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

Output Arguments
flag_1,flag2,...

Logical, scalar value indicating whether the specific output port is fixed size (true) or
variable size (false).

Examples

Specify Output as Fixed Size

Specify in your class definition file that the output from a System object is of fixed size.

methods (Access = protected)
 function c1 = isOutputFixedSizeImpl(obj)
 c1 = true;
 end
end

See Also
matlab.system.mixin.Propagates | propagatedInputFixedSize

Topics
“Set Fixed- or Variable-Size Output” (Simulink)

1 Alphabetical List

1-17390

propagatedInputComplexity
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Complexity of input during Simulink propagation

Syntax
flag = propagatedInputComplexity(obj,index)

Description
flag = propagatedInputComplexity(obj,index) returns true or false to
indicate whether the input argument for the indicated System object is complex. index
specifies the input for which to return the complexity flag.

You can use propagatedInputComplexity only from within the
isOutputComplexImpl method in your class definition file. Use
isOutputComplexImpl when:

• Your System object has more than one input or output.
• The input complexity determines the output complexity.
• The output complexity must differ from the input complexity.

Input Arguments
obj

System object

index

Index of the specified input. Do not count the obj in the index. The first input is always
obj.

 propagatedInputComplexity

1-17391

Output Arguments
flag

Complexity of the specified input, returned as true or false

Examples

Match Input and Output Complexity

Get the complexity of the second input when you run the object and set the output to
match it. Assume that the first input has no impact on the output complexity.

methods (Access = protected)
 function outcomplx = isOutputComplexImpl(obj)
 outcomplx = propagatedInputComplexity(obj,2);
 end
end

See Also
isOutputComplexImpl | matlab.system.mixin.Propagates

Topics
“Set Output Complexity” (Simulink)

1 Alphabetical List

1-17392

propagatedInputDataType
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Data type of input during Simulink propagation

Syntax
dt = propagatedInputDataType(obj,index)

Description
dt = propagatedInputDataType(obj,index) returns the data type of an input
argument for a System object. index specifies the input for which to return the data type.

You can use propagatedInputDataType only from within getOutputDataTypeImpl.
Use getOutputDataTypeImpl when:

• Your System object has more than one input or output.
• The input data type status determines the output data type.
• The output data type must differ from the input data type.

Input Arguments
obj

System object

index

Index of the specified input. Do not count the obj in the index. The first input is always
obj.

 propagatedInputDataType

1-17393

Output Arguments
dt

Data type of the specified input, returned as a character vector for floating-point input or
as a numerictype for fixed-point input.

Examples

Match Input and Output Data Type

Get the data type of the second input. If the second input data type is double, then the
output data type is int32. For all other cases, the output data type matches the second
input data type. Assume that the first input has no impact on the output.

methods (Access = protected)
 function dt = getOutputDataTypeImpl(obj)
 if strcmpi(propagatedInputDataType(obj,2),'double')
 dt = 'int32';
 else
 dt = propagatedInputDataType(obj,2);
 end
 end
end

See Also
getOutputDataTypeImpl | matlab.system.mixin.Propagates

Topics
“Set Output Data Type” (Simulink)
“Data Type Propagation” (Simulink)

1 Alphabetical List

1-17394

propagatedInputFixedSize
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Fixed-size status of input during Simulink propagation

Syntax
flag = propagatedInputFixedSize(obj,index)

Description
flag = propagatedInputFixedSize(obj,index) returns true or false to indicate
whether an input argument of a System object is fixed size. index specifies the input for
which to return the fixed-size flag.

You can use propagatedInputFixedSize only from within isOutputFixedSizeImpl.
Use isOutputFixedSizeImpl when:

• Your System object has more than one input or output.
• The input fixed-size status determines the output fixed-size status.
• The output fixed-size status must differ from the input fixed-size status.

Input Arguments
obj

System object

index

Index of the specified input. Do not count the obj in the index. The first input is always
obj.

 propagatedInputFixedSize

1-17395

Output Arguments
flag

Fixed-size status of the specified input, returned as true or false.

Examples

Match Fixed-Size Status of Input and Output

Get the fixed-size status of the third input and set the output to match it. Assume that the
first and second inputs have no impact on the output.

methods (Access = protected)
 function outtype = isOutputFixedSizeImpl(obj)
 outtype = propagatedInputFixedSize(obj,3)
 end
end

See Also
isOutputFixedSizeImpl | matlab.system.mixin.Propagates

Topics
“Set Fixed- or Variable-Size Output” (Simulink)

1 Alphabetical List

1-17396

propagatedInputSize
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Size of input during Simulink propagation

Syntax
sz = propagatedInputSize(obj,index)

Description
sz = propagatedInputSize(obj,index) returns, as a vector, the input size of the
specified System object. The index specifies the input for which to return the size
information. (Do not count the obj in the index. The first input is always obj.)

You can use propagatedInputSize only from within the getOutputSizeImpl method
in your class definition file. Use getOutputSizeImpl when:

• Your System object has more than one input or output.
• The input size determines the output size.
• The output size must differ from the input size.

Note For variable-size inputs, the propagated input size from propagatedInputSize
differs depending on the environment.

• MATLAB — propagatedInputSize returns the size of the inputs used when you run
the object for the first time.

• Simulink — propagatedInputSize returns the upper bound of the input sizes.

 propagatedInputSize

1-17397

Input Arguments
obj

System object

index

Index of the specified input

Output Arguments
sz

Size of the specified input, returned as a vector

Examples

Match Size of Input and Output

Get the size of the second input. If the first dimension of the second input has a size
greater than 1, then set the output size to a 1 x 2 vector. For all other cases, the output is
a 2 x 1 matrix. Assume that the first input has no impact on the output size.

methods (Access = protected)
 function outsz = getOutputSizeImpl(obj)
 sz = propagatedInputSize(obj,2);
 if sz(1) == 1
 outsz = [1,2];
 else
 outsz = [2,1];
 end
 end
end

See Also
getOutputSizeImpl | matlab.system.mixin.Propagates

1 Alphabetical List

1-17398

Topics
“Set Output Size” (Simulink)

 propagatedInputSize

1-17399

matlab.system.StringSet class
Package: matlab.system

Set of valid character vector values

Description

Note The matlab.System.StringSet class will be removed in a future release. To
create properties with a finite list of values, use enumerations instead. See “Limit
Property Values to Finite List”.

matlab.system.StringSet specifies a list of valid character vector values for a
property. This class validates the character vector in the property and enables tab
completion for the property value. A StringSet allows only predefined or customized
character vectors as values for the property.

A StringSet uses two linked properties, which you must define in the same class. One is
a public property that contains the current character vector value. This public property is
displayed to the user. The other property is a hidden property that contains the list of all
possible character vector values. This hidden property should also have the constant
attribute so that the values cannot be changed by the user.

The following considerations apply when using StringSets:

• The property that holds the current character vector can have any name.
• The property that holds the StringSet must use the same name as the property with

the suffix “Set” appended to it. This property is an instance of the
matlab.system.StringSet class.

• Valid character vectors, defined in the StringSet, must be declared using a cell
array. The cell array cannot be empty nor can it have any empty character vectors.
Valid character vectors must be unique and are case-sensitive.

• The property must be set to a valid StringSet value.

1 Alphabetical List

1-17400

Examples

Set StringSet Property Values

Set the property, Flavor, and the StringSet property, FlavorSet in your class
definition file.

properties
 Flavor = 'Chocolate'
end

properties (Hidden,Constant)
 FlavorSet = ...
 matlab.system.StringSet({'Vanilla','Chocolate'})
end

See Also
matlab.System

Topics
“Limit Property Values to Finite List”

 matlab.system.StringSet class

1-17401

matlab.system.display.Icon class
Package: matlab.system.display

Custom icon image

Syntax
icon = matlab.system.display.Icon(imageFile)

Description
icon = matlab.system.display.Icon(imageFile) sets the imageFile image as
the MATLAB System block icon. To set the icon image, use the icon output argument
from getIconImpl.

Input Arguments
imageFile — Image file
character array

Image file to display on the block icon, specified as a character array. If the image is not
on the path, use the full path to your image file.

The image file must be in a file format supported for block masks. See “Draw Static Icon”
(Simulink).
Example: "image.png"

Examples

Add Image to MATLAB System Block

Define an image in your class definition file.

1 Alphabetical List

1-17402

 methods(Access = protected)
 function icon = getIconImpl(~)
 % Define icon for MATLAB System block
 icon = matlab.system.display.Icon("my_icon.png");
 end
 end

The image now appears on the MATLAB System block icon.

See Also
getIconImpl | matlab.system.mixin.CustomIcon

Topics
Class Attributes
Property Attributes
“Customize System Block Appearance” (Simulink)

Introduced in R2017a

 matlab.system.display.Icon class

1-17403

matlab.system.mixin.SampleTime class

Control sample time for System objects in Simulink

Description
matlab.system.mixin.SampleTime specifies the sample time specifications for a
System object when it is included in a MATLAB System block. Inherit from this mixin
class and its methods to control the sample time of your System object in Simulink, via
the MATLAB System block.

With this mixin, you can:

• Specify the sample time type
• Specify the sample time
• Customize the sample time with offsets and tick times
• Get the current simulation time

System objects that inherit from this mixin class must also inherit from matlab.System.
For example:

classdef MySystemObject < matlab.System & matlab.system.mixin.SampleTime

Methods

getSampleTime Query sample time
getSampleTimeImpl Specify sample time type, offset time, and sample time
getCurrentTime Current simulation time in MATLAB System block
createSampleTime Create sample time specification object

1 Alphabetical List

1-17404

See Also
Classes
matlab.System

createSampleTime | getCurrentTime | getSampleTime | getSampleTimeImpl

Blocks
MATLAB System

Topics
“Specify Sample Time for MATLAB System Block System Objects” (Simulink)

Introduced in R2017b

 matlab.system.mixin.SampleTime class

1-17405

getSampleTime
Class: matlab.system.mixin.SampleTime

Query sample time

Syntax
sts = getSampleTime(obj)

Description
sts = getSampleTime(obj) returns the sample time specification for the System
object obj when the System object is included in a MATLAB System block. You can call
getSampleTime in the stepImpl method to change the algorithm based on the sample
time.

Before sample time has propagated throughout the MATLAB System block model,
getSampleTime returns the getSampleTimeImpl sample time specification. If your
system object does not override getSampleTimeImpl, the default Inherited sample
time specification is returned.

After sample time has propagated, getSampleTime returns the sample time specification
populated with the actual MATLAB System block sample time type, sample time, and
offset time.

Input Arguments
obj — System object
system object

System object included in a MATLAB System block that you want to query.

1 Alphabetical List

1-17406

Output Arguments
sts — Sample time specification object
sample time specification object

The sample time specification for the System object. For more details about sample time
specification objects, see createSampleTime.

Examples
Return Sample Time

This example of stepImpl returns a count value y, the current simulation time ct, and
the sample time st. The sample time is obtained by calling getSampleTime.

function [y,ct,st] = stepImpl(obj,u)
 y = obj.Count + u;
 obj.Count = y;
 ct = getCurrentTime(obj);
 sts = getSampleTime(obj);
 st = sts.SampleTime;
 end

For a complete class definition, see “Specify Sample Time for MATLAB System Block
System Objects” (Simulink).

See Also
createSampleTime | getCurrentTime | getSampleTimeImpl |
matlab.system.mixin.SampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects” (Simulink)

Introduced in R2017b

 getSampleTime

1-17407

getSampleTimeImpl
Class: matlab.system.mixin.SampleTime

Specify sample time type, offset time, and sample time

Syntax
sts = getSampleTimeImpl(obj)

Description
sts = getSampleTimeImpl(obj) returns the sample time specification created within
the method body, sts, for the System object obj. Specify the sample time specification
within the body of getSampleTimeImpl by calling createSampleTime. The sample
time specification affects the simulation time when the System object is included in a
MATLAB System block.

This method is called during setup by setupImpl.

Input Arguments
obj — System object
system object

System object for which you want to specify the sample time.

Output Arguments
sts — Sample time specification object
sample time specification object

An object defining the sample time specification values. You create this object with the
createSampleTime function.

1 Alphabetical List

1-17408

Examples
Specify Inherited Sample Time

Specify that the MATLAB System block should inherit the sample from upstream blocks.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Inherited');
end

Specify Discrete Sample Time

Specify a discrete sample time for the MATLAB System block.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Discrete',...
 'SampleTime',10.2,'OffsetTime',0.5);
end

See Also
createSampleTime | getCurrentTime | getSampleTime |
matlab.system.mixin.SampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects” (Simulink)

Introduced in R2017b

 getSampleTimeImpl

1-17409

getCurrentTime
Class: matlab.system.mixin.SampleTime

Current simulation time in MATLAB System block

Syntax
t = getCurrentTime(obj)

Description
t = getCurrentTime(obj) returns the current simulation time in the MATLAB System
block. Call this method in the stepImpl method of your System object.

Note If the MATLAB System block is operating in continuous sample time,
getCurrentTime may return non-monotonic times due to solver operation.

Input Arguments
obj — System object
system object

System object included in a MATLAB System block that you want to query.

Output Arguments
t — Current simulation time
double

The current simulation time of the MATLAB System block that contains the System object.

1 Alphabetical List

1-17410

Examples
Return Current Simulation Time

This example of stepImpl returns a count value y and the current simulation time ct.
The simulation time is obtained by calling getCurrentTime.

 function [y,ct] = stepImpl(obj,u)
 y = obj.Count + u;
 obj.Count = y;
 ct = getCurrentTime(obj);
 end

For a complete class definition, see “Specify Sample Time for MATLAB System Block
System Objects” (Simulink).

See Also
createSampleTime | getSampleTime | getSampleTimeImpl |
matlab.system.mixin.SampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects” (Simulink)

Introduced in R2017b

 getCurrentTime

1-17411

createSampleTime
Class: matlab.system.mixin.SampleTime

Create sample time specification object

Syntax
sts = createSampleTime(obj)
sts = createSampleTime(obj,'Type',Type)
sts = createSampleTime(obj,'Type',Type,Name,Value)

Description
sts = createSampleTime(obj) creates a sample time specification object for
inherited sample time for the System object obj. Use this sample time specification
object in the getSampleTimeImpl method of your System object. The sample time
specification affects the simulation time when the System object is included in a MATLAB
System block.

sts = createSampleTime(obj,'Type',Type) creates a sample time specification
object with the specified sample time type.

sts = createSampleTime(obj,'Type',Type,Name,Value) creates a sample time
specification object with additional options specified by one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
obj — System object
system object

System object that you want to specify the sample time.

1 Alphabetical List

1-17412

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Type','Fixed In Minor Step'

Type — Sample time type
'Inherited' (default) | 'Controllable' | 'Discrete' | 'Fixed In Minor Step'

Type of sample time you want the System object to use in Simulink. For descriptions of
the different types of sample times, see:

• 'Inherited' - “Inherited Sample Time” (Simulink)
• 'Controllable' - “Controllable Sample Time” (Simulink)
• 'Discrete' - “Discrete Sample Time” (Simulink)
• 'Fixed In Minor Step' - “Fixed-in-Minor-Step” (Simulink)

Example: createSampleTime('Type','Fixed In Minor Step')

Disallow — Disallow controllable sample time
'Controllable'

Optional for Inherited sample time only.

When the sample time type is set to Inherited, this option disallows inherited
controllable sample time. Use this option if your System object depends on having
constant time between each sample-time hit.

If controllable sample time is propagated to the System object, discrete sample time is
used instead with the same tick time as the propagated controllable sample time.
Example:
createSampleTime('Type','Inherited','Disallow','Controllable')

SampleTime — Time between samples
1 (default) | positive number

For Discrete sample time only.

Specify the time between sample hits in Simulink.

 createSampleTime

1-17413

Example: createSampleTime('Type','Discrete','SampleTime',1)
Data Types: single | double

OffsetTime — Offset from sample time
0 (default) | nonnegative number less than SampleTime

For Discrete sample time only.

Specify the offset time for the sample hit. The offset is a time interval indicating an
update delay. The block is updated later in the sample interval than other blocks
operating at the same sample rate.

The offset time must be nonnegative and less than SampleTime.
Example:
createSampleTime('Type','Discrete','SampleTime',2,'OffsetTime',1)

Data Types: single | double

TickTime — Time between sample time hits
-1 (default) | positive scalar

Required for Controllable sample time only.

Specify the time between controllable sample time hits. The tick time must be a positive
scalar.
Example:
createSampleTime('Type','Controllable','TickTime',obj.TickTime)

Data Types: single | double

Output Arguments
sts — Sample time specification object
sample time specification object

The sample time specification object. This object has the following properties:

• Type — Type of sample time
• SampleTime — Time between samples

1 Alphabetical List

1-17414

• OffsetTime — Offset from sample time

Use this object as the return value of getSampleTimeImpl.

Examples
Create Inherited Sample Time Specification Objects

Specify that the MATLAB System block inherits the sample from upstream blocks.
Inherited sample time is the default, so no additional arguments are needed.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj);
end

Create Discrete Sample Time Object

Specify a discrete sample time specification for the MATLAB System block, including
offset time and the sample time.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Discrete',...
 'SampleTime',10.2,'OffsetTime',0.5);
end

See Also
getCurrentTime | getSampleTime | getSampleTimeImpl |
matlab.system.mixin.SampleTime | setNumTicksUntilNextHit

Topics
“Specify Sample Time for MATLAB System Block System Objects” (Simulink)

Introduced in R2017b

 createSampleTime

1-17415

clone
Create duplicate System object

Syntax
objClone = clone(obj)

Description
objClone = clone(obj) creates a copy of the System object obj that has the same
property values and states as obj. If the object you clone is in use and you cannot change
nontunable properties, the new object is also considered "in use".

Examples

Copy an Object

Create a Counter object and set a property.

obj = Counter;
obj.UseIncrement = false

obj =
 Counter with properties:

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1
 WrapValue: 10

Clone the object.

obj2 = clone(obj)

1 Alphabetical List

1-17416

obj2 =
 Counter with properties:

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1
 WrapValue: 10

Input Arguments
obj — System object to clone
System object

System object that you want to clone.

Output Arguments
objClone — Cloned System object
System object

Copy of the System object that has the same properties and state as the original object.

See Also
isLocked

Topics
“System Design in MATLAB Using System Objects”

Introduced in R2010a

 clone

1-17417

getImpulseResponseLengthImpl
Define length of input effects for dataflow subsystems

Syntax
impulseLength = getImpulseResponseLengthImpl(obj)
impulseLength = getImpulseResponseLengthImpl(obj,input1,
input2, ...)

Description
impulseLength = getImpulseResponseLengthImpl(obj) defines the impulse
response length of a System object that is independent of input specifications.

impulseLength = getImpulseResponseLengthImpl(obj,input1,
input2, ...) defines the impulse response length for obj as a function of one or more
of its input specifications.

Input Arguments
obj — System object
system object handle

System object for which you want to specify the impulse response length.

input1, input2, ... — Inputs to the stepImpl method
inputs to the System object

List the inputs to the System object. The order of inputs must match the order of inputs
defined in the stepImpl method. stepImpl passes the inputs into setupImpl to use the
specifications, such as size and data types in the one-time calculations.

1 Alphabetical List

1-17418

Output Arguments
impulseLength — Impulse response length
nonnegative scalar integer | inf

The impulse response length of an object, or number of input samples that affect the
output of a block. The impulse response length is used by dataflow to optimize the
automatic partitioning of a dataflow subsystem for multithreaded simulation and code
generation.

Examples

Get Impulse Response Length

When the impulse response length of a system object is constant, specify the number of
input samples that affect the output of the block.

function s = getImpulseResponseLengthImpl(obj)
 s = 50;
end

Get Impulse Response Length Based on System Object Input Arguments

When inputs to the system object affect the length of the impulse response, specify the
inputs in the function signature.

function s = getImpulseResponseLengthImpl(obj, X, COEFF)
 if isequal(obj.NumeratorSource, ‘Property’)
 s = numel(obj.Numerator) - 1;
 else
 s = numel(COEFF) - 1;
 end
end

See Also
getInputDimensionConstraintImpl | getOutputDimensionConstraintImpl

 getImpulseResponseLengthImpl

1-17419

Topics
“Dataflow Domain” (DSP System Toolbox)

Introduced in R2018b

1 Alphabetical List

1-17420

getInputDimensionConstraintImpl
Define input dimension constraints for dataflow subsystems

Syntax
constraints = getInputDimensionConstraintImpl(obj)
constraints = getInputDimensionConstraintImpl(obj,index)

Description
constraints = getInputDimensionConstraintImpl(obj) defines the input
dimension constraint for the first input.

constraints = getInputDimensionConstraintImpl(obj,index) defines the
input dimension constraint for obj for the indexth input port.

If you specify the getInputDimensionConstraintImpl method, you should also
specify the getOutputDimensionConstraintImpl method.

Input Arguments
obj — System object
system object

System object for which you want to specify constraints.

index — Index of input port
1 (default) | scalar integer

Index of input port, specified as a scalar integer.

 getInputDimensionConstraintImpl

1-17421

Output Arguments
constraints — Dimension constraint
dimension constraint object

The input dimension constraint object, used by dataflow to optimize the automatic
partitioning of a dataflow subsystem for multithreaded simulation and code generation.

Use the inputDimensionConstraint method to specify the following properties of the
dimension constraint object.

• 'MinimumSize' - Minimum number of samples needed to run, specified as a
nonnegative scalar integer.

• 'Concatenable' - Whether the object can accept multiples of the minimum size,
specified as a boolean. The default value for 'Concatenable' is false.

If 'Concatenable' is set to true, the software may buffer the inputs to the System
object. If 'Concatenable' is set to false, the software may execute the block several
times to process all of the incoming data.

Examples
Specify Input Dimension Constraint

Specify the required input dimension of the first input of a system object.

function dc = getInputDimensionConstraintImpl(obj)
 dc = inputDimensionConstraint(obj, 'MinimumSize', obj.NumBins, 'Concatenable', true);
end

Specify Input Dimension Constraint for a Specified Port

To specify the input dimension for an input port other than the first input port, specify the
port number in the constructor.

function dc = getInputDimensionConstraintImpl(obj, index)
 if index == 1
 dc = inputDimensionConstraint(obj, 'MinimumSize', obj.NumBins, 'Concatenable', true);
 else

1 Alphabetical List

1-17422

 dc = inputDimensionConstraint(obj, 'MinimumSize', 1, 'Concatenable', true);
 end
end

Default Behavior
If this method is not overwritten, the MATLAB System block sets the input dimension
constraint to unspecified. The unspecified setting allows the dataflow scheduler to make
conservative assumptions for optimization.

See Also
getImpulseResponseLengthImpl | getOutputDimensionConstraintImpl

Topics
“Dataflow Domain” (DSP System Toolbox)

Introduced in R2018b

 getInputDimensionConstraintImpl

1-17423

getOutputDimensionConstraintImpl
Define output dimension constraints for dataflow subsystems

Syntax
constraints = getOutputDimensionConstraintImpl(obj)
constraints = getOutputDimensionConstraintImpl(obj,index)

Description
constraints = getOutputDimensionConstraintImpl(obj) defines the output
dimension constraint for the first output.

constraints = getOutputDimensionConstraintImpl(obj,index) defines the
output dimension constraint for the indexth output port.

If you specify the getOutputDimensionConstraintImpl method, you should also
specify the getInputDimensionConstraintImpl method.

Input Arguments
obj — System object
system object

System object for which you want to specify constraints.

index — Index of output port
1 (default) | scalar integer

Index of output port, specified as a scalar integer.

1 Alphabetical List

1-17424

Output Arguments
constraints — Output dimension constraint
dimension constraint object

The output dimension constraint object, used by dataflow to optimize the automatic
partitioning of a dataflow subsystem for multithreaded simulation and code generation.

Use the outputDimensionConstraint method to specify the 'MinimumSize' property
of the dimension constraint object. 'MinimumSize' defines the minimum number of
samples needed to run, specified as a nonnegative scalar integer. This value is used for
downstream automatic frame-size calculation in dataflow subsystems.

Examples

Specify Output Dimension Constraint

Specify the required output dimension of the first input of a system object.

function dc = getOutputDimensionConstraintImpl(obj)
 dc = outputDimensionConstraint(obj, 'MinimumSize', obj.NumBins);
end

Specify Output Dimension Constraint for a Specified Port

To specify the output dimension for an input port other than the first input port, specify
the port index in the constructor.

function dc = getOutputDimensionConstraintImpl(obj, index)
 if index == 1
 dc = outputDimensionConstraint(obj, 'MinimumSize', obj.NumBins);
 else
 dc = outputDimensionConstraint(obj, 'MinimumSize', 1);

 getOutputDimensionConstraintImpl

1-17425

 end
end

Default Behavior
If this method is not overwritten, the MATLAB System block sets the output dimension
constraint to unspecified. The unspecified setting allows the dataflow scheduler to make
conservative assumptions for optimization.

See Also
getImpulseResponseLengthImpl | getInputDimensionConstraintImpl

Topics
“Dataflow Domain” (DSP System Toolbox)

Introduced in R2018b

1 Alphabetical List

1-17426

getNumInputs
Number of inputs required to call the System object

Syntax
num = getNumInputs(obj)

Description
num = getNumInputs(obj) returns an integer, num, representing the number of inputs
(not counting the object itself) that you must use when calling the object. This value
changes when you alter properties that turn inputs on or off.

If the object is a source object, num equals zero.

Examples

Get Number of Inputs for an Object

Create a Counter object and set a property.

obj = Counter;
obj.UseIncrement = false

obj =
 Counter with properties:

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1
 WrapValue: 10

Query the number of inputs and outputs needed to call the object.

 getNumInputs

1-17427

in = getNumInputs(obj)

in = 1

out = getNumOutputs(obj)

out = 1

Input Arguments
obj — System object to query
System object

System object to query for the number of inputs.

Output Arguments
num — Number of inputs
nonnegative integer

The number of inputs required to call the object, returned as an integer.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For details, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
getNumOutputs

Topics
“System Design in MATLAB Using System Objects”

1 Alphabetical List

1-17428

Introduced in R2010a

 getNumInputs

1-17429

getNumOutputs
Number of outputs from calling the System object

Syntax
num = getNumOutputs(obj)

Description
num = getNumOutputs(obj) returns the number of outputs, num, from calling the
object. This value changes when you alter properties that turn outputs on or off.

If the object is a sink object, num equals zero.

Examples

Get Number of Outputs for an Object

Create a Counter object and set a property.

obj = Counter;
obj.UseIncrement = false

obj =
 Counter with properties:

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1
 WrapValue: 10

Get the number of inputs and outputs needed to call the object.

1 Alphabetical List

1-17430

in = getNumInputs(obj)

in = 1

out = getNumOutputs(obj)

out = 1

Input Arguments
obj — System object to query
System object handle

System object to query for the number of outputs.

Output Arguments
num — Number of outputs
integer

The number of outputs from calling the System object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For details, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
getNumInputs

Topics
“System Design in MATLAB Using System Objects”

 getNumOutputs

1-17431

Introduced in R2010a

1 Alphabetical List

1-17432

isDone
End-of-data status

Syntax
tf = isDone(obj)

Description
tf = isDone(obj) returns true when the data from a finite source has been
exhausted, typically because all data has been read. The System object obj is often a file
reader, and isDone looks for the end of the file. Otherwise, isDone returns false.

Examples

Read MAT File
This example shows how to read a MAT file using the dsp.MatFileReader object.

Note This example requires DSP System Toolbox™.

filename = [tempname '.mat']; % Create variable name
originalData = rand(10,2);
save(filename,'originalData','-v7.3'); % Write to MAT file

mfr = dsp.MatFileReader(filename,'VariableName',...
 'originalData','SamplesPerFrame', 4);
while ~isDone(mfr) % Stream data into MATLAB
 isDone(mfr) % Display zero if end-of-data not reached
 finalData = mfr() % Display read frame
end

 isDone

1-17433

Input Arguments
obj — System object to query
System object

System object whose status you want to query.

Output Arguments
tf — True or false
0 | 1

True or false result, returned as:

• Logical 1 (done) — End-of-data has been reached.
• Logical 0 (not done) — End-of-data has not been reached.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For details, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Topics
“Summary of Call Sequence”
“System Design in MATLAB Using System Objects”

Introduced in R2010a

1 Alphabetical List

1-17434

isLocked
Determine if System object is in use

Syntax
tf = isLocked(obj)

Description
tf = isLocked(obj) returns logical 1 (true) if the System object is in use. Otherwise,
isLocked returns logical 0 (false).

The object performs an internal initialization the first time that you call the object. After
initialization, the object is considered in-use and you cannot change nontunable
properties and other specifications determined by the System object author. While an
object is in use, isLocked returns 1 (true). To allow changes to the object, call
release.

Examples

Check If Object Is Being Used

Create a Counter object and set a property.

obj = Counter;
obj.UseIncrement = false

obj =
 Counter with properties:

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1

 isLocked

1-17435

 WrapValue: 10

Call the object.

step(obj,1)

ans = 2

Check if the object is in use.

isLocked(obj)

ans = logical
 1

Release the object and check if the object is still locked.

reset(obj)
release(obj)

isLocked(obj)

ans = logical
 0

Input Arguments
obj — System object to query
System object

System object whose status you want to query.

Output Arguments
tf — True or false
0 | 1

True or false result, returned as logical 1 or 0 indicating the status of the System object
as in use (locked) or not.

1 Alphabetical List

1-17436

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For details, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Topics
“Summary of Call Sequence”
“System Design in MATLAB Using System Objects”

Introduced in R2010a

 isLocked

1-17437

release
Release resources and allow changes to System object property values and input
characteristics

Syntax
release(obj)

Description
release(obj) releases system resources such as memory, file handles, or hardware
connections, and allows you to change properties and input characteristics.

Examples

Release and Reset an Object

Create a Counter object and set a property.

obj = Counter;
obj.UseIncrement = false

obj =
 Counter with properties:

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1
 WrapValue: 10

Reset and release the object.

1 Alphabetical List

1-17438

reset(obj)
release(obj)

Input Arguments
obj — System object to release
System object

System object you want to release.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

You can use release on a System object in code generated from MATLAB, but after you
release its resources, you cannot use that System object again.

For details, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
reset

Topics
“System Design in MATLAB Using System Objects”

Introduced in R2010a

 release

1-17439

reset
Reset internal states of System object

Syntax
reset(obj)

Description
reset(obj) resets the internal states and input properties of the System object to their
initial values.

• If obj writes or reads a file, reset resets the object to the beginning of the file.
• If obj changes properties, reset resets the properties to their initial default values.
• If obj uses a random number generation seed, reset resets the seed property.

Examples

Reset Object

Create a Counter object and set a property.

obj = Counter;
obj.UseIncrement = false

obj =
 Counter with properties:

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1
 WrapValue: 10

1 Alphabetical List

1-17440

Reset and release the object.

reset(obj)
release(obj)

Input Arguments
obj — System object to reset
System object

System object whose state you want to reset.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For details, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
release

Topics
“System Design in MATLAB Using System Objects”

Introduced in R2010a

 reset

1-17441

step
Run System object algorithm

Syntax
step(obj, ___)

Description
step(obj, ___) calls the System object and runs the algorithm. Depending on your
System object, step can return output arguments.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

For details about the algorithm and input variables, see the individual System object
reference pages.

Examples

Run an Object Using step

Create a Counter object and set a property.

obj = Counter;
obj.UseIncrement = false

obj =
 Counter with properties:

1 Alphabetical List

1-17442

 UseIncrement: false
 UseWrapValue: true
 StartValue: 1
 Increment: 1
 WrapValue: 10

Run the counter.

step(obj,1)

ans = 2

Input Arguments
obj — System object to run
System object

System object whose algorithm you want to run. Depending on the System object,
additional input arguments might be required.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For details, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
reset

Topics
“System Design in MATLAB Using System Objects”

 step

1-17443

Introduced in R2010a

1 Alphabetical List

1-17444

